
Systems Reference Library

IBM System/360 Operating System

File No. S360-25
Order No. GC28-6817-2

FORTRAN IV (G and H) Programmer's Guide

Program Numbers 360S-F0-500

360S-F0-520

This publication explains how to use the IBM System/
360 Operating System to compile, linkage edit, and
execute programs written in the IBM System/360 FORTRAN
IV language. In addition, it contains information on
program optimization, pi.'Ocessing efficiency, extended
error handling, and Assembler language subroutine link­
age conventions. A section on programming factors of
special interest to users of the IBM System/360 Models
91 and 195 is also included.

This publication is directed primarily to program­
mers familiar with the FORTRAN IV language. Previous
knowledge of the IBM System/360 Operating System is not
required.

OS

-1

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

This is a major revision of, and makes obsolete, Order No. GC28-6817-1
and Technical Newsletter GN28-0590.

l1 new section has been added describing the linkage editor overlay faci­
lity. The section headed "FORTRAN Job Processing" has been expanded to
include information on the loader, the use of dedicated work files, and
partitioned data set processing. Explanations of new parameters added
to the· EXEC statement are included. The system diagnostic appendix has
been updated; Appendix I has been revised to include programming factors
for users of the IBM System/360 Model 195. In addition, minor correc­
t.ions have been made throughout the publication.

The specifications contained in this publication, as amended by
Technical Newsletter GN28-0591, dated December 30, 1970, correspond to
Release 20 of the IBM System/360 Operating System.

All ct:.anges to the text, and small changes to illustrations, are indi­
cated by a vertical line to the left of the change; changed or added
illustrations are denoted by the symbol • to the left of the caption.

Changes are periodically made to the specifications herein. Before
using this publication in connection with the operation of IBM systems,
consult the latest SRL Newsletter, Order No. GN20-0360, for the edi­
tions that are applicable and current.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM Branch Office serving your locality.

Address cornmen·cs concerning the contents of this publication to IBM
Corporation, Programming Publications, 1271 Avenue of the Americas, New
fork, New York 10020.

© Copyright International Business Machines Corporation 1966, 1967, 1970

This publication is directed to program­
mers using either the IBM System/360
FORTRAN IV (G) or FORTRAN IV (H) compiler.
It expla.~ns how to compile, linkage edit,
and execute programs under control of the
IBM system/360 Operating System. The
PORTRAN IV language is described in the
publication IBM System/360 FORTRAN IV Lan­
~age, Form GC28-6515, which is a corequi­
site to this publication.

Most of the information contained in
this guide is common to both the FORTRAN IV
(G) and FORTRAN IV (H) compilers. Where
differences exist, they are clearly marked.

Paragraphs or sections applicable to the
(G) compiler, but not the (H), are desig­
nated throughout this publication by the
symbol:

.-----,
IG ONLY!
L ______ J

Conversely, paragraphs or sections appli­
cable to the (H) compiler, but not the (G),
are designated by the symbol:

r------,
IH ONLY!
L ______ J

The programmer's guide is designed to
provide programmers with information at
three levels of complexity.

1. Programmers who will use the cataloged
procedures as provided by IBM should
read the "Introduction" and "Job Con­
trol Language" sections to understand
the job control statements, the
"FORTRAN Job Processing" section to
understand the use of cataloged proce­
dures, the "Programming considera­
tions" section to be able to use the
FORTRAN language correctly and eff i­
ciently, and the "System Output" sec­
tion to understand the listings, maps,
and messages generated by the compil­
er, the linkage editor, and a load
module.

2. Programmers who, in addition, are con­
cerned with creating and retrieving
data sets, optimizing the use of I/O
devices, or temporarily modifying IBM­
supplied cataloged procedures should
read the entire programmer's guide.

3. Programmers who are concerned with
making extensive use of the operating
system facilities, such as writing
their own cataloged procedures, modi­
fying the FORTRAN library, or calcu­
lating region sizes for operating in
an MVT environment, should also read
the entire programmer's guide in con­
junction with the following publica­
tions, as required:

IBM ..§ystem/360 Operating System:
Job Control Language Reference,
Form GC28-6704

IB~ste~~36Q__Q£erating System:
Job Control Language U8-~r's Guid~,
Form GC28-6703

IBM System/360 operating System:
Concepts and Facilities, Form
GC28-6535

IBM System/360 Operating System:
System Prosg:9mmer's Guide, Forn
GC28-6550

IB~stem/360 Operating System:
Superyiso~ and Data Manaqement Ser­
vice~, Form GC28-6646

IB~stem/360 Opefating System:
su:eervisor and Data Management
Macro Instructions, Form GC28-6647

IBM System/360 Operating System:
Utilities, Form GC28-6586

~BM §y_stem/360: FORTRAN IV
Library: Mathematical and service
Subprogra~~' Form GC28-6818

IBM System/360 Operating System:
Linkage Editor and Loader, Form
GC28-6538

IBM System/360 Operating System:
.§ystem Generation, Form GC28-6554

IBM System/360 qperating System:
Oper~to~'s_Quide, Form GC28-6540

IBM ~stem/360 Operating System:
Messages and codes, Form GC28-6608

IBM System/360 Operating System:
Proqrammer's Guide to Debugging,
Form GC28-6670

IBM System/360 Operating System:
Storage Estimates, Form GC28-6551

This publication contains appendixes
that provide the programmer with the fol­
lowing information:

• Descriptions and explanations of com­
piler invocation from a problem
program.,

• Examples of job processing.

• Diescriptions a.nd explanations for the
preparation of subprograms written in
assemblE~r language for use with a main
program writtE~n in FORTRAN.

• Descriptions of the diagnostic messages
produced during compilation and load
module execution.

• A list of American National Standard
carriagE~ control characters.

• A list of input/output unit types.

• A description Of the FORTRAN IV (H)
optimization f eatu:res.

• A description of the FORTRAN IV (G)
debug facility.

• A discussion of FORTRAN programming
considerations for the user of the IBM
System/360 Models 91 and 195.

For easier reading, the titles of publi­
cations referred to in this publication are
abbreviated. For example, references to
the publication IB~stem/360 Operating
System: Linkage Editor and Loader are
abbreviated to Linkage Editor and Loader
publication.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

INTRODUCTION • • • • • • • • • • • • •
Job and Job Step Relationship
FORTRAN Processing and Cataloged
Procedures • • • • • • • •
Data Sets • • • • • • •

Data set Organization
Data Set Labels
Data Set Cataloging

• 11
• 11

• 11
• 12

12
• 13
• 13

JOB CONTROL LANGUAGE • • •
Job Management • • • • • •
Coding Job Control Statements

• • • • • 14
• 14

• • • • • 14
• 14
• 15

Name Field • • • • •
Operation Field
Operand Field
comments Field •

• • • • • 15
• • • 15

continuing control statements
Notation for Defining control
Statements •

JOB Statement • • • •
Name Field • • •
Operand Field

Job Accounting Information • •
Programmer's Name ••••

• 15

• 16
• 17
• 17
• 17
• 17
• 17

Control statement, Allocation, and
Termination Messages • • • • • • 19
conditions for -Terminating a Job • • 19
Assigning Job Priority (PRTY) 20
Requesting a Message Class
(MSGCLASS) • • • • • • • • • • •
Specifying Main Storage
Requirements for a Job (REGION)
Setting a Job Time Limit (TIME)

EXEC Statement • • • • • •
Name Field • • • • • • • • •
Operand Field • • • •

Positional Parameter • • • • •
K~yword Parameters •
specifying Main storage
Requirements for a Job Step

20

20
21

• 21
• 23

23
23
24

(REGION) • • • • • • • • • • • • • • 2 6
Establishing a Dispatching Priority
(DPRTY) • • • • • • • • 27

Data Definition (DD) Statement 28
Name Field • • • • • • • • 28
Blank Name Field • • • • • • • • • • • 3 O
Operand Field • • • • • • • 30

Retrieving Previously created Data
Sets • • • • • • •

Delimiter Statement
comment Statement

FORTRAN JOB PROCESSING •
Using Cataloged Procedures •

compile • • • • • • • • • • • • • •
Compile and Linkage Edit • • • • • •
Linkage Edit and Execute •
compile, Linkage Edit, and Execute •
compile and Load • • • • • •

Compiler Processing
compiler Name

32
• 35

36

• 37
• 37
• 37
• 38

38
• 39

39
40
40

Compiler ddnames • • • • • 40
compiler Device Classes
Compiler Data Set Assumptions

40
40

CONTENTS

Compiler Options • • •
H ONLY OPT={01112l
H ONLY SIZE=nnnnK • • • •
Multiple Compilation Within a Job
Step • • • • • • • •

Linkage Editor Processing • • • • •
Linkage Editor Names •••••••
Linkage Editor Input and Output

41
• 44

4.4

44
45

• 45
45

Linkage Editor ddnames and Device
Classes • • • • • 46
Additional Input •••••••••• 47
Linkage Editor Priority •••• 48
Other Linkage Editor Control
Statements • • • • • • • • • • • • • 48
Options for Linkage Editor
Processing • • • • • • • 49

Load Module Execution • • • • • • • • • 49
Execution ddnames • • • • 49
Reference Numbers for Data Sets
Specified in DEFINE FILE Statements 50
Retrieving Data Sets Written with
Varying FORTRAN Sequence Numbers • •
Partitioned Data Set Processing

50
52
53
54
54
54
54
54
54

REWIND and BACKSPACE Statements
Error Message Data set • • •
Execution Device Classes •
DCB Parameter

Loader Processing • • • • • • • • •
Loader Name • • • • • • •
Loader Input and Output
Loader ddnames and Device Classes
Loader Priority •••••••
Options for Loader Processing
MAP or NOMAP •
CALL or NOCALL or NCAL
LET or NOLET
SIZE=size
EP=name • • • •
PRINT or NOPRINT •
Programming Example

Dedicated Work Data Sets

CREATING DATA SETS •
Use of DD Statements for Direct-Access

• 54
55
55
55
55
55
55
56
56
56
56

• 58

Data Sets • • • • • • • • • 60
Data Set Name • • • •
Specifying Input/Output Devices
Specifying Volumes •••••••
Specifying Space on Direct-Access

60
60

• 61

Volumes • • • • • • • • • • • • • • 62
Label Information • • • • 63
Disposition of a Data Set 64
Writing a Unit Record Data Set on an
Intermediate Device • • 64
DCB Parameter • • • • • • • • • • • 64

Ref erring to Previously Specified DCB
Information • • • • • • • • • • •
Density and Conversion • • • • • •
Number of Buffers for Sequential
Data Sets • • • • • • • • •
Chained Scheduling • •
Record Format

65
65

65
66
66

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Record Lern1th, Buff er Length, and
Block Length • • • • • • • • • • • 66

FORTRAN Records and Logical Records 67
FORI".lA.T Control • • • • • • 61
Unformatted Control • • • • 69

BACKSPACE Operations • • • • 10
Spanning Considerations • 71

DCB Assumptions for Load Module
Execution • • • • • • • 72

G ONLY CATALOGED PROCEDURES 7 4
Compile • • • • • • • • • • 74
Compile and Linkage Edit •• 74
Linkage Edit and Execute • 75
Compile, Linkaq-e Edit, and Execute • 77
compile and Load • • • • • • • • • • 77

User and Modified Cataloged Procedures • 77
Overriding Cataloged Procedures • • • • 78

overriding Parameters in the EXEC
Statement • • • • • • • • • • • 7 8
Overriding and Adding DD Statements 79

H ONLY CATALOGED PROCEDURES 81
Compile • • • • 81
Linkage Edit • • • • • 82
Execute •••••••••••••• 82
Load • • • • • • • • • 83

User and Modified Cataloged Procedures • 84
Overriding Cataloged Procedures • • • • 84

overriding Parameters in the EXEC
Statement • • • • • • • • • • • 86
overriding and Adding DD Statements 86

PROGRAMMING CONSIDERATIONS •
Storage Locations and Bytes • • • •
Minimum System Requirements for the
FORTRAN IV {G) and (H) Compilers • • •

Boundary Adjustment of Variables
in COMMON Blocks and EQUIVALENCE
Groups • • • • • • • • • • • •
Indicators and Sense Lights
conditional Branching
Arithmetic IF Statement
Use of S'J~OP n Statement • • • • •
Register 15 as a Condition Code
Register • • • • • .. •
Use of Embedded Blanks in FORTRAN
Programs • • • • • • •
Use of DUMP and PDUMP • • • •
Us,e of ERR Parameter in 'READ
Statement • • • • • • • • • •

88
88

• 88

88
• 89
• 89
• 89
• 89

89

89
89

90
Arithmetic Statement Functions • •

G ONLY Use of ASSIGN Statement
G ONLY DO Loop Optimization

• 90
90

• • 90
H ONLY Support Of AND, OR, and
COMPL • • • • • • • • • • • •
Data Initialization Statement

91
91

Object Time Input/Output Efficiency 92
Data Definition Considerations • 93
Direct-Access Programming 93
Direct-Access Programming
Considerations • • • • • • 95

G ONLY compiler Restrictions • 96
H ONLY compiler Restrictions • 96
Library Considerations • .. • • • • • • • 97
DD Statement considerations • • • • 97

Channel Optimi2:ation • • • 97
I/O Device Optimization • • • • 98

Direct-Access Space Optimization • • 98

SYSTEM OUTPUT • • • • • .100
Compiler Output •••••••••• 100

Source Listing •••••• 100
Storage Map •••••••••••• 100
H ONLY Label Map • • ••••• 102
Object Module Listing • .102
Object Module Card Deck •••••• 103
H ONLY Cross Reference Listing ••• 108
H ONLY Structured Source Listing •• 108
Source Module Diagnostics •• 109

Linkage Editor Output • • • • • •• 109
Module Map • • • • _ • • • • • .109
Cross-Reference List •••••• 110

Load Module Output • • • • • • 111
Error Code Diagnostics and
Traceback without Extended Error
Handling Message Facility ••••• 111
Program Interrupt Messages • • .112
ABEND Dump • • • • • .112
Operator Messages ••• 112

Loader Output ••••••• 113

LINKAGE EDITOR OVERLAY .FEATURE •
Designing a Program for Overlay

Segments • • • • • • • • • • •
Paths • • • • • • • • • • • •

•• 114
•• 114
•• 114
•• 115

communication Between Segments •
Inclusive References • • •
Exclusive References

overlay Proces:sing • • ,,
COMMON Areas • • • • •

construction o:E the overlay Program

• • • 117
••• 117

• .118
•• 118
•• 118
• .119

Linkage Editor Control Statements
The OVERLAY Statement • • • • •
The INSERT Statement • •
The INCLUDE Statement
The ENTRY Statement

Processing Options • " •

EXTENDED ERROR HANDLING FACILITY
Functional Characteristics • • •
Subprogram for the Extended Error
Handling Facility • • • •

Accessing and Altering the Option
Table Dynamically • • • •

User-Supplied Error Handling •
User-Supplied Exit Routine •

Option Table Considerations
Option Table Default Values

How To Create or Alter an Option

•• 119
•• 120
•• 120
•• 121
•• 121
• .122

•• 123
•• 123

•• 124

.124
• .125
• .126
•• 127
•• 127

Table ••••••••••• _ •••• 127
Errors in Use of Facility •• 128
Programming Example •• 128
considerations for the Library
Without Extended Error Handling
Facility •••••• o •••••••• 128

APPENDIX A: INVOKING THE FORTRAN
COMPILER " . . .139

APPENDIX B: EXAMPLES OF JOB PROCESSING 140
Example 1140
Example 2141
Example 3142

Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

APPENDIX C: ASSEMBLER LANGUAGE
SUBPROGRAMS
Subroutine References

Argument List • • • •

.146

.146

.146
save Area • • • • • • • • •• 146

.146 Calling Sequence • • • • •
Coding the Assembler Language
Subprogram • • • • • • • • • .. • • .148

Coding a Lowest Level Assembler
Language :~;ubprogram • • • • • • • .148
Higher Level Assembler Language
subprogram • • • • • • • • • • • • • 14 8
In-Line Argument List ••••••• 150
Sharing Data in COMMON ••••••• 150

Retrieving Arguments From the Argument
List ••••••••••••••••• • 150

RETURN i in an Assembler Language
subprogram • • • • • • • • • .151
Object-Time Representation of
FORTRAN Variables .151

•• 152 INTEGER Type • • • • •
REAL Type 153
COMPLEX Type •
LOGICAL Type •

APPENDIX D: SYSTEM DIAGNOSTICS •
FORTRAN IV (G) Compiler Diagnostic

••• 153
.154

.157

Messages • • • • • • • • • • • • •
Error/Warning Messages • • • •
Status Messages • • • • • • •
Informative Messages •••••••

.157

.157

.163
• 165

FORTRAN IV (H) Compiler Diagnostic
Messages • • • • • • • • • • • • •

Informative Messages • • •••
Error/Warning Messages • • • •

Load Module Execution Diagnostic
Messages • • • • • • • • • • •

Program Interrupt Messages
Execution Error Messages •
Operator Messages • • • •

APPENDIX E: EXTENDED AMERICAN
NATIONAL STANDARD CARRIAGE CONTROL

.165

.165

.166

184.14
• 184.14

184.17
• • .186

CHARACTERS ••••••••••••••• 187

APPENDIX F: UNIT TYPES •••• 188

AP:E>ENDIX G: FORTRAN IV (G) DEBUG
FACILITY • • • • • • ••••• 189
DEBUG Statement

TRACE
SUBTRACE •

•••••• 189

INIT • • • •

•• 189
• .189
•• 189

SUBCHK • • e • • • • • • •

DISPLAY Statement • • • •
Special Considerations •

5 .. D D • .189
•189

APPENDIX H: FORTRAN IV (H)
OPTIMIZATION FACILITIES
Program Optimization • • •

Programming Considerations Using
the Optimizer • • • • • • • • •
Definition of a Loop •••
Movement of Code Into
Initialization of a Loop •
Common Expression Elimination
Induction Variable Optimization
Register Allocation
COMMON Blocks • .. • • • •
EQUIVALENCE Statements • •
Multidimensional Arrays
Program Structure • • • •
Logical IF Statements
Branching • • • •
Name Assignment • • • •

APPENDIX I: CONSIDERATIONS FOR MODELS

•• 190

•• 191
• .191

• • 191
• .192

• .193
.193

•• 193
•• 194
• .19ll
• .194
•• 194
•• 195
... 195
•• 196

.196

91 AND 195 • • • • • • • • • •••• 197
Program Interruption Exit Routine •• 197
Boundary Adjustment Routines (Model
91 only) • • • • • • • • • • • .197
Floating-point Operations •••••• 197

Exponent overflow 197
Exponent Underflow • • • • • .197

INDEX •• 199

Page ot GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

I?IGURES

F'igure 1. Rocket Firing Job • 11
Fiqure 2. Job Control Statement
Formats • • • • • • • • • • • • • • 14
Figure 3. JOB Statement • 18
Fiqure 4. Sample JOB Statements • 18
Fiqure 5. EXEC Statement • • • • 22
t•'iqure 6. Sample EXEC Statements • 23
~,·igure 7. compiler, Linkage
Editor, and Loader Options 25
Figure 8. Data Definition
Stateme~nt • • • • • • • • • 2 9
~igure 9. DD Statement • 31
Figure 10. Examples of DD
::::tatements for Unit Record Devices • 32
Fiqure 11. Retrieving Previously
created Data sets • • • • • • • 33
~-''iqure 12. Delimiter Statement 35
rigure 13. comment Statement 36
l''igure 14. Invoking the Cataloged
Procedure FOR'TGC or FORTHC • • • 3 7
Fiqure 15. Compiling a Single
source Module • • • • • • • • • 37
Yigure 16. compiling Several
source Modules • • • • • • 3 8
Figure 17. Invoking the Cataloged
Procedure FOR'TGCL or FORTHCL 3 8
Fiqure 18. Invoking the Cataloged
Procedure 1'.,0R'TGLG or FORTHLG 38
Figure 19. Linkage Edit and
l•:xecute • .. • • • • • • • • • 3 8
Fiqure 20. Linkage Edit and
Execute Obiect Modules in a
cataloged Data Set • • • • • • • • • 39
Figure 21. Invoking the CatalogE~d
Procedure FOR'TGCLG or FORTHCLG 3 9
F'igure 22. Single Compile,
Linkage Edit, and Execute 39
i<'igure 23. Batched Compile,
Linkage Edit, and Execute 39
Figure 23.1. Invoking the
cataloged Procedure FORTGCLD or
FORTHCLD • • • • • • • • • • • • • • 3 9
1-,iqure 23. 2. Single compile and
Load • • • • • 40
Figure 23.3 ..
Load •

Batched compile and

f<'iqure 24. Compiler Options
l;'iqure 25. Multiple Compilation
Within a Job Step • • • •
F'igure 26. Linkage Editor Input
and Output .• • • • • • •
Figure 27. I.:inkage Edi tor Example

40
• 42

44

46

-.-- 0-0 Compilier • • • • • • • • • • 4 8
r'i.qure 28. Tape output for
::>everal Data Sets Using Same Data
;=;et Reference Number
~iqure 29. Loader Example
Figure 30. Examples of DD
:3tateme:nts .• • • • • • •
~,iqure 31. DD Parameters for
creating Data Sets • • • • •

• 51
• 56

• 58

59

Figure 32. FORTRAN Record (FORMAT
Control) Fixed-Length
Specification 68
Figure 33. FORTRAN Record (FORMAT
Control) Fixed-Length
Specification and FORTRAN Record
Length Less Than BLKSIZE • • 68
Figure 34. FORTRAN Record (FORMAT
Control) Variable-Length
Specification • • • • o • • • • • • 68
Figure 35. FORTRAN Record (FORMAT
Control) With Variable-Length -
Specification and the FORTRAN
Record Length Less Than CLRECL-4) • 68
Figure 36. FORTRAN Record (FORMAT
control) With Undefined
Specification and the FORTRAN
Record Length Less Than BLKSIZE • • 68
Figure 37. Fixed-Length Blocked
Records Written Under FORMAT
Control • • • • • • • ti • • • ~ • • 69
Figure 38. Variable-Length
Blocked Records Written Under
FORMAT Control • • • " • • • • 69
Figure 39. Format of a Block
Descriptor Word (BDW) .. • • • • • • 70
Figure 40. Format of a Segment
Descriptor Word (SDW) • • • • • 70
Figure 40.1. Unblocked Records
Written Without FORMAT Control • 70
Figure 40.2. Unblocked Segmented
Records Written Without FORMAT
Control • • • • • • • e • • • • • • 70
Figure 40. 3. Blocked RE~cords
Written Without FORMAT Control • 70
Figure 40.4. Blocked Segmented
Records Written Without FORMAT
Control • • • • • • • • • • • 70
Figure 41. Logical Record (No
FORMAT control) for Din~ct Access • 71
Figure 42. Compile Cataloged
Procedure (FORTGC) • • • • • • • • 75
Figure 43. Compile and Linkage
Edit cataloged Procedure (FORTGCL) 76
Figure 44. Linkage Edit and
Execute Cataloged Procedure
(FORTGLG) • • • • • • • • • • 76
Figure 45. Compile, Linkage Edit,
and Execute cataloged Procedure
(FORTGCLG) • • • • • • • • • • • • 78
Figure 46. compile and Load
cataloged Procedure (FORTGCLD) • • • 78
Figure 47. Compile Cataloged
Procedure (FORTHC) • • • • • • 82
Figure 48. Compile and Linkage
Edit Cataloged Procedure (FORTHCL) • 83
Figure 49. Linkage Edit and
Execute Catalog·ed Procedure
(FORTHLG) • • • • • • • • • • 84
Figure 50. Compile, Linkage Edit,
and Execute Cat.aloged Procedure
(FORTHCLG) • • • • • • • • • • • • • 85

Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Figure 51. Compile and Load
cataloged Procedure (FORTHCLD)
Figure 52. Record Chaining
Figure 53. Writing a
Direct-Access Data Set for the
First Time • • • • • • •
Figure 54. DD Statement

85
• 94

95

Parameters for Optimization • • • • 98
Figure 55. Source Module Listing .100
Figure 56. Sample FORTRAN IV
Program • • • • • • • • •
Figure 57. Storage Map -- (G)
compiler • • • • • • • • •
Figure 58. Storage Map -- CH)

••• 101

•• 101

compiler • • • • • • • • • • • • .102
Figure 59. Label Map -- (H)
compiler ••••••••••••• 103
Figure 60. Object Module Listing
-- (G) Compiler (Part 1 of 2) .104
Figure 61. Object Module Listing
-- CH) compiler (Part 1 of 2) .106
Figure 62. Object Module Deck
Structure -- (G) compiler ••••• 108
Figure 63. Object Module Deck
Structure -- (H) compiler
Figure 64. Compiler Cross

•• 108

Reference Listing -- CH) compiler .108
Figure 65. Structured source
Listing -- CH> compiler
Figure 66. Load Module Map --­

.110

(G) Compiler ••••••••••• 110
Figure 67. Load Module Map --
(H) compiler • • • • • • • • • • • 110
Figure 68. Linkage Editor Cross
Reference List -- (G) Compiler •• 111
Figure 69. Linkage Editor cross
Reference List -- (H) compiler ••• 111
Figure 70. Sample Traceback for
Execution-Time Errors ••••••• 112
Figure 71. Storage Map Produced
by the Loader ••••••••••• 113
Figure 72. A FORTRAN Program
Consisting of Three Program Units .114
Figure 73. Time/Storage Map of a
Three Segment overlay Structure •• 114
Figure 74. overlay Tree Structure
of Three Program Units ••••••• 115
Figure 75. The Paths in the
Overlay Tree in Figure 74 ••••• 115
Figure 76. overlay Tree Structure
Having Six Segments •••••••• 115

Figure 77. Paths Implied by Tree
Structure in Figure 76 .116
Figure 78. Time/Storage Map of Six
Segment Structure •••••• 117
Figure 79. communicatior. Between
Overlay Segments •••••••••• 118
Figure 80. Overlay Program Before
Automatic Promotion of common Areas 119
Figure 81. overlay Program After
Automatic Promotion of common Areas 119
Figure 82. Option Table Preface .129
Figure 83. Option Table Entry •• 130
Figure 84. Example of Assembler
Language Macro Definition Used To
Generate Option Table ••••••• 137
Figure 85. Sample Program Using
Extended Error Handling Facility •• 138
Figure 86. Input/Output Flow for
Example 1 • • • • • • • • • • • • • 140
Figure 87. Job Control Statements
for Example 1 ••••••••••• 140
Figure 88. Job Control Statements
for Example 2 ••••••••••• 142
Figure 89. Block Diagram for
Example 3 ••••••••••••• 143
Figure 90. Job Control Statements
for Example 3 • • • • • • • .144
Figure 91. FORTRAN Coding for
Example 3 • • • • • • • • 11i~
Figure 92. Save Area Layout and
Word contents •••••••••• 147
Figure 93. Linkage Conventions
for Lowest Level Subprogram •• 148
Figure 94. Linkage Conventions
for Higher Level Subprogram •• 149
Figure 95. In-Line Argument List .150
Figure 96. Assembler Subprogram
Example •••••••••••••• 152
Figure 97. Format of Diagnostic
Messages • • • • • • • • • • • • • 157
Figure 98. Format of Diagnostic
Messages • • • • • • • • • .166
Figure 99. Compile-Time Program
Interrupt Message ••••••••• 168
Figure 100. Program Interrupt
Message Format Without Extended
Error Message Facility •••• 184.15
Figure 101. Summary of Error and
Traceback ••••••••••• 184.40
Figure 102. Example of Traceback
Map 184.40

Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

'J'ABLES

Table 1. Cataloqed
Procedure-Names and Functions • 12
Table 2. Job Control Statements • 14
Table 3. Compiler ddnames • • • • 40
Table 4. Device Class Names 41
Table 5. Correspondence Between
Compiler ddnames and Device Classes 41
Table 6. DCB Assumptions for the
< G > compiler Data Sets • • 4 2
Table 7. DCB Assumptjons for the
(H) Compiler Data Sets • • 42
Table 8. Linkage Editor ddnames • 46
Table 9. Correspondence Between
Linkage Editor ddnames and Device -
Classes • • • • • • • • ~ • • 47
Table 10. Load Module ddnames • • • 50
Table 11. Loader ddnames • • • • • 55
Table 12. correspondence Between
Loader ddnames and Device Classes • 55
Table 13. Data Set References • 62
Table 14. DEN Values ••••••• 65

Table 15. Specifications Made by
the FORTRAN Programmer for Record
Types and Blocking • • • • • • • • • 67
Table 16. BLKSIZE Ranges: Device
Considerations • • • • .. • • • 7 2
Table 17. Load Module DCB
Parameter Default Values • 73
Table 18. Storage Allocation 88
Table 19. Additional Built-In
Functions -- (H) Compiler 92
Table 20. Option Table Default
Values • • • • • • • • • • • • .131
Table 21. corrective Action After
Error Occurrence • • • • • •
Table 22. Corrective Action After
Mathematical Subroutines Error
Occurrence (Part 1 of 3) • •
Table 23. corrective Action After
Program Interrupt Occurrence
Table 24. Linkage Registers
Table 25. DimEmsion and Subscript

.132

.133

.136

.147

Format • •
'l'able 26. Constant Expressions

•• 151
•• 193

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

The IBM System/360 Operating System con­
sists of a control program and processing
programs. The control program supervises
execution of all processing programs, such
as the FORTRAN compiler, and all problem
programs, such as a FORTRAN program.
Therefore, to execute a FORTRAN program,
the programmer must first communicate with
the operating system. The medium of com­
munication between the programmer and the
operating system is the job control
language.

The programmer uses job control state­
ments to define two units of work -- the
job and the job step -- to the operating
system and to define the files (data sets)
used in these jobs and job steps. He
defines a job to the operating system by
using a JOB statement; a job step by using
an EXEC statement; and a data set by using
a DD statement.

JOB AND JOB STEP RELATIONSHIP

To the operating system, a job consists
of executing one or more job steps. In the
simplest case, a job consists of one job
step. For example, executing a FORTRAN
main program to invert a matrix is a job
consisting of one job step.

In more complex cases, one job may con­
sist of a series of job steps. For
example, a programmer is given a tape con­
taining raw data from a rocket firing: he
must transform this raw data into a series
of graphs and reports. Three steps may be
defined:

1. Compare the raw data to projected data
and eliminate errors which arise
because of intermittent errors in
gauges and transmission facilities.

2. Use the redefined data and a set of
parameters as input to a set of equa­
tions, which develop values for the
production of graphs and reports.

3. Use the values to plot the graphs and
print the reports.

Figure 1 illustrates the rocket firing
job with three job steps.

In the previous example, each step could
be defined as a separate job with one job
step in each job. However, designating
related job steps as one job is more eff i-

INTRODUCTION
---~-·----··----~

cient: processing time is decreased
because only one job is defined, and inter­
dependence of job steps may be stated.
(The interdependence of jobs cannot be
stated.)

0rojected

_Data
Job Step l:
Refine Doto

Job Step 2:
Develop Values

Job Step 3:
Generate

Graphs and
Re orts

Figure 1. Rocket Firing Job

FORTRAN PROCESSING AND CATALOGED PROCEDURES

When a programmer writes a FORTRAN pro­
gram, the objective is to obtain a problem
solution. However, before the program can
provide this solution, the program itself
must undergo processing. The source pro­
gram (source module) is compiled to give an
object module; and the object module is
linkage edited to give a load moaule. 1 This
load module is then executed to give the
desired problem solution.

If each of the three steps involved in
processing a FORTRAN module is a job step
in the same job, a set of job control
statements that consists of one EXEC state­
ment and one or more DD statements is

1 As an alternative, the object module may
be edited and then automatically executed
by the lo~de~, another IBM-supplied pro­
gram. Details on the use of the loader
can be found in the section "Loader
Processing."

Introduction 11

Page ot GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

required for each step. Because writing
these -job control statements can be time­
consuming work for the programmer, IBM sup­
plies cataloged procedures to aid in the
processing of FORTRAN modules. A cataloged
procedure consists of a procedure step or a
series of procedure steps. Each step con­
tains the necessary set of job control
statements to compile or to linkage edit or
to execute a FORTRAN module. (Note: A JOB
statement cannot be cataloged.) ____ _

For each compiler, IBM provides five
cataloged procedures. The procedures and
their uses are shown in Table 1.

Any of the cataloged procedures can be
invoked by an EXEC statement in the input
stream. In addition, each of the proce­
dures can be temporarily modified by this
r:XEC statement and any DD statements in the
input stream; this temporary modification
is called overriding.

• Table 1. Cataloged Procedure-Names and
Functions

r-------------------1
I Procedure-Name I
~---------T---------f---------------------1
I FORTRJrn GI FORTRAN HI Function I
~---------+---------+---------------------i
~---------+---------+---------------------i
IFORTGC IFORTHC I compile I
~---------+---------+---------------------i
IFORTGCL IFORTHCL !compile and linkage I
I I I edit I
~---------+---------+---------------------i
IFORTGLG IFORTHLG !linkage edit and I
I I I execute I
~---------+---------+---------------------i
IFORTGCLG IFORTHCLG !compile, linkage I
I I I edit, and execute I
~---------+---------+---------------------i
IFORTGCLD IFORTHCLD !compile and load I l _________ i _________ i _____________________ J

DATA SETS

For FORTRAN processing, a programmer
uses DD statements to define the particular
data set(s) required for a compile, linkage
edit, or execute step. In the operating
system, a data set is a named, organized
collection of one or more records that are
logically related. For example, a data set
may be a source module, a library of mathe­
matical functions, or the data processed by
a load module.

A data set in FORTRAN may be one of
three types: sequential, partitioned or
direct-access.

12

A seguenti~! data sg_t is one in which
records are accessed solely on the basis of
their successive physical positions. A
sequential data set may reside on cards,
tape, or disk. The compiler, linkage edi­
tor, and load modules process sequential
data sets. The compiler uses the queued
sequential access method (QSAM) for such
processing, and load modules use the basic
sequential access method (BSAM) for object
time I/O operations. (For additional
information on access methods, see the
Super~isor_~!!Q._Dat~~!!?.:9:ement Services
publication, Order No. GC28-6646.)

A partitioned data s~~ (PDS) is composed
of named, independent groups of sequential
data and resides on a direct-access volume.
A Q.ir~~~ory_ind~~ resides in the PDS and
directs the operating system to any group
of sequential data. Each group of sequen­
tial data is called a member. Partitioned
data sets are used for-:storage of any type
of sequentially organized data. In partic­
ular, they are used for storage of source
and load modules (each module is a member).
In fact, a load module can be executed only
if it is a member of a partitioned data
set. A PDS of load modules is created by
either the linkage editor or a utility pro­
gram. A PDS is accessible to the linkage
editor; however, only individual members of
a PDS are accessible to the compiler. Mem­
bers of a PDS are accessible to a FORTRAN
load module; however, concurrent processing
of two or more members of the same PDS is
not supported. Sequential processing of
two or more members is perrni tted if one
member is closed before the other is pro­
cessed. See the discussion "Partitioned
Data Set Processing" for details on acces­
sing partitioned data sets.

The FORTRAN library is a cataloged PDS
that contains the library subprograms in
the form of load modules. SYS1.FORTLIB is
the name given to this PDS.

To process a member of a partitioned
data set, the programmer must use the DD
statement to provide information about the
data set and the member. The programmer
must specify (in the DSNAME parameter) both
the name of the data set and of the member,
and must indicate (in the LABEL parameter)
if the member is to be created or retri­
eved. However, if the programmer requests
the FORTRAN compiler to process a parti­
tioned data set (for example, to compile a
source deck stored as a member of a parti­
tioned data set) no LABEL information need
be specified.

Note that the processing of a parti­
tioned data set is limited to READ or WRITE
operations only. The programmer is not
permitted both to READ and WRITE the same
data set in a sing le program.

A direct-access data set contains rec­
ords that are read or written by specifying
the position of the record within the data
set. When the position of the record is
indicated in a FIND, READ, or WRITE state­
ment, the operating system goes directly to
that position in the data set and either
retrieves, reads, or writes the record.
For example, with a sequential data set, if
the 100th record is read or written, all
records preceding the 100th record (records
1 through 99) must be transmitted before
the 100th record can be transmitted. With
a direct-acce_ss data set the 100th record
can be transmitted directly by indicating
in the I/O statement that the 100th record
is to be transmitted. However, in a
direct-access data set, records can be
transmitted by FORTRAN direct-access I/O
statements only; they cannot be transmitted
by FORTRAN sequential I/O statements. Rec­
ords in a direct-access data set can be
transmitted sequentially by using the asso­
ciated variable in direct-access I/O
statements.

A direct-access data set must reside on
a direct-access volume. Direct-access data
sets are processed by FORTRAN load modules;
the compiler and linkage editor cannot
process direct-access data sets. Load
modules process data sets of this type with
the basic direct-access method (BDAM).

Data Set Labels

Data sets that reside on direct-access
volumes have standard labels only; data
sets that reside on magnetic tape volumes
can have standard labels or no labels.
Information, such as a data set identifier,
volume sequence number, record format,
density, etc., is stored in the data set
labels. The information required in a DD
statement used to retrieve a labeled data
set is substantially less than in one used
to retrieve an unlabeled data set.

Data Set Cataloging

To relieve the programmer of the burden
of remembering the volume on which a
particular data set resides, the operating
system provides a cataloging facility.
When a data set is cataloged, the serial
number of its volume is associated in the
catalog with the data set name. A pro­
grammer can refer to this data set without
specifying its physical location. Any data
set residing on a direct-access or magnetic
tape volume can be cataloged.

Sequential, partitioned, and direct.­
access data sets can be cataloged; however,
an individual member of a PDS cannot be
cataloged because a member is not a data
set.

Introduction 13

JOB CONTROL LANGUAGE

The FORTRAN programmer uses the job con­
trol statements shown in Table 2 in compil­
ing, linkage editing, and executing
programs.

JOB MANAGEMENT

Job control statements are processed by
a group of operating system routines known
collectively as job management. Job man­
agement routines interpret control state­
ments, control the flow of jobs, and issue
messages to both the operator and the pro­
grammer. Job management has two major com­
ponents: a job scheduler and a master
scheduler.

Table 2. Job Control Statements
r----------T------·------------------------1
!Statement I Function I
1----------+-------------------------------t
!JOB !Indicates the beginning of a I
I lnew job and describes that jobl
~-"'----------+------------------------------t
IEXEC !Indicates a job step and de- I
I jscribes that job step; indi- I
I lcates the cataloged procedure I
I tor load module to be executed I
~----------+-------------------------------t
IDD !Describes data sets, and con- I
I ltrols device and volume I
I I assignment I
1----------+-------------------------------t
!delimit.er !Separates data sets in the in-I
I I put stream from control state- I
I l:ments; it appears after each I
I f data set in the input stream I
1----------+·-------------------------·------t
!comment !Contains miscellaneous I
I tremarks, annotations, etc., I
I twritten by the programmer; it I
I f can appear before or after anyj
I tcontrol statement. I
L--·--·-----.L·------------------------------J

The specific facilities available
through the job scheduler and the master
scheduler depend on the scheduling level
the installation selects during system
generation. Schedulers are available at
two levels -- the sequential scheduler and
the priority scheduler.,

Sequential schedulers process job steps
one at a time in the order of their
appearance in the input stream. Operating
systems with cL primary control program
(PCP) use sequential schedulers.

Priority schedulers are used by systems
that provide multiprogramming with a fixed
number of tasks (MFT) or multiprogramming
with a variable number of tasks (MVT).
Priority schedulers process complete jobs
according to their relative priority within
job classes. Priority schedulers can
accept input data from more than one input
stream.

CODING JOB CONTROL STATEMENTS

Except for the comment statement, con­
trol statements contain two identifying
characters (// or /*) in card columns 1 and
2. The comment statement is identified by
the initial characters //* in card columns
1, 2, and 3. Control statements may con­
tain four fields -- name, operation,
operand, and comments <see Figure 2).

NAME FIELD

The name f i.eld contains between one and
eight alphameric characters, the first of
which must be alphabetic. The name field
begins in card column 3 and is followed by
one or more blanks to separate it from the
operation field. The name field is used:

r-----------·-------------------------------T--1
I FORMAT I APPLICABLE CONTROL STATEMENTS I
1-----------·-------------------------------+---------------·----------------·--------------t
l//Name Oper.ation Operand [Comment] I JOB,EXEC,DD I
I I I
I// Operation Operand [Comment] I EXEC,DD I
I I I
I/* [Comment] I delimiter I
I I I
l//*[Comment] I comment I
L-----------·-------------------------------L-----------------------·--------·----·--------J
Figure 2. Job Control Statement Formats

14

1. To identify the control statement to
the operating system.

2. To enable other control statements in
the job to ref er to information con­
tained in the named statement.

3. To relate DD statements to I/O state­
ments in the load module.

OPERATION FIELD

The operation field contains one of the
following operation codes:

JOB
EXEC
DD

or, if the statement is a delimiter or com­
ment statement, the operation field is
blank. The operation code is preceded and
followed by one or more blanks.

OPERAND FIELD

The operand field contains the parame­
ters that provide required and optional
information to the operating system.
Parameters are separated by commas, and the
operand field is ended by placing one or
more blanks after the last parametE~r.
There are two types of parameters, posi­
tional and keyword.

Positional Parameters: Positional parame­
ters are placed first in the operand field
and must appear in the specified order. If
a positional parameter is omitted and other
positional parameters follow, the omission
must be indicated by a conrrna.

Keyword Parameters: Keyword parameters
follow positional parameters in the operand
field. (If no positional parameters
appear, a keyword parameter can appear
first in the operand field; no leading
comma is required.) Keyword parameters may
appear in any order. If a keyword parame­
ter is omitted, a comma is not required to
indicate the omission.

subparameters: subparameters are either
positional or keyword and are noted as such
in the definition of control statements.

Positional subparameters appear first in
a parameter and must appear in the speci­
fied order. If a positional subparameter
is omitted and other positional subparame­
ters follow, the omission must be indicated
by a comma.

Keyword subparameters follow positional
subparameters in a parameter. (If no posi­
tional subparameters appear, a .keyword sub-­
parameter can appear first in the parame­
ter; no leading comma is required.) Key­
word subparameters may appear in any order.
If a keyword subparameter is omitted, a
comma is not required to indicate the
omission.

COMMENTS FIELD

The comments field can contain any
information considered helpful by the pro­
grammer. Comments, except for those on a
comment statement, must be separated from
the operand field (or the * in a delimeter
statement) by at least one blank; they may
appear in the remaining columns up to and
including column 71.

Continuing Control Statements

Except for the comment statement, which
is contained in columns 1 through 80, con­
trol statements are contained in columns 1
through 71 of cards or card images. If the
total length of a statement exceeds 71
columns, or if parameters are to be placed
on separate cards, operating system con­
tinuation conventions must be followed. To
continue an operand field:

1. Interrupt the field after a complete
parameter or subparameter (including
the comma that follows it) at or
before column 71.

2. Include comments, if desired, by fol­
lowing the interrupted field with at
least one blank.

3. Optionally, code any nonblank charac­
ter in column 72. If a character is
not coded in column 72, the job
scheduler treats the next statement as
a continuation statement if the con­
ventions outlined in points 4 and 5
are followed.

4. code the identifying characters // in
columns 1 and 2 of the following card
or card image.

5. Continue the interrupted operand
beginning in any column from 4 through
16.

Not~: Excessive continuation cards should
be avoided whenever possible to reduce
processing time for the control program.

Job Control Language 15

Comments can be? continued onto addition­
al cards after the operand has been com­
pleted. To continue a comments field:

1. Interrupt the! comment at a convenient
place.

2. Code a nonbla.nk character in column
-; 2.

3. Code the identifying characters // in
columns 1 and 2 of the following card
or card image.

4. continue the comments field beginning
in any column. after column 3.

Note: The comment statement cannot be
continued.

NOTATION FOR DEFINING CONTROL STATEMENTS

The notation used in this publication to
define control statements is described in
the following paragraphs.

1. 'I'he set of symbols listed below are
used to define control statements, but
are never written in an actual
statement.

a.. hyphen
b. or
c. underscore
d. braces { }

E~. brackets []

f. ellipsis
g. superscript 1

'I'he special uses of these symbols are
explained in paragraphs 4-10.

2. Upperca:se letters and words, numbers,
a.nd the set of symbols listed below
a.re written in an actual control
statement exactly as shown in the
statement definition. (Any exceptions
to this rule are noted in the def ini­
tion of a control statement.>

a.. apostrophe
b. asterisk * c. comma
a. equal sign
e·. parenthes·es ()

£. period
g. slash /

3. Lowercase letters, words, and symbols
appearing in a control statement

16

def init:ion represent variables for
which specific information is substi­
tuted in the actual statement.

Example: If name appears in a state­
ment definition, a specific value
(e.g., ALPHA) is substituted for the
variable in the actual statement.

4. Hyphens join lowercase letters, words,
and symbols to form a single variable.

Example: If memb·er-name appears in a
statement definition, a specific value
(e.g., BETA) is substituted for the
variable in the actual statement.

5. Stacked items or items separated from
each other by the "or" symbol repre­
sent alternatives. Only one such
alternative should be selected.

Example: The two representations

A
B and AIBIC
c

have the same meaning and indicate
that either A or B or c should be
selected.

6. An underscore indicates a default
option. If an underscored alternative
is selected, it need not be written in
the actual statement.

Example: The two representations

A
B and Al~IC
c

have the same meaning and indicate
that either A or B or c should be
selected; however, if B is selected,
it need not be written, because it is
the default option.

7. Braces group related items, such as
al terna ti ves.

~Xa!!!Ple: ALPHA=C{AIBlfl,D)

indicates that a choice should be made
among the items enclosed within the
braces. If A is selected, the result
is ALPHA=(A,D). If c is selected, the
result can be either ALPHA=(,D) or
ALPHA=(C,D).

8. Brackets also group related items;
however, everything within the brack­
ets is optional and may be omitted.

Example: ALPHA=(CAIBICJ,D)

indicates that a choice can be made
among the items enclosed within the
brackets or that the items within the
brackets can be omitted. If B is

selected, the result is ALPHA=(B,D).
If no choice is made, the result is
ALPHA= (, D).

9. An ellipsis indicates that the preced­
ing item or group of items can be
repeated more than once in succession.

Example: ALPHA[,BETA] •••

indicates that ALPHA can appear alone
or can be followed by ,BETA optionally
repeated any number of times in
succession.

10. A superscript refers to a description
in a footnote.

Example: (. NEW)1
, OLD{
) Moo\

.. SHR,

indicates that additional information
concerning the grouped items is con­
tained in footnote number 1.

11. Blanks are used to improve the reada­
bility of control statement defini­
tions. Unless otherwise noted, blanks
have no meaning in a statement
definition.

JOB STATEMENT

The JOB statement (Figure 3) is the
first statement in the sequence of control
statements that describe a job. The JOB
statement contains the following
information:

1. Name of the job.

2. Accounting information relative to the
job.

3. Programmer's name.

4. Whether the job control statements are
printed for the programmer.

5. conditions for terminating the execu­
tion of the job.

6. A job priority assignment.

7. Output class for priority scheduler
messages.

8. Specification of main storage require­
ments for a job.

9. Specification of the maximum amount of
time to be allotted for a job.

Examples of the JOB statement are shown
in Figure 4.

NAME FIELD

The "jobname" must always be specified;
it identifies the job to the operating sys­
tem. No two jobs being handled concurrent­
ly by a priority scheduler should have the
same "jobname".

OPERAND FIELD

Job Accounting Information

The first positional parameter can con­
tain the installation account number and
any parameters passed to the installation
accounting routines. These routines are
written by the installation and inserted in
the operating system when it is generated.
The format of the accounting information is
specified by the installation •

. As a system generation option with
sequential schedulers, the account number
can be established as a required parameter.
With priority schedulers, the requirement
can be established with a cataloged proce­
dure for the input reader. (Information on
the cataloged procedure for the input read­
er and on how to write an accounting rou­
tine may be found in the system Program­
mer's Guid~, Form GC28-6550.) Otherwise,
the account number is optional.

Proq!_ammer's Name

The "programmer name" is the second
positional parameter. If no job accounting
information is supplied, its absence must
be indicated by a comma preceding the pro­
grammer's name. If neither job accounting
information nor programmer's name is
present, commas need not be used to indi­
cate their absence.

This parameter is optional unless it is
made mandatory at the installation in the
same way as job accounting information is
made mandatory.

Job control Language 17

.---------ir---------,--1
I I I I
I Name I Operation I Operand I
~----------+-------·--+--·-·--------------------i
I I Positional Parameters
I I
I //jobname JOB [< [account-number] [,accounting-information]) 1 2 3]
I
I C,programmer-namel 4 5 6

i
Keyword Parameters

[MSGLEVEL=(x,y)]7

[COND=((code,operator>C,(code,operator)J ••• e)9J

[PRTY=nnJ 10

[MSGCLASS=x]10

[REGION=(\nnnnnK t
valueoK ~

[TIME=(minutes, seconds)J10
~--------i _________ i---i

1Jf the information specified ("account-number" and/or "accounting-information") con-
tains blanks, or any special characters other than hyphens, it must be delimited by
apostrophes instead of parentheses.

21f only "account-number" is specified, the delimiting parentheses may be omitted.
3The maximum number of characters allowed between the delimiting parentheses or apos­
trophes is 142.

4If "programmer-·name" contains blanks, or any special characters other than periods,
it must be enclosed within apostrophes.

swhen an apostrophe is contained within "programmer-name", the apostrophe must be
shown as two consecutive apostrophes.

6ThE~ maximum number of characters allowed for "programmer-name" is 20.
7The symbol x represents a job control language message code and may be specified as
o, 1, or 2; y represents a job scheduler allocation message code and may be speci­
fied as 0 or 1.

&The maximum number of repetitions allowed is 7.
9Jf only one test is specified, the outer pair of parentheses may be omitted.

10This parameter is used with priority schedulers only. The sequential scheduler
ignores it.

111This parameter is used with MVT priority schedulers only.
l------------·-------------------·-------------------------------------·---------------------J

•FigurE~ 3. JOB Statement

Sample Coding Form

IImI~;~6;;i~J~~-l~~~~~~~~~~I~;~z~~~i~i~~tri~~~f7~~;~x~;~~ urrfilfilm;f;~~~01 ~-~ 0

_ LJ .. _EJ.~}'jf_}_p_~_~_L.._L......L...._L+-.l.._l__J_L_l.._L_i_......L_.4 ... L...l ... _1L ... L .. 1._J. L.. . .L. .. +J.......1. L....LJ. 1 _L_L_L __ + L L. .. .J........l_J..L._L.JL._jl._L.L_i......l...-L.L.L . .J.-1 1 i.....1 L.l ... 1 _.i... ... 11...

!!....f'_1~~f!~l'l!lJ~~_J_j5i~!:.&'...1.!t:.1'!21!i~~J..l..~.l..'....i'!..+~~/'1~L1'i~, ,,c,o1N,O, ~ f, 71 ',L ,T), '
1
"'Js,61 L,£1 ~E1L1 •h_L_J _ _L._LJ_Ll........l..~....l LL..l_l~~

...L....l._f.f14;,,,p_J~_f. __ L....L .. Ll_L.._L_l__L..t .. LL_Ll __ LLJ......l._.J....-+ __ .l......l L....L.J L...L I ...L....L..tL .. l...LJ~....l.......L..L..~~L......L.......L.-j
ll~/~P16,2-, JO!B, ,J,~81'7F·2-~CON8_~?i...','-1T),',P,R1T,'f,•,1.~',R,E,G,I10('l,=,1,~~,K, L....L....W I I I I I I L.l.. d_l......L..L.L~~

Figure 4. Sample Job Statements

18

Control Statement, Allocation, and
Termination Messages

The MSGLEVEL parameter indicates the
type of messages the programmer wishes to
receive from the control program.

MSGLEVEL=(x,y)
The letter x represents a job control
language message code. The value of x
may be O, 1, or 2. When x=O, only the
JOB statement, control statement
errors, and diagnostics appear on SYS­
OUT. When x=l, input statements,
cataloged procedure statements, and
symbolic substitutions of parameters
appear. When x=2, only input state­
ments appear.

The letter y represents an allocation
message code. The value of y may be 0
or 1. When y=O, no allocation or ter­
mination messages appear, if the pro­
gram completes execution. In the
event of an abnormal termination, only
termination messages appear. When
y=l, allocation, termination, and
recovery messages all appear.

If MSGLEVEL is omitted, the default
values assigned are those established
at system generation time for PCP or
from the reader procedure in a multi­
programming environment.

Conditions for Terminating a Job

At the completion of a job step, a code
is issued indicating the outcome of that
job step. This generated code is tested
against the conditions stated in control
statements.

The COND parameter of the JOB statement
specifies conditions under which a job is
terminated. Up to eight different tests,
each consisting of a code and an operator,
may be specified to the right of the equal
sign. The code may be any number between 0
and 4095. The operator indicates the
mathematical relationship between the code
placed in the JOB statement and the codes
issued by completed job steps. If the
relationship is true, the job is ter­
minated. The six operators and their mean­
ings are:

Operator
GT

Me~ni!!g
greater than

GE greater than or equal to
equal to EQ

NE not equal to
less than LT

LE less than or equal to

For example, if a code 8 is returned by
the compiler and the JOB statement
contains:

COND= (7 I LT)

the job is terminated.

If more than one condition is indicated
in the COND parameter and ~!!Y condition is
satisfied, the job is terminated.

For the FORT step of both the FORTGCLG
and FORTHCLG cataloged procedures, the com­
pilers issue one of the following error
codes:

0 - No errors or warnings detected.

4 - Possible errors <warnings) detected,
execution should be successful.

8 - Errors detected, execution may fail.
compilation continues but the lin­
kage editor job step is not executed
unless the programmer has increased
the error code acceptable to the
linkage editor. (The discussion
"Condition for Bypassing a Job Step"
later in this section describes the
method for specifying the acceptable
error code.)

r------,
IG ONLY!
L------J If the LOAD option has
been specified, an object module
will be supplied.

r------,
IH ONLYI
L------J If the error is found in
an executable statement, the state­
ment is replaced by a call to the
IBERH routine (IHCIBERH). If the
resulting load module is executed,
IBERH is called and execution is
terminated.

r------1
IG ONLYI

12 - L------J severe errors detected,
execution is impossible.

16 - Terminal errors detected, compiler
terminated abnormally.

Job Control Language 19

Page of GC2B-6817--2, Revised 12/30/70, by TNL: GN28-0591

~~§.!.9:!!!.!!9-~~~Q-~Ei~~r_!_t_y__l PR '.!'.!l.
(Used with Priority Schedulers Only>

l'o assign a priority other than the
default job priority (as established in the
input reader procedure), the parameter
PRTY=nn must be coded in the operand field
of the JOB statement. The "nn" is to be
replaced with a dE~cimal number from 0
through 13 (the highest priority that can
be assigned is 13).

Whenever possible, avoid using priority
13. ·rhis is used by the system to expedite
processing of jobs in which certain errors
were diagnosed. It is also intended for
other special uses by future features of
systems with priority schedulers.

If the PHTY parameter is omitted, the
default job priority is assumed.

g~g~~§.t!.!!9:_~-!".!~~~~g~_£ la~~-(MSG.£!!~~§}_
(Used with Priority Schedulers Only)

With a quantity and diversity of data in
the output stream, an installation may want
to separate different types of output data
into different classes. Each class is
directed to an output writer associated
with a specific output unit.

Th12 MSGCI,ASS=x parameter allows the mes­
sages issued by the priority scheduler to
be routed to an output class other than the
normal message class, A. The "x" is to be
replaced with an alphabetic or numeric
character. An output writer, assigned to
process this class, transfers the data to a
~.:;pecif ic device.

If the MSGCLASS parameter is omitted,
the job scheduler messages are routed to
the standard output class, A.

!}E~f:!fY!.!!9:_~~~!.!!_§.tQE~g~ Re 5!!:!!. reme!!_t_~_fQE_~
Job (REGION)
-{systems-wit::h MVT on1y>

The REGION parameter is used to specify:

• The maximum amount of main storage to
be allocated to the job. This figure
must include the size of those com­
ponents that are required by the user's
program and that are not resident in
main storage.

• The amount of main storage to be allo­
cated to the job, and in which storage
hierarchy or hierarchies the space is
to be allocated. This request should
be made only if main storage hierarchy
support is spE!Cified during system
generation.

To request the maximum amount of main
storage required by the job, REGION=nnnnnK

20

is coded in the operand field of the JOB
statement. The term nnnnn is replaced with
the number of contiguous 1024-byte areas to
be allocated to the job, e.g., REGION=52K.
This number can range from one to five
digits, but cannot exceed 16383. It should
be specified as an eve·n number. (If an odd
number is specified, the syst1em treats it
as the next highest even number.)

If the REGION parameter is omitted or if
a region size smaller than the default
region size is requested, the default value
(as established in the input reader proce­
dure) is assumed.

Note: If different region si:zes are to be
specified for each step in the job code,
the REGION parameter must be :specified in
the EXEC statement associated with each
step, as described in the section "EXEC
Statement."

Main storage hierarchy support provides
for storage hierarchies 0 and 1. If IBM
2361 Core Storage, Model 1 or 2, is present
in the system, processor storage .is
ref erred to as hierarchy 0 and 2361 Core
Storage is ref erred to as hierarchy 1. If
2361 Core Storage is not present but main
storage hierarchy support was specified
during system generation, a 2-part region
is established in processor storage when a
region is defined to exist in two hierar­
chies. The two parts are not nece$sarily
contiguous.

When main storage hierarchy support is
included in the system, the REGION parame­
ter can be used to request both the maximum
amount of storage to be allocated to the
job and the hierarchy or hierarchies in
which the storage is to be allocated.

To specify a region size and the hierar­
chy desired, REGION=(value K,value1 K) is
coded in the operand field of the JOB
statement. The term "value " is replaced
with the number of contiguous 1024-byte
areas to be allocated to the job in hierar­
chy O; the term "value1 " is replaced with
the number of contiguous 1024-byte areas to
be allocated in hierarchy 1, «:-. g. ,, REGION=
(60K,200K). When processor storage
includes hierarchies 0 and 1, the combined
values of value and value1 cannot exceed
16383. If 2361 Core Storage is present,
value cannot exceed 16383, and value1 can­
not exceed 1024, if using a single Model 1,
or 2048, if using a single Model 2. Each
value specified should be an even number.
(If an odd number is specified, the system
treats it as the next highest even number.)

In systems with main storage hierarchy
support, either subparameter can be omitted
to request storage in only one hierarchy.

If storage is requested only in hierarchy
1, a comma must be coded to indicate the
absence of the first subparameter, e.g.,
REGION=(,52K). If storage is requested
only in hierarchy O, the parentheses need
not be coded, e.g., REGION=70K.

If the REGION parameter is omitted, or
if a region size smaller than the default
region size is requested, the default value
(as established in the input reader proce­
dure) is assumed. When the default region
size is assumed, storage is always allo­
cated in hierarchy o.

• If different region sizes are to be
specified for each step in the job,
code the REGION parameter in the EXEC
statement associated with each step, as
described in the section "EXEC
statement."

• If main storage hierarchy support is
not included and regions are requested
in both hierarchies, the region sizes
are combined and an attempt is made to
allocate a single region from processor
storage. If a region is requested
entirely from hierarchy 1, an attempt
is made to allocate the region from
processor storage.

• For information on storage requirements
to be considered when specifying a
region size, see the storage Estimates
publication.

(Used by Priority Schedulers Only)

To limit the computing time used by a
single job, a maximum time for its comple-

tion can be assigned. such an assignment
is useful in a multiprogramming environment
where more than one job has access to the
computing system.

'rhe time is coded in minutes and
seconds. The number of minutes cannot
exceed 1439. The number of seconds cannot
exceed 59. If the job is not completed in
the assigned time, it is terminated. If
the job execution time is expected to
exceed 1439 minutes (24 hours>, TIME=1440
can be coded to eliminate job timing. If
the TIME parameter is omitted, the default
job time limit (as established in the cata­
loged procedure for the reader/interpreter)
is assumed.

The EXEC statement (Figure 5) indicates
the beginning of a job step and describes
that job step. The statement can contain
the following information:

1. Name of job step or procedure step.

2. Name of the cataloged procedure or
load module to be executed.

3. Compiler and/or linkage editor options
passed to the job step.

4. Accounting information relative to
this job step.

5. Conditions for bypassing the execution
of this job step.

6. A time limit for the job step or an
entire cataloged procedure.

7. Specification of main storage require­
ments for a job step or an entire
cataloged procedure.

Job control Language 21

Page of GC28-6817-·2, Revised 12/30/70, by TNL: GN28-0591

r--------------y---------y---1
jName I Operation I Operand . I
t··-----··--------+--·------+---------------------------------------·-·---------------------~
I Positional Parameter
j//(st:epname] 1 EXEC l PROC=cataloged-procedure-name)
l 'cataloged-procedure-name f
~ 'PGM=program-name
I f PGM=•.stepname.ddname \
i PGM=•.stepname.procstep.ddname

Keyword Parameters

[
JPARM l]
)PARM., procstep2f = (option [,option] •••) 3 £t s

[
)ACCT l . J
IACCT~procstep2f =<accounting-information) 3 6 7

[
fCOND t ' J
koND .. procstep2f =<(code, operator [, stepname [. procstep]] >

[, (code, operator [, stepname [. procstep]])] 8) 9]

[
fTIME t] :t.o :1.:1.

tTIME .. procstep 2 f=<minutes,seconds)

[{;:~~~=.procstep2}=<lnnnnnK l C,value1 K])J 10

valueoK\
:1.2

I
I
I
I
i
I
I
I
I
I
I
I
I
!
I
I
I
!
I [JDPRTY } J
\ lDPRTY.procstep2 =(value lC,value 2)) 13

~-------------i _________ l---~

l
j
I
I

1 If information from this control statement is referred to in a later job step,
nstepname" is required.

2 If this format is selected, it may be repeated in the EXEC statement, once for each
step in the cataloged procedure.

3 If the information specified contains blanks, parentheses, or equal signs, either
the• keyword subparameter must be enclosed by apostrophes or the entire PARM field
must be delimited by apostrophes instead of parentheses.

ii!f only one option is specified and it does not contain any blanks, parentheses, or
equal signs, the delimiting parentheses may be omitted.

5 The maximum number of characters allowed between delimiting parentheses is 100. If
the- option list is enclosed in apostrophes, however, the parameter must be coded on
one~ card.

6 If "accounting-information" does not contain commas, blanks, parentheses, or equal
signs, the delimiting parentheses may be omitted.

7 ThE maximum number of characters allowed between the delimiting apostrophes or
parentheses is 142.

8 The maximum number of repetitions allowed is 7.
I 9 If only one test is specified, the outer pair of parentheses may be omitted.
1~ 0This parameter is used with priority schedulers only. Sequential schedulers ignore
I it.
l 11If only minutes are given, the parentheses need not be used. If only seconds are
I given, the parentheses must be used and a comma must precede the seconds.
I L 2 If only value oK is given, the parentheses need not be used. If only value1 K is
I given, the parentheses must be used and a comma must precede value1 K.
I 1.· 3 If only value 1 is given, the parentheses need not be used. If only value 2 is
I given, th•e parentheses must be used and a comma must precede value 2.
L---

• Figure 5. JE:XEC Statement

22

Example 1 of Figure 6 shows EXEC state­
ments used to execute programs. The pro­
gram names used are the (G) and (H) compil­
er names. Example 2 in Figure 6 shows, for
each compiler, an EXEC statement used to
execute a cataloged procedure.

NAME FIELD

The "stepname" is the name of the job
step or procedure step. It is required
when information from this job step is
referred to in a later job step. No two
steps in the same job should have the same
"stepname."

OPERAND FIELD

Positional Parameter

The first parameter of an EXEC statement
must specify either the name of the cata­
loged procedure or program to be executed.
Each program (load module) to be executed
must be a member of a library (PDS). The
library can be the system library
(SYS1.LINKLIB), a private library, or a

Sample Coding Form

temporary library created to store a pro­
gram from a previous job step of the same
job.

Specifying a Cataloged Procedure:

\
PROC=cataloged-procedure-namel
cataloged-procedure-name \

indicate that a cataloged procedure is
invoked. The "cataioged procedure-
nameft is the name of the cataloged
procedure. For example,

// EXEC PROC=FORTHC
or

/I EXEC FORTHC

indicates that the FORTRAN IV (H) cat­
aloged procedure FORTHC is to be
executed.

Specifying a Program in a Library:

PGM=program-name
indicates that a program is executed.
The "program name" is the member name
of a load module in the system library
(SYS1.LINKLIB) or private library.
For example,

/I EXEC PGM=IEWL

indicates that the load module IEWL is
executed. (A load module in a private

c.,17:J.l1¢!'1L1AI 1 1 1 1 J 1 1 1 , I 1 _L_LL+-.Li._L 1 I , , , , I , _[_J__LJ 1 1 1 1 I 1 1 1 1 l_u __ L_J_+ _ _J_ _ _LL_i_l_

1..--LL..ll~Ltl!ll;hl~L ,fjtJRTiR,AJM JJZ'iGH), ,CJO,HP,r,L1EAi.__,__y_-'-...l.__L~.LL..J_J_P_L, , 1 , , , , I LLL.LLuJ~~
f'-'-L'-~J.L..,'l,_ ,f'.t1£c, ,F.01rn~1:1,c,L1&i,, , , ..l__i_i_.J_~_LLLLLLL! I , , , , 1 , , , , 1...L, , , 1 , , 1 , , , 1 , , , ,~~
~~~-...L 1 1 J 1 1 1 1 1P,A&M.JF:'QB,~a1\D~_iZ'_,M_~~;T';9Cl,~1,H,AIP,tl1D1t)£~TL~~ , J , 1 .L.LJ___u , , I ,J. 1 ~ 

I I 1~A,Rtt.1L,KEl>i=1X',R,E'if,tJ I l__l _ _[_.J._1...L I I I I I I L~-1--L' I I I I I I I I I I I I I I I I ,J, I I I I LL_L 

I I I 1C,~N,0i.1L,IC_J~~Jl1~1'tf.ter'i-1· 1EOIJT1l1t1 I I I _L_L...L+L.L I I I I I I I I I I I I I I I I ,f, ..L...L.1_i_ 

I',,, iC,D,N,o,.1C.,o,:,(,(1l1,L:r,,1s;r~~,,l,7,,1L,T,,,Si1'1£,-f,"Fa,R,7i),)J'1 u, L1Lu_~.E-1_Ll11_LL 

C L 

• Figure 6. Sample EXEC Statements 

Job Control Language 23 



library is executed by concatenating 
that p1::ivate library with the system 
library through the use of a JOBLIB DD 
statement. See the discussion con­
cernin9 JOBLIB under "Data Definition 
(DD) Statement" in this section .. ) 

Specifying a Program Described in a Pre­
vious Job s~: 

PGM=•.stepname.ddname 
indicates that the name of the program 
to be executed is taken from a DD 
statement of a previous job step. The 
• indicates the current job; "step­
name" is the name of a previous step 
within the current job; and "ddname" 
is the name of a DD statement within 
that p:revious job step. (The "step­
name" c:annot refer to a job step in 
another job.) The program referred to 
must be a member of a PDS. For 
examplE!, in the following statements, 
statemEmt STEPS indicates that the 
name of the program is taken from the 
DD statement SYSLMOD in job step 
STEP4. Consequently, the load module 
ARCTAN in thE~ PDS MATH is executed. 

//MCLX JOB ,JOHNSMITH,COND=(7 1 LT) 

//STEP4 EXEC PGM=IEWL 
//SYSLMOD DD DSNAME=MATH(ARCTAN) 

//STEPS EXEC PGM=•.STEP4.SYSLMOD 

Specifying a Progl'.:am Described in a Cata­
lo~d Procedure: 

PGM=•.stepname.procstep.ddname 

24 

indicates that the name of the program 
to be executed is taken from a DD 
statement of a previously executed 
step of a cataloged procedure. ·The * 
indicates the· current job; "stepname" 
is the name of the job step that 
invoked the cataloged procedure; 
"procstep" is the name of a step 
within the procedure; "ddname" is the 
name of a DD statement within the pro­
cedure step. (The "stepname" cannot 
refer to a job step in another job.) 
t'or example, consider a cataloged pro­
cedure FORT, 

//COMPIL EXEC PGM=IEKAAOO 
//SYSPUNCH DD UNIT=SYSCP 
//SYSPRINT DD SYSOUT=A 
//SYSLIN DD DSNAME=LINKINP 

//LKED 
//SYSLMOD 

EXEC PGM=IEWL 
DD DSNAME=RESULT(ANS) 

Furthermore, assume the following 
statements are placed in the input 
stream. 

//XLIV 
//Sl 

JOB ,SMITH,COND=(7,LT) 
EXEC PROC=FORT 

//S2 EXEC PGM=*.Sl.LKED.SYSLMOD 
//FT03F001 DD UNIT=PRINTER 
//FT01F001 DD UNIT=INPUT 

Statement S2 indicates that the name 
of the program is taken from the DD 
statement SYSLMOD.. The :statement is 
located in the procedure step LKED of 
the cataloged procedure :FORT, which 
was invoked by statement Sl. Conse­
quently, the load module ANS in the 
PDS RESULT is executed. 

Keyword Parameters 

The keyword parameters may ref er to a 
program, to an entire cataloged procedure, 
or to a step within a cataloged procedure. 

Options for the Compiler and Linkage 
Edi~: 

The PARM parameter is used to pass 
options to the compiler or linkage editor. 
(PARM has no meaning to a FORTRAN load 
module.) 

PARM 
passes options to the compiler or 
linkage editor, when either is invoked 
by the PGM parameter in an EXEC state-· 
ment, or to the first step in a cata­
loged procedure. 

PARM.procstep 
passes options to a compiler or link­
age editor step within the named cata­
loged procedure step. 

The formats for compiler options and 
those linkage editor options most appli­
cable to the FORTRAN programmer are shown 
in Figure 7. 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

Note: If a subparameter expression in the 
fist of the PARM parameter contains special 
characters, either of two methods may be 
used to delimit the expression: 

1. Enclose the entire subparameter list 
in apostropheso For example: 

PARM= 'LIST,MAP,NAME=MYMAIN,DECK' 

2. Enclose the subparameter expression in 
apostrophes and the entire subparamet­
er list in parentheses. Thus, the 
above example can be coded as: 

PARM= (LIST, MAP, 'NAME=MYMAIN',DECK) 

Since a list enclosed in apostrophes cannot 
be continued onto another control state­
ment, the second method should be used when 
the PARM parameter must be interrupted. 

Detailed information concerning compiler 
and linkage editor options is given in the 
section "FORTRAN Job Processing." 

This COND parameter (unlike the one in 
the JOB statement> determines if the job 
step defined by the EXEC statement is 
bypassed. 

COND 
states conditions for bypassing the 
execution of a program or an entire 
cataloged procedure. 

COND.procstep 
states conditions for bypassing the 
execution of a specific cataloged pro­
cedure step "procstep". 

The subparameters for the COND parameter 
are of the form: 

(code,operator[,stepname]) 

The subparameters "code" and "operator" 
are the same as the code and operator 
described for the COND parameter in the JOB 
statement. The subparameter "stepname" 
identifies the previous job step that 
issued the code. For example, the COND 
parameter 

COND=((5,LT,FORT), (5,LT,LKED)) 

indicates that the step in which the COND 
parameter appears is bypassed if 5 is less 
than the code returned by either of the 
steps FORT or LKED. 

r-----------~~------------------------------------------------------------------------1 
!Compiler Options: FORTRAN IV (G) and FORTRAN IV (H) I 
I I 
I {PARM } '{LIST } {,SOURCE } I 
I PARM.procstep = NOLIST C,NAME=xxxxxx] C,LINECNT=xx] ,NOSOURCE 
I 
I 
I 
I 

{' DECK } {'MAP } 
,NODECK ,NOMAP {'LOAD } 

,NOLOAD {,BCD } 
,EBCDIC {

,ID l I 1. 2 

1 NOIDf 

Compiler Options: FORTRAN IV (H) only 

{
PARM l 
PARM.procstep( 

Linkage Editor: 

{PARM } 
PARM.procstep 

Loader: 

{:::. procstep} 

• 1. 2 

'[OPT={Ql112l] C,SIZE=nnnnkJ {
'EDIT } 
,NOEDIT {

,XREF 
,NOXREF 

C, LET] [, NCAL] [,LIST] )1. 

{
MAP } 

( NOMAP {
,CALL } {'LET } {'SIZE=lOOK} 
,NOCALL rliOLET ,SIZE=size 

l 
{

,PRINT } 1. 2 I 
NOPRINT ) ! 

C ,EP=name] 

~---------------------------------------------------------------------------------------; 
11.The subparameters (options) are keyword subparameters. I 
j 2 If any keyword subparameter contains blanks, parentheses, or equal signs, either the I 
I keyword subparameter must be enclosed by apostrophes or the entire PARM field must be I 
I delimited by apostrophes instead of parentheses. I 
L---------------------------------------------------------------------------------------J 

• Figure 7. Compiler, Linkage Editor, and Loader Options 

Job control Language 25 



If a step in a cataloged procedure 
'~ss ued the code, 11 step name" must qualify 
the name of the procedure step; that is, 

(code,operator[,stepname.procstepl) 

ff "stepname" is not given, "code" is 
compared with all codes issued by previous 
job steps. 

The ACCT parameter specifies accounting 
information for a job step within a job. 

l\.CCT 
is used to pass accounting information 
to the installation accounting rou­
tines for this job step. 

P,.CCT. procstep 
is used to pass accounting information 
for a step within a cataloged 
procedure. 

If both the JOB and EXEC statements con­
tain accounting information, the installa­
tion accounting routines decide how the 
accounting information shall be used for 
the job step. 

setting Job Step Tim~ Limits (_TIME) : 
(Used with MVT Priority Schedulers Only) 

'J'o limit the computing time used by a 
single job step or cataloged procedure, a 
maximum time for its completion can be 
assigned. If the job step is not completed 
in this time, the entire job is terminated. 
Assignment of such a time limit is particu­
larly useful in a multiprogramming environ­
ment where more than one job has access to 
the computing system. 

The time is coded in minutes and 
seconds. The number of minutes cannot 
exceed 1439 (24 hours); the number of 
seconds cannot exceed 59. (If the job step 
execution time is expected to exceed 1439 
minutes, TIME=1440 can be coded to elimi­
nate job step timing.) 

If the TIME parameter is omitted, the 
default job step time limit (as established 
in the cataloged procedure for the input 
reader) is assumed., 

TIME 
is used to assign a time limit for a 
job step or for an entire cataloged 
procedure. For a cataloged procedure, 
this parameter overrides all TIME 
parametE~rs that may have been speci­
fied in the procedure. 

TIME.procstep 

26 

is used to assign a time limit for a 
single step of a cataloged procedure. 

This parameter overrides,, for the 
named step, any TIME parameter which 
is present. One parameter of this 
form can be written for each step in 
the procedure. 

Specifying Main Storage Requirements for a 
Job Step (REGION) 
(Systems with MVT Only> 

The REGION parameter is used to specify: 

• The maximum amount of main storage to 
be allocated to the job step. This 
figure must include the size of those 
components that are required by the 
user's program and that are not resi­
dent in main stora9e. 

• The amount of main storage to be allo­
cated to the job, :step and in which 
storage hierarchy or hierarchies the 
space is to be allocated. This request 
should be made only if main storage 
hierarchy support is specified during 
system generation. 

To request the maximum amount of main 
storage required by th1~ job step, REGION= 
nnnnnK is coded in the operand field of the 
JOB statement. The term nnnnn is replaced 
with the number of contiguous 1024-byte 
areas to be allocated to the job, e.g., 
REGION=52K. This number can range! from one 
to five digits, but cannot exceed 16383. 
It should be specified as an even number. 
(If an odd number is specified, the system 
treats it as the next highest even number.> 

If the REGION parameter is omitted or if 
a region size smaller than the default 
region size is requestE~d, the default value 
(as established in the input reader proce­
dure) is assumed. 

Notes: 

• If the REGION parameter has been speci­
fied on the JOB statement, REGION para­
meters on the job's EXEC statements are 
ignored. 

• When the job step uses a cataloged pro­
cedure, a region size can be requested 
for a single procedure step by includ­
ing, as part of the REGION parameter, 
the procedure step name, i.e., REGION. 
procstep. This specification overrides 
the REGION paramete~r in the named pro­
cedure step, if one is present. As 
many parameters of this form can be 
coded as there are steps in the cata­
loged procedure. 

• To request a single region size for an 
entire cataloged procedure, code the 
REGION parameter without a procedure 



step name. This specification over­
rides all REGION parameters in the pro­
cedure, if any are present. 

Main storage hierarchy support provides 
for storage hierarchies 0 and 1. If IBM 
2361 core Storage, Model 1 or 2, is present 
in the system, processor storage is 
ref erred to as hierarchy 0 and 2361 Core 
storage is ref erred to as hierarchy 1. If 
2361 core storage is not present but main 
storage hierarchy support was specified 
during system generation, a 2-part region 
is established in processor storage when a 
region is defined to exist in two hierar­
chies. The two parts are not necessarily 
contiguous. 

When main storage hierarchy support is 
included in the system, the REGION paramet­
er can be used to request both the maximum 
amount of storage to be allocated to the 
job step and the hierarchy or hierarchies 
in which the storage is to be allocated. 

To specify a region size and the hierar­
chy desired, REGION=(value K, value~K) is 
coded in the operand field of the JOB 
statement. The term "value " is replaced 
with the number of contiguous 1024-byte 
areas to be allocated to the job step in 
hierarchy O: the term "value~" is replaced 
with the number of contiguous 1024-byte 
areas to be allocated in hierarchy 1, e.g., 
REGION= (60K,200K). When processor storage 
includes hierarchies 0 and 1, the combined 
values of value and value~ cannot exceed 
16383. If 2361 Core Storage is present, 
value cannot exceed 16383, and value~ can­
not exceed 1024, if using a single Model 1, 
or 2048, if using a single Model 2. Each 
value specified should be an even number. 
(If an odd number is specified, the system 
treats it as the next highest even number.) 

In systems with main storage hierarchy 
support, either subparameter can be omitted 
to request storage in only one hierarchy. 
If storage is requested only in hierarchy 
1, a comma must be coded to indicate the 
absence of the first subparameter, e.g., 
REGION=(,52K). If storage is requested 
only in hierarchy o, the parentheses need 
not be coded, e.g., REGION=70K. 

If the REGION parameter is omitted, or 
if a region size smaller than the default 
region size is requested, the default value 
<as established in the input reader proce­
dure) is assumed. When the default region 
size is assumed, storage is always allo­
cated in hierarchy O. 

Notes: 

• If the REGION parameter has been speci­
fied on the JOB statement, REGION para-

meters on the job's EXEC statements are 
ignored. 

• If main storage hierarchy support is 
not included and regions are requested 
in both hierarchies, the region sizes 
are combined and an attempt is made to 
allocate a single region from processor 
storage. If a region is requested 
entirely from hierarchy 1, an attempt 
is made to allocate the region from 
processor storage. 

• When the job step uses a cataloged pro­
cedure, a region size can be requested 
for a single procedure step by includ­
ing, as part of the REGION parameter, 
the procedure step name, i.e., REGION. 
procstep. This specification overrides 
the REGION parameter in the named pro­
cedure step, if one is present. As 
many parameters of this form can be 
coded as there are steps in the cata­
loged procedure. 

• To request a single region size for an 
entire cataloged procedure, code the 
REGION parameter without a procedure 
step name. This specification over­
rides all REGION parameters in the pro­
cedure, if any are present. 

• For information on storage requirements 
to be considered when specifying a 
region size, see the Storage Estimates 
publication. 

Establishing a Dispatching Priority 
(DPRTY) 
(Systems with MVT only> 

The DPRTY parameter specifies the dis­
patching priority of a job step's tasks. 
The dispatching priority determines the 
order in which a job step's tasks will use 
main storage and CPU resources. Unless the 
DPRTY parameter is coded, each job step is 
assigned the same dispatching priority as 
the job. 

To assign a dispatching priority to a 
job step, the keyword parameter: 

DPRTY = (value 1, value 2) 

is coded in the operand field of the EXEC 
statement. The terms value 1 and value 2 
may each be assigned a number from 0 
through 15. The higher the number., the 
higher the dispatching priority will be. 
(Whenever possible, assigning a number of 
15 to value 1 should be avoided since this 
number is used for certain system tasks.) 
The number assigned to value 1 is converted 
by the system to determine an internal 
priority. The number assigned to value 2 

Job control Language 27 



Page Of GC28-6817·-2, Revised 12/30/70, by TNL: GN28-0591 

is added to the internal priority to form 
the dispatching priority. If a number is 
not assigned to value 1, a default value of 
zero is assumed; for value 2 a default 
value of 11 is assumed. 

DPRTY 
is used to assign a dispatching 
priority for a job step or for an 
·~ntire cataloged procedure. For a 
cataloged procedure, this specifica­
tion overrides all DPRTY parameters 
that may have been specified in the 
procedure. 

DPRTY .. procstep 
is used to assign a dispatching 
priority to a single procedure step in 
a cataloged procedure. This parameter 
overrides, for the named step, any 
DPRTY parameter which is present. One 
parameter of this form can be written 
for each step in the cataloged 
procedure. 

Note: A detailed discussion of dispatching 
priorities can be found in the Concepts and 
Facilities publication listed in the 
Pref ace. 

QATA_QEFIN!!ION (DD) STATEMENT 

The DD statement (Figure 8) describes 
data sets. The DD statement can contain 
the followin~r information: 

1. Name of the dc:tta set to be processed. 

28 

2. Type and number of I/O devices for the 
data set. 

3. Volume(s) on which the data set 
resides. 

4. Amount and type of space allocated on 
a direct access volume. 

5. Label information for the data set. 

6. Disposition of the data set after 
execution of the job step. 

7. Allocation of data sets with regard to 
channel optimization. 

8. Whether a particular data set may be 
used only for input or only for 
output. 

NAME FIELD 

ddname 
is used: 

1. To identify data sets defined by 
this DD statement to the compiler 
or linkage editor. 

2. To relate data sets defined by 
this DD statement to data set 
reference numbers used by the pro­
grammer in his source module. 

3. To identify this DD statement to 
other control statements :in the 
input stream. 



.-------------~-------T---------T---------------·---------~-----------------------------1 
I Name IOperationlOperand1 I 
~-~----------~~-----+-----~--+---------------·----------------------~---------------~ 

j
ddname { 2 

// procstep.ddname 
JOBLIB3 
STEP LIB ~ 
SYSAEEND 

,SYSUDUMP 

DD 

Positional Parameter 

l~UMMJ 4 

L~ATA J 
Keyword Parameterss 6 

DDNAME=ddname 

{
DSNAME}= 
DSN 

dsname 
dsname(element) 
•.ddname 
•.stepname.ddname 
•.stepname.procstep.ddname 
&name 
&name(element) 

[UNIT=(subparameter-list)] 

[DCB=(subparameter-list)] 

[~VOLUMEt l 
~VOL \ =(subparameter-list~ 

[

SPACE=(subparameter-list) J 
SPLIT=(subparameter-list) 
SUBALLOC=(subparameter-list) 

[LABEL=(subparameter-list)] 

~
DISP=(subparameter-list) ] 
SYSOUT=A 
SYSOUT=E 
SYSOUT=(xC,program-namelC,form-number]) 7 8 

[SEP=(subparameter-list)] 
~----------------------i _________ i ______________________________________________________ ~ 
1A DD statement with a blank operand field can be used to override parameters speci­
fied in cataloged procedures. (See noverriding and Adding DD Statementsn in the sec­
tion ncataloged Proceduresn.) 

2 The name field is blank when concatenating data sets. (Note the exception for the 
use of JOBLIE.) 

3The JOELIE statement precedes any EXEC statements in the job. (See the discussion 
concerning JOBLIB under "Name Fieldn in this section.) 

4 If either the * or DATA the positional parameter is specified, no keyword parameters 
other than DCB=BLKSIZE and DCB=BUFNO can be specified. 

srf nsubparameter-listn consists of only ong subparameter and no leading comma (indi­
cating the omission of a positional subparameter) is required, the delimiting paren­
theses may be omitted. 

6If "subparameter-listn is omitted, the entire parameter must be omitted. 
7 This form of the parameter is used only with priority schedulers. 

18 If nprogram-namen and nform-number" are omitted, the delimiting parentheses can be 
I omitted. If only the form number is given, the parentheses must be used and two com-
1 mas must precede the form number. 
L-------------~------------------------------------------------------------------------
Figure 8. Data Definition Statement 

Job Control Language 29 



The "ddname" format is given in "FORTRAN 
Job Processing." 

procstep.ddname 
is used to override DD statements in 
cataloged procedures. The step in the 
cataloged procedure is identified by 
wprocstep". The "ddname" identifies 
either: 

l. A DD statement in the cataloged 
procedure that is to be modified 
by the DD statement in the input 
stream, or 

2. A DD statement that is to be added 
to the DD statements in the proce­
dure step. 

JOBLIB and STEPLIB 
are used to concatenate a private 
library with the system library, SYSl. 
l~INKLIB: that is, the operating system 
library and the data sets specified in 
the JOBLIB or STEPLIB DD statement are 
temporarily combined to form one 
J_ibrary. Use~ of JOBLIB results in 
concatenation for the duration of a 
job; use of STEPLIB, for the duration 
of a job step. 

'J'he JOELIE DD statement must appear 
immediately after the JOB statement of 
the job to which it pertains, and its 
operand field, at a minimum, must con­
tain the DSNAME and DISP parameters. 
'l'he DISP parameter must be coded ei th­
er DISP=(NEW,PASS) or DISP=(OLD,PASS) 
or DISP=(SHR,PASS) so that the library 
remains available throughout the job. 
(See the discussion of the DISP param­
E~ter under "Operand Field." 

'l'he STEPLIB DD statement may appear in 
any position among the DD statements 
for the step. The data set defined 
should be OLD. If the private library 
is not cataloged and is to be ref erred 
to in a later step (or steps), 
DISP=(OLD,PASS) or DISP=(SHR,PASS) 
should be coded; a later step may then 
refer to it by coding 
DSNAME=:•. stepname. STEPLIB, DISP= (OLD, 
PASS) on the STEPLIB DD statement for 
the later step. 

F'or additional information on the use 
of JOBLIB and STEPLIB DD statements, 
see the Job control Language Reference 
publication, Form GC28-6704. 

SYSABEND and SYSUDUMP 

30 

are special DD names used to define a 
data set on which a system abnormal 
termination dump can be written. The 
dump is provided for job steps subject 
to abnormal termination. 

The dump provided when the SYSABEND DD 
statement is used includes the system 
nucleus, the problem program storage 
area, and a trace table, if the trace 
table option was requested at system 
generation. The SYSUDUMP DD statement 
provides a dump of only the problem 
program area. 

A full discussion of SYSABEND and SYS­
UDUMP DD statements, with an example 
of use, appears in the Job Control 
Language Reference publication, Form 
GC28-6704. 

BLANK NAME FIELD 

If the name field is blank, the data set 
defined by the DD stabement is concatenated 
with the data set defined in the preceding 
DD statement. In effect, these two data 
sets are combined into one data set. 
(Private libraries, i.e., partitioned data 
sets, may also be concatenateq with the li­
brary specified in the JOBLIB DD statement. 
Therefore, several lib:raries can be concat­
enated with the system library. Individual 
members of a partitioned data set,. however, 
cannot be concatenated.) 

~: Handling of data sets whose records 
are of different lengths and/or different 
formats is a function of the program being 
executed. Data sets designated for conca­
tenation may not be in the input stream. 

OPERAND FIELD 

For purposes of discussion, parameters 
for the DD statement have been divided into 
seven functions. Parameters are used to: 

• Specify data in the input stream. 

• Specify unit record data sets. 

• Retrieve a previously created and cata­
loged data set. 

• Retrieve a data set created in a pre­
vious job step in the current job and 
passed to the current job step. 

• Retrieve a data set created but not 
cataloged in a previous job. 

• Create data sets that reside on magnet­
ic tape or direct access volumes. 

• Optimize I/O operations. 



The following text describes the DD 
statement parameters that apply to: 

• Processing unit record data sets. 

• Retrieving data sets created in pre­
vious job steps. 

• Retrieving data sets created and cata­
loged in previous jobs. 

See Figure 9 for applicable parameters. 

Parameters shown in Figure 8 and not 
mentioned in this section are used to cre­
ate data sets and optimize I/O operations 
in j·ob steps. These parameters are dis­
cussed in the sections •creating Data Sets" 
and "Programming Considerations.• 

Specifying Data in the Input Stream: 

* 

DATA 

indicates that a data set (e.g., a 
source module or data) immediately 
follows this DD statement in the input 
stream (see Figure 10). If the EXEC 
statement for the job step invokes a 
cataloged procedure, a data set may be 
placed in the input stream for each 
procedure step. If the EXEC statement 
specifies execution of a program, only 
one data set may be placed in the 
input stream. The DD * statement must 
be the last DD statement for the pro­
cedure step or program. The end of 
the data set must be indicated by a 
delimiter statement. The data itself 
cannot contain job control statements 
(neither the comment statement nor any 
statements with // or /* in columns 1 
or 2). Note, too, that if * is speci­
fied, no keyword parameters other than 
DCB=BLKSIZE or DCB=BUFNO may be 
specified. 

also indicates data in the input 
stream. The restrictions and use of 
the DATA parameter are the same as the 
* parameter, except that // may appear 
in the first and second positions of a 
record. 

UNIT Parameter: 

UNIT=(nameC,{nlP}]) 
specifies the name and number of I/O 
devices for a data set (see Figure 
10). When the system is generated, 
the "name" is assigned by the operat­
ing system or the installation and 
represents a device address, a device 
type, or a device class. (See the 
System Generation publication.) The 
programmer can use only the assigned 

r-----------------------------------------1 
{* l 1 

DATAf 

dsname 
dsname(element) 
•.ddname 

{
DSNAME}= 
DSN 

•.stepname.ddname 
•.stepname.procstep.ddname 
&name 
&name(element) 

UNIT=(name[,{nlP}2))3 

DCB=( j{MODE=E}f,STACK=l} l ) I MODE=C l. STACK=2 ~ 

SYSOUT=A 
SYSOUT=B 
SYSOUT=CxC,program-name] 

£,form-number])~ s 

OLD ,KEEP lSHR ~~ DELETE6] 
DISP=( NEW ,PASS 

MOD ,CATLG 
UNCATLG 

[:~~~~E J ) 7 

,UNCATLG 

LABEL=(subparameter-list)S 

fVOLUME) 
I ( =<subparameter-list)S 

I ',VOL ) 
1------------------------------------------~ 
1If * is specified, no keyword parameters 
other than DCB=BLKSIZE or DCB=BUFNO may 
be specified. 

2If neither •n• nor •p• is specified, 1 
is assumed. 

3If only •name• is specified, the deli­
miting parentheses may be omitted. 
~This form of the parameter is used only 
with priority schedulers. 

5If "program-name" and "form-number• are 
omitted, the delimiting parentheses can 
be omitted. 

6 The assumption for the second subpara­
meter is discussed in •specifying the 
Disposition of a Data Set" in this 
section. 

7 The subparameters are positional. 
ssee the section •creating Data Sets.• 
L-----------------------------------------

• Figure 9. DD Statement 

nlP 

names in his DD statements. For 
example, 

UNIT=190, UNIT=2311, UNIT=TAPE 

where 190 is a device address, 2311 is 
a device type, and TAPE is a device 
class. 

specifies the number of devices allo­
cated to the data set. If a number 

Job Control Language 31 



•nn is specified, the operating system 
assigns that number of devices to the 
data siet. 11 p• is used with cataloged 
data sets when the required number of 
vol ume:s is unknown. The control pro­
gram assigns a device for each volume 
required by the data set. 

Sample Coding Form 

TI?J~Br~}fu;~jiii;~11~l~~IP 1ol 1 121 ~~Tffi~~9~~--,:;;;Ifil:~~I~ 
J.._1_1f;t_1afl!/Jle.~ __ ..11!..~ ,nt,eir: , , .i_l____i_____l__L--L___[_[_J__L_1_j___L__L 

IL?1'(~J>E!l~!~!?Q__§_'ri_~JQ_l1-J1=,A' l~~~ER~§f~lj __ LLLLL 

____ [ _J ____ [ ___ J__L_L_Li_L~---J _ ___[ _ _J______[__J _ _J_L_L _ _j__t-i--_J__L_U __ _j_ ____ l __ l L -1- _i__L__L_ _ _j__J J __ J ___ 1 ___ 1 ___ 

_ _l _j ii?0JQJ11f?iiet~ _JZ~QaLd t:f.J,noh L___l__LL~-LL,_d LLL 

//SYSPUNCH DD UNIT=SYSCP,DCB=STACK=2 
---L.L .1 .Ll--1_LL.Lf---LL-L __ LJ_ __ J __ LJ__~L~___L_L-"-----1----L-Ll_____L_L..L--1 ... --1 ___ J __ _ 

.L.LJ.......l_! I I I I I I I I I I I I 

Figure 10. Examples of DD Statements for 
Unit Record Devices 

}?CB Parametc~r: 

{MODE=E~ {' S'rACK=l} 
DCB= ( MODE=C J , S'rACK= 2 ) 

specify options for the card read 
punch. The MODE subparameter indi­
cates whether the card is transmitted 
in column binary or EBCDIC mode; c 
specifies column binary, and E speci­
fies EBCDIC. 

The STACK subparameter indicates 
stacker selection for the card read 
punch. 

B2~ting a Data Set To An Output Stream 
(SYSQ!JT): With the SYSOUT parameter, out­
put data sets can be routed to a system 
output stream and handled much the same as 
system messages. 

SYSOUT=A 
can be used with sequential schedulers 
to indicate that the data set is to be 
written on the system output device. 
No parameter other than the DCB param­
eter has any meaning when SYSOUT=A i~ 
used. This form of the SYSOUT param­
eter may be specified for printer data 
sets. 

SYSOU'r=B 

32 

can be used with sequential schedulers 
to indicate the system card punch 
unit. The priority scheduler routes 
the output data set to class B. 

SYSOUT=<xC,program-nameJC,form-number]) 
is used with priority schedulers. 
When priority schedulers are used, a 
data set is normally written on an 
intermediate direct access device dur­
ing program execution and later routed 
through an output stream to a system 
output device. The nxn is to be 
replaced by an alphabetic or numeric 
character that specifies the system 
output class to be used. output writ­
ers route data from the output classes 
to system output devices. The DD 
statement for this data set can also 
include a unit specification that 
describes the intermediate direct 
access device and an estimate of the 
space required. If these parameters 
are omitted, the job scheduler pro­
vides default values as the job is 
read and processed. 

If there is a special installation 
program to handle output operations, 
its nprogram-namen should be speci­
fied. "Prograrn-namen is the member 
name of the program, which must reside 
in the system library. 

If the output data set is to be 
printed or punched on a specific type 
of output form, a 4-digit "form­
numbern should be specified. This 
form number is used to instruct the 
operator, in a message issued at the 
time the data set is to be printed, of 
the form to be used. 

Retrieving Previously Created Data Sets 

If a data set is created with standard 
labels and cataloged in a previous job, all 
information for the data set, such as rec­
ord format, density, volume sequence num­
ber, device type, etc., is stored in the 
catalog and labels. This information need 
not be repeated in the DD statement used to 
retrieve the data set; only the name 
<DSNAME) and disposition (DISP) is 
required. 

If a data set was created in a previous 
job step in the current job and its dispo­
sition was specified as PASS, all the 
information in the previous DD statement is 
available to the control program, and is 
accessible by ref erring to the previous DD 
statement by name. To retrieve the data 
set, a pointer to a data set created in a 
previous job step is specified by the 
DSNAME parameter. The disposition (DISP) 
of the data set is also specified, along 
with the UNIT parameter if more than one 
unit is to be allocated. 



If a data set is created with standard 
labels in a previous job but not cataloged, 
information for the data set, such as rec­
ord format, density, volume sequence num­
ber, etc., is stored in the labels; the 
device type information is not stored. To 
retrieve the data set, the name (DSNAME), 
disposition (DISP), volume serial number 
(VOLUME), and device (UNIT) must be 
specified. 

If a data set is created with no labels 
and cataloged, device type information is 
stored in the catalog. To retrieve the 
data set, the name (DSNAME), disposition 
(DISP), volume serial number (VOLUME>, and 
the LABEL and DCB parameters must be 
specified. 

Examples of the use of DD statements to 
retrieve previously created data sets are 
shown in Figure 11. 

IDENTIFYING A CREATED DATA SET: The DSNAME 
parameter indicates the name of a data set 
or refers to a data set defined in the cur­
rent or a previous job step. 

specifying a Cataloged Data set by Name: 

DSNAME=dsname 
the name of the data set is indicated 
by "dsname." If the data set was pre­
viously created and cataloged, the 
control program uses the catalog to 
find the data set and instructs the 
operator to mount the required 
volumes. 

Specifying a Generation Data Group or PDS: 

DSNAME=dsname(element) 
indicates either a generation data set 
contained in a generation data group, 
or a member of a partitioned data set. 
The name of the generation data group 
or partitioned data set is indicated 
by "dsname"; if "element" is either 0 
or a signed integer, a generation data 
set is indicated. For example, 

DSNAME=FIRING(-2) 

indicates the thirdmost recent member 
of the generation data group FIRING. 
(See the Data Management publication 
for the complete description of 
generation data sets.> If "element" 
is a name, a member of a partitioned 
data set is indicated. 

Note: Members of a partitioned data 
set may be read as input to a FORTRAN 
object program or created as output 
from a FORTRAN object program, but 
only if the member name and either 
LABEL=<,,,IN) or LABEL=(,,,OUT) are 
specified in an associated DD 
statement. 

Ref erring to a Data Set in the current Job 
SteP.: 

DSNAME=•.ddname 
indicates a data set that is defined 
previously in a DD statement in this 
job step. The • indicates the current 
job. The name of the data set is 
copied from the DSNAME parameter in 
the DD statement named "ddname". 

Sample Coding Form 

Figure 11. Retrieving Previously Created Data Sets 

Job control Language 33 



Paqe Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

g~t ~!: ·~ !_!!g_:t_~2_--~-Q-~."!:.._~--~~t__ !_!! __ ~-~~ e V!_Q.!!§._~Q.Q 
::.~ !:~!~ f2 : 

DSNAME=*. stepname .• ddname 
indicates a data set that is defined 
in a DD statement in a previous job 
~tep in this job. The * indicates the 
current iob, and "stepname" is the 
name of a previous job step. The name 
of the data set is copied from the 
DSNAME param1~ter in the DD statement 
named "ddname". For example, in the 
following control statements the DD 
~:;tatemE:mt FTOBFOOl in job step S2 
indicates that the data set name 
{TIME) is copied from the DD statement 
PT09F001 in job step Sl. 

//LAU NCH ,JOB 
//.._TOBLIB DD DSNl\.ME=FIRING, DISP= (OLD, PASS) 
//Sl EXEC PGM=ROCKET 
//FT01F001 DD DSNAME=RATES(+l),DISP=OLD 
//FT09F001 DD DSNAME=TIME,DISP=(OLD,PASS) 
//S2 EXEC PGM=DISTANCE 
//FT0:3F001 DD DSNAME=*· Sl. FT09F001, X 
// DISP=OLD 
/ /FTO':>F001 DD * 

E~!.~:r~::j_,_f!g __ t_g~-~-~~t~§.~t- in a Ca taloqed 
Procedure: .. ,. - ---·- - ______ , __ 

DSNAME=*.stepname.procstep.ddname 
... ndicates a data set that is defined 
'n a cataloged procedure invoked by a 
previous job step in this job. The * 
::.ndicates the current job; "stepname" 
~s the name of a previous job step 
that invoked the cataloged procedure; 
"procstep" is the name of a step in 
the cataloged procedure. •rhe name of 
t~he data set is copied from the DSNAME 
rarameter in the DD statement named 
;,; ddname n • 

DSNAME=&name 
assigns a name to a temporary data 
~et. The control program assigns the 
data set a unique name which exists 
only until the end of the current job. 
The data set is accessible in subse­
quent job steps by specifying "&name". 
'Ihis option is useful in passing an 
object module from a compiler job step 
ta a linkage editor job step. 

DSNAME=&name(eleme:nt) 

34 

assigns a namie to a member of a tem­
porary l?DS. 'rhe name is assigned in 
the sam1~ mann•er as for the DSNAME= 
&name option. The "&name(element)" 
option is use:ful in storing load 

modules that will be executed in a 
later job step in the current job. 

SPECIFYING THE DISPOSITION OF A DATA SET: 
The DISP parameter is specified for both 
previously created data sets and data sets 
being created in this job step. It con­
tains three subparameters. 

(SHR) 
)NEWl 

DISP= ()OLD ( 
(Moo) [

,DELETE] [,DELETE J ,KEEP ,KEEP 
,PASS ,CATLG . 
,CATLG ,UNCATLG. 
1 UNCATLG_ 

The first subparameter indicates the 
status of the data set at the beginning of 
or during the job step~ 

SHR 

NEW 

OLD 

MOD 

indicates that the data set resides on 
a direct-access volume and is used as 
input to a job whose operations do not 
prevent simultaneous use of the data 
set as input to another job. This 
parameter has meaning only in a multi­
programming environment for existing 
data sets. If it is omitted in a mul­
tiprogramming environment, the data 
set is considered unusable by any 
other concurrently operating job. If 
it is coded in other than a multipro­
gramming environment, the system 
assumes that the disposition of the 
data set is OLD • 

indicates that the data set is created 
in this step. NEW is discussed in 
more detail in the section "Creating 
Data Sets." 

indicates that the data set was 
created by a previous job or job step. 

indicates that the data set was 
created in a previous job or job step, 
and that additional records are to be 
added to it. Before the first input/ 
output operation for the data set 
occurs, the data set is automatically 
positioned after the last record in 
the data set. If MOD is specified and 
no volume information (e.g., volume 
serial number) is available for the 
data set, the system assumes the data 
set does not yet exist and creates the 
data set for the :job step. (Volume 
information is considered available if 
it is coded in the DD statement, 
passed with the data set from a pre­
vious step, or contained in the 
catalog.> 



The second subparameter indicates the 
disposition of the data set at normal job 
step termination. 

DELETE 

KEEP 

PASS 

causes the space occupied by the data 
set to be released and made available 
at the end of the current job step. 
If the data set was cataloged, it is 
removed from the catalog. 

insures that the data set is kept 
intact until a DELETE parameter is 
specified in a subsequent job or job 
step. KEEP is used to retain uncata­
loged data sets for processing in 
future jobs. KEEP does not imply 
PASS. 

indicates that the data set is 
ref erred to in a later job step. When 
a subsequent reference to the data set 
is made, its PASS status lapses unless 
another PASS is issued. The final 
disposition of the data set should be 
stated in the last job step that uses 
the data set. When a data set is in 
PASS status, the volume(s) on which it 
is mounted is retained. If demounting 
is necessary, the control program 
issues a message to mount the vol-
ume (s) when needed. PASS is used to 
pass data sets among job steps in the 
same job. 

If a data set on an unlabeled tape is 
being passed, the volume serial number 
must be specified in the VOLUME=SER= 
parameter of the DD statement that 
passed the data set. 

Note: The PASS status of the private 
library specified in a JOBLIB DD statement 
always remains in effect for the duration 
of a job. 

CAT LG 
causes the creation of a catalog entry 
that points to the data set. The data 
set can then be ref erred to in subse­
quent jobs or job steps by name (CATLG 
implies KEEP). 

UNCATLG 
causes references to the data set to 
be removed from the catalog at the end 
of the job step. 

If the second subperameter is not speci­
fied, no action is taken to alter the sta­
tus of the data set. If the data set was 
created in this job, it is deleted at the 
end of the current job step. If the data 
set existed before this job, it exists 
after the end of the job. 

The third subparameter indicates the 
disposition of the data set if the job step 
terminates abnormally. This is the condi­
tional disposition of the data set. 
Explanations for DELETE, KEEP, CATLG, and 
UNCATLG are the same as those for normal 
termination. 

~= 

• If a conditional disposition is not 
specified and the job step abnormally 
terminates, the requested disposition 
(the second subparameter of the DISP 
keyword) is performed. 

• Data sets that were passed but not 
received by subsequent steps because of 
abnormal termination will assume the 
conditional disposition specified the 
last time they were passed. If a con­
ditional disposition was not specified 
then, all data sets that were new when 
initially passed are deleted. All 
other data sets are kept. 

• A conditional disposition other than 
DELETE for a temporary data set is 
invalid, and the system assumes DELETE. 

Effect Of DISP Parameter at End of FORTRAN 
Job: In a FORTRAN job that is terminated 
by a STOP or CALL EXIT statement all data 
sets that were used by the job will be 
closed. The closing operation will posi­
tion the volume in accordance with the DISP 
parameter, as follows: 

DELETE 

KEEP, CATLG, UNCATLG 

DELIMITER STATEMENT 

Positioning Action 
Forward space to end 
of data set 

Rewind 

Rewind and unload 

The delimiter statement <see Figure 12) 
is used to separate data from subsequent 
control statements in the input stream, and 
is placed after each data set in the input 
stream. 

r---·-T-----------------------------------, 
fNamef I 
~---·-+-----------------------------------~ 
I/* I I L._ ___ i ___________________________________ J 

Figure 12. Delimiter Statement 

Job Control Language 35 



The delimiter statement contains a slash 
in column l, an asterisk in column 2, and a 
blank in column 3. The remainder of the 
card may contain comments. 

CO~NT STATEMENT 

The comment statement (see Figure 13) is 
used to enter any information considered 
helpful by the programmer. It can be 
inserted before or after any control state­
ment that follows the JOB statement. Com­
ments can be coded in columns 4 through 80. 
The comments cannot be continued onto 
another statement. (If the comment state-

36 

ment appears on a system output listing, it 
can be identified by the appearance of *** 
in columns 1 through 3.) 

r----,--------------------------·----------1 
I Name I I 
~----+------------------------------------i 
I//* I I 
L----..l----------------------·----·----------J 
Figure 13. Comment Statement 

The comment statement contains a slash 
in column 1, a slash in column 2, and an 
asterisk in column 3. The rest of the card 
can contain comments. 



To process a FORTRAN source module from 
compilation through execution, three steps 
are required: to compile the source module 

Ito obtain an object module, to linkage edit 
the object module to obtain a load module,1 
and to execute the load module. For each 
of these three steps, job control state­
ments are required to indicate the program 
or procedure to be executed, to specify 
options for the compiler and linkage edi­
tor, to specify conditions for termination 
of processing, and to define the data sets 
used during processing. Because writing 
these job control statements can be time­
consuming work for the programmer, IBM sup­
plies, for each compiler, four cataloged 
procedures to aid in the processing of FOR­
TRAN modules. The use of cataloged proce­
dures minimizes the number of job control 
statements that must be supplied by the 
programmer. 

USING CATALOGED PROCEDURES 

When a programmer uses cataloged proce­
dures, he must supply the following job 
control statements. 

1. A JOB statement. 

2. An EXEC statement that indicates the 
cataloged procedure to be executed. 

3. A procstep.SYSIN DD statement that 
specifies the location of the source 
module(s) or the object module(s) to 
the control program. (Note: If the 
source module(s) and/or object mod­
ule Cs) are placed in the input stream, 
a delimiter statement is required at 
the end of each data set.) 

In addition, a GO.SYSIN DD statement 
can be used to define data in the input 
stream for load module execution. (A de­
limiter statement is required at the end of 
the data.) 

The job control statements needed to 
invoke the procedures, and deck structures 
used with the procedures are described in 
the following text. 

1As an alternative, the object module may 
be edited and then automatically executed 
by the loader, another IBM-supplied pro­
gram. Details on the use of the loader 
can be found in the Linkage Editor ~nd 
Loader publication. 

FORTRAN JOB PROfESSI~§ 

COMPILE 

The FORTRAN IV (G) cataloged procedure 
for compilation is FORTGC; the FORTRAN IV 
(H), FORTHC. 2 These cataloged procedures 
consist of the control statements shown in 
Figures 42 and 47, respectively. 

Figures 14, 15, and 16 show control 
statements that can be used, as programming 
needs dictate, to invoke for either compil­
er the cataloged procedure for compilation. 
For both compilers, control statements and 
control statement fields are identical, 
except for the procedure-name specified on 
the EXEC statement: FORTGC is specified 
for the (G) compiler; FORTHC, for the (H) 
compiler. In the control statement 
sequences shown, the SYSIN data set con­
taining the source module is defined as 
data in the input stream for the compiler. 
Note that a delimiter statement follows the 
FORTRAN source module. 

//jobname JOB 
// EXEC FORTGC or FORTHC 
//FORT.SYSIN DD * 
r----~-----------------------------------1 

I FORTRAN Source Module I l _________________________________________ J 

/* 

Figure 14. Invoking the Cataloged Proce­
dure FORTGC or FORTHC 

~inq~Qompile: A sample deck structure to 
compile a single source module is shown in 
Figure 15. 

//JOBSC JOB 00,FORTRANPROG,MSGLEVEL=l 
//EXECC EXEC PROC=FORTGC or PROC=FORTHC 
//FORT.SYSIN DD * 
r-----------------------------------------1 
I FORTRAN Source Module I l _________________________________________ J 

/* 

Figure 15. Compiling a Single Source 
Module 

~at£hed Compile: A sample deck structure 
to batch compile is shown in Figure 16. 

2For FORTRAN IV (H), if the EDIT option is 
specified, a SYSUTl data set must be 
defined as a work data set for the compil­
er; if the compiler XREF option is speci­
fied, a SYSUT2 data set must be defined as 
a work data set. 

FORTRAN Job Processing 37 



//JOBBC JOB 00,FORTRANPROG,MSGLEVEL=l 
//EXECC EXEC: PROC=FORTGC or PROC=FORTHC 
//FORT.SYSIN DD * 
r-----------·-----------------------------1 
I First FORTRAN Source Module I 
L-----------·-----·-----------------------J 

r----------------------------------------1 
I Last FORTRAN Source Module I 
L-----------·-----·----------------------J 
/* 

Figure 16. Compiling several Source 
Modules 

When several source modules are entered 
in the SYSIN data set for one job step, the 
compiler recognizes the FORTRAN END state­
ment. If the next card is a delimiter 
statement, control returns to the control 
program at the end of the compilation. If 
the next card is a FORTRAN statement, con­
trol remains with the FORTRAN compiler. 

COMPILE AND LINKAGE EDIT 

:For FORTRAN IV (G), the cataloged proce­
dure to compile FORTRAN source modules and 
linkage edit the resulting object modules 
is FORTGCL; for FORTRAN IV (H), FORTHCL. 
These cataloged procedures consist of the 
control statements shown in Figures 43 and 
48, respectively. 

Figure 17 shows control statements that 
can be used to invoke FORTGCL or FORTHCL. 
The control statements are identical for 
both compilers, except for the procedure­
name specified on the EXEC statement: 
FORTGCL is specified for the (G) compiler; 
FORTHCL, for the (H) compiler. 

//jobname JOB 
// EXEC FORTGCL or FORTHCL 
//FORT.SYSIN DD * 
r------------------------------------~---1 

I F'ORTRAN Source Module I 
l----------·-----·-----------------------J 
/* 

Figure 17. Invoking the Cataloged Proce­
dure F'ORTGCL or FORTHCL 

LINKAGE EDI~' AND EXECUTE 

For FORTRAN IV (G), the cataloged proce­
dure to linkage edit FORTRAN object modules 
and execute the resulting load module is 
FORTGLG; for FORTRAN IV (H) I FORTHLG. 
These cataloged procedures consist of the 

38 

control statements shown in Figures 44 and 
49, respectively. 

Figure 18 shows control statements that 
can be used to invoke FORTGLG or FORTHLG. 
The control statements are identical for 
both compilers, except for the procedure 
name specified on the EXEC statement: 
FORTGLG is specified for the (G) compiler; 
FORTHLG, for the (H) compiler .. 

//jobname JOB 
// EXEC FORTGLG or FORTHLG 
//LKED.SYSIN DD * 
r--------------------------------·--------1 
I FORTRAN Object Module I 
L----------------------------------------J 
/* 

Figure 18. Invoking the Cataloged Proce­
dure FORTGLG or FORTHLG 

A sample deck structure to linkage edit 
and execute, as one load module, several 
object modules entered in the input stream 
is shown in Figure 19. 

The object module decks were created by 
the DECK compiler option. The linkage edi­
tor recognizes the end of one module and 
the beginning of another, and resolves 
references between them. 

//JOBBLG JOB 00, FORTPROG, MSGLEVEL:=l 
//EXECLG EXEC PROC=FORTGLG or PROC=FORTHLG 
//LKED.SYSIN DD * 
r-----------------------------------------1 
I First FORTRAN Object Module I 
l-------------------------------·---------J 

r--------------------------------·---------1 
I Last FORTRAN Object Modul1e I 
L---------------------·-----------·---------J 
/* 
//GO.SYSIN DD * 
r--------------------------------·---------1 
I Data I 
L-----------------------------------------J 
/* 

Figure 19. Linkage Edit and Execute 

A sample deck structure is shown in 
Figure 20 to linkage edit and execute, as 
one load module, object modules that are 
members of the cataloged sequential data 
set, OBJMODS, which resides on a tape 
volume. In addition, a data set in the 
input stream is processed using the SYSIN 
data set. 



Page of GC28-6817·-2, Revised 12/30/70, by TNL: GN28-0591 

//JOBBLG JOB 00,FORTPROG,MSGLEVEL=l 
//EXECLG EXEC FORTGLG or FORTHLG 
//LKED.SYSIN DD DSNAME=OBJMODS,DISP=OLD 
//GO.SYSIN DD * 
r-----------------------------------------1 
I Data I l _________________________________________ J 

/* 

Figure 20. Link.age Edit and Execute Object 
Modules in a Cataloged Data Set 

COMPILE, LINKAGE EDIT, AND EXECUTE 

The FORTRAN IV (G) cataloged procedure 
FORTGCLG and the FORTRAN IV (H) cataloged 
procedure FORTHCLG each pass a source 
through three procedure steps -- compile, 
linkage edit, and go (execute). These cat­
aloged procedures consist of the control 
statements shown in Figures 45 and 50, 
respectively. 

Figures 21, 22, and 23 show control 
statements used to invoke FORTGCLG or 
FORTHCLG. For both compilers, control 
statements and control statement fields are 
identical, except for the procedure name 
specified on the EXEC statement: FORTGCLG 
is specified for the (G) compiler; 
FORTHCLG, for the (H). 

//jobname JOB 
// EXEC PROC=FORTGCLG or PROC=FORTHCLG 
//FORT.SYSIN DD * 
r-----------------------------------------1 
I FORTRAN source Module I l _________________________________________ J 

/* 

Figure 21. Invoking the cataloged Proce­
dure FORTGCLG or FORTHCLG 

~~ngle Compile, Linkage Edit, and Execute: 
Figure 22 shows a sample deck structure to 
compile, linkage edit, and execute a single 
source module. 

//JOBSCLG JOB 00,FORTPROG,MSGLEVEL=l 
//EXECC EXEC FORTGCLG or FORTHCLG 
//FORT.SYSIN DD * 
r-----------------------------------------1 
I FORTRAN Source Module I l _________________________________________ J 

/* 

Batched Compile, Linkage Edit, and Execu~~: 
Figure 23 shows a sample deck structure to 
batch compile, linkage edit, and execute a 
FORTRAN main program and its subprograms. 
The source modules are placed in the input 
stream along with a data set that is read 
using the SYSI N data set. 

//JOBBCLG JOB 00,FORTPROG,MSGLEVEL=l 
//EXECCLG EXEC FORTGCLG or FORTHCLG 
//FORT.SYSIN DD * 
r-----------------------------------------1 
I l"irst FORTRAN source Module I 
L----------------------------------------J 

r-----------------------------------------1 
I Last FORTRAN source Module I l _________________________________________ J 

/* 
//GO.SYSIN DD * 
r-----------------------------------------1 
I Data I l _________________________________________ J 

/* 

Figure 23. Batched compile, Linkage Edit, 
and Execute 

COMPILE AND LOAD 

The FORTRAN IV (G) cataloged procedure 
FORTGCLD and the FORTRAN IV (H) cataloged 
procedure FORTHCLD compile FORTRAN source 
modules and load the resulting object 
modules. The load step combines the func­
tion of the linkage editor with execution 
of the edited module. 

Figure 23.1 shows control statements 
that can be used to invoke FORTGCLD or 
FOKrHCLD. 

//jobname JOB 
//EXECLD EXEC PROC=FORTGCLD 

or PROC=FORTHCLD 
//FORT.SYSIN DD * 
r-----------------------------------------1 
I FORTRAN Source Module I 
L----------------------------------------J 
/* 

//GO.SYSIN DD * 
r-----------------------------------------1 •Figure 23.1. 
I Data I 

Invoking the Cataloged Proce­
dure FORTGCLD or FORTHCLD 

l _________________________________________ J 

/* 

Figure 22. Single Compile, Linkage Edit, 
and Execute 

Si_ggl._~£ompil~_and LoaQ.: Figure 23.2 shows 
control statements that can be used to com­
pile and load a single source module. 

FORTRAN Job Processinq 39 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

//jobname JOB OOf'SOURCE A',MSGLEVEL=l 
//EXECA EXEC FORTGCLD or FORTHCLD 
//FORT.SYSIN DD * 
r-----------------------------------------1 
I FORTRAN source Module I 
L-----------------------------------------J 
/* 
//GO.,SYSIN DD * 
r-----------------------------------------1 
I Data I 
L-----------------------------------------J 
/* 

• Figure 23. 2. Single Compile and Load 

Batched Comp..i.le and Load: Figure 23.3 
shows control statements that can be used 
to batch compile and load a FORTRAN main 
program and its subprograms. The source 
modules are placE~d in the input stream 
along with a data set that is read using 
the SYSIN data set. 

//jobname JrOB 00, I SOURCE B' I MSGLEVEL=l 
//EXECB EXEC PROC=FORTGCLD or PROC=FORTHCLD 
//FORT.SYSIN DD * 
r-----------------------------------------1 
I First FOHTRAN source Module I 
L-----------------------------------------J 

r-----------------------------------------1 
I Last FORTRAN Source Module I 
L----------------·-------------------------J 
/* 
//GO.SYSIN DD * 
r-----------------------------------------1 
I Data I 
L-----------------------------------------J 
/* 

• Figure 23. 3. Batched compile and Load 

COMPILER PROCESSING 

The names for DD statements (ddnames) 
relate I/O statements in the compiler with 
data sets used by the compiler. These 
ddnames must be used for the compiler. 
When the system is generated, names for I/O 
device classes are also established and 
must be used by the programmer. 

•rhe program name for the FORTRAN IV (G) 
compiler is IEYFORT; for the FORTRAN IV (H) 

40 

compiler, IEKAAOO. If either compiler is 
to be executed without using the supplied 
cataloged procedures, an EXEC statement of 
the following form must be used: 

// EXEC PGM=IEYFORT or // EXEC PGM=IEKAAOO 

(For more information on procedures and 
options in invoking IEYFORT or IEKAAOO, see 
"Appendix A: Invoking the FORTRAN 
compiler."> 

The compiler can use seven data sets. 
To establish communication between the com­
piler and the programmer, each data set is 
assigned a specific ddname. Each data set 
has a specific function and device require­
ment. Table 3 lists the ddnames, func­
tions, and device requirements for the data 
sets. 

To compile a FORTRAN source module, two 
of these data sets are necessary -- SYSIN 
and SYSPRINT, along with the direct access 
volume(s) that contains the operating sys­
tem. However, with these two data sets, 
only the source listing is generated by the 
compiler. If an object module is to be 
punched and/or written on a direct-access 
or magnetic tape volume, a SYSLIN and/or 
SYSPUNCH DD statement must be supplied.1 

For the DD statements SYSIN, SYSABEND, 
SYSUDUMP, or SYSPRINT, an intermediate 
storage device may be specified instead of 
the card reader or printer. The intermedi­
ate storage device can be magnetic tape or 
a direct-access device. 

If an intermediate device is specified 
for SYSIN, the compiler assumes that the 
source module deck was written on interme­
diate storage by a previous job or job 
step. If an intermediate device is speci­
fied for SYSPRINT, the map, listing, and 
error/warning messages are written on 
intermediate storage; a new job or job step 
can print the contents of the data set. 
When the SYSPRINT data set is written on 
intermediate storage, carriage control 
characters are placed in the records. 

1For FORTRAN IV (H), if a structured source 
listing is to be generated, a SYSUTl DD 
statement must be supplied. If a cross 
reference listing is to be generated by 
the compiler, a SYSUT2 DD statement must 
be supplied. 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

Table 3. compiler ddnames 
r--------T-----------T--------------------1 
lddname !Function !Device Requirements I 
r--------.J_----------i--------------------~ 
!FORTRAN IV (G) and FORTRAN IV (H) I 
~--------T-----------y--------------------i 
ISYSIN !reading thel•card reader I 
I !source !•intermediate I 
I I program I storage I 
r--------+-----------+--------------------i 
ISYSPRINTlwriting !•printer I 
I lthe storagel•intermediate I 
I lmap, I storage I 
I I listing, I I 
I llabel map, I I 
I land I I 
I I messages I I 
~--------+-----------+--------------------i 
ISYSPUNCHlpunching l•card punch1 I 
I lthe object !•direct access I 
I I module deck I •magnetic tape I 
r--------+-----------+--------------------i 
ISYSLIN !output datal•direct access I 
I lset for thel•magnetic tape I 
I !object !•card punch1 I 
I I module, I I 
I !used as I I 
I I input to I I 
I lthe linkage! I 
I I editor I I 
r--------i-----------i--------------------i 
!FORTRAN IV (H) Only I 
~--------T-----------T--------------------i 
ISYSUTl !work data !•direct access I 
I lset for thel•magnetic tape I 
I !structured I I 
I I source I I 
I I listing I I 
r--------+-----------+--------------------i 
ISYSUT2 twork data !•direct access I 
I tset for thel•magnetic tape I 
I I compiler I I 
I I cross I I 
I I reference I I 
I I listing I I 
r--------+-----------+--------------------~ 
ISYSABENDlwriting thel•printer I 
I or !dump for anl•intermediate I 
ISYSUDUMPlabnormal I storage I 
I I termination I I 
r--------i-----------i--------------------i 
l 1 These must not be the same card punches.I 
L-------------------------------·----------J 

compiler Device Classes 

Names for input/output device classes 
used for compilation are also specified by 
the operating system when the system is 
generated. The class names, functions, and 
types of devices: are shown in Table 4. 

The data sets: used by the compiler must 
be assigned to the device classes listed in 
Table 5. 

compiler Data Set Assumptions 

Standard assumptions are made for the 
DCB parameter of the data sets used by the 
FORTRAN IV (G) and (H) compilers. Table 6 
contains the values set for the logical 
record length, record format, and blocksize 

FORTRAN Job Processinq 40.1 





for the FORTRAN IV (G) compiler. Table 7 
contains the values set for the logical 
record length, record format, and blocksize 
for the FORTRAN IV (H) compiler. Of the 
values in these two tables, only the values 
for blocksize may be overridden with a DD 
statement. 

In addition, the programmer may specify 
the number of buffers to be used for the 
compiler data sets. If this information is 
missing, the queued sequential access 
method (QSAM) default is used. This 
default is three buffers for an IBM 2540 
card read punch and two buffers for all 
other devices. 

Table 4. Device Class Names 
r----------T---------------T--------------1 
!Class Name!Class FunctionstDevice Type I 
~---------+---------------+--------------i 
ISYSSQ !writing, !•magnetic tape! 
I !reading, and !•direct access! 
I I backspacing I I 
I !<sequential) I I 
~---------+---------------+--------------i 
ISYSDA !writing, !•direct access! 
I I reading, I I 
I I backspacing, I I 
I I and updating I I 
I !records in I I 
I jplace (direct) I I 
~----------+---------------+--------------i 
ISYSCP !punching cards !•card punch I 
~----------+---------------+--------·------~ 
IA ISYSOUT output !•printer I 
I I !•magnetic tape! 
~----------+---------------+--------------1 
IB ISYSOUT card l•card punch I 
I I image output I •magnetic tape I 
L----------i---------------i--------------J 

Compiler Options 

Options may be passed to the FORTRAN IV 
(G) or (H) compiler through the PARM par­
ameter in the EXEC statement (see Figure 
24). 

The following information may be speci­
fied for both compilers: 

1. Whether a listing of an object module 
is printed. 

2. The name assigned to the program. 

3. The number of lines per page for the 
source listing. 

4. Whether the source module is coded in 
Binary Coded Decimal (BCD) or Extended 
Binary Coded Decimal Interchange code 
(EBCDIC). 

5. Whether a list of the source state­
ments, with their associated internal 
statement numbers, is printed. 

6. Whether an object module is punched. 

7. Whether a storage map of variable 
names used in the source mdoule is 
printed. 

8. Whether the compiler writes ~he object 
module on external storage for input 
to the linkage editor. 

9. Whether traceback information is to be 
inserted into the source module. 

Table 5. Correspondence Between Compiler ddnames and Device Classes 
r---------T------------------------------------T---------------------------------------1 
lddname I Possible Device Classes (H) I Possible Device Classes (G) I 
~----------+------------------------·------------+---------------------------------------~ 
ISYSIN I SYSSQ, or the input stream device I SYSSQ, or the input stream device I 
I I (specified by DD* or DD DATA), I (specified by DD* or DD DATA), I 
I I or a device specified as the I or a device specified as the I 
I I card reader I card reader I 
~----------+------------------------------------+---------------------------------------~ 
ISYSPRINT I A,SYSSQ I A,SYSSQ I 
~----------+------------------------------------+---------------------------------------~ 
ISYSPUNCH I B,SYSCP1 ,SYSSQ,SYSDA I B,SYSCP I 
~----------+------------------------------------+---------------------------------------~ 
ISYSLIN I SYSSQ,SYSDA,SYSCP1 I SYSSQ,SYSDA I 
~----------+-------------------------------------+---------------------------------------~ 
ISYSUTl I SYSSQ I I 
~----------+------------------------------------+-·--------------------------------------1 
ISYSUT2 I SYSSQ I I 
~----------+------------------------------------+---------------------------------------~ 
ISYSABEND I A,SYSSQ I I 
I or I I I 
ISYSUDUMP I I I 
~----------i------------------------------------i----------------------------------------~ 
11sYSPUNCH and SYSLIN must got be assigned to the same card punch. I 
L---------------------------------------------------------------------------------------J 

FORTRAN Job Processing 41 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

Table 6. DCB Assumptions for the (G) Com-
piler Data Sets 

r------------T--------T--------T----------1 
I ddname I L:RECL I RECFM I BLKSIZE I 
~------------+--------+--------+----------i 
I SYSIN I 80 I FB I 80 I 
~------------+--------+--------+----------i 
I sYsPRIN'r I 120 I FBSA I 120 I 
~------------+--------+--------+----------i 
I SYSLIN I 80 I FBS I 80 I 
~------------+--------+--------+----------i 
I SYSPUNCH I BO I FBSA I 80 I 
~------------L---------..l-------·--L----------i 
jNot~: The values specified for LRECL and! 
IRECFM cannot be changed by the FORTRAN I 
I programmer. The value for BI,KSIZE may be I 
jchanged. I 
I I 
I For fixed--length records (F), S indicates I 
I standard blocks

1
, with no truncated blocks I 

jor unfilled tracks within the data set. I 
L-----------------------------------------J 

The following information may be speci­
fied for the (H} compiler only: 

1. Whether a storage map of labels used 
in the source module is printed. 

2. The type of optimization, if any, 
desired by the programmer. 

3. Whether a structured source listing is 
writtEm. 

4. Whether a cross reference listing is 
printed. 

Compiler options in the PARM parameter 
need not bE~ coded in any specific order • 

Table 7. DCB Assumptions for the (H) Com-
piler Data Sets 

r----------T---------·-T--------T----------1 
I ddname I LRECL I RECFM I BLKSIZE1 I 
~---------+----------+--------+----------i 
I SYSIN I 80 I FB I 801 I 
~----------+----------+--------+----------i 
I SYSPRINT I 137 I VBA I 1411 I 
~---------t----------+--------+----------i 
I SYSLIN I 80 I FB I 801 I 
~----------+-----------+--------+----------.Jf 
I SYSPUNCH I 80 I FB I 801 I 
~---------t----------+--------+----------i 
I SYSUTl I 105 I FB I 10502 I 
~----------+----------+--------+----------i 
I SYSUT2 11024-40963 1 FB 11024-40962 1 
~-----------L---------·--L--------.J.----------~ 
1This value may be increased by overrid­

ing the present value, either through a 
DCB BLKSIZE parameter in the associated 
DD statement or through the DSCB block­
size information for a preallocated data 
set -- if the overriding value is a mul­
tiple of LRECL. 

2This value is fixed by the compiler and 
may not be overridden. If BLKSIZE is 
provided either through a DCB parameter 
in the DD statement or through a DSCB 
for a preallocated data set, it is 
ignored. 

3 The value is within this range, and the 
actual value is calculated during execu­
tion. The size of one of the tables 
used by the compiler (the address con­
stant table) is compared with the track-I 
size of the device specified by SYSUT2, I 
and the LRECL and BLKSIZE fields are I 
equated to the smaller value. I 

L-------------------------·--------------J 

. -------------------------------------------------------------------------·--------------, 
Compiler Options: FORTRAN IV (G) and FORTRAN IV (H) 

' lLIST ( 
= NOLI ST\ 

\,DECK ( 
,,.~ODECK\ 

[, NAME=xxxxxx l 

l,MAP ( 
,NOMAP\ l

,LOAD ( 
,NOLOAD~ 

Compiler Options: FORTRAN IV (H) ONLY 

l
' SOURCE ( 

C,LINECNT=xxl ,NOSOURCE~ 

l
' BCD ( 
,EBCDIC~ lr ID l 's. 2 3 

, NOID\ 

~PARM I l' EDIT l )· XREF l I :1 2 3 

IPARM.proc:step\ = '[OPT={_Qlll2ll C,SIZE=nnnnkl ,NOEDIT\ ,NOXREF~ 
~---------------------------------------------------------------------------------------i 
l 1 If the information specified contains blanks, parentheses, or equal signs, e:lther the I 
I subparameter must be enclosed by apostrophes or the entire PARM field must be deli- I 
I mited by apostrophes instead of parentheses. I 
l 2 If only one option is specified and it does not contain any blanks, parentheses or I 

·I equal signs, the delimiting parentheses or apostrophes may be omitted. I 
f 3The maximum number of characters allowed between delimiting parentheses is 100. If I 
I the option list is enclosed in apostrophes, however, the PARM parameter must be coded I 
I on one card. I 
L---------------------------------------------------------------------------------------J 

• Figure 24. Compiler Options 

42 



LIST or NOLIST 

The LIST option indicates that the 
object module listing is written in the 
data set specified by the SYSPRINT DD card. 
(The statements in the object module list­
ing are in a pseudo assembler language for­
mat.> The NOLIST option indicates that no 
object module listing is written. A 
description of the object module listing is 
given in the section "System output." 

NAME=xxxxxx 

The NAME option specifies the name 
(xxxxxx) assigned to a module (main program 
only) by the programmer. If NAME is not 
specified or the main program is not the 
first module in a compilation, the compiler 
assumes the name MAIN for the main program. 
The name of a subprogram is always the name 
specified in the SUBROUTINE or FUNCTION 
statement. 

The name appears in the source listing, 
map, and object module listing. (See "Mul­
tiple Compilation Within a Job Step" in 
this section for additional considerations 
concerning the NAME option.) 

LINECNT=xx 

The LINECNT option specifies the maximum 
number of lines <xx) per page for a source 
listing. The specified number <xx) may be 
any in the range 01 to 99. If LINECNT is 
not specified, a default of 50 lines per 
page is provided. (The LINECNT option is 
effective only at compile time.) 

The SOURCE option specifies that the 
source listing is written in the data set 
specified by the SYSPRINT DD statement. 
The NOSOURCE option indicates that no 
source listing is written. A description 
of the source listing is given in the sec­
tion "System output." 

DECK or NODECK 

The DECK option specifies that an object 
module card deck is punched as specified by 
the SYSPUNCH DD statement. The object 
module deck can be used as input to the 
linkage editor in a subsequent job. NODECK 
specifies that no object module deck is 
punched. A description of the deck is 
given in the section "System Output." 

~ Q~~OMAP 

The MAP option specifies that a table of 
names is written in the data set specified 
by the SYSPRINT DD statement. The type and 
location of each name is listed. Included 
in the table of names for FORTRAN IV (H) is 

a table of labels appearing in the input 
stream. A description of the table is 
given in the section "System Output." The 
NOMAP option specifies that the table of 
names is not written. 

The LOAD option indicates that the 
object module is written in the data set 
specified by the SYSLIN DD statement. This 
option must be used if the cataloged proce­
dure to compile and linkage edit, or to 
compile, linkage edit, and execute is used; 
i.e., the object module is used as input to 
the linkage editor in the current job. The 
NO:LOAD option indicates that the object 
module is not written on external storage. 
This option can only be used if the cata­
loged procedure to compile is used. 

The BCD option indicates that the source 
module is written in Binary Coded Decimal; 
EBCDIC indicates Extended Binary Coded 
Decimal Interchange code. To intermix BCD 
and EBCDIC in the source module, BCD should 
be specified. 

1.. If the EBCDIC option is selected, 
statement numbers passed as arguments 
must be coded as 

However, if the BCD option is 
selected, statement numbers passed as 
arguments must be coded as 

$!! 

and the $ must not be used as an 
alphabetic character in the source 
module. 

(The n represents the statement 
number.) 

2$ The compiler does not support BCD 
characters either in literal data or 
as print control characters. such 
characters are treated as EBCDIC. For 
example, a BCD + used as a carriage 
control character will not cause 
printing to continue on the same line. 
Programs keypunched in BCD, therefore, 
should be carefully screened if errors 
relating to literal data and print 
control characters are to be avoided. 

ID or NOID 

The ID option specifies that internal 
statement numbers (!SN) are to be generated 
for statements that call subroutine or con-

FORTRAN Job Processing 43 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-059l 

tain external function references. calls 
to IBCOM are not affected. An additional 
four bytes are required for each linkage. 

The ISN is used by the traceback in the 
event of an error in the called subprogram. 
See the discussion on "Load Module output" 
in the section on "System output." 

r------, 
IH ONLYI OPT={01112l 
L------J 

The OPT=O option indicates that the com­
piler uses no optimizing techniques in pro­
ducing an object module. The OPT=l option 
indicates that the compiler treats each 
source module as a single program loop and 
optimizes the loop with regard to register 
allocation and branching. The OPT=2 option 
indicates that the compiler treats each 
source module as a collection of program 
loops and optimizes each loop with regard 
to register allocation, branching, common 
expression elimination, and replacement of 
redundant computations. The options OPT=l 
and OPT=2 are described in more detail in 
the section "Appendix H: FORTRAN IV (H) 
Optimization Facilities." 

r------, 
I H ONLY 1.§.!.~~::_:!:!_nnn~ 
L------J 

In normal instances, the amount of main 
storage allocated for the compile step 
depends on the region size in an MVT 
environment, the partition size in an MFT 
environment, or the machine size in a PCP 
environment. The compiler uses all avail­
able main storage except for 3K bytes ClK= 
1024 bytes) which are left for non-resident 
system routines. 

In certain instances, however, a pro­
grammer may wish to limit the amount of 
main storage used by the compiler. An 
example would. be when the FORTRAN H compil­
er is executed as the original task in a 
multitasking environment. Unless the 
amount of main storage used by the compiler 
is limited, no subtasks could be created 
since no more storage would be available in 
the region. 

The programmer may request the amount of 
main storage to be allocated for the com-

44 

piler by specifying SIZE=nnnnK in the 
operand field of the EXEC statement. The 
term nnnn represents the amount of main 
storage available for compilation. This is 
approximately equal to the work area and 
the size of the compil•::-r code. The value 
of nnnn can range from 115 to 9999. 

During compilation, if the unused avail­
able work area is more than 10K bytes, the 
compiler prints the informational message, 
nnnnK BYTES OF CORE NOT USED. This message 
indicates how much smaller the specified 
SIZE value could be. (If the SIZE paramet­
er is not specified, this message indicates 
how much smaller the region size could be). 

The size of the region or partition in 
which the compiler is running must be at 
least 10K bytes larger than the specified 
SIZE value. If the SIZE parameter is spec­
ified incorrectly, the compiler diagnostic 
message IEK410I (INVALID SIZE PARJ!~ETER) is 
produced and the SIZE parameter is ignored. 
r------, 
IH ONLYI EDIT or NOEDIT 
L------J 

The EDIT option specifies that a struc­
tured source listing i::; written in the data 
set specified by the SYSPRINT DD statement. 
This listing indicates the loop structure 
and the logical continuity of the source 
program. If this option is used, OPT=2 
must be specified and a DD statement with 
the name SYSUTl must be supplied. The fol­
lowing is a typical DD statement for a uti­
lity data set: 

//SYSUTl DD DSNAME=&UTl,UNIT=SYSSQ, 
SPACE=(TRK, (40)) 

&UTl 
specifies a temporary data set. 

UNIT=SYSSQ 
specifies that the data set is to 
reside in a sequential de~vice class. 

SPACE=(TRK, (40)) 
specifies that if the data set is 
assigned to a direct access device, 40 
tracks are to be allocated to the data 
set. 

The NOEDIT option specifies that no 
structured source listing is written. A 
description of the structured source list­
ing is given in the section "System 
Output." 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

r------, 
IH ONLYI XREF or NOXREF 
l------J 

The XREF option specifies that a cross 
reference listing of variables and labels 
is written in the data set specified by the 
SYSPRINT DD statement. This listing indi­
cates the internal statement number of 
every statement in which a variable or 
label is used. If this option is speci­
fied, a DD statement with the name SYSUT2 
must be supplied. The NOXREF option speci­
fies that no cross reference listing is 
written. A description of the compiler 
cross reference listing is given in the 
section "System Output." 

~ot~: The default compiler options shown 
in this publication are standard IBM 
defaults; however, during system genera­
tion, an installation can choose its own 
set of default options. 

Several compilations may be performed 
within one job step. The compiler recog­
nizes the FORTRAN END statement in a source 
module, compiles the program, and deter­
mines if another source module follows the 
END statement. If there is another source 
module, another compilation is initiated 
(see Figure 25). 

r----------------------------------------1 
l//JOBRA JOB ,'FORTRAN PROG' I 
I/ /STEPl EXEC FORTGC or F'ORTHC I 
j//FORT.SYSIN DD * 
I 1 READ (8,lO)A,B,C 
I 
I 
I 
I END 
I SUBROUTINE CALC 
I 
I 
I END 
I/* I l _________________________________________ J 

~"igure 25. Multiple Compilation Within a 
Job Step 

Only one EXEC statement may be used to 
initiate a job step; therefore, compiler 
options can be stated only once for all 
compilations in a job step. 

In a multiple compilation, only the 
first program (if it is a main program) is 
given the name specified in the NAME 
option; all subsequent main programs are 
given the name MAIN. If the first program 
is a subprogram, the name specified in the 
NAME option is not used. If the NAME 
option is not specified, all main programs 

FORTRAN Job Processing 44.1 





in a multiple compilation are given the 
name MAIN. For example, in the multiple 
compilation, 

//MULCOM JOB 
// EXEC FORTGC or 

FORTHC,PARM.FORT='NAME=IOR' 
//FORT.SYSIN DD * 

READ(1 1 10)ALP1 BETA 

END 
SUBROUTINE INVERT(A,B) 

END 
READ(S)P,Q,R 

END 
/* 

the first main program is given the name 
IOR; the third program is given the name 
MAIN. The second program is assigned the 
name INVERT. 

When a multiple compilation is per­
formed, the SYSLIN data set contains all 
the object modules, because only one SYSLIN 
DD statement may be supplied for compiler 
output. If tape or direct-access output is 
specified for the compiler, the object 
modules are written sequentially on the 
volume: 

r------------~---T-----------------1 
I Object Module 1 I Object Module 2 I l _________________ .J._ ________________ J 

LINKAGE EDITOR PROCESSING 

The linkage editor processes FORTRAN 
object modules, resolves any references to 
subprograms, and prepares a load module for 
execution.1 To communicate with the linkage 
editor, the programmer supplies an EXEC 
statement and DD statements that define all 
required data sets; he may also supply 
linkage editor control statements. 

--'------------------
1Another IBM-supplied program, the loader, 

combines -- into one job step -- the f unc­
tions of the linkage editor with execution 
of the edited module. Details on the use 
of the loader can be found in the Linkage 
Editor and Loader publication. 

Linkage Editor Names 

E'ive linkage editor programs are avail­
able with the operating system. The pro­
gram names for these linkage editors and 
the minimum storage in which they are 
designed to operate are: 

PCP and MFT MVT-System 

IEWLE150 15K 24K 
IEWLE180 18K 26K 
IEWLF440 44K 54K 
IEWLF880 88K 96K 
IEWI,F128 128K 136K 

(Where K=1024 Bytes) 

All facilities described for the linkage 
editor in this publication are available 
with all five linkage editors, except that 
blocking of primary input/output is avail­
able only with the higher level linkage 
editors: IEWLF440, IEWLF880, and IEWLF128. 

For simpler programming, the linkage 
editors have been assigned.the alias pro­
gram name IEWL. If the programmer speci­
fies the parameter 

PGM=IEWL 

in the EXEC statement, the highest level 
linkage editor provided in the installa­
tion's operating system is executed. If he 
wants to execute a specific linkage editor, 
he must specify the specific program name 
of that linkage editor. 

Linkage Editor Input and Output 

'l~here are two types of input to the 
linkage editor: ~rimary and secondary. 

~rimary input is a sequential data set 
that contains object modules and linkage 
editor control statements. (A member of a 
PDS cannot be the primary input.) Any 
external references among object modules in 
the primary input are resolved by the link­
age editor as the primary input is proc­
essed. Furthermore, the primary input can 
contain references to the secondary input. 
These references are linkage editor control 
statements and/or external references in 
the FORTRAN modules. 

Secondary input resolves the references 
and is separated into two types: automatic 
call library and additional input specified 
by the programmer. The ~Y!:omatic call 
library should always be the FORTRAN 
library (SYSl.FORTLIB), which is the PDS 
that contains the FORTRAN library subpro-

FORTRAN Job Processing 45 



grams. Through the use of DD statements 
the automatic call library can be concate­
nated with <>tiler partitioned data sets. 
Three types of additional input may be 
specified by the programmer: 

• An object module used as the main pro­
gram in the load module being con­
structed. This object module, which 
can be accompanied by linkage editor 
control statements, is either a member 
of a PD::> or is a sequential data set. 
The first record in the primary input 
data set must be a linkage editor 
INCLUDE control statement that tells 
the linkage editor to insert the main 
program •. 

• An ob"ject module or a load module used 
to resolve external references made in 
another modulE~. The object module, 
which can be accompanied by linkage 
editor control statements, is a sequen­
tial data set or is a member of a PDS. 
The load module, which is a member of a 
PDS, cannot bE~ accompanied by linkage 
editor control statements. An INCLUDE 
statement that defines the data set 
must be given .. 

• A modulE~ used to resolve external 
references made in another module. The 
load module or object module, which can 
be accompanied by linkage editor con­
trol statements, is a member of PDS. A 
linkage editor LIBRARY control state­
ment that defines the data set to the 
linkage editor must be given. 

In addition,, the seconda.ry input can con­
tain external references and linkage editor 
control statements. The automatic call 
library and any of the three types of addi­
tional input may be used to resolve 
references in the secondary input. 

Table 8. Linkag~~ Edi tor ddnames 

The load module created by the linkage 
editor is always placed in a PDS. Error 
messages and optional diagnostic messages 
are written on intermediate storage or a 
printer. In addition, a work data set is 
required by the linkage editor to do its 
processing. Figure 26 shows the I/O flow 
in linkage editor processing. 

Link.age Editor ddnames and Device Classes 

The programmer communicates data set 
information to the linkage editor through 
DD statements identified by specific 
ddnames (similar to the ddnames used by the 
compiler). The ddnames, functions, and 
requirements for data sets are shown in 
Table 8. 

SYSLIN 

SYSLIB 

Automatic 
Call 

Library 

SYSLMOD 

Output 
Module 
Library 

_j__ 

Linkage t--------· 
Editor 

-----

f~agnostic 
Lato Set 

SYS PRINT 

Figure 26. Linkage Editor Input and Output 

r--------------~-------------------------------------------T--------·--------------------1 

I ddname I Function I Device Requirements I 
1---------------t------------------------------------------+----------------------------~ 
ISYSLIN !primary input data, normally the output of !•direct access I 
I I the compiler I •magnetic tape I 
I I !•card reader I 
~---------------1---------------------------------------------+--------·------------·--------i 
ISYSLIB !automatic call library (SYSl.FORTLIB) !•direct access I 
~--------------+-------------------------------------------+----------------------------i 
ISYSUTl lwork data set !•direct access I 
~---------------+---------------·----------------------------+--------·--------------------i 
~SYSPRINT !diagnostic messages !•printer I 
I I !•intermediate storage device! 
~---------------+----·------------·---------------------------+----------------------------i 
ISYSLMOD 1output data set for the load module !•direct access I 
~--------------+-------------------------------------------t----------------------------i 
1user-specifiedladditional libraries and object modules !•direct access I 
I I I •magnetic tape I l.--·--·-----------J. ________________ . ____________________________ .,L ___________________________ J 

46 



Any data sets specified by SYSLIB or 
SYSLMOD must be partitioned data sets. The 
ddname for the DD statement that retrieves 
any additional libraries is written in 
INCLUDE and LIBRARY statements and is not 
fixed by the linkage editor. 

The device classes used by the compiler 
(see Table 4) must also be used with the 
linkage editor~he data sets used by 
linkage editor may be assigned to the 
device classes listed in Table 9. 

Table 9. Correspondence Between Linkage 
Editor ddnames and Device 
Classes 

r--------------T--------------------------1 
I ddname !Possible Device Classes I 
·--------------+-------------------------i 
ISYSLIN ISYSSQ,SYSDA,or the input I 
I !stream device (specified I 
I !by DD * or DD DATA), or al 
I !device specified as the I 
I Icard reader I 
·--------------+--------------------------~ 
ISYSLIB ISYSDA I 
·------------+-----------------·------~ 
ISYSUTl ISYSDA I 
·--------------+-------------------------~ 
ISYSLMOD ISYSDA I 
·--------------+------------------·---~ 
ISYSPRINT IA,SYSSQ I 
~------------+-------------------------~ 
luser-specifiedlSYSDA,SYSSQ I 
L-------------L------------------------J 

Additional Input 

The INCLUDE and LIBRARY statements are 
used to specify additional secondary input 
to the linkage editor. Modules neither 
specified by INCLUDE or LIBRARY statements 
nor contained in the primary input are 
retrieved from the automatic call library. 

INCLUDE Statement: 

r--------T-------------------------------1 
I Operation I Operand I 
·---------+----~----------------------i 
!INCLUDE lddname[(member-name I 
I I C,member-name] ••• )J I 
I I C,ddname[(member-name I 
I I C, member-name] ••• > 11... I 
L---------i-----------------------------J 

The INCLUDE statement is used to include 
either members of additional libraries or a 
sequential data set. The "ddname" speci­
fies a DD statement that defines either a 
library containing object modules and con­
trol statements or just load modules, or 

defines a sequential data set containing 
object modules and control statements. The 
"member name" is not used when a sequential 
data. set is specified. 

The linkage editor inserts the object 
module or load module in the output load 
module when the INCLUDE statement is 
encountered. 

LIBgARY Statement: 

r---------T-------------------------------1 I Operation I Operand I 
·---------+-------------------------------~ 
!LIBRARY lddname(member-name I 
I I C , member-name 1 ••• > I 
I I C,ddname(member-name I 
I I C,member-nameJ ••• >J... I 
L--------i-------------------------------J 

The LIBRARY statement is used to include 
members of additional libraries. The 
"ddname" must be the name of a DD statement 
that specifies a library that contains 
either object modules and linkage editor 
control statements, or just load modules. 
The "member name" is an external reference 
that is unresolved after primary input 
processing is complete. 

The LIBRARY statement differs from the 
INCLUDE statement: external references 
specified in the LIBRARY statement are not 
resolved until all other processing, except 
references reserved for the automatic call 
library, is completed by the linkage edi­
tor. (INCLUDE statements resolve external 
ref e:rences when the INCLUDE statement is 
encountered.) 

Example: Two subprograms, SUBl and SUB2, 
and a main program, MAIN, are compiled by 
separate job steps. In addition to the 
FORTRAN library, a private library, MYLIB, 
is used to resolve external references to 
the symbols X, Y, and z. Each of the 
object modules is placed in a sequential 
data set by the compiler, and passed to the 
linkage editor job step. 

Figure 27 shows the control statements 
for this job. (Cataloged procedures are 
not used.) In this job, an additional 
library, MYLIB, is specified by the LIBRARY 
statement and the ADDLIB DD statement. 
SUBl and SUB2 are included in the load 
module by the INCLUDE statements and the DD 
statements DD1 and DD2. The linkage editor 
input stream, SYSLIN, is two concatenated 
data sets: the first data set is the 
sequential data set &GOFILE which contains 
the main program; the second data set is 
the two INCLUDE statements and the LIBRARY 
statement. After linkage editor execution, 
the load module is placed in the PDS 
PROGLIB and given the name CALC. 

FORTRAN Job Processing 47 



r------------------------------------------------------------------·--------------------1 
//JOBX JOB 
//STEP1 EXEC PGM=IEKAAOO,PARM='NAME=MAIN,LOAD' 

//SYSLIN 
//SYSIN 

DD DSNAME=&GOFILE,DISP=C,PASS),UNIT=SYSSQ 
DD * 
Source module for MAIN 

/* 
//STEP2 EXEC PGM=IEKAA00 1 PARM= 1 NAME=SUB1,LOAD 1 

//SYSLIN 
//SYSIN 

DD DSNAME=&SUBPROGl,DISP=(,PASS),UNIT=SYSSQ 
DD * 
Source module for SUBl 

/• 
//STEP3 EXEC PGM=IEKAAOO,PARM='NAME=SUB2,LOAD' 

//SYSLIN 
//SYSIN 

DD DSNAME=&SUBPROG2,DISP=(,PASS) 1 UNIT=SYSSQ 

/• 
//STEP4 

DD * 
Source module for SUB2 

EXEC PGM=IEWL 

//SYSLIB 
//SYSLMOD 
//ADDLIB 
//DD1 
//DD2 
//SYSLIN 
// 

DD 
DD 
DD 
DD 
DD 
DD 

DSNAME=SYSl.FORTLIB,DISP=OLD 
DSNAME=PROGLIB(CALC),UNIT=SYSDA 
DSNAME=MYLIB,DISP=OLD 
DSNAME=•.STEP2.SYSLIN,DISP=OLD 
DSNAME=•.STEP3.SYSLIN,DISP=OLD 
DSNAME=*.STEP1.SYSLIN,DISP=OLD 

DD 
INCLUDE 
INCLUDE 
LIBRARY 

• 
DDl 
DD2 
ADDLIB(X,Y,Z) 

--------------------------------------------------------------------·--------------------J 
Figure 27. Linkage Editor Example -- (H) Compiler 

Note: This example shows the use of the 
FORTRAN IV 1(H) compiler (program name 
IEKAAOO). 1\.n example showing the use of 
the (G) compiler would be identical except 
for program name; PGM=IEYFORT would be 
coded, where appropriate, instead of 
PGM=IEKAAOO. 

binkage Editor Priority 

If modules with the same name appear in 
a single data set~ only the module encoun­
tered first is inserted in the output load 
module. 

48 

Other Linkage Editor Control Statements 

In addition to the LIBRARY and INCLUDE 
statements, other contxol statements are 
available for use with the linkage editor. 
'These statements enable the user to: spec­
ify different names for load modules 
(ALIAS), replace modules within a load 
module <REPLACE), change program names 
(CHANGE), and name entry points (ENTRY). 
In addition, two statements (OVERLAY and 
INSERT) enable the programmer to overlay 
load modules. For a detailed description 
of these control statements, see the Link­
age Editor and Loader publication, Form 
GC28-6538. 



Options for Linkage Editor Processing 

The linkage editor options are specified 
in an EXEC statement. The options that are 
most applicable to the FORTRAN programmer 
are: 

1::::. procstep( = ( [:i~ [,LET] (, NCAL] 

C, LIST]) 

MAP or XREF 

The MAP option informs the linkage edi­
tor to produce a map of the load module; 
this map indicates the relative location 
and length of main programs and subpro­
grams. If XREF is specified, a map of the 
load module is produced and a cross 
reference list indicating all external 
references in each main program and subpro­
gram is generated. The map or map and 
cross reference list are written in the 
data set specified by the SYSPRINT DD 
statement. If neither option is specified, 
the system generation option for the proce­
dure for the linkage editor is put into 
effect. Descriptions of the map and cross 
reference listing are given in "System 
output." 

The LET option informs the linkage edi­
tor to mark the load module executable even 
though error conditions, which could cause 
execution to fail, have been detected. 

The NCAL option informs the linkage edi­
tor that the libraries specified in the 
SYSLIB DD statement or specified in LIBRARY 
statements are not used to resolve external 
references. (The SYSLIB DD statement need 
not be specified.) The subprograms in the 
libraries are not inserted in the load 
module; however, the load module is marked 
executable. 

The LIST option indicates that linkage 
editor control statements are listed in 
card-image format in the diagnostic output 
data set specified by the SYSPRINT DD 
statement. 

Other options can also be specified for 
the linkage editor. For a detailed de­
scription of all linkage editor options, 
see the Linkage Editor and Loader publica­
tion, Form GC28-6538. 

LOAD MODULE EXECUTION 

When "PGM=program name" is used to in­
dicate the execution of a load module, the 
module must be in either the system library 
(SYS1.LINKLIB) or a private library. When 
the module is in a private library, a JOB­
LIB DD statement must be supplied to in­
dicate the name of the private library. 
For example, assume that the load modules 
CALC and ALGBRA in the library MATH and the 
load module MATRIX in the library MATRICES 
are executed in the following job: 

//JOBN JOB 00,FORTPROG 
//JOBLIB DD DSNAME=MATH,DISP=(OLD,PASS) 
// DD DSNAME=MATRICES,DISP=(OLD,PASS) 
//STEP1 EXEC PGM=CALC 

//STEP2 EXEC PGM=MATRIX 

//STEP3 EXEC PGM=ALGBRA 

The JOBLIB DD statement concatenates the 
private library MATH with the system 
library. The private library MATRICES is 
concatenated with the system library, by 
concatenating the second DD statement with 
the JOBLIB DD statement. 

Execution ddnames 

In the source module, data set reference 
numbers are used to identify data sets. 
Data sets processed by a FORTRAN load 
module must be defined by DD statements. 
The correspondence between a data set 
reference number and a DD statement is made 
by a ddname. 

~rhe ddname format that must be used for 
load module execution is 

FTxxFyyy 

where xx is the data set reference number, 
and yyy is a FORTRAN sequence number. 

Data Set Reference Number (xx>: When the 
system is generated, the upper limit for 
data set reference numbers is specified by 
the installation; it must not exceed 99. 
This upper limit does not correspond to the 
number of input/output devices. 

FORTRAN Job Processing 49 



If an installation specifies an upper 
limit of 99 for its data set reference num­
bers, the ddnames and data set reference 
numbers correspond as shown in Table 10. 
Note that 0 is not a valid data set 
reference number. 

FORTRAN Sequence :~er (yyy): The FORTRAN 
sequence number is used to refer to sepa­
rate data sets that are read or written 
using the same data set reference number. 
For the first data set, the sequence number 
is 001: for the second 002: etc. This 
sequence number is incremented when (1) an 
END FILE statement is executed and a subse­
quent WRITE is issued with the same data 
set reference number or (2) the "END=" exit 
is taken following a READ and a subsequent 
READ or WRITE is issued with the same data 
set reference number. 

A DD statement with the required ddname 
must be supplied every time the WRITE, END 
FILE, WRITE sequence occurs. If the FOR­
TRAN statements in the following example 
are executed., DD statements with the 
ddnames indicated by the arrows must be 
supplied for the corresponding WRITE 
statements. 

St?tements ddnames 

15 FORMAT(3F10.3,I7) 
10 FORMAT(3F10.3) 

DO 20 I=:l,J 

. 
20 WRITE(17,10)A,B,C ----------> FT17F001 

END FILE 17 
DO 30 I=l,N 

30 WRITE(17,15)X,Y,Z,K ---------> FT17F002 
END FILE 17 
DO 40 I=l,M,2 

. 
40 WRITE (17, 10)A, B, C ------------> FTl 7F003 

END FILE 17 

If the p:receding instructions are used 
to write a tape, the output tape (unla­
beled) has the appearance shown in Figure 
28. The tapemarks are written by execution 
of the ENDFILE statements. successful 
execution of ENDFILE always includes writ­
ing an end-of-data indicator. 

50 

Reference Numbers for Data Sets Specified 
in DEFINE FILE Statements 

The characteristics of any data set to 
be used during a direct-access input/output 
operation must be described by a DEFINE 
FILE statement. 

The data set reference number specified 
in any DEFINE FILE statement may refer to 
only one data set. In other words, the 
method described previously concerning 
references to separate data sets that are 
read or written using the same data set 
reference number is prohibited. For 
example, the statement 

DEFINE FILE 2(50,100,L,I2) 

establishes a data set reference number of 
02. All subsequent input/output statements 
must refer to only one data set with the DD 
name of FT02F001. (For a more detailed 
explanation of the DEFINE FILE statement, 
ref er to the FORTRAN IV Language publica­
tion, Form GC28-6515.) 

Retrieving Data Sets Written With Varying 
FORTRAN sequence Numb~rs 

To retrieve the data sets shown in 
Figure 28, the data set sequence number in 
the LABEL parameter must be supplied in the 
DD statement. The LABEL parameter is de­
scribed in detail in the section "Creating 
Data Sets." 

. NL 
LABEL=( [data-set-sequence-number] ~:sL ~ ) 

!,BLPJ 

The "data set sequence number" indicates 
the position of the data set on a sequen­
tial volume. (This sequence number is 
cataloged.) For the first data set on the 
volume, the data set sequence number is 1; 
for the second, it is 2; etc. 

•.rable 10. Load Module ddnames 
r--------------------------·-T-----------1 
I Data Set Reference Numbers I ddnames I 
~-----------------------------+-----------~ 
I 1 I FT01Fyyy I 
I 2 I FT02Fyyy I 
I I I 
I I I 
I I I 
I 13 I FT13Fyyy I 
I I I 
I I I 
I I I 
I 99 l FT99Fyyy I 
L-----------------------------..1.--·---------J 



If one of the data sets shown in Figure 
28 is read in the same job step in which it 
is written, an END FILE statement must be 
issued after the last WRITE instruction. 
If the data set is to be read by the same 
data set reference number, DD statement 
FT17F004 is used to read the data set. The 
execution of a READ statement following an 
END FILE increments the FORTRAN sequence 
number by 1. For example, the following DD 
statements are used to write the three 
data sets shown in Figure 28 and then read 
the second data set: 

//FT17F'001 DD UNIT=TAPE,LABEL=(,NL), X 
// DISP=(,PASS) 
//FT17F002 DD UNIT=TAPE,LABEL=(2,NL), X 
// VOLUME=REF=*.FT17F001 
//FT17F003 DD UNIT=TAPE,LABEL=(3,NL), X 
// VOLUME=REF=*.FT17F001 
//FT17F004 DD VOLUME=REF=*.FT17F001, X 
// DISP=OLD,LABEL=(2,NL), X 
// DSNAME=*.FT17F002,UNIT=TAPE 

The VOLUME parameter indicates that the 
data set resides on the same volume as the 
data set defined by DD statement FT17F001. 
DD statement FT17F004 refers to the data 
set defined by DD statement FT17F002. 

If the data set is read by a different 
data set reference number, for example, 
data set reference numh2r 18; then, the DD 
statement FT17F004 is replaced by the 
statement. 

//FT18F001 DD VOLUME=REF=•.FT17F002 1 X 
// DISP=OLD,LABEL=(2,NL) 

If the data sets shown in Figure 28 are 
cataloged for later reading, and if the 
following DD statements are used to write 
the data sets, 

//FT17F001 DD DSNAME=N1,LABEL=(1,NL), X 
// DISP=(,CATLG),UNIT=TAPE, X 
// VOLUME=SER=163K 
//FT17F002 DD DSNAME=N2,LABEL=(2,NL), X 
// DISP= ( 1 CATLG) 1 VOLUME=REF'=*· FTl 7F001 
//FT17F003 DD DSNAME=N3,LABEL=(3,NL) 1 X 
// DISP=(,CATLG),VOLUME=REF=*.FT17F002 

the information necessary to retrieve the 
data sets is the DSNAME, the LABEL, and the 
DISP parameters. For example, if data set 
reference number 10 is used to retrieve 
data set Nl, the following DD statement is 
required. 

//FT10F001 DD DSNAME=Nl,DISP=OLD, 
/ / LABEL= ( 1 NL) 

If the data set is not cataloged and 
then retrieved in a later job, the VOLUME, 
UNIT, and LABEL information is needed to 
retrieve the data set. When the data set 
is created, the programmer must assign a 
specific volume to it. 

x 

Assume the data sets shown in Figure 28 
were assigned the volume identified by the 
volume serial number A11111 when the data 
sets were created. If the second data set 
written on the volume is retrieved by data 
set reference number 10 in a later job, the 
following DD statement is needed. 

//FT10F001 DD VOLUME=SER=A11111,DISP=OLD, X 
// LABEL=(2,NL) 1 UNIT=SYSSQ 

~ND Exit: Data sets written using the same 
data set reference number can be retrieved 
in the same job or job step by using a 
facility provided in the FORTRAN language 
-- the "END=" exit in a READ statement. 
After the last data set is written and the 
END FILE is executed, a REWIND may be 
issued. A subsequent READ using the same 
data set reference number resets the FOR­
TRAN sequence number to 001. When the last 
record of a data set has been read, an 
additional READ causes the END exit to be 
taken. On the next READ, the sequence 
number is incremented by 1. The data sets 
shown in Figure 28 can be read by using the 
following sequence of statements. 

Note: The DD statements used to create the 
data sets also suffice for retrieving the 
data sets. No additional DD statements are 
required. 

r--------------------------------------------------------------------------------------1 
I tapemark tapemark tapemark I 

! r-=--T __ ::::::T __ =-1-----=-T--~::::T-----~L---T:::::: __ ~L ! 
I IA,B,CIA,B,CI ••• ,A,B,CI fX,Y,Z,KIX,Y,Z,Kl··· IX,Y,Z,KI IA,B,Cl··· IA,B,CI I··· I 
I l-~-.L-~-----J..----.:::::;:J.. ___ J.. _____ 0-~-_a.._ I 
I I 
I Written using DD Written using DD Written using DD I 
I statement FT17F001 statement FT17F002 statement FT17F003 I 
l-----------------------------------·--------------·--------------------------------------J 
~"'igure 28. Tape output for several Data Sets Using Same Data Set Reference Number 

FORTRAN Job Processing 51 



REWIND :17 

100 READ(17,10,END=200)A,B,C ---->FT17F001 

GO TO 100 

200 READ(17,15,END=300)X,Y,Z,K---->FT17F002 

GO TO 200 

300 READ(17,10 1 END=350)A,B,C ---->FT17F003 

GO TO 300 

350 REWIND :17 

conca_tenation: The data sets shown in 
Figure 28 can be concatenated and read as a 
single data set. The information necessary 
(assume cataloged data sets) to retrieve 
the data sets is the DSNAME, LABEL, and 
DISP parameters. For example, if data set 
reference number 16 is used to retrieve the 
data sets, the following DD statements are 
required. 

//FT16F001 DD 
// 
// DD 
// 
// DD 
// 

DSNAME=Nl,DISP=OLD, 
LABEL= (,NL) 

DSNAME=N2,DISP=OLD, 
LA.BEL=(2,NL) 

DSNAME=N3,DISP=OLD, 
LABEL=(3 1 NL) 

The ERR option the FORTRAN READ state­
ment may be used to give control to the 
problem program if an uncorrectable I/O 
error occurs on a magnetic tape or direct­
access device. This parameter is not ef­
fective for data sets on unit record 
devices. 

x 

x 

x 

Note: Concatenation of data sets with 
unlike attributes is not supported. Parti­
tioned data sets with like attributes may 
be concatenated for input only.. concatena­
tion of two or more members of the same PDS 
is not supported. 

52 

Partitioned Data Set Processing 

FORTRAN load modules may access two or 
more members of the same partitioned data 
set (PDS); however, only sequential proces­
sing is permitted. The PDS must be closed 
for one member before attempting to read or 
write another member. 

PDS Processing Using_0 END=" Option: One 
method of sequentially processing two or 
more members of the same PDS is by using 
the "END=" option in a FORTRAN sequential 
READ statement. When the "END=" option is 
executed and a subsequent READ or WRITE 
statement is issued with the same data set 
reference number, the FORTRAN sequence 
number is incremented by one. This allows 
another member of the PDS referenced by the 
same data set reference number to be 
processed. 

The following FORTRAN program illus­
trates how this method is put into effect: 

INTEGER *4 X(20) 1 Y(20) 
10 READ (2,1,END=98) X 
1 FORMAT (20A4) 

GO TO 10 
98 READ (2 1 1 1 END=99) Y 

GO TO 98 
99 WRITE (6 1 2) X,Y 

STOP 
END 

Execution of statement 10 results in the 
processing of the first PDS member which is 
referenced by the FORTRAN sequence number 
001. If this member has the name MEMBER! 
and resides in the cataloged partitioned 
data set named PDS, the DD statement that 
must be supplied is: 

//FTO 2F001 DD DSN=PDS (MEMBER!), 
LABEL(,,,IN),DISP=OLD 

When the "END=" option is exeucted in sta­
tement 10 and the next READ state.ment, sta­
tement 98, is encountered, the FORTRAN 
sequence number becomes 002. This closes 
the PDS for the first member. Another 
member may then be processed. If' its name 
is MEMBERS, the DD statement that must be 
supplied is: 

//FT02F002 DD DSN=PDS(MEMBERS), 
LABEL=(,,,IN),DISP=OLD 

~: For PDS processing, the "END=" 
option specification is the only method of 
incrementing the FORTRAN sequence number. 
The END FILE statement methods described 
earlier in the section "FORTRAN Sequence 
Numbera cannot be implemented since END 
FILE statements cannot be used for parti­
tioned data sets. 



PDS ~~ocess!~g_Using REWIND: A second 
method of processing two or more members of 
the same PDS is the use of the REWIND 
statement in the FORTRAN program. This 
statement should be of the form: 

REWIND a 

where a is an unsigned integer constant or 
variable representing a data set reference 
number. Execution of the REWIND statement 
closes the data set represented by the 
integer a. Any subsequent READ or WRITE 
statement opens the data set again. 

The following example illustrates the 
use of the REWIND statement for the reading 
of two members of the same PDS: 

INTEGER •4 X(20),Y(20) 
READ (2 1 1) X 
REWIND 2 
READ (3, 1) Y 
WRITE (6 1 2) X,Y 

1 FORMAT (20A4) 
2 FORMAT ( 1 1

1 20A4) 
STOP 
END 

Execution of the first READ statement 
results in the processing of the first PDS 
member which is referenced by the FORTRAN 
sequence number 001. If the member has the 
name MEMBERl and resides in the cataloged 
partitioned data set named PDS, the DD 
statement that must be supplied is: 

//FT02F001 DD DSN=PDS(MEMBERl), 
LABEL=C,,,IN),DISP=OLD 

When the REWIND statement is executed, the 
PDS is closed for MEMBERl. The next READ 
statement reopens the data set for another 
PDS member. If the next member name is 
MEMBERS, the DD statement that must be sup­
plied is: 

//FT03F001 DD DSN=PDS(MEMBER5) 1 
LABEL=<,,,IN),DISP=OLD 

The following example illustrates the use 
of the REWIND statement for the writing of 
two PDS members: 

3 

1 

INTEGER •4 X(20) 
DO 3 I=l,20 
XCI)=I 
WRITE (2,1)X 
FORMAT ( 1 ',20A4) 
REWIND 2 
WRITE ( 3, 1) X 
STOP 
END 

Here, the use of the REWIND statement for 
the data set reference number 2 closes the 
PDS. It is reopened for the next member by 
the reference to data set reference 

number 3. The DD statements that must be 
supplied are the same as those in the pre­
vious example; however, LABEL=C,,,OUT) must 
be specified to indicate output processing. 

REWIND and BACKSPACE Statements 

The REWIND and BACKSPACE statements 
force execution of positioning operations 
by the control program. 

A REWIND statement instructs the control 
program to position the volume on the 
device so that the next record read or 
written is the first record transmitted for 
that data set reference number on that 
volume, irrespective of data set sequence 
numbers. The space acquired dynamically 
for I/O buffers for a data set is released 
as part of the REWIND operation. For this 
reason, a program that uses many data sets 
may conserve main storage by issuing REWIND 
statements after processing is completed. 
Since a REWIND statement closes the data 
set, any subsequent READ or WRITE statement 
opens the data set again. For a data set 
where DISP=MOD was specified, the READ or 
WRITE statement causes positioning at the 
end of the data set before the statement is 
executed. 

The BACKSPACE statement causes a 
backward skip of one logical record for 
each BACKSPACE issued. The records may be 
blocked or unblocked and of any valid type 
(F,U,V). Note that the default selection 
for FORTRAN data sets is U-type (undefined) 
records which can not be blocked. If a 
BACKSPACE statement requests backward move­
ment past the load point or first record of 
the data set, that request is ignored. 
Since BACKSPACE is not supported across 
reels of a multi-reel data set on tape, a 
BACKSPACE request made under such condi­
tions is treated as an attempt to move 
backward past the load point. The user is 
not made aware of input/output errors that 
have occurred during a BACKSPACE operation 
until he issues his next READ or WRITE 
request. 

Notes: 

1. REWIND, BACKSPACE or END FILE state­
ments specified for data sets defined 
in direct-access statements are 
ignored. 

2. BACKSPACE statements should not be 
directed to the data set defined as 
SYSIN. 

3. At end-of-file, if the programmer 
wishes to access the file, he should 
issue at least two BACKSPACE state-

FORTRAN Job Processing 53 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

ments. The first statement causes his 
file to be positioned before the tape­
mark; the second positions the file at 
the beginning of the last logical 
record. 

Error Message Data Set 

When the system is generated, the 
installation assigns a data set reference 
number so that execution error messages and 
information for traceback, DUMPs, and 
PDUMPs can be written on a data set. This 
data set is automatically opened at library 
initialization time. The programmer must 
define a data set, using a DD statement 
with the ddname for that data set reference 
number. This data set should be defined 
using the SYSOUT=A parameter. If the error 
message data set is on tape, the DD state­
ment should contain DCB parameters for 
BLKSIZE=133 and RECFM=UA. (The Syste_!!! 
§eneration publication, Order No. 
GC28-6554, explains the method of assigning 
the data set reference number. See the 
description of the· OBJERR parameter in the 
section on the FORTLIB macro instruction.) 

For load module execution, the program­
mer can use the same names assigned to 
device classes used by the compiler (shown 
in Table 4). However, additional names for 
specific devices and device classes can be 
assigned by the installation. The program­
mer can choose which device to use for his 
data sets, and can specify the name of the 
device or class of devices in the UNIT 
parameter of the DD statement. 

The DCB parameter may be specified for 
data sets when a load module is executed. 
For information concerning the DCB parame­
ter, see the section "Creating Data Sets." 

The loader combines into one job step 
the functions of the linkage editor with 

54 

execution of the edited module. It pro­
cesses FORTRAN object or load modules, 
resolves any references to subprograms, 
loads the module, and executes the loaded 
module. The loader does not produce load 
modules for program libraries. For 
detailed information on the loader, see the 
Linkage Editor and Loader publication. 

Loader Name 

The program name for the loader is 
IEWLDRGO. An alias program name, LOADER, 
has been assigned to the loader for simpler 
programming. If the loader is executed as 
a job step, the parameter PGM=LOADER or 
PGM=IEWLDRGO is used in the EXEC statement 
of that job step. 

Loader Input and Output 

The primary input to the loader is in 
the form of object modules and/or load 
modules. While processing an input module, 
the loader finds any references to subpro­
grams in the input module and resolves 
them. 

The output of the loader consists of 
error and diagnostic messages and an 
optional storage map of the loaded program. 
The output is written on either an interme­
diate storage device or a printer.. The 
loader does not require intermediate work 
data sets. 

Loader ddnames and Device Classes 

The programmer communicates data set 
information to the loader through DD state­
ments identified by specific ddnames. 
(These ddnames can be changed during system 
generation.) The ddnames, functions, and 
requirements for data sets are shown in 
Table 11. Only the SYSLIN DD statement is 
required; the other two are optional. In 
addition, any DD statements required for 
execution of the loaded program must be 
included in the job step. (These DD state­
ments are described in the section "Load 
Module Execution".> 



.Table 11. Loader ddnames 
r--------T----------------T--------------1 
I I !Device I 
lddname !Function !Requirements I 
l---------+----------------+--------------i 
ISYSLIN !Primary input !direct access I 
I !data, normally !magnetic tape I 
I I the output of I card reader I 
I !the compiler. I I 
~---------+----------------+-------------i 
ISYSLIB !Automatic call !direct access I 
I I library I I 
I I (SYS1.FORTLIB) I I 
l---------+----------------+--------------i 
ISYSLOUT !Diagnostic !printer I 
I I messages and I intermediate I 
I !storage map. !storage device! 
~---------+--------------+--------------i 
1user- !Data required !any device I 
lspecifiedlfor execution I I 
I !of the loaded I I 
I I program. I I ._ ________ i ________________ i ______________ J 

The device classes used by the compiler 
(see Table 3) must also be used with the 
loader. The dd"La sets used by the loader 
may be assigned to the device classes 
listed in Table 12. 

eTable 12. Correspondence Between Loader 
ddnames and Device Classes 

r---------T-------------------------------1 
lddname !Possible Device Classes I 
~--------+------------------------------i 
ISYSLIN f SYSSQ, SYSDA, or the input I 
I !stream device (specified by DD I 
I I* or DD DATA), or a device spe-1 
I lcified as the card reader. I 
~--------+-------------------------------i 
ISYSLIB ISYSDA I 
~---------+------------------------------i 
ISYSPRINT IA, SYSSQ I 
~---------+-------------------------------i 
!user- ISYSDA, SYSSQ I 
I specified I I 
L-~-------i-------------------------------J 

Loader Priority 

If modules with the same name appear in 
the input to the loader, the loader accepts 
only the first module which appears. 

Options for Loader Processing 

The loader and loaded program options 
are specified in the PARM field of the EXEC 
statement as follows: 

l~=.procstep( = 

MAP .or NOMAP 

l,CALL ( 
,NOCALL\ 

l' LET ( l' SIZE=100Kt 
.~\ ,SIZE=size\ 

C, EP=namel ), PRINT l) 
j,NOPRINT~ 

The MAP option informs the loader to 
produce a map of the loaded program: this 
map lists external names and their absolute 
storage addresses on the data set specified 
by the SYSLOUT DD statement. (If the 
SYSI..OUT DD statement is not used in the 
input deck, this option is ignored.) The 
NOMAP option specifies that the map of the 
loaded program is not to be written. 

CALL or NOCALL or NCAL 

The CALL option specifies that an auto­
matic search of the data set specified on 
the SYSLIB DD statement is to be made. (If 
the SYSLIB DD statement is not in the input 
deck, this option is ignored.) The NOCALL 
or NCAL option specifies that an automatic 
search of the SYSLIB data set is not to be 
made. 

The LET option informs the loader to try 
to execute the object program even though a 
severity 2 error condition is found. (A 
severity 2 error condition is one that 
could make execution of the loaded program 
impossible.) The NOLET option informs the 
loader not to try to execute the loaded 
program when a severity 2 error condition 
is found. 

SIZE= size 

The SIZE option specifies the size, in 
bytes, of dynamic main storage that can be 
used by the loader. The size of the pro­
gram to be loaded must be included in this 
figure. 

FORTRAN Job Processing 55 



The EP option specifies the external 
name to be assigned as the entry point of 
the loaded program. 

PRINT or NOPRINT 

The PRINT option informs the loader to 
produce diagnostic messages on the SYSLOUT 
data set. The NOPRINT option informs the 
loader not to produce diagnostic messages 
on the SYSLOUT data set; SYSLOUT will not 
be opened. 

Note: The default options are: NOMAP, 
CALL, NOLET, SIZE=100K, and PRINT. Other 
default options, however, can be specified 
with the LOADER macro instruction during 
system generation. 

The following are examples of the EXEC 
statement specified for loader processing: 

//LOAD 
//LOAD 
// 
//LOAD 
//LOAD 

EXEC PGM==LOADER 
EXEC PGM=IEWLDRGO,PARM=(MAP, X 

'EP=FIRST' } 
EXEC PGM==IEWLDRGO, PARM= (MAP, LET) 
EXEC PGM=LOADER,PARM=NOPRINT 

Programming Example 

Figure 29 shows the control statements 
used in a job invoking the loader. Two 
subprograms, SUB1 and SUB2, and a main pro­
gram, MAIN, are compiled in separate job 
steps. In addition to the FORTP.AN library, 
a private library, MYLIB, is used to 
resolve external references. Each of the 
object modules is placed in a sequential 
data set by the compiler and passed to the 
loader step. 

It should be noted that cataloged proce­
dures are not used in this job. The pri­
vate library, MYLIB, is concatenated with 
the SYSLIB DD statement. SUBl and SUB2 are 
included in the program to be loaded by 
concatenating them with the SYSLIN DD 
statement. The loaded program requires the 
FT01F001 and FT10F001 DD statements for 
execution. 

56 

r---'------------------·---------------------, 
l//JOBX JOB I 
I/ /STEPl EXEC PGM=IEKAAOO I x I 
I// PARM='NAME=MAIN,LOAD' I 
I I 
I I 
I I 
l//SYSLIN DD DSNAME=&GOFILE, XI 
I// DISP=(,PASS), XI 
I// UNIT=SYSSQ I 
l//SYSIN DD * I 
I Source Module for MAIN I 
I/* I 
l//STEP2 EXEC PGM=IEKAAOO, XI 
I// PARM='NAME=SUBl,LOAD' I 
I I 
I I 
I I 
l//SYSLIN DD DSNAME=&SUBPROGl, XI 
I// DISP=(,PASS), XI 
I// UNIT=SYSSQ I 
l//SYSIN DD * I 
I Source Module for SUBl I 
I/* I 
//STEP3 EXEC PGM=IEKAAOO, XI 
// PARM='NAME=SUB2,LOAD' I 

//SYSLIN DD DSNAME=&SUBPROG2, 
// DISP=(,PASS), 
// UNIT=SYSSQ 
//SYSIN DD * 

Source Module for SUB2 
/* 
//STEP4 
//SYSLOUT 

l//SYSLIB 
I// 
I// 
l//SYSLIN 
I// 
I// 
I// 
I// 
I// 
l//FTOlFOOl 
l//FTlOFOOl 

EXEC 
DD 
DD 

DD 
DD 

DD 

DD 

DD 
DD 

PGM=LOADER 
SYSOUT=A 
DSNAME=SYSl.FORTLIB, 
DISP=OLD 
DSNAME=MYLIB,DISP=OLD 
DSNAME=*.STEPl.SYSLIN, 
DISP=OLD 
DSNAME=*.STEP2.SYSLIN, 
DISP=OLD 
DSNAME=•.STEP3.SYSLIN, 
DISP=OLD 
DSNAME=PARAMS,DISP=OLD 
SYSOUT=A 

I 
I 
I 

XI 
XI 

I 
I 
I 
I 
I 
I 

XI 
I 
I 

XI 
I 

XI 
I 

XI 
I 
I 
I 

I/* I 
L-----------------------------------------J 

•Figure 29. Loader Example 

DEDICATED WORK DATA SETS 

Under MVT, installations can provide 
preallocated or dedicated work data sets. 
If an installation has provided these data 
sets, the programmer can use them as an 
alternative to creating his work data sets. 
Use of dedicated work data sets is more 
efficient than creating work data sets by 
specifying a disposition of NEW,DELETE on 
the work data set DD statement. 



Page of GC28-681'7-2, Revised 12/30/70, by TNL: GN28-0591 

The system allocates these data sets at 
start initiator time (when input/output 
device requirements for a job step are ana­
lyzed by the system). The number of data 
sets to be allocated is based on the number 
of work data set DD statements in a cata­
loged procedure known as the initiator pro­
cedure. The initiator procedure is supp­
lied by IBM, and can be modified or rewrit­
ten by the installation. 

To use a dedicated work data set, 
DSNAME=&&name or DSNAME=&name must be coded 
on a DD statement along with all other 
parameters used to define a new data set 
(see Figure 31). Every DD statement in a 
job with a "name" identical to a ddname on 
a DD statement in the initiator procedure 
is assigned the corresponding dedicated 
data set. If the system cannot assign this 
dedicated data set, it uses the parameters 
coded on the DD statement to create a tem­
porary data set. 

Note: This facility does not support tape 
files. 

The following rules apply to the parame­
ters of DD statements associated with dedi­
cated work data sets: 

1. DSNAME -- The temporary name from the 
initiator procedure replaces that spe­
cified in the DD statement. 

2. DISP -- The disposition specification 
cannot cause deletion of a dedicated 
work data set. Disposition will 
appear to allocation as OLD,KEEP or 
OLD,PASS, only. 

3. UNIT -- Specification of UNIT=AFF= 
DDNAME and DEFER on DD statements are 
ignored if they apply to dedicated 
work data sets. 

4. VOLUME -- Volume information on the DD 
statement is overridden by the volume 
information in the initiator proce­
dure. A specification of REF=•. 
stepname.ddname is not valid since the 
initiator procedure may contain only 
one step. 

s. EXPDT/RETPD -- Expiration date or 
retention is ignored if it is speci­
fied on the DD statement. 

6. SUBALLOC=stepname.ddname must not be 
specified since the initiator may con­
tain only one job step. A specif ica­
tion of RLSE will be ignored. All 
other space parameters are allowed. 

Not~: The units, primary space, secondary 
space, and directory quantities on the DD 
statement are compared with those in the 
dedicated data set. The data set will be 
assigned as long as it is equal to or 
greater than the parameter specified. 

7. DCB -- Information specified in the 
DCB parameter overrides the DCB speci­
fication in the initiator procedure. 

For detailed information on 
pre-allocated or dedicated data sets, see 
the chapter "System Reader, Initiator and 
Writer Cataloged Procedures" in the System 
Programmer's Guide publication. 

FORTRAN Job Processing 57 



Data sets are created by specifying 
parameters in the DD statement or by using 
a data set utility program. This section 
discusses the use of the DD statement to 
create data sets. (The Utilities publica­
tion, Order No. GC28-6586;-aiscusses data 
set utility programs.) No consideration is 
given to optimizing I/O operations; this 
information is given in the section "Pro­
gram Optimizatione" 

To creatE~ data sets, the DSNAME, UNIT, 
VOLUME, SPACE, LABEL, DISP, SYSOUT, and DCB 
parameters are of special significance (see 
Figure 31). These parameters specify: 

DSNAME - name of the data set 

UNIT - class and number of devices 
used for the data set 

Sample Coding Form 

VOLUME - volume on which the data set 
resides 

LABEL - label spec:if ication 

DISP - the disposition of the data set 
after the completion of the job 
step 

SYSOUT - ultimate device for unit record 
data sets 

DCB - tape density, record format, 
record length 

Examples of DD statements used to create 
data sets are shown in Figure 30. 

;--~-~-~fu;i~~;;,~~~l~J~;;;t~~~~Ji~;~i1'~~~;;;iQE•~;;;fu~~~~~~~-,~G~~~!i~~~~oo9 o 

-'---~~.mo.L.e.1 J..J., Cir~z,tJV'i9, ,q, C.a,tq,w.e.d il?au_f-~-L.LL.LL+--LJ., , 1 , , , , I , ~-LL, , I , , , LL-'----'-_, 

11 FT~1~.F.0,0,1 1 .D.D. ,D,S,N,M1_E1 =MALR,1,x,,,DJt?.P.=.C.~w.,,c,A1T,L,GJ,.,,L,A,B,EJ1=,(,,,s,L,,,E,x,P,o1r,•,G,7,@3,tJ,,, 1 ,1, , , , , , , 
U_J__t_Ll_, , , , I , J_~lJi=1DA,Q.,A,s,s~~~~1teB.I,v1~J.E,,,R,EJ,A,IJ_~!§£R=,AA,6,9,) 1 ,, _LLLLLLL~u_L_l_! 
!LLd _ _J_J __ LJ.¥_[__J__[_§~~i~J-=:t~~A~Lt~J.~?)~l'il1'_j2f,O,~T,I,G,i,RiO,U,N,D,)1'· I I I I I I I I I I I I I I LI I I ,3, I 1_J__t_l_!_j 

!_l-LLLlLLL-1--+_L_[__U_li~l!:J+RJ_~J_q_l~~~!/.E,C,L,=,~0,4;,,B1L,K,S,I,i,E,=,1,2,112J. I I I I I ~-U--Ll__i__L~_J__[_L_J_L__[__j 
l1111!1111l1L11j1111~ 

l-L...l-l.4~amiJMiei-~·d.J~Ll...il~f!.JJ.:2it_il_'!fl#-,Oi 1Dot"iai_~n '"" ~oA , I , , , , I , , , , I , , , i_-J--L.~·~·~~ 
ll£JPJlf~~~J?-LQ&~M.E1=,&,W~~!iL~IM~_J_~.L.s 1 .,,3,),.,,o,1,s,P,=,C 1N,E~,,P,A,s,s, >,i1 , , 
!L1 d LLL1¥Lu~9J~Q~~{:>_BfJ~_1~Ji~~E,R,=,(17,7l1 ,1818181 ','f 1919,,,4,4,1'1)l') 1 1 I 1 1 
/lLI ,__lLLL4-1_LJ_J_~~~f'?b~J.=l~.1?l.~_J£F_~t~~~.I,l1E,=12,5i',,0,)I I I I I I I I I I I I i I I I 

I I I L I 
I I I L I 

I I I I 
I I I 

__ J..._J__J _ __J__J__J__4 _ _L_J___~ __ j__J__l--+_J__J_ _ _L _ _[_J_,_ ___ L_L _ _J __ .f-L .. LLLJ_1-~L~LJ.~ I I I I I I I I I I I I I I I I I I I 

J.Wll11Jpil1e., 1::?il.~~J1~y1 ln9 IA £>'SiOOZT /)o16a ~t ,fair, ,t,hel ,Coitepl1Ilf,r, I , , 1 L__;~ 1 
11 S1X?l~JJ·{[1_J~>p__L!_~i(§giyii:J_~L~_L~c,B,"\(~k_~S1I1l1EL~14141,,~E,N1=-121,l1R1i:c1 Hl=IC)I 1 I I , I 

1 
I I I , 1 I ~I 

I I I I I 1_L_j_U 

11Jllj_~ 
I I 121 I I _L_l_! 

11111~ 

I I I 1..L-LJ. 
1111~ 

1111~ 

.. -L_L.l .. Ll _ _J___J__Ly__i_~_[__LL_L.J__J_ ___ .L_l __ +_,__,_ ___ l__l__J __ _L _ _l_J __ _l_+_j___J__J__J__J__J __ L__L_Lt---l ... _L •.•• .! . .-1 __ L_J__ _ _J__l___J__f.--u-'--1 I I I I I I I I I I I I I -'-'---+--'---'-'-'-'-'-I ~ 
_ __J_J~_i_h11Uc1/ll1tjt?igi 10 Jl).o_Cia._~4!1t. ,71hi0iti__d~ti___g~_&it"L~Jjo1ged I I I I I I I~ 
/l_fJ)~11l~~L1_illJ?uQe,~N-:\~1~~~S"!'~~-2liL(_L~LK1E1~P1!J.J~, I!:~'-~:-~'j l u __ Lu __ L_J_u_~ ,11 U-~-
~Lu__l_,,,, j ,_[_~, ... c;o,E,N,=,2 1 ,,r,R,T,Stt~~E,c,FM=,u,,,B,L1 K.s,r,i,Ej~{010101 ) 1 ,, 1, j · , 1 ~1~,~~~1 ,· ,_L__i__i___i_ 

/ ~ ~~;z,~£1R1•"1~.S: 1 ,.J..~~-~..L _hJ...L 

Figure 30. Examples of DD Statements 

58 



() 
11 
m 
'11 
rt ..... 
ia 
~ 
rt 
'11 

C/l 
m 
rt en 

U'I 
\D 

1-sj ..... 
l.Q 
~ 
11 m 
w ... 
• 

t:I 
t:I 

ldsname , 
~ j D S NAM El = ·' d s n a me ( e l em e n t ) ~ J 
l 1 DSN ( I &name ( ~ 

l . · \&name(element) l i 
DUr+1Y 1 
DDNAME=ddname 

UNIT=(name[,{nlPl1])2 

[

SER=(volume-serial-number[,volume-serial-number] ... ) 3] 

dsname ' 
~ VOLUMEl =([PRIVATE][ ,RETAIN][, volume-sequence-number] [,volume-count] ,REF=\ .. *. ddname I ) 4 

11 VOL I "1 *. s tepname. ddname l 
~ *.stepname.procstep.ddname} m 
:;- \ TRK l [,MXIG ]s 
11 SPACE=() CYL l, ( primary-quantity[.secondary-quantity] [,directory-quantity])[ ,RLSE] ,ALX [ ,ROUND]s) 7 

en average-record-length I ,CONTIG 

;' f• BL Pl [,IN J [' EXPDT=yyddd] 8 11 LABEL=( [data-set-sequence-number]), NL [,PASSWORD] , OUT , RETPD=xxxx ) 
() ,SL I 
11 m 
'11 
rt ..... 
::s 

l.Q 

t::I 
'11 
rt 
'11 

C/l 
m 
rt 
en 

\ 

SYSOUT=A 
SYSOUT=B 

SYSOUT=( X[ ,plr::~:~~n]a:e][[:::~~:l·]) 
NEW KEEP ,KEEP 

DISP=(.\.omt. PASS ,CATLG )7 

( 
JMOD l CATLG ,UNCATLG 
f SHR l UNCATLG 

~sname J[ \O/J[ \CfJ~ 10] [ {{FIU)[AIM][T][,BLKSIZE=xxxxx] ~ DCB=( .ddname ,DEN= l ,TRTCH=.E. ,BUFN0={1} [,OPTCD=C] ,RECFM= FB[AIM][T],LRECL=xxxx,BLKSIZE=xxxxx t )
11 .stepname.ddname 12\ IT\ -- V[S][B][AIM][T],LRECL=xxxxx,BLKSIZE=xxxxx~ . s tepname. procs tep. ddname . 3 El: 

,BLKSIZE=xxxx 12 

1If neither "n" nor "P" is specified, 1 is assumed. 
2If only "name" is specified, the delimiting parentheses may be omitted. 
3 lf only one "volume-serial-number" is specified, the delimiting parentheses may be omitted. 
4 SER and REF are keyword subparameters; the remaining subparameters are positional subparameters. 
5 The assumption made when this subparameter is omitted is discussed with the SPACE parameter. 
6 ROUND can be specified only if 11 average-record-length 11 is specified for the first subparameter. 
7 All subparameters are positional subparameters. 
8 EXPDT and RETPD are keyword subparameters; the remaining subparameters are positional subparameters. 
9 The assumption made when this subparameter is omitted is discussed in "Job Control Language." 

10BUFNO is the only DCB subparameter that should be specified for direct access data sets. 
11The first subparameter is positional; all other subparameters are keyword subparameters. 
12This form is used only with compiler and linkage editor blocked input and output. 



USE Of DD STATEMENTS FOR DIRECT-ACCESS DATA 
SETS 

Data sets that are ref erred to in 
FORTRAN direct-access input/output state­
ments must first be defined in the DEFINE 
FILE statement. However, the DD statement 
may be used in conjunction with the DEFINE 
FILE statement f o:r designating other char­
acteristics of the data set. 

If the user chooses to exercise this 
option, caution must be taken in specifying 
the parameters in the DD statement (Figure 
31). The DUMMY parameter may not be used 
with FORTRAN defined direct-access data 
sets because of a conflict in specif ica­
tions. The remaining parameters of the DD 
statement must conform to the specifica­
tions in the DEFINE ~ILE statement. The 
DEN and TRTCH subparameters of the DCB 
parameter apply only to data sets residing 
on magnetic tape volwnes; consequently, 
their use with FORTRAN defined direct­
access data sets may also produce a 
conflict. 

The following statements illustrate the 
possible conflicts that may arise between 
the DEFINE l~ILE a:nd DD statements. 

DEFINE FILE 2(50,100,E,I2) 

//FT02F001 DD DSN.M1E=BOOL, DISP== (NEW, CATLG) 1 
// LABEL=(,SL),UNIT=SYSDA, 2 
// VOLUME=(PRIVATE,RETAIN), 3 
// SPACE=(l00,(50,30),,CONTIG), 4 
// DCB=(DEN=l,RECFM=F,BLKSIZE=100) 

The SPACE par~meter must be included for 
all direct-access data sets, but it must 
also conform to the DEFINE FILE statement; 
the record length in both statements must 
be the same. In the DCB parameter, the 
subparameter DEN applies only to data sets 
residing on magnetic tape volumes. If the 
DUMMY parameter is specified in a DD state­
ment for a direct-access data set, the con­
flict arises because the disposition of a 
direct-access data set is always checked 
and a dummy data set has no disposition. 

Note: The :name field of the DD statement 
must contain FTxxF001, where xx is the data 
set reference number specified in the 
DEFINE FILE statement. 

DATA _SET NA)ME 

The DSNAME parameter specifies the name 
of the data set. Only four forms of the 
DSNAME parameter are used to create data 
sets. 

60 

lDSNAME=dsname l 
DSNAME=dsname(element~ 

specify names for data sets that are 
created for permanent use. 

Note: Members of a partitioned data­
set may be read as input to a FORTRAN 
object program or created as output 
from a FORTRAN object program, but 
only if the member name and either 
LABEL= (,,,IN) or LABEL= (,,,OUT) 
are specified in an associated DD 
statement. 

lDSNAME=&name i 
DSNAME=&name(element>\ 

specify data sets that are temporarily 
created for the E~xecution of a single 

DUMMY 

job or job step. 

is specified in the DD statement to 
inhibit I/O operations specified for 
the data set. A WRITE state.ment is 
recognized, but no data is trans­
mitted. (When the programmer speci­
fies DUMMY in a DD statement used to 
override a cataloged procedure, all 
parameters in the cataloged DD state­
ment are overridden.) 

Note: A DUMMY data set should only be 
read if the "'END= " option i.s speci­
fied in the FORTRAN READ statement. 
If the option is not specified, a read 
causes an end of data set condition, 
and termination of execution of the 
load module. 

DDNAME=ddname 
indicates a DUMMY data set that will 
assume the characteristics specified 
in a following DD statement "'ddname•. 
The DD statement identified by 
"'ddname" then loses its identity; that 
is, it cannot be referred to by an 
*• ••• ddname parameter. The? statement 
in which the DDNAME para.meter appears 
may be referenced by subsequent 
*•••oddname parameters. If a subse­
quent statement identif i.ed by "ddname" 
does not appear, the data set defined 
by the DD statement containing the 
DDNAME parameter is assumed to be an 
unused statemento The DDNAME parame­
ter can be used five times in any 
given job step or procedure step, but 
no two uses can ref er to thE? same 
"ddname". The DDNAME parameter is 
used mainly for cataloged procedures. 

SPECIFYING INPUT/OUTPUT D~VICES 

The name and number of input/output 
devices are specified in the UNI'I~ 
parameter, 



UNIT=(name[,{nfP}] ) 

name 

nf P 

is given to the input/output device 
when the system is generated. 

specifies the number of devices allo­
cated to the data set. If a number 
"n" is specified, the operating system 
assigns that number of devices to the 
data set. "P" is used with cataloged 
data sets when the required number of 
volumes is unknown. The control pro­
gram assigns a device for each volume 
required by the data set. 

Note: See Appendix F for a list of input/ 
output unit types. 

SPECIFYING VOLUMES 

The programmer indicates the volumes 
used for the data set in the VOLUME 
parameter. 

VOLUME=( [PRIVATE][,RETAIN] 

[,volume-sequence-number] 

[,volume-count] 

,SER=(volume-serial-number 
C,volume-serial-numberl ••• ) 

~
dsname } 

,REF= •.ddname 
•.stepname.ddname 
_•.stepname.procstep.ddname 

identifies the volume(s) assigned to 
the data set. 

PRIVATE 
indicates that the assigned volume is 
to contain only the data set defined 
by this DD statement. PRIVATE is 
overridden when the DD statement for a 
data set requests the use of the pri­
vate volume with the SER or REF sub­
parameter. The volume is demounted 
after its last use in the job step, 
unless RETAIN is specified. 

RETAIN 
indicates that this volume is to 
remain mounted after the job step is 
completed. Volumes are retained so 
that data may be transmitted to or 
from the data set, or so that other 
data sets may reside on the volume. 
If the data set requires more than one 
volume, only the last volume is 

retained1 the other volumes are 
demounted when the end of volume is 
reached. If each job step issues a 
RETAIN for the volume, the retained 
status lapses when execution of the 
job is completed. 

volume-sequence-number 
is a 1- to 4-digit decimal number that 
specifies the sequence number of the 
first volume of the data set that is 
read or written. The volume sequence 
number is meaningful only if the data 
set is cataloged and volumes lower in 
sequence are omitted. 

volume-count 

SER 

REF 

specifies the number of volumes 
required by the data set. Unless the 
SER or REF subparameter is used, this 
subparameter is required for every 
multi-volume output data set. 

specifies one or more serial numbers 
for the volumes required by the data 
sets. A volume serial number consists 
of one to six alphameric characters. 
If it contains less than six charac­
ters, the serial number is left­
adjusted and padded with blanks. If 
SER is not specified, and DISP is not 
specified as NEW, the data set is 
assumed to be cataloged and serial 
numbers are retrieved from the cata­
log, or inherited from passed data 
sets in a previous step. A volume 
serial number is not required for new 
output data sets. 

indicates that the data set is to 
occupy the same volume(s) as the data 
set identified by "dsname", 
"*.ddname•, "•.stepname.ddname•, or 
•.stepname.procstep.ddname. Table 13 
shows the data set references. 

When the data set resides on a tape 
volume and REF is specified, the data set 
is placed on the same volume, behind the 
data set referred to by this subparameter. 
If this subparameter is used, the UNIT 
parameter, if specified, is ignored. 

If SER or REF is not specified, the con­
trol. program allocates any non-private 
volume that is available. 

Creating Data Sets 61 



Table 13. Data Set References 
r-----------·-----·---·--T---------------... ---1 
I Option I Refers to I 
..----------·----·--·---+----------------f 
IREF=dsname la data set named I 
I l"dsname• I 
~---------------------+-----------------~ 
IREF=•.ddname la data set indicat-1 
I led by DD statement I 
I l"ddname• in the I 
I !current job step I 
~---------·---------+------------------~ 
IREF=•.stepname.ddnamela data set indicat-1 
I led by DD statement I 
I l"ddname• in the I 
I !previous job step I 
I l"stepname• I 
~---·------·-----·----+-----------------~ 
IREF=•.stepname. la data set indicat-1 
I procstep.ddnamef ed by DD statement I 
I l"ddname• in the I 
I !procedure step I 
I l"procstep• invoked I 
I lin the previous jobl 
I f step •stepname• I 
L---------------------.1----------------J 
SPECIFYING SPACE ON DIRECT-ACCESS VOLUMES 

The programmer indicates the amount of 
space for a data set in the SPACE 
parameter. 

{
TRK } SPACE=( CYL 
average-record-length 

,<primary-quantity 

C,secondary-quantity] 

£,directory-quantity]) 

tMXIG J 
[ 1 RLSE] AI,X [,ROUND]) 

CCINTIG 

The SPACE parameter specifies: 

1. Units of measurement in which space 
allocated. 

2. Amount of space allocated. 

is 

3. Whether unUSE!d space can be released. 

4. In what forma.t space is allocated. 

{
TRK } CYL 
average-record-length 

62 

specifies the! units of mea:surement in 
which storage! is assigned. The uni ts 
may be tracks (TRK), cylinders (CYL), 
or records (average record length in 
bytes expressed as a decimal number 
less than or equal to 65,5:35). 

(primary-quantityC,secondary-quantity] 
[directory-quantity]) 

RLSE 

specifies the amount of space allo­
cated for the data set. The "primary 
quantity• indicates the number of 
records, tracks, or cylinders to be 
allocated when the job step begins. 
The •secondary quantity• indicates how 
much space is to be allocated each 
time previously allocated space is 
exhausted. (Note: The maximum number 
of times secondary allocation will be 
made is 15.) 

For example, by specifying: 

SPACE=(120,(400,100)) 

space is reserved for 400 records; the 
average record length is 120 charac­
ters. Each time space is exhausted, 
space for 100 additional records is 
allocated. 

The "directory quantity" is used only 
in writing a PDS; it specifies the 
number of 256-byte blocks to reserve 
for the PDS directory. 

By specifying: 

SPACE=(CYL,(20,2,5)) 

20 cylinders are allocated to the data 
set. When previously allocated space 
is exhausted, two additional cylinders 
are allocated. Furthermore, space is 
reserved for five 256-byte blocks in 
the directory of a PDS. 

Note: When the FORTRAN prog:rammer 
uses a direct-access data set, he must 
allocate space on the direct-access 
volume in two places: the DEFINE FILE 
statement in the source module and a 
DD statement at load module execution. 
He must also make certain that the DD 
statement SPACE parameter contains an 
adequate SPACE allocation, based on 
the value specified in the DEFINE FILE 
statement. 

indicates that all unused external 
storage assigned to a data set is to 
be released when the data set is 
closed in a job step. 

Note: The RLSE subparameter is 
ignored for any file for which END 
FILE is specified, or for which a 
BACKSPACE statement is issued. 

r:~G l 
~ONTIG! 

specify the format of the space allo-



cated to the data set, as requested in {NL } 
the "primary quantity". SL 

BLP 
MXIG 

ALX 

requests the largest single block of 
contiguous storage that is greater 
than or equal to the space requested 
in the "primary quantity". 

requests all available storage on the 
volume as long as there is at least as 
much space as specified in the "pri­
mary quantity". The operating system 
must be able to allocate at least the 
amount specified as the "primary quan­
tity" by using, at most, five noncon­
tiguous areas of storage. 

CONTIG 

ROUND 

requests that the space indicated in 
the "primary quantity" be contiguous. 

If the subparameter is not specified, 
or if any option cannot be fulfilled, 
the operating system attempts to 
assign contiguous space. If there is 
not enough contiguous space, up to 
five noncontiguous areas are 
allocated. 

indicates that allocation of space for 
the specified number of records is to 
begin and end on a cylinder boundary. 

Note: If a data set might be written on a 
direct access volume, the SPACE parameter 
must be specified in the DD statement. 

LABEL INFORMATION 

The label parameter (LABEL) is used to 
specify the type and contents of a data set 
label. 

{
,NL} LABEL=([data-set-sequence-numberl ,SL 

r I OUTl r. EXPDT=yyddd] 
£,PASSWORD] ~IN J ~RETPD=xxxx ) 

data-set-sequence-number 

,BLP 

is a 4-digit number that identifies 
the relative location of the data set 
with respect to the first data set on 
a tape volume. (For example, if there 
are three data sets on a magnetic tape 
volume, the third data set is identi­
fied by data set sequence number 3.) 
If the data set sequence number is not 
specified, the operating system 
assumes 1. 

specifies data set label information. 
SL indicates standard labels. NL 
indicates no labels (applicable only 
to data sets residing on a tape 
volume>. BLP indicates that label 
processing should be bypassed. 

The feature that allows bypassing of 
label processing is a system genera­
tion option (OPTIONS=BYLABEL). If 
this option has not been specified and 
BLP is coded, the system assumes NL. 

PASSWORD 
is used to secure a data set from 
unauthorized access. The operating 
system assigns security protection to 
the data set. Subsequently, whenever 
the data set is retrieved, the opera­
tor must respond to a message by issu­
ing the correct password. Detailed 
information on the use of the PASSWORD 
subparameter can be found in the Job 
Control Language and the Data Manage­
ment and Supervisor Services publica­
tions. Note that prudence should be 
exercised in specifying this option; 
indiscriminate use of PASSWORD can 
result in operation inefficiencies. 

The subparameters IN, OUT are used to 
control data sets that are to be processed 
as input or output only. Thus a form of 
read/write protection is offered by these 
parameters. 

For input data sets, the IN subpararneter 
allows: 

• Access to members of a partitioned data 
set (for read purposes only). 

• A means of avoiding operator interven­
tion when reading a data set that is 
protected by either a high expiration 
date or by the absence of the write 
ring (file-protected tape). 

For outpu~ data sets, the OUT subparam­
eter allows a member of a partitioned data 
set to be creat~d. 

IN 
specifies that the data set is to be 
processed for input only. IN will be 
recognized only if the first input/ 
output operation specifying the data 
set is a READ. If the first operation 
is not READ, the IN subparameter has 
no effect and both READ/WRITE opera­
tions are allowed. When the first 
operation is a READ, any subsequent 

Crea.ting Data Sets 63 



OUT 

WRITE issued to the data set will be 
treated as an error, and the job will 
be terminated. Additionally, the 
specification of IN permits the read­
ing of a password-protected data set 
(if the correct password is supplied) 
and avc>ids the need of operator inter­
vention when reading a data set pro­
tected by e.ither a high expiration 
date oi:: the absence of a write-ring. 

specifies that the data set defined by 
the DD statement is to be processed 
for output only. OUT will be recog­
nized only if the first input/output 
operation specifying the data set is a 
WRITE. If the first operation is not 
WRITE, the OUT subparameter has no 
effect and both READ/WRITE operations 
a.re all.owed.. However, the creation of 
a member of a partitioned data set is 
not all.owed when the first operation 
is READ, even though the OUT subparam­
eter was specified. When the first 
operation is a WRITE, any subsequent 
READ issued to the data set will be 
treated as an error, and the job will 
be terminated. OUT must be specified 
to create a member of a partitioned 
data set. 

fEXPDT=yydddj 
lFETPD=xxxx J 

specifies how long the data set shall 
exist. The E!Xpiration date, EXPDT= 
yyddd, indicates the year (yy) and the 
day (ddd) the data set can be deleted. 
The period of retention, RETPD=xxxx, 
indicates the period of time, in days, 
that the data. set is to be retained. 
If neither is specified, the retention 
period is assmned to be zero. 

DISPOSITION OF A DATA SET 

The disposition of a data set is speci­
fied by the DISP parameter; see "Data 
Definition (DD) Statement". The same 
options are used for both creating data 
sets and retrieving previously created data 
sets. When a data set is created, the sub­
parameters used are NEW, MOD, KEEP, PASS, 
and CATLG. 

WRITING A UNIT RECORD DATA SET ON AN 
INTERMEDIATE DEVICE 

With the SYSOUT parameter, output data 
sets can be routed to a system output 
stream and handled much the same -as system 
messages. 

64 

SY SO UT= A 
can be used with sequential schedulers 
to indicate that the data set is to be 
written on the system output device. 
No parameter other than the DCB param­
eter has any meaning when SYSOUT=A is 
used. This form of the SYSOUT parame­
ter may be specified for printer data 
sets. 

SYSOUT=B 
can be used with sequential schedulers 
to indicate the system card punch 
unit. The priority scheduler routes 
the output data set to class B. 

SYSOUT=(x[,program-namel (,form-number]) 
indicates that the data set is normal­
ly written on an intermediate direct 
access device during program execu­
tion, and later routed through an out­
put stream to a system output device. 
The "x" is to be replaced by an alpha­
betic or numeric character that speci­
fies the system output class to be 
used. output writers route data from 
the output classes to system output 
devices. The DD statement for this 
data set can also include a unit 
specification that describes the 
intermediate direct access device and 
an estimate of the space required. If 
these parameters are omitted, the job 
scheduler provides default values as 
the job is read and processed. 

If there is a special installation 
program to handle output operations, 
its "program-name• should be speci­
fied. "Program-name" is the member 
name of the program, which must reside 
in the system library. 

If the output data set is to be 
printed or punched on a specific type 
of output form, a four-digit "form 
number" should be specified. This 
form number is used to instruct the 
operator, in a message issued at the 
time the data set is to be printed, of 
the form to be used. 

Note: If the DEN subparameter is explicit­
ly specified for SYSOUT data sets, only 
DEN=2 is allowed in the DCB parameter. In 
addition, TRTCH=C must be specified in the 
DCB parameter, when the SYSOUT data set (1) 
is written on 7-track tape and (2) is com­
posed of variable-length records or con­
tains binary information. 

DCB PARAMETER 

For load module execution, the FORTRAN 
programmer may specify record formats and 



record lengths for sequentially organized 
data sets that reside on magnetic tape or 
direct access volumes. The DCB information 
is placed in the labels for these data 
sets. 

[

dsname J DCB=( •.ddname 
•.stepname.ddname 
•.stepname.procstep.ddname 

C,DEN={Ol11213}] C,TRTCH={CIEITIET}] 

C,BUFN0={11£}][,0PTCD=C] 

({FIU}[AIM][T] C,BLKSIZE=xxxx] ) 
,RECFM=)FBCAIM] [T],LRECL=xxxx,BLKSIZE=xxxx,l 

lV[S][B] CAIM][T],LRECL=xxxx, ( 
l BLKSIZE=xxxx J 

,BLKSIZE=xxxx 

REFERRING TO PREVIOUSLY SPECIFIED DCB 
INFORMATION 

The first subparameter 

[

dsname J 
•.ddname 
•.stepname.ddname 
•.stepname.procstep.ddname 

is used to copy DCB information from the 
data set label of a cataloged data set or 
from a preceding DD statement. The copied 
information is used for processing the data 
set defined by the DD statement in which 
the subparameter appears. Any subparame­
ters that follow this subparameter override 
any copied DCB subparameters. 

dsname 
indicates that the DCB subparameters 
of a cataloged data set "dsname" are 
copied. The data set indicated by 
"dsname" must be currently mounted and 
it must reside on a direct access 
volume. 

•.ddname 
indicates that the DCB subparameters 
in a preceding DD statement "ddname" 
in the current job step are copied. 

•.stepname.ddname 
indicates that the DCB subparameters 
in a DD statement "ddname" that occurs 
in a previous job step "stepname" in 
the current job are copied. 

•.stepname.procstep.ddname 
indicates that the DCB subparameters 
in the DD statement "ddname" are 
copied from a previous step "procstep" 
in a cataloged procedure. The proce-

dure was invoked by the EXEC statement 
"stepname" in the current job. 

DENSITY AND CONVERSION 

The second subparameter indicates the 
density and conversion for data sets resid­
ing on magnetic tape volumes. 

DEN§!.'!'.!: Density is specified for data 
sets residing on any magnetic tape volume. 

DEN={0111213} 
indicates the density used to write a 
data set (see Table 14). 

Table 14. DEN Values 
r-----T-----------------------------------1 
I !Tape Recording Density (bits/inch) I 
I DEN ~-----------------------------------~ 
!Value! Model 2400 I 
I ~-----------------T-----------------~ 
I I 7-Track I 9-Track I 
~-----+-----------------+-------~--------~ 
I o I 200 I I 
I 1 I 556 I I 
I 2 I 000 I 000 I 
I 3 I I 1600 I 
L-----~-----------------~-----------------J 

If DEN is not specified, 800 bits per inch 
is assumed. 

CONVERSION: conversion is used only for 
data sets residing on 7-track tape volumes. 

TRTCH={CIEITIET} 
indicates which conversion type is 
used: 

c - data conversion feature is 
used 

E - even parity is used 

T - translation from BCD to EBCDIC 
is required 

ET - even parity is used and trans­
lation from BCD to EBCDIC is 
required. 

NUMBER OF BUFFERS FOR SEQUENTIAL DATA SETS 

The number of buffers required to read 
or write any data set is specified by 

BUFNO=x 

where x=1 or 2 

Creating Data Sets 65 



Page of GC20-6817·-2, Revised 12/30/70, by TNL: GN28-0591 

CHAI NED SCHEDULING 

Chained scheduling may be requested by 
specifying OPTCD=C as a DCB subparameter in 
the DD state~ment. Al though chained sched­
uling is not used for direct-access I/O 
itself, it does produce faster formatting 
of direct-access data sets. Note that when 
chained scheduling is specified, the system 
makes use of about 2K additional bytes of 
main storage~ to provide the feature. 

RECORD FORMA.T 

Unformatted Control 

~
RECFM=U CA IM] [T] [S] ~ 
RECFM=V[B][AjM] [T](S] 
R:ECFM=F[B] CAI Ml (T]I (S] 

R:ECFM=VS(B][AIMl [Tl 

The characters u, v, F, B, and s 
represent 

U - undefined records (records that do 
not conform to either the fixed­
length or variable-length format) 

V - variable-length records (records 
whose length can vary throughout the 
data set) 

F - fixed·-length records (records whose 
length is constant throughout the 
data set) 

B - blocked records 
s - for fixed-length records, the 

records are written as standard 
blocks, i.e., no truncated blocks or 
unfilled tracks within the data set, 
with the exception of the last block 
or track. 

S - for variabli~-length records, a 
record may span more than one block. 

The character A indicates the use of the 
extended American National Standard car­
riage control characters (see Appendix E); 
the character M indicates the use of 
machine code control characters. 

Note: If A is not specified <or assumed), 
acarriage control character is treated as 
data and written. Single spacing is 
provided. 

The character T specifies the use of the 
track overflow feature. Use of this fea­
ture results in more efficient utilization 
of track capacity and allows records to be 
written when the specified block size 
exceeds track size. RECFM subparameter 
specifications, and the type of processing 
each is associated with, follow: 

RECFM=UT 
Formatted Sequential I/O 

66 

REC FM= VT 
Formatted Sequential I/O 

RECFM=VST 
Unformatted Sequential I/O 

REC FM= FT 
Direct Access I/O or Formatted Sequen­
tial I/O 

Note that backspacing is not allowed when 
track overflow is specified. Therefore, a 
FORTRAN program using the track overflow 
feature may not contain the BACKSPACE 
statement. 

RECORD LENGTH, BUFFER LENGTH, AND BLOCK 
LENGTH 

For blocked records used by the compiler 
or linkage editor, the length of a block is 
specified by the buffer length which is 
specified by 

BLKSIZE=xxxx 

where xxxx is a multiple of the record 
length. 

The record length CLRECL) is permanently 
specified by the compiler or linkage 
editor. 

The SYSPRINT data set of the (G) 
compiler has a record length of 120 bytes 
(including the carriage control byte>; the 
SYSPRINT data set of the (H) Compiler has a 
record length of 137 bytes. The SYSIN, 
SYSPUNCH, and SYSLIN data sets have a 
record length of 80 bytes. 

For unblocked records used by the com­
piler or linkage editor, the programmer 
should set BLKSIZE equal to record length 
except for the FORTRAN IV (H) SYSPRINT data 
set, which has a record length of 141 
bytes. 

For unblocked fixed-length records or 
undefined records used during load module 
execution, the record length and the buffer 
length are specified by 

BLKSIZE=xxxx 

For unblocked variable-length records, 
the record length is specified by 

LR:ECL=xxxx 

buffer length is specified by 

BLKSIZE=xxxx 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

• Table 15. Specifications Made by the FORTRAN Programmer for Record Types and Blocking 
r~---------y----------T----------------T---------------T---------------T---------------1 
I I Blocked or I I RECFM I I I 
I Step !Unblocked I Record Type I Specification I Record Length I Buffer Length I 
~~---------+----------+----------------+---------------+--------·-------+---------------~ 
!Compiler orlUnblocked !Fixed-Length !not specified !not specifieds. IBLKSIZE=record I 
I Linkage I I I I I length I 
I Editor ~----------+----------------+---------------+---------------+---------------~ 
I !Blocked !Fixed-Length jnot specified2. !not specified2. IBLKSIZE=xxxx I 
~----------+----------+----------------+---------------+---------------+---------------~ 

• I !Fixed-Length IRECFM=F2 IBLKSIZE=xxxx2 I 
I ~----------------+--------·-------+----------------i 
!Unblocked !Variable-Length IRECFM=V ILRECL=xxxx I 
I ~----------------+---------------+---------------~ 
I !Variable-Length IRECFM=VS ILRECL=xxxx I 
I I Spanned I I I 

Load Module\ t;~d~fl~~d-------1;;~~~:;-·-------1~i~~i~~:;;;;---1 BLKSIZE=xxxx 

Execution ~----------+----------------+---------------+----------------i 
I I Fixed-Length I RECFM=FB I I 
I ~-----------------f----------------i LRECL=xxxx I 
!Blocked !Variable-Length IRECFM=VB I I 
I ~----------------+--------·-------~ I 
I I Variable-Length I RECFM=VSB I I 
I I Spanned I I I 
I ~----------------+---------------i---------------..L.---------------i 
I !Undefined !Blocked undefined records are not permitted I 

~-----------i~--------i----------------i-----------------------------------------------~ 
Ii.Permanently specified by the compiler and cannot be altered (see "DCB Assumptions I 
I for Load Module Execution"). I 
12 Not specified for direct-access data sets. I 
L---------------------------------------------------------------------------------------J 

For blocked variable-length or fixed­
length records used by load modules, the 
record length is specified by 

LRECL=xxxx 

block length and buffer length are speci­
fied by 

BLKSIZE=xxxx 

Undefined records cannot be blocked. 

Table 15 is a summary of the specif ica­
tions made by the programmer for record 
types and blocking in FORTRAN processinq. 

FORTRAN Records and Logical Record~ 

In FORTRAN, records for sequential data 
sets are defined by specifications in FOR­
MAT statements and by READ/WRITE lists. A 
record defined by a specification in a FOR­
MAT statement is a FORTRAN record (see the 
FORTRAN IV Language publication, Order No. 
GC28-6515). A record defined by a READ/ 
WRITE list is a logical record. Within 
each category, there are three types of 
records: fixed-length, variable-length, 
and undefined. In addition, fixed-length 
and variable-length records can be blocked. 

For unformatted READ and WRITE state­
ments the logical record, as defined by the 
I/O list, is placed into physical records 
and, if required, the logical record is 
spanned over physical records. When span­
ning occurs, FORTRAN library routines do 
not split-write an item over the span even 
though there is enough room in the buffer 
to accomodate part of the item. However, 
FORTRAN does provide the ability to read 
items split across segments. 

FORMAT CONTROL 

The following discussion provides inf or­
mation on records written under control of 
a FORMAT statement. 

UNBLOCKED RECORDS: For fixed-length and 
undefined records, the record length and 
buffer length are specified in the BLKSIZE 
subparameter. For variable-length records, 
the record length is specified in the LRECL 
subparameter: the buffer length in the 
BLKSIZE subparameter. The information 
coded in a FORMAT statement indicates the 
FORTRAN record length (in bytes). 

Fixed-Length Records: For unblocked fixed­
length records written under FORMAT con­
trol, the FORTRAN record length must not 
exceed BLKSIZE (see Figure 32). 

Creating Data Sets 67 



~xamQ;te: Assume BLKSIZE=44 

10 FORMAT(F10.5,I6,2F12.5,'SUMS') 
WRITE(20,10)AB,NA,AC,AD 

r·· - -- - - - - -- BLKSIZE - - -- - - - - - -, 

I I 
I - -- - - FORTRAN Record - - - - - - ---j 

I I 

[- ·-· 44 Byres ~~-~-~------------·---<] 
Figure 32. FORTRAN Record (FORMAT Control) 

Fixed-Length Specification 

If the FORTRAN record length is less 
than BLKSIZE, the record is padded with 
blanks to fill the remainder of the buff er 
(see Figure 33). The entire buffer is 
written. 

ExamQl.e: Assume BLKSI ZE=56 

5 FORMATCF10.5,I6,F12.5,'TOTAL'l 
WRITE(15,5tBC,NB,BD 

I - - - - -- - -- BLKSIZE - - - - - ·- - --, 

I 
~- - -· - - -- - - Written Record - - - - - - -1 
I- - - FORTRAN Record - -- I I 
I I I 

[-·----· 33 Bytes of Data -·---I ___ -=:!yh~s of Bla~_s __ ] 

Figure 33. FORTRAN Record (FORMAT Control) 
l~ixed-Length Specification and 
JPORTRAN Record Length Less Than 
BLKSIZE 

y:ari~Ql~-Lenqth_g~cords: For unblocked 
variable-length records written under FOR­
MAT control, LRECL is specified as four 
greater than the maximum FORTRAN record 
length; and BLKSIZE as four greater than 
LRECL. These extra eight bytes are 
required for the 4--byte block descriptor 
word CBDW) and the 4-byte segment descrip­
tor word CSDW), as shown in Figure 34. The 
BDW <see Figure 39) contains the length of 
the block; the sow (see Figure 40) contains 
the length of the record segment, i.e., the 
data length plus four bytes for the sow. 

68 

- - - - - - - - BLKSIZE - -- - - - - -- - - - --1 

I 
I 

r ··- -- -- -·- ·-- -- - -- -- -- - LRECL - - ·-- -- - -- ---- - --j 

1 

I 

I 
I I 

-- ·- - - - - --- - FORnAN Record 

fowr~r Data 

I 
I 

--1 
I 

Figure 34. FORTRAN Record (FORMAT Control) 
Variable-Length Specification 

If the data length is less than 
CLRECL-4), the unused portion of the bUffer 
is not written (see Fi-gure 35). 

r ... -- - -- - -- - BLKSIZE - - -- - -· - -- - -- - -1 

I w· f- - - --- - -- r1tten Record - - ·-- - - 1 
I 
I 
I I I 

r- -- - - - - -- -- -LRECL - 1-· --- ·-·--- __ _J 

I I I I 
I I -1 I I I :-- -- - FORTRAN Record - - - I I 

I I I I I 

IBowjsowj Data ~==i-~~~~~~~0~~==~] 
Figure 35. FORTRAN Record (FORMAT Control) 

With Variable-Length 
Specification and the FORTRAN 
Record Length Less Than 
(LRECL-4) 

Undefined Records: For undefined records 
written under FORMAT control, BLKSIZE is 
specified as the maximum FORTRAN record 
length. If the FORTRAN record length is 
less than BLKSIZE, the unused portion of 
the buffer is not written (see Figure 36). 

,---------- BLKSIZE-- ----------, 

I I 
f- - -- - - FORTRAN Record - - -- - -, I 
I I I 
I I I 

I Doto ==r=~~~·~==] 
Figure 36. FORTRAN Record (FORMAT Control) 

With Undefined Specification 
and the FORTRAN Record Length 
Less Than BLKSIZE 

BLOCKED RECORDS: For all blocked records, 
the record length is specified in the LRECL 
subparameter; the block length and buffer 
length in the BLKSIZE subparameter. 

Fixed-Length Records: For blocked fixed­
length records written under FORMAT con­
trol, LRECL is specified as maximum poss­
ible FORTRAN record length, and BLKSIZE 
must be an integral multiple of LRECL. If 
the FORTRAN record length is less than 
LRECL, the rightmost portion of the record 
is padded with blanks (see Figure 37). 



Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

Example: Assume BLKSIZE=48 and LRECL=24 

10 FORMAT(I2,F4.1,F8.4,F10.5) 
20 FORMAT(I3,F9.4) 

WRITE(13,10)N,B,Q,S 

WRITE(13 1 20)K,Z 

, - - - -- - - - - -- BLKSIZE - - - - - - ·- - - -
1 

L_ ·- - - - - W . tt BI k I I - - - - r1 en oc - -- - - -- - - --'I 
f-- - - - - - LRECL - - - - -.- - - - - -LRECL -- - - - ~ 
I I FORTRAN 
I- - - - FORTRAN Record - - - - -1. - R d -

1 
I 

1 ecor I 
I I I I 

12 12 Bytes 
24 Dato Bytes Doto Bytes of 

Blanks 

Figure 37. Fixed-Length Blocked Records 
Written Under FORMAT Control 

~ari~Q!g=~ength Records: For blocked 
variable-length records written under FOR­
MAT control, LRECL is specified as four 
greater than the maximum FORTRAN record 
length, and BLKSIZE must be 4 plus an 
integral multiple of LRECL. The four addi­
tional bytes allocated with BLKSIZE are 
required for the block descriptor word 
(BOW) that contains the block length. The 
four additional bytes allocated with LRECL 
are used for the segment descriptor word 
(SOW) that contains the record length 
indication. 

If a WRITE is executed and the amount of 
space remaining in the present buff er is 
less than LRECL, only the filled portion of 
this buffer is written (see Figure 38): the 
new data goes into the next buffer. Howev­
er, if the space remaining in a buffer is 
greater than LRECL, the buffer is not writ­
ten, but held for the next WRITE (see 
Figure 38). If another WRITE is not 
executed before the job step is terminated, 
then the filled portion of the buffer is 
written. 

If LRECL is omitted, its default value 
is set almost equal to the value of 
BLKSIZE. This results in having only one 
record written in any block. 

Example: Assume BLKSIZE=28 and LRECL=12 

30 FORMAT(I3,F5.2) 
40 FORMAT(F4.1) 
50 FORMAT(F7.3) 

WRITE(12,30)M1 Z 
WRITE(12,40)V 
WRITE(12 1 50)Y 

1 ---- - ------- BLKSIZE - - - - - - - ----1 

1------ - - - Written Block - - - - - - -1 

I I 
I 

I 
I 
I 

I ,- - - - - LRECL - - ·- - 1 - - - - -- LRECL -- - -- __ , 
I I I i 
I I r---FORTRAN Record---j 1 _FORTRAN_1 
I I I I 1 Record I 
I I I I I I 

I 
I 
I 
I 

4 
----, 
4 Bytes I 

BDW SDW 8 Doto Bytes sow Data Not I 
Bytes Written I 

_____ .J 

,--FORTRAN Record---, 
I I 
I I 

E ~SDW 
This space of 13 bytes 

7 Doto Bytes Ready for next WRITE. 
(space> LRECL) 

Figure 38. Variable-Length Blocked Records 
Written Under FORMAT Control 

UNF'ORMATTEO CONTROL 

Only variable-length records can be 
written without format control, i.e., the 
RECFM subparameter must be vs. (If nothing 
is specified, vs is assumed.) 

Records written with no FORMAT control 
have the following properties: 

• The length of the logical record is 
controlled by the type and number of 
variables in the input/output list of 
its associated READ or WRITE statement. 

• A logical record can be physically 
recorded on an external medium as one 
or more record segments. Not all seg­
ments of a logical record must fit into 
the same physical record (block). 

• Two quantities control the manner in 
which records are placed on an external 
medium: the block size (as specified 
by the BLKSIZE parameter>, and the log­
ical record (as defined by the length 
of the I/O list). BLKSIZE is specified 
as part of the DCB parameter of the 
data definition (DD) statement. If not 
specified, FORTRAN provides default 
values. 

Each block begins with a 4-byte block 
descriptor word (BDW); each segment begins 
with a 4-byte segment descriptor word 
(SOW). The sows and BDWs are provided by 
the system. Each buffer begins with a 
4-byte block descriptor word (BDW). The 
sows and BDWs are provided by the system. 

Creating Data Sets 69 



Page of GC2B-6817--2, Revised 12/30/70, by TNL: GN28-0591 

_Qnblo~ked R~_fords :: For all unblocked rec­
ords written with or without FORMAT con­
trol, the volume is positioned so that the 
last logical record read or written is 
transmitted next. 

Blocked Records: Blocked records are back­
spaced-on-a-Togical record basis. Thus, a 
BACKSPACE may result in a deblocking opera-

70. 2 

tion rather than makiru~ available a new 
physical record. 

Note: Logical records are usually synony­
mous with the amount of data specified in 
the I/O list for the HEAD· or WRITE state­
ment that processes the record. Thus, when 
there is no FORMAT control, the logical 
record may be spanned over one or more 
physical records on the volume; however, 
FORTRAN treats only the logical record as 
an entity. For records written under 



FORMAT control, a single READ/WRITE state­
ment may ref er to or create several logical 
records. This occurs when there is a "/" 
character in the FORMAT statement or when 
the I/O list exceeds the FORMAT specif ica­
tions, causing the FORMAT statement to be 
used again from the first parenthesis. 

Extending a Data Set: The execution of an 
ENDFILE followed by the execution of a BAC­
KSPACE does not cause the FORTRAN sequence 
number to be incremented. The data set can 
be extended (written) using the same FO­
RTRAN sequence number. 

Record Length, Buff er Length, and Number of 
Buffers for Direct Access Data Sets 

A direct-access data set can contain 
only fixed-length, unblocked records. Any 
attempt to read or write any other record 
format by specification in the DCB parame­
ter is ignored. The record length and 
buff er length for a data set are specified 
by the programmer as the record size in the 
DEFINE FILE statement, and cannot be 
changed by specifying the BLKSIZE or LRECL 
subparameters in the DCB parameter. For 
example, the statement: 

DEFINE FILE 8(1000,152,E,INDIC) 

sets the record length and buff er length 
permanently at 152 bytes. The direct­
access data set defined by this DEFINE FILE 
statement contains 1000 fixed-length, 
unblocked records; each record is 152 bytes 
long and is written under FORMAT control. 

The programmer may specify the number of 
buffers for a direct-access data set as 
follows: 

BUFNO=x 

where: x is the number (1 or 2) of buffers 
used to read or write the data set. 

For records written with FORMAT control, 
the record format is the same as for fixed­
length unblocked records written with FOR­
MAT control for sequential data sets. For 
records written with no FORMAT control, the 
records must be fixed-length and unblocked. 
These records do not contain a block con­
trol word or a segment control word. 

Spanning Considerations 

For records written with no FORMAT con­
trol, the input/output list may exceed the 
logical record length (i.e., block size>. 
In this case a new block is started on out­
put, and the next block is processed on 
input. If it is shorter than the record 

length, the remaining portion of the record 
is padded with zeros (see Figure 41). 

~I'he DEFINE FILE field r ( r=152 in the 
example shown above) specifies the maximum 
size of each record in a data set. It is 
only when this size is exceeded by the I/O 
list that spanning occurs. 

Note that the spanning feature is an 
extension to FORTRAN language specif ica­
tions in that it is applicable only for 
programs written in FORTRAN under the 
System/360 Operating System. 

When spanning occurs, the FORTRAN 
library routines do not split an item over 
the span even if there is enough room in 
the buffer to accommodate part of the item. 
The same considerations apply to reading. 

Example: A DEFINE FILE statement has spec­
ified the record length for a direct-access 
data set as 20. This statement is then 
executed: 

WRITE(9 1 IX)DP1,DP2,R1,R2 

where: DP1 and DP2 are real *8 variables. 
R1 and R2 are real •4 variables. 
IX is an integer variable that con­
tains the record position. 

BACKSPACE, END FILE, and REWIND opera­
tions are ignored for direct access data 
sets. 

r - - - - - Record Length - - - t 
I I 
~- - - - - - Record Segment 1- - - --i 
I I 

t 20 Data Bytes I ___ ___, 

Record Segment l + Record Segment 2 = l Logical Record 

r -
I 

Figure 41. 

- - -Record Segment 2- - - - - -

16 Bytes of Zeros 

-, 
I 

Logical Record (No FORMAT Con­
trol) for Direct ACCPSS 

Creating Data Sets 71 



DCB ASSUMPTIONS FOR LOAD MODULE EXECUTION 

For compilation, the LRECL value for the 
following data sets is fixed and cannot be 
altered by the programmeri 

Data Set 
SY SPRINT 
SYS IN 
SYS PUNCH 
SYS LIN 

LRECL Value 
120 (G) 1 137 (H) 

80 
80 
80 

The SYSPRINT, SYS IN, and SYSI>UNCH com­
piler data sets can contain blocked rec­
ords. If the higher level linkage editor 
(program name: IEWLE440) is used, the SYS­
LIN data set can contain blocked records. 

The BLKSIZE value must be an integral 
multiple of the corresponding LRECL value 
shown above. The maximum BLKSIZE value is 
limited only by the type of input/output 
device (see Table 16) 1 except that for SYS­
LIN the maximum BLKSIZE value is 400 with 
linkage editor IEWLE440. 

Fo:r load module execution, specifica­
tions depend on record type. For F type 
records, the BLKSIZE value must be an 
integral multiple of the LRECL value: for v 
type records, BLKSIZE must be specified as 
4 + n x LRECL (where n is the nwnber of 
records in the block)1 for u type records, 
no blocking is permitted. Note, too, that 
the BLKSIZE and LRECL range is limited only 
by the type of device used to directly 
write the data set. Load module DCB param­
eter default values are shown in Table 17. 

Table 16. BJ:,KsIZE Ranges: Device Considerations 
r---------------------T--------------------------------------------------------------1 
I I BLKSI ZE Ranges I 
I ~---------·------------------------T------------·-------------------i 
I Device Type I F and U Record Type I V Record Type I 
~-----·----------------+----------·------------------------+-------------------------------i 
I Card Reader I 1:5x:580 I 9~:580 I 
1--------------------+---------------------------------+------------·-------·----·--------i 
I Card Punch I 1:5x:581 I 9:Sx:589 I 
~-----·---------------i-+---------------------------------+------------·--------------------1 
I Pr inter:. I I I 
I 120 Spaces I 1:5x:5121 I 9:5x:5129 I 
I 132 Spaces I 1:5x:5133 I 9~:5141 I 
I 144 Spaces I 1:5x:5145 I 9:5x:5153 I 
~--------------------+-------------------------------J.------------·-----------·--------i 
I Magnetic Tape I 18:5x:532,760 I 

~-------------------f----------------------------------T--------------------------------f 
I Direct Access: I Without Track overflow1 I With Track overflow1 I 

I ~------·-------------------------t------------·-----------·---------1 
I 2301 t 1:5x:520,483 I 1~:532,760 I 
I 2302 t 1:5x:54984 I 1:5x:532,760 I 
I 2303 t 1:5x:54892 I 1:5x:532,760 I 
I 2311 I 1~:53625 I 1:5xS32,760 I 
I 2314 I 1:5xs7294 I 1~s32, 760 I 
~------------·---------L----------------------------------L------------------------·--------i 
l 1 If RECFM=V, the minimum block size is 9. I 
l------------·-----·-----------------------------------------------------------·--------J 

72 



Table 17. Load Module DCB Parameter Default Values 
r-----------------------T------------------------------1 
I Sequential Data Sets I Direct-Access Data Sets I 

r-------------------T------------f-----------T-----------f-----------T------------------~ 
I Data Set I I Default I Default I Default I Default LRECL I 
I Reference Number I ddname I BLKSIZE1 I RECFM2 I RECFM I or BLKSIZE I 
~-------------------+------------+-----------+-----------+-----------+------------------i 

~--------=---------+--::~:::::--+----~~~----+-----~-----+-----:-----~ I 2 I FT02Fyyy I 800 I U I F I The value spec-
~-------------------+------------+-----------+-----------+-----------~ 
I 3 I FT03Fyyy I 800 I U I FA3 I if ied as the 
~------------------+------------+-----------t-----------+-----------~ 
I 4 I FT04Fyyy I 800 I U I F I maximum size of 
~-------------------+------------+-----------+-----------+-----------i 
I 5 I FT05Fyyy I 80 I F I F I a record in the 
~-------------------+------------+------~----+-----------+-----------i 
I 6 I FT06Fyyy I 133 I UA3 I F I DEFINE FILE 
~-------------------+------------+-----------+-----------+-----------~ 
I 7 I FT07Fyyy I 80 I F I F I statement. 
~-------------------f------------+-·----------f-----------+-----------i 
I 8 I FT08Fyyy I 800 I u I F I 
I I I I I I 
I I I I I I 
I I I I I I 
I 99 I FT99Fyyy I 800 u I F I 

~-------------------i------------i-----------i-----------i-----------i------------------i 
l 1 If the records have no FORMAT control, the default LRECL is 4 less than BLKSIZE, wheref 
I the default BLKSIZE is as specified in this table. For direct-access data sets, I 
I blocksize is usually limited by track capacity, unless track overflow has been I 
I specified. I 
l 2 If the records have no FORMAT control, the default RECFM is vs (F if it is direct I 
I access>. I 
f 3The first character in the record is for carriage control. I 
L---------------------------------------------------------------------------------------J 

Creating Data Sets 73 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

.-------, 
IG ONLYICATALOGED PROCEDURES 
L------J 

For ease of reference this section, 
directed solely to the user of the FORTRAN 
IV (G) compiler,, has been written as a 
self-contained, independent unit. For 
information on FORTRAN IV (H) cataloged 
procedures, see "FORTRAN IV (H) Cataloged 
Procedures." 

This section contains figures illustrat­
ing the job control statements used in the 
FORTRAN IV (G) cataloged procedures and a 
brief description of each procedure. The 
statements used to override the statements 
and parameters in any cataloged procedure 
are also discussed in this section. (The 
use of cataloged procedures is described in 
"FORTRAN Job Processing.") 

In each of the four cataloged procedures 
that include the compile step (Figures 42, 
43, 45, and 46), the EXEC statement named 
FORT designates that the operating system 
is to execute the program IEYFORT (the 
.F'ORTRAN IV (G) compiler). 

The REGION parameter is ignored by 
sequential schedulers. For priority 
schedulers, it specifies a region size 
sufficient to compile approximately 400 
statements. 

MVT priority schedulers require that 
region size be spE~cif ied, unless the user 
is willing to accept the default region 
size (as established in the input reader 
procedure> • 

'rhe size of the! region is directly 
related to the maJ!:imum number of source 
statements that can be compiled by the 
FORTRAN (G) compiler. A region size of 
100K is estimated to be sufficient to com­
pile approximately 400 statements assuming 
unblocked input and output and non-resident 
access methods. 'I'o adjust this region size 
for smaller or larger source programs, use 
75 bytes per state~ment as a rule of thumb. 

Note: If different region sizes are to be 
specified for each step in the job, the 
REGION parameter should be coded in the 
EXEC statement associated with each step 
instead of in the JOB statement. 

74 

The compiler options (shown in Figure 
24) are not supplied with any procedure 
containing a compile .step. Therefore, if 
the user wishes to ha·ve certain operations 
performed, he must specify those options in 
the job control statements. However, if 
the user does not specify any of the 
options, the system will assume certain 
default options which arc~ noted by the 
underscores in Figure 24 .. 

The control statements contained in the 
procedure, FORTGC (shown in Figure 42) 1 
designate the data set.s to be used by the 
compiler during its operation. The source 
listing, compile-time information, and 
error messages are writtE~n on. the data set 
designated by the SYSPRINT DD statement. 
The object module resulting from the opera­
tion of the FORTRAN compller is written in 
the temporary data set &l .. OADSET, designated 
in the SYSLIN DD statE~ment. This data set 
is sequential and is assigned to a sequen­
tial device such as a tape or direct-access 
device. However, if the direct-access 
device is assigned, a primary allocation of 
200 records is requested with a secondary 
allocation of 100 recorde;. Average record 
length is specified as 80 bytes. The data 
set is in PASS status, and records can be 
added to the data set. The SYSPUNCH DD 
statement defines the card punch to be used 
in obtaining an object deck. 

The SYSOUT=B parameter on the SYSPUNCH 
DD statement is interpreted by sequential 
schedulers as indicating the system card 
punch unit. The priority sch 1eduler will 
route the output to output class B. 

The programmer can override any of the 
default options by using an EXEC statement 
which includes the options that are 
desired. 

compile and Linkage Edit 

The cataloged procedure to compile the 
source module and linkage edit the result­
ing FORTRAN object module (FORTGCI..) is 
shown in Figure 43. The control statements 
for compilation are th•e same as described 
above. However, output of the object 
module is defined by the SYSLIN DD 
statement. 



Sample Coding Form 

I 1£~~JT-L.L_LL~~~L.i!L~''1. ==11, ~h~~iL~1EiC1'X1~~-~--~~--..L.L.LL.L.LL.4..i.LLi-l-L..i-L--'.-+-L.LJ.LLL.L 

I ~I? ,fl,:I.if\111 ,J>,l), I !Sl'L~P~f'!i~~ lL L.Ll-~_Lt_LLL_L.L.Y-t-..Li. .. LLU~LL.LJ_._L.LLL~_j__L_L_LLLLLL+LLl LLL L . .l. 

I I s 'f s P ~&Sµ.~LL~'i.i~o ,u1-r,=- ,'B1 1 .li_~_LLLLLLL.LL.p...L-1......L..L~-L~.1-L.LL.1-_j_J.__LL+-LLLL_L_J _LL L~ .. ....l._L _J _Ll ....l.~~L 
I ~-~il,,~-~~l\l.tB1~!_&.i.."'1.Qlfti~ .. ~1I:1S11>l .. 1CM1t>~~Lh.2...t~~~t!i£.2Lf1~.L<i>L2.Ll ~ .L .U....l._LJ._L..LJ~µd, L l...J 

I u_L.i....LLL..f--.i-i.-i-1.~3.Jft&.!~j "1 C~_cA.2.L<tY~~~~i.Siru)+UU..A::1-~.i6~~~.6..~~L1 _LLL_ + __j__J...L.LJ . ...J ..... L.L.J. j .1 1 ... L LJ.....L.L....t......L. 

Figure 42. compile cataloged Procedure (FORTGC) 

In each of the cataloged procedures that 
include a linkage edit step (Figures 43, 
44, and 45), the EXEC statement named LKED 
specifies that the operating system is to 
execute the program IEWL (the linkage edi­
tor). However, the linkage editor step (or 
the remainder of the procedure) is not 
executed if a condition code greater than 4 
was generated during the operation of the 
compile step in the same procedure. 

Execution of the linkage editor step 
produces a list of the linkage editor con­
trol statements (in card image format>, a 
map or cross-reference listing of the load 
module, and a list of linkage editor diag­
nostic messages on the data set specified 
by the SYSPRINT DD statement. The load 
module is marked executable even though 
error conditions are found during 
processing. 

The primary input to the linkage editor 
may consist of concatenated data sets. The 
first, defined by the SYSLIN DD statement, 
is the output of the compiler; the second 
(may be omitted) is the data set defined by 
a LKED.SYSIN DD statement which is speci­
fied by the user and is external to the 
procedure. 

External references made in a FORTRAN 
object module are resolved by the linkage 
editor. Some or all of these references 
can be resolved from the FORTRAN library 
(SYS1.FORTLIB) designated in the SYSLIB DD 
statement. 

During processing, the linkage editor 
requires a work data set which is defined 
by the SYSUTl DD statement. This data set 
is assigned to a direct-access device with 
primary allocation of 20 records and secon­
dary allocation of ten records. The load 
module produced by the linkage editor is 
written in the temporary PDS defined in the 
SYSLMOD DD statement. The data set is in 
the PASS status. 

Linkage Edit and Execute 

This cataloged procedure, FORTGLG, first 
linkage edits the FORTRAN object module and 
then executes the resulting load module. 
(The FORTGLG procedure is shown in Figure 
44.) Since the linkage edit step is the 
first step in the procedure, the primary 
input is the data set defined by the LKED. 
SYSIN DD statement. 

The execute step is included in two 
cataloged procedures (see Figures 44 and 
45). In each of these procedures the 
execute step is invoked by the EXEC state­
ment named GO. However, this step is 
bypassed if a condition code greater than 4 
was generated during the operation of the 
linkage edit step in this procedure. 

Input to the execute step is defined by 
a GO.SYSIN DD statement which is supplied 
by the user and is external to the proce­
dure. The data set is read using data set 
reference number 5. In the linkage edit 
step, execution-time error messages are 
written in the data set defined by the SYS­
PRINT DD statement. In the execute step, 
error messages and information for trace­
back, DUMPs, and PDUMPs are written on the 
data set associated with the reference num­
ber 6. (Output from the load module can 
also be written in the same data set.> The 
card punch is associated with data set 
reference number 7. 

In a multiprogramming environment with 
an MVT priority scheduler, main storage 
requirements for the execute step are 
determined by a number of factors. These 
include: the size of the object program 
produced by the compiler, the requirements 
of the data access method used, the block­
ing factors, the number and sizes of the 
data sets used, the number and sizes of 
library subprograms invoked, and the sizes 
of the execution time routines required by 
the program. If the default region size 
(established in the cataloged procedure for 
the input reader) is not large enough for 

FORTRAN IV (G) cataloged Procedures 75 



Sample Coding Form 

Figure 43. Compile and Linkage Edit Cataloged Procedure (FORTGCL) 

76 



Page Of GC28-68l.7-2, Revised 12/30/70, by TNL: GN28-0591 

the program, REGION.GO must be used to spe­
cify the region size for the execute step. 

A listing of the execution time routines 
required for various input/output, inter­
ruption, and error procedures is contained 
in the FORTRAN IV Library Subprograms 
publication, Order No. GC28-6818. That 
publication also lists the sizes of both 
the execution-time routines and the 
mathematical subprograms. 

An example of using a REGION.GO 
specification to indicate the main storage 
requiremeP~s for the execute step of a 
FORTRAN program follows. 

//EXAMPLE! JOB ACCOUNTl,'JOHNSMITH', 
// MSGLEVEL=l 

// EXEC FORTGCLG,PARM.FORT=DECK, 
REGION.G0=84K 

//FORT.SYSIN DD * 

FORTRAN SOURCE SYMBOLIC DECKS 

/* 

//LKED.SYSIN DD * 

/* 

PREVIOUSLY COMPILED OR ASSEMBLED 
OBJECT DECKS 

//GO.SYSIN DD * 

INPUT DATA 

/* 

x 

x 

The cataloged procedure (FORTGCLG) to 
compile, linkage edit, and execute FORTRAN 
source modules is shown in Figure 45. This 
cataloged procedure consists of the state­
ments in the FORTGC and FORTGLG procedures, 
with the following exception: the SYSLIN 
DD statement defines the output of the com­
piler, and the same statement in the 
linkage edit step identifies this output as 
the primary input. 

I 

The programmer does not have to define 
the linkage editor input as was required 
for the FORTGLG procedure, but the input 
data set must be defined for the compiler 
so that the source module can be read. A 
data set containing primary input to the 
linkage editor may also be defined by using 
a LKED.SYSIN DD statement. This data set 
is concatenated with the data set contain­
ing the output of the compiler. 

compile and Load 

The cataloged procedure (FORTGCLD) to 
compile and load FORTRAN source modules is 
shown in Figure 46. The control statements 
used in the compiler step are the same as 
those used in the cataloged procedure 
FORTGC (Figure 42). 

The load step is invoked by the EXEC 
statement GO. This statement specifies 
that the loader (program name LOADER) is to 
be executed. The EXEC statement also 
specifies that a storage map and any diag­
nostic messages produced in the load step 
are to be placed in the data set specified 
in the SYSLOUT DD statement. 

The load step will not be executed if a 
condition code greater than 4 was generated 
during the compile step. 

Primary input to the load step is 
defined in the SYSLIN DD statement. This 
is the output data set produced by the com­
piler. Additional input may be defined by 
a GO.SYSIN DD statement which is supplied 
by the user and is external to the proce­
dure. This data set is concatenated with 
the primary input data set. 

Any external references made in the load 
step are resolved by the loader. Some or 
all of these references can be resolved 
from the FORTRAN library (SYSl.FORTLIB) 
designated in the SYSLIB DD statement. 
Private libraries may be concatenated with 
the FORTRAN library to help resolve extern­
al. references. Figure 29 shows how this 
may be done. 

USER AND MODIFIED CATALOGED PROCEDURES 

The programmer can write his own cata­
loged procedures and tailor them to the 
facilities in his installation. He can 
also permanently modify the IBM-supplied 
cataloged procedures. For information 
about permanently modifying cataloged pro­
cedures, see the Job Control Language 
publication. 

FORTRAN IV (G) Cataloged Procedures 77 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

ThE! IBM-supplied cataloged procedures 
for FORTRAN IV (G) define logical unit 05 
as SYSIN, 06 as SYSOUT, and 07 as SYSCP 
(see Figures 44, 45, and 46). If, during 
system generation, values other than 05 for 
the ONLNRD parameter, 06 for the OBJERR 
parameter, and 07 for the ONLNPCH parameter 
were specifi1ed in the FORTLIB macro 
instruction, one or more of the following 
DD cards must be added to the cataloged 
procedures, either to override them at 
execution time or to modify them permanent-
1 y. (The §ystem Gieneration publication, 
Order No. GC28-6554, describes the FORTLIB 
macro instruction.) 

If a //GO.SYSIN DD * statement is used 
to define thE~ input data set, DCB parame­
ters should not be specified. However, if 
the data set defined as SYSIN resides some­
where other than on the system input 
device, the programmer should be· aware that 
the default BLKSIZE is 800 and the default 
RECFM is U (see Table 17). Therefore, if 
he desires a BLKSUrn of 80 and a RECFM of 
F, he must specify them explicitly. 

• For the unit specified as ONLNRD, use 
the DD card: 

//GO.FTxxFOOl DD DDNAME=SYSIN 

• For the unit specified as OBJERR, use 
the DD card: 

//GO.FTxxF001 DD SYSOUT=A 

• For the unit specified as ONL~~CH, use 
the DD card: 

//GO.FTxxF001 DD UNIT=SYSCP, X 
// DCB=(BLKSIZE=80,RECFM=F) 

where: 
xx (2 digits) is the unit 
specified 

In addition, the DD card for FT05001 
must be deleted permanently from the cata­
loged procedure. 

OVERRIDING CATALOGED PROCEDURES 

cataloged procedures are composed of 
EXEC and DD statements. A feature of the 
operating system is its ability to read 
control statements and modify a cataloged 
procedure for the duration of the current 
job. overriding is only temporary; that 
is, the parameters added or modified are in 
effect only for the duration of the job. 
The f ollCMing text discusses the techniques 
used to modify cataloged procedures. 

Sample Coding Form 

Figure 45. Compilet Linkage Edit, and Execute Cataloged Procedure (FORTGCLG) 

78 



Page of GC28-6817--2, Revised 12/30/70, by TNL: GN28-0591 

r--------------------·---::--·:--::--------------------·------··----
Sample Coding Form 

lL F IP 7 F o~ J lQID _ . _ ~ Y s[C ur = ~ ... _ i . i 1 i J 1 l i 1 -r ! i J l 1 ! J 1 I _l l ; 

11 ·1 lj 11 --t-l l 'i;-, Ji l!tj !l i I! ;J:/i; 1.,lt 
111 i l l 1 i I I i : I ! l ! I i l J j TT I l i :~ i ; 1 l _L l 

J _iii l : I 1 I I I I [ 1 • l i l i Ji ii I 1 i 1 T 1 J_L l , l-w 1 ' · · • 

J J 1 11 I !I 11, I Ii I I[ 1 :Jj .1 1 -i :11 1! I j;; i.:J.~-
! I I i J l i JJ 1 J] : l ! I ' 1 ~ ! I i J I i i i j l j I i ; : I -!--<-- r-+-llit+·: I ; t-_:-

i ! ] I I I i: i . ' . T l 11. -, -++++-i-j__j__+_ ; 
I l 1 i ' Ll l j 'l I ' I - I j J l ! ' ; J : : • . ' 

I I J !l Jjl ' ·1 I 1: 1 [ l II ili lj /iili i··_i-_li 

i, 1rJ 11 111 111 1!1-r·:1 :1 : I1. 11 111111111:1111. · 

• Figure 46. Compile and Load· cataloged Procedure (FORTGCLD) 

Q~~!di!!9. Parameters in the EXEC S~atement 

Two forms of keyword parameters 
<"keyword" and "keyword.procstep") are dis­
cussed in "Job Control Language." The form 
"keyword.procstep" is used to add or over­
ride parameters in an EXEC statement in a 
cataloged procedure. 

The FORTRAN programmer can, for example, 
add (or override) compiler, linkage editor, 
or loader options for an execution of a 
cataloged procedure, or he can state dif­
ferent conditions for bypassing a job step. 

Note: When the PARM parameter is overrid­
den, all compiler, linkage editor, or load­
er options stated in the EXEC statement in 
the procedure step are deleted and replaced 
by those in the overriding PARM parameter. 

Example 1: Assume the cataloged procedure 
FORTGC is used to compile a program, and 
the programmer wants to specify the name of 
his program and the MAP option. The fol­
lowing statement can be used to invoke the 
procedure and to supply the compiler 
options. 

//STEP1 EXEC FORTGC, X 
// PARM.FORT='mAP,NAME=MYPROG' 

The PARM options apply to the procedure 
step FORT. 

Example 2: Assume the cataloged procedure 
FORTGLG is used to linkage edit and execute 
a module. Furthermore, the MAP option 
overrides XREF, LET, and LIST in the link­
age editor step and the COND parameter is 

FORTRAN IV (G) Cataloged Procedures 78.1 





Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

changed for the execution of the load 
module. The following EXEC statement adds 
and overrides parameters in the procedure. 

//DO EXEC FORTGLG,PARM.LKED=MAP, X 
// COND.G0=(3,LT,DO.LKED) 

The PARM parameter applies to the link­
age editor procedure step LKED, and the 
COND parameter applied to the execution 
procedure step GO. 

Example 3: Assume a source module is com­
piled and loaded using the cataloged proce­
dure FORTGCLD. Furthermore, an external 
name is specified as the entry point of the 
loaded program. The following EXEC state­
ment adds and overrides parameters in the 
procedure. 

//STEPl EXEC FORTGCLD,PARM.GO='EP=FIRST' 

overriding and Adding DD Statements 

A DD statement with the name "stepname. 
ddname" is used to override parameters in 
DD statements in cataloged procedures, or 
to add DD statements to cataloged proce­
dures. The "stepname" identifies the step 
in the cataloged procedure. If "ddname" is 
the name of a DD statement present in the 
step, the parameters in the new DD state­
ment override parameters in the DD state­
ment in the procedure step. If "d.dname" is 
the name of a DD statement not present in 
the step, the new DD statement is added to 
the step. 

In any case, the modification is ef­
fective only for the current execution of 
the cataloged procedure. 

When overriding, the original DD state­
ment in the cataloged procedure is copied, 
and the parameters specified in it are 
replaced by the corresponding parameters in 
the new DD statement. Therefore, only 
parameters that must be changed are speci­
fied in the overriding DD statement. 

If more than one DD statement is modi­
fied, the overriding DD statements must be 
in the same order as the DD statements 
appear in the cataloged procedure. Any DD 
statements that are added to the procedure 
must follow overriding DD statements. 

When the procedures FORTGC, FORTGCL, 
FORTGCLG, and FORTGCLD are used, a DD 
statement must be added to define the SYSIM 
data set to the compile step in the proce­
dures (see Figures 1~, 22, and 23.2). When 
the procedure FORTGLG is used, a DD state­
ment must be added to define the SYSLIN 
data set (see Figure 19). 

When the procedures FORTGCL, FORTGLG, 
and FORTGCLG are used, an overriding DD 
statement can be used to write the load 
module constructed in the linkage editor 
step in a particular PDS chosen by the pro­
grammer, and assign that member of the PDS 
a particular name. 

During execution of procedure steps, the 
programmer can catalog data sets, assign 
names to aata sets, supply DCB information 
for data sets, add data sets, or specify 
particular volumes for data sets by using 
overriding DD statements. 

Example 1: Assume the data sets identified 
by ddnames FT04F001 and FT08F001 are named, 
cataloged, and assigned specific volumes. 
The following DD statements are used to add 
this information and indicate the locatiOl'l 
of the source module. 

//JOBl JOB MSGLEVEL=l 
//STEP1 EXEC FORTGCLG 
//FORT.SYSIN DD • 
r·----------------------------------------1 I FORTRAN Source Module I 
L-·----------------------------------------J 
/• 
//GO.FT04F001 DD DSNAME=MATRIX, X 
// DISP=(NEW,CATLG),UNIT=TAPE, X 
// VOLUME=SER=987K 
//GO.FT08F001 DD DSNAME=INVERT, X 
// DISP=(NEW,CATLG),UNIT=TAPE, X 
// VOLUME=SER=1020 
//GO.SYSIN DD • 
r-----------------------------------------1 I Input to Load Module I 
L-----------------------------------------J 
/* 

FORTRAN IV (G) Cataloged Procedures 79 



~xample 2: Assume DCB information is added 
to the DD statement identified by ddname 
FT08P001 and a data set for data set 
reference number 4 is created and 
cataloged. 

//JOB2 JOB 
/ /STE!Pl EXEC FORTGLG 
//LKED.SYSIN DD * 
r---·------·-------------------------------1 
I FORTRAN Object Module I 
L----------·------·--------------------------J 
/* 
//GO.FT04F001 DD DSNAME=FIRING, X 
// UNIT=SYSDA,DISP=(NEW,CATLG), X 
// SPACE=(l00,(2000,200) 111 ROUND), X 
// VOLUME==(PRIVATE, SER=207H) 1 X 
// DCB= (RECFM=VB, LRECL=300, BI.KSIZE=604) 
//GO.FT08F001 DD DCB=(RECFM=F,BLKSIZE=200) 
//GO.SYSIN DD * 
r-------------------------------·-----------1 
I Input to Load Module I 
l-----------------------------------------J 
/* 

Example ~: Assume the linkage edit and 
execute cataloged procedure (FORTGLG) is 
used. The load module constructed in the 
linkage editor step is placed in the cata­
loged partitioned data set MATH and is 
assigned the member name DERIV. 

//JOB3 JOB 
//STEPl EXEC FORTGLG 
/ /LKED. SYSLMOD DD DSNAME=MATH (D:ERIV) 1 X 
// DISP=(OLD,PASS) 
//LKED.SYSIN DD • 
r------------------------------------------1 
I FORTRAN Object Module I 
L-----------------------------------------J 
/• 
//GO.SYSIN DD * 
.----·-------------------------------------, 
I Input to Load Module I 
L-----------·------------------------------J 
/* 

Example 4: Assume the compile, linkage 
edit, and execute cataloged procedure 
(FORTGCLG) is used with three data sets in 
the input st1::-eam: 

1. A FORTRAN main program MAIN with a 
series of subprograms, SUBl. through 
SCJBN. 

80 

2. A linkage editor control statement 
that specifies an additional library, 
MYLIB. MYLIB is used to resolve 
external references for the symbols 
ALPHA, BETA, and GAMMA. 

3. A data set used by the load module and 
identified by data set reference 
number 5 in the source module. 

The following example shows the deck 
structure. 

//JOBCLG JOB 00,FORTRANPROG,MSGLEVEL=l 
//HXECCLGX EXEC FORTGC:LG 
//FORT:SYSIN DD * 
r---------------------·--------------------1 
I FORTRAN Source! Module MAIN I 
~----------------------------------------i 
I FORTRAN Source Module SUB1 I 
~---------------------·-------·----·---------i 
I I 
I I 
I I 
~----------------------------------------i 
I FORTRAN Source Module SUBN I 
L----------------------------------------J 
/* 
//LKED.ADDLIB DD DSNAME=MYLIB 
//LKED.SYSIN DD * 

LIBRARY ADDLIB(ALPHA,BETA,GAMMA) 
/• 
//GO.SYSIN DD * 
.----------------------------------------, 
I Input to Load Module I 
L--------------------·---------------------J 
/• 

The DD statement FOUT.SYSIN indicates to 
the compiler that the source modules are in 
the input stream. The DD statement LKED. 
ADDLIB defines the additional library MYLIB 
to the linkage editor. The DD statement 
LKED.SYSIN defines a data set that is con­
catenated with the primary input to the 
linkage editor. The linkage editor control 
statements and the object modules appear as 
one data set to the linkage editor. The DD 
statement GO.SYSIN defines data in the 
input stream for the load module. 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

For ease of reference this section, 
directed solely to the user of the FORTRAN 
IV (H) compiler, has been written as a 
self-contained, independent unit. For 
information on FORTRAN IV (G) cataloged 
procedures, see "FORTRAN IV (G) cataloged 
Procedures." 

This section contains figures showing 
the job control statements used in the FO­
RTRAN IV cataloged procedures and a brief 
description of each procedure. This sec­
tion also describes statements used to 
override statements and parameters in any 
cataloged procedure. (The use of cataloged 
procedures is discussed in "FORTRAN Job 
Processing.") 

In the four cataloged procedures that 
have a compile step (see Figures 47, 48, 50 
and 51) the EXEC statement named FORT indi­
cates that the operating system is to 
execute the program IEKAAOO (the FORTRAN IV 
H compiler). 

The REGION pqrameter is ignored by 
sequential schedulers. MVT priority sche­
dulers require that region size be speci­
fied, unless the user is willing to accept 
the default region size (as established in 
the input reader procedure). 

The amount of main storage allocated for 
the FORTRAN H compiler depends on the 
region size in an MVT environment, the par­
tition size in an MFT environment, or the 
machine size in a PCP environment. The 
compiler uses all available main storage 
except for 3K bytes which are left for non­
resident system routines. 

In certain instances, a programmer may 
wish to limit the amount of main storage 
used by the compiler. An example would be 
when the FORTRAN H compiler is executed as 
the original task in a multitasking 
environemnt. Unless the amount of main 
storage used by the compiler is limited, no 
subtasks could be created since no more 
storage would be available in the region. 

The programmer may request the amount of 
main storage to be allocated for the com­
piler by specifying the SIZE option in the 
PARM parameter. Specific information con­
cerning the SIZE option can be found in the 
section "Compiler Options." 

r------, 
IH ONLYICATALOGED PROCEDURES 
L------J 

Not~: If different region sizes are to be 
specified for each step in the job, the 
REGION parameter should be coded in the 
EXEC statement associated with each step 
instead of the JOB statement. 

Compiler options are not explicitly 
specified; default options are assumed 
in particular, SOURCE and LOAD. The source 
listing and compile-time information and 
error messages are written in the SYSOUT 
data set. 

The object module is written in the tem­
porary data set &LOADSET. The data set 
&LOADSET is a sequential data set and is in 
"pass" status; records can be added to the 
data set. 

The SYSOUT=B parameter on the SYSPUNCH 
DD statement is interpreted by sequential 
schedulers as a specification for the sys­
tem card punch unit. The priority schedu­
lers route the output data set to system 
output class B. A programmer can get an 
object module card deck by overriding the 
default NODECK option with an explicit DECK 
option. 

Several additional DD statements, 
external to the procedure, may be supplied. 
If the EDIT option is used, a work data set 
must be defined with a FORT.SYSUTl DD 
statement. If the compiler XREF option is 
specified, a work data set must be defined 
with a FORT.SYSUT2 DD statement. Input to 
th~:! compile step is defined by a FORT. SYSIN 
DD statement. 

The data set SYSUT1 must be specified if 
the compiler option EDIT (produce struc­
tured source listing) was requested. SYS­
UT2 must be specified if the compiler 
option XREF (produce cross reference list­
ing) was requested. Both data sets may 
reside on tape or direct access but must be 
defined in the sequential device class. 
The following is a typical DD statement for 
a utility data set: 

//SYSUTl DD DSNAME=&UTl,UNIT=SYSSQ, X 
SPACE=(TRK,(40)) 

&UTl specifies a temporary data set. 

UNIT=SYSSQ specifies that the data set is 
to reside in a sequential device 
class. 

FORTRAN IV (H) Cataloged Procedures 81 



I I I ! I I I I I I I I I ! 1....L.-L.-L....._...._. .......................... 

Figure 47. compile cataloged Procedure (FORTHC) 

SPACE==(TRK, (40)) specifies that if the data 
set is assigned to a direct access 
device, 40 tracks are to be allocated 
to the data set. 

In the three cataloged procedures that 
have a linkage edit step (see Figures 48, 
49, and 50), the EXEC statement named LKED 
indicates that the operating system is to 
execute the program IEWL (the linkage edi­
tor). The linkage editor requires a region 
of 54K if used with MVT. The linkage edi­
tor step (or the remainder of a procedure) 
is not executed if a condition code greater 
than 4 was generated by a compile step in 
the same procedure. 

If the linkage edit step is executed, a 
list of linkage editor control statements 
<in card image format>, a map of the load 
module and a list of linkage editor diag­
nostic messages are written in the SYSOUT 
data set. The load module is marked exe­
cutable even though error conditions are 
found during linkage editor processing. 

If the linkage 1edi t step is preceded by 
a compile step Cseie Figures 48 and 50), the 
primary input to the linkage editor may 
consist of concatenated data sets. The 
first, defined by the SYSLIN DD statement, 
is the output of the compiler C&LOADSET 
data set); the second Cif present) is the 
data set defined by a LKED.SYSIN DD state­
ment (external to the procedure>. However, 
if the linkage edit step is the first step 
in a procedure (see Figure 49), the primary 
input is the data set defined by a 
LKED.SYSIN DD statement. 

82 

External references made in a FORTRAN 
object module are resolved by the linkage 
editor. Some or all of these references 
can be resolved from the FORTRAN library 
(SYSl.FORTLIB) which is a system resident 
PDS. 

During processing, the linkage editor 
requires a work data set which is defined 
by the SYSUTl DD statement. This data set 
is assigned to a direct-access device. 

The load module produced by the linkage 
editor is written in the temporary PDS 
&GOSET with a member name of MAIN.. The 
data set is in "pass" :status and is 
assigned to a direct-access device. 

Execute 

In the two cataloged procedures that 
have an execute step (see FigurE~s 49 
and 50), the EXEC statement named GO indi­
cates that the operating system is to 
execute the load module (program) produced 
in a preceding linkage edit step i.n the 
same procedure. However, the execute step 
is bypassed if a condition code greater 
than 4 was generated by a compile or link­
age edit step in the same procedw::·e. 

Input to the executE~ step is defined by 
a GO.SYSIN DD statement (external to the 
procedure) and is read using data set 
reference number 5. E:>~ecution-time error 
messages and information for traceback and 
FORTRAN dumps are written in the SYSOUT 
data set that is associated with data set 
reference number 6. (Output from the load 
module can also be written in the same data 
set.) The card punch is associated with 
data set reference numl:~r 7. 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

..-----------------------------------------------·-····--·--
Sample Coding Form 

Pigure 48. Compile and Linkage Edit Cataloged Procedure (FORTHCL) 

In a multiprogramming environment with 
an MVT priority scheduler, main storage 
requirements for the execute step are 
determined by a number of factors. These 
include: the size of the object program 
produced by the compiler, the requirements 
of the data access method used, the block­
ing factors, the number and sizes of the 
data sets used, the number and sizes of 
library subprograms invoked, and the sizes 
of the execution time routines required by 
the program. If the default region size 
(established in the cataloged procedure for 
the input reader) is not large enough for 
the program, REGION.GO must be used to spe­
cify the region size for the execute step. 

A list of the execution time routines 
required for various input/output, inter­
ruption, and error procedures is contained 
in the FORTRAN IV Library Subprograms pub­
lication, Order No. GC28-6818. That pub­
lication also lists the sizes of both the 
execution-time routines and the mathemati­
cal subprograms. 

An example Of using a REGION.GO 
specification to indicate the main storage 
requirements for the execute step of a 
FORTRAN program follows. 

//EXAMPLEl JOB ACCOUNTl,'JOHNSMITH'r X 
// MSGLEVEL=l 
// EXEC FORTHCLG,PARM.FORT=DECK, X 
// REGION.G0=200K 
//FORT.SYSIN DD * 
.----------------------------------------1 
I FORTRAN Source Symbolic Decks I 
L-----------------------------------------J 
/* 
//LKED.SYSIN DD * 
r-----------------------------------------1 
I Previously Compiled or Assembled I 
I Object Decks I 
L-----------------------------------------J 
/* 
//GO.SYSIN DD * 
r-----------------------------------------1 
I Input Data I t_ ________________________________________ J 

/* 

In the one cataloged procedure that has 
a load step (see Figure 51), the EXEC 
statement named GO indicates that the 
operating system is to execute the program 
LOADER (the loader). The EXEC statement 
also specifies that a storage map of the 
loaded program is to be produced. This map 
is to be placed in the data set specified 
in the SYSLOUT DD statement. 

The load step will not be executed if a 
condition code greater than 4 was generated 
during the compile step. 

FORTRAN IV (H) Cataloged Procedures 83 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

Primary input to the load step is 
defined in the SYSLIN DD statement. This 
is the output data set produced by the com­
piler. Additional input may be defined by 
a GO.SYSIN DD statement which :is supplied 
by the user and is external to the proce­
dure. This data set is concab:mated with 
the primary input data set. 

.Any external references mad~? in the load 
step are resolved by the loader. Some or 
all of these references can be resolved 
from the FORTRAN library (SYSl .. FORTLIB) 
designated in the SYSLIB DD statement. 
Private libraries may be concatenated with 
the FORTRAN library to help resolve 
external references. Figure 29 shows how 
this may be done. 

QSE_!L~mL~Q~2IFIED_ CATALOGED PROCEDURES 

The programmer can write his own cata­
loged procedures and tailor them to the 
facilities in his installation. He can 
also permanently modify the IBM-supplied 
cataloged procedures. For information 
about permanently modifying cataloged pro­
cedures, seE~ the ~rob Control La!!9_uage 
g_ef ~renc~ publication, Order No. 
GC28-670 4. 

1'he IBM-supplied cataloged procedures 
for FORTRAN IV (H) define logical unit 05 
as SYSIN and 06 as SYSOUT (see Figures 49, 
SO, and 51). If, during system generation, 
values other than 05 for the ONLNRD parame­
ter and 06 for the OBJERR parameter were 

specified in the FORTLIB macro instruction, 
one or both of the following DD cards must 
be added to the cataloged procedures, ei­
ther at execution time or permanently. 

• For the unit specified as ONJ~NRD, use 
the DD card: 

//GO.FTxxFOOl DD DDNAME=SYSIN, 
DCB=(BLKSIZE=80~RECFM=F) 

• For the unit specified as OBJERR, use 
the DD card: 

//GO.FTxxF001 DD SYSOUT=A where xx is 
the unit specified. (The system Generation 
publication, Order No.. GC28-6554, 
describes the FORTLIB macro instruction.) 

In addition, the DD card for FTOSFOOl 
must be deleted permanently from the proce­
dure. The following section describes the 
general procedure for adding and deleting 
statements from cataloged procedures. 

OVERRIDING CATALOGED PROCEDURES 

Cataloged procedure!s are composed of 
EXEC and DD statements.. A feature of the 
operating system is its ability to read 
control statements and modify a cataloged 
procedure for the duration of the current 
job. overriding is only temporary; that 
is, the parameters added or modified are in 
effect only for the duration of the job. 
The following text discusses the techniques 
used to modify cataloged procedures. 

Figure 49. I~inkagE? Edit and Exe·cute Cataloged Procedure (FORTHLG) 

84 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

Sample Coding Form 

Figure 50. compile, Linkage Edit, and Execute Cataloged Procedure (FORTHCLG) 

,...--------------------------------------------·-·-----·-· -·-------
Sample Coding Form 

12J456789'10111213u1.s16171e1920212223242s26212a2930313233343536373a3940414243444546474849sos1s2s3s4sss6s7sas960616263646566676a697011~n~~-so: 

//F~RT EXEC PGM= I EKf,4JAJdd, REG 1-iq-Nj= 25i6fK11 l l . ! j : , ++' i_+: ·:• I. - _l_l __ '.I. - : _ 1 1 OJ ' T ~ 11 . 1 1 f ~ --'- '~----t t I '-t - ' ' l 
I Is y SPR I NT DD - )j_SIOUT= ++- L· i I i ; I d i ! J_ i I I_--.;- __ : __ i +-+-+--+-jl ! i j_ L ~ 
11sYsPuNcH Too 1 sYsour=s_ .. 1 ..• ,_TT i ~ __ 1 , n. 1- -~T :-+t: ---~ 1 t1I1 1: : , 
11 s'f sL. 1 N oo orsNAME=~·LOADSET ,lUt\111 T=iSIY1SDA1,1Qin.·sf'FITTM:o15'1:~~&s~~ rr--~~t·r·rt-D< , --·-~ 
11 5PAcE=cT4obl,(2ioo.5lo)1,RILis1E) 1 :T1 Tl, ! r r 1-1 :-~-:--1·'-+--+--HTn-r1 L - , 1 

11~0 EXEC T PGM=LOADER_,_f)AR!M:::foM:A!P)i,!CjgND!=1(14:, L.Ffl,TF1QRT) _; : I ! T 1 j_ ~+ 
//SY5Ll'B DD T [QSNAIME=1SYSl 1 .F'C~T!L~l:B!,Dl1I51Pf. =SJHL~ ! : ! Ii l 1 I l I ! LlT : , r i -r 
I Is y s LIOU T DD l SY so urn= A T n n i T : i ! j i J ! I ; I ! I l i1 ! J ' j I l : ! 1 

11~YSLIN I oo T I 5i51NAME=l:i¥.FORrn.TsYs:u1!N,10:1:sp:;l(10L'DJ_:P1A1s1_s) 11 l 1 11 : ,_,_ 1 :J~r~_J 
//FTQ50jQI DD I ~DNAME=SY[~!N 11T T iJ_ in. I- 1TT; I -1 !- ·-~ r-T. ii-Li -

~j~~~I~~: gig ! S~~~i~ '~j : t 1 n + 
1 t:1 1Ht _ t ! f[]Ll~I, ,_ 

l I I 1 I 1 I 1 ! i : ++--r- i I I T i , i I i i T i T _l T I i T T 1 
• [ni 

l i I ! I ! Ti I l; l. : I I' ITT : l' ! ! 11 T i T ' I ; 

! l ! T ! I l I T I I ; 1 ! i T 1 i I i T l ! i ! 11 : l i :- t •--r- 1 

1 T I' 11 T TII TrlI , ~ : 1

' 

! T l I ! I lil ~. I T i T 1 ! I: J I!: ! : i Tl T ! I ,-J-,J. 
1 : I j! Ti I I I 1T 1TT1 'll I! I ! :l l ! ! 

1 

l;I I ;111 I Ii l: Ii' ,i~T il!i !l' li TT: i ~1 
i l Ii i T tt: ! i ! ~ 1 !I T!T Ti! t r--11i--~- t- ! ', ___ _ 

T I 

1
1 : ' t +L :;~i H:T 'H1 ':r, ' i f4+j c~J1£_l:' ·--~:-~ 

I l I Ti I l 1T:1 TTT !I 1 T J11: ITIJ I J T[J_ll! I 

! i I I T ! I ; i tt T i I T l T .l i T T ! I ! l ! ! t ! -'--· : .i ~ -+- : 
I 2 3 4 3 6 7 8 9 10 11 \2 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 '73-74--75···;6-·-77-·787·9 sci'" 

I 

T 

A 1tondord cord form, 19M electro 888157, h ovo11oble for Pl)nchlnsi 1totem•nfl from thu form 

• Figure 51. compile and Load Cataloged Procedure (FORTHCLD) 

FORTRAN IV (H) Cataloged Procedures 85 



Page of GC28-6817·-2, Revised 12/30/70, by TNL: GN28-0591 

overriding Parameters in the EXEC ptatement 

Two forms of kl~yword parameters 
(•keyword• and •keyword.procstep"> are dis­
cussed in •Job Control Language.• The form 
"keyword.procstep"' is used to add or over­
ride parameters in an EXEC statement in a 
cataloged procedure. 

The FORTRAN programmer can, for example, 
add (or override) compiler or linkage edi­
tor options for an execution of a cataloged 
procedure, or he c::::an state different condi­
tions for bypassing a job step. 

Note: When the PARM parameter is overrid­
den, all compiler and/or linkage editor 
options stated in the EXEC statement in the 
procedure step are deleted and replaced by 
those in the overriding PARM parameter. 

Exa!!!Q!~!: Assume the cataloged procedure 
FORTHC is used to compile a program, and 
the programmer wants to specify the name of 
his program and the MAP option. The fol­
lowing statement can be used to invoke the 
procedure, and to supply the compiler 
options. 

//STEP1 EXEC FORTHC, 
// PARM.FORT='MAP,NAME=MYPROG' 

The PARM options apply to the procedure 
step FORT. 

x 

Example 2: Assum•:! the cataloged procedure 
FORTHLG is used to linkage edit and execute 
a module. ~"'Urthermore, the XREF option 
overrides MAP, LET, and LIST in the linkage 
editor step and the COND parameter is 
changed for the execution of the load 
module. ThE! following EXEC statement adds 
and overrides parameters in the procedure. 

//DO EXEC FORTHLG 11 PARM.LKED=XRE!F, 
// COND.GQ=(3 1 LT,DO.LKED) 

The PARM param•:!ter applies to the link­
age editor procedure step LKED, and the 
COND parameter applies to the execution 
procedure step GOu 

x 

Example 3: Assum•:! a source module is com­
piled, linkage edited, and executed using 
the cataloged procedure FORTHCLG. Further­
more, the compiler option OPT and the link­
age editor option XREF are specified, and 
account number 506 is used for the execu­
tion procedure step. The following EXEC 
statement adds and overrides parameters in 
the procedure. 

//STEP1 EXEC F'1RTHCLG, 
// PARM.FORT='OPT=2', 
// PARM.LKED=XREF, 
// .ACCT. G0=506 

86 

x 
x 
x 

Example 4: Assume a source module is com­
piled and loaded using the cataloged proce­
dure FORTHCLD. Furthermore an external 
name is specified as the entry point of the 
loaded program. The following EXEC state­
ment adds and overrides parameters in the 
procedure. 

/ /STEPl EXEC FORTHCI.:O 1 PARM. GO=' EP=FIRST' 

overriding and Adding~DD Statements 

A DD statement with the name •stepname. 
ddname" is used to ovE~rride parameters in 
DD statements in cataloged procedures, or 
to add DD statements to cataloged proce­
dures. The "stepname" identifies the step 
in the cataloged proce~dure. If •ddname• is 
the name of a DD statement present in the 
step, the parameters in the new DD state­
ment override parameters in the DD state­
ment in the procedure step. If "ddname• is 
the name of a DD statement not present in 
the step, the new DD statement is added to 
the step. 

In any case, the modification is only ef­
fective for the current execution of the 
cataloged procedure. 

When overriding, the original DD state­
ment in the cataloged procedure is copied, 
and the parameters specified in it are 
replaced by the corresponding parameters in 
the new DD statement. Therefore, only 
parameters that must be changed are speci­
fied in the overriding DD statement. 

If more than one DD statement is modi­
fied., the overriding DD statements must be 
in the same order as the DD statements 
appearing in the cataloged procedure. Any 
DD statements that are added to the proce­
dure must follow overriding DD statements. 

Note: The following additional rules apply 
to overriding in cataloged procedures: 

1. In the DCB parameter, individual sub­
parameters can be overridden. 

2. To nullify the use of any particular 
keyword parameter (except the DCB 
parameter>, the overriding DD state­
ment must specify 

keyword=, 

3. A parameter can be overridden by spec­
ifying a mutually exclusive parameter 
in the overriding DD statement. For 
example, in the F'ORTHC procedure, the 
SPACE specification for SYSLIN may be 
overridden by using either the SPLIT 
or SUBALLOC parameter. 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

When the procedures FORTHC, FORTHCL, 
FORTHCLG, and FORTHCLD are used, a DD 
statement must be added to define the SYSIN 
data set to the compile step in the proce­
dures (see Figures 16, 22, and 23.1·>· With 
MVT, if SYSUTl and SYSUT2 DD statements are 
added to the FORT step, the DSNAME=&SYSUT1 
and DSNAME=&SYSUT2 DD parameters should be 
used in order to employ the dedicated work­
f ile feature of the operating system. For 
information on dedicated workf iles, see the 
Job Control Language Reference publication. 
When the procedure FORTHLG is used, a DD 
statement must be added to define the 
SYSLIN data set (see Figures 18 and 19). 

When the procedures FORTHCL, FORTHLG, 
and FORTHCLG are used, an overriding DD 
statement can be used to write the load 

module constructed in the linkage editor 
step in a particular PDS chosen by the pro­
grammer, and assign that member of the PDS 
a particular name. 

In execution procedure steps, the pro­
grammer can catalog data sets, assign names 
to data sets, supply DCB information for 
data sets, add data sets, or specify par­
ticular volumes for data sets by using 
overriding and/or additional DD statements. 

Example 1: Assume the data sets identified 
by ddnames FT04F001 and FT08F001 are named, 
cataloged, and assigned specific volumes. 
The following DD statements are used to add 
this information and indicate the location 
of the source module. 

FORTRAN IV (H) Cataloged Procedures 86.l 





//JOB1 JOB MSGLEVEL=l 
//STEP1 EXEC FORTHCLG 
//FORT.SYSIN DD * 
r------------------------------------1 I FORTRAN Source Module I 
L-----------------------------------------·J 
/• 
//GO.FT04F001 DD DSNAME=MATRIX, X 
// DISP=(NEW,CATLG),UNIT=TAPE, X 
// VOLUME=SER=987K 
//GO.FT08F001 DD DSNAME=INVERT, X 
// DISP=(NEW1 CATLG) 1 UNIT=TAPE, X 
// VOLUME=SER=1020 
//GO.SYSIN DD * 
.-----------------------------------------, 
I Input to Load Module I 
L-----------~--------------------------J 
/* 

Example 2: Assume the linkage edit and 
execute cataloged procedure (FORTHLG) is 
used. The load module constructed in the 
linkage editor step is placed in the cata­
loged partitioned data set MATH and is 
assigned the member name DERIV. 

//JOB3 JOB 
//STEP1 EXEC FORTHLG 
//LKED.SYSLMOD DD DSNAME=MATH(DERIV), X 
// DISP=(MOD,PASS) 
//LKED.SYSIN DD * 
r----------------------------------------1 I FORTRAN Object Module I ._ ________________________________________ J 

/* 
//GO.SYSIN DD * 
r------------------------------------------1 
I Input to Load Module I 
L------------------~--------------------J 
/* 

Example 3: Assume the compile, linkage 
edit, and execute cataloged procedure (FOR­
THCLG) is used with three data sets in the 
input stream: 

1. A FORTRAN main program MAIN with a 
series of subprograms, SUB1 through 
SUBN •. 

2. A linkage editor control statement 
that specifies an additional library, 
MYLIB. MYLIB is used to resolve 
external references for the symbols 
ALPHA, BETA, and GAMMA. 

3. A data set used by the load module and 
identified by data set reference num­
ber 5 in the source module. 

The following example shows the deck 
structure. 

//JOBCLG JOB 00,FORTRANPROG,MSGLEVEL=l 
//HXECCLGX EXEC FORTHCLG 
//FORT.SYSIN DD * 
r------------•-----------------------------1 I FORTRAN source Module MAIN I 
·--~-------------------------------------i 
I FORTRAN source Module SUB1 I 
·-----------------------------------------i 
I I 
I I 
I • I 
·------------------------------------------~ 
I FORTRAN Source Module SUBN I ..__ _______________________________________ J 

/• 
//LKED.ADDLIB DD DSNAME=MYLIB 
//LKED.SYSIN DD * 

LIBRARY ADDLIB(ALPHA,BETA,GAMMA) 
/• 
//GOeSYSIN DD * 
r-----------------------------------------1 
I Input to Load Module I 
L----------------------------------------J 
/• 

The DD statement FORT.SYSIN indicates to 
the compiler that the source modules are 
in the input stream. The DD statement 
LKEDGADDLIB defines the additional library 
MYLIB to the linkage editor. The DD state­
ment LKED.SYSIN defines a data set that is 
concatenated with the primary input to the 
linkage editor. The linkage editor control 
statements and the object modules appear as 
one data set to the linkage editor. The DD 
statement GO.SYSIN defines data in the 
input stream for the load module. 

FORTRAN IV (H) Cataloged Procedures 87 



PROGRAMMING CONSIDERATIONS 

This section discusses a variety of pro­
gramming topics that should be considered 
in writing a FOR~rRAN program. 

STORAGE LOCATIO~S AND BYTES 

Storage locations in System/360 are 
called bytes, words, and double words. One 
word is four bytes long; a double word is 
eight bytes long.. When data i.s read into 
main storage, it is translated into inter­
nal format. See Table 18 for storage allo­
cation according to the type and length of 
the constant or variable. 

Table 18. Storage Allocation 
r--------------.... _,r------T------------------1 
I Type I Length I Storage I 
~---·--------------!-------+----------------~ 
I Logical I 1 11 byte I 
I I 4 I 4 bytes I 
~----·--------------1------+----------------.if 
I Real ~ 4 14 bytes I 
I I 8 18 bytes I 
~----------------·+-----+---------------~ 
I Integer II 2 12 bytes <variable I 
I I I only> I 
I I 4 14 bytes I 
~--------------+------+------------------i 
I ComplE~x II 8 I 8 bytes I 
I ll 16 116 bytes I 
~--·------·-----+-----+------------------~ 
I Character II 11 character/byte I 
I (BCD or EBCDIC} ~ I I 
~----------------+-----+--·--------------~ 
I Hexadecimal ~ 12 characters/byte I 
L--·-------·----·-.lL------~------------------J 

!-1INIMUM SYSTEM REQUIREMENTS FOR THE_FORTgAN 
];.Y_J_~) AND_JH) _Q_QMP_!1~.B.§ 

The operating system is device independ­
ent. In particular, the FORTRAN IV (G) and 
(H) compilers can operate with any combina­
tion of devices (shown in Table 4)1 howev­
er, there are certain requirements. 

88 

• 'rhe FORTRAN JCV CG) compiler requires at 
:least a System/360, Model 40, with 128K 
.bytes of storage and a standard 
instruction set with the floating-point 
option. 

• 'l?he FORTRAN J:V (H} compiler requires at 
least a Systern/360, Model 40, with 256K 
bytes of storage and the standard 
.instruction set with the floating-point 
option. 

• All programs require a device, such as 
the 1052 keyboard printer, for direct 
operator communication. 

• At least one direct-access device must 
be used for residence of the operating 
system. 

• For FORTRAN IV (G), the printer must 
have at least a 120-character print 
line; for FORTRAN IV <H>, at least a 
132-character print line. 

Boundary Adjustment of Variables in COMMON 
Blocks and EQUIVALENCE Group~ 

Variables in a COMMON block or EQUIVA­
LENCE group may be in any order if the 
BOUNDRY=ALIGN option is spec:if ied in the 
FORTLIB macro instruction during system 
generation, because boundary alignment vio­
lations are corrected during execution. 
(The FORTLIB macro instruction is described 
in the System Generation publication.) If 
the BOUNDRY=NOALIGN option is specified and 
boundary violations are encountered during 
execution of the object program, the job 
terminates. 

If the BOUNDRY=ALIGN option of the FORT­
LIB macro instruction is specified and a 
boundary violation occurs in a FORTRAN main 
program or in a FORTRAN or assembler lan­
guage subprogram, each instruction that 
refers to the improperly aligned variable 
requires that (1) the specification excep­
tion resulting from this reference be proc­
essed, and (2) the boundary alignment rou­
tine be invoked. Therefore, considerable 
programming efficiency is gained if the 
programmer ensures that all of the 
variables have proper boundary alignment. 
The FORTRAN IV Language publication con­
tains information on boundary alignment. 

When boundary alignment is performed, 
program interrupt message IHC210I is 
issued. (This message is described com­
pletely in the section "Program Interrupt 
Messages" in Appendix D). For boundary 
alignment, the letter A appears in the text 
of the message and the code 6 appears in 
the old PSW (program status word), which is 
included in the message. The number of 
warning messages printed is limited to 10. 
After 10 boundary alignment adjustments 
have been made, the message is suppressed, 
but boundary alignment violations continue 
to be corrected. 



Note: Even if BOUNDRY=ALIGN is specified 
and a boundary error occurs in an EXECUTE, 
LM <load multiple), or STM (store multiple) 
instruction in a subprogram written in 
assembler language, boundary adjustment 
does not take place and the job terminates. 
Therefore, if these instructions ref er to 
improperly aligned data, they should not be 
used in assembler language subprograms. 

Indicators and Sense Lights 

At the start of program execution, the 
divide-check indicator, the overflow indi­
cator, and the pseudo sense lights are gQt 
initialized. Therefore, if a programmer 
intends to use the indicators or sense 
lights, he should initialize them prior to 
use; otherwise, erroneous results may be 
obtained. (For additional information, see 
the [QgT~~-IY'_LiQE~EY publication.) 

conditional Branching 

A test for 0.0 in an IF statement is not 
recommended. Slight inaccuracies may cause 
the low-order bit(s) to be set. Therefore, 
the test for 0.0 may not yield the expected 
result. 

Arithmetic IF Statement 

A fixed-point overflow condition results 
in the following action: 

• In FORTRAN (G), if the integer is posi­
tive, a negative branch is taken, i.e., 
the first branch. If the integer is 
negative, a positive branch is taken, 
i.e., the third branch. 

• In FORTRAN (H>, the zero (middle) 
branch is always taken. 

Use of STOP n Statement 

There are no checks made to determine if 
a value of n greater than 4095 is used in 
the STOP n statement. 4095 is the maximum 
value that can be used for n and still fit 
into the 3 digits used for the user 
condition-code. Any value of n greater 
than 4095 overflows into the system condi­
tion code. 

Register 15 as a Condition Code Register 

Register 15 is used by the compilers as 
a condition code register, a RETURN code 
register, and a STOP code register (STOP 
code= condition code). The particular 
values that Register 15 can contain and 
their explanations follow: 

16 -- A terminal error has been detected 
during execution in a subprogram (an 
IHCxxxI message is generated). 

4*i -- A RETURN i statement has been 
executed In a subprogram <i is a 
RETURN code) • 

n -- A STOP n statement has been executed 
<g is the condition code>. 

0 -- A RETURN or a STOP statement has 
been executed in either a main pro­
gram or a subprogram <O is a RETURN 
code or a condition code>. 

Note: Both FORTRAN (G) and <H> will gener­
ate ~a STOP (i.e., O is the condition code> 
for a RETURN or RETURN i issued in a main 
program. 

To improve the readability of a source 
program, the programmer may use any number 
of blanks when writing FORTRAN statements. 
Except for literal data, in which blanks 
are retained as coded in the source state­
ment, blanks are normally ignored by the 
compilers. Thus, the statements DO 25 J 
10 is the equivalent of D025J=10. Both 
statements are syntactically correct as­
signment statements and are executed as 
such, i.e., a value of 10 is assigned to 
the variable D025J. Neither statement will 
cause an error message. 

Under the operating system, a program 
may be loaded into different areas of 
storage for different executions of the 
same job. The following conventions should 
be observed when using the DUMP or PDUMP 
subroutine to insure that the appropriate 
areas of storage are dumped. 

:Cf an array and a variable are to be 
dumped at the same time, a separate set of 
arguments should be used for the array and 
for the variable. The specification of 
limits for the array should be from the 

Programming considerations 89 





TRAN IV (H) DO loop optimization, see 
Appendix G, "FORTRAN IV (H) Optimization 
Facilities." 

During the operation of the FORTRAN IV 
(G) compiler, one complete phase is 
included for the purpose of DO loop 
optimization. 

Each loop is recorded internally as it 
is encountered in the source module. As 
each step of the optimization process pro­
gresses, the loops are further categorized 
for ease of reference in generating the 
corresponding object code. 

If loops are nested, the end of each 
loop is denoted by a special reserve mark, 
which is placed at the end of the interme­
diate notation that is being produced. The 
level of nesting is also recorded for each 
group of nested loops. This minimizes 
execution time in determining at object 
time the depth to which calculation must be 
maintained to close the first loop of the 
nest. 

A further categorization divides the 
10ops into standard and non-standard. 
Standard denotes the requirements of regis­
ter assignment for the script expression, 
and non-standard denotes the opposite. 
This method enables the compiler to make 
register assignments prior to the final 
generation of the object code. In this 
way, addresses are retrieved and inserted 
into the designated instruction without 
unnecessary repeated address calculation. 

r------, 
IH ONLYfSupport of AND, OR, and COMP~ 
L------J 

The functions listed in Table 19 are not 
part of the standard FORTRAN language, but 
are currently supported by the (H) compil­
er. caution should be exercised in their 
use since continued support is not assured. 

Data Initialization Statement 

To initialize an array, the programmer 
should consider the following points: 

1. He may initialize any element of an 
array by subscripting the array name. 
Only one element is initialized; if 
any excess characters are specified, 
they are truncated and not placed into 
the next element. (Overflow from one 
element to the next is known as 
spill.) A partially filled array ele­
ment is padded on the right with 
blanks. The following example illus­
trates how individual array elements 
may be initialized: 

DIMENSION A( 10) 
DATA A(1) 1 A(2) 1 A(4) 1 A(5)/ 1 ABCD 1 j 

'QRSTUVW','123 1
,

1 6666 1
/ 

A(l) contains ABCD 
A(2) contains QRST 
A(3) is not initialized (note that 

spill does not occur for a sub­
scripted array name) 

A(4) contains 123b 
A(5) contains 6666 
A(6) through A(10) are not 

initialized. 

2. Several consecutive elements of an 
array may be initialized with a single 
literal constant by specifying the 
array name without a subscript. Data 
spill occurs through as many elements 
as are necessary to insert the con­
stant. If the last element initia­
lized is only partially filled, it is 
padded on the right with blanks. (Any 
subsequent array elements are not 
initialized: that is, their contents 
are unchanged.) Truncation occurs if 
the constant exceeds the limit of the 
array. The following example illus­
trates how several array elements may 
be initialized with one constant: 

DIMENSION ARRAY(9) 
DATA ARRAY/ 
'ABCDEFGHIJKLMNOPQRSTUVWXYZ'/ 

ARRAY(l) contains ABCD 
ARRAY(2) contains EFGH 
ARRAY(3) contains IJKL 
ARRAY(4) contains MNOP 
ARRAY(S) contains QRST 
ARRAY(6) contains uvwx 
ARRAY(7) contains YZbb 
ARRAY(8) and ARRAY(9) are not 

initialized. 

Note that data spill occurs only at 
the beginning of an array. To begin 
data spill in the middle of an array, 
the EQUIVALENCE statement is used in 
the following manner: 

DIMENSION ARRAYA(10),ARRAYB(5) 
EQUIVALENCE (ARRAYA(6) 1 ARRAYB(1)) 
DATA ARRAYB/ 1 ABCDEFGHIJKLMNOPQRST 1 Z 

ARRAYA(l) through ARRAYA(5) are not 
initialized. 

ARRAYA(6) contains ABCD 
ARRAYA(7) contains EFGH 
ARRAYA(8) contains IJKL 
ARRAYA(9) contains MNOP 
ARRAYA(10) contains QRST 

3. The FORTRAN language requires that 
there must be a one-to-one correspon­
dence between data elements and 
initializing constants. However, this 
correspondence may be violated when 

Programming conside~ations 91 



Table 19. Additional Built-In Functions -- CH) compiler 
r---·-----------------T--------------~-----T-----------T------------T----·-------------1 

I I I In-Line I No. of I Type o:f I 'l'ype of I 
!Function I Entry Name I I I Arguments I Arguments !Function Value I 
~----·--------------+------------+-------+----------+-----------+----·------------i 
ILOgical intersect.ion of I I I I Real•4 I I 
I two arguments I AND I I I 2 I or I Real•4 I 
I I I I I Integer•4 I I 
~·--------------------+---------------+-------+-----------+--------·---+-----------------~ 
!Logical union I I I I Real•4 I I 
I of two arguments I OR I I I 2 I or I Real•4 I 
I I I I I Integer•4 I I 
~-----------------------+-----·-·--------+-------+--------+--------·---+------------------~ 
!Logical l's complement I I I I Real•4 I I 
I of argument I COMPL I I I 1 I or I Real•4 I 
I I I I I Integer•4 I I 
L----~-----------·------.L--------------.L-------.L----------.J.--------·---.L----·------------J 

using data spill. In this case, each 
constant should be specified immedi­
ately after the name of the array or 
element it is to init'ialize. In the 
:following example, an array is initia­
lized (using data spill>: then a vari­
able is initialized. 

DIMENSION A(3) 
DATA 1!./ 1 ABCDEFGHIJKL 1 / 1 X/ 1 MNOP 1 / 

A(l) contains ABCD 
A(2) contains EFGH 
A(3) contains IJKL 
X contains MNOP 

If each constant is not specified 
immediately after its associated array 
or variable name, overlay of spilled 
data may occur, as shown in the fol­
lowing example: 

DIMENSION A(3) 
DATA A1 X/ 1 ABCDEFGHIJKL 1 ,10.0/ 

A(l) contains ABCD 
A(2) contains 10.0 
A(3) contains IJKL 
X is not initialized 

:rn this example, the second element of 
the array is overlaid by the second 
:initializing constant. 

Objec~ Time_Input/Output Efficiency 

FORTRAN processing time can be appre­
ciably reduced by the use of programming 
techniques that result in greater data 
transfer efficiency. Such techniques are 
particularly impOJctant in executing pro­
grams that requir«~ substantial input/output 
operations. Discussed below are four pro­
gramniing areas in which the correct choice 
of programming method can increase FORTRAN 
processing speed. 

92 

READ/WRITE TYPE: The unformatted form of 
the READ and WRITE statement provides the 
fastest data transfer rate. For most effi­
cient processing, therefore, the unfor­
matted form should be used to transfer 
information to or from an intermediate data 
set, a data set that is written out during 
a program, not examined by the programnier, 
and then read back for additional process­
ing later in the program or in another pro­
gram. Thus, for an intermediate data set, 
statement 11 in the following example is to 
be preferred to statement 9. 

COMMON A(l0) 1 B(lO) 
DIMENSION D(20) 
EQUIVALENCE (A(l), D(l)) 

9 WRITE (10,lO)A, B 
10 FORMAT (10E13.3/) 
11 WRITE (9) D 

IMPLIED DO: Array notation is far more 
efficient than the indexing capability of 
an implied DO in an I/O list. Thus, for 
efficiency, the statement WRrrE (9) A 
(where A is an array name) is preferable to 
WRITE (9) (A(I),I=l,10). 

EQUIVALENCE STATEMENT: In FORTRAN, on 
input, data is taken from a record and 
placed into storage locations that are not 
necessarily contiguouso On output, data is 
normally gathered from diverse storage 
locations. Input/output operations, howev­
er, can be made more efficient by storing 
and retrieving data from contiguous 
locations. 

To construct an efficient READ or WRITE 
statement for an I/O list con:sisting of 
many variables, use a COMMON or named COM­
MON statement to force all the variables in 
the list to be allocated contiguous storage 
space. Next, use an EQUIVALENCE statement 
to define a single dimensioned variable 
that is the same length as the list of 
variables. Finally, use a WRITE on the 
single-dimensioned variable using array 



notation. The following example illus­
trates this technique: 

COMMON/LISTA/A(10) 1 B(8) 1 C,D,I,K,L(10) 
REAL*8 B 
COMPLEX•16 LIST(10) 
EQUIVALENCE(A(l),LIST(l)) 

WRITE(9) LIST 

BACKSPACE STATEMENT: Use of the BACKSPACE 
statement is not recommended if efficient 
processing is desired. 

Data Definition Considerations 

The DCB parameter of the DD statement 
allows for the redefinition of many data 
set characteristics at execution time. 
Those specifications that most concern the 
FORTRAN programmer are discussed below. 
For a full description of the DCB parame­
ter, see the Supervisor and Data Management 
Macro Instructions publication. 

BLKSIZE: The BLKSIZE subparam~ter speci­
fies the buff er size to be used1 the maxi­
mum is 32K. As a general rule, for tape, 
the larger the blocksize, the more effi­
cient the processing. (Note that for tape, 
the user should not specify a blocksize of 
less than 18 bytes. Records of less than 
18 bytes may be lost when read.) On disk, 
specifying the full track as a blocksize is 
more efficient than specifying a partial 
track. The blocksize specified should be 
large enough to hold the largest logical 
record produced. No spanning of a logical 
record into physical records will then 
occur. 

BUFNO: The BUFNO subparameter specifies 
tuc number of buffers to be used. If a 
value of 1 is specified for BUFNO, single 
buffering is provided. If either no value 
or any value other than 1 is specified, 
double buffering, which offers an overlap 
advantage, is provided. 

RECFM: The RECFM subparameter specifies 
both record format and the use of blockin9. 
When records are blocked, fewer I/O 
requests are made to a device during the 
processing of logical records; I/O proces­
sing speeds are thereby increased. In gen­
eral, large blocking factors improve per­
formance. (See "Record Format" for addi­
tional information.) 

OPTCD: OPTCD=C requests the use of chained 
scheduling, a feature that results in the 
decrease of I/O transfer time. Chained 
scheduling is put into effect only when an 
I/O request is received before a previous 
I/O request has ended. For this reason it 

is difficult to predict when chained sched­
uling will be effective. However, the use 
of chained scheduling will provide a per­
formance improvement in the formatting that 
is done with a new direct access data set. 
For sequential data sets the user may wish 
to measure the effect before selecting 
chained scheduling for production runs. 

Direct-Access Programming 

Using direct-access I/O rather than 
sequential I/O can decrease load module 
execution time: the direct access state­
ments in the FORTRAN IV language enable the 
programmer to retrieve a record from any 
place on the volume without reading all the 
records preceding that record in the data 
set. For efficiency, direct data sets 
should be pre-formatted. If, however, the 
NEW subparameter is specified in the DD 
statement for the data set, a FORTRAN­
supplied load module will format the data 
set before the program begins processing. 

Note: Direct-access I/O statements and 
sequential I/O statements may not be used 
to process the same direct data set within 
the same FORTRAN load module. However, 
sequential I/O statements may process a 
direct data set in one load module, while 
direct access I/O statements process it in 
another. 

Not all applications are suited t0 
direct-access I/O, but an application that 
uses a large table that must be held in 
external storage can use direct-access I/O 
effectively. An even better example of a 
direct-access application is a data set 
that is updated frequently. Records in the 
data set that are updated frequently are 
called master records. Records in other 
data sets used to update the master records 
are called detail records. 

Each of the master records should con­
tain a unique identification that distin­
quishes this record from any other master 
record. Detail records used to update the 
masters should contain an identification 
field that identifies a detail record with 
a master record. For example, astronomers 
might have assigned unique numbers to some 
stars, and they wish to collect data for 
each star on a data set. The unique number 
for each star can be used as identification 
for each master record, and any detail 
reco:rd used to update a master record for a 
star would have to contain the same number 
as the star. 

A FORTRAN program indicates which record 
to FIND, READ, or WRITE by its record posi­
tion within the data set. The ideal situa­
tion would be to use the unique record 

Programming Considerations 93 



identification as the record position. 
However, in most cases this is impractical. 
The solution to this problem is a randomiz­
ing technique. A randomizi_!!g_!.echnique is 
a function which operates on the identif i­
cation field and converts it to a record 
position. Jfor ex.ample, if 6-digit numbers 
are assigned to each star, the randomizing 
technique may truncate the last two digits 
of the number assigned to the star and use 
the remaining four digits as a record posi­
tion. For example, star number 383320 
would. be assigned position 3833. Another 
example of a randomizing technique would be 
a mathematical operation performed on the 
identification number, such as squaring the 
identif icat:ion number and truncating the 
first four digits and the last four digits 
of the result. Then the record for star 
number 3833.20 is assigned record position 
3422. There is no general randomizing 
technique for all sets of identification 
numbers. The programmer must devise his 
own technique for a given set of identifi­
cation numbers. 

Two problems arise when randomizing 
techniques .are used. The first problem is 
that there may be a lot of space wasted on 
the volume. The solution in this instance 
must be developed within the randomizing 
technique itself. For exampler if the last 
two digits ion the identification numbers 
for stars are truncated and no star numbers 
begin with :zero, the first thousand record 
positions are blank. Then a step should be 
added. to the randomizing technique to sub­
tract 999 from the result of the 
truncation. 

The second problem is that more than one 
identification may randomize to the same 
record location. For example, if the last 
two digits are truncated, the stars identi­
fied by numbers 383320, 383396,. and 383352 
randomize to the same record location -
3833. Records that randomize to the same 

Identifier Chain 

record location are called s~nonyms. This 
problem can be solved by developing a dif­
ferent randomizing technique. However, in 
some situations this is difficult, and the 
problem must be solved by chaining. 

Chaining is arranging records in a 
string by reserving an integer variable in 
each record to point to another record. 
This integer variable will contain either 
an indicator showing that there are no more 
records in this chain, or the record loca­
tion of the next record in the chain. Rec­
ords chained together are not. adjacent to 
each other. Figure 52 shows the records 
for star numbers 383320, 383396, and 
383352. 

When records are chained, the first 
record encountered for a record position is 
written in the record position that 
resulted from randomizing the identifica­
tion number. Any records tha.t then ran­
domize to that same record location must be 
written in record positions to which no 
other record identifications randomize. 
The space for these synonyms can be allo­
cated either at the end or the beginning of 
the data set. However, this space must be 
allocated when the data set is first writ­
ten. For example, if the randomizing tech­
nique assigns master records to record 
locations between 1 and 9999, the program­
mer may wish to reserve record locations 
10000 to 12000 for master records that 
become synonyms. 

The programmer must keep a record loca­
tion counter to keep track of' the space 
assigned for synonyms.. When a synonym is 
inserted in this space, the record location 
counter must be incremented. ThE~ program­
mer should set up a dummy record in his 
data set to maintain this record location 
counter. When the direct-access data set 
is created, the record location counter 
should be set at the lower limit of the 

r--------T-·---------T---------------------------------------·--------·----·---------1 
I I Record I I 
I 383320 !Position fort Data I 
I I 383396 I I l--------.1._. ____ , _____ i, ____ . ______________________________________________________________ J 

r·---f---,.-~~J ·-----T---~--------------------------------------------------··-------------, 
I I Record I I 
I 383396 !Position forl Data l 
I I 383352 I I 

:=£~~~-=T=====:======:==============================================: I I End I I 
I 383352 I of I Data I 
I I Chain I I L_ _______ J._ _______ . ____ . ..l ___________________________________________________________________ J 

Figure 52. Record Chaininq 

94 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

record positions available for synonyms 
(i.e., record location 10000 in the example 
used above). 

Also an indicator should be reserved to 
indicate to the program that the end of a 
chain has been reached. Since no record 
position is designated as O, 0 can be used 
to indicate the end of a chain. 

Before a FORTRAN program writes a 
direct-access data set for the first time, 
the data set must be created by writing 
"skeleton records" in the space that is to 
be allocated for the direct-access data 
set. These skeleton records should be 
written by an installation-written program. 
After the skeleton records are written, the 
direct-access data set must be classified 
as OLD in the DISP parameter of the DD 
statement. However, if the skeleton rec­
ords are not written before direct-access 
records are written by the FORTRAN program 
for the first time, a FORTRAN load module 
automatically creates the data set and 
writes the skeleton records. The program­
mer indicates that skeleton records have 
not been written by specifying NEW in the 
DISP parameter. When the data set is 
opened, records are initialized as blank 
records <hexadecimal 40). If unformatted 
WRITE statements are then encountered in 
the program, the buffer for the data set is 
initialized to binary zeroes before the 
data is placed in the buffer. If formatted 
WRITE statements are encountered, the buff­
er is initialized to blanks. 

Figure 53 shows a block diagram of the 
logic that can be used to write a direct 
access data set for the first time. The 
block diagram does not show any attempt to 
write skeleton records. 

Example 3 in Appendix B shows a program 
and job control statements used to update a 
direct-access data set. 

Direct-Access Programming Considerations 

In a job that creates a data set that 
will reside on a direct-access device and 
will be processed by some non-FORTRAN pro­
gram, the DCB subparameter of the DD state­
ment must specify DSORG = DA. This speci­
fication causes the creation of a label 
indicating a direct-access data set. (See 
"Creating a Direct Data Set" in the IBM 
supervisor and Data Management Services 
publication.> If the direct-access data 
set will not be processed by a non-FORTRAN 
program, the DSORG parameter need not be 
specified since the default specification, 
DSORG=PS, is the one required. 

Set Record Position 
in Read Statement 
= Chain Variable 

Figure 53. 

DEFINE FILE 

Allowing enough 
Space for Synonyms 

Set Record 
Location Counter= 

Lower Limit of 
Space for Synonyms 

Variable in Master 
Record = Record 

Location Counter 

Set Record Position 
in Write Statement 

= Record 
Location Counter 

Increment 
Record Location 

Counter by l 

Build 
Master 
Record 

Writing a Direct-AccebS Data 
Set for the First Time 

Space must be allocated in the SPACE 
parameter of the DD statement for a data 
set written on a direct-access volume. For 
direct-access data sets, the space allo­
cated in the SPACE parameter should be con­
sistent with the record length and number 
of records specified in the DEFINE FILE 
statement in the FORTRAN program. For 
example, in the DEFINE FILE statement 

DEFINE FILE 8(1000,40,E,I) 

the number of records is specified as 1000 
and the record length is specified as 40. 
When this program is executed, the DD 

Programming Considerations 95 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

statement for this data set should contain 
the SPACE parameter 

SPACE== ( 40, (1000)) 

indicating that space is allocated for 1000 
records, with 40 bytes for each record. 

The DEFINE FILE statement for a data set 
must be in a program unit that will not be 
overlaid, but does not have to be in the 
same program unit in which I/O operations 
occur. (If the DEFINE FILE is coded in a 
root segment, there is little chance of 
error.) For example, the DEFINE FILE 
statement can be given in a main program 
with a subprogram performing the I/O opera­
tion:s on the data set. However, if an 
associated variable defined in the main 
program is to be used by a subprogram, it 
must be passed to the subprogram in COMMON. 
Since an associated variable is updated by 
I/O operations, the subprogram cannot get 
to the updated value to make use of it in 
its operations unless the associated vari­
able is in COMMON. 

An associated variable should not be 
passed as a parameter between a main pro­
gram and its subprograms because the asso­
ciated variable is not passed in the same 
way that other variables are passed. Other 
variables reflect the result of any opera­
tions performed cm them in the subprogram. 
An associated variable (if passed as a 
parameter> is not changed by operations 
performed on it in the subprogram. 

The FIND state~ment permits record re­
trieval to occur concurrently with computa­
tion or I/O opera.tions performed on 
diffE'.!rent data sets. By using the PIND 
statement, load module execution time can 
be decreased. For example, the statements 

10 A=SQRT(X) 

52 E=ALPHA+BETA*SIN(Y) 
64 WRITE(9)A,B,C,D,E 
76 HEAD (8' 101) X, Y 

are inefficient because computations are 
performed between statements 10 and 52 and 
an I/O operation is performed on another 
data set while re:cord number 101 could be 
retrieved. If the following statements are 
substituted, the execution of this module 
becomes more efficient because record num­
ber 101 is retrieved during computation and 
I/O operations on other data sets. 

96 

5 FIND(8 1 101) 
10 A=SQRT(X) 

52 E=ALPHA+BETA*SINCY) 
65 WRITE(9)A,B,C,D,E 
76 READ(8'101)X,Y 

r------, 
IG ONLY! COMPILER RESTRICTIONS 
L------J ----------

• The maximum level of nesting for DO 
loops and implied DOs is 25. 

• The maximum number of expressions that 
can be nested is 100. 

• The maximum level of nested references 
in an arithmetic statement function 
definition to another statement func­
tion or a function subprogram is 25. 

• The maximum number of source cards for 
one compilation is dependent upon the 
amount of storage available to the com­
piler. A 400 card program requires 
approximately 90K bytes in PCP or MFT 
systems and lOOK bytes in MVr systems. 
However, depending upon the complexity 
of a program, more storage may be 
required. For example, a program con­
taining a high incidence of input/ 
output statements generates more 
internal code, resulting in greater 
storage size requirements. 

• The maximum number of comment cards 
between two statements is 30. The 
maximum number of continuation cards 
between two statements is 19. There is 
no restriction on the number of comment 
cards at the beginning of a deck. 

• The repetition field (a) for format 
codes in a FORMAT statement, if pres­
ent, must be an unsigned integer con­
stant less than 256. This restriction 
also applies to execution-time formats. 

• The FORMAT statement specification w, 
indicating the number of characters-of 
data in the field, must be an unsigned 
integer constant less than 256. This 
restriction also applies to execution­
time formats. 

• In literal constants in the source pro­
gram, any valid card code is permiss­
ible, except a 12-11-0-7-8-9 punch. 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

r----·--, 
IH ONLY! COMPILER RESTRICTIONS 
L------J 

• The maximum level of nesting for DO 
loops is 25. 

• The maximum number of implied DOs per 
statement is 20. 

• The maximum number of characters 
allowed in a literal constant is 255. 

Programming considerations 96.1 





• The maximum number of characters 
allowed in a PAUSE message is 255. 

• The maximum number of nested references 
to another statement function within a 
statement function definition is 50; 
the maximum number of times a statement 
function may be nested is 50. 

• The repetition field (~) for FORMAT 
codes in a FORMAT statement, if pre­
sent, must be an unsigned integer con­
stant less than 256. This restriction 
also applies to execution-time formats. 

• The FORMAT statement specification w, 
indicating the number of characters-of 
data in the field, must be an unsigned 
integer constant less than 256. This 
restriction also applies to execution­
time formats. 

• The debug facility is not supported. 

• The maximum number of arguments in a 
CALL statement is 196. If an argument 
has a variable subscript, that argument 
is counted as two arguments. 

• The maximum number of arguments in 
unique parameter lists in an entire 
program is dependent on the size .of the 
compiler, with a maximum of 1024. 

• The maximum number of arguments in a 
Statement Function Definition is 20. 

(If any of the three preceding restric­
tions is violated, message IEK550I~ 
"PUSHDOWN, ADCON, OR ASF ARGUMENT TABLE 
EXCEEDED" - is issued.) 

• The maximum number of literal constants 
and arguments in unique ~arameter lists 
contained in an entire program is 
approximately 990. (If this restric­
tion is violated, message IEK500I-
" SOURCE PROGRAM IS TOO LARGE"- is 
issued. Either the program must be 
segmented or the number of literal con­
stants and arguments must be reduced.) 

Note: In this version of the compiler, 
Statement Functions are expanded in-line. 

LIBgARY CONSIDERATIONS 

The FORTRAN library is a group of sub­
programs residing in the partitioned data 
set SYS1.FORTLIB. For a detailed descrip­
tion of the FORTRAN library, see the 
FOR~RAN IV Library Subprograms publication, 
Form GC28-6818. A programmer can change 
the subprograms in the library; he can add, 
delete, or substitute library subprograms; 
or he can create his own library. These 
topics are discussed in detail in the 
Utilities publication, Form GC28-6586. 

When the FORTRAN library is changed for 
maintenance or to provide additional fea­
tures, precompiled programs in a user 
library require special attention to bene­
fit from the changed library modules. This 
can be accomplished by using the linkage 
edit facilities to include the current 
library modules, and storing the resultant 
load module back into the FORTRAN library. 
When the facilities of the linkage editor 
are used to provide an overlay structure or 
to replace a single control section, care 
should be taken not to mix FORTRAN library 
modules that are at diverse operating sys­
tem levels. 

This requirement to maintain all library 
routines at the same level also applies to 
IHCADJST. This module is dynamically 
loaded from the system link library when a 
specification exception occurs. Therefore, 
even though a FORTRAN program is in an 
executable form, if it is at a previous 
release level, it will still LOAD the cur­
rent IHCADJST with which it may be 
incompatible. 

DD STATEMENT CONSIDERATIONS 

Several DD statement parameters and sub­
parameters are provided for I/O optimiza­
tion (see Figure 54). Other DD statement 
parameters are discussed in "Job Control 
Language• and "Creating Data Sets.• 

Channel Optimization 

The SEP parameter indicates that I/O 
operations for specified data sets are to 
use separate channels (channel separation), 
if possible. The I/O operations for the 
data set, defined by the DD statement in 
which 

SEP=(ddnameC,ddname] ••• > 

Programming considerations 97 



appears, are assigned to a channel dif­
ferent from those assigned to the I/O 
operations for data sets defined by the DD 
statements 0 ddname". Assigning data sets 
whose I/O operations occur at the same time 
to different channels increases the speed 
of I/O operations .. 

UNIT subparameters can be specified for 
device optimization. 

f ,n l 
UNIT=(name\,PfC,DEFER] 

C,SEP=(ddnameC,ddnameJ ••• )]) 

can be specified for volume mounting and 
device separation.. The "name" and number 
of units are discussed in the section "Data 
Definition Statement". 

DEFER 
indicates that the volume<s> for the 
data s~~t need not be mounted until 
neededo The control program notifies 
the operator when to mount the volume. 
Deferred mounting cannot be specified 
for a new output data set on a direct.­
access device. 

SEP=(ddname[,ddnamel ••• ) 
is used when a data set is not 

assigned to the same access arms on 
direct-access devices as the data sets 
identified by the list of ddnames. 
This subparameter is used to decrease 
access time for data sets and is 
meaningful only for direct-access 
devices. The ope:rating system pro­
vides device separation if possible, 
but ignores the SEP subparameter if an 
insufficient number of access arms is 
available. The SEP subp~~ in 
the UNIT parameter provides for device 
separation, while the SEP ~rameter 
provides for channel separation. 

DEV!CE AFFINITY: The use of the same 
device by data sets is specified by: 

UNIT=AFF=ddname 

The data set defined by the DD statement in 
which this UNIT parameter appears uses the 
same device as the data set defined by the 
DD statement "ddname" in the current job 
step. 

Note: Channel separation and affinity 
requests are ignored if the system's auto­
matic volume recognition feature is used. 

Direct-Access Space Optimization 

The SPACE parameter can be used to spec­
ify space beginning at a designated track 
address on a direct-access volume. The 

·----------------·------------------------------------------------------------------, 
I SEP=(ddnameC,ddnamel ••• ~) 2 

I 
I 
I 
I l(name[, {n1Pl 31 [,DEFER] [,SEP=(ddname[,ddname] ••• 1) 21 4 5 ) 6 ( 

UNIT= AFF==ddname \ 

I SPACE=(ABSTR,(quantity,beginning-address) [,directory-quantity]) 
I 
I 
I 
I 
I 
I 
I 

SPLIT--<n[J:~~raqe-record-length(,<primary-quantityl,secondary-quantityl>]> 

{
TRK } SUBALLOc=( CYL ,<primary-quantityC,secondary-quantityl 
aver.age-record-length 

' [, d.i.rectory-quanti ty 1 ) , {~~~~~:me. ddname } ) 
I stepname.procstep.ddname 
1-----------·-----·----------.... ----------·-------------------------------------------------~ 
l~The maximum number of repetitions allowed is seven. I 
l 2 If only one "ddname" is specified, the delimiting parentheses may be omitted. I 
f 3If neither "n" nor "P" is specified, 1 is assumed. I 
l 4 This subparameter is applicable only for direct-access devices. I 
l 5 This subparameter is the only keyword subparameter shown in this figure. All the I 
I remaining subpa:rameters shown in the UNIT, SPACE, SPLIT, and SUBALLOC parameters are I 
I positional subp.arameters. I 
f 6If only "name" is specified, the delimiting parentheses may be omitted. I l..-,_ ________________________ .... ___________ ... _________________________________________________ J 

Figure 54. DD Statement Parameters for Optimization 

98 



SPLIT or SUBALLOC parameters may be speci­
fied instead of SPACE to split the use of 
cylinders among data sets on a direct 
access volume or to use space specified for 
another data set which it did not use. 
(The other SPACE parameter is discussed in 
ncreating Data Sets.n) 

SPACE BEGINNING AT A SPECIFIED ADDRESS: 

SPACE=(ABSTR,(quantity,beginning-address) 
[,directory-quantity]) 

specifies space beginning at a partic­
ular track address on a direct access 
volume. The nquantityn is the number 
of tracks allocated to the data set. 
The nbeginning addressn is the rela­
tive track address on a direct access 
volume where the space begins. If the 
data set is a new partitioned data set 
(PDS) the ndirectory-quantityn speci­
fies the number of 256-byte blocks 
that are allocated to the directory of 
the data set. 

SPLITTING THE USE OF CYLINDERS AMONG DATA 
SETS: If several data sets use the same 
direct-access volume in a job step, proc­
ssing time can be saved by splitting the 
use of cylinders among the data sets. 
Splitting cylinders eliminates seek opera­
tions on separate cylinders for different 
data sets. Seek operations are measured in 
milliseconds, while the data transfer is 
measured in microseconds. 

SPLIT=<n[J::;!~rage-record-lengthl 
, (primary-quantity 

I, secondary-quantity]>]> 

is substituted for the SPACE parameter when 
the use of cylinders is split. If CYL is 
specified, "nn indicates the number of 
tracks per cylinder to be used for this 
data set. If naverage record lengthn is 
specified, nnn indicates the percentage of 
tracks per cylinder used for this data set. 
The remaining subparameters are the same as 
those specified for SPACE in ncreating Data 
Sets.n 

More than one DD statement in a step 
will use the SPLIT parameter. However, 
only the first DD statement specifies all 
the subparameters; the remaining DD state­
ments need only specify nnn. For example, 

//STEP4 EXEC PGM=TESTFI 
//FT08F001 DD SPLIT=(45,800,(100,25)) 

//FT17F001 DD SPLIT=(35) 

//FT23F001 DD SPLIT=(20) 

ACCE$SING UNUSED SPACE: Data sets in pre­
vious steps may not have used all the space 
allocated to them in a DD statement. The 
SUBALLOC parameter may be substituted for 
the SPACE parameter to permit a new data 
set to use this unused space. 

{
TRK } SUBALLOC=( CYL 
average-record-length 

(,primary-quantity 

[,secondary-quantity] 

[,directory-quantity]) 

{

ddname } 
stepname.ddname > 
stepname.procstep.ddname 

The data set from which unused space is 
taken is defined in the DD statement 
nddnamen, which appears in the step nstep­
nameu n (The step must be in the current 
job.) The other subparameters specified in 
the SUBALLOC parameter are the same as the 
subparameters described for SPACE in 
ncreating Data Sets.n 

Programming Considerations 99 



SYSTE;M OUTPQ.! 

The compilers, the linkage editor, and 
load modules produce aids which may be used 
to document and debug programs. This sec­
tion describes the listings, maps, card 
decks, and error messages produced by these 
components of the operating system. 

COMP:J;LER OUTPUT 

Both the FORTRAN IV (G) and the FORTRAN 
IV (H) compilers can generate, depending 
upon user-specified options, a listing of 
source statements, a table of source module 
names, an object module listing, and an 
object module card deck. Additionally, the 
(H) compiler can generate a structured 
listing of source statements, and a table 
of source module labels. 

source module diagnostic messages are 
also produced during compilation. 

sour~e Listing 

If the SOURCE option of the PARM param­
eter of the EXEC statement is specified, 
the source listing is written in the data 
set specified by the SYSPRINT DD statement. 
An example of a source program listing is 
shown in Figure 55. This printout is the 
source listing of the sample program shown 
in Figure 56. (This program will be used 
throughout the remainder of this publica­
tion for purposes of illustration.) 

c PRIME NUMBER PK..UBLEM 
lSN OOfJ2 lOli WRITE ( 6. 81 
ISN 0003 ti FORMAT t52H FnLLOWING IS 

ll9X,LHl/19XrlH2/19X,lH3) 
ISN 0004 101 1=5 
ISN 000~ 3 A=I 
ISN 01)06 102 A=SQ1~Tt A) 
ISN 0007 103 J=A 
ISN 0308 104 00 l K=3.J,2 
ISN 0009 10~ l=IIK 
ISN 0010 106 1F(Ll<K-Ult2t4 
ISN 0011 l CONTINUE 
lSN 0012 107 WRITE (bwSll 
I SN 0013 ~ FORMAT (I 20) 
ISN 0014 2 1=1+2 
ISN 0015 1 Ob IF ( 1000-1 )7 ,4,3 
ISN 0016 4 WRIH'. (6,9) 

Storage Map 

If the MAP option of the PARM parameter 
of the EXEC statement is specified, a table 
of names, which appear <or are implied) in 
the source module, is written in the data 
set specified by the SYSPRINT DD statement. 
The storage map produced differs according 
to the compiler used. 

r------, 
IG ONLYI 
L------J A table is generated for each of 
seven classifications of variables used in 
the source module. Each table contains the 
names and locations of variables used in 
that particular context. The classif ica­
tions are as follows: 

• COMMON variables 

• EQUIVALENCE variables 

• Scalar variables 

• Array variables 

• subprograms called 

• NAMELIST variables 

• FORMAT statements 

Separate maps are produced for each 
classification, with the appropriate head­
ing preceding the data. The variable 
names, statement labels or subprogram name 

A LIST LF PRIME NUMdERS FROM L TO 1000/ 

ISN 0017 9 FORMAT (14H PROGRAM ERROR) 

ISN 0018 7 WRITE (b,6) 
ISN 0019 6 FORMAT l31H THI.) 15 THE ENO OF ThE PROGRAM) 

lSN 0020 109 STOP 
lSN 0021 H..iO 

--------------------

Figure 55. Source Module Listing 

100 



FORTRAN Codin~ Form 

119x,1H11119x,rn2119x,1H3J ~ :T ,T ~-1--++-

1
1 ---1 i l 

1 1 1•5 I ' : ' : ': + i; I I 
3 A .. I l . l i I ! I 1 T -+---'- ! t- T l + 

1 2 lA "'s Q R:r <!A > _,__ +-T-- ~· ; , ' ; ! i : 
1 

---t-+-+ , ---1 -.\-"------•-i--+-r.1--1 

1 3 J .. A T ! ' I Jl I : i l i : ' +--r-; I I : ; i J 

1 4 DO 1 K=3'l.t'J2:Jtt i T I I I ! h ! .1TJ_ I I! 

t-+--+-+---+--1-+--E+c--N4-='D--l--1--4--T l ~~-+- : : ~- : _l_ T j__ U_ ---+-- l ' : L+-' ~ 
L T I : : ' I ! ' I : l • I ' l 11 i : i i l i . . I T1 

I/Ji i': :J_j_ 1i ! I 111:T i _;_ J_! I_]_ l l;L J l :+~t-rr-" 
1 2 3 4 5 6 7 I 9 10 II 12 13 14 15 16 17 18 19 20 t'I ':2 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 .t5 46 "7 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 M 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 

*A.._... uni form, llM el1ctro M8157, ii available for pvnchi 1totem ... t1 from this form 

Figure 56. sample FORTRAN IV Program 

SUBPROGRAMS CALLED 
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION 
IBCOM# BC SQRT co 

SCALAR MAP 
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION 
I CB A cc J DO K D4 L 08 

FORMAT STATEMENT HAP 
SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION SYMBOL LOCATION 

8 DC 5 126 9 

Figure 57. Storage Map (G) Compiler 

are arranged across the page: six to a 
line. However, storage maps of variables 
not used in the source module are not 
produced. 

Figure 57 is an example of a storage map 
produced by the (G) compiler for the sample 
program in Figure 56. 

r------, 
IH ONLYI 
L------J Figure 58 is an example of a 
storage map produced by the (H) compiler 
for the program in Figure 56. The figure 
displays the following items: 

1. The first line shows the name of the 
program (MAIN) and the program size in 
hexadecimal (00027C). 

l2A 6 13C 

2. The second line shows headings which 
identify names used in the program. 
These headings and the information 
they describe are as follows; 

a. NAME lists names of all variables, 
statement functions, subprograms, 
and internal functions. 

b. TAG lists variable and name use 
codes. Variable use codes are as 
follows: 

A indicates that the variable was 
used as an argument; i.e., it 
appeared in a parameter list 

F indicates that the variable 
appeared on the right of the 

System output 101 



Page~ of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

equal sign: i.e., its value 
was used at some time 

s indicates that the variable 
appeared on the left of an 
equal sign; i.e., its value was 
stored at some time. 

c 

E 

~~~~ use codes are as follows: 

indicates variables in COMMON

indicates variables that appear
in an EQUIVALENCE statement

IF indicates an internal function.

NR indicates variables not
l'."eferred to

SI;> indicates arithmetic statement
functions

XF indicates subprograms

XR indicates variables, arrays, or
subprograms that are referenced
by name

Note that the name code SF
should not be confused with the
variable codes S and F. Codes
s and F are positioned left of
the heading TAG whereas the
name identifier SF appears
under the heading (actually,
beginning under the letter G;
see the placement of codes for
the variable I and the subpro­
gram SQRT in Figure 58).

c. Type identifies the type and
length of each variable.

d. ADD identifies the relative
address assigned to each name.
<All functions and subroutines
have a relative address of 00000.)

The FORTRAN (H) compiler also produces a
map of each COMMON block, followed by a map

~FA
)

TYPE ADD.
R*4 000120
I*-\ 000130

ftAME l AG
I SF

SQRT Xf

MAIN I

T Yf E ADD.
I *4 000124
R*4 000000

of any equivalences made for the block.
The map for each COMMON block contains the
same type of information as for the main
program. The map for the equivalences
lists the name of each variable along with
its displacement (offset) from the begin­
ning of the common block.

r------,
I H ONLY I Label Map
l------J

In addition to the storage map, specifi­
cation of the MAP option for the (H) com­
piler produces a table of statement numbers
known as a label map. The statement num­
bers that appear in the source module are
written in the data set specified by the
SYSPRINT DD statement~ This table
includes:

1. The statement number of each source
label.

2. The relative address assigned to each
label.

3. The symbol 'NR' next to each source
label that is not referenced.

Figure 59 shows a portion of the label
map produced by the (H) compiler for the
program in Figure 56.

Object Module Listing

If the LIST option of the PARM parameter
of the EXEC statement is specified, the
object module listing is written in the
data set specified by the SYSPRINT DD
statement. The listing is in pseudo­
assembler language format: i.e., all
instructions are not valid assembler lan­
guage instructions.

The listing produced differs according
to the compiler used.

SIZE Of PROGRAM 00027C HEXADECIMAL bYTES

NAME TAb
J SF

IOCOM= F Xf

TYPE ADD.
1•4 000128
1•4 000000

NAME TAG
K SF

TYPt ADu.
I *4 ·.)00121 b.TAG

----·--------·----.. ----.. --.. ---------·--·--·--·------"·------·-·---·---·-·----.. ----------------------

Figure 58. Storage Map -- (H) compiler

102

193 OOACC8 NR
195 OOAEEO
400 008118
540 OC84FO
570 0085F8

l<;C CCADE4
201 CCAEFC
405 CC8120
550 CCB54C
590 CCB67E

Figure 59. Label Map -- (H) Compiler

r------,
IG ONLYI
L--~--J The object module listing is
arranged in column format, with headings,
as follows:

column 1: LOCATION--The address in hexa­
decimal of the instruction.

Column 2: STA NUM--The source program
statement numbers of all FOR­
TRAN executable statements.

Column 3:

Column 4
and

column 5:

LABEL--Source labels and compil­
er generated labels.

OP and OPERAND--The actual
instruction.

Column 6: BCD OPERAND--Significant items
ref erred to in the correspond­
ing instruction, e.g., entry
points, labels, variables, and
constants.

Figure 60 shows an object module listing
produced for the program in Figure 56.

1 OOAElO NR
200 OOAFlE
'>20 008412
560 OOB588
605 OOB6AO

r------,
lH ONLYI

2 OOAE 14 NR
205 008106
530 008450
565 OOB5DO
606 008778

L------J The (H) compiler object module
listing is arranged in column format as
follows:

Column 1: The address (in hexadecimal) of
the instruction.

column 2: The assembly format (in hexadec­
imal) of the instruction.

Column 3: Source labels and compiler
generated labels (compiler
generated labels contain six
digits>.

Column 4: The actual instruction.

column 5: Significant items referred to in
the corresponding instruction,
e.g., entry points, labels,
variables, constants, and tem­
poraries <.yxx where y is s, T,
or Q and xx is two digits).

Figure 61 shows an object module listing
produced for the program in Figure 56.

Object Module Card Deck

If the DECK option of the PARM parameter
of the EXEC statement is specified, an
object module card deck is produced. This
deck is made up of four types of cards
TXT, RLD, ESD, and ~ND. A functional
description of these cards is given in the
following paragraphs.

System Output 103

----·----·-----·- --------·----·-·-- --·~-----

LOCATION STA NUM LABEL DP OPERAND BCD OPERAND
000000 BC 15,12(0,15)
000004 DC 0604ClC9
000008 DC 05404040
oooooc '.)TM 14, 12, 12(13)
000010 LM 2,3,40(15)
000014 LR 4.13
000016 L 13,36{0, 15)
OOOOlA ST 13,8(0,4)
OOOOlE STM 3,4,0(13)
000022 BCR 15,2
000024 DC 00000000 A4
000028 DC 00000000 A20
00002C DC 00000000 A36
0001A8 A36 L 13,4(0.131
OOOlAC L 14.12(0.13)
000180 LM 2,12,28(13)
000184 MVI 12(13),255
OOOlB 8 BCR 15,14
OOOlBA A20 L 15 tl 40 (0 t 13) IBCOM#
OOOlBE LR 12, 13
OOOlCO LR 13,4
0001C2 BAL 14,64(0,15)
0001C6 LR 13, 12
0001C8 100 L 15, 140(0,13) IBCOM#
OOOlCC BAL 14,4(0,15)
000100 DC 00000006
000104 DC oooooooc
000108 BAL 14.16(0,15)
OOOLDC 3 101 L 0,360(0,13)
0001 EO S. T Orl52(0,l3)
0001E4 4 3 l o,1s2co,13>
0001E8 LPR 1,0
OOOlEA ST 1,324(0,13)
OOOlEE LO 0,32010,13>
0001F2 AD 0 '304 (Q' 13)
OOOLF6 LTR o,o
0001F8 IJ.ALR 14,0
OOOlFA BC 11,6(0,14)
OOOlFE LCDR o,o
000200 STE 0,156(0,13) A
000204 5 102 LA 1 ' 1 48 (0 ' 1 3 ,
0002 08 l 15, 144(0, 13) SQRT
00020C BALR 14, 15
00020E STE 0,156(0,13) A
000212 6 103 SOR o,o
000214 LE: 0,156(0,13) A
000218 AW o,336(0,131
00021C STD 0,320(0,131
000220 l 0,332(0,13)
000224 LTDR o,o
000226 RALR 14,0
00022 8 BC 11,6(0,14)
00022C LCR o,o
00022E ST 0,160(0,13) J
000232 7 104 L 0,364(0,13l
000236 l44 ST Q,164(0,131 K
0002 3A 8 105 l 0,152<0,13) I
00023E SRDA 0,32(0)
000242 0 0' 164 (0' 13) K
000246 ST l,168(0,13) L
00024A 9 106 l l.168(0,131 L
00024E M 0,164(0,13) K
000252 s 1,152(0,131 I
0002 56 LTR l, l
0002 58 L 14,104(0,131 2
00 02 SC BCR 8,14
00 025E L 14,108(0,13) 4
00 0262 BCR 2' 14
000264 10 1 l 0' 164 (0' 13) K
000268 l lrll6(0,13) l44
00026C LA 2,2(0,0)
0002 70 L 31160(0,131 J
000274 BXLE 0,2,0(l)

-~---------·---··---~-···-·---·--····-··

Figure 60. Object Module Listing -- (G) compiler (Part 1 of 2)

104

000278
0002 7C
000280
000284
0002 88
0002 BC
000290
000294
000298
00029C
0002AO
0002A4
0002A8
0002AA
0002 AE
000280
000284
000286
0002BA
0002 BC
0002CO
0002C4
0002C8
ooozcc
000200
0002 04
000208
00020C
OOOZEO
0002E4
0002E8
0002 EC

11

13

14

15

17

19

107

2

108

4

1

109

L
BAL
DC
DC
BAL
DC
BAL
L
A
ST
l
s
LTR
l
BCR
L
BCR
L
BCR
BAL
DC
DC
BAL
L
BAL
DC
DC
BAL
L
BAL
DC
DC
END

15,140(0,13)
14,4(0,15.
00000006
00000126
14,8(0,15)
04500098
14,16(0,15)
0 ' 152 (Q' 13)
0,368(0,13)
0 ' 1 52 (0 ' 13)
0 '.3 72 (0, 13)
0,152(0,13)
o,o
14,112(0,13)
4, 14
14,96(0,13)
2, 14
l5,140I0,13)
o,o
14,4(0,15}
00000006
0000012A
14,16(0,15)
15,140(0,13)
14,4(0,15)
00000006
0000013C
14,16(0,15)
15,140(0,13)
14,52(0,15)
05404040
40FO

OPTIONS IN EFFECT NOIO,EBCDIC,SOURCE,LIST,NODECK,LOAO,NOMAP
OPTIONS IN EFFECT NAME = MAIN , LINECNT = 50
STATISTICS SOURCE STATEMENTS = 20,PROGRAM SIZE =
STATISTICS NO DIAGNOSTICS GENERATED

IBCOM#

1

3

IBCOM#

IBCOM#

IBCOM#

750

Figure 60. Object Module Listing -- (G) compiler (Part 2 of 2)

system output 105

Figure 62. Object Module Deck Structure -­
(G) Compiler

____ _L __ _

ESD, Type2, and
RLD for External
References in
CALL, 'oXTERNAL,

TXT Cards
for Campi ler
G"nerated
Constants

1, TXT Cards f·~r Coded FORMAT
Stutements

ENTRY Statements for Source
Module Constants

ESD :~pe-=ng [,&--------,;

Entry Points from J TXT Cards

-~Type ;;--J _
7

__
vin~1 the Name _J

l ___ ~i~~~b:::: __ _
Figure 63. Object Module Deck Structure -­

(H) Compiler

r------,
IH ONLYICross Reference Listing
l------J

If the compiler XREF option is speci­
fied, a cross reference listing of
variables and labels is written in the data
set specified by the SYSPRINT DD statement.
The variable names are listed in alphabet­
ical order, according to length. (Variable
names of onE~ character appear first in the

108

listing.) The labels are listed in ascend­
ing sequence along with the internal state­
ment number of the statement in which the
label is defined.

For both variable names and labels, the
listing also contains the internal state­
ment number of each statement in which the
variable or label is used. Figure 64 shows
a compiler cross reference listing produced
for the program in Figure 56.

r------,
IH ONLYIStructured source Listing
l------J

If the EDIT option is specified, a
structured source listing is written in the
data set specified by the SYSPRINT DD
statement. This listing is independent of
the usual source listing and indicates the
loop structure and logical continuity of
the source program.

Each loop is assigned a unique 3-digit
number. Entrance to the loop is indicated
by a left parenthesis followed by a 3-digit
loop number ~- <xxx -- before the internal
statement number of the first statement in
the loop; exit from the loop is indicated
by the 3-digit loop number followed by a
right parenthesis -- xxx> -- on a separate
line before the next non-comment line.

SYMBUL INTFRNAL STATtMENT NUMBE~S
A 0005 0006 0006 Q007
I OOO't 0005 0(109 0010 0012 001'1- 0014 0015
J 0007 0008
k 000'3 0009 OUlO
l oooq 0010
S-11U OU06

LA ti fl OEFINEO REfERE:NCES
l OOll OOC8 0010
2 0014 0010
3 00')~ 00l5
4 0016 0010 00ll5
5 0013 0012
6 0019 0018
7 0018 0015
tl {)013 0002
9 ~J017 0016

lOC 0012
101 0004
102 0006
103 00''7
104 0018
105 00')9
106 0010
107 0012
108 0015
109 0020

Figure 64. compiler Cross Reference List­
ing -- (H) Compiler

Indentations are used to show dominance
relationships among executable source
statements. Statement A dominates state-

ment B if A is the last statement common to
all logical paths from which B receives
control. Statement A is called a domina­
tor, statement B is called a dominee. By
this definition, a statement can have only
one dominator, but a dominator may have
several dominees. For example, a computed
GO TO statement is the last statement
through which control passes before reach­
ing three other statements. The GO TO
statement is a dominator with three
dominees.

A dominee is indented from its dominator
unless it is either the only dominee or the
last dominee of that dominator. The line
of sight between a dominator and its
dominee(s) may be obscured by intervening
statements. This is a dominance discon­
tinuity and is indicated by c--- on a
separate line above the dominee.

Comments and non-executable statements
are not involved in dominance relation­
ships: their presence never causes a.
dominance discontinuity. comments line up
with the last preceding non-comment line:
nonexecutable statements line up either
with the last preceding executable state­
ment or with the first one following.

Figure 65 shows a structured source
listing produced for the program in Figure
56.

source Module Diagnostics

FORTRAN IV (G) and (H) compiler messages
are described in Appendix D.

LINKAGE EDITOR OUTPUT

The linkage editor produces a map of a
load module if the MAP option of the PARM
parameter of the EXEC statement is speci-

f ied, or a cross reference list and a map
if the XREF option is specified. The
linkage editor also produces diagnostic
messages, which are discussed in the
Link.age Editor and Loader publication.

Module Map

The module map is written in the data
set specified in the SYSPRINT DD statement
for the linkage editor. To the linkage
editor, each program (main or subprogram>
and each COMMON (blank or named) block is a
control section.

Each control section name is written
along with origin and length of the control
section. For a program and named COMMON,
the name is listed; for blank COMMON, the
name $BLANKCOM is listed. The origin and
length of a control section is written in
hexadecimal numbers. A segment number is
also listed for overlay structures (see the
Linkage Editor and Loader publication>.

For each control section, any entry
points and their locations are also writ­
ten; any functions called from the data set
specified by the SYSLIB DD statement are
listed and marked by asterisks.

The total length and entry point of the
load module are listed. Figure 66 shows,
for the (G) compiler, a load module map
produced for the program in Figure 56: the
map produced for the (H) compiler is shown
in Figure 6 7.

System Output 109

r----·------------------------·----------------------------------·---------------------1
IIBC219I I
!TRACEBACK 1',0LLOWS ROUTINE ISN REG. 14 REG. 15 REG. 0 REG. 1 I
I IBCOM 8 2 0 0 6 8FC xxxxxxxx xxxxxxxx xx:xxxxxx I
I MASTR 010 00005378 I
I PAYROLL 00003148 xxxxxxxx xxxxxxxx xx:x:xxxxx I
I ENTRY POIN'J? = 00005000 I
l----------·---·----------------·-------------------------------------·----·---------J
Figure 70. SamplE:! Traceback for Execution-Time Errors

Note: For an assembler language program or
subprogram, the internal statement number
field contains the value of the binary
calling sequence identifier specified in
the CALL macro instruction or equivalent
coding. If no identifier was specified,
the field is either blank or its contents
are meaningless in the traceback.

If the t:raceback cannot be completed,
the message TRACEBACK TERMINATED is issued
and the job step is terminated. This mes­
sage appears only if either 13 names of
subprograms appear in the traceback or a
calling loop has been detected (e.g., sub­
program A calling B calling A).

At the end of the traceback, whether it
was completed or not, the entry point of
the main FORTRAN program is given in
hexadecimal.

Figure 70 shows the traceback informa­
tion placed in the! error message data set
for the following example.

Example: A FORTRAN program PAYROLL calls
the subroutine MASTR, which contains a READ
statement. The IHCFIOSH routine is called
to perform the input operation, but an
error condition arises because there is no
DD statement for the data set.

Explanation: PAYROLL was entered at loca­
tion 5000 and called MASTR at internal
statement number (ISN) 10 in PAYROLL.
IBCOM (in this case, the error occurred in
the IHCFIOSH routine) would have returned
to location 68FC in MASTR; MASTR would have
returned to location 5378 in PAYROLL and
PAYROJ~L would have returned to location
3148 in the supervisor. Execution ter­
minates and a condition code of 16 is
returned to the operating system.

Program Interru_E!:__Messages

Program interrupt messages containing
the old Program Status word (PSW) are pro­
duced when one of the following occurs:

112

• Protection Exception (4)
• Addressing Exception (5)
• Specification Exception (6)
• Data Exception (7)
• Fixed-Point Divide Exception (9)
• Exponent-Overflow Exception (C)
• Exponent-Underflow Exception (D)
• Floating-Point Divide Exception (F)

The characters in parentheses :following
the exceptions are PSW codes that appear in
the program interrupt message to indicate
the type of exception. Appendix D contains
a complete description of the message and
its format.

The program interrupt messages are writ­
ten on a data set specified by the pro­
grammer. (See •FORTRAN Job Processing.•)
Operator intervention is not required for
any of these interruptions.

ABEND Dump

If a program interrupt occurs that
causes abnormal termination of a load
module, an indicative dump is given (i.e.,
only the contents of significant registers,
indicators, etc., are dumped). However, if
a programmer adds the statement

//GO.SYSABEND DD SYSOUT=A

to the execute step of a cataloged proce­
dure, main storage and significant regis­
ters, indicators, etc., are dumped. (For
information about interpreting an ABEND
dump, see the Guide to Debugging
publication.)

Operator Messages

A message is transmitted to thE:! operator
when a STOP or PAUSE is encountered during
load module execution. Operator messages
are written on the device specified for
operator communication. For a description
of these messages, see Appendix D.

The value associated with the STOP
statement (0 if a value is not coded) is
passed to the next job step and can be
tested as a condition code by the COND

parameter in the EXEC statement. This con­
dition code will have a value of 16 if FOR­
TRAN terminates the step because of a
detected execution error. The STOP state­
ment, like CALL EXIT, terminates a FORTRAN
program and causes automatic closing and
positioning of FORTRAN data sets, i.e., the
writing out of the last buffer on output,
the releasing of dynamic storage, the clos­
ing of data sets, etc.

LOADER OUTPUT

The loader produces error and diagnostic
messages and a storage map of the loaded
program if the PRINT and MAP options,

respectively, are specified in in the PARM
field of the EXEC statement. The storage
map and diagnostic messages are produced on
the data set specified in the SYSLOUT DD
statement. The diagnostic messages are
fully described in the Messages and Codes
publication.

The storage map includes the name and
absolute address of each control section
and entry point defined in the program. It
is written on SYSLOUT concurrently with
input (SYSLIN) processing, as its entries
appear in the same order as the input ESD
items. The total size and storage extent
of the loaded program are also included.
Figure 71 shows the storage map produced
for the program in Figure 56.

OS/360 LOADER

OPTIONS USED - PRINT,MAP,LET,CALL,RES,SIZE=102400

NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR NAME TYPE ADDR . NAME TYPE ADDR

MAIN SD 63360 IHCSSQRT* SD 63650 SQRT * LR 63650 IHCECOMH* SD 63798 IBCOM# * LR 63798 "FDIOCS# * LR 63854 INTSWTCH* LR 646B6 IHCCOMH2* SD 6Ll6DO SEQDASD * LR 64958 ERRMON * LR 64C40 IHCERRE * LR 64C58 IHCUOPT * SD 6~i200 IHCEFNTH* SD 65500 ADJSWTCH* LR 6586C IHCEFIOS* SD 65A18 FIOCS# * LR 65A18 FIOCSBEP* LR 65A1E ADCON# * LR 6oC98 FCVAOUTP* LR 66D42 FCVLOUTP* LR 66DD2 FCVZOUTP* LR 66F22 FCVEOUTP* LR 677CA FCVCOUTP* LR 679E4 INT6SWCH* LR 67CCB IHCUATBL* SD 67E30 IHCTRCH * LR 68038 ERRTRA * LR 68040

IHCERRM * SD 64C40
ARITH# • LR 65500
IHCFCVTH* SD 66C98
FCVIOUTP* LR 672C8
IHCETRCH* SD 68038

TOTAL LENGTH 4F68
ENTRY ADDRESS 63360

eFigure 71. Storage Map Produced by the Loader

system output 113

LINKAGE EDITOR OVERLAY FEATURE

overlay is a feature of linkage editor
processing that allows the FORTRAN pro­
grammer to reduce the main storage require­
ments of his program by breaking it up into
two or more segments that need not be in
main storagE~ at the same time. These seg­
ments can be assigned the same relative
storage addresses and can be loaded at dif­
ferent times during execution of the pro­
gram. The programmer uses linkage editor
control statements to specify the relation­
ship of segments within the overlay
structure.

DESIGNING A PROGRAM FOR OVERLAY

Programs are placed in an overlay struc­
ture according to the size, frequency of
use, and logical relationships between the
program units that they comprise. The
basic principle of overlay is illustrated
by the simple example in Figure 72. It
shows a FOR'l'RAN program consisting of a
main program and two very large subprograms
named SUBA a.nd SUB. Normally, all three
program units would be loaded into main
storage at the same time and would remain
there throughout execution of the entire
program. However, if there was not enough
main storage space available to accommodate
all three program units at once, and if
SUBA and SUBB did not have to be in main
storage at the same time, the programmer
could design an overlay structure in which
the MAIN routine stayed in main storage at
all times, while subprograms SUBA and SUBB
made use of the remaining space as they
were needed.

r-·--------------------------------------1
I I
I MAIN I
I I
!-----·------·------------------------------~
I I
I SUBA I
I I
~-----------·-------------------------------~
I I
I SUBB I
I I
L----------·----------------·---------J

•Figure 72. A FORTRAN Program Consisting of
'Three Program Uni ts

Figure 73 shows what happens at execu­
tion time to the program in Figure 72. The
MAIN routine is loaded and processing
begins. When the MAIN routine calls SUBA,

114

SUBA is loaded and processing continues
until SUBB is called. SUBB then overlays
SUBA in main storage c:md remains there
until SUBA is called again. The main
storage requirements of the program are
thus reduced from the total number of bytes
in all three program units to the total
number of bytes in the? MAIN routine plus
the larger of the two subprograms.

Main Storage

Time 0------------------------>n

Problem
Program
Area

•Figure 73. Time/Storage Map of a Three
Segment Overlay Structure

SEGMENTS

The relationships among the program
units in the overlay program described
above can be graphically represented by an
overlay "tree" structure, as shown in
Figure 74. Each "branch" of the overlay
tree consists of a separately loadable unit
of the program to which the linka9e editor
assigns a number. These overlay segments
may contain one or more subprograms total­
ing 512K bytes (524,288 bytes).

The first segment in any overlay program
is called the root segment. The root seg­
ment remains in main storage at all times
during execution of the program. It must
contain:

• The program unit which receives control
at the start of processing. Usually
this is the main routine in which pro­
cessing begins at the entry point named
MAIN.

• Any program units which should remain
in main storage throughout processing.
For greater efficiency, subprograms
which are frequently called should also
be placed in the root segment if
possible.

• Any program units containing DEFINE
FILE statements.

• Any automatically called FORTRAN
library subprograms. These are placed
in the root segment automatically by
the linkage editor when it processes
the overlay program.

• certain information which is needed by
the operating· system to control the
overlay operation. Like the FORTRAN
library subprograms, this information
is automatically included in the root
segment by the linkage editor.

Segment 1
(ROOT)

r--------1
I I
I MAIN I
I I
L----y---J

I
Segment 2 I Segment 3

r---------------L------------~-,
I I
I I r----i ___ , r---i ____ ,

I SUBA I I SUBB I
L--------J L--------J

•Figure 74. overlay Tree Structure of Three
Program Units

PATHS

The relationships among the segments of
an overlay program are expressed in terms
of "paths". A path consists of a given
segment and any segments between it and the
root segment. The root segment is thus a
part of every path, and when a given seg­
ment is in main storage, all segments in
its path are also in main storage. The
simple program in Figure 74 is made up of
only two paths, as shown in Figure 75.

The paths of an overlay program are
determined by the dependencies between the
program units which it comprises. A pro­
gram unit is considered to be dependent on

any program unit which it calls or whose
data it must process.

Path 1
r------------,.
I I
I I
I MAIN I
I I
I I
L-----y------JI

I
I
I
I
I
I

r-----i------1
I I
I I
I SUBA I
I I
I I L _______ .._ ____ J

Path 2
·-----------,
I I
I I
I MAIN I
I I
I I
L------T _____ J

I
I
I
I
I
I

r------~----1
I I
I I
I SUBB I
I I
I I
L------------J

•Figure 75. The Paths in the overlay Tree
in Figure 74

E'igure 76 shows a FORTRAN program in an
overlay tree structure. The paths implied
by that structure are illustrated in Figure
77. The MAIN routine and subprograms SUBl

Segment 1
(ROOT)

r-------1
I MAIN I
1------~
I SUBl I
~-------~
I SUB2 I
L---ir---J

Segment 2 I Segment 6
r----------i-----------1
I ALPHA I

r---~--1 r--i---1
I SUB3 I I SUB11 I
1-------i ~-------i
I SUB4 I I SUB12 I
L---y---l L_ ______ J

I
r----------f----------1
I BETA I I
I I I

r---·i---, r---~--, r---i---1
I SUBS I I SUBS I I SUB10 I
·---·----~ 1--------~ L_ ______ J

I SUB6 I I SUB9 I Segment 5
·---·---~ L_ ______ JI
I SUB7 I Segment 4
L---·----J

Segment 3

eFignre 76. overlay Tree Structure Having
Six Segments

Linkage Editor overlay Feature 115

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

stream following the //SYSIN DD* card, or
after the //LKED.SYSIN DD* card if a cata­
loged procedure is used. Linkage editor
control statements have the following form:

r--------------------T--------------------1
i Operation I Operand I
~--------------------+--------------------~
I verb I operand(s) I
l ____________________ i ____________________ J

where "verb" is the name of the operation
to be performed. The first column of all
linkage editor control statements must be
blank, and the operation field, which
begins in column 2, must contain a verb.
The operand field, which must be separated
from the operation field by at least one
blank~ must contain one or more symbols
~eparated by commas. No embedded blanks
may appear in the operand field. Linkage
(~ditor control statemenb3 are placed
befor1?., between, or after modules in the
input stream. They may be grouped, but
Lhey may not be placed, within a module.

The most important control statements
for implementing an overlay program are the
OVERLAY, INSERT, INCLUDE and ENTRY state­
ments. The OVERLAY statement indicates the
beginning of an overlay segment. The
fNSERT statement is used to rearrange the
sequence of object modules in the resulting
load module(s). The INCLUDE statement is
used to incorporate input from secondary
:;ources into the load module. The ENTRY
statement specifies the first instruction
t-o be executed.

The OVERL1\Y statement indicates the
beginning of an overlay segment.
Pral form is:

Its gen-

r--------------------T--------------------1
I Operation I Operand I
~--------------------+--------------------~
I OVERLAY I symbol I
L--------------------i ____________________ J

where~ the op1?.rand "symbol n is the program­
mer's identification of the beginning of
the segment, that is, the symbolic name of
the relative origin. Such symbols may be
any group of from one through eight alpha­
meric characters beginning with an alpha­
betic character.

The OVERLAY statement for a segment is
placed in one of three places: directly
before the object module deck for the first
program unit of the new segment, or before
an INSERT statement. specifying the program
units to be placed in the segment, or

120

before an INCLUDE statement specifying the
program units to be placed in the segment.
Assuming that object module decks are
available, the input deck to the linkage
editor for the program in Figures 76 and 77
could be arranged as follows:

r~~~~-ll
I SUB1 I (object
jSUB2 I' l _____ J

OVERLAY ALPHA

1s~;-1l
I I (object
ISUB4 1,
l _____ J

OVERLAY BETA
r-----1
I SUBS 1 l
I SUB6 I (object
I SUB7 I)
l _____ J

OVERLAY BETA
r-----,
ISUB8 1{
I I (object
I SUB9 1,
l _____ J

OVERLAY BETA

module deck

module deck

module deck

module deck

r~~;~~1} object module deck
l _____ J

OVERLAY ALPHA
r-----1
ISUB11ll
I I (object
I SUB12 I'
l _____ J

ENTRY MAIN

module deck

The order in which the overlay segments
are specified has nothing to do with the
order of execution, which is determined by
subprogram references; however, once a sym­
bolic name has been specified for a point
of origin, it may not be used again in the
deck after specifications have been made
for a point higher in the overlay tree.
Thus, in the example above, no further seg­
ments could be specified for load point
BETA after the second specification for
load point ALPHA.

An OVERLAY statement must never be
placed before the root segment.

The INSERT Statement

There are many instances in which it is
inconvenient or impossible for the pro­
grammer to position object module decks
physically in the input stream. Library
routines, which are normally placed in the

root segment, and routines compiled in an
earlier step in the same job, are examples
of program units for which the object
module decks are not available for posi­
tioning at the time the job is set up.

The INSERT statement is used to position
control sections from such program units in
an overlay structure. A control section,
or CSECT, is the operating system designa­
tion for the smallest separately relocat­
able unit of a program. Examples of FOR­
TRAN control sections are: main programs,
subprograms, blank and named COMMON blocks.

The INSERT statement has the form:

r-------------T---------------------------1 I Operation I Operand I
1--------------+---------------------·------i
I INSERT I csectnameC,csectname •••] I
L-------------'----------------------------J
where •csectname• is the name of the con­
trol section to be positioned. Multiple
operands, separated by commas <not blanks),
may be specified.

The INSERT statement is. plaeed directly
after the OVERLAY statement for the segment
containing the control section. If the
control section is to be positioned in the
root segment, the INSERT statement is
placed before the first OVERLAY statement.

Using INSERT statements and a FORTRAN
source deck, the overlay structure speci­
fied in Figures 76 and 77 could be imple­
mented as follows:

r-------------------1
!FORTRAN source deckl
!containing units I
!MAIN through SUB12 I
L-------------------J
ENTRY MAIN
INSERT MAIN, SUB1,SUB2
OVERLAY ALPHA
INSERT SUB3,SUB4
OVERLAY BETA
INSERT SUB5,SUB6,SUB7
OVERLAY BETA
INSERT SUB8 1 SUB9
OVERLAY BETA
INSERT SUB10
OVERLAY ALPHA
INSERT SUE11,SUB12

If INSERT statements are used more than
once in the same program for a control sec­
tion of the same name, the CSECT will be
positioned in the segment specified by the
first occurrence of the CSECT name in the
input stream. Any additional INSERT state­
ments referring to the CSECT will be
ignored and, at execution time, all
references to the CSECT will resolve to the
first one positioned. Thus, if a subpro-

gram is required in more than one path, it
must be either inserted in the root segment
or renamed before being used with an INSERT
statement.

The INCLUDE Statement

The INCLUDE statement is described in
the section "FORTRAN Job Processing.• When
used in an overlay program, the INCLUDE
statement is generally placed in the seg­
ment in which the material to be included
is required. It is possible to manipulate
the control sections which were added by an
INCLUDE statement through the use of tht~
INSERT statement. Assuming that the con­
trol sections of the overlay program from
the previous examples resided in libraries
as follows:

r·-------------1
I LIBA I
1--------y-----~
I BOOK1 I BOOK2 I
~------+-----~
I MAIN I SUB3 I
ISUBl ISUB4 I
ISUB2 I I
L-------.L-----J

r-----1
ILIBB I
l-----~
ISUBS I
ISUB6 I
ISUB7 I
ISUB8 I
ISUB9 I
ISUB10I
ISUB11 I
ISUB121
L-----J

Then the overlay structure could be imple­
mented by the use of the following control
statements:

ENTRY MAIN
INCLUDE LIBA(BOOK1)
INCLUDE LIBB
OVERLAY ALPHA
INCLUDE LIBA(BOOK2)
OVERLAY BETA
INSERT SUB5 1 SUB6,SUB7
OVERLAY BETA
INSERT SUB8,SUB9
OVERLAY BETA
INSERT SUB10
OVERLAY ALPHA
INSERT SUB11,SUB12

The ENTRY Statement

The ENTRY statement specifies the first
instruction of the program to be executed.
It has the form:

r--------------------T--------------------1
I Operation I Operand I
·--------------------+--------------------i
I ENTRY I External-name I
l--------------------~--------------------J

Linkage Editor Overlay Feature 121

alone.> IBM provides a default of 95
entries; thie programmer can provide addi­
tional entr.ies during system generation.
Figures 82 and 83 describe the fields of
the option table .and list the system
generation default values for the contents
of these fields. Table 20 shows the system
generation default values for each error
condition. Note that default values can be
overridden only; they cannot be permanently
changed.

SUBPROGRAM FOR TH:E E;XTENDED ERROR HANDLING
FACILITY

To make full u:se of the extended error
handling facility,, the programmer may call
four IBM-supplied subroutines in his FOR­
TRAN source program: ERRSAV, ERRSTR, ERR­
SET, and ERHTRA. These subroutines allow
access to the option table to alter it
dynamically.:1. Changes made dynamically are
in effect for the duration of the program
that made the change. Only the current
copy of the option table in main storage is
affected; the copy in the FORTRAN library
remains unchanged.. All passed parameters,
unless otherwise indicated, are 4-byte
(fullword) intege1::s.

j\ccessinq ai:id Al tE~rinq the Option Table
Dynamically

1. •rhe CAI,L ERRBAV statement, described
below, can bE~ used in modifying an
f:mtry temporarily to save the original
·~ntry for later restoration. The
::>tateme?nt causes an option table entry
to be copied into an 8-byte storage
area accessible to the FORTRAN
programmer.

CALL ERRSAV Cierno,tabent)

:Lerno
is a.n inte?ger equal to the error
number to be referenced in the
option table. Should any number
not within the range of the option
table be used, an error message
will be printed.

:t.certain option ta.ble entries may be pro­
tected against alteration when the option
table is set upa If a request is made by
means of CALL ERRSTR or CALL ERRSET to
alter such an entry, the request is
ignored. (See Table 18 for which IBM­
supplied option table entries cannot be
altered.)

124

tabent
is the address of an 8-byte storage
area where the option table entry
is to be stored.

2. To store an entry in the option table,
the following statement is used:

CALL ERRSTR (ierno,tabent)

ierno
is an integer equal to the error
number for which the entry is to be
stored in the option table. Should
any number not within the range of
the option table be used, an error
message will be printed.

tabent
is the address of an 8-byte storage
area containing the table entry
data.

3. The CALL ERRSET statement, described
below, permits the user to change up
to five different options in an option
table entry. A procedure for altering
only one option without altering
others is explained in the definition
of the parameters. Another procedure
is to omit the final parameter (or the
last two or three parameters) from the
calling sequence, or to give the value
of zero to a parameter to indicate no
change.

CALL ERRSET (ierno,inoal,inomes,
itrace,iusadr,irange)

ierno
is an integer equal to the error
number to be referenced in the
option table. Should any number
not within the range of the option
table be used, an error message
will be printed. (Note that if
ierno is specified as 212, there is
a special relationship between the
ierno and irange parameters. See
the explanation for irange.)

inoal
is an integer specifying that
execution be terminated when this
number of errors has occurred. If
inoal is specified as either zero
or a negative number, the specifi­
cation is ignored, and the number­
of-errors option is not altered.
If a value of :more than 255 is
specified, an unlimited number of
errors is permitted.

inomes
is an integer indicating the number
of messages to be printedfi A nega­
tive value specified for inomes
causes all mes:sages to be sup-

pressed; a specification of zero
indicates that the number-of­
messages option is not to be
altered.

itrace
is an integer whose value may be O,
1, or 2. A specification of 0
indicates the option is not to be
changed; a specification of 1
requests that no traceback be
printed after an error occurrence;
a specification of 2 requests the
printing of a traceback after each
error occurrence. (If a value
other than 1 or 2 is specified, the
option remains unchanged.)

iusadr
is an optional parameter that may
contain either:

a. the value 1, as a 4-byte integer,
indicating that the option table
is to be set to show there is no
user-exit routine (i.e., standard
corrective action is to be used
when continuing execution).

b. the name of a closed subroutine
that is to be executed after the
occurrence of the error identified
by ierno. The name must appear in
an EXTERNAL statement in the
source program, and the routine to
which control is to be passed must
be available at linkage editing
time.

c. the value o, indicating that the
table entry is not to be altered.

irange
is an optional parameter specif ieq
as an integer that performs a
double function and indicates that
the inoal, inomes, itrace, and
iusadr options values are to be
applied to the range of error num­
bers ierno to irange. If irange is
smaller than ierno, irange is
ignored (unless ierno has been
specified as 212).

If ierno has been sp~cified as
212, irange functions as a control
carriage parameter. Thus, if ierno
is specified as 212, and irange as
1, single spacing is provided on an
overflow line (standard fixup for
WRITE). If a value other than 1 is
specified, no carriage control is
provided. (Note that if ierno has
been specified as 212 and the car­
riage control option is not to be
changed, irange must be omitted
from the call to ERRSET.)

4. Under the extended error handling
facility, a user may dynamically requ­
est a traceback and continued execu­
tion. To obtain subroutine trace, the
following statement is used:

CALL ERRTRA

The call has no parameters.

USER-SUPPLIED ERROR HANDLING

The user has the ability of calling, in
his own program, the FORTRAN error monitor
(ERRMON) routine, the same routine used by
FORTRAN itself when it detects an error.
ERRMON examines the option table for the
appropriate error number and its associated
entry and takes the actions specified. If
a user-exit address has been specified,
ERRMON transfers control to the user-
wri tten routine indicated by that address.
Thus, the user has the option of handling
errors in one of two ways: (1) simply by
calling ERRMON -- without supplying a user­
written exit routine; or (2) by calling
ERRMON and providing a user-written exit
routine.

In either case, certain planning is
required at the installation level. For
example, error numbers must be assigned to
error conditions to be detected by the
user, and additional option table entries
must be made available for these condi­
tions. The routine that uses the error
monitor for error service should have the
status of an installation general-purpose
function similar to the IBM-supplied mathe­
matical functions. The number of installa­
tion error conditions must be known when
the FORTRAN library is created at system
generation, so that entries will be pro­
vided in the option table by the ADDNTRY
parameter of the FORTLIB macro instruction.
The error numbers chosen for user subpro­
grams are restricted in range. IBM­
designated error conditions have reserved
error codes from 000 to 301. Error codes
for installation-designated error situa­
tions must be assigned in the range 302 to
899. The error code is used by FORTRAN to
find the proper entry in the option table.

To call the ERRMON routine, the follow­
ing statement is used:

imes

CALL ERRMON (imes,iretcd,ierno
C,data1,data2, ••• J)

is the address of an array aligned on
a fullword boundary, that contains, in
EBCDIC characters, the text of the
message to be printed. The number of

Extended Error Handling Facility 125

the error condition should be included
as part of the text, because the error
monitor prints only the text passed to
it. The first item of the array con­
tains an integer whose value is the
length of the message. Thus, the
first four bytes of the array will not
be printed. If the message length is
greater than 133 characters, it will
be printed on two or more lines of
printed output.

iretcd
is an integer variable made available
to the error monitor for the setting
of a return code. A code of O or 1
can be set. An interpretation of
these codes follows:

0 - Th•e option table or user-exit rou­
tine indicates that standard
correction is required.

1 - The option table indicates that a
user exit to a corrective routine
has been executed. The function
is to be reevaluated using argu­
ments supplied in the parameters
data1,data2..... For input/output
type errors, the value 1 indicates
that standard correction is not
wanted.

ierno
is an integer representation of the
error condition. The value assigned
identifies an error condition for
which there is a unique entry in the
option table.. Should any number not
within the range of the option table
be specified., an error message will be
printed.

data1,data2 •••

126

are variable names in an error­
detecting routine for the passing of
arguments fo\md to be in error. One
variable must be specified for each
argument. Upon return to the error­
d.etecti.ng routine, results obtained
from corrective action are in these
variables. Because the content of the
variables can be altered, the loca­
tions i.n which they are placed should
be used only in the CALL statement to
the error monitor; otherwise, the user
of the function may have literals or
variables destroyed.

Since datal and data2 are the parame­
ters which the error monitor will pass
to a user-written routine to correct
the detected error, care must be taken
to make sure that these parameters
agree in type and number in the call
to ERR.MON and in a user-written cor­
rective routine, if one exists.

User-supplied Exit Routine

When a user-exit address is supplied in
the option table entry for a given error
number, the error monitor calls the speci­
fied subroutine for corrective action. The
subroutine may be user-written and is
called by the equivalent of the following
FORTRAN statement:

x

CALL x (iretcd,ierno,data1,data2 •••)

is the name of the routine whose
address was placed into the option
table by the iusadr parameter of the
CALL ERRSET statement. (Interpreta­
tions of the other parameters -­
iretcd, ierno, datal, data2 -- are the
same as those fOl:: the CALL ERRMON
statement.) If an input/output error
is detected (i.e~, an error for codes
211 to 237), subroutine "'x" must not
execute any FORTRAN I/O statements,
i.e., READ, WRITE, BACKSPACE, END
FILE, REWIND, DEBUG, or any calls to
PDUMP or ERRTRA. Similarly, if errors
for codes 216 or 241-301 occur, the
subroutine "x" must not call the
library routine that detected the
error or any routine which uses that
library routine. For example, a
statement such as

R = A ** B

cannot be used in the exit routine for
error 252, because FRXPR# uses EXP,
which detects er:r:or 252.

Note that although a user-written cor­
rective routine may change the setting of
the return code (iretcd), such a change is
subject to the following restrictions:

1. If iretcd is set to o, then datal and
data2 must not be altered by the cor­
rective routine, since standard cor­
rective action is requested. If datal
and data2 are altered when i:retcd is
set to O, the operations that follow
will have unpredictable results.

2. Only the values 0 and 1 are valid for
iretcd. A user-exit routine must
ensure that one of these values is
used if it changes the return code
setting.

Note, too, that the user-written exit
routine can be written in FORTRAN or in
assembler language. In either case, it
must be able to accept the call to it as
shown above. The user-exit routine must be
a closed subroutine that returns control to
the caller.

If the user-written exit routine is
written in assembler language, the end of
the parameter list can be checked. The
high-order byte of the last parameter will
have the hexadecimal value 80. If the rou­
tine is written in FORTRAN, the parameter
list must match in length the parameter
list passed in the CALL statement issued to
the error monitor.

Actions the user may take if he wishes
to correct an er~or are described in Tables
21, 22 (parts 1, 2, 3), and 23.

OPI'ION TABLE CONSIDERATIONS

When a user-written exit subroutine is
to be executed for a given error condition,
the programmer must enter the address of
the routine into the option table entry
associated with that error condition.

Addresses for user-exit subroutines can­
not be entered into option table entries
during system generation. An installation
may, however, construct an option table
containing user-exit addresses and placed
that option table into the FORTRAN library.
(Each address must be specified as a V-type
address constant.) Use of this procedure,
though, results in the inclusion, in the
load module, of all such user-exit subrou­
tines by the linkage editor.

If the user-exit address is not speci­
fied in advance through the use of v-type
address constants, the programmer must
issue a CALL ERRSET statement at execution
time to insert an address into the option
table that was created during system
generation.

The programmer should be warned that
altering an option table entry to allow
•unlimited" error occurrence (specifying a
number greater than 255) may cause a pro­
gram to loop indefinitely.

Option Table Default Values

Table 20 shows the default values for
the opti0n table. If an option recorded in
a table entry does not apply to a particu­
lar error condition, it is shown as not
applicable (NA).

The field that is defined as the user­
exit address also serves as a means of spe­
cifying standard corrective action. When
the table entry contains an address, the
user exit is specified; when it contains
the integer 1, standard correction is spec-

ified. It is not possible for the system
generation process to create an option
table entry with the user-exit address
specified. The user exit must be specified
by altering the option table at execution
time~ To specify that no corrective action
-- either standard or user-written -- is to
be taken, the table entry must specify that
only one error is to be allowed before ter­
mination of execution.

HOW TO CREATE OR ALTER AN OPTION TABLE

As previously explained, the option
table supplied during system generation may
be altered dynamically for any particular
FORTRAN job by the use of the subprograms
ERRSET and ERRSTR. However, to provide a
new set of options for the entire installa­
tion, the option table must be reassembled
and linkage edited into the FORTRAN library
-- after system generation and before the
system is used. A procedure for accomp­
lishing this is described in the following
text.

An assembler language macro definition
can be used to generate an option table.
The macro definition and use of the macro
for each option table entry are supplied as
input to the assembler procedure ASMFCL to
replace the system-generated option table
with the new one. An example of an
assembler language macro definition used to
generate an option table is shown in Figure
84. This example may be used as a guide by
the user.

In the example, the macro parameters are
as follows:

a

b

c

a

b

PREFACE a,b,c

is the number of user entries to be
created.

is the boundary alignment desired. A
value of 0 is used for no alignment; a
value of 1 for alignment.

is the number of times the SETENT
macro instruction is to be issued.
(SETENT is described below.>

SETENT (a,b,c,d)

is the error entry to be altered.

is the count of errors to be allowed.

Extended Error Handling Facility 127

c

d

(A specification of O indicates un­
limited error occurrence.)

is the~ count of the number of times
the me.ssage should be printed before
suppression.

is two hexadecimal digits that specify
the option bits field. This field is
described in Figure 83.

The macro instructions are used as
follows:

1. Only one PREFACE macro instruction is
allowed.

2. As many SETENT macro instructions as
are desired may be used. From 1 to
200 error entries can be specified in
the use of a single SETENT macro
instruction by using continuation
cards.

3. Only error entries that differ from
the default options m~ed be specified.
The default options will be the same
as those listed in Table 20.

4. Error codes must be placed in ascend­
ing order in the SETENT macro instruc­
tion. For IBM-supplied entries, error
codes are in the range 201 to 301.
User entries are in the range 302 to
899.

5. Changing one option for any error
entry requires that all four parame­
ters be specified. If default values
are desired :for an entry, they must be
respecified. For example:

SETENT (241,50,5,42)

indicates that for error 241, the
number of errors to be allowed is 50;
the other two parameters, which must
be specified, are simply the default
values shown in Table 20.

ERRORS IN USE OF FACILITY

When the extended error handling f acili­
ty encounters a condition or a request that

128

requires user notification, an information­
al message is printed.

The error monitor is not recursive: If
it has already been called for an error, it
cannot be re-entered j_f the user-written
corrective routine causes any of the error
conditions that are listed in the option
table. Boundary misalignment is therefore
not allowed in a user··exit routine.

PROGRAMMING EXAMPLE

The programming example in Figure 85
shows how features of the error handling
facility may be used.

In the example, a FORTRAN job utilizes a
user-supplied library subprogram that makes
use of the error handling facility to
handle a divide-by-zero situation. A user­
written routine is supplied to take cor­
rective action after the detection of the
error. Comments in the FORTRAN program
describe what is being done.

CONSIDERATIONS FOR THE LIBRARY WITHOUT
EXTENDED ERROR HANDLING FACILITY

When the extended error handling f acili­
ty is not chosen at system generation,
execution terminates after the first occur­
rence of an error, unless it is one caused
by boundary misalignment, divide check,
exponent underflow, or exponent overflow.
The messages for errors 215, 216, 218, 221-
225, and 241-301 are the same as those with
the extended error handling facility. The
other error messages are of the form
"IHCxxxI" with no text.

Without the facility, ERRMON becomes an
entry point to the traceback routine. User
programs that call the error monitor do not
have to be altered. The error message will
be printed with a traceback map and execu­
tion will terminate.

Note, too, that if the facility is not
selected at system generation, the ERRTRA,
ERRSET, ERRSAV, and ERRSTR subprograms are
assumed to be user supplied if they are
called in a FORTRAN program.

.---------.t-----~---~----~--~---1
Format

<----------------~--------------------4 Bytes-------------------------------------->
r------------------------------------~---1 I Number of entries I
~----------------------T---------------------------T-------------------y------------~
I Boundary alignment I Extended error handling I Alignment count I Reserved I
L----------------------J_--------------------------i----~--------------i----~------J

Description

r---------y--------T--~---1
I Field I Length I I
!Contents lin Bytes! Field Description I
t---------+--------+---------------------------~-----~---------------------------~
!Number of I 4 !Number of entries in the Option Table. The default setting I
f entries I lis 95. I
t---------+--------+---------------------------------~------------------------------~
!Boundary I 1 !Bit 1 of this byte indicates whether boundary alignment was I
I alignment I I chosen at system generation. (Bi ts 0 and 2 through 7 are I
I I !reserved for future use.> I
I I I I
I I IBit 1: 0 = NOALIGN I
I I I 1 = ALIGN I
I I I I
I I IThe default setting is 1 (ALIGN). I
~---------+--------+--~
!Extended I 1 I Indicates whether extended error handling facility was chosen atl
terror I I system generation. I
I handling I I I
I I IFF(hexadecimal) = EXCLUDE I
I I IOO(hexadecimal) = INCLUDE I
~---------+--------+--~
!Alignment! 1 !Maximum number· of boundary alignment messages when extended I
!count I I error handling facility is not chosen. The default setting I
I I I is 10. I
~---------+---------+--~
!Reserved I 1 fReserved for future use. I L---------i_.._ _____ _i _________ .._ __ J

L--Figure 82. Option Table Preface

Extended Error Handling Facility 129

.------------·------·---,
Format

<--·---1 Byte------> <------1 Byte------> <------1 Byte------> <------1 Byte------>
r------------·------·-,.-------------------T-------------------T--------------------1
I Number o:f error I Number of messages I I I
I occurrences allowed I to print I Error count I Option bi ts I
~-----------·------·--L-------------------L--------------------L--------------------i
I User exit address I
L---·--------·-------·---J
Description

r---·-------·r------·-T---1
I Field I I I
IConteLts IDefault:LI Field Description I
~---·-------+------·-+---1
!Number of I 1o:a !Number of times this error condition should be allowed to I
terror I !occur. The maximum setting is 255. When the value of the I
toccurrencest !error count field (below> matches the value in this field, thel
tallowed I ljob is terminated. A value of 0 means an unlimited number of I
I I toccurrences. 3 An attempt to set this field at a value greater I
I I !than 255 results in the field being set to O. I
~-----------+-------·-+-------·-------·---i
!Number I 5~ !The number of times to print the error message when this error!
tmessages I toccurs. Message printing is suppressed thereafter. A value I
Ito print I lof 0 means no message is to be printed. I
1-----------+---------+----------------·---i
I Error I 0 I A count of the number of times this error has occurred. A I
!count I tvalue of 0 means none have occurred. I
~-----------t-------+---1
!Option I 42 !Eight option bit:s defined as follows:
bits II (hexa- !Bit 0: 0 no control character is supplied for overflow

11 decimal) I line:s.
II I 1 control character supplied, when needed, to
'I I provide single spacing for overflow lines.
II I
ii IThe default setting is O.
II I
II I Bit 1: 0
I: I 1
II I

table entry not modifiable.is
table entry modifable.

1; I The default setting is 1.
Ii I
I IBit 2: 0 fewer than 256 errors have occurred.
I I 1
I I

I
I

more than 256 errors have occurred. To determine
how many, add 256 to the value contained in the
error count field (above).

!The default setting is O.
I
IBit 3: 6 0
I
I
I

buffer content with message for this error is not
to be printed.

1 buffer content is to be printed.

!The default setting is O.
I
!Bit 4: Reserved for future use.
I
~Bit 5: 0 =
I
I
I
I
I
I

1

unlimited printing of error message was not
requested. The error message is to be printed
only the number of times shown in the
number-of-messages-to-print field (above).
message is to be printed with every occurrence
this error.

!The default setting is o.
I
!Bit 6: 0
I 1
I

traceback is not to be printed.
traceback is to be printed.

!The default setting is 1.
I
!Bit 7: Reserved for future use.

of

~---·--------i ----------+---i
!User I 1 IA value of 1 in this field indicates that no user-supplied I
lexit I texit is to be taken. If a value other than 1 appears in this I
I I lfield, it is the address of the user-supplied exit routine to I
I I I b•~ taken when this error occurs. I
L-----------.L------·--.1.------------------------·-------------------------------------J

1:1.The default values shown apply to all error numbers (including additional user
I entries) unless excepted by a footnote.
I 2Errors 208, ~!10, and 215 are set as unlimited, and errors 217 and 230 are set to 1.
l 3 When the user sets the count of allowed errors as unlimited, the FORTRAN job may loop
I endlessly unless the operator intervenes.
l~Error 210 is set to l.O, and errors 217 and 230 are set to 1.
l 5 The entry for error 230 is not modifiable.
l 6 This entry is set to 0 except for error numbers 212, 215, 218, 221, 222, 223, 224, andl
I 225. I
L-----·~----------------·---J

Figure 83. Option Table Entry

130

Table 20. Option Table Default Values
r-----T----------T---------T--------------T----------T-------T---------T-----------T----1
I !Number of !Number of I I !Print I !Standard I I
!Error! Errors I Messages! IModifiablelBuffer ITracebackjCorrective IUserl
I Code! Allowed I Allowed !Print Control I Entry !Content! Allowed I Action IExitl
l-----+----------+---------+--------------+----------+-------+---------+-----------+----~

207 10 5 NA Yes NA I Yes Yes I No
208 Unlimited 5 NA Yes NA I Yes Yes I No
209 10 5 NA Yes NA I Yes Yes1 I No1
210 Unlimited 10 NA Yes NA I Yes Yes1 I No
211 10 5 NA Yes NA I Yes Yes I No
212 10 5 No character Yes Yes I Yes Yes I No

213
214

10
10

215 Unlimited
216 10
217
218
219
220
221
222
223
224
225
230
231
232
233-

1 301

lq
10 5

10 6

10
10
10
10
10
10

1
10
10
10

5
5
5
5
1
5
5
5
5
5
5
5
5
1
5
5
5

supplied 2 I I
NA Yes NA I Yes Yes I No
NA Yes NA I Yes Yes I No
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA
NA

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes

Yes I
NA I
NA I
Yes 5

NA
NA
Yes
Yes
Yes
Yes
Yes
NA
NA
NA
NA

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes
Yes 3

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
No
Yes
Yes
Yes

No
No
No
No
No
No
No
No
No
No
No
No
No
No
No

~ ______ __________ ________ i _____ ~--------i ___________ i _______ .,L_ ________ i ___________ i ____ ~

1No corrective action is taken except to return to execution. For boundary alignment,
the corrective action is part of the support for misalignment. For divide check, the
contents of the result register are not altered.

2 If a print control character is not supplied, the overflow line is not shifted to
incorporate the print control character. Thus, if the device is tape, the data is
intact, but if the di~vice is a printer, the first character of the overflow line is
not printed and is tireated as the print control. Unless the user has planned the
overflow, the first character would be random and thus the overflow print line control
can be any of the possible ones. It is suggested that when the device is a printer,
the option be changed to single space supplied.

3 Corrective action consists of return to execution for SLITE.
qit is not considered an error if the END parameter is present in a READ statement. No
message or traceback is printed and the error count is not altered.

5 For an I/O error, the buffer may have been partially filled or not filled at all when
the error was detected. Thus, the buffer contents could be blank when printed. When
an ERR parameter is specified in a READ statement, it is honored even though the error
occurrence is greater than the amount allowed.

l 6 The count field does not necessarily mean that up to 10 missing DD cards will be
I detected in a single debugging run, since a single WRITE performed in a loop could
I cause 10 occurrences of the message for the same missing DD card. I
L--J

Extended Error Handling Facility 131

Page of GC28-6817·-2, Revised 12/30/70, by TNL: GN28-0591

• '!'able 21. Corrective Action After Error Occurrence

r-----,----------,------------------------------------,---1
I I ParametE!rS I I I
I Error I Passed to I I I
jcode I User I Standard Corrective Action I User-supplied Corrective Action I
~-----+--------·--+-----------------------·--------·-----+-------------------------------------·-----~
I 211 I A,B,C !Treat format field containing c as j(a) If compiled FORMAT statement, put I
I I lend of FORMAT statement I hexadecimal equivalent of character inl
I l I I C (see Note 1).
j I I I (b) If variable format, move EBCDIC
I I I I character into c (See Note 1)
~ I I I

! I I
212 I A,B,D l!!!.Q.g~: Ignore remainder of I/O jSee Note 2

I I list. I
I jOutpu!:_: continue by starting new I
I !output record. supply carriage I
I !control character if required by I
I I Option Table. I
I I I
I I I

213 I A,B,D !Ignore remainder of I/O list jSee Note 2
I I I
I I I

214 I A,B,D l!!!Q.~!:_: Ignore remainder of I/O IIf user correction is requested, the

215

217

210+

219-
224

225

231

232

233

A,B,E

A,B,D

!list. !remainder of the I/O list is ignored.
!Output: If unformatted write I
!initially requested changed record I
!format to vs (or VBS). If formatted!
jwrite initially requestE!d, I
I ignore I/O. I
I I
I I
!Substitute zero for the invalid The character placed in E will be sub-
lcharacter. stituted for the invalid character
I I/O operations may not be performed.
I (see Note 1)

I
I
I Increment FORTRAN sequence numb•"!r See Note 2
I and read next file
I
I

A,B,D,F !Ignore remainder of I/O list see Note 2
I
I

A,B,D !Ignore remainder of I/O list jSee Note 2
I I
I I
I I

A,B,E I substitute zero for the invalid I The character placed in E will be sub-·
!character lstituted for the invalid character
I j(see Note 1)
I I
I I

A,_B,D !Ignore remainder of I/O list jSee Note 2
I I

A,B,D,G !Ignore remainder of I/O list jSee Note 2
I I

A,B,D !Change record number to list maximumjSee Note 2
I allowed (32, 000) I
I I

234- A,B,D !Ignore remainder of I/O list jsee Note 2
236 I I I

I I I
I 237 I A,B,D,F !Ignore remainder of I/O list !See Note 2
~-----..L----------i------------------------·------------i---~
I ~~-a,!!i~9§.:
I
IA - Address of return code field (Integer*4)
IB - Address of error number (Integer•4)
I c - Address of invalid format character (Logical• U
ID - Address of data set reference number (Integer•4)
IE - Address of invalid character (Loqical•l)
IF - Address of DECB
I G - Address of record number requested (Integer •4)
I
I Not_~§.:
I
I 1.
I
I
I 2.
I
I
I

A..lternatively, the user can set the return code to O, thus requesting a standard corrective
action.

The user can do anything he wishes except perform another I/O operation - i.e., issue a
READ, WRITE, BACKS.PACE, END FILE, REWIND, PAUSE, PDUMP, DBUG, or ERRTRA. On return to the
Library, the remainder of the I/O request will be ignored.

lfif error condition 218 (I/O error detected) occurs while error messages are being written on the
I object error data set, the message is written on the console and the job is terminated.
I
I If no DD card has been supplied for the object error unit, error message IHC219I is written on
I the SYSOUT data Sf';t and the job is terminated.
l----------------·------------------------·------------·---·-----J

132

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591
• Table 22. Corrective Action After Mathematical subroutines Error occurrenc_e_(_Part 1 of 3 >

r-------T-------------------T-------------------T--1
I I I I Options I
/ l I Invalid t-------~~~~d~~d---------,--U-s-;;_-;;~~ll;d------1
I Error I FORTRAN I Argument I corrective I Corrective Action I
!Code I Reference I Range I Action I (See Note 1) I
~-------+-------------------+------------------+-------------·-----------+---------------------~
I 216 I CALL SLITE (I) I I>4 I The call is treated I I I
I I I I as a no operation I I
I I I I I I
I 216 I CALL SLITET I I>4 I J=2 I I I
I I <I, J> I I I
I I I I I
I 241 I K=I**J I I=O, J$0 I K=O I I, J
I I I I I
I 242 I Y=X**I X=O, I$0 I Y=O I X,I
I I I I
I 243 I DA=D**I D=O, I$0 I DA=O I D, I
I I I
I 244 I XA=X**Y X=O, Y$0 I XA=O X,Y
I I I
I 245 I DA=D**DB D=O, DB$0 I DA=O D,DB
I I I
I 246 I CA=C**I c=o+oi, I$0 I CA=O+Oi c,I
I I I
I 247 I CDA=CD*I c=O+Oi,I$0 I CA=O+Oi co,I
I I I
I 251 Y=SQRT (X) X<O I Y=IXl 1 / 2 x
I

252

253

254

255

256

257

258

259

Y=EXP (X)

Y=ALOG (X)

Y=ALOG10 (X)

Y=COS (X)
Y=SIN (X)

Y=ATAN2 (X, XA)

Y=SINH (X)
Y=COSH (X)

Y=ARSIN (X)
Y=ARCOS (X)

Y=TAN (X)
Y=COTAN (X)

Y=TAN (X)

X>174.673

X=O
X<O

X=O
x<O

Ix l 2:210* n:

X=O, XA=O

I XI 2:174. 673

IXl>l

Y=*

Y=-*
Y=log10IXI

Y=-*
y=log1 olxl

Y=V2/2

Y=O

Y=*

Y=*

2
{

IF X>l. 0; ARSIN (X) = n;

IF X<-1.0; ARSIN(X)=-n:
21

{
IF X>l.O; ARCOS(X)=O I
IF X<-1. 0; ARCOS (X) = 3t I

I

Y=l
I
I
I
I

X is too close y=* I
to an odd I
multiple of ~ I

I 2 I

x

x
x

x
x

x

X,XA

x

x

x

x

L-------.1.-------------------.1.-------------·-----.l.-----------·-------------...l-----------------·----J
I y~riable '!'.Y2~ I
II,J Variables of INTEGER*4 I
IX,XA,Y Variables of REAL*4 I
ID,DA,DB Variables of REAL*8 I
IC,CA variables of COMPLEX*8 I 1z,x1 ,x2 complex variables to be given the length of the functioned argument when I
I they appear. I
lcn Variables of COMPLEX*l6 I
1---1
I Notes: 1. The user-supplied answer is obtained by recomputation of the function I
1-- using the value set by the user routine for the parameters listed. I
I I
I 2. The largest number that can be represented in floating point is I
I indicated above by *. I
L---·--J

Extended Error Handling Facility 133

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

• Table 22. corrective Action After Mathematical Subroutines Error Occurrence (Part 2 of 3)

r----- --T--------------------T-------------------T-------------------------------------·--------1
I I I I options I
I I I ~----------------------T--------------·--------~
I I I Invalid I Standard I User-Supplied I
I Error I FORTRAN I Argument I Corrective I Corrective Action I
i code I Reference I Range I Action I (See Note 1) I
~-----·--+--------------------+-------------------+----------------------+--·------------·--------~

261

262

263

264

265

266

267

268

Y=COTAN CO

DA= DSQRT (D)

DA=DEXP (D)

DA=DLOG (D)

X is too close
to a. multiple
of .n

D<O

D>174.673

D=O
D<O

DA=DLOG10 (D) D=O

DA=DSIN (D)
DA=DCOS (D)

DA=DATAN2(D,DB)

DA=DSINH (D)
DA=DCOSH (D)

DA=DARSIN (D)
DA=DARCOS (D)

DA=DTAN (D)

DA=DCOTAN (D)

D<O

D=O,DB=O

IDl~174.673

IDl>1

269 DA=DTAN (D) D is too close
I to an odd :n:
I multiple of 2
I

Y=* x

DA=IDl 1 / 2 D

DA=* D

DA=-* D
DA=logjXI

DA=-* D
DA= log 1 o I X I

DA=v'2/2 D

DA=O D,DB

DA=* D

DA=O D

DA=1 D

DA=* D

DA=DCOTAN (D) I D is too close DA=* D
I to a multiple

I I of :n: I
l***••t
I For errors 271 through 275, C=X1 +iX2 I
!**•!
I I
I 271 Z=CEXP (C) X:i.>174. 673 Z=* (COS X2+ SIN X2> c I
I I
I 272 Z=CEXP <c> 1x2 1~~2 18 *:rt Z=O+Oi c I
I I
I 273 Z=CLOG (C) C=O+Oi z=-•+Oi c I
~-v~;i~bi~----~YP~--1

II,J Variables of INTEGER*4 I
IX, XA, Y Variabl·es of REAL*4 I
I D, DA, DB Var iabl ·es of REAL* 8 I
I c, CA Variables of COMPLEX*8 I
I z,x11 x2 Complex variables to he given the length of the functioned argument when I
I they appear I
I CD Variables of COMPLEX* 16 I
1--~1
tNotes: 1. The user-supplied answer is obtained by recomputation of the function J
t using the valuP. set by the user routine for the parameters listed. t
I I
! 2. The lar<!rest number that can be represented in floating point is indicated I
I above by *. I
L--J

134

Table 22. Corrective Action After Mathematical Subroutines Error Occurrence (Part 3 of 3)

------T-------------------T------------------T--1 I I I Options I
I I ~----------------------T---------------------------i I I Invalid I Standard I User-Supplied I

rror I FORTRAN I Argument I Corrective I Corrective Action I
:>de I Reference I Range I Action I (See Note 1) I

------+-------------------+------------------+----------------------+---------------------------~
274 Z=CSIN (C) Z=O+Oi c

Z=CCOS (C)

275 Z=CSIN (C) Z=•(SIN X1+iCOS X1) c
2

Z=CCOS (C) Z=*(COS X1-iSIN X1> c
2

Z=CSIN (C) Z=*(SIN X1-iCOS X1) c
2

Z=CCOS (C) Z=*(COS X1 +iSIN X1) c
2

••
For errors 281 through 285, CD=X1+iX2 ••
281

282

283

284

285

290

291

300

Z=CDEXP (CD)

Z=CDEXP (CD)

Z=CDLOG (CD)

Z=CDSIN (CD)
Z=CDCOS (CD)

Z=CDSIN (CD)

Z=CDCOS (CD)

Z=CDSIN (CD)

Z=CDCOS (CD)

Y=GAMMA (X)

Y=ALGAMA (X)

DA=DGAMMA (D)

X1>174.673

CD=O+Oi

x~2-2s2 or
X~57.5744

x~o or
X~4.2937*1073

D~2-2s2 or
D~57. 5774

z=•<cos X2+iSIN X2> CD

Z=O+Oi CD

Z=-•+Oi CD

Z=O+Oi CD

Z=•(SIN X1+iCOS X1> CD
2

Z=•(COS X1-iSIN X1) CD
2

Z=•(SIN X1-iCOS X1) CD
2

Z=* (COS X1 +iSIN X1) CD
2

Y=* x

Y=* x

DA=* D

301 DA=DLGAMA (D) D~O or DA=• D
I D~4.2937•1073

·----~-i--------------------1------------------i---,
'ariable ~ I
:, J Variables of INTEGER*4 I
:, XA, Y Variables of REAL*4 I
11 DA, DB Variables of REAL*8 I
:, CA Variables of COMPLEX•8 I
:,x1 ,Xa Complex variables to be given the length of the functioned argument when they appear I
:D Variables of COMPLEX•16 I
·---of
1otes: 1. The user-supplied answer is obtained by recomputation of the function using the value!

set by the user routine for the parameters listed. I
2. The largest number that can be represented in floating point is indicated above by •. I

·--J

Extended Error Handling Facility 135

•Table 23. corrective Action After :Program Interrupt Occurrence
r--------·-----·-------------·--------------T---------------------·--------------------1
I Program Interrupt Messages I Options I
1------ir-----------ir-----------·--------------f--------------------·-----T-·--------------~
I IParametersl I I User-Supplied I
IErrorlPassed to I I I corrective I
!Code !User Exit I Reason for Interrupt1 !Standard Corrective Action I Action I
1------f------------f--------------------------1----------------------------f--------------i
I 207 I D,I !Exponent overflow !Result register set to the !User may alter I
I I !<Interrupt Code 12) !largest possible floating 10.a I
I I I I point number. The sign of I I
I I I lthe result register is not I I
I I I I altered. I I
I I I I I I

/iSAMPLE JOB 1,SAMPLE, MSGLEVEL=l
//STEP1 EXEC FORTHCLG
//FORT. SYS IN DD *
C MAIN PROGRAM THAT USES THE SUBROUTINE DIVIDE

COMMON E
EXTERNAI ... FIXDIV

C SET UP OPTION TABLE WITH ADDRESS OF USER EXIT
CALL ERRSET(302,30,S,1,FIXDIV)
E==O

C GET VALUES TO CALL DIVIDE WITH
READ (5 I 9) A I B
IF (B) 1 1, 2, 1

2 E•=1. 0
1 CALL DIVIDE(A,B,C)

WRITE(6,10)C
9 FORMAT (2E20. 8)
10 FORMAT (11 1' ,E20.8)

S~~OP

END
SUBROUTINE DIVIDE(A,B,C)

C ROUTINE TO PERFORM THE CALCULATION C=A/B
C IF B=O 'I'HEN USE ERROR MESSAGE FACILITY TO SERVICE ERROR
C PROVIDE MESSAGE TO BE PRINTED

DIMENSION MES(4)
DATA MES(1)/12/,MES(2)/' DIV'/,MP.S(3)/'302I/,~FS(4)/' B=n'/
DJ~TA RMJl.X/Z7FFFFFFF/

C MESSAGE TO BE PRINTED IS
C DIV302I B=O
C ERROR CODE 302 IS AVAILABLE AND ASSIGNED TO THIS ROUTINE
C S'J~EP 1 SA.VE A, B IN LOCAL STORAGE

D=•A
E=B

C S'l'EP2 TEST FOR ERROR CONDITION
100 IF(E) 1,2,1
C NORMAL CASE -- COMPUTE FUNCTION
1 C=•D/E

RETURN
C S'I'EP3 ERROR DETECTED CALL ERROR MONITOR
2 CALL ERRMON(MES,IRETCD,302,D,E)
C S'l'EP 4 BE READY TO ACCEPT A RETURN FROM THE ERROR MONITOR

IF' (IRETCD) 5 ,6 ,S
C IF IRETCD=O STANDARD RESULT IS DESIRED
C S'I'ANDARD RESULT WILL BE C=LARGEST NUMBER IF D IS NOT ZERO
C CR C=O IF E=O AND D=O
6 IF(D) 7,8,7
8 C=:O. 0

GO TO 9
7 C=:RMAX
9 RETURN
C USER FIX UP INDICATED. RECOMPUTE WITH NEW VALUE PLACED IN E
5 GO TO 100

END
SUBROUTINE FIXDIV(IRETCD,INO,A,B)

C THIS IS A USER EXIT TO SERVE THE SUBROUTINE DIVIDE
C THE PARAMETERS IN THE CALL MATCH THOSE USE IN THE CALL TO

FORTRAN can be invoked by a problem pro­
gram through the use of the CALL, ATTACH,
or LINK macro instructions.

The program must supply to the FORTRAN
compiler:

• The information usually specified in
the PARM parameter of the EXEC
statement.

• The ddnames of the data sets to be used
during processing by the FORTRAN
compiler.

.------T---------T-~--------------------1
!Name IOperationlOperand I
1------+---------+-----------------·------.f
llnamell{LINK } IEP=compiler-name, I
I I ATTACH I PARAM= (optionaddr I
I I I C,ddnameaddr1>,VL=1 I
I I I I
ICnamellCALL IIEKAAOO, (optionaddr I
I I I C,ddnameaddrl>,VL I
L-~----i _________ ..._ _______________________ J

compiler-name
specifies the program name of the com­
piler to be invoked. IEYFORT is spec­
ified for FORTRAN IV (G); IEKAAOO, for
FORTRAN IV (H) •

optionaddr
specifies the address of a variable
length list containing information
usually specified in the PARM parame­
ter of the EXEC statement.

The option list must begin on a half­
word boundary. The two high-order
bytes contain a count of the number of
bytes in the remainder of the list.
If there are no parameters, the count
must be zero. The option list is free
form with each field separated by a
comma. No blanks should appear in the
list.

APPENDIX A: INVOKING THE FORTRAN COMPILER

ddnameaddr
specifies the address of a variable
length list containing alternate
ddnames for the data sets used during
FORTRAN compiler processing. This
address is supplied by the invoking
program. If standard ddnames are
used, this operand may be omitted.

The ddname list must begin on a half­
word boundary. The two high-order
bytes contain a count of the number of
bytes in the remainder of the list.
Each name of less than eight bytes
must be left justified and padded with
blanks. If an alternate ddname is
omitted from the list, the standard
name is assumed. If the name is
omitted within the list, the 8-byte
entry must contain binary zeros.
Names can be completely omitted only
from the end of the list.

The sequence of the 8-byte entries in
the ddname list is as follows:

Entry
1
2
3
4
5
6
7
8
9

VL=l or VL

Alternate tiame
SYS LIN
00000000
00000000
00000000
SYS IN
SY SPRINT
SYS PUNCH
SYSUT1
SYSUT2

specifies that the sign bit of the
last full-word of the address parame­
ter list is to be set to 1.

Appendix A: Invoking the FORTRAN Compiler 139

Sample Coding Form

Figure 90. Job Control Statements for Example 3

144

• -j

-- --- f---- -----,-- -

' . .
l>::f-1 · ' - · · - ·r --~'~-!-;---~+--- ·-' '-- ' ·- ·----- -·------' f' --- ' - - ·-- ·'· - t-- ' ···· " ' ·-- ----- .,------~- ~ '· y-•-.1
C GO: TO! WRITE STAR MASTER RECORD 1

r-i - I GI0
1

t-0--25-+----- -c-- ~----j------ ~ -- -:--~----j -- - - I-- ; .. • . . 1 - j '.-

c I Fi RE~co:Ro rs F-OTIND',----uPoA~At\fo-w1ntt--sf-AR-:MfsttR;~----- ~-~~~~---~- -~ ... =-. _ _;:· ·--~-·-~----t-- · I · !+
2!21 'l:= A I B , -~-.__,__._-i -

l

: - !--=------ -----------+----------- ------------------------------ -·------------ f---------j-----------·1-------------- --· --·-----------· -- ; i

-I · - --- ------ --- .. --- t-·-· ... - ----f- --1------- ----1 --

\

---+---------------+ - ----- ------+--------+---------- ------- ------ --------- +---·-------+----f-- ---~---- - .

.L
I 2 3 4 5 6 7 8 9 10 l 1 17 13 14 15 16 I~ 18 '19 20 71 22 23 2,i 25 26 27 28 29 30 31 32 33 3A 35 36 37 38 39 40 41 42 43 44 45 46 4i' 4R 49 50 51 52 53 54 55 56 57 58 59 60 61 62 ~ 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 Ill 79 BO

"A 1lonrlord ct11d form, IBM electrv 88815:. i> '"'oilohl<· 101 p,,n~honn \IOl<'"'<'Olt< f, 0 ,,, 111;1 f0 ,,,, --- ~ - - •·- · -

Figure 91. FORTRAN coding for Example 3

Appendix B: Examples of Job Processing 145

APPENDIX C: ASSEMBLER LANGUAGE SUBPROGRAMS

A FORTRAN programmer can use assembler
language subprograms with his FORTRAN main
program. 'l~his section describes the link­
age conventions that must be used by the
assembler language subprogram to communi­
cate with the FORTRAN main program. To
understand this appendix, the reader must
be familiar with the Assembler Language
publication, Fo:rm GC28-6514 and the Assem­
bler Programmer's Guide.

SUBROUTINE REFER~~

The FORTRAN programmer can ref er to a
subprogram in two ways: by a CALL state­
ment or a function reference within an
arithmetic expression. For example, the
statements

CALL MYSUB(X,Y,Z)
I==J+K+MYFUNC (L, M, N)

ref er to a subroutine subprogram MYSUB and
a function subprogram MYFUNC, respectively.

For subprogram reference, the compiler
generatesi

1. A contiguous argument list; the
addresses of the arguments are placed
in this list to make the arguments
accessible to the subprogram.

2. A save area in which the subprogram
can sa.ve information related to the
calling program.

3. A calling sequence to pass control to
the subprogram.

Arg\ll!lent List

The argument list contains addresses of
variables, arrays, and subprogram names
used as arguments. Each entry in the argu-

146

ment list is four bytes and is aligned on a
fullword boundary. The last three bytes of
each entry contain the 24-bit address of an
argument. The first byte of each entry
contains zeros, unless it is the last entry
in the argument list. If this is the last
entry, the sign bit in the entry is set to
1.

The address of the argument list is
placed in general register 1 by the calling
program.

Save Area

The calling program contains a save area
in which the subprogi:·am plac1es information,
such as the entry point for this program,
an address to which the subprogram returns,
general register contents, and addresses of
save areas used by programs other than the
subprogram. The amount of storage reserved
by the calling program is 18 words. Figure
92 shows the layout of the save area and
the contents of each word. The address of
the save area is placed in general register
13.

The called subprogram does not have to
save and restore floating-point registers.

A calling sequence is generated to
transfer control to the subprogram. The
address of the save area in the calling
program is placed in general register 13.
The address of the argument list is placed
in general register 1, and the entry
address is placed in general register 15.
If there is no argument list, then general
register 1 will contain zero. A branch is
made to the address in register 15 and the
return address is saved in general register
14. Table 24 illustrates the use of the
linkage registers.

~~-----------------------------------~~-----------·-------------------------------~-----, AREA------------>r--1
(word 1) IThis word is used by a FORTRAN compiled routine to store its I

!epilogue address and may not be used by the assembler language I
!subprogram for any purpose. I

AREA+4---------->~-----------------------------~---------------------------------i
(word 2) IIf the program that calls the assembler language subprogram is I

!itself a subprogram, this word contains the address of the save I
tarea of the calling program; otherwise, this word is not used. I

AREA+8---------->~--i
(word 3) IThe address of the save area of the called subprogram. I

AREA +12-------> ~----------------·--i
<word 4) IThe contents of register 14 (the return address). When the sub-I

!program returns control, the first byte of this location is set I
Ito ones. I

AREA+16--------->~-------------------------------·---------------------------------i
(word 5) !The contents of register 15 (the entry address). I

AREA+20--------->~--i
(word 6) !The contents of register o. I

AREA+24-------->~-----------------------------~·--------------------------------i
<word 7) IThe contents of register 1. I

~---------------------------·------------------------------i
I I
I I

• I • I
AREA+68--------->~------------------------------·---------------------------------i

(word 18) !The contents of register 12. I
L---------------------------~--------------------------------J

L---·-------~-----------------------------
Figure 92. Save Area Layout and Word Contents

Table 24. Linkage Registers
r--------T---------------T---1
I Register I I I
!Number !Register Name IFunction I
~-------+---------------+--i
I 0 IResult RegisterlUsed for function subprograms only. The result is returned inl
I I lgeneral or floating-point register o. However, if the result I
I I lis a complex number, it is returned in floating-point regis I
I I lters 0 (real part) and 2 (imaginary part). I
I I I I
I I INote: For subroutine subprograms, the result(s) is returned I
I I lin a variable(s) passed by the programmer. I
~--------+--------------+---i
I 1 !Argument List f Address of the argument l:ist passed to the called I
I I Register I subprogram. I
~-------+--------------+--i
I 2 !Result Register!See Function of Register o. I
~-------+---------~----+--~
I 13 !Save Area !Address of the area reserved by the calling program I
I !Register lin which the contents of certain registers are stored by the I
I I I called program. I
~-------+---------------+---i
I 14 !Return RegisterlAddress of the location in the calling program to which con- I
I I ltrol is returned after execution of the called program. I
~-------+---------------+-----------------------------~-----------------------------i
I 15 !Entry Point !Address of the entry point in the called subprogram. I
I !Register 1Note: Register 15 is also used as a condition code register, I
I I la RETURN code register, and a STOP code register. The partic-1
I I tular values that can be contained in the register are I
I I I 16 - a terminal error was detected during execution of a sub-I
I I I program (an IBCxxxI message is generated) I
I I l4•i - a RETURN i statement was executed I
I I I n - a STOP n statement was executed I
I I I 0 - a RETURN or a STOP statement was executed I
L-_______ J_ ______________ _________________________ ~-----------------------------------J

Appendix C: Assembler Language Subprograms 147

CODING THE ASSEMBLER LANGUAGE SUBPROGRAM

Two types of assembler language subpro­
grams are possible: the first type (lowest
level) assembler subprogram does not call
another subprogram: the second type (higher
level) subprogram does call another
subprogram.

Coding a Lowest Level Assembler Language
subprogr~

For the lowei3t level assembler language
subprogram, the linkage instructions must
include:

1. An assembl4:!r instruction that names an
entry point for the subprogram.

2. An instruction(s) to save any general
registers used by the subprogram in
the save area reserved by the calling
program. (The contents of linkage
registers 0 and 1 need not be saved.)

3. An instruction(s) to restore the
•saved" registers before returning
control to the calling program.

4. An instruction that sets the first
byte in the fourth word of the save
area to ones, indicating that control
is returned to the calling program.

5. An instruction that returns control to
the calling program.

:Figure 9 3 shows the linkage conventions
for an assembler language subprogram that
does not call another subprogram. In addi­
tion to these conventions, the assembler

program must provide a method to transfer
arguments from the calling program and
return the arguments to the calling
program.

Higher Level Assembler Language Subprogram

A higher level assembler subprogram mus1
include the same linkage instructions as
the lowest level subprogram, but because
the higher level subprogram calls another
subprogram, it must simulate a FORTRAN sub·
program reference statement and include:

1. A save area anal additional instruc­
tions to insert entries into its save
area.

2. A calling seque?nce and a parameter
list for the subprogram that the high·
er level subprogram calls.

3. An assembler instruction that indi­
cates an external reference to the
subprogram called by the higher level
subprogram.

4. Additional inst.ructions in the return
routine to retrieve entries in the
save area.

Note: If an assembler language main pro­
gram calls a FORTRAN subprogram, the fol­
lowing instructions must be included in thE
assembler language program before the
FORTRAN subprogram is called:

L 15,=V(IBCOM#)
BAL 14,64(15)

r---------·ir------T---1
!Name IOper .. !Operand Conunents I
~---------+------+---·-----------i
deckname START 10

*
*
*

BC 115,m+1+4(15)
DC IX'm'
DC ICLm'name'

STM
I
114,R,12(13)
I
I

BAL:R fB,O
USING l*,B

BRANCH AROUND CONSTANTS IN CALLING SEQUENCE
m MUST BE AN ODD INTEGER TO INSURE THAT THE PROGRAM
STARTS ON A HALF-WORD BOUNDARY. THE NAME CAN BE PADDED
WITH BLANKS.
THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE
STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS ANY
NUMBER FROM 2 THROUGH 12.
ESTAB~ISH BASE REGISTER (2~B~12)

user f written source statements
I
I
I

LM 12,R,28(13) RESTORE REGISTERS
MVI 112(13),X'FF' INDICATE CONTROL RETURNED TO CALLING PROGRAM
BCR 115,14 RETURN TO CALLING PROGRAM L-., _______ i _______ i __ J

Figure 93. Linkage Conventions for Lowest Level Subprogram

148

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

These instructions cause initialization of
return coding interruption exceptions, and
opening of the error message data set. If
this is not done and the FORTRAN subprogram
terminates either with a STOP statement or
because of an execution-time error, the
data sets opened by FORTRAN are not closed
and the result of the termination cannot be
predicted. Register 13 must contain the
address of the save area that contains the
registers to be restored upon termination
of the FORTRAN subprogram. Specifically,
the fifth word of the save area must con-

tain the address which error-handling rou­
tines are to consider the program entry
point. If control is to return to the
assembler language subprogram, then regist­
er 13 contains the address of its save
area. If control is to return to the
operating system, then register 13 contains
the address of its save area.

Figure 94 shows the linkage conventions
for an assembler subprogram that calls
another assembler subprogram.

r---------T------T--1
!Name IOper. !Operand Comments I
~---------+------+--~
deckname START 0 I

*
*
*

*
*

I*

*

*
*
AREA

*
prob1

*

*
*

EXTRN
BC
DC
DC

STM

BALR

name2
15,m+1+4(15)
X'm'
CLm'namei
SAVE ROUTINE
14,R,12(13)

B,O

NAME OF THE SUBPROGRAM CALLED BY THIS SUBPROGRAM

THE CONTENTS OF REGISTERS 14, 15, AND 0 THROUGH R ARE
STORED IN THE SAVE AREA OF THE CALLING PROGRAM. R IS
ANY NUMBER FROM 2 THROUGH 12.
ESTABLISH BASE REGISTER

USING *,B
LR Q,13 LOADS REGISTER 13, WHICH POINTS TO THE SAVE AREA OF THE

CALLING PROGRAM, INTO ANY GENERAL REGISTER, Q, EXCEPT O,
11, 13 1 AND 15.

LA 13,AREA LOADS THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO
REGISTER 13. I

ST 13,8(0,Q} STORES THE ADDRESS OF THIS PROGRAM'S SAVE AREA INTO THE
CALLING PROGRAM'S SAVE AREA

ST Q,4(0 1 13} STORES THE ADDRESS OF THE PREVIOUS SAVE AREA (THE SAVE
AREA OF THE CALLING PROGRAM} INTO WORD 2 OF THIS PRO­
GRAM1 S SAVE AREA

BC
DS

user

LA
L
BALR
more

L

15,prob1
18F RESERVES 18 WORDS FOR THE SAVE AREA
END OF SAVE ROUTINE

written program statements

CALLING SEQUENCE
1,ARGLIST LOAD ADDRESS OF ARGUMENT LIST
15,ADCON
14,15
user written program statements
RETURN ROUTINE
13,AREA+4 LOADS THE ADDRESS OF THE PREVIOUS SAVE AREA BACK INTO

REGISTER 13
LM 2,R,28(13}
L 14,12(13} LOADS THE RETURN ADDRESS INTO REGISTER 14.
MVI 12(13) 1 X1FF1
BCR 15 1 14 RETURN TO CALLING PROGRAM

* IEND OF RETURN ROUTINE
ADCON DC IACname2}
* !ARGUMENT LIST

IARGLIST DC IAL4(arg1 } ADDRESS OF FIRST ARGUMENT
I I
I I
I I
I DC 1x•ao• INDICATE LAST ARGUMENT IN ARGUMENT LIST
I DC IAL3(argn) ADDRESS OF LAST ARGUMENT
L---------i------i-------------------------------·---------------------------------------
Figure 94. Linkage Conventions for Higher Level Subprogram

I
I
I
I

Appendix C: Assembler Language Subprograms 149

The assembler programmer may establish
an in-line argument list instead of out-of­
line list. In this case, he may substitute
the calling sequence and argument list
~_:;hown in Figure 9 5 for that shown in Figure
94.

r---1
ADCON DC A(prob 1)

LA
.L
CNOP
BALR
DC
DC

14, RETURN
15, ADCON
2, 4
1,15
AL4(arg1)

AL4(arg2)

DC X'80'
DC AL3(argn>

!RETURN BC O,X'isn'
L---
Figure 95. In-Line Argument List

Both named and blank COMMON in a FORTRAN
IV program can be referred to by an as­
sembler lan9uage subprogram. To refer to
named COMMON, the V-type address constant

namE! DC V(name of COMMON)

is used.

If a FOR'I'RAN program has a blank COMMON
area and blank COMMON is also defined (by
the COM instruction) in an assembler lan­
guage subprogram, only one blank COMMON
area is generated for the output load
module. Data in this blank COMMON is
accessible to both programs.

To refer to blank COMMON, the following
linkage may be specified:

COM
name DS OF

-·----·--·------·--> cname

I. 11, ==A (name)
USING name,11

150

CSECT

RETRIEVING ARGUMENTS FROM THE; ARQUMEN~~!.§'.!'.

The argument list contains addresses for
the arguments passed to a subprogram. The
order of these addresses is the same as the
order specified for the arguments in the
calling statement in the main program. The
address for the argument list is placed in
register 1. For example, when the
statement

CALL MYSUB(A,B,C)

is compiled, the following argument list is
generated.

r--------T--------------------------------1
1000000001 address for A I
~--------+--------------------------------~
1000000001 address for B I
~--------+--------------------------------i
1100000001 address for c I
L-------i--------------------------------J
For purposes of discussion, A is a real*8
variable, B is a subprogram name, and c is
an array.

The address of a variable in the calling
program is placed in the argument list.
The following instructions in an assembler
language subprogram can be used to move the
real*8 variable A to location VAR in the
subprogram.

L
MVC

where

Q, 0 (1)

VAR(8),0(Q)

Q is any general register except o.

For a subprogram reference, an address
of a storage location is placed in the
argument list. The address at this storage
location is the entry point to the subpro­
gram. The following instructions can be
used to enter subprogram B from the subpro­
gram to which B is passed as an argument.

L
L
BALR

where

Q, 4 (1)

15, 0 (Q)
14,15

Q is any general register except o.

For an array, the address of the first
variable in the array is placed in the
argument list. An array Cf or exanple, a
three-dimensional array C(3,2,2)] appears
in this format in main storage.

C(l,1,1) C(2,1,1) C(3,1,1) C(l,2,1)--1
r---J
LC(2 1 21 1) C (3, 2, 1) C (1, 1, 2) C (2 1 1, 2)--1

.---J
L-C(3,1,2) C(l,2,2) C(2,2,2) C(3,2,2)

Table 25 shows the general subscript format
for arrays of 1, 2, and 3 dimensions.

Table 25. Dimension and Subscript Format
r-----------T-----------------------------1
IArray A I Subscript Format I ·

r----------+-----------------------------~
IA(Dl) IA(Sl) I
IA(Dl,D2) IA(S1,S2) I
IA(D1,D2,D3)1A(S1,S2,S3) I
r----------i---~-------------------------~
ID1, D2, and D3 are integer constants usedl
lin the DIMENSION statement. s1, s2, and I
IS3 are subscripts used with subscripted I
I variables. I
L--J

The address of the first variable in the
array is placed in the argument list. To
retrieve any other variables in the array,
the displacement of the variable, that is,
the distance of a variable from the first
variable in the array, must be calculated.
The formulas for computing the displacement
(DISPLC) of a variable for one, two, and
three dimensional arrays are

DISPLC=(Sl-l)*L
DISPLC=(Sl-1) *L+ (S2-'1) *Dl*L
DISPLC= (Sl-1) *L+ (S2;.,.1) *Dl*L+ (83-1) *D2*Dl*L

where
L is the length of each variable in
this array.

For example, the variable C(2,1,2) in
the main program is to be moved to a loca­
tion ARVAR in the subprogram. Using the
formula for displacement of integer
variables in a three-dimensional array, the
displacement (DISP) is calculated to be 28.
The following instructions can be used to
move the variable,

L
L
L
ST

where

Q, 8 (1)

R,DISP
S,O(Q,R)
s,ARVAR

Q and R are any general register
except o.
s is any general register. Q and R
cannot be general register o.

Example: An assembler language subprogram
is to be named ADDARR, and a real variable,
an array, and an integer variable are to be

pass~:!d as arguments to the subprogram. The
statement

CALL ADDARR (X,Y,J)

is used to call the subprogram. Figure 96
shows the linkage used in the assembler
subprogram.

RETURN i in an Assembler Language
Subprogram

When a statement number is an argument
in a CALL to an assembler language subpro­
gram, the subprogram cannot access the
statement number argument.

To accomplish the same thing as the
FORTRAN statement RETURN i (used in FORTRAN
subprograms to return to a point other than
that immediately following the CALL>, the
assembler subprogram must place 4•! in
register 15 before returning to the calling
program.

For example, when the statement

CALL SUB (A,B,&10 1 &20)

is used to call an assembler language sub­
program, the following instructions would
cause the subprogram to return to the prop­
er point in the calling program:

LA 15,4 (to return to 10)

BCR 15 1 14

LA 15,8 (to return to 20)

BCR 15,14

Object-Time Representation of FORTRAN
var:i,ables

The programmer who uses FORTRAN in con­
nection with assembler language may need to
know how the various FORTRAN data types
appear in the computer. The following
examples illustrate the object-time repre­
sentation of FORTRAN variables as they
appear in System/360.

Appendix c: Assembler Language Subprograms 151

INTEGER Type

INTEGER variables are treated as fixed-point operands by the FOR':rRAN IV (G) and (B)
compilers, and are governed by the principles of System/360 fixed-point arithmetic.
INTEGER variables are converted into either fullword (32 bit> or halfword (16 bit) signed
integers.

r-------'T-·----T-·--1
!Name IOper.IOperand I
~ ... -------+----+-·---~
ADDARR I START I 0 I
B IEQU 18 I

IBC 115,12(15) I
IDC IX'7' I
IDC ICL7'ADDARR' I
ISTM 114,12,12(13) I
IBALR IB,O I
USINGl*,B I
L 12 1 8(1) MOVE 3RD ARGUMENT TO LOCATION CALLED I
MVC IINDEX(4),0(2) INDEX IN ASSEMBLER LANGUAGE SUBPROGRAM. I
L 13 1 0(1) MOVE 1ST ARGUMENT TO LOCATION CALLED VAR
MVC IVAR(4),0(3) IN ASSEMBLER LANGUAGE SUBPROGRAM.
L 14 1 4(1) LOAD ADDRESS OF ARRAY INTO REGISTER 4.
user I w:ri tten statements

I
I
I •

LM 12,12,28(13)
MVI 11:2 (13), X' FF'
BCR llS,14
DS IOJ!i'

INDEX DS llF
IVAR DS 11F
L--------"--·----.L---------------·------------------------------------·---

• Figure 96. Assembler Subprogram Example

The statements:

INTEGER*2 ITEM/76/,VALUE
INTEGER*4 F,F64/100/
F = 15
VALUE = ··2

would cause the variables ITEM, VALUE, F, F64 to appear in the computer as:

2 Bytes
rT--------y-·-------,

ITEM IOIOOOOOOOI01001100I L_.J. ________ .J. ________ J

s 1 15

2 Bytes
r-T------T-·-------·1

Valuel1111111111111111101
L-.L----·---.l.---------J
s 1 15

4 Bytes
r-T--------T-------T--------T--------1

F 10100000001000000001000000001000011111
L.L----·----L---------"--------"---------J
s 1 31

152

4 Bytes
r-T-------T--------T--------T--------1

F64 10100000001000000001000000001011001001
L-L-------L--------L--------i----~---J
s 1 31

where S in bit position 0 represents the sign bit. All negative numbers are represented
in two's complement notation with a one in the sign-bit position. (For a more complete
explanation of fixed-point arithmetic, refer to the publication IBM System/360 Princ!_E!es
of Operation, Form A22-6821.)

REAL TYPE

All REAL variables are converted into short (32 bit) or long (64 bit) floating-point
numbers by the compiler. The length of the numbers is determined by FORTRAN IV specifi­
cation conventions. For example, the statements:

REAL*4 HOLD,R/100./
REAL*8 A,RATE/-8./
HOLD = -4.
A = 8.

would cause the variables to appear internally as:

S CHARACI'ERISTIC FRACTION
IT-------T--------T--------T--------1

HOLDl1l1000001I01000000IOOOOOOOOIOOOOOOOOI
L-~~-----i ________ i ________ i ________ J

0 1 7 8 31

S CHARACTERISTIC FRACTION
r--------T--------T--------,--------1

R 1010000101011001001000000001000000001 L ________ i_ _______ i ________ i ________ J

01 7 8 31

S CHARACTERISTIC FRACTION
IT-------T-------T--------T--------T----] [-'-·--1

A IOl1000001l10000000100000000I0000000010000 00001
L-~------i ________ i ________ i ________ i____ _ ___ J

0 1 7 8 31 63

S CHARACTERISTIC FRACTION
r-T-------T--------T--------T--------T----1 [--·--1

RATEl11100000111000000010000000010000000010000 00001
L-~------L--------i--------~-------i----- --·--J
0 1 7 8 31 63

where:

• The sign bit (S) occupies bit position o.

• The characteristic occupies bit positions 1-7.

• The fraction occupies either bit positions 8-31 for a short floating-point number or
bit positions 8-63 for a long floating-point number.

COMPLEX TYPE

A COMPLEX variable has two parts (real and imaginary) and is treated as a pair of REAL
numbers. The COMPLEX parts are converted into two contiguous, short or long, floating­
point numbers. For example:

Appendix C: Assembler Language Subprograms 153

COMPLEX D/(2.1,4.7)/ 1 E*16
E = (55.5 -55.5)

will cause the variables D and E to appear in the computer as:

D

E

S CHARACTERISTIC FRACTION
rir-------ir·--------T--------T--------1
101100000110010000111001100111001100112.1
~-+-------+·------+------+--------~
101100000110100101110011001110011001114.7
L-L-------L~------i-------i--------J
0 1 7 8 31

S CHARACT:l!:RISTIC FRACTION

ro11<>0<><>1<>1~;01~0111T1oooooaaTaooooooaTaoooj f ~00155. 5
~-+-------+-------+--------+-------+---- ----~
111100001010011011111000000010000000010000 0000155.5
L-L--------..L.------i--------.1.-.-------i---- ___ J
0 1 7 8 31 63

~ot~: Floating·-point operations in system/360 may sometimes produce a negative zero,
i.e., the sign bit of a floating-point zero will contain a one. FORTRAN IV compilers
consider all flc::>ating-point numbers having a fraction of zero as equivalent. The settin4
of the sign bit is unpredictable in floating-point zeros computed by a FORTRAN G or H
object program. (A detailed explanation of floating-point operations can be found in th4
publication IBM System/360: Principles of Operation, Form A22-6821.

LOGICAL TYPE

FORTRAN IV LOGICAL variables may specify only 2 values:

.TRUE. or .FALSE.

These logical values are assigned numerical values of '1' and •o•, for .TRUE. and
.FALSE., respectively, by both the G and H compilers. The statements:

LOGICAL*l L1uL2/.TRUE./
LOGICAL*4 L3,L4/.FALSE./
Ll .FALSE •
. L3 = • TRUE.

would cause the variables L1, L2, L3, L4 to be assigned the following values (using hexa­
decimal notation) :

<--1 Byte-·->
r--------11

Ll I 00 II
L-----------JI

<--1 Byte-·->
r----------11

L2 I 01 II
L---------·-J

<-------4 Bytes------>
r----T----,-----T----1

L3 I 00 I 00 I 00 I 01 I
L----L----·l.-----i----J

<-----·-4 Bytes------>
r----T---~·---T---1

L4 I 00 I 00 I 00 I 00 I
L----L----.L.-___ .J.. ___ J

154

Note: The values shown above for LOGICAL variables are those assigned for the current
implementation of the FORTRAN IV (G) and (H) compilers. The assembler language programm­
er should not assume these values for future versions of either the (G) or (H) compilers,
since both compilers are subject to change.

The DUMP or PDUMP subroutine can also be used as an additional tool for understanding
the object-time representation of FORTRAN data. Refer to the nuse of DUMP and PDUMP"
section in the "Programming considerations" chapter of this publication or consult the
FORTRAN IV Library Subprograms publication.

Appendix C: Assembler Language Subprograms 155

Page of GC28-6817-2, Revised 12/30/70, by TN:L: GN28-0591

Programmer Response: Probable
user error. correct an unlabeled
statement following a transfer of
control, as it cannot be executed.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEY003I NAME LENGTH

~~planation: The name of a
variable, COMMON block, NAMELIST
or subprogram exceeds six
characters in length; or two
variable names appear in an
expression without a separating
operation symbol.
(Condition code - 0)

Prc~qrammer Response: Probable
usE~r error. Make sure that the
name of a variable, COMMON block,
NAMELIST,, or subprogram does not
exceed six characters in length.
Check that two variable names do
not appear in an expression
without a separating operation
symbol. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY004I COMMA

Exp1ana'tl~~ The delimiter
required in the statement has been
omitted.
(Condition code - 0)

Programrne~r Response: Probable
user error. correct or delete
invalid delimiters and insert the
required delimiter that has been
omitted. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEY005I ILLEGAL L~BEL

158

Explanati._on: Illegal usage of a
statement label; for example, an
attempt i:s made to branch to the
label of .a FORMAT statement.
(Condition code - 8)

Programmer Response: Probable
user error. Correct the illegal
usage of a statement label.
Example: No branch to the label
of a FORMAT statement should be
coded. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY006I DUPLICATE LABEL

Explanation: The label appearing
in the label field of a statement
has previously been defined for
another statement.
(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
previously defined label and
adjust any code referencing the
label. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY007I ID CONFLICT

IEY008I

Explanation: The name of a
variable or subprogram has been
used in conflict with the type
that was defined for the variable
or subprogram in a previous
statement. (Condition code - 8)

Programmer Re~ponse: Probable
user error. Correct any variable
or subprogram name used :in
conflict with the type defined for
the variable or subprogram in a
previous statement. Examples:
The name listed in a CALL
statement is the name of a
variable; a single name appears
more than oncie in the dummy list
of a statement function; a name
listed in an E:XTERNAI~ statement
has been def i:ned in another
context. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

ALLOCATION

Explanation: The storage
allocation specified by a source
module statement cannot be
performed because of an

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

inconsistency between the present
usage of a variable name and some
prior usage of that name.
(Condition code - 8)

~rograffi!!!er R~~onse: Probable
user error. Correct the statement
since the storage allocation
specified by a source module
statement cannot be performed.
Make sure that an inconsistency
between present usage of a
variable name and some prior usage
of that name does not occur.
Examples: A name listed in a
COMMON block has been listed in
another COMMON block; a variable
listed in an EQUIVALENCE statement
is followed by more than seven
subscripts. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEY009I ORDER

Explanation: The statements
contained in the source module are
used in an improper sequence.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that
statements contained in the source
module are used in proper
sequence. Examples: An IMPLICIT
statement does not appear as the
first or second statement of the
source module; an ENTRY statement
appears within a DO loop. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEY010I SIZE

Explanation: A number used in the
source module does not conform to
the legal values for its use.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that a
number used in the source module
conforms to the legal values for
its use. Examples: A label used
in a statement exceeds the legal
size for a statement label; the
size specification in an EXPLICIT
statement is· not acceptable; .an
integer constant is not within the
allowable magnitude. If the

problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEY011I UNDIMENSIONED

IEY012I

~xplanation: A variable name is
used as an array (i.e., subscripts
follow the name), and the variable
has not been dimensioned.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that a
variable name is not used as an
array Ci.e., subscripts must not
follow the name). Include a
DIMENSION statement if one is
missing. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

SUBSCRIPT

Explanation: The number of
subscripts used in an array
reference is either too large or
too small for the array.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
number of subscripts used in an
array reference corresponds to the
number appearing in the DIMENSION
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEY013I SYNTAX

Explanation: The statement or
part of a statement to which this
message refers does not conform to
the FORTRAN IV syntax.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that all
source code conforms to the
FORTRAN IV syntax. Examples: The
statement cannot be identified; a
non-digit appears in the label
field; fewer than three labels
follow the expression in an
Arithmetic IF statement. If the
problem recurs, do the following
before calling IBM for programming
support:

Appendix D: System Diagnostics 159

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

• Have source and associated
listing: available.

IEY014I CONVERT

Explanation: The mode of the
constant used in a DATA or in an
Explicit Specification statement
is different from the mode of the
variable with which it is
associated. The constant is then
converted to the correct mode.
(Condition code - 0)

Praigrammer Response: Probable
user error. Make sure that the
mode of the constant used in a
DATA or in an EXPLICIT
specification statement is
identical to the mode of the
variable with which it is
associated.

IEY015I NO END CARD

Exp~~anation_;_ The source module
does not contain an END statement.
(Condition code - 0)

~~Qgrammer Response: Probable
user error. Include the necessary
END statement for the source
module. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY016I ILLEGAL s~rA.

ExpJ:anation: The context in which
the statement in question has been
used is illegal.
(Condition code - 8)

~roqrammer Response: Probable
user error. Correct or delete
illegal context. Examples: A
specification or a DO statement
appears in a Logical IF; an ENTRY
statement appears outside a
subprogram. If the problem
recurs, do the following before
calling IBM for progranuning
support:

• Have source and associated
listing available.

IEY017I ILLEGAL STA. WRN.

160

Explanation: The message is
produced as a result of any of the
following: a RETURN statement
appears and the source module is
not a subprogram; a RETURN i
statement appears in a FUNCTION

subprogram.
(Condition code - 0)

Programmer Response: Probable
user error. Correct or delete a
RETURN statement appearing outside
a subprogram or a RETURN I
statement appearing in a FUNCTION
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEY018I NUMBER ARG

Explanation: The reference to a
library subprogram specifies an
incorrect number of arguments.
(Condition code - 4)

Programmer Response: Probable
user error. Correct or delete an
invalid reference to a library
subprogram specifying an incorrect
number of arguments. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEY019I FUNCTION ENTRIES UNDEFINED

Explanation: In a FUNCTION
subprogram, there was no statement
to assign a value to the function
name or an entry name. If the
FUNCTION subprogram contains no
ENTRY statements, the error must
be corrected. When ENTRY
statements are present, this
message is a warning provided that
at least one function or entry
name is assigned a value in the
FUNCTION subprogram. However if
no function or entry name is
assigned a value, that error must
be corrected.
(Condition code - 4)

Programmer Response: Probable
user error. Make sure that the
function name and each entry name
is assigned a value in a FUNCTION
subprogram. If the problem
recurs, do the following before
calling IBM for progra:nuning
support:

• Have source and associated
listing available.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IEY020I COMMON BLOCK name ERRORS

Explanation: This message
pertains to errors that exist in
the definitions of EQUIVALENCE
sets which ref er to the COMMON
area. The message is produced
when there is a contradiction in
the allocation specified, a
designation to extend the
beginning of the COMMON area, or
if the assignment of
COMMON storage attempts
to allocate a variable to a
location which does not fall on
the appropriate boundary; "name"
is the name of the COMMON block in
error.
(Condition code - 4)

Programmer Response: Probable
user error. Verify that
definitions of EQUIVALENCE sets
which ref er to a COMMON area are
correct. Make sure that none of
the following occurs: a
contradicition in the allocation
specified, a designation to extend
the beginning of the COMMON area,
or an assignment of COMMON storage
attempts to allocate a variable to
a location which does not fall on
the appropriate boundary. Use the
MAP option to determine offsets in
the COMMON block designated in
error <"name"). If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IEY021I UNCLOSED DO LOOPS

Explanation: The message is
produced if DO loops are initiated
in the source module, but their
terminal statements do not exist.
A list of the labels which
appeared in the DO statements but
were not defined follows the
printing of the message.
(Condition code - 8)

Programmer Response: Probable
user error. Correct or insert
statements where DO loops are
initiated and their terminal
statements do not exist. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEY022I UNDEFINED LABELS

Explanation: If any labels are
used in the source module but are
not defined, this message is
produced. A list of the undefined
labels appears on the lines
following the message.
(Condition code - 8)

Programmer Response: Probable
user error. Correct or insert
necessary references to labels
which require definition. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEY023I EQUIVALENCE ALLOCATION ERRORS

Explanation: This message is
produced when there is a conflict
between two EQUIVALENCE sets, or
if there is an incompatible
boundary alignment in the
EQUIVALENCE set. The message is
followed by a list of the
variables which could not be
allocated according to source
module specifications.
(Condition code - 4)

Programmer Response: Probable
user error. Correct or delete
conflicts between two EQUIVALENCE
sets or incompatible boundary
alignments in the EQUIVALENCE set.
If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IEY024I EQUIVALENCE DEFINITION ERRORS

Explanation: This message denotes
an error in an EQUIVALENCE set
when an array element is outside
the array. (Condition code - 4)

Programmer Response: Probable
user error. correct or delete the
invalid reference in the
EQUIVALENCE set. If the problem

Appendix D: System Diagnostics 161

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

rE!Curs, do the following before
calling IBM for programming
support:

• Make sure that MAP has been
specified as a parameter on the
EXEC statement.

• Have source and associated
listing available.

IEY025I DUMMY DIMENSION ERRORS

Exp!anation: If variables
specified as dummy array
dimensions are not in COMMON and
are not global dummy variables,
the above error message is
produced. A list of the dummy
variables which are found in error
is printed on the lines following
the message. (Condition code - 4)

Programmer Response: Probable
us1~r error. Make sure that
variables assigned to a program
block are defined previously as in
COMMON. If the problem recurs, do
th1~ following before calling IBM
for programming support:

• Have source and associated
listinq available.

IEY026I BLOCK DA~rA PROGRAM ERRORS

~plana:0-on: This message is
produced if variables in the
source module have been assigned
to a pro9ram block but have not
bee?n defined previously as COMMON.
A list of these variables is
printed cm the lines following the
message. (Condition code - 4)

Programme?r Response: Probable
use~r error. Make sure that
variables assigned to a program
block are! defined previously as in
COMMON. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY027I CONTINUATION CARDS DELETED

162

Explana1=!_on: More than 19
continuation lines were read for
one statement. All subsequent
lines are skipped until the
beginning of the next statement is
encountered.
(Condition code - 8)

Proqrammer Response; Probable
user error. Delete the
continuation cards in error and
begin a new source statement to
correct the source. If the
problem recurs, do the following
before calling IBM for prograrruning
support:

• Have source and associated
listing available.

IEY032I NULL PROGRAM

Explanation: This message is
produced when an end of file mark
precedes any true FORTRAN
statements in the source module.
(Condition code - 0)

Prograrruner Response: Probable
user error. Correct or delete an
end-of-file mark preceding any two
FORTRAN statements in the source
module. If the problem recurs, do
the f ollowin9 before calling IBM
for programming support:

• Have source and associated
listing available.

IEY033I COMMENTS DELE:TED

Explanation: More than 30 corrunent
lines were read between the
initial lines of two consecutive
statements. •rhe 31st co:aunent line
and all subse·quent comment lines
are skipped until the beginning of
the next statement is encountered.
(There is no restriction on the
number of comment lines preceding
the first statement.)
(Condition code - 0)

Programmer Response: Probable
user error. Make sure that more
than 30 corrunent lines do not
appear between the initial lines
of two consecutive statements. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEY036I ILLEGAL LABEL WRN

Explanation: The label on this
nonexecutable statement has no
valid use beyond visual
identification, and may produce
errors in the object module if the
same label is the target of a
branch type statement. (Only
branches to executable statements
are valid.) ~rhis message is

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

produced, for example, when an END
statement is labeled. The message
is issued as a warning only.
(Condition code - 0)

Programmer Response: Probable
user error. Correct or delete the
occurrence of a label on a
nonexecutable statement having no
valid use beyond visual
identification. Make sure that
only branches to executable
statements are indicated.
Example: An END statement is
labeled. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEY037I PREVIOUSLY DIMENSIONED WRN

Explanation: This message is
produced if arrays are
redimensioned. The dimensions
first to be given are used. An
example of a situation that would
cause this message to be issued
follows: Dimension information
for an array is given in a type
statement and subsequent COMMON
and/or DIMENSION statements
redefine the dimensions.
(Condition code - 4)

Programmer Response: Probable
user error. Make sure that arrays
have not been redimensioned.
Example: Dimension information
for an array is given in a type
statement and subsequent COMMON
and/or DIMENSION statements
redefine the dimensions. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEY038I SIZE WRN

§xplanation: A variable has data
initializing values that exceed
the size of the scalar or the
array or array element. Examples
of situations that would cause
this message to be issued follow:
(1) Five bytes of initializing
data are given for a scalar
variable, as in REAL A/'ABCDE'/
(2) Excessive bytes are given for
an element of an array, as in DATA
A (1)/'ABCDEFG'/.
(Condition code - 4)

IEY039I

Proqrarnmer Response: Probable
user error. Make sure that data
initializing values for a variable
do not exceed the size of the
scalar or the array or array
element. Examples: Five bytes of
initializing data are given for a
scalar variable, as in
REAL A/'ABCDE'/; excessive bytes
are given for an element of an
array, as in DATA A(l)/'ABCDEFG'/.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

RETURN

Explanation: A RETURN statement
is needed. (Condition code - 0)

Programmer Response: Probable
user error. Insert missing RETURN
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

Status Messages

~rhe following paragraphs describe the
messages that are produced during the
operation of the (G) compiler which denote
the progress of the compilation. Most of
the messages discussed in this section
pertain to the conditions that result in
the termination of the compilation.

IEY028I NO CORE AVAILABLE-COMPIIATION
TERMINATED

Explanation: This message is
produced when the system is unable
to supply the compiler with an
additional 4K byte block of roll
(or table) storage.
(Condition code - 16)

Programmer Response: Probable
user error. Either segment the
program unit into subroutines or
specify a larger REGION size on
the JOB or EXEC card. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

Appendix D: System Diagnostics 163

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

• Have source and associated
listing available.

IEY029I DECK OU'l'PUT DELETED

Explan~ion: If the DECK option
has been specified, and an error
occurs during the process of
punching the designated output,
this message is produced. No
condition code is generated for
this error.

Proqrammer Response: If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
has been specified on the JOB
statement.

• Have source and associated
listing available.

IEY030I LINK EDIT OUTPUT DELETED

~lanation: If the LOAD option
has been specified, and an error
occurs during the process of
generating the load module, this
message is produced.
(Condition code - 16)

Programmer Response: If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
has been specified on the JOB
statement.

• Have source and associated
listing available.

IEY031I ROLL Sizg EXCEEDED

164

~lana:!=_ion: This message is
produced when the WORK or EXIT
roll <table) has exceeded the
storage capacity to which it has
beEm assigned, or some other roll
usE~d by the compiler has exceeded
64:K bytes of storage.
<condition code - 16)

ProgrammE~r Response: Restructure
thE~ program unit and recompile.
If the problem recurs, do the
followin9 before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available~

IEY034I I/O ERROR [COMPILATION TERMINATED]
xxx ••• xxx

IEY035I

Explanation: This message is
produced when an input/output
error is detected during
compilation. If the error
occurred on SYSPUNCH, compilation
is continued and the "COMPILATION
TERMINATED" portion of the message
is not printed. (Condition code -
8). If the error occurred on
SYSIN, SYSPRINT or SYSLIN,
compilation is terminated.
(Condition code - 16). xxx ••• xxx
is the character string formatted
by the SYNADAF macro instruction.
For an interpretation of this
information, see the publication
!BM §ystem/3~~~9.ting System:
Supervisor and Data Management
Macro Instructions, Order No.
GC28-6647-.~~~-

Programmer R~sponse: Check all DD
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVE:L= <1, 1)
has been specified on the JOB
statement.

• Have source and associated
listing available.

UNABLE TO OPEN ddname

Explanation: This message is
produced when the required ddname
data definition card is missing or
the ddname is misspelled.

Programmer Response: Probable
user error. Include the required
ddname data definition statement
or correct a misspelled ddname.
If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MSGLEVE:L= (1, 1)
has been specified on the JOB
statement.

• Have source and associated
listing available.

IEY040I COMMON ERROR IN BLOCK DA'rA

Explanation: An error has ocurred
in the use of a BLOCK DATA
subprogram. There must be at
least one named COMMON statement

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

within the BLOCK DATA subprogram.
The BLOCK DATA subprogram cannot
contain any references to blank
COMMON.
(Condition code - 8)

~rogrammer Resp~nse: Probable
user error. Make sure that there
is at least one named COMMON
statement within the BLOCK DATA
subprogram. The BLOCK DATA
subprogram cannot contain any
references to blank COMMON. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

Informative Messages

Informative messages are generated by
the compiler to inform the programme:r of
the result of the compilation. The
messages are shown with any compiler action
taken.

OPTIONS IN EFFECT option {,option} •••
OPTIONS IN EFFECT option {,option} •••
STATISTICS SOURCE STATEMENTS=nnnnnnnn1

PROGRAM SIZE=nnnnnnnn2
and

STATISTICS NO DIAGNOSTICS GENERATED
or

STATISTICS nnn DIAGNOSTICS GENERATED,
HIGHEST SEVERITY CODE IS n

where

nnnnnnnn1
is the number of source statements,
expressed as a decimal integer.

nnnnnnnn2

nnn

n

is the size, in bytes, of the Qbject
module expressed as a decimal integer.

is the number of diagnostics
generated, expressed as a decimal
integer.

is the condition code.

The first statistics message (giving source
statements and program size) is suppressed
whenever a BLOCK DATA subprogram is
compiled; however, the two
options-in-effect messages and one of the
other statistics messages will still
appear.

I:f there was more than one compilation
Ci.e., there was a multiple compilation>,
one :final message is printed. This message
is suppressed when there is only one main
or subprogram. The message appears as
either:

STATISTICS NO DIAGNOSTICS THIS STEP

or

STATISTICS nnn DIAGNOSTICS THIS STEP

Explanation: If there were no errors in
any of the compilations the first message
is printed. The second message is printed
when there are errors in one or more of the
compilations; the cumulative number of
errors is indicated by the value nnn.

FORTRAN IV (H) COMPILER DIAGNOSTIC MESSAGES

Two types of compiler diagnostic
messages are generated - informative and
error/warning.

Informative Messages

Six unnumbered messages are generated by
the compiler to provide the programmer with
compilation information.

LEVE:L- dmthyr OS/360 FORTRAN IV
DATE:- yy. ddd/HH. nun. ss

Explanation: This message is generated at
the beginning of every compilation. The
level date of the compiler is given by
"dmthyr", where d is the day of the month
(mth) in the year (yr). The number of the
day (ddd) in the year Cyy) that the
compilation takes place is given by
"yy.ddd"; the time of day in hours CHH),
minutes (mm), and seconds (ss) (based on a
24-hour clock) is given by •aH.nun.ss•. The
time is also punched into the END card of
the object deck.

COMPILER OPTIONS - option{option} •••

Explanation: This message is printed on
the first page of every source listing.
Options explicitly specified in the PARM
parameter and any default options appear in
the message.

OPTIONS IN EFFECT NAME=xxxxxx,oPT=On,
LINECNT=xx

OPTIONS IN EFFECT option {,option} •••
STATISTICS SOURCE STATEMENTS=nnnnnnnn1,

PROGRAM SIZE=nnnnnnnn2
STATISTICS NO DIAGNOSTICS GENERATED

Appendix D: System Diagnostics 165

Paqe Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

or

STATISTICS: nnn DIAGNOSTICS GENERATED,
HIGHEST SEVERITY CODE IS n

~xpl~nation_: This message appears
immediately before the ****** END OF
COMPILATION *** *''"* message. It indicates
the size of both the source module and the
object module as well as the FORTRAN (H)
environment in which they were processed.

nnnnnnnn1

is the number of source statements
(comments ca.rds are not included)
expressed as a decimal integer.

nnnnnnnn 2

nnn

is the size of the object module, in
bytes, expressed as a decimal integer.

is the number of diagnostics for each
compilation expressed as a decimal
integer.

The options indicated are the default
options and those explicitly specified in
the PARM parameter of the EXEC statement.
For a full explanation of these options,
see ftcompiler Options" in the "FORTRAN Job
Processing" section of this publication.
The severity code, n, is the completion
code.

nnnnK BYTES OF CORE NOT USED

Expla:nation: This message is produced if
more than lOK bytes of available work area
is not used during compilation.. This
message appears immediately after the
•••••• END OF COMPILATION •••••• message.
The term nnnn indicates how much smaller
the region size could be during
compilation. If a SIZE option is indicated
for the compilation step, the term nnnn
indicates how much smaller the specified
SIZE value could be.

******END OF COMPILATION******

Explanation: This message, which indicates
that all processing of the source program
has been completed, is generated at the end
of every compilation except when an
abnormal termination causes the generation
of the message COMPILATION DELETED. !!

If there is more than one compilation in
a job step, one of the following messages
will be printed after the last compilation:

STATISTICS NO DIAGNOSTICS THIS STEP

or

STATISTICS nnn DIAGNOSTICS THIS STEP,
HIGHEST SEVERITY CODE IS n

166

Explanation: If there were no errors in
any of the compilations, the first message
is printed. The second message :is printed
when there are errors in one or more of the
compilations; the cumulative number of
errors is indicated by the value nnn. The
severity code, n, is the completion code.

Error/Warning Message~

The following text contains a
description of error/warning messages
produced by the compiler. The message is
shown with an explanation, and any compiler
action or user action that is required.

All error/warning messages produced are
written in a group following the source
module listing and object module name
table. Figure 98 shows the format of each
message as it is written in the data set
specified by the SYSPRINI' DD statement.

There are three types of messages: (1)
a terminal error message, (2) serious error
messages, and (3) warning messages. The
terminal error message returns a condition
code of 16; the serious error messages a
code of 8; and the wairning messages a code
of 4.

r---1
I I
I ERROR NO. ERROR MESSAGE I
I ISN a I
I LABEL b IEKxxxI message I
I NAME c I
I I
~--~

a I
is the internal statement I
number of either the state-I
ment in error or the state­
ment following the! last
previous executable
sta temE~nt.

b is a source label (state­
ment number)

c is a variable name
xxx is a 3-digit message

number
message is the actual message

printed
L--
Figure 98. Format of Diagnostic Messages

In addition, following the statement in
which a serious error is detected, the
following appears in the source listing:
ERROR DETECTED - SCAN POINTER = x; x
represents the position of the character
pointed to by the compiler's scan pointer
at the time the error is detected. Any
FORTRAN keywords and/or meaningless blanks

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

are ignored in determining the position of
the character. (If the statement is found
to be invalid during the classification
process, the value of x always equals one.)

In the case of compilation deletion, the
following message appears:

COMPILATION DELETED. Q

where Q can be 1, 2, 3 1 4 1 5, 6, or 7

Explanation: The message is generated by
the FORTRAN System Director. The
compilation is deleted because of the
reason indicated by the value of Q•
(Condition code - 16)

n=l Phase 10 Program too large to compile
or main storage allocation is too
small for compiler size.

n=2 A program interrupt occurred during
execution of the compiler. A program
interrupt message and the contents of
all registers are written preceding
the message.

Figure 99 shows the format of the
compile-time program interrupt
message when the extended error
message facility has not been
specified at system generation time.
In the old PSW, c is a hexadecimal
number that indicates the cause of
the interruption; ~ may be one of the
following values:

c caus~

1 Operation
2 Privileged operation
3 Execute
4 Protection
5 Addressing
6 Specification
7 Data
8 Fixed-point overflow
9 Fixed-point divide
A Decimal overflow
B Decimal divide
c Exponent overflow
D Exponent underflow
E significance
F Floating-point divide

n=3
n=4
n=S

n=6

n=7

!!!
1
2
4
8

10
20
40

Following PHASE SWITCH, m is a
hexadecimal number that Indicates
which phase of the compiler was
executing when the interrupt
occurred; ~ may be one of the
following values:

Phase
Phase 10
Phase 10 (STALL routine)
Phase 15 (PHAZ15 routine)
Phase 15 (CORAL routine>
Phase 20
Phase 25
Phase 30

Phase 15 Program too large to compile
Phase 20 Program too large to compile
Phase in control requested System
Director to terminate compilation
immediately. (Any error messages
generated by the calling phase will
also be written.)
Error detected by IHCFCOMH (IBCOM)
I/O error detected during compilation
- an IHCxxxI message may also be
generated
End of file, no END statement in
source module

IEK001I THE NUMBER OF ENTRIES IN THE ERROR
TABLE HAS EXCEEDED THE MAXIMUM.

(Condition code - 8)

Rrogrammer Response: Probable
user error. Correct the
statements in error. If the
problem recurs, do the followinq
before calling IBM for programming
support:

• Make sure that all indicated
statements in error are
corrected.

• Have source and associated
listing available.

Appendix D: System Diagnostics 167

PagE! of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

r---1
I I
I IHC210I PROGRAM INTERRUPT - OLD PSW IS xxxxxxxcxxxxxxxx - PHASE SWITCH m I
I I l __ J

Figure 99. compile-Time Program Interrupt Message

IEK002I THE DO LOOPS ARE INCORRECTLY
N:E:STED.

(Condition code - 8)

~rogrammer Response: Probable
user error. Resubmit the job with
all statements in thE! range of the
inner DO also in the range of the
outer DO. If the problem recurs,
do the following before calling
IBM for programming support:

• Make sure that the extended
range of a DO statement does not
contain another DO statement
that has an extended range if
the second DO is within the same
program unit as the first.

• Have source and associated
listing available.

IEK003I THE EXPRESSION HAS AN INVALID
LOGICAL OPERATOR.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
logical operator. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEKOOSI THE STA'I'EMENT HAS AN INVALID USE
OF PARENTHESES.

(Condition code - 8)

~Eogrammer Response: Probable
user error. Correct or delete the
parenthesis in question. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK006I THE STATEMENT HAS AN INVALID
LABEL.

(Condition code - 8)

168

Proqrammer F~esponse: Probable
user error. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK007I THE EXPRESSION HAS AN INVALID
DOUBLE DELIMITER.

(Condition code - 8)

Proqrammer Response: Probable
user error. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and assoc:iated
listing available~

IEK008I THE EXPRESSION HAS A CONSTANT
WHICH IS GREATER THAN THE
ALLOWABLE MAGNITUDE~

(Condition code - 8)

Proqranuner R~sponse: Probable
user error. If the problem
recurs, do the f ollowin9 before
calling IBM for programming
support:

• Have sourc•e and associated
listing available.

IEK009I THE EXPRESSION HAS A NON-NUMERIC
CHARACTER IN A NUMERIC CONSTANT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
constant contains only numeric
characters. If the problem
recurs, do the following before
calling IBM for progrramming
support:

• Have source and associated
listing available.

IEK010I THE EXPRESSION HAS A CONSTANT WITH
AN INVALID EXPONENT.

(Condition code - 8)

Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Programmer Response: Probable
user error. Delete or correct the
invalid exponent. Make sure that
the base and exponent are valid
combinations of operand types. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK011I THE ARITHMETIC OR LOGICAL
EXPRESSION USES AN EXTERNAL
FUNCTION NAME AS A VARIABLE NAME.

(Condition code - 8)

Proqrammer Response: Probable
user error. Make sure that the
external function name is not
employed as a variable. Resubmit
the job using the MAP option to
obtain indication of the use of
each name. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK012I THE EXPRESSION HAS A COMPLEX
CONSTANT WHICH IS NOT COMPOSED OF
REAL CONSTANTS.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that both
the real and imaginary parts of
the complex number are valid rea1-
constants. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK013I AN INVALID CHARACTER IS USED AS A
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid character. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK014I THE STATEMENT HAS AN INVALID
NON-INTEGER CONSTANT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid non-integer constant. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK015I THE ARITHMETIC OR LOGICAL
EXPRESSION USES A VARIABLE NAME AS
AN EXTERNAL FUNCTION NAME.

(Condition code - 8)

Proqrammer Response: Probable
user error. Make sure that the
variable is not employed as an
external function. Resubmit the
job using the MAP option to obtain
indications of the use of each
name. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK016I THE GO TO STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
statement contains valid
delimiters. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK017I THE ASSIGNED OR COMPUTED GO TO HAS
AN INVALID ELEMENT IN ITS
STATEMENT NUMBER LIST.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
statement number list contains
executable statement numbers. If
an assigned GO TO is in question,
make sure that the ASSIGN
statement is correct. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

Appendix D: System Diagnostics 169

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IEK019I THE ASSIGNED GO TO HAS THE OPENING
PARENTHESIS MISPLACED OR MISSING.

(Condition code - 8)

Programmer Response: Probable
user error. correct or insert
parenthesis. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK020I THE ASSIGNED GO TO HAS AN INVALID
DKLIMITER FOLLOWING THE ASSIGNED
VARIABLE.

(Condition code - 8)

E~~g~a~~~-g~~Qnse: Probable
usi~r error. Make sure that a
comma follows the assigned
variable~ If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK021I THE COMPUTED GO TO HAS AN INVALID
COMPUTED VARIABLE.

(Condition code - 8)

E~~~rammer Response: Probable
use~r error. Make sure that the
referenced variable is integer and
non-subscripted. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
l.istin9 available.

IEK022I THE VARH~BLE IN THE ASSIGNED GO TO
STJlLTEMEN'l~ IS NOT INTEGRAL.

(Condition code - 8)

Progra~~r R~~ponse: Probable
user error. correct the
non-integral variable. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK023I THE DEFINE FILE STATEMENT HAS AN
INVALID DATA SET REFERENCE NUMBER.

(Condition code - 8)

170

Erogrammer R~sponse: Probable
user error. Make sure that the
data set refE:!rence number or size
is an integer constant. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK024I THE DEFINE FILE STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Re~sponse: Probable
user error. Correct the invalid
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK025I THE DEFINE FILE STATEMENT HAS AN
INVALID INTEGER CONSTANT AS THE
RECORD NUMBER OR SIZE.

(Condition code - 8)

Programmer Re;spon_:?~: Probable
user error. Correct the invalid
integer. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK026I THE DEFINE FILE STATEMENr HAS AN
INVALID FORMAT CONTROL CHARACTER.

(Condition code - 8)

Erogrammer Respons~: Probable
user error. Make sure that the
format control character is one of
L, E, or u. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK027I THE ASSIGN STATEMENT HAS AN
INVALID INTEGER VARIABLE ..

(Condition code - 8)

Programmer Re:~ponse: Probable
user error. Correct or delete the
invalid integer variable.. If the
problem recur:S, do the following
before callinc:J IBM for programming
support:

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

• Have source and associated
listing available.

IEK028I THE ASSIGN STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

PrQgrammer Response: Probable
user error. Determine the invalid
delimiter and correct the
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK030I THE DO STATEMENT HAS AN INVALID
END OF RANGE STATEMENT NUMBER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
end of range statement number is
an executable statement number
appearing after the DO statement.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK031I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID INITIAL VALUE.

(Condition code - 8)

Programmer Response: Probable
user error. Check that the
initial value is either an
unsigned integer constant greater
than zero, or an unsigned non­
subscripted integer variable
greater than zero. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK034I THE ASSIGNMENT STATEMENT BEGINS
WITH A NON-VARIABLE.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
statement. Resubmit the job with
the MAP option to determine the
nature of the non-variable in
question, if possible. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK035I THE NUMBER OF CONTINUATION CARDS
EXCEEDS THE COMPILER LIMIT.

(Condition code - 8)

REogrammer Response: Probable
user error. Make sure that the
statement does not extend over
more than 19 continuation cards.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK036I THE STATEMENT CONTAINS INVALID
SYNTAX. THE STATEMENT CANNOT BE
CLASSIFIED.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK039I THE DEFINE FILE STATEMENT HAS AN
INVALID ASSOCIATED VARIABLE.

(Condition code - 8)

Programmer Response: Probable
user error. Check that the
associated variable is
non-subscripted and integral.
Make sure that the associated
variable does not appear in the
I/O list Of a READ or WRITE for a
data set associated with the
DEFINE FILE statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK040I IT IS ILLEGAL TO HAVE A &
STATEMENT NUMBER PARAMETER OUTSIDE
A CALL STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the &
statement number. If the problem
recurs, do the following before
calling IBM for programming
support:

Appendix D: System Diagnostics 171

Page of GC28-6817-2, Revised 1:2/30/70, by TNL: GN28-0591

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Programmer Response: Probable
user error. Delete or correct the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK070I THE EQUIVALENCE STATEMENT HAS A
MISSING OR MISPLACED DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that there
are as many left parentheses as
there are right parentheses.
Check all commas. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK071I THE EQUIVALENCE STATEMENT DOES NOT
SPECIFY AT LEAST TWO VARIABLES TO
BE Jl!:QUIVALENCED.

(Condition code - 8)

PrQg_rammer Response: Probable
user error. Check delimiters and
correct the invalid source. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK072I THE EQUIVALENCE STATEMENT HAS AN
INVALID V1\RIABLE NAME ..

(Condition code - 8)

Proqrammer Response: Probable
usei~ error. Delete or correct the
invalid variable name. Make sure
that the variable in question is
not a dummy argument. If
necessary, invoke the MAP option
for indications of the use of
variable names. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK073I THE EQUIVALENCE STATEMENT HAS A
SUBSCRIPT WHICH IS NOT AN INTEGER
CONSTANT ..

174

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
subscript. If the problE~m recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK074I THE STATEMENT HAS A VARIABLE WITH
MORE THAN SEVEN SUBSCRIPTS.

(Condition code - 8)

Programmer Response: Probable
user error. Check that all commas
are in correct position. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK075I THE COMMON STATEMENT HAS A
VARIABLE THAT HAS BEEN RE:FERENCED
IN A PREVIOUS COMMON STA'I'EMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
redundant entry. If the problem
recurs, do the~ fallowing before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK076I THE IMPLICIT STATEMENT IS NOT THE
FIRST STATEMENT IN A MAIN PROGRAM
OR THE SECOND STATEMENT IN A
SUBPROGRAM.

(Condition Code - 8)

Programmer Response: Probable
user error. Place the IMPLICIT
statement in correct sequence. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK077I THE IMPLICIT STATEMENT HAS A
MISPLACED DELIMITER IN THE TYPE
SPECIFICATION FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK078I THE IMPLICIT STATEMENT HAS AN
INVALID TYPE.

(Condition· code - 8)

Programmer Response: Probable
user error. Make sure that for
any type there is a corresponding
valid standard or optional length
specification. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK079I THE IMPLICIT STATEMENT HAS A
MISSING LETTER SPECIFICATION.

(Condition code - 8)

PrQ.grammer Response: Probable
user error. Insert the omitted
specification. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK080I THE IMPLICIT STATEMENT HAS AN
INVALID LETTER SPECIFICATION.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
letter specification. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK081I THE IMPLICIT STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK082I THE IMPLICIT STATEMENT DOES NOT
END WITH A RIGHT PARENTHESIS.

(Condition code - 8)

Prog~ammer Response: Probable
user error. Insert the omitted
parenthesis. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK083I THE IMPLICIT STATEMENT HAS A
MISPLACED DELIMITER IN ITS
PARAMETER FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
misplaced delimiter. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK084I THE IMPLICIT STATEMENT CONTAINS A
LITERAL FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Make ·sure that there
are no apostrophes or wH
specifications in the IMPLICIT
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK086I THE COMMON STATEMENT SPECIFIES A
NON-VARIABLE TO BE ENTERED.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that
delimiters are in correct
position. Check that only
variable or array names are
specified for entrance into a
common block. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK087I THE COMMON STATEMENT SPECIFIES A
NON-VARIABLE COMMON BLOCK NAME.

Appendix D: System Diagnostics 175

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

(Condition code - 8)

Programmer Response_: Probable
user error. Correct the invalid
name. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

TEK088I A DUMMY]l,RGUMENT IN A SUBPROGRAM
STATEMEN'I' MAY NOT BE IN COMMON

(Condition code - 8)

Pra'.9:.!"ammer Response: Probable
user error. Make sure that only
variable or array names appear in
the COMMON statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK090I THE EXTEHNAL STATEMENT HAS A
NON-VARIABLE DECLARED AS EX'I'ERNAL.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
non-variable name. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK091I THE EXTERNAL STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK092I THE TYPE STATEMENT MULTIPLY
DEFINES THE VARIABLE.

176

Condition code - 8)

Probable
or delete the

If the
following
programming

~EQ~ramm~~Re~ponse:
user error. Correct
variable in question.
problem recurs, do the
before calling IBM for
support:

• Have source and associated
listing available.

IEK093I THE TYPE STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 8)

~rog.!:ammer Re?..EQ!!§.~: Probable
user error. Correct or delete the
invalid delimiter. If the probelm
recurs, do the following before
calling IBM for prograrruning
support:

• Have source and associated
listing available.

IEK094I THE TYPE STATEMENT HAS A
NON-VARIABLE TO BE TYPED ..

(Condition code - 8)

~.!:2.9_.!:ammer Response: Probable
user error. Correct or delete the
non-variable. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK095I THE TYPE STATEMENT HAS THE WRONG
LENGTH FOR THE GIVEN TYPE.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
specified lenqth is permissible
for the associated type. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK096I THE TYPE STATEMENT HAS A MISSING
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct, delete, or
insert the delimiter in question.
If the problem recurs, do the
following before calling IBM for
prograrruning support:

• Have source and associated
listing available.

IEK101I THE DO STATEMENT OR IMPLTED DO HAS
AN INVALID DELIMITER.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

(Condition code - 8)

PrQgralll!!!gr Rgsponse: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK102I THE BACKSPACE/REWIND/END FILE
STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 8)

~~Qgrammer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK104I THE BACKSPACE/REWIND/END FILE
STATEMENT HAS A DATA SET REFERENCE
NUMBER THAT IS EITHER A
NON-INTEGER OR AN ARRAY NAME.

(Condition code - 8)

Proqrammer Response: Probable
user error. Make sure that the
specified data set reference
number is either an unsigned
integer constant or an integer
variable of length 4. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK109I THE PAUSE STATEMENT HAS A
MISPLACED DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
PAUSE statement contains either no
delimiter or a literal constant
enclosed in single quotes. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK1.10I THE PAUSE STATEMENT SPECIFIES A
VALUE WHICH IS NEITHER A LITERAL
NOR AN INTEGER CONSTANT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
value. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK111I THE PAUSE STATEMENT HAS MORE THAN
255 CHARACTERS IN ITS LITERAL
FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid characters. Make sure
that continuation cards are
correctly indicated. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK112I THE DICTIONARY HAS OVERFLOWED.

(Condition code - 16)

Programmer Response: Probable
user error. If the SIZE parameter
is specified incorrectly,
(IEK410I) correct it and resubmit
the job. If SIZE is coded
correctly, then increase the SIZE
value. Make sure that the region
or partition in which the compiler
is running is at least lOK larger
than the specified SIZE value. If
SIZE is not specified, increase
the REGION size on the JOB or EXEC
card. If the problem recurs, do
the following before calling IBM
for programming support:

• Make sure that MSGLEVEL=(1 1 1)
was specified in the JOB
statement.

• Have source and associated
listing available.

• Have available the value of the
SIZE parameter assigned at
system generation time.

Appendix D: system Diagnostics 171

Page of GC2:B-6817·-2, Revised 12/30/70, by TNL: GN28-0591

IEK115I THg VARIABLE RETURN S'I'ATEMENT HAS
NEITHER AN INTEGER CONSTANT NOR
VARIABLE FOLLOWING THE KEYWORD.

<condition code - 8)

Programm•~r Response: Probable
user error. Correct or delete the
im1alid constant or variable. If
thE:! problem recurs, do the
f ollowinq before calling IBM for
programming support:

• Have source and associated
listing available.

IEK116I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID PARAMETER.

(Condition code - 8)

Programmer Response: Probable
use?r error. Make sure that the DO
variable is a non-subscripted
integer variable. Check that the
initial value, test value, and
increment (if specified) are
either unsigned integer constants
gre~ater than zero, or unsigned
nonsubscripted integer variables
whose value is greater than zero.
Verify that the test value does
not excee~d the allowable
magnitude. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listingr available.

IEK117I THE BLOCK DATA STATEMENT HAS AN
INVALID DELIMITER.

(Condition code·- 8)

Programmer Response: Probable
user error. correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for progranuning
support:

• Have source and associated
listing available.

IEK120I THE BLOCK DATA STATEMENT WAS NOT
THE FIRST STATEMENT OF THE
SUBPROGRAM.

178

(Condition code - 8)

Programmer Response: Probable
user error. Delete the invalid
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source? and associated
listing available.

IEK121I THE DATA STA'l':EMENT HAS A VARIABLE
WHICH HAS A NON-ALPHABETIC FIRST
CHARACTER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid variable, or correct any
erroneous delimiters. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK122I THE DATA STATEMENT CONTAINS A
SUBSCRIPTED VARIABLE WHICH HAS NOT
BEEN DEFINED AS AN ARRAY.

(Condition code - 8)

Programmer Response: Probable
user error. Either define the
variable as an array, or correct
the variable in the DATA
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK123I THE DATA STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK124I THE DATA STATEMENT HAS A VARIABLE
WITH AN INVALID INTEGER SUBSCRIPT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
subscript quantity contains only
integer constants separated by
commas. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IEK125I THE DATA STATEMENT HAS A VARIABLE
WITH A SUBSCRIPT THAT CONTAINS AN
INVALID DELIMITER.

(Condition code - 8)

~rogrammer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recuis, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK129I THE STATEMENT CONTAINS AN INVALID
DATA CONSTANT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
constant is valid for its
designated class and/or type. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK132I THE DATA STATEMENT HAS AN INVALID
DELIMITER IN ITS INITIALIZATION
VALUES.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK133I THE DO STATEMENT CANNOT FOLLOW A
LOGICAL IF STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Change the DO to a GO
TO n, where n is the statement
label of the DO located elsewhere
in the program unit. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK1.34I THE DO STATEMENT HAS AN INVALID
INTEGER DO VARIABLE.

(Condition code - 8)

Proqrammer Response: Probable
user error. Make sure that the
integer DO variable is a non­
subscripted integer variable. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK135I THE DO STATEMEN'I' OR IMPLIED DO HAS
AN INVALID TEST VALUE.

(Condition code - 8)

Programmer RespO_!!.§~: Probable
user error. Make sure that the
test value is either an unsigned
integer constant greater than
zero, or an unsigned
nonsubscripted integer variable
greater than zero. Verify that
the test value does not exceed
23 ~-1. If the problem recurs, do
the following bE!fore calling IBM
for programming support:

• Have source at~ associated
listing available.

IEK136I THE NUMBER OF NESTED DO'S EXCEEDS
THE COMPILER LIMIT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
maximum level of nesting for DO
loops, 25, is not exceeded. If
the problem rec'.1rs, do the
following befor1~ calling IBM for
programming sup?ort:

• Have source and associated
listing avaiL1.ble.

IEK137I THE DO STATEMENr OR IMPLIED DO HAS
AN INVALID INCREMENT VALUE.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
increment value is either an
unsigned integer constant greater
than zero, or an unsigned non­
subscripted integer variable
greater than zero. If the problem
recurs, do the following before
calling IBM for programming
support:

Appendix D: System Diagnostics 179

Page of GC2B-6817--2, Revised 12/30/70, by TNL: GN28-0591

• Have source and associated
listinq available.

IEK138I THE DO S'I'ATEMENT HAS A PREVIOUSLY
DEPINED STATEMENT NUMBER SPECIFIED
TO END THE DO RANGE.

<con di ti cm code - 8)

~9_grarrune:.r Respons~: Probable
user error. Verify that the
statement number specified to end
the~ DO range is an executable
statement number appearing after
the~ DO statement. If the problem
recurs, d.o the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK139I A LOGICAL IF IS FOLLOWED BY
ANOTHER LOGICAL IF OR A
SPECIFICA.TION STATEMEN'r.

<condition code - 8)

Prograrruner Response: Probable
user error. Change the latter
logical IF to a GO TO n, where n
is the statement label of the
logical IF located elsewhere in
the program unit. Include the
specification statement in the
prescribed order prior to
executable statements and
statement function definitions, if
any.. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK140I THE IF STATEMENT BEGINS WITH AN
INV1U.ID CHARACTER.

(Condition code - 8)

Proqrammer Response: Probable
user error. Correct or delete the
invalid character. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK141I THE FORMA'l? STATEMENT DOES NOT END
WITH A RIGHT PARENTHESIS.

1.80

(Condition code - 8)

~!:.29:rammer Response: Probable
user error. Correct any invalid
delimiters and include the right

parenthesis. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK143I THE STATEMENT FUNCTION HAS AN
ARGUMENT WHICH IS NOT A VARIABLE.

(Condition code - 8)

froqrammer Response: Probable
user error. Make sure that the
arguments are non-subscripted
variables. If the problem recurs,
do the following defore calling
IBM for programming support:

• Have source and associated
listing available.

IEK144I THE STATEMENT FUNCTION HAS MORE
THAN 20 ARGUMENTS.

(Condition. code - 8)

Programmer Response: Probable
user error. Redefine the
arguments so that the 20 argument
limit is not exceeded. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK145I THE STATEMENT FUNCTION HAS AN
INVALID DELIMITER.

(Condition code ~ 8)

Programmer Response: Probable
user error. correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK146I THE STATEMENT FUNCTION HAS A
MISPLACED EQUAL SIGN.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
misplaced equal sign. If the
problem recurs, do the following
before calling IBM for programming
support: •

• Have source and associated
listing available.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN2P-0591

IEK147I A STATEMENT FUNCTION DEFINITION
MUST PRECEDE THE FIRST EXECUTABLE
STATEMENT.

(Condition code - 8)

Proqrammer Response: Probable
us~r error. Resequence the
definition so that it follows only
SUBPROGRAM, IMPLICIT, or other
specification statements. Include
a DIMENSION statement if it has
been omitted. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK148I THE DIMENSIONED ITEM HAS A
NON-INTEGER SUBSCRIPT.

(Condition code - 8)

Programmer Response: Probable
user error. Verify that the
subscript quantity is validly
constructed. If the problem
recurs, do the following before
calling IBM for programmer
support:

• Have source and associated
listing available.

IEK149I A VARIABLE TO BE DIMENSIONED USING
ADJUSTABLE DIMENSIONS MUST HAVE
BEEN PASSED AS AN ARGUMENT AND
MUST NOT APPEAR IN COMMON.

(Condition code - 8)

Programmer Response: Probable
user error. Remove the variable
name from the COMMON statement, if
it has been entered in a COMMON
statement. Place the variable in
the argwnent list, if not already
there. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK150I THE DIMENSIONED ITEM HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source arid associated
listing availctble.

IEK151I THE STATEMENT SPECIFIES A
NON-VARIABLE TO BE DIMENSIONED.

(Condition code - 8)

Programmer Response: Probable
user error. COJ~rect the
non-variable narne. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK152I THE SUBPROGRAM :3TATEMENT HAS AN
INVALID DELIMIT:!!:R IN THE ARGUMENT
LIST.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK153I THE STATEMENT HAS AN INVALID NAME
SPECIFIED AS A FUNCTION REFERENCE.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
function has be·en correctly
defined. Verify that the type of
the name used for the reference
agrees with the· type of name used
in the definition. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK156I THE I/O STATEMJi:NT HAS AN INVALID
NAME PRECEDING THE EQUAL SIGN.

(Condition codE~ - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid name. If the problem
recurs, do the following before
calling IBM foJ~ programming
support:

• Have source and associated
listing available.

Appendix D: Sys·;:em Diagnostics 181

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IEK157I THE I/O STATEMENT HAS A
NON-VARIABLE SPECIFIED AS A LIST
ITEM.

(Condition code - 8)

Prograrnmi~r Response: Probable
user error. Make sure that the
I/O list contains variable names,
subscripted or unsubscripted array
names, or array names accompanied
by indexing specifications in the
form of an implied DO. Verify
that no function references or
arithmetic expressions appear in
the I/O list. Use the MAP option
to determine the use of names in
thE~ program unit. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK158I THE I/O STATEMENT HAS AN IMPROPER
PAIRING OF PARENTHESES IN AN
IMPLIED DO, OR A NON-INTEGRAL
INDEX.

(Condition code - 8)

Pro.grammer Response: Probable
user error. Make sure that there
are as many left parentheses as
there are right parentheses.
correct any invalid index. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK159I THE FORMAT STATEMENT DOES NOT HAVE
A STATEMENT NUMBER.

(Condition code - 4)

Proqramm~r Response: Probable
user error. Insert the required
statement number. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK160I THE I/O STATEMENT HAS AN INVALID
DELIMITER IN THE PARAMETERS.

182

(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
invalid delimiter. If the problem
recurs, do the following before

calling IBM for programming
support:

• Have source and associated
listing available.

IEK161I THE I/O STATEMENT HAS A DUPLICATE
PARAMETER.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the duplicate
parameter. If the p:roblem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK163I THE I/O STATEMENT HAS AN ARRAY
WHICH IS NOT DIMENSIONED.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
subscripted array name or array
name in the form of an IMPLIED DO
has been previously declared in a
DIMENSION statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK164I THE I/O STATEMENT HAS AN
ARITHMETIC EXPRESSION OR A
FUNCTION NAME SPECIFIED AS, A LIST
ITEM.

(Condition code - 8)

Programmer Response: Probable
user error. Verify that no
function references or arithmetic
expressions are contained in the
I/O list. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK165I THE I/O STATEMENT HAS A PARAMETER
WHICH IS NOT AN ARRAY AND NOT A
NAMELIST NAME.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid parameter. If the problem
recurs, do the following before
calling IBM for programming
support:

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

• Have source and associated
listing available.

IEK166I THE I/O STATEMENT HAS A
NON-INTEGER CONSTANT OR VARIABLE
REPRESENTING THE DATA SET
REFERENCE NUMBER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
data set reference number is
either an unsigned integer
constant or an integer variable of
length 4. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK167I THE STATEMENT HAS AN INVALID USE
OF A STATEMENT FUNCTION NAME.

(Condition code - 8)

Programmer Response: Probable
user error. Verify that the
statement function name has been
previously defined. Correct any
invalid references. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK168I THE STATEMENT SPECIFIES AS A
SUBPROGRAM NAME A VARIABLE WHICH
HAS BEEN PREVIOUSLY USED AS A
NON-SUBPROGRAM NAME.

(Condition code - 8)

Programmer Response: Probable
user error. If the desired
subprogram name duplicates a
variable name, change the variable
name and all references to it.
use the XREF option to determine
where the variable occurs if the
program unit contains many
statements. If the subroutine
name is in error, correct it. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement, and that
the necessary DD statement is
included.

IEK169I THE DIRECT ACCESS I/O STATEMENT
MAY NOT SPECIFY A NAMELIST NAME.

(Condition code - 8)

Programmer Response: Probable
user error. Change the data set
reference number so that it refers
to a valid sequential device. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing availc:tble.

IEK170I THE DIRECT ACCESS I/O STATEMENT
HAS A NON-INTEGER SPECIFYING THE
RECORD'S RELATIVE POSITION.

(Condition code - 8)

Programmer Response: Probable
user error. coi-:-rect the invalid
non-integer refc~rence. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source a:::id associated
listing avail<:ible.

IEK171I THE NAME SPECIFIED FOR AN ENTRY
POINT HAS ALREADY BEEN USED AS
EITHER A VARIABLE SUBROUTINE OR
FUNCTION NAME.

(Condition code - 8)

Programmer Response: Probable
user error. Change the entry
point name and all references to
it so that duplication is
eliminated. Determine if the name
was erroneously used previously
and correct it. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source a.nd associated
listing available.

• Make sure thclt the XREF option
is specified in the PARM field
of the EXEC :=;tatement, and that
the necessary DD statement is
included.

IEK176I THE I/O STATEMJ~NT CONTAINS INVALID
SYNTAX IN ITS J:MPLIED DO.

(Condition codfl - 8)

Programmer Res1~: Probable
user error. Make sure that
indexing paramE~ters are correctly
specified. Vei-:-ify that there are

Appendix D: Sys1:em Diagnostics 18 3

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

no more than 20 implied DO's per
statement. correct any erroneous
delimiters. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK192I THE STATEMENT HAS A LABEL WHICH IS
SPECIFIED AS BOTH THE LABEL OF A
FORMAT STATEMENT AND ~'HE OBJECT OF
A BRANCH ..

(Condition code - 8)

Proqrammer·Response: Probable
user error. If the branch has
been specified erroneously to a
FORMAT statement, correct it.
cor·rect or delete any misplaced
labels. Use the XREF option for
listings of the internal statement
number of the statements in which
the label is defined and
ref erencE~. If the problem
rec:urs, do the following before
cal.ling IBM for progranuning
support:

• Have source and associated
listing available.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement, and that
the necessary DD statement is
included.

IEK193I THE STATEMENT NUMBER BAS BEEN
P:aE'VIOOSLY DEFINED.

(Condition code - 8)

Programmer Response: Probable
user error. Change the statement
number. Use the XREF option where
many labels occur to determine
which are unused. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement,, and that
the necessary DD statement is
included.

IEK194I THE TYPE STATEMENT BAS A MISSING
DELIMITER IN THE INITIALIZATION
VALUES.

184

(Condition code - 8)

Programmer Response: Probable
user error. Correct any invalid
delimiters. supply the missing
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK197I THE STOP STATEMENT HAS A
NON-INTEGER CONSTANT AFTER THE
KEYWORD.

<condition code - 8)

Programmer Response: Probable
user error. Make sure that the
constant following the keyword is
a string of 1 to 5 decimal digits,
inclusive. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK199I THE SUBROUTINE OR FUNCTION
STATEMENT WAS NOT THE FIRST
STATEMENT.

(Condition code - 8)

Programmer Responses Probable
user error. Make sure that no
statements except comments occur
prior to the SUBROUTINE or
FUNCTION statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK200I QUOTE LITERALS MAY APPEAR ONLY IN
CALL, DATA INJCTIALIZATION,
FUNCTION AND FORMAT STATF.MENTS.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the invalid
reference to the quote literals.
If t.lle problem recurs, do the
following before calling IBM for
progranuning st1pport:

• Have source and associated
listing available.

IEK202I THE STATEMENT HAS A VARIABLE WHICH
HAS BEEN PREVIOUSLY DIMENSIONED.
THE INITIAL DIMENSION FACTORS ARE
USED.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

(Condition code - 4)

Programmer Response: Probable
user error. Delete the
unnecessary or erroneous dimension
specification. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK203I AN ENTRY STATEMENT MUST NOT APPEAR
IN A MAIN PROGRAM. THE STATEMENT
IS IGNORED.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the ENTRY
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK204I THE STOP STATEMENT HAS AN INVALID
DELIMITER.

(Condition code - 4)

Programmer Response: Probable
user error. Correct the invalid
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK205I THE ASSIGNED OR COMPUTED GO TO HAS
AN INVALID ELEMENT FOLLOWING THE
CLOSING PARENTHESIS.

(Condition code - 4)

Programmer Response: Probable
user error. Correct or delete the
invalid element. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK206I THE STATEMENT HAS A
NON-SUBSCRIPTED ARRAY ITEM.

(Condition code - 4)

Programmer Response: Probable
user error. Correct the invalid
array reference. If the problem
recurs, do the following before

calling IBM for programming
support:

• Have source and associated
listing available.

IEK207I THE CONTINUE STATEMENT DOES NOT
END AFTER THE Kl!:Y WORD CONTINUE.

(Condition code - 4)

Programmer Response: Probable
user error. Delete any code
following the CONTINUE keyword.
Make sure that a continuation has
not been indicated on the
statement immediately following
the CONTINUE. If the problem
recurs, do the following bef or:e
calling IBM f oz programming
support:

• Have source a.nd associated
listing available.

IEK2 0 8 I THE CONTINUE S'l'ATEMENT DOES NOT
HAVE A STATEMENT NUMBER.

(Condition codE~ - 4)

Programmer Response: Probable
user error. Dedete the CONTINUE
statement if no related diagnostic
appears with rE~spect to undefined
statement numbE~rs. If there is an
undefined statE~ment number related
to a label omh;sion on the
CONTINUE, then correct the
CONTINUE statement. If the
problem recurs 11 do the following
before calling IBM for programming
support:

• Have source .~md associated
listing available.

IEK209I THE STATEMENI' HAS AN OCTAL
CONSTANT SPECIFIED AS AN INITIAL
VALUE. THE VALUE IS REPLACED BY
ZERO.

(Condition code - 4)

Programmer Response: Probable
user error. If the value of the
octal constant is necessary,
convert it to the appropriate
hexadecimal equivalent. Verify
that a leading "O" has not been
inadvertently specified for a
leading "O" in an initialization
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

Appendix D: systE!m Diagnostics 184.1

Page Of GC2El-6817--2, Revised 12/30/70, by TNL: GN28-0591

IEK211I THE~ STATEMENT HAS A COMPLEX
CONSTANT WHOSE REAL CONSTANTS
DIFFER IN LENGTH.

(Condition code - 4)

Programmer Response: Probable
user error. Correct the constant
so that both parts are either
REAL*4 or REAL•8. If the problem
recurs, do the following before
calling IBM for programming
support~

• Have source and associated
listing available.

IEK212I THE BLOCK DATA SUBPROGRAM CONTAINS
EXECUTABLE STATEMENT(S}. THE
EXECUTABLE STATEMENT($) IS
IGNORED.

(Condition code - 4)

Programmer Response: Probable
user error. Delete the executable
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK222I THE EXPRESSION HAS A LITERAL WITH
A MISSING DELIMITER.

(Condition code - 4)

Proqrammer Response: Probable
user error. Correct invalid
delimiters or insert the missing
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
Ii.sting available.

IEK224I THE STATEMENT AFTER AN ARITHMETIC
IF, GO TO, OR RETURN HAS NO LABEL.

(Condition code - 4)

Programmer Response: Probable
user error. Insert any necessary
labels. If the problem recurs, do
the following before calling IBM
for programming support::

• Ha·ve source and associated
listing available.

IEK225I A LABEL APPEARS ON A
NON-EXECUTABLE STATEMENT. THE
LABEL IS IGNORED.

184.2

(Condition code - 4)

Programmer Response: Probable
user error. Delete the label. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing avallable.

IEK226I THE STATEMENT HAS A VARIABLE WITH
MORE THAN SIX CHARACTERS. THE
RIGHTMOST CHARACTERS ARE
TRUNCATED.

(Condition code - 4)

Programmer Response: Probable
user error. Delete extraneous
characters, or insert any missing
delimiter. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing avaj_lable.

IEK229I ALL THE ARGUMENTS OF AN ARITHMETIC
STATEMENT FUNCTION ARE NOT USED IN
THE DEFINITION.

(Condition code - 4)

Programmer Response: Probable
user error. If the definition is
correct, then delete extraneous
arguments. If arguments were
omitted in the definition, then
include them. Verify that the
expression on the right contains
as many distinct variables as
there are distinct dummy
arguments. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK302I THE EQUIVALENC:E STATEMENT HAS
EXTENDED COMMON BACKWARDSe

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that any
implicit equivalencing or
assignment statements involving
arrays do not create an extension
such that eleDM:mts are added
before the beginning of an
established COMMON block. If the
problem recurs, do the fol.lowing
before calling IBM for programming
support:

Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

• Have source and associated
listing available.

IEK303I THE EQUIVALENCE STATEMENT CONTAINS
AN ARRAY WHICH IS NOT DIMENSIONED.

(Condition code - 8)

Programmer Response: Probable
user error. Include the necessary
subscript quantity for the array
name. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEK304I THE EQUIVALENCE STATEMENT HAS
LINKED BLOCKS OF COMMON TOGETHER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that
implicit equivalencing does not
link COMMON blocks together. use
the MAP option to determine
locations of variable names in the
COMMON blocks in question• If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

• Make sure that the MAP option is
specified in the PARM field of
the EXEC statement.

IEK305I THE EQUIVALENCE STATEMENT CONTAINS
AN ARRAY WITH A SUBSCRIPT WHICH IS
OUT OF RANGE.

(Condition code - 4)

Programmer Response: Probable
user error. correct the invalid
subscript. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

• Make sure that the XREF option
is specified in the PARM
parameter of the EXEC statement,
and that the associated DD
statement is included in the job
stream.

IEK306I THE EQUIVALENCE STATEMENT HAS AN
INCONSISTENCY.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
EQUIVALENCE statement does not
contradict itself or any
previously established
equivalences. Verify that
implicit equivalencing, if it
occurs, does not create
inconsistencies. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK307I THE DATA STATEMENT CONTAINS A
VARIABLE THAT IS NOT REFERENCED.

(Condition code - 4)

Programmer Response: Probable
user error. Make sure that the
indicated variable has not
inadvertently been omitted from a
program unit. If not, delete the
variable from the DATA statement.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK308I THE EQUIVALENCE STATEMENT HAS
EQUIVALENCED TWO VARIABLES IN THE
SAME COMMON BLOCK.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that source
is correct. If necessary and if
possible, replace one of the
invalid variables with a variable
not in COMMON. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

• Make sure that the MAP option is
specified in the PARM field of
the EXEC statement.

IEK312I THE EQUIVALENCE STATEMENT CONTAINS
AN EXTERNAL REFERENCE.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
invalid externally referenced name
in the EQUIVALENCE group. If the
problem recurs, do the following

Appendix D: System Diagnostics 184.3

Page of GC28-6817-·2, Revised 12/30/70, by TNL: GN28-0591

before calling IBM for programming
support:

• Have source and associated
listing available.

IEK314I THE EQUIVALENCE STATEMENT MAY
CAUSE WORD BOUNDARY ERRORS.

(Condition code - 4)

~rog_ramrn~r Resp2p.se: Probable
user error. Arrange variables in
fixed descending order according
to length, or force proper
ali9nment with dummy variables.
con:struct the group so that the
displacement of each variable in
the group can be evenly divided by
the refer 1ence number associated
with the variable. Use the MAP
option for information on
variables and relative addresses.
If the problem recurs, do the
following before calling IBM for
pro9ramming support:

• Have source and associated
listing available.

• Make sure that the MAP option is
specifiE~d in the PARM field of
the EXEC statement.

IEK315I THE EQUIVALENCE STATEMENT WILL
CAUSE WORD BOUNDARY ERRORS.

(Condition code - 4)

Programmer Response: Probable
user error. Arrange variable in
fixed descending order according
to length or force proper
alignment with dummy variables.
construct the group so that the
displacement of each variable in
the group can be evenly divided by
the reference number associated
with the variable. Use the MAP
option for information on
variables and relative addresses.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK317I THE BLOCK DATA PROGRAM DOES NOT
CONTAIN A COMMON STATEMENT.

1.84. 4

(Condition code - 8)

Programmer Response: Probable
user error.. Make sure that all
elements of a COMMON block in any
main program or subprogram are
listed in a COMMON statement in

the BLOCK DATA subprogram. If the
problem recurs, do the following
before calling IBM for progamming
support:

• Have source and associated
listing available.

IEK318I THE DATA STATEMENT IS USED TO
ENTER DATA INTO COMMON OUTSIDE A
BLOCK DATA SUBPROGRAM.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the invalid
reference to the variable'. in
COMMON. Include the reference in
a BLOCK DATA subprogram or in an
assignment statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK319I DATA IS ENTERED INTO A LOCAL
VARIABLE IN A BLOCK DATA PROGRAM.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
variable appears in COMMON. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK320I DATA MAY NOT BE ENTERED INTO A
VARIABLE WHICH HAS BEEN PASSED AS
AN ARGUMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Delete any dummy
arguments that appear in the data
initialization list. Make sure
source is correct. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK322I THE COMMON STATEMENT MAY CAUSE
WORD BOUNDARY ERRORS.

(Condition code - 4)

Programmer Response: Probable
user error. Arrange variables in
fixed descending order according

Page of GC28-6817'-2, Revised 12/30/70, by TNL: GN28-0591

to length, or force proper
alignment with dummy variables.
Construct the block so that the
displacement of each variable can
be evenly divided by the reference
number associated with the
variable. Use the MAP option for
information on the relative
address of each variable in the
block. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

• Make sure that the MAP option is
specified in the PARM field of
the EXEC statement.

IEK323I THE COMMON STATEMENT WILL CAUSE A
WORD BOUNDARY ERROR.

(Condition code - 4)

Programmer Re§_£onse: Probable
user error. Arrange variable in
fixed descending order according
to length, or force proper
alignment with dummy variables.
construct the block so that the
displacement of each variable can
be evenly divided by the reference
number associated with the
variable. Use the MAP option for
information on the relative
address of each variable in the
block. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

• Make sure that the MAP option is
specified in the PARM field of
the EXEC statement.

IEK332I THE STATEMENT NUMBER IS UNDEFINED.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the source so
that a valid statement number is
referenced. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK334I THE COMMON STATEMENT HAS A
VARIABLE WITH A VARIABLE
DIMENSION.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that a
subscript quantity contains only 1
through 7 unsigned integer
constants separated by commas. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK350I THE DATA STATEMENT HAS A MISSING
PARENTHESIS.

(Condition code - 8)

Programmer Response: Probable
user error. correct any invalid
delimiters and insert the
appropriate parenthesis. If the
problem recurs, do the following
before calling IBM for- programming
support:

• Have source and associated
listing available.

IEK351I THE DATA INITIALIZATION VALUE IS
LARGER THAN THE VARIABLE OR ARRAY
ELEMENT - TRUNCATION OR SPILL WILL
OCCUR.

(Condition code - 4)

Explanation: An array or variable
was initialized with a constant
whose length was greater than the
length of an array element. If
the constant was specified as the
first element in a non-subscripted
array, part of the constant will
spill over into the succeeding
array element(s). If the constant
was specified as other than the
first element in a non-subscripted
array, or if it was specified as
any element in a subscripted
array, the constant will be
truncated.

Programmer Response: Probable
user error. If spill is not
desired, make sure that the length
of a constant specified does not
exceed the length of the element.
If truncation is not desired, make
sure that the length of any
constant specified as a subsequent
element in the array does not
exceed the element length. If the
problem recurs, do the following
before calling IBM for programming
support:

Appendix D: System Diagnostics 184.5

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

• Have source and associated
listing available.

IEK352I THE DATJ~ STATEMENT HAS TOO MANY
INITIALIZATION VALUES.

(Condition code - 4)

Programmer Response: Probable
user error. Make sure that a
one-to-one correspondence exists
between the total number of
elements specified or implied in
the data list and the total number
of constants specified by the
corresponding list embedded in
slashes. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK353I THE DIMENSION STATEMENT HAS A
VARIABLE WHICH HAS A SUBSCRIPT OF
REAL MODE.

(Condition code - 8)

Programmer Response: Probable
user error. Verify that all
subscripts are integer. Make sure
that only a combination of integer
and real mixed mode expressions
occurs, if mixed mode is present.
Check that no subscript rules are
violated. · If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK354I A VARIABLE TO BE DIMENSIONED USING
ADJUSTABLE DIMENSIONS MUST HAVE
BEEN PASSED AS AN ARGUMENT AND
MUST NOT APPEAR IN COMMON.

(Condition code - 8)

Programmer Response: Probable
user error. If the variable has
not been entered in a COMMON
statement, remove it. If the
variable :is not already in the
argument list, place it there. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK355I ADCON TABLE EXCEEDED.

(Condition code - 16)

184.6

Programmer Response: Probable
user error. Restructure any
complex statement into less
involved statements.. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available~

IEK356I A PARAMETER CANNOT ALSO BE IN
COMMON.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the source
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK357I THE ARRAY HAS AN INCORRECT
ADJUSTABLE DIMENSION.

(Condiiton code - 8)

Programmer Response: Probable
user error. correct invalid
adjustable dimension.. I:f the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK358I THE ADJUSTABL:E DIMENSION IS NOT
PASSED AS AN ARGUMENT OR IN
COMMON.

(Condition code - 8)

Programmer Response: Probable
user error. Either include the
adjustable dimension in an
argument list, or place it in
COMMON. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

• Make sure that the, XREF option
is specified in the PARM field
and that the associated DD
statement is included in the job
stream.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IEK402I OPEN ERROR ON ddname

Explanation: The data set corres­
ponding to the ddname cannot be
opened. If either the EDIT or the
XREF option has been requested,
the corresponding SYSUT1 or SYSUT2
DD card has not been found.

(Condition code - 16)

Programmer Response: Probable
user error. Make sure that
appropriate DD cards are included
in correct sequence with necessary
keyword and/or positional
parametersa If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified in the JOB
statement.

• Have source and associated
listing available.

IEK403I OPEN ERROR ON SYSPRINT

(Condition code - 16)

Programmer Response: Probable
user error. Check the SYSPRINT DD
statement and recompile. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified in the JOB
statement.

• Have source and associated
listing available.

IEK404I SYNCHRONOUS ERROR ON SYSPRINT

(Condition code - 16)

Proqrammer Response: Probable
user error. Check the SYSPRINT DD
statement and recompile. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified in the JOB
statement.

• Have source and associated
listing available.

IEK410I AN INVALID SIZE PARAMETER HAS BEEN
SPECIFIED. IT WILL BE IGNORED.

(Condition code - 4)

Programmer Response: Probable
user error. Correct the SIZE
parameter. Make sure that it is
specified within the allowable
range, and that the size of the
region or partition in which the
compiler is running is at least
10K larger than the specified SIZE
value. If the problem recurs, do
the following before calling IBM
for programming support:

• Make sure that MSGLEVEL=(l,1)
was specified in the JOB
statement.

• Have source and associated
listing available.

IEKSOOI AN ARGUMENT TO A FORTRAN SUPPLIED
FUNCTION IS OF THE WRONG TYPE.
THE FUNCTION IS ASSUMED TO BE USER
DEFINED.

(Condition code - 4)

Programmer Response: Probable
user error. If the function is
user-suppied, make sure the
function name appears in an
EXTERNAL statement. Make sure
that an argument mode is correct.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available •

IEK501I THE EXPRESSION HAS A COMPLEX
EXPONENT.

(Condition code - 8)

Programmer Response: Probable
user error. correct the exponent
so that it is integral with a
complex base, and otherwise
integral or real. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK502I THE EXPRESSION HAS A BASE WHICH IS
COMPLEX BUT THE EXPONENT IS
NON-INTEGER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
expression so that a complex base
has an integer exponent. If the
problem recurs, do the following

Appendix D: System Diagnostics 184.7

Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

before calling IBM for programming
support:

• Have source and associated
listing available.

IEK503I A NON-SUBSCRIPTED ARRAY ITEM
APPEARS IMPROPERLY WITHIN A
FUNCTION REFERENCE OR A CALL.

(Condition code - 8)

Programmer Response: Probable
user error. correct the invalid
array item following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK504I THE BASE AND/OR EXPONE::NT IS A
LOGICAL VARIABLE.

(Condition code - 8)

Prc~grammE~r Response: Probable
usE~r error. Make sure that base
and/or exponent are only of type
real, integer, or complex. Check
placement of parentheses. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
l.istin9 available.

IEK505I THE INPU'l'/OUTPUT STATEMENT REFERS
TO THE S'l~ATEMENT NUMBER OF A
NON-FORMJl,T STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. correct the invalid
statement number. If the problem
recurs, do the following before
calling IBM for progratmning
support~

• Have source and associated
listing available.

IEK506I THERE IS A MISSING OPEHAND
PRECEEDING A RIGHT PARENTHESIS.

184.8

(Condition code - 8)

Programmer Response: Probable
user error. correct the statement
and resubmit the job. If the
problem r•ecurs, do the following
before cal],.ing IBM for programming
support:

• Have source and associated
listing available.

IEK507I A NON-SUBSCRIPI'ED ARRAY ITEM IS
USED AS AN ARGUMENT TO Jrn IN-LINE
FUNCTION.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the array
item. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEKSOBI THE NUMBER OF ARGUMENTS TO AN
IN-LINE FUNCTION IS INCORRECT.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that
necessary delimiters are
indicated. Correct or delete
items in the argument list. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source! and as:soci.ated
listing available.

IEK509I THE PROGRAM DOES NOT END WITH A
STOP, RETURN, OR GO TO.

(Condition code - 4)

Programmer Response: Probable
user error. Insert the necessary
terminal statement. If the
problem recurs, do the following
before calling IBM for programmer
support:

• Have source and associated
listing available.

IEK510I THE EXPRESSION HAS A LOGICAL
OPERATOR WITH A NON-LOGICAL
OPERAND.

(Condition code - 8)

Programmer Response: Probable
user error. correct the operand.
Make sure that a logical primary
or logical expressions have
correct form. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK512I THE LOGICAL IF DOES NOT CONTAIN A
LOGICAL EXPRESSION.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

(Condition code - 8)

Programmer Response: Probable
user error. correct the
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK515I THE EXPRESSION HAS A RELATIONAL
OPERATOR WITH A COMPLEX OPERAND.

(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
complex operand. Equivalence a
real array of two elements to a
complex variable to pennit use of
the relational operator, if
necessary. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK516I THE ARITHMETIC IF CONTAINS A
COMPLEX EXPRESSION.

(Condition code - 8)

Programmer Response: Probable
user error. correct the
expression. convert the
expression, if possible, to a
permissible type. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK520I THERE IS A COMMA IN AN INVALID
POSITION.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or reposition
the comma. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK521I THE EXPRESSION HAS AT LEAST ONE
EXTRA RIGHT PARENTHESIS.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct
extraneous and invalid I

parentheses. Make sure
parentheses are balanced. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK522I THE EXPRESSION HAS AT LEAST ONE
TOO FEW RIGHT PARENTHESES.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or add needed
parentheses. Make sure
parentheses are balanced. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK523I THE EQUAL SIGN IS IMPROPERLY USED.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid equal sign. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK524I THE EXPRESSION HAS AN OPERATOR
MISSING AFTER A RIGHT PARENTHESIS.

(Condition code - 8)

Programmer Response: Probable
user error. Insert the missing
operator or delete the erroneous
parenthesis. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK525I THE EXPRESSION USES A LOGICAL OR
RELATIONAL OPERATOR INCORRECTLY.

(Condition code - 8)

Programmer Response: Probable
user error. Either correct the
logical or relational operator, or
change invalid operand
expressions. Make sure operators

Appendix D: System Diagnostics 184.9

Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

ar1e preceded and followed by a
period. Verify that expressions
precede operators where required.
If the problem recurs, do the
f ollowinq before calling IBM for
programming support:

• Have source and associated
listing available.

IEK529I A PUNCTION NAME APPEARING AS AN
ARGUMENT HAS NOT BEEN DECLARED
EX'J~ERNAL.

<condition code - 8)

!'.!:s::~ammer Response: Probable
user error. Insert the required
EXTERNAL statement, or delete or
correct the invalid function
reference!. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK530I THE EXPRESSION HAS A VARIABLE WITH
AN IMPROPER NUMBER OF SUBSCRIPTS.

(Condition code - 8)

E_roqramm~r Response: Probable
user error. Check for all
necessary delimiters. Make sure
that there are as many subscripts
as are declared in the associated
specification statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK531I THE EXPRESSION HAS A STATEMENT
FUNCTION HEFERENCE WITH AN
IMPROPER NUMBER OF ARGUMENTS.

(Condition code - 8)

E_roqramme:r~esp2ns~: Probable
user error. Correct the invalid
function reference. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK541I AN ARGUMENT TO A LIBRARY FUNCTION
HAS Jrn INV.A.LID TYPE.

(Condition code - 8)

184.10

Rrogrammer Response: Probable
user error. Corrrect the invalid
argument. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK542I A LOGICAL EXPRESSION APPEARS IN
INVALID CONTEXT.

(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
source statement. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK550I PUSHDOWN, ADCON, OR ASF ARGUMENT
TABLE EXCEEDED.

(Condition code - 16)

Programmer Response: Probable
user error. Change the program
structure. If there are many
subroutine references in a program
unit, subdivide the program unit.
Restructure deeply nested
expressions or eliminate some ASF
arguments where many occur, if
possible. Where parentheses are
deeply nested, restructure the
source statement, if possible, to
eliminate some of the nesting. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK552I SOURCE PROGRAM IS TOO LARGE.

(Condition code - 16)

Programming Response: Probable
user error. Subdivide the program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IEK570I TABLE EXCEEDED. OPTIMIZATION
DOWNGRADED.

(Condition code - 0)

Explanation: Probable user error.
The program is too large to permit
optimization. This is a warning
message and appears in the source
listing at the point where the
table (RM&JOR) overflows. The
compiler performs OPT=l register
allocation only; no other
optimization is performed.

Proqrammer Response: Probable
user error. Either the program
should be segmented or the size of
the table RMAJOR should be
increased. RMAJOR may be
increased by increasing the size
of the compiler at system
generation time. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK580I COMPILER ERROR.

(Condition code - 16)

Explanation: One of the following
four conditions occurred: an
invalid adjective code was
detected; an illegal element
length was detected; no
equivalence group was found; an
unusual primary adjective code was
detected.

Programmer Response: Probable
user error. Make sure that the
source program is correct. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK600I INTERNAL COMPILER ERROR.
LOGICALLY IMPOSSIBLE BRANCH TAKEN
IN A COMPILER SUBROUTINE.

(Condition code - 16)

Programmer Response: Probable
user error. Make sure that the
source code is correct. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK610I THE STATEMENT NUMBER OR GENERATED
LABEL IS UNREACHABLE.

(Condition code - 4)

Note: This message is generated
only if OPT=2 is specified in the
EXEC statement.

Proqrammer Response: Probable
user error. Make sure that
control statements indicate
correct branch targets. Verify
that an unlabeled STOP, RETURN, or
GO TO does not immediately follow
any one of these same three source
statements. Make sure that the
statement following an arithmetic
IF is labeled. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK620I THE STATEMENT NUMBER OR GENERATED
LABEL IS A MEMBER OF AN
UNREACHABLE LOOP.

(Condition code - 4)

Note: This message is generated
only if OPT=2 is specified in the
EXEC statement.

Proqrammer Response: Probable
user error. Make sure that
control statements indicate
correct branch targets. correct
labels so that the loop may be the
target of a branch. Delete
invalid terminal source
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK630I INTERNAL TOPOLOGICAL ANALYSIS
TABLE EXCEEDED.

(Condition code - 16)

Programmer Response: Probable
user error. Insert statement
numbers where a large span of
source code exists without
statement numbers. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

Appendix D: System Diagnostics 184.11

Page of GC28-6817·-2, Revised 12/30/70, by TNL: GN28-0591

LOAD MODULE EXECU'rION DIAGNOSTIC MESSAGES

The load module produces three types of
diagnostic messages:

• Program interrupt messages
• Execution error messages
• Operator message

Program Interrupt Messages

Program interrupt messages containing
the old Program Status word (PSW) are
written when an exception occurs. The
format of the program interrupt message
when the extended error message facility
has not been specified at system generation
time is given in Figure 100. Program
interrupt messages IHC207I, IHC208I, and
IHC209I are produced only when the extended
error message facility has been specified.
The format of these messages can be found
in the section "Execution Error Messages."

~9te: codes 4, Sf 6, and 1 are associated
with the execution-time adjustment of
boundary alignment errors and appear only
when the system is generated to provide
boundary alignment adjustment; i.e • ., when
BOUNDRY=ALIGN is specified in the FORTLIB
macro instruction during system generation
<see the ~tern G~neration publication).

The letter A in the message indicates
that boundary adjustment has taken
place.The letter P in the message indicates
that the interruption was precise. This
will always be the case for
non-specification interrupt messages in
FORTRAN except whEm using machines with
special hardware cm which imprecise
interruptions may occur. The eighth
character in the PSW (i.e., 4, 5, 6, 7, 9,
c, D, or F) represents the code number (in
hexadecimal> associated with the type of
interruption. The following text describes
these interruptions.

Protection ExceptJ.on: The protection
exception <code 4), is recognized when the
key of an operand in storage does not match
th€ protection key in the PSW. A message
is issued only if a specification exception
(code 6) has already been recognized in the
same instruction. Otherwise, the job
terminates abnormally.

If the extended error message facility
is specified, the following information is
provided.

IBCOM - PROGRAM INTERRUPT - ALIGNMENT OLD
PSW IS XXXXXXXLl·XXXXXXXX

184.14

supplemental Data: None.

standard Corrective Action: Continue
execution at point of interrupt.

Programmer Response: Probable user error.
If the job has been te:rminated with a
completion code of SYSTEM=OC6
(specification interrupt), correct the
source causing boundary misalignment. If
the problem recurs, do the following before
calling IBM for programming support:

• Make sure that MAP, :LIST, and DUMP have
been specified as parameters on the EXEC
statement and provide the necessary
GO.SYSUDUMP or GO.SYSABEND DD statement.

• Make sure that the XREF option is
specified in the PARM field of the EXEC
statement and that the necessary DD
statement is include!d.

• Have source and associated listing
available.

Addressing Exception: The addressing
exception (code 5) is recognized when the
address of the data is outside of the
available storage for the particular
installation. A message is issued only if
a specification exception (code 6) has
already been recognized in the same
instruction. Otherwise, the job terminates
abnormally.

If the extended error message facility
is specified, the following information is
provided.

IBCOM - PROGRAM INTERRUPT - ALIGNMENT OLD
PSW IS xxxxxxx5xxxx.xxxx

Supplemental Data: None.

Standard corrective Action: continue
execution at point of interrupt.

Programmer Response: Probable user error.
If the job has been terminated with a
completion code of SYSTEM=OC6
<specification interrupt>, correct the
source causing boundary misalignment. If
the problem recurs, do the following before
calling IBM for programming support:

• Make sure that MAP, LIST, and DUMP have
been specified as parameters on the EXEC
statement and provide the necessary
GO.SYSUDUMP or GO.SYSABEND DD statement.

• Make sure that the XREF option is
specified in the PARM field of the EXEC
statement and that the necessary DD
statement is included.

• Have source and associated listing
available.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

r---1
I 4 I
I s I
I 6 I
I IHC210I PROGRAM INTERRUPTl(A)l-- OLD PSW IS xxxxxxx 7 xxxxxxxx I
I <P>~ 9 I
I c I
I D I
I F I
l---·--------------------------------------J
Figure 100. Program Interrupt Message Format Without Extended Error Message Facility

Specification Exception: The specification
exception (code 6) is recognized when a
data address does not specify an integral
boundary for that unit of information. For
example, a specification error would occur
during execution of the following
instructions.

REAL*8 D, E
COMMON A, B, C
EQUIVALENCE (B, D)
D = 3.0D02

~ote: If an instruction contains a
boundary violation, a specification
interrupt occurs and the message is issued
with code 6. The boundary adjustment
routine is invoked if the BOUNDRY=ALIGN
option was specified in the FORTLIB macro
instruction during system generation. If
an instruction which has been processed for
a boundary violation also contains a
protection, addressing, or data error, the
interrupt message is reissued with the
appropriate code (4, 5, or 7). The job
then terminates because both a
specification erro~ and a protection,
addressing, or data error have been
detected. The completion code in the dump
indicates that the job terminated because
of the specification error.

If the extended error message facility
is specified, the following information is
provided.

IBCOM - PROGRAM INTERRUPT - ALIGNMENT OLD
PSW IS xxxxxxx6xxxxxxxx

Supplemental Data: None.

Standard Corrective Action: Continue
execution at point of interrupt.

Proqrammer Response: Probable user
error. Make sure that proper alignment of
variables is guaranteed. Arrange variables
in fixed descending order according to
length, or force proper alignment with
dummy variables. Construct COMMON blocks
so that the displacement of each variable
can be evenly divided by the reference
number associated with the variable. Use
the MAP option for information on the
relative address of each variable in the

block. Make sure that EQUIVALENCE
statements do not cause misalignment. If
the problem recurs, do the following before
calling IBM for programming support:

• Make sure that MAP, LIST, and DUMP have
been specified as parameters on the EXEC
statement and provide the necessary
GO.SYSUDUMP or GO.SYSABEND DD statement.

• Make sure that the XREF option is
specified in the PARM field of the EXEC
statement and that the necessary DD
statement is included.

• Have source and associated listing
available.

Data Exception: The data exception (code
7), is recognized when the sign and digit
codes for a CONVERT TO BINARY instruction
are incorrect. A message is issued only if
a specification exception (code 6) has
already been recognized in the same
instruction. Otherwise, the job terminates
abnormally.

If the extended error message facility
is specified, the following information is
provided.

IBCOM - PROGRAM INTERRUPT - ALIGNMENT OLD
PSW IS xxxxxxx7xxxxxxxx

Supplemental Data: None.

Standard Corrective Action: continue
execution at point of interrupt.

Programmer Response: Probable user error.
If the job has been terminated with a
completion code of SYSTEM=OC6
(specification interrupt), correct the
source causing boundary misalignment. If
the problem recurs, do the following before
calling IBM for programming support:

• Make sure that MAP, LIST, and DUMP have
been specified as parameters on the EXEC
statement and provide the necessary
GO.SYSUDUMP or GO.SYSABEND DD statement.

• Make sure that the XREF option is
specified in the PARM field of the EXEC

Appendix D: System Diagnostics 184.15

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

statement and that the necessary DD
statement is included.

• Have source and associated listing
available ..

Fixed-Point--Divide Exceptio!!: The
f ixed-point--di vid•= exception, assigned code
number 9, is reco9nized when division of a
fixed-point number by zero is attempted. A
fixed-point divide exception will occur
during execution of the following
statement:

K=I/J

where: I=7 and J=O

~at~: When dealing with large numbers, the
programmer should be aware that fixed-point
overflow does not cause an interrupt and
any overflow caus1:!S incorrect results. No
error message is issued.

:r;;;xpo!}ent-Qve!:flo~~~cept_!_on: 'I'he
exponent-ovE~rflow exception, assigned code
number c, is recoqnized when the result of
a floating-point addition, subtraction,
multiplication, or division is greater than
or equal to 1663 (approximately 7.2 x
107 5). For example, an exponent-overflow
will occur during execution of the
statement:

A 1.0E+75 + 7.2E+75

When the interrupt occurs, the result
register contains a floating-point number
whose fraction is normalized and whose sign
is correct. However, the number is not
usable for further computation since its
characteristic field no longer reflects the
true exponent. The content of the result
register as it existed when the interrupt
occurred is printed following the program
interrupt message with the format:

REGISTER CON~rAINED hhhhhhhhhhhhhhhh

where: hhhhhhhhhhhhhhhh is the
floating-point number in
hexadecimal notation.

If the improved floating-point
engineering changE~ is not in effect, the
register content cannot be used to
calculate the trUE~ value.

184.16

If the improved floating-point
engineering change is in effect, exponent
overflow causes "exponent wraparound" -
i.e., the characteristic field represents
an exponent that is 128 smaller than the
correct one. Treating bits 1 to 7 (the
exponent characteristic field) of the
floating-point number as a binary integer,
the true exponent may be computed as
follows:

TE = (Bits 1 to 7) + 128 - 64

Before program execution continues, the
FORTRAN library sets the result register to
the largest possible floating-point number
that can be represented in short precision
C166 3*(1-16- 6)) or in long precision
(1663*(1-16-14)) 1 but the sign of the
result is not changed. The condition code
is not altered.

Exponent-Underflow Exception: The
exponent-underflow exception, assigned code
number D, is recognized when the result of
a floating-point addition, subtraction,
multiplication, or division is less than
16-65 <approximately 5.4x10-79). For
example, an exponent-underflow exception
will occur during execution of the
statement:

A= 1.0E-50 * 1.0E-50

Although exponent underflows are
maskable, FORTRAN jobs are executed without
the mask so that the library will handle
such interrupts.

When the interrupt occurs, the result
register contains a floating-point number
whose fraction is normalized and whose sign
is correct. However, the number is not
usable for further computation since its
characteristic field no longer reflects the
true exponent. The content of the result
register as it existed when the interrupt
occurred is printed following the program
interrupt message with the format:

REGISTER CONTAINED hhhhhhhhhhhhhhhh

where: hhhhhhhhhhhhhhhh is the
floating-point number in
hexadecimal notation.

If the improved floating-point
engineering change is not in effect, the
exponent underflow always leaves a zero in
the result register.

If the improved floating-point
engineering change is in effect, exponent
underflow causes "exponent wraparound" -
i.e., the characteristic field represents
an exponent that is 128 larger than the
correct one. Treating bits 1 to 7 Cthe
exponent characteristic field) of the

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

floating-point number as a binary integer,
the true exponent may be computed as
follows:

TE = (Bits 1 to 7) - 128 - 64

Before program execution continues, the
library sets the result register to a true
zero of correct precision. If the
interrupt resulted from a floating-point
addition or subtraction operation, the
condition code is set to zero to reflect
the setting of the result register.

Note: The system/360 Operating System
FORTRAN programmer who wishes to take
advantage of the "exponent wraparound"
feature and handle the interrupt in his own
program must call an assembly language
subroutine to issue a SPIE macro
instruction that will override the FORTRAN
interruption routine.

Floating-Point-Divide Exception: The
floating-point-divide exception, assigned
code number F, is recognized when division
of a floating-point number by zero is
attempted. For example, a floating-point
divide exception will occur during
execution of the following statements:

C=A/B

where: A=l.O and B=O.O

Execution Error Messages

Execution error messages have the form:

IHCxxxI [message text]
TRACEBACK FOLLOWS-ROUTINE ISN REG. 14,

REG. 15, REG. O, REG. 1

The facility for error detection and
diagnostic messages is controlled by a
system generation option. When the
parameter OPTERR=INCLUDE is specified in
the FORTLIB macro instruction at system
generation time, the extended error
handling facility is made available during
program execution. This facility is not
made available if OPTERR=EXCLUDE is
specified or if no parameter is specified
at system generation time.

The description of each diagnostic
message contains the error code, the
abbreviated name for the origin of the
error, and an explanation describing the
type of error. In addition, supplemental
data is provided and standard corrective
action to be taken to correct the error is
described. Supplementary data and standard
corrective action are applicable only if
OPTERR=INCLUDE was specified.

Variable information in the message is
shown as X, and in the corrective action
descriptions, * denotes the largest
possible number that can be represented in
floating point. For all load module
execution error messages except IHC210I, a
condition code of 16 is generated and the
job step is terminated unless the
OPTERR=INCLUDE parameter was specified.

The abbreviated name for the origin of
the error is:

IBC - IHCFCOMH routine (performs
interruption, and error procedures).

FIOCS - IHCFIOSH routine (performs I/O
operations for FORTRAN load module
execution).

NAMEL - IHCNAMEL routine (performs
namelist processing>.

DIOCS - IHCDIOSE routine (performs
direct access I/O operations for FORTRAN
load module execution).

IBERR - IHCIBERH routine (performs the
processing of errors detected during
execution of the load modules.)

LIB - SYS1.FORTLIB. In the explanation
of the messages, the module name is
given followed by the entry point
name(s) enclosed in parentheses.

FCVTH - IHCFCVTH routine (performs
conversions).

Note: Message IHC210I is a program
interrupt message. For a description, see
Figure 100 and the section "Program
Interrupt Messages."

IHC207I IBCOM - PROGRAM INTERRUPT-OVERFLOW
OLD PSW IS xxxxxxxCxxxxxxxx
REGISTER CONTAINED X

This message is produced only when
the extended error message
facility is specified.

~lemental Data: The floating­
point number before alteration.

Standard Corrective Action:
Continue execution at point of
interrupt with result register set
to the largest possible
floating-point number that can be
represented in short precision
(1663*(1-16~6)) or in long
precision (166 3•(1-16-14)).

Proqrammer Response: Probable
user error. Make sure that a
variable or variable expression
does not exceed the allowable

Appendix D: System Diagnostics 184.17

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

magnitude. Verify that all
variable~s have been initialized
correctly in previous source
statements, and have not been
inadvertently modified in
intermediate source. If the
problem recurs, do the following
before calling IBM for programming
support.

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and the
necessary DD statement is
included.

• Have source and associated
listing available.

IHC208I IBCOM - PROGRAM
INTERRUPT-UNDERFLOW UNDERFLOW OLD
PSW IS xxxxxxxDxxxxxxxx REGISTER
CONTAINED X

184.18

This message is produced only when
the extended error message
facility is specified.

Supplemental Data: The floating­
point number before alteration.

Standard Corrective Action:
continue execution at point of
interrupt with result register set
to a true zero of correct
precision.

Programmer Response: Probable
user error. Make sure that a
variable or variable expression is
not smaller than the allowable
magnitude. Verify that all
variables have been initialized
correctly in previous source
statements and have not been
inadvertently modified in
intermed.iate source. If the
problem :recurs, do thE~ fallowing
before calling IBM for programming
support.

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
:i.nclud1::!d.

• Have source and associated
listing available.

IHC209I IBCOM - PROGRAM INTERRUPT-DIVIDE
CHECK OLD PSW IS
xxxxxxx\9lxxxxxxxx

IF\

IHC211I

This message is produced only when
the extended error message
facility is specified.

Supplemental Data: NonE~.

Standard CorJrecti ve Action: Leave
register unmodified.

Proqrammer Response: Probable
user error. Either correct the
source where division by zero is
occurring, or modify prE~vious
source statements to test for the
possibilities or bypass the
illegal division. If the problem
recurs, do the following before
calling IBM for programming
support.

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

§xplanation: IBC -- An invalid
character has been detected in a
FORMAT statement.

If the extended error message
facility is specified, the
following information is provided:

IBCOM - ILLEGAL COMPILED FORMAT
CHARACTER SPECIFIED
or
IBCOM - ILLEGAL VARIABLE FORMAT
CHARACTER SPECIFIED X

Supplemental Data: Character in
error.

Standard corrective Action:
Format field treated as an end of
format.

Programmer Response: Probable
user error. Make sure that all
format specifications read in at
object time are valid. If the
problem recurs, do the following
before calling IBM for programming
support:

IHC212I

IHC213I

Page of GC28-6817-·2, Revised 12/30/70, by TNL: GN28-0591

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

Explanation: IBC -- An attempt
has been made to read or write a
record, under FORMAT control, that
exceeds the buff er length.

If the extended error message
facility is specified~ the
following information is provided:

IBCOM - FORMATTED I/0 1 END OF
RECORD ON UNIT X

supplemental Data: Unit number.

Standard Corrective Action: For a
read, ignore remainder of I/O
list; for a write, start new
record with no control character.

Proqrammer Response: Probable
user error. If the error occurs
on input, verify that a FORMAT
statement does not define a
FORTRAN record longer than the
record referred to in the data
set. If reading in data, either
keep a counter to avoid exceeding
end of record or file, or insert
an END= parameter or on the READ
statement for appropriate transfer
of control on end of data set. No
record to be punched should be
specified as longer than 80
characters. For printed output
make sure that no specification is
longer than the printer's line
length. Check all DD statements.
If the problem recurs,, do the
following before calling IBM for
programming support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

• Make sure that LIST has been
specified as a parameter on the
EXEC statement.

Explanation: IBC -- The input
list in an I/O statement without a
FORMAT specification is larger
than the logical record.

IHC214I

If the extended error message
facility is specified, the
following information is provided:

IBCOM - UNFORMATTED READ, END OF
RECORD ON UNIT X

Supplemental Data: Unit number.

Standard Corrective Action:
Ignore remainder of I/O list.

Programmer Response: Probable
user error. Either keep a counter
to avoid exceeding end of record
or file, or insert an END=
parameter on the READ statement
for appropriate transfer of
control on end of data set. Check
all DD statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

• Make sure that LIST has been
specified as a parameter on the
EXEC statement.

Explanation: FIOCS -- For
unformatted records read or
written in sequentially organized
data sets, the record format
(RECFM) specification must include
the characters VS (variable
spanned); any of the optional
characters (B, A, M, or T) may be
specified with the characters vs.
This message appears if the
programmer has coded RECFM=V,
RECFM=U, or RECFM=F.

If the extended error message
facility is specified, the
following information is provided:

FIOCS - UNFORMATTED I/0 1 RECORD
FORMAT SPECIFIED AS F OR U ON UNIT
x

Supplemental Data: Unit number.

Standard Corrective Action: For
read, ignore I/O request; for
write, change record form to v.

Programmer Response: Probable
user error. Correct the RECFM
subparameter. Change a V
<variable) or U (undefined) or F
(fixed) specification to vs. or,

Appendix D: System Diagnostics 184.19

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

on a WRITE only, change the record
format to v. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing and the associated job
stream available.

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

IHC215I CONVERT - ILLEGAL DECIMAL
CHARACTER X

Explanation: An invalid character
exists for the decimal input
corresponding to an I, E, F, or D
format code.

Supplemental Data: Display the
record in which character
appeared.

Standard corrective Action: Zero
replaces the character
encountered.

Note: If the standard or
corrective user action results in
a null format, no output will
result. If the FORMAT statement
is terminated in such a way that
no conversion type is called for,
an alpha·-
nwneric literal may bE~ repeated
for each list item.

Proqrammer Response: Probable
user error. If an IHC214I message
has occu~red previously, correct
thE~ source causing the error.
Otherwise, make sure that all
decimal input is valid. correct
any FORMAT statements specifying
decimal input where character
should bf= indicated. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IHC216I SLITE-SLITET X IS AN ILLEGAL VALUE

~lanatJon: LIB An invalid
sense light number was detected in

184. 20

IHC217I

the argument list in a call to the
SLITE or SLITET subroutine.

supplemental Data: The sense
light value supplied.

Standard Corrective Action: For
SLITE, no action; for SLITET,
return OFF indication, i.e., J=2.

Programmer Response: Probable
user error. If CALL SLITE(i) is
specified ma.k:e sure that i is an
integer expression with a value of
0-4, inclusive. If CALL
SLITET(i,j) :is specified, make
sure that i is an integE~r
expression with a value of 0-4,
inclusive, and j is an integer
variable. If the problem recurs,
do the following before calling
IBM for programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

Explanation: IBC -- An end of
data set was sensed during a READ
operation; that is, a program
attempted to read beyond the data.

If the extended error message
facility is specified, the
following information is provided:

FIOCS - END OF DATA SET ON UNIT X

Supplemental Data: Unit number.

Standard Corrective Action: Read
next file, i.e., increment
sequence number by 1.

Programmer Response: Probable
user error. Make sure that a
FORMAT statement does not define a
FORTRAN record longer than the
record ref erred to in the data
set. Either keep a counter to
avoid exceeding end of record of
file, or insert an END= parameter
on the READ statement for
appropriate transfer of control on
end of data set. Check all DD
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

• Have source and associated
listing available.

• Make sure that LIST has been
specified as a parameter on the
EXEC statement.

IHC218I I/O ERROR xxx ••• xxx

Explanation: FIOCS or DIOCS -­
One of the following occurred:

• A permanent input/output error
has been encountered.

• For sequential I/0 1 the length
of a physical record is
inconsistent with the default
block size or the blocksize
specified on the DD card.

• An attempt has been made to read
or write with magnetic tape a
record that is fewer than 18
bytes long.

xxx ••• xxx is the character string
formatted by the SYNADAF macro
instruction. For an
interpretation of this
information, see the publication
IBM System/360 Operating System:
supervisor and Data Management
Macro Instructions, Order
No. GC28-6647. After the
traceback is completed, control is
returned to the call routine
statement designated in the ERR
parameter of a FORTRAN READ
statement if that parameter was
specified. (See "Use of ERR
Parameter in READ Statement" for
additional information.)

Note: If a permanent input/output
error has been detected while
writing in the object error unit
data set, the error message is
written in the SYSOUT data set and
execution of the job is
terminated.

If the extended error message
facility is specified, the
following information is provided:

FIOCS - I/O ERROR (text provided
by data management)

Supplemental Data: Unit number.

Standard corrective Action:
continue execution and ignore I/O
request.

Note: ERR= parameter is honored.

IHC219I

Programmer Response: Probable
user error. Make sure that, for
sequential I/O, the length of the
physical record is consistent with
the default or specified
blocksize. Check all DD
statements. Make sure that no
attempt has been made to read or
write with magnetic tape from a
record that is fewer than 18 bytes
in length. If the problem recurs,
do the following before calling
IBM for programming support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

• Make sure that LIST has been
specified as a parameter on the
EXEC statement.

Explanation: FIOCS -- Either a
data set is ref erred to in the
load module but no DD statement is
supplied for it, or a DD statement
has an erroneous ddname.

If the extended error message
facility is specified, the
following information is provided:

FIOCS - MISSING DD CARD FOR
(DDname)
or
DIOCS - MISSING DD CARD FOR UNIT X

Supplemental Data: Unit number.

Standard Corrective Action:
Continue execution and ignore I/O
request.

Eroqrammer Response: Probable
user error. Either provide the
missing DD statement, or correct
any erroneous ddname. Example:
If Unit 6 is the installation data
set reference number for the
printer and an attempt is made to
write on Unit 3, then the
following DD statement should be
included: //GO.FT03F001 DD
SYSOUT=A. If the problem recurs,
do the following before calling
IBM for programming support:

• Make sure that MSGLEVEL=(1,1.)
was specified on the JOB
statement.

• Have source and associated
listing available.

Appendix D: System Diagnostics 184.21

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IHC220I

• Make sure that LIST has been
specified as a parameter on the
EXEC statement.

• Have Stage I SYSGEN output
available.

~:~plar@_ti_2!!.!. FIOCS -- A data set
reference number exceeds the limit
specified for data set reference
numbers when this operating system
was generated.

If the extended error message
facility is specified, the
following information is provided:

FIOCS - UNIT NUMBER OUT OF RANGE.
UNIT=X
or
DIOCS - UNIT NUMBER OUT OF RANGE.
UNIT=X

Standard Corrective Action:
continue-execution-and ignore I/o
request.

~!:_Qqrammer_gesponse: Probable
user error. Correct the invalid
data set reference nwnber. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL= (1, 1)
was specified on the JOB
statement.

• Have source and associated
listin«~ available.

• Have Stage I SYSGEN output
available.

IHC221I NA.MEL-NAME LARGER THAN EIGHT
CHl\.RACTERS. NAME=X

184.22

~>lanat~.Qn: NAMEL -- An input
variable name exceeds eight
characters.

~plem~!:!tal Data: Name specified
(first eight characters).

Standard Corrective Action:
Ign;ore-rE~mainder of-name list
request ..

Programmer Response: correct the
invalid NAMELIST input variable,
or provide any missing delimiters.
If the problem recurs, do the

IHC222I

following before calling IBM for
programming support:

• Have source and associated
listing available.

NANEL-NAME NOT IN NAMELIST
DICTIONARY. NAME=X

Explanation: NAMEL -- An input
variable name is not in the
NAMELIST dictionary, or an array
is specified with an insufficient
amount of data.

Supplemental Data: Name
specified.

Standard corrective Action:
Ignore remainder of namelist
request.

Programmer Response: Probable
user error. Make sure that a
correct NAMELIST statement is
included in the source module for
all variable and/or array names
read in using NAMELIST. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IHC223I NAMEL-END OF RECORD ENCOUNTERED
BEFORE EQUAL SIGN. NAME=X

Explanation: NAMEL Either an
input variable name or a subscript
has no delimiter.

Supplemental Data: Name of item.

Standard Corrective Action:
Ignore remainder of the namelist
request.

Programmer Response: Probable
user error. Make sure that all
NAMELIST input data is correctly
specified and all delimiters are
correctly positioned. Check all
delimiters. Make sure that
sequence numbers are not present
in columns 73-80. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IHC224I NAMEL-SUBSCRIPT FOR
NON-DIMENSIONED VARIABLE OR
SUBSCRIPT OUT OF RANGE. NAME=X

Explanation: NAMEL -- A subscript
is encountered after an
undimensioned input name, or the
subscript is too big.

Supplemental Data: Name of item.

Standard Corrective Action:
Ignore remainder of the namelist
request.

~!:Qbabl~_g~~ons~: Probable user
error. Insert any missing
DIMENSION statements, or correct
the invalid array reference. If
the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IHC225I CONVERT-ILLEGAL HEXADECIMAL
CHARACTER X

Explanation: FCVTH -- An invalid
character is encountered on input
under Z format code.

Supplemental Data: Display the
record in which the character
appeared.

Standard Corrective Action: Zero
replaces the encountered
character.

Programmer Response: Probable
user error. Either correct the
invalid character, or correct or
delete the z format code. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

IHC230I SOURCE ERROR AT ISN xxxx -
EXECUTION FAILED [AT SUBROUTINE -
name]

~lanation: IBERR -- During load
module execution, a source
statement error is encountered.
The internal statement number for

IHC231I

the source statement is xxxx; the
routine that contains the
statement is specified by "name."

Supplemental Data: None.

Standard corrective Action:
Terminate execution.

Programmer Response: Make sure
that all source module code is
correct. If the problem recurs,
do the following before calling
IBM for programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Have source and associated
listing available.

Explanation: DIOCS -­
Direct-access input/output
statements are used for a
sequential data set, or
input/output statements for a
sequential data set are used for a
direct access data set.

If the extended error message
facility is specified, the
following information is provided:

IBCOM - DIRECT ACCESS STATEMENT
USED WITHOUT DEFINE FILE ON UNIT X
or
DIOCS - DIRECT ACCESS STATEMENT
USED FOR SEQUENTIAL DATA SET X
or
FIOCS - SEQUENTIAL I/O STATEMENTS
USED FOR DIRECT ACCESS DATA SET X

supplemental Data: Unit number.

Standard corrective Action:
Ignore I/O request.

Programmer Response: Probable
user error. Either include the
necessary DEFINE FILE statement
for direct access or delete the
DEFINE FILE for a sequential data
set. Make sure that all DD
statements are correct. Verify
that all data sets are referenced
with valid FORTRAN statements for
the data set type. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=(l,1)
was specified on the JOB
statement.

Appendix D: System Diagnostics 184.23

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IHC232I

IHC233I

184.24

• Have source and associated
listing available.

Explanation: DIOCS -·- Relative
position of a record is not a
positive integer, or the relative
position exceeds the number of
records in the data set.

If the extended error message
facility is specified., the
following information is provided:

DH~S - RECORD NUMBER X OUT OF
RANGE ON UNIT X

§!!]Qplemental Data: Unit number
and record number.

Standard Corrective Action:
Ignore I/O request.

Programmer Response: Probable
user error. Make sure that the
relative position on the data set
has been specified correctly.
Check all DD statements. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL= u, 1)

was specified on the JOB
statemE~nt.

• Have source and associated
listing available.

Explanat_!on: DIOCS -- The record
length specified in the DEFINE
FIL,E statement exceeds the
physical limitation of the volume
assigned to the data set in the DD
statement.

If the extended error message
facility is specified, the
following information is provided:

DIOCS - RECORD LENGTH GREATER THAN
32K-1 SPECIFIED FOR UNIT X

Supplemental Data: Unit number
specified.

Standard corrective Action: Set
record length to 32K.

Programmer Response: Probable
user error. Make sure that
parameters of the DD statement
conform to specifications in the
DEFINE FILE statement; the record
length in both must be equivalent
and within the physical
limitations of the assigned

IHC234I

IHC235I

volume. If the problem recurs, do
the following befon~ calling IBM
for programming support~

• Make sure that MSGLEVEL=<l,1)
was specified on the ~JOB

statement.

• Have source and associated
listing available.

Explanation: DIOCS -- 'I~he data
set assigned to print execution
error messages cannot be a direct
access data set.

If the extended error message
facility is specified, the
following information is provided:

DIOCS - ATTEMPT TO DEFINE THE
OBJECT ERROR UNIT AS DIRECT ACCESS
DATA SET. UNIT=X

Supplemental _Data: Unit number.

Standard Corrective Action:
Ignore define file entry.

Programmer Response: Probable
user error. Make sure that the
object error unit specified is not
direct access. See the
publication IBM System/360
Operating System: Syste~
Generation, Order Noo GC28-6554,
for information on assigning the
data set reference number. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEJ.r= <1, 1)
was specified on the JOB
statement.

• Have source and associated
listing available.

Explanation: DIOCS -- A data set
reference number assigned to a
direct access data set is used for
a sequential data set.

If the extended error message
facility is specified, the
following information is provided:

DIOCS - DEFINE A DATA SET WHICH
HAS BEEN USED SEQUENTIALLY AS A
DIRECT ACCESS DATA SET. UNIT=X

Supplemental Data: Unit number.

Standard Corrective Action:
Ignore define file entry.

IHC236I

IHC237I

Page of GC28-6811-2, Revised 12/30/70, by TNL: GN28-0591

Programmer Response: Probable
user error. Make sure that use of
and/or reference to sequential
data sets does not conflict with
FORTRAN defined direct access data
sets. Verify that device classes
assigned by the installation do
not conflict with the
specification on the UNIT
parameter of the DD statement.
Make sure that the DEFINE FILE
statement defines a direct access
data set. Check all DD
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=(1,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

Explanation: DIOCS -- A READ is
executed for a direct access data
set that has not been created.

If the extended error message
facility is specified, the
following information is provided:

DIOCS - READ REQUEST FOR AN
UNCREATED DATA SET ON UNIT X

Supplemental Data: Unit number.

Standard corrective Action:
Ignore I/O request.

Programmer Response: Probable
user error. Make sure that either
a data set utility program has.
been used, or appropriate
parameters have been specified on
the associated DD statement.
Verify that, if a DD statement is
used, DSNAME, UNIT, VOLUME, SPACE,
LABEL DISP, SYSOUT, and DCB are
specified correctly or omitted
where appropriate. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MSGLEVEL=(1,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

Explanation: DIOCS -- Length of a
record did not correspond to

length of record specified in
DEFINE FILE statement.

If the extended error message
facility is specified, the
following information is provided:

DIOCS - INCORRECT RECORD LENGTH
SPECIFIED FOR UNIT X

Supplemental data: Unit for which
error occurred.

Standard Corrective Action:
Ignore the I/O request.

IHC240I STAE--SYSTEM ABEND CODE IS XXXX.
FORTRAN CODE IS X.

Explanation: The XXXX field
contains the abnormal termination
completion code. The X field
contains one character, either A,
B, or c. The meanings of these
codes: are:

A -- Input/output has been halted
and cannot be restored.

B -- Input/output has been halted.
The system will attempt to
restart input/output and then
close data sets.

c -- No active input/output at
ABEND time. The system will
close data sets.

Standard corrective Action: None.

Programmer Response: Probable
user error. Make sure that
parameters on the DD statement
conform to specifications in the
DEFINE FILE statement. Verify
that record length, buffer length,
and/or block length as indicated
on the DD statement do not
conflict with specifications in
the DEFINE FILE statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MSGLEVEL=(1,1)
was specified on the JOB
statement.

• Have source and associated
listing available.

IHC241I FIXPI INTEGER BASE=O, INTEGER
EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation (I**J) in
the subprogram IHCFIXPI(FIXPI#)
where I and J represent integer

Appendix D: System Diagnostics 184.25

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

variables or integer constants, I
is equal to zero and J is less
than or equal to zero~

S~J2£lemental Data: Exponent
specified.

Standard Corrective Action:
Resul t=O-. ------·-----

Programmer Response: Probable
user error. Make sure that
integer variables and/or integer
constants for an exponentiation
operation are within the allowable
range. If the base and exponent
may or will fall outside that
range during program execution,
then either modify the operand(s),
or insert source code to test for
the situation and make the
compensation appropriate to the
program unit. Bypass the
exponentiation operation if
necessary. E!xampl~: Assume I,J,K
previously defined integer
variables.

IF(I.EQ.0.AND.J.LE.0) GO TO 11
K == I**J
11 CONTINUE

If the problem recurs, do the
following before calling IBM for
programming support:

• .Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is spec:if ied in the PARM field
of the EXEC statement and that
the necessary DD statement is
i.nclude?d.

• Have source and associated
listing available.

IHC242I FRXPI REAL*4 BASE=O.O, INTEGER
EXPONENT='Xr LE 0

184.26

Explanat!o~~ LIB -- For an
exponentiation operation (R**J) in
the subprogram IHCFRXPI(FRXPI#),
where R represents a real*4
variable or real•4 constant, and J
represents an integer variable or
integer constant, R is equal to
zero and J is less than or equal
to zero.

Sup12leme:!!_~al_J2~t<!: Exponent
specified.

Standard corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
the real variable or constant base
and the integer variable or
constant exponent for an
exponentiation operation are
within the allowable range. If
the base and exponent may or will
fall outside that range during
program execution, then either
modify the operand(s), or insert
source code to test :for the
situation and make the
compensation appropriate~ to the
program unitfi Bypass the
exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC243I FDXPI REAL*8 BASE=O.O, INTEGER
EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation (D**J) in
the subprogram IHCFDXPI(FDXPI#),
where D represents a real•8
variable or real*8 constant and J
represents an integer variable or
integer constant, D is equal to
zero and J is less than or equal
to zero.

Supplemental Data: Exponent
specified.

Standard Corr,§!cti ve ~c~ic~:
Result=O.

Programmer Response: Probable
user error. Make sure that both
the real variable or constant base
and the integer variable or
constant exponent for an
exponentiation operation are
within the allowable range. If
the base and exponent. may or will
fall outside that range during
execution, then either modify the
operand(s), or insert source code
to test for the situation and make
the compensation appropriate to
the program unit. Bypass the

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and the
necessary DD statement included.

• Have source and associated
listing available.

IHC244I FRXPR REAL*4 BASE=O.O, REAL*4,
EXPONENT=x.x, LE 0

Explanation: LIB -- For an
exponentiation operation (R**S) in
the subprogram IHCFRXPR(FRXPR#),
where R and S represent real*4
variables or real*4 constants, R
is equal to zero and S is less
than or equal to zero.

supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
the real variable or constant base
and exponent for an exponentiation
operation are within the allowable
range. If the base and exponent
may or will fall outside that
range during program execution,
then either modify the operand(s),
or insert source code to test for
the situation and make
compensation appropriate to the
program unit. Bypass the
exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC245I FDXPD REAL*8 BASE=O.O, REAL*8
EXPONENT=x.x, LE 0

Explanation: LIB -- For an
exponentiation operation (D**P) in
the subprogram IHCFDXPD(FDXPD#),
where D and P represent real*8
variables or real*8 constants, D
is equal to zero and P is less
than or equal to zero.

Supplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
the real variable or constant base
and exponent for an exponentiation
operation are within the allowable
range. If the base and exponent
may or will fall outside that
range during program execution,
then either modify the operand(s),
or insert source code to test for
the situation and make
compensation appropriate to the
program unit. Bypass the
exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC246I FCXPI COMPLEX*8 BASE=O.O+O.OI,
INTEGER EXPONENT=X, LE 0

Explanation: LIB -- For an
exponentiation operation (Z**J) in
the subprogram IHCFCXPI(FCXPI#),
where Z represents a complex•8
variable or complex*8 constant and
J represents an integer variable
or integer constant, Z is equal to
zero and J is less than or equal
to zero.

Supplemental Data: Exponent
specified.

Standard corrective Action:
Result=O.

Appendix D: System Diagnostics 184.27

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

f~Q_grammer Response: Probable
user error. Make sure that both
the complex variable .or constant
base and the integer variable or
constant exponent for an
exponentiation operation are
within the allowable range. If
the base and exponent may or will
fall outside that range during
program execution, then either
modify the operand(s), or insert
source code to test for the
situation and make the
compensation appropriate to the
program unit. Bypass the
exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
:i.s specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC247I FCDXI COMPLEX*16 BASE=O.O+O.OI,
IN~rEGER EXPONENT=X, LE 0

184.2B

Ex1~!anabi:_on_;_ LIB -- For an
exponentiation operation (Z**J) in
the subprogram IHCFCDXI(FCDXI#),
where z represents a complex*16
variable or complex*16 constant
and J represents an integer
variable or integer constant, Z is
equal to zero and J is less than
or equal to zero.

.§.~pplemental Data: Exponent
specified.

Standard Corrective Action:
Result=O.. - -

Pro_gra~~r Re§Eonse: Probable
user error. Make sure that both
thE~ complex variable or constant
base and the integer variable or
constant exponent for an
exponentiation operation are
within the allowable range. If
the~ base and exponent may or will
fall outside that range during
program e·xecution, then either
modify the operand(s), or insert
source code to test for the
situation and make the
compensation appropriate to the

program unit~ Bypass the
exponentiation operation if
necessary. (See similar example
for IHC241I.) If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC251I SQRT NEGATIVE ARGUMENT=X

Explanation: LIB -- In the
subprogram IHCSSQRT(SQRT), the
argument is less than O.

Supplemental Data: Argument
specified.

Standard Corrective Action:
Result= IX 11/2.

Rrogrammer Response: Probable
user error. Make sure that the
argument is within the allowable
range. Either modify the
argument, or insert source code to
test for a negative argument and
make the necessary compensation.
Bypass the function reference if
necessary. Example: Assume ARG
(REAL*4) is to be the input
argument to SORT. Then a simple
test might appear:

IF (ARG) 10,20,20
10 ARG ABS (ARG)
20 ANS = SORT (ARG}

If the problem recurs, do the
following before calling IBM for
programming support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IHC252I EXP. ARG=X. X, GT 174. 673

~~P!~na~ion~ LIB -- In the
subprogram IHCSEXP(EXP), the
argument is greater than 174.673.

~lemental Data: Argument
specified.

~~~~darQ_~Q~~~~~ive~cti2~: 
Result=*· 

ErogrammeLg§..§.EOnse: Probable 
user error. Make sure that the 
argument to the exponential 
function is within the allowable 
range. If the argument may or 
will exceed that range during 
program execution, then provide 
code to test for the situation 
and, if necessary, modify the 
argument or bypass the source 
referencing the function 
subprogram. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC spatement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC253I ALOG-ALOG10 ARG=x.x, LE ZERO 

Ex12lanation: LIB -- In the 
subprogram IHCSLOG(ALOG and 
ALOG10), the argument is less than 
or equal to zero. Because this 
subprogram is called by an 
exponential subprogram, this 
message also indicates that an 
attempt has been made to raise a 
negative base to a real power. 

supplemental Data: Argument 
specified. 

Standard corrective Action: If 
X=O, result=-*; if X<O, 
result=loglXI or log 10 IXI~ 

Programmer Response: Probable 
user error. Make sure that the 
argument to the logarithmic 
function is within the allowable 
range. If the argument may or 
will be outside that range during 
program execution, then provide 
code to test for the situation 

and, if necessary, modify the 
argument or bypass the source 
referencing the function 
subprogram. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
specified in the PARM field of 
the EXEC statement and that the 
necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC254I SIN-COS/ARG/=/X.X(HEX=X)/, GE 
PI*2**18 

Explanation: LIB -- In the 
subprogram IHCSSCN(SIN and COS), 
the absolute value of an argument 
is greater than or equal to 21°•rr. 
( 21 e • n =. 8 2 3 5 4 9 6 6 4 0 6 2 4 9 9 9 6 D+ 0 6 ) 

§l!2P1emental Data: Argument 
specified. 

Standard Corrective Action: 
Result= vT/2. 

Programmer Response: Probable 
user error. Make sure that the 
argument (in radians where 1 
radian~ 57.2957795131°) to the 
trigonometric sine or cosine 
function is within the allowable 
range. If the argument may or 
will exceed that range during 
program execution, then provide 
code to test for the situation 
and, if necessary, modify the 
argument or bypass the source 
referencing the function 
subprogram. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

Appendix D: System Diagnostics 184.29 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

IHC255I A'I'AN2 ARGUMENTS=O. 0 

Explanation: LIB -- In the 
subprogz:am IHCSATN2, when entry 
name ATAN2 is used, both arguments 
are equal to zero. 

SupplemE!ntal Data: Arguments 
specified. 

Standard Corrective Action: 
Result=O. 

Programmer Response: Probable 
user error. Make sure that both 
arguments do not become zero 
during program execution, or are 
not inadvertently initialized or 
modified to zero. Provide code to 
test for the situation and, if 
necessary, modify the arguments or 
bypass the source referencing the 
function subprogram. If the 
problem recurs, do the following 
before calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC256I SINH-COSH/ARG/=/X.X/, GE 175.366 

184.30 

Exp_!anation: LIB -- In the 
subprogram IHCSSCNH(SINH or COSH), 
the! argument is greater than or 
equal to 174.673. 

supplemental Data: Argument 
specified. 

Standard Corrective Action: 
Result=*· 

Programmer Response: Probable 
user error. Make sure that the 
argument to the hyperbolic sine or 
cosine function is within the 
allowable range. If the argument 
may or will exceed that range 
during program execution, then 
provide code to test for the 
situation and, if necessary, 
modify the argument or bypass the 
source referencing the function 
subprogram. If the problem 
recurs, do the following before 
calling IBM for prograimning 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC257I ASIN-ARCOS/ARG/=/X. X/ G'J~ 1 

Explanation: LIB -- In the 
subprogram IHCSASCN (ARCSIN or 
ARCOS), the absolute value of the 
argument is greater than 1. 

Supplemental Data: Argument 
specified. 

Standard Cori~ecti ve Action: 
Result=O. 

Programmer Response: Probable 
user error. Make sure that the 
argument to the arcsine or 
arccosing function is between -1 
and +1, inclusive. If the 
argument may or will fall outside 
that range during program 
execution, then provide code to 
test for the situation and, if 
necessary, modify the argument or 
bypass the source referencing the 
function subprogram. If the 
problem recurs, do the following 
before calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessa.ry DD statement is 
included. 

• Have source and associated 
listing available. 

IHC258I TAN-COTAN/ARG/=/X.X(HEX=X)/, GE 
PI*2**18 

Explanation: LIB -- In the 
subprogram IHCSTNCT (TAN or 
COTAN), the absolute value of the 
argument is greater than or equal 
to 2i..een. 
(21een=.82354966406249996D+06) 

Supplemental Data: Argument 
specified. 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

Standard corrective Action: 
Result=l. 

Programmer Response: Probable 
user error. Make sure that the 
argument (in radians where 1 
radian ~57. 2957795131°) to the 
trigonometric tangent or cotangent 
function is within the allowable 
range. If the argument may or 
will exceed that range during 
program execution, then provide 
code to test for the situation 
and, if necessary, modify the 
argument or bypass the source 
referencing the function 
subprogram. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC259I TAN-COTAN/ARG/=/~.X(HEX=X)/ 1 
APPROACHES SINGULARITY 

Explanation: LIB -- In the 
subprogram IHCSTNCT (TAN or 
COTAN), the argument value is too 
close to one of the singularities 

( +~'+3n, ... for the tangent; 
-2 -2 

or ±n,±2n, ... for the cotangent). 

Supplemental Data: Argument 
specified. 

Standard Corrective Actio~: 
Result=*· 

Programmer Response: Probable 
user error. Make sure that the 
argument (in radians where 1 
radian~ 57. 29 5779 5131°) to the 
trigonometric tangent or cotangent 
function is within the allowable 
range. If the argument may or 
will approach the corresponding 
singularities for the function 
during program execution, then 
provide code to test for the 
situation and, if necessary, 
modify the argument or bypass the 
source referencing the function 
subprogram. If the problem 
recurs, do the following before 

calling IBM for programming 
support! 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC261I DSQRT NEGATIVE ARGUMENT=X.X 

Explanation: LIB -- In the 
subprogram IHCLSQRT(DSQRT), the 
argument is less than O. 

supplemental Data: Argument 
specified. 

Standard Corrective Action: 
Result=IXl'-/2. 

Programmer Response: Probable 
user error. Make sure that the 
argument is within the allowable 
range. Either modify the 
argument, or insert source code to 
test for a negative argument and 
make the necessary compensation. 
Bypass the function reference if 
necessary. Example: Assume DARG 
(REAL*S) is to be the input 
argument to DSQRT. Then a simple 
test might appear: 

IF (DARG) 10,20,20 
10 DARG = DABS (DARG) 
20 ANS = DSQRT (DARG) 

If the problem recurs, do the 
following before calling IBM for 
programming support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC262I DEXP ARG=x.x, GT 174.673 

Explanation: LIB -- In the 
subprogram IHCLEXP(DEXP), the 
argument is greater than 174.673. 

Appendix D: System Diagnostics 184.31 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

su~ental Data: Argument 
specified. 

Standard Corrective Action: 
Result=*· 

PrQgrammer Respons.e: Probable 
us,er error. Make sure that the 
argument to the exponential 
function is within the allowable 
range. If the argument may or 
will exceed that range during 
program execution, then provide 
code to test for the situation 
and, if necessary, modify the 
argument or bypass the source 
referencing the function 
subprogram. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF optior. 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC263I DLOG-DLOG10 ARG=X.X, LE ZERO 

184.32 

~~~!~!!~~ion: LIB -- In the 
subprogram IHCLLOG(DLOG and
DLOGlO>, the argument is less than
or equal to zero. Because the
subprogram is called by an
exponential subprogram, this
message also indicates that an
attempt has been made to raise a
negative base to a real power.

~>plem~1tal Da~: Argument
spE!cif ied.

Standard Corrective Action: If
X=O, result=-*; if X<O,
result=loglXI or log 10 1x1.

ProqrammE!r Re§_Eonse: Probable
user error. Make sure that the
argument to the logarithmic
function is within the allowable
range. If the argument may or
will be outside that range during
program execution, then provide
code to test for the situation
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before

calling IBM for programming
support:

• Make sure 1that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC264I DSIN-DCOS/ARG/=/X. x (HEX=X) /I
GE PI*2**50

Explanation: LIB -- In the
subprogram IHCLSCN CDSIN and DCOS),
the absolute value of the argument
is greater than or equal to 25oen.

(2soe JC =. 353711887378 02239D+l 6)

Supplemental_Data: Argument
specified.

Standard Corrective Action:
Result = J't/2.

Proqrammer R~sponse: Probable
user error. Make sure that the
argument (in radians where 1
radian.:::::57.2957795131°) to the
trigonometric sine or cosine
function is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement~

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC265I DATAN2 ARGUMENTS=O.O

Explanation: LIB -- In the
subprogram IHCLATN2, when entry
name DATAN2 i:s used, both
arguments are equal to zero.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

supplemental Data: Arguments
specified.

Standard Corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that both
arguments do not become zero
during program execution, or are
not inadvertently initialized or
modified to zero. Provide code to
test for the situation and, if
necessary, modify the arguments or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM f o:r: programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC266I DSINH-DCOSH/ARG/=/X.X/ 1 GE 175.366

Explanation: LIB -- In the
subprogram IHCLSCNH (DSINH or
DCOSH), the absolute value of the
argument is greater than or equal
to 175.366.

supplemental Data: Argument
specified.

Standard corrective Action:
Result=*·

Programmer Response: Probable
user error. Make sure that the
argument to the hyperbolic sine or
cosine function is within the
allowable range. If the argument
may or will exceed that range
during program execution, then
provide code to test for the
situation and, if necessary,
modify the argument or bypass the
source referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC267I DARSIN-DARCOS/ARG/=/X.X/, GT 1

Explanation: LIB -- In the
subprogram IHCLASCN (DARSIN or
DARCOS), the absolute value of the
argument is greater than 1.

.§~emental Data: Argument
specified.

Standard corrective Action:
Result=O.

Programmer Response: Probable
user error. Make sure that the
argument to the arcsine or
arccosine function is between -1
and +1, inclusive. If the
argument may or will fall outside
that range during program
execution, then provide code to
test for the situation and, if
necessary, modify the argument or
bypass the source referencing the
function subprogram. If the
problem recurs, do the following
before calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC268I DTAN-DCOTAN/ARG/=/X.X(HEX=X)/ GE
PI*(2**50)

Explanation: LIB -- In the
subprogram IHCLTNCT (DTAN or
DCOTAN), the absolute value of the
argument is greater than or equal
to 2 5 0e:n:. (250e :n;

=.35371188737802239D+16)

~emental Data: Argument
specified.

Standard corrective Action:
Result=l.

Appendix D: System Diagnostics 184.33

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

-~!:.Q9::t;:~gi~er__g§_§20ns§_: Probable
user error. Make sure that the
argument (in radians where 1
radian::::::: 57. 2957795131c·) to the
trigonometric tangent or cotangent
function is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC2 6 9 I DTAN-DCO'I'AN/ ARG/=/X. X (HEX=X) / 1

APPROACHES SINGULARITY

184.34

J;;;~!~na~ion: LIB -- In the
subprogram IHCLTNCT (D'rAN or
DCOTAN), the argument value is too
close to one of the singularities

(±~'±3n, for the tangent;
2 2

or ±n,±2n, .•. for the cotangent).

§~JQlem~gta!_Q~~~: Arqument
specified.

Stal:!Q§.!:.Q~:orr_§_cti ve_~~tion:
Result=*·

~ro~1raffi!!.1~r- Res22nse: Probable
user error. Make sure that the
argument (in radians where 1
radian;::::i57.2957795131°) to the
trigonometric tangent or cotangent
function is within the allowable
range. If the argument may or
will approach the corre~ponding
singularities for the function
during program execution, then
provide code to test for the
situation and, if necessary,
modify the argument or bypass the
source referencing the function
subprogram. If the problem
recurs, do the following before
calling TBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC271I CEXP REAL ARG=X.X(HEX=X), GT
174.673

Explanation: LIB -- In the
subprogram IHCCSEXP (CEXP), the
value of the real part of the
argument is greater than l74.673.

.§:!:!.02!emental Qata: Argument
specified.

Standard Corrective Action:
Result=*(COS X + iSIN X) where X
is the imaginary portion of the
argument.

Programmer Response: Probable
user error. Make sure that the
argument is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation,
and, if neces~ary, modify the
argument or bypass the source
referencing the function
subprogram. If the
problem recurs, do the following
before callin9 IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC272I CEXP IMAG ARG=X(HEX=X), ABS VALUE
GE PI*2**18

Explanation: LIB -- In the
subprogram IHCCSEXP (CEXP), the
absolute value of the imaginary
part of the argument is greater
than or equal to 21a.n.

(21 8 •n=.82354966406249996D+06)

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

§"!:!02!~~~~tal_Q~~~: Argument
specified.

Standard corrective Action:
Result=O+Oi.

Programmer Response: Probable
user error. Make sure that the
argument to the exponential
function is within the allowable
range. If the argument may or
will exceed that range during
program execution, then provide
code to test for the situation,
and, if necessary, modify the
argument or bypass the source
referencing the function
subprogram. If the problem
recurs, do the following before
calling IBM for programming
support:

• Make sure that MAP and LIST have
been specified as parameters on
the EXEC statement.

• Make sure that the XREF option
is specified in the PARM field
of the EXEC statement and that
the necessary DD statement is
included.

• Have source and associated
listing available.

IHC273I CLOG ARGUMENT=O.O+O.OI

~~~~nati2n: LIB -- In the 
subprogram IHCCSLOG (CLOG), the 
real and imaginary parts of the 
argument are equal to zero. 

Supplem~ntaLQ~ta: Argument 
specified. 

Standard Corrective Action: 
Result=-*+Oi. 

Programmer Response: Probable 
user error. Make sure that both 
the real and imaginary parts of 
the argument do not become zero 
during program execution, or are 
not inadvertently initialized or 
modified to zero. Provide code to 
test for the situation and, if 
necessary, modify the argument or 
bypass the source referencing the 
function subprogram. If the 
problem recurs, do the following 
before calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC274I CSIN-CCOS/REAL ARG/=/X.X (HEX=X)/, 
GE PI*2**18 

Explanation_;_ LIB -- In the 
subprogram IHCCSSCN (CSIN or 
CCOS), the absolute value of the 
real part of the argument is 
greater than or equal to 210.n. 
c21een=.82354966406249996D+06) 

§!!P£!.emental Data: Argument 
specified. 

Standard Corrective Action: 
Result=O+Oi. 

Programmer Response: Probable 
user error. Make sure that the 
real part of the argument 
(in radians where 1 radian ~ 
57.2957795131°> to the 
trigonometric sine or cosine 
function is within the allowable 
range. If the real part of the 
argument may or will exceed the 
range during program execution, 
then provide code to test for the 
situation and, if necessary, 
modify the real part of the 
argument or bypass the source 
referencing the function 
subprogram. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC275I CSIN-CCOS/IMAG ARG/=/X.X CHEX=X)/ 
GT 174.673 

Explanation: LIB -- In the 
subprogram IHCCSSCN (CSIN or 
ccos>, the absolute value of the 
imaginary part of the argument is 
greater than 174.673. 

Appendix D: System Diagnostics 184.35 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

supplemental Data: Argument 
specif i.ed. 

Standard Corrective Data: If 
imaginar~part->o;-Tx-is real 
portion of argument): 

• For sine, result=•/2(SIN X + 
:Leos x:•. 

• For cosine, result=•/2(COS X -
iSIN X). 

If imaginary part <O, (X is real 
portion of argument): 

• For sine, result=*/2(SIN X -
iCOS X)I. 

• F'or cosine, result=*/2 (COS X + 
iSIN X). 

ProqramrnE~r ResponsEi: Probable 
user error. Make sure that the 
imaginary part of the argument Cin 
radians where 1 radian~ 
57.2957797131°) to the 
trigonometric sine or cosine 
function is within the allowable 
range. If the imaginary part of 
the· argument may or will exceed 
that range during program 
exe·cution, then provide code to 
test for the situation and, if 
necessary, modify the imaginary 
part of the argument or bypass the 
source referencing the function 
subprogram. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XHEF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC281I CDEXP-REA:L ARG=X.X(HEX==X) GT 
174 .• 673 

184.36 

Explanation: LIB -- In the 
subprogram IHCCLEXP (CDEXP), the 
value of the real part of the 
argument :is greater than 174.673. 

~!:!i>plemental Data: Argument 
specified .. 

Standard corrective Act.ion: 
Result=*(COS X + iSIN X) where X 

is the imaginary portion of the 
argument. 

Programmer RE~sponse: Probable 
user error. Make sure that the 
real part of the argument to the 
exponential function is within the 
allowable range. If the real part 
of the argument may or will exceed 
that range during program 
execution, then provide code to 
test for the situation and, if 
necessary, modify the real part of 
the argument or bypass the source 
referencing the function 
subprogram. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that MAP and :LIST have 
been specified as parameters on 
the EXEC statement~ 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC282I CDEXP !MAG ARG=X.X(HEX=X) ABS 
VALUE GE PI*2**50 

Explanation: LIB -- In the 
subprogram IHCCLEXP (CDEXP), the 
absolute value of the imaginary 
part of the argument is greater 
than or equal to 250en. 
(250en=.35371188737802239D+16) 

Supplemental Data: Argument 
specified. 

Standard Corrective Action: 
Resul t=•+Oi. 

Programmer Response: Probable 
user error. Make sure that the 
imaginary part of the argument to 
the exponential function is within 
the allowable range. If the 
imaginary part of the argument may 
or will exceed that range during 
program execution, then provide 
code to test for the situation 
and, if necessary, modify the 
imaginary part of the argument or 
bypass the source referencing the 
function subprogram. If the 
problem recurs, do the following 
before calling IBM for programming 
support: 



Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC283I CDLOG ARGUMENT=O.O+O.OI 

Explanation: LIB -- In the 
subprogram IHCCLLOG (CDLOG), the 
real and imaginary parts of the 
argument are equal to zero. 

Supplemental Data: Argument 
specified. 

Standard Corrective Actiog: 
Result=*+Oi. 

~roqraIIl!!!~r Response: Probable 
user error. Make sure that both 
the real and imaginary parts of 
the argument do not become zero 
during program execution, or are 
not inadvertently initialized or 
modified to zero. Provide code to 
test for the situation and, if 
necessary, modify the argument or 
bypass the source referencing the 
function subprogram. If the 
problem recurs, do the following 
before calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is'specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC284I CDSIN-CDCOS/REAL ARG/=/X.X 
(HEX=X)/ 1 GE PI*2**50 

Explanation: LIB -- In the 
subprogram IHCCLSCN (CDSIN or 
CDCOS), the absolute value of the 
real part of the argument is 
greater than or equal to 2soen. 
(250en=.35371188737802239D+16) 

§!!J2plem~gtal_Dat~: Argument 
specified. 

Standard Corrective Action: 
Result=O+Oi. 

Proqrammer Response: Probable 
user error. Make sure that the 
real part of the argument (in 
radians where 1 radian Z 
57.2957795131°) to the 
trigonometric sine or cosine 
function is within the allowable 
range. If the part of the 
argument may or will exceed the 
range during program execution, 
then provide code to test for the 
situation and, if necessary, 
modify the real part of the 
argument or bypass the source 
referencing the function 
subprogram. If the problem 
recurs, do the following before 
calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC285I CDSIN-CDCOS/IMAG ARG/=/X.X 
(HEX=X)/ 1 GT 174.673 

Explanation: LIB -- In the 
subprogram IHCCLSCN (CDSIN or 
CDCOS), the absolute value of the 
imaginary part of the argument is 
greater than 174.673. 

Supplemental Data: Argument 
specified. 

Standard Corrective Action: If 
imaginary part >O, (X is real 
portion of argument) : 

• For sine, result=*/2(SIN X + 
iCOS X). 

• For cosine, result=*/2{COS X -
iSIN X) • 

If imaginary part <O, (X is real 
portion of argument>: 

• For sine, result=*/2(SIN X -
iCOS X). 

• For cosine, result=*/2(COS X + 
iSIN X). 

Appendix D: System Diagnostics 184.37 



Page of GC2B-6817--2, Revised 12/30/70, by TNL: GN28-0591 

Prc~g~ainfI!~=r Response: Probable 
user error. Make sure that the 
imaginary part of the argument <in 
radians where 1 radian z 
57.2957795131°) to the 
trigonometric sine or cosine 
function is within the allowable 
range. If the imaginary part of 
the argument may or will exceed 
that range during program 
execution, then provid·e code to 
test for the situation and, if 
necessary, modify the imaginary 
part of the argument or bypass the 
source referencing the function 
subprogram. If the program 
recurs, do the following before 
calling IBM for prograrrnning 
support~ 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• M.ake sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
tbe necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC290I GAMMA ARG:=X. X(HEX=X), I.E 2**-252 
OR GE 57 .. 5744 

184.38 

~~I:?1anat~Jn: LIB -- In the 
subprogram IHCSGAMA (GAMMA), the 
value of the argument is outside 
the valid range. (Valid range: 
2- .2 5 2 <x<57. 5 7 4 4) 

Supplemental Data: Argument 
specified., 

Standard Corrective Action: 
Resttlt=*. ------·--------

f~Qgrammer Response: Probable 
user error. Make sure that the 
argument to the gamma function is 
within the allowable range. If 
the argume!nt may or will be 
outside that range during program 
execution, then provide code to 
test for the situation and, if 
necessary, modify the argument or 
bypass the· source referencing the 
function subprogram. If the 
problem recurs, do the following 
before calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC291I ALGAMA ARG=X.X(HEX=X), LEO. OR 
GE 4.2937*10**73 

Explanation: LIB -- In the 
subprogram IHCSGAMA (ALGAMA), the 
value of the .argument is outside 
the valid range. (Valid range: 
O<x<4. 2937x10'73) 

supplemental ~ata: Argument 
specified. 

Standard Corrective Action: 
Result=*· 

Programmer Response: Probable 
user error. Make sure that the 
argument to the algama function is 
within the allowable range. If 
the argument may or will be 
outside that range during program 
execution, then provide code to 
test for the situation and, if 
necessary, modify the argument or 
bypass the source referencing the 
function subprogram. If the 
problem recurs, do the following 
before callin9 IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specif i.ed as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the necessary DD statement 
included. 

• Have source and associated 
listing available. 

IHC300I DGAMMA ARG=X.X{HEX=X), LE 2••-252 
OR GE 57.5744 

Explanation: LIB -- In the 
subprogram IHCLGAMA (DGAMMA), the 
value of the argument is outside 
the valid rang 1e. (Valid range: 
2-2!!52<x<57.5744) 

Supplemental D.ata: Argument 
specified. 

Standard Corrective Actior!: 
Result=*· 

Programmer Response: Probable 
user error. Make sure that the 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

argument to the dgamma function is 
within the allowable range. If 
the argument may or will be 
outside that range during program 
execution, then provide code to 
test for the situation and, if 
necessary, modify the argument or 
bypass the source referencing the . 
function subprogram. If the 
problem recurs, do the following 
before calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC301I DLGAMA ARG=X.X(HEX=X), LEO. OR 
GE 4.2937*10**73 

Explanation~ LIB -- In the 
subprogram IHCLGAMA (DLGAMA), the 
value of the argument is outside 
the valid range. (Valid range: 
O<x<4.2937x1073) 

Supplemental Data: Argument 
specified. 

Standard corrective Action: 
Result=*· 

Programmer Response: Probable 
user error. Make sure that the 
argument to the dlgama function is 
within the allowable range. If 
the argument may or will be 
outside that range during program 
execution, then provide code to 
test for the situation and, if 
necessary, modify the argument or 
bypass the source referencing the 
function subprogram. If the 
problem recurs, do the following 
before calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

Even though message printing may be 
suppressed when the extended error message 
facility is available, a summary of errors 
is printed when the job is completed. Its 
format is shown in Figure 101 • The format 
of a traceback map is shown in Figure 102. 

•rhe headings in the traceback map may be 
described as follows: 

ROU'rINE The name of the routine entered, 
which was called by the next 
routine in the list. 

ISN When the compiler's ID option 
supplies an Internal Statement 
Number (!SN), the ISN entry is a 
symbolic reference to the point 
from which the routine was called. 

REG. 1.4 This is the absolute location 
reference to the point from which 
ROUTINE was called. By using the 
ENTRY POINT location, a relative 
location can be computed. 

REG. 15 This is the address of the entry 
point in ROUTINE. 

REG. 0 This is the result register used 
by function subprograms. 

REG. 1 This is the address of the 
argument list passed to ROUTINE. 

If the user specifies that an 
installation-supplied routine is to be used 
for corrective action, this line is added 
to the message: 

USER FIXUP TAKEN, EXECUTION CONTINUING 

For a standard corrective action, the 
message addition reads: 

STANDARD FIXUP TAKEN, EXECUTION 
CONTINUING 

Appendix D: System Diagnostics 184.39 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

SUMMARY OF ERRORS FOR THIS JOB ERROR NUMBER 
219 
217 
211 

Figure 101. Summary of Error and Traceback 

TRACEBACK FOLLOWS- ROUTINE 
IBCOM 
MAIN 

ENTRY POINT- 50008020 

Figure 102. Example of Traceback Map 

ISN 

If the extended error messaqe facility 
detects an error condition, an 
informational message is printed and the 
job may be terminated. The following text 
contains a description of such messages. 

REG. 14 
00008384 
00004918 

NUMBER OR ERRORS 
1 
1 
57 

REG. 15 
000089B8 
50008020 

REG. 0 
00000005 
00000030 

REG. 11 

000081A6 
0003FF04 

• Make sure that MSGLEVEL= Cl, 1) 
was specified on the JOB 
statement. 

• Have source and associated 
listing available. 

IHC900I EXECUTION TERMINATING DUE TO ERROR 
COUNT FOR ERROR NUMBER X 

~~E!.anation: This error has 
occurred frequently enough to 
reach the count specified as the 
number at which execution should 
be terminated. 

IHC901I EXECUTION TERMINATING DUE TO 
SECONDARY ENTRY TO ERROR MONITOR 
FOR ERROR X WHILE PROCESSING ERROR 
x 

184.40 

Sysi~em ~~"t.!2.!!: The job is 
terminated. 

Proqramrner Respons~: Probable 
user error. Make sure that 
occurrences of the error number 
indicated are eliminated. For 
alternative action, see the 
Extended Error Handling Facility 
section. If the problem recurs, 
do the following before calling IBM 
for progr1:imming support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

~~planation: In a user's 
corrective action routine, an 
error has occurred that has called 
the error monitor before it has 
returned from processing a 
diagnosed error. 

System Action: The job is 
terminated. 

Note: If Traceback follows this 
message, it may be unreliable. 

Programmer Response: Probable 
user error. Make sure that the 
error monitor is not called prior 
to processing the diagnosed error. 
~xample: A statement such as 
R=A**B cannot be used in the exit 
routine for error 252, because 
FRXPR# uses EXP, which detects 
error 252. If the problem recurs, 
do the following before calling 
IBM for programming support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 



Page of GC28-68l7-2, Revised 12/30/70, by TNL: GN28-0591 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

IHC902I ERROR NUMBER X OUT OF RANGE OF 
ERROR TABLE 

Exg1ana!:_io!!: A request has been 
made to reference a non-existent 
Option Table entry. 

system A£tio!!: The request is 
ignored and execution continues. 
IRETCD is set to zero. 

Programmer Response: Probable 
user error. Make sure that the 
value assigned to an error 
condition is within the range of 
entries in the option table. If 
the problem recurs, do the 
following before calling IBM for 
programming support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement in 
included. 

• Have source and associated 
listing available. 

• Have information from system 
generation time on the extended 
error handling facility 
available. 

IHC903I ATTEMPT TO CHANGE UNMODIFIABLE 
TABLE ENTRY, NUMBER=X 

~~!anation: The Option Table 
specifies that no changes may be 
made in this entry, but a change 
request has been made by use of 
CALL ERRSET or CALL ERRSTR. 

System Action: The request is 
ignored and execution continues. 

~~Qgrammer Re§.120nse: Probable 
user error. Make sure that no 
attempt has been made to alter 

dynamically an unmodifiable entry 
in the Option Table. If the 
problem recurs, do the following 
before calling IBM for programming 
support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

• Have information from system 
generation time on the extended 
error handling facility 
available. 

IHC904I ATTEMPT TO DO I/O DURING FIXUP 
ROUTINE FOR AN I/O TYPE ERROR 

Explanation: When attempting to 
correct an input/output error, the 
user may not issue a READ, WRITE, 
BACKSPACE, ENDFILE, REWIND, PDUMP, 
DEBUG, or ERRTRA. 

Syste!!!_Action: The job is 
terminated. 

~roqrammer Response: Probable 
user error. Make sure that, if an 
I/O error is detected, the user 
exit routine does not attempt to 
execute any FORTRAN I/O statement. 
If the problem recurs, do the 
following before calling IBM for 
programming support: 

• Make sure that MAP and LIST have 
been specified as parameters on 
the EXEC statement. 

• Make sure that the XREF option 
is specified in the PARM field 
of the EXEC statement and that 
the necessary DD statement is 
included. 

• Have source and associated 
listing available. 

• Have information from system 
generation time on the extended 
error handling facility 
available. 

Appendix D: System Diagnostics 185 



Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

~~tor Messages 

Operator messages for STOP and PAUSE are 
generated during load module execution. 

The message for a PAUSE can be one of 
the forms: 

{
PAUSE n } 

yy IHCOOlA PAUSE ,.message' . 
PAUSE 0 

where: yy is the identification 
number 

!! is the unsigned 1-5 digit 
integer constant 
specified in a PAUSE 
source statement 

'message' is the literal constant 
specified in a PAUSE 
source statement 

0 is printed out when a 

PAUSE 

statement is executed 

Explanation: The programmer should give 
instructions that indicate the action to be 
taken by the! opera tor when the PAUSE is 
encoW1tered. 

186 

User Response: To resume execution, the 
operator presses the REQUEST key. When the 
PROCEED light comes on, the operator types 

REPLY yy,'Z' 

where yy is the identification number and Z 
is any letter or numbc:~r. To resume program 
execution, the operator must press the 
alternate coding key and a numeric 5. 

The message for a STOP statement is of 
the form: 

where: !! 

IHC002I STOP n 

is the unsigned 1-5 digit 
integer constant specified in 
a STOP source statement. 
This value is placed in 
register 15 when the STOP 
statement is executed. 

A STOP or STOP 0 message is 
not displayed on the console. 

User Response: None 



APPENDIX E: EXTENDED AMERICAN NATIONAL STANDARD CARRIAGE CONTROL CHARACTERS 

Code Inter2retation 

* blank Space one line before printing 
* 0 Space two lines before printing 

Space three lines before printing 

* + Suppress space before printing 

* 1 Skip to first line of a new page 
2 Skip to channel 2 
3 Skip to channel 3 
4 Skip to channel 4 
5 Skip to channel 5 
6 Skip to channel 6 
7 Skip to channel 7 
8 Skip to channel 8 
9 Skip to channel 9 
A Skip to channel 10 
B Skip to channel 11 
c Skip to channel 12 
v Select punch pocket 1 
w Select punch pocket 2 

* These carriage control characters are identical to the FORTRAN carriage control 
characters specified in the FORTRAN IV Language publication. 

Appendix E: Extended American National Standard Carriage Control Characters 187 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591 

The UNIT parameter of the DD statement 
can identify an input or output unit by its 
actual address, its type number, or its 
group name. Type numbers, automatically 
established at system generation, corre­
spond to units entered into system 
configurations. Type numbers and 
corresponding units are listed here for the 
reader's convenience. The 2305 Drum 
Storage Unit, the 3330 Disk Storage Unit, 
and the 3211 Printer are listed for planning 
purposes only. 

2400-1 

2400-2 

2400-3 

2400-4 

188 

Unit 
2400 series 9-Track Maqnetic 

Tape Drive that can be 
allocated to a data set 
written or to be written 
in 800 bpi density 

2400 series Magnetic Tape 
Drive with 7-Track 
Compatibility and without 
Data conversion 

2400 series Magnetic Tape 
Drive with ?~Track 
Compatibility and Data 
conversion 

21.rno series 9-Track Magnetic 
Tape Drive that can be 
allocated to a data set 
written or to be written 
in 1600 bpi density 

2400 series 9-Track Magnetic 
Tape Drive having an 800 
and 1600 bpi (density) 
capability 

Direct Access Units 

Unit ~ 
2301 
2302 
2303 
2305 
2311 
2314 
2321 

3330 

Unit 
2301 Drum Storage Unit 
2302 Disk Storage Drive 
2303 Drum Storage Unit 
2305 Drum Storage Unit 
Any 2311 Disk Storage Drive 
2314 Storage Facility 
Any bin mounted on a 2321 

data cell drive 
3330 Disk Storage Facility 

Unit Record Equipment 
1052 
1403 

1442 
1443 
2501 
2520 
2540 

2540-2 

2671 
3211 

Graphic Units 
1053 
2250-1 
2250-3 
2260-1 

2260-2 

2280 
2282 

1052 Printer-Keyboard 
1403 Printer or 1404 Printer 

(continuous form only) 
1442 Card Read Punch 
any 1443 Printer 
2501 Card Reader 
2520 Card Read Punch 
2540 card Read Punch (read 

feed) 
2540 card Read Punch (punch 

feed) 
2671 Paper Tape Reader 
3211 Printer 

1053 Model 4 Printer 
2250 Display Unit, Model 1 
2250 Display Unit, Model 3 
2260 Model 1 Display Station 

(Local Attachment) 
2260 Model 2 Display Station 

(Local Attachment> 
2280 Film Recorder 
2282 Film Recorder-ScaTI~er 



Page of GC28-6817-2, Revised 12/30/70, by TNL: GNL~-U~7~ 

The FORTRAN IV (G) Debug Facility 
statements (DEBUG, AT, DISPLAY, TRACE ON 
and TRACE OFF) are described in the FORTRAN 
IV Language publication. This section---~ 
describes the output produced when these 
statements are used in a FORTRAN source 
module. 

DEBUG STATEMENT 

The options UNIT, TRACE, SUBTRACE, INIT, 
and SUBCHK may be specified in the DEBUG 
statement. The UNIT option indicates the 
unit on which the DEBUG output is to be 
written; if this option is omitted, DEBUG 
output is written on SYSOUT. 

TRACE 

TRACE output is written only when TRACE 
is on as a result of the TRACE ON 
statement. For each labeled statement that 
is executed, the line 

-DEBUG-TRACE statement-label 

is written. 

SUBTRACE 

SUBTRACE is used to trace program flow 
from one routine to another. For each 
subprogram called, the line 

-DEBUG-SUBTRACE subprogram-name 

is written on entry to the subprogram, and 
the line 

-DEBUG-SUBTRACE *RETURN* 

is written on exit from the subprogram. 

INIT 

The output produced as a result of the 
INIT option is written regardless of any 
TRACE ON or TRACE OFF statements in the 
source module. When the value of an 
unsubscripted variable listed in the INIT 
option 

APPENDIX G: FORTRAN IV (G) DEBUG FACILITY 

changes, the line 

-DEBUG-variable-name = value 

is written, with the value given in the 
proper format for the variable type. When 
the value of an element of an array listed 
in the !NIT option changes, the line 

-DEBUG-array-name(element-number) = value 

is written, with the format of the value 
determined by the type of the array 
elemE~nt. The single element number 
subscript is used regardless of the number 
of dimensions on the array. 

SUBCHK 

SUBCHK output is not affected by TRACE 
ON and TRACE OFF statements in the source 
module. When a reference to an array 
listed in the SUBCHK option includes 
subscripts such that the reference is 
outside the array, the line 

I -DEBUG-SUBCHK array-name<element-number> 

is printed. The statement including the 
out-of-bounds reference is operated 
nonetheless. 

DISPLAY STATEMEN'l' 

DISPLAY statement output is identical to 
NAMELIST WRITE output. The first line 
written is the name of the NAMELIST created 
by the compiler for the DISPLAY statement, 
preceded by the ampersand character: 

&DBGnn# 

where: 
nn is the 2-digit decimal value 

assigned to the DISPLAY statement; 
this value begins at 01 for the 
first DISPLAY statement in the 
source module and increases by one 
for each subsequent DISPLAY 
statement. 

The NAMELIST name is followed by the 
DISPLAY list, in NAMELIST format. The 
output is terminated with the line 

&END 

Appendix G: FORTRAN IV (G) Debug Facility 189 



~~~c vL ~LLH-b817-2, Revised 12/30/70, by TNL: GN28-0591 

Any DEBUG output which is produced
during an input/output operation is saved
in storage until the input or output
operation is complete, when it is written
out. Saving this information may require a
request for additional storage space from
the system. If the request cannot be
satisfied, some of the DEBUG output may be
lost. If this situation occurs, the
message

-DEBUG-SOME DEBUG OUTPUT MISSING

190

is written after the output which was
saved.

If a subscript appearing in an
input/output list includes a function
reference, and the FUNCTION contains a
DISPLAY statement, the DISPLAY cannot be
performed. In this case the message

-DEBUG-DISPLAY DURING I/O SKIPPED

is written in the DEBUG output.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

APPENDIX H: FORTRAN IV (H) OPTIMIZATION FACILITIES

This appendix contains information relating
to the use of the FORTRAN IV (H) compiler
optimization facilities.

PROGRAM OPTIMIZATION

Facilities are available in the FORTRAN
IV (H) compiler that enable a programmer to
optimize execution speed and to reduce the
size of the object module. However,
programs that are compiled using the
IBM-supplied cataloged procedures are not
optimized; OPT=O is the default option. A
programmer must override this default
option with either OPT=l or OPT=2 to
specify the use of the optimization
facilities. (See "Cataloged Procedures"
for overriding par- ameters in the EXEC
statement.)

When using OPT=l, the entire program is
a loop, while individual sections of
coding, headed and terminated by labeled
statements, are blocks. The object code is
improved by:

• Improving local register assignment.
(Variables that are defined and used in
a block are retained (if possible) in
registers during the processing of the
block. Time is saved because the num­
ber of load and store instructions are
reduced.)

• Retaining the most active base
addresses and variables in registers
across the whole program. (Retention
in registers saves time because the
number of load instructions are
reduced.)

• Improving branching by the use of RX
branch instructions. (An RX branch
instruction saves a load instruction
and reduces the number of required
address constants.>

When using OPT=2, the loop structure and
data flow of the program are analyzed. The
object code is improved over OPT=l by:

• Assigning registers across a loop to
the most active variables, constants,
and base addresses within the loop.

• Moving outside the loop many
computations which need not be
calculated within the loop.

• Recognizing and replacing redundant
computations.

• Replacing (if possible) multiplication
of induction variables by addition of
those variables.

• Deleting (if possible) references to
some variables.

• Using (where possible) the BXLE
instruction for loop termination. (The
BXLE instruction is the fastest
conditional branch; time and space are
saved.>

Programming Considerations Using the
Optimizer

In general, the specification of OPT=l
or OPT=2 causes compilation time to
increase. However, the object code
produced is more concise and yields shorter
execution times.

The object module logic, when optimized,
is identical to the unoptimized logic,
except in the following cases:

1D If the list of statement numbers in an
Assigned GOTO statement is incomplete,
errors, which were not present in the
unoptimized code, may arise in the
optimized code.

2.. With OPT=2, the computational
reordering done may produce a
different execution time behavior than
unoptimized code. For example, a test
of an argument of a FORTRAN library
function may be executed after the
call to the function. This is caused
by the movement of the function call
to the back target of the loop when
the function argument is not changed
within the loop.

DO 11 I=l,10
DO 12 J=l,10
IF (B(I).LT.0.)GO TO 11

12 C(J)=SQRT(B(I))
11 CONTINUE

The square root computation will occur
before the less-than-zero test, and
will result in a message if B(I) is
negative. A rearrangement of the
program which could avoid this
situation can be constructed:

Appendix H: FORTRAN IV (H) Optimization Facilities 191

DO 11 I=l,10
IF (B(I).LT.0.) GO TO 11
DO 12 J=l,10

12 C(J)=SQRT(B(I))
11 CONTINUE

A similar condition may result with
the statements:

CALL OVERFL (,J)
CALL DVCHK(J)

'These may produce different results
when optimized, because computations
causing overflow, underflow, or
divide-check conditions could be moved
out of the loop in which the test
occurs.

3. If a programmer defines a subprogram
with the same name as a
FORTRAN-supplied subprogram (e.g.,
~:IN, ATAN, etc.), errors could be
:i.ntroduced during optimization. If
the subprogram stores into its
arguments, refers to COMMON, performs
I/O, or remembers its own variables
from one execution to another, the
name of the subprogram must be
specified in an EXTERNAL statement to
allow the program to be optimized
without error.

4. In the statements

5.

192

COMMON X, Y1(10), W, Z
EQUIVALENCE (Yl, Y2)
DIMENSION Y2(l2)

there is an implied equivalence of Y2
(11) and W and Y2(12) and z.

If the optimization feature is not
used, and

w:=Q and A=Y2 (I) (where I=ll)

then the value of Q is assigned to A.

However, if OPT=2 is used, and

W=Q and A=Y2 (I) (where I=ll)

there is !!.Q guarantee that the value
of Q is assigned to A.

When a subprogram is called at one
entry point for initialization of
reference-by-name arguments" and at
another entry point for subsequent
computation, certain argument values
may not be transmitted. This applies
to either arguments of the second call
or any argument values redefined
bE~tween calls and not explicitly
defined in COMMON.

In the following example the
incremented valUE~ for I may not be
transmitted to the subprogram due to
the loop initialization optimization.

CALL INIT (I) SUBROUTINE INIT (/J /)

I = 0
10 CALL COMP

I = I + 1

GO TO 10

ENTRY COMP

6. With OPT=2, variables in named COMMON
arrays may not be stored on exit from
a FORTRAN main program if these
variables have not been used in an I/O
statement in that main program, or if
there is no subroutine call following
the definition of these variables.

Definition of a Loop

The term 'loop' is used to refer to DO
loops and other configurations of coding
that a programmer regards as a loop.

If a progranuner writes a loop which is
preceded by an IF statE~ment, a conditional
GOTO statement, or READ statement with END
or ERR parameters, the loop is not
identified and efficiency is lost. A
CONTINUE statement at the end of the range
of a DO also obscures a. loop (other than a
DO loop) that follows the CONTINUE without
intervening initialization. The insertion
of a labeled CONTINUE statement or any
other suitable rearrangement allows the
loop to be recognized.

The movement of computations from inside
a loop to the initialization coding is done
on the assumption that every statement in
the loop is executed more frequently than
the initialization coding. Occasionally,
this assumption fails and computations are
moved to a position where they are computed
more often. One way to prevent such a move
is to make a subprogram of the coding
<statements and computations) that is
executed less frequently within a loop than
it would be in the initialization coding.

The recognition of loops may also be
obscured when the programmer knows that
some paths through the program cannot
occur; for example,

10 IF (L) GOTO 200
20 I=1
30 ASSIGN 40 TO J

GOTO 100
40 I=I +1
50 IF (I.LE.N) GOTO 30

100 B(I) = FUNCT (I)
110 GOTO J, (40, 220)
200 ASSIGN 220 TO J
210 GOTO 100
220 CONTINUE

From the programmer's point of view, the
statements 30 to 50 comprise a loop which
is initialized by statement 20. The loop
causes an internal subprogram consisting of
statements 100 and 110 to be executed.
From the compiler's point of view, it
appears possible to execute statements- in
the order 10, 200, 210, 100, 110, 40, 50,
30. The compiler does not recognize the
loop, because it appears possible to enter
it without passing through the initializa­
tion coding in statement 20.

A loop can be obscured by tlle computed
GOTO, because the compiler always assumes
that one of the possible branches is to the
succeeding statement, even though the pro­
grammer knows that such a branch is impos­
sible. A loop can also be obscured by a
call to the EXIT routine, because the com­
piler assumes there is a path from such a
statement to the next.

Movement of Code Into Initialization of a
Loop

Where it is logically possible to do so
with OPT=2, the optimizer moves computa­
tions from inside the loop to the outside.
This movement permits a programmer to do
more straightforward coding without penalty
in object code efficiency.

If an expression is evaluated inside a
loop and all the variables in the expres­
sion are unchanged within the loop, the
computation is generally moved outside the

Table 26. Constant Expressions

loop into the coding sequence which ini­
tializes the loop. Even if the constant
expression is part of a larger expression,
this constant expression may still be rec­
ognized and moved. However, the movement
depends on how the larger expression is
written. Table 26 gives examples of ex­
pressions and the constant parts which are
recognized and moved.

Common Expression Elimination

With OPT=2, if an expression occurs
twice in such a way that:

1. any path starting at an entry to the
program always passes through the
first occurrence of the expression to
reach the second occurrence (and any
subsequent occurrence), and

2. any evaluation of the second (third,
fourth, etc.) expression produces a
result identical to the most recent
evaluation of the first expression,
then the value of the first expression
is saved (generally) and used instead
of the value of the second (third,
fourth, etc.) expression.

In statements such as:

A=B + C + D
E=C + D

the common expression c + D is not recog­
nized, because the first expression is com­
puted as (B + C) + D.

Induction Variable Optimization

:en a loop with OPT=2, an induction vari­
able is a variable that is only incremented
by a constant or by a variable whose value
is constant in the loop.

When an induction variable is multiplied
by a constant in the loop, the optimizer
may replace the multiplication with an

r---~-------------------~-----------------y---------------------------------~--------, I Expression where C1, c2, •• ~ I I
I are constant in the loop !Constant expression recognized and moved I
1---+-------------~----------------------------~ I C1 + C2 * C3/SIN (C4) I Cl + C2 * C3/SIN (C4) I
I Cl + C2 • C3 + Bl I Cl + C2 • C3 I
I Cl + B1 + C2 * C3 I C2 * C3 I
I Bl + C1 + C2 • C3 I C2 * C3 I
I Cl + B1 + B2 + C2 * C3 I C2 * C3 I
I Cl • C2/Bl I C1 • C2 I
L--'--------------------------~---------------J

Appendix H: FORTRAN IV (H) Optimization Facilities 193

addition by introducing a new induction
variable into the loop. This new induction
variable may make it possible to delete all
references to the original induction vari­
able. This deletion is likely to occur if
the original induction variable is used
only as a subscript within the loop, and
the value of the subscript is not used on
exit from the loop.

Reqis:ter Allocation

Some variables are assigned to a regis­
ter on entry to a loop and retained in the
register through part or all of the loop to
avoid loading and storing the variable in
the loop. Within the loop, the variable is
modified only in the assigned register, the
value of the variable in storage is not
changed. If necessary, the latest value of
the variable is stored after exit from the
loop.

'The value in general register 13, which
points to the start of a register save
area, remains constant during executicm of
a subprogram. This register is used to
ref er to data, and possibly to branch
within the program. The value in general
register 12 remains constant and is used to
branch within the program, and possibly is
used to ref er to data.

General registers 14 and 15 are used for
base addresses and index values on a
strictly local basis. Floating-point
register 0 and general register 0 are used
as locally assigned arithmetic accumula­
tors. General register 1 is used in con­
junction with general register 0 for fixed­
point arithmetic operations, and to point
to argument lists in subprogram linkages.

The remaining registers are used for
accumulators, index values, base addresses,
and high speed storage (a register
reference is faster than a main storage
reference).

Because general registers 12 and 13 are
not adequate to provide RX branching
throughout a large program, general regis­
ters 11, 10, and 9 may be pre-empted for RX
branching (only if the program exceeds SK,
12K, and 16K bytes, respectively). (RR
branches preceded by loads are required for
branching to points beyond the first 16K
bytes of the program and possibly to the
last part of a program if it exceeds BK,
12K, or 16K bytes by a small amount.)

194

COMMON Blocks

Because each COMMON block is independ­
ently relocatable, each requires at least
one base address to refer to the variables
in it. A sequence of coding that refers to
a large number of COMMON blocks is slowed
down.by the need to load base addresses
into general registers. Thus, if three
COMMON blocks can be combined into one
block whose total size is less than 4096
bytes, one base address can serve to refer
to all the variables. (Many register loads
can be avoided.)

The order in which data is entered into
a COMMON block may also affect the number
of base addresses needed. For example, if
an array of 5000 bytes is placed in a
COMMON block and followed by 200 bytes of
variables, two base addresses are needed:
the beginning address of the first variable
and the beginning address of the last dif­
fer by more than 4096 bytes. However, if
the variables preceded the array, one base
address would suffice.

EQUIVALENCE Statement~

Optimization tends to be weakened by the
occurrence of variable~s in EQUIVALENC:E
statements.

When an array appea.rs in an EQUIVALENCE
statement, a reference· to one of its ele­
ments cannot be eliminated as a common
expression, nor can the reference be moved
out of a loop. However, the elimination
and movement of subscript calculations used
for making the reference is not affected.

If a variable is made equivalent only to
another variable (not in COMMON) of the
same type and length, optimization is not
weakened. The net effect is that the com­
piler accepts the two names as alternate
pointers to the same storage locationn
However, if a variab.le is made equivalent
to another variable in any other way, all
references to it are 'immobilized': the
references cannot be eliminated, moved,
confined to registers, or altered in any
way.

Multidimensional Arrays

In general, references to higher dimen­
sional arrays are slower than references to
lower dimensional arrays. Thus, a set of
one-dimensional arrays is more efficient
than a single two-dimensional array in any

case where the two-dimensional array can be
logically treated as a set of one­
dimensional arrays.

Constants occurring in subscript expres­
sions are accounted for at compile time and
have no effect at execution time.

Program Structure

If a large number of variables are to be
passed among calling and called programs,
some of the variables should be placed in
the COMMON area. For example, in the main
program and subroutine EXAMPL

DIMENSION E(20),I(15)
READ(10)A,B,C
CALL EXAMPL(A,B,C,D,E,F,I)

END

SUBROUTINE EXAMPL (X,Y,Z,P,Q,R,J)
DIMENSION Q(20),J(15)

RETURN
END

time and storage are wasted by allocating
storage for variables in both the main pro­
gram and subprogram and by the subsequent
instructions required to transfer variables
from one program to another.

The two programs should be written using
a COMMON area, as follows:

COMMON A,B,C,D,E(20),F,I(15)
READ(10)A,B,C
CALL EXAMPL

END

SUBROUTINE EXAMPL
COMMON X,Y,Z,P 1 Q(20),R,J(15)

RETURN
END

Storage is allocated for variables in
COMMON only once and fewer instructions are
needed to cross reference the variables
between programs.

To reduce compilation time for
equivalence groups, the entries in the
EQUIVALENCE statement should be specified
in descending order according to off set.
For example, the statement

EQUIVALENCE (ARR1(10,10),ARR2(5,5),
ARR3(1,1) 1 VAR1)

compiles faster than the statement

EQUIVALENCE (VAR1,ARR3(1,1),ARR2(5,5) 1
ARR1(10,10))

~ro reduce compilation time and save
internal table space, equivalence groups
should be combined, if possible. For
example, the statement

EQUIVALENCE (ARR1(10,10),ARR2(5,5),VAR1)

compiles faster and uses less internal
table space than the statement

EQUIVALENCE (ARR1(10,10),VAR1),
(ARR2(5 1 5),VAR1)

Logical IF Statements

A statement such as:

IF(A.LT.B.OR.C.GT.F(X).OR •• NOT.L)GOTO 10

is compiled as though it were written:

IF (A .LT. B) GO TO 10
IF (C .GT. F(X)) GO TO 10
IF (.NOT. L) GOTO 10

Thus, if A .LT. B is found to be true, the
remainder of the logical expression is not
evaluated.

Similarly, a statement such as:

IF (D.NE. 7.0 .AND. E.GE.G) I=J

is compiled as:

20

IF (D.EQ. 7.0) GOTO 20
IF (E.LT.G) GOTO 20
I=J
CONTINUE

The order in which a programmer writes
logical expressions in an IF statement
affects the speed of execution.

If A is more of ten true than B, then
write A .OR. B rather than B .OR. A: and
write B .AND. A rather than A .AND. B.

If any of the following occur in a log­
ical expression:

Appendix H: FORTRAN IV (H) Optimization Facilities 195

Note: Whenever an interruption occurs on
other models of System/360, system routines
provide the setting of the result register
when requested. To maintain compatibility,
these operations are performed in the hard­
ware of the Models 91 and 195 since the
imprecise interruption prohibits the pro­
gramming technique.

198

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

* parameter 31
*.ddname 65
•.stepname.ddname 65
•.stepname.procstep.ddname 65

A, device class
correspondence with ddnames 41
in DD statement 31
with intermediate device 64
in JOB statement 20

ABEND dump 112
ABSTR subparameter 99
Accessing unused space 99
Account numbers 17
Accounting information

in the EXEC statement 26
in the JOB statement 17

Accounting routine 17
ACCT parameter 26
Address, specifying space beginning at 99
Affinity, device 98
ALIAS statement 48
ALX subparameter 63
American National Standard Extended
carriage Control Characters 187

AND function 92
Argument list considerations 150-151
Arithmetic IF statement 89
Arithmetic statement Functions 90
Array

initialization 91-92
notation 92

Arrays, multidimensional 194-195
Assembler language subprograms

~rgument list 146
calling sequence 146
example of 152
linkage conventions 148,149
RETURN i simulation 151
save area 146
subroutine references 146

Assigning job priority 20
Asterisk (*) parameter 31
ATTACH macro instruction 139
Automatic call library 46
Average-record-length subparameter 62,99

B, device class
correspondence with ddnames 41
in DD statement 32
with intermediate device 64

BACKSPACE
restriction with SYSIN 53
statement 70,93

Backspace operations 70-73
BCD compiler option 43
BCD translation 63
BDW 70
Blanks, embedded 89
BLKSIZE subparameter 65-71,93

Block Descriptor word (BDW) 70
Blocked records

with FORMAT control 68-70
without FORMAT control 69-70

BLP subparameter 63
Boundary adjustment

in COMMON blocks 88-89
routines (Model 91) 197

Branching 89
Buffers

length of 66-67
number of 65-66

BUFNO subparameter
DD statement considerations 93
with sequential data sets 65
specification of 65

CALL ERRMON statement 125-126
CALI .. ERRSAV statement 124
CALI .. ERRSET statement 124
CALL ERRSTR statement 124
CALL ERRTRA statement 125
CALL option for the loader 55
CALL macro instruction 139
Carriage control characters 187
Catalog 13
Cataloged procedures

definition of 11-12
invoking 12
modifying 12
names 12

Cataloged procedures (G)
compile 74
compile and linkage edit 74-75
compile and load 77,79
compile, linkage edit, and execute 77
FORTGC

control statements 74
function 12,37
invoking of 37

FORTGCL
control statements 74
function 12,38
invoking of 38

FORTGCLG
control statements 78
error codes 19
function 12,39
invoking of 39

FORTGLG
control statements 79
function 12,38
invoking of 38

linkage edit and execute 75-77
overriding 79-80
user-written 77

cataloged procedures (H)
compile 81
compile and load 83,85
execute 82-83

Index 199

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

FOR THC
control statements 82
function 12,37
invoking of 37

FORTHCL
control statements 83
function 12,38
invoking of 38

FORTHCLG
control statements 85
error codes 19
function 12,39
invoking of 39

FORTHLG
control statements 84
function 12,38
invoking of 38

linkage edit 82,84
overriding 84-87
user-written 83,84

CATLG specification 35
chained scheduling 66,93
Chaining records 94-95
CHANGE statement 48
Channel optimization 97
Channel separation 97-98
Column binary mode 32
comment statement 14-16,36
comments field 15
COMMON

areas 118
boundary adjustment of variables in

88-89
in FORTRAN (H) optimization 194
sharing data in 150

compiler

200

data set assumptions 40-41
ddnames 40
main storage requirements 28,81
names 39
optimization 44,191-192
options 25,41-44

FORTRAN (G)
BCD 43
DECK 43
EBCDIC 43
ID 43-44
LINECNT 43
LIST 43
LOAD 43
MAP 43 11 100-102
NAME 43
NODECK 43
NOID 43-44
NOLIST 43
NOLOAD 43
NOMAP 43
NOSOURCE 43
SOURCE 43,100

FORTRAN (H)
BCD 43
DECK 43
EBCDIC 43
EDIT 371 44,81
ID 43-44
LINECNT 43
LIST 43
LOAD 43

output

MAP 43, 100-·102
NAME 43
NODECK 43
NOEDIT 43-Ll·4
NOID 43-44
NOLIST 43
NOLOAD 43
NOMAP 43
NOSOURCE 43
NOXREF 44
OPT 44
SOURCE 43,100
XREF 43,81,108

cross-reference listing 108-109
label map 102-103
object module card deck 105-107
object module listing 102-105
source listing 100
source map 100-102

restrictions 96
statistics 165-166

COMPL function 91,92
Concatenation 52
COND parameter

error codes 19
in EXEC statement 25
in JOB statement 19

Condition codes 19,89
CONTIG subparameter 62-63
continuing control statements 15
conversion of 7-track tape 65
Creating data sets 58-59
Cross-reference listing 44,108,109
CYL subparameter 62, 91 9
Cylinders, split 99

Data conversion 65
Data initialization 91-92
DATA parameter 31
data set assumptions for compiler 40··41
Data set reference number 49-50
Data set security 63
Data set sequence number 50-51,63
Data Sets

cataloging 13
creating 58-59
definition of 12
direct access

buffers for 71
definition of 12
programming considerations 93-95
record length considerations 70
space requirements 62-63
spanning considerations 71-72

disposition of 34-35
expiration date of 64
labels for 13
naming 60
organizations 1.2
partitioned

definition of 12
FORTRAN library relationship 12
members 12
processing 12,52-53
using "END=" option 52
using REWIND 53

Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

preallocated 56-57
processing for input only 63-64
processing for output only 63-64
utility 44,81

data spill 91
DATA statement 91,92
DCB parameter 32,57,64-65,73
DD (data definition) statement

examples of 58
information specified in 28
parameters

asterisk (*) 31
DATA 31
DCB 32
ddname 49-51
DDNAME 60
DISP 34-35
DSNAME 33-34,60
DUMMY 60
LABEL 63
PASSWORD 63
SEP 97,98
SPACE 60,62,98-99
SPLIT 99
SUBALLOC 99
SYSOUT 31,32,64
UNIT 31 1 61
VOLUME 61

DDNAME parameter 60
ddnames 40 1 46,49,54-55
Debug facility

DISPLAY statement 189
INIT option 189
SUBCHK option 189
SUBTRACE option 189
TRACE option 189
UNIT option 189

DECK compiler option 43,105
Dedicated work data set

function of 56-57
parameters

DCB 57
DISP 57
DSNAME 57
EXPDT/RETPD 5 7
SUBALLOC 57
UNIT 57
VOLUME 57

DEFER subparameter 98
DEFINE FILE statement

reference numbers used in 50
with spanning 71
use with DD statement 60

DELETE specification 35
Delimiter statement 14,35
DEN subparameter

restriction with SYSOUT 64
specification 64,65

Density values 65
Device affinity 98
Diagnostic Messages

compiler
FORTRAN (G) 157-165
FORTRAN (H) 165-184.13

extended error handling 184.14-185
load module execution 184-14-186
loader 113
operator 186

Direct access data sets
buffers for 71
pr<>gramming considerations 93-95
record length considerations 70
space requirements 62-63
spanning considerations 71

Directory index 12
DISP parameter 35,57
Dispatching priority 27
DISPLAY statement 189
DO loops

implied 93
optimization of

FORTRAN (G) 90-91
FORTRAN (H) 191-192

DPRTY parameter 27
DSN parameter 31,33-34,60
DSNAME parameter 30,33-34 1 57,60
DUMMY parameter 60
DUMP subroutine 89-90

EBCDIC
compiler option 43
mode 32
translation 65

EDIT compiler option 37,44,81
Embedded blanks, use of 89
END FILE statement 50-51
End-of-data indicator 50-51
END option 51,60
ENTRY statement 48,121-122
EP loader option 56
EQUIVALENCE groups 88
EQUIVALENCE statement 93,194
ERR option 52
ERR parameter 90
Error codes 19
Error message data set 54
Error messages

(see Diagnostic messages)
Error monitor 123-124
ERRBET subprogram 126-127
ERRSTR subprogram 127
ESD card 107
exclusive references 118
EXEC statement

function 14
information specified in 21
name field 23
parameters

ACCT 26
COND 25
DPRTY 27
PARM 25 1 42-44
PGM 23 1 24
PROC 23
REGION 22 1 26-27
SIZE 28,81
TIME 26

Execution device classes 54
EXPDT subparameter 57,64
Exponent overflow 197
Exponent underflow 197
Extended American National Standard
Carriage control Characters 187

Index 201

GC28-6817-2

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
(USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

READER'S COMMENTS

TITLE: IBM System/360 Operating System
FORTRAN IV (G and H)
Programmer's Guide

FORM: GC28-6817-2

Your comments assist us in improving the usefulness of our publications; they are an important part
of the input used in preparing updates to the publications. All comments and suggestions become
the property of IBM.

Please do not use this form for technical questions about the system or for requests for additional
publications; this only delays the response. Instead, direct your inquiries or requests to your IBM
representative or to the IBM Branch Office serving your locality.

Corrections or clarifications needed:

Page Comment

Please include your name and address in the space below if you wish a reply.

Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6817-2

fold

Attention: PUBLICATIONS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

POST AGE WILL BE PAID BY ...

IBM CORPORATION
1271 Avenue of the Americas
New York, New York 10020

fold

---] FIRST CLASS
MIT NO. 33504
W YORK, N.Y.

• •
• •

.. " ~ .. .
fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 Unitad Nations Plaza, New York, New York 10017
[International]

fold

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Example: Assume BLKSIZE=48 and LRECL=24

10 FORMAT(I2,F4.1,F8.4,F10.5)
20 FORMAT(I3,F9.4)

WRITE(13,10)N,B,Q,S

.
WRITE(13,20)K,Z

,-----------BLKSIZE--- ---- ---
1

L --- - - - W "tt Bl k I I - - - - - r1 en oc - -- - - -- - - --'I
f-- - - - - - LRECL - - - - ---. - - - - -LRECL - - - - ~
I I FORTRAN
t-----FORTRANRecord----i- R d -

1
I

1 ecor I
I I I I

12 12 Bytes
24 Data Bytes Data Bytes of

Blanks

Figure 37. Fixed-Length Blocked Records
Written Under FORMAT control

yari~Ql~=~~ggth Records: For blocked
variable-length records written under FOR­
MAT control, LRECL is specified as four
greater than the maximum FORTRAN record
length, and BLKSIZE must be 4 plus an
integral multiple of LRECL. The four addi­
tional bytes allocated with BLKSIZE are
required for the block descriptor word
(BDW) that contains the block length. The
four additional bytes allocated with LRECL
are used for the segment descriptor word
(SDW) that contains the record length
indication.

If a WRITE is executed and the amount of
space remaining in the present buff er is
less than LRECL, only the filled portion of
this buffer is written (see Figure 38); the
new data goes into the next buffer. Howev­
er, if the space remaining in a buffer is
greater than LRECL, the buffer is not writ­
ten, but held for the next WRITE (see
Figure 38). If another WRITE is not
executed before the job step is terminated,
then the filled portion of the buffer is
written.

If LRECL is omitted, its default value
is set almost equal to the value of
BLKSIZE. This results in having only one
record written in any block.

Example: Assume BLKSIZE=28 and LRECL=12

30 FORMAT(I3,F5.2)
40 FORMAT(F4.1)
50 FORMAT(F7.3)

WRITE<12, 30)M, Z
WRITE(12,40)V
WRITE<12, 50)Y

1 ---- - ------- BLKSIZE - - - - - - - ----1

I I
f-------- Written Block-------, I
I : I
I 1 - -- - - LREC L - - - - T - - - - - LR EC L -- - - - -I
I I I I
I I ,---FORTRAN Record---j r_FORTRAN_~ I
I I I I I Record 1 I

I I I I I]'-----~ 4 Bytes I
Not I

-- ~r~~-J

4

BDW SDW 8 Data Bytes SDW Dot
Byt

1--FORTRAN Record--,
I I
I I

This space of 13 bytes
NiSDW 7 Data Bytes Ready for next WRITE.

(space> LRECL)

Figure 38. Variable-Length Blocked Records
Written Under FORMAT Control

UNFORMATTED CONTROL

Only variable-length records can be
written without format control, i.e., the
RECFM subparameter must be vs. (If nothing
is specified, VS is assumed.)

Records written with no FORMAT control
have the following properties:

• The length of the logical record is
controlled by the type and number of
variables in the input/output list of
its associated READ or WRITE statement.

• A logical record can be physically
recorded on an external medium as one
or more record segments. Not all seg­
ments of a logical record must fit into
the same physical record (block).

• Two quantities control the manner in
which records are placed on an external
medium: the block size (as specified
by the BLKSIZE parameter), and the log­
ical record (as defined by the length
Of the I/O list). BLKSIZE is specified
as part of the DCB parameter of the
data definition (DD) statement. If not
specified, FORTRAN provides default
values.

Each block begins with a 4-byte block
descriptor word (BOW); each segment begins
with a 4-byte segment descriptor word
(SOW). The sows and BDWs are provided by
the system. Each buffer begins with a
4-byte block descriptor word (BOW). The
sows and BDWs are provided by the system.

Creating Data Sets 69

Page of GC28-6817·-2, Revised 12/30/70, by TNL: GN28-0591

The format of a BDW is given in Figure
39.

r--------------------T--------------------1
I block-length I reserved I l ____________________ i ____________________ J

2 byte~s 2 bytes

Figure 39. F'ormat of a Block Descriptor
Word (BDW)

where:

block-length
is a binary count of the total number
of bytes of information in the block.
This includes four bytes for the BDW
plus the sum of the segment lengths
specified in each SDW in the block.
(The permissible range is from 8 to
32,760 bytes.>

reserved
is two bytes of zeros reserved for
system use.

The format of an SDW is given in Figure
40.

r-------------------T----------T---------1
I segment-length I code !reserved I L--------------------i __________ i _________ J

2 bytes 1 byte 1 byte

Figure 40. Format of a Segment Descriptor
Word (SOW)

reserved
is a byte of zeros reserved for system
use.

Unblocked Records: For unblocked records,
if the logical record length is less than
or equal to the length of the block (allow­
ing four bytes for the BOW and four bytes
for the SDW), the block will contain the
entire logical record. The remainder of
the block is unused and. is not transmitted.
The next record is placed in the following
block in the same manne~r (see Figure 40.1).

If the logical record length is greater
than the length of the block, the record is
divided into record segments. The number
of segments is determined from the READ/
WRITE statement and the BLKSIZE
specification. Again, only the filled por­
tion of the block is transmitted and the
next record is placed in the following
block (see Figure 40.2).

Example: Assume BLKSIZE=40

REAL*4 A~B,c,o,E,F,G,H

where: WRITE(9) A,B,C,D

segment-length

code

70

is a binary count of the number of
bytes in the SDW (four bytes) plus the
number of bytes in the data portion of
the segment following the sow. (The
permissible range is from 4 to
32,756 bytes.)

indicates the position of the segment
with respect to the other segments (if
any> of the record. Bits 0 through 5
are reserved for system use and are
set to o. Bits 6 and 7 contain the
codes:

01

10

11

Meani!'.!9:
This segment is not followed or
preceded by another segment of
the record.
This segment is the first of a
multisegment record.
This segment is the last of a
multisegment record.
This segment is neither the
first nor last of a multi­
segment record.

WRITE(9) E,F,G,H

I - - - - - - - - - BLKSIZE - -
I

-- -·-- --,
I
I
I

BDW SDW

I - - - Record l - - I
I I

16 Data Bytes

I
I
I -------------,

16 Bytes Not Written
I
I

.____,__....__ ________ __, __ - - - - ·- - - _ _J

BDW SDW

I - - -Record 2- ---,

I I

16 Data Bytes

----------,
. I

16 Bytes Not Written I
.___.__.__ _______ -'- - - - - - - -- - _J

•Figure 40.1. Unblockedl Records Written
Without FORMAT Control

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

~xamp!~: Assume BLKSIZE=32

REAL*8 A,B,C,D,E,F,G,H

WRITE(9) A,B,c,o

WRITE(9) E,F,G,H

Record l
, - - Segment 2 - -1

.-----..--+-----------i- - - - - - - - ---,

BDW SDW 8 Data Bytes 16 Bytes Not Written I
I

...._____._ _ _.._ __________ - - - - - - - - _ __j

Record 2
I - - - - - - - -Segment 1- - - - - - - ,

IBDWISDWI 24 Daro B~•• j

•Figure 40.2. Unblocked segmented Records
Written Without FORMAT
Control

Blocked Records: For blocked records, if
the logical record length is less than or
equal to the length of the block (allowing
four bytes for the BOW and four bytes for
the SOW), the block will contain the entire
logical record. The next record, preceded
by its sow, begins in the same block (see
Figure 40.3).

If the logical record is greater than
the length of the block, the record is
divided into record segments. The number
of segments is determined from the READ/
WRITE statement and the BLKSIZE
specification. The next record, preceded
by its sow, begins in the same block. If
the length of the second record exceeds the
remainder of the block it too is segmented
(see Figure 40.4).

Example: Assume BLKSIZE=44

REAL*8 A,B,C,D

WRITE(9) A,B

WRITE(9) C,D

r· - - - - - - - -BLKSIZE

I
--- - -·1

I 1 - - - Record l - - I
I I I

&WSDW 16 Data Bytes SDW

I - - -Record 2

I

16 Data Bytes

• Figure 40. 3. Blocked Records Written
Without FORMAT Control

Example: Assume BLKSIZE=32

REAL*8 A,B,c,o,E,F,G,H

WRITE(9) A,B,C,D

.
WRITE(9) E,F,G,H

I -,
_j

1 _ - - - - - - - -BLKSIZE- - - - -- - - -1
I ______ Record l ________ ---j
I I Segment l I

~+Wi 24 Data Byte• =1
~W SDW

_ Record l __ _ i - -·Segment 2 1 Record 2 _____
1 ,---Segment l I

I I

8 Data Bytes SDW 12 Data Bytes

Record 2
I - - - - - - - Segment 2 -------,

E+wi
I

_____ J
2 0 Data Bytes

• Figure 40. 4. Blocked Segmented Records
Written Without FORMAT
Control

Creating Data Sets 70.1

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Unblocked Records: For all unblocked rec­
ords written-with or without FOR.MAT con­
trol, the volume is positioned so that the
last logical record read or writ.ten is
transmitted next.

Blocked Records: Blocked records are back­
spaced-on_a_logical record basis. Thus, a
BACKSPACE may result in a deblocking opera-

70.2

tion rather than making available a new
physical record.

Note: Logical records are usually synony­
mous with the amount of data specified in
the I/O list for the RE:AD or WRITE state­
ment that processes the record. Thus, when
there is no FORMAT control, the logical
record may be spanned over one or more
physica 1 records on the~ volume; however,
FORTRAN treats only the~ logical record as
an entity. For records written under

Note: Even if BOUNDRY=ALIGN is specified
and a boundary error occurs in an EXECUTE,
LM (load multiple), or STM (store multiple>
instruction in a subprogram written in
assembler language, boundary adjustment
does not take place and the job terminates.
Therefore, if these instructions refer to
improperly aligned data, they should not be
used in assembler language subprograms.

Indicators and Sense Lights

At the start of program execution, the
divide-check indicator, the overflow indi­
cator, and the pseudo sense lights are n2t
initialized. Therefore, if a programmer
intends to use the indicators or sense
lights, he should initialize them prior to
use; otherwise, erroneous results may be
obtained. (For additional information, see
the [QR~RA~_1y_LiQE~~y publication.)

conditional Branching

A test for 0.0 in an IF statement is not
recommended. Slight inaccuracies may cause
the low-order bit(s) to be set. Therefore,
the test for 0.0 may not yield the expected
result.

Arithmetic IF Statement

A fixed-point overflow condition results
in the following action:

• In FOR.TRAN (G), if the integer is posi­
tive, a negative branch is taken, i.e.,
the first branch. If the integer is
negative, a positive branch is taken,
i.e., the third branch.

• In FORTRAN (H), the zero (middle)
branch is always taken.

use of STOP n Statement

There are no checks made to determine if
a value of n greater than 4095 is used in
the STOP n statement. 4095 is the maximum
value that can be used for n and still fit
into the 3 digits used for the user
condition-code. Any value of n greater
than 4095 overflows into the system condi­
tion code.

Register 15 as a Condition Code Register

Register 15 is used by the compilers as
a condition code register, a RETURN code
register, and a STOP code register (STOP
code= condition code). The particular
values that Register 15 can contain and
their explanations follow:

16 -- A terminal error has been detected
during execution in a subprogram (an
IHCxxxI message is generated).

4*i -- A RETURN i statement has been
executed In a subprogram <i is a
RETURN code) •

n -- A STOP n statement has been executed
<n is the condition code>.

0 -- A RETURN or a STOP statement has
been executed in either a main pro­
gram or a subprogram (0 is a RETURN
code or a condition code).

Note: Both FORTRAN (G) and (H) will gener­
ate-a STOP (i.e., 0 is the condition code>
for a RETURN or RETURN i issued in a main
program.

To improve the readability of a source
program, the programmer may use any number
of blanks when writing FORTRAN statements.
Except for literal data, in which blanks
are retained as coded in the source state­
ment, blanks are normally ignored by the
compilers. Thus, the statements DO 25 J
10 is the equivalent of D025J=10. Both
statements are syntactically correct as­
signment statements and are executed as
such, i.e., a value of 10 is assigned to
the variable D025J. Neither statement will
cause an error message.

Under the operating system, a program
may be loaded into different areas of
storage for different executions of the
same job. The following conventions should
be observed when using the DUMP or PDUMP
subroutine to insure that the appropriate
areas of storage are dumped.

If an array and a variable are to be
dumped at the same time, a separate set of
arguments should be used for the array and
for the variable. The specification of
limits for the array should be from the

Programming considerations 89

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

first element in the array to the last ele­
ment. For example, if an array TABLE is
dimensioned as:

DIMENSION TABLE (20)

the following statement could be used to
dump TABLE and the real variable B in hexa­
decimal format and terminate execution
after the dump is taken:

CALL DUMP (TABLE(1>,TABLE(20l,O,B,B,O)

IE an area in COMMON is to be dumped at
the same time as an area of storage not in
COMMON, the arguments for the area in
COMMON should be given separately. For
example, if .A is a variable in COMMON, the
following statement could be used to dump
the variables A and B in real format
without terminating execution:

CALL PDUMP <A,A,5,B,B,5)

If variables not in COMMON are to be
dumped, the programs should list each vari­
able separately in the argument list. For
example, if R, P, Q are defined implicitly
in the program, the statement

CALL PDUMP(R,R,5,P,P,5,Q,Q,5)

should be used to dump the three
variables. If

CALL PDUMP(R,Q,5)

is used, all main storage between R and Q
is dumped.

If an array and a variable are passed as
arguments to a subroutine, the arguments in
the call to DUMP or PDUMP in the subroutine
should specify the parameters used in the
definition of the subroutine. For example,
if the subroutine SUBI is defined as:

SUBROUTINE SUBICX,Y)
DIMENSION X(10)

and the call to SUB! within the source
module is:

DIMENSION A(10)

CALL SUBI(A,B)

then the following statement in the subrou­
tine should be used to dump the variables
in hexadecimal format without terminating
execution:

CALL PDUMP ~X(l),X(lO),O,Y,Y,0)

90

If the statement

CALL PDUMP (X(l),Y,0)

is used, all storage between A(l) and Y is
dumped, due to the method of transmitting
arguments. (Y does not occupy the same
storage location as B.>

Use of ERR Parameter in READ Statement

Use of the optional ERR parameter for a
READ statement can indicate the source pro­
gram statement to which transfer should be
made if an error is encountered during data
transfer. When transfer has been made to
that statement, the first subsequent READ
in the source program provides the record
that was in error. If this is not the
record desired, an additional READ should
be issued.

If the ERR parameter is omitted from the
READ statement, an input/output device
error terminates program execution.

ARITHMETIC STATEMENT FUNCTIONS

The Arithmetic Statement Functions (ASF)
can be used to cause selective "automatic"
typing. For example, the ASF,

SQRT(X)=DSQRT(X)

causes the desired function name substitu­
tion, so that each use of SQRT(X) in an
expression in the program will cause execu­
tion of DSQRT<X>.

To accomplish the substitution, the
argument type(s) in the ASF should agree
with the type of argument(s) required for
the desired subprogram. In the example
above, X should be typed as REAL*B. Fur­
thermore, the function name itself should
be typed to agree with the function value
type of the desired subprogram. In the
example, SQRT should be typed as REAL*B.

FORTRAN (H) does not actually require
that an ASF argument be typed as REAL*B,
but because FORTRAN (G) does, it is recom­
mended it be done for both compilers to
ensure interchangeability. However, the
actual argument should be REAL*B or be
typed to be REAL*B.

Pa.ge of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

r------,
IG ONLYIUse of ASSIGN Statement
L------J

The FORTRAN IV (G) compiler uses table
entries produced in one of its phases to
perform storage allocation for the
variables defined in the source module.
This process may result in an unusual
amount of compilation time if a large num­
ber of ASSIGN statements are specified in
the source program. The use of a large
number of ASSIGN statements should be
avoided.

r------,
IG ONLYIDO Loop Optimization
L------J

The following discussion applies to FOR­
TRAN IV (G) only. For information on FOR-

Programming considerations 90.1

•

000278
0002 7C
000280
000284
0002 88
00028C
000290
000294
000298
00029C
0002AO
0002A4
0002A8
0002AA
0002 AE
000280
000284
000286
0002BA
0002BC
0002CO
0002C4
0002C8
0002CC
000200
000204
000208
00020C
0002EO
0002E4
0002E8
0002 EC

11

13

14

15

17

19

107

2

108

4

7

109

l
BAL
DC
DC
BAL
DC
BAL
L
A
ST
L
s
LTR
l
BCR
L
BCR
L
BCR
BAL
DC
DC
BAL
L
BAL
DC
DC
BAL
L
BAL
DC
DC
END

15,140(0,13)
14,4(0,15.
00000006
00000126
14,8(0,15)
04500098
14,16(0,15}
0,152(0,13)
0,368(0,13)
0 ' 1 52 (0' 13)
0 ' 3 72 (0 t l 3)
0,152(0,13)
o,o
14,112(0, 13)
4,14
14 ' 96 { 0 ' 13)
2,14
15, 140{0, 13)
o,o
14,4(0,15)
00000006
0000012A
14, 16(0,l 5)
15, 140{ o, 13»
14,4(0,15)
00000006
0000013C
14,16(0,15)
15,140(0,13)
14,52(0,15)
05404040
40FO

OPTIONS IN EFFECT NOIO,EBCDIC,SOURCE,LIST,NODECK,LOAD,NOMAP
OPTIONS IN EFFECT NAME = MAIN , LINECNT = 50
STATISTICS SOURCE STATEMENTS = 20,PROGRAM SIZE=
STATISTICS NO DIAGNOSTICS GENERATED

IBCOM#

7

3

IBCOM#

IBCOM#

IBCOM#

750

Figure 60. Object Module Listing -- (G) Compiler (Part 2 of 2)

System output 105

000()00 47 f-0 F OOC MAIN BC 15.1210.15)

000004 07404040 DC XL4 1 40404040 1

000008 40404040 OG XL4 1 40404040 1

oooooc 90 EC 0 OOC SH\ 14112, 12U3l
000010 98 23 F rO LM 2.3132(15»
000014 50 30 D 08 ST 3,8(13.
000018 50 DO 3 04 ST 131410 • .lt
OOGOlG 07 f2 BGR 15.2

Tl:MPORARY FOR FLOAT /f-AX
CONST ANTS

000108 4EOOOOOO oc XL4 1 4EOQOOOO'
OOOlOC 00000000 DC XL4'000Q0000 1

000110 00000002 DG XL4 100000002'
000114 00000003 DC XL4 I ()000000 31

000118 00000005 DC XL4 1 00000005 1

OOOllC OOC003E8 DC XL4 • ooooa1E 8 1

AOCONS FOR VARIABLES AND CONSTANTS
AOCONS FOR EXTERNAL RtFERENCES

000138 00000000 DC XL4 1 00000000 1 SQRT
OOOI3C 0000'0000 DC XL4 1 00000000' lBCOH=
OOl.ll48 41 (t.0 0 OQ2 100000 LA 4. 2(o, OJ 2
OtHJ14C 41 90 0 0&.3 LA 91 .H 01 01 3
OVCll50 41 AO 0 005 LA lo. 5(o, 0) 5
000154 41 60 0 ~Ed LA 1:1. HlOO (O, OJ 3E6
00Cl58 58 FO 0 08(; lCiO L 15. 140(o,13> JSCOM=
00015C 45 EO F 1"104 BAL 14. 44 01151
OVC160 06(;0000b UC XL4 9 00000006 1 F
00Ll64 OOCOOU28 oc XL4 1 00000028 1 G-t'
060168 4~ EO F 010 ii AL l4t 16(O.I5J
00016C 50 AO D n74 101 :; r lo. ll6t o.13J
oeo110 58 '00 0 Ol4 3 l o,. 116(o, 13)
Othll 74 68 00 D 05d LO o. 88(0,131
000178 60 O"O D 050 s ri:; o. 801 0, 13)
Ot!>"l7C 12 oc LTR o, 0
0t)()l76 47 40 D ooi: BC 4, 24!2(0,13J
00lJ182 se 00 0 064 sr o, 84(0113)
06til86 6A 00 0 0§0 AO o, 60(0113)
OOC18A 47 FO 0 Ocd BC 151 2321 o. 13)

OC018E H> oc I.Pl\ 01 0
000190 so 00 0 064 ST o, 84((I, 13)

000194 68 00 0 050 50 e. 60(01 l3J
0&0198 70 O'O D 070 Sfl o, 112.& o, 13 J A
OIW19C 41 10 D OltC 102 LA 11 76(01 13)
OtHllAO 58 f C D 088 L 15. 1361 o, 13) SQRT
0001A4 05 Ef BAUl 14,15
OOOlAo 70 00 D 090 :;Tl 01 144.(0113> .fOO
OOOlAA 78 C'O D 090 Le o. 144l 01131 .TOO
OOOlAE 10 00 0 OiO SH. o. 112(01 UJ A
06{;182 28 Qt) 103 SDI<. o. 0
00\ilB"t 78 '00 D 010 Lt o. 112(o, 13J A
OOuUUI bE ee o 05d Awl o .. 88(0113)
001.llBi;. 60 '()~ 0 060 SIL o. 80(. O, l3J
00\ilGO 56 50 0 O!i"t L 51 84(o, 13>
OOOlG"t 47 A'O 0 UA lllC 101 282(0,131
oeo1ca H 55 lf'lk 5, 5
OOOlCA 18 69 104 LR 6, 9
OCWlGC 5t! 7C D Oi4 L 7,. 116(o, 131
oeo100 18 07 105 L~ 01 7
060102 BE 00 0 n,;w SH.LA o. 32(Ch 0)
000106 10 06 DH. o. 6
OOL108 50 10 0 080 sr 11 128(01131 L
OlXJlDC 18 36 106 LR 3,, 6
OOOlOE 5C 2C D 080 M i. 128(0113) L
OOG1E2 16 37 SH. 3 •. 1
OOOlElt 4V 80 0 151,; BC a. 3484 0,13) 2
OOC1E8 47 20 0 11'8 BC 2. 376(0,13J 4
OOClEC 87 64 D uo l BXLE 6. 288(4tl3) 105
Of)ClFO 58 FO I) 084.. 107 L L51 140(t>1 l3> lSCUM=
OOOH4 4§ EG F 004 tlAl. 141 4(01151
OCHHF8 ooooeoo6 l.lC XL.4 100006006 1 F
0\J(Jlf!C oecuoo12 oc XL4 1 00000072 1 G -
OfHJ200 45 EO F fl08 BAL 14 .. 8(o, l5J
000204 045000 74 UC XL4'04500074 1

OfHl20d 45 EO f f\10 ttAL 14,. 16(0,15)
06C20C 56 00 0 fl74 2. l o. 116' 0113)
004;210 lA G4 AR o. 4
ooi.;212 50 co 0 074 s r o. 116(o, 131
000216 16 28 108 Ltt 2, 8
0(J{;2 l6 5B 2C I) 014 s ;_I 116(01 Hl I
OCHJ21C 47 "tC 0 18C ai.;. 4. 396(01 l3J 7
OOl/220 47 8C 0 lld l:IC 81 376(0113t 4
OCHJ224 47 2C &) oco l:IC 2. 1921 @113) 3
uo<i22a 58 fO 0 08C 4 L 15.1 140(@1131 IBCOH=
00lJ22G 45 EO F fl04 8U 14. 4(01 15J
Oe'G230 OQ00()066 UC XL4 1 00000006 1 F
000234 00000076 l#C XL4 1 El0000076 1 G+8
OOU238 45 EO f rtl\J tiAL 14. 16(O.I5J
OOL.23C St! FO 0 0&4.. 7 l 15. 1'40(o. HJ IBCOM=
00\.240 45 EO F 004 UAL 14, 4((l.15)
00!1244 QOC60006 1'C XL4 1 00000006' r

Figure 61. Object Module Listing (H) compiler (Part 1 of 2)

106

OOG24o Otl0fl0088 lJC XL4 1 00000088 1 G+Q
OOl..i24C 45 EO F Ohl 6AL 14., 16(. 0,15)
Otlli250 58 FO O 08C 109 L 15. 14<H 0113) IBCOH=
000254 45 EC F 031t 8Al 14,. .52(0' 15.)
000258 05 UC Xl.1 1 00000005 1

Ofl0259 46 GC xa.1•00000040•
oeo25A 40 LlC Xl.1 100000040 1

000258 40 DC XLl 100000040 1

00025C 40 DC XL1 100000040 1

000250 FO 9C XLl 1000000fO'
AlJURE:SS OF EP !LOGUE

000251:: 58 Fo o oac L 15, 140!. o, 13J
000262 4.5 EO f 034 BAL 14 •. 52(0,15) JBCOM=
000266 0540 lilC XL2 1 40400.'i40 1

000268 404040FO Jl)C Xl.4 1 404040FO'
AlJORESS OF PROLOGUE

00026E 58 f'O 3 oac l 15, 140(o, 3)
000272 45 EO F 040 bAl 14,. 64(0,15) !BCOM=
000276 18 03 LR 13, 3
000278 47 FO 0 098 BC 15, 152(0,13)

ADCON FOR PROLOGUE
000020 0600026E DC Xl.4 1 0000026E 1

A UCON FOR SAVE AREA
000024 OOOOOOBO DC Xl.4 1 QOOQOOBO'

A UCON FOR EPlLUGUE
000080 OOOOQ25E DC XL4 1 000Q025E 1

AUCONS FOR PARAMETEk USTS
OOOOF.C 80000120 DC Xl.4 1 80000120 1 A

AOCONS FOR TEMPORARIES
060140 00()tro000 oc Xl4'00000000 1

000144 OOCQUOOO DC XL4 1 00000000'
AOCIJNS FOR B BLOCK LABELS

Figure 61. Object Module Listing -- (H) Compiler (Part 2 of 2)

OBJECT MODULE CARDS: Every card in the
object module deck contains a 12-2-9 punch
in colwnn 1 and an identifier in columns 2
through 4. The identifier consists of the
characters ESD, RLD, TXT or END. The first
four characters of the name of the program
are placed in colwnns 73 through 76 with
the sequence nwnber of the card in columns
77 through eo.

ESD Card: Four types of ESD cards are
generated as follows:

ESD, type 0 - contains the name of the
program and indicates the
beginning of the object
module.

ESD, type 1 - contains the entry point
name corresponding to an
ENTRY statement in a
subprogram.

ESD, type 2 - contains the names of sub­
programs ref erred to in the
source module by CALL
statements, EXTERNAL state­
ments, explicit function
references, and implicit
function references.

ESD, type 5 - contains information about
each COMMON block.

The number o, 1, 2, or 5 is placed in card
colwnn 25.

RLD Card: An RLD card is generated for
external references indicated in the ESD,
type 2 cards. To complete external
references, the linkage editor matches the
addresses in the RLD card with external
symbols in the ESD card. When external
references are resolved, the storage at the
address indicated in the RLD card contains
the address assigned to the subprogram
indicated in the ESD, type 2 card. RLD
cards are also generated for a branch list
produced for statement numbers.

TXT Card: The TXT card contains the con­
stants and variables used by the programmer
in his source module, any constants and
variables generated by the compiler, coded
information for FORMAT statements, and the
machine instructions generated by the com­
piler from the source module.

~Card: one END card is generated for
each compiled source module. This card
indicates the end of the object module to
the linkage editor, the relative location
of the main entry point, and the length (in
bytes) of the object module.

OBJECT MODULE DEC:K STRUCTURE: Because of
implementation, object module deck struc­
tures differ by compiler. Figure 62 shows
the deck structure for the FORTRAN IV (G)
compiler; Figure 63 shows the deck struc­
ture for the (H) compiler.

System output 107

Figure 62.

Figure 63.

Object Module Deck Structure -­
(G) Compiler

for Source
Module Constants

Object Module Deck Structure -­
(H) Compiler

r------,
IH ONLYjCross Reference Listing
l------J

If the compiler XREF option is speci­
fied, a cross reference listing of
variables and labels is written in the data
set specified by the SYSPRINT DD statement.
The variable names are listed in alphabet­
ical order, according to length. (Variable
names of one character appear first in the

108

listing.) The labels are listed in ascend­
ing sequence along with the internal state­
ment number of the statement in which the
label is defined.

For both variable names and labels, the
listing also contains the internal state­
ment number of each statement in which the
variable or label is used. Figure 64 shows
a compiler cross reference listing produced
for the program in Fi9ure 56.

r------,
IH ONLYIStructured source Listing
L------J

If the EDIT option is specified, a
structured source listing is written in the
data set specified by the SYSPRINT DD
statement. This listing is independent of
the usual source listing and indicates the
loop structure and 109ical continuity of
the source program.

Each loop is assigned a unique 3-digit
number. Entrance to the loop is indicated
by a left parenthesis followed by a 3-digit
loop number -'- (xxx -·- before the internal
statement number of the first statement in
the loop: exit from the loop is indicated
by the 3-digit loop number followed by a
right parenthesis -- :1exx) -- on a separate
line before the next non-comment linE~.

SYMBOL IN URN AL STATtMENT NUMBERS
A 0001) OOQ6 0006 1:1007
I 000'• 0005 0009 0010 0012 0014 0014 0Cl5
J 0~07 0008
k 000'! 0009 0010
l OOO'l 0010
S.JKT OVOb

LABEL DEFINED REFERENCES
l OOll 00(;8 0010
2 0014 0010
3 00'.)~ 0015
4 0016 0010 0015
5 0013 0012
6 0019 0018
7 0018 0015
ll 00()3 0002

" U017 0016
lOC 00'.)2
101 0004
102 0006
103 00''1
104 0018
105 00')9
106 0010
107 0012
108 0015
109 0020

Figure 64. Compiler Cross Reference List­
ing -- (H) Compiler

Indentations are used to show dominance
relationships among executable source
statements. Statement A dominates state-

ment B if A is the last statement common to
all logical paths from which B receives
control. Statement A is called a domina­
tor, statement B is called a dominee. By
this definition, a statement can have only
one dominator, but a dominator may have
several dominees. For example, a computed
GO TO statement is the last statement
through which control passes before reach­
ing three other statements. The GO TO
statement is a dominator with three
dominees.

A dominee is indented from its dominator
unless it is either the only dominee or the
last dominee of that dominator. The line
of sight between a dominator and its
dominee(s) may be obscured by intervening
statements. This is a dominance discon­
tinuity and is indicated by c--- on a
separate line above the dominee.

comments and non-executable statements
are not involved in dominance relation­
ships; their presence never causes a
dominance discontinuity. comments line up
with the last preceding non-comment line;
nonexecutable statements line up either
with the last preceding executable state­
ment or with the first one following.

Figure 65 shows a structured source
listing produced for the program in Figure
56.

Source Module Diagnostics

FORTRAN IV (G) and (H) compiler messages
are described in Appendix D.

LINKAGE EDITOR OUTPUT

The linkage editor produces a map of a
load module if the MAP option of the PARM
parameter of the EXEC statement is speci-

f ied, or a cross reference list and a map
if the XREF option is specified. The
linkage editor also produces diagnostic
messages, which are discussed in the
Lin~aqe Editor and Loader publication.

Module Map

The module map is written in the data
set specified in the SYSPRINT DD statement
for the linkage editor. To the linkage
editor, each program (main or subprogram)
and each COMMON (blank or named) block is a
control section.

Each control section name is written
along with origin and length of the control
section. For a program and named COMMON,
the name is listed; for blank COMMON, the
name $BLANKCOM is listed. The origin and
length of a control section is written in
hexadecimal numbers. A segment number is
also listed for overlay structures (see the
Linkage Editor and Loader publication).

For each control section, any entry
points and their locations are also writ­
ten; any functions called from the data set
specified by the SYSLIB DD statement are
listed and marked by asterisks.

The total length and entry point of the
load module are listed. Figure 66 shows,
for the (G) compiler, a load module map
produced for the program in Figure 56; the
map produced for the (H) compiler is shown
in Figure 67.

System output 109

C PRIME NUMBER PROBLEM
I SN 0002 lOv WRITE (6,8)
I SN 0001 d FORMAT (5lH FOlLUWlN~ IS A LIST OF PRIME NUMdERS FROM 1 TO 1000/

ll9X,lHL/19X,1H~/19X,lH3)

ISl\c 0004
(c1021 SN O(JO"i

I SN OOOo
I SN 0007
I SN 0001

l UOll SN 0009
I SN 0010
I SN OOll

1.)01)
I SN OCP
I SN 0011
ISN 0014
ISN 0015

U02)
I SN 001-'>

101 I=S
3 A=I

102 A-=SQRH A)
103 J:A
104 DO l K=3,J,2
105 L=I/K
106 IFll*K-1)1,2,~

l CONTINUE
c

107 WRITE lb,~)l

5 FORMAT 11101
2 1=1•2

108 IF(l000-117,4,3
c

4 WRITE (6,q)

I SN 0017 9 fORMAT ll4H PROGRAM ERROR)
I SN 0019 7 WRITE (6,bl
I SN
ISN

OOl'l
002'.l

6 FORMAT (31H THIS IS THE END OF THE PROGRAM)
109 STOP

I Si'i 0021 END

Figure 65. Structured Source Listing -- (H)

CONTROL SECT ION ENTRY

NAME ORIGIN L tNGT H NAME LOCATION

M/llN <JO ZE6
MAIN 00

IHC FCOMH* 2E8 FB3
I BC OM= ZE8

IHCSSQRT* l2AO AC
SQRT lZAO

IHCFCllTH* 1350 FEB
A OCON= 1350
FCVIO 1808

IHCF IOSH* 2340 C30
FI OCS= 2340

IHCUATBL* 2F70 108

Figure 66. Load Module Map -- (G) compiler

CONTROL SECT IUN ENTRY

NAME ORIGIN U:NGTH NAME LUCA HON

MAIN GO 27C
IHCS!>QKT* 280 AC

SQRT 2b0
lHlFCOHH* .no FFD

!BC.OH= 330
IHCUOPT * 1330 8
lriCTRCH * 1338 258
IHCFCVTH* 15<JO FF3

AIJCON= l~<:to
FCVIO ltH8

ltiC.FlOSH* 2588 CF2
F IOCS= 2~b8

IHCUATBL* 3280 631:1

Figure 67. Load Module Map -- (H) Compiler

cros~-Reference List

If the linkage editor XREF option of the
PARM parameter of the EXEC statement is
specified, a cross reference list is writ­
ten with the module map. This cross
reference list gives the location from
which an external reference is made, the
symbol externally ref erred to in this con­
trol section, the control section in which

110

compiler

NAME LOCATION NAME LOCATION NAME LOCATION

FOIOCS= 3A4

FCVZO 149C FCVAO 1542 FC VLO 15CA
FCVEO 1072 FCVCO lF6C

NAME LOCATION NAME LOCATION NAME LOCATION

FDIOCS= 3EC

FCYZO 161.JC FCYAO 1782 FCYLO 180A
FCVEO lFBC FCYCO 2186

the symbol appears, and the segment number
of the control sectioih in which the ~ymbol
appears. Unless the linkage editor l.s
building an overlay structure, the cross
reference list appears after the module map
for all control sections. Figure 68 shows,
for the (G) compiler, the cross reference
list produced for the program in Figure 56~
the list produced for the (H) compiler is
shown in Figure 69.

LOAD MODULE OUTPUT

At execution time, FORTRAN load module
di~gnostics are generated in three forms -
error code diagnostics, program interrupt
messages, and operator messages. An error
code indicates an input/output error or a
misuse of a FORTRAN library function. A
program interrupt message indicates a con­
dition that is beyond the capacity of
System/360 to correct. An operator message
is generated when a STOP or PAUSE i.s
executed.

LCCATION REFERS TO SYMBOL IN CONTROL SECTION

00
04

1134
112C
1138
113C
1140
1144
1148
114C
1324
21FC
24c4
2470

ENTRY AODRESS
TOTAL LENGTH

IBCOM=
SQRT
A OCON=
F IOC S=
FCVEO
FCVLO
FCVIO
FCVCO
FCVAO
FCVZO
lbCOM=
IBCUM=
I HC uATBL
I BCOM=
00

3078

IHCFCOMH
IHCSSQRT
I HCFC VTH
IHCFIOSH
IHCFCVTH
IHC FC VTH
IHCFCVTH
IHCFCVTH
IHCFCVTH
IHCFCVTH
IHCFCCMH
IHCFCOMH
IHClJA TBL
IHCFCOMH

Figure 68. Linkage Editor Cross Reference
List -- (G) Compiler

LOCATION REFERS TO SYMBOL IN CONTROL SECTION

138
13C
304

1108
1100
lOEO
llDC
llEO
11E4
l1E8
llEC
UFO
11C8
1490
l't94
1498
2444
2680
2o8C

ENTRY ADDRESS
fUTAL LENGTH

SQRT
IBCOM=
IBCOM=
A OCON=
f'lOCS=
IHCUOPT
FC\IEO
f'CVL.0
FCV.IO
FCVCO
FCVAO
FC\IZO
lHCTRCH
.IBCOM=
AD CON=
FlOCS=
IBCOM=
lHCUATBL
lBCOM=
00

3666

lHCSSQRT
lHCFCOMH
JHCFCOHH
IHCFCVTH
lHCFIOSH
IHCUOPT
IHCFCVTH
IHCFCVTH
JHCFCVTH
IHCFCVTH
IHCFCVTH
IHCFCVTH
lHCTRCH
IHCFCQMH
1HCFCVT.H
IHCFIOSH
IHCFCOHH
1HCUATBL
lHCFCOHH

Figure 69. Linkage Editor Cross Reference
List -- CH) compiler

Error Code Diagnostics and Traceback
without Extended Error Handling Message
Facility

If an error is detected during execution
of a FORTRAN load module, a message and a

diagnostic traceback are written in the
error message data set (see "FORTRAN Job
Processing"). The message is of the form:

message text
TRACEBACK FOLLOWS-ROUTINE ISN REG. 14,
REG. 15, REG. O, REG. 1

These error messages are described in
Appendix D. For the error conditions num­
bered 211 through 214, 217, 219, 220, and
231 through 237, the message will consist
of only IHCxxxI where xxx is a 3-digit
error code. The errors detected by the
FORTRAN mathematical functions will provide
message text describing the error condi­
tion. The traceback, which follows the
error message, is a list of routines in the
direct line of call to the routine in
error, in reverse order of use. After the
traceback is completed, for error message
IHC218I, control is passed to the statement
designated in the ERR parameter of the FOR­
TRAN READ statement if that parameter was
specified. In all other cases, execution
of the job step is terminated and a condi­
tion code of 16 is returned to the operat­
ing system.

Each entry in the traceback contains the
name of the called routine, an internal
statement number (ISN) from the calling
routine (if one was generated for that
call>, and the contents, in hexadecimal, of
register 14 (which indicate the point of
return to the calling routine)~

The first routine listed in the trace­
back is the one that called the library
subprogram in which the error occurred,
except when the name given is IBCOM. Then,
the error could have occurred in IHCFCOMH
or one of the routines that it calls:
IHCFCVTH, IHCNAMEL, or IHCFIOSH. The error
code in the message indicates the actual
origin of the error.

Note: For an assembler language program or
subprogram, the routine name field in the
traceback contains the identifier specified
in the SAVE macro instruction or equivalent
coding. (If the identifier specified is
longer than eight characters, only the
first eight appear.> If no identifier is
specified, the traceback routine name field
is either blank or its contents are mean­
ingless in the traceback.

Internal statement number identifiers
are generated for function references and
calls when the ID option is specified on
the EXEC statement for the compile step.
These identifiers appear in the traceback,
except for FORTRAN calls to IBCOM for which
no :identifiers are generated. If NOID is
specified, no identifiers are generated and
the internal statement number field will be
blank.

System output 111

r-----·---------------------------------------.------------------------------------·----,
ILHC219I I
!TRACEBACK FOLLOWS ROUTINE ISN REG. 14 REG. 15 REG. 0 REG. 1 I
I IBCOM 820068FC xxxxxxxx xxxxxxxx xxxxxxxx I
I MASTR 010 00005378 I
I PAYROLL 00003148 xxxxxxxx xxxxxxxx xxxxxxxx I
IENTRY POINT = 00005000 I
L--·---------------·----J
Figure 70. Sample Traceback for Execution-Time Errors

Note: For an assembler language program or
subprogram, the internal statement number
field contains the value of the binary
calling sequence identifier specified in
the CALL macro instruction or equivalent
coding. If no identifier was specified,
the field is either blank or its contents
are meaningless in the traceback.

If the traceback cannot be completed,
the message TRACEBACK TERMINATED is issued
and the job step is terminated. This mes­
sage appears only if either 13 names of
subprograms appear in the traceback or a
calling loop has been detected (e.g., sub­
program A calling B calling A).

At the end of the traceback, whether it
was completed or not, the entry point of
the main FORTRAN program is given in
hexadecimal.

Figure 70 shows the traceback informa­
tion placed in the error message data set
for the following example.

Example: A FORTRAN program PAYROLL calls
the subroutine MASTR, which contains a READ
statement. The IHCFIOSH routine is called
to perform the input operation, but an
error condition arises because there is no
DD statement for the data set.

Explanation: PAYROLL was entered at loca­
tion 5000 and called MASTR at internal
statement number (ISN) 10 in PAYROLL.
IBCOM (in this case, the error occurred in
the IHCFIOSH routine) would have returned
to location 68FC in MASTR; MASTR would have
returned to location 5378 in PAYROLL and
PAYROLL would have returned to location
3148 in the supervisor. Execution ter­
minates and a condition code of 16 is
returned to the operating system.

Program Interru_E!: Messages

Program interrupt messages containing
the old Program Status Word (PSW) are pro­
duced when one of the following occurs:

112

• Protection Exception (4)
• Addressing Exception (5)
• Specification Exception (6)
• Data Exception (7)
• Fixed-Point Divide Exception (9)
• Exponent-overflow Exception (C)
• Exponent-Underflow Exception CD)
• Floating-Point Divide Exception (F)

The characters in parentheses following
the exceptions are PSW codes that appear in
the program interrupt message to indic:ate
the type of exception. Appendix D contains
a complete description of the message and
its format.

The program interrupt messages are writ­
ten on a data set specified by the pro­
grammer. (See "FORTRAN Job Processing.")
Operator intervention :ls not required for
any of these interruptions.

ABEND Dump

If a program interrupt occurs that
causes abnormal termination of a load
module, an indicative dump is given (i.e.,
only the contents of significant registers,
indicators, etc., are dumped). However, if
a programmer adds the statement

//GO.SYSABEND DD SYSOUT=A

to the execute step of a cataloged proce­
dure, main storage and significant regis­
ters, indicators, etc." are dumped. (For
information about interpreting an ABEND
dump, see the Guide to Debugging
publication.)

Operator Messages

A message is transmitted to the operator
when a STOP or PAUSE is encountered during
load module execution. Operator messages
are written on the device specified for
operator communication.. For a description
of these messages, see Appendix D.

The value associated with the STOP
statement (0 if a value~ is not coded) is
passed to the next job step and can be
tested as a condition code by the COND

• The program unit which receives control
at the start of processin9. Usually
this is the main routine in which pro­
cessing begins at the entry point named
MAIN.

• Any program units which should remain
in main storage throughout processing.
For greater efficiency, subprograms
which are frequently called should also
be placed in the root segment if
possible.

• Any program units containing DEFINE
FILE statements.

• Any automatically called FORTRAN
library subprograms. These are placed
in the root segment automatically by
the linkage editor when it processes
the overlay program.

• certain information which is needed by
the operating· system to control the
overlay operation. Like the FORTRAN
library subprograms, this information
is automatically included in the root
segment by the linkage editor.

Segment 1
(ROOT)

r--------1
I I
I MAIN I
I I
L----y---J

I
Segment 2 I Segment 3

r---------------i--------------,
I I
I I r----i ___ , r----i----1

I SUBA I I SUBB I
L--------J L--------J

•Figure 74. overlay Tree Structure of Three
Program Units

PATHS

The relationships among the segments of
an overlay program are expressed in terms
of "paths". A path consists of a given
segment and any segments between it and the
root segment. The root segment is thus a
part of every path, and when a given seg­
ment is in main storage, all segments in
its path are also in main storage. The
simple program in Figure 74 is made up of
only two paths, as shown in Figure 75.

The paths of an overlay program are
determined by the dependencies between the
program units which it comprises. A pro­
gram unit is considered to be dependent on

any program unit which it calls or whose
data it must process.

Path 1
r------------,.
I I
I I
I MAIN I
I I
I I
L----y------.il

I
I
I
I
I
I

r-----i------,
I I
I I
I SUBA I
I I
I I L _______ .._ ____ J

Path 2
.-----------,
I I
I I
I MAIN I
I I
I I
L------T _____ J

I
I
I
I
I
I

r------i-----,
I I
I I
I SUBB I
I I
I I
L------------J

•Figure 75. The Paths in the overlay Tree
in Figure 74

Figure 76 shows a FORTRAN program in an
overlay tree structure. The paths implied
by that structure are illustrated in Figure
77. The MAIN routine and subprograms SUB1

Segment 1
(ROOT)

r-------,
I MAIN I
t------~
I SUB1 I
~-------i
I SUB2 I
L---.,.---J

Segment 2 I Segment 6
r----------i----------,
I ALPHA I

r---i---, r---i---,
I SUB3 I I SUB11 I
1-------i ~-------i
I SUB4 I I SUB12 I
L--y---l L------J

I
r----------f----------1
I BETA I I
I I I

r---i---1 r---i---, r---i---1
I SUBS I I SUBS I I SUB10 I
t------~ t-------~ L_ ______ J

I SUB6 I I SUB9 I Segment 5
f------i L------.il
I SUB7 I Segment 4
L_ _ _, ____ J

Segment 3

•Figure 76. overlay Tree structure Having
Six Segments

Linkage Editor overlay Feature 115

Path 1
r---·--·--,
I MAIN I
I I
~------~
I I
I SUB1 I
I I
l------~
I I
I SUB2 I
I I
L__T ___ J

I
I
I
I ___ ...1-. __ ,

I I
I SUB3 '
I l
~-------~
I I
I SUB4 I
I I
L--'!f' ___ J

I
I
I
I r---.J._ __ ,

I I
' SUB5 I
I I
~-------~
l I
' SUB6 I
I I
t-------~
I l
I SUB7 I
I I
L------J

Segment 1
(ROOT)

segment 2

Segment 3

Path 2
r-------,
I MAIN I
I I
~------~
I I
I SUBl I
I I
~-------i
I I
I SUB2 I
I I
L-~---J

I
I
I
I

r---.1.---,
I I
I SUB3 I
I ~
~------~
I i
I SUB4 I
I I
L--~---J

I
I
I

' r---.1.---,
I I
I SUBS l
I l
~-------·~
I I
I SUB9 I
I I
L------J

Segment 4

Path 3
r-----1
I MAIN I
I I
~------i
I I
I SUB1 I
I I
~------i
I I
I SUB2 I
I I
L--~---J

I
I
I
I

r---.1.---,
I I
I SUB3 I
I I
~------~
I I
I SUB4 I
I I
L--~---J

I
I
I
I

r---.1.---1
I 1 l
I SUB10 1,
I I J
L------J

•Figure 77. Paths Implied by Tree Structure in Figure 76

116

Segment 5

Path 4
r-------1
I MAIN I
I I
~-----·-i
I I
I SUB1 I
I I
~------i
I I
I SUB2 I
I I
L---,..---J

I
I
I
I

r---.1.---1
I I
I SUB11 I
I I
~------i
I I
I SUB12 I
I I
L------J

Segment 6

,

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

and SUB2 will remain in main storage for
the duration of execution time. They will
occupy the root segment. The segment con­
taining subprograms SUB3 and SUB4 will use
the same area of main storage as the seg­
ment containing subprograms SUBll and
SUB12. Likewise, the main storage area
used by the segment containing SUBS, SUB6,
and SUB7 will be used by the segment con­
taining SUB8 and SUB9, as well as by the
segment containing SUBlO. Figure 78 is a
time/storage map of the program shown in
Figures 76 and 77.

The structure in Figures 76 and 77 con­
sists of segments numbered 1 through 6,
with segment 1 being the root segment.
segments 2 and 6 have the same relative
origin: that is, they will start at the
same location when in main storage. This
origin has been given the symbolic name
ALPHA by the programmer (on an OVERLAY con­
trol card). The relative origin of seg­
ments 3, 4, and 5 has been given the sym­
bolic name BETA.

The relative origin of the root segment,
also called the relocatable origin, is
assigned at o. The relative origin of any
segment other than the root segment is
determined by adding the lengths of all
segments in its path, including the root
segment. When the program is loaded for
execution, the first location of the root
segment (the relocatable origin of the pro­
gram) is assigned to an absolute storage
address. All other origins are automati­
cally increased by the value of that
storage address.

COMMUNICATION BETWEEN SEGMENTS

overlay segments can be related to one
another by being either inclusive or exclu­
sive. Inclusive segments are those which
can be in main storage simultaneously, in
other words, those which lie in the same
path. Exclusive segments are those which
lie in different paths. Thus, in the pro­
gram shown in Figures 76 and 77, segments 2
and 5 are inclusive, while segments 2 and 6
are exclusive.

Main Storage

r--------------------------------1
I I
I Segment 1 (ROOT) I
I I
I I
I ALPHA I
~-------~--------------~------~
I I I
I Segment 2 ISegmentl
I I 6 I
I I I
!BETA I I
~--------T-------T-------
1 I I
I I !Segment
I I I s I I se~ent ~il.:=.~·~Y:.t,
: Se~ent - ,,Jiii

Time 0------------.....1------------>n

Problem
Program
Area

Figure 78. Time/Storage Map of Six Segment
Structure

INCLUSIVE REFERENCES

An inclusive reference is a reference
from a segment in main storage to a subpro­
gram that will not overlay the calling seg­
ment. When a CALL is made from a program
unit in one segment to a program unit in an
inclusive segment, control may be returned
to the calling segment by means of a RETURN
statement.

When a CALL is issued in any segment to
a subprogram which is higher (closer to the
root segment) on the overlay tree, the
called subprogram must return control to
the calling segment by a RETURN statement
before any exclusive overlay segments may
be loaded.

Linkage Editor overlay Feature 117

EXCLUSIVE REFERENCES

Exclusive references are those made in
one seqment to another segment that will
overlay it.

An exclusive reference is considered
valid only if the called routine is also
ref erred to in a segment common to both the
segment to be loaded and the segment to be
overlaid. Assume, for example, in Figure
19 that the main program (common segment)
contains a reference to seqment A but not
to segment B. A reference in segment B to
a routine in segment A is valid because
there is also an inclusive reference
between the common segment and segment A.
(A table in the common segment, supplied by
the linkage editor, contains the address of
segment A. The overlay does not destroy
this table.) An exclusive reference in
segment A to a routine in segment B is
invalid because there is no reference to
segment B in the common segment.

Both valid and invalid exclusive
references are considered errors by the
linkage editor; however, by use of the LET
or XCAL processing options described later
in this section, the programmer can allow a
program containing a valid exclusive
reference to be executed. Programs con­
taining invalid exclusive references are
never executable.

r---------,
Inclusive I COMMON I
Reference---. l_~~~~~~~-J

_____ J _____________ ,
I
I

r----L----, r----i----,
I I I I
!Segment Al !Segment Bl
I i I I
'-----~ _;;;-------J

~----Exclusive Reference

Figure 79. Communication Between Overlay
Segments

overlay is initiated at execution time
in response to a reference to a subprogram
which is not already in main storage. The
subprogram reference may be either a FUNC-

118

TION name or a CALL statement reference to
a SUBROUTINE name. Whem the reference is
executed, the overlay segment containing
the required subprogram. as well as any
segments in its path not currently in main
storage, are loaded.

When a segment is loaded, it overlays
any segment in storage with the same rela­
tive origin. It also overlays any segments
that are lower in the path of the overlaid
segment (i.e., farther from the root seg­
ment). For example, if segments 1, 2, and
3 in Figures 76 and 77 are in main storage
when the main program executes a call to
subprogram SUB11, segments 2 and 3 will not
be available for as long as segment 6 is in
main storage.

Whenever a segment is loaded, it con­
tains a fresh copy of the program units
that it comprises; any data values that may
have been established or altered during
previous processing are returned to their
initial values each time the segment is
loaded. Thus, data values that are to be
retained for longer than a single load
phase should be placed in the root segment.

Overlay is not initiated when a return
is made from a subprogram, or when a seg­
ment in main storage executes a reference
to a subprogram that is already in main
storage.

COMMON AREAS

The linkage editor treats all FORTRAN
COMMON areas as separate subprograms. When
modules containing COMZ..lON areas are pro­
cessed by the linkage E!di tor, the COMMON
areas are collected. 'I'hat is, when two or
more blank (unamed) COMMON areas are
encountered in the input to the linkage
editor, only the largest of them is
retained in the output module. Likewise,
when two or more named COMMON areas of the
same name are encountered, only the largest
of them is retained in the output module.

In an overlay program, the ultimate
location of blank and named COMMON areas in
the output module depends upon which link­
age editor control statements are used in
the building of the OVE!rlay structure (see
the section "Construction of the overlay
Program"). Overlay structures built
without the use of INSERT statements (those
in which the program units for each segment
are included between OVERLAY statements)
produce an output module in which the
linkage editor "promotE!S" the COMMON areas
automatically. The promotion process
places each COMMON area. in the lowest pos­
sible segment on the overlay tree. The

--··--··-·---·---------·----

lowest possible segment is one that will
always be in main storage with every seg­
ment containing a reference to it.

Figures 80 and 81 show an overlay pro­
gram as it appears before and after the
automatic promotion of COMMON areas. The
exact position of a promoted COMMON area
within the segment to which it is promoted
is unpredictable.

If INSERT statements are used to struc­
ture the overlay program, a blank COMMON
area should appear physically in the input
stream in the segment to which it belongs.
A named COMMON area either should appear
physically in the segment to which it
belongs, or should be placed there with an
INSERT statement.

COMMON areas encountered in modules from
automatic call libraries are automatically
promoted to the root segment. If such COM­
MON areas are named, they can be positioned
by the use of an INSERT statement.

Named COMMON areas in BLOCK DATA subpro­
grams must be at least as large as any
identically named COMMON areas in FORTRAN
programs that are to be link edited with
the BLOCK DATA subprograms.

r-------,
I MAIN I
~-------~
I SUBl I
~-------~
I SUB2 I
L---T ___ J

I
I

r----------i----------1
I I
I I

r---i---, r---i---,
ICOMMONAI ICOMMONAI
~-------~ t-------~
I SUB3 I I SUBll I
~-------~ ~-------~
I SUB4 I I SUB12 I
L ___ T ___ J L-------J

I
I

r----------+----------1
I I I
I I I

r---i---, r---i---, r---i---,
ICOMMONBI I SUB8 I ICOMMONBI
~-------~ ~-------~ ~-------~
I SUBS I I SUB9 I I SUB10 I
~-------~ L _______ J L _______ J

I SUB6 I
...-------1
I SUB7 I
L _______ J

Figure 80. overlay Program Before Automat­
ic Promotion of Common Areas

r-------,
I MAIN I
~-------~
I SUBl I
l-------~
I SUB2 I
l-------~
ICOMMONAI
L---T ___ J

I
I

.---------..L---------,
I I
I I

r---i---, r---i---,
I SUB3 I I SUBll I
~-------~ ~-------~
I SUB4 I I SUB12 I
~-------~ L _______ J

ICOMMONBI
L---T ___ J

I
I

r----------t----------,
I I I
I I I

r---i---, r---i---, 1 __ i ___ 1
I SUBS I ISUB8 I ISUB10 I
~-------~ ~-------1 L _______ J

I SUB6 I I SUB9 I
~-------~ L-------J
I SUB7 I
L_ ______ J

Figure 81. overlay Program After Automatic
Promotion of common Areas

The prograrruner communicates his overlay
strategy to the operating system in two
ways: through the use of special proces­
sing options which he specifies in the PARM
parameter of the EXEC statement which
invokes the linkage editor, and through the
use of linkage editor control statements.
The general funGtions of these options and
statements are described in the section
"FORTRAN Job Processing." Those which are
of particular interest to the prograrruner
constructing an overlay program are dis­
cussed below.

LINKAGE EDITOR CONTROL STATEMENTS

Once the programmer has designed an
overlay tree structure for his program, he
places the program in that structure by
indicating to the linkage editor the rela­
tive positions of the segments which make
up the tree. The control statements which
accomplish this are placed in the input

Linkage Editor overlay Feature 119

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

stream following the //SYSIN DD* card, or
after the //LKED.SYSIN DO• card if a cata­
loged procedure is used. Linkage editor
control statements have the fol.lowing form:

r--------------------T--------------------1
I Operation I Operand I
~--------------------+--------------------~
I verb I operand(s) I
l ____________________ i ____________________ J

where "verb" is the name of the operation
to be performed. The first column of all
linkage editor control statements must be
blank, and the operation field, which
begins in column 2, must contain a verb.
The operand field, which must be separated
from the operation field by at least one
blank~ must contain one or more symbols
:;eparated by commas. No embedded blanks
may appear in the operand field. Linkage
editor control statements are placed
before, between, or after modules in the
input stream. They may be grouped, but
they may not be placed, within a module.

The most important control statements
for implementing an overlay program are the
OVERLAY, INSERT, INCLUDE and ENTRY state­
ments. The OVERLAY statement indicates the
beginning of an overlay segment4 The
INSERT statement is used to rearrange the
sequence of obiect modules in the resulting
load module(s). The INCLUDE statement is
used to incorporate input from secondary
sources into the load module. The ENTRY
statement specifies the first instruction
to be executed.

The OVERLAY statement indicates the
beginning of an overlay segment. Its gen­
Pral form is:

r--------------------T--------------------1
I Operation I Operand I
~--------------------+--------------------~
I OVERLAY I symbol I L ____________________ i ____________________ J

where the operand "symbol" is the program­
mer's identification of the beginning of
the segment, that is, the symbolic name of
the relative origin. Such symbols may be
dDY group of from one through eight alpha­
meric characters beginning with an alpha­
betic character.

The OVERLAY statement for a segment is
placed in one of three places: directly
before the object module deck for the first
program unit of the new segment, or before
an INSERT statement specifying the program
units to be placed in the segment, or

120

before an INCLUDE statement specifying the
program units to be placed in the segment.
Assuming that object module decks are
available, the input deck to the linkage
f'di tor for the program in Figures 7 6 and 77
could be arranged as follows:

r~~~~-1l
I SUB1 I (object
ISUB2 IJ
L _____ J

OVERLAY ALPHA

r~~;-1l
I I (object
ISUB4 IJ
L _____ J

OVERLAY BETA

r;~~-s-1 l
I SUB6 I (object
ISUB7 1,
L _____ J

OVERLAY BETA
r-----,
ISUB8 1(
I I (object
ISUB9 1,
L _____ J,

OVERLAY BETA

module deck

module deck

module deck

module deck

r~~;~~1} object module deck
L _____ J

OVERLAY ALPHA
r-----1
I SUB11 I l
I I (object
I SUB12 I'
L _____ J

ENTRY MAIN

module deck

The order in which the overlay segments
are specified has nothing to do with the
order of execution, which is determined by
subprogram references; however, once a sym­
bolic name has been specified for a point
of origin, it may not be used again in the
deck after specifications have been made
for a point higher in the overlay tree.
Thus, in the example above, no further seg­
ments could be specified for load point
BETA after the second specification for
load point ALPHA.

An OVERLAY statement must never be
placed before the root segment ..

The INSERT Statement

There are many instances in which it is
inconvenient or impossible for the pro­
grammer to position object module decks
physically in the input stream. Library
routines, which are nonnally placed in the

root segment, and routines compiled in an
earlier step in the same job, are examples
of program units for which the object
module decks are not available for posi­
tioning at the time the job is set up.

The INSERT statement is used to position
control sections from such program units in
an overlay structure. A control section,
or CSECT, is the operating system designa­
tion for the smallest separately relocat­
able unit of a program. Examples of FOR­
TRAN control sections are: main programs,
subprograms, blank and named COMMON blocks.

The INSERT statement has the form:

r-------------T~-----------------~-----1
I Operation I Operand I
1-------------+---~-----------------------~ I INSERT I csectnameC,csectname •••] I
L-------------1--------------------------J
where •csectname• is the name of the con­
trol section to be positioned. Multiple
operands, separated by commas (not blanks),
may be specified.

The INSERT statement is plaeed directly
after the OVERLAY statement for the segment
containing the control section. If the
control section is to be positioned in the
root segment, the INSERT statement is
placed before the first OVERLAY statement.

Using INSERT statements and a FORTRAN
source deck, the overlay structure speci­
fied in Figures 76 and 77 could be imple­
mented as follows:

.-------------------1
!FORTRAN source deck!
!containing units I
IMAIN through SUB12 I
L-------------------J
ENTRY MAIN
INSERT MAIN, SUB1,SUB2
OVERLAY ALPHA
INSERT SUB3,SUB4
OVERLAY BETA
INSERT SUB5,SUB6,SUB7
OVERLAY BETA
INSERT SUB8 1 SUB9
OVERLAY BETA
INSERT SUB10
OVERLAY ALPHA
INSERT SUE11,SUB12

If INSERT statements are used more than
once in the same program for a control sec­
tion of the same name, the CSECT will be
positioned in the segment specified by the
first occurrence of the CSECT name in the
input stream. Any additional INSERT state­
ments ref erring to the CSECT will be
ignored and, at execution time, all
references to the CSECT will resolve to the
first one positioned. Thus, if a subpro-

gram is required in more than one path, it
must be either inserted in the root segment
or renamed before being used with an INSERT
statement.

The INCLUDE Statement

The INCLUDE statement is described in
the section "FORTRAN Job Processing.• When
used in an overlay program, the INCLUDE
statement is generally placed in the seg­
ment in which the material to be included
is required. It is possible to manipulate
the control sections which were added by an
INCLUDE statement through the use of tht~
INSERT statement. Assuming that the con­
trol sections of the overlay program from
the previous examples resided in libraries
as follows:

ir-------------1
I LIBA I
1-------,.-----~
I BOOK1 I BOOK2 I
1------+-----~
I MAIN I SUB3 I
ISUB1 ISUB4 I
~SUB2 I I
L-------.L-----J

r-----1
f LIBB I
I-----~
ISUBS I
fSUB6 I
f SUB7 I
ISUB8 I
ISUB9 I
fSUB101
ISUB11 I
f SUB121 L_ ____ J

Then the overlay structure could be imple­
mented by the use of the following control
statements:

ENTRY MAIN
INCLUDE LIBA(BOOK1)
INCLUDE LIBB
OVERLAY ALPHA
INCLUDE LIBA(BOOK2)
OVERLAY BETA
INSERT SUB5,SUB6,SUB7
OVERLAY BETA
INSERT SUB8,SUB9
OVERLAY BETA
INSERT SUB10
OVERLAY ALPHA
INSERT SUB11,SUB12

The ENTRY Statement

The ENTRY statement specifies the first
instruction of the program to be executed.
It has the form:

r--------------------T--------------------1
I Operation I Operand I
·--------------------+--------------------~
I ENTRY I External-name I
L--~------------------L--------------------J

Linkage Editor overlay Feature 121

where the operand "external-name" must be
the name of an instruction in the root seg­
ment. usually it will be the name MAIN.

The ENTRY statement may be placed
before, between, or after the program units
or other control statements in the input
stream. An ENTRY statement is necessary in
all overlay programs because, after linkage
editor processing, the first part of the
root segment contains special overlay con­
trol information rather than executable
code. The previous examples of overlay
implementation show the use and placement
of the ENTRY statement.

PROCESSING OPTIONS

Along with the necessary linkage editor
control statements, the programmer imple­
menting an overlay structure must provide
certain information to the operating system
by means of the PARM parameter of the EXEC
statement which invokes the linkage editor.
This information is in the form of keyword
parameters such as OVLY, LIST, XCAL, etc.
Thus, the EXEC statement invoking the link­
age editor might have the form:

//LKED EXEC PGN=IEWL,PARM='OVLY,LIST, ••• '

When the linkage edit is one step (step­
name LKED) of a compile, linkage edit, and
execute procedure such as FORTGCLG, the
PARM information is supplied in the EXEC
statement for the cataloged procedure as
follows:

//STEP EXEC FORTGCLG,PARM.LKED='OVLY,
LIST, ••• '

When PARM is specified for a cataloged
procedure, any processing options which
were originally part of the procedure are
nullified. It is therefore good practice
to list all desired options when PARM is
used for the linkage editor step of such
procedures.

Those linkage editor processing options
which are of special interest to the over­
lay programmer are discussed below.

122

• The OVLY option indicates that the load
module produced will be an overlay
structure, as directed by subsequent
linkage editor control statements.
OVLY must be speci.f ied for all overlay
processing.

• When LIST is speci.f ied, all linkage
editor control statements will be
listed in card imalge format on the dia­
gnostic output data set, SYSPRINT.

• The MAP option instructs the linkage
editor to produce a map of the output
module. The map C>f the output module
of an overlay structure shows the con­
trol sections grouped by segment.
Within each segment, the control sec­
tions are listed ln ascending order
according to theil~ assigned origins.
The number of the segment in which each
appears is also pi~inted.

• When the XREF option is specified, the
linkage editor pre>duces a cross­
reference table of the output module.
The cross-reference table includes a
module map and a list of all address
constants that ref er to other control
sections. Since the cross-reference
table includes a module map, XREF and
MAP cannot both be~ specified for one
linkage editor job step.

• When XCAL is specified to the linkage
editor, a valid exclusive call is not
considered an err<>r, and the load
module is to be marked executable, even
though improper bi:anches were made
between control sections.

• When LET is specified, any exclusive
call (valid or invalid) is accepted.
The output module will be marked "ready
for execution" evEm though certain
error or abnormal conditions were found
during linkage editing. At execution
time, a valid exclusive call may or may
not be executed correctly. An invalid
call will usually cause unpredictable
results; the reque~sted segment will not
be loaded. ~-

This section describes the error diag­
nostic facilities available during program
execution when the extended error handling
facility has been requested at system
generation time.~

The extended error handling facility
provides the user with information about
data-dependent or program errors detected
in a FORTRAN program during execution.2
(These errors are not syntactical or
semantic in nature.) When a data-dependent
or program error occurs, the user is given:

• Messages more informative than those
issued with standard diagnostic
facilities.

• Traceback information more extensive
than that provided with standard diag­
nostic facilities.

• Either standard FORTRAN corrective
action with continued execution or,
optionally, the opportunity to examine
and alter erroneous data.

When an error occurs with extended error
handling in effect, a short message text is
printed along with an error identification
number. The data in error (or some other
associated information) is printed as part
of the message text. A summary error
count, printed when a job is completed,
informs the user how many times each error
occurred.

A traceback map, tracing the subroutine
flow back to the main program, is printed
after each error occurrence; execution then
continues. (If the extend€d error handling
facility is not specified, a traceback map
is printed only for errors causing program
termination and -- if the ERR= option has
been specified in a READ statement -- for
error IHC218I.)

For each error condition detected, the
user has both dynamic and default control
over:

~This facility is requested by means of the
OPTERR parameter of the FORTLIB macro
instruction. For details, see the system
Generation publication.

2The errors detected by the extended error
handling facility are listed in Appendix D
under the heading "Extended Error Messages
for Execution Errors."

EXTENDED ERROR ~ANDLING FACILITY

• The number of times the error is
allowed to occur before program
termination.

• The maximum number of times each mes­
sage may be printed.

• Whether or not the traceback map is to
be printed with the message.

• Whether or not a user~written error­
exit routine is to be called.

The action that takes place is governed by
information stored in an area of main
storage called the option table. <A per­
manent copy of the option table is main­
tained in the FORTRAN library.)

FUNCTIONAL CHARACTERISTICS

When an error is detected, the FORTRAN
error monitor (ERRMON) receives control.
The error monitor is passed the following
information:

• An error identification number.

• The text of the appropriate message to
be printed on the object error unit.

• A pointer to the data in the error.

• The address of an area for a return
code.

The error monitor prints the necessary
diagnostic and informative messages and
then takes one of the following actions:

• Terminates the job.

• Returns control to the calling routine,
which takes a standard corrective
action and then continues execution.

• Calls a user-written closed subroutine
to correct the data in error, and then
returns to the routine that detected
the error, which then continues
execution.

The actions of the error monitor are
controlled by settings in the option table.
The option table consists of a doubleword
pref ace, followed by a doubleword entry for
each error condition. (If the extended
error handling facility is not specified,
the option table is reduced to the pref ace

Extended Error Handling Facility 123

alone.> IBM provides a default of 95
entries: the programmer can provide addi­
tional entries during system generation.
Figures 82 and 83 describe the fields of
the option table and list the system
generation default values for the contents
of these fields. Table 20 shows the system
generation default values for each error
condition. Note that default values can be
overridden only: they cannot be permanently
changed.

SUBPRQGRAM FQR THE EXTENDED ERROR HANDLING
FACIL:J;TY

To make full use of the extended error
handling facility, the programmer may call
four IBM-supplied subroutines in his FOR­
TRAN source program: ERRSAV, ERRSTR, ERR­
SET, and ERRTRA. These subroutines allow
access to the option table to alter it
dynamically. 1 Changes made dynamically are
in effect for the duration of the program
that made the change. Only the current
copy of the option table in main storage is
affected; the copy in the FORTRAN library
remains unchanged. All passed parameters,
unless otherwise indicated, are 4-byte
(fullword) integers.

Acces~inq a~d Altering the Option Table
Dynamic9lly

1. The CALL ERRSAV statement, described
below, can be used in modifying an
entry temporarily to save the original
entry for later restoration. The
statement causes an option table entry
to be copied into an 8-byte storage
area accessible to the FORTRAN
programmer.

CALL ERRSAV (ierno,tabent)

ierno
is an integer equal to the error
number to be referenced in the
option table. Should any number
not within the range of the option
table be used, an error message
will be printed.

1certain option table entries may be pro­
tected against alteration when the option
table is set up.. If a request is made by
means of CALL ERRSTR or CALL ERRSET to
alter such an entry, the request is
ignored. (See Table 18 for which IBM­
supplied option table entries cannot be
altered.)

124

tabent
is the address of an 8-byte storage
area where the option table entry
is to be stored.

2. To store an entry in the option table,
the following statement is used:

CALL ERRSTR (iernc::i,tabent)

ierno
is an integer equal to the error
number for which the entry is to be
stored in the option table. Should
any number not within the range of
the option table be used, an error
message will be printed.

tabent
is the address of an 8-byte storage
area containing the table entry
data.

3. The CALL ERRSET statement, described
below, permits thie user to change up
to five different options in an option
table entry. A procedure for altering
only one option without altering
others is explain·ed in the definition
of the parameters. Another procedure
is to omit the final parameter (or the
last two or three parameters) from the
calling sequence, or to give the value
of zero to a parameter to indicate no
change.

CALL ERRSET (ierno,inoal,inomes,
itrace,iusadr,irange)

ierno
is an integer equal to the error
number to be referenced in the
option table. Should any number
not within the range of the option
table be used, an error message
will be printed. (Note that if
ierno is specified as 212, there is
a special relationship between the
ierno and irange parameters. See
the explanation for irange.)

inoal
is an integer specifying that
execution be terminated when this
number of errors has occurred~ If
inoal is specified as either zero
or a negative number, the specifi­
cation is ignored, and the number­
of-errors option is not altered.
If a value of more than 255 is
specified, an unlimited number of
errors is permitted.

inomes
is an integer indicating the number
of messages to be printed. A nega­
tive value specified for inomes
causes all messages to be sup·-

Table 22. Corrective Action After Mathematical subroutines Error Occurrence (Part 3 of 3)

------T-------------------T------------------T--1
r I I I Options I

I I ~----------------------~---------------------------i I I Invalid I Standard I User-Supplied I
~rror I FORTRAN I Argument I Corrective I corrective Action I
::ode I Reference I Range I Action I (See Note 1) I
-------+-----------~-----+------------------+----------------------+---------------------------i

274 Z=CSIN (C) Z=O+Oi c
Z=CCOS (C)

275 Z=CSIN (C) z=•(SIN X1 +iCOS X1> c
2

Xa>174.673

Z=CCOS (C) Z=*(COS X1-iSIN X1) c
2

Z=CSIN (C) Z=*(SIN X1-iCOS X1> c
2

Xa<-174.673

Z=CCOS (C) Z=*(COS X1 +iSIN X1> c
2

~·· For errors 281 through 285, CD=X1+iX2
'**

281

282

283

284

285

290

291

300

Z=CDEXP (CD)

Z=CDEXP (CD)

Z=CDLOG (CD)

Z=CDSIN (CD)
Z=CDCOS (CD)

Z=CDSIN (CD)

Z=CDCOS (CD)

Z=CDSIN (CD)

Z=CDCOS (CD)

Y=GAMMA (X)

Y=ALGAMA (X)

DA=DGAMMA (D)

I X2 I ;;::::250*

CD=O+Oi

X2>174.673

X2<-174.673

x~2-2s2 or
x;;::::57. 5744

x~o or
x;;::::4.2937•107 3

0~2-2sa or
o;;::::57. 5774

Z=*(COS X2+iSIN Xa) CD

Z=O+Oi CD

z=-•+Oi CD

Z=O+Oi CD

Z=*(SIN X1+iCOS X1> CD
2

Z=*(COS X,_-iSIN X1> CD
2

Z=*(SIN X1-iCOS X1) CD
2

Z=* (COS Xs. +iSIN X,_) CD
2

Y=* x

Y=* x

DA=* D

301 DA=DLGAMA CD) D~O or DA=* D
0;;::::4.2937•1073

-----'--L------------------1-------------------.&.----------·--~
ariable ~ I
,J Variables of INTEGER*4 I
, XA, Y Variables of REAL* 4 I
,DA,DB Variables of REAL*8 I
,CA Variables of COMPLEX*8 I
,x,_,X2 Complex variables to be given the length of the functioned argument when they appear I
D Variables of COMPLEX*16 I
--i
otes: 1. The user-supplied answer is obtained by recomputation of the function using the valuet

set by the user routine for the parameters listed. I
2. The largest number that can be represented in floating point is indicated above by *·I

--J
Extended Error Handling Facility 135

•Table 23. Corrective Action After Program Interrupt Occurrence
r---------------------·--------------------T--------------------------------·---------1
I Program Interrupt Messages I Optic1ns l
1-----.,.----------.,.------------·--------------f---------------------·----T--·--------·------I
I !Parameters! I I User-Supplied I
I Error I Passed to I I I correctbre I
!Code !User Exit I Reason for Interruptj,, !Standard Corrective Action I Action I
l------f----------f------------------------t-----------------------·----t---------·-----~

207 D.,I Exponent overflow !Result register set to the User may alter

208

209

I
I

210 I
I
I
I
I
I
I
I
I

Dir I

None

(Interrupt Code 12) !largest possible floating o.a
!point number. The sign of
!the result register is not
I altered.
I

Exponent underflow
(Interrupt Code 13)

IThe result register is set User may alter
Ito zero. o.a
I

Divide check, Integer !There is no standard fixup. See Note 5.
divide (interrupt Code 9), Result registers are not
Decimal divide (Interrupt touched.
Code 11), Floating point
divide (Interrupt Code
15). 3

Specification interrupt
(Interrupt Code 6) occurs
for boundary misalignment.
Other interrupts occur

!during boundary alignment
!adjustment. They will be
!shown with this error code
land the PSW portion of the
!message will identify the

No special corrective
action other than correct­
ing boundary mi salignmEmts.

see Note 5.

I I interrupt. I
l------..L----·------..L---------------------------L-----------------------------L---------------~
f Variable ~ Description I
I D A variable REAL•8 This variable contains the contents of the result I
I register after the interrupt. I
I I A variable INTEGER•4 This variable contains the •exponent• as an integer I
I value for the number in D. It may be used to deter- I
I mine the amount of the underflow or overflow. The I
I value in I is not the true exponc~nt, but what was I
I left in the exponent field of a floating point number!
I after the interrupt. I
~---·---------------------~
1A program interrupt occurs asynchronously. Interrupts are described in IBM system/3601

O_p_eratinq__§y§j:em: Principles of Operation, Form A22-6821. I
I

2 The user exit routine may supply an alternate answer for the setting of the result I
register. This is accomplished by placing a value for D in the u:ser-exit routine. I
Although the interrupt may be caused by a long or short floating-point operation, the I
user-exit routine need not be concerned with this. The user-exit routine should I
always set a REAL•B variable and the FORTRAN library will load short or long depending!
upon the floating-point operation that caused the interrupt. I

3 For floating-point divide check, the contents of the result register is shown in the
message.

.. For integer and decimal divide checks, no parameters are passed to the user exit
routines.

I
I
I
I
I
I
I

5 The user-exit routine does not have the ability to change result registers after a I
divide check. The boundary alignment adjustments are informational messages and therel
is nothing to alter before execution continues. I

l--·---------------------J

136

//OPTAB JOB 1, 'SAMPLE MACRO' ,MSGLEVEL=1
//VER1 EXEC ASMFC,PARM.ASM=NODECK
//ASM.SYSIN DD •

MACRO
PREFACE &ADENT,&ADJST,&SETENT

CREATE IHCUOPT

THIS MACRO GENERATES THE PREFACE TO THE OPTION TABLE AND SETS
GLOBALS FOR SUBSEQUENT CALLS TO THE SETENT MACRO

.• THE USE OF THIS MACRO GENERATES AN OPTION TABLE AS DEFINED BY IBM
• • AND ALLOWS CHANGES TO INDIVIDUAL ERROR NUMBERS AS DESIRED, BY USE
• • OF SETENT

GBLA &COUNT,&TOTAL,&SETNR
LCLA &A
CSECT IHCUOPT

&SETNR
&COUNT
&TOTAL
&A

SETA
SETA
SETA
SETA

&SETENT
207
&ADENT+301
&ADENT+95

ERROR NUMBER OF FIRST ENTRY IN TABLE
NUMBER OF LAST ENTRY IN TABLE

DC
DC
DC
MEND
MACRO

F' &A' TOTAL NUMBER OF
B' O&ADJST. 000000 I
ALJ (0)

SETENT &E
GBLA &COUNT,&TOTAL,&SETNR
LCLA &B

&B SETA 1
&SETNR SETA &SETNR-1

ENTRIES IN TABLE

.AGAIN ANOP START OF LOOP TO GEN ONE ENTRY IN TABLE FOR ERROR NUMBER
AIF (&COUNT GT &TOTAL).MEND HAVE ALL ENTRIES BEEN CREATED
AIF (&B LE N'&SYSLIST).TEST
AIF (&SETNR EQ OJ.DEFAULT
MEX IT

.TEST ANOP
• • IF THERE IS NO USER SUPPLIED INFO FOR THIS ERROR NO TAKE DEFAULT

AIF (&SYSLIST(&B,1) NE &COUNT).DEFAULT
ERR&COUNT DC AL1(&SYSLIST(&B,2)) NUMBER OF ERRORS TO ALLOW FR SETENT

DC AL1(&SYSLIST(&B,3)) NO OF MSGS TO PRINT FROM SETENT
Dc x•oo•
DC X'&SYSLIST(&B,4) 1 OPTION BITS SUPPLIED BY SETENT
DC F' 1 1

&COUNT SETA &COUNT+1
&B SETA &B+1

AGO .AGAIN RETURN TO LOOP
.DEFAULT ANOP IBM DEFAULTS FOR ERRORS NOT INDICATED BY SETENT

IBM SPECIAL CASES FOR MESSAGE COUNT
AIF (&COUNT EQ 208).UNLIM
AIF (&COUNT EQ 210).UNLIM
AIF (&COUNT EQ 215) • UNLIM
AIF (&COUNT EQ 217) .ONE
AIF (&COUNT EQ 230).0NE

ERR&COUNT DC AL 1 (1 0)
.BACK1 ANOP

DC
.BACK2 ANOP

AL1 (5)

DC x• oo•
IBM SPECIAL CASES

AIF (&COUNT
AIF (&COUNT
AIF (&COUNT
AIF (&COUNT
AIF (&COUNT
AIF (&COUNT
AIF (&COUNT
AIF (&COUNT
DC X'42'
AGO .CONT

.SPBITS DC X'52'

.CONT
F' 1'
&COUNT+1

FOR OPTION BITS
EQ 212) .SPBITS
EQ 215) .SPBITS
EQ 218) .SPBITS
EQ 221) .SPBITS
EQ 222) .SPBITS
EQ 223) .SPBITS
EQ 224).SPBITS
EQ 225).SPBITS

ANOP
DC

&COUNT SETA
AGO

.UNLIM ANOP
ERR&COUNT DC

AIF

• AGAIN RETURN TO LOOP

DC
AGO

.ONE ANOP
ERR&COUNT DC

DC
AIF
DC
DC
AGO

.MEND ANOP
MEND

AL1 (0)
(&COUNT NE 210) .BACK1

AL1 (10)
.BACK2

AL1 (1)
AL1 (1)
(&COUNT
x•oo•
X 1 02 I

.CONT

EQ 217) .BACK2

END OF MACRO DEFINITION

•
EXAMPLE OF THE USE OF THE MACRO

PREFACE 50, 1 , 2
SETENT (220,5,2,21) I (235, 10,5,42) I (255,2,0,4)
SETENT (300,56,65,3)

END
;.•

END OF DATA

Figure 84. Example of Assembler Language Macro Definition Used To Generate Option Table

Extended Error Handling Facility 137

//SAMPLE JOB 1,SAMPLE, MSGLEVEL=1
//STEP1 EXEC FORTHCLG
//FORT.SYSIN DD *
C MAIN PROGRAM THAT USES THE SUBROUTINE DIVIDE

COMMON E
EXTERNAL FIXDIV

C SET UP OPTION TABLE WITH ADDRESS OF USER EXIT
CALL ERRSET(302,30,5,1,FIXDIV)
E:O

C GET VALUES TO CALL DIVIDE WITH
READ(5,9)A,B
IP(B) 1,2,1

2 E=1. 0
1 CALL DIVIDE(A,B,C)

WRITE(6,10)C
9 FORMAT(2E20.8)
10 FORMAT('1',E20.8)

STOP
END
SUBROU'.rINE DIVIDE (A,B,C)

C ROUTINE TO PERFORM THE CALCULATION C=A/B
C IF B=O THEN USE ERROR MESSAGE FACILITY TO SERVICE ERROR
C PROVIDE MESSAGE TO BE PRINTED

DIMENSION MES(4)
DATA MES(1)/12/,MES(2)/' DIV'/,MFS(3)/'302I/,MFS(4)/' B=fl'/
DATA RMAX/Z7FFFFFFF/

C MESSAGE TO BE PRINTED IS
C DIV302I B=O
C ERROR CODE 302 IS AVAILABLE AND ASSIGNED TO THIS ROUTINE
C STEP1 .SAVE A,B IN LOCAL STORAGE

D=A
E==B

C STEP2 TEST FOR ERROR CONDITION
100 IF(E) 1,2,1
C NORMAL CASE -- COMPUTE FUNCTION
1 C=D/E

RETURN
C STEP3 ERROR DETECTED CALL ERROR MONITOR
2 CALL ERRMON(MES,IRETCD,302,D,E)
C STEP 4 BE READY TO ACCEPT A RETURN FROM THE ERROR MONITOR

IF(IRETCD) 5,6,5
C IF IRETCD=O STANDARD RESULT IS DESIRED
C STANDARD RESULT WILL BE C=LARGEST NUMBER IF D IS NOT ZERO
C CR C=O IF E=O AND D=O
6 IF (D) 7 I 8 I 7
8 C=O.O

GO TO 9
7 C==RMAX
9 RETURN
C USER FIX UP INDICATED. RECOMPUTE WITH NEW VALUE PLACED IN E
5 GO TO 100

END
SUBROUTINE FIXDIV(IRETCD,INO,A,B)

C THIS IS A USER EXIT TO SERVE THE SUBROUTINE DIVIDE
C THE PARAMETERS IN THE CALL MATCH THOSE USE IN THE CALL TO
C ERRMON MADE BY SUBROUTINE DIVIDE
C STEP1 IS ALTERNATE VALUE FOR B AVAILABLE -- MAIN PROGRAM
C HAS SUPPLIED A NEW VALUE IN E. IF E=O NO NEW VALUE IS AVAILl'l.BLE

COMMON E
IF (E) 1 , 2 I 1

C NEW VALUE AVAILABLE TAKE USER CORRECTION EXIT
1 B=E

RETURN
C NEW VALUE NOT AVAILABLE USE STANDARD FIX UP
2 IRETCD=O

I*

RETURN
END

//GO.SYSIN DD *
0. 1EOO

/*
O.OEOO

•Figure 85. Sample Program Using Extended Error Handling Facility
138

FORTRAN can be invoked by a problem pro­
gram through the use of the CALL, ~TTACH,
or LINK macro instructions.

The program must supply to the FORTRAN
compiler:

• The information usually specified in
the PARM parameter of the EXEC
statement.

• The ddnames of the data sets to be used
during processing by the FORTRAN
compiler.

1-----T---------T~-----------~------~--1
!Name IOperationlOperand I
l------t-----~---t------------~----------1
ICnamell{LINK } IEP=compiler-name, I
I I ATTACH I PARAM=(optionaddr I
I I I C,ddnameaddrl),VL=1 I
I I I I
ICnamellCALL IIEKAAOO, (optionaddr I
I I I C,ddnameaddrl),VL I
L-~----i __________ _______________________ J

compiler-name
specifies the program name of the com­
piler to be invoked. IEYFORT is spec­
ified for FORTRAN IV (G): IEKAAOO, for
FORTRAN IV (H).

optionaddr
specifies the address of a variable
length list containing information
usually specified in the PARM parame­
ter of the EXEC statement.

The option list must begin on a half­
word boundary. The two high-order
bytes contain a count of the number of
bytes in the remainder of the list.
If there are no parameters, the count
must be zero. The option list is free
form with each field separated by a
comma. No blanks should appear in the
list.

~PP:ENDIX A: INVOKING THE FORTRAN COMPILER

ddnameaddr
specifies the address of a variable
length list containing alternate
ddnames for the data sets used during
FORTRAN compiler processing. This
address is supplied by the invoking
program. If standard ddnames are
used, this operand may be omitted.

The ddname list must begin on a half­
word boundary. The two high-order
bytes contain a count of the number of
bytes in the remainder of the list.
Each name of less than eight bytes
must be left justified and padded with
blanks. If an alternate ddname is
omitted from the list, the standard
name is assumed. If the name is
omitted within the list, the 8-byte
entry must contain binary zeros.
Names can be completely omitted only
from the end of the list.

The sequence of the 8-byte entries in
the ddname list is as follows:

Entry
1
2
3
4
5
6
7
8
9

VL=1 or VL

Alternate ~ame
SYS LIN
00000000
00000000
00000000
SYS IN
SY SPRINT
SYS PUNCH
SYSUT1
SYSUT2

specifies that the sign bit of the
last full-word of the address parame­
ter list is to be set to 1.

Appendix A: Invoking the FORTRAN Compiler 139

.APPENDIX B: EXAMPL:§S OF JOB PROCESSING

The following examples show several
methods to process load modules.

Problem Statement: A previously created
data set SCIENCE.MATH.MATRICES contains a
set of 80 matrices. Each matrix is an
array containing real•4 variables. The
size of the matrices varies from 2x2 to
25x25~ the average size is 10x10. The
matrices are inverted by a load module
MATINV in the library MATPROGS. Each
inverted matrix is written (assume FORMAT
control) as a single record on the data set
SCIENCE.MATH.INVMATRS. The first variable
in each record denotes the size of the
matrix.

MAT I NV

[

Printed
Output

-

SCIENCE.
MATH.

INVMATRS

Figure 86. Input/Output Flow for Example 1

The I/O flow for the example is shown in
Figure 86. The job control statements used
to define this job are shown in Figure 87.

Explanation: The JOB statement identifies
the programmer as JOHN SMI-TH and supplies
the account number 537. Control statements
and control statement error messages are
written in the SYSOUT data set.

The JOBLIB DD statc~ment indicates that
the private library Ml~TPROGS is concate­
nated with the system library.

The EXEC statement indicates that the
load module MATINV is executed.

DD statement FT08F001 identifies the
input data set, SCIENCE.MATH.MATRICES.
(Data set reference number 8 is used to
read the input data set.) Because this
data set has been pre'1riously created and
cataloged, no information other than the
data set name and disposition has to be
supplied.

DD statement FT10F001 identifies the
printed output. (Data set reference number
10 is used for printed output.)

DD statement FT04F001 defines the output
data set. (Data set reference number 4 is
used to write the data set containing the
inverted matrices.> Because the data set
is created and cataloged in this job step,
a complete data set specification is
supplied.

The DSNAME parametc~r indicates that the
data set is named SCIENCE.MATH.INVMATRS.
The DISP parameter indicates that the data

Figure 87. Job control Statements for Example 1

140

set is new and is to be cataloged. The
SPACE parameter indicates that space is
reserved for 80 records, 408 characters
long (80 matrices of average size). When
space is exhausted, space for 9 more rec­
ords is allocated. The space is contig­
uous; any unused space is released, and
allocation begins and ends on cylinder
boundaries.

The DCB parameter indicates variable­
length records, because the size of
matrices vary. The record length is speci­
fied as 2504, the maximum size of a
variable-length record. (The maximum size
of a record in this data set is the maximum
number of elements (625) in any matrix mul­
tiplied by the number of bytes (4) allo­
cated for an element, plus 4 for the seg­
ment control word (SCW) that indicates the
count of the number of data bytes contained
in the record.) The buffer length is spec­
ified as 2508 (the 4 bytes are for the
block control word (BCW) that contains the
length of the block).

The SEP parameter indicates that read
and write operations should take place on
different channels.

Example 2

Problem-Statement: A previously created
data set RAWDATA contains raw data from a
test firing. A load module PROGRD refines
data by comparing the data set RAWDATA
against a forecasted result, PROJDATA. The
output Of PROGRD is a data set &REFDATA,
which contains the refined data.

The refined data is used to develop
values from which graphs and reports can be
generated. The load module ANALYZ contains
a series of equations and uses a previously
created and cataloged data set PARAMS which
contains the parameters for these equa­
tions. ANALYZ creates a data set &VALUES,
which contains intermediate values.

These values are used as input to the
load module REPORT, which prints graphs and
reports of the data gathered from the test
firing. Figure 1 in the "Introduction"
shows the I/O flow for the example. Figure
88 shows the job control statements used to
process this job.

The load modules PROGRD, ANALYZ, and
REPORT are contained in the private library
FIRING.

Explanation: The JOB statement indicates
the programmer's name, JOHN SMITH, and
specifies that control statements and con-

trol statement error messages are written
in the SYSOUT data set.

The JOBLIB DD statement indicates that
the private library FIRING is concatenated
with the system library.

The EXEC statement STEPl defines the
first job step in the job and indicates
that the load module PROGRD is executed.

The DD statements FT10F001 and FT11F001
identify the data sets containing raw data
(RAWDATA) and the f orecasted result
(PROJDATA), respectively.

DD statement FT12F001 defines a tem­
porary data set, &REFDATA, created for
input to the second step. (In the load
module, data set reference number 12 is
used to write &REFDATA.) The DISP parame­
ter indicates that a data set is new and is
passed. The data set is written using the
device class TAPECLS. The VOLUME parameter
indicates that the volume identified by
serial number 2107 is used for this data
set. The DCB parameter indicates that the
volume is written using high density; the
records are fixed-length with FORMAT con­
trol and the buff er length is 400.

The EXEC statement STEP2 defines the
second job step in the job and indicates
that the load module ANALYZ is executed.

DD statement FT17F001 identifies the
data set which contains refined data. The
DISP parameter indicates that the data set
is deleted after execution of this job
step. The DD statement FT18F001 identifies
the previously created and cataloged data
set PARAMS.

DD statement FT20F001 defines the tem­
porary data set &VALUES containing the
intermediate values. The DISP parameter
indicates that the data set is created in
this step, and that it is passed to the
next job step. The data set is written on
volume 2108 using one of the devices
assigned to the class TAPECLSo The DCB
parameter indicates high density and fixed­
length blocked records <written under
FORMAT control). Each record is 204 char­
acters long.

The EXEC statement STEP3 defines the
thh:d job step and indicates that the load
module REPORT is executed. DD statement
FT08F001 identifies the data set containing
intermediate values.

DD statement FT06F001 indicates that the
data set reference number 06 is used to
print the reports and graphs for job step
three.

Appendix B: Examples of Job Processing 141

·' I I ! I

Figure 88. Job Control Statements for Example 2

A data set has been created that con­
tains master records for an index of stars.
Each star is identified by a unique 6-digit
star identification number. Each star is
assigned a record position in the data set
by truncating the last two digits in the
star identification number. Because
synonyms arise, records are chained.

Problem St~tement: Figure 89 shows a block
diagram illustrating the logic for this
problem.

A card data set read from the input
stream is used to update the star master
data set. Each record (detail record) in
this data set contains:

1. The star identification field of the
star master record that the detail
record is used to update.

2. six variables that are to be used to
update the star master.

142

The following convEmtions must be
observed in processin9 this data set:

1. The star master record that contains
the record location counter pointing
to space reserved for chained records
is assigned to record location 1..

2. A zero in the ch.ain variable indicates
that the end of a chain has been
reached.

3. The first variable in each star master
record is the star identification
field; the second variable in each
star master is the chain variable.

4. Each record contains six other
variables that contain information
about that star.

Stop

Set Record Position
in Read Statement
= Chain Variable

Randomize Star
Number to a

Record Location

Set Chain
Variable = Record
Location Counter

Set Record Position
in Write Statement

=Record
Location Counter

Increment
Record Location

Counter by l

Build Star
Master Record

Update J
Variable in
Star Master

Figure 89. Block Diagram for Example 3

When a star detail record is read, its
identification field is randomized, and the
appropriate star master record is read. If
the correct star master record is found,
the record is to be updated. If a star
master is not found, then a star master
record is to be created for that star.

The last record in the star detail data
set contains a star identification number
999999 which indicates that processing the
star detail data set is completed.

Explanation: Figure 89 is similar to the
diagram shown in Figure 53 except Figure 89
includes blocks that describe updating
variables in master records already present
in the data set. (Figure 53 includes
blocks describing certain operations that
must be performed when a direct access data
set is first written.> Also, Figure 89 is
adapted to Example 3, while Figure 53 is
more general. Figure 91 shows the FORTRAN
coding for this program.

The star master record that contains the
record counter is read, placing the record
location counter in LOCREC. Whenever a
detail record is read, the identification
variable is checked to determine if the end
of the detail data set has been reached.
The star detail records contain the
variables A, B, c, D, E, and F.

The identification number in the detail
record is randomized and the result is
placed in the variable NOREC, which is used
to read a master record. The master record
contains the star identification number
(IDSTRM), a chain record location (!CHAIN),
and six variables <T, U, v, x, Y, and Z)
which are to be updated by the variables in
the star detail records. IDSTRM and IDSTRD
are compared to see if the correct star
master is found. If it is not found, then
the variables containing the chain record
numbers are followed until the correct star
master is found or a new star master is
created.

Job .conttol Statements: The program shown
in Figure 91 is compiled and link edited,
placing the load module in the PDS STARPGMS
and assigning t~e load module the name
UPDATE. The data set that contains the
star master records was cataloged and
assigned the name STARMSTR when it was
created. Figure 90 shows the job control
statements needed to execute the module
UPDATE.

Appendix Bz Examples of Job Processing 143

Sample Coding Form

L,,,,1,.,,~,1,,,,

Figure 90. Job Control Statements for Example 3

144

Note: The values shown above for LOGICAL variables are those assigned for the current
implementation of the FORTRAN IV (G) and (H) compilers. The assembler language progranun­
er should not assume these values for future versions of either the (G) or (H) compilers,
since both compilers are subject to change.

The DUMP or PDUMP subroutine can also be used as an additional tool for understanding
the object-time representation of FORTRAN data. Refer to the "Use of DUMP and PDUMP"
section in the "Programming considerations" chapter of this publication or consult the
FORTRAN IV Library Subprograms publication.

Appendix c: Assembler Language Subprograms 155

Page of GC28-6817-2, Revised 12/3~/70, by TNL: GN28-0591

(THIS PAGE INTENTIONALLY LEFT BLANK)

156

Page Of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

APPENDIX D: SYSTEM DIAGNOSTICS

Note: This appendix contains a detailed description of the diagnostic messages produced
during compilation and load module execution. The description of each message includes a
suggested operator or programmer response.

FORTRAN IV (G) COMPILER DIAGNOSTIC MESSAGES

Two types of compiler diagnostic
messages are generated -- error/warning and
status.

The error/warning messages produced by
the compiler are noted on the source
listing immediately after the statement in
which they occur. A maximum of four
messages appears on each line. Figure 97
illustrates the format of the messages as
they are written in the data set specified
by the SYSPRINT DD statement.

There are two types of error/warning
messages: serious error messages, and
warning messages. The serious error
messages have a condition code of 8 and the
warning messages a code of 4 or O.

Status messages are produced during the
operation of the compiler. Most indicate
termination of compilation resulting from
internal compiler errors.

r---1
IXX A+B+-C/(X**3-A**-75)
I $ $
I
In> y message, n) y message
I
Where: n is an integer noting the ordi-

nal occurrence of the error on
each card.

y is a 1- to 3-digit message num­
ber in IEYxxxI format.

$ is the symbol used by the
compiler for flagging the
particular error in the
statement. (This symbol is
usually noted on the line
following the source statement
and may appear at various
points beneath the error
statement depending on the
of error.>

type I

message is the actual message

I
I
I

printed I ___ J

Figure 97. Format of Diagnostic Messages

Error/Warning Messages

~rhe following text contains a
description of error/warning messages
produced by the compiler. The message is
shown with an explanation.

IEY001I ILLEGAL TYPE

Explanation: The type of a
constant, a variable, or an
expression is not correct for its
usage. For example, the variable
in an Assigned GO TO statement is
not an integer variable; or the
variable in an assignment
statement on the left of the equal
sign is of logical type and the
expression on the right side does
not correspond; or an argument in
a reference to an IBM-supplied
subprogram is not the type
required by the subprogram.
(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
variable in an Assigned GO TO
statement is an integer variable.
Verify that any variable in an
assignment statement on the left
of the equal sign is not of
logical type with the expression
on the right side not in
correspondence. Make sure that an
argument in a reference to an
IBM-supplied subprogram is the
type required by the subprogram.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEY002I LABEL

Explanation: The statement in
question is unlabeled and follows
a transfer of control; the
statement therefore cannot be
executed. (Condition code - 0)

Appendix D: System Diagnostics 157

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

p~ogrammer Response: Probable
user error. Correct an unlabeled
statement following a transfer of
control, as it cannot be executed.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEY003I NAME LENGTH

~lana~on: The name of a
variable, COMMON block, NAMELIST
or subprogram exceeds six
characters in length; or two
variable names appear in an
expression without a separating
operation symbol.
(Condition code - 0)

Programmer Response: Probable
user error. Make sure that the
name of a variable, COMMON block,
NAMELIST, or subprogram does not
exceed six characters in length.
Check that two variable names do
not appear in an expression
without a separating operation
symbol. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY004I COMMA

Explanation~ The delimiter
required in the statement has been
omitted.
(Condition code - 0)

Programmer Response: Probable
user error. Correct or delete
invalid delimiters and insert the
required delimiter that has been
omitted. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEYOOSI ILLEGAL LABEL

158

Explanat~n: Illegal usage of a
statement label; for example, an
attempt is made to branch to the
label of a FORMAT statement.
<condition code - 8)

Programmer Response: Probable
user error. Correct the illegal
usage of a statement label.
Example: No branch to the label
of a FORMAT statement should be
coded. If the problem recurs, do
the f ollowin9 before calling IBM
for programming support:

• Have source and associated
listing available.

IEY006I DUPLICATE LA.BEL

Explanation: The label appearing
in the label field of a statement
has previously been defined for
another statement.
(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
previously defined label and
adjust any code referencing the
label. If the problem recurs, do
the following before calling IBM
for programming support:

• Have source and associated
listing available.

IEY007I ID CONFLICT

IEY008I

Explanation: The name of a
variable or subprogram has be!en
used in conf l:Lct with the type
that was defined for the variable
or subprogram in a previous
statement. (Condition code - 8)

Programmer Response: Probable
user error. correct any variable
or subprogram name used in
conflict with the type defined for
the variable or subprogram in a
previous state!ment. Examples:
The name liste!d in a CALL
statement is the name of a
variable; a single name appears
more than once in the dummy list
of a statement function; a name
listed in an EXTERNAL statement
has been defined in another
context. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

ALLOCATION

Explanation: •rhe storage
allocation specified by a source
module statement cannot be
performed because of an

,,,..

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

• Have source and associated
listing available.

IEK028I THE ASSIGN STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

~EQSirammer Response: Probable
user error. Determine the invalid
delimiter and correct the
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK030I THE DO STATEMENT HAS AN INVALID
END OF RANGE STATEMENT NUMBER.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
end of range statement number is
an executable statement number
appearing after the DO statement.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK031I THE DO STATEMENT OR IMPLIED DO HAS
AN INVALID INITIAL VALUE.

(Condition code - 8)

Programmer Response: Probable
user error. Check that the
initial value is either an
unsigned integer constant greater
than zero, or an unsigned non­
subscripted integer variable
greater than zero. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK034I THE ASSIGNMENT STATEMENT BEGINS
WITH A NON-VARIABLE.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
statement. Resubmit the job with
the MAP option to determine the
nature of the non-variable in
question, if possible. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK035I THE NUMBER OF CONTINUATION CARDS
EXCEEDS THE COMPILER LIMIT.

(Condition code - 8)

~Eogrammer Response: Probable
user error. Make sure that the
statement does not extend over
more than 19 continuation cards.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK036I THE STATEMENT CONTAINS INVALID
SYNTAX. THE STATEMENT CANNOT BE
CLASSIFIED.

(Condition code - 8)

Programmer Response: Probable
user error. correct the
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK039I THE DEFINE FILE STATEMENT HAS AN
INVALID ASSOCIATED VARIABLE.

(Condition code - 8)

Programmer Response: Probable
user error. Check that the
associated variable is
non-subscripted and integral.
Make sure that the associated
variable does not appear in the
I/O list of a READ or WRITE for a
data set associated with the
DEFINE FILE statement. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK040I IT IS ILLEGAL TO HAVE A &
STATEMENT NUMBER PARAMETER OUTSIDE
A CALL STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Delete the &
statement number. If the problem
recurs, do the following before
calling IBM for programming
support:

Appendix D: System Diagnostics 171

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

• Have source and associated
listing available.

IEK044I ONLY THE CALL, FORMAT, OR DATA
STATEMENTS MAY HAVE LITERAL
FIELDS.

(Condition code - 8)

Proqrammer Response: Probable
user error. Delete or correct the
misplaced literal field. If the
problem recurs, do the following
before calling IBM for programming
support::

• Have source and associated
listing available.

IEK045I THE EXPRESSION HAS A LITERAL WHICH
IS MISSING A DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Insert the missing
delimiter, or correct the
erroneous delimiter. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK047I THE LITERAL HAS MORE THAN 255
CHARACTERS IN IT.

<condition code - 8)

Proqramm~r Response: Probable
user error. Delete the excessive
characters, or make sure that the
constant is properly delimited.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK050I THE ARITHMETIC IF HAS THE SYNTAX
OF THE BRANCH LABELS INCORRECT.

172

<condition code - 8)

Programmer Response: Probable
user error. Make sure that there
are three executable statement
numbers with commas following the
first two. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK052I THE EXPRESSION HAS AN INCORRECT
PAIRING OF PARENTHESES OR QUOTES.

(Condition code - 8)

~rog!:ammer Response: Probable
user error. Check that there! are
as many left parentheses as there
are right. I:E a FORMAT statement
contains an H Format Code, check
that w is larige enough to
accommodate the data and does not
encompass the closing parenthesis.
Make sure that there is an even
number of single quotes, and that
single quotes within data, if any,
are represented by two successive
single quotes. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK053I THE STATEMENT HAS A MISPLACED
EQUAL SIGN.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
equal sign indicated. If th1e
problem recurs, do the following
before calling IBM for programming
support:

• Have source~ and associated
listing available.

IEK056I THE FUNCTION STATEMENT MUST HAVE
AT LEAST ONE ARGUMENT.

(Condition code - 8)

Programmer Respon~~= Probable
user error. correct the function
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have sourcE~ and associated
listing available.

IEK057I THE STATEMENT HAS A NON-VARIABLE
SPECIFIED AS A SUBPROGRAM NAME.

(Condition code - 8)

Programmer RE~sponse: Probable
user error. Correct the
non-variable subprogram name~. If
the problem JLecurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IEK058I THE SUBPROGRAM STATEMENT HAS AN
INVALID ARGUMENT.

(Condition code - 8)

Programmer Response: Probable
user error. correct or delete the
invalid argument. Use the MAP
option to determine its nature, if
necessary. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK059I THE FUNCTION STATEMENT HAS AN
INVALID LENGTH SPECIFICATION.

(Condition code - 8)

Programmer Response: Probable
user error. Make sure that the
length specification is
permissible for the associated
type. Check that a type has been
specified and that DOUBLE
PRECISION has not been included.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK061I THE EQUIVALENCE STATEMENT CONTAINS
A NON-SUBSCRIPTED ARRAY ITEM.
INCORRECT ADCONS MAY BE GENERATED.

(Condition code - 4)

Programmer Response: Probable
user error. Include the necessary
subscripts. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK062I THE EQUIVALENCE STATEMENT HAS AN
ARRAY WITH AN INVALID NUMBER OF
SUBSCRIPTS.

(Condition code - 8)

~rog!:_~mmer R~~9nse: Probable
user error. Delete the invalid
subscripts or include those
necessary for agreement with the
associated specification
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK064I THE NAMELIST STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Programmer Response: Probable
user error. Delete or correct the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK065I THE NAMELIST STATEMENT HAS A
NAMELIST NAME NOT BEGINNING WITH
AN ALPHABETIC CHARACTER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
character. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK066I THE NAMELIST STATEMENT HAS A
NON-UNIQUE NAMELIST NAME.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the NAMELIST
name. Invoke the MAP option for
indications of the use of each
name, if necessary. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK067I THE NAMELIST STATEMENT HAS AN
INVALID LIST ITEM.

(Condition code - 8)

Programmer Response: Probable
user error. Check that the list
item is a variable or array name.
If the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK069I THE COMMON STATEMENT HAS AN
INVALID DELIMITER.

(Condition code - 8)

Appendix D: system Diagnostics 173

Page of GC28-6817-2, Revised 12.130/70, by TNL: GN28-0591

Progranuner Response: Probable
user error. Delete or correct the
invalid delimiter. If the problem
recurs, do the following before
calling IBM for prograrmning
support:

• Have source and associated
listing available.

IEK070I THE EQUIVALENCE STATEMENT HAS A
MISSING OR MISPLACED DELIMITER.

<condition code - 8)

Programmer Response: Probable
user error. Make sure that there
are as many left parentheses as
there are right parentheses.
Check all commas. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK071I THE EQUIVALENCE STATEMENT DOES NOT
SPECIFY AT LEAST TWO VARIABLES TO
BE EQUIVALENCED.

(Condition code - 8)

~!'_C?_qrarnn!~r Response: Probable
user error. Check delimiters and
correct the invalid source. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK072I THE EQUIVALENCE STATEMENT HAS AN
INVALID VARIABLE NAME.

(Condition code - 8)

Prog_rammer Response: Probable
user error. Delete or correct the
invalid variable name. Make sure
that the variable in question is
not a dununy argument. If
necessary, invoke the MAP option
for indications of the use of
variable names. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK073I THE EQUIVALENCE STATEMENT HAS A
SUBSCRIPT WHICH IS NOT AN INTEGER
CONSTANT.

174

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
subscript. If the problem rE~curs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK074I THE STATEMENT HAS A VARIABLE WITH
MORE THAN SEV~N SUBSCRIPTS.

(Condition code - 8)

Programmer Re:sponse: Probable
user error. Check that all commas
are in correct position. If the
problem recur:s, do the following
before callin9 IBM for programming
support:

• Have source and associated
listing ava:ilable.

IEK07 5I THE COMMON STl\TEMENT HAS A
VARIABLE THAT HAS BEEN REFERENCED
IN A PREVIOUS COMMON STATEMENT.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
redundant entry. If the problem
recurs, do thE~ following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK076I THE IMPLICIT STATEMENT IS NOT THE
FIRST STATEMENT IN A MAIN PROGRAM
OR THE SECOND STATEMENT IN A
SUBPROGRAM.

(Condition Coele - 8)

Programmer Response: Probable
user error. Place the IMPLICIT
statement in correct sequence. If
the problem rE~curs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK077I THE IMPLICIT STATEMENT HAS A
MISPLACED DELIMITER IN THE TYPE
SPECIFICATION FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid delimiter. If the problem

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IEK570I TABLE EXCEEDED. OPTIMIZATION
DOWNGRADED.

(Condition code - 0)

Explanation: Probable user error.
The program is too large to permit
optimization. This is a warning
message and appears in thE! source
listing at the point where the
table (RMAJOR) overflows. The
compiler performs OPT=l register
allocation only; no other
optimization is performed.

Proqrammer Response: Probable
user error. Either the program
should be segmented or thE! size of
the table RMAJOR should be
increased. RMAJOR may be
increased by increasing the size
of the compiler at system
generation time. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK580I COMPILER ERROR.

(Condition code - 16)

Explanation: One of the following
four conditions occurred: an
invalid adjective code was
detected; an illegal element
length was detected; no
equivalence group was found; an
unusual primary adjective code was
detected.

Programmer Response: Probable
user error. Make sure that the
source program is correct. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK600I INTERNAL COMPILER ERROR.
LOGICALLY IMPOSSIBLE BRANCH TAKEN
IN A COMPILER SUBROUTINE.

(Condition code - 16)

Programmer Response: Probable
user error. Make sure that the
source code is correct. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK610I THE STATEMENT NUMBER OR GENERATED
LABEL IS UNREACHABLE.

(Condition code - 4)

Note: This message is generated
only if OPT=2 is specified in the
EXEC statement.

Programmer Response: Probable
user error. Make sure that
control statements indicate
correct branch targets. Verify
that an unlabeled STOP, RETURN, or
GO TO does not immediately follow
any one of these same three source
statements. Make sure that the
statement following an arithmetic
IF is labeled. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK620I THE STATEMENT NUMBER OR GENERATED
LABEL IS A MEMBER OF AN
UNREACHABLE LOOP.

(Condition code - 4)

Note: This message is generated
only if OPT=2 is specified in the
EXEC statement.

Proqrammer Response: Probable
user error. Make sure that
control statements indicate
correct branch targets. Correct
labels so that the loop may be the
target of a branch. Delete
invalid terminal source
statements. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK630I INTERNAL TOPOLOGICAL ANALYSIS
TABLE EXCEEDED.

(Condition code - 16)

Programmer Response: Probable
user error. Insert statement
numbers where a large span of
source code exists without
statement numbers. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

Appendix D: System Diagnostics 184.1.1

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

IEK640I COVERAGE BY BASE REGISTER 12 IN
OBJECT MODULE EXCEEDED.

(Condition code - 16)

Programmer Response: Probable
user error. Segment the program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK650I INTERNAL ADCON TABLE EXCEEDED.

(Condition code - 16)

Programmer Response: Probable
user error. Segment the program
and recompile. If SIZE was
specified, indicate a larger SIZE,
if possible. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK660I INTERNAL COMPILER ERROR.
TEMPORARY FETCHED BUT NEVER
STORED.

<condition code - 16)

Programmer Response: Probable
user error. Make sure that source
is correct. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK661I INTERNAL COMPILER ERRO:R. UNABLE
TO FREE A REGISTER.

(Condition code - 16)

Programmer Response: Probable
user error. Segment large spans
of unlabeled source code into
smaller extents delimited by
statement numbers. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK662I INTERNAi.. COMPILER ERROR.

184.12

TEMPORARY NOT ENTERED IN
ASSIGNMENT TABLE.

(Condition code - 16)

Programmer Response: Probable
user error. Make sure that source
is correct. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK6701 LOGICALLY IMPOSSIBLE BRANCH ~rAKEN
IN A COMPILER SUBROUTINE.

(Condition code - 16)

Programmer Response: Probable
user error. Make sure that source
code is correct. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK671I LOGICALLY IMPOSSIBLE BRANCH TAKEN
IN A COMPILER SUBROUTINE.

(Condition code - 16)

Programmer Response: Probable
user error. Make sure that source
code is correct. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK710I THE FORMAT STATEMENT SPECIFIES A
FIELD WIDTH OF ZERO.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the invalid
field width. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK720I THE FORMAT STATEMENT CONTAINS AN
INVALID CHARACTER.

(Condition code - 8)

Programmer Response: Probable
user error. Correct or delete the
invalid character. If the problem
recurs, do the following before

- -------~-----·----

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

calling IBM for programming
support:

• Have source and associated
listing available.

IEK730I THE FORMAT STATEMENT HAS
UNBALANCED PARENTHESES.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
statement. Delete any unnecessary
or insert missing parentheses.
Make sure wH specifications are
correct. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated
listing available.

IEK740I THE FORMAT STATEMENT HAS NO
BEGINNING LEFT PARENTHESIS~

<condition code - 8)

Programmer Response: Probable
user error. Correct the source
statement. If the problem recurs,
do the following before calling
IBM for programming support:

• Have source and associated

IEK770I THE FORMAT STATEMENT HAS A MISSING
DELIMITER.

(Condition code - 8)

Proqrammer Response: Probable
user error. Either correct or
delete invalid delimiters, or
insert the missing delimiter. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK780I THE FORMAT STATEMENT CONTAINS A
NUMERIC SPECIFICATION GREATER THAN
255.

(Condition code - 8)

Programmer Response: Probable
user error. correct the invalid
numeric specification. If the
problem recurs, do the following
before calling IBM for programming
support:

• Have source and associated
listing available.

IEK800I SOURCE PROGRAM IS TOO LARGE.

listing available. (Condition code - 16)

IEK750I THE FORMAT STATEMENT SPECIFIES A
COUNT OF ZERO FOR A LITERAL FIELD.

(Condition code - 8)

Programmer Response: Probable
user error. Correct the
incorrectly specified count. If
the problem recurs, do the
following before calling IBM for
programming support:

• Have source and associated
listing available.

IEK760I THE FORMAT STATEMENT CONTAINS A
MEANINGLESS NUMBER.

(Condition code - 8)

Programmer Response: Pr0bable
user error. Correct or delete the
invalid number. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

Programmer Response: Probable
user error. Segment the program
and recompile. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

IEK1000I INTERNAL COMPILER ERROR

(Condition code - 4)

Explanation: An erroneous error
number has been placed in the
error table.

Programmer Response: Probable
user error. If the problem
recurs, do the following before
calling IBM for programming
support:

• Have source and associated
listing available.

Appendix D: System Diagnostics 184.13

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

LOAD MODULE EXECU'I'ION DIAGNOSTIC MESSAGES

The load module produces three types of
diagnostic messages:

• Program interrupt messages
• Execution error messages
• Operator message

Program Interrupt Messages

Program interrupt messages containing
the old Program Status Word (PSW) are ·
written when an 4~xception occurs. The
format of the program interrupt message
when the extended error message facility
has not been specified at system generation
time is given in Figure 100. Program
interrupt messages IHC207I, IHC208I, and
IHC209I are produced only when the extended
error message facility has been specified.
The format of these messages can be found
in the section "Execution Error Messages."

Note: Codes 4, 5, 6, and 7 are associated
with the execution-time adjustment of
boundary alignment errors and appear only
when the system is generated to provide
boundary alignment adjustment; i.e. 1 when
BOUNDRY=ALIGN is specified in the FORTLIB
macro instruction during system generation
<see the ~.!=_em ~neration publication).

•rhe letter A in the message indicates
that boundary adjustment has taken
place.The letter P in the message indicates
that the interruption was precise. This
will always be the case for
non-specification interrupt messages in
FORTRAN except when using machines with
special hardware on which imprecise
interruptions may occur. The eighth
character in the PSW <i.e., 4, 5, 6, 7, 9,
c, D, or F) represents the code number (in
hexadecimal) associated with the type of
interruption. The following text describes
these interruptions.

Protection Exception: The protection
exception <code 4), is recognized when the
key of an operand in storage does not match
th~ protection key in the PSW. A message
is issued only if a specification exception
<code 6) has already been recognized in the
same instruction. Otherwise, the job
terminates abnormally.

If the extended error message facility
is specified, the following information is
provided.

IBCOM - PROGRAM INTERRUPT - ALIGNMENT OLD
PSW IS xxxxxx:x:4xxxxxxxx

184.14

Supplemental Data: None.

Standard Corrective Action: Continue
execution at point of interrupt.

Programmer Response: Probable user error.
If the job has been terminated with a
completion code of SYS'TEM=OC6
<specification interrupt), correct thE~
source causing boundary misalignment. If
the problem recurs, do the following before
calling IBM for programming support:

• Make sure that MAP, LIST, and DUMP have
been specified as parameters on the EXEC
statement and provide the necessary
GO.SYSUDUMP or GO.SYSABEND DD statement.

• Make sure that the XREF option is
specified in the PARM field of the l~XEC
statement and that the necessary DD
statement is included.

• Have source and associated listing
available.

Addressing Exception: The addressing
exception <code 5) is recognized when the
address of the data is outside of the
available storage for the particular
installation. A message is issued only if
a specification exception (code 6) has
already been recognized in the same
instruction. Otherwise, the job terminates
abnormally.

If the extended error message facility
is specified, the following information is
provided.

IBCOM - PROGRAM INl'ERRUPT - ALIGNMENT OLD
PSW IS xxxxxxx5xxxxxxxx

Supplemental Data: None.

standard Corrective Action: continue
execution at point of interrupt.

Programmer Response: Probable user error.
If the job has been terminated with a
completion code of SYSTEM=OC6
(specification interrupt), correct th•~
source causing boundary misalignment. If
the problem recurs, do the following before
calling IBM for programming support:

• Make sure that MAP, LIST, and DUMP have
been specified as parameters on the EXEC
statement and provide the necessary
GO.SYSUDUMP or GO.SYSABEND DD statement.

• Make sure that the XREF option is
specified in the PARM field of the EXEC
statement and that the necessary DD
statement is included.

• Have source and associated listing
available.

case where the two-dimensional array can be
logically treated as a set of one­
dimensional arrays.

Constants occurring in subscript expres­
sions are accounted for at compile time and
have no effect at execution time.

Program Structure

If a large number of variables are to be
passed among calling and called programs,
some of the variables should be placed in
the COMMON area. For example, in the main
program and subroutine EXAMPL

DIMENSION E(20),I(15)
READ(10)A,B,C
CALL EXAMPL(A,B,C,D,E,F,I)

END

SUBROUTINE EXAMPL (X,Y,Z,P,Q,R,J)
DIMENSION Q(20),J(15)

RETURN
END

time and storage are wasted by allocating
storage for variables in both the main pro­
gram and subprogram and by the subsequent
instructions required to transfer variables
from one program to another.

The two programs should be written using
a COMMON area, as follows:

COMMON A,B,C,D,E(20),F,I(15)
READ(10)A,B,C
CALL EXAMPL

END

SUBROUTINE EXAMPL
COMMON X,Y,Z,P,Q(20),R,J(15)

RETURN
END

storage is allocated for variables in
COMMON only once and fewer instructions are
needed to cross reference the variables
between programs.

To reduce compilation time for
equivalence groups, the entries in the
EQUIVALENCE statement should be specified
in descending order according to offset.
For example, the statement

EQUIVALENCE (ARR1(10,10),ARR2(5,5),
ARR3 (1, 1) , VARl)

compiles faster than the statement

EQUIVALENCE (VAR1,ARR3(1,1),ARR2(5,5) 1

ARRl<lO, 10))

To reduce compilation time and save
internal table space, equivalence groups
should be combined, if possible. For
example, the statement

EQUIVALENCE (ARR1(10,10),ARR2(5,5),VAR1)

compiles faster and uses less internal
table space than the statement

EQUIVALENCE (ARR1(10,10),VAR1),
(ARR2(5 1 5),VAR1)

Logical IF Statements

A statement such as:

IF(A.LT.B.OR.C.GT.F(X).OR •• NOT.L)GOTO 10

is compiled as though it were written:

IF (A .LT. B) GO TO 10
IF (C .GT. F(X)) GO TO 10
IF (.NOT. L) GOTO 10

Thus, if A .LT. B is found to be true, the
remainder of the logical expression is not
evaluated.

Similarly, a statement such as:

IF (D.NE. 7.0 .AND. E.GE.G) I=J

is compiled as:

20

IF (D.EQ. 7.0) GOTO 20
IF (E.LT.G) GOTO 20
I=J
CONTINUE

~rhe order in which a programmer writes
log:tcal expressions in an IF statement
affects the speed of execution.

If A is more of ten true than B, then
write A .OR. B rather than B .OR. A; and
write B .AND. A rather than A .AND. B.

If any of the following occur in a log­
ical expression:

Appendix H: FORrl'RAN IV (H) Optimization Facilities 195

1. a mixture of both .AND. and .OR.
operators

2. a .NOT. operator followed by a paren­
thesized expression

the entire logical expression must be eval­
uated and efficiency is lost.

Branching

The statement

IF(A.GT.B) GOTO 20

gives equivalent or better code than

IF(A-B>l0,10,20
10 CONTINUE

The Assigned GO TO is the fastest condi­
tional branch.

196

The computed GO TO should be avoided
unless four or more statement labels occur
within the parentheses.

The statement

IF<I-2) 20, 30, 40

is significantly faster than

GOTO (20,30 1 40) 1 I

Name Assignment

For its internal use, the compiler
places names used for variables, arrays,
and subprograms into a table. This table
is divided into six strings and is searched
many times during compilation. Names that
are one character long are placed in the
first string: names two characters long are
placed in the second string: and so on.
For faster compiling, the names should be
distributed equally among the six strings.

APPENDIX!: CONSIDERATIONS FOR;MODELS 91AND195

This appendix discusses FORTRAN program­
ming factors that are of special concern to
users of IBM System/360 Models 91 and 195.

PROGRAM INTERRUPTION EXIT ROUTINE

The library subroutine that handles
interruptions has been modified to recog­
nize precise, imprecise, and multiple
imprecise interruptions. Multi':'le impre­
cise interruptions may require that the
subroutine set more than one of the indica­
tors (for divide check, exponent overflow,
and exponent underflow>.

Modifications are made to the message
that is issued for the following program
exceptions:

• Fixed-point divide

• Decimal divide

• Floating-point exponent overflow

• Floating-point exponent underflow

• Floating-point divide

The format of the message issued is

IHC210I PROGRAM INTERRUPT (x) OLD PSW
IS y

where x represents one of the letters P
(for precise), I (for imprecise), or M (for
multiple imprecise of different classes),
and y is the hexadecimal representation of
the old PSW.

BOUNDARY ADJUSTMENT ROUTINES (MODEL 91
ONLY)

Specification of a system generation
option, BOUNDRY=ALIGN, wili provide boun­
dary adjustment routines for correction of
instructions that cause specification
exceptions. However, the nature of these
fix-up routines requires the identification
of the instruction that causes the excep­
tion. Since specification exceptions on
the Model 91 generate imprecise interrup­
tions, boundary adjustn.-~nts cannot be made.
Thus, when the FORTRAN library is specified
for the Model 91, boundary alignment must
not be requested. Because BOUNDRY=ALIGN is

the default option, BOUNDRY=NOALIGN must be
specified. If BOUNDRY=NOALIGN is not spe­
cified during system generation for the
Model 91, an error message will occur.

Note: If boundary alignment were allowed,
the related task eventually could be ter­
minated for the following reason: Boundary
alignment is made with respect to the
instruction addressed by the program old
PSW, but since the related interruption may
have been imprecise, the old PSW may not
contain the address of the incorrect
instruction.

FLOATING-POINT OPERATIONS

For the Models 91 and 195, floating­
point operations are somewhat different
from what they are on other models. Dis­
cussed below are two of these differences.

Exponent Overflow

A floating-point exponent overflow
exception results in the maximum floating­
point number (see the publication IBM
System/360 Principles of Operation) being
placed in the result register. The correct
sign of the result is appended to the
result in the register. For operations
using long precision, all 56 of the frac­
tion bits in the register are set to one.
For operations using short precision, the
low-order 32 bits in the register remain
unchanged. In addition and subtraction,
the condition code reflects th~ sign of the
result. This exception produces an impre­
cise interruption.

Exponent Underflow

The result of an exponent underflow
exception is that a true zero is placed in
the result register. For long-precision
operations, all 56 of the fraction bits in
the register are set to zero. For short­
precision operations, the low-order 32 bits
in the register remain unchanged. In addi­
tion and subtraction, the condition eode is
set to zero. This exception produces an
imprecise interruption if the mask bit (bit
38) in the PSW is set to one.

Appendix I: Considerations for Models 91 and 195 197

Note: Whenever an interruption occurs on
other models of System/360, system routines
provide the setting of the result register
when requested. To maintain compatibility,
these operations are performed in the hard­
ware of the Models 91 and 195 since the
imprecise interruption prohibits the pro­
gramming technique.

198

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

preallocated 56-57
processing for input only 63-64
processing for output only 63-64
utility 44,81

data spill 91
DATA statement 91,92
DCB parameter 32,57,64-65,73
DD (data definition) statement

examples of 58
information specified in 28
parameters

asterisk (*) 31
DATA 31
DCB 32
ddname 49-51
DDNAME 60
DISP 34-35
DSNAME 33-34,60
DUMMY 60
LABEL 63
PASSWORD 63
SEP 97 1 98
SPACE 60,621 98-99
SPLIT 99
SUBALLOC 99
SYSOUT 31,32,64
UNIT 31,61
VOLUME 61

DDNAME parameter 60
ddnames 40,46 1 49 1 54-55
Debug facility

DISPLAY statement 189
INIT option 189
SUBCHK option 189
SUBTRACE option 189
TRACE option 189
UNIT option 189

DECK compiler option 43,105
Dedicated work data set

function of 56-57
parameters

DCB 57
DISP 57
DSNAME 57
EXPDT/RETPD 57
SUBALLOC 57
UNIT 57
VOLUME 57

DEFER subparameter 98
DEFINE FILE statement

reference numbers used in 50
with spanning 71
use with DD statement 60

DELETE specification 35
Delimiter statement 14,35
DEN subparameter

restriction with SYSOUT 64
specification 64,65

Density values 65
Device affinity 98
Diagnostic Messages

compiler
FORTRAN (G) 157-165
FORTRAN (H) 165-184.13

extended error handling 184.14-185
load module execution 184-14-186
loader 113
operator 186

Direct access data sets
buffers for 71
programming considerations 93-95
record length considerations 70
space requirements 62-63
spanning considerations 71

Directory index 12
DISP parameter 35,57
Dispatching priority 27
DISPLAY statement 189
DO loops

implied 93
optimization of

FORTRAN (G) 90-91
FORTRAN (H) 191-192

DPRTY parameter 27
DSN parameter 31,33-34,60
DSNAME parameter 30 1 33-34,57,60
DUMMY parameter 6 0
DUMP subroutine 89-90

EBCDIC
compiler option 43
mode 32
translation 65

EDIT compiler option 37,44,81
Embedded blanks, use of 89
END FILE statement 50-51
End-of-data indicator 50-51
END option 51,60
ENTRY statement 48,121-122
EP loader option 56
EQUIVALENCE groups 88
EQUIVALENCE statement 93,194
ERR option 52
ERR parameter 90
Error codes 19
Error message data set 54
Error messages

(see Diagnostic messages)
Error monitor 123-124
ERRSET subprogram 126-127
ERRSTR subprogram 127
ESD card 107
exclusive references 118
EXEC statement

function 14
information specified in 21
name field 23
parameters

ACCT 26
COND 25
DPRTY 27
PARM 25,42-44
PGM 23 1 24
PROC 23
REGION 22,26-27
SIZE 28,81
TIME 26.

Execution device classes 54
EXPDT subparameter 57,64
Exponent overflow 197
Exponent underflow 197
Extended American National Standard
Carriage control Characters 187

Index 201

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Extended error handling facility
functional characteristics 123-124
obtaining a traceback 125
option table (see Option table)
subprograms for using 124
user-supplied-exit considerations

126-127

File-protected tape volumes 63
FIND statement 95-96
Fixed-length records 67-68, 68-·69
Fixed-point overflow 89,184.1E
Floating-point operations

Model 91 197
Model 195 197

f"'ORMAT control
blocked records 68-70
unblocked records 67-68

FORTGC
control statements 74
function 12,37
invoking of 37

FORTGCL
control statements 74
function 12,38
invoking of 38

FORTGCLG
control statements 78
error codes 19
function 12,39
invoking of 39

FORTGLG
control statements 75-77
function 12,38
invoking of 38

FORTHC
control statements 82
function 12,37
invoking of 37

FORTH CL
control statements 82,83
function 12,38
invoking of 38

FORTHCLG
control statements 82,85
error codes 19
function 12,39
invoking of 39

FORTHLG
control statenents 82,84
function 12,38
invoking of 38

FORTLIB mac:r·o instruction 8 8
FORTRAN compiler, invoking of 139
FORTRAN library 97
FORTRAN record 67
FORTRAN sequence number 50-51

Graphic units 188

IBCOM 111
ID compiler option 43-44
IEKAAOO 39
IEWL 45
IEWLPRGO 54
IEWLE150 45

202

IEWLE180 45
IEWLF128 45
IEWLF440 45
IEWLF880 45
IEYFORT 39
IF statement 89,195-:l.96
Implied DO 93
Imprecise interruptions 184.14,198
IN subparameter 63-64
INCLUDE statement 47,121
inclusive references 117
Indicators 89
Induction variable optimization 193-194
INIT option 189
initialization of data 91-92
INSERT statement 48,120-121
Invoking cataloged procedures

FORTGC 37
FORTGCL 38
FORTGCLG 39
FORTGLG 38
FORTHC 37
FORTHCL 38
FORTHCLG 39
FORTHLG 38

Invoking the FORTRAN compiler 139
I/O devices

Job

address 31
affinity 98
BLKSIZE ranges for 71
class 31
optimization 97-98
unit type 31,188

assigning priority to 20
conditions for terminating 19
relationship to job step 11

Job accounting information 17
Job control language

definition 11
(see also Job control statements)

Job control statements
coding of 14
comment 14,36-37
comments field 15
continuing 15
DD 14
delimeter 14,35
EXEC 14
JOB 14
name field 14
notation for defining 16
operand field 15
operation field 15
processing of 14
use of 11

Job processing, exampl1~s of 140-1.45
Job scheduler 14
JOB statement

function 14
parameters

account number 17
COND 19
MSGCLASS 20
MSGLEVEL 18,19
programmer' s nam~~ 1 7

•llllllBBll

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

PRTY 20
REGION 18 1 20-21
TIME 21

Job step
conditions for bypassing 25
main storage requirements 26-27
relationship to job 11
time limits, setting of 26

JOBLIB 29 1 30 1 49

KEEP specification 35
Keyword parameters 15

Label map 102
LABEL parameter 63
Labels

bypassing processing of 63
contents of 13
data set 13
standard 13,63

LET
linkage editor option 49
loader option 55
overlay processing option linkage
editor 122

Library, FORTRAN 97
LIBRARY statement 47
LINECNT compiler option 43
LINK macro instruction 139
Linkage conventions 148,149
Linkage editor

control statements
ALIAS 48
CHANGE 48
ENTRY 48,121~122

INCLUDE 47,121
INSERT 48,120-121
LIBRARY 47
OVERLAY 48,120
REPLACE 48

cross-reference list 109
ddnames 46
device classes 46,47
module map 109,110
names 45
options

LET 49
LIST 49
MAP 49 1 109
NCAL 49
XREF 49,109

overlay feature
design 114-118
exclusive references in 118
inclusive references in 117
paths 115
processing 118-119
processing options

LET 122
LIST 122
MAP 122
OVLY 122
XCAL 122
XREF 122

segments 114-115,117
Linkage registers 147

LIST compiler option 43,102
LIS'!' linkage editor option 4 9
LIST linkage editor overlay processing
option 122

Literal constants 96
LOAD compiler option 43
Load module output 111-112
Loader

ddnames 54-55
device classes 54
diagnostic messages 113
error messages 113
input 54
name (IEWLPRGO) 54
options

CALL 55
EP 56
LET 55
MAP 55
NOCALL 55
NOLET 55
NOMAP 55
NOPRINT 56
PRINT 56
SIZE 55

output 54 1 113
priority 55
storage map 113

Logical backspace 70-71

Macro instructions
ATTACH 139
CALL 139
FORTLIB 88
LINK 139
PREFACE 127
SETENT 127-128

MAP compiler option
explanation 43
storage maps 100-102

MAP linkage Editor option
explanation 49
module map 109-110

MAP linkage editor overlay processing
option 122

MAP loader option 55
Master scheduler 14
Messages

compiler
FORTRAN (G) 157-165
FORTRAN (H) 165-184.13

extended error handling 184.14-185
load module execution 184.14-186
operator 186

MODE subparameter 32
Model 91 considerations 197-198
Model 195 considerations 197-198
MSGCLASS parameter 20
MSGLEVEL parameter 18 1 19
MXIG subparameter 63

NAME: compiler option 43
NCAL

linkage editor option 49
loader option 55

NL subparameter 63

Index 203

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

NODECK compiler option 43
NOEDIT compiler option 44
NOID compiler option 43-~4
NOLET loader option 55
NOLIST compiler option 43
NOLOAD compiler option 43
NO MAP

compiler option 43
loader option 55

NOPRINT loader option 56
NOSOURCE compiler option 43
NOXREF compiler option 44

Object module card deck 105-107
Object module deck structure 107-108
Object module listing 102-105
Operating System/360, overview of 11-13
Operator intervention, avoiding 63-64
Operator messages 186
OPT compiler option 44
OPTCD subparameter

chained scheduling considerations 66 1 93
specification 65 1 66

Optimization, channel 97-98
Optimization, compiler 44,191-196
Optimization facilities, FORTRAN (H)

COMMON block considerations 194
connnon expression elimination 193
EQUIVALENCE statement considerations

194-195
induction variables 193-194
loop considerations 192-194
multidimensional arrays 194-195
program structure 195
programming considerations 191
register allocation 194

Option table
accessing entries from 124-125
altering 124-125
considerations 127
creating 127-128
default values 127,131
description of 123,124
description of entries 123

Options

204

compiler 24-25 1 41-44
FORTRAN (G)

BCD 43
DECK 43
EBCDIC 43
ID 43-44
LJI:NECNT 43
LIST 43
LOAD 43
MAP 43
NAME 43
NODECK 43
NOID 43-44
NOLIST 43
NOLOAD 43
NOMAP 43
NOSOURCE 43
SOURCE 43

FORTRAN (H)

BCD 43
DECK 43
EBCDIC 43
EDIT 44
ID 43-44
LINECNT 43
LIST 43
LOAD 43
MAP 43 1 100 1 101-102
NAME 43
NODECK 43
NOEDIT 44
NOID 43-44
NOLIST 43
NOLOAD 43
NOMAP 43
NOSOURCE 43
NOXREF 44
OPT 44
SOURCE 43 1 100
XREF 44

linkage editor 24-251 49
LET 49
LIST 49
MAP 49 1 109-110
NCAL 49
XREF 49 1 110

loade~
CALL 55
EP 56
LET 55
MAP 55
NOCALL 55
NOLET 55
NOMAP 55
NOPRINT 56
PRINT 56
SIZE 55

overlay processing, linkage editor
LET 122
LIST 122
MAP 122
OVLY 122
XCAL 122
XREF 122

OR function 91,92
OUT subparameter 63
Output

compiler 100-109
linkage editor 109
loader 54-56,113
load module 110
system 100-113

Output stream 64
Overflow

exponent 197
fixed-point 89 1 184.16

overlay feature
(see Linkage Editor)

OVERLAY statement 48,120
OVLY linkage editor overlay processing
option 122

Pads, overlay 115-117
Parameters

keyword 15
positional 15

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Parity 65
PARM parameter 24-25
Partitioned data sets 52-53,60

(see also Data sets)
PASS specification 35
PASSWORD parameter 63
PAUSE statement 112,186
PDUMP subroutine 89-90
PGM parameter 23-24,49
Positional parameters 15
PREFACE macro instruction 127
PRINT loader option 56
Priority

dispatcher 27-28
loader 55

Priority schedulers
account number relationship 17
definition 14

PRIVATE keyword 61
Private volumes 61
POC parameter 23
Procedures, cataloged

definition of 11-12
for FORTRAN (G)

compile 74
compile and linkage edit 74-75
compile, linkage edit, and execute

77
FORTGC

control statements 74
function 12,37
invoking of 37

FORTGCL
control statements 74
function 12,38
invoking of 38

FORTGCLG
control statements 78
error codes 19
function 12,39
invoking of 39

FORTGLG
control statements 75-77
function 12,38
invoking of 38

linkage edit and execute 75-77
overriding 78-80
user-written 77

for FORTRAN (H)
compile 81
execute 82-83
FORTHC

control statements 85
functl~Jn 12, 37
invoking of 37

FORTH CL
control statements 85-86
function 12,38
invoking of 38

FORTHCLG
control statements 86-87
error codes 19
function 12,39
invoking of 39

FORTHLG
control statements 86-87
function 12,38
invoking of 38

linkage edit 82
overriding 84-87
user-wi:i.tten 83-84

invoking 12
modifying 12
names 12

Processing efficiency, increasing 92-93
Program inte~rupt messages 112
Program interruption exit routine,

Model 91 197
Model 195 197

programmer name 18
PRTY parameter 19

RECFM subparameter
DD statement considerations 193
specification 65,66

Record chaining 94-95
REF subparameter 61,62
REGION parameter

in EXEC statement 22,26-27
in JOB statement 18 1 20-21

REP:LACE statement 48
Requirements, system 88
Restrictions

BACKSPACE statement 53
compiler 96
DEN subparameter 64

RETAIN keyword 61
RETPD subparameter 57,64
RETURN i simulation 151
REWIND statement 53
RLD card 107
RLSE subparameter 62

save area 146
SAVE macro instruction 111
Scalar variables 100
SDW 70
segment descriptor word (SDW) 70
Segments, overlay 114,115
Sense lights 89
SEP parameter 97-98
Separation, channel 97-98
Sequential schedulers

account number relationship 18
definition 14

SER subparanleter 61
SETENT macro instruction 127-128
7-track tape conversion 65
SIZE option (loader) 55
SIZE parameter 44_, 81
SL subparameter 63
SOURCE compiler option 43,100
source listing 100
SPACE parameter

for direct-access data sets 62,98-99
specification 59 1 99

Spanned records 66,69
Spanning 67,71
SPLIT parameter 99
Split cylinders 99
STACK subparameter 32
Stacker selection 32
Statistics, compiler 165-166
STEPLIB 29 1 30

Index 205

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

STOP statement 89,112-113,186
Storage locations

bytes 88
doublewords 88
words 88

storage map 100-102,113
storage requirements for compiler 28,81
structured source listing 44 1 108-109
SUBALLOC pa.rameter 5 7, 9 9
SUBCHK option 1.89
subprograms, assembler language

argument list 146
calling sequence 146
example of 152
linkage conventions 148,149
RETURN i simulation 151
save area 146
subroutine references 146

Subroutine references 146
SUBTRACE option 189
SYSABEND ddname

as abnormal termination dump data set
29,30

device requirements 40
function 40
possible device class 41

SYSCP device class 41
SYSDA device class 41
SYSIN ddname

DCB assumpti<>ns for, (B) canpiler 42
load module execution, assumptions for

72
device requirements 40
function 40

possible device class 41
record length, (B) compiler 66

SYSLIB ddname 46
SYSLIN ddname

DCB assumptions for, (B) canpiler 42
device requirements 40 1 46
in example 47
function 40 1 46
load module execution, assumptions for

72
possible device classes 41
record length, (B) compiler 66

SYSLMOD ddname 46,47
SYSLOUT ddname 55
SYSOUT parameter 32,64
SYSPRINT ddname

DCB assumptions for, (B) compiler 42
device requirements 40,46
function 40.,46
load module execution, DCB assumptions
for 72

possible device class 41,46-47
record length 66

SYSPUNCB ddname
device requirements 40
function 40
load module execution, DCB assumptions
for 72

possible device class 41
record length 66

SYSSQ ddname 4'.L
System output 100-113
System requirements 88

206

SYSUDUMP ddname
as abnormal termination data set 30
device requirementfs 40
function 40
possible device clclSS 41

SYSUTl ddname
DCB assumptions foi:-, (B) compiler 42
device requirements 40,46
function 40,46
possible device clctss 41, 4 7
use with EDIT option 44 1 81

SYSUT2 ddname
DCB assumptions £01:-, (B) compiler 42
device requirements 40
function 40
possible device class 41
use with XREF option 44 1 81

SYSl.FORTLIB 12,45
SYSl.LINKLIB

concatenating with 30
with PGM parameter 49
as system library 23

Tape density 64,65
Tape units 188
Time limits, setting of 26
TIME parameter 21,26
TRACE option 189
Traceback

without extended error handling
facility 111-112

map 123
obtaining 125
sample of 112

Translation from BCD 65
TRK subparameter 62, ~~9
TRTCB subparameter 6•i, 65
TXT card 107

Unblocked records
with FORMAT control 67-68
without FORMAT control 70

UNCATLG specification 35
Undefined records 68
underflow, exponent :L97
UNIT option 189
UNIT parameter

dedicated work data sets 57
explanation 31-3~~61
unit types 187

Unit record data sets 32 1 64
unit record equipment 187
utility data sets

dedicated 56-57
partitioned 44,81

Variable-length records 68 1 69
Variables, object-time representation of

151-155
VOL parameter 61
VOLUME parameter 5 7, 16 l
Volume-count specification 61
Volwne-sequence-number specification 61
Volumes, program 61

Page of GC28-6817-2, Revised 12/30/70, by TNL: GN28-0591

Warning messages
compiler

FORTRAN (G) 157-165
FORTRAN (H) 165-184. 13

extended error handling 184.14-185
load module execution 184.14-186
operator 186

Work data sets
dedicated 56-57
partitioned 44 1 82

XCAL linkage editor overlay processing
option 122

XREF
compiler option 44,81,108
linkage editor option 49,109
overlay processing options, linkage
editor 122

7-track tape conversion 65

Index 207

