
FE EDUCATION CENTER

KINGSTON, NEW YORK

The attached material was developed for use in forums on 2065
BCU which were conducted in Area 4 by Mr. Jack Cronwell, Senior
FE Specialist, and has been reproduced for your information.

All of the attached material was developed by Jack. Because
he wanted to be able to refer to specific AND's, OR's, and triggers
in his write-up, he developed his own second level diagrams from
logic. You should be aware that many cf these second levels are
contained in the present 2065 FEDM (Y27-2038-0) and in the 2065
Revision Material (Chapter 2, Section 3).

3-13-69

VII.A 1

BCU
or

I Love a Mystery

(A short novel by Jack Cronwell
Area 4 - TAG)

This is a package which I have put together for 2 0 65 men who have a

basic understanding of the function of BCU. 11 BCU is a syn~hronizing

circuit designed to assign storage to contending users - tnos e users being

CPU, and channels." The basic reason to have such a circuit is obvious

to a trained 2065/67 man, but "how it works" seems to be a "mystery".

-This package will take away that mystery.

It consists of a second level which shows the BCU circuitry involved for

a request per the "D 11 reg. in CPU to an even address. This can also be

used as an excellent tool when shooting BCU prob] ems. I have done so

many times. It also cons is ts of the following write-up in which I lead

you through the second level, circuit by circuit, (each "and", "or", and

"trigger" is numbered) from the request trigger going on to the final· "BCU

clean-up 11 pulse, which is a result of that request.

Notes:

A) Abbreviations
1) Triggers :::: Tx's
2) Latches = LTH' s
3) Circuit.= CIRC

B) Number for the CIRC' s am in a circle in the lower right side

of the logic block.

C) "And/or" block's inputs arc differentiated by parenthesized

letters (ie., (a), (b), etc.), as in "and/or" CIRC. #7.

- \."'JI.A2

BOU-I

... .

- 2 -

1) "D sync. Tx 11
- This is turned on in CPU by the MREQ*D micro-

order." It will be turned on at P4 of the clock time of the ROS block

in which you sec the micro-order.

2) "D sync. LTH" - ·This is turned on at not clock of the same cycle·.

in which the sync. Tx comes on. This has an additional turn on,

which is not shown, but it could be turned on directly by the "NEOP 11

or 'IF ETCH 11 res(~t 11 micro-order hardware circuitry. This second turn

on is necessary since those circuits cannot be brought up in time ·

·to ,turn on the 'J'x and s.o. must turn on the LTH. in order to get the

request in as soon as possible.

The output of this feeds the OR, circuit #3.

3) This "or" has 4 inputs the "D synch LTH" "IC synch LTH 11 and 'scan

synch LTH", and the CPU request Tx which is actually a feedback circ.

which will 'hold on to the fact that we are making a CPU request

if we do not get the select out immediately. It has two main outputs.

One goes off and starts the CPU sequencers which will stop the CPU

clock if our request .is not honored immediately by th'e next clock time.

I will discuss their operation later in another write up. The other

output attempts· to get our request into BCU with "and 11 circuit #4.

4) This II and II will allow us to try to turn on our priority Tx if the "BC u

busy Tx 11 is not on, which would say t_ha t some other request has not

yet finished using BCU circuits.

VII.A3

- 3 -

5) "BC U busy Tx 11
- This trigger goes on whenever someone gets

priority to use the BCU circuits, for channels the BCU response

line comes up for any channel that is given ace es s to tho BC U

circuits. This Tx will not go off until BCU clean-·up comes, which

will be at th2 end of a succcs sful BC U operation when a select

pulse is actu~lJ y sent off to some storage.

6) "CPU priority Tx 11
- This Tx going on will say that a CPU request

has c·ontrol of the BC U circuitry. Even though the line, "turn on

CPU prj.01~1 ty 11 is up, l'JC ·cannot turn the Tx on if the address

valid LTH is on. This is a LTH that comes on early in the channel/BCD

selection operation so that the channel would still take priority over us.

if this is not sot hough, we do get priority.

Yea! Yea! we just got Jnto BCU. Nay, Nay, though varlet, thou must

yet get thee a select pulse sent to thy storage. If thou shouldst not

get this, thou wilt be hung in BCU with thy priority Tx on forever and

ever, as thou wilst not get "BCU clean upst". Yea! verily, let us see

if we can even "!IY" to send our select. *
7) "And/or" ~i7 has. an output, which will turn on the storage 2 Tx. This

output is called "Is sue a select 11
• STG 2 Tx going on generates a pulse

which we may or may not send out to a storage: One of the inputs to the

cmc I "and II (a) #7 I is the one which CPU will bring up to first turn

on the STG 2 Tx.

:i-TnANSLJ\TION-Evcn though we have control of BClJ at tl1is point, if conrliU.ons arc not rlght (LC'. In·
. valid ndclrcsf;, f;ion1ge busy, etc.) we will not be able to send a select pulse to om: storagcJ

VII.A4

- 4 -

One of the other inputs to cir. 4/7, "and" (b), is concliiionccl by a channel

getting priority, which is essentially the channel "address valid Ith". The

two 11 and's 11 just discussed will only be active in the beginning of the

operation as they will be deconditioncd once STG. 2 Tx turns· on STG. 2

LTH. The Jrd. "andn (c) is conditioned 1f the 1st. select pulse we

just generated was not actually "sent" to the storage and would continue to

force pulses until a pulse was actually sent to some storage. This could

result if the storage u_nit were busy or we were requesting an invalid address.

8) "STG. 2 Tx" - This Tx going on generates the select pulse. The BCU

oscillator is timed with this Tx going on to generate a 135 nanosecond

pulse which we may or may not try to send to the storage depending on

the validity of the address.

The STG. 2 Tx has a second turn on besides "and/ or" #7; the STG. 1 LTH.

which is only used with an LCS attached to the system. Note that the ~'linus

"LCS advance waiting line is tied to +6V".

9). 11 STG. 2 LTH" - This LTH always goes on at not clock of the cycle

that the Tx goes on. It will prevent the turning on of the STG. 2 Tx

by "and' s" (a) or (b) in "and/or" #7.

STG. 2 LTH will also turn on STG. 3 Tx if a BC U cleanup does not

immediately come on for this pulse which will in turn, turn on the

STG. 2 LTH aga:in. We will continue this loop until we get a BCU

clean-up for this request.

10) 11 1\nd 11 Circ. #10 output will be the timed select pulse. It is taken to

all the possible storage unit circuits in the BCU, and if the address

VII.AS

BCU,..II

- 5 -

on the SAB' s is a valid one to one of the storages, we will "try" to

send it to that storage.

11) "And" circ. #11 is one of several, each of which is in the separate

frame Select Circuits, If the power is On that frame I the select

pulse is allowed to go further on into the frame circuitry ..

12) "And 11 #12 is in the address decode circuitry which determines

if the SABs contain a valid address to an existing memory box. This

is determined by pluggable cards at installation time. It's output

is either odd or even address decode depending on the defeat or no

defeat interleave function and SAB 6 or 2 0. Note that one leg of this

11 and 11
· also requires CPU priority. There are equivalent ones for

channel requests, odd and even select.

13)At this .point we are sitting at the door of "and/or" #13. At this

point, we have gotten into BCU, generated a select pulse, determined

that we have power on bur frame, and that we have a valid address

on the SABs. Note that if we had not had a valid address or power on

the frame, we cannot get through "and/or" circuit #13, "and(a)".

This is a very critical point, since it is here where an invalid address

is truly detected.

The output of #13 is called "high speed select tried 1, I". You must

realize that when you see "select tried" circuitry, this means th.e

address tried was valid, and to a frame with power. \'lhcther· the select

goes out or not has to do with that frame's ava.ilability but you do

know that it is a good address at this poi_nt ..

VII .'Jl.F..

- 6 -

Also notice, at 11 or 11 #14, the 'inputs are labeled l, I; l, II; 2, I;

2, II; etc. This type labeling i_s also used in 11 select sent 11 cir

cuitry. The first No. refers to the physical frame (box) and the second

No. (roman numeral I or II) refers to the odd or even seleet in that

box. I = even and II = odd.

I wish to emphasize that when you see ... select tried" line

labels you know it means a valid select is being tried and "select

sent" labeling means a select pulse was actually sent out to a

frame!

14) 11 HSS sel tried Tx" - Turned on for any frame's sel tried line and

pre\·ent s Invalid address Tx' s fr<?m coming on. ! ! ! !

At this point, let's discuss a good, healthy request for an even,

valid address, power on frame type select. Nothing but clean

living for us, guys !

15) "And/or" #15 is again one of several for each possible frame and

odd/ even portion. of the frame. The output of this will send our

select pulse on a simplex line to the specific storage we want,

where it V-lill become the basic clock pulse. (Oh, BC U, I love you!)

Notice that 11 and (b) 11 has all the same conditions on it as "and/or"

circuit 13 11
,

11 and (a) 11
; plus the fact that the storage must not be

"busy" finishing a former select.

VII.A7

- 7 -

16) "And" #16 has an output which comes up if we send out our select

called "pseudo accept". Well in this case pseudo "ain't" so pseudo

since this is the only way the BCU rea'lizes that he did send a select

and can now do a BCU clean-up operation. A 2365 does not send back

an accept pulse! !

. 17) "And" Circ. #17 has the same inputs, essentially, (valid address,

frame power, select pulse and not busy) as "and/or" #15 ___ _

_____ . The output is labeled "select sent frame 1, I''. This

output is or'ed together with all other "select sent" lines and turns

on what is essentially the "select sent Tx 11
-

11 or 11 18 and "and" 19.

Now friends in radio land, keep calm, but guess what happens

2 0) Good old "and 11 circuit #2 0 has one leg conditioned 11 select sent"

and the other is labeled "HSS early accept." Now you know this

came up at not B 1 time as the select pulse went to our storage

back at "and" #16 and went through the "or" #2 lA. Lea.pin' lizards

sandy, the output of "and 11 20 is --- BCU clean-up!! ! (I may cry).

This good line and "and 11 21 (late BCU clean-up) will reset; HSS

select sent Tx (and #19); HSS select tried Tx (14), prevent STG 3 Tx

from coming on again so we won't generate another select pulse and

reset "BCU busy Tx" #5. Good I good I good; now the next guy can

get a,chance at BCU.

VII.AS

- 8 -

Oops / one other small item men. What if our request had been

for an invalid address, or a frame with power off? Notice that

we would not get through "and/or" 13 (Select tried circuit)

since "and'! 1/12, (invalid address) or; "and"#l l, (power off frame) would not be active.

Well, let's see what this does to "and's" 23 and 24.

22) "Test for invalid address Tx 11 goes on every cycle after the STG 2

LTH goes on. (Essentially, our select pulse). This conditions·

one leg of our 11 and' s" 2 3 and 2 4. If we haven't turned on our

HSS select tried Tx #14, the outputs go up and we notify the

CPU of the condition if this a CPU request and; turn on the invalid

address Tx' s 1 and 2 . These triggers will never go on unless

a request is nade to an invalid address, or a frame with power off! J.

Notice that we 're kind of stuck here though, as without HSS select

sent, 18; we can't get a BCU clean-up to let anyone else in BCU

and do anything about the invalid select! Not so my friends.

We get another select pulse at "and/or" l/7 9 and (c). And we will

send this pulse to the lowest frame with power, "and/or" #15, and (a)

due to the im·alid address Tx being on. This gives us an accept

pulse and '' ~rnd/ or'' 4~ 13, and (c) will come up giving us the select

tried, and at this point we can get our BC U clean-up.

One other point of interest on the inv. address, select, we send

cancel over wHh our select which will force 0' s wi.th good parity on

the MDBO so if this were a fctc h, wo. will ingate good P~1rity to tho

VII.:A9

- 9 -
,.

register waiting for the data and wi 11 not get a bad parity, machine

check condition which would confuse the actual "inv. address

prog. check 11 condition.

Well boys and girls, Annie and Sandy made it through the terrible

BCU safely. But what happened to Dadcj]y Warbucks and Punjab

when they went off into the land of the evil CPU sequencers? That

you' 11 know if you pick up the next episode, 11 Punj ab and the CPU -

stop-clock-trigger 11
•

Jack Cronwell
Sr. FE Specialist - Area 4 - TAG

VII..~ 10

BCU Problems I Have Known and Loved

or

Punjab and the CPU-Stop-Clock-Trigger

(sequel to "I Love a Mystery")

The CPU-Stop-Clock-Trigger has been the key to every "BCU Bug" I have
shot in the 2 0 65. These are the times when you are called to the machine
because it has stopped and you see the "Inhibit Clock" trigger is on_.·
Someone says over your shoulder "Oh, oh, it's a BCU problem", and your
blood runs cold! There is no need for this reaction if you read and fully
understand the following write up and service aid. You should also have
read my previous BC U write up. (An aspirin also helps)

Whenever CPU makes a memory request per the "D", "IC", or "Scan"
circuits; as it tries to get priority, it also starts the "CPU sequencers"
BCU III, "or" #3.

These sequencers are used to tell BCU how long it has been since he made
his last memory request; CPU must know this for very good reasons. If
for some reason CPU does not get his request honored immediately, his
clock. must be stopped. This is done so that:

1) He will still have the correct address available in the
register making the request.

2) He will not try to ingate data before it is available on
thP. buss es on a fetch,

There are three reasons that he may not get his request honored immediately
if you will recall.

1) BCU is busy with another request.
2) A higher priority request is contending for BCU.
3) The storage, CPU is requesting is busy.

In all the cases CPU's request will not be sent out as a select immediately,
and until it is, he will not get a "BCD Clean-up" sent to CPU. (Help keep
our BC U clean) .

You will see later that it is this pulse, BCD clean up, which either prevents
the CPU-Stop-Clock-Trigger from setting, or resets it to start the clock.
again when the select is finally sent out. I will devote the majority of
this write-up to the setting and resetting of this trigger since it has been
the key to the BCU problems I have fixed. (Let's not talk about the others).

VII.B1

- 2 -

But first, let me discuss the sequencers. They are essentially a trigger
to latch to trigger operation once they have been started. There are
two basic types of requests, a three and a four cycle type. Looking at
BCU III, you will see that at "and/or" circuits #' s 33 and 35, if the
"three cycle 11 trigger is on, the sequencers operate as follow~:

CPU 2 trigger
CPU 2 latch
CPU 3 trigger
CPU 4 latch
CPU 5 trigger
CPU 5 latch

If the "three cycle" trigger is off, (a four cycle request has been made)
the sequence is

CPU 2 trigger
CPU 2 latch
CPU 3 trigger
CPU 3 latch
CPU 4 trigger
CPU 4 latch
CPU 5 trigger
CPU 5 latch

You can see the first sequence was three cycles long, and the second was
four.

0 It is when the CPU 2 latch comes on that we may be allowed to turn on the
, "CPU-Stop-Clock" trigger at "and/or" #38 "and" a! You must understand
one fact. If when we make our request, the BCU sends our request out
immediately, CPU receives "BC U clean-up 11 on the very next cycle, that is;
the samf? cycle the CPU-2 trigger and latch comes on! !

Now, let's look at the "CPU-Stop-Clock 11 trigger, "and/or" #39. If we
can ever get one leg on each of the "or's" a, b, and c minus at one time,
we can get the trigg~r on. Let's take the clock cycle just after the CPU-2
latch came on. He will remain on until the next not clock PO. It is at
this time plus PO that we will turn it on if at all.
At "or" a, the top leg will be plus at clock time.

But , the 2 nc leg will be minus most of the time as it will not go plus
until we get the CPU 5 latch and the advance pulse. Well, this will not
happen until the end of the storage cycle. This is used with an LCS only
when the clock is stopped a second time with the CPU 4 latch to await data
from the LCS.

VII.B2

J

- 3 -

At "or" b, the top leg is used with the insert key function. Let's discuss
the normal select, so this will be plus. The next leg down is the one
which will be minus since "and/or" 38, "and" a has the CPU 2 latch and
PO since we are talking of the next cycle after the latch went on.

Now, if we can get one leg of "or" c up, we will turn on the trigger. The
top leg is, "+BO or B2". We are at clock time, so this is plus, the second
leg is "-insert key" and we are not doing this so this will be plus •.

The third leg is "+CPU priority". This could be the leg which would turn
us on if BCU had been busy to us and we did not get priority, but if we had
gotten priority, this leg would be plus, so we would have to look at the
last leg.

This fourth leg, "+BCU clean-up successful" is the deciding leg. If we
had not received BCU clean up immediately, you can see that on this cycle,
this leg would be minus and we would turn the trigger on, it would remain on
until CPU did receive BCU clean up. "Or". c would only have this leg minus
if you examine the other legs. (CPU priority is not reset until late BCU
clean up!) When this "BCU clean up successful" goes plus, the trigger will
reset.

Realize again, that if BCU clean up had been there due to the fact that we
had gotten our select sent to storage, the trigger would not have even been
set.

If for some reason CPU makes too many requests too fast to BCU, the
syl'!.1ptom is usually the fact that the "CPU-Stop-Clock" trigger goes on and
does not get reset. This turns on the "inhibit clock 11 trigger and that's what
you see on the console

11 Here come the judge" ! !

Now, let's talk about the bug which hangs CPU as above.

There are certain basic problems which we must overcome before we can
shoot this at all. '

1) Recognize the pr9blem as being of this nature.

2) Get ourselves some kind of a restart after the hang and
some kind of loop for scoping.

3) Find some place to look and sync with the scope, which
will ge.t us back to the reason for the clock stopping and
not restarting.

VII.B3

'

- 4 -

The first problem is quickly solved as soon as you realize that the CPU
is stopped with the "inhibit clock" trigger on. Look at roller 3, Position 1.
The second is the matter of two tie downs and some research into the
problem.

One tie down will giye you a reset every 16 milliseconds. It.takes the
output of the interval timer single shot and puts it into the switch circuits
such that any switch which you jam in will be functional every 16 m~.
Realize that reset is an overriding function and that, if you had another
switch jammed ·in, you would not see it while res~tting. This reset gets
us to ROS 003 and when it is gone, we will be in the stop loop. This tie
down is 01E-E2F7B3 (KWOll) to 01A-C2D6D4(KD601).

Now we will jam in a second b·uttorn with another tie down. This tie down
will bring up a line called "push button gate". With this up, any button
which is looked at in the stop loop, and jammed in will be functional when
we go by that ROS block in the stop loop. We' 11 jam load PSW. The tie
down is to ground 01C-B4 G03 D09.

·Now every 16 ms. we will get a reset, and then when the reset disappears,
we will be in the stop loop and when we get to the ROS block for LPSW,
we'll do it. This is our restart after the hang up. Of course, we must now
find a good PSW restart point to go back to to get our hang. A good thing
to do is to look at IC to find where you are, get a listing and go back about
four or five instructions before. Here I must leave you to your own devices
as the hang condition could be due to many things occurring. (i.e., you
could have branched here, etc.)

The third problem is what this is all about, the "CPU-Stop-Clock 11 trigger.
He's the place to start at. Scope the output, and you will see him going
on and off. Then it will go on and stay on until the reset occurs. That's
the point of time you 're interested in! ! Put the other probe on the output
of "or" #3 BCU III, MC068. IC, D or scan synchs latches. I can almost
guarantee that you'll see two re'quests coming in one clock cycle after
another. Now you must investigate them and you'll probably find that one
is extraneous.

At this point, remember that many requests are generated by hardware at
end OP time and I fetch time. They will always turn on the "D 11 or "IC"
request latch instead of the trigger. The micro orders enter the triggers
first. I have found such things causing the problems as:

1) ;Hot IC 2 1 , 2 2 == 0 1 , or 10 Ii n es or D 2 1 , 2 2 = 0 1 , or l O ! ·
This causes incorrect hardware requests per IC or D to
refill "Q".

VII.B4

i .

- 5 -

2) Wild ROS branches. Taking me to a block which makes
a request just after a good hardware request has been
made.

3) Hot lines up to some "and' s" on KD201 which is where a~l
the branches make their hardware requests to refill "Q"
per the "D II or II IC II I during I fetch with the "res et II micro
order.

One thing you can be sure of - CPU is never allowed to make one request
right after another without at least one cycle in between!

Notice that what we have called "BCU problems 11 have really ~een in
the CPU, but resulted in stopping the clock due to BC U' s inability to
handle extraneous requests.

Summary of BCU problem approach.

1) Determine some LPSW return point to restart machine.
(about 4 instructions before failing point)

2) a. tie down: 01E-E2f7B3 to 01A-C2D6D4
and; 01CB4G3D9 to ground

b. jam: "reset" button
"LPSW" button

3) Scope output of CPU-Stop-Clock trigger. Note point
where it goes on and does not reset.

4) Look at requests being made at this point of time from
"or" #3 on MC-068. Investigate both of these. One
will be rig 1].t, and one will be in error.

So then kids, punjab has beaten the 11 evil CPU sequencers". But will he,
Daddy Warbucks and Annie ever meet again? I think you'll be surprised
if you tune in next week when you'll hear Annie singing to Sandy, "Sitting
on the consol~ watching all the bits go by".

Don't forget to send in 3 CPU covers and we'll send you the magic
hexadecimal decoder along with your handy dandy ROS plane torque wrench.

J.ack Cronwell
Senior FE Specialist

VII.BS .

D SYNC LTH CPU REQ TX
-P3 +PO -JMo --- A 0

+STG REQ *D-4D SYNC TX -ADDR VALI§P£TPRIORITY

+P4

+NOT BLOCK D SYNC

-P1

Al 0

A I 1

-INH REQ

+PO

I Al 0 I
I -BCU _C/UP i---1 - I iA ___ , l

0

MC 061 +IC
START CPU
SEQUENCERS

B C U - I

;:j !"HAN ADDR VALID LTH

· -(B1+B4) HI
~ +BCU BUSY TX

+CHAN ADDR VALID
-LATE BCU C/UP

0

+ SCAN SYNC LTHf 3

.j MC 161
BCU BUSY TX

+B2 0

+BCU RESP A
-BC

-Bcu c/uP =-f£_1 Bust i

--····' --- --·---<--------------·---L·--·

A
-STG 2 LTH rLa I O

+y+ya L.. ..L.Jft.u I

MC 321
- -·---- -·--····--------·

+B
+T/ON CPU PRIORITY

I -LATE BCU C/UP

·-HSS SEL

~
STG 2 TX

MC 716

t'
MC. 701

··--- ---·--·- -------------

+ ISSUE A SELECT
+B

0
+CPU

6 I PRIORITY

L_ !
MC 166

_1:LCS ADV
STG 1 TX

WAITING TX

-l\.I_:lYAB9E_ WAITING r 1o j+BCU OSC
-B2 -

_A
STG 3 TX L-----

-BCU C/UP MC 706

TIMING PULSE
------!; BCU-II

STG 1 LTH

,=#!r~1 -- ------·- +B~----1A 10

I -B 1 :::jA I ~ H •

I L~c 111
I

STG ---- LTH

-B1 tW o

- - ---- --· A
+BO

~A\9

MC 706 l ---L -

MC 706

<:
H
H .
()
!\.)

+SELECT TIMING
PULSE

+ INVALID ADDR T SEL PULSE TO
FR 1 EVEN

--·

+FR _l=N-q!_?9°SY ---- Aj : j•STG

r--- ai 0 II :

1 11-------4-----~-iJ :

A

+PWR ON FR 1 -B1 .--~]
+ SEL FR 1 , I - -hl -

PSEUDO ACCEPT FR4 __ -r-·i
FR3 : I

FR2 --! 0 I PSEUDO ACCEPT

PSEUDO ACCEPT FR_1__ _b j MC 441 ~------=------~b 15~--

!+DECODE EV - i---~=-~+HS~ ~~RLY ACCEPT
~· - o I! ------ - -

MC 441

+ EVEN ADDR :ADDRESSES

-INVALID ADD-R 11- ·1 + DECODE EV (HI SABS) A CHAN ADDR
------7 --- --- --- -· -- ~-- --·

+CPU PRIORI'J:'~-- 1 2 -

MC 466

B C U - II

+ INVALID ADD
TRIGGER

! iu,=LAJ : __ __! ~ 1Ul- Lil} fff I iAT~
I I

~ i --.------. : I

~A I ;

---l~ I J HSS SEL TRIED

-- Al
1 3

I +S~L -T.RI~~ _ _]_, _ _! __ Fl'

c 'I II 1, II I 0

MC 441 ~ _-_" --~_L__L~ ~

I - -~SJ;;L TRIED! 4, II114 I -

MC 261

?---~

! - BGL_C_/U~-~ I A_ - 1.1~ -4 7 ;=-r 1

]~----- , HSS SEL SENT

A tLATE BCU
,CLEANUP '

l

TEST FOR INVALID

ADDR TRf G
+STG 2 ~~g !Alo

-BCU C/UP
A !22

MC 741

~!:~_J_L_ I __ ~L_!3Y 1 ~ l +S~~ _ SE~T F._R_ 1_
1 --·- FR2 0

-SEL PULSE " FR3

-Bc::U d.EANUP-fAl - _ " -FR4

1
1B f +HSS

~~=---- J
MC 476

l
------ --- ------ -- -------------
-- i "" I BCU

SEL JijENT _ _ t ~C _ CLEANUP)

MC 711

~I +CPU

PRIORITY
--------r-1

N -BS$ SEL TRIE9 -{Al,· ___ :_~l__ ____ iA jPU-L s __ E_ INVALID
l I IADDRE=S~S::.__ __

L_ __ ----- - - - - - - - - --- - - -°' -LU _ _j ---- -----1""-- ---- -

j i--- 1 "INVALID ADDRESS
A I TRIGGER 1 II

"---Q_~ ~ -------r::::--1 + INVALID ADDRESS
-~_3C~U-Cl~!-~ j A~-- LQJ --r:----- "INvALID ADDRESS

t ~ II r:rc--/lJ TRIGGER2

<:
H
H .
(')
w

MC 068 "CPU 2 TX" "CPU 2 LTH"
~1C 2 71

D SYNC LTH
0

IC SYNC LTH
SCAN SYNC LTH

3

3 TX

T/O

MC 121
-INSERT KEYi I I -P1

+ P2 AIO

- P1
A j30

A 0

·--·-·-· ---::-ru;"Q"C~K -CPU ~QtJESTS

CPU 3 LTH

~ CPU 4 TX

~-1
-

CPU 4 LTH

-P1
A

0
+3 CY TX

35
c

j + CPU REQUEST SYNC LTH I
! ----·-- - -----·-------

c p u

SEQUENCERS

B C U - III

+INSERT KEY .

+PO ~T-:-

38

-i-[J SYNC LTH ffi:'CPU-STOP-CLOCK TX"
+PO 4

r=-c~P!J_S_ I:-'.i'!f __ ~- AD;ANCE) ~ A

- -- -- -- - ;}-~ :

_ + (B.O±B2 ---1

.:::INSERT KEY 4 O_ :
+CPU PRIORITY -4 I .

_ _:tBCU CLEANUP--su~cEssmL- Jc
39
tr

MC 041

CPU 5 TX

0
CPU 5 LTH

36
0

37

BCU FUNCTIONAL UNITS

1. STG. l Tx- KEEPS TRYING TO TURN ON STG. 2 IF (LCS)
ADVANCE WAITING Tx IS oN

2. STG. 2 TX - GENERATES A SELECT PULSE TO TRY TO .SEND.
TO STORAGE FRAME,

3. STG. 3.Tx - HOLDS ON STG, 2 LTH. IF SELECT DID NOT GET
SENT. (INVALID ADDRESS, OR BUSY STORAGE)

4. BCU Busy Tx - GoEs ON WHEN A PRIORITY IS ESTABLISHED,
GETS RESET ON BCU CLEAN-UP. SAYS BCU IS BUSY TRYING
TO SEND A SELECT,

5. HSS SELECT TRIED Tx - SAYS A SELECT WAS SENT ouT oR WAS
TRIED TO A BUSY STORAGE UNIT, DOES NOT COME ON
FOR INVALID ADDRESS OR NO POWER.

6. HSS AccEPT LTH - TURNED ON BY PsEUDO AccEPT WHEN SELECT
IS S~NT OUT, THE LAST THING TO GO ON WHICH GENERATES
BCU CLEAN-UP.

7. BCU CLEAN-UP -. COMES ON SHEN A SELECT IS SUCCESFULLY
SENT TO A FRAME,

8, INVALID ADDRESS Tx 1 - SAYS A SELECT WAS ATTEMPTED AND
THERE WAS No HSS SELECT TRIED Tx.

9, CANCEL - FORCED ON WITH INVALID ADDRESS TO GATE O's ON
SDBO! SENT TO STORAGE TO THE LOWEST BOX WITH POWER WHEN
INVALID ADDRESS FORCED A SELECT TO THIS BOX,

10. CPU SEQUENCERS - DETERMINES HOW FAR CPU HAS GONE AFTER
EACH STORAGE REQUEST,

11. STOP-CPU-CLOCK Tx - TURNS ON To STOP CPU so WE CAN HOLD
AN ADDRESS FOR SAB & DO NOT GATE SDBO TOO SOON.

12. CPU-2 LTH - USED TO TURN ON STOP-CPU-CLOCK IF REQUEST
DOES N OT GET HONORED IMMEDIATELY,

13. CPU-4 LTH - USED WITH LCS TO STOP CPU WHEN LCS ADVANCE
DOES NOT ARRIVE IN TIME SO WE WAIT TO GATE IN THE
STORAGE BLISSES UNTIL ADVANCE ARRIVES,

VII,Dl

TROUBLE SHOOTING BCU ON 2065

SYNCHING -

l, THE BEST SYNC IS TH~ ROS BLQCK ON WHICH THE ~EQUEST TO
STORAGE IS MADE. <Ms-RrQ*D-5) FOR EXAMPLE) OR IN THE END
OP BLOCK IN WHICH THE NEOP OR BEOP MICRO-ORDER MAKES A
REQUEST PER TH~ IC TO REFILL THE Q WHEN II IS NECESSARY.
{REFERENCE 2U6J HANDBOOK, PAGE 33, ALD KD 01, KDL01)

2. You CAN ALSO SYNC ON THE PARTICULAR REQUEST TRIGGER IF
YOU KNOW IT ONLY COMES ON FOR THE OPERATION YOU ARE
CONCERNED WITH,
WHAT TO LOOK FOR ---

GENERALLY, YOU'RE LOOKING FOR THE SELECT PULSE TO THE BOX
YOU'VE SELECTED AND BCLJ CLEAN-UP.

SELECT PULSE TO::

Box 1 I (~VEN) - ~C441
Box 1 II {ODD) - ~C442
Box 2 I (EVEN) - ~C443

Rg~ j j 1 <<e~~~ = ~~tt4~
Box 3 I ~ODD) - r1(LJ45
Box 4 I (~VEN) - ~C446
Box 4 II {ODD) - MC445

WHILE SYNCHING EXTERNALLY ON THE REQUEST, LOOK ON THE "A"
P~OBE AND :
1 CHECK To SEE IF you GEI CPU PRIORITY (PAGE MC166)
2 SEE IF YOU HAVE STG L !RIGGER UNDER THE PRIORITY,

(PAGE MC7U6)
3) KEEPING STG 2 TX ON CHANNEL "A" SEE IF-YOU GE! YOUR

SELECT PULSE TO !HE STORAGE BOX ON CHANNEL "B' .
PROBE, l, 2, OR 5 CYCLES LATER,

THE ONLY REASON YOU SHOULDN'T GET IT IMMEDIATELY IS
STORAGE BUSY, MAKE SURE YOU DO NOT GET INVALID ADDRESS
(PAGE MC741) BEFORE THE SELECT PULSE, YNLESS IT IS
AN INVALID ADDRESS YOU ARE REQUESTING!.!

VI 1. o2

.. r

'r. /

