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This publication describes the mathematical and service subpro-
grams contained in the library supplied with Basic FORTRAN 1v and
FORTRAN Iv compilers. Detailed information on each mathematical
routine is provided: its algorithm, speed, accuracy, range, and
error conditions. Information on the use of library subprograms
in either a FORTRAN or assembler language program is also provided.



" Preface

The purposc of this publication is to describe the
mathematical and service subprograms in the FORTRAN'

v library supplied with Basic FORTRAN Iv (0s) and
FORTRAN Iv (0s), As an aid to the programmer in his
use of this publication, the contents of each chapter is
described briefly below:

1. “Introduction” describes the three types of subpro-
grams in the FORTRAN library (rForTLIB)and de-
fines their use in either a FORTRAN or an assembler
language program.

2. “Mathematical Subprograms” describes the subpro-
grams which perform computations frequently
necded by the programmer. A mathematical sub-
program is invoked explicitly whenever one of its
entry names appears in a. sonrce statement or im-

plicitly through use of cert’am aotation in the source,

statement.

3. “Service Subprograms” contains mformahon about
those subprograms which perform utility functions
or test machine indicators.

4. “Algorithms” contains information about the method
used in the library to compute a mathematical func-
tion and describes the effect of an argument error
upon the accuracy of the answer returned.

5. “Performance Statistic™” gives anIAY ¢ erd timing .

statistics for the expiicic; calied .na...cmahcax aub
programs o

SECOND EDITION (September 1972)

6. Theappendixes provide a listof dix sgnostic messages,
a list of module names, a sample storage printout,
storage estimates, and information for the assembler
language programmer.

It is assumed that the reader is familiar with one of
the following publications:
IBM System/360 F ORTRAN IV Languag

C28-6515
IBM System/360 Basic FORTRAN IV Language,

Form C-28-6629
IBM System/360 Operating System: Assembler Lan-

guage, Form C28-6514
In addition, references are made thhm this publica-

tion to information contained in the followmg publica-
tions:
IBM System/360 Pnnaples oi Opemuon Form

A22-6821
IBM/360 Operating System: Supervisor and Data

Management Macro-Instructions, Form C28-6647

IBM System/360 Operating System: Basic FORTRAN

IV (E) Programmer’s Guide, Form C28-6603
IBM System/360 Operating System: FORTRAN IV

(G and H) Programmer’s Guide, Form C28-83817
Standard mathematical notation is used in this

publication, The reader is expected to be familiar

with this notation and w 1th comron nathematxcal

, Form’

‘*eruinology.

This is & reprint of GC28-6818-0 incorporating changes released in Technical Newsletter GN28-0589,

dated Jnne 1, 1970,

This edition corresponds to Release 19 of the IBM System/360 Operating System.
Changes are periodically made to the specifications herein; any such changes will be reported in

subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM representative or to the IBM

Branch Office serving your locality.

A form for readers’ comments is provided at the back of this publication. If the form has been
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The rorisan v library contains three types of sub-
programs: ( 1) mathematical functions such as six and
SQRT. (2) service subprograms such as puap and Exir,
and (3) interface routines such as 18coat and 1BERR.

The library subprograms may be used in either a
FORTRAN or an assembler language program. (Appen-
dix A contains calling information for the assembler
language programmer.) In vorrrax. calls to the library
subprograms are cither at the programmer’s request
or in response to the program requirements. Subpro-
grams _required by the program being compiled are
provided by a linkage cditor or loader. which takes
the subprograms from the library,

Mathematical Function Subprograms

Many commonly used mathematical functions or
calculations are provided by the ForTRAN Iv language.
Programmer requests for these calculations are satisfied
by a compiler in one of two ways: by inserting machine-
language code directly within the object module; or

~ by inserting an extemal reference to a library subpro-
gram that contains the necessary code. and having the
linkage cditor include that subprogram in the load
module. The first method is called in-line, the second
out-of-line.

This publication discusses only out-of-lin¢ routines—
these raathematical functions contained in the library.
The American National Standards Institute (axs1) de-
fines several arithnietic functions—such as absolute
value (aps}, positive difference (pine). and transfer of
sign (SI6N )—as intrinsic functions. For the most pari.

Introduction

code for these functions is inserted in-line by the
rorTRAN compiler at the point in the source module
where the function’s symbolic name is used. Conse-
quently, they are not discussed in this book. However,
the following ansi-defined intrinsic functions have been
implemented as a part of the FOrRTRAN 1v library and
are provided out-of-line for all systems: yraxo/suNo,
AMANOZAMING, MANT/MINT, AMAXT/AMINT, and DA1AX1/
panxt. These are, therefore, documented in this publi-
cation. In Basic rortrax 1v only, four other intrinsic
functions ( vrop, aMoD, AINT. and IFIX/INT/IDINT) are
provided out-of-line as a part of the library and are also
covered here,

Service Subroutine Subprograms

Each of the service subprograms corresponds to a sub-
routine form as defined by a SUBROUTINE statement in
a ForTRAN source module. These subprograms perform
machine indicator tests and utility functions and may
or may not return a value to the calling module. These
subroutines arc discussed in this publication,

Interface Routines

The library contains certain input/output and error
processing routines that act as interfaces with the
compiled program and the operating system. Fre-
quently. the mathematical and service subprograms
require assistance from these routines for input/output,
interruption. and crror processing. Storage estimates
for these routines are included in Appendix B.

Introduction 5



Mathematical Subprograms

The mathematical subprograms supplied in the

FORTRAN librarv perform computations frequently
needed by the programmer. The mathematical subpro-
grams are called in two ways: explicitly, when the
programmer includes the appropriate entry name in a
source language statement (see Table 1): and implicitly.,
when certain notation (e.g.. raising a number to a

Table 1. Explicitly Called Mathematical Subprograms

power) appears within a source language statement
{see Table 6).

The following text describes the individual mathe-
matical subprograms and explains their use in a
FORTRAX program. Detailed information about the
actual method of computation used in each. subpro-
gram, the performance of the subprogram. interrup-
tion and error procedures. and storage estimates can
be found elsewhere in this publication.

General Function

Specific Function

Entry Name(s)

Logarithmic and exponential subprograms

Exponential
(described in Table 2)

EXP
DEXP
CEXP*
CDEXP*

Logarithmic. common and natural

ALOG. ALOGI0
DLOG. DLOG10
CLOG* : :
CDLOG*

Square root

SORT
DSQRT
CSQRT*
CDSQRT*

Trigonometric subprograms
(described in Table 3)

Arcsine and arccosine

ARSIN®, ARCOS*
DARSIN®, DARCOS*

Arctangent

ATAN, ATAN2®
DATAN, DATAN2"

Sine and cosine

SIN, COS

DSIN, DCOS
CSIN®, CCOSs*
CDSIN®. CDCOS*

Tangent and cotangent

TAN®, COTAN®
DTAN®, DCOTAN®*

Hyperbolic function subprograms
(described in Table 4)

Hyperbolic sine and cosine

SINH®, COSH*
DSINH*, DCOSH*

Hyperbolic tangent

TANH
DTANH

Miscellaneons subprograms

Absolute value
(described in Table 5)

CABS*
- CDABS*

Error function

ERF*, ERFC*
DERF*, DERFC*

Gamma and log-gamma

GAMMA®, ALGAMA®
DGAMMA®, DLGAMA®*

Maximum and minimum value

AMAXO, AMINO, MAXO0, MINO
AMAXI, AMIN1, MAX], MIN1

DMAXI1, DMIN1
Modular arithmetic MOD
AMOD, DMOD
Truncation AINT
: INT, IDINT

*Not available in Basic FORTRAN IV (OS)




Explicitly Called Subprograms

Each explicitly called subprogram performs one or
more mathematical functions. Each mathematical fune-
tion is identificd by a unique entry name.,

A subprogram is called whenever the appropriate
entry name is included in a FORTRAN arithmetic expres-
sion. The programmer must also supply one or more
arguments. These arguments follow the entry name
and are separated by commas; the list of arguments is
cnclosed in parentheses.

For example, the source statement:

RESULT = SIN (RADIAN)
causes the sine and cosine subprogram to be called.
The sine of the value in RADIAN is computed and the
function value is stored in RESULT.

In the following example, the square root subpro-

Table 2. Logarithmic and Exponential Subprogriuns (Part [ of 2)

gram is called to compute the square yoot of the value
in anNT. The function value is then added to the value
in sTock and the result 1s stored in ANs.
ANS = STOCK + SQRT (AMNT)
The explicity called subprograms are described in
Tables 2 through 5. The following information is pro-
vided:

General Function: This column states the nature of
the computation performed by the subprogram,

Entry Name: This column gives the entry name that
the programmer must use to call the subprogram. A
subprogram may have more than one entry name; the
particular entry name used depends upon the compu-
tation to be performed. For example, the sine and
cosine subprogram has two entry names: sIN and cos.
If the sine is to be computed, entry name six is used;
if the cosine is to be computed, entry name cos is used.

Function Value Error
General Entry Sub- Argument(s) Type' and Code
Function Name set | DeBnition No. Type' Range Range*
Common ALOG Yes | y=log.xor 1 REAL *4 x>0 REAL *4 253
and natural y=Inx y = -180218
logarithm y = 174.673
ALOG10 Yes | y=logux 1 REAL *4 x>0 REAL *4 253
y = —78.268
y = 75.859
DLOG Yes | y=log.x or 1 REAL *8 x>0 REAL *8 263
y=Inx y = -180218
vy = 174.673
DLOG10 |Yes | y=logux 1 REAL *8 x>0 REAL *8 263
: : v = —78.268
y < 75.859
CLOG No |y=PVlog. (z) |1 coMPLEX*8 |7 <0 + 0i COMPLEX *8 273
See Note 2 v = ~-180.218
i = 175021
! -r=y: =x
CDLOG No | y=PVliog. (2) |1 COMPLEX *16 | z = 0 + 0i COMPLEX *16 283
See Note 2 v Z ~-180.218 :
Y s 175.021
. -*rSy:=~w
Exponential |EXP Yes | y=ex 1 REAL *4 X = 174.673 REAL *4 252
: 0=y=svy
DEXP Yes | y=ex 1 REAL *8 x = 174.673 REAL *8 262
0=y=sy
CEXP No | y=es 1 COMPLEX *8 | xi < 174.673 COMPLEX *8 271,
See Note 3 x| < (2% 0 x) 1SNy S 272
CDEXP |No |y=er 1 |compLEx *16 |x = 174.673 CoMPLEX *16 281,
See Note 3 Ix] < (2500 x) -r=yny2=v 282
NoTEs: (See end of table.)
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Table 2, Logarithmic and Exponential Subprograms (Faet 2 of 2)

Function Value
Argument(s)
General Entry Sub- a Typel and Error
Function Name set Definition No, Type! Range Ranget Code
Square root  {SQRT Yes | v=Vxor I |seEaL*4 X=0 REAL *4 | 251
y=x"* Osys+"
DSQRT Yes | y=Vxor 1 REAL *8 X0 REAL *8 261
y=x"? Osy=+""
CSQRT No |y=Vzor 1 COMPLEX *8 | any COMPLEX COMPLEX *8 »
v=z"?* argument 0=y, = 1.0987(4**) —_—
See Note 3 v! = 1,0087 (4*?)
CDSQRT | No y=Vzor 1 COMPLEX *16 | any COMPLEX COMPLEX *16
y=z"* argument 0=y, = 10987 (" —_—
See Note 3 v = 1.0087 (+'2)

NoTEs:

' REAL*4 and REAL*8 arguments correspond to REAL and DOUBLE PRECISION arguments, respectively, in Basic FORTRaN 1v. Com-

plex arguments cannot be used in a Basic FORTRAN Iv program.

Pv = principal value. The answer given (y, + y-') is that one whose imaginary part (y:) lies between — = and + . \More
specifically: = r < y: = =, unless x;, < 0 and x. = =0, in which case, y: = — =,

z is a complex number of the form x; + x.i.
y = 16% (1 — 18*) for regular precision routines, and 16* (1 — 16°'*) for double-precision routines.

Mathematical Subprograms 7.1



Subset: This column indicates those subprograms
that belong to the Basic FoRmAN 1v library. Unless
otherwise indicated, all such subprograms also belong
to the FORTRAN 1v libraries.

Definition: This column gives a mathematical equa-
tion that represents the computation. An alternate
equation is given in those cases where there is another
way of representing the computation in mathematical
notation. (For example, the square root can be repre-
sented eitherasy = Vxory = xV/2.)

Argument Number: This column gives the number
of arguments that the programmer must supply.

Argument Type: This column describes the type and
length of the argument(s). INTEGER, REAL, and COMPLEX
represent the type; the notations *4, *8, and *16 repre-
sent the size of the argument in number of storage
locations.

Argument Range: This column gives the valid range
for arguments. If an argument is not within this range,
an error message is issued and execution of the load

Table 3. Trigonometric Subprogranis. (Part 1 of 2)

module is terminated unless the extended error han-
dling facility was specified at system generation (see
FORTRAN IV (G and H) Programmer’s Guide listed
in the Preface for a full description of this facility).
Appendix C of this publication contains a description
of the error messages.

* Function Value Type and Range: This column de-
scribes the type and range of the function value re-
turned by the subprogram. Type notation used is the
same as that used for the argument type. Range symbol
y = 16%(1—16-°) for regular precision routines, and
16%3(1—16-14) for double-precision routines.

Error Code: This column gives the number of the
message issued when an error occurs. Appendix C
contains a description of the error messages.

Throughout this publication, the following approxi-
mate values are represented by 2!8 « 77 and 250 « 7r:

218« 7 = 82354966406249996D + 06

280 « v = ,35371188737802239D + 16

Detailed information for the assembler language
programmer is given in Appendix A.

Function Value
Ar, ent(s
General Entry Sub- | Definition gument(s) Type' and Error
Function Name set No. | Typel Range Range* Code
Arcsine and  |ARSIN No |y=arcsin (x) 1 REAL *4 xj=1 REAL *4 (in radians) | 257
arccosine ey <X
g =Y=7
ARCOS No |[y=arccos (x) 1 REAL *4 Ixj=1 REAL *4 (in radians) | 257
O=sy=s~w
DARSIN No | y=arcsin (x) 1 REAL *8 xl=1 REAL *8 (in radians) | 267
x < < ”
=y =
2 2
DARCOS | No |y=arccos (x) 1 |ReaL®8 x| =1 REAL *8 (inradians) | 267
0sSy=r~r
Arctangent |ATAN Yes |y=arctan (x) 1 REAL *4 any REAL argument REAL *4 (inradians) { —
B .
2=Y=7 v
ATAN2 No X ) 2 REAL *4 any REAL arguments | REAL *4 (inradians)| 255
y=arctan { - (except 0, 0) -rlySw
DATAN Yes | y=arctan (x) 1 REAL *8 any REAL argument REAL *8 (in radians) —_—
sy <X
-7 =7
DATANZ2 | No ( X )l 2 REAL *8 any REAL arguments | REAL *8 (in radians) | 265
y=arctan \ 7’ (except 0, 0) -r<ly=s~*
Sine and SIN Yes | y=sin (x) 1 REAL *4 Ix] < (218« ») REAL *4 254
cosine (in radians) -1=y=1
COS Yes | y=cos (x) 1 REAL *4 x| < (2% e w) REAL *4 254
(in radians) ~-1=y=1
DSIN Yes |y=sin (x) 1 |rear®s || <(2%¢x) REAL *8 264
(in radians) -1=y=1 ,
DCOS Yes | y=cos (x) 1 REAL *8 x| < (2%%¢ x) REAL *8 264
{in radians) . ~-l1=sy=1
Notes: (See end of table.)




Table 3. Trigonometric Subprograms (Part 2 of 2)

) Function Value
General Entry Sub- Definition Argament(s) Type® and Error
Function Name set | No. Type! Range Range* Code
Sineand . |CSIN No | y=sin (z) 1 coMPLEX *8 | x| < (2% ¢ ») COMPLEX *8 274,
cosine See Note 2 (in radians) {|x.| = 174.673 “YEynWBEY 275
( continued)
CCOS No | y=cos(2) 1 coMpLEX *8 {Ix] < (2180 x) CoOMPLEX *8 274,
See Note 2 (in radians) |!xs| = 174.673 ~—Y Sy = 275
CDSIN No | y=sin (z) 1 COMPLEX *16] x| < (2%% ¢ =) coMpLEX *16 284,
See Note 2 (in radians) ||x:| < 174.673 -rSywnsy 285
CDCOS No | y=cos () 1 COMPLEX *16] x.‘ < (2% x) COMPLEX *16 284,
See Note 2 (in radians) ||x.| = 174.673 ~— Y=y 285
Tangent TAN No | y=tan (x) 1 REAL *4 x| < (2'% x) REAL *4 258,
and (in radians) { See Note 3 -ySysw 259
cotangent
COTAN No | y=cotan (x) 1 | reat*4 [x] < (2% x) REAL *4 258,
(in radians) |See Note 3 -Yy=Ey=sv 259
DTAN No | y=tan (x) 1 REAL *8 [x| < (2800 x) REAL *8 268,
(in radians) }See Note 3 -ySy=<y 269
DCOTAN |No | y=cotan (x) 1 REAL *8 {x] < (289 &) REAL *8 268,
l (in radians) |See Note 3 ~-YEYSE~w 269
Nores: ]
1 pEaL *4 and REAL *8 arguments correspond tn ReAL and DOUBLE PRECISION arguments, respectively, in Basic FORTRAN 3v. Com-
plex arguments cannot be used in a Basic FORTRAN v program.
* zis a complex number of the form x + x+. .
* The argument for the cotangent functions may not approach a multiple of x; the argument for the tangent functions may not
approach an odd multiple of »/2.

Table 4. Hyperbolic Function Subprograms

¢ 4 = 16" (1 - 16™*) for regular precision routines, and 16® (1 — 167¢) for double-precision routines.

. Function Value
General Entry Sub- Definition Argument(s) Type* and Error §
Function Name. set ‘ No. Type! Range . Range* Code
Hyperbolic |SINH No _ ef—et 1 REAL *4 |x] < 175.366 REAL *4 256
sine and y= 2 —YySYy=y
cosine
COSH No y= e | 1 | ReAL *4 x| < 175.366 REAL *4 256
2 1sysy
DSINH No _ —e” 1 REAL *8 Ix| < 175.368 REAL *8 268
y= —5— ~7TSySy
IDcosH No y= Ete* | 1 |rea'8 Ix| < 175.366 REAL *8 266
2 1=sys~
Hyperbolic _ e -—¢" 1 REAL *4 any REAL argument REAL *4 -
| tangent TANH Yes Y= e ev ~1sy=1l
DTANH Yes L L 1 NEAL *8 any REAL argwment REAL *8 —
. Y= e rer -l1sy=s1
Notzs:
3 mx.‘A and REAL *8 arguments correspond to REAL and DOUBLE PRECISION arguments, respectively, in Basic FORTRAN 1v. Com-
plex arguments cannot be used in a Basic FORTRAN Iv program.

* 4 = 16" (1 — 16) for regular precision routines, and 16 (1 — 16-"*) for double-precision routines,
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Table 5. Miscellancous Mathematical Subprograms (Part 1 of 2)

Function Value
General Entry Sub- Argument(s) Type* and Error
Function Name set Definition No. Type! Range Range* Code
Absolute CABS No | y=|zl= (x*+x2?)"* } 1 |coMpPLEX*8 Jany COMPLEX REAL *4
value argument 0=wn=~y .
See Note 2 ys=0
CDABS No |y=lz|= (x*+x*)" | 1 |compLEX *16{any coMPLEX REAL *8 i
argument O=n=~y .
See Note 2 y:=0
Error ERF No 2 [ = 1 REAL *4 any REAL REAL *4
function Y=z e du argument -l1=y=s1l —
*Jo
ERFC No 9 o 1 REAL *4 any REAL REAL *4
Y=z e du argument 0sSys2 _
y=1 —erf (x)
DERF No 2 [ = 1 REAL *8 any REAL REAL *8
y="= e du argument ~-1=y=1
VrJo et
DERFC No 2 > - 1 |meaL®8 any REAL REAL *8
y=17= f e du : argument 0<sy=2 L
y=1 —erf (x)
Gamma and [GAMMA  No w 1 REAL *4 x > 27282 and REAL *4
log-gamma y= f wle*du x < 57.5744 088560 <y=<+¥w 290
[ ]
ALGAMA No | y=log.T (x)or 1 REAL *4 x > 0and REAL *4
f” x< 42013 10™| -0.12149 <=y =<+« 201
y=log. u*! e du
o
DGAMMA No @ 1 REAL *8 x > 27232 and REAL *8
y=f u=!e™du x < 57.5744 088560 =y=+« 300
L]
DLGAMA No | y=log. I (x)or 1 REAL *8 x > 0and REAL *8
© x < 42013103 -0.12140 =y =
y=log, u*le™du y=v 301
[ ]
Maximum MAXO0 Yes | y=max (xt,...,Xa) = 2 | INTEGER *4 |any INTEGER INTEGER *4
and arguments —
minimum
values
MINO Yes | y=min (xi,...,%a) = 2 | INTEGER *4 |any INTEGER INTEGER *4
arguments —
AMAXO0 Yes | y=max (x1,...,Xa) =2 | INTECER *4 |any INTEGER REAL *4
arguments —_—
AMINO Yes | y=min (xi,...,%n) =2 | iNTEGER *4 |any INTEGER REAL *4
arguments —_—
MAX1 Yes | y=max (xi,...,Xa) =2 | REAL*4 any REAL INTEGER *4
arguments —

X\!on:s: (See end of table.)
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Table 5. Misceilaneous Mathematical Subprograms (Part 2 of 2)

jon Val
Géneral Entry Sub- Argument(s) Functlot: & e Error
. . Type' and 3
Function Name set Definition No. Type! Range " Range® Code
Maximum MIN1 Yes |y=min (xi,...,Xa) =2 | rReaL *4 any REAL INTEGER *4
and arguments —
minimum
values
(continued) JAMAX1 Yes |[y=max (x,...,Xa) =2 | ReaL "4 any REAL REAL *4
arguments -
AMIN1 Yes {y=min (xi,...,%a) =2 |REAL™ any REAL REAL *4
arguments _—
DMAX1 Yes |y=max {x:,...,Xn) =2 |neaL*8 any REAL REAL *8
' . arguments -
IDMIN1 Yes |y=min(x,...,x) |22 |ReaL ) any REAL REAL *8
arguments —
Modular MOD See |y=x«(modulo x.) 2 | INTECER xe 5% 0 INTEGER *4
arithmetic Note (See Note 4 See Note 5 -—
3
AMOD See [y=x: (modulo x:) 2 | REAL *4 x: 70 REAL *4 -
Note |[See Note 4 See Note 5 —_—
3
DMOD See Jy=x: {modulo x:) 2 |REAL*S X2 % 0 REAL *8 -
Note |[See Note 4 See Note 5 —
3
Truncation |AINT See |y = (signx)e*n 1 | meaL®4 | anynreAL REAL *4 )
Note |where n is the largest argument —_—
3  |integer = |x|
INT See |y = (signx)e*n 1 REAL *4 | any REAL INTEGER *4
Note |where n is the largest argument -
3  |integer = |x|
IDINT See |y = (signx)e+n 1 | REAL®8 | anyREAL INTEGER *4
Note |where n is the largest argument —
3  |integer = {x|
Nores:

' REAL®4 and REAL®8 arguments correspond to REAL and DOUBLE PRECISION arguments, respectively, in Basic FORTRAN 1v. Coh-
plex arguments cannot be used in a Basic FORTRAN Iv program.

* Floating-point overflow can occur.

* The coding that performs this function is out-of-line in Basic FORTRAN 1v (0s) and in-line in FORTRAN 1v. Out-of-line coding
is taken from the FORTRAN lLibrary by the linkage editor or loader and processed with the calling module. In-line coding is
inserted by the FORTRAN compiler at the point in the source module. where the function is referenced. This means that the

in-line functions are invoked in FORTRAN Iv by using the appropriate entry name, but that they are not part of the library.
In-line functions are described in the FORTRAN 1v language publications listed in the Preface.

¢ The expression x: (modulo xs) is defined as x; — [—;—';] * x5, where the brackets indicate that an integer is used. The largest

integer whose magnitude does not exceed the magnitude of -:—',- is used. The sign of the iﬁteger is the same as the sign of .."xl. .

* If x» = 0, then the modulus function is mathematically undefined. In addition, a divide exception is recognized and an inter-
ruption occurs..(A detailed description of the interruption pracedure is given in Appendix C.)

* 9 = 16 (1 — 16™) for regular precision routines, and 16® (1 ~ 16™) for double precision routines.
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Implicitly Called Subprograms

The implicitly called subprograms are executed as a
result of certain notation appearing in a FORTRAN
source statement. When a number is to be raised to a
power or when multiplication or division of complex
numbers is to be performed, the ForrrRAN compiler gen-
erates the instructions necessary to call the appropriate
subprogram. For example, if the following source
statement appears in a source module,

ANS = BASE**EXPON

where BASE and EXPON are REAL*s variables, the
FORTRAN compiler generates a reference to FRxPr#, the

Table 6. Implicitly Called Mathematical Subprograms

entry name for a subprogram that raises a real number
to a real power.

The implicitly called subprograms in the FORTRAN
library are described in Table 6. The column headed
“Implicit Function Reference” gives a representation
of a source statement that might appear in a FORTRAN
source module and cause the subprogram to be called.
The rest of the column headings in Table 6 have the
same meaning as those used with the explicitly called
subprograms. Algorithms for implicitly called subpro-
grams are given in the chapter “Algorithms.” Additional
information for assembler language programmers is
given in Appendix A.

licit Function
Generdl | By | s | b Aot Vi | B
Function Name set Reference’ No. Type® Type® e
Multiply and CDMPY# No y=2z%2 2 | compLEX *16 COMPLEX *16
divide complex -
numbers
CDDVD# y = z,/7y 2 coMriex *18 COMPLEX *16
CMPY# No y =122 2 COMPLEX *8 COMPLEX *8
CDVD# y = 2:/2s 2 | compLex *8 coMpPLEX *8
Raise an integer | FIXPI# Yes y=i**j 2 i = INTEGFR *4 INTEGER *4
to an integer j == INTEGER *4 241
power .
Raise a real FRXPI# Yes y=a*"*j 2 a = REAL *4 REAL *4
number to an j = INTEGER *4 242
integer power
FDXPI# Yes y=a**j 2 a = REAL *8 REAL *8
j = INTEGER*4 - 243
Raise a real FRXPR# Yes y=a"*hb 2 a = REAL *4 REAL *4
number to a b = REAL *4 244
real power :
FDXPD# Yes y=a**h 2 a = REAL *8 REAL *8
b = REAL 8* 245
Raise a complex | FCDXI# No y=2z%* 2 |z = compLEX *16 coMPLEX *16
number to an ’ j = INTEGER *4 247
integer power .
FCXPI#* No y=2%%j 2 Z = COMPLEX *8 COMPLEX *8
j = INTEGER *4 246
NOTES:
1. This name must be used in an assembler language program to call the subprogram; the character # is a part of the name and
must be included. '
2. This is only a representation of a FORTRAN statement; it is not the only way the subprogram may be called.
3. REAL *4 and REAL *8 arguments correspond to REAL and DOUBLE PRECISION arguments, respectively, in Basic ¥oRTRAN 1v. Complex
arguments cannot be used in a Basic FORTRAN Iv program.
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For subprograms that involve exponentiation, the
action taken within a’subprogram depends upon the

Table 9. Exponentiation with Real Base and Exponent

Exponent (B
types of the base and exponent used. Tables 7 through Base (A) 350 xP; _no( ) B<0
10 show the result of an exponentiation performed with
the different combinations and values of base and ex- A>0 Fompute t};e. Fu]nctignl ‘ ?omgute t};e
ponent. In these tables, I and J are integers; A and B unction value | value = uncton varve
are real numbers; C is a comp]ex number. A =0 {Function Error message | Error message
value = 0 244 or 244 or
245 245
Table 7. Exponentiation with Integer Base and Exponent A<0 |Error message | Function Error message
E ent (J) 253 or value = 1 253 or
Base (1) I 283 - 283
>0 J=0 ]1<0
I>1 |Compute the ] Function Function
function valugl value = 1 vahie = 0
I=1 [Compute the | Function Function Table 10. Exponentiation with Complex Base and Integer
function value{ value = 1 value = 1 Exponent »
1=0 F;xlnctign Error message | Error message Base (C) Exponent (])
value = 0 241 241 C=P+Qi I>0 J=0 ]<0
I= -1 |Co F 1f ] is an odd N
1 fur:‘c‘gzxtnevt:lie v:l.:;ﬁ::nl : nu{n‘!iea;? function P >0and Compute the | Function Compute the
value = ~1. Q>0 function value| value=1 + 0i | function value
1f) i}’):“ fev e:t' P > 0and Compute the | Function Compute the
3;'1"'1‘3 °h 1““ ion Q=0 function value| value=1 + 0i | function value
- - P > 0and Compute the | Function Compute the
I<-1 mgrvﬁieuq f:l::ﬁ:n 1 f:l:?;no Q<o function value | value=1 + 0f | function value
P =0and Compute the | Function Compute the
Q>0 function value | value=1 + 0i |function value
‘e . . P =0and Function value| E
Table 8. Exponentiation with Real Base and Integer Exponent Q=0 an OTcmon value rro%e:,srage Em;gm:;s: K
Base (A) Exponent (J) 27 2T
ase ]>0 J=0 J<o P = 0and Compute the | Function Compute the
Q<o function value | value=1 + 0f |function value
A>0 |Compute the |Function Compute the
function value |value = 1 function value P <0and Compute the | Function Compute the
- Q>0 function value | value=1 + 0i |function value
A =0 |Function Error message | Error message
value = 0 242 or 242 or P <0and Compute the | Function Compute the
243 243 Q=0 function value | value=1 + 0i |function value
ALO Comgute the Function Comgute the P < 0and Compute the | Function Compute the
function value |value =1 function value Q<o function value | value=1 + 0i |function value
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Service Subprograms

The service subprograms supplied in the rorrran
library are divided into two groups: one group tests
machine indicators and the other group performs
utility functions, Service subprograms are called by
using the appropriate entry name in a FORTRAN lan-
guage CALL statement.

Machine Indicator Test Subprograms

The machine indicator subprograms test the status of
pseudo indicators and may return a value to the calling
program. When the indicator is zero, it is off; when the
indicator is other than zero, it is on. In the following
descriptions of the subprograms, i represents an integer
expression and j represents an integer variable.

Pseudo Sense Light Subprogram
Entry Names: SLITE/SLITET
This subprogram is used to alter, test, and/or record
the status of pseudo sense lights. Either of two entry
names (SLITE or SLITET) is used to call the subprogram.
The particular entry name used in the caLL statement
depends upon the operation to be performed.

If the four sense lights are to be turncd off or one
sense light is to be turned on, entry name sLITE is used.
The source language statement is:

CALL SLITE (i)

where i has a value of 0, 1,2, 3, or 4.

If the value of i is 0, the four sense lights are turned
off; if the value of i is 1, 2, 3, or 4, the corresponding
sense light is turned on. If the value of i is not 0, 1, 2,
3, or 4, error message 216 is issued and execution of
this module or phase is terminated. (This error han-
dling is cxplained in Appendix C.) Execution can con-
tinue, however, if the extended error handling facility
was selected at system generation (FORTRAN v (0s)
only). This facility is explained in detail in the
FORTRAN 1V (G and H) Programmer’s Guide listed
in the Preface,

If a sensc light is to be tested and its status recorded,
entry name SUITET is used. Regardless of its status
before the test, after a sense light is tested, it is always
set off. The source language statement is:

CALL SLITET (i,7§)
14

where:
i has a value of 1, 2, 3, or 4, and indicates which
sense light to test.
i has a value returned by the subprogram. 1 indic-
cates the sense light was on; 2 indicates the sense
light was off.
If the value of i is not 1, 2, 3, or 4, error message
216 is issued and execution of this modyle or phase is
terminated unless the extended error handling facility

" is in effect.

Overflow Indicator Subprogram

Entry Nome: OVERFL

This subprogram tests for an exponent overflow or
underflow exception and returns a value that indicates
the existing condition. After testing, the overflow
indicator is turned off. This subprogram is called by
using the entry name OVERFL in a caLL statement. The
source language statement is:

CALL OVERFL (f)

The value of { is returned by the subprogram to indi-
cate the following: ‘

1 = floating-point overflow condition has occurred
last.

2 = no overflow or underflow condition has occurred.

3 = afloating-point underflow condition has occurred
last.

Note: A value forjof 1 or 3 indicates that that condition
was the last one to occur. An overflow followed by an
underflow in the same statement would be recorded
as condition 3 — “underflow occurred last.”

A detailed description of each exception is given in
the programmer’s guides listed in the Preface.

Divide Check Subprogram
Entry Name: DVCHK
This subprogram tests for a divide-check exception
and returns a value that indicates the existing condi-
tion. After testing, the divide-check indicator is turned
off. This subprogram is called by using entry name
DVCHK in a CALL statement. The source language state-
ment is:

CALL DVCHK (j)

where:
i is set to 1 if the divide-check indicator was on; or
to 2 if the indicator was off.



Utility Subprograms

The utility subprograms perform two operations for
the FORTRAN programmer: they cither terminate execu-
tion (exr) or dump a specified area of storage
(puMP/PDUMP).

End Execution Subprogram
Entry Name: EXIT

The end execution subprogram terminates execu-
tion of the load module or phase and returns control to
the operating system. ( Except that no operator message
is produced, Exir performs a function similar to that
performed by the stop statement.) This subprogram
is called by using the entry name EXIT in a CALL state-
ment. The source language statement is:

CALL EXIT

Storage Dump Subprogram

Entry Names: DUMP/PDUMP

This subprogram dumps a specified area of storage.
Either of two entry names (puMp or PDuMP ) can be used
to call the subprogram. The entry name is followed by
the limits of the area to be dumped and the format
specification. The entry name used in the cALL state-
ment depends upon the nature of the dump to be
taken.

If execution of the load module or phase is to be
terminated after the dump is taken, entry name pump
is used. The source language statement is:
where:

CALL DUMP (a., bl, fx, e oy Qny bn, f-)

a and b are variables that indicate the limits of stor-
age to be dumped (either a or b may represent the
upper or lower limits of storage).

f indicates the dump format and may be one of the
integers given in Table 11. The formats available
depend upon the compiler in use. A sample printout
for each format is given in Appendix E.

Table 11, DUMP/PDUMP Format Specifications

Basic FORTRAN 1V FORTRAN 1V
0 specifies hexadecimal 0 specifies hexadecimal
4 specifies INTECER 1 specifies LocicAL *1
5 specifies REAL 2 specifies LocICAL *4 -

3 specifies INTEGER *2

4 specifies INTEGER *4

5 specifies REAL *4

8 specifies reAL *8

7 specifies compLEX *8
8 specifies coMpLEX *16
9 specifies literal

6 specifies DOUBLE PRECISION

If execution is to be resumed after the dump is taken,
entry name pouUMP is used. The source language state-
ment is:

CALL PDUMP (ah bx. ,n, e ooy Uny bo, fn)

where a, b, and f have the same meaning as for puMmp.

Programming Considerations

A load module or phase may occupy a different area of
storage each time it is executed. To ensure that the
appropriate areas of storage are dumped, the following
conventions should be observed.

If an array and a variable are to be dumped at the
same time, a separate set of arguments should be used
for the array and for the variable. The specification
of limits for the array should be from the first element
in the array to the last element. For example, assume
that A is a variable in coMMON, B is a REAL number,
and TABLE is an array of 20 elements. The following
call to the storage dump subprogram could be used
to dump TABLE and B in the hexadecimal format and
terminate execution after the dump is taken:

CALL PDUMP (ai. by, f1, .., an, b, fa)

If an area of storage in comMoN is to be dumped
at the same time as an area of storage not in COMMON,
the arguments for the area in common should be given
separately. For example, the following call to the
storage dump subprogram could be used to dump the
variables A and B in REAL*s format without terminat-
ing execution:

CALL PDUMP (A,A,6,B,B,6)

If variables not in com»ON are to be dumped, each
variable must be listed separately in the argument
list. For example, if R, P, and Q are defined implicitly
in the program, the statement

CALL PDUMP (R,R,5P,P,5Q,Q,5)

should be used to dump the three variables. If the
statement o

CALL PDUMP (RQ,5)

is used, all main storage between R and q is dumped,
which may or may not include P, and may include
other variables.

If an array and a variable are passed to a subroutine
as arguments, the arguments in the call to the storage
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dump subprogram in the subroutine should specify the
parameters used in the definition of the subroutine.
For example. if the subroutine susr is defined as:

SUBROUTINE SUBI (X\Y)
DIMENSION X (10)

and the call to sust within the source module is:

DIMENSION A (10)

L]
.

CALL SUBI (A, B)

16

then the following statement should be used in susi to
dump the variables in hexadecimal format without ter-
minating execution:
CALL PDUMP (X(1),X(10), 0,Y,Y,0)
If the statement
CALL PDUMP (X(1),Y,0)

is used, all storage between A(1) and Y is dumped
because of the method of transmitting arguments.

When hexadecimal (0) or literal (9) is specified,

the programmer should realize that the upper limit
is assumed to be of length 4.



Algorithms

This chapter contains information about the method by which each mathematical
function is computed. The information for explicitly called subprograms is arranged
alphabetically according to the specific function of each subprogram (i.e., absolute
value, exponentiation, logarithmic, etc.). The individual entry names associated
with each subprogram are arranged logically from simple to complex within each
function, For example, the heading “Square Root Subprograms” will have algo-
rithms arranged in the following order by entry name: sQRT, DSQRT, CSQRT, CDSQRT.

Information for the implicity called subprograms is arranged alphabetically
according to function, and alphabetically by entry name within that function. For
example, the heading “Complex Multiply and Divide Subprograms” will have
algorithms arranged in the following order: covvp# /coatpy#, covp# /CMPY#.

The information for each subprogram is divided into two parts. The first part
describes the algorithm used; the second part describes the effect of an argument
error upon the accuracy of the answer returned.

The presentation of each algorithm is divided into its major computational
steps; the formulas necessary for each step are supplied. For the sake of brevity,
the needed constants are normally given only symbolically. (The actual values
can be found in the assembly listing of the subprograms.) Some of the formulas
are widely known; those that are not so widely known are derived from more
common formulas. The process leading from the common formula to the computa-
tional formula is sketched in enough detail so that the derivation can be recon-
structed by anyone who has an understanding of college mathematics and access
to the common texts on numerical analysis.! Many approximations were derived
by the so-called “minimax” methods. The approximation sought by these methods
can be characterized as follows. Given a function f(x), an interval I, the form of
the approximation (such as the rational form with specified degrees), and the
type of error to be minimized (such as the relative error), there is normally a
unique approximation to f(x) whose maximum error over I is the smallest among
all possible approximations of the given form. Details of the theory and the
various methods of deriving such approximation are provided in the reference.!
The accuracy figures cited in the algorithm sections are theoretical, and they do
not take round-off errors into account. Minor programming techniques used to
minimize round-off errors are not necessarily described here.

The accuracy of an answer produced by these algorithms is influenced by two
factors: the performance of the subprogram (see the chapter, “Performance
Statistics”) and the accuracy of the argument. The effect of an argument error
upon the accuracy of an answer depends solely upon the mathematical function
involved and not upon the particular coding used in the subprogram.

A guide to the propagational effect of argument errors is provided because
argument errors always influence the accuracy of answers whether the errors are
accumulated prior to use of the subprogram or introduced by newly converted
data. This guide (expressed as a simple formula where possible) is intended to
assist users in assessing the effect of an argument error.

1 Any of modem numerical anal texts may be used as a reference. One such text is A. Ralston’s A First
Caune in Numerical Analysis (McGraw-Hill Book Company, Inc., New York, 1965). Buackgro:nd tnformm:m

-lzorithm: that use continued fractios ay be found H. Wall” C
E e nued ns :\' K )in S. Wall's Analytic Theory of Continued
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The following symbols are used in this chapter to describe the effect of an
argument error upon the accuracy of the answer:

SYMBOL EXPLANATION
g(x) The result given by the subprogram.
f(x) The correct result.
f(x) — g(x) The relative error of the result
¢ f(x) given by the subprogram.
3 The relative error of the argument.
E |f(x) — g(x)|  Theabsolute error of the result
given by the subprogram.
A The absolute error of the argument.

The notation used for the continued fractions complies with the specifications
set by the National Bureau of Standards.?

Although it is not specifically stated below for each subroutine, the algorithms
in this chapter were programmed to conform to the following standards governing
floating-point overflow/underflow.

1. Intermediate underflow and overflows are not permitted to occur. This pre-
vents the printing of irrelevant messages.

2. Those arguments for which the answer can overflow are excluded from the
permitted range of the subroutine. This rule does not apply to cpass and cass. -

3. When the magnitude of the answer is less than 16—9, zero is given as the
answer. If the floating-point underflow exception mask is on at the time, the
underflow message will be printed.

Control of Program Exceptions in Mathematical Functions

The ForTRAN mathematical functions have been coded with careful control of error
situations. A result is provided whenever the answer is within the range repre-
sentable in the floating-point form. In order to be consistent with FORTRAN control
of exponent overflow/underflow exceptions, the following types of conditions are
recognized and handled separately.

When the magnitude of the function value is too large to be represented in the
floating-point form, the condition is called a terminal overflow; when the magni-
tude is too small to be represented, a terminal underflow. On the other hand, if the
function value is representable, but if execution of the chosen algorithm causes an

overflow or underflow in the process, this condition is called an intermediate over-
flow or underflow.

Function subroutines in the FORTRAN library have been coded to observe the

following rules for these conditions:

1. Algorithms which can cause an intermediate overflow have been avoided.
Therefore an intermediate overflow should not occur during the execution
of a function subroutine of the library.

2. Intermediate underflows are detected and not allowed to cause an interrupt.
In other words, spurious underflow signals are not allowed to be given. Com-
putation of the function value is successfully carried out.

3. Terminal overflow conditions are screened out by the subroutine. The argu-

ment is considered out of range for computation and an error diagnostic
is given.

8 For'more information, see Milton Ahramowitz and Irene A. Stegun (editors), Handbook of Mathematical
Funftions, Applied Mathematics Serics-55 (National Bureau of Standards, Wu'hinghon, D.C., 1985),
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4. Terminal underflow conditions are handled by forcing a floating-point under-
flow exception. This provides for the detection of underflow in the same
manner as for an arithmetic statement. Terminal underflows can occur in the
following function subroutines: EXP, DEXP, ATAN2, DATAN2, ERFC, and DERFC.

For implicit arithmetic subroutines, these rules do not apply. In this case, both
terminal overflows and terminal underflows will cause respective floating-point
exceptions. In addition, in case of complex arithmetic (implicit multiply and
divide), premature overflow/underflow is possible when the result of arithmetic
is very close to an overflow or underflow condition.
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Explicitly Called Subprograms

Absolute Value Subprograms

CABS/CDABS

1. Write x + iy, = a + ib.

2. Letv; = max ( ix}, iy} ), and v2 = min ( x|, ly} ).

3. If characteristics of v, and v. differ by 7 (15 for cpass) or more, or if v, = 0,
thena =v,b = 0.

4. Otherwise,

a=2¢¢,° \;‘/4. + 1A}(-:%)u,andb=0.
1

If the answer is greater than 16", the floating-point overflow interruption will
take place (see Appendix C). The algorithms for both complex absolute value
subprograms are identical. Each subprogram uses the appropriate real square root
subprogram (SQRT or DSQRT ).

Arcsine and Arccosine Subprograms

ARSIN/ARCOS
Algorithm
1. If 0 =< x = Y%, then compute arcsin (x) by a continued fraction of the form:
arcsin (x) = x + x3 ¢ F where
A ds

F= (C+ey+ (C+c)
The coefficients of this formula were derived by transforming the minimax
rational approximation (in relative error, over the range 0 < x*=< %) for
arcsin (x)/x of the following form:

arcsin(x) a; + ax?

T x -I;::i—-“b—lﬁ + xi]'
Minimax was taken under the constraint that a, = 1 exactly. The relative error

of this approximation is less than 2—283,
If 0 < x = ¥, arccos(x) is computed as:

e.nao+x9°[

arccos(x) =-32r-—- arcsin(x).

2. If %2 < x= 1, then compute arccos(x) essentially as:

arccos(x) = 2« arcsin (Jl ; x).

This case is now reduced to the first case because within these limits,

<7 l:f-(
0= 5 =%

This computation uscs the real square root subprogram (sQrr)
If % < x = 1, arcsin(x) is computed as:

arcsin(x) = —-g—— arccos(x).

Implementation of the above algorithms (steps 1 and 2) were carried out with
care to minimize the round-off errors.
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3. If — 1=x <0, thenarcsin(x) = — arcsin |x|
and arccos(x) = = = arccos |x].

This reduces these cases to one of the two positive cases.

Effect of an Argument Error

A

E ~ m For small values of x, E ~ A. Toward the limits ( % 1) of the

range, a small A causes a substantial error in the answer. For the arcsine, ¢ ~ 8
if the value of x is small.

DARSIN/DARCOS

Algorithm
1. If 0 < x < %, then compute arcsin(x) by a continued fraction of the form:

arcsin(x) == x + x3 * F where
d, d: ds d,
F = cl + » 9 2 2 .
(2t c)+ (x*+cs) + (2 +c4) + (22 + ¢5)
The relative error of this approximation is less than 2-572,
The coefficients of this formula were derived by transforming the minimax

rational approximation (in relative error, over the range 0 =x>*=< %) for.
arcsin(x)/x of the following form:

arcsin(x) a + axx® + axt + ax® + ag“] '

x - =ay + X bo + byx* + bsx* + bax® + %8

Minimax was taken under the constraint that a, = 1 exactly.
If 0 = x = %, arccos(x) is computed as:

arccos(x) =—;5— — arcsin(x).

2. If 1% < x = 1, then compute arccos (x) essentially as:

arccos(x) = 2 ¢ arcsin (Jl ; x)'

This case is now reduced to the first case because within these limits,

og,fl;:"g%.

This computation uses the real square root subprogram (psQRrT).
If % < x = 1, arcsin(x) is computed as:

arcsin(x) = -—;— — arccos(x).

Implementation of the above algorithms (steps 1 and 2) were carried out with
care to minimize the round-off errors.

3. If = 1 =x < 0, then arcsin(x) = — arcsin |x|, and arccos(x) = = — arccos [z,
This reduces these cases to one of the two positive cases.

Effect of an Argument Error

A
E~ </—i_—-_—-x—£ . For small values of x, E ~ A. Toward the limits ( £ 1) of the

range a small A causes a substantial error in the answer. For the arcsine, ¢ ~ § if
the value of x is small.
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Ardanéenf Subprograms

ATAN — Basic FORTRAN 1V (OS)
Algorithm
1. Reduce the computation of arctan (x) to the case 0 = x =< 1, by using

arctan ( — x) = — arctan (x), or

] 1 — L >
arctan | 7 ) =-—5-— arctan |x|.

2. If necessary, reduce the computation further to the case |x| < tan 15° by using
V3erx—1
x+ V3

Fex —
The value of \4 t+ V3 = tan 15° if the value of x is within the range,
tan 15° < x < 1. The value of ( \/ 3 * x — 1) is computed as

(V3 —1)x— 1+ xtoavoid the loss of significant digits.
3. For |x| = tan 15°, use the approximation formula:

arctan (x) R 0.55913709
— = 0.60310579 — 0.05160454x + 7 + 14087812 '

This formula has a relative crror less than 2-271 and can be obtained by
transforming the continued fraction

arctan (x) = 30° + arctan (

%2

arctan (x) x2 5

xS 1T 3+( +“2)
7x w

where w has an approximate value of ( - -:% - 3375 ) 10—+, but the true

45
7+7-9

m - vee s
(7 11 ) +

The original continued fraction can be obtained by transforming the Taylor

series into continued fraction form.

value of w is

Effect of an Argument Error

E~ T?F 5 For small values of x, ¢ ~ &; as the value of x increases, the effect
of & upon ¢ diminishes.

ATAN/ATAN2 — FORTRAN 1V (OS)

Algorithm

1. For arctan (x,, x3):
If x; < 0, use the identity arctan (x;, x;) = —arctan ( —x,, x2).
Hence we may assume that x; = 0. Then:

x
If either x = O or ,—x—ll > 224, the answer = -%—.
2

If xo < 0and |-;—;-| < 2-2, the answer = .



. X
For the general case, if v > 0, the answer = arctan (‘-x ), and
]
- l xl
if x. < 0, the answer = » — arctan =)
x

- )above, or of arctan(x) for the single argu-

2. The computation of arctan (

ment case, follows the algorithm given for the subprogram aran in Basic
FORTRAN 1v (0s).

Effect of on Argument Error

A .
E~14m -Yor small values of x, ¢ ~ §; as the value of x increases, the effect

of 8 upon ¢ diminishes.

DATAN — Basic FORTRAN 1V (OS)

Algorithm
1. Reduce the computation of arctan (x) to the case 0 =< x = 1 by using
arctan( —x) = — arctan(x) and
1 T iyl
arctan , = —2-,__ arctan |xy,

]

2. If necessary, reduce the computation further to the case |x| =< tan 15° by using

' — g0 V3:x-1
arctan(x) = 30 -+ arctan ( <+ V3 )
V3ex— 1

The value of *+ V3 l = tan 15°, if the value of x is within the range tan
15° < x < 1. The value of (\V3+x — 1) is computed as (V3 — 1) x = 1 + x

to avoid the loss of significant digits.
3. For |x| =< tan 15°, use a continued fraction of the form:

arctan(x) a; a; as

————————— 5 2 —

x —1+x[b° (by + x%) — (b +22) — (b3+x2):|'
The relative error of this approximation is less than 2-607,

The coeflicients of this formula were derived by transforming a minimax

rational approximation (in relative error, over the range 0 < x? = 0.071797)
for arctan(x)/x of the following form:

arctan(x) , [[co te1a? + caat + cax®
= aa x do+d1x2+d2x‘+x° ’
Minimax was taken under the constraint that a = 1 exactly.

Effect of an Argument Error

E~ T-f_x_z For small values of x, ¢ ~ 8, and as the value of x increases, the effect

of ¢ upon & diminishes.

DATAN/DATAN2 — FORTRAN IV (OS)

Algorithm

1. For arctan(x,, x.):
If x; < 0, use the identity arctan(x,, x:) = —arctan ( —x,, x2).
Hence we may assume that x; = 0. Then:

x
If either x» = O or ‘x—:l > 2%, the answer =

rofa

Algorithms 23



If x» < 0and l;’—‘ < 2-%, the answer = .
2

. "
For the general case, if x; > 0, the answer = arctan (l?;l)’ and

: x
if x, < 0, the answer = » — arctan (‘—EITI)

2. The computation of arctan (l—%{) above, or of arctan(x) for the single argu-

ment case, follows the algorithm given for the subprogram paTAN in Basic
FORTRAN Iv (05 ).

Effect of an Argument Error

E~ —l—f—x—z- For small values of x, ¢ ~ §, and as the value of x increases, the effect

of ¢ upon § diminishes.

Error Functions Subprograms

ERF/ERFC

Algorithm
1. If 0 = x = 1, then compute the error function by the following approximation:
erf(x) == x(a, + @22 + axx* + ... + ax'?).

The coefficients were obtained by the minimax approximation (in relative
error) of erf(x)/x as a function of x2 over the range 0 = x*> = 1. The relative
error of this approximation is less than 2-2¢¢, The value of the complemented
error function is computed as erfc(x) = 1 — erf(x).

2. If 1 < x < 2.040452, then compute the complemented error function by the
following approximation:

erfc (x) == by + byz + byz® + ... + by2?

where z = x — Ty and T, =« 1.709472. The coefficients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(z +
To) over the range — 0.709472 < z =< 0.33098. The absolute error of this
approximation is less than 2-3!5, The limits of this range and the value of the
origin T were chosen to minimize the hexadecimal round-off errors. The value

1 .
of the complemented error function within this range is between 58 and 0.1573.

The value of the error function is computed as erf(x) = 1 — erfc(x).
3. If 2.040452 = x < 13.306, then compute the complemented error function by
the following approximation:
erfc(x) == e—*+ F/x where z = 22 and
¢ + coz + ;372
FratTatdzra
The coefficicnts for F were obtained by transforming a minimax rational
approximation (in absolute errors, over the range 13.306-? < w < 2.040452-2)
of the function f(w) = erfc(x) * x * e, w = x~2, of the following form:
f(w) % + a,w + ax® + auw?
T bo + b,w + w2 .
The absolute error of this approximation is less than 2~261, This computation
uses the real exponential subprogram (Exe).
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If 2.040452 < x < 3.919206, then the error function is computed as
erf(x) = 1 — erfe(x).
If 3.919206 < x, then the crror function is == 1.

4. If13.306 < <1, < x, then the error function is == 1, and the complemented error func-
tionis == 0 (underﬁow)

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:

erf(— x) = — erf(x),and erfc (— x) = 2 - erfé(x).

Effect of an Argument Error

.E ~ e =+ A, For the error function, as the magnitude of the argument exceeds 1,
the effect of an argument error upon the final accuracy diminishes rapidly. For
small values of x, ¢ ~ 8. For the complemented error function, if the value of x is

greater than 1, erfe(x) ~ -?—Q_—;— Therefore, e ~ 2 x* + 8. If the value of x is negative

orlessthan 1, then e ~ e=#* ¢« A,

DERF/DERFC

Algorithm
1. If 0 = x < 1, then compute the error function by the following approximation:

erf(x) =x(ap + a,x% + axx* + ... + ax*?).

The coefficients were obtained by the minimax approximation (in relative
error) of erf(x)/x as a function of x* over the range 0 =< x* = 1. The relative
error of this approximation is less than 232, The value of the complemented
error function is computed as erfc(x) = 1 — erf(x).

2. If 1 =<x < 2.040452, then compute the complemented error function by the
following approximation:

erfc(x) =< b + bz + bsz® + ... by1s3"®

where z = x — Ty and T, = 1.709472. The coeflicients were obtained by the
minimax approximation (in absolute error) of the function f(z) = erfc(z + To)
over the range —0.709472 =X z < 0.33098. The absolute error of this approxi-
mation is less than 2-99-3, The limits of this range and the value of the origin
T, were chosen to minimize the hexadecimal round-off errors. The value of the

complemented error function within this range is between -21% and 0.1573. The

- value of the error function is computed as erf(x) = 1 — erfe(x).
3.. If 2.040452 = x < 13.306, then compute the complemented error function by
the following approximation:

erfc(x) == e—*« F/x where z = x* and

Fe=c + d, da de dr
T Era)t (zte)+ T (ztc) t+ (z+er)

The coefficients for F were derived by transforming a minimax rational approxi-
- mation (in absolute errors, over the range 13.306-2 =< w = 2.040452—2) of the
function f(w) = erfc(x) * 2+ e #, w = 22, of the following form:
f(w) == a+aw+aw+...+aw
= bo+ bw + bou? +. + bsw® +w’

The absolute error of this approximation is less than 2-57%, This computation
uses the real exponential subprogram (pexp). If 2.040452 < x < 6. 092368 then
the error function is computed as erf(x) = 1 — erfe(x).

If 6.092368 =< x, then the error function is == 1.
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4. If 13.308 = x, then the error function is =<1, and the complemented error
function == 0 (underflow).

5. If x < 0, then reduce to a case involving a positive argument by the use of the
following formulas:

erf(— x) = — erf(x), and erfe (— x) = 2 — erfc(x).

Effect of an Argument Error

E ~ e~*2+ A. For the error function, as the magnitude of the argument exceeds
1, the effect of an argument error upon the final accuracy diminishes rapidly. For

small values of x, ¢ ~ 8. For the complemented error function, if the value of
e—*2

x is greater than 1, erfc(x) ~ T Therefore, ¢ ~ 2x2 « 3, If the value of x
is negative or less than 1, then e ~ e—*% « A.

Exponential Subprograms

EXP

Algorithm

1. I x < — 180.218, then 0 is given as the answer via floating-point underflow.
2. Otherwise, divide x by log,2 and write

= =4a—-b—d
lo

where aand b are integers, 0 = b < 3and0=<d < 1.
3. Compute 2-¢ by the following fractional approximation:

2d
0.034657359 d? + d + 9.9545948 —

2-4=x] -~

617.97227 °
d? + 87.417497
This formula can be obtained by transforming the Gaussian continued fraction

M T R S T = E

The maximum relative error of this approximation is 2-2°,
4. Multiply 2-¢hy 2-?. v
5. Finally, add the hexadecimal exponent g to the characteristic of the answer.
Effect of an Argument Error

¢ ~ A. If the magnitude of x is large, even the round-off error of the argument
causes a substantial relative error in the answer because A = § * x.

DEXP
Algorithm

L. I x < — 180.2187, then 0 is given as the answer via floating-point underflaw.
2. Divide z by log.2 and write

x= (4a—b—-i%)-log,2—r
where a, b, and c are integers, 0 < b <3, 0 < ¢ =< 15, and the remainder r is
within the range 0 < r < -1-15- * log.2. This reduction is carried out in an extra
precision to ensure accuracy. Then e = 16¢ ¢ 2-% « 2-¢/10¢ g7,
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3. Compute e~" by using a minimax polynomial approximation of degree 6 over

the range 0 = r < — * 16g.2. In obtaining coefficients of this approximation,

16
the minimax of relative errors was taken under the constraint that the constant
term g, shall be exactly 1. The relative error is less than 2—56-87,

4. Multiply e=" by 2-¢/18, The 16 values of 2—</1% for 0 < ¢ = 15 are included in
the subprogram. Then halve the result b times.

5. Finally, add the hexdecimal exponent of a to the characteristic of the answer.

Effect of an Argument Error
E ~ A. If the magnitude of x is large, even the round-off error of the argument
causes a substantial relative error in the answer because A = 8+ x.

CEXP/CDEXP

Algorithm

The value of e**+# is computed as e* * cos(y) + i * e * sin(y). The algorithms for
both complex exponential subprograms are identical. Each subprogram uses the
appropriate real exponential subprogram (Exp or pExr) and the appropriate real
sine/cosine subprogram ('cos/sIN or pCOS/DSIN ).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If e+ = R+ e’ then H = yand ¢(R) ~ A (x).

Gamma and Log Gamma Subprograms

GAMMA/ALGAMA

Algorithm

1. If0 < x = 2-%2, then compute log-gamma as log.I'(x) == — log.(x).
This computation uses the real logarithm subprogram (avroc).

2. If 2-22 < x < 8, then compute log-gamma by taking the natural logarithm of
the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls.

r(x+1)

3. If2-22 < x < 1, then use I'(x) = — o reduce to the next case.

4. If 1 = x =< 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:

z [ag + a1z + a222 + asz?]
bo + b]Z + bzzz + z8

where z = x — 1.5. The absolute error of this approximation is less than 2-25-0
If2 < x < 8, thenuse I'(x) = (x — 1) I'(x — 1) to reduce step by step to the
preceding case.

6. If 8 < x, then compute log-gamma by the use of Stirling’s formula:

log.r(x) = x(loge(x) — 1) — % loge(x) + % log.(2r) + G(x).
The modifier term G(x) is computed as

G(x) =dyx—! +'dyx—2.
These coefficients were obtained by a form of minimax approximation minimiz-
ing the ratio of the absolute error to the value of x. The absolute error is less
than x - 2-262, Remembering the fact that x < log.I'(x) in this range, the
contribution of this error to the relative error of the value for log-gamma is less

I'(x) e=co +

@;
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than 2-262, This computation uses the real logarithm subprogram (Aroc).
For gamma, compute I'(x) = e”, where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (Exp).

Effect of an Argument Error

e ~ ¢ (x) * A for gamma, and E ~ y (x) * A for log-gamma, where ¢ is the
digamma function. :

1
1f - < x < 3, then ~2 < ¢ (x) < L. Therefore, E ~ A for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial ¢ in this range.

If the value of x is large, then y (x) ~ log. (x). Therefore, for gamma,
¢ ~ 8 x * log, (x). In this case, even the round-off error of the argument con-

tributes greatly to the relative crror of the answer. For log-gamma with large
values of x, e ~ 8.

DGAMMA/DLGAMA

Algorithm

1. If 0 < x = 2-2%2, then compute log-gamma as log.T'(x) = — log.(x).
This computation uses the real logarithm subprogram (proc).

2. If 2-%2 < x < 8, then compute log-gamma by taking the natural logarithm
of the value obtained for gamma. The computation of gamma depends upon the
range into which the argument falls,

r(x+1
3 If2-%2 < x < 1, thenuse T'(x) = —g—x—-z to reduce to the next case.

4. If 1 = x = 2, then compute gamma by the minimax rational approximation (in
absolute error) of the following form:
zlao+ az+ ...+ agzt]
bo + byz + . + bez® + 27
where z = x — 1.5. The absolute error of this approximation is less than 2-593,
5. If2 <x < 8 thenuse I'(x) = (x — 1) I'(x — 1) to reduce to the preceding
case.
6. If 8 = x, then compute log-gamma by the use of Stirling’s formula:
logeI'(x) == x(log.(x) — 1) — Y& log.(x) + % log.(2x) + G(x).
The modifier term G(x) is computed as
G(x) edpx—' + dix 3 + dox~3 + dax~7 + dx°.

These coefficients were obtained by a form of minimax approximation minimiz-
ing the ratio of the absolute error to the value of x. The absolute error is less
than x ¢ 2--%¢1, Remembering the fact that x < log.I'(x) in this range, the
contribution of this error to the relative error of the value for log-gamma is less
than 2-5¢, This computation uses the real logarithm subprogram (proc). For
gamma, compute I'(x) = e, where y is the value obtained for log-gamma.
This computation uses the real exponential subprogram (oExe).

I(x) =co +

Effect of an Argument Error

e ~ y(x) * A for gamma, and E ~ y(x) * A for log-gamma, where y is the
digamma function.

1
If 5 <x< 3, then —2 < y(x) < 1. Therefore, E ~ A for log-gamma. How-

ever, because x = 1 and x = 2 are zeros of the log-gamma function, even a small
8 can cause a substantial ¢ in this range.
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If the value of x is large, then y¢(x) ~ log.(x). Therefore, for gamma,
e ~ &+ x ¢ log.(x). In this case, even the round-off error of the argument con-
tributes greatly to the relative error of the answer. For log-gamma with large
values of x, ¢ ~ 8.

Hyperbolic Sine and Cosine Subprograms

SINH/COSH

Algorithm

1. If |xj < 1.0, then compute sinh(x) as:
sinh(x) == x + ¢;x* + cox® + cax?.

The coefficient ¢; were obtained by the minimax approximation (in relative

sinh(x) ) . . . .
as the function of a2. The maximum relative error of this

error) of

approximatidn is 2308,
2. If x = 1.0, then sinh(x) is computed as:
sinh(x) = (1 + 8) [ert 1% — p2fer+onr],

-2-13 , so that this expression is theoretically equivalent to
[er — e=*]/2. The value of v (and consequently those of log.t and §) was so
chosen as to satisfy the following conditions:

a) vis slightly less than 12, so that § > 0 and small.

b) log.v is an exact multiple of 2-1%.

The condition b) insures that the addition x + log.v is carried out exactly. This

maneuver was designed to reduce the round-off errors and also to enlarge the

limits of acceptable arguments. This computation uses the real exponential sub-
program (EXP). '

If x = — 1.0, use sinh(x) = — sinh(|x|) to reduce to case 2 above. :

. If cosh (x) is desired, then for all valid values of arguments use the identity:
cosh(x) = (1 + 8) [e*+"r¥ + p2/er+15.r], Here the notation and the consid-
eration are identical to case 2 above. This computation uses the real exponential
subprogram (Exp).

Here, 1 + 8 =

-~ e

Eftect of an Argument Error
For the hyperbolic sine, E ~ A * cosh (x) and ¢ ~ A « coth(x).
For the hyperbolic cosine, E ~ A * sinh(x) and ¢ ~ 8 « tanh(x).
Specifically, for the cosine, ¢ ~ A over the entire range; for the sine, ¢ ~ & for
small values of x.

DSINH/DCOSH
Algorithm
1. If |x| < 0.881374, then compute sinh(x) as:
sinh (x) == cox + €123 + cx* + ... + cex'®.

The coeflicients ¢, were obtained by the minimax approximation (in relative
sinh(x)

error) of as the function of x*. Minimax was taken under the constraint

that ¢, = 1 exactly. The maximum relative error of this approximation is 2—85-7,
2. If x = 0.881374, then sinh(x) is computed as:

Sinh(x) = (1 + 8) [e"“‘"-" - oﬂlez-{v-log.p].
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1
Here,1 + 8 = 29 % that this expression is theoretically equivalent to

[er — e~*]/2. The value of v (and consequently those of log.v and 8) was so
chosen as to satisfy the following conditions:
a) v is slightly less than 1%, so that § > 0 and small.
b) log.v is an exact multiple of 218, : _
The condition b) insures that the addition x + log.v is carried out exactly. This
mancuver was designed to reduce the round-off errors and also to enlarge the
limits of acceptable arguments. This computation uses the real exponential sub-
program ( DEXP).
3. If x = —0.881374, then use sinh(x) = —sinh(|x|) to reduce to case 2 above.
4. If cosh(x)is desired, then, for all valid arguments use the identity:
cosh(x) = (1 4+ &) [er+'8.r + v?[e+15.r], Here the notation and the consid-
eration are identical to case 2 above. This computation uses the real exponential
subprogram (DEXP).
Eftect of an Argument Error
For the hyperbolic sine, E ~ A ¢ cosh(x) and ¢ ~ A * coth(x).
For the hyperbolic cosine, E ~ A ¢ sinh(x) and ¢ ~ A « tanh(x).

Specifically, for the cosine, ¢ ~ A over the entire range; for thc sine, ¢ ~ 8 for
the small values of x.

Hyperbolic Tangent Subprograms

TANR.

Algorithm
L. If |x|= 2-%, then tanh(x) ==
2. If2-12 < |x| = 0.7, use the followmg fractional approxxmatlon
tanh(x) 0.8145651
x% + 2471749 |
The coefficients of this approximation were obtained by taking the minimax
of relative error, over the range x? < 0.49, of approximations of this form under

the constraint that the first term shall be exactly 1.0. The maximum relative
error of this approximation is 2264,

3. If 0.7 <x< 9.011, then use the identity tanh(x) =1 —

=] -~ x? [0.0037828 +

2
(e*)2+1°
The computation for this case uses the real exponential subprogram (Exe).
4. If x = 9.011, than tanh(x) == 1.

5. If x < —0.7, then use the identity tanh(x) = —tanh(~—x).

Effect of an Argument Error

2a
E ~ (1 —tanh?x) A, and ¢ ~ Simh (20)° For small values of x, ¢ ~ §, and as the

value of x increases, the effect of § upon e diminishes.

DTANH

Algorithm .

L If x| = 2-%%, then tanh(x) = x.

2. If 2% < |z| < 0.54931, use the following fractional approximation:
tanh(x) dyx? dz ds

et ot Pttt E v




This approximation was obtained by rewriting a minimax approximation of the
following form:
tanh(X) . " oag+ a|x2 + apxt
2=y + x2e 5"
by + bix? + box* + x
Here the minimax of relative error, over the range x* < 0.30174, was taken

under the constraint that ¢, shall be exactly 1.0. The maximum relative error of
the above is 2~ 3,

3. If 0.54931 =< x < 20.101, then use the identity tanh(x) =1 — =51
This computation uses the double precision exponential subprogram (prxp).
4. If x = 20.101, then tanh(x) =< 1.
5. If x < -- 0.54931, thep use the identity tanh(x) = — tanh( — x).
Effect of an Argument Error
E ~ (1 — tanh? x) A, and ¢ ~ lzx‘(l . For small values of x, ¢ ~ 8. As the
: '~ Sin

value of x increases, the effect of & upon ¢ diminishes.

Logarithmic Subprograms (Common and Natural)

ALOG/ALOG10
Algorithm

L

2.

6.

. Writez =
1+
. Now,x = 2%p—a-d. =

. To obtain loge(

Write x = 167 » 2-9 « m where p is the exponent, ¢ is an integer, 0 = ¢ = 3,
and m is within the range, % < m < L
Define two constants, a and b (where @ = base point and 2~? = a), as follows:

1
frs=m< Vz,thona= and b = 1.

- =
\/2 m<lthena land b = 0.

™2 h
. enm==ag*
m+a ? 1

1
z~ ,and log.(x) = (4p —q — D) log. 2 + loge(—i—-z-)

+ z
nzmm4<anm

m —

0.5m + 0 5a
resented in our system with slightly more significant digits than z itself), and
apply an approximation of the following form:

142 C
log. —:—)aw[co+ & |

These coefficients were obtained by the minimax rational approximation of

1+
57 lo ( )over the range 22 ¢ (0, 0.02944) under the constraint that co

shall be exactly 1.0. The maximum relative error of this approximation is less
than 2-25-33,

If the common logarithm is desired, then logiox = logsce * logex.

) first compute w = 2z = (which is rep-

!M of an Amumcnf Error

~ 8. Specifically, if 8 is the round-off error of the argument, e.g., § ~ 6 * 10-5,

then E ~ 6+ 10—%, Therefore, if the argument is close to 1, the relative error can
be very large because the value of the function is very small.
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DLOG/DLOG10

Algorithm

1.

2.

6.

. Write z =

Write x = 16° * 29 « m where p is the exponent, q is an integer, 0 < ¢ = 3,
and m is within the range %2 = m < L.
Define two constants, a and b { where a = base point and 2—? = a), as follows:

1
If%§m<'7§,thena= Y%andb = 1.

1
va—'2=§m< 1l,thena=1and b = 0.

m-—a 142
.Then,m =a-
m+a

=% and |z| < 0.1716.

+ 2z

' 1+
. Now, x = 2tp—a-2. i_ z,and logx = (4p — g — b) log2 + log. ( z).

1—-2
m-—a

1+
. To obtain log, (T—:—z), first compute w = 2z = BT 0% (which is repre-

sented in our system with slightly more significant digits than z itself), and
apply an approximation of the following form:

1+2 Cs
loge( )gw Co+01w2 w2+c-.»+ C .
1~z w? +cq + —g—

w2+05

These coefficients were obtained by the minimax rational approximation of

1 1+
% log. (1 — :) over the range z2 ¢ (0, 0.02944) under the constraint that ¢,

shall be exactly 1.0. The maximum relative error of this approximation is less
than 2—0-38,

If the common logarithm is desired, then log;ex = log,ee * logex.

Effect of an Argument Error

E ~ 8. Therefore, if the value of the argument is close to 1, the relative error can
be very large because the value of the function is very small.

CLOG/CDLOG
Algorithm

L
2.
3.

" Finally, lett, = {

32

Write log. (x + iy) = a + ib.

Then, a = log. |x + iy| and b = the principal value of arctan (y, x).
log. |x + iy| is computed as follows:

Let v, = max (|x|, |y|), and v; = min (|x], |y|)-

1
Let t be the exponent of v;,ic., v, =m+ 16, —=m < L

16
tift <0
t—- 1ift>0}’

and s = 16,

. L5 vz \?
Then, log. |x + iy| = 4¢; « log.(2) + 1 log, [:(—s—)2 + (T) ]

Computation of v;/s and va/s are carried out by manipulation of the charac-
teristics of v, and v.. In particular, if vo/s & 1, it is taken to be 0. The algor-
ithms for both complex logarithm subprograms are identical. Each subprogram
uses the appropriate real natural logarithm subprogram (aroc or pLoc) and the
appropriate arctangent subprogram ( ATAN2 or DATANZ ).



Eftect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r» ¢ and log. (x + iy) = a + ib,thenh = b
and E(a) = 5(r).

Sine and Cosine Subprograms

SIN/COS
A[gomhm

4
1. Define z = — * |x| and separate z into its integer part (¢) and its fraction part
®
(r).Thenz = q + r,and |x| = (—;—r—- . q)+ (l;— . r)c

2. If the cosine is desired; add 2 to g. If the sine is desired and if x is negative,
add 4 to q. This adjustment of g reduces the general case to the computation
of sin (x) for x = 0 because

cus (*x) =sin (—;—+ x),and
sin ( — x) = sin(= + x).
3. Letgo=q mod 8.

Then, for go = 0, sin (x) = sin (%. ,)’
~ go=1,sin (x) = cos (-}(1 - r)).
go = 2,sin (x) = cos (—;—-- r),

qo=f;,sin (x) = sin (: (1 —r)),

qo = 4,sin (x) = — sin (-E—- r).
Go = 5,sin (x) = — cos -:—(1 - r)),
Go = B,sin (x) = — cos (-’7;—" r),
qo = 7,sin (x) = — sin (—:—(1 - r)).
These formulas reduce each case to the compﬁtation of either sin (—E-' r,)

or cos (-}- . r,) where r, is either r or (1 — r) and is within the range,
0 __S_ " é 1.

4. If sin (-;:—- . r,)is needed, it is computed by a polynomial of the following
form:

sin ("':" . f;)?-"- r (ao + air? + a.r + asr;‘).

The coeflicients were obtained by the interpolation at the roots of the Chebyshev
polynomial of degree 4. The relative error is less than 228 for the range.
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5. If cos (-} o1y ) is needed, it is computed by a polynomial of the following
form: '

€os (-—:— . r.)a 1+ byry? + bory* +bsr®

Coefficients were obtained by a variation of the minimax approximation which
provides a partial rounding for the short precision computation. The absolute
error of this approximation is less than 2—24:57,

Effect of an Argument Error

E ~ A. As the value of x increases, A increases. Because the function value dimin-
ishes periodically, no consistent relative error control can be maintained outside

the principal range, — -’2:— ==+ —;—-

DSIN/DCOS

Algorithm
1. Divide x| by% and separate the quotient (z) into its integer part (g) and

4
its fraction part (r). Then, z = |x| * — =4q + r, where g is an integer and r
is within the range, 0 < r < 1. ‘

2. If the cosine is desired, add 2 to g. If the sine is desired and if x is negative,
add 4 to q. This adjustment of g reduces the general case to the computation of
sin (x) for x = 0, because

cos (% x) = sin (lxl +-§-),and
sin (= x) = sin ({x| + #).

3. Let go=¢q mod 8.

Then, for g, = 0, sin (x) = sin

(3

Go = l,sin (x) = (
o (5

(5

RN
mw
ol

Go = 2, sin (x) =

')

)
‘v
go = 3,sin (x) =sin (1~ r))
o = 4,sin (x) = — sin ({—-:),
do=5,sin () = = cos (- (1= 1)),
go = 8,sin (z) = — cos (-—--r)
go =7,sin (x) = — sin (-(1 —f))

These formulas reduce each case to the computation of either sin (-— . r,)

orcos(— 'r,) where r, is either r or (1 — r), and is within the range,
0_<_71§1
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4. Finally, either sin(-i—'- ° 1y )or cos (—:—;— o )is computed, using the polynomial

interpolations of degree 6 in ;2 for the sine, and of degree 7 in r,? for the cosine.
In either case, the interpolation points were the roots of the Chebyshev poly-
nomial of one higher degree. The maximum relative error of the sine polynomial
is 2—%8 and that of the cosine polynomial js 283,

Effoct of an Argument Error

E ~ A. As the value of the argument increases, A increases. Because the function

value diminishes periodically, no consistent relative error control can be main-

tained outside of the principal range, — -’-2'-§_ = +-Z-2r—.
CSIN/CCOS
Algorithm
1. If the sine is desired, then
sin(x + iy) = sin(x) * cosh(y) + i * cos(x) ¢ sinh(y).
If the cosine is desired, then ;
cos(x + iy) = cos (x) * cosh(y) — i+ sin(x) * sinh(y).
2. The value of sinh(x) is computed within the subprogram as follows.
Assume x = 0 for this, since sinh( — x) = ~ sinh(x).
3. If x = 0.346574, then use sinh (x) = & (e‘ - —é]:;)

4, If 0 = x < 0.346574, then compute sinh(x) by use of a polynomial:
sinh(x)
x

=g, + a;x% + agx‘.

The coefficients were obtained by the minimax approximation (in relative
error) of sinh(x)/x over the range 0 < x* < 0.12011 under the constraint that

ay shall be exactly 1.0. The relative error of this approximation is less than
2-—20.18.

1
5. The value of cosh(x) is computed as cosh (x) = sinh|x| + e
This computation uses the real expoential subprogram (Exp) and the real
sine/ cosine subprogram (sm/cos).
Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer, the
programmer must understand the effect of an argument in the sm/cos, Exp, and
SINH/ cosH subprograms.

CDSIN/CDCOS
Algorithm
1. If the sine is desired, then 4
sin (x+iy) = sin(x) * cosh(y) + i * cos(x) * sinh(y).
If the cosine is desired, then
cos(x + dy) = cos(x) * cosh(y) — i+ sin(x) * sinh(y).
2. The value of sinh(x) is computed within the subprogram as follows.
Assume x = 0 for this, since sinh( = x) = — sinh(x).

3. If x = 0.481212, then use sinh(z) = % (ei - -:7)
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4. If 0 = x < 0.48]212, then compute sinh(x) by use of a polynomial:
sinh(x)

T = + a\x? + axxt + ax® + ax® + agx'’.

The cocfficients were obtained by the minimax approximation (in relative
crror) of sinh(x)/x over the range 0 = x* = (0.23156 under the constraint

that a, shall be exactly 1.0. The relative error of this approximation is less

than 2-356.07,

5. The value of cosh(x) is computed as cosh (x) = sinh|x| +'e:'l_'|
This computation uses the rcal exponential subprogram (pexr) and the real
sine/ cosine subprogram (psiN/pcos).

Effect of an Argument Error

To understand the effect of an argument error upon the accuracy of the answer,
the programmer must understand the effect of an argument error in the psiN/pcos,
DEXP; and DSINH/DCOSH subprograms.

Square Root Subprograms

SQRT
Algorithm
1. If x = 0, then the answer is 0.
2. Write x = 16°7~% « m, where 2p — q is the exponent and g equals cither 0 or 1;
1
m is the mantissa and is within the range 16 =m<l
3. Then, Vx = 167+ 4=4\/m.
4. For the first approximation of V/x, compute the following:
1.288973
0.8408065 + m /"

This approximation attains the minimax relative error for hyperbolic fits of V.
The maximum relative error is 2- 578,
5. Apply the Newton-Raphson iteration

Ynt1 = % (yn +—
twice. The sccond iteration is performed as

x X
y2 - % (yl -_!;:)-*--!-IT’

with a partial rounding. The maximum relative error of y, is theoretically
2—'.‘5.!0.

Yo = 160+ 4 (1.681595 -

Eftect of an Argument Error

1
€ ~—38§.

2

DSQRY

Algorithm
1. If x = O, then the answer is 0.
2. Write x = 16%7~¢« m, where 2p — q is the exponent and q equals either 0 or 1;

1
m is the mantissa and is within the range T =m<l
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3. Then, Vx = 162+ 4-7y/m.
4. For the first approximation of \/x, compute the followmg
Yo = 167+ 41~2+ 0.9202 (m + 0.2587).

The cxtrema of relative errors of this approximation for ¢ = 0 are 2-3*® at

1
= ], 23265 gt ;. = 0.2587, and 2-29%5 at in = 6 . This approximation, rather

x
than the minimax approximation, was chosen so that the quantity T y3 be-
3

low becomes less than 16*—* in magnitude. This arrangement allows us to
substitute short form connterparts for some of the long form instructions in the
final iteration.

5. Apply the Newton Raphson iteration

x
Unt1 = ¥ (yn +?I—)

four times to y,, twice in the short form and twice in the long form. The final
step is performed as

X
nw=ys+ % (g;—ya)

with an appropriate truncation maneuver to obtain a virtual rounding. The
maximum relative error of the final result is theoretically 2—63.23,

Effect of an Argument Error

1 8
<~
CSQRT/CDSQR‘T
Algorithm
1. Write Vx + iy = a + ib.

x| 4+ |x + i ——
2. Compute the value z = A ’______%_—__—]5!_ as ke vV u; + w, where k, w, and wa

are defined in 3, or 4, below. In any case let v; = max (|x|, |y|) and

v; = min ( [z}, |y|).
3. In the special case when cither v; = 0 or v, $ v3, let w; = v; and w2 = v, so
that w; + w; is effectively equal to v,.
Also letk = lif v, = [x| and

=1/vZifv, = |y|.
4. In the general case, compute F = \l i+ Y ( )

If |x| is near thé underflow threshold, then take
= [x|, w2 = v, * 2F,and k = 1/v2.

Ifo, F is near the overflow threshold, then take

= |x|/4, w, = v, *F/2, and k = /2.
In all other cases, take w, = [x|/2,w: = vy * F,and k = 1.

5 Ifz=0,thena =0and b = 0,
Ifz5£0andx = 0, thena = z, and
: Yy

-—

%
Ifz£0andx < 0, thena = |—y—|,and
= (signy) * z.
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The algorithms for both complex square root subprograms are identical.
Each subprogram uses the appmpnatc rcal square root subprogram (SQRT or
DSQRT).

Effect of an Argument Error

The effect of an argument error depends upon the accuracy of the individual
parts of the argument. If x + iy = r+e*and Vx + iy = R« e'f,

then ¢(R) ~ % 5(r),and «(H) ~ 8(h).

Tangent and Cotangent Subprograms

TAN/COTAN
Algorithm

1. Divide ix! by Z_ and separate the result into integer part (g) and the fraction
1 1%

part (r). Then x| = —:—;—- (g +r).

2. Obtain the reduced argument (1) as follows:
if g is even, thenw = r
ifgisodd,thenw =1 ~— r.

The range of the reduced argumentis0 S w < 1.
3. Let go=¢q mod 4.

Then for go = 0, tan jx| = tan (—:—;— . w) and cot ;'x|’ = cot (-j:— . w),

1r.)
T ' v)

qv = 1, tan [x| = cot (-;-r— . w) and cot {x| = tan (

9o ='2, tan |x| = — cot (%- . w) and cot |x| = — tan (—Z— . w),
go = 3,tan jx| = — tan (—;L . w) and cot |x| = — cot ( Z . w).

4. The value of tan (_Z- . w) and cot (.} . w) are computed as the ratio of two
polynomials:

o (e o (5

where u = % w? and
P(u) = — 8.460901 + ¢
Q(u) = — 10.772754 + 5.703366 * u — 0.159321 ¢+ u?.

These coefficients were obtained by the minimax rational approximation (in
relative error) of the indicated form. The maximum relative -error of this
approximation is 2—2¢, Choice of u rather than w? as the variable for P and Q
is to improve the round-off quality of the coefficients.

. If x < 0, then tan(x) = — tan x|, and cot(x) = — cot |x|.

. This program is provided with two kinds of error controls. One is for arguments
whose magnitude is greater than 218 « ., The other is for arguments which are
very close to a singularity of the function. In either case, the precision of the
argument is deemed insufficient for obtaining a reliable result. More specifically,
the second control screens out the following arguments:

a) |x| = 16~ for coraN (the result would overflow).
b} x is such that one can find a singularity within eight units of the last digit

[= I
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value of the floating-point representation of the sum g + r. Singularities are
cases when the cotangent ratio is to be taken and w = 0.
The test threshold of this control can be dynamically modified by assembler
code programs.

Effact of an Argument Error

A 2 . .
E~ “cosi (%) ,and e ~ m for tan(x). Therefore, near the singularities

1 e .
x= (k +4-?) =, where k is an integer, no error control can be maintained. This

is also true for cotan(x) for x near kr, where k is an integer.

DTAN/DCOTAN:
Algorithm

1. Divide || by—Z‘ and separate the result into integer part (q) and the fraction

part (r). Then x| =—z4r—~(q +r).

2. Obtain the reduced argument (w) as follows:
if giseven,thenw = r
ifgisodd,thenw =1 —r.
The range of the reduced argument is 0 =< w =< 1.
3. Let go= g mod 4.

Then for qq = 0, tan |x| = tan (—} . w)and cot |x| = cot (—:— . w),
qo = 1, tan |x] = cot (—:— . w)and cot x{ = tan (—Z—- . w),
go = 2,tan [x| = — cot (% . w)and cot |x| = — tan (-;L . w),
.o = 3,tan || = — tan (_:_;_ . w)aﬂd cot ;x| = — cot (% . w).

4. The value of tan (—E— . w) and cot (-—:— . w) are computed as the ratio of
two polynomials:

( ) w e P(w?) q ( ” ) Q(w?)

tan{ —w 0(w?) —=7 37 and cot —4-w = 0+ P(w?)
where both P and Q are polynomials of degree 3 in w2 The coefficients of P
and Q were obtained by the minimax rational approximation (in relative error)

1
of - tan (—:— w ) of the indicated form. The maximum relative error of this

approximation is 2358,

5. If x < 0, then tan(x) = — tan x|, and cot(x) = — cot |1|.

6. This program is provided with two kinds of error controls. One is for argu-
ments whose magnitude is greater than 2% « =, The other is for arguments which
are very close to a singularity of the function. In either case, the precision of
the argument is deemed insufficient for obtaining a reliable result. More
specifically, the second control screens out the following arguments:

a) ]x] = 16— for cotaN (the result would o\ ﬂow)

b) xis such that one can find a singularity v in eight units of the last digit
value of the floating-point representation o the sum q + r. Singularities are
cases when the cotangent ratio is to be take and w = 0.
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The test threshold of this control can be dynamically modified by assembler
code programs. '

Effect of an Argument Error

9 .
E ~ o (x)’ and ¢ ~ ) for tan(x). Therefore, near the singularities of

1 N
x = (k + -E-) =, where K is an integer, no error control can be maintained.

This is also true for cotan(x) for values of x near kx, where k is an integer.

Implicitly Called Subprograms

The entry point names of the following implicitly called subprograms are gener-
ated by the compiler.

Complex Multiply and Divide Subprograms

CDVD #/CMPY # (Divide/Multiply for COMPLEX*8 Arguments)
CDDVD#/CDMPY # (Divide/Multiply for COMPLEX*16 Arguments)

Algorithm
Multiply: (A + Bi) (C + Di) = (AC — BD) + (AD + BC)i
Divide: (A + Bi)/(C + Di)
1. If |C|§ |D], set
A=B,B=-AC=D,D= -—(C,since

A+Bi B=Ai
- before step 2.
C+Di-D=cCi oesep

2.8 A'—A B’—-P-D'—D
N C‘t —"C; - C, "'—6!
then compute
A + Bi A'+Bi A+ BD B' — A'D

C+Di - 1+Di - 1+DD T T¥DD *

Error Conditions

Partial underflows can occur in preparing the answer.

Complex Exponentiation Subprograms

FCDXI13 (COMPLEX* 16 Arguments)

FCXPi# (COMPLEX*8 Arguments)

Algorithm

The value of y, + y2i = (21 + 2,i)! is computed as follows.

Let Jj| =z r;* 2*wherer, = Oorlfork=0,1,..., K
k=0 .

Thenz {| = ﬂozz', and the factors z* can be obtained by successive squaring.
1, %

More specifically:
1. Initially: k = 0,n'® = il 9@ + ¢, 9% =1 + 04,
20 + 2,0f = z, + 2.
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2. Raise the index k by 1, and let n'*-1 = 2q + r, where g is the integer
quotientand r = Qor 1. :
3. Letn® = gq.
4. If r = 0, then y, ¥ + yutBri = gy =1 + gy, k-1,
Ifr=1theny,® + yo'0i = (g ¥~ + ya% 1) (251 + k1),
5. If n®" 40, then z,*%) + z2.®0§ = (z,%—1 + z,'¥=1)2 and steps 2
through 5 are repeated until n) = 0.
6. Whenn® = 0,andj = 0, then gy, + y2i = 1 ® +y.
Ifj < O,theny, + y.i = (1+ 0i) / (1™ + ya'*%).

Exponentiation of a Real Base fo a Real Power Subprograms

FDXPD 3 (REAL*8 Arguments)
FRXPR3 (REAL*4 Arguments)

Algorithm

1. Ifa = Oand b =< 0, crror return.
Ifa = 0and b > 0, the answer is 0.

2. Ifas«# 0and b = 0, the answer is 1.

3. All other cases, compute a” as e » ¢ 7, In this computation the exponential sub-
routine and the natural logarithm subroutine are used. If a is negative or if
b « log a is too large, an error return is given by one of these subroutines.

Error estimate

The relative error of the answer can be expressed as (¢ + «) b * log (a) + e
where ¢, e, and ¢; are relative errors of the logarithmic routine, machine multi-
plication, and the exponential routine, respectively. .

For Foxrp¥*, ¢ = 3.5x10-1, ¢ = 2.2x101%, and & = 2.0x10-!%, Hence the
relative error = 5.7x10-1%x | b + log a | + 2.0x10-'¢, Note that b * log @ is the
natural logarithm of the answer.

For FRXPR¥, ¢; = 8.3x10~7, &, =X 9.5x10~7, and 3 < 4.7x10-7. Hence the relative
‘error < 1.8x10-%x | b« loga | + £.7x10-"

Effect of an Argument Error

[a(1 + 8)1 b(1 + &) == a®() + &b + loga + b3,). Note that if the answer does
not overflow, |b ¢ log a| < 175. On the other hand b can be very large without
causing an overflow of a® if log a is very small. Thus, if @ = 1 and if b is very
large, then the effect of the perturbation §, of a shows very heavily in the relative
error of the answer.

Exponentiation of a Real Base to an Integer Power Subprograms

FDXPIL# (REAL*8 Arguments)
FRXPI# (REAL*4 Arguments)
Algorithm
K .
The value of y = @’ is computed as follows: Let |j| = 2 n2* where r, = Oor 1
k=0
fork=0,1,..., K Thenall = ;t‘r g“" and the factors a2* can be obtained by suc-
" .
cessive squaring.
More specifically:

1. Initially: k = 0,n® = |j|, y® = 1,and 2® =a.
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2. Raise the index k by 1, and decompose n*~1* = 2q + r, where q is the
integer quotientand r = Oor 1.

3. Letn® = gq,
4, Ifr = 0, then y® = y:—-n,

If r = 1, then y® = yk—1igtk—1),

5. If n® o 0, then z%) = z(k—lzk1—-) and steps 2 through 5 are repeated

untiln® = 0,

6. Whenn® = 0,andj =0, theny = y™.If < 0, theny = ;(7,

Note: The negative exponent is computed by taking the reciprocal of the posi-
tive powey. Thus it is not possible to compute 16.0**—64 because there is a lack
of symmetry for real floating-point numbers — i.e., 16.0**—64 can be represented,
but 16.0**64 cannot. The result is obtained by successive multiplications and is
exact only if the answer contains less than 14 significant hexadecimal digits.

Exponentiation of an integer Base to an Integer Power Subprogram

FIXPI: (INTEGER*4 Arguments)

Algorithm K,
The value of L = I is computed as follows: Let j = 2 e * 2* where r, = 0
orlfork=0,1..., K Then I! = 7 I, and the fact;r: ;"" can be obtained by
successive squaring,. e

More specifically:

1. Initially: k = 0, n® = j, y® = 1, and m©® = I,

2. Raise the index k by 1, and decompose n*~1 = 2q + r, where q is the
integer quotient and r = O or 1.

3. Letn™ =gq. '

4. Ifr = 0, theny® = yti-1j,
Ifr = 1, then y'®) = yE=1) o -0,

5. If n® o= 0, then m™® = mt—1) « =1 and steps 2 through 5 are repeated
until n®) = 0,

8. Whenn® =0,L = L%,

Note: The result is obtained by successive multiplications. The result is exact
only if it is less than (2**31) — 1. Results are meaningless when this limit is
exceeded and may even be of changed sign.



This chapter contains accuracy and timing statistics for
the explicitly called mathematical subprograms. These
statistics are presented in Tables 12 and 13 and are
arranged in alphabetical order, according to the entry
names. The following information is given in the two
tables:

Entry Name: This column gives the entry name that
must be used to call the subprogram.

Argument Range: This column gives the argument
range used to obtain the accuracy figures. For each
function, accuracy figures are given for one or more
representative segments within the valid argument
range. In each case, the figures given are the most
meaningful to the function and range under consid-
eration.

The maximum relative error and standard deviation
of the relative error are generally useful and revealing
statistics; however, they are useless for the range of a
function where its value becomes 0, because the slight-
est error in the argument can cause an unpredictable
fluctuation in the magnitude of the answer. When a
small argument error would have this effect, the maxi-
mum absolute error and standard deviation of the
absolute error are given for the range. For example,
absolute error is given for sin(x) for values of x near .

Sample: This column indicates the type of sample
used for the accuracy figures. The type of sample de-
pends upon the function and range under consider-
ation. The statistics may be based either upon an
exponentially distributed (E) argument sample or a
uniformly distributed (U) argument sample.

Accuracy Figures: This column gives accuracy fig-
ures for one or more representative segments within
the valid argument range. The accuracy figures sup-
plied are based upon the assumption that the argu-
ments are perfect (i.e., without error and, therefore,
having no error propagation effect upon the answers).
The only errors in the answers are those introduced by
the subprograms. The chapter, “Algorithms,” contains
a description of some of the symbols used in this
chapter; the following additional symbols are used in
the presentation of accuracy figures:

Performance Statistics

The maximum
relative error
produced
during testing.

f(x) — g(x)

M (¢) = Max e))

The standard

f(x;) — g(x) |* deviation (root-
f(xy) mean-square )of

the relative error.

v(e) = \}%Z,

The maximum
absolute error .
produced
during testing.

M(E) = Max | f(x) — g(x) |

5 The standard
deviation (root--
mean-square ) of
the absolute error.

o(B) = JE; i) - s

In case of complex functions, the absolute value
signs employed in the above definitions are to mean the
complex absolute values. In the formulas for the
standard deviation, N represents the total number of
arguments in the sample; i is a subscript that varies
from 1 to N.

Average Speed: The average time given for each
function was determined by executing a job using an
interval timer to measure time differences. Because of
the various methods of performance enhancement used
in some models of the System/360 (e.g., interleaving
storage, buffered storage, execution overlap, antici-
patory branching analysis), instruction order and mix
can affect performance on certain models. Conse-
quently, the times given must be considered as highly
generalized and differences may be observed during
normal use of the functions.

Test ranges, where they do not cover the entire
legal range of a subroutine, were selected so that users
may infer from the accuracy figures presented the
trend of errors as an argument moves away from the
principal range. The accuracy of the answer deteri-
orates substantially as the argument approaches the
limit of the permitted range in several of the sub-
routines. This is particularly true for trigonometric
functions. An error generated by any of these subrou-
tines, however, is at worst comparable in order of
magnitude to the effect of the inherent rounding error
of the argument.
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Table 12. Accuracy Figures

Entry Argument Sample - Accuracy Figures
Name Range E/U M) Relative . - Absqlute o (E)
ALGAMA |0 < X < 05 U | 116x 100 3.54 x 10~
05=X 3.0 U 9.43 X 1077 342 % 1077
30X < 8.0 0] 1.25 x 10-¢ 3.04 x 1077
80=X< 160 U 1.18 x 10" 3.80 x 1077
16.0 = X < 500.0 U 9.85 x 1077 1.90 X 1077
ALOG 05=X=s15 U 6.85 x 10°® 2.33 x 108
X<05X>15 E 8.32 x 107 1.19 X 107
ALOG 10 [05=X=15 U 7.13 x 1078 226 X 1078
X< 05X> L5 E |105x10° 2.17 x 107
ARCOS -1=X=+1 V) 8.85 x 1077 3.19 X 1077~
‘| ARSIN -1=sX=+1 U 9.34 X 1077 2.06 x 107
ATAN The full range Note 7 | 1.01 x 107" 4.68 X 1077
ATAN 2 The full range / Note 7 | 1.01 x 10" 4,68 x 1077
CABS The full range Note 1 | 9.15 X 1077 2.00 X 1077
CCOS [X:| =10, X:| =1 U | 250x10° 766 X 1077
See Note 2
CDABS The full range Note 1 | 2.03 x 10-1¢ 4.83 x 107%7
CDCOS | [X./=10,|X{ =1 U |[398x10* 2.50 X 1071
Sec Note 3 .
CDEXP X =1, X = /2 U 3.76 X 10°1¢ . 1.10 X 107¢
X = 20, |X| =20 U |274x1078 9.64 X 107¢
CDLOG The full range Note 1 | 2.72 X 10-1¢ 5.38 X 10717
except (1 + Oi)
CDSIN X =10, X0 =1 U 2.35 X 10713 2.25 X 1071¢
See Note 4
CDSQRT | The full range Note 1 | 1.76 x 1071¢ 4.06 X 1077
CEXP IX:| =170, (X =#/2 | U |993x 107 2.67 X 1077
1%} = 170, U 1.07 X 10°° 2,73 x 1077
/2 < |X:| =20
CLOG The full range Notel | 7.15 x 10°7 1.38 X 10°7
except (1 + Oi) »
COos 0=X=~ 4] 1.19 x 10°? 4.60 x 10°®
‘ “10sX <0, U 128 X 10 455 X 1078
r<X=10
10 < |X]| = 100 U 1.14 X 1077 4.60 x 10°°
COSH ~5=X=+5 U 1.27 x 10°® 2.63 x 1077
COTAN | |X|=w/4 U {107 x 10 3.58 x 10”7
x/4 < |X| = w/2 U {140 x 10 (Note5) | 2.58 x 10°7
/2 < [X| =10 U 1.30 %X 10°®* (Note 5) | 3.11 x 107
10 < X < 100 U |149 %10 (Note5) | 3.15 x 107
NoTes: (See end of table.)
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Table 12. Accuracy Figufes ( Continued)

Accuracy Figures
Entry Argument Sample Tative beolute
Name Range E/U M (e) Relative o (e) M (E) A o (F)
CSIN Xi| =10, [X:| = 1 U [1e2x10" 7.38 X 10°7
See Note 6
CSQRT The full range Note 1 | 7.00 x 107 1.71 x 1077
DARCOS X|=1 U 2.07 X 1071 7.05 X 1077
DARSIN | |X|=1 U | 204x101° 5.15 X 10717
DATAN The full range Note7 | 2.18 X 107'¢ 7.04 X 1077
DATAN2 The full range Note 7 | 2.18 X 1071 7.04 % 1077
DCOS 0=X=r~r U 1.79 x 10718 6.53 X 10-'7
~10=X<0, U 1.75 x 10716 5.93 x 10717
T X=10
10 < X =100 U 2.64 x 10718 1.01 x 10713
DCOSH X|=5 U 3.63 x 10-1¢ 9.05 X 1077
DCOTAN | |X| = =/4 U | 248 x 10 (Note5)| 8.79 x 107
/4 < X[ =#/2 . U 2.78 X 107** (Note 5) | 8.61 X 107'*
/2 < [X|£10 U 5.40 X 107'3 (Note 5) | 1.13 x 10-1*
10 < |X| = 100 U 8.61 X 10'3 (Note 5)| 4.61 X 107*
DERF Xl=1.0 U 1.89 x 10714 2.60 x 10717 -
1.0 < |X] = 2.04 U 2.87 x 10°7 9.84 X 1071® -
2.04 < |X| < 6.092 U [ 139 x 107 8.02 X 1071#
DERFC -6<X<0 U 2.08 X 1071¢ 6.52 X 10717
0=X=s1 U 1.40 X 1071¢ 2.59 X 10717 -
1IKX=204 U 4.11 X 10°'¢ 8.86 X 1077 -
204 < X< 4 U 3.26 x 107¢ 8.85 x 10717
4=X<133 U 3.51 x 1071* 1.96 X 10-13
DEXP Xi=1 U 2,04 x 1071 543 x 1017
1< |X|=20 U 2.03 X 101 4.87 x 10717
20 < [X] =170 U 1.97 X 107¢ 4.98 X 10°17
DGAMMA |0 <X <1 U 2.14 X 101¢ 7.84 X 10717
1=X=s2 U 2.52 x 10717 6.07 X 10718
2<X <4 U 221 X 1071¢ 8.49 x 10°17
4=X<8 U | 505 x 107¢ 1.90 X 10-18
8=Xc16 U 6.02 X 1018 1.78 X 10713
16=X < 57 U 1.16 x 1071¢ 4.11 X 10°1°
DLGAMA |0 < X=s05 : U 277 X 10°1¢ 9.75 X 10-17
05<X<3 U 2.24 X 1071 797 x 10717
I=sX<«8 U 2.89 x 101¢ 8.80 x 10-7
8=X 16 U 2.88 X 101 8.92 x 1077
16 =X < 500 U 1.9 x 1072¢ 3.93 x 10717
DLOG 05=X=15 U 4.60 x 1077 2.09 X 10717
X<05X>15 E 3.32 X 10718 552 x 1077
Nortes: (See end of table.)
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Table 12. Accuracy Figures {Continued)

Entry Argument Sample —— Accaracy Figures
Name Range E/U M© Relative () M (E) Absolute o(E)
DLOGI0 |05=X=15 U 273 X 107 1.07 x 107
X< 05X>15 E | 3.02 x 10¢ 6.65 X 10717
DSIN X! < »/2 U | 360 x 107 4.82 x 10717 7.74 X 10" 1.98 x 10717
/2 < |X| =10 U 1.4 x 1071 6.49 X 1017
10 < [X| = 100 U 2.68 x 1071 1.03 x 107
DSINH IX! < 0.88137 U | 208 x 101 3.74 X 1071
0.88137 < |X| =5 U | 3.80x 10 9.21 X 107
DSQRT The full range E 1.08 x 10-1¢ 2.16 X 1077
DTAN X! < /4 U | 341 x 10 .27 X 10717
x/4 < |X| = x/2 U | 143 X 102 (Note 5)| 2.95 x 10714
*/2 < |X| =10 U | 278 X 103 (Note 5) | 7.23 x 1071
10 < [X] = 100 U | 379 x 1071 (Note 5)| 9.50 X 10-1¢
DTANH | |X| = 054931 U | 191 x 1071 3.86 x 107
054931 < |X| =5 U | 154 x10¢ 1.87 X 10717
ERF iXj=1.0 U | 816 x 107 1.10 X 1077
1.0 < X| = 2.04 U | 113x107 3.70 x 10-®
2.04 < [X| = 3.9192 U | 595x%x10° 3.41 x 10°®
ERFC -38<X<0 U | 9.0 x 107 2.96 X 107
0=X=10 U | 742 x 107 1.27 X 10
10 < X =204 U | 154 x10° 3.78 x 10”7
204 <X =40 U | 228 x 10 3.70 x 10”7
140<X =133 U | 155x 10 8.57 x 107°
EXP X|=1 U | 465 x 107 1.28 x 10-
1< X[ =170 U | 442 %107 115 x 1077
GAMMA |0< X< 10 U | 9.86 x 107 3.66 X 107
1L0SX=20 U | 113x107 3.92 X 10°®
20 < X=4.0 U | 947 x 107 3.79 x 1077
40 < X < 80 U | 226x10° 8.32 X 107
80=X=160 U | 220x10® 7.61 X 10°¢
160 < X =57.0 U | 462 %103 1.51 X 10~
SIN [X| < »/2 U | L3z x10° 1.82 X 10~ 118 X 1077 4.55 X 10"
*/2 < |X| =10 U L15 x 10° 4.64 x 10°°
10 < [X| = 100 U 1.28 x 10~ 452 x 10°
SINH -5=X=<+5 U | 126 x10°° 2.17 X 1077
SQRT The full range E | 445X 107 8.43 X 107
NotEes: (See end of table)
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Table 12. Accuracy Figures (Continued)

Accuracy Figures
52;?; Arlia‘ux::znt S;:n/:%le v ‘Relative Absolute
M (e) o (¢ M (E) s (E)
TAN IX| = »/4 1) 171 x 10°° 2.64 X 1077
/4 < X| = »/2 U 1.05 X 107% (Note 5) | 3.59 x 107
»/2<|X|=10 U 6.49 X 107° (Note5) | 3.38 X 1077
10< |X| = 100 U 1.57 X 107% (Note 5) | 3.07 x 1077
TANH X|=07 U 8.48 x 1077 148 x 10°7
07<[X| =5 6] 244 x 1077 | 4.23 X 10°®
NoTes:

! Tl}e' distribution of sample arguments upon which these statistics are based is exponential radially and is uniform around the

: ?l;gl:naximum relative error cited for the ccos function is based upon a set of 2000 random arguments within the range. In
the immediate proximity of the points(n + —;—) x4+ 0i (wheren =0, £ 1, = 2,...,) the relative error can be quite
high, although the absolute error is small.

* The maximum relative error cited for the cpcos function is based upon a set of 1500 random arguments within the range.
In the immediately proximity of the points { , + %

high, although the absolute error is small.

¢ The maximum relative error cited for the cosin function is based upoh a set of 1500 random arguments within the range.
In the immediate proximity of the points nx + 0i (wheren = = 1, = 2,,..,) the relative error can be quite high, although
the absolute error is small.

* The figures cited as the maximum relative errors.are those encountered in a sample of 2500 random arguments within-the
respective ranges. See the appropriate section in the chapter “Algorithms” for a description of the behavior of errors when
the argument is near a singularity or a zero of the function. S

* The maximum relative error cited for the csiv function is based upon a set of 2000 random arguments within the range. In

the immediate proximity of the points nx + 0i (where n = % 1, = 2,...,) the relative error can be quite high, although
the absolute error is small. ...

x+ 0i (wheren=0,% 1, £ 2,...,) the relative error can be quite

' The sample arguments were tangents of numbers uniformly distributed between — —;—-and + -;:-
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.Table 13. Average Machine Timings (Part 1 of 4)

Timing Averages in Microseconds for Various Models
Entry Argument Sample
Name Range EU1 5 40 50 85 (N(;’tse 3) (Ngtse 4) | o1 | 195
ALGAMA 05<X < 3.0 U 8873 | 2531 731 178 105 | 44 | 33 | 30 16
0<cX<05 U 8920 | 92564 751 185 | 105 42 ]| 34| 28 17
30=X < 80 u 10640 | 3038 897 218 | 125 52 | 37 | 32 19
80=<X < 160" U 7193 | 2178.| 584 152 92 33 | 29 | 24 14
16.0 = X < 500.0 U 7526 | 2231 611 152 92 34 | 30 | 25 15
ALOG 05<X=15 U 4021 | 1101 324 85 45 17113 10 7
X<05X>15 E 4108 | 1238 331 85 45 153 121} 10 7
ALOGI10 05=X=<15 U 4384 | 1324 351 85 45 17 | 14| 1 7
X<05X>15 E 4384 | 1324 351 85| 45 181311 7
ARCOS ~1=X= 41 u 5020 | 1624 424 105 65 20 | 21| 16 10
ARSIN ~1SXS+1 U 2620 | 1571 411 105 65 23 | 19 | 15 9
ATAN The full range Note 2 4038 1024 304 72 3s 17 12 5
Note 5 Note 2 3945 981 285 67 34 | 18 | 11
ATAN?2 The full range Note 2 6114 1717 452 108 58 22 17110 7
CABS The full range Note 1 6007 1838 458 116 74 26 23 19 13
CCOoS X =10,1X:| =1 U 16923 | 4705 | 1425 332 | 191 74 | 54 | e1 35
CDABS The full range Note 1 17009 | 4628 774 157 91 34 | 28| 20 14
CDCOS 1X:| =10, Xl =1 U 59957 | 13961 | 2896 546| 313 | 117 | 75 | 63 37
CDEXP XS 1, [X] = w/2 U 51091 | 11350 | 2507 479 | 268- | 105 | 62| 55 33
1%] = 20, X = 20 U 51315 | 11406 | 2518 479 | 268 | 105 | 61 { 54 33
CDLOG The full range Note1 { 46248 | 10239 | 2074 413 | 235 85 | 69 | 48 32
(except (0 + 0i))
CDSIN X =10, Xl =1 1] 60406 | 13995 | 2007 546 | 302 | 118 | 71 | e2 37
CDSQRT The full range Notel | 303436 | 9217 | 1396 302 { 168 60 | 55 | 35 27
CEXP Xel = 170, |Xo) < /2 U 14720 | 4046 | 1250 282 | 174 65 | 47 | 55 32
[Xi|=170,x/2< X:| <20] U 15017 | 4138 | 1275 201 174 | 66 | 47 | 54 32
CLOG The full range Notel | 12700 | 3596 | 1033 957 | 157 60 | 49 | 43 26
(except (0 + 0i)) .
cos 0<X=nr U 4448 | 1091 337 78 38 15 9| 11 6
;? %é 5% U 4520 | 1111 | 344 8| 38| 15| 9| 1n 6
10 < |X| = 100 U 4520 | 1118 344 72| -38 15 9| 1 6
- COSH -5=X=+5 U 6399 | 2011 | 597 145 92 30 | 23| 28 18
COTAN X< x/4 U 5068 | 1311 391 92 58 19 | 14} 16 8
x/4 < [X| = w/2 U 5214 | 1378 397 92 58 18 |13} 14 8
/2<IX|=10 U 6540 | 1378 404 02 58 18 { 13| 14
10 < iX| = 100 U 6510 1378 | 397 92| 58 18 |13] 14 7
CSIN Xl =10,iX: =1 U 16894 | 4680 | 1417 | 332 | 199 | 75 |55 | 61 | 35
CSQRT The full range Notel | 10446 | 3555 808 207 | 124 47 |43 ] 33 | 24
DARCOS X|=1 U 19127 | 5011 931 185 98 34 |31] 19 12
NoTEs: (See end of table.)
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Table 13, Average Machine Timings (Part 2 of 4)

Timing Averages in Microseconds for Various Models
Entry Argument Sample 75 85
Name Range E/U 30 40 s0 | 65 | (Noted | (Noted) | 91 | 195
DARSIN X|=1 U 19255 | 5064 937 185 98 35 | 32 | 18 12
DATAN The full range Note2 | 19937 | 3779 769 145 78 29 | 24 | 12 7
Note 5 Note2 | 19881 | 3745 750 139 74 28 | 23 | 12
DATAN2 The full range Note2 | 20646 | 4104 858 | 171 95 35 | 30 | 13 9
DCOS 0SX=~ U 16541 | 3406 762 138 72 29 | 17 | 12 7
:'<° %2 S 0, U 16541 | 3419 | 762 | 138 78 | 20 | 17 | 12 7
10 < X< 100 U 16541 | 3406 769 145 72 29 | 17 | 13 7
DCOSH X|=5 U 21010 | 4931 | 1031 212 118 43 | 20 | 27 17
DCOTAN IX| = »/4 4] 17612 | 3498 777 145 85 29 | 19 | 16 8
/4 |X| < x/2 U 17945 | 3644 817 152 78 28 |19 | 15 8
/2 < |X| =10 U 18284 | 3651 817 152 85 29 |19 | 15 8
10 < |X| =< 100 U 18284 | 3638 | 817 152 85 29 |19 | 15 8
DERF X|=10 U 21539 | 4493 | 1029 178 98 42 |22 |13 8
10 < |X| =204 U 29202 | 6213 | 1382 238 | 132 57 {29 |15 10
2,04 < |X| < 6.092 u 40028 | 9313 | 1842 365| 198 76 | 59 | 34 23
DERFC -8<X<0 U 35447 | 7993 | 1642 siz| 178 66 | 48 | 277 | 19
0=X=1 U 21898 | 4546 | 1049 185] 105 2 |22 [13] 8
l<cX=s204 U 29047 | 6159 | 1362 232 195 56 | 28 |16 | 10
204 <X <4 U 39800 | 9266 | 1822 365] 192 75 | 59 | 34w | 23
4=X <133 U 39987 | 9326 | 1849 32| 205 77 | 60 | 35 24.
DEXP X|=1 U 14305 | 3613 715 145 78 3 18 |13
1<[X|=20 U 14305 | 3639 722 145 78 31 |18 {13
20 < [X| =170 U 14305 | 3846 729 138 72 30 |18 |13
DGAMMA |[0<X<1 U 25481 | 5559 | 1162 212 118 49 | 29 | 17 10
1=X=2 U 24180 | 5386 | 1149 | 205| 112 | 49 |20 | 18 | 10
2<cX<4 U 26290 | 5719 | 1249 218| 125 55 |30 | 19 11
4=X<8 U 30031 | 6708 | 1469 265| 145 63 | 36 | 22 12
8=X<c16 U 45811 | 10833 | 2189 432 238 96 | 65 | 48 32
18X < 57 U 45936 | 10899 | 2195 425| 238 9 | 65 | 48 32
DLGAMA 0<X=05 U 39586 | 9533 | 1922 358| 198 83 | 54 | 32 20
05<X<3 U 41884 | 9326 | 1929 358| 205 83 | 55 |33 20
3=sX<8 U 43378 | 10479 | 2202 412| 232 94 | 58 | 37 23
8=X<16 U 31041 | 7139 | 1442 2781 152 62 | 44 | 31 21
16 =X < 500 U 31622 | 7226 | 1469 285| 158 62 | 44 | 32 21
DLOG. 05=<X=<15 U 15934 | 3806 729 145 78 28 |22 |11 8
X<05X>15 E 16391 | 3886 749 145 72 30 |22 |11 8
DLOG10 05<=Xs<15 uU 17237 | 4079 - | 782 145 78 30 [23 |12 8
X<05X>15 E 17698 | 4168 802 145 85 31 |24 |12 8

Notes: (See end of table.)
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Table 13. Average Machine Timings (Part 3 of 4)

Entry Argument Sample Timing Averages in Microseconds for Various Models
Name - Range E/U 30 40 50 | e5 (No7tz 3| ( Now ) | a1 {105
DSIN _ IX| = «/2 U 16598 | 3406 | 769 | 138] 78 | 30| 18 | 13 7
*/2 < |X| = 10 U 16598 | 3426 | 769 | 138] 78 |30 | 15| 13 7
10 < |X| = 100 U 16598 | 3419 | 769 | 1451 72 | 30| 15| 13 7
DSINH X! = 0.88137 U 11957 | 2604 | 5684 | 105] 52 [ 28| 8| 8 4
0.88137< |X| =5 U 21585 | 5058 | 1057 | 212| 118 | 44 | 29 | 268 | 17
DSQRT The full range E 9416 | 2679 | 409 92] 45 |18 ) 16| 8 7
DTAN IX| = «/4 U 17527 | 3424 | 751 | 132 72 [ 20| 16 | 13 7
®/4 < |X| = /2 U 18587 | 3671 | 824 | 158] 85 [ 28 | 19 | 13 8
/2 < |X|=10 U 18525 | 3644 | 817 | 152] 85 [ 28| 18 | 13 8
10 < |X] < 100- U 18525 | 3624 | 817 | 152] 85 |28 | 18 | 13 8
DTANH IX| = 0.54931 U 14169 | 2673 | 515 2| 52 |19 15] 8 4
054931 < [X| =5 U 18432 | 4503 | 955 | 198 105 |43 [ 30 |23 |15
ERF IX|=1.0 U 4151 | 1124 | 384 o2l 4 |20 |14 |1 7
10 < |X| < 2.04 U 5180 | 1438 | 457 | 12| 58 | 28 | 16 | 22
2,04 < |X| =< 3.9192 U 9124 | 2644 | 7711 | 185| 105 | 44 | 34 | 31 | 21
ERFC ~38<X<0 U 6924 | 1984 | 597 | 145| 78 |33 | 24 | 22 | 14
0=X=10 U 4215 | 1158 | 3n go| 45 |21 | 14 | 12
10 < X <204 U 5059 | 1411 | 444 | 105 58 [ 25 | 16 | 14
204 < X< 40 U 9020 | 2624 | 757 | 178] 105 |43 | 34 |32 |21
40 < X=133 U 9300 | 2684 | 791 | 178) 112 | 43 | 35 | 34 .| 21
EXP IXj<1 U 4120 | 1351 | 384 ss| 52 |16 ] 14|18 |11
1< [X| =170 v 4150 | 1338 | 384 8s| 52 16|14 |18 |11
GAMMA 0<X<10 U 4633 | 12718 | 384 92| 52 |22 | 17|12
10=SX=20 U 4493 | 1251 | 391 92| 52 |23 ] 16 |18 7
20 < X=40 U 5147 | 1424 | 444 | 105] 58 |27 | 19 | 16 8
40<X <80 U 6604 | 1824 | 571 | 138 78 |34 | 24 |18 | 10
80=X=160 U 11729 | 3571 | 997 | 245| 145 |53 | 45 | 41 | 28
160 < X = 57.0 U 11729 | 3501 | 967 | 238] 152 | 54 | 45 | 42 | 28
SIN X = /2 U 4383 | 1078 | 337 8| 38 |16] 9|12 6
»/2 <|X| =10 U 4560 | 1124 | 351 85| 45 |16 | 10| 12 8
10 < |X| = 100 U 4560 | 1124 | 351 8 4 | 18] o] 12 7
SINH -5SX=+5 U 5803 | 1764 | 537 | 125 72 |24 | 22 [ 24 | 15
SQRT The full range E 3162 | 1051 | 224 58| 38 | 10| 10| o 6
TAN IX] < »/4 U 2059 | 1258 | 364 85] 52 |17 ] 12 | 14 7
/4 < |X| = =/2 U 5378 | 1391 | 404 o8| 58 | 18| 14 | 13 7
V2L |X| <10 U 5205 | 1364 | 391 g2| 52 |18 | 13| 12 7
10 < |X| =< 100 U 5205 | 1358 | 397 o8] 58 |18 | 13 | 12 7
NoTEs: (See end of table.)
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Table 13. Average Machine Timings (Part 4 of 4)

Entry Argument Sample Timing Averages in l\iicmsccor;(;s for Vario;x; Models
Ni R E/U
e anke 30 | 40 |50 |es |mNotes) | (Noted) | o1 | 105
TANH X|=07 U 2658 598 177 45 25 10 6 5 3
07 < X| =5 v 6092 1911 564 132 78 27 22 23 17
Nores:

! The distribution of sample arguments upon which these statistics are based is exponential radially and is uniform around the
origin.

* The sample arguments were tangents of numbers uniformly distributed between —

? The statistics for the Model 75 are based upon four-way interleaving.

—;—-and =,

2

¢ The second column of speeds for the Model 85 applies to that machine with high-speed multiply feature.

* Timing figures on this line apply to the version for Basic FORTRAN IV (0s).
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Appendix A: Assembler Language Information

The mathematical and service subprograms in the
FORTRAN IV library can be used by the assembler
language programmer. Successful use depends on three
things: (1) making the library available to the linkage
editor; (2) setting up proper calling sequences, based
on either a call macro instruction or a branch; and (3)
supplying correct parameters—i.e., arguments. '

Library Avadilability
The System/360 Operating System rorrran 1v library
is a partitioned data sct named sysi.rorriis, The as-
sembler language programmer must arrange for the
desired subprograms (modules) to be taken from this
library and brought into main storage, usually as a part
of his load module. This can be done by emploving
the techniques described in the publication IBM
System/360 Operating System: Linkage Editor and
Loader, Form C28-6538. ‘

For example, the ForTRAN 1v library could be made
part of the automatic call library by asing these job
control statements:

i [johname JOB desired operands

! Istepname EXEC ASMPCLG, PARM.LKED
='XREF, LIST,
MAY .

CTASML SYSIN DD .

(assembler Tanguage program souree Jeck )
/¥
MHLKEDSYSLIB DD
/ *
Subprograms requested in the source program would

then be available to the linkage cditor for inclusion in
the Toad module.

DSNAME=SYS1.FORTILIE,
DISP==SHR

Calling Sequences .
Two general methods of calling are possible: (1) cod-
ing an appropriate macro instruction (sce the publica-
tion IBM System/360 Operating System: Supervisor
and Data Management Macro Instructions, Form C28-
"6647), such as caLw; or (2) coding assembler language
branch instructions.
In all cases, a save area must be provided that:
® is aligned on a fullword boundary
® is at least as large as the size specified in Tables
14, 15, and 16, but preferably the standard 18
words to ensure future compatibility
® has its address in general register 13 at the time
of the call macro instruction or branch

52

-Nork: rorrraN subprograms use certain floating-point

registers (see Table 14), but do not save and restore
original register contents. If the programmer wishes
floating-point information retained, he must save it
himself before calling the subprogram.

If the called subprogram is one that uses FORTRAN
input/output, error, or interruption routines (see Table
17), the calling program must include the following
two instructions before the branch is made:

1, 15, = V (IBCOM#)

BAL 14,64 (15)
These instructions cause a branch into the BcoM sub-
program, which initializes return coding and prepares
routines to handle interruptions. If this initialization is
omitted, an interruption or error may cause abnormal
termination. ( After initialization, BcoM returns to the
intruction following the BaL.)

Nore: When these instructions are included, the occur-
rence of a decimal divide exception within the assem-
bler language program will cause the character B to
appear in the program interruption message.

When a branch instruction rather than a call macro
instruction is used to invoke a subprogram, several
additional conventions must be observed:

® An argunent (parameter) list must be assem-
bled on a fullword boundary. It consists of one
4-hyte address constant for each argument, with
the last address constant containing a 1 in its
high order bit.

e The address of this argument list must be in
general register 1.

® The address of the entry name of the called
subprogram must be in general register 15.

¢ The address of the point of return to the calling
program must be in general register 14.

The total requirements for an assembler language
calling sequence are illustrated in Figure 1.

Supplying Correct Parameters

Arguments must be of the proper type, length, and
quantity, and, in certain cases, within a specified range
for the subprogram called.

For mathematical subprograms, this information can
be found in Tables 2 through 6. INTEGER*s denotes a
signed binary number four bytes long. REAL*s and
REAL*8 are normalized floating-point numbers, 4 and 8
bytes long, respectively. compLEX*s and coMPLEX*16-
are complex numbers, 8 and 16 bytes long, respectively,
whose left half contains the real part, and right half



BAL 14, 64(15)
* * L]

*

LA 13,area
LA 1arglist
L 15,entry
BALR 14,15

NOP  X'id”

*® * * ]

* L] * *

L 15, = V(IBCOM#)

entry DC V (entry name)
or
entry DC A (entry name)
- * * L]
area DS x=xF

‘These two statements are necessary if the called subprogram uses FORTRAN
imput/output, error, or interrupt routines (sce Appendix B).

General register 13 contains the address of the save area.
seneral register 1 contains the address of the argument list.
General register 15 contains the address of the subprogram.

General register 14 contains the address of the point of return to the calling
program,

This statement is optional. The id represents an identification number.
This number is supplied by the programmer and may be any hexadecimal
integer less than 2" — 1.

NotEe: In this case, the entry nume must be-defined by an EXTRN instric-
tion to obtain proper linkage.

This statement defines the save area necded by the subprogram. The xx
represents the minimum size of the save area required; however, the pro-
gramnier is advised to use a save area of 18 fullwords for all subprograms.
(The minimum suve area requitements are given in Tables 14 and 15
for the mathematical subprograms and in Table 168 for the scrvice sub-
programs. )

DC AL3 (arg)

For more than one argument

DC AL3 (args)

For one argument
CNOP Aligns the argament list at a fullword boundary.
arglist DC X'80 Places a 1 in the high order bit of the only argument.

Contains the address of the argument,

CNOP Aligns the argument list at a fullword boundary.
arglist DC A (arg) Contains the address of the first argument.
DC A (arg:) Contains the address of the second argument.
L]
L
DC X80 Places a 1 in the high order bit of the last argument.

Contains the address of the last argument.

Figure 1. General Assembler Language Calling Sequence

conthins the imaginary part. Each part is a normalized
floating-point number. Four-byte argument types must
be aligned on fullword boundaries, and 8-byte and 16-
byte types must be aligned on double-word boundaries.

Argument information for nonmathematical sub-
programs can be found in “Service Subprograms.”

Error messages resulting from incorrect arguments
are explained in “Appendix C: Interruption and Error
Procedures.”

Resulis

Each mathematical subprogram returns a single answer
" of a type listed in Tables 2 through 6 (see “Function
Value Type”). The INTEGER answers are returned in
general register 0, REAL answers are returned in float-
ing-point register 0, and coMPLEX answers are returned
in floating-point register 0 and 2. Result registers are
listed by subprogram entry name in Table 14.

The location and form of the service subroutine
results can be determined from the discussion in
“Service Subprograms.”

Example

To find the square root of the value in AMNT, the library
square root subprogram (entry name sQrr) could be
invoked, using the following statements:

L 15, = V (IBCOM#)
BAL 14.84(15)
LA " 13SAVE
CALL SQRT,(AMNT), VL.
SAVE DS " 18F
AMNT DC COE44
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Table 14, Assembler Information for the Explicitly Called

Mathematical Subprograms

Save Area Registers Used'
Entry Name(s) {Fullwords) | Result | Intermediate

AINT 9 0 2,46
ALGAMA, GAMMA 9 0 2.1.6
ALOG, ALOG10 7 0 2.1.6
AMANXO, AMINO 6 0
MAXO, MINO 9 0*
AMANXI, AMINI G . 0
MAXI], MIN] 9 0*
AMOD. DMOD 9 0 2. 1.6
ARCOS. ARSIN 10 0 2.4
ATAN 5 0 2,16
ATAN, ATAN? 7 0 2.6
CABS n 0.2 4.6
CCOS, CSIN 9 0.2 4
CDABS . 0.2 4.6
CDCOS. CDSIN 9 0.2 4
CDEXP S 0,2 4.6
CDLOG S 0.2 4.6
CDSQRT 9 0.2 1.6
CEXP 8 0,2 1.6
CLOG S 0.2 1,6
COS. SIN 7 0 2, 4
COSII, SINII 8 0 2,4
COTAN, TAN n 0 2.4
CSORT Q) 0.2 4.6
DARCOS. DARSIN 13 0 2,4
DATAN 5 0 2.4.6
DATAN. DATAN2 7 0 2.4.6
DCOS. DSIN 7 0 2,4
DCOSH. DSINH 8 0 2.4
DCOTAN, DTAN 7 0 2,4,6
DERF. DERFC 11 0 2, 4.6
DEXP 7 0 2
DGAMMA, DLGAMA 11 0 2,4.6
PDLOG, DLOG10 9 0 2,46
DMAXI, DMIN] 9 0
DSQRT 7 0 2,4
DTANIH 5 0 2,46
EXP 11 0
ERF, ERFC 11 0 2, 46
IDINT, INT, IFIN 9 0*
MOD 9 0*
SQRT 7 0 2
TANH 5 0 2,4,6

'Floating-point; asterisk indicates general.

Table 15, Assembler Information for the Implicitly Called

Mathematical Subprograms

(The vL operand in caLt indicates the end of the
parameter list.)

Employing only assembler language instructions, the
sequence would be:

L 15.=V(IBCOM#)

BAL 14.64(15)

LA " 13SAVE

LA 1.ARG

L 15.ENTRY

BALR 14.15
ENTRY e " V(SQRT)
SAVE DS Ty
ARG e T NS0

ne AL3(AMNT)
AMNT DC AR

Note that, in both cases, a branch to 1Bcox is pro-
vided, a save area is set up, and AMNT meets argument
specifications by being a four-byte normalized floating-
point number, = 0, aligned on a fullword boundary.

In both cases, the answer (12, in this instance) is
returned in floating-point register 0 as a 4-byte floating-
point number.

Space Considerations

Many of the mathematical sni)programs require other,
mathematical subprograms for their calculations. In
addition, most of the subprograms use the input/
output, crror, and interruption library subroutines.
(This interdependence is outlined in “Appendix B:
Storage Estimates.”) Thus, although the programmer
may request just one FORTRAN subprogram, the require-
ments of that subprogram may make the resultant load
module quite large. The sQrt routine, for example, takes

] Save Area Registers Used' only 344 bytes of storage itself, but requires other sub-
E"(l‘}' .\;Ilnt‘(.\‘) (F““\V()Yd.\') Result | Intermediate routines that incrvase tho load module size by approxi.
CDMPY#. CDDVD# 5 0.2 1.6 mately 20,000 bytes.
CDVD=, C\MPY# 5 0,2 4,6
i
;{1\\11};; ;g g. Table 16. Assembler Information for the Service Subprograms
:;?tll:}l‘i i f; g Entry Name(s) Save Area (Fullwords)
FDXPD2 18 0 DUMP, PDUMP 18
FCDXI= 18 0.2 DVCHK 10
FCXP1# ) 18 0,2 EXIT 5
OVERFL 10
'Floating-point; asterisk indicates general. SLITE, SLITET 10
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Appendix B contains decimal storage estimates (in
bytes) for the library subprograms. The cstimate given
does not include any additional mathcematical subpro-
grams or FORTRAN routines that the subprograms use
during execution. The entry names of any additional

Table 17. Mathematical Subprogram Storage Estimates

Appendix B: Storage Estimates

mathctical library subprograms used are given in

Table 17. Tables 17 and 18 also indicate which mathe-

matical and service subprograms require FORTRAN
routines for input/output. interruption, and error pro-

cedures.

- 10, Error
Additional Mathematical & Interrupt
Eutry Name(s) Decimal Estimates Subprograms Used Routines
AINT S0 . No
ALGAMA, GAMMA 848 ALOG, EXD "es
ALOG, ALOGI10 1614 Yes-
AMAXO, AMINO, MAXO, MINO 224 No
AMAXI, AMIN1, X{AX1, MIN1 234 No
AMOD, DMOD 120 No
ARCOS, ARSIN 496 SORT Yes
ATAN ann No
ATAN, ATAN2 488 Yes
CABS 192 SORT Yes
CCOS, CSIN 760 EXP, SIN.COS Yes -
CDABS 200 DSQRT Yes
CDCOS, CDSIN 8§32 DEXDP, DSIN DCOS Yes
CDDVD#, CDMPY# 240 No -
CDEXP . 624 DEXP, DSIN ‘DCOS Yes -
CDLOG 188 DLOG, DATAN2 Yes
CDSQRT 328 DSQRT Yes
CDVD#, CMPY# 216 ) No
CEXP 392 EXP, SIN/COS ) Yes
CLOG 164 ALOG, ATAN? 'es
COS, SIN 504 ' Yes
COSH, SINH 504 EXP Yes
COTAN, TAN 648 Yes
CSQRT 312 SQRT Yes
DARCOS, DARSIN 648 DSQRT Yes
DATAN 3l No
DATAN, DATAN?2 648 ‘oS
DCOS, DSIN 696 Yes
DCOSH, DSINH 592 DEXP Yes
DCOTAN, DTAN n Yes
DERF, DERFC 808 DEXDP Yes
DEXP 7 Yes
DGAMMA, DLCAMA 1056 DLOG, DEXP : Yes
DLOG, DLOGI10 538 Yes
DMAX1, DMIN1 120 No
DSQRT 352 Yes
DTANH 304 DEXP Yes
EXP 424 Yes
ERF, ERFC 520 EXP . Yes
FCDXPI# 560 CDMPY# ‘CDODVD# Yes
FCXPI# 536 CDVD#/C\MPY2 Yes
FDXPD# 464 DEXP, DLOG Yes
FRXPRY 208 Yes
432 EXP, ALOGC

FIXPI# 388 » ALOC ¥§:
FRXPI# 360 Yes
IDINT, INT 136 No
MOD 56 No
TANH 258 ENP Yes
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The programmer must add the estimates for all
subprograms and routines needed to determine the
amount of storage required. If the programmer has not
made allowances for the storage required by any of
these additional routines (see Table 19), the amount
of available storage may be cxceeded and execution
cannot begin.

System/360 Operating System
The names of execution-time routines sometimes vary
according to whether or not the Extended Error
Handling facility is in effect. In the following discus-
sion, the names that are used are those when the facility
has not been specified. Table 19 presents a cross listing
of names for both circumstances. A full discussion of
extended error handling is given in the FORTRAN IV
(G and H) Programmer’s Guide listed in the Preface.
The 1HCFIOSH routine performs input/output pro-
cedures for both Basic FORTRAN 1v and FORTRAN 1v.

Table 19, OS Execution-Time Routines Storage Estimates

[ This routine refers to a table (mcuarsL) for informa-
tion about the input/output devices used during
execution.] The 1HCFCOME routine performs interrup-
tion and error procedures for Basic FORTRAN 1v library
subprograms: the IHCFCOMH, IHCFCVIH, IHCFINTH,
IHCTRCH, and 1HCUOPT routines perform the procedures
for FORTRAN 1v library subprograms. If a system con-
tains both basic and full ForrraN 1v compilers, the
IHCFCOMH-THCFCVTH' routines are used. Tables 17 and
18 indicate which library subprograms require these
cxecution-time routines,

Table 18. Service Subprogram Storage Estimates

1/0, Error,

& Interrupt
Entry Name(s) Decimal Estimates Routines
DUMP/PDUMP 544 Yes
DVCHK 80 Yes
EXIT 32 Yes
OVERFL 88 Yes
SLITE/SLITET 302 Yes

Extended Error Handling Facility
Routine Name Decimal Estimate Used by Routine Name Decimal Estimate
IHCAD]}ST 1,156 FORTRAN 1V Same Same
IHCDBUG 2,152 FORTRAN IV Same Same
IHCFCOME 6,196 Basic FORTRAN 1V Not applicable
IHCFCOMH 4,218 FORTRAN IV IHCECOMH 5,368
IHCCOMH2 520 FORTRAN 1V Same 1,120
IHCDIOSE 2,688 Both IHCEDIOS 3,856
(See Note 1) (See Note 1)
IHCFIOSH 3,744 Both IHCEFIOS 4,976
+ IHCUATBL + IHCUATBL
(See Notes 2 and 3) (See Notes 2 and 3)
IHCFINTH 926 FORTRAN 1V IHCEFNTH 1,368
IHCFCVTH 4,756 FORTRAN 1V Same Same
IHCCGOTO 64 Basic FORTRAN 1V Not applicable
IHCIBERH 224 FORTRAN 1V Same Same
IHCIBERR 136 Basic FORTRAN IV Not applicable
. IHCNAMEL 2,880 FORTRAN 1V Same Same
IHCSTAE 450 FORTRAN 1V Same Same
[HCTRCH 792 - FORTRAN IV IHCETRCH 708
IHCUOPT 8 FORTRAN IV Same 800 + 8n
(See Note 4)
Not applicable FORTRAN 1V IHCERRM 1,552
Not applicable FORTRAN 1V IHCFOPT 824
NOTEs: v
1. This module also acquires dynamic storage. Its amount, in bytes, may be computed by the formula 184 + buffer size.
Each buffer value should be 800, except for a card read punch which is 80 and a printer which is 133. FORTRAN utilizes
double buffering.
2. This module also acquires dynamic storage. Its amount, in bytes, may be computed by the formula 128 + buffer size.
Buffer lengths are listed in Note 1,
3. The number of bytes in table IHCUATBL may be computed by the formula 12n + 8, where n is the number of data set
reference numbers requested during system generation.
4. The number of additional entries supplied in the Option Table during system generation is represented by n.
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In addition, several other execution-time routines
may be needed to resolve external references in 4
FORTRAN IV object module. "
1. If a source module specifies direct-access input/

output operations, the compiler genérates a call to

the 1HCDIOSE routine. _

2. At the point that errors are encountered during
compilation, the compiler generates a call to an
error routine (IHCIBERR for Basic FORTRAN v and
HCIBERH for FORTRAN 1v). If execution of the load
module is attempted, the error routine is called,
a thessage is issued, and the execution is terminated.

. If a Basic FORTRAN 1v source module contains a com-

puted co TO, the compiler generates a call to the
IHCCGOTO routine.

. If a FORTRAN 1v source module contains any input/

output operations that refer to a NAMELIST name,
compiler generates a call to the 1HCNAMEL routine.

. If a rORTRAN Iv source module uses.the debug

facility, the compiler generates a call to the 1HCcDBUG
routine.

. If boundary alignment was specified during system

generation, the 1HCAD]ST routine will be loaded if a
boundary-alignment error occurs.
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Appendix C: Interruption and Error Procedures

This appendix contains brief explanations of the pro-
gram interruption and error procedures used by the
FORTRAN library. A full description of program inter-
rupts is given in the publication IBM System/360
Principles oj Operation, Form A22-6821. The program-
mer'’s guides listed in the Preface give detailed informa-
tion about error processing and message formats.

Interruption Procedures

The ForTRAN library processes those interrupts that are
described below; all others are handled directly by
the system Supervisor:

1. When an interrupt occurs, indicators are set to
record exponent overflow, underflow, fixed-point,
floating-point or decimal divide exceptions. These
indicators can be interrogated dynamically by the
subprograms described in the chapter, “Service
Subprograms.”

2. A message is printed on the object error unit

when each interrupt occurs. The old program

status word (psw) printed in the message indi-
cates the cause of each interrupt.

3. Result registers are changed when exponent over-
flow or exponent underflow (codes C and D)
occur. (For a description of the format of floating-
point numbers, see the publication IBM System/
360 Principles of Operation, Form A22-6821.)
Result registers are also set when a floating-point
instruction is referenced by an assembler language
execute (EXEC) instruction.

4. Condition codes set by floating-point addition or

substraction instructions are altered for exponent
underflow (code D).

5. After the foregoing services are performed, execu-
tion of the program continues from the instruction
following the one that caused the interrupt.

Error Procedures

During execution, the mathematical subprograms as-
sume that the argument(s) is the correct type. No
checking is done for erroneous arguments (i.e., the
wrong type, invalid characters, the wrong length, etc.);
therefore, a computation performed with an erroneous
argument has an unpredictable result. However, the
nature of some mathematical functions requires that
the input be within a certain range. For example, the
square root of a negative number is not permitted.
If the argument is not within the valid range given in
Tables 2 through 6, an error message is written on the
object error unit data set defined by the installation
during system generation. The execution of this load
module or phase is terminated and control is returned
to the operating system. However, execution can con-
tinue, (in FORTRAN v (0s) only), if extended error
handling was selected during system generation. This
facility provides for standard corrective action by the
user. For a full description of extended error message
handling, see the publication IBM System/360 FOR-
TRAN IV (G and H) Programmer’s Guide, Form
C28-6817. .

Table 20 lists the error messages in numeric order,
gives the entry name(s) associated with that number
and an explanation of the error. The programmer’s
guides listed in the Preface of this publication show
the text and format of the message as it appears in the
crror listing. In the following explanations, x repre-
sents the argument supplied by the programmer.



Table 20. Error Messages

Etror Code Entry Name(s) Explanation
216 SLITE, An invalid sense-light number was detected in the argument list of a call to the SLITE or
SLITET SLITET subprogram.
241 FIXPI# In the FIXPI# subprogram, a base number of zero and an exponent less than or equal to zero
is an error.
242 FRXPI# In the FRXPI# subprogram, a base number of zero and an exponent less than or equal to zero
is in error. ’
243 FDXPI# In the FDXPI# subprogram, a base number of zero and an exponent less than or equal to zero
is an error.
244 FRXPR# In the FRXPR# subprogram, a base number of zero and an exponent less than or equal to zero
is an error.
245 FDXPD# In the FDXPD# subprogram, a base number of zero and an exponent less than or equal to zero
is an error.
246 FCXPI# In the FCXPI# subprogram, a base number of zero and an exponent less than or equal to zero
is an error.
247 FCDXI# In the FCDXI# subprogram, a base number of zero anﬁ an exponent less than or equal to zero
is an error.
251 SQRT In the SQRT subprogram, the value of the argument is less than zero,
252 EXP In the EXP subprogram, the value of the argument is greater than 174.673. 7
253 ALOG, In the ALOG/ALOGIO subprogram, the value of the argument is less than or equal to-zero.
ALOGI10 Because this subprogram is called by an exponential subprogram, this message also indicates
that an attempt has been made to raise a negative base to a real power.
254 SIN, In the SIN/COS subprogram, the absolute value of an argument is greater than or equal
COS to 218 r.
255 ATAN2 When the entry name ATAN2 is used, the value of both arguments cannot be zero.
256 SINH, In the subprogram SINH/COSH, the value of the argument is greater than or equal to
COSH 175.368. .
257 ARSIN, In the ARSIN/ARCOS subprogram, the absolute value of the argument is greater than one.
ARCOS
258 TAN, In the TAN/COTAN subprogram, the absolute value of the argument is greater than or equal
COTAN to 218 .
259 TAN, In the TAN/COTAN subprogram, the value of the argument is too close to one of the
COTAN singularities (£ x/2, + 3x/2, ... for the tangent; = », % 2r, ... for the cotangent).
261 DSQRT In the DSQRT subprogram, the value of the argument is less than zero.
262 DEXP In the DEXP subprogram, the value of the argument is greater than 174.673.
263 DLOG, In the DLOG/DLOGIO0 subprogram, the value of the argument is less than or equal to zero.
DLOGIl0 Because the subprogram is called by an exponential subprogram, this message also indicates
that an attempt has been made to raise a negative base to a real power.
264 DSIN, In the DSIN/DCOS subprogram, the absolute value of the argument is greater than or equal
DCOS to 2% x.,
2685 DATAN2 When the entry name DATAN? is used, the value of both arguments cannot be zero.
266 DSINH, In the DSINH/DCOSH subprogram, the absolute value of the argument is greater than or
DCOSH equal to 175.366.
287 [D)AAll‘lségé In the DARSIN/DARCOS subprogram, the absolute value of the argument is greater than one.
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Table 20. Error Messages (Continued)

Error Code Entry Name(s) Explanation
268 DTAN, In the DTAN/DCOTAN subprogram, the absolute value of the argument is greater than or
DCOTAN equal to 2%° »
269 DTAN, In the DTAN/DCOTAN subprogram, the value of the argument is too close to one of the
DCOTAN singularities (% »/2, * 3%/2, ... for the tangent; + w, £ 2x, ., . for the cotangent).
271 CEXP In the CEXP subprogram, the absolute value of the real part of the argument is greater
than 174.673.
272 CEXP In the CEXP subprogram, the absolute valué of the imaginary part of the argument is greater
than or equal to 21 =,
273 CLOG In the CLOG subprogram, the value of both the real and imaginary parts of the argument
cannot be zero.
274 CSIN, In the CSIN/CCOS subprognm, the absolute value of the real part of the argument is greater
CCOS than or equal to 218 x,
275 CSIN, In the CSIN/CCOS subprogram, the absolute value of the imaginary part of the argument is
CCOs greater than 174.673.
281 CDEXP In the CDEXP subprogram, the value of the real part of the argument is greater than 174.673.
282 CDEXP In the CDEXP subprogram, the absolute value of the imaginary part of the argument is
greater than or equal to 2%° x,
283 CDLOG In the CDLOG subprogram, the value of both the real and imaginary parts of the argument
cannot be zero.
284 CDSIN, In the CDSIN/CDCOS subprogram, the absolute value of the real part of the argument is
CDCOS greater than or equal to 23° .
285 CDSIN, In the CDSIN/CDCOS subprogram, the absolute value of the imaginary part of the argument
CDCOS is greater than 174.673.
280 GAMMA In the GAMMA subprogram, the value of the argument is outside. the valid range of
27 & X « 57.5744.
291 ALGAMA In the ALGAMA subprogram, the value of the argument is outside the valid range of
0 < X < 4.2937 - 10™
300 DGAMMA In the DGAMMA subprogram, the value of the argument is outside the valid range of
. 2™ « X « 57.5744.
301 DLGAMA In the DLGAMA subprogram, the value of the argument is outside the valid range of
0 < X < 4.2037 - 10™.
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Appendix D: Module Names

Table 21. Mathematical Subprogram Module Names o Table 21. Mathematical Subpltogram Module Names

(Part 1 of 2) (Part 2 of 2)
Module Name Module Name
FORTRAN IV FORTRAN IV _
Eatry Name (G&H) Basic FORTRAN IV Entry Name (G&H) Basic FORTRAN IV
AINT ———— IHCFAINT DERF IHCLERF |  ——————
ALGAMA THCSGAMA ———— DERFC HICLERF ————
ALOG IHCSLOG IHCSLOG DEXP IHCLEXP IHCLEXP
ALOG10 IHCSLOG IHCSLOG DCGAMMA IHCLCAMA |  ~————
AMAXO0 IHCFMAXI IHCFMAXI DLCAMA JHCLGAMA |  —eemeem
AMAX1 IHCFMAXR IHCFMAXR DLOG 1HCLLOG THCLLOG
AMINO IHCFMAXI THCFMAXI DLOG10 IHCLLOG IHCLLOG
AMIN1 IHCFMAXR IHCFMAXR DMAXI IHCFMAXD IHCFMAXD
AMOD | ——— AMOD DMIN1 IHCFMAXD IHCFMAXD
ARCOS IHCSASCN | ———— pDMOD | e IHCFMODR
ARSIN IHCSASCN | ————m DSIN IHCLSCN IHCLSCN
ATAN THCSATN2 ITHCSATAN DSINH IHCLSCNH ——
ATAN2 IHCSATN2 ——— DSQRT IIICLSQRT THCLSQRT
DTAN IHCLTNCT —_——
CABS IHCCSABS | ———— DTANH IHCLTANH IHCLTANH
Ccos IHCCSSCN | ———mme EXP THCSEXP THCSEXP
CDABS IHCCLABS —— e e e ERF IHCSEBF ______
CDCOS IHCCLSCN ——— ERFC IHCSERF | . e
CDDVD# IHCCLAS ——— .
CDEXP IHCCLEXP | ——e—— FCDXI# IHCFCDXI —————
CDLOG IHCCLLOG ————— FCXPI1# IHCFCXPI |  ———— —
CDMPY# IHCCLAS | FDXPD# IHCFDXPD THCFDXPD
CDSIN IHCCLSCN | ———mmmm FDXPl# IHCFDXPI IHCFDXPI
CDSQRT IHCCLSQT — FIXPI# THCFIXPI IHCFIXPI
CDVD# IHCCSAS —— FRXPI# IHCFRXPI IHCFRXPI
CEXP IHCCSEXP ——— FRXPR# IHCFRXPR IHCFRXPR
CLOG IHCCSLOG — GAMMA IHCSGAMA |  ———
CMPY # THCCSAS —_— .
CoSs IHCSSCN IHCSSCN IDINT | ————— IHCIFIX
COSH IHCSSCNH ————— INT | ———.— IHCIFIX
COTAN IHCSTNCT ——— MAXO0 IHCFMAXI IHCFMAXI
CSIN IHCLSCN THCLSCN MAX1 IHCFMAXR IHCFMAXR
CSQRT IHCCSSQT ———— MINO IHCFMAXI IHCFMAXI
MIN1 IHCFMAXR IHCFMAXR
DARCOS IHCLASCN —— MOD — IHCFMODI
DARSIN IHCLASCN | ——— ,
DATAN IHCLATN2 IHCLATAN SIN IHCSSCN IHCSSCN
DATAN2 IHCLATNZ | ———— o ‘"CSSCN;‘ —————
DCOS IHCLSCN IHCLSCN SQRT THCSSQR THCSSQRT
DCOSH IHCLSCNH ———— TAN IHCSTNCT ———
DCOTAN IHCLINCT | ———— TANH IHCSTANH IHCSTANH
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Appendix E: Sample Storage Printouts

A sample printout is given below for cach dump
format that can be specified for the storage dump
subprogram. The printouts are given in the following
order: hexadecimal, LOGICAL*1, LOGICAL*4, INTEGER*2,
INTEGER*4, REAL*3, REAL*S, COMPLEX*8, COMPLEX*16,
and literal (see Figure 2). Note that the headings on the
printouts are not generated by the system, but were

obtained by using ForRMAT statements. The number
printed at the left of each output line is the storage loca-
tion (in hexadecimal) of the first data item tabulated.

The output of the storage dump subprogram (for
both entry names, pump and poump) is placed on the
object error unit data set defined by the installation
during system generation.

CALL POUMP WITM MEXADECIMAL FORMAY SPECIFIED
00ASED SJ5FSEID 00000000 MOSFSEIO0 10000000 42100000

0060F8 €0000000 00080000 1200000 &1366666 0000000C &33100000

006DCS 42800000 00000000 000000600 00000000 00000000 00000000 90000000

00 00000000 80600000

CALL POUMP WITH LOGICAL®1 FORMAT SPECIFIED

0DSELE T F

CALL POUMP WITH LOGICAL®S FORMAT SPECIFIEOD

006£10 F T

CALL POUMP WITH INTEGER®2 PORMAT SPECIFIED

[1I1$13 10

Q0bELIA ~100

Q06ELC 10

CALL POUMP WITH INTECER®N FORMAT SPECIFIED

ao0sr20 1 2 3 L] 1 ? ] 9 10
006ENS 11 - 12

CALL PDUMP wITH REAL®N FORMAT SPECIFIED

$06EQO 0,20000000E 01  0.33939996¢ 01

CALL POUMP WITH REAL®S PORMAT SPECIFIED
0060CH 0.175999999999999%0 03

CALL POUMP W{TH COMPLEX®) FORMAT SPECIFIED

006000 €3.0000000,4,0000000)

(%,0000000,8.0000000)

CALL PCUMP WITH COMPLEX®16 FORMAT SPECIFIEC
oceDED €0.9999999999999990,0,99999939999999%0)

€~0.9999999999999990, -0, 9399999999999930)

CALL 'DUKP,I]YN LITERAL PORMAT SPECIFIED
006ESC THIS ARRAY CONTAINS ALPHAMERIC DATA

Figure 2, Sample Storage Printouts



absoluteerror .................... ... . ... .... 18, 43.47
absolute value subprograms . ............. .. ... .. .6, 10, 20
accuracy figures for mathematical subprograms. . . .. .. 4347
AINT subprogram
SIZE . e 55
L PN 11
ALGAMA/GAMMA subprogram
BECUTACY . .. ve e s ie e ciaeea e e 44, 46
algorithm ... ... ... ... ... .. .. ... ... ... 27-28
effect of an argumenterror ....... .............. 28
@YTOT MNESSAEES . . . v v o v e e it ee e eeeineaennnn 60
SIZE ... e 55
tmings ....... ... .. e 48, 50
S ottt ettt e e 10
algorithms for mathematical subprograms .......... .. 17-42
ALOG/ALOGI0 subprogram
ACCUTACY .« ..o iir e tie e it et e Lo 44
algorithm ....... .. ... ... . ) |
effect of an argumenterror. . ..... .. .. .. ... .. ... 31
EIFOT MESSAZE . . . .o eevte et e s 59
SIZE ... e e e 55
timings .. ... ... ... 48
U ottt e e e 7
AMAX0/AMINO/MAX0/MINO subprogram
SIZ€ ... 55
U ittt e e e 11
AMAX1/AMIN1/MAXI1/MIN1 subprogram
SiZe .. 55
USE . ittt ittt e e 10-11
American National Standards Institute (ANSI) ...... 5
AMOD/DMOD subprogram
B2 .. 55
USB ittt et tet i et e 11
arccosine subprograms ............... ......... 6, 8, 20-21
ARCOS/ARSIN subprogram
BCCUTACY . . o v ovven o v ie it e i e e 44
algorithm ... ....... ... ... . ... 20-21
effect of an argumenterror ...................... 21
EITOTMESSAE . . . ..o vveeeeenr e eaeeenneanens 59
SIZ€ . ... 55
Hmings .......... ... ... . 48
B8 .ottt i et e 8
arcsine subprograms ............... ....... +8, 8, 20-21, 55
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IDINT/IFIX/INT subprogram
size .......................................... 55
.......................................... 11
!FIX (see IDINT/IFIX/INT)
TIHCAD]IST ... i e e ie e eens 56
3 (000 1 Yo 56-57
THCCLABS .. ... .. ittt 61
(see also CDABS)
Index 65



IHCCLAS (see CDDVD# /CHMPY # )
IHCCLEXP
(see also CDEXP)
IHCCLLOG ...
(see also CDLOG)
IHCCLSCN . . ..
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ITHCFCDXI (see FCDXI1#)
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IHCFCVTH . ..... ... ... ...
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THCLERF ......... ..........
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assembler language requirements ... ... e 54
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0S execution-time routines . ... . ... ... 56
service subprograms . . .. . ... 56
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