Systems Reference Library

IBM System/360
FORTRAN IV Library Subprograms

Program Number 360S-LM-501
360F-LM-619
| 360N-LM-480

This publication describes the library subprograms supplied with

| Basic FORTRAN 1v (E) and FORTRAN Iv (G, H, DOS, and MODEL 44)
and tells how to use the subprograms in either a FORTRAN or an
assembler language program.

File Number $360-25
Form C28-6596-4

0S
 44PS
D0S

Preface

The purpose of this publication is to describe the
FORTRAN library subprograms and their use in either
a FORTRAN or an assembler language program. The
body of the publication describes the mathematical
subprograms (which perform computations) and the
service subprograms (which perform testing and
utility functions). This information is intended pri-
marily for the FORTRAN programmer; Appendix E is
intended for the assembler language programmer.
Additional appendixes contain algorithms (the method
by which a mathematical function is computed), per-
formance statistics, descriptions of interruption and
error procedures, storage estimates, and sample stor-
age printouts.

The reader should be familiar with one of the follow-
ing publications:

IBM System/360 FORTRAN IV Language, Form
C28-6515

IBM System/360 Basic FORTRAN IV Language,
Form C28-6629

IBM System/360 Operating System: Assembler Lan-
guage, Form C28-6514

Frrra EprtioN (October 1968)

IBM System/360 Model 44 Programming System:
Assembler Language, Form C28-6811

IBM System/360 Disk and Tape Operating Systems:
Assembler Language, Form C24-3414

In addition, references are made within this publica-
tion to information contained in the following publi-
cations:

IBM System/360 Principles of Operation, Form
A22-6521

IBM System/360 Operating Systems Supervisor and
Data Management Macro-Instructions, Form C28-6647

IBM System/360 Model 44 Programming System:
Guide to System Use, Form C28-6812

Standard mathematical notation is used in this publi-
cation. The reader is expected to be familiar with this
notation and with common mathematical terminology.

Appendix E provides information about the use of
these library routines by assembler language program-
mers. Corresponding information for pos is in the
publication IBM System/360 Disk Operating System,

- FORTRAN 1V Programmer’s Guide, Form C28-6397.

This is a revision of, and makes obsolete, C28-6596-3. Additions have been made to support
the IBM System/360 Disk Operating System. All changes to the text or tables are indicated by
a vertical line to the left of the change; revised illustrations are denoted by a ® to the left

of the caption.

Specifications contained herein are periodically subject to change; any such changes will be
reported in subsequent revisions or Technical Newsletters. Before using this publication in
connection with the operation of IBM systems, refer to the latest SRL Newsletter, Form

N20-0360 for the editions that are applicable and current.

A form for readers’ comments is provided at the back of this publication. If the form has
been removed, comments may be addressed to IBM Corporation, Programming Systems
Publications, 1271 Avenue of the Americas, New York, N.Y. 10020.

© Copyright International Business Machines Corporation, 1966, 1968

Introduction 5
Mathematical Subprograms 6
Explicitly Called Subprograms 6
Implicitly Called Subprograms 14
Optional Extended Error Message Facility. 15
User-Supplied Corrective Action. 15
Service Subprograms 19
Machine Indicator Test Subprograms................... 19
Utility Subprograms 19
Appendix A. Algorithms. 21
xxxCLABS (CDABS) and xxxCSABS (CABS)
Subprograms 22
xxxCLEXP (CDEXP) and xxxCSEXP (CEXP)
Subprograms 22
xxxCLLOG (CDLOG) and xxxCSLOG (CLOG)
Subprograms 22
xxxCLSQT (CDSQRT) and xxxCSQT (CSQRT)
Subprograms 22
xxxCLSCN Subprogram (CDSIN and CDCOS)........ 23
xxxCSSCN Subprogram (CSIN and CCOS)............ 23
xxxLASCN Subprogram (DARSIN and DARCOS) 24
IHCLATAN Subprogram (DATAN)................. 25
xxxLLATN2 Subprogram (DATAN and DATAN2)...... 25
xxxLERF Subprogram (DERF and DERFC).......... 26
xxxLEXP Subprogram (DEXP)...................... 27
xxxLGAMA Subprogram (DGAMMA and DLGAMA) ... 28
xxxLLOG Subprogram (DLOG and DLOGI10)......... 28
xxxLLSCN Subprogram (DSIN and DCOS).......... .. 29
xxxLSCNH Subprogram (DSINH and DCOSH) 30
xxxLSQRT Subprogram (DSQRT)................... 30
xxxLL,TANH Subprogram (DTANH).................. 31
Tables
1 Explicitly Called Mathematical Subprograms. 7
2 - Logarithmic and Exponential Subprograms....... 8
3 Trigonometric Subprograms 9
4 Hyperbolic Function Subprograms 11
5 Miscellaneous Mathematical Subprograms 11
6 Implicitly Called Mathematical Subprograms. 14
7 Exponentiation with Integer Base and Exponent... 15
8 Exponentiation with Real Base and Integer
Exponent 15
9 Exponentiation with Real Base and Exponent. 15
10 Exponentiation with Complex Base and Integer
Exponent 15
11 Optional Service for Error Situations 16
12 Corrective Action After Program Interrupt
Occurrence 18
13 The xxxFDUMP Subprogram Format
Specifications 20
14 Performance Statistics 42
15 Mathematical Subprogram Storage Estimates. 56
16 Service Subprogram Storage Estimates. 57

17 Execution-Time Routine Storage Estimates,
Operating System e 57

Contents

xxxLTNCT Subprogram (DTAN and DCOTAN)....... 31
xxxSASCN Subprogram (ARSIN and ARCOS)......... 32
THCSATAN Subprogram (ATAN)................... 33
xxxSATN2 Subprogram (ATAN and ATAN2).......... 33
xxxSERF Subprogram (ERF and ERFC)........... ... 34
xxxSEXP Subprogram (EXP)........................ 35
xxxSGAMA Subprogram (GAMMA and ALGAMA) 36
xxxSLOG Subprogram (ALOG and ALOGI10).......... 36
xxxSSCN Subprogram (SINand COS)................ 37
xxxSSCNH Subprogram (SINH and COSH)........... 38
xxxSSQRT Subprogram (SQRT)..................... 38
xxxSTANH Subprogram (TANH).................... 39
xxxSTNCT Subprogram (TAN and COTAN).......... 39
Appendix B. Performance Statisties 41
Appendix C. Interruption and Error Procedures 47
Interruption Procedures 47
System/360 Operating System....................... 48
Model 44 Programming System. 49
Disk Operating System 49
Error Procedures 0., 49
Appendix D. Storage Estimates 56
System/360 Operating System......................... 56
Model 44 Programming System........................ 57
Disk Operating System I 57
Appendix E. Assembler Language Information 59
Calling Sequences 59
Mathematical Subprograms 60
Service Subprograms 61
Appendix F. Sample Storage Printouts 62
Index.........l 63
lllustrations

18 Execution-Time Routine Storage Estimates,

Model 44 System 57
18.1 Execution-Time Routine Storage Estimates,
Disk Operating System 58

19 Execution-Time Routine Storage Estimates
with Extended Error Message Facility

Operating System 58
20 Assembler Information for the Service
Subprograms 61
Figures
1 Program Interrupt Message Format,
Operating System 47
2 Program Interrupt Message Format,
Model 44 System 49
2.1 Program Interrupt Message Format,
Disk Operating System 49
3 General Assembler Language Calling Sequence... 60
4 Sample Storage Printouts 62

The FORTRAN 1v library for the System/360 Operating
System, the Model 44 Programming System and the
Disk Operating System comprises two types of relo-
catable subprograms: mathematical subprograms and
service subprograms. The mathematical subprograms
correspond to a subprogram defined by a FUNCTION
statement in a FORTRAN source module. These sub-
programs always return one answer (function value)
to the calling module. The service subprograms cor-
respond to a subprogram defined by a suBROUTINE
statement in a FORTRAN source module. These sub-
programs may or may not return a value to the calling
module.

Calls to the library subprograms are either at the
programmer’s request or in response to program re-
quirements. Under the System/360 Operating System,
all calls are processed by the linkage editor, which
takes the subprograms from the library. The library
subprograms are then combined by the linkage editor
with the calling module (either an object or a load
module) into another load module which is ready for
execution. Under the Model 44 Programming System
| and the Disk Operating System, the linkage editor

Introduction

takes the subprograms from the library and combines
them with the calling module into an executable phase.

The library subprograms may be called in either a
FORTRAN or an assembler language program. The next
two sections of this publication contain calling infor-
mation for the FORTRAN programmer; Appendix E con-
tains calling information for the assembler language
programmer.

Subprogram Names

Except for a three-character prefix, the names of sub-
programs described in this publication are the same
for all systems. The prefix is uniformly 1mc for the
Operating System library, Boa for the Model 44 Pro-
gramming System, and mwr for the Disk Operating
System. These characters occupy the portion of the
subprogram name shown as xxx in the text and tables.
Thus, the subprogram named here as xxxcsLoc has
the name mccstoc under the Operating System,
BoacsLoc under the Model 44 Programming System,
and 1wrcsLoc under the Disk Operating System.

Introduction 5§

Mathematical Subprograms

The mathematical subprograms supplied in the
FORTRAN library perform computations frequently
needed by the applications programmer. The mathe-
“matical subprograms are called in two ways: explicitly,
when the programmer includes the appropriate entry
name in a source language statement (see Table 1);
and implicitly, when certain notation (e.g., raising a
number to a power) appears within a source language
statement (see Table 6).

The following text describes the individual mathe-
matical subprograms and explains their use in a
FORTRAN program. Detailed information about the
actual method of computation used in each subpro-
gram, the performance of the subprogram, interrup-
tion and error procedures, and storage estimates can
be found in the appendixes of this publication.

Explicitly Called Subprograms

Each explicitly called subprogram performs one or
more mathematical functions. Each mathematical
function is identified by a unique entry name that
differs from the name of the subprogram.
A subprogram is called whenever the appropriate
entry name is included in a FORTRAN arithmetic expres-
_sion. The programmer must also supply one or more
arguments. These arguments follow the entry name
and are separated by commas; the list of arguments is
enclosed in parentheses.
For example, the source statement

RESULT = SIN (RADIAN)

causes the racsscN subprogram to be called. The sine
of the value in rRaDIAN is computed and the function
value is stored in RESULT.

In the following example, the mcssQrT subprogram
is called to compute the square root of the value in
AMNT. The function value is then added to the value
in stock and the result is stored in ans.

ANS = STOCK + SQRT (AMNT)

The explicitly called subprograms are described in
the tables that make up the rest of this section.
These tables show the general function, subprogram
name, the FORTRAN library that contains the subpro-
gram, definition, entry name(s), argument information,
type of function value returned, and assembler re-
quirements. The following column headings are used
in the tables:

General Function: This column states the nature of
the computation performed by the subprogram.

6

Subprogram Name: This column gives the module
name of the subprogram. The first three characters
are uniformly 1mHc for subprograms in the System/360
Operating System library, Boa for those in the Model
44 Programming System library, and wr for those in
the Disk Operating System library. These three char-
acters occupy the portion of the subprogram name
that is shown as xxx in the text and tables.

Subset: This column indicates those subprograms
that belong to the Basic FORTRAN 1v (E) library. Unless
otherwise indicated, all subprograms that belong to
the E library also belong to the FORTRAN 1v (G, H, MODEL
44, and pos) library.

Definition: This column gives a mathematical equa-
tion that represents the computation. An alternate
equation is given in those cases where there is another
way of representing the computation in mathematical
notation. (For example, the square root can be repre-
sented either as y= V/x or y = x%/2,) The definition
for those subprograms that accept complex arguments
contains the notation z = x;+ xi.

Entry Name: This column gives the entry name that
the programmer must use to call the subprogram. A
subprogram may have more than one entry name; the
particular entry name used depends upon the compu-
tation to be performed. For example, the mcsscN sub-
program has two entry names: cos and siN. If the
cosine is to be computed, entry name cos is used; if
the sine is to be computed, entry name sIN is used.

Argument Number: This column gives the number
of arguments that the programmer must supply.

Argument Type: This column describes the mode
and length of the argument. INTEGER, REAL, and
coMPLEX represent the type of number; the notation
*4, *8, and *16 represent the size of the argument in
storage locations.

Norte: In Basic FORTRAN 1v, a real argument corre-

sponds to the REAL *4 argument, and a double-

precision argument corresponds to the REAL *8 argu-

ment. Complex arguments cannot be used with a

Basic FORTRAN 1v compiler.

Argument Range: This column gives the valid range
for an argument. If the argument is not within this
range, an error message is issued and execution of this
load module is terminated. Appendix C contains a
description of the error messages.

Function Value Type: This column describes the
type of function value returned by the subprogram.
The notation used is the same as that used for the
argument type.

Table 1. Explicitly Called Mathematical Subprograms

General Function Specific Function Subprogram Name Entry Name(s)
Logarithmic and exponential Common and natural logarithm xxxCLLOG* CDLOG
subprograms (described in Table 2) xxxCSLOG* CLOG

xxxLLOG DLOG, DLOG10
xxxSLOG ALOG, ALOGI10
Exponential xxxCLEXP* CDEXP
xxxCSEXP* CEXP
xxxLEXP DEXP
xxxSEXP EXP
Square root xxxCLSQT CDSOQRT
xxxCSSQT* CSQRT
xxxLSQRT DSQRT
xxxSSQRT SQRT
Trigonometric subprograms Arcsine and arccosine xxxLASCN* DARSIN, DARCOS
(described in Table 3) xxxSASCN* ARSIN, ARCOS
Arctangent IHCLATAN DATAN
xxxLATN2* DATAN, DATAN2
IHCSATAN ATAN
xxxSATN2* ATAN, ATAN2
Sine and cosine xxxCLSCN* CDSIN, CDCOS
xxxCSSCN* CSIN, CCOS
xxxL.SCN DSIN, DCOS
xxxSSCN SIN, COS
Tangent and cotangent xxxLTNCT* DTAN, DCOTAN
xxxSTNCT* TAN, COTAN
Hyperbolic function subprograms Hyperbolic sine and cosine xxxLSCNH* DSINH, DCOSH
(described in Table 4) xxxSSCNH* SINH, COSH
Hyperbolic tangent xxxLTANH DTANH
xxxSTANH TANH
Miscellaneous subprograms Absolute value xxxCLABS* | cDABS
(described in Table 5) xxxCSABS* CABS
Error function xxxLERF* DERF, DERFC
xxxSERF* ERF, ERFC
Gamma and log-gamma xxxLGAMA* DGAMMA, DLGAMA
xxxSGAMA* GAMMA, ALGAMA
Maximum and minimum value xxxFMAXD DMAX], DMIN1
xxxFMAXI AMAXO0, AMINO, MAX0, MINO
xxxFMAXR AMAX]1, AMIN1, MAX1, MIN1
Modular arithmetic IHCFMODI MOD
IHCFMODR AMOD, DMOD
Truncation IHCFAINT AINT
IHCFIFIX IDINT, INT
*Not available in FORTRAN 1V (E)

Assembler Requirements: This column gives the reg-
isters used by the subprogram and the minimum save
area that the assembler language programmer must
supply. For example, the assembler requirements for
the xxxcssQT subprogram are:

registers 0, 2(4)
save area 9F
This information specifies that:
1. The function value is found in floating-point reg-
isters 0 and 2.

2. Floating-point register 4 is used for intermediate
computation.
3. The save area must be at least nine full-words in
length.
Detailed information for the assembler language pro-
grammer is given in Appendix E,

Nortk: In the following tables, the approximate value
of 218 « 7 is .82354966406249996D + 06; the approximate
value of 25° « 7 is .35371188737802239D + 16.

Mathematical Subprograms 7

o Table 2. Logarithmic and Exponential Subprograms

General
Function

Subprogram
Name

Sub-
set

Definition

Entry
Name

Argument(s)

No.

Type*

Range

Function
Value

Type'

Assembler
Require-
ments

' Common
and natural
logarithm

xxxCLLOG

No

y=rv log. (z)
See Note 2

CDLOG

complex
*16

z %0 + 0i
See Note 3

complex
*16

registers
0,2
save area

8F

xxxCSLOG

y=pv log. (z)
See Note 2

CLOG

complex

*8

z5% 0+ 0i
See Note 3

complex
*8

registers
0,2

save area
8F

xxxLLOG

Yes

y=log.x or
y=lnx

DLOG

real *8

x>0

real *8

registers
0(2)
save area
9F

y= IOng

DLOGI0

real *8

x>0

real *8

registers
0(2)
save area

9F

xxxSLOG

Yes

y=logex or
y=Inx

ALOG

real *4

x>0

real ¥4

registers
0(2)
save area

5Ff

y=logiox

ALOGI0

real ¥4

x>0

real *4

registers
0(2)
save area

5Ft

Exponential

xxxCLEXP

y=e”

See Note 4

CDEXP

complex
*16

xi = 174.673
[xe] < (29 7)

complex
*16

registers
0,2

save area
8F

xxxCSEXP

y=e”
See Note 4

CEXP

complex

*8

x = 174,673
[xs] < (2%«)

complex
*8

registers
0,2

save area
8F

xxxLEXP

Yes

DEXP

real *8

x = 174.673

real *8

registers
0(2)
save area
oF

xxxSEXP

Yes

EXP

real *4

x = 174.673

real *4

register 0
save area
12F

Square root

xxxCLSQT

y=Vzor
y=zl/2

CDSQRT

complex
*16

any complex
argument
See Note 3

complex
*16

registers
0,2 (4)
save area

oF

xxxCSSQT

y=Vzor
y._:zl/z

CSQRT

complex
*8

any complex
argument
See Note 3

‘complex

*8

registers
0,2 (4)
save area
9F

xxxLSQRT

Yes

y=Vxor
y=x‘/2

DSQRT

real *8

real *8

registers
0(2,4)
save area
5F%

xxxSSQRT

Yes

y=Vxor
y=x1/2

SQRT

real *4

real *4

registers
0(4)
save area
5F+

NoTEs:

1. In FORTRAN 1V (E), a real argument corresponds to the REAL *4 argument, and a double-precision argument corresponds to
the REAL *8 argument.
2. PV = principal value. The answer given is from that point " where the i imaginary part (y:) lies between —m and + . More specifi-
cally: —r <y: =<, unless x; < 0 and x. = —0, in which case, y» = —m.
3. Floating-point overflow can occur.

4. Where z is a complex number of the form x; +x.i.
tFor 0S/360, seven words are needed.

8

Table 3. Trigonometric Subprograms

A . Function | Assembler
General Subprogram | Sub- Entry rgument(s) Value Require-
Function Name set Definition Name | No. Type' Range Type* ments
Arcsine and | xxxLASCN No y = arcsin (x) DARSIN| 1 real *8 x| =1 real registers
arccosine *8 (in 0(2,4)
radians) | save area
13F
y = arccos (x) DARCOS| 1 real*8 x|=1 real registers
*§ (in | 0(2,4)
radians) | save area
13F
xxxSASCN No y = arcsin (x) ARSIN 1 real *4 k=1 real registers
*4 (in 0(2,4)
radians) | save area
10F
y = arccos (x) ARCOS 1 real ¥4 x| =1 real registers
*4(in | 0(24)
radians) | save area
10F
Arctangent | THCLATAN | See y = arctan (x) DATAN 1 real *8 any real real registers
Note argument *8 (in 0(2,4,6)
2 radians) | save area
5F
xxxLATN2 See y = arctan (x) DATAN | 1 real *8 any real real registers
Note argument *8 (in 0(2,4,86)
2 radians) | save area
5Ft
X1 DATAN2| 2 real *8 any real real registers
y = arctan (;) arguments *8 (in 0(2,4,86)
(except 0, 0) radians) | save area
5Ft
IHCSATAN | See y = arctan (x) ATAN 1 real*4 any real real. registers
Note argument *4 (in 0(2,4,6)
2 radians) | save area
5F
xxxSATN2 See y = arctan (x) ATAN 1 real*4 any real real registers
Note argument *4 (in 0(2,4,6)
2 radians) | save area
5F¢t
_ (X1) ATAN2 2 real *4 any real real registers
y = arctan { -7 arguments *4 (in 0(2,4,6)
(except 0, 0) radians) | save area
5Ft
Sine and xxxCLSCN No y = sin (z) CDSIN 1 complex [[x]<<(2%) complex | registers
cosine See Note 4 *16 (in |x| =174.673 | *16 0,2 (4)
radians) save area
9F
y = cos (z) CDCOS 1 complex | |x|<(2%°¢) complex | registers
See Note 4 *16 (in | |x|=174.673 |*16 0,2 (4)
radians) save area
9F
xxxCSSCN No y = sin (z) CSIN 1 complex | |x|<(2"®¢) complex | registers
See Note 4 *8 (in x| =174.673 *8 0,2 (4)
radians) save area
9F
y = cos (z) CCOS 1 complex | [x|<(2®7) complex | registers
See Note 4 *8 (in [xe| =174.673 | *8 0,2 (4)
radians) save area
oF

Mathematical Subprograms

9

Table 3. Trigonometric Subprograms (Continued)

Argument(s) Function | Assembler
General Subprogram | Sub- Entry gu Value Require-
Function Name set Definition Name No Type* Range Type* ments
Sine and xxxLSCN Yes y = sin (x) DSIN 1 | real [x|<(2%7) real *8 registers
cosine *8 (in 0(2,4)
(continued) raflians) save area
5F%
y = cos (x) DCOS 1 | real [x|< (2%« 7) real *8 | registers
*8 (in 0 (2: 4)
radians) save area
5F%
xxxSSCN Yes y = sin (x) SIN 1 | real |x[< (2%« 7) real *4 registers
*4 (in 0(2,4)
radians) save area
5Ft
y = cos (x) COs 1 | real - |x|<< (2%) real *4 registers
*4 (in 0(2,4)
radians) save area
5Ft
Tangent and | xxxLTNCT | No y = tan (x) DTAN 1 | real [x|< (2%« 7) real *8 | registers
cotangent *8 (in See Note 3 0(2,4,86)
radians) save area
| 5F1
y = cotan (x) DCOTAN| 1 | real |x]<< (2%) real *8 registers
*8 (in See Note 3 0(2,4,6)
radians) save area
5F%
xxxSTNCT No y = tan (x) TAN 1 | real [x|< (2% +) real *4 registers
*4 (in See Note 3 0(2,4)
radians) save area
5F :
y = cotan (x) COTAN | 1 | real [x|< (2%« 7) real *4 registers
*4 (in See Note 3 0(2,4)
radians) save area
5F
No1Es:

1. In FORTRAN 1V (E), a real argument corresponds to the REAL *4 argument, and a double-precision argument corresponds to
the REAL *8 argument.

2. Instead of the IHCLATAN and IHCSATAN subprograms contained in the FORTRAN 1V (E) library, the FORTRAN 1V library

contains the xxxLATN2 and xxxSATN2 subprograms.

3. The argument for the cotangent functions may not be near a multiple of r; the argument for the tangent functions may not be near
an odd multiple of =/2.

4. Where z is a complex number of the form x; + xi.

{For 0S/360, seven words are needed.

10

Table 4. Hyperbolic Function Subprograms

A (s Function | Assembler
General Subprogram | Sub- Entry rgument (s) Value Require-
Function Name set Definition Name No. Type* Range Type' ments
Hyperbolic | xxxLSCNH No _e'—e™ DSINH 1 | real *8 |x|<174.673 real *8 registers
sine and y 2 0(2,4)
cosine save area
9F
_e'te™ DCOSH | 1 | real*8 [x]<174.673 real *8 registers
) 0(2,4)
save area
9F
xxxSSCNH No _ef—e™ SINH ‘1 | real ¥4 |x|<174.673 real *4 registers
Y= 0(2,4)
save area
9F
_e'te™ COSH 1 | real *4 |x]<174.673 real *4 registers
YmTe 0(2,4)
save area
9F
Hyperbolic | xxxLTANH | Yes _ef—e™ DTANH | 1 | real*8 any real real *8 | registers
tangent Y= o argument 0(2)
save area
5F
xxxSTANH Yes _e—eT TANH 1 | real ¥4 any real real *4 registers
fampenpe argument 0(2)
save area
5F
NoOTE:
1. In FORTRAN IV (E), a real argument corresponds to the REAL *4 argument, and a double-precision argument corresponds
to the REAL *8 argument.
Table 5. Miscellaneous Mathematical Subprograms
Ar €(s) Function | Assembler
General Subprogram | Sub- Entry gumentis Value Require-
Function Name set Definition Name No. Type* Range Type* ments
Absolute xxxCLABS No | y=lz|=(x2+x")"? CDABS 1 | complex | any complex real *8 registers
value *16 argument 0,2 (4)
See Note 2 save area
8F
xxxCSABS No |y=lz|=(x2+x*)*? CABS 1 | complex | any complex real *4 registers
*8 argument 0,2 (4)
See Note 2 save area
8F
Error xxxLERF No o [2 DERF 1 | real *8 any real real *8 registers
function y=—= f e du argument 0(2,4,6)
vVaJ save area
11F
9 (%= DERFC 1 | real *8 any real real *8 registers
=—=1]e" du argument 0(2,4,86)
vrJ . save area
y=1-—erf (x) 11F

Mathematical Subprograms 11

Table 5. Miscellaneous Mathematical Subprograms (Continued)

Ar t(s) Function | Assembler
General Subprogram | Sub- Entry gument{s Value Require-
Function Name set Definition Name | No. [Type' Range Type! ments
Error xxxSERF No 9 [F = ERF 1 }real *4 any real real *4 registers
function y=—= f e™ du argument 0(2,4,6)
(continued) Vrd save area
11F
9 ® ERFC 1 |Jreal *4 any real real *4 registers
y=-\7: f e™ du argument 0(2,4,6)
x save area
y=1-—erf (x) 11F
Gamma and | xxxLGAMA | No © DGAMMAL} 1]real *8 x > 2% and real *8 registers
log-gamma y= f u* e du x < 57.5744 0(2,4,6)
° save area
11F
y=log. I' (x) or DLGAMA | 1 |real *8 x > 0 and real *8 registers
w x<4.2913-10% 0(2,4,86)
y=log. f u*te™ du save area
0 11F
xxxSGAMA No © GAMMA 1 J{real *4 x > 2% and real *4 registers
y= f u*te™du x < 57.5744 0(2,4,6)
0 save area
11F
y=log.T (x} or ALGAMA | 1 |real *4 x > 0 and real *4 registers
i x<4.2913-10™ 0(2,4,6)
y=loge. f u**e du save area
0 11F
Maximum xxxFMAXD Yes | y=max (x1,...,%) |DMAX1 =2 | real *8 any real real *8§ register 0
and arguments save area
minimum 9F
values
y=min (x:,...,%) |DMINIL =2 }real *8 any real real *8 register 0
arguments save area
9F
xxxFMAXI Yes | y=max (x:1,...,%) |AMAXO =2 |integer | any integer real ¥4 register 0
*4 arguments save area
9F
MAXO0 =2 | integer any integer integer | register
*4 arguments *4 See Note 3
save area
9F
y=min (%:,...,%) |AMINO =2 | integer | any integer real *4 register 0
*4 arguments save area
oF
MINO =2 |integer | any integer integer | register
*4 arguments *4 See Note 3
save area
9F

12

Table 5. Miscellaneous Mathematical Subprograms (Continuied)

Argument(s) Function | Assembler
General Subprogram [Sub- Entry gu . Value Require-
Function Name set Definition Name No. Type* Range Type* ments
Maximum |xxxFMAXR |Yes |y=max (x:,...,%) |AMAX1 =2 |real*4 | any real real *4 | register 0
and arguments save area
Minimum 9F
Values
(continued) MAX1 =2 |real*4 | any real integer | register
arguments *4 See Note 3
save area
9F
y=min (X1,...,%) | AMIN1 =2 |real *4 any real real ¥4 register 0
: arguments save area
9F
MIN1 =2 lreal ¥4 any real integer | register
arguments *4 See Note 3
save area
9F
Modular IHCFMODI |{See [y = x (modulo x:) MOD 2 |integer X240 integer | register
arithmetic Note| See Note 5 See Note 6 *4 See Note 3
4 save area
9F
IHCFMODR | See {y = x: (modulo x) AMOD 2 {real *4 X2 5% 0 real *4 register 0
Note{ See Note 5 See Note 6 save area
4 9F
y = x1 (modulo x;) DMOD 2 freal *8 X2 5% 0 real *8 register 0
See Note 5 See Note 6 save area
9F
Truncation | IHCFAINT | See |y = (signx)'n AINT 1 |real *4 any real real *4 register 0
Note| where n is the largest argument save area
4 integer = |x| 9F
THCFIFIX See | y = (signx)*n IDINT 1 |real *8 any real integer | register 0
Note| where n is the largest argument See Note 3
4 integer = |x| save area
9F
INT 1 Jreal *4 any real integer | register
argument See Note 3
save area
9F

NotEs:

1. In FORTRAN IV (E), a real argument corresponds to the REAL *4 argument, and a double-precision argument corresponds
to the REAL *8 argument.

2. Floating-point overflow can occur.

. The result is stored in general register 0.

. The coding that performs this function is out-of-line in FORTRAN IV (E) and in-line in FORTRAN IV. Out-of-line coding is
taken from the FORTRAN library by the linkage editor and processed with the calling module. In-line coding is inserted by the

FORTRAN compiler at the point in the source module where the function is referenced. This means that the in-line functions
are available in FORTRAN IV by using the appropriate entry name but that they are not part of the library.

. The expression x; (modulo x:) is defined as x1 — [ﬂ] « x2, where the brackets indicate that an integer is used. The largest in-
Xz

teger whose magnitude does not exceed the magnitude of X% is used. The sign of the integer is the same as the sign of X
X2 Xz
. If x: = 0, then the modulus function is mathematically undefined. In addition, a divide exception is recognized and an interrup-
tion occurs. (A detailed description of the interruption procedure is given in Appendix C.)

Mathematical Subprograms 13

Implicitly Called Subprograms

The implicitly called subprograms perform operations
required by the appearance of certain notation in a
FORTRAN source statement. When a number is to be
raised to a power or when multiplication and division
of complex numbers are to be performed, the FORTRAN
compiler generates the instructions necessary to call
the appropriate subprogram. For example, if the fol-
lowing source statement appears in a source module,

ANS = BASE**EXPON
where BAseE and ExPON are values of the form REAL *4,

the xxxFrxPR subprogram is called by the FORTRAN
compiler.

The implicitly called subprograms in the FORTRAN
library are described in Table 6. This table shows the

Table 6. Implicitly Called Mathematical Subprograms

general function, subprogram name, the FORTRAN
library that contains the subprogram, implicit function
reference, entry name, argument information, type of
function value returned, and assembler requirements.
The column headed “Implicit Function Reference”
gives a sample source statement that might appear in
a FORTRAN source module and cause the subprogram
to be called. The rest of the column headings in Table
6 have the same meaning as those used with the ex-
plicitly called subprograms.

The action taken within the subprogram depends
upon the type of base and exponent used. Tables 7
through 10 show the result of an exponentiation per-
formed with the different combinations and values of
base and exponent. In these tables, I and J are integers;
A and B are real numbers; C is a complex number.

Implicit Areu t(s) Function
General Subprogram | Sub- Function Entry* gument(s Value Assembler
Function Name set Reference! Name No. Type® Type® Requirements
Multiply and xxxCLAS No y=z*2z CDMPY# 2 | complex *16 | complex *16 registers 0, 2 (4, 6)
divide complex save area S5F'
numbers y = z/2: CDDVD# 2 | complex *16 | complex *16 registers 0, 2 (4, 6)
save area 5F
xxxCSAS No y =z*2z CMPY# 2 | complex *8 complex *8 registers 0, 2 (4, 6)
save area 5F
y = 2./22 CDVD# 2 | complex *8 complex *8 registers 0, 2 (4, 6)
save area S5F
Raise an integer | xxxFIXPI Yes y = i*¥j FIXPI# 2 |i= integer*4| integer *4 register 0
to an integral j = integer*4 See Note 4
power save area 18F
Raise a real xxxFRXPI Yes y =a*¥*j FRXPI# 2 |a =real *4 real *4 register 0
pumber to an j = integer save area 18F
integral power xxxFDXPI Yes y = a**j FDXPI# 2 |a=real *8 real *8 register 0
j = integer*4 save area 18F
Raise a real xxxFRXPR Yes y=a**b FRXPR# 2 |a=real *4 real *4 register 0
number to a b = real ¥4 save area 18F
real power xxxFDXPD |Yes | y=a**b FDXPD# 2 |a=real *8 real *8 register 0
b = real *8 save area 18F
Raise a complex | xxxFCDXI No y =z**j FCDXI# 2 = complex | complex *16 | register 0, 2
number to an *16 save area 18F
integral power j = integer
xxxFCXPI No y =z%*j FCXPI# 2 |z = complex | complex *8 register 0, 2
*8 save area 18F
j = integer

NoTEs:

must be included.

the REAL *8 argument.
4. The result is stored in general register 0.

1. This is only a representation of a FORTRAN statement; it is not the only way the subprogram may be called.
2. This name must be used in an assembler language program to call the subprogram; the character # is a part of the name and

3. In FORTRAN 1V (E), a real argument corresponds to the REAL *4 argument and a double precision argument corresponds to

14

® Table 7. Exponentiation With Integer Base and Exponent

Exponent
Base (I p (J)
J>o0 J=0 1<0
1>0 Compute the | Function Function value = 1
function value | value = 1 ifI=1
Otherwise, function
value = 0
I=0 Function Error message |Error message
} value = 0 xxx2411; xxx2411;
or OA2411 or OA2411
Compute the | Function Function value= —1
1<0 function value | value = 1 ifI=—1and
if J is an odd
number
Function value = 1
ifI=—1and
if J is an even
number
Otherwise, function
value = 0
e Table 8. Exponentiation with Real Base and Integer Exponent
Exponent
Base (A) ponent ()
J>0 J=0 J<0
A >0 | Compute the | Function Compute the
function value| value = 1 function value
A =0 | Function Error message Error message
‘ value = 0 xxx2421 or xxx2421 or
xxx2431; xxx2431;
or OA2421 or 0A2421
or OA2431 or OA2431
A <0 | Compute the | Function Compute the
function value| value = 1 function value
® Table 9. Exponentiation with Real Base and Exponent
E t (B
Base (A) xponent ()
B>0 B=0 B <0
A >0 | Compute the | Function Compute the
function value| value = 1 function value
A =0 | Function Error message | Error message
| value = 0 xxx244I or xxx2441 or
xxx2451; xxx2451;
or OA2441 or OA244]
or OA2451 or OA245]
A <0 |Error message| Function Error message
l xxx2531 or value = 1 xxx2531 or
xxx2631 xxx2631

Optional Extended Error Message Facility'

When the rorTrAN library has been created by sys-
tem generation, the extended error message facility
may be selected. This facility provides the following
features:

1. Execution can continue after an error occurs in a
mathematical function, with a standard result supplied
as the functional value.

2. A user-written routine can be supplied to take
corrective action.

For 0S/360 Full-Language FORTRAN only.

e Table 10. Exponentiation with Complex Base and Integer

Exponent
Base (C) Exponent (])

C=R+Ri J>0 J=0 J<0
R >0and Compute the | Function Compute the
Ri>0 function value | value=1 + 0i | function value
R > 0and Compute the | Function Compute the
Ri=0 function value | value=1 + 0i | function value
R > 0and Compute the | Function Compute the
Ri<0 function value | value=1 + 0i | function value
R = 0and Compute the | Function Compute the
Ri>0 function value | value=1 + 0i | function value
R =0and | Functionvalue| Errormessage | Error message
Ri=0 0+ 0i xxx2461 or xxx2461 or

xxx2471; xxx2471;

or OA2461 or OA2461

or OA2471 or OA2471
R = 0and Compute the | Function Compute the
Ri<0 function value | value=1 + 0i | function value
R <0and Compute the | Function Compute the
Ri>0 function value { value=1 + 0i | function value
R < 0and Compute the | Function Compute the
Ri=0 function value | value=1 + 0i | function value
R <0and Compute the | Function Compute the
Ri<0 function value | value=1 + 0i | function value

3. Installation-written function subprograms may
use the FORTRAN extended error message facility for
the control and printing of error messages comparable
to those put out by the ForTRAN library.

Table 11 describes the function values supplied as
standard corrective actions and the parameters upon
which recognition is based when user-supplied correc-
tive action is chosen. Table 12 shows corrective action
after interrupt occurrence.

User-Supplied Corrective Action

If the user chooses to write his own routine for correc-
tive action, the user-supplied routine is called as

follows:

CALL NAME (IRETCD, IERNO, DATA1, DATA2,...)

Value on entry to

Value upon entry

Parameter Description subroutine NAME from NAME
IRETCD Return code 1 lor0
IERNO Error Code Cannot be changed Cannot be changed

DATAL
DATA2

Data

Data in error
upon entry

For IRETCD=1,

the new values to
be used in recom-
puting the function
are placed in
DATA1, DATA2.
For IRETCD=0,
these parameters
may not be altered.

The subprogram NAME may do the following for
these parameters:
¢ Examine the values in DATA1,DATA2.

Mathematical Subprograms 15

e If the function is to be recomputed, new data is Action” in Table 11 correspond to pATA1,DATA2. When

placed in DATA1,DATA2. writing the subprogram NAME in FORTRAN, declaration
e If standard corrective action is desired, IRETCD is must be made for the type of constant being processed.
changed to 0. For example, for error 246, pata1 (C) is COMPLEX*8,

The parameters listed in “User-Supplied Corrective and paTa2 (I) is INTEGER*4.

Table 11. Optional Service for Error Situations

Options
Invalid Standard User-Supplied
Error FORTRAN Argument Corrective Corrective Action
Code Reference Range Action (See Note 1)
For errors 207-210, see Table 12
216 CALL SLITE (I) 1>4 The call is treated as I
a no operation
216 CALL SLITET (L,]) I>4 J=2 I
241 K=I"*] 1=0, J=0 K=0 L]
242 Y=X**I X=0,I=0 Y=0 X, I
243 DA=D**1 D=0, I=0 DA=0 D, I
244 XA=X**Y X=0, Y=0 XA=0 XY
245 DA=D**DB D=0, DB=0 DA=0 D, DB
246 CA=C**] C=0+0i, I=0 CA=0+0¢ C I
247 CDA=CD*I C=0+0i, I=0 CA=0+0i CD, I
251 Y=SQRT (X) X<0 Y=|X X
252 Y=EXP (X) X>174.673 Y=* X
253 Y=ALOG (X) X=0 Yy=-* X
X<0 Y=log {X] X
Y=ALOG10 (X) X=0 Y=-* X
X<0 Y—10g10|X| X
254 Y=CO0S (X) [X|= 25 Y=v2/2 X
Y=SIN (X)
255 Y=ATAN2 (X, XA) X=0,XA=0 Y=0 X, XA
256 Y=SINH (X) [X|=174.673 y=* X
Y=COSH (X)
257 Y=ARSIN (X) [X]>1 Y=0 X
Y=ARCOS (X)
258 Y=TAN (X) [X|=(2%)*x Y=1 X
Y=COTAN (X)
259 Y=TAN (X) X is too close to an Y=* X
odd multiple of %
Y=COTAN (X) X is too close to a Y=* X
multiple of =
261 DA=DSQRT (D) D=0 DA=]D[”2 D
262 DA=DEXP (D) D>174.673 DA=* D
263 DA=DLOG (D) D=0 DA=-* D
D<0 DA =log|X| D
DA=DLOG10 (D) D=0 DA=—* D
D<0 DA =logu|X| D
264 DA=DSIN (D) |D|=2%*x DA=V2/2 D
DA=DCOS (D)
265 DA=DATAN2 (D, DB) D=0,DB=0 DA=0 D, DB
Variable Type
1] Variables of INTEGER*4
X, XA, Y Variables of REAL*4
D, DA, DB Variables of REAL*8
C,CA Variables of COMPLEX*8
Z, Xy, X2 Complex variables to be given the length of the functioned argument when they appear
CD Variables of COMPLEX*16
NOTES

. The user-supplied answer is obtained by recomputatlon of the function using the value set by the user routine for the parameters
listed. (See “User-Supplied Corrective Action.”)
2. The largest number that can be represented in floating point is indicated by *.

16

Table 11. Optional Service for Error Situations (Continued).

Options
Invalid Standard User-Supplied
Error FORTRAN Argument Corrective Corrective Action
Code Reference Range Action (See Note 1)
266 DA=DSINH (D) |D|=174.673 DA=* D
DA=DCOSH (D)
267 DA=DARSIN (D) [D|>1 DA=0 D
DA=DARCOS (D)
268 DA=DTAN (D) |D|=2%*x DA=1 D
DA=DCOTAN (D)
269 DA=DTAN (D) D is too close to an DA=* D
odd multiple of —;r‘—
DA=DCOTAN (D) D is too close to a DA=* D
multiple of =
For errors 271-275, let C=X:+iX.
271 Z=CEXP (C) X:>174.673 =*(COS X:+SIN X:) C
272 Z=CEXP (C) | Xe| =2 Z=0+0i C
273 Z=CLOG (C) C=0+0i Z=—-*40i C
274 Z=CSIN (C) |Xi| =2 Z=0+0i C
Z=CCO0S (C)
275 Z=CSIN (C) X.>174.673 Z=*(SIN X, +iCOS X,) C
2
Z=CCOS (C) =1(COS X, —iSIN X,) C
2
Z=CSIN (C) X< —174.673 Z=*(SIN X,—iCOS X:) C
2
Z=CCOS (C) =*{COS X, +iSIN X;) C
2
For errors 281-285, let CD=X, +iX:
281 Z=CDEXP (CD) X:>>174.673 Z=*(COS X2+iSIN X,) CD
282 Z=CDEXP (CD) |Xe|=2%* Z=0+0i CD
283 Z=CDLOG (CD) CD=0+0i Z=—*+0i CD
284 Z=CDSIN (CD) Xy | =25 Z=0+0i CcD
Z=CDCOS (CD)
285 Z=CDSIN (CD) X:>174.673 Z=*(SIN X, +iCOS Xy) CD
2
Z=CDCOS (CD) Z=*(COS X,—iSIN X1) CD
2
Z=CDSIN (CD) X,<l—174.673 Z=*(SIN X,—iCOS X,) CD
2
Z=CDCOS (CD) Z=*(COS X, +iSIN Xy) CD
2
290 Y=GAMMA (X) X=97% or Y=* X
X=57.57T44
291 Y=ALGAMA (X) X=0or Y=* X
X=4.2937*10"
300 DA=DGAMMA (D) D=2 or DA=* D
D=57.5774
301 DA=DLGAMA (D) D=O0or DA=* D
D=4.2937*10%
Variable Type
| A Variables of INTEGER*4
X, XA, Y Variables of REAL*4
D, DA, DB Variables of REAL*8
C,CA Variables of COMPLEX*8
Z, X1, Xe Complex variables to be given the length of the functioned argument when they appear
CD Variables of COMPLEX*16
Notes

1. The user-supplied answer is obtained by recomputation of the function using the value set by the user routine for the parameters

listed. (See “User-Supplied Corrective Action.”)

2. The largest number that can be represented in floating point is indicated by *.

Mathematical Subprograms

17

Table 12. Corrective Action After Program Interrupt Occurrence

Program Interrupt Messages Options
Parameters Reason for Standard User-Supplied
Error Passed to Interrupt Corrective Corrective
Code User Exit (See Note 1) Action Action
207 D, I Exponent overflow Result register set to User may alter D.
(Interrupt Code 12) the largest possible See Note 2.
floating-point number.
The sign of the result
register is not altered.
208 D,1 Exponent underflow The result register is User may alter D.
(Interrupt Code 13) set to zero. See Note 2.
209 None Divide check, There is no standard See Note 3.
Integer divide fixup. Result registers
{(Interrupt Code 9), are not touched.
Decimal divide
(Interrupt Code 11),
Floating point divide
(Interrupt Code 15).
» See Note 4.
210 None Specification interrupt No special corrective See Note 3.
(Interrupt Code 6) occurs action other than correcting
for boundary misalignment. boundary misalignments.
Other interrupts occur
during boundary alignment
adjustment. They will be
shown with this error
code, and the PSW portion
of the message will
identify the interrupt.
Variable Type Description
D A variable REAL*8 This variable contains the contents of the result register after
the interrupt.)
1 A variable INTEGER*4 This variable contains the “exponent” as an integer value for the

number in D. It may be used to determine the amount of
the underflow or overflow. The value in I is not the true expo-
nent, but what was left in the exponent field of a floating-point
number after the interrupt.

Notes to Table 12

Note 1: A program interrupt occurs asynchronously.
Interrupts are described in IBM System/360 Operating
System: Principles of Operation, Form A22-6821.

Note 2: The user-exit routine may supply an alternate
answer for the setting of the result register. This is
accomplished by placing a value for D in the user-exit
routine. Although the interrupt may be caused by a
long or short floating-point operation, the user-exit
routine need not be concerned with this. The user-exit
routine should always set 2 REAL*8 variable, and the
FORTRAN library will load short or long depending

18

upon the floating-point operation that caused the in-
terrupt.

Note 3: The user-exit routine does not have the abil-
ity to change result registers after a divide check. The
boundary alignment adjustments are informational
messages and there is nothing to alter before execution
continues.

Note 4: For floating-point divide check, the contents
of the result register is shown in the message.

The service subprograms supplied in the FORTRAN
library are divided into two groups: one group tests
machine indicators and the other group performs
utility functions. Service subprograms are called by
using the appropriate entry name in a FORTRAN source
language caLL statement.

Machine Indicator Test Subprograms

The machine indicator subprograms (xxxFsrit,
xxxFOVER, and xxxFDVCH) test the status of pseudo in-
dicators and may return a value to the calling program.
When the indicator is zero, it is off; when the indica-
tor is other than zero, it is on. In the following descrip-
tions of the subprograms, i represents an integer
expression and j represents an integer variable.

xxxFSLIT Subprogram

The xxxFsLIT subprogram is used to alter, test, and/or
record the status of pseudo sense lights. Either of two
entry names (SLITE or SLITET) is used to call the sub-
program. The particular entry name used in the caLL
statement depends upon the operation to be per-
formed.

If the four sense lights are to be turned o¥F or one
sense light is to be turned on, entry name sLItE is used.
The source language statement is:

CALL SLITE(i)

where i has a value of 0, 1, 2, 3, or 4.

If the value of i is 0, the four sense lights are turned
off; if the value of i is 1, 2, 3, or 4, the corresponding
sense light is turned on. If the value of i is not 0, 1, 2,
3, or 4, an error message is issued and execution of
this module (or phase) is terminated. (This error
message is explained in Appendix C.)

If a sense light is to be tested and its status recorded,
entry name SLITET is used. After a sense light is tested,
it is set to off. The source language statement is:

CALL SLITET (i,1)
where:

i has a value of 1, 2, 3, or 4, and indicates which
sense light to test.

i is set to 1 if the sense light was on; or to 2 if the
sense light was off.

If the value of i is not 1, 2, 3, or 4, an error message
is issued and execution of this module (or phase) is
terminated. (This error message is explained in Appen-
dix C.)

Service Subprograms

xxxFOVER Subprogram
The xxxFOVER subprogram tests for an exponent over-
flow or underflow exception and returns a vzlue that
indicates the existing condition. After testing, the over-
flow indicator is turned off. This subprogram is called
by using the entry name OVERFL in a CALL statement.
The source language statement is:
CALL OVERFL (j)
where:
j is set to 1 if a floating-point overflow condition
exists; to 2 if no overflow or underflow condition
exists; or to 3 if a floating-point underflow condi-
tion exists. A detailed description of each exception
is given in Appendix C.

xxxFDVCH Subprogram

The xxxFpvcH subprogram tests for a divide-check
exception and returns a value that indicates the exist-
ing condition. After testing, the divide-check indicator
is turned off. This subprogram is called by using entry
name DVCHK in a CALL statement. The source language
statement is:

CALL DVCHK (j)
where:

i is set to 1 if the divide-check indicator was on; or
to 2 if the indicator was off. A detailed description of
the divide-check exception is given in Appendix C.

Utility Subprograms

The utility subprograms perform two operations for
the FORTRAN programmer: they either terminate execu-
tion (xxxrExiT) or dump a specified area of storage
(xxXFDUMP).

xxxFEXIT Subprogram

The xxxFEXIT subprogram terminates execution of this
load module (or phase) and returns control to the
operating system. (This subprogram performs a func-
tion similar to that performed by the stop statement.)
The xxxrEXIT subprogram is called by using the entry
name EXIT in a caLL statement. The source language
statement is:

CALL EXIT

xxxFDUMP Subprogram

The xxxFpuMp subprogram dumps a specified area of
storage. Either of two entry names (pump or PDUMP)
can be used to call the subprogram. The entry name

Service Subprograms 19

is followed by the limits of the area to be dumped and
the format specification. The entry name used in the
caLL statement depends upon the nature of the dump
to be taken.

If execution of this load module (or phase) is to be
terminated after the dump is taken, entry name pump
is used. The source language statement is:

CALL DUMP (a1, by, fi, . . . , Gny b, fu)
where:

a and b are variables that indicate the limits of stor-
age to be dumped (either a or b may represent the
upper or lower limits of storage).

f indicates the dump format and may be one of the
integers given in Table 13. The formats available
depend upon the compiler in use. A sample printout
for each format is given in Appendix F.

Table 13. The xxxFDUMP Subprogram Format Specifications
FORTRAN IV (E) FORTRAN 1V

0 specifies hexadecimal 0 specifies hexademical
4 specifies INTEGER 1 specifies LOGICAL *1
5 specifies REAL 2 specifies LOGICAL *4
6 specifies DOUBLE 3 specifies INTEGER *2
PRECISION 4 specifies INTEGER *4

5 specifies REAL *4

6 specifies REAL *8

7 specifies COMPLEX *8
8 specifies COMPLEX *16
9 specifies literal

If execution is to be resumed after the dump is taken,
entry name ppuMP is used. The source language state-
ment is:

CALL PDUMP (al, bx, fl, « e yQny bn, fn)

where a, b, and f have the same meaning as explained
previously.

Programming Considerations

A load module (or, in the Model 44 Programming
System, a member of the phase library) may occupy
a different area of storage each time it is executed. To
ensure that the appropriate areas of storage are dumped,
the following conventions should be observed.

Norte: In the following examples, A is a variable in
COMMON, B is a real number, and the array TABLE is
dimensioned as:

DIMENSION TABLE (20)

If an array and a variable are to be dumped at the
same time, a separate set of arguments should be
used for the array and for the variable. The specifica-

20

tion of limits for the array should be from the first
element in the array to the last element. For example,
the following call to the mcFpuMmp subprogram could
be used to dump TABLE and B in hexadecimal format
and terminate execution after the dump is taken:

CALL DUMP (TABLE (1), TABLE (20), 0, B, B, 0)

If an area of storage in comMMoN is to be dumped
at the same time as an area of storage not in COMMON,
the arguments for the area in comMmoN should be given
separately. For example, the following call to the
xxxFDUMP subprogram could be used to dump the
variables A and B in REAL *3 format without terminat-
ing execution:

CALL PDUMP (A,A,6,B,B,6)

If variables not in comMoN are to be dumped, each
variable must be listed separately in the argument
list. For example, if R, p, and ¢ are defined implicitly
in the program, the statement

CALL PDUMP (R,R,5,P,P,5,0,Q,5)

should be used to dump the three variables. If the
statement
CALL PDUMP (R,Q.5)

is used, all main storage between R and @ is dumped,
which may or may not include p, and may include
other variables.

If an array and a variable are passed to a subroutine
as arguments, the arguments in the call to the xxxrpump
subprogram in the subroutine should specify the
parameters used in the definition of the subroutine.
For example, if the subroutine susr is defined as:

SUBROUTINE SUBI (X, Y)
DIMENSION X(10)

and the call to susr within the source module is:
DIMENSION A(10)

CALL SUBI (A, B)

then the following statement in the subroutine should
be used to dump the variables in hexadecimal format
without terminating execution:

CALL PDUMP (X(1),X(10),0,Y,Y,0)
If the statement
CALL PDUMP (X(1),Y,0)

is used, all storage between a(1) and v is dumped,
due to the method of transmitting arguments.

Appendix A. Algorithms

Appendix A contains information about the computations used in the explicitly
called mathematical subprograms. This information is arranged in alphabetical
order, according to the module (or phase) name of the subprogram. The entry
names associated with each subprogram are given in parentheses after the module
(or phase) name.

The information for each subprogram is divided into two parts. The first part
describes the algorithm used; the second part describes the effect of an argument
error upon the accuracy of the answer returned.

The presentation of each algorithm is divided into its major computational steps;
the formulas necessary for each step are supplied. Some of the formulas are
widely known; those that are not so widely known are derived from more common
formulas. The process leading from the common formula to the computational
formula is sketched in enough detail so that the derivation can be reconstructed
by any one who has an understanding of higher mathematics and access to the
common texts on numerical analysis.!

The accuracy of an answer produced by these algorithms is influenced by two
factors: the performance of the subprogram (see Appendix B) and the accuracy
of the argument. The effect of an argument error upon the accuracy of an answer
depends solely upon the mathematical function involved and not upon the partic-
ular coding used in the subprogram.

A guide to the propagational effect of argument errors is provided because
argument errors always influence the accuracy of answers whether the errors are
accumulated prior to use of the subprogram or introduced by newly converted
data. This guide (expressed as a simple formula where possible) is intended to
assist users in assessing the effect of an argument error.

The following symbols are used in this appendix to describe the effect of an
argument error upon the accuracy of the answer:

SYMBOL EXPLANATION
q(x) The result given by the subprogram.
f(x) The correct result.
) ‘ f(x) — g(x) The relative error of the result
f(x) given by the subprogram.
8 The relative error of the argument.
E | f(x) — g(x) | The absolute error of the result
given by the subprogram.
A The absolute error of the argument.

The notation used for the continued fractions complies with the specifications
set by the National Bureau of Standards.2

1Any of the common numerical analysis texts may be used as a reference, One such text is F. Hildebrand’s

Introduction to Numerical Analysis (McGraw-Hill Book Company, Inc., New York, N. Y., 195) Background
information for algorithms that use continued fractions may be f found in H. S. Wall’s Analytic Theory of
Continued Fractions (D. VanNostrand Co., Inc., Princeton, N. J., 1948).

2 For more information, see Milton Abramow1t7 and Irene A. Stegun (editors), Handbook of Mathematwal
Functions, Applied Mathematics Series-55 (National Bureau of Standards, Washington, D.C.), 1965.

Appendix A. Algorithms 21

xxxCLABS (CDABS) and xxxCSABS (CABS) Subprograms
1. Write |x + iy| = a + ib.
2. ffx=y =0,thena=0and b = 0.

> [y]), and
x|, [y])-

/7 .N2
Then,a=vl'\} 1+ (%) ,and b = 0.

1

3. Let v; = max (|x
vy = min (

The algorithms for both complex absolute value subprograms are identical.
Each subprogram uses the appropriate real square root subprogram (xXxLSQRT
OF XXXSSQRT).

xxxCLEXP (CDEXP) and xxxCSEXP (CEXP) Subprograms

Algorithm

The value of e**+# is computed as e * cos(y) + i * e * sin(y). The algorithms
for both complex exponential subprograms are identical. Each subprogram uses
the appropriate real exponential subprogram (xxxLEXP or xxxsexp) and the appro-
priate real sine/ cosine subprogram (*XXLSCN Or XXXSSCN).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If e*+% = R » ¢# then H = y and ¢(R) ~ A (x).

xxxCLLOG (CDLOG) and xxxCSLOG (CLOG) Subprograms

Algorithm
1. Write log. (x + iy) = a + ib.

2. Then, a = log. |x + iy|and b = the principle value of arctan % .

The algorithms for both complex natural logarithm subprograms are identical.
Each subprogram uses the appropriate complex absolute value subprogram
(xxxcLABS or xxxcsABs), the appropriate real natural logarithm subprogram
(xxxLLOG or xxxSLOG), and the appropriate arctangent subprogram (XxXLATN2
OF XXXSATN2).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r * ¢ and log, (x + iy) = a + ib,thenh = b
and E(a) = §(r).

xxxCLSQT (CDSQRT) and xxxCSSQT (CSQRT) Subprograms
Algorithm

1. Write Vx + iy = a + ib.

2. Ifx=y=0,thena=0and b = 0.

3. IfoO,thena=\/ x + [x +iy
- 2

andb=l.
2a

22

4. Ifx < 0,thenb = (signy). \}%ﬂ

Y
2b

The algorithms for both complex square root subprograms are identical. Each
subprogram uses the appropriate real square root subprogram (xxXLSQRT or
XXXSSQRT).

anda =

Effect of an Argument Error
The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r * ¢ and Vx + iy = R * ¢, then

«(R) ~ %8(1’), and e(H) ~ 3(h).

xxxCLSCN Subprogram (CDSIN and CDCOS)
Algorithm
1. If the sine is desired, then

sin(x + iy) = sin(x) * cosh(y) + i+ cos(x) * sinh(y).

If the cosine is desired, then

cos(x + iy) = cos(x) * cosh(y) — i+ sin(x) * sinh(y).

2. If x < 0, then sinh(—x) = —sinh(x).
1
er — -

ea:

3. If x > 0.3465736, then sinh(x) =

4. If 0 = x = 0.3465736, then compute sinh (x) by use of the polynomial:
sinh(x)
x
The coefficients are obtained by expanding the polynomial with respect to the
Chebyshev polynomials over the range 0 =< x2 = 0.120113. The relative error
of this approximation is less than 2—21.8,

= q + alx2 + 02x4 + ...+ a5x1°.

5. The value of cosh(x) is computed as cosh(x) = sinh|x| + 'e_}il

This computation uses the real exponential subprogram (xxxLExp) and the
real sine/ cosine subprogram (xxxLscN).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer,
the programmer must understand the effect of an argument error in the xxxLscN,
xxxLEXP, and xxxLSNH subprograms.

xxxCSSCN Subprogram (CSIN and CCOS)

Algorithm
1. If the sine is desired, then
sin (x + dy) = sin(x) * cosh(y) + i+ cos(x) * sinh(y).
If the cosine is desired, then
cos(x + iy) = cos(x) * cosh(y) — i*sin(x) ¢ sinh(y).
2. If x < 0, then sinh(—x) = —sinh(x).
1

e’ — —
3. 1fx > 0.3465736, then sinh(x) = — c.

Appendix A. Algorithms 23

24

4. If 0 = x = 0.3465736, then compute sinh (x) by use of the polynomial:

sinh (x
_—}L—) = ay + a;x? + a.x*.

The coefficients are obtained by expanding the polynomial with respect to the
Chebyshev polynomials over the range 0 = x? = 0.120113. The relative error
of this approximation is less than 2—26-4,

5. The value of cosh(x) is computed as cosh(x) = sinh|x| + —ll—l .
e €T

This computation uses the real exponential subprogram (xxxsexp) and the
real sine/ cosine subprogram (xxxsscN).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer,
the programmer must understand the effect of an argument in the xxxsscn, xxxsexp,
and xxxssCNH subprograms.

xxxLASCN Subprogram (DARSIN and DARCOS)

Algorithm

L. H0=x= % , then compute arccos(x) as:

arccos(x) = —727— — arcsin(x).
1

If 0 = x = —-, then compute arcsin(x) by a polynomial of the form:

2
arcsin(x) = x + 2% + 2% + ...+ 1225,
The coefficients are obtained by expanding the function f(z) = w,
z = x?, with respect to the Chebyshev polynomials over the range, 0 = x §—i-.

The relative error of this approximation is less than 2-557,
2. If —;——< x = 1, then compute arcsin (x) as:

arcsin(x) = —— arccos(x).

r
2

If % < x = 1, then compute arccos (x) as:

arccos(x) = 2 ¢ arcsin (\/ L ; x) .

This case is now reduced to the first case because within these limits,

This computation uses the real square root subprogram (xxxLsQrT).
3. If =1 =x < 0, then arcsin(x) = —arcsinx|
and arccos(x) = = — arccos|x|.

This reduces these cases to one of the two positive cases.

Effect of an Argument Error
_+a
V1 —x?
a small A causes a substantial error in the answer. For the arcsine, ¢ ~ § if the
value of x is small.

E~ . For small values of x, E ~ A. Toward the limits (1) of the range

IHCLATAN Subprogram (DATAN)

Algorithm
1. Reduce the computation of arctan (x) to the case 0 = x = 1 by using
arctan(—x) = —arctan(x) or
1 7
arctan W T2 arctan |x|

2. If necessary, reduce the computation further to the case |x| = tan 15° by using

arctan (x) = 30° + arctan \/3°—x—_1
x+ Vv3
V3ex—1
x+ V3
tan 15° < x = 1. The value of (/3 +x — 1) is computed as

1

(V3—=1)x — - —1; + x to avoid the loss of significant digits.

The value of = tan 15° if the value of x is within the range,

3. For || = tan 15°, use a continued fraction of the form:

arctan (x) 1+ a,x> Qs as ay
x - (by + 22) + (by +x2) + (bs + %) + (bs+ 22) +°°°

The relative error of this approximation is less than 2579, The coefficients of
this formula were derived by transforming the continued fraction:

1 34 16 + 25
arctan (x) _ 14+ 3 25+ 7 7-81-11
x B (—3—+x_2)— (_23__|_x—2)__ (5—9+x—2)—
5 5+9 913
4+3-9
5+11-169

33T |, 2} —
(13-17+x) w

2
where w has an approximate value of5.—11.~—13.—17 (— x =2+ 40) but the true

6427
5+28919

value of w is .
(179 n x—2)+

3717

Effect of an Argument Error

- A
1+
effect of € upon § diminishes.

E For small values of x, ¢ ~ 8, and as the value of x increases, the

xxxLATN2 Subprogram (DATAN and DATAN2)
Algorithm

s

2

1. For arctan(x,, x»), if either x, = 0 or > 256 the answer = (sign ;) * g

Otherwise, if x, > 0, the answer = arctan (%—) , and
2

if x; < 0, the answer = arctan (%—) + (signx) * .
2
The rest of the computation is identical for either one or two arguments.

Appendix A. Algorithms

25

26

. Reduce the computation of arctan(x) to the case 0= x = 1, by using

arctan(—x) = —arctan(x), or

1\ _ =
arctan(lxl)—) arctan|x|.

. If necessary, reduce the computation further to the case |x| = tan 15° by using

arctan(x) = 30° + arctan -\1—:126—;1-
x+ V3
V3ex—1
x+ V3
tan 15° < x < 1. The value of (/3 * x — 1) is computed as (V3 — 1) x — 1
to avoid the loss of significant digits.

The value of = tan 15° if the value x is within the range,

. For |x| = tan 15°, use a continued fraction of the form:

arctan(x) __ 1+ a;x? as as a,
T (bt at)+ (bat)+ (bt)+ (bata)+

The relative error of this approximation is less than 2—57° The coefficients of
this formula were derived by transforming the continued fraction:

-1 34 16+ 25
arctan(x) =14 3 257 7+81<11
x 3., .\ _ 23 —2) _ 59 —2
(=) o) (Gwre)-
4439
5+ 11169

0 L\
(;13-17+x) w

: 2y
where w has an approximate value of E Il 1317 (—x—2 + 40) but the
64+ 27
5289+ 19

true value of w is 179 PR .
B ET I

Effect of an Argument Error

E ~

A
112 For small values of x, e ~ 8, and as the value of x increases, the effect

of ¢ upon § diminishes.

xxxLERF Subprogram (DERF and DERFC)
Algorithm

1

If 0 = x < 1, then compute the error function by the following approximation:
erf(x) = x (ap + ax? + axx* + ... + a;1x22).

The coeflicients were obtained by expanding the function f(z) = erfx(x))

= x2, with respect to the Chebyshev polynomials over the range, 0 =< x < 1.

The relative error of this approximation is less than 1.07 « 2—57, The value of

the complemented error function is computed as erfc(x) = 1 — erf(x) and is

1
greater than 6

. If 1= x < 2.0400009, then compute the complemented error function by the

following approximation:
erfc (.’XI) = bo + blz + b2Z2 +.,.+ blszls
where z = x — Ty and Ty == 1.999999. The coefficients were obtained by ex-

panding the function f(z) = erfc(z + T,) with respect to the Chebyshev poly-

nomials over the range —1 = x = 0.04. The absolute error of this approxima-

tion is less than 1.5 « 2-61, The limits of this range and the base value for T
-were used to minimize the hexadecimal truncation error. The value of the com-
1

556 - The value of

plemented error function within this range is greater than 95

the error function is computed as erf(x) = 1 — erfc(x).

3. If 2.0400009 = x =< 13.306, then compute the complemented error function by

the following approximation:
(co+cix 24 cox—t+ ...+ Copx™40) e—**

x

The coefficients were obtained by expanding the function
f(z) = erfc (x) * x *» e®, z = x—2, with respect to the Chebyshev polynomials
over the range 2.04—2 > z = 13.306—2. The relative error of this approximation
ranges from 258 at 2.04 to 2—51 at 13.306. This computation uses the real ex-
ponential subprogram (xxxLEXP).
If x = 6.092, then the error function is computed as erf(x) = 1 — erfe(x).
If x > 6.092, then the error function is = 1.

4. If 13.306 < «x, then the error function is = 1, and the complemented error
function is = 0.

erfc (x) =

5. If x < 0, then reduce to a case involving a positive argument by the use of
the following formulas:
erf(—x) = —erf(x) and erfc(—x) = 2 — erfe(x).

Effect of an Argument Error

E ~ e~ +» A, For the error function, as the magnitude of the argument exceeds
1, the effect of an argument error upon the final accuracy diminishes rapidly. For

small values of x, ¢ ~ 8. For the complemented error function, if the value of

x is greater than 1, erfc(x) ~ 22—_5_2. Therefore, ¢ ~ 2x° « 8. If the value of x

is negative or less than 1, then ¢ ~ e=2* ¢+ A,

xxxLEXP Subprogram (DEXP)

Algorithm

1. If x < — 180. 2183, then 0 is given as the answer.
2. Divide x by log.2 and write

X C
= = (da—-b--C-—d
Y=g e 6 9

where a, b, and ¢ are integers, 0 =b=3, 0=c =15, and d is within the range

0s=d< —116— .Then, e? = 2V = 16%+ 20« 2—¢/16 ¢ 2—d,

3. Compute 2—¢ by using the Chebyshev interpolation of degree 6 over the range,
0=d< _116_ . The maximum relative error of this computation is 257,

4. If ¢ > 0, then multiply 2—¢ by 2—¢/16, (The 15 values of 2=/ for 1 = ¢ = 15
are included in the subprogram.)

5. If b > 0, then halve the result b times.
6. Finally, add the hexadecimal exponent a to the characteristic of the answer.

Effect of an Argument Error

E ~ A. If the magnitude of x is large, even the round-off error of the argument
causes a substantial relative error in the answer because A = §+ «.

Appendix A. Algorithms

27

* xxxLGAMA Subprogram (DGAMMA and DLGAMA)

Algorithm

1. If 0 < x < 2-252, then compute log-gamma as log.I'(x) = —log.(x). This
computation uses the real logarithm subprogram (xxxLLOG).

2. If 2-252 <« x < 8, then compute log-gamma by taking the natural logarithm
of the value obtained for gamma. The computation of gamma depends upon
the range into which the argument falls.

_TI'(x+1)
==

3. If 222 < x < 1, then use I'(x) to reduce to the next case.

4. If 1 = x = 2, then compute gamma by the following approximation:
I'(x)=ay+ a2z + @z’ + ... + anz”

where z = x — 1.5. The coefficients were obtained by expanding the function
f(z) = T(x) with respect to the Chebyshev polynomial for |z| = 0.5. The
absolute error of this approximation is less than 1.5 ¢« 2798,

5. If2 < x < 8, thenuse ['(x) = (x — 1) I'(x — 1) to reduce to the preced-
ing case.

6. If 8 = x, then compute log-gamma by the use of Stirling’s formula:

logT'(x) == x(loge(x) — 1) — -é—loge(x) + 5 log.(2r) + G(x).

The modifier term G(x) is computed as
G(x) = byx=* + byx=3 + bsyx=5 + byx~7 + bsx—.

The coefficients were obtained by expanding the function f(z) = Gscx) s
z = x~2 with respect to the Chebyshev polynomials over the range

0 < z < 8-2. The absolute error of the approximation for G(x) is less than
x * 2758, Because, in this range, x < log.J'(x), the contribution of this error
to the relative error of the value for log-gamma is less than 2%, This com-
putation uses the real logarithm subprogram (xxxLroc).

For gamma, compute I'(x) = ¢?, where y is the value obtained for log-
gamma. This computation uses the real exponential subprogram (xxxLEXP).

Effect of an Argument Error
€ ~ y(x) * A for gamma, and E ~ y(x) * A for log-gamma, where y is the
digamma function.

If % < x < 3, then —2 < y(x) < 1. Therefore, E ~ A for log-gamma.

However, because x = 1 and x = 2 are zeros of the log-gamma function, even
a small § can cause a substantial ¢ in this range.

If the value of x is large, then y(x) ~ log.(x). Therefore, for gamma,
e ~ 8¢ x ¢ log.(x). In this case, even the round-off error of the argument con-
tributes greatly to the relative error of the answer. For log-gamma with large
values of x, ¢ ~ 8.

xxxLLOG Subprogram (DLOG and DLOG10)

Algorithm
1. Write x = 167 « 2=¢ + m, where p is the exponent, q is an integer, 0 = q = 3,

and m is within the range, —;—- =m<L

2. Define two constants, a and b (where a = base point and 2—? = a) as follows:

2

If \/L?gm <1,thenag = land b = 0.

If %gm < —\;—?,thena =—l—andb = 1.

. _m-a — e 1+ =z
3. Writez = ——— . Then,m = a 1= and |z| < 0.1716.
4. Now, x = 2‘“’—‘1—“1 t i,andlogex = (4p — q — b) log2 + loge(i i 2)

5. Finally, log, (]i -: z

degree 7 in 2z over the range, 0= 22> = 0. 02944. The maximum relative error
of this approximation is 2—59-6,

6. If the common logarithm is desired, then log;ox = log;ee * logex.

) is computed by using the Chebyshev interpolation of

Effect of an Argument Error

E ~ 8. Therefore, if the value of the argument is close to 1, the relative error can
be very large because the value of the function is very small.

xxxLSCN Subprogram (DSIN and DCOS)
Algorithm

1. Divide |x| by% and separate the quotient (z) into its integer part (q) and

its fraction part (r). Then, z = |x = q + r, where g is an integer and 7

T
is within the range, 0=r < 1.

2. If the cosine is desired, add 2 to q. If the sine is desired and if x is negative,
add 4 to g. This adjustment of g reduces the general case to the computation of
sin (x) for x = 0, because

cos (xx) = sin (lxl +%) ,and

sin (—x) = sin ([x| + =).
3. Let go=q mod 8.

Then, for q¢ = 0,sin (x) = sin (Z . r)

go = 1,sin (x) = cos (-Z—(l - r))
)

do = 3,sin (x) = sin (%(1 - r))
o = 4,sin (x) = —sin (%—-r)

go = 5,sin (x) = —cos (—;’—(1 - r))
go = 6,sin (x) = —cos (—;’—-r)

go = T,sin (x) = —sin (%(1 - r))

These formulas reduce each case to the computation of either sin (—l’ 1‘1) or

go = 2, sin (x) = cos (

4

cos —Z— r1) ; where r; is either r or (1 —r), and is within the range, 0=r, =1

4. Finally, either sin

Z * 14) Or cos -Z—- 71) is computed, using the Chebyshev

interpolation of degree 6 in r,2 for the sine, and of degree 7 in r,2 for the cosine.
The maximum relative error of the sine polynomial is 2-5% and that of the
cosine polynomial is 2643,

Appendix A. Algorithms

29

30

Effect of an Argument Error

E ~ A. As the value of the argument increases, A increases. Because the function
value diminishes periodically, no consistent relative error control can be main-
ki3

tained outside of the principal range, — —72!— =x=+ 3

xxxLSCNH Subprogram (DSINH and DCOSH)

Algorithm

1. If |x| < 0.3465736, then compute sinh(x) as:
sinh(x) = x + cx® + % + e + cx® + o'l
sinh(x)

The coefficients are obtained by expanding the function f(z) = —

z = x2, with respect to the Chebyshev polynomials over the range,
0 = z < 0.12011326. The relative error of this approximation is less than 2619,
2. If either |x| = 0.3465736 or the cosh(x) is desired, obtain w = el!. Then,
-1 — —1
-tﬂizg—, and sinh(x) = (sign x) -1-0—2L0—

nential subprogram (xxxLExp) is used to compute the value of w.

cosh(x) = . The real expo-

Effect of an Argument Error
For the hyperbolic sine, E ~ A * cosh(x) and ¢ ~ A * coth(x).
For the hyperbolic cosine, E ~ A ¢ sinh(x) and ¢« ~ A ¢ tanh(x).
Specifically, for the cosine, E ~ A over the entire range; for the sine, ¢ ~ 8
for the small values of x.

xxxLSQRT Subprogram (DSQRT)

Algorithm

1. If x = 0, then the answer is 0.

2. Write x = 16%—2 ¢ m, where 2p — q is the exponent and g equals either 0 or 1;
m is the mantissa and is within the range, Tlé =m< L

3. Then, Vx = 167+ 2-2¢+ \/m .

4. For the first approximation of \/x , compuite the following:

5)

g m)-

. . . T |
The maximum relative error of this approximation is 9"

y0=2—2q°161’-(%+

5. Apply the Newton-Raphson iteration

1 X
o =5 ()

four times to y, (the first two times in the short form and the last two times in
the long form). The final step is performed as

_ 1/ x
y4-—y3+2(y3 ys)
to minimize the computational truncation error. The maximum relative error
of the final result is theoretically 26570,

Effect of an Argument Error

€~ —3

xxxLTANH Subprogram (DTANH)
Algorithm
1. If |x| < 0.54931, then use the following fractional approximation:

tanh (x) 1 — a1x? + asxt + axx® + x8
x by + bix® + box* + bax® + 8
where:
a; = 676440.765 by = 2029322.295
ap = 45092.124 by = 947005.29
a3 = 594.459 b, = 52028.55

by = 630.476

The maximum relative error of this approximation is 2—%4-5, The formula was
obtained by transforming the continued fraction

tanh (x) _ 1+ x2 x2 x?

3+5+"""15+w
where w has an approximate value of 0.017, but the true value of w is
%2 x?
17+ 194

2. If 0.54931 = x < 20.101, then use the identity tanh (x) = 1 —

. This

e + 1
computation uses the double precision exponential subprogram (xxxLEXP).

3. If x = 20.101, then tanh (x) = 1.

4, If x = — 0.54931, then use the identity tanh (x) = — tanh (—x).

Effect of an Argument Error

2A
sinh (2x)
value of x increases, the effect of 8§ upon ¢ diminishes.

E ~ (1 — tanh® x) A, and ¢ ~ For small values of x , ¢ ~ 8. As the

xxxLTNCT Subprogram (DTAN and DCOTAN)

Algorithm
1. Divide |x| by% and separate the result into the integer part (q) and the
fraction part (7). Then, |x| = % (g + r).

2. Obtain the reduced argument {(w) as follows:
if g is even, then w = r.
ifgisodd,thenw =1 —r.
The range of the reduced argument is 0 = w = 1.

3. Let qo = g mod 4.
Then, for g = 0, tan |x| = tan (Z cw) and cot |x| = cot (—Z— . w)

4'“’)
m o w
2

qo = 3, tan |x| = —tan(Z . w) and cot [x| = —cot (Z . w)

go = 1, tan |x| = cot (Z °w)andcot|x| =tan(

qo = 2, tan |x| = —cot (Z . w) and cot |x| = —tan(

4. The values of tan (Z . w) and cot (Z

. w) are computed as the ratio

of two polynomials.

Appendix A. Algorithms

31

32

o) = W P(w?) T) = QW)
tan(I w) = ~5(w?) ,and cot(n w) = P(a)
where P(w?) is of degree 3 and Q(w?) is of degree 4 in w2 The coefficients
of P and Q are obtained by economizing the continued fraction

tan(z) _ , _ z* 2* 2%
z 3— 5= T7=""
in the following way.
L ootan(z) . 2?22 22 2 22 z? z?
Write: — = 1 3— 5— 7— 9— (11 +d,)— (13+d,)— (15 + d3)

and determine the values for d,, ds, and d; so that the right-hand expression
gives the exact answers for 22 = 0.395, 0.542, and 0.607. Then the maximum

relative error of this formula over the range 0 = z §~7i— is 34 + 1019,

Change the variable from z to w =% z and rewrite the formula to obtain
P(w?) and Q(w?).
5. If x < 0, then tan(x) = —tan |x|, and cot(x) = —cot |x].

Effect of an Argument Error

A 2 . "
E ~ o (x)’ and ¢ ~ Sin(2x) for tan(x). Therefore, near the singularities

ofx = (k+ <)™ where k is an integer, no error control can be maintained.

This is also true for cotan(x) for values of x near kx, where k is an integer.

xxxSASCN Subprogram (ARSIN and ARCOS)

Algorithm

L. H0=x= %, then compute arccos(x) as:

arccos(x) = %— arcsin(x).

Hos=x= —%—, then compute arcsin(x) by a polynomial of the form:

arcsin(x) == x + ¢2® + cox® + c3x7 + cgx® + cpxll

The coefficients are obtained by expanding the function f(z) = arLl;l(-x—)—,

z = x2, with respect to the Chebyshev polynomials over the range 0 = z §%.
The relative error of this approximation is less than 2—275,
2. If %< x = 1, then compute arcsin(x) as:
arcsin(x) = % — arccos(x).
If —;— < x = 1, then compute arccos(x) as:

2
This case is now reduced to the first case because within these limits,

l—xSi
2 =27

This computation uses the real square root subprogram (xxxssQrr).

arccos(x) = 2 arcsin(1- x)

0=

3. If =1 =x < 0, then arcsin(x) = — arcsin x|, and arccos(x) = = — arccos |%].
This reduces these cases to one of the two positive cases.

Effect of an Argument Error

E ~ —=——. For small values of x, E ~ A. Toward the limits (=1) of the

V1 — a2

range, a small A causes a substantial error in the answer.

IHCSATAN Subprogram (ATAN)

Algorithm

1. Reduce the computation of arctan (x) to the case 0 = x = 1, by using
arctan (—x) = —arctan (x), or

1\~ _
arctan (le) = 5~ — arctan |x|.
2. If necessary, reduce the computation further to the case |x| = tan 15° by using
arctan (x) = 30° + arctan (-\—@J-—_:—l)

x + V3
V3ex—1 o . o
~Y—— = =< tan 15° if the value of x is within the range,
x+ V3

tan 15° < x = 1. The value of (V3 + x — 1) is computed as
(V3—1)x — 1 + x to avoid the loss of significant digits.

The value of

3. For |x| = tan 15°, use the approximation formula:
arctan (x) _ 0.55913709
— = 0.60310579 — 0.05160454x% + = T 14087812
This formula has a relative error less than 227! and can be obtained by
transforming the continued fraction

x2
arctan (x) _ 1—
* 3 + (—— + x—z) w
where w has an approximate value of (-%,?— =2 + 33;5 104, but the true
45
7«79

value of w is

B .,
(7 nte)

The original continued fraction can be obtained by transforming the Taylor
series into continued fraction form.

Effect of an Argument Error

E~ T-ﬁ—x? . For small values of x, ¢ ~ 8; as the value of x increases, the effect

of & upon ¢ diminishes.

xxxSATN2 Subprogram (ATAN and ATAN2)
Algorithm

> 224 the answer = (signx,;) * %

1. For arctan(xy, x,), if either x, = 0 or|—- p

o

2

Otherwise, if x5 > 0, the answer = arctan (9;_1) ,and
2

if x; < 0, the answer = arctan () + (signx,) =

The rest of the computation is identical for either one or two arguments.

Appendix A. Algorithms

33

34

2. Reduce the computation of arctan(x) to the case 0 = x = 1, by using
arctan(—x) = — arctan(x) or

arctan (ﬁ) — arctan |x]

3. If necessary, reduce the computation further to the case |x| = tan 15° by using
V3ex—1
x+ V3

= tan 15° if the value of x is within the range,

arctan(x) = 30° + arctan

V3ex—1
x+ V3
tan 15° < x =< 1. The value of (/3 ¢ x — 1) is computed as

(V3 = 1) x — 1 + x to avoid the loss of significant digits.

The value of

4. For |x|= tan 15°, use the approximation formula:
arctan(x) _ 0 0.55913709
—Yy = 0.60310579 — 0.0516045x +—---—-—--———x2 + 1.4087812
This formula has a relative error less than 2—27! and can be obtained by trans-
forming the continued fraction

x2
arctan(x) _
x -
FEy
where w has an approximate value of (- %,?—x* + 3%5) 10—* but the true
45
value of w is 77-9
43

—_— -2
7 11+x)+

The original continued fraction can be obtained by transforming the Taylor
series into continued fraction form.

Effect of an Argument Error

E ~ -l—é—xg . For small values of x, ¢ ~ §; as the value of x increases, the effect

-of § upon ¢ diminishes.

xxxSERF Subprogram (ERF and ERFC)
Algorithm

1. If 0 = x < 1.317, then compute the error function by the following approxi-
mation:
erf(x) = x(ap + a:x% + asx* + ... + agx'2).

The coefficients were obtained by expanding the function f(z) = ——-

with respect to the Chebyshev polynomials over the range 0 =< x =< 1.317. The
relative error of this approximation is less than 2—2¢, The value of the comple-
mented error function is computed as erfc(x) = 1 — erf(x) and is greater
thani.
16
2. If 1.317 < x = 2.0400009, then compute the complemented error function by
the following approximation:
erfc(x) == by + b1z + baz? + ... + biz"
where z = x — T, and T, == 2.0400009. The coefficients were obtained by
expanding the function f(z) = erfc(x + T,) with respect to the Chebyshev

polynomials over the range (1.317 — Ty) < z = 0. The absolute error of this
approximation is less than 1.3 ¢« 2—3°, The value of the complemented error
function within the range 1.317 < x = T is greater than —2—;—6 . The value of the
error function is computed as erf(x) = 1 — erfe(x).

3. If Ty < x = 13.306, then compute the complemented error function by the fol-

lowing approximation:
(cotcx 2+ cox 4+ ... +cx %) e ™

X

The coefficients were obtained by expanding the function
f(z) = erfc (x) * x * e, 2 = x—2, with respect to the Chebyshev polynomials
over the range Ty—2 > z = 13.306—2. The relative error of this approximation
is less than 1.2 « 2—23, This computation uses the real exponential subprogram
(xxxSEXP).
If x = 3.9192, then the error function is computed as erf(x) = 1 — erfc(x).
If x > 3.9192, then the error function is == 1.

erfe(x) =

4. 1f 13.306 < x, then the error function is = 1, and the complemented error func-
tion is == 0.

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:
erf(—x) = —erf(x) and
erfe(—x) = 2 — erfe(x).

Effect of an Argument Error

E ~ ¢—* ¢« A. For the error function, as the magnitude of the argument exceeds 1,
the effect of an argument error upon the final accuracy diminishes rapidly. For

small values of x, ¢ ~ 8. For the complemented error function, if the value of x is
— a2

greater than 1, erfc(x) ~ ¢ . Therefore, e ~ 2 x2 « 8. If the value of x is negative

2x
or less than 1, then e ~ =2 * A,

xxxSEXP Subprogram (EXP)

Algorithm

1. If x < —180.218, then O is given as the answer.
2. If |x| < 228, then 1is given as the answer.

3. Otherwise, divide x by log.2 and write
x
y=m= (4a — b —d)

where @ and b are integers, 0 = b =3and 0=d < L
Then, e* = 2% = (160« 22+ 2—¢),

4. Compute 2—9 by the following fractional approximation:

g1 [2d
00465735 + d + Doty

/17 97227 \
& + 87417497)

This formula can be obtained by transforming the Gaussian-type continued
fraction

1+ 2= 34+ 2— 5+ 2— T+ 2
The maximum relative error of this approximation is 2—2°.
5. Multiply 2—¢ by 2-?,

6. Finally, add the hexadecimal exponent a to the characteristic of the answer.

Appendix A. Algorithms

35

Effect of an Argument Error

e ~ A. If the magnitude of x is large, even the round-off error of the argument
causes a substantial relative error in the answer because A = § « x.

xxxSGAMA Subprogram (GAMMA and ALGAMA)

Algorithm

1. If 0 < x < 2-%2, then compute log-gamma as log, I' (x) = —log. (x). This
computation uses the real logarithm subprogram (xxxsLoG).

2. If 2-252 < x < 8, then compute log-gamma by taking the natural logarithm of
the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

F(x+1)
x

3. 122 < x < 1, thenuseI (x) = to reduce to the next case.

4, If 1 = x = 2, then compute gamma by the following approximation:
T(x) =a, + a;z + a2z2+ e +a929

where z = x — 1.5. The coefficients were obtained by expanding the function
f(z) = T (x) with respect to the Chebyshev polynomials for |z| = 0.5. The
absolute error of this approximation is less than 1.5 + 2—%.

5. If2 < x < 8 thenusel (x) = (x — 1) T' (x — 1) to reduce step by step to
the preceding case.

6. If 8 =< x, then compute log-gamma by the use of Stirling’s formula:

log, T (x) == x{log, (x) — 1) — 3 log () + 3 log. (2r) + G(x).

The modifier term G(x) is computed as
G(x) = byx—1 + bax—2.
The absolute error of the approximation for G(x) is 1.4 * 2—2%. This computa-
tion uses the real logarithm subprogram (xxxsroc).
For gamma, compute I' (x) = e¥, where y is the value obtained for log-
gamma. This computation uses the real exponential subprogram (xxxsexp).

Effect of an Argument Error

e ~ ¢ (x) * A for gamma, and E ~ ¢ (x) * A for log-gamma, where y is the
digamma function.

1f % < x < 3,then —2 < ¢ (x) < 1. Therefore, E ~ A for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial ¢ in this range.

If the value of x is large, then y (x) ~ log. (x). Therefore, for gamma,
e ~ 8 x * log, (x). In this case, even the round-off error of the argument con-
tributes greatly to the relative error of the answer. For log-gamma with large
values of x, ¢ ~ 8.

xxxSLOG Subprogram (ALOG and ALOG10)

Algorithm
1. Write x = 167 * m, where p is an integer and m is within the range,-—llg =m<1l
2. Define two constants, @ and b, where a = base point and 2-? = g, as follows:
1 1 1
— —— = — =
If16=m< 8,thena 16andb 4,
If §m<—;—,thena=%andb=2.

If

IA

m < 1, thenga =1andb = 0.

m]»—- oo

3. Writez = —m—_——a—.Then,m =gq-
m+a

,and |z| _S_—lg- .

1+ 2

4. Now, x = 217—0

, and logsx = (4p — D) log2 + loge(i i:)

5. Finally, log. (11 t 2) is evaluated using the Chebyshev interpolation of degree

. 1 . . .
4in 22 over therange, 0 = 22 = 5 The maximum relative error of this ap-
proximation is 2278,

6. If the common logarithm is desired, then log;ox = log;ee * logex.

Effect of an Argument Error

E ~ &. Specifically, if § is the round-off error of the argument, e.g., § ~ 6 * 108,
then E ~ 6 * 10—8, Therefore, if the argument is close to 1, the relative error can
be very large because the value of the function is very small.

xxxSSCN Subprogram (SIN and COS)
Algorithm

1. Define z = —‘—1—'
o

x| and separate z into its integer part (q) and its fraction part

(r). Thenz = q + r,and |« =(%—-q)+(2°r).

2. If the cosine is desired, add 2 to g. If the sine is desired and if x is negative,
add 4 to g. This adjustment of g reduces the general case to the computation
of sin (x) for x = 0 because

cos (*x) = sin (i+ x) ,and

2
sin (—«) = sin (= + x).

3. Let qo = q mod 8.
Then, for g, = 0, sin (x) = sin(7. r)

4
go = 1,sin (x) = cos (—Z—'(l - r))

go = 2,sin (x) = cos(;r 'r)

qo = 3,sin (x) = sin(—z—(l —r))

go = 4,sin (x) = —sin ('Z—’ ”)
go = 5,sin (x) = —cos (—;—r—(l - r))
. ko
go = 6,sin (x) = —cos (-4— r)
go = T,sin (x) = —sin (%(1 - r))
These formulas reduce each case to the computation of either sin (-i——' rl) or

cos (-;—:- rl)where ry is either r or (1 — r) and is within the range,

O_S_Tlél.

Appendix A. Algorithms

37

38

4. F inally, the computation for either the sine or the cosine is performed, using
the Chebyshev interpolation of degree 3 in 7% The maximum relative error
of the sine polynomial is 2—281 and that of the cosine polynomial is 2248,

Effect of an Argument Error

E ~ A, As the value of x increases, A increases. Because the function value dimin-
ishes periodically, no consistent relative error control can be maintained outside
™

the principal range, — =—<x =< + 5

2

xxxSSCNH Subprogram (SINH and COSH)

Algorithm

1. If |x| < 0.3465736, then compute sinh(x) as:
sinh(x) = x + 0.16666505x> + 0.00836915x°. .

The coefficients were obtained by expanding the function f(z) = sml;(x)
%2, with respect to the Chebyshev polynomials over the range

< z < 0.12011326. The relative error of this approximation is less than
—26.5

b

N O N

2. If either |x| = 0.3465736 or the cosh(x) is desired, obtain w = el Then,

—1 —_—
30_-%12_’ and sinh(x) = (sign x). w 2w

tial subprogram (xxxsexp) is used to compute the value of w.

-1
cosh(x) = . The real exponen-

Effect of an Argument Error

For the hyperbolic sine, E ~ A * cosh(x) and € ~ A * coth (x).
For the hyperbolic cosine, E ~ A ¢ sinh (x) and ¢ ~ § * tanh(x).

Specifically, for the cosine, ¢ ~ A over the entire range; for the sine, ¢ ~ 8§ for
small values of x.

xxxSSQRT Subprogram (SQRT)
Algorithm
1. If x = 0, then the answer is 0.

2. Write x = 16% + m, where p is an integer and m is within the range,

1
—_ <
256_m<]..

3. Then, V/x = 16° + \Vm, where p is the exponent of the answer and m is the
mantissa of the answer.

4. For the first approximation of \/m, take hyperbolic approximations of the form

a+ 5 _Ilj_ " where the values of a, b, and ¢ depend upon the value of m as follows:
a Ileg <m < 1,then a = 180713
= —1.57727
¢ = 0.954182

These values minimize the maximum relative error (¢) over the range,
while making an exact fit at m = 1. The exact fit at m = 1 minimizes the
computational loss of the last hexadecimal digit for the values of m slightly
less than 1. The relative error of this approximation is less than 2—544,

1

1
b. If <L <m <-% then a = 0428795
256 16 b = —0.0214398
¢ = 0.0548470

These values minimize m!/® « ¢, over this range of m where ¢ denotes the
relative error of this approximation. ¢ is less than 2—65 ¢« m—1/8,

5. Multiply the result by 167 to obtain the first approximation (y,) of the answer.

6. To obtain the final answer, the Newton-Raphson iteration

_1 x
Yn+1 &= —2—(yn +

Yn
must be applied twice to yo. For % < m < 1, the final relative error is
theoretically less than 2—2¢7; for _2_.;—6_ =m <_116_’ the final absolute error is

theoretically less than 2—2° « 16°.

Effect of an Argument Error

€~ 58

2

xxxSTANH Subprogram (TANH)

Algorithm
L. If |x| = 272, then tanh (x) = «.

2. If 2712 < x| < 0.54931, use the following fractional approximation:
tanh (x) x% + 35.1535

=1-
* 2 + 451842 + 15550

This approximation has a relative error less than 2—27. The formula can be
obtained by transforming the continued fraction

tanh (x) =1+ a2 a2 a?
x 3+ 54+ T+w
where w has an approximate value of 0.0307, but the true value of w is
x2 x2
9+ 11+
3. If 0.54931 =< x < 9.011, then use the identity tanh (x) = 1 — —e2—7—2-i_-_—1' The
computation for this case uses the real exponential subprogram (xxxsexe).
4. If x = 9.011, then tanh (x) == 1.
5. If x = —0.54931, then use the identity tanh (x) = —tanh (—x).
Effect of an Argument Error
E ~ (1 —tanh?x) A, and e ~ —.—‘-25——. For small values of x, ¢ ~ §, and as the
sinh (2x)

value of x increases, the effect of § upon ¢ diminishes.

xxxSTNCT Subprogram (TAN and COTAN)
Algorithm

1. Divide |x| by —Z—and separate the result into the integer part (g) and the

fraction part (r). Then, [x| = —%—(q + 7).

Appendix A. Algorithms

39

40

2. Obtain the reduced argument (w) as follows:
if g is even, then w = 7,
ifgisodd,thenw =1~ r.

The range of the reduced argumentis 0 < w = 1.

3. Let qo = g mod 4.
m mw
" w) and cot jxl = cot (T’ w)

Then, for ¢y = 0, tan x| = tan(
Z . w)andcot x| = tan(;r . w)

qo = 2, tan |x| = —cot (—;1— . w) and cot |x| = —tan (%— . w)

Tov)

. w) are computed as the ratio of

go=1,tan [x| = cot (

qo = 3, tan |x| = —tan (% . w) and cot x| = —cot (

w) and cot (Z
two polynomials.

tan (——— . w) we P(w2) . and cot(

Q(w?) ’
where P(w?) = 212.58037 — 12.559912w?
Q(w?) = 270.665736 — 71.645273w? + w*
This approximation is obtained by economizing the continued fraction

4. The values of tan(Z .

)= Q) _Q(w?)

P(w?)

tan(z) _ 1 — 2 2 2
z 3— 5—-7-"°
in the following way:
2 2 2
Write: tan(z)El— il d d

and determine values for d;, ds, and ds so that the right-hand expression
gives the exact answers for 22 = 0.19, 0.432, and 0.594. Then the maximum

relative error of this formula over the range 0 < z g—z—-is 1.74 - 10-8,

Change the variable from z to w = 4. z and rewrite the formula to ob-
T
tain P(w?) and Q(w?).
5. If x < 0, then tan |x|, and cot(x) = —cot |x|.

Effect of an Argument Error

A 2
E ~ —— ~ —— . ope
o5 (x) and ¢ Sin (%) for tan(x). Therefore, near the singularities
1 . o
x = (k +'§)1r, where k is an integer, no error control can be maintained.

This is also true for cotan(x) for x near kr, where k is an integer.

Appendix B contains accuracy and timing statistics for
the explicitly called mathematical subprograms. These
statistics are presented in Table 14 and are arranged
in alphabetical order, according to the entry names.
The following column headings are used in Table 14:

Entry Name: This column gives the entry name that
must be used to call the subprogram.

Argument Range: This column gives the argument
range used to obtain the accuracy figures. For each
function, accuracy figures are given for one or more
representative segments within the valid argument
range. In each case, the figures given are the most
meaningful to the function and range under consid-
eration.

The maximum relative error and standard deviation
of the relative error are generally useful and revealing
statistics; however, they are useless for the range of a
function where its value becomes 0, because the slight-
est error in the argument can cause an unpredictable
fluctuation in the magnitude of the answer. When a
small argument error would have this effect, the maxi-
mum absolute error and standard deviation of the
absolute error are given for the range. For example,
absolute error is given for sin(x) for values of x near .

Sample: This column indicates the type of sample
used for the accuracy figures. The type of sample de-
pends upon the function and range under consid-
eration. The statistics may be based either upon an
exponentially (E) distributed argument sample or a
uniformly (U) distributed argument sample.

Accuracy Figures: This column gives accuracy fig-
ures for one or more representative segments within
the valid argument range. The accuracy figures sup-
plied are based upon the assumption that the argu-
ments are perfect (i.e., without error and, therefore,

Appendix B. Performance Statistics

having no error propagation effect upon the answers).
The only error in the answers are those introduced by
the subprograms. Appendix A contains a description
of some of the symbols used in this appendix; the
following additional symbols are used in the presenta-
tion of accuracy figures:

f(x) — g(x)
f(x)

The maximum
relative error
produced
during testing.

M (¢)

Max

_. The standard
1 f(x;) — g(x:)|* deviation (root-
W_Z i f(x;) mean-square) of
the relative error.

Q
—~
m
g
i

The maximum
absolute error
produced

during testing.

M (E) = Max|f(x) — g(x) |

The standard
deviation (root-
mean-square) of
the absolute error.

2

f(x) — g(x)

(®) = |¥T;

In the formulas for the standard deviation, N repre-
sents the total number of arguments in the sample;
i is a subscript that varies from 1 to N.

Accuracy for the Model 44 is based on performance
with the FLOATING-POINT PRECISION switch in the “14”
(vertical) position. This position selects the highest
(56) of the four long-precision increments permitted.

Average Speed: This column gives the timing statis-
tics. These statistics represent the average speed in
microseconds for the various System/360 models, Sta-
tistics are supplied for Models 30, 40, 44, 50, 65, and
75. Statistics for the Model 75 are based upon two-way
interleaving.

Appendix B, Performance Statistics 41

5 Table 14. Performance Statistics

Entry Argument Sample Accuracy Figures Average Speed (Microseconds)
Name Range E/U M (e) o (e) M (E) o (E) 30 | 40| 50| 65] 75 44
(SeeNote 8) | (See Note 9)
ALGAMA | 0<x=05 U 1.09 X 10—6 3.35 X 10—7 10500 2800 865 [221 {131 727 553
05<x<3 U 9.65 X 10—7 3.74 X 10—7 10500 | 2820 884 |225 | 133 734 560
3=x<8 U 1.21 X 10—6 2.86 X 10—7 12100 | 3250 {1020 {259 {151 820 638
8§=x<16 U 1.25 X 10—8 3.89 X 10—7 7600 2010| 617 {162 97.3 470 356
16 = x < 500 U 1.04 x 10—6 2.03 X 10—7 7600 | 2010 617 |162 97.3 477 362
ALOG 05=x=<15 U 3.46 X 10—7 8.62 x 10—8 4481 | 1178 361 | 91.9{ 52.3 229 176
x<05,x>15 E 8.32 x 10—7 1.20 X 10—7 44811 1178| 361 | 91.9] 52.3 299 176
ALOG10 [05=x=15 U 1.64 x 10—7 478 X 10—8 48471 1278| 388 | 98.1] 56.1 248 193
x<05,x>15 E 1.05 x 10—¢ 2.17 X 10—7 4847 1278 388 | 98.1| 56.1 248 193
ARCOS —-l=x=+1 U 1.80 x 10—7 3.29 x 10—¢ 5340 | 1460] 451 |118 70.6 325 238
ARSIN -l=x=+1 U 8.56 x 10—7 2.38 X 10—7 52701 1450 445|114 68.4 312 228
ATAN The full range Note 7 9.75 X 10—7 454 X 10—7 For ATAN in FORTRAN IV (E) 165 125
(Mod. 44: 3602 913 255 68.8 40.6
tany, y in Additional time for ATAN in
rTr,m FORTRAN 1V
2 2 104 47| 24| 8 5.9
ATAN2 The full range Note 7 9.75 X 10—7 4,54 X 10—7 4874 | 1288 375 {103 19.7 _
CABS The full range Note 1 1.87 x 10—6 7.65 X 10—7 51941 1421} 396 | 108 68.4 299 205
CCOS [x:] = 10, x| = 20 U 1.79 x 10—86 7.21 X 10—7 15783 | 443311329 1334 {203 1089 848
See Note 2
CDABS The full range Note 1 3.32 X 10—156 | 516 X 10—18 14021 3061| 638 | 150 89.0 733 6536
CDCOS IX1I =10, [x{=1 U 5.16 X 10—15 3.42 X 10—16 48343 111705 |2335 | 507 | 301 3020 2807
See ilote 3
CDEXP) =1, (x| = —21‘; U 4.04 X 10—16 1.39 X 10—16 41737 |10144 12048 | 456 | 260 2616 2419
|xi| = 20, [x] =20 U 3.63 X 10—15 | 1.29 X 10—16 41737 |10144]2048 | 456 | 260 2611 2415
CDLOG The full range Note 1 8.73 x 10—15 6.38 X 10—17 53362 11194012393 | 542 | 317 3105 2860
CDSIN %] =10, x| =1 U 3.72 x 10—15 3.49 X 10—16 48250 11166812322 | 503 | 298 3018 2808
See Note 4
CDSQRT | The full range Note 1 9.86 X 10—18 1.91 X 10~16 27951) 590611282301 | 181 1543 1392
CEXP | = 170, || = 9] 118 X 10-6 | 2.34 X 10—7 13731 3888|1166|291 | 177 958 732
K[=170,
T U 1.068 x 10—6 2.51 X 10—7 13899 3930|1180 294 | 178 971 746
E‘ <]le é 20
CLOG The full range Note 1 2.00 X 10—¢ 1.56 X 10—7 15504 | 4246|1261{ 338 | 216 1014 777
except (1 + 0i)

SONsIIE}S SOoUBULIONS] g Xipuaddy

i

Table 14. Performance Statistics (Continued)

Entry Argument Sample Accuracy Figures Average Speed (Microseconds)
Name Range E/U M () o (€) M (E) s (E) 30 40 | 50| 65 | 75 44
(SeeNote8) |(See Note 9)
COS O0=x=nx U 147 X 10—7 5.48 X 10—8 3934 1047 | 2981 742 | 44.0 196 157
-10=x<0 U 142 X 10—7 5.67 X 10—8 39901 1061 | 303| 75.4 1 445 198 159
r<x=10
10 < |x| = 100 U 1.35 X 10—7 5.61 X 10—8 39901 1061 { 303{ 75.4 1 445 200 161
COSH -5==x=+5 U 1.31 X 10-—86 3.40 X 10—¢6 6110 | 1810] 570} 145 89.2 486 312
COTAN ||| = % U 1.29 X 10—6 | 3.68 X 10—7 4420 | 1180 | 341| 86.7 | 56.0 | 227 180
I <|lx=Z U 3.80 X 10—¢ 7.70 X 10—+ 4610 { 1220 { 351 89.3 | 55.5 233 188
4 9 See Note 5
s - 1.13 X 105 6.03 X 10—7 4580 | 1210 | 348 | 88.1 | 55.0 233 188
2 <kl=10 U See Note 5
10< |x| = 100 1.67 X 10—5 6.67 X 10—7 4580 | 1210 | 348 88.1 | 55.0 233 187
See Note 5
CSIN %] = 10, x| =1 U 1.97 X 10—6 7.09 X 10—7 15690 | 4397 {1316 | 331 {200 1081 843
See Note 6
CSQRT The full range Note 1 1.61 x 10—¢ 458 X 1017 10408 | 2870(805 219 {140 676 493
DARCOS (|—1=x=+1 U 2.72 X 10—16 9.35 X 10—17 22600 | 5100{1100| 246 {143 1439 1289
DARSIN -1=x=+1 U 2.40 X 10—16 6.00 X 10—17 22400 | 5060 |1090 (243 {140 1440 1292
DATAN The full range Note 7 2.08 X 10—16 | 6.64 X 10—17 For DATAN in FORTRAN IV (E)
(Mod. 44: 19056 4000 715 153 83.6 1010 966
tany, yin Additional time for DATAN in
r L FORTRAN IV
- 3' T 104 47| 24| 8 5.9
DATAN2 | The full range Note 7 2.08 X 10—16 6.64 X 10—17 22281 | 4734 | 886} 195 22.9 —_ —_
DCOS O0=x=n U 1.79 x 10—16 6.40 X 10—17 13133 | 3146 605 132 74.2 761 713
ToExge U 176 x 10-16 | 593 x 10-17 | 13133 |3146| 605|132 | 742 | 762 714
10<L le = 100 U 2.65 X10—15 1.01 X 10—15 13133 | 3146 605| 132 74.2 759 712
DCOSH -5=x=+5 U 4.81 X 10—186 1.34 X 10—16 18300 | 4260 | 898|206 |[119 1050 923
DCOTAN | x| =5 U 3.46 X 10-16 | 838 x 10—17 15300 | 3590 | 675|150 | 89.2 | 869 819
1r< x| = ™ U 1.72 x 10—18 | 500 X 10—15 15900 | 3640 | 715} 156 89.8 906 856
4 =2 See Note 5
T U 5.33 X 10—13 1.09 X 10—14 15800 | 3690| 706} 155 89.1 901 852
-<|x| =10
2 See Note 5
10<L [x[=100 U 8.61 X 10—13 | 4,61 X 10—14 15800 | 3690} 706{ 155 89.1 899 849
See Note 5 1

Table 14. Performance Statistics (Continued)

Entry Argument Sample Accuracy Figures Average Speed (Microseconds)
Name Range E/U M (¢) o (e) M (E) o (E) 30 | 40 | 50| e5] 75 44

(SeeNote 8) | (See Note 9)

DERF x| = 1.317 U 1.70 X 10—16 | 271 x 10—17 18400 | 4610 879|190 | 109 | 1208 1083
1.317 < |x| = 2.04 U 2.91 x 10-17 | 117 X 10—17 24300 6060(1150| 250 | 141 | 1635 1467

2.04 < |x| < 6.092 U 1.70 x 10—17 | 8.03 x 10—18 45200 10900 [2080| 449 | 259 | 2868 2626

DERFC | -6<x<0 U 1.88 X 10—16 | 6.84 X 10—17 36700 | 8920 (1700|369 | 218 | 2355 2147
0=x= 1317 U 3.52 X 10-16 | 7.62 x 10—17 18600 | 4650 | 891}193 | 111 | 1213 1086

1.317 < x =< 2.04 U 445 x 10—16 | 1.27 x 10—16 24100 | 6000 1130 | 244 | 139 | 1623 1454

2.04 <x< 4 U 4.02 X 10-15 | 1,24 X 10—15 45000 {10800 [2060 | 444 | 258 | 2854 2612
4=x<133 U 5.02 X 10—15 | 1.40 X 10—15 45200 [10900 |2000 | 451 | 263 | 2871 2628

DEXP k=1 U 2.27 x 10—16 | 7.49 x 1017 12145| 2907| 607|138 | 755 | 720 648
1< x| =20 U | 231x10-15 | 869 x 1016 12145 2907| 607|138 | 755 | 716 644

20 < |x| = 170 U 2.33 x 10-15 | 9.33 x 10—16 12145| 2907 607|138 | 755 | 715 643

DGAMMA | 0 <x < 1 U 2.18 x 10—16 | 7.93 x 10—17 30700 | 7500 (1400|304 | 175 | 2058 1853
I1=x=2 U 312 x 10-17 | 845 x 10—18 28200 | 7050(1340{ 202 [169 | 1921 1714

2<x=4 U 1.69 X 10—15 | 4,60 X 10—16 30100] 7520{1430| 312 | 180 | 2034 1827

4<x<8 U 2.85 X 10—15 | 9.46 x 10—16 33900 | 8470(1610| 352 [205 | 2268 2054

8=x<16 U 6.42 x 10—15 | 2,01 x 10—15 40600 | 9560 [1940 [434 |241 | 2498 2294

16 = x < 57 U 6.2 X 10—1¢ | 296 X 10—1¢ 40600 | 9560 [1940 {434 [241 | 2503 2298

DLGAMA [0 <x =05 U 411 x 10—16 | 1.60 x 10—16 46900 {11300 2160|471 [267 | 3056 2783
05<x<3 U 2.86 X 10—16 | 1.16 X 10—16 44900 [11100 [2130 | 466 |264 | 2983 2709

3=x<8 U 2.38 x 10—15 | 3.99 x 10—16 45900 [12200 [2330| 512 {202 | 3228 2047

8=x<16 U 3.36 x 10—16 | 1.18 x 10—16 28200 | 6580(1310|296 |161 | 1712 1572

16 = x < 500 U 1.62 X 10—15 | 243 X 1016 28200 | 6580 (1310|296 |161 | 1725 1585

DLOG |05=x=15 U 1.85 x 10—16 | 7.29 X 10—17 16044 | 3769| 734|161 | 865 | 929 855
x<05x>15 E 3.31 X 10—16 | 546 x 10—17 16041 | 3765| 733/ 161 | 865 [929 855

DLOGI0 [05=x=15 U 823 x 10—17 | 3.09 X 10—17 17149 4048| 778|171 | 923 | 997 920
x<05,x>15 E 6.14 X 10—16 | 9.96 X 10—17 17147 4044| 777[170 | 920 | 996 920

DSIN =3 U 408 X 10-16 | 4.85x10-17 | 910X 10-17 | 217 X 10-17 13145| 3148| 609|133 | 755 | 762 714
—;'< xl < 10 U 1.64 X 1016 | 6.35 X 10—17 13145| 3148| 609|133 | 755 | 763 715

10 < |x|=< 100 U 2.69 X 1015 | 1.03 X 10—15 13145 3148| 609|133 | 755 | 761 714

DSINH | [x| < 0.34657 U 2.10 x 10-16 | 5.29 x 10—17 8650 | 2170| 408| 88.5| 52.4 | 505 457
0.34657 < [x| =5 U 359 x 10—18 | 873 X 10—17 18400 | 4280 901{207 [119 | 1049 925

SOTISIIE}S Q0UBWLIONR g xtpuaddy

i

Table 14. Performance Statistics (Continued)

Entry Argument Sample Accuracy Figures Average Speed (Microseconds)
Name Range E/U M (e) o (e) M (E) o (E) 30 | 40 |50 | 65 |75 44

(See Note 8) |(See Note 9)
DSQRT The full range E 1.08 X 10—16 | 2,17 X 10—17 8173 | 1684 . ‘355 85.3 | 49.2 370 334
DTAN [x é% 5.25 X 10—16 | 9.96 X 10—17 15100 | 3500 | 647{142 84.1 852 806
o <K= o 1.67 X 10—-12 | 3.69 x 10—1¢ 15700 | 3660 | 696|151 86.8 902 854

4 2 See Note 5
o <K =10 U 1.57 X 10—13 | 451 X 10—15 15600 | 3640 | 6881150 86.1 895 848

9 See Note 5
10 < |x| = 100 U 3.79 X 10—12 | 9.50 X 10—14 15600 | 3640 | 688|150 86.1 893 846

See Note 5
DTANH |x| = 0.54931 U 2.00 X 10—16 4.45 x 10—17 12299 | 2850 | 477|106 55.5 668 641
054931 < |x| =5 U 1.99 X 10—16 2,54 X 10—17 16078 | 3778 | 833192 |110 979 874
EXP =1 U 4.65 X 10—7 1.28 X 107 4173 | 1250 | 388| 95.2 | 534 311 192
x| = 170 U 4.69 X 10—7 1.17 X 10—7 4183 | 1250 | 387] 94.8 | 534 308 189
ERF |x| = 1.317 U 9.26 X 10—7 1.43 X 10—7 4140 | 1120 | 363] 88.5 | 52.7 276 189
1.317 < |x| = 2.04 U 9.02 X 10-8 342 x 10-8 4500 | 1230 | 397} 99.1 | 58.8 322 220
2.04 < |x| = 3.9192 U 6.07 X 10—-8 342 x 10—8 10000 | 2800 | 845|213 {127 740 525
ERFC -38<x<K0 U 9.10 X 10—7 2.97 X 10-7 7040 | 1960 | 607,153 91.6 521 367
0=x=1317 .U 3.90 X 10—*6 5.65 X 10—7 4250 | 1150 | 374 92.0 | 54.3 284 195
1317 <x=2.04 U 1.02 x 10—6 2.13 X 10—7 4410 | 1210 | 387] 96.0 | 58.0 319 216
204 <x<4 U 1.20 x 10— 3.60 X 1017 9950 | 2780 | 835{210 126 737 521
4=x=133 0) 1.52 x 10—53 8.45 x 10—¢ 10100 | 2840 | 859(216 {131 749 532
GAMMA [0<x<1 U 9.86 X 10—7 3.45 x 10—7 5840 | 1560 | 484{123 74.0 433 306
l1=x=2 U 1.00 x 10—7 3.74 X 10—8 5620 | 1520 | 489123 73.5 4_128 301
2<x=4 U 9.29 X 10—7 3.63 x 10—7 6330 {1700 | 546(137 81.1 460 330
4<x<8 U 2.25 X 10—6 8.14 X 10—7 7740 {2070 | 659{166 96.2 538 402
8§=x<16 U 2.29 X 10-5 7.67 X 10—6 12000 | 3320 |1020263 [155 845 618
16 =x <57 U 4.36 x 10—5 145 x 10—5 12000 |3320 |1020)263 [155 842 616
SIN x| = -;r— U 1.59 X 10—¢ 2.02 X 10—7 1.31 X 10—7 5.55 X 10—8 3876 {1036 | 298] 74.2 | 44.3 194 155
—;—< x| =10 U 1.41 x 10—7 5.53 X 10—8 3989 {1064 | 307| 76.4 | 45.3 201 163
10 < |x| = 100 U 1.46 x 10—7 5.61 x 10—8 3989 1064 | 307| 76.4 | 45.3 200 162
SINH -5=x=+75 U 1.20 X 10—8 3.20 X 1017 5890 | 1740 | 545{139 85.3 461 297
SQRT The full range E 8.70 X 10-7 1.68 x 107 2965 | 801 | 210| 59.1 | 35.8 142 90

P
(=]

Table 14. Performance Statistics (Continued)

Entry Argument Sample Accuracy Figures Average Speed (Microseconds)
Name Range E/U M (e) (e M (E) o (E) 30 [40|50] 6 [75 44
(See Note 8) | (See Note 9)
TAN x| % U 1.56 x 10—¢ 3.22 X 10—7 4220 {1120 319 | 79.9 | 51.3 209 166
K < Jx| =7 U 6.58 X 10—5 1.67 x 10—6 4500 11844 338 | 85.3 | 52.8 232 188
4 =2 See Note 5
- U 4.92 X 10—% 1.28 X 10—§ 4460 | 1170 335 | 84.1 | 524 226 183
- <[x[=10
P) See Note 5
10 < |x| = 100 U 3.35 X 10—5 1.02 X 10—6 4460 | 1170 | 335 | 84.1 | 52.4 227 184
See Note 5
"TANH |x| = 0.54931 U 8.12 X 10—7 1.66 X 10—7 2581 | 649 173 | 46.1 | 29.0 89 63
0.54931 < |x| =5 U 5.74 X 10—7 7.53 X 10—8 5952 | 1774 { 551 {142 86.3 446 294

Notes to Table 14

These notes are associated with Table 14 and contain
more detailed information about samples and relative
errors for certain functions.

Note 1: The distribution of sample arguments upon
which these statistics are based is exponential radially
and is uniform around the origin.

Note 2: The maximum relative error cited for the
ccos function is based upon a set of 2000 random argu-
ments within the range. In the immediate proximity of

the points (n + %) = + 0i (where n= 0, 1, 2,

... ,) the relative error can be quite high, although
the absolute error is small.

Note 3: The maximum relative error cited for the
cocos function is based upon a set of 1500 random
arguments within the range. In the immediate prox-

2
+1, £2,...,) the relative error can be quite high

imity of the points (n + i) = + 0i (where n = 0,

although the absolute error is small.

Note 4: The maximum relative error cited for the
cosiN function is based upon a set of 1500 random
arguments within the range. In the immediate prox-
imity of the points nr + 0i (where n = *1, *2,
. .. ,) the relative error can be quite high although
the absolute error is small.

Note 5: The figures cited as the maximum relative
errors are those encountered in a sample of 2500 ran-
dom arguments within the respective ranges. See the
appropriate section in Appendix A for a description
of the behavior of errors when the argument is near a
singularity or a zero of the function.

Note 6: The maximum relative error cited for the
csiN function is based upon a set of 2000 randon argu-
ments within the range. In the immediate proximity
of the points nr + 0i (wheren = *1, £2,...,) the
relative error can be quite high although the absolute
error is small.

Note 7: The sample arguments were tangents of

numbers uniformly distributed between — % and + %

Note 8: The statistics for the Model 75 are based
upon two-way interleaving.

Note 9: The second column of speeds for the Model
44 applies to that machine with high-speed registers.

Appendix C.

Appendix C contains descriptions of the procedures
followed when the execution of a load module is dis-
continued. Execution may be discontinued due to one
of two reasons: an interruption or an error. After an
interruption is processed, execution of this load module
or phase continues; after an error is processed, execu-
tion of this load module or phase is terminated. The
following text explains the procedure used to handle
each case.

Interruption Procedures

A program interruption is a computer-originated
break in the flow of processing. (For a full description
of program interrupts, see the publication IBM Sys-
tem/ 360 Principles of Operation, Form A22-6621.) The
FORTRAN library processes those interrupts that are
described below; all others are handled directly by
the system Supervisor and will cause job termination.

The following services are provided by the FORTRAN
support for interrupt occurrence:

1. When an interrupt occurs, indicators are set
to record exponent overflow, underflow, fixed-point,
floating-point or decimal divide exceptions. These
indicators can be interrogated dynamically by the sub-
programs described in “Service Subprograms.”

2. A message is printed on the object error unit
when each interrupt occurs. The psw printed in the
message indicates the cause of each interrupt.

3. Result registers are changed when exponent over-
flow or exponent underflow (codes C and D, below)
occur. (For a description of the format of floating-
point numbers, see the publication IBM System/360
Principles of Operation, Form A22-6621.) Result regis-
ters are also set when a floating-point instruction is
referenced by an assembler language execute (Ex)
instruction.

Interruption and Error Procedures

4. Condition codes set by floating-point addition or
substraction instructions are altered for exponent
underflow (code D).

5. After the foregoing services are performed, execu-
tion of the program continues from the instruction
following the one that caused the interrupt.

The program interrupt message contains the old pro-
gram status word (psw), which indicates the cause
of the interrupt. Figure 1 shows the format of the
message as it is issued by the operating system. Figure
2 shows the format as issued by the Model 44 system,
and Figure 2.1 shows the pos format. If the letter A
appears in parentheses in the program interrupt mes-
sage, boundary adjustment has taken place. The letter
P in the message indicates that the interruption was
precise. This will always be the case for nonspecifica-
tion interrupt messages in FORTRAN except when using
machines with special hardware on which imprecise
interruptions may occur. The eighth character in the
psw represents the code number associated with the
type of interruption. These interruptions are described
in the following paragraphs. (For more information
on the psw, see the publication IBM System/360 Prin-
ciples of Operation, Form A22-6621.)

Specification Exception (Code 6): The specification
exception (code 6) is recognized when a data address
does not specify an integral boundary for that unit of
information. A specification error would occur, for ex-
ample, during the execution of the following program
segment:

DOUBLE-PRECISION D, E
COMMON A, B, C
EQUIVALENCE (B, D)
D = 3.0D02

Fixed-Point Divide Exception (Code 9): The fixed-
point divide exception (code 9) is recognized when
division of a fixed-point number by zero is attempted.

IHC2101 PROGRAM INTERRUPT(';)OI.D PSW IS xxxxxxx

mUNOOVONO O A

XXXXXXXX

Figure 1. Format of Program Interrupt Message, Operating System

Appendix C. Interruption and Error Procedures 47

A fixed-point divide exception would occur during exe-
cution of the following statements:

J=0
I=7
K=1/]

Exponent-Overflow Exception (Code C): The ex-
ponent-overflow exception (code C) is recognized
when the absolute value of the result of a floating-
point addition, subtraction, multiplication, or division
is greater than or equal to 16%% (approximately 7.2 x
1073). For example, an exponent overflow would occur
during execution of the statement:

A=10E + 75+ 72E + 75

When the interrupt occurs, the result register con-
tains a floating-point number whose fraction and sign
is correct. However, the number is not usable for
further computation since its characteristic field no
longer reflects the true exponent. The content of the
result register as it existed when the interrupt occurred
is printed following the program interrupt message
with the format.

REGISTER CONTAINED hhhhhhhhhhhhhhhh
where:

hhhhhhhhhhhhhhhh is the floating-point

number in hexadecimal
notation.

Exponent overflow causes “exponent wraparound”
—i.e., the characteristic field represents an exponent
that is 128 smaller than the correct one. Treating bits 1
through 7 (the exponent characteristic field) of the
floating-point number as a binary integer, the true ex-
ponent (TE) may be computed, as follows:

TE = (Bits 1 through7) + 128 — 64

Before program execution continues, the FORTRAN
library sets the result register to the largest possible
floating-point number that can be represented in
short precision [16% * (1-16—)] or in long precision
[16%3 * (1-16—1¢)], but the sign of the result is not
changed. The condition code is not altered.

Exponent-Underflow Exception (Code D): The ex-
ponent-underflow exception (code D) is recognized
when the absolute value of the result of a floating-point
addition, subtraction, multiplication, or division, is less
than 16—95 (approximately 5.4 x 10-7?) but not equal
to 0. An exponent-underflow exception would occur
during execution of the statement:

A=—10E-50 * 1.0E — 50

Although exponent underflows can be masked,
FORTRAN jobs are executed without the mask so that
the library will handle such interrupts.

When the interrupt occurs, the result register con-
tains a floating-point number whose fraction and sign
is correct. However, the number is not usable for fur-

48

ther computation since its characteristic field no longer
reflects the true exponent. The content of the result
register as it existed when the interrupt occurred is
printed following the program interrupt message with
the format:

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where:

hhhhhhhhhhhhhhhh is the floating-point
number in hexadecimal
notation.

Exponent underflow causes “exponent wraparound”
—i.e., the characteristic field represents an exponent
that is 128 larger than the correct one. Treating bits 1
to 7 (the exponent characteristic field) of the floating-
point number as a binary integer, the true exponent
(TE) may be computed, as follows:

TE = (Bits 1 through 7) — 128 — 64

Before program execution continues, the FORTRAN
library sets the result register to a true zero of correct
precision. If the interrupt resulted from a floating-point
addition or subtraction operation, the condition code
is set to zero to reflect the setting of the result register.
Norte: The Sysem/360 Operating System FORTRAN pro-
grammer who wishes to take advantage of the “ex-
ponent wraparound” feature and handle the interrupt
in his own program must call an assembly language
subroutine to issue a sPIE macro-instruction, which will
override the FORTRAN interruption routine.

Floating-Point Divide Exception (Code F): The
floating-point divide exception (code F) is recognized
when division of a floating-point number by zero is
attempted. A floating-point divide exception would
occur during execution of the following statements:

B =00
A=10
C=A/B

System/360 Operating System

The interrupt message is written in the system out-
put data set.

A specification exception program interrupt message
(code 8) is issued only if the BOUNDRY=ALIGN option
was specified in the FORTLIB macro-instruction during
system generation and a boundary alignment error
occurs. Then the boundary alignment routine is in-
voked to correct the boundary misalignment. If an
instruction that has been processed for boundary mis-
alignment also contains a protection, addressing, or
data error, the interrupt message will be reissued with
the appropriate code (4, 5, or 7). (In these cases, the
letter A appears in parentheses in the program inter-

OA2101 PROGRAM INTERRUPT (A) OLD PSW IS xxxxxxx

MmO O oo

XXXXXXXX

Figure 2. Format of Program Interrupt Message, Model 44 System

rupt message.) Then the job will terminate because
both a specification error and a protection, addressing,
or data error have been detected. The completion code
in the dump will specify that the job terminated be-
cause of the specification error.

The number of warning messages printed is limited
to ten. After ten boundary alignment adjustments have
been made, the message is suppressed, but boundary
alignment violations continue to be corrected.

Protection Exception (Code 4): The protection ex-
ception (code 4) is recognized when the key of an
operand in storage does not match the protection key
in the psw. A message is issued only if a specification
exception (code 6) has already been recognized in the
same instruction. Otherwise, the job terminates abnor-
mally without a message.

Addressing Exception (Code 5): The addressing ex-
ception (code 5) is recognized when the address of
the data is outside of available storage for the particu-
lar installation. A message is issued only if a specifica-
tion exception (code 6) has already been recognized
in the same instruction. Otherwise, the job terminates
abnormally without a message.

Data Exception (Code 7): The data exception (code
7) is recognized when the sign or digit codes for a
CONVERT TO BINARY instruction are incorrect. A message
is issued only if a specification exception (code 6)
has already been recognized in the same instruction.
Otherwise, the job terminates abnormally without a
message.

Model 44 Programming System
The interrupt message is written in sYsopT.

The program interrupt message (with code 6, as
described in “Specification Exception”) that results

when the boundary specification convention is vio-
lated will contain the “(A)” only if the &Fix option
has been turned on (sera 1) in Boavopt. With that
option on (as it is in the distributed version of the sys-
tem), a routine that adjusts for the misalignment is
executed each time such a violation occurs, and proc-
essing continues.

With the &rFix option on, the number of program
interrupt messages put out as the result of boundary
violations is limited to a message for each of the first
n violations per execution, where n is the operand of
the seTa instruction for the &PRNTMES option. In the
system as distributed, this operand is equal to 0. Only
the message, and not the alignment correction, is
inhibited.

Disk Operating System
The interrupt message is written on sysLsT.

The ILF2251 message is issued for arithmetic excep-
tions, such as fixed point divide. The REGISTER
CONTAINED portion is issued only for exponent over-
flow and underflow conditions. Processing resumes
after the error condition is listed.

The ILF2261 message appears for other forms
of program interrupt. The A character appears only
for boundary alignment errors. In such cases, it is for
information only since an attempt is made to correct
the error and resume processing. If, however, an in-
struction containing a boundary alignment violation
also contains a protection, addressing, or data error,
the message is reissued with the appropriate code, 4,
5, or 7. The job then terminates.

The interruption codes and their explanations are
identical to those for the Operating System, as dis-
cussed previously in this section.

ILF2251 PROGRAM INTERRUPT — OLD PSW IS xxxxxxx

mOOvove

4

7

xxxxxxxx [REGISTER CONTAINED xxxxxxxx]

ILF2261 PROGRAM INTERRUPT [A] — OLD PSW IS xxxxxxx {5} XXXXXXXX

e Figure 2.1. Format of DOS Program Interrupt Messages

Appendix C. Interruption and Error Procedures 49

Error Procedures

During execution, the mathematical subprograms as-
sume that the argument(s) is the correct type. No
checking is done for erroneous arguments (i.e., the
wrong type, invalid characters, the wrong length, etc.);
therefore, a computation performed with an erroneous
argument has an unpredictable result. However, the
nature of some mathematical functions requires that
the input be within a certain range. For example, the
square root of a negative number is not permitted.
If the argument is not within the valid range given in
Tables 2 through 6, an error message is written on the
object error unit data set defined by the installation
during system generation. The execution of this load
module or phase is terminated and control is returned
to the operating system.

The error message that is issued has the format:

IHCyyyl [Message text]
TRACEBACK FOLLOWS. ..
or
OAyyyl
or
ILFyyyl
TRACEBACK FOLLOWS...

where yyy is a numeric code that identifies the error
detected.

The first message is issued by the Operating System,
the second by the Model 44 Programming System, and
the last by the Disk Operating System. Traceback is
a diagnostic tool for ForTraN under the Operating Sys-
tem and the Disk Operating System. It is a list of rou-
tines in the direct line of call to the routine in which
the error occurred. It is described in the publications
IBM System/360 Operating System FORTRAN IV
Programmer’s Guide: FORTRAN IV (G), Form C28-
6639, or FORTRAN IV (H), Form C28-6602, and IBM
System/360 Disk Operating System: FORTRAN IV
Programmer’s Guide, Form C28-6397. The following
text lists the error messages in numeric order, explains
the error, and indicates what action the system takes.
In these explanations, x represents the argument sup-
plied by the programmer and * represents the largest
possible value that can be represented in floating-point
notation. —

IHC2161 SLITE-SLITET X IS AN ILLEGAL VALUE

OA216]

ILF2241
Explanation: In the xxxFsLiT subprogram, a value of
i thatisnot 0, 1, 2, 3, or 4 is an error; for xxxsLITE, a
value for i that is not 1, 2, 3, or 4 is an error.

50

System Action Without Extended Error Facility: Ex-
ecution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the error
occurrence counts kept in the Option Table. Stand-
ard corrective action is taken before execution con-
tinues and consists of no action for svrre, and
returning an ofF indication (i.e.,] = 2) for sLITET.

IHC2411 FIXPI INTEGER BASE = 0, INTEGER EXPONENT =
X, LEO
OA2411
| ILF2411
Explanation: In the xxxFixpr subprogram, a base
number of zero and an exponent = 0 is an error.
System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0.

IHC2421 FRXPI REAL*4 BASE = 0.0, INTEGER
EXPONENT = X, LEO
OA242i
| 1LF2421

Explanation: In the xxxFrxp1 subprogram, a base
number of zero and an exponent = 0 is an error.
System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0.

IHC2431 FDXPI REAL*8 BASE = 0.0, INTEGER
EXPONENT = X, LEO
0A243]
| 1LF2431

Explanation: In the xxxFpxpI subprogram, a base
number of zero and an exponent = 0 is an error.
System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0.

IHC2441 FRXPR REAL*4 BASE = 0.0, REAL*4
EXPONENT = X.X,LEO
OA244i
| 1F2441

Explanation: In the xxxFrxPR subprogram, a base
number of zero and an exponent = 0 is an error.
System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-

error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0.

IHC2511 SQRT NEGATIVE ARGUMENT = X
OA2511
| IF2511

Explanation: In the xxxssQrr subprogram, a value

cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0.

IHC2451 FDXPD REAL*8 BASE = 0.0 REAL*8 EXPONENT =
X.X, LEO

OA245]

| 1LF2451

of x < 0is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to |x|*%.

Explanation: In the xxx¥pXPD subprogram, a base IHC252] EXP ARG = X.X, GT 174.673
number of zero and an exponent = 0 is an error. 0A252!
System Action Without Extended Error Facility: | 1LF2521

Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0.

Explanation: In the xxxsexp subprogram, a value of
x > 174.673 is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Fxecution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value

| IHC2461 FCXPI COMPLEX+*8 BASE = 0.0 + 0.0l, to *
INTEGER EXPONENT = X, LEO '
0A2461
' ILF2461 IHC2531 ALOG-ALOGI0 ARG = X.X,LE =0
Explanation: In the xxxrcxpr subprogram, a base |2-?22:33’,

number of zero and an exponent = 0 is an error.
System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0.

Explanation: In the xxxsLoc subprogram, a value of
x = 0 is an error. Because this subprogram is also
called by an exponentiation subprogram, this mes-
sage also indicates that an attempt has been made
to raise a negative real base to a power.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution

| 1HC2471 FCDXI COMPLEX*16 BASE = 0.0 + 0.01,
INTEGER EXPONENT = X, LE 0
0A2471
| 1F2471

Explanation: In the xxxrcpx1 subprogram, a base

number of zero and an exponent = 0 is an error. IHC2541 SIN-COS /ARG/ = /X.X (HEX = X)/, GE PI#2%*18
System Action Without Extended Error Facility: OA2541

Execution of this load module or phase is terminated. | ILF254!

continues and consists of setting the functional value
to *if x = 0, and to log |x| or logso |+ (depending on
the subprogram called) if x is less than 0.

System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the

Explanation: In the xxxsscN subprogram, a value of
|x|= 2!% » x is an error.

Appendix C. Interruption and Error Procedures 51

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value

to 1/2/2.

IHC2551 ATAN2 ARGUMENTS = 0.0
OA2551
| ILF2551

Explanation: In the xxxsaTN2 subprogram when
entry name ATAN? is used, a value of x; = x, = 0 is
an error,
System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0.

IHC2561 SINH-COSH /ARG/ = X.X/, GE 174.673
OA25¢1
‘ ILF2561

Explanation: In the xxxsscNH subprogram, a value
of |x| = 174.673 is an error.
System Action Without Extended Error Facility:
Execution of this Joad module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to *.

IHC2571 ARSIN-ARCOS /ARG/ = /X.X/ GT 1

OA2571

| 1LF2571

Explanation: In the xxxsascN subprogram, a value
of lx[> 1is an error.
System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0.

IHC2581 TAN-COTAN /ARG/ = /X.X (HEX = X)/, GE
PI+2%%]18
OA2581
| 1r2s81
Explanation: In the xxxsTNcT subprogram, a value of

|x| = 21 * is an error:

52

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 1.

IHC2591 TAN-COTAN /ARG/ = /X.X (HEX = X)/,

APPROACHES SINGULARITY

0A2591
| 1LF2591

Explanation: In the xxxsTNCT subprogram, a value of

. - 3
x too close to one of the singularities (= —E-, i%, e

for the tangent; *a, +2x, ... for the cotangent) is
an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution.
continues and consists of setting the functional value
to *.

IHC2611 DSQRT NEGATIVE ARGUMENT = X.X
0A2611
| ILF2611

Explanation: In the xxxsQrT subprogram, a value
of x < 0is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to |x|*%,

IHC2621 DEXP ARG = X.X, GT 174.673
0A2621
. ILF2621

Explanation: In the xxxLEXP subprogram, a value of
x > 174.673 is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to *.

IHC2631 DLOG-DLOG10 ARG = X.X, LE ZERO
OA2631
' ILF2631

Explanation: In the xxxLL0G subprogram, a value of
x = 0 is an error. Because this subprogram is also
called by an exponentiation subprogram, this mes-
sage also indicates that an attempt has been made
to raise a negative real number to a power.

error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to *.

IHC2671 DARSIN-DARCOS /ARG/ = /X.X/, GT 1
0A2671
| ILF2671

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to — * if x = 0 and to log || or logyo [x| (depending
on the subprogram called) if x is less than 0.

IHC2641 DSIN-DCOS /ARG/ = /X.X (HEX = X)/,

GE PI+2%%50

OA2641
' 1LF2641

Explanation: In the xxxLscN subprogram, a value of
|%| = 25° = is an error. _

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value

to \/2_/2.

Explanation: In the xxxLascN subprogram, a value
of |x| > 11is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0.

| IHC2681 DTAN-DCOTAN /ARG/ = /X.X (HEX = X)/ GE

PI* (2%%50)

0A2681
| 1tF268i

Explanation: In the xxxLTNCT subprogram, a value of
|x| = 250 « « is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value

to 1.
IHC2651 DATAN2 ARGUMENTS = 0.0

' ﬁ‘::::,’ IHC2691 DTAN-DCOTAN /ARG/ = /X.X (HEX = X)/,
APPROACHES SINGULARITY

Explanation: In the xxxLATN2 subprogram when 0A269I

entry name DATAN? is used, a value of x; = %, = 0 | 1r2691

is an error. Explanation: In the xxxLTNCT subprogram, a value of
System. Action Without Extended Error Facility: oo close to one of the singularities (% -2, __,_3_1r’ .
Execution of this load module or phase is terminated. 2 27"
System Action With Extended Error Message Fa- for the tangent; ®x, *=2x, . . . for the cotangent) is

an error.
System Action Without Extended Error Facility:

Standard corrective action is taken before execution Execution of this load module or phase is terminated.
continues and consists of setting the functional value System Action With Extended Error Message Fa-
t0 0. cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to *.

cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.

IHC2661 DSINH-DCOSH /ARG/ = /X.X/, GE 174. 673
0A266
| IF2661

Explanation: In the xxxrscnu subprogram, a value

of x| = 174.673 is an error. IHC2711 CEXP REAL ARG = X.X (HEX =X), GT 174.673
System Action Without Extended Error Facility: 0A271I

Execution of this load module or phase is terminated, | ILF2711
System Action With Extended Error Message Fa- Explanation: In the xxxcsexp subprogram, a value
cility: Execution continues contingent upon the of x; > 174.673 is an error.

Appendix C. Interruption and Error Procedures 53

System Action Without Extended Error Facility: IHC2751 f;zN;t;gOS/lMAG ARG/ = X.X (HEX = X)/, 6T

Execution of this load module or phase is terminated. OA275I

System Action With Extended Error Message Fa- | 1LF2751

cility: Execution continues contingent upon the Explanation: In the xxxcsscN subprogram, a value

error occurrence counts kept in the Option Table. of ’x2|> 174.673 is an error.

Standard corrective action is taken before execution System Action Without Extended Error Facility:

continues and consists of setting the functional value Execution of this load module or phase is terminated.

to * (cos x — isIN x) where x is the imaginary part of System Action With Extended Error Message Fa-

the argument. cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution

| 1HC2721 CEXP IMAG ARG = X (HEX = X), ABS VALUE GE continues and consists of setting the functional value

0A2721 Prea=18 as follows: If imaginary part > 174.673 (x is real
| 1LF2721 part of argument): for sine, result = 3 (siN x +

Explanation: In the xxxcsexp subprogram, a value
of [x2| = 218« 7 is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to 0 + 0i.

.
icos x); for cosine, result = 7 (cos x — isiN x). If

imaginary part < — 174.673 («x is real part of argu-
*

ment): for sine, result =) (sIN x — icos x); for

*
cosine, result = 3 (cos x + isIN x).

IHC2811 CDEXP REAL ARG = X.X (HEX = X) GT 174.673
OA2811
l ILF2811

Explanation: In the xxxcLExp subprogram, a value
of x; > 174.673 is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to * (cos x + isiv x) where x is the imaginary part
of the argument.

| 1HC2731 CLOG ARGUMENT = 0.0 + 0.0
0A2731

| iLF2731
Explanation: In the xxxcsLoc subprogram, a value
of x; = x, = 0is an error.
System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to — * + 0Oi,

IHC2821 CDEXP IMAG ARG = X.X (HEX = X) ABS VALYE
GE PI+2+%%50
OA2821]
| 1F2821
Explanation: In the xxxcLExp subprogram, a value
of |x5| = 2% + x is an error.
System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
Execution of this load module or phase is terminated. continues and consists of setting the functional value
System Action With Extended Error Message Fa- to 0 + 0i.
cility: Execution continues contingent upon the | IHC2831 CDLOG ARGUMENT = 0.D0 + 0.DOI
error occurrence counts kept in the Option Table. = 0A2831
Standard corrective action is taken before execution | ILF2831

IHC2741 CSIN-CCOS/REAL ARG/ = /X.X (HEX = X), GE
PI*2%%]18
OA2741
| ILF2741
Explanation: In the xxxcsscN subprogram, a value
of [x1| = 218 « 7 is an error.
System Action Without Extended Error Facility:

continues and consists of setting the functional value
to 0 + 0i.

Explanation: In the xxxcLrLoc subprogram, a value
of x; = x, = 0is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to — * + 0.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to *.

IHC2911 ALGAMA ARG = X.X (HEX = X), LE 0 OR
GE 4.2937*10%%73
OA2911
| ILF2911

Explanation: In the xxxscama subprogram for the

IHC284] CDSIN-CDCOS /REAL ARG/ = /X.X (HEX = X)/,
GE PI*2%%50
0A284
| ILF2841

Explanation: In the xxxcLscN subprogram, a value
of |x;| = 20 + = is an error.
System Action Without Extended Error Facility:

log-gamma function, a value of x = 0 or x = 4.2037
» 10" is an error.
System Action Without Extended Error Facility:

Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value

Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value

to 0 + 0. to *.
IHC2851 CDSIN-CDCOS /IMAG ARG/ = /X.X (HEX = X)/, IHC300I DGAMMA ARG = X.X (HEX = X), LE 2** —~252 OR
GT 174.673 GE 57.5744
OA285! OA300!
| ILF2851 | 1LF3ool

Explanation: In the xxxcLscn subprogram, a value
of]x2| > 174.673 is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
as follows: If imaginary part > 174.673 (x is real

Explanation: In the xxxLcama subprogram for the
gamma function, a value of x = 2—2%2 or x = 57.5744
is an error. ‘

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.
Standard corrective action is taken before execution
continues and consists of setting the functional value
to *.

*
part of argument): for sine, result = 3 (siv x +

. . * . IHC3011 DLGAMA ARG = X.X (HEX = X), LE 0 OR
icos x); for cosine, result = 3 (cos x — isiN x). If GE 4.2937%10%%73 ()
imaginary part < — 174.673 (x is real part of argu- ' ﬁ'::::,’

Explanation: In the xxxLcama subprogram for the
log-gamma function, a value of x =< 0 or x = 4.2937
« 1073 is an error.

System Action Without Extended Error Facility:
Execution of this load module or phase is terminated.
System Action With Extended Error Message Fa-
cility: Execution continues contingent upon the
error occurrence counts kept in the Option Table.

E 3
ment): for sine, result = 3 (siv x — icos x); for

*
cosine, result = 3 (cos x + isIN x).

IHC290I GAMMA ARG = X.X (HEX = X), LE 2%% —252 OR
GE 57.5744
OA290I
| ILF2901

Explanation: In the xxxscaAMa subprogram for the
gamma function, a value of x = 2252 orx = 57.5744
is an error.

Standard corrective action is taken before execution
continues and consists of setting the functional value
to *,

Appendix C. Interruption and Error Procedures 55

Appendix D. Storage Estimates

Appendix D contains decimal storage estimates
(in bytes) for the library subprograms. The
estimate given does not include any additional
library subprograms or FORTRAN execution-time
routines that the subprogram needs during execu-
tion. The names of any additional library subpro-
grams needed are given in Table 15 in the
column headed “Additional Subprograms.”

Some library subprograms also require execu-
tion-time routines for input/output, interruption,
and error procedures.

If the programmer has not made allowances
for the storage required by any of these addi-
tional routines (see Tables 17, 18 and 18.1), the
amount of available storage may be exceeded
and execution cannot begin. The programmer
must add the estimates for all subprograms and
routines needed to determine the amount of stor-
age required.

System/360 Operating System

Note: The names of execution-time routines
sometimes vary according to whether or not the
Extended Error Message facility is in effect, In
the following discussion, the names that are used
are those when the facility has not been specified.
Table 19 presents a cross listing of names for
both circumstances.

The mcFIOsH routine performs input/output
procedures for both FORTRAN 1v (E) and FORTRAN
1v. [This routine refers to a table (mcuatsL) for
information about the input/output devices used
during execution.] The 1HCFCOME routine per-
forms interruption and error procedures for
FORTRAN IV (E) library subprograms; the
IHCFCOMH, IHCFCVTH, IHCFINTH, IHCTRCH, and
IHCUOPT routines perform the procedures for
FORTRAN 1Iv library subprograms. If a system
contains both compilers, the ICFCOMHE-THCFCVTH
routines are used. Tables 15 and 16 indicate
which library subprograms require these execu-
tion-time routines.

In addition, several other execution-time rou-
tines may be needed to resolve external refer-
ences in a FORTRAN Iv object module.

1. If a source module specifies direct access
input/output operations, the compiler gener-
ates a call to the 1HCDIOSE routine.

56

2. At the point that errors are encouraged during com-
pilation, the compiler generates a call to an error

o Table 15. Mathematical Subprogram Storage Estimates

Uses
Input/
Decimal Estimates Output
and
Inter-

Subprogram Additional ruption

Name OS {44PS DOS Subprograms Routines
xxxCLABS 192 200 | 144 | xxxLLSQRT Yes
xxxCLAS 2401 220 | 208 No
xxxCLEXP 640 280 | 208 xxxLEXP, xxxLSCN Yes
xxxCLLOG 464) 3101} 224 xxxCLABS, xxxLSQRT,| Yes

xxxLLOG, xxxLATN2
xxxCLSCN 840} 500 | 408 xxxLEXP, xxxLSCN Yes
xxxCLSQT 224 2401 168 | xxxLSQRT Yes
xxxCSABS 184 190 | 136 | xxxSSQRT Yes
xxxCSAS 216] 200 | 208 No
xxxCSEXP 600| 280 | 208 xxxSEXP, xxxSSCN Yes
xxxCSLOG 432| 290 | 216 xxxSABS, xxxSSQRT | Yes
xxxSLOG, xxxSATN2

xxxCSSCN 760| 440 | 344 xxxSEXP, xxxSSCN Yes
xxxCSSQT 208| 230 | 168 | xxxSSQRT Yes
THCFAINT 80 —| — No
xxxFCDXI 560| 370 | 288 xxxCLAS Yes
xxxFCXPI 536| 350 | 272 xxxCSAS Yes
xxxFDXPD 464 240 | 176 xxxLLOG, xxxLEXP Yes
xxxFDXPI 368| 200 | 168 Yes
IHCFIFIX 136 — | — No
xxxFIXPI 368| 230 184 Yes
xxxFMAXD 120f 170 | 120 No
xxxFMAXI 224 290 | 224 No
xxxFMAXR 224 290 | 216 No
JHCFMODR | 120 ——| —— No
ITHCFMODI 56 — | — No
xxxFRXPI 360 190 | 168 Yes
xxxFRXPR 4321 250 | 168 xxxSLOG, xxxSEXP Yes
xxxLASCN 664] 520 | 400 xxxLSQRT Yes
IHCLATAN | 352| — | — No
xxxLATN2 680 520 | 528 Yes
xxxLERF 864| 920 | 800 xxxLEXP Yes
xxxLEXP 680 480 | 480 Yes
xxxLGAMA | 1088| 820 | 728 xxxLLOG, xxxLEXP Yes
xxxLLOG 616[430 | 392 Yes
xxxLSCN 680 390 | 416 Yes
xxxLSCNH 584| 400 | 304 | xxxLEXP Yes
xxxLSQRT 360| 160 | 160 Yes
xxxLTANH 376 350 | 312 xxxLEXP Yes
xxxLTNCT 776 400 | 416 Yes
xxxSASCN 536 380 | 312 | xxxSSQRT Yes
IHCSATAN | 216 —| — No
xxxSATN2 520(380 384 Yes
xxxSERF 504| 560 | 432 xxxSEXP Yes
xxxSEXP 480| 340 | 304 Yes
xxxSGAMA 840| 600 | 488 | xxxSLOG, xxxSEXP | Yes
xxxSLOG 488| 280 | 288 Yes
xxxSSCN 536 270 | 304 Yes
xxxSSCNH 504 340 | 248 | xxxSEXP Yes
xxxSSQRT 368 180 | 184 : Yes
xxxSTANH 206 280 | 224 | xxxSEXP Yes
xxxSTNCT 672] 310 320 ‘ Yes

routine (IHCIBERR for FORTRAN v (E) and IHCIBERH
for rorTrRAN 1v). If execution of the load module
is attempted, the error routine is called, a message
is issued, and the execution is terminated.

3. If a FORTRAN Iv (E) source module contains a com-
puted co 1O, the compiler generates a call to the
HCCGOTO routine.

4. If a FORTRAN 1v source module contains any input/
output operations that refer to a NAMELIST name,
compiler generates a call to the 1HCNAMEL routine.

5. If a ForTRAN 1v source module uses the debug
facility, the compiler generates a call to the mcDBUG
routine.

6. If boundary alignment was specified during system
generation, the 1HCAD)ST routine will be loaded if a
boundary-alignment error occurs.

Model 44 Programming System

In the FORTRAN library of the Model 44 Programming
System, the BoAFIOCS routine is the interface with the
system input/output services. This routine refers to a
table, BoAuNITB, for information about the input/output
devices used during execution. The BoAIBCOM routine
performs interruption and error procedures. If a source
program contains any input/output operation(s) re-
ferring to a NAMELIST name, the compiler generates a
call to the BoANAMEL routine.

Disk Operating System

The mwrF10Cs routine performs input/output proced-
ures for FORTRAN 1v under the Disk Operating System.
This routine refers to a table, either LFUNTAB or
ILFGHTAB, for information about the input/output
devices used during execution. The wwFIBCOM,
ILFADCOM, and ILFFINT routines perform input/output
preparation, conversion, and interrupt processing for
the library subprograms.

The wracoMm routine is used, when necessary, for
communication with pos Basic FORTRAN modules.
ILFTRBK provides traceback diagnostic messages.

In addition, several other execution time routines
may be needed to resolve external references.

1. If a rorTRAN module requires direct access input/
output operations, the compiler generates a call to
ILFDIOCS.

2. When errors are encountered during compilation,
the compiler generates a call to ILFIBERR. If execu-
tion of an incorrect statement is attempted, this
routine is called, a message is issued, and execution
is terminated.

3. If a rorTRAN source module specifies a NAMELIST
operation, the compiler generates a call ILFNAMEL
routine.

4. If a ForTRAN source module uses the debug facility,
the compiler generates a call to the ILFDEBUG
routine.

® Table 16. Service Subprogram Storage Estimates

Decimal Estimates | Uses Input/Output
Subprogram - and Interruption
Name 0S| 44PS} DOS Routines
xxxFDVCH 80 {120 | 80 Yes
xxxFDUMP 544 | 760 1496 Yes
xxxFEXIT 32| 40 | 32 Yes
xxxFOVER 88 1130 | 88 Yes
xxxFSLIT 384 | 280 |208 Yes

Table 17. Execution-Time Routine Storage Estimates, Oper-

ating System

Routine Decimal
Name Estimate Used By
IHCADJST 1,156 FORTRAN IV
IHCCGOTO 60 FORTRAN1V (E)
IHCDBUG 2,152 FORTRAN IV
IHCDIOSE 2,688 (See Note 1) | Both :
IHCFCOME 6,196 FORTRAN1V (E
IHCFCOMH 4,168 FORTRAN IV
IHCCOMH2 520 FORTRAN IV
IHCFCVTH 4,688 FORTRAN 1V
IHCFIOSH 3,744 + IHCUATBL | Both
(See Notes 2 and 3)
IHCIBERH 294 FORTRAN IV
IHCIBERR 136 FORTRANI1V (E)
IHCNAMEL 2,880 FORTRAN IV
IHCTRCH 792 FORTRAN 1V
IHCUOPT 8 FORTRAN 1V

Note 1: This module also acquires dynamic storage. Its
amount, in bytes, may be computed by the formula
184 + buffer size
Each buffer value should be 800, except for a card
read punch which is 80 and a printer which is 133
FORTRAN utilizes double buffering.
This module also acquires dynamic storage. Its
amount, in bytes, may be computed by the formula
128 + buffer size
Buffer lengths are listed in Note 1.
The number of bytes in table IHCUATBL may be
computed by the formula
12n + 8
where n is the number of data set reference numbers
requested during system generation,

NortE 2:

Note 3:

Appendix D. Storage Estimates 57

@ Table 18. Execution-Time Routine Storage Estimate, Model

44 System

Table 19. Execution-Time Routines Storage Estimates With
Extended Error Message Facility, Operating System

Routine Name

Decimal Estimate

BOADIOCS
BOAFIOCS
BOAIBCOM
BOANAMEL
BOAUNITB
BOAUOPT
BNXAD]ST

688
1,776
10,432
2,432
(see Note 1)

8

1,000
(Note 2)

Note 1: The number of bytes in CSECT BOAUNITB may
be computed by the formula

where n is the number of data set reference numbers|
requested during system construction.
Note 2: BNXADJST does not reside in the library of relo-
catable modules, but in the absolute phase library.

8n +8

® Table 18.1. Execution-Time Storage Estimates, Disk Operating

System
Routine Decimal
Name Estimate
ILFACOM 1168
ILFADCON 4309
ILFDEBUG 1592
ILFDIOCS 648
ILFFINT 1392
ILFFIOCS 3722
ILFGHTAB 272
ILFIBCOM 4336
ILFIBERR 200
ILFNAMEL 2222,
ILFTRBK 592
ILFUNTAB 272

Corresponding
Module With No
Routine Error Message
Name Facility Storage Estimate
IHCAD]JST IHCAD]JST 1,156
IHCDBUG IHCDBUG 2,152
IHCECOMH | IHCFCOMH 5,368
IHCCOMH2 IHCCOMH2 1,120
IHCEDIOS THCDIOSE 3,848 (See Note 1)
IHCEFIOS IHCFIOSH 4,584 + IHCUATBL
(See Notes 2 and 3)
IHCEFNTH IHCFINTH 1,368
IHCERRM _ 1,512
IHCETRCH IHCTRCH 706
IHCFCVTH IHCFCVTH 4,688
IHCFOPT — 824
IHCIBERH IHCIBERH 224
IHCNAMEL IHCNAMEL 2,880
IHCUOPT IHCUOPT 800 + 8n (See Note 4)
Notk 1:' This module also acquires dynamic storage. Its

Note 2:

NoTE 3:

Norte 4:

amount, in bytes, may be computed by the formula
184 + buffer size
Each buffer value should be 800, except for a card
read punch which is 80 and a printer which is 133.
FORTRAN utilizes double buffering.
This module also acquires dynamic storage. Its
amount, in bytes, may be computed by the formula
128 + buffer size
Buffer lengths are listed in Note 1.
The number of bytes in table IHCUATBL may be
computed by the formula
12n + 8
where n is the number of data set reference num-
bers requested during system generation,
The number of additional entries supplied in the
Option Table during system generation is repre-
sented by n.

58

Appendix E. Assembler Language Information

The mathematical and service subprograms in the
FORTRAN 1V library are available to the assembler lan-
guage programmer. The following text explains the
method of calling a library subprogram in an assembler
language program, and then gives additional informa-
tion necessary to use each type of subprogram. (The
assembler language programmer should also be fami-
liar with the information contained in Appendix D.)

Calling Sequences

To call either type of library subprogram, the assem-
bler language programmer supplies an entry name,
an argument list, and an area used by the subprogram
to store information (i.e., a save area). The following
conventions must be observed when calling a library
subprogram in an assembler language program:

1. The address of the entry name must be in general
register 15.

2. The address of the point of return to the calling
program must be in general register 14.

3. The address of the argument list must be in general
register 1.

4. The argument list must be assembled on a full-word
boundary; it consists of one 4-byte address constant
for each argument. The last argument must have
a 1in its high order bit.

5. The address of the save area must be in general
register 13.

6. The save area must be assembled on a full-word
boundary. Although the minimum size of the save
area depends upon the subprogram, the program-
mer is advised to use a save area of 18 full-words
for all library subprograms. The minimum save
area sizes are given in Tables 2 through 6 for the
mathematical subprograms, and in Table 17 for the
service subprograms.

7. If the information in a floating-point register is to
be retained, the programmer must save and restore
the contents of the register. The subprograms that
make use of the floating-point registers contain no
provisions for saving the information.

8. If a main program in assembler language contains
any calls to those library subprograms that use the
FORTRAN execution-time routines (see Appendix D),
the following instructions must be included before
the call to the subprogram is issued:

oS | 44PS
L 15,=V(IBCOM#) EXTRN IBCOM#
BAL 14,64(15) | oo
L 15,=A(IBCOM#)

BAL 14,64(15)

These instructions cause the initialization of return
coding and the interruption exceptions described in
Appendix C. If these instructions are omitted, the
occurrence of an interruption or an error causes un-
predictable termination of the execution of this load
module.

Noze: In an assembler language program, a decimal-
divide exception may occur. This causes the char-
acter B to appear in the program interruption
message described in Appendix C.

The user of System/360 Operating System may use
several methods to call a ForTRAN library subprogram:
the appropriate macro-instructions described in the
publication IBM System/360 Operating System: Su-
pervisor and Data Management Macro-Instructions,
Form C28-6647 or the general assembler language
calling sequence (given in Figure 3). If the macro-
instructions are used, the address of the save area must
be placed in general register 13 before using a macro-
instruction to give control to the subprogram. For
example, if the square root of the value in AMNT is to
be computed and save is the address of the same area,
the following statements could be included in an as-
sembler language program to call the mcssQrr sub-
program:

L 15,=V(IBCOM#)
BAL 14,64(15)

LA " 13,SAVE

CALL SORT, (AMNT),VL

SAVE DS 18F
If the general assembler language calling sequence
shown in Figure 3 is used, the programmer must en-
sure that all of the conventions discussed previously
are followed. For example, to call the rucssQrT sub-
program to compute the square root of the number in
AMNT, the following statements would be included in

the source program: '

LA 13,SAVE
LA LARG
L 15,ENTRY
BALR 1415
ENTRY DC V(SQRT)
SAVE DS " 18F
ARG ~ DC X80’
DC AL3(AMNT)

Appendix E. Assembler Language Information 59

LA 13, area General register 13 contains the address of the save area.
LA 1, arglist General register 1 contains the address of the argument list.
L 15, entry General register 15 contains the address of the subprogram.
BALR 14,15 General register 14 contains the address of the point of return to the
calling program.
NOP Xid’ This statement is optional. The id represents the binary calling sequence
identifier. This number is supplied by the programmer and may be any
* * ok hexadecimal integer less than 216 — 1,
entry DC V (entry name)
entry DC A (entry name) Note: In this case, the entry name must be defined by an EXTRN instruc-
* ¥ ¥ tion to obtain proper linkage.
area DS xxF This statement defines the save area needed by the subprogram. The xx
represents the minimum size of the save area required; however, the pro-
grammer is advised to use a save area of 18 full-words for all subprograms.
(The minimum save area requirements are given in Tables 2 through 6
for the mathematical subprograms and in Table 16 for the service sub-
* * ok programs.)
CNOP Aligns the argument list at a full-word boundary.
arglist DC X80 Indicates the first byte of the only argument.
DC AL3 (arg) Contains the address of the argument.
or for more than one argument:
arglist DC A (arg) Contains the address of the first argument.
DC A (arg:) Contains the address of the second argument.
DC X80 Indicates the first byte of the last argument.
DC AL3 (arga) Contains the address of the last argument.

Figure 3. General Assembler Language Calling Sequence

When the load module is executed, the 1HcsQrT sub-
program is called to compute the square root of the
number in AMNT; the result is stored in floating-point
register 0. The binary calling sequence identifier is
not used.

The assembler language user of the Model 44 Pro-
gramming System will use the calling sequence given
in Figure 3. He will, however, use only the A-type
address constant where the choice between that and
the V-type is given. As the note in the figure states,
the label in the operand portion of the address constant
must be made the object of an ExTRN statement to
obtain proper linkage.

Mathematical Subprograms

The assembler language programmer supplies one or
more arguments for each mathematical subprogram.
The arguments may be either integer values or nor-
malized floating-point real or complex values.

An integer argument is four bytes in length and
starts on a full-word boundary. A real argument is
either four or eight bytes in length. The four-byte

60

argument starts on a full-word boundary. The eight-
byte argument starts on a double-word boundary and
occupies two adjacent words. The first word contains
the most significant digits. This word is also the ad-
dress of the entire argument; the second word con-
tains the least significant digits.

A complex argument is either eight or sixteen bytes
in length and starts on a double-word boundary. The
first half of the argument contains the real part of the
complex argument; the second half contains the
imaginary part. The address of the real part of the
argument is the address of the entire argument.

Each mathematical subprogram returns a single
answer. This answer is either an integer value or a
normalized floating-point real or complex value. An
integer answer is stored in general register 0, a real
answer is stored in floating-point register 0, and a
complex answer is stored in floating-point registers
0 and 2.

Tables 2 through 6 contain additional information for
using the mathematical subprograms in an assembler
language program. These tables give the floating-point

Table 20. Assembler Information for the Service Subprograms registers that are used by the sﬁbprogram and the

Subprogram Entry Save Area save area required by the subprogram.
Name Name(s) (Full Words)
woFDUMP AL e Service Subprograms
xxxFDVCH DVCHK 10 The service subprograms do not use the floating-point
sxxFEXIT EXIT 5 registers during execution; however, each service sub-
xxxFOVER OVERFL 10 program requires a save area. The minimum size of
xxxFSLIT SLITE 9 the save area depends upon the subprogram to be
SLITET 10 used and is given in Table 20.

Appendix E. Assembler Language Information 61

Appendix F. Sample Storage Printouts

A sample printout is given below for each dump for-
mat that can be specified for the xxxrpump subpro-
gram. The printouts are given in the following order:
hexadecimal, LOGICAL *1, LOGICAL *4, INTEGER *2,
INTEGER *4, REAL *4, REAL *8, COMPLEX *8, COMPLEX *16,
and literal (see Figure 4). Note that the headings on
the printouts are not generated by the system, but
were obtained by using FORMAT statements.

The output of the xxxrpump subprogram (for both
entry names, puMp and ppump) is placed on the object
error unit data set defined by the installation during
system generation.

CALL PDUMP WITH HEXADECIMAL FORMAT SPECIFIED

00A3EQ 485FSE10 00000000 485FSE10 10000000 42100000

006DC8 42800000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000
006DF8 C0000000 00000000 41200000 41566666 0000000C 41100000

CALL PDUMP WITH LOGICAL*! FORMAY SPECIFIED

006ELE T F

CALL PDUMP WITH LOGICAL*4 FORMAT SPECIFIED

006E10 F T

CALL PDUMP WITH INTEGER*2 FORMAT SPECIFIED

006E18 10

006EIA -100

006E1C 10

CALL PDUMP WITH INTEGER*4 FORMAT SPECIFIED

006E20 1 2 3 & 5 7 8 9 10
006E48 11 12

CALL PDUMP WITH REAL*4 FORMAT SPECIFIED

006E00 0.20000000E 01 0.53999996E 01

CALL PDUMP WITH REAL*8 FORMAT SPECIFIED

006DC8 0.1759999999999939D 03

CALL PDUMP WITH COMPLEX*8 FORMAT SPECIFIED

006000 (3.0000000,4,0000000)

(4,0000000,8,6000000)

CALL PDUMP WITH COMPLEX*16 FORMAT SPECIFIED

006DEQ €0.9999999999999990, 0.9999999999999990)

(~0,9939999999999990,-0,9999999999999990)

CALL PDUMP WITH LITERAL FORMAT SPECIFIED

0BBESC THIS ARRAY CONTAINS ALPMAMERIC DATA

Figure 4. Sample Storage Printouts

62

Absolute €Iror 21, 41
Absolute value 7,11, 22, 41
Accuracy statistics 41, 47

AINT (see IHCFAINT)

ALGAMA (see xxxSGAMA)

Algorithms 21, 40
ALOG (see xxxSLOG)

ALOGI10 (see xxxSLOG)

AMAXO (see xxxFMAXI)

AMAXI1 (see xxxFMAXR)

AMINO (xxxFMAXTI)

AMINT1 (see xxxFMAXR)

AMOD (see IHCFMODR)

Arccosine subprograms 7,9, 24, 32-33, 56
ARCOS (see xxxSASCN)

Arguments 6, 60
ARSIN (see xxxSASCN)

Arcsin subprograms. 7, 9, 24, 32-33, 56
Arctangent subprograms. 7, 9, 25-26, 33-34, 56
Assembler language calling sequence. 59-61
Assembler requirements 7, 8-13, 14, 59-61

ATAN (see IHCSATAN or xxxSATN2)
ATAN2 (see xxxSATN2)
CABS (see xxxCSABS)

Callingsequenceccciviineiin.. 59-60
Calling FORTRAN subprograms
explicitly 6-13
implicitly 14-15
in assembler language 59-60
CALL macro-instruction 59
CALL statement 5,16-17

CCOS (see xxxCSSCN))

CDABS (see xxxCLABS)

CDCOS (see xxxCLSCN)

CDDVD# (see xxxCLAS)

CDEXP (see xxxCLEXP)

CDLOG (see xxxCLLOG)

CDMPY# (see xxxCLAS)

CDVD (see xxxCSAS)

CDSIN (see xxxCLSCN)

CDSQRT (see xxxCLSQT)

CEXP (see xxxCSEXP)

CLOG (see xxxCSLOG)

CMPY # (see xxxCSAS)

CSQRT (see xxxCSSQT)

Common logarithm subprograms. 7, 8, 21,28-29, 36-37, 56
Complemented error function subprogram. 7, 11-12, 26-27,

34-35, 56
Corrective action after program interrupt occurrence. . . 18
COS (see xxxSSCN)
COSH (see xxxSSCNH)
Cosine subprograms. 7, 9-10, 23-24, 29-30, 37-38, 56
COTAN (see xxxSTNCT)
Cotangent subprograms. 7, 10, 31-32, 38-39, 56

CSIN (see xxxCSSCN)
DARSIN (see xxxLASCN)
DARCOS (see xxxLASCN)
DATAN (see IHCLATAN or xxxLATN2)
DATAN2 (see xxxLATN2)
DCOS (see xxxLSCN)
DSCOSH (see xxxLSCNH)
DCOTAN (see xxxLTNCT)
DEREF (see xxxLERF)
DERFC (see xxxLERF)
DEXP (see xxxLEXP)

Index

DGAMMA (see xxxLGAMA))
Disk Operating System

Assembler Language 2
Error Messagesc.ouurimomaenennnaenin. 50-55
Execution-Time Routines 57
Interrupt Procedures 49
Storage Estimates 56-58
Subprogram Names 5
Divide-check exception 16, 48

DLGAMA (see xxxLGAMA)
DLOG (see xxxLLLLOG)
DLOGIO0 (see xxxLLOG)
DMAX]1 (see xxxFMAXD)
DMINT1 (see xxxFMAXD)
DMOD (see IHCFMODR)
DSIN (see xxxLLSCN)
DSINH (see xxx.LSCNH)
DSQRT (see xxxLLSQRT)
DTAN (see xxxLTNCT)
DTANH (see xxxLTANH)
DUMP (see xxxFDUMP)
DVCHK (see xxxFDVCH)
Entry nameiiiaiiiii 6
ERF (see xxxSERF)

ERFC (see xxxSERF)

Error
absolute 21, 41
TOESSAZES .+ v oo v eee et e e 49-55
optional service i 16
ProcedurIesciiii 49-55
propagation 41
relative 21, 41

Error function subprograms. 7, 11-12, 26-27, 34-35, 56

Execution-time routines 56-58

EXIT (see xxxFEXIT)
EXP (see xxxSEXP)

Explicitly called subprograms 5,6-13
listof 7
performance statistics 42-46
size Of 56-57
tables 8-13
use in FORTRAN cciiieinnnn. 6-7
use in assembler language. 59-61

Exponential subprograms 7, 8, 22, 27, 35, 56

Exponent overflow exception 19, 48

Exponent underflow exception 19, 48

Extended Error Message facility. 15

FCDXI# (see xxxFCDXI)
FCXPI# (see xxxFCXPI)
FDXPD # (see xxxFDXPD)
FDXPI# (see xxxFDXPI)
FIXPI# (see xxxFIXPI)
FRXPI# (see xxxFRXPI)
FRXPR# (see xxxFPXPR)

Function value 5,6

GAMMA (see xxxXSGAMA)

Gamma subprograms 7, 12, 28, 36, 56

Hyperbolic cosine subprograms 7, 11, 30, 38, 56

Hyperbolic sine subprograms 7, 11, 30, 38, 56

Hyperbolic tangent subprograms 7, 11, 31, 39, 56

IDINT (see IHCFIFIX)

Implicitly called subprograms 5, 6, 14-15
list of 14
result of use 15
SIZE ot 56
USE ot ettt e e e e 14

Index 63

INT (see IHCFIFIX)

Interruption procedures 47
Linkageeditor R 5
Logarithmic subprograms........... 7, 8, 22, 28-29, 36-37, 56
Log-gamma subprograms 28, 36, 56
Machine indicator test subprograms............... 19, 58, 60
Mathematical subprograms 5,6
algorithms 21, 40
definition 5
explicitly called 6-13
implicitly called 14-15
list of 7,14
performance 41-46
SIZES .. 56
usein FORTRAN 6-15
use in assembler language.................... ... 60
Maximum value subprograms 7, 12-13, 56

MAXO (see xxxFMAXI)
MAXI1 (see xxxFMAXR)
MINO (see xxxFMAXI)

MIN1 (see xxxFMAXR)

Minimum value subprograms 7, 12-13, 56
MOD (see IHCFMODI)

Model 44 Programming System. 5, 41-46, 47, 49, 58, 59, 60
Modular arithmetic subprograms 7, 13, 56
Natural logarithm subprograms 7, 8, 22
Operating System, System/360......... 5, 41-46, 48-49, 56, 59

OVERFL (see xxxFOVER)
PDUMP (see xxxFDUMP)

Program interrupt corrective action.................. 18
Pseudo sense lights 19
Relative error 21,41
Sample dump printouts 62
Sampling techniques 41
Sense lights 19
Service subprograms
machine indicator test 19
SIZES .. 57
use in assembler language....................... 59-62
use in FORTRAN 19-20
utility ...
SIN (see xxxSSCN')
Sine subprograms 7, 9-10, 23-24, 29-30, 37-38, 56

SINH (see xxxSSCNH)

SLITE (see xxxFSLIT)

SLITET (see xxxFSLIT)

SORT (see xxxSSQRT)

Square root subprograms 7, 8, 22-23, 30, 37-38, 56

Standard deviation 41
Storage estimates 56-58
Storage printouts 62
Subprogram names 5
Subprograms and execution-time routines
BOADIOCS routineccouoo... 58
BOAFIOCS routine 58
BOAIBCOM routinecccoouu. ... 58
BOANAMEL routine 58
BOAUNITB routine 58
BOAUOPT routine 58
BNXADIST routinecccoouuoiii.. 58
IHCCGOTO routineccouui.. 57
xxxCLABS subprogram
algorithm 22
effect of an argument error 22
performance 42
SIZEe ..., 56
WS .ttt 11
xxxCLAS subprogram
SIZE ... 56
USE & ittt 14

64

xxxCLEXP subprogram
algorithm 27
effect of an argument error 27
EITOT MESSAZES - . o . oo oe ettt ie e ens 52, 54
performance, 42
SIZE ot 56
WS o ottt e 8
xxxCLLOG subprogram
algorithm 22
effect of an argument error..................... 22
EITOT IMESSAZE . .o o eeee e iee e e 54
performance 42
SIZE . . 56
USE oottt et e e 8
xxxCLSQT subprogram
algorithm 22-23
effect of an argument error..................... 23
performance i, 42
SIZE 56
USE .« ettt e e 8
xxxCLSCN subprogram
algorithm 23
effect of an argument error. 23
€ITOT MESSAZES . . . o oot ettt et e 51,54
performance 42
SIZE i 56
USE o ottt e 9
xxxCSABS subprogram
algorithm 22
effect of an argument error..................... 22
performance 42
SIZE 56
USE .ottt e e e e 11
xxxCSAS subprogram
SIZE .o 56
USE . ottt et e e 14
xxxCSEXP subprogram
algorithm 22
effect of an argument error. 22
€ITOL MESSALES .« o . o v vv et ettt e e e 51,53
performance 42
SIZE . 56
USE oottt 8
xxxCSLOG subprogram
algorithm 22
effect of an argument error. 22
€ITOL MESSAZES . o\ oo oo e e e e e 53
performance 42
SIZ€ . 56
USE oottt 8
xxxCSSQT subprogram
algorithm 22-23
effect of an argument error..................... 23
performance 43
SIZE . 56
WS Lt 8
xxxCSSCN subprogram
algorithm 23-24
effect of an argument error. 24
EITOT MNESSAZES . . . o vt oot et iee e e 53
performance, 42-43
SIZE . 56
USE ottt 9
IHCDBUG routinec.cuvuuuen. .. 56-58
IHCDIOSE routine 56-58
THCFAINT subprogram
SIZE L 56
USE .ottt e e 13
xxxFCDXI subprogram
error message e 50
resultofuse 15

USE o vt e e et e e 14
IHCFCOME routine 56-58
IHCFCOMH routineco.... 56-58
IHCFCVTH routineccovveuns 56-58
xxxFCXPI subprogram

EITOY IESSAZE . oo v v e vve oo ee e 50

resultof use 15

SIZE .t 56

USE o it i e e e 14
xxxFDUMP subprogram

assembler requirements 53-54

format specification 20

output 62

programming considerations 20

sample printouts 62

SIZE . i e 57

USE oot et et e e e 19-20
xxxFDVCH subprogram

assembler requirements 53-54

size P 57

L 1 PP 16
xxxFDXPD subprogram

€ITOT TNESSAZEo et e e ee e, 50

result of use 15

SIZE . i 56

USE .« vttt e 14
xxxFDXPI subprogram

EITOT MESSAZE . . oo oottt et e e ens 50

result of use 15

SIZE . i e 56

USE oo ettt 14
xxxFEXIT subprogram

assembler requirements 53-54

SIZE . 57

USE Lottt 16
THCFIFIX subprogram

SIZ€ .o 56

USE ottt ettt e e e 13
xxxFIXPI subprogram ,

€ITOT MESSAZE . .« v oe oo eee e e, 50

resultofuse 15

SIZE .. 56

USE ottt 14
xxxFMAXI subprogram

SIZE .. 56

USE .ottt e 12
xxxFMAXD subprogram

SIZE .. 56

USE .\ttt e 12
xxxFMAXR subprogram

SiZe 56

USE .ottt 13
IHCFMODI subprogram

SIZE .. 56

WSE ottt 13
IHCFMODR subprogram

Size 56

L 13
xxxFOVER subprogram

assembler requirements 53-54

SIZE L. 57

USE ottt 16
xxxFRXPR subprogram

€ITOT MESSAZEoouuimnennnnnn... 50

resultofuse, .. 15

SIZE ... 56

USE .ottt 14
xxxFRXPI subprogram

EITOY MESSAZE . . oo oo ettt e e 50

result of use e 15

SIZE ... 56
USE ittt 14
xxxFSLIT subprogram
assembler requirements 53-54
€ITOT MESSAZEo v eee ettt e 50
SIZE 57
USE .« ottt 16
IHCIBERH routine 56-58
IHCIBERR routine 56-58
xxxLASCON subprogram
algorithm 24
effect of an argument error. 24
€ITOY MESSAZE . . - .o ee e e e e e 52
performance 43
SIZE . it 56
USE oottt 9
IHCLATAN subprogram
algorithm, 25
effect of an argument error............. 25
performance 43
SIZE .« 56
USE ..ot 9
xxxLATN2 subprogram
algorithm 25-26
effect of an argument exror. 26
€ITOT TNESSAZE o oeve et 52
performance, 43
SIZ€ . i 56
TISE - ottt et e e e 9
xxxLERF subprogram
algorithm, 26-27
effect of an argument error. 27
performance 44
SIZE o\t 56
USE ottt e 11
xxxLEXP subprogram
algorithm 27
effect of an argument error.............. 27
€ITOT MIESSAZE .« . o v oeteeee ettt e e e e 52
performance, 44
SIZE . i 56
WS . ot 8
xxxLGAMA subprogram
algorithm 28
effect of an argument error. 28
€ITOr MESSALES oo e ee et et e e 55
performance 44
SIZE . 56
TS . ottt e e e 12
xxxLLOG subprogram
algorithm 28-29
effect of an argument error. 29
EITOT MESSAZE . - o o eve e e e et e e e 52
performance 44
SIZE .. 56
USE oottt 8
xxxLSCN subprogram
algorithm 29
effect of an argument error.................... 30
EITOT MESSAZE . . o v ovee oo 52
performance iiiia. 42, 43
SIZE ... 56
USE ottt 10
xxxLLSCNH subprogram
algorithm 30
effect of an argument error.................... g 30
EITOT TNESSAZE . . o . oo vvev et ne e iaeaeens 52
performance 43, 44
SIZ€ .. 56
USE o\ttt e e 11

xxxLSQRT subprogram
algorithm il
effect of an argument error.....................
€ITOT TNESSALZE . .« v v vvevveeeeee e ieneeneinns
performance
SIZE . .
USE .+ e e et e e e e

xxxLL.TANH subprogram
algorithm o i il
effect of an argument error.
performancec.. i
SIZ . i e
USE - o et ettt

xxxLTNCT subprogram
algorithm il
effect of an argument error.
€ITOT MESSAZESo oo ee e teeeee s
performance i
SIZE ...
USE .« et ettt

IHCNAMEL routineo

xxxSASCN subprogram
algorithm
effect of an argument error.....................
€ITOT TNESSAZE . o oo oot e et oo et eeee e
performance i
SIZE .o e
USE ittt

THCSATAN subprogram
algorithm
effect of an argument error.
performance
SIZE . .. e

xxxSATN2 subprogram
algorithm
effect of an argument error.
€ITOT MESSAZEo vvveenenne e,
performance,
SIZE . i

xxxSERF subprogram
algorithm
effect of an argument error....................
performance
SIZe ...

xxxSEXP subprogram
algorithm
effect of an argument error.
€ITOT TMESSAZE . .o v v e eei e iee e eeeenns
performance
SIZe ..

66

xxxSGAMA subprogram

algorithm 36
effect of an argument error..................... 36
EITOT MNESSAZES . . . v v e ve v vmenceeraenenesnns 54
performanceiiiiiiiiiiiiin, 42,45
SIZE o it 56
USE -ttt een e e 12
xxxSLOG subprogram
algorithm 36-37
effect of an argument error. 37
EITOT TNESSAZE . . o v v e e eeenneneanennnens 51
performanceoiiiiiiiiiiiiia, 42
SIZE i e 56
USE ottt ettt 8
xxxSSCN subprogram
algorithml 37-38
effect of an argument error. 38
EITOT MESSAZE . o« e v e e eee e et 51
performance 43, 45
SIZE o ot 56
USE .« ettt ittt 10
xxxSSCNH subprogram
algorithm o 38
effect of an argument error. 38
€ITOT MESSAZE . - « o v oo e e e ee et 51
performance e 43, 45
SIZE vttt e e 56
USE - ittt ettt et e 11
xxxSSQRT subprogram
algorithm 38-39
effect of an argument error.................... 39
€ITOT MESSAZE . .. o vov e eenn e 51
performanceiiiiii 45
SIZE . 56
USE .« ittt e e s 8
xxxSTANH subprogram
algorithm 39
effect of an argument error. 39
performance 46
SIZE .« vt e 56
USC .ot e 11
xxxSTNCT subprogram
algorithm, 39-40
effect of an argumenterror..................... 46
EITOT MESSAZES . . - o oo et e e eeneenn. 51,52
performance 43, 46
SIZE .. e 56
U o\ttt e e e e 10
TAN (see xxxSTNCT)
Tangent subprograms. 7, 10, 31-32, 39-40, 56
TANH (see xxxSTANH)
Timing statistics 41-46

Trigonometric subprograms. .. .7, 9-10, 23-26, 29-34, 37-40, 56

Truncation subprograms 7, 13, 56
User-supplied corrective action 16-18
Utility subprograms 16-17, 56, 58-61

C28-6596-4

T8I

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

READER'S COMMENT FORM

Title: IBM System/360 Form: C28-6596-4
FORTRAN IV
Library Subprograms

Your comments assist us in improving the usefulness of our publications; they
are an important part of the input used for technical newsletters and revisions.

Please do not use this form for technical questions about the system; it only
delays the response. Instead, direct your technical questions to your local
IBM representative.

Corrections or clarifications needed:

Page Comment

Please indicate in the space below if you wish a reply:

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

8-6596-4

'OUR COMMENTS, PLEASE . . .

Chis publication is one of a series that serves as a reference source for systems analysts
rrogrammers, and operators of IBM systems. Your answers to the questions on the back of
his form, together with your comments, will help us produce better publications for your
1se. Each reply will be carefully reviewed by the persons responsible for writing and
>ublishing this material. All comments and suggestions become the property of IBM.

’LEASE NOTE: Requests for copies of publicatioris and for assistance in utilizing your IBM sys-
em should be directed to your IBM representative or to the IBM sales office serving your

ocality.

\ttention: PUBLICATIONS

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITER STATES

POSTAGE WILL BE PAID BY . . .

IBM CORPORATION

1271 AVENUE OF THE AMERICAS
NEW YORK, N.Y. 10020

nternational Business Machines Corporation
Jata Processing Division

12 East Post Road, White Plains, N.Y. 10601
USA Only] .

BM World Trade Corporation
121 United Nations Plaza, New York, New York 10017
International] '

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

et esvseeesacesscne

IR

DR P

ceeecscrensne.

sesscssare

Veess sevescecsscccccsesres

aur] STy} SuoTe Ino

