
Systems Reference Library

IBM System/360 Disk Operating System

I. American National Standard COBOL

Programmer's Guide

Program Number 360N-CB-482

File No. 5360-24
Form GC28-6398-l

This publication describes how to compile an American
National Standard COBOL X3.23-1968 program using the
IBM System/360 Disk operating System American National
Standard Full COBOL Compiler Version 2. It ~lso
describes how to linkage edit the resulting object
module, and execute the program. Included is a
description of the output from each of these three
steps: compile, linkage edit, and execute. In
addition, this publication explains features of the
compiler and available options of the operating system.
American National Standard COBOL was formerly known as
USA Standard COBOL.

DOS

---...;-.. ".- -

~
I

PREFACE

This publication is logically and
functionally divided into two parts. Part
I contains information useful to
programmers who are running IBM American
National Standard COBOL programs, i.e.,
programs compiled on the version 2
Compiler, under the control of the IBM
System/360 Disk operating System. Part I
covers such topics as job control language,
library usage, interpreting output, and
program debugging. Part I is intended
solely as object-time reference material.

Part II contains supplemental
information on the use ,of the language as
specified in the publication IBM System/360
Disk.Operating System: American National
Standard COBOL, Form GC28-~394, and should
be used in conjunction with this
publication for coding IBM American
National Standard COBOL programs. Part II
covers in detail such topics as file
organization, file label handling, and
record formats. Part II is intended as
source-time reference material for language
features that are primarily
system-dependent.

Second Edition (February 1970) .

wider and more detailed discussions of
the Disk Operating System are given in the
following publications:

IBM System/360 Disk Operating System:
System Control and system Service
Programs, Form GC24-5036

IBM System/360 Disk Operating System:
supervisor and Input/Output Macros, Form
GC24-5037

IBM System/360 Disk Operating system:
Data Management Concepts, Form GC24-3427

IBM System/360 Disk Operating System:
System Generation and Maintenance, Form
GC24-5033

IBM System/360 Principles of Operation,
Form GA24-6821

The titles and abstracts of related
publications are listed in the publication
IBM System/360 Bibliography, Form
GA22-6822.

This edition is a major revision of Form GC28-6398-0 and makes that
edition and its associated Technical Newsletter, Form N28-0263,
obsolete. The specifications in this publication correspond to Release
22/23 of the IBM System/360 Disk Operating System. This edition
contains changes and additions that reflect the Version 2 Compiler's
support of the following features: relative track addressing for direct
files, spanned records on sequential tape files and on direct files, and
forced end-of-volume for a sequentially organized file on a direct
access device. In addition, changes have been made throughout the
publication to correct and clarify specific items. All technical
changes are indicated by a vertical line to the left of the change:
revised or new illustrations are denoted by the symbol • to the left of
the caption.

Changes are continually made to the specifications herein: any such
changes will be reported in subsequent revisions or Technical
Newsletters. Before using this publication in connection with the
operation of IBM systems, refer to the latest SRL Newsletter, Form
GN20-0360, for editions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or the IBM branch office serving your locality.

A form for readers' comments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM corporation, Programming publications, 1271 Avenue of the Americas,
New York, New York 10020.

@ Copyright International Business Machines corporation 1969, 1970

• I

CONTENTS

I

~,

PART I INCLUDE Statement 39
ENTRY Statement · · · · · · · · 39

INTRODUCTION · · · 11 ACTION Statement · 39
Control Program · 11 Autolink Feature · · 40

supervisor · · · · · · · · 11
Job Control Processor · · · · · 11 LIBRARIAN FUNCTIONS · · · · · · · · 41

A. Initial Program Loader 11 Librarian · · · · · · 41 · · · · Processing Programs 11 Core Image Library • · · · · · · · · 41
System Service Programs · · · · · · · 11 Cataloging and Retieving Program
Application Programs · · · · · · · · · 12 Phases -- Core Image Library 41
IBM-Supplied Processing Programs · 12 Relocatable Library · · · · · 42

Multiprogramming · · · · · · · · · · 12 Maintenance Functions · · · · · · · · 42
Background vs. Foreground Programs 12 Cataloging a Module -- Relocatable

Library · · · · · · · · · 42
JOB DEFINITION • · · · · · · 13 Source Statement Library · · · · · · 43

Job Steps · · · · · 13 Maintenance Functions · · · · 43
Compilation Job steps · · · · · 13 Cataloging a Book Source
Multiphase Program Execution · · · · 13 Statement Library · · 43

Types of Jobs · · · · · · · · · · 14 Updating Books -- Source Statement
Job Definition Statements · 15 Library · · · · · · · · · · · · · · 45
Other Job Control Statements · · · 16 Logical Unit Assignment and Control

Stateme~t Placement: · · · · · · · · 47
JOB PROCESSING · · · · · 17 UPDATE Function -- Invalid Operand

Compilation · 17 Defaults · · · · · · · · · 47
Editing . · · · · 17 Private Libraries · · · · · · 48
Phase Execution · · · · · 18 Source Language Considerations · · 48

Multiphase Programs · · 18 Extended Source Program Library
,r--- Facility 48 I . · · · · · · · ~.I PREPARING COBOL PROGRAMS FOR PROCESSING 19

Assignment of Input/Output Devices · · · 19 PROGRAM CHECKOUT · · · · · · · · · · 51
Job Control · · · · · · · · · · · · · · 21 Debug Language · · · 51

Job Control Statements · · · · · · · · 21 Flow of Control · · · · 51
Comments in Job Control Statements · 21 Displaying Data Values During
Statement Formats · · · · · · -. · · 21 Execution · · · · · · · · · · · 52
Sequence of Job Control Statements · 22 Testing a Program selectively · 54

Description and Formats of Job Testing Changes and Additions to
Control Statements · · · · · · 22 Programs · · · · · 54

ASSGN Statement · · · · · · · 22 Dumps . . · · · · · · · · · · 54
CLOSE Statement · · 24 How to Use a Dump · · · · · · · · · · 55
DATE Statement · · · · · · · 24 Errors That Can Cause a Dump · · 55
TLBL Statement · · · · · · · · · 25 Locating a DTF · · · · · · 56
DLBL Statement · · · · · · · · · 26 Locating Data · · · · · · · · · · · · 57
EXTENT Statement · · · 26 Diagnostic Messages · · · · · · 64
VOL Statement · · · · · 28 Working with Diagnostic Messages · 64
DLAB Statement · · 29 Generation of Diagnostic Messages 64
TPLAB Statement · · · · · 30 Linkage Editor output · · · · 64
XTENT Statement · · · · · · · · 30 Execution Time Messages 64
JOB Statement · · · · · · · · 31 Recording Program Status · · · · · · 64
LBLTYP Statement · 31 RERUN Clause · · · · · 65
LISTIO Statement · · · · · · 32 Taking a Checkpoint 65
MTC Statement · · · · · · 32 Restarting a Program • · · • 66
OPTION Statement · · · 32
PAUSE Statement · 34 INTERPRETING OUTPUT · · · · · · 67
RESET Statement 34 Compiler Output 67
RSTRT Statement · · · · 35 Object Module · · · · 75
UPSI Statement · · · · · · 35' Linkage Editor Output 75

CBL Statement -- COBOL Option Comments on the Phase Map 77
Control Card • · · · · · · · · · 35 Linkage Editor Messages · · 77
Job Control Commands · · · · · · · 37 COBOL Phase Execution Output • · · 77

r"\: Linkage Editor Control Statements 37 Operator Messages · · · · · · 78
I Control Statement Placement 38 STOP Statement • 78 I · · · · · · '.~ PHASE Statement 38 ACCEPT Statement 78 · · · · · · · · · ·

system Output
CALLING AND CALL~D PROGRAMS
Linkage • • • • •

Linkage In A Calling Program • •
Linkage In A Called·Program
Entry Points • • • • • • • •
Correspondence of Arguments and

• 79

81
81

• 81
82
82

Parameters • • • • • • • • • • • • 82
Linkage Editing without OVerlay • • • • '83
Assembler Language Subprograms • • 84

Register Use • • ~ • • • • • 84
Save Area • • • • • 84
Argument List • • • • • • • • • 84

In-Line Parameter List • • 85
Lowest Level Program • 87

Overlays • • • • • • • 87
special Considerations When Using
Overlay Structures • • • • • • • • • • • 87

Assembler Language Subroutine for
Accomplishing Overlay • • • • • • • • 88
Linkage Editing with Overlay • • • 89
Job Control for Accomplishing Overlay 90

USING THE SORT FEATURE • • • • •
Sort Job 'Control Requirements

Sort Input and Output Control
Statements • • • • • • • • • •
Sort Work File Control Statements

Amount of Intermediate Storage
Required • • • • • • •
Improving Performance

• • 95
95

• • 95
• • 96

96
96

Sort Diagnostic Messages •
Linkage with the Sort Feature

Completion Codes • • • • • •

• • • 96

Checkpoint/Restart During a Sort • •

USING THE SEGMENTATION FEATURE • •

• • 96
97

• • 97

99
Operation • • • • • • • • • • •

Output From a Segmented Program
Compiler output • • • •

• • • 99

Linkage Editor Output •••• '.
Cataloging a Segmented Program •
Determining the Priority of the
Last Segment Loaded into the
Transient Area • • • • • •

Sort in a Segmented Program

PART II

• .100
.100
.101

• .101

• .101
.101

PROCESSING COBOL FILES ON MASS STORAGE
DEVICES • • • • • •• • •••••• 107
File Organization ••••••• 107

Sequential Organization ••••••• 107
Direct Organization .107
Indexed Organization. • • .107

Data Management Concepts. • .108
Sequential organization (DTFSD) •• 109

Processing a Sequentially Organized
File

Direct Organization (DTFDA)
Accessing a Directly Organized File
ACTUAL KEY Clause • • • •

Randomizing Techniques • • •
Actual Track Addressing

.109

.109
.110
.111
.112

Considerations for Specific Devices .125
Randomizing for the 2311~Disk Drive 125
Randomizing for the 2321 Data Cell .126

Indexed Organization (DTFIS) · · · .127
Prime Area · · · · · · · · .127
Indexes . · · · · · .128

Track Index · · · · · · · .128
Cylinder Index · · · · · .128
Master Index · · · · · · .128

Overflow Area · · · · · · · · · .128
Cylinder Overflow Area · · · · · · .128
Independent Overflow Area · .128
Adding Records to an Indexed File .128

Accessing an Indexed File (DTFIS)
Key Clauses · · · · · · · · Improving Efficiency · · · ·

ADVANCED PROCESSING CAPABILITIES · · DTF Tables . · · · · · · · · · · Pre-DTF Switch · · · · · · Error Recovery · · · · · · · · Volume and File Label Handling · Tape Labels · · · · · · · · · · · Volume Labels
Standard File Labels · · · · · · User Labels · · · · · · · · · · Nonstandard Labels · · · · · Label Processing Considerations · Mass Storage File Labels · · · · · Volume Labels
Standard File Labels · · · · · · User Labels · · · · · · · · Label Processing Considerations · Files on Mass Storag~ Device
Opened as Input · · · · · · · · Files on Mass Storage Devices
Opened as Output · · · · · Unlabeled Files · · · ·

RECORD FORMATS • •
Fixed-length (Format F) Records .• •
Undefined (Format U) Records • • • •
Variable-length (Format V) Records •

APPLY WRITE-ONLY Clause
Spanned (Format S) Records • • • •

S-Mode Capabilities • • • • • • •
Sequentially Organized S-Mode Files

· .130

· .130

· .131

· .133

· .133

· .138

· .138

· .144

· .144

· .144

· .144

· .144

· .144

· .148

· .149

· .149

· .149

· .150

· .150

· .150

· .150

· .151

• .153
• .153
• .153
• .154

.157

.157
• .158

on Tape or Mass Storage Devices .159
Source Language Considerations ••• 159
Processing sequentially Organized
S-Mode Files •••••••••••• 159

Directly Organized S-Mode Files .161
Source Language Considerations ••• 161
Processing Directly Organized
S-Mode Files • • • • • • • .162

OCCURS Clause with the DEPENDING ON
Option • • • • • • • .162

PROGRAMMING TECHNIQUES •• 165
General considerations. • .165

Spacing the Source Program Listing .165
Environment Division. • • • • • .165

SELECT Sentence • • •. • • • • • • • 165
APPLY WRITE-ONLY Clause ••• 165

Data Division •••••• 165
Overall Considerations •••••• 165

Prefixes. • • • • •••••• 165
Level Numbers • • • • • • .166

File Section. • • .166
RECORD CONTAINS Clause ••••••• 166

Working-Storage Section •• 166

/

n

;-',
\
',,---,'

,

separate Modules • • • • • • •
Locating the Working-Storage
Section in Dumps • • • • •

Data Description •• • • • •
REDEFINES Clause • • • • •
PICTURE Clause • • • • • •
USAGE Clause • • •
SYNCHRONIZED Clause • • • • •
Special considerations for DISPLAY
and COMPUTATIONAL Fields •
Data Formats in the Computer • • •

Procedure Division • • • • • • • • • •
Modularizing the Procedure Division

Main-Line Routine
Processing Subroutines • •
Input/Output Subroutines •

Intermediate Results • • • •
Intermediate Results and Binary

.166

.166

.167

.167

.167

.169

.172

.172

.172

.174

.174

.174

.174

.175

.175

Data Items • • • • •
Intermediate Results and COBOL
Library Subroutines

•• 175

.175
Intermediate Results Greater Than
30 Digits ••• • • .175
Intermediate Results and
Floating-point Data Items
Intermediate Results and the ON

• •• 175

SIZE ERROR Option ••••••••• 176
Procedure Division Statements .176

COMPUTE Statement .176
IF Statement. • • • • .176
MOVE Statement • • • • • •
NOTE Statement • • • • • •
PERFORM Statement • • • •

READ INTO and WRITE FROM Options •
TRACE Statement • • • •
TRANSFORM Statement • • • • •

Using the Report Writer Feature

.176

.176
• •• 176
• •• 176

: .177
.177
• 177

REPORT Clause in a File I
Description (FD) Entry. .177
Summing Techniques ••••••••• 177
Use of SUM ••••••••••••• 177
SUM Routines •••••••••••• 178
output Line Overlay .179
Page Breaks .179
WITH CODE Clause. • • • .179
Control Footings and Page Format •• 180
NEXT GROUP Clause • • • • • • .181
Floating First Detail •• 181
Report Writer Routines. • • .181

Table Handling Considerations ••• 181
Subs cripts • • • • • • • 181
Index-names •• 182
Index Data Items •••••••••• 182
OCCURS Clause ••••••••••• 182
DEPENDING ON Option ••• 182
SEARCH ALL Statement. • .183
SET Statement ••••••••• 183
SEARCH Statement ••• • • • ,. .185
Building Tables • • • • • • .186

APPENDIX A: SAMPLE PROGRAM OUTPUT ••• 187

APPENDIX B: STANDARD TAPE FILE LABELS .201

APPENDIX C: STANDARD MASS STORAGE
DEVICE LABELS •••••••••• 203

APPENDIX D: TRACK FORMATS FOR THE
2311, 2314, AND 2321 DIRECT-ACCESS
STORAGE DEVICES • • • • • • • • • .209

APPENDIX E: COBOL LIBRARY SUBROUTINES .211
Input/Output Subroutines ••••••• 211

Printer Sp~cing •••••••••• 211
Tape and Sequential Disk Labels •• 211
CLOSE WITH LOCK Subroutine ••••• 211
WRITE Statement Subroutines .211
READ Statement Subroutines ••••• 211
REWRITE Statement Subroutines ••• 211
DISPLAY (EXHIBIT and TRACE)
Subroutines •••••••••••• 211
ACCEPT and STOP (literal) Stateme,nt
Subroutines • • • • • • • • • 212
CLOSE Subroutine. • • • • • • .212
Multiple File Tape Subroutine ••• 212
Input/Output Error Subroutines ••• 212
Disk Extent Subroutines •••••• 212
Auxiliary Subroutines •• 212

Conversion Subroutines. • • .212
Arithmetic Verb Subroutines. • .214
Sort Feature Interface Routine •• 214
Checkpoint (RERUN) Subroutine •• 214
Segmentation Feature Subroutine ••• 214
Other Verb Routines •••••• 214

Compare Subroutines •••••• 214
MOVE Subroutines. • .215
TRANSFORM Subroutine •••••• 215
Class Test Subrout1ne •• 215
SEARCH Subrout~ne. • .215
Main Program or Subprogram
Subroutine. • • • • • • • • .215

APPENDIX F: DIAGNOSTIC MESSAGES
Compiler Diagnostic Messages •
Object Time Messages • • • • •

COBOL Object Program Unnumbered
Messages • • • • • • • • • • • •

.217

.217

.234

• .235

APPENDIX G: MACHINE CONSIDERATIONS ••• 237
Minimum Machine Requirements for the
Compiler • • • • • • • • • • •
Execution Time Considerations
Sort Feature Considerations

APPENDIX H: COMMUNICATION REGION
Communication Region • • • • •

• .237
• .237
• .237

• .239
• .239

APPENDIX I: SAMPLE JOB DECKS. • .241
Direct Files • • • • • • • • • .242

Creating a Direct File ••••••• 242
Retrieving and Updating a Direct
File • • • • • • • • • • • • .242

Indexed Files • • • • • • • • .243
Creating an Indexed File. • .243
Retrieving and Updating an Indexed
File. • • • • • • • • • • • .244

Files Used in a Sort Operation •••• 244
Sorting an Unlabeled Tape File ••• 244

INDEX • .245

ILLUSTRATIONS

FIGURES

Figure 1. S~mple Structure of Job Deck
for ,Compiling, Linkage Editing, and
Executing a Main Program and Two
Subprograms • • • • • • • • •
Figure 2. Sample Logical Unit
Assignments •••••••••

• 13

• 19
Figure 3. possible specifications for
X'ss' in the ASSGN Control Statement • 24
Figure 4. Sample Label and File
Extent Information for Mass Storage
Files • • • • • • • • • • • • • • • 28
Figure 5. Job Definition -- Use of
the Librarian • • • • ~ • • • • • • • • 38
Figure 6. Sample Coding to Calculate
FICA • • • • • • • • • • • • • • • 49
Figure 7. Altering a Program from
the Source Statement Library Using
INSERT and DELETE Cards
Figure 8. Effect of INSERT and
DELETE Cards • • • • •
Figure 9. sample Output of EXHIBIT
Statement with the CHANGED NAMED
Option ••••••••••••••

49

• 50

53
Figure 10. Sample Dump Resulting from
Abnormal Termination • • • • • • • • • • 58
Figure 11. Examples of Compiler Output • 68
Figure 12. Linkage Editor Output • 76
Figure 13. output from Execution Job
Steps • • • • • • • • • •
Figure 14. Calling and Called
Programs ••••••••••
Figure 15. Example of Data Flow Logic
in a Call Structure • • • • • •
Figure 16. Sample Linkage Routines
Used with a Calling Subprogram • • •
Figure 17. Sample In-line Parameter
List •••••••••••••••
Figure 18. Sample Linkage Routines
Used with-a Lowest Level Subprogram
Figure· 19. Example of an Assembler
Language Subroutine for Accomplishing

• 78

81

83

86

87

87

Overlay • • • • • • • • • • • • • • • • 88
Figure 20. Flow Diagram of Overlay
Logic • • • • • • • • • 89
Figure 21. Job Control for
Accomplishing Overlay • • • • 90
Figure 22. Calling Sequence to Obtain
Overlay Between Three COBOL Subprograms 91
Figure 23. Segmenting the Program
SAVECORE •••••••• • • • • • 99
Figure 24. Storage Layout for SAVECORE 100
Figure 25. Compiler output for
SAVECORE •••••• •• .101
Figure 26. Linkage Editing a
Segmented Program • • • • • . . '. .102
Figure 27. Location of Sort Program
in a Segmentation Structure •••••• 103
Figure 28. Structures of the Actual
Key • • • • • • • • • .111

Figure 29. Permissible Specifications
for the First Eight Bytes of the
Actual Key •••••••••••••• 112
Figure 30. Creating a Direct File
Using Method B ••••••••••••• 116
Figure 31. Creating a Direct File
with Relative Track Addressing Using
Method B ••••••••••
Figure 32. Formats of Blocked and

• .121

Unblocked Records • • • • • • • • .127
Figure 33. Adding a Record to a Prime
Track ••••••••••• • .129
Figure 34. Standard Tape File Label
and TPLAB Cards •••••••••• 145
Figure 35. Standard Tape File Label
and TLBL Card (Showing Maximum
Specifications) •••••••
Figure 36. Standard Tape File Label
and TLBL Card (Showing Minimum
Requi rements) ..'......

• .146

.147
Figure 37. Standard, User, and Volume
Labels •• • • • • • • • • • • .148
Figure 38. Nonstandard Labels. • .148
Figure 39. Fixed-Length (Format F)
Records •••••••••••••••• 153
Figure 40. Undefined (Format U)
Records • • • • • • • • • • •• • .154
Figure 41. Unblocked V-Mode Records .154
Figure 42. Blocked V-Mode Records •• 155
Figure 43. Fields in Unblocked V-Mode
Records •••••••••••••••• 156
Figure 44. Fields in Blocked V-Mode
Records • • • • • • • • • •
Figure 45. First Two Blocks of
VARIABLE-FILE-2 • • • • •
Figure 46. Control Fields of an
S-Mode Record • • • • • • • •
Figure 47. One Logical Record
Spanning Physical Blocks
Figure 48. First Four Blocks of
SPAN-FILE • • • • • • • • • • •
Figure 49. Advantage of S-Mode
Records Over V-Mode Records
Figure 50. Direct and Sequen,tial

• .156

• .157

• .158

• .159

• .160

• .160

Spanned Files on a Mass Storage Device 161
Figure 51. Calculating Record Lengths
When Using the OCCURS Clause with the
DEPENDING ON Option • • • • • .164
Figure 52. Treatment of Varying
Values in a Data Item of PICTURE S9 •• 174
Figure 53. Sample of GROUP INDICATE
Clause and Resultant Execution Output .179
Figure 54. Format of a Report Record
When the CODE Clause is specified
Figure 55. Activating the NEXT GROUP

.180

Clause ••••••••••• • .181
Figure 56. Table Structur'e in Core
storage • • • • • • • • • • • •
Figure 57. Track Format •
Figure 58. Communication Region in
the Supervisor ••••••••

• .184
• .210

• .239

8

c

Table 1. Job Control Statements • 16
Table 2. Symbolic Names, Functions,
and Permissible Device Types • • • • • • 20
Table 3. Glossary Definition and
Usage • • • • • • • • • • • • • • • • • 73
Table 4. Symbols Used in the Listing
and Glossary to Define
Compiler-Generated Information • • 74
Table 5. system Message
Identification Codes ••• -. • 79
Table 6. Conventional Use of Linkage
Registers •••••• -.... 84
Table 7. Save Area Layout and Word
Contents -. • • -. • • • • • - • -. • • • 85
Table 8. Recording Capacities of Mass
Storage Devices • - •• - .107
Table 9. Partial List of Prime
Numbers •• 114
Table 10. Fields Preceding DTFMT and
DTFSD • • • • -. • -. • • • • • • • .134
Table 11. Fields Preceding DTFDA -
ACCESS IS RANDOM - Actual Track
Addressing • • • • • • -. • • -. • • • • .134
Table 12. Fields Preceding DTFDA -
ACCESS IS RANDOM - Relative Track
Addressing-. • - • -. • • -. • • -. • • • • .135

TABLES

Table 13. Fields Precedinq DTFDA -
ACCESS IS SEQUENTIAL - Actual Track
Addressing ••••••••••••••• 136
Table 14. Fields Preceding DTFDA -
ACCESS IS SEQUENTIAL - Relative Track
Addressing- • -. • • • • - .. -. • - • - • - • -. • - .137
Table 15. Fields Preceding DTFIS ••• 137
Table 16. Meaning of Pre-DTF Switch .- .138
Table 17. Errors Causing an Invalid
Key Condition ••••••••••••• 139
Table 18. Meaning of Error Bytes for
GIVING option of Error Declarative ••• 140
Table 19. Location and Meaning of
Error Bits for DTFMT •••••••••• 142
Table 20. Location and Meaning of
Error Bits for DTFSD •••••••••• 142
Table 21. Location and Meaning of
Error Bits for DTFDA •••••••••• 142
Table 22. Location and Meaning of
Error Bits for DTFIS •••••••••• 143
Table 23. Data Format Conversion •• - .170
Table 24. Relationship of PICTURE to
storage Allocation • - • - • - • - • - • - • -. • -. .173
Table 25. Rules for the SET Statement .185
Table 26. Functions of COBOL Library
Conversion Subroutines ••••••••• 213
Table 27. Functions of COBOL Library
Arithmetic Subroutines ••••••••• 214

- ------------ --------------

"

PART I

• INTRODUCTION

• JOB DEFINITION

• JOB PROCESSING

• PREPARING COBOL PROGRAMS FOR PROCESSING

• LIBRARIAN FUNCTIONS

• PROGRAM CHECKOUT

• INTERPRETING OUTPUT

• CALLING AND CALLED PROGRAMS

• USING THE SEGMENTATION FEATURE

• USING THE SORT FEATURE

c'
9

---------------- --- -

•

c

o

In the years since 1959, COBOL has
undergone considerable refinement and
standardization. Now, an extensive subset
for a standard COBOL has been specified by
the American National Standards Institute,
an industry-wide association of computer
manufacturers and users. This standard is
called American National Standard COBOL.
,IBM American National Standard COBOL is
compatible with American National Standard
COBOL and includes a number of extensions
to it as well.

An IBM American National Standard COBOL
program may be processed by the IBM
System/360 Disk Operating System. Under
control of the operating system, a set of
IBM American National Standard COBOL source
statements is translated to form a module.
In order to be executed, the module in turn
must be processed to form a phase. The
reasons for this will become clear later.
For now it is sufficient to note that the
flow of an IBM American National Standard
COBOL (herein, simply termed COBOL) program
through the operating system is from source
statements to module to phase.

The Disk operating system consists
essentially of a control program and a
number of processing programs.

CONTROL PROGRAM

The components of the control program
are: the Supervisor, Job Control
Processor, and the Initial Program Loader.

SUPERVISOR

The main function of the Supervisor is
to provide an orderly and efficient flow of
jobs through the operating system. (A job
is some specified unit of work, such as the
processing of a COBOL program.) The
Supervisor loads into the computer the
phases that are to be executed. During
execution of the program, control usually
alternates between the Supervisor and the
processing program. The supervisor, for
example, handles all requests for
input/output operations.

INTRODUCTION

JOB CONTROL PROCESSOR

The primary function of the Job Control
Processor is the processing of job control
statements. Job control statements
describe the jobs to be performed and
specify the programmer's requirements for
each job. Job control statements are
written by the programmer using the job
control language. The use of job control
statements and the rules for specifying
them are discussed later.

INITIAL PROGRAM LOADER

The Initial Program Loader (IPL) routine
loads the Supervisor into main storage when
system operation is initiated. Detailed
information about the Initial Program
Loader need not concern the COBOL
programmer. Anyone interested in this
material, however, can find it in the
publication IBM System/360 Disk Operating
System: System Control and System Service
Programs.

PROCESSING PROGRAMS

The processing programs include the
COBOL compiler, service programs, and
application programs.

SYSTEM SERVICE PROGRAMS

The system service programs provide the
functions of generating the system,
creating and maintaining the library
sections, and editing programs into disk
residence before execution. The system
service programs are:

1. Linkage Editor. The Linkage Editor
processes modules and incorporates
them into phases. A single module can
be edited to form a single phase, or
several modules can be edited or
linked together to form one executable
phase. Moreover, a module to be
processed by the Linkage Editor may be
one that was just created (during the
same job) or one that was created in a
previous job and saved.

Introduction 11

The programmer instructs the Linkage
Editor to perform these functions
through job control statements. In
addition, there are several linkage
editor control statements.
Information on their use is given
later.

2. Librarian. The Librarian consists of
a group of programs used for
generating the system, maintaining and
reorganizing the disk library areas,
and providing printed and punched
output from the libraries. The three
system libraries are: the core image
library, the relocatable library, and
the source statement library. In
addition, the Librarian supports
private relocatable and source
statement libraries. Detailed
information on the Librarian is given
later. .

APPLICATION PROGRAMS

Application programs are usually
programs written in a higher-level
programming language (e.g., COBOL). All
application programs within the Disk
Operating System are executed under the
supervision of the control program.

IBM-SUPPLIED PROCESSING PROGRAMS

The following are examples of
IBM-supplied processing programs:

1. Language translators, e.g., COBOL
compiler

2. Sort/Merge

3. Utilities

4. Autotest

MULTIPROGRAMMING

For those systems with main storage
equal to or in excess of 24K bytes, the
Disk Operating System offers
multiprogramming support. In addition to
at least 24K bytes of main storage,

12

multiprogramming support requires the
storage protection feature.

Multiprogramming refers to the ability
of the system to control more than one
program concurrently by interleaving their
execution. This support is referred to as
fixed partitioned multiprogramming, since
programs are assigned to fixed locations
when they are cataloged to the system.
Each program occupies a contiguous area of
main storage. The amount of main storage
allocated to programs to be executed may be
determined when the system is generated, or
it may be determined by the operator when
the program is loaded into main storage for
execution.

BACKGROUND VS. FOREGROUND PROGRAMS

There are two types of problem programs
in multiprogramming: background and
foreground. Background programs are
initiated by the Job Control Processor from
hatched-job input streams. Foreground
programs may operate in either the
batched-job mode or in the single-program
mode. Single-program foreground programs
are initiated by the operator from the
printer-keyboard. When one program is
completed, the operator must explicitly
initiate the next program.

Background and foreground programs
initiate and terminate independently of one
another. Neither is aware of the other's
status or existence.

The system is capable of concurrently
operating one background program and one or
two foreground programs. Priority for CPU
processing is controlled by the Supervisor
with foreground programs having priority
over background programs. Control is taken
away from a high priority program when that
program encounters a condition that
prevents continuation of processing, until
a specified event has occurred. Control is
taken away from a lower priority program
when an event for which a higher priority
program was waiting has been completed.
Interruptions are received and processed by
the Supervisor.

COBOL source modules must,be compiled as
background programs. COBOL program phases
can be executed as either background or
foreground programs.

C
~)

./

C
-~

)

o

o

A job is a specified unit of work to be
performed under control of the operating
system. A typical job might be the
processing of a COBOL program -- compiling
source statements, editing the module
produced to form a phase, and then
executing the phase. Job definition the
process of specify~ng the work to be done
during a single job -- allows the
programmer considerable flexibility. A job
can include as many or as few job steps as
the programmer desires.

JOB STEPS

A job step is exactly what the name
implies -- one step in the processing of a
job. Thus, in the job mentioned above, one
job step is the compilation of source
statements; another is the linkage editing
of a module; another is the execution of a
phase. In contrast to a job definition,
the definition of a job step is fixed.
Each job step involves the execution of a
program, whether it be a program that is
part of the Disk operating System or a
program that is written by the user. A
compilation requires the execution of the
COBOL compiler. similarly, an editing
implies the execution of the Linkage Editor
Finally, the execution of a phase is the
execution of the problem program itself.

Compilation Job Steps

The compilation of a COBOL program may
necessitate more than one job step (more
than one execution of the COBOL compiler).
In some cases, a COBOL program consists of
a main program and one or more subprograms.
To compile such a program, a separate job
step must be specified for the main program
and for each of the subprograms. Thus, the
COBOL compiler is executed once for the
main program and once for each subprogram.
Each execution of the compiler produces a
module. The separate modules can then be
combined into one phase by a single job
step -- the execution of the Linkage
Editor.

For a COBOL program that consists of a
main program and two subprograms,
compilation and execution require five
steps: (1) compile (main program), (2)
compile (first subprogram), (3) compile

JOB DEFINITION

(second subprogram), (4) linkage edit
(three modules combined into one phase),
and (5) execute (phase). Figure 1 shows a
sample structure of the job deck for these
five job steps. compilation and execution
in three job steps -- compile, linkage
edit, and execute -- is applicable only
when the COBOL source program is a single
main program.

r--,
1// JOB PROG1
I·
I·
I~
1// EXEC FCOBOL
I {source deck - main program}
1/*
1·
I·
I·
1// EXEC FCOBOL
I {source deck - first subprogram}
1/*
I·
I·
I·
1// EXEC FCOBOL
I {source deck - second subprogram}
1/*
I·
1-
I·
1// EXEC LNKEDT
I·
I·
I·
1// EXEC L-_______________________________________ _

Figure 1. Sample Structure of Job Deck
for compiling, Linkage Editing,
and Executing a Main Program
and Two subprograms

Multiphase Program Execution

The execution of a COBOL program has
thus far been referred to as the execution
of a phase. It is possible, however, to
organize a COBOL program so that it is
executed as two or more phases. Such a
program is known as a multiphase program.

By definition, a phase is that portion
of a program tha~ ~s loaded into main
storage by a single operation of the
Supervisor. A COBOL program can be
executed as a single phase only if there is
an area of main storage available to

Job Definition 13

accommodate all of it. A program that is
too large to be executed as a single phase
must be structured as a multiphase program.
The technique that enables the programmer
to use subprograms that do not fit into
main storage (along with the main program)
is called overlay.

The number of phases in a COBOL program
has no effect on the number of job steps
required to process that program. As will
be seen, the Linkage Editor can produce one
or more phases in a single job step.
Similarly, both single-phase and mUltiphase
programs require only one execution job
step. Phase execution is the execution of
all phases that constitute one COBOL
program.

Detailed information on overlay
structures, as well as information on using
the facilities of the operating system to
create multiple phases and to execute them,
can be found in the chapter "Calling and
Called Programs."

TYPES OF JOBS

A typical job falls into one of several
categories. A brief description of these
categories follows; a complete discussion
is found in the chapter "Preparing COBOL
Programs for Processing."

Compile-Only: This type of job involves
only the execution of the COBOL compiler.
It is useful when checking for errors in
COBOL source statements. A compile-only
job is also used to produce a module that
is to be further processed in a subsequent
job.

A compile-only job can consist of one
job step or several successive job steps.

Edit-Only: This type of job involves only
the execution of the Linkage Editor. It is
used primarily to combine modules produced
in previous compile-only jobs, and to check
that all cross references between modules
have been resolved. The programmer can
specify that all modules be combined to
form one phase; or he can specify that some
modules form one phase and that others form
additional phases. The phase output
produced as the result of an edit-only job
can be retained for execution in a
subsequent job.

14

Compile and Edit: This type of job
combines the functions of the compile-only
and the edit-only jobs. It requires the
execution of both the COBOL compiler and
the Linkage Editor. The job can include
one or more compilations, resulting in one
or more modules. The programmer can
specify that the Linkage Editor process any
or all of the modules just produced; in
addition, he can specify that one or more
previously produced modules be included in
the linkage editor processing.

Execute-Only: This type of job involves
the execution of a phase (or multiple
phases) produced in a previous job. Once a
COBOL program has been compiled and edited
successfully, it can be retained as one or
more phases and executed whenever needed.
This eliminates the need for recompiling
and re-editing every time a COBOL program
is to be executed.

Edit and Execute: This type of job
combines the functions of the edit-only and
the execute-only jobs. It requires the
execution of both the Linkage Editor and
the resulting phase(s).

compile, Edit, and Execute: This type of
job combines the functions of the compile
and edit and the execute-only jobs. It
calls for the execution of the COBOL
compiler, the Linkage Editor, and the
problem program; that is, the COBOL program
is to be completely processed.

When considering the definition of his
job, the programmer should be aware of the
following: if a job step is cancelled
during execution, the entire job is
terminated; any remaining job steps are
skipped. Thus, in a compile-edit-and
execute job, a failure in compilation
precludes the editing of the module(s) and
phase execution. Similarly, a failure in
editing precludes phase execution.

For this reason, a job usually should
(but need not) consist of related job steps
only. For example, if two independent
single-phase executions are included in one
job, the failure of the first phase
execution precludes the execution of the
second phase. Defining each phase
execution as a separate job would prevent
this from happening. If successful
execution of both phases can be guaranteed
before the job is run, however, the
programmer may prefer to include both
executions in a single job.

o

JOB DEFINITION STATEMENTS

Once the programmer has decided the work
to be done within his job and how many job
steps are required to perform the job, he
can then define his job by writing job
control statements. Since these statements
are usually punched in cards, the set of
job control statememts is referred to as a
job deck. In addition to job control
statements, the job deck can include input
data for a program that is executed during
a job step. For example, input data for
the COBOL compiler the COBOL program to
be compiled -- can be placed in the job
deck.

The inclusion of input data in the job
deck depends upon the manner in which the
installation has assigned input/output
devices. Job control statements are read
from the unit named SYSRDR (system reader),
which can be either a card reader, a
magnetic tape unit, or a disk extent.
Input to the proqessing programs is read
from the unit named SYSIPT (system input),
which also can be either a card reader, a
magnetic tape unit, or a disk extent. The
installation has the option of assigning
either two separate devices for these units
(one device for SYSRDR, a second device for
SYSIPT) or one device to serve as both
SYSRDR and SYSIPT. If two devices have
been assigned, the job deck must consist of
only job control statements; input data
must be kept separate. If only one device
has been assigned, inp~t data must be
included within the job deck.

There are four job control statements
that are used for job definition: the JOB
statement, the EXEC statement, the
end-of-data statement (/*), and the
end-of-job statement (/&). In this
chapter, the discussion of these job
control statements is limited to the
function and use of each statement. The
rules for writing each statement are given
in the chapter ·Preparing COBOL Programs
'for Processing."

The JOB statement defines the start of a
job. One JOB statement is required for
every job; it must be the first statement
in the job deck. The programmer must name
his job on the JOB statement.

The EXEC statement requests the
execution of a program. Therefore, one
EXEC statement is required for each job
step within a job. The EXEC statement
indicates the program that is to be
executed (for example, the COBOL compiler,
the Linkage Editor). As soon as the EXEC
statement has been processed, the program
indicated by the statement begins
execution.

The end-of-data statement, also referred
to as the 1* (slash asterisk). statement,
defines the end of a program's input data.
When the data is included within the job
deck (that is, SYSIPT and SYSRDR are the
same device), the 1* statement immediately
follows the input data. Fo~ example, COBOL
source statements would be placed
immediately after the EXEC statement for
the COBOL compiler; a 1* statement would
follow the last COBOL source statement.

When input data is kept separate (that
is, SYSIPT and SYSRDR are separate
devices), the 1* statement immediately
follows each set of input data on SYSIPT.
For example, if a job consists of two
compilation job steps, an editing job step,
and an execution job step, SYSIPT would
contain the source statements for the first
compilation followed by a 1* statement, the
source statements for the second
compilation followed by a 1* statement, any
input data for the Linkage Editor followed
by a 1* statement, and perhaps some input
data for the problem program followed by a
/* statement.

The end-of-job statement, .also referred
to as the 1& (slash ampersand) statement,
defines the end of the job. A 1& statement
must appear as the last statement in the
job deck.

Job Definition 15

OTHER JOB CONTROL STATEMENTS

The four job definition statements form
the framework of the job deck. There are a
number of other job control statements in
the job control language; however. not all
of them must appear in the job deck. The
job control statements are summarized
briefly in Table 1.

The double slash preceding each
statement name identifies the statement as
a job control statement. Most of the
statements are used for data management
creating. manipulating. and keeping track
of data files. (Data files are externally
stored collections of data from which data
is read and into which data is written.)

16

----~- - --- -------- ------ ------ - --

Table 1. Job Control Statements
r---------T-------------------------------,
1 Statement 1 Function 1
.---------f-------------------------------i 1// ASSGN Input/output assignments. 1
1 1
1// CLOSE Closes a logical unit assigned
1 to magnetic tape.
1
1// DATE
1
1
1// DLAB
1
1// DLBL
1
1// EXEC
1

Provides a date for the
CommUnication Region.

Disk file label information.

Disk file label information.

Execute program.

1// EXTENT Disk file extent.
1
1// JOB
1
1

Beginning of control
information for a job.

1// LBLTYPI Reserves storage for label
1 1 information.
1 1
1// LISTIOI Lists input/output
1 1 assignments.
1 1
1// MTC 1 Controls operations on
1 1 magnetic tape.
1 1
1// OPTION Specifies one or more job
1 control options.
1
1// PAUSE
1
1
1// RESET
1
1
1
1// RSTRT
1
1
1// TLBL
1
1// TPLAB
1
1// UPSI
1
1// VOL
1
1// XTENT
1
1/*
1
1
I/~

1

Creates a pause for operator
intervention.

Resets input/output
assignments to standard
assignments.

Restarts a checkpointed
program.

Tape label information.

Tape label information.

Sets user-program switches.

Disk/tape label information.

Disk file extent.

End-of-data-file or
end-of-job-step.

End-of-job.

1* Comments. L-________ ~ ______________________________ J

(
\

o

•

o

This chapter describes in greater detail
the three types of job steps involved in
processing a COBOL program. Once the
reader becomes familiar with the
information presented here, he should be
able to write control statements by
referring only to the next chapter,
nPreparing COBOL Programs for Processing. n

COMPILATION

Compilation is the execution of the
COBOL compiler. The programmer requests
compilation by placing in the job deck an
EXEC statement that contains the program
name FCOBOL, the name of the COBOL
compiler. This is the EXEC FCOBOL
statement.

Input to the compiler is a set of COBOL
source statements, consisting of either a
main program or a subprogram. Source
statements must be punched in Extended
Bi ~iary-Coded-Decimal Interchange Code
(EBCDIC). The COBOL source statements are
read from SYSIPT. The job deck is read
from SYSRDR. If SYSRDR and SYSIPT are
assigned to the same unit, the COBOL source
statements should be placed after·the EXEC
FCOBOL statement in the job deck.

Output from the COBOL compiler is
dependent upon the options specified when
the system is generated. This output may
include a listing of source statements
exactly as they appear in the input deck.
The source listing is produced on SYSLST.
In addition, the module produced by the
compiler may be written on SYSLNK, the
linkage editor input unit, and punched on
SYSPCH. Separate Data and/or Procedure
D~vision maps, a symbolic cross-referen~e
list, and diagnostic messages can also be
produced. The format of compiler output is
discussed and illustrated in the chapter
"Interpreting output."

The programmer can override any of the
compiler options specified when the system
was generated, or include some not
previously specified, by using the OPTION
control statement in the compile job step.
Compiler options are discussed in detail in
the chapter "Preparing COBOL Programs for
Processing."

JOB PROCESSING

EDITING

Editing is the execution of the Linkage
Editor. The programmer requests editing by
placing in the job deck an EXEC statement
that contains the program name LNKEDT, the
name of the Linkage Editor. This is the
EXEC LNKEDT statement.

Input to the Linkage Editor consists of
a set of linkage editor control statements
and one or more modules to be edited.
These modules include any of the following:

1. Modules that were compiled previously
in the job and placed at that time on
the linkage editor input unit, SYSLNK.

2. Modules that were compiled in a
previous job and saved as module
decks. The module decks must be
placed on SYSIPT. Linkage editor
control statements are read from
SYSRDR.

3. Modules that were compiled in a
previous job step and cataloged in the
relocatable library. The relocatable
library is a collection of frequently
used routines in the form of modules,
that can be included in a program
phase via the INCLUDE control
statement in the linkage editor job
step.

Output from the Linkage Editor consists
of one or more phases. A phase may be an
entire program or it may be part of an
overlay structure (multiple phases).

A phase produced by ~he Linkage Editor
can be executed immediately after it is
produced (that is, in the job step
immediately following the linkage editor
job step), or it can be executed later,
either in a subsequent job step of the same
job or in a subsequent job. In either of
the latter cases, the phase to be executed
must be cataloged in the core image libary.
Such a phase can be retrieved in the
execute job step by specifying the phase
name in the EXEC statement, where phase
name is the name under which it was
cataloged. Otherwise, the phase output is
retained only for the duration of one job
step following the linkage editor job step.
That is, if the module that was just
linkage edited is to be executed in the
next job step, it need not have been
cataloged. An EXEC statement will cause
the phase to be brought in from the

Job Processing 17

temporary part of 'the core image library
and will begin execution. However, the
next time-such a module is to be executed,
the linkage editor job step is required
since the phase was not cat·aloged in the
core image l1brary.

In addition to· the phase, the Linkage
Editor produces a phase map on SYSLST.
Linkage editor diagnostic messages are also
printed on SYSLST. If the NOMAP option of
the linkage editor ACTION control statement
is specified, no phase map is produced and
linkage editor diagnostic messages are
listed on SYSLST, if assigned. Otherwise,
the diagnostic messages are listed on
SYSLOG. The.contents of the phase map are
discussed and illustrated in the chapter
-Interpreting Output.-

Linkage editor control statements direct
the execution of the Linkage Editor.
Together with any module decks to be
processed, they form the linkage editor
input deck, which is read by the Job
Control Processor from SYSIPT and written
on SYSLNK.

There are four linkage editor control
statements: the ACTION statement, the
PHASE statement, the ENTRY statement, and
the INCLUDE statement. These statements
are discussed in the next chapter.

PHASE EXECUTION

Phase execution is the execution of the
problem program, for example, the program
written by the COBOL programmer. If the
program is an overlay structure (multiple
phase), the execution job step actually
involves the execution of all the phases in
the program.

The phase(s) to be executed must be
contained in the core image library. The
core image library is a collection of
executable phases from which programs are
loaded by the Supervisor. A phase is
written in the temporary par~of the core -

18

image library by the Linkage Editor at the
time the phase is produced. It is
permanently retained (cataloged) in the

'Core image library, if the programmer has
so requested, via the ~ option in the
OPTION control statement.

The programmer requests ,the execution of
a phase by placing in the jo~ deck an EXEC
statement that specifies the name of the
phase. However, if the phase to be
executed was produced in the immediately
preceding job step, it is not nec~ssary to
specify its name in the EXEC statel~nt.

MULTI PHASE PROGRAMS

A COBOL program can be executed as a
single phase as long as there is an area of
main storage available to accommodate it.
This area, known as the problem program
~, must be large enough to contain the
main program and all called subprograms.
When a program is too large to be executed
as a single phase, it must be structured as
a multiphase program.

The overlay structure available to the
COBOL programmer for multi phase programs is
known as root phase overlay, and is used
primarily for programs of three or more
phases. One phase of the program is
designated as the root phase (main program)
and, as such, remains in the problem
program area throughout the execution of
the entire program. The other phases in
the program -- subordinate phases -- are
loaded into the problem program area as
they are needed. A subordinate phase may
overlay any previously loaded subordinate
phase, but no subordinate phase may overlay
the root phase. One or more subordinate
phases can reside simultaneously in main
storage with the root phase.

Use of the linkage editor control
statements needed to effect overlay are
discussed in the chapter -Calling and
Called Programs.-

..

CI

o

This chapter provides information about
preparing COBOL source programs for
compilation, linkage editing, and
execution.

ASSIGNMENT OF INPUT/OUTPUT DEVICES

Almost all COBOL programs include
input/output statements calling for data to
be read from or written into data files
stored on external devices. COBOL programs
do not reference input/output devices by
their actual physical address, but rather
by their symbolic names. Thus, a COBOL
program is dependent on the device type and
not on the actual device address. The
COBOL programmer need only select the
symbolic name of a device from a fixed set
of symbolic names. At execution time, as a
'job control func~ion, the symbolic name is
associated with an actual physical device.
The standard assignment of physical
addresses to symbolic names may be made at
system generation time. However, job
control statements and operator commands
can alter the standard device assignment
before program execution. This is
discussed later in this chapter.

To simulate an installation environment,
all the examples in this publication assume
that the symbolic units and their physical
and logical assignments are as shown in
Figure 2.

The symbolic names are divided into two
classes: system logical units and
programmer logical units.

The system logical units (SYSIPT,
SYSLNK, SYSLOG, SYSLST, SYSPCH, SYSRES,
SYSSLB, SYSRLB, and SYSRDR) are used by the
control program and by IBM-supplied
processing programs. SYSIPT, SYSLST,
SYSPCH, and SYSLOG can be implicitly
'referenced by certain COBOL procedural
statements. Two additional names, SYSIN
and SYSOUT, are defined for background
program assignments. The names are valid
only to the Job Control Processor, and
cannot be referenced in the COBOL program.
SYSIN can be used when SYSRDR and SYSIPT
are the same device; SYSOUT must be used
when SYSLST and SYSPCH are assigned to the
same magnetic tape unit.

Programmer logical units are those in
the range SYSOOO through SYS221 and may be
referenc~d in the COBOL source language
ASSIGN clause.

PREPARING COBOL PROGRAMS FOR PROCESSING

r--------T----------T---------------------,
. ! Logical I Physical I Device !
1 unit 1 Unit I Type 1
t--------t----------~---------------------i
!SYSRES IX'190' 12311 Disk unit I
~--------t----------~---------------------i
ISYSLNK IX'191' 12311 Disk unit 1
t--------t----------t---------------------~
ISYSRDR, IX'OOC' 12540 Card 'reader 1
I SYSIPT I I 1
t--------~----------t---------------------~
ISYSLS~ IX'OOE' 11403 Printer 1
t--------+----------f---------------------i
ISYSPCH IX'OUD' 12540 Card punch I
t--------t----------f--------~------------~
ISYSLOG IX'OlF' 11052 Printer keyboard I
~--------t--~-------+---------------------i
ISYSSLB IX'191' 12311 Disk unit I
t--------t----------t---------------------~
ISYSRLB IX'191' 12311 Disk unit 1
~--------t----------+---------------------i
ISYS001 IX'191' 12311 Disk system I
! I I work file 1
~--------f----------+---------------------i
!SYS002 !X"191.' 12311 Disk system I
I I I work file 1
~--------+----------+---------------------i
!SYS003 !X'190· 12311 Disk system 1
1 I 1 work file 1
t--------+----------+---------------------i
ISYS004 IX'281' 12400 Tape work file' 1
t--------+----------+---------------------i
ISYS005 IX'OOE' 11403 Printer 1
~--------+----------t---------------------i
ISYS006' IX'191' 12311 Disk unit I
t--------t----------t---------------------~
ISYS007 !X'191' 12311 Disk unit 1
.--------+----------+---------------------i
ISYS008 IX' 282" 12400 Tape unit I
t--------f----------f---------------------i
ISYS009 IX'283' 12400 Tape unit !
~--------+----------t---------------------~
ISYS010 ,IX'284' 12400 Tape unit 1
t--------+----------+---------------------i
ISYS011 I X" 285' 12400 Tape unit 1
t--------t----------f---------------------i
ISYS012 IX'OOE" 11403 Printer !
.--------+--------~-+---------------------i
I SYS013 I XI' OOC' 12540 Card reader 1
t--------t----------~---------------------~
ISYS014 IX'OlF' 11052 Printer keyboardl
r--------+--~-------+---------------------i
ISYS015 IX'192' 12314 Disk unit 1
t--------t----------t---------------------~
ISYS016 IX'192' 12314 Disk unit I
.--------+----------+---------------------i
ISYS017 1 Unassigned 1 I
Ithrough 1 1 I
ISYS221 1 1 I L-_______ ~ _________ ~ ____________________ J

Figure 2. Sample Logical Unit Assignments

Preparing COBOL Programs for Processing 19

A COBOL programmer uses the source
language ASSIGN clause to assign a file
used by his problem program to the
appropriate symbolic name. Although
symbolic names may be assigned to physical
devices at system generation time, the
programmer may·alter these assignments at
execution time by means of the ASSGN

control statement. However, if the
programmer wishes to use the assignments
made at system generation time for his own
data files in the COBOL program, ASSGN
control statements are unnecessary.

Table 2 is a complete list of symbolic
names and their usage.

Table 2. Symbolic Names, FUnctions, and Permissible Device Types
r-----~--T---------------~-----------------------------~---~---------------------~--,
ISymbolic I I Permissible 1
I Name I Function I Device Types I
~---------+-------~--+_------------------------i
ISYSRDR IInput unit for control statements. I Card reader I
I I I Magnetic tape unit I
I , I Disk extent I
~--------+---i-------------------------~ ISYSIPT I Input unit for programs. I Card reader I
t I I Magnetic tape unit I
I I I Disk extent I
~--------+---+-------------------------~ ISYSPCH IMain unit for punched output. I Card punch I
I I I Magnetic tape unit I
I I I Disk exte~t I
~--------+_--~---i-------------------------~
I SYSLST I Main unit for printed output. I Printer I
I I I Magnetic tape unit I
I I I Disk extent I
~--------+---+-------------------------~ ISYSLOG IReceives operator messages and logs in job control I Printer keyboard I
I I statements. I Printer I
~---------+---+-------------------------i ISYSLNK IInput to the Linkage Editor. I Disk extent I
I I I I
~--------+---+-------------------------~ ISYSRES IContains the operating system, the core image I Disk extent I
I , library, relocatable library, and source state- I I
I I ment library. I I
~--------+------------------------~--------------~-----------i-------------------------~ ISYSSLB IA private source statement library. I Disk extent I
~---------+-------~---+-------------------------~
ISYSRLB IA private relocatable library. I Disk extent I
~--------+---~---+-------------------------~
ISYSIN IMust be used when SYSRDR and SYSIPT are assigneB I Disk I
I I to the same disk extent. May be used when they I Magnetic tape unit I
I I are assigned to the same card reader or magnetic I Card reader I
I I tape. . I I
~--------+---+-------------------------~ ISYSOUT IThis name must be used when SYSPCH and SYSLST are I Magnetic tape unit I
I I assigned to the same magnetic tape unit. It I I
I I must be assigned by the operator ASSGN command. I I
~~--------+---+-------------------------~
ISYSmax IThese units are available to the programmer as I Any unit I
I I work files or for storing data files. They 1 I
I I are called programmer logical units as opposed I I
I I to the above-mentioned names which are always I I
I I referred to as system logical units. The I I
I I largest number of programmer logical units I I
I I available in the system is 222 (SYSOOO through, I I
I I SYS221). The value of SYSmax is determined by the I I
I I distribution of the programmer logical units I I
I I among the partitions. I I L ________ ~ ___ ~ ________________________ J

20

r
I ,

"- .

o

JOB CONTROL

The Job Control Processor for the Disk
Operating system prepares the system for
execution of programs in a batched job
environment. Input to the Job Control
Processor is in the form of job control
statements and job control commands.

JOB CONTROL STATEMENTS

Job control statements are designed for
an 80-column punched card format. Although
certain restrictions must be observed, the
statements are essentially free form. Job
control statements conform to these rules:

1. Name. Two slashes (//) identify the
statement as a job control statement.
They must be in columns 1 and 2. At
least one blank immediately follows
the second slash.

Exceptions: The end-of-job statement
contains /& in columns 1 and 2; the
end-of-data file statement contains /*
in columns 1 and 2; the comment
statement contains * in column 1 and a
blank in column 2.

2. operation. This identifies the
operation to be performed. It can be
up to eight characters long. At least
one blank follows its last character.

3. Operand. This may be blank or may
contain one or more entries separated
by commas. The last term must be
followed by a blank, unless its last
character is in column 71.

4. Comments. Optional user comments must
be separated from the operand by at
least one space.

Continuation cards are not recognized by
the Job Control Processor. For the
exception to this rule, see the
descriptions of the DLAB and TPLAB
statements.

All job control statements are read from
the device identified by the symbolic name
SYSRDR.

comments in Job Control Statements

Comment statements (i.e., statements
preceded by an asterisk in column 1
followed by a blank) may be placed anywhere
in the job deck. The remainder of the card

may contain any character from the EBCDIC
set. Comment statements are designed for
communication with the operator;
accordingly, they are written on the
console printer-keyboard, SYSLOG, in
addition to being written on SYSLST. If
followed by a PAUSE control statement, the
comment statement can be used to request
operator action.

Statement Formats

The following notation is used in the
statement formats:

1. All upper-case letters represent
specifications that are to appear in
the actual statement exactly as shown
in the statement format. For example,'
JOB in the operation field of the JOB
statement should be punched exactly as
shown.

2. All lower-case letters represent
generic terms that are to be replaced
in the ac~ual statement. For example,
jobname is a generic term that should
be replaced by the name that the
programmer is giving his job.

3. Hyphens are used to join two or more
words in order to form a single
generic term. For example,
device-address is one generic term.

4. Brackets are used to indicate that a
specification is optional and is not
always required in the statement. For
example, [type] in4icates that the
programmer's replacement for the
generic term, type, mayor may not
appear in the statement, depending on
the programmer's requirements.

5. Braces enclosing stacked items
indicate that a choice of ~ ~ tern
must be made by the programmer. For
example:

{

SYS 1 PROG

~~xxx
indicates that either SYS, PROG, ALL,
or SYSxxx must appear in the actual
statement.

Preparing COBOL Programs for Processing 21

6. Brackets enclosing stacked items
indicate that a choice of one item
may, but need not, be made by the
programmer. For example:

[
,X'SS']
,ALT

indicates that either ,X'ss' 'or ,ALT
but not both, may appear in the actual
statement, or the specification can be
omitted entirely.

7. All punctuation marks shown in the
statement formats other than hyphens,
brackets, and braces must be punched
as shown. This includes periods,
commas, and parentheses. For example,
,[date] means that the specification,
if present in the statement, should
consist of the programmer's
replacement for the generic term date
preceded by the comma with no
intervening space. Even if the date
is omitted, the comma must be punched
as shown •

. 8. The ellipsis (•••) indicates where
repetition may occur at the user's
opticn. The pcortion of the format
that may be repeated is determined as
follows:

a. Scanning right to left, determine
the bracket or brace delimiter
immediately to the left of the
ellipsis.

b. continue scanning right to left
and determine the logically
matching bracket.or brace
delimiter.

c. The ellipsis applies to the words
and punctuation between the pair
of delimiters.

Sequence of Job Control Statements

The job deck for a specific job always
begins with a JOB statement and ,ends with a
/& (end-of-job) statement. A specific job
consists of one or more job steps. The
beginning of a job step is indicated by the
appearance of an EXEC statement. When an
EXEC statement is encountered, it initiates
the execution of the job step, which
includes all pr,eceding control statements
up to, but not including, a previous EXEC
statement.

The only limitation on the sequence of
statements within a job step is that which
is discussed here for~the label information
statements.

22

The label statements must be in the
order:

or

or

or

VOL
TPLAB

VOL
DLAB
XTENT (one for each area or file in

the volume)

DLBL
EXTENT (one for each area or file in

the volume)

TLBL

and must immediately Erecede the EX~
statement to which they apply.

DESCRIPTION AND FORMATS. OF JOB CONTROL
STATEMENTS

This section contains descriptions and
formats of job control statements.

Job control statements, with the
exception of /*, /&, and *, contain two
slashes in columns 1 and 2 to identify
them.

ASSGN Statement

The ASSGN control statement assigns a
logical input/output unit to a physical
device. An ASSGN control statement must be
present in the job deck for each data file
assigned to an external storage device in
the COBOL program where these assignments
differ from those established at syst~m
generation time. Data files are assigned
to programmer logical units in COBOL by
means of the source language ASSIGN clause.
The ASSGN control statement may also be
used to change a system standard assignment
for the duration of the job. The format of
the ASSGN control statement is as follows:

r--------------------------------[-~~;;;;]--l
I // ASSGN SYSxxx,device-address I
I ,ALT I L-__ J

SYSxxx
is one of the logical devices listed
in Table 2.

Exception: SYSOUT must be assigned
using the ASSGN job control·command.
Job control commands are described in
detail in the publication IBM
System/360 Disk Operating system:
System Control and System service "--.
Programs.

device-address

X'ss'

allows three different formats:

X'cuo"
where c is the channel number and uu
the unit number in hexadecimal
notation. The values of "cuu" : are
determined by each installation.

UA

c = 0 for multiplexor channel,
1 through 6 for selector
channels 1 through 6.

uu = 00 to FE (0 to 254) in
hexadecimal.

indicates that the logical unit is
to be unassigned. Any source
language input/output operation
attempted on this device causes
cancellation of the job.

IGN
indicates that the logical unit is
to be unassigned. References to
this logical unit are ignored during
program execution. However, if
OPTIONAL has been specified in the
SELECT sentence for an input file,
the first READ statement for that
file causes control to be
transferred to·the
imperative-statement following the
AT END option of the READ statement.
The IGN option is not valid for
SYSRDR, SYSIPT, and SYSIN. This
option is useful in program
debugging since source language
input or output ref~rences to files
residing on symbolic units for which
IGN has been specified are ignored.

is the device specification. It is
used for specifying mode settings for
7-track and dual density 9-track
tapes. If X'ss':is not specified, the
system assumes X"90':for 7-track tapes
and X'CO' :for 9-track tapes. The
possible specifications for X'ss' :are
shown in Figure 3.

ALT
must be specified in the control
statement that assigns an alternate
magnetic tape unit which is used when
the capacity of the original
assignment is reached. The
specifications for the alternate unit
must be the same as those of the
orginal unit, since X'ss' : cannot be
specified. The characteristics of the
alternate unit must be the same as
those of the original unit. Multiple
alternates can be assigned to a
symbolic unit.

D~vice assignments made by the ASSGN
control statement are considered temporary.
They are in effect until another ASSGN
control statement or a RES~ statement for
that logical unit, or the next /& or JOB
statement is read, whichever occurs first.
If a RESET, /&, or JOB statement is
encountered, the assignment reverts to the
standard assignment established at system
generation time plus any modification by an
ASSGN command.

The COBOL programmer may assign only the
programmer logical units (SYSOOO through
SYS221) to data files used in his program.
For example, if the following ASSIGN clause
is used,

SELECT IN-FILE ASSIGN TO SYS004-UR-2540R-S

an ASSGN control statement must appear in
the job deck which assigns SYS004 to a
physical deviqe if the physical device
differs from the permanent assignment. In
this case, the physical device must be a
2540 card reader. An example of such a
control statement is:

/ / ASSGN SYS004, x' OOC"

Physical unit X, OOC" :was permanently
assigned to a 2540 Card Reader at system
generation time.

Note: The ASSGN control statement is
necessary only when the symbolic unit
assignment is being made to a physical
device address which differs from that
established at system generation time.

"Appendix I: Sample Job Decks" contains
illustrations of ASSGN statement usage.

Preparing COBOL Programs for Processing 23

." . ,
~, .. -"---_. ---

r----T------T-----------------------------,
, , , 7-Track Tape ,
, 'Bytes~--------T-----------T--------~
, 'per' , Translate , Convert,
, ss , Inch , Parity 'Feature 'Feature'
~----+------+--------+-----------+--------i

10 200 odd off on
20 200 even off off
28 200 even on off
30 200 odd off off
38 200 odd on off
50 556 odd off on
60 556 even off off
68 556 even on off
70 556 odd off off
78 556 odd on off
90 800 odd off on
AO 800 even off off
A8 800 even on off r
BO 800 odd off off I
B8 800 odd on off I

~--------~-----------~--------~
, 9-Track Tape I
~---------------------------~

CO 800 , single density 9-track I
CO 1600, single density 9-track ,
CO 1600, dual density 9-track I
C8 800 , dual density 9-track , L ___ ~ ______ ~ _____________________________ J

Figure 3. possible Specifications for
X'ss' 'in the ASSGN Control
Statement

CLOSE Statement

The CLOSE control statement is used to
close either a system or programmer logical
unit assigned to tape. As a result of the
CLOSE control statement, a standard
end-of-volume label set is written and the
tape is rewound and unloaded. The CLOSE
statement applies only to a temporarily
assigned logical unit, that is, a logical
unit for which an ASSGN control statement
has been specified within the same job.
The format of the CLOSE control statement
is as follows:

r-------------------------~---------------,
I 1 , ['X'CUU' {,X'ss,]] I 1 ,UA I
1// CLOSE SYSxxx ,IGN I
1 ,ALT I L-_______________________________________ J

The logical unit can optionally be
reassigned to another device, unassigned,
or switched to an alternate unit.

Note that when SYSxxx is a system
logical unit, one of the optional
parameters must be specified. When closing
a programmer logical unit, no optional
parameter need be specified.

24

SYSxxx
may only be used for magnetic tape and
may be specified as SYSPCH, SYSLST,
SYSOUT, or SYSOOO through SYS221.

X' cuu·1

X'ss'

UA

IGN

ALT

specifies that after the logical unit
is closed, it will be assigned to the
channel and unit specified. (See
"ASSGN Control Statement" for an
explanation of 'cuu'~) When
reassigning a system logical unit, the
new unit will be opened if it is
either a mass storage device or a
magnetic tape at load point.

represents device specification for
mode settings on 7-track and 9-track
tape. (See "ASSGN Control Statement"
for an explanation of ·SS~~) If X'ss'
is not specified, the mode settings
remain unchanged.

specifies that the logi,cal unit is to
be closed and unassigned.

specifies that the logical unit is to
be closed and unassigned with the
ignore option. This operand is
invalid for SYSRDR, SYSIPT, or SYSIN.

specifies that the logical unit is to
be closed and an alternate unit is to
be opened and used. This operand is
valid only for system logical output
units (SYSPCH, SYSLST, or SYSOUT)
currently assigned to a magnetic tape
unit.

DATE Statement

The DATE control statement contains a
date that is put in the Communication
Region of the Supervisor. A complete
description of the fields of the
Communication Region is given in "Appendix
H: Communication Region." The DATE
statement is in one of the following
formats:

r------------------------------~----------,
1// DATE rnrn/dd/yy ,

~--~
1// DATE dd/mm/yy , L __ J

where:
rom = month (01 to 12)
dd = day (01 to 31)
yy = year (00 to 99)

(
\
"''--- .

I~'\

! \
'\ ,"

' f

c

\ 0
'-"

The format to be used is the format
selected when the system was generated.

When the DATE statement is used, it
applies only to the current job being
executed. The Job Control Processor does
not check the operand except to ensure that
its length is eight characters. If no DATE
statement is specified in the current job,
the Job Control Processor supplies the date
given in the last SET command. The SET
command is discussed in detail in the
publication IBM System/360 Disk Qperating
System: system Control and System Service
Programs.

A DATE statement should be included in
every job deck that has as one of its job
steps the execution of a COBOL program that
utilizes the special register CURRENT-DATE,
if the date desired is other than that
designated in the previous SET command.

TLBL Statement

The TLBL control statement replaces the
VOL and TPLAB combination used in previous
versions of the system. However, the
current system will continue to support
these statements. The TLBL control
statement contains file label information
for tape label checking and writing. Its
format follows:

r---,
1// TLBL filename, I
1 ['file-identifier'l,[datel, I
1 [file-serial-numberl, I
I [volume-sequence-numberl, I
I [file-sequence-numberl, 1
1 [generation-number], I
1 [version-number] 1 L-__ J

filename
identifies the file to the control
program. It can be from one to seven
characters in length. If the
following SELECT sentence appears in a
COBOL program:

SELECT NEWFILE ASSIGN TO
SYS003-UT~2400-S-0UTFILE

the filename operand on control
statements for this file must be
OUT FILE. If the SELECT clause were
coded:

SELECT NEWFILE ASSIGN TO
SYS003-UT-2400-S

the filename operand on the control
statement far the file must be SYS003.

'file-identifier' :

date

consists of from 1 to 17 characters,
contained within apostrophes l

indicating the name associated with
the file on the volume. This operand
may contain embedded blanks. If this
operand is omitted on output files,
the filename will be used. If this
operand is omitted on input files, no
checking will be done.

consists of from one to six
characters, in the format yy/ddd,
indicating the expiration date of the
file for output or the creation date
for input. (The day of the year may
consist of from one to three
characters.) For output files, a one
to four character retention period
(d-dddd) may be specified. If this
operand is omitted, a O-day retention
period will be assumed for output
files. For input files, no checking
will be done if this operand is
omitted or if a retention period is
specified.

file-serial-number
consists of from one to six characters
indicating the volume serial number of
the first (or only) reel of the file.
If fewer than six characters are
specified, the field will be
right-justified and padded with zeros.
If this operand is omitted on output
files, the volume serial number of the
first (or only) reel of the file will
be used. If the operand is omitted on
input files, no checking will be done.

volume-sequence-number
consists of from one to four
characters in ascending order for each
volume of a multivolume file. This
number is incremented automatically by
OPEN and CLOSE routines as required.
If this operand is ,omitted on output
files, BCD 0001 will be used. If
omitted on input files, no checking is
done.

file-sequence-number
consists of from one to four
characters in ascending order for each
file of a multivolume file. This
number is incremented automatically by
OPEN ana CLOSE routines as required.
If this operand is omitted on output
files, BCD 0001 will be used. If it
i p omitted on input files, no checking
will be done.

generation-number
consists of from one to four numeric
characters that modify the
file-identifier. If this operand is
omitted on output files, BCD 0001 is

Preparing COBOL Programs for Processing 25

'I,

used. If it is omitted on input
files, no checking will be done.

version-number
consists of from one to· two numeric
characters that modify the generation
number. If this operand is omitted on
output files, BCD 01 will be used. If
it is omitted on input files, no
checking will be done.

Note: If a tape file with standard labels
is opened two different ways in the same
COBOL program, and that file resides on a
multifile volume, the programmer should use
two separate TLBL cards with different
filenames specified on each.

DLBL-Statement

The DLBL control statement, in
conjunction with the EXTENT statement,
replaces the VOL, DLAB, and XTENT
combination used in previous versions of
the Disk operating System. However, the
current system will continue to support the
VOL, DLAB, and XTENT statements. The DLBL
statement has the following format:

r---,
1// DLBL filename I
1 ,('file-identifer'l,£datel, (codes] 1 L ___ J

filename
identifies the file to the control
program. It can be from one to seven
characters in length. . If the
following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYS005-DA~2311-A-INPUTA

the filename operand on control
statements for this file must be
INPUTA. If the SELECT sentence is
coded:

SELECT INFILE ASSIGN TO
SYS005-DA-2311-A

the filename operand -on control
statements for the file must be
SYS005.

'file-identifier':

26

is the name associated with the file
on the volume. This can consist of
from 1 to 44 alphanumeric characters
contained within apostrophes,
including the file-identifier and, if
used, generation-number and version
number of generation. If fewer than
44 characters are used, the field is

date

codes

left-justified and padded with blanks.
If this operand is omitted, filename
will be used.

consists of from one to six characters
indicating either the .retention period
of the file in the format d through
dddd (1-9999), or the absolute
expiration date of the file in the
format yy/ddd. When the d through
dddd format is used, the file is
retained for the number of days
specified as dddd. For example, if
date is specified as 31, the file will
be retained a month from the day of
creation. When the yy/ddd format is
used, the file is retained until the
day (ddd) in the year (yy) specified.
For example, if date is specified as
69/200, the file will be retained
through the 200th day of the year
1969.

If date is omitted when the file is
created, a 7-day retention period is
assumed. If this operand is present
for a file opened as INPUT or 1-0, it
is ignored.

is a 2- or 3-character field
indicating the type of file label, as
follows:

SD = Sequential Disk
DA = Direct Access

ISC = Indexed Sequential using Load
Create

ISE = Indexed sequential using Load
Extension, Add, or Retrieve

If code is omitted, SD is assumed.

"Appendix I: Sample Job Decks" contains
illustrations of DLBL statement usage.

EXTENT Statement

The EXTENT control statement defines
each area (or extent) of a DASD file -- a
file assigned to a mass storage device.
One or more EXTENT control statements must
follow each DLBL statement.

The EXTENT control statement replaces
the XTENT statement used in previous
versions of the Disk Operating System.
However, XTENT will continue to be
supported in the current system.

C)

The format of the EXTENT control
statement is:

r---,
1// EXTENT [symbolic-unitl,[serial-numberlI
I , [typel,[sequence-numberl I
1 , [relative-trackl,[number-of-tracks] I
I , [split-cylinder-track],[B=binsl I L. __ J

symbolic-unit
is a 6-character field indicating the
symbolic unit (SYSxxx) of the volume
for which this extent is effective.
If this operand is omitted, the
symbolic unit of the preceding EXTENT
statement will be used. When '
specified, symbolic-unit may be any
SYSxxx assigned to the device type
indicated in the SELECT sentence for
the file. For exampl~, if the
following coding appears in a COBOL
program:

SELECT OUTFILE ASSIGN TO
SYSOO 4-DA~ 23.11-'A

the symbolic unit in the EXTENT
control statement can by any SYSxxx
assigned to a 2311 disk pack. The
symbolic unit operand is not required
for an IJSYSxx filename, where xx is
IN, PH, LS, RS, SL, or RL. If SYSRDR
or SYSIPT is assigned, this operand
must be included.

serial-number

type

consists of from one to six characters
indicating the volume serial number of
the volume for which this extent is
effective. If fewer than six
characters are used, the field will be
right-justified and padded with zeros.
If this operand is omitted, the volume
serial number of the preceding EXTENT
control statement will be used. If no
serial number was provided in the
EXTENT control statement, the serial
number will not be checked and it will
be the user's responsibility if files
are destroyed as a result of mounting
the incorrect volume.

consists of one character indicating
the type of the extent, as follows:

1 --
2

4
8

Data area (no split cylinder)
Overflow area (for an indexed
file)
Index area (for an indexed file)
Data area (split cylinder)

If this operand is omitted, 1 is
assumed.

sequence-number
consists of from one to three
characters containing a decimal number
from 0 to 255 indicating the sequence
number of this extent within a
multi-extent file. Extent sequence 0
is used for the master index of an
indexed file. If the master index is
not used, the first extent of an
indexed file has the sequence number
1. The extent sequence number for all
other types of files begins with O.
If this operand is omitted for the
first extent of ISFMS files. the
extent will not be accepted. For SD
or DA files, this operand is not
required. Direct files can have up to
five extents. Indexed files can have
up to eleven data extents (nine prime,
one cylinder index, one separate
overflow) •

relative-track
consists of from one to five
characters indicating the sequential
number of the track, relative to zero,
where the data extent is to begin. If
this field is omitted on an ISFMS
file, the extent will not be accepted.
This field is not required for DA
input or for SD input files (the
extents from the file labels will be
used).

Formulas for converting actual to
relative track addresses (RT) and
relative track to actual for the DASD
devices follow.

Actual to Relative:

2311 10 x cylinder number + track
number = RT

2314 20 x cylinder number + track
number = RT

2321 1000 x subcell number + 100 x
strip number + 20 x block
number + track number = RT

Relative to Actual:

2311 RT = quotient is cylinder,
10 remainder is track

2314 RT = quotient is cylinder,
20 remainder is track

2321 RT = quotient is subcell,
1000 remainder1

remainder1 =
100

remainder2 =
20

quotient is strip,
remainder2

quotient is block,
remainder is track

Preparing COBOL Programs for Processing 27

Example: Track 5, cylinder 150 on
a 2311 = 1505 in relative track.

number-of-tracks
consists of from one to five
characters indicating the number of
tracks to be allocated to the file.
For SO input files, this field may be
omitted. The number of tracks for a
split cylinder file must be a multiple
of the number of cylinders specified
for the file and the number of tracks
specified for each cylinder.

split-cylinder-track

Dins

consists of from one to two
characters, with a value of 0 through
19, indicating the upper tack number
for the split cylinder in so files.

consists of from one to two characters
identifying the 2321 bin that the
extent was created for, or on which
the extent is currently located. If
the field is one character, the
creating bin is assumed to be zero.
There is no need to specify a creating
bin for so or ISFMS files. If this
operand is omitted, bin 0 is assumed
for both bins. If the operand is
included and positional operands are
omitted, only one comma is required
preceding the keyword operand. If any
operands preceding the bin
specification are omitted, one comma
for each operand is acceptable, but
unnecessary.

Figure 4 shows examples of using the
DLBL statement in conjunction with the
EXTENT statement. "Applendix I: Sample
Job Decks" contains illustrations of EXTENT
statement usage.

VOL Statement

The VOL control statement is used when
standard labels for a DASD or tape file are
checked. It is used in conjunction with
TPLAB or DLAB and XTENT statements. The
VOL and TPLAB or VOL, DLAB and XTENT
statements must appear in that order and
must immediately precede the EXEC statement
to which they apply. The format of the VOL
control statement is:

r---,
1// VOL SYsxxx,filename I L-__ J

SYSxxx
is the symbolic unit name. The
symbolic unit name is the same name
that appears in the XTENT statement
for the file.

filename
identifies the file to the control
program. It can consist of from one
to seven characters. The'appearance
of two identical operands is
characteristic of COBOL object
modules, since filename might be the
logical unit which is assigned to a
device.

Note tha~ filename, as used in this
context, does not refer to the COBOL
file-name, but to filename as it is used by
the system.

For example, if the following COBOL
coding appeared as part of a complete
program, MASTERX is the name by which the '
file is known to the control program.

r---,
I
IDirect file:
I
I The following DLBL and EXTENT statements describe a direct file occupying 840
I tracks, beginning on relative track 10.
I
I
I
I
I

// DLBL MASTER,,75/001,DA
// EXTENT SYS015,111111,1,0,10,840

IIndexed file:
I
I The following DLBL and EXTENT statements describe an indexed file occupying 80
I tracks, beginning on relative track 1106. The first EXTENT allocates a 4-tra~k
Icylinder index. The second EXTENT allocates a 76-track data area.
I
I
I

// DLBL MASTER,,75/001,ISC
// EXTENT SYS015,111111,4,1,1106,4

I // EXTENT SYS015,111111,1,2,1110,76 L-_________________ ~ ___ _

Figure 4. Sample Label and File Extent Information for Mass Storage Files

28

,,~

\ '
... ~ _,i

-------~---------------.

o .- .

o

ENVIRONMENT DIVISION.
FILE-CONTROL.

SELECT MASTER-FILE ASSIGN TO
SYS004-UT-2400-S-MASTERX

DATA DIVISION.
FILE SECTION.
FD MASTER-FILE

The VOL control statement for the file
could be coded as follows:

// VOL SYS004,MASTERX

If the COBOL SELECT sentence had been
coded as:

SELECT MASTER-FILE ASSIGN TO
SYS004-UT-2400~S

SYS004 would be the name by which the file
is known to the control program and the VOL
statement could be coded as follows:

// VOL SYS004,SYS004

The filename, as used in the VOL control
statement format, is identical to the
symbolic name of the program DTF that
identifies the file. Although, in COBOL,
displacement is from the symbolic name
MASTER-FILE when referencing the DTF, the
system interprets this to be MASTERX in the
first case, and SYS004 in the second case.

When coding the VOL control statement
for files assigned to mass storage devices,
there is an additional consideration. If
the following SELECT sentence appears in a
COBOL program:

SELECT INFILE ASSIGN TO
SYS001-DA-2311-A-INPUTA

the symbolic unit name on the control
statements for the file can be any SYSxxx
assigned to a 2311 disk pack. The filename
on control statements for the file must be
INPUTA.

For example, the VOL control statement
might be:

// VOL SYS021,INPUTA

If the SELECT sentence were coded:

SELECT INFILE ASSIGN TO
SYS004-DA-2311~A

the symbolic unit name on control
statements for the file can be any SYSxxx
assigned to a 2311 disk pack. The filename

on control statements for the file must be
SYS004. Both of the following VOL control
statements are acceptable:

// VOL SYS004,SYS004
// VOL SYS005,SYS004

DLAB Statement

The DLAB control statement contains
information for label checking and creation
of files assigned to mass storage devices.
This statement must immediately follow a
VOL control statement. (Disk label formats
are given in "Appendix C: Standard Mass
Storage Device Labels.") The format of the
DLAB control statement is:

r-----------.-----------------------------,
1// DLAB 'label fields 1-3', I
I xxxx,yyddd,yyddd,'systemcode t [,type] 1 L-__________ • _____________________________ J

'label fields 1-3'

xxxx

The first three. fields of the
disk-file label are contained just as
they appear in the label. This is a
51-character string contained within
apostrophes and followed by a comma.

The DLAB statement requires two cards
for completion; therefore, column 72
of the first card requires a character
punch other than a blank. The columns
between the comma and the continuation
character must be blank.

is the volume-sequence-number in field
4 of the Format 1 label and must begin
in card column 16 of the second card.

yyddd,yyddd
is the file creation date followed by
the file expiration date. It is
recommended that this field be left
blank.

'systemcode'
is ignored by the Disk ,Operating
System. The dummy field specified
must be 13 characters long.

indicates the type of file label:

SD = Sequential Disk
DA = Direct Access
ISC = Indexed Sequential (used when

creating the file)
ISE = Indexed Sequential (used when

updating or retrieving the
file)

SD is assumed if this entry is
omitted.

Preparing COBOL,Programs for Processing 29

TPLAB statement

The TPLAB control statement contains
file label information for tape label
checking and creation. It must immediately
follow a VOL control statement. The TPLAB
control statement contains an image of a
portion of the standard tape file label.
The format and contents of ~ standard tape
label are given in "Appendix B: Standard
Tape File Labels." The format of the TPLAB
control statement is as follows:

r---,
I {'label fields 3-10'} I
1// TPLAB 1
1 'label fields 3-13' : I L ___ J

'label fields 3~10'
is a 49-byte character string
contained within apostrophes,
identical to positions 5 through 53 of
the tape file label. These fields can
be included in one line and are the
only ones used for label checking.

'label fields 3-13'
is a 69-byte character string
contained within apostrophes,
identical to positions 5 through 73 of
the tape file label. These fields are
too long to be included on a single
line. The character string must
extend into column 71, a continuation
character (any character) must be
placed in column 72, and the character
string is completed on the next line.
The continuation line starts in column
16. Fields 3 thr9ugh 13 are written
in the corresponding fields when the
output label is created. When
specified for an input file, fields 11
through 13 are ignored. However, even
for output files, fields 11 through 13
are never used by the Disk Operating
System label processing routines.

XTENT statement

The XTENT control statement is used to
define an area of a file on a mass storage
device. Each DASD file (file assigned to a
mass storage device) requ~res one or more
XTENT control statements. The format of
the XTENT control statement is:

r--, 1// XTENT type,sequence,lower,upper 1
I . 'serial no';SYSxxx[,B2] I L-_______________________________________ -J

type

30

Each XTENT type identifies the funtion
of the defined area.

Extent Type -- occupies one or three
columns containing:

1
2

4
128

=
=
=
=

Data area (no split cylinder)
OVerflow area (for an indexed
file)
Index area (for an indexed file)
Data area (split cylinder). If
type 128 is specified, the lower
head is assumed to be H~ H2 H2
in lower, and the upper head is
assumed to be H~ H2 H2 in upper.
(See the discussion of the lower
and upper fields.)

sequence Extent sequence Number -
indicates the sequence number
of this extent within a
multi-extent file. The
sequence number occupies one
to three columns and contains
a decimal number from 0 to
255. Extent sequence 0 is
used for the master index of
an indexed file. If the
master index is not used, the
first extent of an indexed
file contains sequence number
1. The extent sequence for
all other types of files
begins with O. Direct files
can have up to five extents.
Indexed files can have up to
eleven data extents (nine
prime, one cylinder index, one
s~parate overflow).

lower Lower Limit of Extent
occupies nine columns and
contains the lowest address of
the extent in the form
B~C~C~C2C2C2H~H2H2

where:

B~ is the initially assigned
cell number. It is equal to:

o for 2311 and 2314
o to 9 for 2321

c~c~ is the subcell number.
It is equal to:

00 for 2311 and 2314
00 to 19 for 2321

C2C2C2 is the cylinder number.
It can be:

000 to 199 for 2311 and
2314

.2!: strip number:

000 to 009 for 2321

\0. _

~,
(,

\ ,
'- --

u

upper

H~ is the head block position.
It is equal to:

o for 2311 and 2314
o to 4 for 2321

H2H2 is the head number.' It
can be:

00 to 09 for 2311
00 to 19 for 2321 and

2314

A lower extent of all zeros is
invalid.

Note: For 2321, the last five
strips of subcell 19 are
reserved for alternate tracks.

upper Limit of Extent -
occupies nine columns
containing the highest address
of the extent in the same form
as the lower limit.

'serial no' Volume Serial Number -- This
~s a 6-byte alphanumeric
character string, contained
within apostrophes. The
number is the same as in'the
volume label (volume serial
number) and the Format 1 label
(file serial number).

SYSxxx This is the symbolic address
of the DASD drive. If more
than one symbolic address is
to be specified on separate
XTENT cards for the same file,
the symbolic addresses must be
in consecutive order. See
"EXTENT Statement" for details
on SYSxxx assignments.

B2 Currently assigned cell
number. Its value is:

o for 2311 or 2314
o to 9 for 2321

This field is optional. If
missing, the Job Control
Processor assigns B2 = B~.

JOB Statement

The JOB control statement indicates the
beginning of control information for a job.
The JOB control statement is in the
following format:

r---, 1// JOB jobname 1 ~ __ J

-------- - ----- - -

jobname
is a user-defined name consisting of
from one to eight alphanumeric
characters. Any user comments can
appear on the JOB control statement
following the jobname (through column
72). If the timer feature is present,
the time of day appears in columns 73
to 80 when the JOB statement is
printed on SYSLST. The time of day is
also printed in columns 1 through 8 on
the next line of SYSLOG.

If a job is restarted, the jobname
must be identical to that used when
the checkpoint was taken.

Note: The JOB statement resets the effect
of all previously issued OPTION and ASSGN
control statements.

LBLTYP Statement

The LBLTYP control statement defines the
amount of storage to be reserved at linkage
edit time in the problem program area of
main storage in order to process tape and
nonsequential DASD file labels. It applies
to both background and foreground object
programs, and is required if the file
contains standard labelti. '

The LBLTYP control statement immediately
precedes the // EXEC LNKEDT statement in
the job deck, with the exception of
self-relocating programs for which it is
instead submitted immediately preceding the
// EXEC statement for the program. The
format of the LBLTYF control statement is:

r---,
1 {TAPE [(nn)] } 1
1// LBLTYP 1
1 NSD(nn) 1 ~ __ J

TAPE [(nn)]
is used only if tape files requ~r~ng
label information are to be processed
and if no nonsequential DASD files are
to be processed. ~ is optional and
is present only for future expansion.
It is ignored by the Job Control
Processor.

NSD(nn)
is used if any nonsequential DASD
files are to be processed, regardless
of other type files that are used. Ba
specifies the largest number of
extents to be used ~or a single file.

Preparing COBOL Programs for Processing 31

LISTIO statement

The LISTIO control statement causes the
system to print a list of input/output
assignments on SYSLST. The format of the
LISTIO control ·statement is:

r---,
I SYS I
I PROG I
1 Fl 1
1 F2 1
1// LISTIO ALL 1
1 SYSxxx 1
1 UNITS I
1 DOWN I
1 UA 1
I X'cuu' I t ___ J

SYS

PROG

Fl

F2

ALL

causes the physical units assigned to
all system logical units to be listed.

causes the physical units assigned to
all background programmer logical
units to be listed.

causes the physical units assigned to
all foreground~one logical units to be
listed'.

cau'ses the physical units assigned to
all foreground-two logical units to be
listed.

causes the physical units assigned to
all logical units to be listed.

SYSxxx

UNITS

DOWN

UA

32

causes the physical units assigned to
the logical unit specified to be
listed.

causes the logical units assigned to
all physical units t9 be listed.

causes all physical units specified as
inoperative to be listed.

causes all physical units not
currently assigned to a logical unit
to be listed.

X'cuu'
causes the logical units assigned to
the physical unit specified to be
listed.

MTC Statement

The MTC control statement controls 2400
series magnetic tape operations. The
format is as follows:

r---, 1// MTC opcode,SYSxxx[,nn] 1 L-__________ ~ _____________________________ J

opcode ,
specifies the operation to be
performed. opcode can be chosen from
the following:

BSF Backspace to tapemark

BSR Backspace to inter record gap

ERG Erase gap (write blank tape)

FSF Forward space to tapemark

FSR Forward space to interrecord
gap

RUN Rewind and unload

REW Rewind

WTM Write tapemark

SYSxxx

[,nn]

represents any logical unit assigned
to magnetic tape upon which the MTC
control statement is to operate.

is the decimal number (01 through 99)
which, if specified, represents the
number of times the operation is to be
performed. If nn is omitted, the
operation is 'performed once.

OPTION statement

The OPTION control statement is used to
specify one or more of the options of the
Job Control Processor. The format of the
OPTION statement is:

r---,
1// OPTION optionl[,option2]... 1 L-__ J

,r-',
(~II

c;

o

The order in which the selected options
appear in the operand field is arbitrary.
options are reset to the standard
established at system generation time upon
encountering the next JOB statement or the
/& statement.

The options are:

LOG
causes the listing of columns 1
through 80 of all control statements
on SYSLST. If LOG is not the standard
established at system generation time,
control statements are not listed
until a LOG option is encountered.
Once a LOG option statement is read,
logging continues from job step to job
step until a NOLOG option is
encountered or until either the JOB or
/& control statement is encountered.

NOLOG

DUMP

suppresses the listing of all control
statements on SYSLST until a LOG
option is encountered, or until either
the JOB or /& control statement is
encountered.

causes a dump of the registers and
main storage to be printed on SYSLST
in the case of an abnormal program
termination (such as a program check).

NODUMP

LINK

suppresses the DUMP option.

indicates that the object module is to
be linkage edited. When the LINK
option is used, the output of the
COBOL compiler is written on SYSLNK.
The LINK option must always precede an
EXEC LNKEDT statement in the job deck.
(CATAL also causes the LINK option to
be set.) LINK is not acceptable to
the Job Control Processor operating in
the foreground.

NOLINK

DECK

suppresses the LINK option. The COBOL
compiler can also suppress the LINK
option if the program contains an
error that would preclude the
successful execution of the program.

causes the COBOL compiler to punch an
object module on SYSPCB. If both DECK
and LINK are specified, the output of
the compiler is written on both SYSPCB
and SYSLNK.

NODECK
suppresses the DECK option.

LIST
causes the compiler to write the COBOL
source statements on SYSLST.

NOLIST
suppresses the LIST option.

LISTX
causes the COBOL compiler to write a
Procedure Division map on SYSLST.

NOLISTX

XREF

suppresses the LISTX option.

causes the COBOL compiler to write a
symbolic cross-reference list on
SYSLST.

NOXREF

SYM

suppresses the XREF option.

causes the COBOL compiler to write a
Data Division map on SYSLST.

NOSYM

ERRS

suppresses the SYM option.

causes the COBOL compiler to write the
diagnostic messages related to the
source program on SYSLST.

NOERRS

CATAL

suppresses the ERRS option.

causes the cataloging of a phase or
program in the core image library upon
completion of a linkage editor job
step. CATAL also causes the LINK
option to be set. CATAL is not
acceptea by the Job Control Processor
operating in a batched-job foreground
environment.

STDLABEL
causes the standard label track to be
cleared and'all DASD or tape labels
submitted after this point to be
written on the standard label track.
This option is reset to the USRLABEL
option at end-of-job or end-of-job
step. All file definition statements
submitted after the STDLABEL option
are available to any program in any
area until another set of standard
file definition statements is
submitted. STDLABEL is not accepted
by the Job control Processor operating
in a batched-job foreground
environment. All file definition
statements following OPTION STDLABEL
are included in the standard file
definition set until one of the
following occurs:

Preparing COBO~ Programs for Processing 33

• End-of-job step

.-End-of-job

• OPTION USRLABEL is specified

• OPTION PARSTD is specified

USRLABEL
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the user
label track.

PARSTD
causes all DASD or tape labels
submitted after this point to be
written at the beginning of the
partition standard label track. The
PARSTO option is reset to the USRLABEL
option at end-of-job 'or end-of-job
step. All file definition statements
submitted after the PARSTD option will
be available to any program in the
current partition until another set of
partition standard file definition
statements is submitted. All file
definition statements submitted after
OPTION PARS TO will be included in the
standard file definition set until one
of the following occurs:

• End-of~job step

• End-of-job

• OPTION USRLABEL is specified

• OPTION STOLABEL is specified

For a given filename, the sequence of
search for label information during an
OPEN is the USRLABEL area, followed by
the PARSTD area, followed by the
STDLABEL area.

The options specified in the OPTION
statement remain in effect until a
contradictory option is encountered or
until a JOB control statement is read. In
the latter case, the options are reset to
the standard that was established at system
generation time.

Any assignment for SYSLNK, after the
occurrence of the OPTION statement, cancels
the LINK and CATAL options. These two
options are also canceled after each
occurrence of an EX~C statement with a
blank operand.

34

PAUSE Statement

The PAUSE control statement allows for
operator intervention between job steps.
The format of the PAUSE control statement
is:

r---,
1// PAUSE [comments] 1 L-__________ • _____________________________ J

The PAUSE control statement is effective
just before the next input control
statement in the job deck is read. The
PAUSE control statement always prints on
SYSLOG and SYSLST.

An exampl~ of this statement is:

// PAUSE SAVE SYS004, SYS005, MOUNT
NEW TAPES

This sample' statement instructs the
operator to save the output tapes and mount
two new tapes.

When the PAUSE statement is encountered
by the Job Control Processor, the printer
keyboard (IBM 1052) is unlocked for
operator-message input. The
end-of-communication indicator, B, causes
processing to continue. If an IBM 1052
Printer is not available, the PAUSE control
statement is ignored.

RESET Statement

The RESET control statement resets
input/output assignments to the standard
assignments. The standard assignments are
those specified at system generation time
plus any modifications made by the operator
by means of the ASSGN command without the
TEMP option. The RESET command is
discussed in detail in the publication IBM
System/360 Disk Operating System: System
Control and System Service Programs. The
format of the RESET statement is:

1// RESET)PROG 1
r-----------(SYS----}----------------------l

1) ALL 1
1 ~SYSxxx 1 L ___ J

SYS

PROG

resets all system logical units to
their standard assignments.

resets all programmer logical units to
their standard assignments.

,r--.

(
"-- ..

c'

ALL
resets all system and programmer
logical units to their standard
assignments.

SYSxxx
resets the logical unit specified to
its standard assignment.

RSTRT statement

A restart facility is available for
checkpoint programs. A programmer can use
the source language RERUN clause in his
program to cause checkpoint records to be
written. This allows sufficient
information to be stored so that program
execution can be restarted at a specified
point. The checkpoint information includes
the registers, tape positioning
information, a dump of main storage; and a
restart address.

The restart facility allows the
programmer to continue execution of an
interrupted job at a point other than'the
beginning. The procedure is to submit a
group of job control statements including a
RSTRT control statement. The format is as
follows:

r---,
1// RSTRT SYSxxx,nnnn[,filename] 1 L-__________________ ~ _____________________ J

SYSxxx

nnnn

is the symbolic unit name of the
device on which the checkpoint records
are stored. This unit must have been
assigned previously.

is the identification of the
checkpoint record to be used for
restarting. This serial number
consists of four characters. It
corresponds to the checkpoint
identification used when the
checkpoint was taken. The serial
number is supplied by the checkpoint
routine.

filename
is the symbolic name of the 2311 or
2314 disk checkpoint file used for
restarting. It must be identical to
the SYSxxx of the system-name
specified in the RERUN clause. This
operand applies only when specifying a
2311 or 2314 disk as the checkpoint
file.

When a checkpoint is taken, the
completed checkpoint is noted on SYSLOG.
Restarting can be done from any checkpoint
record, not just the last. The jobname
specified in the JOB statement must be
identical to the jobname used when the
checkpoint was taken. The proper
input/output device assignments must
precede the RSTRT control statement.

Assignment of input/output devices to
symbolic unit names may vary from the
initial assignment. Assignments are made
for restarting jobs in the same manner as
assignments are made for normal jobs.

See the chapter "Program Checkout" for
further details on taking checkpoints and
restarting a program for ~hich checkpoints
have been taken.

UPSI statement

The UPSI control statement allows the
user to set program switches that can be
tested by problem programs at execution
time. The UPSI control statement has the
following format:

r---, 1// UPSI nnnnnnnn 1 L-__ J

nnnnnnnn
consists of from one to eight
characters of 0, 1, or X. Positions
containing 1 are set to 1; positions
containing X are unchanged.
Unspeci£ied rightmost positions are
assumed to be X.

The UPSI byte is the 24th byte in the
Communication Region of the Supervisor. A
complete description of the fields of the
Communication Region is given in "Appendix
H: Communication Region." The Job Control
Processor clears the UPSI byte to binary
zeros before reading control statements for
each job. When the UPSI control statement
is read, the Job'control Processor sets
these bits to the user's specifications.
Any combination of the eight bits can be
tested in the COBOL source program at
execution time by means of the source
language switches UPSI-O through UPSI-7.

CBL STATEMENT -- COBOL OPTION CONTROL CARD

Although most options for compilation
are specified either at system generation
time or in the OPTION control statement,

Preparing COBOL Programs for Processing 35

the COBOL compiler provides an additional
statement, the CBL statement, for the
specification of compile-time options
unique to COBOL.

The CBL card must be placed between the
EXEC FCOBOL statement and the first
statement in the COBOL program. The CBL
card cannot be continued. However, if
specification of options will continue past
column 71, multiple CBL cards may be used.

The options shown in the following
format may appear in any order. No blanks
may appear in the operand field.
Underscoring indicates the default case.

r--,
I I
I [,~ J [,FLAGW] I I CBL [BUF=nnnnn] , NOSEQ , FLAGE I
I I
I [,SUPMAP] [,SPACEn] [,CLIST] [,STXIT] I
I I
I [, QUOTE] [, LIBR] [, TRUNC] I
I , APOST , NOLIBR , NOTRUNC I L-__ J

CBL
must begin in column 2 and be preceded
and followed by at least one blank.

BOF=nnnnn
the BOF option specifies the amount of
storage to be assigned to each
compiler work file buffer. ~ is a
decimal number from 256 to 32,767. If
this option is not specified, 256 is
assumed.

SEQ
NOSEQ

indicates whether the compiler will
sequence-check source statements.

FLAGW
FLAGE

FLAGW indicates that both warning and
error diagnostic messages are to be
listed; FLAGE indicates that only
error diagnostic messages are to be
listed.

SUPMAP
causes the LINK, DECK, CLIST, and
LISTX options to be suppressed if an
E-level diagnostic message is produced
by the compiler.

SPACED

36

indicates the type of spacing to be
used on the output listing. ~ can be
specified as either 1 (single
spacing), 2 (double spacing), or 3
(triple spacing). If the SPACEn

---- -------- ---

option is omitted, single spacing is
provided.

CLIST

STXIT

QUOTE
APOST

indicates that a condenseu listing is
to be produced. The Procedure
Division portion of the object listing
will contain the address of the first
generated instruction for each verb.
The CLIST option overrides the LISTX
or NOLISTX options. The LISTX or
NOLISTX options are either established
at system generation time or specified
in the OPTION control statement.

enables a user error declarative to
get control when an input/output error
occurs on a unit record device.

-----QUOTE indicates to the compiler that
the double quotation marks (W) should
be accepted as the character to
delineate literals; APqST indicates
that the apostrophe ('1 should be
accepte6. The compiler will generate
the specified character for the
figurative constant QU~E(S).

LIBR
NOLIBR

LIBR specifies that the BASIS card
and/or the COpy statement are used in
the source program. NOLIBR allows
additional table space to be available
during compilation.

NOTRUNC
TRONC
-----NOTRUNC specifies nonstandard

truncation of COMPUTATIONAL items.
With nonstandard truncation, an item
is truncated on the basis of the
amount of storage it occupies, rather
than on the basis of its PICTURE
clause.

For example, suppose that the
programmer using the NOTRUNC option
describes two Data Division items as
follows:

A PICTURE S9999 USAGE
COMPUTATIONAL. .

B PICTURE S9 OSAGE COMPUTATIONAL.

After the following Procedure Division
statement is executed, B contains the
value of A, since each item. occupies
one halfword of storage.

MOVE A TO B

With the TRONC option, standard
truncation of COMPUTATIONAL items
occurs. Standard truncation is based

()

on the PICTURE clause of the item
being moved.

For example, with standard truncation,
after the MOVE described above is
executed, B contains only the
low-order digit of A. According to
the rules of standard truncation,
COMPUTATIONAL items are converted to
internal decimal, moved with decimal
alignment, and truncated.

JOB CONTROL COMMANDS

Job control commands are distinguished
from job control statements by the absence
of // blank in positions 1 through 3 of
each command. They permit the operator to
adjust the system according to day-to-day
operating conditions. This is particularly
true in the area of, device assignment,
where the operator may need to (1)
communicate to the system that a device is
unavailable, or (2) designate a different
device as the standard for a given symbolic
unit. Therefore, these commands normally
are not a part of the regular job deck for
a job. Job control commands tend to be
effective across jobs, whereas job control
statements are confined within a job.

Job control commands are discussed in
detail in the publication IBM System/360
Disk Operating System: system Control and
System Service Programs.

LINKAGE EDITOR CONTROL STATEMENTS

Object modules used as input to the
Linkage Editor must include linkage editor
control statements. There are four linkage
editor control statements: PHASE, INCLUDE,
ENTRY, and ACTION.

The discussion of these statements in
this publication applies only to background
programs. For foreground programs, see the
publication IBM system/360 Disk Operating
System: System Control and System Service
Programs.

Linkage editor control statements
initially enter the system through the
device assigned to SYSRDR as part of the
input job stream. PHASE and INCLUDE
statements may also be present on SYSIPT or
in the relocatable library. All four
statements are verified for operation
(INCLUDE, ACTION, ENTRY, or PHASE) and are
copied to SYSLNK to become input when the
Linkage Editor is executed.

Linkage editor control statements must
be blank in position 1 of the statement.
The operand field is terminated by the
first blank position. It cannot extend
beyond column 72.

The Linkage Editor is executed as a
distinct job step. Figure 5 shows how the
linkage editor function is performed as a
job step in three kinds of operations.

1. catalog Programs in Core Image
Library. The linkage editor function
is performed immediately preceding the
operation that catalogs programs into
the core image library. When the
CATAL option is specified, programs
edited by the Linkage Editor are
cataloged in the core image library by
the Librarian after the editing
function is performed. The sequence
of this operation is shown in Part ®
of Figure 5. Note that the input for
the LNKEDT function could contain
modules from the relocatable library
instead of, or in addition to, those
modules from the card reader, tape
unit, or mass storage unit extent
assigned to SYSIPT. This is
accomplished by naming the module(s)
to be copied from the relocatable
library in an INCLUDE statement.

2. Load-and-Execute. The sequence of
this "operation is shown in Part ® of
Figure 5. Specifying OPTION LINK
causes the Job Control Processor to
open SYSLNK, and allows, the Job
Control Processor to place the object
module(s) and linkage editor control
statements on SYSLNK. As with the
catalog operation, the input can
consist of object modules from the
relocatable library instead of, or in
addition to, those modules from the
card reader, tape unit, or disk extent
assigned to SYSIPT. This is accom
plished by specifying the name of the
module to be included in the operand
of an INCLUDE statement. After the
object modules have been edited and
placed in the core image library, the
program is executed. The blank
operand in the EXEC control statement
indicates that the program that has
just been linkage edited and
temporarily stored in the core image
library is to be executed.

3. compile-and-Execute. source. modules
c.an be compiled and then executed in a
single sequence of job steps. In
order to do this, the COBOL compiler
is directed to write the object modure
directly on SYSLNK. This is done by
using the LINK option in the OPTION
control statement. Upon completion of
this output operation, the linkage

Preparing COBOL Programs for Processing 37

14------ EXEC FCOBOl OPTION CATAl
PHASE PROGA, *

f+------- INCLUDE
{object module}

I
------14------ EXEC PROGA -----~I~I

ENTRY
EXEC LNKEDT

® lOAD AND EXECUTE

Core
Storage
Execution

I

: OPTION liNK 1
1 INCLUDE I

1

1-41·----- EXEC FCOBOl

I. {object module} 1
~I-----------------ENTRY --------------~II

©

Source
Module

OPTION LINK
EXEC FCOBOl

t--------------------- ENTRY
EXEC lNKEDT
EXEC

EXEC lNKEDT I
EXEC

Core
Storage
Execution

I
I
I
1

,I

Figure 5. Job Definition -- Use of the Librarian

editor function is performed. The
program is linkage edited and tem
porarily stored in the core image
library. The sequence of this
operation is shown in Part @ of Figure
5.

Control Statement Placement

The placement of linkage editor control
statements is subject to the following
rules:

1. The ACTION statement must be the first
linkage editor control statement
encountered in the input stream;
otherwise, it is ignored.

2. The PHASE statement must precede each
object module that is to begin a
phase.

3. The INCLUDE statement must be
specified for each object module that
is to be included in a program phase.

38

4. A single ENTRY statement should follow
the last object module when multiple
object modules are processed in a
single linkage editor run.

ACTION and ENTRY statements, when
present, must be on SYSRDR. PHASE and
INCLUDE statements may be present on
SYSRDR, SYSIPT, or in the relocatable
library.

PHASE statement

The PHASE statement must be specified if
the output of the Linkage Editor is to
consist of more than one phase or if the
program phase is to be cataloged in the
core image library. Each object module
that begins a phase must be preceded by a
PHASE statement. Any object module not
preceded by a PHASE statement will be
included in the current phase.

The statement provides the Linkage
Editor with a phase name and an origin
point for the phase. The PHASE statement
is in the following format:

o

r---, I PHASE name,arigin[,NOAUTO] I L-__ J

name
is the symbolic name of the phase. It
is the name under which the program
phase is to be cataloged. This name
does not have to be the name specified
in the PROGRAM-lID paragraph in the
Identification Division of the source
program and, in the case of overlay
and sort, it should not be the same.
It must consist of from one to eight
alphanumeric characters. Phases that
are to be executed in an overlay
structure should have phase names of
from five to eight alphanumeric
characters, the first four of which
should be the same. An asterisk
cannot be used as the first character
of a phase name.

origin
indicates to the Linkage Editor the
starting address of this specific
phase. An asterisk may be used as an
origin sp~cification to indicate that
this phase is to follow the previous
phase. This origin specification
format of the PHASE statement covers
all applications that do not include
setting up ove~lay struct~es. See
the chapter "Calling and Called
Programs" for information on the PHASE
statement for overlay applications.

NOAUTO
indicates that the Automatic Library
Look-Up (AUTOLINK) feature is
suppressed for both the private
relocatable library and the system
relocatable library. (The use of
NOAUTO causes the AUTOLINK process to
be suppressed for that phase only.)
The AUTOLINK feature is discussed
later in this chapter.

INCLUDE Statement

The INCLUDE statement must be specified
for each object module deck or object
module in the relocatable library that is
to be included in a program phase. The
format of the INCLUDE statement is as
follows:

r---, I INCLUDE [module-name] [, (namelist)] I L-__ J

The INCLUDE statement has two optional
operands. When both operands are used,
they must be in the prescribed order. When
the first operand is omitted and the second

operand is used, a comma must precede the
second operand.

module-name
must be specified when the object
module is in the relocatable library.
It is not specified when the module to
be included is in the form of a card
deck being entered from SYSIPT.
module-name is the name under which
the module was cataloged in the
library, and must consist of from one
to eight alphanumeric characters.

(namelist)
causes the Linkage Editor to construct
a phase from the control sections
specified in the list. Since control
sections are of no interest to the
COBOL p~ogrammer, users interested in
this option should refer to t~e
description of the INCLUDE statement
in the publication IBM system/360 Disk
Operating System: system Control and
system Service Programs.

ENTRY Statement

The ENTRY statement is required only if
the user wishes to provide a specific entry
point in the first phase produced by the
Linkage Editor. When no ENTRY statement is
provided, the Job Control Processor writes
an ENTRY statement with a blank operand on
SYSLNK to ensure that an ENTRY statement
will be present to halt linkage editing.
The transfer address will be the load
address of the first phase. The ENTRY
statement is described further in the
publication IBM System/360 Disk Operating
System: system Control and system Service
Programs.

ACTION Statement

The ACTION statement is used to indicate
linkage editor options. When used, the
statement must be the first linkage editor
statement in the input stream. The format
of the ACTION statement is as follows:

r----------~-----------------------------,
I CLEAR I
I MAP I'
I NOMAP I
I ACTION NOAUTO I
I CANCEL I
I Fi I
I F2 I L-__ ~

Preparing COBOL Programs for Processing 39

CLEAR

MAP

indicates that the entire temporary
portion of the core image library will
be set to binary zero before the
begi~ming of the linkage editor
flL'"lction. CLEAR is a time-consuming
function and should be used only when
·necessary.

indicates that SYSLST is available for
diagnostic messages. In addition, a
main storage map is output on SYSLST.

NOMAP
indicates that SYSLST is unavailable

·when performing the linkage-edit
function. The mapping of main storage
is not performed, and all linkage
editor diagnostic messages are listed
on the printer-keyboard (SYSLOG).

NOAUTO
suppresses the AUTOLINK function for
both the private and system
relocatable libraries during the
linkage editing of the entire program.
AUTOLINK is discussed later in this
chapter.

CANCEL

40

causes an automatic cancellation of
the job if any of.the linkage editor
errors 21001 through 21701 occur./

These diagnostic messages can be found
in the publication IBM System/360 Disk
Operating System: System Control and
System Service Programs.

F1 and F2
are options used in conjunction with
programs executed in the foreground
area. See the publication IBM
System/360 Disk Operating System:
System Control and system Service
Programs.

AUTOLINK FEATURE

If any references to external-names are
still unresolved after all modules have
been read from SYSLNK, SYSIPT, and/or the
relocatable library, AUTOLINK collects each
unresolved external reference from the
phase. It then searches the private
relocatable library (if SYSRLB has been
assigned) and the system relocatable
library for module names identical to the
unresolved names and includes these modules
in the program phase. This feature should
not be suppressed (via PHASE or ACTION
statemen~s) in linkage editor job steps
which include COBOL subroutines' cataloged
in the relocatable library. See the
chapter "Calling and Called Programs" for
additional details.

c
The system residence device (SYSRES) for

the Disk operating System can contain three
libraries: the core image library, the
relocatable library, and the source
statement library. Executable programs
(core image format) are stored in the core
image library: relocatable object modules
are stored in the relocatable library: and
source language routines are stored in the
source statement library.

The core image library is required for
each disk resident system. The relocatable
library and the source statement library
are not required.

In addition to the three system
libraries located on SYSRES, the user may
also request creation of private source
statement and relocatable libraries. These
libraries' are discussed under "Private
Libraries" in this chapter.

LIBRARIAN

The Librarian is a group of programs
that perform three major functions:

1. Maintenance

2. Service

3. Copy

Maintenance functions are used to
catalog (that is, add), delete, or rename
components of the three libraries, condense
libraries and directories, set a condense
limit for an automatic condense function,
reallocate directory and library extents,
and update the source statement library.

The copy function is used either to
completely or selectively copy the disk on
which the system resides. Service
functions are used to translate information
from a particular library to printed
(displayed) or punched output.

only the catalog maintenance function of
the Librarian is discussed in this
publication for the three system libraries.
In addition, the update function of the
source statement library is discussed. A
complete description of librarian functions
can be found in the publication IBM
System/360 Disk Operating System: System
Control and System Service Programs.

LIBRARIAN FUNCTIONS

CORE IMAGE LIBRARY

The core image library may contain any
number of programs. Each program consists
of one or more separate phases. Associated
with the core image library is a core image
directory which contains a unique
descriptive entry for each phase in the
core image library. These entries in the
core image directory are used to locate and
retrieve phases from the core image
library.

Cataloging and Retieving Program Phases -
Core Image Library

If a program is to be cataloged in the
core image library, the job control
statement // OPTION with the CATAL option
must be specified prior to the first
linkage editor control card, and must
precede the first PHASE card of the program
to be cataloged. Upon successful
completion of the linkage editor job step,
output from the linkage editor is placed in
the core image library as a permanent
member. The program phase is cataloged
under the name specified in the PHASE
statement.

If a phase in the core image library is
to be replaced by a new phase having the
same name, only the catalog function need
be used. The previously cataloged phase of
the same name is implicitly deleted from
the core image direc~ by the catalog
function, and the space it occupies in the
library can later be released by the
condense function.

Note: The necessary ASSGN control
statements must follow the // JOB control
statement if the current assignments are
not the following:

1. SYSRDR -- Card reader, tape unit, or
disk extent

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST -- Printer, tape unit, or disk
extent

4. SYSLOG Printer keyboard

5. SYSLNK -- Disk extent

Librarian Functions 41

The following is an example of
cataloging a single phase, FOURA, into the
core image library. (The program phase
FOURA can be executed in the next job step
by specifying the // EXEC statement with a
blank name field.>

// JOB CATALOG
// OPTION CATAL

PHASE FOURA,*
INCLUDE

{object deck}
/*
// LBLTYP TAPE
/ / EXEC LNKEDT
// EXEC
/f,

To compile, linkage edit, and catalog
the phase FOURA into the core image library
in the same job, the following job deck
could be used:

/ / JOB CATALOG
/ / OPI'ION CATAL

PHASE FOURA,*
// EXEC FCOBOL

{source deck}
/*
/ / EXEC LNKEDT
/*
/f,

When the phase is executed in a
subsequent job, the EXEC statement that
calls for execution must specify FO~,
i.e., the name by which the phase has been
cataloged.

// JOB EXJOB
// EXEC FOURA
/f,

RELOCATABLE LIBRARY

The relocatable library contains any
number of modules. Each module is a
complete object deck in relocatable format.
The purpose of the relocatable library is
to allow the user to maintain frequently
used routines in residence and combine them
with other modules without recompiling.

Associated with the relocatable library
is the relocatable directory. The
directory contains a unique, descriptive
entry for each module in the relocatable
library. The entries in the relocatable
directory are used to locate and retrieve
modules in the relocatable library.

42

MAINTENANCE FUNCTIONS

To request·a maintenance function for
the relocatable library, the following
control statement is used:

/ / EXEC MAINT

cataloging a Module -- Relocatable Library

The catalog function adds a module to
the relocatable library. A module in the
relocatable library is the output of a
complete COBOL compilation.

The catalog function implies a delete
function. Thus, if a module exists in the
relocatable library with the same name as a
module to be cataloged, the module in the
library is deleted by deleting reference to
it in the relocatable directo;y.

The CATALR control statement is required
to add a module to the relocatable library~
The format of the CATALR control statement
is:

r-----------~-----------------------------l I CATALR module-name [,v.m] I L-__ J

module-name

v.m

is the name by which the module is
known to the control program. The
module-name consists of from one to
eight characters , the first of which
must not be an asterisk.

specifies the change level at which
the module is to be cataloged. y may
be any decimal number from 0 through
121. ill may be any decimal number from
o through 255. If this operand is
omitted, a change level of 0.0 is
assumed. A change level can be
assigned only when a module is
cataloged.

All control statements required to
catalog an object module must be read from
SYSIPT. For the catalog function, device
assignments must be as follows:

1. SYSRDR .l:_ Card reader, tape unit, or
disk extent

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST -- Printer, tape unit, or disk
extent

4. SYSLOG ..1._ Printer keyboard

'/--.......

C~ ___ \

Note: If SYSRDR and/or SYSIPT are assianed
to a tape unit, the MAINT program assumes
that the tape is positioned to the first
input record. The tape is not rewound at
the end of the job.

The following is an example of compiling
a source program and cataloging the
resultant module in the relocatable
library. The job deck is read from SYSIPT.

// JOB NINE
// OPTION DECK
// EXEC FCOBOL

{source deck}
/*
// PAUSE PLACE DECK AFTER CATALR CARD
/ / EXEC MAINT

/*
/&

CATALR MOD9

(punched deck goes here)

In the abov~ example, as a result of the
compile step, the object module is written
on SYSPCH. The next job step catalogs the
object module (MOD9) into the relocatable
library. Since the object module must be
cataloged from SYSIPT, a message to the
operator instructs him to place the object
module on SYSIPT behind the CATALR
statement.

The following is an example of
cataloging two previously created object
modules in the reloca·table library:

// JOB EIGHT
/ / EXEC MAINT

CATALR MOD8A

/*
/&

{object deck}
CATALR MOD8B

{object deck}

SOURCE STATEMENT LIBRARY

The source statement library contains
any number of books. Each book in the
source statement library is composed of a
sequence of source language statements.
The purpose of the source statement library
is to allow the COBOL programmer to
initiate the compilation of a book into the
source program by using the COpy statement
or BASIS card.

Each book in the source statement
library is classified as belonging to a
specific sublibrary. Sublibraries are
defined for two programming languages:
Assembler and COBOL. Individual books are
classified by sublibrary names. Therefore,
books written in each of these languages
may have the same name.

Associated with the source statement
library is a source statement directory.
The directory contains a unique descriptive
entry for each book in the source statement
library. The entries in the source
statement directory are used to locate and
retrieve books in the source statement
library.

MAINTENANCE FUNCTIONS

To request a maintenance function for
the source statement library, the following
control statement must be used:

/ / EXEC MAINT

Cataloging a Book -- Source Statement
Library

The CATALS control statement is required
to add a book to a sub library of the source
statement library.

A book added to a sublibrary of the
source statement library is removed by
using the delete function. When a book
exists in a sublibrary with the same name
as a book to be cataloged in that
sublibrary, the existing book in the
sublibrary is deleted. The following is
the format of the CATALS control statement:

r-----------~-----------------------------,
I CATALS sublib.library-name[,v.m[,C]] I L ___ J

The operation field contains CATALS.

sublib
represents the sublibrary to which a
book is to be cataloged and can be:

Any alphanumeric character (0-9, A-Z,
#, $, and @) representing source
statement libraries. The characters A
and C have special uses:

A is used for the Assembler sublibrary

C is used for the COBOL sublibrary

Librarian Functions 43

The sublib qualifier is required. If
omitted, the operand will be flagged as
invalid and no processing will be done on
the book.

library-name

v.m

C

represents the name of the book to be
cataloged. The library-name consists
of from one to eight alphanumeric
characters, the first of which must be
alphabetic. It is the name the
programmer uses to retrieve the book
when using the source language COPY
statement or BASIS card.

specifies the change level at which
the book is to be cataloged. y may be
any decimal number from 0 through 127;
ID may be any decimal number from 0
through 255. If this operand is
omitted, a change level of 0.0 is
assumed. The v.m operand becomes part
of the entry in the directory for the
specified book. Its value is
incremented each time an update is
performed on the book.

indicates ~hat change level
verification is required before
updates are,accepted for this book.

See the UPDATE control statement,
discussed later in this chapter. for its
relationship to the v.m and C operands of
the CATALS control statement.

In addition to the CATALS control
statement. a control statement of the
following form must precede and follow the
book to be cataloged:

r---, I BKEND [sublib.library-namel,[SEQNCE1, I
I [count]. [CMPRSDl I L-__ J

All operand entries are optional. When
used, the entries must be in the prescribed
order and need appear only in the BKEND
statement preceding the book to be
cataloged.

The first entry in the operand field is
identica~ to the operand of the CATALS
control statement.

SEQNCE

44

specifies that columns 76 to 80 of the
card images constituting the book are
to be checked for ascending sequence
numbers. If an error is detected in
the sequence checking, an error
message is printed. The error can be
corrected, and the book can be
recataloged.

count
specifies the number of card images in
the book. When the count operand is
used, the card input is counted,
beginning with the preceding BKEND
statement and including the subsequent
BKEND statement. If an error is
detected in the card count, an error
message is printed. The error can be
corrected, and the book can be
recataloged.

CMPRSD
indicates that the book is to be
cataloged in the library in compressed
format.

Card input for the catalog function is
from the device assigned to SYSIPT. The
CATALS control statement is also read from
the device assigned to SYSIPT. For the
catalog function, device assignments must
be as follows:

1. SYSRDR -- Card reader, tape unit, or
disk extent

2. SYSIPT -- Card reader, tape unit, or
disk extent

3. SYSLST -t_ Printer, tape unit, or disk
extent

4. SYSLOG -- Printer keyboard

Frequently used Environment Division,
Data Division, and Procedure Division
entries can be cataloged in the COBOL
sublibrary of the source statement library.
A book in the source statement library
might consist, for example, of a file
description of the Data Division or a
paragraph of the Procedure Division.

The following is an example of
cataloging a file description in the COBOL
sublibrary of the source statement library.

/ / JOB ANYNAME
/ / EXEC MAINT

CATALS C.FILEA
BKEND C.FxLEA

/*
/f,

BKEND

BLOCK CONTAINS 13 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS RECA.

Retrieving a Cataloged Book -- COBOL COpy
statement: The preceding file description
can be included in a COBOL source program
by writing the following statement:

FD FILEB COpy FILEA.

(\,
\. j

/'-'\
• I
\ "
'~I

Note that the library entry does not
include FD or the file-name. It begins
with the first clause that is actually to
follow the file-name. This is true for all
options of the copy statement. However,
data entries in the library may have a
level number (01 or 77) identical to the
level number of the data-name that precedes
the COpy statement. In this case, all
information about the library data-name is
copied from the library and all references
to the library data-name are replaced by
the data-name in the program if the
REPLACING option is specified. For
example, assume the following data entry is
cataloged under the library-name DATAR,

01 PAYFILE USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF
PAYFILE.

and the following statement is written in a
COBOL source module:

01 GROSS COpy DATAR REPLACING PAYFILE
BY GROSS.

The compiler interprets this as:

01 GROSS USAGE IS DISPLAY.
02 CALC PICTURE 99.
02 GRADE PICTURE 9

OCCURS 1 DEPENDING ON CALC OF
GROSS.

Note also that the library-name is used
to identify the book in the library. It
has no other use in the COBOL program.

Text cataloged in the source statement
library must conform to COBOL margin
restrictions.

The COBOL COpy statement is discussed in
detail in the section "Extended Source
Program Library Facility."

Updating Books -- Source Statement Library

The update function is used to make
changes to properly identified statements
within a book in the source statement
library. Statements are identified in the
identification field, columns 73 through
80, which is fixed in format as follows:

Columns 73-76 Program identification
which must be constant
throughout the book.

C==;, Columns 77-80 Sequence number of the
statement within the
book.

One or more source statements may be
added to, deleted from, or replaced in a
book in the library without the necessity
of replacing the entire book. The update
function also provides these facilities:

1. Resequencing statements within a book
in the source statement library

2. Changing the change level (v.m) of the
book

3. Adding or removing the change level
requirement

4. Copying a book with optional retention
of the old book with a new name (for
backup purposes)

The UPDATE control statement is used for
the update function and has the following
format:

r----------~-----------------------------, I UPDATE sublib.library-name,[s.bookl],1
I [v.rn], [nn] I L-__ J

The operation field contains UPDATE.

sublib
represents the sublibrary that
contains the book to be updated. It
may be any of the characters 0 through
9, A through Z, i, $, or @.

s.book1

v.m

provides a temporary update option.
The old book is renamed s.book1 and
the updated book is named
sublib.library-name. § indicates the
sublibrary that contains the old,
renamed book. It may be one of the
characters 0 through 9, A through Z,
i, $, or @. If this operand is not
specified, the old'book is deleted.

represents the change level of the
book to be updated. y may be any
decimal number from 0 through 127; ill
may be any decimal number from 0
through 255. This operand must be
present if change level verification
is to be performed. Use of the
optional entry C in the CATALS control
statement at the time the book is
cptaloged in the library determines
whether change level verification is
required before updating. If the
directory entry specifies that change
level verification is not required
before updating, the change level
operand in the UPDATE control
statement is ignored.

Librarian Functions 45

nn

If the change level is verified, the
change level in the book's directory
entry is increased by 1 by the system
for verification of the next update.
If m is at its maximum value and an
update is processed, m is reset to 0
and the value of y is increased by 1.
If both v and m are at their maximum
values and an update is processed,
both v and m are reset to O.

represents the resequencing status
required for the update. nn may be a
1- or 2-character decimal number from
1 through 10, or it may be the word
NO. If nn is a decimal number, it
represents the increment that will be
used in resequencing the statements in
the book. If nn is NO, the statements
will not be resequenced. If nn is not
specified, the statements will be
resequenced with an increment of 1.
When a book is resequenced, the
sequence number of thefirst statement
is 0000. For example, if a book is
cataloged in the source statement
library with sequence numbers ranging
from 0010 through 1000 with increments
of 5 for each statement:

and TIn is not ·specified when the
update function is performed, the book
is resequenced with numbers 0000,
0001, 0002, ••• etc.

and NO is specified, insertions,
deletions, and/or replacements are
made with no effect on the original
sequence nUmbers.

and nn is specified as 2, the book is
resequenced with numbers 0000, 0002,
0004, ••• etc., regardless of the
original sequencing of the book in the
library or the sequence numbers of the
added or replacement cards.

The UPDATE control statement is followed
by ADD, DEL (delete), and/or REP (replace)
control statements as required, followed by
the terminating END statement. The ADD,
DEL, REP, and END statements are identified
as update control statements by a right

_parenthesis in the first position (column 1
in card format). This is a variation from
the general librarian control statement
format; thus, it clearly identifies these
control statements as part of the update
function.

ADD.Statement: The ADD statement is used
for the addition of source statements to a
book. The format is:

r--,
I) ADD seq-no I L ___ J

46

ADD indicates that source statements
following this statement are to be added to
the book.

seq-no
represents the sequence number of the
statement in the book after which the
new statements are to be added. It
may be any decimal number consisting
of from one to four characters.

DEL statement: The DEL statement causes
the deletion of source statements from the
book. The format is:

r---,
I) DEL first-seq-no[,last-seq-no] I L-_______________________________ ~ ________ J

DEL indicates that statements are to be
deleted from the book.

first-seq-no
last-seq-no

represent the sequence numbers of the
first and last statements of a section
to be deleted. Each number may be a
decimal number consisting of from one
to four characters. If last-seq-no is
not specified, the statement
represented by first-seg-no is the
only statement deleted.

RE~ statement: The REP statement is used
when replacement of source statements is
required in a book. The format is:

-r---,
I) REP first-seq-no[,last-seq-no] I L-__ J

REP indicates that source statements
following this statement are to replace
existing statements in a book.

first-seq-no
last-seq-no

represent the sequence numbers of the
first and last statements of a section
to be replaced. Each number may be a
decimal number consisting ,of from one
to four characters. Any number of new
statements can be added to a book when
a section is replaced. (The number of
statements added need not equal the
number of statements being replaced.)

Sequence number 9999 is the highest
number acceptable for a statement to be
updated. If the book is so large that
statement sequence numbers have "wrapped
around" (progressed from 9998, 9999, to
0000,0001), it will not be possible to
update statements 0000 and 0001.

END statement: This statement indicates
the end of updates for a given book. The
format is:

r-------------------------~--------------, I) END [v. m [, C]] I L ___ J

v.m

C

represents the change level to be
assigned to the book after it is
updated; y may be any decimal number
from 0 through 127. ill may be any
decimal number from 0 through 255.
This operand provides an additional
means of specifying the change level
of a book in the library. (The other
method is through the use of the ~
operand in the CATALS statement.)

indicates that change level
verification is required before any
subsequent updates for a given book.

If v.m is specified and £ is omitted',
the book does not require change level
verification before a subsequent update.
This feature removes a previously specified
verification requirement for a particular
book.

If both optional operands are omitted,
the change level in the book's directory
entry is increased as a result of the
update, and the verification requirement
remains unchanged.

Logical Unit Assignment and Control
Statement Placement:

For the update function, SYSIN must be
assigned to a card reader, a tape unit, or
a disk unit. SYSLST must be assigned to a
printer, a tape unit, or a disk extent;
SYSLOG must be assigned to the printer
keyboard.

Control statement input for the update
function, read from the device assigned to
SYSIN, must be in the following order:

1. The JOB control statement.

2. The ASSGN control statements, if the
current assignments are not those
required. The ASSGN control
statements that can be used are SYSIN,
SYSLST, and SYSLOG.

3. The EXEC MAINT control statement.

4. The UPDATE control statement.

5.) ADD,) DEL, or) REP statements with
appropriate source statements.

6.) END statement.

7. The /* control statement.

8. The /& control statement, which is the
last control statement of the job.

The source statement library can also be
updated by using the DELETE and INSERT
cards. These are discussed in "Extended
Source' Program Library Facility" in this
chapter, and in the publication IBM

I System/360 Disk Operating System: American
National Standard COBOL.

UPDATE Function -- Invalid Operand Defaults

UPDATE Statement:

1. If the first or second operand is
invalid, the statement is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity.

2. If change level verification is
required and the incorrect change
level is specified, the statement is
flagged, the book is not updated, and
the remaining control statements are
checked to determine their validity.

3. If the resequencing operand is
invalid, resequencing is done in
increments of 1.

ADD, DEL, or REP Statements:

1. If there is an invalid operation or
operand in an ADD, DEL, or REP
statement, the statement is flagged,
the book is not updated, and the
remaining control statements are
checked to determine their validity.
All options of the UPDATE and END
statements are ignored.

2. The second operand must be greater
than the first operand in a DEL or REP
statement. If not, the statement is
considered invalid and is flagged, the
book is not updated, and the remaining
control statements are checked to
determine their validity. All options
of the UPDATE and END statements are
ignored.

3. All updates to a book between an
UPDATE statement and an END statement
must be in ascending sequential order
of statement sequence numbers. The

Librarian Functions 47

first operand of a DEL or REP
statement must be greater than the
last operand of the preceding control
statement. The operand of an ADD
statement must be equal to or greater
than the last operand of the preceding
control statement. Consecutive ADD
statements must not have the same
operand. If these conditions are not
met, the default is the same as for
items 1 and 2.

END statement: If the first operand of the
END statement is invalid, the statement is
flagged, both operands are ignored, and the
book is updated as though no operands were
specified. If the second operand is
invalid, the statement is flagged, the
operand is ignored, and the book is updated
as though the second operand were not
specified.

out-of-Sequence Updates: If the source
statements to be added to a book are not in
sequence or do not contain sequence
numbers, the book is updated, and a message
indicating the error appears following the
END statement •. If the resequencing option
has been specified in the UPDATE statement,
the book is sequenced by the specified
value, and subsequent updating is possible.
If the resequencing option is not
specified, the book is resequenced in
increments of 1, and subsequent updating
will be possible. If the resequencing
option NO is specified, the book will be
out of sequence, and subsequent updating
may not be possible.

PRIVATE LIBRARIES

Private libraries are desirable in the
system to permit some libraries to be
located on a disk pack other than the one
used by SYSRES.

Private libraries are supported for the
relocatable library and for the source
statement library on both the 2311 and 2314
mass storage devices. However, the
following restrictions apply:

1. The private library must be on the
same type of disk device as SYSRES.

2. Reference may be maae to a private
relocatable library only if SYSRLB is
assigned. If SYSRLB is assigned, the
system relocatable library cannot be
changed.

3. Reference may be made to a private
source statement library only if
SYSSLB is assigned. If SYSSLB is
assigned, the system source statement
library cannot be changed.

48

4. Private libraries cannot be
reallocated.

5. The COpy function is not effective for
private libraries except when they are
being created.

An unlimited number of private libraries
is possible. However, each must be
distinguished by a unique file
identification in the DLBL statement for
the library. No more than one private
relocatable library and one private source
statement library may be assigned in a
given job.

The creation and maintenance of private
libraries is discussed in the publication
IBM System/360 Disk Operating System:
System Control and System Service Programs.

SOURCE LANGUAGE CONSIDERATIONS

To use the private source statement
library for COpy, BASIS, INSERT, and DELETE
(see "Extended Source Program Library
Facility" for further details), the ASSGN,
DLBL, and EXTENT control statements that
define this private library must be present
in the job deck for compilation. When
present, a search for the book is made in
the private library. If it is not there,
the system library is searched. If the
statements for the private library are not
present, the system library is searched. A
programmer may create several private
libraries, but only one private library can
be used in a given job.

EXTENDED SOURCE PROGRAM LIBRARY FACILITY

A complete program may be included as an
entry in the source statement library by
using the catalog function. This program
can then be retrieved by a BASIS card and
compiled in a subsequent job.

The following control statements would
be used to catalog the program SAMPLE as a
book in the COBOL sublibrary of the source
statement library:

// JOB CATALOG
/ / EXEC MAINT

CATALS C. SAMPLE
BKEND C.SAMPLE

/*
/&

{source program}

BKEND

------ ----------- - --

(j

o

When compiling a program that has been
cataloged in the COBOL sublibrary of the
source statement library, a BASIS card
brings in an entire source program. The
following control statements could be used
to compile the cataloged program SAMPLE:

// JOB PGMl
// OPTION LOG,DECK,LIST,LISTX,ERRS
// EXEC FCOBOL
BASIS SAMPLE
/*
/&

INSERT or DELETE cards may follow the
BASIS card if the user wishes to modify the
book SAMPLE before it is processed by the
compiler. The original source program must
have been coded with sequence numbers in
columns 1 through 6 of each source card.

The INSERT statement will add new source
statements after the specified sequence
numbers. The DELETE statement will delete
the statements indicated by the sequence
numbers, or will delete more than one
statement when the first and last sequence
numbers to be deleted are specified,
separated by a hyphen. Source program
cards may follow a DELETE card for
insertion before the card following the

last one deleted. The sequence numbers in
columns 1 through 6 are used to update
COBOL source statements at compilation
time, and are in effect for the one run
only.

Assume that a company runs its payroll
program each week as a source program taken
from the source statement library. The
name of the program is PAYROLL. During the
year, social security tax (FICA) is
deducted at the rate of 4~2/5% each week
for all personnel until earnings exceed
$7800. The coding to accomplish this is
shown in Figure 6.

At the beginning of the year, the test
for earnings over $7800 is taken out of the
program until a more appropriate time later
in the year. In addition" at the beginning
of the year, a union contract dictates that
all draftsmen receive a 5% pay increase.
Assume that records for all personnel
contain an occupation code. The code
identifying draftsmen is DR. The
programmer can program these changes as
shown in Figure 7.

The altered program will contain the
coding shown in Figure 8.

r--------------' ---~-----------------------------,
1000730 IF ANNUAL-PAY GREATER THAN 7800 GO TO PAY-WRITE. 1
1000735 IF ANNUAL-PAY GREATER THAN 7800 - BASE-PAY GO TO LAST-FICA. 1
1000740 FICA-PAYR. COMPUTE FICA-PAY = BASE-PAY * .044 1
1000745 MOVE FICA-PAY TO OUTPUT-FICA. 1
1000750 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE. 1
1000755 ADD BASE-PAY TO ANNUAL-PAY. 1
1 1
1 1
I • 1
1000850 STOP RUN. 1 L __ ,. ____________ ~ __________________________ J

Figure 6. Sample Coding to Calculate FICA

r-----------------~---,
1// JOB PGM2
1// OPTION LOG,DECK,LIST,LISTX,ERRS
1// EXEC FCOBOL
I CBL QUOTE
IBASIS PAYROLL
IDELETE 000730, 000735
1 IF OCCUPATION-CODE = WDR" PERFORM PAY-INCREASE THRU EX1.
IINSERT 000850
1 PAY-INCREASE. MULTIPLY 1.05 BY BASE-PAY.
I EXl. EXIT.
1/& L __ _

Figure 7. Altering a Program from the Source Statement Library Using INSERT and DELETE
Cards

Librarian Functions 49

r--~-----------------------------, I IF OCCUPATION-CODE = "DR" PERFORM PAY-INCREASE THRU EX1. (
1000740'-FICA-PAYR. COMPUTE FICA-PAY = BASE-PAY * .044 \
1000745 MOVE FICA-PAY TO OUTPUT-FICA. ,--.. _,
1000750 PAY-WRITE. MOVE BASE-PAY TO OUTPUT-BASE.
1000755 ADD BASE-PAY TO ANNUAL-PAY.
I·
I·
I·
1000850 STOP RUN.
1 PAY-INCREASE. MULTIPLY 1.05 BY BASE-PAY.
1 EXl. EXIT. L-__ _

Figure 8. Effect of INSERT and DELETE Cards

•

50

".. ~ ... , \

f \,
~/I

A programmer using the American National
standard COBOL compiler under the IBM
System/360 Disk operating System has
several methods available to him for
testing, debugging, and revising his
programs for increased operating
efficiency.

The COBOL debugging language can be used
by itself or in conjunction with other
COBOL statements. A dump can also be used
for program checkout.

DEBUG LANGUAGE

The COBOL debugging language is designed
to assist the COBOL programmer in producing
an error-free. program in the shortc~st
possible time. The following sections
discuss the use of the debug language and
other methods of program checkout.

The three debug language statements are
TRACE, EXHIBIT, and ON. Anyone of these
statements can be used as often as
necessary. They can be interspersed
throughout a COBOL source program, or they
can be contained in a packet in the input
stream to the compiler.

Program checkout may not be desired
after testing is completed. A debug packet
can be removed after testing to eliminate
the extra object program coding generated
for the debug statements.

The output produced by the TRACE and
EXHIBIT statements is listed on the system
logical output device (SYSLST).

The following discussions describe
m~thods of using the debug language.

FLOW OF CONTROL

The READY TRACE statement causes the
compiler-generated card numbers for each
section-name and paragraph-name to be
displayed. ' These card numbers are listed
on SYSLST at execution time when control
passes to these sections and paragraphs.
Hence, the output of the READY TRACE
statement appears as a list of card
numbers.

PROGRAM CHECKOUT

To reduce the length of the list and the
time taken to generate it, a trace can be
stopped with a RESET TRACE statement. The
READY TRACE/RESET TRACE combination is
helpful in examining a particular area of
the program where the flow of co~trol is
difficult to determine, e.g., code consists
of a series of PERFORM statements or nested
conditional statements. The READY TRACE
statement can be coded so that the trace
begins before control passes to that area.
The RESET TRACE statement can be coded so
that the trace stops when the program has
passed beyond the area.

Use of the ON statement with the TRACE
statement allows conditional control of the
tracing. When the COBOL compiler
encounters an ON statement, it creates a
counter which is incremented during
execution, whenever control passes through
the ON statement. For example, if an error
occurs when a specific record is processed,
the ON statement can be used to isolate the
problem record. The statement should be
placed where control passes through it only
once for each record that is read. When
the contents of the counter equal the
number of the record (as specified in the
ON statement), a trace can be taken on that
record. The following example shows a
method in which the 200th record could be
selected for a TRACE statement.

Col.
1 Area A

RD-REC.

DEBUG RD-REC
PARA-NM-1. ON 200 READY TRACE.

ON 201 RESET TRACE.

If the TRACE statement were used without
the ON statement, every record would be
traced.

An example of a common program error is
failing to break a loop or unintentionally
creating a loop in the program. If many
iterations of the loop are required before
it can be determined that a program error
exists, the ON statement can be used to
initiate a trace after the expected number
of iterations has been completed.

Program Checkout 51

Note: If an error occurs in an ON
statement, the diagnostic message may refer
to the previous statement number.

DISPLAYING DATA VALUES DURING EXECUTION

A programmer can display the value of a
data item during program execution by using
the EXHIBIT statement. The EXHIBIT
statement has three options:

1. EXHIBIT NAMED -- Displays the names
and values of the data-names listed in
the statement.

2. EXHIBIT CHANGED -- Displays the value
of the data-names listed in the
statement only if the value has
changed since the last execution of
the statement.

3. EXHIBIT CHANGED NAMED -- Displays the
names and the values of the data-names
only if the values have changed since
the last execution' of the statement.

Data values can be used to check the
accuracy of the program. For example,
using EXHIBIT NAMED, the programmer can
display specified fields from records,
compute the calculations himself, and
compare his calculations with the output
from his program. The coding for a payroll
problem might be:

Col.
1

DEBUG

52

Area A

GROSS-PAY-CALC.
COMPOTE GROSS-PAY =
RATE-PER-HOUR * (HRSWKD
+ 1. 5 * OVERTIMEHRS).

NET-PAY-CALC.

NET-PAY-CALC
SAMPLE-l. ON 10 AND

EVERY 10 EXHIBIT NAMED
RATE-PER-HOUR, HRSWKD,
OVERTIMEHRS, GROSS-PAY.

This coding will cause the values of the
four fields to be listed for every tenth
data record before net pay calculations are
made. The output could appear as:

RATE-PER-HOUR = 4.00 HRSWKD = 40.0
OVERTIMEHRS = 0.0 GROSS-PAY = 160.00

RATE-PER-HOUR = 4.10 HRSWKD = 40.0
OVERTIMEHRS = 1.5 GROSS-PAY = 173.23

RATE-PER-HOUR = 3.35 HRSWKD = 40.0
OVERTIMEHRS = 0.0 GROSS-PAY = x34.00

Note: .Decimal points are included in this
example for clarity, but actual printouts
depend on the data descripti,on in the
program.

The preceding was an example of checking
at regular intervals (every tenth record).
A check of any unusual conditions can be
made by using various combinations of COBOL
statements in the debug packet. For
example:

IF OVERTIMEHRS GREATER THAN 2.0
EXHIBIT NAMED PAYRCDHRS •••

In connection with the previous example,
this statement could cause the entire pay
record to be displayed whenever an unusual
condition (overtime exceeding two hours) is
encountered.

~~"
,(\

'''-./

C'I

C)

..

o

The EXHIBIT statement with the CHANGED
option also can be used to monitor
conditions that do not occur at regular
intervals. The values of data-names are
listed only if the value has changed since
the last execution of the statement. For
example, suppose the program calculates
postage rates to various cities. The flow
of the program might be:

r---------,
I READ INPUT I
I DATA FOR 1<----®
I CITY I
L----T----J

I
I
V

r---------,
I CALCULATE I
I RATE FOR I
I CITY I L __ ~ ___ J

I
I
V

r---------,
I EXHIBIT I
I CHANGED I
L----T-----J

I
I

<e.? No--->®

I YES

I
I
V

The EXHIBIT statement with the CHANGED
option in the program might be:

EXHIBIT CHANGED STATE CITY RATE

The output from the EXHIBIT statement
with the CHANGED option could appear as:

01 01 10
02 15
03
04 10

02 01
02 20
03 15
04

03 01 10

The first column contains the code for a
state, the second column contains the code
for a city, and the third colUmn contains
the code for the postage rate. The value
of a data-name is listed only if it has
changed since the previous execution. For
example, since the postage rate to city 02
and city 03 in state 01 are the same, the
rate is not printed for city 03.

The EXHIBIT statement with the CHANGED
NAMED option lists the data-name if the
value has changed. For example, the
program might calculate the cost of various
methods of shipping to different cities.
After the calculations are made, the
following statement could appear in the
program:

EXHIBIT CHANGED NAMED STATE CITY RAIL
BUS TRUCK AIR

The output from this statement could appear
as shown in Figure 9. Note that a
data-name and its value are listed only if
the value has changed since the previous
execution.

r---,
I STATE = 01 CITY = 01 RAIL = 10 BUS = 14 TRUCK = 12 AIR = 20
I

CITY = 02

CITY = 03 BUS = 06 AIR = 15

CITY = 04 RAIL = 30 BUS = 25 TRUCK = 28 AIR = 34

STATE = 02 CITY = 01 TRUCK = 25

CITY = 02 TRUCK = 20 AIR = 30

..
L ___ _

Figure 9. sample Output of EXHIBIT Statement with the CHANGED NAMED Option

Program Checkout 53

TESTING A PROGRAM SELECTIVELY

A debug packet allows the programmer to
select a portion of the program for
testing. The packet can include test data
and can specify operations the programmer
wants to be performed. When the testing is
completed, the packet can be removed. The
flow of control can be selectively altered
by the inclusion of debug packets, as
illustrated in the following example of
selective testing of B:

r-------... -,
I I
I START I
I I
L_--T ---_J

I L ________________ ,

r---------,
I I-
I A I
I I L ________ J

I
V

r---------,
I DEBUG I
I PACKET I
I FOR A I
L----T----J

I
r----------------J
I

V
r--------,
I I
I B I
I I
L----T---J

I L ______________ ,

r------,
I I
I C I
I I L _________ J

I
V

r---------,
I DEBUG I
I PACKET I
I FOR C I
L----T----J

I
I

r----------------J
I
V

r---------,
I I
I STOP I
I RUN I L _______ J

In this program, A creates data, B
processes it, and C prints it. The debug
packet for A simulates test data. It is
first in the program to be executed. In
the'packet, the last statement is GO TO B,
which permits A to be bypassed. After B is
executed with the test data, control passes
to the debug packet for C, which contains a
GO TO statement that transfers control to
the end of the program, bypassing C.

54

TESTING CHANGES AND ADDITIONS TO PROGRAMS

If a program runs correctly, and changes
or additions might improve its efficiency,
a debug packet can be used to test changes
without modifying the original source
program.

If the changes to be incorporated are in
the middle of a paragraph, the entire
paragraph with the changes included must be
written in the debug packet. The last
statement in the packet should be a GO TO
statement that transfers control to the
next procedure to be executed.

There are usually several ways to
perform an operation. Alternative methods
can be tested by putting them in debug
packets.

The source program library facility can
be used for program checkout by placing a
source program in a library (see the
chapter "Librarian Functions"). Changes or
additions to the program can be tested by
using the BASIS card and any number of
INSERT and DELETE cards. Such changes or
additions remain in effect only for the
duration of the run.

A debug packet can also be used in
conjunction with the BASIS card to debug a
program or to test deletions or additions
to it. The debug packet is inserted in the
input stream immediately following the
BASIS card and any INSERT or DELETE cards.

If a serious error occurs during
execution of the problem program, the job
is abnormally terminated; any remaining
steps are bypassed; and a program phase
dump is generated. The programmer can use
the dump for program checkout. (However,
any pending transfers to an external device
may not be completed. For example, if a
READY TRACE statement is in effect when the
job is abnormally terminated, the last card
number may not appear on the external
device.) In cases where a serious error
occurs in other than the problem program
(e.g., Supervisor), a dump is not produced.
Note that program phase dumps can be
suppressed if the NODUMP option of the
OPTION control statement has been specified
for the job, or if NODUMP was specified at
system generation time and is not
overridden by the DUMP option for the
current job.

r"-""'"
l
\ .. ~, ..

o

HOW TO USE A DUMP

When a job is abnormally terminated due
to a serious error in the problem program,
a message is written on SYSLST which
indicates the:

1.

2.

3.

4.

Type of interrupt (e.g., program
check)

Hexadecimal address of the instruction
that caused the interrupt

Condition code

Reason for the interrupt (e.g., data
exception)

The instruction address can be compared
to the Procedure Division map. The .
contents of LISTX provide a relative
address for each statement. The load
address of the module (which can be
obtained from the map of main storage
generated by the Linkage Editor) must be
subtracted from the instruction address to
obtain the relative instruction address as
shown in the Procedure Division map. If
the interrupt occurred within the COBOL
program, the programmer can use the error
address and LISTX to locate the specific
statement in the program which caused a
dump to be taken. Examination of the
statement and the fields associated with it'
may produce information as to the specific
nature of the error.

,Figure 10 is a sample dump which was
caused by a data exception. Invalid data
(i.e., data which did not correspond to its
usage) was placed in the numeric field B as
a result of redefinition. The following
discussion illustrates the method of
finding the specific statement in the
program which caused the dump. Letters
identifying the text correspond to letters
in the program listing.

The program interrupt occurred at HEX
LOCATION 00373A. This is indicated in
the SYSLST message printed just before
the dump.

®

©

®

The linkage editor map indicates that
the program was loaded into address
003000. This is determined by
examining the load point of the
control section TESTRUN. TESTRUN is
the name assigned to the program
module by the source coding:

PROGRAM-ID. TESTRUN.

The specific instruction which caused
the dump is located by subtracting the
load address from the interrupt
address <i.e., subtracting 3000 from
373A). The result, 73A, is the
relative interrupt address and can be
found in the object code listing. In
~his case the instruction in question
is an AP (add decimal).

The left-hand column of ,the object
code listing gives the compiler
generated card number associated with
the instruction. It is card 69. As
seen in the source listing, card 69
contains the COMPUTE statement.

Additional details about reading a dump
are found in the chapter "Interpreting
output."

ERRORS THAT CAN CAUSE A DUMP

A dump can be caused by one of many
errors. Several of these errors may occur
at the COBOL language level while others
can occur at the job control level.

The following are examples of COBOL
language errors that can cause a dump:

1. A GO TO statement with no
procedure-name following it may have
been improperly initialized with an
ALTER statement. The execution of
this statement will cause an invalid
branch.

2. Arithmetic calculations or moves on
numeric fields that have not been
properly initialized.

3.

4.

For example, neglecting to initialize
the object of an OCCURS clause with
the DEPENDING ON option, or
referencing data fields prior to the
first READ statement may cause a
program interrupt and a dump.

Invalid data placed in a numeric field
as a result of redefinition.

Input/output errors that are
nonrecoverable.

Program Checkout 55

5. Items with subscripts whose values
exceed the defined maximum value can
destroy machine instructions when
moved.

6. Attempting to execute an invalid
operation code through a system or
program error.

7. Generating an invalid address for an
area that has address protection.

8. Subprogram linkage declarations that
are not defined exactly as they are
stated in the calling program.

9. Data or instructions can be modified
by entering a subprogram and
manipulating data incorrectly. A
COBOL subprogram can acquire invalid
information from the main program~
e.g., a CALL statement using a
procedure-name and an ENTRY statement
using a data-name.

10. An input file contains invalid data
such as a blank numeric field or data
incorrectly specified by its data
description.

The compiler does not generate a test
to cHeck the sign position for a valid
configuration before the item is used
as an operand. The programmer can
test for valid data by means of the
numeric cla~s test and, by using the
TRANSFORM statement, convert it to
valid data under certain conditions.

For example, if the units position of
a numeric data item described as USAGE
IS DISPLAY contained a blank, the
blank could be transformed to a zero,
thus forcing a valid sign.

LOCATING A DTF

One or more DTF's are generated by the
compiler for each file opened in the COBOL
program. All information about that file
is found within the DTF or in the fields
preceding the DTF. See t~e chapter
"Advanced Processing Capabilities" for the
type of information available and its
location.

A particular DTF may be located in an
execution-time dump as follows:

1.

56

Determine the order of the DTF address
cells in the TGT from the DTF numbers
shown for each file-name in the
glossary.

Note: Since the order is the same as
the FD's in the Data Division, the
order can be determined from the
source program if the SYM option was
not used <i.e., no glossary was
printed).

2. Find the relative starting address of
the block of DTF cells from the TGT
listing in the Memory Map.

3. Calculate the absolute starting
address of the block by adding the
hexadecimal relocation factor for the
beginning of the object module as
given in the linkage editor MAP.

4. Allowing one fullword per DTF cell,
count off the cells from the starting
address found in step 3, using the
order determined in step 1 to locate
the desired DTF cell.

5. If more than one DTF is generated for
a file, the above procedure should be
followed using the PGT and the SUBDTF
cells rather than the TGT and the
DTFADR cells. The order of multiple
DTF's in core is dependent on the OPEN
option as follows:

a. INPUT

b. OUTPUT

c. I -0 or INPUT REVERSED

The following discussion illustrates the
method of finding the DTF' $ in the sample
program in Figure 10. Letters identifying
the text refer to letters in the program
listing.

®

@

®

The DTF for FILE-1 precedes the DTF
for FILE-2.

DTFADR CELLS begin at relative
location 5CO.

Since the relocation factor is 3000,
the DTFADR CELLS begin at location
35CO in the dump.

The DTF for FILE-l begins at location
3158, and the DTF for FILE-2 begins at
location 31EO.

-- ----------------

()

LOCATING DATA

The location assigned to a given
data-name may similarly be found by using
the BL number and displacement given for
that entry in the glossary, and then
locating the appropriate one fullword BL
cell in the TGT. The hexadecimal sum of
the glossary displacement and the contents
of the cell should give the relative
address of the desired area. This can then
be converted to an absolute address as
described above.

since the problem program in Figure 10
interrupted because of a data exception,
the programmer should locate the contents
of field B at the time of the interrupt.
This can be done as follows:

®

Locate data-name B in the glossary.
It appears under the column headed
SOURCE-NAME. Source-name B has been
assigned to base locator 3 (i.e.,

lBL =3) with a displacement of 050.
The sum of the value of base locator 3
and the displacement value 50 is the
address of data-name B.

The Register Assignment table lists
the registers assigned to each base
locator. Register 6 has been assigned
to BL =3.

The contents of the 16 general
registers at the time of the interrupt
are displayed at the beginning of the

®

®

dump. Register 6 contains the address
000030E8.

The location of data-name B can now be
determined by adding the contents of
register 6 and the displacement value
50. The result, 3138, is the address
of the leftmost byte of the 4-byte
field B.

Note: Field B contains F1F2F3C4.
This is external decimal
representation and does not correspond
to the USAGE COMPUTATIONAL-3 defined
in the source listing.

The location assigned to a given
data-name may also be found by using
the BL CELLS pointer in the TGT Memory
Map. Figure 10 indicates that the BL
cells begin at location 35B4 (add 5B4
to the load point address, 3000, of
the object module). The first four
bytes are the first BL cell, the
second four bytes are the second BL
cell, etc. Note that the third BL
cell contains the value 30E8. This is
the same value as that contained in
register 6.

Note: Some program errors may destroy
the contents of the general registers
or the BL cells. In such cases,
alternate methods of locating the
DTF'sare useful.

Program Checkout 57

COCCI
00002
00003
00004
00005
000C6
00007
00008
0000<3
C0010
00011
00012
00013
00014
00015
00016
00017
00018
00019
0002C
00021
00C22
00023
00024
00025
00C26
00027
00C28
00029
00030
00C31
000.32
00033
00034
00035
00036
00C37

000010
000020
000030
000040
000050
000060
000C70
000080
OCCC90
00010C
000110
00012C
'000130
C0014C
C0015C
000160
00'0170
000180
000190
CC02 CC
000210
000220
00023C
OC0240
000250
000255
000260
000270
OC028C
000290
CC0300
000310
000320
OCC33C
000340
OC035C
000360

IDENTIFICATION DIVISION.
PROGRAM-ID. TESTRUN.

AUTHOR. PRCGRA~~ER NAME.
INSTALLATICN. NEW yORK PROGRAMMING CENTER.
DATE-WRITTEN. SEPTeMBER 10, 1968.

DATE-COMPILED. 06/20/69
REMARKS. THIS PROGRAM HAS ~EEN WRITTEN AS A SAMPLE PROGRAM FOR

COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS
INPUT.

ENVIRONMENT CIVISICN.
CONFIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-H50.
OBJECT-COMPUTER. IEM-360-H50.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT FILE-1 ASSIGN TO SYS008-UT-2400-S.
SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S.

DATA DIVISION.
FILE SECTION.
FD FILE-1

LABEL RECORDS ARE STANDARD
BLOCK CONTAINS 5 RECORDS
RECORDING MODE IS F
RECORD CONTAINS 20 CHARACTERS
DATA RECORD IS RECORD-I.

01 RECORD-I.
05 FIELD-A PIC ~20J.

FD FILE-2
LABEL RECORCS ARE STANDARD

BLOCK CONTAINS 5 RECORDS
RECORD CONTAINS 20 CHARACTERS
RECORDING MODE IS F
CATA RECORD IS RECORD-2.

01 RECORD-2.
05 FIELD-A PIC X(20).

®

Figure 10. Sample Dump Resulting from Abnormal Termination (Part 1 of 6)

58

00038
00C3<;
00040
00041
00042
00043
00044
00045
00046
00C41
00048
0004<;
00050
00051
00052
00053
00054
00055
00056
00057
00058
0005'3
0006(
00061
COOt2
00063
00064
000t5
00066
00061
00068
OCC69
C001C
00071
00C72
00073
00074
00075
00016
COC17
00078
00'07<;
00C80
00081
00082
00083
00CE4

OC037C
OC0380
000390
000400
OC0410
000420
OC0430
OC0440
000450
CC0460
000470
000480
0004<;C
000500
OC051C
000520
000530
000534
000535
000536
000540
OC0550
000560
000570
000580
00059C
000600
0(0610
000620
00063C
000640
000645
000650
000660
OC067C
000680
000690
C00700
00071C
000720
000730
000740
000750
000760
00017C
000780
((C79C

-----------------------~

~ORKING-STORAGE SECTION.
01 FILLER.

02 COUNT PIC S<;C; COMP SYNC.
02 ALPHABET PIC X(26) VALUE IS "ABCDEFGHIJKLMNOPQRSTUVWXYZ".
C2 ALPHA REDEFI~ES ALPHABET PIC X OCCURS 26 TIMES.
02 NUMBR PIC S99 COMP syNC.
02 DEPENDENTS PIC X(26) VALUE "01234012340123401234012340".
02 DEPEND REDEFINES DEPENDENTS PIC X OCCURS 26 TIMES.

01 WORK-RECORD.
05 NAME-FIELD PIC X.
05 FILLER PIC X.
05 RECORD-NO PIC 9999.
C5 FILLER PIC X VALUE IS SPACE.
05 LOCATION PIC AAA VALUE IS "NYC".
05 FILLER PIC X VALUE IS SPACE.
05 NO-OF-DEPE~DENTS PIC xx.
05 FILLER PIC X(7) VALUE IS SPACES.

C1 RECORDA.
02 A PICTURE S<;(4) VALUE 1234.
02 B REDEFINES A PICTURE 59(7) COMPUTATIONAL-3.

PROCEDURE DIVISION.
BEGI~. RE~DY TRACE.

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
AND INITIALIZES COUNTERS.

STEP-I. OPEN OUTPUT FILE-1. MOVE ZERO TO COUNT, NUMBR.
NOTE THAT THE FOLLOWING CREATES INTERNALLY THE RECORDS TO BE
CONTAINED IN THE fILE, WRITES TH~M ON TAPE, AND DISPLAYS
THEM ON THE CONSOLE.

STEP-2. ADD 1 TO COUNT, NUMBR. MOVE ALPHA (COUNT) TO
NAME-FIELD. ~

CO fotPUT E B = B + 1. ~
MOVE DEPEND (COUNT) TO NO-Of-DEPENDENTS.
MOVE ~UMBR TO RECORD-NO.

S1EP-3. DISPLAY WORK-RECORD UpoN CONSOLE. WRITE RECOPD-1 FROM
WORK-RECORD.

STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL COUNT IS EQUAL TO 26.
NOTE THAT THE FOLLOWING CLOSES THE OUTPUT FILE AND REOPENS
IT AS INPUT.

STEP-5. CLOSE FILE-1. OPEN INPUT FILE-2.
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES
OUT EMPLOYEES WITH NO DEPENDENTS.

STEP-6. READ FILE-2 RECORD INTO WORK-RECORD AT END GO TO STEP-A.
STEP-7. IF No-OF-DEPENDENTS IS EQUAL TO "0" MOVE "Z" TO

NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECCRD. GC TO STEP-6.
STEP-8. CLOSE FILE-2.

STOP RUN.

Figure 10. Sample Dump Resulting from Abnormal Termination (Part 2 of 6)

o

Program Checkout 59

---- ._. ------- - ----

l·

INTRNL NAME LVL SOURCE N~ME
DNM=1-148 FD FILE-l
DNM=I-178 Cl RECORD-l
DNM=I-199 OZ FIELD-~
ONM=I-2H FD FILE-2
DNM=1-24c 01 RECORD-2
DNM=1-267 OZ FIELD-~

DNM=I-287 01 FILLER
DNM=1-306 OZ COUNT
ONM=1-321 CZ ilL PHABET
DNM=1-339 CZ ALPHA
DN~=1-357 02 NUMeR
DNM=1-372 C2 DEPENDENTS
DNM=1-392 02 DEPEND
DNM=I-408 01 HORK-RECCRC
DNM=I-43Z OZ NAME-FIELD
DNM=1-452 OZ FIllER
DNM=I-471 CZ RECORD-NO
DNM=I-490 c2 FILL ER
ONM=2-000 02 LOCATICN
DNM=2-0lE C2 FILLER
DNM=Z-037 OZ No-Of-DEPENOENTS
DNM=Z-C63 OZ FILLER
DNM=2-082 01 RECORDA
DNM=2-10Z OZ A

~@> DNM=2-1l3 OZ B

~EMORY M~P

TGT

SAVE AREA
SWITCH
TALLY
SORT SAVE
ENTRY-SAVE
SORT CORE SIZE
NSTD-REELS
SORT RET
WORKING CELLS
SORT FILE SIZE
SORT MODE SIZE
PGT-VN TBL
TGT-VN TElL
SoRUB ADDRESS
LENGTH OF VN TBL
LNGTH OF SoRHS
PGM 10
~(INITl)

UPSI SWITCHES
OVERFLOW CELLS --
Bl CELLS ~
DTFADR CEllS
TEMP STORAGE
TEMP STORAGE-Z
TEMP STORAGE-3
TEMP SToRAGE-4
Bll CEllS
VlC CELLS
S e,l CelLS
INDEX CELLS
SUBACR CEllS
(NCll CELLS
PFMCTL CELLS
PFMSAV CEllS
VN CEllS
SAVE AREA =2
XSASH CELLS
XSA CelLS
PARAM CELLS
RPTSAV AREA
CHECKPT CTR
IOPTR CELLS

REGISTER ASSIGNMENT

REG 6
REG 7
REG 8

BL =3 --®
BL =1
BL =2

BASE DISPL INTRNL NAME DEFINITION USAGE
DTF=OI DNM= 1-148 OTFMT

BL=l 000 DNM=1-178 OS OCL20 GROUP
BL=l 000 DNM=1-199 OS ZOC 01 SP

DTF=OZ DNM=1-Z16 DTFMT
BL=Z 000 DNM=1-Z46 OS OCLZO GROUP
Bl=Z 000 DNM=1-Z67 OS ZOC DISP
Bl=3 000 DNM=1-Z87 oS OCL56 GROUP
BL=3 000 DNM=1-306 OS 1H COMP
BL=3 OOZ DNM=1-3Z1 OS Z6C DISP
BL=3 OOZ DNM=I-339 OS lC I)ISP
Bl=3 01C DNM=1-357 OS IH COf.4P
BL=3 OlE DNM=1-372 OS 26C PISP
Bl=3 OlE DNM=1-39Z OS 1C DISP
BL=3 038 DNM=1-408 OS OCl20 GROUP
BL=3 038 DNM= 1-43Z OS 1C D1SP
BL=3 039 DNM= 1-45Z OS lC DI~P
BL=3 03A DNM= 1-471 OS 4C DISP-NM
BL=3 03E DNM=1-490 OS lC DISP
BL=3 03F DNM= 2-000 OS 3C OISP
BL=3 042 DNM=Z-018 OS 1C DISP
Bl=3 043 DNM=Z-037 OS ZC IHSP
Bl=3 045 DNM=Z-063 OS 7C nISP
BL=3 050 DNM=Z-08Z oS OCl4 GROUP
BL=3 050 DNM=Z-102 OS 4C DISP-NM
Bl=3 050 DNM=Z-1l3 OS 4P COMP-3

003F 8

003F8
00440
00444
00448
0044C
00450
00454
u0456
00458
00588
0058 C
00590
00594
00598
0059C
0059E
005AO
005A8
005AC
005B4
005B4

-® 005CO
005C 8
00500
00500
00500
00500
00504
00504
00504
00504
005DC
0050C
0050C
005EO
005E4
005E4
005E4
005E4
005E8
005E8
005EA

Figure 10. Sample Dump Resulting from Abnormal Termination (Part 3 of 6)

60

R a Q M
r~',

'--'
F

F

R 0

R 0

R

(J

~

C) 00070e «;4 CF 0 106 NI 106(13) ,X'OF' T5=01+6
00070(4F 30 0 100 CVB 3,100(0,13) T5=01
OCC71C 40 30 6 01C STH 3,01C(0,6) ONM=1-357

67 000714 41 40 6 002 LA 4,002(0,61 ONM=1-339
000718 48 20 6 000 LH 2,000(0,6) ONM=1-306
0007lC 4C 2C C 042 MH 2,042(0,12) LIT+2
000720 1A 42 AR 4,2
000722 5B 4C C 040 S 4,040(0,12) L IT+O
000726 50 40 0 10C ST 4,10C(0,13) SBS=l
00072A 58 EO 0 10C L 14.10C(0,13) SBS=l
OC072E 02 CC 6 038 E 000 MVC 038(1,6),000(14) ONM=1-432 ONM=1-339

69 000734 F8 70 0 100 C 044 - ZAP 100(8,13) ,044(1,12) TS=Ol LIT+4
00073" FA 43 0 103 6 050 @)-AP 103(5,131,050(4,6) TS=04 DNM=2-113
OC0740 F8 33 6 050 0 104 ZAP 050(4,6),104(4,13) ONM=2-113 TS=04+1

7C 000746 41 4C 6 OlE LA 4,01E(0,61 ONM=1-392
OC074A 48 2C 6 000 LH 2,000(0,61 ONM=1-306
00074E 4C 20 C 042 ~H 2,C42(0,12) LIT+2
000752 1A 42 "R 4,2
OCC754 5B 4C C 040 S 4,040(0,12) LIT+O
000758 50 40 OlEO ST 4,1EO(0,13) SBS=2
OC075C 58 EC OlEO L 14,lEO(0,13) SBS=2
000760 02 OC 6 043 E 000 MVC 043(1,6),000(14) ONM=2-37 ONM=1-3Q2
000766 92 40 6 044 MVl 044(6),X'40' ONM=2-37+1

7l OC076A 48 3C 6 01C LH 3,01C(0,61 ONM=1-357
00076 E 4E 30 o 100 CVO 3,100(0,13) TS=O 1
000772 F3 31 6 03A o 106 UNPK 03"(4.6),106(2,13) ONM=1-471 T$=07
00077e <;6 FC 6 030 01 030(6),X'FO' DNM=1-471+3

72 00077C 58 FC C 004 L 15,004(0,12) V(ILBDOSPOI

PHASE XFR-AO LOCORE HICURE l)SK-AD ESO TYPE LABEL LOADED R.EL-FR

TEST (C3000 0030CO 0048E3 50 07 2 CSECT TESTRUN 003000 003000-@

C SECT IJFFBZZN 003908 003908

* ENTRY IJ FF ZZZN 003908
.,r ... \ * ENTRY IJFFBZZZ 003908

~~' * ENTRY IJFFZZZZ 003908

CSECT ILBOSAEO 0047FO 0047FO
ENTRY I LBOSAE1 004810

CSECT ILBOMNSO 0047E8 OC47E8

CSECT ILBDCSPO 003FA8 OC3FA8

* ENTRY I LBDCSP1 0044F8

* ENTRY ILBOOSP2 004590

* ENTRY ILBDCSP3 004748

CSECT ILBDIMLO 004780 004780

CSECT IJJCP01 003DEO 003DEO
ENTRY IJJCPD1N 003DEO

* ENTRY IJJCP03 0030EO

Figure 10. Sample Dump Resulting from Abnormal Termination (Part 4 of 6)

Program Checkout 61

®

05031 PROGR~M CHECK I~TERRUPTION - HEX LOCATION 00373A - CONDITION CODE 0 - DATA EXCEPTION ~
05001 JOB SAMPLE CANCELED

SAMPLE 06/20/6C; ©
GR C'-7 000035CO 00003608 OOCCCOOI 00000001 000030EA 5000399A 000030E8 000032CO
GR 8-F 00003328 oce0396A 00C03000 00003000 OQ 0035 FO 000033F8 000030EA 00003FA8
FP REG 00000000 00000000 OOCCCCOO COOOOOOO ooooooeo OCOOOOOO OCOOOOOO 00000000
C OMREG BG ACCR IS 0001FO

--BG--
002F80 05064C05 (1D4C540 FF1500C7 COO03740 0000396A 00003000
002FAO 00CC300C 000025FO 000033F8 COO030EA 00003FA8 OCC035CO 000C3608 00000001
002FC 0 occoceOl 00C030EA 50CC399A 000030E8 000032CO 00003328 ooceocco 000E6070
002FEO OCCCOOOO --SAME--
0030CO 00E2 E8E2 FOFOF840 00E3C1C7 C5C6C9D3 C54C404e 4C4C4040 404CF1F1 F1F1F1Fl
003020 FOFOFOF1 FOFOFOF1 FOFOFOF1 FOF140F6 F9F1F7F1 40F6F9F3 F6F5FOFO FOFOFOFO
003040 FCC4C6E2 61E306E2 61F3F6FC 40400000 FIF240(1 (3(3C5C7 E3C5C461 61050640
003C60 E5(1D3C9 C4400607 C50540C6 C60940C6 C903C54B 4CC6C903 C57E02C2 0306C302
00-3C 80 E2CC;E~C5 58COFOC6 58EOCCOO 58DOFOCA 9500EOOO 4770FOA2 96100048 92FFEOOC
0030AO 47FOFOAO 98CEF03A 90ECOoCC 1850989F FOBA9110 00480719 07FF0700 0000396A
OC3CC C OCC030CO 00C03000 000035FO 0OO033F8 00003664 00003950 C306C2C6 FOFOFoFO
0030EO E3C5E2E3 0C;E4054C eC01C1C2 C3C4C5C6 C7C8C901 02030405 C6C70809 E2E3E4E5
003100 E6 E7 E8 E9 OOOlFOFl F2F3F4FC FIF2F3F4@ FOF 1F2F3 F4FOF1F~ F3F4FOFI F2F3F4FC
00~12C C1C3C507 E3C54005 E8C340E3 C5404040 404C4040 C6C56009 F,1F2F3c4 OCOOOOOO
00314C C1010014 occcccec ooeccccc 00000000 ®130000CO CCOOOOO~ 00C9200 00000108
003160 00003190 OOCOOOOO 10C03908 1260E2Ed H E2FOFCF8 40400166 900COOOO 04000000
o C31 f C CCOOOOOO 86BCF018 41ECECC1 58201044 01003258 2C000064 00C032CO 000032CO
0031~0 00000C14 0000332~ 0064CC63 COOOOOOO OOOOFIFI FIFIFIFI FOFOFOFI FOFOFOF1
0031CO 010047FO OCCOOOOO 0101(014 00000000 OOOOOOOC OCOOOOOO ooocoeoo OCOOOOOO
0031EC • ~COC82CO COCOCle8 00CC3218 eooooooo 100039C8 1468E2E8 E2FCFCF8 40400276
0032CC 800COOOO 20000ceo OOCCOOOO 86BCFO 16 41EOEOCI 58201044 02003328 00000064
003220 000C33C;C OCCOCOCO 00000014 00000000 00640063 00000000 00004810 OC0047FC
003240 COOCOCOC OCCCOCCC OCCCCOOO 00000000 0000C3(5 40C6C9C5 03(440(9 0303C5C7
003260 C1C34B7E 15E2E3C5 09(3C905 C7400500 056C09C 5 070609E3 4(07C9C3 E3E409C5
003280 4C6C40F6 40060940 F740C905 40C90303 C5C7C103 40C706E2 C9E3C906 054B7E15
0032~0 E2E3C509 03C905C7 4CD5060 5 6009C507 060C;E340 07C9C3E3 E409C540 6040E4E2
0032(0 C1C7C540 C506E340 C4C9E207 03C1E860 E2E34B7E 16E2E3C5 OC;03C905 C7400506
OC32EO 056C09C 5 070609E3 40D7CC;C3 E3 E409C5 406040E5 40C90540 C90303C5 C7CI0340
003~00 0706E2C9 E3C90605 4B7E15E2 E3C50903 C905C740 05060560 0C;C50706 09E34007
003~20 CC;C3E3E4 09C54060 40E240(9 0540C9 D3 D3C5C7Cl 03400706 E2Cc;E3C9 06054B7E
003~40 15CC4770 C;46A45EC E2E3C50C; C3C905C7 400506C5 60C9C507 0609E340 07C9C3E3
003360 E409C540 6040C4C9 C7C9E340 03C5D5C 7 c3C840C7 E340F1F8 4A7E15E2 E3C50903
003380 (905C740 05060560 0C;C507C6 09E34007 C9 C3 E3 E4 C~C54060 40E2C8C9 0303C905
0033AO C74(C6C9 C503C440 C 7E34CF2 4S 7E15E 2 E3C50903 C9C5C740 C5C60560 09C50706
0033(C 09E340C7 C9(3E3E4 09C54060 4007C505 C3C540(6 CC;C503C4 4CC7E340 F24B7E15
OC33EO E2E3C509 03C905C7 400506D5 60D9C5l)7 D60C;E340 07C9C3E3 E409C540 604005D6

Figure 10. Sample~Dump Resulting from Abnormal Termination (Part 5 of 6)

62

(J

C,;

®

003400 40D7D6E4 05C44CE2 C507C109
003420 04C5E24C C303C1E4 E2C54C04
003440 7C00004B OCCOOOCO OOCCCOOO
003460 OCC03coe 00003158 500C3SSA
003480 C5E4C4C5 09C9C340 07C9C3E3
0034AO 06E2C9E3 (9C6C54B 7E1605E4
0034C(40CS0303 C5C7C103 40D706E2
0034EO E409C540 ,60400506 4CF940C9
CC35(0 7COC36AC 0(C03FA8 000035CO
003520 OC0030E8 000032CO 000C3328
003540 00003FA8 000035CO 000(44F8
003560 C9C3E3E4 OSC8406C 4CC4C9C7
003580 OCOOOOOO 00000000 OO(CCOOO
0035AO 00003000 E2C3C103 00003000
0035<:0 a 100003158 OCC031EG I OC(COO(O
0035EO 000037C2 E84B7E20 000047CO
003600 000037C2 00003864 000038BO
OC3620 000C3EE(C(((3806 000C31C2
003640 5858C2C3 C306E2C5 5B5BC2C6
003660 060SC4Fl 58FCCCC4 051FOO(1
003680 4004F6F3 404040FO 411CC048
0036AO OAC24100 C1C858FO C00805EF
0036CO C0400201 6C1CC040 58FOCC04
0036EO 4E30C1CC 07C5C1DC 010CS4CF
0031CO 010C07C5 01C00100 940F01C6
003720 1A42584C CC4C5C40 010C58E(
003140 F8336050 01044140 601E4820
0031CO 020C6043 ECCCS240 6(444830
003780 051FOOOl 4004F7F2 40404CC8
0037AO C2137000 60385810 01C81841
0037CO 07F158F(COC4(51F CC(140C4
0037EO 01E84830 ~00C4930 CC4658FO
CC3800 C004051F C00140C4 F7F7404C
003820 500CFe08 4500Fcec oec(ccec
003840 184005FO 5000F008 45COFC(C
003E60 961(1020 58FOC(04 051FCOC1
OC3880 011F1841 41FOCC2C 02C21025
0038AO 6C388000 58FOC018 07FF5810
0038CO 5810ce34 5E2CCC30 05COCC60
0038EO 5810C064 501001EC 412001EC
CC39(0 00140000 (lC40038 FFFF5810
003S20 581C01CC 94EF1020 18011840
003940 ' OA02580C C1CC4110 C(580AC2
003960 077992FF 200C9610 004850EO
003980 58ECO(54 C7FES62C 0(48416C
0039AO 50401000 871650CO 418001BC
OC3SCO 020301EE C0385860 01C45870
0039EO 47FOF046 47FOF02A 47FOF272
003ACO F3F490AE F3009620 103C45AO
003A20 F30C45A(F(B847FC F03690AE
003A40 F32E45AO FCC645AO F32E02(1
003A60 CAO(45A(F32E02CO 1038101E
003AEO 07031C4C 1C4C07FE 01C31044
003AAO 1003471C F37C9140 1005471C
OOnACO 50AOF400 45AOF32E 58AOF400
003AEO 48BC1000 41E01058 12BB41EC
003EOO 58E01048 10EE1BBE 47FOF110
OC3820 91201C02 4710F1A2 58B01C38

CIE3D6D9 4B7E15C6 C503E840 E3C8C540 09C505C1
CIE840C2 C540E207 C5C3C9C6 0000004B 00000000
00003664 00000000 00000000 00003158 OC0032CC
40C90303 C5C7(lC3 400706E2 C9E3C906 054B7E16
E4U9C540 604C0740 CS0540C9 0303C5C7 C1034007
04C509C9 C34CC7C9 C3E3E409 C54(6C40 E540C905
C9E3C9D6 D5487E16 05E404C5 09C9C340 07C9C3E3
054007C9 C3E3E409 00C03600 000C32CO 0100C340
00003608 000C32CO 00003000 00003158 5000399A
0000396A 00003000 00003000 000C35FO 00003608
000032CO 0001C5C7 00003600 E404C50S C9C34007
C9E340D3 C505C7E3 C840C7E3 40F1F848 7E1605E4
COOOOOOO ®C4C9C7C9 E34003C5 D5C7E3C8 404E40E2
C0000250 N 0000C32~ ~00032Co10000332810C003CE8
0000001C 00000000 OC0030EA C540D506 E340C4C9
00003F90 000C47E8 CCC03FA8 000C4780 000036C8
00003910 000037BC 000037E2 000C37F6 000038AA
COIA8B5B OOOCOOCI 1C00001A 5B5BC206 07C5054C
C304E4D3 FOESOOCO CCCOOOCO E6060902 60D9C5C3
4004F6FO 404040C1 96400048 58FOC004 051FOOOl
580001C8 184005FO 5000F008 4500FOOC 00003158
581001C8 961C1020 502001BC 587C01BC 02016000
051FOOOI 4004F6F7 40404000 4830C042 4A3060CO
01064F30 UI0C403C 6CCC4830 CC424A30 601C4E3C
4F30D1DO 4030601e 41406002 48206000 4C20C042
010C0200 6038EOOO F87C0100 C044F~43 01036050
60004C20 C0421A42 5B40C040 504C01EO 58E001EO
601C4E30 0100F331 6C3A0106 96F0603D 58FOC004
58FOC004 051FOOC2 OC000014 000001C4 0038FFFF
5~F01010 45EOFOCC 502001BC 587C01BC 581001E8
F7F44040 408F5800 01E85000 01E45800 eC245000
e028078F 5810eooe 07F15800 01E45000 01E858FC
40005810 01C894EF 10201801 184C4110 CC5005FO
OA025800 01C84110 C0580A02 4110C048 5800C1CC
00000000 OA0241CC 01CC58FO CCC805EF 581001CC
4004F8FO 404C40FO 581001CC 58FOC02C 91201010
F00158FO 101C45EO FC085020 01CC5880 01C00213
C01C07F1 58FOCC04 051FOOOl 4004F8F1 4040405F
60430772 95406044 07720200 6043C061 92406044
58FOC004 051F80C1 1000000B OC000068 00000000
C01407F1 58FCC004 051FOOC1 4CC4F8F3 404040CC
4110C050 070005FO 5000F008 4500FOOC 00000000
CAOEOAOE 500050C8 5C5000C4 '582CCOOO 9500200C
005405FO 91200048 47EOF016 580CB(48 9820B050
00044110 COOC4170 CC400670 055C5840 10001E4e
417001CF 051058CO 8C001EOB 500Q8000 87861000
01BC5880 01C058EO 005407FE 47FOF07C 47FOFOAo
47FOF052 47FOFOC6 47FOF150 C901C6C6 C2E9E905
FOB89bAE F30044CO 10349101 1C15078E, OA0990AE
F3D058AO 10445BAO 10404780 F03640AO 1C3E45AC
103E1050 47FOF036 5CACF300 45ACF32E 42001038
C7011000 100058~O F3C007FE 91041015 4710FOBC
104407fE 98B01044 4400102C 50B01044 07FA9110
F33A9180 1015478C F37C9120 1015471C FOE80AOO
91011004 4710F282 58E01028 440C1030 50E01028
F1349640 1005i28B 41E01058 4740F1A2 948FI005
91401005 4710F1A2 g11010n3 41E0105C 4710F1A2
S48F1005 02021039 104141BB 00005080 10409104

o Figure 10. Sample Dump Resulting from Abnormal Termination (Part 6 of 6)

Program Checkout 63

DIAGNOSTIC MESSAGES

Diagnostic messages are generated by the
compiler and listed on SYSLST when errors
are found in the source program.

Note: Diagnostic messages are suppressed \
when the NOERRS option is in effect.

WORKING WITH DIAGNOSTIC MESSAGES

1. Approach the diagnostic messages in
the order in which they appear on the
source listing •. It is possible to get
compound diagnos~ic messages.
Frequently, an earlier diagnostic'
message indicates the reason for a
later diagnostic message. For
example, a missing quotation mark for
an alphabetic or alphanumeric literal
could involve the inclusion of some
clauses not intended for that
particular literal. This could cause
an apparently valid clause to be
diagnosed as invalid because it is not
complete, or because it is in conflict
with something that preceded it.

2. Check for missing or superfluous
punctuation, or other errors of this
type.

3. Frequently, a seemingly meaningless
message is clarified when the valid
syntax or format of the clause or
statement in question is referenced.

GENERATION OF DIAGNOSTIC MESSAGES

The compiler scans the statement,
element by element, to determine whether
the words are combined in a meaningful
manner. Based upon the elements that have
already been scanned, there are only
certain words or elements that can be
correctly encountered.

If the anticipat~d elements are not
encountered, a diagnostic message is
produced. Some errors may not be uncovered
until information from various sections of
the program is combined and the
inconsistency is noted. Errors uncovered
in this manner can produce a slightly
different message format than those
uncovered when the actual source text is
still available. The message that is made
unique through that particular error may
not contain, for example, the actual source
statement that produced the error.

64

Errors that appear to be identical are
diagnosed in a slightly different manner,
depending on where they were encountered by
the compiler and how they fit within the
context of valid syntax. For example, a
period missing from the end of the
Working-Storage section header is diagnosed
specifically as a period required. There
is no other information that can appear at
that point. However, if at the end of a
data item description entry, an element is
encountered that is not valid at that"
point, such as the digits 02, it is
diagnosed as invalid. Any clauses
associated with the 02 entry which conflict
with the clauses in the previous entry (the
one that contained the missing period), are
diagnosed. Thus, a missing period produces
a different type of diagnostic message in
one situation than in the other.

LINKAGE EDITOR OUTPUT

The Linkage Editor pro~uces diagnostic
messages, console messages, and a storage
map. For a complete description of output
and error messages from the Linkage Editor,
see the publication IBM System/360 Disk
Operating System: System Control and
System Service Programs. Output resulting
from the linkage editing of a COBOL program
is discussed in the chapter "Interpreting
output."

EXECUTION TIME MESSAGES

When an error condition that is
recognized by compiler-generated code
occurs during execution, an error message
is written on SYSLST and SYSLOG. No
message is written on SYSLST when an error
occurs in the foreground and SYSLST is
assigned to a disk.

Messages that normally appear on SYSLOG
are provided with a code indicating whether
the message originated in a foreground or
background program. These messages are
listed in "Appendix F: Diagnostic
Messages."

RECORDING PROGRAM STATUS

When a program is expected to run for an
extended period of time, provision should
be made for taking checkpoint information
periodically during the run. A checkpoint
is the recording of the status of a problem
program and main storage (including

o

input/output status and the contents of the
general registers). Thus, it provides a
means of restarting the job at an
intermediate checkpoint position rather
than at the beginning, if for any reason
processing is terminated before the normal
end of the program. For example, a job of
higher priority may require immediate
processing, or some malfunction (such as a
power failure) may occur and cause an
interruption. Checkpoints are taken using
the COBOL RERUN clause.

Restart is a means of resuming the
execution of the program from one of the
checkpoints rather than from the beginning.
The ability to restart is provided through
the RSTRT job control statement.

RERUN CLAUSE

The presence of the RERUN clause in the
source program causes the CHKPT macro
instruction to be issued at the specified
interval. When the CHKPT macro instruction
is issued, the following information is
saved:

1. Information for the Restart and other
supervisor or job control routines.

2. The general registers.

3. Bytes 8 through 10, and 12 through 45
of the Communication Region.

4. The problem program area.

5. All file protection extents for files
assigned to mass storage devices if
the extents are attached to logical
units contained in the program for
which checkpoints are taken.

Since the COBOL RERUN clause provides a
linkage to the system CHKPT macro
instruction, any warnings and restrictions
on the use of this macro instruction also
apply to the use of the RERUN clause. See
the publication IBM System/360 Disk
Operating System: supervisor and
Input/output Macros for a complete
description of the CHKPT macro instruction.

TAKING A CHECKPOINT

In order to take a checkpoint, the
programmer must specify the source language
RERUN clause and must define the file upon
which checkpoint records are to be written
(e.g., ASSGN, EXTENT, etc.) Checkpoint
information must be written on a 2311 or

2314 mass storage device or on a magnetic
tape -- either 7- or 9-track. Checkpoint
records cannot be imbedded in one of the
problem program's output fi'les, i. e., the
program must establish a separate file
exclusively for checkpoint records.

In designing a program for which
checkpoints are to be taken, the user
should consider the fact that, upon
restarting, the program must be able to
continue as though it had just reached that
point in the program at which termination
occurred. Hence, the user should ensure
that:

1. File handling is such as to permit
easy reconstruction of the status of
the system as it existed at the time
of checkpoint was taken. For example,
when multifile reels are used, the
operator should be informed (by
message) as to which file is in use at
the time a checkpoint is to be taken.
He requires this information at
restart time.

2. The contents of files are not altered
between the time of the checkpoint and
the time of the restart. For
seguential files, all records written
on the file at the time the checkpoint
is taken should be unaltered at C

restart time. For nonsequential
files, care must be taken to design
the program so that a restart will not
duplicate work that has been completed
between checkpoint time and restart
time. For example, suppose that
checkpoint 5 is taken. By adding an
amount representing the interest due,
account XYZ is updated on a
direct-access file that was opened
with the 1-0 option. If the program
is restarted from checkpoint 5 and if
the interest is recalculated and again
added to account XYZ, incorrect
results will be produced.

If the program is modular in design,
RERUN statements must be included in all
modules that handle files for which
checkpoints are to be taken. (When an
entry point of a module containing a RERUN
statement is encountered, a COBOL
subroutine, ILBDCKPO, is called. ILBDCKPO
enters the files of the module into the
list of files to be repositioned.)
Reposi~ioning to the proper record will not
occur for any files that were defined in
modules other than those containing RERUN
statements. Moreover, a restart from any
given checkpoint may not reposition other
tapes on which checkpoints are stored.
Note, too, that only one disk checkpoint
file can be used.

Program Checkout 65

RESTARTING A PROGRAM

If the programmer requests checkpoints
in his job by means of the COBOL RERUN
clause, the following message is given each
time a checkpoint is taken:

nnnn

OCOOl CHKPT nnnn HAS BEEN TAKEN ON
SYSxxx

is the 4-character identification of
the checkpoint record.

To restart a job from a checkpoint, the
following steps are required:

1. Replace the // EXEC statement with a
// RSTRT statement. The format of the
RSTRT statement is discussed in the
chapter "Preparing COBOL Programs For
Processing." All other job control
statements applicable to the job step

66

should be the same as when the job was
originally run. If necessary, the
channel and unit addresses for the //
ASSGN control statements may be
changed.

2. Rewind all tapes used by the program
being restarted, and mount them on
devices assigned to the symbolic units
required by the program. If
multivolume files are used, mount (on
the primary unit) the reel being used
at the time that the checkpoint was
taken, and rewind it. If multifile
volumes are used, position the reel to
the start of the file referenced at
the time the checkpoint is being
taken.

3. Reposition any card file so that only
cards not yet read when the checkpoint
was taken are in the card reader.

4. Execute the job.

()
The American National Standard COBOL

compiler, COBOL object module, Linkage
Editor, and other system components can
produce output in the form of printed
listings, punched card decks, diagnostic or
informative messages, and data files
directed to tape or to mass storage
devices. This chapter gives the format of
and describes this output. The same COBOL
program is used for each example.
QAppendix A: Sample Program Output" shows
the output formats in the context of a
complete listing generated by the sample
program.

COMPILER OUTPUT

The output of the compilation job step
may include:

• A printed,listing of the job control
statements

• A printed listing of the statemen£s
contained in the source program

. • A glossary of compiler-generated
information about data

• A printed listing of the object code

• A condensed listing containing only the
first generated instruction for each
verb

• Compiler diagnostic messages

• A cross-reference listing

• System messages

• An object module

The presence or absence of the
above-mentioned types of compiler output is
determined by options specified at system
generation time. These options can be
overridden or additional options specified
at compilation time by using the OPTION
control statement and the CBL card.

The level of diagnostic message printed
depends upon the FLAGW or FLAGE option of
the CBL card.

All output to be listed is written on
the device assigned to SYSLST. Line
spacing of the source listing is controlled
by the SPACEn option of the CBL card and by
SKIP 1/2/3 and EJECT in the COBOL source

INTERPRETING OUTPUT

program. The number of lines per page can
be specified in the SET command. In
addition, a listing of input/output
assignments can be printed on SYSLST by
using the LISTIO control statement.

Figure 11 contains the compiler output
listing shown in "Appendix A: Sample
Program output. Q Each type of output is
numbered, and each format within each type
is lettered. The text following the figure
is .an explanation of the figure.

CD

The listing of the job control
statements associated with this job
step. These statements are listed
because the LOG option was specified
at system generation time.

Compiler options. The CBL card, if
specified, is printed on SYSLST unless
the LIST option is suppressed.

The source module listing. The
statements in the source program are
listed exactly as submitted except
that a compiler-generated card number
is listed to the left of each line.
This is the number referenced in
diagnostic messages and in the object
code listing. It is also the number
printed on SYSLST as a result of the
source language TRACE statement. The
source module is not listed when the
NOLIST option is specified.

The following notations may appear on
the listing:

C Denotes that the statement was inserted
with a COpy statement.

** Denotes that the card is out of
sequence. NOSEQ should be specified on
the CBL card if the sequence check is
to be suppressed.

I Denotes that the card was inserted with
an INSERT or BASIS card.

If DATE-COMPILED is specified in the
Identification DiVision, any sentences in
that paragraph are replaced in the listing
by the date of compilation. It is printed
in one of the following formats depending
upon the format chosen at system generation
time.

DATE-COMPILED. month/day/year ~

DATE-COMPILED. day/month/year

Interpreting Output 67

// JCB SA~PLE }
// CPTICN NODECK.lINK,lIST,lISTX.SYM.ERRS CD

PHASE TEST,*
// EXEC FCOBCl

CBl eUCTE ®

00001
000C2
00003
00CC4
00005
000C6
00CC7
00.008
00CC9
0001C
00011
00012
00013
00014
00015
OOOH:
00'01 7
00018
0001e;

00056
00C57
00058
OOOS<;
00060

00073
00074
00015
OOOle
000i?
00018
00C79
ccoeo

OC001C
OC0020
000030
000040
000050
000060
000070
000080
000090
CC01CC
000110
C0012C
00013C
000140
CC0150
OC0160
000170
000180
000190

C00550
000560
00051C
CC058C
000590

OC0720
000130
COC140
000150
000160
000110
CC0180
CC0190

IDE~TIFICATION DIVISION.
PROGRAM-ID. TESTRUN.

AUTHOR. PROGRAMMER NAME.
INS~ALlATICN. ~EW YORK PROGRAMMING CENTER.
DATE-WRITTEN. SEPTEMBER 10, 1968.

DATE-CCMPILED. 06/20/69
REMARKS. THIS PRCGRAM HAS BEEN WRITTEN AS A SAMPLE PROGRAM FOR

COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS
INPUT.

ENVIRONMENT DIVISION.
CO~FIGURATION SECTION.
SOURCE-COMPUTER. IBM-360-H50.
OBJECT-COMPUTER. IEM-360-H50.
INPUT-OUTPUT SECTIC~.

FILE-CONTROL.
SELECT FILE-1 ASSIGN TO SYS008-UT-24CC-S.
SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S.

PROCEDURE DIVISION.
BEGIN. READY TRACE.

NOTE THAT THE FOLLOWING OPENS THE OUTPUT FILE TO BE CREATED
AND INITIALIZES COUNTERS.

STEP-I. OPEN OUTPUT FILE-i. MOVE ZERO TO COUNT, NUMBP.

STEP-5. CLOSE FILE-I. OPEN INPUT FILE-2.
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES
OUT EMPLCYEES WITH NO DEPENDENTS.

STEP-6. READ FILE-2 RECORD ,INTO WORK-RECORD AT END GC TO STEP-B.
STEP-7. IF NO-OF-CEPENDENTS IS EI.lUAL TO "0" MOVE "Z" TO

NO-OF-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO STEP-6.
STEP-8. CLOSE FILE-2.

STOP RUN.

Figure 11. Examples of Compiler Output (Part 1 of 4)

68

(" \....'
.-"

@ ® © ®
INTRNL NAME LVL SOURCE NAME BASE
ONM=1-148 FO FILE-l OTF=Ol
ONM=1-178 01 RECORD-l BL=l
ONM=1-199 02 FI ELO-A BL=l
ONM.::1-2H FD F ILE-2 OTF=02
ONM=1-246 01 RECORO-2 BL=2
ONM=l:-267 C2 FIELD-A BL=2
DNfI=1-287 01 FILLER BL=3
ONM=1-306 C2 COUNT BL=3
ONM= 1-321 C2 AL PHAB ET BL=3
DNM=1-339 C2 ALPHA BL=3
ONM=1-3S7 C2 NUMBR BL=3 -

MEMORY MAP

TGT

SAVE AREA
SWITCH
TALLY

®

SORT SAVE
ENTRY-SA\iE
SORT CORE SIZE
NSTD-REELS

LI TERAL POOL (HEX I ®

®
DISPL

000
000

OCO
000
000
000
002
002
OlC

003FO

003FO
00438
0043C
00440
00444
00448
0044C

®
INTRNL NAME
ONM=1-148
ONM=1-178
ONM=1-199
ONM=1-2l6
ONM=1-246
ONM=1-267
DNM=1-287
DNM=1-306
DNM=1-32l
ONM=1-33 Cl

DNM=1-357

.@
DEFINITION

OS OCL20
os 2CC

oS OCL20
OS 20C
OS OCLS6
OS lH
oS 26C
OS lC
oS lH

00628 (L IT+Cl
OC64C (LlT+24)

C0000001 001ASB5B C2D607CS DS4CSB5B C2C30306 E2C5585B
C2C6C304 E403FCE9 COOOOOOO

DISPLAY LITERALS (BCD)

00l:4C (L Tl+36) 'WCRK-RECORD'

PGT ©
C\iERFLOW CELLS
VIRTUAL CELLS
PROCECURE NAME CELLS
GENERATED NAME CELLS
SUBCTF ACDRESS CELLS
\iNI CELLS
LITERALS
DISPLAY LITERALS

00SE8

00SE8
00SE8
00SF4
00608
00620
00620
00b28
0064C

Figure 11. Exampl~s of compiler Output (Part 2 of 4)

® ®
Ll5AGt:: R a Q M
DTFMT F
GROUP
DISP
I)TFMT F
GROUP ®
DISP
GROUP
CO"'1P
DJ5P
DISI' R a
COMP

Interpreting output 69

REGISTER ASSIGNMENT

1@ REG 6 BL =3 (-~'
REG 7 BL =1

\,,- ./ REG e BL =2

® ® © ® ®
57 000658 START EQU * OCC658 58 FC C 004 L 15,004(0,121 V(ILB005PO)

00065C 05 1 F BALR 1,15
CCC65E CC0140 DC X'000140'
000t:61 04F5F7404040 DC X'04F5F7404040'

57 OC0668 96 40 0 048 CI 048(13),X'40' 5WT+0
60 OCOe6C 58 Fe C 004 L 15,004(0,121 V(ILB005PO)

000670 05 IF BALR 1,15
00C672 OC0140 DC X'000140'
000675 C4F6FC4C4040 DC X'04F6F0404040'

60 00067C 41 10 C 046 LA 1,046(0,12) LIT+6
00068C 58 ee 0 lC8 L 0,lC8(0,13) OTF=1
000684 18 40 LR 4,0
000686 C5 FO BALR 15,0
C00688 50 ce F 008 5T 0,008(0,15)
00068C 45 CO F OOC BAL 0,00C(0,15)
000690 OCCCCOOO DC X'OOOOOOOO'
00C694 OA 02 5VC 2
000696 41 OC 0 lC8 LA 0,1C8(0,13) OTF=l
OCC69A 58 Fe C 008 L 15,008(0,12) V(ILBOIMlO)
00069E 05 EF BALR 14,15

(j) 0006AO 58 10 0 lC8 L 1 ,lC8 (0,13) OTF=l
OCC6A4 <;6 10 1 020 CI 020(l),X'10'
0006A8 50 20 0 1BC 5T 2,I13C(0,13) BL =1
0006AC 58 70 0 lBC

®
L 7,1 BC (0, 13) BL = 1

60 OC06BO 02 01 6 000 C 040 MVC 000(2,6),040(12) ONM=1-306 LJT+O
0006B6 02 01 6 01C C 040 MVC 0IC(2,6),040(12) ONM=I-357 LJT+O

64 0006BC PN=OI ECU * OCC68C 58 FO C 004 L 15,004(0,12) V(ILB005PO)
0006Ce e5 1 F BALR 1,15
0006C2 COO14C DC X'000140'
0006C5 C4F6F4404040 DC X'04F6F4404040' r-, 64 0006CC 48 30 C 042 LH 3,042(0,12) L IT+2 () oe060e 4A 30 6 000 AH 3,000(0,6) ONM= 1-306

."".-"~ 000604 4E 30 0 100 CVO 3,100(0,13) T5=01
OCC608 07 05 0 lUO o 100 XC 100(6,13),100(13) T5=01 T5=01
0006DE 94 OF 0 106 NI 106(13) ,X'OF' T5=01+6
0006E2 4F 30 0 100 CVB 3,100(0,13) TS=OI
OC06E6 4C 3C 6 000 5TH 3,000(0,6) ONM=I-306
0006EA 48 30 C 042 LH 3,042(0,12) LIT+2
OCC6EE 4A 30 6 OlC AH 3,01C(0,6) ON"1=1-357
0006F2 4E 30 0 100 CVO 3,100(0,13) T5=0 1
0006F6 07 05 DIDO o 1,)0 xc 10 0(6,13),100(13) TS=OI T5=01

Figure 11. Examples of Compiler Output (Part 3 of 4)

70

() ®
DATA NAMES

FIlE-l
RECCRD-l
FIlE-2
RECORO-2
COUNT
ALPHA
NUMBR
DEPEND
WORK-RECORD
NAfJE-FIELO
RECORD-NO
NC-OF-DEPENDENTS

®.
PROCEDURE

STEP-2
STEP-6
STEP-8

CARD

®
64
64

NAMES

ERROR MESSAGE

® ©.
ILA5011I-W
I LA5011 I-W

CROSS-REFERENCE DICTIONARY

DEFN REFERENCE

00017 00060 e006e 00068
00028 00068
00018 00073 00073 00076
0003b 00076
00040 00060 00064 00064
00G42 00064 00064
00043 0006e OC064 00064
00045 00066 00066
oe046 00068 00068 00076
00047 000(:4
0004':1 00067 00067
00053 00066 00066 00077

DEFN REFERENCE

00004 00070
00070 00078
00079 00076

@
HIGH ORDER TRUNCATION MIGHT
HIGH ORDER TRUNCATIJN Ml~HT

OCCUR.~ ®
OCCUR. }

Oe013

00076

00064

oe067

00078

oe077

Figure 11. Examples of compiler Output (Part 4 of 4)

00079

00066 00070

®

00071 00077

Interpreting Output 71

72

Glossary. The glossary is listed
when the SYM option is specified.
The glossary contains information
about names in the COBOL source
program.

® and@ The internal-name
generated by the compiler.
This name is used in the
compiler object code listing
to represent the name used in
the source program. It is
repeated in column F for
readability.

®

©

A normalized level number.
This level number is
determined by the compiler as
follows: the first level
number of any hierarchy is
always 01, and increments for
other levels are always by
one. Only level numbers 03
through 49 are affected;
level numbers 66, 77, and 88,
and FD, SD, and RD indicators
are not changed.

The data-name that is used in
the source module.

Note: The following Report Writer
internally-generated data-names
can appear under the SOURCE NAME
column:

CTL.LVL Used to coordinate
control break
activities.

GRP.IND Used by coding for GROUP
INDICATE clause.

TER.COD Used by coding for
TERMINATE clause.

FRS.GEN Used by coding for
GENERATE clause.

-nnnn Generated report record
associated with the file
on which the report is
to be printed.

RPT.RCD Build area for print
record.

CTL.CHR First or second position
of RPT.RCD. Used for
carriage control
character.

RPT.LIN Beginning of actual
information which will
be displayed. Second or
third position of
RPT.RCD.

CODB
CELL

E.nnnn

S.nnnn

N.nnnn

Used to hold code
specified.

Name generated from
COLUMN clause in
02-level statement.

Used for elementary
level with SUM clause,
but not with data-name.

Used to save the total
number of lines used by
a report group when
relative line numbering
is specified.

@ and ® For data-names, these columns
contain information about the
address in the form of a base and
displacement. For file-names, the
column contains information about
the associated DTF, if any.

@

®

This column defines storage for
each data item. it is represented
in assembler-like terminology.
Table 3 refers to information in
this column.

Usage of the data-name. For FD
entries, the DTF type is
identified (e.g., DTFDA). For
group items containing a USAGE
clause, the usage type is printed.
For group items that do not
contain a USAGE clause, GROUP is
printed. For elementary items,
the information in the USAGE
clause is printed.

@ A letter under column:

R - Indicates that the data-name
redefines another data-name.

o - Indicates that an OCCURS
clause has been specified for
that data-name.

Q - Indicates that the data-name
is or contains the DEPENDING
ON object of the OCCURS
clause.

M - Indicates the record format.
The letters which. may appear
under column Mare:

F - fixed-length records

U - undefined records

v - variable-length records

S - spanned records

(
-~

. -",/

C
--'...,'
./

\
,;

Table 3. Glossary Definition and Usage
r----------------------------T-----------------------T----------------------------------,
'Type ,Definition, Usage ,
~---------------------------+-----------------------t----~-----------------------------~

Group Fixed-Length 'DS OCLN GROUP
Alphabetic , DS NC DISP
Alphanumeric , DS NC DISP
Alphanumeric Edited 'DS NC AN-EDIT
Numeric Edited I DS NC NM-EDIT
Index-Name , OS 1B INDEX-NM
Group Variable-Length I OS VLI=N GROUP
Sterling Report 'DS NC RPT-ST
External Decimal 'OS NC DISP-NM
External Floating-Point , OS NC DISP-FP
Internal Floating-Point I OS 1F COMP-1

I OS 1D COMP-2
Binary , OS 1B, 1F, OR 2F COMP
Internal Decimal I OS NP COMP-3
Sterling Non-Report I OS NC DISP-ST
Index-Name , BLANK INDEX-NAME
File (FD) I BLANK DTF TYPE
Condi tion (88) I BLANK BLANK
Report Def ini tion (RD) I BLANK BLANK
Sort Definition (SD) I BLANK BLANK

r----------------------------~-----------------------~----~-----------------------------~
,Note: Under the definition column, N = size in bytes, except in group variable-length ,
Iwhere it is a variable cell number. I L-___ ~ _______________________ J

Global tables and literal pool:
Global tables are listed when the
LISTX option is specified, unless
SUPMAP is also specified and an
E-Ievel error is encountered. A
global table contains easily
addressable information needed by the
object program for execution. For
example, in the Procedure Division
output coding (3), the address of the
first instruction under STEP-1 (OPEN
OUTPUT FILE-1) is found in the
PROCEDURE NAME CELLS portion of the
Program Global Table (PGT).

®

®

The Task Global Table (TGT). This
table is used to record and save
information needed during the
execution of the object program.
This information includes
switches, addresses, and work
areas.

The Literal Pool. This lists all
literals used in the program, with
duplications removed. These
literals include those specified
by the programmer (e.g., MOVE
"ABC" TO DATA-NAME) and those
generated by the compiler (e.g.,
to align decimal points in
arithmetic computations). The
literals are divided into two
groups: those that are referenced
by instructions (marked "LITERAL
POOL") and those that are
parameters to the display object

time subroutine (marked "DISPLAY
LITERALS").

The Program Global Table (PGT).
This table contains literals and
the addresses of procedure-names
referenced by Procedure Division
instructions.

Register assignment: This lists the
register assigned to each base locator
in the object program.

Object code listing. The object code
listing is produced when the LISTX
option is specified, unless SUPMAP is
also specified and an E-Ievel error is
encountered. The actual object code
listing contains:

®

®

©

The compiler-generated card
,number. This number identifies
the COBOL statement in the source
deck which contains the verb that
generates the object code found in
column C.

The relative location, in
hexadecimal notation, of the
object code instruction in the
module.

The actual object code instruction
in hexadecimal notation.

Interpreting Output 73

,®

®

®

The procedure-name number. A
number is assigned only to
procedure-names referred to in
other Procedure Division
statements.

rhe object code instruction'in the
form that closely resembles
assembler language. (Displacements
are in hexadecimal notation.)

Compiler-generated information
about the operands of the
generated instruction. This
includes names and relative
locations of literals. Table 4
refers to information in this
column.

Table 4. Symbols Used in the Listing and
Glossary to Define
Compiler-Generated Information

r----------T-------------------~----------,
I Symbol I Meaning I
~---------+------------------------------i
I DNM SOURCE DATA NAME f
I SAV SAVE AREA CELL
ISWT SWITCH CELL
ITLY TALLY CELL
IWC WORKING CELL
ITS TEMPORARY STORAGE CELL
IVLC VARIABLE LENGTH CELL
ISBL SECONDARY BASE LOCATOR
IBL BASE LOCATOR
IBLL BASE LOCATOR FOR LINKAGE
I SECTION
ION ON COUNTER
IPFM PERFORM COUNTER
I PSV PERFORM SAVE
IVN VARIABLE PROCEDURE NAME
ISBS SUBSCRIPT ADDRESS
IXSW EXHIBIT SWITCH
IXSA EXHIBIT SAVE AREA
IPRM PARAMETER
IPN SOURCE PROCEDURE NAME
IGN GENERATED PROCEDURE NAME
IDTF DTF ADDRESS
IVN VARIABLE NAME INITIALIZATION
I LIT LITERAL
ITS2 TEMPORARY STORAGE
I (NON-ARITHMETIC)
IRSV REPORT SAVE AREA
ITS3 TEMPORARY STORAGE
I (SYNCHRONIZATION)
I TS4 TEMPORARY STORAGE
I (SYNCHRONIZATION)
I INX INDEX CELL
I V (BCDNAME) VIRTUAL
IVIR VIRTUAL L __________ ~ ______________ ~ ______________ _

74

®

®

Cross-reference Dictionary: The cross
reference dictionary is produced when
the XREF option is specified. It
consists of two parts:

®

®

The XREF dictionary for data-names
consists of data~names followed by
the generated card number of the
statement which defines each
data-name, and the generated card
number of statements where each
data-name is referenced.

The XREF dictionary for
procedure-names consists of the
procedure-names followed by the
generated card number of the
statement where each
procedure-name is used as a
section-name or paragraph-name,
and the generated card number of
statements where each
procedure-name is referenced.

The names appear in the order in which
they appear in the source program.
The number of references appearing in
the cross-reference dictionary for a
given name is based upon the number of
times the name is referenced in the
code generated by the compiler.

Diagnostic messages: The di,!lgnostic
messages associated with the
compilation are always listed. The
format of the diagnostic message is:

®

®

@

Compiler-generatea card number.
This is the number of a line in
the source program related to the
error.

Message identification. The
message identification for the
Disk Operating system American
National Standard COBOL compiler
always begins with the symbols
ILA.

The severity level. There are
four severity levels as follows:

(W) Warning
This level indicates that an
error was made in the source
program. However, it is not
serious enough to interfere
with the execution of the
program. These warning
messages are listed only if
the FLAGW option is specified
in the CBL card or chosen at
system generation time.

(C) Conditional
This level indicates that an
error was made but the
compiler usually makes a

®

corrective assumption. The
statement containing the error
is retained. Execution can be
attempted.

(E) Error
This level indicates that a
serious error was made.
Usually the compiler makes no
corrective assumption. The
statement or operand
containing the error is
dropped. Compilation is
completed, but execution of
the program should not be
attempted.

(D) Disaster
This error indicates that a
serious error was made.
Compilation is not completed.
Results are unpredictable.

The message text. The text
identifies the condition that
caused the error and indicates the
action taken by the compiler.

Since Report Writer generates a
number of internal data items and
procedural statements, some error
messages may reflect internal
names. In cases where the error
occurs mainly in these generated
routines, the error messages may
indicate the. card number of the RD
entry for the report under
consideration. In addition, there
are errors that may indicate the
number of the card upon which the
statement containing the error
ends rather than the card upon
which the error occurs. Internal
name formats for Report Writer are
discussed under "Glossary"
(heading 4, item c).

"Appendix F: Diagnostic Messages"
gives a compl~te list of compiler
diagnostic messages.

OBJECT MODULE

The object module contains the external
symbol dictionary, the text of the program,

and the relocation dictionary. It is
followed by an END statement that marks the
end of the module. For additional
information about the external symbol
dictionary and the relocation dictionary,
see the publication IBM System/360 Disk
Operating system: System Control and
System service Programs.

An object deck is punched if the DECK
option, is specified, unless SUPMAP option
was specified and an E-level diagnostic
message was generated. The object module
is written on SYSLNK if the LINK option is
specified, unless SUPMAP was specified and
an E-Ievel diagnostic message is generated.

LINKAGE EDITOR OUTPUT

The output of the linkage edit step may
include:

• A printed listing of the job control
statements

• A map of the phase after it has been
processed by the Linkage Editor

• Diagnostic messages

• A listing of the linkage editor control
statements

• A phase which may be assigned to the
core image library

Any diagnostic messages associated with
the Linkage Editor are automatically
g~ne=ated as output. The other forms of
output may b~ requested by the OPTION
control statement. All output to be listed
is printed on the device assigned to
SYSLST.

Figure 12 is an example of a linkage
editor output listing. It shows the job
control statements and the phase map. The
different types of output are numbered and
each type to be explained is lettered. The
text following the figure is an explanation
of the figure.

Interpreting Output 75

EN1RV } f'i'
II EX EC lNKEDT ~

JOB SAMPLE DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT

ACTICN
liST
LIST
LIST
LIST
LIST
LIST
LIST
LIST

TAKEN MAP
PHASE TEST,*
AUTOLINK IJFFBZZN
AUTClJNK ILBDDSPO
INCLUDE'lJJCPDI
AUTOlINK IlBDIMlO
AUTOLINK IlBDMNSO
AUTOLINK ILBDSAEO
ENTRV

® ®
PHASE XFR-AD

rEST 003000

@ ®
LOCORE HICORE

003000 CC48CB

Figure 12. Linkage Editor output

76

®
DSK-AD

50 07 2

® ®
ESD TYPE LABEL

CSECT TESTRUN

CSECT IJFFBZZN

* ENTRY I J FFZZZN

* ENTRV IJFFBZZZ

* ENTRY IJFFZZZZ

CSECT ILBDSAEO
ENTRY ILBDSAEI

CSECT ILBDMNSO

CSECT ILBDDSPO

* ENTRV ILBDCSPI

* ENTRY ILBDDSP2
* ENTRY ILBDDSP3

CSECT ILBOIMlO

C SECT IJJCPDI
ENTRY IJJC PD IN

* ENTRY IJJCPD3

@
,n

® '"'--./

LOADED REL-FR

003000 003000

003 9C 0 OC39CO
0039CO
OC39CO
0039CO

0047D8 0047 D8
004 7F 8

CD
0047DO 004700

003F90 003F90
0044EO
004578
004730

004768 0(14768

003DC8 0030C8
0030C8
0030C8

("'\
~,/

o

®

®

The job control statements. These
statements are listed since the LOG
option is specified.

Disk linkage editor diagnostic message
of input. The ACTION statement is not
required. If the MAP option is
specified, SYSLST must be assigned.
If the statement is not used and
SYSLST is assigned, MAP is assumed and
a map of main storage and any error
diagnostic messages are considered
output on SYSLST.

Map of main storage. A phase map is
printed when MAP is specified (or
assumed) during linkage editor
processing. The following information
is contained in the map of main
storage:

®

®

®

®

®

®

o

The name of each phase. This is
the name specified in the phase
statement.

The transfer address of each
phase.

The lowest main storage location
of each phase.

The highest main storage location
of each phase.

The hexadecimal disk address where
the phase begins in the core image
library.

The names of all CSECT's belonging
to a phase.

All defined entry points within a
CSECT. If an entry point is not
referenced, it is flagged with an
asterisk (*).

The address where each CSECT is
loaded.

The relocation factor of each
CSECT.

Comments on the Phase Map

The severity of linkage editor
diagnostic messages may affect the
production of the phase map. Since various
processing options affect the structure of

the phase, the text of the phase map will
sometimes provide additional information.
For example, the phase may contain an
overlay structure. In this case, a map
will be listed for each segment in the
overlay structure.

Linkage Editor Messages

The Linkage Editor may generate
informative or diagnostic messages. A
complete list of these messages is included
in the publication IBM Systern/360 Disk
Operating System: System Control and
System Service Programs.

COBOL PHASE EXECUTION OUTPUT

The output generated by program
execution (in addition to data written on
output files) may include:

~ Data displayed on the console or on the
printer

• Messages to the operator

• System informative messages

• System diagnostic messages

• A system dump

A dump and system diagnostic messages
are generated automatically during program
execution only if the program contains
errors that cause abnormal termination.

Figure 13 is an example of output from
the execution job step. The following text
is an explanation of the illustration.

®

Job control statements. These
statements are listed because the LOG
option is specified.

Program output on printer. The
results of execution of the TRACE and
EXHIBIT NAMED statements appear on the
program listing.

Console output. Data is printed on
the console as a result of the
e~ecution of DISPLAY UPON CONSOLE.

Interpreting output 77

II ASSGN SYS008,X'282' ~
II TLBL SYS008,'TAPEFILE',69/36S,,0001,0001 CD
/I. EXEC

64
68
73
76
77
WORK-RECORD = ACOOOI NYC Z
76
77
WORK-RECORD = BC0002 NYC 1
76
77
WORK-RECORD = CC0003 NYC 2
76
77 GD
WORK-RECORD = DC0004 NYC 3
76
77
WORK-RECORD = ECOOOS NYC 4
76
77
WORK-RECORD = FC0006 NYC Z
76
77
WORK-RECORD = GC0007 NYC 1
76
77
WORK-RECORD = HC0008 NYC 2

BG II JOB SAMPLE
00.47.14

BG I
4ll0A NO VOLI LBL FOUND

BG llllll
BG ACOOOI NYC 0
BG BC0002 NYC 1
BG CC0003 NYC 2
BG DC0004 NYC 3
BG ECOOOS NYC 4
BG FC0006 NYC 0
BG GC0007 NYC 1
BG HC0008 NYC 2
BG IC0009 NYC 3
BG ",COO 10 NYC 4
BG KCOOll NYC 0
BG LC0012 NYC 1
BG MCOO 13 NYC 2
BG NC0014 NYC 3
BG OCOOIS NYC 4
BG PC0016 NYC 0
BG QC0017 NYC 1
BG RC0018 NYC 2
BG SC0019 NYC 3
BG TC0020 NYC 4
BG UC002l NYC 0
BG VC0022 NYC 1
BG WC0023 NYC 2
BG XC0024 NYC 3
BG YC002S NYC 4
BG ZC0026 NYC 0
BG 000101 69171

TLBL= SYS008 SYS008=282

Figure 13. output from Execution Job Steps

OPERATOR MESSAGES

The COBOL phase may issue operator
messages. In ·the message, XX denotes a
system-generated 2-character numeric field
that is used to identify the program
issuing the message.

STOP statement

The following message is generated by
the STOP statement with the literal option:

I XX Cll0A STOP 'literal'

Explanation: This message is issued at the
programmer's discretion to indicate
possible alternative action to be taken by.
the operator.

78

Operator Response: Follows the
instructions given both by the m~ssage and
on the job request form supplied by the
programmer. If the job is 'to be resumed,
hit end-of-block.

ACCEPT Statement

The following message is generated by an
ACCEPT statement with the FROM CONSOLE
option:

XX ClllA "AWAITING REPLY"

Explanation: This message is issued by the
object program when operator intervention
is required. .

Operator Response: Enter the reply and hit
end-of-block. To send message, hit
end-of-block again. (The contents of the
text field should be supplied by the
programmer on the job request form.)

o

o

o

SYSTEM OUTPUT

Informative and diagnostic messages may
appear in the listing during the execution
of the object program.

Each of these messages contains an
identification code in the first column of
the message to indicate the portion of the
operating system that generated the
message. Table 5 lists these codes,
together with identification for each.

Table 5. System Message Identification
Codes

r----T------------------------------------,
I Code I Identification I
~----+------------------------------------~ I 0 I An on-line console message from I
I I the Supervisor I
~----+------------------------------------~
I 1 I A message from the Job Control I
I I Processor I

~----+------------------------------------~
I 2 I A message from the Linkage Editor I

~---+------------------------------------~
I 3 I A message from the Librarian I
~----+------------------------------------~
I 4 I A message from LIOCS I
~---+------------------------------------~
I 7 I A message from the Sort program I
~----+------------------------------------~
I C I A message from COBOL object time I
I I subroutines I L--__ ~ ___________________________________ J

Interpreting Output 79

o

This chapter· describes the accepted
linkage conventions for calling and called
programs and discusses linkage methods when
using an assembler language program. In
addition, this chapter contains a
description of the overlay facility which
enables different called programs to occupy
the same area in main storage at different
times. It also contains a suggested
assembler language program to be used in
conjunction with the overlay feature.

A COBOL source program that passes
control to another program is a calling
program. The program that receives control
from the calling program is referred to as
a called program. Both programs must be
compiled (or assembled) in separate job
steps, but the resulting object modules
must be linkage edited together in the same
phase.

A called program can also be a calling
program; that is, a called program can, in
turn, call another program. In Figure 14
for instance, program A calls program B;
program B calls program C. Therefore:

1. A is considered a calling program by B

2. B is considered a called program by A

3. B is considered a calling program by C

4. C is considered a called program by B

r--,
I ABC I
I r-------, r--------, r------, I
I ICalling I I Called I 1 Called I I
I Iprogram I Iprogram 1 Iprogram 1 I
I lof B 1 lof All of B 1 1
1 1 1-->1 1---->1 1 1
I I "Calling 1 I I ,
, , I' program " I I
, , ,\of C 1 1 , \
\ L ________ J L _______ J L ________ J \
L ____________________________________ · ___ J

Figure 14. Calling and C~lled Programs

By convention, a called program may call
to an entry point in any other program,
except one on a higher level in the "path"
of that program. That is, A may call to an
entry point in B or C, and B may call Ci
however, C should not call A or B.
Instead, C transfers control only to B by
issuing the EXIT PROGRAM or GOBACK
statements in COBOL (or its equivalent in
another language). B then returns to A.

CALLING AND CALLED PROGRAMS

Compiler generated switches, e.g., ON
and ALTER, are not reinitialized upon each
entrance to the called program, that is,
the program is in its last executed state.

LINKAGE

Whenever a program calls another
program, linkage must be established
between the two. The calling program must
state the entry point of the called program
and must specify any arguments to be
passed. The called program must have an
entry point and must be able to accept the
arguments. Further, the called program
must establish the linkage for the return
of control to the calling program.

LINKAGE IN A CALLING PROGRAM

A calling COBOL program must contain the
following statement at the point where
another program is to be called:

r--,
'CALL literal-1 [USING identifier-1 \
1 [identifier-21 ••• 1 I L __ J

literal-1
is the name specified as the
program-name in the PROGRAM-ID
paragraph of the called program, or
the name of the entry point in the
called program. When the called
program is to be entered at the
beginning of the Procedure Division,
literal-1 is the name of the program
being called. When the called program
is to be entered at some point other
than the beginning of the Procedure
Division, literal-1 should not be the
same as the name specified in the
PROGRAM-ID paragraph of the called
program. Since the program-name in
the PROGRAM-ID paragraph produces an
external reference defining an entry
point, this entry point name would not
be uniquely defined as an external
reference.

identifier-1 [identifier-21 •••
are the arguments being passed to the
called program. Each identifier
represents a data item defined in the
Linkage section of the called program

Calling and Called Programs 81

--

and must contain a level number 01 or
77. If the called program is an
assembler language program, the
arguments may represent file-names and
procedure-names. If no arguments are
to be passed, the USING option is
omitted.

LINKAGE IN A CALLED PROGRAM

A called COBOL program must contain two
sets of statements:

1. One of the following statements must
appear at the point where the program
is entered.

If the called program is entered at
the first instruction in the Procedure
Division and arguments are passed by
the calling program:

r------------------------------------, , ,
,PROCEDURE DIVlSION [USING ,
, identifier-1 [identifier-2l ••• l. I L ____________________________________ J

If the entry point of the called
program is not the first statement of
the Procedure Division:

r-------------------------------------, , ,
I ENTRY literal-1 [USING identifier-1 ,
, [identifier-2l •• :. 1 , L-____________________________________ J

literal-1
is the name of the entry point in
the called program. It is the
same name that appears in the
CALL statement of the program
that calls this program.
literal-1 must not be the name of
any other entry point or
program-name in the run unit.

identifier-1 [identifier-2l ••• l
are the data items representing
parameters. They correspond to
the arguments of the CALL
statement of the calling program.
Each data item in this parameter
list must be defined in the
Linkage section of the called
program and must contain a level
number of 01 or 77.

2. Either of the following statements
must be inserted where control is to
be returned to 'the calling program.

82

r-------------------------------------,
, EXIT PROGRAM. ,
~-------------------------------------~
, GOBACK. , L _____________________________________ J

Both the EXIT PROGRAM and GOBACK
statements cause the restoration of
the necessary registers, and return
control to the point in the calling
program immediately following the
calling sequence.

ENTRY POINTS

Each time an entry point is specified in
a called program, an external-name is
defined. An external-name is a name that
can be referenced by another program that
has been separately compiled or assembled.
Each time an entry name is specified in a
calling program, an external reference is
defined. An external reference is a symbol
that is defined as an external-name in
another separately compiled or assembled
program. The Linkage Editor resolves
external-names and external references, and
combines calling and called programs into a
format suitable for execution together,
i.e., as a single phase.

Note: Several different entry points may
be defined in one COBOL source module.
Different CALL statements in any module of
the phase may specify the same entry point,
but each definition of an entry point must
be unique in the same phase.

CORRESPONDENCE OF ARGUMENTS AND PARAMETERS

The number of identifiers in the
parameter list of the called program must
be the same as the number of identifiers in
the argument list of the calling program.
There is a one-for-one correspondence. The
correspondence is positional and not by
name. An identifier must not appear more
than once in the same USING clause.

Only the address of an argument is
passed. consequently, both the identifier
that is an argument and the identifier that
is the corresponding parameter refer to the
same location in main storage. The pair of
identifiers need not be identical, but the
data descriptions must be equivalent. For
example, if an argument is a level-77
data-name representing a 30-character
'string, its corresponding parameter could
also be a level-77 data-name representing a
character string of length 30, or the
parameter could be a level-01 data item

with subordinate items representing
character strings whose combined length is
30.

Although all parameters in the ENTRY
statement must be described with level
numbers 01 or 77, there is no such
restriction made for arguments in the CALL
statement. An argument may be a qualified
name or a subscripted name. When a group
item with a level number other than 01 is
specified as an argument, proper boundary
word alignment is required if subordinate
items are described as COMPUTATIONAL,
COMPUTATIONAL-l, or COMPUTATIONAL-2. If
the argument corresponds to an 01-level
parameter, doubleword alignment is
required.

LINKAGE EDITING WITHOUT OVERLAY

Assume that a COBOL main program
(COBMAIN), at one or more points in its
logic executes CALL statements to COBOL
programs SUBPRGA, SUBPRGB, SUBPRGC, and
SUBPRGD. Also assume that the module sizes
for the main program and subprograms are:

Program
COBMAIN
SUBPRGA
SUBPRGB
SUBPRGC
SUBPRGD

Module Size
(in bytes)

20,000
4,000
5,QOO
6,000
3,000

Through the linkage mechanism, all
called programs plus COBMAIN must be
linkage edited together to form one module
of 38,000 bytes. Therefore, COBMAIN would
require 38,000 bytes of storage in order to
be executed. No overlay structure need be
specified at linkage edit time if 38,000
bytes of core storage are available.

The following is an example of the job
control statements needed to linkage edit
these calling and called programs without
specifying an overlay structure. The
source decks for COBMAIN and SUBPRGA are
included in the job deck, whereas SUBPRGB,
SUBPRGC, and SUBPRGD are in the relocatable
library.

// JOB NOVERLAY
// OPTION LINK,LIST,DUMP

ACTION MAP

/*

/*

PHASE EXAMP1,*
INCLUDE

{object module

INCLUDE SUBPRGB
INCLUDE SUBPRGC
INCLUDE SUBPRGD
INCLUDE

COBMAIN}

{object module SUBPRGA}

ENTRY
// EXEC LNKEDT
// EXEC

/*
/&

{data for program}

Figure 15 is an example of the data flow
logic of this call structure where all the
programs fit into main storage.

Execute
lNKEDT

linkage
Editor

I--------i- - -} Storage

layout

Figure 15. Example of Data Flow Logic in a
Call Structure

Note: For the example given, it is assumed
that SYSLNK is a standard assignment. The
flow diagram illustrates how the various

Calling and Called Programs 83

program segments are linkage edited into
storage in a sequential arrangement.

ASSEMBLER LANGUAGE SUBPROGRAMS

A main program written in COBOL can call
programs wri~ten in other languages that
use the same linkage conventions. Whenever
a COBOL program calls an assembler language
program, certain conventions and techniques
must be used.

There are three basic ways to use
assembler-written called programs with a
main program written in COBOL:

1. A COBOL main program or called program
calling an assembler-writtem program.

2. An assembler-written program calling a
COBOL program.

3. An/assembler-written program calling
another assembler-written program ..

From these combinations, more
complicated structures can be formed.

In a COBOL program; the expansions of
the CALL and GOBACKor EXIT PROGRAM
statements provide the save and return
coding that is necessary to establish
linkage between the calling and called
programs in accordance with the linkage
conventions of the system. Assembler
language programs must be prepared in
accordance with the same linkage
conventions. These conventions include:

1. Using the proper registers to
establish linkage.

2. Reserving, in the calling progr~, a
storage area for items contained in
the argument list. This storage area
can be referenced by the called
program.

3. Reserving, in the calling program, a
save area in which the contents of the
registers can be saved.

REGISTER USE

The Disk Operating System has assigned
functions to certain registers used in
linkages. Table 6 shows the conventions
for using general registers as linkage
registers. The calling program must load
the address of the return point into
register 14, and it must load the address
of the entry point of the called program
into register 15.

84

Table 6. Conventional Use of Linkage
Registers

r----T--------T---------------------------,
IReg·IReg. I I
I No. I Name I Function I
~----+--------t---------------------------~
I 1 I Argument I Address of the argument I
I I list I list passed to the called I
I I register I program. I
.----+--------+---------------------------~
113 I Save I Address of the area re- I
I I area I served by the calling pro-I
I I register I gram in which the contents I
I I I of certain registers are I
I I I stored by the called I
I I I program. I
.----+--------+---------------------------~
114 I Return I Address of the location inl
I "I register I the calling program to I
I I I which control is returned I
I I I after execution of the I
I I I called program. I
.----+--------+---------------------------~
115 I Entry I Address of the entry point I
I I point I in the called program. I
I I register I I L-___ ~ ______ ~_~ __________________________ J

SAVE AREA

A calling assembler language program
must reserve a save area of 18 words,
beginning on a fullword boundary, to be
used by the called program for saving
registers; it must load the address of this
area into register 13. Table 7 shows the
layout of the save area and the contents of
each word.

A called COBOL program does not save
floating-point registers. The programmer
is responsible for saving and restoring the
contents of these registers in the calling
program.

ARGUMENT LIST

The argument list is a group of
contiguous fullwords, beginning on a
fullword boundary, each of which is an
address of a data item to be passed to the
called program. If the program is to pass
arguments, an argument list must be
prepared and its address loaded into
register 1. The high-order bit of the last
argument, by convention, is set to 1 to
indicate the end of the list.

(r---\

"

Table 7. Save Area Layout and Word
contents

r---,
I r-------------------------,
IAREA IThis word is a part of the I
I (word 1) Istandard linkage convention I
I lestablished under the Disk I
I IOperating system. The word I
I Imust be reserved for proper I
I laddressing of the subsequent I
I I entries. However, an I
I lassembler subprogram may use I
I Ithe word for any desired I
I I purpose. I
I ~--------------------------~
IAREA+4 IThe address of the previous I
I (word 2) Isave area, that is, the save I
I larea of the subprogram that I
I Icalled this one. I
I ~-------------------------~
IAREA+8 IThe address of the next save I
I (word 3) larea, that is, the save area I
I lof the subprogram to which I
I Ithis subprogram refers. I
I ~---------------------~
IAREA+12 IThe contents of register 14, I
I (word 4) Ithat is, the return address. I
I ~-----------~----------~
IAREA+16 IThe contents of register 15, I
I (word 15) I that is, the entry address. I
I ~-----------------------~
IAREA+20 IThe contents of register O. I
I (word 6) I I
I ~-------------------~
IAREA+24 IThe contents of register 1. I
I (word 7) I I
I • I I
I • I I
I • I I I ~----------------------------~1
I AREA+ 68 IThe contents of register 12. II
I (word 18) I II I L-___________________________ JI
L ______________________________________ J

Any assembler-written program must be
coded with a detailed knowledge of the data
formats of the arguments being passed.
Most coding errors occur because of the
data format discrepancies of the arguments.

If one programmer writes both the
calling program and the called program, the
data format of the arguments should not
present a problem when passed as
parameters. However, when the programs are
written by different· programmers, the data
format specifications for the arguments
must be clearly defined for the user.

The linkage conventions used by an
assembler program that calls another
program are illustrated in Figure 16. The
linkage should include:

1. The calling sequence.

2. The save and return routines.

3. The out-of-line parameter list. (An
in-line parameter list may be used.)

4. A save area on a fullword boundary.

In-Line Parameter List

The assembler programmer may establish
an in-line parameter list instead of an
out-of-line list. In this case, he may
substitute the calling sequence and
parameter list illustrated in Figure 17 for
that shown in Figure 16.

Calling and Called Programs 85

r---,
decknarne START 0 INITIATES PROGRAM ASSEMBLAGE AT FIRST
* AVAILABLE LOCATION. ENTRY POINT TO THE
* PROGRAM.

ENTRY
EXTRN
USING

* SAVE ROUTINE
namej. STM

*
*
*

*
*

*
*
*
*
*
*

LR
DROP
USING
LR

LA

ST

ST

namej.
name2
namej.,15

14,rj.,12(13)

r3,15
15
name1.,r3
r2,13

13, AREA

13,8 (r2)

r2,4(13)

BC 15,probj.

THE CONTENTS OF REGISTERS 14, 15, AND
o THROUGH rj. ARE STORED IN THE SAVE
AREA OF THE CALLING PROGRAM (PREVIOUS
SAVE AREA). rj. IS ANY NUMBER FROM 0 THROUGH 12.

WHERE r3 AND r2 HAVE BEEN SAVED
LOADS REGISTER 13, WHICH POINTS TO THE
SAVE AREA OF THE CALLING PROGRAM, INTO
ANY GENERAL REGISTER, r2, EXCEPT 0 AND 13.
LOADS THE ADDRESS OF THIS PROGRAM'S
SAVE AREA INTO REGISTER 13.
STORES THE ADDRESS OF THIS PROGRAM'S SAVE
AREA INTO WORD 3 OF THE SAVE AREA OF THE
CALLING PROGRAM.
STORES THE ADDRESS OF THE PREVIOUS SAVE
AREA (I. E., THE SAME AREA OF THE CALLING
PROGRAM) INTO WORD 2 OF THIS PROGRAM'S
SAVE AREA.

AREA DS 18F RESERVES 18 WORDS FOR THE SAVE AREA
* THIS IS LAST STATEMENT OF SAVE ROUTINE.
probj. {User-written program statements}
* CALLING SEQUENCE

LA 1,ARGLST
L 15,ADCON
BALR 14,15
{Remainder of user-written program statements}

* RETURN ROUTINE
L 13,4(13)

* LM 2,rj.,28(13)

* L 14,12(13)

*
* MVI 12(13),X'FF'

*
* BCR 15,14
ADCON DC A(name2)
* PARAMETER LIST
ARGLST DC AL4(arg1)

DC AL4(arg2)

LOADS THE ADDRESS OF THE PREVIOUS SAVE
AREA BACK INTO REGISTER 13.
THE CONTENTS OF REGISTER 2 THROUGH r1. ARE
RESTORED FROM THE PREVIOUS SAVE AREA.
LOADS THE RETURN ADDRESS, WHICH IS IN
WORD 4 OF THE CALLING PROGRAM'S SAVE AREA,
INTO REGISTER 14.
SETS FLAG FF IN THE SAVE AREA OF THE
CALLING PROGRAM TO INDICATE THAT CONTROL
HAS RETURNED TO THE CALLING PROGRAM.
LAST STATEMENT IN RETURN ROUTINE
CONTAINS THE ADDRESS OF SUBPROGRAM name2.

FIRST STATEMENT IN PARAMETER AREA SETUP

DC X'80' FIRST BYTE OF LAST ARGUMENT SETS BIT 0 TO 1
DC AL3(argn) LAST STATEMENT IN PARAMETER AREA SETUP L _________________________ .:.. __________ ~ __________________ ._.. _________________________ J

Figure 16. Sample Linkage Routines Used with a Calling Subprogram

86

(---.. ,
f
\

'"

.--,
ADCON DC A(prob1)

LA
L
CNOP
BALR
DC
DC

14, RETURN
15,ADCON
2,4
1,15
AL4(arg1)
AL4(arg2)

DC X'80'
DC AL3(argn)

RETURN EQU * L _______________________________________ _

Figure 17. sample In-line Parameter List

LOWEST LEVEL PROGRAM

If an assembler called program does not
call any other program (i.e., if it is at
the lowest level), the programmer should
omit the save routine, calling sequence,
and parameter list shown in Figure 16. If
the assembler called program uses any
registers, it must save them. Figure 18
illustrates the appropriate linkage
conventions used by an assembler program at
the lowest level.

r---,
deckname START 0

name

ENTRY name

USING
STM

.. .

*,15
14,r1,12(13)

User-written program statements

LM 2,r1,28(13)
MVI 12(13),X'FF'
BCR 15,14

r--~
INote: If registers 13 and/or 14 are usedl
lin the called subprogram, their contents I
Ishould be saved and restored by the I
Icalled subprogram. I L ________________ ~ _______________________ J

Figure 18. Sample LinKage Routines Used
with a Lowest Level Subprogram

OVERLAYS

If a program is too large to be
containeq in the number of bytes available
in main storage, it can still be executed
by means of an overlay·structure. An
overlay structure permits the re-use of
storage locations previously occupied by
another program. In order to use an
overlay structure, the programmer must plan
his program so that one or more called
programs need not be in main storage at the
same time as the rest of the program phase.

The following is a diagram of the basic
form of a program to be overlaid:

I
I
IROOT PHASE
I
I
I • _____ J.-____ ,

I I
I I
I I
I I
I I
ISUBA ISUBB

The root phase consists of the COBOL
main program and an assembler language
subroutine which handles the overlay
structures. SUBA and SUBB are the called
programs that are to be overlaid in core
storage.

In using the overlay technique, the
programmer specifies to the Linkage Editor
which programs are to overlay each other.
These programs are processed by the Linkage
Editor so they can be placed automatically
in main storage for execution when called
by the main program. The resulting output
of the Linkage Editor is called an overlay
structure •

SPECIAL CONSIDERATIONS WHEN USING OVERLAY
STRUCTURES

There are three areas of special concern
to the programmer who decides to use the
overlay feature. These problems concern
the use of the assembler language
subroutine, proper linkage editing, and job
control statements.

calling and Called Programs 87

ASSEMBLER LANGUAGE SUBROUTINE FOR
ACCOMPLISHING OVERLAY

1. The example is a suggested technique,
and is not the only technique.

The CALL statement is used for "direct"
linkage: that is, the assistance of the
Supervisor is not required (as it 'is when
loading or fetching a phase). there are no

2. It can be used for assembler overlays
if the user has a desired entry pOint

1Lrlhis END card and the first
statement at that entry point is 'STM
14,12,12(13)'(90ECDOOC).

.COBOL statements that will generate the
equ1valent of the LOAD or FETCH assembler
macro instructions. For this reason, one
must call an assembler program to effect an
overlay of a COBOL program. This routine
must be linkage edited as part of either a
,root phase orperrnanently resident phase.

3. The subroutine cannot be used for
entry points other than at the first
instruction of the Procedure Division.
A suggested technique for diverse
entry points is a table look-up using
V-type constants.

The sample overlay subroutine shown in
Figure 19 is governed by the following
restrictions:

Note: Care should be taken with the
techniques used in statements 0019 and
0020. Only when the COBOL program is

r---, I STMNT SOURCE STATEMENT '
I
I
I
J

0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015
0016
0017
0018
0019
0020
0021
0022
0023
0024
0025
0026
0027
0028
0029
0030
0031
0032
0033
0034
0035
0036
0037
0038
0039
0040
0041
0042

OVERLAY START 0
ENTRY OVRLAY

* AT ENTRY TIME
*
*
*
*
*
*

R1~POINTER TO ADCON LIST OF USING ARGUMENTS
FIRST ARGUMENT IS PHASE OR SUBROUTINE NAME
MUST BE 8 BYTES
R13=ADDRESS OF SAVE AREA
R14=RETURN POINT OF CALLING PROGRAM
R15=ENTRY POINT OF OVERLAY PROGRAM

* AT EXIT
*
*
*
*
*

*
*
*
*
*

ENTRY

SOBIN

ASUB
CORSUB
STMINS
HWTWC

R1=POINTER TO SECOND ARGUMENT OF ADCON LIST
OF USING ARGUMENTS

R14=RETURN POINT OF CALLING PROGRAM--NOT THIS PROG
R15=ENTRY POINT OF PHASE OR SUBPROGRAM

USING *,15
STM 0,1,20(13) SAVE REG 0 AND 1
L 1,0(1) Rl=ADDRESS OF PHASE
CLC 0(8,1),CORSUB IS IT IN CORE
BE SUB IN YES
MVC CORSUB(8),0(1) NO,CORSUB=PHASE NAME
SR 0,0 RO=O

LOAD REQUIRES RO=O IF LOAD ISN'T SPECIFIED,
Rl=ADDRESS OF PHASE ENTRY

UPON RETURN

4 LOAD PHASE

STEP SEARCH POINTER

NAME

SVC
SH
LA
CLC
BNE
ST
LM
LA
L
BR
DS
DC

1,HWTWO
1,2(1)
0(4,1),STMINS
ENTRY

IS THIS THE ENTRY POINT
NO, LOOP BACK

-DC
DC
END

1,ASUB
0,1,20(13)
1,4(1)
15, A SUB
15
iF
8X'FF'
X'90ECDOOC'
H'2'

YES, SAVE IT
RESTORE REGO AND 1
STEP PAST PHASE NAME ADCON
LOAD ENTRY POINT ADDRESS

L-___ _

Figure 19. Example of an Assembler Language Subroutine for Accomplishing Overlay

88

(r-----....

',- ,,'

loaded are altered GO TO statements
reinitialized. A better technique would be
to load the called programs each time they
are required.

LINKAGE EDITING WITH OVERLAY

In a linkage editor job step, the
pro-granuner specifies the overlay points in
a program by using PHASE statements. In
the Working-Storage section, a level-77
constant must be created for each phase to
be called at execution time. These
constants have a PICTURE of X(8) and a
VALUE clause containing the same name as
that app~aring on the PHASE card for that
segment in the linkage edit run.

In addition, each argument to be passed
to the called program must have an entry in
the Linkage section. Remember, also, that
the ENTRY statement should not refer to the
program-name but rather to the
paragraph-name in the Procedure Division
where control is to be passed on entering
the called program. (Use of the
program-name will result in incorrect
execution.)

When preparing the control cards for the
Linkage Editor, the programmer should be
certain to include the assembler language
subroutine with the main (root) phase.
Also, to achieve maximum overlay, the phase
names for the called programs should be
different from the names of the called
programs specified in the PROGRAM-ID
paragraphs.

Figure 20 is a flow diagram of the
overlay logic. The PHASE cards indicate
the beginning address of each phase. The
phases OVERLAYC and OVERLAYD will have the
same beginning address as OVERLAYB. The
sequence of events is:.

1. The main program calls the overlay
routine.

2. The overlay routine fetches the
particular COBOL subprogram and places
it in the overlay area.

3. The overlay routine transfers control
to the first instruction of the called
program.

4. The called program returns to the
COBOL calling program (not to the
assembler language overlay routine).

If OVERLAYB were known to be in storage,
the CALL statement would be:

r-----------~-----------------------------,
I CALL "OVERLAYB" USING PARAM-1, PARAM-2. I L--_______________________________________ J

But when using the assembler language
overlay routine (OVRLAY), it becomes:

r---, I CALL "OVRLAY" USING PROCESS-LABEL, I
I PARM-i, PARM-2. I L-__ J

where PROCESS-LABEL contains the
external-name OVERLAYB of the called
program.

However, the ENTRY statement of the
called program is the same for both cases,
i.e., ENTRY "OVERLAYB" USING PARAM-1,
P1L~-2, whether it is called indirectly by
the main program through the overlay
program or called directly by the main
program.

Note: An ENTRY which is to be called by
OVRLAY must precede the first executable
statement in the called program.

COBOL
Main or Root

Overlay Routine

Overlay Area

OVERLAY B
Subprogram

OVERLAY C
Subprogram

OVERLAY 0
Subprogram

Figure 20. Flow Diagram of Overlay Logic

Calling and Called Programs 89

JOB CONTROL FOR ACCOMPLISHING OVERLAY

The job control statements required to
accomplish the overlay illustrated in
Figure 20 are shown in Figure 21. The
PHASE statements specify to the Linkage
Editor that the overlay structure to be
established is one in which the called
programs OVERLAYB, OVERLAYC, and OVERLAYD
overlay each other when called during
execution.

Note: The phase name specified in the
PHASE card must be the same as the value
contained in the first argument for CALL

nOVRLAyn, i.e., PROCESS-LABEL, COMPUTE-TAX,
etc., contain OVERLAYB, OVERLAYC,
respectively, which are the names given in
the PHASE card.

It is the programmer's responsibility to
write the entire overlay, i.e., the COBOL
main (or calling) program and an assembler
language subroutine (for which a sample
program is given in this chapter) that
fetches and overlays the called programs.
A calling sequence to obtain an overlay
structure between three COBOL subprograms
is illustrated in Figure 22.

r------------------'---,
// JOB OVERLAYS
// OPTION LINK

PHASE OVERLAY, ROOT
// EXEC FCOBOL

{COBOL Source for Main Program OVERLAY}
/*
/ / EXEC ASSEMBLY

Source deck for Assembler Language Routine OVRLAY

PHASE OVERLAYB, *
/ / EXEC FCOBOL

{COBOL Source for Called Program OVERLAYB}

PHASE OVERLAYC,OVERLAYB
/ / EXEC FCOBOL

{COBOL Source for Called Program OVERLAYC}

PHASE OVERLAYD, OVERLAYC
{COBOL Source for Called Program OVERLAYD}

/*
/ / EXEC LNKEDT
// EXEC
/*
/& L-__ J

Figure 21. Job Control for Accomplishing Overlay

90

/
I '-_.,

,r
(

"'-j'
r---'---,

COBOL Program Main (Root or Main Program)

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY.

ENVIRONMENT DIVISION.

· .
DATA DIVISION.

WORKING-STORAGE SECTION.
77 PROCESS-LABEL PICTURE IS xes) VALUE IS "OVERLAYB".
77 PARAM-1 PICTURE IS X.
77 PARAM-2 PICTURE IS XX.
77 COMPUTE-TAX PICTURE IS xes) VALUE IS "OVERLAYC".

01 NAMET.
02 EMPLY-NUMB PICTURE IS 9(5).
02 SALARY PICTURE IS 9(4)V99.
02 RATE PICTURE IS 9(3)V99.
02 HOURS-REG PICTURE IS 9(3)V99.
02 HOURS-OT PICTURE IS 9(2)V99.

01 COMPUTE-SALARY PICTURE IS xes) VALUE IS "OVERLAYDn.
01 NAMES.

· .

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
· .

CALL "OVRLAY" USING PROCESS-LABEL, PARAM-l, PARAM-2.

CALL "OVRLAY" USING COMPUTE-TAX, NAMET.
· .

CALL "OVRLAY" USING COMPUTE-SALARY, NAMES.
· .
. L-_______ ---_______ ~ _____________________________________ ~ ________________ ~ ____________ J

Figure 22. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 1 of 3)

Calling and Called Programs 91

-- -----

r--,
COBOL Subprogram ~

IDENTIFICATION DxVISION.
PROGRAM-ID. OVERLAY1.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 PARAM-10 PICTURE X.
01 PARAM-20 PICTURE XX.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYB" USING PARAM~10, PARAM-20.

GOBACK.

COBOL Subprogram C

IDENTIFICATION DIVISION.
PROGRAM-ID. OVERLAY2.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION.

01 NAMEX.
02 EMPLY-NUMBX PICTURE IS 9(5).
02 SALARYX PICTURE IS 9(4) V99.
02 RATEX PICTURE IS 9(3)V99.
02 HOURS-REGX PICTURE IS 9(3)V99.
02 HOURS-OTX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY "OVERLAYC" USING NAMEX.

GOBACK. L-. __________________ - _____________________________________ - ___________________________ _

Figure 22. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 2 of 3)

92

,....

r--,
COBOL Subprogram D

IDENTIFICATION DIVISION.
PROGRAM-ID. ·OVERLAY3.

ENVIRONMENT DIVISION.

DATA DIVISION.

LINKAGE SECTION
01 NAMES.

02 RATES PICTURE IS 9(6).
02 HOURS PICTURE IS 9(3)V99.
02 SALARYX PICTURE IS 9(2)V99.

PROCEDURE DIVISION.
PARA-NAME. ENTRY ·OVERLAYD· USING NAMES •

. .
GOBACK. L ___ _

Figure 22. Calling Sequence to Obtain Overlay Between Three COBOL Subprograms
(Part 3 of 3)

Calling and Called Programs 93

\ ... J'

.. - ..

In order to use the System/360 Disk
operating System Sort/Merge program, Sort
Feature statements are written in the COBOL
source program. These statements are
described in the publication IBM System/360
Disk Operating System: American National
Standard COBOL. The sort/Merge program
itself is described in the publication IBM
System/360 Disk oper.ating System: Tape- and
Disk Sort/Merge, Form GC28-6676. nAppendix
G: Machine Considerationsn in this
publication ~ontains information about
system requirements when the Sort Feature
is used.

Additional job control statements must
be included in the execution step of the
job to describe the files used by the sort
program. These statements are described
below in nSort Job Control Requirements. n

Note: The Checkpoint/Restart Feature can
be activated during a sorting operation by
specifying the RERUN statement.

SORT -JOB CONTROL REQUIREMENTS

Three types of files can be defined for
the sort program in the execution job step:
input, output, and work.

SORT INPUT AND OUTPUT CONTROL STATEMENTS

When the USING and/or GIVING options are
specified, the compiler generates dummy
Input and/or output Procedures. Hence, the
job control requirements for files named as
operands of USING and GIVING are the same
as those for files used as input to or
output from the sorting operation in these
procedures.

The following job control statements are
required for files used as input to or
output from the sorting operation:

USING THE SORT FEATURE

ASSGN

followed by

VOL
TPLAB

or

VOL
DLAB
XTENT

or

DLBL
EXTENT

or

TLBL

The symbolic unit to which each sort
input or output file is assigned in the
source language ASSIGN clause is specified
in an ASSGN control statement.

Note: ASSGN control statements are
required only if the input/output devices
used in an application have not been
previously assigned the appropriate
symbolic names.

If an input file contains standard
labels, a TLBL or DLBL (or VOL and TPLAB or
VOL and DLAB) statement(s) is required.
The symbolic name of the device from which
the input file is to be read must also be
included on this statement.

One EXTENT (XTENT) control statement is
required to define the limits of each area
of a mass storage device from which an
input file will be read. EXTENT (XTENT)
statements must include the symbolic unit
name of the device containing the extent.

If the output file is to use standard
labels, a TLBL or DLBL (or VOL and TPLAB or
VOL and DLAB) statement(s) is required.

one EXTENT (XTENT) control statement
must be used to define the limits of each
area of a mass storage device onto which
the output file is written. The symbolic
name of the output unit must appear on this
card.

Using the Sort Feature 95

,----- ----------------- -

SORT WORK FILE CONTROL STATEMENTS

The Sort program requires at least one
mass storage unit or three tape units as an
intermediate sort work file. The symbolic
units to which this file is assigned must
be consecutively numbered beginning with
SYS001. Intermediate storage may be
assigned on the following devices:

• IBM 2400 Magnetic Tape Units

• IBM 2311 Disk Storage Drive

• IBM 2314 Direct-Access Storage Device

Note: When variable-length or
redefined-length records are being sorted,
sort work files must not be assigned to
7-track tapes. 7-track tape work files can
only be used to sort records whose keys are
packed decimal or binary.

Device types may not be mixed; i.e.,
work units for a particular sort operation
must all be of the same type.

If spanned records are being sorted and
mass storage devices are being used as sort
work files, it is the user's responsibility
to assign these work files to devices whose
track sizes are larger than the logical
record sizes of the records being sorted.
A spanned record that is larger than the
available track size can be sorted by
assigning the work files to magnetic tape •.

If a work unit is to use standard
labels, a TLBL or DLBL (or VOL and TPLAB or
VOL and DLAB) control statement(s) is
required. The filename entry on these
statements must be SORTWKl through SORTWKn.
The symbqlic unit names assigned to the
work areas to be allocated (SYS001, SYS002,
etc.) must appear on these cards.

One EXTENT (XTENT) control statement
must be included to define each work area
on a mass storage device. The total work
area required may be divided into as many
as eight extents, which would require eight
EXTENT (XTENT) control statements.
Symbolic unit names on these statements
must be in consecutive order, (SYS001,
SYS002, etc.).

Amount of Intermediate Storage Reguired

When intermediate storage is assigned on
a mass storage unit, at least twice the
amount required to hold all input records
should be assigned. This area may consist

96

of from one to eight extents, and the
extents may be assigned on no more than
eight devices.

If tape intermediate storage is used, at
least the minumum number of units (three)
must be assigned. The input file can be as
large as the number of records that can be
written on one. full reel of tape.
Assigning more than three intermediate
storage tape drives does not increase the
maximum input file size, but does improve
performance.

Improving Performance

Performance increases significantly if
50K is available for execution of the Sort
program. At the lOOK level, the
performance is very high. If no core is
available, the Sort/Merge program will
issue a message:

7054A "INSUFFICIENT CORE"

SORT DIAGNOSTIC MESSAGES

The messages generated by the Sort
FeatUre are listed in the publication IBM
System/360 Disk 9perating system: Tape-ind
Disk sort/Merge, Form GC28-6676.

LINKAGE WITH THE SORT FEATURE

To initiate a sort operation, the COBOL
object program includes the object time
subroutine ILBDSRTO and transfers control
to it.

If the INPUT PROCEDURE option of the
SORT statement is specified in the source
program, exit E15 of the Sort/Merge program
is used. At this exit, the record released
by the user is passed to the Sort/Merge
program. Since a dummy Input Procedure
will be generated by the compiler when the
USING option is specified, records in the
USING file are also passed to the
Sort/Merge program at exit E15.

If the OUTPUT PROCEDURE option of the
SORT statement is specified, exit E35 of
the Sort/Merge program is used. At this
exit, the record returned by the Sort/Merge
program is passed to the user. Since a
dummy output Procedure is generated by the
compiler when the GIVING option is (',
specified, records are also returned at .
exit E35 and written on this file.

Completion Codes

The Sort/Merge program returns a
completion code upon termination and this
code is s~ored in the COBOL special
register SORT-RETURN. The codes are:

o -- Successful completion of
Sort/Merge

16 -- Unsuccessful completion of
Sort/Merge

Successful Completion: When a Sort/Merge
application has been successfully executed,
a completion code of zero is returned and
the sort operation terminates.

Unsuccessful CompLetion: If the Sort
program encounters an error during
execution that will not allow it to
complete successfully, it returns a
completion code of 16 and terminates. (A
possible error is an uncorrectable
input/output error.) The publication IBM
System/360 Disk Operating System: Tape and
Disk Sort/Merge, Form GC28-6676 contains a
detailed description of the conditions
under which this termination will occur.

The user may test the SORT-RETURN
register for successful termination of the
sort operation, as shown in the following
example:

SORT SALES-RECORDS ON ASCENDING KEY,
CUSTOMER-NUMBER, DESCENDING KEY DATE,
USING FN-1, GIVING FN-2. IF
SORT-RETURN NOT EQUAL TO ZERO, DISPLAY
·SORT UNSUCCESSFUL" UPON CONSOLE, STOP
RUN.

CHECKPOINT/RESTART DURING A SORT

The Checkpoint/Restart Feature is
available to the programmer using the COBOL
SORT statement. The programmer uses the
RERUN clause to specify that checkpoints
should be taken during program execution.
The control statement requirements for
taking a checkpoint are discussed in the
~hapter "Program Checkout."

The system-name specified in the RERUN
clause as the sort checkpoint device must
not be the same as any system-name used in
the source language ASSIGN clause, but
follows the same rules of formation.

The RERUN clause is fully described in
the publication IBM System/360 Disk
Operating System: American National
Standard COBOL.

Using the Sort Feature 97

/'"" I

COBOL segmentation is a facility that
provides a means of accomplishing object
time overlay as a result of specifications
made at the source language level.
Segmentation will allow the programmer to
divide the Procedure Division of a source
program into sections. Through the use of
a system of priority numbers, certain
sections are designated as permanently
resident in core storage and other sections
as overlayable fixed segments and/or
independent segments. Thus, a large
program can be executed in a defined area
9f core storage by limiting the number of
segments in the program that are
permanently resident in core.

If there is a limit on the amount of
core available, the program SAVECORE could
be segmented as illustrated in Figure 23.

r--,
IIDENTIFICATION DI~SION. I
I I
IPROGRAM-ID. SAVECORE. I
I· I
I. I
IENVIRONMENT DIVISION. I
I I
I OBJECT-COMPUTER. IBM-360-50 I
I SEGMENT-~IMIT IS 15. I
I. I
I·
IDATA DIVISION.
I·
I.
IPROCEDURE DIVISION.
SECTION-l SECTION 8.

SECTION-2 SECTION 8.

SECTION-3 SECTION 16.

SECTION-4 SECTION 8.

SECTION-5 SECTION 50.

SECTION-6 SECTION 16.

SECTION-7 SECTION 50.

L _____________________________________ ~ __

Figure 23. Segmenting the Program SAVECORE

USING THE SEGMENTATION FEATURE

Assuming that 12K is available for the
program SAVECORE, Figure 24 shows the
manner in which core storage would be
utilized. It is apparent from the
illustration that SECTION-3, SECTION~6, and
SECTION-7 cannot be in core at the same
time, nor can SECTION-3, SECTION-5 and
SECTION-7 be in core simultaneously. -

Sections in the permanent segment
(SECTION-l, SECTION-2, and SECTION-4) are
those which must be available for reference
at all times, or which ar~ referenced
frequently. They are distinguished here by
the fact that they have been assigned
priority numbers less than the segment
limit.

Sections in the overlayable fixed
segment are sections which 'are less
frequently used. They are always made
available in the state they w~re in when
last used. They are distinguishable here
by the fact that they have been assigned
priority numbers greater than the segment
limit but less than 49.

Sections in the independent segment can
overlay, and be'overlaid by, either an
overlay able fixed segment or another
independent segment. Independent segments
are those assigned priority numbers greater
than 49 and less than 100, and they are
always given control in their initial
state.

OPERATION

Execution of tne object program begins
in the root segment. The first segment in
the permanent segment is considered the
root segment. If the program does not
contain a permanent segment, the compiler
generates a dummy segment which will
initiate the execution of the first
overlay able or independent segment. All
global tables, literals, and data areas are
part of the root segment. Called object
time subroutines are also part' of the root
segment. When CALL statements appear in a
segmented program, subprograms are loaded
with the fixed portion of the main program
as if they had a priority of zero.

segmented programs must not be called by
another program (segmented or not
segmented).

Using the segmentation Feature 99

r---------------------------, I data-buffers, global I
I table, etc., (lK) I

t-~;~;i~;:1-(2~)------------1)
~---------------------------~(
I SECTION-2 (2K) I(permanent segment
t-;;~;i~~:4-(2~)------------1J (segment limit < 15) fixed portion

(12K) ~--------------------------- ------------------------------I SECTION-3 (3K) I SECTION-5 (2K)
I I
I I
I I

5K I I
I I
I I
I I
I SECTION-6 (2K) I SECTION-7 (lK) I
___________________________ ~ _________ -----------------____ J

-------------~ ----- ~--------------

SECTION-3 and SECTION-6 SECTION-5 and SECTION-7 are
independent segments are overlayable fixed segments

(14 < segment limit < 50) (49 < segment limit < 100)

Figure 24. Storage Layout for SAVECORE

OUTPUT FROM A SEGMENTED PROGRAM

COMPILER OUTPUT

The output produced by the compiler is
an overlay structure consisting of multiple
object modules preceded by linkage editor
control statements. Segments whose
priority is greater than the segment limit
(or 49, if no SEGMENT-LIMIT clause is
specified) consist of executable
instructions only.

The compiler generates each segment as a
separate object module preceded by a PHASE
card. The names appearing on these PHASE
cards (segment-names) conform to the
following naming conventions:

1. The name of the root segment is the
same as the program-name specified in
the PROGRAM-ID clause.

2. The name of each overlayable and
independent segment is a combination
of the program-name and the priority
number of the segment. These names
are formed according to the following
rules:

100

a. If the program-name is 6, 7, or 8
characters in length, the
segment-name will consist of the
first 6 characters of program-name
plus the 2-character priority
number.

b. If the program-name is less than 6
characters in length, the
priority-number is appended after
the program-name.

Note: Single digit priority-numbers
are preceded by a zero.

The compiler generates an ENTRY card to
the root segment as the last card input to
the Linkage Editor.

Figure 25 is an illustration of the
compiler output for the skeleton program
shown in Figure 23.

()

r---,
PHASE S~VECORE,ROOT

{object module for the root segment
(sections with priority-numbers less
than the segment limit) including any
programs called by SAVECORE}

PHASE SAVEC016,*

{object module for segments with a
priority of 16 (two sections)}

PHASE SAVEC050,SAVEC016

{object module for segments with a

I
priority of 50 (two sections)}

I
j
I ENTRY SAVECORE L __ _

Figure 25. compiler Output for SAVECORE

LINKAGE EDITOR OUTPUT

Figure 26 is an illustration of the
input to the Linkage Editor and the phase
map produced by the Linkage Editor
resulting from the compilation and editing
of the segmented program BIGJOB. The
following text is an explanation of the
figure.

Q) PHASE card generated by the compiler
for the root segment BIGJOB.

®

AUTOLINK card for the Segmentation
subroutine.

PHASE cards generated by the compiler
for segments of priority 10, 47-50, 60,
62, and 63.

Control cards generated for the Sort
Feature. These cards are explained in
"Sort in a Segmented Program".

QD ENTRY card generated by the compiler
for the root phase.

Location of the entry point CURSEGM.
Item 6 is explained in "Determining the
.Priority of the Last Segment Loaded
into the Transient Area~.

GD ~ad address of p~ase ILBDDUMO. Item 7
is explained in "Sort in a Segmented
Program."

cataloging a Segmented Program

When the CATAL option is used to catalog
a segmented program, the following points
should be observed:

1. To avoid duplicate names, the user
must be aware of the naming
conventions used by the compiler (see
"Compiler output") because a
segment-name may be the same as a
phase-name already existing in the
core image library.

2. Since the PHASE card is generated by
the compiler, the user must not
specify a PHASE card for the program.

To invoke a previously cataloged
segmented program, the user must use the
following control statement:

// EXEC name

where name is the program~name specified in
the PROGRAM-ID clause.

Determining the priority of the Last
Segment Loaded into the Transient Area

If a segmented program is abnormally
terminated during execution, the priority
of the last segment loade~ into the
transient area can be determined as
follows:

1. In the map of main storage generated
by the Linkage Editor, under the
column LABEL, look for the name
'CURSEGM' :(see item 6 in Figure 26).

2. Associated with this label, in the
column LOADED, is an address.

3. At this location is stored the
priority (one byte) of the segment
current in the transient area. If
this byte is X'OO'; no segment has
been loaded into the transient area.
This indicates that the error causing
the dump occurred in the root segment.

SORT IN A SEGMENTED PROGRAM

If a segmented program contains a SORT
statement, the sort program will be loaded
above the largest overlayable or
independent segment as shown in Figure 21.

Using the Segmentation Feature 101

The compiler accomplishes this by
providing the following two control
statements at the end of the overlay
structure:

PHASE ILBDDUMO,transient area + L

INCLUDE ILBDDUMO

-~~;;
l I~_

';'

These cards are illustrated in Figure 26,
item 4. The value of WLW in the figure is
X'2F2' 'which is the length of the longest
segment, BIGJOB41, rounded to the next
halfword boundary. Note that Linkage
Editor relocates ~he phase ILBDDUMO to the
next doubleword boundary (see Figure 26,
item 1).

r----------------·---------------------------------------~-----------------------------,
IJOB BIGJ DISK LINKAGE EDITOR DIAGNOSTIC OF INPUT
I
I
IACTION TAKEN MAP
I
I LIST
I·
I·
I·
ILIST
I LIST
I·
I·

PHASE BIGJOB,ROOT

AUTOLINK
AUTOLINK

ILBDSEMO
ILBDSRTO

ILIST PHASE BIGJOB10,*

CD

I LIST PHASE BIGJOB41,BIGJOB10
ILIST PHASE BI~JOB48,BIGJOB47
ILIST PHASE BIGJOB49,BIGJOB48 f3\
I LIST PHASE BIGJOB50,BIGJOB49 ~
I LIST PHASE BIGJOB60,BIGJOB50
I LIST PHASE BIGJOB62,BIGJOB60
I LIST PHASE BIGJOB63,BIGJOB62
ILIST PHASE ILBDDUMO,BIGJOB63+X"002F2' i f4\
I LIST INCLUDE ILBDDUMOfi\ ~ ~
I LIST ENTRY BIGJOB \!J
~---~
~--~-------------~-----------------------------~
I PHASE XFR-AD LOCORE BICORE DSK-AD ESD TYPE LABEL LOADED REL-FR
I
ROOT BIGJOB 0030.00 003000 0075A3 64 04 1 CSECT BIGJOB 003000 003000

BIGJOB10 0075A8 0075A8 0075E9 64 09 2
BIGJOB47 0075A8 0075A8 007899 65 00 1
BIGJOB48 0075A8 0075A8 0075DB 65 00 2
BIGJOB49 0075A8 0075A8 0075D3 65 01 1
BIGJOB50 0075A8 0075A8 0075F1 65 01 2
BIGJOB60 0075A8 0075A8 0076ED 65 02 1
BIGJOB62 0075A8 0075A8 0075D1 65 02 2

CSECT
* ENTRY
CSECT

CSECT
CSECT
CSECT
CSECT
CSECT
CSECT
CSECT

ILBDSEMO
CURSEGM
ILBDSRTO

BIGJOB10
BIGJOB47
BIGJOB48
BIGJOB49
BIGJOB50
BIGJOB60
BIGJOB62

006268
00637D
006B38

0075A8
0075A8
0075A8
0075A8
0075A8
0075A8
0075A8

006268 CD
006B38

0075A8
0075A8
0075A8
0015A8
0075A8
0015A8
0075A8

BIGJOB63 0075A8 0075A8 007621 65 03 1 CSECT BIGJOB63 0075A8 0015A8
ILBDDUMO 0078AO 0078AO 0078A1 65 03 2 CSECT ILBDDUMO 0078AQ.. 0=078AO 0) -------__ J

Figure 26. Linkage Editing a Segmented Program

102

-- - -- --------------------- --------------- ---

'''"- ,

C:

r--,
r-----------,
I ROOT I Including COBOL subroutines and called programs
~------------~

\
I TRANSIENT I

L I AREA I
I----------~

Overlayable and independent segments

ISORT PROGRAM I u __________ J

I
I
I
I
I
I
I
I
I
I
I L = length of the largest segment in bytes. L __ -----------------

Figure 27. Location of Sort Program in a segmentation Structure

using the segmentation Feature 103

PART II

• PROCESSING COBOL FILES ON MASS STORAGE DEVICES

• ADVANCED PROCESSING CAPABILITIES

• RECORD FORMATS

• PROGRAMMING TECHNIQUES

Part II 105

-------------- -----

o

o

A mass storage device is one on which
records can be stored in such a way that
the location of anyone record can be
determined without extensive searching.
Records can be accessed directly rather
than serially.

The recording surface of a mass storage
device is divided into many tracks. A
track is defined as a circumference of the
recording surface. The number of tracks
per recording surface and the capacity of a
track for each device are shown in Table 8.

Table 8. Recording capacities of Mass
Storage Devices

r------T----------------------------------,
1 Device 1 Capacity 1
r-----+----------------------------------~
12311 1 200 tracks per surface; 3625 1
1 1 bytes per track. 1
~------+----------------------------------~
12314 1 200 tracks per surface; 7294 1
1 1 bytes per track. 1
~------+----------------------------------~
12321 1 100 tracks per strip; 2000 bytes 1
1 1 per track. 1 L-_____ ~ __________________________________ J

Each device has some type of access
mechanism through which data is transferred
to and from the device. The mechanisms are
different for each device, but each
mechanism contains a number of read/write
heads that transfer data as the recording
surfaces rotate past them. Only one head
can transfer data (either reading or
writing) -at a time.

FILE ORGANIZATION

Records in a file must be logically
organized so that they can be retrieved
efficiently for processing. Three methods
of organization for mass storage devices
are supported by the Disk Operating System
American National Standard COBOL compiler:
sequential, direct, and indexed.

SEQUENTIAL ORGANIZATION

In a sequential file, records are
organized solely on the basis of their
successive physical location in the file.
The records are read or updated in the same
order in which they appear.

-- ,

PROCESSING COBOL FILES ON MASS STORAGE DEVICES

Individual records cannot be located
quickly. Records usually cannot be deleted
or added unless the entire file is
rewritten. This organization is used when
most of the records in the file are
processed each time the file is used.

DIRECT ORGANIZATION

A file with direct organization is
characterized by some predictable
relationship between the key of a record
and the address of that record on a mass
storage device. This relationship is
established by the user.

Direct organization is generally used
for files where the time required to locate
individual records must be kept to an
absolute minimum, or for files whose
characteristics do not permit the use of
sequential or indexed organization.

This organization method has
considerable flexibility. The accompanying
disadvantage is that although the Disk
Operating System provides the routines to
read or write a file of this type, the user
is largely responsible for the logic and
programming required to locate the key of a
record and its address on a mass storage
device.

INDEXED ORGANIZATION

An indexed file is similar to a
sequential file in that rapid sequential
processing is possible. The indexes
associated with an indexed file also allow
quick retrieval of individual records
through random access. Moreover, a
separate area of the file is set aside for
additions; this eliminates the need to
rewrite the entire file when adding
records, a process that would usually be
necessary with a sequentially organized
file. Although the added records are not
physically in key sequence, the indexes are
constructed in such a way that the added
records can be quickly retrieved in key
sequence, thus making rapid sequential
access possible.

Processing COBOL Files on Mass Storage Devices 107

In this method of organization, the Disk
operating System has sontrol over the
location of the individual records. Since
the characteristics of the file are known,
most of the mechanics of locating a
particular record are handled by the
system.

DATA MANAGEMENT CONCEPTS

The data management facilities of the
Disk Operating System are provided by a
group of routines that are collectively
referred to as the Input/Output Control
System CIOCS). A distinction is made
between two types of routines:

1. Physical loes (PIOCS) -- the physical
input/output routines included in the
supervisor. PIOCS is used by all
programs run within the system. It
includes facilities for scheduling
input/output operations, checking for
and handling error conditions related
to input/output devices, and handling
input/output interruptions to maintain
maximum input/output speeds without
burdening the user's problem program.

2. Logical IOCS (LIOCS) -- the logical
input/output routines linked with the
user's problem program. These
routines provide an interface between
the user's file processing routines
and the PIOCS routines.

LIOCS performs those functions that a
programmer needs to locate and access
a logical record for processing. A
logical record is one unit of
information in a file of similar
units, for example, one employee's
record in a master payroll file, one
part-number record in an inventory
file, or one customer account record
in an account file. One or more
logical records may be included in one
physical record. LIOCS refers to the
routines that perform the following
functions:

a. Blocking and deblocking records

b. Switching between input/output
areas when two areas are specified
for a file

c. Handling end-of-file and
end-of-volume conditions

d. Checking and writing labels

A brief description of functions
performed by LIOCS and their relationship
to a COBOL program follows.

108

Whenever COBOL imperative-statements
CREAD, WRITE, REWRITE, etc.) are used in a
program to control the input/output of
records in a file, that file must be
defined by a DTF (Qefine !he Eile). A DTF
is created for each file opened in a COBOL
program from information specified in the
Environment Division, FD entry, and
input/output statements in the source
program. The DTF for each file is part of
the object module that is generated by the
compiler. It describes the characteristics
of the logical file, indicates the type of
processing to be used for the file, and
specifies the main storage areas and
routines used for the file.

one of the constants in the DTF table is
the address of a logic module that is to be
used at execution time to process that
file. A logic module contains the coding
necessary to perform data management
functions required by the file such as
blocking and deblocking, initiating label
checking, etc.

Generally, these logic modules are
assembled separately and cataloged in the
relocatable library under a standard name.
At linkage editing time, the Linkage Editor
searches th.e relocatable library using the
virtual reference to locate the logic
module. The logic module is then included
as part of the program phase. Note that
since the Autolink feature of the Linkage
Editor is responsible for including the
logic modules, the COBOL programmer need
not specify any INCLUDE statements.

The type of DTF table prepared by the
compiler depends on the organization of the
file and the device to which it is
assigned. The DTF's used for processing
files assigned to mass storage devices are
as follows:

DTFSD -- Sequential organization,
sequential access

DTFDA -- Direct organization,
sequential or random access

DTFIS -- Indexed organization,
sequential or random access

The remainder of this chapter provides
information about preparing programs which
process files assigned to mass storage
devices. Included are general descriptions
of the organization, the COBOL statements
that must be specified in order to build
the correct DTF tables, and coding
examples.

o

SEQUENTIAL ORGANIZATION (DTFSD)

In a sequential file on a mass storage
device, records are written one after
another -- track by track, cylinder by
cylinder -- at successively higher
addresses.

Records may be fixed-length, spanned, or
variable-length, blocked or unblocked, or
undefined. Since the file is always
accessed sequentially, it is not formatted
with keys.

Processing a sequentially organized file
for selected records is inefficient. If it
is done infrequently, the time spent in
locating the records is not significant.
The slowest way is to read the records
sequentially until the desired one is
located. On the average, half of the file
must be read to locate one record.

Additions and deletions require a
complete rewrite of a sequentially
organized file on a mass storage device.
Sequential organization is used on mass
storage devices primarily for tables and
intermediate storage rather than for master
files.

sequentially organized files formatted
with keys cannot be created using DTFSD.
DTFDA may be used to create and access
(sequentially or randomly) such files.

PROCESSING A SEQUENTIALLY ORGANIZED FILE

To create, retrieve, or update a DTFSD
file, the following specifications should
be made in the source program:

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO SYSnnn-

Optional clauses:

RESERVE Clause
FILE-LIMIT Clause

-) 2314
{

UT} {2311}

DA {2321

ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL
RERUN Clause
SAME Clause

-S

APPLY WRITE-ONLY Clause (create only)
APPLY WRITE-VERIFY Clause (create or

update only)

Invalid clauses:

ACCESS MODE IS RANDOM
ACTUAL KEY Clause
NOMINAL KEY Clause
RECORD KEY Clause
TRACK AREA Clause
MULTIPLE FILE TAPE Clause
APPLY EXTENDED-SEARCH Clause
APPLY CYL-OVERFLOW Clause

{

MASTER-INDEX}
APPLY Clause

CYL-INDEX

APPLY CORE-INDEX Clause

DTFSD files may be opened as INPUT,
OUTPUT, or 1-0. When creating such a file,
an INVALID KEY condition occurs when the
file limit has been reached and an attempt
is made to place another record on the mass
storage device. The file limit is
determined from the XTENT or EXTENT control
statements.

When a DTFSD file is opened as OUTPUT,
each WRITE statement signifies the creation
of a new record. When opened as 1-0, each
WRITE statement signifies that the record
just read is to be rewritten.

DIRECT ORGANIZATION (DTFDA)

with direct organization, there is a
definite relationship bet ewe en the key of a
record and its address. This relationship
permits rapid access to any record if the
file is carefully organized. The user
develops a record address that ranges from
zero to some maximum by converting a
particular field in each record to a track
address. Each byte in the address is a
binary number. To reference a particular
record, the user must supply both the track
address and the identifier that makes each
record unique on its track. Both the track
address and the identifier are supplied by
the user in the ACTUAL KEY clause. This
will be discussed in detail later in this
chapter.

with direct organization, records may be
fixed length, spanned or undefined. The
records must be unblocked. RO (record
zero) of each track is used as 'a capacity
record. It contains the address of the
last record written on the track, and is
used by the system to determine whether a
new record will fit on the track. The
capacity records are updated by the system
as records are added to the file. The
capacity records do not account for
deletions: as far as the system is

Processing COBOL Files on Mass Storage Devices 109

concerned, once a track is full it remains
full (even if the user deletes records)
until the file is reorganized.

Often, more records are converted to a
given track address than will actually fit
on the track. These surplus records are
known as overflow records and are usually
written into a separate area known as an
overflow area.

As already noted, the user has an
unlimited choice in deciding where records
are to be located in a directly organized
file. The logic and programming are his
responsibility.

When creating or making additions to the
file,. the user must specify the location
for a record (track address) and the
identifier that makes each record on the
track unique. If there is space on the
track, the system writes the record and
updates the capacity record. If the
specified track is full, a standard error
condition occurs, and the user may specify
another track address in his USE AFTER
STANDARD ERROR declarative routine.

In the case of one maximum size record
per track (when spanned records are not
specified), the data length plus the length
of the symbolic key cannot exceed the
following values:

2311
2314
2321

3605 bytes
7249 bytes
1984 bytes

When reading or updating the file, the
user must supply the track address and the
unique identifier on the track for the
specific record being sought. The system
locates the track and searches that track
for the record with the specified
identifier. If the record is not found,
COBOL indicates this to the user by raising
an INVALID KEY condition. Only the track
specified by the user is searched. If,
however, the APPLY EXTENDED-SEARCH clause
has been specified for the file, the entire
cylinder is searched for the desired
record. In this case, the INVALID KEY
condition arises only if the record cannot
be found on the cylinder. To ensure file
integrity, the upper limit of each extent
of a file using EXTENDED-SEARCH must be the
last track of a cylinder.

Error recovery from a DTFDA file is
described in detail in the chapter
"Advanced Processing Capabilities."

110

ACCESSING A DIRECTLY ORGANIZED FILE

A directly organized file (DTFDA) may be
accessed either sequentially or randomly.

ACCESSING A DIRECTLY ORGANIZED FILE
SEQUENTIALLY: When reading a direct file
sequentially, records are retrieved in
logical sequence; this logical sequence
corresponds exactly to the physical
sequence of the records. To retrieve a
DTFDA file sequentially, the following
specifications are made in the source
program:

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

{
2311} {A} ASSIGN TO SYSnnn-DA- 2321-
2314 D

Optional clauses:

FILE-LIMIT Clause
ACCESS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL
ACTUAL KEY Clause
RERUN Clause
SAME Clause

Invalid clauses:

RESERVE Clause
ACCESS MODE IS RANDOM
NOMINAL KEY Clause
RECORD KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause
APPLY CYL-OVERFLOW Clause
APPLY EXTENDED- SEARCH Clause
APPLY WRITE-VERIFY Clause

{
MASTER-INDEX}

APPLY Clause
CYL-INDEX

APPLY CORE-INDEX Clause

When DTFDA records are retrieved
seqpentially, the file may be opened only
as INPUT. The AT END condition occurs when
the last record has been read and execution
of another READ is attempted.

Note that in the ASSIGN clause, an A
must be specified for files with actual
track addressing, and a Q must be specified
for files with relative track addressing.

ACCESSING A DIRECTLY ORGANIZED" FILE
RANDOMLY: To create a directly organized
file randomly, the following

\ "

o

specifications are made in the source
program:

ENVIRONMENT DIVISION

Required clauses:

SELECT file-name

{
2311} {A) ASSIGN TO SYSnnn-DA- 2321 - (
2314 DJ

ACCESS MODE IS RANDOM
ACTUAL KEY Clause

Optional clauses:

FILE-LIMIT Clause
PROCESSING MODE IS SEQUENTIAL
RERUN Clause
SAME Clause
APPLY WRITE-VERIFY Clause

Invalid clauses:

RESERVE 'Clause
ACCESS MODE IS SEQUENTIAL
NOMINAL KEY Clause
RECORD KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause
APPLY EXTENDED-SEARCH Clause
APPLY WRITE-VERIFY Clause
APPLY CYL-OVERFLOW Clause

{
MASTER-INDEX}

APPLY Clause
CYL-INDEX

APPLY CORE-INDEX Clause

Note that in the ASSIGN clause, an A
must be specified for files with actual
track addressing, and a ~ must be specified
for files with relative track addressing.

To retrieve or update a directly
organized file randomly, the following
specifications must be made in the source
program.

ENVIRONMENT DIVISION

Required clauses:

SELECT file-name

ASSIGN TO SYSnnn-DA- n~~H -g}
ACCESS MODE IS RANDOM
ACTUAL KEY Clause

Note that in the ASSIGN clause an A must
be specified for files with actual track
addressing, a ~ must be specified for files
with relative track addressing, a Q must be
specified for files with actual track
addressing when the REWRITE statement is
used, and W must be specified for files
with relative track addressing when the
REWRITE statement is used.

The optional and invalid clauses are the
same as those specified previously for
creating a directly organized file.

Exception: APPLY EXTENDED-SEARCH is
optional when retrieving or updating a
directly organized file randomly.

ACTUAL KEY CLAUSE

Note that the ACTUAL KEY clause is
required for DTFDA files when ACCESS IS
RANDOM, is optional for DTFDA files when
ACCESS IS SEQUENTIAL, and is not used for
DTFSD files.

The actual key consists of two
components. One component expresses the
track address at which the record is to be
placed for an output operation, or at which
the search is to begin for an input
operation. The track address can be
expressed either as an actual address or as
a relative address, depending upon the
addressing scheme chosen when the file was
created. The other component is associated
with the record itself and serves as its
unique identifier. The structures of both
actual keys are shown in Figure 28.

r---, , , , , , , ,
'Byte ,

r-------------------------------,
, Actual Key ,

~-------------T-----------------~
,Actual Track \Record Identifier \
I Address , , L _____________ ~ _________________ J

1 8 9 263

, r-------------------------------,
" Actual Key ,
\ ~-------------T-----------------~
\ \ Relative \Record Identifier,
\ \ Track Address' , , L _____________ ~ ________________ J

'Byte 1 4 5 258 L-_______________________________________ _

• Figure 28. Structures of the Actual Key

The format of the ACTUAL KEY clause is:

ACTUAL KEY IS data-name

Processing COBOL Files on Mass Storage Devices 111

r-------------T-------------T---------------T--------------T-------------,
~----:::~-----+-----~~::----+----~:;~~~::---+-----~~:~-----+----~::~:~---~ ~'
I M I BIB IC I C I HI H I R I

--------------+-------------+------+------+------+--------+------+-------+-------------i
I Byte I I I I I I I I I
I I I I I I I I I I
I Device I 0 I 1 I 2 I 3 I 4 I 5 I 6 I 7 I

~-------------- -------------+------+------+------+--------+------+-------+-------------i
I 2311 I 0-221 I 0 I 0 I 0 I 0-199 I 0 I 0-9 I 0-255 I
~--------------+-------------+------+------+------+--------+------+-------+-------------~
I 2314 'I 0-221 I 0 I 0 I 0 I 0-199 I 0 I 0-19 I 0-255 I

~--------------+-------------+------+------+------+--------+------+-------+-------------i
I 2321 I 0-221 I 0 I 0-9 I 0-19 I 0-9 I 0-4 I 0-19 I 0-255 I L ______________ ~ _____________ ~ ______ ~ ______ ~ ______ ~ ________ ~ ______ ~ ______ ~ _____________ J

Figure 29. Permissible Specifications for the First Eight Bytes of the Actual Key

When actual track addressing is used,
data-name may be any fixed item from 9
through 263 bytes in length. It must be
defined in the Working-Storage, File,. or
Linkage Section. The first eight bytes are
used to specify the actual track address.
The structure of these bytes and
permissible specifications for the 2311,
2314, and 2321 mass storage devices are
shown in Figur~ 29. The user may select
from 1 to 255 bytes for the record
identifier portion of the actual key field.

When relative track addressing is used,
data-name may be any fixed item from 5
through 258 bytes in length. It must be
defined in the File Section, the Working
storage Section, or the Linkage Section.
The first four bytes of data-name are the
track identifier. Thn identifier is used
to specify the relative track address for
the record and must be defined as an
8-integer binary data item whose maximum
value does not exceed 16,777,215. The
remainder of data-name, which is 1 through
254 bytes in length, is the record
identifier. It represents the symbolic
portion of the key field used to identify a
part~cular recora on a track.

For a complete discussion of the ACTUAL
KEY clause, see the publication IBM

I' systenv.360'.Disk'.operatinq'.system: .. American
National Standard COBOL.

Randomizinq Techniques

One method of determining the value of
the track address portion of the field
defined in the ACTUAL KEY clause is
referred to as indirect addressing.
Indirect addressing generally is used when
the range of keys for a file includes a
high percentage of unused values. ' For
example, employee numbers may range from
000001 to 009999, but only 3000 of the
'possible 9999 numbers are currently

112

assigned. Indirect addressing is also used
for nonnumeric keys. Key, in this
discussion, refers to that field of the
record being written that will be converted
to the track address portion.

Indirect addressing signifies that the
key is converted to a value for the actual
track address by using some algorithm
intended to limit the range of addresses.
Such an algorithm is called a randomizing
technique. Randomizing techniques need not
produce a unique address for every record
and, in fact, such techniques usually
produce synonyms. Synonyms are records
whose keys randomize to the same address.

Two objectives must be considered in
selecting a randomizing technique:

1. Every possible key in the file must
randomize to an address within the
designated range.

2. The addresses should be distributed
evenly across the range so that there
are as few synonyms as poss~le.

Note that one way to minimize synonyms
is to allocate more space for the file than
is actually required to contain all the
records. For example, the percentage of
locations that are actually used might be
80% to 85% of tpe allocated space.

I When actual track addressing is used,
the first eight bytes of the ACTUAL KEY
field can be thought of as a "discontinuous
binary address." This is significant to
the programmer because .he must keep two
considerations in mind. First, the
cylinder and head number must be in binary
notation, so the results of the randomizing
formula must be in binary format. Second,
the address is "discontinuous" since a
mathematical overflow from one element
(e.g., head number) ·does not increment the
adjacent element (e.g., cylinder number).

- ---------------

,r--.
\)
~./

DIVISION/REMAINDER METHOD: One of the
simplest·ways to indirectly address a
directly organized file is by using the
division/remainder method. (For a
discussion of other randomizing techniques,
see the publication Introduction to IBM
System/360 Direct Access Storage Devices
and.Organization Methods, Form GC20-16Q9.)

1. Determine the amount of locations
required to contain the data file.
Include a packing factor for
additional space to eliminate
synonyms. . The packing factor should
be approximately 20% of the total
space allocated to contain the data
file.

2. select, from the prime number table,
the nearest prime number that is less
than the total of step 1. A prime
number is a number divisible only by
itself and the integer 1. Table 9 is
a partial list of prime numbers.

3. Clear any zones from the first eight
bytes of the actual key field. This
can be accomplished by moving the key
to a field described as COMPUTATIONAL.

4. Divide the key by the prime number
selected.

5. Ignor~ the qllotienti utili?~ th~
remainder as the relative location
within the data file.

6. (For actual track addressing only)
Locate the beginning of the space
available and manipulate the relative
address, to the actual device address
if necessary.

For example, assume that a company is
planning to create an inventory file on a
2311 disk storage device. There are 8000
different inventory parts, each identified
by an 8-character part number. Using a 20%
packing factor, 10,000 record positions are
allocated to store the data file.

Method A: The closest prime number to
10,000, but under 10,000, is 9973. Using
one inventory part number as an example, in
this case #25DF3514, and clearing the zones
we have 25463514. Dividing by 9973 we get
a quotient of 2553 and a remainder of 2445.
2445 is the relative location of the record
within the data file corresponding to part
number 25DF3514. The record address can be
determined from the relative location as
follows:

1. (For actual track addressing only)
Determine the beginning point for the

data file (e.g., cylinder 100, track
0) •

2. Determine the number of records that
can be stored on a track (e.g., twelve
per track on a 2311 disk pack,
assuming each inventory record is 200
bytes long).

Because each data record contains
non-data components, such as a count
area and interrecord gaps, track.
capacity for data storage will vary
with record length. As the number of
separate records on a track increases,
interrecord gaps occupy additional
byte positions so that data capacity
is reduced. Track capacity formulas
provide the means to determine total
byte requirements for records of
various sizes on a track. These
formulas can be found in the
publications IBM System/360 Component
Descriptions, Forms GA26-5988 and
GA26-3599.

3. Divide the relative number (2445) ·by
the number of records to be stored on
each track.

I 4. (For actual track addressing only)
The result, quotient = 203, is now
divided into cylinder and head
desi~~tion. ~inc~ the 2311 disk pack
has ten heads, the quotient of 203 is
divided by 10 to show:

Cylinder or CC = 20
Head or HH = 03 (high-order zero

added) .

4B. (For relative track addressing only)
The result, quotient = 203, now
becomes the track identifier of the
actual key.

Method B: Utilizing the same example,
another approach will also provide the
relative track address:

1. The number of records that may be
contained on one track is twelve.
Therefore, if 10,000 record locations
are to be provided, 834 tracks must be
reserved.

2. The prime number nearest, but less
than 834, is 829.

3. Divide the zone-stripped key by the
prime value. (In the example,
25463514 divided by 829 provides a
quotient of 30715 and a remainder of
779. The remainder is the relative
address.)

Processing COBOL Files on Mass Storage Devices 113

-----------------------------------_._-_._--

Table 9. Partial List of Prime Numbers Table- 9. Partial List of Prime Numbers
(Part 1 of 2) (Part 2 of 2)

r------------------T----------------------, r------------------7----------------------,
I A I B I I A I B I
I (Number) I (Nearest Prime Number I
I I Less Than A) I

I (Number) I (Nearest Prime Number I
I I Less Than A) I

~------------------+----------------------i .------------------t----------------------i
500 499 5600 5591
600 599 5700 5693
700 691 5800 5791
800 797 5900 5897
900 887 6000 5987

1000 997 6100 6091
1100 1097 6200 6199
1200 1193 6300 6299
1300 1297 6400 6397
1400 1399
1500 149~

6500 6491
6600 6599

1600 1597 6700 6691
1700 1699 6800 6793
1800 1789 6900 6899
1900 1889 7000 6997
2000 1999 7100 7079
2100 2099 7200 7193
2200 2179 7300 7297
2300 2297 7400 7393
2400 2399 7500 7499
2500 2477 7600 7591
2600 2593 7700 7699
2700 2699 7800 7793
2800 2797 7900 7883
2900 2897 8000 7993
3000 2999 8100 8093
3100 3089 8200 8191
3200 3191 8300 8297
3300 3299 8400 8389
3400 3391 8500 8467
3500 3499 8600 8599
3600 3593 8700 8699
3700 3697 8800 8i93
3800 3797 8900 8899
3900 3889 9000 8899
4000 3989 9100 9091
4100 4099 9200 9199
4200 4177 9300 9293
4300 4297 9400 9397
4400 4397 9500 9497
4500 4493 9600 9587
4600 4597 9700 9697
4700 4691 9800 9791
4800 4799 9900 9887
4900 4889 10,000 9973
5000 4999 10,100 10,099
5100 5099
5200 4197'\ \

10,200 10,193
10,300 10,289

5300 5297
5400 4399 ~.

10,400 10,399
10,500 10,499

5500 5483 10,600 10,597 L __________________ ~ _____________________ J L _________________ ~ _____________________ J

114

.. ~ ... ,

4. (For actual track addressing only) To
convert the relative address to an
actual device address, divide the
relative address by the number of
tracks in a cylinder. The quotient
will provide the cylinder number and
the remainder will be the track
number. For example, the 2311 disk
pack would utilize 779 as:

Cylinder or CC = 77
Track or HH = 9

\
Figure 30 is a sample COBOL program

which creates a direct file with actual
track addressing using Method Band
provides for the possibility of synonym
overflow. Synonym overflow will occur if a
record randomizes to a track that is
already full. The following description
highlights the features of the example.
Circled numbers on the program listing
correspond to the numbers in the text.

The value 10 is added to TRACK-l to
ensure that the user program does not
write on cylinder o. Cylinder 0 must
be reserved for the Volume Table of
Contents.

• Since the prime number used as a
divisor is 829, the largest possible
remainder will be 828. Adding 10 to
TRACK-l adjusts the largest possible
remainder to 838.

If synonym overflow occurs, control is
given to the error procedure
declarative· specified in the first
section of the Procedure Division.
The declarative provides that:

• Any record which cannot fit on a
track (i.e., tracks 0 through 8 of
any cylinder) will be written in the
first available position on the
following track(s).

• Any record which cannot fit within a
single cylinder will be written on

®

®

cylinder 84 (i.e., the cylinder
overflow area).

• If a record cannot fit on either
cylinders 1 through 83, or on
cylinder 84, the job is terminated.

The standard error condition nno room
found" is tested before control is
given to the synonym routine. Other
standard error conditions as well as
invalid key conditions result in job
termination.

ERROR-COND is the identifier which
specifies the error condition that
caused control to be given to the
error declarative. ERROR-COND is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLST. They are printed before the
execution of each WRITE statement.
This output has been provided in order
to facilitate an understanding of the
logic involved in the creation of
D-FILE.

The first twelve records which
randomize to cylinder 002 track 8 are
actually written on track 8 •

The next twelve records which
randomize to' cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 002 track 9.

The next twelve records which
randomize to cylinder 002 track 8 are
adjusted by the SYNONYM-ROUTINE and
written on cylinder 84 track 0 (i.e.,
the overflow cylinder).

The last two records which randomize
to cylinder 002 track 8 are adjusted
by the SYNONYM-ROUTINE and written on
cylinder 84 track 1 (i.e., the
overflow cylinder).

Processing COBOL Files on Mass Storage Devices 115

'/ I JOB M En'iODB
II OPTION NODECK,lINK,lIST,lISTX,SYM,ERRS
/1 EXEC FCOBOl

IDENTIFICATION DIVISION.
PROGRAM-ID. METHOD-B.
ENV1RONMENT DIVISION.
CONFIGURATION SECTION.
SCURCE-COMPUTER. IBM-360.
OBJECT-COMPUTER. IBM-360.
INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT O-F1LE ASSIGN SYSOIS-DA-2311-A-MASTER
ACCESS IS RANDOM
ACTUAL KEY IS ACT-KEY.
SELECT C-fILE ASSIGN TO SYS007-UR-2540R-S.

DATA OIVISION.
FILE SECTION.
FO D-FILE

LABEL RECORDS ARE SlANDARO.
01 D-REC.

02 PART-NUM PIC X(SJ.
02 NUM-ON-HAND PIC 9'4~.
02 PRICE PIC 9(5~V99.
02 FILLER PIC X(lSlJ.

FD C-FILE
LABEL RECORDS ARE OMITTED.

01 C-REC.
02 PART-NUM PIC X(SJ.
02 NU M-ON-HAND PIC 9' 4,) •
02 PRICE PIC ~(5JV99.

WORKING-STORAGE SECTION.
77 HD PIC 9 VALUE ZERO.
77 SAVE PIC S9(S) COMP SYNC.
77 QUOTIENT PIC S9(SJ CaMP SYNC.
01 ERROR-CONO.

02 FILLER PIC 99 VALUE ZERO.
02 ERR PIC 9 VALUE ZERO.
02 FILLER PIC 9(5) VALUE ZERO.

01 TRACK-l PIC ~999.
01 TRACK-ID REDEFINES TRACK-I.

02 CYL PIC t;99.
02 HEAD PIC 9.

e1 KEY-1.
C2 M PIC S9~9 COMP SYNC VALUE ZEROES.
02 BB PIC S9 COMP SYNC VALUE ZERO.
02 CC PIC S999 COMP SYNC.
02 HH PIC S9 COMP SYNC.
02 R PIC X VALUE LOW-VALUE.
C2 REC-ID PIC xes).

01 KEY-2 REDEFINES KEY-l.
02 FILLER PIC X.
C2 ACT-KEY PIC X(16,'.

Figure 30.' creating a Direct File Using Method B (Part 1 of 4)

116

('
" ' ... ~ , ...

'"

PROCEDURE DIVISION.
DECLARATIVES.
ERRQR-PROCEDURE SECTION. USE AFTER STANDARD ERROR PROCEDURE

ON D-FILE GIVING ERROR-COND.
ERROR-ROUTINE.

EXHIBIT NAMED ERROR-COND.
IF ERR = 1 GO TO SYNONYM-ROUTINE ELSE }

DISPLAY 'CTHER STANDARD ERROR 'REC-ID GD
GO TO EOJ.

SYNONYM-ROUTINE.
IF CC = 84 AND HD = 9 DISPLAY 'OVERFLew AREA FULL'

GO TO EOJ.
IF CC = 84 ADD 1 TO HD GO TO ADJUST-HD.
IF HH = 9 GO TO END-CYLINDER.
ADO 1 TO HH.
GO TO WRITES.

EN C-CYL IND ER •
MOVE 84 TO CC.

ADJUST-HD.
MOVE HD TO HH.
GO TO WRITES.

END DECLARATIVES.
FILE-CREATION SECTION.

OPEN INPUT C-FILE
OUT PUT 0- F I L E •

READS.
READ C-FILE AT END GO TO EOJ.
MOVE CORRESPONDING C-REC TO D-REC.
MOVE PART-NUM OF C-REC TO REC-ID SAVE.
DIVIDE SAVE BY 829 GIVING QUOTIENT REMAINDER TRACK-I.
ADD 10 TO TRACK-I.
MOVE CYL TO CC.
MOVE HEAD TO HH.

WRITES.
EXHIBIT NAMED TRACK-ID C-REC CC HH.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.

INVALID-KEY.

EOJ.

II LBLTYP NSD(011
II EXEC LNKEDT

CISPLAY 'INVALID KEY REC-ID.

CLOSE C-FILE D-FILE.
STOP RUN.

Figure 30. Creating a Direct File Using Method B (Part 2 of 4)

Processing COBOL Files on Mass Storage Devices 117

II ASSGN SYSCC7,X'OOC'
II ~SSGN SYS015,X'192'
II OlBL MASTER.,50/0C1.CA
II EXTENT SYS015,111111,1,0,10,840
'I EXEC

TRACK-ID 0010 C-REC 829CCCCC
TRACK- 10 COll C-REC 8290COOI
TRACK-IO 001l C-REC 82900001X
TRACK-IO 0028 C-REC 8290CC18C1
TRACK-IO 0028 C-REC 8290C018C2
TRACK-IO 0028 C-REC 8290CC18C3
TRACK- 10 0028 C-REC 8290001804
TRACK-IO 0028 C-REC 8290C(18C5
TRA(K-IO 0028 (-REC 8290(018C6
TRACK-IO 0028 C-REC 8290CC18C7
TRACK-I C 0028 C-REC 82900C1808
TRACK-IO 0028 C-REC 8290C01809
TRACK- I C 0028 C-REC 82900C1810
TRACK-IO 0028 C-REC 8 290CO 1811
TRACK-IC 0028 C-REC 8290CClE12
TRACK-IO OC28 C-REC 8290C(1813
ERROR-COND = C0100000
TRACK-IO = 0028 C-REC 82900C1813

- TRACK-IO = 0028 C-REC 8290001814
ERROR-caNO = CC1COCCO
TRACK-IO = 0028 C-REC 82900C1814
TRACK-IC = 0028 C-REC 8290001815
ERROR-CONC = C01COOOO
TRACK- I 0 = 0028 C-REC 8290CC1815
TRACK-IO = 0028 C-REC 8290001816
ERROR-COND = C01CCCCO
TRACK-IO = 0028 C-REC 82900C1816
TRACK-IO = 0028 C-REC 8290001817
ERROR-CONO = C01CCCCO
TRACK-I C = 0028 C-REC 8290001817
TRACK-IO = OC28 C-REC 82900C181E
ERROR-COND = 00100CCO
TRACK-ID = 0028 C-REC 8290001€18
TRACK-ID = OC28 C-REC 82900ClEl«;
ERRCR-COND = 00100000
TRACK- 10 = 0028 C-REC 82900C181«;
TRACK- 10 = 0028 C-REC 82900C1820
ERROR-CDND = 00100000
TRACK-IO = 0028 C-REC 82900C182C
TRACK- I D = CC28 C-REC 8290001821
ERROR-CON D = CC1COCCO
TRACK- I 0 = 0028 C-REC 8290001821
TRACK- I D = OC28 C-REC 8290CC1822
E RRO-CON 0 = 00100000
TRACK- I D = OC28 C-REC 8290001822
TRACK-IO = 0028 C-REC 82900C1823
ERRCR-CCND = C01COOOO
TRACK-ID = CC2E C-REC 8290C01823
TRACK-IC = 0028 C-REC 82900C1824
ERROR-ceND = CO 1 COCCO
TRACK-ID = 0028 (-REC 8290CC1824

CC 001 HH 0
CC 001 HH 1
CC 001 HH 1
CC 002 HH 8
CC 002 f-IH 8
CC 002 HH 8
CC 002 HH 8
CC 002 HH 8
CC CO2 HH = 8
CC 002 HH 8
CC 002 HH 8
CC 002 HH 8
CC CC2 HH 8
CC 002 HH 8
CC CO2 HH 8
CC 002 HH 8

CC 002 HH 9
CC 002 HH 8

CC 002 HH 9
CC 002 HH 8

CC CO2 HH 9
':C 002 HH 8

CC CO2 HH 9
CC 002 HH 8

CC CO2 HH 9
CC 002 HH 8

CC 002 HH 9
CC 002 HH 8

CC 002 HH 9
CC CC2 HH 8

CC CO2 HH 9
CC 002 HH 8

CC CC2 HH 9
CC 002 HH 8

CC 002 HH 9
CC CO2 HH 8

CC 002 HH 9
CC 002 HH 8

CC CO2 HH 9

Figure 30. Creating a Di~ect File Using Method B

118

®

C/~

®

(Part 3 of 4)

TRACK-ID = 0028 C-REC 8290CC1825 CC 002 HH

(~~)
ERRCR-COND = 00100000
TRACK- I D = 0028 C-REC 82900C1825 CC CO2 HH
ERRCR-COND = COI000CO
TRACK-ID = C028 C-REC 8290001825 CC C84 HH
TRACK-ID = 0028 C-REC 8290CC182t CC 002 HH
ERROR-COND = 00100000
TRACK-ID = 0028 C-REC 8290001826 CC CO2 HH 9
ERRCR-CCND = 00100000
TRACK- I 0 = C028 C-REC 8290C01826 CC 084 HH 0
TRACK-ID = 0028 C-REC 8290C01821 CC CC2 HH 8
ERRCR-COND = 001COOOO
TRACK-ID = 0028 C-REC 8290C01821 CC 002 HH 9
ERRCR-COND = COICOOCO
TRACK-IC = 0028 C-REC 8290CC1821 CC C84 HH C
TRACK-ID = 0028 C-REC 8290C01828 CC CO2 HH 8
ERRCR-CONe = COICCCCC
TRACK-ID = 0028 C-REC 82900C1828 CC CO2 HH C;

ERRCR-CCND = COI00COO
TRACK-ID = 0028 C-REC 8290C01828 CC 084 HH a
TRACK-ID = 0028 C-REC 8290001829 CC 002 HH 8
E~PCr-COND = C0100000
TRACK-ID = CC28 C-REC 829000182<3 CC 002 HH 9
ERRCR-COND = 00100CCO
TRACK-ID = 0028 C-REC 829000182 c; CC 084 HH a
T RACK- I C = 0028 (-REC 829000183C CC CO2 HH 8
ERRcR-CONC = CClCCCCC
TRACK-IC = 0028 C-REC 8290001830 CC CO2 HH <3
ERROR-CONC = C01COOCO
TRACK-ID = 0028 C-REC 829CCC18~C CC C84 HH a ®
TRACK-ID = 0028 C-REC 8290C01831 CC CO2 HH 8
ERRCR-CCND = COI00000
TRACK-ID = CC28 C-REC 8290001831 CC 002 HH 9
ER~CR-CCNC = 00100000
TRACK-ID = CC28 C-REC 8290C01831 CC 084 HH 0
TRACK-IC = 0028 C-REC 82900018!2 CC CO2 HH 8
ERRCR-CCNO = CCICCOOO
TRACK-IC = 0028 C-REC 8290001832 CC 002 HH c;
ERRCR-CCND = C01COOOO
TRACK-IC = 0028 C-REC 829CC01832 CC 084 HH 0

",..-~, TRACK-JC = CC28 C-REC 82900018~! cr CO2 HH 8

(I ERRCR-CCND = CC1CCCCO
TRACK-ID = 0028 C-REC 8290C01833 CC 002 HH 9

,/ ERRCR-CCND = COI00000
TRACK-ID = 0028 C-REC 8290C01833 CC 084 HH a
TRACK-ID = CC28 C-REC 8290001834 CC CO2 HH 8
ERROR-CON D = 001COOCO
TRACK-ID = 0028 C-REC 8290001834 CC 002 HH 9
ERROR-CONC = CCl(CCCC
TRACK-IC = 0028 C-REC 8290C01834 C(. C84 HH a
TRACK-Ie = 0028 C-REC 8290C(1835 CC CC2 HH 8
ERRCR-CONC = CCICOCCO
TRACK-ID = 0028 C-REC 82900C18!5 CC 002 HH 9
ERRCR-CCNC = 00100000
TRACK-JD = CC28 C-REC 82900C1835 CC 084 HH a
TRACK-ID = OC28 C-REC 8290001836 CC CO2 HH 8
ERFCR-COND = COI00COO
TRACK-ID = C028 C-REC 829000 1836 CC 002 HH 9
ERRCR-CON C = 001cooeo
TRACK-ID 0028 C-REC 8290001836 CC 084 HH a

TRACK-1D 0028 C-REC 8290001831 cc 002 HH 8
FRRQR-COND = C0100000
TRACK-ID = 0028 C-REC 8290001831 CC 002 HH 9
ERROR-COND = CC100CCO
TRACK-ID = CC28 C-REC 82900018~7 CC 084 HH a
ERROR-COND = (CICCOOO
TRACK- I D = 0028 C-REC 829COO1831 CC 084 HH 1 (J)
TRACK-ID = 0028 C-REC 8290001838 CC 002 HH 8
ERROR-COND = C01COCOO
TRACK-I D = 0028 C-REC 8290CC1838 CC 002 HH = 9
ERROR-COND = COI000CO
TRACK-ID = 0028 C-REC 8290CC18~fl CC C84 HH

Figure 30. creating a Direct File Using Method B (Part 4 of 4)

o
Processing COBOL Files on Mass Storage Devices 119

Figure 31 is a sample COBOL program
which creates a direct file with relative
track addressing using Method B. The
sample program provides for the possibility
of synonym overflow. Synonym overflow will
occur if a record randomizes to a track
which is already full. The following
discussion highlights some basic features.
Circled numbers on the program listing
correspond to numbers in the text.

Since the prime number used as a
divisor is 829, the largest possible
remainder will be 828.

@ If synonym overflow occurs, control is
given to the USE AFTER STANDARD ERROR
declarative specified in the first
section of the Procedure Division.
The declarative provides that any
record that cannot fit on the track to
which it randomizes will be written on
the first subsequent track available.

GD The standard error condition Wno room
foundW is tested before control is
given to the SYNONYM-ROUTINE. Other
standard error conditions as well as
invalid key conditions result in job
termination (EOJ).

120

ERROR-COND is the identifier which
specifies the error condition that

®

caused control to be given to the
error declarative. ERROR-CONn is
printed on SYSLST whenever the error
declarative section is entered.
TRACK-ID and C-REC are also printed on
SYSLST before execution of each WRITE
statement. This output has been
provided in order to facilitate an
understanding of the logic involved in
the creation of D-FILE.

The first twelve records which
randomize to relative track 18 are
actually written on relative track 18.

Ttie next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-ROUTINE and
are actually written on relative track
19.

The next twelve records which
randomize to relative track 18 are
adjusted by the SYNONYM-ROUTINE and
are actually written on relative track
20.

The last two records whi~h randomize
to relative track 18 are adjusted by
the SYNONYM-ROUTINE and are actually
written on relative track 21.

C)

o

// JOB METH ODB
1/ OPTION NJDECK,LINK,LIST,LISTX,SYM,ERRS
// EXEC FCOBOL

CBL QUOTE
00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038

IDENTIFICAr ION DIV ISION.
PROGR~t1-ID. tU:r=JODB.
ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SDURCE-:JMPUTER. IBM-360.
OBJECT-COM P[H ER. IBtl-3 60.
INPUT-DUTPUT SE: TION.
FI LE-CONT ROL.

SELE:T O-FILE ASSI3N TO SYS015-DA-2311-D-MASrER
ACCESS IS RANDOM.
ACTUAL KEY IS A:T-KEY.
S ELECr C-FIL E ASS IGN TO SY S 007- UR - 2S40R- S.

DA TI'i DIVISION.
FILE SECTION.
FD D-FILE

LABEL RECORDS ARE STANDARD.
01 D-REC.

05 PART-NJM PIC X (8) •
05 NUM-ON-HAND PIC 9 (~).
05 PRICE PIC 9(~V99.
05 FILLER pr: X (181).

FD C-FILE
LABEL RE:OROS ARE OMITTED.

01 C-REC.
05 PI'iRT-NUM PIC X (8).
05 NU M-ON-HAND PIC 9 (4) •
05 PRICE PIC 9 (5) V99.
05 FI1.LER PIC X(61).

W) RK ING- STORA:; E SEC TI ON.
77 SAVE PIC 59 (8) COMP SYNC.
77 QU)TIENT PI: S9 (8) :OMP SYNC.
01 ACT-KEY.

02 TRAC K- 10 PIC S9 (8) CaMP SYNC.
02 REC-ID PIC X(8).

01 ERROR-COND.
02 FILLER PIC 99 VALUE ZERO.
02 ERR PI: 9 VA LUE ZE RO.
02 FILLER PIC 9 (5) VALUE ZERO •

• Figure 31. Creating a Direct File with Relative Track Addressing Using Method B
(Part 1 of 4)

Processing COBOL Files on Mass storage Devices 121

)0039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067

PRJ C ED UR E D I VI SI 0 N •
DECLARAT IV ES.
ERROR-PROCEDUR8 SECTION. USE AFTER SrANDARD ERROR PROCEDJRE

ON D-FILE GIVING ERROR-COND.
ERROR-RO UTINE. (

EXHIBIT NAMED ERROR-COND.
IF ERR = 1 :; 0 TO SYNONYM-ROUTI NE ELS E f'i\

DISPLAY "OTHER SrANDARD ERRJR "RE:::-ID (\V
GO '1?O EOJ.)

SYNONn1-ROUr INE.
IF TRACK-ID IS LESS TfIAN 834, ADD 1 ro rRACK-ID. GO ro

W RIr ES.
END DECLARA TI VE S.

OPEN INPur C-FILE
o UTP UT D-FI LE.

READS.
READ C-FILE A TEND :;0 TO EOJ.
MOVE CORRESPONDING C-REC TO D-REC.
MOVE PART-NUM OF C-REC TO REC-ID, SAVE.
DIVIDE SAVE BY 829 GIVING QUOTIENT REMAINDER TRACK-ID. } fT\

WRITES. \V
EXHIBIr NAMED TRACK-ID C-REC.
WRITE D-REC INVALID KEY GO TO INVALID-KEY.
GO TO READS.

IN VAL ID- KE Y.

EOJ.
DISPLAY "INVALID KEY "REC-ID.

CLOSE C-FILE D-FILE.
STOP RUN.

1/ LBLTYP NSD(01)
/ / EXEC LNKEDT

• Figure 31. Creating a Direct File with Relative Track Addressing Using Method B
(Part 2 of 4)

122

0

,.
(,-,)

II ASSGN SYS007,X'00C'
II ASSGN SYS015,X'192'
II DLBL MAsTER,,70/365,DA
II EXTENT SYS025,111111,1,0,10,850
II EXEC

TRACK-ID 00000000 C-REC 82900000
TRACK-ID 00000001 C-REC 82900001
TRACK-ID 00000018 C-REC 8290001801
TRACK-ID 00000018 C-REC 8290001802
TRACK-ID 00000018 C-REC 8290001803
TRACK-ID 00000018 C-REC 8290001804
TRACK-ID 00000018 C-REC 8290001805
TRACK-ID 00000018 C-REC 8290001806 CD TRACK-ID 00000018 C-REC 8290001807
GRACK-ID 00000018 C-REC 8290001808
TRACK-ID 00000018 C-REC 8290001809
TRACK-ID 00000018 C-REC 8290001810
TRACK-ID 00000018 C-REC 8290001811
TRACK-ID 00000018 C-REC 8290001812
TRACK-ID 00000018 C-REC 8290001813
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001813
TRACK-ID = 00000018 C-REC 8290001814
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001814
TRACK-ID = 00000018 C-REC 8290001815
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001815
TRACK-ID = 00000018 C-REC 8290001816
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001816
TRACK-ID = 00000018 C-REC 8290001817
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001817
TRACK-ID = 00000018 C-REC 8290001818
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001818
TRACK-ID = 00000018 C-REC 8290001819 CD ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001819
TRACK-ID = 00000018 C- REC = 8290001820
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001820
TRACK-ID = 00000018 C-REC 8290001821
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001821
TRACK-ID = 00000018 C-REC 8290001822
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001822
TRACK-ID = 00000018 C-REC 8290001823
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001823
TRACK-ID = 00000018 C-REC 8290001824
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC 8290001824

eFigure 31. Creating a Direct File with Relative Track Addressing Using Method B
(Part 3 of 4)

Processing COBOL Files on Mass Storage Devices 123

rRACK-ID = Q0000018 C-REC 8290001825
ERROR-CONO = 00100000
r RACK- ID = 00000019 C-REC 8290001825
ERROR-CONO = 00100000
rRACK-ID = 00000020 C-REC 8290001825
TRACK-ID = 00000018 C-REC 8290001826
ERROR-CONO = 00100000
rRACK-ID = 00000019 C-REC 8290001826
ERROR-CONO = 00100000
rRACK-IO = 0.0000020 C-REC 8290001826
TRACK-IO = 00000018 C-REC = 8290001821
ERROR-CONO = 00100000
TRACK-IO = 00000019 C-REC = 8290001821
ERROR-CONO = 00100000
TRACK-IO = 00000020 C-REC = 8290001821
r RACK- 10 = 00000018 C-R BC 8290001828
ERROR-CONO = 00100000
rRACK-IO = 00000019 C-REC = 8290001828
ERROR-CONO = Q0100000
rRACK-IO = 00000020 C-REC = 8290001828
TRACK-IO = 0.0000018 C-REC = 8290001829
ERROR-CONO = Q0100000
TRACK-IO = 00000019 C-REC = 8290001829
ERROR-CONO = 00100000
TRACK-IO = Q0000020 C-REC = 8290001829
r RACK- 10 = 00000018 C-REC 8290001830
ERROR-CONO = 00100000
rRACK-IO = 00000019 C-REC = 8290001830
ERROR-CONO = 00100000
rRACK-IO = Q0000020 C-REC = 8290001830
TRACK-IO = 00000018 C-REC = 8290001831
ERROR-CONO = 00100000
TRACK-IO = 00000019 C-REC = 8290001831
ERROR-CONO = 00100000
TRACK-IO = 00000020 C-REC = 8290001831
rRACK-IO = Q0000018 C-REC 8290001832
ERROR-CONO = 00100000
rRACK-IO = 00000019 C-REC = 8290001832
ERROR-CONO = 00100000
rRACK-IO = 00000020 C-REC = 8290001832
TRACK-IO = 00000018 C-REC = 8290001833
ERROR-CONO = 00100000

'TRACK-IO = 00000019 C-REC = 8290001833'
ERROR-CONO = 00100000
TRACK-IO = 00000020 C-REC = 8290001833
rRACK-IO = 00000018 C-REC 8290001834
ERROR-CONO = 00100000
rRACK-IO = 00000019 C-REC = 8290001834
ERROR-CONO = 00100000
rRACK-IO = 00Q00020 C-REC = 8290001834
TRACK-IO = 0,0000018 C-REC = 8290001835
ERROR-CONO = 00100000
rRACK-IO = 00000019 C-REC = 8290001835
ERROR-CONO = Q0100000
r RACK- 10 = 00000020 C-REC = 8290001835
TRACK-ID = 00000018 C-REC = 8290001836
ERROR-CONO = Q0100000
rRACK-IO = 00000019 C-REC = 8290001836
ERROR-COND = Q0100000
rRACK-IO = 00000020 C-REC = 8290001836
TRACK-ID = 00000018 C-REC = 8290001837
ERROR-CONO = 00100000
rRACK-ID = 00000019 C-REC 8290001837
ERROR-CONO = 00100000
rRACK-ID = 00000020 C-REC 8290001831
ERROR-COND = 00100000
r RACK-ID = 00000021 C-REC 8290001831
TRACK-ID = 00000018 C-REC = 8290001838
ERROR-COND = 00100000
TRACK-ID = 00000019 C-REC = 8290001838
ERROR-CONO = 00100000
TRACK-ID = 00000020 C-REC = 8290001838
ERROR-CONO = 00100000
TRACK-ID = 00000021 C-REC = 8290001838

CD

• Figure 31. Creating a Direct File with Relative Track Addressing Using Method B
(Part 4 of 4)

124

C"I ~l

ACTUAL TRACK ADDRESSING CONSIDERATIONS FOR
SPECIFIC DEVICES

Randomizing for the 2311 Disk Drive

When randomizing for the 2311 Disk
Drive, it is possible to circumvent the
discontinous binary address by coding the
randomizing formula in decimal arithmetic
and then converting the results to binary.
This can be done by setting aside a decimal
field with the low-order byte reserved for
the head number, and the high-order bytes
reserved for the cylinder number. A
mathematical overflow from the head number
will now increment the cylinder number and
produce a valid address. The low-order
byte should then be converted to binary and
stored in the HH field, and the high-order
bytes converted to binary and stored in the
CC field of the actual key field.

Randomizing to the 2311 Disk Drive
should present no significant problems if
the programmer using direct organization is
completely aware that the cylinder and head
number give him a unique track number. To
illustrate, the 2311 could be thought of as
consisting of tracks numbered as follows:

Cylinder 0 Cylinder 1 Cylinder 2
--, --, --1-

Track 1 0 110 120
Numbers --~ --~ --~

1 1 1
--~ --~ --~

1 1 1
--~ --~ --~

1 1 1
--~ --~ --~

1 1 1
--~ --~ --~

1 1 1
--~ --~ --~

1 1 1
--~ :--~ --~

1 9 119 129

If the randomizing formula resulted in
an address of cylinder 001, head 9:

Cylinder 1 Head
Number 1 Number

--------------f-----------
001 1 9

this would be a reference to track 19.
This fact allows the programmer to ignore
the discontinuous cylinder and head number.
If his formula resulted in an address of
0020, this would result in accessing
cylinder 2, head 0, the location of track
20.

The programmer can make another use of
this decimal track address. He may wish to
reserve the last track of each cylinder for
synonyms. If this is the case, he is in
effect redefining the cylinder to consist
of nine tracks rather than ten tracks. The
2311 cylinder could then be thought of as
consisting of track numbers, as follows:

Cylinder 0 Cylinder 1 Cylinder 2
--, --, --,

Track 1 0 19 11 8
Numbers --~ --~ --~

1 1 119
--~ --~ --~

1 1 120
--~ --~ --~

1 1 1
--~ --~ --~

1 1 1
--~ --~ --~

1 1 1
--~ --~ --~

1 1 1
--~ --~ --~

1 8 \17 126

If the progra~er randomizes to relative
track number 20, he can access it by
dividing the track address by the number of
tracks (9) in a cylinder. The quotient now
becomes the cylinder number, and the
remainder becomes the head number.

2 cylinder number

9fo020
18

2 = head number

To simplify randomizing, an algorithm
must be developed to generate a decimal
track address. This track addr~ss can then
be converted to a binary cylinder number
and head number. In addition, tracks can
be reserved by dividing the track address
by the number of tracks in a cylinder. The
same concepts will hold true for devices
such as the 2314. For example, an
algorithm can be developed using 20 tracks
per cylinder and dividing by the closest
prime number less than 20.

Processing COBOL Files on Mass storage Devices 125

Randomizing for the 2321 Data Cell

The track reference field for the 2321
Data Cell is composed of the following
discontinuous binary address:

sub
cell cell strip cyl. head record

r---T---T----T----T-----T----T----T------,
I I I I I I I I I
IMIBIB IC I C IH IH I R I
L~~_~ ___ ~ ____ ~ ____ ~ _____ ~ ____ ~ ____ ~ ______ J

0-9 0-19 0-9 0-4 0-19

At first glance, this presents an almost
impossible randomizing task; but since each
strip includes 100 tracks that are
accessible through cylinder and head
number, the 2321 Data Cell can be
considered to consist of consecutively
numbered tracks.

Tracks I strip
-------------------+-------

0 • 99 0

100""------199 1 ...,.----
900 • 999 9

1000 ...,.----. 1099 10

1900~ -1999 19

10000~.10099 100

19900~. 19999 199

199900"""-'---: 199999 1999

, It can be seen that relative track 20 is
located on cylinder 1, head 0 of some
particular strip. Its address can be
calculated by d~viding by 20.

1 = cylinder number

20/20
20

o = head number

Thus, relative track number 120 will be
located on strip 1, cylinder 1, head 0 of
some subcell. Note that the strip number
is given by the hundreds digit, and the
cylinder and head number are derived by
dividing the two low-order digits by 20.

The same relationship holds true for
relative track number 900. It is located
on strip 9, cylinder 0, track O. Again,
the hundreds digit gives the strip number,
and dividing the two low-order digits by 20

126

results in a quotient and remainder of
zero.

This relationship holds true through a
'relative track number of 19999, which is
the number of tracks that can be contained
on one cell of a data cell array. By
applying the foregoing rules, an address of
subcell 19, strip 9, cylinder 4, head 19 is
derived.

Thus, by randomizing to as-digit
decimal track number, the programmer will
be able to access the 20,000 tracks
(40,000,000 characters) contained in a
cell.

The thousands digits would represent the
subcell number, the hundreds digit the
strip number, and the quotient and
remainder of the two low-order digits
divided by 20 would represent the cylinder
and head number. Each one of these
resulting decimal digits would then be
converted to binary and placed in the
appropriate location in the track reference
field.

There is a total of 200,000 tracks per
data cell array. To derive valid addresses
that cross cell boundaries, the user should
randomize to a 6-digit decimal track
address. The highest address possible
should be 199,999. To convert this to a
data cell address, similar rules apply. In
this case, the user must divide the three
high-order digits by 20:

9 = cell

20 J199
180

19 = subcell

The quotient becomes the cell number and
the remainder becomes the subcell number.
The hundreds digit is still the strip
number, and the cylinder and head number
can be derived as previously illustrated.
The resulting address is 0091994190 and
would appear in the first eight bytes of
the actual key field as follows:

sub
cell cell strip cyl.head

r----T----T----T----T----T----T----T----'
1M IB IB IC IC IH IH IR I
r----+----+----+----+----+----+----+----~
I 0 I 0 I 9 I 19 I 9 I 4 I 19· I 0 I
L-___ ~~---~----~---~----~----~----~---J

Randomizing to the data cell can be
accomplished by developing an algorithm to
generate decimal track addresses. The use
of the foregoing rules makes it possible to

c

(J

(~I
,.

CJ

C)

convert these generated track addresses to
the appropriate discontinuous binary
address. -

INDEXED ORGANIZATION (DTFIS)

An indexed file is a sequential file
with indexes that permit rapid access to
individual records as well as rapid
sequential processing. Error recovery from
a DTFIS file is described in detail in the
chapter "Advanced Processing Capabilities."
An indexed file has three distinct areas:
a prime area, indexes, and an overflow
area. Each area is described in detail
below.

PRIME AREA

When the file is first created, or when
it is subsequently reorganized, records are
wri tten in the prime area. Until the prime,'
area is full, additions to the file may
also be written there. The prime area may
span multiple volumes.

The records in the prime area must be ,
formatted with keys, and must be positioned
in key sequence. The records may be
blocked or unblocked. If records are
blocked, each logical record within the
block contains its key, and the key area
for the block contains the key of the
highest record in the block. The Disk
operating System permits fixed-length
records only. Figure 32 shows the formats
of blocked and unblocked records on a
track.

r--,
Unblocked Records

r---------T------T-------T-----T------T-----T-------T-----T------T---------,
I KEY NUMBER I I COUNT I KEY I DATA I I COUNT , KEY , DATA I I L __________ ~ ______ ~ _______ ~ _____ ~ ______ ~ _____ ~ _______ ~ _____ ~ ______ ~ ________ J

A A A
, I \
I I I
1 1 \
1 1 L--Logical record (key embedded)
I 1
I I
1 L--Key of logical record
1
1
L--Highest key on track

Blocked Records

r---------T---T----------T-----T------T------T------T---T------------------,
IKEY NUMBER \ 1 COUNT 1 KEY I DATA I, DATA 1 DATA 1 1 1 L __________ ~ ___ ~ __________ ~ _____ ~ ______ ~ ___ ~ __ ~ ______ ~ ___ ~ _________________ J

A A -- '-"'" ~
1 I
1 I
1 1
I I
1 I
1 1
1 1

A
1
1
I
L--Logical records with embedded keys

1 L--Key of last logical record in block
I
I

I L--Highest key on track I L-__ J

Figure 32. Formats of Blocked and Unblocked Records

Processing COBOL Files on Mass Storage Devices 127

INDEXES

There are three possible levels of
indexes for a file with indexed

,organization: a track index, a cylinder
index, and a master index. They are

: created and writ.ten by the system when the
file is created or reorganized.

,Track Index

This is the lowest level of index and is
always present. There is one track index
for each cylinder in the prime area. It is
always written on the first track of the

. cylinder that it indexes.

The track index contains a pair of
'entries for each prime data track in the
. cylinder: a normal entry and an overflow
'entry. The normal entry contains the home
address of the prime track and the key of

-the highest record on the track. The
,qverflow entry contains the highest key
associated with that track and the address
of the lowest record in the overflow area.

:If no overflow entry has yet been made, the
'address of the lowest record in the
overflow area is the dummy entry X'FF'.

Cylinder Index

The cylinder index is a higher level of
index and is always present. Its entries
point to track indexes. There is one
cylinder index for the file. It is written
on the device specified in the APPLY
CYL-INDEX clause. If this clause is not
specified, the cylinder index is written on
the same device as the prime area.

Master Index

The master index is the highest level
index and is optional. It is used when the
cylinder index is so long that searching it
is very time consuming. It is suggested
that a master index be requested when the
cylinder index occupies more than four
tracks. (A master index consists of one
entry for each track of the cylinder
index.)

The Disk Operating System permits one
level of master index for the file and
requires that it be written immediately
before the cylinder index. If a master
index is desired, the APPLY MASTER-INDEX

128

clause must be specified in the source
program. When this clause is specified,
the cylinder index is placed on the same
device as the master index.

OVERFLOW AREA

There are two types of overflow areas:
a cylinder overflow area and an independent
overflo~ area. Either or both may be
specified for an indexed file. Records are
written in the overflow area(s) as
additions are made to the file.

,Cylinder OVerflow Area

A certain number of whole tracks are
reserved in each cylinder for overflow
records from the prime tracks in that
cylinder. The user may specify the number
of tracks to be reserved by means of the
APPLY CYL-OVERFLOW clause. If he specifies
o as the number of tracks in this clause,
no cylinder overflow area is reserved. If
the clause is omitted, 20% of each cylinder
is reserved for overflow.

Independent Overflow Area

Overflow records from anywhere in the
prime area are placed in a certain number
of cylinders reserved soley for this
purpose. The size and location of the
independent overflow area can be specified
if the user includes the proper job control
XTENT (or EXTENT) cards. The area must,
however, be on the same mass storage device
type as the prime area. '

A suggested approach is to have cylinder
overflow areas large enough to contain the
average number of overflow records caused
by additions and an independent overflow
area to be used as the cylinder overflow
areas are filled.

Adding Records to an Indexed File

A new record added to an indexed file is
placed into a location on a track in the
prime area determined by the value of its
key field. If records in the file were
placed in precise physical sequence, the
addition of a new record would require the
shifting of all records with keys higher
than that of the one inserted. However,
indexed organization allows a record to be
inserted into its proper position on a
track, with the shifting of only the

-~-------- -----~~--~~-- ---- -

r
...... _-.".

c)

C)

o

r---,
PRIME DATA AREA

Track No.

r-----' r-----'
0001 1000011 1000031 L _____ J L _____ J

New

r-----'
1000091 L _____ J

r----'
1000101 L _____ J

" I
I
I

record----------J

r----'
1000111 L _____ J

" I
I
I
I
I

Original record moved up-----------------J

r-----'
0002 1000161 L _____ J

OVERFLOW AREA

r-----'
10001 4 1 L _____ J

" I

r-----'
1000171
L _____ J

r----'
1000251 L ____ J

r----'
1000271 L _____ J

L------Record removed from Track 0001 L ___ _

Figure 33. Adding a Record to a Prime Track

records on that track. Any records for
which there is no space on that track are
then placed in an overflow area, and become
overflow records. Overflow records are
always fixed-length, unblocked records,
formatted with keys.

As records are added to the overflow
area, they are no longer in key sequence.
The system ensures, however, that they are
always in logical sequence.

Figure 33 illustrates the addition of a
record to a prime track.

The new record (00010) is written in its
proper sequential location on the prime
track. The rest of its prime records are
moved up one location. The bumped record
(00014) is written in the first available
location in the overflow area. The record
is placed in the cylinder overflow area for
that cylinder, if-a cylinder overflow area
exists and if there is space in it;
otherwise, the record is placed in the
independent overflow area. The first
addition to a track is always handled in
this manner. Any record that is higher
than the original highest record on the
preceding track, but lower than the
original highest record on this track, is
written on the prime track. Record 00015,

for example, would be written as the first
record on track 0002, and record 00027
would be bumped into the overflow area.

Subsequent additions are written either
on the prime track where they belong or as
part of the overflow chain from that track.
If the addition belongs between the last
prime record on a track and a previous
overflow from that track (as is the case
with record 00013), it is written in the
first available location in the overflow
area on an empty track, or on a track whose
first record has a numerically lower key.

If the addition belongs on a prime track
(as would be the case with record 00005),
it is written in its proper sequential
location on the prime track. The bumped
record (record 00011) is written in the
overflow area.

A record with a key high~r than the
current highest key in the file is placed
on the last prime track containing data
records. If that track is full, the record
is placed in the overflow area.

Processing COBOL Files on Mass Storage Devices 129

ACCESSING AN INDEXED FILE (DTFIS)

An indexed file may be accessed both
sequentially and randomly.

ACCESSING AN INDEXED FILE SEQUENTIALLY:
indexed file may only be created
sequentially. It can also be read and
updated in the sequential access mode.
following specifications may be made in
source program.

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO SYSnnn-DA-{~~i!}- I
2321

RECORD KEY Clause

An

The
the

NOMINAL KEY Clause (when reading, if the
START statement is used)

Optional clauses:

FILE-LIMIT Clause
ACC~SS MODE IS SEQUENTIAL
PROCESSING MODE IS SEQUENTIAL
RERUN Clause
SAME Clause
APPLY WRITE-VERIFY Clause (create and

update)
APPLY CYL-OVERFLOW Clause (create)

{
MASTER-INDEX}

APPLY Clause
CYL-INDEX

Invalid clauses:

130

ACCESS MODE IS RANDOM
ACTUAL KEY Clause
TRACK-AREA Clause
MULTIPLE FILE TAPE Clause
APPLY WRITE-ONLY Clause
APPLY EXTENDED-SEARCH Clause
APPLY CORE-INDEX Clause
RESERVE Clause

ACCESSING AN INDEXED FILE RANDOMLY: A
randomly-accessed indexed file may be read,
updated, or added to. The following
specifications may be made in the source
program:

ENVIRONMENT DIVISION

Required clauses:

SELECT [OPTIONAL] file-name

ASSIGN TO SYSnnn-DA- {~~~~} -I
2321

ACCESS IS RANDOM
NOMINAL KEY Clause
RECORD KEY Clause

Optional clauses:

FILE LIMIT Clause
PROCESSING MODE IS SEQUENTIAL
TRACK-AREA Clause
RERUN Clause
SAME Clause
APPLY WRITE VERIFY Clause
APPLY CYL-OVERFLOW Clause
APPLY CORE-INDEX Clause

{

MASTER-INDEX}
APPLY

CYL-INDEX

Invalid clauses:

RESERVE Clause

Clause

ACCESS MODE IS SEQUENTIAL
ACTUAL KEY Clause
MULTIPLE FILE TAPE Clause
APPLY EXTENDED-SEARCH Clause

Key Clauses

When creating an indexed file, the only
key clause required is the RECORD KEY
clause. The data-name specified in this
clause is the name of the field within the
record that contains the key. Keys must be
in ascending numerical order when creating
an indexed file.

If a START statement is used when
retrieving an indexed file sequentially,
the NOMINAL KEY clause is required.

------------------~- ~~

r ,--,'

o

When accessing an indexed file randomly,
both the NOMINAL KEY and RECORD KEY clauses
ar~ required. When reading the file, the
data-name specified in the NOMINAL KEY
clause is the key of the record which is
being retrieved. The data-name specified
in the RECORD KEY clause is the name of the
field within the record that contains this
key.

When adding records to an indexed file,
the data-name specified in the NOMINAL KEY
clause is the key for the record being
written and is used to determine its
physical location. The data-name specified
in the RECORD KEY clause specifies the
field in the record that contains the key.

Improving Efficiency

When processing an indexed file, the
following source language Environment
Division clauses may be used to improve
efficiency:

TRACK-AREA Clause
APPLY CORE-INDEX Clause

For additional details, see the

I publication IBM System/360 Disk Operating
System: American National Standard COBOL.

Processing COBOL Files on Mass Storage Devices 131

•

c'

--------- ------------ ----------------

c
The following topics are discussed

within this chapter:

DTF Tables

Error Recovery

Volume and File Label Handling

DTF TABLES

Whenever COBOL imperative-statements
(READ, WRITE, REWRITE, etc.) are used in a
program to control the input and/or output
of records in a file, that file must be
defined by a DTF. A DTF is created by the
compiler for each file opened in a COBOL
program from information specified in the
Environment Division, FD entry, and
input/output statements in the source
program. The DTF for each file is part pf
the object module that is generated by the
compiler. It describes the characteristics
of the logical file, indicates the type of
processing to be used for the file, and
specifies the main storage areas and
routines used for the file.

The DTF's generated for the permissible
combinations of device type and COBOL file
processing technique are as follows:

DTFCD Card reader, punch -
organization and access
sequential

DTFPR Printer -- organization and
access sequential

DTFMT Tape -- organization and access
sequential

ADVANCED PROCESSING CAPABILITIES

DTFSD Mass storage device -
organization and access
sequential'

DTFDA Mass storage device -
organization direct, access
sequential or random

DTFIS Mass storage device -
organization indexed, access
sequential or random

Because of their limited interest for
the COBOL programmer, the contents and
location of the fields of each of the DTF
types are not discussed in this
publication. However, there are certain
fields which immediately precede the
storage area allocated for the DTF which
are pertinent and which are described
below.

For magnetic tape files (DTFMT) or
sequentially organized files on mass
storage devices (DTFSD), a 24-byte Pre-DTF
is reserved in front of the DTF. The
fields of the Pre-DTF are shown in Table
10. If any option is not specified, the
field will contain binary zeros.

When actual track addressing is used for
files with direct organization and random
access (DTFDA), a variable-length Pre-DTF
is reserved. The fields of the Pre-DTF are
shown in Table 11. If any option is not
specified, the field will contain binary
zeros.

When relative track addressing is used
for files with direct organization and
random access (DTFDA), a variable-length
Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 12. If any
option is not specified, the field will
contain binary zeros.

Advanced Processing Capabilities 133

- Table 10. Fields Preceding DTFMT and DTFSD
r------T---,
11 byte I Number of reels (as specified in the ASSIGN clause) when file is opened~ I \~\..,- _ ..

~-------+---i
11 byte I Number of reels remaining (i.e., file not completely read)~ I
~------t---~
12 bytes I Maximum record length if records are variable, blocked and APPLY WRITE-ONLY isl
I I not specified. I
~------t---~

" -I I [REEL] I , 14 bytes I Address of label declarative with BEGINNING option I
I I UNIT I
~-------+---i
~ I [REEL] I 14 bytes I Address of label declarative with ENDING option I
I I UNIT I
~------t---~

-14 bytes I Address of label declarative with ENDING FILE option I
~-------+---i
14 bytes I Address of label declarative with BEGINNING FILE option I
-~------t---~
11 byte I Switch -- FF if closed WITH LOCK; otherwise, the switch is used as shown in I
I I Table 16 I
~-------t---~
13 bytes I Address of USE AFTER STANDARD ERROR declarative I

t-------~-------------------------:::::::::::---~
I I
~---i
I~For INPUT files with nonstandard labels only. I L ___ J

,-Table 11. Fields Preceding DTFDA - ACCESS IS RANDOM - Actual Track Addressing
r-------T---,
19-263 I I
I bytes 1 ACTUAL KEY~ I
~-------+---i
18 bytes I SEEK Address 2 I
~------+---~
12 bytes I Error bytes3 1
~-------+---i
14 bytes 1 Address of file extent information I
~------+---~
14 bytes I Address of label declarative with ENDING FILE option I
~-------+---i
14 bytes I Address of label declarative with BEGINNING FILE option I
~------t------------------------------------~--~
11 byte 1 Switch -- FF if closed WITH LOCK: otherwise the switch is used as shown in I
I 1 Table 16 1
~-------+---~
13 bytes I Address of USE AFTER STANDARD ERROR declarative I

f-------~----------------------------:::::--{
I I
~---i
11 ACTUAL KEY specified in last executed WRITE statement I
12 In the form MBBCCHHR I
13 This area is reserved by the Supervisor and assigned the name ERRBYTE. For a I
I complete discussion, refer to the publication IBM System/360 Disk Operating I
I System: Supervisor and Input/Output Macros, Form GC24-5037. I L ___ J

134

eTable 12. Fields Preceding DTFDA - ACCESS IS RANDOM - Relative Track Addressing

c r------T---,
15-258 I I
I bytes IACTUAL KEY1 I
~-------+---~
14 byteslSEEK address 2 I
~-------+---i
13 byteslLast extent used3 I
r------+---~
11 byte INot used ' I
~-------+---i
12 byteslError bytes4 I
r------+---~
11 byte IIndex to last extent used in the Disk Extent Table I
~-------+---~---------------------------i
13 byteslAddress of Disk Extent Table in the DTF I
r------+---~
14 byteslAddress of label declarative with ENDING FILE option I
~-------+---i
14 byteslAddress of label declarative with BEGINNING FILE option I
r------+---~
11 byte ISwitch -- FF if closed WITH LOCK; otherwise the switch is used as shown in I
I ITable 16 I
r------+---i
13 byteslAddress of USE AFTER STANDARD ERROR declarative I

~------L---J

7 DTFDA 1
I I
~---i
11ACTUAL KEY specified in the last executed WRITE statement I
12 In the form TTTR I
13 In the form TTT I
14This area is ~eserved by the DOS Supervisor and assigned the name ERRBYTE. For a I
I complete discussion, refer to the publication IBM System/360 Disk Operating I
I System: Supervisor and Input/Output Macros. I L ______________ ~ __ J

o
d d o bOlO 9 135 A vance Process1ng Capa 1 1t1es

When actual track addressing is used for
files with direct organization and
sequential .. access (DTFDA), a 31-byte
Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 13. If any
option is not specified, the field will
contain binary zeros.

When relative track addressing is.used
for files with direct organization and

sequential access (DTFDA), a 31-byte
Pre-DTF is reserved. The fields of the
Pre-DTF are shown in Table 14. If any
option is not specified, the field will
contain binary 2eros.

For files whose organization is indexed,
only four bytes are reserved preceding the
DTF, as shown in Table 15.

eTable 13. Fields Preceding DTFDA - ACCESS IS SEQUENTIAL - Actual Track Addressing
r-------T---,
18 byteslSEEK address1 I
r-------t---~
15 bytesiIDLOC2 I
~-------+---i
12 byteslError bytes3 I
r-------+---~
14 byteslAddress of file extent information I
~-------+---i
14 byteslAddress of label declarative with ENDING FILE option I
r-------t---~
14 byteslAddress of label declarative with BEGINNING FILE option I
~-------+---i
11 byte ISwitch -- FF if closed WITH LOCK: otherwise the switch is used as shown in I
I ITable 16 I
~-------+-------------7--~--------i
13 byteslAddress of USE AFTER STANDARD ERROR declarative I
~-------~---~

f DTFDA ~
I I
r---~
11 In the form MBBCCHHR I
12Address (returned by the system) of next record in the form CCHHR I
13 This area is reserved by the DOS Supervisor and assigned the name ERRBYTE. For a I
I complete discussion, refer to the publication IBM System/360 Disk Operating I
I System: Supervisor and Input/Output Macros. I L ___ J

136

()
\..-

• Table 14. Fields Preceding DTFDA - ACCESS IS SEQUENTIAL - Relative Track Addressing
r-------T---,
14 bytes I SEEK address~ I
r-------f---~
13 byteslLast extent used2 I
~-------+---~
11 byte INot used I
r-------+---~
14 bytesiIDLOC3 I
~-------+---i
11 byte INot used I
r-------+---~
12 bytes I Error bytes~ I
~-------+---i
11 byte IIndex to the last extent used in the Disk Extent Table I
r-------f---i
13 byteslAddress of Disk Extent Table in the DTF I
~-------+_---i
14 byteslAddress of label declarative with ENDING FI~E option I
r-------+---~
14 byteslAddress of label declarative with BEGINNING FILE option I
~-------+_--i
11 byte ISwitch -- FF if closed with LOCK; otherwise the switch is used as shown in 1
1 ITable 16 I
~-------+_--i
13 byteslAddress of USE AFTER STANDARD ERROR declarative I

~------L--------------------------:::::---------------------------____________________ ~

1 I
r---i
I~In the form TTTR 1
12 In the form TTT I
13Address <returned by the system) of the next record in the form TTTR I .
14This area is reserved by the DOS Supervisor and assigned the name ERRBYTE. For a 1
1 complete discussion, refer to the publication IBM System/360 Disk Operating I
I System Supervisor and Input/Output Macros. 1 L-__ ~

• Table 15. :r:ields Preceding DTFIS
r-------T---,
11 byte ISwitch -- FF if closed WITH LOCK; otherwise the switch is used as shown in 1
1 ITable 16 1
r-------f---i
13 byteslAddress of USE AFTER STANDARD ERROR declarative 1
t-------.l.---i

t DTFIS (
L-__ ~

Advanced Processing Capabilities 137

Some files can be opened several
different ways in one COBOL program.

For DTFCD and DTFPR, only one DTF will
be generated for each file.

For DTFMT, a maximum of three DTF's may
be needed -~ one each for OPEN INPUT, 'OPEN

'INPUT REVERSED, and OPEN OUTPUT.

For DTFSD, a maximum of three DTF's may
:be needed -- one each for OPEN INPUT, OPEN

OUTPUT, and OPEN 1-0 statements.

For DTFIS, a maximum of two DTF's may be
needed. If access is sequential, one DTF
for nloadn and one for nretrieve n may be
needed. If access is random, only one DTF
need be generated at a time.

For DTFDA, only one DTF is needed.

Pre-DTF Switch

, When used, this switch provides
, communication between the executing program
and its input/output subroutines at
execution time. The entire byte may be set
to X'FF' :to indicate that the file was
closed WITH LOCK and cannot be reopened.
ofherwise the switch is used as shown in
Table 16.

ERROR RECOVERY

COBOL allows the user to handle
input/output errors through 1) the INVALID
KEY clause for certain source language
statements, and 2) the USE AFTER STANDARD
ERROR declarative sentence.

Input/output errors caused by the
program can be recovered from directly by

138

the procedure specified in the INVALID KEY
clause. That is, when the system
determines that an invalid key condition
exists, control is returned to the user at
the impera~ive-statement specified in the
INVALID KEY clause. An invalid key
condition can occur on files with direct or
indexed organization and on sequentially
organized disk files. The errors that
cause an invalid key condition are shown in
Table 17.

• Table 16. Meaning of Pre-DTF Switch
r-----T-----------------------------------, I Bit I Meaning, if ON I
~-----+-----------------------------------~ I 0 ITurned ON the first time a DTFSD I
I loutput file is opened. The entire I
I IDTF is saved for subsequent OPEN I
I 10UTPUT statements. I
~-----+-----------------------------------~
I 1 ITurned ON when DTFDA or DTFSD files I
I lare opened 1-0. I
~-----+-----------------------------------~

2 This bit is ON to indicate
beginning of volume user label
processing. The bit is set OFF
when a file is opened to indicate
to the user label processing
subroutine (ILBDUSLO) that
beginning-of-file user labels are
to be processed. That subroutine
sets the bit ON after beginning
of-file processing to indicate that
all subsequent calls for this
subroutine are for beginning-of
volume user label processing.

~-----+-----------------------------------~
I 3 IFor output files with variable- I
I Ilength blocked records, this bit isl
I Iturned OFF when a file is opened I
I land ON for all WRITE's after the I
I I first. I
~----+-----------------------------------~
I 4 ITurned ON for spanned record I
I Iprocessing on a DTFDA file. I
~----+-----------------------------------~
I 5-7 1Not used. I L _____ ~ ___________________________________ J

,r->
i:... ,/1

"~-,

()

o

Table 17. Errors Causing an Invalid Key Condition
r------------T-------------T--------T---------T--,
,Organization, ACCESS 'OPEN '1-0 Verb, Condition ,
~-------------+-------------+--------+---------+--i
'Sequential I [SEQUENTIAL] I OUTPUT I WRITE I End of extents reached. ' ,
r------------+-------------+--------+---------+--i
, Direct , [SEQUENTIAL]' OUTPUT I WRITE , Track address outside file extents. ,
~-------------+-------------+--------+---------+--i
I Direct I RANDOM I INPUT I READ I No record found. I
I I ~--------+---------+--i
I I I OUTPUT I WRITE I Track.address outside file extents. ,
I I ~--------+---------+--i
, , ,1-0, READ I Track address outside file extents. "
, , 'I REWRITE , ,
r------------+-------------+--------+---------+--i
I Indexed '[SEQUENTIAL]I INPUT 'START , No record found. ,
I I I 1-0 I I I
, , ~--------+---------+-------------------------------------~--i
I , , OUTPUT 'WRITE , Duplicate record; sequence check. ,
, ~-------------+--------+---------+--i
, I RANDOM 'INPUT' READ 'NO record found. ,
I I ~--------+---------i I
I I I 1-0 I REWRITE I I
I I ~--------+---------+--i
I I I 1-0 I WRITE I Duplicate record. I . L ____________ ~ _____________ ~ ________ ~ _________ ~ _______________________________________ J

Other input/output errors cause the job
to be cancelled unless the user has
specified a USE AFTER STANDARD ERROR
declarative. Control is transferred to
this declarative section if the system
determines that a "standard" error has
occurred during input/output processing.
In this declarative section, the user may

interrogate the COBOL error bytes if he has
specified the GIVING option of the USE
AFTER STANDARD ERROR declarative sentence.
The meaning of these bytes for a specified
combination of device type and file
processing ~echnique is shown in Table 18.

Advanced Processing Capabilities 139

Table 18. Meaning of Error Bytes for GIVING Option of Error Declarative (Part 1 of 2)
r-------T------------T------------T------T-----T--------------T----T--------------------,
1 I. 1 1 11/0 I. 1 1 1
IDevice 1 Organization 1 ACCESS 1 OPEN IVerb 1 Condition 1 Byte 1 Result 1

(r-"
\
\, _ . .I

~-------+------------+------------+------+-----+--------------f----f--------------------i
1 Unit 1 Sequential 1 [SEQUENTIALll 1 1 Input/output 1 1 IFile must be closed 1
I record 1 I 1 1 I error 1 1 and job must be I
1 1 I I 1 I I 1 terminated. 1
~------+------------+------------+------+-----f--------------+----+--------------------~
Tape sequential [SEQUENTIALlIINPUT IREAD IWrong length 1 2 ISkip block if 1

1 1 I record 1 I return is made to 1
1 I I 1 I non-declarative I
I I I 1 I portion. 1
1 1 ~--------------+----+--------------------~
1 I IParity error 1 1 ISkip block if I
1 I 1 I 1 return is made to 1
I I 1 I 1 non-declarative I
1 I I I I portion. 1
~------+-----f--------------~----~--------------------~
10UTPUTIWRITEIAII exceptional conditions are handled I
1 I I by the system. 1

~-------+------------+------------f------f-----f--------------T----T--------------------~
DASD sequential [SEQUENTIALlIINPUT IREAD IWrong length I 2 ISkip block if I

1 1-0 I 1 record I 1 return is made to I
1 1 I I 1 non-declarative I
I I 1 I I portion. I
I I r--------------f----+--------------------~ ·
I 1 IParity error 1 1 ISkip block if 1
I 1 I I I return is made to I
1 I 1 I 1 non-declarative I
1 I 1 I 1 portion. 1
~------+-----f--------------+----+--------------------~
1 OUTPUT 1 WRITE 1 Parity error I 1 IBad block written. I
11-0 1 .--------------f----+--------------------i
I 1 IWrong length I 2 IBad block written. 1
I I I record I I I

~-------+------------+------------+------+-----+--------------f----+--------------------i
IDASD I Direct I [SEQUENTIALlIINPUT IREAD IWrong length I 2 IReturn to statement 1
I I I I I I record I I after READ. I
I I I I I .---------------f----+--------------------i
I I I I I IData check in I 1 IReturn to statement 1
1 I I I I I count area I 1 after READ. I
1 'I I I I .--------------f----+--------------------i
1 < 1 I 1 I I Data check for I 4 I Return to statement 1
I' 1 I I I I key and/or I 1 after READ. I
1 1 I 1 I 1 data I I I
~------+------------+------------+------+-----f--------------~---~--------------------~
DASD Direct RANDOM IINPUT IREAD ISame as ACCESS SEQUENTIAL (above). I

II-O I I I
~------+-----f--------------T----T--------------------~
OUTPUT WRITEIWrong length I 2 IReturn to next I

I record I 1 statement; bad 1
I I I block written. I
.--------------f----+--------------------i
IData check in 1 1 IReturn to next I
I count area I I statement; bad I
1 1 I block written. I
r--------------f----+--------------------~
IData check fori 4 IReturn to next I
I key and/or I I statement; bad I
I ,data I I block written. I
.--------------+----+--------------------i
INO room found I 3 IReturn to next I
I 1 I statement. I

~-------~-----------~------------~------~-----~-------------~----~--------------------i
1 Note: If no USE AFTER STANDARD ERROR routine is specified and one of the above I
Iconditions occurs, the user is notified of the condition and the job is cancelled. I L ___ J

140'

- ------------~---------.

o

Table 18. Meaning of Error Bytes for GIVING option of Error Declarative (Part 2 of 2)
r-------T------------T------------T------T-------T--------------T----T------------------,
I I I 1 11/0 1 1 1 1
1 Device 1 Organization 1 ACCESS 10PEN 1 Verb 1 Condi tion 1 Byte 1 Result 1
~-------+------------+------------+------+-------+--------------+----+------------------~
IDASD 1 Direct 1 RANDOM 11/0 IREWRITEIWrong length 1 2 IReturn to next 1
1 1 1 1 1 1 record 1 1 statement; bad 1
1 1 1 1 1 1 1 1 block written. 1
1 1 1 1 1 ~--------------+----+------------------~
1 1 1 1 1 IData check in 1 1 IReturn to next 1
I 1 I I 1 I count area 1 1 statement; bad 1
I I 1 1 1 1 1 1 block written. 1
1 1 1 1 1 ~--------------+----+------------------~
1 1 1 1 1 IData check in 1 4 IReturn to next 1
1 1 1 1 1 1 key and/or 1 1 statement; bad 1
1 1 1 1 1 1 data 1 1 block written. 1
~-------+------------+------------+------+-------+--------------+----+------------------~
DASD Indexed [SEQUENTIALllINPUT IREAD IDASD error 1 1 IReturn to next 1

11-0 IREWRITE~--~-----------+----~ statement; bad 1
1 1 IWrong length 1 2 I block read or 1
1 1 1 record 1 I written. I
1 ~-------+--------------+----+------------------~
I ISTART IDASD error 1 1 Icontinued pro- 1
1 1 1 1 1 cessing of file 1
1 1 1 1 1 permitted. 1
~----~-+-------+--------------+----+------------------~
OUTPUT 1 WRITE IDASD error 1 1 IReturn to next 1

1 ~--------------+----~ statement; bad 1
1 IWrong length I 2 I block written. I
1 1 record 1 1 1
1 ~--------------+----+------------------~
1 IPrime data 1 3 IFile must be 1
1 1 area full 1 1 closed. 1
1 ~--------------+----+------------------~
I ICylinder index 1 4 IFile must be I
1 1 full 1 1 closed. I
1 ~--------------+----+------------------~
I IMaster index 1 5 IFile must be I
1 1 full 1 I closed. 1

~------+------------+------------+------+-------+--------------+----+------------------~
DASD Indexed RANDOM I INPUT I READ I DASD error 1 1 I Return to next I

11-0 IREWRITE~-------------+----~ statement; bad I
1 1 IWrong length 1 2 I block read or 1
I 1 I record 1 I wri tten. I
~------+-------+--------------+----+------------------~
11-0 I WRITE I DASD error I 1 I Return to next I
I 1 ~--------------+----~ statement; bad I
1 1 IWrong length 1 2 I block written. I
1 1 1 record 1 1 I
1 I ~--------------+----+------------------~
I I 10verflow area I 6 IFiles must be I
1 I I full I 1 closed. I

r------~-----------~------------~------~-------~--------------~---~-----------------~
INote: If no USE AFTER STANDARD ERROR routine is specified and one of the above I
Iconditions occurs, the user is notified of the condition and the job is cancelled. I L ____ ~ __ J

If the user includes a USE AFTER
STANDARD ERROR routine without specifying
the GIVING option, he must call an
assembler language routine within the
declarative if he wishes to interrogate the
error bits -- set either in the DTF (DTFMT,
DTFSD, or DTFIS) or in the fields preceding
the DTF (DTFDA).

Interrogation of these error bits should
be made to the locations shown in Tables
19, 20, 21, and 22.

Note: The byte and bit displacement in
Tables 19, 20, 21, and 22 is relative to
zero.

Advanced processing Capabilities 141

Table 19. Location and Meaning Of Error Bits for DTFMT
r~-------------T-----------T--------------------------T-----------T---------------------,
1 OPEN 1 Verb 1 Condi tion I Byte* 1 Bi t I'
r--------------+-----------+--------------------------+-----------+---------------------~
1 INPUT 1 READ 1 Wrong length record 1 3 1 1 1
1 1 r--------------------------+-----------+---------------------~
I .1 1 Pari ty e:r:ror 1 2 1 6 I
~----------~---+-----------+--------------------------t-----------t---------------------~
1 OUTPUT 1 WRITE 1 Wrong length record 1 3 1 1 1
1 1 r--------------------------t-----------t---------------------~
1 1 1 Pari ty error 1 2 1 6 1
r-------------~~-----------~--------------------------~-----------~---------------------~
I*Within the DTF. I L-__ J

Table 20. Location and Meaning of Error Bits for DTFSD
.------------y------------T--------------------------T------------T--------------------,
1 OPEN 1 Verb I Condi tion 1 Byte* I Bi t I
t-------------+------------t--------------------------+------------+--------------------~
1 INPUT, 1-0 I READ I Wrong length record I 3 1 1 1
1 1 r--------------------------t------------+--------------------~
1 1 1 Parity error 1 2 1 6 I
~-------------t------------+--------------------------t------------t--------------------~
1 OUTPUT, 1-0 I' WRITE 1 Parity error 1 2 I 6 1
~-------------~------------~--------------------------~------------~--------------------~
I*Within the DTF. I L _____ ~ ___ J

Table 21. Location and ~eaning of Error Bits for DTFDA
r------------T---------------T-----------T----------------------------T--------T--------,
I ACCESS I OPEN I Verb I Condi tion 1 Byte* I Bi t I
~-----------t---------------+-----------+-------------------~--------+--------t--------~
I (SEQUENTIALl I INPUT I READ I Wrong length record 1 0 11 I
I I I r----------------------------+--------+--------~
1 I 1 I Data check in count area 1 1 I 0 I
I I I r----------------------------+--------t--------~
I I I I Data check in key or data I 1 I 3 I
I I I r----------------------------+--------t--------~
1 1 I I No record found I 1 I 2 or 4 I
r------------+----~----------+-----------+----------------------------~--------~-------~
RANDOM I INPUT, 1-0 I READ I Same as sequential I

~---------------+-----------+----------------------------T--------T--------~
I OUTPUT I WRITE I Wrong length record I 0 I 1 I
I I ~----------------------------+--------+--------~
I I I No room found I 0 I 4 I
I I r----------------------------+--------t--------~
I I 1 Data check in count area 1 1 I 0 I
I I r----------------------------+--------+--------~
I I I Data check in key or data I 1 I 3 I
r---------------+-----------+----------------------------+--------t--------~ I I -0 I REWRITE I Wrong length record I 0 I 1 I
I I r----------------------------+------~-+--------~
I I 1 Data check in count area I 1 I 0 1
I I r----------------------------+--------t--------~
I I I Data check in key or data I 1 I 3 I
I I ~----------------------------+--------+--------~
I I I No record found I 1 I 2 or 4 I

r------------~--------------~-----------~-~--------------------------~--------~-------~
I*Within error bytes preceding DTF. See the section "DTF Tables" for the location of I
I these bytes. I L ___ J

142

o

Table 22. Location and Meaning of Error Bits for DTFIS
r-----------T---------------T-----------T----------------------------T--------T--------,
I ACCESS I OPEN I Verb I Condi tion I Byte* I Bit, I
~------------+---------------+-----------+----------------------------+--------+-----7--~

[SEQUENTIAL] I INP.UT, 1-0 I READ I DASD error I 30 I 0 I
I I ~----------------------------+--------t--------~
I I I Wrong length record I 30 I 1 ' I
~--------------+-----------+----------------------------+--------t--------~
I OUTPUT I WRITE I DASD error I 1 30 I 0 I
I I ~----------------------------+--------t--------~
I I I Wrong length record I 30 I 1 : I
I I ~----------------------------+--------t----~---~
I I I Prime data area full I 30 I 2 : I
I I ~----------------------------+--------t--------~
I I I Cylinder index full I 30 I 3 I
I I ~----------------------------+--------+--------~
I I I Master index full I 30 I 4 '. I

~------------+---------------t-----------+----------------------------+--------t--------~
I RANDOM I INPUT, 1-0 I READ I DASD error I 30 I 0 , I
I I I REWRITE I I I I
I I I ~----------------------------+--------t----~---~
I I I I Wrong length record I 30 I 1 , I
I ~---------------+-----------+----------------------------+--------t--------~
I I I -0 I WRITE I DASD error I 30 I 0 , I
I I I ~----------------------------t--------t----~---~
I I I I Wrong length record I 30 I 1 I
I I I ~----------------------------t--------t----~---~
I I I I Overflow area full I 30 I 6. I
~------------~---------------i-----------~-------------_______________ ~ ________ i_ _______ ~

I*Within the DTF.' I L ___ J

The following should be considered when
processing tape input files:

1. Two types of errors are returned to
the user: wrong length record and
parity check. The COBOL error bytes,
if requested, are set to reflect the
error condition and control is
transferred to the USE AFTER STANDARD
ERROR declarative sentence. The error
block is made available at data-name-2
of the GIVING option, if specified.

If a parity error is detected when a
block of records is read, the tape is
backspaced and reread 100 times before
control is returned to the user. If
the error persists, the block is
considered an error block and is added
to the block count found in the DTF
table.

2. Normal return (to the non-declarative
portion) from a USE AFTER STANDARD
ERROR declarative section is through
the invoked IOCS subroutine. Thus,
the next sequential block is brought
into main storage permitting continued
processing of the file. (The error
block is bypassed.) A return through
the use of a GO TO statement does not
bring the next block into main '
storage; therefore, it is impossible
to continue processing the file.

The processing of a sequential disk file
opened as input is the same as the previous
discussion of tape files, except that the
disk block is reread ten times before being
considered an error block.

COBOL cannot handle nested errors on
sequential files. If errors occur within
an error declarative, results are
unpredictable.

Advanced Processing Capabilities 143

VOLUME AND FILE LABEL HANDLING

TAPE LABELS

Among the several types of tape labels
allowed under the Disk Operating System
are: volume labels, standard file labels,

I user standard labels, and nonstandard
labels. Unlabeled files are also
permitted. The description of each type of
label follows.

Volume Labels

A volume label is used whenever standard
file labels are used. Logical IOCS
requires a volume label with VOLl as its
first four characters on every standard or
user labeled file. VOL2-VOL8 are also
allowed, but must be written and checked by
the user.

Standard File Labels

A standard file label is an 80-character
label created when an output file is opened
or closed, in part by IOCS using the VOL
and TPLAB or TLBL control statements. The
first three characters are HDR (header),
EOV (end-of-volume), or EOF (end-of-file).
The fourth character is a 1, indicating the
first of a possible eight labels. The
remainder of the label is formatted into
fields describing the file. Labels 2
through 8 in this field are bypassed on
input, and are not created on output under

144

----------------- ---

the Disk Operating System. The contents of
the fields of a standard file label are
described in "Appendix B: Standard Tape
File Labels." The relationship between the
TPLAB statement and a standard file label
is shown in Figure 34. The relationship
between the TLBL statement and a standard
file label is shown in Figures 35 and 36.

User Labels

A user standard label is an 80-character
label having UHL (user header label) or UTL
(user trailer label) in the first three
positions. The fourth position contains a
number 1 through 8 which represents the
relative position of the user label within
a group of user labels. The contents of
the remaining 76 positions are entirely up
to the user. User labels, if present,
follow HDR, EOV, or EOF standard labels.
On multivolume files, they may also appear

I
at beginning-of-volume. User header labels
are resequenced starting with one (UHL1) at
the beginning of a new volume. Figure 37
shows the positioning of user labels on a
file.

(~I Nonstandard Labels \

A nonstandard label may be any length.
The contents of a nonstandard label is
entirely user-dependent. It is the COBOL
user's responsibility either to process or
bypass nonstandard labels on input and to
create them on output. Figure 38 shows the
positioning of nonstandard labels on a
file.

. ', ,

5:
~
~
C'O
PI

~
o o
C'O
en
en
~
()
~
~
~
t:r
I-'
rt
C'O
en

~
.a::
U"I

c) r'\
\, .'

Standard Tape File Label

Label Identifier

File Identifier System Code

: H D R~ 1 i
: EO F: :
IE OVI I
, I I

~

Supplied
by IOCS

:0 0 0 0 0 0 OlD 0 S / T 0 S /3 6 0 b b:b b b b b b b~:
l (InHDR1) l : I
I I I I
I I I I

Supplied by IOCS on output
if TPlAB specifies fields 1- 10 only

Job Control TPLAB Card(s) (May be punched with fields 1 -10 or 1 -13)

18.5 - - ~hi 0
~ ••• ~O~"u.u •• ~~~u~~~u~~m~aU~~MVAnnnnn~~nnnn.

~~~~~ .. ~~~~~~~ .... ~~~uu~~ .... ~~~UU~~~~~111111111111 

/1 . File Vol File Gener_~~ Creation xpiratio .~ ~ 
t: O~r. File Identifier Seria1 Seq: Seq. ation .: Date ate ~ Block System ~ 
~ tlon No. No. No. No. .; b'Yr.'Day b'Yr.IDay CI) Count Code 8 

I I I 
000000000000000000000000000000000000000000000000:00.0 0 0 010 0:0 0 0 0 00000000000 0000000 
12145'J"~I"~UnM"U"annn~~av H.VU~~~.V •• ~ ~"u u ~~~u ~~~f~~ IUUM~MJAUnnnl~~nnnn. 
11111111111111111~1111111111 J+{ 11~11~11l:\1~111®'!111111~1 ~ 1@'1Jlll11111111111 o ~ ~ ~ 0~: 9 I ® ~ 12 @ 
~2222222Z22222222£,2222222222,_~22£~22£,22~,2,,2~~.2 2~£~2l. 2,~222~_l22 2222222 
I I I I I 

t 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 333333333333:3313 3 3 3:3 3j3 3 3 3 33333333333 3333333 
I I 

44444444444444444444444444 44444444444444444444'4414 4 4 414 4~1 44 4 44 44 4 44 44 44 444 4444 
I I I 

555555555555555555555555555555555555555555555555~5~555~5~5b5 51555555555 5555555 
, I I 

~ 6666666666666 6 6 6 G 66 6 6 6 6 6 6 6 6666 66 6 66 6 6 6 6 6 6 6 6 66 6166 IU 6 6'66~ 66 6 66666 & 66 & 6 6 & 6 6 6666 
I I I 

I I I 
11 1 1 1 1 1 11 1 7 7 i 7 7 7 7 7 7 1 7 7 7 7 7 7 7 7 7 1 7 7 7 7 7 1 7 7 7 7 7 7 7 i 7 7 7 717 717 7 7 717 7 17 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

I I I I 

t88883886888888888888888888 88881818888888888888~8.888~8.888 8888888888& 86R8888 
I I I I 

99 99999~999999999999999S9 999S999S9999999S9999~9~999~9~99 99SS99S9g99 9999999 
12145'J"~ t"~U»M"U"annn~~av H.VU~~~.V •• ~ ~"u u ~~~~ ~>~~~~ IUUM~"JAUnnnl~~nnnn. 

IBM 50 1 

Blank J la-s punch Blank Any character 

222222222222 

333333333333 

444444444444 

555555555555 

666666666666 

177777777771 

8888888R8888 

9H99g99S9S~ 
"n 1'12Il/~ ~l6lJ l': "'" 

1 
Continuation card 
(required if fields 
1- 13 are used) 

/ It PL A B t, . t J too 0 0 ~ t 
The circled numbers on the TPLAB cards. correspond to the Quote (a- S punch) if only Fields 1- 10 are used 

numbered fields of the tape label above. Security code if Fields 1-13are used 

Figure 3~. Standard Tape File Label and TPLAB Cards 

r) 
'- ~-



~ 
+: 
C'I 

(~ 
\. ~./ 

Standard Tape File Label 

lH DR: 1: 
:E 0 F: : 
:E 0 V: : 
'--v--
Supplied 
by 10CS 

I 

File Identifier 

II ~ 0l?8r- File Name ~ ~ File-ID 

Version Number 

System Code 

e 
( Reserved 

forA. S. A.) 

.. atlon 0 ;:, 

~ Notes: 
00000000000000 00 000000000000000 

It2II21Z2211425ltl1212131313ZU Maximum size TLBL fields 
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 are shown. 

22222222222222 222222222222222 • Any field (except Ident, 

33333333333333 333333333333333 Operation, and Date) 
b f 1 °to t 

44 4 444444 4444 44 44 44 44 4 44 44 44 ma
h 

y e :-om hposl 10n,Oo
CS t e maximum sown. 

55555555555555 555555555555555 fills in the remaining 

666666 6 6 666666 666666666666666 positions of the label field. 

1 7 111111111111 7 1 7 7 7 1 7 7 7 7 1 7 177 • Ident and Operation must 
. be as shown. 

889S8883S8Se8S 388838888888888 • Date may be 4-6 positions; 

9 9 L ~ ~ 9 ~ q qs 9 9., 9S qg 9 9 9 9 9 9 9 9 959 Retention period, 1- 4. 
1234 S' 1. !1D1I121l141 II 1!1IIZ021Z2232425.-11212130313ZU Sl101I72J1147HI71117UD 2 If fO Id ° °tted heft h 

IBM 50.)1 a Ie IS oml , Sit e 

I It L BLJ ~~""' l' following comma and fields 
Blank L-a-5punch--f to the left. 

Figure 35. 

Date - yy/d or yy/dd or yy/ddd (on Input or Output) lacs supplies a default value 
Retention Period - d-dddd (on Output only) for the label field on output. 

3 No comma follows the last 
field used. 

Standard Tape File Label and TLBL Card (Showing Maximum Specifications) 

c) 
File-ID 

/--~\ 
I , 

\. ) 



6: 
~ 
~ 
en 
PI 

I'd 
Ii 
o 
o 
en 
en 
en 
~. 

~ 
(') 
IlJ 

'1j 
IlJ 
t:r 
~. 

I-' 
~. 

rt" 
~. 

en 
en 

~ 
.c:
..,J 

r'\ 
~~) 

Standard Tape File Label 

;(---
\ ,-----/ 

File Identifier System Code 

~H D R b ! DTF Name 
:E 0 F: : 

:b b b b b b b b b bl 
I I 
I I 
I I 

Volume 
Serial 

Number IE OVI I 
I I I 

'--v--' 
Supplied 
by 10CS 

I I 
I I 

Job Control TLBL Card 

I 

I oJ o per-
File Name c ation II) 

~ 

00 0~000 0~000000 OOOODDOOOOOOOOOOOOOOOOOOOOOODOOOOOOOOOOOOOOOOOOOOOOOO~GOOOOOOOOOt 
1 2 3 4 5 • 7 • 9 10 II 12131415 ~IIH"M~nn~.~vaDm~~~~~sV»~~~~~"~.~~~~~~~M~~M~U~~~~Me"V"nMnnnu~nnnnA 

1 1 1 1111 111111 1 1 1 1 1 1 1 1 1 1'1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

22 212222 217222222 22222222222222222222222222222222222222222222222222222222222222222 

33 33333 3~333333 33333333333333333333333333333333333333333333333333333333333333333 • 
~ 

44 44444 4~444444 44444444444444444444444444444444444444444444444.44444444444444444 ~ 

55 5 :i.5 5 5 5~555555 55555555555555555555555555555555555555555555555555555555555555555 

66 6~666 6~666666 66666666666666666666666666666666666666666666666666666666666666666 

77 7 ~ 77 7 7~'777777 7 7 1 7 77 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 

88 88888 88888888 88888888888888888888888888888888888888888888888888888888888888888 

99999999~99999999999999999999999999999999999999999999999999999999999999999999999 
1 2 3 4 5 , 7 • I 10 II 12 13 14' 15 1617 11 19 20 21 n 23 24 25 26 27 a a 30 31 32 3l 34 35 S 31 » 19 40 41 4Z 43 "45 414J 41 4t ~ 51 ~ ~ 54 55 51 5J 51 5110 11 ~ 13 M 15 .. V •• /171 n n 14 15 n n n 11. 

lit LBj 
Blank 

Figure 36 • 

DTF 
Name 

Standard Tape File Label and TLBL Card (Showing Minimum Requirements) 

On input, ·no values 
are suppl ied and no 
checking is performed. 

o 



LABEL PROCESSING CONSIDERATIONS 

The labels which may appear on tape are 
shown in Figures 37 and 38. The compiler 
allows the user to work with all the 
previously mentioned labels as well as with 
unlabeled files. 

If user labels are to be created or 
checked in the COBOL program, the USE AFTER 
BEGINNING/ENDING LABELS declarative 
sentence and the LABEL RECORDS clause with 
the data-name option must be specified. 

r---------------------------------------------------------------------------------------, 
Load Point Marker 

I RN NRN NP PR RRN NP PRRN NP PR 

~=T---T;T;T=T;T~T;T=T~T~T=T~T-T--------T-T;T;T=T;T~T=T~T-T;T;T=T;T~T=T~T-T--------} 
I IOIOI-IOIDIDI-IDIHI-IHITI ITI OIOI-19I T I-ITITIDIDI-IDIHI-IHITI 
I ILILI-ILIRIRI-IRILI-ILIMI FILE #lIMIFIFI-IFILI-ILIMIRIRI-IRILI-ILIMI FILE #2 
I 11121-1811121-18111-181 I I 11121-18111-181 11121-1 8111-181 I L _____ ~_~_~_~_~_~_~_~_~_~_~_~_~ ________ L_~_~~_~_~_~_~_~_~~~_~_~~~_~_~_~ ______ _ 

End of Tape Marker 

1 R R N N P P R R 

I
-::::-:~=1:1~1~1=1~1~1=1~1:1:1--------------------

IMIVIVI-IVILI-ILIMIMI 
I 111 21-1811 1-1 81 I 1 

---------~-~-~-~-~-~-~-~-~-~-~--------------------

Notes: R = Required~ processed by IOCS. 
N = Permitted, but not written or checked, by IOCS and not available to user. 
P = Processed by IOCS and available to user. _______________________________________________________________________________________ J 

Figure 37. Standard, User, and Volume Labels 

r--------------------------------------------------------------------------------------, 
Load Point Marker 

1 . 
o R C 

r-T------T-T-T-T-T--------T-T-T-T-T-T--------------
~_J ILl ILl I I ILl ILl I 
I IAI IAI I I IAI IAI 1 
I IBI-IBITI ITIBI-IBITI 

t
iEl IEIMI FILE #l1MrEI IEIMI 
ILl-ILl I I ILl-ILl I 

1 lSI lSI I I lSI lSI I L _______ ~~_~_~_~ ________ ~_~_~_~_~_~ _____________ _ 

Notes: R = Required, processed by IOCS. 
o = Optional. 
C = Written by COBOL compiler. L ______________________________________________________________________________________ _ 

Figure 38. Nonstandard Labels 

148 



o 

() 

Header labels are written or read when 
the file is opened or when a volume switch 
occurs. Trailer labels are written when 
the physical end of the reel is reached, or 
when a CLOSE REEL or CLOSE file-name is 
issued. Trailer labels are read on each 
reel except the last when a tapemark is 
reached. For the last reel (i.e., EOF 
labels), trailer labels are not read until 
the file is closed. 

For multivolume input files with 
nonstandard labels, the user must specify 
the integer-l option of the source language 
ASSIGN clause, where integer-l is the 
number of reels in the file. This number 
can be overridden at execution time by 
storing a nonzero integer in the special 
register NSTD-REELS before opening the 
file. Therefore, the number of reels is 
available to the programmer while the file 
is opened both in the special register 
NSTD-REELS and in the field reserved for, 
this purpose which precedes the DTF table 
~or DTFMT (see "DTF Tables" in this 
chapter). In addition, the number of reels 
remaining after each volume switch can also 
be found in the field reserved for this 
purpose which precedes the DTF table for 
DTFMT. 

When processing a multivolume file with 
nonstandard labels (i.e., when the 
gata=~ option of the LABEL RECORDS 
clause is specified), if the user wishes to 
stop reading or writing before the physical 
end of a reel is reached, he must set a 
switch in the appropriate declarative 
section. In the Procedure Division, he can 
either CLOSE REEL or CLOSE FILE depending 
on the switch setting. Volume switching is 
done by LIOCS when CLOSE REEL is executed. 

MASS STORAGE FILE LABELS 

The IBM System/360 Disk Operating System 
provides postive identification and 
protection of all files on mass storage 
devices by recording labels on each volume. 
These labels ensure that the correct volume 
is used for input, and that no current 
information is destroyed on output., 

The mass storage labels always include 
one volume label for each volume and one or 
more file labels for each logical file on 
the volume. There may also be user header 
labels and user trailer labels. 

Volume Labels 

The volume label is an aO-byte data 
field preceded by a 4-byte key field. Both 
the key field and the first four bytes of 
the data field contain the label identifier 
VOL1. IOCS creates a standard volume label 
for every volume processed by the Disk 
Operating System. It is always the third 
record on cylinder 0, track O. The format 
and contents of a standard volume label can 
be found in the publication IBM System/360 
Disk operating System: Data Management 
Concepts. 

Standard File Labels 

A standard file label identifies a 
particular logical file, gives its 
location(s) on the mass storage device, and 
contains information to prevent premature 
destruction of current files. A standard 
file label for a file located on a mass 
storage device is a 140-character label 
created (OPEN/CLOSE OUTPUT) in part by IOCS 
using the VOL and DLAB, or DLBL control 
statements. The fields contained within 
the label follow three standard formats. 

1. Format 1 is used for all logical 
files. The contents of the fields of 
a Format 1 label is discussed in 
"Appendix C: Standard Mass Storage 
Device Labels." 

2. Format 2 is required for indexed 
files. The contents of the fields of 
a Format 2 label can be found in the 
publication IBM System/360 Disk 
Operating System: Data Management 
Concepts. 

3. Format 3 is required if a logical file 
uses more than three extents of any 
volume. The contents of the fields of 
a Format 3 label can be found in the 
DOS Data Management Concepts 
publication cited previously. 

Advanced Processing Capabilities 149 



User Labels 

The user can include additional labels 
to further define his file. The labels are 
referred to as user standard labels. They 
cannot be specified for indexed files. A 
user label is .an 80-character label 
containing UHL (user header label) or UTL 
(user trailer label) in the first three 
character positions. The fourth position 
contains a number 1 through 8 which 
represents the relative position of the 
user label with a group of user labels. 
The contents of the remaining 76 positions 
is entirely up to the user. User header 
and trailer labels are written on the first 
track of the first extent of each volume 
allocated by the user for the file. User 
header labels are resequenced starting with 
one (UHL1) at the beginning of each new 

. volume. 

LABEL PROCESSING CONSIDERATIONS 

Files on Mass storage Device opened as 
Input. 

1. Standard labels checked 

a. The volume serial numbers in the 
volume labels are compared to the 
file serial numbers in the EXTENT 
(or XTENT) cards. 

b. Fields 1 through 3 in Format 1 
label are compared to the 
corresponding fields in the DLBL 
(or DLAB) card. Fields 4 through 
6 are then checked against their 
EBCDIC equivalents in the DLAB 
continuation card. 

c. Each of the extent definitions in 
the Format 1 and Format 3 label.s 
is checked against the limit 
fields supplied in the EXTENT 
(or XTENT) cards. 

2. User labels checked 

150 

a. If user header labels are 
indicated for directly or 
sequentially organized files, they 
are read as each volume of the 
file is opened. After reading 
each label, the OPEN routine 
branches to the user's label 
routine if the appropriate USE 
AFTER STANDARD LABEL PROCEDURE 
declarative is specified in the 
source program. The LABEL RECORDS 
clause with the data-name option 
must be specified in the Data 

Division. The user's label 
routine then performs any 
processing required. 

b. If user trailer labels are 
indicated on a sequential file, 
they are read after reaching the 
end of the last extent on each 
volume when the file is closed, 
provided end-of-file has been 
reached. Trailer labels are 
processed by the user's label 
routine if the appropriate USE 
AFTER STANDARD LABEL PROCEDURE 
declarative is specified in the 
source program. The LABEL RECORDS 
clause with the data-name option 
must be specified in the Data 
Division. 

Files on Mass Storage Devices Opened as 
Output 

1. Standard labels created 

a. The volume serial numbers in the 
volume labels are compared to the 
file serial numbers in the EXTENT 
(or XTENT) cards. 

b. The extent definitions in all 
current labels on the volume are 
check~d to determine whether any 
extend into those defined in the 
EXTENT (or XTENT) cards. If ~ny 
overlap, the expiration date 1S 
checked against the current date 
in the Communication Region of the 
Supervisor. If the expiration 
date has passed, the old labels 
are deleted. If not, the operator 
is notified of the condition. 

c. The new Format 1 label is written 
with information supplied in the 
DLBL card (or the DLAB card and 
the DLAB continuation card). If 
an indexed file is being 
processed, the DTFIS routine 
supplies information for the 
Forma t 2 label. 

d. The information in the EXTENT 
(or XTENT) cards is placed in the 
Format 1 labels and, if necessary, 
in the additional Format 3 labels. 

2. User header labels created 

a. If user header labels are 
indicated by the presence of the 
appropriate USE AFTER STANDARD 
LABEL PROCEDURE declarative and 
the LABEL RECORDS clause with the 
data-name option, the user's label 



o 

b. 

routine is entered to furnish the 
labels as each volume of the file 
is opened. This can be done for 
as many as eight user header 
labels per volume. As each label 
is presented, IOCS writes it out 
on the first track of the first 
extent of the volume. 

If user trailer labels are 
indicated by the presence of the 
appropriate USE AFTER STANDARD 
LABEL PROCEDURE declarative and 
the LABEL RECORDS clause with the 
data-name option, the user's label 
routine is entered to furnish the 
labels when the end of the last 
extent on each volume is reached. 
This can be done for as many as 
eight user trailer labels. The 
CLOSE statement must be issued to 
create trailer labels for the last 
volume of a sequential file or for 
a direct file. 

UNLABELED FILES 

When a multivolume tape file is opened 
as INPUT and integer as specified in the 
ASSIGN clause is greater than 1, the 
compiler will generate the following 
message to the operator: 

C126D IS IT EOF? 

The operator must respond either with N if 
it is not the last reel, or with Y if it is 
the last reel. If it is end-of-file, 
control passes to the imperative-statement 
specified in the AT END phrase of the READ 
statement; if it is not end-of-file, 
processing of the next volume is initiated. 

If the integer specified in the ASSIGN 
clause is not greater than 1, control 
always passes at end-of-volume-to the 
imperative-statement specified in the AT 
END phrase of the READ statement. 

Advanced Processing Capabilities 151 





() 
Logical records may be in one of four 

formats: fixed-length (format Fl, 
variable-length (format V), undefined 
(format Ul, or spanned (format S). F-mode 
files must contain records of equal 
lengths. Files containing records of 
unequal lengths must be V-mode, S-mode, or 
U-mode. Files containing logical records 
that are longer than physical records must 
be S-mode. 

The record format is specified in the 
RECORDING MODE clause in the Data Division. 
If this clause is omitted, the compiler 
determines the record format from the 
record descriptions associated with the 
file. If the file is to be blocked, the 
BLOCK CONTAINS clause must be specified in 
the Data Division. 

The prime consideration in the selection 
of a record format is the nature of the 
file itself. The programmer knows the type 
of input his program will receive and the 
type of output it will produce. The 
selection of a record format is based on 
this knowledge as well as an understanding 
of the type of input/output devices on 
which the file is written and of the access 
method used to read or write 'the file. 

FIXED-LENGTH (FORMAT F) RECORDS 

Format F records are fixed-length 
records. The programmer specifies format F 
records by including RECORDING MODE IS F in 
the file description entry in the Data 
Division. If the clause is omitted and 
both of the following are true: 

• All records in the file are the same 
size 

• BLOCK CONTAINS [integer-1 TO] 
integer-2... does not sp~cify 
integer-2 less than the length of the 
maximum level-01 record 

the compiler determines the recording mode 
to be F. All records in the file are the 
same size if there is only one record 
description associated with the file and it 
contains no OCCURS clause with the 
DEPENDING ON option, or if mUltiple record 
descriptions are all the same length. 

The number of logical records within a 
block (blocking factor) is normally 
constant for every block in the file. When 

RECORD FORMATS 

fixed-length records are blocked, the 
programmer specifies the BLOCK CONTAINS 
clause in the file description entry in the 
Data Division. 

In unblocked format F, the logical 
record constitutes the block. The BLOCK 
CONTAINS clause is unnecessary for 
unblocked records. 

Format F records are shown in Figure 39. 
The optional control character, represented 
by C in ~igure 39, is used for stacker 
selection and carriage control. When 
carriage control or stacker selection is 
desired, the WRITE statement with the 
ADVANCING or POSITIONING option is used to 
write records on the output file. In this 
case one character position must be 
included as the first character of the 
record. This position will be 
automatically filled in with the carriage 
control or stacker select character. The 
carriage control character 'never appears 
when the file is written on the printer or 
funched on the card punch. 

.----------------------------------------, 
I I 
I Logical Record I 
I r--T------------------------, I 
I I C I va ta I 1 I L ___ ~ ________________________ J I 

1 1 

Blocked Records 
r-----------T-----------T-----------, 
I Logical 1 Logical 1 Logical I 
I Record I Record I Record I L-__________ ~ __________ ~ __________ J 

<------------F~xed Length-----------> 

Unblocked Record 
r----------------------------------, 
I Logical Record I L ___________________________________ J 

<--------~---Fixed Length-----------> 
L-_______________________________________ _ 

Figure 39. Fixed-Length (Format F) Records 

UNDEFINED (FORMAT U) RECORDS 

Format U is provided to permit the 
processing of any blocks that do not 
conform to F or V formats. Format U 
records are shown in Figure 40. The 
optional control character C, as discussed 

Record Formats 153 



under "Fixed-Length (Format F) Records," 
may be used in each logical record. 

The programmer specifies format U 
records by including RECORDING MODE IS U in 
the file description entry in the Data 
Division. U-mode records may be specified 
only for directly organized or standard 
sequential files. 

If the RECORDING MODE clause is omitted, 
and BLOCK CONTAINS [integer-1 TO] 
integer-2 ••• does not specify integer-2 
less than the maximum level-01 record, the 
compiler determines the recording mode to 
be U if the file is directly organized and 
one of the following conditions exist: 

• The FD entry contains two or more 
level-01 descriptions of different 
lengths. 

• A record description contains an OCCURS 
clause with the DEPENDING ON option. 

• A RECORD CONTAINS clause specifies a 
range of record lengths. 

Each block on the external storage media 
is treated as a logical record. There are 
no record-length or block-length fields. 

Note: When a READ INTO statement is used 
for a U-mode file, the size of the longest 
record for that file is used in the MOVE 
statement. All other rules of the MOVE 
statement apply. 

r----------------------------------------, 
I Logical Record I 
I r---T----------------------, I 
I I C I Data I I I L ___ ~ ______________________ J I 

I I 
I Format U Record I 
I r---------------------------------, I 
I I Logical Record I I I L _________________________________ J I 

I I L _________________________________________ J 

Figure 40. Undefined (Format U) Records 

VARIABLE-LENGTH (FORMAT V) RECORDS 

The programmer specifies format V 
records by including RECORDING MODE IS V in 
the file description entry in the Data 
Division. V-mode ~ecords may only be 
specified for standard sequential files. 
If the RECORDING MODE clause is omitted and 

154 

BLOCK CONTAINS [integer-l] TO integer-2 ••• 
does not specify integer-2 less than the 
maximum level-01 record, the compiler 
determines the recording mode to be V if 
the file is standard sequential and one of 
the following conditions exists: 

• The FD entry contains two or more level 
01 descriptions of different lengths. 

• A record description contains an OCCURS 
clause with the DEPENDING ON option. 

• A RECORD CONTAINS clause specifies a 
range of record lengths. 

V-mode records, unlike U-mode or F-mode 
records, are preceded by fields containing 
control information. These control fields 
are illustrated in Figures 41 and 42. 

The first four bytes of each block 
contain control information (CC): 

LL -- represents two bytes designating 
the length of the block (including, 
the ·CC· field). 

BB -- represents two bytes reserved for 
system use. 

The first four bytes of each logical 
record contain control information (cc): 

11 -- represents two bytes designating 
the logical record length 
(including the 'cc' :field). 

bb -- represents two by~es reserved for 
system use. 

For unblocked V mode records (see Figure 
37) the data portion + CC + cc constitute 
the block. 

r-----------------------------------------, 
I I 
I 4 4 variable I 
I <--bytes-><--bytes--><------bytes------->I 
Ir----T----T----T----T-------------------, I 
I I LL I BB I 11 I bb I Data I I 
I~~~~-------------------JI 
I I 
I ·CC· 'cc' I 
I I L _________________________________________ J 

Figure 41. Unblocked V-Mode Records 

For blocked V-mode records (see Figure 
42) the data portion of each record + the 
cc of each record + CC constitute the 
block. 

~J 

\ . -, 

r-" ( " 
'-./ 



r--------------------------------------------------------------------------------------, 
I 1st 2nd 3rd I 
I Logical Record Logical Record Logical Record I 
I /"'--. /'0.. /"'.. I 
I r----T----T----T----T-----------T~-T----T---------~~--T----T--------~ I 
I I LL I BB I 11 I bb I DATA-l I 11 I bb I DATA-2 I 11 I bb I DATA-3 I I I L ____ ~ ____ ~ ____ ~ ____ ~ ___________ ~ ____ ~ ____ ~ _________ ~ ___ ~ ____ ~ __________ J I 
I'~~~/~ I 
I ICC' 1_ I 
I (block control 'cc' I 
I bytes) (record control I 
I bytes) I L ______________________________________________________________________________________ J 

Figure 42. Blocked V-Mode Records 

The control bytes are automatically 
provided when the file is written and are 
not communicated to the user when the file 
is read. Although they do not appear in 
the description of the logical record 
provided by the user, the compiler will 
allocate input and output buffers which are 
large enough to accomodate them. When 
variable-length records are written on unit 
record devices, control bytes are neither 
printed nor punched. They appear, however, 
on other external storage devices as well 
as in buffer areas of core storage. V-mode 
records moved from an input buffer to a 
working-storage area will be moved without 
the control bytes. 

Note: When a READ INTO statement is used 
for a V-mode file, the size of the longest 
record for that file is used in the MOVE 
statement. All other rules of the MOVE 
statement apply. 

Example 1: 

Consider the following standard 
sequential file consisting of unblocked 
V-mode records: 

FD VARIABLE-FILE-l 
RECORDING MODE IS V 

01 

BLOCK CONTAINS 35 TO 80 CHARACTERS 
RECORD CONTAINS 27 TO 72 CHARACTERS 
DATA RECORD IS VARIABLE-RECORD-l 
LABEL RECORDS ARE STANDARD. 

VARIABLE-RECORD-l. 
I 

05 FIELD-A PIC X(20). 
05 FIELD-B PIC 99. 
05 FIELD-C OCCURS 1 TO 10 TIMES 

DEPENDING ON 
FIELD-B PIC 9(5). 

The LABEL RECORDS clause is always 
required. The DATA RECORD(S) clause is 

never required. If the RECORDING MODE 
clause is omitted, the compiler determines 
the mode as V since the record associated 
with VARIABLE-FILE-l varies in length 
depending on the contents of FIELD-B. The 
RECORD CONTAINS clause is never required. 
The compiler determines record sizes from 
the record description entries. The BLOCK 
CONTAINS clause is also unnecessary, since 
the compiler assumes unblocked records if 
the clause is omitted. Record length 
calculations are affected by the following: 

• When the BLOCK CONTAINS clause with the 
RECORDS option is used, the compiler 
adds four bytes to the logical record 
length and four more bytes to the block 
length. 

• When the BLOCK CONTAINS clause with the 
CHARACTERS option is used, the user 
must include each cc + CC in the length 
calculation (see Figure 42). In the 
definition of VARIABLE-FILE-l, the 
BLOCK CONTAINS clause specifies 8 more 
bytes than does the record contains 
clause. Four of these bytes are the 
logical record control bytes and the 
other four are the block control bytes. 

Assumming that FIELD-B contains the 
value 02 for the first record of a file and 
FIELD-B contains the value 03 for the 
second record of the file, the first two 
records will appear on an external storage 
device and in buffer areas of core storage 
as shown in Figure 43. 

If the file described in Example 1 had a 
blocking factor of 2, the first two records 
would appear on an external storage medium 
as shown in Figure 44. 

Record Formats 155 



r-------------------------------------------------------------------------------------------------, 
1 1st Block 2nd Block 1 
1 ./'-... _ ~ 1 
1 r----T--T----T--T-------T--T-------T-------T----T--T----T--T-------T--T-------T-------T-------, 1 
1 I0040IBBI0036IbbIFIELD-AI02IFIELD-CIFIELD-CI0045IBBIOO41IbbIFIELD-AI03IFIELD-CIFIELD-CIFIELD-CI 1 IL ____ ~ __ ~ ___ ~_~ _______ ~ __ ~ _______ ~ _______ ~ ____ ~_~ ___ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ _______ J 1 

1 1 
1 Note: Lengths appear in decimal notation for illustrative purposes. 1 
1- 1 L _________________________________________________________________________________________________ J 

Figure 43. Fields in Unblocked V-Mode Records 

r---------------------------------------------------------------------------------------, 
f 1st Record 2nd Record 1 
1 /'--.... __ -"- 1 
Ir----T--T-~--T--T-------T--T-------T-------T----T--T-------T--T-------T-------T-------, 1 
1 1 OOSllBBI 0036IbbIFIELD-AI 02 1 FIELD-CI FIELD-CI 0041 Ibb 1 FIE LD-AI03I FIELD-CIFIELD-CIFIELD-CI I IL ____ ~ __ ~ ____ ~ __ ~ _______ ~ __ ~ _______ ~ _______ ~ ____ ~_~ _______ ~_~ _______ ~ _______ ~ ______ J 1 

I 1 
I Note: Lengths appear in decimal notation for illustrative purposes. 1 
I. I L _______________________________________________________________________________________ J 

Figure 44. Fields in Blocked V-Mode Records 

Example 2: 

If VARIABLE-FILE-2 is blocked, with 
space allocated for three records of 
maximum size per block, the following FD 
entry could be used when the file is 
created: 

FD VARIABLE-FILE-2 
RECORDING MODE IS V 
BLOCK CONTAINS 3 RECORDS 
RECORD CONTAINS 20 TO 100 CHARACTERS 
DATA RECORDS ARE VARIABLE-RECORD-l, 
VARIABLE-RECORD-2 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-l. 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC X(SO). 

01 VARIABLE-RECORD-2. 
05 FIELD-X PIC X(20). 

As mentioned previously, the RECORDING 
MODE, RECORD CONTAINS, and DATA RECORDS 
clauses are unnecessary. By specifying 
that each block contains three records, the 
programmer allows the compiler to provide 

156 

space for three records of maximum size 
plus additional space for the required 
control bytes. Hence, 316 character 
positions are reserved by the compiler for 
each output buffer. If this size is oth( ~r 
than that required, the BLOCK CONTAINS 
clause with the CHARACTERS option should be 
specified. 

Assuming that the first six records 
written are five 100-character records 
followed by one 20-character record, the 
first two blocks of VARIABLE-FILE-2 will 
appear on the external storage device as 
shown in Figure 45. 

The buffer for the second block is 
truncated after the sixth WRITE statement 
is executed since there is not enough space 
left for a maximum size record. Hence, 
even if the seventh WRITE to 
VARIABLE-FILE-2 is 'a 20-character record, 
it will appear as the first record in the 
third block. This situation can be avoided 
by using the APPLY WRITE-ONLY clause when 
creating files of variable-length blocked 
records. 

.... 
I 

r 



o 

r-------------------------------------------------------------------------------------------------, 
I 1st Block 2nd Block I I ____ ___ I 

I r---T--T---T--T----T---T--T----T---T--T----T---~T---T--T---T--T----T---T------------------, I 
I l::~l~~l:~~l~~l~~:~~~~l~~l~~::l:~~l~~l~:~:l ____ l::~l~~l:~~~~~:::l:~~~~~~:::~~~~~~~~:::J I 
I I 
I Note: Lengths appear in decimal notation for illustrative purposes. I 
I I L _________________________________________________________________________________________________ J 

Figure 45. First Two Blocks of VARIABLE-FILE-2 

APPLY WRITE-ONLY Clause 

The APPLY WRITE-ONLY clause is used to 
make optimum use of buffer space when 
creating a standard sequential file with 
blocked V-mode records. 

Suppose VARIABLE-FILE-2 is being created 
with the following FD entry: 

FD VARIABLE-FILE-2 
RECORDING MODE IS V 
BLOCK CONTAINS 316 CHARACTERS 
RECORD CONTAINS 20 TO 100 CHARACTERS 
DATA RECORDS ARE VARIABLE-RECORD-l, 
VARIABLE-RECORD-2 
LABEL RECORDS ARE STANDARD. 

01 VARIABLE-RECORD-l. 
05 FIELD-A PIC X(20). 
05 FIELD-B PIC X(SO). 

01 VARIABLE-RECORD-2. 
05 FIELD-X PIC X(20). 

The first three WRITE statements to the 
file create one 20-character record 
followed by two 100-character records. 
Without the APPLY WRITE-ONLY clause, the 
buffer is truncated after the third WRITE 
statement is executed, since the maximum 
size record no longer fits. The block is 
written as shown below: 

.--7--7--7--7----T---T--T----T---T--T----' 
\236\bb\24\bb\Data\104\bb\Data\104\bb\Data\ L ___ ~ __ ~ __ ~ __ ~ ____ ~ ___ ~ __ ~ ____ ~ ___ ~ __ ~ ____ J 

Using the APPLY WRITE-ONLY clause will 
cause a buffer to be truncated only when 
the next record does not fit in the buffer. 
That is, if the next three WRITE statements 
to. the file specify VARIABLE-RECORD-2, the 
block will be created containing six 
logical records, as shown below: 

r308TbbT24TbbT~~~~Tl04TbbT~~~~Tl04TbbT~~~~? L-__ ~ __ ~ __ ~ __ ~ ___ ~ ___ ~ __ ~ ____ ~ ___ ~ __ ~ ____ ~ 

Note: When using the APPLY WRITE-ONLY 
clause, records must not be constructed in 
buffer areas. An intermediate work area 
must be used with a WRITE FROM statement. 

SPANNED (FORMAT S) RECORDS 

A spanned record is a logical record 
that may be contained in one or more 
physical blocks. Format S records may be 
specified for direct files and for standard 
sequential files assigned to magnetic tape 
or t~ mass storage devices. 

When creating files with S-mode records, 
if a record is larger than the remaining 
space in a block, a segment of the record 
is written to fill the block. The 
remainder of the record is stored in the 
next block or blocks, as required. 

When retrieving a file with S-mode 
records, only complete records are made 
available to the user. 

Spanned records are preceded by fields 
containing control information. Figure 46 
illustrates the control fields. 

BDF (Block Descriptor Field): 

LL -- represents 2 bytes designating the 
length of the physical block 
(including the block descriptor 
field itself). 

BB -- represents 2 bytes reserved for 
system use. 

SDF (Segment Descriptor Field) : 

11 -- represents 2 bytes designating the 
length of the record segment 
(including the segment descriptor 
field itself). 

bb -- represents 2 bytes reserved for 
system use. 

Record Formats 157 

· I 



Note: There is only one block descriptor 
field at the beginning of each physical 
block. There is, however, one segment 
descriptor field for each record segment 
within the block. 

Each segment of a record in a block, 
even if it is the entire record, is 
preceded by a segment descriptor field. 
The segment descriptor field also indicates 
whether the segment is the first, the last, 
or an intermediate segment. Each block 
includes a block descriptor field. These 
fields are not described in the Data 
Division; provision is automatically made 
for them. These fields are not available 
to the user. 

A spanned blocked file may be described 
as a file composed of physical blocks of 
fixed length established by the programmer. 
The logical records may be either fixed or 
variable in length and that size may be 
smaller, equal to, or larger than the 
physical block size. There are no required 

. relationships between logical records and 
physical block sizes. 

A spanned unblocked file may be 
described as a file composed of physical 
blocks each containing one logical record 
or one segment of a logical record. The 
logical records may be either fixed or 
variable in length. When the physical 
block contains one logical record, the 
length of the block is determined by the 
logical record size. When a logical record 
has to be segmented, the system always 
writes the largest physical block possible. 
The system segments the logical record when 
the entire logical record cannot fit on the 
track. 

Figure 47 is an illustration of blocked 
spanned records of SFILE. SFILE is 
described in the Data Division with the 
following file description entry: 

FD SFILE 
RECORD CONTAINS 250 CHARACTERS 
BLOCK CONTAINS 100 CHARACTERS 

Figure 47 also illustrates the concept 
of record segments. Note that the third 
block contains the last 50 bytes of REC-l 
and the first 50 bytes of REC-2. such 
portions of logical records are called 
record segments. It is therefore correct 
to say that the third block contains the 
last segment of REC-l and the first' segment 
of REC-2. The first block contains the 
first segment of REC-l and the second block 
contains an intermediate segment of REC-l. 

S-MODE CAPABILITIES 

Formatting a file in the S-mode allows 
the user to make the most efficient use of 
external storage while organizing data 
files with logical record lengths most 
suited to his needs. 

1. Physical record lengths can be 
designated in such a manner as to make 
the most efficient use of track 
capacities on mass storage devices. 

2. The user is not required to adjust 
logical record lengths to maximum 
physical record lengths and their 
device-dependent variants when 
designing his data files. 

3. The user has greater flexibility in 
transferring logical records across 
DASD types. 

Spanned record processing will support 
the 2400 tape series, the 2311 and 2314 
disk storage devices, and the 2321 data 
cell drive. 

r---------------------------------------------------------------------------------------, 
I I 
I <--4 bytes---> <--4 bytes--> <----------------Variable bytes------------------> I 
I r------T------T------T------T-------------------------------------------------, I 
I I LL I BB I 11 I bb I Data Record or Segment I I 
I L ______ ~-----,~------~-----~----------------------___________________________ J I 
I I 
I BDF SDF I 
I I L ______________________________________________________________________________________ J 

.Figure 46. Control Fields of an S-Mode Record 

158 

--------- ----- -----

,. ... '\ 

il J ..... / 



( " 

"'-../ 

.--------------------------------------------------------------------------------------, 
I I 
I <--------100 bytes-------> <--------100 bytes-------> <-50 bytes-> <-50 bytes-> I 
I r------------------------, r------------------------, .----------.------------, I 
I I REC-l I G I REC-l I G I REC-l I REC-2 I I I L ________________________ J L ________________________ J L-__________ ~ ____________ J I 

I 1st Block . 2nd Block 3rd Block I 
I I L ______________________________________________________________________________________ J 

eFigure 47. One Logical Record Spanning Physical Blocks 

SEQUENTIALLY ORGANIZED S-MODE FILES ON TAPE 
OR MASS STORAGE DEVICES 

When the spanned format is used for 
DTFMT or DTFSD files, the logical records 
may be either fixed or variable in length 
and are completely independent of physical 
record length. A logical record may span 
physical records. A logical record may 
span physical records. A physical record 
may contain one or more logical records 
and/or segments of logical records. 

Source Language Considerations 

The user specifies S-mode by describing 
the file with the following clauses in the 
file description (FD) entry of his COBOL 
program: 

• BLOCK CONTAINS integer-2 CHARACTERS 

• RECORD CONTAINS [integer-l TO] 
integer-2 CHARACTERS 

e RECORDING MODE IS S 

The size of the physical record must be 
specified using the BLOCK CONTAINS clause 
with the CHARACTERS option. Any block size 
may be specified. Block size is 
independent of logical record size. 

The size of the logical record may be 
specified by the RECORD CONTAINS clause. 
If this clause is omitted, the compiler 
will determine the maximum record size from 
the record descriptions under the FD. 

Format S may be specified by the 
RECORDING MODE IS S clause. If this clause 
is omitted, the compiler will set the 
recording mode to S if the BLOCK CONTAINS 
integer-2 CHARACTERS clause was specified 
and either: 

1. integer-2 is less than the largest 
fixed-length level-Ol FD entry 

2. integer-2 is less than the maximum 
length of a variable level-Ol FO entry 
(i.e., an entry containing one or more 

OCCURS clauses with the DEPENDING ON 
option) • 

When the spanned recording mode is being 
used, each logical record is processed in a 
work area, not in the buffer. Logical 
records are always aligned on a double-word 
boundary. Therefore, the user is not 
required to add inter-record slack bytes 
for alignment purposes. 

Except for the APPLY WRITE-ONLY clause, 
all the options for a variable file apply 
to a spanned file. 

Processing seguentially Organized S-Mode 
Files 

Suppose a file has the following file 
description entry: 

FD SPAN-FILE 
BLOCK CONTAINS 100 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS DATAREC. 

01 DATAREC. 
05 FIELD-A PIC X(100). 
05 FIELD-B PIC X(50). 

Figure 48 illustrates the first four 
blocks of SPAN-FILE as they would appear on 
external storage devices (i.e., tape or 
mass storage) or in buffer areas of core 
storage. 

Note: 

1. The RECORDING MODE clause is not 
specified. The compiler determines 
the recording mode to be S since the 
block size is less than the record 
size. 

2. The length of each physical block is 
100 bytes, as specified in the BLOCK 
CONTAINS clause. All required control 
fields, as well as data, must be 
contained within these 100 bytes. 

3. No provision is made for the control 
fields within the level-Ol entry 
OATAREC. 

Record Formats 159 



r~" 
r---------------------------------------------------------------------------------------------------------~ 

4 4 92 4 4 . 58 4 30 "'-- ' 
<-bytes-><-bytes-><-----------bytes-------------> <-bytes-><-bytes-><---bytes---><-bytes-><--bytes---> 
r--T---T---T----T------------------------------, 
ILL IBB III I bb I DATAREC (1) I 

r---T---T---T----T-------------T---T----T-----------, 
ILL IBB III I bb I DATAREC (1) III I bb IDATAREC (2)1 L ___ ~ ___ ~ ___ ~ ____ ~ ______________________________ J L ___ ~ ___ ~ ___ ~ ____ ~ ____________ ~ ___ ~ ___ ~ ___________ J 

1st Block 2nd Block 

4 4 92 4 4 28 4 60 
<-bytes-><-bytes-><-----------bytes-------------> <-bytes-><-bytes-><--bytes---><-bytes-><---bytes---->I 
r--T---T---T----T------------------------------, r--T---T---T----T-----------T---T----T-------------, I 
ILL IBB III I bb I DATAREC (2) I ILL IBB III I bb IDATAREC (2)111 I bb I DATAREC (3) II L ___ ~ ___ ~ ___ ~ ____ ~ ______________________________ J L ___ ~ ___ ~ ___ ~ ____ ~ ___________ ~ ___ ~ ___ ~ _____________ J I 

3rd Block 4th Block 
I 
I 
I _________________________________________________________________________________________________________ J 

e Figure 48. First Four Blocks of SPAN-FILE 

r-----------------------------------------T--------------------------------------------, 
I RECORDING MODE IS V I RECORDING MODE IS S I 

~------------------------------------------+--------------------------------------------~ 
I I I 
I I I 
I r-----T-----' r-----T-----' r-----' I r-----T-----T-----' r-----T-----T-----' I 
I I 150 I 150 I G I lS0 I 100 I G I 150 I I I lS0 I lS0 I SO I G I 100 I 100 I 150 I I I L _____ ~ _____ J L _____ ~ _____ J L _____ J I L _____ ~ ____ ~ _____ J L _____ ~ _____ ~ ____ J I 
I '-y-"'~ '-v--' -v--' I ~ ~ ------------~ ~ I 
I Rl R2 R3 R4 RS I Rl R2 R3 R4 RS I 
I I I 
I I I 
~------------------------------------------~--------------------------------------------~ 
I~otg: The enclosed diagrams are for illustrative purposes only. Neither takes into I 
laccount the space required for control fields. I L _______________________________________________________________________________________ J 

eFigure 49. Advantage of S-Mode Records Over V-Mode Records 

The preceding discussion dealt with 
S-mode records which were larger than the 
physical blocks that contained them. It is 
also P9ssible to have S-mode records which 
are equal to or smaller than the physical 
blocks that contain them. In such cases, 
the RECORDING MODE clause must'specify S 
(if so desired) since 'the compiler cannot 
determine this by comparing block size and 
record size. 

One advantage of S-mode records over 
V-mode records is illustrated by a file 
with the following characteristics: 

1. RECORD CONTAINS SO TO lS0 CHARACTERS 

2. BLOCK CONTAINS 3S0 CHARACTERS 

3. The first five records written are 
150, 150, lS0, 100, and 150 characters 
in length. 

160 

For V-mode records, buffers are 
truncated if the next logical record is too 
large to be completely contained in the 
block (see Figure 49). This results in 
more physical blocks and more inter-record 
gaps on the external storage device. 

Note:' For V-mode records, buffer 
truncation occurs: 

1. when the maximum level-Ol record is 
too large 

2. if APPLY WRITE-ONLY or SAME RECORD 
AREA is specified and the actual 
logical record is too large 

For S-mode records, all blocks are 3S0 
bytes long and records that are too large 
to fit entirely into a block will be, 
segmented. This results in more efficient 
use of external storage devices since the 

C~ 



o 

number of inter-record gaps are minimized 
(Figure 49). 

With the exception of the last block, 
the actual physical block size will always 
fall between the limits of specified block 
size and four bytes less than the specified 
block size, depending on whether or not the 
residual space of an incomplete block in 
the buffer is sufficient to add a segment 
length field and at least one byte of data. 
That is, specified block size - 4 S actual 
block size's specified block size. 

The last block may be short when an 
incomplete block remains in the buffer at 
CLOSE time. 

A second advantage of S-mode processing 
over that of V-mode is that the user ~s no 
longer limited to a record length that does 
not exceed the track capacity of the mass 
storage device selected. Records may span 
track, cylinders, and extents, but not 
volumes. 

DTFMT and DTFSD spanned records differ 
from other formats because of an allocation 
of an area of core know as the "logical 
record area." If logical records span 
physical blocks, COBOL will use this 
logical record area to assemble complete 
logical records. If logical records do not 
span blocks (i.e., they are contained 
within a single physical block) the logical 
record area is not used. Regardless, it is 
complete logical records that are made 
available to the user. Both READ and WRITE 
statements should be thought of as 
manipulating complete logical records and 
not record segments • 

DIRECTLY ORGANIZED S-MODE FILES 

When S-mode is used for a directly 
organized file, only unblocked records are 
permitted. Logical records may be either 
fixed or variable in length. A logical 
record will span physical records if, and 
only if, it spans tracks. A physical 
record will contain only one logical record 
or a segment of a logical record, or 
segments of two logical records and/or 
whole logical records. Records may span 
tracks, cylinders, and extents, but not 
volumes. 

Source Language Considerations 

The user specifies S-mode by describing 
the file with the following clauses in the 
file description (FD) entry of his COBOL 
program: 

• BLOCK CONTAINS integer-2 CHARACTERS 

• RECORD CONTAINS [integer-1 TO] integer-2 
CHARACTERS 

• RECORDING MODE IS S 

The size of a logical record may be 
specified by the RECORD CONTAINS clause. 
If this clause is omitted, the compiler 
will determine the maximum record size from 
the record descriptions under the FD. 

The spanned format may be specified by 
the RECORDING MODE IS S clause. If this 
~lause is omitted, the compiler will set 
the recording mode to S if the BLOCK 

. --------------------------------------------------------------------------------------, 
Sequential File Direct File 

r-----T---------T-------------, r-----' r---------, r-------, 
I R1 I R2 I R3 I ••• 1st track ••• I R1 I G I R2 I G I R3 I L _____ ~ _________ ~ _____________ ~ L _____ J L _________ .J L ______ J 

r-----------------------------1 r-------------------------------, 
I R3 I ••• 2nd track ••• I R3 I L-____________________________ J L-______________________________ J 

r-----------T-----------------, r-----------------, r---------, 
I R3 I R4 I ••• 3rd track ••• I R3 I G I R4 I L-__________ ~ ________________ J L _________________ J L-________ J 

r-------, 
••• 4th track ••• I R4 I L _______ J 

L-_____________________________________________________________________________________ _ 

eFigure 50. Direct and sequential Spanned Files on a Mass Storage Device 

I 
I 
I 
I 
I 
1 
I 
I 

Record Formats 161 



CONTAINS integer-2 CHARACTERS clause was 
specified and integer-2 is less than the 
greatest logical record size. This is the 
only use of the BLOCK CONTAINS clause. It 
is otherwise treated as comments. 

The physical block size is determined by 
either: 

1. the logical record length 

2. the track capacity of the device being 
used 

If, for example, the track capacity of a 
mass storage device is 3,625 characters, 
any record smaller than 3,625 characters 
may be written as a single physical block. 
If a logical record is greater than 3,625 
characters, the record is segmented. The 
first segment may be contained in a 
physical block of up to 3,625 bytes, and 
the remaining segments must be contained in 
succeeding blocks. In other words, a 
logical record will span physical blocks 
if, any only if, it spans tracks. 

Figure 50 illustrates four 
variable-length records (R1, R2, R3, and 
R4) as they would appear in direct and 
sequential files on a mass storage device. 
In both cases, control fields have been 
omitted for illustrative purposes. For 
both files, assume: 

1. BLOCK CONTAINS 3625 CHARACTERS (track 
capacity = 3,625) 

2. RECORD CONTAINS 500 TO 5000 CHARACTERS 

In the sequential file, each physical 
block is 3,~25 bytes in length and is 
completely filled with logical records. 
The file consists of three physical blocks, 
occupies three tracks, and contains no 
inter-record gaps. 

In the direct file, the physical blocks 
vary in length. Each block contains only 
one logical record or one record segment. 
Logical record R3 spans physical blocks 
only because it spans tracks. The file 
consists of seven physical blocks, occupies 
more than three tracks, and contains three 
inter-record gaps. 

Processing Directly Organized S-Mode Files 

When processing directly organized 
files, there are two advantages spanned 
format has over the other record formats: 

1. Logical record lengths may exceed the 
length restriction of the track 
capacity of the mass storage device. 

162 

If, for example, the track capacity of 
a mass storage device is 2,000 bytes, 
the length of each logical record for 
formats other than spanned is, by 
necessity, restricted to the track 
capacity. 

Note: Even when the spanned format is 
used, the COBOL restriction on the 
length of logical records (i.e., a 
maximum length of 32,767 characters) 
must be adhered to. 

2. For formats other than spanned, only 
complete logical records can be 
written on any single track. This 
means that if a track has only 1,000 
unoccupied bytes and the user attempts 
to· add a record of 1,100 bytes to this 
track, an INVALID KEY condition will 
occur. When the spanned format is 
used, a 1,000 byte segment will be 
written on the specified track, and 
the remainder will be written on the 
next track. The segmenting is 
transparent to the user. 

OCCURS CLAUSE WITH THE DEPENDING ON OPTION 

If a record description contains an 
OCCURS cIa use with the DEPENDING ON option, 
the record length is variable. This is 
true for records described in an FD as well 
as in the Working-Storage section. The 
previous sections discussed four different 
record formats. Three of them, V-mode, 
U-mode, and S-mode, may contain one or more 
OCCURS clauses with the DEPENDING ON 
option. 

This section discusses some factors that 
affect the manipulation of records 
containing OCCURS clauses with the 
DEPENDING ON option. The text indicates 
whether the factors apply to the File or 
Working-Storage sections, or both. 

The compiler calculates the length of 
V-mode records containing the OCCURS clause 
with the DEPENDING ON option at two 
different times, as follows (the first 
applies to FD entries only; the second to 
both FD and working-storage entries): 

1. When a file is read and the object of 
the DEPENDING ON option is within the 
record. 

2. When the object of the DEPENDING ON 
option is changed as a result of a 
move to it or any item within its 
group. (The length is not calculated 
when a move is made to an item which 
redefines or renames it.) 

() 



o 

C) 

consider the following example: 

WORKING-STORAGE SECTION. 

77 CONTROL-l 
77 WORKAREA-l 

PIC 99. 
PIC 9 (6)V99. 

01 SALARY-HISTORY. 
05 SALARY OCCURS 0 TO 10 TIMES 

DEPENDING ON 
CONTROL-l PIC 9(6)V99. 

The Procedure Division statement MOVE 5 
TO CONTROL-l will cause a recalculation of 
the length of SALARY-HISTORY. MOVE 
SALARY (5) TO WORKAREA-l will not cause the 
length to be recalculated. 

The compiler permits the occurrence of 
more than one level-Ol record, containing 
the OCCURS clause with the DEPENDING ON 
option, in the same FD entry (see Figure 
51). If the BLOCK CONTAINS clause is 
omitted, the buffer size is calculated from 
the longest level-Ol record description 
entry. In Figure 51, the buffer size is 
determined by the description of RECORD-l 
(RECORD-l need not be the first record 
description under the FD). 

During the execution of a READ 
statement, the length of each lev~-Ol 
record description entry in the FD will be 
calculated (see Figure 51). The length of 
the variable portion of each record will be 
the product of the numeric value contained 
in the object of the DEPENDING ON option 
and the length of the subject of the OCCURS 
clause. In Figure 51, the length of 
FIELD-l is calculated by multiplying the 
contents of CONTROL-l by the length of 
FIELD-l; the length of FIELD-2, by the 
product of the contents of CONTROL-2 and 
the length of FIELD-2; the length of 
FIELD-3 by the contents of CONTROL-3 and 
the length of FIELD-3. 

Since the execution of a READ statement 
makes available only one record type (i.e., 
RECORD-l type, RECORD-2 type, or RECORD-3 
type), two of the three record descriptions 
in Figure 51 will be inappropriate. In 
such cases, if the contents of the object 
of the DEPENDING ON option does not conform 
to its picture, the length of the 
corresponding record will not be 
calculated. For the contents of an item to 
conform to its picture: 

• An item described as USAGE DISPLAY must 
contain decimal data. 

• An item described as USAGE 
COMPUTATIONAL-3 must contain internal 
decimal data. 

• An item described as USAGE 
COMPUTATIONAL must contain binary data. 

The following example illustrates the 
length calculations made by the system when 
a READ statement is executed: 

FD 

01 RECORD-l. 
05 A PIC 99. 
05 B PIC 99. 
05 C PIC 99 OCCURS 5 TIMES 

DEPENDING ON A. 

01 RECORD-2. 
05 D PIC XX. 
05 EPIC 99. 
05 F PIC 99. 
05 G PIC 99 OCCURS 5 TIMES 

DEPENDING ON F. 

WORKING-STORAGE SECTION. 

01 TABLE-3. 
05 H OCCURS 10 TIMES DEPENDING ON B. 

01 TABLE-4. 
05 I OCCURS 10 TIMES DEPENDING ON E. 

When a record is read, lengths are 
determined as follows: 

1. The length of RECORD-l is calculated 
using the contents of field A. 

2. The length of RECORD-2 is calculated 
using the contents of field F. 

3. The length of TABLE-3 is calculated 
using the contents of field B. 

4. The length of TABLE-4 is calculated 
using the contents of field E. 

The user should be aware of several 
characteristics of the previously cited 
length calculations. The following example 
illustrates a group item (~.e., REC-l) 
whose subordinate items contain an OCCURS 
clause with the DEPENDING ON option and the 
object of that DEPENDING ON option. 

Record Formats 163 



r--------------------------------------------------------------------------------------, 
FD INPUT-FILE 

DATA RECORDS ARE RECORD-l RECORD-2 RECORD-3. 

01 RECORD-l. 
05 CONTROL-l PIC 99. 
05 FIELD-l OCCURS o TO 10 TIMES DEPENDING ON CONTROL-l PIC 9(5). 

01 RECORD-2. 
05 CONTROL-2 PIC 99. 
05 FIELD-2 OCCURS 1 TO 5 TIMES DEPENDING ON CONTROL-2 PIC 9 (4). 

01 RECORD-3. 
05 FILLER PIC XX. 
05 CONTROL-3 PIC 99. 
05 FIELD-3 OCCURS 0 TO 10 TIMES DEPENDING ON CONTROL-3 PIC X(4). ____ ~ __________________________________________________________________________________ J 

Figure 51. Calculating Record Lengths When Using the OCCURS Clause with the DEPENDING ON 
Option 

WORKING-STORAGE SECTION. 
01 REC-l. 

05 FIELD-l PIC 9. 
05 FIELD-2 OCCURS 5 TIMES DEPENDING ON 

FIELD-l PIC XeS). 

01 REC-2. 
05 REC-2-DATA PIC X(sO). 

The results of executing a MOVE to the 
group item REC-l will be affected by the 
following: 

• The length of REC-l may have been 
calculated at some time prior to the 
execution of this MOVE statement. 

• The length of REC-l may never have been 
calculated at all. 

• After the move, since the contents of 
FIELD-l have been changed, an attempt 
will be made to recalculate the length 
of REC-l. This recalculation, however, 
will only be made if the new contents 
of FIELD-l conform to its picture 
(i.e., USAGE DISPLAY must contain an 
external decimal item, USAGE 
COMPUTATIONAL-3 must contain an 
internal decimal item and USAGE 
COMPUTATIONAL must contain a binary 
item). In the preceding example, if 
FIELD-l does not contain an external 
decimal item, the length of REC-l will 
not be calculated. 

Note: According to the COBOL description, 
FIELD-2 can occur a maximum of five times. 
If, however, FIELD-l contains an external 
decimal item whose value exceeds five, the 
length of REC-l will still be calculated. 

164 

One possible consequence of this invalid 
calculation will be encountered if the user 
attempts to initialize REC-l by moving 
zeros or spaces to it. This initialization 
would inadvertently delete part of the 
adjacent data stored in REC-2. 

The following discussion applies to 
updating a record containing an OCCURS 
clause with the DEPENDING ON option and at 
least one other subsequent entry. In this 
case, the subsequent entry is another 
OCCURS clause with the DEPENDING ON option. 

WORKING-STORAGE SECTION. 
01 .VARIABLE-REC. 

05 FIELD-A PIC X(10). 
05 CONTROL-l PIC 99. 
05 CONTROL-2 PIC 99. 
05 VARY-FIELD-l OCCURS 10 TIMES 

DEPENDING ON CONTROL-l PIC xeS). 
05 VARY-FIELD-2 OCCURS 10 TIMES 

DEPENDING ON CONTROL-2 PIC X(9). 

01 STORE-VARY-FIELD-2. 
05 VARY-FLD-2 OCCURS 10 TIMES 

DEPENDING ON CONTROL-2 PIC X(9). 

Assume that CONTROL-l contains the value 
5 and VARY-FIELD-l contains 5 entries. 

In order to add a sixth field to 
VARY-FIELD-l the following steps are 
required: 

MOVE VARY-FIELD-2 TO STORE-VARY-FIELD-2. 
ADD 1 TO CONTROL-l. 
MOVE 'additional field' TO VARY-FIELD-l 

<-CONTROL-l) • 
MOVE STORE-VARY-FIELD-2 TO VARY-FIELD-2. 



This chapter describes several 
techniques for increasing the efficiency of 
a COBOL program. It is divided into six 
parts. The first four parts deal with the 
divisions of a COBOL program. The fifth is 
concerned with the Report Writer Feature, 
and the sixth with Table Handling Feature. 

GENERAL CONSIDERATIONS 

Spacing the Source Program Listing 

There are four statements that can be 
coded in any or all of the four divisions 
of a source program: SKIP1, SKIP2, SKIP3, 
and EJECT. These statements provide the 
user with the ability to control the 
spacing of a source listing and thereby 
improve its readability. 

ENVIRONMENT DIVISION 

SELECT Sentence 

SELECT sentences for the most active 
files should appear first, since the COBOL 
compiler assigns registers to files until 
it runs out of registers and then reuses 
the last registers for all subsequent 
files. 

APPLY WRITE-ONLY Clause 

To make optimum use of buffer space 
allocated when creating a standard 
sequential file with blocked V-mode 
records, the programmer should use the 
APPLY WRITE-ONLY clause for the file. 
Using this clause causes a buffer to be 
truncated only when the next record does 
not fit in the buffer. (If APPLY 
WRITE-ONLY is not specified, the buffer is 
truncated when the maximum size record will 
not fit in the space remaining in the 
buffer. ) 

PROGRAMMING TECHNIQUES 

DATA DIVISION 

OVERALL CONSIDERATIONS 

Prefixes 

Assign a prefix to each level-Ol item in 
a program, and use this prefix on every 
subordinate item (except FILLER) to 
associate a file with its records and work 
areas. For example, MASTER is the prefix 
used here: 

FILE SECTION. 
FD MASTER-INPUT-FILE 

01 MASTER-INPUT-RECORD. 

WORKING-STORAGE SECTION. 
01 MASTER-WORK-AREA. 

05 MASTER-PAYROLL PICTURE 9(3). 
05 MASTER-SSNO PICTURE 9(9). 

If files or work areas have the same 
fields, use the prefix to distinguish 
between them. For example, if three files 
all have a date field, instead of DATE, 
DAT, and DA-TE, use MASTER-DATE, 
DETAIL-DATE, and REPORT-DATE. Using a 
unique prefix for each level-01 item and 
all subordinate fields makes it easier for 
a user unfamiliar with the program to find 
fields in the program listing, and to know 
which fields are logically part of the same 
record or area. 

When using the MOVE statement with the 
CORRESPONDING option and referring to 
individual fields, redefine or rename 
ncorrespondingn names with the prefixed 
unique names. This technique eliminates 
excessive qualifying. For example: 

Programming Techniques 165 



01 MST-WORK-AREA. 
05 SAME-NAMES. (***) 

10 LAST-NAME PIC ••• 
10 FIRST-NAME PIC ••• 
10 PAYROLL PIC ••• 

05 DIFF-NAMES REDEFINES SAME-NAMES. 
10 MST-LAST-NAME PIC ••• 
10 MST-FIRST-NAME PIC ••• 
10 MST-PAYROLL PIC ••• 

01 RPT-WORK-AREA. 
05 SAME-NAMES. (***) 

10 PAYROLL PIC ••• 
10 FILLER PIC ••• 
10 FIRST-NAME PIC ••• 
10 FILLER PIC ••• 
10 LAST-NAME PIC ••• 

PROCEDURE DIVISION. 

IF MST-PAYROLL IS EQUAL TO HDQ-PAYROLL 
AND MST-LAST-NAME 
IS NOT EQUAL TO PRRV-LAST-NAME 
MOVE CORRESPONDING 
MST-WORK-AREA 
TO RPT-WORK-AREA. 

Note: Fields marked *** above must have 
exactly the same names for their 
subordinate fields to be considered 
"corresponding." The same names must not 
be the redefining ones or they will not be 
considered to correspond. 

Level Numbers 

The programmer should use widely 
incremented level numbers such as 01, 05, 
10, 15, etc., instead of 01, 02, 03, 04, 
etc., in order to allow space for future 
insertions of group levels. For 
readability, indent level numbers. Use 
level number 88 for codes. Thus, if the 
codes must be changed, the Procedure 
Division coding for tests need not be 
changed. 

FILE SECTION 

RECORD CONTAINS Clause 

The programmer should use the RECORD 
CONTAINS clause with the integer CHARACTERS 
option in order to save himself, as well as 
any future programmer, the task of counting 
the data record description positions. In 

166 

addition, the compiler can then diagnose 
errors if the data record description 
conflicts with the RECORD CONTAINS clause. 

WORKING-STORAGE SECTION 

Separate Modules 

In a large program, the programmer 
should plan ahead for breaking the programs 
into separately compiled modules, as 
follows: 

1. When using separate modules, an 
attempt should be made to combine 
entries of each Working-Storage 
section into a single level-Ol record 
(or a single level-Ol record for each 
32K bytes). Logical record areas can 
be indicated by using level-02, -03, 
etc., entries. A CALL statement with 
the USING option is more efficient 
when a single item is passed than when 
many level-Ol and/or -77 items are 
passed. When this method is employed, 
mistakes are more easily avoided. 

2. Areas which do not contain VALUE 
clauses should be separated from areas 
that do contain VALUE clauses. VALUE 
clauses (except for level-S8 items) 
are invalid in the Linkage section. 

3. When the Working-Storage Section 
consists of one level-Ol item without 
any VALUE clauses, the COpy statement 
can easily be used to include the item 
as the description of a Linkage 
Section in a separately compiled 
module. 

4. See the chapter "Using the 
Segmentation Feature" for additional 
information on how to modularize the 
Procedure Division of a COBOL program. 

Locating the Working-Storage Section in 
Dumps 

A simple method of locating the 
Working-storage Section of a program in 
object-time dumps is to include the two 
following statements as the first and last 
Working-Storage statements, respectively, 
in the program. 

77 FILLER PICTURE X(44), VALUE "PROGRAM 
XXXXXXXX WORKING-STORAGE BEGINS HERE". 

01 FILLER PICTURE X(42), VALUE "PROGRAM 
XXXXXXXX WORKING-STORAGE ENDS HERE". 

C" 



These two nonnumeric literals will 
appear in all dumps of the program, 
delimiting the Working-storage Section. 
The program-name specified in the 
PROGRAM-ID clause should replace the 
XXXXXXXX in the literal. 

DATA DESCRIPTION 

The Procedure Division operations that 
most often require adjustment of data items 
include the MOVE statement, the IF 
statement when used in a relation test, and 
arithmetic operations. Efficient use of 
data description clauses, such as 
REDEFINES, PICTURE, and USAGE, avoids the 
generation of extra code. 

REDEFINES Clause 

REUSING DATA AREAS: The main storage area 
can be used more efficiently by writing 
different data descriptions for the same 
data area. For example, the coding that 
follows shows how the same area can be used 
as a work area for the records of several 
input files that are not processed 
concurrently. 

WORKING-STORAGE SECTION. 
01 WORK-AREA-FILE1. 

(largest record description for FILE1) 

01 WORK-AREA-FILE2 REDEFINES 
WORK-AREA-FILE1. 

(largest record descript~on for FILE2) 

ALTERNATE GROUPINGS AND DESCRIPTIONS: 
Program data can often be described more 
efficiently by providing alternate 
groupings or data descriptions for the same 
data. For example, a program references 
both a field and its subfields, each of 
which is more efficiently described with a 
different usage. This can be done by using 
the REDEFINES clause as follows: 

01 PAYROLL-RECORD. 
05 EMPLOYEE-RECORD PICTURE X(28). 
05 EMPLOYEE-FIELD REDEFINES 

EMPLOYEE-RECORD. 
10 NAME PICTURE X(24). 
10 NUMBERX PICTURE S9 (5) COMP. 

as DATE-RECORD PICTURE X(10). 

The following illustrates how a table 
(TABLEA) can be initialized by having 
different data descriptions for the same 
data: 

as VALUE-A. 
10 A1 PICTURE S9(9) COMPUTATIONAL 

VALUE IS ZEROES. 
10 A2 PICTURE S9 (9) COMPUTATIONAL 

VALUE IS 1. 

10 A100 PICTURE S9(9) COMPUTATIONA 
VALUE IS 99. 

as TABLEA REDEFINES VALUE-A 
PICTURE S9(9) COMPUTATIONAL 
OCCURS 100 TIMES. 

PICTURE Clause 

DECIMAL-POINT ALIGNMENT: Procedure 
Division operations are most efficient when 
the decimal positions of the data items 
involved are aligned. If they are not, the 
compiler generates instructions to align 
the decimal positions before any operations 
involving the data items can be executed. 

Assume, for example, that a program 
contains the following instructions: 

WORKING-STORAGE SECTION. 
77 A PICTURE S999V99. 
77 B PICTURB S99V9. 

PROCEDURE DIVISION. 

ADD A TO B. 

Time and internal storage space are 
saved by defining Bas: 

77 B PICTURE S99V99. 

If it is inefficient to define B 
differently, a one-time conversion can be 
done, as explained in "Data Format 
Conversion" in this chapter. 

Programming Techniques 167 



FIELDS OF UNEQUAL LENGTH: When a data item 
is moved to another data item of a 
different length, the following should be 
considered: 

• If the items are external decimal 
items, the compiler generates 
instructions to insert zeros in the 
high-order positions of the receiving 
field, when it is the larger. 

• If the items are nonnumeric, the 
compiler generates instructions to 
insert spaces in the low-order 
positions of the receiving field (or 
the high-order positions if the 
JUSTIFIED RIGHT clause is specified). 
This generation of extra instructions 
can be avoided if the sending field is 
described with a length equal to or 
greater than the receiving field. 

SIGN USAGE: The presence or absence of a 
plus or minus sign in the description of an 
arithmetic field often can affect the 
efficiency of a program. The following 
paragraphs discuss some of the 
considerations. 

Decimal Items: The sign position in an 
internal or external decimal item can 
contain: 

1. A plus or minus sign. If S is 
specified in the PICTURE clause, a 
plus or minus sign is inserted when 
either of the following conditions 
prevail: 

168 

a. The item is in the Working-Storage 
section and a VALUE clause has 
been specified. 

b. A value for the item is assigned 
as a result of an arithmetic 
operation during execution of the 
program. 

If an external decimal item is 
punched, printed, or displayed, an 
overpunch will appear in the low-order 
digit. In EBCDIC, the configuration 
for low-order zeros normally is a 
nonprintable character. Low-order 
digits of positive values will be 
represented by one of the letters A 
through I (digits 1 through 9); 
low-order digits of negative values 
will be represented by one of the 
letters J through R· (digits 1 through 
9). 

2. A hexadecimal F. If S is not 
specified in the PICTURE clause, an F 
is inserted in the sign position when 
either of the following conditions 
prevail: 

a. The item is in the Working-Storage 
section and a VALUE clause has 
been specified 

b. A value for the item is developed 
during the execution of the 
program. 

An F is treated as positive, but is 
not an overpunch. 

3. An invalid configuration. If an 
internal or external decimal item 
contains an invalid configuration in 
the sign position, and if the item is 
involved in a Procedure Division 
operation, the program will be 
abnormally terminated. 

. Unsigned items (items for which no S has 
been specified) are treated as absolute 
values. Whenever a value (signed or 
unsigned) is stored in or moved in an 
elementary move to an unsigned item, a 
hexadecimal F is stored in the sign 
position of the unsigned item. For 
example, if an arithmetic operation 
involves signed operands and an unsigned 
result field, compiler-generated code will 
insert an F in the sign position of the 
result field when the result is stored. 

For internal and external decimal items 
used as input, it is the user's 
responsibility to ensure that the input 
data is valid. The compiler does not 
generate a test to ensure that the 
configuration in the sign position is 
valid. 

When a group item is being moved, the 
data is moved without regard to the level 
structure of the group items inVOlved. The 
possibility exists that the configuration 
in the sign position of a subordinate 
numeric item may be destroyed. Therefore, 
caution should be exercised in moving group 
items with subordinate numeric fields or 
with other group operations such as READ or 
ACCEPT. 



USAGE Clause 

The USAGE clause should be written at 
the highest level possible. 

DATA FORVAT CONVERSION: Operations 
involving mixed, elementary numeric data 
formats require conversion to a common 
format. This usually means that additional 
storage is used and execution time is 
increased. The code generated must often 
move data to an internal work area, perform 
any necessary conversion, and then execute 
the indicated operation. often, too, the 
result may have to be converted in the same 
way. Table 23 indicates when data 
conversion is necessary. 

If it is impractical to use the same 
data formats throughout a program, and if 
two data items of different formats are 
frequently used together, a one-time 
conversion can be effected. For example, 
if A is defined as a COMPUTATIONAL item and 
B as a COMPUTATIONAL-3 item, A can be moved 
to a work area that has been defined as 
COMPUTATIONAL-3. This move causes the data 
in A to be converted to COMPUTATIONAL-3. 
Whenever A and B are used in a Procedure 
Division operation, reference can be made 
to the work area rather than to A. When 
this technique is used, the conversion is 
performed only once, instead of each time 
an operation is performed. 

Progra~ng Techniques 169 

------------------------- ---



Table 23. Data Format Conversion 
r---------T-------------T---------T--------------T-----------T--------------------------, 
I I I I I Converted I I 
I I I Boundary I I for I I 
I I Bytes I Alignment I Typical I Arithmetic I Special I 
lusage I Required IRequired I Usage IOperations I Characteristics I 
~---------+-------------+---------+--------------+-----------+--------------------------~ 
I DISPLAY 11 per digiti No I Input from I Yes I May be used for numeric I 
I (external I (except for I I cards, output I I fields up to 18 digits I 
I decimal) I V) I Ito cards, I I long. I 
I I I I listings I I I 
I I I I I I Fields over 15 digits I 
I I I I I I require extra instruc- I 
I I I I I I tions if used in I 
I I I I I I computations. I 
~--------+-------------+---------+--------------+-----------+--------------------------~ 
I DISPLAY 11 per I No I Input from I Yes I Converted to COMP- 2 I 
I (external I character I I cards, output I I format via COBOL library I 
I floating I (except for I Ito cards, I I subroutine. I 
I point) I V) I I listings I I I 
~---------+-------------+---------+--------------+-----------+--------------------------~ 
COMP-3 1 per 2 No IInput to a I Sometimes I Requires less space than 
(internal digits plus Ireport item Iwhen a I DISPLAY. 
decimal) 1 byte for I IsmaIl I 

low-order I Arithmetic ICOMP-3 iteml Convenient form for 
digit and I fields lis used I decimal alignment. 
sign I Iwith a I 

IWork areas IsmaIl COMP I Can be used in arithmetic 
I litem I computations without 
I I I conversion. 
I I I 
I I I Fields over 15 digits 
I I I require a subroutine when 
I I I used in computations. 

~---------+-------------+---------+--------------+-----------f--------------------------~ 
COMP 12 if 1~~4 Halfword ISubscripting I sometimes Rounding and testing for 
(binary) I I Ifor both the ON SIZE ERROR 

14 if 5~N~9 Fullword Arithmetic mixed and condition are cumbersome 
I fields unmixed if calculated result is 
18 if 10~N~18 Fullword usages greater than 9(9). 
Iwhere N is 
Ithe number of 
19's in the 
I picture 
I 
I 
I 

Extra instructions are 
generated for binary 
computations if the 
SYNCHRONIZED clause is 
not specified. 

I Fields of over nine 
I digits require additional 
I handling. 

~--------+-------------+---------+--------------+-----------+--------------------------~ 
ICOMP-1 14 (short- IFullword IFractional I No I Tends'to produce less I 
I (internal I precision) I I exponentiation I I accurate results if more I 
I floating I I I I I than 17 significant I 
I point) I I I I I digits are required and I 
I I I I I I if the exponent is I 
I I I I I I large. I 
I I I I I I I 
I I I I I I Requires floating-point I 
I I I I I I feature. I 
~---------+-------------+---------f--------------f-----------f--------------------------~ 
ICOMP-2 18 (long- I Double- I Fractional I No I Same as COMP-l. I 
I (internal I precision) I word I exponentiation I I I 
I floating I I Iwhen addition-I I I 
I point) I I lal precision I I I 
I I I I is required I I I L ________ ~ _____________ ~ _________ ~ ______________ ~ ___________ ~ _________________________ J 

170 

-- ~~ ----- -- - ---

(' 
\, I 



c: The following seven cases show how data 
conversions are handled on mixed elementary 
items for names, data comparisions, and 
arithmetic operations. Moves without the 
CORRESPONDING option to and from group 
items, as well as comparisons involving 
group items, are done without conversion. 

Numeric DISPLAY to COMPUTATIONAL-3: 

To Move Data: Converts DISPLAY data to 
COMPUTATIONAL-3 data. 

To Compare Data: Converts DISPLAY data to 
COMPUTATIONAL-3 data. 

To Perform Arithmetic Operations: Converts 
DISPLAY data to COMPUTATIONAL-3 data. 

Numeric DISPLAY to COMPUTATIONAL: 

To Move Data: Converts DISPLAY data to 
COMPUTATIONAL-3 data and then to 
COMPUTATIONAL data. 

To Compare Data: Converts DISPLAY to 
COMPUTATIONAL or converts both DISPLAY and 
COMPUTATIONAL data to COMPUTATIONAL-3 data. 

To Perform Arithmetic Operations: Converts 
DISPLAY data to COMPUTATIONAL-3 or 
COMPUTATIONAL data. 

COMPUTATIONAL-3 to COMPUTATIONAL: 

To Move Data: Moves COMPUTATIONAL-3 data 
to a work area and then converts 
COMPUTATIONAL-3 data to COMPUTATIONAL data. 

To Compare Data: Converts COMPUTATIONAL 
data to COMPUTATIONAL-3 or vice versa, 
depending on the size of the field. 

To Perform Arithmetic Operations: Converts 
COMPUTATIONAL data to COMPUTATIONAL-3 or 
vice versa, depending on the size of the 
field. 

COMPUTATIONAL to COMPUTATIONAL-3: 

To Move Data: Converts COMPUTATIONAL data 
to COMPUTATIONAL-3 data in a work area, and 
then moves the work area. 

To Compare Data: Converts COMPUTATIONAL to 
COMPUTATIONAL-3 data or vice versa, 
depending on the size of the field. 

To Perform Arithmetic Operations: Converts 
COMPUTATIONAL to COMPUTATIONAL-3 data or 
vice versa, depending on the size of the 
field. 

COMPUTATIONAL to Numeric DISPLAY: 

To Move Data: Converts COMPUTATIONAL data 
to COMPUTATIONAL-3 data and then to DISPLAY 
data. 

To Compare Data: Converts. DISPLAY to 
COMPUTATIONAL or both COMPUTATIONAL and 
DISPLAY data to COMPUTATIONAL-3 data, 
depending on the size of the field. 

To Perform Arithmetic Operations: 
Depending on the size of the field, 
converts DISPLAY data to COMPUTATIONAL 
data, or both DISPLAY and COMPUTATIONAL 
data to Cot-1PUTATIONAL-3 data in which case 
the result is generated in a 
COMPUTATIONAL-3 work area and then 
converted and moved to the DISPLAY result 
field. 

COMPUTATIONAL-3 to Numeric DISPLAY: 

To Move Data: Converts COMPUTATIONAL-3 
data to DISPLAY data. 

To Compare Data: Converts DISPLAY data to 
COMPUTATIONAL-3 data. The result is 
generated in a COMPUTATIONAL-3 work area 
and is then converted and moved to the 
DISPLAY result field. 

Numeric DISPLAY to Numeric DISPLAY: 

To Perform Arithmetic Operations: Converts 
all DISPLAY data to COMPUTATIONAL-3 data. 
The result is generated in a 
COMPUTATIONAL-3 work area and is then 
converted to DISPLAY and moved to the 
DISPLAY result field. 

Internal Floating-point to Any Other: When 
an item described as COMPUTATIONAL-lor 
COMPUTATIONAL-2 <internal floating-point) 
is used in an operation with another data 
format, the item in the other data format 
is always converted to internal floating
point. If necessary, the internal 
floating-point result is then converted to 
the format of the other data item. 

Programming Techniques 171 



As illustrated in Table 20, 
COMPUTATIONAL, COMPUTATIONAL-1 and 
COMPUTATIONAL-2 items have specific 
boundary alignment requirements. To ensure 
correct alignment, either the programmer or 
the compiler may have to insert slack 
bytes. 

The SYNC~ONIZED clause may be used at 
the elementary level to specify the 
automatic alignment of elementary items on 
their proper boundaries, or at the 01 level 
to synchronize all elementary items within 
the group. For COMPUTATIONAL items, if the 
PICTURE is in the range of S9 through 
S9 (4)', the item is aligned on a halfword 
boundary. If the PICTURE is in the range 
of S9(5) through S9(18), the item is 
aligned on a fullword boundary. For 
COMPUTATIONAL-1 items, the item is aligned 
on a fullword boundary. For 
COMPUTATIONAL-2 items, the item is aligned 
on a doubleword boundary. The SYNCHRONIZED 
clause and slack bytes are fully dis~ussed 
in the publication IBM System/360 Disk 
operating System: American National 
Standard COBOL. 

~ecial Considerations for DISPLAY and 
COMPUTATIONAL Fields 

NUMERIC OlSPLAY FIELDS: Zeros are not 
inserted into numeric DISPLAY fields by the 
instruction set. When numeric DISPLAY data 
is moved, the compiler generates 
instructions that insert any 'necessary 
zeros into the DISPLAY fields. When 
numeric DISPLAY data is compared, and one 
field is smaller than the other, the 
compiler generates instructions to move the 
smaller item to a work area where zeros are 
inserted. 

COMPUTATIONAL FIELDS: COMPUTATIONAL fields 
can be aligned on either a halfword or 
fullword boundary. If an operation 
involves COMPUTATIONAL fields of different 
lengths, the halfword field is 
automatically expanded to a fullword field. 
Therefore, mixed halfword and fullword 
fields require no additional operations. 

COMPUTATIONAL-1 AND COMPUTATIONAL-2 FIELDS: 
If an arithmetic operation involves a 
mixture of short-precision and 
long-precision fields, the compiler 
generates instructions to expand the 
short-precision field to a long-precision 
field before the operation is executed. 

COMPUTATIONAL-3 FIELDS: The compiler does 
not have to generate instructions to insert 
high-order zeros for ADD and SUBTRACT 

172 

statements that involve COMPUTATIONAL-3 
data. The zeros are inserted by the 
instruction set. 

Data Formats in the Computer 

The following examples illustrate how 
the various COBOL data formats appear in 
the computer in EBCDIC (Extended 
Binary-Coded-Decimal Interchange Code) 
format. More detailed information about 
these data formats appear in the 
publication IBM System/360 Principles of 
Operation. 

Numeric DISPLAY (External Decimal): 
Suppose the value of an item is -1234, and 
its PICTURE and USAGE clauses are: 

PICTURE 9999 DISPLAY. 

or 

PICTURE S9999 DISPLAY. 

The item appears in the computer in the 
following forms, respectively: 

I F1 I F2 I F3 I F4 I L ____ ~ ____ ~ ____ ~ ____ J 
---",-" 

Byte 

I F1 I F2 I F3 I D4 I L ____ ~ ___ ~ ____ ~ ____ J 
'-v--' 

Byte 

Hexadecimal F is treated arithmetically as 
positive; hexadecimal D represents a minus 
sign. 

COMPUTATIONAL-3 (Internal Decimal): 
Suppose the value of an item is +1234, and 
its PICTURE and USAGE clauses are: 

PICTURE 9999 COMPUTATIONAL-3. 

or 

PICTURE S9999 COMPUTATIONAL-3. 

The item appears internally in the 
following forms, respectively: 

I 01 I 23 I 4F I L ___ ..L-___ ~ ____ J 

'-..".-; 

Byte 

I 01 I 23 I 4C I L ____ ~ ____ ~ ____ J 

'--",-" 

Byte 



C) 

o 

Hexadecimal F is treated arithmetically as 
positive; hexadecimal C represents a plus 
sign. 

Note: Since the low-order byte of an 
internal decimal number always contains a 
sign field, an item with an odd number of 
digits can be stored more efficiently than 
an item with an even number of digits. 
Note that a leading zero is inserted in the 
above example. 

COMPUTATIONAL (Binary): Suppose the value 
of an item is 1234, and its PICTURE and 
USAGE clauses are: 

PICTURE S9999 COMPUTATIONAL. 

The item appears internally in the 
following form: 

I 0000 I 0100 I 1101 I 0010 I L ______ ~ ______ ~ ______ ~ ______ J 

t 
Sign 

position 

A 0 in the sign position indicates that 
the number is positive. Negative numbers 
are represented in two's complement form; 
thus, the sign position of a negative 
number will always contain a 1. 

For example -1234 would appear as 
follows: 

I 1111 I 1011 I 0010 I 1110 I L ______ ~ ______ ~ ______ ~ ______ J 

t 
Sign 

Position 

Binary Item Manipulation: A binary item is 
allocated storage ranging from one halfword 
to two fullwords, depending on the number 
of 9's in its PICTURE. Table 24 is an 
illustration of how the compiler allocates 
this storage. Note that it is possible for 
a value larger than that implied by the 
PICTURE clause to be stored in the item. 
For example, PICTURE S9(4) implies a 
maximum value of 9,999, although it could 
actually hold the number 32,767. 

Because most binary items are 
manipulated according to their allotted 
storage capacity, the programmer can ignore 
this situation. For the following reasons, 
however, he must be careful of his data: 

1. When the ON SIZE ERROR option is used, 
the size test is made on the basis of 
the maximum value allowed by the 
picture of the result field. If a 
size error condition exists, the value 
of the result field is not altered and 
control is given to the imperative
statements specified by the error 
option. 

2. When a binary item is displayed or 
exhibited, the value used is a 
function of the number of 9's 
specified in the PICTURE clause. 

3. When the actual value of a positive 
number is significantly larger than 
its picture value, a value of 1 could 
appear in -the sign position of the 
item, causing the item to be treated 
as a negative number in subsequent 
operations. 

Table 24. Relationship of PICTURE to Storage Allocation 
r-----------------------T----------------------------T---------------------------------, 
\ PICTURE \ Maximum Working Value \ Assigned storage \ 
~------------------------+----~-----------------------+---------------------------------~ 
IS9 through S9(4) 1 32,767 lOne nalfword 1 
\ 1 1 1 
\S9(5) through S9(9) \ 2,147,483,647 lOne fullword \ 
\ \ I I 
\S9(10) through S9(18) \ 9,223,372,036,854,775,807 1 Two fullwords 1 L ________________________ ~ ____________________________ ~ _________________________________ J 

Programming Techniques 173 



r-----T-----------------------T-------------T-------------------------,----------------, 
I I Hexadecimal Result of I Decimal I Actual Decimal Value I DISPLAY or I 
I Case I Binary Calculation I Equivalent I in Halfword of storage I EXHIBIT Value I 

~-----f-----------------------+-------------+-------------------------+----------------~ 
I A I 0008 I 8 I +8 I 8 I 

r------f-----------------------+-------------+-------------------------+----------------~ 
1 B I OOOA I 10 I +10 I 0 I 
~------+-----------------------+-------------+-------------------------+----------------~ 
I C I C350 I 50000 I -15536 1 6 I L _____ ~ _______________________ ~ _____________ ~ _________________________ ~ ________________ J 

Figure 52. Treatment of Varying Values in a Data Item of PICTURE S9 

Figure 52 illustrates three binary 
manipulations. In each case, the result 
field is an item described as PICTURE S9 
COMPUTATIONAL. One halfword of storage has 
been allocated, and no ON SIZE ERROR option 
is involved. Note that if the ON SIZE 
ERROR option had been specified, it would 
have been executed for cases Band C. 

COMPUTATIONAL-lor COMPUTATIONAL-2 
<Floating-point): Suppose the value of an 
item is +1234 and that its USUAGE is 
COMPUTATIONAL-l, the item appears 
internally in the following form: 

101100 001110100 1101 0010 0000 0000 00001 L_~ _________ ~ _____________________________ J 

S 1 7 8 31 

S is the sign position of the number. 

A 0 in the sign position indicates 
that the sign is plus. 

A 1 in the sign position indicates 
that the sign is minus. 

Bits 1 through 7 are the exponent 
<characteristic) of the number. 

Bits 8 through 31 are the fraction 
(mantissa) of the number. 

This form of data is referred to as 
floating point. The example illustrates 
short-precision floating-point data 
(COMPUTATIONAL-l). In long-precision 
(COMPUTATIONAL-2), the fraction length is 
56 bits. (For a detailed explanation of 
floating-point representation, see the 
publication IBM Systern/360 Principles of 
Operation. ) 

PROCEDURE DIVISION 

The Procedure Division of a program can 
often be made more efficient or easier to 
debug by using some of the techniques 
described below. 

174 

MODULARIZING THE PROCEDURE DIVISION 

Modularization involves organizing the 
Procedure Division into at least three 
functional levels: a main-line routine, 
processing subroutines, and input/output 
subroutines. When the Procedure Division 
is modularized, programs are easier to 
maintain and document. In addition, 
modularization makes it simple to break 
down a program using the segmentation 
feature, resulting in a more efficient 
segmented program. 

Main-Line Routine 

The main-line routine should be short 
and simple, and should contain all the 
major logical decisions of the program. 
This routine controls the order in which 
second-level subroutines are executed. All 
second-level subroutines should be invoked 
from the main-line routine by PERFORM 
statements. 

Processing Subroutines 

Processing subroutines should be broken 
down into as many functional levels as 
necessary, depending on the complexity of 
the program. These must be completely 
closed subroutines, with one entry point 
and one exit point. The entry point should 
be the first statement of the subroutine. 
The exit point should be the EXIT 
statement. Processing subroutines can 
PERFORM only lower level subroutines; 
return to the higher level subroutine 
(processing subroutine) must be 
accomplished by a GO TO statement that 
references the EXIT statement. 

---- -- -- ----- -----



Input/Output Subroutines 

The input/output subroutines should be 
the lowest level subroutines, since all 
higher level subroutines have access to 
them. There should be one OPEN subroutine 
and one CLOSE subroutine for the program, 
and only one functional (READ or WRITE) 
subroutine for each file. Having one READ 
or WRITE subroutine per file has several 
advantages: 

1. Coding can be added to count records 
on a file, transform blanks into 
zeros, check for 9's padding, etc. 

2. Input and output files can be 
reformatted without changing the logic 
of the program. 

3. DEBUG statements can be added during 
testing to create input or to DISPLAY 
formatted output, instead of having to 
create a test file. 

INTERMEDIATE RESULTS 

The compiler treats arithmetic 
statements as a succession of operations 
and sets up intermediate result fields to 
contain the results of these operations. 
Examples of such statements are the 
arithmetic statements and statements 
containing arithmetic expressions. See the 
appendix "Intermediate Results" in the 
publication IBM System/360 Disk Operating 
System: American National Standard COBOL 
for a description of the algorithms used by 
the compiler to determine the number of 
places reserved for intermediate result 
fields. 

Intermediate Results and Binary Data Items 

If an operation involving binary 
operands requires an intermediate result 
greater than 18 digits, the compiler 
converts the operands to internal decimal 
before performing the operation. If the 
result field is binary, the result will be 
converted from internal decimal to binary. 

If an intermediate result will not be 
greater than nine digits, the operation is 
performed most efficiently on binary data 
fields. 

Intermediate Results and COBOL Library 
Subroutines 

If a decimal multiplication operation 
requires an intermediate result greater 
than 30 digits, a COBOL library subroutine 
is used to perform the multiplication. The 
result of this multiplication is then 
truncated to 30 digits. 

A COBOL library subroutine is used to 
perform division if: 

1. The divisor is equal to or greater 
than 15 digits. 

2. The length of the divisor plus the 
length of the dividend is greater than 
16 bytes. 

3. The scaled dividend is greater than 30 
digits. (A scaled dividend is a 
number that has been multiplied by a 
power of ten in order to obtain the 
desired number of decimal places in 
the quotient.) 

Intermediate Results Greater Than 30 Digits 

Whenever the number of digits in a 
decimal intermediate result is greater than 
30, the field is truncated to 30 digits. A 
warning message will be generated du~ing 
compilation, and program flow will not be 
interrupted at execution time. This 
truncation may cause a result to be 
incorrect. 

If binary or internal decimal data is in 
agreement with its data description, no 
interrupt can occur because of an overflow 
condition in an intermediate result. This 
is due to the truncation described in the 
preceding paragraph. 

If the possibility exists that an 
intermediate result field may exceed 30 
digits, truncation can be avoided by the 
specification of floating-point operands 
(COMPUTATIONAL-lor COMPUTATIONAL-2)i 
however, accuracy may not be maintained. 

Intermediate Results and Floating-point 
Data Items. 

If a floating-point operand has an 
intermediate result field in which exponent 
overflow occurs, the job will be abnormally 
terminated. 

Programming Techniques 175 



Intermediate Results and the ON SIZE ERROR 
Q2tion 

The ON SIZE ERROR option applies only to 
the final calculated results and not to 
intermediate result fields. 

PROCEDURE DIVISION STATEMENTS 

COMPUTE statement 

The use of the COMPUTE statement 
generates more efficient coding than does 
the use of individual arithmetic 
statements, since the compiler can keep 
track of internal work areas and does not 
have to store the results of intermediate 
calculations. It is the user's 
responsibility, however, to ensure that the 
data is defined with the level of 
significance required in the answer. 

IF Statement 

Nested and compound IF statements should 
be avoided as the logic is difficult to 
debug. 

MOVE Statement 

Performing a MOVE operation for an item 
longer than 256 bytes requires the 
generation of more instructions than are 
required for that of a MOVE operation for 
an item of 256 bytes or less. 

When a MOVE statement with the 
CORRESPONDING option is executed, data 
items are considered as "corresponding" 
only if their respective data-names are the 
same, including all implied qualification 
up to, but not including, the data-names 
used in the MOVE statement itself. 

For example: 

01 AA 
05 BB 

10 CC 
10 DO 

05 EE 
10 FF 

01 XX 
05 BB 

10 CC 
10 DO 

05 YY 
10 FF 

The statement MOVE CORRESPONDING AA TO XX 
will result in moving CC, but not FF, since 
FF of EE does not correspond to FF of YY. 

116 

Note: The other rules for MOVE 
CORRESPONDING, of course, must still be 
satisfied. 

NOTE Statement 

An asterisk (*) should be used in place 
of the NOTE statement since there is the 
possibility that when NOTE is the first 
sentence in a paragraph, it will 
inadvertently cause the whole paragraph to 
be treated as part of the NOTE. 

PERFORM Statement 

PERFORl-1 is a useful statement if the 
programmer adheres to the following rules: 

1. Always execute the last statement of a 
series of routines being operated on 
by a PERFORM statement. When 
branching out of the routine, make 
sure control will eventually return to 
the last statement of the routine, 
which should be an EXIT statement. 
Although no code is generated, the 
EXIT statement allows a programmer to 
immediately recognize the extent of a 
series of routines within the range of 
a PERFORM statement. 

2. Always either PERFORM routine-name 
THRU routine-name-exit, or PERFORM 
section-name. A PERFORM 
paragraph-name can create problems for 
the programmer trying to maintain the 
program. For example, if one 
paragraph must be broken into two 
paragraphs, the programmer must 
examine every statement to determine 
whether this paragraph is within the 
range of the PERFORM statement. As a 
result, all statements referencing the 
paragraph-name must be changed to 
PERFORM THRU statements. 

READ INTO AND WRITE FROM OPTIONS 

Always use READ INTO and WRITE FROM, and 
process all files in the Working-Storage 
section for the following reasons: 

1. Debugging is much simpler. 
Working-Storage areas are easier to 
locate in a dump than are buffer 
areas. And, if files are blocked, it 
is much easier to determine which 
record in a block was being processed 
when the abnormal termination . 
occurred. 



o 

2. Trying to access a record-area after 
the AT END condition has occurred (for 
example, AT END MOVE HIGH-VALUE TO 
INPUT-RECORD) can cause problems if 
the record area is defined only in the 
File Section. 

Note: The programmer should be aware that 
additional time is used to execute the move 
operation involved in each READ INTO or 
WRITE FROM instruction. 

When a READ INTO statement is used for a 
V-mode or U-mode file, the size of the 
longest record for that file is used in the 
MOVE statement. All other rules of the 
MOVE statement apply. 

TRACE Statement 

The programmer should remember that the 
RESET or READY options of the TRACE 
statement are initialized with each 
execution of a CALL statement. 

TRANSFORM Statement 

The TRANSFORM statement generates more 
efficient code than the EXAMINE REPLACING 
BY statement when only one character is 
being transformed. The TRANSFORM 
statement, however, uses a 256-byte table. 

USING THE REPORT WRITER FEATURE 

REPORT Clause in a File Description (FD) 
Entry 

A given report-name may appear in a 
maximum of two file description entries. 
The file description entries need not have 
the same characteristics. . If the same 
report-name is specified in two file 
description entries, the report will be 
written on both files. For example: 

ENVIRONMENT DIVISION. 
SELECT FILE-l ASSIGN SYS005-UR-1403-S. 
SELECT FILE-2 ASSIGN SYS001-UT-2400-S. 

DATA DIVISION. 
FD FILE-l RECORDING MODE F 

RECORD CONTAINS 121 CHARACTERS 
REPORT IS REPORT-A. 

FD FILE-2 RECORDING MODE V 
RECORD CONTAINS 101 CHARACTERS 
REPORT IS REPORT-A. 

For each GENERATE statement, the records 
for REPORT-A will be written on FILE-l and 
FILE-2, respectively. The records on 
FILE-2 will not contain columns 102 through 
121 of the corresponding records on FILE-l. 

Summing Techniques 

Execution time in an object program can 
be made more efficient by keeping in mind 
that Report Writer source coding is treated 
as though the programmer had written the 
program in COBOL without the Report Writer 
feature. Therefore, a complex source 
statement or series of statements will 
generally be. executed faster than simple 
statements that perform the same function. 
The following example shows two coding 
techniques for the Report section of the 
Data Division. Method 2 uses the more 
complex statements. 

RD ••• CONTROLS ARE YEAR MONTH WEEK DAY. 

Method 1: 

01 TYPE CONTROL FOOTING YEAR. 
02 SUM COST. 

01 TYPE CONTROL FOOTING MONTH. 
02 SUM COST. 

01 TYPE CONTROL FOOTING WEEK. 
02 SUM COST. 

01 TYPE CONTROL FOOTING DAY. 
02 SUM COST. 

Method 2: 

01 TYPE CONTROL FOOTING YEAR. 
02 SUM A. 

01 TYPE CONTROL FOOTING MONTH. 
02 A SUM B. 

01 TYPE CONTROL FOOTING WEEK. 
02 B SUM C. 

01 TYPE CONTROL FOOTING DAY. 
02 C SUM COST. 

Method 2 will execute faster. One 
addition will be performed for each day, 
one more for each week, and one for each 
month. In Method 1, four additions will be 
performed for each day. 

Use of SUM 

Unless each identifier is the name of a 
SUM counter in a TYPE CONTROL FOOTING 
report group at an equal or lower position 
in the control hierarchy, the identifier 
must be defined in the File, Working
Storage, or Linkage Sections as well as in 
a TYPE DETAIL report group as a source 
item. A SUM counter is algebraically 

Programming Techniques 177 



incremented just before presentation of the 
TYPE DETAIL report group in which the item 
beinq summed appears as a source item or 
the item being summed appeared in a SUM 
clause that contained an UPON option for 
this DETAIL report group. This is known as 
SOURCE-SUM corresponding. In the following 
example, SUBTOTAL is incremented only when 
DETAIL-l is generated. 

FILE SECTION. 

02 NO-PURCHASES PICTURE 99. 

REPORT SECTION. 
01 DETAIL-l TYPE DETAIL. 

02 COLUMN 30 PICTURE 99 SOURCE 
NO-PURCHASES. 

01'DETAIL-2 TYPE DETAIL. 

01 DAY TYPE CONTROL FOOTING 
LINE PLUS 2. 

02 SUBTOTAL COLUMN 30 PICTURE 999 
SUM NO-PURCHASES. 

01 MONTH TYPE CONTROL FOOTING 
LINE PLUS 2 NEXT GROUP 
NEXT PAGE. 

SUM Routines 

A SUM routine is generated by the Report 
Writer for each DETAIL report group of the 
report. The operands included for summing 
are determined as follows: 

1. The SUM operand(s) also appears in a 
SOURCE clause(s) for the DETAIL report 
group. 

2. The UPON detail-name option was 
specified in the SUM clause. In this 
case, all the operands are included in 
the SUM routine for only that DETAIL 
report group, even if the operand 
appears in a SOURCE clause in other 
DETAIL report groups. 

When a GENERATE detail-name statement is 
executed, the SUM routine for that DETAIL 
report group is executed in its logical 

178 

sequence. When GENERATE report-name 
statement is executed and the report 
contains more than one DETAIL report group, 
the SUM routine is executed for each one. 
The SUM routines are executed in the 
sequence in which the DETAIL report groups 
are specified. 

The following two examples show the SUM 
routines that are generated by the Report 
Writer. Example 1 illustrates how operands 
are selected for inclusion in the routine 
on the basis of simple SOURCE-SUM 
correlation. Example 2 illustrates how 
operands are selected when the UPON 

. detail-name option is specified. 

Example 1: The following statements are 
coded in the Report Section: 

01 DETAIL-l TYPE DE 
02 ••• SOURCE A. 

01 DETAIL-2 TYPE DE 
02· ••• SOURCE B. 
02 ••• SOURCE C. 

01 DETAIL-3 TYPE DE 
02· ••• SOURCE B. 

01 TYPE CF ••• 
02 SUM-CTR-l ••• SUM A, B, C. 

01 TYPE CF ••• 
02 SUM-CTR-2 ••• SUM B. 

A SUM routine is generated for each 
DETAIL report group, as follows: 

SUM-ROUTINE FOR DETAIL-l 

REPORT-SAVE 
ADD A TO SUM-CTR-l. 

REPORT-RETURN 

SUM-ROUTINE FOR DETAIL-2 

REPORT-SAVE 
ADD B TO SUM-CTR-l. 
ADD C TO SUM-CTR-l. 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 

SUM-ROUTINE FOR DETAIL-3 

REPORT-SAVE 
ADD B TO SUM-CTR-l. 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 



Exam~: This example uses the same 
coding as Example 1, with one exception: 
the UPON detail-name option is used for 
SUM-CTR-l, as follows: 

01 TYPE CF 
02 SUM-CTR~l ••• SUM A, B, C 

UPON DETAIL-2. 

The following SUM routines would then be 
generated instead of those shown in the 
previous example: 

SUM Routine for DETAIL-l 

REPORT-SAVE 
REPORT-RETURN 

SUM Routine for DETAIL-2 

REPORT-SAVE 
ADD A TO SUM-CTR-l. 
ADD B TO SUM-CTR-l. 
ADD C TO SUM-CTR-l. 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 

SUM Routine for DETAIL-3 

REPORT-SAVE 
ADD B TO SUM-CTR-2. 

REPORT-RETURN 

output Line Overlay 

The Report Writer output line is created 
using an internal REDEFINES specification, 
indexed by integer-l. No check is made to 
prevent overlay on any line. For example: 

02 COLUMN 10 PICTURE X(23) 
VALUE "MONTHLY SUPPLIES REPORT". 

02 COLUMN 12 PICTURE X(9) 
SOURCE CURRENT-MONTH. 

A length of 27 in column 10, followed by a 
specification for column 12, will cause 
field overlay when this line is printed. 

Pa~ Breaks 

The Report Writer page break routine 
operates independently of the routines that 
are executed after any control breaks 
(except that a page break will occur as the 
result of a LINE NEXT PAGE clause). Thus, 
the programmer should be aware of the 
following facts: 

1. A Control Heading is not printed after 
a Page Heading except for first 
generation. If the programmer wishes 
to have the equivalent of a Control 

Heading at the top of each page, he 
must include the information and data 
to be printed as part of the Page 
Heading. Since only one Page Heading 
may be specified for each report, he 
should be selective in considering his 
Control Heading because it will be the 
same for each page, and may be printed 
at inappropriate times (see "Control 
Footings and Page Format" in this 
chapter) • 

2. GROUP INDICATE items are printed after 
page and control breaks. Figure 53 
contains a GROUP INDICATE clause and 
illustrates the execution output. 

r-----------------------------------------, 
REPORT SECTION. 

01 DETAIL-LINE TYPE IS DETAIL LINE 
NUMBER IS PLUS 1. 
02 COLUMN IS 2 GROUP INDICATE 

PICTURE IS A(9) SOURCE IS 
MONTHNAME OF RECORD-AREA (MONTH). 

(Execution Output) 
~-----------------------------------------~ 
I JANUARY 15 AOO... I 
I A02... I 
I I 
IPURCHASES AND COST... I 
~-----------------------------------------~ 
I JANUARY 21 A03... I 
I A03... I L _________________________________________ J 

Figure 53. Sample of GROUP INDICATE Clause 
and Resultant Execution Output 

WITH CODE Clause 

When more than one report is being 
written on a file and the reports are to be 
selectively written, a unique l-character 
code must be given for each report. A 
mnemonic-name is specified in the RD-level 
entry for each report and is associated 
with the code in the Special-Names 
paragraph of the Environment Division. 

Note: If a report is written with the CODE 
option, the report should not be written 
directly on a printer device. 

This code will be written as the first 
character of each record that is written on 
the file. When the programmer wishes to 
write a report from this file, he needs 

Programming Techniques 179 



only to read a record, check the first 
character for the desired code, and have it 
printed if the desired code is found. The 
record should be printed starting from the 
third character, as illustrated in Figure 
54. 

r--------T---------T--------} I ,Control , 
, Code , Character, Record 

>"------1 
~ ______ J l _________ ~ _________ ~ _______ _ 

123 n 

Figure 54. Format of a Report Record When 
the CODE Clause is Specified 

The' following example shows how to 
create and print a report with a code of A. 
A Report Writer program contains the 
following statements: 

ENVIRONMENT DIVISION. 

SPECIAL-NAMES. A IS CODE-CHR-A 
B IS CODE-CHR-B. 

DATA DIVISION. 

REPORT SECTION. 
RD REP-FILE-A CODE CODE-CHR-A ••• 

RD REP-FILE-B CODE CODE-CHR-B ••• 

A second program could then be used to 
print only the report with the code of A, 
as follows: 

DATA DIVISION. 
FD RPT-IN-FILE 

RECORD CONTAINS 122 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS RPT-RCD. 

01 RPT-RCD. 
05 CODE-CHR 
05 PRINT-PART. 

10 
10 

PICTURE X. 

PICTURE X. 
PICTURE X(120). 

FD PRINT-FILE 
RECORD CONTAINS 121 CHARACTERS 
LABEL RECORDS ARE STANDARD 
DATA RECORD IS PRINT-REC. 

01 PRINT-REC. 
05 FILLER PICTURE X(121). 

180 

PROCEDURE DIVISION. 

LOOP. READ RPT-IN-FILE AT END 
GO TO CONTINUE. 

CONTINUE. 

IF CODE-CHR = "A" 
WRITE PRINT-REC FROM PRINT-PART 
AFTER POSITIONING CTL-CHR LINES. 
GO TO LOOP. 

Control Footings and Page Format 

Depending on the number and size of 
Control Footings (as well as the page depth 
of the report), all of the specified 
Control Footings may not be printed on the 
same page if a control break occurs for a 
high-level control. When a page condition 
is detected before all required Control 
Footings are printed, the Report writer 
will print the Page Footing (if specified), 
skip to the next page, print the Page 
Heading (if specified) and then continue to 
print Control Footings. 

If the programmer wishes all of his 
Control Footings to be printed on the same 
page, he must format his page in the 
RD-Ievel entry for the report (by setting 
the LAST DETAIL integer to a sufficiently 
low line number) to allow for the necessary 
space. 

~.' 

\.. . 



NEXT GROUP Clause 

Each time a CONTROL FOOTING report group 
with a NEXT GROUP clause is printed, the 
clause is activated only if the report 
group is associated with the control that 
causes the break. This is illustrated in 
Figure 55. 

r-----------------------------------------, 
RD EXPENSE-REPORT CONTROLS ARE FINAL, 

MONTH, DAY 

01 TYPE CONTROL FOOTING DAY 
LINE PLUS 1 NEXT GROUP 
NEXT PAGE. 

01 TYPE CONTROL FOOTING MONTH 
LINE PLUS 1 NEXT GROUP 
NEXT PAGE. 

(Execution Output) 

EXPENSE REPORT 

January 31 ••••••••• 29.30 
(Output for CF DAY) 

January total ••••• 131.40 
(Output for CF MONTH) L ________________________________________ J 

Figure 55. Activating the NEXT GROUP 
Clause 

~: The NEXT GROUP NEXT PAGE clause for 
the control Footing DAY is not activated. 

Floating First Detail 

The first presentation of a body group 
(PH, PF, CH, CF, DE) that contains a 
relative line as its first line will have 
its relative line spacing suppressed; the 
first line will be printed on either the 
value of FIRST DETAIL or INTEGER PLUS 1 of 
a NEXT GROUP clause from the preceding 
page. For example: 

1. If the following body group was the 
last to be printed on a page 

01 TYPE CF 'NEXT GROUP NEXT PAGE 

then this next body group 

01 TYPE DE LINE PLUS 5 

would be printed on value of FIRST 
DETAIL (in PAGE clause). 

2. If the following body group was the 
last to be printed on a page 

01 TYPE CF NEXT GROUP LINE 12 

and after printing, line-counter = 40, 
then this next body group 

01 TYPE DETAIL LINE PLUS 5 

would be printed on line 12 + 1 (i.e., 
line 13). 

Report Writer Routines 

At the end of the analysis of a report 
description (RD) entry, the Report writer 
routines are generated, based on the 
contents of the RD. Each routine has its 
own compiler-generated card number. 
Therefore, in the source listing, the last 
compiler-generated card number for an RD 
and that of the next source statement are 
not sequential. 

TABLE HANDLING CONSIDERATIONS 

Subscripts 

If a subscript is represented by a 
constant and if the subscripted item is of 
fixed length, the location of the 
subscripted data item within the table or 
list is resolved during compilation. 

If a subscript is represented by a 
data-name, the location is resolved at 
execution time. The most efficient format 
in this case is COMPUTATIONAL, with PICTURE 
size less than five integers. 

The value contained in a subscript is an 
integer which represents an occurrence 
number within a table. Every time a 
subscripted data-name is referenced in a 
program, the compiler generates up to 16 
instructions to calculate the correct 
displacement. Therefore, if a subscripted 
data-name is to be processed extensively, 
move the subscripted item to an 
unsubscripted work area, do all necessary 
processing, and then move the item back 
into the table. Even when subscripts are 
described as COMPUTATIONAL, subscripting 
takes time an~'core storage. 

Programming Techniques 181 



Index-names 

Index-names are compiler-generated 
items, one fullword in length, assigned 
storage in the TGT (Task Global Table). An 
index-name is defined by the INDEXED BY 
clause. The value in an index-name 
represents an actual displacement from the 
beginning of the table that corresponds to 
an occurrence number in the table. Address 
calculation for a direct index requires a 
maximum of four instructions; address 
calculation for a relative index requires a 
few more. Therefore, the use of 
index-names in referencing tables is more 
efficient than the use of subscripts. The 
use of direct indexes is faster than the 
use of relative indexes. 

Index-names can only be referenced in 
the PERFORM, SEARCH, and SET statements. 

Index Data Items 

Index data items are compiler-generated 
storage positions, one fullword in length, 
that are assigned storage within the COBOL 
program area. An index data item is 
defined by the USAGE IS INDEX clause. The 
programmer can use index data items to save 
values of index-names for later reference. 

Great care must be taken when setting 
values of index data items. Since an index 
data item is not part of any table, the 
compiler is unable to change any 
displacement value contained in an 
index-name when an index data item is set 
to the value of an index-name or another 
index data item. See the SET statement 
examples later in this chapter. 

Index data items can only be referenced 
in SEARCH and SET statements. 

OCCURS Clause 

If indexing is to be used to reference a 
table element and the Format 2 (SEARCH ALL) 
statement is also used, the KEY option must 
be specified in the OCCURS clause. A table 
element is represented by the subject of an 
OCCURS clause, and is equivalent to one 
level of a table. The table element must 
then be ordered upon the keyes) and 
data-name(s) specified. 

182 

DEPENDING ON Option 

If a data item described by an OCCURS 
clause with the DEPENDING ON data-name 
option is followed by nonsubordinate data 
items, a change in the value of data-name 
during the course of program execution will 
have the following effects: 

1. The size of any group described by or 
containing the related OCCURS clause 
will reflect the new value of 
data-name. 

2. Whenever a MOVE to a field containing 
an OCCURS clause with the DEPENDING ON 
option is executed, the MOVE is done 
-on the basis of the current contents 
of the object of the DEPENDING ON 
option. 

3. The location of any nonsubordinate 
items following the item described 
with the OCCURS clause will be 
affected by the new value of 
data-name. If the user wishes to 
preserve the contents of these items, 
the following procedure can be used: 
prior to the change in data-name, move 
all nonsubordinate items following the 
variable item to a work area; after 
the change in data-name, move all the 
items back. 

Note: The value of data-name may change 
because a move is made to it or to the 
group in which it is contained; or the 
value of data-name may change because the 
group in which it is contained is a record 
area that has been changed by execution of 
a READ statement. 

For example, assume that the Data 
Division of a program contains the 
following coding: 

01 ANYRECORD. 
05 A PICTURE S999 COMPUTATIONAL-3. 
05 TABLEA PICTURE S999 OCCURS 100 

TIMES DEPENDING ON A. 
05 GROUPB. 

Subordinate data items. 
End of record. 

GROUPB items are not subordinate to TABLEA, 
which is described by the OCCURS clause. 
Assuming that WORKB'is a work area with the 
same data structure as GROUPB, the 
following procedural coding could be used: 

MOVE GROUPB TO WORKB 

Calculate a new value of A 

MOVE WORKB TO GROUPB 

r'"', 
I 

\, -' 



The preceding statements can be avoided 
by placing the OCCURS clause with the 
DEPENDING ON option at the end of the 
record. 

Note: data-name can also change because of 
a change in the,value of an item that 
redefines it. In this case, the group size 
and the location of nonsubordinate items as 
described in the two preceding paragraphs 
cannot be determined. 

SEARCH ALL Statement 

The SEARCH ALL statement is used to 
search an entire table for an item without 
having to write a loop procedure. For 
example, a user-defined table may be the 
following: 

01 TABLE. 
05 ENTRY-IN-TABLE OCCURS 90 TIMES 

ASCENDING KEY-l,KEY-2 
DESCENDING KEY-3 
INDEXED BY INDEX-l. 
10 PART-l PICTURE 9(2). 
10 KEY-l PICTURE 9(5). 
10 PART-2 PICTURE 9(6). 
10 KEY-2 PICTURE 9(4). 
10 PART-3 PICTURE 9(33). 
10 KEY-3 PICTURE 9(5). 

A search of the entire table can be 
initiated with the following instruction: 

SEARCH ALL TABLE AT END GO TO NOENTRY 
WHEN KEY-l = VALUE-l AND KEY-2 = VALUE-2 
AND KEY-3 = VALUE-3 MOVE PART-l 
(INDEX-l) TO OUTPUT-AREA 

The preceding instructions will execute 
a search on the given array TABLE, which 
contains 90 elements of 55 bytes and 3 
keys. The primary and secondary keys 
(KEY-l and KEY-2) are in ascending order 
whereas the least significant key (KEY-3) 
is in descending order. If an entry is 
found in which the three keys are equal to 
the given values (i.e., VALUE-l, VALUE-2, 
VALUE-3), PART-l of that entry will be 
moved to OUTPUT-AREA. If matching keys are 
not found in any of the entries in TABLE, 
the NOENTRY routine is entered. 

If a match is found between a table 
entry and the given values, the index 

(INDEX-l) is set to a value corresponding 
to the relative position within the table 
of the matching entry. If no match is 
found, the index remains at the setting it 
had when execution of the SEARCH ALL 
statement began. 

Note: It is more efficient to test keys in 
order of significance (i.e., KEY-l should 
be specified before KEY-2 in the WHEN 
statement). The WHEN statement can only 
test for equality, and only one side of the 
equation may be a key. 

SET Statement 

The SET statement is used to assign 
values to index-names and to index data 
items. 

When an index-name is set to the value 
of a literal, identifier, or an index-name 
from another table element, it is set to an 
actual displacement from the beginning of 
the table that corresponds to the 
occurrence number indicated by the second 
operand in the statement. The compiler 
performs the necessary calculations. If an 
index-name is set to another index-name for 
the same table, the compiler need make no 
conversion of the actual'displacement value 
contained in the second operand. 

However, when an index data item is set 
to another index data item or to an 
index-name, or when an index-name is set to 
an index data item, the compiler is unable 
to change any displacement value it finds, 
since an index data item is not part of any 
table. Thus, no conversion of values can 
take place. Remember this to avoid making 
progra~ing errors. 

For example, suppose that a table has 
been defined as: 

01 A. 
05 B OCCURS 2 INDEXED BY Il, 15. 

10 C OCCURS 2 INDEXED BY 12, 16. 
15 D OCCURS 3 INDEXED BY 13, 14. 

20 EPIC X ( 20) • ' 
20 F PIC 9(5). 

The table appears in core storage as 
shown in Figure 56. 

Programming Techniques 183 



r---------------------------------------------------------------------------------------, 

'D (1, 1, 

)D C (1, 1) (1, 1, 

tD (1, 1, 
B (1) 

~: 
(1, 2, 

C (1, 2) (1, 2, 

,D ~1, 2, 
A 

I: 
(2, 1, 

C ( 2, 1) ( 2, 1, 

(2, 1, 
B (2) 

F 
( 2, 2, 

C (2, 2) (2, 2, 

, D ( 2, 2, 

Figure 56. Table structure in Core storage 

Suppose that a reference to D (2, 2, 3) 
is necessary. The following method is 
incorrect: 

SET 13 TO 2. 
SET INDX-DATA-ITM TO 13. 
SET 13 UP BY 1. 
SET 12, Il TO INDX-DATA-ITM. 
MOVE D (Il, 12, 13) TO WORKAREA. 

The value contained in 13 after the first 
SET statement is 25, ·which represents the 
beginning point of the second occurrence of 
D. When the second SET statement is 
executed, the'value 25 is placed in 
INDX-DATA-ITM, and the fourth SET statement 
moves the value 25 into 12 and Il. The 
third SET statement increases. the value in 
13 to 50. The calculation for the address 
D (Il, 12, 13~ would then be as follows: 

(address of D (1, 1, 1» + 25 + 25 + 50 
= (address ,of D (1, 1, 1» + 100 

This is not the address of D (2, 2, 3). 

184 

1) 

2) 

3) 

1) 

2) 

3) 

1) 

2) 

3) 

1) 

2) 

3) 

r--------------------T-----' 
I E I F I 
~--------------------t-----~ 
I E I F I 
~--------------------t-----i 
I E I F I 
~--------------------t-----~ 
I E I F I 
~--------------------t-----i 
I E I F I 
~--------------------t-----~ 
I E I F I 
~--------------------t-----i 
I E I F I 
~--------------------t-----i 
I E I F I 
~--------------------+-----i 
I E I F I 
~--------------------t-----~ 
I E I F I 
~--------------------+-----i 
I E I F I 
~--------------------t-----i 
I E I F I l ____________________ ~ _____ J 

The following method will find the 
correct address: 

SET 13 TO 2. 
SET 12, Il TO 13. 
SET 13 UP BY 1. 

Byte 
0 

25 

50 

75 

100 

125 

150 

175 

200 

225 

250 

275 

300 

In this case, the first SET statement 
places the value 25 in 13. Since the 
compiler is able to calculate the lengths 
of Band C, the second SET statement places 
the value 75 in 12, and the value 150 in 
Il. The third SET statement places the 
value 50 in 13. The correct address 
calculation will be: 

(address of D (1, 1, 1» + 150 + 75 + 50 
= (address of D (1, 1, 1» + 275 

The rules for the SET statement are 
shown in Table 25. 

Use care when setting the value of 
index-names associated with tables 
described as OCCURS DEPENDING ON. If the 
table entry length is changed, the value 
contained within the index-name will become 
invalid unless a new SET statement corrects 
it. 

--- ---- - - --~~~ 

"'----...., 
( 

I, 
\. 



",- . , 
( ) 
"--~ 

Table 25. Rules for the SET Statement 
r-----------------T----------------------T---------------------.-----------------------, 
I Sending I I I I 
I Receiving 1 Index-name 1 Index data item I Identifier or Literal I 

r-----------------t----------------------t---------------------t-----------------------~ 
I Index-name I Set to value I Move without I Set to value corre- I 
I I corresponding to I conversion I sponding to occurrence I 
I I occurrence nurnber1 I I number I 

~------------------t----------------------t---------------------t-----------------------~ 
I Index data item I Move without I Move without I Illegal I 
I I conversion I conversion I I 

~------------------+----------------------t---------------------t-----------------------~ 
I Identifier I Set to occurrence I Illegal I Illegal I 
I I number represented I I I 
I I by index-name I I I 

~------------------~----------------------~---------------------~----------------------~ 
11If index-names refer to the same table element, move without conversion. I L _______________________________________________________________________________________ J 

SEARCH Statement 

Only one level of a table (a table 
element) can be referenced with one SEARCH 
statement. Note that SEARCH statements 
cannot be nested, since an 
imperative-statement must follow the WHEN 
condition, and the SEARCH statement is 
itself conditional. 

To write a series of statements that 
will search the 3-dimensional table defined 
in the discussion of the SET statement, the 
programmer could write: 

77 COMPARANDl PIC X(5). 
77 COMPARAND2 PIC 9(5). 

01 A. 
02 B OCCURS 2 INDEXED BY 11 IS. 

03 C OCCURS 2 INDEXED BY 12 16. 
04 D OCCURS 3 INDEXED BY 13 14. 

05 E PI C X ( 5) • 
05 F PIC 9 ( 5) • 

(Initialize COMPARANDl and COMPARAND2) 

PERFORM SEARCH-TESTl THRU SEARCH-EXITl 
VARYING 11 FROM 1 BY 1 UNTIL 12 IS 
GREATER THAN 2. 

ENTRY-NOENTRY1. 
GO TO ERROR-RECOVERY1. 

SEARCH-TEST1. 
SET 13 TO 1. 
SEARCH D WHEN E (11, 12, 13) 

COMPARANDl AND F (11, 12, 13) 
COMPARAND2 

SET IS TO 11 
SET 16 TO 12 
SET 12 TO 3 
SET 11 TO 3 
ALTER ENTRY-NOENTRYl TO PROCEED 

TO ENTRY-PROCESSING1. 
SEARCH-EXIT1. EXIT. 

ERROR-RECOVERY1. 

ENTRY-PROCESSING1. 
MOVE E (IS, 16, 13) TO OUTAREA1. 
MOVE F (IS, 16, 13) TO OUTAREA2. 

The PERFORM statement varies the indexes 
(11 and 12) associated with table elements 
Band C; the SEARCH statement varies index 
13 associated with table element D. 

The values of 11 and 12 that satisfy the 
WHEN conditions of the SEARCH statement are 
saved in IS and 16. 11 and 12 are then 
both set to 3, so that upon return from the 
SEARCH statement, control will fall through 
the PERFORM statement to the GO TO 
sta tement. 

Subsequent references to the desired 
occurrence of table elements E and F make 
use of the index-names IS and 16 in which 
the correct value was saved. 

Format 1 SEARCH statements perform a 
serial search of a table. If it is certain 
that the "found" condition is beyond some 
intermediate point in the table, the 

programming Techniques 185 



index-names can 'be set at that point and 
only that part of the table be searched; 
this speeds up execution. If the table is 
large and must be searched from the first 
occurrence to the last, Format 2 (SEARCH 
ALL) is more efficient than Format 1, since 
it uses a binary search technique; however, 
the table must then be ordered. 

In Format 1, the VARYING option allows 
the programmer to: 

• Vary an index-name other than the first 
inaex-name statea ior this taole 
element. Thus, with two SEARCH 
statements, each using a different 
index-name, more than one value can be 
referenced in the same table element 
for comparisons, etc. 

• Vary an index-name from another table 
element. In this case, the first 
index-name specified for this table is 
used for the SEARCH, and the index-name 
specified in the VARYING option is 
incremented at the same time. Thus, 
the programmer can search two table 
elements at once. 

In Format 1, the WHEN condition can be 
any relation condition and there can be 
more than one. If multiple WHEN conditions 
are stated, the implied logical connective 
is OR -- that is, if anyone of the WHEN 
conditions is satisfied, the imperative
statement following the WHEN condition is 
executed. If all conditions are to be 
satisfied before exiting from the SEARCH, 
the' compound WHEN condition with AND as the 
logical connective must be written. 

In Format 2, the SEARCH ALL statement, 
the table must be ordered on the key(s) 
specified in the OCCURS clause. Any key 
may be specified in the WHEN condition, but 
all preceding data-names in the KEY option 
must also be tested. The test must be an 
"equal to" (=) condition, and the KEY 

186 

data-name must be either the subject or 
object of the condition, or the name of a 
conditional variable with which the tested 
condition-name is associated. The WHEN 
condition can also be a compound condition, 
formed from one of the simple conditions 
listed above, with AND as the only logical 
connective. The KEY data item and the item 
with which it is compared must be 
compatible, as given in the rules of the 
relation test. 

Compilation is faster if keys are tested 
in toe ~~Ctt statement 1n tne same order 
as they appear in the KEY option. 

Note that if KEY entries within the 
table do not contain valid values, then the 
results of the binary search will be 
unpredictable. 

Building Tables 

When reading in data to build an 
internal table: 

1. Check to make sure the data does not 
exceed the space allocated for the 
table. 

2. If the data must be in sequence, check 
the sequence. 

3. If the data contains the subscript 
that determines its position in the 
table, check the subscript for a valid 
range. 

When testing for the end of a table, use 
a named value giving the item count, rather 
than using a literal. Then, if the table 
must be expanded, only one value need be 
changed, instead of all references to a 
literal. 

c 



(J 

APPENDIX A: SAMPLE PROGRAM OUTPUT 

The following is a sample COBOL program 
and the output listing resulting from its 
compilation, linkage editing, and 
execution. The program creates a blocked, 
labeled, standard sequential file, writes 
it out on tape, and then reads it back in. 
It also does a check on the field called 
No-OF-DEPENDENTS. All data records in the 
file are displayed. Those with a zero in 
the No-OF-DEPENDENTS field are displayed 
with the special character Z. The records 

of the file are not altered from the time 
of creation, despite the fact that the 
No-OF-DEPENDENTS field is changed for 
display purposes. The individual records 
of the file are created using the 
subscripting technique. TRACE is used as a 
debugging aid during program execution. 

The output formats illu~trated in the 
listing are described in the chapter 
"Interpreting Output." 

1/ JOB SAMPLE 00.41.14 
/1 OPTICN NODECK,LINK.LIST,LISTX,SYM,ERRS 

PHASE TEST,* 
II EXEC FCOBOL 

CBL eUOTE 

OOCCI 
00002 
COCC3 
00C04 
00C05 
00C06 
00001 
00008 
00009 
00010 
00011 
00012 
0001.3 
00C14 
00015 
00016 
00011 
00018 
OCC19 
00C20 
00021 
00C22 
00023 
00024 
00C25 
00026 
00021 
00C28 
00029 
CC030 
00021 
00032 
00033 
00034 
00035 
00036 
00C31 

000010 
000020 
OC0030 
000040 
000050 
000060 
000010 
C00080 
000C90 
00010C 
OCC110 
000120 
000130 
OC0140 
000150 
000160 
OC0110 
000180 
000190 
C002CO 
000210 
OC0220 
000230 
000240 
CC025C 
000255 
000260 
C0027C 
000280 
000290 
OC0300 
000310 
000320 
000330 
C00340 
000350 
000360 

IDENTIFICATION DIVISION. 
PROGRAM-ID. TESTRUN. 

AUTHOR. PROGRAMMER NAME. 
INSTALLATION. NEW YORK PROGRAMMING CENTER. 
DATE-WRITTEN. SEPTEMBER 10, 1968. 

DATE-COMPILED. C6/20/69 
REMARKS. THIS PROGRAM HAS 8EEN WRITTEN AS A SAMPLE PROGRAM FOR 

COBOL USERS. IT CREATES AN OUTPUT FILE AND READS IT BACK AS 
INPUT. 

ENVIRONMENT DIVISION. 
CONFIGURATION SECTION. 
SOURCE-COMPUTER. I8M-360-H50. 
OBJECT-COMPUTER. IeM-360-H50. 
INPUT-OUTPUT SECTION. 
FILE-CCNTROL. 

SELECT FILE-1 ASSIGN TO SYS008-UT-2400-S. 
SELECT FILE-2 ASSIGN TO SYS008-UT-2400-S. 

DATA DIVISION. 
FILE SECTION. 
FD FILE-1 

LABEL RECORDS ARE STANDARD 
BLeCK CONTAINS 5 RECORDS 
RECORDING MODE IS F 
RECORD CONTAINS 20 CHARACTERS 
DATA RECORD IS RECORD-I. 

01 RECORD-I. 
05 FIELD-A PIC X(20). 

FD FILE-2 
LABEL RECORDS ARE STANDARD 

BLOCK CO~T~INS 5 RECORDS 
RECORD CONTAINS 20 CHARACTERS 
RECORDING MOCE IS F 
D~TA RECORC IS RECORD-2. 

01 RECORD-2. 
05 FIELD-A PIC X(20). 

Appendix A: Sample Progra~ Output 187 



00C3E 
0003<; 
00C4C 
00041 
00042 
00043 
00044 
00045 
COC4(: 
00047 
00C48 
0004<; 
0005C 
OC051 
00052 
OQ053 
OdOI:.Lj 

I -

OO\~55 
00u56 
00057 
00058 
00C5S 
00C60 
00061 
00C62 
000(:3 
000t4 
000(:5 
000(:,6 
00067 
00068 
OOC(:<; 
00070 
00071 
00072 
00073 
00074 
00075 
00076 
00077 
00078 
C0079 
oooec 

188 

CCC37C 
000380 
CC0390 
000400 
000410 
000420 
OCC430 
000440 
0(045C 
OC0460 
000470 
OC0480 
000490 
000500 
OC051C 
000520 
OCC53C 
000540 
OC055C 
OC0560 
000570 
000580 
000590 
0006CC 
00061C 
OC062C 
0(063C 
CC064C 
OC0650 
CC066C 
000670 
OC0680 
OC06<;C 
000700 
CC071C 
000720 
000730 
C0074C 
000750 
000760 
000770 
00078C 
C C07 SC 

WORKING-STCRAGE SECTION. 
01 FILLER. 

02 COUNT PIC S99 COMP SYNC. 
02 ALPHABET FIC X(26:J VALUE IS·"ABCDEFGHIJKLt-1N!1PQRSTUVWXYZ". 
02 ~LPHA REDEFINES ALPrlABET PIC X OCCURS 26 TI~ES. 
02 NU~BR PIC S99 LOMP SYNC. 
C2 DEPENDENTS PIC X(26) VALUE "01234012340123401234012340". 
02 DEPEND REDEFINES DEPENDENTS PIC X OCCURS 26 TIMES. 

Cl hCRK-RECCRD. 
05 NAME-FIELD PIC X. 
05 FILLER PIC X. 
C5 RECORD-NO PIC 9999. 
C5 FILLER PIC X VALUE IS SPACE. 
05 LOCATICN PIC AAA VALUE: IS "NYC". 
C5 FILLER PIC X VALUE IS SPACE. 
05 NO-OF-DEPENDENTS PIC XX. 
C5 FILLER PIC X(7) VALUE IS SPACES. 

PROCEDURE DIVISI(~. 

BEGIN. REACY TRACE. 
NOTE THAT THE FCLLOWING OPENS T~E OUTPUT FILE TO BE CREATED 
AND INITIALIZES COUNTERS. 

STEP-I. OPEN OUTPUT FILE-I. MOVE ZERO TO COUNT, NUMBR. 
NOTE THAT THE FOLLUWING CRcAfES I~TERNALLy THE RECORDS TO BE 
CONTAINEC IN T~E FILE, wRITES THEM ON TAPE, AND DISPLAYS 
THEM ON THE CCNSCLE. 

STEP-2. ~DC 1 TO COU~T. NUM8R. MOVE ALPHA (COUNT) TO 
NAME-FIELD. 
MOVE DEPENC (COUNT) TO NO-OF-DEPENDENTS. 
MO~E NUMBR TO RECORD-NO. 

STEP-3. DISPLAY WORK-RECOKD UPUN CONSOLE. WRITE RECORD-l FROM 
WCRK-RECCRC. 

STEP-4. PERFORM STEP-2 THRU STEP-3 UNTIL COUNT IS EQUAL TO 26. 
NOTE THAT THE FOLLOWING CLOSES THE OUTPUT FILE AND REOPENS 
IT AS INPUT. 

STEP-5. CLOSE FILE-I. OPEN INPUT FILE-2. 
NOTE THAT THE FOLLOWING READS BACK THE FILE AND SINGLES 
Oll EMPLOYEES WITH NO DtPENDENTS. 

STEP-6. RE~D fILE-2 RECORD INTO wORK-RECORD AT END GO TO STEP-8. 
STEP-7. IF NO-oF-CEPENDENTS IS E~UAL TO "0" MOVE "Z" TO 

NO-Of-DEPENDENTS. EXHIBIT NAMED WORK-RECORD. GO TO STEP-6. 
STEP-8. CLCSE FILE-2. 

STOp RUN. 

r 
\ 
,_ ...... .1 

c 



lNTRNL NAME LVL SOURCE NAME BASE DISPL INTRNL NAME DEFINITION USAGE R 0 Q M r,; DNH=1-148 FD fILE-l DTF=OI DNM=1-14P DTFMT F 
DNM=I-178 01 RECORD-l BL=l oeo DNM=1-178 OS OCL20 G~OUP 

-_/ DNM=1-199 02 FI ELD-A BL=l 000 DNM= 1-199 oS 20C DISP 
DNM= l-2H FD FILE-2 DTF=02 DNM=1-2l6 DTFMT F 

DNM=1-246 01 RECORD-2 BL=2 oeo DNM=I-246 OS OCL20 GQ,OUP 
ONM=I-267 C2 FIELD-A BL=2 000 DNM=1-267 OS 20C DISP 
DNM= 1-28 7 01 FILLER BL=3 000 DNM= 1-2 87 oS OCL56 GQ,OUP 
ONM=1-306 02 COUNT BL=3 000 ONM=I-306 DS IH C8MP 
DNM= 1-321 ct AL PHAB ET BL=3 002 DN",= 1-321 OS 26C OISP 
DNM=1-339 C2 ALPHA BL=3 002 DNM=1-339 OS lC DISP R a 
DNM=I-357 02 NUM8R BL=3 OlC DNM=1-357 OS IH COMP 
DNM=1-372 C2 DEPENDENTS BL=3 OlE DNM=1-372 DS 26C DISP 
DNM=I-392 02 DEPEND BL=3 OlE DNM=1-392 DS lC DISP R 0 
DNM=I-408 01 WORK-RECORD 8L=3 038 DNM=1-408 OS OCL20 GQ,OUP 
DNM= 1-432 02 NAME-FIELD BL=3 038 DNM=I-432 DS lC DIS P 
DNM=I-452 02 FILLER BL=3 039 DNM= 1-452 DS lC DISP 
DNM=I-471 02 RECORD-NO BL=3 03A DNM= 1-471 DS 4(, OISP-f\IM 
DNM=1-490 02 FILLER BL=3 03E DNM=1-490 DS lC DISP 
DNM=2-000 02 LOCATION 8L=3 03F DNM= 2-000 DS 3C OISP 
DNM=2-0lE C2 FILLER BL=3 042 ONM=2-0l8 OS lC DISP 
DNM=2-037 02 NO-OF-DEPENDENTS Bl=3 043 DNM=2-037 os 2C DISP 
DNM=2-063 02 FlLLER BL=3 045 DNM= 2-063 OS 7C DISP 

o 
Appendix A: Sample Program output 189 



MEMORY MAP 

TGT 

SAVE AREA 
SWITCH 
TALLY 
SORT SAVE 
ENTRY-SAVE 
SORT CORE SIZE 
NSTD-REElS 
SORT RET 
kORKING CELLS 
SORT FILE SIZE 
SORT MODE SIZE 
PG T-VN Tel 
TGT-VN TBL 
SORT"B ADDRESS 
LENGTH OF VN TBL 
LNGTH OF SORTAB 
PGM 10 
ACINITU 
UPS I SWITCHES 
OVERFLOW CELLS 
eL CELLS 
OTFACR CEllS 
TEMP STORAGE 
TEMP STORAGE-2 
TEMP STORAGE-3 
TEMP STORAGE-4 
ell CELLS 
VLC CELLS 
SBL CELLS 
INDEX CELLS 
SUBADR CELLS 
(NCTl CELLS 
PFfJCTL CELLS 
PFMSAV CELLS 
VN CELLS 
SAVE AREA =2 
XSASW CELLS 
XSA CELLS 
PAR AM CELLS 
RPTSAV AREA 
CHECKPT CTR 
IOPTR CELLS 

003F 0 

003FO 
00438 
0043C 
00440 
00444 
00448 
0044C 
0044E 
00450 
00580 
00584 
00588 
0058C 
00590 
00594 
00596 
00598 
005AO 
005A4 
005AC 
005AC 
005B8 
005CO 
D05C 8 
005C8 
005C 8 
005C8 
005ec 
005CC 
005ec 
005CC 
00504 
00504 
00504 
00508 
0050C 
005DC 
0050C 
005DC 
005EO 
005EO 
005EO 

LITERAL POOL (HEX) 

o O·l: 2 8 (LI T + C) 
00640 (L IT+24) 

COC00001 001A5B5B C20607C5 D5405B5B C2C3D3C6 E2C55B5B 
C2C6C3D4 E4D3FCE9 COOOOOOO 

DISPLAY LITERALS (BCD) 

b064C (LTL+36) 

190 

'WORK-RECORD' 

PGT 

OVERFLOW CELLS 
VIRTL'Al CELLS 
PROCEDURE NA~E CEllS 
GENERATEC NAME CELLS 
SUBDTF ADDRESS CELLS 
VNI CELLS 
LITERALS 
DISPLAY LITERALS 

005E8 

005E8 
Ou5E8 
005F4 
00608 
00620 
00620 
00628 
0064C 



.REGISTER ~SSIGNMENT 

Cj REG 6 BL =3 
REG 7 BL =1 
REG 8 BL =2 

57 000658 START EQU * 000658 58 FO C 004 L 15,004(0,12) V(ILBDDSPO) 
00065C 05 IF BALR 1,15 
00065E COO140 DC X'OC0140' 
000661 0'4F5F7404040 DC X'04F5F1404040' 

57 000668 C;6 40 D 048 CI 048(13),X'40' SWT+O 
60 00066C 58 FO C 004 L 15,C04(0,12) V(ILBDOSPO) 

000670 05 IF BALR 1,15 
COC612 CC014C DC X'000140' 
000615 04F6F0404040 DC X' 04F6F0404040' 

60 00067C 41 10 C 046 LA 1,046(0,12) LIT+6 
000680 58 CO 0 lC8 L 0,lC8(0,13) DTF=l 
000684 18 40 LR 4,0 
000l:86 (5 FO BALR 15, O' 
000688 50 00 F 008 ST 0,008(0,15) 
00068C 45 00 F OOC BAL 0,00C(0,15) 
00069C CCCCCOOC DC X'OOOOOOOO' 
000694 OA 02 SVC 2 
000696 41 00 0 lC8 LA 0,1C8(0,13) DTF= 1 
00069~ 58 FO C 008 L 15,008(0,12) V ( I LBOIMLO ) 
00069 E 05 EF BALR 14,15 
OCC6AC 58 10 D lC8 L 1,lC8(0,13) OTF= 1 
0006A4 96 10 1 020 01 020(1),X'10' 
0006A8 50 20 0 1BC ST 2,lBC(0,13) BL = 1 
OCC6AC 58 7C 0 1BC L 7,1 BC CO, 13) BL = 1 

60 0006BO 02 01 6 000 C 040 MVC 000(2,6),040(12) ONM=1-306 LIT+O 
0006B6 02 01 6 OlC C 040 MVC 01C(2,6),040(12) ONM=1-357 LIT+O 

64 0006BC PN=Ol EQU * 0006BC 58 FC C 004 L 15,004(0,12) V(ILBOOSPO) 
0006CC C5 IF BALR 1,15 
0006C2 000140 DC X'OC0140' 
0006C5 C4F6F440't040 DC X'04F6F4404040' 

6,4 0006CC 48 30 C 042 LH 3,042(0,12) L IT+2 \ 
\ 0006DO 4A 3C 6 000 AH 3,000(0,6) DNM=1-306 I 000604 4E 3C DIDO CVO 3,100(0,13) TS=O 1 "- -- ~ 

I 
OC060 8 01 05 0 100 o 100 XC 1 DO ( 6 , 13) ,1 DO ( 13 ) TS=Ol TS=Ol 
0006DE 94 OF D 106 NI 106(13),X'OF' TS=01+6 
OC06E2 4F 30 0 100 CVB 3 , 1 DO ( 0 , 13 ) TS=O 1 
0006E6 40 30 6 000 STH 3,000(0,61 ONM=1-306 
0006EA 48 30 C 042 LH 3,042(0,12) L"I T+2 
00C6EE 4A 30 6 OlC AH 3,01C(0,6) ONM=1-357 
0006F2 4E 30 0 100 CVO 3,100(0,13) TS=Ol 
OCC6F6 07 05 0 100 o 100 XC 100(6,13),100(13) TS=01 TS=01 

Appendix A: Sample Program Output 191 



0006FC 94 OF 0 lOb N1 106(13),X'OF' TS=01+6 
OC0100 4F 3C 0 100 CVB 3,100(0,13) TS=Ol 
000104 40 3C 6 OlC STH 3,01C(0,6) ONM=1-351 ,~ 

64 CC0108 41 40 6 002 LA 4,002(0,6) ONM=1-339 
I" 

00010C 48 2C 6 000 LH 2,000(0,6) ONM=1-306 
OC0110 4C 20 C 042 MH 2,042(0,12) L IT+2 
oe0114 1A 42 AR 4,2 
000116 5B 40 C 040 S 4,040(0,12) LIT+O 
OC011A 50 4C 0 lDC ST 4,10C(0,13) SBS= 1 
00011E 58 EC 0 lDC L 14,1OC(0,13) SBS=l 
000122 02 00 6 038 E 000 MVC 038( 1,6),000(14) ONM=1-432 I)Nt-1=1-339 

66 000128 41 4C 6 OlE LA 4,OlE(0,6) ONM=1-392 
00012C 48 20 6 000 LH 2,000(0,6) ONM=1-306 
000130 4C 20 C 042 MH 2,042(0,12) LIT+2 
000134 1A 42 AR 4,2 
000736 58 4C C 040 S 4,040(0,12) LI T+O 
00013A 50 4C OlEO ST 4,lEO(0,13) SBS=2 
OC073E 58 EC OlEO L 14,lEO(0,13) SBS=2 
000142 02 00 6 043 E 000 /l,VC 043(1,6),000(14) ONM=2-31 1)NM=1-392 
ce0148 <;2 4C 6 044 tl,V1 044(6),X'40' ONM=2-37+1 

61 00014C 48 3C 6 01C LH 3,C1C(0,6) ONM=1-357 
OC0150 4E 30 o 100 CVO 3,100(0,13) TS=Ol 
ceC754 F3 31 6 03A o ll)6 UNPK 03A(4,6) ,106(2,13) DNM=1-471 TS=OI 
00015A 96 FO 6 030 01 03D(6),X'FO' DNM=1-471+3 

68 00015E 58 FC C 004 L 15,004(0,12) V( ILBDoSPO) 
000162 05 IF BALR 1,15 
000164 000140 DC X'000140' 
000761 C4F6F 8404040 DC X'04F6F8404040' 

68 00076E 58 FC C 004 L 15,004(0,12) V( ILBoDSPO) 
000772 05 IF BALR 1,15 
000714 0002 DC X'0002' 
000176 00 DC X'OQ' 
OC0111 000014 DC X'000014' 
00011A coecC1C4 DC X'000OOlC4' BL =3 
00017E OC38 DC X'0038' 
CC0180 FFFF DC X'FFFF' 

68 000782 02 13 1 000 6 038 MVC 000(20,7),038(6) ONM=1-178 ONM=1-408 
000188 58 10 0 lC8 L 1,IC8(0,13) OTF=1 
00018C 18 41 LR 4,1 
00078E 58 FO 1 010 L 15,01C(0,1l 
000792 45 EO F OOC BAL 14,COC(0,15) ('""'\ 000196 50 20 o 1BC ST 2,1RC(O,13) BL = 1 
00019A 58 10 C laC L 7,lBC(0,13) BL =1 \ 
00079E GN=OI EQU * OCC19E 58 10 0 1E8 L 1,1E8(O,13) VN=Ol 
0001A2 07 F1 BCR 15,1 

10 CC07A4 PN=02 EQU * 0001A4 58 FC C 004 L 15,C04(0,12) V(ILBOOSPO) 
CC07A8 05 IF BALR 1,15 
OC07AA 000140 DC X'000140' 
0001AC 04F7F04C4040 DC X' 04F7F0404040' 

70 0001B4 58 CC 0 lE8 L 0,lE8(0,13) VN=Ol 
OC01B8 50 ce D 1E4 ST 0,lE4(O,13) PSV=l 
00018C 58 00 C 024 L 0,024(0,12) GN=02 
oeC1CC 50 CC D lE8 ST 0, lE8 (0,13) VN=Ol 
0007C4 GN=02 EOU * 
oe01C4 48 3C 6 000 LH 3,COO(0,6) ONM=l-306 
0001C8 49 30 C 044 CH 3,044(0,12) L IT+4 
0001CC 58 FO C 028 L 15,028(0,12) GN=03 
0001DC e1 8F eCR 8,15 

192 



0001 02 58 1C C DOC L 1,OCC(0,12) PN=Ol 

r- eOC106 01 F1 BCR 15,1 
\ 000108 GN=03 ECU * ) 

'--/ 000708 58 oe 0 lE4 L 0,1E4(0,13) PSV=l 
oeC70C 50 ec 0 lE8 ST 0,lE8(0,13) VN=Ol 

13 0001EO 58 Fe C 004 L 15,C04(0,12) V(ILBDDSPO) 
0001E4 05 1F BALR 1,15 
0007Ei: COO14C DC X'000140' 
0001E9 04F1F3404040 DC X'04F7F3404040' 

13 OC01F C 58 1C 0 lC8 L 1,1C8(0,13) OTF=l 
0007F4 94 EF 1 020 NI 020(1I,X'EF' 
0007F8 18 C1 LR 0,1 
0007FA 18 4C LR 4,0 
0001FC 41 1C C 04E LA 1,04E(0,12) LI T+14 
cce8CC C1 CC BCR 0,0 
CC0802 C5 FC BALR 15,0 
000804 50 CC F OOti ST 0,008(0,15) 
CCC8C8 45 OC F DOC BAL 0,00C(0,15) 
00080C CCCCCOOO DC X'ocoooooo' 
000810 OA 02 SVC 2 
OCC812 58 ec D lca L 0,1C8(0,13) OTF= 1 
000816 41 10 C 050 LA 1,056(0,12) LI T+22 
00081A OA 02 svc 2 

13 0008lC 41 1 C C 046 LA 1,046(0,12) L IT+6 
000820 58 CC C lCC L 0,lCC(0,13) DTF=2 
000824 18 4C LR 4,0 
000826 05 FC BALR 15,0 
000828 5C CC F 008 ST 0,008(0,15) 
00082C 45CCFOOC SAL 0,00C(0,15) 
000830 cecccooo DC X'ooocoooo' 
00C834 CA C2 SVC 2 
OCC83i: 41 CC 0 lee LA 0,lCC(0,13) OTF=2 
00083A 58 FC C 008 L 15,COE(0,12) V(ILBDIMLO) 
CC083E 05 EF BALR 14,15 
00084C 58 10 0 lCC L 1,1CC(0,13) DTF=2 
000844 136 10 1 020 01 020(1I,X'10' 

16 OCC848 PN=03 EC:U * 000848 58 FC C 004 L 15,004(0,12) V(ILBDDSPO) 
OC084C 05 1F BALR 1,15 
00C84E OC0140 DC X'000140' 

( \, COC851 04F7 F64C4u40 DC X'04F7F6404040' 
\.. 16 OC085E 58 1C D 1CC L 1,lCC(Q,13) OTF=2 \. . . 00085C 58 FC C 02C L 15,02C(0,12) GN=04 v'./ 

OC0860 <;1 20 1 010 HI 010 ( 1) , X ' 20 ' 
000864 07 1F BCR 1,15 
000866 18 41 LP 4,1 
000E68 41 FC C 02C LA 15,02C(0,12) GN=04 
00086C D2 C2 1 025 FOOL tlVC 025(3,1) ,001(15) 
000812 58 FO 1 010 L 15, C1C( 0, 1) 
CCC876 45 EC F 008 BAL 14,008(0,15) 
00081A 50 20 0 lCO ST 2,lCO(0,13) BL =2 
00C81E 58 80 D lCO L 8,1CO(0,13) BL =2 
CCC882 D2 13 6 038 a 000 MVC 038(20,6),000(8) DNM=1-408 ON~=1-746 

000888 58 FO C 018 L 15,C18(0,12) PN=04 
OC088C 01 FF BCR 15,15 

76 00088E GN=04 ECU * 000a8E 58 1C C Gle L 1,01C(0,12) PN=05 
COCa'i2 C7 F1 BCR 15,1 

11 OCC894 PN=04 ECU * 000894 58 FC C 004 L 15,C04(0,12) V( lLBDDSPO) 

Appendix A: Sample Program output 193 



OCC898 05 IF BALR 1,15 (-"" 
OCC8<.;A CCC14C DC X'000140' 
OCC890 04F7F7404040 DC X' 04F7F7404040' \ 

" .' 

77 0008A4 58 1 C C 034 L 1,C34(0,12) GN=06 
CCC8A8 58 2C C 030 L 2,030(0,12) GN=05 
0008AC 05 00 C 05E 6 043 CLC C5E(l,12) ,043(6) LI T+30 f)NM=2-37 
0008B2 07 72 BCR 7,2 
0008B4 95 4C 6 044 CLI 044(6),X'40' DNM=2-37+1 
0008B8 07 72 BCR 7,2 

77 CC08BA GN=06 ECU * 0008BA D2 CO 6 043 C 05F tJVC 043{l ,6) ,05F(I2) DNM=2-37 LIT+31 
oe08CO 92 40 6 044 MVI 044(6),X'40' ONM=2-37+1 

78 COC8C4 GN=05 ECU * 0008C4 58 1C C 060 L 1,060(0,12) LI T+32 
OC08C8 50 10 0 1EC ST 1,lEC(0,13) pRM= 1 () 

OC08CC 41 20 0 1EC LA 2,lEC(0,13) PRM=l 
000800 58 FC C 004 L 15,004(Otl2) V(ILBDDSPO) 
000804 C5 IF BALR 1,15 
OCC806 8001 DC X'8001' 
OC0808 10 DC X'lO' 
OCC809 CCOOOB CC x, boooo B' 
0008DC CCCOO064 DC x'ccce0064' LIT+36 
OCC8EO 0000 DC X'OOOO' 
OCC8E2 00 DC X'OO' 
0008E3 000014 DC X'000C14' 
OCC8E6 ODCOC1C4 DC X'ODOO01C4' BL =3 
0008EA CC38 DC X' OC3 8' 
0008 EC FFFF DC X'FFFF' 

78 00C8EE 58 1C C 014 L 1,014(Od2) PN=03 
0008F2 07 F1 BCR 15,1 

79 0008F4 PN=05 ECU * 0008F4 58 FC C 004 L 15,004(0,12) V( IlBDOSPO) 
0008F8 05 IF BALR 1,15 
OCC8FA OC0140 CC X'000140' 
00C8FC C4F7F~4C4040 DC X, 04F7FS404040' 

79 OC0904 58 10 0 ICC L 1,lCC(0,13) DTF=2 
CC0908 94 EF 1 020 NI 020(l),X'EF' 
00090C 18 01 LR 0,1 
00090E 18 4C LR 4,0 
OC0910 41 10 C 04E LA 1,04E(0,12) LIT+14 (-""'\, 
000914 07 CO BCR 0,0 I 

OCC916 C5 FC B~lR 15,0 
I, t 

" v 

000918 5C CC F 008 ST 0,008(0,151 
00091C 45 oe F OOC B~L 0,00C(0,151 
cceS2C CCOCCOOO DC X'OOOOOOOO' 
000924 OA 02 SVC 2 
000926 58 CC C ICC l 0,lCC(0,13) DTF=2 
00092A 41 1C C 056 LA 1,056(0,12) L IT+22 
0OO92E O~ 02 SVC 2 

80 00C~3C OA CE SVC 14 
OCC932 CA CE SVC 14 
OC0934 50 DC 5 008 I NIT2 ST 13,008(0,5) 
OC0938 50 5C D 004 ST 5,004(0,13) 
OCO<';3C 58 2C C 000 L 2,000(0,12) VIR=l 
OC0940 95 00 2 000 CLI 000(2),X'OO' 
000<;44 C7 7<; BCR 7,9 
000946 <';2 FF 2 000 MVI 000(2),X'FF' 
C0094~ C;6 10 o 048 CI 048(13),X'10' SWT+O 
CCC94E 50 EC o 054 I NI T3 ST 14,054(0,13) 
000952 C5 FO BALR 15, C 

194 



OC0954 91 20 0 048 TM 048(13) ,X'20' 5WT+0 

0 
OC0958 47 EO F G16 BC 14,016(0,15) 
CCC95C 58 CC B 048 L 0,048 (0,11) 
OC0960 98 2C B 050 LM 2,13, e50( 11) 
COO<364 58 EC 0 054 L 14,054(0,13) 
000968 C7 FE BCR 15,14 
00096A 96 20 C 04d CI 048( 13), X' 20' 5WT+0 
00096E 41 6C 0 004 LA 6,004(0,0) 
000972 41 10 C OOC LA 1,00C(0,12) PN=OI 
000976 41 7C C 040 LA 7,040(0,12) L IT+o 
OC097A u; 7C 8CTR 7,0 
00097C 05 50 BALR 5,0 
00097E 58 4C 000 L 4,000(0,1) 
CC0982 IE 4B ALR 4,11 
000984 50 4C 1 000 5T 4,COO(0,1) 
eCC988 87 16 5 000 BXLE 1,6,000(5) 
00098C 41 80 0 IBC LA 8,lBC(0,13) OVF=l 
OC0990 41 70 0 lCF LA 7,1CF(0,13) T5=0 1-1 
OC0994 C5 10 BALR 1,0 
000996 58 CO 8 000 L 0,000(0,8) 
eCC99A IE oe ALR 0,11 
OC099C 5C CC 8 000 5T 0,000(0,8) 
OC09AO 87 86 1 000 BXLE 8,6,000(1) 
OCC9A4 02 C3 0 lE8 C 03d tJVC lE8(4,13),038(12) VN=OI-C VNT=l 
0009AA 58 60 0 lC4 L 6,1C4(0,13) BL =3 
0009AE 58 70 0 IBC L 7 , 1 BC ( 0 , 13) BL = 1 
0009B2 58 ec 0 lCO L 8,ICO(0,13) BL =2 
000986 58 EO 0 054 L 14,C54(0,13) 
OCC9BA C7 FE BCR 15,14 
o(oeoo C5 FO 1 NI Tl BALR 15,C 
000CC2 C7 CC BCR 0,0 
CCCC04 90 CE F DOA STM 0,14,00A(15) 
000008 47 Fa F 082 BC 15,C82(0,15) 
COOOOC CS 30F 
oeOC84 58 CC F OC6 L 12,OC6(0,15) 
000088 58 EC C 000 L 14,000(C,12) V I R=1 
OCOC8C 58 C( F OCA L 13,OCA(0,15) 
000090 95 CC E 000 CLI 000(14) ,X'OO' 
000C94 47 7C F OA2 BC 7,OA2(O,15) 
000098 <;6 lC 0 048 CI 048(l3),X'10' 5WT+O 

C \ 00009C 92 FF E 000 MVI 000(14),X'FF' 
OOOOAO 47 FO F GAC BC 15,OAC(0,15) 

~) OOOOA4 98 CE F 03A LM 12,14,03A(15) 
OCOCA8 90 EC C OOC STM 14,12,00C(13) 
OOOCAC Ie 50 LR 5,13 
OCOCAE 98 9F F OtlA LtJ. 9,15,CBA(l5) 
0000B2 91 lC 0 048 TM 048(13),X'10' 5WT+0 
CCOCB6 C7 19 8CR 1,9 
OCOOB8 07 FF BCQ, 15,15 
eCOOBA C7 00 eCR 0,0 
ocoeBC cceCC94E ACCCN L4(INIn) 
.OOOOCO oeccoooo AoCON L4( INIT1) 
CCCCC4 C(CCCOOO AoCCN L4(INIT1) 
0000C8 CCCCC5E8 AoCON L4(PGTl 
ccoecc cce OC3 FO AoCON L4(TGT) 
CCOCO C (C(CC658 AoCCN L4 (5T ~RT) 
000004 CCCCC934 AoCON L4(INIT2) 
ocoe08 C306C2C6FOFOFOFO DC X'C306C2C6FOFOFOFO' 
OOOOEO E3C 5E 2 E3u 9E4D540 CC X'E3C5E2E309E40540' 

,~' 

Appendix A: Sample Program Output 195 



CROSS-REFERENCE DICTIONARY 

DATA NAMES 

fILE-l 
RECORD-l 
F ILE-2 
RECORC-2 
COUNT 
ALPHA 
NUMeR 
DEPEND 
WORK- RECOR 0 
NA,.,E-F I ELD 
RECORD-NO 
NO-OF-DEPENDENTS 

PROCEDURE NAMES 

STEP-2 
STEP-6 
STEP- 8 

C~RD ERROR MESSAGE 

64 
64 

ENTRY 

ILASOIII-W 
ILASCIII-W 

II EXEC LNKEDT 

DEfN REF ER ENC E 

OC017 00060 00060 
00028 00068 
COO18 00073 00073 
00036 00076 
00040 0006C 00064 
OC042 00064 00064 
00043 0006C 00064 
00045 00066 00066 
OC046 00068 00068 
00047 00064 
00049 00067 00C67 
00053 00066 00066 

DEFN REFERENCE 

OC064 0007C 
00076 00078 
CC079 00076 

HIGH ORDER TRUNCATION MIGHT OCCUR. 
HIGH ORDER TRUNCATION MIGHT OCCUR. 

rlO068 OC073 

00076 00076 

00064 00064 

COC64 00067 

C0076 00078 

00077 00077 

JOB SAMPLE 06/20/69 DISK LINKAGE EDITOR DIAGNOSTIC Of INPUT 

ACTION 
LIST 
LIST 
l I S1' 
lIST 
LIST 
LIST 
LIST 
LIST 

196 

TAKEN MAP 
PHASE TEST,* 
AUTOLINK IJFF8ZZN 
AUTOLINK ILBDDSPC 
INCLUDE IJJCPDl 
AUTOLINK ILBDIMLO 
~UTOLINK ILBDMNSC 
AUTOLINK ILBOS~EO 
ENTRY 

f" 
I 

"'-

00079 

00066 00070 

, 

00077 C0077 



06/20/69 PHASE XFR-AD LOCORE HICORE DSK-AD ESO TYPE LABEL LOADED RE=L-FR (\, 
-,/ TEST C03000 003000 0048C8 50 07 2 CSECT TESTRUN 003000 003000 

CSECT IJFFBZZN 0039CO 0('39 r.0 

* ENTPY IJFFZZZN 003<:lCO 

* ENTPy IJFFBZZZ 0039CO 

* ENTRY IJFFZZZZ 0039CO 

CSECT ILBOSAEO 004708 OC4708 
ENTRY ILBCSAEl 0047F8 

CSECT ILBOMNSO 004700 004700 

CSECT ILBODSPO 003F90 003F<:l0 

* ENTRY ILBOCSPl 0044EO 

* ENTRY ILBODSP2 004578 

* ENTRy ILBOOSP3 004730 

CSECT ILBOIMLO 004768 004768 

CS ECT IJJCPOI 0030C8 0030C8 
ENTRY IJJCPDIN 003 DC8 

* ENTRy IJJCP03 0030C8 

Appendix A: Sample Program output 197 



II ASSGN SYS008,X'282' 
1/ TLBL SYS008,'TAPEFILE',69/365"OOOl,0001 
// EXEC 

60 
64 
68 
70 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
(:8 
64 
68 
6,! 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
64 
68 
73 
76 
77 
WORK-RECORD 
76 
77 
WOR1<-RECORD = 

198 

ACOCOl NYC Z 

8(0002 NYC 1 

------~-- ------------------~ 

,)""---""\ 

.' 

". .' 

( 

I 



76 

C:' 77 
WORK-RECCRD CCOO03 NYC 2 
76 
77 
WORK-RECORD = DCOO04 NYC 3 
76 
77 
WORK-RECORD = ECOOC5 NYC 4 
76 
77 
WORK-RECORD FCOOO6 NYC Z 
76 
77 
WORK-R ECORD GCOOO7 NYC 1 
76 
71 
WORK-R ECORD HCOO08 NYC 2 
76 
71 
WORK-RECORD ICOOC9 NYC 3 
16 
17 
WORK-RECORD J COO 10 NYC 4 
7{; 
11 
WORK-RECORD KC0011 NYC Z 
16 
17 
WORK-RECORD LCOO12 NYC 1 
16 
77 
WORK-R ECORD MCOO13 NYC 2 

(' , 
76 I, , 17 .... 
W ORK- RECO RD N COO 14 NYC 3 
76 
77 
WORK-RECORD OCOO15 NYC 4 
76 
77 
WORK-RECORD :: PCOO16 NYC Z 
76 
77 
WORK-RECCRO QCOO17 NYC 1 
76 
77 
WCRK-~ECORO RCOO18 NYC 2 
76 
17 
WORK-RECORD = S(0019 NYC 3 
76 
17 
WORK-RECORD = T (00 20 NYC 4 
76 
71 
WORK-RECORe UCC021 NYC Z 
76 
77 
WORK-RECORD V(0022 NYC 1 
76 
77 

(--" 
"--') 

Appendix A: Sample Program Output 199 



WORK-RECORC WCOO23 NYC 2 
76 (~, 

77 \ I 

WORK-RECORC XCOO24 NYC 3 
\ 

"-

76 
77 
WOR K- R ECO R 0 YCOO25 NYC 4 
76 
77 
WORK- RECORD ZC0026 NYC Z 
76 
79 

r 

EOJ S .AMPL E 

OI10A GIVE IPL CONTROL COMMANDS 
set da:f:e=061 20 16 9 ,cloc~ =00 I 40 I 0 0 
BG 01201 DOS IPL COMPLETE 
BG 1IOOA READY FOR COMMUNICATIONS. 
BG 
BG II JOB SAMPLE 

00.40.13 
BG 

4110A NO VOL1 LBL FOUND TLBL= SYS008 SYS008=282 
BG 111111 
BG ACOOOI NYC 0 
BG BC0002 'NYC 1 ,,-",,\ 
BG CC0003 NYC 2 I 
BG DC0004 NYC 3 \ 

BG EC0005 NYC 4 
BG FC0006 NYC 0 
BG GC0007 NYC 1 
BG HC0008 NYC 2 
BG IC0009 NYC 3 
BG JC0010 NYC 4 
BG KC0011 NYC 0 
BG LC0012 NYC 1 
BG MC0013 NYC 2 
BG NC0014 NYC 3 
BG OC0015 NYC 4 
BG PC0016 NYC 0 
BG QC0017 NYC 1 
BG RC0018 NYC 2 
BG SC0019 NYC 3 
BG TC0020 NYC 4 
BG UC0021 NYC 0 
BG VC0022 NYC 1 
BG WC0023 NYC 2 
BG XC0024 NYC 3 
BG YC0025 NYC 4 
BG ZC0026 NYC 0 
BG 000101 69171 

41330 ERROR IN HDR LBL SYS008 SYS008=282 
BG ignore 
BG EOJ SAMPLE 

00.45.07,DURATION 00.04.54 

C' 
200 



C; 

/'"- .. 
( \ 
\-...-'1 

File 
label 

Field Number 

label 
ldentmer 

File ldentifler 

Venlon 
Number 'of 
Generation 

APPENDIX B: STANDARD TAPE FILE LABELS 

Expiration 
Date 

1011 

File 
Security 

12 13 14 

System Code 

The standard tape file label format and contents are as follows: 

Field 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

Name and Lenqth 

LABEL IDENTIFIER 
3 bytes, EBCDIC 

FILE LABEL NUMBER 
1 byte, EBCDIC 

FILE IDENTIFIER 
17 bytes, EBCDIC 

FILE SERIAL NUMBER 
6 bytes, EBCDIC 

VOLUME SEQUENCE 
NUMBER 
4 bytes 

FILE SEQUENCE 
4 bytes 

GENERATION TIME 
4 bytes 

VERSION NUMBER OF 
GENERATION 
2 bytes 

Description 

Identifies the type of label. 
HDR Header (beginning of a data file) 
EOF End-of-file (end of a set of data) 
EOV End-of~volume (end of the physical reel) 

Always a 1. 

Uniquely identifies the entire file, may contain 
only printable characters. Some other systems 
will not accept embedded blanks in the file 
identifier. 

Uniquely identifies a file/volume relationship. 
This field is identical to the volume serial 
number in the volume label of the first or only 
volume of a multivolume file or a multifile set. 
This field will normally be numeric (000001 to 
999999), but may contain any six alphanumeric 
characters. 

Indicates the order of a volume in a given file or 
multifile set. The first must be numbered 0001, 
and subsequent numbers must be in proper numeric 
sequence. 

Assigns numeric sequence to a file within a multi
file set. The first must be numbered 0001. 

Uniquely identifies the various editions of the 
file. May be from 0001 to 9999 in proper numeric 
sequence. 

Indicates the version of a generation of a file. 

Appendix B: Standard Tape File Labels 201 



Fielg Name and Length 

9. 

10. 

11. 

12. 

13. 

14. 

202 

CREATION DATE 
6 bytes 

EXPIRATION DATE 
6 bytes 

FILE SECURITY 
1 byte 

BLOCK COUNT 
6 bytes 

SYSTEM CODE 
13 bytes 

RESERVED 
7 bytes 

Description 

Indicates the year and the day of the year that the 
file was created. 

Position 
1 
2-3 
4-6 

Code 
blank 
00-99 
001-366 

Meaning 
none 
year 
day of year 

(e.g., January 31, 1971 would be entered as 
71031) • 

Indicates the year and the day of the year when the 
file may become a scratch tape. The format of 
this field is identical to field 9. On a 
multifile reel processed sequentially, all files 
are considered to expire on the same day. 

Indicates security status of the file. 

o No security protection. 

1 = Security protection. Additional 
identification of the file is required before 
it can be processed. 

Indicates the number of data blocks written in the 
file from the last header label to the first 
trailer label, exclusive of tapemarks. Count 
does not include checkpoint records. This field 
is used in trailer labels. 

Uniquely identifies the operating system. 

Reserved. Should be recorded as blanks. 



File Name 

Option Record Key 
Codes Length Location ,. r 1 

Reserved 
For Future File Secondary 

Use Allocation Type 

J I I I~ 1&1 '11:-r ~~ ~I~ 0..0 0: ~I~ 0': ~I I I~ coco coco coo.. 

Reserved ,J 
For Future RJard JIOCk Ke! loata Set 
Use Format Length Length Indicators 

APPENDIX C: STANDARD MASS STORAGE DEVICE LABELS 

Space 
Remaining 

l 
Last Used 
Track & 
Record On 
That Trock 

g:1 I I I§ ~I;s §~ 

First Extent 

Lower Upper 
Limit Limit 

~II I:: =1 I 1:3 = ,J [Extent 
Extent Type Sequence 
Indicator Number 

File 
Serial 

Additional Extent 

Sequence 
Number Extents 

Additional Extent 

I I I I I 1;9 ~ II I Ilia 

System Code 

Pointer 

I I I I~ 

Format 1: This format is common to all data files on disk. 

Field Name and Length 

1. FILE NAME 
44 bytes, alphanumeric EBCDIC 

Description 

This field serves as the key portion of the file 
label. It can consist of three sections: 

1. File ID is an alphanumeric field assigned by 
the user and identifies the file. It can be 
1 through 35 bytes in length if generation 
and version numbers are used, or 1 through 44 
bytes in length if they are not used. 

2. Generation Number. If used, this field is 
separated from File ID by a period. It has 
the format Gnnnn, where G identifies the 
field as the generation number and nnnn (in 
decimal) identifies the generation of the 
file. 

3. Version Number of Generation. If used, this 
section immediately follows the generation 
number and has the format Vnn, where V 
identifies the field as the version of 
generation number and nn (in decimal) 
identifies the version of generation of the 
file. 

Note: IBM System/360 Disk Operating System 
compares the entire field against the filename 
given in the DLAB and DLBL cards. The generation 
and version numbers are treated differently by the 
IBM System/360 Operating System. 

Appendix C: Standard Mass Storage Device Labels 203 



Fields 2 through 33 constitute the DATA portion of the file label. 

Eield Name and Length 

2. 

3. 

4. 

5. 

6. 

7a. 

7b. 

7c. 

8. 

9. 

10. 

204 

FORMAT IDENTIFIER 
1 byte, EBCDIC numeric 

FILE SERIAL NUMBER 
6 bytes, alphanumeric EBCDIC 

VOLUME SEQUENCE NUMBER 
2 bytes, binary 

CREATION DATE 
3 bytes, discontinuous binary 

EXPIRATION DATE 
3 byteS; discontinuous binary 

EXTENT COUNT 
1- byte, binary 

BYTES USED IN LAST BLOCK 
OF DIRECTORY 
i byte~inary 

SPARE 
1 byte 

SYSTEM CODE 
13 bytes 

RESERVED 
"1 bytes 

FILE TYPE 
2 bytes 

Description 

1 = format 1 

Uniquely identifies a file/volume relationship. It 
is identical to the volume serial number of the 
first or only volume of a multivolume file. 

Indicates the order of a volume relative to the 
first volume on which the data file resides. 

Indicates the year and the day of the year the file 
was created. It is of the form YDD, where Y 
signifies the year (0-99) and DD the day of the 
year (1-366). 

Indicates the year and the day of the year the file 
may be deleted. The form of this field is 
identical to that of field 5. 

Contains a count of the number of extents for this 
file on this volume. If user labels are used, 
the count includes the user label track as a 
separate extent. This field is maintained by the 
Disk Operating System. 

Used by IBM System/360 Operating System only for 
partitioned (library structure) data sets. Not 
used by the Disk operating System. 

Reserved for future use. 

Uniquely identifies the operating system. 

Reserved for future use. 

The contents of this field uniquely identify the 
type of data file. 

Hex 
Code 
4000 

2000 

8000 

0200 

0000 

Meaning 
Sequential organization 

Direct organization 

Indexed organization 

Library organization 

Organization not defined in the file 
label 



Field Name and Length 

11. RECORD FORMAT 
1 byte 

12. 

13. 

14. 

15. 

16. 

OPl'ION CODES 
1 byte 

BLOCK LENGTH 
2 bytes, binary 

RECORD LENGTH 
2 bytes, binary 

KEY LENGTH 
1 byte, binary 

KEY LOCATION 
2 bytes, binary 

Description 

The contents of this field indicate the type of 
records contained in the file. 

Bit 
Position 
o and 1 

2 

3 

4 

5 and 6 

7 

Content Meaning 
01 Variable-length records 

10 Fixed-length records 

11 Undefined format 

o No track overflow 

1 File is organized using track 

o 

overflow (IBM System/360 
Operating System only) 

Unblocked records 

1 Blocked records 

o No truncated records 

1 Truncated records in file 

01 Control character ASA code 

10 Control character machine code 

00 Control character not stated 

o Records are written without 
keys 

1 Records are written with keys 

Bits within this field are used to indicate various 
options used in building the file. 

Bit 
Position 

o 

1-7 

Meaning 
If on, indicates data file was created 

using write validity check. 

Unused. 

Indicates the block length for fixed-length 
records, or maximum block size for variable
length blocks. 

Indicates the record length for fixed-length 
records, or the maximum record length for 
variable-length records. 

Indicates the length of the key portion of the data 
records in the file. 

Indicates the high-order position of the data 
record. 

Appendix C: Standard Mass Storage Device Labels 205 



Fielg Name and Length 

17. DATA SET INDICATORS 
1 byte 

18. 

19. 

20. 

21. 

206 

SECONDARY ALLOCATION 
4 bytes, binary 

LAST USED TRACK AND 
RECORD ON THAT TRACK 
5 bytes, discontinuous binary 

AMOUNT OF SPACE REMAINING ON 
LAST TRACK USED 
2 bytes, binary 

EXTENT TYPE INDICATOR 
1 byte 

Description 

Bits within this field are used to indicate the 
following: 

Bit 
Position 

o 

1 

2 

3 

Meaning 
If on, indicates that this is the last 

volume on which this file normally 
resides. This bit is used by the 
Disk Operating System DTFSR routine 
only. None of the other bits in 
this byte are used by the Disk 
Operating System. 

If on, indicates that the data set 
described by this file must remain 
in the same absolute location on the 
direct-access device. 

If on, indicates that block length 
must always be a multiple of eight 
bytes. 

If on, indicates that this data file 
is security protected; a password 
must b,e provided in order to access 
it. 

4-7 Space. Reserved for future use. 

Indicates the amount of storage to be requested for 
this data file at end-of-extent. This field is 
used by the IBM System/360 Operating system only. 
It is not used by the Disk Operating System 
routines. 

Indicates the last occupied track in a consecutive 
file organization data file. This field has the 
format CCHHR. It is all binary zeros if the last 
track in a consecutive data file is not on this 
volume, or if it is not consecutive organization. 

A count of the number of bytes of available space 
remaining on the last track used by this data 
file on this volume. 

Indicates the type of extent with which the 
following fields are associated: 

Hex 
Code 
00 

01 

02 

04 

40 

80 

Meaning 
Next three fields do not indicate any 

extent. 

Prime area (indexed) or consecutive 
area, etc., (i. e., the extent 
containing the user's data records). 

Overflow area of an indexed file. 

Cylinder index or master index area of 
an indexed file. 

User label track area. 

Shared cylinder indicator. 
c 

/ 



Field Name and Length 

22. EXTENT SEQUENCE NUMBER 
1 byte, binary 

23. 

24. 

LOWER LIMIT 
4 bytes, discontinuous binary 

UPPER LIMIT 
4 bytes 

25-28. ADDITIONAL EXTENT 
10 bytes 

29-32. ADDITIONAL EXTENT 
10 bytes 

33. POINTER TO NEXT FILE LABEL 
WITHIN THIS LABEL SET 
5 bytes, discontinuous binary 

Description 

Indicates the extent sequence in a mul ti-exteil'E--
file. 

The cylinder and the track address specifying the 
starting point (lower limit) of this extent 
component. This field has the format CCHH. 

The cylinder and the track address specifying the 
end point (upper 'limit) of this extent component. 
This field has the format CCHH. 

These fields have the same format as the fields 
21 through 24, above. 

These fields have the same format as fields 21 
through 24, above. 

The disk address (format CCHHR) of a continuation 
label is needed to further describe the file. If 
field 9 indicates indexed organization, this 
field will point t~ a Format 2 file label within 
this label set. Otherwise, it points to a Format 
3 file label, and then only if the file contains 
more than three extent segments. If no 
additional file label is pointed to, this field 
contains all binary zeros. 

/ 

Appendix C: Standard Mass Storage Device Labels 207 



" 



C) 
APPENDIX D: TRACK FORMATS FOR THE 2311, 2314, AND 2321 DIRECT-ACCES~ STORAGE DEVICES 

The track format for the 2311, 2314, and 
2321 direct-access storage devices is 
illustrated in Figure 57. The names of the 
fields are given in the following 
discussion. 

Index Marker: All tracks start with an 
index marker. It is a signal to the 
hardware that indicates beginning of the 
track. 

Home Address: The home address, preceded 
by a gap, follows the index marker. The 
home address uniquely identifies each track 
by specifying the cylinder and head number. 

Track Descriptor Record (Record 0): Record 
o consists of two parts: a count portion 
and a data portion. The count portion is 
the same as it is for any other record (see 
the following description of count for 
record 1. The 8-byte data portion is used 
to record inform~tion used by LIOCS. The 
information in the data portion depends on 
the data organization (direct or indexed) 
that is being used. 

For direct organization, this portion in 
th~ form of CCHHR contains the address of 
the last record on the track and the number 
of bytes remaining on the track. This 
information is used to determine whether 
there is space for another record on the 
track. For indexed organization, the data 
portion contains the address of the last 
record in the cylinder overflow area and 
the number of tracks remaining in the 
cylinder overflow area. Record 0 is then 
used as the cylinder overflow control 
record. 

Address Marker: All records after record 0 
will be preceded by a 2-byte address 
marker. The address marker is a signal to 
the hardware that a record is starting. 

Data Records: Data records (see R1 in 
Figure 49) can consist of a count and data 
portion for sequential organization, or a 

count, key, and data portion for direct and 
indexed organizations. 

1. Count Portion. The count portion 
contains the identification of each 
record, the key length, and the data 
length. 

a. Identification. Each record is 
identified with its cylinder 
number, head number, or record 
number. The cylinder and head 
numbers will be the same as those 
of the home address. The record 
number will indicate a particular 
record on the track. That is, the 
first record after record 0 will 
be record 1, followed by record 2, 
etc. This 5-byte binary field in 
the form of CCHHR is often 
referred to as the record 10. 

b. Key Length. The key length is 
specified in an 8-bit byte; its 
length can range from 0 to 255. 
This field will contain a zero if 
there is no key. 

c. Data Length. The data length is 
specified in the 16 bits of the 
next two bytes., 

Note: It is the count portion 
that identifies the presence or 
absence of a key, in addition to 
indicating the data length. In 
this way, each record is unique 
and self formatting. 

2. Key Portion. The key portion of the 
record is normally used to store the 
control field of the data record such 
as a man number. Direct and indexed 
files must have a key portion. 

3. Data Portion. The data portion of the 
record contains the data record. 

Appendix D: Track Formats for the 2311, 2314, and 2321 Direct-Access Storage Devices 209 



Note that all records, including the 
data record, terminate with a 2-byte cyclic 
check. The hardware uses this cyclic check 
to ensure that is correctly reread what it 
had written. The cyclic check is 
cumulative and is appended to each record 
when it is written. Upon reading the 
record, the cyclic check is again 
accumulated and then compared with the 
appended cyclic check. If they do not 
agree, a data check is initiated. 

The first byte of the count portion of 
each record and the home address is 
reserved for a flag byte. If a track 

becomes defective, a utility program may be 
used to transfer the data to an alternate 
track. (Cylinders 200 through 202 are 
reserved for alternate tracks on the 2321. 
Strips 6 through 9 of subcell 19 of each 
cell are reserved for alternate tracks on 
the 2321.) In this case, a flag bit within 
the byte is set on to indicate that this is 
a defective track and the address of an 
alternate track will be placed in the 
record ID of record O. Subsequent 
references to this defective track will 
result in the Supervisor accessing record 0 
for the address of the alternate track. 

GC+JG~G~G0~GqJGJ Rl-Count IGI Rl-K_eY_'_G_I_R_l_-_D_ata--JtGQG0 I I Count Data I '----------..... , 
Index Home Address 

Descriptor 

Marker Addiress Track Marker 

G= Gap Record 

IFICI C IH , H,C ,C, IF, C IC, H, H,R,KL,DLIDLICICI 

I

F'! '-..-II N~Uem~b-:-er ,...I Fla~ Y'H:!;' IKeJ y~ 
I Number ILength I Check 

Cylinder Cyclic Cylinder Record Data 
Number Check Number Number Length 

Bits I 0,0 ,0 ,0 I 0, 0, , 

o Good Track}.J 
1 Defective 

o Original} 
1 Alternate .-

IF, C, C I H, HI R ,KLIDL,Dl! CI C, 

1'---1-' Iii 
Flag Record Key Data Cyclic 

ID Length Length Check 

Figure 57. Track Format 

210 

G 
A 
P 

First Data 
Record 

1 
G 
A 
P 
~~ '---..,-1-LJ 
Key o Optional o Variable 

Length 

G 

~~CICI 

Data o Variable 
Length 

--- ---- ---- ---- --



o 
COBOL library subroutines perform 

operations requiring extensive coding. For 
this reason it would be inefficient to 
place the coding in the object module each 
time it is needed. Most COBOL library 
subroutines are stored in the relocatable 
library. When required, they are combined 
at link-edit time with the object module 
produced by the compiler. 

There are several major categories of 
COBOL library subroutines: 

• Input/output verb routines 

• Conversion routines 

• Arithmetic verb routines 

• Sort Feature interface routines 

• Checkpoint (RERUN) routines 

• Segmentation Feature routines 

• Other verb routines 

INPUT/OUTPUT SUBROUTINES 

The input/output subroutines are used 
for the COBOL verbs DISPLAY (TRACE and 
EXHIBIT), ACCEPT, STOP (literal), READ, 
WRITE, and REWRITE, printer spacing, 
printer overflow, input/output errors, disk 
formatting and extent handling, and tape 
and sequential disk labels. 

Printer Spacing 

The ILBDSPAO subroutine is used to 
control printer spacing when the WRITE 
statement with the BEFORE/AFTER ADVANCING 
or POSITIONING option is specified in the 
source program. 

Tape and Sequential Disk Labels 

The ILBDUSLO and ILBDNSLO subroutines 
are used when user or nonstandard labels, 
respectively, are to be processed (LABEL 
RECORDS ARE data-name). 

APPENDIX E: COBOL LIBRARY SUBROUTINES 

CLOSE WITH LOCK Subroutine 

The ILBDCLKO subroutine is given control 
to issue an object-time message when an 
OPEN statement is used to open a file 
previously closed WITH LOCK. 

WRITE Statement Subroutines 

The ILBDVBLO subroutine is used to write 
variable-length blocked records. 

The ILBDDIOO subroutine is used for 
writing files with direct organization 
(DTFDA) • 

The ILBDISMO subroutine is used for 
writing files with indexed organization. 

READ Statement Subroutines 

The ILBDDSRO subroutine is used to read 
sequentially the records of a directly 
organized file. 

The ILBDDIOO subroutine is used to read 
randomly the records of a directly 
organized file. 

The ILBDISMO subroutine is used to read 
an indexed file. 

REWRITE Statement Subroutines 

The ILBDDIOO subroutine is used to 
update records on a directly organized 
file. 

The ILBDISMO subroutine is used to 
update an indexed file. 

DISPLAY (EXHIBIT and TRACE) Subroutines 

The ILBDDSPO subroutine formats one or 
more operands into printed lines, 
performing conversions as needed. 

Appendix E: COBOL Library Subroutines 211 



The ILBDOSYO and ILBDASYO subroutines 
open SYSLST and/or SYSPCH and/or SYSIPT if 
there are DISPLAY or ACCEPT statements in a 
label declarative. 

ACCEPT and STOP (literal) Statement 
Subroutines 

The ILBDACPO subroutine is used to 
handle ACCEPT statements for both SYSIPT 
and the console, as well as the STOP 
(literal) statement. The ILBDACPO 
subroutine does not format or convert 
operands. For operands greater than 80 
characters in length, any remainder in 
excess of the nearest multiple of 80 is 
ignored when accepting data from SYSIPT. 

CLOSE Subroutine 

The ILBDCRDO subroutine is given control 
when a CLOSE UNIT statement is issued for a 
sequential input file wit~ direct 
organization. 

Multiple File Tape Subroutine 

The ILBDMFTO subroutine is given control 
when a reel contains more than one file and 
there are no standard labels. 

Input/Output Error Subroutines 

The ILBDSAEO subroutine is used for 
processing input/output errors that occur 
on tape and sequenti~l disk. 

The ILBDDAEO subroutine is used for 
processing input/output errors that occur 
on directly organizeq files. 

The ILBDISEO subroutine is called 
whenever an input/output error occurs 
during the processing an indexed file. 

The ILBDABXO subroutine is used to issue 
a STXIT macro instruction causing control 
to be passed to it if there"is an error on 
a unit-record device. 

212 

Disk Extent Subroutines 

The ILBDFMTO subroutine writes record 0 
(RO) on each track of each extent of a 
directly organized file opened as output, 
and writes an ~nd-of-file (EOF) record as 
the last record in the file. This 
subroutine is called after the file has 
been opened. 

The ILBDXTNO subroutine stores for 
subsequent use the extent information for 
directly organized files. 

Auxiliary Subroutines 

Certain input/output subroutines use 
auxiliary subroutines as follows: 

Auxiliary 
Routine 
ILBDMOVO 

Used By 
ILBDSPAO, ILBDNSLO, 

ILBDVBLO 

ILBDIDAO ILBDFMTO, ILBDDSRO 

CONVERSION SUBROUTINES 

Eight ~umeri<c data formats are permitted 
in COBOL: ' five external (for input and 
output) and three internal (for internal 
processing). 

The five external formats are: 

• External or zoned decimal 

• External floating-point 

• Sterling display 

• Numeric edited 

• Sterling report 

The three internal formats are: 

• Internal or packed decimal 

• Binary 

• Internal floating-poin~ 

The conversions from internal decimal to 
external decimal, from external decimal to 
internal decimal, and from internal decimal 
to numeric edited are performed in-line. 
The otq~r conversions are,performed by the 
COBOL library subroutines shown in Table 
26. 



Table 26. Functions of COBOL Library Conversion Subroutines 
r----------------------T---------------------------------------------------------------, 
I I Conversion I 
I ~-------------------------------T-------------------------------~ 
I Subroutine Name I I I 
I and Entry Points I From I To I 
~-----------------------+-------------------------------+-------------------------------~ 
I ILBDEFL2 I External floating-point I Internal decimal I 

I I I I 
I ILBDEFLl I External floating-point I Binary I 

I I I I 
I ILBDEFLO I External floating-point I Internal floating-point I 

~-----------------------+-------------------------------+-------------------------------~ 
I ILBDBID01 I Binary I Internal decimal I 

I I I I 
I ILBDBID11 I I I 

I I I I 
I ~LBDBID21 I I I 
r----------------------+-------------------------------+-------------------------------~ 
I ILBDBIE01 I Binary I External decimal I 

I I I I 
I ILBDBIE11 I I I 
I I I I 
I ILBDBIE21 I I I 

~-----------------------+-------------------------------+-------------------------------~ 
I ILBDBII02 I Binary I Internal floating-point I 
I I I I 
I ILBDBII12 I I I 
r----------------------+-------------------------------+-------------------------------~ I ILBDTEF02 I Binary I External floating-point I 
I I I I 
I ILBDTEF12 I I I 
I I I I 
I ILBDTEF2 I Internal decimal I External floating-point I 
I I I I 
I IFBDTEF3 I Internal floating-point I External floating-point I 

~-----------------------+-------------------------------t-------------------------------~ 
I ILBDIDBO I Internal decimal I Binary I 

I I I I 
I ILBDIDBl I External decimal I Binary I 

r----------------------+-------------------------------+-------------------------------~ I ILBDDCIl I Internal decimal I Internal floating-point I 
I I I I 
I ILBDDCIO I External decimal I Internal floating-point I 

~-----------------------+-------------------------------t-------------------------------~ 
I ILBDIFDO I Internal floating-point I Internal decimal I 

I I I I 
I ILBDIFDl I Internal floating-point I External decimal I 
r----------------------+-----------------------~-------+-------------------------------~ 
I ILBDIFBl I Internal floating-point I Binary integer and a power I 
I I I of 10 exponent I 

I I I I 
I ILBDIFB23 I I I 
I I I I 
I ILBDIFB03 I Internal floating-point I Binary I 

r----------------------+----------------------------~--+-------------------------------~ I ILBDIDRO I Internal decimal I Sterling report I 
~-----------------------+-------------------------------t-------------------------------~ 
I ILBDIDTO I Internal decimal I Sterling non-report I 
~-----------------------+-------------------------------+-------------------------------~ 
I ILBDSTIO I Sterling non-report I Internal decimal I 
r----------------------~--------------------------~----~-------------------------------~ 
11The entry points used depend on whether the double-precision number is in registers 0 I 
I and 1, 2 and 3, or 4 and 5, Tespectively. I 
12The entry points are for single-precision binary and double-precision binary, I 
I respectively. I 
13This entry point is used for calls from other COBOL library subroutines. I L _______________________________________________________________________________________ J 

Appendix E: COBOL Library Subroutines 213 



ARITHMETIC VERB SUBROUTINES 

Most arithmetic operations are performed 
in-line. However, involved calculations 
with very large numbers, such as decimal 
multiplication of two 30-digit numbers, are 
performed by COBOL library arithmetic 
subroutines. These subroutine names and 
their functions are shown in Table 27. 

SORT FEATURE INTERFACE ROUTINE 

communication between the Sort/Merge 
program and the COBOL program is maintained 
by ILBDSRTO. 

CHECKPOINT (RERUN) SUBROUTINE 

The ILBDCKPO subroutine issues the 
checkpoint macro instruction, which will 
write checkpoint records on a 
user-specified tape or disk checkpoint 
device. There are two calling sequences to 
this subroutine. The first, ILBDCKP1, is 
activated during initialization when the 
addresses of all files in the program are 
entered in a table. The second, ILBDCKP2, 
is required to take checkpoints during a 
sorting operation. 

If RERUN is requested during a sorting 
operation, ILBDSRTO must gather a list of 
physical IOCS files in use by the Sort 
program every time Sort exits at Ell, E21, 
and E31. ILBDSRTO then calls the 
checkpoint subroutine which will take a 
checkpoint of all active files. 

SEGMENTATION FEATURE SUBROUTINE 

The segmentation Feature requires an 
object time subroutine, ILBDSEMO. The 
ILBDSEMO subroutine performs the following 
functions when segments are needed: 

1. Loads and initializes independent 
segments not in core. 

2. Loads overlayable segments not in 
core. 

3. Initializes independent segments if 
the segment is in core. 

4. Branches to desired entry points if 
the segment is in the root segment. 

OTHER VERB ROUTINES 

There are also COBOL library subroutines 
for comparisons, the verbs MOVE and 
TRANSFORM, and other features of the COBOL 
language. 

Compare Subroutines 

The ILBDVCOO subroutine compares two 
operands, one or both of which is variable 
in length. Each may exceed 256 bytes. 

The ILBDIVLO subroutine is used in 
comparisons involving the figurative 
constant ALL 'literal', where literal is 
greater than one character. 

Table 27. Functions of COBOL Library Arithmetic Subroutines 

r---------------T-----------------------------------------------------------------------, 
ISubroutine Name I Function I 
r---------------t-----------------------------------------------------------------------~ 
IILBDXMUO I Internal decimal multiplication (30 digits * 30 digits = 60 digits) I 
~---------------t-----------------------------------------------------------------------~ 
IILBDXDIO I Internal decimal division (60 digits/30 digits = 30 digits) I 
r---------------t-----------------------------------------------------------------------~ 
IILBDXPRO I Decimal fixed-point exponentiation I 
~---------------+-----------------------------------------------------------------------~ 
IILBDFPWO I Floating-point exponentiation I 
r---------------t-----------------------------------------------------------------------~ 
IILBDGPW01 I Floating-point exponentiation I 
~---------------~-----------------------------------------------------------------------~ 
11The ILBDGPWO entry point is used if the exponent has a PICTURE clause specifying an I 
I integer. The ILBDFPWO entry point is used in all other cases. . I L ___________________________________________________________________ ~-------------------J 

214 



(". , 
, I 

( 
1 
~-./ 

MOVE Subroutines 

The ILBDVMOO subroutine is used when one 
or both operands is variable in length. 
Each may exceed 256 bytes. The subroutine 
has two entry points, depending on the type 
of MOVE: ILBDVMOO (left-justified) and 
ILBDVM01 (right-justified). 

The ILBDMVLO subroutine is used to move 
the figurative constant ALL 'literal'; 
where literal is greater than one 
character. 

The ILBDANEO subroutine is used to 
perform a right-or left-justified 
alphanumeric edited move. 

TRANSFORM Subroutine 

The ILBDVTRO subroutine transforms 
variable-length items. 

Class Test Subroutine 

The ILBDCLSO subroutine is used to 
perform class tests for variable-length 

items and those fixed-length items longer 
than 256 bytes. 

Note: The following tables are placed in 
the library for use by the in-line coding 
generated by the compiler and the 
subroutines called for by both the class 
test and TRANSFORM: 

ILBDATBO 
ILBDETBO 
ILBDITBO 

Alphabetic class test 
External decimal class test 
Internal decimal class test 

SEARCH Subroutine 

The ILBDSCHO subroutine processes each 
search argument key according to type. 

Main Program or Subprogram subroutine 

The ILBDl·1SNO subroutine is a 1-byte 
switch tested in the code generated for 
EXIT PROGRAM, GOBACK, INIT1, and INIT2. 

Appendix E: COBOL Libr~ry Subroutines 215 



\ . 



This appendix describes diagnostic 
messages generated by the compiler and by 
compiler-generated object code. 

COMPILER DIAGNOSTIC MESSAGES 

Using one of the messages as an example, 
COBOL compiler messages are in the 
following format: 

105 ILA1002I-W ***** SECTION HEADER 
MISSING. ASSUMED PRESENT. 

The code 105 is the compiler-generated 
card number of the statement where the 
error has occurred. ILA identifies this as 
a Disk Operating System American National 
Standard COBOL compiler message; 1002 is 
the identifying number of the message. The 
symbol I indicates that this is a message 
to the programmer for his action. W is a 
level of severity in the error code with an 
explanation as follows: 

W Warning -- Indicates that an error was 
made in the source program. However, 
it is not serious enough to hinder the 
execution of the program. 

C Conditional -- Indicates that an error 
was made but the compiler usually 
makes a corrective assumption. The 
statement containing the error is 
retained. Execution can be attempted 
for the debugging value. 

E Error -- Indicates that a serious 
error was made. Usually the compiler 
makes no corrective assumption. The 
statement containing the error is 
dropped. Execution of the program 
should not be attempted. 

D Disaster -- Indicates that a serious 
error was made. Compilation is not 
completed. Results are unpredictable. 

The message text usually describes the 
error and describes the action-taken by the 
compiler as a result of the error. Most of 
the messages are self-explanatory, except 
in two situations: 

1. When no compiler action is given. 
These messages are numbered in the 
3000 series. They appear in 
combination with other messages that 
do have the compiler action described. 

2. 

APPENDIX F: DIAGNOSTIC MESSAGES 

When messages describe 
require an explanation 
include in a message. 
explanations appear in 
messages. 

errors that 
too long to 
These 
text under the 

Words in a message that must vary 
according to the program being compiled are 
denoted by five asterisks (*****> in the 
messages printed below. Three asterisks 
(***> appearing in messages on a listing 
indicate that the compiler has encountered 
unrecognizable information. 

ILA0001I-D NO MORE TABLE SPACE AVAILABLE. 
COMPILATION ABANDONED. 

Explanation: Because of the 
size or complexity of the 
source program, all of the 
space available for internal 
tables was exhausted. 

User Response: Allocate more 
core storage for the compiler 
or make the program smaller or 
less complex. 

ILA0002I-D BASIS LIBRARY NOT FOUND. 
COMPILATION ABANDONED. 

Explanation: The source 
statement book specified in a 
BASIS card at the beginning of 
compilat~on was not found. 

User Response: Correct the 
BASIS card or make the source 
code available in the library. 

ILA0003I-D A TABLE HAS EXCEEDED MAXIMUM 
SIZE. COMPILATION ABANDONED. 

ILA0004I-

Explanation: An attempt has 
been made to add information to 
a table that has been made 
static. The problem should 
never occur. 

User Response: Refer the 
problem to a Customer Engineer. 

LINK OPTION RESET - D OR E 
LEVEL ERROR FOUND. 

Explanation: The LINK option 
(set by a // OPTION LINK job 
control statement) was reset if 
it had been set previously. 
This prevents· the execution of 
a partially compiled program or 
a program with serious errors 

Appendix F: Diagnostic Messages 217 



in it. If a // EXEC LNKEDT 
card is read later, the job 
control diagnostic - 1S13D 
STATEMENT OUT OF SEQUENCE - is 
logged. The operator usually 
cancels the job at this point. 

ILA0005I-D LOGIC OR MACHINE ERROR IN 
TAMER. COMPILATION ABANDONED. 

Explanation: A program logic 
error was detected in the 
FCOBOL table management 
routines. 

User Response: The problem 
should be referred to a 
customer Engineer. 

Note: Messages numbered ILA0001I, 
ILA0003I, and ILA0005I may be printed at 
any time during compilation and may be 
followed by a dump. Message ILA0002I is 
printed at the beginning of compilation. 
Message ILA0004I follows the last message 
issued. 

The following messages are grouped in 
the compiler output listing. 

ILA1001I-C NUMERIC LITERAL NOT RECOGNIZED 
AS LEVEL NUMBER BECAUSE '*****' 
ILLEGAL AS USED. SKIPPING TO 
NEXT LEVEL, SECTION OR 
DIVISION. 

ILA1002I-W ***** SECTION HEADER MISSING. 
ASSUMED PRESENT. 

ILA1003I-W ***** PARAGRAPH NAME MISSING. 

ILA1004I-E 

ILAl005I-E 

I lLAl006I-E 

ILAl007I-W 

ILA1008I-W 

ILA1009I-E 

ASSUMED PRESENT. 

INVALID WORD *****. SKIPPING 
TO NEXT RECOGNIZABLE WORD. 

INVALID ORDER IN ENVIRONMENT 
DIVISION. SKIPPING TO NEXT 
DIVISION. 

DECLARATIVES SECTION WITHOUT 
USE SENTENCE. SECTION CAN 
NEVER BE EXECUTED. 

***** NOT PRECEDED BY A SPACE. 
ASSUMED SPACE. 

RIGHT PAREN SHOULD NOT BE 
PRECEDED BY SPACE. 

COpy MUST BE PRECEDED BY 
PROCEDURE-NAME. IGNORED. 

ILA10l0I-W LEFT PAREN SHOULD NOT BE 
FOLLOWED BY SPACE. 

ILA10l1I-C RECORDING MODE SPECIFICATION IS 
INVALID. ASSUMED VARIABLE. 

218 

• 

ILA1012I-E FILE-NAME NOT UNIQUE. USING 
FIRST DEFINITION. 

ILA1013I-E CHARACTER LENGTH IN 
SPECIAL-NAMES MUST BE ONE. 

ILA1014I-W 'FILE' NOT PRESENT IN MULTIPLE 
FILE CLAUSE. ASSUMED PRESENT. 

ILA1015I-E ***** INVALID AS EXTERNAL-NAME. 
IGNORED. 

ILA1016I-E MORE THAN ONE ***** CLAUSE. 
SKIPPING TO NEXT CLAUSE. 

ILA1017I-E ***** INVALID IN ***** CLAUSE. 
SKIPPING TO NEXT CLAUSE. 

ILA1018I-E COpy CLAUSE INVALID IN A COpy 
LIBRARY. IGNORED. 

ILA1019I-E NO LIBRARY NAME. COPY CLAUSE 
IGNORED. 

ILA1020I-E ***** MUST BE PROCEDURE-NAME 
FOLLOWING DEBUG.*****. 

ILA1021I-E ***** DOES NOT BELONG ON A 
DEBUG CARD. SKIPPING TO NEXT 
CARD. 

ILA1022I-W PERIOD DOES NOT BELONG ON DEBUG 
CARD. DELETED. 

ILA1023I-E INVALID FILE-NAME. USE 
IGNORED. 

ILA1024I-E UNDEFINED FILE-NAME. USE 
IGNORED. 

ILA1025I-C 

I lLA1026I-W 

ILA1027I-E 

ILA1028I-E 

ILA1029I-E 

ILA1030I-E 

REDEFINES CLAUSE NOT FIRST 
CLAUSE FOLLOWING DATA-NAME. 
ASSUMED FIRST. 

FOUND ***** EXPECTING 
ENVIRONMENT. ALL ENV. DIV. 
STATEMENTS IGNORED. 

DUPLICATE FD. IGNORED. 

***** SENTENCE IMPROPERLY 
WRITTEN. SENTENCE IGNORED. 

***** IN ***** SENTENCE NOT 
DEFINED AS FILE-NAME. SENTENCE 
IGNORED. 

***** IN *****\SENTENCE IS 
-- INVALID. WORD IGNORED. 

ILA1031I-C USE SENTENCE NOT PRECEDED BY 
SECTION-NAME. SECTION-NAME 
ASSUMED. 

ILA1032I-E ***** INCORRECTLY USED IN USE 
SENTENCE. SENTENCE IGNORED. 

//'"-" 

\ 
\ .. 

r , 

\. ~ .-' ' 



lLAl033I-W ***** FILE-NAME ALREADY 
ASSIGNED THIS SAME CLAUSE 
OPTION. USING FIRST ONE. 

lLA1034I-E ***** CLAUSE ILLEGAL IN ***** 
LEVEL. SKIPPING TO NEXT VALID 
CLAUSE. 

lLAl035I-E INTEGER NOT PRESENT IN MULTIPLE 
I FILE CLAUSE. 

lLA1036I-C QUALIFIED NAME INVALID AFTER 
LEVEL NUMBER. USING LOWEST 
NAME. 

lLA1037I-E ***** INVALID IN DATA 
DESCRIPTION. SKIPPING TO NEXT 
CLAUSE. 

lLA1038I-E ***** INVALID AFTER LEVEL 
NUMBER. SKIPPING TO NEXT 
LEVEL. 

ILA1039I-W DATA-NAME IN **~~* CLAUSE NEED 
NOT BE QUALIFIED. USING LOWEST 
NAME. 

ILA1040I-E IMPROPER LEVEL NUMBER FOR FILE 
SECTION. 

ILA1041I-E ***** INVALID AS USED IN ***** 
SECTION. SKIPPING TO NEXT 
LEVEL, SECTION OR DIVISION. 

ILAl042I-E ASSIGN CLAUSE MISSING IN 
SELECT. CONTINUING. 

lLA1043I-W END OF SENTENCE SHOULD PRECEDE 
*****. ASSUMED PRESENT. 

lLAl044I-E INVALID OR MISSING USING AND/OR 
GIVING CLAUSE IN SORT 
STATEMENT. PROGRAM CANNOT BE 
EXECUTED. 

ILA1045I-E INVALID ORDER IN ***** SECTION. 

lLA1046I-E MEMBER NOT FOUND IN LIBRARY. 
IGNORING COPY. 

ILAl047I-E SYNTAX OF COMMENT IS INCORRECT. 
SKIPPING TO NEXT CLAUSE. 

ILA1048I-E REEL (UNIT) NOT IN ASSIGN 
CLAUSE. ASSUMED PRESENT. 

ILAl049I-E ***** FILE-NAME ALREADY 
ASSIGNED THIS MULTIPLE FILE 
CLAUSE OPTION. USING FIRST 
ONE. 

lLA1050I-E ***** FILE ALREADY ASSIGNED 
THIS APPLY OPTION. FILE-NAME 
IGNORED. 

ILA1051I-E NO DAT~-NAME IN USE SENTENCE. 
SENTENCE IGNORED. 

lLA1052I-E ***** ILLEGALLY USED IN USE 
SENTENCE. END SENTENCE, 
RESCANNING AT NEXT RECOGNIZABLE 
WORD. 

lLA1053I-E ***** CLAUSE INVALID. CLAUSE 
IGNORED. 

lLA1054I-E OPERAND FOR INITIATE NOT FOUND 
OR ILLEGAL. OPERAND DROPPED. 

lLA1055I-E VALID FILE-NAME NOT PRESENT. 
DESCRIPTION IGNORED. 

lLA1056I-E FILE-NAME NOT DEFINED IN A 
SELECT. DESCRIPTION IGNORED. 

lLA1057I-E FIRST WORD IN REPORT SECTION 
NOT RD. IGNORED. 

lLA1058I-E NO REPORTS CLAUSE IN FILE 
SECTION. REPORT SECTION 
IGNORED. 

lLA1059I-E NO REPORT CLAUSE FOR RD. RD 
IGNORED. 

IILA1060I-E 

ILA1061I-E 

IILA1062I-E 

INVALID WORD IN REPORT WRITER 
STATEMENT. IGNORED. 

DUPLICATE CLAUSE. DROPPED. 

***** IN COPY REPLACING 
STATEMENT INVALID AS BCD NAME. 

lLA1063I-E DUPLICATE ENTRY IN PAGE CLAUSE. 
DROPPED. 

lLA1064I-E NO TYPE CLAUSE SPECIFIED. 
SKIPPING TO NEXT 01. 

ILAl065I-E INTEGER MISSING IN PAGE CLAUSE. 
ENTRY IGNORED. 

lLA1066I-E INVALID WORD IN PAGE CLAUSE. 
SKIPPING TO NEXT RECOGNIZABLE 
WORD. 

lLA1067I-E INVALID HEADER. SKIPPING TO 
NEXT RECOGNIZABLE WORD. 

ILA1068I-E OPERAND FOR GENERATE NOT FOUND. 

lLA1069-E 

CLAUSE DROPPED. 

INVALID TYPE CLAUSE. SKIPPING 
TO NEXT 01. 

lLA1070I-C FLT-PT LIT MANTISSA EXCEEDS 16 
DIGITS. TRUNCATED TO 16. 

lLAl071I-C FLT-PT LIT EXPONENT EXCEEDS 2 
DIGITS. TRUNCATED TO 2. 
RESCANNING. 

ILA1072I-C FLT-PT LIT EXPONENT FOLLOWED BY 
NON-BLANK. RESCANNING AT 
NON-BLANK. 

Appendix F: Diagnostic Messages 219 



ILA1073I-C FLT-PT LIT E FOLLOWED BY 
INVALID CHARACTER. RESCANNING 
AT E. 

lLA1074I-C FLT-PT LIT SIGN FOLLOWED BY 
INVALID CHARACTER. RESCANNING 
AT E. 

lLA1075I-C FLT-PT LIT EXCEEDS LIMIT. 
ASSUME MAX OR MIN PER SIGN OF 
EXPONENT. 

ILA1076I-C ALPHANUMERIC LIT EXCEEDS 120 
CHARACTERS. TRUNCATED TO 120. 

ILA1077I-C ALPHANUMERIC LIT CONTINUES IN 
A-MARGIN. ASSUME B-MARGIN. 

ILA1078I-W ALPHANUMERIC LIT CONTI tIDED 
WITHOUT HYPHEN OR QUOTE. 
ASSUMED. 

ILA1079I-W ALPHANUMERIC LIT HAS ZERO 
LENGTH. ASSUME ONE SPACE. 

ILA1080I-W PERIOD PRECEDED BY SPACE. 
ASSUME END OF SENTENCE. 

ILA1081I-W PERIOD NOT FOLLOWED BY SPACE. 
ASSUME END OF SENTENCE. 

ILA1082I-C NUMERIC LIT EXCEEDS 18 DIGITS. 
TRUNCATED TO 18. 

ILA1083I-C ILLEGAL CHARACTER. SCAN 
RESUMED AT NEXT VALID 
CHARACTER. 

ILA1084I-W COMMA SHOULD NOT BE PRECEDED BY 
SPACE. 

ILA1085I-C WORD OR PICTURE EXCEEDS iO 
CHARACTERS. TRUNCATED TO 30 
CHARACTERS. 

ILA1086I-W ***** SHOULD BEGIN IN A-MARGIN. 

ILA1087I-W .~****. SHOULD NOT BEGIN IN 
A-MARGIN. 

ILA1088I-E MISSING FIRST INSERT OR DELETE 
CARD. PASS CARDS UNTIL FOUND. 
*****. 

ILA1089I-E INSERT OR DELETE NUMBER OUT OF 
SEQUENCE. SKIPPING TO NEXT 
INSERT OR DELETE NUMBER. 
*****. 

ILA1090I-E DELETE THRU NUrmER OUT OF 
SEQUENCE. PASS CARDS UNTIL 
NEXT INSERT OR DELETE. *****. 

ILA1091I-C ***** IN A-MARGIN NOT VALID AS 
PROC-NM. ASSUME B-MARGIN. 

ILA1092I-E DECLARATIVES DO NOT FOLLOW 
PROCEDURE DIVISION. IGNORED. 

220 

ILA1093I-E NO DECLARATIVES SECTION. END 
DECLARATIVES IGNORED. 

lLA1094I-E INTEGER IN NEXT GROUP CLAUSE 
DOES NOT CONFORM TO PAGE CLAUSE 
SPECIFICATIONS. CONTINUING. 

lLA1095I-W WORD 'SECTION' OR 'DIVISION' 
MISSING. ASSUMED PRESENT. 

lLA1096I-E DATANAME IN UPON CLAUSE NOT 
SPECIFIED AS A DATANAME FOR A 
TYPE DETAIL REPORT GROUP IN 
THIS REPORT. UPON OPTION 
IGNORED. 

ILA1097I-E PROGRAM-ID MISSING OR 
MISPLACED. IF PROGRAM-ID DOES 
NOT IMMEDIATELY FOLLOW 
IDENTIFICATION DIVISION, IT 
WILL BE IGNORED. 

lLA1098I-C ALPHA LITERAL NOT CONTINUED 
WITH HYPHEN AND QUOTE. END 
LITERAL ON LAST CARD. 

ILA1099I-E ***** IS INVALID AS USED. 

I ILAll00I-W ***** SEQUENCE ERRORS IN SOURCE 
PROGRAM. 

ILAll01I-E NEXT PAGE NOT IN FIRST LINE 
CLAUSE. IGNORED. 

I ILAll02I-W INCOMPLETE ELEMENTARY ITEM. 
ASSUME VALUE SPACES. 

ILAll03I-E GROUP TYPE ALLOWED ONCE FOR RD. 
IGNORED. 

ILAll04I-E CONTROL NAME NOT SPECIFIED IN 
RD. SKIPPING TO NEXT 01. 

I ILAll05I-W ELEMENTARY ITEM EXPECTED. 
ASSUMED. 

ILAll06I-E OPERAND FOR TERMINATE NOT FOUND 
OR ILLEGAL. OPERAND DROPPED. 

lLAll07I-C 'NEXT GROUP' CLAUSE IS ILLEGAL 
FO~ THIS REPORT GROUP. 

~ IGNORED. 

lLAll08I-E ***** IS NOT A POSITIVE 
INTEGRAL NUMBER. ASSUMED ONE. 

lLAll09I-E DUPLICATE USE OF CONTROL NAME. 
SKIPPING TO NEXT 01. 

ILAlll0I-W INVALID USE OF SUM CLAUSE. 
CLAUSE IGNORED. 

ILAllllI-W ELEMENTARY LEVEL WITHOUT COLUMN 
OR SUM CLAUSE. 

ILAll12I-E '~****' ALREADY SPECIFIED IN 
TWO FILE DESCRIPTION ENTRIES. 
IGNORED. 

--- -------------



;"'. ( \ 

'-:/) 

ILA1113I-E EXPECTING 6-DIGIT SEQUENCE 
NUMBER. SKIPPING TO NEXT 
INSERT OR DELETE NUMBER. 
*****. 

ILA1114I-C EXTRANEOUS COMMA OR HYPHEN ON 
DELETE CARD. IGNORED. 

ILA1115I-E 

ILAll16I-E 

ILA1117I-E 

ILA1118I-E 

ILAl119I-E 

I ILA1120I-W 

NO BLANK, COMMA, OR HYPHEN 
FOLLOWING SEQUENCE NUMBER. 
ASSUME BLANK. *****. 

EXPECTING 6-DIGIT SEQUENCE 
NUMBER AFTER HYPHEN. IGNORING 
DELETE FROM THRU NUMBER. 
*****. 

DELETE NUMBER GREATER THAN LAST 
SEQUENCE NUMBER. STOP INSERT 
AND DELETE. *****. 

INSERT NUMBER GREATER THAN LAST 
SEQUENCE NUMBER. STOP INSERT 
AND DELETE. *****. 

INTEGER IN 'LINE' CLAUSE DOES 
NOT CONFORM TO PAGE CLAUSE 
SPECIFICATIONS. CONTINUING. 

COMMA NOT FOLLOWED BY SPACE. 
ASSUMED. 

lLA1121I-W PERIOD OR COMMA INVALID AS USED 
IN PICTURE CLAUSE. 

ILA1122I-E EXTERNAL-NAME IN RERUN CLAUSE 
MUST NOT BE THE SAME AS 
SYSTEM-NAME USED IN ASSIGN 
CLAUSE. SENTENCE IGNORED. 

ILA1123I-E NUMBER IS ZERO OR NEGATIVE. 
SENTENCE IGNORED. 

ILA1124I-E NUMBER TOO LARGE FOR RERUN. 
SENTENCE IGNORED. 

ILA1125I-C ***** FILE-NAME USED IN 
"P'RlWIOUS R~'RlJN. USING l?~S't' 

ONE. 

ILA1126I-E ***** FILE-NAME SPECIFIED IN 
BOTH RERUN AND USING OR GIVING 
OPTION. RERUN IGNORED. 

ILAl127I-C ***** INVALID IN ***** 
SENTENCE. REST OF SENTENCE 
IGNORED. 

ILAl129I-C ID DIV. HEADER MISSING OR 
MISPLACED. ASSUMED PRESENT. 

ILAl130I-E ***** DIV. HEADER MISSING. 
WORDS IN ***** STATEMENTS ARE 
INVALID. 

ILA1131I-W INVALID PRIORITY NUMBER. ZERO 
ASSUMED. 

ILA1132I-E INVALID SYSTEM-NAME. SKIPPING 
TO NEXT CLAUSE. 

ILA1133I-W MORE THAN 1 USE ON STANDARD 
ERROR SPECIFIED FOR SAME FILE 
ON OPEN OPTION. USE IGNORED. 

ILA1134I-E 

ILAl135I-W 

ILAl136I-E 

ILA1137I-W 

ILA1141I-C 

ILA1142I-E 

USE SPECIFIED FOR FILE WITH 
LABEL RECORDS OMITTED OR 
STANDARD. SENTENCE IGNORED. 

INTEGER-l OUTSIDE OF ALLOWABLE 
LIMITS. 1 ASSUMED. 

DATANAME ALREADY SPECIFIED FOR 
A TYPE DETAIL REPORT GROUP. 
SKIPPING TO NEXT 01, RD, OR 
SECTION. 

MINIMUM NUMBER OF OCCURRENCES 
IN OCCURS CLAUSE NOT LESS THAN 
MAXIMUM NUMBER. CONTINUING. 

FILE ORGANIZATION FIELD INVALID 
IN SYSTEM-NAME. SEQUENTIAL 
ASSUMED. 

USE FOR STANDARD ERROR OR LABEL 
PROCESSING SPECIFIED FOR FILE 
AND OPEN OPTION. USE FOR OPEN 
OPTION IGNORED. 

ILAl143I-E USE STATEMENTS IMPLY STANDARD 
AND NON-STANDARD LABELS. USE 
IGNORED. 

ILAl144I-W WRITE AFTER POSITIONING AND 
WRITE BEFORE ADVANCING. 
ILLEGALLY USED FOR 1 FILE. 

ILA1145I-E ***** DUPLICATELY DEFINED IN 
SPECIAL NAMES PARAGRAPH. 
SENTENCE IGNORED. 

ILA1147I-E SD FILE ILLEGALLY SPECIFIED IN 
SAME AREA CLAUSE. CLAUSE FOR 
SD IGNORED. 

ILA1148I-C INVALID SEGMENT LIMIT. FIFTY 
ASSUMED. 

ILAl149I-E FILES IN SAME AREA CLAUSE DO 
NOT ALL APPEAR IN THE SAME 
SORT/RECORD AREA CLAUSE. 
'.****' NOT GIVEN SAME AREA 
NUMBER. 

ILAl151I-E ILLEGAL CHARACTER USE IN 
CURRENCY SIGN CLAUSE. CLAUSE 
IGNORED. 

IAL1152I-E ON AND/OR OFF STATUS MUST BE 
SPECIFIED ON UPSI CLAUSE. 
SPECIAL NAME IGNORED. 

ILA1154I-E 2 DIFFERENT LABEL PROCEDURES 
FOR EOF AND EOV WITH 'BEFORE' 

Appendix F: Diagnostic Messages 221 



OPTION. BOTH LABEL PROCEDURES 
IGNORED. 

ILAl155I-E DEVICE CLASS INVALID IN 
SYSTEM-NAME. SKIPPING TO NEXT 
FIELD. 

ILAl156I-C DEVICE NUMBER INVALID IN 
SYSTEM-NAME. ,~****' ASSUMED. 

ILAl158I-E '~****'IN ENTRY STATEMENT IS 
SAME AS PROGRAM-ID. '~****' 
IGNORED FOR ENTRY VERB. 

ILAl156I-W PAGE LIMIT INTEGER-l NOT 
SPECIFIED. ASSUME HIGH-VALUE. 

ILAl160I-E CONTINUATION OF WORD FOUND IN 
A-MARGIN. IGNORED. 

ILAl161I-W RESERVED WORD MISSING. ASSUMED 
PRESENT. 

ILAl162I-E INTEGER IN LINE CLAUSE IS LESS 
THAN PREVIOUS VALUE. IGNORED. 

ILAl16~T-E ABSOLUTE LINE NUMBER IS 
PRECEDED BY A RELATIVE LINE 
NUMBER. IGNORED. 

ILAl164I-E NO PAGE CLAUSE SPECIFIED. ALL 
LINE CLAUSES MUST BE 'LINE PLUS 
INTEGER'. IGNORED. 

ILA1165I-E 'HEADING' EQUALS 'FIRST DETAIL' 
IN PAGE CLAUSE. PAGE HEADING 
IS ILLEGAL. CONTINUING. 

lLA1166I-E 'FOOTING' EQUALS 'PAGE LIMIT' 
IN PAGE CLAUSE. PAGE FOOTING 
IS ILLEGAL. CONTINUING. 

ILAl167I-W 'LINE NEXT PAGE' CLAUSE IS 
ILLEGAL FOR THIS REPORT GROUP. 
IGNORED. 

I ILA1168I-W DUPLICATE REPORT NAME. 
SKIPPING TO NEW RD. 

ILA1169I-E AN OPERAND IN THIS SUM CLAUSE 
DOES NOT APPEAR AS A SOURCE 
ITEM IN DETAIL *****. OPERAND 
IGNORED. 

ILAl170I-E DETAIL REPORT GROUP SPECIFIED 
WITH NO DATANAME. CONTINUING. 

ILAl171I-E INTEGERS IN PAGE CLAUSE ARE NOT 
IN ASCENDING ORDER. 
CONTINUING. 

ILAl172I-E WORD INVALID AS REPORT NAME. 
RD IGNORED. 

ILA1173I-E GROUP INDICATE IS ILLEGAL FOR 
THIS REPORT GROUP. IGNORED. 

222 

I ILA1174I-E NO LINE CLAUSE SPECIFIED IN 
PRECEDING REPORT GROUP. NO 
OUTPUT GENERATED. 

ILAl175I-E DATANAME FOR THIS REPORT GROUP 
IS NOT UNIQUE. SKIPPING TO NEW 
01, RD, SECTION. 

ILAl176I-E SYS NUMBER NOT EQUAL TO 001 FOR 
SORT FILE. ASSUMED PRESENT. 

ILAl178I-E RESET CLAUSE SPECIFIED, AND IS 
EITHER ILLEGAL FOR THIS REPORT 
GROUP, OR ELEMENTARY ITEM DOES 
NOT CONTAIN A SUM CLAUSE. 
CLAUSE IGNORED. 

ILAl179I-E COLUMN NUMBER ILLEGAL. ASSUME 
COLUMN 1. 

ILA2001I-C BLOCK SIZE SMALLER THAN RECORD 
SIZE. BLOCK CONTAINS IGNORED. 

lLA2002I-W ORGANIZATION INCORRECT. USING 
STANDARD SEQUENTIAL. 

ILA2003I-W RANDOM ACCESS ILLEGAL FOR THIS 
FILE. USING SEQUENTIAL. 

ILA2004I-E RECORDING MODE ILLEGAL FOR 
ACCESS METHOD. RECORDING MODE 
IGNORED. 

ILA2005I-W A CARD-FILE OPENED INPUT MUST 
HAVE FIXED RECORD FORMAT. 
FIXED ASSUMED. 

ILA2006I-C SPANNED RECORDS INVALID FOR 
THIS DEVICE. USING VARIABLE. 

ILA2007I-C RECORD CONTAINS CLAUSE 
CONFLICTS WITH RECORD 
DESCRIPTION. CLAUSE IGNORED. 

ILA2008I-C APPLY MASTER/CYLINDER INDEX 
VALID ONLY FOR INDEXED FILES. 
CLAUSE IGNORED. 

lLA2009I-C SYNCHRONIZED ITEM NOT ON PROPER 
BOUNDARY. NO ALIGNMENT 
PERFORMED BECAUSE STARTING 
ADDRESS OF THE REDEFINES ITEM 
WOULD HAVE TO BE CHANGED. 

ILA2010I-E OBJECT OF REDEFINES CLAUSE IS 
OCCURS DEPENDING ON SUBJECT. 
REDEFINES CLAUSE IGNORED. 

lLA2011I-E AN INDEX DATA ITEM MAY NOT BE A 
CONDITIONAL VARIABLE. 88(S) 
DISCARDED. 

ILA2012I-E INDEX NAMES AND/OR KEYS IGNORED 
FOR TABLE WITH ILLEGAL SUBJECT. 

ILA2013I-C BLOCK CONTAINS CLAUSE 
IMPROPERLY WRITTEN. CLAUSE 
IGNORED. 



C) 

o 

ILA2014I-C BLOCK CONTAINS CHARACTERS MUST 
BE USED FOR SPANNED RECORDS. 
USING VARIABLE. 

lLA2015I-W CONFLICTING SPECIFICATIONS FOR 
RECORD FORMAT. ***** ASSUMED. 

ILA2016I-E DATA-RECORD SIZE IS VARIABLE. 
'RECORDING MODE F' IGNORED. 

lLA2017I-E IF THE SUBJECT OF AN INDEXED BY 
CLAUSE IS AN ELEMENTARY ITEM 
ONLY THAT ITEM MAY BE SPECIFIED 
IN THE KEY CLAUSE. REST OF 
KEYS DISCARDED. 

ILA2018I-E OBJECT OF RENAMES CLAUSE WAS 
NOT FOUND OR NON-UNIQUE IN 
LOGICAL RECORD. 

ILA2019I-C BLOCK CONTAINS CLAUSE INVALID 
WHEN RECORD FORMAT IS UNDEF. 
CLAUSE IGNORED. 

lLA2020I-C TRACK-AREA CLAUSE ILLEGAL FOR 
THIS ACCESS METHOD. CLAUSE 
IGNORED. 

I lLA2021I-C 

ILA2022I-E 

PICTURE DUPLICATION FACTOR 
TRUNCATED TO 5 SIGNIFICANT 
DIGITS. 

THE OBJECT OF THE RENAMES OR 
RENAMES THRU CLAUSE CANNOT BE 
AN 01, 66, 77, OR 88. 
STATEMENT DISCARDED. 

lLA2023I-E ***** KEY MISSING. FILE 
IGNORED. 

ILA2024I-E ***** KEY IS ILLEGAL FOR THIS 
ACCESS METHOD. CLAUSE IGNORED. 

ILA2027I-C APPLY CORE INDEX ILLEGAL FOR 
THIS ACCESS METHOD. CLAUSE 
IGNORED. 

lLA2028I-W RECORD CONTAINS CLAUSE 
IMPROPERLY WRITTEN. CLAUSE 
IGNORED. 

ILA2029I-C FIRST NON 77, 88 ITEM IN 
SECTION IS NOT AN 01. THIS 
ITEM WAS CHANGED TO 01. 

ILA2030I-C 77 ITEM PRECEDED BY AN 01-49 
ITEM OR 77 IN FILE SECTION. 77 
CHANGED TO 01. 

lLA2031I-C 88 ITEM MUST MUST BE PRECEDED 
BY 01-49 OR 77 ITEM. 88 
CHANGED TO 01. 

ILA2032I-E 88 ITEM CONTAINED A CLAUSE 
OTHER THAN VALUE CLAUSE. 
CLAUSE DELETED. 

ILA2033I-C ITEM'S USAGE INCOMPATIBLE WITH 
USAGE OF GROUP IT BELONGS TO. 
USAGE CHANGED TO GROUP'S USAGE. 

ILA2034I-E GROUP ITEM HAS PICTURE CLAUSE. 
CLAUSE DELETED. 

ILA2035I-E GROUP ITEM HAS BLANK WHEN ZERO 
CLAUSE. CLAUSE DELETED. 

lLA2036I-E 

ILA2037I-E 

IILA2038I-E 

ILA2039I-C 

ILA2040I-E 

lLA2041I-E 

ILA2042I-E 

GROUP ITEM HAS JUSTIFIED 
CLAUSE. CLAUSE DELETED. 

BLANK WHEN ZERO CLAUSE USED 
INCORRECTLY. CLAUSE IGNORED. 

ACTUAL KEY MUST BE GREATER THAN 
4 AND LESS THAN 259 BYTES IN 
LENGTH. USING 5. 

PICTURE CONFIGURATION ILLEGAL. 
PICTURE CHANGED TO 9 UNLESS 
USAGE IS 'DISPLAY-ST', THEN 
L( 6) BDZ9BDZ9. 

JUSTIFIED CLAUSE SPEC'D FOR 
NON-ALPHABETIC OR 
NON-ALPHANUMERIC ITEM. CLAUSE 
DELETED. 

CONDITION NAME UNDER GROUP HAS 
VALUE CLAUSE THAT IS NUMERIC. 
88 DISCARDED. 

THIS ITEM CAUSES OVER 3 LEVELS 
OF SUBSCRIPTING. OCCURS CLAUSE 
DROPPED FOR THIS ITEM. 

ILA2043I-E 01 OR 77 LEVEL HAS AN OCCURS 
CLAUSE. CLAUSE DELETED. 

IILA2044I-E DUPLICATE SD. IGNORED. 

ILA2045I-E REPORT CONTROL NAME UNDEFINED. 

ILA2046I-E REPORT CONTROL NAME NOT FIXED 
LENGTH. 

ILA2047I-E MORE THAN 12 INDEX NAMES 
SPECIFIED FOR TABLE. FIRST 12 
ACCEPTED. 

lLA2049I-C NO VALID OPEN FOR FILE. FILE 
IGNORED. 

lLA2050I-C BLOCK SIZE TOO LARGE. USING 
MAXIMUM FOR DEVICE. RECORD 
TRUNCATED. 

lLA2051I-C APPLY EXTENDED SEARCH VALID 
ONLY FOR DIRECT FILES. CLAUSE 
IGNORED. 

lLA2052I-E MORE THAN 12 KEYS SPECIFIED FOR 
TABLE. FIRST 12 ACCEPTED. 

ILA2055I-C STERLING NON-REPORT PICTURE -
SIGN IN POUND FIELD MUST BE ON 

Appendix F: Diagnostic Messages 223 



HI OR LO ORDER DIGIT. PICTURE 
REPLACED BY 9D8D7. 

ILA2056I-C STERLING NON-REPORT PICTURE - 9 
IN ILLEGAL POSTION. PICTURE 
REPLACED BY 9D8D7. 

lLA2057I-C STERLING NON-REPORT PICTURE -
SIGN IN SHILLING FIELD ILLEGAL. 
PICTURE REPLACED BY 9D8D7. 

lLA2058I-C STERLING NON-REPORT PICTURE - 8 
IN ILLEGAL POSITION. PICTURE 
REPLACED BY 9D8D7. 

lLA2059I-C STERLING NON-REPORT PICTURE -
SIGN IN PENCE FIELD ILLEGAL. 
PICTURE REPLACED BY 90807. 

ILA2060I-C STERLING NON-REPORT PICTURE - 6 
OR 7 IN ILLEGAL POSITION. 
PICTURE REPLACED BY 90807. 

lLA2061I-C STERLING NON-REPORT PICTURE. 
USAGE NOT DISPLAY-ST. PICTURE 
REPLACED BY 9(1). 

lLA2062I-C STERLING NON-REPORT PICTURE - V 
IN ILLEGAL POSITION. PICTURE 
REPLACED BY 9D8D7. 

lLA2063I-C STERLING NON-REPORT PICTURE - S 
IN ILLEGAL POSITION. PICTURE 
REPLACED BY 9D8D7. 

lLA2064I-C STERLING NON-REPORT PICTURE -
DIGIT LENGTH GT 2. PICTURE 
REPLACED BY 90807. 

ILA2065I-C STERLING NON-REPORT PICTURE -
SHILLING FIELD GT 18. PICTURE 
REPLACED BY 90807. 

lLA2066I-C STERLING NON-REPORT PICTURE -
PENCE FIELD GT 2. PICTURE 
REPLACED BY 90807. 

lLA2067I-C STERLING NON-REPORT PICTURE -
NO POUND SEPARATOR. PICTURE 
REPLACED BY 90807. 

ILA2068I-C ONLY THE RENAMES CLAUSE MAY BE 
SPECIFIED FOR A LEVEL 66 ENTRY. 
CLAUSE IGNORED. 

lLA2069I-C NUMERIC PICTURE - SIGN IN 
ILLEGAL POSITION. PICTURE 
REPLACED BY 9(1). 

lLA2070I-C NUMERIC PICTURE - P IN ILLEGAL 
POSITION. PICTURE REPLACED BY 
9(1): 

lLA2071I-C NUMERIC PICTURE - V IN ILLEGAL 
POSITION. PICTURE REPLACED BY 
9(1). 

224 

lLA2072I-C NUMERIC PICTURE - NO 9 IN 
PICTURE. PICTURE REPLACED BY 
9 (1). 

lLA2073I-C NUMERIC PICTURE - P ENCLOSED BY 
9'S. PICTURE REPLACED BY 9(1). 

lLA2074I-E COMPILER ERROR - MINOR CODE FOR 
RENAMES ENTRY IS ILLEGAL. 

lLA2075I-C NUMERIC PICTURE - DIGIT LENGTH 
GT 18. PICTURE REPLACED BY 
9(1). 

ILA2076I-C NUMERIC PICTURE - DIGIT LENGTH 
+ SIGN SCALE GT 18. PICTURE 
REPLACED BY 9 (1) • 

ILA2077I-C EXTERNAL FLOATING-POINT PICTURE 
- USAGE NOT DISPLAY. PICTURE 
CHANGED TO 9. 

ILA2078I-W EXTERNAL FLOATING-POINT PICTURE 
- MORE THAN 1 SIGN. CHANGED TO 
1. 

ILA2079I-C EXTERNAL FLOATING-POINT PICTURE 
- SIGN IN ILLEGAL POSITION. 
PICTURE CHANGED TO +9.E+99. 

ILA2080I-C EXTERNAL FLOATING-POINT PICTURE 
- SIGN MISSING. ASSUME MINUS 
SIGN. 

ILA2081I-C EXTERNAL FLOATING-POINT PICTURE 
- REQUIRED CHARACTER BEFORE 
EXPONENT MISSING. PICTURE 
CHANGED TO +9.E+99. 

ILA2082I-W EXTERNAL FLOATING-POINT PICTURE 
- NO DECIMAL POINT IN MANTISSA. 
ASSUME IMPLIED V. 

ILA2083I-C EXTERNAL FLOATING-POINT PICTURE 
- MANTISSA LENGTH GT 16. 
PICTURE CHANGED TO +9.E+99. 

ILA2084I-C EXTERNAL· FLOATING-POINT PICTURE 
- TOTAL LENGTH GT 21. PICTURE 
CHANGED TO +9.E+99. 

lLA2085I-C EXTERNAL FLOATING-POINT PICTURE 
- EXPONENT LENGTH NOT 2 DIGITS. 
ASSUME 2 DIGITS. 

ILA2086I-C NUMERIC EDITED PICTURE - TWO 
FIXED DOLLAR SIGNS, +, - OR 
FIXED AND FLOATING DOLLAR SIGN. 
PICTURE REPLACED BY 9(1). 

ILA2089I-C NUMERIC EDITED PICTURE - 9, Z 
OR * PRECEDES FLOATING STRING. 
PICTURE REPLACED BY 9("). 

ILA2090I-C NUMERIC EDITED PICTURE - P IN 
ILLEGAL POSITION. PICTURE 
REPLACED BY 9(1). 

c 

c 



ILA2091I-C NUMERIC EDITED PICTURE - TWO 
DIFFERENT FLOATING STRING 
CHARACTERS. PICTURE REPLACED 
BY 9(1). 

ILA2092I-C NUMERIC EDITED PICTURE - Z AND 
* IN PICTURE. PICTURE REPLACED 
BY 9 (1). 

ILA2093I-C NUMERIC EDITED PICTURE - 9 
PRECEDES * OR Z. PICTURE 
REPLACED BY 9(1). 

ILA2094I-C NUMERIC EDITED PICTURE -
FLOATING STRING PRECEDES * OR 
Z. PICTURE REPLACED BY 9(1). 

ILA2096I-C DECIMAL POINT MAY ONLY APPEAR 
ONCE IN A PICTURE CHARACTER 
STRING. PICTURE REPLACED BY 
9(1). 

ILA2097I-C 

ILA2098I-C 

NUMERIC EDITED PICTURE -
DECIMAL POINT OR V 
CONTRADICTORY TO P. PICTURE 
REPLACED BY 9(1). 

INDEXED BY AND/OR KEY CLAUSE IS 
ILLEGAL FOR ITEM SUBORDINATE TO 
GROUP THAT HAS OCCURS BUT NO 
INDEXED BY CLAUSE. CLAUSE 
IGNORED. 

ILA2099I-C NUMERIC EDITED PICTURE - CR OR 
DB AND SIGN BOTH USED. PICTURE 
REPLACED BY 9(1). 

lLA2100I-C NUMERIC EDITED PICTURE - CR OR 
DB NOT LAST TWO CHARACTERS IN 
PICTURE. PICTURE REPLACED BY 
9(1). 

lLA2101I-C NUMERIC EDITED PICTURE - SIGN 
IS NOT FIRST OR LAST CHARACTER 
IN PICTURE. PICTURE REPLACED 
BY 9(1). 

ILA2102I-C NUMERIC EDITED PICTURE -
NUMERIC CHARACTERS AFTER 
DECIMAL POINT ARE NOT THE SAME. 
PICTURE REPLACED BY 9(1). 

ILA2103I-C NUMERIC EDITED PICTURE - TOTAL 
LENGTH GT 127. PICTURE 
REPLACED BY 9(1). 

ILA2104I-C NUMERIC EDITED PICTURE -
NUMERIC LENGTH GT 18. PICTURE 
REPLACED BY 9(1). 

ILA2105I-E ONLY ONE KEY MAY BE SPECIFIED 
IF THE SUBJECT OF TABLE IS A 
KEY. REST OF KEYS DISCARDED. 

ILA2106I-E THE RENAMES CLAUSE MUST BE THE 
LAST ENTRY IN A LOGICAL RECORD. 
SKIPPING TO NEXT LEVEL, 
SECTION, OR DIVISION. 

ILA2107I-W NUMERIC EDITED PICTURE - USAGE 
NOT DISPLAY. PICTURE CHANGED 
TO 9. 

ILA2108I-E KEYS IGNORED FOR ITEM WITH NO 
INDEXED BY CLAUSE. 

ILA2110I-C APPLY WRITE-ONLY VALID ONLY ~'OR 
VARIABLE BLOCKED RECORDS. 
CLAUSE IGNORED. 

ILA2113I-W ITEM WITH USAGE OF 
COMPUTATIONAL-lOR 
COMPUTATIONAL-2 HAS PICTURE 
CLAUSE. CLAUSE IGNORED. 

ILA2114I-E ONLY THE SYNCHRONIZED CLAUSE IS 
ALLOWED FOR A USAGE IS INDEX 
ITEM. CLAUSE IGNORED. 

ILA2115I-E 

I ILA2116I-E 

ILA2117I-E 

LENGTH OF VARIABLE GROUP GT 
32K. ACCEPTED AS WRITTEN. 

FIXED LENGTH GROUP ITEM IN 
WORKING-STORAGE OR LINKAGE 
SECTION IS GT 131K. ACCEPTED 
AS WRITTEN. 

INVALID REPORT CHARACTER. 
PICTURE CHANGED TO 9. 

ILA2118I-C LENGTH OF REDEFINES SUBJECT 
GREATER THAN LENGTH OF 
REDEFINES OBJECT. SUBJECT 
LENGTH USED. 

ILA2119I-E VALUE CLAUSE SPECIFIED FOR AN 
ITEM IN A REDEFINES GROUP. 
CLAUSE IGNORED. 

ILA2120I-E OBJECT OF REDEFINES CLAUSE 
UNDEFINED OR ILLEGAL. CLAUSE 
IGNORED. 

ILA2121I-W SUBJECT OF REDEFINES IS 
VARIABLE LENGTH. 

ILA2122I-E REDEFINES SUBJECT LEVEL NUMBER 
NOT EQUAL TO REDEFINES OBJECT 
LEVEL NUMBER OR OBJECT NOT 
IMMEDIATELY PRECEDING SUBJECT. 
CLAUSE IGNORED. 

ILA2123I-W OBJECT OF REDEFINES IS 
SUBSCRIPTED. 

ILA2124I-C OBJECT OF REDEFINES IS VARIABLE 
LENGTH GROUP ITEM. REDEFINES 
CLAUSE IGNORED. 

ILA2125I-W VALUE CLAUSE TREATED AS 

I COMMENTS FOR ITEMS IN FILE AND 
LINKAGE SECTIONS. 

ILA2126I-C VALUE CLAUSE LITERAL TOO LONG. 
TRUNCATED TO PICTURE SIZE. 

Appendix F: Diagnostic Messages 225 



ILA2127I-C NUMERIC VALUE CLAUSE SPECIFIED 
FOR GROUP ITEM. CLAUSE 
IGNORED. 

ILA2128I-C VALUE CLAUSE LITERAL DOES NOT 
CONFORM TO PICTURE. CHANGED TO 
BLANKS. 

ILA2129I-C VALUE CLAUSE LITERAL DOES NOT 
CONFORM TO PICTURE. CHANGED TO 
ZERO. 

ILA2130I-E ITEM CANNOT HAVE VALUE CLAUSE. 
CLAUSE IGNORED. 

lLA2132I-E RECORD KEY LENGTH GREATER THAN 
255 BYTES. ACCEPTED AS 
WRITTEN. 

lLA2133I-W LABEL RECORDS CLAUSE INVALID OR 
MISSING. ***** ASSUMED. 

lLA2134I-C VALUE FOR SCALING CHARACTER 
SHOULD BE ZERO. CHANGED TO 
ZERO. 

I 
lLA2135I-C RECORDS IN ISAM FILE CANNOT BE 

VARIABLE LENGTH. ASSUMED FIXED 
AT MAXIMUM SIZE. 

I 

lLA2136I-E NOMINAL KEY LENGTH FOR INDEXED 
FILE GREATER THAN 255 BYTES. 
KEY IGNORED. 

lLA2137I-E THE OBJECT OF THE RENAMES THRU 
CLAUSE IS SUBORDINATE TO THE 
SUBJECT. STATEMENT DISCARDED. 

ILA2139I-W APPLY WRITE VERIFY VALID ONLY 
FOR MASS STORAGE DEVICES. 
CLAUSE IGNORED. 

ILA2140I-E VALUE CLAUSE SPECIFIED ON BOTH 
GROUP AND ELEMENTARY ITEM OR ON 
SUBORDINATE GROUP. SECOND 
ITEM'S VALUE CLAUSE IGNORED. 

lLA2141I-C LENGTH OF LITERAL IS MORE OR 
LESS THAN LENGTH OF GROUP. 
LENGTH OF LITERAL ASSUMED. 

lLA2142I-W ALPHABETIC OR ALPHANUMERIC ITEM 
HAS ILLEGAL USAGE. PICTURE 
CHANGED TO 9. 

lLA2143I-W STERLING NON-REPORT PICTURE -
MORE THAN ONE V OR S. ASSUMED 
ONE. 

I lLA2144I-C NUMERIC PICTURE - MORE THAN ONE 
V OR S. ASSUMED ONE. 

ILA2145I-E 

226 

ALPHABETIC OR ALPHANUMERIC ITEM 
LENGTH GREATER THAN 32767. 
TRUNCATED TO 32767. 

lLA2146I-W RECORD CONTAINS DISAGREES WITH 
COMPUTED MAXIMUM. USING 
COMPUTED MAXIMUM. 

lLA2148I-W ON AN 01 (77) COpy LIBRARY-NAME 
CLAUSE, LIBRARY DID NOT HAVE AN 
01 (77) AS FIRST CARD. 

lLA2149I-E VALUE CLAUSE SPECIFIED FOR ITEM 
WITH OCCURS OR FOR ITEM 
SUBORDINATE TO AN ITEM WITH 
OCCURS. CLAUSE IGNORED. 

lLA2150I-E VALUE CLAUSE SPECIFIED ,FOR ITEM 
IN VARIABLE LENGTH PORTION OF A 
WORKING-STORAGE RECORD. CLAUSE 
IGNORED. 

lLA2151I-C ELEMENTARY ITEMS NOT INTERNAL 
FLOATING-POINT MUST HAVE 
PICTURE. PICTURE ASSUMED 9. 

lLA2152I-D COMPILER ERROR - PHASE 2 INPUT 
UNRECOGNIZABLE. SKIPPING TO 
NEXT PHASE. 

lLA2153I-C APPLY CYLINDER OVERFLOW VALID 
ONLY FOR INDEXED FILES. CLAUSE 
IGNORED. 

lLA2154I-C THE AREA BEING REDEFINED IS NOT 
IMMEDIATELY PRECEDING THE ENTRY 
WHICH REDEFINES IT OR THE LEVEL 
NUMBERS OF THE SUBJECT AND 
OBJECT OF THE REDEFINES ARE NOT 
THE SAME. THE OBJECT OF THE 
REDEFINES IS ASSUMED TO BE THE 
LAST ENTRY WITH THE SAME LEVEL 
NUMBER AS THE SUBJECT OF THE 
REDEFINES. 

lLA2155I-C ILLEGAL STERLING NON-REPORT 
PICTURE CHARACTER. PICTURE 
REPLACED BY 9D8D7. 

lLA2156I-W PICTURE DOES NOT CONTAIN A 
SIGN. SIGN DROPPED FROM VALUE 
CLAUSE LITERAL. 

lLA2157I-W RESERVE CLAUSE TREATED AS 
COMMENTS FOR THIS FILE 
ORGANIZATION. 

lLA2158I-D OCCURS DEPENDING ON VARIABLE IS 
IN VARIABLE PORTION OF A 
RECORD. PROGRAM INTERRUPT WILL 
OCCUR. 

lLA2159I-C 

lLA2160I-E 

OBJECT OF REDEFINES CLAUSE NOT 
DEFINED. PREVIOUS 01 ASSUMED 
TO BE OBJECT. 

THE OBJECT OF THE RENAMES OR 
RENAMES THRU CLAUSE CANNOT 
CONTAIN AN OCCURS OR OCCURS 
DEPENDING ON CLAUSE NOR MAY IT 
BE SUBORDINATE TO AN ITEM THAT 

( 
\ 
\..'-



WAS ONE OF THESE CLAUSES. 
,,---\ STATEMENT DISCARDED. 
~I 

(J 

ILA2161I-C PICTURE INVALID. ADJACENT C 
DELIMITERS. ASSUMED PICTURE 
L( 6) 9BDZ9BDZ9. 

lLA2162I-C PICTURE INVALID. ADJACENT D 
DELIMITERS. ASSUMED PICTURE 
L( 6) 9BDZ9BDZ9. 

lLA2163I-C PICTURE INVALID. MORE THAN 2 
DELIMITERS. ASSUMED PICTURE 
L(6) 9BDZ9BDZ9. 

lLA2164I-C PICTURE INVALID. NO STERLING 
DELIMITERS. ASSUMED PICTURE 
L(6) 9BDZ9BDZ9. 

lLA2165I-C PICTURE INVALID. ONLY 1 
STERLING DELIMITER. ASSUME 
PICTURE L(6)9BDZ9BDZ9. 

lLA2166I-C PICTURE INVALID. ERROR IN 
SHILLING FIELD. ASSUMED 
SHILLING PICTURE Z9B. 

ILA2167I-C PICTURE INVALID. NUMBER OF 
POUND DIGITS EXCEEDS 15. 
ASSUMED PICTURE L(6)9BD. 

ILA2168I-C PICTURE INVALID. ERROR IN 
WHOLE PENCE FIELD. ASSUMED 
PENCE PICTURE Z9. 

lLA2169I-C PICTURE INVALID. ERROR IN 
DECIMAL PENCE FIELD. DECIMAL 
FIELD TRUNCATED. 

ILA2170I-C PICTURE INVALID. ERROR IN 
POUND FIELD. ASSUMED POUND 
PICTURE L(6)9B. 

lLA2171I-C PICTURE INVALID. NUMBER OF 
POUND DIGITS PLUS NUMBER OF 
PENCE DECIMAL EXCEEDS 15. 
DECIMAL PENCE DROPPED. 

lLA2172I-C PICTURE INVALID. SIZE OF 
REPORT FIELD EXCEEDS 127 BYTES. 
ASSUMED PICTURE L(6)BDZ9BDZ9. 

lLA2173I-C PICTURE INVALID. CR OR DB NOT 
VALID WITH LEADING SIGN. 
DECIMAL FIELD TRUNCATED. 

lLA2174I-C PICTURE INVALID. SIGN IN 
DECIMAL PENCE FIELD NOT VALID 
WITH LEADING SIGN. DECIMAL 
FIELD TRUNCATED. 

lLA2175I-C TRACK-AREA EXCEEDS AND IS 
REDUCED TO 32,760 BYTES. 

lLA2176I-W MULTIPLE YlLE TAPE CLAUSE ONLY 
APPLIES TO MAGNETIC TAPE FILES. 
CLAUSE IGNORED. 

lLA2177I-W ZERO SUPPRESSION CHARACTER WILL 
OVERRIDE BLANK WHEN ZERO 
CLAUSE. CLAUSE IGNORED. 

ILA2178I-E RECORD-KEY IS NOT WITHIN 
FILE-RECORD. 

lLA2179I-E RECORD-KEY IS NOT FIXED-LENGTH. 

lLA2180I-C RECORD-KEY FOR UNBLOCKED FILE 
INCLUDES FIRST BYTE OF RECORD. 

lLA2181I-C NOMINAL OR ACTUAL KEY IS 
DEFINED WITHIN THE FILE. 

lLA2182I-E FILE MAY BE OPENED OUTPUT ONLY. 
FILE IGNORED. 

I lLA2183I-W NO LEVEL 01 FOR FD OR SD. 

lLA2184I-E VALUE CLAUSE LITERAL DOES NOT 
CONFORM TO PICTURE. CLAUSE 
IGNORED. 

I 

lLA2185I-E DATA-NAME-3 EITHER PRECEDES 
DATA-NAME-2 OR IS DATA-NAME-2 
IN THE RENAMES THRU CLAUSE. 
STATEMENT DISCARDED. 

ILA2186I-C PICTURE DUPLICATION FACTOR IS 
ZERO. ASSUMING ONE OCCURRENCE 
OF PICTURE CHARACTER. 

ILA2187I-E 

lLA2188I-C 

lLA2190I-W 

lLA2191I-C 

lLA2192I-E 

OBJECT OF RENAMES CLAUSE OR 
RENAMES THRU CLAUSE IS NOT IN 
SAME LOGICAL RECORD. STATEMENT 
DISCARDED. 

EXTERNAL FLOATING-POINT PICTURE 
~LLEGAL WHEN CURRENCY SIGN IS 
E. PICTURE CHANGED TO 9. 

PICTURE CLAUSE IS SIGNED, VALUE 
CLAUSE UNSIGNED. ASSUMED 
POSITIVE. 

THE SYNCHRONIZED CLAUSE SHOULD 
NOT BE SPECIFIED WHEN 88'S ARE 
UNDER GROUP. STATEMENT 
ACCEPTED AS WRITTEN. 

ONLY USAGE IS DISPLAY SHOULD BE 
SPECIFIED WHEN VALUE CLAUSE IS 
ASSOCIATED WITH A GROUP ITEM. 
ACCEPTED AS WRITTEN. 

ILA2193I-C LITERAL-l IS GREATER THAN OR = 
TO LITERAL- 2 IN VALUE THRU 
CLAUSE. IGNORED. 

lLA2194I-C CHARACTERS OPTION IN BLOCK 
CONTAINS CAUSE NOT LEGAL IN 
INDEXED FILE. CLAUSE IGNORED. 

lLA2196I-C NO VALUE CLAUSE GIVEN FOR 
CONDITION NAME. VALUE ASSUMED 
ZERO OR SPACES DEPENDING ON 
PICTURE. 

Appendix F: Diagnostic Messages 227 

----- -------._-----------



lLA2199I-C TRACK AREA TOO SMALL. CLAUSE 
IGNORED. 

lLA2200I-E TAPE RECORD MUST CONTAIN AT 
LEAST 18 CHARACTERS. FILE 
IGNORED. 

lLA2201I-E NOMINAL KEY OR CORE-INDEX 
DATANAME MUST BE DEFINED IN 
WORKING-STORAGE SECTION. 

lLA2202I-E NOMINAL KEY OR CORE-INDEX 
DATA-NAME MUST BE DEFINED IN 
THE FIXED PORTION OF A RECORD. 
CONTINUING. 

lLA2203I-E INVALID DEVICE TYPE FOR SD. 
DISK ASSUMED. 

lLA2204I-E RECORD KEY AND NOMINAL KEY MUST 
BE THE SAME LENGTH. CONTINUING. 

lLA220SI-E ORGANIZATION ILLEGAL FOR 
ACCESS. FD IGNORED. 

lLA2206I-E REWRITE ILLEGAL FOR 
ORGANIZATION. FD IGNORED. 

lLA2207I-C APPLY CORE-INDEX LEGAL ONLY FOR 
INDEXED ORGANIZATION. CLAURE 
IGNORED. 

lLA2208I-E ***** KEY INVALID, UNDEFINED, 
OR NOT UNIQUE. CLAUSE IGNORED. 

lLA2209I-C CORE-INDEX DATANAME INVALID. 
UNDEFINED, OR NOT UNIQUE. 
CLAUSE IGNORED. 

lLA2210I-E ACTUAL KEY MUST BE GREATER THAN 
8 AND LESS THAN 263 BYTES IN 
LENGTH. USING 9. 

lLA2211I-C CYLINDER OVERFLOW TOO LARGE. 
CLAUSE IGNORED. 

lLA2212I-W INVALID ALPHANUMERIC EDITED 
CHARACTER. ACCEPTED AS 
WRITTEN. 

lLA2213I-W USER LABEL RECORD NOT DESCRIBED 
UNDER FD. USER LABEL IGNORED. 

lLA2214I-C STERLING NON-REPORT PICTURE -
NO SHILLING SEPARATOR. PICTURE 
REPLACED BY 9D8D7. 

ILA3001I-E ***** NOT DEFINED. ***. 

Explanation: This message 
always appears in conjunction 
with another message. 

lLA3002I-E ***** NOT UNIQUE. ***. 

228 

Explanation: This message 
always appears in conjunction 
with another message. 

lLA3003I-E HIGHEST LEVEL QUALIFIER ***** 
NOT DEFINED. ***. 

Explanation: This message 
always appears in conjunction 
with another message. 

lLA3004I-W QUALIFYING NAME ***** NOT 
UNIQUE. DISCARDED. 

Explanation: This message 
always appears in conjunction 
with another message. 

lLA300SI-E ***** NOT A VALID QUALIFIER. 
***. 

Explanation: This message 
always appears in conjunction 
with another message. 

lLA3006I-E ***** NOT DEFINED AS PART OF 
*****. ***. 

Explanation: This message 
always appears in conjunction 
with another message. 

lLA3007I-W ***** NOT UNIQUELY QUALIFIED BY 
*****. DISCARDED. 

Explanation: This message 
always appears in conjunction 
with another message. 

lLA3008I-E ***** NOT VALID AS IDENTIFIER-l 
IN ***** CORRESPONDING 
STATEMENT. STATEMENT 
DISCARDED. 

lLA3009I-E ***** NOT VALID AS IDENTIFIER-2 
IN ***** CORRESPONDING 
STATEMENT. 

lLA3010I-W SUPERFLUOUS 'TO' IGNORED IN 
***** CORRESPONDING STATEMENT. 

lLA3011I-W NO CORRESPONDENCE FOUND BETWEEN 
IDENTIFIER AND *****. 

lLA3012I-D COMPILER ERROR - LAST ITEM 
REFERENCED BY ACCESS WAS 
ELEMENTARY ITEM. 

lLA3013I-D DICT PTR LESS THAN QVAR ENTRY 
FOR ELEMENTARY ITEM. 

lLA3014I-D NO MATCH FOUND IN QVAR FOR 
***** ELEMENTARY ITEM. 

ILA3016I-D IMPOSSIBLE *****. COMPILER 
ERROR. 

ILA3017I-D COMPILER ERROR. ***** MINOR 
CODE ILLEGAL. 

I 

\---



o 

ILA3018I-E SPECIAL REGISTERS TIME-OF-DAY 
OR CURRENT-DATE MAY ONLY BE 
USED IN THE MOVE STATEMENT. 

Explanation: This message 
always appears in conjunction 
with another message. 

ILA3019I-D ILLEGAL LEVEL FOR *****. 

ILA3020I-E REPORT NAME ILLEGAL AS USED. 
DISCARDED. 

ILA3021I-C ***** NOT UNIQUE IN ITS GROUP. 
DISCARDED. 

ILA3022I-E ***** NOT VAL~D AS IDENTIFIER-l 
IN SEAR~H STATEMENT. STATEMENT 
DISCARDED. 

ILA3023I-W ITEMS CONTAINING THE USAGE IS 
INDEX, REDEFINES, RENAMES, OR 
OCCURS CLAUSES DO NOT QUALIFY 
AS CORRESPONDING IDENTIFIERS. 

ILA3024I-E NO KEYS WERE SPECIFIED FOR 
*****. STATEMENT DISCARDED. 

ILA3025I-E AN ERROR WAS DETECTED 
PROCESSING THE 'KEY FOR' 
PARAMETER. 

ILA3026I-E IDENTIFIER OMITTED IN ***** 
CORRESPONDING STATEMENT. 

ILA3027I-W DATA-NAME UNDER LABEL RECORD IS 
NON-UNIQUE. LAST DATA 
DESCRIPTION OF ***** ASSUMED. 

I ILA3029I-E 

ILA4001I-C 

ILA4002I-E 

CONDITION NAME ILLEGAL AS USED 
IN ***** STATEMENT. *****. 

OUTCOME OF PRECEDING CONDITION 
LEADS TO NON-EXI STENT 'NEXT 
SENTENCE'. 'STOP RUN' 
INSERTED. 

***** STATEMENT INCOMPLETE. 
STATEMENT DISCARDED. 

ILA4003I-E EXPECTING NEW STATEMENT. FOUND 
*****. DELETING TILL NEXT VERB 
OR PROCEDURE NAME. 

ILA4004I-E ***** / ***** IS ILLEGALLY USED 
IN ***** STATEMENT. DISCARDED. 

ILA40~5I-E ***** AND ***** VIOLATE RULE 
ABOUT LENGTH OF TRANSFORM 
OPERANDS. STATEMENT DISCARDED. 

ILA4006I-C ***~* STATEMENT CONTAINS 
UNPAIRED LEFT PARENTHESES. 
OUTERMOST IGNORED. 

ILA4007I-C ***** MISSING OR MISPLACED IN 
***** STATEMENT. ASSUMED IN 
REQUIRED POSITION. 

ILA4008I-W SUPERFLUOUS ***** FOUND IN 
***** STATEMENT. IGNORED. 

ILA4009I-E EXAMINE STATEMENT REQUIRES 
FIGURATIVE CONSTANT, SINGLE 
ALPHANUMERIC CHARACTER, OR 
l-DIGIT UNSIGNED NUMERIC 
INTEGRAL LITERAL. FOUND *****. 
STATEMENT DISCARDED. 

ILA4010I-C ***** STATEMENT CONTAINS 
UNPAIRED RIGHT PARENTHESES. 
OUTERMOST IGNORED. 

ILA4011I-E ***** IS NOT AN ALLOWABLE 
CHARACTER FOR *****. STATEMENT 
DISCARDED. 

ILA4012I-E COMPARISON BETWEEN TWO LITERALS 
IS ILLEGAL. TEST DISCARDED. 

ILA4013I-C RELATIONAL MISSING IN IF 
STATEMENT •. 'EQUAL' ASSUMED. 

ILA4014I-E EXAMINE STATEMENT REQUIRES 
IDENTIFIER WHOSE USAGE IS 
DISPLAY. FOUND ***** / *****. 
STATEMENT DISCARDED. 

ILA4015I-E 'GO TO' ILLEGAL UNLESS ALTERED. 
STATEMENT DISCARDED. 

ILA4016I-E OPERAND OF ***** APPEARS IN 
WRONG SEGMENT OF PROGRAM. 
ACCEPTED AS WRITTEN. 

ILA4017I-E ELSE UNMATCHED BY CONDITION IS 
DISCARDED. 

ILA4018I-E 

ILA4019I-E 

SET STATEMENT HAS AN ILLEGAL 
OPERAND BEFORE 'TO' OR 
INCOMPATIBLE OPERANDS. OPERAND 
BEFORE 'TO' DISCARDED. 

***** / ***** MAY NOT BE USED 
AS ARITHMETIC OPERAND IN ***** 
STATEMENT. ARBITRARILY 
SUBSTITUTING *****. 

ILA4020I-C SIGN BEFORE ***** IS DISCARDED. 

ILA4021I-W MINUS SIGN FOLLOWED BY SPACE 
ACCEPTED AS REVERSING SIGN OF 
FOLLOWING LITERAL. 

ILA4022I-W EXIT MUST BE SINGLE-WORD 
PARAGRAPH PRECEDED BY A ' 
PROCEDURE- NAME. STATEMENT 
DISCARDED. 

ILA4023I-E STORE-FIELD WHEN USED IN 
COMPUTATION MUST BE TO NUMERIC 
DATA-NAME. FOUND ***** / 
*****. STATEMENT DISCARDED. 

ILA4024I-E TWO OPERANDS ARE REQUIRED 
BEFORE 'GIVING'. STATEMENT 
DISCARDED. 

Appendix F: Diagnostic Messages 229 

-----------------------------------~----- --- -----



ILA402SI-E WRITE AFTER POSITIONING AND 
WRITE BEFORE ADVANCING 
ILLEGALLY USED FOR SAME FILE. 
BEFORE ASSUMED. 

ILA4037I-E SYNTAX REQUIRES PROCEDURE-NAME 
TO FOLLOW 'THRU'. FOUND *****. 
***** OPTION DISREGARDED. 

ILA4026I-E ***** / ***** IS ILLEGALLY USED ILA4038I-E 
IN ***** TEST. TEST DISCARDED. 

VARYING OPTION REQUIRES NUMERIC 
IDENTIFIER/INDEX-NAME. FOUND 
LITERAL. ARBITRARILY 
SUBSTITUTING *****. ILA4027I-C RIGHT TERM OF A CONDITION MAY 

NOT BE NEGATED. NEGATION IS 
APPLIED TO THE RELATIONAL. I ILA4039I-E *****/***** IN VARYING OR TIMES 

OPTION IS NOT NUMERIC. 
ARBITRARILY SUBSTITUTING *****. ILA4028I-C TWO 'NOT'S' IN SUCCESSION 

ILLEGAL. ACCEPTED AS 
CANCELLING EACH OTHER. ILA4040I-E ***** FILE ***** MAY NOT BE 

OPENED ***** AND IS DISCARDED. 
ILA4029I-E ***** / ***** MAY NOT BE 

COMPARED WITH ***** / *****. ILA4041I-E SYNTAX REQUIRES 'INPUT', 
TEST DISCARDED. 

ILA4030I-E FOUND ***** AFTER CONDITION. 
EXPECT 'OR', 'AND', OR VERB TO 

'. OUTPUT', OR '1-0' AFTER OPEN. 
FOUND *****. DELETING TILL ONE 
OF THESE IS FOUND. 

IMMEDIATELY FOLLOW CONDITION. ILA4042I-E SYNTAX REQUIRES FILE-NAME IN 
***** STATEMENT. FOUND *****. 
DELETING TILL LEGAL ELEMENT 
FOUND. 

DELETING TILL ONE OF THESE IS 
FOUND. 

ILA4031I-E PROCEDURE-NAME NOT THAT OF A 
SINGLE GO PARAGRAPH MAY NOT BE 
ALTERED. STATEMENT DISCARDED. 

ILA4032I-C NO ACTION INDICATED IF 
PRECEDING CONDITION IS TRUE. 
STATEMENT ACCEPTED WITH TRUE 
AND FALSE OUTCOMES IDENTICAL. 

ILA4033I-C PROCEDURE-NAME WHICH IS THE 
END-OF-RANGE OF A PERFORM 
STATEMENT MAY NOT BE ALTERED. 
STATEMENT DISCARDED. 

ILA4034I-C GO DEPENDING ON MUST BE 
FOLLOWED BY INTEGRAL IDENTIFIER 
LESS THAN 4 DIGITS IN LENGTH. 
FOUND *****. STATEMENT 
DISCARDED. 

ILA403SI-W NO MORE THAN 3 INDEX-NAMES OR 
IDENTIFIERS SHOULD BE VARIED IN 
PERFORM STATEMENT. ACCEPTED AS 
WRITTEN. 

Explanation: This compiler can 
normally handle a program 
varying more than three. 
data-names, but the practice is 
illegql under standard COBOL 
language rules and is not 
recommended. 

ILA4036I-W PERFORM RANGE IS FROM ***** TO 
***** , WHICH PRECEDES IT. 
ACCEPTED AS WRITTEN. 

230 

Explanation: This compiler can 
normally handle the perform 
range indicated, but the 
practice is not recommended. 

ILA4043I-W WRITE AFTER ADVANCING AND WRITE 
AFTER POSITIONING ILLEGALLY 
USED FOR SAME FILE. ACCEPTED 
AS WRITTEN. 

ILA4044r-c *****/***** SHOULD NOT BE MOVED 
TO NUMERIC FIELD. SUBSTITUTING 
*****. 

ILA404SI-E CODE OPTION ILLEGAL FOR ON-LINE 
DEVICE. OPTION DELETED. 

ILA4047I-E READ OR WRITE ILLEGAL FOR LABEL 
RECORDS. STATEMENT DISCARDED. 

ILA4048I-E USE VERB MAY NOT APPEAR EXCEPT 
IN DECLARATIVES SECTION. 
STATEMENT DISCARDED. 

ILA4049I-W INAPPROPRIATE OPTIONAL COBOL 
WORDS PRECEDING ***** IGNORED. 

ILA40S0I-E SYNTAX REQUIRES *****. FOUND 
*****. STATEMENT DISCARDED. 

ILA40S2I-E *****/***** MAY NOT BE TARGET 
FIELD FOR *****/***** IN ***** 
STATEMENT AND IS DISCARDED. 

ILA40S4I-E SYNTAX REQUIRES SORT-FILE NAME. 
FOUND *****. STATEMENT 
DISCARDED. 

ILA40SSI-C SORT SEQUENCE NOT SPECIFIED. 
ASCENDING ASSUMED. 

ILA40S6I-E SYNTAX REQUIRES **'***. FOUND 
*****. DISCARDED. 

ILA40S7I-E NuMBER OF SORT KEYS EXCE~DS 
MAXIMUM OR TOTAL KEY LENGTH 



( - .... 

" ~./) 

EXCEEDS 256 BYTES. ***** 
DISCARDED. 

lLA4059I-E SORT-KEY MUST BE 
NON-SUBSCRIPTED OR NON-INDEXED 
FIXED-LENGTH DATA-NAME DEFINED 
UNDER AN SD. FOUND *****. 
DISCARDED. 

lLA4060I-C ***** IS NOT A POSITIVE NUMERIC 
INTEGRAL LITERAL OF REQUIRED 
LENGTH. ***** OPTION 
DISCARDED. 

lLA4061I-W NEITHER NAMED NOR CHANGED 
SPECIFIED. STATEMENT ACCEPTED. 
WILL BE TREATED AS FORMATTED 
DISPLAY. 

lLA4062I-W 'NAMED CHANGED' ACCEPTED AS 
'CHANGED NAMED'. 

lLA4063I-W PREVIOUS DEBUG PACKET REFERS TO 
SAME PROCEDURE-NAME. CARD 
DELETED AND FOLLOWING 
STATEMENTS ATTACHED TO 
IMMEDIATELY PRECEDING PACKET. 

lLA4064I-E ***** IS NOT A POSITIVE NUMERIC 
INTEGRAL LITERAL OF REQUIRED 
LENGTH. SUBSTITUTING *****. 

lLA4065I-W NUMERIC LITERAL IN EXAMINE 
STATEMENT SHOULD BE UNSIGNED. 
SIGN IGNORED. 

lLA4066I-E SYNTAX REQUIRES 01 LEVEL SD 
DATA-NAME IN RELEASE STATEMENT. 
FOUND *****. STATEMENT 
DISCARDED. 

lLA4067I-W ALL CHARACTER SHOULD NOT BE 
USED AS LITERAL IN EXAMINE 
STATEMENT. STATEMENT ACCEPTED 
AS WRITTEN. 

lLA4068I-D COMPILER ERROR. PHASE 4 TRYING 
TO GET DATA ATTRIBUTES FOR 
*****. 

lLA4069I-C SYNTAX REQUIRES DEVICE-NAME. 
FOUND ***** IN ***** STATEMENT. 
SYSTEM UNIT ASSUMED. 

ILA4070I-E ***** STATEMENT REQUIRES 
IDENTIFIER WHOSE USAGE IS 
DISPLAY. FOUND SPECIAL 
REGISTER. STATEMENT DISCARDED. 

lLA4071I-E ***** EXCEEDS LEGAL LENGTH. 
DISCARDED. 

lLA4072I-W EXIT FROM ***** PROCEDURE 
ASSUMED BEFORE *****. 

lLA4073I-W ***** SHOULD NOT APPEAR IN 
DECLARATIVE SECTION. ACCEPTED 
AS WRITTEN. 

I lLA4074I-C 

Explanation: The statement 
will be compiled, but its use 
is illegal under standard COBOL 
rules and is not recommended. 

STATEMENT CONTAINS FLOATING 
POINT DATA ITEMS. REMAINDER 
IGNORED. 

lLA4075I-C 'NEXT SENTENCE' : ILLEGAL AND 
DISCARDED. BOTH ***** AND NOT 
***** WILL CAUSE EXECUTION OF 
NEXT VERB. 

ILA4076I-E ***** REQUIRES ***** LEVELS OF 
SUBSCRIPTING OR INDEXING. 
SUBSTITUTING FIRST OCCURRENCE 
OF *****. 

lLA4077I-E ***** MAY NOT BE USED AS A 
SUBSCRIPT SINCE IT REQUIRES 
SUBSCRIPTING ITSELF. 
SUBSTITUTING FIRST OCCURRENCE 
OF *****. 

lLA4078I-E SUBSCRIPT MUST BE INTEGRAL 
DATA-NAME OR LITERAL. FOUND 
NON-INTEGER *****. 
SUBSTITUTING FIRST OCCURRENCE 
OF *****. 

ILA4079I-E ***** FOUND AMONG SUBSCRIPTS. 
SUBSTITUTING FIRST OCCURRENCE 
OF *****. 

lLA4080I-W DEBUG CARD MAt NOT REFER TO A 
PROCEDURE NAME WHICH ITSELF IS 
IN A DEBUG PACKET. CARD 
DELETED AND FOLLOWING 
STATEMENTS ATTACHED TO 
IMMEDIATELY PRECEDING PACKET. 

ILA4081I-C ***** EXCEEDS ***** CHARACTERS. 
UP TO 114 ACCEPTED. 

lLA4082I-E ***** IS NOT DEFINED AS 
SUBSCRIPTED OR INDEXED. 
SUBSCRIPTS DISCARDED. 

lLA4083I-E OCCURS-DEPENDING-ON-VARIABLE 
MUST BE INTEGRAL 
NON-SUBSCRIPTED DATA-NAME. 
FOUND *****. ARBITRARILY 
SUBSTITUTING *****. 

lLA4084I-C ILLOGICAL USE OF PARENTHESES 
ACCEPTED WITH DOUBTS AS TO 
MEANING. 

lLA4085I-E RECORD DESCRIPTION FOR FILE 
***** MISSING OR ILLEGAL. 
STATEMENT DISCARDED. 

lLA4086I-C ***** CONDITION USED WHERE ONLY 
IMPERATIVE STATEMENTS ARE LEGAL 
MAY CAUSE ERRORS IN PROCESSING. 

Appendix F: Diagnostic Messages 231 



ILA4087I-E 'END DECLARATIVES' :MISSING OR 
MISPLACED. PROGRAM CANNOT BE 
EXECUTED. 

ILA4088I-D COMPILER ERROR. I-C TEXT COUNT 

POSITIVE INTEGRAL NUMERIC 
LITERAL. FOUND *****. 
STATEMENT DISCARDED. 

FIELD O. SKIPPING TO PHASE 5. ILA4102I-E SET STATEMENT REQUIRES OPERAND 
AFTER 'TO' :TO BE INDEX NAME, 
INDEX DATA ITEM, NUMERIC 
LITERAL, DATA NAME, OR POSITIVE 
INTEGRAL NUMERIC LITERAL. 

ILA4089I-W *****/***** SHOULD NOT BE 
TARGET FIELD FOR *****/***** IN 
***** STATEMENT. STATEMENT 
ACCEPTED AS WRITTEN. FOUND *****. STATEMENT 

DISCARDED. 
lLA4090I-E SORT-KEY MUST BE IN FIXED ILA4103I-C 'ALL' : MUST BE FOLLOWED BY 

ALPHANUMERIC LITERAL. FOUND 
*****. DISCARDING 'ALL'. 

POSITION NOT MORE THAN 4092 
BYTES FROM START OF RECORD. 
***** DISCARDED. 

ILA4091I-E SYNTAX REQUIRES OPERAND. FOUND 
*****. TEST DISCARDED. 

ILA4092I-W EXTERNAL DECIMAL NAME USED IN 
TRANSFORM STATEMENT. STATEMENT 
ACCEPTED AS WRITTEN. 

ILA4094I-W ***** IS IN A RECORD OF AN 
APPLY-WRITE-ONLY FILE, AND, 
REFERRING TO IT MAY CAUSE 
ERRORS IF FILE IS OPENED AS 
OUTPUT WHEN ***** STATEMENT IS 
EXECUTED. 

ILA4095I-E WRITE FROM IDENTIFIER REQUIRED 
FOR *****, TO WHICH WRITE-ONLY 
IS APPLIED. STATEMENT 
DISCARDED. 

ILA4096I-W ***** STATEMENT WILL NEVER BE 
EXECUTED. 

Explanation: The logic of the 
COBOL source program prevents 
the computer from executing the 
statement noted. The compiler, 
however, accepts the statement 
as written. 

ILA4097I-C UNIT (REEL) OPTION ILLEGAL FOR 
*****. DlSCARDED. 

ILA4098I-E 'ALTER' STATEMENT VIOLATES RULE 
ABOUT REFERENCES TO A GO TO IN 
A DIFFERENT INDEPENDENT 
SEGMENT. IGNORED. 

ILA4099I-E NO EXIT SPECIFIED BEFORE END OF 
THIS DECLARATIVE SECTION. 
CONTROL WILL FALL THROUGH TO 
NEXT SECTION. 

ILA4100I-W IDENTIFIER FOLLOWING INTO (FROM) 
IN READ (WRITE) STATEMENT SHOULD 
NOT BE DEFINED UNDER SAME FD AS 
RECORDNAME. ACCEPTED AS 
WRITTEN. 

ILA4101I-E SET STATEMENT REQUIRES OPERAND 
AFTER 'UP' OR 'DOWN' TO BE 
NUMERIC INTEGRAL DATANAME OR 

232 

I ILA4104I-E (SEARCH OR) SEARCH ALL 
STATEMENT HAS EITHER 
SUBSCRIPTED OR INDEXED 
IDENTIFIER-lOR ILLEGAL 
OPERAND. SCANNING TILL 'AT 
END' :OR '~HEN'~ DELETING TILL 
ONE OF THESE IS FOUND. 

ILA4105I-E DATA-NAME CANNOT BE BOTH 
INDEXED AND SUBSCRIPTED IN 
***** STATEMENT. SUBSCRIPTS 
DISCARDED. 

ILA4106I-E DATA-NAME MUST BE INDEXED BY 
INDEX NAME OR INDEX N~ill PLUS 
OR MINUS AN INTEGRAL NUMERIC 
LITERAL. SUBSTITUTING FIRST 
OCCURRENCE OF *****. 

ILA4108I-E CALLED PROGRAM MAY NOT BE 
SEGMENTED. ENTRY STATEMENT 
IGNORED. 

ILA4109I-E KEY IN SEARCH-ALL FLOATING 
POINT OR STERLING. STATEMENT 
CHANGED TO SEARCH STATEMENT. 

ILA4110I-E CONDITION IN SEARCH ALL 
STATEMENT TESTS KEY WITHOUT 
TESTING ALL PRECEDING KEYS. 
STATEMENT DISCARDED. 

ILA4111I-E INVALID CONDITION OR INVALID 
FORMULA IN CONDITION IN 
SEARCH-ALL STATEMENT. 
STATEMENT DISCARDED. 

ILA4112I-W SET UP OR DOWN SHOULD NOT 
INCREMENT INDEX-NAME BY INDEX 
DATA ITEM. ACCEPTED AS 
WRITTEN. 

ILA4113I-C BEFORE OR AFTER ADVANCING OR 
AFTER POSITIONING REQUIRED FOR 
*****. ASSUMING *****. 

ILA4114I-C INVALID ADVANCING/POSITIONING 
OPTION. 1 LINE ASSUMED. 

ILA4115I-C "AFTER POSITIONING' :EXPECTED 
BUT NOT FOUND. ASSUMED 
PRESENT. 



ILA4116I-E ILLEGAL TO ***** FILE *****. 
STATEMENT DELETED. 

ILA4117I-C ***** CLAUSE MISSING. ***** 
NEXT SENTENCE USED. 

lLA4118I-C 

lLA4119I-C 

I lLA4120I-C 

lLA5001I-D 

lLA5002I-D 

ILA5003I-C 

lLA5004I-W 

NO REWIND IS AN INVALID OPTION 
FOR FILE *****. IGNORED. 

INVALID FILE-TYPE FOR START 
VERB. STATEMENT DISCARDED. 

REWRITE LEGAL ONLY FOR • U' : AND 
'w' -DIRECT FILE. ACCEPTED AS 
• WRITE' • 

ERROR OCCURRED WHILE TRYING TO 
ASSIGN A DOUBLE REGISTER. 
COMPILATION ABANDONED. 

ERROR OCCURRED WHILE PROCESSING 
A SUBSCRIPTED OR INDEXED 
DATA-NAME. COMPILATION 
ABANDONED. 

DIVISOR IS ZERO. RESULT WILL 
BE ALL 9' S. 

ALPHANUMERIC SENDING FIELD TOO 
BIG. 18 LOW ORDER BYTES USED. 

lLA5005I-D ERROR OCCURRED WHILE PROCESSING 
A MOVE. COMPILATION ABANDONED. 

lLA5006I-D UNEXPECTED INPUT TO THE MOVE OR 
STORE PROCESSOR. COMPILATION 

lLA5015I-E INVALID USE OF SPECIAL 
REGISTER. STATEMENT DISCARDED. 

lLA5016I-E MORE THAN 255 SUBSCRIPT ADDRESS 
CELLS USED. PROGRAM CANNOT 
EXECUTE CORRECTLY. 

I lLA5017I-C 

I lLA5018I-C 

lLA5019I-C 

I lLA5020I-C 

lLA5021I-C 

lLA5022I-C 

lLA5023I-E 

lLA5024I-E 

INVALID ADVANCING CLAUSE OPTION 
FOR A DTFCD FILE. USING 
STACKER 1. 

INTEGER IN POSITIONING CLAUSE 
NOT BETWEEN 0 AND 3. 
1 ASSUMED. 

PUNCH STACKER SELECT SPECIFIED 
FOR A DTFPR FILE. USING "SKIP 
TO CHANNEL 1". 

IDENTIFIER IN EXHIBIT EXCEEDS 
MAXIMUM. TRUNCATED TO 120 
CHARACTERS. 

INTEGER IN ADVANCING OR 
POSITIONING CLAUSE NOT 
POSITIVE. POSITIVE ASSUMED. 

MORE THAN 2-DIGIT INTEGER IN 
ADVANCING CLAUSE. USING 
INTEGER-1. 

EOP INVALID FOR DOUBLE-BUFFERED 
FILE. IGNORED. 

END OF PAGE OPTION REQUESTED 
FOR NON-DTFPR FILE. IGNORED. 

ABANDONED. I lLA5025I-C ADVANCING OR POSITIONING OPTION 
ILLEGAL FOR NON-SEQUENTIAL 
FILE. IGNORED. lLA5007I-D UNEXPECTED INPUT TO THE 

ARITHMETIC CODE GENERATOR. 
COMPILATION ABANDONED. 

lLA5008I-D UNEXPECTED INPUT TO THE 
FLOATING-POINT ARITHMETIC 
ROUTINE 'FBCVBH'. COMPILATION 
ABANDONED. 

lLA5009I-D LOST SUBSCRIPT OR INDEX ID IN 
TABLE 'XSSNT'. COMPILATION 
ABANDONED. 

lLA5010I-C HIGH ORDER TRUNCATION OF THE 
CONSTANT DID OCCUR. 

lLAS011I-W HIGH ORDER TRUNCATION MIGHT 
OCCUR. 

lLA5012I-D LOST INTERMEDIATE RESULT 
ATTRIBUTES IN 'XINTR' TABLE. 
COMPILATION ABANDONED. 

lLA5013I-G ILLEGAL COMPARISON OF TWO 
NUMERIC LITERALS. STATEMENT 
DISCARDED. 

r--, 
I ' 

~ \ lLAS014I-E KEY IN SEARCH ALL AT INVALID 
'-./ OFFSET. STATEMENT DISCARDED. 

"/ -------------------------

lLA5026I-C EXHIBIT CHANGED OPERAND GREATER 
THAN 256 BYTES. LENGTH OF 256 
ASSUMED. 

The following messages may be 
interspersed in phase 6 output. 

lLA6003I-D ERROR FOUND PROCESSING F4 TEXT. 
UNKNOWN DATA A-TEXT CODE. 

lLA6005I-D ERROR FOUND PROCESSING F1 TEXT. 
COMPILATION ABANDONED. 

lLA6006I-E MAP SUPPRESS SPECIFIED AND 
E-LEVEL DIAGNOSTIC HAS 
OCCURRED. LISTX, LINK, CLIST 
AND DECK WILL BE IGNORED. 

lLA6007I-D TABLE HAS EXCEEDED MAXIMUM 
SIZE. PMAP, LOAD MODULE AND 
DECK WILL BE INCOMPLETE. 

The following messages are issued on 
SYSLOG and SYSLST during an FCOBOL 

Appendix F: Diagnostic Messages 233 

\ 



compilation. They are printed on SYSLST 
with the prefix ILA. 

Cl00I 

Cl01I 

Cl02I 

Cl03I 

Cl04I 

234 

BACKGROUND AREA IS LESS THAN 
54K. 

Explanation: At least 54K is 
required to compile using 
FCOBOL. 

User Response: Allocate at 
least 54K to the background 
partition. 

DEVICE NOT ASSIGNED - SYSnnn. 

Explanation: nnn is either 
001, 002, 003, or 004. The 
specified logical unit is 
unassigned and must be 
assigned. 

User Response.: Make sure that 
the assignment is made. 

UNSUPPORTED DEVICE TYPE -
SYSnnn. 

Explanation: nnn is either 
001, 002, 003, or 004. The 
specified file must be a disk 
file if SYS001, or a tape or 
disk file if SYS002 through 
SYS004. 

User Response: Make the 
correct assignment. 

END OF FILE ON SYSIPT. 

Explanation: End-of-file was 
encountered in the 
initialization phase - no 
source language was found. 

User Response: Check the 
source module for embedded /* 
<slash asterisk) cards or 
missing source cards. 

WARNING. SYSOOl FILE IS TAPE. 

Explanation: In small, simple 
programs that do not require 
dictionary spill, it is 
sometimes possible to compile 
with the spill file (SYS001) 
assigned to tape. However, if 
any spill does occur, an 
input/output error may occur. 

User Response: Reassign SYSOOl 
to a disk file. 

OBJECT TIME MESSAGES 

The following messages are normally 
issued on SYSLOG. 

Cll0A 

Cll1A 

STOP literal 

Explanation: The programmer 
has issued a STOP literal 
statement in the FCOBOL 
program. 

User Response: Operator should 
respond with end-of-block, or 
with any character in order to 
proceed with the program. 

AWAITING REPLY 

Explanation: This message is 
issued in connection with the 
FCOBOL ACCEPT statement. 

User Response: The operator 
should reply as specified by 
the programmer. 

The following messages are issued on 
SYSLOG and SYSLST prior to cancellation of 
the job. If the DUMP option is specified, 
a partial dump is taken from the problem 
program origin to the highest core location 
of the last phase loaded. When this 
occurs, the eight bytes immediately 
preceding the DTF are destroyed. The 
messages have the form: 

CmmrnI SYSnnn filename dtfaddress text 

where mmm and text correspond as follows: 

mmm 
112 
113 
114 
115 
116 
117 
118 
119 
120 
121 
122 

123 

text 
DATA CHECK 
WRONG LENGTH RECORD 
PRIME DATA AREA FULL 
CYLINDER INDEX FULL 
MASTER INDEX FULL 
OVERFLOW AREA FULL 
DATA CHECK IN COUNT 
DATA CHECK IN KEY OR DATA 
NO ROOM FOUND 
DASD ERROR 
DASD ERROR WHILE ATTEMPTING 

TO WRITE RECORD ZERO 
FILE CANNOT BE OPENED AFTER 

CLOSE WITH LOCK 

Explanation: Condition 
indicated occurred on SYSnnn, 
filename is 7 characters in 
length and is the file-name as 
generated in the SELECT 
sentence, and dtfaddress is the 
hexadecimal address of the 
file's DTF table. 



User Response: Rerun the job 
or add a user declarative 
section to the Procedure 
Division to handle errors 
within the program. 

124 CYLINDER AND MASTER INDEX 
TOO SMALL 

125 NO EXTENTS 

Explanation: During CLOSE UNIT 
processing, no extent is found 
for the next volume. 

User Response: Rerun job with 
proper EXTENT (XTENT) 
statements. 

The following message is issued on 
SYSLOG: 

C126D IS IT EOF? 

Explanation: A tapernark was 
just read on an unlabeled tape 
file described at compilation 
time as having more than one 
reel. 

User Response: The operator 
must respond either with N if 
it is not the last reel, or 
with Y if it is the last reel. 

COBOL Object Program Unnumbered Messages 

xxx ••• 

Explanation: This message is 
written on the console and is 
recognizable because it is not 
preceded by a message code and 
action indicator. It is issued 
by an object program originally 
coded in COBOL. The message 
text is supplied by the object 
program and may indicate 
alternative action to be taken. 

System Action: The job 
continues. 

Operator Response: Operator 
response, if any is needed, is 
determined by the message text. 

Appendix F: Diagnostic Messages 235 



• 

,/ 



;-\ 
~I 

This appendix contains information 
concerning system requirements for the DOS 
American National Standard COBOL compiler, 
execution time considerations, and the Sort 
Feature. Additional information used in 
estimating the main and auxiliary storage 
requirements is contained in the publication 
,IBM System/360 Disk Operating System: 
performance Est~mates, Form GC24-5032. 

MINIMUM MACHINE REQUIREMENTS FOR THE 
COMPILER 

1. At least a System/360 Model 30. The 
compiler also operates on Models 40, 
50, 65, 67 (in 65 mode), or 75. A 
minimum of 54K bytes of main storage 
is required except when using the 
Report Writer Feature. This 
necessitates a minimum partition size 
of 80K bytes. 

2. Four utility data sets on 2400 Tape 
units, 2311 Disk Drives, or 2314 Disk 
Storage Facility. At least one 
utility data set as well as the 
operating system must reside on a mass 
storage device (i.e., a 2311 or 2314). 
If the three remaining utility data 
sets reside on tape, there must be a 
separate tape unit for each data set. 
If they reside on a mass storage 
device, there must be enough space on 
that device. 

Utility data set assignments must be 
made as follows: 

SYS001 - disk unit 
SYS002 - disk or tape unit 
SYS003 - disk or tape unit 
SYS004 - disk or tape unit 

3. A device, such as a printer keyboard, 
for direct operator communication. 

4. A device, such as a card reader, for 
the job input stream. 

5. A device, such as a printer or tape 
unit, for system output files. 

6. The commercial instruction set, and 
floating-point arithmetic feature, if 
floating-point literals or 
calculations are used. 

APPENDIX G: MACHINE CONSIDERATIONS 

Note: All devices currently supported by 
IBM System/360 Disk Operating System COBOL 
are supported by IBM System/360 Disk 
Operating System American National Standard 
COBOL. 

EXECUTION TIME CONSIDERATIONS 

The amount of main storage must be 
sufficient to accomodate at least: 

• The selected control program 

• Support for the file processing 
techniques used 

• Load module to be executed 

SORT FEATURE CONSIDERATIONS 

The Sort/Merge program must be executed 
under control of the Disk operating System. 
The program requires the following minimum 
machine configuration: 

1. 16K (16,384) bytes of main storage if 
the program is to use IBM 2400 Series 
Magnetic Tape units or IBM 2311 Disk 
Storage Drives for intermediate 
storage. The Sort/Merge program uses 
10,240 bytes; an additional 6K bytes 
are needed for the Disk Operating 
System and user-written routines. 

2. 32K (32,768) bytes of main storage if 
the program is to use the IBM 2314 
Direct Access Facility for 
intermediate storage. The Sort/Merge 
program uses 22,528 bytes; an 
additional 10K bytes are needed for 
the Disk Operating System and 
user-written routines. 

Note: Performance increases 
significantly if 50K is available for 
operation of the Sort/Merge program. 
At the lOOK level, the performance is 
very high. 

3. Standard instruction set. 

4. One 2311 or 2314 disk unit attached to 
one selector channel for sort input, 
output, and work files. (System 
residence requirements may necessitate 
having an additional disk storage unit 
for sorting.) 

Appendix G: Machine considerations 237 

---------------------.- -- ------



5. One IBM 1403 and 1443 Printer, or one 
IBM 1052 Printer Keyboard. 

6. One IBM 1442, 2501, 2520, and 2540 
Card Reader, or one IBM 2400 Series 
Magnetic Tape Unit (7- or 9-track) 
assigned to SYSIPT and SYSRDR. 

7. Three IBM 2400 Series Magnetic Tape 
Units for work files when tape units 
are to be used for intermediate 
storage. 

8. One IBM 2400 Series Magnetic Tape Unit 
if tape input/output is to be used. 

238 

When tape units are used for 
intermediate storage, five input/output 
devices are required as the minimum for a 
sorting operation (one input, three work, 
one output). When disk units are used for 
intermediate storage, three extents are 
required (one input, one work, one output). 

Three extents are required as a ~n1mum 
for a disk merging operation (two input, 
one output). A one-way merge, which simply 
copies the input file, may be executed with 
two tape units or one disk unit. 

4 



r-' .,'\ 
"'------/ 

c' 

COMMUNICATION REGION 

The Communication Region is a(46-byte1 ? 
storage area within the supervis~ used~y' 
the Supervisor and the COBOL compiler. The 
structure of the Communication Region is 
illustrated in Figure 58. 

Fields in the communication Region are 
addressed relative to the first byte of the 
region. An asterisk (*) identifies the 
fields available to the COBOL user. 

Byte(s) 
0-7* 

Meaning 
Calendar date supplied during the 

IPL procedure or by the DATE 
control statement. This field 
can be used for dating printed 
output of the COBOL program via 
the special register 
CURRENT-DATE. The date can be 
in one of two forms: mm/dd/yy 

8,9 

or dd/mm/yy where rom is month, dd 
is day, and yy is year. The form 
is chosen by the installation at 
system generation time. 

Address of the background program 
label area. 

10,11 Reserved for control program use. 

12-22* User area for inter-program or 
intra-program communication. 

Bytes 

This field can be referenced in a 
COBOL program executing in the 
background via the special 

Date 

Mo/Day/fr 

or 

Day/Mo/Yr 

0 

• Address af first 
byte supplied in 
register 1 by 
COMRG 

7 8 

... 
c 
.! 
c 

User Area e 
~ 
Q 
'; (Inter-or Intraprogram ~ Reserved Communication) g. 
VI 
C) 
c 
'i 
~ 
] 

cu 

~} 
-a 'E 2 
~~< 

9 10 11 12 22 

APPENDIX H: COMMUNICATION REGION 

Byte(~ Meani~ 
register COM-REG. All eleven 
bytes are initialized to binary 
zeros when a JOB control 
statement is encountered. 

23* User program switch indicators 
(UPSI). The condition-name 
associated with the status of the 
UPSI switches can be specified in 
the COBOL program via the 
Special-Names paragraph of the 
Environment Division. UPSI byte 
switches are set by the UPSI 
control statement. The 
condition-name associated with 
each may be tested in the 
Procedure Division of the COBOL 
program. UPSI byte switches are 
initialized to binary zeros when 
a JOB control statement is 
encountered. 

24-31 Jobname for background programs 
located in the operand field of 
the JOB control statement. 

32-35 

36-39 

40-43 

44,45 

Vi 
a.. 
2 ... 

cu .,r. 
2 
'i 
VI 

E e 
81 
~ 

23 24 

Address of the uppermost byte of 
the background program area. 

Address of the uppermost byte of 
the last phase loaded into the 
background program area. 

Address of the uppermost byte used 
in loading any phase of the 
background program. 

Length of the background program 
label area • 

~ ~ 
Jab Name E « 

0 
1\1 

C) ] ::c c e =ti E oS a.. 
.9~ ( Entered from E C E 

Job Control) 
1\1 

1\1 0 E 
::0 c ... 

~ I: ._ a.. 
0 ~ 
~ U "'0 E a.. 1\1 1\1 

'0 ..... 5::0 E 0 
1\1 1\1 1\1 e 1\1 

>.0 >'51 >.a.. ::c 
co e co 0 co 1\1 ~ 1;;« -=0: 1;;-£ ..... 

~ g E ~ ~ 5 ~~'O 0 

1\1 ... 0 

~ 8. a .,r. 
... 8. ... ~ 8. ~ ~ :g c.. 81 :g c.. 81 
«::>~ «::>et "'0 c...,r. 1\1 «::>a.. -' 

31 32 35 36 39 40 4344 45 

Figure 58. Communication Region in the Supervisor 

Appendix H: Communication Region 239 





-------------. - .-- - - .--------

C''';, 
. ./ 

This appendix illustrates the necessary 
job control statements and their sequence 
for five typical programs: 

1. Creating a Direct File 

2. Retrieving and Updating a Direct File 

3. Creating an Indexed File 

4. Retrieving and Updating an Indexed 
File 

5. Sorting an Unlabeled Tape File 

In all five programs the programmer has 
requested the following compiler options 
through the OPTION control statement: 

NOOECK 

LINK 

LIST 

LISTX 

SYM 

ERRS 

No punched card output for 
the object program is 
needed. 

The object module is to be 
linkage edited. 

The COBOL source statements 
are to be printed on SYSLST. 

A Procedure Division map is 
to be printed on SYSLST. 

A Data Division map is to be 
printed on SYSLST. 

The diagnostic messages of 
the COBOL compiler are to be 
printed on SYSLST. 

The EXEC FCOBOL statement calls for 
execution of the FCOBOL compiler. 

By using the CBL card, the programmer 
indicates that in this source program the 
quotation mark (") is used for nonnumeric 
literals. 

The ASSIGN clause in the COBOL source 
program specifies a system-name with the 
following fields: 

SYSnnn-class-device-organization-[name] 

The ASSGN control statement for a file 
must specify the same logical unit as the 
SYSnnn field of system-name. The ASSGN 
statement assigns the logical unit to a 
specific hexadecimal address. The address 
specified must be associated with the 
device whose number is given in the device 
field of system-name. 

APPENDIX I: SAMPLE JOB DECKS 

The DLBL control statememt for a labeled 
file on a mass storage device must contain 
the same ~ as system-name. This is the 
name by which the file is known to the 
control program. (The name field of 
system-name is optional. If ~ is 
omitted, the DLBL statement must specify 
the logical unit (SYSnnn) as the 
file-name.) The code field of the OLBL 
statement must correspond to the class and 
organization fields of system-name as 
follows: 

OLBL I ASSIGN I ASSIGN 
"code" I "class" I "organization" 

--------t------------t---------------
SD I DA or UT I S 

I I 
I I 

DA I DA I A or U, 0 or W 
I I 
I I 

ISC I DA I I 
I I 
I I 

ISE I DA I I 

The first EXTENT control statement for a 
file on a mass storage device must specify 
the same logical unit as the SYSnnn field 
of system-name. (Subsequent EXTENT 
statements for the same file, if they 
immediately follow the first, may omit this 
field.) The type of the extent must be 
compatible with the organization field of 
system-name as follows: 

EXTENT I ASSIGN 
"type" I "organization" 

--T------------------t---------------
1 I (data area, no I S, A, U, I,D, W 

split cylinder) I 
I 
I 

2 (overflow area fori I 

3 

indexed file) I 

(index area for 
indexed file) 

I 
I 
I I 
I 
I 
I 

4 (data area, split I S, A, Uf If 0, W 
cylinder) I 

Appendix I: Sample Job Decks 241 



DIRECT FILES 

The following two examples illustrate 
the job control statements necessary for 
programs that create and update a direct 
file. 

In the COBOL source programs, the 
programmer has written: 

SELECT DA-FILE ASSIGN TO 
SYS015-DA-2311-A-MASTER ••• 

SELECT CARD-FILE ASSIGN TO 
SYS007-UR-2540R-S ••• 

In the READFILE source program, the 
programmer has written: 

SELECT PRINT-FILE ASSIGN TO 
SYS008-UR-2403-S ••• 

(Note the relationship between the 
system-names in the source programs and the 
control statements.) 

The LBLTYP statement defines the amount 
of storage to be reserved to process labels 
for the DA file. The file has one extent. 

The EXEC LNKEDT statement causes the 
object program to be linkage edited. 

An ASSGN control statement assigns 
logical unit SYS007 to the hexadecimal 
address OOC -- a 2540R Card Reader. 

In the updating program, another ASSGN 
statement assigns logical unit SYS008 to 
the hexadecimal address OOE -- a 1403 
Printer. 

The next series of statements identify 
the direct file completely. 

The ASSGN statement identifies the file 
as residing on logical unit SYS015, which 
has the hexadecimal address of 192 -- a 
2311 Disk Drive. 

The DLBL statement specifies the 
filename as MASTER, with an expiration date 
of the 365th day of 1970, and that the file 
has direct organization (DA).' 

The EXTENT statement specifies that the 
file residing on logical unit SYS015 has a 
serial number 111111, that the extent is a 
data area with no split cylinder and that 
this is the first (and only) extent for the 
file (type and sequence number 1,0), that 
the file begins on relative track 1020 
(track 0 of cylinder 102), and that the 
file occupies 100 tracks. 

242 

(Note that in the EXTENT statement, the 
relative track number (1020) is not 
required for the input DA file of the 
updating program, since the system will use 
the file labels for this information.) 

The EXEC statement begins execution of 
the problem program, and is followed by 
input data. 

The /* statements indicate end-of-data, 
the /& statement indicates end-of-job. 

Creating a Direct File 

// JOB CREATEDA 
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS 
// EXEC FCOBOL 

CBL QUOTE 

{COBOL source deck} 
/* 
// LBLTYP NSD(Ol) 
// EXEC LNKEDT 
// ASSGN SYS007,X'00C' 

I / / ASSGN SYS015, X· 192' 
// DLBL MA,STER,70/365,DA 
// EXTENT SYS015,111111,1,0,1020,100 
// EXEC 

/* 
/& 

{input data cards} 

Retrieving and Updating a Direct File 

// JOB READFILE 
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS 
// EXEC FCOBOL 

CBL QUOTE 

{COBOL source deck} 
/* 
// LBLTYP NSD(Ol) 
// EXEC LNKEDT 
// ASSGN SYS007,X'00C' 
// ASSGN SYS008,X'00E' 

1// ASSGN SYS015,X'192' 
// DLBL MASTER,70/365,DA 
// EXTENT SYS015, 111111, 1, 0,1020,100 

/* 
/& 

{input data cards} 



; '\ 
l : 
,~ _-I 

INDEXED FILES 

The following two examples illustrate 
the job control statements necessary for 
programs that create and update an indexed 
file. 

In the CREATEIS source program, the 
programmer has written: 

SELECT IS-FILE ASSIGN TO 
SYS015-DA-2311-I-MASTER 

ACCESS IS SEQUENTIAL 
RECORD KEY IS REC-ID. 

In the RANDIS source program, the 
programmer. has written: 

SELECT IS-FILE ASSIGN TO 
SYS015-DA-2311-I-MASTER 

ACCESS IS RANDOM 
NOMINAL KEY IS KEY-ID 
RECORD KEY IS REC-ID. 

SELECT PRINT-FILE ASSIGN TO 
SYS008-UR-1403-S 

RESERVE NO ALTERNATE AREAS. 

In both source programs, he has written: 

SELECT CARD-FILE ASSIGN TO 
SYS007-UR-2540R-S. 

I-O-CONTROL. 
APPLY MASTER-INDEX TO 2311 ON IS-FILE. 

(Note the relationship between the 
source program statements and the job 
control statements.) 

The LBLTYP statement defines the amount 
of storage reserved to process lables for 
the indexed file. The file has three 
extents: a master index extent, a cylinder 
index extent, and a data extent. 

The EXEC LNKEDT statement causes the 
object module to be linkage edited. 

An ASSGN control statement assigns 
logical unit SYS007 to the hexadecimal 
address OOC -- a 2540R Card Reader. 

In the retrieval program, another ASSGN 
statement assigns logical unit SYS008 to 
the hexadecimal address OOE -- a 1403 
Printer. 

The next ASSGN statement assigns logical 
unit SYS015 to the hexadecimal address 193 

a 2311 Disk Drive. 

The DLBL statement names the rile as 
MASTER, and indicates the expiration date 
as the 365th day of 1970. In the file 
creation program, the file label is indexed 
sequential using Load Create (code ISC); in 

the retrieval program, the file label is 
indexed sequential using Load Extension, 
Add or Retrieve (code ISE). 

The first EXTENT statement is identified 
as a master index (type and sequence 
numbers are 4,0), and the relative track is 
1800 (the extent begins on cylinder 180 
track 0), and the extent is 10 tracks long. 

The second EXTENT statement is 
identified as a cylinder index (type and 
sequence number are 4,1), the relative 
track is 1810 (the extent begins on 
cylinder 181, track 0), and the extent is 
10 tracks long. 

(Note that the extents assigned to 
master and cylinder indexes must be 
contiguous, and that the master index must 
precede the cylinder index on the disk 
pack. Also note, that if a master index is 
not requested, the first extent is that for 
the cylinder index, which would be type 4, 
sequence number 1.) 

The third EXTENT statement is identified 
as a data area (type 1) and is the third 
extent named for this file. The relative 
track is 0010 (the extent begins on 
cylinder 1, track 0), and the extent is 
1750 tracks long. 

End-of-data is indicated with the /* 
statement; end-of-job is indicated with the 
/& statement. 

Creating an Indexed File 

// JOB CREATEIS 
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS 
// EXEC FCOBOL 

CBL QUOTE 

{COBOL source deck} 
/* 
// LBLTYP NSD(03) 
/ / EXEC LNKEDT 
// ASSGN SYS007,X'00C' 
// ASSGN SYS015,X'193' 
// DLBL MASTER,70/365,ISC 
// EXTENT SYS015,111111,4,0,1800,10 
// EXTENT SYS015,111111,4,1,1810,10 
// EXTENT SYS015,111111,1,2,0010,1750 
// EXEC 

/* 
/& 

{input data card} 

Appendix I: Sample Job Decks 243 

-------------------------- --- ----- --
,I 



Retrieving and Updating an Indexed File 

/ / JOB RANDIS 
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS 
// EXEC FCOBOL 

{COBOL source deck} 
// LBLTYP NSD(03) 
// EXEC LNKEDT 
// ASSGN SYS007,X'00C' 
// ASSGN SYS008,X'00E' 
// ASSGN SYS015,X'193' 
// DLBL MASTER, 70/365, ISE 
// EXTENT SYS015,111111,4,0,1800,5 
// EXTENT SYS015,111111,4,1,1810,10 
// EXTENT SYS015,111111,1,3,0010,1750 
// EXEC 

/* 
/& 

{input data cards} 

FILES USED IN A SORT OPERATION 

The following example illustrates the 
job control statements necessary for a 
program that sorts an unlabeled tape file. 

In the COBOL source program, the 
programmer has written: 

SELECT NET-FILE-IN ASSIGN TO 
SYS007-UT-2400-S. 

SELECT NET-FILE-OUT ASSIGN TO 
SYS008-UT-2400-SL. 

SELECT NET-FILE ASSIGN TO 3 
SYS001-UT-2400-S. 

NET-FILE-IN is the input file: 
NET-FILE-OUT is the output file; NET-FILE 
is the sort work file, which utilizes three 
tape units. 

244 

(Note the relationship between the 
system-names in the COBOL source program 
and the control statements.) 

The EXEC LNKEDT statement causes the job 
to be linkage edited. 

The first two ASSGN control statements 
assign the logical unit SYS007 to 
hexadecimal address 181, and logical unit 
SYS008 to hexadecimal address 182. SYS007 
is the sort input file, and SYS008 is the 
sort output file. 

The last three ASSGN statements assign 
logical unit SYSOOl to hexadecimal address 
183, logical unit SYS002 to hexadecimal 
address 281, and logical unit SYS003 to 
hexadecimal address 282. SYS001, SYS002, 
and SYS003 are the logical units that must 
be used for sort work files. The sort work 
files must be assigned to 9-track tape 
units. At this installation, 9-track tape 
drives are associated with hexadecimal 
addresses 183, 281, and 282. 

Sorting an Unlabeled Tape File 

// JOB SORTCOB 
// OPTION NODECK,LINK,LIST,LISTX,SYM,ERRS 
/ / EXEC FCOBOL 

CBL QUOTE 

{COBOL source deck} 
/ / EXEC LNKEDT 
// ASSGN SYS007,X'181' 
// ASSGN SYS008,X'182' 
// ASSGN SYS001,X'183' 
// ASSGN SYS002,X'281' 
// ASSGN SYS003,X'282' 
// EXEC 
/& 



(Where more than one page reference is given, the major reference appears first.) 

* 
/* 
/& 

21 
15 
25 

abnormal termination 54-57 
ACCEPT statement 78 

subroutines 212,211 
accessing a direct file 109-127 

randomly 110-111 
sequentially 110 

accessing an indexed file 127-131 
randomly 130-131 
sequentially 130 

accessing a sequential file 109 
actual key 111-127 

actual track addressing 
111-115,125-127 

sample program 115-119 
relative track addressing 111-113 

sample program 120-124 
ACTUAL KEY clause 111-112 
actual track addressing 111-115,125-127 

sample program 115-119 
ADD statement 46 
adding records to an indexed file 

128-129,130-131 
adding source statements to a book 46 
addressing direct files 

actual track addressing 
111-115,125-127 

sample program 115-119 
relative track addressing 111-113 

sample program 120-124 
ALTER statement 

in a called program 81 
APOST option 36 
application programs 12 
APPLY EXTENDED-SEARCH clause 110 
APPLY WRITE-ONLY clause 157 

programming technique 165 
arguments ~ 

passed to a called assembler language 
program 84-85 

pas,sed to a called COBOL program 
81,82-83 

arithmetic subroutines 214 
assembler language routine for 

accomplishing overlay 88-89 
assembler language subprograms 83-87 
assembler sublibrary of source statement 
library 43 

ASSGN control statement 22-23,20 
ASSIGN clause 19,20 
assigning storage for compiler work file 
buffers 36 

assignment of input/output devices 19-20 
asterisk <*) 21 
AUTOLINK 40 

--------- -- ---

Automatic Library Look-Up (AUTOLINK) 
and ENTRY control statement 40 
and PHASE control statement 39 

auxiliary subroutines 212 

background program 12 
label area 239 

BASIS card 48-49,43 
used for debugging 54 

hatched-job mode 12 
binary items 173-174 
BKEND control statement 44 
block descriptor field 157 
block-length field 

V-mode records 154 
books in the source statement library 

cataloging 43-44 
retrieving 44-45 
updating 45-47 

braces 21 
brackets 21 
BUF option 36 
building tables 186 

CALL statement 81-82 
in segmented program 99 

called program 81 

40 

calling an assembler language subprogram 
84-87 

calling and called programs 81-93 
calling program 81 
capacity records 109-110 
CATAL option 34,41 
cataloging 

a book 43-45 
a module 42-43 
a program phase 41-42,37,39 
a segmented program 101 

CATALR control statement 42 
CATALS control statement 43 
CBL statement 36-37 
checking standard labels 148,150 

DLAB control statement 29 
DLBL control statement 26 
TLBL control statement 25 
TPLAB control statement 30 
VOL control statement 28-29 

checkpoint subroutine 214,65 
checkpointing a COBOL program 64-66 
eheckpoints during a sort operation 97 

control statement requirements 65 
CHKPT macro instruction 65 
class test subroutine 215 
CLIST option 36 
CLOSE control statement 24 
CLOSE UNIT subroutine 212 
CLOSE WITH LOCK subroutine 211 
COBOL option card (CBL card) 36-37 

Index 245 



COBOL sublibrary of source statement 
library 43 

comment control statement 21 
comments in job control statements 
comments on the phase map 17 
Communication Region 239 

DATE control statement 
compare subroutines 214 
compilation 17,11 

24 

236 
options for 36-37,33-34 
work files required for 

compile and edit job 14 
compile, edit, and execute job 
compile-only job 14 

14 

21 

compiler diagnostic messages 217-235,74 
generation of 64 
working with 64 

compiler-generated card number 
on diagnostic messages 74 
on object code listing 73 
on source statements 61 

compiler machine requirements 
compiler options 

CBL card 36-37 
OPTION control statement 

compiler output 67-75 

237 

33-34 

completion codes from sort program 
computational items 

97 

conversions involving 169-171 
internal representation of 172-174 
special considerations for 172 

COMPUTE statement 
programming technique 
subroutines 214 

COM-REG 239 

176 

condensed object listing 36 
continuation of job control statements 

DLAB control statemeht 29 
TPLAB control statement 30 

control fields 
S-mode records 157 
V-mode records 154 

control footings and page format 
control program 11 
control sections 39 

180 

21 

conversion subroutines 212-213 
converting elementary data items 
converting track addresses 

169-111 

in a COBOL source program 
relative to actual 115 

in EXTENT control statement 
actual to relative 27 
relative to actual 27 

copy function of Librarian 41 
COpy statement 44-45 
core image directory 41 
core image library 41-42,31,39 
correspondence of arguments and parameters 

assembler language subprograms 84 
COBOL subprograms 82-83 

creating a direct file 110-111 
actual track addressing 

111-119,125-126 
sample program 115-119 

relative track addressing 
111-113,120-124 

sample program 
sample job decks 

120-124 
241-242 

creating an indexed file 130 
sample job deck 243,241 

creating standard mass storage file 
labels 149-150 

DLAB control statement 29 
DLBL control statement 26 
PARSTD option 34 
STDLABEL option 34 

creating standard tape file labels 
144,145-149 

PARSTD option 34 
STDLABEL option 34 
TLBL control statement 25 
TPLAB control statement 30 

creating user labels 148-149,144 
USRLABEL option 34 

cross-reference dictionary 74 
CURRENT-DATE 239,25 
cylinder index 128 
cylinder overflow area 128 

data, locating in a dump 
data extents 

direct files 27,30 
indexed files 27,30 

data files 17 

57 

data format conversion 169-171 
data formats in the computer 112-174 
data management 108,17 
DATE-COMPILED 67 
DATE control statement 24-25 

and Communication Region 
debug packet 54 
debugging language 
DECK option 33 
DEL statement 46 
DELETE card 48-50 

51-54 

used for debugging 54 
deleting source statements 

for one run only 49-50 
from a book 46 

239 

DEPENDING ON option of OCCURS clause 
and Table Handling Feature 182-183 
and variable-length records 162-164 

device assignment 19-20 
duration of effect 23 

diagnostic messages 
compiler 74-75,64,217-234 
generation of 64 
linkage editor 77 
object time 79,234-235 

direct files 109-127 
actual track addressing 

109-119,125-126 
relative track addressing 
109-113,120-124 

sample job decks 
direct linkage 88 

241-242 

direct organization 109-127,107 
disk extent subroutines 212 
DISPLAY items 

conversions involving 171,170 
internal format of 172 
special considerations for 

DISPLAY statement subroutines 
172 
211-212 

(". 
. "-.. ; 



~.\ 

~I 

---------------- ------- -----------_. 

division/remainder method of randomizing 
113-115 

used to create a direct file 
actual track addressing 115-119 
relative track addressing 120-124 

DLAB control statement 29 
DLBL control statement 26 

identifying private libraries 48 
DTF 

creation 
locating 
symbolic 

of 108,133 
in a dump 56 
name of 29 

DTF tables 
dummy segment 
DUMP option 
dumps 54-63 

133-138 
99 

33 

errors causing 
how to use 55 
locating data in 
locating DTF in 

edit and execute job 
editing 17-18 
edit-only job 
EJECT 67,165 
ellipsis 22 

14 

55-56 

57 
56 

14 

END statement 47 
end-of-data control statement 
end-of-job control statement 
ENTRY control statement 40 

15 
15 

generated by compiler for Segmentation 
100,101 

entry point in a called program 
ENTRY statement 82 

in an overlay structure 
error recovery 

89 

on unit-record devices 36 

81,82 

using an assembler language routine 
141-143 

using error declarative section 138-141 
using INVALID KEY 138,139 

ERRS option 33 
EXEC control statement 
EXEC FCOBOL statement 
EXEC LNKEDT statement 
execute-only job 14 
execution output 77-79 

15 
17,15 
17,15 

execution time, machine requirements 
EXHIBIT statement 52-53 

subroutine 211 
EXIT PROGRAM statement 
extended search 110 

82 

237 

extended source program library facility 
48-50 

EXTENT control statement 
extents, maximum number 
external-name 82 
external reference 

unresolved 40 

F-mode records 153 
FCOBOL 17 
file integrity 110 

82 

26-28 
27,30 

file organization 107-108 
direct 109-126,107 
indexed 127-131,107 
sequential 109,107 

file retention 
on direct-access storage devices 26 
on tape devices 25 

fixed-length records 153 
fixed partitioned multiprogramming 12 
FLAGE option 36 
FLAGW option 36 
foreground programs 12 
format F records 153 
format notation 21-22 
format S records 157-162 
format U records 153-154 
format V records 154-157 

generic terms 21 
GIVING option of error declarative 

139-141 
global table 73 
glossary 72 
GOBACK statement 82 

IBM-supplied processing programs 12 
identification field of COBOL source 
statements 45 

IF statement 176 
ILBDCKPO subroutine 65,214 
ILBDSEMO subroutine 101,102,214 
ILBDSRTO subroutine 96,214 
in-line parameter list 85,87 
INCLUDE control statement 39 
independent overflow area 128 
independent segment 99 
index data items 182,183 
index-names 182,183-186 
indexed files 127-131 

adding records to 128-129 
sample job decks 241,243-244 

indexed organization 107,127-131 
improving efficiency when using 131 

indexes 128 
indirect addressing 112-114 
Initial Program Loader (IPL) 11 
input 

compiler 17 
Job Control Processor 20 
Linkage Editor 17,37,39 

for a segmented program 100,101,102 
INPUT PROCEDURE option 95,96 
Input/Output Control System (IOCS> 108 
input/output error subroutines 212 
input/output errors 138-143 
INSERT card 49,50 

used for debugging 54 
intermediate results 175-176 
interrupts, errors causing 55-56 
INVALID KEY condition 138,139 

direct organization 110,139 
indexed organization 139 
standard sequential organization 
109,139 

IOCS 108 

job 13 
types 14 

job control commands 37 

Index 247 

--------------- - - --- -------



job control considerations 
for accomplishing overlay 
for sort program 95-96 

Job Control Processor 11,21 

90 

options 33-34 
JOB control statement 
job control statements 

definition 11 

31,15 
15,21-37 

21 format notation 
formation of 21 
overlay considerations 
sequence of 22 
sort considerations 

90 

95-96 
job deck 15,22 
job definition 13 
job definition statements 
job step 13 

15 

label area, reserving storage for 31 
label definition 

DLAB control statement 29 
DLBL control statement 26 
TLBL control statement 25 
TPLAB control statement 30 

label processing 144-151 
mass storage file labels 149-151 
tape fil~ labels 144-149 

label processing considerations 
mass storage file labels 150-151 
tape file labels 148-149 

label processing subroutines 211 
LBLTYP control statement 31-32 
level numb~rs 166 
LIBR option 37 
Librarian 41,12 
line overlay '(Report Writer) 179 
LINK option 38,33,216 
linkage ' 81-83 

in a called program 82 
in a calling program 81 
correspondence of arguments and 
parameters 82 . 

entry points 82 
linkage conventions 83-87 

argument list 85 
assembler sUbprogram 83 
generated by compiler for segmentation 
100,101,102 

overlay considerations 89 
in-line parameter list 85 
lowest level subprogram 87 
register use 84 
save area 84 

linkage editing 17,14 
with overlay 89 
without overlay 83 

Linkage Editor 11 
linkage editor control statements 37-40 

fields of 37 
generated by compiler for segmentation 

100,101,102 
overlay considerations 
placement of 38-39' 

linkage editor diagnostic of input 77 
linkage editor input deck 18 
linkage editor input for a segmented 

program 100,101,102 
linkage editor messages 77 

248 

linkage editor output 75-77,64,17-18 
linkage registers 84 
linkage with the Sort Feature 96-97 
LIOCS 108 
LIST option 33 
LISTIO control statement 32 
LISTX option 33 
literal pool 73 
locating the Working-Storage Section in 

dumps 166-167 
LOG option 33 
logic module 108 
Logical Input/Output Control System 

(LIOCS) 108' 
logical record 108 

spanning physical blocks 157-162 

machine considerations 231-238 
main program or subprogram subroutine 215 
maintenance function of Librarian 41-48 
mass storage device 107 
mass storage file labels 149-151 
master index 120 
modularizing 

the Data Division 166 
the Procedure Division 174-175 
used by the Segmentation FeatUre 99 

module 11 . 
input to Linkage Editor 39 

MOVE statement 176 
MOVE statement subroutines 215 
MTC control statement 32-33 
multifile volumes 

TLBL control statement 25 
multiphase program 18,13,14 
multiple file tape subroutine 212 
multiprogramming 12 
multivolume tape files with nonstandard 
labels 149 

naming conventions used by segmentation 
100 

NEXT GROUP clause 181 
NODECK option 33 
NODUMP option 33 
NOERRS option 33 
NOLIBR option 37 

'NOLINK option 33 
NOLIST option 33 
NOLISTX option 33 
NOLOG option 33 
NOMAP option 18,40 
NOMINAL KEY clause 130,131 
nonstandard tape file labels 144 

multivolume file considerations 149 
NOSEQ option 36 
NOSYM option 33 
NOTE statement 176 
NOTRUNC option 37 
NOXREF option 33 
NSTD-REELS 149 

object code listing 73-74 
object module 75 

produced by the compiler for 
Segmentation 100 

object time messages 234-235 

~-

\ 

r 
Ir----

\. .1 



, 
l ,,--,-

C' '''~, 

OCCURS clause 
with Table Handling 
with S-mode records 
with U-mode records 
with V-mode records 

ON statement 51 
operator communication 

Feature 
162-164 
162-164 
162-164 

ACCEPT statement 78 
job control commands 
PAUSE control statement 
STOP statement 78 

37 
34 

182 

operator intervention between job steps 
34 

operator messages 
ACCEPT statement 78 
STOP statement 78 

OPTION control statement 33 
duration of effect 34 

OPTIONAL (SELECT clause) 23 
options for compiliation 

CBL card 36-37 
OPTION control statement 33-34 

organization of files 107-108 
direct 109-127,107 
indexed 127-131,107-108 
sequential 109,107 

origin point of phase 39 
output 

compiler 67-75,17 
complete sample program 187-199 
EXHIBIT statement 51-53 
from a segmented program 100-102 
linkage editor 75-77,6Q,17-18 
phase execution 77-78 
system 79 
TRACE statement 51-53 

OUTPUT PROCEDURE option 96 
overflow area 128-129 
overlay 14 

using Segmentation Feature 99-103 
using subprogram linkage 89-93 . 

overlay logic 89 
overlay structures 87-93 

job control considerations 90 
linkage editor 89-93 
PHASE statement 39 
provided by Segmentation Feature 

99-103 
overlayable fixed segment 99 

page breaks 179 
parameter list 82,85 
PARSTD option 34 
PAUSE control statement 34 
PERFORM statement 176 
permanent segment 99 
phase 

definition of 11 
origin point 39 

PHASE control statement 39 
generated by compiler for Segmentation 
100,101,102 

using overlay 89 
phase execution 18 

output 77-78 
phase map 77 
Physical Input/Output Control System 

(PIOCS> 108 

PICTURE clause 
PIOCS 108 

167-168 

pre-DTF switch 138 
prefixes 165-166 
prime area 127 
prime numbers 113,114 
printer spacing subroutine 211 
priority numbers 99 
private libraries 48 
private relocatable library 40 
problem program area 18 
Procedure Division header 82 
processing 

direct files 110-111 
indexed files 130 
sequential files 109 

processing programs 11 
Program Global Table (PGT) 73 
PROGRAM-ID paragraph 

and program linkage 81 
and segmentation 100 

program switches 35-36 
Communication Region 239 

programmer logical units 19,20 
programming techniques 165-186 

Data Division 165-174 
Environment Division 165 
general considerations 165 
Procedure Division 174-177 
Report Writer Feature 177-181 
Table Handling Feature 181-186 

QUOTE option 36 

randomizing 
for the 2311 Disk Drive 125 
for the 2321 Data Cell Drive 

randomizing techniques 112-115 
126 

sample programs 115-119,120-124 
READ INTO statement 176-177 
READ statement subroutines 211 
READY TRACE statement 51,177 
RECORD CONTAINS clause 166 
record formats 153-164 

format F 153 
format S 157-162 
format U 153-154 
format V 154-157 

RECORD KEY clause 130-131 
record zero (RO) 109 
recording capacities of mass storage 
devices 107 

REDEFINES clause 167 
register use for linkage 84 
relocatable library 42,43 

directory 42 
INCLUDE statement 

REP statement 46 
39 

replacing source statements in a book 
REPORT clause 177 
Report Writer Feature 177-181 
Report Writer routines, generation of 
RERUN clause 

and RSTRT control statement 
and Sort Feature 97 
subroutine 214 

RESET control statement 
RESET TRACE statement 

35 
51 

65,35 

Index 

46 

181 

249 

------ ------ -------------



restarting a checkpointed program 66,35 
retrieving a book from the source statement 
library 44,45 

BASIS card 48,49 
COpy statement 44,45 
modifying using INSERT and DELETE 
cards 49,50 

retrieving a direct file 111 
sample job deck 241,242 

retrieving an indexed file 130 
sample job deck 241,244 

retrieving a program phase 41-42 
REWRITE statement subroutines 211 
root phase 18 

in overlay structure 87 
root phase overlay 18 
root segment 99,100,101 
RSTRT control statement 35,66 
RO (record zero) 109 

S-mode records 157-162 
sample program output 187-199 
save area 84 
SEARCH ALL statement 183,186 
SEARCH statement 185-186 

subroutine 215 
segment descriptor field 157 
segment limit 99,100 
Segmentation Feature 99-103 

subroutine 214 
segmentation subroutine 214 
segments 99-101 
SELECT clause 

ASSGN control statement 23 
DLBL control statement 26 
EXTENT control statement 27 
programming technique 165 
TLBL control statement 25 
VOL control statement 29 

SELECT OPTIONAL clause 23 
SEQ option 36 
sequence-check source statements 36 
sequence of job control statements 22 
sequential organization 107,109 
service function of Librarian 41 
SET command 25,67 
SET statement 183-184 
7-track tape, restriction when used as sort 

work files 96 
sign usage 168 
single-program mode 12 
SKIPl 67,165 
SKIP2 67,165 
SKIP3 67,165 
slash ampersand (/&) 15 
slash asterisk (/*) 15 
sort' diagnostic messages 96 
Sort Feature 95-97 

machine requirements 237-238 
in a segmented program 101-103 

sort interface subroutine 214 
sort job control requirements 95-96 
sort work files 96 
sorting an unlabeled tape file 241,244 

sample job deck 244 
... , SORT-RETURN 97 

source statement libraIY 43-48 
--directory 43 

250 

space allocation 
EXTENT control statement 27-28 
XTENT control statement 30-31 

SPACEn option 36 
spacing of source program listing 
36,67,165 

spanned records 157-162 
on directly organized files 159-161 
on sequentially organized files 

161-162 
and Sort Feature 96 

special registers 
COM-REG 239 
CURRENT-DATE 
NSTD-REELS 
SORT-RETURN 

25,239 
149 

97 
spill file 234 
standard file labels 

format 1 203-207 
mass storage 149-150 
tape 144,148-149,201-202 

START statement 130 
statement formats 21-22 
STDLABEL option 34 
STOP statement 78 

subroutines 212 
STXIT option 36 
subordinate phases 
subscripts 163 

18 

SUM counters 177,178 
SUM routines 178-179 
summing techniques 177,178 
Supervisor 11 
SUPMAP option 36 
suppressing messages 

FLAGE option 36 
NOERRS option 33 

SYM option 33 
symbolic names 

of input/output devices 
of phases 39 

SYNCHRONIZED clause 
synonyms 112 
SYSIN 19,20 
SYSIPT 19,20 
SYSLNK 19,20,38 
SYSLOG 19,20 
SYSLST 19,20,67 
SYSOUT 19,20,23 
SYSPCH 19,20 
SYSRDR 19,20 

172 

19-20 

on same device as SYSIPT 
SYSRES 19,20,48 

15,17,19 

SYSRLB 19,20,48 
SYSSLB 19,20,48 
system logical units 19 
system message identification codes 
system-name restriction for RERUN on 
file 97 ' 

system output 79 
system service programs 
SYSOOO through SYS221 

table element 182 

11-12 
19,20 

Table Handling Feature 181-la6 
tape file labels 144-149 
Task Global Table (TGT) 73 

79 
a sort 



,.- , 
I \ 

I , 
'-- , ... -' 

TLBL control statement 25-26 
standard tape file labels 141,142 

TPLAB control statement 30 
standard tape file labels 140 

TRACE statement 51,177 
track 107 
track addressing 109-~27 

actual 111-115,125-~27 
sample program 115-119 

relative 111-113 " 
sample program 12,0-124 

track formats for direct-access storage 
devices 209-210 

track index 128 
TRANSFORM statement 177 

subroutine 215 
transient area 101,102,103 
TRUNC option 37 
truncation of COMPUTATIONAL items 37 

U-mode records 
undefined records 
unlabeled files 

sorting 244 

152-153 
152-153 

151 

unnumbered messages 235 
unresolved external references 
unsigned items 168 
UPDATE function 45-48 

ADD statement 46 
control statement placement 
DEL statement 46 
END statement 47 

40 

47 

invalid operand defaults 
logical unit assignment 
REP statement 46 

47-48 
47 

UPDATE statement 45-46 
UPDATE statement 45-46 
updating a,book in the source 

111 

statement 
I fOra ry 45-48 

updating a direct file 
sample job deck 242 

updating an indexed file 
sample job deck 244 

130-131 

UPSI byte 36 
UPSI control statement 

Communication Region 
UPSI switches 239 
UPSI-O through UPSI-7 
USAGE clause 169-171 
user labels 

mass storage files 
tape files 144,148 

35 
239 

36 

150,151 

user program switch indicators 
USING option 

of CALL statement 81 
of ENTRY statement 82 
on Procedure Division header 

USRLABEL option 34 
utility data sets 

239 

82 

required by compiler 237 
required by sort program 238,96 

V-mode records 154-157 
variable-length records 
VOL control statement 
volume labels 

mass storage 149 
tape 144 

154-157 
28-29 

WITH CODE clause 179-180 
work files 

required by compiler 237 
required by sort program 238,96 

Working-Storage Section, locating in a 
dump 166-167 

WRITE FROM statement 176-177 
WRITE statement subroutines 211 

XREF dictionary 74 
XREF option 33 
XTENT control statement 30 

7-track tape, restriction when used as sort 
work files 96 

Index 251 





( 

) 

---- -----------------

o 

( ' , 
I~ 

\ , 
t ...... - ~. 

~--'.I' 

READER'S COMMENTS 

TITLE: IBM System/360 Disk Operating System 
American National Standard COBOL 
Programmer's Guide 

FORM: GC28-6398-1 

Your comments assist us in improving the usefulness of our publications; they are an important part 
of the input used in preparing updates to the publications. All comments and suggestions become 
the property of IBM. 

Please do not use this form for technical questions about the system or for requests for additional 
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM 
representative or to the IBM Branch Office serving your locality. 

Corrections or clarifications needed: 

Page Comment 

Please include your name and address in the space below if you wish a reply. 

Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



GC28-6398-1 

· () , • t= · .... : e. t. 

• » 
"/.~-

~~ 
:5-
: (I) 

fold fold 

· ........................................................................................................................ 

Attention: PUBLICATIONS 

BUSINESS REPLY MAIL 
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ••• 

IBM CORPORATION 
1271 Avenue of the Americas 
New York, New York 10020 

FIRST CLASS 
PERMIT NO. 33'04 
NEW YORK, N.Y. 

. ..,.--' 

......................................................................... ~ ............................................. : 
fold 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.I06ot 
(USA Only] 

, ... ld Trade Corporation 
. ''''tions Plaza, New York, New York 10017 

fold 

.c· 
; . 

o 

I'd 
Ii 
1-'-
::s 
rT 
CD 
P. ( 
1-" 
::s 
c: · 1 f/.l · ~ · 
(j) 
(') 
N 
co 
I 

m 
w 
\0 
00 

I 

I-' 

...,' 
" , 



C
=,--,\ 

-.:.> 

" 

J 

~. I 

" 



GC28-6398-1 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.IOSOI 
[USA Only) 

IBM World Trade Corporation 
921 United Nations Plaza, New York, New York 10017 
[International) 

, 

,--

J'~" 
)" ' 
~:::: 

. 
~ . 
(j) 
o 
N 
00 
I 

0"\ 
W 
\0 
00 
I 

I-' 


