File No. S360-25 ‘
Form No. c28-6639-1 | (J§

y Systems Reference Library

IBM System/360 Operating System
FORTRAN IV (G) Programmer's Guide

Program Number 360S-F0-520

This publication describes how to compile,
link edit, and execute a program written in
IBM System/360 FORTRAN IV Language.

B

Second Edition

This publication is a major revision of, and obsoletes, Form C28-6639-0,
and Technical Newsletters N28-2212, N28-0212, N28-0234, and N28-0236.
New material explains how FORTRAN IV handles exponent overflow and
underflow in floating-point registers. There are also additions and
deletions among input/output messages. Changes to the text are indicat-
ed by a vertical line to the left of the change; revised illustrations
are denoted by the symbol (¢)to the left of the caption.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Publications, 1271 Avenue of the BAmericas,
New York, N.Y. 10020

© International Business Machines Corporation 1966

The purpose of this guide is to enable
programmers to compile, 1link edit, and
execute FORTRAN IV programs under control

of IBM System/360 Operating System. The
FORTRAN IV language is described in the
publication IBM System/360 FORTRAN IV Lan-
guage, Form C28-6515, which is the corequi-
site to this publication.

The Programmer's Guide is organized to
fulfill its purpose at three levels:

1. Programmers who will use the cataloged
procedures as provided by IBM should
read the "Introduction" and "Job Con-
trol Language" sections to understand
the job control statements, the
"FORTRAN Job Processing" section to
understand the use of cataloged proce-
dures, the "Programming Considera-
tions" section to be able to wuse the
FORTRAN language correctly and effi-
ciently, and the "System Output" sec-
tion to understand the listings, maps,
and messages generated by the compil-
er, the linkage editor, and a 1load
module.

2. Programmers who, in addition, are con-
cerned with creating and retrieving
data sets, optimizing the use of 1I/0
devices, or temporarily modifying IBM-
supplied cataloged procedures should
read the entire Programmer's Guide.

3. Programmers concerned with making
extensive use of the operating system
facilities, such as writing their own
cataloged procedures, modifying the
FORTRAN library, or calculating region
size for operating in a multiprogram-
ming environment with a variable num-
ber of tasks, should also read the
entire Programmer's Guide in conjunc-
tion with the following publications,
as required:

IBM System/360 Operating System: System
Programmer's Guide, Form C28-6550

IBM System/360 Operating System: Supervi-

PREFACE

IBM System/360 Operating System: Job Con-

trol Language, Form C28-6539

IBM System/360 Operating System: Utili-

ties, Form C28-6586

IBM System/360: FORTRAN IV, Library Sub-
programs, Form C28-6596

IBM System/360 Operating System:
Editor, Form C28-6538

Linkage

IBM System/360 Operating System: System
Generation, Form C28-6554

IBM System/360 Operating System:
Operator's Guide, Form C28-6540

IBM System/360 Operating System:
Programmer's Guide to Debuggqging, Form
C28-6670

IBM . System/360 Operating System: Messages
and Codes, Form C28-6631

appendixes
fol-

This publication contains
that provide the programmer with the
lowing information:

e Descriptions and explanations of com-
piler invocation from a problem pro-
gram.

¢ Examples of job processing.

e Descriptions and explanations for the
preparation of subprograms written in
assembler language for use with a main
program written in FORTRAN.

o Detailed descriptions of the diagnostic
messages produced during compilation
and load module execution.

¢ A list of USA carriage control charac-
ters. .

¢ Descriptions of the output £from the
debug facility.

For easier reading, the titles of publi-

sor and Data_ Management Services, Form cations referred to in this publication are
C28-6646 abbreviated. For example, references to
the publication IBM System/360 Operating

IBM System/360 Operating System: Storage System: Linkage Editor are abbreviated to

Requirements, Form C28-6551

"Linkage Editor publication."

INTRODUCTION
Job and Job Step Relatlonshlp o .
FORTRAN Processing and Cataloged

ProceduresS o« o« o« o o o o o o o @
Data Sets . ¢« ¢« ¢ ¢ ¢ ¢ ¢ = o o .
Data Set Organization.
Data Set Labels.
Data Set Cataloging.

JOB CONTROL LANGUAGE « « « o o o o @
Job Management « « ¢« ¢ ¢ 4 o o o o o

Coding Job Control Statements. . . .
Name Field. « o o o ¢ o o o o o =«
Operation Field « . « ¢« o ¢ ¢ « «
Operand Field . . . « o« o
Continuing Control Statements .« .
COMMENES. « « o o o o o o o o o =
Notation for Defining Control

Statements <« . ¢ ¢ ¢ 0 e o o . .

JOB Statement. « ¢« o« ¢ ¢ o o o o o .
Name Field. « o o o o o o o o o o«
Operand Field .« ¢« « ¢ o o o o = =

Job Accounting Information . .
Programmer's Name.
Control Statement Messages .

Conditions for Terminating a Job

Exec Statement ¢ ¢ o o o .
Name Field. « « o o o o « o o o «
Operand Field . . ¢ ¢ « ¢« o« ¢« o «

Positional Parameter
Keyword Parameters . « . « « .

Data Definition (DD) Statement . . .
Name Fielde o ¢ ¢ 4 o o o o « o &«
Operand Field « . e .

Retrieving PreV1ously Created
Data Sets « ¢« ¢ ¢« ¢ ¢ o « . .

Delimiter Statement. « « « « « o « «
FORTRAN JOB PROCESSING . « « o o « o«

Using Cataloged Procedures
Compile . « . « . « « o e o =
Compile and Link Edlt c e o e o o
Link Edit and Execute . . . « . .
Compile, Link Edit, and Execute .

compiler ProcessSing. « « « o o o o o
Compiler Nam€. « o« o« « « « o =
Compiler ddnames . « « « o« - .
Compiler Device Classes. . . .
Compiler Options . . . « . . .
Multiple Compilation Within a

JOb Stepe v ¢« ¢ ¢ o o o o o .

Linkage Editor Processing.
Linkage Editor Name.

CONTENTS

Linkage Editor Input and Output.

Linkage Editor ddnames and
Device ClasSsSeS. « « o « « « &
Additional Input « « « « « . .
Linkage Editor Priority. . . .
Multiple Link Editing Within a
Step. . . . « o o -
Other Llnkage Edltor Control
Statements. « e e -
Options for Linkage Edltor
Processing. « . « . ¢« <« « o .

Load Module Execution. « « « « « «
Program Name « . « ¢ « « o o+ o
Execution ddnames.

Reference Numbers for Data Sets

Specified in DEFINE FILE
Statements.
Retrieving Data Sets Written
with Varying FORTRAN Sequence
Numbers .« « = « o ¢ o o = « =
ERR=Parameter. « . . « =+ « =

REWIND and BACKSPACE Statements.

Exrror Message Data Set
Execution Device Classes . . .
DCB Parametere « « o o« o o =

CREATING DATA SETS o« o « ¢ + + = o

Use of DD Statements for Direct-Access

Data SetsS v o« o ¢ o o o ¢ o o o o
Data Set Nam€. o« o o « o & o o o o o
Specifying Input/Output Devices. . .
Specifying Volumes + « o« o o « o + o

Specifying Space on Direct~Access
VOlUMES ¢ v ¢ « o o o o o o o o o =

Label Information. « . « o« « « « «
Disposition of a Data Set. « o « «

Writing a Unit Record Data Set on an
Intermediate Device . . « « « o o

DCB Parametere « o« o o o « o o o «
Referring to Previously Specified
DCB Information. . . .« «. « « « «
Density and Conversion. . « . « .
Record Format . .

Record Length, Buffer Length, Blbck

Length, and Number of Buffers for

Sequential Data Sets . . . -
FORTRAN Records and Loglcal
Records for Sequential Data
SetSe « ¢ ¢ e e v e e e e e
BACKSPACE Operations«

40
41

41

4ée
46
48

ug

49
50

51

51

51

51
52

52

53

Record Length, Buffer Length,
Number of Buffers for Direct
Access Data SetS v v o o« « o o o

DCB RANGES and ASSUMPTIONS. « « <«

CATALOGED PROCEDURES ©w ¢ o « o o o o o
Compile. . . .« . e s e o e
Compile and Llnk Edlt. « o e e =
Link Edit and Execute. .« . . « .
Compile, Link Edit, and Execute.

User and Modified Cataloged Procedures

Overriding Cataloged Procedures. . . .
Overriding Parameters in the
EXEC Statement. . . « o e
Overriding and Addlng DD
Statements. . . ¢ < . . o 0 e .

PROGRAMMING CONSIDERATIONS . « o « o« o«
Storage Locations and Bytes.

Minimum System Requirements for the
FORTRAN Compiler. « « « « o« o o o« « =

Source Program Considerations.
DO Loop Optimization
Indicators and Sense Lights. . .
Boundary Adjustment of Variables

in COMMON Blocks and
EQUIVALENCE GYXOUPSe o« o « o o o
Use of DUMP and PDUMP. « « « « «
Use of ERR Parameter in READ
Statement . . . ¢ ¢
Direct Access Programming. . . .
Direct Access Programming
considerations. « « ¢ ¢ « o . .

Compiler Restrictions. . . « « « « .« &
Library Considerations . « « « « . . .

DD Statement Considerations.
Channel Optimization
I/0 Device Optimization.
Direct-Access Space Optimization

SYSTEM OUTPUT. « o« o o o o o o o o o o

Compiler Output. w « o ¢ « o = o o « &
Source LiSting « o« o o « « o o «
Storage Map. « < o « o s e o e
Object Module Llstlng. « e e e o
Object Module Card Deck. . . . «
Source Module Diagnostics. . . .

Linkage Editor Output. . . . « . . .
Module Map « « « « o « o « o o =
Cross-Reference List + o o @« o« «

Load Module Output « . v « ¢ o o « o »
Error Code Diagnostic Messages
and Traceback « « « « o « « o &

65
66
68
68

Program Interrupt Messages . . .
ABEND DUNP « o o « o o o o o « =
Operator MesSSageS. « « « « ¢ o «

APPENDIX A: INVOKING THE FORTRAN
COMPILER. « « « « o o « o o o o « o =

APPENDIX B: EXAMPLES OF JOB
PROCESSINGe o « o o o o o o o o o o =
Example 1: . « . . ¢ « .+ ¢ « « &
Example 2: . ¢ ¢ ¢ ¢ ¢ 4 o o o @
Example 32 ¢ ¢ ¢« & o o o o o o =

APPENDIX C: ASSEMBLER LANGUAGE
SUBPROGRAMS .+ o« @« o « s o 2 = =+ « o =

Subroutine References. . .
Argument List. . . .
Save Area. .« « « .
Calling Sequence

Coding the Assembler Language

SUbProgram. w « o« o « o « « « o o o «
Coding a Lowest Level Assembler
Language Subprogram « . . « . .

Higher Level Assembly Language
Subprogram.
In-Line Argument List.
Sharing Data in COMMON

Retrieving Arguments from the Argument
LiSte @ ¢ o o o o o o o o o a o a o &
RETURN i in an Assembler
Language Subprogram
APPENDIX D: SYSTEM DIAGNOSTICS. . . .
Compiler Diagnostic Messages
Compiler Error/Warning Messages.
Compiler Status Messages

Load Module Execution Diagnostic

MESSAgeS. « o w ¢ o o e s e o o e o .
Program Interrupt Messages . . .
Execution Error Messages
Operator MessageS. « « « « o « o

APPENDIX E: EXTENDED USA CARRIAGE
CONTROL CHARACTERS. « o « « @« o o « o

APPENDIX F: DEBUG FACILITYe o « « « =
Debug Statement. . « . < ¢ = « . < < &
TLXACE «¢ « « o« o o o s o o o o« o =
SUDLXacCe w o« o o o « o = o o o = =
Inite v o o @ o o ¢ o o o o o o o
SubChk. o« o o ¢ & ¢ ¢ o o & o = = &
Display Statement. « « « « o « « « =« .
Special Considerations . . « <« « o « .

INDEXe « ¢ o o o o o 2 o o = o o = = =

. 94

. 96

«101

.102
102
.104
.109

.110
.111
.111
.111
~111
<111
.111
111
112

.113

FIGURES

Figure 1.
Figure 2.
Formats « o« ¢ o o o o o o o o o o

Rocket Firing Job
Job Control Statement

Figure 3. JOB Statement . . <«
Figure 4. Sample JOB Statements . . .
Figure 5. EXEC Statement. o
Figure 6. Sample EXEC Statements . .

Figure 7. Compiler and Linkage
Editor OptionS. « « « « ¢ « o o o « &
Figure 8. Data Definition Statement.
Figure 9. DD Statement Parameters . .
Figure 10. Examples of DD Statements
for Unit Record Devices . « « ¢ « « .
Figure 11. Retrieving Previously
Created Data S€tS « o« « o o =« ¢ o « =
Figure 12. Delimiter Statement. . . .
Figure 13. Invoking the Cataloged
Procedure FORTGCe v « « o« o o o o o
Figure 14. Compiling a Single Source
MOAULE: o ¢ ¢ o o o o o o o o o o o =
Figure 15. Compiling Several Source
ModulesS <« v &« o o o o o « s o o o o =
Figure 16. Invoking the Cataloged
Procedure FORTGCL « « « o o = o o < «
Figure 17. Invoking the Cataloged
Procedure FORTGLG . & « « .«
Figure 18. Link Edit and Execute
Several Object Modules in the Input
StreamMe o« « « o o o o o o o o o o o =
Figure 19. Link Edit and Execute
Several Object Modules in a Cataloged
Data Sete ¢ ¢ ¢ ¢ ¢ o o o o o o o o
Figure 20. Invoking the Cataloged
Procedure FORTGCLG. . . .
Figure 21. Single Complle, Llnk Edlt
and Execute . . o« o o e e
Figure 22. Batched Complle, Link
Edit, and Execute . . ¢ ¢« ¢« 2 2 o o .
Figure 23. Compiler Options. . « « . .
Figure 24#. Multiple Compilation
Within a Job Step &« &« ¢« « ¢ ¢ o & . .
Figure 25. Linkage Editor Input and
OUtpPUt. « ¢ ¢ o ¢ o o o o « o « o o =

Figure 26. Linkage Editor Example . .
Figure 27. Tape Output for Several
Data Sets Using Same Data Set

Reference Number. « e e e
Figure 28. DD Parameters for Creating
Data Sets e e o o o
Figure 29. Examples of DD Statements.
Figure 30. FORTRAN Record (FORMAT
Control) Fixed-Length Specification .
Figure 31. FORTRAN Record (FORMAT
Control) With Fixed-Length
Specification and FORTRAN Record
Length Less Than BLKSIZE.« .
Figure 32. FORTRAN Record (FORMAT
Control) Variable-Length
Specification « « ¢ . ¢ e 4 4 e o o .

« o ¢ o

30
30
31
31

31

31
32
32

32
34

35
37
39
43

47
48

53

54

54

ILLUSTRATIONS

Figure 33. FORTRAN Record@ (FORMAT
Control) With Variable-Length
Specification and the FORTRAN Record
Length Less Than (LRECL-4). & « « . .

Figure 34. FORTRAN Record (FORMAT
control) With Undefined Specification
and the FORTRAN Record Length Less
Than BLKSIZE. « « « o« e

Figure 35. leed—Length Blocked
Records Written Under FORMAT Control.

Figure 36. Variable-Length Blocked
Records Written Under FORMAT Control.

Figure 37. Format of a Block Control
WOrde ¢« o o o o o = o o o o o o = =« =

Figure 38. Format of Segment Control
WOrd. o o o o o o o o o o s o = o « =
Figure 39. Variable-length Unblocked

Records, No FORMAT Control, One
Record Segment. « . . .

Figure 40. Varlable—length Unblocked
Records, No FORMAT Control, Two
Record Segments « « « ¢« o o o o .

Figure 42. Logical Record (No FORMAT
Control) for Direct AccesSS. . « . « .

Figure 43. Compile Cataloged
Procedure (FORTGC). . . . - - .

Figure 44. Compile and Llnk Edlt
Cataloged Procedure (FORTGCL)

Figure 45. Link Edit and Execute
Cataloged Procedure (FORTGLG)

Figure 46. Compile, Link Edit, and
Execute Cataloged Procedure
(FORTGCLG)e v « o 2 o o o o = « « o =

Figure 47. Record Chaining. . . « . .

Figure 48. Writing a Direct Access
Data Set for the First Time

Figure 49. DD Statement Parameters
for Optimization. .~ « o .

Figure 50. Sample FORTRAN IV Program.
Figure 51. Source Module Listing. . .
Figure 52. Storage Map. « « « « « « &
Figure 53. Object Module Listing. . .
Figure 54. Object Module Deck
SEYUCEUZE « ¢ ¢ ¢ o o« o o a o o = = &
Figure 55. Format of Diagnostic

MESSAgESe « o o o o o o o = = = « * =
Figure 56. Module Map . « « « « « = &
Figure 57. Linkage Editor

Cross-Reference List.« . e .
Figure 58. Sample Traceback for

Execution-Time Errors« . .
Figure 59. Input/Output Flow for :

Example 1 « e o = =
Figure 60. Job Control Statements for

Example 1 ¢ ¢ 4 o o ¢ o o o o o = =
Figure 61. Job Control Statements for

EXample 2 ¢ ¢ o o o o o o o o s = o o
Figure 62. Block Diagram for Example

1
Figure 63. Job Control Statements for

Example 3 & ¢ ¢ ¢ o o o o ¢ o o o o o

54

54
55
55
56
56

57

57
58
62
63
63
65
71
73
74
76
77
78
80

81
81

82
83
86
87
87
90
921

Figure 64,

3. .

Figure 65.
Figure 66.
Lowest Level Subprogram

TABLES

Table

1.

Table 2.
Table 3.
Table 4.

Compiler ddnames and Device Classes

Table 5.

Table

Linkage Editor ddnames and Possible

6.

FORTRAN Coding for Example

Save AY€A. « o« o = o

Linkage Conventions for

Job Control Statements
Compiler ddnames . . .
Device Class Names . .
Correspondence Between

Linkage Editor ddnames
Correspondence Between

Device ClaSSeSe o « o o o o « «

Table
Table

7.
8.

Load Module ddnames .
Data Set References .

91
93

94

12
33
33

33

38
49

Figure 67.

Subprogram.
Figure 68.
Figure 69.

Example . .

Table 9.
Table 10.

Higher Level Assembler

In-Line Argument List.

Assembler Subprogram

DEN Subparameter Values.

Specifications Made by the
FORTRAN Programmer for Record Types

and Blocking.

DCB Parameter

: Device

Table 11. BLKSIZE Ranges
Considerations. . . .

Table 12. Load Module
Default Values.

Table 13. sStorage All

Table 14. Linkage Registers .
Table 15.

Format.

-

ocation. . . .

Dimension and Subscript

-

-

52

53
59
60
93
926

The IBM System/360 Operating System (the
operating system) consists of a control
program and processing programs. The con-
trol program supervises execution of all
processing programs, such as the FORTRAN
compiler, and all problem programs, such as
a FORTRAN program. Therefore, to execute a
FORTRAN program, the programmer must first
communicate with the operating system. The
medium of communication between the pro-
grammer and the operating system is the job
control language.

The programmer uses job control state-
ments to define two units of work to the
operating system: the job and the job step,
and to define the files (data sets) used in
these jobs and job steps. He defines a job
to the operating system by wusing a JOB
statement; a job step by wusing an EXEC
statement; and a data set by wusing a DD
statement.

JOB AND JOB STEP RELATIONSHIP

To the operating system, a job consists
of executing one or more job steps. In the
simplest case, a job consists of one job
step. For example, executing a FORTRAN
main program to invert a matrix is a job
consisting of one job step.

In more complex cases, one Jjob may
consist of a series of Jjob steps. For
example, a programmer is given a tape

containing raw data from a
he must transform this
series of graphs and reports.
may be defined:

rocket firing:
raw data into a
Three steps

1. Compare the raw data to projected data
and eliminate errors which arise
because of .intermittent errors in
gauges and transmission facilities.

2. Use the refined data and a set of
parameters as input to a set of equa-
tions, which develop values for the
production of graphs and reports.

3. Use the values to plot the graphs and

print the reports.

Figure 1 illustrates the rocket firing
job with three job steps.

INTRODUCTION

In the previous example, each step could
be defined as a separate job with one job

step in each job. However, designating
related job steps as one 3job 1is more
efficient: processing time 1is decreased

because only one job is defined, and inter-
dependence of job steps may be stated.

(The interdependence of Jjobs cannot be
stated.)
Raw
Data
Projected Job Step 1:
Data Refine Data
Refined
Data
P Job Step 2:
arameters Develop Values
Job Step 3:
Generate
Graphs and
Reports
Graphs
and
Figure 1. Rocket Firing Job

FORTRAN PROCESSING AND CATALOGED PROCEDURES

When a programmer writes a FORTRAN pro-
gram, the objective is to obtain a problem
solution. However, before the program can
provide this solution, the program itself
must undergo processing. The source pro-
gram (source module) is compiled to give an
object module; and the object module is
link edited to give a load module. This
load module is then executed to give the
desired problem solution.

If each of the three steps involved in
processing a FORTRAN module is a job step
in the same job, a set of job control
statements that consists of one EXEC state-
ment and one or more DD statements is
required for each step. Because writing
these job control statements can be time-
consuming work for the programmer, IBM
supplies cataloged procedures to aid in the

Introduction 9

processing of FORTRAN modules. A cataloged
procedure consists of a procedure step or a
series of procedure steps. Each step
contains the necessary set of job control
statements to compile or to link edit or to
execute a FORTRAN module. (Note: A JOB
statement cannot be cataloged.)

Four FORTRAN cataloged procedures are
supplied by IBM., These four cataloged
procedures and their uses are:

FORTGC compile

FORTGCL compile and link edit

FORTGLG link edit and execute

FORTGCLG compile, link edit, and execute

Any of the cataloged procedures can be
invoked by an EXEC statement in the input
stream. In addition, each of the proce-
dures can be temporarily modified by this
EXEC statement and any DD statements in the
input stream; this temporary modification
is called overriding.

DATA SETS

For FORTRAN processing, a programmer
uses DD statements to define the particular
data set(s) required for a compile, link
edit, or execute step. In the operating
system, a data set is a named, organized
collection of one or more records that are
logically related. For example, a data set
may be a source module, a 1library of
mathematical functions, or the data proc-
essed by a load module.

Data Set Organization

A data set is a named collection of

data. Several methods are available for
internally organizing data sets. Three
types of data sets are accessible in FOR-

TRAN processing: sequential data sets, par-
titioned data sets, and direct access data
sets.

A sequential data set is organized in
the same way as a data set that resides on
a tape volume, but a sequential data set
may reside on any type of volume. The
compiler, linkage editor, and load modules
process sequential data sets. The compiler
uses the queued sequential access method
(QSAM) for such processing, and load
modules use the basic sequential access
time method (BSAM) for object time I/0
operations.

10

A partitioned data set (PDS) is composed
of named, independent groups of sequential
data and resides on a direct access volume.
A directory index resides in the PDS and
directs the operating system to any group
of sequential data. Each group of sequen-
tial data is called a member. (A nember of
a PDS is not a data set.) Partitioned data
sets are used for storage of any type of
sequentially organized data. In particu-
lar, they are used for storage of source
and load modules (each module is a member).
In fact, a load module can be executed only
if it is a member of a partitioned data
set. A PDS of load modules is created by
either the 1linkage editor or a utility
program. A PDS is accessible to the 1lin-
kage editor; however, only individual mem-
bers of a PDS are accessible to the compil-
er. Members of a PDS are not accessible to
a FORTRAN load module.

The FORTRAN library is a cataloged PDS
that contains the 1library subprograms in
the form of load modules. SYS1.FOKTLIB is
the name given to this PDS.

A direct _access_data set contains
records that are read or written by speci-
fying the position of the record within the
data set. When the position of the record
is indicated in a FIND, READ, or WRITE
statement, the operating system goes
directly to that position in the data set
and either retrieves, reads, or writes the
record. For example, with a sequential
data set, if the 100th record is read or
written, all records preceding the 100th
record (records 1 through 99) must be
transmitted before the 100th record can be
transmitted. With a direct access data set
the 100th record can be transmitted direct-
ly by indicating in the I/O statement that
the 100th record is to be transmitted.
However, in a direct access data set,
records can only be transmitted by direct
access I/0 statements; they cannot be
transmitted by sequential I/0 statements.
Records in a direct access data set can be
transmitted sequentially by using the asso-
ciated variable in direct access 1/0 state-
ments.

A direct access data set must reside on
a direct access volume. Direct access data
sets are processed by FORTRAN load modules;
the compiler and linkage editor cannot
process direct access data sets. Load
modules process data sets of this type with
the basic direct access method (BDAM).

Saying that a data set 1is sequential, .
partitioned, or direct access reflects its
organization. Saying that a data set is
cataloged or that it is a generation data
set reflects a method of retrieving the

data set. Sequential, partitioned, and
direct access data sets can be cataloged;
however, an individual member of a PDS
cannot be cataloged because a member is not
a data set. A generation data set can only
be a sequential or direct access data set;
a generation data set cannot be a PDS or a
member of a PDS. (see the section "Job
Control Language" for information on how to
specify a generation data set.)

Data Set Labels

Data sets that reside on direct-access

volumes have standard 1labels only; data
sets that reside on magnetic tape volumes
can have standard labels or no labels.
Information, such as a data set identifier,

volume sequence number, record format, den-

etc., is stored in the data set

The information required in the DD
statement used to retrieve a 1labeled data
set 1is substantially less than that
required to retrieve an unlabeled data set.

sity,
labels.

Data Set Cataloging

To zrelieve the programmer of the burden
of remembering the volume on which a par-
ticular data set resides, the operating
system provides a cataloging facility.
When a data set is cataloged, the serial
number of its volume is associated in the
catalog with the data set name. A program-
mer can refer to this data set without
specifying its physical location. Any data
set residing on a direct-access or magnetic
tape volume can be cataloged.

Introduction 11

JOB CONTROL LANGUAGE

The FORTRAN programmer uses the job
control statements shown in Table 1 to
compile, link edit, and execute programs.

Table 1.

r——- T
| Statement
L 4

Job Control Statements

Function

T T

| JOB |]Indicates the beginning of a

| |new job and describes that job.
L

e e L |

I
| |Indicates a job step and de-|
| |scribes that job step; indi-|
| |cates the cataloged procedure]
| |or 1load module to be executed.|
= 1
DD |Describes data sets, and con-
|trols device and volume assign-
| ment.
N

b e — — s

sets in the]
| input stream from control]
|statements; it appears after|
|each data set in the input|

| stream. |
L

|

|

|

t }
|delimiter|Separates data
[

|

|

|

L J

JOB_MANAGEMENT

Job control statements are processed by
a group of operating system routines known
collectively as job management. Job man-
agement routines interpret control state-

ments, control the flow of jobs, and issue
messages to both the operator and the
programmer. Job management has two major
components: a job scheduler and a master
scheduler.

The specific facilities available
through the job scheduler and the master

scheduler depend on the scheduling level
the installation selects during system gen-

appearance in the input stream. Operating
systems with a primary control program
(PCP) and those that provide multiprogram-
ming with a fixed number of tasks (MFT) use
sequential schedulers.

Priority schedulers process jobs accord-
ing to their relative priority and availa-
ble system resources, and can accept input
data from more than one input stream.
Systems that provide multiprogramming with
a variable number of tasks (MVT) use prior-
ity schedulers.

CODING JOB CONTROL STATEMENTS

Job control statements are identified by
the initial characters // or /% in card

columns 1 and 2, and may contain three
fields -- name, operation, and operand (see
Figure 2).
NAME FIELD

The name contains between one and eight
alphameric or national characters, the
first of which must be alphabetic. The
name begins in card column 3 and is fol-

lowed by one or more blanks to separate it
from the operation field. The name is used
in the following ways:

1. To identify the control statement to

the operating system.

2., To enable other control statements in

eration. Schedulers are available at two the job to refer to information con-
levels ~- the sequential scheduler and the tained in the named statement.
more powerful priority scheduler.
3. To relate DD statements to

Sequential schedulers process job steps, input/output statements in the 1load
one at a time, in the order of their module.
r - 1 1
] FORMAT } APPLICABLE CONTROL STATEMENTS |
5 ; + -1
| //Name Operation Operand [Comment] }JOB,EXEC,DD i
|77 Operation Operand [Comment] | EXEC, DD |
|7* [Comment] |delimiter |
L 4 J

Figure 2. Job Control Statement Formats

12

OPERATION FIELD

The operation field contains one of the
following operation codes:

JOB
EXEC
DD

If the statement is a delimiter state-
ment, the operation field is blank. The
operation code is preceded and followed by
one or more blanks.

OPERAND FIELD

The operand field contains the parame-
ters that provide required and optional
information to the operating system.

Parameters are separated by commas, and the
operand field is ended by placing one or
more blanks after the 1last parameter.
There are two types of parameters; posi-
tional and keyword.

Positional Parameters: Positional parame-
ters are placed first in the operand field
and must appear in the specified order. If
a positional parameter is omitted and other
positional parameters follow, the omission
must be indicated by a comma.

Keyword Parameters: Keyword parameters
follow positional parameters in the operand
field. (1f no positional parameters
appear, a keyword parameter can appear
first in the operand field; no leading
comma is required.) Keyword parameters are
not order dependent, i.e., they may appear
in any order. If a keyword parameter is
omitted, a comma is not required to indji-
cate the omission.

Subparameters: Subparameters are either
positional or keyword and are noted as such
in the definition of control statements.

Positional subparameters appear first in
a parameter and must appear in the speci-
fied order. If a positional subparameter
is omitted and other positional subparame-
ters follow, the omission must be indicated
by a comma.

Keyword subparameters follow positional
subparameters in a parameter. (If no posi-
tional subparameters appear, a keyword sub-
parameter can appear first in the parame-
ter; no leading comma is required.) Key-
word subparameters are not order dependent,
i.e., they may appear in any order. If a
keyword subparameter is omitted, a comma is
not required to indicate the omission.

CONTINUING CONTROL STATEMENTS

A control statement can be written in
card columns 1 through 72. If a control
statement exceeds 71 columns, it may be
continued onto the next card. The continu-
ation must be interrupted after the comma
that follows the last parameter on the card
and a nonblank character must be placed in
column 72. The continuation card must
contain // in columns 1 and 2, blanks in
columns 3 through 15, and the continued
portion of the statement must begin in
column 16.

Note: Excessive continuation cards should
be avoided whenever possible to reduce
processing time for the control program.

COMMENTS

Comments must be separated from the last
parameter (or the * in a delimiter
statement) by one or more blanks and may
appear in the remaining columns up to and
including column 71.

However, comments may be continued by
placing a nonblank character in column 72,
// in columns 1 and 2 of the continuation
card, and continuing the comment in any
column after column 15 (columns 3-15 must
be blank). There is no limit to the number
of continuation cards that may be used for
a single control statement or comment.
Also, there 1is no limitation placed upon
the number of comment cards that may be
contained in the source program.

NOTATION FOR DEFINING CONTROL STATEMENTS

The notation used in this publication to
define control statements is described in
the following paragraphs.

1. The set of symbols listed below are
used to define control statements, but
are never written in an actual state-

ment.

a. hyphen -

b. or |

¢. underscore _
d. Dbraces {1
e. Dbrackets [1
f. ellipsis .o
g. superscript 1

The special uses of these symbols
explained in paragraphs 4-10.

are

Job Control Language 13

14

Uppercase letters and words, numbers,
and the set of symbols 1listed below
are written in an actual control
statement exactly as shown in the
statement definition. (Any exceptions
to this rule are noted in the defini-
tion of a control statement.)

a. apostrophe '
b. asterisk *

c. comma R
d. equal sign =
e. parentheses)
f. period .
g. slash /

Lowercase letters, words, and symbols
appearing in a control statement defi-
nition represent variables for which
specific information is substituted in
the actual statement.

Example: If "name" appears in a state-
ment definition, a specific value
(e.g., ALPHA) is substituted for the
variable in the actual statement.

Hyphens join lowercase letters, words,
and symbols to form a single variable.

Example: If "member-name" appears in a
statement definition, a specific value
(e.g., BETA) is substituted for the
variable in the actual statement.

Stacked items or items separated from
each other by the "or" symbol rep-
resent alternatives. Only one such
alternative should be selected.

Example: The two representations
A

B and A|B|C
C

have the same meaning and indicate
that either A or B or C should be
selected.

An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

Example: The two representations
A

B and A|B|C
C

have the same meaning and indicate
that either A or B or C should be
selected; however, if B 1is selected,
it need not be written, because it is
the default option.

Braces group related items, such as
alternatives.

Example:
ALPHA=({A|B|C},D)

Indicates that a choice should be made
among the items enclosed within the
braces. If A is selected, the result
is ALPHA=(A,D). If C is selected, the
result can be either ALPHA=(,D) or
ALPHA=(C,D).

8. Brackets also group related items;
however, everything within the brack-
ets is optional and may be omitted.

Example:
ALPHA=([A|B|C],D)

indicates that a choice can be made
among the items enclosed within the
brackets or that the items within the
brackets can be omitted. If B is
selected, the result is ALPHA=(B,D).
If no choice is made, the result is
ALPHA=(,D).

9. An ellipsis indicates that the preced-
ing item or group of items can be
repeated more than once in succession.

Example:
ALPHA(,BETAl...

indicates that ALPHA can appear alone
or can be followed by ,BETA repeated
optionally any number of times in
succession.

10. A superscript refers to a prose de-
scription in a footnote.

Example: (NEW)?1
OLD‘
MOD

indicates that additional information
concerning the grouped items is con-
tained in footnote number 1.

11. Blanks are used to improve the reada-
bility of control statement defini-
tions. Unless otherwise noted, blanks
have no meaning in a statement defini-
tion.

JOB_STATEMENT

The JOB statement (Figure 3) is the
first statement in the sequence of control
statements that describe a job. The JOB
statement contains the following informa-
tion:

1. Job name.

2. Accounting information relative to the
job.

3. Programmer's name.

4., Whether the job control statements are
printed for the programmer.

5. conditions for terminating the execu-
tion of the job.

6. A job pfiority assignment.

7. Output class

for priority scheduler
messages. *

8. Specification of main storage require-
ments for a job.

Examples of the JOB statement are shown

in Figure 4.

NAME FIELD

The "jobname" must always be specified;
it didentifies the Jjob to the operating
system. No two jobs being handled concur-
rently by a priority scheduler should have
the same "jobname."

OPERAND FIELD

Job Accounting Information

The first positional parameter can con-

tain the installation account number and
any parameters passed to the installation
accounting routines. These routines are

written by the installation and inserted in
the operating system when it is generated.
The format of the accounting information is
specified by the installation.

As a system generation option with
sequential schedulers, the account number
can be established as a required parameter.
With priority schedulers, the requirement
can be established with a cataloged proce-
dure for the input reader. (Information on
how to write an accounting routine may be
found in IpM_System/360 Operating System:
Systems Programmer's Guide.) Otherwise,
the account number is optional.

Programmer 's Name

The "programmer name" 1is the second
positional parameter. If no job accounting
information is coded, its absence must be
indicated by a comma preceding the
programmer's name. If neither job account-
ing information nor programmer's name is
present, commas need not be used ¢to indi-
cate their absence.

This parameter is optional unless it is
made mandatory at the installation in the
same way as job accounting information is
made mandatory.

Ccontrol Statement Messages

The MSGLEVEL parameter indicates the
type of control statement messages the
programmer wishes to receive from the con-

trol program.

MSGLEVEL=0
indicates that only control statement
errors and diagnostic messages are

written for the programmer.

MSGLEVEL=1
indicates that all control statements
as well as control statement errors
and diagnostic messages are written
for the programmer.

occurs on a control
statement that is continued onto one or
more cards, only one of the continuation
cards is printed with the diagnostic messa-
ges.

Note: If an error

conditions for Terminating a Job

At the completion of a job step, a code
is issued indicating the outcome of the job

step. The generated code is tested against
the conditions stated in control state-
ments. The error codes generated by the

FORTRAN compiler are:
0 - No errors or warnings detected.

4 - Possible errors (warnings) detected,
execution should be successful.

8 - Errors detected, execution may fail.
Compilation continues regardless of
the errors. If a LOAD option has been
specified, a LOAD module will be sup-
plied unless the error code generated
is greater than the error level speci-
fied by the programmer.

Job control Language 15

T T
Name |Operation|Operand
]

|
//jobname | JOB

Positional Parameters

[({account-number] [, accounting-information]) i, 2, 3}
[, programmer-namel] 4, 5, 6

Keyword Parameters

MSGLEVEL=1
[COND=((code,operator) [, (code,operator)l...7) 8]
[PRTY=nn]?®

[MSGCLASS=x]9°

— —— —— —— ———— —— — —— ——. ‘S— t— tan el S o

[REGION=nnnnnkl]®

e — i S — e S . S . S S i, S et . e, St S GO e S

T
I
|
|
|
!
|
|
I;M.S&IEV_EL-:Q
I
|
|
I
|
|
!
|
I
1

o e . o et o o e S e e . i e

~———
|1If the information specified ("account-number" and/or "accounting-information") con-|
| tains blanks, parentheses, or equal signs, it must be delimited by apostrophes instead|
| of parentheses. |
|21f only "account-number" is specified, the delimiting parentheses may be omitted. |
| 3The maximum number of characters allowed between the delimiting parentheses or|
| apostrophes is 144.

|4If “"programmer-name" contains commas, parentheses, apostrophes, or blanks, it must be|
| enclosed within apostrophes.

| 5When an apostrophe is contained within "programmer-name", the apostrophe must be shownj|
| as two consecutive apostrophes.

| The maximum number of characters allowed for "programmer-name" is 20.

| 7The maximum number of repetitions allowed is 7.

|8If only one test is specified, the outer pair of parentheses may be omitted.

|°This parameter is used by the priority scheduler only. The sequential scheduler
| ignores it.

L

Figure 3. JOB Statement

[——

IBM . 80 Column Key Punch Layout
FAWE ’n_m BLDG. PHONE NO. PROJECT NO. 'lezfr lt L] |PROJECY NAME ‘l DATE DUE OUT IsNE!r_or_
123]4]5 illbl?lullx 13{14{15[16]17{18 24 33| 34| 38| 36! 37| 38! 39|a0] 41| a2 43| 4s! 5| ac] 47{ 48] 45| 50| 51] 52) 53! 54 55! 56] 7376|727 78|
1] le.
rari 4 J_Bllﬂ"l’ﬁjlf)‘l.slﬁ ral? lal} = (12 4lLIT) aMS VIEL 2/2
_L .

/ 2/F]=[2/21s'd] (2lsiniry s a1l Pl 1

i iR duRRNANARRA(ARRNRRRR

Figure 4. Sample JOB Statements

12 - Severe errors detected, execution is tionship between the code placed in the JOB
impossible. statement and the codes issued by completed
job steps. If the relationship is true,
16 - Terminal errors detected, compiler the job is terminated. The six operators
operation terminated. (If a terminal and their meanings are:
error is detected during load module exe-
cution, a 16 is issued.)

Operator Meaning
The COND parameter specifies conditions GT greater than
under which a job is terminated. Up to GE greater than or equal to
eight different tests, each consisting of a EQ equal to
code and an operator, may be specified to NE not equal to
the right of the equal sign. The code may LT less than
be any number between 0 and 4095. The LE less than or equal to

operator indicates the mathematical rela-

16

For example, if a code 8 is returned by
the compiler and the JOB statement con-
tains:

COND=(7,LT)

the job is terminated.

If more than one condition is indicated
in the COND parameter and any condition is
satisfied, the job is terminated.

Assigning Job_Priority (PRTY):
(Used by Priority Schedulers Only)

To assign a priority other than the
default job priority (as established in the
input reader procedure), PRTY=nn must be
coded in the operand field of +the JOB
statement. The term "nn" is to be replaced
with a decimal number from 0 through 14
(the highest priority number is 14).

Whenever possible, avoid using priority
14. This is used by the system to expedite
processing of exceptional jobs. It is also
intended for other special uses by <future
features of systems with priority schedul-
ers.

If the PRTY parameter 1is omitted, the
default job priority is assumed.

Requesting a Message Class (MSGCLASS) :
(Used by Priority Schedulers Only)

With a quantity and diversity of data in
the output stream, an installation may want
to separate different types of output data
into different classes. Each class is
directed to an output writer associated
with a specific output unit. The
MSGCLASS=x parameter allows the messages
issued by the job scheduler to be routed to
an output class other than the normal
message class, A. Replace the letter "x"
with an alphabetic or numeric character.
An output writer, which is assigned to
process this class, will transfer this data
to a specific device.

Specifving Main Storage Requirements for a
Job (REGION):
(Used by Priority Schedulers Only)

REGION=nnnnnK can be specified to indi-
cate the amount of main storage to be
allocated to the job. Replace the term

"nnnnn” with the number of 1024-byte areas

to be allocated to the job; e.g.,
REGION=100K. This number can range from
one to five digits and cannot exceed

16,384,

If the REGION parameter is omitted, the
default region size (as established in the
input reader procedure) is assumed.

Note: If different region sizes are to be
specified for each step in the job, the
REGION parameter should be coded in the
EXEC statement associated with each step
instead of in the JOB statement.

EXEC STATEMENT

The EXEC statement (Figure 5) indicates
the beginning of a job step and describes
that Jjob step. The statement can contain
the following information:

1. Name of the job or procedure step.

2. Name of the cataloged procedure or
load module to be executed.

3. Compiler and/or linkage editor options
passed to the job step.

4., Accounting information relative to
this job step.

5. CcConditions for bypassing the execution
of this job step.

6. A time 1limit for the job step or an
entire cataloged procedure.

7. Specification of main storage require-
ments for a job step or an entire
cataloged procedure.

Example 1 of Figure 6 shows the EXEC
statement used to execute a program. Exam-
ple 2 in Figure 6 shows an EXEC statement
that invokes a cataloged procedure.

NAME FIELD

The "stepname" is the name of the job
step or procedure step. It is required
when information from this job step is

referred to in a later job step.

Job Control Language 17

r f
|Name !

"r)
= -—+

|

|

Operation| Operand !

e

Positional Parameter
| ,
// [stepnamel? | EXEC

cataloged-procedure-name
PGM=program-name

PGM=%*, stepname.ddname s
.PGM=% ., stepname. procstep.ddname,

PROC=cataloged-procedure-name Z

Keyword Parameters

}PARM |]
| { PARM. procstep2} =(option[,optionl...) 3, 4,5

iACCT 2
ACCT.procstep2{=(accounting-information)3, 6,7
COND

_COND.procstep2;=((code,operator[,stepname[.procstep]])
[, (code,operatorl,stepnamel.procstepll)]...8)?]

iTIME g 10, 12
TIME.procstep?2 = (minutes, seconds)

ﬁREGION |

10
REGION.procstep?2 = nnnnnkK]

o s e s . e e e e e e s —— . — — . — — ——— ———

o e e e e e

11f information from this control statement is referred to in a later job step,
"stepname" is required.

21f this format is selected, it may be repeated in the EXEC statement, once for each|
step in the cataloged procedure.]
3If the information specified contains blanks, parentheses, or equal 31gns, it must be|
delimited by apostrophes instead of parentheses.

“If only one option is specified and it does not contain any blanks, parentheses, or|
equal signs, the delimiting parentheses may be omitted.

SThe maximum number of characters allowed between the delimiting apostrophes or|
parentheses is 40. The PARM parameter cannot occupy more than one card.
6If T"accounting-information" does not contain commas, blanks, parentheses, or equal|
signs, the delimiting parentheses may be omitted.

7The maximum number of characters allowed between the delimiting apostrophes or|
parentheses is 144. ’

8The maximum number of repetitions allowed is 7.

9If only one test is specified, the outer pair of parentheses may be omitted.

|19This parameter is used by priority schedulers only. Sequential schedulers ignore it.
|+2If only minutes are given, the parentheses need not be used. If only seconds are

| given, the parentheses must be used and a comma must precede the seconds.

L

Figure 5. EXEC Statement

. e, el . — — — . S— — S— — — — — T— — ——— ———" — —— — — — i a—]

I
[
|
I
I
I
|
I
|
I
|
|
I
|
|
I
|
|
|
|
I
I
|
I.
|
|
I
I
I
|
|
I
I
|
I
|
|
|
|
I

e e e . o ——

OPERAND FIELD gram from a previous job step of the same
job.

Positional Parameter
. Specifying a Cataloged Procedure:

The options in the positional parameter iPROC-cataloged-procedure—name;
of an EXEC statement specify either the cataloged-procedure-name

name of the cataloged procedure or program indicate that a cataloged procedure is

to be executed. invoked. The "cataloged procedure
name" is the name of the cataloged

Each program (load module) to be execut- procedure. For example,

ed must be ..a member of a library (PDS).

The library can be the system library // EXEC PROC=FORTGC

(SYS1.LINKLIB), a private 1library, or a or

temporary library created to store a pro- // EXEC FORTGC

18

IBM 80 Column Key Punch Layout

NAME 10:91-. Eu;c. |PHONE NO. lrno::cr NG. I rnlo.uzcl:r |io. L I_Pm»u ‘[nAr: DUE OUT]su:z'r__op
1|2)3]|4|s Sl 7]3 9]101112131‘1516171!»4 0§21 23242525272329!0il3233343536373339404142“444546‘47484§50§ISH53545556-: 61| 67(68(69(70171(72({73(74 76{77|78(79/80,
Elxla i1 L
/ ﬁgF y cler=i¢ QF,Q 7);¢oﬂp=(7our)sv =2dgfs REGTION= i
lElxla |
/ 4 orz"r‘ﬁd 2 i
1z RM-lroRT =" NecK s MAF s Lizls 775
AlRH. L D= xREF]) L
lonD. Kelp= (72 LTl STEPH, ! 3 .
canp. l6a=ldc 7 allTsla Tel P [keD) 3 (7 o LiTs STiePdl, IForm) Dls
l ceTelilddilA BN
L l HERRRE |
eFigure 6. Sample EXEC Statements
indicates that the cataloged procedure //MCLX JOB , JOHNSMITH,COND=(7,LT)
FORTGC is to be executed. .
Specifying a Program in a Library: //STEP4 EXEC PGM=IEWL
//SYSLMOD DD DSNAME=MATH(ARCTAN)
PGM=program-name .
indicates that a program is executed. .
The "program name" is a member name of .
a load module in either the system //STEP5 EXEC PGM=*.STEP4.SYSLMOD

library (SYS1.LINKLIB) or a private
library. For example,
statement STEP5 indicates +that the
name of the program is taken from the
// EXEC PGM=IEWL DD statement SYSLMOD in Jjob step
STEP4. Consequently, the load module
ARCTAN in the PDS MATH is executed.
indicates that the load module IEWL is
executed. (A load module in a private
library is identified to the operating
system through the use of a JOBLIB DD
statement. See the discussion con-
cerning JOBLIB under "Data Definition

(DD) Statement" in this section.) Specifying a Program Described in a Cata-

loged Procedure:

Specifying a Program Described in a Pre-
vious Job Step:

PGM=*.stepname.procstep.ddname
indicates that the name of the program
to be executed is taken from a DD
statement of a previously executed
step of a cataloged procedure. The *
indicates the current job; "stepname"
is the name of the Jjob step that

PGM=*%, stepname.ddname
indicates that the name of the program
to be executed is taken from a DD
statement of a previous job step. The

* indicates the current job; -
"stepname" is the name of a previous ﬁnzggzge Jthe z;taloged procedure;
step within the current Jjob; and P P~ 15 € name of a step

within the procedure; "ddname" is the

"ddname" is the name of a DD statement name of a DD statement within th
n e

within that revious job step. (The

"stepname" cangot referjto a jgb step procedure step. (The "sStepname" can-
in another job.) The program referred QOE refer to a job step in another
to must be a member of a PDS. For %o -) For example, consider a cata-
example, in the statements, oged procedure FORT,

Job Control Language 19

//COMPIL EXEC PGM=IEYFORT
//SYSPRINT DD SYSOUT=A
//SYSPUNCH DD UNIT=SYSCP

//SYSLIN DD DSNAME=LINKINP

-

//LKED EXEC
//SYSLMOD DD

PGM=IEWL
DSNAME=RESULT (ANS)

Furthermore, assume the following
statements are placed in the input
stream.

//XLIV JOB SMITH,COND=(7,LT)
/7/81 EXEC PROC=FORT

//S2 EXEC PGM=%.S51.LKED.SYSLMOD

//FT03F001 DD
//FT01F001 DD

UNIT=PRINTER
UNIT=INPUT

The statement S2 in the input stream
indicates that the name of the program
is taken from the DD statement SYSLMOD

in the procedure step LKED in the
procedure FORT, which was invoked by
the EXEC statement Sl1. Consequently,

the load module ANS in the PDS RESULT
is executed.:

Keyword Parameters:

The keyword parameters may refer to a
program, to an entire cataloged procedure,
or to a step within a cataloged procedure.

Options for the Compiler and Linkage Edi-

tor:

The PARM parameter is wused to pass
options to the compiler or linkage editor.
(PARM has no meaning to a FORTRAN load
module.)

PARM o
passes options to the compiler or
linkage editor, when either is invoked
by the PGM parameter in the EXEC
statement, or to the first step in a
cataloged procedure.

20

PARM. procstep
passes options to a compiler or link-
age editor step within the named cata-
loged procedure step.

The format for compiler options, and
those 1linkage editor options most applica-
ble to the FORTRAN programmer is shown in
Figure 7.

Detail information concerning compiler

and linkage editor options is given in the
section "FORTRAN Job Processing."™

condition for Bypassing a Job Step:

This COND parameter (unlike the one in
the JOB statement) determines if +the job
step defined by the EXEC statement is
bypassed.

COND

states conditions - for bypassing the
execution of a program or an entire
cataloged procedure.

COND.procstep
states conditions for bypassing the
execution of a specific cataloged pro-
cedure step "procstep”.

The subparameters for the COND parameter
are of the form:

(code,operator[,stepnamel)

The subparameters "code" and "operator"
are the same as the code and operator
described for the COND parameter in the JOB
statement. The subparameter "stepname"”
identifies the previous job step that
issued the code. For example, the COND
parameter

COND=((5, LT, FORT), (5,LT, LKED))

indicates that the step in which +the COND
parameter appears is bypassed if 5 is less
than the code returned by either of the
steps FORT or LKED.

If a step in a cataloged procedure
issued the code, "stepname" must qualify
the name of the procedure step; that is,

(code,operator{,stepname.procstepl)
If “"stepname" is

compared to all codes
job steps.

not given, "code" is
issued by previous

Linkage Editor:

;PARM MAP

Compilexr:
%PARM ' JLIST
PARM.procstepg = NOLIST [, NAME=xxxxxx]
+DECK +MAP , LOAD
» NODECK + NOMAP ,NOLOAD)

PARM. procstep%=([XREF] (,LET)] I[,NCAL] (,LIST])?*

» SOURCE
[, LINECNT=xx]) , NOSOURCE

+BCD ¢ ID '1, 2
,EBCDIC s NOID

—
T — S s S —— e -y

|*The subparameters (options) are keyword subparameters.
blanks, parentheses,
| not be delimited by parentheses, but by apostrophes.

| 21f° the information specified@ contains

or equal signs, it must

e e — e e e ————————

L - -

® Figure 7.

Accounting Information:

The ACCT parameter specifies accounting
information for a job step within a job.

ACCT
is used to pass accounting information
to the installation accounting rou-
tines for this job step.

ACCT.procstep
is used to pass accounting information
for a step within a cataloged proce-
dure.

If both the JOB and EXEC statements
contain accounting information, the instal-
lation accounting routines decide how the
accounting information shall be used for
the job step.

Setting Job Step Time Limits (TIME):
(Used by Priority Schedulers Only)

To 1limit the computing time used by a
single job step or cataloged procedure
step, a maximum time for its completion can
be assigned. Such an assignment is useful
in a multiprogramming environment where
more than one job has access to the comput-
ing system.

The time is coded in minutes and sec-
onds. The number of minutes cannot exceed
1439. The number of seconds cannot exceed
59. If the job step is not completed in
this time, the entire job is terminated.
(If the job step execution time is expected
to exceed 1439 minutes (24 hours) TIME=1440
can be coded to eliminate job step timing.)
If the TIME parameter is omitted, the
default job step time limit (as established
in the cataloged procedure for the input
reader) is assumed.

Compiler and Linkage Editor Options

TIME
assigns a time limit for a job step or
for an entire cataloged procedure.
For a cataloged procedure, this param-

eter overrides all TIME parameters
that may have been specified in the
procedure.

TIME.procstep

assigns a time limit for a single step
of a cataloged procedure. This param-
eter overrides, for the named step,
any TIME parameter which is present.
As many parameters of this form as
there are steps in the cataloged pro-
cedure being executed can be written.

Specifying Main Storage Requirements for a
Job Step (REGION) :
(Used by Priority Schedulers Only)

The REGION parameter may be specified in
the JOB statement, in which case it over-
rides REGION parameters specified in the
EXEC statements and applies to all steps of
the Jjob. However, if it is desired to
allot to each step only as much storage as
it requires, the REGION parameter should be
omitted from the JOB statement and EXEC
statements should contain a REGION parame-
ter specifying the amount of main storage
to be allocated to the associated job step.
If the REGION parameter is omitted from
both JOB and EXEC statements, the default
region size (as established in the cata-
loged procedure for the input reader) is
assumed. The size is specified in the form
"nnnnnK” where "nnnnn" is the number of
1024-byte areas to be allocated to the job
step; e.g., REGION=100K.

REGION
specifies a region size for the job
step or for the entire cataloged pro-
cedure. For a cataloged procedure,
this parameter overrides all REGION

Job Ccontrol Language 21

parameters that may have been speci-

fied in the procedure.

REGION.procstep

specifies a region size for a single
step of a cataloged procedure. This
parameter overrides the REGION parame-
ter in the named cataloged procedure
step, if one 1is present. As many
parameters of this form as there are
steps in the cataloged procedure being
executed can be written.

For a discussion of the region size

required for FORTRAN jobs, see "Cataloged
Procedures."

DATA DEFINITION (DD) STATEMENT

The DD statement (Figure 8) describes
data

sets. The DD statement can contain

the following information:

1. Name of the data set to be processed.
2. Type and number of I/O devices for the
data set.
3. Volume(s) on which the data set
resides.
4. Amount and type of space allocated on
a direct-access volume.
5. Label information for the data set.
6. Disposition of the data set after
execution of the job step.
7. Allocation of data sets with regard to
channel optimization.
NAME FIELD
ddname

22

is used:

1. To identify data sets defined by
this DD statement to the compiler
or linkage editor.

2. To relate data sets defined by
this DD statement to data set
reference numbers used by the
programmer in his source module.

3. To identify this DD statement to
other control statements in the
input stream.

The "ddname" format is given in "FORTRAN
Job Processing.".

procstep.ddname

is used to override DD statements in
cataloged procedures. The step in the
cataloged procedure is identified by
"procstep." The "ddname" identifies
either:

1. A DD statement in the cataloged
procedure that is to be modified
by the DD statement in the input
stream, or

2. A DD statement that is to be
added to the DD statements in the
procedure step.

JOBLIB

is wused to concatenate partitioned
data sets with the system 1library:
that 1is, the operating system library
and the data sets specified in the
JOBLIB DD statement are temporarily
combined to form one 1library. ‘The
JOBLIB statement must immediately fol-
low a JOB statement, and the concate-
nation is in effect only for the
duration of the job. In addition,
"DISP=(OLD,PASS)" must be specified in
the JOBLIB DD statement.

(See the following text concerning the
DISP parameter.) Only one JOBLIB
statement may be specified for a job.

The "PGM=program name" parameter in
the EXEC statement refers to a 1load
module in the system library. Howev-
er, if this parameter refers to a load
module in a private library, a JOBLIB
statement identifying the PDS in which
the module resides must be specified
for the job. The JOBLIB statement
concatenates the system library with
the private library.

1
Name Operation|Operand*
4

1
|Positional Parameter

% o
DUMMY]

| DATA

=}
o

dename 2
//< procstep.ddname
\lJOBLIB3

Keyword ParametersS

DDNAME=ddname

dsname

dsname(element)
*,ddname

DSNAME= < *.stepname.ddname >
*,stepname.procstep.ddname
&éname
éname (element) .

[UNIT=(subparameter-1list)]
(DCB=(subparameter-1list)]
[VOLUME=(subparameter-list)]

SPLIT=(subparameter-list)

SPACE= (subparameter-list)]
SUBALLOC= (subparameter-1list)

[{LABEL= (subparameter-1list)]

o e o e e e e e e e e . e s . e e . . e S . S e, . . i e e e e o et et e . e =]

i e e e e . . o i P it (o G, G i e, S S, T . S Gt S i, e, e, D et B B o S Gt e, S b ca)

| [SEP=(subparameter-list)]
i

1A DD statement with a blank operand field can be used to override parameters specified]|
in cataloged procedures. (See "Overriding and Adding DD Statements"™ in the section|
"Cataloged Procedures".)
2The name field is blank when concatenating data sets. (Note the exception for the use|
| of JOBLIB.) |
|*The JOBLIB statement precedes any EXEC statements in the job. (See the discussion]|
| concerning JOBLIB under "Name Field" in this section.) |
|“If either DATA or * is specified, keyword parameters cannot be specified. |
| 5 If “"subparameter-list" consists of only one subparameter and no 1leading commal|
| (indicating the omission of a positional subparameter) is required, the delimiting]
| parentheses may be omitted.
|9This form of the parameter is used only with priority schedulers.
|7If program-name and form no. are omitted, the delimiting parentheses can be omitted.
L

:
|
|
u
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
|
|
|
|
|
|
|
!
I
|
!
|
!
|
|
|
|
|
|
!
:
|
!
|
|

DRI —

Figure 8. Data Definition Statement

Blank Name Field

The 1library indicated in the JOBLIB If the name field is blank, the data
statement is searched before the system set defined by the DD statement is
library is searched. concatenated with the data set defined

in the preceding DD statement. In

Note: A JOBLIB statement does not have effect, these two data sets are com-
to be entered for load modules created in bined into one data set. Other parti-
this job, or for permanent members of the tioned data sets (not individual mem-
system library. bers of a PDS) may also be concatenat-

ed with the data set specified in the
JOBLIB DD statement. Therefore, the

Job Control Language 23

system 1library may be concatenated
with several partitioned data sets.

Note: In concatenation of data sets,
neither of the designated data sets
may be in the input stream. Also,
data sets whose recoxrds are of differ-
ent length and/or different formats
cannot be concatenated.

OPERAND FIELD

For purposes of discussion, parameters
for the DD statement dre divided into seven
functions:

o Specify data in the input stream.
o Specify unit record data sets.

e Retrieve a previously created and cata-
loged data set.

e Retrieve a data set which was created
in a previous job step in the current
job and passed to the current job step.

e Retrieve a data set created but not
cataloged in a previous job.

e Create data sets that reside on magnet-
ic tape or direct-access volumes.

e Optimize I/O-operations.

The following text describes the DD

statement parameters that apply to:
1. Processing unit record data sets.

2. Retrieving data sets created
vicus job steps.

in pre-
3. Retrieving data sets created and cata-
loged in previous jobs.
See Figure 9 for applicable parameters.
The method of retrieving uncataloged

data sets created in previous jobs is also
discussed in this section.

24

tpaa |

dsname

| dsname (element)

*,ddname

*.stepname. ddname
*.stepname.procstep.ddname
&§name

&nameelement)

DSNAME=

UNIT=(namel,{n|P}2])3

|
| (

PRTSP=2
pcB=(¢ (PRTsp=3

)
>
(%{MODE=E§i,STACK=1g$>

MODE=C)} (,STACK=2

PRTSP=0
PRTSP=1

)

YSOUT=A
SYSOUT=B
SYSOUT=(x [, program-namel [, form-no.1)7, &

+DELETE |«
OLD «KEEP
NEW «PASS)s
MOD +CATLG
SHR + UNCATLG,

DISP=(

LABEL=(subparameter-list) €

<

OLUME=(subparameter-1ist) ¢

1If either of these two parameters is
selected, it must be the only parameter
selected.

2If neither "n" nor "P" is specified, 1
is assumed.

3If only "name" is specified, the delim-
iting parentheses may be omitted.

4The assumption for the second subparam-
eter is discussed in "Specifying the
Disposition of a Data Set" in this
section.

SThe subparameters are positional.

| 5See the section "Creating Data Sets."”

| ?This form of the parameter is used only
| with priority schedulers.

|]8If program-name and form no. are

| omitted, the delimiting parentheses can

| be omitted.
L

e i S e . s Tt s . s i, (s Tt S S i D b T S il et P e, S Gty SIS e
b e e e e e . —— - — — —— ——— —— — — — i — o — — — — ——— — — S— — — —— —— —— — — —— — — —— — —" —— S— S— {— — . S]

DD Statement Parameters

Figure 9.

Parameters shown in Figure 8 and not
mentioned in this section are wused to
create data sets and optimize I/O opera-
tions in Jjob steps. These parameters are
discussed in the sections "Creating Data

Sets" and "Programming Considerations."

1-10 | L | | ~50 | 1 =70 | -80
ﬂ2I3I4l5[6I7IBT9U—12LTl5J—[71819IOI U_L314[5T6]7I8191Cﬂl]2]—1415I—l71819loll I2I3I4[516I7IBISIOII 12I314l5|6|7|819101 | 1213I4I5I6|7lalelol| 1213141516I7]81910
...EﬂaﬂUﬂBIJJ.ﬂﬁ/Mth R P R VRPN R AP VAP ATITE NP BRI IV R I B
/ISYSIPRI NTI 11 1J§|Ylsl U1T|=A,lDICIBl=IPIRI1.IS|p|=|2I LAI;I 1L I I S Y IAL Lo - | l L1 1 | l I . |] § I | l 11 1 1 I 11 1 IJI 11 1

¥ ¥ T T 1 T
|I|LLIII,l_!llllll,L]lIlIIl|II14LIIIII|IIIJIlllll|11|lllllllllIIIIlIlIlII'IIIJJlLI
T T T T 1 T
/ 2 r b IlllllllllIllI_LIlJIIllI!lIl]J_llJl!llllll_l_ll_LlJJllllll
/ISYsPll!LNlCH IDIDI 1U NAIAL-T‘I ISYSICIPI, ICIBI ISTAIC|K| |2 L1 L I b T '} 1 L1 11 14 1.4 1 IAI § B A I O | l 11t 1 | 11 1 lJ | .
l*lllllll_I[lllIlllll!llllIll]JjIIIJ_LlALllJ‘!JII||ILLI!LIII_I_]IAL|!IlllllJ_]l!ll!lIllll
: 111.!11 |||||||!|1|J ||11L41| 1LLJ]¢|! N NN !|||||||||
/L/SYSII|1.DDII*.nnnl.L|.||L.1IL..L|.~-.||.J_.ll‘.4|||||JL44‘11414L|I||||||1|||||||||l||
Figure 10. Examples of DD Statements for Unit Record Devices

Specifying Data in the Input Stream:

*

DATA

indicates that a data set (e.g., a
source module or data), immediately
follows this DD statement in the input
stream (see Figure 10). If the EXEC
statement for the job step invokes a
cataloged procedure, a data set may be
placed in the input stream for each
procedure step. If the EXEC statement
specifies execution of a program, only
one data set may be placed in the
input stream. The DD #* statement must
be the 1last DD statement for the
procedure step or program. The end of
the data set must be indicated by a
delimiter statement. The data cannot
contain // or /* in the first two
characters of a record.

also indicates data in the input
Stream. The restrictions and use of
the DATA parameter are the same as the
*, except that // may appear in the
first and second positions in a
record.

UNIT Parameter:

UNIT=(namel, {n|P}])

specifies the name and number of I/0
devices for a data set (see Figure
10). When the system is generated,
the "name" is assigned by the operat-
ing system or the installation and
represents a device address, a device
type, or a device class. (See the
System Generation publication.) The

programmer can use only the assigned
names in his DD statements. For exam-
ple,

n|P

UNIT=190, UNIT=2311, UNIT=TAPE

2311 is
device

where 190 is a device address,
a device type, and TAPE is a
class.

specifies the number of devices allo-
cated to the data set. If a number
"n" is specified, the operating system
assigns that number of devices to the
data set. Parallel, "pP", is used with
cataloged data sets when the required
number of volumes is unknown. The
control program assigns a device for
each volume required for the data set.

DCB_Parameter:

DCB=PRTSP=1{0]|1]2| 3}

DCB=(

used to indicate line spacing for
The digits 0, 1, 2, and
no space, single space,
double space, and triple space, re-
spectively. This subparameter is not
effective if A (for USA carriage con-
trol characters) has been specified in

is
the printer.
3 indicate

the RECFM parameter (refer to the
paragraph on Record Format in the
section "Creating Data Sets").

MODE=E %,STACK=1§

MODE=C) {,STACK=2})

specify options for the card read
punch. The MODE subparameter indi-
cates whether the card is transmitted
in column binary mode (C) oxr EBCDIC
mode (E).

The STACK subparameter indicates a

stacker selection for the card read
punch.

Job Control Language 25

Routing a Data Set to an Output Stream

Retrieving Previously Created Data Sets

(SYSOUT) :

Through the use of the SYSOUT parameter,
output data sets can be routed to a system
output stream and handled much the same as
system messages.

SYSOUT=A

can be used with sequential schedulers
to indicate that the data set is to be
written on the system output device.
No parameter other than the DCB param-
eter has any meaning when SYSOUT=A is
used. With systems providing mul-
tiprogramming with a fixed number of
tasks, the processing program that
writes the data must be in the lowest
priority partition.

SYSOUT=B
can be used with sequential schedulers
to indicate the system card punch
unit. The priority scheduler will
route the output to class B.

SYSoUT=(x[,program-namel [,form-no.1)

is used with priority schedulers.
When priority schedulers are used, the
data set is normally written on an
intermediate direct access device dur-
ing program execution and later routed
through an output stream to a system
output device. The character "x" can
be alphabetic or numeric, specifying
the system output class. Output writ-
ers route data from the output classes
to system output devices. The DD
statement for this data set can also
include a unit specification describ-
ing the intermediate direct ' access
device and an estimate of the space
required. If these parameters are
omitted, the job scheduler provides
default values as the job is read and
processed.

If there 1is a special installation
program to handle output operations,
its "program-name" should be speci-
fied. "Program-name" is the member
name of the program, which must reside
in the system library.

If the output data set is to be
printed or punched on a specific type
of output form, a four-digit
"form-no." should be specified. This
form number is wused to instruct the
operator, in a message issued at the
time the data set is to be printed, of
‘the form to be used.

26

If a data set is created with standard
labels and cataloged in a previous job, all
information for +the data set, such as
record format, density, volume sequence
number, device type, etc., is stored in the
catalog and labels. This information need
not be repeated in the DD statement used to

retrieve the data set; only the name
(DSNAME) and disposition (DISP) is
required.

If a data set was created in a previous
job step in the current Jjob, and its
disposition was specified as PASS, all the
information in the previous DD statement is
available to the control program and is
accessible by referring to the previous DD
statement by name. To retrieve the data
set, a pointer to a data set created in a
previous Jjob step is specified by the
DSNAME parameter. The disposition (DISP)
of the data set is also specified. If more
than one unit is to be allocated, the UNIT
parameter is specified, too.

If a data set is created with standard
labels in a previous job but was not
cataloged, information pertaining to the
data set, such as record format, density,
volume sequence number, etc., is stored in

the 1label; the device type information is
not stored. To retrieve the data set, the
name (DSNAME), disposition (DISP), volume

serial number (VOLUME), and device (UNIT)

must be specified.

If a data set is created with no labels
and cataloged, device type information is

stored in the catalog. To retrieve the
data set, the name (DSNAME), disposition
(DISP), volume serial number (VOLUME),

LABEL and DCB parameters must be specified.

of the use of DD statements to
sets are

Examples
retrieve previously created data
shown in Figure 11.

IDENTIFYING A CREATED DATA_SET: The DSNAME
parameter indicates the name of a data set
or refers to a data set defined in the
current or a previous job step.

Specifying a cataloqged Data Set by Name:

DSNAME=dsname

the fully qualified name of the data
set is indicated by "dsname." If the
data set was previously created and
cataloged, the control program uses
the catalog to find the data set and
instructs the operator to mount the
required volumes.

Specifying a Generation Data Group or PDS: ' Referring +to a Data Set in a Previous Job

Step:
DSNAME=dsname(element) N
indicates either a generation data set DSNAME=*,stepname.ddname

contained in a generation data grouy, indicates a data set that 1is defined
or a member of a partitioned data set. in a DD statement in a previous job
The name of the generation data group step in this job. The * indicates the
or partitioned data set is indicated current job, and "stepname" 1is the
by "dsname"; if "element" is either 0 name of a previous job step. The name
or a signed integer, a generation data of the data set 1is copied from the
set is indicated. For example, DSNAME parameter in the DD statement

named "ddname." For example, in the

control statements:
DSNAME=FIRING(-2)
//LAUNCH JOB

//JOBLIB DD DSNAME=FIRING, X
indicates the third most recent member DISP=(OLD, PASS)
of the generation data group FIRING. //S1 EXEC PGM=ROCKET
(Ssee the Data Management publication //FT01F001 DD DSNAME=RATES(+1), X
for a description of generation data DISP=0LD
sets.) If "element" 1is a name, a //FT09F001 DD DSNAME=TIME, X
member of a partitioned data set is DISP=(OLD, PASS)
indicated. //S2 EXEC PGM=DISTANCE

//FT08F001 DD DSNAME=%*.S1.FTO9F001, X

DISP=0OLD

Note: Members of a partitioned data //FT0S5F001 DD *
set cannot be read as dinput to a .
FORTRAN object program or created as .
output from a FORTRAN object program -
even though the member name has been
specified in the DSNAME parameter of a The DD statement FT08F001 in job step
DD statement. S2 indicates that the data set name

(TIME) is copied from the DD statement
FT09F001 in job step Sl.
Referring to a Data Set in the Current Job

Step: Referring to a Data Set in a Cataloged
Procedure:

DSNAME=* .ddname
indicates a data set that is defined DSNAME=*.,stepname.procstep.ddname

previously in a DD statement in this indicates a data set that is defined
job step. The * indicates the current in a cataloged procedure invoked by a
job. The name of the data set is previous Jjob step in this job. The *
copied from the DSNAME parameter in indicates the current job; "“stepname"
the DD statement named "ddname." is the name of a previous job step;

Sample Coding Form

1-10 11-20 21—-30 31-40 41-50 51-60 61-70 71-80
1 [2[3[4]5]6[7][8]9][0[1[2]3]4]5]6]7]8]o]ol 1 [2]3[a]5]6]718]9]0] 1 [2]3]4[5]el7I8[alol1 [2][3]4a[5]6]7 8]0l [2]3][4]5]6[7I8[9]0l I{2]3]|4]5]6]7[8]9]0] I [2]3{4]5]6|7{8[9|0
[: evif ’ Datp Sedi |l el e Loy
//FTQ[1¢.¢|1!JDADI]DlSlNlAIM]E!iMAlTLHL,DISP! l(\ DQLP[AS)1 R I B IR PRI [
1.1414:4!41:114;41L:|1.L11|4!|::1|L|:|l|||14.||.||||||J|||!L111J1||1l|1414|||||

AVE = Q A AR 22U L1603 1 1 6 X b, x }
L/.F.T.WFWM D P,§N.AME.=.*.-|3|TJER“1~.F.T,W‘W.Ql." D.I,SP' (MODAKEEP) \ vy vt finnidinns
lJilIlll4lllllilLlLlllll|lll!lllllllllll‘lllIlIll!llllllllLﬁLllLlJl|ll!14L|4[lllll
Xample| 3z Ketrievi'ng a / agad Daltng Seat. drea ‘'n \@ FraWlous Job
/I F1T|1|ilF|@|¢|1| 1 |D|D| LLDL§LN1NME|=1MA1T|I44,-IDIISP OLD ,]U]N'IIT 118(¢1,VOLUME SEQ 121Ll J o111 J 11 Lli 11t IJ_I A

1|||1||'|L|||l||l||l1!l|ll||||1414ulll|llIlJllllLl;lngng||J|Jll|Illlll]_lliL

Figure 11. Retrieving Previously Created Data Sets

Job Control Language 27

"procstep" is the name of a step in
the cataloged procedure. The name of
the data set is copied from the DSNAME
parameter in the DD statement named
"ddname. "

Assigning Names to Temporary Data Sets:

DSNAME=éname

assigns a name to a temporary data
set. The control program assigns the
data set a unique name which exists
only until the end of the current job.
The data set is accessible in subse-
quent job steps by specifiying
"gname." If it is required to refer
to this name in a separate job (i.e.,
because of abnormal termination) the
name is "é&name.JOBNAME."

DSNAME=¢&name (element)

assigns a name to a member of a
temporary PDS. The name is assigned
in the same manner as the
"DSNAME=éname. " If it is required to
refer to this name in a separate job
(i.e., because of abnormal
termination) the name is
"&name.JOBNAME."

SPECIFYING THE DISPOSITION OF A DATA SET:

The

previously created data sets and data

DISP parameter is specified for both

sets

created in this job step.

,DELETE
NEW) | ,KEEP

DISP=()OLD + PASS)
MOD » CATLG
SHR) | , UNCATLG

is wused for all data sets residing on

magnetic tape or direct access volumes.

The
status

first subparameter indicates the
of the data set at the beginning or

during the job step.

NEW

OLD

28

indicates that the data set is created
in this step. NEW is discussed in
more detail in the section "Creating
Data Sets."

indicates that the data set was creat-
ed by a previous job or job step.

MOD

SHR

The second
disposition of the data

indicates that the data set was creat-
ed in a previous job or job step, but
records can be added to the data set.
Before the first I/0 operation for the
data set occurs, the data set is
positioned after the last record. If
MOD is specified and (1) the volume
serial number is omitted, and (2) the
data set is not cataloged or passed,
then MOD is ignored and NEW assumed.

indicates that the data set resides on
a direct-access volume and is used as
input to a job whose operations do not
prevent simultaneous use of the data
set as input to another job. This
parameter has meaning only in a mul-
tiprogramming environment for existing
data sets. If it 4is omitted in a
multiprogramming environment, the data
set 1is considered unusable by any
other concurrently operating job. If
it is coded in other than a multiprog-
ramming environment, the system
assumes that the disposition of the
data set is OLD.

indicates the
set at job step

subparameter

termination.

DELETE

KEEP

PASS

causes the space occupied by the data
set to be released and made available
at the end of the current job step.
If the data set was cataloged, it is
removed from the catalog.

insures that the data set 1is kept
intact until a DELETE option is speci-
fied in a subsequent job or job step.
KEEP is used to retain uncataloged
data sets for processing in future
jobs. KEEP does not imply PASS.

indicates that the data set is
referred to in a later job step. When
a subsequent reference to the data set
is made, its PASS status lapses unless
another PASS is issued. The final
disposition of the data set should be
stated in the the last job step that
uses the data set. When a data set is
in PASS status, the volume(s) on which
it is mounted is retained. If dis-
mounting is necessary, the control
program 1issues a message to mount the
volume(s) when needed. PASS 1is used
to pass data sets among job steps in
the same job.

If a data set on an unlabeled tape is
being passed, the volume serial number
must be specified in the VOLUME=SER=

parameter of the DD statement that

"passed" the data set.

Note: The PASS status of the private
library specified in a JOBLIB DD
statement always remains in effect for
the duration of a job.

CATLG
causes the creation of a catalog entry
that points to the data set. The data
set can then be referred to in subse-
quent jobs or job steps by name (CATLG
implies KEEP).

UNCATLG
causes references to the data set to
be removed from the catalog at the end
of the job step.

If the second subparameter is not speci-
fied, no action is +taken to alter the
status of the data set. If the data set
was created in this job, it is deleted at
the end of the current job step. If the
data set existed prior to this job, it
remains in existence at the end of the job.

DELIMITER STATEMENT

The delimiter statement (see Figure 12)
is used to separate data from subsequent
control statements in the input stream, and
is placed after each data set in the input

stream. It cannot be placed in a catalog
procedure.

r T A - === 1
|Name {Operation]Operand |
L 1 1 _.._....1
v 1 T

f7* | | |
L L L d
Figure 12. Delimiter Statement

The delimiter statement contains a slash
in column 1, an asterisk in column 2, and a
blank in column 3. The remainder of the
card may contain comments.

Job Cdntrol Language 29

FORTRAN JOB_PROCESSING

A FORTRAN source module may be processed
starting with compilation and ending with
execution. In this case three steps are
required: compile the source module to
obtain an object module, 1link edit the
object module to obtain a load module, and
execute the 1load module. Job control
statements are required for each of these
steps to: indicate the program or procedure
to be executed, to specify options for the
compiler and linkage editor, to specify
conditions for termination of processing,
and to define the data sets used during
processing. Because writing these job con-
trol statements can be time-consuming work
for the programmer, IBM supples four cata-
loged procedures to aid in the processing
of FORTRAN modules. The use of cataloged
procedures minimizes +the number of job
control statements that must_be supplied by
the programmer.

USING CATALOGED PROCEDURES

When a programmer uses cataloged proce-
dures, he must supply the following 3job
control statements:

1. A JOB statement.

2. An EXEC statement that indicates the
cataloged procedure to be executed.

3. A procstep.SYSIN DD statement that
specifies the 1location of the source
module(s) or the object module(s) to
the control program.

Note: If the source module(s) and/or
object module(s) are placed in the input
stream, a delimiter statement is required
at the end of each data set.

In addition, a GO.SYSIN DD * statement
can be used to define data in the input
stream for 1load module execution. (A de-
limiter statement is also required at the
end of this data.)

The job control statements needed to
invoke the procedures, and deck
used with the procedures are described in
the following text.

COMPILE

The cataloged procedure for compilation
is FORTGC. This cataloged procedure con-

30

structures

sists of the control statements shown in
Figure 43 in "Cataloged Procedures."

Figure 13 shows control statements that
can be used to invoke FORTGC. The SYSIN
data set containing the source module is
defined as data in the input stream for the

compiler. Note that a delimiter statement
follows the FORTRAN source module.

/7 jobname JOB

// EXEC FORTGC

//FORT.SYSIN DD *

r 1
| FORTRAN Source Module |
L J
/%

Figure 13. Invoking the Cataloged Proce-

dure FORTGC

Single Compile: A sample deck structure to
compile a single source module is shown in
Figure 14.

//JOBSC JOB 00, FORTRANPROG,MSGLEVEL=1
//EXECC EXEC PROC=FORTGC
//FORT.SYSIN DD *

| FORTRAN Source Module

b e ol

7%

Figure 14. Compiling a Source

Module

Single

Batched Compile: A sample deck structure
to batch compile is shown in Figure 15.

//JOBBC JOB 00,FORTRANPROG,MSGLEVEL=1
//EXECC EXEC PROC=FORTGC
//FORT.SYSIN DD *

]
j First FORTRAN Source Module |

L J

13 1

| Last FORTRAN Source Module |

L J

/*

Figure 15. cCompiling Several Source
Modules

When several source modules are entered
in the SYSIN data set for one job step, the

compiler recognizes the FORTRAN END state-
ment. If the next card is a delimiter
statement, the control program is called at
the end of the compilation. If the next

card is a FORTRAN statement, the FORTRAN
compiler remains as the controlling pro-
gram.

COMPILE AND LINK EDIT

The cataloged procedure to compile FOR-
TRAN source modules and 1link edit the
resulting object modules is FORTGCL. This
cataloged procedure consists of the control
statements shown in Figure 44 in "Cataloged
Procedures."

Figure 16 shows control statements that
can be used to invoke FORTGCL.

//jobname JOB
// EXEC FORTGCL
//FORT.SYSIN DD *

FORTRAN Source Module

[— -
b e od

/%

Figure 16. Invoking the Cataloged Proce-

dure FORTGCL

LINK EDIT AND EXECUTE

The cataloged procedure to 1link edit
FORTRAN object modules and execute the
resulting load module is FORTGLG. This

cataloged procedure consists of the control
statements shown in Figure 45 in "Cataloged
Procedures."

Figure 17 shows control statements that
can be used to invoke FORTGLG.

/7/3jobname JOB
// EXEC FORTGLG
//LKED.SYSIN DD *

FORTRAN Object Module

- — -
e e

Sk
Figure 17. Invoking the Cataloged Proce-
dure FORTGLG

Figure 18 illustrates a sample deck
structure to link edit and execute several
object modules in the input stream as one
load module.

//JOBBLG JOB 00,FORTPROG,MSGLEVEL=1
//EXECLG EXEC PROC=FORTGLG
//LKED.SYSIN DD *

r

| First FORTRAN Object Module
L

[Sp———

r 1

| Last FORTRAN Object Module |

L J

J*

//GO.SYSIN DD *

) 1

| Data |

L 4

S *

Figure 18. Link Edit and Execute Several
Object Modules in the Input
Stream

The object module decks were created by
the DECK compiler option. The 1linkage
editor recognizes the end of one module and
the beginning of another, and resolves
references between them.

Figure 19 illustrates a sample deck
structure that 1link edits and executes
object modules that are members of the

cataloged sequential data set, OBJIJMODS, as
a single load module. Reading of a data
set in the input stream is accomplished by
using data set reference number 5.

//JOBBLG JOB 00, FORTPROG, MSGLEVEL=1
//EXECLG EXEC FORTGLG

//LKED.SYSIN DD DSNAME=0OBJMODS, DISP=OLD
//GO.SYSIN DD *

r - -

| Data
L

7 *

b e]

Link Edit and Execute Several
Object Modules in a Cataloged
Data Set

Figure 19.

COMPILE, LINK EDIT, AND EXECUTE

The fourth cataloged procedure,
FORTGCLG, passes a source module through
three procedure steps: compile, link edit,
and execute. This cataloged procedure con-
sists of the - control statements shown in
Figure 46 in "Cataloged Procedures."

Figure 20 shows control statements that
can be used to invoke FORTGCLG.

FORTRAN Job Processing 31

/7jobname JOB
// EXEC PROC=FORTGCLG
//FORT.SYSIN DD *

| FORTRAN Source Module

be o oud

Figure 20. Invoking the Cataloged Proce-

dure FORTGCLG

Single Compile, Link Edit, and Execute:

- data sets

Figure 21 shows a sample deck structure to
compile, l1link edit, and execute a single
source module.

//JOBSCLG JOB 00, FORTPROG,MSGLEVEL=1
//EXECC EXEC FORTGCLG

//FORT.SYSIN DD *

r 1

| FORTRAN Source Module |
L

R}

/%

//GO.SYSIN DD *

r 1
| Data |
L — J
/¥

Figure 21. Single Compile, Link Edit, and

Execute

Batched Compile, Link Edit, and_ _Execute:
Figure 22 shows a sample deck structure to
batch compile, link edit, and execute. The
source modules are placed in the input
stream along with a data set that is read
using data set reference number 5.

//JOBBCLG JOB 00, FORTPROG,MSGLEVEL=1
//EXECCLG EXEC FORTGCLG
//FORT.SYSIN DD *

r--= 1
| First FORTRAN Source Module |
t— - 1
r 1
| Last FORTRAN Source Module |
L - J
/%

//LKED.SYSIN DD *

r——-= 1
| Object Modules |
P L Y J
/*

//GO.SYSIN DD *

r - 1
| Data |
L _——— J
/*

Figure 22. Batched Compile, Link Edit, and

Execute

32

COMPILER PROCESSING

The names for DD statements (ddnames)
relate 1I/0 statements in the compiler with
used by the compiler. These
ddnames must be used for the compiler.
When the system is generated, names for I/O
devices classes are also established and
must be used by the programmer.

Compiler Name

-

The program name for the compiler is
IEYFORT. If the compiler is to be executed
without using the supplied cataloged proce-
dures in a job step, an EXEC statement of
the form

// EXEC PGM=IEYFORT

must be used. (For more“detailed informa-
tion on procedures and options in calling
IEYFORT, refer to Appendix A, "Invoking the
FORTRAN Compiler.")

Compiler ddnames

The compiler can use four data sets. To
establish communication between the compil-
er and the programmer, each data set is
assigned a specific ddname. Each data set
has a specific function and device require-
ment. Table 2 1lists the ddnames, func-
tions, and device requirements for the data
sets.

To compile a FORTRAN source module, two
of these data sets are necessary; SYSIN-and

SYSPRINT, along with the direct-access
volume(s) that contains the operating sys-
tem. With these two data sets, only a

listing is generated by the compiler. If
an object module is to be punched and/or
written on a direct-access or magnetic tape
volume, a SYSPUNCH and/or SYSLIN LD state-
ment must be supplied.

Table 2. Compiler ddnames Table 3. Device Class Names
r———- T T 1 r T T 1
| | | DEVICE | |CLASS NAME |CLASS FUNCTIONS|DEVICE TYPE |
| ddname |FUNCTION | REQUIREMENTS | 4= -— -4
3 —_—— 4 ' 4 | SYSSQ |writing, | emagnetic |
| SYSIN | reading the |ecard reader | | | reading, | tape
| | source | emagnetic tape | | | backspacing | edirect- |
| | program | edirect-access] | | (sequential) | access
------ } fommm 1 ¥ 1 4
| SYSPRINT |writing the |eprinter | | SYsba |writing, |edirect-
| | storage | emagnetic tape | | | reading, | access
] | map, | edirect-access | l | backspacing, | |
| |listing, and | | | |updating | |
| |messages | | | | recoxds in | |
F + 4 4 | |place (direct) | |
| SYSPUNCH| punching | ecard punch? | b + + 4
| | the object | emagnetic tape | | s¥scp |punching cards |scard punch |
i |module deck |edirect-access] b=—=--- -1 + i
F + + 4 1A | SYSOUT output |eprinter |
| SYSLIN |output data |edirect-access | | | | emagnetic |
| |set for the |emagnetic tape | i | | tape |
| |object module|escard puncht | b + 3 4
| |used as input| | |B | SYSOUT card | ecard punch |
| |to the link- | | | | image output | emagnetic |
] |age editor | | | | | tape |
—_—— 1 i { L 1 L 1
| *These must not be same card punch |
| devices |
L 4 Table 4. Correspondence Between Compiler
ddnames and Device Classes
13 T 1
For the DD statement SYSIN or SYSPRINT, |ddname |Possible Device Classes |
an intermediate storage device (direct- b + |
access or magnetic tape) may be specified | SYSIN | S¥SSQ, or the input stream de- |
instead of the card reader or printer. | | vice (specified by DD * or DD |
' [|DATA), or a device specified |
| |as a card reader |
If an intermediate device is specified b + |
for SYSIN, the compiler assumes that the | SYSPRINT| A, SYSSQ |
source module deck was written on inter- b +
mediate storage by a previous job or job | SYSPUNCH| B, SYSCP
step. If an intermediate device is speci- ¢ +
fied for SYSPRINT, the map, listing, and |SYSLIN |SYSSQ,SYSDA
L) i}

error/warning messages are written on that
device; a new job or job step can print the
contents of the data set. When the SYS-
PRINT data set is written on an intermedi-
ate storage device, carriage control char-
acters are placed in the records.

Compilexr Device Classes

Names for input/output device classes
used for compilation are also specified for
the operating system when the system is
generated. The class names, functions, and
types of devices are shown in Table 3.

The data sets used by the compiler must
be assigned to the device classes listed in
Table 4.

Compiler Options

Options may be passed to the compiler
through the PARM parameter in the EXEC
statement (see Figure 23). The following

information may be specified:

1. Whether a listing of an object module
is printed.

2. Name assigned to the program.

3. The number of lines per page for the
source listing.

4. Whether the source module is coded in
Binary Coded Decimal (BCD) or Extended
Binary Coded Decimal Interchange Code
(EBCDIC).

FORTRAN Job Processing 33

T 1
| %PARM» ; ' JLIST «BCD + SOURCE |
| 'PARM.procstep}) = |NOLIST| [,NAME xxxxxx][,LINECNT=xx] +EBCDIC + NOSOURCE |
I]
| +DECK «MAP +« LOAD ¢ ID '1,2,3 |
| +NODECK({).NoMmar(),NOLOAD +«NOID |
[d
v A
]*If the information specified contains blanks, parentheses, or equal signs, it must be |
| delimited by apostrophes; otherwise, parentheses may be used. |
|2If only one option is specified and it does not contain any blanks, parentheses or |
| equal signs, the delimiting parentheses or apostrophes may be omitted.- |
| 3The maximum number of characters allowed between the delimiting apostrophes or paren-|
| theses is #40. The PARM parameter cannot occupy more than one card. |
L -J
® Figure 23. Compiler Options

5. Whether a list of the source state- piler. The specified number, xx, may be

ments, with their associated internal anywhere in the range from 1 to 99. If

statement numbers, is printed.
6. Whether an object module is punched.

7. Whether a
names used
printed.

storage map of variable
in the source module is

8. Whether the compiler writes the object
module on external storage for input
to the linkage editor.

Options specified in the PARM parameter
may be in any order.

LIST or NOLIST: The LIST option indicates
that the object module listing is written
on the data set specified by the SYSPRINT
DD card. (The statements in the object
module listing are in a pseudo assembly
language format.) The NOLIST option indi-
cates that no object module 1listing is
written. A description of the object
module 1listing is given in the section
"System Output."

Name=xxxxxx: The NAME option specifies the
name (xxxxxx) assigned to a module (main
program only) by the programmer. If NAME
is not specified or the main program is not
the first module in a compilation, the
compiler assumes the name MAIN for the main
program. The name of a subprogram is
always specified in the SUBROUTINE or FUNC-

TION statement.

The name appears in the source 1listing,
map, and object module 1listing. (See
"Multiple Compilation Within a Job Step" in
this section for additional considerations
concerning the NAME option.)

LINECNT=xx: The LINECNT option specifies
the maximum number (xx) of lines per page
that will be written on the data set
specified by the SYSPRINT DD statement when
a source 1listing is generated by the com-

34

LINECNT is not specified, the number of
lines will be obtained from the system (the
default number may be changed by the
installation).

BCD__or EBCDIC: The BCD option indicates
that the source module is written in Binary
Coded Decimal; EBCDIC indicates Extended
Binary coded Decimal Interchange Code.
Intermixing of BCD and EBCDIC in the souzrce
module is not allowed.

Note: If the EBCDIC option is selected,
statement numbers passed as arguments must
be coded as

én
However, if the BCD option is selected,
statement numbers passed as arguments must
be coded as

$n

and the $ must not be used as an alphabetic
character in the source module. (n rep-
resents the statement number.)

SOURCE___or_ NOSOQOURCE: The SOURCE option

specifies that the source listing is writ-
ten on the data set specified by the
SYSPRINT DD statement. The NOSOURCE option
indicates that the source listing is not
written. A description of the source list-
ing is given in +the section "System
Output."

DECK_or NODECK: The DECK option specifies
that an object module card deck is punched
as specified by the SYSPUNCH DD statement.
The object module deck can be used as input
to the linkage editor in a subsequent job.
NODECK specifies that the object module
deck 1is not punched. A description of the
deck is given in the section "System Out-

put."”

MAP or NOMAP: The MAP option specifies
that a table of names, which appear in the
object module, 1is written on the data set
specified by the SYSPRINT DD statement.
The type and location of each name is
listed. The NOMAP option specifies that
the table of names 1is not written. A
description of the map is given in the
section "System Output."”

LOAD or NOLOAD: The LOAD option indicates
that the object module is written on the

data set specified by the SYSLIN DD state-
ment. This option must be wused if the
cataloged procedure to compile and link

edit, or to compile, link edit, and execute
is used; i.e., the object module is used as

input to the linkage editor in the current
job.
The NOLOAD option 1indicates that the

object module is not written on external
storage. This option can only be used if
the cataloged procedure to compile is used.

ID_or NOID: The ID option specifies that
internal statement numbers (ISN) are to be
generated for statements that call subrou-
tine or contain external function referen-
ces. Calls to IBCOM are not affected. An
additional four bytes are required for each
linkage.

The ISN is used by the traceback in the
event of an error in the called subprogram.
See the disciussion on "Load Module Output"
in the section on "System Output."

Note: The compiler default options shown
in this publication are standard IBM
defaults; however, at system generation, an
installation can choose its own set of
default options.

Multiple Compilation Within a Job Step

Several compilations may be performed
within one job step. The compiler recog-
nizes the FORTRAN END statement in a source
deck, compiles the program, and determines
if another source module follows the END
statement. If there 1is another source
module, another compilation is initiated
(see Figure 24).

Only one EXEC statement may be used to
initiate a job step; therefore, compiler
options can be stated only once for all
compilations in a job step.

{

| //JOBRA JOB , 'FORTRAN PROG'
|//STEP1 EXEC FORTGC

| //FORT.SYSIN DD *

1 READ (8,10)A,B,C

END
SUBROUTINE CALC
END

/*

o S i et s B e Gt e
e e e e e e e i e s e o e)

Multiple Compilation Within a
Job Step

Figure 24.

The first main program in a multiple
compilation is given the name specified in
the NAME option (only if this program is
not preceded by a SUBROUTINE or FUNCTION
subprogram); all subsequent main programs
are given the name MAIN. However, if the
NAME option is not specified, only those
main programs that are physically first in
a multiple compilation are given the name
MAIN. For example, in the multiple compi-
lation,

//MULCOM JOB
7/ EXEC FORTGC,PARM.FORT="NAME=IOR'

//FORT.SYSIN DD *
READ(1,10)ALP,BETA

END
SUBROUTINE INVERT(A,B)

END
READ(5)P,Q,R
END
/%
the first main program is given the name

IOR; the third program is given the name
MAIN. The second program is assigned the
name INVERT. However, had the order of the
first two programs been reversed, the name
IOR would not have been applied to any of
the programs illustrated.

When a multiple compilation is pex-
formed, the SYSLIN data set contains all
the object modules because only one SYSLIN
DD statement is supplied for compiler out-
put. If tape or direct-access output is
specified for the compiler, the object
modules are written sequentially on the
volume.

FORTRAN Job Processing 35

r T L]
| Object Module 1 | Object Module 2 | ...
L L J

LINKAGE EDITOR PROCESSING

The linkage editor processes FORTRAN
object modules, resolves any references to
subprograms, and constructs a load module.
Communication with the 1linkage editor is
established through a programmer supplied
EXEC statement and DD statements that
define all required data sets. The user
also has the option of supplying linkage
editor control statements.

Linkage Editor Name

Three linkage editor programs are avai-
lable with the operating system. The pro-
gram names for the three 1linkage editors
and the minimum storage in which they are
designed to operate are:

IEWLE150 15,360 bytes
IEWLE180 18,432 bytes
IEWLELULO 45,056 bytes

Object modules processed by the linkage
editor cannot exceed 512K bytes, because
this is the maximum that can be processed
by program FETCH.

All facilities described for the linkage
editor in this publication are available
with all three linkage editors, except that
blocking the primary input and primary
output is available only with the higher
level linkage editor, IEWLE4U4O.

For simpler programming, the linkage
editors have been assigned the alias pro-
gram name IEWL. If the programmer speci-
fies the parameter

PGM=IEWL
in the EXEC statement, the highest level
linkage editor provided in the

installation's operating system is execut-
ed. If he wants to execute a specific
linkage editor, he must specify the specif-
ic program name of that linkage editor.

Linkage Editor Input and Output

There are two
linkage editor:

types of input to the
primary and secondary.

36

Primary input 1is a sequential data set
that contains object modules and 1linkage
editor control statements. Any external
references among object modules in the
primary input are resolved by the linkage
editor as the primary input is processed.
Furthermore, the primary input can contain
references to the secondary input. These
references are 1linkage editor control
statements and/or FORTRAN external referen-
ces in the object modules.

Secondary input resolves any references
and is separated into two types: automatic
call library and additional input specified

by the programmer. The automatic call
library should always be the FORTRAN

library (SYS1l.FORTLIB), which contains the
FORTRAN library subprograms. Through the
use of DD statements, the automatic call

library can be concatenated with other
partitioned data sets. Three types of
additional input may be specified by the
programmer :

e An object module used as +the main

program in the load module being con-
structed. This object module, which
can be accompanied by linkage editor

control statements, is either a member

.of a PDS or is a sequential data set.
The first record in the primary input
data set must be a linkage editor
INCLUDE control statement that tells
the 1linkage editor to insert the main
program.

e An object module or a load module used
to resolve external references made in
another module. An object module,
which can be accompanied by 1linkage
editor control statements, is a sequen-
tial data set or is a member of a PDS.
A load module, which is a member of a
PDS, cannot be accompanied by linkage
editor control statements. An INCLUDE

statement that defines the data set
must be given.
¢ A load module used to resolve external

references made in another module. The
load module or object module, which can
be accompanied by linkage editor con-
trol statements, is a member of PDS. A
linkage editor LIBRARY control state-
ment that defines the data set to the
linkage editor must be given.

In addition, the secondary input can con-
tain external references and linkage editor
control statements. The automatic call
library and any of the three types of
additional input may be used to resolve
references in the secondary input.

The load module created by the 1linkage
editor is always placed in a PDS. Error
messages and optional diagnostic messages

Table 5. Linkage Editor ddnames

3 T Ly 1
| ddname | FUNCTION |DEVICE REQUIREMENTS |
—_— L 1 1
T 1) 1
SYSLIN	Primary input data, normally the output	edirect-access
	of the compiler	smagnetic tape
	ecard reader	
t 4 - ~		
SYSLIB	automatic call library (S¥Sl.FORTLIB) edirect-access	
b-- } :		
sYsuTl1	work data set	edirect-access
8 1 KN J		
[3 1) T 1		
SYSPRINT	diagnostic messages	*printer
] emagnetic tape		
	edirect-access i	
¢ $ t :		
SYSLMOD	output data set for the load module	edirect-access]
L 1 L 4		
v 1] 1		
user-specified	additional libraries and object modules	edirect-access
		emagnetic tape
L J I 4 d
are written on an intermediate storage Rll data sets specified by SYSLIB or
device or a printer. In addition, a work SYSLMOD must be partitioned data sets.
data set is required by the linkage editor (Additional inputs are partitioned data
to do its processing. Figure 25 shows the sets or sequential data sets.) The ddname
I/0 flow in linkage editor processing. for the DD statement that identifies any
additional libraries is written in INCLUDE
and LIBRARY statements and is not fixed by
the linkage editor.
SYSUT 1
SYSLIB Work SYSLMOD
Data Set
Automatic Output
Call y Module
Library Library
SYSLIN

Primary Linkage . .

Input Editor The device classes used by the compiler
(see Table 3) must also be used with the
linkage editor. The data sets used by
linkage editor may be assigned to the

- Diagnostic device classes listed in Table 6.
Additional D
o ata Set
Libraries
SYSPRINT
Figure 25. Linkage Editor Input and Output
Additional Input
Linkage Editor ddnames and Device Classes
The INCLUDE and LIBRARY statements are

The programmer communicates data set
information to the linkage editor through
DD statements identified by specific

ddnames (similar to the ddnames used by the
compiler). The ddnames, functions, and
requirements for data sets are shown in
Table 5.

used to specify additional secondary input
to the 1linkage editor. Modules neither
specified by INCLUDE or LIBRARY sStatements
nor contained in the primary input are
retrieved from the automatic call library.

FORTRAN Job Processing 37

Table 6. Correspondence Between Linkage
Editor ddnames and Possible
Device Classes

r - 1
| ddname |Possible Device Classes |
L 1 4
r -7 1
SYSLIN	SYSsQ,SYsDA, or the input
	stream device (specified
	by DD * or DD DATA) or
	device specified as the
jcard reader	
b=——- t 4	
SYSLIB	SYSDA
L _+_ K	
L3 1	
sysuT1	SYspa [
L d d	
[} T 1	
SYSLMOD	SYSDA
F + 1	
SYSPRINT	a,SYSSQ
X 4 d	
13 L)	

J

+
| user-specified|SYSDA, SYSSQ
IR

| IpS—

INCLUDE_Statement:

r T 1
lOperationlOperand j
L T 1
| INCLUDE |ddname [(member-name |
| | [,member-namel...)] |
] | [,ddnamel (member-name |
| | [,member-namel...)1l...]
L L J

The INCLUDE statement is used to include
either members of additional libraries
(PDS) or a sequential data set. The
"ddname" specifies a DD statement that
defines either 'a PDS containing object
modules and control statements or just load

modules, or defines a sequential data set
containing object modules and control
statements. The "member name" is the name

of a member of a PDS and is not used when a
sequential data set is specified.

The 1linkage editor
module or load module in
module when the INCLUDE
encountered.

LIBRARY Statement:

inserts the object
the output 1load
statement is

r T .
|Operation|Operand
I 1

L}

| LIBRARY

]
|ddname (member-name
| [,member-namel...)
| | [,ddname(member-name
| | [,member-namel...)l...
L 1

TS VR -

The LIBRARY statement is used to include
members of additional libraries. The

38

"ddname" must be the name of a DD statement
that specifies a PDS that contains either
object modules and linkage editor control
statements, or Jjust load modules. The
"member name" is an external reference that
is unresolved after primary input process-
ing is complete.

The LIBRARY statement differs from the
INCLUDE statement in that external referen-
ces specified in the LIBRARY statement are
not resolved until all other processing,
other than those references reserved for
the automatic call library, are completed
by the linkage editor. (INCLUDE statements
resolve external references when the
INCLUDE statement is encountered.)

Example: Two subprograms, SUB1L and SUB2,
and a main program, MAIN, are compiled by
separate job steps. In addition to the
FORTRAN 1library, a private library, MYLIB,
is used to resolve external references to
the symbols X, Y, and Z. Each of the
object modules is placed in a sequéntial
data set by the compiler, and passed to the
linkage editor job step.

shows the control statements
(Note: cataloged procedures
are not used.) In this job, an additional
library, MYLIB, is specified by the LIBRARY
statement and the ADDLIB DD statement.
SUB1L and SUB2 are included in the load
module by the INCLUDE statements and the DD
statements DD1 and DD2. The linkage editor
input stream, SYSLIN, is two concatenated
data sets: the first data set is the
sequential data set §GOFILE which contains
the main program; the second data set is
the two INCLUDE statements and the LIBRARY
statement. After linkage editor execution,
the load module is placed in the PDS
PROGLIB and given the name CALC.

Figure 26
for this job.

Linkage Editor Priority

If modules with the same name appear in
the input to the linkage editor, only one
of the modules is inserted in the output
load module. The following priority for
modules is established by the linkage edi-
tor:

1. Modules appearing in SYSLIN or modules
identified by INCLUDE statements.

2. Modules identified by the LIBRARY

statement.

3. Modules appearing in SYSLIB.
For example, if a module named SIN

appears both in a module identified in a
LIBRARY statement and in the automatic call

r
|//30BX JOB
| 7/STEP EXEC
| : .
} .
|//SYSLIN DD
| 7/SYSIN DD *

| Source module for MAIN
|/*
|//STEP2 EXEC

| .
} -
|//SYSLIN DD
| //SYSIN DD *

| Source module for SUB1
|7*

| //STEP3 EXEC

.

-

|//SYSLIN DD
| 7//SYSIN DD *

| Source module for SUB2
|/*

| //STEPY PGM=IEWL

-

EXEC

|//SYSLIB DD
| //SYSLMOD DD

| 7/ADDLIB DD DSNAME=MYLIB,DISP=0LD

| 7/DD1 DD DSNAME=*, STEP2.SYSLIN, DISP=0LD
|7/DD2 DD DSNAME=+ .STEP3 . SYSLIN, DISP=OLD
|//SYSLIN DD DSNAME=#.STEP1 .SYSLIN, DISP=OLD
| /7 DD *

INCLUDE bD1
INCLUDE DD2

PGM=IEYFORT, PARM="'NAME=MAIN, LOAD'
DSNAME=8GOFILE,DISP=(,PASS),UNIT=SYSSQ
PGM=IEYFORT, PARM="NAME=SUB1, LOAD'
DSNAME=8SUBPROGl,DISP=(,PASS),UNIT=SYSSQ
PGM=IEYFORT, PARM="'NAME=SUB2, LOAD'

DSNAME=§SUBPROG2,DISP=(, PASS) , UNIT=SYSSQ

DSNAME=SY¥S1.FORTLIB, DISP=OLD
DSNAME=PROGLIB (CALC) , UNIT=SYSDA

e e e e e e e e e e e e e e s e e e s —— ——— ——— —— — —— d— —— — — — —g—— et g @2}

LIBRARY ADDLIB(X,Y,Z)
| 7*
1 _
Figure 26. Linkage Editor Example
library, only the module identified in the -

LIBRARY statement is inserted in the output
load module.

If modules with the same name appear in
a single data set, only the module encoun-
tered first is inserted in the output load
module.

Multiple Link Editing Within a Step

Just as the compiler can perform several
compilations within a procedure step or job
step (batched compilation), the 1linhkage
editor can produce several load modules
within a single procedure step or job step.
Another 1linkage editor control statement,
the NAME statement, is used to delimit the
input for one 1load module from the input
for another load module.

i T
| Operation|Operand |
[4

U T
| NAME | member-name ((R)] |
L L

The NAME statement is placed after the
last object module or linkage editor con-
trol statement used as input to a load
module. Any modules or control statements
following a NAME statement are assumed to
be part of the next 1load module being
constructed. A NAME statement can be
placed only in the primary input: any NAME
statements in the secondary input are
ignored.

All of the resulting load modules from a
batched linkage editor execution are placed
in the 1library (PDS) specified in the
SYSLMOD DD statement. The member name for
each of the resulting load modules is
specified as "member name" in the NAME

FORTRAN Job Processing 39

statement. For example, if the primary
input for one of the 1load modules is
followed by a NAME statement containing the
member name XALPHA, and the SYSLMOD DD
statement for the linkage editor step spec-
ifies the PDS MYLIB, the resulting load
module is assigned the member name XALPHA

and is placed in the PDS MYLIB. The
SYSLMOD DD statement should not contain a
member name. However, if the SYSLMOD
statement contains a member name, that

member name must be identical to the member
name specified in the first NAME statement
appearing in the primary input.

The NAME statement can be used to speci-
fy that a load module currently residing in
a PDS is to be replaced by the load module
constructed from the input immediately
preceding the NAME statement. Replacement
is specified by coding (R) following the
member name in the NAME statement.

When several load modules are created in
a single step (multiple link editing), the
options specified in the EXEC statement for
that step apply to each load module created
in that step.

Example: An object module resides on a
sequential data set PROGX. A load module
is to be constructed from this module,
using the FORTRAN library 'and a private
library MYLIB to resolve external referen-

ces within the module.
module resides on a sequential data set
PROGY, and a 1load module is to be con-
structed from this object module using the
same library to resolve external referen-
ces. Both load modules are to be placed in
the library PROGLIB. The first module is
to be assigned the member name FUNTST; the
second module is assigned the member name
SUBTST.

Another object

The following text shows the job control
statements and the position of INCLUDE,
LIBRARY, and NAME linkage editor statements
necessary to perform the job. ‘

//3J0B2 JOB 108, 'J.JONES’

//STEP EXEC PGM=IEWL

//SYSLIB DD DSNAME=SYS1l.FORTLIB,DISP=0LD
//SYSLMOD DD DSNAME=PROGLIB,DISP=OLD

//DD1 DD DSNAME=PROGX,DISP=0LD
//DD2 DD DSNAME=PROGY,DISP=OLD
//ADDLIB DD DSNAME=MYLIB
//SYSLIN DD *

INCLUDE DD1
" LIBRARY ADDLIB(X,Z)

NAME FUNTST

INCLUDE DD2

LIBRARY ADDLIB(Y,Z)

NAME SUBTST
/%

40

The JOB statement JOB2 defines the job,
and the EXEC statement STEP instructs the
operating system to execute the program
IEWL. The DD statement SYSLIB tells the
linkage editor that the FORTRAN library is
the automatic call library. The SYSLMOD DD

statement tells the 1linkage editor that
both modules are written 1in the PDS
PROGLIB.

The first INCLUDE statement and the DD
statement DD1 tell the linkage editor that
the first load module is to contain the
object module that resides on the sequen-
tial data set PROGX. The first LIBRARY
statement tells 1linkage editor that the
references to X and Z in this module are to
be resolved by the 1library MYLIB. The
first NAME statement tells the 1linkage
editor that the resulting module is
assigned the member name FUNTST. The con-
trol statements are similar for the load
module with the member name SUBTST.

Other Linkage Editor Control Statements

In addition to the LIBRARY
statements, other control
available for use with the linkage
These statements enable the user to:
fy different names for load
(ALIAS), replace modules within a 1load
module (REPLACE), change program names
(CHANGE), and name entry points (ENTRY).
In addition, two statements, OVERLAY and
INSERT, enable the programmer to overlay
load modules. For a detailed description
of these control statements, see the Link-
age Editor publication.

and INCLUDE
statements are
editor.
speci-
modules

Options for Linkage Editor Processing

The linkage editor options are specified
in an EXEC statement. The options that are
most applicable to the FORTRAN programmer
are: :

PARM MAP
PARM.procstep\=(] XREF |[,LET] [, NCAL]

(,LISTD)
Other options can also be specified for

the 1linkage editor. For a detailed de-
scription of all 1linkgae editor options,

see the Linkage Editor publication.

MAP oxr XREF: = The MAP option informs the
linkage editor to produce a map of the load
module; this map indicates the relative
location and <1length of main programs and

subprograms. If XREF is specified, a map
of the 1load module is produced and a
cross-reference list indicating all exter-

nal references in each main program and
subprogram is generated. The map and/or
cross-reference 1list are written in the
data set specified by the SYSPRINT DD
statement. If neither option is specified,
no map or cross-reference listing is gener-
ated. Descriptions of the map and cross-
reference listing are given in the section
"System Output."”

LET: The LET option informs the linkage
editor to mark the load module executable
even though error conditions, which could

cause execution to fail, have been
detected.
NCAL: The NCAL option informs the linkage

editor that the libraries specified either
in the SYSLIB DD statement or in LIBRARY
statements are not used to resolve external
references. (The SYSLIB DD statement need
not be specified.) The subprograms in the
libraries are not inserted in the load
module; however, the load module is marked
executable.

LIST: The LIST option indicates that all
linkage editor control statements are list-
ed in card-image format in +the data set
specified by the SYSPRINT DD statement.

LoAaD MODULE EXECUTION

The ddnames used in executing load
modules must meet the format specified by
IBM. When the system is generated, device
names are assigned by the operating system
and the installation; the programmer choos-
es devices by specifying either the instal-
lation or operating system names.

Program_Name

When "PGM=program name" is used to indi-
cate the execution of a 1load module, the
module must be in either the system library

(SYS1.LINKLIB) or a private library. When
the module is in a private 1library, a
JOBLIB DD statement must be supplied to

indicate the name of the private library.
For example, assume that the load modules
CALC and ALGBRA in the library MATH and the

load module MATRIX in the library MATRICES
are executed in the following job:

//JOBN JOB 00, FORTPROG

//JOBLIB DD DSNAME=MATH,DISP=(OLD,PASS)
// DD DSNAME=MATRICES,DISP=(OLD, PASS)
//STEP1 EXEC PGM=CALC

//STEP2 EXEC PGM=MATRIX

//STEP3 EXEC PGM=ALGBRA

.
.

The JOBLIB DD statement concatenates the
private 1library MATH with the system
library. The private library MATRICES is
concatenated with the system 1library by
concatenating the second DD statement with
the JOBLIB DD statement.

Execution ddnames

In the source module, data set reference
numbers are used to identify data sets.
Data sets processed by a FORTRAN 1load
module nust be defined by DD statements.
The correspondence between a data set ref-
erence number and a DD statement is made by
a ddname.

The ddname format that must be used for
load module execution is

FTXXFYYy

where:
xx 1is the data set reference number
yyy is a FORTRAN sequence number

Data_ _Set_ Reference Number (xx): When the
system is generated, the wupper 1limit for
data set reference numbers specified by the
installation 1is 99. This upper limit does
not correspond to the number of
input/output devices.

If an installation specifies an upper
limit of 99 for its data set reference
numbers, the ddnames and data set reference
numbers correspond as shown in Table 7.
Note that 0 is not a wvalid data set
reference number.

FORTRAN Job Processing 43

Load Module ddnames'

Table 7.

3 L) k|
| Data Set Reference Numbers | ddnames |
¢ ¥ :
| 1 | FTO1lFyyy |
| 2 | FTO2Fyyy |
-] .	
]
- ! -	
13	FT13Fyyy
] .	-
.	.
!]	
.	-
99	FT99Fyyy
L L J

FORTRAN Sequence Number (yyy): The FORTRAN
sequence number is used to refer to separ-
ate data sets that are read or written
using the same data set reference number.
For the first data set, the sequence number
is 001; for the second 002; etc. This
sequence number is incremented when (1) an
END FILE statement is executed and a subse-
quent WRITE is issued with the same data
set reference number or (2) the "END=" exit
is taken following a READ and a subsequent
READ or WRITE is issued with the same data
set reference number.

A DD statement with the required ddname
must be supplied every time the WRITE, END
FILE, WRITE sequence occurs. If the FOR-
TRAN statements in the following example
are executed, DD statements with the
ddnames indicated by the arrows must be
suppliea for the corresponding WRITE state-
ments.

42

Statements ddname

15 FORMAT(3F10.3,I7)
10 FORMAT(3F10.3)
DO 20 I=1,J

20 WRITE(17,10)A,B,C-==———m—w—e > FT17F001

END FILE 17
DO 30 I=1,N

30 WRITE(17,15)X,Y,Z,K——-—-—-—- > FT17F002
END FILE 17
DO 40 I=1,M,2.

40 WRITE(17,10)A,B,C—————————— > FT17F003

END FILE 17

If the preceding instructions are used
to write a tape, the output tape is unla-
beled and has the appearance shown in
Figure 27.

Reference Numbers for Data Sets Specified

in DEFINE FILE Statements

The characteristics of any data set to
be used during a direct-access input/output
operation must be described by a DEFINE
FILE statement.

The data set reference number specified
in any DEFINE FILE statement may refer to
only one data set. In other words, the
method described previously concerning ref-
erences to separate data sets that are read
or written using the same data set ref-
erence number is prohibited. For example,
the statement

DEFINE FILE 2(50,100,L,I2)

establishes a data set reference number of
02. All subsequent input/output statements
must refer to only one data set with the
FORTRAN sequence number of FT02F001. (For
a more detailed explanation of the DEFINE
FILE statement, refer to the FORTRAN IV
Language publication.)

r]

| tapemark tapemark tapemark |

] records 1 records records |
k1

| |A B,C|A,B C|...|A By C| |x Y,Z, K|X,Y,Z K|...|x,y Z,Kl |A,B,C|...|A,B,C| [|
L

| Written using DD Written using DD Written using DD |

| statement FT17F001 statement FT17F002 statement FT17F003 |

L J

Figure 27. Tape Output for Several Data Sets Using Same Data Set Reference Number

Retrieving Data Sets Written with Varying
FORTRAN Sequence Numbers

To retrieve the data sets shown in
Figure 27, the data set sequence number in
the LABEL parameter must be supplied in the
DD statement. The LABEL parameter is de-
scribed in detail in the section “Creating
Data Sets."

+ NL
+SL

LABEL=([data-set-sequence-number])
The "data set sequence number" indicates
the position of the data set on a sequen-
tial volume, (This sequence number is
cataloged.) For the first data set on the
volume, the data set sequence number is 1;
for the second, it is 2; etc.

If one of the data sets shown in Figure
27 is read in the same job step in which it
is written, an END FILE statement must be
issued after the last WRITE instruction.
If the data set is to be read by the same
data set reference number, DD statement
FT17F004 is used to read the data set. The
execution of a READ statement following an
END FILE increments the FORTRAN sequence
number by 1. For example, the following DD
statements are used to write the three data
sets shown in Figure 27 and then read the
second data set:

//FT17F001 DD UNIT=TAPE,LABEL=(,NL)

//FT17F002 DD UNIT=TAPE,LABEL=(2,NL), X
// VOLUME=REF=%.FT17F001
//FT17F003 DD UNIT=TAPE,LABEL=(3,NL), X
// VOLUME=REF=%,FT17F001
//FT17F004 DD VOLUME=REF=%*.FT17F002 X
/7 DISP=OLD,LABEL=(2,NL) X
// DSNAME=*.FT17F002, X
// UNIT=TAPE

The VOLUME parameter indicates that the
data set resides on the same volume as the
data set defined by DD statement FT17F001.
DD statement FT17F004 refers to the data
set defined by DD statement FT17F002.

If the data set is read by a different
data set reference number, for example,
data set reference number 18; then, the DD

statement FT17F004 is replaced by the
statement:

//FT18F001 DD VOLUME=REF=%,FT17F002, X
// DISP=0OLD,LABEL=(2,NL)

If the data sets shown in Figure 27 are
cataloged for the purpose of later reading

them, and the following DD statements are
used to write the data sets,

//FT17F001 DD DSNAME=Ni,LABEL=(1,NL), X
// DISP=(,CATLG) ,UNIT=TAPE X
/7 + VOLUME=SER=163K

//FT17F002 DD DSNAME=N2,LABEL=(2,NL), X
V77 VOLUME=REF=%,FT17F001, X
// UNIT=TAPE, DISP=(,CATLG)
//FT17F003 DD DSNAME=N3,LABEL=(3,NL), X
Vo4 VOLUME=REF=%*_,FT17F002, X
// UNIT=TAPE,DISP=(,CATLG)

The information necessary to retrieve the

data sets is the DSNAME, the LABEL, and the
DISP parameters. For example, if data set
reference number 10 is used to retrieve

data set N1, the following DD statement is
required.

//FT10F001 DD DSNAME=N1,DISP=0LD, X
7/ LABEL=(1,NL)

If the data set 1is not cataloged and
then retrieved in a later job, the VOLUME,
UNIT, and LABEL information is needed to
retrieve the data set. When the data set
is created, the programmer must assign a
specific volume to it.

Assume the data sets shown in Figure 27
were assigned the volume identified by the
volume serial number A11111 when the data
sets were created. If the second data set
written on the volume is retrieved by data
set reference number 10 in a later jOb, the
following DD statement is needed.

//FT10F001 DD VOLUME=SER=A11111,DISP=0OLD, X
7/ LABEL=(2,NL), UNIT=SYSSQ

END Exit: Data sets written using the same
data set reference number. can be retrieved
in the same job or Jjob step by using a
facility provided in the FORTRAN language -
the "END=" exit in a READ statement.

FORTRAN Job Processing 43

After the last data set is written and the
END FILE is executed, a REWIND is issued.
A subsequent READ using the same data set

reference number resets the FORTRAN
sequence number to 001. When the last
record of a data set has been read, an

additional READ causes the END exit to be
taken. On the next READ, the sequence
number is incremented by 1. The data sets
shown in Figure 27 can be read by using the
following sequence of statements.

Note: The DD statements used to create the
data sets also suffice for retrieving the
data sets. No additional DD statements are
required.

REWIND 17

100 READ(17,10,END=200)A,B,C ----> FT17F001

GO TO 100

200 READ(17,15,END=300)X,Y,Z,K--=->FT17F002

GO TO 200

300 READ(17,10,END=350)A,B,C ----> FT17F003
GO TO 300

350ccnccen.

Concatenation: The data sets shown in
Figure 27 can be concatenated and read as a
single data set. The information necessary
(assume cataloged data sets) to retrieve
the data sets is the DSNAME, LABEL, and
DISP parameters. For example, if data set
reference number 16 is used to retrieve the
data sets, the following DD statements are
required.

//FT16F001 DD DSNAME=N1,DISP=OLD, X
LABEL= (1, N)

V4 DD DSNAME=N2,DISP=0OLD,LABEL=(2,NL)

VY DD DSNAME=N3, DISP=OLD, LABEL=(3, NL)

Note: Concatenation of data sets defined
by direct-access statements is not allowed.

4y

ERR=Parameter

The ERR= parameter may be used to give
control to the problem program if an uncor-
rectable I/O error occurs on a magnetic
tape or direct access device. This param-
eter is not effective for data sets on unit
record devices.

REWIND and BACKSPACE Statements

The REWIND and BACKSPACE statements
force execution of positioning operations
by the control program.

A REWIND statement instructs the control
program to position the volume on the
device so that the next record read orx
written is the first record transmitted for
that data set reference number on that

volume, irrespective of data set sequence
numbers.
The effect o©f a BACKSPACE statement

depends upon the record format and the type
of control used to read or write the record
(FORMAT control or no FORMAT control). For
specific information concerning BACKSPACE,
see "Backspace Operations" in the section
"Creating Data Sets."

Note: REWIND, BACKSPACE or END FILE state-
ments specified for data sets defined in
direct-access statements are ignored.

Error Message Data_Set

When the system is generated, the
installation assigns a data set reference
number so that execution error messages and
information for traceback, DUMPs, and
PDUMPs can be written on a data set. The
programmer must define a data set, using a
DD statement with the ddname for that data
set reference number. This data set should
be defined using the SYSOUT=A parameter.
(The publication IBM _System/360 Operating
System, System Generation, explains the
method of assigning the data set reference
number.)

If this data set is not defined and an
error condition is encountered during the
execution of the job step, the job step is
terminated and a condition code of 16 is
issued.

Execution Device Classes

For load module execution, the program-
mer can use the same names assigned to
device classes used by the compiler (shown
in Table 3). However, additional names for
specific devices and device classes can be
assigned by the installation. The program-
mexr can choose which device to use for his
data sets, and specify the name of the
device or class of devices in the UNIT
parameter of the DD statement.

DCB_Parameter

The DCB parameter may be specified for
data sets when a load module is executed.
For information concerning the DCB paramet-
er, see the section "Creating Data Sets."

FORTRAN Job Processing 45

CREATING DATA SETS

Data sets are created by specifying
parameters in the DD statement or by using
a data set utility program. This section
discusses the use of the DD statement to
create data sets. (The Utilities publica-
tion discusses data set utility programs.)
No consideration is given to optimizing I/0
operations; this information is given in
the section "Programming Considerations."

To create data sets, the DSNAME, UNIT,
VOLUME, SPACE, LABEL, DISP, SYSOUT, and DCB
parameters are of special significance (see
Figure 28). These parameters specify:

DSNAME - name of the data set

UNIT - class and number of devices used
for the data set

VOLUME - volume on which the data set
resides

LABEL - label specification

DISP - the disposition of the data set
after the completion of the job
step

SYSOUT - ultimate device for unit record
data sets

DCB - tape density, record format,

record length

Examples of DD statements used to create
data sets are shown in Figure 29.

USE_OF_DD_STATEMENTS FOR DIRECT-ACCESS DATA
SETS

Data sets that are referred to in FOR-
TRAN direct-access input/output statements
must first be defined in the DEFINE FILE
statement. However, the DD statement may
be used in conjunction with the DEFINE FILE
statement for designating other charac-
teristics of the data set.

If the user chooses to exercise this
option, caution must be taken in specifying
the parameters in the DD statement (Figure
28). With FORTRAN defined direct-access
data sets, the DUMMY parameter may not be
used because of a conflict in specifi-
cations. The remaining parameters of the
DD statement must conform to the specifi-
cations in the DEFINE FILE statement. The
DEN and TRTCH subparameters of the DCB
parameter apply only to data sets residing
on magnetic tape volumes; consequently,
their wuse with other FORTRAN defined
direct-access data sets may also produce a
conflict.

46

The following statements illustrate the
possible conflicts that may arise between
the DEFINE FILE and DD statements.

DEFINE FILE 2(50,100,E,I2)

//FT02F001 DD DSNAME=BOOL,DISP=(NEW,CATLG)1

/7 LABEL=(,SL),UNIT=SYSDA, 2
/77 VOLUME= (PRIVATE, RETAIN), 3
// SPACE=(100, (30,50),,CONTIG), 4
44 DCB=(DEN=1, RECFM=F, BLKSIZE=100)

The SPACE parameter must be included for
all direct-access data sets, but it must
also conform to the DEFINE FILE statement;
the record length in both statements must
be the same. In the DCB parameter, the
subparameter DEN applies only to data sets
residing on magnetic tape volumes. If the
DUMMY parameter is specified in a DD state-
ment for a direct-access data set, the
conflict arises because the disposition of
a direct-access data set is always checked
and a dummy data set has no disposition.

Note: The name field of the DD statement
must contain FTxxF001; where xx is the data
set reference number specified in the
DEFINE FILE statement. '

DATA SET NAME

The DSNAME parameter specifies the name
of the data set. Only four forms of the
DSNAME parameter are used to create data
sets.

2DSNAME=dsname

DSNAME=dsname (element)
specify names for data sets that are
created for permanent use.

Note: Members of a partitioned data set
cannot be read as input to a FORTRAN object
program or created as output from a FORTRAN
object program even though the member name
has been specified in the DSNAME parameter
of a DD statement.

iDSNAME=8name

DSNAME=¢gname (element)
specify data sets that are temporarily
created for the execution of a single
job or job step.

DUMMY Note: A dummy data set should only be

is specified in the DD statement to read if the "END=" option is specified
inhibit I/0 operations specified for in the FORTRAN READ statement. If the
the data set. A WRITE statement is option is not specified, a read causes
recognized, but no data is transmit- an end of data set condition and
ted. (When the programmer specifies termination of execution of the load
DUMMY in a DD statement used to over- module.

ride a cataloged procedure, all param-
eters in the cataloged DD statement
are overridden.)

dsname

dsname(element)
DSNAME= &name

&name(element)
DUMMY

DDNAME=ddname

UNIT=(name [.{ n|P}1])2
, SER=(volume-serial-number [,volume-seriol-number] L3

dsname
VOLUME=([PRIVATE][, RETAIN] [, volume-sequence-number] [, volume-count] | ,REF=} * . ddname)4
*.stepname.ddname
*.step .procstep.dd
TRK MXIG s
SPACE=({ CYL , (primary-quantity [, secondary-quantity] [, directory-quantity]) [, RLSE] | ,ALX [,roUND]é)7
average-record-length CONTIG
LABEL=([data-set-sequence-number] { :_;1"} [: %;?g;:l::d] ¥®
SYSOUT=A
SYSOUT=8
SYSOUT=(X |, program-name][, fonn-no.])
< ,DELETE 7 3
NEW)| ,KEEP
pisp=(Jowp (| ,pass y
MOD (| ,CATLG
SHR) L,UNCATLG
dsname c {FIU} [A][,BLKSIZE=xxxx]
* . ddname 0 E 11197 | ,RecFMm=J V[AJ, [RECL=xxxx . BLKSIZE=xxxx
DCB=(1 » stepname. ddname /DEN=¢ 1 »TRTCH=4 1 +BUFNO=) 5. {FICBLA] , LRECL=xxxx, BLKSI ZE=xoxx
*.stepname, procstep. ddname 2 ET , BLKSI ZE=xxxx !

)\l

! If neither "n" nor "P" is specified, 1 is assumed.

2y only "name" is specified, the delimiting parentheses may be omitted.
If only one "volume-serial-number" is specified, the delimiting parentheses may be omitted.
SER and REF are keyboard subparameters; the remaining subparameters are positional subparameters.
The assumption made when this subparameter is omitted is discussed with the SPACE parameter.
ROUND can be specified only if "average-record-length" is specified for the first subparameter.
All subparameters are postional subparameters.
EXPDT and RETPD are keyword subparameters; the remaining subparameters are positional subparameters.
oThe assumption made when this subparameter is omitted is discussed in "Job Control Language".
BUFNO is the only DCB subparameter that should be specified for direct access data sets.
The first subparameter is positional; all other subparameters are keyword subparameters.
This form is used only with compiler and linkage editor blocked input and output.

6

Figure 28. DD Parameters for Creating Data Sets

Creating Data Sets

47

Sample Coding Form
1-10 | 11-20 1 21-30 1 31-40 1 41-50] 51— 60 | 61-70] 71-80
1T213[a[5]e[7[8[s[o[12[3lal5[6]7IBIS[0 11213 [Aa15[6 7 [8]9]0[1 [2[3[A15I6l 718[8]0] 1 [213a]5]6 7 [a[s[ol 1 12[3[a[5]6[7[8[o]o] i [2[3[45]6l7[e]s[o]1 [2]3[4[56[7]8I9[0
a : / OIS AR AP I R B I I
//FT31FO@1, DD, DSNAME=MATRIXDI,SP=(NEWICATLG),» LABEL=(2SL,2EXPDT=67@31) | 1, . |,
Moy, UNIT=DACLASS s VOLUME=(PRIVATE RETAINISER=AA6D), i\ (1 2, 100,
IIIJ 11 l 11 J__];j[_l_Ll IﬁIPIAJClE!=1(I3l¢l¢I’A(11l¢l¢!,11lgﬂl)],l,ICIOIN!TIIIGI7IR'0IUIN|D|)!’I 1.1 1 l 1 1 1 1 ! S] l) | ! 131 1 IJ 11)1
/l/l 11 [14 J_L] 111 lJPICIBJ=I(IRJE]CIFJM=IVIQ|,ILIRIEICIELQQIHL’ABJLJKJSIIIZIEl=liI2Ii|2|)l 11 l N W T T U I T N I | l 1131 l L1 lJ_l j I
|1||l1|ll!lll|l||x||||||l\|_|_|!41||4[||||‘!_111_1||_11|!1|1||4||4!1L1|]_111_L!|4LIIJ_|1J_L
/|/|F|T|8191F|¢|¢|‘l| |D1D| |DISIN|AM|EI=|&T|EJM‘PI,IUINIIIII=I(IlAIPIExg[szle)QID[IISIPI=I(INIEIWI,IPIAISISI)1)| IIREN T AT | |11 T |
/I/I 1 Ill 1 1] oLt 1 VlQ'ZIE)ME4|=I(|’JRIEITAII lNI’llI,I9I’ISIEIRI=I(I7I7I7I,I8|8I8I’I9lzlzl’lgH[u[))4l_Jl 1 I L1t) I 11 1 1 I L1 1 ' 11 1.t
/1L.,[,..LLPL.JQCBFKQéﬂﬁzpﬁﬁﬁfﬂtpaﬁ¢x§l2&?25¢ﬂl,|.,...(....|....l,..,.....;..l,
lllIlllJl#lllllllll!lllj_[ll_ll!lII_I_l!#ll!llllll_lll%lIJIIJIII!ILIILLII_LPALIILJIJ_L
: /| { Y,
L/JSIYlslPlR|IIN1TLIDIDI IlelslnglTliAl,lDlC\Bl=l(IBILLKISII]gLElgliquuI,IQEluizl’IRItng=lg)l] 11 1. .1 I 111t I 1t 1} I 141 1 | 11 1 1
lLlll!lll‘!illlllllLl!llllI!l_ll!Alllg_l_I_llll!lllllllII!Illllllll!|lll‘ll|l!14l_llJ_Ll
o 4y freatsing g) Ble 19, A Fut]
|’/fI§ﬂfQﬂ1|9P.PﬁNAMﬁFﬁHﬁ 10ISP=(sKEEP) sUNIT=248@-2 . .\, b 0.,
l(l 11 I 1l 4 1 1 l Lt 11 IDIC|Bl=|(lDlEIN|=|21’I|RIF;i=IE|TI,|Rl€AClFIM|1=IL,l,IB|L|KI§AIIZIE;=119‘0|¢l)4,l 1 1 ; | S L 14 11 ; I2I 1 1 I 1.1 1.1
|LL..|..J.|Lg.JYQLfngfAﬁgs..1.‘.JI.AJ‘LJ.L.|L..J..,.1...J;.A.,L....;.”.l....
® Figure 29. Examples of DD Statements
DDNAME=ddname . n|p
indicates a dummy data set that will specifies the number of devices allo-

assume the characteristics specified
in a following DD statement of
"ddname." The DD statement identified
by "ddname" then loses its identity;
that 1is, it cannot be referred to by
an *....ddname parameter. The state-
ment in which the DDNAME parameter
appears may be referenced by subse-
quent *.,...ddname parameters. If a
subsequent statement identified by
"ddname" does not appear, the data set
defined by the DD statement containing
the DDNAME parameter is assumed to be
an unused statement. The DDNAME
parameter can be used five times in
any given job step or procedure step,
but no two uses can refer to the same
"ddname. " The DDNAME parameter is
used mainly for cataloged procedures.

SPECIFYING INPUT/QOUTPUT DEVICES

The programmer specifies the name and
number of input/output devices in the UNIT
parameter:

UNIT=(namel, {n|P}1)
name

is given to the input/output device
when the system is generated.

48

cated to the data set.

SPECIFYING VOLUMES

The programmer indicates +the volumes
used for the data set in the VOLUME parame-
ter:

VOLUME=([PRIVATE] [,RETAIN]
[, volume-sequence-number]
[, volume-count]

ESER=(volume-serial—number

[,volume~serial-number]...)

dsname
+REF=) *_ddname)
*.step.ddname ‘
*.stepname.procstep.ddname

identifies the volume(s) assigned to
the data set. .

PRIVATE .
indicates that the assigned volume is
to contain only the data set defined
by this DD statement. PRIVATE is
overridden when the DD statement for a
data set requests the use of the
private volume with the SER or REF
subparameter. :

RETAIN
indicates that this volume is to
remain mounted after the job step is
completed. (Unless RETAIN is speci-
fied, the volume is dismounted after
its 1last use in the job step.)
Volumes are retained so that data may
be transmitted to or from the data
set, or so that other data sets may
reside on the volume. If the data set
requires more than one volume, only
the last volume is retained; the other
volumes are dismounted when the end of
volume is reached. If each job step
issues a RETAIN for the volume, the
retained status lapses when execution
of the job is completed.

volume-sequence-number

is a one-to-four digit decimal number
that specifies the sequence number of
the first volume of the data set that
is read or written. The volume
sequence number is meaningful only if
the data set is cataloged and volumes
lower in sequence are omitted.

volume-count
specifies the number of volumes
required by the data set. Unless the
SER or REF subparameter is used, this
subparameter 1is required for every
multi-volume output data set.

SER

specifies one or more serial numbers
for the volumes required by the data
sets. A volume serial number consists
of one to six alphameric characters.
If it contains less than six charac-
ters, the serial number is left
adjusted and padded with blanks. If
SER is not specified, and DISP is not
specified as NEW, the data set is
assumed to be cataloged and serial
numbers are retrieved from the cata-
log, or inherited £from passed data
sets in a previous step. A volume
serial number is not required for new
output data sets.

REF
indicates that the data set is to
occupy the same volume(s) as the data
set identified by "dsname",
"*.,ddname", "*,stepname.ddname", or
*, stepname.procstep.ddname. Table 8
shows the data set references.

When the data set resides on a tape
volume and REF is specified, the data set
is placed on the same volume, immediately
behind the data set referred to by this
subparameter. When this subparameter is
used, the UNIT parameter must be omitted.

Table 8. Data Set References
L} T
| Option | Refers to
1 4
1) T
| REF=dsname |a data set named
| | "dsname"
<lr

REF=#%.ddname ja data set indica-
|ted by DD statement
| "ddname" in the

|current job step
4

|ted by DD statement
| "ddname” in the job
|step "stepname"

4

h)

REF=%,stepname.
procstep.ddname|a data set indica-
|ted by DD statement|]
| "ddname® in the |
| procedure step |
|"procstep" invoked |
|in the job step |
| "stepname”]
L J

4

1

I

1 1
REF=*.stepname.ddname|a data set indica- |
|

|

d

1

|

[e =t e i s e s e g = e A

If SER or REF is not specified, the
control program will allocate any non-
private volume that is available.

SPECIFYING SPACE ON DIRECT-ACCESS VOLUMES

SPACE= ({CYL
average-record-length

TRK s
¢ (primary-quantity
[, secondary-quantity]l

[,directory-quantityl)

+MXIG
(,RLSE]}| ,ALX [,ROUND])
+CONTIG :

The SPACE parameter specifies:

1. Units of measurement in which space is
allocated.

2. Amount of space allocated. :

3. Whether unused space can be released.

4. In what format space is allocated.

TRK

CYL

average-record-length
specifies the units of measurement in
which storage is assigned. The units
may be tracks (TRK), cylinders (cYL),
or records (average record length (in
bytes) expressed as a decimal number
<65,535). ’

Creating Data Sets 49

(primary-quantity(,secondary-quantityl
[,directory-quantityl)

specifies the amount of space
allocated for the data set. The
"primary quantity" indicates the num-
ber of records, tracks, or cylinders
to be allocated when the Jjob step
begins. The "secondary quantity"”
indicates how much space is to be
allocated each time previously allo-
cated space is exhausted. (Note: The
maximum number of times secondary
allocation will be made is 15.)

The "directory quantity" is used only
when writing a PDS, and it specifies
the number of 256-byte blocks to «re-
serve for the directory of the PDS.’

For example, by specifying:
SPACE=(120, (400,100))

space is reserved for 400 records, the
average record 1length is 120 charac-
ters. Each time space 1is exhausted,
space for 100 additional records is
allocated. :

By specifying:
SPACE=(CYL, (20,2,5))

20 cylinders are allocated to the data
set. When previously allocated space
is exhausted, two additional cylinders
are allocated. In addition, space is
reserved for five 256-byte blocks in
the directory of a PDS.

RLSE
indicates that all unused external
storage assigned to this data set is
released when the data set is closed
in a job step.

MXIG

ALX

CONTIG
specify the format of the space allo-
cated to the data set, as requested in
the "primary quantity."

MXIG
requests the 1largest single block of
contiguous storage that 1is greater
than or equal to the space requested
in the "primary quantity."

ALX

50

requests all available storage on the
volume as long as there is at least as
much space as specified in the
"primary quantity." The operating
system must be able to allocate at
least the amount specified as the
"primary quantity" by using, at most,
five non-contiguous areas of storage.

CONTIG
requests that the space indicated in
the "primary quantity" be contiguous.

If the subparameter is not specified,
or if any option cannot be fulfilled,
the operating system attempts to
assign contiguous space. If there is
not enough contiguous space, up to
five non-contiguous areas are allocat-
ed.

ROUND
indicates that allocation of space for
the specified number of records is to
begin and end on a cylinder boundary.

Note: If a data set might be written on a
direct-access volume, the SPACE parameter
must be specified in the DD statement.

LABEL INFORMATION

The label parameter (LABEL) is used to
specify the type and contents of a data set
label.

;,NL
LABEL~=([data-set-sequence-numberl !, SL

« EXPDT=yyddd
¢« RETPD=xxxxX |)

data-set-sequence-number

is a four-digit number that identifies
the relative location of the data set
with respect to-the first data set on
a tape volume. (For example, if there
are three data sets on a magnetic tape
volume, the third data set is iden-
tified by data set sequence number 3.)
If the data set sequence number is not
specified, the operating system
assumes 1.

NL

sL
specifies whether a data set is
labeled or unlabeled. SL indicates
standard labels. NL indicates no

labels (applicable only to data sets
residing on a tape volume).

[EXPDT=yyddd]
RETPD=XXXX

specifies how long the data set shall
existe. The expiration date,
EXPDT=yyddd, indicates the year (yy)

and the day (ddd) the data set can be
deleted. The period of retention,
RETPD=xxxxX, indicates the period of
time, in days, that the data set is to
be retained. If neither is specified,
the retention period is assumed to be
Zero.

DISPOSITION OF A DATA SET

The disposition of a data set is speci-
fied by the DISP parameter; see "Data
Definition (DD) Statement." The same
options are used for both creating data
sets and retrieving previously created data

sets. When a data set is created, the
subparameters used are NEW, MOD, KEEP,
PASS, and CATLG.

WRITING A UNIT RECORD DATA SET ON AN
INTERMEDIATE DEVICE

A printed output data set may be written
on an intermediate device and subsequently
written on the printer (ultimate device).

SYSOUT=A
indicates
tion for printed output data
the printer.

that the ultimate destina-
sets 1is

Note: 1If the DEN subparameter is explicit-
ly specified for SYSOUT data sets, only
DEN=2 is allowed in the DCB parameter. In
addition, TRTCH=C must be specified in the
DCB parameter when the SYSOUT data set (1)
is written on = 7-track tape, and (2) is
composed of variable-length records or con-
tains binary information.

DCB_PARAMETER

For load module execution, the FORTRAN
programmer may specify record formats and
record lengths for sequentially organized
data sets that reside on magnetic tape or
direct-access vélumes. The DCB information
is placed in the 1labels for these data
sets.

dsname

DCB=(| *.ddname
*_.stepname.ddname
*,.stepname.procstep.ddname

{,DEN={01]2}1(, TRTCH={C|E|T|ET}]

{F|U}[A] [, BLKSIZE=xxxx]
«RECFM= < V[A], LRECL=xxxX, BLKSIZE=xXxXxX
{FlV}B[A],LRECL=xxxx,BLKSIZE=xxxx)

[, BUFNO={1|2}]

REFERRING TO PREVIOUSLY SPECIFIED DCB
INFORMATION

The first subparameter

dsname

* ,ddname

*,stepname.ddname .
*.stepname.procstep.ddname

is 'used to retrieve DCB parameter informa-
tion from previously created data sets.
The control program copies the DCB informa-
tion specified for the data set referred to
by this subparameter. The copied informa-
tion is used for processing the data set
defined by the DD statement in which the
subparameter appears. Any subparameters
that follow this subparameter override any
copied DCB subparameters.

dsname
indicates that the DCB subparameters
of a cataloged data set "dsname" are
copied. The data set indicated by
"dsname" must be currently mounted and
it must reside on a direct-access
volume.

*,ddname
indicates that the DCB subparameters
in a preceding DD statement "ddname"
in the current job step are copied.

*,stepname.ddname
indicates that the DCB subparameters
in a DD statement "ddname" that occurs
in a previous job step "stepname" in
the current job are copied.

*,.stepname.procstep.ddname
indicates that the DCB subparameters
in the DD statement "ddname" are
copied from a previous step "procstep"
in a cataloged procedure. The proce-
dure was invoked by the EXEC statement
"stepname" in the current job.

Creating Data Sets 51

DENSITY AND CONVERSION

The second subparameter indicates the

density and conversion for tape volumes.

DENSITY: Density is only specified for
data sets residing on magnetic tape
volumes.
DEN={0]1]2}
indicates the density used to write
the data set (refer to Table 9).
eTable 9. DEN Subparameter Values
r T 1
| DEN |Tape Recording Density (bits/inch)|
| k {
| | Model 2400 [
| k T i
| Value | 7-Track] 9-Track |
i 1 B .’
T 1 v
] O | 200 | - |
L + 1 4
T T 1
| 1+ | 556 | - |
L 1 4 d
T 1 T L}
i 2 | 800 | 800 |
|8 4 1 4
r T T - 1
lg 3| - I 1600 i
L 1 L J
CONVERSION: Conversion is used only for

data sets residing on 7-track tape volumes.

TRTCH={C|E|T|ET}
indicates
used:

which conversion type is

C - data conversion feature is used
E - even parity is used

T - translation from either BCD to
EBCDIC or EBCDIC to BCD is
required

ET - even parity is used and transla-
tion from either BCD to EBCDIC or
EBCDIC to BCD is required

RECORD FORMAT

RECFM=U[A]
RECFM=V [B] [A]
RECFM=F [B] [A] [M]

The characters U, V, F, and B represent

U - undefined records (records that do
not conform to either the fixed-
length or variable-length format)

V - variable-length records (recoxds

whose length can vary throughout the
data set)

52

F - fixed-length records (records whose
length is constant throughout the
data set)

B - blocked records

The character A indicates the use of the
extended ASA carriage control characters
(see Appendix E); the character M indicates
the use of machine code control characters.

RECORD LENGTH, BUFFER LENGTH, BLOCK LENGTH,
AND NUMBER OF BUFFERS FOR SEQUENTIAL DATA
SETS

For blocked records used by the compiler
or linkage editor, the length of a block is
specified by the buffer length which is
specified by

BLKSIZE=xXXXX

where:
xxxx is a of the record

length

multiple

(LRECL) is
compiler or

The record length
specified by the
editor.

permanently
linkage

The SYSPRINT data set of the compiler
has a record length of 120 bytes (including
the carriage control byte). The SYSIN,
SYSPUNCH, and SYSLIN data sets have a
record length of 80 bytes.

For unblocked records used by the com-
piler or 1linkage editor, the programmer
should set BLKSIZE equal to record 1length.

For unblocked fixed-length records or
undefined records used during load module
execution, the record length and the buffer
length are specified by
BLKSIZE=XXXX

For unblocked variable-length records,
the record length is specified by

LRECL=XXXX
buffer length is specified by

BLKSIZE=XXXX

e Table 10. Specifications Made by the FORTRAN Programmer for Record Types and Blocking
T T T T 1
| | Blocked or | | RECFM i |
Ste Unblocked Record Type Specification |Record Length |Buffer Length
L p 1 1 4 4 4 d
[} T 1 T T T A
| Compiler or| Unblocked |Fixed-Length |not specified |not specified?|BLKSIZE=record|]
Linkage length
= ; | 1 s)
| | Blocked | Fixed-Length |not specified®|not specified?|BLKSIZE=xxxXx |
IR 1 1 | 1 4 " |
v T T T h) 1)
| | | Fixed-Length | RECFM=F2 | BLKSIZE=xxxx2 | |
| I t 1 t 1 |
| | Unblocked |Variable-Length|RECFM=V | LRECL=XXXX | |
| | t + + 1 I
| Load Module] |Undefined | RECFM=U | BLKSIZE=xXxx |BLKSIZE=xxxx |
| Execution } + 4 + { |
		Fixed-Length	RECFM=FB		
	b + { LRECL=XXXX				
] Blocked	ariable—Length]RECFM=VB				
	% - L !				
		Undefined	Blocked undefined records are not permitted		
1 1 L N					
v 1					
*Permanently specified by the compiler and cannot be altered (see "DCB Ranges and					
Assumptions"). i					
2Not specified for direct access data sets.					
L 4
For blocked variable-length or fixed- there are three types of records: fixed-
length records used by load modules, the length, variable-length, and undefined. 1In
record length is specified by addition, fixed-length and variable-length
records can be blocked.
LRECL=XXXX
block length and buffer length are
specified by UNBLOCKED RECORDS, FORMAT CONTROL: For
fixed-length and wundefined records, the
BLKSIZE=XXXX record length and buffer length are
specified in the BLKSIZE subparameter. For
Undefined records cannot be blocked. variable-length records, the record length
is specified in the LRECL subparameter; the
Table 10 is a summary of the specifi- buffer length in the BLKSIZE subparameter.

cations

made by the programmer for record

types and blocking in FORTRAN processing.

The number of buffers required to read

or write any data set is specified by

BUFNO=x

where:

x=1 or x=2

FORTRAN Records and Logical Records for

Sequential Data Sets

In FORTRAN, records for sequential data

sets are defined by specifications in FOR-

MAT statements and by READ/WRITE lists. A
record defined by a specification in a
FORMAT statement 1is a FORTRAN record (see
the section "Input/Output Statements" in
the FORTRAN IV _ Language publication). A
record defined by a READ/WRITE 1list is a
logical record. Within each category,

The information coded in a FORMAT statement
indicates the FORTRAN record length (in
bytes).

Fixed-Length Records: For unblocked fixed-
length records written under FORMAT
control, the FORTRAN record length must not
exceed BLKSIZE (see Figure 30).

Example: Assume BLKSIZE=44

10 FORMAT(F10.5,16,2F12.5,"'SUMS"')
WRITE(20,10)AB,NA, AC, AD

- ————— === BLKSIZE — — — —— — — — — ——— 1

| |
:— ————————— FORTRAN Record = — — — — — — —— 1

| |

44 Bytes of Data
Figure 30. FORTRAN Record (FORMAT Control)

Fixed-Length Specification

Creating Data Sets 53

If the FORTRAN record length is 1less
than BLKSIZE, the record is padded with
blanks to fill the remainder of the buffer
(see Figure 31). The entire buffer is
written.

Example: Assume BLKSIZE=56

5 FORMAT (F10.5,I6,F12.5,"TOTAL")
WRITE (15,5) BC,NB,BD

F———————— == BLKSIZE — — — — — — — — — — — 1

I . !

————— Written Record ~—~ ~—~ — — — |
r 7

| l '

I i mmL—ﬁ————————ﬁ
|

} : === FORTRAN Record — — — | }

[|

——————————— 1

BCW|SCW| Data Not Written Jl

Figure 33. FORTRAN Record (FORMAT Control)

With Variable-Length Specifi-
cation and the FORTRAN Record
Length Less Than (LRECL-U4)

F——————— — —— BLKSIZE — ~ — — — — — — — — 9
| I
|
:— —_— — —— —— — WrittenRecord - — — — — — — ——
!
F———FOMMthm———q {
| |
! : Undefined Records: For undefined records
written under FORMAT control, BLKSIZE is
33 Bytes of Data 23 Bytes of Blanks specified as the maximum FORTRAN record
length. If the FORTRAN record length is
Figure 31. FORTRAN Record (FORMAT Control) less than BLKSIZE, the unused portion of
With Fixed-Length Specification the buffer is not written (see Figure 34).
and FORTRAN Record Length Less
Than BLKSIZE
Variable-Length Records: For unblocked
variable~-length records written under FOR- _ _ _ _ _ _ _ __ _ _ BLKSIZE — — — — — — — —— —
MAT control, LRECL is specified as four r :
greater than the maximum FORTRAN record o -
length and BLKSIZE as four greater than r' FORTRAN Record 1 :
LRECL. These extra eight bytes are ! |
required for the #-byte block control word [... |} T - ———T— H
(BCW) and the 4-byte segment control word Data Not Written |
(SCW), as shown in Figure 32. The BCW (sege H—H2"""7"7"7"77"7-"-"-"757-"-"7"7"7-"8"—8—"“"->oo—— J
Figure 37) contains the 1length of the Figure 34. FORTRAN Record (FORMAT Control)

block; the SCW (see Figure 38) contains the
length of the record segment, i.e., the
data length plus four bytes for the SCW.

If the FORTRAN record length is less
than (LRECL-4), the unused portion of the
buffer is not written (see Figure 33).

r——————— == BLKSIZE — — — — — — — — ——— T
|
‘, |
| T RRECL——— —— — ——— —— 1
o
Il e ————— FORTRAN Record — — — — — — — 1
[|
I |
lBj:W SCW| Data
Figure 32, FORTRAN Record (FORMAT Control)

Variable-Length Specification

54

With Undefined Specification
and the FORTRAN Record Length
Less Than BLKSIZE

BLOCKED RECORDS, FORMAT CONTROL: For all
blocked records, the record length is spec-
ified in the LRECL subparameter; the block
length and buffer 1length in +the BLKSIZE
subparameter.

Fixed-Length Records:
length records written under FORMAT
control, LRECL is specified as maximum
possible FORTRAN record length, and BLKSIZE
must be an integral multiple of LRECL. If
the FORTRAN record 1length is 1less than
LRECL, the rightmost portion of the record
is padded with blanks (see Figure 35).

For blocked fixed-

Example: Assume BLKSIZE=48 and LRECL=24

10 FORMAT(I8,F16.4)
20 FORMAT(I12)

WRITE(13,10)N,B
WRITE(13,20)K
——————————— BLKSIZE — —— — — — — — ——
| |
:— ————————— Written Block — —— — — — — — — n
————— RECL — — — — — - ————— me~———4
| | FORTRAN I
t= — — — FORTRAN Record — —— — - — "¢ [y = |
| [|
12 12 Bytes
24 Data Bytes Data Bytes of
Blanks
Figure 35. Fixed-Length Blocked Records

Written Under FORMAT Control

Variable-Length Records: For blocked
variable-length records written under FOR-
MAT control, LRECL is specified as four
greater than the maximum FORTRAN record
length, and BLKSIZE must be 4 plus an
integral multiple of LRECL. The four addi-
tional bytes allocated with BLKSIZE are
required for the block control word (BCW)
that contains the block length. The four
additional bytes allocated with LRECL are
used for the segment control word (SCW)
that contains the record length indication.

If a WRITE is executed and the amount of
space remaining in the present buffer is
less than LRECL, only the filled portion of
this buffer is written (see Figure 36); the
new data goes into the next buffer. Howev-
er, 1if the space remaining in a buffer is
greater +than LRECL, the buffer is not
written, but held for the next WRITE (see
Figure 36). If another WRITE is not exe-
cuted before the job step is terminated,
then the filled portion of the buffer is
written.

Example: Assume BLKSIZE=28 and LRECL=12

30 FORMAT(I3,F5.2)
40 FORMAT(F4.1)
50 FORMAT(F7.3)

-

WRITE(12,30)M,2
WRITE(12,40)V
WRITE(12,50)Y
——————————— BLKSIZE — — — — — — — ————1
| |
r— —————— Written Block — — — — — —— 1 :
T
} CTTTTREL—— - LRECL — — — — - :
| 1
I | —~—_FORTRAN Record——{ --FORTRAN —} !
[T B I | Record | |
1 | D |
4 4 Bytes 1
BCWISCW 8 Data Bytes SCW Data Not
Bytes Written |
_____ J

— —-FORTRAN Record— —

This space of 13 bytes

BCW|SCW,| 7 Data Bytes Ready for next WRITE.
(space >LRECL)
Figure 36. Variable-Length Blocked Records

Written Under FORMAT Control

NO FORMAT CONTROL: Only variable-length

records can be written with no FORMAT
control; i.e., the RECFM subparameter must
be V. (If nothing is specified, V is

assumed.)

Records written without FORMAT control have
the following properties:

¢ The 1length of the 1logical record is
controlled by the type and number of
variables in the I/0 list of its asso-
ciated READ or WRITE statement.

e A logical record can be physically
recorded on an external medium as one
or more record segments. Not all seg-
ments of a logical record must fit into
the same physical record (block).

e Three quantities control the manner in
which records are placed on an external
medium: the block size (as specified by
the BLKSIZE parameter), the segment
length (as specified by the LRECL
parameter), and the logical record (as

Creating Data Sets 55

defined by the length of the I/O list).
BLKSIZE and LRECL are specified as part
of the DCB parameter of the data defi-
nition (DD) statement. If not speci-
fied, FORTRAN provides default values.

with a
each

Each block begins
control word (BCW);

4-byte block
segment begins

with a UW4-byte segment control word (SCW).
The SCWs and BCWs are provided by the
system.

The format of a BCW is given in Figure

37.

13 T
| block-length] reserved
L 4L
2 bytes 2 bytes
Figure 37. Format of a Block Control Word

where:

block-length
is a binary count of the total number
of bytées of information in the block.

This includes four bytes for +the BCW

plus the sum of the segment lengths
specified in each SCW in the block.
(The permissible range 1is from 8 to

32,767 bytes.)

reserved
is two bytes of
system use.

zeros reserved for

The
38.

format of an SCW is given in Figure

r T £l 1
| segment-length | code | reserved |
L 1 L J
2 bytes 1 byte 1 byte
Figure 38. Format of Segment Control Word

where:

segment-length
is a binary count of the number of
bytes in the SCW (4 bytes) plus the
number of bytes in the data portion of
the segment following the SCW. (The
permissible range is from 4 to 32,763
bytes.)

code
indicates the position of the segment
with respect to the other segments, if
any, of the record. Bits 0 through 5
are reserved for system use and are
set to O. Bits 6 and 7 contain the
codes:

56

Code Meaning
00 This segment is not followed or

preceded by another segment
of the record.
01 This segment is the first of a
multi-segment record.

10 This segment is the 1last of a
multi-segment record.

11 This segment is neither the
first nor last of a multi-
segment record.

reserved
is a byte of zeros reserved for system
use.

Unblocked Records: For unblocked records
written without FORMAT control the value of
BLKSIZE is equal to LRECL + 4. (The four
additional bytes are for the BCW.)

If the logical record 1length is Jless
than or equal +to LRECL-4, the 1logical
record comprises one record segment.
Hence, for the associated READ or WRITE

statement, one record segment, i.e., one
block, is transmitted (see Figure 39).
Note that the unused portion of the block
is not transmitted.

If the logical record length is greater
than LRECL-4, the logical record comprises
N record segments, where: N=logical record
length/LRECL-4. Hence, for the associated
READ or WRITE statement, N record segments,
i.e., N blocks, are transmitted (see Figure
40).

Example 1: Assume BLKSIZE=28 and LRECL=24

WRITE (18) Q,R

where:
Q and R are real *8 variables.

|
| F————————— IRECL - — ——— — — — — -
| | !
: —-——— Logical Record — — — — — 9 :
BCW SCW Data Segment Not Written
4 bytes 4 bytes 16 bytes 4 bytes
Figure 39. Variable-length Unblocked Re-

cords, No FORMAT Control, One
Record Segment

Example 2: Assume BLKSIZE=28 and LRECL=24

WRITE (18) Q,R,S,V,X

where:
Q, R, and V are real *8 variables.
S and X are real *4 variables
[————————— — BLKSIZE — — — ——— — —— — 1
| |
| r———- LRECL—— ——————— —Jl
| | |
: —————— Beginning of Logical Record ——— ——— -
BCW SCW Data Segment 1
4 bytes 4 bytes 20 bytes
— — = — —End of Logical Record — — — ——
BCW SCW Data Segment 2 Not Written
4 bytes 4 bytes 12 bytes 8 bytes
Figure 40. Variable-length Unblocked Re-
cords, No FORMAT Control, Two
Record Segments
Blocked Records: For blocked records

written without FORMAT control, each block,
except the last, is composed of at least M
record segments, where: M = BLK-
SIZE-4/LRECL.

logical record 1length is less
equal to LRECL-4, the logical
record comprises one record segment.
Hence, for the associated M READ or WRITE
statement, one block, i.e., M record seg-
ments, is transmitted.

If the
than or

If the logical record length is greater
than LRECL-4, the logical record comprises

N record segments, where: N = 1logical
record length/LRECL-4. Hence, for the
associated READ or WRITE statement, N
record segments (i.e., as many blocks of M
segments each as are needed to makeup N
segments) are transmitted. The unused por-
tion of the last block is held for the next
READ or WRITE statement (see Figure U41).

Example: Assume BLKSIZE=28 and LRECL=12
WRITE (18) A

.

WRITE (18) B

-

WRITE (18) E

where:
A is a real *8 variable.
B and E are real *U4 variables.
Ff~———~——————— BLKSIZE - —————————— =
| !
I = WECL ——————— LRECL —————]
' : [)
| - — Logical Record — ——— Logical Record— — |
BCW | SCW Record 1 SCW Record 2 Not Written
4 bytes 4 bytes 8 bytes 4 bytes 4 bytes 4 bytes

— — Logical Record-——

BCW SCW Record 3 Space Ready for Next Write 4
4 bytes 4 bytes 4 bytes 16 bytes
Figure 41. Variable-length, Blocked Re-

cords, No FORMAT Control

BACKSPACE Operations

Unblocked Records, FORMAT Control: For all
unblocked records written under FORMAT con-
trol, the volume is positioned so that the
last record read or written is transmitted
nexte.

Unblocked Records, No FORMAT Control: For
all unblocked records written without FOR-
MAT control, the volume is positioned so
that the last logical record read or writ-
ten is transmitted next.

Creating Data Sets 57

Blocked Records: The programmer is warned
against backspacing blocked records; the
results obtained are unpredictable.

RECORD LENGTH, BUFFER LENGTH, AND NUMBER OF
BUFFERS FOR DIRECT ACCESS DATA SETS

A direct access data set can contain
only fixed-length, unblocked records. Any
attempts to read or write any other record
format by specification in the DCB parame-
ter are ignored. The record 1length and
buffer 1length for a data set are specified
by the programmer as the record size in the

DEFINE FILE statement, and cannot be
changed by specifying the BLKSIZE or LRECL
subparameters in the DCB parameter. For

example, the statement:

DEFINE FILE 8(1000,152,E,INDIC)

sets the record length and buffer length
permanently at 152 bytes. The direct
access data set defined by this DEFINE FILE
statement contains 1000 fixed-length,
unblocked records, each record is 152 bytes
long, and is written under FORMAT control.

The only DCB parameter that can be
supplied for direct access data sets is the
number of buffers:

BUFNO=x

where:
X is the number (1 or 2) of buffers
used to read or write the data set.

For records written with FORMAT control,
the record format is the same as for
fixed-length unblocked records written with
FORMAT control for sequential data sets.
For records written with no FORMAT control,
the records must be fixed length and
unblocked. These records do not contain a
block control word or a segment control
word. For records written with no FORMAT
control, the logical record can exceed the
record 1length specified in the DEFINE FILE
statement. If it is shorter than the
record length, the remaining portion of the
record is padded with zeros (see Figure
42).

58

—————— Record Length — — —— — — -
I i
:— ————— Record Segment | — == — — — — —l

|
I |

20 Data Bytes

Record Segment 1+ Record Segment 5 = 1 Logical Record
—r——-———— Record Segmentyg — — — — — — 1

4 Data Bytes 16 Bytes of Zeros

Figure 42. Logical Record (No FORMAT

Control) for Direct Access

Example: A DEFINE FILE state-
ment has specified the record length for a
direct access data set as 20. This state-
ment is then executed.

WRITE(9'IX)DP1,DP2,R1,R2

where:
DP1 and DP2 are double precision vari-

ables

R1 and R2 are real variables

IX is an integer variable
that contains the record
position

BACKSPACE, END FILE, and REWIND opera-

tions are ignored for direct access data

sets.

DCB RANGES AND ASSUMPTIONS

For compilation, the LRECL value for the
following data sets is fixed and cannot be
altered by the programmer:

Data Set LRECL Value
SYSPRINT 120
SYSIN 80
SYSPUNCH 80
SYSLIN 80

The SYSPRINT, SYSIN, and SYSPUNCH com-

piler data sets can contain blocked
records. If the higher level linkage edi-
tor (program name: IEWLE440) is used, the

SYSLIN data set contain blocked

records.

can

The BLKSIZE value must be an integral
multiple of the corresponding LRECL value
shown above. The maximum BLKSIZE value is
limited only by the type of input/output
device (see Table 11), except that for
SYSLIN the maximum BLKSIZE value is 400
with linkage editor IEWLEWU4O.

integral multiple of the LRECL value; for V
type records, BLKSIZE must be specified as
4 + n x LRECL (where n is the number of
records in the block); for U type recoxds,
no blocking is permitted. Note, too, that
the BLKSIZE and LRECL range is limited only
by the type of device used to directly

write the data set (see Table 10.1). Load
For load module execution, specifi- module DCB parameter default values are
cations depend on record type. For F type shown in Table 12.
records, the BLKSIZE wvalue must be an
Table 11. BLKSIZE Ranges: Device Considerations
=== ==7=7777"777 T 1
| | BLKSIZE Ranges |
| t T - %
| Device Type | F and U Record Type | V Record Type]
L -4 — 1]
| 3 T 1 1
| Ccard Reader | 1<x<80 | 9<x<80 |
¢ —mmmmmmeemot b :
| Card Punch | 1<x<81 | 9<x<89]
S t—- } 1
| Printer: | | |
| 120 Spaces | 1<x<121 | 9<x<129 |
| 132 spaces i 1<x<133 | 9<x<141]
| 144 Spaces I 1<x<145 | 9<x<153 |
¢ 3= - L i
| Magnetic Tape | 18<x<32,000 |
L - __+)
[} T 1
| Direct Access: | Without Track Overflow? | With Track Overflow?l |
| F fomm s :
i 2301 | 1<x<20,483 | 1<x<32,763]
2302	1<x<4984	1<x<32,763
2303	1<x<4892	1<x<32,763
2311	1<x<3625	1<x<32,763
2314	1<x<7294	1<x<32,763
———— L 4 4		
2If RECFM=V,'the minimum block size is 9.]		
Lo J

Creating Data Sets 59

® Table 12. Load Module DCB Parameter Default Values

r T 1
| Sequential Data Sets | Direct Access Data Sets |
4 L |
v T T v v LR |
| Data Set | Default | Default | Default | Default LRECL |
I| Reference Number ddname | BLKSIZE' | RECFM2 | RECFM | or BLKSIZE |
k - 1 + 1 t 4
| 1 | FTOlFyyy | 800 | U | F | |
k 1 1 + t i [
| 2 | FTO2Fyyy | 800 | U | F | The value spec-|
L 1 4 1
T T T | I
11 3 FTO3Fyyy | 800 [U | FA3 ified as the
L I] 4
r T T I . I
] 4 | FTO4Fyyy | 800 | U | F | maximum size of|
k + t + 1 1 |
| 5 | FTOSFyyy | 80 | F | F | a record in the|
b t 1 + 1 i |
1 6 | FTO6Fyyy | 133 [UA3 | F | DEFINE FILE |
L 1 1 1 4 J I
' T T T 1 1
| 7 | FTO7Fyyy | 80 | F | F | statement.
[R 1 1 1 4 J I
r) T T 1 1
| 8 | FTO8Fyyy | 800 | U | F | |
I . I . I . ! - | - | I
I - I . | . | - | - | |
| . I . | . I . | - | I
| 99 | FT99Fyyy | 800 | U | F | |
= 1 L L i | L __=

1|7If the records have no
the default BLKSIZE is

|I|2If the records have

| access).

||3The first character in

L

FORMAT control, the default LRECL is 4 less than BLKSIZE, where|
as specified in this table.

no FORMAT control, the default RECFM is V (F if it is direct]

the record is for carriage control.

I
|
J

60

This section contains figures illustrat-
ing the job control statements used in the
FORTRAN IV cataloged procedures and a brief
description of each procedure. The state-
ments used to override the statements and
parameters in any cataloged procedure are
also discussed in this section. (The use
of cataloged procedures 1is described in
"FORTRAN Job Processing.")

Compile

In each of the three cataloged proce-
dures that include the compile step
(Figures 44, 45, and 46), the EXEC state-
ment named FORT designates that the operat-
ing system is to execute the program IEY-
FORT FORT (the FORTRAN IV G compiler).

The REGION parameter 1s ignored by

sequential schedulers. For priority
schedulers, it specifies a region size
sufficient to compile approximately 400

statements.

Priority schedulers require that region
size Dbe specified, wunless the user is
willing to accept the default region size
(as established in the input reader
procedure) .

The size of the region is directly
related to the maximum number of source
statements that can be compiled by the
FORTRAN G compiler. A region size of 100K
is estimated to be sufficient to compile
approximately 400 statements assuming
unblocked input and output and non-resident
access methods. To adjust this region size
for smaller or larger source programs, use
75 bytes per statement as a rule of thumb.

Note: If different region sizes are to be
specified for each step in the job, the
REGION parameter should be coded in the
EXEC statement associated with each step
instead of in the JOB statement.

The compiler options (shown in Figure
23) are not supplied with any procedure
containing a compile step. Therefore, if
the user wishes to have certain operations
performed, he must specify those options in
the job control statements. However, if
the wuser does not specify any of the
options, the system will assume certain
default options which are noted by the
underscores in Figure 23.

CATALOGED PROCEDURES

The control statements contained in the

procedure (shown in Figure 43) designate
the data sets to be used by the compiler
during its operation. The source listing,

compile-time information, and error messa-
ges are written on the data set designated
by the SYSPRINT DD statement. The object
module resulting from the operation of the
FORTRAN compiler is written in the tempora-

ry data set &LOADSET, designated in the
SYSLIN DD statement. This data set is
sequential and is assigned to a sequential

device such as a tape or direct-access
device. However, if the direct-access
device is assigned, a primary allocation of
200 records is requested with a secondary
allocation of 100 records. Average record
length is specified as 80 bytes. The data
set is in PASS status and records can be
added to the data set. The SYSPUNCH DD
statement defines the card punch to be used
in obtaining an object deck.

The SYSOUT=B parameter on the SYSPUNCH
DD statement is interpreted by sequential
schedulers as indicating the system card
punch unit. The priority scheduler will
route the output to output class B.

The programmer can override any of the

default options by using an EXEC statement
which includes the options that are

desired.

Compile and Link Edit

The cataloged procedure to compile the
source module and link edit the resulting
FORTRAN object module (FORTGCL) is shown in

Figure 44, The control statements for
compilation are the same as described
above. However, output of the object

module is defined by the SYSLIN DD state-

ment.

In each of the cataloged procedures that
include a 1link edit step (Figures 44, u5s,

and 46), the EXEC statement named IKED
specifies that the operating system is to
execute the program IEWL (the 1linkage
editor). However, the linkage editor step

(or the remainder of the procedure) is not
executed if a condition code greater than u
was generated during the operation of the
compile step in the same procedure.

Cataloged Procedures 61

IBM

FORTRAN Coding Form

X738
Pincad in U, A,

PROGRAM

PROGRAMMER | DATE

GRAPHIC PAGE of
CARD ELECTRO NUMGER

PUNCHING
INSTRUCTIONS

PUNCH

e § FORTRAN STATEMENT IDEATIFICATION
JI/FIOR EXEC] PGN=[TEYFOKT): REGI ON=18EK TITIT TTTTTITTIT I T
/sy slPRIINT| DD! | ISYSOUT=A
/1 'SYSPUNCH PD | [SYSOU[T=B |
ll1'SYSL|IN DD | DSNAME=I£L'0lADSE T2 0!t [siPl=[¢(MOD]> PAlSSD s lUNI[T='SY SIS &> X

[/ : SPA{CE:(,&F’ (2ioi¢tnﬂm,ait.sie ,Dicairell.iksur:s-‘ieﬂ
| Al

eFigure 43,

Execution of the link edit step produces
a list of the linkage editor control state-
ments (in card 1image format), a map and
cross-reference listing of the load module,
and a list of 1linkage editor diagnostic
messages on the data set specified by the
SYSPRINT DD statement. The load module is
marked executable even though error condi-
tions are found during processing.

The primary input to the linkage editor
may consist of concatenated data sets. The
‘first, defined by the SYSLIN DD statement,
is the output of the compiler; the second
(may be omitted) is the data set defined by
a LKED.SYSIN DD statement which is speci-

fied by the user and is external to the
procedure.
External references made in a FORTRAN

object module are resolved by the linkage

editor. Some or all of these references
can be resolved from the FORTRAN library
(SYS1.FORTLIB) designated in the SYSLIB DD
statement.

During processing, the linkage editor
requires a work data set which is defined
by the SYSUT1 DD statement. This data set
is assigned to a direct-access device with

primary allocation of twenty records and
secondary allocation of ten records. The
load module produced by the linkage editor

is written in the temporary PDS defined in
the SYSLMOD DD statement. The data set is
in the PASS status.

Link Edit and Execute

This cataloged procedure, FORTGLG, first
link edits the FORTRAN object module and
then executes the resulting load module.
(Procedure is shown in Figure 45.) Since
the link edit step is the first step in the
procedure, the primary input is the data
set defined by the LKED.SYSIN DD statement.

62

Compile Cataloged Procedure (FORTGC)

The execute step is dincluded in two
cataloged procedures (see Figures #5 and
46). In each of these procedures the
execute step is invoked by the EXEC state-
ment named GO. However, this step is
bypassed if a condition code greater
than 4 was generated during the
operation of the link edit step in this
procedure.

Input to the execute step is defined by
a GO.SYSIN DD statement which is supplied
by the user and is external to the proce-
dure. The data set is read using data set
reference number 5. In the link edit step,
execution-time error messages are written
in the data set defined by the SYSPRINT DD

statement. In the execute step, errorx
messages and information for traceback,
DUMPs, and PDUMPs are written on the data

set associated with the reference number 6.
(Output from the load module can also be
written in the same data set.) The card
punch is associated with data set reference
number 7.

In a multiprogramming environment with a
priority scheduler, main storage require-
ments for the execute step are determined
by a number of factors. These include: the
size of the object program produced by the
compiler, the requirements of the data
access method used, the blocking factors,
the number and sizes of the data sets used,
the number and sizes of library subprograms
invoked, and the sizes of the execution
time routines required by the program. if
the default region size (established in the
cataloged procedure for the input reader)
is not large enough for the program,
REGION.GO must be used to specify the
region size for the execute step.

]BM FORTRAN Coding Porm [raived
:OGIAMMEI I DATE fjvarypiatA NS ::'A;:Ic ::;Emcnz;umv
el é ' FORTRAN STATEMENT IDENTIHICATION
V2 3 4 SJ6 7 8 ® 10 11 02 43 V4)5 16 17 I8 19 20 20 22 23 24 25 24 27 28 29 30 31 32 33 34 35 36 37 38 39 4D 41 42 4 44 45 44 47 49 49 50 51 52 5] 54 55 6 57 58 59 60 41 62 43 &4 45 6 87 68 49 70 71 72173 74 7S 76 77 78 79 89
£7Eder 111 | Exec PaMe1e/EclaTiRecTrn= INRERRNEAENRRARENN
Y 3 Pl (MoODls Daluntir=ls)
1z =)alRLSE) > DCBl=BILKS!I ZE =
LK s s =3 6/K'> | PIARMsI (X vg.]tr, 1ST)]s Conp= (4L Tl> FlORT
¥ :) .F s DIsPs IBESRARREARNRRREEREREREAE
/S ‘ ME .(bd& £Y)5') § | ,@Mz'[. SDAs
1 Ll s (204519 11)1s RL! 19 = 1 =1 gy
Y, D | is T=A | L
[be ITESYSDAlISPACE Y 21 @) §‘§f 2)DC B=BL KIS/ ZEl=I1|F2Y
tysysuen || pp [. =gl n,s%jn Pl= (0[N3 DEL
#Figure 44. Compile and Link Edit Cataloged Procedure (FORTGCL)
IBM FORTRAN Coding Form ol
— = A o
e § FORTRAN STATEMENT IDENTIFICATION
et
rd LMD, ; Pl=i(su:PAFﬁgsu Ti=lSYSDA >
I Sp) s RL@EL;P e LKSI;E;J_FWJ
/| 545
Y, PERYIY. [(l2ldsl1'd) s [Rl]seD 1 Ipicll= 8L Kls]i [2IE]= 11 iB2
‘ oo iGN AREEE TR
Vird pﬁuizw‘ (4 LiTls L KED) b
4 QD D R E
o |ls
Y

eFigure 45. Link Edit and Execute Cataloged Procedure (FORTGLG)

A listing of the execution time routines sizes of both the execution time routines
required for various input/output, inter- and the mathematical subprograms.
ruption, and error procedures is contained
in IBM_System/360 FORTRAN IV Library Sub- An example of using a REGION.GO specifi-
programs. That publication also lists the cation to indicate the main storage

Cataloged Procedures 63

requirements for the execute
FORTRAN program follows.

step of a

//EXAMPLE1l JOB ACCOUNT1, *JOHNSMITH' X
MSGLEVEL=1
//EXEC FORTGCLG,PARM.FORT=DECK, X

REGION.GO=8U4K

//FORT.SYSIN DD¥*

FORTRAN SOURCE SYMBOLIC DECKS

-
.

/%

//LKED.SYSIN DD#*

-

PREVIOUSLY COMPILED OR ASSEMBLED
OBJECT DECKS

/¥
//GO.SYSIN DD#*
INPUT DATA

/*

Compile, Link Edit, and Execute

The cataloged procedure (FORTGCLG) to
compile, link edit, and execute FORTRAN
source modules is shown in Figure 46. This
cataloged procedure consists of the state-
ments in the FORTGC and FORTGLG procedures,
with the following exception: the SYSLIN DD
statement defines the output of the compil-
er, and the same statement in the link edit
step identifies this output as the primary
input.

The ' programmer does not have to define
the linkage editor input as was required
for the FORTGLG procedure, but the input
data set must be defined for the compiler
so that the source module can be read. A
data set containing primary input +to the
linkage editor may also be defined by using
a LKED.SYSIN DD statement. This data set
is concatenated with the data set contain-
ing the output of the compiler.

64

USER_AND MODIFIED CATALOGED PROCEDURES

The programmer can write his own cata-
loged procedures and tailor them to the

facilities in his installation. He can
also permanently modify the IBM-supplied
cataloged procedures. For information

about permanently modifying cataloged pro-

cedures, see the Job Control Language pub-
lication.
The IBM-supplied cataloged procedures

for FORTRAN IV (G) define logical wunit 05
as SYSIN, 06 as SYSOUT, and 07 as SYSCP
(see Figures 45 and 46). 1If, during system
generation, values other than 05 for the
ONLNRD parameter, 06 for the OBJERR parame-
ter, and 07 for the ONLNPCH parameter were
specified in the FORTLIB macro instruction
 one or more of the following DD cards
must be added to the cataloged procedures,
either to override them at execution time
or to modify permanently.

If a //GO.SYSIN DD * statement is used
to define the input data set, DCB paramet-
ers should not be specified. However, if
the data set defined as SYSIN resides
somewhere other than on the system input
device, the programmer should be aware that
the default BLKSIZE is 800 and the default
RECFM is U (see Table 10). Therefore, if
he desires a BLKSIZE of 80 and a REFM of F,
he must specify them explicitly.

e For the unit specified as ONLNRD, use
the DD card:

//GO.FTxxF001 DD DDNAME=SYSIN

e For the unit specified as
the DD card:

OBJERR, use

//GO.FTxxXF001 DD SYSOUT=A

¢ For the unit specified as ONLNPCH, use
the DD card:

//GO.FTxXF001 DD UNIT=SYSCP, X
DCB=(BLKSIZE=80, RECFM=F)

where:
xx (2 digits) is the unit spec-
ified

The publication IBM System/360 Operating
System, System Generation describes the

FORTLIB macro instruction.

In addition, the DD card for FT05001
must be deleted permanently from the cata-
loged procedure.

IBM FORTRAN Coding Form ety
= g, e L L L P T F 1 e e
o [R O O O
el g FORTRAN STATEMENT Rt
B B O R R
E { =T EYF ORT. TON= [INNRRAERNREREANREN T REN
Ve r;ijsgiuggf! A RANANA AR R ARARARRARRARARARRRANREARAARRAR AR
LS O 'sysoures [T LITTELTTILL PP IOl CTepiy PRl rpygriis N
(SYSLIN | | DD | PSNAME=6LOADSETa DISPE(MODs PASSDaUNIT=SYSSQa ||~ | 1|11 111> 11111
Wyl LTI T ispaces (8@(2@d1i1da) sRLSE) s DCB=pLKSIRE=8 | | [[I [\ 11T 1T [
KED EXEC PGM=TEWL\REGION=G6/K1PARM= (XREF1 LET3L1ST) s COND=(4s LToFORD) ([11~ I
YSIA | ph | NSNAMEsSYS1 FORTLIRDISP=SHR | | [[| TT T | [TTTTTTITiTTTT
1.8y D | PSNAME=£6QS LA s D 1SP= (NEW:|PASS) s LINI T SYSDA S | | 1
| ' ACE= (124 (2 1¢,/1)|s RUSEY) DICR=BLIKS 1 ZEl=1 @24 | [[| [[[T+ |
! INT DD | Bysour=A | | oo LT T T T T T |
|litsyseira | | DD | UNIT=SYSDA =(1¢ 142}7311 IsRLSED» DCB=BLKSI ZE=1g924 | [T [[1]
¥SLIN | | DD - PSNAME=eLOADSET DISP= (ouplabeLere) |1 11 i1 lT]] i
L T b T pbNAMe=sYs]T) L [REEERREAEN > I
v /G0 EC. PGM= u|. L KED|. SysiMoDscoNh=(| (43 L T)s FORTD'a (4 4]L.T LKED ,
=iy bl msyspN LT AERNNEN IRREN .
‘ bb | SOuTeA | || \ i P RN ! ‘ [IREEEEEEE
1 FAdY DD | Sysour=B | EBSBNRE NERRNRRRRYNRRR X N
TN RN I o T = HEAEE

sFigure 46,

OVERRIDING CATALOGED PROCEDURES

Cataloged procedures
EXEC and DD statements. A feature of the
operating system is its ability to read
control statements and modify a cataloged
procedure for the duration of the current
job. Overriding is only temporary; that
is, the parameters added or modified are in
effect only for the duration of the job.
The following text discusses the techniques
used to modify cataloged procedures.

are composed of

Overriding Parameters in the EXEC Statement

Two forms of keyword parameters
("keyword" and "keyword.procstep") are dis-
cussed in "Job Control Language."™ The form
"keyword.procstep" is used to add or over-
ride “parameters in an EXEC statement in a
cataloged procedure.

The FORTRAN programmer can, for example,
add (or override) compiler or linkage edi-
tor options for an execution of a cataloged
procedure, or he can state different condi-
tions for bypassing a job step.

Note: When the PARM parameter is overrid-
den, all compiler and/or 1linkage editor
options stated in the EXEC statement in the
procedure step are deleted and replaced by
those in the overriding PARM parameter.

Example 1: Assume the cataloged procedure
FORTGC 1is wused to compile a program, and

the programmer wants to specify the name of
his program and the MAP option. The fol-
lowing statement can be used to invoke the

Compile, Link Edit, and Execute Cataloged Procedure (FORTGCLG)

procedure and to supply the compiler
options.

//STEP1 EXEC FORTGC, X
/7 PARM.FORT="'MAP, NAME=MYPROG"'

The PARM options apply to the
step FORT.

procedure

Example 2: Assume the cataloged procedure
FORTGLG is used to link edit and execute a
module. Furthermore, the MAP option over-
rides XREF, LET, and LIST in the 1linkage
editor step and the COND parameter is
changed for the execution of the 1load
module. The following EXEC statement adds
and overrides parameters in the procedure.

//DO EXEC FORTGLG,PARM.LKED=MAP, X
// COND.GO=(3,LT,DO.LKED)
The PARM parameter applies to the link-

age editor procedure step LKED, and the
COND parameter applied to the execution
procedure step GO.

Example_ _3: Assume a source module is
compiled, 1link edited, and executed using
the cataloged procedure FORTGCLG. Further-

more, the 1linkage editor option MAP is
specified, and account number 506 is used
for the execution procedure step. The

following EXEC statement adds and overrides
parameters in the procedure.

//STEP1 EXEC FORTGCLG, PARM.LKED=MAP, X
4 ACCT.GO=506

Cataloged Procedures 65

Overriding and Adding DD Statements

A DD statement with the name
"stepname.ddname" is used to override
parameters in DD statements in cataloged
procedures, or to add DD statements to
cataloged procedures. The "stepname" iden-
tifies the step in the cataloged procedure.
If "ddname" is the name of a DD statement:

1. Present in the step, the parameters in
the new DD statement override parame-
ters in the DD statement in the proce-
dure step.

2. Not present in the step, the new DD
statement is added to the step.

In any case, the modification is only
effective for the current execution of the
cataloged procedure.

When overriding, the original DD state-
ment in the cataloged procedure is copied,
and the parameters specified in it are
replaced by the corresponding parameters in
the new DD statement. Therefore, only
parameters that must be changed are speci-
fied in the overriding DD statement.

If more than one DD statement is modi-
fied, the overriding DD statements must be
in the same order as the DD statements
appear 1in the cataloged procedure. Any DD
statements that are added to the procedure
must follow overriding DD statements.

When the procedures FORTGC, FORTGCL, and
FORTGCLG are used, a DD statement must be
added to define the SYSIN data set to the
compile step in the procedures (see Figures
15 and 21). When the procedure FORTGLG is
used, a DD statement must be added to
define the SYSLIN data set (see Figure 18).

When the procedures FORTGCL, FORTGLG,
and FORTGCLG are used, an overriding DD
statement can be wused to write the load

module constructed in the linkage editor
step in a particular PDS chosen by the
programmer, and assign that member of the

PDS a particular name.

During execution of procedure steps, the
programmer can catalog data sets, assign
names to data sets, supply DCB information
for data sets, add data sets, or specify
particular volumes for data sets by wusing
overriding DD statements.

66

Example 1: Assume the data sets identified
by ddnames FTO4F001 and FT08F001 are named,
cataloged, and assigned specific volumes.
The following DD statements are used to adad
this information and indicate the location
of the source module.

//J0B1 JOB MSGLEVEL~=1
//STEP1 EXEC FORTGCLG
//FORT.SYSIN DD #*

13
| FORTRAN Source Module
L
J*

//GO.FTO4F001 DD DSNAME=MATRIX,
// DISP=(NEW,CATLG),UNIT=TAPE,
/77 VOLUME=SER=987K
//GO.FT08F001 DD DSNAME=INVERT,
// DISP=(NEW,CATLG) ,UNIT=TAPE,
/7 VOLUME=SER=1020

//GO.SYSIN DD*

S p——

PN XM

| '~ Input to Load Module

-
e e od

Example 2: Assume DCB information is added
to the DD statement identified by ddname
FT08F001 and a data set for data set
reference number 4 is created and cata-
loged.

//30B2 JOB
//STEP1 EXEC FORTGLG
//LKED.SYSIN DD *

r 1
| FORTRAN Object Module |
L —_— —_— -d
/¥

//GO.FTO4F001 DD DSNAME=FIRING, X
// UNIT=SYSDA,DISP=(NEW,CATLG), X
7/ SPACE=(100, (2000,200),,,ROUND), X
// VOLUME=(PRIVATE, SER=207H), X

7/ DCB=(RECFM=VB, LRECL=300, BLKSIZE=604)
//GO.FT08F001 DD DCB=(RECFM=F,BLKSIZE=200)
//GO.SYSIN DD *

| Input to Load Module |

—_— -d

Example 3: Assume the link edit and exe-
cute cataloged procedure (FORTGLG) is used.
The load module constructed in the linkage
editor step is placed in the cataloged
partitioned data set MATH and is assigned
the member name DERIV.

//J0B3 JOB

//STEP1 EXEC FORTGLG

//LKED.SYSLMOD DD DSNAME=MATH (DERIV), X
Vs DISP=(OLD, PASS)

//J0OBCLG, JOB 00, FORTRANPROG, MSGLEVEL=1
//HXECCLGX EXEC FORTGCLG
//FORT.SYSIN DD *

[} 1
//LKED.SYSIN DD * | FORTRAN Source Module MAIN |
r - - 7 } %
| FORTRAN Object Module | | FORTRAN Source Module SUB1 |
L 4 3 4
% | . |
//G0O.SYSIN DD * | . |
r 1 l “ I
| Input to Load Module. | t ——— 4
L—— - 4 | FORTRAN Source Module SUBN |
/* L 3

/%

//LKED.ADDLIB DD DSNAME=MYLIB
Example 4: Assume the compile, link edit, //LKED.SYSIN DD *
and execute cataloged procedure (FORTGCLG) LIBRARY ADDLIB(ALPHA,BETA,GAMMA)

is used with three data sets in the
stream:

input

1. A FORTRAN main program MAIN with a
series of subprograms, SUB1 through
SUEN.,

2. A linkage -editor control statement
that specifies an additional 1library,

MYLIB. MYLIB is wused to resolve
external references for the symbols
ALPHA, BETA, and GAMMA.

3. A data set used by the load module and
identified by data set reference num-
bexr 5 in the source module.

The following example shows the deck
structure.

/*
//GO.SYSIN DD *

r

1 Input to Load Module
L

/¥

| ——

The DD statement FORT.SYSIN indicates to
the compiler that the source modules are in
the input stream. The DD statement
LKED.ADDLIB defines the additional 1library
MYLIB to the linkage editor. The DD state-
ment LKED.SYSIN defines a data set that is
concatenated with the primary input to the
linkage editor. The linkage editor control
statements and the object modules appear as
one data set to the linkage editor. The DD
statement GO.SYSIN defines data in the
input stream for the load module.

Cataloged Procedures 67

PROGRAMMING CONSIDERATIONS

This section discusses minimum system
requirements for the compiler, program
optimization, updating the FORTRAN library,
creation of the programmer's private
library, and limitations of the compiler.

STORAGE LOCATIONS AND BYTES

are
One

Storage 1locations
called bytes, words,

in System/360
and double-words.

word 1is four bytes long; a double-word is
eight bytes long. When data is read into
main storage, it is translated into inter-

nal format. See Table 13 for storage
allocation according to the type and length
of the constant or variable.

Table 13. Storage Allocation

r T = T 1
| Type | Length| Storage |
| N] J
I X T T 1
| Logical | 1 |1 byte |
] | 4 |4 bytes]
b 1 t 1
|Real | 4 |4 bytes |
| | 8 |8 bytes |
b s -—————
Integer	2	2 bytes (variable
	I only)	
	4	4 bytes
I 4 1 4		
[} T T 1		
Complex i 8	8 bytes	
	16	16 bytes
t 1 $ -		
Character	=--	1 character/byte
(BCD or EBCDIC)		

I 1 :
| Hexadecimal | =-- |2 characters/byte |
| L L 4

MINIMUM SYSTEM REQUIREMENTS FOR THE FORTRAN
COMPILER

The FORTRAN compiler requires at least a
System/360 Model 40 computer with a minimum
storage capacity of 128K bytes and a stand-
ard instruction set with the floating-point
option.

All programs require a device such as an
IBM 1052 Keyboard Printer for direct opera-
tor communication. Also, at 1least one
direct-access device must be provided for
system residence.

68

The printer must have at least a

120-character print line.

| SOURCE PROGRAM CONSIDERATIONS

The FORTRAN compiler automatically
provides optimization of certain areas of
the source module. Other areas may be

optimized by the programmer through his use
of the FORTRAN language.

The following paragraphs describe the
optimization facilities that are provided
by the compiler and those defined by the
programmer.

DO Loop Optimization

During the
compiler, one
for the purpose

operation of the FORTRAN
complete phase is included
of DO loop optimization.

Each loop is recorded internally as it
is encountered in the source module. As
each step of the optimization process pro-
gresses, the loops are further categorized
for ease of reference in generating the
corresponding object code.

If loops are nested, the end of each
loop is denoted by a special reserve mark,
which is placed at the end of the inter-
mediate notation that is being produced.
The 1level of nesting is also recorded for
each group of nested loops. This minimizes
execution time in determining at object
time the depth to which calculation must be
maintained to close the first loop of the

nest.
A further categorization divides the
loops into standard and non-standard.

Standard denotes the requirements of reg-
ister assignment for the script expression,
and non-standard denotes the opposite.
This method enables the compiler to make
register assignments prior to the final
generation of the object code. In this
way, addresses are retrieved and inserted
into the designated instruction without
unnecessary repeated address calculation.

Indicators_and Sense Lights

At the start of program execution, the
divide-check indicator, the overflow indi-
cator, and the sense lights are not ini-
tialized. Therefore, if a programmer
intends to use the indicators or sense
lights, he should initialize them prior to
use; otherwise, erroneous results may be
obtained.

Boundary Adjustment of Variables in COMMON
Blocks and EQUIVALENCE Groups

Variables in a COMMON block or EQUIVAL-
ENCE group may be in any order if the
BOUNDRY=ALIGN option was specified in the
FORTLIB macro instruction during system
generation, since boundary-alignment viola-
tions will be corrected at exection time.
(The FORTLIB macro instruction is described
in the publication IBM System/360 Operating
System, System Generation). it the
BOUNDRY=NOALIGN option was specified and
boundary violations are encountered during
execution of the object program, +the job
will terminate.

If the BOUNDRY=ALIGN option of the FORT-
LIB macro instruction was specified and a
boundary violation occurs in a FORTRAN main
program or in a FORTRAN or assembler lan-
guage subprogram, each instruction that
refers to the improperly aligned variable
will require that (1) the specification
exception resulting from this reference be
processed, and (2) the boundary-alignment
routine be invoked. Therefore, considera-
ble programming efficiency will be gained
if the programmer insures that all of the
variables have proper boundary alignment.
The publication IBM System/360 FORTRAN IV
Language contains information on boundary
alignment.

When boundary alignment is performed,

program interrupt message IHC210I is
issued. (This message is described in the
section "Program Interrupt Messages" in

Appendix D). For boundary alignment, the
letter A appears in the text of the message
and the code 6 appears in the old PSW
(program status word), which is included in
the message. The number of warning messa-
ges printed is limited to 10. After 10
boundary-alignment adjustments “have been
made, the message is suppressed, but
boundary-alignment violations continue to
be corrected.

Note: Even if BOUNDRY=ALIGN was specified,
if a boundary error occurs on an EXECUTE,
LOAD MULTIPLE, or STORE MULTIPLE assembler
language statement, boundary adjustment

will not take place
terminate. Therfore, if these instructions
refer to improperly aligned data, they
should not be wused in assembler language
subprograms.

and the job will

Use of DUMP and PDUMP

Under the operating system, a program
may be 1loaded into different areas of
storage for different executions of the
same job. The following conventions should
be observed when using the DUMP or PDUMP
subroutine to insure that the appropriate
areas of storage are dumped.

If an array and a variable are to be
dumped at the same time, a separate set of

arguments should be used for the array and
for the variable. The specification of
limits for the array should be from the

first element in the array to the 1last
element. For example, if an array TABLE is
dimensioned as:

DIMENSION TABLE (20)

The following statement could be used to
dump TABLE and the real variable B in
hexadecimal format and terminate execution
after the dump is taken:

CALL DUMP (TABLE(1),TABLE(20),0,B,B,0)

If an area in COMMON is to be dumped at

same time as an area of storage not in
the arguments for the area in
should be given separately. For
if A is a variable in COMMON, the
following statement could be used to dump
the wvariables A and B in real format
without terminating execution:

the
COMMON,
COMMON
example,

CALL PDUMP (A,A,5,B,B,5)

If variables not in COMMON are to be
dumped, the programs should list each vari-
able separately in the argument list. For
example, if R, P, Q are defined implicitly
in the program, the statement:

CALL PDUMP(R,R,5,P,P,5,0,0,5)

should be used to dump the three variables.
If the statement:

CALL PDUMP(R,Q,5)

is used, all main storage between R and Q

is dumped.

Programming Considerations 69

If an array and a variable are passed as
arguments to a subroutine, the arguments in
the call to DUMP or PDUMP in the subroutine
should specify the parameters used in the
definition of the subroutine. For example,
if the subroutine SUBI is defined as:

SUBROUTINE SUBI(X,Y)
DIMENSION X(10)
and the call of SUBI within the
module is:

source

DIMENSION A(10)

10 CALL SUBI(A,B)

then the following statement in the subrou-
tine should be used to dump the variables
in hexadecimal format without terminating
execution:

CALL PDUMP (X(1),X(10),0,Y,Y,0)
If the statement:

CALL PDUMP (Xx(1),Y,0)
is used, all storage between A(1l) and Y is
dumped, due to the method of transmitting

arguments. (Y does not occupy the same
storage location as B.)

Use of ERR Parameter in READ Statement

Use of optional ERR parameter for a READ
statement can indicate the source program
statement to which transfer should be made
if an error 1is encountered during data
transfer. When transfer has been made to
that statement, the first subsequent READ
in the source program provides the record
that was in error. If this 1is not the
record desired, an additional READ should
be issued. ‘

If the ERR parameter is omitted from the

READ statement, and input/output device
error terminates program execution.

Direct Access Programming

access I/0 rather than
sequential I/O can decrease load module
execution time: the direct access state-
ments in the FORTRAN IV language enable the
programmer to retrieve a record from any
place on the volume without reading all the
records preceding that record in the data
set. Direct data sets should be pre-

Using direct

70

formatted. If the NEW
specified in the DD statement for the

subparameter is
data

set, the FORTRAN 1load module will format
the data set before the program begins
processing.

Note: Direct access 1I/0 statements and

sequential I/O statements may not be used
to process, via the same unit number, the
same direct data set within the same
FORTRAN load module. However, sequential
I/0 statements may process a direct data
set in one load module, while direct access
I/0 statements process it in another.

Not all applications are suited to
direct access 1I/0, but an application that
uses a large table that must be held in
external storage can use direct access I/0
effectively. An even better example of a
direct access application is one that uses
a data set that is wupdated frequently.
Records in the data set that are updated
frequently are called master records.

Records 1in other data sets used to update
the master records are called detail
records.

Each of the master records should con-
tain a wunigue identification that distin-
quishes this record from any other master
record. Detail records used to update the
masters should contain an identification
field that identifies a detail record with
a master record. For example, astronomers
might have assigned unique numbers to some
stars, and they wish to collect data for
each star on a data set. The unique number
for each star can be used as identification
for each master record, and any detail
record used to update a master record for a
star would have to contain the same number
as that of the star.

A FORTRAN program indicates which record
to FIND, READ or WRITE by its record
position within the data set. The ideal
situation would be to use the unique record
identification as the record position.
However, in most cases this is impractical.
The solution to this problem is a randomiz-
ing technique. A randomizing technique is
a function which operates on the identifi-
cation field and converts it to a record
position. For example, if six-digit num-
bers are assigned to each star, the random-
izing technique may truncate the last two
digits of the number assigned to the star
and wuse the remaining four digits as a
record position. For example, star number
383320 would be assigned position 3833.
Another example of a randomizing technigque
would be a mathematical operation performed
on the identification number, such as
squaring the identification number and
truncating the first four digits and the

Identifier Chain

—-——— - -

T

| Record |

383320 |Position for|
|

1

| 383396

1
|
Data |
|
3

—_————t

r=—-- -

T
| Record

383396 |Position for
| 383352

i

———

.
|
Data |
|

Data |

Figure 47. Record Chaining

last four digits of the result. Then the
record for star number 383320 is assigned
record position 3422. There is no general
randomizing technique for all sets of iden-
tification numbers. The programmer must
devise his own technique for a given set of
identification numbers.

Two problems arise when randomizing
techniques are used. The first problem is
that there may be a lot of space wasted on
the volume. The solution in this instance
must be developed within the randomizing
technique itself. For example, if the last
two digits on the identification numbers
for stars are truncated and no star numbers
begin with zero, the first thousand record
positions are blank. Then a step should be
added to the randomizing technique to sub-
tract 999 from the result of the trunca-
tion.

The second problem is that more than one
identification may randomize to the same
record location. For example, if the last
two digits are truncated, the stars iden-
tified by numbers 383320, 383396, and
383352 randomize to the same record loca-
tion - 3833. Records that randomize to the
same record location are called synonyms.
This problem can be solved by developing a
different randomizing technique. However,
in some situations this is difficult, and
the problem must be solved by chaining.

Chaining is arranging records in a
string by reserving an integer variable in
each record to point to another record.
This integer variable will contain either
an indicator showing that there are no more

records in this chain, or the record loca-
tion of the next record in the chain.
Records chained together are not adjacent

to each other.
for star
383352,

Figure 47 shows the records
numbers 383320, 383396, and

When records are chained, the first
record encountered for a record position is
written in the record position that result-
ed from randomizing the identification num-
ber. Any records that then randomize to
that same record location must be written
in record positions to which no other
record identifications randomize. The
space for these synonyms can be allocated
either at the end or the beginning of the,
data set. However, this space must be
allocated when the data set is first writ-
ten. For example, if the randomizing tech-
nique assigns master records to record
locations between 1 and 9999, the program-
mer may wish to reserve record 1locations
10000 to 12000 for master records that
become synonyms.

The programmer must keep a record loca-
tion counter to keep track of the space
assigned for synonyms. When a synonym is
inserted in this space, the record location
counter must be incremented. The program-
mer should set up a dummy record in his
data set to maintain this record location
counter. When the direct access data set
is created, the record location counter
should be set at the 1lower 1limit of the
record positions available for synonyms
(i.e., record location 10000 in the example
used above).

Also an indicator should be reserved to
indicate to the program that the end of a
chain has been reached. Since no record
position is designated as 0, 0 can be used
to indicate the end of a chain.

Before a FORTRAN program writes a direct
access data set for the first +time, the
data set must be created by writing
"skeleton records" in the space that is to
be allocated for the direct access data
set. These skeleton records should be
written by an installation-written program.
After the skeleton records are written, the

Programming Considerations 71

direct access data set must be classified

as OLD in the DISP parameter of the DD
statement. However, if the skeleton
records are not written before direct

access records are written by the FORTRAN
program for the first time, a FORTRAN load
module automatically creates the data set
and writes the skeleton records. The pro-
grammer indicates that skeleton records
have not been written by specifying NEW in
the DISP parameter. A FORTRAN load module
writes skeleton records according to the
format described in "WRITE -- Create a
Direct Organization Data Set - Format F
Records"™ in "Section 3, Basic Sequential
Access Method (BSAM)" in the Control Pro-
gram Services publication.

Figure 48 shows a block diagram of the
logic that can be used to write a direct
access data set for the first time. The
block diagram does not show any attempt to
write skeleton records.

Example 3 in Appendix B shows a program

and job control statements used to update a
direct access data set.

Direct Access Programming Considerations

In a job that creates a data set that
will reside on a direct-access device, the
DCB subparameter of the DD statement must
specify DSORG = DA in order that the label
that is created will indicate that this is
a direct-access data set (see "Creating a
Direct Data Set" in the publication IBM
System/360 Operating System: Supervisor and
Data Management Services, Form C28-6646).

allocated in the SPACE
parameter of the DD statement for a data
set written on a direct access volume. For
direct access data sets, the space allocat-
ed in the SPACE parameter should be consis-
tent with the record length and number of
records specified in the DEFINE FILE state-
ment in the FORTRAN program. For example,
in the DEFINE FILE statement

Space must be

DEFINE FILE 8(1000,40,E,T)

the number of records is specified as 1000
and the record length is specified as 40.
When this program is executed the DD state-
ment for this data set should contain the
SPACE parameter

SPACE=(40, (1000))

~indicating that space is allocated for 1000
records, and 40 bytes for each record.

The DEFINE FILE statement for a data set
must be in a source module in the root

72

| segment (i.e., it cannot be overlaid),

.operations unless the

but
does not have to be in the same source
module in which I/O operations occur. For
example, the DEFINE FILE statement can be
given in a main program with a subprogram
performing the I/0 operations on the data
set. However, if an associated variable
defined in the main program is to be used
by a subprogram, it must be passed to the
subprogram in COMMON. Since an associated
variable is updated by input/output opera-
tions, the subprogram cannot get to the
updated value to make use of it in its
associated variable
is in COMMON.

The FIND statement permits record
retrieval to occur concurrently with compu-
tation or I/O operations performed on dif-
ferent data sets. By using the FIND state-
ment, load module execution time can be
decreased. For example, the statements

10 A=SQRT(X)

-

52 =ALPHA+BETA*SIN(Y)
64 WRITE(9)A,B,C,D,E
76 READ(8'101)X,Y

are inefficient because computations are
performed between statements 10 and 52 and
an I/O operation is performed on another
data set while record number 101 could be
retrieved. If the following statements are
substituted, the execution of this module
becomes more efficient because record num-
ber 101 is retrieved during computation and
I/0 operations on other data sets.

5 FIND(8'101)
10 A=SQRT(X)

52 E=ALPHA+BETA*SIN(Y)
65 WRITE(9)A,B,C,D,E
76 READ(8'101)X,Y

COMPILER _RESTRICTIONS

e The maximum level of nesting for DO
loops and implied DOs is. 25.

e The maximum number of expressions that

can be nested is 100.

e The maximum level of nested references
in an arithmetic statement function
definition to another statement func-
tion or a function subprogram is 25.

DEFINE FILE

Allowing enough
Space for Synonyms

t
Set Record
Location Counter =
Lower Limit of
Space for Synonyms

Write Record
Containing
Record
Location
Counter

Randomize
Identification
Number to
Record Location

Set Record Position Build
in Read Statement Master
= Chain Variable Record

require approximately 90K bytes in PCP
or MFT systems and 100K bytes in MVT
systems.

¢ The maximum number of contiguous com-
ment and/or continuation caxrds after
the first statement is 49. There is no
restriction on the number of comments
at the beginning of the deck.

LIBRARY CONSIDERATIONS

The FORTRAN 1library is a group of sub-
programs residing in the partitioned data
set SYS1.FORTLIB. For a detailed descrip-
tion of the FORTRAN library, see the FOR-
TRAN IV Library Subprograms publication. A
programmer can change the subprograms in
the library; he can add, delete, or substi-
tute library subprograms; or he can create
his own 1library. These topics are dis-
cussed in detail in the Utilities publica-
tion.

DD STATEMENT CONSIDERATIONS

Set Chain
Variable in Master
Record = Record
Location Counter

Write
Master
Record

Set Record Position
in Write Statement
= Record
Location Counter

1

Increment
Record Location
Counter by 1

Figure 48. Writing a Direct Access Data

Set for the First Time

¢ The maximum number of source cards for
one compilation is dependent upon the
amount of storage available to the
compiler. A 400 statement program will

Several DD statement parameters and sub-
parameters are provided for I/0 optimiza-
tion (see Figure 49). Other DD statement
parameters are discussed in "Job Control
Language™ and "Creating Data Sets."

Channel Optimization

The SEP parameter indicates that I/O
operations for specified data sets are to
use separate channels (channel separation),
if possible. The I/0 operations for the
data set, defined by the DD statement, in
which

SEP=(ddnamel, ddnamel...)

appears, are assigned to a channel differ-
ent from those assigned to the I/0 opera-
tions for data sets defined by the DD
statements "ddname". Assigning data sets
whose I/0 operations occur. at the same time
to different channels increases the speed
of I/0 operations.

I/0 Device Optimization

UNIT subparameters can be specified for
device optimization.

Programming Considerations 73

1)
| SEP=(ddnamel,ddnamel...1) 2

UNIT={AFF=ddname

TRK
SUBA1LOC=(;CYL
average-record-length
ddnarme
[,directory-quantityl),

e e ——

[
i
|

(namel, n|P 3][(,DEFER] [,SEP=(ddnamel,ddnamel...1)
SPACE=(ABSTR, (quantity, beginning-addressl,directory-quantityl))
,CYL
SPLIT=(n ,average-record-length},(primary-quantity[,secondary—quantity])])
},(primary—quantity[,Secondary-quantity]

stepname.ddname)
stepname.procstep.ddname

2]4 5)6}

|*The maximum number of repetitions allowed is 7.
is specified, the de11m1t1ng parenthebes may be omitted.
|2If neither "n" nor "P" is specified, 1 is assumed.

]| 4“This subparameter is applicable only for direct-access devices.
the only keyword sukparameter shown in this figure.
| remaining subparameters shown in the UNIT, SPACE, SPLIT, and SUBALLOC

|2If only one "ddname"

|3This subparameter is

| positional subparameters.

——
— . . s et . S o —— — — ———— g— —— o— —— —]

All the]
varameters arej

|61f only "name" is specified, the delimiting parentheses may be omitted.

|
S 4

Figure 49.

VOLUME_MOUNTING AND DEVICE SEPARATION:

N
UNIT=(name[,P][,DEFER]

[,SEP=(ddname(,ddnamel...)1)

can be specified for volume mounting and
device separation. The "name" and number
of units are discussed in the section "Data
Definition Statement."

DEFER

indicates that the volume(s)
data set need not be mounted until
needed. The control program notifies
the operator when to mount the volume.
Deferred mounting cannot be specified
for a new output data set on a direct-
access device.

for the

SEP=(ddnamel,ddnamel...)
is used when a data set is not
assigned to the same access arms on
direct-access devices as the data sets
identified by the 1list of ddnames.
This subparameter is used to decrease

access time for data sets and is
meaningful only for direct-access
devices. The operating system honors

the request for device separation if
possible, but ignores the SEP sub-
parameter if an insufficient number of

access arms are available. the SEP
subparameter in the OUNIT parameter
provides for device separation, while

74

DD Statement Parameters for Optimization

the SEP parameter provides for channel
separation.

DEVICE AFFINITY: The use of the
device by data sets is specified by:

same

UNIT=AFF=ddname

The data set defined by the DD statement in
which this UNIT parameter appears uses the
same device as the data set defined by the
DD statement "ddname" in the current job
step.

Direct-Access Space Optimization

The SPACE parameter can be used to
specify space beginning at a designated
track address on a direct-access volume.
The SPLIT or SUBALLOC parameters may be
specified instead of SPACE to split the use
of cylinders among data sets on a direct-
access volume or to use space specified for
another data set which it did not use.
(The other SPACE parameter is discussed in
"Creating Data Sets.")

SPACE BEGINNING AT A SPECIFIED ADDRESS:

SPACE= (ABSTR, quantity, beginning-address
[,directory-quantityl)
specifies space beginning at a
particular track address on a direct-

access volume. The "quantity" is the
number of tracks allocated to the data
set. The "beginning address" is the
relative track address on a direct-
access volume where the space begins.
If the data set is a new partitioned
data set, the "directory quantity"
specifies the number of 256-byte
blocks that are allocated to the
directory of a new PDS.

SPLITTING THE USE OF CYLINDERS AMONG DATA
SETS: If several data sets use the same
direct-access volume in a job step, proc-
essing time can be saved by splitting the
use of «cylinders among the data sets.
Splitting cylinders eliminates seek opera-
tions on separate cylinders for different
data sets. Seek operations are measured in
milliseconds, while the data transfer is
measured in microseconds.

,CYL
SPLIT=(n|y,average-record-length

. (primary-quantity
[,secondary-quantityl)|{)

is substituted for the SPACE parameter when
the use of cylinders is split. If CYL is
specified, "n" indicates the number of
tracks per cylinder to be used for this
data set. If "average record length" is
specified, "n" indicates the percentage of
tracks per cylinder used for this data set.
The remaining subparameters are the same as
those specified for SPACE in "Creating Data
Sets."

More than one DD statement in a step
will use the SPLIT parameter. However,
only the first DD statement specifies all
the subparameters; the remaining DD state-
ments need only specify "n". For example:

//STEPY4 EXEC PGM=TESTFI
//FT08F001 DD SPLIT=(45,800, (100,25))
//FT17F001 DD SPLIT=(35)
//FT23F001 DD SPLIT=(20)

ACCESSING UNUSED _SPACE: Data sets in pre-
vious steps may not have used all the space
allocated to them in a DD statement. The
SUBALLOC parameter may be substituted for
the SPACE parameter to permit a new data
set to use this unused space.

TRK l
SUBALLOC= (< CYL
‘average-record—lengthf

(primary-quantity,
[,secondary-quantity]

[,directory-quantityl),

{ddname l
stepname.ddname)
stepname.procstep.ddname

The data set from which unused space is
taken is defined in the DD statement
"ddname", which appears in the step
"stepname." (The step must be 1in the
current job.) The other subparameters

specified in the SUBALLOC parameter are the
same as the subparameters described for
SPACE in "Creating Data Sets."

Programming Considerations 75

SYSTEM OUTPUT

The compiler, linkage editor, and 1load
module produce aids which may be used to
document and debug programs. This section
describes the 1listings, maps, card decks,
and error messages produced by these compo-
nents of the operating system.

COMPILER OUTPUT

A listing of the source statements, a
table of the source module names, an object
module 1listing, and an object module card
deck will be generated by the compiler,
depending on the options specified by the
user. Source module diagnostic messages
are also produced during compilation.

Source Listing

If the SOURCE option is specified, the
source listing is written in the data set
specified by the SYSPRINT DD statement. An
example of a source module listing is shown
in Figure 51. This printout is the source
listing of the sample program illustrated
in Figure 50.

(This program will be used throughout
the remainder of the publication for pur-
poses of example illustration.)

mM FORTRAN Coding Form I rrd
mowm SAMPLE PROGRAM A EEE el o 1
PROGRAMMER Inm GLGG INSTRUCTIONS PUNCH

STATLMENT % FORTRAN STATEMENT A ON

[| [T | |PRIME _NUMBER PROBLEM ' ' || ' | I] N ENNEE NN | |

100 WRITE [(/648) BRI | +*1!\ [|
8| IFIORMATT| |(I512H FOILLOWING TS| A" LI|ST. OF] PRIME NUMBERS| FROM i TO! 11600/
149X [LH1/19X 94 H2/19X94H3)[¢ [TiilT{ | !??i N | [
11| [T=5 T e Pl
3] |Al=I ; ! R o L | !
1162 [A=SIQRTI(AD LT NN BE Ll
103! (J|=A i BEREEE | i ? N i
1@yl IDO] 4] Ki=31sl)si2 AR e RN i
195] IL=lI/K T TT (] I ol Tri T
1ge] TFICLRK=T0M 208 [ol L o g
[1| [CONTIINUE! | R EERE [R | !
1@7] WRITE |(6>5)II EERNEERN R | L NN
FORMAT (126 BN T
2 T=T#2 [T[] IEERENERAN EEER RN
198 TF(1g@@-T) 743 1177171 1 NN EER IR I |
Y WRIITEE [(eb(@)1 | I [[([1ii[] IR NEREE
9 FORMAT, (I1l4H PRIOGRAM ERROR) R | P
7] WRITE [(66)! R Ll N i I
o [FIORMAT] [(]3[tH TH[TS TS| THE| [END, OF THE| PROGRAM)
1109| ISITIOP, NERRRE BERER L
EINL i | ! R |
il AEEEEN RN ERENEREN L]
l,"!67g'w"ww“wuwuww“J”urnJJJMJ;JJ”JJJJW"HQu{jﬂudﬂﬂﬂ”n””w””wuﬂuu&uuuwnnnn"ﬁ“ﬂ""”

Figure 50. Sample FORTRAN IV Program

76

Storage_Map

If the MAP option is specified, a table
is generated for each of seven classifica-
tions of variables used in the source
module. Each table contains the names and
locations of variables used in that partic-
ular context. The classifications are as
follows:

¢ COMMON variables

e EQUIVALENCE variables
e Scalar variables

e Array variables

e Subprograms called

s NAMELIST variables

e FORMAT statements

Separate maps are produced for each
classification, with the appropriate head-
ing preceding the data. The variable
names, statement labels or subprogram names
are arranged across the page; six to a

line. However, storage maps of variables
not used in the source module are not
produced.

Figure 52 is an example of a storage map
produced for the sample program in Figure
50.

Object Module Listing

If the LIST option is specified, an
object module 1listing is produced. An
example of an object module 1listing is
given in Figure 53.

c PRIME NUMBER PROBLEM
coo1 100 WRITE (6,8)
€002 8 FORMAT (52H FULLOWING 1S A LIST OF PRIME NUMBERS FRGM 1 TO 1000/
119Xy 1H1/ 19X, 1H2/19X,1H3)
0003 101 1=5
0CO04 3 A=I
€005 102 A=SQKT(A)
0006 103 J=A
coo7 104 DO 1 K=3,J,2
0008 105 L=1/K
CGCY 106 IF(L*K=1)142,4
cclo 1 CONT INUE
0011 107 WRITE (6,5)1
0012 5 FOKRMAT (120}
0013 2 1=1+2
CCl4 108 IF(1000~117:443
0015 4 WRITE (6,9)
001le 9 FORMAT (14H PKGGRAM ERROR)
0017 7 WRITE (6,6)
ocls 6 FURMAT (31lH THIS 1S THE END OF THE PROGRAM)
ccl9 109 STOP
€020 END
Figure 51. Source Module Listing
SCALAR MAP
SYMBCL LOCATIGN SYMBOL LOCATION SYMBOL LOCATIGN SYMBOL LOCATION SYMBOL LOCATICN
1 BC A co K cs L cc
SUBPROGRAMS CALLED
SYNMBCL LCCAT ION SYMBUL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
IBCOM= DO SQRT D4
FORMAT STATEMENT MAP
SYMBCL LOCATIGN SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION
8 DC 5 126 9 12A 6 13C
Figure 52. Storage Map

System Output 77

LCCATION STA NUM LABEL O©P OPERAND RCD OPERAND
€00000 BC 15,12(0,15)

€0C004 uc 0604C1CS

cccoos DC D5404C40

00000C STM 14412412(13)

000010 LM 213,40(15)

C00014 LR 4413

cCcoo1l6 L 13+36(0415)

0G001A ST 13,8(0,4)

CCOOLE STM 3,490(13)

000022 BCR 1542

000024 DC 60000000 A4
cC0028 nC 00000000 A20
00002C oc 00000000 A36
000158 A36 L 13,4(0,413)

00015C L 14,12(0,413)

0001A0 LM 2,12428(13)

0001A4 MvI 12(13),255

000148 BCR 15,14

0001AA A20 L 15,160(C,13) 1BCOM=
0001AE LK 12,13

CCOleo LR 1344

C001B2 BAL 14,64(G,15)

000186 Lk 13,12

€c01B8 1 100 L 15,160(0,13) 1BCOM=
00018C BAL 14,4(0,15)

0cCclco oc 00000006

0001C4 ity 000600DC

0001C8 L 15,160(0,13) 1BCOM=
coolcc BAL 14,16(0,15)

000100 3 101 L 0,344(0,13)

0001C4 ST 0,140(0413) 1
¢00108 4 3 L 0+146(0413) I
0001CC LPR 1,0

0001DE ST 1,324(0413)

CO01E2 LD 0,320(0,13)

COCLE6 AD 0+304(0,13)

COO1EA LTR 0,0

COO01EC BALR 14,0

COO1EE bL 1156(0,14)

0001F2 LCDR 0,0

0001F4 STE 0,144(0413) A
CCOLF8 5 102 LA 1,168(0,13)

CO01FC L 159164(0413) SQRT
0C0200 BALR 14415

ccozc2 STE 0,144(0413) A
000206 6 103 SDR 0,0

€c0208 LE 0,144(0,13) A
00020C Aw 0,336(0,13)

€C0210 STD 0,328(0,13)

000214 L 04332(0513)

c00218 LTDR 0,0

C0021A BALR 1440

0G6021C BC 1196(0,14)

000220 LCR 0,0

000222 ST 04,148(0G,13) J
060226 7 104 L 0,348(0,13)

000224 L44 ST 0,152(0,13) K
C0022E 8 105 L 0,140(0,13) I
€Ccz232 SRDA 0,32(0)

€0023¢ D 0,152(0,13) K
00023A ST 1,156(0413) L
€0023E 9 106 L 1,156(0,13) L
000242 M G,152(0,13) K
€C0246 S 1,140¢0,13) I
0C0Z4A LTR 1,1

00024C L 144104(0,13) 2
6CC250 BLR 8,14

000252 L 144108(0,13) 4
000256 BCR 2,14

€00258 10 1 L 0,152(0413) K
00025¢C L 1,116(0413) L44
660260 LA 242(040)

000264 L 3,148(0,13) J
000268 BXLE 042,0(1)

€0026C 11 107 L 15,160(0,13) 1BCOM=

Figure 53. Object Module Listing (Part 1 of 2)

78

€C0270 BAL
000274 DC
0cc278 DC
60027C L
060280 BAL
000284 uC
céo288 BAL
00028C 13 2 L
000250 A
0C0294 ST
000298 14 108 L
cec2sc s
600240 LTR
000242 L
000246 BLR
000248 L
0002AC BCR
0002AE 15 4 L
00282 BLR
000284 BAL
000238 oC
00028C DC
€602C0 BAL
€G02C4 17 7 L
0002C8 BAL
0c02cC ils
000200 oc
C002C4 BAL
000208 19 109 L
€002LC BAL
CCC2E0 oC
0002E4 oc
END
TGTAL MEMORY REQUIREMENTS Q00ZE6 BYTES

14+4(0,15)
€0000006
00000126
15,160(0,13)
14,8(0,15)
0450D08C
14416(0,15)
0,140(0,13)
0,352(0,413)
0,140(0,13)
04356(0,13)
0,140(0,13)
0,0
14,4112(0,13)
4yl4
14,96(0,13)
2114
15,160(0,13)
0,0
1444(0,15)

0000C006
000C012A
14,16(0,15)
15,160(0,413)
1444(0,415)
00000006
00006013C
14,16(0,15)
15,160(0,13})
14952(C4y15)
05404040
40F0

IBCOM=

I1BCOM=

IBCOM=

IBCOM=

Figure 53.

Object Module Card Deck

If the DECK option is

object module card deck is produced.
made up of four types of cards --
A functional

deck is

TXT, RLD, ESD, and END.

Object Module Listing

specified, an

This

description of these cards is given in the

following paragraphs.

OBJECT MODULE CARDS: Every

in the

object module deck contains a 12-2-9 punch

in column 1. The identifier
the characters ESD, RLD,
columns 2 through 4.

acters of the

The first four
name of the program are

consists of
TXT or END in

char-

placed in columns 73 through 76 with the

sequence number of the

77-80.

card

in columns

(Part 2 of 2)

ESD CARD:
generated, as

ESD, type 0 -

ESD, type 1 -

Four types

of ESD cards are

follows:

contains the name of the pro-~
gram and indicates the begin-
ning of the object module.
The name is the module name
followed by a #.

contains
(where

the entry point
control is given to
begin execution of the
module). The entry point is
the module name on a SUBROU-
TINE or FUNCTION statement,
or the name specified in the
NAME option, or the name
MAIN.

System Output 79

ESD, type 2 - contains the names of subpro-
grams referred to in the
source module by CALL state-
ments, EXTERNAL statements,
explicit function references,

and implicit function ref-
erences.
ESD, type 5 - contains information about

each COMMON block.
The number 0, 1, 2, or 5 is placed in card
column 25.

RLD__CARD: An RLD card is generated for
external references indicated in the ESD,
type 2 cards. To complete external ref-
erences, the 1linkage editor matches the
addresses in the RLD card with external
symbols in the ESD card. When external
references are resolved, the storage at the
address indicated in the RLD card contains
the address assigned to the subprogram
indicated in the ESD, type 2 card. RLD
cards are also generated for a branch 1list
produced for statement numbers.

TXT__CARD: The TXT card contains the con-
stants and variables used by the programmer
in his source module, any constants and
variables used by the programmer in his
source module, any constants and variables
generated by the compiler, coded informa-
tion for FORMAT statements, and the machine
instructions generated by the compiler from
the source module.

END_CARD: One END card is generated for
each compiled source module. This card
indicates the end of the object module to
the 1linkage editor, the relative location
of the main entry point, and the length (in
bytes) of the object module.

OBJECT MODULE DECK STRUCTURE:
indicates the
structure.

Figure 54
FORTRAN object module deck

Source Module Diagnostics

Two types of diagnostic messages are
written by the compiler -- error/warning
' messages and status.

80

END Card

p "
RLD Cards for
the Object
Module

P
TXT Cards for

Address

Constants

J—
TXT Cards for
Subprogram

Addresses

s

TXT Cards for
Subprogram
Argument Lists

/
TXT Cords for
the BRANCH
Table

A g
TXT Cards for
the BASE
Table

TXT Cards for
Object
Module Code

e
TXT Cards for r_‘
Temp Storage
and Constants

TXT Cords for
FORMAT
Statements
.

TXT Cards for
Literal
Constants
) reem——
TXT Cards for
NAMELIST
Tables

ESD, Type 2
External
References

ESD, Type 5
COMMON Area

ESD, Type 1
Entry Points

ESD, Type O
Program Name
of the Object
Module

Figure 54. Object Module Deck Structure

Source Module Error/Warning Messages: The
error/warning messages produced by the com-
piler are noted on the source 1listing
immediately after the statement in which
they occur. A maximum of four messages
appears on each line. Figure 55 illus-
trates the format of the messages as they
are written in the data set specified by
the SYSPRINT DD statement.

There are two types of error/warning
messages: serious error messages, and warn-
ing messages. The serious error messages
have a condition code of eight and the
warning messages a code of four or zero.

For a description of error/warning mes-
sages, see Appendix D.

= A+B+-C/ (X**3-A%*-75)
$

n) y message

>
>

n) y message,

Where: n 1is an integer noting the posi-
tional occurrence of the error on
each card.

y is a 1-to-3 digit message num-
ber in IEYxxxI format.

—— ———— ——— — ot .)

$ 1is the symbol wused by thej
compiler for flagging the partic-|
ular error in the statement (this}|
symbol is always noted on the]|
line following the source state-|
ment and underneath the error).

e e e

b e A s G

message 1is the actual message
printed

(R ——-

Figure 55. Format of Diagnostic Messages

Status _Messages: During operation of the
compiler, messages may occur which indicate
termination of compilation. These messages
are noted as a result of internal compiler
errors which render continuation of compi-
lation impossible. These messages are ter-
minal error messages and have a condition
code of 16. For a description of these
messages see Appendix D.

Module Ma

The module map is written in the data
set specified in the SYSPRINT DD statement
for the 1linkage editor. To the linkage
editor, each program (main or subprogram)
and each COMMON (blank or named) area is 3
control section.

Each control section name is written
along with origin and length of the control
section. For a program and named COMMON,
the name is listed; for blank COMMON, the
name $BLANKCOM is listed. The origin and
length of a control section is written in
hexadecimal numbers. A segment number is
also listed for overlay structures (see the
Linkage Editor publication).

For each control section, any entry
points and their locations are also writ-
ten; any functions called from the data set
specified by the SYSLIB DD stateméent are
listed and marked by asterisks.

The total length and entry point of the
load module are listed.

Figure 56 shows a load module map for
the Sample Program shown in Figure 50.

Cross-Reference List

If the option XREF is specified, a
cross-reference list is written with the
module map. This cross-reference list

LINKAGE EDITOR OUTPUT gives the 1location from which an external
reference is made, the symbol externally
referenced in this control section, the

The linkage editor produces a map of a control section in which the symbol
load module if the MAP option is specified, appears, and the segment number of the
or a map and a cross-reference list if the control section in which the symbol

XREF option 1is specified. The 1linkage appears. Unless the 1linkage edito is

editor also produces diagnostic messages, building an overlay structure, the cross-

which are discussed in the Linkage Editor reference list appears after the module map
publication. for all control sections.
CONTROL SECTION ENTRY
NAME ORIGIN LENGTH NAME LOCATION NAME LOCATION NAME LOCATION NAME LOCATION
MAIN# 00 2E6
MAIN oo
IECFCCME* 2E8 FB3
1BCOM= 2E8 FDIOCS= 3A4
IHCSSQRT* 12A0 AC
SQRT 1240
IFCFCVTE* 1350 FEB
ADCON= 1350 FCVZO 149¢ FCVAOD 1542 FCVLO 15CA
FCVIO 1808 FCVED 1072 FCVCO 1F6C
IHCFIOSH* 2340 €30
FIOCS= 2340
IHCUATBL* 2F170 108

Figure 56. Module Map

System Output 81

Figure 57 shows the cross-reference list
for the Sample Program shown in Figure 50.

LCCATION REFERS TO SYMBOL IN CONTROL SECTION
0o IBCOM= IHCFCGOMH
D4 SQRT IHC SSQRT
1134 ADCON= IHCFCVTH
112C FIOCS= IHCFIOSH
1138 FCVE(Q IHCFCVTH
112C FCVLO IHCFCVTH
1140 FCVIC IHCFCVTH
1144 FCvCO IHCFCVTH
1148 FCVAO IHCFCVTH
114C FCVZO0 IHCFCVTH
1324 IBCOM= IHCFCCMH
21FC IBCOUM= IHCFCOMH
24¢€4 IHCUATBL IHCUATBL
24170 IBCOM= IHCFCOMH
ENTRY ADDRESS 00
TATAL LENGTH 3078

Figure 57. Linkage Editor Cross-Reference

List

LOAD MODULE OUTPUT

The programmer defines the output data
sets for load module execution in READ,
WRITE, and FORMAT statements. At execution
time, FORTRAN load module diagnostics are
generated in three forms -- error code
diagnostics, program interrupt messages,
and operator messages. An error code indi-
cates an input/output error or a misuse of
a FORTRAN 1library function. A program
interrupt message indicates a condition
that is beyond the capacity of System/360
to correct. An operator message is gener-
ated when a STOP or PAUSE is executed.

Exrror Code Diagnostic Messages and

If an error is detected during execution
of a FORTRAN load module, a message and a
diagnostic traceback are written in the
error message data (see "FORTRAN Job
Processing"). The message is of the form:

IHCxxxI [message textl]

TRACEBACK FOLLOWS ROUTINE ISN REG. 14

where:
xxx is a 3-digit error code

These error codes are described in Appendix

D. The traceback, which follows the error
message, is a 1list of routines in the

82

direct line of <call to the routine in
error, in reverse order of use. After the
traceback is completed for error message
IHC218I, control is passed to the statement
designated in the ERR parameter of the
FORTRAN READ statement if +that parameter
was specified. 1In all other cases, execu-
tion of the job step is terminated and a
condition code of 16 is returned to the
operating system.

Each entry in the traceback contains the
name of the called routine, an internal
statement number (ISN) from the calling
routine (if one was generated for that
call), and the contents, in hexadecimal, of
register 14 (which indicate the point of
return to the calling routine).

The first routine listed in the trace-
back 1is the one that called the library
subprogram in which the error occurred,
except when the name given is IBCOM. Then,

the error could have occurred in IHCFCOMH
or one of the routines that it calls:
JHCFCVTH, IHCNAMEL IHCDIOSE, or IHCFIOSH.

The error code in the message indicates the
actual origin of the error.

Note: For an assembler language program oOr
subprogram, the routine name field in the
traceback will contain the identifier spec-

ified in the SAVE macro instruction or
equivalent coding. (If the identifier
specified is longer than eight characters,

only the first eight will appear.) 1If no
identifier is specified, the traceback rou-
tine name field will be blank or have
content meaningless for the traceback.

Internal statement numbers are generated
for function references and calls when the
ID option is specified on the EXEC card at
compile time. These numbers appear in the
traceback, except for FORTRAN calls to
IBCOM for which internal statement numbers
are not generated.

For an assembler 1language program Or
subprogram, the internal statement number
field will contain the value of the binary
calling sequence identifier specified in
the CALL macro instruction or equivalent
coding. If no identifier was specified,
the field will be blank or its contents
will be meaningless in the traceback.

If the traceback cannot be completed,
the message TRACEBACK TERMINATED is issued
and the 3job step is terminated. This
message will appear only if (1) 13 names of
subprograms appear in the traceback or (2)
a calling loop has been detected, e.g.,
subprogram A calling B calling A.

IHC219T

ENTRY POINT = 5000

.
|

| TRACEBACK FOLLOWS ROUTINE
| IBCOM

i MASTR

| PAYROLL
]

|

ISN REG. 14
820068FC
00005378
00003148

—— e ——

Figure 58.

At the end of the traceback, whether it
was completed or not, the entry point of
the main FORTRAN program is given, in
hexadecimal.

shows the traceback informa-
data set

Figure 58
tion placed in the error message
for the following example.

Example: A FORTRAN program PAYROLL calls
the subroutine MASTR, which contains a READ
statement. The IHCFIOSH routine is called
to perform the input operation, but an
error condition arises because there is no
DD statement for the data set.

Explanation: PAYROLL was entered at loca-
tion 5000 and called MASTR. IBCOM (in this
case, the error occurred in the IHCFIOSH
routine) would have returned to location
68FC in MASTR; MASTR would have returned to
location 5378 in PAYROLL, and PAYROLL would
have returned +to 1location 3148 in the
supervisor. Execution terminates and a
condition code of 16 1is returned to the
operating system.

Program Interrupt Messages

Program interrupt messages containing
the o0ld Program Status Word (PSW) are
prQduced when one of the following occurs:

e Protection Exception (4)

e Addressing Exception (5)

e Specification Exception (6)

¢ Data Exception (7)

e Fixed-Point Divide Exception (9)
e Exponent-Overflow Exception (C)

e Exponent-Underflow Exception (D)

¢ Floating-Point Divide Exception (F)

Sample Traceback for Execution-Time Errors

The characters in parentheses following the
exceptions are PSW codes that appear in the
program interrupt message to indicate the
type of exception. BAppendix D contains a
complete description of the message.

The program interrupt messages are writ-
ten on a data set specified by the program-
mer. (See "FORTRAN Job Processing".)
Operator intervention 1is not required for
any of these interruptions.

ABEND Dump

If a program interrupt occurs that caus-
es abnormal termination of a load module,
an indicative dump is given (i.e., only the
contents of significant registers, indica-
tors, etc., are dumped). Howevexr, if a
programmer adds the statement

//GO.SYSABEND DD SYSOUT=A

to the execute step of a cataloged proce-
dure, main storage and significant. reg-
isters, indicators, etc., are dumped. (For

information about interpreting an ABEND
dump, see the Control Program Messages,
Completion_ Codes, and Storage Dumps publi-
cation.

Operator Messages

A message is transmitted to the operator
when a STOP or PAUSE is encountered during
load module execution. Operator messages
are written on the device specified for
operator communication. For a description
of these messages, see Appendix D.

System Output 83

FORTRAN can be invoked by a problem
program through the use of the CALL,
ATTACH, or LINK macro-instructions.

The program must supply to the FORTRAN
compiler:

e The information usually specified in
the PARM parameter of the EXEC state-
ment.

e T

during processing by the

he ddnames of the data sets to be used
FORTRAN com-

piler.

r
| Name
1

T T
|Operation|Operand
1 4

'

|
|
|
|
|
|
|

[name]T{LINK }

|
{namel | CALL

1
| EP=IEYFORT
PARAM= (optionaddr
[,ddnameaddrl),VL=1

| \ATTACH

b e s e s e s s, stden. . g

|
|
|
| IEYFORT
|
|
1

| PARAM= (optionaddr
| (,ddnameaddrl), VL
1
optionaddr
specifies the address of a variable
length list containing information

usually specified in the PARM parame-
ter of the EXEC statement

The option list must begin on a half-
word boundary (one that is not also a
full-word boundary). The two high-
order bytes contain a count of the
number of bytes in the remainder of
the list. If there are no parameters,
the count must be zero. The option
list is free form with each field

Appendix A:

APPENDIX A:

INVOKING THE FORTRAN COMPILER

separated by a comma. No blanks

should appear in the list.

ddnameaddr

VL=1

specifies the address of a variable
length list containing alternate
ddnames for the data sets used during
FORTRAN compiler processing. This
address is supplied by the invoking
programe. If standard ddnames are

used, this operand may be omitted.

The ddname list must begin on a half-
word boundary (one that is not also a

full-word boundary). The two high-
order bytes contain a count of the
number of bytes in the remainder of
the list. Each name of 1less than

eight bytes must be left justified and
padded with blanks. If an alternate
ddname is omitted from the 1list, the
standard name is assumed. If the name
is omitted within the 1list, the 8-byte
entry must contain binary zZeros.
Names can be omitted only from the end
of the 1list.

The sequence of the 8-byte entries in
the ddname list is as follows:

Entry Alternate Name

1 SYSLIN

2 000500000
3 00000000
[} 00000000
5 SYSIN

6 SYSPRINT
7 SYSPUNCH

specifies that the sign bit of the
last full-word of the address parame-
ter list is to be set to 1.

Invoking the FORTRAN Compiler 85

APPENDIX B: _EXAMPLES OF JOB PROCESSING

The following examples show several
methods to process load modules.
Example 1:
Problem Statement: A previously
created and cataloged data set

SCIENCE.MATH.MATRICES contains a set of 80
matrices. Each matrix is an array contain-
ing real variables. The size of the matri-
ces varies from 2x2 to 25x25; the average

size 1is 10x10. The matrices are inverted
by a load module MATINV in the PDS MAT-
PROGS. Each inverted matrix is written

(assume FORMAT control) as a single record
on the data set SCIENCE.MATH.INVMATRS. The
first wvariable in each record denotes the
size of the matrix.

The I1I/0 flow for the example is shown in
Figure 59. The job control statements used
to define this job are shown is Figure 60.

SCIENCE.
MATINV MATH.
INVMATRS
Printed
Output

Figure 59. Input/Output Flow for Example 1
Explanation: The JOB statement identifies
the programmer as JOHN SMITH and supplies
the account number 537. Both control
statements and control statement error mes-
sages are printed on the SYSOUT data set.

The JOBLIB DD statement indicates that
the private library MATPROGS is concatenat-
ed with the system library.

The EXEC statement indicates +that the
load module MATINV is executed.
DD statement FTO08F001 identifies the

input data set, SCIENCE.MATH.MATRICES. (In
the load module, data set reference number
8 1is wused to read the input data set.)

86

Because this data set has been previously
created and cataloged, no information other
than the data set name and disposition has
to be supplied.

DD statement FT10F001 identifies the
printed output. (In the load module, data
set reference number 10 is used for printed
output.) The data set is written on the
class of devices specified in the SYSOUT
parameter.

DD statement FTOU4F001 defines the output
data set. (In the load module, data set
reference number 4 1is wused to write the
data set containing the inverted matrices.)
Because the data set is created and cata-
loged in this job step, a complete data set
specification is supplied.

The DSNAME parameter indicates that the
data set is named SCIENCE.MATH.INVMATRS.

The DISP parameter indicates that the data
set is new and is to be cataloged. The
SPACE parameter indicates that space is
reserved for 80 records, 408 characters
long (80 matrices of average size). When
space is exhausted, space for 9 more
records is allocated. The space is con-

tiguous; any unused space is released, and
allocation begins and ends on cylinder
boundaries.

The DCB parameter indicates variable-
length records, because the size of
matrices vary. The record length is speci-
fied as 2508, the maximum size of a
variable-length record for this applica-

tion. (The maximum size of a record in
this data set is the maximum number of
elements (25) in a matrix multipled by the

number of bytes (4) allocated for an ele-
ment, plus 4 for the variable that indi-
cates the size of the matrix, plus 4 for
the segment control word (SCW) that con-
tains a count of the number of data bytes
in +the record.) The buffer length is
specified as 2512 (the 4 extra bytes are
for the block control word that contains
the length of the block.)

The SEP parameter indicates that the
data set SCIENCE.MATH.INVMATRS should use a
different channel from that used for data
set SCIENCE.MATH.MATRICES.

Sample Coding Form

] -] 71-80
jzlﬂﬂGITIBI9IOIL|213I4|5IGI71319];{ |J213]415LT718—|9K;{| 12131415161718|910{—EFL15U7[8J910Jlrl2j3lﬂ51617181101—|213[‘$LI5IZ(L?”8]§T]|T2|3Fﬂ5[6]_18 EI)
AALNVERT JOB 5377J0HNSMITH7MSGLEVELlLJI;!I“lllleIH|14J4|!.|11|.‘.I,lg 1
IIJOBILlIlngD l SNIAMEMATPROIGS,DI'SP OLD 1 ‘I 13)] 1.1 1) ! | N] | 11 1 141 1 1 1 lALl 1.1 it 11 ’ 1.1 1 1

/lIMVIERIT EXEC P[@MMAiTIl ||11114xi IV R SR R 51:: J_L141[1414]411|
/IFIﬂﬁF¢¢1|DD DSNAMﬁ SCIQNCE MATH-M@TRIQES’DE§P OLD

11 1 (el bl t 11111 lllllJIl'llli'l(!llllll

1/ FTIBFO0L DD SYSOUT=A

IIIJ_II_IL.J;

llll'lll]

T
|
T
|
|
|
T
IlLI.L'IIllllLlL(llllIllllIllll[;L[iJ_lLlllIIIIlI!II((IlJlJ
|
T
T
|
1

/1 ETQUF@@1, DD DSNAME, screlncs MAJ,HL,IMVMAT,@-L,I R .
I 1., DISP=(NEWsCATLG) sUNIT= DAQLASS)VOLUME SER=1889W> 1\, (2., 1,00
T ﬁPACE}(H¢§p(8¢13)7RL§E7COMTI 7ROUND))SEP|fI¢8F¢011,,,,l 3
Mooy, ., DCB=(RECFM=VB,LRECL-9@8BLKSIZE=2728) ., \. .\ (| .\ 1i00ii'iiolo..,

T .;...#l... 1 IS SO N B AN S c b e Vo b b v by g s by e b e g g

Figure 60. Job Control Statements for Example 1

Sample Coding Form
1213[4516L718LT01LH—]3F[516I7Jalsﬂolu2]_x4|5|el7ls\eloll 1 lz|3L4[5[ﬂ7IBTTorﬂ2BLI5lsl7lslslo%| I2|3[415I617|8[9]OE i 1213T§|l5-]6|7|81910} 1]2|3|4l5]6l7]8|9!0
//TESTFIRﬁ Qg&,aJOHNSMIT@)MSGLEVEL =1 P BT B B PR I I S
//JOBLIB DID DSNAME= FJRINGpDISPl (OLDnPASS) T T T N D PN T
[1STEPS, EXEC, PGM=PROGRD. . 1 | i\ i\ yui il leieieriilaniitiiiilen,l
//FTL¢F¢¢M DD, QSNAM& RAWQAIAJDISP QLQI.l..IllJ I P DT T PR T
[/FTAAF@@Y, DD DSNAME= ,PROJDATA),ZIJ@PILOLD1‘“,,|,UIJ.,_L,“,,;,L, TR
//FT12F¢¢L DD DSNAME GREFpATAapISP‘KNEWnPASSLsUNIT,TAPEﬁLga,!,Lli|l,,,!,L,l|,J,J
/ﬂ..ll...l.l. VO UME (1RETAIM1SER 21¢7),L 1,|J...1..,i1,,.,1,,,,|L...321..I..L
Moo tii oo, DCB=(DEN=29RECFM=FoBLKSIZE-UBE) ., | .. .\, .).0iiiveiitiiiin,.,,
//STﬁPZiEX£C PGMgANALYZ [T N D I DS D T DU PR P
/JFTLTFOPY, DD _DSNAME=%-STEPL.FTL2F@BLODISP=0LD 1\ \\\ tte ot fieeatines
//FT18F¢91.DD DSMAME PAR@MSaDIﬁP oLD. = I N A U S B I B
4LEIZ¢F¢¢1 bD DﬁNAME18VALp587DISP &ygﬂ%PASS)7pNIT JAPECL&l,iIJ,IIJ_LLLA il
Mo i, DCB= (DE,N, ,2)|R’ELC‘F,M, leBJLKSIZE 2{6'41),,)IQLUME =SER=2 ¢,4..|...1|..|,...1.
//STEP3 EXEC PGM REPORT ,L,,‘L,],,,,l,,,ll,,,,.,,l,.l,,,Lli,,ll,l,!,,l,,|,,,
//FT@BFBBY DD, DSNAME=%. STELPLZ - FT20F@@13DISP=0LD_ Q e L e el
//FTAGF@AY DD_UNIT=PRINTER , ., (.. i\ \i.0.. i, R T T
e o o Lo b by L b b e b b b b e

Figure 61. Job Control Statements for Example 2

Example 2: against a forecasted result, PROJDATA. The

output of PROGRD is a data set &REFDATA,
which contains the refined data.
Problem Statement: A previously created
data set RAWDATA contains raw data from a The refined data is wused to develop
test firing. A load module PROGRD refines values from which graphs and reports can be
data by comparing the data set RAWDATA generated. The load module ANALYZ contains

Appendix B: Examples of Job Processing 87

© 2107 is used for this data

a series of equations and uses a previously
created and cataloged data set PARAMS which
contains the parameters for these equa-
tions. ANALYZ creates a data set &§VALUES,
which contains intermediate values.

These values are used as input to the
load module REPORT, which prints graphs and
reports of the data gathered from the test
firing. Figure 1 in the "Introduction"
shows the I/0 flow for the example. Figure
61 shows the job control statements used to
process this job.

The load modules REFDAT, ANALYZ, and
REPORT are contained in the private library
FIRING.

________ The JOB statement indicates
the programmer's name, JOHN SMITH, and that
control statements and control statement
error are printed on the console typewrit-
er.

The JOBLIB DD statement indicates that
the private library FIRING is concatenated
with the system library.

The EXEC statement STEP1 defines the
first job step in the job and indicates
that the load module PROGRD is executed.

The DD statements FT10F001 and FT11F001
identify the data sets containing raw data
(RAWDATA) and the forecasted result
(PROJDATA), respectively.

DD statement FT12F001 defines a tempora-
ry data set, SREFDATA, created for input to
the second step. (In the load module, data
set reference number 12 is used to write
EREFDATA.) The DISP parameter indicates
that a data set is new and is passed. The
data set is written using the device class
TAPECLS. The VOLUME parameter indicates
that the volume identified by serial number
set. Theé DCB
parameter indicates that the volume is
written using high density; the records are
fixed-length blocked; the record length is
400; and the buffer length is 2000.

The EXEC statement STEP2 defines the
second job step in the job and indicates
that the load module ANALYZ is executed.

DD statement FT17F001 identifies the
data set which contains refined data. The
DSNAME parameter indicates that the data
set name 1is copied from DD statement

88

FT12F001 in Jjob step STEP1. The DISP
parameter indicates that the data set is
deleted after execution of this job step.
The DD statement FT18F001 identifies the
previously created and cataloged data set
PARAMS.

DD statement FT20F001 defines the tem-
porary data set §&VALUES containing the
intermediate values. The DISP parameter
indicates that the data set is created in
this step, and that it is passed to the
next job step. The data set is written on
volume 2108 wusing one of the devices
assigned to the class TAPECLS. The DCB
parameter indicates high density and fixed-
length blocked records. Each record is 204
characters long.

The EXEC statement STEP3 defines the
third Jjob step and indicates that the load
module REPORT is executed.

DD statement FTO8F001 identifies the
data set containing intermediate values.
The DSNAME parameter indicates that the
data set name is copied from the DD state-
ment FT20F001 in job step STEP2.

DD statement FT10F001 indicates that the
data set reference number 10 1is used to
print the reports and graphs for job step
three.)

Example 3:

A data set has been created that con-~
tains master records for an index of stars.

Each star is identified by a unique six-
digit star identification number. Each
star 1is assigned a record position in the

data set by truncating the last two digits
in the star identification number. Because
synonyms arise, records are chained.

The following conventions must be

observed processing this data set:

1. The star master record that contains
the record location counter pointing
to space reserved for chained records
is assigned to record location 1.

2. A zerxro in the chain variable indicates
that the end of a chain has been
reached. :

3. The first variable in each star master
record 1is the star identification
field; the second variable in each
star master is the chain variable.

4. Each record contains six other varia-
bles that contain information about
that star.

Problem Statement: Figure 62 shows a block
diagram illustrating the 1logic for this
problem.

A card data set read from the input
stream is used to update the star master
data set. Each record (detail record) in
this data set contains:

1. The star identification field of the
star master record that the detail
record is used to update.

2. Six variables that are to be used to
update the star master.

When a star detail record is read, its
identification field is randomized, and the
appropriate star master record is read. If
the correct star master record is found,
the record is to be updated. If a star
master is not found, then a star master
record is to be created for that star.

The 1last record in the star detail data
set contains a star identification number
999999 which indicates that processing the
star detail data set is completed.

Explanation: Figure 62 is similar to the
diagram shown in Figure 48, except Figure
62 includes blocks that describe updating
variables in master records already present
in the data set. (Figure 48 includes
blocks describing certain operations that
must be performed when a direct access data
set 1is first written.) Also, Figure 62 is
adapted to Example 3, while Figure 48 is
more general. Figure 64 shows the FORTRAN
coding for this program.

The star master record that contains the
record counter is read, placing the record
location counter in LOCREC. Whenever a
detail record is read the identification
variable is checked to determine if the end
of the detail data set has been reached.
The star detail records contain the varia-
bles A, B, C, D, E, and F.

The identification number in the detail
record is randomized and the result is
placed in the variable NOREC, which is used
to read a master record. The master record
contains the star identification number
(IDSTRM), a chain record location (ICHAIN),
and six variables (T, U, V, X, Y, and 2)
which are to be updated by the variables in
the star detail records. IDSTRM and IDSTRD

Write Star
Master
Record

Set Record Position
in Read Statement
= Chain Variable

Figure 62,

Appendix. B:

Read Star
Master

Record
No.1

Read Star
Detail

fdent
in Star Detail
=999999

Randomize Star
Number to a
Record Location

!

Read Star
Master
Record

Ident
in Star Detail =
Ident in Star
Master

Chain
Variable in
Master =

Write Star
Master
Record

Update
Variable in
Star Master

Set Chain
Variable = Record

Location Counter

Set Record Position
in Write Statement
= Record
Location Counter

Increment
Record Location
Counter by 1

1

Build Star

Master Record

Block Diagram for Example

Examples of Job Processing

89

are compared to see 1if the correct star
master is found. If it is not found, then
the variables containing the chain record
numbers are followed until the correct star
master is found or a new star master is
created.

Job Control Statements: The program shown
in Figure 64 is compiled and 1link edited,

placing the load module in the PDS STARPGMS

and assigning

UPDATE. The data

the 1load module

star master records

assigned the name

set that
was

created. Figure 63 shows the job
statements needed to

UPDATE.

execute

Sample Coding Form

1-10

//STARDAUP, JOB 3231 J -, ASTRONON\ER’)MSGLEVEL 1,

11-20 41-50 51-60
lEBEBBIBEEBEEEBEIEEEHBBBEEIBBEUEEﬂBEIEEB“EBHBBIEEEDEBHEEIEBEﬂBIEEEIBEEﬂEBﬂBEIDBO

lIllllll‘JllJ_llJ_l;Jlllll

71-80

v ol

//J0BLIB DD DSNAME= =STARPGMS)DISP=OLD,
17 EXEC PG,M UPDATE |

L1||4!_L||||4|_L;|

1 llll

A A |

L}

|

oo v L}
T 1

|

T

....I..L.I.J_I.J;..J_LI.HxI-u.lJ_,.J_l.L..l,.Hl,.

NV BT SRR |

RN B

'IIIlIIIIlIIIIlllIlIIlIIII 11
//FT¢7F¢¢1 DD DSNAME STAI_MSTR’DISP OLD j_L J_LLI 11 l 111 I‘l RN IllllllLIJllLl 111
/FT01FO0L DD % ... STAR DETAILS FOLLOW s,
.| L 1 Istar Deﬁall oata Set IJI_I;I I_Ll 11l IJ‘ 11 l 1.1t 1 !;l 11 l P | ; L1 1 l) U -l
R END OF STAR. DETAILS“”L““ RN

[A

Figure 63. Job Control Statements for Example

90

3

contains
cataloged
STARMSTR when

the module

DEFIIINE FILE 7(12000)>1303EsNEXT) :
¢/ REIAD] IREC|ORD ClONTAINING [RECORD LOCATION COUNTER
READ|(7715[1@1) IIDSTRMsLOCREC

C_READ| STAR DATIA AND| CHECK FOR[LAST| STAR DATA| RECORD

26 | | READ|(121@2)IDS[TRDsAISBICIDIEF |
T ITE(IDSTRD|-9999199)28[3993 99 . o

C RANDIOMTZE IDENTIFIICATION FIELD IN[STAR| DATAl AND |READ [STAR [MASTER
2@ | | | NORE|C=IDSITRD/ 1|00
27 | [IREAD|(7'NOREC11@3)ID/STRMAICHAINITHUp VXY Z
C IS [THIS [CORRE[CT STIAR MA|STER

[T | IF(IDSTRD[-IDSTRM) 21322521
Cl 1S |THERE| A CHAIN VIARIAB|LE
21 [[[IFCI|CHAIND 2432|4523 ,
€] NIO.[BIEGIN| CONS[TRUCT|ING NEW MAISTER [AND CHAIN
C UPDIATE CHAIN VARIABLE IN LAST STAR MASTER RECORD| AND WRITE| LAST| RECORD
24 | | [ICHAIN=LOCREC :

T [WRITE(7"NOREC1@1)IDSTRMsICHAIN B
C_SET| RECORD NUMBER [TO BE/GIN CIONSTRUCTION OF NEW STAR MASTER[. UPDATE |
Cl RECIORD. LIOCATIION COUNTER]- BUILD NEW STAR MASTER RECORD

| | | INORE|[c=LOCREC _ :
|77 | ILOCREC=LOCREC+]1 a
[.
C 60 |Tlo WRIITE STAR MASTER| RECORD * T
' [60 Tjo 25 ' T
C| [IIF [RECORD IS [FOUND|sy UPDATE AND WRIITE S[TAR MASTER Tl
2&}1 Z=A/B . -
H \
L * v
25 | WRITIE(7'NOREC1@3)IDSTRMsICHAINITHUs VXY Z o
C GO [TIO_ READ NEXT STIAR DATA REICORD |
1160 To 26 :

C IF |CHAIN VARIABLE [IN RE/CORD READ [THE NEXT S[TAR MASTER IN THE CHAIN

23 " | INORE[C=ICHAIN B -

T 1o Tlo 27]

C IF [END OF STAR DATASWRITE STIAR MASTER |[CONTAING RECORD| LOCATION |COUNTER

99 | |IDSTRM=0 i - _ ERREERERRE
I WRITE(T7’1/9101)IDSTRMsLOCREC

1 ISTOP| 99999
101 FORMAT(I6pTHY) ‘
102 [[FORMAT(T6]r6F1d.3) :
103 | [FORMAT(I6)yIU4y 6/F2@. 3)) s
| [IEND | T
Figure 64. FORTRAN Coding for Example 3

Appendix B:

Examples of Job Processing

91

APPENDIX C: ASSEMBLER_ LANGUAGE SUBPROGRAMS

A FORTRAN programmer can use assembler

language subprograms with his FORTRAN main
program. This section describes the 1link-
age conventions that must be used by the

assembler language sSubprogram to communi-
cate with +the FORTRAN main program. To
understand this appendix, the reader must
be familiar with the Assembler Language

publication and the Assembler Programmer's

Guide.

SUBROUTINE REFERENCES

The FORTRAN programmer can refer to a
subprogram in two ways: by a CALL statement
or a function reference within an arithmet-
ic expression. For example, the statements

CALL MYSUB(X,Y,Z)
I=J+K+MYFUNC(L,M,N)

refer to a subroutine subprogram MYSUB and
a function subprogram MYFUNC, respectively.

For subprogram reference, the compiler
generates:

i. A contiguous argument list; the
addresses of the arguments are placed
in this 1list to make the arguments
accessible to the subprogram.

2. A save area in which the subprogram
can save information related to the
calling program.

3. A calling sequence to pass control to
the subprogram.

Arqument List

The argument list contains addresses of
variables, arrays, and subprogram names
used as arguments. Each entry in the
argument list is four bytes and is aligned
on a full-word boundary. The last three
bytes of each entry contain the 24-bit
address of an argument. The first byte of
each entry contains zeros, unless it is the
last entry in the argument list. If this

92

is the 1last entry, the sign bit in the
entry is set to one.
The address of the argument 1list is

placed in general register 1 by the calling
program.

Save Area

The calling program contains a save area
in which the subprogram places information,
such as the entry point for this program,
an address to which the subprogram returns,
general register contents, and addresses of
save areas used by programs other than the
subprogram. The amount of storage reserved
by the calling program is 18 words. Figure
65 shows the 1layout of the save area and
the contents of each word. The address of
the save area is placed in general register
13.

The called subprogram does not have to
save and restore floating point registers.

Calling Sequence

A calling sequence 1is generated to
transfer control to the subprogram. The
address of the save area in the calling

program is placed in general register 13.
The address of the argument list is placed
in general register 1, and the entry
address 1is placed in general register 15.
A branch is made to the address in register
15 and the return address is saved in
general register 14. Table 14 illustrates
the use of the linkage registers.

CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

Two types of assembler language subpro-
grams are possible: the first type (lowest
level) assembler subprogram does not call
another subprogram; the second type (higher
level) subprogram does call another subpro-
gram.

r 1
| AREA=======-==--- >0 -—== 1 |
| (word 1) | This word is used by a FORTRAN-compiled routine to store |]
| | its epilogue address and may not be used by the assem- | |
| | bler language subprogram for any purpose. | |
| AREA+4==mm—mmemm > — { |
(woxrd 2)	If the program that calls the assembler language	
	subprogram is itself a subprogram, this word contains	
	the address of the save area of the «calling program;	
	otherwise, this word is not used.	
AREA+8-———=---——~ > -_— -]		
(word 3)	The address of the save area of the called subprogram.	
AREA+12--~---=-= > - -—]		
(word 4)	The contents of register 1l4(the return address). When	
	the subprogram returns control, the first byte of this]
	location is set to ones.]
AREA+16--———-———~ >t -]		
(word 5)	The contents of register 15(the entry address).	
AREA+20---—-===-- >t - - 3]		
(word 6)	The contents of register 0.]	
AREA+2U4===-=m=—m >t - 4		
(word 7)	The contents of register 1.	
F -1 '		
I	. I	
	-	
!	. I I	
AREA+68-=——=———— >t —_— ————]		
(word 18)	The contents of register 12.	
L —_— 1
S oI S }
e Figure 65. Save Area

Table 1u4. Linkage Registers

I T T -T== 1
|Register| | |
| Number |Register Name | Function |
Gt 1 - - .
| 0 |Result Register|Used for function subprograms only. The result is returned in|
| | |general or floating-point register 0. However, if the result]
] | |is a complex number, it is returned in floating-point reg-|
| | |isters 0 (real part) and 2 (imaginary part).

| | |[Note: For subroutine subprograms, the result(s) is returned in|
| | |a variable(s) passed by the programmer. |
|8 L 1 u |
) T T R}
| 1 |Argument List |Address of the argument list passed to the called subprogram. |
| |Register | |
t = 1 e
| 2 |Result Register|See Function of Register 0.]
e + :
| 13 |Save Area |Address of the area reserved by the calling program in which]
| |Register |the contents of certain registers are stored by the called|
| | | program. [
o O T 1
| 14 |Return Register|Address of the location in the <calling program to which|
| | |control is returned after execution of the called program. |
b t -~ {
| 15 |Entry Point |Address of the entry point in the called subprogram. |
| |Register | |

| | |Note: Register 15 is also used as a condition code register, aj
| | |RETURN code register, and a STOP code register. The particu-|
| | |lar values that can be contained in the register are: |
|] | 16 - terminal error detected during execution of a subprogramj
| | | (an IHCxxxI message is generated) |
| | j4*1 - a RETURN i statement is executed |
| | | n - a STOP n statement is executed]
| | | O - a RETURN or a STOP statement is executed |
L L 1 _———— 4

Appendix C: Assembler Language Subprograms 93

Coding a Lowest Level Assembler Language
Subprogram

For the lowest level assembler language
subprogram, the linkage instructions must
include:

1. An assembler instruction that names an
entry point for the subprogram.

2. An instruction(s) to save any general
registers used by the subprogram in
the save area reserved by the calling
program. (The contents of 1linkage
registers 0 and 1 need not be saved.)

3. An instruction(s) to restore the
"saved" registexrs before returning
control to the calling program.

4, An instruction that sets the first
byte in the fourth word of the save
area to ones, indicating that control

is returned to the calling program.

5. An instruction that returns control to
the calling program.

66 shows the linkage conventions
for an assembler language subprogram that
does not call another subprogram. In addi-
tion to these conventions, the assembler
program must provide a method to transfer

Figure

Higher Level Assembly Language Subprogram

A higher level assembler subprogram must
include the same 1linkage instructions as
the lowest level subprogram, but because
the higher 1level subprogram calls another
subprogram, it must simulate a FORTRAN
subprogram reference statement and include:

1. A save area and additional instruc-
tions to insert entries into its save
area.

2. A vcalling sequence and a parameter
list for the subprogram that the high-
er level subprogram calls.

3. An assembler instruction that indi-
cates an external reference +to the
subprogram called by the higher level
subprogram.

4. Additional
routine to
save area.

instructions in the return
retrieve entries in the

Figure 67 shows the linkage conventions
for an assembler subprogram that calls
another assembler subprogram.

In-lLine Argument List

The assembler programmer may establish
an in-line argument list instead of out-of-
line list. In this case, he may substitute

94

arguments from the calling program and the calling sequence and arxgument 1list
return the arguments to the calling pro- shown in Figure 68 for that shown in Figure
gram. 67.

r T T 1
| Name |Oper. |Operand comments |
F ===t 1
| deckname] START] 0 |
	BC	15, m+1+4(15) BRANCH AROUND CONSTANTS IN CALLING SEQUENCE
	DC	X"m' m MUST BE AN ODD INTEGER TO INSURE THAT THE PROGRAM
	DC	CLm' name" STARTS ON A HALF-WORD BOUNDARY. THE NAME CAN BE PADDED
1 *	I WITH BLANKS.	
	s™	14,R,12(13) THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE
*		STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY
* NUMBER FROM 2 THROUGH 12.		
	BALR	B,0 ESTABLISH BASE REGISTER (2<B<12)]
	USING	*,B
juser	written source statements	
I I !		
I ! I~ I		
I I b I		
	TM	2,R,28(13) RESTORE REGISTERS
	[MVI }12(13),X*'FF' INDICATE CONTROL RETURNED TO CALLING PROGRAM	
	BCR	15,14 RETURN TO CALLING PROGRAM
L L 1 e e e . e e o e o o e e e - -
"Figure 66. Linkage Conventions for Lowest Level Subprogram

¢ T T

| Name |Oper. |Operand Comments

I b -~

| deckname| START| 0

| | EXTRN | name > NAME OF THE SUBPROGRAM CALLED BY THIS SUBPROGRAM

| | BC |15, m+1+4(15)

| |DC 1X'm*

] | bC |CLm"® name,

| * | | SAVE ROUTINE

| |sT™M |14,R,12(13) THE CONTENTS OF REGISTERS 14, 15, AND O THROUGH R ARE
| | | STORED IN THE SAVE AREA OF THE CALLING PROGRAM, R IS ANY
| | | NUMBER FROM 2 THROUGH 12.

| |BALR |B,0 ESTABLISH BASE REGISTER

| | USING | *,B

| | LR 1Q,13 LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE
| * 1 | CALLING PROGRAM, INTO ANY GENERAL REGISTER, Q, EXCEPT 0,
| * | | 1, 13, AND 15.

| | LA |13,AREA LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO

| * i | REGISTER 13.

| | sT 113,8(€0,Q) STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE
| * |] CALLING PROGRAM'S SAVE AREA

| | sT 19« 4(0,13) STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE
| * | | AREA OF THE CALLING PROGRAM) INTO WORD 2 OF THIS PRO-
| *] | GRAM'S SAVE AREA

| | BC |15, proby

| AREA | DS |18F RESERVES 18 WORDS FOR THE SAVE AREA

| * | |END OF- SAVE ROUTINE

| prob, Juser |written program statements

! be

| -

| | - |

| * | | CALLING SEQUENCE

| | LA |11,ARGLIST LOAD ADDRESS OF ARGUMENT LIST

| L |15,ADCON

| |BALR |14,15

| |[more |user written program statements

I |- |

| [« |

| |- |

| * | |RETURN ROUTINE

| | L |13,AREA+Y LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA BACK INTO
| * | | REGISTER 13

| | LM 12,R,28(13)

| |L |14,12(13) LOADS THE RETURN ADDRESS INTO REGISTER 14.

| |MVI {12(13),X'FF'

| |BCR |15,14 RETURN TO CALLING PROGRAM

I* | |END OF RETURN ROUTINE

|ADCON |DC |A(namey)

| * | | ARGUMENT LIST

|ARGLIST |DC |ALY4 (arg,) ADDRESS OF FIRST ARGUMENT

| b

| o

| | bC |X*80"' INDICATE LAST ARGUMENT IN ARGUMENT LIST

| | DC |AL3 (argn) ADDRESS OF LAST ARGUMENT

L L L -

Figure 67. Higher Level Assembler Subprogram

Appendix C: Assembler Language Subprograms

e e e e e e e e —————)

95

Sharing Data in COMMON

Both named and blank COMMON in a FORTRAN
IV program can be referred to by an
assembly language subprogram. To refer to
named COMMON, the V-type address constant
name DC V(name of COMMON)
is used.

If a FORTRAN program has a blank COMMON

area and blank COMMON is also defined (by
the COM instruction) in an assembly 1lan-
guage subprogram, only one blank COMMON
area 1is generated for the output load
module. Data in this blank COMMON is

accessible to both programs.

r 1
| ADCON DC A(prob,) |
| . |
1 . |
| . |
I LA 14,RETURN |
] L 15, ADCON |
[CNOP 2,4 |
| BALR 1,15

| DC ALY (arg,) |
| DC ALY4 (argy) |
I . I
| . |
| . |
| DC X'80"' |
| DC AL3(argp) |
! !

RETURN BC 0,X"'isn'

Figure 68. In-Line Argument List

RETRIEVING ARGUMENTS FROM THE ARGUMENT LIST

The argument list contains addresses for
the arguments passed to a subprogram. The
order of these addresses is the same as the
order specified for the arguments in the
calling statement in the main program. The
address for the argument list is placed in
register 1. (If statement numbers are
passed as arguments, they are not placed in
the argument list. See "Return i in an
Assembler Language Subprogram.") For exam-
ple, when the statement

CALL MYSUB(A,B,C)

is compiled, the following argument list is
generated.

r T K
] 00000000] address for A |
L 1 d
I) - === - 1
| 00000000 | address for B |
4

---------- i)
120000000} address for C |
L 1 J

96

For purposes of discussion, A 1is a
real*8 variable, B 1is a subprogram name,
and C is an array.

The address of a variable in the calling
program is placed in the argument list.
The following instructions in an assembler
language subprogram can be used to move the
real*8 variable A to location VAR in the
subprogram. .

L Q,0(1)
MVC VAR(8),0(Q)
where:
Q is any general register except 0
For a subprogram reference, an address

of a storage location 1is placed in the
argument list. The address at this storage
location is the entry point to the subpro-
gram. The following instructions can be
used to enter subprogram B from the subpro-
gram to which B is passed as an argument.

L Q,u4(1)
L 15,0(Q)
BALR 14,15
where:

Q is any general register except 0

For an array, the address of the first
variable in the array is placed in- the
argument list. ~An array [for example, a

three-dimensional array C (3,2,2)] appears
in this format in main storage:
c(,1,1) c(2,1,1) c(3,1,1) cC(1,2,1)---
J
r
--c(2,2,1) c<c(3,2,1) c<(1,1,2) cC(2,1,2)---
J
r
--Cc(3,1,2) c<c(1,2,2) cC(2,2,2) C(3,2,2)
Table 15 shows the general subscript
format for arrays of 1, 2, and 3 dimen-
sions.
Table 15. Dimension and Subscript Format
H -1
|Array A Subscript Format
b T 1
|A(D1) |A(S1) |
|A(D1,D2) |a(s1,s2) |
|a(p1,D02,D3)|A(S1,S2,S3)
EX 3
- 1

|D1, D2, and D3 are integer constants used|
|in the DIMENSION statement. S1, S2, and|
| S3 are subscripts used with subscripted|

|variables.]
L -J

The address of the first variable in the
array is placed in the argument list. To
retrieve any other variables in the array,
the displacement of the variable, that is,
the distance of a variable from the first
variable in the array, must be calculated.
The formulas for computing the displacement
(DISPLC) of a variable for one, two, and
three dimensional arrays are:

DISPLC=(S1-1)*L
DISPLC=(S1-1) #L+ (S2-1) *D1*L
DISPLC=(S1-1)*L+(S2-1)#*D1#*L+ (S3-1) #D2*D1+L

where:
L is the length of each variable in
the array
For example, the wvariable C(2,1,2) in

the main program is to be moved to a
location ARVAR in the subprogram. Using
the formula for displacement of variables
in a three-dimensional array, the displace-
ment (DISPLC) is calculated to be 28. The
following instructions can be used to move
the variable,

LA Q,8(13)

LA R,DISPLC
L S,0(Q,R)
ST S,ARVAR

where:

Q, R, and S are general registers;
Q and R cannot be general register
0

Example: An assembler language subprogram
is to be named ADDARR, and a real variable,
an array, and an integer variable are to be

passed as arguments to the subprogram. The
statement

CALL ADDARR (X,Y,J)
is used to call the subprogram. Figure 69

shows the used in the assembler

subprogram.

linkage

RETURN i in an Assembler Language
Subprogram

When a statement number is an argument
in a CALL to an assembler language subpro-

gram, the subprogram cannot access the
statement number argument.
To accomplish the same thing as the

FORTRAN statement RETURN i (used in FORTRAN
subprograms to return to a point other than
that immediately following the CALL), the
assembler subprogram must place U4*i in
register 15 before returning to the calling
progran.

For example, when the statement

CALL SUB(A,B,§10,§20)

is used to call an assembler language
subprogram, the following instructions
would cause the subprogram to return to the
proper point in the calling program:

-

LA 15,4 (to return to 10)

BCR 15,14

LA 15,8 (to return to 20)

BCR 15,14

Appendix C: Assembler Language Subprograms 97

r LB L} L
| Name Oper. |Operand |
L I d
3 T)
|ADDARR |START|O |
|B EQU |8 |
| BC 115,12(15) |
| DC |X*7 |
| |[DC |CL7*'ADDARR®
| ADDARR |STM |14,12,12(13)
| BALR |B,0
| USING|*,B
| L |2,8(1) MOVE THIRD ARGUMENT TO THE LOCATION CALLED INDEX IN

MVC |INDEX(4),0(2) THE ASSEMBLER LANGUAGE SUBPROGRAM.

L |3.0(1) MOVE FIRST ARGUMENT TO THE LOCATION CALLED VAR IN THE

MVC |VAR(4),0(3) ASSEMBLER LANGUAGE SUBPROGRAM
| L |4,4(1) LOAD THE ADDRESS OF THE ARRAY TO GENERAL REGISTER U. |

L |4, 4(8)

user. |written statements

| -
| |

M]14,12,28(13) |
] |MVI]12(13),X'FF' |
	BCR 15,14	
IDS	OF	
INDEX	DS	1F
VAR [DS	1F	
i 4 L d
Figure 69. Assembler Subprogram Example

98

This

scription of the diagnostic messages
duced during

a detailed de-
pro-
compilation and load module

appendix contains

execution.

COMPILER DIAGNOSTIC MESSAGES

Two types of compiler diagnostic messa-

ges
status.

are generated --

error/warning and

Compilex Error/Warning Messages

The following text contains

a descrip-

tion of error/warning messages produced by

the compiler.
explanation.

IEY0011

IEY002T

IEY003I

The message is shown with an

ILLEGAL TYPE

Explanation: The variable in an
Assigned GO TO statement is not an
integer variable; or the variable
in an assignment statement on the
left of the equal sign is of
logical type and the expression on
the right side does not corre-
spond; or an argument in a ref-
erence to an IBM-supplied subpro-

gram is not the type required by
the subprogram. (Condition cCode
8)

LABEL

Explanation: The statement in
question is unlabeled and follows
a transfer of control; the state-
ment therefore cannot be executed.
(Condition Code 0)

NAME LENGTH

Explanation: The name of a varia-
ble, COMMON block, NAMELIST or

subprogram exceeds six characters
in 1length; or two variable names
appear in an expression without a
separating .= operation symbol.
(Condition Code 4)

IEYOOLTI

IEYO005I

IEYO006I

IEY007I

IEY008I

Appendix D:

APPENDIX D: SYSTEM DIAGNOSTICS

COMMA

Explanation: The comma required in
the statement has been omitted.
(Condition Code 0) ‘

ILLEGAL LABEL

Explanation: 1Illegal usage of a
statement label; for example, an
attempt is made to branch to the
label of a FORMAT statement.
(Condition Code 8)

DUPLICATE LABEL

Explanation: The label appearing
in the label field of a statement
has previously been defined for
another statement. (Condition
Code 8) .

ID CONFLICT

Explanation: The name of a varia-
ble or subprogram has been used in
conflict with the type that was
defined for the wariable or sub-
program in a previous statement.

Examples: The name 1listed in a
CALL statement is the name of a
variable; a single name appears
more than once in the dummy 1list
of a statement function; a name
listed in an EXTERNAL statement

has been defined in another con-
text. (Condition Code 8)
ALLOCATION

Explanation: The storage alloca-
tion specified by a source module
statement cannot be performed
because of an inconsistency
between the present usage of a
variable name and some prior usage
of that name.

Examples: A name listed in a COM-
MON block has been 1listed in
another COMMON block; a variable
listed in an EQUIVALENCE statement
is followed by more than seven
subscripts. (Condition Code 8)

System Diagnostics 929

IEY009I

IEY010I

IEY011I

IEY012I

IEY013I

IEYO014I

100

ORDER

Explanation: The statements con-
tained in the source module are
used in an improper sequence.

Examples: An IMPLICIT statement
does not appear as the first or
second statement of +the source
module; an ENTRY statement appears
within a DO loop. (Condition Code
8)

SIZE

Explanation: A number used in the
source module does not conform to
the legal values for its use.

Examples: A label used in a state-
ment exceeds the legal size for a
statement label; the size specifi-
cation in an Explicit Specifi-
cation statement is not accepta-
ble; an integer constant is too
large. (Ccondition Code 8)

UNDIMENSIONED

Explanation: A variable name is
used as an array (i.e., subscripts
follow the name), and the variable
has not been dimensioned.
(Condition Code 8)

SUBSCRIPT

Explanation: The number of sub-
scripts used in an array reference
is either too large or too small
for the array. (Condition Code 8)

SYNTAX

Explanation: The statement or
part of a statement to which this
message refers does not conform to
the FORTRAN IV syntax.

Examples: The statement cannot be
identified; a non-digit appears in
the 1label field; fewer than three
labels follow the expression in an
Arithmetic IF statement.
(condition Code 8)

CONVERT

The mode of the con-
stant used in a DATA or in an
Explicit Specification statement
is different from the mode of the
variable with which it is asso-
ciated. The constant is then con-
verted to the correct mode.
(Condition Code 0)

Explanation:

IEY015I

IEYO01l6I

IEYO17I

IEY018I

IEY019I

IEY020I

NO END CARD

Explanation: The source module
does not contain an END statement.
(Condition Code 0)

ILLEGAL STA.

Explanation: The context in which
the statement in question has been
used is illegal.

Examples: The statement "S" in a
Logical IF statement is a Specifi-
cation statement, a DO statement,
etc.; an ENTRY statement appears
in the source module and the
source module is not a subprogram.
(Condition Code 8)

ILLEGAL STA. WRN.

Explanation: The message is pro-
duced as a result of any of the
following: a RETURN statement
appears and the source module is

not a subprogram; a RETURN i
statement appears in a FUNCTION
subprogram. (condition Code 0)
NUMBER ARG

Explanation: The reference to a
library subprogram specifies an
incorrect number of arguments.
(Condition Code 4)

FUNCTION ENTRIES UNDEFINED

Explanation: If the program being
compiled is a FUNCTION subprogram,
and there is no scalar with the
same name as the FUNCTION nor is
there a definition for each ENTRY,
the message appears on +the 8YS-
PRINT data set. A 1list of the
names in error is printed follow-
ing the message. (Condition Code
0)

COMMON BLOCK name ERRORS

Explanation: This message per-
tains to errors that exist in the
definitions of EQUIVALENCE sets
which refer to the COMMON area.
The message is produced when there
is a contradiction in the alloca-
tion specified, a designation to
extend the beginning of the COMMON

area, or if the assignment of
COMMON storage attempts to allo-
cate a variable to a location
which does not fall on the

IEY0211

IEY022I

IEY023I

IEYO24T

IEY025I

IEY026I

appropriate boundary; "name" is
the name of the COMMON block in
error. (Condition Code Uu)

UNCLOSED DO LOOPS

Explanation: The message is pro-
duced if DO loops are initiated in
the source module, but their ter-
minal statements do not exist. A
list of the labels which appeared
in the DO statements but were not
defined follows the printing of
the message. (Condition Code 8)

UNDEFINED LABELS

Explanation: If any 1labels are
used in the source module but are
not defined, this message is pro-
duced. A list of the undefined
labels appears on the lines fol-
lowing the message. However, if
there are no undefined labels, the
word NONE appears on the same line
as the message. (Condition Code
8)

EQUIVALENCE ALLOCATION ERRORS

Explanation: This message is pro-
duced when there is a conflict
between +two EQUIVALENCE sets, or
if there is an incompatible bound-
ary alignment in the EQUIVALENCE
set. The message is followed by a
list of the variables which could
not be allocated according to
source module specifications.
(Condition Code 4)

EQUIVALENCE DEFINITION ERRORS

This message denotes
an error in an EQUIVALENCE set
when an array element is outside
the array. (Condition Code 4)

Explanation:

DUMMY DIMENSION ERRORS

Explanation: If variables speci-
fied as dummy array dimensions are
not in COMMON and are not global
dummy variables, the above error
message is produced. A 1list of

the dummy variables which are
found in error is printed on the
lines following the message.

(Condition Code 4)

BLOCK DATA PROGRAM ERRORS

IEY0321

Explanation: This message is pro-
duced if variables in the source
module have been assigned to a
program block but have not been
defined previously as COMMON. A
list of these variables is printed
on the lines following the mes-
sage. (Condition Code 4)

NULL PROGRAM

Explanation: This message is pro-
duced when an end of file mark
precedes any true FORTRAN state-
ments in the source module.
(Condition code 0)

compiler Status Messages

The

following paragraphs

describe the

messages that are produced during the oper-

ation of
progress

the
of the compilation.

compiler which denote the
Most of the

messages discussed in this section pertain
to the conditions that result in the termi-
nation of the compilation.

IEY028I

IEY029I

IEY0301I

IEY031I

Appendix D:

NO CORE AVAILABLE-COMPILATION TER-
MINATED

Explanation: This message is pro-
duced when the system is unable to
supply the compiler with an addi-
tional 4K byte block of 1roll (or
table) storage. (Condition Code
16)

DECK OUTPUT DELETED

Explanation: If the DECK option
has been specified, and an error
occurs during the process of
punching the designated output,
this message is produced. No con-
dition code is generated for this
error.

LINK EDIT OUTPUT DELETED

Explanation: If the LOAD option
has been specified, and an error
occurs during the process of gen-
erating the load module, this mes-
sage is produced. (Condition Code
16)

ROLL SIZE EXCEEDED

Explanation: This message is pro-
duced when +the WORK or EXIT roll

System Diagnostics 101

IEYO033I

IEYO34I

IEY0351I

(table) has exceeded the storage
capacity to which it has been
assigned, or some other roll used
by the compiler has exceeded 64K
bytes of storage. (Condition Code
16)

EXCESSIVE COMMENTS

Explanation: If more than 49 con-
tigious comment and/or continua-
tion cards are read, this message
is printed, and the remainder of
the cards are skipped until a card
that is not a comment or continua-
tion card is encountered. (There
is no restriction on the number of
comments at the beginning of the
deck.) No condition code is gen-
erated for this message.

I/0 ERROR [COMPILATION TERMINATED]
XXXo o« XXX

Explanation: This message is pro-
duced when an input/output error
is detected during compilation.
If the error occurred on SYSPUNCH,
compilation is continued and the
"COMPILATION TERMINATED" portion
of the message 1is not printed.
(Condition cCode 8). If the error
occurred on SYSIN, SYSPRINT or
SYSLIN, compilation is terminated.
(Condition Code 16). XXX...XXX is
the character string formatted by
the SYNADAF macro instruction.
For an interpretation of this
information, see the publication
IBM _System/360 Operating System:
Supervisor and Data_ Management
Macro_ Instructions, Form C28-6647.

UNABLE TO OPEN ddname

Explanation: This message is pro-
duced when the required ddname
data definition card is missing or
the ddname is misspelled.

LOAD MODULE EXECUTION DIAGNOSTIC MESSAGES

The

load module produces three types of

diagnostic messages:

e Program interrupt messages.

e Execution error messages.

¢ Operator messages.

102

Program Interrupt Messages

Program interrupt messages containing
the o01ld Program Status Word (PSW) are
written when an exception occurs. The
format is:

A

IHC2101 PROGRAM INTERRUPT(P)OLD PSW IS xxxxxxx XXXXXXXX

mONOVONOGLA

and 7 are associated
adjustment of

Note: Codes 4, 5, 6,
with the execution-time
boundary alignment errors and appear only
when the system is generated to provide
boundary alignment adjustment; i.e., when
BOUNDRY=ALIGN is specified in the FORTLIB
macro instruction (see the publication IBM

System/360 Operating System, System
Generation).
If the letter A appears in the message,

boundary adjustment has taken place. The
letter P in the message indicates that the
interruption was precise. This will always
be the case for non-specification interrupt

messages in FORTRAN except when using
machines with special hardware on which
imprecise interruptions may occur. The

eighth character in the PSW (i.e., 4, 5, 6,
7, 9, D, or F) represents the code number
(in hexadecimal) associated with the type

of interruption. The following text des-
cribes these interruptions.

Protection _ Exception: The protection
exception, assigned code 4, is recognized

when the key of an operand in storage does
not match the protection key in the PSW. A
message is issued only if a specification

exception (code 6) has already been recog-
nized in the same instruction. Otherwise,
the job terminates abnormally.

Addressing __Exception: The addressing
exception, assigned code 5, is recognized

when the address of the data is outside of
the available storage for the particular

installation. A message is issued only if
a specification exception (code 6) has
already been recognized in the same
instruction. Otherwise, the job terminates
abnormally.

Specification Exception: The specification
exception, assigned code 6, is recognized

when a data address does not specify an
integral boundary for that unit of informa-

tion. A specification error would occur
during execution of the following instruc-
tions:

DOUBLE-PRECISION D, E
COMMON A, B, C
EQUIVALENCE (B, D)

D = 3.0D02

Note: If an instruction contains a bounda-
ry violation, a specification interrupt
will occur and the message will be issued
with code 6. The boundary-adjustment xrou-
tine will then be invoked, if the
POUNDRY=ALIGN option was specified in the
FORTLIB macro instruction during system
generation. If an instruction which has
been processed for boundary misalignment
also contains a protection, addressing, or
data error, the interrupt message will be
reissued with the appropriate code (4, 5,
or 7). The job will then terminate because
both a specification error and a protec-
tion, addressing, or data error have been
detected. The completion code in the dump
will specify that the job terminated
because of the specification error.

Data Exception: The data exception,
assigned code 7, 1is recognized when the
sign or digit codes for a CONVERT TO BINARY
instruction are incorrect. A message is
issued only if a specification exception
(code 6) has already been recognized in the
same instruction. Otherwise, the job ter-
minates abnormally.

Fixed-Point-Divide Exception: The fixed-
point-divide exception, assigned code
number 9, is recognized when division of a
fixed-point number by =zero is attempted.
For example, a divide exception would occur
during execution of the following state-
ment:

R=I/J0
where:

J=0 and
I=7

Exponent-Overflow Exception: The exponent-
overflow exception, assigned code number C,
is recognized when the result of a
floating-point addition, subtraction,
multiplication, or division is greater than
or equal to 1663 (approximately 7.2x1075),
For example, an exponent-overflow would
occur during execution of the statement:

A=1.0E+75+7.2E+75

When the interrupt occurs, the result
register contains a floating-point number
whose fraction and sign is correct. How-
ever, the number is not usable for further
computation since its characteristic field

no longer reflects the true exponent. The
content of the result register as it exist-
ed when the interrupt occurred is printed
following the program interrupt message
with the format:

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where:
hhhhhhhhhhhhhhhh is the £floating-
point number in hexadecimal nota-
tion
Exponent overflow causes "exponent
wraparound" - 1i.e., the characteristic
field represents an exponent that is 128
smaller than the correct one. Treating

bits 1 to 7 (the exponent characteristic
field) of the floating-point number as a
binary integer, the true exponent (TE) may
be computed, as follows:

TE=(Bits 1 to 7) +128 =~ 64

Before program execution continues, the
FORTRAN library sets the result register to
the largest possible floating-point number
that can be represented in short precision
(1663%(1-16-%)) or in long precision

(1663*% (1-16-14)), but the sign of the

result is not changed. The condition code
is not altered.
Exponent-Underflow Exception: The

exponent-underflow exception, assigned code

number D, is recognized when the result of
a floating-point addition, subtraction,
multiplication, or division is less than

16—65 (approximately 5.4x10-79). For exam-
ple an exponent-underflow exception would
occur during execution of the statement:

A 1.0E-50%1.0E-50

Although exponent underflows are maska-
ble, FORTRAN jobs are executed without the
mask so that the library will handle such
interrupts.

When the interrupt occurs, the result
register contains a floating-point number
whose fraction and sign is correct. How-
ever, the number is not usable for further
computation since its characteristic field
no longer reflects the true exponent. The
content of the result register as it exist-
ed when the interrupt occurred is printed
following the program interrupt message
with the format:

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where:
hhhhhhhhhhhhhhhh is the £floating-
point number in hexadecimal nota-
tion

Appendix D: System Diagnostics 103

Exponent anderflow
wraparound” - i.e.,
field represents an exponent that is 128
larger than the correct one. Treating bits
1 to 7 (the exponent characteristic field)
of the floating-point number as a binary
integer, the true exponent (TE) may be
computed as follows:

causes "exponent

TE=(Bits 1 to 7) - 128 - 64

Before program execution continues, the
FORTRAN library sets the result register to
a true =zero of correct precision. If the
interrupt resulted from a floating-point
addition or subtraction operation, the
condition code is set to zero to reflect
the setting of the result register.

Note: The System/360 Operating System FOR-
TRAN programmer who wishes to take advan-
tage of the "exponent wraparound" feature
and handle the interrupt in his own program
must call an assembly language subroutine
to issue a SPIE macro instruction which
will override the FORTRAN interruption rou-
tine.

Floating-Point-Divide Exception: The
floating-point-divide exception, assigned

code number F, is recognized when division

of a floating-point number by zero is
attempted. For example, a floating-point
divide exception would occur during

execution of the following statement:
C=A/B
where:

B=0.0 and
A=1.0

Execution_ Error Messages

Execution error messages have the form:
IHCxxxI[message text]
TRACEBACK FOLLOWS ...

where:
xxx is the error code

Traceback, which is a diagnostic tool con-
taining a 1list of the routines in the
direct 1line of call to the routine in
error, is discussed in the section "System
Output.”

In the following text, the error codes
are given with an explanation describing
the " type of error. Preceding the explana-
tion, an abbreviated name is given indicat-
ing the origin of the error. For any load

104

the characteristic

module execution error, unless otherwise
stated below, a condition code of 16 is
generated and the job step is terminated.

The abbreviated name for the origin of
the error is:

IBC -~ IHCFCOMH routine (performs inter-
ruption, conversion, and error
procedures).

FIOCS -~ IHCFIOSH routine (performs I/O
operations for FORTRAN load module
execution).

NAMEL -- IHCNAMEL routine (performs the
processing of NAMELIST specifications).

IBERR -- IHCIBERH routine (performs the
processing of errors detected during
execution of the load module).

DIOCS -- IHCDIOSE routine (performs
direct-access 170 operations for FORTRAN
load module execution).

LIB -- SYS1.FORTLIB.
of the messages, the module name is
given followed by the entry point
name(s) enclosed in parentheses.

In the explanation

FCVTH -- IHCFCVTH routine
conversions).

(performs

IHC211I

Explanation: IBC -- An invalid
character has been detected in a
FORMAT statement.

IHC2121

Explanation: IBC -- An attempt
has been made to read or write a
record, under FORMAT control, that
exceeds the buffer length.

IHC213I

Explanation: IBC =-- The input
list in an I/O statement without a
FORMAT specification is larger
than the logical record.

IHC2141

IHC215I

IHC216I

IHC2171 -

IHC2181

IHC2191

" Explanation:

Explanation: FIOCS -- For records
in sequential data sets written
with no FORMAT control, for which
the RECFM subparameteér must be V
(variable), either U (undefined)
or F (fixed) was specified.

Explanation: FCVTH -- An invalid
character exists for the decimal

input corresponding to an I, E, F,
or D format code.

Explanation: ILIB -- An illegal
sense light number was detected in
the argument list in a call to the

'SLITE or SLITET subroutine.

IBC -- An end of
data set was sensed during a READ
operation; that is, a program
attempted to read beyond the data.

I/0 ERROR XXX.. XXX

Explanation: IBC -- A permanent
input/output error has been
encountered, or an attempt has
been made to read or write with
magnetic tape a record that is
less than 18 bytes long.

XXX...XXX 1s the character string
formatted by the SYNADAF macro
instruction. For an interpretion
of this information, see the pub-
lication IBM Systenv/360 Operating
System: Supervisor and Data Man-
agement Macro Instructions, Form
C28-6647. After the traceback is
completed, control is returned to
the call routine statement desig-
nated in the ERR parameter of a
FORTRAN READ statement if that
parameter was specified.

Explanation: FIOCS ~- A data set
is referred to in the load module,
but no DD statement is supplied
for it or a DD statement has an

erroneous ddname.

IHC2201I

IHC2211

IHC2221

IHC2231

IHC224T

IHC2251

IHC230I

IHC231I

Appendix D:

Explanation: FIOCS -- A data set
reference number exceeds the limit
specified for data set reference
numbers when this operating system
was generated.

Explanation: NAMEL -~- An input
variable name exceeds eight char-
acters.

Explanation: NAMEL -- An input
variable name is not in the NAME-
LIST dictionary, or an array is

specified with an insufficient
amount of data.
Explanation: NAMEL -- An input

variable name or a
no delimiter.

subscript has

Explanatjion: NAMEL -- A subscript
is encountered after an undimen-
sioned input name.

Explanation: FCVTH -- An illegal
character is encountered on input
for the Z format code.

SOURCE ERROR AT ISN xxxxX - EXECU-
TION FAILED AT SUBROUTINE-name

Explanation: IBERR -- During load
module ' execution, a source state-
ment error is encountered. The
internal statement number for the
source statement is xxxx, the rou-
tine that contains the statement
is specified by "name".

Explanation: DIOCS - Direct
access input/output statements are
used for a sequential data set, or
input/output statements for a
sequential data set are used for a
direct access data set.

System Diagnostics 105

IHC232I

IHC2331

IHC2341

IHC235I

IHC2361I

IHC2371

IHC241T

IHC242I

106

Explanation: DIOCS -- Relative
position of a record is not a
positive integer, or the relative
position exceeds the number of
records in the data set,

record
DEFINE
physi-
volume
the DD

Explanation: DIOCS -- The
length specified in the

FILE statement exceeds the
cal limitation of the
assigned to the data set in
statement.

Explanation: DIOCS -- The data
set assigned to print execution
error messages cannot be a direct
access data set.

Explanation: DIOCS -- A data set
reference number assigned to a
direct access data set has been
used for a sequential data set.

Explanation: IBC -- A READ is
executed for a data set that has
not been created.

Explanation: DIOCS -- Length of
record read did not correspond to
length of 1record specified in
DEFINE FILE statement.

Explanation: LIB -- For an
exponentiation operation (I**J) in
the subprogram IHCFIXPI (FIXPI#)
where I and J represent integer
variables or integer constants, I
is equal to =zero and J is less
than or equal to zero.

Explanation: LIB - For an
exponentiation operation (R**J) in
the subprogram IHCFRXPI (FRXPI#),

IHC243I

IHC244T

IHC2451

IHC246I

IHC2471

where R represents a real*l4 varia-
ble or integer constant, R is
equal to zero and J is 1less than
or equal to zero.

Explanation: LIB - For an
exponentiation operation (D*#*J) in
the subprogram IHCFDXPI (FDXPI#),
where D represents a real*8 varia-
ble or real*8 constant and J rep-
resents an integer variable or
integer constant, D is equal to
zero and J is less than or equal
to zero.

Explanation: LIB - For an
exponentiation operation (R##S) in
the subprogram IHCFRXPR(FRXPR#),
where R and S represent real#l
variables or real*4 constants, R
is equal to zero and S is less
than or equal to zero.

Explanation: LIB - For an
exponentiation operation (D#*#P) in
the subprogram IHCFDXPD(FDXPD#),
where D and P represent real*8
variables or real*8 constants, D
is equal to zero and P is less
than or equal to zero.

Explanation: @~ LIB -- For an
exponentiation operation (Z**J) in
the subprogram IHCFCXPI(FCXPI#),
where Z represents a complex*8
variable or integer constant, Z is

equal to zero and J is 1less than
or equal to zero.
Explanation: LIB - For an

exponentiation operation (Z##J) in
the subprogram IHCFCDXI(FCDXI#),
where Z represents a complex*16
variable or complex*16 constant
and J represents an integer varia-
ble or integer constant, 2 is
equal to =zero and J is less than
or equal to zero.

IHC2511

IHC252I

IHC253I

IHC2541

IHC255T

IHC256I

IHC2571

IHC2581

Explanation: LIB -- In the sub-
program IHCSSQRT(SQRT), the argu-
ment is less than 0.

Explanation: LIB -- In the sub-
program IHCSEXP(EXP), the argument
is greater than 174.673.

Explanation: LIB -- In the sub-
program IHCSLOG(ALOG and ALOG10),
the argument is less than or equal
to zero. Because this subprogram
is called by an exponential sub-
program, this message also indi-
cates that an attempt has been
made to raise a negative base to a
real power.

Explanation: LIB -- In the sub-
program IHCSSCN(SIN and COS), the
absolute value of an argument is
greater than or equal to 238eT
(218eT=_,82354966406249996D+06).

Explanation: LIB -- In the sub-
program IHCSATN2, when entry name
ATAN2 is used, both arguments are
equal to zero.

Explanation: LIB -- In the sub-
program IHCSSCNH(SINH or COSH),
the argument is greater than or
equal to 174.673.

Explanation: LIB -- In the sub-
program IHCSASCN (ARCSIN or
ARCOS), the absolute value of the

argument is greater than 1.

Explanation: LIB -- In the sub-
program IHCSTNCT (TAN or COTAN),
the absolute value of the argument
is greater than or equal to 218eé'7
(218e 7 =,82354966406249996D+06) .

IHC2591

IHC261T

IHC262I

IHC2631

THC2641

IHC265T

IHC2661

IHC2671I

Appendix D:

Explanation: LIB -- In the subpro-
gram IHCSTNCT (TAN or COTAN), the
argument value is too close to one
of the singularities

(%
or

NH

1+3%,... for the tangent
Ty 2, for the cotangent).

I+

Explanation: LIB -- In the sub-
program IHCLSQRT{(DSQRT), the arqgu-
ment is less than 0.

Explanation: LIB -~ In the sub-
program IHCLEXP(DEXP), the argu-

ment is greater than 174.673.

Explanation: LIB -- In the sub-
program IHCLLOG(DLOG and DLOG10),
the argument is less than or equal
to zero. Because the subprogram
is called by an exponential sub-
program, this message also indi-
cates that an attempt has been
made to raise a negative base to a
real power.

Explanation: LIB -- In the sub-
program IHCLSCN(DSIN and DCOS),
the absolute value of the argument
is greater than or equal to 259s 7
(25%ew =,35371188737802239D+16).

Explanation: LIB -- In subprogram
IHCLATN2, when entry name DATAN2

is used, both arguments are equal
to zero.’
Explanation: LIB -- In the sub-

program IHCLSCNH (DSINH or DCOSH),
the absolute value of the argument

is greater than or equal to
174.673.

Explanation: LIB -- In the sub-
program IHCLASCN (DARSIN or

System Diagnostics 107

IHC2681I

IHC2691

IHC2711

IHC272I

IHC273I

IHC2741

IHC275I

108

DARCOS), the absolute value of the
argument is greater than 1.

Explanation: LIB -- In the sub-
program IHCLTNCNT (DTAN or

DCOTAN), the absolute value of the
argument is greater than or equal
to 250e7w

(250e7 =,35371188737802239D+16).

Explanation: LIB ~-- In the sub-
program IHCLTNCT (DTAN or DCOTAN),
the argument value is too close to
one of the singularities

(:l:al»,.-h—z’z—",... for the tangent;

Em E2m. Lo the cotangent).

Explanation: LIB -- In the sub-
program IHCCSEXP (CEXP), the value
of the real part of the argument
is greater than 174.673.

Explanation: LIB -- In the sub-
program IHCCSEXP (CEXP), the abso-
lute value of the imaginary part
of the argument is greater than or
equal to 218er

(228e¢ m =,82354966406249996D+06) .

Explanation: LIB -- In the sub-
program IHCCSLOG (CLOG), the real
and imaginary parts of the argqu-
ment are equal to zero.

Explanation: LIB -- In the sub-
program IHCCSSCN (CSIN or CCOS),
the absolute value of the real
part of the argument is greater
than or equal to 218em
(218e7 =,82354966406249996D+06) .

Explanation: LIB -- In the sub-
program IHCCSSCN (CSIN or CCOS),
the absolute value of the imag-

IHC2811

IHC282I

IHC283I

IHC284I

IHC285I

IHC290I

IHC291I

IHC300I

inary part of the argument is
greater than 174.673.

Explanation: LIB -- In the sub-
program IHCCLEXP (CDEXP) , the
value of the real part of the
argument is greater than 174.673.

Explanation: LIB =-- In the sub-
program IHCCLEXP (CDEXP), the
absolute value of the imaginary

part of the argument is greater
than or equal to 25CeT
(250e T =_,35371188737802239D+16).

Explanation: LIB =-- In the sub-
program IHCCLLOG (CDLOG), the real
and imaginary parts of the argu-
ment are equal to zero.

Explanation: LIB =-- In the sub-
program IHCCLSCN (CDSIN or CDCOS),
the absolute value of the real
part of the argument is greater
than or equal to 250%er

(25%e7m =,35371188737802239D+16).

Explanation: LIB -- In the sub-
program IHCCLSCN (CDSIN or CDCOS),
the absolute value of the imag-
inary part of ‘the argument is
greater than 174.673.

Exglaﬁation: LIB -- In the sub-
program IHCSGAMA (GAMMA) , the

value of the argument is outside
the valid range (2-252<x<57.5744).

Explanation: LIB -- In the sub-
program IHCSGAMA (ALGAMA), the

value of the argument is outside
the valid range (0<x<4.2937x1073).

Explanation: LIB -- In the sub-
program IHCLGAMA (DGAMMA), the

value of the argument is outside
the valid range (2+-252<x<57.5744).

IHC3011
Explanation: LIB -- In the sub-
program IHCLGAMA (DLGAMA), the

value of the argument is outside
the valid range (0<x<4.2937x1073),

Operator Messages

Operator messages for STOP and PAUSE are
generated during load module execution.

The message for a PAUSE can be one of
the following formats:

PAUSE n
yy IHCO001A PAUSE 'message'
PAUSE 0
where:
Yy is the identification num-
ber
n is the unsigned 1- to
5-digit integer constant

specified in a PAUSE source
statement

message is the 1literal constant
specified in a PAUSE source
statement

0 is printed out when a PAUSE
statement is executed.

Explanation: The programmer should give
instructions that indicate the action to be
taken by the operator when the PAUSE is
encountered.

User Response: To resume execution, the
operator presses the REQUEST key. When the
PROCEED light comes on, the operator types

REPLY yy,*z"

where:
Yy is the identification num-
ber
z is any letter or number

To resume program execution the operator
must press the alternate coding key and a
numeric 5.

The message for a STOP statement can be
one of the following formats:

THC002I %STOP n%

STOP 0
where:

n is the unsigned 1- to
5-digit integer constant
specified in a STOP source
statement

0 is printed when a STOP

statement is executed

User Response: None

Appendix D: System Diagnostics 109

APPENDIX E: EXTENDED USA CARRIAGE CONTROL CHARACTERS

code Interpretation

* blank Space one line before printing
* 0 Space two lines before printing

- Spéce three lines before printing

* + Suppress space before printing
* 1 Skip to first line of a new page

2 Skip to channel 2

3 Skip to channel 3

4 Skip to channel 4

5 Skip to channel 5

6 Skip to channel 6

7 Skip to channel 7

8 Skip to channel 8

9 Skip to channel 9

A Skip to channel 10

B Skip to channel 11

C Skip, to channel 12

v Seleét punch pocket 1

W Select punch pocket 2

*These carriage control characters are
identical to the FORTRAN carriage control
characters specified in the FORTRAN IV
Lanquage publication.

110

The FORTRAN Debug Facility statements
(DEBUG, AT, DISPLAY, TRACE ON and TRACE
OFF) are described in the FORTRAN IV Lan-
guage publication. This section describes
the output produced when these statements
are used in a FORTRAN source module.

DEBUG_STATEMENT

The options UNIT, TRACE, SUBTRACE, INIT,
and SUBCHK may be specified in the DEBUG
statement. The UNIT option indicates the
unit on which the DEBUG output is to be
written; if this option is omitted, DEBUG
output is written on SYSOUT.

TRACE

TRACE output is written only when TRACE
is on as a result of the TRACE ON state-
ment. For each labeled statement that is
executed, the line

TRACE statement-label

is written.

SUBTRACE

SUBTRACE is used to trace program flow
from one routine to another. For each
subprogram called, the line

SUBTRACE subprogram—name

is written on entry to the subprogram, and

the line
SUBTRACE *RETURN#*

is written on exit from the subprogram.

INIT

The output produced as a result of the
INIT option is written regardless of any
TRACE ON or TRACE OFF statements in the
source module. When the value of an unsub-
scripted variable listed in the INIT optlon
changes, the line .

APPENLCIX F: DEBUG FACILITY

variable-name = value

is written, with the wvalue given in the
proper format for the variable type. When
the value of an element of an array 1listed
in the INIT option changes, the line

array-name (element-number) = value

is written, with the format of the value
determined by the type of the array ele-
ment. The single element number subscript
is used regardless of the number of dimen-
sions on the array.

SUBCHK

SUBCHK output is not affected by TRACE

ON and TRACE OFF statements in the source
module. When a reference to an array
listed in the SUBCHK option includes sub-~

scripts such that the reference is outside
the array, the line

SUBCHK array-name(element-number)

The statement including the

reference is operated

is printed.
out-of-bounds
nonetheless.

DISPLAY STATEMENT

DISPLAY statement output is identical to
NAMELIST WRITE output. The first 1line
written is the name of the NAMELIST created
by the compiler for the DISPLAY statement,
preceded by.the ampersand character:

§DBGnn#

where:

nn is the 2-digit decimal value
assigned to the DISPLAY statement;
this value begins at 01 for the
first DISPLAY statement in the
source module and increases by one
for each subsequent DISPLAY state-
ment.

The NAMELIST name is followed by the

DISPLAY 1list, in NAMELIST format. The
output is terminated with the line
§END
Appendix F: Debug Facility 111

SPECIAL CONSIDERATIONS

Any DEBUG output which is produced dur-
ing an input/output operation is saved in
storage until the input or output operation
is complete, when it is written out. Sav-
ing this information may require a request
for additional storage space from the sys-
tem. If the request cannot be satisfied,

some of the DEBUG output may be lost. If

this situwation occurs, the message

SOME DEBUG OUTPUT MISSING

112

is written after the output which was
saved. '

If a subscript appearing in an
input/output list includes a function ref-
erence, and the FUNCTION contains a DISPLAY
statement, the DISPLAY cannot be performed.
In this case the message

DISPLAY DURING I/O SKIPPED

is written in the DEBUG output.

A, device class
ABEND dump 82
ABSTR subparameter 74
Accessing unused space 75
Account number 15,16
Accounting information
in the EXEC statement 21
in the JOB statement 15,16
ACCT parameter 21
ACCT.procstep parameter 21
Additional input to the linkage editor
AFF subparameter 74
Affinity for devices 74
ALIAS linkage editor control statement
ALX subparameter 50
Argument list 92,96-97
Assembler language subprograms
addresses of arguments 96-97
argument list 92
calling sequence 92
COMMON area, use of 96
linkage conventions 92,93
register use 93
RETURN 97
save area 92
subroutine references 92
Assigning names to temporary data sets
28,46
Asterisk parameter (*) 24-25
Automatic call library 37,38
Average record length subparameter

26,u45,51

BACKSPACE statement 44,57
Batched compilation 30,35
BCD compiler option 34
BLKSIZE subparameter 52
Blocked records 52,54,57
BUFNO subparameter 53
Bypassing a job step 20
Byte 68

card input and output 25,26
Carriage control characters
Catalog 11
Cataloged data sets
cataloged procedure

IBM supplied 11,61-64

invocation of 30-32

overriding 10,22,65-67

steps 61-64

user-written 64
Cataloged procedure name parameter 18
CATLG subparameter 29
CHANGE linkage editor control statement
Channel separation 73
Column binary mode 25
comments in job control statements
COMMON area 69,96

25,51,110

11

13

37

40

49,74

40

Compile and link edit cataloged procedure

(FORTGCL) 31,61,63
Compile cataloged procedure (FORTGC)
30,61,62

compile, link edit, and execute catalo
procedure (FORTGCLG) 31-32,64,65
Compiler
ddnames 32-33
debug facility output 111-112
device classes 33
error/warning messages
invocation of 30,85
multiple or patched compilation 30
name 32
object module deck structure 80
object module listing 78-79
options 33-35
restrictions 72-73
source listing 77
storage map 77
Concatenating data sets
with other data sets 24
with the system library 20-24
COND parameter
in the EXEC statement 20
in the JOB statement 15-18
COND. procstep parameter 20
condition code
in the EXEC statement 18-20
in the JOB statement 15-18
Cconstants 68
CONTIG subparameter S50
continuing control statements 13
control fields in variable-length
records 54,55,57
control statement messages 15
conversion for tape data sets
Creating data sets 4#6-59
Cross-reference list, linkage editor
CYL subparameter 49,75
Cylinders, direct-access device 49,75

80,99-101

52

DATA parameter 25
Data in input stream 25
Data set reference number
Data sets 10-11
cataloged 11
labels 11
organization 10
residence 10
DCB parameter 25,51-53
DCB ranges and assumptions
DD statement
asterisk parameter 24-25
DATA parameter 25
DCB parameter 25,51-53
ddname 22,48
DDNAME parameter U8
definition of 22,46,73
DISP parameter 28,51
DSNAME parameter 28,46
DUMMY parameter U6
LABEL parameter 43,50
SEP parameter 74
SPACE parameter 49,74-75
SPLIT parameter 75

41-42

58

Index

INDEX

ged

=35

81-82

113

SUBALLOC parameter 75
SYSOUT parameter 26,51
UNIT parameter 24,48,74
VOLUME parameter 48
ddname 22,48
DDNAME parameter 48
Debug facility output 111-112
DECK compiler option 34,79
Deck structure, object module 80
DEFER subparameter 74
DEFINE FILE statement 58,72
Definition of
DD statement 22,46,73
EXEC statement 16
JOB statement 14
DELETE subparameter 29
Delimiter statement 29
DEN subparameter 52
Density, tape 52
Device class 33
Diagnostic messages 80-81,101-104
Direct access data sets
buffer length 58
number of buffers 58
record length 58
Direct access programming
associated variable 72
DEFINE FILE statement 72
randomizing techniques 70
record chaining 71
skeleton records 71
synonyms 71
Directory quantity 50,75
DISP parameter 28-29,51
Disposition of a data set 28-29,51
DO loops 68
Double-word 68
DSNAME parameter
DUMMY parameter 46
DUMP subroutine 69

70-73

28-46

EBCDIC compiler option 34

EBCDIC mode 25

END card for object modules 80

END FILE statement 43,44

ENTRY linkage editor control statement 40

ERR parameter 70

Error message data set 44

Error/warning messages
generated by the compiler 80,99-101
generated by the linkage editor 82

generated for load modules 82,102-109
ESD card 79
Exceptions
exponent-overflow 82,103
exponent-underflow 82,103
fixed-point-divide 82,103
floating-point-divide 82,104

EXEC statement
ACCT parameter 21
ACCT.procstep parameter 21
COND parameter 20
COND.procstep parameter 20
DEFINITION OF 16
NAME 17
parm PARAMETER 18,33,65
parm.PROCSTEP PARAMETER 18,65
pgm PARAMETER 18-19

114

proc PARAMETER 18-19
Execution, load module

DCB assumptions 58

ddnames 41

device classes 45 .

error message data set 44

errors (see error/warning messages)

program name 41
EXPDT subparameter 51
Expiration date for data sets 51
Exponent-overflow 82,103
Exponent-underflow 82,103
External references 36,80

Fields in job control statements

name field 12

operand field 13

operation field 13
Fixed-length records 54-59
Fixed-point-divide 82,103
Floating-point-divide 82,104
FORTGC

description of 61

use of 10,30-31,61
FORTGCL

description of 61-62

use of 10,31,61
FORTGCLG

description of 65

use of 10,31-32,65
FORTGLG

description of

use of 10,31-62
FORTRAN library 10,36,38,73
FORTRAN records

direct-access data sets 58-59

sequential data sets 53-59
FORTRAN sequence number 42
FTxxFyyy U1

62-65

Generation data group 27

ID compiler optio 35
IEWL 36 :
IEWLE150 36
IEWLE180 36
IEWLF440 36
IEYFORT 32

_ INCLUDE linkage editor control

statement 37
Input

to the compiler 30,32

to the linkage editor
Input stream 25
INSERT linkage editor caontrol statement 40
Integer constants and variables 68
Intermediate storage device 33,51
Interrupt messages 82,109
Invocation of the FORTRAN compiler
I/0 devices

address 25-26,48,73-74

name 25-26,48,73-74

number of 25-26,48,73-74

36,37

30,85

Job 9
Job control statements
comments 13

12-13

continuing 13
notation for defining 13
JOB statement
account number parameter 15,16
accounting information parameter 15
COND parameter 15-18
definition of 14-15
MSGLEVEL parameter 15
name 15
programmer's name parameter 15
Job step 9
JOBLIB DD statement 22,29,40
Jobname 15

KEEP subparameter 28
Keyword parameters and subparameters 13
Keyword.procstep 20,65

LABEL parameter 43,50
Labels, data set 11,43,50~-51
Length
buffer 52,53,58
of FORTRAN records 53,58
of logical records 53,58
LET linkage editor option 41
Library
automatic call 37,38
FORTRAN 10,36,38
private 19
system 19
LIBRARY linkage editor control
statement 37
LINECNT compile option 34
Link edit and execute cataloged procedure
(FORTGLG) 10,31-36
Linkage conventions 92,93
Linkage editor
additional input 37
automatic call library 37,38
control statements 37,38-40
cross-reference list 40,81-82
ddnames used with 37
device classes 37
module map 40,81
name 36
options 40-41
primary input 36
priority 38
secondary input 36
LIST linkage editor option 41,77
LOAD compiler option 35
Yoad module
cross-reference list 81-82
execution of (see execution, load
module)
map 81
Locations, storage 68
Logical records
fixed-length 53,54,55,59
undefined 54,59
variable-length 54,55,59
LRECL subparameter 58
MAP
compiler option 35
linkage editor option 40
Messages
compiler error/warning 80,99-101

control statement 15
load module 82,102
operator 82,109
program interrupt 82,102
source module diagnostic 81
Minimum system requirements 68
MOD subparameter 28
MODE subparameter 25
Module map 81
MSGCLASS parameter 16
MSGLEVEL parameter 15
Multiple compilation 30,35
Multiple link editing 39
Multiprogramming with a variable number
of tasks (MVT)
cataloged procedures 61,62
job management 12
programming considerations 73
MVT (see Multiprogramming with a variable
number of tasks)
MXIG subparameter 50

NAME
compiler option 32
linkage editor control statement 39
Name subparameter 25,u48,74
NCAL linkage editor option 41
NEW subparameter 28
NL subparameter 43,50
NODECK compiler option 34
NOID compiler option 35
NOLOAD compiler option 35
NOMAP compiler option 35
NOSOURCE compiler option 34
Notation for defining control
statements 13
Number of I/O devices subparameter
25-26,48,73-74

Object module

card deck 80

listing 78-79

map 81
OLD subparameter 28
Operator messages 82,109
Options

compiler 33

linkage editor 40
Organization of data sets 10
Output

of a load module 82

of the compiler 76-80

of the linkage editor 81
OVERLAY linkage editor control
statement 40
oOoverlaying load modules 40
Overriding cataloged procedures

10,22,65-67

Parameters
keyword 13
positional 13
PARM.procstep parameter 18,35
Partitioned data set 10
PASS subparameter 28
Passed data sets 28
PAUSE statement 82,102
PDS (see partitioned data set)

Index 115

PDUMP subroutine 69

PGM parameter 18-19

Positional parameters and subparameters
Primary input 36

Primary quanitity subparameter 49,75
Printer spacing 25,51,92

Priority schedulers 12

PRIVATE subparameter U8

Private volume 48

PROC parameter 18-19
Procedure,cataloged 9-10

Procstep 19,20

Procstep.ddname 22

Procstep.SYSIN 30

Programmer's name parameter 15

PRTSP subparameter 25

PRTY parameter 16

Randomizing techniques 70

Real constants and variables 68

RECFM subparameter 51

Record chaining 70

REF subparameter 48

REGION parameter 17,21

Register use 93

REPLACE linkage editor control
statement 40

RETAIN subparameter 49

Retention period for data sets 49

RETPD subparameter 51

Retrieving data sets 26,43

REWIND statement 44,57

RLD cards 80

RLSE subparameter 50

ROUND subparameter 50

Save area 92

Secondary input 38

Secondary quantity subparameter 49,75

SEP subparameter 74

Sequential data set 10

SER subparameter 49

Serial number, volume 49

Skeleton records 71

SL subparameter 43,50

SOURCE compiler option 34

Source listing 34,77

Space on direct-access volumes 49,74

SPACE parameter 49,74

Specifying execution of a program
described in a cataloged procedure 19
described in a previous job step 19
in a library 19

SPLIT parameter 74

STACK subparameter 25

116

Stacker selection 25
Standard labels 11,26,43,50
Step

job 9

procedure 9
Stepname 17
STOP statement 82,109
Storage map 77
SUBALLOC subparameter 75
Subparameters 14
Subprograms, assembler language 92
SYSCP device class 33
SYSDA device class 33
SYSIN ddname 30,32,33
SYSLIB ddname 37,38
SYSLIN ddname 32,37,38
SYSLMOD ddname 37,38
SYSOUT parameter 33,51
SYSPRINT ddname 33,37,38
SYSPUNCH ddname 32,33
SYSSQ device class 33
SYSUT1 ddname 37,38
SYS1.FORTLIB 10,36,40

Tape density 52

Temporary names for data sets 28,46
Terminating a job 15

TRK subparameter 49,75

TRTCH subparameter 52

TXT card 80

Unblocked records
direct-access data set 58
sequential data set
fixed-length 52-58
undefined 52-58
variable-length 52-58
UNCATLG subparameter 29
Undefined logical record 54
UNIT parameter 25-26,48,73-74
Unit record data sets 25-26,51

Variable-length logical record 54,55,57
Variables 69

Volume count subparameter 49

VOLUME parameter 48

Volume sequence number subparameter 48
Volume serial number 48

Warning messages
(see error/warning messages)
Word 68

XREF linkage editor option 41,81

C28-6639-1

TSIV

International Business Machines Corporation
Data Processing Division -

112 East Post Road, White Plains, N Y.10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10 017
[lntarnahnnal]

i

