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PREFACE 

During the last few years the digital computer has assumed a prominent role 
in system simulation and in the solution of nontrivial mathematical equations. 
Computer languages such as FORTRAN, BASIC, and PL/l have provided users 
with a convenient method for communicating with the computer on a wide range 
of problems. In many cases, specialized computer programs have been developed 
that are directly tailored to a particular class of problems. A notable example is in 
the area of modeling physical systems. Several software packages are available, one 
of the most widely used being the Continuous System Modeling Program (S/360 
CSMP and CSMP III) which was developed by the IBM Company. 

CSMP is a program especially designed to allow users to simulate all types of 
physical systems with a minimum of programming difficulty. The language 
employs user-oriented statements for formulating numerically complicated mathe­
matical operations such as integration and differentiation. Input data, problem 
parameters, and program output are handled by extremely simple statements. The 
power and flexibility of FORTRAN is retained with CSMP since it is used as the 
source language. Essentially, all capabilities of FORTRAN can be used in a 
CSMP program. 

The basic objective of this text is to provide instruction for both the college 
student and the practicing engineer and scientist on the use of CSMP in modeling 
physical systems and solving mathematical equations. The book assumes that the 
reader has no background in CSMP and only an introductory knowledge of 
FORTRAN. 

In many programming texts, the essential ingredients for writing a complete 
program (input, output, and structure statements) are contained in various chapters 
throughout the book. This means the user must read the entire text before for­
mulating and writing meaningful programs. This book is organized in such a way 

ix 
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that the reader need study only the first two chapters in order to solve significant 
problems. 

The basic fundamentals of CSMP are presented with detailed explanations and 
are illustrated by example problems. From our experience as both students and 
teachers, we feel that this approach is more appealing and effective in the learning 
process. Thus, important concepts, program statements, and general software 
procedures are illustrated by actual working programs representing disciplines 
from a large cross section of engineering, mathematics, and related fields. 

The first two chapters present introductory material and are designed to bring 
the reader to a point where it is possible to effectively use the program. Each exam­
ple in Chapter Two concentrates on presenting one or two key concepts and then 
showing how these concepts are applied in a typical application. The third chapter 
has a somewhat different objective in that it concentrates on presenting the more 
advanced features of CSMP and is developed under five main headings; Integra­
tion Methods, Data Statements, Translation Control Statements, Subprograms, 
and Data Output. Once the reader has a basic knowledge of CSMP, the material in 
this chapter can be used to increase programming capability and as a convenient 
reference section. As in the second chapter, all important concepts are illustrated 
by practical example programs. Chapter Four concentrates on specific examples 
dealing with the frequency response of a system, the simulation of digital control 
systems, and the simulation of logic functions. 

All of the material prior to Chapter Five is written for S/360 CSMP. With the 
exception of output capability, there is very little difference in using S/360 CSMP 
and CSMP III. Consequently, the first four chapters also apply to CSMP III. The 
additional capabilities and slight programming changes are outlined in Chapter 
Five. 

Practice problems are included at the close of all major chapters. Any serious 
potential user of CSMP should work these problems since it is practically impos­
sible to master a program language without actually writing programs. 

The material contained in the Appendix is quite useful in that it gives a com­
plete summary of all functions and signal sources available in CSMP as well as a 
list of definitions, restrictions, diagnostic messages, and reserved words. 

The authors wish to express their appreciation to Mr. George Miles and Mr. 
Wayne Toppins of the University of Tennessee Computing Center for their assis­
t~nce and helpful comments. Also, we are grateful to our wives for their continuous 
ejncouragement. 

F.R.S., W.L.G. 



1 
INTRODUCTION 

In the years preceding the development and wide acceptance of the digital 
computer, solutions for system simulations and differential equations were com" 
monly programmed on· the analog computer. Inherent with the analog computer 
was the necessity for the user to give careful consideration to both magnitude and 
time scaling of the problem variables. Complex operations such as square roots, 
squaring, and trigonometric functions usually required special purpose hardware. 
The solution to higher"order equations or to several simultaneous equations 
resulted in a complicated maze of patch-panel wiring. Troubleshooting for a mis­
placed wiring connection on the patch board was a tedious and time-consuming task. 

Following the introduction of FORTRAN and other high-level programming 
languages, digital computer methods were developed that made possible the 
numerical solution to problems that were formerly solved on the analog computer. 
Mathematicians, researchers, and engineers were confronted with developing and 
debugging their own programs or relying on the skill of a professional programmer. 
Relying on a programmer to develop software often results in either the user not 
adequately describing the problem or the programmer not correctly interpreting 
the user's request. 

If, however, users accept the challenge of developing their own software, 
they are faced with the problem of devoting so much effort to writing programs 
that little time is left for the main responsibilities of their positions. 

An Application-Oriented Program 

In response to the need for a program language that did not require extensive 
knowledge of FORTRAN methods and numerical techniques, IBM developed an 

1 
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application-oriented program known as Digital Simulation Language-90 (DSL-90) 
for the 7090 digital computer series. (1) This program was later modified and 
adapted for use with the IBM System/360. The name of the simulation was changed 
to Continuous System Modeling Program (System/360 CSMP). (2-4) More recently 
the scope of CSMP has been extended to include greater flexibility by incorporat­
ing CRT graphic-display capability, multiple printer-plots on a single page, line­
printer charts, overstrikes for gray toning and contour definition, and several new 
function blocks. (5-6) This version of the program is known as CSMP Ill. Since 
there is very little difference between S/360 CSMP and CSMP III, both forms 
are simply referred to as CSMP. This book will use both forms. 

CSMP was particularly written to solve either a system of ordinary differential 
equations or analog block diagrams as encountered in system theory. In developing 
the program, emphasis was placed on simplified input data statements, output 
statements, and on program control statements that almost directly describe the 
mathematical equations or physical variables of the problem. In effect, CSMP 
allows the user to concentrate on the details of the physical system rather than the 
usual concerns of numerical analysis and programming. 

Background Required For Using CSM P 

A person entirely unacquainted with computer programming can learn to 
solve significant and rather complex problems with CSMP with less than two hours 
of preparation. An introductory knowledge of FORTRAN is a helpful but not an 
essential prerequisite. Using CSMP is like using any other programming language 
in that the scope of problems which one can solve increases with the depth of 
preparation and the frequency of application. 

Using the CSMP program is similar in many respects to using the electronic 
analog computer. Many of the special CSMP statements perform the same func­
tion as typical analog computer components. As previously noted, there is never 
a need to be concerned with amplitude and time-scaling. CSMP digital simula­
tion has many other advantages over the use of an analog machine in that it (1) is 
more accurate; (2) is easier to program; and (3) has much gr:eater capability in 
handling nonlinear and time-variant problems. 

Anyone working in a field of science who has a need to simulate a system or 
solve ordinary differential equations will quickly recognize the power of CSMP. 
Typically, CSMP can be used to model the dynamic behavior of an automobile, 
to determine the effect of adding nonlinear rubber isolaters in controlling the vibra­
tion of a machine, to study the effects of changing the deadband in a controller of 
a nonlinear feedback-control system, to simulate the cardiovascular system, and 
to predict the future performance of the stock market from a yet to be derived 
nonlinear, time-varying, multiple input/output model. Apparently, the number of 
potential applications for CSMP is limited only by the needs and imagination of 
its users. (7-11) 
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The Power of CSMP 

The flexibility and ease of using CSMP cannot be described in a few short 
sentences. However, as a simple introduction, consider the following nonlinear, 
time-varying, differential equation: 

d
2
y + yt dy + y = t2 

dt 2 dt 

y(O) = 1.0 

y(O) = 2.0 

The program below illustrates the ease of solving this equation. 

Y2DOT = TIME*TIME - Y - Y*TIME*YDOT 
YDOT = INTGRL (2.0, Y2DOT) 
Y = INTGRL (1.0, YDOT) 
TIMER FINTIM = 3.0, PRDEL = 0.03 
PRINT Y 
END 
STOP 
ENDJOB 

With the exception of control cards, the entire program listing consists of only 
eight statements. The output from the computer will be a column listing giving 
100 discrete values of the dependent variable Y calculated uniformly over three 
units of problem time. As a comparison, the reader might reflect on the effort 
required to solve this problem by numerical methods using FORTRAN or by 
simulation using an analog computer. 

As another simple example, suppose the step response of the following block 
diagram representation of a system is desired. 

R + c 

This system can be simulated using only ten CSMP statements. 
As these illustrations point out, only a few program statements are required 

for problem simulations. Solutions using FORTRAN or an analog computer 
would certainly require much more complicated programming. However, 
FORTRAN and analog simulation are powerful in their own right. The purpose 
of this text is to give the reader a background in CSMP and leave the ranking of 
programming methods to someone else. 
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CSMP is most useful for small and medium-size simulations. For extremely 
large and complex problems the simulation may be limited by program-size restric­
tions. Also, because of the flexibility in programming, CSMP simulations may 
require slightly more computer time than custom-developed programs. 
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2 
FUNDAMENTALS 

OF SYSTEM/360 

CSMpt 

The objective of this chapter is to present those fundamentals of CSMP that 
will allow the beginning user to write productive programs. Extensive discussions of 
format, program structure, and the functions of the simulation language as separate 
sections within the chapter are purposely avoided. This is because the authors 
have found through experience that the basic fundamentals can be more readily 
grasped by presenting examples that illustrate practical applications of the program. 

The discussions of symbols, constants, operators, structure, and format pro­
vide a working description of the simulation language. These discussions are fol­
lowed by eleven examples that have been carefully selected to enable the reader to 
develop a fundamental knowledge of the simulation language as he progresses 
through the material. Problems at the end of the chapter should be considered as 
part of the text, for it is practically impossible for one to ever develop program­
ming skill without personally formulating and writing programs. 

A General Overview of CSM P 

CSMP is an application-oriented program in that it is specially written for 
scientists, engineers, and analysts who are involved in work that requires the solu­
tion of ordinary differential equations or in simulating a system that has been 
modeled as a block diagram. Long hours of tedious program development and 
program debugging are not required for effecting the solution of rather compli­
cated problems. 

tEven though this chapter specifically deals with S/360 CSMP, the same programming 
fundamentals also apply to CSMP III. With the noted exception of the Example 2.2, all pro­
grams in this chapter will run on a CSMP III system. 

5 



6 Fundamentals of System/360 CSMP Ch. 2 

The utility and ease of using CSMP stems mainly from (1) simplified pro­
gram statements; (2) flexibility of program structure; and (3) a basic set of pre­
programmed function blocks. 

Program statements can be -broken down into three categories: data state­
ments, structure statements, and control statements. Data statements pertain to 
entities such as initial conditions for integration or numerical values for param­
eters and constants of the problem. Structure statements are the heart of the 
program in that the inner-relationship of the problem variables are here defined. 
Control statements are used to specify the problem run-time, the integration incre­
ment, the format of the output data resulting from the problem solution, and 
other specific options relating to translation and execution of the program. In 
reality, the user is not compelled to make a decision in terms of which category a 
problem statement belongs. These categories are defined simply to describe the 
types of statements that are utilized. 

The program structure of CSMP is composed of three segements: Initial, 
Dynamic, and Terminal. Generally, data statements will appear in the Initial seg­
ment. In addition, calculations that are required to be performed only one time 
during a simulation (i.e., the volume of a cylinder) can be conveniently placed in 
this segment. The Dynamic segment is usually composed of structure statements 
that describe the dynamics of the system or explicitly describe a set of differential 
equations. The Terminal segment is the last segment in the program and is usually 
made up of control statements. 

Many problems simulated by CSMP will not require the explicit structure 
described above. Examples that use the Initial, Dynamic, and Terminal segmen­
tation as well as examples in which this segmentation can be omitted are presented 
in this chapter. 

The flexibility of CSMP can be considerably extended to include the power of 
FORTRAN conditional logic and branching. This extension is accomplished 
through the sort and nosort options of the program. If the user does not specify 
sort and nosort sections, a sort subprogram within CSMP will automatically place 
the problem statements in the correct order for the simulation .. Automatic sorting 
relieves the user from the task of keeping up with the proper order of program 
statements as required by the FORTRAN language. However, occasions often 
arise whereby conditional logic and branching are necessary in a simulation. The 
NOSORT label card provides this additional flexibility by establishing sections in 
the program in which the statements are executed by ordinary FORTRAN rules. 
A more detailed discussion on the structure of CSMP, including the sort and nosort 
options, will be given later. 

Perhaps one of the greatest assets of CSMP is the availability of thirty-four 
functional blocks,o) A functional block plays a role similar to a FORTRAN 
subroutine in that the user specifies a function but, in this case, the subroutine 
that specifies the properties of the function is pre-programmed in the CSMP 
package. The different types of functional blocks are (1) mathematical functions; 
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(2) system macros; (3) switching functions; (4) function generators; (5) signal 
sources; (6) logic functions; and (7) FORTRAN functions. A complete list of the 
functional blocks along with appropriate descriptions of what the functions accom­
plish is given in Appendix I. Illustrations using many of these functions will be 
presented in this chapter. 

Most simulations require some form of integration. For this purpose, CSMP 
gives the user a choice of seven pre-programmed methods. If the user does not 
specify an integration method, the program will automatically use Runge-Kutta 
with variable integration-step size (RKS). 

The user interested in installation and system requirements fOf running CSMP 
should consult appropriate IBM manuals. (2-3) 

The following paragraphs describe the use of symbols, constants, and opera­
tors as normally employed in programming languages and particularly as em­
ployed in CSMP. Next, a fairly comprehensive description of the structure of 
CSMP is presented. Many readers may find it advantageous to proceed to Example 
2.1 and return to the following material at a later time. 

Symbols and Constants 

All symbols used in CSMP programs must begin with an alphabetic letter 
(A through Z) and contain not more than six characters. Only alphabetic and 
numeric characters with no embedded-blanks are allowed. Some examples of valid 
and invalid symbols are: 

Allowed Not Allowed Type of Error 

Ql lQ First character is a number 
B12345 BA Embedded-blank 
ABCDEF ABCDEFG Too many characters 
IlJ2 *AB Invalid first character 
K A(A Invalid second character 

There are certain words reserved for CSMP and FORTRAN that cannot be 
used as symbols. These reserved words are listed in Appendix II. Unlike 
FORTRAN, the CSMP language does not require that symbols having a first 
character of I, J, K, L, M, or N be automatically treated as integers. All symbols, 
unless otherwise specified, will be treated as floating-point numbers. t The method 
of designating a symbol as an integer is discussed in Chap. 3. 

Floating-point (real) constants can be written two ways. The most common 
method involves numbers with only a decimal point. 

t A floating-point number contains a decimal. For more information see Reference 4. 
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234.256756 

0.005945 

- 45.7 

+ 100.0 

Ch.2 

This type of number is limited to a total of twelve characters and not more than 
seven significant decimal digits. For either very large or small numbers, the format 
involving the letter E should be used. This type constant can assume values be­
tween approximately 10-75 through 10+75 • Examples of E-format numbers, which 
can be used in a CSMP program, are listed below. 

E-format 

3.254E4 
-678.1E7 
0.0231E-5 
1764.7E11 

Equivalent to 

3.254 X 104 

-6.781 X 109 

2.31 X 10-7 

1.7647 X 1014 

Integers are written without a decimal point and can contain up to ten digits. 
The use of subscripted variables [e.g., X(4), Y(4, 5, 7)] is permitted in the 

CSMP language with certain restrictions. These restrictions and guidelines for 
using subscripted variables are outlined in Chap. 3. Double precision is only 
available in CSMP III. This is covered in detail in Chap. 5. 

Operators 

Operators used for the basic arithmetic operations are exactly the same as 
FORTRAN. These operators are tabulated below. 

Symbol Function Symbol Function 

+ addition ** exponentiation 
subtraction replacement 

* multiplication ( ) grouping of 
variables and/or 
constants 

division 

The order in which calculations are performed is also exactly the same as 
FORTRAN. 
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Operation 

Evaluation of functions 
Exponentiation (**) 
Multiplication and 

division (* and /) 
Addition and subtraction 

(+ and -) 

Fundamentals of System/360 CSMP 9 

Hierarchy 

1st (highest) 
2nd 
3rd 

4th (lowest) 

Operators of the same hierarchy, with the exception of exponentiation, are 
performed from left to right and exponentiation operations are performed right 
to left. Expressions within parentheses are always performed first. The order of 
some arithmetic calculations is shown in the following examples: 

A 
A/(B*C) = B*C 

(A**B)**C = (AB)C = AB*C 

Many programming errors can be attributed to mistakes in interpreting the 
correct hierarchy of operations. For this reason, it is recommended that sufficient 
sets of parentheses be used to insure that the arithmetic operations are performed 
in the desired order. 

Format 

As with FORTRAN, only columns I through 72 are read as part of the pro­
gram. Consequently, columns 73 through 80 are not processed and can be used 
for any type of identification. Unlike FORTRAN, structure statements can begin 
in any column. Some typical CSMP statements printed on computer cards are 
shown in Fig. 2.1. 

Three consecutive periods ( ... ) at the end of the information contained on a 
computer card indicates that the statement is continued to the next card. 

Y = 3.569*SIN(3.14159*TIME/180.0) + 54.632*EXP(21.3*TIME) ... 
-2.32*X*Z/(3.14159*P) i 

[

Three consecutive periOdsJ 
allows continuation to the 
next card. 

A statement may be continued on as many as eight cards for a total of nine cards 
to express a single statement. Special care should be taken not to separate a con­
stant or a symbol on consecutive cards. This type of error is very difficult to find 
since no diagnostic messages are printed. 

An asterisk in the first column denotes a comment card. Comment cards have 
no effect on the execution of the program. They can be placed anywhere in the 
program and will be printed with the program listing. Blank cards may be inserted 
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6661666666666616666666666616 6 6 6 6 6 6 6 6 6 6 6 616 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 616 6 6 616 6 6 6 6 6 6 6 6 6 6 6 6666 

11111/1/1111111111111111111111111111111111111111111111711111111/1111111 1-1 11111/1 

88888888888 C 8 818 818 818 8 8 8 81B 818 8 8 8 818 8 8 818 818 8 8 8 8 818 8 8 8 8 8 818 818 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 

999999999999 S ~ 9 9 9 9 9 9 9 9 9 919 9 9 9 9 9 9 9 919 9 919 9 9 9 9 9 9 9 9 9 9 9! 9 9 9 9 9 9 9999999999999919999999 
123" 5 6 1 8 51~~!~151S111819202122Zl242SZ62128Z93Q3IS2~3H3S363139394D414l4SU4$46414849S0S1S25354rS56515S$9&061S261&4G5B56168S91DlIl2J31415167JJlTJ811 

Fig.2.1 Computer cards printed with examples of CSMP state­
ments. 

1 

in the computer card deck to add additional lines of spacing in the listing of the 
program. 

Structure of CSMP 

The solution of most problems does not require a detailed understanding of 
the structure of CSMP. However, in complicated simulations where it is required 
to control the order of the execution of the program, an understanding of the struc­
ture of the CSMP program is necessary. 

Basically the CSMP program can be divided into three segments: 

INITIAL 
DYNAMIC 
TERMINAL 
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Each of the three segments can be further divided by repeated use of sort and nosort 
sections. The program simulation statements are contained in the body of these 
sections. A diagram showing the basic structure of a CSMP program is shown in 
Fig. 2.2. 

Sections 
Segments Sort or N osort 

Simulation 
statements 

.......-----Statements 

INITIAL Section =Statements ~ 
Section ----:;;;..-.---Statements 

Statements 

Section oc::::::::::::: Statements 
Statements 

_______ Statements 

~ 
Section ---=-~---Statements 

DYNAMIC Section =-Statements 
------Statements 

Section --..... ~=-----Statements 
---Statements 

~ Statements 

~
section ---=-=-----Statements 

Statements 
TERMINAL Section ~ 

---Statements 

Section ____ Statements 

----Statements 

Fig. 2.2 Structure of the CSMP program. 

The following paragraphs give a description of the INITIAL, DYNAMIC, 
and TERMINAL segments and explain their application. It should be noted that 
the three segments must appear in the order presented and each segment can be 
used only once. 

Initial Segment 

The Initial segment is the first to appear in the program. It is used exclusively 
for calculations that need to be performed only once. The use of the Initial segment 
can reduce computer time since all statements listed in this segment will be executed 
only: once. All calculations for initial conditions must be included in this segment. It 
is not always necessary or even desirable to use the Initial segment, consequently, 
this segment is optional. To specify the use of the Initial segment, a card must be 
inserted with the label INITIAL at the beginning of the segment. 
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Dynamic Segment 

The CSMP program uses an iterative procedure for problem solution. Since 
iterations only occur in the Dynamic segment, all simulation statements that are 
used to describe the dynamic response must be included in this seguent. In effect, 
the Dynamic segment can be thought of as a subprogram that is executed at each 
iteration step. The Dynamic segment can be specified by two methods as listed 
below. 

1. If the Initial segment is not specified, the Dynamic segment is automatically 
incorporated into the program. No labeling is necessary. 

2. If the Initial segment is specified, a card with the label DYNAMIC must 
precede the statements in the Dynamic segment. 

Terminal Segment 

The Terminal segment is the last of the three segments and is used for those 
calculations that should be performed at the completion of the simulation. This 
segment is optional and is only executed when a statement with the label TER­
MINAL is placed after the Dynamic segment. 

Sort and Nosort Sections 

One of the most important and valuable features of the CSMP program is 
the sorting capability. The sorting feature chooses the correct order for the execu­
tion of the structure statements. This means that in a section where the statements 
are sorted (called a sort section), the order in which the statements are placed in 
the program deck has absolutely no effect on the order of statement execution. 
The sort section cannot be used for all types of operations. For example, the fol­
lowing FORTRAN conditional logic and branching statements, which control 
the order of execution, obviously conflict with the CSMP sorting procedure. 

IF(X.GTA.5) GO TO 6 
GO TO 7 

6 IF(Y) 3, 4, 5 

Consequently, these types of FORTRAN statements cannot be used in a sort 
section. An expression such as 

x = X + 1.0 

in which the same variable appears on both sides of the equal sign is another type 
of operation that cannot be used in a sort section. Also excluded from sort sections 
are FORTRAN WRITE and FORMAT instructions such as the following: 

WRITE(6, 100) X, Y, Z 
100 FORMAT(3F30.5) 

In nosort sections, no sorting is performed and therefore all statements are exe-
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cuted in the exact order in which they appear in the program. FORTRAN condi­
tionallogic and branching and all other similar statements that specify a particular 
order of control must be included in a nosort section. 

All statements in the Initial and Dynamic segments not labeled by a NOSORT 
card are automatically placed in sort sections while statements in the Terminal 
segment are automatically placed in a nosort section. To specify a change in 
section in any of the three segments, the use of a separate card with either a SORT 
or NOSOR T label is required. An example of a particular CSMP program having 
a complex structure is illustrated in Fig. 2.3. 

In this example the first group of statements in the Initial segment are auto­
matically sorted up to the point where the NOSORT statement is included. After 
the NOSORT card, all remaining statements in the Initial segment are contained 
in a nosort section. The first NOSORT label in the Dynamic segment places the 
first group of statements in a nosort section. The next group of statements after 
the SORT label are sorted. A NOSORT label then changes the last group of state­
ments in the Dynamic segment back to a nosort section. In the Terminal segment, 

All statements in the Initial 
segment are only executed 
at the beginning of the run. 

Statements in the Dynamic 
segment are executed at 
each integration step. 

Statements in the Terminal 
segment are only executed 
at the end of the run. 

INITIAL 

: :: : : :: } Statements are sorted. 

NOSORT 

: : : : : :: } Statements are not sorted and executed in 
...... . the order in which they appear. 

DYNAMIC 
NOSORT 

SORT 

} 
Statements are not sorted and executed in 
the order in which they appear. 

} Statements are sorted. 

NOSORT 

: : : : : :: } Statements are not sorted and executed in 
.,. .... the order in which they appear. 

TERMINAL 

SORT 

} 

Statements are not sorted and executed in 
the order in which they appear. 

} Statements are sorted. 

Fig. 2.3 Example of a CSMP program having a complex structure. 
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the first group of statements are automatically placed in a nosort section. The 
following SORT label changes the last group of statements to a sort section. 

Note that when a section contains both sort and nosort segments, the seg­
ments will be executed in the order they appear. 

Solving Problems with CSMP 

The following eleven example problems illustrate the use of CSMP to simulate 
a wide range of engineering and mathematical problems. By studying the examples 
and working the problems at the end of the chapter, the reader will have a good 
working knowledge of CSMP. 

Example 2.1 Spring-Mass-Damper System 

Some of the very basic concepts of CSMP can be illustrated by simulating the motion 
of the linear spring-mass-damper system that is shown in Fig. 2.4. 

~~I 

I. ~K ...........----~,.....-----...,i x(t = 0) = 1.0 M X(t=O)=O.O 
1------1 M = 1.5 slugs C ) (~ C = 4.0 lb-sec/ft. 

O/~W&'///;::!>~~&. K = 150 lb/ft. 

Fig. 2.4 Spring-mass-damper system. 

Applying Newton's second law leads directly to the following second-order equation 
of motion. 

d 2X dX 
M dt 2 +C{ft+KX=O (2.1) 

When dealing with differential equations higher than first-order, it is helpful to reduce all 
equations to a set of first-order expressions. For some problems, this can require a major 
effort. However, for Eq. 2.1, it is only necessary to introduce new symbols and rearrange 
variables. 

Let 

and 

VEL =~~ (velocity) 

ACC = d(VEL) 
dt 

(acceleration) 

The resulting two first-order equations for velocity and acceleration along with the 
initial conditions are: 

dX = VEL 
dt 

d(~;L) = -(C*VEL + K*X)/M 

Initial conditions: X(t = 0) = 1.0, VEL(t = 0) = 0.0 

(2.2) 

(2.3) 
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With this brief explanation, a CSMP program containing only the basic features 
needed to numerically solve Eqs. (2.2) and (2.3) is shown in Fig. 2.5. In this example 
program it is not necessary to specify the Initial, Dynamic, or Terminal segments. All 
statements are automatically placed in the Dynamic segment and sorted. Thus the order 
in which the structure statements are arranged in the deck has no effect on the execution 
of the program. The first two statements of the program are comment cards and are 
identified by an asterisk in the first column. As previously mentioned, comment cards do 
not affect the execution of the program. The third card is a CONSTANT statement used 
to assign values to variables. 

* M = MASS, C = DAMPING CONST&NT, K = SPRING CONSTANT, X = DISPLACEMENT 1 
* VEL = VELOCITY, ACC = ACCELERATION, XO = INITIAL DISPLACEMENT 2 

CONSTANT M = 1.5. C = 4.0, K = 150.0. XO = 1.0 3 
ACC = (-K*X - C*VEl)/M 4 
X = INTGRllXC,VEL~ 5 
VEL = INTGRLlO.O,ACC) 6 
PRINT X, VEL, Ace 7 

TITlE SIMULATICN OF A SPRING-MASS-DAMPER SYSTEM 8 
TIMER FINTI" = 2.0, PRDEL = 0.C5 9 

END 10 
STOP 11 
ENDJOB 12 

Fig. 2.5 Program for simulating spring-mass-damper system. 

CONSTANT. The word CONSTANT must be the first label on the card 
and must be followed by at least one blank space. Otherwise, after this first blank 
space, blanks are not considered. Successive variables can be set equal to con­
stants (both real and integer) by putting the variable name on the left side of the 
equal sign. A comma following a numeric value permits another assignment. 
Notice that a comma should not be placed after the last number. A CONSTANT 
statement must be continued to following cards by the use of three consecutive 
periods( ... ). The format of the CONSTANT card used in this example is 

CONSTANT M = 1.5, C = 4.0, K = 150.0, XO = 1.0 

The fourth card is an ordinary FORTRAN statement used to calculate the 
acceleration (ACC). Statements 5 and 6 use a special mathematical function 
(INTGRL) that is unique to CSMP. The INTGRL statement represents the mathe­
matical function of integration as defined by Table 2.1. 

Table 2.1 

Formulation for Integration 

CSMP Form 

Definition: Integration 

Y = INTGRL(IC, X) 
IC = YeO) 

Mathematical Function 

y= S: Xdt + Ie 

Equivalent Laplace transform 

X(S)--->-I ! 1--->- Y(s) 
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In the definition presented in Table 2.1, the integration is with respect to the 
independent variable t. The symbol TIME is a reserved word in the CSMP pro­
gram and is used to represent the independent variable. The integrand can be an 
algebraic expression, but the initial condition (IC) of the INTGRL function must 
be a constant or symbol. If the INTGRL function is included as part of a statement, 
it must be the rightmost part of the expression. 

Allowed 

Y = INTGRL(7.0, X-Z) 
Y = 10.0 + INTGRL(Q,X) 
Y = 3.0*INTGRL(Q,X) 

Not Allowed 

Y = INTGRL(3.0 + 4.0, X-Z) 
Y = INTGRL(Q,X) + 10.0 
Y = INTGRL(Q,X)*3.0 

INTGRL is only one of several mathematical functions available to the 
CSMP user. A listing and a definition for all functions are contained in Appendix I. 

The fifth and sixth statements of Fig. 2.5 represent the integration of Eqs 
(2.2) and (2.3). In statement 5, the velocity VEL is integrated to obtain the dis­
placement X with the initial condition of XO. In the same manner, the sixth state­
ment will perform the integration of the acceleration ACC to obtain the velocity 
VEL with the initial velocity equal to zero. The seventh card is a PRINT statement 
which has the following general definition. 

PRINT. The PRINT card is used to specify the variables that will be printed 
at each specific interval during the simulation. All variables following the PRINT 
label plus the independent variable TIME will be printed and correctly labeled. 
A comma must be inserted between successive variable names and at least one 
blank space must follow the PRINT label. The PRINT label should appear only 
once in the program. If more than one PRINT statement is included, only the last 
will be executed. If necessary, three periods ( ... ) can be used to continue to fol­
lowing cards. An example of the PRINT statement is: 

PRINT X, VEL, ACC 

A column format is automatically used for output when there are less than 
nine dependent variables printed. An example of this is shown in Fig. 2.6 which 
is the output of the program of Fig. 2.5. Up to forty-nine dependent variables can 
be printed. When more than eight are specified, an equation-form output format 
is used as shown in Fig. 2.7. Notice that the output for both Figs. 2.6 and 2.7 is 
E-format with five significant digits. The user has no other choice of output format 
when using the CSMP PRINT statement. The eighth card in the program is a 
TITLE statement. 

TITLE. The TITLE card allows the user to specify a heading that will appear 
at the top of each page of printed output. At least one blank space must follow the 
label TITLE and the first character must be a number or an alphabetic letter. 
Continuation to successive cards is not permitted, but up to five TITLE cards can 
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SIMULATION OF A SPRING-~ASS-CAMPER SYSTEM RKS INTEGRATION 

TIM E 
0.0 
5. OOOuE -u2 
1.OOOuE-Ol 
1.500ul::-01 
2.0000E-0l 
2.~000E-ul 

3.00 OOE -01 
3.5000E-Ol 
4. OOOuE -01 
4.S000E-01 
5.0000E-01 
~. 500uE-Ol 
I).OOUOE-01 
6.500uE-Ol 
7.0000E-Ol 
7 .5000E -0 1 
8.0000E-Ol 
8.5000E-Ol 
9. QOaOE-Ol 
9.5000E-Ol 
1.0000E 00 
1.050uE 00 
i • .i.OOOE 00 
1.1500E: 00 
1.2000E 00 
1.2500t: 00 
1 • .j0 JuE 00 
1.J500E OU 
1.4000E 00 
1.45001: 00 
1.5000E 00 
1.550uE 00 
J..6000E 00 
1.6500E: 00 
1. lOOOE 00 
1.1500E 00 
1.bOOOE 00 
1.8S00E 00 
1.90uuE 00 
1.9500E 00 
2.0000E 00 

0.0 

1.2500E 01 

2.5000E 01 

3.7500E 01 

5. OOOOE 01 

X 
i.OOOOE 00 
8.8283E-01 
5.7793E-01 
1.7863E-01 

-2.1l17E-01 
-5.0491E-01 
-6.4574E-Ol 
-6.20'18E-Ol 
-4.5698E-01 
-2.C871E-01 

5.6407E-02 
2.755lE-01 
4.0411E-Ol 
4.24041:-01. 
3.4430E-01 
1.9559E-Ol 
2.0609E-02 

-1.3725F-Ol 
-2.4395E-Ol 
-2.8142E-Ol 
- 2 • 4<; 71 E- 0 1 
-1.6472E:-01 
-5.258'1E-02 

5.7602E-02 
1.4084E-01 
1.8140E-01 
1.7533E-01. 
1.29831:-01 
6.0245E-02 

-1. 4458E -02 
-l.6524E-02 
-i.1330E-Ol 
-1.1952f-01 
-9.757H-02 
-5.5995E-02 
-6.7754E-03 

3.7855E-02 
6.8238E-02 
7.9l88E-02 
7.0622E-02 
4.6938E-02 

VEL 
0.0 

-4.4884E 00 
-1.38181: CO 
-8.2319E 00 
-7.C8391: 00 
-4.4556E 00 
-1.1340E 00 

2.0328E 00 
4.3385E 00 
5.362CE 00 
5.0288E 00 
3.5845~ 00 
1.4990E 00 

-6.6<;88E-01 
-2.4145E 00 
-3.3879E 00 
-3.46331= 00 
-2.7355!: 00 
-1.471.6E 00 
-2.E1COE-C2 

1.24l7F. 00 
2.0683 E 00 
2.3178E 00 
2.C048E 00 
1.2714E 00 
3.3817E-Ol 

-5.5613E-01 
-1.2113E 00 
-1.5071 E 00 
-1.42C6E 00 
-i.CInE 00 
-4.3434E-Ol 

1.110eE-Ol 
6. 1160E-0 1 
9.5046E-01. 
S.7661E-OI. 
7.7575 E-Ol 
4.2210'::-01 
1.5851E-02 

-3.4333E-01 
-5.18«;8E-Ol 

Ace 
-1.0000E C2 
-1.6313E 01 
-3.8093E 01 

4.0884E 00 
4.0068E ot 
6.2313E C1 
6.7598E 01 
5.6617F 01 
3.41.29E 01 
6.5125E 00 

-1.9051E Cl 
-3.7109E 01 
-4.4409E 01 
-4.0618E 01 
-2.7991E 01 
-1.0524E 01 

7.1746E 00 
2.1020E 01 
2. 8319~ C1 
2.8217E 01 
2.1.660E 01. 
1.0957E 01 

-C;.2178E-Ol 
-1.1106E 01 
-1.7474E 01 
-1.9042E 0 I. 
-1.6050E 01 
-9.7523E 00 
-2.0055E CC 

5.2340E 00 
1.0310E 01 
1.2489E 01 
1.1480E 01. 
7.9662E 00 
3.0650E 00 

-1..9269E CO 
-5.8542E 00 
-7.9494E 00 
-7.9611E CO 
-6.1466E 00 
- 3. 149qE 00 

Fig. 2.6 Column-type output for spring-mass-damper system. 

51 MP INTEGRATION 

X 1.0000E 03 y 1.0000E 06 l 4.5176E-05 
R 1.0000E 00 V 0.0 T = 0.0 
E1 1.aOOOE 03 Tl 5.0000E 02 00 = 1.0000E 09 

X 2. 2 ~:d 5E 03 Y 5.0782E 00 Z = -1.2535E 02 
R 4.4376E-01 V 1.186t!E 01 T = 5.2665E 00 
E1 1.6onE 02 Tl 5.1250E 02 00 = 1.1444E 10 

X 5.07tHE 03 y 2.5787E 07 Z = -4.0781E 02 
R 1.9692E-01 V 2.4423E 01 T = 4.8094E 00 
E1 1.9531E 02 Tl 5.2500E 02 00 = 1.3095E 11 

X 1.1443E 04 Y 1.3094E 08 l = -1.0443E 03 
k 8.7390E-02 V 3.1l11E 01 T = 3.2431E 00 
E 1 2.9722E 02 Tl 5.3750E 02 DO = 1.4984E 12 

X 2.5786E 04 Y 6.6494E 08 Z = -2.478bE 03 
R 3.8180E-02 V 4.9768E 01 T 1.9300E 00 
E1 5.0561E 02 Tl 5.5000E 02 UD 1.1l4bE 13 

Fig. 2.7 Example of equation-type output. 

17 

Q 0.0 
w 0.0 
AB 0.0 

Q 2.8169E 04 
w 7.9347E 08 
AB = -3.3524E 06 

(,) = 1.2695E 05 
w = 1.6ll7E 10 
AS = - 5. 0577E 07 

= 4.2911E 05 
= 1.8414E 11 

AB = -4.4347E 08 

IJ = 1.2893E 06 
w = 1.6623E 12 
AS = -3.1809E 09 
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be used. Each TITLE card provides one line of heading on each page of output. 
An example of a TITLE statement is 

TITLE SIMULATION OF A SPRING-MASS-DAMPER SYSTEM 

The ninth card is called a TIMER statement. 
TIMER. The TIMER card is used to specify the variables that control the 

run-time, print increment, integration interval (step-size), and minimum allowable 
integration interval. In Fig. 2.5, only two TIMER variables are used, FINTIM, 
and PRDEL. An example of the TIMER statement is 

TIMER FINTIM = 2.5, PRDEL = 0.05 
i i 
At least one blank '----A comma must 
space must follow 
the label TIMER 

separate listings 

FINTIM. FINTIM is a symbol that appears on the TIMER card and deter­
mines the value of TIME (independent variable) at which the run is terminated. 
FINTIM is set equal to the desired simulation time. and must be included on the 
TIMER card. 

PRDEL. This TIMER variable controls the increment for the output of the 
PRINT statement. If the value for PRDEL is not specified, it is automatically set 
equal to FINTIMjlOO. If a value of OUTDEL is also included on a TIMER 
card, the output increment of the PRINT statement can change. At this point, 
there is no need to explain the relationship between PRDEL and OUTDEL, since 
it will be covered later in this chapter. 

The three other variables that can appear on the TIMER card are defined 
below. A detailed explanation is included in Example 2.2 and in Chap. 3. 

OUTDEL. Print increment for the print-plot output 
DELT. Integration interval 
DELMIN. Minimum integration interval 
The format for specifying the above variables on a TIMER card is similar to 

a CONSTANT card. At least one blank must follow the label TIMER, and suc­
cessive listings of variables must be separated by commas. The order in which the 
variables are listed on the TIMER card is not important. 

The last three statements (END; STOP, and ENDJOB) must be included to 
signify the end of the program. These cards must appear in the order shown in 
Fig. 2.5 and the ENDJOB statement must begin in the first column. For more 
complicated simulations, the END, STOP, and ENDJOB cards can be used to 
control the execution of the program. A detailed explanation will follow when 
advanced topics are considered in Chap. 3. For most simulations the user needs 
only to use these cards to signify the end of the program. 

Example 2.2 Simulation of a Block Diagram 

The previous example illustrated one of the principal attributes of CSMP, the solu­
tion of a differential equation. Another important application is determining the response 
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of a system that is modeled as a block diagram. Block diagram representation of a system 
is often used in control system analysis and design. However, the concept of a block 
diagram is not restricted to control systems alone. In fact, this application extends to such 
areas as physiology, transportation, energy conservation, and economics. 

The basic premise of the block diagram, or signal-flow graph, stems from the applica­
tion of Laplace transforms or operator notation. For example, a system might be repre­
sented by the second-order, linear, time-invariant differential equation 

d~~}t) + A d~~t) + Bx(t) = ku(t) (2.4) 

If dx (O)/dt = x(O) = 0, application of Laplace transforms yields 

Xes) K 
U(s) = S2 + As + B (2.5) 

In the sense of the block diagram, the above relationship can be represented by the con­
figuration shown in Fig. 2.8. 

U(s) I K I ) s2+As+B ----~) 
X(s) 

Fig. 2.8 Block diagram representation 
of a second-order differential equation. 

Laplace transforms and block diagrams offer the convenience of analyzing a system 
without the necessity of working directly with the system equations. In effect, the Laplace 
transform changes a linear differential equation to an algebraic expression. 

Suppose we consider the simplified schematic diagram of a position control system 
shown in Fig. 2.9. Neglecting viscous friction and the electrical time-constant of the motor, 
this position control system can also be represented by the block diagram of Fig. 2.10. 
Generally, the block diagram is much easier to work with than the schematic. 

As an example, suppose the parameters in Fig. 2.10 have the values of Km = 4, 

R 

R 

R 

Summing 
amplifier 

Power 
Gain amplifier 

Error pick-off 

D.C. motor 
r------ -l Output 

: (8 0 ) ~---,. 
I 

I 
I 
I 
I 

I Mechanical 
I linkage 
I 
I 
I 

Input 

-~~--~~-----< 
I 

h 
Fig. 2.9 Simplified schematic diagram of a position control sys­
tem. 
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+ 

Lumped 
parameter 

gain D.C. motor 

Fig. 2.10 Block diagram of the position control system. 

Ch.2 

Kl = 1.5625, and a = 2. We desire to simulate the response of the system to a unit-step 
input. 

To solve this problem, we first restructure the system diagram so that it is compatible 
to CSMP modeling. A suitable diagram for this purpose is presented in Fig. 2.11. 

Two basic dynamic blocks are present in this representation and can be broken out 
as separate entities as follows: 

X2'1 (~ ~ 1) 1 __ X_l~) ~ {- I OUTPUT, 

Block A BlockB 

There is no real significance attached to the order of the blocks, block A could have 
appeared as the block nearest the output and preceded by block B. The arrangement of the 
blocks, for linear systems, is a matter of user preference. The symbols Xl, X2, X3, 
ERROR, etc., are intermediate variables. They could have been designated by other 
symbols up to six characters in length. It is normally desirable to use variable names 
which describe physical variables in the problem. A significant point that should be made 
is that each block must have an input and an output variable. For example, X2 is the 
input and Xl is the output for block A; whereas, Xl is the input and OUTPUT is the 
output of block B. 

Blocks A and B have special meaning in CSMP. In a sense they are represented as 
subprograms and can be executed by simple statements. The mathematical functional 
relationship for block A is shown in Table 2.2. The 1/ s term (integration) was previously 
discussed in Example 2.1. 

Table 2.2 

Formulation for First Order Lag 

General Form 

Definition: 1ST ORDER LAG 

(Real pole) 

Y = REALPL(IC, P, X) 

IC = YeO) 

Function 

pdY +Y=X 
dt 

1 
Laplace form: Ps + 1 

Xes) ~ yes) 
)~I---~) 
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I 
• 

Fig.2.11 A CSMP representation of the system in Fig. 2.10. 

These formulations help explain why the original system was subdivided as given in Fig. 
2.11. Note that the general form for REALPL is l/(Ps + 1). This means that when we 
encounter terms of the form l/(s + a) we must divide the numerator and denominator by 
a. This changes the form to (l/a)/(s/a + 1) and the (l/a) term in the numerator can either 
be associated with another constant or represented by a single block as follows. 

A program listing for the CSMP simulation of this problem is presented in Fig. 2.12.t 
For convenience, the CSMP block representation corresponding to this program is 

* CSMP PROGRAM FeR 'EXA~PLE 2 - ALOCK DIAGRAM OF SECOND ORDER SYSTEM 
* NOTE THAT THE ASTERISK IN COLUMN ONE SIGNIFIES A COMMENT STATEMENT 

TITLE PRINTED LISTING OF "OUTPUT" (SIMULATION) AND "OUTEXT" (ANALYTICAL' 
* THE TITLE IS ALWAYS GJV~N AT THE TOP OF THE "PRINTED LISTING" PAGE(SI 

INPUT STEP(O.O' 
ERROP INPUT - OUTPUT 
OUTPUT INTGRL(0.0,X1I 
Xl REAlPL(0.0,l.0/2.0,X2) 
X2 2.0*X3 
X3 1.5625*ERROR 

* THE FOLLOWING ST~TEMENTS ARE NOT PART OF THE CSMP SIMULATION. THEY 
*ARE USED TG CALCULATE THE EXACT SOLUTION OF "OUTPUT" FOR COMPARISON 

OUTEXT = 1.0 - (EXP(-WN*lETA*TIMt)t/SQRT(l.O - lETA*lETA})* ••• 
SIN(WN*SQRT(l.O -ZETA*ZETA)*TIME + THETA) 
WN = 2.5 
ZETA = 0.4 
THETA = ATAN(SQRT(l.O - lETA*ZETA)/ZETA) 

* END OF SPECIAL CALCULATION SFCTION FOR "OUTPUT" COMPARISON 

TlMERFINTlM = 5.2, OUTDEL = 0.16, PRDEL = 0.04 
PRTPLT OUTPUT(ERRORI, ERROP(,0.51 
PRINT OUTPUT, OUTEXT 
LABEL STEP RESPONSE FOR SECOND nRDE~ SYSTEM 
END 
STOP 
ENDJOB 

Fig. 2.12 CSMP listing for Example 2.2. 

tThe symbol OUTPUT cannot be used in a CSMP III program since it is a reserve word 
that has a special meaning. To run this program on CSMP III, the symbol, OUTPUT, must 
be replaced by another symbol. 
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INPUT 
(9;) 

ERROR +_l_HIJ 
1 a (s/a + 1) s 

Fig. 2.13 Programming block diagram for Example 2.2. 

OUTPUT 
(90 ) 

I 
Ch. 2 

repeated in Fig. 2.13. One can easily relate the input-output variables of the blocks in 
Fig. 2.13 to the statements given in the program listing. Since the arrangement of the cards 
is not unique, one may start with any block and proceed to describe the system. 

Several new terms have been introduced in this problem that were not used in Exam­
ple 2.1. These terms include PRTPLT, OUTDEL, STEP and LABEL. A general definition 
of these terms will be given before examining the computer output for Example 2.2. 

PRTPLT. An example of a PRTPLT output is given in Fig. 2.14. PRTPLT 
statements are used to specify those variables that the user desires to be printer­
plotted. Continuation cards are not allowed, but up to ten separate PR TPLT 
statements containing 100 variables can be used. A card giving a typical PR TPLT 
request might appear as 

PRTPLT Xl, OUTPUT, ERROR 

In this case, separate printer plots will be made for Xl, OUTPUT, and ERROR. 
Another useful feature of the PR TPL T request is the capability of printing up to 
a maximum of three additional problem variables on the same page as the printer­
plotted variable. These additional variables appear on the far right side of the page 
in column format. The statement 

PRTPLT X1(ERROR, OUTPUT), X2, OUTPUT 

means that separate printer plots will be made for Xl, X2, and OUTPUT. In addi­
tion, the values of ERROR and OUTPUT will be printed on the right side of the 
pages that give the printer-plot of XI. 

The range and scale ofa printer~plotted variable can be controlled as follows: 

PRTPLT SIGX(0.2, 3.0) 
PRTPLT SIGX(, 4.0) 
PRTPLT SIGX(-1.2,) 
PRTPLT SIGX(O.4" XOUT) 

The information given by each statement is: 

statement (1) 
statement (2) 
statement (3) 
statement (4) 

Statement (1)-The printer-plot of SIGX will not show values less than 0.2 
or greater than 3.0. Consequently, the scale of the printer-plot will be adjusted 
for a maximum of 3.0 and a minimum of 0.2. 

Statement (2)-The printer-plot of SIGX does not have a specified lower 
bound but the upper bound is 4.0. 
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ST~P qESP~NSE FOR SECONr CPDEP SYSTE~ PAGE 

TI ~f 
0.0 
1.60001:-01 
3.2000F-Ol 
4.8COJE-0} 
6.4CCOE-Ol 
8.0COO'=-01 
9.6000'=-01 
1.12eOI: 00 
1.2800E 00 
1.4400E 00 
1.6COO~ 00 
1.1600~ 00 
1.9200E 00 
2.08001: 00 
2.2400F 00 
2.4CCOE 00 
2.56COE 00 
2.7200F 00 
2.88eOE 00 
3.040Cf. 00 
3.2000!.= 00 
3.3600E 00 
3.5200E 00 
1.6800= 00 
3.8400E 00 
4.0000= 00 
4.16001: 00 
4.3200'= 00 
4.48001? 00 
4.6400E 00 
4.g000E 00 
4.9600E 00 
5.12eOE 00 
5.2000r: 00 

~If>iIMU~ 

0.0 
OUTPUT VERSUS TIME MAXIMUM 

1.2531E 00 
I OUTPUT 

0.0 
1.1172~-02 

2. 48~51=- 01 
4.1856;:-01 
7.1618[-01 
9.2708E-OI 
1.0901f 00 
1.1963E 00 
1.2468': 00 
1.2502E 00 
1.2189= 00 
I. let 5~ 00 
l.lObOE 00 
1.0478': 00 
9.9900f-Ol 
9.6313£-01 
Q.430£'=-01 
Q.3568E-Ol 
9.3904=-01 
Q.4971E-01 
'1.6426':-01 
9.19t5E-01 
9.~358E-Ol 

1.0046':= 00 
1. all <:1= 00 
1.0156;: 00 
1.0162E 00 
1.0J451;' 00 
1.0112= 00 
1. 0014~ 00 
1.00)6'=' CO 
1.000'3E CO 
9.9792E-01 
9.9707E-Ol 

+ 
--+ 

---------+ -------------------+ ----------------------------+ 
------------------------------------+ -------------------------------------------+ 
-----------------------------------------------+ 
----------~--------------------------------------+ 
------------------------------------------------~+ 
------------------------------------------------+ ----------------------------------------------+ --------------------------------------------+ 
-----------------------------------------+ ---------------------------------------+ --------------------------------------+ 
-------------------------------------+ -------------------------------------+ 
-------------------------------------+ -------------------------------------+ 
-------------------------------------~+ 
---------------------------------------+ ---------------------------------------+ 
---------------------------------------~+ 
----------------------------------------+ ----------------------------------------+ 
----------------------------------------+ ----------------------------------------+ ----------------------------------------+ 
----------------------------------------+ ----------------------------------------+ 
---------------------------------------+ ---------------------------------------+ ---------------------------------------+ 

Fig. 2.14 Printer-plot for step response of Example 2.2. 

f.RR'JR 
1.0000E 00 
9.28831=-01 
7.5l65E-01 
5.2t44f-01 
2.8382F.-Ol 
7.2920E-02 

-9.0071E-02 
- t. 962 6E" - 0 1 
-2.4684F.-Ol 
-2.5023F.-Ol 
-2.1BR7E-Ol 
-1.6653E-Ol 
-1.0602;:-01 
-4.1760f.-02 

1.00ISE-03 
3.6Z13E-02 
5.6994{=-02 
6.4324f-02 
6.0Q6':3':-02 
5.02-86E-02 
3. 5139~-02 
2.0'346F-02 
6.4203F-03 

-4.5576E-03 
-1.l91lF.-02 
-1.564!E-02 
-1.6236E-02 
-1.4412F-02 
-1.1236E-02 
-7.3662E-03 
-3.5t>10E-03 
- 3. ,_ 316E - 04 

2.0832E-03 
2.92'BF-03 



24 Fundamentals of System/360 CSMP Ch.2 

Statement (3)-SIGX will not have printer-plotted values less than -1.2. 
The upper bound is unspecified. 

Statement (4)-The printer-plot of SIGX has a lower bound of 0.4 and the 
upper bound unspecified. Also, XOUT will be listed on the right side of the SIGX 
printer-plot. Finally, printer-plots can only be made using the independent vari­
able (usually TIME) along the abscissa and the requested dependent variable as 
the ordinate. In other words, it is not possible to plot two dependent variables 
simultaneously as in a phase-plane plot. 

OUTDEL. OUTDEL controls the output increment of the independent vari­
able for printer-plots. If printer-plot points are desired every 0.04 time-units, we 
use OUTDEL = 0.04. The OUTDEL specification is included on the TIMER 
card. A typical example of an OUTDEL assignment is 

TIMER FINTIM = 10.0, OUTDEL = 0.02 

If printer-plots are requested but OUTDEL is not specified, the program will use 
an OUTDEL = PRDEL. If PRDEL is not given in the program, OUTDEL is 
set to FINTIMjlOO. When OUTDEL and PRDEL are both specified, the smaller 
of the two will be adjusted to be a submultiple of the larger. A useful guide in 
selecting the OUTDEL interval is that each page of OUTPUT will contain fifty 
lines. Thus, if the user desires the printer-plot to be contained on one page only, 
the OUTDEL value should be OUTDEL = FINTIMj50. In general, the OUT­
DEL selection, based on the number of pages for the plot, is given by OUTDEL = 
FINTIMj(50 x number of output pages). 

STEP. STEP is one of several signal sources available in CSMP. This particu­
lar signal provides a unit-step forcing-function and is described in Table 2.3. 

Table 2.3 

Formulation for a Unit Step Signal 

General Form 

Definition: Unit-step input 
or forcing 
function. 

Y = STEP(T) 

A unit-step input applied at t = 0 is expressed by 

XIN = STEP(O.O) 

Function 

y= 0 t < T 
Y=1 t>T 

~
.O 

Y T 
t 

If the input forcing-function is a step of weight 3 applied at t = 2.4, the expression 
is written as 

XIN = 3.0*STEP(2.4) 
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LABEL. LABEL cards are used for placing an open-format title or heading 
at the top of each page of printer-plotted output. The first non-blank character 
following LABEL must be alphabetic or numeric. After the first non-blank 
character, special symbols (=, /, *, etc.) may be used within the heading. As with 
PRTPLT cards, continuation cards are not permitted, but up to ten LABEL 
cards may be used for each simulation. Consider the following illustration. 

PRTPLT ROVER, SIGMA 
LABEL RESPONSE OF SYSTEM MODEL - PROBLEM I 
PRTPLT Xl 
LABEL STATE Xl WITH INITIAL CONDITION X2 = 2.0 

Since the first LABEL statement is associated with the first PR TPLT statement, 
the second with the second, and so on, the heading, RESPONSE OF SYSTEM 
MODEL-PROBLEM 1, will appear at the top of each page of printer-plotted 
output for the variables ROVER and SIGMA. The printer-plot of Xl will have 
a heading of STATE Xl WITH INITIAL CONDITION X2 = 2.0. If the number 
of PRTPLT cards exceeds the number of LABEL cards, the excess print-plots 
will not have headings. 

Refer to Fig. 2.12 and consider the following portion of the listing: 

TIMER FINTIM = 8.0, OUTDEL = 0.16, PRDEL = 0.04 
PRTPLT OUTPUT (ERROR), ERROR (, 0.5) 
LABEL STEP RESPONSE FOR SECOND ORDER SYSTEM 
PRINT OUTPUT, OUTEXT 

The TIMER card gives the information that the simulation will run for 8.0 sec, 
printer-plotted output will occur every 0.16 sec, and printed output every 0.04 sec. 
We note that with a FINTIM of 8.0 and OUTDEL of 0.16, there will be one page 
for each printer-plotted variable (number of pages = FINTIM/(OUTDEL *50). 

The PRTPLT card specifies printer plots for OUTPUT and ERROR. The 
plot for OUTPUT will have ERROR given in tabular form at the right side of the 
page. The plot of ERROR will have an upper bound of 0.5. The heading, STEP 
RESPONSE FOR SECOND ORDER SYSTEM will appear at the top of each 
page of printer-plotted output. The printer-plot for OUTPUT is given in Fig. 2.14 
while Fig. 2.15 shows the plot for ERROR. 

The PRINT card designates that OUTPUT and OUTEXT will be printed 
out. As indicated in the program listing of Fig. 2.12, the exact analytical solution 
(OUTEXT) is calculated. Notice also in Fig. 2.16 the very close agreement between 
the CSMP numerical solution (OUTPUT) and the exact analytical solution. This 
is an indication of the accuracy that can be expected. 

Example 2.3 Solution of the Van der Pol Equation 

This example illustrates the ease of solving a nonlinear differential equation for 
various parameter values. The particular example is the well-known Van der Pol equation, 
which is shown below with the selected initial conditions. 
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STEP RESPONSE FOR SECOND CROfR SYSTE~ PAGE 

TtH 
0.0 
1.6000E-01 
3.2000E-01 
4. 8COO~-01 
6.4000E-OI 
8.0000E-Ol 
9.6000E-01 
1.1200E 00 
1.l800E 00 
1.4400E 00 
1.6000E 00 
1.76COE 00 
1.9200E 00 
2.0800E 00 
2.2400E 00 
2.4000E 00 
2.5600E 00 
2.7200E 00 
2.8800E 00 
3.0400E 00 
3.2000E 00 
3.3600E 00 
3.5200E 00 
3.b800E 00 
3.8400: 00 
4.0000E 00 
4.1600E 00 
4.3200E 00 
4.4800E 00 
4.6400':: 00 
4.8000£ 00 
4.9600E 00 
5.1200E 00 
5.2000E 00 

MINIMUM 
-2. 'BnE-Ol 

J ERROR 
1.0000E 00 
9.2883::-01 
7. 5it 5E-Ol 
5.2144E-01 
2.8382E-01 
1.2920E-02 

ERROR VER SUS TIME MAXIMUM 
5.0000E-01 

I 

-9.00112-02 
-1.9626E-01 
-2.4684E-01 
-2.5023E-Ol 
-2.1381E-Ol 
-1.6653E-Ol 
-1.0602E-01 
-4.1160E-02 

1.0018::-03 
3.6273E-02 
5.6984E-02 
6.4324E-02 
6.0963E-02 
5.0286E-02 
3.573QE-02 
2.0346E-02 
6.4203E-03 

-4.5576E-C3 
-1.1911E-02 
-1.5641E-02 
-1.6236E-02 
-1.44nE-02 
-1.1236E-02 
-1.3662E-03 
-3.5610E-03 
-3.1316E-04 

2.0832E-03 
2.9293E-03 

--------------------------------------------------* --------------------------------------------------* --------------------------------------------------* 
::::::::::::::::::::::::::::::::::::--------------,* 
---------------------+ 
----------+ 
---+ I I 
+ Note that the plotted value of 
+ ERROR does not exceed the 
::~ __ + specified value of 0.5 

---------+ -------------+ 
----------------+ -------------------+ --------------------+ 
---------------------+ --------------------+ 
--------------------+ -------------------+ ------------------+ 
-----------------+ ----------------+ ----------------+ 
---------------+ ---------------+ 
---------------+ ----------------+ ----------------+ 
----------------+ ----------------+ ----------------+ 
-----------------+ 

Fig. 2.15 System error response for Example 2.2. 

x + £(X2 - I)X + X = 0 

X(O) = 2.0 

X(O) = 0.0 

(2.6) 

A helpful first step is to change the second-order differential equation to an equivalent 
set of first-order equations, easily accomplished as 

X=XD 

X= XDD = -£(X2 -l)XD - X 

(2.7) 

(2.8) 

The program for solving Eqs. (2.7) and (2.8) is straight forward, as shown in Fig. 
2.17. An ordinary FORTRAN statement is used to calculate xnD and two INTGRL 
functions are used to integrate XDD and XD to obtain XD and X, respectively. 

In this example the following PARAMETER card is used to make a sequence of 
simulation runs for five different values of the constant E. 

PARAMETER E = (0.05, 0.5, 2.0, 10.0, 50.0) 

One separate run is made for each value of E. Figs. 2.18 and 2.19 show the printer-plot 
outputs for E = 2.0 and E = 50.0. Note that the parameter value E is listed at the begin­
ning of each plot and on each page of PRINT output. 
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PRI~TED LISTING OF "QUTPUT" (SIMULATI~NI AND "OUTEXT" (ANALYTICAL» 

TIME 
0.0 
4.0000E-OZ 
8.0000E-OZ 
1.2000E-Ol 
1.6000!:-01 
2.00001.:-01 
2.4000'=-01 
Z.BOOOE-Ot 
3.2000E-Ol 
3.6000E-Ol 
4.0000E-01 
4.4000"=-01 
4.8000E-01 
5.20COE-Ol 
5.6000E-Ol 
6.00001:-01 
6.4000'=-01 
6.8000E-Ol 
7.2000E-Ol 
1.60COE-Ol 
a.OOOOE-OI 
8.40COE-01 
A. 9000E-Ol 
9.2000E-Ol 
9.60COE-OI 
1.0000'= 00 
1.0400E 00 
l.oaOOE 00 
1.1200E 00 
1.1600!: 00 
1.2000E 00 
1.2400E 00 
1.28 co;: 00 
1.3200E 00 
1.3600E 00 
1.4000E 00 
1.4400': 00 
1.48COE 00 
l.5l00E 00 
1.5600'= 00 
1.60COE 00 
1.6400E 00 

r------- CSMP Solution 

1 r Analytical Solution 

OUTPUT 
0.0 
4.8652E-03 
1.8912E-02 
4.1300E-02 
7.1172E-02 
1.0767E-Ol 
1.4992E-Ol 
1.9710E-01 
2.4835E-Ol 
3.0288E-Ol 
3.5991E-Ol 
4.181lE-01 
4.7856E-Ol 
5.3aa2E-01 
5.98 88E- 0\ 
6.5817E-Ol 
7.1b"8E-Ol 
7.7246E-Ol 
8.2660E-Ol 
8.7824E-0l 
9.2708E-Ol 
9.7286E-01 
1.0154E 00 
1.0545E 00 
1.0901E 00 
1.l220E 00 
1.1504E 00 
1.1751E 00 
1.1963f 00 
1.2139E 00 
1.2281E 00 
1.2390E 00 
I.Z468E 00 
1. 251 7~ 00 
1.2537E 00 
1.2532E 00 
1.L502E 00 
1.245lE 00 
1.2380E 00 
1.2292E 00 
1.21891: 00 
1.2072E 00 

(lUTEXT 
4.7684f-07 
4.8663E-03 
1.89131:-02 
4. 1300E-02 
7.1172E-02 
1.0767E-01 
1.49nE-01 
1.9710[-01 
2.4A35f-Ol 
3.0288E-01 
3.599H-01 
4.1871E-Ol 
4.1856£-01 
5.3883E-01 
5. g888E-01 
6.5817E-O'1. 
1.l619E-01 
7.7247E-Ol 
B.2660E-Ol 
S.7824E-Ol 
9.2708E-01 
9.72P7f-Ol 
1.0154E 00 
1.0545E 00 
1.0901 E 00 
1.1221E 00 
1.1504= 00 
1.1751'=' 00 
1.~.<t63E 00 
1.2139f 00 
1.2281E 00 
1.2391E 00 
1.2469E 00 
1.2517E 00 
1.2537E 00 
1.2532E 00 
1.2502E 00 
1.2451E 00 
1.2380E 00 
1.2292E 00 
1.2\891; 00 
1. Z072E 00 

Fig. 2.16 Diagram illustrating printer output for Example 2.2. 

27 

When making a sequence of runs using a PARAMETER card, all printer-plots for the 
same variable will have a common scale. This means that some plots may not cover the 
full range (example: Fig. 2.19); however, a common scale has the advantage that a direct 
comparison can be made between plots of sequential runs. 

In Example 2.1, a description of the CONSTANT statement was given. The applica­
tion of both the INCON and PARAMETER cards is identical to the CONSTANT 
statement. They are completely interchangeable but are lettered differently as a matter of 
convenience to the user. The description given below is, therefore, equally valid for all 
three cards. 
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LABEL SOLUTION OF THE VAN DER POL EQUATION 

* THE FOLLOWING PARAMETER STATEMENT RECYCLES THE PRCGRAM FOR THE FIVE 
* DIFFERENT VALUES Of E. 

PARAMETER E: (0.05, 0.5, 2.0, 10.0, 50.0J 

INeON XI = 2.0, XDI ~ 0.0 
XDD = -E*(X*X - 1.0)*XD - X 
X = INTGRL(XI,XO) 
XD = INTGRl(XDI,XCCJ 
PRTPLT X (XO,XDD1 
TIMER FINTIM : 10.0, OUTDEL 0.25 

END 
STOP 
ENDJOB 

Fig.2.17 Program to solve Van der Pol equation. 

$JLuTlON OF THe VAN OER PC'l EQUAT ION PAGE 

TIME 
O.U 
2.50uJE-Ol 
5.0000E-OL 
7.500JE-Ol 
l.OOOOE 00 
1.2500E OJ 
l.500JE 00 
1.7500E 00 
2.0000E 00 
2.250vE 00 
2.5000E 00 
2.7500E 00 
3.0000E 00 
3.2500E OJ 
3.5000E 00 
3.7500E 00 
4.0000E 00 
1t.250oE 00 
1t.5000E 00 
1t.7500E 00 
5.0000E 00 
5.2500E 00 
5.5000E 00 
5.7500E 00 
f).OOOOE 00 
6.2500E 00 
b.5000E 00 
b .7!;QOE 00 
7.0000E 00 
7.2500E 00 
7.5000E 00 
7.750i.lE 00 
8.0000E 00 
8.2500E 00 
a.5000E 00 
8.7500E 00 
9.0000E 00 
9.2500E 00 
9.5000E 00 
9.7500E 00 
1.0000E 01 

X 

MINIMUM 
-2.C197E 00 

I 

VERSUS T1 ME 
= 2.0000E 00 

MAXIMUM 
2.0174E 00 

I 
2.0000E 00 
1.9597E 00 
1.8839E 00 
1.7955 E 00 
1.6980E 00 
1.5905E 00 
1.4701E 00 
1.3320E 00 
1.1679E 00 
9.6270E-Ol 
6.8613E-01 
2.73971:-01 

-3.9365E-Ol 
-1.3112E 00 
-1.9025E 00 
-2.0L97E 00 
-1.9815E 00 
-1.9069E 00 
-1.8201E 00 
-1.7247E 00 
-1.6199E 00 
-1.5033E 00 
-1.3704E 00 
-1.2143E 00 
-1.0219E 00 
-7.6847E-Ol 
-4.0125E-Ol 

1.8610E-01 
1.0705E 00 
1.8063E 00 
2.0137E 00 
1.9970E 00 
1.9278E 00 
1.8435E 00 
1.7504E 00 
1.6482E 00 
1.5349E 00 
1.4068E 00 
1.2577E 00 
1.0765E 00 
8.4246E-Ol 

-------------------------------------------------+ 
-------------------------------------------------+ -----------------------------------------------+ 
-----------------------------------------------+ 
----------------------------------------------+ --------------------------------------------+ 
-------------------------------------------+ -----------------------...,-----------------+ ---------------------------------------+ ---'---------------------------------+ ---------------------------------+ 
----------------------------+ 
--------------------+ --------+ 
-+ 

-+ 
--+ 
---+ 
----+ ------+ --------+ ---------+ 
------------+ 
---------------+ -------------------+ --------------------------+ -----------------------------------+ ------------------------------------------+ ------------------------------------------+ -----------------------------------------+ 
-------------------------------- -+ --------------------------------------+ 
---------------------------------------+ 
----------~-------------------------------~ ---------------------------------
------------------~---------------~--. -----------------------------+ -----------------------------------------------------------+ 

XD XDD 
0.0 -2.0000E 00 

-2.6104E-Ol -4.7673E-Ol 
-3.3346E-Ol -1.8382E-Ol 
-3.7194E-01 -1.4120E-01 
-4.0872E-01 -1.5853E-Ol 
-4.5342E-Ol -2.0331E-Ol 
-5.1291E-Ol -2.7892E-Ol 
-5.9721E-Ol -4.0725E-Ol 
-7.2507E-Ol -6.4001E-Ol 
-9.3568E-ol -1.0997E ·00 
-1.3174E 00 -2.0806E '00 
-2.0640E 00 -4.0920E 00 
-3.3366E 00 -5.2454E 00 
-3.4977E 00 6.3417E 00 
-1.1181E 00 8.0742E 00 
-1.5696E-02 2.1164E 00 

2.5613E-Ol 4.8245E-Ol 
3.2795E-Ol 1.7175E-Ol 
3. 6465E-Ol 1.3333E-Ol 
3.9919E-Ol 1.4817E-OI 
4.4076E-OI 1.1I815E-Ol 
4.9547E-Ol 2. 5489E-OI 
5. 71 87E-o 1 3.6616E-Ol 
6. 8561E...,01 5.6372E-Ol 
8.6868E.,01 9.4486E-Ol 
1.1921E 00 1.1441E 00 
1.S16SE 00 3.4494E 00 
2.916SE 00 S.S613E 00 
3.1196E 00 -2.ll47E 00 
1.7696E 00 -9.S1)9E 00 
1.S361E-Ol -3.13SlE 00 

-2.1S68E-Ol -6.901lE-01 
-3.lSnE-01 -2.1412E-Ol 
-3.SS92E-Ol -1.3601E-Ol 
-3.S979E-OI -l.'tlSOE-Ol 
-4.289SE-Ol -l.1SSSE-Ol 
-4.19S9E-Ol -2.3427E-Ol 
-S.4923E-Ol -3.3123E-Ol 
-6.S109E-Ol -S.0014E-Ol 
-S.USOE-Ol -8.1869E-Ol 
-1.0818E 00 ";'1.n40E 00 

Fig. 2.18 Printer-plot output for solution of Van der Pol equation 
E=2.0. 

PARAMETER, CONSTANT, INCON. These data statements are used for 
assigning numerical values. Only the first five letters are required to signify their 
use. Thus it is not necessary to write PARAMETER in full since P ARAM is 
acceptable. This also applies to many other CSMP statements. For example, 
PRTPLOT may be used rather than PRTPLT. 

Regarding PARAMETER, CONSTANT, and INCON; at least one blank 
must follow the label card while the remaining entries must have the general format 
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SJLUT ION OF THE VAN DER POL EQUATION PAGE 

TI ME 
.I .u 
Z.;u.J.JE-.J1 
~.JOOJc-Jl 

7.500JE-01 
1.JOOJE OJ 
1.2!l00E uu 
1.;00JE (.Iv 

1.nuolO OJ 
2.000.Je OU 
2.2 :>0010 OJ 
2 .500v E OJ 
,.7~OJE 0.1 
J.OOOuE 00 
3.2~00t: OJ 
3.5JOJE OJ 
3.7:>OuE OU 
4.vOOOE JO 
4.2jJO~ 00 
".500ve OV 
4.75vve OJ 
5.0QQOE 00 
:>.250J1: 00 
>.5uuJE UO 
5.7,OOE OU 
o.OOOOE uJ 
b.2 SOve 00 
b.500uE 00 
o.7500E 00 
7.0000t OJ 
1.2~Oue 00 
1.5000E 00 
1.nOOE 00 
iI.OOOJE OJ 
8.2S00E OU 
1i;5 QuJE .10 
8.150010 00 
9.000UE uO 
9.2500E 00 
9.50vOE Ou 
9.750uE OJ 
1 .0uOO E \)1 

MINI"IUM 

X 
- 2. Cl c; 7" 00 

I 

VERSUS TIME 
~ 5.0000E 01 

MAXIMUM 
2.0174E 00 

I 
2.0000= 0C 
1.9967t 00 
1.9934= CC 
1.'1900E 00 
1.9B6t>E OC 
1.9833= OC 
1.9799E CO 
1.9765E OC 
1.97311' 00 
1.9(,96E 00 
1.9662E DC 
1.96281' CO 
1.9S93E CC 
1.9S59E 00 
1.9524E 00 
1.9489" CC 
1.9454E 00 
1.9419E OC 
1.9384E 00 
1.9349E,)0 
1.9313<: OC 
1.927IlE 00 
1.9242~ OC 
1.9206E 00 
1.9171E CO 
1.9135= OC 
1.9099~ 00 
1.9062E CC 
1.9026;: 00 
1.8990E 00 
1.8953= OC 
1.891 7E 00 
1. 88BO~ CC 
1.8843E 00 
1.BBObE CO 
1. B769E OC 
1.BBIE CO 
1.B694E CO 
1.Bb56E 00 
1.B618E 00 
1.B58H: OC 

- ------- ---- --- ----------------------------------+ 
---- ---- ---- --- ----- ------------ ---- ----------- --+ 
---- -------- -------------------------------------+ 
-------------------------------------------------+ 
--- - - --- ---- --- -------- - --- - ---- ----------------- + 
-------------------------------------------------+ ------ --------- ----------------------------------+ 
- -- - - --- -- -- - -- -- ------- -------- ---- ----------- --+ 
---- ---- -----------------------------------------+ 
-------------------------------------------------+ 
---- ---------------------------------------------+ 
--------------- ----------------------------------+ 
-------- ------- ----------------------------------+ 
-------------------------------------------------+ 
------------ -------------------- -----------------+ 
----------.--------------------------------------+ 
- --- ---- ---- ----------------------------------- --+ 
-------------------------------------------------+ 
-------------------------------------------------+ 
------------------------------------------------+ 
--------- ---- ----------- -------- ----------------+ 
-------- ---------------- ---------------- --------. 
-- ---- -- - - -- ------ ------------------------------ + 
------------------------------------------------+ 
-------- -- --------------------------------------+ 
--- ---------------------------------------------+ ------------------------------------------------+ 
------------------------------------------------+ ------------------------------------------------+ 
------------------------------------------------+ 
--- - - --- - ------ ----------------- ----------------+ ------------------------------------------------+ ------------------------------------------------+ 
------------ ------------------------------------+ 
- -- ------- -------- ----- -------------------------+ ------------------------------------------------+ ------------------------------------------------+ 
------------------------------------------------+ 
------------------------------------------------+ 
-------- - --- --- - --------------------------------+ 
----~-------------------------------------------+ 

XD XDD 
0.0 -2.0000E 00 

-1.3368E-02 -2.5845E-04 
-1.3156E-02 -3.7365E-02 
-1.3320E-02 -1.8501E-02 
-1.3462E-02 -3.1214E-03 
-1.3293E-02 -3 .. 3574E-02 
-1.3544E-02 -2.1t862E-03 
-1.3564E-02 -5.3825E-03 
-1.3620E-02 -2.9l64E-03 
-1.3643E-02 -5.4636E-03 
-1.3l08E-02 -1.8091E-03 
-1.3156E-02 -8.8120E-04 
-1.3802E-02 -1.8l81E-04 
-1.3831E-02 -2.0018E-03 
-1.3Bl0E-02 -2.4099E-03 
-1.3918E-02 -1.6050E-03 
-1.3961E-02 -1.5526E-03 
-1.3978E-02 -5.2lt52E-03 
-1.4058E-02 -2.2030E-01t 
-1.4013E-02 -It.2686E-03 
-1.4147E-02 -2.8l06E-04 
-1.4190E-02 -4.9400E-04 
-1.lt235E-02 -5.8210E-04 
-1.4125E-02 -2.1666E-02 
-1.lt331E-02 -2.6l03E-04 
-1.4322E-02 -7.7343E-03 
-1.4426E-02 -2.0nOE-04 
-1.4474E-02 -2.0504E-04 
-1.4523E-02 -2.050ltE-04 
-1.4512E-02 -1.9346E-03 
-1.4552E-02 -9.2669E-03 
-1.46l2E-02 -2.1172E-04 
-1.4677E-02 -6.0024E-03 
-1.4140E;"02 ~.5366E-03 
-1.4809E-02 -2.4033E-03 
-1.4879E-02 -2.2888E-04 
-1.4893E-02 -5.0983E-03 
-1.4968E-02 -2.4109E-03 
-1.5030E-02 -1.5574E-03 
-1.5072E-02 -3.0l08E-03 
-1.5145E-02 -1.0271E-03 

Fig. 2.19 Printer-plot output for solution of Van der Pol equation 
E = 50. 

of variable name, equal sign, and numerical assignment. Additional assignments 
are made on the same card by placing a comma after the numerical value. Any 
number of assignments may appear on a card. Up to eight continuation cards are 
allowable by using three consecutive periods at the end of the card. Valid applica­
tions are 

PARAMETER AX = 6.0, MW = 2.0, TAU = 1.0, ... 
RHO = 0.1, GAMMA = 6.2E - 03 
PARAM EDGE = 3.2, START = 6.4, LAST = -0.5 
lNCON lCXl = 0.115, lCX2 = 0.0 
CONST ALPHA = 1.35, BETA = -6.134 
CONSTANT X = 5.6, Y = -45.78 

where all of these cards are used in the same program. The results of the simula­
tion would have been unchanged by using 

CONSTANT AX = 6.0, MW = 2.0, TAU = 1.0, .. . 
RHO = 0.1, GAMMA = 6.2E - 03, lCXl = 0.115, .. . 
lCX2 = 0.0, ALPHA = 1.35, BETA = -6.134, ... 
X = 5.6, Y = -45.78, EDGE = 3.2, START = 6.4, ... 
LAST = -0.5 
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In the above, CONSTANT could be replaced by either INCON or PARAMETER. 
Calculations are not allowed in a data statement. An example of an invalid 

statement is shown below. 

CONSTANT X = 5.8, Y = 4.2/3.14 

LIllegaloperation 

As illustrated in Example 2.3, an attractive feature of these data statements 
is their capability of making sequential runs. A typical statement is 

INCON ICX1 = (0.0, 2.0, -1.2, 6.0), ICX2 = 2.3 

The program will make four simulation runs in which leXl is assigned the values 
appearing in the parentheses in the order given from left to right. The value of 
ICX2 = 2.3 is used for each run. As a slight modification one may use 

PARAMETER ICX1 = (0.0, 3*0.2, 1.4, 2*2.0) 

which will result in seven simulation runs with the values of ICXl being 0.0, 0.2, 
0.4, 0.6, 1.4, 2.0, 4.0. A maximum of fifty runs can be made in any sequence. 

Only one variable can be used to make sequential runs. Examples of invalid 
data statements which attempt to make sequential runs using two variables for 
two different programs are 

PARAMETER X = (2.0, 5.0, 9.0), Y = (3.0,4.0, 7.0) 
CONSTANT X = (2.0, 5.0, 9.0) 
PARAMETER Y = (3.0,4.0, 7.0) 

Example 2.4 Transient Temperature Response 

In some simulations it is necessary to use functional relationships that are contained 
in tabular or graphic form. Fig. 2.20 shows an example of a graphic relationship between 

3 

2 

y 

x 
Fig. 2.20 Graphic relationship between X and Y. 
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X and Y that can be represented by using a FUNCTION statement. Points on the curve 
of Fig. 2.20 are entered on a FUNCTION card as illustrated below. 

r--Independent variable(X) 

1 ~ ~ 1 L 
FUNCTION F = (0.5,1.0), (1.0, 2.0), (2.0, 2.5), (2.75, 2.25), (3.5, 1.5) L t t t t j 

Function name LDependent variable (Y) 

The symbol F represents the chosen name of this particular function but any other 
valid symbol can be used. The independent variable for each point is always listed first 
starting with the smallest algebraic value. This variable must monotonically increase to 
assure that the slope is neither infinite nor the function muItivalued. Increment size of the 
independent variable may be unequal as shown in the above example. Parentheses can be 
used to group the coordinates of each point but are not required. Commas must separate 
all numbers. The list of values can be extended to additional cards by the use of three 
consecutive periods ( ... ). There are no specific restrictions on the number of points per 
function. 

The two types of statements which use the data contained on the previous FUNC­
TION card are 

Y = AFGEN(F, X) 
Y = NLFGEN(F, X) 

where Y is the dependent variable (ordinate) and X is the independent variable (abscissa). 
The AFGEN statement provides linear interpolation between consecutive data 

points. In effect, the curve is represented by a series of straight-line segments. The more 
closely spaced the points, the more accurate the representation of the function. 

NLFGEN uses a Lagrange quadratic interpolation between points. Consequently, 
the NLFGEN element cannot accurately represent functions containing abrupt changes. 
An example of this is shown by Fig. 2.21. 

Notice that the error in using the NLFGEN statement is greatest where the data points 
are widely separated and where the curve changes abruptly. 

Both AFGEN and NLFGEN functions can be treated as ordinary variables and, 
consequently, included as part of structure statements. An example is 

Z = 3.5*AFGEN(F, X)/(3.8 - NLFGEN(L, TIME» 

If the value of the input variable is outside the specified range of the function, a 
diagnostic message is printed and the simulation proceeds without interruption. The 
value returned by AFGEN or NLFGEN is either the first or last dependent variable in 
the FUNCTION statement. For example, if the input value of X in the graphical relation­
ship of Fig. 2.20 were 4.0, the output would be 1.5. In a similar manner, the output would 
be 1.0 for all input values less than 0.5. 

This example illustrates the simulation of the transient temperature response of a 
small hot copper cylinder which is quenched in water. Special emphasis is placed on the 
use of the FUNCTION statement in conjunction with the AFGEN function. 
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NLFGEN 
AFGEN 

o Data points 

Ind~pendent variable 

" / --.""" 

/ 
/ 

/ 
/ 

Fig.2.21 Comparison of curve fit using AFGEN and NLFGEN 
functions. 

Figure 2.22 defines the physical setup of the problem. 

Ch.2 

Applying the basic law of heat conduction and assuming uniform cylinder temperature 
and constant water temperature yields 

TDOT = T = H*AREA*(TA - T)/(RO*C*V) 

T = S: T dt + TINITL 

where T = temperature of cylinder 

TA = temperature of water, 5300 R 

TINITL = initial temperature of cylinder, 19600 R 

AREA = surface area of cylinder = n(D2/2 + DL) 

RO = density of copper, 559 Ib/ft3 

C = specific heat of copper, 0.0915 Btu/lb-oR 

V = volume of cylinder = n D2L/4 

D = diameter of cylinder, 0.02 ft 

L = length of cylinder, 0.1 ft 

(2.9) 

(2.10) 

H = overall heat transfer coefficient, a function of temperature as shown 
in Table 2.4. 

Data for the heat transfer coefficient is taken from Table 2.4 and entered into the 
program on a FUNCTION statement called HBOIL. 
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--1 r-D = 0.02 ft 

Copper CYlinder:UT 

L = 0.1 ft 
Temperature = T 

Initial temperature = I 9600 R ~ 

Table 2.4 

Fig. 2.22 Schematic showing the quench­
ing of a hot copper cylinder in water. 

Boiling Heat Transfer Coefficient as a Function 
of Temperature 

Temperature 
COR) 

672.1 
673.0 
687.0 
702.0 
737.0 
822.0 
1082 
1672 
2672 

Heat Transfer Coefficient 
(Btu/ft2-hr-OR) 

114 
278 
667 
3680 
13200 
3680 
880 
880 
1140 

Notice that this program contains all three segments: Initial, Dynamic, and Terminal. 
The use of the three segments is not required for this particular program, but is included 
in order to show a logical classification of the structure statements. The Initial segment 
contains both the FUNCTION statement and the CONSTANT card which are used to 
specify the parameters of the system, Since the calculations used to determine AREA and 
V are only required once, they are included in the Initial segment. 

In the Dynamic segment, an AFGEN statement is used to specify H, a FORTRAN 
type statement is used to calculate TOOT, and the INTGRL function is used to inte­
grate TOOT to obtain T. 



34 Fundamentals of System/360 CSMP Ch. 2 

The run is terminated either by reaching the finish time (FINTIM) or by the control 
of the FINISH card. 

FINISH. The FINISH label allows the user to terminate a run prior to the 
time as specified by FINTIM. A run can be ended when any dependent variable 
first crosses or reaches a given bound. In the program of Fig. 2.23, the run will 
terminate when T reaches or crosses the value of 682°R, or when TIME reaches 
FINTIM. If more than one FINISH card is included, only the last card is con­
sidered. A single FINISH statement can contain a maximum of ten terminating 
conditions. Continuation to successive cards is permitted. 

LAREL QUENCHING OF A HOT COPPER CYL INUER 
INITIAL 

CONSTANT RO : 559.0. C : 0.0915. TA : 530.0, L = 0.1, 0 : 0.02 •••• 
TINITL : 1960.0. PI : 3.14159 

* THE FOLLOWING VALUES LISTED ON THE FUNCTION CARD ARE THE HEAT TRANSFER 
* COEFFICIENT AS A FUNCTION OF TEMPERATURE 
FUNCTION HBOIL = (672.1.114.0),(673.0.278.0).(681.0.661.0), 

(702.Q.36aO.O),(137.0,13200.0J,(U22.0,3680.0), 
(1082.0.~80.0),{1672.0,880.0),(2h12.0.1140.0) 

AREA: PI*(D*0/2.0 + D*Lt 
V : PI*D*D*L/4.0 

DYNAMIC 
H : AFGEN(HBOIL.T) 
TDOT : H*AREA*(TA - TJ/(RO*C*V) 
T = INTGRL(TINITl,TDOT) 

TER~I NAL 

END 
STOP 
END JOB 

TIMER FINTIM = 0.006, OUT DEL = 0.00001 
FINISH T = 682.0 
PRTPLT T (H) 

Fig. 2.23 Program to calculate the transient temperature of a 
copper cylinder. 

The FINISH statement 

FINISH X = -3.0, Y = z 
t i'--__ ---. 
I I 
At least one blank A comma must separate 
space after the label all listings 
Finish 

shows two conditions for ending the run. The first condition (X = - 3.0) will 
terminate the run when X first reaches or crosses - 3.0. The second requirement 
(Y = Z) will end the simulation when Y = Z, or when Y - Z first changes sign. 
The run will be terminated when either of the conditions are met. 

Since the FINISH conditions are checked at each integration interval, the 
run may be terminated at a time that is not a multiple of PRDEL or OUTDEL. 
If this happens, printing will occur at the time when the FINISH condition is met. 

Figure 2.24 shows the PR TPL T output for the time history of the temperature 
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OUFNCHING OF A HOT COPPER CYLINDER PAGE 

TIM!: 
0.0 
1.0000E-0,) 
2.0000'::-05 
3.0000E-0') 
4.0000F-05 
!) .()OOOE-05 
6.0000~-05 

1.0000E-05 
A.001)0~-05 

9.0000E-05 
1.00,10F-04 
1.1000E-04 
1.2000E-04 
1.,1}001:-04 
1.4000'::-04 
1.50001"-04 
1.6000E-04 
1.7000E-04 
1.80001=-04 
1.9000F-04 
2.0QOOE-04 
2.100I'lF-04 
2.2000E-04 
2.3000E-04 
2.4000':-04 
2.5000E-04 
2. (.OO()F - 04 
2.7000':-04 
2.6000E-04 
7..9000E-{'I4 
3.00001=-04 
3.1 OOOE- 04 
3.2000F.-04 
3.3000F-04 
3.400'1E-04 
3.5000E-04 
3.6000F-04 
3.7000E-04 

T 

MINIMU~ 
6.7907E 02 

I 

T VHSlJS TIME MAXIMUM 
1.9600E 03 

I 
1.~oOOr: 03 
1.9029E 03 
1.84d9E 03 
1.1918E 03 
1.1493E 03 
1.10BE 03 
1.6590F 03 
1.b116E 03 
1.~172F. 03 
1.5383E 03 
1.5009E 03 
1.46481: 03 
1.4301E 03 
1.3961E 03 
1.364~E 03 
1.3335E 03 
1.3036E 03 
l.2149E 03 
1.2472E 03 
1.2206E 03 
1.1949E 03 
1.11021: 03 
1.14bSE 03 
1.123bE 03 
1.10lSE 03 
l.oe02E 03 
1.0Sb6E 03 
1.0279E 03 
9.9394E 02 
9.5509E 02 
9.121bE 02 
H.b658E 02 
6.2011E 02 
7.3674'C 02 
6.9375E 02 
b.8613E 02 
b.8224F 02 
6.7907E 02 

-------------------------------------------------+ -----------------------------------------------+ ---------------------------------------------+ 
-----------------------------~-------------+ -----------------------------------------+ ---------------------------------------+ --------------------------------------+ ------------------------------------+ 
-----------------------------------+ ---------------------------------+ --------------------------------+ ------------------------------+ -----------------------------+ ----------------------------+ --------------------------+ -------------------------+ ------------------------+ -----------------------+ 
----------------------+ ---------------------+ 
------~~------------+ 
-------------------+ ------------------+ -----------------+ ----------------+ 
---------------+ --------------+ -------------+ ------------+ ----------+ ---------+ 
-------+ -----+ 
--+ 
+ 
+ 
+ 
+ 

Fig.2.24 Printer-plot output for temperature of copper cylinder. 

of the copper cylinder. Notice that the FINISH card controlled the termination 
of the program at TIME = 0.00037 hr. 

Example 2.5 Three-Stage Saturn Vehicle 

For some types of simulations it is necessary to use conditional branching statements 
to control the sequence of calculations. An example of this type problem is the simulated 
launch of a three-stage Saturn rocket in which each stage requires different equations to 
describe the physical parameters. The FORTRAN IF statement can readily be used to 
insure that calculations are performed in proper order. 

Figure 2.25 gives the significant system parameters and also shows the forces acting 
on the vehicle. 

Applying Newton's second law and neglecting all minor effects and disturbances, 
the equations of motion for a rocket traveling in a radial direction from the center of 

H 
9.5488E 02 
9.4003E 02 
9.2599E 02 
9.1270E 02 
9.0010E 02 
~.8814E 02 
8.80aOE 02 
8.80aOE a2 
8.80aOE 02 
8.8000E 02 
8.S000E 02 
8.8000E 02 
8.80aOE 02 
a.8000E 02 
8.aoaOE a2 
8.BoaOE 02 
8.80aOE 02 
a.8000E a2 
8.BOOOE 02 
8.8000E 02 
8.BOOOE 02 
8.S000E 02 
8.8000E 02 
a.8000E 02 
8.8000E 02 
d.9888E 02 
1.1537E 03 
1.4629E 03 
1.8283E 03 
2.2468E 03 
2.7090E 03 
3.1999E 03 
3.89l7E 03 
1.3130E 04 
2.02HE 03 
6.4290E 02 
5.3413E 02 
4.4664E 02 
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the earth are 

and 
mY = rhVo - mg - !pCaAV2 

ALT = S: Vdt 

where m = mass of total rocket in slugs 

V = velocity in ft/sec 

Y = acceleration in ft/sec 2 

rh = mass flow rate of propellant in slug/sec (con­
stant for each stage) 

Va = outflow velocity of propellant relative to 
rocket in ft/sec 

g = acceleration of gravity which is giyen by 

g = 32.17[r
6 
+rALTT 

r 6 = radius of earth in feet 

AL T = altitude of rocket in feet 

p = density of air in slug/ft3 

An approximate value of p is given by the 

p = 0.00238 e-ALT/24000 

CaA = cross-sectional area of the rocket times the drag 
coefficient in ft2 

Ch. 2 

(2.11) 

(2.12) 

Program Symbols 
(Fig. 2.26) 

MASS 

VEL 

ACC 

MDOT 

VOUT 

G 

RADERH 

ALT 

RO 

DRAG 

While Eqs. (2.11) and (2.12) are valid for each stage, the parameters m, rh, Va' and 
CaA will change for each burn. 

Figure 2.26 shows the CSMP program listing for the simulation of the launch. All 
three segments (Initial, Dynamic, Terminal) are included in this program. The use of the 
three segments is good programming practice since it separates the different types of 
program statements. 

The Initial segment is used to specify the constants in the program and makes a one­
time calculation to find the radius of the earth RADERH in feet. 

Since the parameters in Eq. (2.11) depend on the particular burn stage, FORTRAN 
IF statements are utilized to transfer control to the appropriate group of structure state­
ments. To allow the use of logic branching statements, the· first part of the Dynamic 
segment is changed to a no sort section. 

By examining the program structure, one can make the following observations. 
If the flight time TIME is less than the burn time of the first stage BURNT1, control 

is transferred to statement 1. The instantaneous mass MASS of the total moving rocket is 
calculated and the appropriate values for the propellant-mass-flow rate MDOT, drag­
coefficient times cross-sectional area DRAG, and propellant-outflow velocity VOUT for 
the first stage are specified. Control is then transferred to statement 3 which is a FOR-
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CSMP 
Symbols 

MASS3 
VOUT3 
FLOW3 
BURNT3 
DRAG3 

MASS2 
VOUT2 
FLOW2 
BURNT2 
DRAG2 

MASSI 
VOUTl 
FLOWI 
BURNTl 
DRAG 1 

Fundamentals of System/360 CSMP 

Third stage 

Initial mass = 8137 slugs 
Outflow velocity = 15250 ft/sec 
Mass flow rate = 14.75 slugs/sec 
Burn time = 479 sec 
Drag coefficient times cross­

sectional area = 360 sq ft 

Second stage 
Initial mass = 32205 slugs 
Outflow velocity = 13805 ft/sec 
Mass flow rate = 81.49 slugs/sec 
Burn time = 359 sec 
Drag coefficient times cross­

sectional area = 460 sq ft 

First stage 
Initial mass = 148820 slugs 
Outflow velocity = 8060 ft/sec 
Mass flow rate = 930 slugs/sec 
Burn time = 150 sec 
Drag coefficient times cross­

sectional area = 510 sq ft 

Fig. 2.25 Saturn three-stage rocket. 

Drag fPCdAV2 

Grar=mg 

37 

TRAN CONTINUE statement. After the CONTINUE statement, the Dynamic segment 
is changed to a sort section. Calculations are then made for acceleration of gravity G, 
density of air RO, and acceleration of the rocket ACC. INTGRL statements are used to 
find the velocity VEL and altitude of the rocket ALT. The final two statements in the 
Dynamic segment are used to calculate the velocity in miles per hour MPH and the 
altitude in miles MILES. Control is then transferred back to the beginning of the Dynam­
ic segment where the iterative procedure is repeated. 

The final portion of the Dynamic segment was changed to a sort section to eliminate 
the possibility of having calculations performed in the wrong order. 

The value of FINTIM is set equal to the total burn time of all three stages and will 
consequently terminate the program at the end of the third-stage burn. 
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LABEL SIMULATION OF THE LAUNCH OF A SATURN V THREE STAGE ROCKET 
INITIAL 

CONSTANT MASSl = 148820.0, MASSZ = 32205.0, MASS3 = 8131.0, 
FLOWl = 930.0, FLOW2 :: 81.49, FLOW3 :: 14.15, VOUTt = 8060.0, 
YOUTZ:: 13805.0. VOUT3 = 15250.0. DRAGl = 510.0. DRAG2 = 460.0, ••• 
DRAG3 = 360.0. BURNT! = 150.0, BURNTZ = 359.0 
RADERH = 3960.0*5280.0 

DYNAMIC 
NOSORT 

IF(TIME.LE.BURNTIJ GO TO 1 
IF(TIME.lT.(BURNTl + BURNT2Jt GO TO 2 

* CALCULATIONS FOR THIRD STAGE 
MASS MASS3 - FLOW3*(TIME - BURNT1 - BURNT2J 
MOOT = FLOW3 
DRAG = DRAG3 
YOUT :: VOUT3 
GO TO 3 

* CALCULATIONS FOR FIRST STAGE 
1 MASS MASSl + MASS2 + MASS3 - fLOW1*TIME 

MOOT :: FLOWl 
DRAG = DRAGl 
YOUT :: VOUT 1 
GO TO 3 

* CALCULATIONS FOR SECOND STAGE 
Z MASS MASSZ + MASS3 - FLOW2*(TIME - BURNTlt 

MOOT :: fLOWZ 
DRAG = DRAGZ 
YOUT = YOUTZ 

3 CONTI NUE 
SORT 

Ch. 2 

G :: 32.11*I(RADERH/(RADERH + AlT)t**Z) GRAVITY 
RO = 0.00Z3S*EXP(-AlT/Z4000.0) OENSITY 
ACC (MDOT*VOUT - MASS*G - 0.5*ORAG*RO*VEL*VELJ/MASS 
YEL = INTGRL(O.O,ACC) 
ALT = INTGRLIO.O.VEl) 
MPH:: VEl*60.0/88.0 
MILES = AlT/5Z80.0 

TERMINAL 
TIMER FINTIM = 988.0, PRDEl :: 4.0, OUTOEl :: 20.0 
PRINT MILES. MPH, ACC,G, RO 
PRTPLT MPH (MILES,ACe) 

* THE FOLLOWING FOUR STATEMENTS ARE USED TO MAKE CALCULATIONS AFTER THE 
* RUN IS COMPLETED AND TO PRINT THE RESUlTS. 

FEET = ~ILES*5280.0 
WEIGHT = MASS*32.17 

100 FORMAT(2E20.5) 
WRITE(6,100) FEET,-WEIGHT 

END 
STOP 
END JOB 

Fig. 2.26 Program to simulate the launch of a Saturn rocket. 

Ordinary FORTRAN FORMAT and WRITE statements can be used in nosort 
sections. An example of this is shown by the last two statements in the Terminal segment. 
Since the statements in the Terminal segment are only executed at the end of the pro­
gram, the final altitude in feet FEET and the final earth-weight of the rocket WEIGHT 
can be calculated and will be the last output of the program. A detailed discussion of the 
use of FORTRAN output statements is included in Chap. 3 in the section on data output. 

The PRTPLT output showing the vehicle velocity profile is given in Fig. 2.27. 
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SIMULATION OF THE LAUNCH OF A SATURN V THREE STAGE ROCKET PAGE 

TIME 
0.0 
2.0000E 01 
4.0000E 01 
6.0000E 01 
8.0000E 01 
1.0000e: 02 
1.2000E 02 
I.4OOOF. 02 
1.600,01'; 02 
I.OOOOE 02 
2.0000;; 02 
;>.2000" 02 
2.4000" 02 
2.6000<; 02 
2.80001'; 02 
3.00MI' 02 
3.2000" 02 
3.4000E 07. 
3.6000!' 1')2 
J.8000E 07, 
4.00001' 02 
4.2000", 02 
4.4000F; 07. 
4.6000" 02 
4.AOOI)F; 0;> 
5.0000E 07 
';.20001; 1')2 
';.4000c 02 
5.6001)" 07 
5.8000;: 02 
6.0000r: 02 
6.21')00<: 02 
6.40001' 02 
6.60001: 02 
6.801)0E 02 
7.aoool' 07. 
7.2000c 02 
7.4000E 02 
7.60001' 07 
7.bOOI')E 02 
A. 0000 c 02 
8.;>000F. 02 
8.4001)F; 02 
8.60)1)1' 02 
A.8001)1; 02 
9.0000E 07 
9.201)'1<: 02 
9.4000~ 02 
9.6000F 02 
Q.80DO!' 02 
9.i\SOOc 02 

MINIMUM 
0.0 

MPH VERSUS TIME MAXIMUM 
2.ftZ30E 04 

I MPh 
0.0 
1.~966E 02 
3.2111E 02 
5.8673E 02 -+ 
'I. 52'17F 02 -+ 
1.4688E 03 ---+ 
2.2062E 03 ----+ 
3.2793E 03 
3~9871E 03 
3.9603E 03 
3.9556E 03 -------- .. 
3.9743E 1)3 --------+ 
4.0184E 03 
4.01198E 03 
4ol'l12E OJ 
4.325<'E 03 
4.49551: 03 ---------+ 
4.7062E 03 ---------+ 
4.9621!' 03 ----------+ 
5.2694E 03 ---------- + 
5.6356E 03 -----------+ 
6.0701E 03 ------------+ 
6.51!48E 03 -------------+ 
7.1'155!' 03 --------------+ 
7.92311: 03 ---------------- + 
8.7'169E 03 ------------------+ 
'1.2739" 03 --- ----- -----------+ 
9.B85E 03 ------------ -------+ 
9.4258E 03 -------------------+ 
9.536SE 03 -------------------+ 
'I.672flE 03 -------------------+ 
9.1l352E 03 --------------------+ 
1.0026E 04 ------------------'-- + 
1.024bE 04 ---------------------+ 
1.0!;OOE 04 ---------------------+ 
1.078aE 04 ----------------------+ 
lol1l5E 04 ----------------------+ 
1.141l4E 04 -----------------------+ 
1.lYOOE 04 
1.236H" 04 ------------ ---- ---- -----+ 
1.2b9'>E 04 --------------------------+ 
1.34YlE 04 ---------------------------+ 
1.416!>E 1)4 ------------------------ -----+ 
1.4'130~ 04 --- --------- ------------------+ 
1.,)8071' 04 -------------------------------+ 
l.bS ItlF 04 ----------------------------------+ 
1.799!lE 04 --- ----------------- ---- -------- -----+ 
1.'1397E 04 ----------------------------------------. 
2.1092F 04 --- ----- ------------ ---- -------------------+ 
2.J214E 04 -----------------------------------------------+ 
2.4230E 04 ---------------------------- ---------------------+ 

Fig. 2.27 Printer-plot output for launch of Saturn rocket. 

Example 2.6 Control System with Compensation 

MILES Ace 
0.0 1.4564E 00 
3.3361E-Ol 1.1664E 01 
1.55't9E 00 1.6553E 01 
4.0380E 00 2.Z716E 01 
1l.2590E 00 3.160 IE 01 
1.4902E 01 4.4911E 01 
2.4987E 01 6.4539E 01 
4.0030E 01 9.5564E 01 
6.1211E 01 -2.1380E 00 
8.3283E 01 -1.1131E 00 
1.0526E 02 4.9306E-Ol 
1.2728E 02 2.2805E 00 
1.4947E 02 4.2094E 00 
1.7198E 02 6.3042E 00 
1.9496E 02 8.5945E 00 
2.1860E 02 1.1U6E 01 
2.4309E 02 1.3913E 01 
2.6863E 02 1.7042E 01 
2.9546E 02 2.0571E 01 
3.2386E ~2 2.4594E 01 
3.541ZE 02 Z.9229E 01 
3.8660E 02 3.4639E 01 
4.2171E 02 4.1048E 01 
4.5994E 02 4.8776E 01 
5.0187E 02 5.8299E 01 
5.4824E 02 7.0350E 01 
5.9908E 02 3.9352E 00 
6.5077E 02 5.5599E 00 
1.0288E 02 1.2573E 00 
7.5554E 02 9.0401E 00 
8.0889E 02 1.0922E 01 
a.o307E 02 1.2920E 01 
9.1822E 02 1.5053E 01 
9.7452E 02 1.7344E 01 
1.0321E 03 1.9819E 01 
1.0912E 03 2.2512E 01 
l.l521E 03 2.5462E 01 
1.21'48E 03 2.8719E 01 
1.2797E 03 3.2347E 01 
1.3471E 03 3.6425E 01 
1.4173E 03 4.1058E 01 
1.4905E 03 4.b38oE 01 
1.5673E 03 5.2598E 01 
1.6481E 03 5.995tjE 01 
1.1334E 03 6.8849E 01 
1.8240E 03 1.9841E 01 
1.920oE 03 9.3828E 01 
2.0243E 03 1.1230E 02 
2.1366E 03 1.3793E 02 
2.2595E 03 1.1602E 02 
2.3122E 03 1.9705E 02 

A problem often encountered by the control engineer is to compensate a system so 
that both dynamic and steady state design specifications are met. This problem illustrates 
how a simple compensator can be added to a system in order to improve the transient 
response to a unit-step input while increasing the static-loop gain. 

Consider the closed-loop configuration in Fig. 2.28. The system step response with a 
loop gain of 300/24 and without compensation is given in Fig. 2.29. We note that the 
response has excessive oscillation and a peak overshoot of 89 %. 

The system requirements are to increase the static-loop gain to 300/12 and design a 
compensator so that the overshoot for a step input is approximately 20 % and the time to 
the first peak is equal to or less than 1 sec. 



INPUT '+ OUTPUT 

s(s + 2) (s + 12) 

Fig.2.28 Uncompensated system diagram for Example 2.6. 

STEP R!=SPON5E FOR Ui~CC~PENSATFD SYSHM - ~XAMPL= ~.6 PAGE 

TJ ME 
0.0 
6.0000::-02 
1.2000::-01 
1.8000E-01 
2 .4000~-01 
3.00COE-01 
3.6000~-01 

4.2000E-01 
4.8000E-01 
5.4000E-Ol 
6.00f)Of-01 
6.6COOE-01 
7.2000E-Ol 
7.80COE-Ol 
8.4COOE-Ol 
<:1.00001:-01 
9.6000E-Ol 
1.0200E 00 
1.0800E 00 
1.1400E 00 
1.2000c 00 
1.2600E 00 
1.3200E 00 
1.3800E 00 
1.440017 00 
1.5COOF 00 
1.5600E 00 
1.6200E 00 
1.6800E 00 
1.7400E 00 
1.8000E 00 
1.13600E 00 
1.9200~ 00 
1.9800E 00 
2.0400E 00 
2.1000:: 00 
2.1600:: 00 
2.2200~ 00 
2.2 tlOOF 00 
2.~400E 00 
2.4000F. 00 
2.46CCE 00 
2.521)0E 00 
2.5800E 00 
2.6400:: 00 
2.7CCOE CO 
2.7600E 00 
2.8200E 00 
2.8800E 00 
2.9400E 00 
3.0000E 00 

40 

MINIMUM 
0.0 

OUTPUT VE~5US TIME MAXIMUM 
1.8894[ 00 

I OUTPUT 
0.0 
8. 8246E- 03 
5.8440E-02 
1.6470E-OJ 
3.2761E-Ol 
5.378ZE-Ol 
7.8032E-Ol 
1.0368E 00 
i.2876E 00 
1. 5136~ 00 
1.6977E r)0 
1.8261E 00 
1.8894'= 00 
1.8834E 00 
1.809-.E 00 
1.6735E co 
1.4P71E 00 
1.264 9:: 00 
1.0245'= 00 
7.8462E-C1 
5.6374':- 01 
3.7874E-Ol 
2.4353E-Ol 
1.6805E-Ol 
1.5754E-Ol 
2.1215E-01 
3.2703E-Ol 
4.92 70E -01 
6.9587E-Ol 
9.2048E-Ol 
1.14QOE GO 
1.3637E 00 
1.54f..2E 00 
1.6886= 00 
1.7744:; 00 
] .79961:: 00 
1.1628~ 00 
1.6675E 00 
1.5211r; 00 
1.3370E CC 
1.1282E 00 
9.1155E-Ol 
7. 0391E -01 
5.2118E-Ol 
3.1723£:-01 
2.8279[-01 
2. 4464~-Ol 
2.6518f-Ol 
3.4222E-Ol 
4.69'6E-01 
6.3599c-Ol 

+ 
+ 
-+ 

----+ 
--------+ --------------+ 
--------------------+ ---------------------------+ ----------------------------------+ 
----------------------------------------+ 
----------~---------------------------------+ 
------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ 
-----------------------------------------------+ --------------------------------------------+ ---------------------------------------+ 
---------------------------------+ ---------------------------+ 
--------------------+ 
--------------+ ----------+ 
------+ ----+ ----+ 
-----+ --------+ -------------+ 
------------------+ ------------------------+ 
------------------------------+ ------------------------------------+ ----------------------------------------+ 
--------------------------------------------+ ----------------------------------------------+ 
-----------------------------------------------+ ----------------------------------------------+ --------------------------------------------+ 
----------------------------------------+ -----------------------------------+ 
-----------------~-----------+ 
------------------------+ ------------------+ 
-------------+ ---------+ -------+ 
------+ -------+ 
---------+ 
------------+ 
----------------+ 

Fig.2.29 Uncompensated system step response for Example 2-6. 
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Using classical design procedures, one can define a proposed compensator with a 
transfer function given by 

(lead) (lag) 
_ (s + 2.2)(s + 0.2) 

Gis) - (s + 8.0)(s + 0.0275) (2.13) 

The diagram in Fig. 2.30 includes this compensator as well as a block arrangement 
suitable for CSMP simulation. Figure 2.31 gives the program listing using the variable 
names as specified in Fig. 2.30. When compared with Example 2.2, one notes that the 
essential difference is the addition of the compensator, Gis). The CSMP statement and 
formulation for a simple zero and pole (taken together) are summarized in Table 2.5. 

Table 2.5 

Formulation for a Lead-Lag Structure 

General Form 

Definition: Pole-zero (often 
called lead-lag 
compensator) 

Y = LEDLAG('t'b't'2'X) 

Function 

• "t'lS + 1 
Laplace form. "t'2

S 
+ 1 

Xes) ) "t'lS+11~ 
"t'2S + 1 

Fig. 2.30 Diagram for programming compensated system of 
Example 2.6. 

From a practical point of view, the LEDLAG formulation (as illustrated in this example) 
can be used for either a lead or lag compensator as defined in classical control theory. 

The step response of the system with the compensator is shown in Fig. 2.32. We see 
that the problem specifications are met. One important reason for employing CSMP for 
a problem of this nature is that the graphic methods used in designing compensators do 
not generally yield a convenient method for determining the system step response. This is 
particularly true for higher-order systems. 



42 Fundamentals of System/360 CSMP 

INPUT :: S-TEP( O. 0» 
ERROR = INPUT - OUTPUT 
X8 300.0*ERROR 
X7 {O.2/0.0275t*XB 
X6 LEDlAG(I.0/0.2,1.0/0.0275,X7t 
X5 - (Z.2/8.0t*X6 
X4 :: L:DLAGlI.0/2.2,l.C/8.0,X5J 
X3 (1.0/24.0)*X4 
X2 REALPlCO.0,1.0/2.0,X3t 
Xl R~ALPl(0.O,l.O/12.0,X2' 
OUTPUT:: INTGRL(O.O,Xlt 

TIMER FINTIM :: 6.0, aUTOEl :: 0.12 
PRl'PLT OUTPUT 
LABEL RESPJNSE FOR COMPENSATED SYSTEM - EXAMPLE 2-6 
END 
STOP 
ENDJOB 

Fig.2.31 CSMP program listing for Example 2.6. 

Ch. 2 

RESPONSE FOR COMPENSATED SYSTEM - EXAMPLE 2-6 PAGE 1 

Tt "E 
0.0 
1.2000E-Ol 
2.4000E-Ol 
3.6CCOE-Ol 
4.8000F-Ol 
6.0000E-OI 
1.2000E-Ol 
8.4000E-OI 
9. bCCOE-Ol 
1.0BOOE 00 
1.2000E 00 
1.3200E 00 
1.4400~ 00 
1.56COE 00 
1.6 eOOE 00 
1.8000E 00 
1.9200E 00 
2.0400E 00 
i.1600E 00 
2.2 eCOE 00 
2.4000E 00 
2.52COE 00 
2.b400E 00 
2.7l:COE 00 
2.8eOOE 00 
3.0000E 00 
3.1200E 00 
3.2400E 00 

MINIMUP04 
0.0 

OUTPUT VERSUS TIME MAXIMUM 
l.l068E 00 

I OUTPUT 
0.0 
4.9649E-02 
~.4100E-OI 
5.1065E-Ol 
7.7689E-Ol 
9. S866E-Ol 
1.1266E 00 
1.1941E 00 
1.2068= 00 
1.J846E 00 
1.14581.: 00 
1.1045E 00 
1.0691E 00 
1.0436E 00 
1.0283E 00 
1.0216E 00 
1.0209E 00 
1.0235E OC 
1.0274E 00 
1.0309E 00 
1.0335E 00 
1.0348E 00 
1.0349E 00 
1.0342E 00 
1.0330E 00 
1.0315E 00 
1.0301E 00 
1.02B8E 00 

+ 
--+ 

---------+ 
---------------------+ --------------------------------+ ----------------------------------------+ 
----~-----------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ -----------------------------------------------+ 
---------------------------------------------+ --------------------------------------------+ 
-------------------------------------------+ ------------------------------------------+ ------------------------------------------+ 
------------------------------------------+ ------------------------------------------+ 
------------------------------------------~ 
------------------------------------------+ ------------------------------------------+ 
------------------------------------------+ ------------------------------------------+ ------------------------------------------+ 
------------------------------------------~ ------------------------------------------+ ------------------------------------------+ 
------------------------------------------+ 

Fig. 2.32 Compensated system step response for Example 2.6. 

Example 2.7 RLC Circuit Problem 

The purpose of this example is to illustrate how CSMP can be used to simulate an 
electric circuit. A series RLC circuit is given in Fig. 2.33. Suppose it is desired to find the 
voltage across the capacitor in response to a pulse-train input of unit amplitude. There 
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1.0 

Ililem[ 
T 2T 

T= 0.18 

R L 

Fig. 2.33 Series RLC circuit. 

R = 60 ohms 
L = 1.0 Hn 
C = 100 ~fd 

are several approaches that can be used to determine the solution. Three methods will be 
considered here. 

Method l-Transfer Function. The transfer function between eo(t) and ein(t) can be 
expressed as: 

1 
Eo(s) rc 
Ein(S) = 2 + (R) +_1 

S L S LC 

(2.14) 

This can easily be simulated by CSMP provided we know the nature of the roots of the 
characteristic equation. Two possibilities exist in that the roots can either be real or com­
plex. If the roots are real we can solve the problem by applying REALPL twice. A func­
tion (CMPXPL) which requires only one program statement can be used for either real or 
complex roots. The solution using this function will be presented later in this example. 

Method 2-State Variable Representation. The following equations can be written 
for the previous circuit. 

Rearranging yields 

eiit) = Ri(t) + L d~~) + eo(t) 

i(t) = C ~; (t) 

. (t) _ i(t) 
eo - C 

let) = _ eoCt) _ Ri(t) + ein(t) 
L L L 

(2.15) 

(2.16) 

(2.17) 

(2.18) 

These last two equations form a state-variable representation of the system where the 
states are eoCt) and i (t). 

Method 3-Direct Circuit Application. Kirchoff's law, applied directly to the RLC 
circuit, yields 

eiit) = Ri(t) + L d~~t) + ~ f: i(t) dt (2.19) 

A "graphical" representation for the solution of this equation is given later. 
Pulse Train Generation. The input voltage given in Fig. 2.33 is a train of square waves 

which can be generated by using two standard CSMP functions. These two functions are 
IMPULS and PULSE and are defined in Tables 2.6 and 2.7. 
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Table 2.6 

Formulation for an Impulse Generatort 

Description 

Y = IMPULS(P 1, P 2) 

y 

••• 

Function 

y = ° for t <Pi 
Y = 1 for (t-P i ) = KP2 

Y = ° for (t-P i ) =F KP2 

where K = 0,1,2,3, ... 

Ch. 2 

tThis impulse function does not have the same properties as the well-known Dirac (impulse) 
function. 

y 

1.0 

0 

Table 2.7 

Formulation for Pulse Generator 

Description 

Y = PULSE(P,X) 

-1 p ~ 
Tl 

X 

Function 

Y = 1 for Ti :::;; X < (Ti + P) 
Y = ° for all other t 
X is the trigger and must be greater 

than zero 

As an example, suppose the following pulse-train is desired. 

Signa 1 •••• 

o 0.1 0.4 0.5 0.8 0.9 

The trigger signal for the pulse will be 

FLASH = IMPULS(O.O,O.4) 

where FLASH (a dummy variable) plays the role of X for the pulse function. Theexpres-
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sion for the output pulse-train is then given by 

SIGNAL = PULSE(O.l ,FLASH) 

With this preliminary background we return to the circuit problem and give a solution 
using each method described above. 

Solution by Method 1. As a first step in this solution one should determine the parti­
cular values of c; and OJn from Eq. (2.14) (the characteristic equation), which can be easily 
accomplished by comparing 

R 1 
S2 + y; s + LC = 0 

with 

S2 + 2c;OJns + OJ; = 0 

Recall from linear system theory that if 

c; = 1; the roots are real and equal (critical damped) 

c; > 1; the roots are real and unequal (overdamped) 

c; < 1; the roots are complex (underdamped) 

Comparing coefficients in Eqs. (2.20) and (2.21) gives 

OJn = ,.jljLC 

R 
c; = 2,.jLjC 

Using the values of R, L, and C from Fig. 2.33 results in 

OJn = 100.0, c; = 0.3 

(2.20) 

(2.21) 

(2.22) 

(2.23) 

(2.24) 

which implies that the system has complex roots. Complex roots can be directly simulated 
by using the function defined in the Table 2.8, provided the roots are in the denominator 
of the transfer function. Roots in the denominator of a transfer function are called poles 
and thus for this case we refer to these roots as complex poles. 

Table 2.8 

Formulation for Complex Palest 

General Form 

Definition: Complex poles 
Y = CMPXPL(ICl,IC2",OJmX) 
ICI = YeO) 
IC2 = YeO) 
For any value of , 

Function 

yet) + 2C;OJny(t) + OJ;y(t) = x(t) 
Equivalent Laplace form 

y 8' +2C;~"s +00; I~ 
tThe poles are not required to be complex to use CMPXPL. As noted in the table any value 

of , is acceptable and thus the function can also be used when the poles are real. 
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A diagram giving a block arrangement for simulating Eq. (2.20) is given in Fig. 2.34. The 
actual program listing of the simulation statements is given directly below the diagram 
in Fig. 2.35. 

E~ I I EOUT 
IILC S2 + (R/L)s + IILC • 

Fig. 2.34 Simulation diagram for RLC circuit (Method 
solution). 

* FXAMPLE PRCBLEM FOR RLC NETWORK - EXAMPLE 2-1 

PARAM L = 1.0, C = 0.0001, R = 60.0 
TRIG = IMPULS(0.O,0.36} 
EIN = PULSEtO.18,TRIG) 
X = EIN*(l.O'(L*C») 
EOUT = CMPXPl(0.O,0.0,R/C2.0*SQRTCL/C)},SQRT(1.O/CL*C)),X) 

Tl~ER FINTIM = 0.4, OLTDEL = 0.008 
PRTPLT EOUTtEINI 
LABEL PULSE TRAI~ RESPONSE ACROSS CAPACITOR OF RLC NETWORK 
PRTPLT EIN 
LABEL PLOT SHOWING T~E PULSE TRAIN TO RLC NETWORK 
END 
STOP 
ENDJOB 

Fig. 2.35 Program listing for RLC circuit (Method 
solution). 

For convenience, the circuit parameter values are listed on a PARAMETER card. 
This gives the added flexibility of changing the circuit values without repunching several 
problem statement cards. 

The voltage response across the capacitor is shown by the printer-plot of Fig. 2.36 
which gives the response for a time increment involving two input pulses. 

Solution by Method 2. The program listing for the solution of Eqs. (2.17) and (2.18) is 
given in Fig. 2.37. An advantage of using this approach is that one is not required to 
determine the form of the roots for the circuit characteristic equation. Formulating the 
problem in this manner has the added advantage of giving the solution for the current in 
the circuit. This current response is given in Fig. 2.38. 

The voltage eO<t) is identical to the solution in method 1; therefore, another printer-plot 
for this variable is not given. 

Solution by Method 3. The diagram in Fig. 2.39 presents one form of solution for 
Eq. (2.19). Anyone familiar with analog computer simulation recognizes that differentia­
tion has a tendency to produce noise (spikes). However, this approach was selected here 
to stress the use of the derivative function in CSMP. This function is defined in Table 2.9. 
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TI ~E 
1.0 
',.OCOOE-03 
.oCOOE-02 
.4000E-02 
.2000E-02 
.OOOOE-02 
.8000E-02 
.oCCOE-02 
.4000E-02 
.2000E-02 
.OCOOE-02 
.8000E-02 
.oOOOE-02 
.0400E-Ol 
.1200E-Ol 
.2000E-Ol 
.2aOOE-Ol 
.3 bOOE-Ol 
.4400E-Ol 
.5200E-Ol 
.oCOOE-01 
.6 aOOE-Ot 
.1000E-01 
.8400E-Ol 
.9200E-Ol 
.OCOOE-Ol 
.OBOOE-Ol 
.loOOE-OI 
,2400E-OI 
.3200E-Ol 
.4000E-Ol 
,4800E-Ol 
,5600E-OI 
,64COE-Ol 
,1200E-OI 
,aOOOE-O! 
,8800E-Ol 
,96COE-Ol 
,0400E-OI 
1200E-OI 
2000E-Ol 
2aOOE-01 
3600E-OI 
4400E-Ol 
5l00E-01 
bCOOE-Ol 
b800E-01 
1600E-OI 
8400E-Ol 
92QOE-Ol 
OOOOE-Ol 

four 

MINIMUM 
-3.7134E-Ol 

I 

Eour VERSUS TIME MAXIMUM 
1.3116E 00 

I 
0.0 
2.6053E-Ol 
7.1aObE-Ol 
1.2052E 00 
1.3701E 00 
1.2945F. 00 
1.1054E 00 
9.3162E-Ol 
8.6384E-Ol 
8.8378E-Ol 
9.5213E-Ol 
l.0115E 00 
1.0495E 00 
l.0455E 00 
1.0lUE 00 
9. 9581E- 01 
9.8220E-Ol 
9.8235E-Ol 
9.9094E-Ol 
1.000bE 00 
1.0063E 00 
1.006BE 00 
1.0038E 00 
9.2911E-OI 
4.8989E-Ol 

-1.1989E-02 
- 3. 2360E- 01 
-3.5611E-Ol 
-2. 0539f:-Ol 
-1.2140E-02 

1.126IE-Ol 
1.3591E-Ol 
8.4858E-02 
1.236bE-02 

- 3.84511:- 02 
-S.1316E-02 
-3.4623E-02 
-1.51l2E-03 

1.282lE-02 
1.9261E-02 
1.391SE-02 
3.9656E-03 

-4.1406E-03 
-7.1634E-03 
-5.5832E-03 
-1.9129E-03 

2.6182E-Ol 
7. a07lE-Ol 
1.2015E 00 
1.3716E 00 
1.2941E 00 

----------+ ------------------+ 
--------------------------------+ ---------------------------------------------+ 
-------------------------------------------------+ -----------------------------------------------+ ------------------------------------------+ 
-------------------------------------+ -----------------------------------+ ------------------------------------+ 
-------------------------------------+ ---------------------------------------+ 
----------------------------------------+ 
----------------------------------------+ ---------------------------------------+ 
---------------------------------------+ --------------------------------------+ --------------------------------------+ 
---------------------------------------+ ---------------------------------------+ 
---------------------------------------+ 
---------------------------------------+ ---------------------------------------+ 
-------------------------------------+ ------------------------+ ----------+ 
-+ 
+ 
----+ 
----------+ -------------+ 
--------------+ 
-------------+ -----------+ 
---------+ ---------+ ---------+' 
----------+ -----------+ 
-----------+ -----------+ ----------+ 
----------+ ----------+ ----------+ 
----------+ ------------------+ 
---------------------------------+ ---------------------------------------------+ 
-------------------------------------------------+ -----------------------------------------------+ 

Fig.2.36 Computer solution for voltage across the capacitor 
(Method 1 solution). 
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EIN 
1.0000E 00 
!eOOOOE 00 
1.0000E 00 
l.OOOOE 00 
1. OOOOE 00 
l.OOOOE 00 
1.0000E 00 
1. OOOOE 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1. OOOOE 00 
1.0000E 00 
1.0000E 00 
1. OOOOE 00 
I.OOOOE 00 
l.OOOOE 00 
1.0000E 00 
l.OOOOE 00 
l.OOOOE 00 
l.OOOOE 00 
l.OOOOE 00 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
O. a 
0.0 
0.0 
O. a 
0.0 
O. a 
0.0 
0.0 
O. a 
0.0 
0.0 
0.0 
0.0 
1.0000E 00 
1. OOOOE 00 
l.OOOOE 00 
1. OOOOE 00 
1.0000E 00 
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Table 2.9 

Formulation for Differentiation 

General Form 

Definition: Differentiation 

Y = DERIV(IC,X) 

IC = X(O) 

Function 

yet) = dx (t) 
dt 

Laplace form: 

X~0~Y 

Ch. 2 

The program listing for the simulation is given in Fig. 2.40 and is accompanied by the 
error message 

SIMULATION INVOLVED AN ALGEBRAIC LOOP CONTAINING THE 
FOLLOWING ELEMENTS 
I X3 I 

This statement means that the sort subprogram in CSMP cannot find an integration or 
other memory blockt in the loop involving I - X3 - I. The program will not run in this 
case. To correct this situation, one must re-cast the problem so that every loop in the 
diagram contains a memory block or integration. Loops are not always obvious for a 
given set of equations unless one draws a block diagram or signal-flow graph. 

* SOLUTION TC RLC CIRCUIT USING STATE VARIABLE APPROACH 

PARAM L = 1.0, C = 0.0001, R = 60.0 
TRtG = IMPULS(0.0,O.36t 
EIN = PUlSE(0.18,TRIGt 
EOOOT = IIC 
* I IS THE CURRENT THRCUGH THE INDUCTOR 
lOOT = (l.O/Lt*t-EO - I*R + EINt 
EO = INTGRLCO.O,EODOTt 
* EO IS THE VOLTAGF ACROSS THE CAPACITOR 
I = INTGRL(O.O,IOCTt 

TIMER FINTIM = 0.4, QUT~EL = 0.008 
PRTPLT EOCEINI 
LABEL VOLTAGE ACRCSS THE CAPACITQR - EXAMPLE 2-1 
PRTPLT l(EINI 
LABEL CURRENT TrPCUGH T~E INDUCTOR - EXAMPLE 2-7 
END 
STOP 
ENOJOB 

Fig. 2.37 Program listing for RLC solution (Method 2). 

tA discussion of memory functions is given in Chap. 3. 



CURRENT THROUGH THE INDUCTOR - ~XAMPlF. 2-7 PAGE 1 

Tt "'~ 
.0 
.OCOOE-03 
.bOOOE-02 
.4000E-02 
.2000E-02 
.0000F.-02 
.8000E-02 
.6000E-02 
.4000E-02 
.2000E-02 
.OCOOE-02 
.8000E-02 
.6000E-02 
.0400'=-01 
.1200E-Ol 
.2000E-Ol 
.2800E-Ol 
.3bOOE-01 
.44COE-Ol 
.5200E-,OI 
.bOOOE-OI 
,6800E-Ol 
,1600E-Ol 
,8400e":'01 
,9200E-Ol 
,OCOOE-Ot 
,08COE-Ol 
, lbOOE-OI 
,2400E-Ol 
,3200E-0l 
,4000E-Ol 
,4800E-Ol 
5600E-Ol 

,b400!::-01 
,12CO~-Ol 

80aOE-01 
,S800E-Ol 
9600E-Ol 
0400E-Ol 
1200E-Ol 
2eOOE-Ol 
2 BOOE-O 1 
3 bOOE-OI 
4400E-Ol 
5200E-0l 
bOOOE-GI 
b800E-OI 
1bOOE-01 
8400E-Ol 
9200E-Ol 
OCOOE-OI 

MINIMUM 
-6.50321:-03 

I 

VERSUS TIME MAXI MUM 
b.4814E-03 

I 

0.0 -------------------------+ 
5.6998E-03 ----------------------------------------------+ 
b.4814E-03 -------------------------------------------------+ 
3. 8425E-03 ---------------------------------------+ 
3.5175E-04 --------------------------+ 

-1.9711E-03 ------~----------+ 
-2.4b36E-03 ---------------+ 
-1.S812E-03 -----------~------+ 
-2.7314E-04 -----------------------+ 

b.b814E-04 ---------------------------+ 
9.2889E-04 ----------------------------+ 
6.4217E-04 ---------------------------+ 
1.5598E-04 -------------------------+ 

-2.2049E-04 ------------------------+ 
-3.4729E-04 -----------------------+ 
-2.5846E-04 ------------------------+ 
-7.8941E-05 ------------------------+ 

7.020bE-05 -------------------------+ 
1.2811E-04 -------------------------+ 
1.0291E-04 -------------------------+ 
3.7)67E-05 -------------------------+ 

-2.1201E-05 ------------------------+ 
-4.1230E-05 ------------------------+ 
-4.0583E-05 ------------------------+ 
-5.b50bE-03 ---+ 
-b. 503 2E-03 + 
-3.8911E-03 ----------+ 
-4.0707E-04 -----------------------+ 

1.9498E-03 --------------------------------+ 
2.4693E-03 ----------------------------------+ 
l.bOIZE-03 -------------------------------+ 
2.923bE-04 --------------------------+ 

-6.5865E-04 ----------------------+ 
-9.2999E-04 ---------------------+ 
-6.4989E-04 ----------------------+ 
-1.6339E-04 ------------------------+ 

2.1648E-04 -------------------------+ 
3.4731E-04 --------------------------+ 
2.b097E-04 --------------------------+ 
B.1788E-05 -------------------------+ 

-6.853IE-05 ------------------------+ 
-1.285bE-04 ------------------------+ 
-1.0318E-04 ------------------------+ 
-3.8439E-05 ------------------------+ 

2.0526E-05 -------------------------+ 
2.1380E-04 -------------------------+ 
5.8010E-03 -----------------------------------------------+ 
6.4711E-03 -------------------------------------------------+ 
3. 7644E-03 ---------------------------------------+ 
2.7532E-04 --------------------------+ 

-2.0171E-03 -----------------+ 
Fig. 2.38 Current response of RLC circuit (Method 2 solution). 
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EIN 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
I.OOOOE 00 
1.0000E 00 
1.0000E 00 
1.0COOE 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000f 00 
1.0000E 00 
I.OOOOE 00 
I.OOOOE 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
I.OOOOE 00 
1.0000E 00 
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Solution for: 

i(t) = ein _ -1-f i(t) dt - 1:. di (t) 
R RC· R dt 

I 

-------, 
I 

Fig.2.39 Solution diagram for RLC circuit using DERIV function. 

CCNSTANT L = 1.0, C = 0.0001, R 60.0 

TRIG = IMPULS(0.0,0.36) 
EIN = PULSEI0.1S, TRIG) 
Xl = IEIN)/R 
Xl = -VC 
*VC IS THE VOLTAGE ACROSS THE CAPACITOR 
X3 (L/R)*OERIV(O.O,I) 
I = Xl + X2 + X3 
* I IS THE CURRENT IN THE CIRCUIT 
VC = (1.0/R*C)*INTGRLlO.0,I) 
TIMER FINTIM = 0.4, OUTOEL = 0.008 
PRTPLT ve, I 
LABEL SOLUTION FOR CIRCUIT USING OERIV - EXAMPLE 2-7 
ENO 
STOP 

Ch. 2 

SIMULATION INVOLVES. AN ALGEBRAIC LOOP CONTAINING THE FOllOWING ELEMENTS 
I X3 I 

OUTPUTS 
12(500' 

INPUTS PARA~S INTEGS ~ MEM BlKS FORTRAN DATA COS 
35(1400' 5(400) 1+ 0= 1(300) 9(600) 5 

•• **PROBlEM CAN NOT BE EXECUTEC.*** 

Fig. 2.40 Program listing for RLC solution using DERIV func­
tion. 
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Although the simulation will not run using the DERIV function, one should not 
interpret this to mean a loop cannot have a derivative term. To correct the present problem 
a solution for the capacitor voltage that has an integrator in each loop is given in Fig. 2.41. 
The program listing in Fig. 2.42 follows directly from the diagram and the simulation 
results are identical to those obtained by previous methods. 

The objective of this example has been to demonstrate how CSMP can be used for 
the solution of an electric circuit. However, it should be noted that other specialized pro­
grams such as ECAP (Electric Circuit Analysis Program) are generally better suited for 
circuit analysis and design. 

Solution for: 

di (t) =:J.'!_ -l-f i(t) dt _ R i(t) 
dt L LC L 

I 

Fig. 2.41 Diagram for Method 3 solution of RLC circuit using all 
integrators. 

CCNSTANT L = 1.0, C = 0.0001, R 60.0 

T~IG = IMPUlS(0.0,0.36t 
EIN = PUlSE(0.18, TRIG) 
*VC IS THE VOLTAGE ACROSS THE CAPACITOR 
* I IS THE CURRENT IN TME CIRCUIT 
Xl = (EINt/L 
X2 = -VC/l 
X3 = -{R/Ll*I 
lOOT = Xl + X2 + X3 
VC =(l.O/Ct*INTGRL(O.O,I) 
I = INTGRl(O.O,ICOT) 
TIMER FINTIM = 0.4, OUTOEL ~ 0.008 
PRTPLT VC, I 

VC 

lABEL RlC CIRCUIT USING INTGRL TERIoIS ONLY. - EX~MPLE 2-1 
END 
STOP 
IENDJOB 

Fig. 2.42 Program listing for Method 3 using all integrator blocks. 
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Example 2.8 Temperature Control for a Chemical Process 

A simplified diagram of a temperature-control system is shown in Fig. 2.43. Basically, 
this system regulates the temperature of a chemical material by passing it through a heat 
exchanger unit. An output-temperature sensor compares the process temperature to the 
desired set-point. Any difference between the measured and set-point -signals is condi­
tioned by a proportional-integral controller whose output makes correcting adjustments 
to the steam control valve. 

Set point + 

Flow of incoming 
chemical material 

Vent ......... .1.-.+-__ +-_.., 

Temperature 
sensor 

Temperature 
controlled 
output 

Heat 
exchange 
unit 

Fig. 2.43. Simplified diagram of a temperature control system. 

PI controller System process 
,------------, r-----------------, 

I I 
I 
I 
I 
I 
I 
I 
I 

e -IJs 

I 
I 
I First-order lag 
I 

Delay 

I 
I 
I 
I 

L __________ J L ________________ _ 

Fig. 2.44 Block diagram of temperature control system. 

Output 
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Figure 2.44 gives a block-diagram representation of the linearized system. If the output 
of the first-order lag is J(t), then an ideal delay of 0 units will produce J(t - 0). In terms of 
Laplace transforms this delay is expressed by e-9s and so represented in the block diagram. 

The functional relationship for the delay block is given in Table 2.10. 

Table 2.10 

Formulation for Ideal Delay 

General Form Function 

Definition: Ideal Delay 
Y = DELAY(N, P, X) 
P = Delay time 

yet) = x(t - P) t ~ P 

N = Number of points sampled 
during P (N must be an 
integer) 

yet) = 0 t < P 
Laplace form: e-Ps 

Xes) ) I e-Ps 1---+ Yes) 

The only thing likely to cause confusion is the number of points sampled during P. As 
noted in Table 2.10, N must be an integer and should not include a decimal (Le., 21.0 
is not allowed but 21 is). As a rule the value of N should be equal to the approximate 
number of integration steps expected during the delay time P.t 

Slight modifications of the original block diagram are necessary before directly 
writing the simulation statements. One suitable, but not unique, representation is given in 
Fig. 2.45 where the gain constants have been isolated from the dynamic elements. As 
stated in a previous example, each block must have input and output variable assign­
ments. 

TEMSET TEMOUT 

Fig. 2.45 Simulation diagram for Example 2.8. 

The simulation program listing is shown in Fig. 2.46. The data statements PARA­
METER, CONSTANT and INCON are used to assign numerical values to the specified 
variables. The use of PARAMETER KC = (1.8, 12.0) will cause the program to run 
first with KC = 1.8 and second with KC = 12.0. A complete description of PARA­
METER, INC ON and CONSTANT was given in Example 2.3. 

tRefer to Appendix I for further discussion on selecting N. 
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* CHEMICAL PReCESS CONTROL 

PARAMETER KC =.(1.8,12.0', THETA = 19.0 
CONSTANT KP = 6.45, TAU = 544.0, TAUI = 540.0 
INeON ICX3 = 0.0, ICRlPL = 0.0 
TEMS£T = STEP(O.O) 
ERROR = TEMSET - TEMOUT 
X5 = KC*ERROR 
X4 = (1.O/TAU!)*X5 
X3 = INTGRlCICX3,X4) 
XCONT = X5 + X3 
Xl = (KPt*XCONT 
XPROC = REALPLCICRLPL, TAU, XII 
TEMOUT = DELAY(25,THETA, XPROCI 

TIMER FINTIM = 200.0, OUTOEL = 4.0, PRDEL = 2.0 
PRTPLT TEMOUT 
LABEL TEMPERATURE OF PROCESS OUTPUT - EXAMPLE 2-8 
PRTPLT XCONT 
LABEL OUTPUT OF PI CONTROLLER - EXAMPLE 2-8 
PR INT TE MOUT 
END 
STOP 
ENOJ08 

Fig. 2.46 CSMP program listing for the system in Fig. 2.45. 

Ch.2 

The control statements indicate that the simulation will run for 200 sec (FINTIM). 
Printer-plots will be made for TEMOUT and XCONT with each plotted point occurring 
every 4 sec (OUTDEL). In addition, the values of TEMOUT occurring every 2 sec 
(PRDEL) will be printed on separate pages from those of the printer-plots of TEMOUT. 

The response of TEMOUT for KC = 1.8 and 12.0 is shown in Figs. 2.47 and 2.48, 
respectively. Not only is the requested plot LABEL given at the top of the output but 
the particular value of KC also appears. Whenever repeated runs occur, the run value 
of the variable parameter will be given at the top of all PR TPL T and PRINT pages. 

We note that the printer-plot points of TEMOUT for KC = 1.8 are practically all 
the same. The reason for this is that the printer-plot points are quantized to always cover 
fifty printer spaces across the page. If a multiple-value parameter is used, the quantization 
is made over the range of the maximum and minimum values of the total data set. For 
this example, the largest value in the data set is 34.855 and the smallest value is -29.642. 
It is incidental that both values occur for KC = 12.0. The quantization step is therefore 

Quantization step = 34.855 ~ 29.652 . 1.29 units (2.25) 

The variation of TEMOUT for KC = 1.8 is from 0 to 1.0 (see Fig. 2.47) which is less than 
one quantization unit. The only reason the plotted output level changes for this case is 
that 0.0 is almost at a quantization step point and the addition of approximately 0.106 
causes a level change. 

One might look upon multiple-parameter value runs as having the disadvantage of 
possibly giving one or more obscured plots. This may be true, but, on the other hand, the 
plots are scaled to a common relative amplitude which is often a desired characteristic. 
Furthermore, it is always possible to rerun the simulation using a single-value parameter. 
Figure 2.49 shows the rerun of this problem for KC = 1.8 only. 

The remaining printer-plots and printed output for XCONT and TEMOUT are 
omitted since they give the same general type of information as previously presented. 



TE~PER~TURE CF PROCESS OUTPUT - fXA~PLE 2-8 

TI~= 
0.0 
4.0000'= 00 
8.0CCOE 00 
1.20001: 01 
1.6000E 01 
2.0CCOE 01 
2.40COE 01 
2.AOOOE 01 
3.2000E 01 
3.6000E 01 
4.00COE 01 
4.4000E 01 
4.80COE 01 
5.20COE 01 
5.6CCOE 01 
6.0COOE 01 
6.4000E 01. 
6.aooos: 01 
7.2000E 01 
7.6000E 01 
8. OCCOE 01 
8.4000E 01 
8.BCCOE 01 
9.2000E 01 
9.6000S: 01 
1. cooor: 02 
1.04COE 02 
1.0800~ 02 
1.1200E 02 
1.16COE 02 
1.2COOE 02 
1.2400E 02 
1.2800:: 02 
1.32COE 02 
1.36COE 02 
1.4000E 02 
1.4400E 02 
1.4800E 02 
1.52COE 02 
l.50COE 02 
1.6000E 02 
1.6400E 02 
1.6800E 02 
1.7200E 02 
1.7600E 02 
I.AOOOE 02 
1.8400E 02 
1.8800E 02 
1.,9200'= 02 
1.96CO'= 02 
2.00C'OE 02 

MI"'IMU~ 
-2.9642 E 01 

TFMOUT VERSUS TIME 
KC I.BOOOE 00 

TF MOUT I 
0.0 
0.0 
0.0 
0.0 
0.0 
2.1342E-02 
1.061lE-Ol 
1.9209!:-01 
2.7747E-Ol 
3.6285E-Ol 
4.4710E-Ol 
5.~521E-Ol 
5.9603E-Ol 
6.5957E-Ol 
7.l582E-01 
7.6485E-Ol 
8.0707E-01 
8.4309E-Ol 
8.7353E-01 
8.9902E-Ol 
9.2016E-Ol 
9.3157E-Ol 
9.51761:-01 
9.6324E-01 
9.7244E-Ol 
9.7974E-Ol 
9.8548E-Ol 
9.8994E-01 
9.9337E-Ol 
9.9596E-Ol 
9.9789E-Ol 
9.9929E-Ol 
1.0003E 00 
1.0010E 00 
1.0014E 00 
1.0017E 00 
1.001SE 00 
!.OOISE 00 
1.0018E 00 
1.0018E 00 
1.0017E 00 
1.00l5E 00 
1.0014f. 00 
1.0013E 00 
1.0012E 00 
1.001lE 00 
1.0010E 00 
1. aa09E 00 
1.0009E 00 
1.000I:lE 00 
1.0007E 00 

----------------------+ ----------------------+ 
----------------------+ ----------------------+ 
----------------------+ ----------------------+ -----------------------+ 
-----------------------+ -----------------------+ -----------------------+ 
-----------------------+ -----------------------+ 
-----------------------+ -----------------------+ -----------------------+ 
-----------------------+ -----------------------+ -----------------------+ 
-----------------------+ -----------------------+ 
-----------------------+ -----------------------+ -----------------------+ 
-----------------------+ -----------------------+ -----------------------+ 
-----------------------+ -----------------------+ 
-----------------------+ -----------------------+ -----------------------+ 
-----------------------+ -----------------------+ -----------------------+ 
-----------------------+ -----------------------+ 
-----------------------+ 
-----------------------+ -----------------------+ 
-----------------------+ -----------------------+ -----------------------+ 
-----------------------+ -----------------------+ 
-----------------------+ -----------------------+ -----------------------+ 
-----------------------+ -----------------------+ -----------------------+ 
-----------------------+ 

Fig. 2.47 Printer-plot of TEMOUT for Example 2.8 (KC = 1.8). 

PAGE 1 

MAXI MUM 
?4855E 01 

I 
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TEMP~RATURE OF PROCESS OUTPUT - EXAMPLE 2-8 PAGE 1 

TIME 
0.0 
4.00001: 00 
8.0000E 00 
1.20COE 01 
1.6000E 01 
2.0000E 01 
2.4000f 01 
2.8000E 01 
3.2000E 01 
3.6000E 01 
4.0000E 01 
4.4000E 01 
4.8000E 01 
5.2000E 01 
5.6000,= 01 
6.0COOE 01 
6.4000E 01 
6.8COOE 01 
7.2000E 01 
7.6000E Ot 
8.0000E 01 
8.40COE 01 
8.8000E 01 
9.2COOE 01 
9.6000E 01 
1.0COOE 02 
1.0400E 02 
1.0800E 02 
1.1200E 02 
1.1600E 02 
1.2000E 02 
1.2400E 02 
1.2800E 02 
1.32COE 02 
1.3600E 02 
1.4000E 02 
1.4400E 02 
1.4800E 02 
1.5200E 02 
1.5600E 02 
1.6000E 02 
1.6400E 02 
1.68COE 02 
1.1200E 02 
1..1600E 02 
1.8COOE 02 
1.84001: 02 
1.8800E 02 
1.9200E 02 
1.9600E 02 
2.00COE 02 

56 

MINIMUt-I 
-2.9642E 01 

TEMOUT I 

TEMOUT VERSUS TIME 
KC 1.2000E 01 

0.0 ----------------------+ 
0.0 ----------------------+ 
0.0 ----------------------+ 
0.0 ----------------------+ 
0.0 ----------------------+ 
1.4228E-Ol -----------------------+ 
7.1142~-01 -----------------------+ 
1.2806E 00 -----------------------+ 
1.8498E 00 ------------------------+ 
2.4190£ 00 ------------------------+ 
2.9377E CO -------------------------+ 
3.1830E 00 -------------------------+ 
3.1045E 00 ------------------~------+ 
2.7020E 00 -------------------------+ 
1.9755E OC -----------------~------. 
9.4448E-Ol -----------------------+ 

-2.6877E-Ol ----------------------+ 
-1.4835E 00 ---------------------+ 
-2.5153E 00 ---------------------+ 
-3.1198E CO -------------------~+ 
-3.3006E 00 --------------------+ 
-2.7538E 00 --------------------+ 
-1.5125E 00 ---------------------+ 

3.3142E-01 -----------------------+ 
2.6321t 00 -------------------------+ 
5.0841E 00 --------------------------+ 
1.3241E 00 ----------------------------+ 
8.9245E 00 -----------------------------+ 
9.5744E 00 ------------------------------+ 
8.9782E 00 -----------------------------+ 
1.0053E 00 ----------------------------+ 
3.1240E 00 -------------------------+ 

-5.5492E-01 ----------------------+ 
-5.3826E 00 ------------------+ 
-1.0056E 01 ---------------+ 
-1.3805E 01 ------------+ 
-1.5793E 01 ----------+ 
-1.5532E 01 ----------+ 
-1.2594E 01 -------------+ 
-1.0404E 00 -----------------+ 

8.8519E-Ol -----------------------+ 
1.0234E 01 ------------------------------+ 
1.9711E 01 --------------------------------------+ 

MAXIMUM 
3.4855E 01 

I 

2.8025E 01 --------------------------------------------+ 
3.33j1E 01 ------------------------------------------------+ 
3.4549E 01 -------------------------------------------------+ 
3.0642E 01 ----------------------------------------------+ 
2.1323E 01 ---------------------------------------+ 
7.2223E 00 ----------------------------+ 

-1.0552E 01 --------------+ 
-2.9642E 01 + 

Fig. 2.48 Printer-plot of TEMOUT for Example 2.8 (KG = 12.0). 



TEMPERATURE OF P~OCESS OUTPUT - EXAMPLE 2-8 PAGE 

TI ME 
0.0 
4.0000E 00 
8.0000E 00 
1.2000E 01 
1.60CCE 01 
2.0COOE 01 
2.4000E 01 
2.80COE 01 
3.2000E 01 
3.6000E 01 
4.0000E 01 
4.4000r:: 01 
1t.8COOE 01 
5.2000E 01 
5.6000E 01 
6.0000E 01 
6.4000E 01 
6.80001: 01 
7. lOOOE 01 
7.60COE 01 
a.OOOOE 01 
8.4000E 01 
8.8000E 01 
9.2000E 01 
9.QOOOE 01 
1.0000E 02 
1.04COE 02 
1.0800E 02 
1.1200E 02 
1.1600E 02 
1.2000E 02 
1.2400E 02 
1.2eOOE 02 
1.3200E 02 
1.3600E 02 
1.4000E 02 
1.44COE 02 
1.4800E 02 
1.5200E 02 
1.5600= 02 
l.60COE 02 
1.6400': 02 
1.6aCOE 02 
1.7200E 02 
1.76COE 02 
1.8000E 02 
1.8400E 02 
1.8S00E 02 
1.9200E 02 
1.96001: 02 
2.0eoo!: 02 

~INIMUM 
0.0. 

TEMOUT VERSUS TI~E MAXIMUM 
1.0020F 00 

I TEMOUT 
0.0 
0.0 
0.0 
0.0 
0.0 
2..1342E-02 
1.0671E-Ol 
1.9209E-Ol 
2.7147E-Ol 
3.6282E:-Ol 
4.4672E-Ol 
5.2483F.-Ol 
5.95c5E-01 
6.5919E-Ol 
7.1544E-Ol 
7.6451E-Ol 
8.0680E-Ol 
8.4288E-Ol 
8.7339E-Ol 
8.9894E-Ol 
9.2015E-Ol 
9.3760E-Ol 
9.5184E-Ol 
9.6336E-Ol 
9.7259E-Ol 
9.7991E-Ol 
9.8567E-Ol 
9.9013E-Ol 
9.9356E-Ol 
9.9615E-01 
9.9B01E-Ol 
9.9946E-OI 
1.0005E 00 
1.00llE 00 
1.0016E 00 
1.0018E 00 
1.00192 00 
1.0020E 00 
1.0019E 00 
1.0018E 00 
1. 0011E 00 
1.0016E 00 
1.0015E 00 
1.OO14E 00 
1.00B!:: 00 
1.00llE 00 
1.0010E 00 
1.00loE 00 
1.0009E 00 
1.OOO8E 00 
1.000BE 00 

+ 
+ 
+ 
+ 
+ 
-+ 

-----+ ---------+ 
-------------+ ------------------+ 
----------------------+ 
--------------------------+ -----------------------------+ 
--------------------------------+ 
~----------------------------------+ --------------------------------------+ 
----------------------------------------+ ------------------------------------------+ 
-------------------------------------------+ --------------------------------------------+ ---------------------------------------------+ 
----------------------------------------------+ -----------------------------------------------+ ------------------------------------------------+ 
------------------------------------------------+ ------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ 

Fig. 2.49 Plotted output of TEMOUT with KC = 1.8 and full­
scale plotting. 
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Example 2.9 Simulation of Gear Train Containing Backlash 

The function generators shown in Appendix I are very useful for simulating non­
linear systems. An example of a system using a dead-space function is shown in Fig. 2.50. 

This system represents a sinusoidal torque driving a flywheel through a set of gears 
having excessive backlash. The shaft, connecting gear 2 and the flywheel, is not rigid but 
has a spring constant of K = 4000 in-Ib/radian. The contact force between gear teeth 
depends upon their relative position. Figure 2.51 shows the contact force as zero in the 
position where the teeth are not in contact and increasing in a linear manner after contact 
has been made. 

The functional relationship between force and displacement can be simulated by a 
dead space (DEADSP) function generator. 

Table 2.11 

Formulation of Dead Space Function 

CSMP Statement 

Definition: Dead Space 
Y = DEADSP(PJ,P2,X) 

Function 

y 

--------------~--~----~--------------x· 

y = x - P2 ; for x> P2 

y = X - P l ; for x < P l 

Using the force characteristics shown on Fig. 2.51, the following DEADSP function 
can be used to simulate the contact force between gear teeth. 

F = KG*DEADSP( -0.1, 0.1, RhTHETAI - R2*THETA2) 

where RhTHETAI - R2*THETA2 = relative movement between gear teeth. 
The equations for the angular accelerations of the gears and flywheel are: 

cOl = WDI = (T*SIN(W*TIME) - RhF)/1l 

cO2 = WD2 = (R2*F + K*(THETA3 - THETA2))/12 

c03 = WD3 = K*(THETA2 - THETA3)/13 

(2.26) 

(2.27) 

(2.28) 

In the program of Fig. 2.52, the angular accelerations are calculated by ordinary 
FORTRAN statements. INTGRL functions are used to integrate angular accelerations 
and velocities to obtain angular velocities and angular displacements, respectively. All 
initial conditions are assumed to be zero. 

It is often desirable to know the maximum and minimum values of variables during a 
run. The RANGE statement can be used for this purpose. In this example, it is used to 
list the maximums and minimums for 10 variables. 
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I1 = 0.4 Ib-sec2 -in. 
R 1 = radius = 5.0 in. 

/3 = 0.8 lb-sec2 -in. 

12 = 0.0 llb-sec 2-in. THETA3 
R2 = 1.0 in. 

} 
Gear 2 

Fig.2.50 Schematic of gear train system. 

Force 
between 

gear teeth 

Fig.2.51 Backlash in gear teeth. 

Slope = 
200000lb/in. 

Relative 
movement between 

gear teeth 

RANGE. The RANGE card allows the user to obtain both the maximum 
and minimum values of specified variables that occur during the run. Included 
with the maximum and minimum values are the times at which the values occurred. 
The times of maximum and minimum do not necessarily occur at a multiple of 
PRDEL or OUTDEL. An example of the output from the RANGE statement 
for this problem is shown in Fig. 2.53. 

RANGE F, WDI, WD2, WD3, WI, W2, W3, THETAI, THETA2, THETA3 
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TITLE SIMULATION OF THE DYNAMICS OF A GEAR TRAIN CONTAINING BACKLASH 
CONSTANT 11 = O.~, 12 = 0.01, 13 = 0.8, R1 = 5.0, R2 = 1.0, 
KG = 200000.0, K = 4000.0, T = 100.0, W = 20.0 
F = KG * OEADSP(-O.l, 0.1, Rl*THETAl - R2*THETA2) 
WOl = (T * SIN(W*TIME) - Rl * FJ/Il 
W02 = (R2 * F + K * (THETA3 - THETA2))/I2 
W03 = K * (THETA2 - THETA3)/I3 
Wl = INTGRL(O.O, WD1) 
W2 = INTGRUO.O, WD2) 
W3 = INTGRL(O.O, WD1) 
THETAl = INTGRL(O.O, W1J 
THETA2 = INTGRL(O.O, W2) 
THETA3 = INTGRL(O.O, w3) 
PRINT f, WOl, W02, W03, WI, W2, W3, THETAI, THETA2, THETA3 
RANGE F. WOlf WDl, WD3, WL, W2, W3, THETAl, THETA2, THETA3 

TIMER FINTIM = 0.5. PRDEL = 0.005 
END 
STOP 
ENDJOB 

Fig. 2.52 Program for gear train simulation. 

PROBLEM DURA lION 0.0 TO 5.0000E-Ol 

VARIABLE MINIMUM TIME MAXIMUM 
F -9.2400E 02 2.7134E-OI 9.4ll0E 02 
WDl -1.1534E 04 4.l30lE-01 l.136lE 04 
WD2 -9.2923E 04 2.1l34E-Ol 8.8692E 04 
W03 -1.7390E 02 2.2181E-Ol 1.8759E 02 
WI -3.0321E 00 2.1984E-Ol 3.253lE 00 
W2 -l.8832E 01 3.6290E-Ol 2.0539E 01 
W3 -2.1485E-Ol 1.1375E-01 2.7382E 00 
THETA 1 0.0 0.0 l.3119E-01 
THET A2 -4.2604E-03 3.7164E-02 6.5328E-Ol 
THETA3 0.0 0.0 6.3820E-Ol 

Fig. 2.53 Example of output from a range statement. 

Tl~E 

4.130lE-Ol 
2.7134E-Ol 
4.1301E-Ol 
3.8948E-Ol 
3.874lE-Ol 
1.8764E-Ol 
4.6904E-Ol 
4.5464E-Ol 
4.9929E-01 
5.0000E-01 

Only one RANGE statement can be used, but this statement can contain up to 
100 variables by using continuation cards. 

Since more than eight variables are requested in the PRINT statement, the 
"equations format" as shown in Fig. 2.54 is automatically selected. Two TITLE 
cards are used to obtain two lines of heading on each page of output. 

Example 2.10 Beam Deflection Problem 

There exists a large class of engineering problems where it is necessary to use a trial 
and error solution. Two-point boundary-value problems generally fall within this class. 
The CSMP program has a feature for handling this type of problem and can be illustrated 
with the following cantilever-beam example. 

This problem can be simply stated: find the deflection and stress of a thin steel canti­
lever beam of varying thickness with a 30 lb weight hung on the end. Figure 2.55 gives the 
basic configuration of the problem along with beam measurements. 

The thin tapered beam will have a large deflection and consequently a large slope. 
For this reason, the exact equation for the radius of curvature is used in the following 
differential equation for beam deflection. 
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TIME 0.0 F z 0.0 WDl " 0.0 WDZ 0.0 
Wl '" 0.0 W2 . 0.0 lil : 0.0 
THETA2: 0.0 THETA3 .. 0.0 

TIME 5.0000E-03 F s 0.0 WDl c 2.4958E 01 WD2 0.0 
wl .. 6.2448E-02 W2 : 0.0 w3 . 0.0 
THETA2z 0.0 THET A3z 0.0 

TIME 1.0000E-02 F 0.0 WDl " 4.9661E 01 WC2 s 0.0 
Wl 2.4911E-Ol W2 = 0.0 W3 0.0 
THETA2s 0.0 THET A3 .. 0.0 

TIME z 1.5000E-02 F s 0.0 WOl 1.3880E OL WC2 0.0 
Wl '" 5.58Z9E-Ol 112 " 0.0 W3 - 0.0 
THETA2z 0.0 THET A3" 0.0 

TIME .. 2.0000E-OZ F .. 0.0 WDl 9.1354E 01 WDZ .. 0.0 
W1 .. 9.8613E-Ol W2 " 0.0 w3 0.0 
THETA2= 0.0 THET A3a 0.0 

TIME " 2.5000E-02 F '" 0.0 WDl 1.L986E OZ WD2 " 0.0 
Wl " 1.5302E 00 W2 " 0.0 W3 . 0.0 
THETAZ· 0.0 THETA3- 0.0 

TIME 3.0000E-OZ F c 0.0 WDl 1.4116E OZ WDZ : -3.542ZE 03 
Wl 5.1468E-Ol W2 1.1544E 01 W3 1.6510E-02 
THETA2= 8.8591E-03 THETA3" 4.1982E-06 

TIME .. 3.5000E-OZ F = 0.0 WDl 1.6105E 02 1102 " -6.7610E 03 
Wl '" -9.4938E-Ol W2 - -4.0249E 00 113 4.3920E-Ol 
THETAZ .. 1.8021E-OZ THETA3" 1.1l90E-03 

TIME " 4.0000E-02 F .. 0.0 WDl 1.1934E OZ IIDZ = 1.6842E 02 
W1 .. -1.2125E 00 WZ 4.6252E 00 W3 z 4.4856E-Ol 
THETA2'" 1.651ZE-03 THET A3= 3.512.3E-03 

TIME s 4.5000E-02 F " 0.0 WDl 1.9583E 02 1102 .. -6.6252E 02 
Wl .. -3.3311E-Ol WZ .. -3.6696E 00 W3 " 5.5Z24E-Ol 
THETA2= 1.6850E-03 THET A3" 6.0281E-03 

TIME '" 5.0000E-02 F 0.0 WDl = 2.1037E 02 WDZ 5.5512E 02 
Wl 6.8258E-Ol WZ z 4.1011E 00 W3 4.4153E-Ol 
THETAZ= 1.171bE-03 THETA3~ 8.5669E-03 

TIME .. 5.5000E-02 F " 0.0 WDl .. 2.2280E OZ WDZ .. -4.4811E 02 
Wl 1.1664E 00 WZ - -3.1386E 00 W3 .. 5.5310E-Ol 
THETA2= 1.2151E-02 THET 0= 1.1037E-02 

TIME " 6.0000E-02 F 0.0 WDl .. 2.3301E 02 WD2 : -8.3114E 03 
wl " 9.2847E-Ol 112 .. -2.6537E 00 113 1.3139E-Ol 
THETA2= 3.4127E-02 THET A3z 1.3933E-02 

TIME : 6.5000E-02 F z 0.0 WDl .. 2.4089E 02 WD2 .. -3.2118E 03 
Wl z -1.2541E-Ol WZ : -8.4676E 00 113 1.0940E 00 
THETA2=· 2.6512E-02 THETA3: 1.8542E-02 

Fig. 2.54 Output from gear train simulation. 

where M = bending moment in beam 

E = Young's Modulus (30 x 106psi) 

I = Moment of inertia = n- wt3 

w = width of beam (1.0 in) 

t = thickness of beam 

y = deflection of beam 

t = slope of beam 

d2y = M[l (dy )2]3/2 
dx 2 EI + dx 

Symbols program 
(Fig. 2.56) 

FORCE*(LO - X) 

E 

I 

WIDTH 

T 

Y 

YP 

YPP 

WD3 ~ 0.0 
THETA1- 0.0 

WD3 0.0 
THETA1- 1.0411E-04 

WD3 0.0 
THETAlz 8.3166E-04 

WD3 0.0 
THETA1: Z.1999E-03 

WD3 0.0 
THETA 1- 6.6135E-03 

WD3 '" 0.0 
THETA1: 1.Z859E-02 

WD3 " 4.4Z11E 01 
THETA 1'" 2.0949E-02 

WD3 = 8.451ZE 01 
THETAl= 2.1422E-02 

WD3 z -9.6052E 00 
THETA1= 1.5125E-02 

WD3 8.2815E 00 
THETA1" 1.1615E-OZ 

1103 " -6.9464E 00 
THETA1= 1.Z511E-02 

WD3 5.6014E 00 
THETA1= 1.8613E-02 

WD3 1.0397E OZ 
THETA1· 2.3806E-02 

WD3 z 4.0141E 01 
THETA 1" 2.1541E-02 

(2.29) 
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~------------------------------------------30----------~ 

~----------------------20----------~ 

~-------10------~ 

in. 0.3 in. 0.15 in. 0.1 in. 

L 

I· 
Fig. 2.55 Cantilever beam. 

Notice that in Eq. (2.29), the independent variable X is the position in the horizontal 
direction. This is the first example in which the independent variable has not been time 
(TIME). This detail can easily be handled by renaming the independent variable using the 
control statement RENAME. A listing of the program in Fig. 2.56 shows an application 
of this statement. 

RANAME. The RENAME statement can be used to change the symbol 
for any of the six reserved names (DELT, DELMIN, FINTIM, OUTDEL, 
PRDEL, and TIME), as shown below: 

RENAME TIME = X 

In this example, the symbol X will be used in place of the reserve word TIME. 
The independent variable listed in all PRINT and PR TPL T outputs will be the 
variable X. Successive renaming on the same card must be separated by a comma. 
No continuation cards (oo.) are allowed with RENAME; however, several RE­
NAME cards may be used. 

The only requirement for the location of the RENAME card is that it must 
be placed before the TIMER statement. 
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LABEL LARGE DEFLECTION OF A CANTILEVER BEAM 
RENAME TI ME = X 

INITIAL 
CONSTANT L= 30.0, WIDTH = 1.0,E = 10.OE6, FORCE = 30.0, LO = 26.0 
FUNCTION THICK = (0.0,0.4),(10.0,0.3),(20.0,0.15),(30.0,0.1J 

DYliAMIC 
C = SQRT(l.O + yp*vP) 
XA = INTGRL(O.O.C) 
T = NLFGEN(T~ICK,XA) 
I = WIDTH*T*T*T/12.0 
YPP = FORCE*(LO:" X)*C*C*C/(E*n 
YP = INTGRL(O.O,VPP) 
Y = INTGRL(O.O,VP) 
STRESS = FORCE*(LO - X)*T/(2.0*It 

TERMINAL 
TIMER FINTIM = 30.0 
FINISH XA = L 
IF(ABS(X - Le).LT.0.3) GO TO 1 
LO = LO + 0.2*(X - LO) 
CALL RERUN 

1 CJNTINUE 

~ THE FOLLOWING END CARD RESETS THE INITIAL CONDITIONS AND INITIATES 
* ANOTHER RUN LSING A VALU~ OF OUTDEL = 0.6. 

END 

eND 
STOP 
ENDJQB 

TIMER OUTDEL = 0.6 
PFlTPLT Y (STRESS,XA,VP) 

Fig. 2.56 Program for deflection of cantilever beam. 

Since the beam is curved, the X coordinate is not equal to the distance as 
measured along the center line of the beam. The distance from the base along the 
beam is given by 

XA = I: [1.0 + (CZ) 2J
/
2 dx 

CSMP statements for the above expression are 

C = SQRT(1.0 + yP*YP) 
XA = INTGRL(O.O, C) 

(2.30) 

The value of XA must be used as the argument of the nonlinear function-generator 
statement to calculate the thickness of the beam. 

T = NLFGEN(THICK, XA) 

Since the beam is curved in its final deflected shape, the exact horizontal LO 
position of the end of the beam is not known. An initial estimate of 26 in. is made 
on a CONSTANT card. With this initial estimate the values of y, dyjdx, d 2 yjdx2 

and stress are calculated as 

d
2
y = YPP = FORCE*(LO - X)*C*C*Cj(E*I) 

dx 2 

dy = IX d2
y dx = YP = INTGRL(O 0 YPP) dx 0 dx2 • , 

(2.31) 

(2.32) 
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f
Xd 

Y = 0 Ix dx = Y = INTGRL(O.O, YP) (2.33) 

(J = ';; = STRESS = FORCE*(LO - X)*T/(2.0*I) (2.34) 

The calculations in the Dynamic segment continue until the distance -inte­
grated along the beam XA is equal to the total length L. At this point the first run 
is terminated by the following FINISH statement: 

FINISH XA = L 

The FINISH statement terminates a run when the variable XA reaches 
or first crosses the specified bound L. At this point the actual horizontal posi­
tion of the end of the beam X is compared with the first estimate LO. If the 
first estimate for the horizontal location of the end of the beam is not sufficiently 
close (less than 0.3 in.) to the calculated value, additional runs will be required until 
this criterion is satisfied. The CALL RERUN feature is used to solve this trial and 
error problem. 

CALL RERUN. The CALL RERUN statement must be placed in the Ter­
minal segment to recycle the program through additional runs with new para­
meters. All constants used in succeeding runs will have the same values as specified 
in the Initial segment unless otherwise specified in the Terminal segment. The 
program listing of Fig. 2.56 illustrates the use of the CALL RERUN statement. 

After the first run is terminated by the FINISH statement, the difference 
between the actual horizontal position of the end of the beam X is compared with 
the initial guess LO. If the absolute difference is greater than or equal to 0.3 in., 
a new estimate for LO is calculated and, the CALL RERUN statement will recycle 
the program using the new estimate for LO and all other constants as specified 
in the Initial segment. 

Successive runs will occur until the absolute difference between the actual 
horizontal position and the estimate is within the desired range. When this occurs, 
the FORTRAN IF statement will transfer the execution to the CONTINUE 
statement which bypasses the CALL RERUN card. 

In this example, the CONTINUE card is used as a FORTRAN statement. 
If the statement number were not included, the CONTINUE card would have 
been executed as a CSMP statement. A detailed explanation of the CSMP CON­
TINUE card is given in Chap. 3. 

Notice that there is no output statement before the first END card. This 
means that there will be no output until the final run is completed. If output is 
desired at the end of each iterative run, PRINT, or PRTPLT statements should 
be placed before the first END card. The first END card is used after a CALL 
RERUN statement to reset the independent variable X to zero, and to initiate 
another run. The use of the END statement for making multiple runs is covered 
in Chap. 3. The PRTPLT output for the final run is shown in Fig. 2.57. 

One of the most important statements for trial and error solution is the algo-
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LARGe DEFLECTION OF A CAHILEVER BEAM PAGE 

x 
0.0 
b.OOOOE-Ol 
1.2000E 00 
1.BOOOE OJ 
2.4000E OJ 
3.0000E 00 
3.bOOOt: OJ 
1t.2000E OU 
It.aOUOE 00 
5.4000E 00 
6.0000E 00 
lI.bOOOE 00 
7.200uE 00 
7.S000E 00 
8.4000E 00 
9.001l0E 110 
9.bOJOE 00 
1.0200E 01 
1.081l1lE 01 
1.140ilE 01 
•• 2000E 01 
1.2biluE III 
l.3200E 01 
1.3SIlOE 01 
1.4400E 01 
1.~000E 01 
1.560;);: 01 
1.b200E ill 
1.bSOOE 01 
1.7ltOOE 01 
1.1l000E 01 
1.lIo00E 01 
1.9200E 01 
1.9800E 01 
2.0400E Ol 
2.J.000E 01 
2.1bOOE 01 
2.2200E 01 
l.2800i: 01 
.!. .34JJE 01 
l.4000E OJ. 
2.lt600E 01 
l.520JiO 01 
2.51100E 01 

MINIMUM 
0.0 

VERSUS X MAXIMUM 
1.2606E 01 

I y 

0.0 
2.6519E-03 
1.0687E-02 
2.4228E-02 
4.3402E-02 
6.8342E-02 
9.9186E-02 
1.3608E-01 
1.7918E-Ol 
2.2863E-Ol 
2.8461 E-O 1 
3.4l28E-Ol 
4.1684E-Ol 
4.9346E-Ol 
5.7736E-Ol 
6.6 874E-0 1 
7.6782E-Ol 
8.7484E-Ol 
9.9010E-01 
1.114CE CC 
1. 24 70E 00 
1.38C;7E 00 
1.5427E OC 
1.7061E 00 
1.8825E 00 
2.07L1E 00 
2.2731E 00 
2.4916E 00 
2.7267E 00 
2.9810E 00 
3.2574E 00 
3.5595E 00 
3.8924E 00 
4.2630E 00 
4.6l85E 00 
5.1462E 00 
5.6757E 00 
6.2791E 00 
6.9728E 00 
7.7780E 00 
8.7224E 00 
9.8371E 00 
1.1142E 01 
1.2b06E 01 

+ 
-+ 
-+ 
-+ 

---+ 
----+ 

-----+ 
------+ 

--------+ 
---------+ 
---------+ 
----------+ 
-----------+ 
------------+ 
--------------+ 
---------------+ 
----------------+ 
------------------+ 
--------------------+ 
----------------------+ 
------------------------+ 
---------------------------i· 
------------------------------+ 
----------------------------------+ 
---------------------------------------+ 
---- ---- ---- ----- -------------------- -------+ 
-------------------------------------------------+ 

Fig.2.S7 PRTPLT output for deflection of beam. 

STRESS 
2.9250E 04 
2.9452E 04 
2.9653E 04 
2.9852E 04 
3.0048E 04 
3.0243E 04 
3.0434E 04 
3.0622E 04 
3.0806E 04 
3.0985E 04 
3.1159E 04 
3.1326E 04 
3.1486E 04 
3.1638E 04 
3.1780E 04 
3ol912E 04 
3.2031E 04 
3.2277E 04 
3.2751E 04 
3.3Z79E 04 
3.3866E 04 
3.4520E 04 
3.5249E 04 
3.6066E 04 
3.6984E 04 
3.8019E 04 
3.9194E 04 
4.0538E 04 
4.2089E 04 
4.3898E 04 
4.601tlE 04 
4.8625E 04 
5.1818E 04 
5.2945E 04 
5.2539E 04 
5.1556E 04 
4.9863E 04 
4.1302E 04 
4.3680E 04 
3.8772E 04 
3.2331E 04 
2.4161E 04 
1.4345E 04 
3.6008E 03 

XA 
0.0 
.6.0001E-Ol 
1.2001E 00 
1.8002E 00 
2.4005E 00 
3.0010E 00 
3.6018E 00 
4.2030E 00 
4.8045E 00 
5.4066E 00 
6.0092E 00 
6.6124E 00 
7.2164E 00 
1.8213E 00 
8.4212E 00 
9.03HE 00 
9.6422E 00 
1.0252E 01 
1.0863E 01 
1.1415E 01 
1.2090E 01 
1.2107E 01 
1.3326E 01 
1.3948E 01 
1.4513E 01 
1.5202E 01 
1.5835E 01 
1.6414E 01 
1.1118E 01 
1.7710E 01 
1.8430E 01 
1.9102E 01 
1.9188E 01 
2.0494E 01 
2.1224E 01 
2.1984E 01 
2.2185E 01 
2.3636E 01 
2.4553f!! 61 
2.555JE 01 
2.66?1E 01 
2.1943E 01 
2.9319E 01 
3.0961E 01 

rithm used in the terminal segment to recalculate LO. The calculation that was 
used in this example is 

LO = LO + O.2*(X - LO) (2.35) 

This statement is not meant to be the optimum algorithm for calculating the 
new estimate for LO. It is only a calculation that yielded desired results. Extreme 
care should be used in choosing algorithms for recalculating new estimates of 
parameters. These calculations can affect not only the number of iterative runs 
but can often make the difference between a convergent or divergent solution. 

Example 2.11 Stress Analysis of Cam-Follower System 

In all of the previous examples, some form of numerical integration was performed. 
This example illustrates the use of CSMP to make a sequence of calculations where no 
integration is conducted. Other computer languages such as FORTRAN and BASIC 
could be used for this particular type of problem but CSMP has the advantage of par­
ticular capabilities such as FUNCTION and PRTPLT. 

The problem is to calculate the contact stress between a cam and roller-follower at 
2° cam increments. A schematic of the physical system is shown in Fig. 2.58. 

YP 
0.0 
8.8725E-03 
1.1945E-02 
2.1226E-02 
3.6124E-02 
4.6448E-02 
5.6408E-02 
6.6615E-02 
1.7019E-02 
8.1813E-02 
9.882<1E-02 
1.1014E-Ol 
1.2176E-01 
1.33nE-Ol 
1.4600E-01 
1.5865E-Ol 
1.7168E-01 
1.8513E-Ol 
1.9919E-Ol 
2.1399E-Ol 
2.2962E-Ol 
2.4622 E-Ol 
2.6391E-Ol 
2.8289E-Ol 
3.0331E-Ol 
3.2562E-Ol 
3.5001E-Ol 
3.1698E-Ol 
4.0n1E-Ol 
4.4142E-Ol 
4.8093E-Ol 
5.2152E-Ol 
5.8402E-Ol 
6.5323E-Ol 
1.3310E-Ol 
8.2803E-Ol 
9.4020E-Ol 
1.0151E 00 
1.2422E 00 
1.4495E 00 
1.1015E 00 
2.0141E 00 
2.3261E 00 
2.5201E 00 
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RF 
Radius follower 

~ Spring constant 
K = 150 Ib/in. 

t Y (lift) 

~---Follower 

~---Cam (1 in. thick) 

Fig.2.58 Schematic of cam-follower system. 

Ch. 2 

The stress is a function of the angular position of the cam, consequently, the inde­
pendent variable is THETA. The first statement of the program of Fig. 2.59 uses the 
RENAME card to change the symbol for the independent variable from TIME to 
THETA. 

The maximum compressive contact stress for a 1 in. thick steel cam and roller-follower 
is given by the Hertz formula. 

STRESS = 2291J F(~*~:F) (psi) 

where R = radius of curvature of cam profile at the 
point of contact (in.) 

RF = radius of roller-follower (in.) 

F = radial load (lb) 

(2.36) 
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RF~AME TIME = THETA 
LAB=L CALCULATION OF CONTRACT STRtSS BETWEEN CAM AND FOLLOWER 

CONSTANT RF = 0.15, K = 150.0, YI = 0.2'5 
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FUNCTION LIFT =(0.0,0.01,(30.0,0.09371,(60.0,0.315), (90.0,0.15) ••• 
,(120.0,1.125),(150.0.1.406),(180.0,1.5),(210.0,1.5), 
(240.0.1.351),(270.0.0.9H18),(300.0,0.375),(330.0,0.1433), 
(360.0,0.01 
FUNCTION RADCUV = 10.0,2.0),(30.U,2.4),(60.0,2.5),(90.0,2.75), ••• 
(120.0,3.01,(150.0,3.3),(180.0,3.51,(210.0,3.51,(240.0,2.95), 
1270.0,2.8),(300.0,2.6),1330.0,2.5),(360.0,2.01 

END 
ST1P 
ENOJ08 

V = NLFGEN(LIFT,THETAI 
F = K*( Y + VI. 
R = ~LFGEN(RADCUV,THETAI 
STRESS = 2291.0*SQRTIF*IR + RF)/(R*RFII 
PRTPLT STRESS (F,R,Y) 
TIMER FINTIM = 360.0, OUTDEL = 7.0 

Fig. 2.59 Program to calculate contact stress between cam and 
follower. 

The radius of curvature of the cam surface is measured from the drawing of the cam 
at 30° increments and this information is included in the following FUNCTION state­
ment. 

FUNCTION RADCUV = (0.0,2,0),(30.0,2.4),(60.0,2.5),(90.0,2.75), 
(120.0,3.0),(150.0,3.3),(180.0,3.5),(210.0,3.5),(240.0,2.95), 
(270.0,2.8),(300.0,2.6),(330.0,2.5),(360.0,2.0) 

To simplify the calculation of force, the cam is assumed to be rotating at a speed 
where the inertial forces can be neglected. A static analysis which neglects the pressure 
angle yields the following expression for the force between the cam and follower. 

F= K(Y + YI) (2.37) 

where Y = lift of follower 

YI = initial compression of spring 

The lift Y is also a function of THETA and is measured from the drawing at 30° 
increments. This information is included in the following FUNCTION statement. 

FUNCTION LIFT = (0.0,0.0),(30.0,0.0937),(60.0,0.375),(90.0,0.75), 
(120.0,1.125),(150.0,1.406),(180.0,1.5),(210.0,1.5), 
(240.0, 1.357),(270.0,0.9818),(300.0,0. 375),(330.0,0.1433), 

Since both the radius of curvature of the cam and the lift are represented by smooth 
curves, the NLFGEN function-generating element is used to calculate values for Rand 
y. 

The TIMER card controls the increment and range of calculations. In this example, 
FINTIM was set equal to 360.0 which corresponds to a cam rotation of one revolution. 
A value of OUTDEL = 2.0 forces the calculations to be performed and print-plotted at 
2° increments. One page of the printer-plot output is shown in Fig. 2.60. Note the maxi­
mum and minimum values for the print-plot variable STRESS are always included in the 
PR TPLT output. 
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CALCULAT I Clt-l 

THETA 
0.0 
7.00001" 00 
4. OOOOF Or) 
b.OOOOE 00 
8.00001' 00 
1.0000E 01 
1.;>00OE 01 
1.4000E CJl 
1.bOOOE 01 
1.8000E 01 
2.0000!: 01 
2.2000E 01 
2.4000" 01 
?bOOOf:' 01 
?BOOOE 01 
3.0000F. 01 
"'I.;>OOOE 01 
3.4000F. 01 
3.bOOOF 01 
3. fl OOOE 01 
4.0000E 01 
4.2000E 01 
4.4000E 01 
4.bOOOE 01 
4.8000F 01 
5.00001' 01 
5.;>000E 01 
5.4000F 01 
5.bOO';" 01 
5.BOOOE 01 
b.OOOOF 01 
6.2000E 01 
6.4000E 01 
6.bOOO F 01 
6.8000E 01 
7.0000E 01 
7.2000E 01 
7.4000F 01 
7.bOOOE 01 
7.8000E 01 
8.00001: 01 
8.l000E 01 
8.4000E 01. 
8.6000r: 01 
8.80001' 01 
9.0000E 01 
9.2000E 01 
9.4000E 01 
9.bOOOE 01 
9.8000E 01 
l.OOOOE 02 

OF cm. TRAC T STRESS BETWEE r- CAM AND FOLLOWEr<. PAGE 

MIN IMUM STRESS VERSUS THETA ~AXIMUM 
1.899bE 04 4.7359E 04 

STRESS I I F R y 
1.B99bE 04 3.7500E 01 2.0000E 00 0.0 
1.9197E 04 3.8437E 01 2.0267E 00 6.2467E-Ol 
1.939bE 04 3.9374E 01 2.0533E 00 1.2493E-02 
1.9592E 34 4.0311E 01 2.0BOOE 00 1.8740E-02 
1.9785E 1)4 4.1248E 01 2.10b7E 00 2.4987E-C2 
1.9915E 04 4.2185E 01 2.1333E 00 3.1233E-02 
2.01b3E 04 4.3122E 01 2.1600E 00 3.1480E-02 
2.0349E 04 4.4059E 01 2.1bb7E 00 4.3727E-02 
2.0533E 04 4.49'l6E 01 2.2133E 00 4.9973E-02 
2.0714E 04 4.5'l33E 01 2.2400E 00 5.6220E-02 
2.0894E 04 4.b870E 01 2.2667E 00 6.2467E-02 
2.101lE 04 4.7B07E 01 2. 2'l33E 00 6.8713E-02 
?124bE 04 ---+ 4.8744E 01 2.3200E 00 7.4'l60E-02 
2.1420E 04 4.'l681E 01 2.3467E 00 8.1207E-02 
2.1591E 04 5.0618E 01 2.3133E 00 8.7453E-C2 
2.11blE 04 ----+ 5.1555E 01 2.4000E 00 9.HOOE-02 
2.21491: 04 -----+ 5.3492E 01 2.41bOE 00 1.0662E-Ol 
2.255bE 04 5.5555E 01 2.4307E 00 1.2037E-Ol 
2.2981E 04 5.7743E 01 2.4440E 00 1.34'l5E-01 
2.3423E 04 6.0055E 01 2.4560E 00 1.503 7E-0 1 
2.3S8LE 04 --------+ 6.24'l3E 01 2 .46b 7E 00 1.6662E-01 
2.4355E 04 ---------+ 6.5056E 01 2.47bOE 00 1.8371E-01 
2.4844E 04 ----------+ 6.7744E 01 2.41l40E 00 2.0163E-01 
2.5341E 04 -----------+ 7.0557E 01 2.4'l07E 00 2.2038E-Ol 
2.58b3E 04 ------------+ 7.34'l5E 01 2.4960E 00 2.3997E-Ol 
2.b391E 04 -------------+ 7.6558E 01 2.5000E· 00 2.603'lE-01 
2.6932E 04 -------------+ 7.'l746E 01 2.5027E 00 2.8164E-0 1 
2.7484E 04 --------------+ 8.3060E 01 2.5040E 00 3.0373E-Ol 
2.8047E 04 ---------------+ 8.6498E 01 2.5040E 00 3.2665E-Ol 
2.8b21E 04 ----------------+ 9.0061E 01 2.5027E 00 3.5041E-01 
2.9205E 04 -----------------+ 9.3750E 01 2.5000E 00 3. 7500E-0 1 
2.'l700E 04 ------------------+ 'l.70b3E 01 2.5120E 00 3.9708E-Ol 
3.0194E 04 -------------------+ 1.0044E 02 2.5247E 00 4.1'l5'lE-01 
3.0b88E 04 --------------------+ 1.0388E 02 2.5380E 00 4.4250E-Ol 
3.1181E 04 -------- -------------+ 1.0738E 02 2.5520E 00 4.6584E-01 
3.1b14E 04 ----------------------+ 1.1094E 02 2.5667E 00 4.8'l59E-01 
3.216bE 04 -----------------------+ 1.1456E 02 2.5820E 00 5.1376E-Ol 
3.2b57E 04 ------------------------+ 1.1825E 02 2.5'l80E 00 5.3834E-Ol 
3.3147E 04 -----------------------+ 1.2200E 02 2.6147E 00 5.6334E-Ol 
3.3636E 04 -------------------------+ 1.2581E 02 2.6320E 00 5.8876E-01 
3.4124E 04 --------------------------+ 1.2969E 02 2.6500E 00 6.145'lE-01 
3.4612E 04 ------------------------ ---+ 1.3363E 02 2. b68 7E 00 6.4084E-Ol 
3.5098E 04 ----------------------------+ 1.3763E 02 2.b880E 00 6.6750E-01 
3.5584E 04 ----------------------------+ 1.416'lE 02 2.1.080E 00 6.'l459E-01 
3.60b1!E 04 ------------------------------+ 1.4581E 02 2.7287E 00 7.2208E-01 
3.6552E 04 ------------------------------+ 1.5000E 02 2.7500E 00 7.5000E-01 
3.6982E 04 -----------------------------+ 1.5375E 02 2.7667E 00 7.7500E-Ol 
3.7406E 04 -----------------------------+ 1.5750E 02 2.7833E 00 8.0000E-01 
3.7825E 04 -----------------------------+ 1.6l25E 02 2.8000E 00 8.2500E-01 
3.8238E 04 ------------------------------+ 1.6500E 02 2.8167E 00 8.5000E-Ol 
3.8647E 04 ------------------------------+ 1.6875E 02 2.8333E 00 8.7500E-Ol 

Fig. 2.60 Printer-plot output for contact stress. 
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3. Continuous System Modeling Program III (CSMP III) Operations Guide, Program 
Number 5734-XS9, SH19-7002-1, IBM Data Processing Division, White Plains, 
N.Y. 

4. MCCRACKEN, DANIEL D., A Guide To Fortran IV Programming 2nd ed. New York: 
John Wiley and Sons, Inc. 
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PROBLEMS 

1 Write a CSMP program for solving the following nonlinear differential equation: 

d 2x 
dt 2 + 25(1.0 + 0.1x 2)x = 0 

subject to the initial conditions, 

Answer:t 

x(O) = 3.0 

X(O) = 0.0 

x(t) = 2.9531 at TIME = 1.0 

69 

2 A high-temperature oven is heated by an electrical element supplying 12,000 BTU/hr. 
The heat loss from the oven by convection and radiation is calculated to be the 
following. 

qloss = 2 x 10-S(T! - T!) + 8.0(To - To) BTU/hr 

If the initial temperature is 5300 R (700 P), determine the oven temperature at 0.05 hr, 
0.1 hr, 0.3 hr, and 0.5 hr. The differential equation for this transient heat transfer 
problem is 

I'\. 

V 

Answer: 

CtTo = qsupplied - qloss 

Ct = thermal capacitance, 24 BTU;oR 

Oven 

/ 

~ qsupplied 

C; • 

To = Oven temperature 
Ta = Outside temperature 
Ta = 530

0
R 

/ 

qloss 

"\ 

Fig. P2.2 

At TIME = 0.5 hr, To = 723.6°R 

t Answers are given to the problems at particular discrete times. If the programs are written 
correctly then the solutions should agree at the designated value of TIME. 
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3 Given the system shown in Fig. P2.3, if the input is a unit-step (STEP(O.O», write a 
program to find the printer-plot of the output. Use a FINTIM of 1.3 and an OUT­
DEL of 0.026. 

INPUT + 

Answer: 

Fig. P2.3 

1 
s(s + 6) 

Output = 0.81395 at TIME = 0.364 

4 The period of vibration of a pendulum for small angles is 

2nlf· 

OUTPUT 

Using the capability of a PARAMETER card to make sequential runs, compare the 
periods of oscillation of a pendulum which has initial angles of 5°,20°,45°, 90°, and 
135°. The equation of motion for the pendulum is 

Answer: 

LO + g sin (8) = 0 

m = mass Fig. P2.4 

5° period = 6.286"" Ljg 
20° period = 6.331"" Ljg 
45° period = 6.534"" Ljg 
90° period = 7.416,vrrg 

135° period = 9.600,.jIJg 
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5 A system is represented by the vector differential equation, 

x = Ax + bu 

in which 

A =[ ~ 
-16 

1 

-10 ~J b=[~J 
o -2 16 

Use CSMP to find Xl(t), X2(t), and X3(t). 

Answer: 

At TIME = 1.9: Xl(t) = 0.793 

u = unit-step 

6 The differential equation for the motion of the base of an unbalanced electric motor 
is shown below. 

Mx + ex + kx = mero 2 sin (rot) 

M = 0.1 Ib-sec2/in 

e = 1.2 lb-sec/in 

k = 800 lb/in 

me = 0.009 Ib-sec2 

Assuming the system is initially at rest, find the time-history of the motion of the 
base. The motor speed increases according to the following formula. 

ro = 12On(1 - e-t/ 4 ) 

Unbalanced electric motor 

Fig. P2.6 

Answer: 

When ro = 90 rad/sec, x = 0.067 in. 

7 The system diagram of a process having time delay is shown in Fig. P-2.7 
Find the unit-step response of the system. Compare your results with those given in 
Fig. 2.14 which is the step response of the system above without delay. Use 
FINTIM = 8.0, and OUTDEL = 0.16. 



72 Fundamentals of System/360 CSMP Ch. 2 

C(s) 

Fig. P2.7 

Answer: 
Using N = 20 in the DELAY Function gives e(t) = 1.4116 at TIME = 1.44 

8 Determine the time-history for the water level in each of the three tanks. Initially 
the water level in all tanks is 10ft. The cross-sectional areas of the tanks are shown 
below. 

Ai = 4 ft2 

A2 = 8 fP 

A3 = 12 ft2 

The general equation describing the height of water is 

A/Ii = qin - qout 

The flow through an orifice is given below. 

Orifice area = 0.001 ft2 

Answer: 

q = Aorifice,j2gliH 

=w III \ ~i" = 0.5 ft'lsec 

1------.------1 

Orifice area = 0.002 ft2 

Fig. P2.8 

At TIME = 50 sec: Hi = 10.11 ft 

H2 = 12.95 ft 

H3 = 9.76 ft 

Orifice area = 0.003 ft2 
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9 A space vehicle is reentering the earth's atmosphere. In the position shown, the 
vehicle is 200,000 ft from the surface of the earth and the speed is 25,000 mph. The 
aerodynamic drag is: 

!total = 0.5ACdPV 2 

where A = cross sectional area of vehicle = 80 ft2 

Cd = drag coefficient = 0.55 

P = 0.00238 e-h/24000 (slug/ftJ) 

h = altitude in feet 

The equations of motion in cylindrical coordinates are shown below. 

m(r - r 8 2) = idrag radial - mg 

m(r8 + 2f8) = - idrag tangential 

(a) Using this information, how fast does the vehicle strike the earth? (b) What is the 

total distance traveled by the vehicle? Hint: s = S: v dt (c) How much energy is 

dissipated in aerodynamic drag? Hint: Energy = S: force ~; dt 

Space vehicle 

m = mass = 80 slugs , 
80~ 

V 

Fig. P2.9 

Answer: 

(a) 224 ft/sec (b) 779,000 ft (c) 5.43 X 1010 ft-Ib 

10 The block diagram of a system containing amplifier saturation is given in Fig. P2.10. 
Use the function generator Y = LIMIT(PbP2,X) given in Appendix I to find the 
response of the system if r(t) = R(s) = 3.5u(t) where u(t) is a unit-step starting at 
t = 0. Select FINTIM = 4.0, OUTDEL = 0.08, and obtain the printer-plot output 
of c(t). 
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R(s) + v-- g 6 

~ ~~--~_S_(S_+ __ 2)_(_S_+_1_0)~ 
Amplifier 

with 
saturation 

______ ..JtC--- ______ - 1.5k 

Characteristics of amplifier 

Fig. P2.10 

Answer: 
At TIME = 1.28 c(t) = 5.2106 

k= 30 

11 To test the impact characteristics of neoprene, a 36.6 lb weight is dropped on a 
doughnut-shaped specimen. The velocity at impact is 52.7 in/sec. The acceleration of 
the weight was measured to be the following: 

Time 
(sec) 

o 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.01 
0.012 
0.015 

Acceleration 
(g's) 

o 
-13.0 
-23.0 
-32.0 
-35.0 
-34.0 
-33.0 
-24.0 
-11.0 

o 
1.0 

1 g = 386 in/sec2 

Using the AFGEN function to represent data taken from this test, determine 
the time-history of the velocity and displacement of the top surface of the neoprene. 
Also determine the energy absorbed by the neoprene. 
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Answer: 

36.61b 
weight 

Fundamentals of System/360 CSMP 

Accelerometer· 

~
I Neoprene 

I I 

% Fig. P2.11 

at TIME = 0.0075 sees 

displacement = 0.208 in. 

velocity = -15.0 in/sec 

15 

12 An automobile passes over a triangular bump at a speed of 20 ft/sec. Determine the 
maximum pitch and vertical motion of the center of gravity. Neglect the deflection 
of the tires and the effects of the unsprung mass. The automobile has the following 
parameters. 

Weight = 4200 lb 

Spring constants = front: 120 lb/in., rear: 180 lb/in. 

Damping coefficients = front: 10 lb-sec/in., rear: 12.0 lb-sec/in. 

Pitch moment of inertia = 40,000 Ib-sec2/in. 

t 

F ~==:J V: 20 ft/sec 

65" { 

5" 

t 

Fig. P2.12 

Hint: Ijj = 1: torques due to springs and shock absorbers about center of 
gravity 

my = 1: forces due to spring and shock absorbers. 

Answer: 

Ymax = 2.09 in.; Bmax = 1.840 
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13 Same as the above problem, except the shock absorbers are more realistically repre­
sented by having different linear damping coefficients in the compression and rebound 
directions. 

Damping coefficients = front: compression 6.0 lb-sec/in.; rebound 
14.0Ib-sec/in. 

Answer: 

rear: compression 8.0 lb-sec/in.; rebound 
18.0Ib-sec/in. 

Ymax = 1.588 in., ()max = 1.395° 

14 A block diagram model of a position control system with tachometer feedback is 
given in Fig. P2.14. 

R(s) 
INPUT 

---""'I KTs 1-----' 

Tachometer 

Fig. P2.14 

('(s) 
OUTPUT 

Let R(s) correspond to a unit-step [i.e., INPUT = STEP(O.O)] and find e(t) for values 
of KT = 0.1, 1.5, 4.0. Use the PARAMETER card for running multiple values of 
KT • Specify FINTIM = 5.0, and OUTDEL = 0.1 for the printer-plot of the output. 
Also specify that ERROR and INPUT are listed on the same page which gives the 
printer-plot of the output. Use a LABEL card with your choice of wording for the 
title of the printer-plot output. 

Answer: 

e(t) = 1.2329 

e(t) = 1.0468 

e(t) = 0.9919 

at TIME = 0.7 

at TIME = 0.9 

at TIME = 1.9 

KT = 1.0 

KT = 1.5 

KT = 4.0 

15 The following Blasius equation is a transformed equation describing the laminar 
boundary layer on a flat plate. 

d 3 I d 2 I 
d113 + d112 I = 0 

Based on previous experience, the following boundary conditions will yield a 
satisfactory solution. 

dl 
1(11 = 0) = dl1(l1 = 0) = 0 

dl 
dl1(l1 = 3) = 2 
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Using a trial and error solution determine the value of 

d 2f 
d1'/2 (1'/ = 0) 

Answer: 

~~~ (1'/ = 0) = 1.328 

16 Solve the following set of differential equations. 

where 

Answer: 

3Xl + X2 + Sit + 10Xl = 10 + e-t 

Xl + 4X2 + 2SX2 + 4x~ = 0 

Xl(O) = X2(0) = 0 

At TIME = 1.0 Xl = 1.276 

17 The diagram below represents an experimentally measured water temperature 
increase in a steam generating boiler due to a step input of fuel. The fuel is natural 

200 

190 

G:' 
'L-

Q) 
I-< 

180 .a 
(1:f 
I-< 
Q) 

0.. 
E 
~-

170 

1601--__ -~ 

2 4 6 8 10 12 14 16 18 20 

Time (minutes) 

Fig. P2.17 
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gas and the step input level is 10,000 ft3/hr. The heat content of the gas is approxi­
mately 1000 Btu/fP. A proposed model for matching the temperature increase (over 
the range t = 0 to t = 19 min) due to the step input of fuel is given by 

T(s) K 2 f-7:d S 

U(s) = s(l + 't'lS)(l + 't'2S) 

where T has units of of, K2 has units of °F/ft3, U(input) is in ft3/min, and 't'a, 't'b 't'2 
have units of minutes. Use CSMP to assist you in determining appropriate values 
for K 2 , 't'a, 't'b and't'2' 

Answers: 

K2 = 0.04 °F/ft3, 't'a = 4 min, 't'1 = 2 min, 't'2 = 5 min 

18 A red hot cylindrical piece of iron is brought from a heat treating furnace and is 
allowed to cool in still air. Energy is removed from the piece by both convection and 
radiation. Assuming the iron remains at a uniform temperature, the following 
equation can be used to describe the transient temperature. 

mc~; = hA(Ta - T) + AfO'(T! - T4) 

where: Ta = 545°R, m = 161.7 Ibm, c = 0.13 Btu-IbmrR 

A = 3.01 ftz, h = 0.18(T - Ta)o.33 Btu/ft2-hr (assuming turbulence 
flow over piece) 

f = 0.95, 0' = 0.1714 X 10-8 Btu/hr-ft2-oR4 

Use the FINISH card to determine how long it takes for the piece to cool from 
19100 R to 1300oR . 

..... 1 ~f---- 20"-----i·~1 

I ( .... J~ _______ T~) T, = Ambient temperature 

Fig. P2.tS 

Answer: 
0.378 hours 

19 The following equations describe the angular recoil of a hand gun. The assumption 
is made that the gun is loosely held so that no external moment is applied to the gun. 
The restraining force vector passes through the center of mass. The parameters for a 
38 caliber pistol are shown below. 

Bullet weight = w = 0.0207 pounds 

Moment of inertia about center of mass = 1= 0.0105 Ib-in.-sec2 

d = 0.9 inches 

Cross-sectional area of bullet = A = 0.1 in. 2 

Find the angular recoil of the hand gun and muzzle velocity for the following 
description of barrel pressure. 
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Answer: 
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~ d2x =PA 
I d2

() =dAP 386 dt2 

dt

2 

r=~'\=d~:-::====+'.~ 
P = Pressure 

,-. .r;; 
3-
~ 5000 

o 
x (inches) 

Fig. P2.19 

At x = 3.962 in., () = 0.018212 radians, 
and x = 12600 in./sec 

Closed form solution: 

() = xwd/(386I) 

20 An automobile engine has a stroke of 3.70 in. and a connecting rod length of 5.84 in. 
as shown in Fig. P2.20. The following is an expression for the exact acceleration of the 
piston for a constant engine speed. 

r = 3.70" 
2 

L = 5.84" 

Fig~ P2.20 



80 Fundamentals of System/360 CSMP Ch.2 

a = -002 [R cos 8 + R2 (L2 - R2 sin2 8)-1/2 cos 28 

+ ~4 (L2 _ R2 sin2 8)-3/2 sin2 28] 

Use the above equation to calculate the acceleration of the piston for an engine 
speed of 4800 rpm (00 = 1601t rad/sec) at three degree increments during one com­
plete revolution of the crankshaft. 
Answer: 

amax = 3.355 x lOs in/sec2 at 141 0 

amin = -6.155 x lOs in/sec2 at 00 



3 
ADVANCED FEATURES 

OF CSMP 

The preceding chapter introduced the basic concepts and features that allow 
the reader to begin using CSMP. In this chapter, additional programming capabil­
ities are described which permit considerable flexibility in the simulation of com­
plex systems. The presentation is divided into five distinct areas: integration 
methods, data statements, translation control statements, data output, and sub­
programs. Each section is essentially a separate entity and consequently the 
material can be covered in any order. 

Since integration is normally a pivotal point in most simulations, the first 
section concentrates on the various numerical integration routines available in 
CSMP. 

Integration Methods 

One of the most attractive features of CSMP is that the user seldom needs to 
become involved in specifying either the type or any of the details of the numerical 
integration method. For those who wish to specify the integration technique, there 
are five fixed-step and two variable-step methods available. CSMP III provides 
two additional techniques which are described in Chap. 5. If none of the seven 
methods are suitable, the user can supply his own integration subroutine. The 
following paragraphs describe the relative advantages and disadvantages of vari­
able and fixed-step integration methods, error requirements, and give guidelines 
for choosing the best integration method. 

81 
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Variable-Step Integration Methods 

When the integration method is not specified, a variable-step Runge-Kutta 
method (CSMP name: RKS) is automatically used. This method is generally a 
good choice for most problems and is used in the example problems-in Chap. 2. It 
is a sophisticated method that has the advantage of automatically adjusting the 
time increment of integration to meet the demands of the dynamic conditions of 
the simulation. Thus, the user is virtually assured a satisfactory solution. 

The second variable-step integration technique is the fifth-order, predictor­
corrector, Milne method (MILNE). This method is specified by including the 
following CSMP statement in the program. 

METHOD MILNE 

The MILNE method is similar to the RKS integration technique in that it 
uses rather sophisticated numerical algorithms and adjusts the step-size to meet 
changing conditions. MILNE integration has essentially the same advantages and 
disadvantages as the RKS technique. Generally, one will not know prior to the 
run which integration method will give the best simulation results. While the RKS 
method may give best results for one problem, the MILNE method may perform 
best for another type of problem. 

Both methods have the disadvantage of sometimes using an extremely small 
integration step-size which results in excessive computer time. The step-size is 
controlled by algorithms which provide estimates of integration error. 

Integration Error Requirements 

In both variable-step methods, the absolute value of the estimated integration 
error (ABSERR) and the relative magnitude of the estimated error (RELERR) 
are compared with user-specified error-bounds. The step-size is then adjusted to 
meet the desired error criteria. The error limit of the absolute error dominates for 
large values of integrator output while the relative error is more important for 
small values of output. A detailed mathematical description of all integration 
methods and error criteria is contained in Appendix III. 

If error-bounds are not specified, a value of 0.0001 is automatically used for 
both the absolute and relative errors for all RKS and MILNE integration. The user 
can specify either or both the relative and absolute errors for each integrator by 
using the RELERR and ABSERR statements. Examples of both statements are 
shown below. 

RELERR X = 0.0002, Y = 5.0E-5, Z = 0.0005 
ABSERR X = 0.0003, Y = 7.5E-5 

The first statement sets the relative error for the X, Y, and Z integrators to 
the values shown. In the second statement, the absolute errors for only the X and 
Y integrators are changed as indicated. 

The use of the RELERR and ABSERR cards enables the user to specify the 



Ch. 3 Advanced Features of CSMP 83 

allowable error for each separate integrator which, in effect, governs the size of the 
integration step. Computer time can be more efficiently used since step-size and 
computer time are directly related. 

It is quite difficult to determine the exact quantitative effect that the relative 
and absolute errors have on step-size and solution accuracy. In order to show the 
relationship of error-bound to solution accuracy for one particular problem, the 
following second-order linear equation is solved using the variable-step Runge­
Kutta method for values of relative and absolute error that ranged from 0.00005 
to 0.1. The particular problem is the harmonic oscillator, 

y + 4n2y = 0 (3.1) 

with initial conditions of yeO) = 1.0, yeO) = 0 
A plot of the exact solution for yet) is given in Fig. 3.1. To illustrate the effect 

of ABSERR and RELERR error bounds, the exact solution is compared to the 
Runge-Kutta numerical solution. 

y Or---------~~--------~------------~------------~--

- 1 

Fig.3.1 Plot of the exact solution of y(t) + 41T2y(t) = 0, with 
y(O) = 1, y(O) = O. 

Table 3.1 contains a summary of the average absolute difference between the 
exact solution and numerical solution as a function of error-bound. The number 
of integration steps is also listed. The information in this table should not be 
directly applied to all problems but it does illustrate how error-bounds affect the 
accuracy of solution for one particular problem. Round-off errors in the numerical 
calculations limit the maximum accuracy of the solution. Consequently, the solu­
tion error cannot be expected to continue to become smaller indefinitely for increas­
ingly smaller values of error-bound. 

In some problems the error-bounds and the dynamics of the simulation do 
not control the integration step-size. Since the solution must be calculated at each 
output interval the integration step-size must be equal to or less than the magnitude 
of either PRDEL or OUTDEL. This means that for small output-intervals the 
step-size is determined by the print interval. For this condition the error-bound 
has no effect on the step size. In the numerical solution ofEq. (3.1), which generated 
the data contained in Table 3.1, the print interval was made sufficiently large to 
not affect the integration step-size. 
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Table 3.1 

Solution Error of Eq. (3.1) Using RKS as a Function of 
ABSERR and RELERR. 

Error-bound Average Absolute 
ABSERR Difference between Number of 

and Numerical and Exact Integration 
RELERR Solutions Steps 

0.00005 5.48 x 10-6 29 
0.0001 7.06 x 10- 5 23 
0.0002 7.95 x 10- 5 23 
0.0005 1.01 x 10-4 20 
0.001 8.87 x 10- 5 20 
0.002 5.88 x 10-4 18 
0.004 4.89 x 10-4 17 
0.005 4.89 x 10-4 17 
0.01 4.89 x 10-4 17 
0.02 1.69 x 10- 3 15 
0.1 1.69 x 10- 3 15 

Ch.3 

As previously stated, it is not necessary to specify the integration step-size 
for either the RKS or MILNE integration methods. The first integration step is 
automatically set equal to io of PRDEL or OUTDEL, whichever is smaller. If 
the user wishes to use a different value for the first step-size, this can be accom­
plished by specifying a value for DELT on the timer card. The definition of the 
DELT specification is as follows: 

DEL T. The value of DEL T is the integration interval or step-size of the indepen­
dent variable. If DELT is specified, it is automatically adjusted if necessary to be a 
submultiple of PRDEL or OUTDEL. If neither PRDEL or OUTDEL has been 
specified, DELT is adjusted to be a submultiple of FINTIMjIOO. When DELT is 
not specified, the first integration step is io of the smaller value of PRDEL or 
OUTDEL. For either of the variable-step integration methods there is no need to 
specify a value for DELT unless the user feels that the first step-size (io of smaller 
value of PRDEL or OUTDEL) is too large. When using a fixed-step integration 
method, the value of DELT should be carefully selected. Guidelines for choosing 
a value are discussed later. 

For some problems, the error requirements and the dynamics of the solution 
may demand an extremely small step-size. A lower limit can be placed on the 
integration step-size by specifying a value for DELMIN on the timer card. 

DELMIN. The value assigned to DELMIN on the timer card specifies the 
minimum allowable integration interval for the variable-step integration methods. 
If DELMIN is not specified, it is taken as FINTIM X 10-7 • The following timer 
card shows a typical application where DELMIN is included. 

TIMER FINTIM = 8.0, PRDEL = 0.2, DELMIN = 2.0E-8 
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If either of the variable-step integration methods attempts to use a value of DELT 
smaller than DELMIN, the run is terminated at that point with the appropriate 
message. 

Fixed-Step Integration Methods 

There are five fixed-interval integration techniques ranging from the sophisti­
cated Runge-Kutta to an extremely simple rectangular integration. A listing of the 
five fixed-step methods in the order of decreasing complexity is given below. 

Summary of Fixed-Step Integration Methods 

CSMPName 

RKSFX 

SIMP 
TRAPZ 
ADAMS 
RECT 

Method 

Fourth-order Runge-Kutta with 
fixed interval 
Simpson's Rule integration 
Trapezoidal integration 
Adams-Second Order 
Rectangular integration 

The integration technique is specified by the use of the METHOD card with 
the appropriate CSMP integration name. An example of specifying the trapezoidal 
method is shown below. 

METHOD TRAPZ 

Since these methods all use a fixed-integration interval, the value of DELT 
should be carefully chosen. Information for choosing a value for DELT is discussed 
in the following section. 

Choosing the Integration Method 

When specifying an integration method one must be concerned with obtaining 
sufficient accuracy without using excessive computing time. Generally, the selec­
tion of the best integration is an extremely complex decision. For problems that 
are not extremely complex or do not require a large amount of computer time, 
either the variable-step Runge-Kutta or Milne methods are probably the best 
choice. The error-bound can be specified to meet the desired accuracy and the 
step-size is then automatically adjusted to the changing dynamic conditions of the 
problem. 

The solution of Eq. (3.l) by both the Milne and the variable-step Runge­
Kutta methods were compared to the exact solution given in Fig. 3.1. The step­
sizes on the first set of runs were entirely controlled by the default error-bound of 
0.0001. In the second set of runs the error-bounds were not changed, but 100 lines 
of output were specified. From the results shown in Table 3.2, notice that the 
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Table 3.2 

Comparison of Numerical Solutions Using The Variable­
Step Milne and Runge-Kutta Methods 

A verage Absolute 
Difference between 

Integration Numerical and Exact 
Method Solutions of Eq. 3.1 

First set of runs, Variable-step 
default error bound Runge-Kutta 7.06 x 10- 5 

of 0.0001, 
2 lines of output Milne 1.08 x 10- 5 

Second set of runs, Variable-step 
default error bound Runge-Kutta 4.86 x 10-6 

of 0.0001, 
100 lines of output Milne 6.56 x 10- 6 

Ch.3 

Number of 
Integration 

Steps 

23 

58 

104 

112 

smaller output interval of the second set of runs forced the integration step-size 
to be smaller and consequently reduced the error. 

For certain types of problems, fixed-step integration methods may give better 
results. The following is a listing of three situations where fixed-step methods 
should be considered. 

1. In some types of problems where sudden changes or discontinuities occur, 
the variable-step methods may demand an integration step which is smaller 
than the minimum allowed (DELMIN). If this occurs the run is terminated 
at that point. The user then has the choice of increasing the error require­
ments (RELERR and ABSERR), decreasing DELMIN, or using one of 
the fixed-step methods. 

2. If the output interval is very small, the maximum step-size is constrained 
by the output and there is no need to use a sophisticated, time-consuming 
integration technique. For this situation a simple fixed-step method should 
be used. 

3. When using elements such as IMPULS (Example 2.7) which involve critical 
time-sequencing relationships, it is good practice to use a fixed-step method 
that is a submultiple of the desired pulse interval. 

The big problem in using a fixed-step method is choosing the proper integra­
tion step-size. DELT should be chosen such that it is sufficiently small to insure 
an accurate solution and not too small to result in excessive run time. There is no 
exact procedure for determining the proper step-size prior to making a simula­
tion run. The dynamic response of the system determines the necessary step size. 
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The faster the response, the smaller should be the integration interval. It is advisable 
to make the first choice of DELT sufficiently small to ensure an accurate solution. 
The step-size is probably too large if a smaller integration interval results in a 
significantly different answer. 

In order to provide an estimate on how integration error is affected by step­
size, the numerical solution of Eq. (3.1) was compared with the exact solution 
shown in Fig. 3.1. This was done for all five fixed-step integration methods using 
a step-size that ranged from 10 to 10,000 integration steps per cycle of the cosine 
function. The average absolute difference between the exact solution and the numer­
ical solution is plotted in Fig. 3.2 as a function of step-size for the five integration 
methods. 

10- 1 

10- 2 

Average 
absolute 10- 3 

error 

10-4 

10- 5 

10-6~ __________ ~ __________ ~ ________ ~ 

0.0001 0.001 0.01 0.1 DELT 

10,000 1000 100 10 Steps/period 

Fig. 3.2 Average absolute error as a function of step-size and inte­
gration method. 
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The results shown in Fig. 3.2 are only intended to show the relative accuracy 
of the various methods as a function of step-size. The curves also illustrate that a 
small integration interval does not necessarily give the greatest accuracy. If the 
frequency content of the solution can be estimated, Fig. 3.2 can be helpful in 
estimating the appropriate step-size. 

As previously mentioned, the various integration methods are greatly different 
in complexity and consequently require different amounts of computing time. In 
order to provide an estimate on computing time for the five fixed-step methods, a 
program was run in which 10,000 integration steps were performed. The computer 
time required for only the numerical integration, using an IBM 360 Model 65 
computer, is listed below. 

Method 

RKSFX 
SIMP 
TRAPZ 
ADAMS 
RECT 

Time in Seconds 

3.578 
2.513 
1.647 
1.198 
0.982 

In many problems the most time-consuming portion of the simulation is not 
the result of the numerical integration, but is due to the calculations required at 
each integration step. The numb~r of times that all statements in the Dynamic 
segment are executed for each integration step depends upon the method. Table 
3.3 contains this information for all seven methods. 

If the problem requires a large number of calculations for each integration 
step, a savings in computer time may result if a smaller step-size is used in conjunc­
tion with a less sophisticated integration method. 

Integration 
Method 

RKSFX &RKS 
SIMP 
MILNE 
TRAPZ 
ADAMS 
RECT 

Table 3.3 

Number of Times that all 
Statements in the Dynamic 
Segment are Executed for 

Each Integration Step 

4 
3 
2 
2 
1 
1 
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The Variable KEEP 

The CSMP variable KEEP is used to indicate when the numerical technique 
has reached the end of an integration step. KEEP is set equal to 1 when a valid 
integration step has been completed. For intermediate steps and for trial steps of 
the variable-step methods, KEEP equals O. The KEEP variable was used in pro­
grams which calculated the average absolute error between the numerical and 
exact solution of Eq. (3.1). 

An example of a program using Simpson's integration rule with a step-size of 
0.001 seconds is shown in Fig. 3.3. 

TITLE PROGRAM TO CALCULATE THE AVERAGE ABSOLUTE ERROR OF EQUATION 3.1 
INITIAL 
CONSTANT PI = 3.14159, SUM = 0.0, COUNT = 0.0 
OYNAfo41C 

* THE FOLLOWING 3 CARDS ARE USED T~ SOLVE EQUATION 3.1, WHERE­
* YOO = StCOND DERIVATIVE OF Y WITH RESPECT TO TIME 
* YO = FIRST DERIVATIVE OF Y WITH RESPECT TO TIME 

YOO = -4.0*PI*PI*Y 
YO = INTGRL(O.O, YOO) 
Y = INTGRL(l.O, YO) 

* TH~ FOLLOWING NOSORT SECTION IS REQUIRED TO USE THE "IF" STATEMENT 

NOSORT 

* KEEP IS EQUAL TO 1 WHEN THE END OF A VALID INTEGRATION STEP IS REACHED 

IF(KEEP. EQ .1) GO TO 1 
GO TO 2 
1 SUM = SUM + ABS(Y - COS(2.0*PI*TIME» 
COUNT = COUNT + 1.0 
AAER = SUM/COUNT 
2 CONTINUE 
TERMINAL 
Tl~ER FINTIM = 1.0, PRDEL 0.1, DELT 0.001 
METHO~ SIMP 
PRINT y, SUM, COUNT, AAER 
eND 
STOP 
ENOJOB 

Fig.3.3 Program to calculate the average absolute error ofEq. 3.1. 

In the program of Fig. 3.3, the variable KEEP was used to indicate when a 
valid integration step was reached. When KEEP equals 1, the variable SUM 
increases by the absolute difference between the numerical solution Y and the 
exact solution, cos(2.0*n*TIME). Also the number of valid integration steps is 
recorded by the variable COUNT. The quotient, SUM/COUNT is equal to the 
average absolute error AAER. 

Table 3.3 shows that for Simpson's integration, statements in the Dynamic 
segment are executed three times at each integration step. This means that KEEP 
is equal to 1 every third time the program cycles through the Dynamic segment. 
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Changing Integration Technique and 

Output Interval During a Run 

Ch. 3 

CSMP offers the user the flexibility of changing integration methods, step­
size, error requirements, and output-interval during a simulation run. The CSMP 
CONTINUE statement is used for this purpose. (In CSMP III, the END CON­
TINUE is used.) A brief description of the CONTINUE statement.follows, while 
a detailed explanation is included in this chapter in the section on translation 
control statements. 

A problem which illustrates the need to change step-size and output-interval 
is the simulation of the impact of two railroad freight cars. A small step-size is 
required during impact period because of the high forces and rapidly changing 
conditions. A much larger step-size and output-interval can be used for the post­
impact motion. 

Example 3.1 

In this example it is desired to calculate the forces, accelerations, and deflections 
during the impact of two railroad cars. The motion after impact is also desired. Car num­
ber one is moving from left to right with a velocity of 8 ft/sec. It strikes and is coupled to a 
second car that is initially stationary. The impact first occurs at t = O. The couplers are 
assumed to be connected to both cars by a linear-spring and damper. A constant rolling­
resistance force opposing motion is also included. Figure 3.4 illustrates the simplified 
problem and gives the appropriate parameters. 

Initial velocity = 8 ft/sec 

Car no. 1 

Weights: 
WI = 140,000 lb 
W2 = 95,000 lb 

Rolling resistance: 
Car no. 1 = 600 lb 
Car no. 2 = 400 lb 

Car no. 2 

SOUt&.fEIUI CB&Q 

c = 18,000 lb-sec/ft 

Coupler 

Fig. 3.4 Impacting freight cars. 
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Using Newton's second law, the equations describing the motion of the two freight 
cars are derived as follows. 

FORCE = K*(X2 - Xl)/2.0 + C*(V2 - Vl)/2.0 

VI = [FORCE - 600.0*SIGN(Vl)]/Wl/32.17 

V2 = [-FORCE - 400.0*SIGN(V2)]/W2/32.17 

Symbols Used in CSMP 
Program of Fig. 3.5 

FORCE 
K 
C 
ACCI & ACC2 
VI &V2 
Xl &X2 
WI &W2 

Force between cars. 
Spring constant of coupler spring, 3.5 x 105 lb/ft. 
Damping constant of coupler, 18,000 lb-sec/ft. 
Accelerations of cars 1 & 2, respectively. 
Velocities of cars 1 & 2, respectively. 
Displacements of cars 1 & 2, respectively. 
Weights of cars 1 & 2, respectively. 

(3.2) 

(3.3) 

(3.4) 

Prior to running the program, it was estimated that the impact would occur in less 
than 1.0 sec. Therefore, FINTIM on the first TIMER card was set equal to 1.0 and the 
output-interval was chosen to be 0.02. For the post-impact motion FINTIM was set equal 
to 21.0 with an output-interval of 2.0. For illustration purposes, the fixed-step Runge-

TITLE SIMULATION OF THE IMPACT OF TWO RAILRCAD CARS. THE OuTPUT 
TITLE INTERVAL AND INTEGR~TION TECHNIQUE ARE CHANGED DURING THE RUN. 

CONSTANT K = 3.5E5. C = 18000.0, Wl = 140000.0, W2 = 95000.0 
FORCE = K*(X2 - XlI/Z.O + C*IVZ - VlI/l.O 
ACCl = IFORCE - 600.0*SIGN(1.0,Vl)t/(Wl/32.l7) 
ACCZ = I-FORCE - 400*SIGN(l.O,V2)t/(w2/32.l1) 
VI INTGRL(S.O.ACClJ 
V2 = INTGRL(0.0,ACC2) 
Xl = INTGRLlO.O,Vl) 
X2 = INTGRLIO.0.V2) 
DEFLCT = Xl - X2 
PRINT FORCE, ACC1, ACC2, Vl, V2, Xl, X2, DEFLCT 
METHOD RKSFX 
TIMER FINTIM = 1.0, PRDEL = 0.025, DELT = 0.0005 

* THE FOLLOWING CONTINUE CARD ALLOWS THE OUTPUT INTERVAL AND THE 
* INTEGRATION TECHNIQUE TO BE CHANGED DURING THE RUN. THE CHANGES ARE MADE 
* AFTER 1.0 SECONDS, WHICH IS THE FINTIM TIME ON THE ABOVE TIMER CARD. 

CONTINUE 
~E THOD MILNE 
RELERR Vl = 0.0005, V2 = J.0005, Xl 
ABSERR Vl = 0.0005, V2 = 0.0005, Xl 
TIMER FINTIM = 21.0. PROEL = 2.0 

END 
STQP 
ENDJOB 

0.0005, X2 0.0005 
0.0005, X2 0.0005 

Fig. 3.5 Program for the simulation of the impact of two freight 
cars. 
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Kutta method (RKSFX) with a step-size of DEL T = 0.0005 sec was used for the impact 
period and the variable-step Milne (MILNE) method was used for the motion after 
impact. Also for illustration purposes, the relative and absolute errors for all integrators 
of the Milne integration were set equal to 0.0005. 

The program for simulating this system is shown in Fig. 3.5. One notes the use of the 
CONTINUE card to change the output-interval and integration technique. The CON­
TINUE card permits these changes without resetting the independent variable TIME. 

The output for this simulation is contained in Figs. 3.6 and 3.7. 

SIMULATION OF THE IMPACT OF TWO RAILROAD CARS. THE OUTPUT RKSFX INTEGRAT ION 
INTERVAL 4ND INTEGRATION TECHNIQUE AR E CHANGED OUR I NG THE RUN. 

TIME fORCE ACCI ACC2 VI V2 Xl X2 OEFLCT 
0.0 -7.2000E 04 -1.b682E 01 2.4Ut6E 01 8.0000E 00 0.0 0.0 0.0 0.0 
2.50001" -02 -9.3825E 04 -2.1b97E 01 3.1631E 01 7.5164E 00 7.0417E-01 1.9422E-Ol 8.411lE-03 1.8580E-Ol 
'5.0000E-02 -1.07 SSE 05 -2.4859E 01 3.629!>E 01 6.9306E 00 1.5590E 00 3.7497E-Ol 3.6464E-02 3.3850E~01 
7.5000E-02 -1.1344E 05 -2.6205E 01 3.8279E 01 6.2886E 00 2.4966E 00 5.4027E-01 8.7054E-02 4.53UE-01 
1.0000E-Ol -1.1201E 05 -2.5876E 01 3.7795E 01 5.{>343E 00 3.4523E 00 6.8929E-01 1.b 144E-Ol 5.2785E-Ol 
1.7500E-Ol -1.0ft25E 05 -2.ft093E 01 3.5167E 01 5.0069E 00 4.3684E 00 8.2221E-Ol 2.5933E-Ol 5.6288E-Ol 
1. 5000E -01 -9.1367E Olt -2.1133E 01 3.0804E 01 4. ft3 94E 00 5.19blE 00 9.40llE-01 3.7912E-Ol 5.6102E-Ol 
1.7500E-Ol -7.H2ftE Oft -1.730BE 01 2.5169E 01 3.9574E 00 5.8979E 00 1.0449E 00 5.1808E-Ol 5.2680E-Ol 
2.00001"-01 -5.5740E Oft -1.2~46E 01 1.8740E 01 3.5784E 00 6.ft479E 00 1.1388E 00 6.7274E-Ol 4.6609E-Ol 
2.2500F-Ol -3.5798E 04 -8.3637E 00 1.1987E 01 3.3119E 00 6.8322E 00 l.ll 47E 00 8.3909E-Ol 3.8560E-Ol 
2.5000E-Ol -1.617lE 04 -3.S538E 00 5.3407E 00 3.1596E 00 7.0481E 00 1.30531: 00 1.0129E 00 2.9239E-Ol 
2.1S00E-Ol 2.0343E 03 3.2957E-Ol -8.2431E-Ol 3.1164E 00 7.1032E 00 1.3835E 00 1.1901E 00 1.9341E-Ol 
3.0000E-Ol 1.7936E Oft 3.9837E 00 -6.2093E 00 3.1716E 00 7.0134E 00 1.4619E 00 1.3668E 00 9.5084E-02 
3.25001:- 01 3.0889E 04 6.9599E 00 -1.0595E 01 3.3099E 00 6.8010E 00 1.5428E 00 t.5397E 00 3.0394E-03 
3.5000E-01 4.0ft93E 04 9.1668E 00 -1.3848E 01 3.51nE 00 6.4930E 00 1.6279E 00 1.7060E 00 -7.8133E-02 
3.7500F.-Ol 4.6593E 04 1.0569E 01 -i.5913E 01 3.7614E 00 6.U85E 00 1.7l87E 00 1.8638E 00 -1.450lE-01 
4.0000F.-Ol 4.9257E 04 1.1181E 01 -1.6815E 01 4.0349E 00 5.7070E 00 1.8161E 00 2.0116E 00 -1.9547E-Ol 
4.2500E-01 4.8741E 04 1.1062E 01 -1.6641E 01 4.3143E 00 5.2867E 00 1.92 05E 00 2.1490E 00 -2.28 51E-Ol 
4.5000E-Ol 4.545SE 04 1.030SE 01 -1.5529E 01 4.5826E 00 4.8828E 00 2.0311E 00 2.2160E 00 -2.4432E-Ol 
4.7500E-01 3.9929E 04 9.0312E 00 -1.3657E 01 4.8254E 00 4.5166E 00 2.1494E 00 2.3934E 00 -2.4405E-01 
'5.0000E-Ol 3.1746E 04 7.3867E 00 -1.122'tE 01 5.0313E 00 4.2046E 00 2.2126E 00 2.5023E 00 -2.2964E-Ol 
5.25 OOE- 01 2.4525E 04 5.4916E 00 -8.4404E 00 5.1927E 00 3.9582 E 00 2.4005E 00 2.6041E 00 -2.0363E-Ol 
5.5000E-Ol 1.S867E 04 3.50801: 00 -5.5084E 00 5.3053 E 00 3.7837E 00 2. ';)18E 00 2.7007E 00 -1.6892E-01 
'5.75001:-01 7.3274E 03 1.5459E 00 -2.6167E 00 5.3682E 00 3.b824E 00 2.6653E 00 2.1939E 00 -1.2857E-Ol 
6.0000E-Ol -6.1086E 02 -2.1824E-Ol 7.1402E-02 5.3837E 00 3.6512 E 00 2.1998E 00 2.8854E 00 -8.5610E-02 
6.2500F-Ol -7.560IlE 03 -1.8752E 00 2.4249E 00 5.3562E 00 3.6832E 00 2.9341E 00 2.9769E 00 -4.2837E-02 
6.5000E-Ol -1.3231E 04 -3.1796E 00 4.3471E 00 5.2923E 00 3.7688E 00 3.0672E 00 3.0699E 00 -2.1l32E-03 
b.7500E-01 -1.1463E 04 -4.1507E 00 5. 7782E 00 5.1999E 00 3.8964E 00 3.1984E 00 3.1657E 00 3.2749E-02 
7.0000E-Ol -2.0169E 04 -4.7723E 00 6.6943E 00 5.0871E 00 4.0533E 00 3.3270E 00 3.2650E 00 6.2055E-02 
7.2500E-Ol -2.1378E 04 -5.0502E 00 1.1038E 00 4.9642 E 00 4.22b8E 00 3.4521E 00 3.3684E 00 8.4238E-02 
7.5000E-Ol -2.1201E 04 -5.0095E 00 7.0438E 00 4.8378E 00 4.4045E 00 3.5752E 00 3.4763E 00 9.88b1E-02 
7.7S00E-Ol -1.98llE 04 -4.6907E 00 b. 5740E 00 4.1l60E 00 4.5755E 00 3.6945E 00 3.5885E 00 1.0600E-Ol 
8.0000E-Ol -1.1442E 04 -4. 1458E 00 5. 1709E 00 4.b05tE 00 4.7304E 00 3.6110E 00 3.7049E: 00 t.0611E-01 
8.25 OOF -01 -1.4342E 04 -3.4334E 00 4.72UE 00 4.5100E 00 4.8620E 00 3.9249E 00 3.8248E 00 1.0005E-01 
8.S000F-Ol -1.0781E 04 -2.6153E 00 3.5155E 00 4.4342E 00 4.9651E 00 4.036bE 00 3.9417E 00 8.8911E-02 
8.7500E-Ol -7.0223E 03 -1.7515E 00 2.2425E 00 4.3796E 00 5.0371E 00 4.14c>1E 00 4.0728E 00 7.3943E-02 
9.0000E-Ol -3.306bE 03 -8.9769E-Ol 9.8428E-Ol 4.3465E 00 5.0773E 00 4.2557E 00 4.1992E 00 5.6479E-02 
9.2500E-01 1.5599E 02 -1.0203E-Ol -1.S1128E-Ot 4. 3342E 00 5.0870E 00 4.3642E 00 4.3263E 00 3.7826E-02 
9.5000E-Ol 3.1927E 03 5.9577E-Ot -1.2166E 00 4.3406E 00 5.0691E 00 4.4125E 00 4.4533E 00 1.9222E-02 
9.7500E-Ot 5.6803E 03 1.1674E 00 -2.0590E 00 4.3629E 00 5.0211E 00 4.58llE 00 4.5195E 00 1.7319E-03 
1.0000F 00 7.5395E 03 1.5946E 00 -2.688bE 00 4.3971E 00 4.9b79E 00 4.6907E 00 4.7045E 00 -1.3760E-02 

Fig. 3.6 Motion of railroad cars during impact. 

SIMULATION OF THE IMPACT OF TWO RAILROAD CARS. THE OUTPUT MI LNE I NT EGRA TI ON 
INTERV4L AND INTEGRATION TECHNICUE ARE CHANGED DURI NG THE RUN. 

TIME FORCE ACCI ACC2 VI V2 Xl X2 DEFLCT 
1.0000E 00 7.~395E 03 1. 59't6E 00 -.1.6886E: 00 4.3971E 00 4.9679E 00 4.6907E 00 4.7045E 00 -1.3760E-02 
3.0000E 00 11.11 18E: 01 -1.1922E-Ot -1.6294E-Ol 4.3517E 00 4.3583E 00 1.3679E 01 1.3619E 01 -1.2207E-04 
5.0000F 00 -1.'t982E 02 -1.7230E-Ol -8.ft720E-02 4.0830E 00 4.0768E 00 2.2113E 01 2.2113E 01 5.3406E-04 
7.0000E 00 -2.8289E 02 -2.0288E-Ol -3.96!>8E-02 3.81S2E 00 3.7941E 00 2.9999E 01 2.9999E 01 5.3406E-04 
'1.0000E 00 -2.2b76E: 02 -1.8998E-Ol -5.8663£-02 3.5452E 00 3.5146E 00 3.7338E 01 3.7338E 01 -2.7466E-04 
.I.IOOOE 01 -3.8365E 01 -1.46b9E-01 -1.2246E-Ol 3.2848E 00 3.2209E 00 4.4127E 01 4.4130E 01 -3.0670E-03 
1.3000E 01 -5.8007E 02 -2.7UbE-01 b.0978E-02 2.9512E 00 3.03511: 00 5.0315E 01 5.0367E 01 7.6294E-03 
1.5000E 01 -8.7971E: 02 -3.4002E-Ol 1.6244E-Ol 2.7154E 00 2.7052E 00 5.6069E 01 5.6065E 01 4.5013E-03 
1.7000E 01 -3.4298E 02 - 2.1668E-Ol -1.9308E-02 2.4556E 00 2.4107E 00 6.1215E 01 6.1215E 01 -3.5095E-04 
1.9000E 01 4.4059f 02 -3.6630E-02 -2.8465E-Ol 2.1b39E 00 2.1b31E 00 6.5814E 01 6.5817E 01 -2.5635E-03 
2.1000E 01 -1.9237E 02 -1.8208E-01 -7.0309E-02 1.8984E 00 1.8770E 00 6.9867E 01 b.9867E 01 0.0 

Fig. 3.7 Post-impact motion of railroad cars. 
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In summary, choosing the best integration method is quite complicated, both 
from a theoretical and a practical point of view. No absolute set of guidelines can 
be written that will insure the optimum method is used for all problems. The 
user should be prepared to experiment in order to obtain the best method with 
regard to run-time and accuracy. It should be emphasized that either of the variable­
step integration methods using the default error-bounds will give satisfactory solu­
tions for the vast majority of problems. The additional computing time that may 
result when using this approach is usually considerably less expensive than the 
time the user would spend in choosing an optimum method. However, for com­
plicated problems that will require a large amount of computing time, the user 
can justify spending time in deciding which method will give the best results. 

User-Supplied Integration Method 

In the event that none of these seven integration methods satisfies the user's 
requirements, an additional centralized integration method can be added to CSMP. 
The complete integration routine is entered into the program as a FORTRAN 
subroutine named CENTRL. The method is specified using the statement, 

METHOD CENTRL 

Example 3.2 

To illustrate a program that employs a user-supplied integration technique, the 
following linear, first-order differential equation will be solved. 

d(CASH) = INTRST*CASH 
dt 

Initial condition: CASH(t = 0) = $1000. 

(3.5) 

Equation (3.5) governs the present value of a bank account where the money is 
continuously compounded. This method of compounding is used by many banks and 
savings and loan associations. The initial amount in the account is $1,000.00. 

CASH = present value of bank account 

INTRST = yearly interest rate = 0.065 (6.5 %) 
t = time in years 

The user supplied integration method is the CSMP Simpson method. Note that the 
only reason for using the CENTRL integration feature in this problem is to demonstrate 
its use. 

Figure 3.8 shows a listing of the entire program. The comment cards are supplied to 
assist the reader to interpret the program. The IBM System Manual(1) as well as the 
section on subprograms should be used as a reference for this procedure. Most of the 
information contained in Fig. 3.8 was taken from the IBM System Manual. 

Figure 3.9 gives the output for the program for a time period of 50 years. The accuracy 
of the numerical integration can be compared with Eq. (3.6) which is the analytical solu­
tion to Eq. (3.5). 

CASH = 1000eO.065t (3.6) 
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* PROGRAM TO ILLUSTRATE THE METHOD OF PROVIDING A USER-SUPPLIED 
* INTfr.RATION TECHNIQUE TO THE PROGRAM. IN THIS EXAMPLE, THE CSMP 
* SIMPSON METHOD IS USED. 
LABEL HISTORY OF SlOOO BANK ACCOUNT, 6.5 CONTINUOUSLY COMPUND INTEREST 

RENAME TIME = YEARS 

C 

C 
C 

c 
C 
C 
C 
C 
C 
C 
C 
C 
c 
c 

c 

C 
2000 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

c 

C 

CONSTANT INTRST = 0.065 
CASH INTGRL(lOOO.O, INTRST*CASH j 

TIMER FINTIM = 50.0. OUTDEL = 1.0, DELT 0.05 
PRTPLT CASH 
MFTHOn CENTRL 

ENO 
ST,)P 

THE FOLLOWING IS THE FORTRAN SUBROUTIN~ "CENTRL" 
SUBROUTINE CENTRL 

TH~ FOLLOwING 2 COMMON AND 5 EQUIVALENCE CARDS ARE REQUIRED FOR ALL 
INT~GPATION METHODS. 
CO~MON DOUMl(b4) .C(8000),NALARM,KPOINT,DDUM2(16),RANGE(400),H,KEEP 
CQMMON DDUM3(1214),IFLAG(SO),FAM(50),NOINTG,NOSYMB,SYMB(1) 
EQUIVALENCE (IFLAG(16),ISTEP),(IFlAGl19),DTIME),(IFLAG(40),ISTORE) 
FOUIVALENCE (IFLAGl18),ISTARTJ,(IFLAG(10),IFIRST) 
~QUIVALENCE (C(l),TIME).(C(Z),DELT),(C(3.,DELMIN) 
EQUIVALENCE (C(4),FINTIM),lC(5),PRDEL),(C{6),OUTOEL. 
EOUIVALENCE (ODUM3(49Z),TNEXTJ,(DDUMZ(10),KREL),(DDUM2l11),KABS) 
NOINTG IS THE NUMBER OF INTEGRATORS 
C IS THE DYNAMIC STORAGE ARRAY FOR THE EXECUTION PHASE 
H IS THE HIGHEST FREQUENCY OUTPUT SAMPLE RATE 
DELT HAS BEEN MOCIFIED TO BE A SUBMULTIPLE OF H 
TNEXT IS THE TIME OF THE NEXT OUTPUT POINT 

STAR T OF PROGRAM 
IF CENTRL IS AN ERROR TESTING INTEGRATION METHOD, SET NALARM TO 

ONE WHEN ERROR TEST FAILS IN ORDER TO STOP RUN. 
ISTART IS SET TO ZERO BY AN END OR CONTIN CARD TO START THE CASE 
ISTEP IS SET TO ZERO TO INITIALIZE STATUS 
ISTEP=O 
ISTORE IS THE NUMBER OF LOCATIONS USED IN THE C ARRAY 
ISTORE=KPOINT+3*NOINTG 
GO TO 3000 

CO~TINUE 
FOR SPECIAL INTEGRATION, USER ~UST INSERT HIS CODING HERE 
AT THIS POINT VALUES ARE AVAILABLE FOR TIME lERO.(Y,YDOT,YIC) 
INTEGRATOR OUTPUTS ARE LOCATED IN C(N+6) FOR N=l TO NOINTG 
INTEGRATOR INPUTS ARE LOCATED IN C(N+6+NOINTGI FOR N=l TO NOINTG 
INTEGRATOR INITIAL CONDITIONS IN C(N+6+2NOINTGJ FOR N=l TO NOINTG 

HISTOR! OF OUTPUTS ~UST BE STORED IN USER DI~ENSIONED ARRAY OR 
UPPER LOCAT IONS OF C ARRAY 

EXAMPLE FOR K HI STORY POINTS (REPLACE ARGUMENTS WITH CONSTANTS) 
DIMENSION CHYS(K,ll 
EQUIVALENCE(C(8000-300*K+l) ,CHYS(l) 

IN THf SIMPSON INTEGRATION METHOD, THERE ARE 3 HISTORY POINTS, K 
EQUIVALENCE (C(7101I, CHYS(ll) 
DIMENSION CHYSl3,l),CY(1) 

THF. FOLLOWING IS THE CSMP SIMPSON INTEGRATION METHOD. 
~QUIVALENCE (C(7),CY(11) 
FQUIVAlENCE(DlJU~2( 13) ,HAST) 

C HISTORY IS STOREC AS FOLLOWS 

C CHYS(J,I)=PAST VALUES AS REQUIRED 
C WHERE J VARIES FROM 1 TO K HISTORY POINTS AND 
C WHERE I VARIES FROM 301-NOINTG TP 300 
C 

Fig. 3.8 Program illustrating the use of CENTRL. 

3 
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2010 

2020 

2030 
2040 

C 

3000 
C 

c 

00 2010 II=l.NOINTG 
1=301-II 
J=r-.JOINTG+ll 
CHYSll.IJ=CY(II) 
CHY S ( 2. I ) =C Y ( J) 
C v ( It) = .5 *0 Fl T *c Y ( J ) + C Y ( I I ) 
OTIME=OTIME+l. 
JI~E=DTIME*.5*OElT+TlAST 
ISTART=l 
KEEP=O 
tALL UPDATE 
DO 207.0 IJ=l.NOINTG 
1=301-11 
J=NClINTG+II 
CHYSI3.1)=CYIJI 
CY I I I »= • 5 *D E l T *c Y I J j+ C v I I I ) 
OT! ME=OTlME+l. 
TIME=OTIME*.5*DELT+TLAST 
CALL UPDATE 
on 2030 IJ=l.NOINTG 
1=301-1 I 
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J=NOINTG+I1 
CY(II)=CHYS(1.I)+.5*OElT*(CHYSI2.1)+4.*CHYSI3,I)+CYIJ) )/3. 
CONTINUE 
KEEP IS SET TO IDENTIFY POINT TO STORE 
KFEP ;: 1 
CALL UPDATE 
CO"lTI NUE 
STATUS CHECKS FOR VARIABLE RANGES A~D OUTPUT TIMES 
CAL l ST ATUS 
IFIRST IS SET TO 4 TO INDICATE THE END OF A CASE 
IFIIFIRST-4)2000.4000.4000 

4000 RETURN 
END 

ENOJOB 

Fig.3.8 (Continued) 

Data Statements 

Three of the most useful and commonly used data statements are CON­
STANT, PARAMETER, and INCON. These three statements are completely 
equivalent in CSMP and they were previously defined and used in Chap. 2. It 
should be pointed out that these data statements cannot be used for assigning 
values to subscripted variables. As in FORTRAN, subscripted variables require 
special consideration. Following are descriptions of how data statements using 
subscripted variables are used in CSMP programs. 

Subscripted Variables 

Subscripted variables provide a procedure for handling large arrays of related 
data as are frequently found in systems represented by simultaneous equations. 
Any valid symbol, except those which start with the letters I, J, K, L, M, or N, 
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YEARS 
0.0 
1.0000E 
2.0000E 
3,.0000E 
4.0000E 
5. OOOOE 
b.OOOOE 
7.0000E 
8.0000E 
9.0000E 
1. OOOOE 
1.1000E 
1.2 OOOE 
1.3000E 
1.4000E 
1.5000E 
1.6000E 
1.1000F. 
1.8000E 
1.9000E 
2. OOOOE 
2.10001: 
2.2000E 
2.3000E 
2.4000E 
2.5000E 
2.6000E 
2.1000r:: 
l.8000E 
2.9000E 
3.0000E 
3.1000F. 
3 •. 2000E 
3.3000E 
3.4000E 
3.5000E 
3.6000E 
3.1000E 
3.8000E 
3.9000E 
4.0000E 
4.1000E 
4.2000E 
4.3000E 
4.4000E 
4.5000E 
4.60001= 
4.1000E 
4.8000E 
4.9000E 
5. OOOOE 
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00 
'00 
00 
00 
00 
00 
00 
00 
00 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 
01 

CASH 
1.0000E 
1.0672E 
1.13BBE 
1.2l53E 
1.2969E 
1.3840E 
1.4110E 
1.5762 E 
1.6820E 
1.1950E 
1.9155E 
2.0441E 
2.1814E 
2.3279E 
2.4S43E 
2.b511E 
2.829lE 
3.0191E 
3.2219E 
3.4383E 
3.6692E 
3.9156E 
4.1785E 
4.4~91E 

4.7586E 
5.0781E 
5.4191E 
5.7830E 
6.1714E 
6.5858E 
7.0280E 
7.5000E 
8.0036E 
8.,411E 
9.1l47E 
9.7268E 
1.0380E 
1.1077E 
1.1821E 
1.2615E 
1.3462E 
1.4,366E 
1.5331E 
1.6360E 
1.14,9E 
i.B632E 
1.9883E 
2.1218E 
2.264.3E 
2.4164E 
2.5186E 

MINIMUM 
1.0000E 03 

I 
03 + 
03 + 
03 + 
03 + 
03 + 
03 + 
03 + 
03 -+ 
03 -+ 
03 -+ 
03 -+ 
03 --+ 
03 --+ 
03 --+ 
03 --+ 
03 ---+ 
03 ---+ 
03 ----+ 
03 ----+ 
03 ----+ 
03 -----+ 
03 -----+ 
03 ------+ 
03 ------+ 
03 -------+ 
03 --------+ 
03 --------+ 
03 ---------+ 
03 ----------+ 
03 -----------+ 
03 ------------+ 
03 -------------+ 
03 --------------+ 
03 ---------------+ 
03 -------------.---+ 

CASH 

03 -----------------+ 
04 ------------------+ 
04 --------------------+ 
04 ---------------------+ 
04 -----------------------+ 

VERSUS YEARS 

04 -------------------------+ 
04 --------------------------+ 
04 -------------.---------------+ 
04 ------------------------------+ 
04 ---------------------------------+ 
04 ----------------------------------+ 
04 --------------------------------------+ 
04 ---------------------.-------------------+ 

fo'AXIMUM 
2.5786E 04 

I 

04 ------------------------------------------+ 
04 ----------------------------------------------+ 
04 -------------------------------------------------+ 

Fig. 3.9 Output for program of Fig. 3.8. 
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may be subscripted. Examples of both valid and invalid subscripted variables are: 

Valid 

A(3) 
COUNT(5,7,6) 
ZP123(7,2,8) 

Invalid 

JP(8) 
ABCDEFG(4,2) 
4X(9) 

(Invalid first symbol) 
(Excessive characters) 
(First character cannot be a number) 

As in FORTRAN, it is necessary to specify the following information before 
using subscripted variables. 

1. What variables are subscripted. 

2. How many subscripts there are for each subscripted variable. 

3. The maximum size for each subscript. 

This information can be specified by using either the DIMENSION or STOR­
AGE statements. 

DIMENSION Statement 

Subscripted variables larger than one dimensional arrays [e.g. X(3, 5) Y(3, 7, 5)] 
must be listed on a DIMENSION card. The DIMENSION statement is handled 
exactly as in FORTRAN with the exception being that a virgule (j) must appear 
in the first column. The virgule indicates that the DIMENSION instruction is a 
FORTRAN specification statement (discussed below). An example of a valid 
statement is shown below. 

Statement must 
begin after 
column 6 (At least one blank space 

/ ~DIMENSION X(20), Y(4, 10), A(4, 4, 4) 

"-Virgule in column 1 ~ ~ommas between 
all listings 

The compiler will assign 20 spaces to the one-dimensional array named X, 
40(4 X 10) spaces to the two-dimensional array Y, and 64 (4 X 4 X 4) sp~ces to 
the three-dimensional array A. The user should not attempt to use' a subscript 
larger than the maximum size as specified in the DIMENSION statement. Also, 
subscripts must never be smaller than 1. This means that negative numbers and 
zero cannot be used as subscripts. A seven-dimensional array, which is the limit 
of FORTRAN IV (Level G), is the largest that can be used in a CSMP program. 
The DIMENSION statement should be placed at the beginning of the program 
since it must appear before any subscripted variables are used. 
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FORTRAN Specification Cards 

Cards containing a virgule (/) in column 1 are called FORTRAN specification 
cards. These cards are treated exactly as FORTRAN statements and consequently 
must follow a somewhat different format than usual CSMP statements. The follow­
ing rules must be followed when using FORTRAN specification cards. 

1. All FORTRAN specification cards must contain a virgule (j) in column 1. 

2. Statements must be contained in columns 7-72. 

3. A maximum of 10 FORTRAN specification cards are permitted in any 
one program. 

4. Continuation cards are permitted and must contain a nonzero character 
in column 6 and a virgule in column 1. 

The following DIMENSION statement illustrates the continuation of a FOR­
TRAN specification instruction. 

/ DIMENSION X(9), Y(8), Z(7, 8, 8), 
/ 1 Q(6,6), RT(3, 3, 3, 3) 

~ 
"--{NOnzero character in column 6 

for all continuation cards 

{
Virgule in column 1 for all cards of 
FORTRAN specification statements 

STORAGE Statement 

One-dimensional arrays [e.g. X(5), Y(78)] can be handled by using the CSMP 
STORAGE statement. This card is used similarly to the DIMENSION statement, 
the exceptions being that it can only be used for one-dimensional arrays and that 
it is not a FORTRAN specification card. An example of a valid statement is 

,--At least one blank space is necessary 
STORAGE Z(90), Y(75), X(5) 

The symbols following the STORAGE label represent subscripted variables 
with the appropriate number of storage locations contained within parentheses. 
A STORAGE statement may be continued to additional cards by using either 
three consecutive periods or multiple STORAGE cards. All STORAGE state­
ments should be placed at the beginning of the program since they must appear 
before any subscripted variables are used. DIMENSION and STORAGE state­
ments may be used in the same program. 

Subscripted variables are subject to certain restrictions in CSMP programs. 
Special care must be taken to observe the following rules. 
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All subscripted variables must be declared in either a DIMENSION or 
STORAGE statement. 

2 Subscripted variables cannot appear to the left of an equal sign except in 
a no sort section or within a PROCEDURE function. The use and defini­
tion of a PROCEDURE function is covered later in this chapter. Examples 
of statements that are only allowed in nosort sections or in PROCEDURE 
functions are: 

Y(5) = SIN(3.0*TIME) 
Y(l) = 3.14159*Q(3) 

Examples of statements allowed in all sections of the program are: 

Z = 4.0*X(4) + COS(Y(2» 
Q = AFGEN(ABC, X(6» 
P = INTGRL(S.7, Y(3» 

3 The output of an INTGRL function cannot be a subscripted variable. 
Thus, the following statement type is not allowed anywhere in the pro­
gram. 

X(2) = INTGRL(2.3, Y) 

4 Subscripted variables cannot be used in PRINT or PR TPLT statements. 
(This is not the case in CSMP III). In order to obtain a PRINT or PRTPLT 
output of subscripted variables, it is first necessary to set the dimensioned 
variables equal to non subscripted variables. This is illustrated in following 
examples. 

Assigning Values to Subscripted 
Variables 

There are three convenient methods for assigning values to subscripted vari­
ables. 

The CSMP "TABLE" statement. 

2 The FORTRAN "DATA" statement. 

3 The FORTRAN "READ" statement. 

A description of the use of these three statements along with a method of declaring 
variables as integers follows. 

TABLE Statement: Subscripted variables that are listed on a STORAGE 
card may be assigned values using the TABLE statement. This is a CSMP data 
statement which allows values to be assigned to one-dimensional subscripted vari­
ables. The use of the TABLE card is similar to the other data statements (CON­
STANT, PARAMETER, and INCON) the exception being that the TABLE 
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statement can only be used for one-dimensional subscripted variables. In addition 
to the usual way of assigning values, the K*n form can be used to assign K con­
secutive variables the value n. The following is an example of a valid statement. 

TABLE X(I) = 22.56, X(9) = -0.891, X(3 - 6) = 4*6.74, Y(I) = 3.14 

In the above example X(1), X(9), and Y(1) are assigned the values shown. X(3), 
X(4), X(5), and X(6) are all set equal to 6.74. All variables contained in a TABLE 
statement must be listed on a STORAGE card. TABLE statements may be con­
tinued to additional cards by using either three consecutive periods or multiple 
TABLE statements may be used. 

DATA Statement: The FORTRAN DATA statement provides an additional 
means for assigning values to subscripted variables. The DATA card is a FOR­
TRAN specification statement and must contain a virgule in column 1. Only sub­
scripted variables should appear on a DATA card and these variables must be 
listed in a DIMENSION statement. Subscripted variables that are listed in a 
FORTRAN EQUIVALENCE statement must not appear on a DATA card. An 
example of a DATA and appropriate DIMENSION statement is 

1 DIMENSION Y(3, 2) 
1 DATA Y/6*3.141 

The above DATA statement assigns a value of 3.14 to all six variables of the two­
dimensional array. 

The order in which numerical values are assigned to a two-dimensional array 
is illustrated by the following statements. 

1 
1 

DIMENSION Y(3, 2) 
DATA Y/7.45, 2*5.89, -4.32, 2*3.331 

These statements will assign the numerical values of 

Y(I, 1) = 7.45 
Y(2, 1) = 5.89 
Y(3, 1) = 5.89 

Y(1,2) = -4.32 
Y(2, 2) = 3.33 
Y(3, 2) = 3.33 

A single DATA statement can also be used to assign values to more than one 
subscripted variable. For example, 

1 
1 

DIMENSION X(3, 2, 2), Y(2) 
DATA X/4*4.27, -7.16, 3*12.81, 4*0.71/, Y/2*87.31 

The above card assigns the values, 

X(I, 1, 1) = 4.27 
X(2, 1, 1) = 4.27 
X(3, 1" 1) = 4.27 
Y(1) = 87.3 

X(I, 2, 1) = 4.27 
X(2, 2, 1) = -7.16 
X(3, 2, 1) = 12.81 
Y(2) = 87.3 

X(I, 1,2) = 12.81 
X(2, 1,2) = 12.81 
X(3, 1,2) = 0.71 

X(1, 2, 2) = 0.71 
X(2, 2, 2) = 0.71 
X(3, 2,2) = 0.71 

A more comprehensive description of DATA statements can be found in many 
books on FORTRAN. (2-5) 
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FIXED Statement: When using subscripted variables, it is often necessary to 
use variables as integers for such purposes as indexing. Variables are specified as 
integers by the use of the FIXED statement. This instruction allows the user to 
declare selected variables as integers (fixed-point numbers). As previously stated, 
all variables in CSMP are automatically treated as real numbers (floating-point) 
unless otherwise specified. Consequently, any valid symbol that is to be treated as 
an integer must be included on a FIXED card. The following is an example of a 
valid FIXED statement. 

FIXED I, A, Y6, J 
~At least one blank space 

Continuation cards ( ... ) or multiple FIXED cards may be used if necessary. 
It should be remembered that integer variables cannot be used in either 

PRINT or PR TPL T statements. If the output of an integer variable is desired, it 
should first be set equal to a real variable. The following two statements could be 
used to print the value of the integer variable I. 

Z = I (This statement must be in the Dynamic segment.) 
PRINT Z 

READ Statement: The convenience and flexibility of the FORTRAN state­
ment, READ (5, XYZ) can be used in CSMP programs to assign values to vari­
ables. The READ card must appear in a nosort section. It is usually placed in the 
Initial segment since this segment is only executed once at the beginning of the 
simulation. However, the READ statement can also be included in a nosort section 
of the Dynamic segment. The user should be aware that all statements in the 
Dynamic segment are executed from one to four times for each integration step. 
The exact number of executions depends upon the integration method and is given 
in Table 3.3. When using a READ instruction for nonsubscripted variables, the 
variable must appear somewhere else in the program before it can be included in 
a PRINT or PR TPL T statement. 

A FORTRAN FORMAT statement must be used in conjunction with a 
READ card. The FORMAT card specifies the form in which numerical values 
are listed on data cards. The FORMAT card must be contained in a nosort section 
and any continuation cards must have a $ in card column 6. A detailed explanation 
on the use of READ and FORMAT statements can be found in books on FOR­
TRAN.(2-SJ 

Numerical values used with the READ statements are contained on data 
cards. These cards must be placed between the labels DATA and ENDDATA. 
The DATA card must immediately follow the END card. The ENDDATA label 
follows the last data card and it must be punched in card columns 1-7. In CSMP 
III, the labels INPUT and ENDINPUT are used in place of DATA and END­
DATA. It should be noted that this DATA card is a CSMP statement and is 
different from the FORTRAN DATA statement that was previously described. 
Portions of three programs which use READ and FIXED statements are shown 
below. 



INITIAL 
STORAGE X(4) 
FIXED J 
NOSORT 
100 FORMAT(2F10.0) 
READ(5,100) (X(J), J = 1,4) 
DYNAMIC 

: } Statements defining the run. 

END 
DATA 

19. 
9. 
ENDDATA 
STOP 
ENDJOB 

INITIAL 

24. 
47. 

DIMENSION Y(2, 3) 
FIXED K, J 
NOSORT 
50 FORMAT(3F14.2) 
READ(5, 50)«Y(K, J), J = 1,3), K = 1,2) 
DYNAMIC 

: } Statements defining the run. 

END 
DATA 

13.42 
0.78 
ENDDATA 
STOP 
ENDJOB 

INITIAL 
NOSORT 
READ(5,999) P, Q, R, S 
999 FORMAT(4E12.3) 
DYNAMIC 

3.56 
32.56 

: } Statements defining the run. 

END 
DATA 

0.543E4 
ENDDATA 
STOP 
ENDJOB 

102 

0.400E7 0.643E-4 

-67.80 
3.34 

0.484E3 
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Specification Form of INTGRL 

Statement 

To facilitate the integration of subscripted variables, the specification or array 
form of the INTGRL statement can be used. This form of the INTGRL statement 
allows the use of subscripted variables as inputs, outputs, and initial conditions. 
The general form of the statement is 

ZE = INTGRL(XOE, XE, N) 

where ZE = output of the integration 

XOE = initial condition 

XE = integrand 

N = number of elements in the integrator array, N must be a 
literal integer constant 

In order to use the above specification form of the INTGRL statement for an 
array of 20 in S/360 CSMP, the program must begin with DIMENSION and 
EQUIVALENCE cards. 

/ 
/ 

DIMENSION X(20),XO(20),Z(20) 
EQUIVALENCE (XE,X(1)), (XOE,XO(l)), (ZE,Z(l)) 

The above cards are not required when using CSMP III. See Chap. 5 for a 
detailed explanation and examples. 

It is not permissible to use a STORAGE card to declare the subscripted vari­
ables that appear in the array form of INTGRL statements. 

In conjunction with the above DIMENSION and EQUIVALENCE state­
ments, the expression 

ZE = INTGRL(XOE,XE,20) 

will integrate 20 variables, namely 

Z(l) = S: X(l) dt + XO(l) 

Z(2) = S: X(2) dt + XO(2) 

Z(20) = S: X(20) dt + XO(20) 

An example illustrating the use of subscripted variables with the specification 
form of the INTGRL statement is the following transient heat transfer problem. 
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Duct 

Air flow Tungsten heating rod 

Fig.3.10 Cross-section of tungsten heating rod in duct. 

Example 3.3 

Consider air flowing in a duct across a tungsten heating element. As electric current 
supplies energy at a uniform rate per unit-volume to the wire, energy is being removed 
from the circular heating element by radiation, convection, and conduction. The problem 
is to find the transient temperature distribution along the rod after the current is turned on. 
The temperature distribution of the rod is described by a partial differential equation 
having time and distance as the independent variables. Since partial differential equations 
cannot be directly solved using CSMP, a common method of solution is to divide the 
tungsten element into a number of small equal-sized elements. Each element is assumed to 

T(i - 1) 

qradiation = ES(T4 (i) - TA 4 )As 

qconvection = H(T (i) - T A)A s 

qradiation qconvection 

1 1 qconduction =KAc(T(i) -T(i+ l))/L 

T(i) 

~----L =----'..---.- DIA 

qconduction = KAc (T (i - 1) - T(i))/L 

L=O.lft 
DIA = 0.01 ft 

Ac = cross-sectional area =~ (DIAl2 

As = surface area = 1T·L·DIA 
TA = air temperature, = 5300 R 

T(i) = temperature of i th element 

Fig. 3.11 Heat flow from ith element. 
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have a uniform temperature. This method transforms a continuous system into a lumped 
system which is represented by a set of ordinary differential equations. The accuracy of 
the simulation improves as the element size decreases. 

In this example~ the heating element is divided into 20 equal-sized elements~ each 0.1 
ft long and 0.01 ft in diameter. The elements are sequentially numbered left to right. 

Figure 3.11 shows the heat flow for the ith element. An energy balance on this element 
yields the following equation. 

where 

d~?) = [K.AC(T(i - 1) - 2.0T(i) + T(i + 1»/L 

- ES·AS(T(i)4 - TA4) - H·AS(T(i) - TA) 

+ QELEC·AC·L]/(RO·C·AC·L) 

T(i) = temperature of ith element, oR 

K = thermal conductivity, 94.0 Btu/hr-ft-oR 

AC = cross-sectional area of tungsten rod, f12 

ES = Stefan-Boltzmann constant times surface emissivity~ 
8.5 x 10- 10 Btu/hr-ft2-oR4 

TA = air temperatures in duct, 5300 R 

H = heat transfer coefficient for forced convection~ 
25.0 Btu/hr-ft2-oR 

AS = surface area of element, ft 2 

RO = density of tungsten, 1208 Ibm/ft3 

C = specific heat of tungsten, 0.032 Btu/lbmoR 

QELEC = electrical energy supplied per unit-volume, 
6.0 x 106 (Btu/hr-ft3) 

(3.7) 

In the first equation of the array (i = 1)~ the T(i - 1) term must be set equal to the 
temperature of the left wall. In the same manner, the T(i + 1) term of the last equation 
(i = 20) must be set equal to the temperature of the right side wall. 

The program for simulating this system is shown in Fig. 3.12. 
There are several points which should be discussed regarding the program. 

1. Note that it is necessary to use the DIMENSION and EQUIVALENCE state­
ments to specify the subscripted variables used with the specification form of the 
INTGRL statement. These relationships are given below. 

Subscripted variables 

T(i) = temperature of ith 
element 

TI(i) = initial temperature 
of ith element 

TD(i) = d~~i) 

EQUIVALENCE variables 

TE 

TIE 

TDE 
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TITLE THE USE OF SUBSCRIPTED VAPIABLES TO SOLVE A HEAT TRANSfER 
TI TLI: PROBLEM 
INITIAL 

I UI~ENSICN T(20). ll(20), TO(20) 
I EyLlIVALENCE (TF,T(U), (TIE,TlCU ), (TOE, TOCl) ) 

FIXED 1 

Ch.3 

CONSTANT RO = 1208.0, C = 0.032, K = 94.0, H = 25.0, ES = 8.5E-IO ••• 
, OIA = 0.01, L = 0.1, TA = 530.0, THALL = 530.G. QElEC = 6.0E6 
AC = 3.14159*OIA*0IA/4.0 
AS = 3.1415Q*OIA*L 

NOSORT 
00 2 1 = 1,20 

2 TI(I) = 530.0 
DYNAMIC 
NOSORT 

TO{I) = (K*AC*(TWAll - 2.0*T(I) + T(2»)/L - ES*AS*CTCl)**4 
TA**4J - H*AS*U(U - TA) + QElEC*AC*U/(RO*C*AC*U 
TO(20) = (K*~C*(T(19) - 2.0*T(20) + TWAll)/L - ES*AS*{T(20)**4 -

TA**4) - H*AS*(TI20) - TA) + OElEC*AC*l)/lRO*C*AC*ll 
DO 1 I = 2,19 
TOll) = (K*AC*(T(I-l) - 2.0*T(II + T(I+l')/L. - ES*AS*CTCIl**4 -
TA**4) - H*AS*ITlI) - TA) + QElEC*AC*l)/(RO*C*AC*L) 

SORT 

* THE FOLLOWING IS THE SPECIFICATION fORM OF THE INTGRL STATEMENT. IT IS 
* USED TO INTEGRATE ARRAYS. 

TE = INTGRl(TIE,TOE,20) 

* SUBSCRIPTED VARIABLES CAN NOT BE INCLUDED IN PRINT OR PRTPlT STATEMENTS. 
* CONSEQUENTLY, IT IS NECESSARY TO INTRODUCE THE FOllOWI~G FOUR VARIABLES 
* FOR OUTPUT PURPOSES. 

TI = Ttl) 
T5 = 1(5' 
no = TelO) 
T11 = 1(17) 
PRINT Tl, T5. TIO, T17 
TI~ER FINTIM = 0.018, PROEL 

END 
0.0006 

STOP 
END JOB 

Fig. 3.12 Program to simulate temperature of tungsten rod. 

2 The last portion of the Initial segment is changed to a no sort section to allow a DO 
loop to be used to set all values of initial temperatures TI(i) equal to 530oR. All 
calculations for initial conditions that are used in INTGRL statements must be 
performed in the Initial segment. Because TI(i) must be declared in a DIMENSION 
statement and not in a STORAGE statement, a TABLE card cannot be used to 
initialize the values of TI(i). Also, since TI(i) is contained in an EQUIVALENCE 
statement, a DATA card cannot be used to specify the initial values for TI(i). 

3 The first portion of the Dynamic segment is changed to a no sort section to allow 
subscripted variables to appear on the left-hand side of the equal sign and also 
to permit the use of the DO loop. 

4 If the INTGRL statement were written as 

TE = INTGRL(530.0, TDE,20) 

only the first term of the array T(l) would have the initial value of 530.0. All of the 



Ch. 3 Advanced Features of CSMP 107 

remaining terms would have initial value of zero. For this reason it is necessary to 
include the array TI(i) for nonzero initial conditions. 

5 Since subscripted variables cannot be used in S/360 CSMP PRINT or PR TPLT 
statements, it is necessary to set all subscripted variables desired as output equal 
to nonsubscripted variables. In this example, the subscripted variables T(1), T(5), 
T(lO), and T(17) are set equal to new variables for output purposes. 

The resulting output for this simulation is shown in Fig. 3.13. 

THE USE Of SUBSCRIPTED VARIABLES TO SOLVE A HEAT TRANSFER RKS 
PROfnEM 

TIME Tl T5 HO H1 
0.0 5.3000E 02 5.3000E 02 5.3000E 02 5.3000E 02 
6. QOOOE - 04 6.10S3E: 02 6.101 OE 02 b.1610E 02 6.1610E 02 
i.7000E-03 6.7098E 02 6.8947E 02 6.8941E 02 6.894bE 02 
1.HOOOE-03 7. I 705E 02 7.518SE 02 1.5185E 02 7.5i82E 02 
2.4000E - 03 7.S261E' 02 8.0478E 02 8.0419E 02 8.0469E 02 
1.0000F-03 1.d03SE 02 8.49bOE 02 3.4963E 02 8.4939E 02 
3. 6000F. - 03 8.0216E 02 8.8747E 02 8.8752E 02 8.8109E 02 
4.2000E-03 8.1944f 02 9.1939E 02 9.1950E 02 9.1879E 02 
4.bOOOF-03 8.3320E: 02 9.4626E 02 9.4b43E 02 9.4538E 02 
5. 4000E: - 03 8.4421E 02 9.68a2E 02 9.6908E 02 9.6765 E 02 
b.OOOOE-03 8.5305E 02 9.8775E 02 9.8811E 02 9.8624E 02 
6. 6000E - 03 B. 6018 E 02 1.0036E 03 1.0041E 03 1.0018E 03 
7.2000E-03 8.6593E 02 1.0168E 03 1.0175E 03 1.0147E 03 
7. !:IOOOF -03 8.7059E 02 1.0279E 03 1.0287E 03 1.0254E 03 
8. /i-000E - 03 8.7437f 02 1.03 HE 03 1.0380E 03 1.0343E 03 
9.0000F-03 8.7745E 02 1.044BF 03 1.0459E 03 1.0417E 03 
9. oOOOE: - 03 8.7994E 02 1.0512E 03 1.0524E 03 1.0479E 03 
1.02 ODE - 02 8.8198E 02 1.0566E 03 1.0519E 03 1.0530E 03 
1.0800F.-02 8.8364E 02 1.ObIOE 03 1.0625E 03 1.0512E 03 
1.1400f-02 8.8500E 02 1.0647E 03 i.0663E 03 1.0607E 03 
1. 2000F- 02 8. 8611E: 02 1.061SE 03 1.0695E 03 1.0636E 03 
1.2600E-02 a.870iE 02 1.0703E 03 i.0721E 03 1.0660E 03 
1.32 OOf - 02 8.8775E: 02 1.0724E 03 1.0743E 03 1.0680E 03 
1.3800E-02 8.8836E 02 1.0742E 03 1.0762E 03 1. Ub~6E 03 
1.4400E-02 8.888bE 02 1.0756E 03 1.0717E 03 i.07l0E 03 
1.5000F-02 8.8927E 02 1.0768E 03 1.0790E 03 1.072lE 03 
1.5600E-02 8.89t>OE 02 1.0778E 03 I.OBOIE 03 1.0130E 03 
1.62 OOE- 02 8.8988E 02 1.07B7E 03 1.0810E 03 1.0738E 03 
1.6800E-02 8.90 lUE 02 i.0794E 03 1.OB17E 03 1.0744E 03 
1. 7400F -02 8.902QE 02 1.0199E 03 1.0824E 03 1.0750E 03 
1.BOOO£-02 8.9044E 02 1.0804E 03 1.0829E 03 1.0754E 03 

Fig. 3.13 Output of program of Fig. 3.12. 

The specification form of the INTGRL statement cannot be used for direct double­
integration of arrays. For example, an acceleration array which is integrated into a veloc­
ity array cannot be directly integrated into a displacement array. The following example 
illustrates the correct procedure for performing double-integration of arrays. 

Example 3.4 

Consider the system of Fig. 3.14 which shows five uncoupled spring-mass units. The 
entire mass assembly is moving to the right with a common velocity of 50 ft/sec. The base 
strikes and then sticks to an immovable rigid surface. The problem is to find the resulting 
motion of all five masses after impact. 

INTEGRA TlON 
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Base 

~X(1) 

Weight (1) 

~X(2) 

Weight (2) 

'~X(3) 

Weight (3) 

~X(4) 

Weight (4) 

Immovable 

~X(5) 
rigid surface 

Weight (5) 

Initial velocity of all masses = 50 ft/sec 

Fig.3.14 Spring-mass system. 

Using Newton's second law, the acceleration of the ith mass can be written as 

. -STIFF(i)*X(i) 
A(l) = WEIGHT(i)j32.17 (3.8) 

where STIFF(i) is the stiffness of the spring connected to the ith mass. 
The program for calculating the system dynamics is shown in Fig. 3.15. 
In the program, WEIGHT(i) and STIFF(i) are declared as subscripted variables by 

a STORAGE statement. This allows a TABLE card to be used to specify the values for 
WEIGHT(i) and STIFF(i). 

Note that the entire Dynamic segment is changed to a no sort section. This assures 
that all statements will be executed in the exact order in which they appear in the program. 
The acceleration array A(J) is calculated and then integrated to obtain the velocity array 
V(J). It is not permissible to directly integrate this velocity array to obtain the displace­
ment array. An intermediate array must be set equal to the velocity array. This is accom­
plished by the program statements 

DO 2 J = 1,5 
2 VI(J) = V(J) 
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TITLE PROGRAM TO CALCULATE THE DYNAMICS OF A MECHANICAL SYSTEM USING 
TITLE SUBSC~IPTED VARIABLES. 
INITIAL 
I DIMENSION XIS), VIS), A(S), V1IS), YELIIS) 
I EOUIVALENCE I XE, XIU I, (VE, VB) ), (AE, A(l) ) 
I 1, IV1E, V1(1) ), (YELlE, VELI(1) ) 

STORAGe WEIGHT(S), STIFF(S) 
TABLE WEIGHT(1-2) = 2*13.6, WEIGHT(3) = 18.9, WEIGHT(4-S) 2*11.5, ••• 

STIFF(ll = 13S.0, STlFF(2-3) = 2*180.0, HIFF(4-5) = 2*320.0 
FIXED J 

NOSORT 
DO 3 J = 1,5 
3 VELI (J) = 50.0 

DYNAMIC 
NOSrtRT 

DO 1 J = l, S 
1 A(J) = -STIFF(J)*XIJI/CWEIGHTCJ)/32.17) 

VE = INTGRLIVELIE,AE,S) 

109 

* CSMP DOES NOT PERMIT DIRECT DOUBLE INTEGRATION OF ARRAYS WHEN USING THE 
* SPECIFICATION FORM OF THE INT&~l STATEMENT. CONSEQUENTLY, THE FOLLOWING 
* TWOSTATE~ENTS ARE USED TO GENERATE THE ARRAY V1(JI WHICH CAN BE 
* INTEGRATED TO FIND XIJ). 

DO 2 J = l, S 
2 Vl(JI = VIJI 

XE = INT~RL(O.O,VIE,S) 
Xl=XllI 
X2 X(21 
X3 = X(3) 

X4 = X(41 
X~ = XIS) 

HRM INAL 
TIMER FINTIM 0.6, PRDEL 0.02 
PRINT Xl. X2. X3. X4. XS 

END 
STOP 
ENDJ::JB 

Fig. 3.15 Program to simulate the dynamics of five masses. 

The VI(J) array can now be integrated to obtain the displacement array. Since the 
VI(i) array is used in the specification form of an INTGRL statement, it must be included 
in the EQUIVALENCE statement. The output for this program is given in Fig. 3.16. 

OVERLAY Statement 

The FUNCTION statement which was defined in Example 2.4 is considered 
a data statement. It is used for specifying pairs of x-y coordinates for the function 
generating elements AFGEN and NLFGEN. When making more than one run, 
the OVERLAY statement can be used to change previously specified x-y values 
contained in FUNCTION statements. An example of an OVERLA Y card is 

OVERLAY TORQUE = 0.0,4.5 , 3.0,7.8 , 6.0,11.9 , 10.0,19.0 

In this example, the FUNCTION defined as TORQUE will take on the new 
x-y values for the second run as given in the OVERLAY statement. 

The format for an OVERLAY statement is the same as for a FUNCTION 
card with the following exceptions. 
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PROGRAM TO CALCULATE THE DYNAMICS OF A MECHAN ICAL SYSTEM USING RKS INTEGRATION 
SUBSCRIPTED VARIABLES. 

TIME 
0.0 
2.0000E-02 
4.0000E-02 
6.0000E-02 
8.000017-02 
1. OOOOF.- 01 
1.2000F-Ol 
1.4000E-01 
1. 6000F- 01 
1.8000E-01 
2.0000E-01 
2.2000F.-01 
2.4000E-Ol 
2. 6000F.- 01 
2 .8000E- 01 
3.0000['-01 
3.2000E-Ol 
3.4000E-Ol 
3. 6000E- 01 
3 .8000E- 01 
4.0000E-Ol 
4.2000E-Ol 
4.4000E-01 
4.6000E-01 
4. 8000E- 01 
5 .OOOOF-O L 
5.2000~-OL 

').4000E-01 
5 .6000E-0 1 
'). 800CE - 01 
6.0000E-01 

Xl X2 X3 X4 X5 
0.0 0.0 0.0 0.0 0.0 
9.7884E-01 9.1l85E-01 9.7970E-01 9.413I:1E-Ol 9.4138E-OI 
1.8HOE 00 1.7805E 00 1.8405E 00 1.5550E 00 1.5556E 00 
2.4573E 00 2.2902E 00 2.47U1E 00 1.6293 E 00 1.6293 E 00 
2.7701E 00 2.4154E 00 2.8l51E 00 1.136I:1E 00 1. U68E 00 
2.7329E 00 2.1350E 00 2.8106E: 00 2.4938E-Ol 2.4938E-Ol 
2.3502E 00 1.4961E 00 2.4651E 00 -7.2470E-01 -7.2470E-01 
1.6705E 00 6.0608E-Ol 1.820n 00 -1.4469E 00 -1.4469E 00 
7.7975E-Ol -3.8576E-01 9.5533F-01 -1.6664E 00 -1.6664E 00 

- 2 • 095 8E - 0 1 -1.3128E 00 -2.5886E:-02 -1.3069E 00 -1.3069E 00 
-1.1724E 00 -2.0194E 00 -1.0040E 00 -4.9J20E-01 -4.9320E-Ol 
-1.9871E 00 -2.3870E 00 -1.8602E 00 4.91fs1E-Ol 4.9181 E-01 
-2.5506E 00 -2.3538E 00 -2.4909E 00 1.3059E 00 1.3059E 00 
-2.7918E 00 -1.9253E 00 -2.8194E 00 1.6663 E 00 1.6663E 00 
-2.6802E 00 - 1.1736E 00 -2.8058E 00 1.4476E 00 1.4476 E 00 
-2.2299E 00 -2.248 7E -01 -2.4520E 00 7.2596E- 01 7.2596E-Ol 
-1.4977E 00 7.6164E-Ol -1.8006E 00 -2.4791E-01 -2.4791E-01 
-5. 7630E-0 1 1.6203E 00 -9.3091E-01 -1.1356E 00 -1.1356E 00 

4.1 796E-0 L 2.2068E 00 5.1754E-02 -1.62 SBE 00 -1.6288E 00 
1.3~94E 00 2.4229E 00 1.0281E 00 -1.5559E 00 -1.5559E 00 
2.1290E 00 2.2321E 00 1.879bE 00 -9.4239E-01 -9.4239E-01 
2.6296E 00 1.6665E 00 2.5034F. 00 -1.4542E-03 -1.4542E-03 
2.7978E 00 8. 2117E - 0 L 2.8234E 00 9.3996E-01 9.3996 E-01 
2.o125E 00 -1.6207E-01 2.8008E 00 1.5548E 00 1.5548E 00 
2.0970E 00 -1.liS1E 00 2.4386F 00 1.62'13E 00 1.6293E 00 
1.3165E 00 -i.8864E 00 1.7805f 00 1.l311E 00 1.13 77E 00 
3.6959E-Ol -2.3380E 00 9.0639~-01 2.5082E-01 2.508lE-01 

-6.2400E-01 -2.3970E 00 -7.7623E-02 -7.2322E-01 -7.2322 E- 0 1 
-1.5387E 00 - 2.0535E 00 -1.0522E 00 -1.4459E 00 -1.4459E 00 
-2.2590E 00 -1.3653E 00 -1.8992F. JO -1.6663 EOO -1.6663E 00 
-2.6'B8E 00 - 4. 4 717E - 0 1 -2.5158E 00 -1.3075 E 00 -1.3075E 00 

Fig. 3.16 Output from program of Fig. 3.15. 

1 The label OVERLAY is used in place of the label FUNCTION. 

2 The number of x-y data pairs in an OVERLAY statement must not be 
more than the number of x-y pairs in the original FUNCTION statement. 

3 Parentheses must not be used in OVERLAY statements to separate pairs 
of data. 

A simple example which illustrates the use of an OVERLAY statement is the 
problem of calculating the volumetric flow of blood pumped by the human heart 
for two different pressure profiles. 

Example 3.5 

Figure 3.17 shows two time-histories of ventricular pressure in the human heart. 
Profile No. 1 represents a strong heart beat while profile No. 2 corresponds to a more 
average heart. An expression which approximates the flow rate of blood pumped by the 
heart is 

P 
FLOW = 575.0 (3.9) 
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Fig.3.17 Time-history of pressure in pumping chamber of the 
human heart. 

where FLOW = volumetric flow rate in I/sec 

P = ventricular pressure in mm-Hg 

111 

A single integration of FLOW with respect to time yields the total amount of blood that 
has flowed from the heart during one beat. 

VOLUME = S: FLOW dt (3.10) 

Figure 3.18 shows the program for solving for the total flow for both pressure profiles. 
Data representing the first time-history of pressure is entered on the FUNCTION card 
with the label PRESS. The OVERLAY statement contains the data for the second pres­
sure profile used for the function PRESS in the second run. Figure 3.19 contains the 
PRTPLT output resulting from the first pressure profile and Fig. 3.20 shows the output 
for the second time-history of pressure. Notice in the program of Fig. 3.18 that the 
OVERLAY statement appears immediately after the first END card. The END card 
permits the simulation to accept new data and control statements for another run. Note 
also that the END card sets the independent variable (TIME) to zero and resets all 
initial conditions. A detailed discussion on the use of the END statement is contained in 
the following section on translation control statements. 
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LABEL BLOOO FLOW PROBLEM TO ILLUSTRATE THE USE OF AN OVERLAY STATEMENT. 
FUNCTION PRESS = (0.0,8.0),(0.05,12.0',(0.1,21.0),(0.15,80.0), 

(0.2,140.01,(0.25,174.0),(0.28,178.0),(0.3,117.0),(0.32,176.0), 
(0.35,115.0),(0.4,165.0),(0.45,138.0),(0.5,86.0),(0.55~19.0), 
(0.6,3.0),(0.62,3.5),(0.64,4.0),(0.61,5.0),(0.7,6.0),(0.8,8.0) 

P = NLFGENCPRESS,TtME) 
FLOW =- P/515.0 
VOLUME = tNTGRL(O.O,FLOW) 
PRTPLT VOLUME CP,FLOW) 
TIMER FINTIM = 0.8, OUTOEL =- 0.04 

• THE FOLLOWING ENO CARO RESETS THE INITIAL CONOITIONS, RESETS TIME TO ZERO, 
• PREVIOUSLY OEflNEO FUNCTION TO THE VALUES SHOWN. 
• ANOTHER RUN. THE OVERLAY STATEfoilENT CHANGES THE OATA CONTAINEO IN THE 

ENO 
OVERLAY PRESS = 0.0,5.0, 0.05,8.0, 0.1,18.0, 0.15,63.0, 0.2,100.0, ••• 

0.25,120.0, 0.3,124.0, 0.35,124.0, 0.4,120.0, 0.5,65.0, 0.54,6.0, ••• 
0.56,4.0, 0.58,2.0, 0.59,2.0. 0.61,2.2, 0.65,2.5, 0.7,3.0, 0.8,5.0 

ENO 
STOP 
ENOJ08 

Fig. 3.18 Program to calculate blood flow and to illustrate the use 
of an OVERLAY statement. 

8LOOD flOW PR08LEM TO ILLUSTRATE THE USE OF AN nVERLAY STATEMENT. PAGE 

TIME 
0.0 
4-.0000E-02 
8.0000E-02 
l.2000E-Ol 
l.6000E-01 
2.0000E-Ol 
2.4-000E-Ol 
2.8000E-Ol 
3.2000E-Ol 
3.6000E-Ol 
4-.0000E-Ol 
4-.4-000E-Ol 
4-.8000E-Ol 
5.2000E-Ol 
5.6000E-Ol 
6.00ODE-Ol 
6.4-000E-Ol 
6.8000E-Ol 
7.2000E-Ol 
7.6000E-Ol 
8.0000E-Ol 

MINIMUM 
0.0 

VOLUME VERSUS TJ ME MAXIMUM 
1.05l4E-01 

I VOLUME 
0.0 
6.6l82E-04 
1.61161E-03 
3.2800E-03 
1.8047E-03 
1.5868E-02 
2.6722E-02 
3. 8947E-02 
5.126BE-02 
6.3458E-02 
7.5282E-02 
8.6l20E-02 
9.5085E-02 
1.0107E-01 
1.0342E-01 
l.03l4E-Ol 
1.039BE-01 
l.0430E-01 
1.041lE-01 
1.0520E-Ol 
1.0514E-Ol 

+ 
+ 
+ 
-+ 
---+ 
-------+ ------------+ 


Fig. 3.19 Blood flow for pressure-pulse. 

Translation Control Statements 

P 
B.OOOOE 00 
1.1200E 01 
1.68001" 01 
3.86001" 01 
9.19201' 01 
1.4000E 02 
1.6928E 02 
i.1800E 02 
1.7600E 02 
1.1383~ 02 
1.6500E 02 
1.4476E 02 
1.0980E 02 
6.1000E 01 
1.1120E 01 
3.0000E 00 
4.0000E 00 
5.3333E 00 
6.5641E 00 
7.4461E 00 
8.0000E 00 

FLOW 
1.3913E-02 
1.9478E-02 
2.9211E-02 
6.l130E-02 
1.5986E-Ol 
2.4348F-Ol 
2.9440E-Ol 
3.0951E-01 
3.0609E-Ol 
3.0232E-Ol 
2.86961"-01 
2.5176E-Ol 
1.909'6E-Ol 
1.0609E-01 
2.0383E-02 
5.2lnE-03 
6.9565E-03 
9. 2754E-03 
1.1416E-02 
1.2950E-02 
1.3913E-02 

Translation control statements specify how structure statements are to be 
treated. They also are used for run control purposes. For example, the INITIAL, 
DYNAMIC, and TERMINAL statements, which were defined in Chap. 2, are 
translation control statements. They specify how groups of structure statements 
are to be handled. The END and CONTINUE statements, which have previously 
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BLOOD FLOW PROBLEM TO ILLUSTRATE THF USE OF A .. OVERLAV STATEME~T. PAGE 

TIME 
0.0 
4.DOOOE-02 
8.0000E-02 
1.2000E-01 
1.f»000E-01 
2.0000E-Ol 
2.ltOOOE-01 
2.8000E-01 
3.2000E-01 
3.f»000E-01 
4. DOODE-01 
4.4000E-Ol 
1t.8000E-Ot 
5.2000E-Ol 
5.~DOOE-Ol 
6.0000E-01 
6.ItOOOE-01 
6.8000E-Ol 
7.2000E-Ol 
7.6000E-Dl 
8.0000E-Ol 

VOLUME 
0.0 
·1t.3130E-0'o 
1.tOlt2E-03 
2.4927E-03 
6.0B95E-03 
1.2068E-02 
1.9692E-02 
2.8155E-02 
3.6804E-02 
It.5ltlt5E-02 
5.3930E-02 
6.1833E-02 
6.8379E-02 
7.2734E-02 
7.3638E-02 
7.3812E-02 
7.3971E-02 
7.ltt51E-02 
7.4361E-02 
7.4615E-02 
1.'o928E-02 

+ 
+ 

-+ 
----+ --------+ 
-------------+ 

VOLUME VERSUS TIME 

------------------+ ------------------------+ 
------------------------ ------+ -----------------------------------+ -----------------------------------------+ 

MAXIMUM 
7.49281"-02 

I 

---------------------------------------------+ ------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ ----------------------------------------.---------+ 

Fig. 3.20 Blood flow for pressure-pulse. 

P 
5.00001" 00 
7.'o000E 00 
1.3160E 01 
3.1800E 01 
7.1040~ 01 
1.0000E 02 
1.17361; 02 
1.2432E 02 
1.24480: 07 
1.2352E 02 
1.20001; 02 
1.0552E 02 
8.10131:' 01 
3.814'3~ 01 
4.0000E 00 
2.0661E 00 
2.43151' 00 
2.7833E 00 
3.29331" 00 
4.04001' 00 
5.0000F 00 

113 

FLOW 
8.6951E-03 
1.28701"-02 
2.28811'-02 
5. 5301tE-02 
1.23551'-01 
1.7391E-Ol 
2.041010-01 
2.1621E-Ol 
2.16'091'-01 
2.14B2F.-Ol 
2.08701'-01 
1.8'351E-Ol 
1.40B9E-Ol 
6.6336'0-02 
6.9564E-03 
3.59421'-03 
4.239H:-03 
4.8406E-03 
5.7215"'-03 
1.02611'-03 
8.69561'-03 

been used and briefly described, can be used for run-control purposes and con­
sequently are also translation control statements. 

This section is concerned with the following six statements and how they can 
be used for changing data and output statements for sequential runs, resetting 
integration methods and error requirements, and other special features pertaining 
to run control techniques. 

END 

END 
RESET 
CONTINUE 
STOP 
ENDJOB 
ENDJOB STACK 

The END card must appear at least once in every program. For programs 
where control and data statements are not changed and only one run is desired, 
the END card simply appears immediately after the last structural statement. 
All examples in Chap. 2, with the exception of Example 2.10, illustrated this use 
of the END statement. 

The END card can be used to permit the simulation to accept new data and 
control statements for sequential runs as illustrated in this chapter in the program 
of Fig. 3.18. When the END card is not followed immediately by a STOP card, 
another run is automatically initiated incorporating the changes that follow the 
END card. At the start of the new run, the initial conditions are automatically 
reset and the independent variable (TIME) is set to zero. The following simple 
example program illustrates how this is accomplished. 
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INCON YO = 2.0 

Y = INTGRL(YO, V) 

END 
INCON YO = 7.5 
END 
STOP 
ENDJOB 

Ch.3 

In the above example, the initial value for Y in the first run is 2.0. For the 
second run the initial value of Y is 7.5. 

Example 3.6 

Several important points can be illustrated by incorporating an extra END card in 
the program in Fig. 3.3. Figure 3.21 shows this program where an END card has been 
added to provide one additional run. The first run of the program is identical to the origi­
nal program in Fig. 3.3. In the second run, the integration method, output, and timer 
variables are changed as specified by the cards following the first END statement. 

Note that SUM and COUNT are set equal to zero for the second run. This is neces­
sary even though these variables were originally set equal to zero in the Initial segment. 
If they are not reset to zero, the final values of SUM and COUNT in the first run will be 
used as the starting values in the second run. 

For the variables that appear on the TIMER card, it is only necessary to specify 
changes. In this problem, DELT is the only timer variable that changes for the second 
run. 

The two pages of output from the program in Fig. 3.21 is shown in Fig. 3.22. 
All changes that were made for the second run, in the previous example, nullified the 

corresponding instruction specified in the first run. Not all statements, however, will 
cancel previous instructions. The following is a list of the statements that when used for an 
additional run will completely nullify the corresponding instructions of previous runs. 

FINISH 
METHOD 
PREPARE 
PRINT 
TITLE 

The following is a list of five additive instructions. These statements do not nullify previous 
ones, but simply provide additional instructions. 

ABSERR & RELERR 
LABEL 
PRTPLT 
RANGE 
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TITLE PROGRAM TO CALCULATE THE AV~R~GE ABSOLUTE ERROR OF EQUATION 3.1 
INIT I AL 
CONSTANT PI = 3.14159, SUM 0.0, COUNT = 0.0 
DYNAMIC 

• THE FuLLOWING 3 CARDS ARE USED TO SOLVE EQUATION 3.1, WHERE­
• YOO = SECOND DERIVATIVE OF Y WITH RESPECT TO TIME 
* YO = Fl~ST DERIVATIVE OF Y WITH RESPECT TO TIME 

YUD = -4.0*PI*PI*Y 
YO = INTGRLlO.O, YDO) 
Y = INTGRL(1.0, YO) 

• TiE FOLLOWING NOSORT SECTION IS REQUIRED TO USE THE "IF" STATEMENT 

NOSORT 

• KEEP IS EQUAL TO 1 WHEN THE END OF A VALID INTEGRATION STEP IS REACHED 

IFlKEEP. EQ .1) GO TO 1 
GO TJ 2 
1 SUM = SUM + ABS(Y - COS(2.0*PI*TI~E)) 
COUNT = COUNT + 1.0 
AA~R = SUM/COUNT 
2 CONTINUE 
TERMINAL 
TIME~ FINTIM = 1.0, PRDEL 0.1, QELT 
METHOD SIMP 
~RINT Y, SUM, COUNT, AAER 

0.001 

* THE FuLLUWING "END" CARD RESETS THE INITIAL CONDITIONS A~D SETS THE 
* I~DEPENDENT VARIABLE (TIME' TO ZERO AND INITIATES ANOTHER RUN USI~G THE 
* CHANGE~ THAT FOLLOW 7HE END CARD. 

END 
PRINT 'i, YO, YDD, SUM, COUNT, AAER 
TIMER DELT = 0.004 
CONSTANT SUM = 0.0, COUNT = 0.0 
ME THOD TRAPl 

END 
STJP 
ENDJOB 

Fig. 3.21 Program to illustrate the use of END statement. 

PROGRAM TO CALCULATE THE AVERAGE ABSOLUTE ERROR OF EQUATION 3.1 

TIME y SUM COUNT AAER 
0.0 1.0000E 00 0.0 1.00OOE 00 0.0 
1. OOOOE- 01 8. 0902E-0 1 1.38l6E-04 1.OLOOE 02 L.3bBOE-06 
2 .OOOOF- 01 3.0902E-Ol 4.0048E-04 2.0100E 02 1.9925E-06 
3.0000E-Ol -3.0901E-Ol 5.8232E-04 3.0l00E 02 1.9346E-06 
4.0000E-Ol - 8. 0900 E - 01 1.7282E-03 4.0100E 02 4.3098E-06 
5.0000E-Ol -9.9997E-Ol 4.180LE-03 5.0l00E 02 8.3434E-06 
6.0000E-Ol -8.0899E-Ol 7.4814E-03 6.0100E 02 1.2448E-05 
7.0000E-Ol -3.0900E-OL l.0343E-02 7.0l00E 02 1.4755E-05 
8.0000E-Ol 3.0900E-0 L 1.1399E-02 8.0l00E 02 1.42J1E-05 
9.0000F-Ol 8. 0891.E-0 1 1.3523E-02 9.0l00E 02 1.5009E-05 
1.OOOOE 00 9.9994E-Ol l.8603E-02 l.OOlOE OJ 1.8585E-05 

Fig. 3.22 Output of program of Fig. 3.21. 

SIMP INTEGRA TlON 
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PROGRAM TO CALCULATE THE AVERAGE ABSOLUTE ERROR OF EQUATION 3.1 TRAPl INTEGRATION 

TIME 
0.0 
1. OOOOE - 01 
2.0000F.-Ol 
3.0000E-Ol 
4.0000E-Ol 
5.00aOE-01 
6.0000E-Ol 
7.0000E-Ol 
8.0000E-Ol 
9.0000E-Ol 
l.OOOOE 00 

Y YO YOO SUM COUNT AAER 
1.0000E 00 0.0 -3.9478E 01 0.0 1.0000E 00 0.0 
8.0898E-Ol -3.6935E 00 -3.1937E 01 3.4213E-04 2.6000E 01 I.J159E-05 
3.0889E-Ol -5.9159E 00 -1.Z195E 01 2.3815E-03 5.1000E 01 4.6813E-OS 

-3.0920E-Ol -5.9753E 00 1.2207E 01 6.4546E-03 7.6000E 01 8.4929E-05 
-8.09l7E-01 -J.6918E 00 3.1945E 01 1.0940E-02 1.0l00e 02 1.0832E-04 
-1.0000E 00 2.0339F-03 3.9478E 01 1.2990E-02 1.2600E 02 1.0309E-04 
-8.0879E-Ol 3.6951E 00 J.19JOE 01 1.5985E-02 1.5100E 02 1.0586E-Q4 
-3.0859E-Ol 5.9765E 00 1.2182E 01 2.4672 E-02 1.7600E 02 1.40l8E-04 

3.0951E-Ol 5.9746E 00 -1.2219F 01 3.6836E-02 2.01 DOE 02 1.8326E-Q4 
8.0936E-Ol 3.6902E 00 -3.1952f 01 4.1795E-02 2.2600E 02 2.1148E-04 
l.OOOOE 00 ~4.0638E-OJ -3.9478E 01 5.2229E-02 2.5100E 02 2.0808E-Q4 

Fig. 3.22 (Continued) 

As an example, consider a program having the following structure. 

Main body of program 

TIMER FINTIM = 4.0, OUTDEL = 0.1, PRDEL = 0.2 
PRINT A, B, C 
PRTPLTX 

Control statements PRTPLT Y 
for first run RANGE X 

Control statements 
for second run 

ABSERR X = 0.001, Y = 0.003 
LABEL OUTPUT OF "X" INTEGRATOR 
LABEL OUTPUT OF "Y" INTEGRATOR 
END 

l ~Jl~,z ABSERR Z = 0.0004, Y = 0.005 
LABEL OUTPUT OF "Z" INTEGRATOR 
END 
STOP 
ENDJOB 

For the first run of the above example program, the following occurs: 

1 A, B, and C are printed at the interval specified on the timer card. 

2 A printer-plot of the variable X will be made with the heading: OUTPUT OF "X" 
INTEGRATOR. 

3 A printer-plot of the variable Y will be made with the heading: OUTPUT OF "Y" 
INTEGRATOR. . 

4 The maximum and minimum values of X are listed by the RANGE statement. 
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5 Absolute errors of 0.001 and 0.003 will be used for the X and Y integrators, 
respectively. 

For the second run, the following occurs: 

1 The variable C is printed at the interval specified on the only timer card. 

2 As in the first run, printer-plots will be made for X and Y with the same headings. 

3 An additional printer-plot of the variable Z will be made with the heading: OUT-
PUT OF "Z" INTEGRATOR. 

4 The maximum and minimum values of X, Y, and Z are listed by the RANGE 
statements. 

5 Absolute errors of 0.001,0.005, and 0.0004 will be used for the X, Y, and Z inte­
grators, respectively. 

In this example PRTPLT, LABEL, RANGE, and ABSERR are the additive 
statements. 

It may be necessary in some simulations to eliminate certain control state­
ments in going from one run to another. For this purpose the RESET card should 
be used. 

RESET 

This statement allows the user to nullify certain control instructions used in 
previous runs. 

The RESET card can be used for the following statements. 

ABSERR & RELERR 
FINISH 
LABEL 
PREPARE 
PRINT 
PRTPLT 
RANGE 

The RESET card should be placed immediately after the END or CONTINUE 
card to insure its proper use. RESET PRTPLT will nullify all previous PRTPLT 
and LABEL instructions. RESET LABEL nullifies only LABEL statements. A 
card containing only RESET on it will nullify all previous LABEL, PRTPLT, 
PREPARE, PRINT, and RANGE instructions. 

A TITLE statement cannot be nullified by using a RESET card. The use of a 
TITLE instruction after an END or CONTINUE card will nullify the previous 
TITLE card. 

The following example illustrates the use of the END and RESET statements 
along with the multiple run capability of a PARAMETER card. This example 
also shows the use of a CSMP random number generator. 
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Example 3.7 

Random number signal sources can be very useful in simulating problems associated 
with many fields, including Industrial Engineering. An example of a typical problem 
involves determining the random distribution of the stiffness of a coil spring that is manu­
factured in high volume. The wire diameter and inside diameter of the spring are random 
variables that can best be described by a Gaussian distribution having a mean and stan­
dard deviation. The stiffness of a coil spring which is shown in Fig. 3.23 depends on the 
wire size and inside diameter of the coil as expressed by 

G*DW4 

K = 8(DI + DW)3N 

---,..--. ={= DW = Wire diameter 

r- DI-1 
DI = inside diameter of spring Fig. 3.23 Coil spring. 

where G = modulus of elasticity for steel in shear = 11,500,000 psi 

N = number of active coils = 10 

D W = diameter of wire 

DI = inside diameter of spring coil 

In addition, the following program parameter definitions are used. 

MEANI = mean inside diameter of spring = 1.000 in. 

(3.11) 

SIGMAI = standard deviation of inside diameter of spring: 0.001, 0.002, 
and 0.005 in. 

MEANW = mean wire diameter = 0.100 in. 

SIGMAW = standard deviation of wire diameter: 0.00033, 0.0006, 0.0015 in. 

Since there are three different standard deviations for both the wire size and inside 
spring diameter, a total of nine runs will be required to simulate all combinations. 

CSMP has signal sources which provide random numbers from two distributions. 
These are the Gaussian and the uniform distributions. For the Gaussian distribution, the 
statement 

x = GAUSS(N, M, S) 
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gives a signal having a normal distribution 

where N = any odd integer (used as a seed value); in CSMP III use any integer 

M = mean value 

S = standard deviation 

Only at each valid integration step (when KEEP = 1) does the GAUSS signal source 
provide a number. It is not activated during trial or immediate integration steps. 

A uniform random number distribution between 0 and 1 can be provided by the 
following RNDGEN function. 

x = RNDGEN(N) 

where N is any odd integer which is also used as a seed value. When using two or more 
random-number signal sources, each statement should use a different seed value. 

Using the GAUSS signal source, the following CSMP statements can be used to 
describe the random numbers representing the wire and inside spring diameters. 

DW = GAUSS(1, MEANW, SIGMAW) 
DI = GAUSS(3, MEANI, SIGMAI) 

The standard deviation of the stiffness can be expressed by the following formula. 

(3.12) 

where Kj = stiffness of ith spring 

n = number of springs in sample 

Using the above expressions for the random variables DW and DI, and Eq. (3.12) for 
the standard deviation of the spring stiffness, a program for simulating production runs 
for all nine combinations of standard deviations of wire and inside diameters is shown in 
Fig. 3.24. Note the method used in this program to reset COUNT, SUMK, and SUMK2 
to zero. This procedure should be used when using the mUltiple-run capability of a 
PARAMETER card. The output for the very last run (SIGNAW = 0.0015, SIGMAI 
= 0.005), which involves a simulation of 3000, springs, is given in Fig. 3.25. 

CONTINUE 

The CONTINUE card can be used to change data or control statements 
without resetting initial conditions or the independent variable (TIME). It is used 
in place of the END card. When the program encounters a CONTINUE state­
ment, it will accept the changes in control and data statements that follow this 
card. The program will then continue from the point where the previous run was 
ended. The CONTINUE statement provides, in effect, an interrupt point where 
changes in control and data statements can be made. The program in Fig. 3.5 
illustrates the use of the CONTINUE card to change integration methods, inte­
gration error requirements, and timer variables during the run. 

In CSMP III, the END CONTINUE label is used in place of CONTINUE. 
When using the CONTINUE card, the following rules must be followed. 
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TITLE PROGRAM TO SIMULATE THE VARIANCE IN THE STIFFNESS IN THE HIGH 
TITLE VOLUME PRODUCTION OF A COIL SPRING. 

RENAME TIME a NUMBER 
PARAMETER SIGMAW = (0.00033, 0.0006, 0.0015) 
CONSTANT COUNT = 0.0, SUMK • 0.0. SUMKl • 0.0. MEANW • 0.1, 

MEANI = 1.0, SIGMAI = 0.001, N = 10.0, G : 11.5E6 
OW = GAUSS(l, MEANW, SIGMAW) 
01 = GAUSS(l, MEANI, SIGMAI) 
K = G*(DW*.4)/(S.0*((DW + DI)*.3'.N) 

NOSORT 

Ch.3 

• THE FOLLOWING 5 CARDS ARE USED TO RESET COUNT, SUMK, AND SUMK2 TO ZERO 
* AT THE BEGINNING OF EACH RUN. 

IF(NUMBER.NE.O.O) GO TO 2 
COUNT = 0.0 
SUMK • 0.0 
SUMK2 = 0.0 

2 CONTINUE 
IF(KEEP.NE.1' GO TO 1 
COUNT • COUNT + 1.0 
SUMK = SUMK + K 
SUMK2 = SUMK2 + K*K 

* THE FOLLOWING "IF" STATEMENT IS USED TO AVOID DIVIDING BY ZERO 
* IN THE CALCULATION OF THE STANDARD DEVIATION (SIGMAK) 

IF(COUNT.LT. (PRDEL - 2.0) ) GO TO 1 
SIGMAK = SQRT((COUNT*SUMK2 - SUMK*SUMK)/(COUNT*(COUNT - 1.0))) 
MEANK = SUMK/COUNT 

1 CONTINUE 
PRINT SIGMAK, MEANK 
RANGE K, OW, 01, SIGMAK, MEANK 
TIMER FINTIM = 5000.0, DELT = 1.0, PRDEL = 100.0 
METHOD RECT 
END 
RESET RANGE 
RANGE K, OW, 01 
CONSTANT SIGMAI = 0.002 
TIMER FINTIM = 3000.0, PRDEL = 200.0 
PRINT SIGMAK, MEANK, K, OW, 01 
END 
CONSTANT SIGMAI = 0.005 
END 
STOP 
ENDJOB 

Fig. 3.24 Program to simulate the production of a coil spring. 

1 The multiple run capability of the PARAMETER, CONSTANT, or 
INCON statements must not be used in a run where a CONTINUE card 
is used. 

2 A program containing a TERMINAL segment should not be used with a 
CONTINUE statement. 

3 A new value for FINTIM should be specified on a timer card for every use 
of a CONTINUE card. If a CONTINUE statement is initiated by a FINISH 
card, the output (PRDEL and OUTDEL) will be incremented from the 
time at which the FINISH condition was encountered. 

4 The FORTRAN CONTINUE statement is distinguished from the CSMP 
CONTINUE card by a statement number. Figure 3.24 illustrates the use 
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PROGRAM TO SIMULATE THE VARIANCE IN THE STIFFNESS IN THE HIGH INTGRL NOT USED SIG~AW= 1.5000E-03 
VOLUME PRODUCTION OF A COIL SPRING. 

NUMBER SIGMAK MEANK K OW 01 
0.0 3.0245E-Ol 1.0196E 01 9.3799E 00 9.5150E-02 9.8383E-Ol 
2.0000E 02 b.1l6SE-Ol 1.0836E 01 1.0007E 01 9.7a35E-02 9.9a05E-01 
4.0000E 02 6.4029E-Ol 1.0804E 01 1.1095E 01 1.0075E-Ol 1.0003E 00 
6.0000E 02 6.4b03E-0 1 1.0787E 01 1.2347E 01 1.0324E-01 9.9448E-Ol 
a.OOOOE 02 6. 3315E-0 1 1.0a04E 01 1.l378E 01 1.0165E-01 1.0033E 00 
1.0000E 03 6.3632E-0 1 1.0797E 01 1.1053E 01 1.0133E-Ol 1.0095E 00 
1.Z0DOE 03 b.2593E-0 1 1.0797E 01 1.0664E 01 1.0010E-Ol 1.0061E 00 
1.4000E 03 6.2863E-Ol 1.0797E 01 1.1533E 01 1.0183E-01 1.000lE 00 
l.6000E 03 6.3020E:-Ol 1.0H8E 01 1.0704E 01 9.9853E-02 1.0013 E 00 
1.8000E 03 6.2993E-0 1 1.oa04E 01 1.0S89E 01 9.9512E-02 l.0006E 00 
2.0000E 03 6.2875E-Ol 1.0804E 01 1.1122E 01 1.0015E-Ol 9.9135E-Ol 
2.200m: 03 6.2451E-Ol 1.08llE 01 1.0604E 01 9.9617E-02 1.0015E 00 
2.4000E 03 6.2795E-0 1 1.0al0E 01 1.0789E 01 1.0025E-Ol 1.0038E 00 
2.bOOOE 03 6.2814E-Ol 1.080SE 01 1.0583E 01 9.9897E-02 1.OOblE 00 
2.8DDDE 03 6.2734E-Ol 1.OB05E 01 1.0528E 01 9.9399E-02 1.00llE 00 
3.0000E 03 6.2547E-Ol 1.0804E 01 1.0589E 01 9.9600E-02 1.001SE 00 

Range Output 

PROBLEM DURATION 0.0 TO 3.0000E 03 

VARI ABLE MINIMUM NUMBER MAXIMUM NUMBER 
K 8.6505E 00 3.8300E 02 1.2991E 01 2.4l00E 03 
OW 9.4510E-02 3.!nOOE 02 1.0530E-Ol 1.6S00E 02 
OI 9. 7930E-0 1 2.0200E 02 1.0220E 00 5.65COE 02 

Print Output 

Fig. 3.25 Output of Fig. 3.24 for last run. 
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of the FORTRAN CONTINUE card. It can only be used in a nosort sec­
tion or within a PROCEDURE function with a statement number. 

An example of a complicated program which makes use of several END, 
RESET, and CSMP CONTINUE statements follows. 

1st portion 
of 1st run 

2nd portion 
of 1st run 

3rd portion 
of 1st run 

Main body of program 

! 
CONSTANT Q = -13.5; R = 9.0, S = 11.0 
LABEL PRINTER-PLOT OF "X" 
PRTPLT X 
TIMER FINTIM = 1.0, OUTDEL = 0.02 
CONTINUE 

1 

RESET PRTPLT 
TIMER FINTIM = 1.1, DELT = 0.0005, PRDEL = 0.001 
METHOD ADAMS 
CONSTANT Q = -17.0, R = 8.0 
PRINT X, Y 
CONTINUE 

! 
TIMER FINTIM· = 2.4, PRDEL = 0.02 
METHOD RKS 
PRTPLT Y 
LABEL Y = DISTANCE 
CONTINUE 

4th portion {RELERR Z = 0.00002 
of 1st run TIMER FINTIM = 3.8 

FINISH Y = 100.0 
END 

2nd, 3rd, & RESET 
4th runs PARAMETER S = (12.0, 12.3, 12.7) 

PRTPLT X,Y 
TIMER FINTIM = 2.0 
FINISH Y = 126.0 
END 
STOP 
ENDJOB 

The above example program makes two complete runs. In the first run, the 
CONTINUE card is used three times to make changes in parameters, output, and 
integration method. The following is a summary of the first run. 

1 The first portion of the first run, which ends at FINTIM = 1.0, uses the 
following parameters and timer variables. 
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Q = -13.5 
R =9.0 
S = 11.0 

OUTDEL = 0.02 

A printer-plot of the variable X is made with the following heading: PRIN­
TER-PLOT OF "X". Since the integration method is not specified, the 
variable-step Runge-Kutta method is used. 

2 The second portion of the first run terminates at FINTIM = 1.1. The 
following parameters and timer variables are changed to the values shown. 

Q = -17.0 
R = 8.0 

DELT = 0.0005 
PRDEL = 0.001 

Adams integration is used. The RESET PR TPL T card nullifies the pre­
vious PR TPL T and LABEL statements and the only output is given by the 
PRINT X, Y statement. 

3 The third portion of the first run ends at FINTIM = 2.4. There are no 
changes in parameter values and the integration method is changed back 
to variable-step Runge-Kutta (RKS). The output includes the previous 
PRINT X,Y statement and the additional PRTPLT Y card with the follow­
ing heading: Y = DISTANCE. 

4 For the fourth and last portion of the first run, the run will terminate at a 
time of 3.8, or when the variable Y first reaches the value of 100.0. The 
relative error for the Z integrator is changed from the usual value of 0.0001 
to 0.00002. All PRINT and PRTPLT outputs remain the same as in the 
third portion. 

The first END card indicates the completion of the first run. All initial conditions 
are reset to the original values and the independent variable (TIME) is set to zero. 
The multiple run capability of a PARAMETER card is used to make three addi­
tional runs using the specified values of the parameter S. Note that because of the 
use of the multiple run PARAMETER card, a CONTINUE statement cannot be 
used in this portion of the program. The RESET card nullifies the previous 
PRTPLT, RELERR, LABEL, PRINT, and FINISH statements. Consequently, 
the only output will be printer-plots of the variables X and Y. The output interval 
will be the value of OUTDEL as specified in the first portion of the first run. The 
STOP and ENDJOB cards have been used without explanation in all programs. 
Their use is described as follows. 

STOP 

The STOP card must follow the last END card to signify the completion of 
the last run. It is also used to separate any user-supplied FORTRAN subprogram 
from the CSMP program. All subprograms must follow the STOP card. 
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ENDJOB 

This card is used to signify the end of a job. In"all previous programs, which 
have not included FORTRAN subroutines, the ENDJOB statement follows the 
STOP card. When FORTRAN subroutines are used, the ENDJOB must follow 
them. This is illustrated in the section in this chapter on subprograms. ENDJOB 
is one of five statements that must begin in card column 1. The other statements 
are: COMMON, COMMON MEN, ENDDATA, and ENDJOB STACK. 

ENDJOB STACK 

This statement, when used in place of the ENDJOB card, allows another 
CSMP job to directly follow. However, most computer installations prohibit the 
practice of "stacking runs". It is recommended that the user check with the com­
puter installation before using the ENDJOB STACK statement. The ENDJOB 
label must begin in card column 1 and STACK must begin in column 9. A blank 
card should follow the ENDJOB STACK card. 

Data Output 

The majority of CSMP output is ordinarily handled by the five output state­
ments: PRINT, PRTPLT, RANGE, TITLE, and LABEL. The user, however, 
has a wide range of other methods for printing data. These include the use of 
FORTRAN output statements, a DEBUG subroutine that provides output of all 
variables, a PREPARE statement that is used to allow plotting of variables on 
offline X-Y plotters, and a DECK statement that returns a punched deck of the 
program. CSMP III provides additional output capabilities that are covered in 
Chap. 5. This section describes the use of the four types of output that are avail­
able in both S/360 CSMP and CSMP III. 

FORTRAN Output 

The entire output capability of FORTRAN, with the exception of the PUNCH 
instruction, is available to the CSMP user. This includes the use of FORTRAN 
WRITE, PRINT, and FORMAT statements. Methods of using these output 
instructions are similar to those in FORTRAN. The primary restriction is that all 
FORTRAN output statements must be contained in no sort sections or in PRO­
CEDURE functions. A summary of general rules follows later in this section. 
The reader should refer to specialized texts on FORTRAN, because of the gen­
erality and complexity of FORTRAN output statements.<2-S) 

It is not obvious when it is desirable or necessary to use FORTRAN output 
capabilities. Some typical situations are listed as follows. 

1 It may be necessary to print values from either the Initial or Terminal 
segments. These values would be printed only one time at the beginning or 
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end of the run. CSMP PRINT or PRTPLT statements cannot be used for 
this purpose. Consequently, the only choice is to use FORTRAN output 
statements. 

2 Subscripted variables and integers cannot be used in PRINT and PR TPL T 
statements in S/360 CSMP. FORTRAN output statements can be used for 
these types of variables. 

3 A maximum of fifty variables (including TIME) can be included in a S/360 
CSMP PRINT statement. Essentially any number of variables can be 
incorporated in FORTRAN output statements. 

4 The user has no control over output format when using PRINT and 
PRTPLT statements. Conversely, the format flexibility of FORTRAN 
offers considerable freedom in the style of output data. 

5 CSMP PRINT and PRTPLT statements are executed at regular intervals 
as specified on the TIMER card. With the proper use of FORTRAN logical 
control and output statements, it is possible to have output at any point 
and at any interval during the run. 

6 Since integration must be performed at each PRINT and PRTPLT interval, 
CSMP output statements usually affect the integration interval of variable­
step methods. FORTRAN output instructions do not affect the integration 
step-size and as a result FORTRAN WRITE statements can be used to 
monitor each step in variable-step integration. 

Statements in the Initial and Terminal segments are executed only once during 
a run. Consequently, FORTRAN output instructions can be utilized in these two 
segments with no special consideration other than being used in no sort sections or 
PROCEDURE functions. However, when FORTRAN output statements are used 
in the Dynamic segment, special care must be used. For example, depending upon 
the integration method, FORTRAN output instructions are executed up to four 
times for each integration step (see Table 3.3) and for each trial integration step if 
a variable step method is used. To provide FORTRAN output only at the end of 
valid integration steps, the following type of statement is recommended. 

IF(KEEP. EQ. 1) WRITE(6,lOO) X,Y,Z 

The above will print the values of X,Y, and Z using FORMAT number 100 at 
each valid integration step. 

The following is a summary of some general rules for using FORTRAN 
output statements. 

1 All FORTRAN output and FORMAT statements must be in no sort sec­
tions or PROCEDURE functions. 

2 Continuation cards used with FORTRAN output and FORMAT state­
ments must contain a $ in card column 6. 
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3 FORTRAN output instructions in the Initial and Terminal segments are 
executed only one time. Statements in the Dynamic segment are printed up 
to four times for each integration step. It is recommended that the following 
use of the IF statement be employed to provide output only at the end of 
valid integration steps. 

IF(KEEP. EQ. 1) WRITE(6,100) X, Y, Z 

4 The FORTRAN PRINT statement can be used in a CSMP program as 
part of a logical IF statement. For example, the following FORTRAN 
PRINT statement is valid. 

IF(TIME. GT. 1.9) PRINT 100, X, Y, Z 

The following PRINT instruction cannot be used. 

PRINT 100, X, Y, Z 

It should be pointed out that the FORTRAN PRINT statement offers no 
advantages over the FORTRAN WRITE instruction. For this reason, it 
is recommended that the FORTRAN PRINT statement not be used. 

5 FORTRAN FORMAT instructions can be located in any nosort section 
or procedure function of the program. The most logical location is in a 
nosort section of the Initial segment. 

6 The FORTRAN PUNCH instruction cannot be used in a CSMP program. 
If punched output on data cards is desired, the user should employ a FOR­
TRAN WRITE statement. In a FORTRAN program, the following state­
ment provides punch output. 

WRITE(7,100) X, Y, Z 

The above statement is not valid in a CSMP program. Unit number 7 is a 
work data set used by the CSMP system. The user should specify in JCL 
cards that another unit number be set in reserve for punched output. This 
unit number is then used in the WRITE instruction to provide punched 
output. 

The following orbital mechanics problem is used to illustrate the use of 
FORTRAN output statements in all three segments. 

Example 3.8 

This problem involves the two-dimensional motion of a space vehicle in an orbit 
that passes over both the North and South Poles. In the initial condition, the vehicle is in 
a circular orbit at an altitude of 300,000 m. At the start of the simulation, rockets on the 
space vehicle are ignited for 120 sec which provide a thrust in the tangential direction. At 
the end of the 120 sec rocket burn, the only force acting on the vehicle is gravity. 

To eliminate the problem of programming the effect of variable vehicle mass, it is 
assumed that the thrust of the rockets provides a constant acceleration of 4.905 m/sec2 

(0.5 g). A cylindrical coordinate system, as shown in Fig. 3.26, is ideally suited to describe 
the two-dimensional motion. 
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~ Tangential direction 

;L~ !\space vehicle 

~---, e 

---+---=---f-~ +---+---1 
REARTH = 6.373 x 106 m 

Fig. 3.26 Cylindrical coordinates of a space vehicle in a polar 
orbit. 

The nonlinear equation set is 

;: = rro 2 - g 

OJ = (A - 2fro) 
r 

where r = radius from center of earth, m 

e = angular position, deg 

ro = angular velocity, radians/sec 

g = acceleration of gravity, 
3.983 x 1014/r 2, m/sec2 

A = acceleration resulting from rocket thrust, m/sec2 

A = 4.905 

A =0 

TIME < 120.0 sec 

TIME> 120.0 sec 

(3.13) 

(3.14) 

(3.15) 

Program symbols 

R 

ANGLE 

OMEGA 

G 

A 

The program, shown in Fig. 3.27, which simulates the motion of the space vehicle is 
divided into the three segments. In the Initial segment the initial radius RO and initial 
angular velocity OMEGAO are calculated. The angular velocity of a satellite in a circular 
orbit is given by Eq. (3.16). 

OMEGAO =,.ff (rad/sec) (3.16) 

Note that a FORTRAN WRITE statement is used with an appropriate FORMAT 
card to print the velocity in the circular orbit in mph. A WRITE instruction is also in­
cluded in the Initial segment to provide a heading for output from the Dynamic segment. 

In the Dynamic segment, a logical IF statement is used in the first nosort section to 
assign the proper value of A. A sort section is then used to calculate;: (RDD) and OJ 
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LABEL PROGRAM TO CALCULATE THE ORBIT Of SATELLITE. 
INIT~AL 

CONSTANT REARTH = 6.373E6, C = 3.983El4, ALTO 3 300000.0 
RO= REARTH • ALTO 
G = C/CRO*ROJ 
OMEGAO = SQRTCG/RO) 
VEL = OHEGAO*RO 
MPH = VEL/O.44704 

NOSORT 
100 FORHATI1H1,26HINITIAL VELOCITY IN HPH • .FlO.O) 
101 FORMAT(4E28.6) 
102 fORMATIZFZ5.2) 

Ch. 3 

103 FORMATI1H1,12X,21HFINAL VELOCITY IN HPH,7X,23HFlNAL ALTITUDE IN HI 
$LES) 

104 FORMATC/,16X,'ALTITUDE IN METERS',lOX,'ANGLE IN DEGREES',12X,'VELO 
$CITY IN METERS/SEC',6X,'TIME IN SECONDS'. 

WRITEI6,100) MPH 
WRITEC 6,104') 

DYNAMIC 
NOSORT 

A = 0.0 
IFITIME.LE.1Z0.0) A = 4.905 

SORT 
G = CII R*R) 
ROD = R*OMEGA*OMEGA - G 
OMEGAO = CA - Z.O*RO*OHEGAJ/R 
RO = INTbRLCO.O,ROO) 
R = INTGRLIRO,RoJ 
OMEGA INTGRLCOMEGAO,OMEGAO) 
ANGLE = (180.0/3.14159)*INTGRLCO.0,OMEGA) 

NOSORT 
ALT = R - REARTH 
VEL = SQRT(RO*Ro + (R*OMEGAJ**Z' 
IFCTIME.GT.1Z0.0' GO TO 1 
IF(KEEP.EQ.l) WRITE(6,101) ALT, ANGLE. VEL, TIME 
1 CONTINUE 

HRMINAL 
T1MER FINTIM = 9500.0, OUTDEL = 120.0 
ABSERR R = 1.0 
FINISH ANGLE = 360.0 
PRTPLT ALT (ANGLE, VEL, G) 
MPH = VEL/0.44704 
MILES = ALT/1609.344 
WR ITE( 6, 103) 
WRITE(6,l02) MPH, MILES 

END 
STOP 
ENDJOB 

Fig. 3.27 Program to simulate the motion of a space vehicle and 
to demonstrate the use of FORTRAN output statements. 

(OMEGAD) and integrations are performed to calculate f (RD), r, OJ (OMEGA), and 
() (THETA). The Dynamic section is changed back to a no sort section to allow the use of 
a FORTRAN WRITE statement. The WRITE statement is executed at each valid inte­
gration step during the first 120.0 sec of the simulation. This WRITE statement does not 
affect the step-size of the variable interval integration methods. Notice that the value of 
OUTDEL is equal to 120.0. This means an integration step must be performed at TIME 
= 120.0 sec which insures the program will simulate the total burn of the rockets. Also 
note that the allowable absolute error for the R integrator is increased to 1.0. The default 
absolute error of 0.0001 provides tighter control than necessary for very large output of 
the R integrator. 

The output from the FORTRAN WRITE and FORMAT instructions is given in 
Fig. 3.28. 



Ch. 3. Advanced Features of CSMP 

~ FORTRAN output from initial segment 
INITIAL VE:LOCITY Ir. MPH = 17282. / 

ALTITUDE IN METERS ANGLE IN DEGREES V~LDCITY IN METERS/SEC 
O.300000E 06 0.0 O.772577E 04l 
O.300000F 06 0.498699E 00 O.116255E 04 
0.3000LUE 06 0.150320E 01 0.183610E 04

5
\ 

O.30U273E 06 0.354051E 01 O.798296E 04 
U.303325f 06 0.826137E 01 O.t)31070E 04 

129 

TI ME I N SECONDS 
0.0 
O.150000E 01 
0.225000E 02 
O.525000E 02 
O.120000E 03 

***SlMULATIO~ HALTED... ANGLE = 3.b59~E 02 
Output from Dynamic Segment 

FINAL VELOCITY IN MPH 
186')0.59 

FINAL ALTITUDE IN MILES 
1 8 7 • 03 """"""---

Output from Terminal Segment 

Fig 3.28 Output from FORTRAN statements in Fig. 3.27. 

Note that the first two lines of Fig. 3.28 were initiated in the Initial segment. The 
following five lines which describe the motion during the 120.0 sec rocket burn period 
were printed by the WRITE statement in the Dynamic segment. Since all integration steps 
are printed and the FORTRAN WRITE statement does not affect the integration step size 
of the variable-step Runge-Kutta method, the progress of the numerical integration can 
be monitored. Note that the first integration step is 7.5 sec which is r\i of the output 
interval. In the second step the integration interval is increased to 15.0 sec, and for the 
third step the interval is 30.0 sees. For the fourth and last integration step during the 
rocket burn, a step size of 67.5 sec is used. The final velocity and altitude which was 
printed from the Terminal segment is shown in the last two lines of Fig. 3.28. 

The time-history of the altitude is shown by the PRTPLT output of Fig. 3.29. 
Note that the FORTRAN output statements had absolutely no effect on the PRTPL T 

output. This is not the case if both FORTRAN WRITE and PRINT statements are used 
in the Dynamic segment of the same program. FORTRAN and PRINT output state­
ments are printed in the order in which they are generated. Consequently, FORTRAN and 
PRINT outputs are mixed together and can be confusing to read. Consider the example of 
using the following PRINT statement used with a PRDEL of 15.0 in the program of 
Fig. 3.27. 

PRINT ALT, ANGLE, VEL, G 

The portion of the mixed output is shown in Fig. 3.30. 

DEBUG Subroutine 

It is often useful when developing or checking out new programs to know the 
values of all variables. The DEBUG subroutine can be used for this purpose. It will 
print the current values of all non subscripted variables at each successive integra­
tion step. Any diagnostic messages that may appear are printed at the point where 
they occur. The subroutine is called by the following statement. 

CALL DEBUG(N, T) 



PROGR AM TO 

TIME 
0.0 
1.2000E 02 
2.4000E 02 
3.6000E 02 
4.8000E 02 
6.00001' 02 
7.2000E 02 
8.4000E 02 
9.6000E 02 
1.0800':; 03 
1.2000E 03 
1.32001; 03 
1.4400E 03 
1.5600:: 03 
1. bAOOE 03 
1.8000E 03 
1.9200E 03 
2.0400E 03 
2.1600E 03 
2.2600E 03 
2.4000E 03 
2.520aE 03 
2.6400E 03 
2.7600E 03 
2.8600E 03 
3.0000E 03 
3.1200E 03' 
3.2400E 03 
3.3600E 03 
3.4800E 03 
3.6000E 03 
3. 7200E 03 
3.8400E 03 
3.9600E 03 
4.0800E 03 
4.2000E 03 
4.32 ODE 03 
4.4400E 03 
4.5600E 03 
4.6800F. 03 
4.8000E 03 
4.9200E 03 
5.0400E 03 
5.1600E 03 
5.2800E 03 
5.4000E 03 
5.5200E 03 
5.6400E 03 
5.7600E 03 
5.8800E 03 
6.0000E 03 
6.1200E 03 
6.2400E 03 
6.3600E 03 
6.4800E 03 
6.6000E 03 
6.7200E 03 
6.6400E 03 
6.9600E 03 
7.0800E 03 
7.2000E 03 
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CALCULATE THE ORtllT OF SATELLITE. PAGE 

Mlt.IMUM ALl VERSUS TIME MAXIMUM 
3.0000E 05 2.9358E 06 

ALT I I ANGLE VEL G 
3.0000E 05 0.0 7.7258E 03 8.9447E 
3.0:;33E 05 8.2614E 00 8.3107E 03 8.9357E 
3.'3B7E 05 1.6823E 01 8.3132E 03 8. 8dl OE 
3.6495~ 05 2.5306E 01 8. <'695E 03 8. 7730E 
4.2542E 05 3.3662E 01 8.2057E 03 8.6177E 
5.0360E 05 4.1849E 01 8.1240E 03 8.4227E 
5.9773t:. 05 4.9834E 01 8.02721: 03 8.1969E 
7.0538E 05 5.7590E 01 7.9182E 03 7.9495E 
B.2429E 05 ---------+ 6.5101E 01 7.7999E 03 7.6890E 
9.5208E 05 ------------+ 7.2360E 01 7.6752E 03 7.4230E 
1.0864E 06 --------------+ 7.9362E 01 7.5465E 03 7.1580E 
1.2251E 06 ------- ----------+ 8.6113E 01 7.416;;E 03 6. B991E 
1.3662E 06 --------------------+ 9.2620E 01 7.2862E (H 6.6499E 
1.5077E 06 :..---------------------+ 9.8892E 01 7.1583E 03 6.4133E 
1.6479E 06 -------------------------+ 1.0494E 02 7.0338E 03 6.1910E 
1.7d54E 06 ----------------------------+ 1.1079E 02 6.9137E 03 5.9840E 
1.9189E 06 --- - ---------------- ---- ------ + 1.1645E 02 6.7991E 03 5.7929E 
2.0472E 06 --------------------------------+ 1.l193E 02 6.6906E 03 5.6177E 
2.1693E 06 ----------------------------------+ 1.2724E 02 6.5888E 03 5.4583E 
2.2643E 06 ------------------------ -------------+ 1.3242E 02 6.4941E 03 5. 3142E 
2.3916E 06 ---------------------------------------+ 1.3746E 02 6.4066E 03 5.1850E 
2.49')4E 06 -----------------------------------------+ 1.4238E 02 6.3272E 03 5.0"100E 
2.5802E 06 -------- ---------------------------------+ 1.4720E 02 6.2556E 03 4.9688E 
2.6606E 06 --------------------------------------------+ 1.5193E 02 6.1919E 03 4.8807E 
2.7313E 06 --- -------------------------------------------+ 1.5658E 02 6.1364E 03 4.8053E 
2.79181': 06 -----------------------------------------------+ 1.6117E 02 6.0892E 03 4.74201': 
2.8419E 06 -----------------------------------------------+ 1.6570E 02 o.0502E 03 4.6905E 
2.8816E 06 --- ---- -----------------------------------------+ 1.7018E 02 6.0195E 03 4.6504E 
2.9105E 06 ---------------------------------------------+ 1.7463E 02 5.9972E 03 4.6215E 
2.9285E 06 -------------------------------------------------+ 1.7906E 02 5.9833E 03 4.6036E 
2.9358E 06 ----------------------------------------------+ 1.8348E 02 5.9777E 03 4.5964E 
2.9320E 06 -------------------------------------------------+ 1.8790E 02 5.9806E 03 4.6001E 
2.9174E 06 -------------------------------------------------+ 1.9Z32E 02 5.9918E 03 4.6146E 
2.8920E 06 -------------------------------------------------+ 1.9677E 02 6.0114E 03 4.6400E 
2.8558E 06 ------------------------------------------------+ 2.0124E 02 6.0394E 03 4.6764E 
2.8090E 06 --- --------------------------------------------+ 2.0575E 02 b.0757E 03 4.7242E 
2.7518E 06 ---------------------------------~---------+ 2.1032E 02 6.1203E 03 4.7837E 
2.0844E 06 ---------------------------------------------+ 2.1495E 02 6.1732E 03 4.8551E 
2.6070E 06 -----------------------------------------+ 2.1965E 02 6.2342E 03 4.9391E 
2.5202E 06 -----------------------------------------+ 2.2444E 02 6.3033E 03 5.0361E 
2.4242E 06 ----------------------------------------+ 2.2933E 02 6.3804E 03 5. 1466E 
2.3196E 06 --------------------------------------+ 2.3433E 02 6.4652E 03 5.2712E 
2.2070E 06 ------------------------------------+ 2.3946E 02 6.5576E 03 5.4105E 
2.0870E 06 --------------------------------+ 2.4473E 02 6.6571E 03 5.5649E 
1.9606E 06 -----------------------------+ 2.50l6E 02 6.7636E 03 5.7350E 
1.8287E 06 --- -------------------------+ 2.5575E 02 6.8763E 03 5.9211E 
1.692':>E 06 --------------------------+ 2.6154E 02 6.9947E 03 6.1230E 
1.5528E 06 -----------------------+ 2.6752E 02 7.1179E 03 6.3405E 
1.4115E 06 --.. ------------------+ 2.7372E 02 7.2449E 03 6.5727E 
1.270LE 06 ------------------+ 2.8015E 02 7.3744E 03 6.8182E 
1.1304E 06 ---------------+ 2.8682E 02 7.504aE 03 7.0744E 
9.9439E 05 -------------+ 2.9374E 02 7.6343E 03 7.3380E 
8.6422E 05 ----------+ 3.0092E 02 7.7606E 03 7.6044E 
7.4218E 05 --------+ 3.0835E 02 7.8813E 03 7. 867!tE 
6.3063E 05 3.1603E 02 7.9936E 03 8.1201E 
5.3193E 05 ----+ 3.2395E 02 8.0946E 03 8.3539E 
4.4835E 05 --+ 3.3207E 02 a.1815E 03 8.5598E 
3.619bE 05 3.4038E 02 8.2513E 03 8.7289E 
3.3449E 05 3.4883E 02 8.3017E 03 8.8529E 
3.0725E 05 3.5737E 02 8. 3309E 03 8.9253E 
3.0099E 05 3.6595E 02 tl.3376E 03 8.9420E 

Fig. 3.29 PRTPLT output for the program of Fig. 3.27. 

N is equal to the number of outputs. An output, which includes a listing of the 
values of all variables, is printed for all trial and intermediate integration steps as 
well as for valid steps. N must be an integer constant. The output will begin at 
TIME = T or at the first integration step after TIME = T. 

The DEBUG subroutine can only be called from no sort sections or PRO­
CEDURE functions. It is recommended that DEBUG be called at the end of the 
Dynamic section. This insures that all computations of the dynamic simulation 
are completed before DEBUG is called. DEBUG may not be called from the Ter-
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TIME ALT ANGLE VEL G 
0.0 3.0000E 05 0.0 7.7258E 03 8.9lt47E 00 

0.300000E 06 0.622078E-Ol 0.773036E 04 0.937500E 00 
0.300000E 06 O. 186 734E 00 0.773956E 04 0.281250E 01 
0.300000E 06 0.436232E 00 0.775795E 04 0.656250E 01 
0.300005E 06 O.999766E 00 0.779932E 04 0.150000E 02 

1.5000E 01 3.0001E 05 9.9977E-Ol 7.7993E 03 8.9lt46E 00 
0.300049E 06 0.200900E 01 0.787284E 04 0.300000E 02 

3.0000E 01 3.0005E' 05 2.0090E 00 7.8728E 03 8.9445E 00 
0.300171E 06 0.302769E 01 0.7946"28E 04 0.450000E 02 

4.5000E 01 3.00l7E 05 3.0277E 00 7.9463E 03 8.9lt42E 00 
0.300409E 06 0.4055HE 01 0.801958E 04 0.600000E 02 

6.0000E 01 3.0041E 05 4.0558E 00 8.0196E 03 8.9436E 00 
, 0.300803E 06 0.509327E 01 0.80927lE 04 0.750000E 02 

1.5000E 01 3.0080E 05 5.0933E 00 8.0927E 03 8.9425E 00 
0.301393E 06 0.b14008E 01 0.816564E 04 0.900000E 02 

9.0000E 01 3.0139E 05 6.1401E 00 8.1656E 03 8.9lt09E 00 
0.302219E 06 0.1l9613E 01 0.823830E 04 0.105000E 03 

1.0500E 02 3.0222E 05 7.1961E 00 8.2383E 03 8.9387E 00 
0.303321E 06 O. 826135E 01 0.831068E 04 0.120000E 03 

1.2000E 02 3.033ZE 05 8.2614E 00 8.3107E 03 8.9358E 00 \ 1.3500E 02 3.0474E 05 9.3317E 00 8.3153E 03 8.9320E 00 
1.5000E 02 3.0647E 05 1.0402E 01 8.3134E 03 8.9273E 00 
1.6500E 02 3.0852E 05 1.1471E 01 8.3112E 03 8.9218E 00 Output from FORTRAN Statements 
1.8000E 02 3.1089E 05 1.2539E 01 8.3087E 03 8.9155E OO~ 
1.9500E 02 3.1358E 05 1.3601E 01 8.3058E 03 8.9084E 00 
2.1000E 02 3.1658E 05 1.4674E 01 8.3026E 03 8.9004E 00 
2.2500E 02 3.1990E 05 1.5740E 01 8.2990E 03 8.8915E 00 Output from PRINT Statement' 
2.4000E 02 3.2353E 05 1.6804E 01 8.2951E 03 8.8"819E 00 
Z.5500E 02 3.2741E 05 1.7868E 01 8.2909E 03 8.8715E 00 
2.1000E 02 3.3112E 05 1.8930E 01 8.2863E 03 8.8602E 00 
2.8500E 02 3.3628E 05 1.9991E 01 8.Z814E 03 8.8482E 00 

Fig. 3.30 Example of mixed FORTRAN and CSMP output. 

"'" '" "'" 
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minal segment since this segment is not executed until the end of the run. Logical 
control instructions can be used with DEBUG but they should not be used to 
"branch around" the CALL DEBUG statement at TIME = O. The DEBUG 
subroutine can be used several times in one program. 

Figure 3.31 shows a DEBUG statement added to the program of Example 3.8, 
which simulated the motion of a space vehicle. To simplify the program, all 
FORTRAN output statements are removed. 

LABEL PROGRAM TO CALCULATE THE ORBIT OF SATELLITE USING CALL DEBUG 
INITIAL 

CONSTANT REARTH = 6.313E6. C = 3.983E14, ALTO = 300000.0 
RO = REARTH + ALTO 
G = C/(RO*RO) 
OMEGAO = SQRT(G/RO) 

DYNAMIC 
NOSORT 

A = 0.0 
IFITIME.LE.1Z0.0) A = 4.905 

SORT 
G = C/IR*R) 
ROD = R*OMEGA*OMEGA - G 
OMEGAO = IA - 2.0*RO*OMEGA'/R 
RD = INTGRLCO.O,ROD' 
R = INTGRLCRO,RD) 
OMEGA = INTGRLtOMEGAO,OMEGAD) 
ANGLE = (180.013.14159 )*1 NTGRLC 0.0, OMEGA) 

NOSORT 
ALT = R - REARTH 
VEL = SQRTCRO*RD + (R*OMEGA)**Z) 

* THE FOLLOWING DEBUG STATEMENT WILL PRINT THE VALUE OF ALL VARIABLES USEO 
* IN THE PROGRAM FOR 4 ITERATIONS. THE OUTPUT WILL START AT TIME: 1600, 
* OR ON THE FIRST INTEGRATION STEP AFTER TIME = 1600. 

CALL DEBUG(4,1600.0) 
TERMINAL 

TIMER FINTIM \ 9500.0; OUT DEL = 120.0 
ABSERR R = 1.0 
FINISH ANGLE = 360.0 
PRTPLT ALT (ANGLE. VEL, G) 

END 
STOP 
ENOJOB 

Fig. 3.31 Program to illustrate the use of CALL DEBUG. 

The DEBUG output is shown in Fig. 3.32. Note that the first output occurred 
at TIME = 1620.0 which is the first integration step after TIME = 1600.0. Since 
KEEP was equal to 0 in all four DEBUG printings, none of the outputs represent 
a valid integration step. The six-digit symbols beginning with ZZ are generated by 
the CSMP program. 

PREPARE 

If the user's computer installation has offline plotting facilities, data generated 
by CSMP programs can be plotted on offline X-Y plotters. The PREPARE state­
ment allows the user to specify up to forty-nine variables for offline plotting pur-
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CSMP RKS INTEGRATION 

DEBUG OUTPUT KEEP- 0 
TIME" 1.b200E 03 DELT .. 1.2000E 02 

OUTDEL- 1.2000E 02 
ll0005" 1.7793E 00 
ll0009" 8.88l0E-04 
llOOOb= 0.0 

DEUuN= 9.5000E-04 
RD "1.lb93E 03 
ROD = -1.4011E-0 1 
ll0002= 0.0 
REARTH= b.3730E Ob 
A = 0.0 
ll0007 a 0.0 

FINTIM" 
R 
ll0008" 
RO 
C 

9.4800E 03 
7.95l0E Ob 
1.1727E 03 
b.b730E Ob 
3.9829E 14 
1.0195E 02 

PROEL = 0.0 
OMEGA = 8.8021E-04 
OMEGAD= -2.5890E-07 
OMEGAO= 1.1578E-03 
ALTO " 3.0000E 05 
AL T .. 1.57aOE Ob G .. b.3003E 00 

VEL .. 7.0955E 03 

DEBUG OUTPUT KEEP" 0 
TIME = 1. b200E 03 DELT = 1.2000E 02 

OUTDEL= 1.20DOE 02 
llOO05" 1.7793E 00 
HOO09" 8.8021E-04 
llOOOb" 0.0 
G .. b.3002E 00 
VEL 7.0955E 03 

DEBUG OUTPUT KEEP" 0 
TIME = 1.b500E 03 OELT 1.2000E 02 

OUTOEL= 1.2000E 02 
llOO05- 1.8051E 00 
llOO09= 8.8020E-04 
lZOO06" 0.0 
G 6.2450E 00 
VEL " 1.0641E 03 

DEBUG OUTPUT KEEP= 0 
TIME ,. 1.6500E 03 DELT .. 1.2000E 02 

OUTDEL= 1.2000E 02 
llOO05= 1.8055E 00 
lZOOO9= 8.1244E-04 
ZlOO06= 0.0 
G = 6.2452E 00 
VEL " 1.0b49E 03 

DEUIIN= 9.5000E-04 
RO 1.lb93E 03 
ROD .. -1.40l2E-Ol 
llOO02= 0.0 
REARTH= b.3730E 06 
A 0.0 
ZZOO07 .. 0.0 

DELMIN= 9.5000E-04 
RO ,. 1.1651E 03 
ROD .. -1.b642E-01 
ZZOO02= 0.0 
REARTH= 6.3730E 06 
A = 0.0 
ZZOO01= 0.0 

OEL'41N= 9.5000E-04 
RO a 1.lb43E 03 
ROD = -1.649IE-Ol 
l10002= 0.0 
REARTH= 6.3730E Ob 
A " 0.0 
ZlOO07= 0.0 

ANGLE = 

FINTIM= 
R " 
llOO08" 
RO 
C 
ANGLE = 

FINTIM= 
R 
llOO08= 
RO .. 
C 
ANGLE .. 

FINTIM= 
R 
llOO08= 
RO 
C 
ANGLE = 

9.4800E 03 
1.95l0E Ob 
1.lb93E 03 
b.b130E Ob 
3.9829E 14 
1.0195E 02 

9.4800E 03 
7.98blE Ob 
1.lb93E 03 
6.6130E 06 
3.9829E 14 
1.0346E 02 

9.4800E 03 
7.9860E 06 
1.165lE 03 
6.6130E 06 
3.9829E 14 
1.0344E 02 

PRDEL = o. a 
OMEGA = 8.8020E-04 
OMEGAO= -2.5889E-07 
OMEGAO= 1.1578E-03 
AL TO " 3. OOODE 05 
ALT " 1.578DE 06 

PRDEL = 0.0 
OMEGA = 8.7244E-D4 
OMEGAD= -2.5456E-07 
OMEGAO= 1.1578E-03 
ALTO " 3.0000E 05 
AL T = 1.o131E 06 

PRDEL = O. a 
OMEGA = 8.7257E-04 
OMEGAD= -2. 5443E-07 
OMEGAO= 1.1578E-03 
AL TO 3. OOOOE 05 
ALT .. 1.b130E Ob 

***SIMULATION HAL TED*** ANGLE .. 3.6595E 02 

Fig.3.32 DEBUG output form program of Fig. 3.31. 

poses. Its use for preparing the variables X, Y, and Z for plotting is illustrated 
below. 

PREPARE X, Y, Z 

Using the PREPARE card is similar to using the PRINT statement; the similar­
ities are listed below. 

The CSMP continuation device C ... ) may be used for continuation of the 
PREPARE statement to additional cards. 

2 Only one PREPARE statement should be used. 

3 The independent variable TIME is automatically included. 

4 The heading contained in TITLE statements is specified in the data set 
generated by the PREPARE card and is available to the X-Yplottin~ pro­
grams. 

5 The output interval is specified by the timer variable OUTDEL. Note, the 
output interval for the PRINT statement is PRDEL. 

The data from the PREPARE card is generated on the I/O device specified 
as number 15. Depending upon the computer operating system, this data will 
either be stored on a disk-storage device or on magnetic tape. 
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The simulation of the dynamic response of a pneumatic piston-cylinder sys­
tem illustrates the use of the PREPARE statement. 

Example 3.9 

A common engineering problem involves simulating the response of a piston driven 
by pressurized air flowing into a cylinder. This is a reasonably complex problem since it 
involves the fluid- and thermodynamics of a compressible fluid. Figure 3.33 shows a 
drawing of the system where air is flowing at a subsonic velocity through a small orifice 
to the cylinder. 

Cross-sectional area = 0.4 ft2 Weight = 280 lb 

• 
Open to atmosphere 

Area of orifice = 
0.0008 ft2 

P = pressure 
T = temperature 
V= volume 

PI supply pressure 

Fig. 3.33 Piston cylinder system. 

The mass flow rate for subsonic velocity of an ideal gas, without losses, through an 
orifice is 

rh = C[(J)2IY - (~ry+1)/Yr/2 (3.17) 

where C = A 1P l,j(1' ~girRTl (3.18) 

An energ~ balance on the air in the adiabatic cylinder yields the following expression 
for the time rate of change of cylinder air temperature. 

. (-P1X + rhCpTl - rhcvT) 
T = (3.19) 

cvm 
T(O) = To 

The volume inside the cylinder is 

V=Vo +A·X (3.20) 

Assuming thermodynamic equilibrium, the perfect gas law can be used to solve for 
the cylinder pressure. 

m·R·T 
P= V (3.21) 
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Newton's second law can be used to calculate the acceleration of the piston 

X = A(P - Po) 
WEIGHT/gc 

(3.22) 

where A 1 = area of orifice, 0.0008 ftz 

P 1 = supply pressure, 3900.0 lbf/ft 2 

Tl = temperature of incoming air, 5600 R 

R = gas constant, 53.35 ft-Ibf/lbm-oR 

X = movement of piston, ft 

I' = ratio of specific heats, 1.4 

A = area of piston, 0.4 ft2 

C p = specific heat of air at constant 
pressure, 0.24 Btu/Ibm-oR 

Cv = specific heat of air at constant 
volume, 0.171 Btu/Ibm-oR 

To = initial temperature of air in cylinder, 5300 R 

Po = atmospheric pressure, 2116.8 Ibf/ft3 

Mo = initial mass of air in cylinder 

Vo = initial volume of cylinder, 0.06 ftJ 

gc = 32.17 Ibm-ft/lbf-sec2 

WEIGHT = weight of piston and attached mass, 
280.0 Ibm 

J = 778 ft-Ibf/Btu 

Symbols Used in 
Program of Fig. 3.34 

Al 

PI 

Tl 

R 

X 

GAMMA 

A 

CP 

CV 

TO 

PO 

MO 

VO 

GC 

WEIGHT 

J 

Equations (3.17), (3.19), and (3.22) are contained in the program of Fig. 3.34 and are 
integrated to determine the response. 

The PREPARE card in the program of Fig. 3.34 is used to generate a data set for the 
offline plotting of the variables X, XD, and XDD. 

Once the data set is generated, the user must supply a program to interface directly 
with the plotter. In this example the velocity XD and acceleration XDD are plotted as a 
function of displacement X. The interfacing program that was used at the University of 
Tennessee for a CALCOMP 763 plotter is shown in Fig. 3.35. It should be noted that 
each computer installation will require its own interfacing program. 

Figure 3.36 shows the PRINT output from the program of Fig. 3.34. Figure 3.37 is 
the resulting offline X-Y plot. 

DECK 

In simulation studies it is often necessary to make several runs from the same 
program changing only parameters and output statements. Computer time can be 
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li'HTIAL 
TITL~ PROGRAM Ta STUDY THE DYNAMICS OF A PNEUM~TIC PISTON-CYLINDER 
TITLE ANO TO IlLUST~ATE THE USE 8F THE PRFPARE STATEMENT. 

CONSTANT Pl = 3900.0, T1 = 560.0, At ~ 0.0008, PO = 2116.8, 
TO = 530.0. VO = 0.06. A = 0.4, WEIGHT = 280.0, CP = 0.24, 
CV = 0.111, R = 53.35, J = 778.0, GA~~A = 1.4, GC = 32.11 
MO = PO*VO/(R*TOI 
C = A1*Pl*SQRT(2.0*GC*GAM~A/(R*T1*(GAMMA - l~a)11 

OYNA~IC 
MD = C*SQRT«P/Pll**(2.0/GAMMAI - (P/P1J**«GAMMA + 1.OJ/GAMMA •• 
V = VO + A*X 
TO = (-P*A*XD/J + ~D*CP*T1 - MO*CV*TJ/(M*CV' 
P = M*R*T/V 
XOO = (P - PO,*A/(WEIGHT/GCJ 

M = INTGRl(~C.MO) 
T = INTG~l(TO,TOI 
XD = INTGRl(O.O,XODJ 
X = INTGRl(C.C,XDI 

PRINT X, XD, XDD, T, TO, M, MD, P 
FINISH X = 1.0 
TIMER FINTI~ = 5.0, PRD:L = 0.01. QUTDEl = 0.005 

* THE FOlLOWIN~ PREPARE CARD IS USED TO GENERATE A DATA SET THAT 
* CAN BE USED FeR QFF LINE PLOTTING Of THE VARIABLES X, XO, AND XOO. 

PREPARE X, XD, xeD 

cNU 
:iTJP 
i:NDJOB 

Fig. 3.34 Program to simulate the response of a pneumatic piston 
cylinder system and to illustrate the use of the PREPARE state­
ment. 

Ch.3 

saved in this situation by making a punched card deck of the translated CSMP 
program. An understanding of the inner workings of the CSMP program is obvi­
ously not necessary for successfully programming. However, the following brief 
description of the CSMP program will enable the reader to better understand the 
advantages of using a translated punched deck. For the reader who is interested in 
more detail, the CSMP System Manual(!) is recommended. 

Once the user's program is read into the computer, the CSMP program begins 
to build the subroutine UPDATE. This is called the translation phase. In generating 
UPDATE, three primary tasks are accomplished. 

1 The statements in the sort sections are placed in the proper order. 

2 The proper transfer of control for the various segments and sections is 
established. 

3 Common statements are established to make the proper variables available 
between UPDATE and the CSMP modules. 

In the next step, the FORTRAN G compiler is invoked and the linkage editor 
then links UPDATE with the various CSMP execution modules. Control is then 
passed to MAIN which is the main or calling program. During the execution of the 
program, MAIN calls the appropriate subroutine to perform the necessary opera-
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II EXEC FJPTGCLG.GOREG=96K 
IIFJRT.SVSIN DO * 

DIMENSION IBUF(bb4) 
[) I MEN S ION TIM E ( lOu 0) • x ( lOu 0' , v I 1 00 0' ,Z ( 1 0 ° 0) ,X DO T( 1 ° ° ° , 
DI~fNSION ICODl(20',ICODEl(20' 
DO 5 I = 1,11 
READ (8.80' DUMMY 

5 CONTINUE 
80 FORMAT (A4) 

READ (5.60) ICODE 
READ (5.60) ICODEl 

60 FORMAT I 20A4 ) 
NOPTS = 110 
DO 10 I = 1.NOPTS 
READ (8.END=20) TIMEII),XII),YII),ZIU 

10 CONTINUE 
20 CALL PLOTS (IBUF.664,60.0) 

CALL Z IPOFF 
YAXIS = 9.0 
XAXIS = 10.0 
DO 100 J = 1,3 
NPTS = NOPTS 
NPTS = NPTS I J 
NST = NPTS * J +1 
NOEL = NPTS * J + J + 1 
CALL SCALE ITIME.XAXIS,NPTS,J' 
CALL SCALE IX,XAXIS,NPTS,J) 
CALL SCALE IV,YAXIS,NPTS,J' 
CALL SCALE (Z,YAXIS,NPTS,J) 
CALL SYMBOL (7.0,9.03,0.14,10,0.0,-1) 
CALL SYMBOL (7.5,9.0,O.14,ICODE,O.O,80) 
CALL SYMBOL (7.0,8.7,0.14,01,0.0,-1) 
CALL SYMBOL (7.5,8.b4,0.14,ICODE1,0.0,80) 
CALL AXIS (-0.75,0.O,3HXDD,+3,YAXIS,90.0,ZINST),ZINDEl)) 
CALL AXIS (0.O.O.0.2HXD.+2.YAXIS.90.0,Y(NST).V(NDEl)) 
CALL AXIS (O.O,O.O,lHX,-l,XAXIS,O.O,XINST),XCNDEL)) 
CALL FLINE (X,Y.NPTS,J,+1,10) 
CALL FlINE (X.Z,NPTS,J,+1,01) 
CALL PLOT (15.0,0.0,-3' 

100 CONTINUE 
CALL PLOT (0.0.0.0,999) 
NSTOP = NOPTS 
WRITE (6,63) ITIMEIL),XIl),Yll),ZCl),l=1,NSTOP) 

63 FORMAT (lH .4(E14.6.5X)) 
STOP 
END 

IIGO.PLOTTAPE DO SYSCUT=P 
II GO. fT 08 FOOL DO OS N=PlOTT ER, DC B= (R ECFM= VS, lRECL=2 55, BlKS I IE=2550) , 
II UNIT=2400,DISP=(OlD,KEEP),LABEL=I,SL"IN),VOL=SER=002330 
IIGO.SYSIN DO * 
XD I VELOC ITY) 
XDD (ACCELERATION) 
1* 

Fig.3.35 Program used at The University of Tennessee to inter­
face between the data set generated by the PREPARE card and a 
CALCOMP 763 plotter. 

131 

tion; integration, printing, plotting, initialization, etc. This total operation of the 
CSMP program is quite complicated. A strong background in all areas of pro­
gramming is required if the process is to be understood. 

When the label DECK is included in a program with the appropriate JCL 
(job control language) cards, a punched card deck is made. The deck includes the 
CSMP subroutine UPDATE and all user-supplied subroutines, a listing of sym-
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PRO"RAM TJ STUDY THE DYNAMICS OF A PNEUMATIC PISTON-CYlINDER RKS I NTEGR AT I aN 
AND TO ILLUSTRATE THE USE OF THE PREPA~E STATEMENT. 

TIME X XO XDD T TO MD 
0.0 0.0 C.O -1.0098E-Oft 5.3000E 02 3.9930E 03 ft.ft918E-0) 1.001lE-02 2.1168F 0) 
1.500u£:-1)2 1.Z.369E-03 2.ft369E-Ol 3.126ftE 01 5.7555E 02 2.08HE 03 5.5101E-03 6.ft301E-02 2.1971<: 03 
3.0000E-Ol 9.lft45E-03 8. fIl53E -01 4.90ne 01 5.9341F 02 3.7ft45E 02 6.ft049E-03 5.5621"-02 3.18j3" 03 
ft.5000E-v2 2.1946E-02 1.6260<: 00 4.9603E 01 5.9023E 02 -6.6606E 02 1.2246E-03 1).5241E-02 ~.1961E 03 
6.0000E-Ol 5.1628E-02 2.3086E 00 4.0511E 01 5.1696E Ol -1.01ZZE 03 8.0899E-03 6.C393E-02 2.9983E 03 
7.500uE-Ol 9.6383E-02 l. elS8E 00 l.8966E 01 5.6118<: 02 -9.1l91E 02 9.0332E-03 6.5095E-02 2.1471" 03 
9. OOOOE -Ol 1.4161E-"01 3.1876E 00 1.8H3E 01 5.ft841F 02 -7.91591: Ol 1.0033E-02 6.194ljE-02 2.511>4!: 03 
l. O:'Ouc-u 1 1.9114E-Ol 3.3905E 00 9.6998E 00 5.3812F. 02 -5.9082E 02 1.106I)E-02 b.9372F-02 2.3219" 03 
1.2000E-Ol 2.ftl8lE-01 3.ft1l34E 00 2.9908E 00 1).3063E Ol -4.1l09E 02 1.lllGE-02 6.9953E-02 2. UIl9E 03 
1.3500E-Ol 2.9520E-Ol 3.4886E 00 -2.0441E 00 5.2'>591: 02 -2.6475E 02 1.3161E-02 1.0l02E-02 2.0123E 03 
1.500uE-Ol 3.4115E-01 3.428'lE 00 -5.1l83E 00 5.2254F. 02 -1.4616': 02 1.4212(-02 1.0057F-02 1.9924E 03 
1.6500e-il1 3.9183E:-01 3.3225<: 00 -8.3020!: 00 5.2107!: 02 -5.3236E 01 1.5262E-02 6.99481"-02 1.9362" Ol 
1.8000E-vl 4.4661E-Ol ~. 1842E 00 -1.0010E 01 5.20841: 02 2.0588E 01 1.6311F-02 6.9841E-02 1.8990E 03 
1.9500E-v1 4.'l326E-01 3. 02 51E 00 -1.1009E 01 5.2160E 02 1.8645E 01 1. 7358E -02 6.976510-02 1.8172': 03 
2.1000E;-ill 5.3738E-01 2.8568E 00 -1.1430E 01 5.2314!: 02 1.239b!' 02 1.8404E-02 6.9731E-02 1.8681 e 03 
l.l500E-Jl 5.1895E-Ol 2.6852E 00 -1.lH6F 01 5.25HE 02 1.5a11E 02 1.9450E-02 6.97351:'-07. 1.86<)3!: O~ 
2. 'tOOOE-01 6.1196f-Ol 2.~175E 00 -1.0930E 01 "i .21851; 02 1.84150:: 02 2 .04961'-02 6.9112E-02 1.8190" 03 
2.!J500E-01 6.54521:-01 2.~5eSE· co -1.0165E 01 5.3071': 02 2.0311E 07 7. • 1 5'-3 E-02 6.9830E-02 1.89560:: 0'\ 
1..7000E-vl 6.8819E-Ol 2.2138E 00 -9.14151' 00 "i.33911'0 02 2.1419E 02 2.2591f-02 6.9899E-02 1.9119!: 03 
2.8500E-vl 7. ?102E-Ot 2. OA57E 00 - 7.916 7E 00 5.3718!: 02 2.2051E 02 2.36ftOE-02 6.99681'-02 1.9445F. 03 
3. OOOOE -vl 1.5146E-Ol 1.9710!: 00 -6.5430E 00 5.405010 02 2.2086E 02 2.46901'-02 1.002910-02 1.9144'" 03 
3.1~OOE-Ol 1.1l043E-Ol 1. 88C;Cl" 00 -5.0102E 00 5.4378F 02 2.1637E 02 2.5741E-02 7.0074£-02 2.0065E 03 
3.3000c;-1.I1 11.011271'-01 1. e252E 00 - 3. 5463E 00 5.469710 02 2.0755E 02 2.67<)21:-02 7.00<)9E.,.02 2.03<)6<: 03 
3.ft500E-v1 8.3530E-Ol 1.78350:: 00 -2.01101' 00 5.4999E 02 1.94900:: 02 2 ~7843E-O? 7.0107.F-02 2.01291" 03 
3.6000c;-vl 8.6189E-Ol 1.164510 00 -5.25ft6E-Ol 5.5280'" Ol 1.7898E 07 2.BR95F-02 7.00R3E'-02 2.1054E 03 
3.15001:-1.11 8.8835E-Ol 1.1673E 00 8.8864E-Ol 5.5534E 02 1.6039E 02 2.9946E-02 7.0045E-02 7.136110 03 
3.9000E-Ol 9.1501E-Ol 1.19061= 00 2.1899E CO 5.57&01= 02 1.39150:: 02 3.0996[-02 6.9993E-02 2.1645'" 03 
4.0'00E-Ol 9.421bE-01 1. a323E 00 3.3486E CO 5.5953E 02 1.1172E 02 3.20461'-02 6.9<)33F-02 7.1897E 03 
4.2JOOE-Ol 9.7006E-Ol 1.8902E 00 4.3415E 00 5.6112E 02 9.4911E 01 3.3094E-02 6.<)a72E-02 2.2113E 03 
't.351lIlE-,)J. 9.98931'-01 1.9616E 00 5.1'H9E 00 5.6231E 02 7.2167E 01 3.4142~-02 6.9814"-07 7.2289r 03 

***S1MULATlON HALTED*** X = 1.0063E 00 

4.}815E-01 1.00631' 00 1.Cl813!: 00 5.32481; 00 5.6263E 02 6.6527E 01 3.4403F.-02 6.98011'-02 2.2327" 03 

Fig. 3.36 PRINT output from the simulation of the piston 
cylinder system. 

boIs used in the execution phase, and all data, execution, and output statements. 
When the translated deck is used for initiating a run, generating the subroutine 
UPDATE is not necessary and consequently, computer time is saved. 

Any of the data, execution, and output control statements can be changed in 
the translated deck. Minor modifications can even be made in the structure state­
ments of the translated punched deck. A complete discussion of the use of trans­
lated decks is included in the CSMP System Manual. (1) 

Figure 3.38 shows the deck statement inserted in the program of Example 3.9. 
A listing of the resulting punched card deck is shown in Fig. 3.39. Included in this 
listing are the JCL cards that are required at The University of Tennessee's com­
puting center to make additional runs. 

Additional runs can be made by changing the data, execution, and output 
control statements that appear at the end of the punched deck. It is suggested 
that the user contact the computer installation to determine the required JCL 
cards. 

User Defined Functions and Subroutines 

Functions most often encountered in digital simulations have been pro­
grammed as a fundamental part of CSMP. Several of these functional blocks were 
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Fig. 3.37 Offline X-Y plot of piston response. 

presented in Chap. 2 and the remaining ones are given in Appendix I. Such func­
tions are typically of the form Y = REALPL(IC, P, X). It is impossible to foresee 
the various types of relationships that might be needed in every situation and thus 
an all-encompassing set of expressions cannot be pre-programmed. Also, the stor­
age requirements for including such flexibility would soon become completely 
unreasonable. Having recognized this, CSMP was written so that users could 
easily develop their own functions relative to a particular problem or even to a 
given discipline. Such capability is available through the use of MACRO, PRO­
CEDURE, and standard FORTRAN subprograms. 

The purpose of this section is to present basic guidelines for developing and 
using extended functional capabilities. The MACRO type function will be intro-

0.90 1. 00 
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TITLE PROGRAM TO STUDY THE DYNAMICS OF A PNEUMATIC PISTON-CYLINDER 
TITLE AND TO ILLUSTRATE THE USE OF THE DECK STATEMENT 
INITIAL 

CONSTANT Pl = 3900.0. Tl = 560.0. Al = 0.0008. PO z lI16.8, 
TO = 530.0. VO = 0.06. A = 0.4, WEIGHT = 280.0. CP ,. 0.l4. 
CV = 0.111. R = 53.35. J = 778.0, GAMMA = 1.4, GC = 3l.17 
MO = PO*VO/CR*TO) 
C = Al*Pl*SQRTCl.O*GC*GAMMA/CR*Tl*(GAMMA - 1.0))) 

DYNAMIC 
MO = C*SQRT(P/P~)**(2.0/GAMMAt - (P/Pl)**CCGAMMA + 1.OJ/GAMMAJJ 
V = VO + A*X 
TO = (-P*A*XD/J + MD*CP*Tl - MO*CV*TJ/(M*CV) 
P = M*R*T/V 
XOD = (P - POt*A/CWEIGHT/GCJ 

M = INTGRLCMO,MO) 
T = I NTGRL no, TOj 
XD = INTGRL(O.O.XDD) 
X = INTGRLCO.O.XO) 

PRINT X. XO. XOO. T. TO. M, MD, P 
FIN I SH X ,. 1 • 0 
TIMER FINTIM = 5.0. PRDEL = 0.015 

* THE FOLLOWING DECK STATEMENT WHEN USED WITH THE PROPER JeL CARDS 
* WILL RETURN A PUNCHED CARD DECK OF THE TRANSLATED PROGRAM. 

DECK 

END 
STOP 
ENOJOB 

Fig. 3.38 Program to simulate the response of a pneumatic 
piston cylinder system and to illustrate the use of the DECK state­
ment. 

Ch.3 

duced first and will be followed by the PROCEDURE and FORTRAN subpro­
grams. As usual, example programs are given which illustrate the use of these func­
tions in a complete simulation. 

MACRO FUNCTIONS 

In many respects a macro function can be compared to a FORTRAN sub­
routine although they are definitely not the same. As a simple illustration suppose 
the following set of equations is used within the body of a more comprehensive 
simulation. 

Ax(t) + By(t) = fl(t) 

Cx(t) + Dy(t) = f2(t) 

(3.23) 

(3.24) 

We assume that A, B, C, and D are fixed parameters whilefl(t) andf2(t) are time 
varying functions defined elsewhere in the simulation. The problem is to solve 
for x(t) and yet). A matrix form of solution is 

[
X(t)J = [A BJ-l [fl(t)J 
yet) C D f2(t) 

(3.25) 



~IJRROlJTtNE UPDATE 
CQMM~~ 1l9901(51.Il9901.ll9902.1l9902,ll990],IZ990],Zl9991(54) 
Cn"4"1nN TIME 

1.nElT .OElMIN.FINTIM.PPDEL .OUTDEl.M ,T ,XD ,X 
1.Mn .TO ,XOD .llOJ07.MO ,TO ,ll0004,ll0006,P1 
1.Tl .Al .PO .VO .A ,WEIGHT,CP ,CV ,R 
1.J ,GAMMA .GC .C .V ,P 

cnMMCN Z19992(79b61.NAlARM.IZ9993,ZZ9994(4171,KEEP,ZI9995(489I 
$.IlOOOO.Z1999b(8241,IZ9997,IZ999d,ZI9999( 811 

RFAl M 
1.M~ .MO .J 

G1 TO(]9995.39996.399~7.]9~981,I10000 
C SYSTEM SEGMENT UF MODEL 
39995 cn~TINUE 

119993: 35 
119997= 4 
Il9998= 34 
READ(S.3999JI(ZZ9999(1199991.119999=1, 811 

39990 FORMAT(18A41 
1l9901= 310019 
119902= 340032 
Il9903= 81 
GO TO 39999 

C INITIAL SEGMENT OF MODEL 
39996 CONTINUE 

"II}=PO*VOI (k*TOI 
C=Al*Pl*SQRT(2.0*GC*GAMMA/(R*Tl*(GAMMA-l.0111 
(;) TO 39999 

C DVNAMIC SEGMENT OF MODEL 
39991 CONTI NUE 

V:VO+A*X 
P=M*R*T/V 
MO=C*SQRT«P/P11**(2.0/GAMMAI-(P/P11**«(GAMMA+1.0J/GAMMAl) 

C M =INTGRL (MO ,MO » 
TD=(-P*A*XD/J+MO*CP*T1-MO*CV*T"(M*CV) 

C T =INTGRL (TO ,TO 
XDD=(P-POI*A/(WEIGHT/GCI 

C xo =tNTGRl (ll0004 ,XDD 
C X =INT&RL (Zl0006 ,XD 

Zl0007=XD 
GO TO 39999 

C TER~INAl SEGMENT OF MODEL 
39998 cn~TINUE 
39999 cnNTI ~UE 

RETUR~ 

END 
IllKED.SYSLIB 00 
II DO 
II DO DSN=UTCC.APPlIB.DISP=SHk 
IllKED. SY SIN DO DSN=UTCC. PA~ MLI B( LKEDCSMP» ,{) I SP=SHR JCL cards added to 
II GO .FTl3FOOl DO UN IT= wORK ,SPACE= (CYL. (ttl»" 
II DCB=(~ECFM=VBS ,LRECL=200,BLKS IZE=L004) the punched deck 
IIGO.FTI4FOOI 00 UNIT=WORK,SPACE=(CYL,(l,l)). 
II OCB=(RECFM=VBS,lRECL=200.BLKSIZE=1004) 
I I GO. S V S J NOD * 
TIME DFlT DELMINFINTIMPROEL CUTDElM T XD X MD TO SVMB 1 
XOD ll0007MO TO ll0004ZZ0006P1 Tl Al PO VO A SYMB 2 
WEIGHTCP CV R J GAMMA GC C V P SYMB 3 

SYMB 4 
SVMB 5 

These data, execution,and output control V 
statements can be changed. 

TITLE PRnGRAM TO STUDY THE DYNAMICS OF A PNEUMATIC PISTON-CYLINDER 
TITLE AND TO ILLUSTRATE THE USE OF THE DECK STATEMENT 

CONSTA~T P1 = 3900.0, Tl = 560.0, Al = 0.0008, PO = 2116.8, ••• 
TO = 530.0. VO = 0.06. A = 0.4, WEIGHT = 280.0. CP = 0.24, 
CV = 0.171, ~ = 53.35. J = 778.0~ GAMMA = 1.4, GC = 32.17 
PRINT X. XO. XDD. T, TO, t..1. MD, P 
FINISH X = 1.0 
TIMER FINTIM = 5.0, PRDEl = 0.01 

END 
STOP 

Fig.3.39 Listing of cards returned by DECK statement from 
program in Fig. 3.38. 

141 
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A macro giving the solution for x(t) and yet) can be formulated as follows 

MACRO ANSI, ANS2 = INVERT(A, B, C, D, FUNl, FUN2) 
DETERM = A*D - C*B 

ENDMAC 

All = D/DETERM 
A12 = - B/DETERM 
A2l = -C/DETERM 
A22 = A/DETERM 
ANSI = All *FUNI + A12*FUN2 
ANS2 = A2l *FUNI + A22*FUN2 

Ch.3 

The calculations as specified in the macro could be invoked from the program by 
the following statement. 

P, Q = INVERT(6.0, 7.1, -2.3, 18.0, Nl, N2) 

The above instruction will execute the statements of the INVERT macro and 
consequently solve for P and Q from the following equation set. 

6P + 7.lQ = Nl 

-2.3P + 18P = N2 

(3.26) 

(3.27) 

At another point within the main program the macro might again be invoked by 

x, y = INVERT(PARl,PAR2**2, F-M,RING,INl,IN2) 

More will be said later about the function outputs and the arguments of the macro 
name. 

A macro is a parallel-type function. This means that the statements written 
between MACRO and END MAC will be arranged by the CSMP sort algorithm 
to insure that calculations are performed in the correct order. In addition,. the func­
tion defining the macro (INVERT in the above example) will be sorted within 
other statements of the overall program. 

Fundamental rules which must be observed when using macros are 

1 Macro definition cards must be placed at the beginning of the program 
and precede any structural statements even though the structural state­
ments are in an INITIAL segment. Generally, the only cards placed before 
a macro are those which relate to FIXED, STORAGE, HISTORY, 
MEMORY, and RENAME. 

2 The very first card of the macro is a translational control statement con­
taining the word MACRO and is followed, on the same card, by the ex­
pression representing the function. At least one blank space must follow 
MACRO and the first output variable. The last card of the macro must 
contain the letters ENDMAC. For a single output variable one might 
have 
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MACRO FORCE = SHARP(MASS, TORQUE, CONSTl) 

Macro statements 

END MAC 

3 If necessary, the function defining the macro may be continued up to a 
total of four cards using the customary ... for continuation. As an illus­
tration one might have, 

MACRO OUT = CALCU(M2l,M22, ... 
M3l, M32, INl, IN2) 

Statements within the body of the macro cannot be continued from one 
card to another using the ... feature. Therefore, continuation cards cannot 
appear in a macro other than the first statement defining the function. 

4 There are no restrictions on the number of output variables, input vari­
ables, and parameters used in defining a macro other than that the total 
function statement cannot exceed four cards. The macro outputs and 
macro arguments must be separated by commas. 

5 All variables and parameters associated with the macro definition are 
"dummy" names with the exception of the unique name assigned to the 
function definition. Thus, 

Unique name 
i 

MACRO 
r-I 

SIG, RUN = FILSIM (XX2, JUMP, METX) 

r~' 
Dummy names 

When using this macro, the label FILSIM must be retained; however, 
SIG, RUN, XX2, JUMP, and METX can be replaced by other names. 
For example, the above macro could also be invoked by the statement 

TRIG, DECAY = FILSIM(6.4, CCX, (4.0 - B)/A) 

in which case the following replacements are made by the macro 

Replaces 
TRIG ---~)SIG 

DECAY ) RUN 
6.4 ) XX2 

CCX ) JUMP 
(4.0 - B)/A----+) METX 
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6 Once a macro function is defined it can be used several times in one pro-
gram. For example, 

AA, BX = FILSIM(ICl, DUM, RY) 
KY, NY = FILSIM(NUM, DEM, RELX) 
RED, WWW = FILSIM(3.2, A-M, LLP) 

can all be used to invoke the previously defined macro FILSIM (see 5 
above) in a single simulation. 

7 The arguments used in a macro statement can be literals, variables, sub­
scripted variables, and standard FORTRAN expressions. However, sys­
tem macros (CMPXPL, MODINT, LEDLAG, REALPL and INTGRL) 
cannot be used as arguments. Consider the macro definition given earlier 

MACRO SIG, RUN = FILSIM(XX2, JUMP, METX) 

The following two statements are valid. 

X, Y = FILSIM(Q**2, M(2), SQR T(B**2 - 4*A*C» 
RX, MY = FILSIM(SINE(O.1, 400.0, 0.0), STEP(O.O), AA) 

Statements which cannot be used include 

X, Y = FILSIM(9.3, INTGRL(O.O, Z), AA) 
I I 

i 
not allowed as arguments 

t 
X, Y = FILSIM(9.3, iREALPL(O.O, 0.2, W), AA) 

8 Neither a user defined macro function nor a system macro can be used as 
part of an expression in a structure statement. As an example, the follow­
ing is an invalid instruction. 

Q = SHARP(3.3, T, -4.71)/3.75 

9 Variables defined within the structure statements of a macro are not avail­
able for program output through the use of PRINT, PRTPLT, PREPARE, 
and RANGE. For a variable to be available as output data it must be 
defined as one of the output names of the macro. 

10 A macro may be invoked within another macro. For example suppose 
the following macro is defined. 

MACRO Y = STATE(All, A12, Bl, R, ICI) 
XIDOT = AlhXI + BhR + Al2 
Xl = INTGRL(ICI, XIDOT) 
Y=XI 

END MAC 

The macro STATE may be used in another macro called SIMULA as 
illustrated by 
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MACRO OUTX = SIMULA(INPUT, DIST, S11, S12, SBl, SICl) 
XX = STATE(Sll, S12, SBl, GAIN*INPUT, SICl) 
QQ = INTGRL(O.O, DIST) 
OUTX = XX + QQ 

ENDMAC 

11 As noted previously, macro structure statements may appear in any order 
since the sorting algorithm will place them in a correct sequence for com­
putation. Macro functions can be used either in the structure statements 
of a procedure function or in a nosort section. A macro so used will not 
be sorted and furthermore, a macro cannot invoke another macro when used 
in this way. 

12 Neither CSMP data nor control statements may appear between MACRO 
and ENDMAC. Also, FORTRAN control and input/output statements 
cannot appear unless they are embedded within a procedure function. 
Input and output statements can reference FORMAT statements but the 
FORMAT statements cannot appear in a macro; With the above excep­
tion, any CSMP or FORTRAN structure statements, including a sub­
routine call, may appear within a macro. 

Perhaps the best way to understand the rules and guidelines for formulating 
macros is to see how they are applied in several examples. 

A good policy to follow when developing a macro is to test the operation of 
the function before incorporating it into a more comprehensive simulation. The 
following example presents the development of a rather simple, but useful, macro 
and a test for asserting the correct operation of the function so generated. 

Example 3.10 

The desired operating characteristics of an on-off device are shown in Fig. 3.40. 
The actual device might represent a relay with deadspace, although here the purpose is to 
make the characteristics as general as possible. Once developed, the macro can be used as 
a subcomponent in a more extensive system. 

The macro may be generated by 

MACRO ,PLAY = RELAY(YPl, YP2, XPl, XP2, FLASH) 
IF(FLASH.GT.XP2.AND.FLASH.LT.XPl) GO TO 99 
IF(FLASH.GE.XPl) GO TO 98 
IF(FLASH.LE.XP2) GO TO 97 

99 PLAY = 0.0 
GO TO 96 

98 PLAY = YPI 
GO TO 96 

97 PLAY = YP2 
96 CONTINUE 

ENDMAC 
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Output 

YPI 

XP2 XPI 
Input 

YP2 

{ 

YPI, when input ~ XPI 
Output = YP2, when input ~ XP2 

0, when XP2 < input < XPI 

Fig.3.40 Desired characteristics of Relay-type device. 

The output, PLAY, and arguments YP1, YP2, XPl, and XP2, and FLASH are dummy 
symbols and can be replaced by other symbols when invoked from the main program. 
Notice that FORTRAN branching and logic statements have been used. Since the struc­
ture statements of a macro are sorted, the user would encounter difficulty using the pro­
gram unless steps are taken to insure the statements are not sorted. One way to avoid 
sorting is to place a card with the letters PROCEDURAL immediately following the 
macro definition card. This will be explained more fully in the next section dealing with 
procedure functions. Another way to avoid sorting is to place a NOSORT card before 
the program statement which invokes the macro. A program which uses this approach and 
also checks the performance of the macro is given in Fig. 3.41. The macro function is 
invoked by the statement 

OUTPUT = RELAY(LIMIT1, LIMIT2, BOUND1, BOUND2, INPUT) 

A sine wave with frequency of 6.28 radians/sec is used as the device input. The values of 
LIMITl, LIMIT2, ~OUND1, and BOUND2 have been specified on a Parameter card. 
The output from the program is given in Fig. 3.42, where one will note that the function is 
operating correctly. 

If the NOSORT card were omitted from the program in Fig. 3.41 the program would 
not run and an appropriate error message would appear. 

The major emphasis in developing CSMP was placed upon the creation of a simula­
tion language for handling problems which involve differentiation and integration. As 
shown in Example 3.11, however, one can write CSMP programs which do not solve 
differential equations. While such programs may certainly be written in FORTRAN or 
other higher-level languages, CSMP quite often gives a simpler formulation without 
using DO loops and subscripted variables. The following will present one such use of 
CSMP. 



Ch. 3 Advanced Features of CSMP 

MACRO PLAY = FELAY(YP1, YP2, XP1, XP2, FLASH) 
IF(FLASH.GT.XP2.AND.FLASH.LT.XPl) GO TO 9Q 
IF(FLASH.GE.XP1) GO TO 9~ 
IF(FLASH.LE.XP2) GO Tn 97 

99 PLAY = 0.0 
GO TO 96 

98 PLAY = YPl 
GO TO 96 

97 PLAY = YP2 
96 CONTINUE 

ENDMAC 
PAPAM LIMITl = 1.2, LIMIT2 = -1.8, BCUNDl = 1.0, BOUND2 -1.0 

~""OSORT 
INPuT = 3.0*SINE(0.0,6.2A,O.0) 
OUTPUT = ~ELAY(LIMtTl, LI~IT2, ROUNDl, BOUND2, INPUT) 
TIMER FINTIM = 1.0, OUTDEL : 0.02 
PRTPLT OUTPUT(INPUT) 
LABEL PEPFORMANC~ OF PELAY MACPO - EXAMPLE 3-10 
EII40 
STIJP 
E~OJQB 

*Placing the Macro in a Nosort section permits FORTAN 
logic and branching within the Macro. 

Fig.3.41 Program test for relay macro (Example 3.10). 

Example 3.11 
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A mortgage of $32,000 is to be financed through a bank on a 25 year 9 % interest 
note. We would like to write a program which will calculate and print the following: 
(1) the current month; (2) the monthly payment; (3) the interest paid each month on the 
loan; (4) the running total interest; (5) the amount applied each month toward reducing 
the original mortgage; (6) the total equity; and (7) the balance left to pay on the loan. 

A standard equation for determining the fixed monthly payments on a fixed-period 
loan is given by 

and 

(PdRM*S) 
Monthly payment = (S - 1) . 

where S = (1 + IRM)PERIOD 

P = original mortgage value 

IRM = monthly interest rate 

(3.28) 

(3.29) 

This calculation is performed only one time and can therefore be placed in the INITIAL 
segment of the program. 

We make the following definitions for programming convenience. 

MONINT = monthly interest 

BALANC = balance remaining on the loan 

MPA Y = amount paid each month toward reducing the loan 

PA Y = fixed monthly payments 

EQUITY = total amount paid off on the loan 

TOTINT = running total interest paid 
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TI .. E 
0.0 
2-.0000E-02 
4.0000E-02 
6.0000E-02 
8.0000E-02 
1.0000E-01 
l.2000E-01 
1.4000E-Ol 
l.6000E-Ol 
1.8000E-Ol 
2.0000E-Ol 
2.2000e-Ol 
2.4000E-Ol 
.2.6000E-Ol 
2.8000E-Ol 
3.0000E-Ol 
3.2000E-01 
3.4000E-01 
3.60001;-01 
3.8000E-Ol 
4.0000E-Ol 
4.2000E-01 
4.4000E-Ol 

·4.6000E-Ol 
4.8000E-Ol 
5.0000E-Ol 
5.2000E-Ol 
5.4000E-Ol 
5.6000E-Ol 
5.8000E-Ol 
6.0000E-01 
6.2000E-Ol 
6.40001:-01 
6.6000E-Ol 
6.8000E-Ol 
7.0000e-Ol 
7.2000E-Ol 
1.4000E-Ol 
7.6000E-01 
7.8000E-01 
8.0000E-Ol 
a.2000E-01 
8.4000E:"01 
8.6000e-01 
8.8000E-Ot 
9.0COOE-Ol 
9.2COOE-Ol 
9.4000E-Ol 
9.6000E-Ol 
9.BOOOE-Ol 
1.0000E 00 
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OUTPUT 
0.0 

MINIMUM 
-1.8000E 00 

I 

OUTPUT VERSUS TIME MAXIMUM 
1.2000E 00 

I 

0.0 
0.0 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.200GE 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
1.2000E 00 
0.0 
0.0 
0.0 
0.0 
0.0 

-l.BOOOE 00 
-.1.8000E 00 
-1. BOOOE 00 
-l.BOOOE 00 
-1. BOOOE 00 
-1. BOOOE 00 
-l.BOOOE 00 
-1. BOOOE 00 
-l.BOOOE 00 
-1.BOOOE 00 
-1. BOOOE 00 
-l.BOOOE 00 
-1.8000E 00 
-1. BOOOE DO 
-l.BOOOE 00 
-1.BOOOE 00 
-1.BOOOE 00 
-1.8000E 00 
-1.8000E 00 
-1.8000E 00 
0.0 
0.0 
0.0 

-----------------------------+ 
-----------------------------+ -----------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ ----------_ . ..:_------------------------------------+ 
-------------------------------------------------+ 
-------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ 
---------------~---------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -----------------------------+ 
-----------------------------+ 
-----------------------------+ -----------------------------+ 
-----------------------------+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

-----------------------------+ -----------------------------+ 
-----------------------------+ 

Fig.3.42 CSMP output for program given in Fig. 3.41. 

INPU1 
0.0 
3.758l 
7.451' 
1.1031 
1.444j 
1.1624 
2.052' 
2.310' 
2.532: 
2.113 ' 
2.8521 
2.946! 
2.993~ 

2.994; 
2.941-
2.8541 
2.7151 
2.534' 
2.313 . 
2.056: 
1.166! 
1.4481 
1.108: 
7.503: 
3.8051 
4.1B51 

-3.1101 
-1.4101 
-1.099' 
-1.440' 
-1.158 
-2.049: 
-2.307, 
-2.529, 
-2.111 
-2.851 
-2.945, 
-2.993 
-2.994' 
-2.948 
-2.855 
-2.111 
-2.531 
-2.316 
-2.059 
-1.170 
-1.453 
-1.112 
.,.,7.549 
-3.853 
-9.568 
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The basic calculations required are 

MONINT = IRM*BALANC 
MPAY = PAY - MONINT 
EQUITY = MPAY + PAST EQUITY 
BALANC = P - EQUITY 
TOTINT = MONINT + PAST. TOTAL INTEREST 

These equations must be solved 300 times (twenty five years with twelve payments each 
year). Each time the set of equations is solved, certain quantities must be updated simi­
larly to a difference equation. 

There are several ways these equations can be programmed in CSMP but a macro 
approach will be given since this is the major topic of discussion. 

We first write the macro 

MACRO MONINT, MPAY =CALCUl(IRM,BALANC,PAY) 
MONINT = IRM*BALANC 
MPAY = PAY - MONINT 

END MAC 

where IRM and PAY are fixed parameters and BALANC is an input variable. MONINT 
and MPA Yare output variables of the macro. The statement selected to call the macro is 

MONINT,MPAY = CALCUl(IRM,BALANC,PAY) 

As explained earlier, the user is only required to retain CALCUI in the call statement 
and all other terms can be replaced by perhaps more meaningful terms. In this case it is 
convenient not to change the output and argument symbols. 

Another macro is now written for the remaining calculations. 

MACRO EQUITY,BALANC,TOTINT=CALCU2(MPAY,PASPAY, ... 
P,MONINT,PSTINT) 

EQUITY = MPAY + PASPAY 
BALANC = P - EQUITY 
TOTINT = MONINT + PSTINT 
PASPAY = EQUITY 
PSTINT = TOTINT 

ENDMAC 

The call statement to the macro will be 

EQUITY,BALANC,TOTINT =CALCU2(MPAY,PASPA Y,P,MONINT,PSTINT) 

The comments made regarding symbols used in the previous macro also apply here. 
Note in this last macro that PASPAY and PSTINT are used for updating the equity and 
total interest. At this point a word of caution is in order. 

In problems which do not involve integration, calculations in the program are made 
at intervals of DELT. If DELT is not specified, a value of FINTIM/lOO is automatically 
used. In this problem, all calculations must be performed once for each month. Since the 
unit of time is months, it is essential that DELT be specified equal to one. 

A program for performing the calculations of this example is given in Fig. 3.43. The 
first five printed output lines are as shown in Fig. 3.44. As a matter of convenience we 
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*.******** EXAMPLE 3-11 U$$$$SSU 

* BALANC BALANCE TO PAY ON THE LOAN 
* MGNINT INTEREST fOR THE CURRENT MONTH 
* TOTINT :: TOTAL INTEREST PAID TO DATE 
* MPAY AMOUNT PAID ON LOAN FOR THE CURRENT MONTH 
* EQUITY CURRENT AMCUNT PAID-OfF ON THE LOAN 
* IRM THE MONTHLY INTEREST RATE (IN DECIMAL FORM) 
* PAY THE MCNTHLY PAYMENT (A CONSTANT) 

MACRO MONINT, ~PAY = CAlCU1tIRM,BAlANC,PAY) 
MONINT = IRM*BALANC 
MPAY = PAY - MONINT 

ENOMAC 

MACRO EQUITY, BALANC, TOTINT 

eQUITY 
BALANC 
TOTINT 
PASPAY 
PSTINT 

ENOMAC 

RENAME TI ME 

INITIAL 

P, MONINT, PSTINT) 
MPAY + PASPAY 
P - EQUITY 
MONINT + PSTINT 
EQUITY 
TOTI NT 

MONTH 

CAlCU2(MPAY, PASPAY, ••• 

PARAMETER P = 32000.0, I = 9.0, PERIOD = 300.0 
INCON PSTINT 0.0, TOTINT 0.0, ~ONINT = 0.0, ••• 

EQUITY = 0.0, PASPAY = 0.0 
eALANC = P 
[RM = 111200.0 
S = (1.0 + IRM)**PERIOD 
PAY = (P*IRM*S)/(S - 1.0) 

DYNAMIC 
NOSORT 

IF(MONTH.EQ.O.O) GO TO 1 
MCNINT, MPAY = CALCU1(IRM,BALANC,PAY) 
EQUITy,BALANC,TOTI~T = CALCU2(MPAY,PASPAY,P,MONINT,PSTINT) 

1 CONTINUE 
TIMER FINTIM =300.0, PRDEL = 1.0, DELT = 1.0, OUTDEL : 10.0 
PRINT PAY, MONINT, TOTINT,MPAY,EQUITY,BALANC 
TITLE OUTPUT FOR EXAMPLE 3-11 
PRTPlT EQUITV(TOTI~T) 
END 
STOP 
ENOJ08 

Fig. 3.43 Program for calculating the amortization of a mortgage. 

Ch. 3 

change TIME to MONTH by the rename statement, as shown in the program. Note that 
the two macros are placed at the beginning of the program. Also, PSTINT,TOTINT, 
MONINT,EQUITY, and PASPAY are initialized to zero and BALANC set equal to 
P($32,OOO). After the NOSORT card a FORTRAN branching statement, 

IF(MONTH.EQ.O.O) GO TO 7 

is placed. This obviously causes the program to by-pass calculations, as desired, at 
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OUTPUT FOR EXAMPLE 3-11 INTGRL NOT USED 

MONTH PAY MeN INT TOT INT MPAY EQUITY BALANC 
0.0 2.6855E 02 0.0 0.0 0.0 0.0 3.2000E 
1.0000E 00 2.6855E 02 2.4000E 02 2.4000E 02 2.8546E 01 2.8546E 01 3.191lE 
2. OOOOE 00 2.6855E 02 2.3979E 02 4.79HE 02 2.8760E 01 5.7305E 01 3.1943E 
3.0000E 00 2.6855E 02 2.3951E 02 1.1936E 02 2.8975E 01 8.6281E 01 3.1914E 
4.0000E 00 2.6855£ 02 2.3935E 02 9.581lE 02 2.9193E 01 1.1541E 02 3.1885E 
5.0000E 00 2.6855E 02 2.3913E 02 1.1918E 03 2.9412E 01 1.4488E 02 3.1855E 
6.0000E 00 2.6855E 02 2.3891E C2 1.4368E 03 2.9632E 01 1.1452E 02 3.1825E 
1.0000E 00 2.6855E 02 2.3869E 02 1.6154E 03 2.9854E 01 2.0437E 02 3. 17,96E 
8.00COE 00 2.6855E 02 2.3841E 02 1.9139E 03 3.0078E 01 2.3445E 02 3.1766E 
9.0000E 00 2.6855E 02 2.3824E 02 2.1522E 03 3.0304E 01 2.6415E 02 3.1135E 
1.0000E 01 2.6855E 02 2.3801E 02 2.3902E 03 3.0531E 01 2.9528E 02 3.1105E 
1.1000E 01 2.6855E 02 2.3119E 02 2.62 aOE 03 3.0160E 01 3.2604E 02 3.1614E 
1.2000E 01 2.6855E 02 2.3755E 02 2.8655E 03 3.0991E 01 3.5104E 02 3.1643E 

Fig. 3.44 Output from the mortgage program of Fig. 3.43. 

MONTH = 0.0. It is important that MONTH be used in this statement. Using TIME in 
place of MONTH will cause the program to ignore the IF statement and give incorrect 
results. When a CSMP program variable is renamed, the newly assigned variable should 
be used in the program. 

This example problem was programmed using macro functions simply to illustrate 
the use of such functions. Obviously, the problem can be written without using a macro 
and Fig. 3.45 shows one solution using straightforward statements. The output of this 
program is identical in all respects to the program which uses the macros. 

In summary, CSMP can be used for problem solving without integration. The 
advantage of using CSMP versus FORTRAN will often be that DO loops and subscripted 
variables are not necessary. This leads to a less demanding effort on the part of the pro­
grammer, especially if the programmer is not an expert in using FORTRAN. One disad­
vantage of using CSMP in problems of this type is that generally slightly more computing 
time (CPU time) is required. 

Example 3.12 

The occasion may arise when the solution of a differential equation of the form 

d 3x d 2x dx d 3r d 2r dr 
al dt 3 + a2 dt 2 + a3 dt + a4 X = b l dt 3 + b2 dt 2 + b3 dt + b4r (3.30) 

is desired. If we assume all zero initial conditions and all constant coefficients, applying 
Laplace transforms yields 

Xes) bls3 + b2s2 + b3s + b4 
R(s) = als3 + a2s2 + a3S + a4 (3.31) 

This type of problem cannot be handled directly using CSMP system macros such as 
REALPL and CMPXPL. 

The task in this example is to develop a macro which can be used for solving a ratio 
of polynomials up to the fifth-power with the form 

Define, 

Xes) bls S + b2s4 + b3s3 + b4s2 + bss + b6 
R(s) = als s + a2s4 + a3s3 + a4s2 + ass + a6 

yes) 
R(s) = als s + a2s4 + a3s3 + a4s2 + ass + a6 

(3.32) 

(3.33) 

04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
04 
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*.*.* 
.. BALANC 
• MeNI NT 
* TOTINT 
• ~PAY 
• EQUITY 
• IRM * PAY 

RENAME TIME 

INITIAL 

EXAMPLE 3-11 WITHOUT USING MACROS **.** 
BALANCE TO PAY ON THE LOAN 
INTEREST FOR THE CURRENT MONTH 
TOTAL INTEREST PAID TO OAT: 
AMOUNT PAID ON LOAN FOR THE CURRENT MONTH 
CURRENT ~MOUNT PAID-OFF ON THE LOAN 
THE ~CNTHLY INTEREST RATE (IN DECIMAL FORM) 
THE ~ONTHLY PAYMENT (A CONSTANT» 

MONTH 

PARAMETER P = 32000.0, I = q.o, PERIOO = 300.0 
tNCON PSTINT 0.0, TOTIN: 0.0, MONINT = 0.0, ••• 

EQUITY = 0.0, PASPAY = 0.0 
BALANC = P 
I R,.. = 1/1200. 0 
S = (1.0 + IRMt.*PERIOO 
PAY = (P*IRM.st/(S - 1.0t 

DYNAMIC 
NOSORT 

IF(MONTH.EQ.O.Ot GO TO 1 
~ONINT = IRM*eALANC 
MPAY = PAY - MONINT 
EQUITY = MPAY + PASPAY 
BALANC = P - EQUI TY 
TOTINT MONINT + PSTINT 
PAS PAY = EQU!TY 
PSTINT = TOTINT 

1 CONTINUE 
TIMER FINTIM =300.0, PROEL = 1.0, OELT = 1.0, DUTOEL 10.0 
PRINT PAY, MONINT, TOTINT,MPAY,EQUITY,BALANC 
TITLE OUTPUT FOR EXAMPLE 3-11 WITHOUT MACROS 
END 
STOP 
ENOJ08 

Fig. 3.45 Program for calculating mortgage payments without 
using macros. 

X(S) 
Y(s) = hISS + h2S4 + h3S3 + h4S2 + hss + h6 

In the time domain, Eq. (3.33) becomes 

dSy d 4y d 3y d 2y dy 
al dtS + a2 dt4 + a3 dt 3 + a4 dt 2 + as dt + a6Y = r 

Now define 

Yl =y 

dYI dy 
dt = dt =Y2 

dY2 d 2y 
dt = dt2 =Y3 

(3.34) 

(3.35) 
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dY3 d 3y 
dt = dt3 =Y4 

dY4 d 4y 
dt = dt4 = Ys 

dys dSy 1 
dt = dtS = a;[r - a6YI - aSY2 - a4Y3 - a3Y4 - a2YS] 

From Eq. (3.34), after going to the time domain and making appropriate substitutions, 
we have 

x = b6YI + bSY2 + b4Y3 + b3Y4 + b2ys + b l d;s 

where 
dys dSy 
dt = dtS 

An appropriate macro for these equations is 

MACRO XOUT = TRANSF (BN, AD, IN) 
Yl = INTGRL (0.0, Y2) 
Y2 = INTGRL (0.0, Y3) 
Y3 = INTGRL (0.0, Y 4) 
Y 4 = INTGRL (0.0, Y5) 
Y5 = INTGRL (0.0, Y5DOT) 

(3.36) 

(3.37) 

Y5DOT = (1.0/AD(l»*(IN -AD(6)*Yl-AD(5)*Y2-AD(4)*Y3-AD(3)* ... 
Y4-AD(2)*Y5) 

XOUT = BN(6)*Yl+BN(5)*Y2+BN(4)*Y3+BN(3)*Y4+BN(2)* ... 
Y5 + BN(l)* Y5DOT 

END MAC 

The parameters for the polynomials can be placed in the macro using TABLE and 
STORAGE. For this case, 

STORAGE BNUMl(6), ADENl(6) 
TABLE BNUMl(1-6) = Nl, N2, N3, N4, N5, N6, .. . 

ADENl(1-6) = Dl, D2, D3, D4, D5, D6, .. . 

where BNUMl and ADENl are dummy names for the numerator and denominator 
coefficients. 

Care must be exercised in using the TABLE with this general fifth-order system. For 
example, if the particular transfer function is 

2s 2 + 4s + 3 
9s3 + 6s 2 + 5s + 8 

the polynomial should be viewed as 

OS3 + 2S2 + 4s + 3 
9s 3 + 6s 2 + 5s + 8 

The parameters should be read in as 

TABLE BNUMl(1-6) = 0.0,2.0,4.0,3.0,0.0,0.0, ... 
ADENl(1-6) = 9.0, 6.0, 5.0, 8.0, 0.0,0.0 

(3.38) 

(3.39) 
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where NI = 0.0 DI = 9.0 

N2 = 2.0 D2 = 6.0 

N3 = 4.0 D3 = 5.0 

N4 = 3.0 D4 = 8.0 

N5 = 0.0 D5 = 0.0 

N6 = 0.0 D6 = 0.0 

As an illustration of using this MACRO in a system, consider the diagram in Fig. 3.46. 
The program, which invokes the macro twice, is given in Fig. 3.47. 

INPUT 
S2 + 12s + 100 
s2 + 40s + 425 S3 + 52s2 + 700s + 1200 

Fig.3.46 System diagram for Example 3.12, illustrating the use 
of a macro function. 

Note that BNUMI, ADENI, and X2 replace N, D, and IN respectively for one reference 
to the macro. On the second reference, BNUM2, ADEN2, and Xl replace N, D, and IN. 
This explains the reason for naming the STORAGE and TABLE values BNUMI, 
BNUM2, ADENI, and ADEN2. 

The guidelines and examples which have been presented in this section on generating 
macro functions should serve as a good foundation for the beginning user. The scope of a 
problem will usually determine whether a special macro function should be written. 
Obviously, when properly used, a macro function can save considerable programming 
effort. 

The power of the macro is further increased when used with procedure functions. 
The following section will show how this is accomplished. 

PROCEDURE FUNCnON 

As in the macro, a procedure function offers another way for users to define 
their own simulation functions. The major differences between these two transla­
tion control statements are (a) the macro is called within the program in a way 
that is analogous to calling a subroutine, the procedure function is a single entity 
within the program and is not called ; (b) macro structure statements are sorted by 
the sorting algorithm while structure statements of the procedure function are 
not sorted. Therefore, the statements of a procedure function can be so written 
as to utilize FORTRAN logical and branching statements as well as subscripted 
variables. 
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*.** •• *********************************************** 
* A MACRO MUST BE PLACED AT THE FPONT OF THE DECK * 
.*.***********************.************************** 
~ACRO XOUT = TRANSFCBN, An, INI 

Yl IN T G.R LC O. 0, Y Z ) 
yZ INTGRLCO.O, V31 
Y3 INTGRLCO.O, V41 
Y4 tNTGRL(O.O, V5) 
V5 INTGRLCO.O, V5DQT) 
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V5DOT Cl.0/AD(11)*CYN-AOC61*Yl-AD(51*V2-ADC41*Y3-ADC31*V4-AD(21*VSI 
XOUT BNC61*Vl+BNC51*Y2+BNC41*V3+BN(31*V4+BN(ZI*V5+BN(11*V5DOT 

ENDMAC 

****************************************************************** 
* NOTE THAT STORAGf sIze OF ALL fLEMENTS ARE So INDICATED ON * 
* T~E SINGLE FOLLOWING CARD * 
****************************************************************** 

STORAGE BNUMlC61, ADEN1C61, RNUM2(61, ACEN2C61 

************************************************************ 
* THE PARTICULAR VALUES OF THE STORAGE LOCATIONS ARE GIVEN * 
* USING "TABLE". ~OTE TH~T TABLE IS TYPED ONLY ONCE AND * 
* AND THE ••• FEATURE IS USED FOR CONTINUATION * 
************************************************************ 

TABLE BNUMICl-6) 
ADENI 0-6 I 
BNUM2(1-61 
ADEN2Cl-61 

PAPAMETER K = 3000.0 
INPUT = STEPCO.OI 
ERROR = INPUT - CUTPUT 
X2 :: K*ERRlJR 

1.0, 12.0, 100.0, 3*0.0, ••• 
1.0, 40.0, 425.0, 3*0~0, ••• 
3* O. 0,1.0, 2 * 0.0, ••• 
1.0, 52.0, 700.0, 1200.0, 2*0.0 

Xl = TRANSFCBNUMl, ADENl, X2) 
X = T~ANSF(BNUM2, ADEN2, XlI 
OUTPUT = INTGRL(O.O, X) 
TIMER FINTIM:: 20.0, aUTOEL:: 0.4 
PRTPl T OUTPUT 
LABEL OUTPUT OF SYSTEM WITH DOUBLE INVOCATION OF 
LABEL TRANSFER FU~CTION ~4CRO - EXA~PLE 3-12 
END 
STOP 
ENDJOB 

Fig. 3.47 Program showing the use of a transfer function macro. 

Except for a single important difference, one can achieve the same program­
ming objectives with a no sort section as with a procedure function. This important 
difference is that a nosort section forms a division between sorted sections of the 
program. All statements occurring before a nosort section remain above the sec­
tion. Likewise, statements made after a nosort section always remain after the sec­
tion. However, statements within a procedure function are never sorted but the 
function itself is treated as a single entity and moved around within the overall 
program as required by the sorting algorithm. 

The basic structure of a procedure function is given in the following example. 
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PROCEDURE MASS = MV AR Y (SLOPE, SWITCH, MASSO) 
IF (TIME. GE. SWITCH) GO TO 14 
MASS = MASSO * (1.0 + SLOPE*TIME) 
GO TO 8 

14 MASS = MASSO * (1.0 + SLOPE*SWITCH) 
8 CONTINUE 

ENDPROCEDURE 

Ch. 3 

Suppose for a given problem that SLOPE = - 0.2 and SWITCH = 3.0. We 
assume these values have been entered previously on a parameter card. A condi­
tion for branching is set up by a logical IF statement involving TIME and 
SWITCH. The procedure function for this case will determine the time varying 
MASS as given in Fig. 3.48. This procedure function can be located essentially 
anywhere in the DYNAMIC segment of a simulation requiring the time-varying 
mass. The sort algorithm will place the procedure function in the correct position 
relative to other program statements. The time-varying characteristics of the mass 
can easily be changed by inserting new values for MASSO, SWITCH and SLOPE 
on parameter cards. 

Although many of the structure format statements for using a procedure 
function are similar to a macro, the procedure accomplishes a different purpose 
and the following rules should be observed. 

1 The first card of the procedure contains the word PROCEDURE followed 
by at least one blank space. A simple illustration is 

PROCEDURE JX, AMP = XFUN(XUP, PARI, SIGNAL) 

MASSO 

O.4MASSO 

0.0 1.0 2.0 3.0 4.0 

Time 

Fig.3.48 Diagram of time-varying mass used in PROCEDURE 
illustration. 



Ch. 3 Advanced Features of CSMP 157 

2 Unlike a macro, the arguments of a procedure cannot be functions, expres­
sions, or numbers. They must be names defined elsewhere in the program. 

3 As noted above, the first card of a procedure contains the word PRO­
CEDURE. The very last card contains the single word, ENDPROCEDURE. 
All statements describing the procedure function are placed between the 
PROCEDURE card and the ENDPROCEDURE card. Since CSMP 
takes action on the first five characters of these words, the user may replace 
PROCEDURE by PROCED, and ENDPROCEDURE by ENDPRO. 

4 As with the macro function, variables defined within a procedure are not 
available as output data by means of PR TPLT, PRINT, PREPARE or 
RANGE unless they are output names on the procedure definition card. 
In the following example, 

PARAM CONSTI = 0.5, CONST2 = 0.1 
PROCEDURE Xl, X2 = READY(CONSTl, CONST2) 

Xl = CONSThEXP**( -3.0*TIME) 
X2 = CONST2*Xl**2 
X3 = INTGRL(O.O, Xl) 

ENDPROCEDURE 
TIMER FINTIM = 1.0, PRDEL = 0.02 
PRINT Xl, X2 
END 
STOP 
ENDJOB 

X3 is not available as output data; however, output is available for Xl and 
X2. Changing the definition card to 

PROCEDURE Xl, X2, X3 = READY (CONSTl, CONST2) 

will make X3 available as output data. 

5 The procedure function may be located in both INITIAL and DYNAMIC 
segments. (Since the TERMINAL segment executes statements in the order 
they appear, a procedure function would not serve a useful purpose in this 
segment.) The procedure may not be placed in a nosort section. 

6 Procedure functions may be placed within a macro. Even though the macro 
statements are sorted, the statements contained within each procedure will 
not be sorted except as a single block. 

7 Procedure functions within a macro may not be used to invoke other 
macros. A macro, however, may invoke another macro which itself may 
contain one or more procedure functions. 

8 A procedure function cannot be placed within another procedure function. 

9 If the user desires all statements in a macro to be procedural then a single 
card containing the word PROCEDURAL should be placed immediately 
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after the macro definition card. For example, the procedure function given 
previously in this section may be changed to a macro as follows: 

MACRO MASS = MVARY (SLOPE, SWITCH, MASSO) 
PROCEDURAL 
IF (TIME.GE.SWITCH) GO TO 14 
MASS = MASSO*(1.0 + SLOPE*TIME) 
GO TO 8 

14 MASS = MASSO*(1.0 + SLOPE + SWITCH) 
8 CONTINUE 

END MAC 

Note that an ENDPROCEDURE card is not to be used in this case. Re­
strictions placed upon the arguments of MV AR Y, when used as a pro­
cedure function, are now removed and consequently the arguments now 
conform to those of a macro. 

Most of the guidelines presented here on using the procedure function are applied 
in the following rather comprehensive problem. 

Example 3.13 

The purpose of this problem is to illustrate how CSMP can be applied to simulating 
four-way traffic flow at a signal light. The simulation makes use of the procedure function 
as well as several other program features. These additional features include the mode 
integrator and the logic functions AND and NOT. 

The first step of the problem is to develop a reasonable model for traffic flow. In the 
diagram in Fig. 3.49 we assume that traffic flows from east to west, west to east, north to 
south and south to north. The assumption is made that cars do not turn at the light. 
The justification for making this assumption is simply to avoid the added complication in 
the problem. Turning traffic could be included with the addition of ten to twelve program 
statements. 

The first consideration is to establish the flow of traffic. One must recognize that the 
spacing between cars is a random variable even with a given density of traffic flow. The 
one exception is when the through-put (flow) is maximum. For example, in a 20 mph 
speed zone, we assume maximum through-put when the distance between each car is 
constant and each car is traveling at the maximum speed limit. This situation is shown in 
Fig. 3.50. 

To simplify the flow modeling we assume each car approaching the intersection is 
traveling at the same velocity but with a random arrival. Intuitively we know that even 
with random spacing between cars, the density or compactness of the traffic varies during 
the time of day. For this problem we assume the traffic density is as shown in Fig. 3.51. 
The intended interpretation here is that a relative density of one represents maximum 
traffic through-put as discussed earlier. 

The problem becomes one of producing a string of random traffic having a given 
density. This can be accomplished as follows. Define an impulse train by 

ETRIG = IMPULS(O.O, EPERID) 
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Fig. 3.49 Diagram showing intersection geometry at the traffic 
light. 

Car unit 
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For maximum flow 

~Constant 
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o Each unit moves with the same velocity. 
o The space, d, between each car is the same. 
o The period of each unit is P sec. 

Fig. 3.50 Spacing of cars for maximum flow rate. 
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where the pulse train starts at 0.0 and has a spacing of EPERID sec. The spacing EPERID 
is set equal to the period, P, corresponding to maximum traffic flow shown earlier in Fig. 
3.50. Next a random-variable sequence of numbers between 0 and 1 is made available 
from the random-number generator, RNDGEN. 

Thus ERAND = RNDGEN(3) 

where ERAND is the selected name of the sequence and 3 is a seed value (any odd integer). 
Now define a time-varying function, ESIG, such that 

ESIG = EDENSE - ERAND 
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Fig.3.51 Normalized east to west traffic density. 

where EDENSE is the value of the traffic density (from Fig. 5.51) at a particular time. 
ESIG will be a random number between -1 and 1. If EDENSE is greater than ERAND, 
ESIG will be positive and this signifies that a car should be generated at this time. Con­
versely, if ESIG is negative, no car is generated. By using the logical AND function with 
ETRIG and ESIG as arguments, a trigger for a pulse generator is formed. The width of 
the pulse from the generator can be set to the length of a car. The statements required are 

ESINK = AND(ESIG, ETRIG) 
EFLOW = PULSE(EWIDTH,ESINK) 

where EWIDTH is a parameter (the car length) and EFLOW is the flow of traffic. AND 
is a logical function defined by 

Y = AND(Xl,X2) 

Y = 1 if Xl, X2 > 0 

Y = 0 otherwise 

By combining the above statements, one can write a procedure function for generat~ 
ing EFLOW as follows. 
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PROCEDURE EFLOW = EFORM(EWIDTH, EPERID) 
ETRIG = IMPULS(O.O, EPERID) 
ERAND = RNDGEN(3) 
EDENSE = AFGEN(ENORM, TIME) 
ESIG = EDENSE - ERAND 
ESINK = AND(ESIG, ETRIG) 
EFLOW = PULSE(EWIDTH, ESINK) 

END PRO 
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The value of EDENSE is determined by using the linear interpolater, AFGEN, where 
the function is defined by the data of Fig. 3.51. Thus, 

FUNCTION ENORM = (0.0,0.2),(0.5,0.25),(1.0,0.34), ... 
(1.5,0.46),(2.0,0.5),(2.5,0.45),(3.0,0.42),(3.5,0.43), ... 
(4.0,0.48),(4.5,0.58) 

Use of the AFGEN was previously explained in Chap. 1. At this point in the simulation 
development the user should write a short program and verify that EFORM is correctly 
generated. A short program for this purpose is given in Fig. 3.52 and the resulting output 
is presented in Fig. 3.53. 

FUNGTION ENORM = (O.0,0.21,(.5,.251,(1.,.34),(1.5,.46},(2.,.51, ••• 
( 2. 5,. 45) , C 3. ,. 42 I , ( 3. 5 , • 43 I ,C 4. ,. 4 8 ) , ( 4. 5 , • 5 8 » , ( 5. , • 6 6 I 

PARAM EWIDTH = 0.01, EPERID = 0.02 

*.***.**************************************************************** * NOTE ON THE FOLLOWING PROCEDURE TRANSLATION CONTROL CARD * 
* THAT ALL VARIABLES REQUESTfD FOR PRINTING MUST BE LISTED AS * 
* OUTPUTS OF THE PROCEDURE FUNCTION * 
***************************************.****************************** 
PROCEDURE ETRIG, EO~NSE, ERAND, ESIG, EFLOW = EFORM(EWIDTH,EPERID' 

ETRIG = I~PUlS(O.O, EPERI~I 

ENDPRQ 

ERAND = RNDGEN(3) 
EDENSE = AFGEN(ENCRM, TIME) 
ESIG = EDE~SE - ERA~D 
fSINK ANOCESIG, ETRIGI 
EFlOW = PUlSE(EWIOTH,ESINK) 

TIMER FINTIM = 0.2, PRDEL = 0.002, DELT = 0.002 
PRINT ETRIG, EDENSE, ERAND, ESIG, EFlCW 
TITLE 1******* TEST FOR RANDOM PULSE GENERATOR - EXAMPLE 3-13 ****** 
END 
STOP 
ENDJOB 

Fig. 3.52 Program for testing the random generation of a string of 
cars. 

Having developed a reasonable representation of traffic flow, attention is next 
directed to the problem of determining (a) how many cars have approached the light; (b) 
how many cars have passed under the light; and (c) how many cars are waiting at any 
given instant of time. The total number of cars approaching the light can be determined by 
integrating the traffic flow and dividing by the width of a car pulse. This can be deter-



1····**· TEST FOR RANDOM PULSE GEIliERATOR - EXAMPl'= 3-13 ****** 

TIME ETRIG E CE NS F. ERAND ES IG EFLOW 
0.0 1. OOOOE 00 2.COOOE-01 9.1557E-05 1.9991E-01 1.0000E 00 
2.0000E-03 0.0 2. 0020E -01 5.4933E-04 1.9965E-Ol l.OOOOE 00 
4.00COE-03 0.0 2.0040E-Ol 2.4720E-03 1.9793E-Ol l.OOOOE 00 
6.0000E-03 0.0 2.0060E-Ol 9.8878E-03 1.ClO1lE-Ol 1.0000E 00 
8.0000E-03 0.0 2. OOBOE-Ol 3.7079E-02 1.6372E-01 1. OOOOE 00 
1. 00COE-02 0.0 2.0100E-Ol 1.?348E-Ol 6.1515E-02 1.000eE 00 
1.2000E-02 0.0 2.0120E-01 4.6720E-C1 -2.6600E-01 0.0 
1.40COE-02 0.0 2.0140E-Ol 6.0182E-01 -4.0042E-01 0.0 
1.6000E-02 0.0 2. 01bOE-01 4.0612E-01 -2.0452E-01 0.0 
1.8000E-02 0.0 2.0180E-Ol 2.0407E-02 1.8139E-Ol 0.0 
2.00COE-02 l.OOOOF 00 2.0200E-01 4.6132E-01 -2.6532E-01 0.0 
2.2000E-02 0.0 2.0220E-C1 6.2025E-01 -4.1805'=-01 0.0 
2.4000E-C2 0.0 2. 0240E-01 5.1562E-01 -3.1322E-01 0.0 
2.6000E-02 0.0 2. Ol60E-01 5.1l50E-01 -3.0890E-01 0.0 
2.80COE-02 0.0 2.0280E-Ol 4.2840E-01 -2.2560E-01 0.0 
3.00COE-02 0.0 2.0300E-Ol 9.6687E-Ol -1.6381E-Ol 0.0 
3.2000E-02 0.0 2.0320E-Ol 9.4563E-01 -7.4244E-Ol 0.0 
3.4000E-02 0.0 2.0340E-01 9.7195E-Ol -1.6855E-Ol 0.0 
3.60COE-02 0.0 2.0360E-Ol 3.2096E-01 -1 • 1 13 6 E- 01 0.0 
3.8000E-02 0.0 2.0380E-Ol 1.7823E-01 2.5567E-02 0.0 
4.0000E-02 1.0000E 00 2.0400E-Ol 1.8079E-01 2.3215E-02 1. OOOOE 00 
4.2000E-02 0.0 2.0420E-01 4.8062E-01 -2.7642E-01 1.0000E 00 
4.4000E-02 0.0 2. 0440E-01 2.5t-64E-01 -5.2244E-02 1.0000E 00 
4.60COE-02 0.0 2.0460E-Ol 2.1430E-0,1 -9.6995E-03 1.0000E 00 
4.8000E-02 0.0 2.0480E-01 9.7600E-Ol -1.7120E-01 1.0000E 00 
5.0000E-02 0.0 2.0500E-01 9.2129E-01 - 7. 222 9E - 01 1.0000E 00 
5.2000E-02 0.0 2.0520E-01 7.7977E-01 -5.7457E-01 0.0 
5.40COE-02 0.0 2. 0540E- 01 3.3299E-01 -1.2759E-Ol 0.0 
5.6000E-02 0.0 2.0560E-Ol 9.8003E-01 -7 .1443E- 01 0.0 
5.8000E-02 0.0 2.05S0E-Ol 8.8322E-01 -6.7742E-Ol 0.0 
6.0000E-02 1.0000E 00 2.0600E-Ol 4.7910E-Ol -2.1310E-Ol 0.0 
6.2000E-02 0.0 2.0620E-01 9.2562E-01 -7.1942E-Ol 0.0 
6.4000E-02 0.0 2.0640'=-01 2.4180E-Ol -3.5397E-02 0.0 
6.6000E-02 0.0 2.0660E-Ol 1.2020E-01 8.6404E-02 0.0 
6. BOOOE-02 0.0 2.0680f-Ol 5.4501E-Ol -3.3821E-01 0.0 
7.COOOE-02 0.0 2.0700E-Ol 1.8827E-Ol 1.8127E-02 0.0 
7.2000E-02 0.0 2.0720E-Ol 2.2458E-Ol -1.7379E-02 0.0 
7.4000E-02 0.0 2.0740E-0l 6.5301E-Ol -4.4561E-01 0.0 
1.6000E-02 0.0 2.C760E-Ol 8.9688E-Cl -6.8928E-Ol 0.0 
1.80COE-02 0.0 2.0780E-Ol 5.0414E-0,1 -2.9634E-Ol 0.0 
8.0000E-02 1.0000E 00 2.0800E-Ol 9.5295E-01 -1.4495E-01 0.0 
B.20COE-02 0.0 2.0820E-Ol 1.8040E-01 2. 7796E- 02 0.0 
8.4000E-02 0.0 2.0840E-Ol 5.0590E-01 -2.9750E-OI 0.0 
8.bOOO-E-02 0.0 2.C860E-Ol 4.1118E-Ol -2.0318E-Ol 0.0 
8.8000E-02 0.0 2.0880E-Ol 9.1757E-01 -1.0871E-01 0.0 
9.0000E-02 0.0 2. C900E-01 7.9938E-Ol -5.9038E-Ol 0.0 
9.2000E-02 0.0 2.0920E-Ol 5.3812E-Ol -3.2892E-Ol 0.0 
C;.4000E-02 0.0 2.0940E-01 3.432IE-02 1.7508E-01 0.0 
C;.bOOOE-02 0.0 2. 0960E-Ol 3.62 a2E-Ol -1.5322E-Ol 0.0 
Q.8000E-02 0.0 2.0980E-Ol 8.6803E-Ol -6.5823E-Ol 0.0 
1.0000E-01 1.0000E 00 2. 1000E-Ol 9.4281 E-Ol -7.3281E-Ol 0.0 
1.0200E-Ol 0.0 2.1020E-Ol 8.4457E-Ol -6.3431E-01 0.0 
1.04COE-01 0.0 2.1040E-01 5.8216E-Ol -3.717bE-Ol 0.0 
1.0600E-Ol 0.0 2.1060E-01 6.91 76E-01 -6.8116E-O,1 0.0 
1.0800E-Ol 0.0 2.1080E-Ol l.lU6E-Ol 9.9635E-Ol 0.0 

Fig. 3.53 The printer-plotted output from the program of a ran-
dom pulse genera tor. 

162 



Ch.3 Advanced Features of CSMP 

mined using the INTG RL function as 

ELEFT = INTGRL(O.O, EFLOW) 
ETOTAL = ELEFT/EWIDTH 

where ETOTAL is the total traffic arriving from the east. 
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For simplicity, the state of the light is assumed to be either green or red with amber 
ignored. The number of cars passing under the light can now be determined using the 
mode integrator function whose characteristics are given in Table 3.4. 

Table 3.4 

Mode Integrator Function 

(7SlkfJP Stater.nent lkfather.natical Equivalent 

Y = MODINT(IC, Xl, X2, X3) yet) = f X3(t) dt + Ie Xl > 0, any X2 

yet) = IC Xl < 0, X2 > ° 
yet) = last output Xl < 0,X2 :::;:; ° 

The input signal X3 should be the actual traffic passing under the light with Xl the state 
of the light. Thus, if Xl is greater than zero (the light is green), yet) increases by integrating 
X 3 • When the light changes to red, Xl equals zero and yet) holds the last output value. 
Any non-positive number for X 2 can be used. Expressing this in program variables gives 

ERIGHT = MODINT(O.O, EWLITE, -1.0, EWX2) 
EPASED = ERIGHT/EWIDTH 

where EWLITE = state of the east-west light 

EWX2 = the pulses passing under the light 

EPASED = the total number of cars passed through the light 

The traffic backed-up at any time on the east side is given by 

EBAKUP = ELEFT - ERIGHT 
EWAlT = EBAKUP/EWIDTH 

where EWAlT is the actual traffic backed up or waiting on the east side. 
The excitation signal, EWX2, must take the following into account. When the light 

changes from red to green, traffic will not move instantaneously. We assume the flow 
linearly increases with time up to the limit of maximum through-put. Once the maximum 
flow is reached, the excitation will remain at this level until EBAKUP reaches zero. Once 
EBAKUP reaches zero, EWX2 should be changed to EFLOW. Suppose we assume that 
after 8 car units have passed under the light, EWX2 reaches the maximum value of 
EWIDTH/EPERID. 

A program which combines the generation of random traffic with traffic volumn in 
the east to west direction is given in Fig. 3.54. The correct state of EWX2 is determined by 
the procedure function EWX3 except for testing the state of EBAKUP. Logically, this 
test should also be made in the EWX3 procedure function but in attempting to do so an 
algebraic loop will be formed between ERIGHT, EBAKUP, and EWX3. This algebraic 
loop is avoided by testing the state of EBAKUP in a NOSORT segment. 
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FUNCTION ENORM = (0.0,0.2),(.5,.25.,(1.,.341,(1.5,.46),(2.,.51, ••• 
e 2. 5,. 45. ,( 3. ,. 42) , ( 3. 5 , • 43 t , (4. ,.48 I , ( 4. 5 , .58 1 , ( 5. , .66 1 

PARAM EWIOTH = 0.012, EPERIO = 0.024, CYCLE = 1.0, EBAKUP = 0.0 

LITRIG = IMPULS (O.O,CYCLEI 
EWLITE = PULSE(CYClE/2.0,LITRIGI 
ETRIG = IMPULSeO.O, EPERIOI 

PROCEOURE EFLCW = EFOR~(ETRIGI 
fRANO = RNOGEN(3) 
EDENSE = AFGEN(ENOR~, TIMEI 
ESIG = EOE~SE - ERANO 
ESINK ANOCESIG, ETRIG) 
EFLOW = PUlSE(EWIDTH,ESINK. 

ENOPRO 

NOSDRT 
IF(EBAKUP.GT.O.OI EWX2 = fWX3 
IF(EBAKUP.Lf.O.OI EWX2 =EFLOW 
SORT 

ELEFT = INTGRL(O.O,EFLOW' 
ERIGHT = MODINT(0.0,EWLITE,-1.O,EWX2' 
E8AKUP = ELEFT-ERIGHT 

PROCEDURE EWX3 = GENRALlEWlITE,EFLOW,CYClE,EWIOTH,EPERIDI 
IF(TIME.lT.(CYClE/2.0») GO TO 19 
IF(EWlITE.EQ.O.Ot GO TO 21 
IFeEPASLT.EQ.O.O) CLOTIM = TIME 
EDELT = TI~E - OlOTIM 
IFIEOELT.GE.(S.O*EPERIDt) GO TO 23 
EWX3 = «EWIOTH)/(8.0*(EP~RIO**2)))*EOELT 
EPASl T = EWLITE 
GO TO 27 

21 EWX3 = 0.0 
EPASlT = 0.0 
GO TO 27 

19 EPASLT = 0.0 
IF(EWLITE.GT.O.O' EWX3 ~FLOW 
If{EWLITE.GE.O.O) EWX3 0.0 
GO TO 27 

23 EWX3 = EWIOTH/EPERID 
27 CONTINUE 

ENOPRO 

ETOTAL = ELEFT/EWIOTH 
EPASEC = EPIGHT/EWIDTH 
EWAlT = EOAKUP/EwIDTH 

TIMER FINTIM = 1.0, DUTOEL = 0.02, PROEL = 0.02 
PRTPLT ETOTAL, EPASEO, EW4IT 
LABEL TEST FaR TRAFFIC MaDEL - EXA~PLE 3-13 
END 
STOP 
ENOJ08 

Fig. 3.54 Traffic simulation program for east to west traffic. 

This same basic model applies to west-east, north-south, and south-north traffic and 
in a natural way invites the use of macro functions. 

A simpler program could have been written to illustrate the use of the procedure 
function. However, most meaningful real-world simulations require combinations of 
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several CSMP features. The intention here has been to show how the procedure function 
can typically be used as an element in a more comprehensive simulation. 

Fortran Subprograms 

There are two forms of subprograms that can be used in CSMP programs, 
FORTRAN function and subroutine. The function subprogram can be used when­
ever the output is a single variable. A subroutine must always be used when there 
are multiple outputs. 

The MACRO and PROCEDURE functions essentially serve the same purpose 
as subprograms and are generally preferred. However, subprograms do have 
certain advantages not found in the macro and procedure functions. The following 
is a listing of the most important advantages. 

~ 1 FORTRAN subprograms that are stored in the computer's system library 
can be called directly by CSMP programs. 

2 The statements of a subprogram are not processed by the CSMP translator. 
Consequently, larger models can be developed by using subprograms. 

3 Subprograms used in CSMP programs are compatible in FORTRAN pro­
grams. Therefore, subprograms can be interchanged between CSMP and 
FORTRAN programs. 

General Guidelines 

The rules for writing a subprogram for the use in a CSMP program are exactly 
the same as for a FORTRAN program. If needed, the reader should refer to spe­
cialized texts on FORTRAN(2-S) for a complete discussion on this topic. Imple­
mentation of subprograms in CSMP is somewhat different than in FORTRAN. 
Special considerations that must be followed are outlined by the following general 
rules. 

1 All subprograms must follow the STOP card and furthermore, the last sub­
program must be terminated by the ENDJOB card. 

2 The following CSMP functional elements cannot be used in subprograms: 
INTGRL, DERIV, DELAY, ZHOLD, IMPL, MODINT, REALPL, 
LEDLAG, CMPXPL, HSTRSS, STEP, IMPULS, PULSE, RAMP, 
SINE, GAUSS, RNDGEN, and any user-defined macro function. 

3 A FORTRAN function subprogram can be invoked in all segments and 
sections of a CSMP program. This includes invocations in macro and pro­
cedure functions. Using input variables P, Q, and R, a statement for calling 
the function XYZ is 

x = XYZ(P, R, Q) 



4 A FORTRAN subroutine can be called by two different methods. The 
CALL statement which is used in FORTRAN programs is only allowed 
in nosort sections and procedure functions. An example of a CALL state­
ment for the subroutine named ABC is the following. 

CALL ABC(P, Q, R, X, Y) 

If the output variables of the subroutine are on the right-hand side of the 
argument list of the subroutine, a second method for calling a subroutine 
can be used. This method can be used in all sections and segments, includ­
ing macro and procedure functions. An example of this type of statement 
for the same ABC subroutine is shown below. 

X, Y = ABC(P, Q, R) 

It should be reemphasized that the above statement can only be used when 
the outputs X and Yare the last variables in the argument list of the sub­
routine. 

Another limitation for using the above form for calling a subroutine is 
that it can only be used when there are two or more output variables. 

5 When calling a FORTRAN subroutine that is stored in computer memory, 
the CALL form must be used in a no sort section or procedure function. 

6 If the output of a subprogram includes subscripted variables, the calling 
statement in the CSMP program must be in a nosort section of a procedure 
function. All subscripted variables used as inputs or outputs must be de­
clared on either a STORAGE or DIMENSION card. 

The following example program illustrates the use of a FORTRAN sub­
routine to calculate the roots of a quadratic equation of the following form; 

Ax2 + Bx + C = 0 (3.40) 

In this program the inputs to the subroutine are the coefficients A, B, and C. 
The outputs returned by the subroutine are the real part of the solution: Xl REAL 
and X2REAL; and the imaginary part of the solution, XlIM and X2IM. 

: generating A, B, and C 
~ I Program statements 

~ Statement for calling 
Xl REAL, X2REAL, XlIM, X2IM = ROOTS (A,B,C)/ subroutine 

END 
STOP 

; I Program statements 
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SUBROUTINE ROOTS (A,B,C,XIREAL,X2REAL,XlIM,X2IM) 
IF(B*B - 4.0*A*C) 1,2,3 
1 XIREAL = -B/(2.0*A) 

X2REAL = XIREAL 
XlIM = SQRT(4.0*A*C-B*B)/(2.0*A) 
X2IM = -XlIM 
GO TO 4 

2 XIREAL = - B/(2.0* A) 
X2REAL = XIREAL 
XlIM = 0.0 
X2IM = 0.0 
GO TO 4 

3 XIREAL = (-B+SQRT(B*B-4.0*A*C))/(2.0*A) 
X2REAL = (-B-SQRT(B*B-4.0*A*C))/(2.0*A) 
XlIM = 0.0 
X2IM = 0.0 

4 CONTINUE 
RETURN 
END 

ENDJOB 

The statement used in the above example program for calling the subroutine 
can be used in all segments and sections of the program. The following statement 
can also be used to call the subroutine, but it must be used in a nosort section or 
procedure function. 

CALL ROOTS(A, B, C, XIREAL, X2REAL, XlIM, X2IM) 

Example 3.14 

One method for solving a set of simultaneous differential equations is to solve for the 
highest derivative of each variable and then successively integrate to obtain the total 
answer. This approach sometimes requires solving a set of simultaneous algebraic equa­
tions. As an example, consider the following problem, 

= -O.5Xl - 1.7Xl + 0.3X2 + 0.21x~ + sin (1) 

where all initial conditions are zero. 

(3.41) 

(3.42) 

(3.43) 

The method of solution is to first solve for Xb X2, and X3 as functions of the other 
variables that appear in the equations. This requires the solution of a set of simultaneous 
linear algebraic equations as shown by Eq. (3.44). 

XDD =A-IY (3.44) 

where A, XDD, and Yare defined by the following matrices. 
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A = I~ 
l56 

t 2 + 4 

o 
2t 

OJ 24 

100 

l
-0.5X 1 - 1.7 x 1. + 0.3X2 + 0.21x~ + s~n (t)J 

Y = 0.017tx1 - 5X2 - X2 + 0.lx1 + 1.6X3 

X1X2 - X3 - 2.4X3 + e-xd23 

Ch.3 

(3.45) 

(3.46) 

(3.47) 

Since the elements of both the A and Y matrices are time dependent, the XDD 
vector must be calculated at each integration step. Most computer installations have pro­
grams available for solving matrix relationships of the form given by Eq. (3.44). At many 
centers these subroutines are on-line and can be called from storage. In this example, a 
subroutine which uses the Gauss-Jordan elimination method with complete pivotal 
searching is employed. The subroutine SOLVE is called from the CSMP program. Within 
the subroutine SOLVE is another subroutine named INVERT. Figure 3.55 shows a 
listing of the CSMP program and the FORTRAN subroutines for solving the set of 
differential equations. 

Because A is a double-subscripted variable, the FORTRAN DIMENSION state­
ment must be used. The FORTRAN LOGICAL instruction is a FORTRAN specification 
statement and is used to declare that SING is a logical variable. If the matrix A is singular, 
the logical variable SING is true. In this example, the matrix is never singular and hence 
the solution of the equation set is given in Fig. 3.56. 

Since the variable-step Runge-Kutta integration method is used in this example, 
subroutine SOLVE is called four times for each integration step. If this procedure is used 
to solve an equation set that has a large number of variables, a large amount of computer 
time will be required for the multiple solution of the XDD vector. 

It should be noted that the only way to call the subroutine SOLVE is by using the 
CALL SOLVE instruction in a no sort or procedure section. The following statement 
cannot be used since the output variable (XDD) is not the last argument of the subroutine. 

XDD = SOL VE(A, 3, 3, 3, Y, SING) 

Note that there is only one output variable. This is another reason why the above 
form for calling the subroutine SOLVE cannot be used. 

Special consideration must be made when using subprograms where the output 
depends on past values of output and past and present values of input. 

Memory 

This statement is required for subprograms that contain memory functions. 
A memory function is one where the output depends only on past values of input 
and output. As an example, consider the following statement. 

MEMORY ABC(13) 

The above instruction specifies that 13 storage locations are allocated for 
memory functions which are contained in the subprogram ABC. The MEMORY 
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I 

TITLE PROGRAM TO DEMONSTRATE THE USE OF A SUBROUTINE AND 
TITLE A SYSTEM OF SIMULTANEOUS DIFFERENTIAL EQUATIONS 

DIMENSION All,3). XDD(3), Yll) 
LOGICAL SING 

FIXED I, J 
NOSORT 

DO 1 I 1.3 
OOlJ 1.3 
AII.J) x 0.0 

x 1.0 
TI ME*TI ME + 4.0 

~ 5.0 
.. 24.0 
.. 56.0 
= 2. O*TI ME 
.. 100.0 

TO SOLVE 

AU.U 
All.2) 
AIZ.U 
AI2.3) 
Al3.i) 
All.Z) 
An.3) 
Yl 1 J = 
Y(2) 
y(3) 
CALL 

-0.5*XDl - 1.1*Xl + 0.3*XZ + 0.21*IX].*]) + SINCTIME) 
O.011*Xl*TIME - 5.0*XD2 - X2 + O.l*X] + 1.6.XD3 

SORT 

XDl*X02 - X3 - 2.4*XD3 + EXPI-Xl/23.0J 
SOLVEIA.3.3.3.Y.XOD.SING) 

XDI = INTGRLCO.O,XDDll») 
XOZ .: INTGRLCO.O.XODCZ» 
X03 .: INTGRlCO.0.XDD(3» 
X ly = I NTGRU O. O. XDU 
X2 = INTGRlI0.0.XD2) 
X3 = INTGRlIO.O,XD]) 

PRINT Xl. XZ. Xl 
TIMER FINTIM = O.Z. PRDEL .: 0.01 

END 
STOP 
C THE FOLLOWING TWO SUBROUTINES WILL SOLVE A SET OF SIMULTANEOUS 
C LINEAR EQUATIONS. 

SUBROUTINE SOlVECA.MA,NA,N,B.X,SING) 
REAL AIMA.NA).BlNJ.XIN) 
LOGICAL SING 
CALL INVERTIA.N.MA.SING. 
IF(SINGJRETURN 
DO 10 l=l.N 
XII)"O.O 
DO 10 J=l.N 

10 X([)=X(I)+A(I.J)*S(JJ 
RETURN 
END 
SUBROUTINE INVERTlA.ORDER,DIM A, SING) 
INTEGER ORDER. DIM A 
REAL A(DIM A.l),BClOO).CllOO) 
N=ORDER 
LOGICAL SING 
INTEGER IPCIOO).IOllOO) 
DO 1 K=l.N 
PIVOT-O. 
DO 100 I-=K. N 
DO 100 J=K,N 
IFCASSIA(I.J»-ABS(PIVOT»)lOO,lOO,lOl 

101 PIVOT"'AII,J) 
IPIK):a1 
IQIKJ=J 

100 CONTINUE 
IFIPIVOT)102,900.102 

102 IPK=tPIK) 
IOK=IOCK) 
If(IPK-K)200.Z99,200 

ZOO DO 201 J=l.N 
Z=Al IPK.J) 
AIIPK.J)=ACK,J) 

ZOI AIK.J)=Z 
299 CONT INU E 

IF(IQK-K)300,399,300 

Fig. 3.55 CSMP program and subroutines used to solve a set of 
differential equations. 

169 



300 DO 301 l=l.N 
Z= A ( I .1 QK ~ 
A(I,IQK)=A(I,K) 

301 A(I.K)=Z 
399 CONTI NUE 

DO 400 J=l.N 
IF(J-KJ403.40Z,403 

402 B(J)=1./PIVOT 
C(J~=l. 

GOT a 404 
403 B(J)s-A(K.J~/PIVCT 

C(J)=A(J,K) 
404 A(K,JJ=O. 
400 A(J.K)=O. 

DO 405 1=1. N 
DO 405 J=l.N 

405 AlI,J)=A(I,J)+C(U*S(J) 
1 CONTINUE 

K=N 
DO 500 KDUM= 1. N 
IOK=IQ(K) 
IPKaIP(K) 
IF( IPK-K)SOl.,502,501 

SOL DO 503 I=L,N 
Z= A ( I, I PK) 
A( I , I P K ) =A ( I , K ) 

503 A(I,K)=Z 
S02 IF( IOK-K)S04,500,504 
504 DO 506 J=l,N 

I=A( IQK,J) 
A(IQK.JI=A(K.J) 

506 A(K,J)=Z 
500 K=K-l 

SING = .FALSE. 
RETURN 

900 SING = .TRUE. 
RETURN 
END 

ENDJOB 

Fig. 3.55 (Continued) 

PROGRAM TO OEMONSTRATE THE USE OF A SUBROUTINE AND TO SOLVE 
A ~Y~TEM OF SIMULTANEOUS CIFFERENTIAL EQUATIONS 

TIME 
Il.O 
1.0000E-02 
2.uOOOE-J2 
3.0000E-J2 
tt. t)()UuE-U2 
5.0000E-02 
6. UOOOI:-02 
7.0000c-02 
8.JOOOE-u2 
9.0000E-02 
1.00uOE-OI 
1.1U()Oc-OI 
1. 20QuE-Q 1 
1.30QOE-Jl 
1. 'tOQui:-OI 
1. 5000E-O 1 
1.6vUUc-OL 
1.7000i:-Ol 
1.8000E-Ol 
1.9JOOE-Ol 
2 .OOOOE-O 1 

Xl 
0.0 
1.4215E-Ob 
5.6849E-06 
1.2790E-05 
2.2737E-05 
3.5528E-05 
5.1166E-05 
6.<;655E-05 
9.1001E-05 
1.1521E-04 
1.4Z29E-04 
1.7225E-04 
2.0510E-04 
2.4085E-04 
2.7952E-04 
3.21LIE-04 
3.6565E-04 
4.1314E-04 
4.6361E-04 
5.1708E-04 
5.7356E-04 

X2 
c.e 

-3.1430E-01 
-1.0C;27E-06 
-2.6889E-06 
-3.C570E-06 
-3.1516E-06 
-3.9282E-06 
-3.3428E-C6 
-1.75Z1E-06 

i.C862E-06 
5.4138E-06 
1.1471 E-05 
1.'i4C;8E-05 
2.9733E-C5 
4.2413E-05 
5. H14E-C5 
7.6053E-05 
<;.1482E-C5 
1.2229E-04 
l.5072E-04 
1.8Z99E-04 

X3 
0.0 

-2.9598E-07 
-1.1833E-06 
-2.6614E-06 
-4.7307=-06 
-1.3923E-06 
-1.0648E-05 
-1.4501E-05 
-1.8953E-C5 
-2.4010E-05 
-2.9616E-05 
-3.5951E-05 
-4.2859E-05 
-5.0389E-05 
-5.8555E-05 
-6.1367E-05 
-1.6833E-05 
-8.6964E-05 
- 9. 1170E-05 
-1.0926E-04 
-1. Z146E-04 

RKS 

Fig. 3.56 PRINT output for the solution of the set of differential 
equations. 

170 
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card should appear in the deck before the first reference to the subprogram. 
Examples of some CSMP memory elements are the following 

INTGRL 
DELAY 
REALPL 
CMPXPL 

History 

This statement is used with subprograms where functions are used in which 
the output depends on past and present values of output and present values of input. 
The following instruction will reserve 8 history storage locations for the subpro­
gram ABC, and 17 for the subprogram DEF. 

HISTORY ABC(8) DEF(17) 

The HISTORY statement must appear before any reference to the subprogram. 
Some CSMP history functions are: 

DERIV IMPULS 
GAUSS PULSE 

RST 
STEP 

HSTRSS RNDGEN ZHOLD 

A more comprehensive discussion of MEMORY and HISTORY can be found 
in References (1 and 6). 

Implicit Functions 

For certain types of simulations, the output of CSMP will state that an alge­
braic loop is formed between a specified list of variables and that the program 
cannot be executed. This problem arises whenever a loop does not contain at least 
one memory function. 

As noted in the previous section, there are two types of memory functions 
defined in CSMP. If we consider a function to be characterized as having an output 
and input, the following applies. 

(a) A MEMORY function is one whose output depends only on past values 
of the output and input. 

(b) A HISTORY function is one whose output depends on past values of the 
output and input and in addition, the present value of the input. 

There are four MEMORY functions in CSMP: INTGRL, REALPL, 
CMPXPL, and DELAY. Each loop of a simulation must contain either at least 
one of these functions or a user-defined memory function to avoid an algebraic 
loop. However, loops are not always obvious in a simulation. 

Consider the simple circuit shown in Fig. 3.57(a). If the output is the voltage 
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(a) Series circuit 

~ 
- 1/R 1 

(b) Flow graph for the series circuit 

Fig. 3.57 Series circuit and proposed flowgraph. 

across R2 and the input is the independent source Vinet), a set of equations describ­
ing the network is 

Vit) = i(t)R2 

i(t) = Vinet) _ Vit) 
Rl Rl 

(3.48) 

(3.49) 

A flow graph for the two equations is given in Fig. 3.57(b). Since the flow graph 
contains a feedback loop without a memory function, programming these equa­
tions will result in an algebraic loop. An algebraic loop can often be circumvented 
by either rewriting the simulation equations or using the CSMP implicit function. 

Formulation of Implicit Functions 

An equation of the form F(x) = 0 is an implicit function. The equation for 
F(x) can be written as 

x =f(x) 

where F(x) =1= f(x). As an example, suppose 

F(x) = x 2 + 3x - 4 = 0 

One way of expressing the variable x is 

x =f(x) = t(4 - x 2
) 

The CSMP function 

x = IMPL(XO, ERROR, FOFX) 

(3.50) 

(3.51) 

(3.52) 

(3.53) 
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will often find an x which satisfies the general equation, x = f(x) , and in particular 
may satisfy Eq. (3.52). In the IMPL function arguments, 

XO = an initial guess for x as specified by the user 

ERROR = the error specified by the user in finding x 

FOFX = the right hand side of Eq. (3.50) 

A general rule for using the IMPL function is that the expressions for FOFX must 
appear after X = IMPL (XO, ERROR, FOFX) and the last such expression must 
specify FOFX. Furthermore, the variable X must appear at least once on the right 
side of the equations defining FOFX. As applied to Eq. (3.52) one may write either 

or 

X = IMPL (XO, ERROR, FOFX) 
A = 4.0/3.0 
B = -(X**2)/3.0 
FOFX =A + B 

X = IMPL (XO, ERROR, FOFX) 
FOFX = (4.0 - X**2)/3.0 

which illustrates that the user is not required to split-up FOFX. 
CSMP uses a Wegstein's accelerated convergence algorithm to calculate Xn+ 1 

using Xn-l, xn,f(Xn-l) andf(xn) with a user-specified initial guess for X.(6) The test 
for satisfying the user-specified ERROR is based on 

I
Xn+l - Xnl < ERROR 

Xn+l 
for I X n+ 1 I > 1 (3.54) 

or 
for I xn+ll < 1 (3.55) 

Generally there will be more than one way of expressing x = f(x). For the 
case, F(x) = X2 + 3x - 4 = 0, two ways of writing x are 

4 - x 2 

X = -3- =f(x) (3.56) 

and 

x = ±,J4 - 3x =f(x) (3.57) 

The IMPL function results will often depend on the form selected for f(x) as well 
as the initial guess. The polynomial, x 2 + 3x - 4 = 0, has roots at x = 1 and 
x = -4. Suppose Eq. (3.56) is used to represent f(x). The convergence of the 
implicit algorithm may be observed by printing out the variables x and f(x) each 
time the program passes through the implicit loop. A short program for this pur­
pose is given in Fig. 3.58. With ERROR = 0.05, the following values of X were 
obtained for the indicated initial values of XO. 
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PARAM XO = -3.0, ERROR = 0.05 
NOSORT 
X = I~PL(XO,ERROR.FCFXt 
A = 4.0/3.0 
e = -tx**2t/3.0 
FQFXl = A + B 

WRITE(6.11 X,FOFXl 
1 FORMAT(2E20.10t 

FfJFX = A + B 
TIMER FINTIM = 1.0, DELT = 0.25, PRDEL = 0.25 
PRINT X 
TITLE ILLUSTRATION OF I~PlICIT FUNCTION 
END 
STOP 
ENDJOB 

Fig. 3.58 Program for printing the values of x and f(x) during 
the implicit loop convergence process. 

Initial Guess 
XO 

0.5 
2.5 

-1.0 
-3.0 
-6.0 

Solution 
X 

1 
1 
1 

-4 
-4 

Ch. 3 

Rather than present a lengthy discussion on how convergence takes place, the 
reader is encouraged to submit the previous program of Fig. 3.58 and observe the 
trial values of X and FOFXl as the program converges to the final value of X. 

If X is expressed by 

x = -,v'4 - 3x 

solutions for X, using ERROR = 0.05, are as follows 

Initial Guess 
XO 

3.0 
-1.0 
-2.0 
-6.0 

Solution 
X 

-4 
-4 
-4 
-4 

(3.58) 

We observe that for XO = -1, X converges to +1 in one case and -4 in the 
other. 
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Corresponding to the program in Fig. 3.58 a portion of subroutine Update 
will give 

30000 X = IMPL( 1, XO,ERROR,FOFX) 
IF(NALARM) 30002, 30002, 30001 

30001 CONTINUE 
A = 4.0/3.0 
B = -(X**2)/3.0 
FOFX1 = A + B 
WRITE(6,1) X, FOFX1 
FORMAT(2E20.10) 
FOFX =A + B 
GO TO 30000 

30002 CONTINUE 

On first entering the IMPL routine, NALARM is set .equal to 1 and X equal to 
XO. The value of FOFX is determined and the program returns to 30000. When 
the error criteria is satisfied, NALARM is set to zero and X set equal to the last 
value of FOFX. The program goes to 30002 and continues in the simulation. If 
the error criteria is not satisfied after 100 iterations, NALARM is set to -1 and 
the run is terminated with a message stating that 100 iterations have been exceeded. 

The entire implicit function may be considered as a functional block with X 
as the output variable. Occasions may arise in which intermediate variables defin­
ing the implicit function are required for calculations elsewhere in a program. In 
such cases, extreme care must be exercised to avoid erroneous results. If at all 
possible, the desired intermediate variables should be recalculated outside the im­
plicit loop. However, it may be possible to define the intermediate variables as 
outputs from either a procedure function or a user-defined macro which contains 
the entire implicit loop. Example 3.16 illustrates the use of a macro for this purpose. 

Rules and guidelines for using the IMPL function can be summarized as 
follows. 

I As many statements as desired may be used to define/ex); however, the out­
put name in the last statement of the definition must be identical to the 
third argument, FOFX, of the IMPL statement. The output name for FOFX 
cannot be the output of an expression containing an INTGRL block nor 
can it be the output of a user defined macro, procedure or user-supplied 
routine. The last statement in the implicit loop cannot be continued. 

2 The implicit variable must appear on the right side of an equal sign at least 
once in the statements defining FOFX. 

3 An implicit loop can be defined within a macro or procedure provided the 
entire set of required statements is contained within the macro or pro­
cedure. 

4 An implicit loop cannot be defined within another implicit loop. 
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Example 3.15 

Consider the circuit diagram of Fig. 3.57(a) which was earlier described by the 
equations 

Vo(t) = i(t)R2 

i(t) = ~n(t) _ Vit) 
Rl Rl 

A simple CSMP program for the solution of i(t) and the resulting output is 

PARAM R1 = 8.0, R2 = 2.0 
VIN = 10.0*STEP(0.0) 
VO = IA*R2 
IA = VINjR1 - VOjR1 
TIMER FINTIM = 1.0, DELT = 0.25, PRDEL = 0.25 
PRINT IA 
END 
STOP 
ENDJOB 

(3.59) 

(3.60) 

SIMULATION INVOLVES AN ALGEBRAIC LOOP CONTAINING THE 
FOLLOWING ELEMENTS VIN VO IA 

********PROBLEM CAN NOT BE EXECUTED******** 

The algebraic loop can be broken by using the implicit function shown below. 

PARAM R1 = 8.0, R2 = 2.0, lAO = 2.0, ERROR = 0.05 
VIN = 10.0*STEP(0.0) 
IA = IMPL(IAO, ERROR, FOFIA) 
A = VINjR1 
VO = IA*R2 
B = -VOjR1 
FOFIA = A + B 
TIMER FINTIM = 1.0, DELT = 0.25, PRDEL = 0.25 
PRINT IA 
END 
STOP 
ENDJOB 

The output from the PRINT request is 

TIME 
0.0 
2.5000E-01 
5.0000E-01 
7.5000E-01 
1.0000E 00 

IA 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 
1.0000E 00 

The initial value of IA is specified on the PARAM card as lAO = 2.0 and the acceptable 
error as ERROR = 0.05. Note that FOFIA is the last statement used in defining IA and 
also corresponds to the third argument in the IMPL function. 
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Example 3.16 

The diagram of a feedback system which does not contain a memory function is 
shown in Fig. 3.59. An unaware user may write the following program only to find that 
the simulation involves an algebraic loop. 

OUTPUT 

Fig.3.59 Diagram for Example 3.16. (This diagram does not 
contain a memory function.) 

PARAM K =0.6 
INPUT = STEP(O.O) 
E = INPUT - OUTPUT 
Xl = K*E 
OUTPUT = LEDLAG(1.0, 1.0/5.0, Xl) 
METHOD RKSFX 
TIMER FINTIM = 2.0, DELT = 0.05, PRDEL = 0.1 
PRINT OUTPUTt 
END 
STOP 
ENDJOB 

The algebraic loop can be broken by making OUTPUT an implicit function in the fol­
lowing manner. 

PARAM OUTO = 0.2, ERROR = 0.05, K = 0.6 
INPUT = STEP(O.O) 
OUTPUT = IMPL(OUTO, ERROR, FOFOUT) 
E = INPUT - OUTPUT 
Xl = K*E 
FOFOUT = LEDLAG(1.0, 1.0/5.0, Xl) 
METHOD RKSFX 
TIMER FINTIM = 2.0, DELT = 0.05, PRDEL = 0.1 
PRINT OUTPUTt 
END 
STOP 
ENDJOB 

The response of the system has a discontinuity at time equals zero and hence a fixed-step 
integration method is used to avoid computational difficulties with the variable-step inte­
gration. The printed output from the program is shown in Fig. 3.60. One can easily verify 
by analytical methods that the values for OUTPUT are correct. 

tOUTPUT is acceptable for S/360 CSMP but should be changed to another variable for 
CSMP III. 
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PRINTED OUTPUT FOR LEDlAG ALGEBRAIC LOOP 

Tt~E 
0.0 
1.OOOOE-Ol 
2.0000E-Ol 
3.0000E-Ol 
4.0000E-Ol 
5.0000E-Ol 
b.OOOOE-01 
1.0000E-Ol 
8.0000E-Ol 
9.00 GOE-01 
1.0000E 00 
1.1000E 00 
1.20COE 00 
1.3000E 00 
1.4000E 00 
1.5000E 00 
l.bOOOE 00 
1.1000E 00 
1. BOOOE 00 
1.9000E 00 
2.00COE 00 

OUTPUT 
1.5000E-01 
b.8202E-01 
6.2631E-OI 
5.8080E-01 
5.4350E-01 
5.1296E-Ol 
4.8195E-01 
4.6747E-01 
4.501lE-01 
4.3699E-Ol 
4.2515E-01 
4.1655E-Ol 
4.0902E-01 
4.0285E-Ol 
3.9180E-Ol 
3.9361E-Ol 
3.9029E-01 
3.8152E-01 
3.852 5E- 01 
3.8339E- 01 
3.8181E-Ol 

Fig. 3.60 Printer output from the algebraic loop containing the 
LED LAG function. 

Ch.3 

Now suppose that one desires to evaluate the integral of E2 which is often a meaning­
ful index of performance. For this problem, this can be accomplished simply by adding 
the statement, ISA = INTGRL(0.0,E**2), outside the implicit loop. As an alternate 
approach, E may be expressed as the output of a macro and incorporated into a program 
as follows. 

MACRO E, OUTPUT = CHECK(OUTO, ERROR, K, INPUT) 
OUTPUT = IMPL(OUTO, ERROR, FOFOUT) 
E = INPUT - OUTPUT 
Xl = K*E 
FOFOUT = LEDLAG(1.0, 1.0/5.0, Xl) 

END MAC 
PARAM OUTO = 0.2, ERROR = 0.05, K = 0.6 
INPUT = STEP(O.O) 
E, OUTPUT = CHECK(OUTO, ERROR, K, INPUT) 
ISA = INTGRL(O.O, E**2) 
METHOD RKSFX 
TIMER FINTIM = 2.0, DELT = 0.05, PRDEL = 0.1 
PRINT E, ISA, OUTPUT 
END 
STOP 
ENDJOB 

In summary, the implicit function can often be used for breaking an algebraic loop. 
The user however should be aware that the specified initial value and the user-selected 
form of [(x) can influence the solution. Normally, the user will know the general results 
expected from the simulation. Therefore, if an unexpected (or unwanted) solution is 



Ch.3 Advanced Features of CSMP 179 

obtained when using the IMPL function, one should try several different initial conditions 
and perhaps change the form of f(x). 
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PROBLEMS 

1 Using the END and/or CONTINUE card, solve for the time-history of the value of 
a bank account over a four~y~ar period. One hundred dollars is deposited at the 
beginning of the first year at the interest rate of 5 % per year. At the beginning of the 
second year the interest rate is increased to 6 %, and at the beginning of the third 
year the interest rate is 6.75 %. The fourth year, the interest rate is 7.5 %. Assume 
that money is continuously compounded according to the following formula. 

d$ = i$ 
dt 

where i = yearly interest rate (0.05, 0.06, 0.0675, 0.075) 

Answer: 
At end of fourth year, $ = 128.72 

2 A linear transfer function that can be used to approximate the response of a human 
operator to a visual command in turning a steering wheel is shown below. The input 
is a unit-step input. 

() (1.6s + l)(O.lls + l)e- O•2s () 

IN(S) ~- (1.2s + 1)(0.15s + 1)(0.OO35s2 + 0.084s + 1) ~ o(s) 

Determine the response of the man to a unit-step input. Note that the e- o. 2s term 
represents a pure time delay of 0.2 sec. 
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Fig. P3.2 

Answer: 
At TIME = 1.0, (Jo = 1.1874 

3 A real estate purchase of $42,000 is financed for 25 years at an interest rate of 9.5 %. 
Write a CSMP program to calculate the monthly paymerits, the amount paid in 
interest each month, and the amount paid on the principal each month. 

Answer: 

Monthly payment = $366.95, at the tenth month interest = $329.97, 
principal = $36.98 

4 Consider the system represented in the following diagram. 

Output 1 

Output 2 

Fig. P3.4 

If Input 1 and Input 2 are unit-steps applied at t = 0, find the responses of Output 1 
and Output 2. 

Answer: 
At TIME = 1.2, Output 1 = 0.39523, Output 2 = 0.12559 

5 The location of a hole is given by the X and Y dimensions. Assume that the X dimen­
sion varies between 11.900 in. and 12.100 in. with a uniform distribution and Y 
dimension has a Gaussian distribution with a mean of 5.000 inches and a standard 
deviation of 0.100 inches. 

Fig. P3.S 
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How many parts in a production run of 1000 will have a radius R outside the 
tolerance of R = 13.000 ± O.1oo? 

Answer: 
13'5 parts 

6 Use subscripted variables and the array form of the integral statement to solve the 
following set of equations that describe a mechanical system. The system is initially 
at rest. 

where 

Answer: 

mlXl + (k 1 + k 2)Xl + eXl - k2X2 - eX2 = 0 

m2x 2 + (k2 + k 3)X2 + eX2 - k2Xl - eXl - k3X3 = 0 

m3x3 + k3X3 - k3X2 = 12 sin (4.0t) 

ml = 2.3, m2 = 3.4, m3 = 0.9 

kl = 19.0, k2 = 45.0, k3 = 12.0, c = 0.8 

12 sin (4.0t) 

X2 

Fig. P3.6 

At TIME = 2.0, Xl = -0.2075, X2 = -0.2707, X3 = 0.4517 

7 The gas pressure acting across a small caliber bullet varies with the distance traveled 
by the bullet down the barrel of the gun. 

The following table gives this pressure-distance relationship for a 26 in. barrel. 

Pressure 
X, in. Ib/in. 2 

0 5,500 
1.0 13,000 
2.0 22,500 
3.0 27,700 
4.0 30,200 
5.0 29,000 
6.0 27,500 
8.0 22,000 

10.0 16,000 
12.0 11,100 
15 6,200 
18 4,100 
21 3,750 
26 3,540 
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Pressure 

Ii X IG;~ 
~...J 180 grain bullet Fig. P3.7 

Assume the diameter of the bullet is 0.300 in. and weighs 180 gr (0.0234Ib). The 
frictional drag on the barrel is to be considered small compared to the gas force. 

Use Newton's second law to find the time required for the bullet to leave the 
barrel and the muzzle velocity. Compare answers using the NLFGEN and AFGEN 
arbitrary function generators. 

Answers: 

mX =PA 

Using AFGEN v = 27546 in./sec 
Using NLFGEN v = 27512 in./sec 

8 An automobile costing $4000 is financed for 36 months with monthly payments of 
$130.50. The annual effective compound interest rate for this loan can be determined 
by solving the expression 

Iannual = (1 + i)12 - 1 

where Iannual = annual effective compound interest rate expressed in decimal form 
(not per cent) 

i = interest rate per month expressed in decimal form 

The solution for i (rate per month) can be found from 

(1 + i)n - 1 
an/i = i(1 + i)n 

where in this case 
4000 

an/i = 130.50 = 30.651 

and n = 36. An implicit expression for i can therefore be written as 

. (1+i)n-l 
1 = 30.651(1 + i)n 

Develop a CSMP program using the IMPL function to solve for i. Include a state­
ment in your program for finding Iannual' Use PRINT to give the values of Iannual and 
i. What effect does the initial guess for i have on the solution for i? Use i = 0.01 and 
i = 5.0 as initial values and error = 0.00001. 

Answers: 
For i (initial) = 0.01, i = .0089613, Iannual = .11298 
For i (initial) = 5.0, same answers 

9 Use the multiple run capability of a PARAMETER card to solve Mathieu's equation 
for the following values of a 

a = 0.5, 1.5, 3.0, 5.0 

b = 2.0, OJ = 3.0 
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Mathieu's equation is 

d 2y 
dt 2 + (a - 2b cos rot)y = 0 

yeO) = yeO) = 2.0 

Answers: 

At TIME = 1.0 y = 4.979 
y = 3.669 
y = 2.046 
y = 0.4326 

a = 0.5 
a = 1.5 
a = 3.0 
a = 5.0 

10 The figure below shows a tapered beam with an axial load of 10,000 lb and a uni­
form load of 72 lb/in. The differential equation describing the deflection of the beam 
is 

d 2y 
El dx2 =-M M = moment due to uniform lead + py 

Using the CALL RERUN statement, find the deflection of the beam. 

Uniform load = 72 Ib/in. 

~'-l- ~ THCCQ?-i ..... t--- 1O,0001b 

" x = 100 in. 
x = 0 H = 10 - 0.6 Vx 

~ 
B = width = 4.0 in. 
E = 1.4 x I 06 psi 

Y I = BH3/12 

Fig. P3.10 

Answer: 

Ymax = 0.388 in. at X = 66 in. 

11 The acceleration indicated by an accelerometer is given by the following formula. 

A = ro;z 

The equation of motion of the seismic mass is 

i + 2'ronz + ro;z = ji 

z 

I 

Fig. P3.11(a) 
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Using the multiple run capability of the PARAMETER and END cards, find 
the indicated acceleration reading for the four combinations of natural frequencies 
and damping ratios. The input acceleration is shown below. 

1. ron = 10 rad/sec ,= 0.1 
2. ron = 10 rad/sec ,= 0.7 
3. ron = 100 rad/sec ,= 0.1 
4. ron = 100 rad/sec ,= 0.7 

3860/sec2 

y 

0.4 0.5 
Time Fig. P3.11(b) 

Answers: 
Case 1 At TIME = 0.4, A = 4054.0 
Case 2 At TIME = 0.4, A = 2430.0 
Case 3 At TIME = 0.4, A = 3839.0 
Case 4 At TIME = 0.4, A = 3725.0 

12 A steel cantilever beam has a distributed load as shown below. 

w(x = 15) = 121b/in. 
y 

x 
~--------------------------------,~ 

E = 30 x 106 psi x = 30 in. 

b = 2 in. 

~h=lin. 

1= bh
3 = 1 in4 

12 6 

Fig. P3.12 

The equation which describes the shape is the following fourth order differential 
equation. 

d4y w(x) 
dx4 = - E1 

w(x) = density of the distributed load 

Using the following boundary condition on the left end and the AFGEN func­
tion to represent the density of the distributed load, solve for the deflected shape of 
the beam. 

yeO) = d~~) = 0 

d 2y(0) 2700 
dx 2 = - E1 

d 3y(0) 180 
(lX3= E1 
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Answer: 
At x = 30, y = -0.111 in. 

13 The approximate dimensions of the cross-section of a railroad rail are given by the 
following table. 

y 

o 
0.5 
1 
1.3 
3.0 
4.7 
4.9 
5.0 
5.3 
6.4 
6.55 

6 
6 
1.7 
1.0 
0.65 
0.8 
0.95 
1.2 
2.9 
2.9 
1.0 

O---L..-.------+-------' 

Fig. P3.13 

Use the AFGEN function to approximate the shape of the rail and find the 
center of mass and the moment of inertia about line 0-0. The moment of inertia is 
given by the following formula. 

1= f y 2t dy 

Answer: 
y cg = 2.87 in. 1= 171.9 in.4 

14 The transfer function of a system is given by 

yes) 12 
U(s) = (s + 2)(s + 6) 
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A unit-step input is applied to the system. It is desired to sample the output signal, 
yet), every 0.04 sec as shown in the diagram below. 

12 I--Y-X-
(s + 2)(s + 6) T = 0.04 

U - __ --I 

Step input 

Write a CSMP program which outputs the sampled signal. Use the IMPULS function 
for modeling the sampler. 

Answer: 
y = 0.76307 at TIME = 0.72 using variable-step integration. 

15 The following equations describe the motion of a top spinning about a frictionless 
pivot point. The only external torque is due to gravity. 

o = I'til 2 sin B cos B - I(~ + til cos B)tiI sin B + WD sin B 
I' 

rjJ = -2I'Otil cos B + I(~ + til cos B)O 
I' sin B 

~ = tilO sin B - rjJ cos B 
I = moment of inertia of top about spin axis = 0.001 Ib-in-sec2 

I' = moment of inertia of top about a line perpendicular to the spin axis and through 
the pivot point = 0.04 Ib-in-sec2 

W = weight = 0.8 lb 
D = 2.0 in. 

---() 

cp 

Spin axis 

Fig. P3.1S 

Find the motion of the top for the following initial conditions. Note the singu­
larity at (J = O. 

rp = til = 0, ~ = 500 radians/sec, B = 1.0 radians, 0 = 0.5 radians/sec 

Answer: 
At TIME = 1.0 sec, B = 63.83°, 'II = 200.55°, ~ = 499.31 rad/sec 

16 The difference equation for a low pass filter can be expressed as 

y(kT) = (1 - rt)x(kT) + rty[(k - I)T] 
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for ~ less than 1. For this case select ~ = 0.8 and T = 0.1. The input signal, x(t), is 
given by 

x(t) = t + 0.5 sin (611:t) 

Write a CSMP program which (a) gives the input signal x(t) every 0.1 sec; and (b) 
gives the filtered signal y(t) every 0.1 sec. t 
Answer: 

At TIME = 4.1, x(t) = 4.5755, y(t) = 3.7666 

17 A classical problem in the calculus of variation is to determine the path of quickest 
descent-the brachistochoe problem. This problem involves finding the curve between 
two points that a sliding particle would descend in the minimum time. The exact 
curve is a cycloid. 

0,0 x 

......-Sliding particle 

y = f(x) 

y 

Fig. P3.17 

The time required for a mass to slide down a curve under uniform gravity is 
given by the following expression. 

__ 1_ fX / 1 + y'2 d 
t - ,.j2g 0 'V-y- x 

Using Euler's equation, the above integral can be minimized by the solution to 
the following differential equations 

y' = ~ ~ - 1 

The value of c = 30.32 will yield a solution that will pass through the following 
point: x = 25, y = 25.9. Using this value of c, solve the above equation to deter­
mine the shape of the curve. Note that in integrating the above expression for y', it 
is necessary to add a small number (10- 6) to y to avoid dividing by zero at the start 
of the integration. Also, it is necessary to use a small step size at the beginning of the 
integration. Use the CONTINUE card to increase the step size of a fixed-step size 
integration method (RKSFX) after x = 0.5. 

Answer: 
At x = 25, y = 26.01 

tSee Problem 18, Chap. 4 for additional comments. 
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18 Consider the first-order differential equation given by 

d~~t) + 3y(t) = u(t) 

yeO) = 0 

Ch. 3 

where u(t) is a unit-step defined to be 1 for t greater than or equal to zero and zero 
for t less than zero. One approach for numerical solution to this equation is to use the 
Tustin approximation for differentiation. In such case 

d~~) -+ ~ [; + !J Y(z) 

where T is the time between numerical iterations and z is the z-transform variable. 
Using this approximetion one writes 

2 [z - IJ T z + 1 Y(z) + 3Y(z) = U(z) 

which yields 

T 
Kl =2+3T' 

Using the left shifting property of z-transforms gives the difference equation 

y(kT) = K 1[u(kT) + u((k - I)T] - K2y((k - I)T) 

(a) Solve the original differential equation using the standard INTGRL function of 
CSMP. Use trapezoidal integration (i.e., METHOD TRAPZ) with DELT = 0.1. 
(b) Write a CSMP program which solves the difference equation. Use T = 0.1. 
Compare the results with that of part (a). 

Answers: 
At TIME = 1.0, yet) = 0.31578 [part (a)], yet) = 0.31711 [part (b)] 

19 The steady-state current for a 60 hertz-120 volt input to the circuit below is given by 
the following expression. 

. [ Ri + L2OJ2 J1/2 
1 = 120 L2OJ2(R1 + R2)2 + (R 1R2)2 OJ = 120n rad/sec 

The phase angle of the current can be expressed as 

cp = tan-1 (LOJ) _ tan- 1 [LOJ(R1 + R2)J 
R2 RIR2 

120 volts 
60 hertz 

L 

Fig. P3.19 
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The values of the resistances and inductance with the appropriate tolerances 
and standard deviations are: 

Rl = 10 ohms (± 10%), O'RI = 0.33 ohms 

R2 = 60 ohms (± 20 %), 0' R2 = 4.0 ohms 

L = 0.18 henries (± 20%), O'L = 0.012 henries 

Use the GAUSS function to calculate the current and phase angle for gaussian 
distributed random values of Rt, R 2 , and L. Find the average and standard deviation 
of both the current and phase angle for 300 different combinations of parameters. 

An expression for the standard deviation is: 

Answer: 

[
n ± xi' _ (± X/)2]1/2 

0' - /=1 /=1 
x - n(n - 1) 

iave = 2.294 amps, CPave = - 34.29° 
0'/ = 0.104 amps 0'",= 2.264° 

20 The purpose of this problem is to illustrate how a macro is invoked within another 
macro. Consider the general system diagram shown in Fig. P3.20-1. Both subsystem 
A and subsystem B can be described by a state equation of the form 

[~l(t)J = [all a12J [X1(t)J + [btJr(t) 
X2(t) a21 a22 X2(t) b2 

Disturbance A 

Output 

Fig. P3.20-1 

where Xl(O) = ICI and X2(O) = IC2. The program in Fig. P3.20-2 is a proposed 
method for writing a single MACRO to describe both subsystems A and B and a 
single MACRO to describe both XXA and XXB. Verify that the program is correct. 
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MACRO Y = STATECAIl.A12,A21.A22,8l,B2.R.ICI.IC2) 
XIDOT = AIIOX! • A12 0X2 • 81 0R 
X200T = A2l oXl • A220X2 • B20R 
Xl = INTGHLCICl.XlDOT) 
X2 = INTGRLtIC2.X2UOT) 
Y = Xl 

ENDMAC 

• SECOND MACRO FOLLOWS 
~ACRO OUT~ = SIMULACINPUT.GAIN.DIST.SII.S12 •••• 

S21,S22,Srll,SB2.SICl,SIC2) 
XX = STATECSll.Sl2,S2l.S22.SHl.SB2.GAIN0INPUT.SICl.SIC2) 
QQ = INTGRLCO.O.DIST) 
OUTX = XX • QQ 

ENDMAC 

• PARAMETERS FOR THE SUBSYSTEMS FOLLOW 
PARAMETER SAAll = 0.0. SAAl2 = 1.0. SAA2l = -2.0. SAA22 = -3.0 •••• 

Ch.3 

SABI = 0.0. SAB2 = 1.4. SAGAIN = 0.5. SAICI = 0.O.SAIC2 = 0.0 
PARAMETER SBAll = 0.0. SBA12 = 1.0. S~A2l = -4.0. SBA22 = -5.0 •••• 

SBBl = 0.0. S8B2 = 1.0. SBGAIN = 2.1. saICl = 0.0. SBIC2 = 0.0 

INA = STEPCO.O) 
DISTA = 0.2°SINC400.0oTIME) 
INS = STEPCO.U 
DISTS = EXPC-O.loTIME) 
XXA = SIMULACINA.SAGAIN,DISTA.SAAI1.SAAI2.SAA2l •••• 

SAA22.SABl.SAR2,SAICl,SAIC2) 
XXB = SIMULACIN~. SBGAIN. DISTB, SBAII. SBAI2. SBA2l •••• 

SBA22. SBrll. SBB2.SBICl. S8IC2) 
OUTPUT = XXA • XXB 
TIMER FINTIM = 2.0, OUTDEL = 0.04 
PRTPLT OUTPUTCXXA,XXB) 
END 
STOP 

Fig. P3.20-2 

Find the response of the system for the inputs, disturbances and system parameters 
as given in Figure P3.20-2. 

21 Many problems in control theory formerly solved by classical methods ,are now 
formulated as an optimal control problem using state space analysis. This problem 
illustrates the use of CSMP for simulation of a time optimal control problem in 
which the control is expressed in closed form. The state equations for a particular 
system are given by 

with initial conditions 

1J [Xl(t)J + [OJ u(t) 
-rJ- X2(t) 1 

Xl(O) = XIO 

X2(O) = X20 

The problem is to find the closed-loop control u(t) such that for any initial set, ~(O), 
the system response time for state ~(t) is minimized. Figure P3.21-1 gives a diagram 
which expresses the essence of this problem. 

The solution for the control u(t) can be expressed as(7) 
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Control 
logic 

Fig. P3.21-1 
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which is maximum effort in that u(t) will be either plus or minus one. The solution 
for the control logic is obtained from the argument of the sign function and is thus 
given by 

This equation defines the switching curve as shown in Fig. P3.21-2. 

+2 

-2 - I 

Fig. P3.21-2 

+ 1 
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The program listing for simulating this system is given in Fig. P3.21-3. The com­
plexity of writing a single statement for u(t) can be avoided by grouping the terms of 
the switching curve. A conventional FORTRAN statement for the sign of a function 
is used in the simulation along with standard CSMP simulation statements. The 
FORTRAN statement 

y = sign (PbP2) 

takes the value of P l and multiplies by the sign of P2 • 

PARAM ALPHA = 0.4 
INCON ICXI = -2.0, ICX2 = 0.0 
Xl DOT = X2 
Xl = INTGRL(ICXI, XIDOT) 
X2DOT = -ALPHA*X2 + U 
X2 = INTGRL(ICX2, X2DOT) 
GAMMA = ALOG(I.O + ALPHA*ABS(X2» 
BETA = SIGN(I.O, X2)/(ALPHA*ALPHA) 
RHO = Xl + (X2)/ ALPHA 
U = -SIGN(l.O, RHO - BETA*GAMMA) 
TIMER FINTIM = 3.0, OUTDEL = 0.06 
PRTPLT Xl (U ,X2) 
LABEL STATE RESPONSE OF Xl AND X2 FOR TIME OPTIMAL 
CONTROL 
END 
STOP 
END JOB 

Fig. P3.21-3 Program listing for time optimal control. 

The time optimal response, starting from any point in the Xl, X2 plane should respond 
under control of maximum effort u(t) until the system trajectory reaches the switching 
curve. At this point the sign of the control is reversed and the system should follow 
the ideal switching curve to the origin. Use the program above with ICXI = -2 and 
ICX2 = 0 and find the system response for Xl(t) and X2(t). Use a FINTIM of 3.0 
and an OUTDEL of 0.06. Verify that the response intersects the switching curve and 
then proceeds to the origin. 

Answer: 
At TIME = 2.1, Xl = -0.36077, X2 = 0.05055, U = -1.0 



4 
FURTHER APPLICA TION 

OF CSMP 

The types of problems which can be simulated with CSMP are practically 
unlimited. Consequently, examples in Chaps. 2 and 3 were rather general and spe­
cifically selected to illustrate basic features. For the most part, these earlier chapters 
present those attributes of the program which are required in the majority of 
simulations. The material in Chap. 4 is somewhat more limited in scope but never­
theless relates to important engineering applications. 

One normally views CSMP as a tool for obtaining the transient or dynamic 
response of a system of equations. In the first part of this chapter, however, two 
methods are given for obtaining the steady-state frequency response of a system. 
One of these methods relies on direct application of the system transfer function: 
the Laplace variable s is replaced by jro and the response is obtained as a function 
of ro. The second method uses transient response information to find the frequency 
response. 

The second topic of the chapter deals with particular block diagram forms of 
transfer functions and illustrates how these diagrams can be used to formulate the 
system state-variable equations. An example is given in which the state equations 
are solved using CSMP. 

Real-time digital control has become increasingly important with recent 
technological development in the minicomputer and microprocessor field. There­
fore, a section is included which gives the basic concepts for simulating direct 
digital control. The material covers sample and hold simulation, recursive digital 
control algorithms, and the digital three-mode (PID) controller. Anyone involved 
with real-time digital control will find this material to be helpful in evaluating the 
performance of proposed computer control systems. 

Although CSMP is normally viewed as a software package for simulating 
continuous systems, the program also has the capability of simulating digital 
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194 Further Application of CSMP Ch. 4 

logic. The final section in this chapter presents an introduction to logic simulation 
and thus provides a method for investigating the performance of purposed con­
figurations without actually building hardware realizations. 

Frequency Response 

The concept of frequency response is well known in most scientific fields, 
particularly physics and engineering. (1-4) Basically this concept arises when con­
sidering an nth order, linear, differential equation with constant coefficients. In 
particular, if such an equation is written as 

dnx(t) + dn- 1x(t) + ... + dx(t) + (t) 
dtn an- 1 dtn-1 al dt aox 

= bmd
m 

J(t) + b _ d
m

-
1 
J(t) + ... + b dJ(t) + b J(t) (4.1) 

dtm m 1 dtm 1 1 dt 0 

and J(t) = F sin rot, the steady-state solution for x(t) can be expressed as 

x(t) = I X(jro) I sin (rot + if» 
where 

I X(jro) I = IA(ro) + jB(ro) I 
and 

if> = tan- 1[B(ro)/A(ro)] 

(4.2) 

(4.3) 

(4.4) 

The question arises as to whether CSMP can be effectively used to calculate 
the frequency response of a system. The answer is a qualified yes. We have seen 
that if the transfer function or differential equation of a system is known, the 
response of the system to any forcing function can be determined using INTGRL, 
REALPL, LED LAG, CMPXPL, and user-defined transfer function macros. If 
the forcing function is selected as a sine wave, the response of the system in steady 
state will yield the I X(jro) I and if>. This, however, is a rather awkward approach in 
that CSMP must go through the transient portion of the solution for each fre­
quency before reaching steady state. The transient calculations are wasted com­
puter time with respect to determining the steady-state solution. Thus, even though 
CSMP can be used to determine the frequency response, excessive computer time 
is required if the procedure described above is followed. Only in rare instances, 
such as calculating the response for one or two frequencies, could one justify using 
this procedure. 

While the above method should generally be avoided, there are other ap­
proaches to finding the frequency response using CSMP. Two methods are given 
below. For the first method a macro is developed and the response determined 
without using integrators. The second method uses an array of integrators and is 
applicable to finding the frequency response directly from measured time-domain 
data. 
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Frequency Response Without Integration 

Consider a transfer function of the form 

G( ) = N6 S5 + N sS4 + N 4S3 + N3 S2 + N 2s + Nl 
s D6S5 + DS S4 + D4S3 + D3S2 + D2s + Dl 

(4.5) 

Replacing s by j(f), multiplying out, and collecting real and imaginary terms gives 

Define 

giving 

Xl = (Ns(f)4 - N3(f)2 + N l ) 

X2 = (N6(f)s - N 4(f)3 + N 2(f) 

X3 = (Ds(f)4 - D3(f)2 + D l) 

X4 = (D6(f)S - D4(f)3 + D2(f) 

G(j(f) = Xl + !X2 
X3 + jX4 

Rationalizing the expression for G(j(f) yields 

G(' ) = (Xl X3 + X2X4) + j(X2X3 - Xl X4) 
j(f) (X~ + Xn 

We therefore have from Eq. (4.8) 

. [Xi + X~Jl/2 I G(j(f) 1= X~ + X~ 
and from (4.9) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

To compute the frequency response, various values of (f) must be used to calculate 
Xl' X2 , X3 , and X4 • 

The values assigned to (f) will normally depend upon the intended application. 
Typically, linear increments of (f) are used for Nyquist plots whereas logarithmic 
increments are used for Bode diagrams. The frequency increments will be equally 
spaced on a log scale provided, 

i = 0, 1, 2, ... , m 

where m = the total number of steps over the frequency range 

(f)min = starting value of (f) 

A = 1/(the number of desired points per decade) 

(f)i = (f) for the ith point 

(4.12) 
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The natural stepping variable of CSMP is the program variable TIME. The 
equations for the frequency response developed above are, however, not func­
tions of time. Nevertheless, the index ia can be replaced by TIME if TIME is 
incremented by 0, a, 2a, 3a, ...... , rna. When integration is not specified in 
CSMP, the increments of TIME can be controlled by the value of DELT given on 
the TIMER card. The following example illustrates how these observations may be 
used for obtaining the frequency response. 

Example 4.1 

The transfer function of a system is given by 

25 
G(s) = S2 + 3s + 25 (4.13) 

The frequency response is desired over the range OJ = 0.1 to OJ = 10 radians/sec with 
20 equally spaced log steps per decade. 

A program for this purpose is given in Fig. 4.1. In this program a procedural macro 
is used to calculate I G(jOJ) I and /G(jOJ). The coefficients ofthe transfer function are placed 
into the program using the STORAGE and TABLE features. Frequency is incremented 
by the equation 

OMEGA = WMIN*(10.0**(TIME» 

~ACRO FASE, MAG = FREO(N,D,OMEGA) 
PROCEDURAL 

Xl N(5)*(OMEGA**4)-N(3)*IOMEGA**2)+Nlll 
Xl = N(6)*ICMEGA**5)-N(4)*(OMEGA**3)+N(2)*0~EGA 
X3 = D(5)*(0~EGA**4)-C(31*(OMEGA**2)+D(l) 
X4 = D(6)*(CMEGA**5)-D(4t*COMEGA**3)+O(2)*OMEGA 
MAG = (SQRT(Xl*Xl+XZ*X211/CSQRTlX3*X3+X4*X4» 
CONV = 57.29578 
XREAl = XI*X) + X2*X4 
XIMAG = X2*X3 - X1*X4 
FASE = (ATAN2CXIMAG,XREAL»*CONV 
IFCFASE)2, 2, ) 
3 FASE = FASE - 360.0 
2 CONTINUE 

ENOMAC 
INITIAL 

PARAM WMIN = 0.1, WMAX = 10.0 
DYNAMIC 
STORAGE NUM(61, OEN(6) 
TARLE NUM(l-61 = 25.0, 5*0.0, ••• 

DENCl-6) = 25.0, 3.0, 1.0, 3*0.0 
NOSORT 
OMEGA = WMIN*(lO.O**(TIME» 
PHASE, VALUE = FREQ(NU~,DEN,OMEGA) 
FINISH CMEGA = WMAX 

(4.14) 

* SET OUTDEL EQUAL TO ("IE OVER T~E NU~BER ~F STEPS PER DECADE 
TIMER FINTIM =.4.0, DUTOEL = 0.05, DELT = 0.05 
PRTPLT VALUECOMEGA,PHASE), PHASECOMEGA,VALUE) 
LABEL OUTPUT FOR EXAMPLE 4-1 
END 
STOP 
ENOJOB 

Fig. 4.1 Frequency response program listing using a procedural 
macro. 
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The value of TIME is incremented as the smallest value ofDELT and OUTDEL. Termi­
nation of OMEGA is governed by FINTIM or the finish statement, FINISH = WMAX. 
One must be careful in specifying FINTIM in this case. When TIME = FINTIM, 
OMEGA will be (romin)lOFINTIM. For FINTIM = 4 the maximum OMEGA is 10,000 
times rom in which gives 1000 for romin = 0.1. Obviously, in this case the FINISH state­
ment will terminate the run. 

The form of output can be selected by the user. The customary Bode diagram will 
be obtained if printer-plots of magnitude and phase are requested. As shown on the out­
put in Fig. 4.2, TIME is still listed in the first column and should be ignored except to 
observe that its increments vary according to the value of OUTDEL. The actual value of 
OMEGA can be listed on the plots by specifying it as an argument of the requested 
PRTPLT variable. For example 

PRTPLT VALUE (OMEGA) 

The program was. written for any transfer function with up to a maximum of a fifth­
order numerator and denominator. The macro could be extended to a more general case, 
for example a tenth-order numerator and denominator, but at the sacrifice of using more 
CPU time. 

Frequency Response Using Array 
Integrators 

A transfer function is defined as the ratio of the Laplace transform of the out­
put to the Laplace transform of the input when the system has zero initial condi­
tions. As noted in the previous section, a transfer function can be defined only for 
linear, time-invariant, systems. The frequency-response function can be determined 
from the transfer function by replacing s with jro. We can then write 

. X( 'ro) f:: x(t)e-
Jrot 

dt 
G(Jro) = _J_ = --,-:-----

F(jro) f:: J(t)e- Jrot dt 
(4.15) 

where X(jro) and F(jro) are the Fourier transforms of x(t) and J(t) respectively. 
These integrals are defined provided they are absolutely convergent. This is shown 
by 

f:: I x(t)e- Jrot I dt = f:: I x(t) I dt < 00 (4.16) 

and similarly for the integral involving J(t). If x(t) and J(t) are zero for t < 0, 
Eq. (4.15) becomes 

fOO x(t)e-Jrot dt 
G(jro) = -=-'::':-----f 0 J(t)e- Jrot dt 

(4.17) 

Evaluating these integrals gives another method for finding the frequency response. 
From the standpoint of a numerical integration one would never attempt to evalu­
ate the integral over the range (0, 00). Thus, from practical considerations, the 



OUTPUT FOR EXAMPLE 4-1 PAGE 1 

MINIMUM VALUE VER.SUS TIME MAXIMUM 
2.3506F-Cl 1.7459E 00 

TI ~E VALUE I I OMEGA PHASE 
0.0 1.0003E CO -------------------------+ 1.0000E-01 -6.8779E-OI 
5.0CCO!:-02 1.0004E 00 -------------------------+ l.1220E-01 -7.7178E-Ol .... 1.0COOE-OI I.0005E 00 -------------------------+ 1.2589E-Ol -8.6606E-Ol 

= 
1.5000E-Ot 1.0007E 00 -------------------------+ 1.4125E-01 -9.7187E-OI 
2.00COE-01 1.0008E 00 -------------------------+ 1.5849E-01 -1.0907E 00 
2. 5000E- 01 1.0010E 00 -------------------------+ 1.7783E-Ol -1.2240E 00 
3.0000E-OI I.0013E 00 -------------------------+ 1.9953E-01 -1.3738E 00 
3.5000E-Ol 1.0016E 00 -------------------------+ 2.2387E-OI -1.5419E 00 
4.0000E-Ol 1.0021E 00 -------------------------+ 2.5119E-Ol -1.7309E 00 
4.5000E-Ol 1.0026E 00 -------------------------+ 2.8184E-Ol -1.9432E 00 
5. OOOOE- 01 1.0033E 00 -------------------------+ 3.1623E-Ol -2.1819E 00 
5.5000E-Ol 1.0041E 00 -------------------------+ 3.5481E-Ol -2.4504E 00 
6. OOOOE-Ol 1.00521: 00 -------------------------+ 3.9811E-OI -2.7525E 00 
6.5COOE-Ol 1.0066E 00 -------------------------+ 4.4668E-Ol -3.0929E 00 
7.0000E-Ol 1.0083E 00 -------------------------+ 5.0119E-Ol -3.4766E 00 
1.5000E-Ol 1.0105E 00 -------------------------+ 5.6234E-OI -3.9098E 00 
8.0000E-01 1.0132E 00 -------------------------+ 6.3096E-Ol -4.3991E 00 
8.5CCOE-OI 1.0166E 00 -------------------------+ 7.0794E-Ol -4.9546E 00 
9.0000E-OI 1.0210E 00 --------------------------+ 7.9433E-01 -5.5850E 00 
9.5000E-OI 1.0266E 00 --------------------------+ 8.9125E-Ol -6.3033E 00 
1.0000E 00 1.033bE 00 --------------------------+ l.OOOOE 00 -7.1250E 00 
I.0500E 00 1.0426E 00 --------------------------+ 1.1220E 00 -8.0691E 00 
1.1000E 00 1.0541E 00 ---------------------------+ l.2589E 00 -9.1626E 00 
1.1500E 00 1.0b88E 00 ---------------------------+ 1.4125E 00 -1.0431E 01 
1.2000E 00 1.0871E 00 ----------------------------+ 1.5849E 00 -1.1938E 01 
1.2500E 00 1.1121E 00 -----------------------------+ 1.1783E 00 -1.3128E 01 
1.3000E 00 1.1439E 00 ------------------------------+ 1.9953E 00 -1.5896E 01 
1.3500E 00 1.1856E 00 -------------------------------+ 2.2381E 00 -1.8513E 01 
1.4COOF. 00 1.2405E 00 ---------------------------------+ 2.5119E 00 -2.l958E 01 
1.4500E 00 1.3132E 00 -----------------------------------+ 2.8184E 00 -2.6368E 01 
1.5000E 00 1.4086E 00 --------------------------------------+ 3.1623E 00 -3.2311E 01 
1.5500E 00 1.5290E 00 ------------------------------------------+ 3.5481E 00 -4.0618E 01 
1.6000E 00 1.6b16E 00 -----------------------------------------------+ 3.9811E 00 -5.2539E 01 
1.6500E 00 1.7459E 00 -------------------------------------------------+ 4.4668E 00 -6.9360E 01 
1.7000E 00 1.6627E 00 -----------------------------------------------+ 5.01l8E 00 -9.0452E 01 
1.7500E 00 1.3794E 00 -------------------------------------+ 5.6234E 00 -1.1143E 02 
1.8000E 00 1.0402E 00 --------------------------+ 6.3095E 00 -1.2804E 02 
1.8500E 00 7.6003E-Ol -----------------+ 7.0194E 00 -1.3918E 02 
1.9000E 00 S.5637E-01 ----------+ 7.9432E 00 -1.4797E 02 
1.9500E 00 4.1224E-Ol -----+ 8.9125E 00 -1.5384E 02 
2.0000E 00 3. 0950E-.0 1 --+ 9.9999E 00 -1.5820~ 02 
2.05COE 00 2.3506E-Ol + 1.1220E 01 -1.6155f. 02 

Fig. 4.2 Printer-plot of the frequency response amplitude using 
log OJ steps. 
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range must be limited to a finite practical upper bound, t f' The expression for 
G(jro) can be viewed as 

f! x(t)e- joot dt + foo x(t)e- joot dt 
G(jro) = ~!~ (4.18) 

S J(t)e-joo dt + f J(t)e- joot dt 
o t! 

If the integration process is terminated. after t" error in G(jro) will result according 
to the remaining integrals evaluated from tf to 00.(5) 

Let the input to a system be a pulse of duration t f/2 where the t f selected is 
large enough to cover the range of the transient response shown in Fig. 4.3. The 

INPUT System OUTPUT 

Fig. 4.3 Typical time comain signals for determining frequency 
response. 

input signal is not required to be an ideal pulse but should contain sufficiently 
high harmonics to cover the frequency range of interest for G(jro). G(jw) can be 
written as 

. _ f~ x(t) cos (rot) dt - j f~ x(t) sin (rot) dt 
G(Jro) - st! ft! 

o J(t) cos (rot) dt - j 0 J(t) sin (rot) dt 

Suppose the frequency response is desired at the frequency points 

Determining G(jroi ) requires that 84 integrals be evaluated. In particular, if 

G('ro) = A(jroi) - jB(jroi) 

J C(jro) - j D(jroi ) 

then 

i=1,2, ... ,21 

and similar expressions prevail for B(jroj), C(jroj), and D(jro;), Observe that 

(4.19) 

(4.20) 

(4.21) 

A(jroj ) = INTGRL[IC, x(t) cos (rott)] (4.22) 

and thus 21 integrals of this form, one for each roi' could be programmed. 
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A series of integrals of this form can best be handled using the integrator 
array feature of CSMP. This type of integration was presented earlier in Example 
3.3. The following example will show how these concepts can be programmed in 
CSMP for finding the frequency response. t 

Example 4.2 

Find the pulse response and frequency response for the system shown in Fig. 4.4. 

R(s) + 25 C(s) 

s(s + 3) 
-

Fig. 4.4 System diagram for Example 4.2. 

We observe that the closed-loop transfer function is given by 

C(s) 25 
R(s) = S2 + 3s + 25 

(4.23) 

which is identical to the transfer function in Example 4.1. 
The first problem to resolve is the width of the pulse test function. Comparing the 

above transfer function to the standard second-order form, S2 + 2'colls + co;, gives 
COli = 5 and' = 0.3. The ±1.8% settling time is ts = 4gcoll = 2.67 sec. To insure small 
error for G(jco) we select a pulse width of 4.2 sec. 

If we now apply a pulse R given by 

R = Ql - Q2 
Ql = STEP(O.O) 
Q2 = STEP( 4.2) 

(4.24) 

then e(t) = x(t) will be the response of the system with R = ret) = f(t) as the input. 
An ordinary CSMP program can be written for the system in Fig. 4.4 to find e(t). 

This e(t) plays the role of x(t) in the earlier mathematical discussion. 
A program for finding the pulse response and the frequency response from CO = 0.1 

to co = 10 radians/sec at ten equal log steps per decade is shown in Fig. 4.5. The following 
key points are noted. 

Frequency W(I) is calculated in the initial segment using a conventional DO loop. 
The program determines the pulse response, XX, of the system. The time-varying XX is 
passed on to a procedure function where the time-varying XA(I), XB(I), XC(I), and 
XD(I) (I = 1, 2, ... , 21) are determined. The procedure function returns XA(I), XB(I), 
XC(I), and XD(I) to the arguments of the array integrators A(I), B(I), C(I), and D(I). 

tSlight modifications are required for using the array integrator in CSMP III. See Chap. 5. 



'" ILLUSTRATION OF FREQUENCY RESPONSE USING ARRAY INTEGRATION 
I nl~FNSIQN A(21),B(21),C(21),0(21),AIC(21),6IC(21),CIC(21).0IC(21), 
I $ XA(Z1) ,XB(2U ,XC(2U ,XD(2U 
I EOUIVALENCE (Al,A(l)I,(Bl,B(l),(Cl,C(l»,(OI,Oll), 
I $ ( A I C 1 , A I C ( 1 ) I r( Bl C 1, B I C (l I ) , (C 1 C 1, C 1 C ( 1) ) , COl C 1,0 I C' U ) , 
I $ (X AI. X A ( U ) , ( X B 1 , X B ( 1) ) ,( XC 1 , XC (l n , ( XO 1 , X 0 Cl )) 
F I XED I. IT OT A L 
STORAGE W(Z1). GAIN(2U, PHASE(2U 

** 

P1ITIAL 
PA~AMETER XDECAD = 10.0, NUMDEC 
N(1S'lRT 

2.0, WMIN 0.1 

IT0TAl = NUMDEC*XDECAD .. 1.0 
X = 0.0 

*'" 

Del 20 1= 1, ITOTAl 
X = 1.0/XDECAD .. X 

20 WeI) = wMIN*(10.0**(X» 

DYNAMIC 
01 = STEP(O.OI 
02 = STEP(4.Z1 
R = 01 - 02 
E = R - XX 
Xl (25./3.01*E 
XZ REAlPltO.O,I.0/3.0,Xl) 
XX INTGRL(O.Q,Xl) 
Al INTGRL(AIC1,XA1,211 
Bl INTGRL(BICl,XBl,211 
C1 INTf,~L(CICl.XCl,211 

Dl INTGRL(CICl,XDl,21) 
PR~CEOURE XAl,XBl,XC1.XDl = FJRCE(~,XX,R,ITOTAL) 

DD 1 I = I,ITOTAL 
XA(II XX*CfJS(WCI)*TIME) 
XBC I I XX*SIN( W( I I*TIM~) 
XCII) ~*COS(W(I)*TIME) 

1 XD(I) R*SIN(W(I)*TIME) 
ENf)PRO 

* 

TfRMINAL 
CONV = 57.29578 
DO 3 I = 1,ITOTAl 
GAIN(l) = (SORTU(IJ**2 .. B(I)**Z)/(SQRTCC(I)**2 .. 0(1)**2)) 

PHASE(!) = (ATAN2(-R(I),A(I)I-ATAN2(-O(I),C(I»)*CONV 
IF C P HA S E ( 1) ) 9,9.8 

8 PHASE(!) = PHASE(!) - 360.0 
9 CONTINUE 
3 WRITE(6tlO) W(l),GAIN(I), PHASE(1) 

10 FnRMAT(IHO,8H OMEGA =,E12.5,3X,11HAMPlITUOE =,2X,E12.5 
$,3X,7HPHASE =,2X.FIO.5) 

** 
TIMER FINTIM = 10.0, OUTDEl = 0.2, DElT 
PRTPl T XX 
LABEL OUTPUT FOR EXAMPLE 4-2 ARRAY 
END 
STIJP 
ENDJOB 

0.001, PRDEl = 0.1 

Fig. 4.5 CSMP program listing for finding frequency response 
with integrator array. 

201 
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In the terminal segment conventional FORTRAN statements are used to calculate 

/ A(I)2 + B(I)2 
GAIN(I) = '\I C(I)2 + D(I)2 (4.25) 

PHASE(I) - tan- 1 (-B(I») _ tan-1(-D(I») 
- A(I) C(I) (4.26) 

OUTPUT FOR EXAMPLE 4-Z ARRAY PAGE 

TIME 
0.0' 
2.0000F.-01 
4.0000E-01 
b.0000E-01 
8. OOOOF.-O 1 
1.0000E 00 
1.2000F 00 
1.40doE 00 
1.6000E 00 
1.8000E 00 
Z.OOOOE 00 
2.2000E 00 
2.4000E 00 
2.6000E 00 
2.8000E 00 
3.0000E 00 
3.2000E 00 
3.4000E 00 
3.6000E 00 
3.8000E 00 
4.0000F 00 
4.2000E 00 
4.4000E 00 
4.bOOOE 00 
4.8000E 00 
S.OOOOE 00 
S.2000!: 00 
5.4000E 00 
5.bOOOE 00 
5.8000E 00 
b.OOOOE 00 
b.lOOOE 00 
6.4000E 00 
6.6000E 00 
6.8000E 00 
7.0000E 00 
7.l000E 00 
7.4000E 00 
7.6000E 00 
7.8000E 00 
8.0000E 00 
8.2000E 00 
8.4000E 00 
8.bOOOE 00 
8.8000E 00 
9.0000E 00 
9.2000E 00 
9.4000E 00 
9.6000E 00 
c).8000E 00 
1.0000E 01 

XX 

MIN IMUM 
-3.6443E-01 

I 

----------+ 

xx 

---------------------+ 

VERSUS TIME 

---------------------------------------+ 

MAXIMUM 
1.3641E 00 

I 
0.0 
3.8141E-01 
1.0186E 00 
1.3555E 00 
1.294SE 00 
1.0573E 00 
8.8749E-01 
8.7Zl2E-01 
9.5215 E-01 
1.0292E 00 
1.05l3E 00 
l.0279E 00 
9.9580E-Ol 
9.8l07E-01 
9.8608E-Ol 
9.9846E-Ol 
l.0063E 00 
l.OOb3E 00 
l.0019E 00 
9.98l9E-01 
9.9741E-01 
9.9877E-01 
6.l897E-Ol 

-------------------------------------------------+ 

-1.7633E-02 
-3.5483E-Ol 
-2.9445E-01 
-5.7717E-02 

1.1226E-01 
1.280lE-01 
4.8140E-02 

-2.9031E-02 
-5.1352E-02 
-2.8l03E-02 

4.1044E-03 
1.8961E-02 
1.4011E-OZ 
1.6021E-03 

-6.3230-E-03 
-6.3044 E-03 
-1.9344E-03 

1.8041 E-03 
2.6104E-03 
1.2482E-03 

-3.6340E-04 
-9.9750E-04 
-6.5606 E-04 
-1.4780E-OS 
3.4716E-04 
3.0644E-04 
7.1827E-05 

-1.0614E-04 

-----------------------------------------------+ 
--------------------------------------~-+ ------------------------------------+ -----------._----------------------+ 
--------------------------------------+ -------------------------_._------------+ 
----------------------------------------+ ----------------------------------------+ ---_ ... _-------------------------------+ 
--------------------------------------+ ----------------------------_._--------+ 
--------------------------------------+ ---------------------------------------+ ---------------------------------------+ ---------------------------------------+ ---------------------------------------+ ----------------------------_._--------+ 
--------------------------------------+ ----------------------------+ ----------+ 
+ 
--+ 
--------+ 
-------------+ --------------+ -----------+ ---------+ 
---------+ ---------+ ----------+ -----------+ ----------+ 
----------+ ----------+ ---------+ ----------+ ----------+ ----------+ ----------+ 
----------+ ----------+ ----------+ ----------+ ----------+ ----------+ ----------+ ----------+ 

Fig. 4.6 Pulse response of the system for Example 4.2. 
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The program output for GAIN(I) and PHASE(I) are neither printer-plotted nor printed 
in the usual CSMP form but are listed using FORTRAN Write and Format statements. 

The pulse response of the system is given in Fig. 4.6 where we note that the response 
overshoot is approximatley 36 %, as expected for , = 0.3. We also note that for all 
practical purposes the system has reached steady state in 4 sec. 

Frequency response information is given in column format in Fig. 4.7. Comparing 
this output with the results of Example 4.1 (Fig. 4.2) shows excellent agreement. The 
decibel amplitude could easily be added to the output listing by inserting the statement, 

DBGAIN(I) = 20.0*ALOG(GAIN(I» (4.27) 

along with slight modifications in the Write and Format statements. 

PROBLEM DURATION 0.0 TO l.OOOOE 01 

MINIMUM TIME MAXIMUM TIME VAR tABLE 
XX -3.6443E-01 4.9000E 00 1.3641E 00 1.0000E-01 

OMEGA 0.12589E 00 AMPLITUDE 0.10005E 01 PHASE -0.86600 

O~EGA 0.15849E 00 AMPLITUDE O.10008E 01 PHASE -1.09013 

OMEGA 0.19953E 00 AMPLITUDE O.100l3E 01 PHASE -1.37399 

OMEGA 0.25119E 00 A~PLITUDE a .10021E 01 PH ASE -1.13112 

OMEGA 0.31623E 00 AMPLITUDE O.10033E 01 PHASE -2.18208 

OMEGA 0.39811E 00 AMPLITUDE 0.10052E 01 PHASE -2.15266 

OMEGA 0.50119E 00 AMPLITUDE D.I0083E 01 PHASE -3.47651 

OMEGA 0.63096E 00 AMPLITUDE 0.10132E 01 PHASE -4.39891 

O~EGA 0.19433E 00 AMPLITUDE D.10210E 01 PHASE -5.58496 

OMEGA O.10000E 01 AMPLITUDE O.10336E 01 PHASE -7.12580 

OMEGA 0.12589E 01 AMPLITUOE O.10540E 01 PHASE -9.16152 

OMEGA 0.15849E 01 A~PLITUDE C.10874E 01 PHASE -11.93899 

OMEGA = 0.19953E 01 AMPLITUDE O.11440E 01 PHASE -15.89472 

OM~GA O.25119E 01 AMPLITUDE O.12405E 01 PHASE -21.95506 

OM~GA O.31623E 01 AMPLITUDE O.14086E 01 PHASE -32.29756 

OM~GA 0.39810E 01 AMPLITUDE 0.16619E 01 PHASE -52.54179 

OMEGA O.SOl18E 01 A~PLITUOE o • 16627 E 0 1 PH AS E -90.46185 

O~F.GA 0.6309SE 01 AMPLITUDE O.10394E 01 PHASE -128.03969 

OMEGA O.79432[ 01 AMPLITUDE O.55605E 00 PHASE -141.91351 

OMEGA O.99999E 01 AMPLITUDE O.30965E 00 PHASE -158.23978 

QMfGA 0.12589E D2 AMPLITUDE ~.17989E 00 PHASE -164.20155 

Fig. 4.7 Frequency response information for Example 4.2 using 
the integrator array. 



lLLU~I~~1 lU~ Lr r~~~UC~~T ~~~ru~~c U~lN~ AKKAT INI~~KAI 1UN 
I OIMFNSION A(2lt,BC21t,C(211,O(21),AIC(211,BIC(Zll,CIC(211,OIC(21I, 
I $ XA(Zlt,XB(21t,XC(21),XO(211 
I EQUIVALENCE (Al,A(lll,(Bl,B(III,(Cl,C(lll,CDl,D(llt, 
I S(AICI,AICCl»,CBICl,BIC(111,(CIC1,CICCll),(DICI,OICClI), 
I $ (XAl, X A Cl 1 I , (X Bl, XB (l I I, C XCI, XC (11 I, ( XOl, XO( 1 1 I 
FIXE ° I, I TO TAL 
STORAGE W(21), GAIN(211, PHASE(211 
FUNCTION SIGNAL = (0.0,0.01,(.2,.3814),(.4,1.019),C.6,1.355), ••• 

( .8,1.295) , ( 1.0,1.057) , ( 1.2,.8875) , ( 1.4,. 872) , ( 1. 6,.952) , ( 1.8,1.03 I ,. •• 
(2.0,1.051),(2.2,1.0281,(2.4,.9961,(2.6,.9811,(2.8,.9861, ••• 
( 3.0,.9981 , ( 3. 2,1.00) , ( 3.4,1.001 , C 3.6,1.00) , (3.8,1.001, ••• 
(4.00,1.001,(4.2,.6171,(4.4,-.01821,(4.6,-.3541,(4.8,-.2941, ••• 
(5.0,-.0571,(5.2,.1121,(5.4,.1281,(5.6,.04781,(5.8,-.0291, ••• 
( 6. 0 ,- • 051 1 , C 6. Z , .... 027 Q I , ( 6 • 4 ,. 004) , ( 6. 6 , • 01 89 I , ( 6. 8 , • 0 t 3 9 I , ••• 
(7.0,.00151,(7.?,~.00631,(7.4,-.0061,(7.6,-.00191,(7.8,.00181, ••• 
(8.0,.0026),(8.2,.00123),(8.4,-.00041,(8.6,-.00091,(8.8,-.0006), ••• ,q.O, 0.01 , ( 9.2, O. a 1 , ,q. 4, 0.01 , ( 9.6, O. 0 1 , ( 9. 8, 0.0 I , (l O. 0, O. 0 1 *. 

INITIAL 
PARAMETER XDECAD = 10.0, NUMOEC 
NOSORT 
ITOTAl = NUMDEC*XOECAC + 1.0 
x = 0.0 

00 20 I = 1, !TOT Al 
X = 1.0/XOECAO + X 

20 w( I) = WMIN*' 10.0*"'( XII 

Oyt-iAMIC 
Ql = STEP(O.OI 
Q2 = STEP(4.21 
Q = Ql - Q2 
XX AFGE~(SIGNAl,TIM~1 
Al INTGRL(AICl,XAl,211 
81 INTGRL(RICl,XBl,21 I 
Cl INTGRL(CICl,XCl,211 
Dl INTGRl(DICl,XOl,~!1 

2.0, wMIN 0.1 

PROCEOUFE XAl,X91,XCl,XDl = FORCE(W,XX,P,ITOTAlI 
DO 1 I = 1,ITOTAL 
XA( I) Xx*CCS(W( I I*TIMEI 
XBIII XX*SIt-JOHII*TIMF.1 
XC ( I I R *c 0 S ( W ( I 1 *T I ~ F. ) 

1 XDIII R*SIN(W(IIHt~FI 

ENOPRO 
• 
~ETHCD RKSFX 

TERMINAL 
TFRMlf\Al 

** 

CONV = 57.Zt:;578 
DO 3 I = 1,ITOTAl 
GAIN(l) = (SQRT{!\(It**2 + B(l 1**2) II(SQRT(C(I)**Z + DCII**2lt 

PHASE(I) = (ATAN2(-B(I),!\(I»-AUN2C-D(II,C(IIII*CONV 
IF(PHASE(IIIQ,9,8 

8 PHASE( II = PHASE! I I - 360.0 
9 CONTINUE 
3 WRITE(6,101 W(lI,GAPHII, PHASE(!I 

10 FORMAT(lHO,8~ CMEGA =.~12.5,3X,11HAMPlITUOE :,2X,E12.5 
$,3X,7HPHASE =,2X,F10.51 

TIMER FINTIM = 10.0, OUTOEl = 0.2, DELT = 0.005, PRDEl : 0.1 
PRTPLT XX 
lABEL ARRAY INTEGRATION USING NUMERICAL FUNCTION EXAMPLE 4-Z 
!:NO 
STOP 

Fig. 4.8 CSMP program listing for finding frequency response 
from pulse response using the integrator array. 
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The CPU time for running this program on the 360/65 was approximately 40 sec. The 
multiple integrations account for the rather large CPU time as compared to Example 4.1 
which used only 10 sec for twice as many frequency points. Obviously, if the system 
transfer function is known, the method of Example 4.1 is preferred over the array integra­
tion method. 

The real advantage of the array-integrator method exhibits itself in the following 
light. There are many practical systems where direct frequency response measurements 
are extremely difficult and uneconomical to obtain. Making such measurements on 
chemical process plants and metal-rolling mills is practically out of the question. How­
ever, the pulse response of many systems can be directly and economically measured. If 
this time domain data is coupled to the array-integrator program via either AFGEN or 
NLFGEN then the system frequency response can be obtained. 

To illustrate this point, suppose the time response data of Fig. 4.7 is used to define 
a function. 

FUNCTION SIGNAL = (0.0, 0.0), (0.2, 0.3814), ... 

from which the signal XX is obtained by: 

XX = AFGEN (SIGNAL,TIME) 

The program in Fig. 4.8 has incorporated these changes by simply removing the original 
system-transfer function. The resulting frequency response information is shown in Fig. 
4.9. The response compares favorably to the "exact" answers and deviations can be 
attributed to interpolation inaccuracy. 

In summary, this section shows two methods for obtaining a system frequency re­
sponse using CSMP. The first method applies directly to those systems with known transfer 
functions. The second method can be applied to systems with known transfer functions 
and, moreover, has its greatest value in determining the frequency response from pulse­
response information as measured directly from the physical system. 

State Variable Formulation from Transfer 

Functions 

The occasion often arises when one wishes to express the dynamics of a system 
in state-variable form rather than the customary transfer function. The state equa­
tions for a linear, time-invariant, system can be written as 

i.(t) = Ax(t) + Ru(t) 

yet) = Cx(t) + Du(t) 

(4.28) 

(4.29) 

where x(t) = n-dimensional column vector called the system state vector, 

yet) = q-dimensional column vector called the system output vector, 

u(t) = m-dimensional column vector called the system input vector, 

and A, B, C, and D have appropriate matrix dimensions. 
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OMEGA = 0.10000E 00 AMPLITUDE 0.99969E 00 PHASE. = -0.68448 

OMEGA 0.12589E 00 AMPLITUOE 0.99986E 00 PHASE -0.86155 

OMEGA = 0.15849E 00 AMPLITUDE 0.10001E 01 PHASE = -1.08507 

OMEGA = 0.19953E 00 AMPLITUDE 0.10006E 01 PHASE = -1.36697 

OMEGA = 0.25119E 00 AMPLITUDE 0.10013f 01 PHASE = -1.72244 

OMEGA 0.31623E 00 AMPLITUDE O.10024f 01 PHASE -2.17153 

OMEGA = 0.39811£ 00 Af.'PL I TUDE = 0.10041F.: 01 PHASE = -2.73948 

OMEGA = 0.50119E 00 AMPLITUDE = 0.10069£ 01 PHASE = -3.45968 

OMEGA = 0.63096E 00 AMPLITUDE 0.10113E 01 PHASE -4.37542 

OMEGA 0.79433£ 00 AMPLITUDE 0.10183£ 01 PHASE = -5.54671 

OMEGA = 0.10000E 01 Af.1?L ITUDE 0.10297E 01 PHASE -7.05657 

OMEGA 0.12589E 01 AMPLITUOE 0.104B6E 01 PHASE = -9.01148 

OMEGA = 0.15849E 01 AMPLITUDE 0.10623E 01 PHASE -15.71143 

OMEr,A 0.19953f 01 AMPLITUDE 0.11272E 01 PHASE -16.04182 

OMEGA 0.25119E 01 AMPLITUDE 0.12128E 01 PHASE -21.98824 

OMEGA = 0.31623£ 01 AMPLITUDE 0.14504£ 01 PHASE -33.11356 

OMEGA 0.39810£ 01 At~PL I TUDE 0015816E 01 PHASE -52.59436 

OMEG" = 0.5011AE 01 AMPL I TUllE 0.15293£ 01 PHASE -89.78917 

OM£GA = 0.630QC:;f 01 At-1PL TrUDE 0.7401'+E Uo PHASE -128.34552 

OMEGA 0.7943?'E 01 MHlL t TUI)E 0.42237£ 00 PHASE -149.91252 

OME(;A 0.99999£ 01 "~PLITuOE = 0.20528E 00 PHASE -155.85031 

Fig. 4.9 Frequency response information obtained by Fourier 
transform. 

Consider a system represented by the transfer function 

C(s) _ a2s2 + ai s + ao (4.30) 
R(s) - S4 + bsss + b2s2 + bis + bo 

A block diagram which represents this transfer function is given in Fig. 4.10. The 
following equations can be written from the diagram. 

XI(t) = X2(t) 

xit) = xs(t) 

xlt) = X4(t) 

X4(t) = r(t) - bOXI(t) - bIx 2(t) - b2Xs(t) - bSX4(t) 
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Fig. 4.10 Block diagram for phase variable state equations. 

and 

e(t) = aOxl + a1x2 + a2X3 

Expressing these equations in matrix form gives 

o 
o ][X

1

(t)] [0] o xit) 0 ( + r t) 
1 x 3(t) 0 

-b3 xlt) 1 

and 

e(t) = [ao 

Comparing with Eqs. (4.28) and (4.29) we have 

A = [~ ~ r ~] B = [~] 
-bo -b1 -b2 -b3 1 

and x(t) = [Xl(t), X2(t), x 3(t), X4(t)Y, yet) = e(t), net) = ret). 

C(s) 

(4.31) 

(4.32) 

Assuming the input to the system in Fig. 4.10 is a unit step, a CSMP program 
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corresponding to the system diagram can be written as 

R = STEP (0.0) 
E = R - BO*Xl - BhX2 - B2*X3 - B3*X4 
X4 = INTGRL (0.0, E) 
X3 = INTGRL (0.0, X4) 
X2 = INTGRL (0.0, X3) 
Xl = INTGRL (0.0, X2) 
C = AO*Xl + Al *X2 + A2*X3 
TIMER FINTIM = 3.0, OUTDEL = 0.1 
PRTPLT Xl, X2, X3, X4, C 
END 
STOP 
ENDJOB 

Ch. 4 

The constants AO, AI, A2, BO, B1, B2, and B3 are usually given on parameter 
cards and FINTIM and OUTDEL will depend upon these coefficients. This pro­
cedure for programming a transfer function can easily be extended to higher-order 
polynomials. The state variable formulation in this particular form is commonly 
known as the phase variable representation.(6.7.S) 

This illustration shows that a set of state equations can always be written for 
a system transfer function. The state-representation for a transfer function is not 
unique. In fact, it can be proven that for a given transfer function there exist 
infinitely many state representations. 

Another method for expressing the transfer function of Eq. (4.30) is given in 
Fig. 4.11. Using the output of each integration (the l/s terms) as states, one can 

R(s)~'-----"---"--------' 

Fig. 4.11 Alternate block diagram form for state variable repre­
sentation. 

Xl = C(s) 
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easily write a set of equations corresponding to Eqs. (4.28) and (4.29). This is done 
in an exercise at the end of this chapter. 

Digital Control Systems 

Digital computers have become an important method for controlling feedback 
systems. The purpose of this section is to illustrate how CSMP can be used to simu­
late the digital control process. 

A simplified diagram showing the role of the digital computer in a feedback 
system is given in Fig. 4.12. The analog output of the system is converted to a 
binary representation by the analog to digital (A/D) converter. The system input 
must be converted to a compatible binary representation. The computer subtracts 
the binary output from the binary input to form a binary error signal. The error 
signal becomes the "input" to a properly selected control algorithm. 

INPUT Computer 
calculations 

Fig. 4.12 Basic digital feedback control system. 

OUTPUT 

Assume that algorithm calculations are made every T sec to form the binary 
signal, m, as shown in the diagram. This binary signal is converted to an analog 
signal by the digital to analog converter (D/ A) to produce the signal q which is 
applied to the system. The design problem is to determine the algorithm which 
satisfies system specifications. The functions carried out by the computer hard­
ware in Fig. 4.12 can be equivalently represented by the more straightforward 
model as given in Fig. 4.13. The problem of selecting the control algorithm reduces 
to one of finding the function D(z) where z is the z-transform variable. The major 
attention in this section will be given to the simulation problem, since methods for 
finding D(z) are given in the literature. (9.10.11) 
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~ 
Digital 

controller 
Zero-order 

hold 

Fig. 4.13 Simplified diagram for digital control. 

Example. 4.3 

Ch.4 

OUTPUT 

Plant 

The system shown in Fig. 4.14 does not include a controller D(z). It is desired, how­
ever, to investigate the effect of the sampling process on the system stability. Ideal sam­
pling, followed by a zero-order hold, can be simulated as follows. If the input to the ideal 

INPUT + E Zero-order Q 10 OUTPUT 

"f - hold s(s + 3.5) 
-

T 

Fig. 4.14 System diagram with sample and hold. (Example 4.3.) 

sampler is E, then the output of the zero-order hold can be represented as Q. This process 
can be simulated using the following CSMP statements. 

Al = IMPULS(O.O, T) 
Q = ZHOLD(Al, E) 

The reader will recall that Al = IMPULS(PI, P2) produces a unit-impulse train starting 
at PI with pulses occurring every P2 sec. Properties of the zero-order hold are defined in 
Table 4.1. (Also, see Appendix I) 

Table 4.1 

Properties of the Zero-Order Hold 

CSMP Form 

Q = ZHOLD(Al, E) 

Function 

Q(t) = E 
Q(t) = last output 
Q(t) = 0 

AI> 0 
Al <0 

t = initial t 
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Now suppose we desire to find the step response of the system for sampling times of 
T = 0.3 and T = 0.8. A simple program for this purpose is given below. 

PARAM T = (0.3, 0.8) 
INPUT = STEP(O.O) 
E = INPUT - OUTPUT 
Al = IMPULS(O.O, T) 
Q = ZHOLD(Al, E) 
Xl = (10.0/3.5)*Q 
X2 = REALPL(O.O, 1.0/3.5, Xl) 
OUTPUT = INTGRL(O.O, X2) 
METHOD RKSFX 
TIMER FINTIM = 6.0, OUTDEL = 0.24, DELT = 0.01 
PRTPLT OUTPUT 
LABEL STEP RESPONSE OF SYSTEM WITH SAMPLE AND HOLD 
END 
STOP 
ENDJOB 

A fixed-step integration (RKSFX) is selected for this example to insure that an integration 
is performed when the sampling switch closes. If a variable-step integration is used, the 
integration will not generally occur at the sampling time but rather when KEEP = 1. The 
resulting response will not be representative of uniform sampling every T sec. When using 
the sample and hold, variable integration can be selected but either OUTDEL or PRDEL 
should be chosen to be a sub-multiple of the sampling interval. Fixed-step integration is 
recommended for simulating discrete data systems. This is particularly important when a 
digital controller is placed in the system. 

The responses in Fig. 4.15 show the effect of the sampling process on the system 
stability. The continuous system response has approximately 12 % overshoot while the 
overshoot becomes larger as T in the sampling process is increased. 

Example 4.4 

The purpose of this example is to illustrate a procedure for finding the time response 
of a closed-loop feedback system which contains a digital controller, D(z), and a zero­
order hold. The basic block diagram of the system is shown in Fig. 4.16. This system is 
identical to the one given in Example 4.3 except the gain is raised from 10 to 70 and a 
digital controller is added to the system. A procedure for selecting the controller is given 
in reference 11. 

First consider the simulation of D(z) followed by the zero-order hold. For this 
example the particular D(z) is given by 

D( ) - 0 1 z - 0.981 
z - . z - 0.998 

If this function is represented in a more general form as 

D( ) = ao + al z-
1 

z 1 + b1z-1 

we can easily employ the phase variable or rectangular programming methods given in 
the previous section by replacing s by z. The block diagram for the rectangular form is 
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given in Fig. 4.17. The controller and the zero-order hold can be programmed as a 
MACRO using the following CSMP statements: 

MACRO E2 = COMP(SAMTIM, TX, AO, AI, Bl, El) 
TX = IMPULS(O.O, SAMTIM) 
EZ = TX*El 
YO = AO*EZ + PI 
Yl = Al*EZ - Bl*YO 
PI = DELAY(I000, SAMTIM, Yl) 
E2 = ZHOLD(TX, YO) 

END MAC 

This macro is completely general for any D(z) of the form so prescribed and can 
easily be extended to higher-order D(z). 

A block diagram of the total system is shown in Fig. 4.18 and is used to identify 
the inputs and outputs of the various blocks within the CSMP program. Figure 4.19 gives 
the program listing corresponding to the block diagram. Figure 4.20 gives the step 
response, e(t), of the compensated system. Compare this response to that obtained earlier 
in Example 4.3. The gain was 10 but has now been raised to 70. Note also that fixed-step 
integration is used with DELT = 0.02 to insure that integration is performed at the 
sampling interval of T = 0.1. 

While the method for simulating D(z) given in this example is completely general 
for any digital controller, it is not directly the method followed in programming a control 
algorithm for real-time digital control. We recall that the operator Z-l was simulated by 

(a) 
Continuous 
system 

STEP. RESPONSE OF CONTINUOI.JS SYSTEM TO COMPARE WITH SAMPLE AND HOLD PAGE 

TIME 
0.0 
I.llOOOE-Ol 
3.6000E-01 
5.40COE-OI 
7.2COOE-01 
9.0000E-01 
I.OBOOE 00 
1.2600E 00 
1.4400E 00 
1.62COE 00 
I.S000E 00 
1.9BOOE 00 
2.1600E 00 
2.3400E 00 
2.5200E 00 
2.7000~ 00 
2.BaCOE 00 
3.0600E 00 
3.2400E 00 
3.4200E 00 
3.6000E 00 
3.7 eCOE 00 
3.9600E 00 
4.1400E 00 
4.3200E 00 
4.'5COOE 00 
4.6aOOE 00 
4.8600E 00 
5.04COE 00 
5.nCOE 00 
5.4000E 00 
5.5800E 00 
5.7600E 00 

MINIMUM 
0.0 

OUTPUT VER sus T I ME MAXIMUM 
1.1215E 00 

I OUTPUT 
0.0 
1.2934E-Ol 
4. 0196E~01 
6.87UE-Ol 
9.1221E-01 
1.0526E 00 
1.1I51E 00 
1.1215E 00 
1.0964E 00 
1.0605E 00 
1.0272E 00 
1.003lE 00 
9.8956E-Ol 
9.8478E-01 
9.8579E-01 
9.8966E-01 
9.9414E-Ol 
9.9789E-01 
1.0004E 00 
1.0016E 00 
1.0019E 00 
1.0016E 00 
1.001lE 00 
1.0005E 00 
1.0001E 00 
9.9988E-01 
9.9977E-Ol 
9.9977E-01 
9.9982E-01 
9.9989E-01 
9.9995E-Ol 
I.OOOOE 00 
I.OOOOE 00 

+ 
-----+ 
-----------------+ 
------------------------------+ ----------------------------------------+ ----------------------------------------------+ 
-------------------------------------------- - - - - - + -------------------------------------------------+ 
------------------------------------------------+ 
----------------------------------------------+ 
---------------------------------------------+ 
-------------------------------------------- + ------------------------------------------+ -------------------------------------------+ -------------------------------------------+ --------------------------------------------+ 
--------------------------------------------+ 
-------------------------------------------+ --------------------------------------------+ 
-------------------------------------------+ --------------------------------------------+ 
--------------------------------------------+ --------------------------------------------+ --------------------------------------------+ 
--------------------------------------------+ ------------------------------------------+ -------------------------------------------+ -------------------------------------------+ 
--------------------------------------------+ 
---------------------.,.----------------------+ 
-------------------------------------------+ --------------------------------------------+ 
--------------------------------------------+ 

Fig. 4.15 System step-response for Example 4.3. 
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(b) 
Sample 
and hold, 
T ==0.3 sec 

(c) 
Sample 
and hold, 
T == 0.8 sec 

TIME 
0.0 
2.4000E-Ol 
4.8000E-Ol 
7.2 eOOE-OI 
9.60001'-01 
1.2000E 00 
1.4400E 00 
1.6800E 00 
1.9200E 00 
2.1600E 00 
2.4000E 00 
2.64COE 00 
2.88COE 00 
3.1200E 00 
3.3600E 00 
3.60001: 00 
3.84COE 00 
4.0800E 00 
4.3200E 00 
4.5600E 00 
4.8COOE 00 
5.0400E 00 
5.2 eCOE 00 
5.5200E 00 
5.76COE 00 
6.0000E 00 

Tt ME 
0.0 
2.4000E-01 
4.8000E-01 
7.2000E-01 
9.6000E-01 
1.2000E 00 
1.4400E 00 
1.6eCOE 00 
1.9200E 00 
2.1600E 00 
2.4000E 00 
2.6400E 00 
2.8eOOE 00 
3.1200E 00 
3.3600E 00 
3.6000E 00 
3.8400E 00 
4.0eOOE 00 
4.3200E 00 
4.5600E 00 
4.8000E 00 
5.0400= 00 
5.2800E 00 
5.5200E 00 
5.7600E 00 
6.0000E 00 
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OUTPUT 

"lINIMU"l 
0.0 

0.0 
2.21eOE-01 

OUTPUT VERSUS TIME 
T = 3.0000E-01 

6.6318E-Ul -----------------+ 
1.0e24: 00 ----------------------------- + 
1. 3189E ~O -----------------------------------+ 
1.3460E 00 ------------------------------------+ 
1.2343E 00 ---------------------------------+ 
1.0719E 00 -----------------------------+ 
9.3795:-01 -------------------------+ 
8.7641E-Ol -----------------------+ 
8. 8489E- 01 ------------------------+ 
9.3330E-Ol -------------------------+ 
9'. 9045E- 01 --------------------------+ 
1.0314E 00 ---------------------------+ 
1.0453 E 00 ----------------------------+ 
1.0368E 00 ----------------------------+ 
1.0175E 00 -------- ------------------- + 
9.9823E-01 ---------------------------+ 
9.8635E-Ol --------------------------+ 
9.8408 E'-O 1 --------------------------+ 
9.8875E-Ol --------------------------+ 
9.9594E-Ol ---------------------------+ 
1.·.;)022E 00 ---------------------------+ 
1.0054E 00 ---------------------------+ 
1.0053E 00 --------------------------- + 
1.0032E 00 ---------------------------+ 

MINIMU'" 
0.0 

+ 
------+ 

OUT PUT VERSUS T I ME 
T = 8.0000E-Ol 

PAGE 

MAXIMUM 
1.8433E 00 

I 

PAGE 

MAXIMUM 
1.8433E 00 

I OUTPUT 
0.0 
2.2180E-Ol 
7.0724E-Ol 
1.3065E 00 
1.7891E 00 
1.8172E 00 
1.6271E 00 
1.3451E 00 
1.0454E 00 
7.4309E-Ol 
4.3961E-Ol 
3.6110E-Ol 
5.4558E-Ol 
8.4359E-Ol 
1.1343E 00 
1.2845E 00 
1.3667E 00 
1.4058E 00 
1.2947E 00 
1.0894E 00 
8.4347E-Ol 
7.0573E-01 
7.0726E-Ol 
7.6892E-Ol 
8.6170E-Ol 
9.8047E-Ol 

---------------------------------------- ---- - - - - + 
------------------------------------------------- + --------------------------------------------+ 
------------------------------------ + 
----------------------------+ 

-----------+ ---------+ 
--------------+ 
------------------------------+ ----------------------------------+ ------------------------------------+ 
--------------------------------------+ -----------------------------------+ -----------------------------+ 
----------------------+ -------------------+ 
-------------------+ 
--------------------+ -----------------------+ --------------------------+ 

Fig. 4.15. (Continued) 

OUTPUT ---lv;Lx 
T~~ 

Fig.4.16 System diagram with a digital controller. (Example 4.4.) 
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e~-.e_z~ ______ ~ ______ -, 

T 

Fig. 4.17 Block diagram representation for the realization of a 
first-order digital controller. 

Fig. 4.18 Total simulation diagram for Example 4.4. 

MACRO E2 

ENOMAC 

TX 
fZ 
YO 
Yl 
P1 
E2 

COMP(SAMTIM, TX, AO, Al, Bl, Ell 
IMPULS(O.O, SAMTIM) 
TX*El 
AO*El + PI 
AI*El - 81*YO 
DELAY(10JO, SAMTIM,Y1) 
lHOLDnX, YO) 

* PLANT STRUCTURE FOLLQWS 
PARAMETEP AO = 0.1, Al = -0.0981, 81 -0.998, SAMTIM .1 

C = INTGRL(0.0,X2) 
X2 REALPLlO.Q,0.Z86,XIJ 
Xl = 20.0*E2 
E2 = COMP(SAMTIM, TX, AO, Al, 81, El) 
El=R-C 
R. = STEPlO.O) 

METHOD RKSfX 
TIMER FINTIM = 5.0, OUTDEL = 0.18, DElT = 0.02 
PRTPLT C 
LABEL STEP RESPONSE FOR DIGITAL CONTROL SYSTEM EXAMP. 4-4 
END 
STOP 
ENOJOB 

Fig. 4.19 Program listing for a digital control system. (Example 
4.4.) 

Ch. 4 

C(s) 
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STEP RESPONSE FOR DIGITAL CONTROL SYSTEM EXAMP. ~-~ PAGE 

TtME 
0.0. 
1.80001:=-('11 
3.6000E-01 
5.4000E-01 
1.?OOOE-n 1 
9. OOOOE-Ol 
1.0800E 00 
1.2600E 00 
1. 4~OOE 00 
1.b200E 00 
1.S000E 00 
1.9800E 00 
2.1600E 00 
2.3400E 00 
2.5200E 00 
2.7000E 00 
2.8800E 00 
3.0600E 00 
3.2~OOE 00 
3.4200F 00 
3.60001: 0('1 
3.7800E 00 
3.9600E 00 
4.14001; 00 
4.3200E 00 
~.5000E 00 
4.68001:: 00 
4.8600E 00 

MINI MUM 
0.0 

c VERSUS TIME MAXIMUM 
l.1883E 00 

I c 
0.0 
9.2493E-02 
3.0146E-Ol 
5.4612E-Ol 
7.7337E-01 
9.5472 E-Ol 
1.0806E 00 
1.1542 F. 00 
l.lS51E 00 
1.l857E 00 
1 .1681 E 00 
1.1421E 00 
1.11~8 E 00 
1.0906 E 00 
1.0716E 00 
1.0582 E 00 
1.0499E 00 
1.0456E 00 
1.0439E 00 
1.043SE 00 
1.0443E 00 
l.0449E 00 
1.0451E 00 
1.0449E 00 
1.044LE 00 
1.0430E 00 
1.0416E 00 
1.0400E 00 

+ 
---+ 

----------------------~--------------------+ -------------------------------------------+ -------------------------------------------+ -------------------------------------------+ -----------------------------------------+ -------------------------------------------+ 
----~--------------------------------------+ -------------------------------------------+ -------------------------------------------+ -------------------------------------------. 

Fig.4.20 Step response of a system containing a digital controller. 
(Example 4.4.) 

using the CSMP DELAY function. In the following example the controller will be pro­
grammed using a recursive difference equation. 

Example 4.5 

The system diagram of a process to be controlled by a digital algorithm is shown in 
Fig. 4.21. (12) We note from the diagram that D(z) is given by 

D(z) = Q(z) = 0.19185(z - 0.56496)(z - 0.96585) 
E(z) (z - 0.99501)(z - 0.42857) (4.33) 

This controller can be programmed as a difference equation using either a direct, cascade, 
or parallel realization. (11) Each of these methods will be briefly discussed. 

Direct Realization. The function D(z) can be expressed as 

D( ) = Q(z) __ 0.19185z2 
-- 0.29368z + 0.10469 

z E(z) -- Z2 -- 1.42358z + 0.42643 
(4.34) 

The standard procedure here is to divide the numerator and denominator by Z2 

and cross-multiply. In terms of Q(z) and E(z) this yields 

Q(z) = 0.19185E(z) -- 0.29368z- 1E(z) + 0.10469z- 2E(z) 

+ 1.42358z- 1Q(z) -- 0.42643z- 2Q(z) (4.35) 
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,------------------------------, 
I Digital computer I 
I I 
I I 
I INPUT + E(z) 0.19185(z - 0.56496) (z - 0.96585) I 

: (z - 0.99501) (z - 0.42857) : 
L __________________________ J 

,-- ------ --- --- - - -- ----- --- - --I 
I 

OUTPUT I 
I--t-~ I 

I 
I 
I 
I 
I 

I Analog process I 
L _________________ ~ _ ~ ____________ J 

Fig. 4.21 System diagram with second-order digital controller. 
(Example 4.5.) 

Using the real-translation property of z-transforms(13) gives 

Q(nT) = 0.19185E(nT) - 0.29368E[(n - I)T] + 0.10469E[(n - 2)T] 

+ 1.42358Q[(n - l)T] - 0.42643Q[(n - 2)T] (4.36) 

where T is the sampling interval, n = 0, I, 2, ... , and 

Q(nT) = the present value of the output Q at t = nT 

Q[(n - l)T] = the first past value of Q 

Q[(n - 2)T] = the second past value of Q 

E(nT) = the present value of the input Eat t = nT 

E[(n - 1 )T] = the first past value of E 

E[(n - 2)T] = the second past value of E 

For convenience in programming, the expression for Q(nT) is written as 

Q = 0.19185E - 0.29368El + 0.10469E2 + 1.42358Ql - 0.42643Q2 

The present value of E is always known in a process. After solving for Q, the 
coefficients of the algorithm are immediately updated by including the following 
statements; 

Q2 = Ql 
Ql =Q 
E2 =El 
El =E 

(4.37) 
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INITIAL 
El 0.0 
01 0.0 
r-2 0.0 
Q2 0.0 
PARhM K = ?2e:. 

CYNA~IC 

INPUT = STEP/C.O) 
E = H1PLJT - CL T 
OUT = IWGflt (0.0, X2) 
X2 = INTGRlIC.O, X2D) 
X2D = X3 - 5.71*X2 
X3 = iNTGRl(O.O, X3f11 
X3D = X4 - ~.7l*X3 
X4 = K *X5 
X5 = ZhCl[(AI. CI 
Al = IMPUL~(C.O. C.l) 
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~!H~CEOl)lU Q = OlJ~MY(F.,El,f2,Ql,Q2,Al) 
IF(!I.NE.l.C) Gn Te 10 
rF(KE~p.~E.I.C) GC TO 10 
Q = .191d5*F-.29368*El+.10469*E2+1.42358*Ql-.42643*Q2 
E 2 E 1 
E1 = E 
Q2 = Q1 
Q1 = Q 

10 COI\TINUE 
[f\!)PRfl 

"'ETHon RKSFX 
Tr~ER fINTIM = 8.0, CUTDfL = 0.16, O~lT 0.01 
PRTPLT OUT 
LABEL OUTPUT ~OR FXAMPlE 4-5 
EhD 
STOP 
ENDJOB 

Fig. 4.22 Program listing for Example 4.5 using direct realization. 

A CSMP program which incorporates this realization for D(z) is given in Fig. 4.22. 
We note that the expressions for D(z) are given as a procedure function since they 
must be executed sequentially. The statement 

IF(KEEP.NE.1.0) GO TO 10 

insures that the statements of the procedure function cannot be executed except 
when an integration is performed. Furthermore, when fixed-step integration is 
selected, the statement 

IF(A1.NE.1.0) go to 10 

allows the procedure function to be executed only at sampling instants nT where 
n = 0, 1, 2, ... and T (sampling time) is an integral multiple of DELT. One will 
note that when a variable step-size integration method is used, integration will 
not normally occur at nT and the program will generally give misleading results. 

Initial values for E1, E2, Q1 and Q2 are given in the INITIAL segment. It is 
important to observe that E2 is updated prior to El and Q2 is updated prior to Q1 
in the procedure function. 

The response of the system for a unit-step input applied at t = 0 is given in 
Fig. 4.23. 



'JUTPIJT FOR E:XAMPLE 4-5 PAGE 

TI MI= 

0.0 
1.6000f-Ol 
3.2ceCF-e1 
4.800QE-01 
6.4CCOE-01 
8.0ceCE-e1 
9.6000F-Ol 
1.12eeE 00 
1.2800r 00 
1.'~400F 00 
1.6eceE CC 
1.7600E 00 
1.92eOE 00 
2.08eeo:: cc 
2.24COE 00 
2.4CCOE CO 
2.56001= 00 
2.72COE 00 
2.eecct: CO 
"3.0400E CO 
3.20COE 00 
3.3600'" 00 
3.5200E 00 
3.6fce!:: CC 
3.B400E 00 
4.0eceE 00 
4.1l:00F: OC 
4.32001: 00 
4.4800': 00 
4.6400~ 00 
4.8UOOI= 00 
4.<;HCr: CO 
5.1200£' 00 
5.?eCCf 00 
5.44eo", oe 
5.6CCOF 00 
5.7600E CO 
5.92eOE 00 
6.i.l800F 00 
6.?4eCE 00 
6.40001: 00 
6.56ceE 00 
6.72ceE CC 
6.8900E 00 
7.04eOE 00 
7.20COI: 00 
7.36COE 00 
1.~2eOE ce 
7.6dOOE 00 
1.84COF OC 
8.0ceeE 00 

~l q ~L~ 
C.O 

CUT VERSUS TIME MAXIMUM 
1.2328f 00 

I OUT 
0.0 
2.7389E-02 
1.4014E-e1 
3.1569E-01 
5.1261E-01 
1.0248E-Ol 
8.6790E-Ol 
1.COC<;E cc 
1.1001'= CO 
1.1678E OC 
1.20BSE CC 
1.2286E 00 
1.2326E 00 
1.2251E ac 
1.2120E 00 
1.1941E ac 
1.1761E 00 
1.1577E ce 
1.1406E ce 
1.12!>2E CO 
1.lJ..18E ac 
1.1003E ac 
1.0905t: OC 
1.ce23E CC 
1.0752E OC 
1.06'12E 00 
1.0640E OC 
1.0595E oe 
1.0554F co 
1.0516f CC 
1.0482E 00 
1.04?OE CC 
1.0420t 00 
1.0392E 00 
1.0365E ec 
1.0340E ae 
1.0317E 00 
1.0295E CC 
1.0274:: 00 
1.0255E CC 
1.0231E CC 
1.0220E 00 
1.0204E ce 
1.0189E ec 
1.0176E ao 
1.011:3E CC 
1.01S2E CO 
1.0141E CC 
1.0BIE 00 
1.0122E CC 
1.01l3E CC 

+ 
-+ 

-----+ ------------+ --------------------+ ----------------------------+ -----------------------------------+ 

--------------------------------------------+ --------------------------------------------+ -------------------------------------------+ -------------------------------------------+ -------------------------------------------+ -------------------------------------------+ ------------------------------------------+ ------------------------------------------+ ------------------------------------------+ ------------------------------------------+ ------------------------------------------+ 
------------------------------------------+ ------------------------------------------+ ------------------------------------------+ -----------------------------------------+ -----------------------------------------+ 
-----------------------------------------+ -----------------------------------------+ -----------------------------------------+ -----------------------------------------+ -----------------------------------------+ -----------------------------------------+ -----------------------------------------+ -----------------------------------------+ -----------------------------------------+ -----------------------------------------+ -----------------------------------------+ 
----------------------------~------------+ -----------------------------------------+ -----------------------------------------+ 

Fig. 4.23 Unit-step response of the second-order digital control 
system. (Example 4.5.) 

Cascade Realization. For cascade realization, D(z) is expressed as 

D( ) = Q(z) = 0 19185[1 - O.56496z- 1][1 - O.96585Z- 1
] 

Z E(z)' 1 - O.99501z 1 1 - 0.42857z 1 
(4.38) 
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where the grouping of the numerator and denominator terms within the brackets 
is arbitrary. An input/output relationship is assigned to each term of Q(z)/E(z) 
by expressing 

Q(z) Q(z) V(z) S(z) 
E(z) = V(z) • S(z) • E(z) 

where ~~~~ = 0.19185 

V(z) _ [1 - 0.56496z- 1
] 

S(z) - 1 - 0.99501z- 1 

S(z) _ [1 - 0.96585z- 1
] 

E(z) - 1 - 0.42857z- 1 

Each of these expressions can be written in difference equation form to give 

S = E - 0.96585El + 0.42857 SI 

v = S - 0.56496S1 + 0.99501 VI 

Q = 0.19185V 

(4.39) 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

Again, after processing the above equations, the coefficients must be updated by 
setting 

El =E 
81 = 8 
VI =V 

(4.44) 

The simulation for the total system is the same as that given in Fig. 4.22 except 
the procedure function becomes 

PROCEDURE Q = DUMMY(E, At, El, 81, VI) 
IF(Al.NE.l.O) GO TO 10 
IF(KEEP.NE.1.0) GO TO 10 
8 = E - 0.96585*El + 0.42857*81 
V = 8 - 0.56496*81 + 0.9950h VI 
Q = 0.19185*V 
El =E 
81 = 8 
VI =V 

10 CONTINUE 
END PRO 

and in the INITIAL segment El = 0.0, SI = 0.0, and VI = 0.0. 
Parallel Realization In the parallel realization method D(z) is expanded in 

partial-fraction form. When the numerator and denominator of D(z) are the same 
order, the denominator is first divided into the numerator, which for this example 
gives 

D( ) = 0 19185 + (-0.02057z + 0.022875) 
z. (z - 0.99501)(z - 0.42857) 

(4.45) 
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In partial-fraction form, D(z) becomes 

A B 
D(z) = 0.19185 + z _ 0.99501 + z - 0.42857 

where A = 0.00425 and B = -0.02482. We now write the function as 

D(z) = Q(z) = M(z) + N(z) + P(z) 
E(z) E(z) E(z) E(z) 

where: Afc~] = 0.19185 

N(z) _ 0.00425z- 1 

E(z) - 1 - 0.99501z 1 

P(z) -0.02482z- 1 

E(z) = 1 - 0.42857z 1 

These expressions lead directly to the difference equations 

M = 0.19185E 

with coefficient updating 

N = 0.00425El + 0.99501Nl 

P = -0.02482El + 0.42857Pl 

Q=M+N+P 

El =E 

Ml =M 

Nl =N 

PI =P 

Ch.4 

(4.46) 

(4.47) 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

(4.52) 

The total simulation program is again identical to that of Fig. 4.22 except 
that the INITIAL segment contains the values El = 0.0, MI = 0.0, NI = 0.0, 
PI = 0.0 and the procedure function is given by 

PROCEDURE Q = DUMMY(E, El, Ml, Nl, PI, AI) 
IF(A1.NE.1.0) GO TO 10 
IF(KEEP.NE.1.0) GO TO 10 
M = 0.19185*E 
N = O.00425*El + O.9950hNl 
P = -0.02482*El + 0.42857*Pl 
Q=M+N+P 
El = E 
Ml =M 
Nl =N 
PI = P 

10 CONTINUE 
ENDPRO 

The unit-step output response for each of the three methods is practically 
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identical to the response given in Fig. 4.23. The reader may ask why three differ­
ent methods are presented. When these algorithms are programmed for real-time 
digital control, two factors become important. First, the computer time required 
to execute the algorithm may be an important factor. If this is the sole considera­
tion one would select the algorithm that requires the fewest number of additions 
and mUltiplications. Second, numerical roundoff and truncation may have a sig­
nificant influence on the system response. In this case one might try each realiza­
tion and select the one that gives the best results. Several investigators have found 
that parallel realization most often gives the best performance. 

Example 4.6 

Classical analog compensation techniques that rely heavily upon frequency response 
methods can be extended to digital control by implementing appropriate algorithms in the 
digital computer. The bases for this extension were given in the previous examples. 

Obtaining frequency response information or developing models can be extremely 
time consuming and therefore is not always a luxury the control engineer can afford. This 
is particularly true in the process control industry. Normally one finds in this case that a 
three-mode controller is the most attractive compromise for improving system perform­
ance. The term three-mode stems from the nature of the controller in that one mode is 
directly proportional to the applied signal, one mode is proportional to the integral of the 
signal, and one mode is proportional to the derivative. Therefore the term, proportional­
integral-derivative (PID) controller is often used rather than three-mode. 

The diagram in Fig. 4.24 shows the representation of this controller as applied to a 
unity-negative feedback system. The continuous PID controller can be approximated on 
a digital computer using several forms of algorithms. (1 0,14) As a simplified version we 
can write 

Xlk) = Xj(k - 1) + T*E(k) 

XD(k) = (ljT)(E(k) - E(k - 1)) 

(4.53) 

(4.54) 

where Eq. (4.53) corresponds to integration and (4.54) to differentiation. The output of 
the digital PID is then given by 

Y(k) = Kp*E(k) + KlXj(k - 1) + T*E(k)) + KD((ljT)(E(k) - E(k - 1))) (4.55) 

We note that 

T = sampling time 

E(k) = present value of the applied signal 

E(k - 1) = first past value of E(k) 

Xlk) = present estimate of the integral 

Xlk - 1) = first past value of Xlk) 

Consider the system shown in Fig. 4.25 where the sample switch and the zero-order­
hold represent the digital computer without a control algorithm. With a sampling time of 
T = 0.01, the step response shown in Fig. 4.26 is practically identical to the continuous 
system (Le. without the sampler and hold). 

A program using the same basic system but including a digital representation of the 
PID controller is given in Fig. 4.27. The algorithm for the controller is contained in a 
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Fig. 4.24 Ideal representation of an ideal continuous PID con­
troller. 

c 

Fig.4.25 System of Example 4.6 without a digital PID controller. 

Ch. 4 

c 

procedure function in the same way as given previously in Example 4.5. Earlier comments 
with respect to using fixed integration steps rather than variable steps also apply to this 
simulation. 

Integration and differentiation for the controller are approximated by Eqs. (4.53) and 
(4.54), respectively. Using Kp = 12, K1 = 20, and KD = 4 gives the step response shown in 
Fig. 4.28. We note the improvement in the system rise-time as well as a decrease in the 
overshoot when compared to the response without a controller. 

In conclusion, this section has presented several methods for simulating a digi­
tal control system. There are many other ways to view the digital control system, fOl' 
example, the digital implementation of a predictive controller. (15) Nevertheless, the 
methods presented here are fundamental and generally apply to more advanced 
techniques. 

There is strong justification for learning the programming concepts presented 
in this section. Advances in computer technology, particularly in the micro­
processor area, have reduced the cost for digital control by a factor of tendur­
ing the last decade. Continued improvement in computer technology, coupled 
with the flexibility offered by a digital controller, will in all likelihood result in a 
growing number of applications in this area. 



RESPO~SE WITHOUT PID CC~TROL - ~XA~PLE 4-6 PAGE 1 

TI "E 
0.0 
8.0000E-02 
l.bOCOE-OI 
2.4COOE-Cl 
3.2000E-01 
4.0000E-Ol 
4.8000~-01 
5.6000E-Ol 
6.400()'E-01 
7.2000E-01 
a.OCCOE-OI 
8.8000E-0! 
9.6 eOOE-Ol 
l.0400E 00 
1.1200E 00 
1.2000E 00 
1.2800IE 00 
1.3600E 00 
1.44COE 00 
1.5200E 00 
1.bOCOE 00 
1.6S00E 00 
1.7600E 00 
1.84001; 00 
1.9200E 00 
2.00001: 00 
2.08CO~ 00 
2.1600F. 00 
2.2400E 00 
2.3200E 00 
2.4000E 00 
2.4800E 00 
2.5600E 00 
2.6400E 00 
2.72COE 00 
2.8000E 00 
2.8800E 00 
2.96001; 00 
3.0400E 00 
3.1200E 00 
3.2000~ 00 
3.2800E 00 
3.3600E 00 
3.4400E 00 
3.5200E 00 
3.6000E 00 
3.6800F. 00 
3.7600':: 00 
3.84001: 00 
3.9200E 00 
4.00COE 00 

MIN I MUM 
0.0 

COUT VERSUS TIME MAXIMUM 
1.1628E 00 

I COUT 
0.0 
1.2118'=-02 
4.5165E-02 
9.6963E-02 
1.6191E-01 
2.3704E-Ol 
3.1907E-01 
4.05041:-01 
4.9235E-Ol 
5.7873£=-01 
6.6229E-Ol 
7.4146E-Ol 
8.1503E-01 
8.8209E-01 
9.4202E-01 
9.9446E-Ol 
1.0393~ 00 
1.0765E 00 
1.1065!: 00 
1.1295E 00 
1.1460E 00 
1.15671: 00 
1.1621E 00 
1.1628E 00 
1.l596E 00 
1.1531E 00 
1.1440~ 00 
1.1328E 00 
1.1201E CO 
1.l0t5E 00 
1.0923E 00 
1.0781E 00 
1.0641E 00 
1.05071= 00 
1.0381': 00 
1.0264E 00 
1.0159E 00 
1.0065E 00 
9.9837E-Ol 
9.9147E-0l 
9.8579E-01 
9.8129E-Ol 
9.7789(-01 
9.7552E-01 
9.7408E-01 
9.7346E-01 
9.7356f-Ol 
9.7427E-01 
9.7548E-Ol 
9.7709E-01 
9. HOlE-Ol 

+ 
+ 
-+ 

----+ ------+ ----------+ 
-------------+ -----------------+ 
---------------------+ 
------------------------+ ----------------------------+ 
-------------------------------+ -----------------------------------+ -------------------------------------+ 
----------------------------------------+ ------------------------------------------+ 
--------------------------------------------+ ----------------------------------------------+ -----------------------------------------------+ 
------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ 
------------------------------------------------+ ------------------------------------------------+ 
-----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ 
---------------------------------------------+ ---------------------------------------------+ --------------------------------------------+ 
--------------------------------------------+ -------------------------------------------+ -------------------------------------------+ 
------------------------------------------+ ------------------------------------------+ 
------------------------------------------+ ------------------------------------------+ ------------------------------------------+ 
-----------------------------------------+ -----------------------------------------+ -----------------------------------------+ 
-----------------------------------------+ -----------------------------------------+ 
-----------------------------------------+ ------------------------------------------+ ------------------------------------------+ 

Fig.4.26 Step response for Example 4.6 without PID controller. 
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INITIAL 
T = 0.01 
El = 0.0 
INTGl = 0.0 
KINTG = 20.0 
KPROP = 12.0 
KDERIV = 4.0 

DYNAMIC 
E = INPUT - RESP 
INPUT = STEP(O.OI 
RESP = INTGRL(O.O,Xll 
Xl REAlPl(0.0,1.0/2.0,X21 
X2 = 2.0*X3 
X 3 = l HO l D ( A 1 , Y) 

Al = IMPULS(O.O,T) 
PROCEDURE Y = PtC(41,E,El,T,KPROP,KINTG,KOERIV,INTGll 

IF(Al.NE.l.01 GO TO 10 
IF(KEEP.NE.l.0) GO TO 10 
EPROP = KPROP*E 
EDERIV = KOERIV*(l.Q/TI*(E - Ell 
tNTG = INTGI + T*E 
EINTG = KINTG*INTG 
Y = EPROP + EDF.R!V + EINTG 
El = ~ 
INTGI = I~TG 

10 CONTI NUE 
ENDPRO 
t.1ETHtD RKSFX 
TIMER FINTIM 4.0, aUTDEL = 0.08, DELT = 0.001 
PRTPLT RESP 
LABEL OUTPUT FOR EXAMPLE 4-6 WITH PID CONTROLLER 
END 
ST':JP 
ENOJOB 

Fig.4.27 CSMP program listing for PID controller. (Example 4.6.) 

Simulation of Digital Logic 

Ch. 4 

The capability for simulating various digital logic functions is available in 
CSMP. We recall that functional blocks such as INTGRL are the key elements 
for simulating continuous systems. The same holds true for the digital logic case 
in that again standard blocks are available which make it possible to simulate 
practically any digital configuration. 

Most of the functions related to logic simulation are given in Table 4.2. 
These functions are also given in Appendix I along with other special switching 
logic. As an introduction, example problems are given below that illustrate how 
these elements can\be used in combination to perform useful logic tasks. 

Example 4.7 

This problem illustrates how a random-generated binary number (either 0, 1,2, or 3) 
can be processed through digital logic so as to form the equivalent decimal representation 
of the number and thereby activate the proper edges of a Nixie light. 

In Fig. 4.29(a), XLI and XL2 form the binary representation of 0, 1, 2, and 3. El 
through E7 in 4.29(b) is a truth table for the edges of the light as defined in 4.29(c). The 



OUTPUT FOR EXAMPLE 4-6 WITH PIO CONTROLLER PAGE 1 

TI ~E 
0.0 
8.0000E-02 
1.6000=-01 
2.4000E-Ol 
3. 2000~-01 
4.0000E-Ol 
4.ROOOE-01 
5.6000E-01 
6.4000'=-01 
7.2000E-Ol 
8.0000E-Ol 
8.BOOOE-Ol 
CJ.6000E-Ol 
1.04COF 00 
1.ll00E 00 
1.l000E 00 
l.2BOOE 00 
1.3600E 00 
1.4400F. 00 
1.5200E 00 
l.bOOOE 00 
l.6eOOE 00 
1.7600E 00 
1.84COE 00 
1.9200E 00 
2.0000E 00 
2.0800F. 00 
2.16001; 00 
2.2400F. 00 
2.3200r 00 
2.4000E 00 
2.48001: 00 
2.5600E 00 
2.6400E 00 
2.7200F 00 
2.8000E 00 
2.8800F 00 
2.CJ6COE 00 
3.·0400F 00 
3.1200E CO 
3.2000E 00 
3.2800E 00 
3.3600E OC) 
3.4400E 00 
3.5200E 00 
3.6COOE 00 
3.6800E 00 
3.16COE CO 
3.8400e 00 
3.9200E 00 
4.0000E 00 

~It-.lI~U~ 
0.0 

RESP VERSUS TI~E MAXIMUM 
1.0177F 00 

I RESP 
0.0 
1.9619E-OI 
l.0108E 00 
1.0625: 00 
1.015SE 00 
1.0177E 00 
1.0158E 00 
1.0718E 00 
l.0664E 00 
1.0601E 00 
l.0533E 00 
1.0463': 00 
1.0393E 00 
l.0326E 00 
1.0263E 00 
1.0205'= 00 
l.OlS2E 00 
I.Ol06E 00 
l.0066E 00 
1.0032!:: 00 
1.0004E 00 
9.9818~-Ol 
9.964bE-Ol 
9.9519E-Ol 
9.943lE-01 
9.9319E-Ol 
9.9355E-Ol 
9.9356E-Ol 
9.9l75~-01 
9.93 09E-0J. 
9.9454E-Ol 
9.9506E-01 
9.9562E-01 
9.CJ620E-OI 
9.9617E-OI 
9.9132E-01 
9.9784F.-01 
9.9832E-Ol 
9.9875~-01 
9.9913E-01 
9.9946E-Ol 
9.CJ914E-OI 
9.9997E-Ol 
1.0001': 00 
1.0003E 00 
1.0004E 00 
1.0004E 00 
1.0005E 00 
l.0005E 00 
1.000S!:; 00 
1.0005E 00 

+ 

------------------------------------+ ----------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ -------------------------------------------------+ 
-------------------------------------------------+ -------------------------------------------------+ ------------------------------------------------+ 
------------------------------------------------+ ------------------------------------------------+ 
-----------------------------------------------+ -----------------------------------------------+ -----------------------------------------------+ 
-----------------------------------------------+ ----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ 
----------------------------------------------+ 
----------------------------------------------+ ----------------------------------------------+ 

"--+ 

----------------------------------------------+ 
----------------------------------------------+ 

Fig. 4.28 Step response of system with PID digital controller. 
(Example 4.6.) 
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Table 4.2 

Logic Functions for CSMP (Also, see Appendix /) 

Statement Form 

y N-I = Previous state of flip-flop 

RESETTABLE FLIP-FLOP 

Y = COMPAR (Xb X2) 

COMPARATOR 

Y = NAND (Xl' X2) 

NOT AND 

Y = lOR (Xb X 2) 

INCLUSIVE OR 

Y = NOR (Xb X2) 

NOT OR 

EXCLUSIVE OR 

Y = NOT (X) 
NOT 

Y = EQUIV (Xl, X2) 

EQUIVALENT 

y=o 
Y = 1 

Function 

Y = 1 Xl <0, Y =01 
Y = 0 X2 :::;;;0, 
Y = 1 

y=o Xl <X2 

Y = 1 X I >X2 

Y = 1 Xl> 0, X2 > 0 
y=o OTHERWISE 

y=o Xl> 0, X2 > 0 
Y= 1 OTHERWISE 

y=o Xl :::;;;0, X2 <0 
Y = 1 OTHERWISE 

Y = 1 Xl :::;;;0, X2 <0 
y=o OTHERWISE 

Y = 1 Xl :::;;;0, X2 > 0 
Y = 1 Xl> 0, X2 <0 
y=o OTHERWISE 

Y = 1 X:::;;; 0 
y=o X>O 

Y = 1 Xl :::;;;0, X2 <0 
Y = 1 Xl> 0, X2 > 0 
Y=O OTHERWISE 

logic statements defining EI through E7 are: 

EI = XLI· XL2 (not XLI and not XL2) 
E2 = XLI + XL2 (XLI or not XL2) 
E3 = 1.0 (always on) 
E4 = XLI + XL2 (not XLI or XL2) 
E5 = E2 (same as the state of E2) 
E6 = XL2 (not XL2) 
E7 = XLI (the state of XLI) 

Ch. 4 
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Number XLI XL2 

0 0 0 
1 0 1 
2 1 0 
3 1 1 

(a) Binary values of XLI and XL2 for given decimal numbers. 

El E2 E3 E4 E5 E6 E7 Number 

1 1 1 
0 0 1 
0 1 1 
0 1 1 

(b) Truth table for light edges. 

(c) Light edge definition. 

1 
1 
0 
1 

El 

E6 

1 
0 
1 
1 

E2 

E7 

E5 

1 
o 
1 
o 

E3 

E4 

o 
o 
1 
1 

Fig.4.29 Diagram defining logic properties for Example 4.7 

o 
1 
2 
3 
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A logic circuit for performing the above functions is given in Fig. 4.30 where we 
assume the random number is available from XLI and XL2. 

The program for making this simulation will first use RNDGEN to generate a 
random number. The number so generated will lie between 0 and 1. The output of the 
random number generator wiII be partioned as follows: 

For 0 <output < 0.25 ----+- Assign 0 

For 0.25 < output < 0.50 ----+- Assign 1 

For 0.50 < output < 0.75 ----+- Assign 2 

For 0.75 < output < 1.00 ----+- Assign 3 

The numbers 0, 1,2, and 3 will be represented in binary form to give the correct values for 
XLI and XL2. Next the logic functions for El through E7 will be expressed in terms of 
CSMP functional logic blocks. Finally, the output will give the random binary number and 
indicate the state for each edge of the light. 

The program given in Fig. 4.31 will accomplish the above tasks. More than 50% of 
the program statements are used to create a special form of output. Note that on the 
TIMER card, FINTIM is given as 15.0 and DELT specified as 0.5. This means that 30 
random numbers will be generated. Of course, the user has complete freedom to specify 
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XLI XL2 

I 

\)OT \)OT 
( ~ AND 

EI 

OR 
E2 

) 

1 =E3 

OR 

J 
E4 

E2=E5 

E6 

E7 

Fig.4.30 Logic circuit for Example 4.7. 

FINTIM and DELT. In this example neither the PRINT nor PRTPLT features ofCSMP 
were used since all desired output is obtained from conventional FORTRAN statements. 
An example of typical output is given in Fig. 4.32 where the random number, the binary 
representation, and the state of each light edge are given at the top of the page. This is 
followed by a bold print output of the decimal equivalent. 

Example 4.8 

The reset-set-toggle (RST) flip-flop in the CSMP functional blocks, as given in Table 
4.2, can be used for simulating many standard digital functions. This example illustrates 
the use of the flip-flop in constructing and testing a two-bit up-down counter. (Modulo 
two.) 

Several comments should first be made on logic design using CSMP. First the logic 
statements should be placed after a NOSORT card. Logic designs using flip-flops with 
feedback from the output states will form algebraic loops if run as SORT statements. 



* PROGRAM TO TURN ON LIGHT WITH NU~BER FROM ZERO TO THREE 

NOSORT 
************************************************************************ 
* PART Ofl.lE - GENERATE RANDOM NUMBER * 
********************~*************************************************** 

L = RNDGENl91 
Xl2 = 0.0 
IFlL.GE.0.51 GO TO 13 
XLl = 0.0 
IF(l.GE.0.251 Xl2 = 1.0 
GO TO 14 

13 XLl = 1.0 
IF(l.GE.0.151 XLZ = 1.0 

14 CONTINUE 
************************************************************************ * PART TWO - lOGIC STRUCTURE * 
************************************************************************ 

XL18AR = ~OT(XL1) 
XlZBAR = NOT(XL21 
El ANn(XLIBA~,XLZBAR' 
EZ IOR(Xll,XL2BARI 
1:3 1.0 
E4 IOR(XlIBAR,Xl2) 
E5 E2 
~6 Xl2BAR 
1:7 XU 

************************************************************************ * PART THREE - WRITE OUT THE VALUES FOR L,XLl,XLZ,El,E2,E3,E4,E5,E6,E1* 
************************************************************************ 

WRITE(6,3 t 
3 FORMATCIH1,IX,'RANDCM NUMBER XLI XL2 EDGEl EDGE2 EDGI:3 

SEDGE4 ~OGE5 EDGE6 EDG~7'1 
WRITEe6,10) l,XLl,XL2,E1,E2,E3,E4,E5,E6,E7 

10 FnRMAT(3X,F10.8,7X,F3.1,2X,F3.1,4X,F3.1,4X,F3.1,4X,F3.1,4X,F3.1, 
S4X,f3.1,4X,F3.1,4X,F3.1,111111111 

*****************.****************************************************** * PART FOUR - SPECIAL WRITE STATEMENTS TO FORM DECIMAL NUMBER * 
************************************************************************ 

IFeXL1.EQ.0.0.AND.XL2.EQ.O.01 GO T8 q 
IFeXll.EQ.l.0.ANO.XL2.EQ.l.OI GO TO 8 
I~CXLl.~Q.0.O.ANO.Xl2BAR.EQ.0.OI GO TO 11 
IF(XL1.EQ.l.0.AND.Xl2BAR.~Q.l.0) GO TO 12 

9 WRITE(6,151 
* THIS FO~MAT PRINTS A ZERO 

15 FOR~AT(T34,12(,X' I/T34,lZ(lX'I/11(T34,'XX XX'/I, 
S2(T34,'XXXXXXXXXXXX'/1 I 

GO TO 25 
l1 WR IT E ( 6,19 I 

* THIS FORMAT PRINTS ACNE 
19 FOR~AT(15(/T40,'XX'1 I 

GO TO 25 
1Z WRlTE(6,201 

* THIS FORMAT PRINTS A TWO 
20 FORMATCT34,12( 'X'IIT34,12( 'X' 1/5(T44, 'XX'II ,T34,12e' X'I! 

ST34,12(' X'I 15(T34,'XX' /I ,T34,12( 'X' IIT34,12('X'11t 
GO TO 25 

8 WR ITE ( 6,1 71 
* THIS FORMAT PRINTS A THREE 

17 FORMATlT34,lZe'X'tIT34,12('X't/5(T44,'XX'/I,T34,12('X'tl 
$T 34,12 ( • X' II r; ( T 44, • X X' II , T 34,12 ( I X' II T34, 12 ( , X' tIl 

Z5 CONTINUE 
TIMER FINTIM =15.0, DELT = 0.5 
END 
STep 

Fig.4.31 Program listing for NIXIE light indicator. (Example 4.7.) 
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RANOCM NUMAER 
0.54687333 

XLl XL2 =DGEl EOGE2 EDG=3 EDGE4 EDGE5 EDGE6 EOGE7 
1.0 0.0 0.0 1.0 1.0 0.0 1.0 1.0 1.0 

)(XXXXXXXXXXX 
XXXXXXXXXXXX 

xx 
xx 
xx 
xx 
XX 

XXXX)(XXXXXXX 
XXXXXXXXXXXX 
XX 
xx 
xx 
xx 
xx 
XXXXXXXXXXXX 
XXXXXXXXXXXX 

Fig.4.32 Typical program output for NIXIE light. (Example 4.7.) 

Furthermore, the SORT algorithm will change the logic statements around so that the 
resulting simulation becomes nonsense. Second CSMP will go through the program 
statements twice at TIME = 0 even though integral functions are not used. This means 
that flip-flops will react to the two passes and will often give erroneous results. This prob­
lem can be avoided by starting pulses into the logic only after TIME = O. Third, when 
integration is not used in CSMP, the program statements are executed every DELT units. 
Thus, users should specify a DELTon the TIMER card commensurate with the frequency 
desired for executing the program statements. In summary, the following guidelines are 
recommended when using CSMP to simulate logic containing flip-flops. 

1 Always place logic statements after a NOSORT card. 

2 Apply inputs to the logic after time = O. 

3 Use a DELT corresponding to the frequency desired for executing the program 
statements. 

The logic diagram of an up-down counter using RST flip-flops is shown in Fig. 4.33. 
The counter counts up one unit for every Xl pulse applied and counts down one unit for 
every X2 pulse applied. Simultaneous pulses for Xl and X2 gives an undefined condition. 

A CSMP program for simulating this counter is given in Fig. 4.34. The train of pulses 
applied to the system start at TIME = 0.1. Four pulses are first applied from Xl and 
followed by a continuous train of pulses from X2 • Note that variables QlI and Q2I are 
introduced in the INITIAL section. This allows the states of the flip-flops to be defined 
so that statements for R1, S1, T1 (input to flip-flop 1) and R2, S2, T2 (input to flip-flop 2) 
can be written. Note also that all logic statements follow a NOSORT card and that 
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Sl 

Tl 

Rl 

T2 

S2 

T2 

R2 

Flip-flop 
1 

Flip-flop 
2 

Fig. 4.33 Logic diagram for up-down counter of Example 4.8. 

Ql 

Q2 

DELT = 0.1 is used on the TIMER card. If a DELT is not specified, the program uses 
FINTIM/lOO and thereby executes the program statements at this value. 

The output of the program is given in Fig. 4.35. Note that Q2 is the low-order bit and 
Ql is the high-order bit. The four input pulses for Xl gives the binary count 1, 2, 3, 0 
(which is correet). One will also observe that X2 causes the proper down-count. 
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I~ITIAL 
011 o. a 
021 0.0 

************************.**~.*.~.**.*********.********************** 
* THE FOLLOwING STATEMENTS r.ENEPATE A TKAIN OF PULSES AS INPUT * 
*********************~********* •• *********************************** 

CYNAMIC 
NOSORT 

XXI IMPULS(O.l,O.l) 
YYl IMPULS(O.5,O.1) 
Xl XXI - YYl 
X2 = YVl 

******************************************************************** 
• THE FOLLOWINr. STATEME~TS FORM AN UP-DOWN COUNTER * 
*************.*********.******************************************** 

QIIBAP = NOT(QII) 
Q2IBAR = NOT(QZI) 
Ml ANO(0II8AR,QZI I 
Sl AND(Xl,Mll 
Tl AND(X2,Q2IB~RI 

Nt AND(QII,QZII 
Rl AND(Xl,Nl) 
R2 ANO(X2,Q2Il 
S2 Tl 
T2 Xl 
Q1 RST(Rl,Sl,Tll 
02 RST(R2,S2,TZ) 
01J = Q1 
021 = Q2 

TI MER 
PRINT 
TITLE 
END 
STOP 
ENCJOB 

FINTIM = 1.5, DELT = 0.1, PRDEL = 0.1 
Xl, X2, Ql, Q2 
OUTPUT OF A MODULO TWO COUNTER EXAMP~~ 4-8 

Fig. 4.34 CSMP program of the up-down counter of Example 4.8. 

CUTPUT OF A MODULO TWO COUNTER EXAMPLE 4-8 

TIME Xl X2 Ql 02 
0.0 0.0 0.0 0.0 0.0 
I.OOOOE-Ol 1.0000E 00 0.0 0.0 1.0000E 
2. ')0 Ooi-Ot 1.0000E 00 0.0 I.OOOOE 00 0.0 
3.0000E-Ol 1.0000E 00 0.0 t. OOOOE 00 t.OOOOE 
4.0000::-01 l.OOOOE 00 0.0 0.0 0.0 
':i.OOOOE-Ol 0.0 1. CCOOE 00 1.0000E 00 1.OOOOE 
6.0000t::-Ol 0.0 I.DOOOE 00 1.00001.: 00 0.0 
7. COOOE-Ol 0.0 1.0000E 00 0.0 I.OOOOE 
8.0000E-Ol 0.0 1.OOOOE 00 0.0 0.0 
9.0000E-Ol 0.0 1.0000E 00 1.0000E 00 t.OOOOE 
I.DOCOf 00 0.0 I.COOOe: 00 ] .OOOOE 00 0.0 
1.l000E 00 0.0 I.OCOOE 00 0.0 1.0000E 
1.?000~ 00 0.0 1.0000E 00 0.0 0.0 
1.~00O-: 00 0.0 1.0000'= 00 1.0000E 00 t.OOOOE 
1.40 DOC:: 00 0.0 1.0000E 00 1.OOOOE 00 0.0 
1.50(01:= 00 0.0 1.COOOE 00 0.0 I.OOOOE 

Fig. 4.35 Output results of up-down counter simulation. (Example 
4.8.) 

00 

00 

00 

00 

00 

00 

00 

00 
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PROBLEMS 

1 The open-loop transfer function of a system is given by 

G(s) _ 150 
- s(s + 2)(s + 10) 
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(a) Find the frequency response of the open-loop system over the range COmin = 0.1 
to comax = 100.0. Use the basic program given in Fig. 4.1 with NUM(1-6) and 
DEN(1-6) changed to appropriate values for this problem. Obtain 20 output 
points per decade. Add a statement to the program in Fig. 4.1 so that the output 
magnitude is expressed in decibels (dB). If VALUE is the output, this can be 
expressed in dB by 

VALUEX = 20.0*ALOG10(VALUE) 

(b) The G(s) given above is used in a unity-negative feedback system as shown below. 
Again, use the basic program of Fig. 4.1 to obtain the closed-loop frequency 
response. Express the output in dB and request PR TPLT of output and phase 
for .1 < CO < 100.0, 

I~ G(s) 
+ 

OUTPUT 

Fig. P-4.1b 

(c) From the computer output of (a) and (b) give 
(i) the phase margin and gain margin of the system; 

(ii) the peak overshoot (Mp) of the closed-loop frequency response; 
(iii) the frequency at which the peak response occurs (cop); 
(iv) the approximate bandwidth of the closed-loop system; and, finally, 
(v) is the closed-loop system stable? 

Answers: 
Part (a). At CO = 1.2589, VALUEX = 13.983, PHASE = -129.36 
Part (b). At CO = 2.5119, VALUEX = 5.2604, PHASE = -24.841 
Part (c). (i) Phase margin = 10 deg, gain margin = 4.06 dB 

(ii) Mp = 15.117 dB, (iii) cop = 3.548, (iv) 5.3, (v) yes 

2 A stereo amplifier has the following transfer function 

4.05 x 108s 
G(s) = (s + 30)(s + 135,000) 

Use the frequency response program given in Fig. 4.1 and determine the response of 
the amplifier for 6.28 < co <628,000. Use log stepping with 10 increments per 
decade. Have the program plot dB magnitude and phase versus 0). What values are 
given by the PRTPLT for the low-frequency cutoff, high-frequency cutoff, band­
width, and mid-frequency gain? 

Answers: 
Low frequency cutoff ~ 31.5 radians/sec 
High frequency cutoff . 1.27 x 105 radians/sec 
Bandwidth ~ 1.27 x lOs radians/sec 
Mid-frequency gain . 69.5 dB 

3 Make the necessary modifications to the program in Fig. 4.1 in order to find the 
frequency response of VoCs)/Vls) for the network given below. Use the PRTPLT 
statement to list the dB magnitude and phase versus CO (co in log steps, 10 steps/per 
decade) over the range 0.1 < co :::;; 30,000. Hint: the transfer function is given by 



Answer: 

R L 

R = 10 ohms 1 
~ ___________ c~~ 

L = 2 x 10- 3 Henrys 
C = 16 x 10-6 Farads 

Fig. P-4.3 

1 
Vo(s) rc 
f((s) = 2 + R +_1 

s L s LC 

At ro = 1995.2, Vo(ro) = 0.638 dB, Phase = -20.09° 

4 Consider the multiple-element mechanical system shown in Fig. P-4.4. The differential 
equations describing this system are 

-B3 ~l + (M2d;t~2 + (B2 + B3)d~2 + K2X2) = J(t) 

d 2xI ( )dXI B dX2 0 MI dt 2 + BI + B3 dt + K1XI - 3 dt = 

f(t) 

/ 

Fig. P-4.4 

By assuming zero initial conditions, taking the Laplace transform, and solving the 
simultaneous equations one finds 

X1(s) SB3 
F(s) = C 4S4 + C 3S 3 + C 2S 2 + CIS + Co 

where: C4 = MIM2 

C3 = M 1(B2 + B3) + M 2(B1 + B3) 

C2 = M2KI + MIK2 + BI (B2 + B3) + B2B3 

C1 = K1(B2 + B3) + K2(B1 + B3) 

Co = KIK2 

Let MI = M2 = KI = K2 = B3 = 1.0, and BI = B2 = 0.5. Find the frequency 
response of the transfer function, X1(s)/F(s), over the relevant range of ro. Solve 
this problem by making appropriate changes of the program in Fig. 4.1. 

Answers: 
At ro = 1.0, magnitude = -1.938 dB, phase = -900 
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5 A particular process-transfer function is given by 16 

T( ) = 1.25(S2 + 0.345s + 0.32)e-°. Ss 

s (S + 1)(s + 0.2)2 

Find the frequency response over the range .001 < ()):::;: 10 by making appropriate 
changes in 'the program of Fig. 4.1. Use log stepping for ()) with 16 steps per decade. 
What is the phase margin and gain margin? 

Answer: 
Phase margin = 62°, gain margin = 0.677 absolute 

6 The transfer function of a particular band-reject filter is given by 

S4 + 1.6 X 103s3 + 8.8 X 105S 2 + 1.92 X lOss + 1.44 X 1010 
G(s) = S4 + 1.204 X 104s3 + 3.648 X 107 S2 + 1.4448 X 109s + 1.44 X 1010 

Find the frequency response of this filter over the range 1 < ()) < 100,000. Use log 
stepping for ()) with 1 ° steps per decade. PR TPL T the dB magnitude of the filter re­
sponse. What band of frequencies are rejected by this filter? 

Answer: 
Approximately 14 to 8500 radians/sec 

7 A signal is given by 

yet) = 10.0*SIN(10.0*TIME) + 1.hSIN(350.0*TIME) 

Find the response of the filter in Prob. 6 to this signal over the time interval 
0:::;: TIME < 1.4 with OUTDEL = 0.014. Use the transfer function macro given in 
Example 3.12 in developing your program. Comment on the filter response for this 
yet). 

Answer: 
For ()) = 350, signal is attenuated by 40 dB 

8 A pulse ret) defined by 
ret) = 1 

ret) = 0 

0.0< t< 0.6 

all other t 

is applied to a linear, time-invariant, minimum-phase system. Data for the pulse 
response are given below. 

Time Response Time Response 

0.000 0.000 0.645 0.5092 
0.045 0.2899 0.675 0.3773 
0.075 0.4221 0.720 0.2405 
0.120 0.5590 0.765 0.1534 
0.165 0.6464 0.855 0.0624 
0.255 0.7380 0.915 0.0342 
0.330 0.7710 0.975 0.0188 
0.390 0.7838 1.060 0.0076 
0.480 0.7934 1.200 0.0002 
0.600 0.7980 
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Find the frequency response of this system. Hint: Use the array-integrator frequency 
response program as shown in Fig. 4.8. Use the data above to define the AFGEN 
function. An approximate frequency range should start at COm in = 0.1 with NUM­
DEC (number of decades) = 4 and XDECAD (number of points per decade) = 10. 
Dimensioned variables in Fig. 4.8 should be changed from 21 to 41. Allow approxi­
mately 3 min of CPU time on a 360/65 to run this problem. 

Answer: 
At CO = 19.95 radians/sec, magnitude = -8.85 dB, phase = -62.9° 

9 Data given in Prob. 8 were measured from the system configuration of Fig. P-4.9. 

I b I 
0.0 0.6 0.0 0.6 1.2 

INtV/[ I G(s) I 

I 
• OUTPUT 

Fig. P-4.9 

(a) From the frequency response of Prob. 8, determine a reasonable model for 
G(s). 

(b) Use the G(s) determined from part (a) above in the configuration of Fig. P-4.9. 
Apply a pulse input as shown in this diagram and use CSMP to find the output 
response. Compare this response to the data given in Prob. 8 to determine the 
validity of your model. An introductory background in feedback systems is 
necessary for working this problem. 

Answers: 
8 

(a) G(s) = (s + 2) 

10 The transfer function of a system is given by 

C(s) 300s2 + 720s + 132 
R(s) = S5 + 22s4 + 137s3 + 496s2 + 725s + 132 

(a) Express this transfer function in integration form as shown in Fig. 4.11. 
(b) Write a set of state variable equations from your diagram by using the output of 

each integration as a state. 
(c) Use the equations in part (b) and write a CSMP program for finding e(t) (the 

output) when ret) (the input) is a unit step. Hint: Use variable-step integration 
with OUTDEL = 0.12 and FINITIM = 6.0. 

Answer: 
(c) At TIME = 0.84, e(t) = 1.1923 

11 The transfer function of a system is given by 

C(s) 150 
R(s) = S3 + 12s2 + 20s + 150 
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(a) Express this transfer function in integration form as shown in Fig. 4.10. 
(b) Write a set of state variable equations from your diagram by using the output of 

each integrator as a state. 
(c) Use the equations in part (b) and write a CSMP program for finding e(t) (the 

output) when ret) (the input) is a unit step. Hint: Use variable-step integration 
with OUTDEL = 0.08, FINTIM = 4.0. 

Answer: 
At TIME = 1.12, e(t) = 1.3443 

12 A signal given by 
let) = (4*e- O•1t) + sin (1.5t) sec 

is applied to the input of a sample and hold system as illustrated in Fig. P-4.12. The 
ideal sampler closes every T = 0.4 sec. Write a CSMP program which will 
PRTPLT let), [*(t), and x(t). Use an OUTDEL of 0.1 sec and a FINTIM of5.0 sec. 

~ f*(t) Zero-order 
hold 

x(t) 

T Fig. P-4.12 

Answer: 
At TIME = 2.1, x(t) = 3.416 

13 The model of a continuous process is given in Fig. P-4.13. 

R(s) 

INPUT 
r(t) 

x y 

Fig. P-4.13 

....... ---~ C(s) 

OUTPUT 
c(t) 

(a) If ret), the input, is a unit step, write a CSMP program which gives the output 
response, e(t). Assume all initial conditions are zero. 

(b) Remove the segment of the system betweenxandyin Fig. P-4.13 and replace it by 
a sample and hold as given in Prob. 12. This replacement is representative of 
what happens when a digital computer is used to close the process loop. Develop 
a CSMP simulation for this case and determine the unit-step response for 
T = 0.08, 0.32. A fixed-step integration should be used for this case with DELT 
being a sub-multiple of T. 

Answers: 
(a) At TIME = 0.96, e(t) = 0.50984 
(b) At TIME = 1.04, T = 0.08, e(t) = 0.65624 

At TIME = 1.04, T = 0.32, e(t) = 0.47167 
Both for METHOD RKSFX, DELT = 0.008 
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14 The system diagram of a proposed direct digital control system using a PID control 
algorithm is shown in Fig. P-4.14. The digital control portion can be expressed in a 

ERROR ESTARr-----, 
Digital 

T 

PROCEDURE algorithm by 

control 
algorithm 

Fig. P-4.14 

OUT 

PROCEDURE SUM = PID(Al,SETPT,T,K,TI,TD,ESTAR,ESTAR1,INTG1) 
IF(A1.NE.1.0) GO TO 10 
'IF(KEEP.NE.1.0) GO TO 10 
EPROP = ESTAR 
EDERIV = TD*(1.0jT)*(ESTAR - ESTARl) 
INTG = INTGI + T*ESTAR 
EINTG = (1.0jTI)*INTG 
SUM = K*(EPROP + EDERIV + EINTG) 
ESTARI = ESTAR 
INTGI = INTG 

10 CONTINUE 
END PRO 

Find the unit-step response of this system using the above control algorithm with 
T = 0.02, K = 9.6, TI = 1.67, TD = 0.15, INTGI = 0.0, and ESTARI = 0.0. 
Use RKSFX with DELT = 0.02, FINTIM = 10.0, OUTDEL = 0.2. Give the 
PRTPLT of OUT. A review of Example 4.6 may be helpful in working this problem. 

Answer: 
At TIME = 0.8, OUT = 1.1431 

15 A cascade form of a PID controller for the system in Prob. 14 is given in Fig. 
P-4.15. (16) Implement this controller in discrete form using a PROCEDURE 
function. Parameters of the controller are K' = -9.6, Sampling Interval = 0.02, 
TI = 1.67, TD = 0.15, all initial conditions are zero. Use RKSFX fixed-step 
integration, FINTIM = 10.0, DELT = 0.02, OUTDEL = 0.2. Give the PRTPLT 
of OUT. 
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OUT 

Fig. P-4.1S 

Answer: 
At TIME = 1.2, out(t) = 0.94849 

16 Consider the system shown in Fig. P-4.16. It has been determined that a suitable 
controller, D(z), for this system with a sampling time of T = 0.5 is 

D( ) = AO + Ahz- 1 = (0.25 - 0.24*z-1) 
z 1 + Bhz- 1 (1.0 - 0.99*z-1) 

3 Digital 
controller 

D(z) 
sO + O.ls) (1 + O.Ss) 

Fig. P-4.16 

Use the method given in Example 4.4 for simulating the above system. Let the input, 
R, be a unit step. Give the PRTPLT of C and the output of the zero-order hold. Let 
FINTIM = 10.0, OUTDEL = 0.15, DELT = 0.025, METHOD RKSFX. 
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Answers: 
At TIME = 4.2, ZOH = -0.026969, e(t) = 1.1697 

17 The diagram for a digital control system is given in Fig. 4.21. Find the unit-step 
response of the system when the controller is expressed as a parallel realization. Use 
the PROCEDURE approach. See Example 4.5 for further details. 

Answers: 
(For T = 0.1, DELT = 0.05, OUTDEL = 0.1, METHOD RKSFX) 
At TIME = 1.4, output = 1.1532 

18 Although the subject was not discussed in the text, CSMP can be used for simulating 
and finding the response of digital filters. For example, the exponential filter can be 
expressed as 

Y(z) (1 - IX)z 
X(z) = z - IX 

where: z = the z-transform variable 

IX = a filter parameter 

Y(z) = z-transform of the filter output 

X(z) = z-transform of the filter input 

A digital algorithm for this filter is 

Y(nT) = (1 - IX)X(nT) + IX Y[(n - l)T] 

where: Y(nT) = nth value of the filter output 

Y((n - l)T) = (n - l)st value of the filter output 

X(nT) = nth value of the filter input 

T = filter sampling time 

The frequency response of the discrete filter for several values of IX is shown in Fig. 
P-4.18(a). 

Let an input signal to the filter be given by 

yet) = sin (0.05t) + 0.5 sin (0.44t) 
term A term B 

We wish to design a filter which will attenuate term B by 15 dB but pass term A. To 
achieve this we select IX = 0.9 and T = 1.43 sec. The program in Fig. P-4.18(b) can be 
used to simulate this filter. Run this program and observe the output. Comment on 
your results. 

Answer: 
At TIME = 80.08, x(t) = -1.0729, yet) = -0.21010 
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O~~ __ ~~=S~~~--~--------------------I 

-2~--------~~-------3~--~~+-~~-------------------------1 

-4~--------------~~------~~+---~--~r-------------------4 

-6 

-8 

- 10 

- 12 

-14 

- 16 

- 18 

- 20 

- 22 

,24~---------------------------+----------------------~--~ 

- 26 ~----------------------------+-----------------------cx = 0.9 

-28~--------------------------~------------------------~ 
0.01 0.1 

w (multiply each value by rr/T) 

Fig. P-4.18(a) Magnitude response of the digital exponential filter. 

***PROBlE~ INPUT STATEMENTS*** 

PARAM ALPHA = O.~. V1 = 0.0 
* SA~PLING TIME = 1.43 
DVNAMIC 

NOSORT 
X = SINCO.05*TIME) + 0.5*SIN(O.44*TIME) 
Y = (l.O - ALPHA)*X + AlPHA*V1 
Yl = Y 

* W~EN USING THIS F~OGPAM BE SURE T~AT DELT ON THE 
* TIMER CARD IS SET EQUAL TO THE SA~PlING TIME 
• MAKE SURE V1 IS UP[ATED AS SHOWN 
TIMER FINTI~ = 250.0. OUTDEl = 2.86, DElT = 1.43 
PRTPl T X, V 
LABEL IllUSTRATICN OF EXPONENTIAL FILTER, PRoe 4-18 
END 
STOP 
HCJCe 

Fig. P-4.18(b) Program listing for Problem 4.18. 

1.0 
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19 The algorithm of a third-order discrete Butterworth :filter is given by 

yen) = 0.0039*X(n) + 0.0116*X(n - 1) + 0.0116*X(n - 2) + 0.0039*X(n - 3) 

+ 2.305h Yen - 1) - 1.8317* Yen - 2) + 0.4957* Yen - 3) 

where the coefficients have been selected to give a bandwidth of n/9T. Let the input 
to the filter be identical to the input signal given in Prob. 18. Use a sampling time of 
T = 2 sec. This should attenuate term B by 30 dB. Write a CSMP program to 
simulate this :filter. Use a FINTIM = 125 ,DELT = 2.0, and OUTDEL = 2. O. 
Compare the results to Prob. 18. 

Answer: At TIME =68, x(t) =0.29501, yet) = -0.14972 



5 
CSMP III 

The preceding chapters specifically dealt with the form of CSMP called Sys­
tem/360 Continuous System Modeling Program (S/360 CSMP). An extension of 
S/360 CSMP called CSMP III is available. It incorporates the following major 
changes and improvements. 

1 Additional output versatility including extensive x-y plotting capability 
is available. 

2 Several new functional blocks have been added. 

3 Double precision calculations can be used to improve accuracy. 

4 The model size has been increased. 

There is very little difference in using the two forms of CSMP. Most programs 
written for S/360 CSMP are completely compatible with CSMP III and will run 
without modifications. The following is a brief check list of items that should be 
considered when running a program on a different form of CSMP. 

244 

1 The S/360 CSMP PRTPLT statement is treated as an OUTPUT instruc­
tion in CSMP III. The OUTPUT statement cannot be used in S/360 CSMP. 

2 Subscripted variables are allowed in CSMP III PRINT and OUTPUT 
statements, but are not permitted in any S/360 CSMP output instructions. 

3 The S/360 CSMP CONTINUE statement is equivalent to the END CON­
TINUE instruction used in CSMP III. 

4 In S/360 CSMP data cards are placed between the labels DATA and 
ENDDATA. The equivalent labels in CSMP III are INPUT and END IN­
PUT. 
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5 The use of the array form of the INTG RL function is considerably different 
in the two forms ofCSMP. 

6 There are several function blocks that can only be used in CSMP III. They 
are listed in this chapter and in Appendix I. 

7 The JCL (job control language ) cards are different. 

It is the intent of this chapter to point out the major differences in using the 
two forms of the CSMP program and to describe the additional features of CSMP 
III. This material does not contain a detailed description of all the features and 
capabilities of CSMP III. The reader should refer to the IBM manualw for addi­
tional information. 

This chapter is divided into three sections: output, functions, and control 
statements. The greatest difference between the two forms of the CSMP program 
exists in output capability. Output capabilities are covered in the first section. 
The second section contains descriptions of the additional CSMP III functions. 
A few control statements are slightly different in CSMP III. This is covered in the 
last section. 

Output Statements 

Additional output statements are provided in CSMP III as well as methods 
for controlling the format of the output. The beginning user should start with the 
standard output statements and gradually work up to using the various available 
options. 

The four major output statements are PRINT, OUTPUT, PREPARE, and 
RANGE: Each of these statements can be used alone or with auxiliary instruc­
tions to alter the standard output format. FORTRAN output capability is avail­
able in both forms of CSMP. 

PRINT 

The PRINT statement is used exactly as in S/360 CSMP. The changes listed 
below provide additional flexibility. 

1 Up to 55 variables can be listed on a PRINT card. 

2 The PRINT statement can be used for subscripted variables. For example, 
the following card will print the values of A, B, X(l), Y(6), Y(7), Y(8), and 
Y(9). 

PRINT A, B, X(l), Y(6-9) 

TITLE 

As in S/360 CSMP, the TITLE statement is used for specifying the heading 
of PRINT output. Each TITLE statement, which can be continued to one addi-
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tional card, provides up to 120 characters in one line of output. A maximum of 
six cards can be included in a program. This means that three TITLE statements, 
each containing one continuation card; six TITLE cards with no continuations; 
or an equivalent number of cards can be used. 

For example, the following two TITLE statements provide a total of two 
lines of heading for PRINT output. 

TITLE SIMULATION OF THE CONTROL SYSTEM FOR NATURAL GAS··· 
TRANSMISSION 
TITLE ALL UNITS ARE GIVEN IN THE METRIC SYSTEM 

RERUN 

The RERUN card is used to print in the heading the values of listed param­
eters. For example, when several runs are made using the CALL RERUN 
statement, the current values of X, Y, and Z are printed as part of the heading by 
using the following statement. 

RERUN X, Y, Z 

PRINTPAGE 

This statement allows the user to specify the size of pages used for PRINT 
output. If the size is not specified by the HEIGHT and WIDTH variables, the 
height will be the standard sixty lines and the width will be 132 characters. An 
example of a PRINTPAGE statement is shown below. 

PRINTPAGE HEIGHT = 50, WIDTH = 104 

This instruction will provide a page 50 lines high and 104 characters wide. 
Page width determines the maximum number of variables that can be listed in 
column form as summarized below. 

OUTPUT 

Page Width 

132 
120 
104 

91 
78 

Maximum Number of Output 
Variables in Column Form 

9 
8 
7 
6 
5 

The OUTPUT statement provides an additional means for both printing and 
plotting output. It is used in place of the S/360 CSMP PRTPLT statement. If 
PR TPLT is used in CSMP III, it is automatically treated as an OUTPUT state-
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ment. Up to fifty-five variables can be included in one statement. An example 
of a valid OUTPUT card is shown below. 

OUTPUT X, W, T(3), Q(3-12), P 

The output format is automatically determined by the number of variables 
that are listed on the OUTPUT statement. For five or fewer variables, the output 
is both plotted and printed on the same plot. When there are more than five vari­
ables the output is only printed. The following example illustrates the use of the 
OUTPUT statement with the three different formats. 

Example 5.1 

Consider the problem of calculating the steady-state error of an accelerometer for a 
sinusoidal input of frequency 01. Fig. 5.1 shows the basic elements of an accelerometer. 

Fig. 5.1 Elements of an accelerometer. 

The steady-state percent error is given by the following expression 

where ,= damping factor 

01 . f .. 
01 = ratio 0 excltmg 

n frequency to natural 
frequency 

100 

Symbols used in program 

ZETA 

FREQ 

(5.1) 

The program shown in Fig. 5.2 calculates the percent error as a function of frequency 
ratio and damping factor. The independent variable is the frequency ratio (FREQ) and 
each subscripted variable (ERROR(I)) represents the error for a particular value of ,. 
The ERROR(I) variable corresponds to a damping factor of 1/20. The printing format 
depends on the number of variables listed in the OUTPUT statement. For 1-5 variables, 
both a printer-plot and tabular listing are given on the same page. The plot for each 
variable is independently scaled and identified by a unique symbol. The output for the 
following instruction containing four variables is given in Fig. 5.3. 

OUTPUT ERROR(l), ERROR(8-9), ERROR(14) 

As with the S/360 CSMP PRTPLT instruction, multiple OUTPUT statements can 
be used to provide separate plots. For example, the following three cards will provide 
three separate plots of X, Y, and Z. 

OUTPUT X 
OUTPUT Y 
OUTPUT Z 
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LABEL STEADY-STATE ERROR OF AN ACCELEROMETER AS A FUNCTION OF FREQUE ••• 
NCY AND CAMPING FACTOR 

RENAME TIME = FREQ 
FIXED I 
STORAGE ERRUR(20) 

NOSORT 
DO 1 1 = 1,20 
ZETA = FLOATCI)/20.0 

1 ERROR(I1 = 100.0/SQRTCC1.0 - fREQ*FREQ)**Z + CZ.O*ZETA*FREQ)**ZJ 
- lCC.O 
OUTPUT ERRGRCl), ~RROR(8-9), ERPOR(14) 

LABEL TYPICAL OUTPUT FOR 1-5 VARIABLES 
OUTPUT ERROR(4), ERROR(6-10) 

LABEL TYPICAL OUTPUT FOR 6-9 VARIABLES 
OUTPUT ERRORCl-20) 

LABEL TYPICAL OUTPUT FOR 10-55 VARIABLES 
TIMER FINTIM = 1.0, OUTDEL = 0.02 

END 
STOP 
ENDJOB 

Fig. 5.2 Program to calculate the steady-state error of an accel­
erometer. 

In S/360 CSMP, three separate PRTPLT cards or the following single statement will also 
give three separate plots. 

PRTPLT X, Y, Z 

For 6-9 variables, a column listing is used. It is similar to the format used by the 
PRINT statement. The output from the following instruction containing six variables is 
given in Fig. 5.4. 

OUTPUT ERROR(4), ERROR(6-10) 

For 10-55 variables a row format is used. The names of the variables are listed in 
the left column and each successive column contains the magnitude of the variables for 
increasing values of the independent variable (TIME). Figure 5.5 shows an example of 
this type of output for the following statement. 

OUTPUT ERROR(1-20) 

Similar to the PRTPLT instruction, the print interval for the OUTPUT statement 
is specified by OUTDEL. 

LABEL 

This statement specifies the heading that appears at the top of each page 
of OUTPUT printout. Only one continuation card is allowed for each LABEL 
instruction. LABEL statements provide headings for all OUTPUT instructions 
that follow the LABEL cards. LABEL instructions that follow an OUTPUT 
statement refer only to the statement they follow. Examples are shown by the 
program of Fig. 5.2 and outputs in Figs. 5.3, 5.4, and 5.5. A typical LABEL 
statement is shown below. 

LABEL SIMULATION OF THE INDUSTRIAL DYNAMICS OF A ... 
MANUFACTURING PLANT 



~ 

~ 

FREQ 
0.0 
2.00000E-02 
4.00000E-02 
6.00000E-02 
8.00000E-02 
0.10000 
0.12000 
0.14000 
0.16000 
0.18000 
0.20001) 
0.22000 
0.24000 
0.26000 
0.28000 
C.30000 
0.32000 
0.~4000 

0.36000 
0.38000 
0.40000 
0.42000 
0.44000 
0.46000 
0.48000 
0.50000 
0.52000 
0.54000 
0.56000 
0.5liOOO 
0.6000:) 
0.62000 
0.64000 
0.66000 
0.68000 
0.70000 
0.72000 
0.74000 
0.76000 
0.78000 
0.80000 
0.82000 
0.84000 
0.86000 
0.88000 
0.90000 
0.92000 
0.94000 
0.96000 
0.98000 
1.0000 

ERROR (l) 

0.0 
3.98102E-02 
0.15944 
0.35947 
0.64085 

1.0049 
1.4535 
1.9888 
2.6134 
3.3306 
4.1441 
5.0581 
6.0777 
7.2084 
8.4569 
9.8304 
11.337 
12.988 
14.792 
16.762 
18.913 
21.261 
23.824 
26.624 
29.686 
33.038 
36.715 
40.755 
45.205 
50.121 
55.568 
61.625 
68.390 
75.980 
84.541 
94.257 
105.36 
118.14 
133.00 
150.44 
171.16 
196.11 
226.64 
264.65 
312.96 
375.65 
458.52 
568.38 
706.80 
846.09 
900.00 

-30.00 
0.0 
0.0 
0.0 

'0' =ERROR(14) 
'X'=ERROR(9) 
'*'=ERROR(8) 
'+'=ERRORUJ 

10.00 
32.00 
40.00 
1000. 

X--------------I--------------I--------------O--------------1 
X I I 0 I 
X I 1 0 1 
X 1 I 0 I 
X I I 0 1 
+X I 1 0 1 
+x I 1 0 I 
+X 1 1 0 1 
+ X I 1 a 1 
+ X 1 I 0 1 
+---X----------I--------------I--------------O--------------1 
+ X 1 I 0 I 
+ x I I a I 
+ X I I 0 I 
+ X I I 0 I 
+ *x I I a I 
+ *x I I 0 1 
+ *x I I 0 I 
+ *x I I 01 I 
1+ *X I 01 I 
1+-------------I-X------------I-------------01--------------1 
I + I *x 1 0 I I 
I + I *x 1 a 1 I 
1 + 1 *x 1 0 I I 
1 + I *x I 0 I I 
1 + 1 *x 1 0 1 I 
1 + 1 XI 0 1 1 
1 + I IX a 1 I 
1+ I 1 X 0 1 I 
1+ 1 1 XO 1 1 
1--+-----------1--------------I------J*------I--------------1 
1 + I I Ox* 1 I 
1 + I I 0 x* 1 I 
1 + I lOX *1 1 
1 + I lOX 1* I 
1 + 1 10 X [ * I 
I + 1 01 X * I 
I + I 0 I IX * I 
I + I 0 I IX * I 
1 + I 0 I IX * I 
I---------+----I------D-------I--------------IX--------*----1 
I + 10 I X * I 
I ... I 0 1 Xl * 1 
I I +0 I X I * I 
1 01 + I X I * I 
1 01 + I X I * 1 
I 0 I +1)( 1* 1 
1 0 I IX+ 1* I 
I a I XI + * I 
10 I X I * I + 1 
1-0------------[-----X--------[-------*------I--------+-----1 

ERROR(8) 
0.0 
2.71912E-02 
0.10884 
0.24504 
0.43591 
0.68192 
0.98314 

1.3400 
1.7531 
2.2227 
2.7494 
3.3336 
3.9761 
4.6771 
5.4372 
6.2568 
7.1360 
8.0751 
9.0739 
10.132 
11.249 
12.423 
13.652 
14.935 
16.268 
17.647 
19.067 
20.521 
22.001 
23.498 
25.000 
26.493 
27.962 
29.387 
30.750 
32.025 
33.190 
34.216 
35.075 
35.741 
36.184 
36.379 
36.303 
35.938 
35.270 
34.292 
33.004 
31.414 
29.535 
27.389 
25.000 

Fig. 5.3 Typical printer-plot from OUTPUT statement for 1-5 
variables. 

ERROR(9) 
0.0 
2.37885E-02 
9.51996E-02 
0.21423 
0.38091 
0.59528 
0.85732 

1.161J. 
1.5246 
1.9298 
2.3825 
2.8827 
3.4300 
4.0242 
4.6647 
5.3507 
6.0815 
6.8557 
7.6719 
8.5281 
9.4220 
10.351 
11.311 
12.298 
13.307 
14.332 
15.367 
16.403 
17.431 
18.441 
19.421 
20.357 
21.237 
22.044 
22.761 
23.372 
23.859 
24.205 
24.391 
24.403 
24.226 
23.848 
23.259 
22.455 
21.432 
20.194 
18.747 
17.100 
15.267 
13.265 
11.111 

ERROR (14) 

0.0 
7.78198E-04 
3.06702E-03 
6.54602E-03 
1.07422E-02 
1.49994E-02 
1.84326E-02 
1.99890E-02 
1.H4326E-02 
1.23138E-02 
0.0 

-2.03094E-C2 
-5.06281E-02 
-9.31854E-02 
-0.15018 
-0.22418 
-0.31799 
-0.43413 
-0.57556 
-0.74533 
-0.94635 
-1.1818 
-1.4545 
-1.7615 
-2.1237 
-2.5259 
-2.9767 
-3.4780 
-4.0323 
-4.6411 
-5.3058 
-6.0271 
-6.8057 
-7.6416 
-8.5343 
-9.4828 
-10.486 
-11.541 
-12.647 
-13.800 
-14.997 
-16.236 
-17.511 
-18.820 
-20.159 
-21.522 
-22.906 
-24.308 
-25.721 
-27 .144 
-28.571 
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TVPICAL OUTPUT FOR 6-9 VARIABLES 

FPEQ ERRJR(4) ERROR,(b. ERROR(7) ERROR(8) ERROR(9) ERROR(10 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 
2.0000I)E-02 3.68042E-02 3.279 L LE-J2 3. 01971E -02 2.719L2E-02 2.37885E-02 L .99890E-1 
4.00000E-U2 0.14738 0.13132 0.1'2088 0.10884 9.51996E-02 7.9956 LE-I 
6. 00OOOE-02 0.33218 0.29585 0.27225 0.24504 0.21423 0.11982 
B.00OOOE-02 0.59196 0.52689 0.48465 0.43597 0.38091 0.31946 
0.10000 0.92775 0.82510 0.75854 0.68192 0.59528 0.49870 
0.12000 1.3409 1.1914 1.0945 0.983 L4 0.85732 0.71127 
0.140(1) 1.8332 1.6268 1.4934 1.3400 1. .1611 0.97485 
0.16000 2.4066 2.1328 1.9559 L.7531 1.5246 1.2711 
0.18000 3.0636 2.1L07 2.4832 2.2227 1.9298 1.6053 
0.20000 3.8068 3.3623 3.0163 2.7494 2.3825 1.9771 
0.22000 4.6391 4.0895 3.7365 3.3336 2.8827 2.3856 
0.24000 5.5657 4.8946 4.4651 3.9161 3.4300 2.8298 
0.26000 6.5891 5.7798 5.2635 4.6711 4.0242 3.3088 
0.28000 1.7144 6.7478 6.1333 5.4312 4.6647 3.82LO 
0.30000 8.9469 1.8014 7.0759 6.2568 5.3507 4.3650 
0.32000 10.292 8.9437 8.0932 7.1360 b.0815 4.9389 
0.34000 11.157 10.17d 9.1865 8.0751 6.8557 5.5405 
0.36000 13.349 11.501 10.358 9.0139 7.6119 6.1611 
0.38000 15.015 12.936 11.608 10.132 8.5281 6.8159 
0.40000 16.945 14.467 12.936 1l.249 9.4220 7.4834 
0.42000 18.968 16.105 14.351 12.423 10.351 8.1655 
0.44000 21.156 17.853 15.846 L3.652 1l.3li 8.8578 
O.4600i) 23.520 19.715 17.423 14.935 12.298 9.5549 
0.48000 26.073 21.696 19.083 16.268 13.307 10.251 
0.50000 28.831 23.797 20.824 17.647 14.332 10.940 
0.52000 31.810 26.022 22.645 19.067 15.367 11.614 
0.54000 35.026 2t1. 3 73 24.542 20.521 16.403 12.265 
0.56000 3d.499 30.851 26.510 22.001 17.431 12.885 
0.58000 42.250 33.456 28.544 23.498 18.441 13.463 
0.60000 46.301 36.184 30.632 25.000 19.421 13 .990 
0.62001) 50.676 39.030 32.766 26.493 20.357 14.455 
0.64000 55.391 41.986 34.929 27.962 21.237 14.846 
0.66000 60.490 45.040 37.103 29.387 22.044 15.152 
0.68000 6'>.977 48.172 39.261 30.750 22.761 15.361 
0.10000 71.878 51.359 41.393 32.025 23.372 15.462 
0.72000 78.207 54.568 43.45L 33.190 23 .• 859 15.444 
0.14000 84.969 57.759 45.403 34.216 24.205 15.296 
0.76000 92.152 60.881 47.211 35.075 24.391 15.009 
0.78000 99.723 63.874 48.829 35.741 24.403 14.576 
0.80000 107.61 66.667 50.210 36.184 24.226 13.990 
0.82000 115.71 69.179 51.307 36.319 23.848 13.248 
0.8'tOOO 123.85 71.326 52.072 36.303 23.259 12.347 
0.86000 131.78 73.016 52.461 35.938 22.455 11.289 
0.88000 139.18 74.162 52.436 35.270 21.432 10.077 
0.90000 145.66 14.688 51.969 34.292 20.194 8.7149 
0.92000 150.71 74. '>29 '>1.043 33.004 18.747 7.2117 
0.94000 154.06 73.645 49.652 31.414 17.100 5.5166 
0.96000 155.15 72.025 47.807 29.535 15.267 3.8210 
0.98000 153.81 69.684 45.530 27.389 13.265 1.9576 

1.0000 150.00 66.667 42.857 25.000 11.111 0.0 

Fig. 5.4 Typical print-out from OUTPUT statement for 6-9 
variables. 

250 



STEADY-STATE ERROR OF AN ACCELERO'lETER AS A ,FUNCTION OF FREQUENCY AND DAMPING FACTOR 
TYPICAL OUTPUT FOR 10-55 VARIABLES 

FREO 0.0 2.00000E-02 4.00000E-02 6.00000E-02 8.00000E-02 0.10000 0.12000 0.14000 0.16000 

E RRnR (l) 0.0 3.98102E-02 0.15944 0.35947 0.64085 1.0049 1.1t535 1.9888 2.6131t 
ERRORI21 0.0 3.91998E-02 0.15703 0.35400 0.63107 0.98949 1.1t310 1.9576 2.5119 
ERROR 0) 0.0 3.82080E-02 0.15302 0.34492 0.61476 0.96375 1.3934 1.9057 2.5029 
ERROR 141 0.0 3.68042E-02 0.14738 0.33218 0.59196 0.92775 1.3409 1.8332 2.4066 
ERRORI51 0.0 3.50037E-02 0.14015 0.31583 0.56265 0.88152 1.2735 1.7402 2.2831 
ERRORI61 0.0 3.27911E-02 0.13132 0.29585 0.52689 0.82510 1.1914 1.6268 2.1328 
ERROR I 71 0.0 3.01971E-02 O. 12088 0.27225 0.48465 0.75854 1.0945 1.4934 1.9559 
ERROR(8) 0.0 2.71912E-02 0.10884 0.24504 0.43597 0.68192 0.98314 1.3400 1.7531 
ERRORI91 0.0 2.37885E-02 9.51996E-02 0.21423 0.38091 0.59528 0.85732 1.1671 1.52106 
ERROR (l0) 0.0 1.99890E-02 7.99561E-02 0.17982 0.31946 0.49870 0.71727 0.97it85 1.2111 
ERROR Ill) 0.0 1.57776E-02 6.31256E-02 0.14185 0.25169 0.39229 0.56314 0.76364 0.99303 
ERROR I 121 0.0 1.11847E-02 4.46930E-02 0.10028 0.17761 0.27614 0.39516 0.53383 0.69113 
ERROR (13) 0.0 6'.17981 E-03 2.46735E-02 5.51910E-02 9.12900E-02 0.15033 0.21350 0.28581 0.36603 
ERROR I lit) 0.0 7.78198E-01t 3.06702E-03 6.54602E-03 ,1.07lt22E-02 1.49994E-02 1.84326E-02 1.998'iOE-02 1.8lt326E-02 
ERRORCl5) 0.0 -5.06592E-03 -2.01263E-02 -4.55780E-02 -8.19550E-02 -0.12973 -0.18980 -0.26311 -0.35091 
ERROR (161 0.0 -1.12610E-02 -4.49066E-02 -0.10129 -0.18079 -0.28378 -0.41106 -0.56320 -0.14120 
ERRORCl71 0.0 -1.774bOE-02 -'7.11975E-02 -0.16045 -0.28558 -0.44699 -0.64481 -0.87968 -1.1511 
ERRORCl81 0.0 -2.47955E-02 -9.91821E-02 -0.22305 -0.39650 -0.61919 -0.89111 -1.2120 -1.5816 
ERROR Cl9) 0.0 -3.21350E-02 -0.12868 -0. 281l18 -0.51329 -0.80026 -1.1495 -1.5591 -2.0300 
ERROR 120 I 0.0 -3.99475E-'02 -0.15977 -0.35873 -0.t:3596 -0.99013 -1.4195 -1.9223 -2.4961 

fREe 0.18000 0.20000 0.22000 0.24000 0.26000 0.28000 0.30000 0.32000 0.34000 

ERROR (1) 3.3306 4.1441 5.0581 6.0777 7.2084 8.4569 9.8304 11.337 12.988 
ERROR (2) 3.2770 4.0764 4.9740 5.9747 7.0837 8.3072 9.6520 11.126 12.738 
ERROR 0) 3.187'" 3.9638 4.8343, 5.8037 6.8768 8.0590 9.3566 10.776 12.326 
ERRORI41 3.0636 3.8068 4.6397 5.5657 6.5891 7.7144 8.9469 10.292 11.751 
ERROR(51 2.9043 3.6061 4.3910 5.2621 6.2226 7.2762 8.4270 9.6793 11.038 
ERROR (6) 2.7107 3.3623 4.0895 4.8946 5.7798 6.7478 7.8014 8.9437 10.178 
ERROR( 71 2.4832 3.0763 3.7365 4.4651 5.2635 6.1333 7.0759 8.0932 9.1865 
ERROR 181 2.2227 2.7494 3.3336 3.9761 4.6771 5.4372 6.2568 7.1360 8.0151 
ERROR(91 1.9298 2.3825 2.8827 3.4300 4.0242 4.6647 5.3507 6.0815 6.8551 
ERROR ClO) 1.6053 1.9771 2.3856 2.8298 3.3088 3.8210 4.3650 4.9389 5.51t05 
ERROR Ill) 1.2504 1.5346 1.8445 2.1785 2.5349 2.9119 3.3071 3.7180 4.1418 
ERROR (12) 0.86581 1.0565 1.2616 1.4791 1.7010 1.9431 2.1845 2.4286 2.6120 
ERROR I 131 0.45276 0.54440 0.63914 0.73494 0.82953 0.92043 1.0049 1.0802 1.1429 
ERRORI141 1.23138E-02 0.0 -2.03094E-02 -5.0b281E-02 -9.31854E-02 -0.15018 -0.22418 -0.31199 -0.43<U3 
ERRORI151 -0.45436 -0.57500 -0.71442 -0.87425 -1.0565 -1.2630 -1.4951 -1.7568 -2.01t85 
ERRORIl6) -0.94608 -1.1788 -1.4406 -1.7326 -2.0561 -2.4123 -2.8026 -3.2282 -3.6901 
ERROR 1171 -1.4616 -1.8096 -2.1964 -2.6222 -3.0876 -3.5928 -4.1382 -4.1239 -5.3502 
ERRORCl8) -1.9997 -2.4657 -2.9793 -3.5398 -4.1467 -4.7991 -5.4962 -6.2369 -7.0203 
ERRORI19) -2.5589 -3.1451 -3.7868 -4.4822 -5.2295 -6.0264 -6.8709 -7.1606 -8.6931 
ERROR (20 I -3.1383 -3.8462 -4.6166 -5.4463 -6.3320 -7.2700 -8.2569 -9.2888 -10.362 

~ Fig. 5.5 Typical print-out from OUTPUT statement for 10-55 

""" variables. 
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PAGE 

The PAGE card provides a number of options for selecting the format and 
page size for OUTPUT printout. The following parameters which appear on a 
PAGE card can be used to provide logarithmic scaling, contoured and shaded 
printer-plots, merged printer-plots, reduced size pages, and a method for inter­
facing with x-y plotting devices. 

HEIGHT and WIDTH 
XYPLOT 
MERGE 
CONTOR 
SHADE 
NTAB and NPLOT 
GROUP 
LOG 
SYMBOL 

As in the use of the LABEL statement, a PAGE card which is placed before a 
group of OUTPUT statements applies to them· all. PAGE statements which are 
placed after an OUTPUT statement refer only to the statement they follow. If 
instructions are not specified on a PAGE statement, the standard format is always 
automatically used. 

HEIGHT and WIDTH. These variables are used to control page height and 
width for both printer and x-y plotter output. If the HEIGHT variable is not spe­
cified, the standard 60 lines per page is used for printer-plot output. For x-y plotter 
output, the default option is either 8 in. or 8 cm depending on the local plotter 
system. The WIDTH variable can be used to reduce the size from the standard 
width of 132 characters to the minimum width of 52 characters. For x-y plotter 
output, the WIDTH variable refers to the width of the plot. The standard width 
is 10 in. or 10 cm. An example of specifying a printer-plot 120 characters wide and 
50 lines high is shown below. 

PAGE HEIGHT = 50, WIDTH = 120 

XYPLOT. For computer installations where a plotting subroutine has been 
incorporated into the CSMP III System, the XYPLOT symbol can be used to 
initiate off-line x-y plotting. Because of the various makes and models of digital 
plotters, each computer facility needs to develop its own plotting subroutine.(1,2) 
When the XYPLOT symbol is listed on the PAGE card, the variables contained in 
the OUTPUT statement are printed by an x-y plotter rather than a line printer. 
The first variable listed in the OUTPUT statement is plotted on the abscissa, and 
all the remaining variables are plotted on the ordinate. LABEL statements are 
automatically transferred to the plotting routines. If the scale is not specified, 
automatic scaling is used. An example of the method used to specify the scale is 
shown by the following statements. 

OUTPUT X(4.0, 12.0), Y(O.O, 25.0) 
PAGE XYPLOT 
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For this example, the variable X is plotted on the abscissa with a scale ranging 
from 4.0 to 12.0, and the variable Y is plotted on the ordinate with the scale of 0.0 
to 25.0. 

If automatic scaling is desired, the following statements should be used. 

OUTPUT X, Y, Z 
PAGE XYPLOT 

The above statements will plot X on the abscissa versus the variables Y and 
Z on the ordinate. Note that the OUTPUT statement used with XYPLOT allows 
complete flexibility in the choice of the independent variable. 

The PREPARE instruction described in Chap. 3 can also be used to produce 
a data set for off-line plotting. 

MERGE. This symbol is used to merge printer-plots from several runs to 
one plot for OUTPUT statements containing only one variable. As an example, 
consider the problem of plotting on one graph the dynamic response of a spring­
mass-damper system for three values of damping. 

Example 5.2 

Fig. 5.6 shows a linear spring-mass-damper system with the given parameters and 
initial conditions. The equation of motion is given by Eq. (5.2). 

mx + ex + kx =/ (5.2) 

f = 200.0 newtons (N) 
m = 36.0 kilograms (kg) 
k = 1000 newton/meter (N/m) 
c = 35, 150, and 500 N-sec/m 
x(O) = x(O) = 0 

m 

Fig. 5.6 Linear spring-mass-damper system. 

"/ 

The program of Fig. 5.7 uses a standard PARAMETER statement to make three 
runs for specific values of e. The MERGE parameter is used to combine the time-history 
of displacement for all three runs in one printer-plot. 

Fig. 5.8 shows the resulting OUTPUT. 
An alternate form of print-plot is available by specifying the CONTOR and SHADE 

parameters. They can effectively illustrate the transient response of distributed systems. 
For example, the transient and spatial temperature distribution in one-dimensional heat 
flow can be illustrated by using the CONTOR or SHADE parameter. 
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* CSMP III PROGRAM TO SIMULATE SPINT-MASS-OAMPER SYSTEM AND TO 
* ILL~STRATE THE USE OF THE MERGE STATEMENT 

* 

CONSTANT F = 200.0, M = 36.0, K = 1000.0 
PARAMETER C = (35.0, 150.0, 500.0) 

XOC = ACCELERATION 

XDD = (F - C*XD - K*X)/M 
XD = INTGRL(O.O,XDD) 
X = INTGRL(O.O,XD) 

OUTPUT X 
PAGE MERGE 

XD = VElOC I TY 

TIMER FINTIM = 1.96, CUTDEL 0.04 
END 
STOP 
END JOe 

Fig. 5.7 Program to simulate spring-mass-damper system and to 
illustrate MERGE output. 

Ch. 5 

CaNTOR. This parameter provides a contoured form of a printer-plot. 
Scaling for the plot is automatic when the following statement is used. 

PAGE CONTOR 

A second form of the CaNTOR parameter can be used to specify the scale. 
In the following statement, the scaled range of the plot is between 3.0 and 45.0. 

PAGE CONTOR = (3.0,45.0) 

Example 5.3 

The problem of simulating the transient-temperature distribution in a rod illustrates 
printer-plots using both CONTOR and SHADE parameters. The copper rod shown in 
Fig. 5.9 is insulated on the outside surface to prevent heat flow in the radial direction. The 
initial temperature of the rod is 3000 K and the left-hand end is connected to an infi­
nite heat source which maintains this end at a temperature of 300oK. At the start of the 
simulation, the right-hand end is brought in contact with a surface having a constant 
temperature of 500oK. As in Example 3.3, the copper rod is divided into 20 equal-size 
elements. Assuming a constant temperature in each element, the transient temperature of 
the ith element is given by Eq. (5.3). 

d~~i) = Q[T(i - 1) - 2.0*T(i) + T(i + 1)] i = 1, 2, ... ,20 (5.3) 

where Q = k/(pcL2) 

P = density of copper, 
8890 kg/m3 

c = specific heat, 
398 joule/kg-OK 

k = thermal conductivity, 
386 watt/m-oK· 

L = length of element, 
0.02m 

Symbols used in computer program 

Q 
RO 

C 

K 

L 

Figure 5.10 shows the program for solving the set of 20 equations. 



~ 

=: 

PARAMETER 
C 

TIME 
0.0 
4.00000E-02 
8.00000E-02 
0.12000 
0.16000 
0.20000 
0.24000 
0.28000 
0.32000 
0.36000 
0.40000 
0.44000 
0.48000 
0.52000 
0.56000 
0.60000 
0.64000 
0.68000 
0.72000 
0.76000 
O.SOOOO 
0.84000 
0.88000 
0.92000 
0.96000 
1.0000 
1~0400 
1.0800 
1.1200 
1.1600 
1.2000 
1.2400 
1.2800 
1.3200 
1.3600 
1.4000 
1.4400 
1.4800 
1.5200 
1.5600 
1.6000 
1.6400 
1.6800 
1.7200 
1.7600 
1.8000 
1.8400 
1.8800 
1.9200 
1.9600 

PUN 1 
35.000 

RUN 
0.0 
4.37119E-03 
1.70718E-02 
3.72326E-07 
6.36933E-02 
9.50645'=-02 
0.12980 
0.1662') 
0.20278 
0.23780 
0.26984 
0.29763 
0.32011 
0.33652 
0.34638 
0.34950 
0.34601 
0.33631 
0.32101 
0.30114 
0.27759 
0.25156 
0.22428 
0.19700 
0.11088 
Ci~14"'02 
0.12638 
0.10972 
9.76132E-02 
9.04115E-02 
8.825,)5E-02 
9.10290E-02 
9.84793E-02 
0.10996 
0.12496 
0.14265 
0.16215 
0.18255 
0.20293 
0.22241 
0.24011 
0.25551 
0.267R6 
0.27678 
0.28203 
0.28352 
0.28132 
0.27568 
0.26696 
0.25567 

RUN 2 
150.00 

0.0 
0.0 
0.0 

RUN 3 
500.00 

'X'= RU~ 
'."= RUN 
,+"= RUN 

3 
2 
1 

0.4000 
0.4000 
0.4000 

X------------------I------------------I------------------1------------------1 X I r 1 I 
I X. r , r I I X.+ I t r 1 
t X.+ I I T 
I X. +1 r , I 
I X • + , , 1 

X I * + 1 , 1 X 1 * 1+ I , 
I XI * 1 + 1 
I------------------IX----------------*I------------+-----1------------------1 
I IX 1 * + , 

, X * 1 + I 
J X * I + I 
1 X * J + 1 
1 X * 1 + 1 
1 X * I + 1 
1 X * I + 1 
1 X * I + t 

I I X 1 * + I 
I------------------I-----------X------I------*-------+---!------------------I 
! , X 1 * + I I 
1 , X I * T 

J X +T * Y 
I +X I * I 
1 + X 1* I 
T + X * , 
I + X *1 1 

+t X *' 1 
+ , x* TIl 

J---------------+--I---------------X*-I------------------1------------------1 
1 +T XI I I 

+ I *X I I 
I + *x J I 
I + XII 
I + X I 1 
I • X I T 
I .*x 1 1 
1 XI+ , , , XI • I I 

I------------------I-----------------XI-------+----------1------------------1 
1 1 x* + 1 1 
, 1 X* + I 1 
r I X* + , 1 
I r x* + I 1 
I I X* • I J 
I I XI* + I 1 
I I X 1* + 1 1 
J I x* + 1 I 

, x*. 1 J 

Fig.5.8 MERGE output from program of Fig. 5.7. 

RUN 2 
0.0 
4.19209E-03 
1.,)7270~-07 

3.30069E-02 
5.44452F-02 
1.85291E-02 
0.10387 
0.12924 
0.15360 
0.17612 
0.19615 
0.21327 
0.22721 
0.23791 
0.24541 
0.24991 
0.25169 
0.25108 
0.24849 
0.24431 
0.23897 
0.23286 
0.22635 
0.21976 
0.21338 
0.20143 
0.20209 
0.19749 
0.1 cB69 
0.19074 
0.18861 
0.lIH2R 
0.18667 
0.18670 
0.18126 
0.18826 
0.IR959 
0.19113 
0.19280 
0.19451 
0.19618 
0.19715 
0.19917 
0.20040 
0.20143 
0.20224 
0.20284 
0.20323 
0.21)341 
0.20346 

Rut; 3 
0.0 
3. HOd7E-03 
1.250S0E-C2 
Z.392b8E-02 
3.64596E-02 
4.9206bE-02 
6. 16432E-02 
1.347S3E-C2 
8.45687E-02 
9.48529E-02 
0.10433 
0.11301 
C.120'ii5 
0.12819 
1).13418 
0.14078 
0.14624 
0.15119 
0.15569 
0.15918 
0.16349 
0.16686 
O.169'ii2 
0.17270 
0.17522 
0.11751 
0.17959 
0.18147 
0.18318 
0.18474 
0.18615 
0.18742 
0.18859 
0.18964 
0.19060 
0.19147 
0.19225 
0.19291 
0.19362 
0.19421 
0.19414 
0.19523 
0.19561 
0.19601 
0.19643 
0.19616 
0.19706 
0.19733 
0.19158 
0.19180 
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I 

Insulated sur~ace, 1.... T(i) 

T(i - l) 

TU + 1) 

B 
1-+--------0.4 m-----~ 

ith element 
L = 0.02 m 

Fig. 5.9 Insulated copper rod. 

Note in the CONTOR printer-plot of Fig. 5.11 there are 11 variable groups each 
covering a specific range of temperatures. 

The following listing shows the symbols for each range: 

Symbols Percent range Temperature values 

L less than 2.5 % 300 to 305 OK 
1 7.5 % to 12.5 % 315 to 325 OK 
2 17.5% to 22.5% 335 to 345 OK 
3 27.5 % to 32.5 % 355 to 365 OK 
4 37.5 % to 42.5 % 375 to 385 OK 
5 47.5 % to 52.5 % 395 to 405 OK 
6 57.5 % to 62.5 % 415 to 425 OK 
7 67.5% to 72.5% 435 to 445 OK 
8 77.5% to 82.5% 455 to 465 OK 
9 87.5% to 92.5% 475 to 485 OK 
H more than 97.5 % 495 to 500 OK 

The percent numbers in the above listing are valid for all CONTOR plots while the 
temperature values apply only to Fig. 5.11. 

SHADE. This parameter provides a shaded print-plot and is used exactly 
the same as the CONTOR parameter. Scaling is automatic when the following 
statement is used. 

PAGE SHADE 

The scale range of -5.0 to 4.5 is specified by the following form. 

PAGE SHADE = (-5.0, 4.5) 

The output from the SHADE parameter of the program of Fig. 5.10 is shown 
in Fig. 5.12. 

Note that there are ten levels of intensity. Variables having values near the 
high side of the scale are represented by dark plotting. Variables in the lowest 10% 
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I liBEL CS,.o1P III pqUGRAM Te SIMULATI- THE TRI\NSIENT H~peRATUP.E 

tAAEl DISTRIBUTlUN or A CUPPeR Rl'D 
INITIAL 
CO~ST~NT RO = db9u.J, C = 398.0, K = 1d6.0, L = 0.02, 
HeFf = 300.0, P~IGHT = ':iOO.C 
FIXED I 
Q = K/(RO*C*L*L) 
TA8lE TI(1-2U) = iU*300.0 

DYNAMIC 
N05flR T 

P)(1) = Q*(TLEFT - 2.0*T(1) + TIZII 
Dr) 1 1 = 2,19 

1 Tf)III = Q*(TII-ll - Z.O*TIII + TII+1) 
TO(ZOI = Q*ITI1Y) - 2.U*T(201 + TRIGHT) 

SCIH 
T = l"HGRl(Tl. ID, 20) 
nUT PUT f (1-20 I 

LABH EXAMPll: 1)1- A CONTeR PRINTER-PLOT 
p ~G F C(J\lTiJR 
OUTPLJT Tll-2\)) 

LA~EL ~XI\MPl[ or A SHAUl- PPIN1[R-PL~T 
PAGE SI-AOE.: 
TIMF~ FINTIM = 450.0. OLJTUeL = 10.0 

ENf'J 
STI)P 
EI\DJ(J~ 

Fig. 5.10 Program to simulate the temperature of copper rod. 

of the scale range are represented by blanks. At each 10 % increase in magnitude 
of the output variables, the printing becomes one shade darker. 

The remaining five PAGE parameters (NTAB, NPLOT, GROUP, LOG, 
and SYMBOL) are only applicable to printer-plot output. This occurs when OUT­
PUT statements contain less than six variables. 

NTAB. This parameter specifies the number of variables that will be both 
print-plotted and tabulated. When NTAB is used on the PAGE card as shown 
below, 

PAGE NTAB = 2 

only the first two variables in the OUTPUT statement will be both print-plotted 
and tabulated. The remaining variables on the OUTPUT statement will only be 
print-plotted. 

NPLOT. This parameter specifies the number of variables that will be both 
print-plotted and tabulated. All remaining variables listed on the OUTPUT 
statement will only be tabulated. 

GROUP. This parameter specifies the number of variables that are to be 
print-plotted with the same scale. The common scale is determined by the entire 
group of variables. The following statement specifies that the first three variables 
listed on the OUTPUT card will be print-plotted with the same scale. 

PAGE GROUP = 3 

LOG. This parameter specifies that number of variables on the OUTPUT 
card that are to be print-plotted with a logarithmic ordinate scale. 

SYMBOL. This parameter allows the user to specify the identification sym­
bols used in printer-plots. To illustrate the use of several PAGE parameters, con­
sider the output from the following statements used in the program of Fig. 5.2. 



CSMP III PRCGRA~ TO SI~LLATE TrE TRANSIENT TFYPERATURE 
OISTRIBUTION OF A COPPER RO~ 
EXAMPLE OF A CONTOP PRl~TER-PLOT 

CUNTOUR PReSENTATION F~R Ttl) SCALE VALUES 'L'= 300. 
, l' = 320. 
Ib l = 420. 

TIME 
0.0 
10.000 
20.000 
30.000 
4 Il. 000 
50. Oil\) 
00.000 
10.001l 
80.000 
90.000 
100.00 
110.00 
120.JO 
130 .00 
140.00 
l~O.JO 
IbO .00 
170.00 
180.00 
190.00 
21l0.00 
210.00 
220.00 
230.JO 
240.00 
250. 110 
260.00 
2. 70.00 
280.VO 
290.00 
3,00. IlO 
310.00 
320.JJ 
330.00 
340.00 
350.00 
360.00 
370.01l 
380.00 
390.01l 
400.00 
410.00 
420.JO 
4jO.JO 
440.00 
450.00 

"2' = 340. '3' = 360. '4'= 380. '5' = 400. 
'7' = 440. '8' = 460. '9'= 4flO. 'H"= 500. 

1 1 1 1 1 1 1 
2 3 4 5 6 7 9 9 0 2 it 5 6 7 8 9 

lLLlLLLLllLLLllllLLLllLLllLlLlllLLLlllLLLLLLLLLLLlLlLLLlLLlLLllLLLLLLLLLLLLLLLLllLLLLLlLlLlLLllLLLlLlLLLLLlllllllt 
LlLLLllLllLLLLLllllllLLlLllllLllllllllLlLlLLLLLlLLLLlllLLLLLLLlLLLLlLLlLLLLLLLLLLLlLlLL III 22 3 4 ~ I 

lLLLLLLLLLLlLlllLLLLLLLLLLLLLLLlLLLLLLlLLLLlLLLLLllLLLLLlLLLLLLlLLlLLLlLlLL 11111 222 33 44 55 6b l' 
lLLLLLlLLLLLLLLlLLLLLLLLLLLLlLlLLlLLLLLLlLLlLLLLLLLLLLLLLlLlLLLLl 111111 2222 333 44 55 66 17 
LLLlLlLLLlLlLLllLLlLLLLlLllLLLLLLlLLLLlLLLLlLLULLlLLLlLL 1111111 2222 333 44 555 60 71 91 
LLLLlLLLLLLlLLLLLlLLLLLLLLLlLLLLLLLlLLLLLLLLLLlLLl 11111111 2222 3333 44 555 66 11 e: 
LLLLLLLLLlLlLLLllLLlllllllLLLlLLLLLLLLLLLlL 111111111 22222 3333 444 555 666 17 88 
LlLLLLLLLLLLlLLlLLLLLLLLLLLLLLLLlLLLL 111111111 22222 3333 444 ~55 66 71 08 
lLLLLllLLLLLlLLlLLLLLlLLLLLLlLL 1111111111 22222 3333 4444 555 666 711 8iS 
lLLLLLLLLLLlLLLLLLLLLLlLlL 11111111111 222222 33333 4444 5555 666 777 8do 
LLLlLLLLLLllLLLlLLllL 11111111111 2222222 33333 4444 555 66~ 771 ad~ 
lLLlLlLLlLLLlLLLL 11111111111 2222222 33333 4444 5555 6666 717 dd8 
lLLLLl,lLllLLL 111111111111 2222222 333333 44444 5555 6666 777 d88 
lLlLLlLLLlL 111111111111 2222222 333333 4444 5555 666~ 7777 3d8 
LLLLLLLL 111111111111 22222222 333333 44444 5555 6666 7777 3ada '1' 
llLlLlL 1111111111111 22222222 333333 44444 5555 6666 777 Bdda 9' 

g' LLLLL 111111111111 22222222 333333 44444 55555 6666 7777 898a 
LLLL 1111111111111 22222222 3333333 44444 55555 6666 7777 88dd ~9' 

S9' 
99' 
99' 

LLL 111111111111 222222222 333333 44444 55555 6666 7777 BAd 
LL 111111111111 22222222 3333333 444444 55555 66666 7777 8883 
Ll 111111111111 22222222 333333 444444 55555 66666 7777 88RS 
L 111111111111 222222272 3333333 44444 55555 6666 7777 8888 
l 11111111111 22222222 333333 44444 55555 6666 7777 8888 
l 11111111111 222222?22 3333333 444444 55555 66666 77711 38888 

11111111111 22222222 3333333 444444 55555 66666 7777 8888 
1111111111 22222222 3333333 444444 55555 66666 77777 8888 

1111l11i11 22222222 3333333 444444 55555 66666 7777 88888 
111111111 22222222 3333333 444444 555555 66666 77777 8888 

111111111 22222222 3333333 444444 555555 666666 77777 38888 
111111111 22222222 3333333 4444444 55555 66666 77777 88888 

111111111 2222222 3333333 444444 555555 666666 77777 88888 
111111111 22222222 3333333 444444 555555 66666 77777 88888 
11111111 22222222 3333333 444444 55555 666666 17777 88888 

111111111 2222222 3333333 4444444 555555 666666 777777 98888 
11111111 22222222 3333333 444444 555555 666666 77777 88838 
11111111 2222222 33~3333 4444444 555555 666666 77777 888888 
11111111 22222222 3333333 444444 555555 666666 777777 g8J8d 

11111111 2222222 3333333 444444 555555 66666 77777 83888 
11111111 22222222 3333333 4444444 555555 666666 77777 88888 
11111111 2222212 3333333 444444 555555 666666 777777 888888 
1111111 2222222 3333333 444444 555555 666666 777777 888888 
1111111 22~2222 3333333 4444444 555555 666666 77777 88888 
1111111 2222222 3333333 444444 555555 666t66 777777 88888 
1111111 2222222 3333333 4444444 555555 660666 777777 88888 

11111111 2222222 333333 44444~4 555555 666666 777777 888888 
1111111 2222222 3333333 444444 555555 666666 77777 8d8888 

Fi2:. 5.11 Example of CONTOR printer-plot output. 

;'99' 
~'19' 
S'}C; 
-;9C;' 
.,99' 

,-;<;c;' 
'N99' 
Si99 
h99 
h99 

99':;SC; 
99j99 
<;9,0;'1 
C;9~9C; 

':i9~9C; 

,'I,:;"C; 
'1<N~99 

~C;9(jS9 

999<:.99 
')'i'h9 
'7S9,S 
999-19 
,:/<;9,9 
999~9 

'19h9 
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OUTPUT ERROR(8), ERROR(9), ERROR(12), ERROR(15) 
PAGE NTAB = 2, GROUP = 4, SYMBOL = (A, B, C, D) 

The output for the above statements is shown in Fig. 5.13. 

Ch. 5 

Note that the NTAB parameter provides that only the first two variables 
have tabulated output. The GROUP parameter provides that all four variables 
are plotted with the same ordinate scale. The SYMBOL parameter specifies that 
the letters A, B, C, and D are used to identify the printer plots of the variables 
ERROR(8), ERROR(9), ERROR(l2), and ERROR(l5), respectively. 

CALL PRINT and CALL OUTPUT 

Both the PRINT and OUTPUT instructions can be invoked at any point in 
the program by using the CALL statement. These output statements are normally 
invoked when specified conditions occur, where the IF instruction is usually used 
to branch to the CALL statement. An example of using the CALL OUTPUT 
statement is shown below. 

NOSORT 
IF(X.GT.6.0) CALL OUTPUT 

Note that both the CALL PRINT and CALL OUTPUT statements must be used 
in nosort or procedure sections. The use of the CALL instruction assumes that 
the appropriate PRINT or OUTPUT statement is defined in the program. If either 
of the CALL instructions are invoked at a normal PRDEL or OUTDEL interval, 
the duplicate printing is suppressed. 

As in Sj360 CSMP, the FORTRAN WRITE statement in nosort or procedure 
sections is allowed. In some circumstances, this type output may be desirable. 

RANGE 

This instruction is used to list the maximum and minimum values of selected 
variables and the time of occurrence. Its function in CSMP III is exactly the same 
as in Sj360 CSMP. The only difference is that the maximum number of variables 
allowed in a RANGE statement is 110. An example of a valid instruction is shown 
below. 

RANGE G, H,'Xl, Yl, T, COST, Q, ... 
L, J, R 

Subscripted variables should not be used in a RANGE statement. 

Functions 

In addition to the functions available in Sj360 CSMP, CSMP III provides 
the user with additional function blocks. This section briefly describes some of the 
more important functions available only in CSMP III. 



FREQ ERRDR(8) 
0.0 0.0 
2.00000E-02 2.71912E-02 
4.00000E-02 O.10H84 
6.00000E-02 0.24504 
8.00000E-02 0.43597 
0.10000 0.68192 
0.ll000 0.98314 
0.14000 1.3400 
0.16000 1.7531 
0.18000 2.2227 
0.20000 2.7494 
0.22000 3.3336 
0.24000 3.9761 
0.26000 4.6771 
0.28000 5.4372 
0.30000 6.2568 
0.32000 7.1360 
0.34000 8.0751 
0.36000 9.0739 
0.38000 10.132 
0.40000 H.249 
0.42000 12.423 
0.44000 13.652 
0.46000 14.935 
0.48000 16.268 
0.50000 17.647 
0.52000 19.067 
0.54000 20.521 
0.56000 22.001 
0.58000 23.498 
0.60000 25.000 
0.62000 26.493 
0.64000 27.962 
0.66000 29.387 
0.68000 30.750 
0.70000 32.025 
0.72000 33.190 
0.74000 34.216 
0.16000 35.015 
0.78000 35.141 
0.80000 36.184 
0.82000 36.379 
0.84000 36.303 
0.86000 35.938 

~ 
0.88000 35.270 
0.90000 34.292 .... 0.92000 33.004 
0.94000 31.414 
0.96000 29.535 
0.98000 27.389 

1.0000 25.000 

-40.00 
-40.00 
-40.00 

'C'=ERROR(2) 
'8 t =ERROR(9J 
'A'=ERROR(8' 

40.00 
40.00 
40.00 

1-------1-------1-------1-------1-------0-------1-------1-------1-------1-------1 
1 1 I 1 I 0 1 I I 1 I 
I I I I I 0 I I I 1 I 
1 I I I I 0 I I I I I 
I I 1 1 I D I I I I I 
1-------1-------1-------1-------1-------08------1-------1-------1-------1-------1 
I I I 1 1 DB I I I I 1 
1 1 1 1 1 DC 1 1 I 1 1 
I I I I 1 OCB I 1 I I I 
I I I I I DC 8 I 1 I I I 
I-------I-------I-------I-------I------OIC8A----I-------1-------1-------1-------1 
I 1 1 I I D1C 8 I I I I I 
I 1 I 1 I DIC BA I I I I I 
I I 1 1 1 0 1 C 8A 1 1 I I I 
I 1 I I I 01 C 8 1 I 1 1 I 
l-------I-------I-------I-------I-----0-I-C--8A-l-------1-------1-------1-------1 
I 1 1 1 1 0 I C BAI I 1 I I 
1 1 1 1 I 0 I C BA I I I I 
I 1 1 I I 0 1 C BA I I I I 
1 I I 1 I 0 I C I BA I I I 1 
I-------I-------I-------I-------I----O--I--C----I-BA----1-------1-------1-------1 
I I I 1 10 I C IB A I I I I 
I I 1 1 10 I C I B AI I I I 
1 I 1 I 1 0 I C I B AliI I 
I 1 1 I 10 I C I BA I I I 
l-------1-------I-------I-------1-0-----I---C---l-----B-I-A-----I-------I-------I 
1 I I I 10 I C I BA I I I 
I 1 1 I 10 I C I I B A I I 1 
I 1 I I 0 I C I 16 AI I I 
I I I I 01 I C liB A I I 
I-------I-------I-------1-----0-1-------I---C---l-------I---B---IA------I-------I 
I I I 1 01 1 C 1 I B I A 1 I 
1 1 I 101 IC 1 I Bl A I I 
I I I 101 I C I I BI AI I 
I I I I 0 1 I C 1 I BI AI I 
l-------1-------1-------10------I-------I-C-----I-------I-------8-------A-------I 
I 1 I 0 1 IC I I B I A I 
I I I 01 I C I I B I A I 
I I I 0 I I CI 1 I IB 1 A I 
I 1 1 0 1 I CI I 1 IB I A I 
I-------I-------I---D---I-------I----C--I-------I-------I-------IB------I----A--I 
I I ID I I C I I I B I A I 
I I 10 1 1 C I liB I A I 
I I 0 I I C I I I Bl I A I 
I 1 01 I C I I I BI I A I 
l-------I----O--I-------I------CI-------I-------I-------I---B---I-------I--A----I 
1 1 0 I 1 C I 1 lIB I IA 1 
1 I 0 1 I C I 1 I IB I A I 
I 10 1 I C I I I BI I A I I 
I 0 1 IC I I I B I I A I I 
I-----O-I-------I------CI-------I-------I-------I--B----I-------IA------I-------I 

Fig. 5.13 Printer-plot to illustrate the use of NTAB, GROUP, 
and SYMBOL. 

ERROR(9) 
0.0 
l.31885E-02 
9.51996E-02 
0.21423 
0.38091 
0.59528 
0.85732 

1.1671 
1.5246 
1.9298 
2.3825 
2.8827 
3.4.300 
4.0242 
4.6647 
5.3501 
6.0815 
6.8551 
7.6719 
B.5281 
9.4220 
10.351 
11.311 
12.298 
1.3.307 
14.332 
15.367 
16.403 
17.431 
18.441 
19.421 
20.357 
21.237 
22.044 
22.761 
23.372 
23.859 
24.205 
24.391 
24.403 
24.226 
23.848 
23.259 
22.455 
21.432 
20.194 
18.741 
11.100 
15.267 
13.265 
11.111 
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Arbitrary Function Generators 

The AFGEN and NLFGEN function generators used in S/360 CSMP are 
also available in CSMP III. There are two additional arbitrary function generators 
available for CSMP III users, FUNGEN and TWOVAR. 

FUNGEN 

This arbitrary-function generator allows the user to choose the degree of 
interpolation. A typical statement is shown below. 

where 

Y = FUNGEN(ABC, N, X) 

Y = dependent variable (output) 

ABC = function name, it is defined on a FUNCTION card 

N = degree of interpolation, may be 1, 2, 3, 4, or 5. N must be an 
integer constant or integer variable. 

X = independent variable (input) 

When N = 1, FUNGEN is identical to AFGEN; and when N = 2, 
FUNGEN uses second-degree interpolation which is the same as NLFGEN. 

CALL FGLOAD 

In addition to specifying x-y data in a FUNCTION statement as illustrated 
in Example 2.4, a CALL FGLOAD instruction using SUbscripted variables can be 
used to load the data. A typical set of statements follows. 

(

independent variables 

(
dependent variables 

INITIAL 
STORAGE X(26), Y(26) This statement must be used to specify 
SYSTEM NPOINT = 26 the number of data points. 

NOSORT '} 
: generation of the values of X(i) and Y(i) 

CALL FGLOAD(ABC, X, Y, 26) 
~ '-- dependent variables 

independent variables 

In the above example, 26 pairs of subscripted variables are read in or gen­
erated in the Initial segment. This data is then entered into the function ABC by 
the CALL FGLOAD instruction. The values of the independent variables X 
must be monitonically increasing and single-valued. A typical set of instruction 
for using the data entered by the CALL FGLOAD statement is shown below. 

COST = AFGEN, (ABC, UNITS) 
FUNCTION ABC 
~ dummy statement to instruct the CSMP translator 

that the name ABC is an arbitrary function 
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This function loading capability is useful when the x-y relationship results 
from complex calculations. Computer time can be saved by performing the calcu­
lations only once in the Initial segment and then using an arbitrary function gen­
erator to return the values in the Dynamic segment. 

TWOVAR 

This arbitrary function generator can be used for functions of the form 
Z = F(X, Y). An example of this statement is shown below. 

where 

Z = TWOV AR(ABC, Y, X) 

Z = dependent variable 

ABC = function name 

X & Y = independent variables 

A graphical representation of Z as a function of X and Y is given by Fig. 5.14. 

Fig. 5.14 Functional relationship between X, Y, and Z. 
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Note in Fig. 5.14 that the three-dimensional surface is represented by four 
lines each having a constant value of X. The functional relationship of Y and Z 
for constant values of X is the format used to specify the function Z = F(X, Y). 
Using the function name ABC, the following statements can be used to define the 
functional relationship shown in Fig. 5.14. 

Value of l' / (Y, Z) Pairs of data 

FUNCTION ABC, 0.0 = (0.0, 4.0), (0.5, 3.0), (1.5, 2.0), (2.5, 1.7), ... 
(3.5, 1.7), (4.5, 2.0) 

FUNCTION ABC, 1.0 = (0.0, 3.5), (1.0, 2.8), (2.0, 1.9), (3.0, 1.5), ... 
(4.5, 1.8) 

FUNCTION ABC, 2.0 = (0.0, 3.0), (1.0, 2.3), (2.0, 1.8), (3.2, 1.6), ... 
(3.8, 1.6). (4.5, 1.6) 

FUNCTION ABC, 3.5 = (0.0, 2.2), (1.0, 1.2), (2.0,0.7),(2.8,0.75), ... 
(3.5, 0.9), (4.0, 1.05), (4.5, 1.2) 

Each FUNCTION statement contains the pairs of (Y, Z) values for a constant 
value of X. The cards must be arranged such that the values of X be monoton­
ically increasing in each FUNCTION statement. If the TWOV AR function should 
have to extrapolate for values of either X or Y outside the specified range, a 
diagnostic message will appear and computation will proceed. 

CALL TVLOAD 

Data for the TWOV AR function generator can be loaded using the subrou­
tine TVLOAD. Its use is similar to FGLOAD, except TVLOAD must be called 
to load the data for each family of curves having a constant value of X. An 
example of loading the data contained in Fig. 5.14 for the curve X = 0 is given 
by the following instructions. 

INITIAL 
STORAGE Y(6), Z(6) 
SYSTEM NPOINT = 24, NFUN = 6 

total number £-z) (number of function 
point pairs. 

NOSORT 
TABLE Y(I-6) = 0.0, 0.5, 1.5,2.5, 3.5,4.5 
TABLE Z(1-6) = 4.0, 3.0,2.0, 1.7, 1.7,2.0 

Function~~~~~~aAD(AwBC /' Y,Z, 6, 1,0.0) 

Independent variable ~ 
Dependent variable 
Number of (y-z) pairs 
The curve number (1st curve) 
Value of X for pairs of (y-z) data 

curves plus two. 
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The CALL TVLOAD statement is used three more times to load the y-z data for 
the curves X = 1.0, X = 2.0, and X = 3.5. 

An example of the second CALL TVLOAD statement is shown below. 

CALL TVLOAD(ABC, Y, Z, 5,2,1.0) 

The value of X must be monotonically increasing for the successive CALL 
TVLOAD instructions. The range of Y should be the same for each call instruction 
and must be monotonically increasing. 

A typical set of instructions for using the TWOV AR arbitrary function which 
is loaded by the subroutine TV LOAD is shown below. 

SLOPE 

Q = TWOVAR(ABC, R, S) 
FUNCTION ABC } 
FUNCTION ABC - -Two dummy FUNCTION statements 

are required. 

This function is used to calculate the slope of a function specified by data 
points in a FUNCTION statement. It is not the time derivative as given by the 
DERIV function. The standard form is given below. 

Y = SLOPE(ABC, N, X) 

where Y = the slope of the function ABC at X. 

Y _ df(X) 
- dX 

ABC = function name containing the x-y data. The data may also be loaded 
by the CALL FGLOAD statement. 

N = an integer constant or variable giving the degree of the polynomial 
that is used to fit the data. The slope is computed from a poly­
nomial curve fit. N may be 1,2, or 3. 

Example 3.12 in Chap. 3 illustrates the use of a macro to handle a general 
transfer function. CSMP III has a function block for this purpose. 

TRANSF 

Consider the following general block diagram written in Laplace transform 
notation. 

The output for the above block can be obtained by using the following state­
ment. 

C = TRANSF(n, B, m, A, R) 
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where n & m = integers giving the order of the denominator and numera­
tor of the transfer function, respectively 

B & A = subscripted variables defining the transfer function of the 
denominator and numerator, respectively 

R = input 

The following statements should be used to declare A and B as subscripted 
variables and to assign values to A(i) and B(i). 

STORAGE A(m + 1), B(n + 1) 
TABLE A(1 - (m + 1)) = ah a2, a3, ... , am+l 

TABLE B(1 - (n + 1)) = bh b2 , b3, ••• , bn+1 

Consider the example of simulating the following block diagram by the use 
of the TRANSF function. 

R(s) C(s) 
--+ 

S2 + 5s2 + 11.2 
--+ 

1.1s4 + 4s3 + 7s2 + 2s + 0.5 ret) = 12.0 

The program for determining the response is shown below. 

STORAGE A(3), B(5) 
TABLE A(1 - 3) = 5.0, 1.0, 11.2 
TABLE B(1 - 5) = 2.0, 7.0, 4.0, 1.1,0.5 
C = TRANSF (4, B, 2, A, 12.0) 
PRINT C 
TIMER FINTIM = 4.0, PRDEL = 0.08 
END 
STOP 
ENDJOB 

Control Statements 

Additional control capabilities are available in CSMP III. They include 
branching instructions, integration techniques, and double-precision calculations. 
This section describes the additional control capabilities as well as the changes in 
control statements. 

END CONTINUE 

This statement is used in CSMP III as the CONTINUE instruction is used 
in S/360 CSMP. It allows a run to be interrupted so that data or control statements 
can be changed during the simulation. A detailed explanation of the CSMP CON­
TINUE statement is contained in Chap. 3 in the section on translation control 
statements. 
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INPUT and ENDINPUT 

These labels are used to identify the set of cards containing data to be entered 
into the program by the FORTRAN READ(5, XYZ) instruction. The INPUT 
card must immediately follow the END statement. All data cards must be con­
tained between INPUT and END INPUT. The END INPUT label must be punched 
in card columns 1-8. 

END 
INPUT 

: } data cards 

ENDINPUT 
STOP 
ENDJOB 

In S/360 CSMP, the DATA and ENDDATA labels are used in place of IN­
PUT and END INPUT. This is described in Chap. 3 in the section on data state­
ments. 

In CSMP III it is possible by the use of the CALL FINISH statement to ter­
minate a run by branching to the Terminal segment. Also new parameters and 
control variables can be introduced in the simulation by employing the CALL 
CONTIN card. 

CALL FINISH 

This statement can be used in nosort or procedure sections to branch to the 
Terminal segment. If there is no Terminal segment, the program will terminate 
when the CALL FINISH instruction is encountered. The CALL FINISH instruc­
tion is normally used in conjunction with an IF statement as shown below. 

IF(FORCE .GT. FMAX) CALL FINISH 

CALL CONTIN 

This statement is similar to the CALL RERUN instruction described in 
Chap. 2. When the program encounters a CALL CONTIN statement, a new run 
is initiated starting with the value of TIME from the previous run. The CALL 
CONTIN card does not reset initial conditions. As with the CALL RERUN 
instruction, the CALL CONTIN statement should only be used in the Terminal 
segment and is normally used with an IF statement. 

I ntegration Techniques 

There are two additional integration methods available in CSMP III; RKSDP 
and STIFF. As in S/360 CSMP, if the integration technique is other than the vari­
able-step Runge-Kutta, it must be specified on a METHOD card as shown below. 

METHOD STIFF 
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RKSDP. This is the double-precision version of the variable-step Runge­
Kutta method. To take advantage of the increased accuracy, the ABSERR and 
RELERR parameters should be used to decrease the error-bound on the integrator 
output. Additional information for using double-precision is contained in a follow­
ing section. 

STIFF. This variable-step integration method should be used'for the class of 
problems represented by so-called "stiff" equations. These equations have solu­
tions which have exponents which are greatly different as typified by Eq. (5.4). 

x = Ae-t + Be-lOOt (5.4) 

STIFF integration is used because numerical solutions using a method such 
as Runge-Kutta sometimes exhibit what is called partial-induced-instability when 
solving a stiff equation. <3> 

Array Integration 

The array or specification form of the INTGRL function is also available in 
CSMP III as illustrated by the following statement. 

Y = INTGRL(XO, X, 40) 

The above instruction specifies an array of 40 integrators: Y = output, 
XO = initial condition, and X = integrand. 

Since the above INTGRL statement in CSMP III automatically specifies 
that Y, XO, and X are subscripted variables, they must not be included in a 
STORAGE or DIMENSION statement. Unlike S/360 CSMP, the initial condi­
tions can be loaded using a TABLE statement. The EQUIVALENCE card that 
is required in S/360 CSMP is not used in CSMP III. Examples of programs using 
a CSMP III array integrator are shown in Figs. 5.10 and 5.15. The program of Fig. 
5.15 shows the double-precision calculations used in the program of Fig. 5.10. 

There are two additional variables that can be included on the TIMER card, 
DELMAX and TIME. 

DEL MAX 

This symbol specifies the maximum allowable integration step size for all 
variable-step integration methods. If not specified, the smaller of PRDEL or 
OUTDEL is used. 

TIME 

This variable specifies the value of TIME at the beginning of the run. If not 
included on the TIMER card, it is set equal to zero. 

Double-Precision Operations 

In some simulation problems the round-off errors with single-precision arith­
metic are too large for satisfactory solutions. Double-precision calculation can 
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improve accuracy and is available in CSMP III. The following describes the vari­
ous aspects of using double-precision. 

integration. The following card provides double precision variable-step 
Runge-Kutta integration. 

METHOD RKSDP 

The numerical integration calculations are performed in double-precision but 
the output is returned in single-precision which is rounded from the double­
precision results. 

If double-precision output is required, the specification form of the INTO RL 
statement must be used for all integration. The following two control cards should 
be included. 

SYSTEM DPINTG 
METHOD RKSDP 

Double-precision initial conditions may be set using the TABLE instruc­
tion. 

Calculations. There are several rules that must be followed when using 
double-precision numbers. 

I All double-precision variables must be subscripted and all of these vari­
ables not appearing in the specification form of the INTORL function 
must be declared on a REAL*8 card. 

/ REAL*8 Q(15), P(30), S(60) 
\ '-Column 7 
"'--Virgule in column 1 

The above instruction must appear before the first structure statement. 
2 Double-precision numbers can be rounded and set equal to single-precision 

numbers using the following statement. 

Y = ZZRND(X(4» 

In the above instruction, the double-precision variable X( 4) is rounded and 
set equal to the single-precision variable Y. 

3 Double-precision symbols starting with the letters I, J, K, L, M, and N 
must be included on a FIXED card. 

4 The double-precision symbol for TIME is ZZTIME. 
5 The exponential form using D instead of E can be used for assigning values 

to double-precision constants. 

Y(3) = 7.987654D5 (7.987654 x 106 ) 

PI(1) = 3.1415926535898DO (3.1415926535898) 

Output. Double-precision variables cannot be used in standard CSMP III 
output statements. They must be equated, or rounded using the ZZRND instruc­
tion before they can appear in CSMP output statements. 
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x = XDP(l) (equated) 
Y = ZZRND(YDP(l» (rounded) 
OUTPUT X, Y 

Ch. 5 

If double-precision output is desired, the FORTRAN WRITE statement 
should be used as covered in Chap. 3 in the section on data output. 

The program of Fig. 5.15 illustrates double-precision integration for calculat­
ing the transient temperature distribution of the copper rod of Example 5.3. A 
FORTRAN WRITE instruction is used to print the double-precision result which 
is shown in Fig. 5.16. 

Note the differences between the double-precision program of Fig. 5.15 and 
the single-precision program of Fig. 5.10. 

* CSMP III PROGRAM TO SIMULATE THE TRANSIENT TE~PERATURE DISTRIBUTIJN 
* OF A CCPPER RUD USING COUBL~ PRFCISIDN CALCULATIONS 
INITIAL 
I REAL*8 DP( 7) 

FIX FD T 
TABLE TI(1-20) 20*3.002 
SVSTE~ OPINTG 
METt-CO RKSOP 
RFLERR T(1-20) 1.0~-8 

ABSERI{ T(1-20) 1.Of-8 
NCSfJRT 

* T>-iE I)OllBLE PRECiSION SUBSCRIPTED VARIABLE DP(I) IS USED 
* TO I"lPUT THE VALUtS OF THE PARAMfHRS OF T~~ COPPEr< ROD UF EXAMPLE- 5.3 

CPIII d.d9D3 
DPI21 3.98D2 
DP( 3) 3.l:l6D2 
\) P ( 4 I 2 .0 0- 2 
DPI'3) 3.0C2 
OP( (;) 5.J02 
[) P ( 7) f.)P (3 1 I ( DP 11) "'uP (2) "'DP 14 1 *oP (4) ) 

lCO FnR~AT(5G22.12) 

101 EDRM liT ( I , oX. • T I ME' , l8X, • T ( 41 • , 18 X, , T ( tl 1 • , 17 X, • r I 10)' ,17 X, ' T ( 16) • ) 
WRITF(6,lJll 

DYNAMIC 
NGSflRT 

HHU = flP(71*(iJP(5) - 2.0*T(l) + T(21) 
!Vl 1 I 2,19 

Te(ll = fW(7)'*(T(!-1l - 2.0*T(I) + T(I+1) 
TD(201 = OP(71*IT(191 - 2.0*1(20) • DPlb» 

SfJRI 
T = INIGRLtTI, TD, 20) 

NOSOR 1 

* THI: rCLLuWlr-.G f-ORIRAN WRITE STATFMENT PRUVIDES OUTPUT AT THE END OF 
* EACH TENTH VALID INIEGRATICN STEP 

I F IKE E P • N E. 1 ) G(1 TO 2 
CT = CT .. 1.0 
IFICT.LT.0.5) GU TO 2 
WRlTEI6,lOJ) (Tlr-U:, 1(4), TIS). T(lO), T(1611 
CT = 0.0 

2 CUN T I IIIU 1= 
TIMER FINTIM = 450.0 

END 
STnp 
EI\iOJOR 

Fig. 5.15 Simulation of the temperature of copper rod using 
double precision. 
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TItoIE 
1.26562500000 
3.09375 )00000 
5.90625JOOOOO 
10.4062500000 
17.7187500000 
30.0937500000 
51.4687500000 
89.7187500000 
148.218750000 
199.968750000 
253.96875(100n 
303.468750000 
355.2187500<)0 
406.968750000 
450.000000'100 

$$$ SIMULATlrN HAL T"f' ~('1P 

T(4) 

~OO .000(10nCOO 
~OO.OOO(,OnnOO 
100.nf\nf\000nn 
11'0.1)('·')('()n?05 
3nO. ',)000A,}()1/, 
100.01014171 0 
::InO.301>Q26535 
103.n2}0??391 
110. 61131 BnOQ9 
::l17.18~;>09177 

3?2.91l4 n Il1578 
326.86354r)646 
1;>9. ~84n<)o91>'i 
""?.C9C7BB5 
111.4811~11Q2 
FPIISH fr"JI'lTTTn~1 

T (8) 

100.000000000 
100.0n0000001 
1I)n.0r)00n0950 
3'10.000221716 
10'l.nI461l8661> 
1nO.336181644 
102. 971H?'!!36 
312.7271)54459 
17.9. 4775'i021>A 
141.543210126 
3"il.104'i'l23'}a 
151.5951>(1)186 
167.611R40784 
11>1>.2802,,1105 
1I,S.564AI)S895 

TIMr 45n.(1) 

T (In) 

300.000000000 
100.000000174 
300.000061033 
300.004986118 
300.13'i408143 
301.497811978 
307.765962064 
323.260691678 
344.1413553'1''1 
357.814603171 
31i8.286939071 
375.294859587 
3110.685218191 
1A4.61QB34664 
387.068383799 

Fig.5.16 Double precision output from program of Fig. 5.15. 
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PROBLEMS 

1 The equations which defined the concentrations of xenon 135 (X) and iodine 135 (I) 
in a nuclear reactor which has been suddenly shut down are given below. 

X = -2.09 X 1O- 5X + 2.88 x 10- 51 

i = -2.88 x 10- 51 

The initial concentrations are 

X(O) = 3 X 1015 atoms per unit volume 

1(0) = 7 x 1016 atoms per unit volume 

Find the concentrations at t = 100,000 sec. Plot the results using a logarithmic 
ordinate. 

Answer: 
At TIME = 100,000 X = 1.761 X 1016 I = 3.929 X 1015 

2 In an epidemic of a contagious disease, the following Kermack-McKendrick set of 
equations model the number of the population who are susceptible to the disease S, 
the number of infectious carriers C, and the number of individuals who have recov­
ered and are immune R. 

S = -A·S·C 

C = A·S·C - B·C 

R=B·C 

A and B are constants which characterize the epidemic. Time is measured in days. 
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Using the following initial conditions for a population of 1000, 

S(O) = 900 

C(O) = 10 

R(O) = 90 

solve the Kerma~k-McKendrick equation using A = 0.001 and B = 0.072. 

Ch. 5 

Include S, C, and R in a common printer-plot using the same scale for all vari­
ables. 

Answer: 
At TIME = 10 days, S = 27.4, C = 631.2, R = 341.4 

3 Solve the following equation using both the RKSFX and STIFF methods. 

y + 201j + 200y = 0 

y(O) = 1.0 

y(O) = 0 

Compare the numerical solution with the exact solution. 

_ 200 -t 1 -200t 
Y - 19ge - 19ge 

Answer: 
The difference between the exact solution and the numerical solution using 

RKSFX and STIFF is less than 10-4 • However, several program interrupts due to 
underflow occur when using RKSFX. 

4 Use the TRANSF function to solve for the dynamic response of the system repre­
sented by the following block diagram. A unit-step input occurs at t = O. 

S2 + 5s + 7 
r(s) -+ S6 + 8ss + 23s4 + 44s3 + 41s2 + 14s + 4 -+ c(s) 

Answer: 

60 

Height 40 
feet 

(y) 

20 

40 

At TIME = 10.0 c = 2.1671 

Profile of Roller Coaster Track 

80 120 

Feet (x) 

Fig. P-5.5 

160 200 240 
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5 A 640 lb gravity-powered roller coaster travels on a track shown in the above profile. 
Aerodynamic drag equal to 0.005v 2 and a rolling resistance of 10 lb oppose motion. 
The velocity at the start of the run is 15 ft/sec. Use the SLOPE function to evaluate 
dy/dx in simulating the motion of the vehicle. 

The equation of motion is 

where 

Answer: 

~v = -w sin 8 - 0.005v2 - 10.0 
g 

w = weight 

g = acceleration of gravity, 32.17 ft/sec 2 

At TIME = 6.0 sec: v = 35.1 ft/sec and x = 197.0 ft. 

6 A 27 lb weight moving downward at a velocity of 200 in/sec strikes and sticks to a 
lead cylinder. 

l V = 200 in·/see 

Fig. P-S.6 

The dynamic resisting-force of the lead cylinder for large strains is approximated 
by the following formula. 

F = 620[1 + 0.OO4(L ~ yy.o2](L ~ yr· 44 

The equation that describes the motion of the mass is given below. 

3
2
8
7
6Y = 27 - F 
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Generate data for the resisting-force F in the Initial segment using the following 
range for y and j. 

o < y < 0.25 in. 

o < j < 200 in./sec 

Load the generated data by using the TVLOAD subroutine and then use the 
TWOV AR function to calculate F to determine the maximum deflection of the load 
cylinder. 

Answer: 
Ymax = 0.150 in. at TIME = 0.00343 sec 

7 The device below is used to control the water level in a tank. The flow characteristics 
of the valve are given in the figure below. The outflow from the tank is given by the 
following expression. 

l
y 

I" 4" 
Valve ~ZZZltala::z:zz:z:z:ja::z:zz() 

Supply ~ 

pressure c:====:::c:j3:r==:l 
=p 

40 

20 
qin 

(in.3 /sec) 

Cross-sectional 
area of tank 
250in.2 

Float 

~==~========~~qo 
p= 62 psi 

p= 40 psi 

p = 23 psi 

p= 10 psi 

~P=3Psi 

0.5 1.0 (in.) 
y 

Fig. P-5.7 

At the start of the simulation, h = 10, P = 23 psi, and Y = 0.5. Use the 
TWOV AR function to represent the valve characteristics and solve for the dynamics 
of the system when P is suddenly increased to 60 psi. 
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The equation describing the water level is 

dh 
250 dt = qin - qo· 

Answer: 
At TIME = 40 sec, h = 10.69 in. 

S The curve below represents an odd periodic function. Using the FUNGEN function 
with 5th-order interpolation, find the Fourier coefficients for the first five terms of the 
periodic function. The odd Fourier coefficients are given by the following expression. 

2 

f(t) 

Fig. P-S.8 

bn = ~ f: J(t) sin (n;t) dt 

2p = period = 8.0 

Answer: 
bi = 0.84, b2 = 0.91, b3 = 0.32, b4 = -0.40, bs = 0.27 

9 The road-holding ability of an automobile can generally be improved by decreasing 
the unsprung mass. Use the below model of one corner of an automobile to find the 
time average ratio of tire force to vehicle weight as the car passes over a depression 
in the road. Do the simulation for unsprung masses of 80 and 150 lb. 
Equations of motion are 

mIYI = kt(y - YI) + k(Y2 - YI) + C(Y2 - YI) + mIg 

m2Y2 = k(YI - Y2) + CUI - Y2) + m2g 

initial conditions: 

Answer: 

YI(O) = (mi tt m2)g Y2(0) = YI(O) + "'kg 

YI(O) = h(O) = 0 

Tire force kt(y - Y 1) 
w~ight = (mi + m2)g 

Unsprung mass 801b: average force/weight = 0.6937 
Unsprung mass 150 Ib: average force/weight = 0.6733 
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v~ 1000 in./sec 

(Tire) K t = 1100 Ib/in. 

k = 125 Ib/in. T C = 10 1lKec/in. 

Fig. P-S.9 

10 A control system is represented by the following block diagram. For the following 
input, use the TRANSF and REALPL functions to find the time response of the 
output. 

r(t) = 5(1 - e-t / 2 ) 

+ 
r(s) 3s + 2 t----r--+- c(s) 

S3 + 3s 2 + 5.2s + 1.7 

Fig. P-S.I0 

Answer: 
At TIME = 6.0, c = 3.5697 

11 Motorcycle helmets are tested by dropping a helmet containing a headform on a 
rigid surface. The following data for two different helmets was taken at the South­
west Research Institute and is the acceleration measured in the headform during a 
Z-90 test. The helmet has a velocity at impact of 19.6 ft/sec. Using the OVERLAY 
statement, find the rebound velocities of both helmets using one program. 

The following expression can be used to estimate the injury to a human head 
from an impact. A value greater than 1000 is usually fatal. 

HIC = S: aZ
•

S dt 

a is the acceleration in g's. 
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---
/' " 

Head form 

/ \ 
" \\ Accelerometer 
\ 
\ 

\ lv = 19.6 rtfsec 

Helmet 

Fig. P-S.ll 

Calculate the value of HIC for both helmets. 

Test Results of a Good Helmet Test Results of a Poor Helmet 
Time Acceleration 
(sec) (g's) 

o 
0.001 
0.002 
0.003 
0.004 
0.005 
0.006 
0.007 
0.008 
0.009 
0.01 
0.011 
0.012 

o 
24 
45 
84 
125 
144 
135 
120 
71 
52 
20 
12 
o 

Time Acceleration 
(sec) (g's) 

o 
0.001 
0.0015 
0.002 
0.0025 
0.003 
0.0035 
0.004 
0.0045 
0.005 
0.0055 
0.006 
0.0065 
0.007 

o 
100 
180 
235 
220 
258 
246 
205 
175 
110 
75 
48 
14 
o 

Answer: 
Good helmet: rebound velocity 

= 7.34 ft/sec 
Poor helmet: rebound velocity 

= 10.85 ft/sec 
HIC = 935.7 HIC = 2653 

12 Each ofthe three tanks initially contain 500 gal of brine with 50 lb, 100 lb, and 150 lb 
of salt dissolved in tanks 1,2, and 3, respectively. The flow between tanks is shown 
in Fig. P-5.12. By assuming the brine is kept well stirred, the following equations 
describe the amount of salt in each tank. 

dWl 5W2 3Wl 

dt = 500 - t - 500 + 2t 

dW2_ 3Wl +~_~ 
dt - 500 + 2t 500 - t 500 - t 

dW3 3W2 4W3 
dt = 500 - t - 500 - t 
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WI = 50 Ib salt W2 = 100 Ib salt W3 = 150 Ib salt 

I 2 3 

5 gal/min 3 gal/min 

'" • 
I I I I 
J • I I '" l 

3 gal/mm 4gal/mm 

Fig. P-S.12 

Find the amount of salt in each tank after 4 hours. Use the GROUP parameter 
to plot the time-history of Wb W2, and W3 with the same scale. 

Answer: 
WI = 186.77 lb of salt 
W2 = 54.927 lb of salt 
W3 = 58.308 lb of salt 

13 When a perfectly flexible and homogeneous cable is hung between two support 
points, the equation of its shape is called the catenary. The exact shape is given by the 
solution to the following differential equation. 

d2
y = ~Jl + (dy )2 

dx 2 h dx 

where: W = 0.17 lb/ft, weight per unit length of cable 

h = tension in cable at the lowest point 

~96ft~ 
y 

x Fig. P-S.13 

Find the shape of the free hanging cable for the following values of h. 

h = 10,40, and 300lb 

Use the MERGE parameter to plot all three curves on one page. 

Answer: 
At: x = 96ft 

h = 101b, y = 97.341 ft 
h = 401b, y = 19.857 ft 
h = 3001b, y = 2.6118 ft 
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14 An aluminum circular fin on a 0.5 ft. diameter pipe is used to transfer energy from 
the surface of the pipe to the ambient air. One fin can transfer 3200 Btu/hour. For a 
thin circular fin having only a radial temperature distribution, the following equation 
gives the steady-state temperature for natural convection. 

d 2T + 1- dT _ 2h (T _ T.) = 0 
dr 2 r dr kL a 

where: T = temperature of fin 

Ta = ambient temperature = 80°F 

h = 0.19(T - Ta)0.33 Btu/hr-ft2-oF 

k = 118 Btu/hr-ft-oF 

L = thickness of fin = 0.0085 ft 

Energy flows from surface of 
fin by natural convection 

~ 
L = 0.0085 ft 

T 
1'a = ambient temperature 

Fig. P-S.14 

Find the temperature at a radius of 0.75 ft. Note that the above equation requires 
the integration to start at r = 0.25 ft. An initial condition for the temperature 
gradient on the inside surface of the fin can be calculated from the following relation­
ship. 

dTI q = 3200 = -kA-
d r 7=0.25 

A = area = O.5nL 

Answer: 
T(r = 0.75) = 171.55°F 

15 Solve problem 14 using the following boundary conditions 

T(r = 0.25) = 650°F 

dT h 
dr (r = 0.75) = -7([T(r = 0.75) - Ta] 

In the second boundary condition, the heat flow from the outer edge of the fin is 
set equal to the energy removed from the same surface by convection. Since the 
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temperature gradient at the outer edge is specified, the CALL RERUN statement 
must be used in an iterative procedure to calculate the temperature gradient at the 
inside surface: dT(r = 0.25)/dr. 

Answer: 

dT(r = 0.25) = -11460 F/IN 
dr 
T(r = 0.75) = 451.7°F 



APPENDIX 

I 
LISTING AND 

DEFINITION OF ALL 

CsMP FUNCTIONS 

The information in this section gives a summary of the functional blocks in 
both CSMPj360 and CSMP III. The first portion contains those functions which 
are identical for both versions of CSMP. The second portion gives those functions 
which have been added to the newer version, CSMP III. 

Material in this Appendix can be a valuable asset to the user in that a brief 
description of the function is given along with the example numbers in the text 
which use the function. 

Table A-1 

Functions Involving Integration And Differentiation 

J>rograr.n Stater.nent Mather.natical/Transforr.nation Equivalent 

INTEGRATION 

Y = INTGRL(IC, X) 

IC = yet) It=to 
X = the input variable or 

function 

(a) For CSMP/360, to = O. 
(b) For CSMP III, to is specified on 

the TIMER card by TIME = to. 
If not specified, to = O. 

These comments apply for all blocks 
that contain a to. 

y = ft x dt + yet 0) 
to 

to = starting time 

t = independent variable 

Equivalent Laplace transform 

yes) 1 
Xes) = s 

281 
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Comments 

This is probably one of the most frequently used functional blocks of 
CSMP. If the user does not specify a method of integration, then RKS variable 
step will automatically be used in the program. However, six other methods of 
integration are available and anyone of these can be selected by listing the par­
ticular integration form on a METHOD card (see pages 81 to 93). Users may 
define their own integration through the use of a FORTRAN subroutine named 
CENTRL (pages 93 to 95). 

A vector or array integration form is also available by using the specifica­
tion form 

Y = INTGRL(IC, X, N) 

where Y = an output array 

IC = array of initial conditions 

X = array of inputs or integrands 

N = the number of elements in the input array 

Before using the specification form of integration, the reader should review the 
material starting on page 103. Application of this form of integration for S/360 
CSMP is given in Example 3.3, page 104 and Example 4.2, page 200. Examples 
of the use of array integration in CSMP III are shown in Chapter 5. 

Application of the ordinary integration form, that is Y = INTGRL(IC,X), 
can be found in the following examples: Ex. 2.1, p. 14; Ex. 2.2, p. 18; Ex. 2.3, 
p. 25; Ex. 2.4, p. 30; Ex. 2.5, p. 35; Ex. 2.6, p. 39; Ex. 2.7, p. 42; Ex. 2.8, p. 52; 
Ex. 2.9, p. 58; Ex. 2.10, p. 60; Ex. 3.1, p. 90; Ex. 3.6, p. 114; Ex. 3.8, p. 126; Ex. 
3.9, p. 134; Ex. 3.12, p. 151; Ex. 3.13, p. 158; Ex. 3.14, p. 167; Ex. 3.16, p.177; 
Ex. 4.3, p. 210; Ex. 4.4, p. 211; Ex. 4.5, p. 215; Ex. 4.6, p. 221; Ex. 5.2, p. 253; 
Ex. 5.3, p. 254. 

Program Statement Mathematical/Transformation Equivalent 

DIFFERENTIATION 

Y = DERIV(IC, X) 

IC = dx(t) l 
dt =to 

X = input variable 

Comments 

yet) = ~~t) 

Equivalent Laplace transform 

Yes) 
Xes) = s 

Generally, this function is not used to any considerable extent in simula­
tion. DERIV is not a MEMORY or HISTORY function and therefore cannot 
be used alone in a closed loop except when the loop is broken by an implicit 
function. An example using the DERIV function is given on p. 48. 
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Program Statement Mathematical/Transformation Equivalent 

REAL POLE or FIRST-ORDER LAG 

Y = REALPL(lC, P, X) 

IC = yet) It=to 

X = the forcing function 
or input 

Comments 

p'Z+y=x 

Equivalent Laplace transform 

yes) 1 
Xes) = ps + 1 

This function is often used in control system simulation. The terms real pole 
and first-order Jag are frequently used in control systems and engineering; hence 
these terms are used as descriptive titles. However, the equation 

p'Z+y=x 

is simply a first-order differential equation. When the transfer function is ex­
pressed as 

the form must be changed to 

yes) A 
Xes) = s + B 

A 
yes) B 
Xes) = 1 + s 

B 

See pp. 21 to 22 for further comments. 
Applications using the REALPL function are given in Ex. 2.2, p. 18; Ex. 

2.6, p. 39; Ex. 2.8, p. 52; Ex. 4.2, p. 200; Ex. 4.3, p. 210; Ex. 4.4, p. 211; Ex. 
4.6, p. 221. 

Program Statement 

LEAD-LAG 

Y = LEDLAG(Pl, P2, X) 

Note: PI and P2 are 
parameters; initial 
conditions are not used 
with this function. 

Comments 

Mathematical/Transformation Equivalent 

dy dx 
P2 dt + Y = PI dt + x 

Equivalent Laplace transform 

yes) PIS + 1 
Xes) = P2S + 1 

This is another function often used in control system simulation. The term 
lead-lag is descriptive of compensation in control systems. A lead compensator 
is of the form given above when PI > P2. A lag compensator is of the same form 
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Comments (continued). 

but with P2 > Pl' Further comm~nts and application of this function are given 
in Example 2.6, p. 39. 

Program Statement 

COMPLEX POLES 

Y = CMPXPL(ICl, IC2, PI, P2, X) 

ICI = yet) It=lo 

IC2 = yet) It=to 

Comments 

Mathematical/Transformation Equivalent 

d 2y dy 2 
dt 2 + 2PI P2 dt + P 2Y = x 

Equivalent Laplace transform 

yes) I 
Xes) = S2 + 2PI P2S + P~ 

This function is particularly designed for second-order polynomials with 
complex roots. If the roots are real, one may employ REALPL twice. Neverthe­
less, CMPXPL will also handle the case when roots of S2 + 2P1 P2s + P~ are 
real. Ordinarily, one encounters this polynomial in the form S2 + 2Cron s + ro~. 
Obviously, P2 is equivalent to ron and PI equivalent to C. If one desires to simu­
late the transfer function 

yes) 1 
Xes) = S2 + 1.6s + 4 

then P2 = 2 and PI = 0.4. 
Application of this function is given in Example 2.7, p. 42. 

Program Statement 

MODE-CONTROLLED INTEGRATOR 

Y = MODINT(IC, Xl, X2, X3) 

IC = yet) It=to 

Comments 

Mathematical/Transformation Equivalent 

yet) = ft X3 dt + Ie; for Xl > 0, any X2 
to 

yet) = IC ; for Xl < 0, X2 > 0 

yet) = last output ; for Xl < 0, X2 :::;;; 0 
from integrator 

This function allows the user to start an integration, integrate for prescribed 
conditions, then hold the value of y, restart the integration for other prescribed 
conditions. For some simulations, the value of y may have large step-changes. If 
this occurs while using a variable-integration step-size the condition on DELMIN 
may not be satisfied and the simulation will halt. The user can correct the situa­
tion by changing to a fixed-step integration with appropriate step-size. 

See Example 3.13, p. 158, for application of the mode-controlled integrator. 
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Table A-2 

Special CSMP Functions 

Program Statement 

ZERO-ORDER HOLD 

Y = ZHOLD(XI, X2) 

Xl = a trigger signal 

X2 = input to the hold 

Comments 

Mathematical/Transformation Equivalent 

y(t) = X2 ; for Xl > 0 

y(t) = last value of X2; for Xl < 0 

y(t) It=to = 0 

Equivalent Laplace transform 

Y(s) I - e- sT 

X(s) = s 

T = the sampling interval 

This function has important application in the design and simulation of 
discrete data systems. The physical property of the zero-order hold is illustrated 
in the following sketches. 

Y=x2(nT) 

o 234567 

liT 

(a) Input to ZHOLD (b) Output of ZHOLD 

A convenient signal for Xl is the IMPULS function. Thus, to sample and hold a 
sine function of a frequency of 30 radians/sec, every 1 sec, one may write 

X2 = SIN(30.0*TIME) 
Xl = IMPULS(O.O, 1.0) 
Y = ZHOLD(XI, X2) 

It is important to recognize that if a variable-step integration method is used in 
a problem, integration will generally not occur when IMPULS is applied. This 
means that sampling will not occur at nT but rather at those values of TIME for 
which an integration is performed. This problem can be overcome by using a 
fixed-step integration in which T is a multiple of DELT. 

Application of the zero-order hold can be found in Ex. 4.3, p. 210; Ex. 4.4, 
p. 211; Ex. 4.5, p. 215; Ex. 4.6, p. 221. 
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Program Statement Mathematical/Transformation Equivalent 

DEAD TIME (DELAY) 

Y = DELA YeN, P, X) 

P = the ideal delay time 

N = number of points of X 
sampled during P. 
N must be an integer 
constant ~ 3 but < 16,378 

Comments 

y = x(t - p); for t > p 

y = 0 ; for t <p 

Equivalent Laplace transform 

yes) = e-PS 

Xes) 

The role of this function is shown in the following sketches. As a rule of 
thumb one can select N as a number in the range of expected integrations during 
P. The program uses P/ N as the sample interval of X when PI N ~ DELT, 
otherwise DELT is used. 

xU) 

(a) Signal before 
delay 

y 

(b) Signal with p 
units of delay 

Dead time is often present in process control systems and hence DELAY is 
a convenient function to use when simulating these systems. Another important 
use of the DELAY function stems from the simulation of discrete systems repre­
sented by z-transforms. Thus, if 

D( ) = M(z) = A + BZ-l 
z N(z) 1 + CZ-l 

the Delay function can be used for Z-l to simulate D(z) much in the same way 
that INTGRL is used to simulate S-l. 

Application of the Delay function is given in Ex. 2.8, p. 52; and Ex. 4.4, 
p.211. 

Problem Statement 

IMPLICIT FUNCTION 

Y = IMPL(IG, ERROR, FOFY) 

IG = an initial guess for Y 

ERROR = an acceptable error in 
finding a solution for Y 

FOFY = the function of y, fey) 

Mathematical/Transformation Equivalent 

y =f(y) 

If(y) - yl s error 
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Comments 

The implicit function is used to solve a problem of the form 

F(y) = 0 

This function can be expressed (usually in several different forms) as 

y =f(y) 

where F(y) = fey) - y = 0 

The expression for fey) must be the last statement used in the implicit loop. 
Further comments on the implicit function and how it can be used to break 

algebraic loops are given on pp. 176 to 178. For application see Ex. 3.15, p. 176; 
and Ex. 3.16, p. 177. 

Program Statement 

RAMP FUNCTION 

Y = RAMP(T) 

T = starting time of ramp 

Comments 

Table A-3 

Signal Sources 

Function Definition 

y = t - T; for t 2 T 

y = 0 ; for t < T 

This function is often used for special test-signal purposes. Note that the 
slope of the ramp is 1. This can be changed to any value by 

Y = Q*RAMP(T) 

Also, combinations of the ramp can be used to generate other special 
signals. For example, 

Xl = RAMP(O.O) 
X2 = RAMP(2.0) 
X3 =Xl -X2 

produces the signal shown below. 

X3
2.o0 

2.0 
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Program Statement 

STEP FUNCTION 

Y = STEP(T) 

T = starting time of the step 

Comments 

Function Definition 

y = 0; for t < T 

y = 1; for t ?::. T 

y = 0; for t < T 
y = I; for t ~ T 

yLO~ 
o p 

App.! 

The step input is one of the most frequently used signals for investigating 
the transient response of a system. The amplitude of the step can be changed to 
values other than one by using the statement, 

Y = A*STEP(T) 

where A is the desired amplitude. Single-shot pulses can easily be generated by 
multiple use of the step function. For example, the statements 

Xl = STEP(O.5) 
X2 = STEP(l.5) 
X3 = Xl - X2 

produces the pulse sketched below. Application of the step function can be 
found in the following examples. Ex. 2.2, p. 18; Ex. 2.6, p. 39; Ex. 2.7, p. 42; 
Ex. 2.8, p. 52;Ex.3.12,p. 151;Ex. 3.13,p.158;Ex.3.15,p.176; Ex. 3.16, p. 177; 
Ex. 4.2, p. 200; Ex. 4.3, p. 210; Ex. 4.4, p. 211; Ex. 4.5, p. 215; Ex. 4.6, p. 221. 

X3 r~--L-I ------L-I_ 
0.5 1.5 

Program Statement 

PULSE FUNCTION 

Y = PULSE(P, TRIG) 

P = pulse width 

TRI G = trigger starting each pulse 

Time 

Function Definition 

y = 1; for time duration P following 
the application of TRIG. 

y = 0; for all other time 
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Comments 

This function offers a convenient way for generating a train of pulses. Peri­
odic pulses can be generated by using a periodic trigger. The spacing between 
pulses will be random provided the trigger is random (with P less than the dura­
tion between trigger applications). For an illustration of generating a pulse 
train see the comment notes of the Impulse function. 

The pulse function is used in the following examples. Ex. 2.7, p. 42; and 
Ex. 3.13, p. 158. 

Program Statement 

IMPULSE FUNCTION 

Y = IMPULS(T, P} 

T = time when first impulse is 
applied 

P = spacing between impulses 

Comments 

Function Definition 

y = 0; for t < T 

y = 1; for t = T + NP 

y = 0; for t =F T + NP 

N = 0,1,2, ... 

This function has an amplitude of 1 at discrete points of time. In most cases 
a unit impulse is considered to have infinite amplitude and an area of 1 (Dirac 
function). The user should note this difference. 

The IMPULS is particularly useful as a trigger function. As an example, a 
train of unit pulses can be generated as follows. 

Xl = IMPULS(O.O, 1.0} 
X2 = PULSE(0.2, Xl} 

The signal X2 generated by these two statements is shown below. The impulse 
function is also useful in simulating the ideal sampler in discrete data systems 
(see Example 4.3, p. 210). The use of the impulse function is also given in Ex. 
2.7, p. 42; Ex. 3.13, p. 158; Ex; 4.4, p. 211; Ex. 4.5, p. 215; Ex. 4.6, p. 221. 

X21.0~h_----L..-D---L..------L-D---L..--"· 
o 0.2 1.0 1.2 2.0 2.2 
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Program Statement Function Definition 

VARIABLE SINE FUNCTION 

Y = SINE(DELAY,OMEGA,PHASE) 

DELA Y = delay time for starting 

y = sin (omega(t-delay) + phase) 
; for t ~ delay 

the function 

OMEGA = frequency of the function 
in radians/unit time 

PHASE = phase shift in radians 

Comments 

y=o ; for t < delay 

PHASE/OMEGA 

y 

o 

This function offers the user a convenient way of displacing a sine function. 
If the user is not concerned about either phase shift or delay, the ordinary FOR­
TRAN SIN can be used as in the following statement 

Y = SIN(OMEGA*TIME) 

where OMEGA is a specified value of radian frequency and TIME is the CSMP 
variable for time. See Example 3.10, p. 145 for an illustration of the CSMP 
SINE function. 

Problem Statement 

UNIFORM DISTRIBUTION 

RANDOM NUMBER GENERATOR 

Y = RNDGEN(N) 

N = any odd integer which is used 
as a "seed" value 

Comments 

Function Definition 

Uniform distribution of Y 

p(y11 ..... --­

o 
y 

P(y) is the probability density 
function. 

This function generates numbers between 0 and 1 with a uniform distribu­
tion. For a given seed value, the random sequence will be unchanged from one 
computer run to the next. Details for using RNDGEN are given on p. 119. 

Application of this function is given in Ex. 3.13, p. 158; Ex. 4.7, p. 224. 



App.1 Listing and Definition of All CSMP Functions 291 

Program Statement 

NORMAL DISTRIBUTION 

RANDOM NUMBER GENERATOR 

Y = GAUSS(N, PI, P2) 

N = an odd integer seed value 

PI = mean 

P2 = standard deviation 

Comments 

Function Definition 

Normal distribution of Y 

P(y) I~ 
y 

P(y) is the probability density 
function 

This function produces random values of y which statistically have a Gaus­
sian distribution with a specified mean and standard deviation. Both random 
number generators return numbers only at valid integration steps (KEEP = 1). 

Additional comments concerning the use of GAUSS are given on p. 118. 
See Example 3.7, p. 118 for application. 

Table A-4 

Function Generation 

Problem Statement 

ARBITRARY FUNCTION GENERATOR 

(linear interpolation) 

Y = AFGEN(FUNCT, X) 

X = an independent variable 

FUNCT = name of a function defined 
by a FUNCTION card. 

Any valid FORTRAN symbol can be 
used. 

Comments 

A 
• 

y 

Function Definition 

C 
/· ........... D 

B .\ F 
.~. 
E 

x 

Linear interpolation between data 
points (A,B,C,D,E,F) 

AFGEN is used to generate a function specified by the user. Linear or 
straight line interpolation is used between given values of x. Data points for x 
and yare listed on a FUNCTION card (placed at the beginning of the program) 
as below 

Xl Yl X2 Y2 ••• etc. 
t t t t 

FUNCTION LUCK = (0.0, 1.2),(0.3, 1.8),(0.7, 2.3), (1.1, 0.9),(1.7, -0.3) 
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Comments (continued). 

The function is called by a statement in the program such as 

Y = AFGEN(LUCK, X) 

Further explanation of AFGEN is given on p. 31. Application of this function is 
given in Ex. 2.4, p. 30; Ex. 3.13, p. 158; Ex. 4.2, p. 200. 

Problem Statement 

ARBITRARY FUNCTION GENERATOR 

(quadratic interpolation) 

Y = NLFGEN(FUNCT, X) 

X = an independent variable 

FUNCT = name of a function defined 
by a FUNCTION card. 

Comments 

Function Definition 

A 
• C D 

~-----.----. 

y 

x 

Quadratic interpolation between 
points (A,B,C,D) 

The use of this function is identical to AFGEN except that quadratic inter­
polation is used between data points. See the comments given for AFGEN and 
also refer to p. 31. 

Application of NLFGEN can be found in Ex. 2.10, p. 60; Ex. 2.11, p. 65; 
Ex. 3.5, p. 110. 

Table A-5 

Nonlinear System Characteristics 

Program Statement 

DEAD SPACE 

Y = DEADSP(Pl, P2, X) 

X = input function 

PI, P2 = parameters defining the 
range of the dead space 

Definition of Characteristic 

y 

/ P2 X 

y=o 
y = x - P2 ; for x > P2 

y = X - P 1; for x < P 1 
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Comments 

This function can be used for simulating dead space in a system nonlinearity 
such as a valve. The slope on the active portion is not limited to 45° and can be 
changed to a specified value by 

Y = Q*DEADSP(PI, P2, X) 
(Q = specified slope) 

Application of this function is given in Example 2.9, p. 58. 

Program Statement Definition 0/ Characteristic 

LIMITER 

Y = LIMIT(PI, P2, X) 

X = an input 

PI, P2 = parameters defining 
the range of limiting 

Comments 

y 

fo 

y = PI; for x < PI 

y = P2 ; for x> P2 

x 

y = X ; for PI < x <P2 

Used for defining limiting or saturation in a system. The slope of the func­
tion can be changed from 45° by the statement 

Y = Q*LIMIT(PI, P2, X) 
(Q = user defined slope) 

A typical application of this function is given in Example 2.1 0, p. 60. 

Program Statement 

QUANTIZER 

Y = QNTZR(P, X) 

P = width of quantized signal 

X = independent variable 

Definition 0/ Characteristic 

y = KP; for (K - -!)P < x < (K + -!)P 

K = 0, ±l, ±2, ±3, ... 



294 Listing and Definition of All CSMP Functions App.! 

Comments 

Useful for quantizing a function or signal. For example, a sin function can 
be quantized as follows. 

Xl = SIN(lO.O*TIME) 
X2 = Xl *QNTZR(O.05, TIME) 

This function can be used to simulate the output of a digital to analog converter. 

Program Statement 

HYSTERESIS 

Y = HSTRSS(IC, PI, P2, X) 

PI, P2 = parameters defining the 
range of the hysteresis 

IC = value of Y at to' 

X = independent variable 

Definition of Characteristic 

Y 

Y = X -Pz 

for [x(t) - x(t - At)] > 0 

and y(t - At) < (x - Pz) 

y =x -PI 

for [x(t) - x(t - At)] < 0 

and y(t - At) ~ (x - PI) 

otherwise y = y(t - At) 

Table A-6 

Switching Functions 

Program Statement 

OUTPUT SWITCH 

YI, Y2 = OUTSW(Xl, X2) 

Description of Switch 

Yt = X2. Y2 = 0 ; for Xl < 0 

YI = 0 ,Y2 = X2; for Xl ~ 0 

x 

Yl 
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Program Statement 

INPUT SWITCH 

Y = INSW(Xl, X2, X3) 

Program Statement 

COMPARATOR 

Y = COMPAR(Xl, X2) 

Program Statement 

FUNCTION SWITCH 

Y = FCNSW(Xl, X2, X3, X4) 
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X2 

• 
X3 

• • 
Xl 

II( 

Xl 

X2 • 

X2 

• 
X3 

; ~ :. 
Xl 

oil( 

Description of Switch 

::Q Xl <0 

~ 
~f>O 

Y = X2; for x I < 0 

y = X3; for Xl ~ 0 

Description of Switch 

C 
0 Xl <X2 
M 
P 
A 
R Xl ~X2 
E 

y = 0; for Xl < X2 

y = 1; for Xl > X2 

Description of Switch 

Xl <0 ~ 
..... 

x,=o> 
x,>O ~ @ 
Y = X2; for X I < 0 

y = X3; for Xl = 0 

y = X4; for Xl > 0 

y 

y=O 

y = 1 

y 
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Program Statement Description of Switch 

RESETTABLE FLIP-FLOP 

Q = RST(R, S, T) S 

T RST Q 

flip-flop 

R 

Q = 0; for R > 0 (regardless of Sand T) 

Q = 1; for R < 0, and S > 0 (regardless of T) 

Q = 0; I ! T> 0 ! Q(t - ilt) = 1 
Q = 1; R < 0 T> 0 Q(t - ilt) = 0 

for and when 
Q = 0; S < 0 T So 0 Q(t - ilt) = 0 

Q = 1; T So 0 Q(t - ilt) = 1 

Comments 
This switch has the operating characteristics of a reset-set-toggle flip-flop. 

Q(t - ilt) is the previous state of the flip-flop. At the start of a simulation, 
Q(t - at) = 0 for Rand S < 0 with either state of T. 

Application of this flip-flop is given in Example 4.8, p. 228. 

AND 

Program Statement 

Y = AND(Xl, X2) 

Applications given in 
Ex.3.13,p.158 
Ex. 4.7, p. 224 
Ex. 4.8, p. 228 

NAND (not and) 

Y = NAND(Xl, X2) 

Table A-7 

Logic Functions 

xl 

x2 

Xl 

X2 

Logic Function Description 

0 
y = 1; for x I > 0, X2 > 0 

y = 0; otherwise 

D 
Y = 0; for Xl > 0, X2 > 0 

y = 1; otherwise 

y 

y 
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Program Statement Logic Function Description 

NOT 

~ Y = NOT(X) x y 

Application given in 
Ex. 4.7, p. 224 
Ex. 4.8, p. 228 y = 1; for x:::;: 0 

y = 0; for X> 0 

INCLUSIVE OR Xl 

D Y = IOR(Xl, X2) 
y 

X2 

Application given in 
Ex. 4.7, p. 224 y = 0; for Xl :::;: 0, X2 :::;: 0 

y = 1; otherwise 

NOR (not or) xl 

D y 
Y = NOR(Xl, X2) X2 

Y = 1; for X I :::;: 0, X2 :::;: 0 

y = 0; otherwise 

EXCLUSIVE OR Xl )D y 

Y = EOR(Xl, X2) X2 

Y = 1; for Xl :::;: 0, X2 > 0 

y = 1; for X I > 0, X2 :::;: 0 

y = 0; otherwise 

EQUIVALENT xl 

D y 
Y = EQUIV(Xl, X2) X2 

Y = 1; for Xl :::;: 0, X2 :::;: 0 

y = 1 ; for X I > 0, X2 > 0 

y = 0; otherwise 

FORTRAN Functions. All FORTRAN functions are available for use in 
CSMP simulation. Also, the majority of FORTRAN techniques can be used with 
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CSMP including WRITE statements, DO loops, GO TO, and IF. In some cases 
the FORTRAN statements require special handling procedures within the body of 
a CSMP program. Several examples are given in the text in which FORTRAN 
is included with the CSMP program. 

In the following table some of the more common FORTRAN functions are 
listed for convenience. Users should refer to any standard FORTRAN text for a 
more complete listing. 

Program Statement 

EXPONENTIAL 

Y = EXP(X) 

NATURAL LOGARITHM 

Y =ALOG(X) 

COMMON LOGARITHM 

Y = ALOG lO(X) 

ARCTANGENT 

Y = ATAN(X) 

TRIGONOMETRIC SINE 

Y = SIN(X) 

TRIGONOMETRIC COSINE 

Y = COS(X) 

SQUARE ROOT 

Y = SQRT(X) 

HYPERBOLIC TANGENT 

Y = TANH(X) 

ABSOLUTE VALUE 

(Real argument and output) 

Y = ABS(X) 

Table A-8 

FORTRAN Functions 

Mathematical Description 

y = eX 

y = In (x) 

y = loglo (x) 

y = tan- 1 (x) 

y = sin (x) 

y = COS (x) 

y=,vx 

y = tanh (x) 

y =\x\ 
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Program Statement Mathematical Description 

ABSOLUTE VALUE 

(Integer argument and output) 

Y = IABS(X) y =Ixl 

TRANSFER OF SIGN 

X = SIGN(A, B) A·B 
X=lBT 

LARGEST VALUE 

(Integer arguments and real 
output) 

Y = AMAXO(XI, X2, ... , XN) y = max (x h X2, ••• , xn) 

LARGEST VALUE 

(Real arguments and output) 

Y = AMAXI(XI, X2, ... , XN) y = max (Xh X2, ••• ,Xn) 

LARGEST VALUE 

(Integer arguments and output) 

Y = MAXO(XI, X2, ... , XN) y = max (x h X2, .•• , Xn) 

LARGEST VALUE 

(Real arguments and 
integer output) 

Y = MAXI(XI, X2, ... , XN) y = max (Xh X2, ••• , Xn) 

SMALLEST VALUE 

(Integer arguments and real 
output) 

Y = AMINO(XI, X2, ... , XN) y = min (x h X2, ••• , Xn) 

SMALLEST VALUE 

(Real arguments and output) 

Y = AMINI (Xl, X2, ... , XN) y = min (x h X2, ••• , Xn) 

SMALLEST VALUE 

(Integer arguments and output) 

Y = MINO(XI, X2, ... , XN) y = min (Xh X2,' •• , xn) 
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Program Statement 

SMALLEST VALUE 

(Real arguments and 
integer output) 

Y = MIN1(Xl, X2, ... , XN) 

App.1 

Mathematical Description 

Additional CSMP Functions. The following functions have been added to 
CSMP III. Refer to Chap. 5 for addition comments concerning CSMP III. 

Table A-9 

Functions Added to CSMP III. 

Program Statement 

GENERAL LAPLACE TRANSFORM 

(Available only in CSMP III) 

Y = TRANSF(N, B, M, A, X) 

Format For Entering Data: 

STORAGE 

B(N + 1), A(M + 1) 

TABLE 

B(1 - (N + 1» = B(1). 

B(2), ... ,B(N + 1), 

A(1 - (M + 1» = A(1), 

A(2), ... , A(M + 1) 

Comments 

Transformation Equivalent 

X(s) amsm +am_lsm- 1 + ... +als+am+l 
bnsn +bn_1sn- 1 + ... +b1s+bn+1 

where m:::;; n 

Y(s) 

The TRANSF function can be used to find the response of a transfer func­
tion with m zeros and n poles (m < n) due to an arbitrary input, x. The user 
should note with caution that am+ 1 and bn+ 1 are the last coefficients of the 
numerator and denominator respectively while am and bn are the first coefficients. 

Suppose one desires to find the step response of the following transfer func­
tion using TRANSF. 

G(s) _ Y(s) _ 3s 2 + 4s + 2 
- X(s) - S3 + 6s 2 + 9s + 4 

The statements given below can be used in the program for this purpose. 

STORAGE DENCOF(4), NUMCOF(3) 
TABLE DENCOF(1-4) = 9.0,6.0, 1.0,4.0, 

NUMCOF(1-3) = 4.0,3.0,2.0 
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Comments (continued). 

IN = STEP(O.O) 
OUT = TRANSF(3, DENCOF, 2, NUMCOF, IN) 

For further comments see Example 3.12, p. 151; and p. 265. 

Program Statement 

VARIABLE FLOW TRANSPORT DELAY 

(Available only in CSMP III) 

Y = PIPE(N, IC, P, Xl, X2, ND) 

N = the number of intervals required 
to define the 'delay of P. 

IC '= the initial condition of entire 
pipeline 

P = the holdup quantity 

Xl = flow rate 

X2 = delayed characteristic 

ND = degree of interpolation for 
retrieving delayed characteristic. 
This may be 1 or 2. 

This functional block is used to 
simulate the transient flow of an 
incompressible fluid in a system 
having a time delay. 

Program Statement 

FUNCTION GENERATOR WITH DEGREE 

OF INTERPOLATION CHOSEN BY USER 

(Available only in CSMP III) 

Y = FUNGEN(FUNCT, N, X) 

FUNCT = function name 

N = degree of interpolation to 
be used. User may select 
from 1, 2, 3,4, or 5. 

X = value of abscissa 

Comments 

Equivalent Mathematical Expression 

Iv = ft Xl dt 
to 

y = IC; for Iv < P 

_ q(1v - P) - q(lv(t - At) - P). 
y - Iv - Iv(t - At) , 

forlv ~P 

where Iv = flow volume 

q = weighted volume 

Equivalent Mathematical Expression 

y 

x 

y = [(x) 

Degree of interpolation between A, B, 
C, D, E, and F depends upon selection 
ofN. 

Use of this function is very similar to AFGEN and NLFGEN. See p. 262. 
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Program Statement 

SLOPE OF A CURVE 

(Available only in CSMP III) 

Y = SLOPE(FUNCT, N, X) 

FUNCT = user's name of the curve 

N = the degree of interpolation 
to be used, N = 1, 2, or 3. 

X = value of abscissa 

ARBITRARY FUNCTION OF 2 VARIABLES 

(Available only in CSMP III) 

Y = TWOV AR(FUNCT, Z, X) 

See p. 263. 

SAMPLING INTERVAL SWITCH 

(Available only in CSMP III) 

Y = SAMPL~Pl, P2, (::)] 

PI = the starting time for sampling 
to occur 

P2 = the last time for sampling to 
occur 

P3 = the time interval between 
samples if entered as a 
floating-point number 

N = the number of sampling 
intervals if entered as a 
fixed-point number 

Program Statement 

SCALAR-TO-ARRAY CONVERTOR 

(Available only in CSMP III) 

CALL ARRAY (VI, V2, ... , VN, X) 

This statement should only be used in 
nosort or procedural sections. Storage 
locations for the subscripted variable 
must be allocated by eithe a STORAGE 
of DIMENSION statement. 

Function Definition 

y =dfl 
dx x 

See p. 265. 

z 
y =f(x, z) 

y = 1 for TIME = P1 + kp3 :::;; P2 

or 

y = 1 for TIME = P1 + k(P2 n- Pt) <P2 

k = 0,1,2,3, ... for both the above 
conditions 

y = 0 otherwise 

Equivalent Mathematical Expression 

x(l) = Vt 

x(2) = V2 

x(n) = Vn 
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Program Statement 

ARRAY-TO-SCALAR CONVERTOR 

(Available only in CSMP III) 

YI, Y2, ... , YM = SCALAR(X(2» 

DOUBLE PRECISION FLOATING-POINT TO 

SINGLE PRECISION 

(Available only in CSMP III) 

Y = ZZRND(X(2» 

Equivalent Mathematical Expression 

Yl = x(2) 

Y2 = x(3) 

Ym = x(m + 1) 

The ZZRND function transforms 
by rounding the double precision 
variable X(2) to the single 
precision variable Y. 
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II 
DIAGNOSTIC MESSAGES, 

PROGRAM RESTRICTIONS, 

AND RESERVED WORDS 

This material involving diagnostic messages, restrictions, and reserved words 
was primarily taken from IBM Manuals.(1,2) 

Diagnostic Messages 

Diagnostic messages may occur during both the translation and execution 
phases of the program and are designed to be self-explanatory. Some of the diag­
nostic checks detect illegal characters or incorrect syntax; the symbol "$" is printed 
below the detected error prior to the associated diagnostic message. A "warning 
only" message is printed when an error is not wholly discernible in translation or 
does not destroy the "validity" of simulation. Some examples of these errors are: 

Control variable name not a systems variable 

Parameter value not specified 

Variable used as input to a section not available from any prior section 

Some examples of errors causing a run halt at the end of translation are: 

Incorrect structure or data statement format 

Invalid data card type 

Unspecified implicit loop 

RELERR specification on other than an integrator output name 

Examples of errors causing a run halt during execution are: 

304 
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Failure of an integration or implicit function to meet the error criterion 

A misspelled subroutine name 

The following is an alphabetical list of diagnostic messages with their ex­
planations and suggested corrections. The messages with the label "S/360" apply 
only to S/360 CSMP, the messages with the label "III" apply only to CSMP III, 
and messages designated with "Both" apply to both forms of CSMP. 

III CALL CONTIN CAN ONLY BE USED IN A TERMINAL SEGMENT 
"CALL CONTIN" can be used only in a Terminal segment. If it is used else­
where, the run terminates. 

Both CALL RERUN CAN ONLY BE USED IN A TERMINAL SEGMENT 
"CALL RERUN" can be used only in a Terminal segment. If it is used elsewhere, 
the run terminates. 

III CENTRAL INTEGRATION ROUTINE NOT SUPPLIED 
On the METHOD execution control card, the user has used the word, CENTRL, 
to specify his integration method. However, he has not supplied the integration 
deck to the program. The run will be terminated. 

Both CSMP STATEMENT INCORRECTLY WRITTEN 
The translation phase has detected an error in the statement printed before this 
message. The statement should be checked carefully, including parentheses and 
commas. Although translation of the source statements will continue, the run will 
be terminated before the execution phase. 

Both CSMP STATEMENT OUT OF SEQUENCE 
The sequence of input statements cannot be processed and the run will be termi­
nated before the execution phase. The statement should be checked for sequence 
in the input deck to see if it has been misplaced. MACRO definitions must pre­
cede all structure statements. An INITIAL segment, when used, must precede the 
DYNAMIC segment. If used, the TERMINAL segment must follow the DYNA­
MIC segment. 

S/360 DATA HAS NOT BEEN SPECIFIED FOR AN AFGEN FUNCTION 
S/360 DATA HAS NOT BEEN SPECIFIED FOR AN NLFGEN FUNCTION 

An AFGEN (or NLFGEN) function generator has been used in a structure 
statement but the corresponding data has not been specified using the FUNC­
TION statement. The run will be terminated. 

III DATA HAS NOT BEEN SUPPLIED FOR A TWOVAR FUNCTION 
A TWOV AR function generator has been used in a structure statement, but the 
data has not been specified on FUNCTION statements. The run will be termi­
nated. 

III DATA NOT SUPPLIED FOR FUNCTION 
An AFGEN, NLFGEN, FUNGEN, or SLOPE function generator has been 
used in a structure statement, but a FUNCTION statement has not specified the 
corresponding data. The run will be terminated. 
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S/360 DYNAMIC STORAGE EXCEEDED. THIS CASE CANNOT BE RUN 
The 8000-word limitation on simulator data storage has been exceeded. The 
storage in this array includes the current values of model variables, function and 
error tables, central integration history, and subscripted variable values. The 
problem should be analyzed to determine where equations can be combined to 
reduce the number of required entries in the array. 

S/360 ERROR-CENTRAL INTEGRATION ROUTINE NOT SUPPLIED 
The user has used the word CENTRL for his integration method on the 
METHOD execution control card; however, he has not supplied the integration 
deck to the program. The run will be terminated. 

Both ERROR IN COORDINATE ENTRIES 
An error has been detected in the previously printed FUNCTION data state­
ment. There is either an odd number of entries in the data table or an improper 
sequence of X-coordinate values. The run will be terminated. 

S/360 ERROR IN PRINT-PLOT STATEMENT 
An error has been detected in the PR TPL T output control statement. The 
statement should be checked for a correct number of parentheses and commas 
for specifying lower and upper limits, particularly if one or the other is missing, 
and commas are used to indicate this. Although the run continues, everything on 
the card after the error is disregarded. 

Both ERROR IN TABLE ENTRY 
In the previously printed TABLE data statement, an error has been detected. 
Although reading of the data statements will continue, the run will be termi­
nated before execution. 

Both EXCEEDED MAXIMUM ITERATIONS ON IMPLICIT LOOP 
One hundred iterations of the implicit loop have been run and convergence has 
not yet occurred. The run has been terminated. One possibility is to change the 
error condition, so that the convergence criteria can be met. 

III FAMILY OF PARAMETER VALUES AFTER END CONTINUE DELETED 
Following an END CONTINUE statement, a multiple-value parameter has been 
defined. These values will be deleted and the program will use the previous\ value 
of the parameter. 

III FINTIM HAS NOT BEEN SET. RUN DELETED 
FINTIM either has not been specified or was made equal to zero. 

S/360 FINTIM IS ZERO. THIS CASE CANNOT BE EXECUTED 
FINTIM either has not been specified or has been specified as being equal to zero. 

III FUNCTION DATA EXCEEDS STORAGE 
Function data supplied in the execution input exceeds the core storage allocated. 
The run is terminated. 

III FUNCTION DATA FOR LOAD EXCEEDS STORAGE 
The FGLOAD or TVLOAD subprogram has been called and the available 
storage for the function as specified by the SYSTEM NPOINT=n-statement is 
not sufficient. 



App.1I Diagnostic Messages, Program Restrictions, and Reserved Words 301 

III FUNCTION DATA FOR LOAD INCORRECT 
The FGLOAD or TVLOAD subprogram has been called and the input data (X 
values) are not monotonically increasing. 

III FUNCTION NAME xxxxxx HAS BEEN SPECIFIED PREVIOUSLY 
The name assigned to function data on a FUNCTION statement has been already 
assigned to another function, parameter, or variable. 

Both GENERATED STATEMENT NO. xx 
The Translator has detected an error during generation of statement xx of an 
invoked macro in the structure of the model. Carefully check the corresponding 
statement of the macro definition for proper spelling and punctuation. 

Both ILLEGAL CHARACTER OR DOUBLE OPERATOR 
In the previously printed statement, an illegal character or double operator has 
been detected. Although translation of the source statements will continue, the 
run will be terminated before the Execution phase. 

III ILLEGAL SPECIFICATION ON RERUN 
Following an END RERUN statement or END CONTINUE, there is an OUT­
PUT or PREPARE statement or a TIMER statement with an OUTDEL para­
meter. This is an illegal specification. 

Both INCORRECT IMPLICIT STATEMENT 
The Translation phase has detected an error in the IMPL structure statement 
printed before this message. The statement should be checked to see that the third 
argument is the output name of the last statement in the definition and that the 
block output appears at least once to the right of an equal sign. Although trans­
lation of the source statements will continue, the run will be terminated before 
the Execution phase. 

Both INCORRECT MACRO STATEMENT 
The Translation phase has detected an error in the macro use statement printed 
before this message. The statement should be checked to ensure that the number 
of arguments and outputs is correct and that the argument list ends with a paren­
thesis. Although translation of the source statements will continue, the run will 
be terminated before the Execution phase. 

S/360 INCORRECT TIMER VAR NAME**WARNING ONLY 
One of the system variable names (FINTIM, DELT, PRDEL, OUTDEL, or 
DELMIN) has been misspelled on the TIMER execution control card. The user 
should also check the possibility that the system variable has been renamed. 
Although the run will continue, the system variable misspelled will be unchanged. 

Both INPUT NAME SAME AS OUTPUT NAME 
The output variable n~me to the left of the equal sign has also been used as an 
input name on the right side of the equal sign. Except as output of a memory type 
functional element, such usage is not permissible in a parallel, sorted section. The 
run will be terminated. 

III INPUT P IS LESS THAN ZERO FOR DELAY 
Delay time P of the DELA Y function is found to be less than zero, which is an 
invalid condition. The execution of this run will be terminated. 
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III INPUT P2 IS LESS THAN PI FOR DEADSP 
Parameter P2 is found to be less than parameter PI for the DEADSP function 
and this is an invalid condition. 

III INPUT P2 IS LESS THAN ZERO FOR IMPULS 
The time between impulses P2 is found to be less than zero for the IMPULS 
function, which is an invalid condition. 

S/360 INPUT TO FUNCTION GENERATOR nnnnnn ABOVE SPECIFIED RANGE 
INPUT =xxxX.xxxx 
The input (xxxx.xxxx) to the function generator named nnnnnn is above the maxi­
mum specified range. The program will take the value for the maximum specified 
and continue. This message will be printed only once, even though the condition 
is reached several times. 

S/360 INPUT TO FUNCTION GENERATOR nnnnnn BELOW SPECIFIED 
RANGE INPUT =xxxx.xxxx 
The input (xxxx.xxxx) to the function generator named nnnnnn is below the mini­
mum specified range. The program will take the value for the minimum specified 
and continue. This message will be printed only once, even though the condition 
is reached several times. 

[
ABOVE] III INPUT TO FUNCTION name BELOW INPUT DATA 

[CURVE NO. nnnn] CALL mmmm INPUT = w at v 

The input to the function generator (interpolating for the function named in the 
message) is above the maximum or below the minimum input specified. The out­
put of the function generator is set equal to the output value of the function corre­
sponding to the input extreme which was violated. This message is printed only 
once even though the condition may be reached several times. The curve number 
nnnn indicates (for functions of two variables) for which curve the first input was in 
error. For example, if the model contains the following function of two variables: 

FUNCTION F, -5. = (0., 3.5), (1., 6.1), (3., 8.6) 
FUNCTION F, 3.2 = (0., 3.8), (1., 7.5), (3.2, 9.6) 
FUNCTION F, 10.2 = (0., 4.2), (1.2, 8.3), (2.8, 9.3) 

and the diagnostic message specifies CURVE NO.2, then the error is in the 
first input to the function curve 

FUNCTION F, 3.2 = (0., 3.8), (1., 7.5), (3.2, 9.6) 

The call number mmmm is the first argument of the interpolation function in the 
UPDATE FORTRAN subroutine generated by the Translator. For example, if 
the model contains the statement 

OP = AFGEN (FUNCT, XIN) 

the UPDATE subroutine would contain the corresponding statement 

OP = AFGEN (n, FUNCT, XIN) 

The first argument n is an integer constant and would be the call number in the 
diagnostic message for this statement if the value of XIN is outside the range 
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of the function FUNCT. The input value out of range is specified by INPUT 
= w. The value of the independent variable for this out-of-range condition is 
given by AT v. 

SECOND INPUT TO FUNCTION name [~:~~!J INPUT DATA 

CALL mmmm INPUT = w AT v 

The second input to the function generator TWOV AR (interpolating for the 
function of two variables named in the message) is above the maximum or below 
the minimum input specified. The output of the function generator is set equal to 
the output value of the function corresponding to the input extreme which was 
violated. This message is printed only once even though this condition may be 
reached several times. The call number mmmm is the first argument of the inter­
polation function block in the UPDATE subroutine generated by the Translator. 
For example, if the model contains the statement 

OUT = TWOVAR (F, XIN, ZIN) 

the UPDATE subroutine would contain the corresponding statement 

OUT = TWOVAR (n, F, XIN, ZIN) 

The first argument n is an integer constant and would be the call number in the 
diagnostic message for this statement if the value of ZIN is outside the range of 
the function F. The second input value which is out of range is specified by 
INPUT = w. The value of the independent variable for this out-of-range condi­
tion is given by AT v. 

Both LABEL INCORRECTLY WRITTEN 
The label used in the preceding statement cannot be recognized by the program. 
Check for proper spelling. The statement will be disregarded; the run will con­
tinue. 

III MACRO WITHIN MACRO USED IN A PROCEDURAL 
Macros, separately defined, can be invoked within the definition of other macros 
if overall parallel structure is implied. Invocation of a macro within a procedure 
within a macro definition is therefore not permissible. Similarly, a macro contain­
ing other macros in its definition may not be invoked from a procedure or from a 
procedural section. 

S/360 MACRO xxxxxx WITHIN MACRO yyyyyy USED IN A PROCEDURAL 
SECTION 
Macros, separately defined, may be invoked within the definition of other macros 
if overall parallel structure is implied. Invocation of a macro within a procedure 
within a macro definition is therefore not permissible. Similarly, a macro contain­
ing other macros in its definition may not be invoked from a procedure or from a 
procedural section. 

III METHOD SELECTED EXCEEDS STORAGE 
The integration method specified in the execution input exceeds the core storage 
allocated. The run is terminated. The integration methods available, in order of 
increasing size, are: RECT, TRAPZ, SIMP, ADAMS, RKSFX, RKS, STIFF, 
RKSDP, and MILNE. 
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S/360 MORE THAN 10 PRTPLT STATEMENTS 
More than ten PR TPLT output control statements have been specified. Only the 
first ten will be used. 

Both NUMBER EXCEEDS 12 CHARACTERS 
In the previously printed statement, a number exceeding twelve characters in a 
macro argument or integrator block initial condition has been detected. Although 
translation of the source statements will continue, the run will be terminated 
before the execution phase. 

Both NUMBER INCORRECTLY WRITTEN 
In the previously printed statement, a number written incorrectly has been 
detected. If detected during the translation phase, translation of the source state­
ments will continue; however, the run will be terminated before the execution 
phase. 

S/360 ONLY FIRST 10 CONDITIONS FOR JOB END WILL BE TESTED 
More than ten specifications have been given with the FINISH execution control 
statement. Although the run will continue, only the first ten specifications will be 
used. 

III ONLY FIRST 10 CONDITIONS WILL BE TESTED 
More than ten specifications have been given through the FINISH execution 
control statement. Although the run will continue, only the first ten specifications 
will be used. 

Both ONLY FIRST 50 VALUES WILL BE USED 
The multiple-value form of the PARAMETER data statement specifies more 
than 50 values for the parameter. A sequence of runs will be performed using only 
the first 50 values. 

S/360 ONLY FIRST 50 VARIABLES WILL BE PREPARED 
More than 50 variables (including TIME) have been specified with PREPARE or 
PR TPL T output control statements. Although the run will continue, only the 
first 50 variables will be used. 

III ONLY FIRST 220 VARIABLES WILL BE PREPARED 
More than 220 variables (including TIME) have been specified through PRE­
PARE or OUTPUT print control statements. Although the run will continue, 
only the first 220 variables will be used. 

S/360 ONLY FIRST 50 VARIABLES WILL BE PRINTED 
More than 50 variables (including TIME) have been requested with PRINT 
execution control statements. Only the first 50 will be printed; others will be 
ignored. 

III ONLY FIRST 55 VARIABLES WILL BE PRINTED 
More than 55 variables (including TIME) have been requested through PRINT 
execution control statements. Only the first 55 will be printed; others will be 
ignored. 

S/360 ONLY FIRST 100 VARIABLES WILL BE RANGED 
More than 100 variables (including TIME) have been specified with the RANGE 
output control statement. Although the run will continue, only the first 100 vari­
ables will be used. 
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III ONLY FIRST 110 VARIABLES WILL BE RANGED 
More than 110 variables (including TIME) have been specified through the 
RANGE output control statement. Although the run will continue, only the 
first 110 variables will be used. 

Both ONLY LAST VALUE OF FAMILY USED FOR CONTINUE RUN 
A multiple-value parameter has been used in a run that is to be continued. The 
continue control feature will be implemented only with the last value of the para­
meter. This is a warning message. The run will continue. 

Both OUTPUT NAME HAS ALREADY BEEN SPECIFIED 
In the previously printed statement, the output variable name to the left of the 
equal sign has been used before as an output variable name; that is, it has occur­
red to the left of the equal sign in a preceding section. The run will be continued. 

Both PARAMETERS NOT INPUT OR OUTPUTS NOT AVAILABLE TO SORT 
SECTION ***SET TO ZERO*** 
A list of variable names will be printed following this heading. The run is con­
tinued. Variables that are not parameters specified on data cards are set to zero. 
Output variable names that are not available to this sort section are initially set 
to zero, but may change as the problem is run. 

Both PROBLEM CANNOT BE EXECUTED 
At least one diagnostic message will have been printed among the source state­
ments indicating the reason why the problem cannot be executed. The run will 
be terminated. 

S/360 PROBLEM INPUT EXCEEDS TRANSLATION TABLE nn 
During translation of the problem, a table has been exceeded and the run will 
terminate. The specific table is identified by nn in the following list: 

nn Translation Table 

1 More than 500 statement output names. 

2 More than 1400 statement input names (temporary count during trans-
lation). 

3 More than 400 parameter names 

4 More than 300 INTGRL or MEMORY outputs 

5 More than 1400 input names and unique block names 

6 More than 20 FIXED variable names 

7 More than 100 non-zero initial condition numeric values 

8 More than 10 FORTRAN specification cards 

9 More than 100 unique block names and symbolic names with first letter 
I, J, K, L, M, or N but not appearing on FIXED statements 

10 More than 25 STORAGE variable names 

11 More than 15 sections (SORT or NOSORT) 

12 More than 100 MACRO arguments, outputs, and statement numbers for 
one MACRO 
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nn Translation Table 

13 More than 50 MACRO functions 

14 More than 120 MACRO definition cards 

15 More than 50 HISTORY or MEMORY functions 

16 More than 15 MEMORY functions 

17 More than 85 variables that are neither parameters specified on data 
cards nor outputs of a following SORT section 

18 More than 150 duplicate names in COMMON (outputs or inputs to 
INTGRL blocks) 

19 More than 100 parameters in one SORT sequence 

20 More than 600 structure statements in a single SORT section 

21 More than 180 characters in a single macro-generated statement. This 
restriction is violated by a procedural macro with more than 25 names for 
input and output variables or by a macro which includes a statement of 
excessive complexity. To circumvent the restriction, simplify the macro 
definition. 

III PROBLEM INPUT EXCEEDS TRANSLATION TABLE nn 
A table has been exceeded during translation of the problem, and the run will 
terminate. The specific table is identified by nn, which refers to the following list: 

nn Translation Table 

More than 600 macro and statement output names 

2 More than 1900 macro and statement input names 

3 More than 300 INTGRL blocks 

4 More than 400 parameter and function names 

5 More than 50 STORAGE or 100 integrator array specifications 

6 More than 50 user-defined history and memory functions 

7 More than 50 macro functions defined 

8 More than 125 MACRO definition statements 

9 More than 100 literal constants (does not include zero values) 

10 More than 25 FIXED variable names 

11 More than 20 sort sections 

12 Sum of arguments, outputs and statement numbers of a macro block 
definition is more than 100 

13 More than 300 duplicate names used with INTGRL blocks 

14 More than 600 structure statements in a single sort section 
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nn Translation Table 

15 More than 100 variables in a single SORT sequence 

16 More than 180 characters in a single macro-generated statement. This 
restriction is violated by a procedural macro with more than 25 names for 
input and output variables or by a macro which includes a statement of 
excessive complexity. To circumvent the restriction, simplify the macro 
definition. 

S/360 PRTPLT, PREPARE, AND RANGE VARIABLES EXCEED 100. ALL 
RANGE VARIABLES STARTING WITH xxxxxx HAVE BEEN DELETED 
More than 100 variables (including TIME) have been specified with PRTPLT, 

. PREPARE, and RANGE output control statements. Although the run will con­
tinue, only the first 100 variables will be used for this run. 

III RANGE VARIABLES DELETED STARTING WITH NAME 
Too many variables have been specified on RANGE, OUTPUT, and PREPARE 
statements. "Name" and all those following are deleted from RANGE area. 

S/360 RERUN FROM TERMIN CANCELED FOR CONTIN RUN 
The TERMINAL segment cannot be used to cause a rerun when a CONTINUE 
translation control statement started the run. The TERMINAL computation 
statements will be executed but any CALL RERUN will be ignored. 

S/360 SIMULATION HALTED 
The run was terminated because a FINISH condition was satisfied. The variable 
name and its value are printed. 

III SIMULATION HALTED FOR FINISH CONDITION 
The run was terminated because a finish condition was satisfied. The variable 
name and its value are printed. 

Both SIMULATION INVOLVES AN ALGEBRAIC LOOP CONTAINING THE 
FOLLOWING ELEMENTS 
A list of output variable names will be printed following this diagnostic. The sort 
subprogram has been unable to find an integration or memory block in the loop 
involving these variables. The run will be terminated before the execution phase. 

S/360 SYMBOLIC NAME xxxxxx NOT DEFINED 
An error has been detected on the PARAMETER, INCON, CONSTANT, or 
TIMER card printed before this message. Although input to the execution phase 
will continue, the simulation will not be run. 

III SYMBOLIC NAME NOT DEFINED IN MODEL 
An error has been detected on the PARAMETER, INC ON, CONSTANT, or 
TIMER card printed before this message. Although input to the Execution phase 
will continue, the simulation will not be run. 

Both SYMBOLIC NAME EXCEEDS SIX CHARACTERS 
In the previously printed statement, a symbolic name exceeding six characters has 
been detected. Although translation of source statements will continue, the run 
will be terminated before Execution. 
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Both SYMBOLIC NAME INCORRECTLY WRITTEN 
In the previous statement, a symbolic name has been written incorrectly. The job 
will be terminated. 

III TOO MANY CONTINUATION CARDS 
The previously printed statement has been continued on too many cards. If a 
MACRO label statement has over three continuation statements or if a structure 
statement has over eight continuation statements, the user should make multiple 
statements or use more columns on individual cards. Although translation of the 
source statements will continue, the run will be terminated before the Execution 
phase. 

S/360 TOO MANY CONTINUATION CARDS. MAX=n 
The previously printed statement has been continued on too many cards. If 
N = 3, a MACRO label statements has over three continuation statements. If 
N = 8, a structure statement has over eight continuation statements. The user 
should make multiple statements or use more columns on individual cards. 
Although translation of the source statements will continue, the run will be termi­
nated before the execution phase. 

Both TOO MANY LEFT PARENTHESES 

Both TOO MANY RIGHT PARENTHESES 
Too many left (or right) parentheses have been detected in the statement printed 
before this diagnostic. Although the translation of the source statements will 
continue, the run will be terminated before the execution phase. 

Both VARIABLE STEP DELT LESS THAN DELMIN. SIMULATION HALT 
The simulation will not be continued because the specified DELT is less than the 
specified DELMIN. 

Programs Restrictions 

Size limitations of the CSMP programs may be exceeded when solving very 
large problems. The following table gives some of the restrictions for both S/360 
CSMP and CSMP III. Additional restrictions appear in this Appendix in the sec­
tionon diagnostic messages under the message, "PROBLEM INPUT EXCEEDS 
TRANSLATION TABLE nn." 

Number of statement and MACRO output names 
Numbers of statement and MACRO input names 
Number of parameter and function names 
Number of integrators plus statements with memory 

and history 
Number of structure statements in a single sort section 
Number of sort sections 
Number of parameters in a single sort sequence 

S/360 CSMP 

500 
1400 
400 
300 

600 
15 

100 

CSMPIII 

600 
1900 
400 
300 

600 
20 

100 
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S/360 CSMP CSMP III 

Number of user-supplied memory and history functions 50 50 
Number of memory functions 15 
Number of MACRO functions 50 50 
Sum of MACRO arguments, outputs, and statements 100 100 

number for one MACRO 
Number of FINISH specifications 10 10 
Number of RANGE and PREPARE variables t ~ 
Number of STORAGE variables 25 50 
Number of statement sent directly to FORTRAN 10 

(identified by a / in column 1) 
Number of FIXED variables 20 25 

tThe total number of RANGE, PRTPLT, and PREPARE variables must be 100 or less. 
tTwo times the number of RANGE variables plus the number of PREPARE and OUTPUT 

variables must be equal to or less than 220. 

Reserved Words 

The words listed below are reserved for special use in CSMP. They should 
not be used as variable or subprograms names. 

ABS GO 
BACKSPACE GOTO 
CALL lABS 
COMMON IDIM 
CONTINUE IF 
DABS IFIX 
DBLE INTEGER 
DEFINE ISIGN 
DIM PAUSE 
DIMENSION READ 
DFLOAT REAL 
DO RETURN 
DOUBLE REWIND 
DSIGN SIGN 
END SNGL 
END FILE STOP 
EQUIVALENCE SUBROUTINE 
EXIT WRITE 
EXTERNAL 
FIND 
FLOAT 
FORMAT 
FUNCTION 
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In addition to the above words, the following restrictions must be followed for 
variable names. 

1 Certain variable names are reserved for use by the system, and cannot 
appear in a CSMP structure statement. These names are NALARM, 
IZxxxx, and ZZxxxx, where x is any digit. 

2 KEEP is a COMMON variable and it must be used consistently with its 
intended purpose. 

3 DELT, DELMIN, DELMAX, FINTIM, TIME, PRDEL, and OUTDEL 
are system reserved names and, unless renamed, must appear only in their 
intended context. 

4 TIME is the name for the independent variable and should be used only 
for that purpose. 

5 CSMP subroutines, unless renamed, must be used only as intended. These 
names are MAINEX, CENTRL, NUMER, ALPHA, DEBUG, UPDATE, 
CSTORE, and the standard CSMP functional block names. 

6 The statement numbers 30000 to 39999, inclusive, are reserved for system 
use in the UPDATE subprogram. 



APPENDIX 

III 
MA THEMATICS OF 

INTEGRA TION METHODS 

There are six different integration methods available in S/360 CSMP. CSMP 
III provides an additional method for solving stiff equations. All methods use cen­
tralized integration. This means that integration is performed after all structure 
statements have been evaluated. 

In the Milne and Runge-Kutta methods, the step-size is automatically adjusted 
to user-specified error-bounds during the problem execution. The following gives 
the mathematics of the integration methods as listed in the IBM programs refer­
ence manuals. (1,2) 

Milne Fifth-Order Predictor-Corrector (MILNE) 

Predictor: Yf+l1t = Yt- l1t + ~t(8X, - 5X,-M + 4X,-2M - X,-3I1t) 

Estimate: Yt+l1t = 0.96116Y~+l1t + 0.03884Yf+M 

Integration interval control is based on the following criteria: 

I yc - yP I,......, Error 
A+Rlycl =A+Rlycl <1 

Runge-Kutta Fourth-Order (RKS) 

1 
Yt +M = Yt + 7)(K1 + 2K2 + 2K3 + K 4 ) 

317 
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Kl = atf(t, Yt) 

K2 = atf(t + ~t, Yt + ~l) 

K3 = atf(t + ~t, Yt + ~2) 

K4 = atf(t + at, Yt + K3) 

The interval (at) for both variable step integrations will be reduced to satisfy 
the following criterion: 

I YtHt - ys I:::::: Error < 1 
A + R I YtHt I - A + R I Yt+At I -

In both the MILNE and RKS methods, ys is Y t + At calculated by Simpson's rule. 
A and R are the absolute and relative errors corresponding to the values specified 
by ABSERR and RELERR. 

A form of the fourth-order Runge-Kutta for a fixed-step-size (RKSFX) is also 
available. The mathematics are the same as shown above with the exception that 
the error criterion is not used. 

In addition to RKSFX method, there are four fixed-step integration methods. 
Adams Second-Order (ADAMS) 

Simpson's Rule (SIMP) 

Predictor: Y f+tl.t/2 = Yt + ~t Xt 

Y p _ yP + atx t+tl.t - t+tl.t/2 T t+At/2 

Corrector: Y7+tl.t = Yt + ~t(Xr + 4Xt+tl.t/2 + Xt+M) 

Trapezoidal (TRAPZ) 

Predictor: 

Estimate: 

Rectangular (RECT) 

Yf+M = Yt + at X t 

at 
Yt+M = Yt + T(Xt + xt+tl.t) 

YtHt = Yt + at Xt 

In all of the above equations, the common terminology is Xt = Yt = f(t). The 
value of Xr+tl.t used in the estimate is based on the prediction Y f+tl.t. 

A method for handling stiff equations(3,4) (STIFF) is available in CSMP III. 
The solution is computed by the following step by step procedure. 
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Given the differential equation y = J(t, y), y(to) = Yo 

(1) yit) = [yet) - yet - ho)]jho 

(2) d l = yet) - y it) 

(3) Y it + c5) = yet) + c5y(t) where c5 < hj4 

(4) yit + c5) =J[t -I- c5, yp(t -I- c5)] 

(5) dz = [Yit + c5) - y(t)]jc5 

C = {(e.th - l)jlh 1 < 0, 
1 1 + lhj2 1 >0 

{
e.th 1 < 0 

Co = 1 + lh 1 >0 

(7) ycCt + h) = yet) + hy it) + hcldl 

(8) yeCt + h) = J[t + h, ycCt + h)] 

(9) E = h[ycCt + h) - (y A(t) + codl )] 

(10) Ee = 2c5[Yit + c5) - yet)] 

Step 1 

Step 2 

To start up 

ho =0 

yiO) =y(O) 

y is assumed to be the sum of an asymptotic part and a 
perturbation from the asymptote. 

Steps 3 and 4 These steps constitute Euler integration with step size c5. 

Step 5 dz ~ yet). It is assumed that the form of J(t, y) makes calcu­
lation of y difficult. 

Step 6 

Step 7 

Step 8 

y c is computed solution at end of current step; h is step-size. 

E is used to monitor step-size h. 

Ee is used to monitor Euler step-size. 

The section on integration methods in Chap. 3 contains details for using the 
various methods. Information on accuracy and computer time is also included in 
this section. 

In the event that none of the methods satisfies the user's requirements, the 
user can supply his own integration method. This method is entered in the system 
by the name of CENTRL. Example 3.2 illustrates the procedure for using a user­
supplied integration method. 
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A 

ABSEER (absolute error): 
definition, 82, 318 
effect on problem solution, 84 
program application, 91, 116, 117 
resetting during simulation, 114, 

117 
Accelerometer (simulation), 247 
ADAMS (integration): 

accuracy, 87 
application, 85 
mathematics of, 318 
time requirements, 88 

AFGEN function: 
definition, 31 
illustration, 291 
program application, 32-34, 204 

Algebraic loop: 
definition, 171 
diagnostic message, 313 
program application, 48, 176-78 

Algorithm: 
digital filter, 241, 243 
for digital control, 216, 219, 220 
PID digital controller, 221-24 

ALOGI0 function, 203, 234 
AND (lo~c): 

definitIon, 226, 296 
program application, 160-61; 229, 

232 
Arbitrary function generators (see also 

AFGEN,NLFGEN,FUNGEN) 
CSMP III, 262-63, 301 
CSMP/360, 291, 292 

Array integration: 
general discussion, 103-4, 268 
program application, 104-7, 197-203 

ATAN2 (arc tangent), 196, 201 

B 

Beam deflection simulation, 60-65 
Block diagram: 

digital control system, 209, 210, 213, 
214, 216 

position control system, 40 
simulation of, 18-22 
temperature control system, 52 

Bode diagram (see ,Frequency response) 
Boundary value problem: 

endpoint calculations, 64-65 
program application, 60 

c 

CALL ARRAY statement, 302 
CALL CONTIN statement, 267 
CALL DEBUG subroutine: 

description, 129, 130, 132 
program application 132, 133 

CALL FGLOAD subroutine, 262, 263 
CALL FINISH instruction, 267 
CALL OUTPUT instruction, 260 
CALL PRINT instruction, 260 
CALL RERUN statement: 

definition of, 64 
program application, 63 

CALL TVLOAD subroutine, 264, 265 
Cam follower simulation, 65-68 
CENTRAL (integration): 

application, 9~-95 
description, 93 

Chemical process, 52-58 
Circuit simulation, 42-52 
CMPXPL function (complex poles): 

application using, 46 
definition, 45, 284 

Coil spring mfg. simulation, 118 
COMMON MEN statement, 124 
COMMON statement, 21, 34, 124 
COMPARATOR (logic), 226 
COMPAR function (switching), 295 
Complex poles (see also CMPXPL): 

transfer function for, 45 
Constants (in CSMP), 7, 8 
CONSTANT statement: 

definition, 15, 28 
limitations on use, 95, 120 
program application, 14-17, 54,89 

CONTINUE statement: 
CSMP application, 29 
description, 119, 120, 122, 123 
FORTRAN application, 63, 64 
program illustration, 92, 122, 201 

CONTINUE statement (FORTRAN): 
description, 120 
program application, 63, 64, 120 

CONTOR parameter: 
application, 257, 258 
description, 254, 256 

Control statements: 
CSMP III, 266-70 
CSMP/360, 112-24 

CSMP III: 
control statements, 266-67 
dlfferences between S/360 CSMP, 

244 
functions, 260-66 
general comment, 2 
program ,examples: 

accelerometer simulation, 247 
heat transfer, 254, 270 
spring-mass-damper system, 253 

CSMP/S360: 
basic structure, 10-14 
general comment, 2 
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CSMP/S360 (continued) 
overview, 5-7 

D 

program without integration, 65 
system installation of, 7 

Data output: 
CSMP III, 245-60 
CSMP/360, 124-238 

DATA statement: 
description, 101, 244 
program application, 102 

DATA statement (FORTRAN): 
description and application, 100 

DEADSP function (dead space): 
definition, 58, 292 
program application, 60 

DEBUG (see CALL DEBUG) 
DECK: 

description, 135-38 
example of, 140, 141 

DELAY function (time delay): 
description, 53, 286 
program application, 53-54 
used with z-transforms, 212 

DELMAX symbol, 268 
DELMIN symbol, 18, 85-86 
DELT symbol: 

application, 89 
definition, 18, 85-87 . 
for logic stepping, 232 
for program steppin~, 196 

Derivative (differentiation) (see also 
DERIV): 

DERIV function: 
application 48, 50 
definition, 48, 282 

Diagnostic messages: 
listing of, 304-14 
program application, 176 

Difference equation, 215-25 
Differential equation solution, 151, 

167-68 
Digital controller: 

cascade realization, 218 
direct realization, 215 
parallel realization, 219 
PID,221-24 

Digital control systems: 
diagram illustrating, 209 
general discussion, 209-20 

Digital logic: 
program application, 224, 228 
simulation, 224-32 
table of functions, 226 

DIMENSION statement: 
description, 97-99 
examples using, 102, 106, 201, 247 

DO loop (with CSMP), 201 
Double-precision operations: 

description, 268-70 
example, 270 
restriction on using, 8 

DYNAMIC segment: 
definition, 12 
general use, 2 
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E 

in digital control, 217 
in digital logic, 232 
program application, 34, 38, 63, 

196, 201 

Electric circuit simulation, 42-52 
END card: 

definition, 18, 113 
typical application, 21, 38, 111-15, 

122 
END CONTINUE statement, 119, 266 
ENDDATA statement, 101-2 
ENDINPUT statement, 101, 267 
ENDJOB card: 

definition, 18, 124 
typical application, 21, 38, 123 

ENDJOB STACK card, 124 
ENDMAC card: 

description, 142 
illustration, 145 

ENDPROCEDURE: 
application, 156, 217, 220 
description, 157-58 

EOR function (logic), 226, 297 
EQUIV ALENCE statement: 

description, 103, 105, 106 
examples, 106, 109, 201 
used in CSMP III, 268 

EQUIVALENT function (logic), 226, 
297 

Examples using CSMP 1360: 
amortization schedule for home 

mortgage, 147-51 
automobile traffic-flow simulation, 

158-65 
beam deflection simulation, 60-65 
coil spring mfg. (random 

distribution), 118-19 
compounding interest in saving 

account (user supplied 
integration), 93-95 

control system with compensation, 
39-42 

feedback system with digital control­
ler, 211-15 

feedback system with sample and 
hold, 210-11 

frequency response, 196-205 
gear train containing backlash, 

58-60 
heat transfer in air duct, 104-7 
impact dynamics of two railroad 

cars, 90-93 
modulo two up-down counter, 

228-332 
Nixie light logic simulation, 224-28 
orbital trajectory simulation of space 

vehicle, 126-29 
PID digital controller, 221-24 
position control system, 18-25 
response of piston driven by air 

cylinder, 134-35 
RLC circuit, 42-52 

Examples using CSMP 1360 (continued) 
simulation of system involving an 

algebraic loop, 176-77 
solution of nonlinear, time-varying, 

simultaneous differential 
equations, 167-69 

spring-mass-damper system, 14-18 
stress analysis of cam follower, 65-68 
temperature control for a chemical 

process, 52-58 
three-stage Saturn vehicle, 35-39 
transfer function simulation, 151-54 
transient temperature response, 

30-35 
Van der 'Pol Equation, 25-30 
ventricular pressure simulation of 

human heart, 110-12 
Examples using CSMP III: 

F 

dynamics of accelet'ometer 
transducer, 247-48 

spring-mass-damper system, 253-54 
transient heat distribution, 254-59 

FCNSW function (function switch), 
295 

FINISH label: 
definition, 34 
program application, 34, 63-64, 196 
resetting of, 114, 117 

FINTIM symbol: 
definition, 18 
typical application, 17-18, 18-25 
used with a CONTINUE statement, 

120 
FIXED statement: 

application, 102, 106, 257 
description, 101 
double precision, 269 

Flip-flop (RST), 228-32, 296 
Format (card columns), 9-10 
FORMAT statements: 

program application, 102, 128, 129, 
229 

use in CSMP 9, 101, 125, 126, 201 
FORTRAN: 

as used inCSMP, 6 
continuation cards, 125 
functions, 297-300 
output, 63-64, 124-26 
specification statement, 97-98 
subprograms, 138, 165-68 

FORTRAN functions: 
CONTINUE,37-38 
FORMAT, 38, 201, 204, 229 
GO TO, 229 
IF,35 
WRITE, 38, 201, 204, 229 

Frequency response: 
general discussion, 194 
program for calculation of, 196, 201 
using array integrators, 197 
with Bode diagram, 196-97 
without integration, 195 



Function generators (see Arbitrary 
function generators) 

FUNCTION statement (generation): 
program application, 34, 67, 204-5 
used with AFGEN, 30-31 
used with NLFGEN, 30-31 

Function blocks, 6-7 
FUNGEN function, 262, 301 

G 

GAUSS (distribution function): 
application, 119, 120 
description, 291 

Gear train (simulation), 58 
GO TO statement, 229 
GROUP parameter: 

H 

application, 260, 261 
description, 257 

Heat transfer simulation, 34, 104, 105, 
254,270 

HEIGHT variable, 252 
HISTORY function, 171 
HSTRSS function (hysteresis), 294 

I 

IF statement: 
program application, 128, 217, 219, 

220, 224, 229 
with CSMP, 35, 126 

IMPL statement (implicit function) 
(see also Algebraic loop): 

application, 176-78 
description, 172, 173, 286 

IMPULS function: 
definition, 44, 289 
in sampled data, 210-11 
program application, 46, 86 

Inclusive OR (see lOR) 
INCON: 

description, 28 
illustrations, 29 
limitation on use of, 95, 120 
program application, 28, 54 

Independent variable: 
other than TIME, 66 
renaming of, 62 

INITIAL segment: 
definition, 11 
general comment, 2 
in logic simulation, 232 
program application, 34, 38, 63, 

196, 201 
with digital control simulation, 217 

INPUT statement, 101, 244, 267 
INSW function (switch), 295 
Integers: 

example, 106 
specified by, 101 

Integration: 
accuracy of, 84, 86, 87 
array, 103, 268 

Integration (continued) 
changin~ integration technique 

durmg run, 90 
choosing the method, 85 
CSMP III, 267-68 
double precision, 268 
error requirement, 82-84, 86 
fixed step method, 85 
mathematics of, 317-19 
methods, 85 
mode-controlled, 163, 284 
specification form, 103 
step size, 82-87, 129 
stiff equation, 268 
time requirements, 88 
user-supplied integration method, 

93 
variable step method, 82 

Interest on investment, 93, 147 
INTGRL (integration): 

description, 25, 281-82 
program application (typical), 14, 

18, 42, 54, 60, 91, 106 
specification form, 103, 107 
with subscripted variables, 99 

lOR function (logic): 

J 

description, 226, 297 
program application, 229 

Job control language cards (JCL), 137, 
138,245 

K 

KEEP symbol: 
description, 89 
program application, 89, 125, 217 

L 

LABEL statement: 
definition, 25 
program application, 21, 122 
resetting of, 114, 117, 123 
using more than one, 46 

Laplace transform, 19 
LED LAG function: 

definition, 41, 283 
program application, 42 

LIMIT function, 293 
Logic functions, 226, 296, 297 
LOG parameter, 257 

M 

MACRO function: 
description, 139-54 
fundamental rules, 142-45 
in digital control, 212 
program application, 146-54, 196 

MAIN subroutine, 136 
MEMORY statement, 168, 171 
MERGE instruction: 

description, 253 
example, 254, 255 

METHOD statement: 
description, 82, 85 
program application, 89 

MILNE integration method: 
accuracy, 86 
description of mathematics, 317 
general description, 88 
program application, 82 

MODINT function: 
description, 163, 284 
program application, 164 

N 

NAND function (logic), 226, 296 
NLFGEN function: 

definition 31, 292 
program application, 63, 67, 111 

Nonlinear function generator (see 
NLFGEN) 

Nonlinear system characteristics, 
292-94 

Nonlinear systems: 
differential equation solution, 25-30 
function generators for, 292-94 
use of dead space in, 58 

NOR function (logic), 226, 297 
NOSORT section: 

definition, 12-14 
general comments, 6 
program application, 38, 196, 201 
used in digital logic, 232 

NOT function (logic), 226, 297 
NPLOT parameter, 257 
NT AB parameter: 

o 

description, 257 
example, 260-61 

Offline plotters, 132, 133, 135 
Operators (with CSMP), 
OUTDEL parameter: 

definition, 24 
program application, 18-25 
relationship to FINTIM, 24 
used with CONTINUE, 120, 122 
used with integration, 67 
used with PREPARE, 133 

OUTPUT statement: 
description, 246-47 
program application, 247-51 

OUTSW function, 294 
OVERLAY statement: 

description, 109, 110 
example, 111 

p 

Page height/width control (see 
HEIGHT, WIDTH,) 

PAGE statement: 
description, 252 
example, 254 

PARAMETER card: 
definition, 28 
illustrations, 26, 28 
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PARAMETER card (continued) 
limitation on use of, 95, 120 
multiple values for parameter, 53 
program application, 201, 211 

PI continuous controller, 52 
PID digital controller, 221-24 
PIPE function, 301 
Piston-cylinder system, 134 
PREPARE statement: 

description, 132, 133 
problem application, 134, 136, 137 
resetting of, 114, 117 

PRTPLT (printer-plot) 
computer output of (typical), 23, 28 

35,40,42,47,49,56,65 
CSMP III (see OUTPUT), 247-48 
description, 22 
of integers, 101 
program application (typical), 21, 

34,38,46,54,63,67,196,201 
resetting, 114, 117, 122, 123 
scaling of, 54 
subscripted variables, 99, 107 
with log stepping, 197-98 

PRINT (FORTRAN), 124, 126 
PRINTPAGE statement, 246 
PRINT statement: 

column output (typical), 17, 27, 54, 
60 

computer logic output, 232 
description, 16 
equation type output, 17, 61 
integers, 101 
maximum number of variables, 126 
program application (typical), 15, 

21, 54,60 
resetting, 114, 117, 122, 123 
subscripted variables 99, 107 

PROCEDURE function: 
description, 154-64 
fundamental rules, 156-58 
typical application, 161, 164, 196 
used in digital control, 217 

Program restrictions, 311, 312, 314, 
315, 316 

PULSE function: 
application program, 46 
definition, 44, 288 

Pulse generation (with STEP), 200 
Pulse train: 

application program, 46 
generation of, 43-44 
random generated, 224-26 

PUNCH statement, 124 

Q 

QNTZR function (quantization), 
203-94 

R 

RAMP function, 287 
Random number generator (see 

GAUSS and RNDGEN 
function) 
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RANGE statement: 
description (CSMP/360), 20 
description (CSMP III), 260 
resetting of, 114, 117 
simulation using, 58-60 

READ statement: 
example, 102 
use in CSMP, 101, 267 

REALPL function (real pole): 
definition, 20, 283 
program application (typical), 21, 

42,54 
REAL *8 statement, 269-70 
RECT integration (rectangular): 

accuracy of, 87 
mathematics of, 318 
time requirements, 88 
use of, 85 

Recursive difference equation, 215-21 
Relay device, 145, 146 
RELERR statement: 

application 91, 116, 117 
definition of, 82, 318 
effect on program accuracy, 84 
resetting, 114, 117 

RENAME statement: 
description, 62 
program application, 62-65 
with a MACRO, 142 

RERUN statement, 246 
Reserve words, 315-16 
RESET statement: 

description, 117 
example, 120, 122 

Resettable flip-flip (RST): 
definition, 226 
program application, 228-32 

Restrictions (see Program restrictions) 
RKS integration: 

accuracy of, 84, 86 
description, 82 
mathematical formulation, 318 
time requirements, 88 

RKSDP integration (double precision): 
description, 269 
example, 270 

RKSFX (fixed-step integration): 
accuracy of, 86-87 
application in digital control, 

211-18 
description, 85 
mathematical formulation, 318 
time requirements, 88 

RNDGEN function (random number 
generator) : 

s 

application with digital logic, 229 
description, 119, 290 

Sample data control, 209-24 
SAMPLE function (switch), 302 
SCALAR function (array-to-scalar 

converter), 303 
SHADE parameter (gray-tone print 

output): 

description, 256 
example output, 21f;J7, 259 

Signal sources, 287-:91 
SIMP integration (Simpson): 

accuracy- of, 87 
description, 85 
example, 89 
mathematical formulation, 93-95, 318 
time requirement, 88 

SINE function, 290 
SLOPE function, 265, 302 
SORT section: 

basic use, 6 
definition, 12-14 
typical application, 38 

Space vehicle simulation, 35-37, 126 
Specification statement: 

description, 97, 98 
example, 106 

Spring-mass system, 107, 253 
SQRT (square root), 63, 194, 201 
Standard deviation (expression), 119 
State variables: 

circuit simulation using, 43 
transfer function representation in, 

205-8 
STEP function: 

definition, 24, 288 
in typical example programs, 21, 54, 

155 
STIFF integration: 

description of, 267, 268 
mathematical formulation, 318-19 

STOP statement: 
description, 123 
example, 18, 122, 169 

STORAGE statement: 
description, 98-99, 106 
example, 109, 196, 248 

Subscripted variables: 
CSMP III integration with, 254-55 
CSMP/360 integration with, 99, 103 
output using, 125, 245-48 
use in CSMP, 95, 97-103, 201 

Switching functions, 294-96 
SYMBOL parameter: 

description, 257 
example, 260-61 

Symbols (in CSMP), 7-8 

T 

TABLE statement: 
description, 99-100, 106 
program application, 109, 196, 257 

TERMINAL segment: 
definition, 12 
general comments, 2 
program application, 34, 38, 63, 201 

Thermodynamics, 134 
TIME (independent variable): 

double precision, 269 
with PREPARE statement, 133 
resetting to zero, 113 
setting starting value, 268, 281 



Time delay function (see DELAY 
FUNCTION) 

TIMER card: 
description, 18 
typical application, 14-17, 60 

TITLE statement: 
description, 16, 18, 245-46 
resetting of, 114, 117 
typical application, 14-17, 60, 122-23 

Traffic flow (simulation) 158-65 
Transfer function: 

general application, 43, 195-96 
state variable form, 205-8 

TRANSF function, 265-66, 300 
Translation control statement (see 

Control statements) 
TRAPZ integration (trapezoidal): 

accuracy, 87 
description, 85 
mathematical formulation, 318 
time requirement, 88 

Two-point boundary value problem, 60 

TWOVAR function (two variable), 
263-64,302 

u 

UPDATE subroutine, 136-38 
User defined functions and 

subroutines, 138-40 

v 
Ventricular pressure (heart), 110-11 

w 
Wegstein's algorithm, 173 
WIDTH variable, 252 
WRITE statement: 

program application, 127-29, 201, 
229 

use in CSMP, 124-26 

x 

XYPLOT instruction, 252 

z 
ZHOLD function (zero order hold): 

definition, 210, 285 
program application, 217, 219, 220, 

224 
Z-transform: 

algorithm simulation for inverse, 
215-20 

represented by DELAY function, 
211-15 

ZZRND instruction, 269-70, 303 
ZZTIME symbol, 269 
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Other books of interest .. . 

TH E APPLICATION OF G S TO 
M SIMULATIO 

Geoffrey Gordon 

This book provides a very practical and easy-to-follow guide to the widely 
used General Purpose Simulation System, based on the latest version of 
the language issued by 18M, GPSS V. ' 

Three chapters. are devoted to modeling, discrete simulation and pro­
gramming techniques; a series of thirteen chapters explain all features 
of the GPSS V language; seven valuable appendices summarize program­
ming details of the language , and its assembly program, describe the 
internal operations of the program, and compare GPSS V with previous 
versions of the language. 

Published 1975 320 pages 

MINICOMPUTER SYSTEMS: 
ing (PO -11) 

Richard H. Eckhouse, Jr. 

A diverse group of readers will find MINICOMPUTER SYSTEMS to be 
an excellent guide to the effective use of the inexpensive, yet powerful, 
small computers now available. 

There are discussions of the fundamental concepts of computer hard­
ware and software independent of any particular language or machine, 
programming fundamentals, PDP-ll organization and structure, pro­
gramming techniques, introduction to data structures, system software, 
operating systems, and an applications environment. 

Published 1975 343 pages 

ULATION 
IENTIFIC COMPUTERS 

Manesh J. Shah 

This is a practical book, written to bring the convenience and economy 
of today's compact digital computers to virtually anyone who needs to 
simulate and solve dynamic systems problems in engineering and the 
physical sciences. " 

For example, it treats control systems of various types, mechanical sys­
tems and related design problems, chemical processing, simulations of 
different kinds of chemical reactor systems, and many others. 

Published 1976 416 pages 
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