File No. S360-25 (0S)
Order No. GY28-6638-2

IBM System/360 Operating System
FORTRAN IV (G) Compiler

Program Logic Manual

Program Number 360S-F0-520

This publication describes the internal logic of the
FORTRAN IV (G) compiler.

Program Logic Manuals are intended for wuse Dby IBM
customer engineers involved in program maintenance, and
by systems programmers involved in altering the program
design. Program logic information is not necessary for
program operation and use; therefore, distribution of
this manual is limited to persons with program main-
tenance or modification responsibilities.

The FORTRAN IV (G) compiler is a processing program
of the IBM System/360 Operating Systeme It translates
one or more source modules written in the FORTRAN
language into an object module that can be processed
into an executable load module by the linkage editor.

Restricted Distribution

Program Logic

PREFACE

This publication provides customer Concepts and Facilities, Form C28-6535
engineers and other technical personnel
with information describing the internal Supervisor and Data Management Macro-
organization and operation of the FORTRAN Instructions, Form C28-6647
IV (G) compiler. It is part of an inte~r
grated library of IBM System/360 Operating Linkage Editor, Program__Logic_Manual,
System Program Logic Manuals. Other publi- Form Y28-6610
cations required for an understanding of ’
the FORTRAN 1V (G) compiler are: System Generation, Form C28-6554
IBM System/360 Operating System: This publication <consists of two

sections:

Principles of Operation, Form A22-6821
.Section 1 is an introduction that

FORTRAN 1V Langquage, Form C28-6515 describes the FORTRAN IV (G) compiler as a

. whole, including its relationship to the
Introduction to Control Program _Logic, operating system. The major components of
Program Logic Manual, Form Y28-6605 the compiler and relationships among them

are also described in this section.

FORTRAN_IV_(G_and_H) Programmer's Guide,
Form C28-6817 Section 2 consists of a discussion of
compiler operation. Each component of the
Any reference to a Programmer's Guide compiler is described in sufficient detail
in this publication applies to FORTRAN to enable the reader to understand its
IV_(G_and H) Programmer's.Guide, Form operation, and to provide a frame of
C28-6817. The FORTRAN IV _(G) Program- reference for the comments and coding supp-
mer's Guide, Form C28-6639, (to which lied in the program listing. Common data

references may exist in this publica- such as tables, blocks, and work areas is
tion) has been replaced by the com- discussed only to the extent required to
bined G and H Programmer's Guide. understand the 1logic of each component.

Flowcharts are included at the end of this
Although not regquired, the following section.
publications are related to this publica-
tion and should be consulted: Following Section 2, are appendixes that
. contain reference material.
IBM System/360 Operation System:

If more detailed information is
Sequential Access Methods, Program Logic required, the reader sho?ld see the com-
Manual, Form Y28-6604 ments, remarks, and coding in the FORTRAN

IV (G) program listing.

Third Edition (December 1972)

This is a reprint of GY28-6638-1 incorporating changes in Technical
Newsletters GY28-6826, dated November 15, 1968 (Release 17),
GY28-6829, dated July 23, 1969 (Release 18), and GY28-6847, dated
January 15, 1971 (Release 20).

Changes are periodically made to the specifications herein; any
such changes will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning the contents of this publication to
IBM Corporation, Programming Publications, 1271 Avenue of the Amerlcas,
New York, New York 10020.

© Copyright International Business Machines Corporation 1968, 1970

SECTION 1:
Purpose of the Compiler . « « «
Machine Configuration
compiler and System/360 Operating
Systeém o o« o o o o o o a o o o o
Compiler Design « o « o o« o &
Limitations of the Compiler .
Compiler Implementation & o «
POP LanguUage « « « o o o o o o
Compiler Organization . .
Control Phase:

Phase 1: Parse (IEYPAR) . .
Phase 2: Allocate (IEYALL) .
Phase 3: Unify (IEYUNF) . .
Phase U4: Gen (IEYGEN) . «
Phase 5: Exit (IEYEXT) . . .

Roll (IEYROL) e e e o o o @

Compiler Storage Configuration

Compiler OUtput .« o « « o« o« o o
Object Module

Components of the Object Module

.
.
-
.

Object Module General Register

Usage e ©®© e e e e o e e @
Source Module Listing
Object Module Listing
Storage Maps « « o« o«
Error Messages . « « « o o«

Common Error Messages .

Compiler Data Structures .

Rolls and Roll Controls .
ROLL ADR Table
BASE, BOTTOM, and TOP Tables
Special Rolls . ¢« ¢ &« o o« &
Central Items, Groups,
Stats ¢« ¢ ¢ o e ¢ o o o o

Other Variables e o o o o o @
Answer BOX o« i o o o o o o o
Multiple Precision Arithmetic
Scan Control . « « « o .
Flags o« o o o o o o o o
QUOtES & o o o o o o o
MESSAJeS ¢ o ¢« « ¢ o o o o @

Compiler Arrangement and Genera

Register Usage . « . « . .

POInters « o« « o o o o« o @

Drivers .« « o« o o o o o &
Operation Drivers . . .
control Drivers

SECTION 2: COMPILER OPERATION
Invocation Phase (IEYFORT) .
IEYFORT, Chart 00 . .
IEYPRNT, Chart O0OA4
PRNTHEAD, Chart 01A2
IEYREAD, Chart 01A4
IEYPCH, Chart 02A3 .
PRNTMSG, Chart 03A1
IEYMOR, Chart 01D1 .
IEYNOCR . & o o« o
IEYRETN, Chart 03A2
OPTSCAN, Chart AA .
DDNAMES, Chart AB .

e o o 5 .8 o & o o o
a o o o o o o o

.
.

1

.

e o o o o

and Group

INTRODUCTION TO THE COMPILER

Invocation (IEYFORT)

@ o 6 o 6 0o 06 o o o o

o & o & o & & o 0 ¢

CONTENTS

HEADOPT, Chart AC . « « o o &«
TIMEDAT, Chart AD « o« « o o o
Output from IEYFORT . . .
Phase 1 of the Compiler:
Flow of Phase 1, Chart 04 . . .
PRINT and READ SOURCE, Chart BA
STA INIT, Chart BB . . . « «
LBL FIELD XLATE, Chart BC . .
STA XLATE, Chart BD
STA FINAL, Chart BE . « « « .
ACTIVE END STA XLATE, Chart BF
PROCESS POLISH, Chart BG . . .
Output from Phase 1 % « « « « &
Polish Notation

Source Listing « « o« « o & .
Phase 2 of the Compller. A locate
(IEYALL) « « o « o e @

Flow of Phase 2 Chart 05 e e .
ALPHA LBL AND L SPROGS,
ALPHA SCALAR ARRAY AND SPROG,
Chart CA e e e L] . L] L] L] . L]
PREP EQUIV AND PRINT ERRORS,
CB L] e e L] - e o . L] . . L] . .
BLOCK DATA PROG ALLOCATION,
CC o o & e o o o o o
PREP DMY DIM AND PRINT ERRORS,
Chart CD «. &« o o « o o . .
PROCESS DO LOOPS, Chart CE P
PROCESS LBL AND LOCAL SPROGS,
ChartCF.....-...-.’
BUILD PROGRAM ESD, Chart CG .
ENTRY. NAME ALLOCATION, Chart CH
COMMON ALLOCATION AND OUTPUT,
Chart CI L] L] e L] L] o L) L] L] L]
EQUIV ALLOCATION PRINT ERRORS,
Chart CK L] e L] L] L] . e - L] L] e
BASE AND BRANCH TABLE ALLOC,
CL L] L] . L] e o L] . . e L] L] . .
SCALAR ALLOCATE, Chart CM . .
ARRAY ALLOCATE, Chart CN . . .
PASS 1 GLOBAL SPROG ALLOCATE,
Chart CO . . « « . e o s o e
SPROG ARG ALLOCATION, Chart CP
PREP NAMELIST, Chart CQ . . .
LITERAL CONST ALLOCATION,
FORMAT ALLOCATION, Chart CS .
EQUIV MAP, Chart CT o« « « o« o«
GLOBAL SPROG ALLOCATE, Chart CU
BUILD NAMELIST TABLE, Chart CV
BUILD ADDITIONAL BASES,
DEBUG ALLOCATE, Chart CX . . .

Output From Phase 2 . « « &

Error Messages Produced by Allocate

Unclosed DO LOOPS o« « « o o «

Subprogram List « « ¢ ¢ .0« o @
cards Produced by Allocate . .

Phase 3 of the Compiler: Unify (IEYUNF)

Flow of Phase 3, Chart 07 . . .

-

Chart CA

Chart

Chart CW

Storage Maps Produced by Allocate

Parse (IEYPAR)

Chart

Chart

Chart CR

.

® 5 o & o o & »

ARRAY REF ROLL ALLOTMENT, Chart DA .
CONVERT TO ADR CONST, Chart DB . .
CONVERT TO INST FORMAT, Chart DC . .

46

46
46

46

46

DO NEST UNIFY, Chart DD
IEYROL Module .+ « o « o o o
Phase 4 of the Compiler:
(IEYGEN) « o o o o o o o
Flow of Phase 4, Chart 08
ENTRY CODE GEN, Chart EA
PROLOGUE GEN, Chart EB .
EPILOGUE GEN, Chart EC .
GET POLISH, Chart ED . .
LBL PROCESS, Chart EF .
STA GEN, Chart EG . .«
STA GEN FINISH, Chart EH
Phase 5 of the Compiler: Exit (IEYEXT
Flow of Phase 5, Chart 09 . « « ¢
PUNCH TEMP AND CONST ROLL, Chart
PUNCH ADR CONST ROLL, Chart FB .
PUNCH CODE ROLL, Chart FC « «
PUNCH BASE ROLL, Chart FD .« «
PUNCH BRANCH ROLL, Chart FE . .
PUNCH SPROG ARG ROLL, Chart FF ,
PUNCH GLOBAL SPROG ROLL, Chart FG
PUNCH USED LIBRARY ROLL, Chart FH
PUNCH ADCON ROLL, Chart FI « « o«
ORDER AND PUNCH RLD ROLL, Chart FJ
PUNCH END CARD, Chart FK « « « &
PUNCH NAMELIST MPY DATA, Chart FL
Output From Phase 5 « « o« o o ¢ o o

®
s

o 06 8 o 8 5 o s o (e o
e & ©o & o0 o & o

.
.
e
°
.
°
e
.
.
]

e o o o o

APPENDIX A: THE POP LANGUAGE « o« « o

POP INStructionsS « o« o « ¢« o o o o o o
Transmissive Instructions . « « «
Arithmetic and Logical Instructions
Decision Making Instructions . . «
Jump Instructions .« « « o o o &
Roll Control Instructions . . o
Code Producing Instructions ., .
Address Computation Instructions
Indirect Addressing Instruction

Labels . . . e e« a o o
Global Labels « ¢ o o

Local Labels « « «

Assembly and Operation .
POP Interpreter
Assembler Language References t

s & o s o
e o o & o

[}

¢ e o ije & & o & 5 & s o s o

Subroutines .« « o o o« o o
Global Jump Instructions .

)
8 o o o 2 o & & & & s s

e o o Q6 o o o o

Local Jump Instructions . .
APPENDIX B: ROLLS USED IN THE COMPILER
Roll 0: LIB Roll e e e e e o 0o o e e
Roll 1: SOURCE ROl1l ¢ o« ¢ « o ¢ o o
Roll 2: IND VAR Roll . . « 4 e e
Roll 2: NONSTD SCRIPT ROll e o & e e
Roll . 3: NEST SCRIPT ROl .« « ¢ o o &
ROll 4: POLISH ROLL 4 o o ¢ o o o o .
Roll U4: LOOP SCRIPT ROll . ¢ o @« o
Roll 5: LITERAL CONST ROll . « « « &«
Roll 7: GLOBAL SPROG Roll . . e« o e o
Roll 8: FX CONST RO1l 4 ¢ ¢ o o = o =
ROll 9: FL CONST Roll e e e ® a2 o e ©
Roll 10: DP CONST ROI1l ¢ &« « o o o «
Roll 11: COMPLEX CONST ROll .« « « o
Roll 12: DP COMPLEX CONST RO1l &« « « &
Roll 13: TEMP NAME Roll e @ & 8 e © e
Roll 13: STD SCRIPT ROLIl & & e « o o @
ROll 14: TEMP RO1l o 4 ¢ o o o o o o« &
Roll 15: DO LOOPS OPEN ROll . « « « o
ROll 15: LOOPS OPEN ROll . . » e & o e

e o o6 o6 6 0 & & o a o
(6]
=

.
w
w

e 6 6 8 0 8 o & 6 0 & o
wm
~

<135
«135

<136
«136
«136

«137
«137
138

<140
. 140
<140
L] 1“1
. 101
- 1“1
<141
<142
- 1“2
<142
<143
<143
«143
«143
«143
<143
<140
<144
.1lu4
<14y

Roll
Roll
Roll
Roll
Ro1l1l
Roll
Roll
Roll
Roll
Ro1ll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
RoOll
Roll
Roll
Roll
RoO1l1l
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Rol1l
Roll
Roll
Roll
Roll
Roll
Roll
Ro1l1l
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll

16:
16:

21:

38:
39:

40:

42:

463

50:

52:
52:

: EQUIVALENCE TEMP (EQUIV

: EXPLICIT Roll . .
: CALL LBL Roll . .

: ARRAY PLEX Roll . .

t AT RO1l « « & « &

: NAMELIST MPY DATA
¢ GENERAL ALLOCATION Roll
t CODE Roll ¢ = ¢ ¢ & « &

ERROR MESSAGE Roll
TEMP AND CONST Roll
ERROR CHAR RoO1ll . .
ADCON RoOll
INIT Roll
DATA SAVE Roll . . .

TEMP

EQUIVALENCE HOLD (EQUIV HOLD)

® we 0 o o o @

REG Rol l . L) . L) L]
BASE TABLE Roll . .
ARRAY RO1ll
DMY DIMENSION Roll
SPROG ARG Roll . .
ENTRY NAMES Roll
GLOBAL DMY Roll .
ERROR ROll . . .
ERROR LBL Roll .
LOCAL DMY Roll .
LOCAL SPROG Roll

« s e o o
e o o o o

ERROR SYMBOL Roll .
NAMELIST NAMES Roll
NAMELIST ITEMS Roll
ARRAY DIMENSION Roll
BRANCH TABLE Roll .
TEMP DATA NAME Roll
TEMP POLISH Roll .
FXACRoOll
EQUIVALENCE Roll .
BYTE SCALAR Roll . .
USED LIB FUNCTION Roll
COMMON DATA RoOll . . .
HALF WORD SCALAR Roll .
COMMON NAME RoOll . . .
TEMP PNTR Roll
IMPLICIT Roll
EQUIVALENCE OFFSET Roll
FLAC RO1l . ¢« o &« « &
LBL Roll .
SCALAR ROll
HEX CONST Roll . .
DATA VAR RoOll . . .
LITERAL TEMP (TEMP LITERAL

e & 9 8 0
e & ® & & ®» o " 0 e " 0
e o o s 8 6 o & & s s o 0 e 0 e 0
® & & o ° o 6 o & 0 o 8 ° 0 s 3 0

® o e o & o & & 8 ® o T e 8 B e o

" o o o

e » & e » e o 8 s e

COMMON DATA TEMP Roll . .
FULL WORD SCALAR RoOll . .
COMMON AREA ROll
NAMELIST ALLOCATION Roll
COMMON NAME TEMP Roll .

EQUIV ALLOCATION Roll .

RID RO1l . & & o o' o »
COMMON ALLOCATION Roll
LOOP CONTROL Roll . .
FORMAT Roll
SCRIPT ROll
LOOP DATA Roll . .
PROGRAM SCRIPT Roll

s & & ° 8 6 8 e 8 e 0 o o o

ARRAY REF Roll . .
ADR CONST Roll . .

o e o A s 8 o »
¢ o o 6 8 o o s o o

SUBCHK RoOll . . .

e & 8 & & 0 s e 8 s 3 s e s v e
e 6 & 6 o o B 5 o 8 0 o o & o
o 8 o & 6 8 9 6 5 8 6 » 0 o @

.144
.144
.145
.145
.145
.145

145

.1u45
.146
.146
.146
<147
<147
147
.148
.148
.148
.148
.149
.149
.149
149
.149
150
150
150
150
.151
151
.151
.151
.152
.152
.152
.152
.153
.153
.153
.153
.153
154
«154
.154

.155
«155
«155
+155
«155
.156
.156
.156
.156
.156
«157
«157
«157
.158
.158
.15¢
159
.159
160
.160
160
160

Roll
Roll
Roll

60:
62:
62:

NAMELIST MPY DATA Roll . .
GENERAL ALLOCATION Roll ., .
CODE Roll L] L] . . L] . L] L] L]
R011>63: AFTER POLISH ROll ¢ « o « o
Work and EXit ROIL1IS « « o « o o o o

WORK RO11 . . & ¢ ¢ o o o o o o

EXIT ROI1L . . & o ¢ 2 o e o o o« @

APPENDIX C: POLISH
General FOIM « « o o « o o o o o o @
Labeled Statements « .« ¢ ¢ 2 & o o »
Array References .« « « o ¢ ¢ o o o «
ENTRY Statement . . . « ¢ ¢ ¢ o » &
ASSIGN Statement . . e e o« o o @
Assigned GO TO Statement e e o 4 o
Logical IF Statement « o« « o « o o o
RETURN Statement o o o
Arithmetic and Logical A551gnment
Statement . . ¢ 4 4 e e o o & o o o
Unconditional GO TO Statement . . .
Computed GO TO Statement « « ¢ « « «
Arithmetic IF Statement
DO Statement « « o o o ¢ ¢ o ¢ o« o @
CONTINUE Statement « « . .
PAUSE and STOP Statements . « « « «
END Statement . . « ¢ o ¢ o o o o o
BLOCK DATA Statement « « « o« o« o o
DATA Statement and DATA in Explicit
Specification Statements « « ¢ o o .
I/0 LiSt v o o o o o o o o o o o o
Input Statements « « o o o o o o o o
FORMATTED READ . . ¢ ¢ « o o o o @
NAMELIST READ . ¢ & o« ¢ o o o o
UNFORMATTED READ e o o s o e o o
READ Standard Unlt e e e e e e e
Output Statements <« « o ¢ o ¢ o ¢ o
FORMATTED WRITE . . ¢« ¢ o o o o o
NAMELIST WRITE ¢ « « o o o o o o @
UNFORMATTED WRITE« .
PRINT . & ¢ o « o o o o « « o« o
PUNCH e o o e o o o e = s e e s @
Direct Access Statements « o« o« « o o
READ, Direct Access . « « « « .+
WRITE, Direct ACCESS « « « o « « «
FIND &+ ¢ ¢« o 2 o o o o o o o o o« =
DEFINE FILE =« ¢ ¢ o« ¢ o o o o o
END FILE Statement « « « o &
REWIND Statemeént « « o« o ¢ o o o o @
BACKSPACE Statement « « . .
Statement Function « « « ¢ « « o « o
FUNCTION Statement . . o« o « o o ¢ «
Function (Statement or
Reference . « o« o« o o ¢ o o o o o &
Subroutine Statement
CALL Statement « « « « o o« o o o o o
Debug Facility Statements
AT o ¢ e o 2 o o « @« a o« s« o o o =
TRACE ON . ¢ ¢ o o o o o o o o o =
TRACE OFF 4 o« @ ¢ o @ a © o a o &«
DISPLAY =« o « o o o o = =» a » o =

APPENDIX D: OBJECT CODE PRODUCED
THE COMPILER 4 « ¢ o o s o o o ¢ o o
Branches .« « « « ¢ o o o o o o o o o
Computed GO TO Statement =
DO Statement « « o« o o ¢ o o o o o o
Statement Functions . . « ¢ « « o &
Subroutine and Function Subprograms

.160
160
«160
.161
<161
<161
.161

.163
«163
.163
.163
.164
.1l6U
164
.l64
.164

164
.165
.165
.165
165
.166
.166
<166
«166

. 166
.167
.167
.167
. 168
.168
.168
.168
.168
.169
.169
.169
.169
.169
.169
.170
.170
.170
.170
.171
.171
.171
.171

171
.171
<172
.172
<172
.172
<172
.173

175
175
<175
<175
.17¢
<176

Input/Output Operations . . .

Formatted Read and Write Statements

Formatted
Formatted
Formatted

Second List Item,
Second List Array,
Final List Entry,

177
.177
177
.178
.178

Unformatted Read and Write Statements 178

Second List Item,
Second List Array,

Backspace, Rewind, and Write
STOP and PAUSE Statements .
NAMELIST READ and WRITE . .
DEFINE FILE Statement . . .
FIND Statement « « ¢ « « &
Direct Access READ and WRITE
Statements « ¢« o« « ¢ o o o o
FORMAT Statements
FORMAT Beginning and Endlng
Parentheses .« o« ¢« o « o &
Slashes . « ¢ ¢« &« o o « .
Internal Parentheses . . .

Repetition of Individual FORMAT

Specifications . . .
1,F,E, and D FORMAT Codes
A FORMAT Code 4 ¢ « o « &
Literal Data . . « « . . .
X FORMAT Code . . 4 o« o«
T FORMAT Code
Scale Factor-P
G FORMAT Code =+ & « o o« o
L FORMAT Code
Z FORMAT Code . . « ¢ « &
Debug Facility
DEBUG Statement o o o« o o o
Beginning of Input/Output
End of Input/Output . . .
UNIT Option . . . « . . .
TRACE Option « o« « o o« o« @
SUBTRACE Option
INIT Option « o« « « o o &
SUBCHK Option . . . o . .
AT Statement o « o« ¢ ¢ o o o
TRACE ON Statement
TRACE OFF Statement < o o« o
DISPLAY Statement o o« o o

?

APPENDIX E: MIGCELLANEOUS REFERENCE

DATA o« o« o o e o o o o o o o
Parse Labhel List +« ¢ « o o o &
Supplementary Parse Label List
Allocate Label List .« « &« o

Supplementary Allocate Label LlSt

Unify Label List
Supplementary Unify Label LlSt
Gen Label List . .
Supplementary Gen Label List .
Exit Label List =« ¢« o o« o o &
Supplementary Exit Label List

e e e o o e

APPENDIX F:
SUBPROGRAMS . .
Library Functions .« « « &« «
composition of the Library . .
System Generation Options .
Module Summaries . . « « .+ o
Library Interrelationships .
Initialization
Input/Output Operations . . .

e & o e o e o

e« o o .

Unformatted
: Unformatted
Final List Entry, Unformatted

OBJECT-TIME LIBRARY

.178
.178
.178

Tapemark 178

.

)

.179
.179
.179
179

<179
.180

180
.180
.180

.180
.180
.180
.180
.181
.181

~.181

.181
.181
.181
.181
.181
.181
.181
.181
.182
.182
.182
.183
.183
.183
.183
.183

.185
185
.185
.193
.193
.196
.196
.198
.198
.208
. 208

.212
«212
. 212
212
.213
214
. 215
. 216

Define File e o o o o218 Compiler-Directed Errors: IHCIBERH . .228

Sequential Read/erte Without Format .218 Program INterrupts « « ¢« o« o« ¢ o o o 4229
Initial Call « &« « ¢ « ¢ o o o o o o218 Action for Interrupts 9, 11, 12,
Second Call L] L] L] L] L] ° L] L] L L] L] .219 13‘ and 15 L] L] L] L] L] o [] . L] . . L] L] 229
Additional List Item Calls219 Action for Interrupt 6 . . « « o o 229
Final Call o o « o o o o ¢ o o o o o219 Library-Detected Errors . « « « « « 230
System Block Modification and Without Extended Error Handling . .230
Reference « ¢ ¢« ¢« o o o o o o o o o219 With Extended Error Handling231
Error Conditions « o« « « « ¢ o « o« 220 Abnormal Termination Processing . . .231
Sequential READ/WRITE With Format . .221 Codes 4 and 12 . . « ¢ ¢ ¢« o « o » 231
Processing the Format Specification 221 Codes 0 and 8 + « o« e o «231
Direct Access READ/WRITE Without Extended Error Handling Fac111ty e o 232
FOXrmat « o o« o o o o« o o o o o o o o o224 Option Table--IHCUOPT . . « ¢232
Initialization Branch . . . « « . 224 Altering the Option Table--IHCFOPT 232
Successive Entries for List Items 225 Error Monitor--IHCERRM « « ¢ o« &« « +233
Final Branch « « « o o ¢ ¢ o ¢ o o« 225 Extended Error Handling
Error Conditions . . . «226 Trackback--IHCETRCH .« ¢« « o« o« « « 233
Direct Access READ/WRITE Wlth Format «226 CONVErsion ¢« « « o o o« o« o o o o ¢ o o o234
FIND ¢« o « o o o e o o o 2226 Mathematical and Service Routines . . .234
READ And WRITE U51ng NAMELIST e o o o226 Mathematical Routines . « « « o o o o234
Read « o « o o o o o o o o o o o o 226 Service Subroutines e o o o234
Write e e 6 @ e e o o e e e o o o 227 IHCFDVCH (Entry Name DVCHK) e« o o o234
Error conditions . . . e o o o o o227 IHCFOVER (Entry Name OVERFL)235
Stop and Pause (Write-to- 0perator) o 227 IHCFSLIT (Entry Names SLITE,
StOP v« o « o o o o o o o o o o o o 2227 SLITET) . ¢ o o o o o o o s o o « 2235
Pause e ®© o e e e e e o o e o o o . 227 IHCFEXIT (Entry Name EXIT) « o ¢ o 235
Backspace . « ¢ « o o o o o o o o o 2227 IHCFDUMP (Entry Names DUMP and
Rewind « « o o e o o o « o o o« o o o o228 PDUMP) ¢ ¢ ¢ ¢ o o o o « o « o o« o 2235
End“File e ®© o © ® o ©o o o © o o o o .228 IHCDBUG e o o o o o o o o« o o o o 2236
Error Handling « « o « o o o o o o « o 228 Termination . ¢ « ¢ o ¢ ¢ ¢ o o o o o 239

GI&OSSARY e @ e e o e e o e o e o @ o o o 259

INDEX .« ¢ ¢ ¢ o o o o o o o o o o o o o263

FIGURES

Figure 1. Overall Operation of
the Compiler « o« ¢ « o o'« ¢ o o o
Figure 2. Compiler Organization
Chart . L] L] e L L] . - - L . . L] -
Figure 3. Compiler Storage
Configuration .« « ¢« o« o o« ¢ o o @
Figure 4, Compiler Output . . .
Figure 5. Object Module

conf iguration e e e e e o o e o e
Figure 6. . Example of Use of Save
Area e o e o ¢ o e o e o o e e
Figure 7. Roll Containing K
Bytes of Information « e o o o o
Figure 8. Roll Containing L
Bytes of Reserved Information and
K Bytes of New Information « o e
Figure 9. Roll With a Group Size
of Twelve . o 4 ¢ ¢ o ¢ o o &
Figure 10. Roll with Variable
Group Size e e o o e s e o e o @
Figure 11. First Group Stats

Table « « « « o 4 ..
Figure 12. Second Group Stats
Table ¢ « . ¢ o o ..
Figure 13. Scan Control Variables
TABLES

Table 1. Internal Configuration

of Operation Drivers . « « o« o o« «
Table 2. Internal Configuration
of Control Drivers (Part 1 of 2) .,

"able 3. Rolls Used by Parse . .
rable 4. Rolls Used by Allocate
Table 5. Rolls Used by Unify . .
Table 6. Rolls Used by Gen . . .
Table 7. Rolls Used by Exit . .
Table 8., POP Instruction

Cross-Reference LiSt ¢« o« « « o o &«

« 15
.« 16

26

26
27

ILLUSTRATIONS

Figure 14. Quotes Used in the

Compiler- « 27
Figure 15. Compiler Arrangement

with Registers 28
Figure 16. Calling Paths for

Library Routines 215
Figure 17. Control Flow for

Input/output Operations 217
Figure 18. IHCUATBL: The Data
Set Assignment
Figure 19. DSRN Default Value
Field of IHCUATBL Entry 240
Figure 20. Format of a Unit Block

for a Sequential Access Data Set . 240
Figure 21. Format of a Unit Block

for a Direct Access Data Set . . . 242
Figure 22. General Form of the

Option Table (IHCUOPT) 242.1
Figure 23. Preface of the Option

Table (IHCUOPT) 242.,2
Figure 24. Composition of an

Option Table Entry 242.2
Figure 25. Original Values of

Option Table Entries 242.3

. . 239

Table 9. Routines Affected by
Extended Error Handling Option . . 212
Table 10. Format Code Translations

and Their Meanings 222
Table 11. IHCFCVTH Subroutine
Directory . . « « « « « « « o« « . . 234
Transfer Table . 236

Table 12. IHCDBU
Table 13. DCB Default Values . . . 240
Table 14. IHCFCOMH/IHCECOMH

Transfer and Subroutine Table . . 242.3

CHARTS

Chart 00. IEYFORT (Part 1 of 4) .
Chart 01. IEYFORT (Part 2 of 4) .
Chart 02, IEYFORT (Part 3 of W) .
Chart 03. IEYFORT (Part U of 4) .
Chart AA. OPTSCAN @« « « o o o o @
Chart BABs DDNAMES « ¢ « o o o o @
Chart AC. HERDOPT o« « o« o o o o o
Chart AD. TIMEDAT . « « o @
Chart O4.1. PHASE 1 - PARSE (Part
1 of 2) e e 6 e e e o e e o e o
Chart 0u4.2. PHASE 1 - PARSE (Part
2 Of 2) [] L] L] L] L] L] . . L] o L] L] L
Chart BA. WRITE LISTING AND READ
SOURCE . . L] L] . L] Ll L] L] Ll L] L L] .
Chart BB. INITIALIZE FOR
PROCESSING STATEMENT . « & . o
Chart BCl. PROCESS LABEL FIELD
(Part 1 of 2) 4« o« o & . o o
Chart BC2. PROCESS LABEL FIELD
(Part 2 of 2) . . o o e o o o
Chart BD. PROCESS STATEMENT e o o
Chart BE. COMPLETE STATEMENT AND

‘MOVE POLISH
Chart BF.
Chart BG.
Chart 05.
(Part 1 of
Chart 06.
(Part 2 of
Chart CA.
VAR ROLL .
Chart CB.
Chart cCcC.
Chart CD.
DIMENSIONS
Chart CE.
LOOPS .
Chart CF.
ROLL . .
Chart CG.

PROCESS END STATEMENT .
PROCESS POLISH o o o«
PHASE 2 - ALLOCATE

2) .. e .
PHASE 2 - ALLOCATE

2) . N

MOVE BLD NAMES TO DATA

ALLOCATE BLOCK DATA . .
PREPROCESS DUMMY

CHECK FOR UNCLOSED DO
CONSTRUCT BRANCH TABLE

e o @& e @6 e e e o & o o

ALLOCATE HEADING AND

PUNCH ESD CARDS ¢ . ¢ o . « e

Chart CH.

CHECK ASSIGNMENT OF

FUNCTION VALUE L] - L] . . L] L] L ° L]

Chart CI.
Chart CK.
ALLOCATION
Chart CL.

COMMON ALLOCATION . . .
EQUIVALENCE DATA

SAVE AREA BASE AND

BRANCH TABLE ALLOCATION e o o e @

Chart CM.
Chart CN.
Chart CO.
SUBPROGRAM
Chart CP,
ARGUMENT LI
Chart CQ.
Chart CR.
CONSTANTS
Chart CS.
Chart CT.
Chart CU.
ADDRESSES

ALLOCATE SCALARS . . .
ALLOCATE ARRAYS « o« « o
ADD BASES FOR
ADDRESSES « « « o « o
ALLOCATE SUBPROGRAM

STS . Ll . . . LN
PREPARE NAMELIST TABLES
ALLOCATE LITERAL
ALLOCATE FORMATS . . .
MAP EQUIVALENCE . .
ALLOCATE SUBPROGRAM

e e e e e © o e o e o a

.
.

PREPARE EQUIVALENCE DATA

68
68
69
70

70
71

72
73
T4
75

76

17

79

80

81

82

83

84
85

86
87
89
90

91
92

93
95
96

Chart CvV. BUILD AND PUNCH

NAMELIST TABLES =« v« « « o « o o« « « 97
Chart CW. BUILD BASES ¢« « « « « « « 98
Chart CX. "DEBUG ALLOCATE . . « « « 99
Chart- 07.. PHASE 3 - UNIFY100
Chart DA. BUILD ARRAY- REF ROLL . .101
Chart DB.- MAKE ADDRESS CONSTANTS .102
Chart DC. CONSTRUCT INSTRUCTIONS .103
Chart DD. PROCESS NESTED LOOPS . .104
Chart 08.- PHASE 4 - GEN105
Chart EA. GENERATE ENTRY CODE . . .106
Chart EB. PROLOGUE CODE GENERATION 107
Chart EC. EPILOGUE CODE GENERATION 108
Chart ED. MOVE POLISH NOTATION . .109
Chart EF. PROCESS LABELS . . « . .110
Chart EG. GENERATE STMT CODE . . .111
Chart EH. COMPLETE OBJECT CODE . 112
Chart 09. PHASE 5 - IEYEXT113
Chart FA. PUNCH CONSTANTS AND

TEMP STORAGE 2 « o o o o o o « o « o114
Chart FB. PUNCH ADR CONST ROLL . .115
Chart FC. PUNCH OBJECT CODE116
Chart FD. PUNCH BASE TABLE117
Chart FE. PUNCH BRANCH TABLE . . .118
Chart FF. PUNCH SUBPROGRAM

ARGUMENT LISTS = « « « ¢ o o o « » 2119
Chart FG. PUNCH SUBPROGRAM

ADDRESSES =« o o o o o o'« « o o o« 2120
Chart FH. COMPLETE ADDRESSES FROM
LIBRARY &« ©o 2 « « o o o o « o « « o121
Chart FI. PUNCH ADDRESS CONSTANTS .122
Chart FJ. PUNCH RLD CARDS123
Chart FK. PUNCH END CARDS124
Chart FL. PUNCH NAMELIST TABLE
POINTERS ¢« « o « « « o « o o o o o« «125
Chart GO. IHCFCOMH/IHCECOMH

(Part 1 of 4) e o o <243
Chart GO. IHCFCOMH/IHCECOMH

(Part 2 of 4) « » «2U43.1
Chart GO, IHCFCOMH/IHCECOMH

(Part 3 of 4) e o 243.2
Chart GO. IHCFCOMH/IHCECOMH

(Part 4 of 4) . . « &« « & . . «2U43.3
Chart G1. IHCFIOSH/IHCEFIOS

(Part 1 of 2) o o o o &« o o o o » o244
Chart Gl. IHCFIOSH/IHCEFIOS

(Part 2 of 2) . . e . . . o 244.1
Chart G2. IHCDIOSE/IHCEDIOS

(Part 1 of 5) . . « . ¢« e o o o245
Chart G2. IHCDIOSE/IHCEDIOS

(Part 2 of 5)« . . . o 2245.1
Chart G2. IHCDIOSE/IHCEDIOS

(Part 3 of 5) . . . «245.2
Chart G2. IHCDIOSE/IHCEDIOS

(Part 4 of 5) .« & ¢ ¢ o o o « o <245.3
Chart G2. IHCDIOSE/IHCEDIOS

(Part 5 Of 5) o o o o o o o o « « 206
Chart G3. JTHCNAMEL « « o o o o o« <247
Chart Gb4. IHCFINTH/IHCEFNTH

(Part 1 of 3) . &« « ¢ o & e o o o248
Chart Gtu. IHCFINTH/IHCEFNTH

(Part 2 Of 3) o o o« o« o o« o « o o248.1

Chart
(Part
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

Gl.
3 of
G5.
Gé6.
G7.
G7.
G8.
G8.
G9,
G9.

IHCFINTH/IHCEFNTH
3) L] o L] L] L] ° o L]
IHCADIST o o o o o
JHCIBERH o« o o« o «

IHCSTAE (Part 1 of
IHCSTAE (Part 2 of
IHCERRM (Part 1 of
IHCERRM (Part 2 of
IHCFOPT (Part 1 of
IHCFOPT (Part 2 of

2)
2)
2)
2)
3)
3)

. 248.2
« o249
« «250
« 251
« 252
« 253
« 254
« 255
« 256

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart

G9.
G10.
G1l1.
G1l2.
G13.
G1lu.
G15.
G16.
G1l6.
G16.
Gl6.

IHCFOPT (Part 3 of

IHCTRCH/IHCERTCH

IHCFDUMP .
IHCFEXIT .
IHCFSLIT .
IHCFOVER .
IHCFDVCH .

IHCDBUG (Part 1
IHCDBUG (Part 2
IHCDBUG (Part 3
IHCDBUG (Part U

of
of
of
of

) . 257
. «258
. 258.1
. 258.2
.258.3
. 258.4
. 258.5
4) .258.6
4) .258.7
4) .258.8
4) .258.9

L N

This section contains general informa-
tion describing the purpose of the FORTRAN
IV (G) compiler, the minimum machine confi-
guration required, the relationship of the
compiler to the operating system, compiler
design and implementation, and compiler
output, The various rolls,* variables,
registers, pointers, and drivers used by
the compiler are also discussed.

PURPOSE _OF THE COMPILER

The IBM System/360 Operating System
FORTRAN IV (G) compiler is designed to
accept programs written in the FORTRAN 1V
language as defined in the publication IBM
System/360: FORTRAN IV _ Langquage, Form
C28-6515,

The compiler produces error messages for
invalid statements, and, optionally, a
listing of the source module, storage maps,
and an object module acceptable to the
System/360 Operating System linkage editor.

MACHINE CONFIGURATION

The minimum system configuration
required for the use of the IBM System/360
Operating System with the FORTRAN IV (G)
compiler is as follows:

e An IBM System/360 Model 40 computer
with a storage capacity of 128K bytes
and a standard and floating-point
instruction set.

e A device for operator communication,
such as an IBM 1052 Keyboard Printer.

o At least one direct-access device pro-
vided for system residence.

COMPILER AND SYSTEM/360 OPERATING SYSTEM

The FORTRAN IV (G) compiler is a proces-
sing program of the IBM System/360

iMost of the tables used by the compiler

are called rolls. (Further explanation of
rolls is given in *"Rolls and Roll
Controls. ")

SECTION_ 1: INTRODUCTION TO_THE COMPILER

Operating System. As a processing program,
the compiler communicates with the control
program for input/output and other ser-
vices. A general description of the con-
trol program is given in the publication
IBM System/360 Operating System: Introduc-
tion to Control Program__Logic, Program

Logic Manual.

A compilation, or a batch of compila-
tions, is requested using the job statement
(JOB), the execute statement (EXEC), and
data definition statements (DD). - Alterna-
tively, cataloged procedures may be used.
A discussion of FORTRAN IV compilation and
the available cataloged procedures is given
in the publication IBM System/360 Operating
System: FORTRAN IV (G) Programmer's Guide.

The compiler receives control initially
from the calling program (e.g., job sche-
duler or another program that CALLs, LINKs
to, or ATTACHes the compiler). Once the
compiler receives control, it uses the QSAM
access method for all of its input/output
operations. After compilation is com-
pleted, control is returned to the calling

program.

COMPILER DESIGN

The compiler will operate within a total
of 80K bytes of main storage. This figure
includes space for the compiler code, - data
management access routines, and sufficient

working space to meet other storage
requirements stated ' throughout this
publication.

Any additional storage available is used
as additional roll storage.

LIMITATIONS OF THE COMPILER

The System/360 Operating System FORTRAN
IV (G) compiler and the object module it
produces can be executed on all System/360
models from Model 40 and above, under
control of the operating system control
program. All input information must be
written in either BCD or EBCDIC representa-
tion. The compiler is designed to process
all properly written programs so that the
object code produced by the compiler is
compatible with the ex1st1ng mathematical
library subroutines.

Section 1: 1Introduction to the Compiler 9

If ten source read errors occur during
the compilation, or if it is not possible
to use SYSPRINT, the operation of the
compiler 1is terminated. The operation of
the compiler is also limited by the availa-
bility of main storage space. The compila-
tion is terminated if:

e The roll storage area is exceeded

e Any single 1roll exceeds 64K bytes,
thereby making it unaddressable

exceeds its

e The WORK or EXIT roll
allocated storage
Note: If any of these conditions occur

during the first phase of the compilation,
the statement currently being processed may
be discarded; in this case, the compilation
continues with the next statement.

COMPILER IMPLEMENTATION

The primary control and processing rou-

tines (hereafter referred to as "POP rou-
tines" or "compiler routines") of the com-
piler are primarily written in machine-

independent pseudo -instructions called POP
instructions.

Interpretation of the pseudo instruc-
tions is accomplished by routines written
in the System/360 Operating System assembl-
er language. These routines (hereafter
referred to as "POP subroutines") are an
integral part of the compiler and perform
the operations specified by the POP ins~-
tructions, e.g., saving of backup informa-
tion, maintaining data. 1nd1cators, and gen-
eral housekeeping.

Control of the compiler operation is
greatly affected by source language syntax
rules during the first phase of the .compil=-
er, Parse. During this phase, identifiers
and explicit declarations encountered in
parsing are placed in tables and a Polish
notation form of the program is produced.
(For further information on Polish nota-
tion, see Appendlx C, "Polish Notation
Formats. ™)

10

.generating
-phases, operate directly on the tables and

formed by a compiler. .

area, IEYROL.

The compiler quite frequently uses the
method of recursion in parsing, analysis,
and optimization. All optimizing and code
routines, which appear in later

Polish notation produced by Parse.

‘The compiler 1is .- also designed so that
reloading of the compiler is unnecessary in
order to accomplish multiple compilations.

POP LANGUAGE

The FORTRAN IV (G) compiler is written
in a combination of two languages: the
System/360 Operating System assembler lan-
guage, which . is wused where it is most
efficient, and the POP language.

The POP ‘language is a mnemonic macro
programming language whose instructions
include functions that are frequently per-
POP instructions are

written for assembly by the System/360
Operating System- assembler, with the POP
instructions defined as macros. Each POP

instruction 1is assembled as a pair of
address constants which together indicate
an instruction code and an operand. A
statement or instruction written in the POP
language is called a POP. - The POP instruc-
tions are described in Appendix A.

COMPILER ORGANIZATION

The System/360 Operating System FORTRAN

IV . (G) compiler is composed of a control
.phase, Invocation, and five processing
phases . (see Figure 1): . Parse, Allocate,

Unify, Gen, and Exit. The operating system
names for these phases -are, respectively,
IEYFORT, - IEYPAR, - IEYALL, ' IEYUNF, IEYGEN,
and IEYEXT. - (The first level control and
second level processing .compiler routines
used in each phase are shown in Figure 2.)
In addition, Move is a pre-assembled work

IEYFCRT

r 1 r 1 r 1
SYSIN-=m e >| Source | =———==>] Control | ——- > Invocation |-———- > (:)
| Module |] Program | | Phase |
L J L J L d
[) L 1
| r———>]|Source Module|] SYSPRINT
| ! |listing |
V IEYPAR] L i
r 1 |
| Parse b ————————y
| (Phase 1) | |
L]
T r 1
| L-—->|Source Module| SYSPRINT
| |diagnostics |
l L J
V IEYALL r .
(m———————————— 1 r——=>|Storage Maps | SYSPRINT
| Allocate |] L 4
| (Phase 2) jpeo—m—mmemeaeq 4
L -——7 4 | r 1
| L___>|ESD and TXT | SYSPUNCH/SYSLIN
| |cards |
V IEYUNF L 3
r R 1
| Unify |
|- (Phase 3) |
L d
T
V IEYGEN
I 1
| Gen |
| (Phase 4) | r 1
L T 4 r———>|0Object Module] SYSPRINT
| | |1listing |
I I L b
V IEYEXT | r .
r . | |Object Module|] SYSPUNCH/SYSLIN
| Exit b 4 >|TXT cards {
| (Phase 5) | | L 4
L J I
T
I | r 1
| | |ESD, RLD, and| SYSPUNCH/SYSLIN
V IEYFORT L___>|END cards i
L 1
r 1
| Invocation |
| Phase |
L & J
o ¥,
L] * .
. L *, .
. % Multiple %, NO r 1
. Compilations « >|Control |
*. o ¥ | Program |
*, . L 3
L
* YES
®
Figure' 1. Overall Operation of the Compiler
Section 1: Introduction to the. Compiler 11

Control Phase: Invocation (IEYFORT)

The Invocation phase (IEYFORT) is loaded
upon invocation of the compiler and remains
in core storage throughout compilation. It
is entered initially from the calling pro-
gram, from each module at -the end of its
processing, and from Exit after compilation
is complete, :

At the initial entry, the Invocation
phase initializes bits in IEYFORT1 from the
options specified by the programmer for the
compilation, opens data sets, and fetches
the modules IEYPAR, IEYALL, IEYUNF, IEYGEN,
and IEYEXT via a series of LOAD macro
instructions. These modules remain in core
storage for a series of main program and
subprogram compilations unless it is deter-
mined that additional space required for
tables is not available. When this occurs,
modules - that precede the active one are
deleted, and compilation is resumed. If
more space is required, modules that follow
the currently active one are deleted.

When a module completes processing, it
returns to IEYFORT, which ensures the pre-
sence of the next module and transfers to
it. During initialization for a subpro-

gram, IEYFORT ensures that all modules are
loaded.
The last entry is made from the Exit

phase at the completion of a compilation.
When the entry is made from Exit, the
Invocation phase checks for multiple compi-
lations. If another compilation is
required, the compiler is reinitialized and
the main storage space allocated for the
expansion of rolls is assigned to the next
compilation; otherwise, control is returned
to the calling program.

Phase 1: Parse (IEYPAR)

Parse accepts FORTRAN statements in card

format from SYSIN and scans these to pro-
duce error messages on the SYSPRINT data
set, a source module 1listing (optional),

and Polish notation for the program. The
Polish notation is maintained on internal
tables for use by subsequent phases. In

addition, Parse produces the roll entries
defining the symbols used in the source
module,
Phase 2: Allocate (IEYALL)

Allocate, which operates immediately

after Parse, uses the roll entries produced

12

~object instruction for

by Parse to perform the storage allocation
for the variables defined in the source
module. The addressing information thus
produced is then left in main storage to be
used by the next phase.

The ESD cards for the object module
itself, COMMON blocks and subprograms, and
TXT cards for NAMELIST tables, 1literal
constants and FORMAT statements are pro-
duced by Allocate on the SYSPUNCH and/or
SYSLIN data sets. Error messages for
COMMON and EQUIVALENCE statements, unclosed
DO loops and undefined labels are produced
on SYSPRINT; on the MAP option, maps of
data storage are also produced.

Phase 3: Unify (IEYUNF)

The Unify phase optimizes the usage of
general registers within DO 1ldops by
operating on roll data which describes
array references. The optimization applies
to references which include subscripts of
the form ax+b, where a and b are positive
constants and x 1is an active induction
variable (that is, x is a DO-controlled
variable and the reference occurs within
the DO loop controlling it), and where the
array does not have any adjustable dimen-
sions. The addressing portion of the
each. such array
reference is constructed to minimize the
number of registers used for the reference
and the number of registers which must be
changed as each induction variable changes.

Phase 4: Gen (IEYGEN)

Gen uses the Polish notation produced by
Parse and the memory allocation information
produced by Allocate. From this informa-
tion, Gen produces the code, prologues, and
epilogues required for the object module.
In order to produce the object code, Gen
resolves labeled statement references
(i.e., a branch target label) and subpro-
gram entry references.

The final output from Gen is a complete
form of the machine language code which is
internally maintained for writing by the
Exit phase.

Phase 5: Exit (IEYEXT)

Exit, which is the last processing phase
of the compiler, produces the TXT cards for
the remaining portion of the object module,
the RLD cards (which contain the relocat-
able information), and the END card. This
output 1is placed optionally on the SYSLIN

data set for 1linkage editor processing
and/or SYSPUNCH if a card deck has been
requested. Additionally, a listing of the

generated code may be written on the SYS-

Section 1:

PRINT data set in a format similar to that
produced by an assembly program.

Roll (IEYROL)

Roll contains static rolls and roll
information always required for compiler
operations. These are described under the

heading "Rolls and Roll Controls®™ later in
this section.

Introduction to the Compiler 13

—— = - —— - - - - —— -

r

r—-—-START COMPILER

——

!
 L-——STATEMENT PROCESS----

5
i

I
i

L

ALLOCATE

o e et e e e e e e o % e e e e e e . S e o e o oy

r

L

r———START GEN

|
|
GEN-————q

r
|
|
L

| r
L---GEN PROCESS

———— ———- G- e —— ——— — — —— — —— — o, (e St Tt i WO Tt e, o S — ot . S — S et SOt — T ——", — T —— — —, — T c— — —

EXIT-—=—-——-——-EXIT PASS

s o o -

(o e e e o . e

~—-PRINT AND READ SOURCE
STA INIT
LBL FIELD XLATE
STA XLATE
STR FINAL
REGISTER IBCOM
PROCESS POLISH
ACTIVE END STA XLATE
---STA FINAL END

--—PREP EQUIV AND PRINT ERRORS
BLOCK DATA PROG ALLOCATION
PREP DMY DIN AND PRINT ERRORS
PROCESS DO LOOPS
PROCESS LBL AND LOCAL SPROGS
BUILD PROGRAM ESD
ENTRY NAME ALLOCATION
COMMON ALLOCATION AND OUTPUT
BASE AND BRANCH TABLE ALLOC
EQUIV ALLOCATION PRINT ERRORS
FORMAT ALLOCATICN
SCALAR ALLOCATE
ARRAY ALLOCATE
PASS 1 GLOBAL SPROG ALLOCATE
SPROG ARG ALLOCATION
PREP NAMELIST
LITERAL CONST ALLOCATION
EQUIV MAP
GLOBAL SPROG ALLOCATE
BUILD NAMELIST TABLE
ALPHA LBL AND L SPROG
BUILD ADDITIONAL BASES
ALPHA SCALAR ARRAY AND SPROG
LITERAL CONST ALLOCATION
CALCULATE BASE AND DISP

~---DEBUG ALLOCATE

—~~ARRAY REF ROLL ALLOTMENT
DO NEST UNIFY
CONVERT TO ADR CONST
-~~CONVERT TO INST FORMAT

~--MOVE ZEROS TO T AND C
ENTRY CODE GEN
PROLOGUE GEN

~--EPILOGUE GEN

---GET POLISH

LBL PROCESS

STA GEN
---STA GEN FINISH
TEMP AND CONST ROLL
ADR CONST ROLL
CODE ROLL
BASE ROLL
BRANCH ROLL
SPROG ARG ROLL
GLOBAL SPROG ROLL
USED LIBRARY ROLL
ADCON ROLL
AND PUNCH RLD ROLL
END CARD
HEADING
A LINE
COMPILER STATISTICS

Figure 2. Compiler Organization Ch

14

art

r R T

| Load |

|Module | |Content or

| Name | Components | Function

[1 i

r L] L B
Low .| IEYFORT | IEYFORT | Invocation and_
Core| | control

L«\\v/,&\\\‘////~<\\::BE£233/’/\\\\J

Roll Storage is Allocated from this
Area

IEYPAR |IEYPAR |Parse phase |
] | |

| |Quotes and i

| | messages |

I | |

IEYALL |IEYALL = |Allocate phase |
| | |

| IEYUNF |Unify phase |

| | |

| IEYGEN | IEYGEN | Generate phase |
]

!

J

I
Core|IEYEXT |IEYEXT = |Exit phase
L 4 4

]
| IEYFORT1 |Option bits

|
| IEYFORT2 |Loads and deletes
| other modules

Roll statistics
(bases, tops,
bottoms)

IEYROL

Group statistics
(displacement
group 51zes)

Roll address table
IEYINT POP Jump Table

POP machine
language sub-

—— — — A —— — — S ——— — .) e, S, D D e S s S o Tt st S O, el e e, it

|
!
I
|
|
|
I
I
|
W
]
|E
|
IR
|
|
I
|
|
|

Figure

3. Compiler Storage Configuration

COMPILER STORAGE CONFIGURATION

Figure 3 illustrates the relative posi-
tions, but not the relative sizes of the
component parts of the FORTRAN compiler as
they exist in main storage. The component
parts of each phase are described in Sec-
tion 2.

COMPILER OUTPUT

The source module(s) to be compiled
appear as input to the compiler on the
SYSIN data set. The SYSLIN, SYSPRINT, and
SYSPUNCH data sets are used (depending on
the options specified by the wuser) to
contain the output of the compilation.

The output of the compiler is repre-
sented in EBCDIC form and consists. of any
or all of the following:

Object Module (linkage editor input)

Source Module listing

Object Module listing

Storage maps

Error messages (always produced)

Relocatable card images for punchiné

The overall data flow and the data sets
used for compilation are illustrated in

Figure 4. The type of output is determined
by compile time parameters.

Section 1: Introduction to the Compiler 15

(o o e o . e i —— — — — — —— — — — — — — — — — —— — ——— — —— — ——— —— — — ——————— —

r——---For all
| compilations
|
|
|
|
|
l .
}----LIST Option--
|
|
|
SYSIN |
-1 |
| Source | |
|Module | }----DECK Option--
b1 |
| I
| |
v |
[——————— |
| FORTRAN | 1
IV (G) =>4
|Compiler| |
L 4 b LOAD Option--
|
|
|
|
l)
}----MAP Option---
|
|
|
o
|
|
L

-———SOURCE Option

r
| Error and
>| Warning
| Messages
| (if any)
L

e e e e

r
| Object

>| Module
| *© listing

L

[

r 1
|Object Module |
>| (ESD, TXT, RLD |
|END) card Images|
L 1

r a
|Object Module |
>| (ESD, TXT, RLD, |
|END) Card Images|
L 1

r 1
>| Storage |
| Map |
L 3
r 1
| Source |
>| Module |
| Listing |
L 4

SYSPRINT

SYSPRINT

SYSPUNCH

SYSLIN

SYSPRINT

SYSPRINT

b s o e s . — — —— —— —— — —— — — — —— — — — —— — — —— — — — S— — — —— —— — — — ——— — — —]

Figure 4. Compiler Output

16

OBJECT MODULE

The configuration of the object module
produced by the FORTRAN IV (G) compiler is
shown in Figure 5.

Entry point--->
Heading

r
I
1L
T
| Save area
|
]
| Base table

| Branch table
L
v

{Subprogram argument

|lists
F

| Subprogram addresses

| EQUIVALENCE variables]|
b -~ -4

T
|Scalar variables

|Arrays
L

| NAMELIST tables

jLiteral constants |
| (except those used |
|in DATA and PAUSE |
| statements) |

| FORMAT statements
L

|and constants
|8 -—

1
|
¢ i
| Temporary storage |
|
4
|
4

. Figure S. Object Module Configuration

Components of the Object Module

The following paragraphs describe the
components of the object module produced by
the FORTRAN IV (G) compiler,

HEADING: The object module heading
includes all initializing instructions

required prior to the execution of the body

of the object module. Among other func-
tions, these instructions set general
register 13 (see "Object Module General
Register Usage") and perform various opera-
tions, depending on whether the prbgram is
a main program or a subprogram and on
whether it calls subprograms. (See "Code
Produced f£for SUBROUTINE and FUNCTION
Subprograms. ")

SAVE __AREA: The at maximuam 72
bytes long, is reserved for information
saved by called subprograms. Figure 6
shows an example of the use of this area in
program Y, which is called by program X,

and which calls program Z.

save area,

The first byte of the fifth word in the
save area (Save Area of Y + 16) is set to
all ones by program Z before it returns to
program Y. Before the return is made, all
general registers are restored to their
program Y values,

E_TAB The base table is a 1list of
adiresses from which the object module
loads a general register prior to accessing
data; the general register is then used as
a base in the data referencing instruction.

Because an interval of 4096 bytes of
storage can be referenced by means of the
machine instruction D field, consecutive
values representing a single control sec-
tion in this table differ from each other
by at least 4096 bytes. Only one base
table entry is constructed for an array
which exceeds 4096 bytes in length; hence,
there 1is a possibility that an interval of
more than 4096 bytes exists between conse-
cutive values for a single control section
in the table.
table

The addresses compiled into this

are all relative, and are modified by the
linkage editor prior to object module
execntion. Those entries constructed for

references to COMMON are modified by the
beginning address of the appropriate COMMON
block; those entries constructed for
references to variables and constants
within the object module itself are modi-
fied by the beginning address of the appro-
priate object module.

Section 1: Introduction to the Compiler 17

<---4 bytes——-->

r
| Subprogram

Save Area of Y|epilogue address
8

b
+4 |Program X save
| area address

S

+8 |Program Z save
|area address

]
|
|
|
|
|
|
|
|
|
| ¢
| +12 |Register 14
|
|
|
|
|
]
|
|
|
|
|
L

O 4
+16 |Register 15 |
41
a
+20 |Register 0 |
e 1
! - |
| . |
| . |
pommm e i
+72 |Register 12 |
4

Figure 6. Example of IJse of Save Area

BRANCH TABLE: This table contains one
fullword entry for each branch target label
(a label referred to in a branch statement)
and statement function in the source
module. In addition, one entry occurs for
each 1label produced by the compiler in
generating the object module. These labels
refer to return points in DO loops and to
the statement following complete Logical IF
statements, and are called made labels.

In the object module code, any branch is
performed by 1loading general register 14
(see "Object Module General Register
Usage”) from this table, and using a BCR
instrucé¢tion. The values placed in this
table by the compiler are relative ad-
dresses. Each value is modified by the
base address of the object module by the
linkage editor. i

SUBPROGRAM ARGUMENT LISTS: This portion of
the object module contains the addresses of
the arguments for all subprograms called.
In calling a subprogram, the object module
uses general register 1 to transmit a
location in this table. The subprogram
then acquires the addresses - of its argu-
ments from that location and from as many
subsequent locations as there are argu-
ments. The sign bit of the word containing
the address of the last argument for each
subprogram is set to one.

18

<---Stored by initial entry code.
<---Stored by program Y .

<---Stored by program Z, if it calls subroutines-

Values on leaving program Y,

stored by program Z.

e e U U U S —— |

SUBPROGRAM ADDRESSES: This 1list contains
one entry for each FUNCTION or SUBROUTINE
subprogram referenced by the object module.
The entry will hold the address of that
subprogram when it @ is supplied by the
linkage editor. The compiler reserves the
correct amount of space for the list, based
on the number of subprograms referred to by
the source module.

EQUIVALENCE VARIABLES: This area of the
object module contains unsubscripted
variables and arrays, listed in EQUIVALENCE

sets which do not refer to COMMON.

SCALAR VARIABLES: All - non-subscripted
variables which are not in COMMON and are
not members -of EQUIVALENCE sets appear in
this area of the object module.

ARRAYS: All arrays which are not in
COMMON, and are not members of EQUIVALENCE
sets appear in this area of the object
module.

NAMELIST TABLES: For each NAMELIST name
and DISPLAY statement in the source module,
a NAMELIST table is constructed by the
compiler and placed in this area of the
object module. Each table consists of one
entry for each scalar variable or array
listed following the NAMELIST name or in
the DISPLAY statement, and begins with four
words of the following form:

T a 1
W | |
|Word] 1 2 3 u] 1 2 3 4 |
k T | q
I 1 I ' P 1 | I
| | name field | 1 | . name field
| 2 | | | 2 i |
I b .| ! e .|
| 3 i] | | |
] | not used]] 3 | address field
! 4 | | | b D Bt To——s-—- o= 4
t t ! ! I | |no. | y

| 4 | type | mode |dimens. |length |
R To f=mommm P Ao !
where the name field contains the NAMELIST 1]indica-|first dimension factor |
name, right justified. For the DISPLAY | 5 |tor |field |
statement, the name is DBGnn#, where nn is] -4 -
the number of the DISPLAY statement within] |not |second dimension factor|
the source program or subprogram. | 6 |used |field
| O
Table entries for scalar variables have] |not Jthird dimension factor 1
the following form:] 7 Jused |field |
1 b e 4

T 1] . . |
W o : l
{Word] 1 2 3 4 |] . . |
b b 4 | etc. etc.]
| 1 | | t- - -
] | name field |
| 2 |] where:
| ¢ e :

] 3] address field] name field
] I3 T T —-——4 contains the name of the array, right
| b] type | mode | not used] justified.
L . 1 ——he e J ;
address field
contains the relative address of the
where: beginning of the array within the

name field)
contains the name of the scalar vari-
able, right justified.

address field
contains the relative address of the
variable within the object module.

type field
contains zero to indicate a scalar
variable.

mode field
contains the mode of the variable,

coded as fo@llows:

Logical,
Logical,

1 byte

fullword

Integer, halfword

Integer, fullword

Real, double precision

Real, single precision

Complex, double precision

complex, single precision

Literal (not currently
compiler-generated)

BOONOUE W
L1 T 1 1 [TR VR | I 1

NAMELIST table
the following form:

entries for arrays have

Section 1:

object module.

mode field

contains the mode of the array ele-
ments, coded as for scalar variables, -
above.

no. dimens.
contains the number of dimensions in
the array; this value may be 1-7.

length field
contains the length of the array
ment in bytes.

ele-

indicator field
is set to zero if the array has been
defined to have variable dimensions;
otherwise, it is set to nonzero.

first dimension factor field
contains the total size of the array
in bytes.

second dimension factor field
contains the address of the second
multiplier for the array (nl*L, where
nl is the size of the first dimension
in elements, and L is the number of
bytes per element).

Introduction to the Compiler 19

third dimension factor field

contains the address of the third
multiplier for the array (nl*n2#*L,
where nl is the size of the first

dimension in elements, n2 is the size
of the second dimension, and L is the
number of bytes per element).

A final entry for each NAMELIST table is
added after the last variable or array name
to signify the end of that particular list.

This entry is a fullword in length and
contains all zeros.
LITERAL CONSTANTS: This area contains a

list of the literal constants used in the
source module, except for those specified
in DATA and PAUSE statements.

FORMAT STATEMENTS: The FORMAT statements
specified in the source module are con-
tained in this area of the object module.
The statements are in an encoded form in
the order of their appearance in the source
module. (See "Appendix D: Code Produced
by the Compiler.") The information contains
all specifications of the statement but not
the word FORMAT.

TEMPORARY STORAGE AND CONSTANTS: This area
always begins on a double precision boun-
dary and contains, in no specific order,
the constants required by the object module
code and the space for the storage of
temporary results during computations. Not
all of the source module constants neces-
sarily appear in this area, since as many
constants as possible are used as immediate
data 1in the code produced. Some constants
may appear which are not present in the
source module, but which have been produced
by the compiler.

PROGRAM TEXT: If the object module con-
tains statement functions, the code for
these statements begins the program text
and is preceded by an instruction that
branches around them to the first execut-
able statement of the programe (See
"Statement Functions" in Appendix D for
further explanation of this code.) Follow-
ing the code for the statement functions is
the code for the executable statements of
the source module.

Object Module General Register Usage

The object module produced by the
FORTRAN IV (G) compiler uses the System/360
general registers in the following way:

Register 0: Used as an accumulator.

Register 1: Used as an accumulator and

to hold the beginning address of the
argument 1list in branches to sub-
programs.

20

Register 2: Used as an accumulator.

Register 3: Used as an accumulator.
Registers 4 through 7: Contain index
values as required for references to

array variables, where the subscripts
are linear functions of DO variables and
the array does not have variable
dimensions.

Registers 8 and 9: Contain index values
as required for references to array
variables, where the subscripts are of
the form x#+c, where x 1is a non DC-
controlled variable and ¢ is a constant.

Register 9: Contains index values as
required for references to array
variables where the subscripts are non-
linear of the form I*J, where I and J
are the variables,

Registers 1C¢ through 12: Contain Dbase
addresses loaded from the base table.

Register 13: Contains the beginning
address of the object module save area;
this value is loaded at the beginning of
program execution. Register 13 is also
used for access to the base table, since
the base table follows the save area in
main storage.

Contains the return
address for subprograms and holds the
address of branch target instructions
during the execution of branch
instructions.

Register 14:

Register 15: Contains the entry point
address for subprograms as they are
called by the object module.

SOURCE MODULE LISTING

The optional source module listing is a
symbolic listing of the source module; it
contains indications of errors encountered
in the program during compilation. The
error message resulting from an erroneous
statement does not necessarily cause ter-
mination of compiler processing nor the
discarding of the statement. Recognizable
portions of declaration statements are
retained, and diagnosis always proceeds
until the end of the program.

OBJECT MODULE LISTING

The optional object module listing uses
the standard System/360 Operating System

assembler mnemonic operation codes and,
where possible, refers to the symbolic
variable names contained in the source
module. Labels used in the source module
are 1indicated at the appropriate places in
the object code listing.

STORAGE MAPS

The optibnal storage map consists of six
independent listings of storage informa-
tion. Each listing specifies the names and
locations of a particular class of vari-
able. The listings are:

e COMMON variables

EQUIVALENCE variables
® Scalar variables

e Array variables

o NAMELiéT tables

e FORMAT statements

A list of the subprograms called is also
produced.

ERROR MESSAGES

Errors are indicated by 1listing the
statement in its original form with the
erroneous phrases or characters undermarked
by the dollar sign character, followed ' by
comments indicating the type of the error.
This method is described in more detail in
"Phase 1 of the Compiler: Parse (IEYPAR)."

Common Error Messages

The message NO CORE AVAILABLE is pro-
duced (through IEYFORT) by all phases of
the compiler when the program being com-
piled exhausts the main storage space
available to the compiler. This message is
produced only when the PRESS MEMORY routine
cannot provide unused main storage space on
request from the compiler.

The message ROLL SIZE EXCEEDED is pro-
duced (through the Invocation phase,
IEYPORT) by all phases of the compiler when
the size of any single roll or rolls is
greater than permitted. The following cir-
cumstances cause this message to be
produced: :

e The WORK roll exceeds the fixed storage
space assigned to it.

e The EXIT roll exceeds the fixed storage
space assigned to it.

e Any other roll, with the exception of
the AFTER ,POLISH roll and the CODE
roll, exceeds 64K bytes of storage. 1In
this case, the capacity of the ADDRESS
field of a pointer to the roll is
exceeded and, therefore, the informa-
tion on the roll is unaddressable. The
AFTER POLISH and CODE rolls are
excepted, since pointers to these rolls
are not required.

The compilation terminates following the
printing of either of these messages.

COMPILER DATA STRUCTURES

The POP language is designed to manipul-
ate certain well-defined data structures.

Rolls, which are the tables primarily
used by the compiler, are automatically
handled by the POP instructions; that is,
when information is moved to and from
rolls, controls indicating the status of
the rolls are automatically updated.

Items (variables) with fixed structures
are used to maintain control values for
rolls, to hold input characters being pro-
cessed, and to record Polish notation, etc.
These item structures are also handled
automatically by the POP instructions.

The arrangement of the parts of the
compiler is significant because of the
extensive use of relative addressing in the
compiler. General registers are used to
hold base addresses, to control some rolls,
and to assist in the interpretation of the
POP instructions,

ROLLS AND ROLL CONTROLS

Most of the tables employed by the
compiler are called rolls. This term de-
scribes a table which at any point in time
occupies only as much storage as is
required for the maximum amount of informa-
tion it has held during the present compi-
lation (exceptions to this rule are noted
later). Another distinctive feature of a
roll is that it is used so that the last
information placed on it is the first
information retrieved. ~-- it uses a "push
up? logic.

Section 1: Introduction to the Compiler 21

With the exception of the WORK and EXIT

rolls, the rolls of the compiler are main-
tained in an area called the roll storage
area. - The 'rolls ' in this-. area-are both
named and numbered. While. the references

to rolls in this document and in the
compiler comments are primarily. by name,
the names -are converted to corresponding
numbers at assembly.time. and the rolls are
arranged in storage and referred to by
number.

If the roll storage area is considered
to.. be one block of continuous storage, the
rolls are placed in-this area in. .ascending

sequence by roll number; that is, roll 0
begins at the base address of the roll
storage area; ..rolls.1, 2, 3, etc., follow

roll zero in sequence, with the roll whose
number is largest terminating the roll
storage area.

Initially, all rolls except roll 0 are
empty and occupy no space;- this . is accomp-
lished by having thé beginning and "end of
all rolls located at the same place. (Roll
0, the LIB roll, 1is a fixed-length roll
which contains all of its data. initially.)
when information is to be placed on a roll
and no space is available due to a conflict
with the next roll, rolls greater-in number
than the roll in question are moved down
(to higher addresses). to _make the space
available. This is accomplished by physic-
ally moving the information on:.the rolls a
fixed number of storage locations and alt-
ering the controls :to indicate the change.
Thus, roll 0 never changes in size, loca-
tion, or contents; all other rolls. expand
to higher -addresses as required. When
information is removed from a roll, the
space which had been occupied by that
information is left vacant; therefore, it
is- not necessary to move rolls for each
addition of information. -

With the exception of the area occupied
by roll 0, the roll storage area actually
consists of any number of - non-contiguous
blocks of 4096 bytes of storage. The space
required for roll 0 is not part of one of
these blocks., Additional blocks of storage
are acquired by the compiler whenever cur-
rent roll storage 1is exceeded. -If the
system is unable to fulfill a request for
roll storage, the PRESS MEMORY routine is
entered to find roll space that is no
longer in |use, If 32 or more bytes are
found, the compilation continues. If fewer
than 32 bytes are found, the compilation of
the current program .is terminated, the
message NO CORE AVAILABLE is printed, and
space is freed. - If there are multiple
programs, the next one is compiled.

The following paragraphs describe the

controls and statistics maintained by the
compiler in order +to control the storage

22

allocation for rolls and the functioning o
the "push up" logic. : .

ROLL ADR Table

The ROLL ADR table is a 1000-byte table
maintained in IEYROL. Each entry in this
table holds the beginning address of a
block of storage which has been assigned to
the roll storage area. The first address
in the table 1is always the . beginning
address of roll 0. The second address is
that of the first U4K-byte block of storage
and, therefore, the. beginning address of
roll 1. Initially, _ the last - address
recorded on the table is the beginning
address of a block which holds the CODE and

AFTER POLISH rolls, with the CODE roll
beginning at the first 1location: in the
block.

As information 1is recorded on rolls
during the operation of the compiler, addi-

tional storage space may eventually be
required. Whenever storage is needed for a
roll which precedes the CODE roll, an

additional UK Dblock is requested from the
system and its address is inserted into the
ROLL ADR table immediately before the entry
describing the CODE roll base. This inser-
tion requires that any entries describing

the CODE and AFTER POLISH rolls be moved
down in the ROLL ADR table. The informa-
tion on all rolls following (greater in

number than) the roll requiring . the space
is then moved down a fixed number of words.

The roll which immediately precedes the
CODE roll moves into the new block of
storage. This movement of the rolls
creates the desired space for the roll

requiring it. The movement of rolls.does
not respect roll boundaries; that is, it is
entirely possible that any roll or rolls
may bridge two blocks of storage.

When additional storage space is
required for the AFTER POLISH roll, a block
is requested from the system and its begin-
ning address is added to the bottom of the
ROLL ADR table. When the CODE roll
requires more space, a new block is. added
in the same manner, the AFTER POLISH roll
is moved down into the new block, and the

vacated space 1is available to the CODE
roll. :

The CODE and AFTER POLISH rolls are
handled separately because the amount of

information which can be expected to reside
on them makes it impractical to move them
frequently in order to satisfy storage
requirements for all other rolls. The CODE
roll is also somewhat unique in that it is
assigned a large amount of space: before it
is used; that is, the AFTER POLISH roll-

does not begin at the same location as does
the CODE roll. :

BASE, BOTTOM, and TOP Tables

In order to permit dynamic allocation as
well as to permit the use of the "push up"
logic, . tables containing the variables
BASE, BOTTOM, - and. TOP. are maintained to
record the current status of each of the
rolls. These variables indicate addresses
of rolls. Information stored on rolls is
in . units of fullwords; hence, these
addresses are always multiples of four.
The length of each of the tables is deter-
mined by the number of rolls, and the roll
number. is an index to the appropriate word
in each table for the roll. :

Each of the variables occupies a full-
word and has the following configuration:

11 12 3

0 12 90 1
~ T - T - -1
	Entry number	
~	into the	Displacement
	ROLL ADR	(12 bits)
	Table I I	
L 1 —————-a1 - J
The entry number points to an entry in the

ROLL ADR table and, hence, to the beginning
address of a block of roll storage. The
displacement 1is a byte count “from the
beginning ofthe indicated storage block to

the 1location to which the variable (BASE,
BOTTOM, or TOP) refers.
It 1is significant to -note that the

displacement field in these variables occu-
pies twelve Dbits., If the displacement
field is increased beyond its maximum value
(4095), the overflow increases the entry
number into the ROLL ADR table; this is the

desired result, since it simply causes the
variable to point to the next entry in the
table -and effectively indicate the next
location in the roll storage

area, the
beginning of the next block.

The first status variable for each roll,

BASE, indicates the beginning address of
that roll, minus four. The second vari-
able, BOTTOM, indicates the address of the

most recently entered word on the roll.

If the roll is completely empty, its
BOTTOM is equal to its BASE; otherwise,
BOTTOM always exceeds BASE by a multiple of
four. Figure 7 illustrates a roll which
contains information.

BASE (n) l

r 1
> | | <===—= unused
TP ()) | [
prmmm e o4
prmmmmm oo 1
t -
prommm oo :
| . | X bytes
| . |
| . I
e ——————— i
BOTTOM(n)~-—-=>| |
L 4
Figure 7. Roll Containing K Bytes of
Information

When information is to be added to a
roll, it 1is stored at the address pointed
to by BOTTOM, plus four, and BOTTOM is
increased by four. When a word is to be
retrieved from a roll, it is read from the
address specified by BOTTOM, and, under
most. circumstances, BOTTOM is reduced by
four, thus indicating that the word is no
longer occupied by the roll. This altera-
tion of the value of BOTTOM is termed

_____ If the information retrieved from
a roll is to remain on the roll as well as
at the destination, BOTTOM is not changed.:
This operation is indicated by the . use of
the word ‘“"keep" in the POP instructions
that perform it.-

The current length (in bytes) of a roll
is determined by subtracting its BASE from
its BOTTOM. Note that this is +true even
though the. entry number field appears in
these variables, since each increase in
entry number indicates 4096 bytes occupied
by the roll. Thus, there is no 1limitation
on the size of a roll from this source.

For each 1roll, an additional status
variable, called TOP, is maintained. TOP
enables the program to protect a portion of
the roll from destruction, while allowing
the use of the 1roll as though it were
empty. Protecting 'a roll in this way 1is
called reserving the roll. The contents of
TOP (always greater than or equal to the
contents of BASE) indicate a false BASE for
the roll. The area between BASE and TOP,
when TOP does not equal BASE, cannot be
altered or removed from the roll. Ascend-
ing locations from TOP constitute the new,
empty roll.

Like BASE, TOP points to the word imme-
diately preceding the first word into which
information can be stored. A value is
automatically stored in this unused word
when the roll is reserved; the value is the
previous value of TOP, minus the value of
BASE and 1is called the reserve _mark.
Storage of this value permits more than one
segment of the roll to be reserved.

Section 1: Introduction to the Compiler = 23

A single roll (roll n), then, containing
K bytes of information, (where K'is always
a multiple of four) and having no reserved
status, has the following settings for its
status variables:

BOTTOM = BASE + K = TOP + K

Figure 7 also illustrates this roll. 1If
the same roll contains L bytes reserved and
K additional bytes of information, the
settings of its status variables are as
follows:

BOTTOM = TOP + K = BASE + L + K + U

This roll is shown in Figure 8. Note that
the relationships given above are valid
because of the structure of the BASE,
BOTTOM, and TOP variables.

4 bytes

1
| <=——unused

-1
|

BASE (n)-————- >

L bytes

4
|
|
4
1
|
|
|
y
|
|
3
1
|
4
1
|

TOP (n)-———-—-—— > <---previous

TOP-BASE

— i, e b . i — . c— ek s e c——

t

K bytes

BOTTOM (n)—-—-->
Roll Containing L Bytes of Re-
served Infcrmation and K Bytes

~ of New Information

Figure 8.

Special Rolls

The WORK roll and the EXIT roll are
special rolls in that they are not main-
tained in the roll storage area, but rather
appear in IEYROL with a fixed amount of
storage allocated to each. They are rolls

24

in the sense that they employ the same push
up logic which is used for the other rolls;
however, they are not numbered, and their
controls are, therefore, not maintained in
the tables used for the other rolls.

The WORK roll is used as a temporary
storage area during the operations of the
compiler. Because information is moved to
and from the roll frequently it is handled
separately from other rolls.

‘The EXIT roll warrants special treatment
because it is used frequently in maintain-
ing exit and entrance addresses for compil-
er routines.

The bottom of the WORK roll is
in general register U4, WRKADR;
register 5, EXTADR, holds the address of
the bottom of the EXIT roll. These values
are absolute addresses rather than in the
format of the BOTTOM variable recorded for
other rolls.,

recorded
general

For a more detailed explanation of the
WORK and EXIT rolls, see Appendix B "Rolls
Used by the Compiler."

Central Items, Groups, and Group Stats

CENTRAL ITEMS: The items SYMBOL 1, SYMBOL
2, SYMBOL 3, DATA 0, DATA 1, DATA 2, DATA 3
and DATA U4, two bytes each in length, and
DATA 5, eight bytes in 1length, contain
variable names and constants. These items
are called central due to the nature and
frequency of their wuse. They occupy
storage in the order listed, with DATA 1
aligned to a doubleword boundary.

In general, SYMBOL 1, 2,
variable names; DATA 1 and 2 are used to
hold real constants, DATA 3 and 4 to hold
integer constants, DATA 1, 2, 3 and 4 to
hold double precision and complex con-
stants, and DATA 1, 2, 3, 4 and 5 to hold
double-precision complex constants.

and 3 hold

GROUPS: While the basic unit of informa-
tion stored on rolls is a fullword, many
rolls contain logically connected informa-
tion which requires more than a singleword
of storage. .Such a collection of informa-
tion is called a group and always occupies
a multiple of four bytes. A word of a
group of more than one word is sometimes
called a rung of the group.

Regardless of the size of the group on a
given roll, the item BOTTOM for the roll
always points to the last word on the roll.
Figure 9 shows a roll with a group size of
twelve.

4 bytes
r 3 BASE (n)
| | <--
-+ 4 (TOP (n)
| I
L d
T 1
1st group < | |
L 4
v 1
| |
L 4
v 1
| |
_ k i
2nd group « | |
k
|
L
S r
I |
R ¥
1} 1
3rd group « | |
t .|
] | <-- BOTTOM (n)
L 4
Figure 9. Roll With a Group Size of
Twelve

For some rolls, the size of the group is
not fixed. In these cases a construct
called a "plex" is used. The first word of
each plex holds the number of words in the
plex, exclusive of itself; the remainder
holds the information needed in the group.
(See Figure 10.)

4 bytes
r h)
BASE (n) | |<---no. words
->t 4 in group
TOP (n). S .|
| 3 |
L 4
r L
¢ {
l I c:[roup
b 1 information
| |)
b 1
| 4 I
[b
r 1
| .
b 1
| |) plex
t 1
r
I 1}
t {
| |
b 1
| 2 Il.
8 Jd
r 1
| | > plex
| - 4
T 1
BOTTOM (n) | |s
L 4
Figure 10. Roll with Variable Group Size

The assignment of roll storage does not
respect group boundaries; thus, groups may
be split between two blocks of roll
storage.

s GROUP__STATS: Since the size of the group
varies from roll . to roll, this charac-
teristic of each roll must be tabulated in
order to provide proper manipulation of the
roll. In addition, the groups on a roll
are frequently searched against the values
held in the central items (SYMBOL 1, 2, 3,
etCey)e Additional characteristics of the
roll must be tabulated in order to provide

for this function. Four variables tabu-
lated in the group stats tables are
required to maintain this information.

(See Section 2 "IEYROL Module.")

The first group stats table contains a
l1-word entry for each roll. The entry is
divided into two halfword values. The
first of these is the displacement in bytes
from SYMBOL 1 for a group search; that is,
the number of bytes to the right of the
beginning of SYMBOL 1 from which a compara-
tive search with the group on the roll
should begin. This value is zero for rolls
which contain variable names (since these
begin in SYMBOL 1), eight for rolls which
contain real, double-precision, complex or
double-precision complex constants (since
these begin in DATA 1), and twelve for
rolls which contain integer constants.

The second value in the first group
stats table is also a displacement; the
distance in bytes from the beginning of the
group on the roll to the byte from which a
comparative search with the central items
should begin.

The second group stats table also holds
a 1-word entry for each roll; these entries
are also divided into two halfword values.
The first of these is the number of conse-
cutive bytes to be used in a comparative
search, and refers to both the group on the
roll and the group in the central items
with which it is being compared.

is
in
the

The second item in the second table
the size of the group on the roll,
bytes. For rolls which hold plexes,
value of this item is four.

For example, the DP_CONST roll, which is
used to hold the double-precision constants
required for +the object module, has.an
8-byte group. The settings of the Group
Stats for this roll are 8, 0, 8, and 8,
respectively. The first 8 indicates that
when this roll 1is searched in comparison
with the central items, the search should
begin eight bytes to the right of SYMBOL 1
(at DATA 1). The 0 indicates that there is
no displacement in the group itself; that
is, no information precedes the value to be
compared in the group. The second 8 is the
size of the value to be searched. The
final 8 is the number of bytes per group on
the roll.

Section 1: Introduction to the Compiler 25

The group stats for the ARRAY roll
(which holds the names and dimension infor-
mation of arrays) ‘are 0, 0, 6, and 20.
They indicate that the search begins at
SYMBOL 1, that the search begins 0 bytes to
the right of the beginning of the group on
the roll, that the number of bytes to be
searched is 6, and that the group 6 size on
the roll is 20 bytes.

Figures 11 and 12 show the two group
stats tables containing the information on

the DP CONST roll and the ARRAY roll
discussed above. It should be noted that
the information contained on these two

tables is arranged according to roll num-
bers. In other words, the group stats for
roll 5 are in the sixth entry in the tables
(starting with entry number 0).

4 bytes ' .
- T ;!
L ! 4
r T 1
L 4 J
r 1
| . |
| |
| |
t {
v T
DP CONST roll---=>| 8] 04
[N 1 4
r 1
] . |
| . |
| . |
1 y]
v T R}
ARRAY roll—-—->| 0] 0}
b) N y]
r 1
| . |
| . |
| . |
b T 4
v 1 4
Figure 11. First Group Stats Table
4 bytes
r T 1
[4 y]
v T 1
1 1 2
T N
| . |
| . !
| . |
L 4
13 T 1
DP CONST roll-—->| 8] 8|
[} 4 4
v 1
| . |
| }
| . a
L 1
v T b
ARRAY roll-—-->| 6| 20}
L L d
r M
| . |
| . |
| . |
[N]
L} T 1
L L J

Figure 12. Second Group Stats Table

26

- tions.

OTHER VARIABLES

In addition to the central items,
several other variables used in the compil-
er perform functions which are significant
to' the understanding of the POP instruc-
These are described in the follow-
ing paragraphs.

Answer Box

The variable ANSWER BOX, which is re-
corded in the first byte of the first word
of each EXIT roll group, is wused to hold
the true or false responses from POP
instructions. The value "true" is repre-
sented by a nonzero value in this variable,
and "false" by zero. The value is checked
by POP jump instructions.

Multiple Precision Arithmetic

Most of the arithmetic performed in the
compiler is- fullword arithmetic. When
double-precision arithmetic 1is required,
the variables MPAC 1 and MPAC 2, four bytes
each in 1length, are wused as a double-
precision register. These variables are
maintained in main storage.

Scan Control

Several variables are used in the
character scanning performed by the first
processing ‘phase of +the compiler, Parse.
Their names, and terms associated with
their values, are frequently used 1in
describing the POP instructions.

The variable CRRNT CHAR holds the source
statement character which is currently
being inspected; the variable is four bytes
long. The position (scan arrow) of the
current character within the input state-
ment (its column number, where a continuous
column count is maintained over each state-
ment) is held in the low-order bit posi-
tions of the fullword variable CRRNT CHAR
CNT.

Non-blank characters are called "active
characters, " except when 1literal or IBM
card code - information is being scanned.
The variable LAST CHAR CNT, which occupies
one word of storage, holds the column
number of the active character previous to
the one in CRRNT CHAR.

1
Column number: 1234567890

DO 50 I =1, 4

A(I) = B(I)*%*2
DO 50 J=1, 5
50 Cc(J+1) .= A(I)

Explanation:

In the
which contains the above statements,
ment 50 is currently being parsed.

processing of the source module
state-
The

current character from the input buffer is
J. The settings of the scan control
variables are shown in Figure 13.
ettt 1
| (EBCDIC) J |
L e e e e e e e e e e e e e e e 4

CRRNT CHAR
[T T T T 1
| N
L J

CRRNT CHAR CNT

(scan arrow)
0t 1
|1 8 |
L J

LAST CHAR CNT

Figure 13, Scan Control Variables

Flags

Several flags are used in the compiler.
These 1-word variables have two possible
values: on, represented by nonzero, and
off, represented by zero. The name of the
flag indicates the significance of the "on"
setting in all cases.

Quotes

are sequences of characters pre-
count; they

Quotes
ceded by a halfword character

are compared with the input data to deter-
mine a statement type during the Parse
phase. These constants are grouped
together at the end of phase 1. The

location 1labeled QUOTE BASE is the begin-
ning location of the first quote; instruc-

tions which refer
with address fields
this location.

to quotes are assembled
which are relative to

Figure 14 shows some of the quotes used
by the compiler and how they -‘are arranged
in storage. ‘

4 bytes
r 1
QUOTE BASE | 00 02 N D |
prmmmm oo .
| 00 08 I M |
e 1
| E N S I |
prmm e 1
| © N b b |
prmm oo .
| 00 07 M P |
- 1
| L I C I
b oo .
| T b b b |
——- —-- -1
| 00 07 L o |
e 1
| G I C A |
pmmm e e 1
| L b b b |
b .
| . |
| . I
| . |
¢ -4
| 00 06 F o |
prmm oo 1
R M A T |
B

Messages

The messages used in the compiler, which
are also grouped together at the end of
Phase 1, are the error messages required by
Parse for the source module 1listing. The
first byte of each message holds the condi-
tion code for the error described by the
message. The second byte of the message is
the number of bytes in the remainder of the
message. The message follows this halfword
of information.

The location labeled MESSAGE BASE is the
beginning location of the first message;
instructions which refer to messages are
assembled with address fields relative to
this location.

Section 1: Introduction to the Compiler 27

COMPILER ARRANGEMENT AND GENERAL REGISTER General register 2, PGB2, holds the
USAGE : beginning address of the global jump table,
a table containing the addresses of compil-
er routines which are the targets of jump
Figure 15 shows the arrangement of the instructions. (See Appendix A for further
compiler in main storage with the Parse discussion of this table and the way in
phase shown in detail. General registers which it is used.) The global jump table
that hold base locations within the compil- appears in each phase of the compiler and
er are shown pointing to the locations they is labeled PROGRAM BASE 2; thus, the value
indicate. Note that the labels CBASE and held in general register 2 is changed at
PROGRAM BASE 2 appear in each phase of the the beginning of each phase of the
compiler; the general registers CONSTR and compiler.
PGB2 contain the locations of those labels
in the operating phase.

r T T T T TS T T T T T T T T T ST T T T T T T T T T T T T T T T T 1
] Register | Label | Contents |
¢ i L {
] Invocation Phase |
¢ v pomm—mmmmome- - ---—--——-{ low
| POPPGB--->| POP TABLE | POP Jump Table | storage
| | b i
| | POP SETUP | POP Machine Language Subroutines

| | T T —— -4
| | | Data for POP Subroutines |
prmmm oo e ¥ - |
| ROLLBR--->]| ROLL BASE | Roll Statistics (Bases, Tops, Bottoms) |
| 1 | frmm oo - -4
| | | Group Stats (Displacements, Group Sizes) |
| ! b = i
| | | WORK Roll |
| | v ——— e 1
| 1 | EXIT Roll |
| | % 1
| | | ROLL ADR Table |
| | pommmmmm oo cc - -4
] | | Roll storage |
A A NN NSNS NSNS NSSS IS NI NSNS NI NSNS NSNS NSNS NSNS NN NI NSNS NSNS NSNS NN NN NNNNNNANSNNINNSNNNNANS
|] | Roll Storage*]
e t-- ~
'] CONSTR--->| CBASE | Parse Data Items |
| | - T 4
| | | Parse Routines]
| ! k i
| PGB2————- >] PROGRAM BASE 2 | Parse Global Jump Table |
| 1 T ; ---4
| | Parse Routines containing assembler]
|] | language branch targets

| T oo e 1
| | QUOTE BASE | Quotes |
| | k i
| | MESSAGE BASE | Messages 1
I i - A ——————————————————————————————— - 4 high
] PHASE 2: Allocate | storage
i 4
i -== 1
] PHASE 3: Unify |
e :
| PHASE 4: Gen |
b B
r 1
| PHASE 5: Exit |
L —_— - — e e e e o e o e e e e e e e e e o e e e e o e 2 o ,’
r

| *Roll storage is allocated in U4K-byte blocks, beginning from the higher end]
| of storage contiguous with Parse. Additional blocks are obtained,. as|

| needed, from preceding (lower) U4K-byte blocks of storage. : |
L J

' Figure 15. Compiler Arrangemeht~with Registers

28

Compiler routines which contain assem-
bler language instructions and are either
branched to by other assembler language
instructions or which themselves perform
internal branches, follow the global jump

table. General register 2 is used as a
base register for references to both the
global jump table and these routines.

Figure 15 shows this register in Parse.

General register 3, called POPADR in the
compiler code, is used in the sequencing of
the POP operations. It holds the address
of the current POP, and is incremented by 2
as each POP is interpreted.

General register 4, called WRKADR, holds
the address of the current bottom of the
WORK roll.

General register 5, called EXTADR, holds

the address of the current bottom of the
EXIT roll.
General register 6, called POPXIT, holds

the return location for POP subroutines.
When POPs are being interpreted by POP
SETUP, the return is to POP SETUP; when

machine language instructions branch to the

POPs, it is to the next instruction.
General register 7, called ADDR, holds
the address portion of the current POP
instruction (eight bits); it is also used
in the decoding of the operation code
portion of POP instructions.
General register 8, called POPPGB, holds

the beginning address of the machine lan-
guage code for the POP instructions and the
POP jump table. Figure 15 shows this
register, which is used as a base for
references to these areas.

called CONSTR, holds
referred

General register 9,
the beginning address of the data
to by the compiler routines. This area
precedes the routines themselves, and is
labeled CBASE, as indicated in Figure 15.
This register is, therefore, used as a base
register for references to data as well as

for references to the routines in the
compiler; its wvalue is changed at the
beginning of each phase.

General register 10, ROLLBR, holds the
beginning address of the roll area; that

is, the beginning address of the base table
(see Figure 15). The value in this
register remains constant throughout the
operation of the compiler.

General register 11, RETURN, holds
return addresses for the POP subroutines.

The remaining general registers are used
temporarily for various purposes 1in the
compiler.

POINTERS

Information defining a source module
variable (its name, dimensions, etc.) is
recorded by the compiler when the name of
the variable appears in an Explicit speci-
fication or DIMENSION statement. For
variables which are not explicitly defined,
this information is recorded when the first
use of the variable is encountered. All
constants are recorded when they are first
used in the source module.

All references to a given variable or
constant are indicated by a pointer to the
location at which the information defining
that variable or constant is stored. The
use of the pointer eliminates redundancy
and saves compiler space.

The pointer is a

1-word value in the
following format: '

1 byte 1 byte 2 bytes
r T] === 1
| TaG | OPERATOR | ADDRESS |
L 4. R J
where:
TAG

is a 1-byte item whose value is repre-
sented in two parts: MODE, occupying
the upper four bits, indicates whether
the variable or constant is integer,
real, complex or logical; SIZE, indi-
cated in the lower four bits, speci-
fies the length of the variable or

constant (in bytes) minus one. (See
Figure 15.1).

Al T T 1
|value | MODE | Value | SIZE |
p------- t----- 1 R
] 0 | Integer | 0 | 1 byte |
} 1 | Real] 1 | 2 bytes |
| 2 | Complex | 3 | 4 bytes |
| 3 | Logical | 7 | 8 bytes |
) 4 | Literals | F | 16 bytes |
| | Hexadecimal | | |
[, R i R d

Figure 15.1 TAG Field MODE and SIZE Values
OPERATOR
is a 1-byte item which contains the
roll number of the roll on which the
group defining the constant or vari-
able is stored.

ADDRESS
is a 2-byte item which holds the
relative address (in bytes) of .the

group which contains the information
for the constant or variable; the
address 1is relative to the TOP of the
roll.

Section 1: Introduction to the Compiler 29

The pointer contains all the information
required to determine an absolute location
in the roll storage area. The roll number
(from the OPERATOR field) is first used as
an index into the TOP table. The ADDRESS
field of the pointer is then added to the
TOP, - and. the result is handled as follows:

1. Its entry number field (bits 12
through 19) is used as an index .into
the ROLL ADR-.table. -

2+ Its ‘displacement - field (bits 20

- through 31) is..added to the base

address found in the ROLL. ADR table.

The result of step 2 is the address
indicated by the pointer.

Example: - Using a pointer whose OPERATOR
field- contains the value 2 and whose
ADDRESS field contains the value 4, and the
following tables:

TOP ROLL ADR
T T T 1 g 1
0 | | | | 0 | |
e e b 4
1] | | | 1] |
2 | | 2 | 20 | 2 | 1000 |
et B b !
o . | I . |
S I . | 1 . |
o . | | . |
| ! | |
the location 1024 is.determined. Note that
for larger values in the pointer and in

TOP, the entry number field of TOP can be
modified by the addition of ADDRESS. In
this case the result of the addition holds

2 and 24 in the entry number and displace-
ment- fields, respectively.

'Since’relative addresses are recorded in
po;nters,» it is not necessary to alter a
pointer-when the roll pointed to is moved.
Note also that the relative address in the
pointer may exceed 4096 bytes with no
complication of the addressing scheme. The
only limitation on the size of a roll comes
about because of the size of the ADDRESS

field of the pointer: 16 bits permit
values less than 64K bytes to be
represented.

30

For the purposes of object code genera-
tion, the mode and size of the constant or
variable is available to influence the type
of operations which can be employed, e.qg.,

integer or - . floating, fullword, or
doubleword.
DRIVERS

In the generation of Polish notation
from the source language statements,
"drivers" are also used. These "“drivers"

are values that are one word long and have
the same format as the pointer. The +two
types of drivers used by the compiler are
discussed in the following paragraphs.

Operation Drivers

One type of driver 1is the operation
driver, which indicates arithmetic or log-
ical operations to be performed. The
fields of the driver are:

TAG
is a 1-byte item whose value is repre-
sented in two parts: MODE, occupying
the upper four bits, indicates the
‘mode of the operation, e.g., integer,
floating-point, complex or logical;
SIZE, indicated in the lower four
bits, specifies the 1length of the
result of the operation (in bytes)
minus one.)

OPERATOR :
is a 1-byte item containing a value
which indicates the operation to be
performed, e.g., addition, subtrac-
tion, etc.’ The values for OPERATOR
are larger than the number of 'any
roll, and hence, also serve to distin-
guish a driver from a pointer.

ADDRESS

is a 2-byte item containing a value
which indicates the "forcing strength"

of the operation specified by the
driver; its values range from zero to
ten. o ‘

~ The forcing strengths associated with
the operation drivers are given in Table 1.

Table 1. Internal Configuration of Opera-
tion Drivers
r T T T q
] | | | ADDRESS |
|] | | (Forcing]
|Driver | TAG? | OPERATOR|Strength) |
L i 4 1 4
[3 T T T |
| Sprog2 | 00 | 40 | 00 00]
L 1 4 Y .{
T T T T~
| Power | 00 | 42] 00 01
L Il 1 1 . 4
L} T T T R
|Unary Minus | 00 | 43 | 00 02 |
——m oo e fommmmmmmm e 4
|Multiply | 00 | uy | 00 03]
L 1 1 1 4
r " T T - 1
|Divide | 00 | 45 | 00 03]
1 4 1 ____+q
L 3 T T -
|ada | 00 | 4e | 00 Ou]
L i 1 LN § |
T T T T 1
| Subtract | 00 | 47] 00 04]
e e oo 4
|GT | 00 | 48 | 00 05 |
L 1 1 1 4
T K] - T Kl 1
|GE | 00 | 49 | 00 05]
} e .
|LT | 00 | 113\ | 00 05 !
N i S N 1 ¥ |
r T T T 1
|LE | 00 | uB | 00 05]
pomm oo s e frmmmmmmmm e :
1EQ] 00 | 4c | 00 05 |
[y _+___ 4 1 1
L] T T 1
| NE | 00 | 4D | 00 05
1 N e e e e .
T T T + 'q
{ NOT] 00 | LE | 00 06]
L —_—— 1 __+ 1 4
r T T 1
| AND | 00 | uF | 00 07 |
F e B Frmmmmmem e 1
] OR | 00 | 50 |- 00 08
T ——— 4-———4 + 1
|Plus and Below| | |]
] Phony3 | 00] 3F | 00 09]
I 1 1 1 d
[} T T T B
| EOE“ | 00 | 3F | 00 OA |
8 i § i 4

}1The MODE and SIZE settings are placed in|
| the driver when it is used. |
|2Indicates a function reference.]
|3Used to designate the beginning of an|
| - expression.)
14Means "end of expression"™ and is used]

| for that purpose. : J
L

Control Drivers

The other type of driver used in the
generation of Polish notation is called the
control driver. It is used to ‘indicate the
type of the statement for which code is to
be written. The control driver may also
designate some other control function ' such
as an I/0 list, an array reference, or an
error linkage.

The fields of the control driver differ
from those of the operation driver in that
zero is contained in the TAG field, 255 in
the OPERATOR field (the distinguishing mark
for control drivers), and a unique value in
the ADDRESS field. The value ' in - the
ADDRESS field is an entry number into a
table of branches to routines that process
each statement type or control function; it

is used in this way during the operations
of = Gen. The formats of the operation
drivers and control drivers are given in

Appendix E.

Table 1 lists the operation drivers and
the values contained in each field. The
control drivers are given in Table 2. The
ADDRESS field 1is the only field given

because the TAG and OPERATOR fields are
constant. All values are represented in
hexadecimal.

Section 1: Introduction to the Compiler 31

Table 2. 1Internal Configuration of Con- Table 2. Internal Configuration of Con-
trol Drivers (Part 1 of 2) trol Drivers (Part Z of 2)
r T -——=- r T 1
b l R | |
| Driver | APDRESS | | Driver | RDDRESS |
| | | I [[
F -- oot T f-omomm 1
| AFDS I 8 | | ERR= | 210 |
R 1 4 } 4 _I
[} 1) 1 v T
| ARRAY | 23C | | EXP and ARG I 4go |
f--—- B T $-mmmoomm oo 1
| ASSIGN | 20 | | FIND | uc |
1 4 4 L 1 _'
H T 1 r +
| ASSIGNED GOTO | 1c] | FORMAT | 208 I
et i - oo oo .
| ASSIGNMENT | 4] | FORMAT STA | 30. |
1 1 4 I8 4 ,l
H T 1 r +
| AT | 68 | | GoTo I 14 |
¢ 3---- § prmommmmmmmmmmeemeoeeeee fm-mmoemmee .
| BSREF | 34 | | 1IF | 24 |
% —_— R 4 ‘,_ 4 _i
L) 1 T
| cALL | 2c] | IOL DO CLOSE I 218 I
F e fommmmmee § oo frmmmmmmmmeem .
| cGoTo | 18] | IOL DO DATA | 21c |
1 31 4 1 1 ____l
v T 1 L] T
| CONTINUE | 28 | | I0 LIST | 214 I
frmmmmmmm o - e § e e - 1
| DATA | 3c] } LOGICAL IF I 60 |
} 1 4 I8 1 ____{
T T 1 r T
| DEFIWE FILE | i | | NAMELIST | 204 [
F —mmmmmmmo o oo T e 1
| DIRECT IO] 200 | | PAUSE | 38 |
I8 1 J 1 ! _|
r T 1 r T
| DISPLAY ID | 74 | | READ WRITE [48 I
F i R T T fommmm e 1
| Do | 10 | } RETURN] 50 |
L 4 i | 1 1 4
t T 1 [T 1
| DUMMY | 68 I | STANDARD PRINT UNIT | 234 |
b-- - s oo rmmmmmmmmeen y
| END] C | | STANDARD PUNCH UNIT | 238 |
L 3 4 I8 —_— 4
r T a v T 1
| END= | 20C a | STANDARD READ UNIT | 230 I
t e 1 - —mmm oo fommmmmmmmeem :
| ERROR LINK 1 | 54] | STOP | 6U |
I 1 4 L 4 _‘
r T R r T
| ERROR LINK 2 | 58 | | SUBPROGRAM | 40 I
e — oo LI e 1
| ERROR LINK 3 | 5C] | TRACE OFF | 70 I
L i 4 } B S, _l
[} T
| TRACE ON | 6C |
e S 1

32

This section describes in detail the
Invocation phase and the five processing
phases of the compiler and their operation.
The IEYROL module is also described.

INVOCATION PHASE (IEYFORT)

The Invocation phase is the compiler
control phase and is the first and 1last
phase of the compiler. (The logic of the
phase is illustrated in Chart 00.) If the
compiler is invoked in an EXEC statement,
control is received from the operating
system control program. However, control
may be received from other programs through
use of one of the system macro instruc-
tions: (CALL, LINK, or ATTACH.

IEYFORT performs compiler initializa-
tion, expansion of roll storage assignment,
input/output request processing, and com-
piler termination. The following para-

graphs describe these operations in greater

detail.

IEYFORT, CHART 00

IEYFORT is the basic control routine of
the Invocation phase. Its operation is
invoked by the operating system or by
another program through either the CALL,
LINK, or ATTACH macro instructions. The
execution of IEYFORT includes scanning the
specified compiler options, setting the
ddnames for designated data sets, initia-
lizing heading information, and acquiring
time and date information from the system.

IEYFORT sets pointers and indicators to
the options, data sets, and heading infor-
mation specified for use by the compiler.
The options are given in 40 or fewer
characters, and are preceded in storage by
a binary count of the option information.
This character count immediately precedes
the first 1location which contains the
option data. The options themselves are
represented in EBCDIC.

On entry to IEYFORT, general register 1
contains the address of a group of three or
fewer pointers. Pointer 1 of the group
holds the beginning address of an area in
storage that contains the execute options
specified by the programmer (set in the
OPTSCAN routine),

SECTION 2: COMPILER OPERATION

Pointer 2 contains the address of the
list of DD names to be used by the compiler
(set in the DDNAMES routine).

Pointer 3 contains the address of the
heading information. Heading data nay
designate such information as the continua-
tion of pages, and the titles of pages.

If the FORTRAN compiler is invoked by
the control program (i.e., called by the
system), pointers 2 and 3 are not used.
However, if the compiler is invoked by some
other source, all pointers may be wused.
The 1latter condition is determined through
an interrogation of the high order bit of a

pointer. If this bit is set, the remaining
pointers are nonexistent. Nevertheless,
pointers 1 and 3 may exist while pointer 2

is nonexistent; in this
contains all zeros.

case, pointer 2

During the operation of IEYFORT, the
SYSIN and SYSPRINT data sets are always
opened through use of the OPEN macro
instruction. The SYSLIN and SYSPUNCH data
sets are also opened depending upon the
specification of the LOAD and DECK options.
The block sizes of these data sets are set
to 80, 120, 80 and 80, respectively. These
data sets may be blocked or unblocked
(RECFM=F, FB, or FBA) depending upon the
DCB specification in the DD statements.
IEYFORT concludes the compiler initializa-
tion process with a branch to the first
processing phase = of the compiler, Parse
(IEYPAR).

From . this point in the operation of the
compiler, each processing phase calls the
next phase to be executed. However, the
Invocation phase is re-entered periodically
when the compiler performs such input/
output operations as printing, punching, or
reading. The last entry to the Invocation
phase is at the completion of the compiler
operation.

IEYPRNT, Chart O0OA4

IEYPRNT is the routine that is called by
the compiler when any request for printing
is issued. The routine sets and checks the
print controls such as setting the 1line
count, advancing the line count, checking
the lines used, and controlling the spacing
before and after the printing of each line.
These control items are set, checked, . and
inserted into the SYSPRINT control format,

Section 2: Compiler Operation 33

and the parameter information and print
addresses are initialized for SYSPRINT.

If there is an error during the printing
operation, EREXITPR sets the ' error code
resulting from the print error. Any error
occurring. during an input/output operation
results in a termination of compiler
operation.

PRNTHEAD, Chart 01A2

PRNTHEAD is called by IEYPRNT after it
has been determined that the next print
operation begins on a new page. The pro-
gram name and the new page number placed
into the heading format and any parameter
information and origin addresses are
inserted into the SYSPRINT. format. If an
optional heading is specified by the pro-
grammer, it is inserted into the print line
format. A PUT macro instruction is issued
to print the designated line, and all print
controls are advanced for the next print
operation.

IEYREAD, Chart 01A4

IEYREAD is called by the compiler at the
time that a read operation is indicated.
It reads input in card format from SYSIN
using the GET macro instruction. IEYREAD
can handle concatenated data sets.

If an error occurs during the read
operation, the routine EREXITIN is called.
This routine checks the error code
generated and prints the appropriate error
message.,

IEYPCH, Chart 02A3

When a punch output
requested by the compiler, control is tran-
sferred to the IEYPCH routine. The LOAD
and DECK options are checked to determlne
what output to perform.

operation is

Any errors: detected during output result

in a transfer of control to the EREXITPC,
for SYSPUNCH, or EREXITLN, for SYSLIN,
routine. The routine sets a flag so that

no further output is placed on the affected
file.

34

PRNTMSG, Chart 03A1

PRNTMSG 'is called when any type of
message 1is' to be printed. The print area
is initialized with blanks and the .origin
and displacement controls are set. The
message is printed in two segments; each
segment is inserted into the print area
after the complete message length is deter-
mined and the length and origin of each
segment has been calculated. Once the
entire message has been inserted, the car-
riage control for printing is set and
control is transferred to the system to
print the message.

IEYMOR, Chart 01D1

IEYMOR is called when additional roll
storage area is needed for compiler opera-
tion. This routine may be entered from any
of the processing phases of the compiler.
The GETMAIN mac¢ro instruction is issued by

this routine and transfers control to the
system for the allocation of one U4K-byte
block of contiguous storage. The system

returns to IEYMOR with the absolute address
of the beginning of the storage block in
general register: 1. Once the requested
storage space has been obtained, IEYMOR
returns to the invoking phase. If the
system is unable to allocate the requested
storage, inactive modules of . the compiler
are deleted. Those preceding the currently
active module are deleted first; then those
following it are deleted, if necessary.
Should additional space be needed after all

inactive modules are deleted, compiler
operations are terminated.

When IEYMOR returns to the invoking
phase with the ~absolute . address of the

storage block. in general register 1, the
invoking phase then stores the contents of
register 1. in the ROLL ADR table.

The ROLL ADR table is wused by the
compiler to record the addresses of the
different blocks of storage that have been
allocated for additional roll capacity.
The contents of the table are later used in
IEYRETN for releasing of the same storage
blocks.

IEYNOCR

IEYNOCR is called by PRESS MEMORY
(IEYPAR) whenever it is unable to obtain at
least 32 bytes of unused storage. IEYNOCR
prints the message NO CORE AVAILABLE,
branches to a subroutine that checks to see
if there are any source language cards to
be disregarded, and then exits to IEYRETN.

IEYRETN, Chart 03A2

The compiler termination routine
(IEYRETN) is invoked by Exit (IEYEXT) or by
one of the input/output routines after the
detection of an error.

The routine first obtains the error
condition code returned by the compiler and
tests this value against any previous value
received during the compilation. The com-
piler communications area for the error
code 1is set to the highest code received
and a program name of "Main" is set in the
event of multiple compilations. The rou-
tine then checks general register 1 for the
address of the ROLL ADR table. Each entry
of the ROLI, ADR table indicates the begin-
ning of a 4K~-byte block of roll storage
that must be released. A FREEMAIN macro
instruction is issued for each block of
storage indicated in the table until a zero
entry 1is encountered (this denotes the end
of the ROLL ADR table). '

The presence of more than one source
module in the input stream is checked by
interrogating the end-of-file indication
and the first card following this notation.
1f another compilation is indicated, the
line, card, and page count control items
are reinitialized and all save registers
used by the Invocation phase are restored.
The number of diagnostic messages generated
for the compilation is added to a total
count for the multiple compilation and the
diagnostic error count is reset to zero.
The first processing phase of the compiler,
Parse (IEYPAR), is called and the operation
of the compiler proceeds as described in
the previous paragraphs and those pertain-
ing to the processing phases.

If another compilation is not indicated,
a check is made to determine if there was a
multiple compilation. If there was a mul-
tiple compilation, an indication of the
total number of diagnostic messages
generated for all of the compilations is
printed. Also, routine IEYFINAL closes the
data set files used Dby the compiler (by
means of the CLOSE macro instructionji. The
terminal error condition code is obtained
and set for the return to the invoking
program, and all saved registers . are
restored before the return is made. .

Routine IEYFINAL also receives control
from other compiler routines when an input/
output error is detected.

each

OPTSCAN, Chart AA

OPTSCAN determines the existence of the
parameters specifying the compiler options.
If options are specified, the wvalidity of
option is checked against the parame-
ter table and the pointer to these options
is set once the options have been vali-
dated. The program name is noted depending
upon the presence or absence of the NAME
parameter. However, if these options are
not specified, the first pointer of the
group of three supplied to the compiler by
the system contains zero.

DDNAMES, Chart AB

DDNAMES scans the entries made for the
names of the data sets to be used by the
compiler. The entries corresponding to
SYSN, SYSIN, SYSPRINT, and SYSPUNCH are
checked; if an alternate name has been
provided, it is inserted into the DCB area.

HEADOPT, Chart AC

HEADOPT determines the existence of the
optional heading information. 1f such
information exists, 1its 1length is deter-
mined, it is centered for printing, and
then 1is inserted into the Printmsg Table,
with pointer 3 being set.

TIMEDAT, Chart AD

TIMEDAT serves only to obtain the time
and date information from the system and to
insert the data into the heading line.

OUTPUT FROM IEYFORT

The following paragraphs describe the
error messages produced during the opera-
tion of the Invocation phase. These mes-
sages denote the progress of the compila-
tion, and denote - the condition which
results in the termination of the compiler.
IEY028T NO CORE AVAILABLE - COMPILATION
TERMINATED

The system was unable to provide a
4K-byte block of additional roll
storage and PRESS MEMORY was
entered. It, too, was unable to
obtain space. The condition code
is 16.

Section 2: Compiler Operation 35

IEY029I

IEY030I

IEY031I

IEY032I

IEYO341

IEY0351

36

DECK OUTPUT DELETED

The DECK option has been specified,
and an error occurred during the
process of punching the designated
output. No error condition code is
generated for this error.

LINK EDIT OUTPUT DELETED

The LOAD option has been specified,
and an error occurred during the
process of generating the load
module. The condition code is 16.

ROLL SIZE EXCEEDED

This message is produced when: (1}
The WORK or EXIT roll has exceeded
the storage capacity assigned; or
(2) Another roll used by the com-
piler has exceeded 64K bytes of
storage, thus making it unaddress-
able. (This condition applies to
all rolls
and CODE

code is 16.

rolls,) The condition

NULL PROGRAM

produced when an

encountered on
set prior to any
The condi-

This message is
end-of-data set is
the input data
valid source statement.
tion code is 0.

I/0 ERROR [(COMPILATION TERMINATED]
XXXo o o XXX

This message 1is produced when an
input/output error is detected dur-
ing compilation. If the error
occurred on SYSPUNCH, compilation
is continued and the COMPILATION
TERMINATED portion of the message
is not printed. The condition code
is 8. If the error occurred on
SYSIN, SYSPRINT, or SYSLIN, compi-
lation is terminated. The condi-
tion code is 16. XXX...Xxx is the
character string formatted by the
SYNADAF macro instruction. For an
interpretation of this informaticn,
see the publication IBM_System/360
operating System: Supervisor_ and
Data Management Macro-Instructions,
Form C28-6647.

UNABLE TO OPEN ddname

This message is produced when the
required ddname data definition
card is missing or the ddname is
misspelled.

except the AFTER POLISH

Multiple Compilations

The following message
the end of 2 multiple.
to indicate the total number of
errors that occurred. The message
will not appear if the cowpiler is
terminated because of an error con-

appears at
compilation

dition or if the compilation con-
sisted of only one main or one
subprograin.
#STATISTICS* NO DIAGNOSTICS THIS
STEP
- or
STATISTICS nnn DIAGNOSTICS THIS
STEP
where:
nnn is the total number of diagnostic
messages for the multiple compilation

expressed as a decimal integer.

PHASE 1 OF THE COMPILER: PARSE (IEYPAR)

"The first processing phase of the
FORTRAN IV (G) compiler, Parse, accepts
FORTRAN statements in card format as input

and translates them.
ments are translated to
which define the

Specification state-
entries on rolls
symbols of the program.

Active statements are translated to Polish
notation. The Polish notation and roll
entries produced by Parse are its primary
output. In addition, Parse writes out all
erroneous statements and the associated
error messages. Parse produces a full
source module 1listing when the SOURCE

option is specified.

The following description of Parse con-
sists of two parts. The first part, "Flow
of Phase 1," describes the overall logic of
the phase by means of both narrative and
flowcharts.

The second part, "Output from Phase 1,°"
describes the Polish notation produced by
Parse. The construction of this output,
from which subsequent phases produce object
code, 1is the primary function performed by
Parse. See DAppendix C for the Polish
format for each statement type.

The source listing format and the error

messages produced by Parse are also
discussed.

The rolls manipulated by Parse are
listed in Table 3 and are mentioned in the
following description of the phase. At the
first mention of a roll, its nature is
briefly described. See Appendix B ‘for a

complete description of a format of a roll.

Table

3. Rolls Used by Parse

Roll Name

Lib

Source

Ind Var

Polish

Literal Const

Hex Const

Global

Fx Const

Fl Const

Dp Const

Complex Const

Dp Complex
const

Temp Name

Tenp

Error Temp

DO Loops Open

Error Message

Error Char

Init

Xtend Lbl

Xtend Target
Lbl

Array

Entry Names

Global Dmy

Error

Local Dmy

o o e e e e e e . e . i e . s . S — — — — — ————

Roll Name
Local Sprog
Explicit

Call Lbl
Namelist Names
Namelist Items

Array Dimension

Temp Data Name

Temp Polish

Equivalence

Used Lib
Function

Common Data

common Name

Implicit

Equivalence
Of fset

Lbl

Scalar

Data Var

Literal Temp

Format

Script

Loop Data

Program Script

AT

Subchk

After Polish

— e — I — — —— — — — — —— — C—— — — — — — — — — — — — — — — —)

|
]
1
|
1
!
|
|
I
1
|
|
1
!
|
|
|
1
|
1
|
-

Section 2: Compiler Operation 36.1

FLOW OF PHASE 1, CHART 04~

START COMPILER initializes the operation
of Parse, setting flags from the user
options, reading and writing out (on
option) any initial comment cards in the
source module, and leaving the first card
of the first statement in an input area.
This routine concludes with the transfer of
control to STATEMENT PROCESS.

STATEMENT PROCESS (G0631) controls the
operation of ' Parse. The first routine
called by STATEMENT PROCESS is PRINT AND
READ. SOURCE. On return from that routine,
the previous source statement and its error

messages have been written out (as defined

by user options), and the statement to be
processed (including any comment cards)
plus the first card of the next statement

will be on the SOURCE _roll. (This roll
holds the source statements, one character
per byte.) STATEMENT PROCESS then calls
STA INIT to initialize for the processing
of the statement and LBL FIELD XLATE to
process the label field of the statement.

On return from LBL FIELD XLATE, if an
error has been detected in the label field
or in column 6, STATEMENT PROCESS restarts.

Otherwise, STA XLATE and STA FINAL are
called to complete the translation of the
source statement. Oon return from STA
FINAL, if the last statement of the source
module has not been scanned, STATEMENT
PROCESS restarts.,

When the last card of a source module

has been scanned, STATEMENT PROCESS deter-
mines whether it was an END card; if not,
it writes a message. The routine then sets
a flag to indicate that no further card
images should be read, and calls PRINT AND
READ SOURCE to write out the last statement
for the source listing (depending on wheth-
er the SOURCE option was specified or was
indicated as the default condition at sys-
tem generation time).

When no END card appears, two tests are
made: (1) If the last statement was an
Arithmetic IF statement, the Polish nota-

tion must be moved to the AFTER POLISH
roll; (2) If the last statement was of a
type which does not continue in sequence to
the next statement (e.g., GO TO, RETURN),
no code is required to terminate the object

module, and the Polish notation for an END
statement 1is constructed on the POLISH
roll. If the NEXT STA LBL FLAG is off,

indicating that the last statement was not
of this type, the Polish notation for a
STOP or RETURN statement is constructed on
the POLISH roll, depending on whether the
source module is a main program or a
subprogram.

After the Polish notation for the STOP
or RETURN has been constructed on the
POLISH 1roll, the Polish notation for the
END statement is then constructed.

Parse keeps track of all inner DO loops
that may possibly have an extended range.
Parse tags the LABEL _roll entries for those

labels within the DO loops that are poss-
ible re-entry points from an extended
range. These tags indicate the points at

which general registers 4 through 7 must be
restored. The appropriate LOOP DATA roll
groups are also tagged to indicate to the
Gen phase which of the inner DO loops may
possibly have an extended range. Gen then
produces object code to save registers 4
through 7. :)

After processing the last statement of
the source module, a pointer to the LOOP
IND VAR roll 1is released, and,
source module was a main program, the
routine REGISTER IBCOM (G0707) is called to
record IBCOM as a required subprogram. For
all = source modules, - the information
required for Allocate is then moved to the

appropriate area, and the Parse phase is
terminated.
PRINT and READ SOURCE, Chart BA

PRINT AND READ SOURCE (G0837) serves
three functions: ‘
1. It writes out the previous source
statement ‘and its error messages as
indicated by user options.

2., It reads the new source statement to
be processed, including any comment
cards, as well as the first card of
the statement following the one to be
processed,

3. It performs an initial classification
of the statement to be processed.

The statement to be written out is found
on the SOURCE roll. ©One line at a time is
removed from this roll and placed in a
120-byte output area from which it is
written out. The new statement being read
into the SOURCE roll ‘is placed in an

80-byte input area and replaces the state-
ment being written out as space on the
SOURCE roll becomes available. Any blank

card images in the source module are elimi-
nated before they reach the SOURCE roll.
Comment cards are placed on the SOURCE roll
exactly as they appear in the source
module. The last card image placed on the
SOURCE roll is the first card of the source
statement following the one about to be

Section 2: Compiler Operation 37

processed; therefore, any comment . cards
that appear between two statements are
processed with the statement which precedes
them. When an END card has been read, no
further reading is performed.

The initial classification of the state-
ment that occurs during the operation of
this routine determines, . at most, two
characteristics about the statement to. be
processed: (1) If it is a statement of the
assignment type, i.e., either an arithmetic
or logical assignment statement or a state-
ment function, or (2) If it is a Logical IF
statement, whether the statement "S" (the
consequence of the Logical 1IF) is an
assignment statement. Two flags are set to
indicate the results of this classification
for later routines.

At the conclusion of this routine, all
of the previous source statements and their
errors have been removed from the SOURCE
roll and are written out., In addition, all
of the statements to be processed (up to
and including the first card of the state-
ment following it) have been placed on the
SOURCE roll.

STA INIT, Chart BB

STA INIT (G0632) initializes for the
Parse processing of a source statement. It
sets the CRRNT CHAR CNT and the LAST CHAR
CNT to 1, and places the character from
column 1 of the source card in the variable
CRRNT CHAR.

It then determines, from a count made
during input of the statement, the number
of card images in the statement; multiply-
ing this value by 80, STA INIT sets up a
variable (LAST SOURCE CHAR) to indicate the
character number of the last character in
the statement.

The routine finally releases the TEMP
NAME roll and sets several flags and
variables to constant initial values before
returning to STATEMENT PROCESS.

LBL_FIELD XLATE, Chart BC

LBL FIELD XLATE (G0635) first saves .the
address of the current WORK and EXIT roll
bottoms. It then inspects the first six
columns of the first card of a statement.
It determines whether a label appears, and
records the label if it does. If any
errors are detected in the label field -or
in column 6 of the source card, LBL FIELD
XLATE records these errors for later print-

38

ing and returns to STATEMENT PROCESS
{(through SYNTAX FAIL) with the ANSWER BOX
set to false.

Pointers to all labels within DO loops
are placed on the XTEND LBL roll. Labels
that are jump targets (other than Jjumps
within the DO loop) are tagged to indicate
to Gen at which points to restore general
registers 4 through 7. : ,

If the statement being processed is the
statement following an Arithmetic IF state-
ment, LBL FIELD XLATE moves the Polish
notation for the Arithmetic IF statement to
the AFTER POLISH roll after adding a point-
er to the label of the present statement to
it.

STA XLATE, Chart BD

Under the control of STA XLATE (G063b)
the source module statement on the SOURCE
roll is processed and the Polish notation
for that statement is produced on the
POLISH 1roll, which holds Polish notation
for source statements, one statement at a
time. Errors occurring in the statément
are recorded for writing on the source
module listing.

The addresses of the bottoms of the WORK
and EXIT rolls are saved. Then, if the
statement is of the assignment type (the
first flag set by PRINT AND READ SOURCE is
on), STA XLATE ensures that a BLOCK DATA
subprogram is not being compiled and falls
through to ASSIGNMENT STA XLATE (G0637).
If a BLOCK DATA subprogram is being com-
piled, STA XLATE returns after recording an
invalid statement error message. If the
statement 1is not of the assignment type, a
branch is made to LITERAL TEST (G0640),
which determines the nature of the state-
ment from its first word(s), and branches
to the appropriate routine for processing
the statement. The names of the statement
processing routines indicate their func-
tions; for example, DO statements are
translated by DO STA XLATE, while Computed
GO TO statements are translated by CGOTO
STA XLATE.

With the exception of LOGICAL IF STA
XLATE, the statement processing routines
terminate their operation through STA XLATE
‘EXIT. LOGICAL IF STA XLATE moves the
second flag set by PRINT AND READ SOURCE
(which indicates whether the statement "S"
is an assignment statement) into the first
flag, and calls STA XLATE as a subroutine

for the translation of the statement "S."
When all of the Logical IF statement,
including "S," has been translated, LOGICAL
IF STA XLATE also terminates through STA
XLATE EXIT.

STA XLATE
whether errors

EXIT (G0723) determines
in the statement are of a

severity level which warrants discarding
the statement. If such errors exist, and
the statement is active (as opposed to a
specification statement), the Polish nota-
tion produced for the statement is removed
and replaced by an invalid statement driver
before a return is made to STATEMENT
PROCESS. Otherwise, the Polish notation is
left intact, and a return is made to
STATEMENT PROCESS.

Section 2: Compiler Operation 38.1

STA_FINAL, Chart BE

'STA FINAL (G0633) increases the state-
ment number by one for the statement just
processed. It then determines whether any
Polish notation has been produced on the
POLISH roll; if no Polish notation is
present, STA FINAL returns to STATEMENT
PROCESS.

If the
tion of a type which may not

statement produced Polish nota-
close a DO

loop, STA FINAL bypasses the check for the
close of a DO loop. Otherwise, STA FINAL
determines whether the label (if there is
one) of the statement corresponds to the
label of the terminal statement of a DO
loop. If so, the label pointer (or poin-
ters, if the statement terminates several

DO loops) is removed from the DO_LOOPS OPEN
roll, which holds pointers to DO 1loop
terminal statements until the terminal

statements are found.

When the statement is the target of a DO
loop, extended range checking is continued.
DO loops which have no transfers out of the
loop are eliminated as extended range can-

didates. In addition, the nest level count
is reduced by one and the information
concerning the array references in the

closed loop is moved from the SCRIPT roll
to the PROGRAM SCRIPT roll.

STA FINAL then places the label pointer
(if it is required) on the Polish notation
for the statement, and, at STA FINAL END,
adds the statement number to the Polish.

Except when the statement just processed
was an Arithmetic IF statement, STA FINAL
END terminates its operation by moving the
Polish notation for the statement to the
AFTER POLISH roll. In the case of the
Arithmetic IF, the Polish notation is not
moved until the label of the next statement
has been processed by LBL FIELD XLATE.
When the Polish notation has been moved,
STA FINAL returns to STATEMENT PROCESS.

ACTIVE END_STA XLATE, Chart BF

" ACTIVE END STA XLATE (GO642) 'is invoked
by STATEMENT PROCESS when the END card has

been omitted and the last statement in the
source module has been read. If the last
statement was not a branch, the routine

determines whether a subprogram or a main
program is being terminated. If it is - a
subpraogram, the Polish notation for a
RETURN is constructed; if it is a main
program, the Polish notation for a STOP
statement 1is - constructed. If the last
statement was a branch, this routine
returns without doing anything.

PROCESS POLISH, Chart BG

PROCESS POLISH (GO844) moves a count of
the number of words in the Polish notation
for a statement, and the Polish notation
for +that statement, to the AFTER POLISH
roll.

OUTPUT FROM PHASE 1

The output from Parse 1is the Polish
notation and roll entries produced for
source module active statements, the roll
entries produced for source module specifi-
cation statements, and the source module
listing (on option SOURCE) and error mes-

sages. The following paragraphs describe
the Polish notation and the source and
error listings. See Appendix B for

descriptions of roll formats.

Polish Notation

The primary output from Phase 1 of the
compiler is the Polish notation for the
source module active statements. This
representation of the statements is pro-
duced one statement at a time on the POLISH
roll. At the end of the processing of each
statement, the Polish notation 1is trans-
ferred to the AFTER POLISH roll, where it
is held wuntil it 1is required by later
phases of the compiler.

The format of the Polish notation dif-
fers from one type of statement to another.
The following paragraphs describe the gen-
eral rules for the construction of Polish
notation for expressions. The specific
formats of the Polish notation produced for
the various FORTRAN statements are given in
Appendix C.

Polish notation is a method of writing
arithmetic expressions whereby the tradi-
tional sequence of "operand;" "operation"
"operand," is altered to a functional nota-
tion of "operation" "operand," T“operand;."
Use of this notation has the advantage of
eliminating the need for brackets of

various levels to indicate the order of
operations, since any "operand" may itself
be a sequence of the form "operation"
"operand™ “operand," to any level of
nesting.

Assuming expressions which do not
include any terms enclosed in parentheses,

the following procedure 1is used to con-
struct the Polish notation for an
expression:

Section 2: Compiler Operation 39

1. At the beginning of the expression, an
artificial driver is placed on the
WORK roll; this driver is the Plus and
Below Phony driver, and has a lower
forcing strength than any -arith-
metic or logical operator. (Forcing
strengths are given in Table 1.)

2. As each variable name or constant in
the expression is encountered, a
pointer to the defining group is
placed on the POLISH roll.

3.. When an operator is encountered, the
corresponding driver is constructed
and it 1is compared with the 1last

driver on the WORK roll:

a. If the current driver has a higher
forcing strength than the driver
on the bottom of the WORK roll
(the "previous" driver, for the
purposes of this discussion), the
current driver is added to the
WORK roll and the analysis of the
expression continues,

b, If the current driver has a forc-
ing strength which is lower than
or equal to the forcing strength
of the previous driver, then:

(1) If the previous driver is the
Plus and Below Phony driver,

the current driver replaces
the previous driver on the
WORK roll (this situation can

only occur when the current
driver is an EOE driver, indi-
cating the end of the expres-
sion) and the analysis of the
expression is terminated.

(2) If the previous driver is not
the Plus and Below Phony driv-
er, the previous driver is
removed from the WORK roll and
placed on the POLISH roll, and
the comparison of the current
driver. against the previous
driver is repeated (that is,
using the same current driver,
this procedure 1is repeated
from 3).

The - sequence of operations which occurs
when the analysis of an expression is

terminated removes the EOE driver from the
WORK roll. :
Example _1: The expression A + B produces
the Polish notation

A

B

+

40

where:

A represents a pointer to the deflnlng
group for the variable A

+ represents the Add driver. This nota-
tion is produced from the top down; when it
is read from the bottom .up, the sequence
described above for Polish notation is
satisfied.

Explanation: The following operations
occur in the production of this Polish
notation:

1. The Plus and Below Phony driver is
placed on the WORK roll.

2. A 'pointer to A is placed on the POLISH
roll.

3. An Add driver is constructed and com-
pared with the Plus and Below Phony
driver on the bottom of the WORK roll;
the Add driver has a higher forcing
strength and is therefore added to the
WORK roll (according to rule 3a,
above) . .

4, A pointer to B is placed on the POLISH
roll.

5. An EOE (end of expression) driver is
constructed and compared with the BAdd
driver on the bottom of the WORK roll;
the EOE driver has a lower forcing
strength, and the Add driver is there-
fore removed from the WORK roll and
added to the POLISH roll (rule 3b2).

6. The EOE driver is compared with the
Plus and Below Phony driver on the
bottom of +the WORK roll; the EOE
driver has a lower forcing strength,
and therefore (according to rule 3bl)
replaces the Plus and Below Phony
driver on the WORK roll.

7. The analysis of the expression is
terminated and the EOE driver is
removed from the WORK roll. The
Polish notation for the expression is
on the POLISH roll.

‘B /C

Example 2: The expression A+
produces the Polish notation

A ;

B

C

/.

+
which,~read from the bottom up, is + /7 C B

A.

Explanation:. The following operations
occur in the production of this ‘Polish
notation:

1. The - Plus and - Below Phony driver is

placed on the WORK roll.

2. A p01nter to A is’ placed on the POLISH
rolls

3.v An Add driver is construcﬁed and com-
pared with the Plus and Below Phony

driver; the Add driver has the higher
forcing strength and is placed on the
WORK roll.

4. A pointer to B is placed on the POLISH
roll.

5. A Divide driver is
compared with the Add driver; the
Divide driver has the ' higher forcing
strength and 1is placed on the WORK
roll.. : . .

6. A pointer to C is placed on the POLISH
roll.

7. An EOE driver is constructed and com-
pared with +the Divide driver; since
the EOE driver has the 1lower forcing
strength, the Divide driver is moved
to the POLISH roll.

8. The EOE driver is compared with the
Add Adriver; since the EOE driver has
the lower forcing strength, the 2add
driver is moved to the POLISH roll.

9. The EOE driver is compared with the
Plus and Below Phony driver; since the
EOE -driver has the lower forcing
strength, it replaces the Plus and
Below Phony driver on the WORK roll,
and the analysis of the expression
terminates with the removal of one
group from the WORK roll.

Example 3: The expression A / B - C
produces the Polish notation

A

B

/

C
which, read from the bottom up, is - C / B
A. . :
Explanation: The ~f0116wing operations
occur in the production of this Polish
notation:

1. The Plus

and Below Phony driver is
placed on the WORK roll. .

constructed and .

2. A pointer to A is placed on the POLISH
roll.:

3. A Divide driver 1is constructed and
compared with the Plus and Below Phony
driver; the Divide driver has the
higher forcing strength and is added
to the WORK roll.

4, A pointer to B is placed on.the POLISH
: roll.

5. A Subtract driver is constructed and
compared with the Divide driver; the
‘Subtract driver R has-.a lower forcing
strength, therefore the Divide. driver
is moved to the POLISH roll.

6. The Subtract driver is compared w1th
the Plus and Below Phony driver; the
Subtract driver has the higher forcing
strength and is added to the WORK
roll.

7. A pointer to C is placed on the POLISH
roll.

8. An EOE driver is constructed and com-
pared with the Subtract driver; since
the EOE driver has a 1lower forcing
strength, the Subtract driver is moved
to the POLISH roll.

9. The EOE driver is compared with the
Plus and-Below Phony driver; the EOE
driver replaces the Plus and Below
Phony driver on the WORK roll and. the
analysis of the expression is ter-
minated.

Recursion is used in the translation . of
an expression when a left parenthesis is
found; therefore, the term enclosed in the
parentheses 1is handled as a separate

expression. The following three examples
illustrate the resulting Polish notation
when more complicated expressions are
transformed: '

Polish Notation
-*+DCBA
/*DC-BA
+**XC/-CX/ZX

Expression

1. A-B*(C+D)

2. (A-B)/(C*D)

3. X/Z/ (X-C) +C**X

The following should be noted with re-
spect to the exponentiation operation:

e Exponentiations on the same level are
scanned right to 1left. Thus, the
expression A**Bx*C**D is equivalent to
the expression A*#* (B**(C**D)),

¢ Two groups are added to the POLISH roll
to indicate each exponentiation opera-
tion. The first of these is the Power
driver; the second is a pointer to the

group on -the global subprogram roll
(GLOBAL SPROG roll) which defines the

Section 2: Compiler Operation 41

required exponentiation routine. Thus,
the expression A ** B produces the
following Polish notation:

Pointer to A.

Pointer to B -

Power driver :
Pointer to exponentiation routine

The concept of Polish notation is
extended in the FORTRAN IV (G) compiler to
include not only the representation of
arithmetic expressions, but also the repre-
sentation of all parts of the active state-
ments of the FORTRAN language. The parti-
cular notation produced for each type of
statement is described in Appendix C. Once
an entire source statement has been pro-
duced on the POLISH roll, phase 1 copies
this roll to the AFTER POLISH roll and the
processing of the next statement begins
with the POLISH roll empty.

Source Listing

The
source module listing.
is requested by the user (by means
option SOURCE), source module cards are
listed exactly as they appear on the input
data set with error messages added on
separate lines of the 1listing. If no
source module 1listing is requested, Parse
writes only erroneous statements and their
error messages. -

secondary output from Parse is the
If a source listing
of the

The following paragraphs describe the
error recording methods used in ‘phase 1,
the format of the source listing and the
error messages generated.

ERROR RECORDING: As a rule, Parse attempts
to continue processing source statements in
which errors are found. However, certain
errors are catastrophic and cause Parse to
terminate processing at the point in the
statement where the error occurred.

compiled
call to the

Statements which cannot be
properly are replaced by a
FORTRAN error routine IHCIBERH.

three techniques of
The first of

Throughout Parse,
error recording are used.
these is used when the error is not cata-
strophic. This method records the char-
acter position in the statement at which
the error was detected (by means of IEYLCE,
IEYLCT, or IEYLCF instructions) and the
number of the error type on the ERROR roll;
after recording this information, Parse
continues to scan the statement.

The second and third techniques of error
recording are used when the error detected

42

is catastrophic, at least to part of the
statement being scanned. The second tech-
nique is a Jjump to an error recording
routine, such as ALLOCATION FAIL or SUB-
SCRIPTS FAIL, which records the error and
jumps to FAIL. The third technique is the
use of one of the instructions, such as
IEYCSF or IEYQSF, which automatically jump
to SYNTAX FAIL if the required condition is

not met. SYNTAX FAIL also exits through
FAIL. : .
If the statement being processed is

active and errors have been detected in it,
FAIL removes any Polish notation which has
been produced for the statement from the
POLISH roll, replacing it with. an error
indicator. FAIL then restores WORK and
EXIT roll controls to their condition at
the 1last time they were saved and returns
accordingly.

Some translation routines modify the
action of the FAIL routine through the use
of the IEYJPE instruction so that FAIL
returns immediately to the location follow-
ing the IEYJPE instruction.. The transla-
tion routine can then resume the processing
of the statement from that point.

FORMAT OF THE SOURCE MODULE LISTING: Error
information for a source module card con-
taining errors appears on the listing lines
immediately following that card. For each
error encountered, a $ sign 1is printed
beneath the active character preceding the
one which was being inspected when the"-
error was detected. The only exception
would be in the case of a SYNTAX error. In
such a case, the $ sign wundermarks the
character being inspected when the error is
detected. The 1listing line which follows
the printed card contains only the $ sign
markers. .

The next 1line of the listing describes
the marked errors. The errors are numbered
within the card (counting from one for the
first error marked); the number is followed
by a right parenthesis, the error number,
and the type of the error. Three errors
are described on each 1line, for as many
lines as are required to 1list all the
marked errors on the source card.

The following is an illustration of the
printed output from phase 1:

DIMENSION ARY(200), BRY(200) CRY(S5,10,10)
o $
1) IE!OO“I COMMA

IF (AA + BB) 15, 20, 250000
$

1) 1IEY010I SIZE

ARY(J) = BRY
$ $:
1) IEY002I LABEL 2) IEY012I SUBSCRIPT
GTO 30

$
1) IEY013I SYNTAX

ERROR TYPES: The types of errors detected
and reported by Parse are described in the
following paragraphs. For each error type,
the entire message which agppears on the
source output is given; the condition code
and a description of the causes of this
error follows the message.

IEY001I ILLEGAL TYPE: This message is
associated with the source module statement
when the type of a variable is not correct
for its usage. Examples of situations in
which this message would be given are: (1)
The variable in an Assigned GO TO statement
is not an integer variakle; (2) In an
assignment statement, the variable on the
left of the equal sign is of 1logical type
and the expression on the right side is
not. The condition code is 8. ‘

IEY002I LABEL: This message appears with a
statement which should be 1labeled and is
not. Examples of such statements are: (1)
A FORMAT statement; (2) The statement fol-
lowing a GO TO statement. The condition
code for the error is 0.

IEY003I NAME LENGTH: The name of a vari-
able, COMMON block, NAMELIST, or subprogram
exceeds six characters in length. If two
variable names appear in an expression
without a separating operation symbol, this
message is produced. The condition code is
4,

IEYOO4I COMMA: A comma 1is supposed to
appear in a statement and it does not. The
condition code is 0.

IEY005I ILLEGAL LABEL: The
label is invalid for example, if an attempt
is made to branch to the label of a FORMAT
statement, ILLEGAL LABEL is produced. The
condition code is 8.

usage of a

JEY006I DUPLICATE LABEL: A label appearing
in the 1label field of a statement is
already defined (has appeared in the label
field of a previous statement). The condi-
tion code is 8.

IEY010I SIZE:

IEY007I ID CONFLICT: The name of a vari-
able or subprogram is used improperly, in
the sense that a previous .statement or a
previous portion of the present statement
has established a type for the namne, - and
the present usage is in conflict with that
type. Examples of such situations are:
(1) The name listed in a CALL statement is
the name of a variable, not a subprogram;
(2) A single name appears more than once in
the durmmy list of a statement function; (3)
A name listed in an EXTERNAL statement has

already been defined in another context.
The condition code is 8.

IEY008I ALLOCATION: Storage assignments
specified by a source module statement -

cannot be performed due to an inconsistency
between the present usage of a variable
name and some prior usage of that name, or
due to an improper usage of a name when it

first occurs in the source module.
Examples of the situations causing the
error are: (1) A name listed in a COMMON
block has been 1listed in anothexr COMMON
block; 2) A variable listed in an EQUIVA-
LENCE statement 1is followed by more than

seven subscripts. The condition code is 8.
The statements of a source
module are wused in an improper sequence.
This message 1is produced, for example,
when: (1) An IMPLICIT statement appears as
anything other than the first or second
statement of the source module; (2) An
ENTRY statement appears within a DO loop.
The condition code is 8.

IEY00SI ORDER:

A number used in the source
module does not conform to the legal values
for its wuse., Examples are: (1) The size
specification in an Explicit specification

statement is not one of the acceptable
values; (2) A label which 1is wused 1in a
statement exceeds the legal size. for a

statement label; (3) An integer constant is
too large., The condition code is 8.

IEY011I UNDIMENSIONED: A variable name
indicates an array (i.e., subscripts follow
the name), and the variable has not been

dimensioned. The condition code is 8.

IEY012I__SUBSCRIPT: The number of sub-
scripts used in an array reference is
either too large or too small for the

array. The condition code is 8.

The statement or part of a
refers does not
If a state-

IEY013I SYNTAX:
statement to which it
conform to FORTRAN IV syntax.

ment cannot be identified, this error mes-
sage is used. Oother cases 1in which it
appears = are: (1) A non-digit appears in

the 1label field; ' (2) Fewer than three

labels follow the expression in an Arith-
metic IF statement. The condition code 1is
8.

Section 2: Compiler Operation 43

IEY014I CONVERT: In a DATA statement or in
an Explicit specification statement con-
taining data values, the mode of the con-
stant 1is different from the mode of the
variable with which it is associated. The
compiler converts the constant to the
correct mode. Therefore, this message is
simply a notification to the programmer
that the conversion 1is performed. The
condition code is 0.

CARD: The source module
statement. The

IEY015I NO_END
does not contain an END
condition code is O.

ILLEGAL__STA.: The statement to
which it is attached 1is invalid in the
context: in which it has been used.
Examples of situations in which this mes-
sage appears are: (1) The statement S in a
Logical IF statement (the result of the
true condition) is a specification state-
ment, a DO statement, etc.; 2) An ENTRY
statement appears in the source module and
the source module is not a subprogram. The
condition code is 8.

IEYO01l61

IEY017I ILLEGAL STA. WRN : A RETURN I
statement appears in any source module
other than a SUBROUTINE subprogram. The

condition code is O.

IEY018I NUMBER ARG: A reference to a
Iibrary subprogram appears with the in-
correct number of arguments specified.

The condition code is 4.

IEY027I CONTINUATION CARDS DELETED: More
than 19 continuation lines were read for 1
statement. All subsequent lines are
skipped until the beginning of the next
statement 1is encountered. The condition
code is 8. '

IEY033I COMMENTS DELETED: More than 30
comment lines were read between the initial
lines of 2 consecutive statements. The
31st comment line and all subsequent com-
ment 1lines are skipped until the beginning
of the next statement is encountered.
(There 1is no restriction cn the number of
comment lines preceding the first state-
ment.) The condition code is 0.

IEY036I ILLEGAL LABEL WRN: The label on
this nonexecutable statement has no valid
use beyond visual identification, and may
produce errcrs in the object module if the

same label is the target of a branch-type
statement. (Only branches to executable
statements are valid.) This message is

produced, for example, when an END state-
ment is labeled. The message is issued as
a warning only. The condition code is 4.

uy

IEY037I PREVIOUSLY DIMENSIONED__WRN, : The
array flagged has been previously dimen-
sioned. The dimensions that were given
first are used. Examples of this error are
(1) a DIMENSION statement defining an array
with a subsequent COMMON statement defining
the same array with new dimensions, or (2)
array dimersions specified in a Type state-
ment and also. in a subsequent DIMENSION

and/or COMMON statement. The condition
code is 4.
IEY038I SIZE WRN.: A variable has Adata

initializing values that exceed the size of
the scalar, the array, or the array ele-
ment. Examples of this error are (1) the
specification REAL A/'ABCDE'/ where A has
not been previously dimensioned (i.e., A is
a scalar), or (2) the specification

DATA A(1)/7H ARBRCDEFG/ where A has been
previously dimensicned. The condition code
is 4.

PHASE 2 OF THE COMPILER: ALLOCATE (IEYALL)

Phase 2 of the
assignment of storage for the
defined in the source module.

compiler performs the
variables
The results

‘of the allocation operations are entered on

tables which are left in storage for the
next phase. In addition, Allocate writes
(on option) the object module ESD cards,
the TXT cards for NAMELIST tables, literal
constants, and FORMAT statements, and pro-
duces error messages and storage maps
(optionally) on the SYSPRINT data set.

The following paragraphs describe the
operations of Allocate in two parts. The
first part, "Flow of Phase 2," describes
the overall logic of the phase by means of
narrative and flowcharts.,

The second part, "Output frcm Phase 2,"
describes the error messages and memory
maps which are produced on the source
module 1listing during the operation of the
phase, as well as the ESD and TXT cards
produced. It also describes the types of
error detection performed during Allocate.

Rolls manipulated by Allocate are listed
in Table U4, and are briefly described in
context. Detailed descriptions of roll
structures are given in Appendix B.

Table

~ - -

|RO11 |
|No. Roll Name | N
| 1 Source |
| 5 Literal Const |
| 7 Global Sprog |
| 14 Temp |
] 15 Do Loops Open |
| 18 1Init |
| 19 Equiv Temp |
|} 20 Equiv Hold |
| 21 Base Table]
| 22 Array |
| 23 Dmy Dimension |
] 24 Entry Names |
| 25 Global Dmy |
| 26 Error Lbl]
| 27 Local Dmy |
] 28 Local Sprog |
| 29 Explicit |
| 30 Error Symbol |
| 31 Namelist Names |
| 32 Namelist Items |
| 34 Branch Table]
| 37 Egquivalence |
| 37 Byte Scalar |
| 38 Used Lib |
] Function |
| 39 cCommon Data |
L 4

4. Rolls Used by Allocate

Roll Name

Halfword
Scalar
Comnmon Name
Implicit
Fquivalence
Offset
Lbl
Scalar
Data Var
Common Data
Temp
Namelist
Allocation
Ccommon Area
Common Name
Temp
Equiv
Allocation
common
Allocation
Format
Subchk
General
Allocation

e it s et e Bt s s s G s e s S s S S, St Wi B s e e S s, Wt G e, et)

Section 2:

Compiler Operation U44.1

FLOW OF PHASE 2, CHART 05

START ALLOCATION (G0359) controls the
operation of the Allocate phase. The pri-
.mary function of this routine is to call
the subordinate routines which actually
perform the operations of the phase.

of Allccate 1is divided
into three parts: the first part performs
initialization; the second part (called
pass 1) makes an estimate of the number of
base table entries required to accommodate
the data in the object module; the third
part actually assigns storage locations for
the object module components, leaving indi-
cations of the assignment in main storage
for use by subsequent phases.

The operation

The first part of Allocate's . operation
is performed by calling the routines ALPHA
IBL AND L SPROG, PREP EQUIV AND PRINT
ERRORS,- BLOCK DATA PROG ALLOCATION, PREP
DMY DIM AND PRINT ERRORS, PRCCESS DO LOOPS,
PROCESS LBL AND LOCAL SPROGS, BUILD PROGRAM
"ESD, ENTRY NAME ALLOCATION, COMMON
ALLOCATION AND OUTPUT, and EQUIV ALLOCATION
PRINT ERRORS, : :

After return from EQUIYV ALLOCATION PRINT
ERRORS, START ALLOCATION initializes for
and begins pass 1. The 'variable PROGRAM
BRERK, which is used to maintain the rela-
tive address being assigned to an object
module component, 1is restored after being
destroyed during the allocation of = COMMCN
and EQUIVALENCE. 2 The groups in the BASE
TABLE_roll (which becomes the ‘object module
base table) are counted, and the value ten
is added to this count to’ provide an
estimate of the size of the -object - module
tase takle. = The BASE TABLE roll is then
reserved so that groups added to the roll
can be ‘separated from those used in the
count. The value one is ‘assigned to the
variable AREA CODE, indicating that storage
to be assigned is all relative to the
teginning of the object module and ' carries
its ESD number.

When these operations are complete,
START ALLOCATION <calls EASE AND BRANCH
TABLE ALLOC, and upon return from this
routine again increases the variable

PROGRAM BREAK by the amount of storage
allocated to EQUIVALENCE. START ALLOCATION
continues its operation by calling BUILD
ADDITIONAL PBASES, PREP NAMELIST, SCALAR
ALLOCATE, ARRAY ALLOCATE, PASS 1 GLOBAL

SPROG ALLOCATE, SPROG ARG ALLOCATION,
LITERAL CONST ALLOCATION and FORMAT
ALLOCATICN. .

After the operation of FORMAT

ALLOCATICN, the last part of Allocate is
begun. - 'The variable PROGRAM BREAK is re-
initialized to the value it was assigned

‘provide for data values which

prior to pass 1. The BASE TABLE roll
groups are counted to determine the total
size of the roll after groups have been
added by pass 1; again, five extra groups
(or ten words) are added to the count to
will appear
in the object module, but which are not yet
‘defined. The PASS 1 FLAG is then turned
off, and START ALLOCATION calls DERUG
ALLOCATE, ALPHA SCRLAR ARRAY AND SPROG,
BASE AND BRANCH TABLE ALLOC, GLOBAL SPROG
ALLOCATE, SPROG ARG ALLOCATION, EQUIV MAP,
SCALAR ALLOCATE, ARRAY ALLOCATE, BUILD
NAMELIST TABLE, LITERAL CONST ALLOCATION,
and FORMAT ALLOCATION. ‘

At RELEASE ROLLS, START ALLOCATIOR con-
cludes its operation by releasing rolls,
increasing the PROGRAM BREAK to ensure that
the next base begins on a doubleword boun-
dary, and calling CALCULATE BASE AND DISP
and BUILD ADDITIONAL BASES in order to
guarantee that at least three bases are
allotted for the TEMP__AND_ _CONST_ _roll.
After this calculation, Allocate prepares
for and relinquishes control to Unify.

ALPHA LBL AND L SPROGS, Chart CA

This routine (G(0543) is the first rou-
tine called by START ALLOCATION., It moves
the binary labels from the LBL roll and the
statement function names ' from - the LOCAL
SPROG roll to the DATA VAR roll. The order
of the labels and statement function nares

on their respective rolls is maintained,
and the 1location on the DATAR VAR roll at
which each begins is recorded. The names
are moved because Allocate destroys them in
storing allocation information, and Exit
needs them for writing the object module
listing.

ALPHA SCALAR_ARRAY AND SPROG, Chart CA

This routine moves the names of scalars,
arrays, and called subprograms to the DATA
VAR roll from the rolls on which they are
placed by Parse. ~The order of names is
preserved and the beginning location for
each type of name on the DATA VAR roll is
saved.

PREP_EQUIV AND PRINT ERRORS, Chart CB

Subscript information on the EQUIVALENCE
OFFSET roll (which indicates the subscripts
used in EQUIVALENCE statements in the
source module) is used by this routine

Section 2: Compiler Operation 45

(G0362) to calculate the relative ad-
dresses of array elements referred to in
statements. (Pointers to the EQUIVALENCE

CFFSET roll are found on the EQUIVALENCE
roll for all subscripted references 1in
EQUIVALENCE statements.) The addresses
computed are relative to the beginning of
the array. When an array reference in a
source module EQUIVALENCE sfatement is out-
side the array, designates an excessive
number of dimensions, or specifies too few
dimensions, an error message is printed by
this routine.

BLOCK DATA PROG ALLOCATION, Chart CC

This routine {G0361) controls the allo-
cation
DIMENSION, EQUIVALENCE,

in a BLOCK DATA subprogram.

and Type statements
Since all data

specified in EQUIVALENCE must be allocated
under COMMON, this routine registers an
error upon encountering on the EQUIVALENCE

roll. The routine terminates with a jump

to RELEASE RCLLS (G0360), which, in turn,
terminates the Allocate phase.
PREP DMY DIM AND PRINT ERRCRS, Chart CD

This routine (G0365) ccnstructs the DMY
DIMENSION roll, placing a rointer to the
ENTRY NAMES roll group defining the ENTRY
with which a dummy array is connected, and
a pointer to the array for each dummy array

containing a dummy dimension.

Before the 1roll is constructed, this
routine ' ensures that each array having
dumry dimensions is itself a dummy, and
that each dummy dimension listed for the
array 1is either in COMMON or is a global
dummy variable in the same call. If any of
these conditions are not satisfied, error

nmessages are written.

PROCESS DO_LOOPS, Chart CE

This routine (G0371) inspects the DO
LOOPS OPEN roll for the purpose of deter-
mining whether DO 1loops opened by the
source module have been left unclosed; that
is, whether the terminal statement of a DO
loop has been omitted from the source
module, The DO LOOPS CPEN roll holds
pointers to labels of target statements for
DO 1loops until the loops are closed. If
any information is present on this roll,
loops have been left unclosed.

46

information on the DO
records the

Oon encountering
LOOPS OPEN roll, this routine
undefined 1labels for 1listing as DO loop
errors, and (on option) 1lists them. It
also sets the high order bit of the TAG
the undefined label to zero; this indicates
to Gen that the loop is not closed.

PROCESS_IBL AND LOCAL SPROGS, Chart CF

This routine (G0372) constructs the
BRANCH TABLE roll, which is to become the

of data specified in DATA, COMMON,

object module branch table. The routine
first processes the LBL roll. For each
branch target label found on that roll, a
new BRANCH TABLE roll group is constructed,

and the label on the LBL roll is replaced
with a pointer to the group constructed.
Undefined 1labels are also detected and

printed during this process.

When this operation 1is complete, the
LOCAL__SPROG_roll (which lists the names of
all statement functions) is inspected, and
for each statement function, a group is
added to the BRANCH TABLE roll, and part of
the statement function name is placed with
a pointer to the constructed group.

BUILD PROGRAM ESD, Chart CG

This routine (GO0374) constructs and
punches the ESD cards for the object module

itself (the program name) and for each
ENTRY to the object module. It also
assigns main storage locations to the

object module heading by increasing the
PROGRAM BREAK by the amount of storage
required.

ENTRY NAME ALLOCATION, Chart CH

This routine (G0376) does nothing if the
source module is other than a FUNCTION
subprogram. If, however, the source module
is a FUNCTION, this routine places the
names of all ENTRYs to the source module on
the EQUIVALENCE roll as a single
EQUIVALENCE set; it also ensures that the
ENTRY name has been used as a scalar in the

routine. If the variable has not been
used, an appropriate error message is
printed and the scalar variable is defined

by this routine.

COMMON ALLOCATION AND OUTPUT, Chart CI

This routine (G0377) allocates all COM-
MON storage, one block at a time, generat-
ing the COMMON ALLOCATION roll (which holds
the name, base pointer, and displacement
for all COMMON variables) in the process.
Groups are added to the BASE TABLE roll as
they are required to provide for references
to variables in COMMON. The ESD cards for
COMMON are constructed and written out.
All errors in COMMON allocation are written
on the source listing and the map of COMMON
storage is also written (on option).

EQUIV_ALLOCATION PRINT ERRORS, Chart CK

This routine (G0381) allocates storage
for EQUIVALENCE variables, creating the
EQUIVALENCE ALLOCATION roll in the process.
For each variable appearing in an EQUIVA-
LENCE set, except for EQUIVALENCE variables
which refer to COMMON (which have been
removed from the EQUIVALENCE roll during
the allocation of COMMON storage), the name
of the variable and its address are
recorded.

The information pertaining to EQUIVA-
LENCE sets is stored on the EQUIV ALLOCA-
TION roll in order of ascending addresses.
Required bases are added to the BASE TABLE
roll, and all remaining EQUIVALENCE errors
are printed.

BASE AND BRANCH TABLE ALLOC, Chart CL

This routine (GOou37) assigns main
storage for the object module save area,
base table, and branch table. The required
base table entries are added as needed,
PROGRAM BREAK 1is increased, and the base
pointer and displacement for each of these
areas is recorded in a save area for use by
Gen. During pass 1 of Allocate, this
assignment of storage 1is tentative and
depends on the estimate of the size of the
base table. The second time this routine
is operated, the actual number of base
table entries required in the object module
has been determined by pass 1 and the space
allocation is final.

SCALAR ALLOCATE, Chart CM

Fach group on the SCALAR roll is
inspected by this routine (G0397), which
defines all nonsubscripted variables. It

allocates storage for the variables listed
on the roll, except for those which are in
COMMON or members of EQUIVALENCE sets. The
first +time SCALAR ALLOCATE operates, it
determines the number of base table entries
required to accommodate references to the
object module scalar variables. The infor-
mation on the SCALAR roll is not altered,
nor is any other roll built or modified by
the routine.

At the second operation of the routine,
the SCALAR roll is modified, and the actual
storage locations (represented by the base
pointer and displacement) to be occupied by
the scalar variable are either computed and
stored on the SCALAR roll or copied from
the COMMON or EQUIV ALLOCATION roll to the
SCALAR roll.

All "call by name" dummy variables are
placed on the FULL WORD SCALAR roll; as
each remaining scalar 1is inspected, its
mode is determined. If it is of size 8 or
16 (double-precision real or single- or
double-precision complex), storage is allo-
cated immediately. If the variable does
not require doubleword alignment, it is
moved to one of three rolls depending on
its size: FULL WORD SCALAR, HALF WORD
SC€ALAR, or BYTE SCALAR.

When all groups on the SCALAR roll have

been processed in this manner, the
variables on the FULL WORD SCALAR roll,
then the HALF WORD SCALAR roll, then the

BYTE SCALAR roll are assigned storage. The

map of scalars is produced (on option) by
this routine.

ARRAY ALLOCATE, Chart CN

This routine (GO401), like SCALAR ALLOC-
ATE, 1is called twice by START ALLOCATE.
The first time it is called, it determines
the number of base table entries required
for references to the object module arrays.
The second time the routine is operated, it
actually assigns storage for the arrays,
and records the appropriate base pointer
and displacement on the ARRAY roll.

As each array name is found on the ARRAY
roll, it is compared with those on the
COMMON, EQUIV, and GLOBAL DMY rolls. For
COMMON and EQUIVALENCEd arrays, the alloca-
tion information is copied from the appro-
priate roll. Since all dummy arrays are
Ycall by name" dummies, dummy array groups
are always replaced with pointers to the
GLOBAL DMY roll. For each array to be
assigned storage, new base table entries
are constructed as required. In no case is
more than one base used for a single array.

Section 2: Compiler Operation 47

Since arrays are allocated in the order
of their. appearance, some unused storage
space may appear between consecutive arrays
due to. the required:alignment. The array
map - 1is produced . (on. option) by . this
routine. . - :)

PASS 1 GLOBAL SPROG ALLOCATE, Chart CO

This routine (GO402) counts the groups
on the GLOBAL SPROG and USED LIB FUNCTION
rolls (which hold, respectively, the non-
library: and . .library subprogram names
referred to in the source module) to deter-
mine the number. of. base table entries
required for references to the subprogram
addresses region of the object module. The
required BASE TABLE roll groups are added.

SPROG_ARG ALLOCATION, Chart CP

This routine (GO442) adds the number of
arguments to subprograms (and thus, the
number of words in the argument list area
of the object module) to the PROGRAM BREAK,
thus allocating storage for this portion of
the object module. BASE TABLE roll groups
are added as required. .

PREP NAMELIST, Chart CQ

This routine (GO443) determines the
amount of main storage space required for
each object module NAMELIST table. The
NAMELIST ALLOCATION roll is produced during
this routine's operation; it contains, for
each NAMELIST data item, the name of the
item and a pointer to the SCALAR or ARRAY
roll group defining it. If any data name
mentioned in a NAMELIST is not the name of
a scalar or array, the appropriate error
message is printed by this routine.

The NAMELIST NAMES roll is left holding
the NAMELIST name and the absolute location
of the beginning of the corresponding
object module NAMELIST table. Required
BASE TABLE roll groups are added by this
routine.

LITERAL CONST ALLOCATION, Chart CR

This routine (GOu4U44) is called twice by
START ALLOCATION. Its first operation de-
termines the number of BASE TABLE roll
groups which should be added to cover the

48

literal constants in the
The -° second operation of the routine
actually assigns storage for all 1literal
constants (except those appearing in source
module DATA and PAUSE statements) and
writes (on option) the TXT cards for them.

object module.

FORMAT ALLOCATION, Chart CS

This routine (GO445) is called twice by
START ALLOCATION. The first time it. is
called 1is during the operation of pass 1.
In pass 1, the PROGRAM BREAK 1is increased
by the number of bytes occupied by each
FORMAT.

The second time that FORMAT ALLOCATION
is called, each FORMAT is written out and
the FORMAT roll is rebuilt. The base and
displacement information and a pointer to
the label of the FORMAT statement are the
contents of the rebuilt FORMAT group. The
map of the FORMAT statements used in the
object module 1is also written out. - (on
option) by this routine. :

EQUIV _MAP, cChart CT

This routine (GO441) adjusts the values
on the EQUIVALENCE ALLOCATION roll to the
corrected (for the correct allocation of
the base table, since this routine operates
after the completion of pass 1) base point-
er and displacement, and constructs the
BASE TABLE roll groups required. The map
of EQUIVALENCE variables 1is produced (on
option) by this routine.

GLOBAL SPROG ALLOCATE, Chart CU

This routine (GO403) goes through the
GLOBAL SPROG and USED LIB FUNCTION rolls,
inserting the base pointer and displacement
for each of the subprograms 1listed there;
this 1is the allocation of storage for the
subprogram addresses region of the object
module. The ESD cards for the subprograms
are written, the required BASE TABLE roll
groups are added, and a list of the subpro-
grams called is produced (on option).

BUILD NAMELIST TABLE, Chart CV

This routine (GO0405) operates after pass
1 of Allocate. It uses the NAMELIST NAMES
roll in determining the base and displace-

each NAMELIST reference in the
The BASE TABLE roll "groups
are added as required. The PRCGRAM BREAK
is increascd as indicated, and the TXT
cards are written out according to the base
and displacement calculations for each
entry on the NAMELIST ALLOCATION roll. A
map of the NAMELIST tables is produced (on
option) by this routine.

mwent for
source module.

BUILD ADDITIONAL_BASES, Chart CW

This routine (G0438) is called whenever
it may be necessary to construct a new BASE
TABLE roll group. It determines whether a
new base is required and, if so, constructs
it. '

DEBUG ALLOCATE, Chart_ CX

(GO5u45) processes the
inforration on the INIT and SUBCHEK rolls,
marking the groups on the SCALAR, ARRAY,
and GLOBAL DMY rolls which define the
variables listed. When all the information
on the SUBCHK roll has been processed, the
routine returns.

This routine

OUTPUT FROM PHASE 2

The following paragraphs describe the
output from Allocate: error messages,
maps, and cards. Allocate alsc produces
roll entries describing the assignment of
main storage. See Appendix B for descrip-

tions of the roll formats.

Frror Messages Produced by Allocate

listing, with error
indications and error messages for the
errors detected during initial processing
of the source statements, is produced by
phase 1 of the compiler. Certain program
errors can occur, however, which cannot be
detected until storage allocation takes
place. These errors are detected and
~reported (if a listing has been requested),
at the end of the listing by ALLOCATE; the
error messages are described in the follow-
ing paragraphs.

The source module

FUNCTION ERROR: When the program being
compiled is a FUNCTION subprogram, a check
is made to determine whether a scalar with
the same name as the FUNCTION and each

ENTRY is defined. If no such scalars are
listed on the SCALAR roll, the wessage -

IEY01l9I FUNCTION ENTRIES,UNUEFINED

source module 1listing.
followed by a list of the
The condition ccde is 4.

is written on the
The message 1is
undefined names.

two types can
definitions of EQUIVALENCE
sets which refer to the COMMON area. The
first type of error exists because of a
contradiction in the allocation specified,
e.g., the EQUIVALENCE sets (A,B(6),C(2))
and (B(8),C(1)). The second error type is
due to an attempt to extend the beginning
of the COMMON area, as in COMMON A,B,C and
ECUIVALENCE (A,F(10)).)

COMMON _ERRORS: Errors of

exist in the

An additional error in the assignment of
COMMON storage occurs if the source program
attempts to allocate a variable to a loca-
tion which does not fall on the appropriate
boundary. Since each COMMON block is
assumed to begin on a douvple-precision
boundary, this error can be produced in
either (or both) the COMMON statement and
an EQUIVALENCE statement which refers to
COMMON,

When each block of COMMON
been allocated, the message

storage has

IEY020I CCMMON BLOCK / / ERRORS

is printed if any error has been detected

(the block name is provided). The message
is followed by a 1list of the variables
which could not be allocated due to the

errors. The condition code is 4.

Unclosed DO _Loops

If DO loops are initiated in the source
module, but their terminal statements do
not exist, Allocate finds pointers to the
labels of the nonexistent terminal state-
ments on the DO .LOOPS OPEN roll. If
pointers are found on the roll, the message

IEY021I UNCLOSED DC LOOPS

is printed, followed by a 1list of the
labels which appeared in DO statements and
were not defined in the source module. The
condition code is 8.)

Section 2: Compiler Operation 49

UNDEFINED LABELS: If any lakels are used
in the source module but are not defined,
they constitute 1label errors. Allocate
checks for this situation. At the conclu-
sion of this check, the message

IEY022Y UNDEFINED LABELS

If there are undefined 1labels
they are listed
message. The

is printed.
used in the source module,
on the lines following the
condition code is 8.

EQUIVALENCE ERRORS: Allocation errors due

to the arrangement of EQUIVALENCE state-
ments which do not refer to COMMCN
variables may have two causes., The first

of these is the conflict between two EQUIV-
ALENCE sets; for example, (A,B(6),C(3)) and
(B(8),C(1)).

The second is due to incompatible boun-
dary alignment in the EQUIVALENCE set. The
first variable in each EQUIVALENCE set is
assigned to its appropriate koundary, and a
record is kept of the size of the variable.
Then, as each variakle in the set is
grocessed, if any variable of a greater
size requires alignment, the entire set is
moved accordingly. If any variable is
encountered of the size which caused the
last alignment, or of lower size, and that
variable is not on the agrropriate boun-
dary, this error has occurred.

If EQUIVALENCE errors of either of these
types occur, the message

IEY023I EQUIVALENCE ALLOCATION ERRORS

is printed. The message is followed by a
list of the variables which could not be
allocated according to source module speci-
fications. The condition code is 4.

Another class of EQUIVALENCE error is
the specification, in an ECUIVALENCE set,
of an array element which is outside the
arraye. These errors are summarized under
the heading

IEY024I EQUIVALENCE DEFINITICN ERRORS
condi-

on the source module listing. The
tion code is 4. .

DUMMY DIMENSION ERRORS: If variables spe-
cified as quwmy array dimemnsions are not in
COMMON and are not global dummy variables,
they constitute errors. These are summa-
rized under the heading ‘ :

IEY025I DUMMY DIMENSION ERRCRS

on the source module listing. The
tion code is 4.

50

BLOCK DATA ERRORS: If variables specified

COMMON MAP:

condi-

within the BLOCK DATA subprogram have not
also been defined as COMMON, they consti-
tute errors. The message

IEY0261I BLOCK DATA PROGRAM ERRORS
is produced on the
followed by a

variables in error.
u.

source module listing
summarization of the
The condition code 1is

Storage Maps_Produced_by Allocate

Allocate produces the storage maps de-
scribed below during its operations; these
maps are printed only if the MAP option is
specified by the programrmer.

The map of each COMMON block
is produced by Allocate. The map is headed
by two title lines; the first of these is

COMMON / name / MAP SIZE n
and the second is the pair of words
SYMBOL LOCATION

printed five times across the line. The
title lines are followed by a list of the
variables assigned to the COMMON block and
their relative addresses, five variables
per 1line, in order of ascending relative
addresses. The name contained within the
slashes 1is the name of the COMMON block.
The amcunt of core occupied by the block
(n) is given in hexadecimal and represents
the number of bytes occupied.

Subprogram List

Allocate prints a list of the subpro-
grams called by the source module being
compiled. This list is printed only if the
MAP option is specified by the programmer.
The subprogram list is headed by the line

SUBPROGRAMS CALLED

and contains the names of the subroutines
and functions referred to in the source
module.
SCALAR__MAP: The scalar map is produced by
Allocate and consists of -two title lines,
the first of which reads

SCALAR MAP

and the second of which is identical to the
second title line of the COMMON maps. The

title is followed by
COMMON scalar variables, five variables per
line, and their relative addresses, in
cxder of ascending relative addresses.

a list of the non-

ARRAY MAP: The first title line of the

array map reads
ARRAY MAP

In all other respects, the
identical to the scalar mag.

array map is

EQUIVALENCE__MAP: The first title line of
the map of ECUIVALENCE sets reads

EQUIVALENCE LCATA MAP

The second line for both maps is standard.
The variables listed in the EQUIVALENCE map
are those not defined as COMMON.

NAMELIST MAP: This map shows the locations
of the NAMELIST tables. The first title

line reads

NAMELIST MAP

and the second 1line 1is standard. The
symbol- listed is +the NAMELIST name asso-
ciated with each of the tables.

FORMAT MAP: This map gives the labels and
locations of FORMAT statemrents. The first
title line is

FORMAT STATEMENT MAP

and the second title is the same as @ the

others described. The symkol listed is the
label of the FORMAT statement.

Cards Produced by Allocate

both ESD and TXT
DECK option or a
specified by the

Allocate produces
cards, provided that a
LOAD option has been

programmer. All ESD cards required by the
object module are produced during this
phase. These include cards for the CSECT

in which the object module is contained for
each COMMON block and for each subprogram
referred to by the object module.

The ESD cards that are produced by
Allocate . are . given in the following order
according to type:

ESD, type 0 - contains the name of the
program and indicates the begin-
ning of the object module.

ESD, type 1 - contains the entry point to a
SUBROUTINE or FUNCTION subpro-
gram, or the name specified in
the NAME option, or the name
MAIN. - The name designated on the
card 1indicates where control is
given to begin execution of the
module.

ESD, type 2 - contains the names of subpro-
grams referred to in the source
module by CALL statements,
EXTERNAL statements, explicit
function references, and implicit
function references.

ESD, type 5 - contains information about

each COMMON block.

The TXT cards produced during this phase
£fill the following areas of the object
module:

o The NAMELIST tables
e The literal constants

¢ The FORMAT statements

The other TXT cards required for the
object module are produced by later phases
of the compiler.

PHASE_3 OF _THE_COMPILER: _UNIFY (IEYUNF)

The third phase - of the compiler opti-
mizes the subscripting operations performred
by the object module by deciding, on the
basis of frequency of use, which subscript
expressions within DO loops are to appear
in general registers, and which are to ' be
maintained in storage.

The following paragraphs, “"Flow of Phase
3," describe the operation of Unify by
means of narrative and flowcharts.

The rolls manipulated by Unify are
listed in Table 5 and are mentioned in the
following discussion of the phase; these
rolls are briefly described in context.
See Appendix B for a complete. description
of any roll used in the phase.

Section 2: Compiler Operation 51

Table 5. Rolls Used by Unify

r T -
| Roll Number | Roll Name |
| 2 | Nonstd Script |
| 3 | Nest Script i
| 4 | loop Script 1
| 13 | Std Script |
| 14 | Temp]
| 20 | Reg]
| 21 | Base Table |
i 22 | Array]
52	Loop Control
54	Script
55	loop Data
] 56 | Program Script |
] 57 | Array Ref |
] 58 | Adr Const |
R — ;R —

FLOW OF PHASE 3, CHART 07

START UNIFY (G0111) controls the opera-
tion of this phase of the compiler, It
initializes for the phase by setting the
proper number of groups on the ARRAY REF
roll to zero (this function is performed by
the routine ARRAY REF ROLL ALLOTMENT) and
moving the information transmitted on the
PROGRAM SCRIPT roll to the SCRIPT roll.
When the initialization is complete, the
reserve blocks on the SCRIPT roll are in
order from the outermost lcop of the 1last
source Tmodule DO nest (at the top of the
roll) to the innermost loop of the first
source module DO nest (at the bottom of the
roll).

After initialization, START UNIFY begins
the optiwmizing process Ly inspecting the
last group of a reserve block on the SCRIPT
roll; a value of zero in this group indi-
cates the end of the SCRIPT roll informa-
tion. When the value is nonzero, DO NEST
UNIFY 1is called to process the information
for an entire nest of LO lcops. On return
from this routine, the nest has been pro-
cessed; the count of temporary storage
locations required is updated, and START
UNIFY repeats its operations for the next
nest of loops.

) When all 1loops have been processed,
START UNIFY makes a complete pass on the
ARRAY REF roll, setting up the instruction
format fcr the array references from point-
ers which have been 1left on the roll
(CONVERT TO INST FORMAT actually sets up
the instruction fields). When all groups
on the ARRAY REF roll have been processed,
a jump is made to CONVERT TO ADR CONST.
This routine sets up groups as required on
the ADR_CONST roll from data on the LOOP
CONTROL roll. When the LOOP_CONTROL roll
has been processed, this routine terminates
the Unify phase by calling Gen.

52

ARRAY REF_ROLL ALLOTMENT, Chart DA

(G0145) constructs the

The groups on this roll
are initialized with values of Zero.
Pointers to the roll have been placed on
the SCRIPT roll and in the Polish notation
by Parse, but information has not actually
been put on the roll before this routine is
called. The number of groups required has
been transmitted from Parse.

This routine
ARRAY REF roll.

CONVERT TO_ADR_CONST, Chart DE

This routine (G0113) constructs the ADR
CONST roll from the base address informa-
tion on the LOOP CONTROL roll.

When the third word of the LOOP CONTROL
roll group contains an area code and dis-
placement, CUnify requires a base address
which it does not find in the base table.
Since no values can be added to the base
table by Unify, the required value must be
placed in the temporary storage and con-
stant area of the object module. The ADR
CONST roll holds the information required
for Exit to place the value in a temporary
storage and constant location and to pro-
duce the RLD card required to get the
proper modification of the value in that
location at load time. This routine builds
that information on the ADR CONST roll by
allocating the temporary storage and con-
stant locations for the area codes and
displacement values it finds on the LCOP
CONTROL roll. See Appendix B for further
explanation of the rolls involved.

CONVERT TOQ INST_FORMAT, Chart DC

This routine (G0112) sets up the first
word (zero rung) of each ARRAY REF roll
group by testing the contents of the later
words (the register rungs) of the same
roll. The result is the skeleton of the
instruction *o be wused for an array
reference. When the second and third words
of the group point to a general register,
they are shifted into the appropriate posi-
tion and inserted into the zero rung. (See
Appendix B for the configuration of the
ARRAY RFEF 1roll group.) At each entry to
this routine, one word is processed and
that word 1is cleared to zero before the
routine exits.

DO_NEST UNIFY, Chart DD

This routine (G0115) first initializes
for the processing of one nest of DO loops.
For each DO loop, a reserve block exists on
the SCRIPT roll and one group exists on the
LOOP DATA .roll. These blocks and groups
are ordered so that, reading from the
bottom of the rolls up, a nest level of one
indicates the end of a nest of loops; that
is, for each nest, the bottom block repre-
sents the inner 1loop and the top block
represents the outer loop.

DO NEST UNIFY serves a control function
in this phase, arranging information to be
processed by DO LOOP UNIFY and LEVEL ONE
UNIFY; it 1is these latter routines which
actually perform the optimization of sub-
scripting by means of register assignment.
The main result of the optimization is that
in the initialization code for each 1loop,
only that portion of each subscript which
depends on the DO loop variable is
computed. i i

DO LOOP UNIFY expects to find a reserved
block on the bottom of the NEST SCRIPT roll

describing a 1loop one nest level deeper
than the 1loop described by the bottom
reserved block on the SCRIPT roll. More-

over, both the block on the SCRIPT roll and
the block on the NEST SCRIPT roll must
already reflect the allocation of arrays by
Allocate; that is, both blocks must have
been processed by NOTE ARRAY ALLOCATION
DATA, another routine called by DO NEST
UNIFY. This arrangement 'is required so
that DO LOOP UNIFY can pass information
from the loop being processed (on the NEST
SCRIPT roll) to the next outer loop (on the
SCRIPT roll).

A special case is made of the reserved
block describing a loop of nest level one,
since there is no outer 1loop to which
information can be passed. The routine
LEVEL ONE UNIFY processes in place of DO
LOOP UNIFY in this case; it expects to find
the reserved block describing the level one
loop on the NEST SCRIPT roll.

IEYROL MODULE

The IEYROL module is 1loaded into main
storage ' by program fetch, along with the
Invocation phase and the five processing
phases. It contains two static rolls (the
WORK roll and the EXIT roll), roll statis-
tics, group stats, and the ROLL ADR table.
Throughout the operation of the compiler,
it maintains a record of the storage space
allocated by the control program to the
dynamic rolls.

|

|

|

|

|

!

!

| 14
-] 15

|

|

!

|

|

I

I

L

Gen (IEYGEN)

Phase 4 of the Compiler:

Gen produces object code from the Polish
notation and roll information left by pre-
vious phases of the compiler. The - code
produced by this phase appears, one state-
ment at a time, on the CODE roll, and is
saved there wuntil it is written out by
EXIT. \

The following paragraphs, "Flow of Phase
4," describe the operation of this phase by
means of narrative and flowcharts. :

The rolls manipulated by Gen are listed
in Table 6 and are mentioned in the follow-
ing description of the phase; these rolls
are briefly described in context. See
Appendix B for a complete description of
all of the rolls used in the phase. '

Rolls Used by Gen

Table 6.
r
|RO11 |Roll
|No. Roll Name |No. Roll Name
] 1 Source 24 Entry Names
4 Polish 25 Global Dmy
8 Fx Const 34 . Branch Table
9 F1l Const 36 Fx Ac
10 Dp Const 40 Temp Pntr
11 Complex Const 42 Fl1l Ac
12 Dp Complex 43 1Lbl

44 Scalar
45 Data Var

Const
14 Temp

"Do Loops Open " Loop Control

15 Loops Open 55 Loop Data
16 Temp and Const 56 Array Plex
‘17 Adcon 57 Array Ref

18 Data Save 59 At

22 Array 62 Code

23 Dmy Dimension 63 ~After Polish |
23 Sprog Arg

e it ot o . e i e e o i ot e e o i, e e s e)

o e e e e e e e et e i it e s et e e
wn
[\

FLOW OF PHASE 4, CHART 08

START GEN (GO491) initializes for the
operation of the Gen phase. - It then calls
ENTRY CODE GEN to produce the object "head-
ing code and PROLOGUE GEN and EPILOGUE GEN
for the required prologues ' and -epilogues.
Oon return from EPILOGUE GEN, START GEN
falls through to GEN PROCESS. ‘

GEN PROCESS (GO492) controls the repeti-
tive operations of Gen., It first calls GET
POLISH, which moves the Polish notation for
one statement from the AFTER POLISH roll to
the POLISH roll. Using the Polish notation
just moved, GEN PROCESS determines whether
the statement to be processed was labeled;
if it was, the. routine LBL PROCESS is
called. If the source statement was not

Section 2: Compiler Operation 53

labeled, or when LBL PROCESS returns, GEN
PROCESS calls STA GEN and STA GEN FINISH.
On return from STA GEN FINISH, GEN PROCESS
restarts. .

The termination of the Gen phase of the
compiler occurs when an END statement has
been processed. END STA GEN jumps directly
to TERMINATE PHASE after the object code is
produced, rather than returning to GEN
PROCESS. TERMINATE PHASE is described in
Chart EG and in the accompanying text.

ENTRY CODE_GEN, Chart_ EA

ENTRY CODE GEN (GO499) first determines
whether the source module is a subprogram.
If it 1is not, the heading code for a main
program is placed on the CODE roll, the
location counter is adjusted, and the rou-
tine returns.

If the source module is 'a subprogram,
ENTRY CODE GEN determines the number of
entries to the subprogram, generates code

for the main entry and for each secondary
entry and, when all required entry code has
been produced, it then returns.

PROLOGUE_GEN, Chart EB

PROLOGUE GEN (GO504) processes the main
"entry and each additional ENTRY to the
source subprogram, producing the required
prologues. Prologue code transfers argu-
ments as required and is, therefore, not
produced if no arguments are listed for the
ENTRY. The prologue code terminates with a
branch to the code for the appropriate
entry point to the subprogram; in prepara-
tion for the insertion of the address of
that entry point, this routine records the
location of the branch instruction on the
ENTRY NAMES roll. If the source module is
not a subprogram, PROLOGUE GEN exits.

EPILOGUE GEN, Chart EC

EPILOGUE GEN (G0508) processes the main
entry and each additional ENTRY to a sub-
program, producing the required epilogues.
Epilogue code returns argument values and
returns to the calling program. If this
routine determines that the source module
is not a subprogram, main program prologue
and epllogue code are produced.

GET POLISH, Chart ED

This routine (G0712) moves the Polish
notation - for a single statement from the

54

AFTER POLISH rolli to the POLISH roll. The
Polish notation is moved from the beginning
of the AFTER POLISH roll, and a pointer is
maintained to.indicate the position on the
roll at which the next statement begins.

Note: Unlike the other rolls, data from
the AFTER POLISH roll is obtained on a
first-in first-out basis (i.e., the BASE
rather than the BOTTOM pointer is used).
This is done +to maintain the sequence of
the source program.

LBL_PROCESS, Chart EF

LBL PROCESS

(GO493) stores the label
pointer 1left on the WORK roll by GEN
PROCESS in STA LBL BOX. It then inspects

the LBL roll group defining the label, and
determines whether the 1label 1is a Jjump
target. If so, the base register table is
cleared to indicate that base values must
be reloaded.

If the 1label 1is not the target of a
jump, or when the base register table has
been cleared, the AT roll is inspected.
For each AT roll entry (and, therefore, AT
statement) referring to the labeled state-
ment being processed, made labels are con-
structed for the debug code and for the
next instruction in line, pointers to these
labels are recorded on the AT roll, and an
unconditional branch to the debug code is
placed on the CODE roll.

When all AT references +to the
label have been processed, an instruction
is placed on the CODE roll to inform Exit
that a label was present and that a branch
table entry may be required. Then, if the
trace flag is on (indicating the presence
of the TRACE option in the source DEBUG
statement), the debug linkage for TRACE and
the binary 1label are placed on the CODE

present

roll. If the trace flag is off, or when
the ~code has been completed, LBL PROCESS
returns.)

STA GEN, Chart EG

STA GEN (G0515) uses the control driver
left on the WORK roll by GEN PROCESS to
index into a jump table (STA RUN TABLE),
jumping to the appropriate routine for
constructing the object code for .the spe-

cific type of statement being processed.
This operation is called a "run" on the
driver; other "runs™ occur in Gen for
building - specific instructions or for

generating data references.

The names of the code generating rou-
tines indicate the functions they perform;

for example, assignment statements are pro-
cessed by ASSIGNMENT STA GEN, while GO TO
statements are processad by GO TO STA GEN.
These routines construct the code for the
statement on the CODE roll and, when the
code is complete, return tc GEN PROCESS.

END STA GEN processes the END statement
and provides the normal termination of the
Gen ‘phase by jumping to TERMINATE PHASE
after producing the code. The code pro-
duced for the END statement is identical to
that for +the STOP statement if a main
program is being compiled or a RETURN

statement if a subprogram is being com-
piled. If an AT statement precedes the
END, an unconditional Lkranch instruction is

constructed to return from the debug code
to the main line of code.

TERMINATE PHASE (GO544) prepares for and
calls the Exit phase of the compiler.

STA GEN FINISH, Chart EH

STA GEN FINISH (GO496) determines wheth-
er the present statement is the closing
statement of any DO loops; if it is, this
routine generates the code required for the
LO loop closing and repeats the check for
additional loops to be closed.

When all DO closings have been pro-
cessed, STA GEN FINISH resets pointers to
temporary locations, clears accumulators,
and returns to GEN PROCESS.

PHASE S5 OF THE COMPILER: EXIT (IEYEXT)

Exit produces the SYSPUNCH and/or SYSLIN
output requested by the programmer, except
for the ESD cards and TXT card produced by
the Allocate phase. It also produces the
listing of the object module on SYSPRINT,
if it has been requested by the programmer.

The description of this phase of the
compiler is divided into two parts. The
first of these, ®"Flow of Phase 5,% de-
scribes the overall logic cf the phase by
means of narrative and flowcharts.

The second part of the description of
the phase, "Output from Phase 5," describes
the output written by the rhase.

. The 1rolls wused by Exit are listed in
Table 7, and are briefly described in
context., For further descriptior of rolls,

see Appendix B.

Table 7. Rolls Used by Exit
[b mmm e 1
| Roll Number | Roll Name |
i 7 | Global Sprog |
16	Temp and cConst
17	ADCON
20	CSECT
] 23	Sprog Arg !
38	Used Lib Function -
us	BCD
46	Base Table
51	RLD
52	Branch Table
58	Adr Const
62	Code
) - 1 ——— ———d
FLOW OF PHASE 5, CHART 09

EXIT PASS (G0381) controls
the operation of this phase. After initia-
lizing, this routine calls PUNCH NAMELIST
MPY DATA and PUNCH TEMP AND CONST ROLL.
The routine PUNCH ADR CONST ROLL is then
called and, if an object module listing was
requested, the heading for that listing is
written out.

The routine

After this operation, EXIT PASS calls
PUNCH CODE ROLL, records the memory
requirements for the code, and prints the
compiler statistics. PUNCH BASE ROLL,

PUNCH BRANCH ROLL, PUNCH SPROG ARG ROLL,
PUNCH GLOBAL SPROG ROLL, PUNCH USED LIBRARY
ROLL, PUNCH ADCON ROLL, ORDER AND PUNCH RLD
ROLL, and PUNCH END CARD are then called in
order. Oon return from the last of these,
EXIT PASS releases rolls and exits to the
Invocation phase of the compiler.

PUNCH TEMP_AND_CONST RCLL, Chart FA

This routine (G0382) initializes the
location counter for the temporary storage
and constant area of the object module., It
then initializes a pointer to the TEMP AND
CONST roll and begins the processing of
that roll from top to bottom. Each group-
on the roll is moved to the output area;
when the output area is full, a TXT card is
written. When the entire TEMP AND CONST
roll has been processed, a jump is made to
PUNCH PARTIAL TXT CARD, which writes out
any partial TXT card remaining in the
output area and returns to EXIT PASS.

Section 2: Compiler Operation 55

PUNCH_ADR CONST ROLL, Chart FB

The information on the ACR CONST roll is
‘used by this routine (G0383) to produce TXT
cards for temporary storage and constant
area locations which contain addresses.
RLD roll entries are also produced to cause
correct modification of thcse locations by
the linkage editor. The beginning address
of the temporary storage and constant area
is computed. Then, for each ADR CONST roll
‘entry, the TEMP AND CONST roll pointer is
added to that value to produce the address

at which an address constant will be
stored. This address is placed in the TXT
card and on the RLD roll, the address
constant from the ADR CONST roll initial-
izes that location, and the area code from
the ADR CONST roll is rplaced on the RLD
roil. (See Appendix B for 1roll descrip-

tions.)

PUNCH CODE_ROLL, Chart FC

PUNCH CODE ROLL (G0384) initializes a

location counter and a pointer to the

roll. Inspecting one group at a time, it
determines the nature of the word. If it
is a statement number, PUNCH CODE RCLL

simply stores it and repeats the operation

with the next word.

If a group is a constant, it is placed
in the output area for SYSPUNCH and/or
SYSLIN, This category includes literals

thus, the con-
occupy several

which appear in-line and,
stant to be written may
groups on the roll.

Groups representihg cocde are placed in

the output area and, if an object module
listing has been requested, the line
entered into the output area is listed

before it is punched. The contents of the
CATA VAR roll are used fcr the listing of
the operands.

roll 1is an

If the group on the COLE

indication of the definition of anh address
constant, the location counter 1is stored
accordingly, and the operation of the rou-

tine continues with the next group.

PUNCH CODE ROLL also determines whether
the group 'is an indication of the defini-
tion of a lakel, if it is, the routine

defines the label on the BRANCH TABLE roll
as required, inserts the 1label in the
output line for the object module listing
and repeats with the next group on the
roll.

When all groups on the roll have been
processed, a transfer to PUNCH PARTIAL TXT

56

CODE

CARD is made; that routine writes out any
incomplete TXT card which may be in the
output area, and returns to EXIT PESE.

PUNCH BASE ROLL, Chart FD

PUNCH BASE ROLL (G0399) initializes a
pointer to the BASE TABLE roll and initial-
izes the location counter to the beginning
address of the object module base table.
It then enters each group on the BASE TABLEL
roll into the TXT card output area; it also
records the object module ESD number and
the location counter on the RLD roll for
later production of the RLD cards.
Whenever the output area is full, a TXT
card is written. When all groups on the
BASE TABLE roll have been processed, the
routine makes a jump to PUNCH PARTIAL TXT

CARD, which writes out any incomplete card
in the output area and returns to EXIT
PASS.

PUNCH_BRANCH ROLL, Chart FE

This routine (GO400) first initializes a
pointer to the BRANCH TABLE roll, and the
location counter to the beginning location
of the okject module branch table. When
these operations are completed, the routine
inspects the BRANCH TABLE roll from top to
bottom, making the requisite entries on the
RLD roll and entering the addresses from
the roll in the TXT card output area. TXT
cards are written when the output area is
full. When all BRANCH TABLE roll groups
have been processed, the routine jumps to
PUNCH PARTIAL TXT CARD, which writes out
any incomplete card in the output area and
returns to EXIT PASS.

PUNCH _SPROG ARG ROLL, Chart FF

PUNCH SPROG ARG ROLL (GO402) initializes
a pointer to the SPROG ARG roll and ini-
tializes the location counter to the begin-
ning - address of the subprogram argquments
area of the object module.

The routine then inspects the groups on
the SPROG ARG roll. If the first word of
the group contains the value zero (indicat-
ing an argument whose address will be
stored dynamically), the group is placed in
the TXT card output area, and the card is
written if the area is full. The routine
then repeats with the next group on the
roll.

If the SPROG ARG roll group does not
contain - zero, the group: is then inspected
to determine whether it refers to a tem-
porary location. If it does, the correct
location (address of the temporary storage
and constant area plus the relative address
within that area for this location) is
determined. The required RLD roll entries
are then made, the address is moved to the
output area, and PUNCH SFROG ARG ROLL
repeats this process with the next group on
the roll.

If the group from the SPROG ARG roll
contained neither a zero nor a temporary
location, the argument referenced must have
been ‘a scalar, ‘an array, - a label or-a
subprogram. In any of these cases, a base
table pointer and a displacement are on the
pointed roll. From these, this routine
computes the location of the variable or
label or the subprogram address, enters it
in the TXT card output .area, and records
the RLD information required on the RLD
roll. The routine then repeats with the
next group on the SPROG ARG roll.

This

PUNCH PARTIAL TXT CARD when all SPROG ARG
roll groups have been processed,

PUNCH GLOBAL SPROG ROLL, Chart FG

This routine (GO403) first inverts the
GLOBAL SPROG roll and moves one word from
that roll to the WORK roll. If these
actions indicate that there is no informa-
tion on the roll, the routine exits.

Otherwise, for each group on the GLOBAL
SPROG roll, this routine enters the ESD
number for the subprogram and the location
at which its address is to be stored on the
RLD roll. The routine alsc writes a word
containing the value zero for each subpro-
gram listed (these words become the object
module subprogram addresses region). When
all groups on the GLOBAL SPROG roll have
been processed, the routine. exits through
PUNCH PARTIAL TXT CARD, which writes out
any incomplete card remaining in the output
area before returning to EXIT PASS.

PUNCH USED LIBRARY ROLL, Chart FH

This routine (G0404) performs the same
function for the USED _LIB_ _FUNCTION roll
that the previous routine performs for the
GLOBAL SPROG roll, thus completing the
subprogram addresses region of the object
module. The techniques used for the two
rolls are identical.

routine exits to EXIT PASS through

PUNCH ADCON ROLL, Chart FI

This routine (G0405) returns immediately
to EXIT PASS if there is no information on
the ADCON_roll. Otherwise, it writes out
one TXT caxrd for each group it finds on the
roll, obtaining the area code, the address
constant, .and the address of the constant
from the ADCON roll. .The ESD number and
the address of the constant are placed on
the RLD roll for subsequent processing. A
TAZT card is punched "containing the con-
stant. ‘The operation of PUNRCH ADCON ROLL
terminates when all groups on the roll have
been processed.

ORDER_AND PUNCH RLD ROLL, Chart FJ

This routine (GO416) sorts the RLD roll
and processes the groups on that roll,
producing the object module RLD cards. The
card images are set up, and the RLD cards
are actually written out as they are com-
pleted. When all information on ‘the roll
has been processed, this routine returns to
EXIT PASS. s ‘

PUNCH_END_CARD, Chart FK

PUNCH END CARD (GO424) produces the
object module END card. It ‘moves the
required information into the card image
and initiates the write operation; it then
returns to EXIT PASS.

PUNCH NAMELIST MPY DATA, Chart FL

This routine (G0564) is responsible for
the punching of TXT and RLD cards for those
words in the object module NAMELIST tables
which contain pointers to array dimension
multipliers. The multipliers themselves
are placed on the TEMP AND CONST roll. The
required information is found omn the
NAMELIST MPY DATA roll; when all - groups
have been processed, this routine returns
to EXIT PASS.

OUTPUT FROM PHASE 5

Four types of output are produced by the
Exit phase of the compiler: TXT cards, RLD

cards, the object module listing, and the
compiler statistics. The cards are pro-
duced on SYSPUNCH and/or SYSLIN, according

to the wuser's options. The listing, if

Section 2: Compiler Operation 57

requested, is produced on SYSPRINT. The
compiler statistics for the compilation are
produced on SYSPRINT.

The formats of the TXT and RLD cards are
described in the publicaticn IBM System/360
Operating System: Linkage Editor Program

Logic_Manual. The object module 1listing
consists of the following fields:
s Location, which 1is the hexadecimal

address relative to the beginning of
the object module contrel section, of
the displayed instruction.

(entitled STA NUM),
which is the consecutive statement
nuirber assigned to the source module
statement for which the displayed
instruction is part of the code pro-
duced. This value is given in decimal.

e Statement number

e Label, which is the statement label, if
any, applied to the statement for which
the code was produced. The statement
label is given in deciral.

e Operation code (entitled OP), which is
the symktolic operation code generated.

e Operand, which 1is given in assembly
format but does not contain any vari-
able names.

e Operand (entitled BCD OPERAND), which
contains the symbolic name of the vari-
able referred to in the source module
statement which resulted in the code.

58

The compiler statistics are the final
output from phase 5. The formats for the
messages which provide compiler statistics
for the compilation are as follows:)

OPTIONS IN EFFECT option{,optionl}...
OPTIONS IN EFFECT option{,optionl}...
STATISTICS SOURCE STATEMENTS=nnnnnnnng,
PRCGRAM SIZE=nnnnnnnn,
and
STATISTICS NO DIAGNOSTICS GENERATED

or

STATISTICS nnn DIAGNOSTICS GENERATED,
HIGHEST SEVERITY CODE IS n

where:

of source state-
decimal

nnnnnnnn,; is the number
ments expressed as. a
integer.

nnnnnnnn, is the size, 1in bytes, of the
object module expressed as a
decimal integer.

nnn is the number of diagnostics
generated expressed as a deciral
integer.
n is the condition code.
The first statistics message (giving
source statements and program sizel is

suppressed whenever a BLOCK DATA subprogram
is compiled; however, the two options-in-
effect messages and one of the other statis-
tics messages will still appear.

Chart 00.

IEYFORT (Part 1

of 4)

ey
. .
* A3 »
. .
ees
IEYFORT IEYFO1 I
E N T
[ETTY VLT Ty *TIMEDAT ADA2*
* . PO Sl P St et
. IEYFORT . * INITIALIZE *
* * * AND DATE *
SEEREISIRRSINES * INFORMATION
SeeksseRRRETROES
SEesEB2esstrse SEEsEED3eesssesases
. .
* INITIALIZE * * SYSTEM OPEN #
* AND SET SAVE * FOR_SYSIN AND
- REGISTERS : * SYSPRINT *
SRS ERAIEESRIORINS rErEseREIRIS
BASERC2RREER IR RN c3” T,
. » . ..
. ENABLE - .. NO
» INTERRUBTS BY * #. LOAD OPTION .%mm-.
+ "SPIE MACRO * .. . l
.
P P T . . X
YES eni
. .
* E3 *
. -
s
ssseD2 . Jeessabrenne
. *
* * * SYSTEM *
INITIALIZE BASE# OPEN FOR
* REGISTERS b * SYSLIN *
P T TR [T T
eee
* .
* E3 $->
* +
ees
IEYFO0S ¥ I
CRSREQSRRERRIS LS E3" .
*OPTSCAN * o ..
P S et PP s * *. NO
* SCAN * *.DECK OPTIONS .#%———
he COMPILER * *. : .
* NS * N
[Tt e T
res
. -
+G3
. .
e
F2© . PIPP L T T PE PR,
.* .
* DDNAMES *. NO * SYSTEM *
*. SPECIFIED .%--- OPEN FOR
‘.‘ ‘.' * SYSPUNCH .
Ta. el LETTTT PP R T
+ YES e
ek
« A3 & .
. . *G3 *->
rer
“har
IEYF10
SRERRGIEEERRILSES SEEesGIEaRRIEIES
*DDNAMES ABA2% . *
Pt P s Y + INITIALIZE _ *+
* SCAN * *LINES/PAGE FOR # -
* *PRINTING FORMAT#*
* REPLACEMENTS * *
sraEIEEERR SRS SesarrtRERIRISS
H2' el
.. .. eesHIERERERES
.. *. NO .
'.eEADING DRTA..‘-—— : IEYPAR :
Ce. S Ty
.
“+"YES 1T
. »
« A3 = L
. .
sene
I

FXEERTORSRSRINE
PT

* INFORMATION #
FEERRRRR RS EREERE

EYPRNT
CESSALSEEEE RSN S
.
¢ IEERNT %
FEEFEFEREEESRS S

SsessBUsERELELENS
* *
* .
INITIALIZE SAVE®
. REGISTERS .
BERNARERITRRINRS

ERRERCURRSERERRER
. *

. SAVE .
* LINE COUNT *
+ TORIGIN *
M * eres
ekserseresreirer . .
*+ D5 *
* *
eer
RN IEYF22
DY *, FHIFADSEIB SR RS
.. . *PRNTHEAD _ 01A2+
*. YES P i vir SO S
#. BEGIN NEW _#-—-ee——->® PRINT *
+., PAGE . * PAGE HEADING 3
“. - ° BEEFESF AT RN
No
Rax L]
.
* B4 +->l.
MR [
aen P
EYF25 . B4+
P
M M cens
+ _ ADVANCE _ *
$LINE COUNT ONE %
- M
rrrrrrerrErERS
Fu° el
. saxe

*.
. * MAX *

*. LINES USED
., .
*. .
. ¥

+ NO

(TR
. ..

NO .+ CARRIAGE "+.
CONTROL=0

.

« YES *
e-22>e D5
*

*

see

EEEGSEsERRELEL
.

YES

.
*

* ADVANCE -
>:LINE ‘COUNT ONE :
*

*

*
EEEERRRERRERRR RS

-* .
" MAX *.
‘..LINES USED ‘.‘

——————e>

EYF30
[N TY
*

FETTY Y

.
* STORE LINE *
* COUj 1 *
* SYSPRT FORMAT :
P T TR PP

BEREIKUII IR SR IRRS
* *
*PARAMETERS_AND *
PRINT ADDRESSES#.
* INTO SYSPRT *

P L TP PP Y

ans
YES _* *
——Z>% D5 *

sree

FEERRSEER AR EREE
RETURN *

TO COMPILER :
P P LT Y

Section 2:

Compiler Operation 59

Chart 01.

EREXITPR
FREEQT HRRRRRERS
* EREXITPR E
CERARASAERERENNS

v
ota‘tBl‘Qtttt‘ttt

ERROR CODE
'RLSULTING FROM

PRINT ERROR
t‘t#‘t.tttit‘tt#t

XXX

ks

*03 »
->% A3 *

*
(RS
IEYMOK

ARRRCLARERREERE
* *
M IEYMOR *
* *

EEERERRRRRARRAS

cot’onltntttttttn

*
‘ ISSUE GETMAIN *
FOR 4K BYTES OF<--
. STORAGE *

AEESRSERRERERRRRSE

——

* *,
. SUCCESSFUL .*
.. *

LRy R Y
* *
* DELETE *
:INACTIVE~MODULE:

* *
AEREREREERA TR RN

.+7 WERE *. YES
I, ANY DELETED [#--=
.

*

R
* NO

R e R H] R R R RS e DR
*

*
* RETURN WITH *
* POS VE *
:CONDITION CODE :

ARRRRRRRRER R RN

}
AERRRTLREE AR NR
* ‘RETURN *
* WITH *
* NON-POSITIVE *
:CONDITION CODE :
AEEREBRER R R RSN

60

IEYFORT (Part 2 of

PRNTHEAD

ERRE VAR RS2 2]
* *
* PRNTHEAD *
* *

ERAERERRRRARE RN

FEEREBOERARREER N
*

ADVANCE
PRINT PAGE
COUNT

rntue

*
*
*
*
*

ARARRRRERARANR RN

P o
* *
* CONVERT *
* PAGE_COUNT TO *
* DECIMAL :
*

EEERRBEFRRRAAERN

#tl‘tDZt“tttt"t

SLT PAGE COUNT 0

‘ INTO HEADING
FORMAT

EERREERERERRRARER

AEEEKEDRRRRERRER

*

* SLT PROGRAM
INTO

‘HEADING FORMAT

.ttt#‘tttt##*tttl

TR

\
HEREEF2RERR RN RES
* *

*SET PARAMETERS *
' AND ADDRLSSLS *
INTO SYSPRT :

EEERERARRRERRRR NN

v
AERERGORRA KR KRR ER
* *
* SET *
* LINE COUNT TO *
* TWO *
*
*

*
EE R T

. T
*. OPTIONAL
. HEADING .
* ¥
*, ¥
*+ YES

.t‘otJZttttt#zttt
* .

OBTAIV

* SET .AND ‘
* CONTROL ELOCK *
: INFORMATION *
*

*
AEEEBEBERRRERR SR

xa

CETTY

- NO *
Ixo2__>% D3 *
*

LT L]
* *
* B3 *°
* *

2EEE

S LR LT P

* *
‘PRINT HEADING*

ERERRERERRENS

v
AEFERCIHE AR R RS
* *
* ADVANCE *
TLINE COUNT TWO *
* *
FEEEFREEERRRRERE R

*EEE
* *
* D3 *->
* *
k%
PRADOS
*EFEIDIEEREEE SRR
* *
¢ SET L *
M
* ORIGIN *
* *
* *

AEEREREERRERTRR

FEARKEIRFRRRRRRER
SLT *
R'IAGV *
CO“QR *
* SKIPPlNG LINE :
*

AEEREERERREREN KR

- % *

»

*RRAFIRknk b bRk ®
* *
* RETURN *
. *

EEREEREERRERREK

“rEx
*

ks

IEYREAD
SEESALEERREEERR
* *
* IEYREAD *
* B *
e T T Y

SRERABULEERRRR SRR
* *
* SET BASE *
* AND SAVE *
* REGISTERS *
* *
*

EEEREREERER RS RS

“+"YES

READOUT2

t*ttputttttttttt
OBTAIN CTARD
ORIGIN AND
RESET FLAG

FEREEFARRRERRRRRE

t
*
*
*

"

Rk

HERRFELUR AR KRR R RS
* *
* RESTORE *
:SAVE REGISTERS :

* *
AEEREEREERRRER AR R

v
FERAFUERRRRRERE
* RETURN *
: TO COMPILER :
P Y

hkk
* *
* GU§ *—o
* *

ek
EERREGYRERREFRAEE
* *

* SAVE CARD *
* OKRIGIN OR LOF *
* NOTATION :

AEERRERR KRR KRR

.* “s. NO
*. FIRST CARD I+

sEkE
* *
* C5 %o

* *

Rk
FEERACHEEERBRRRE R
* *

*SET PARAMETERS *
——=>% AND ADDRESSES *
* FOR SYSIN :

* FORM.
RERFEERRERERRRERS

FEFEERDS kR kRN kKKK
* SYsTEM GET
+ OBTAINS BOF *
EEXERRERERERE

-‘. *,
* _CONCATENATED .*
* .DATA SEIS.*
, o

LI
+ YES

AEERKESHERE XA RER
* SET SWITCh B
* Fo!

*
*
* CONCATENATED *
: DATA SETS=0 :
ERERERRERRREEF KRR

Rk

R

Chart 02.

EREXITIN

RRBRAIBERBRAANY

»
* EREXITIN »
- »

HERRRABBRBERE RS

v
I 22322 2222 223
» -

OBTAIN
SYSIN ERROR
COUNT

LR R R

*
*
»
*
*

ARRBERARBERRRRR S

c1 *,
ot

¥ -
#.,ERROR CODE 0
-

IEYFORT

EREXINOS
ARRBRCOARERRRRAER
* . »

* kR

* SET
>#TERMINAL ERROR
* CODE

.’. .*. * -
., o P
*.NO
v

D1 D2
* = » »
» SETUP BAD * #SET UP. BAD CARD#*
CARD IMAGE i #AND ABORT COMP #*
- MESSAGE * * MESSAGES *
* * - *

BRRENE] E2
#PRNTMSG 03A1* ®*PRNTMSG 03A1%
L) ft B
bl PRINT L4 * PRINT -
* ERROR * * MESSAGES *
- MESSAGE * * -
BEnEuRE EneERREy

v
ERRBEF I RERARARER
- -
- SET -
#TERMINAL ERROR #*
- CODE »
-
BRBRRBERBARARR RN

v

rREER

*#01
* C5%

(Part 3 of)

222
* *
* Ad #
*

*
nw |

TIEYPCH v o
EEEREALHHRE SRR RN
EEERATHERER RS SYSTEM

* *
* 1EYPCH *
* * * PARAMETERS +
E2 2222222222222 2

E22 22222222223

R
* -
* B4 *—>
* *

EAER
v 1IEYF70 v
HAERREBIHHERRERA NN ERRERDLENRRRRE AR RN
* » *
INITIALIZE
BASE AND SAVE

»* * RESTORE .
* *SAVE REGISTERS
* REGISTERS * .

*

*

R E TR

*
*
*
*
*

*
EEEFERARRRBRRERD

| l
! !

ot 1

ERRRBERRESER RN

v
BRBRCHEX R RRRRR
* *4 NO * *
LOAD OPTION <%——y * RETURN *
*. ¥ i * TO COMPILER *
N . i P22 T T Ty Ty

- -

. . v
* YES s

* *
* G3 *
* *
v
*

*

ERER

03 .
o* LOAD %o
¥

FILE .
TERMINATED »
»* ¥ !

v
BERFRET RSN RN
* *
*SET PARAMETERS
* AND ADDRESSES
* FOR SYSPCH

* : »
ARRFABRERBRRE NN

.k ox

EERBRFEIRRRERERS RN

SYSTEM
* “PUT ROUTINE =
INSERTS
PARAMETER
ADDRESSES
ARRRBREBERE N

(223
* *
* G3 *—>
* *

EEE v
1IEYF60 ¥y
G3
Ed *o
NO

» . *,
DECK OPTION <%

* »" i

1

v

e

K3

*g o

ote
H3 *e
% DECK #*,
-

TLE
*e TERMINATED
o*

.4. o
L e 3
* NO

v
HRBERYTRHERRRRA RN
* INSERT *
* PROGRAM -
* 'SEQUENCE bl
- *
* »
* *

NUMBERS

ERERBRREREERBE

v
HRER R IRERD RN
*

- *EEE

*SET PARAMETERS * » »
FOR SYSPCH # >% A4 *
» - * *
AERE

* »
ARBBEBRFBARED RN BN

Section 2:

EREXITRC

HEREASH N R EE RN
*

*
* EREXITPC *
* *

HRBERER NN RN BN

[P R—

ERARRCSERREE LR RN
* *

* SET FLAG *
* TO TURN OFF *
* SYSPCH *
* *
HEREARERERRERER RN

v -
HARERCSHRRNERR R AL
* *

* SET *
* . ERROR -CODE *
* VALUE *
* *
= *

TS T T T T

- v
EEBRADSREREEXER R
*

*
* SET FLAG 7O =
* TURN OFF LOAD *
* L INKAGE *
» M
* *

HEEERRAERRRE RN NN

v
HRRABRESHERERRREAR
* *
* SET ERROR »
* CODE FOR _LINK: *
* EDIT OUTPUT #
* *
* *

FEERAERERERRE RN

Compiler Operation 61

Chart 03.

IEYFORT (Part 4

of

u)

*RER
* -
#* A3 ®
* * R ER
E2 22 * »
{ * AL *——m
I - * |
ERER v
PRNTMESG IEYRTN TEYFINAL v ot
RERRRATERERRRRERE A4 * g
FHRERRA]ERRRRRERR RRERADRHRRER RS #* RE-INITIALIZE #* ¥ g,
» * * * BASE AND * o® DECK *, NO
* PRNTMSG * * 1EYRETN * #*SAVE REGISTERS * *o QUTPUT o ¥———
* * * * * FOR COMPILER * *o STOPPED .* -]
RN RERNNNRR R ERRERERERERR RN * TERMINATION * *g ¥
FERRERRRRERRRRRRN *, oW v
* YES L2]
] * *
® Ca *
» »
LE A2]
v
v v ¥ v
HERERD]HEREER RS RERREBORRRRERRRRE B3 *. EERRERTLRRARARARR RN
- - * * » * g
* INITIALIZE * #* INITIALIZE * o® 0A *e NO * PRINT DATA *
* PRINT BUFFER # * BASE AND SAVE ¥ *q OPTION - SET STATUS
#*# WITH BLANKS * * REGISTERS * *¢SPECIFIED.* l * MESSAGE *
- * »* * *q ok
*, oW v LAS S22 2L L]
I * YES Run
* * EEEE
* G3 * * *
* * * C4 %>
EERE » *
| L
v v TIEYFNL10O
C1 Cc3 Illllcaiill'l'ill
* SET upP »* * OBTAIN * * *
* PRINT BUFFER #* * COMPILER * * 1SSUE * ' '
* ORIGIN AND * #*COMMUNICATIONS * * CLOSE FOR * * FOR SYSlN AND *
* DISPLACEMENT # * ORIGIN * * SYSLIN * * SYSPRINT *
»* * * * * * *
* ERRRERRE EERRRRRARRRRERERR
v v v
HRERND] D2 %% FURBRDLERERRRRRA R
* * * * 'FREEPDDL 03A5’ 'FREEPOUL OBAS’
* GET MESSAGE * #* GET CONDITION * SRR d——® SRR R-doRRR——
#* LENGTH AND * * CODE RETURNED # ' FREE STORAGE * ‘ FREE STORAGE ’——~1
* ORIGIN * * BY COMPILER ¥ * USED BY * # USED BY SYSIN *
* * * * * SYSLIN * * AND SYSPRINT #]
* Y e e YT T EERRRARERARRARARR v
nnn
ERER * *
» - * HS *
* E4 # * *
* - LR L3
v R v
v v o¥e 1EYRS0 o*o
RERRRC]HRARRRRR RN lcullgzuiunlcollf *e
* * ¥ »
* PLACE * ‘TEST LAST ERROR' * RELEASE
1ST MSG SEGMENT# DE STORAGE
* IN PRINT » l PREVIDUS '
* BUFFER * » SETTING * .
*, ok
| * YES
L2 2] |
* G3 * »
I - * * F4 n-)l
l EEnw * »
EEE

v
ERRERF | RRRERRERRR
GE

TH AND
OF 2ND
SG SEGMENT

*
ERRBRE RN RN R

LR R R R R

v
EERBICO2RRRABRENRS
*

*VALUE RETURNED ¥
* »

v
ERRRBECIRERRRR RN N

* PRINT DATA *
SET STATUS
* MESSAGE *

v
C'IliFAQlil’l'i!l
'OBTAIN AODRESS O

*
0 RELEASE *
» B
*

E2 22222222222 22224 E2 22222222 222) ARRRERBTERRR LN ERR
R
* *
* G3 #—>
* *
EXT 23 v
v TIEYFNLOS o*. v
ERRRRG] G2 G3 - ARARRGAFEBARR AR
- * » * ¥ * g » *
PLACE 2ND * # INSERT 'MAIN® # «* DECK #ISSUE FREEMAIN
SEGMENT IN * * ROGRAM * *. OPTION o #FOR RELEASE QOF *
* PRINT BUFFER # # NAME OF NEXT * | *.SPECIFIED.* | » STORAGE *
» * * PGM * *, ¥ * *
LEd v *, % v ARBEARBRRRRRRERRR
. ERRR * YES EREN
ERE * o~ » -
» * * Eq * * Cq »
* H2 * * * * *
- * L2z LA 22
%R R v \"2
v 1EYR60 o*e %o
HRERERRH] ERRRRREERN 2 g BEERBHIA AR R AR RN Ha LY
* * o * g » * ¥ -
* * ANDTHER *. NO * 1SSUE - El
CARRIAGE * COMPILATION # CLOSE FOR * o #—
» CONTROL * . . » SYSPUNCH * -
- » *. o * * 1
ERRRRERRRRRERRRRER - - v FRERBRRRRRBRR R RN \"
#* YES RN N uw
»* * * *
* A3 = * H2 #
* *] *
Py [y e
| * -
v v v * Fa »
ERBRER P RAARBRERERN RERRRJORRERERRRER HRRRRJIRRARBRRA AR * -
- * #FREEPOOL 03AS* Ll wxun
SYSTEM PUT__ # # RE-INITIALIZE # bttt * *
ROUTINE WRITE #LINE. CARD AND * * FREE STDRAGE * >* A4 *
MESSAGE * # PAGE COUNT * * us| M
* * * svspuucn Enun
FERRRERRRRRRE En e CO‘.!!"{
|)
\" REERBK2RHRERERRERR
ARBRK L ERRRRBRRN » - FRBAKIHERRBRRREN
* * - RESTORE * * *
* RETURN * #SAVE REGISTERS # > IEYPAR *
- * * * * *
A 222222222223 RERREABRABBRERN

62

» »
FERBRRRBRRRERRNRY

FREEPOOL

RRERASEER SRR AN
» »
* FREEPOOL *
* »*

AERRERARRERR RN

l

i

v
:;!aas-:»nuiquu
. LOAD DATA .
* SET BUFFER *
* ADDRESS -
* -
FEERRRERB AR RN

v
l'!'lcsllll{!l'll

TE
*SIZE OF AREA 10'
* BE FREED

i!llllilinlllh&ll

v
AEBRRDSHAERREEE NN
» »

*ISSUE FREEMAIN *
* FOR DATA SET *
* STCRAGE *
* »*
ARRRARRRRAARRIRRD

<—

ARERESHRREARR RN
* *
* RETURN *
* *

RERRERAERRREERN

Eren
* HS

nan

v
ERRBAHSHE N RN RN
* *

* SET ERROR *
*CODE FOR RETURN#
e TO CALLER hd

» *
E R Y T

PP —

ARREPSHERRE RS
» -
* RETURN »
» -

ERRRRRBRBEBRNR

Chart AA.

OPTSCAN

HERRA2RERRER RN
* *
* OPTSCAN *
* *

RERBRAAERRRRRED

v
HEERRBD N R RN R
* *

- xw

* GET
*PARAMETER LIST
* LENGTH

[22

LR R}
>
W
LR R}

LT3

PRS20

PRS22

AERBRAZHARE RSN RR
* *

* SET INDICATOR
*IN POINTER FOR
* COMPILER

LE LR]

LRI e TR T 2 T e 2]

o¥e
*o

o® *o

*
NAME= QUOTE
* »

PRS23 ot

BaA *g EERREBSER R R AR RN
¥ * *
* *
LINECNT= > SET FLAG *
QUOTE % * »
- oW * -
*e o eI I T R T Y 2

* NO

|
v

v
EEEERF2RRRRERRERE
- »
» ADVANCE
*PARAMETER SCAN
* POINTER

*
ERABEERAERERERNN

>l
i
v
.
*.

ok ok

PROSSQT
G2

-® *o
«* PROGRAM *,
*o NAME

L

NO
I

r
v
¥
H1 o %o
o® *
LINECNT
SPECIFIED
*

*o
*,

o#

o*
7 YES

PRS30

nnn{¢J|¢¥ail»§§§0
* *
* PREPARE
+ CONVERT
* LINECNT
*

*

RERRERREERBRERER

ok

RERRRHOEERERRRR RN
* COMPARE *
* PARAMETERS *
>*SPECIFIED WITH #
* PARAM TABLE #*

*

*

*
ERERAERANERRR RN RN

* e

J2
o *.
YES % PARAM *.
IN TABLE o®
* g - ¥
| . o
v LS
ERE * NO
* *]
* A3 1
* * v
xR LA 2
* *
* D3 *
»* -
RN

YES

P
,SPECIFIED.
*. ok '

. .
» * *, o*
e I I T TR R *, o¥
YES
rnnw
- »
* C3 #—->
{ *
v [
ot PRS25 v
c2 *, ERAERCITHENRR RN ERN
ot *, * »
NO % AMY *o * SET PROGRAM *
* o OPTIONS I * N *
I *,SPECIFIED.* *COMPILER COMM. *
I *o o * AREA »
v *. ¥ L L R e
Exnw * YES
» * wunw
* E3 *
» * | * D3 *#—>
EEEE » *
v RN
ke PRSOUT v
D2 *, HREEEDIE NN NN AR
o* *, * »*
YES % *, » RESET »
#.COMMA PRESENT.* * SCAN CONTROL *
*, o * FLAGS »
*o o * . *
%, o% REEEREEEE RN R NN
* NO
1 R
*
* E3 #—>
»* »*
R 1
v OPTS10 v
E2%x E3% »*
* * * OBTAIN *
* SET TO SCAN # * SYSTE! *
* ONLY 8 CHARe. * *CENERATED NAME *
*IGNORE ANY OVER#¥ * OR PGM NAME *
» * * »
e R R Y P R T L

v
ARRERFIHRRERRRE AR
* SAVE *
* NAME FOR *
* MULTIPLE *
* COMPILATIONS *
* *

*

ERARERRERERRRNRN

*o
o WAS *o
%o NAME CPTION o#%

*o GIVEN %

RERREHIERER R R RE RS
* *

* »
* INSERT SYSTEM *
* NAME *
* *
* *

EARBAEEFRERER R
|
v
EREFYIERRERRRRE
*

*
* RETURN *
* *

LR

YES *

oPTS20
HARRGARR RN R ERRN
*
>* RETURN *
» *

ERRRRERRRR R RRN

Section 2: Compiler Operation 63

Chart AB.

64

DDNAMES

ERREADHEREARRRE
* *
» DDNAMES *
* »

EEERBEREREAR RN

v
ARREECORB BB RN R
* *

* OBTAIN *
*LENGTH OF DATA *
* SET MES *

* *
ARBRABERRRERR RN RN

. *,
¥ DOES *. NO
*. LIST EXIST
*

FRERUEDH AR RRBRNN
»

ADVANCE LIST

*
»* *

POINTER TO * * RETURN
» M
M
»

»
»*
* FIRST ENTRY
‘
*

EERARRREARRERND

v
BERRRGOANRRRERER NN
» *
» NSERT *
*ENTRY INTO DCB *
* FOR SYSLIN *

»*
*

»
AEARBRERRBERR AR

v
EARRRHDO AR BB AR AR
* *
* MOVE *
#* POINTER TO *
* FIFTH ENTRY *
» *
* *

ERERRBRBARNBERR R

- *q LE 2 2]

>* Ha
*

*e o ¥ L322 d

v
HERREIARRRNRNNN
*

ERERRREAR RN RNN

ERRE
* *
* A4 *
* *
LTS
v
FRERRAGEEEE SRR NR
*

* INSERT
*ENTRY INTO DCB
* FOR SYSIN

*

* ok kR

. *
TEERERERRRERRRNERN

v
REERRBLEERERERR NN
* *
. MOVE
POINTER TO
SIXTH ENTRY

EE I s

-k
ko

*, 2223

*
«* - DOES « NO
*o ENTRY EXIST o
*o o
*, ¥ R
e oF
T YES

v
HRERRDERERERNE RN
* *
* INSERT
*ENTRY INTO DCB
* FOR SYSPRT
*

»
EREREERERRERRRRER

* Kk

v
HREEREL RN AN NN NN
»

*
MOVE POINTER TO
* SEVENTH ENTRY #*
* . »

* »
EREREREERRERR RN

ok
Fa *o
o® *e X223
ot DOES NO
#o ENTRY EXIST %
*g ¥

*o ¥ REE

RRRERGAER AN RE RN
» *
* INSERT »
*ENTRY INTO DCB *
% FOR SYSPCH *
* *
E2 2222222222222

XN
- *
* . Ha x>
* *

EXR
DONMOUT

v
EEERHGHERRRRRRR
* *
* RETURN *
* -

ERERBEARRRRRRES

Chart AC.

T2 T I T

HEADOPT

EA R YYVEZ RS R L 23

* *
* HEADOPT *
* *

3NN AR

v
FRRRERGD TN WX RN XN
*

*

OBTAIN LENGTH *
OF HEADING *
OPTION *

* ok X

* *
L2222 2222 22222 222

|
|
v
o ¥,
c2 *o
ot *

o *a
*HEADING LIST %
*e EXIST o%
*q - ¥
e o

T YES

v
HXRERD 2N E R EERR
*

* SET uP
CENTERING OF
* PAGE HEADING

*
RN R RN RN

koK kK K

v
WX RE D X RN N R NN

* B
*FORCE 119 CHAR
* LIMIT FOR

* OPTIONAL

* HEADING

* ok ok ok ok K

|

v
HERREE2 N RN N R
* SET *
*HEADING ORIGIN *
AND LENGTH INTO
PRINT MSG TABLE
* *

I3 2222222222222 23

|

4 |

|

v
HRERGERNEE AN R

*
* RETURN *
* *

RN RN

NO

ERERCIHRRERERER
PR

>*
.

RETURN

% 3 I3 W I I KN

*
*
*

Section 2:

Compiler Operation 65

Chart AD.

66

TIMEDAT

WA DWW NE N

* »
* TIMEDAT *
- *
TR NN

v
WA RRBD NN RERN
* SET upP *
® UNIT *
* SPECIFICATION #
#FOR TIME OF DAY#®
* *

P22 T2 S22 222222 2 2N

v
L2222]ed -2 2222 222 2]

GET *
TIME AND DATE #*
#*# FROM SYSTEM #
#* SUPERVISOR *

* *
36 36 I 5 I I NN

v
R RRD2 W2 HERR
*

* INSERT

* TIME INTO
* HEADING LINE
*

R 2 AT 222222 2222

LE R R X J

v
HERRREDHERBRERERR
* *
* INSERT *
:DATE INTO LINE :

* *
EA 22222222222 2222

v
A D W E
»* *
* RETURN »
* *
EA 222222222222

Chart O4.1. PHASE

GO

START
COMPILER

G0631

STATEMENT
PROCESS

G0632

G0635

1 - PARSE

630
EEREDDERRRRRREE
* *
* IEYPAR *
* *

AEEEEFEEERRRERE

v
LR RS PAS S S LS
* *

* PROGRAM *
:INITIALIZATION :

* *
HEEEEEERRRRRREREE

v

FEXEFKC2F AR ERRES
* READ ONE *

CARD

* INPUT

FEEREERERERESR

/

X kRD2REKRRRRRKHE
* TURN ON FLAuS
* INDICATIN
*FIRST STMT AN
*PREVIOUS PRINT
* COM:
#‘#t#ttttttttttt

R

*kkE

* *

* E2 *->
* *
*hE%

v
EEEREEEDRRERRRRREER
tPR’{/E:D SRC BAAZ

READ NE!
EEREERRRERRRKSE

J
EREFKFHERRKKRERE
* STA INIT-BBA2 *
F R e i B e T T
* INITIALIZE *
* FOR NEW *
* STATEMENT *
AEREEREERERERE RS

FRRERGERERRERAAS
LEL XLATE BCA2%
EEE B B T T B Bt Bt
* PROCESS LABEL *
* FIELD AND *

* COL 6 *
EEEERRRERRRRRR KRR

*
.* LABEL *.
.S . OR .
-, COL ¥
. ERRORS .
*, %
* * NO
*
*
*
*
636

GO

FEREETOREREREE R R E

‘STA XLATE- BDAl%*
L I e o >
* PROCESS *
‘ ENTIRE *
STATEMENT

tttt#t*ttt*tt#t::

(Part 1 of 2)

*k**
* *
* BY *
* *
*EE¥
G0633
*E*EXBUEEEREXRXE XS
*+STA FINAL- BEA2%
YCOMPLT. POL, .
1CE05E DO LooPS. »
* MOVE POLISH. _#
LR EE E R R e R 2]
L%,
THIS IS THE FIRST LS
CARD OF THE FIRST
STATEMENT . L
COMMENTS AREWRITTE ¥.: SOURCE MODULE *
SOT IN THTS OPERATION. - PROCESS EE
t
kEkEE '
* *
* E2 *
* *
*kkE
N

.‘ .
¥ LAST *.
*

e
* *
* Fy #
*EEE

AT COMPLETION OF :“**Eu“*"*’¥¥:

STMT TO *+ RECORD *
BE PROCESSED IS *+ 'NO END CARD' #
ON SOURCE ROLL. * ERROR MESSAGE *
*
EEFEEREREERE R RS

LR E L]

* *

* FU4 *->

* *

*¥%¥
tt‘ntruttattstttt
t SET_INDICATOR t

FOR REA

: CoNpiETE »
*
AEFEEEEXRREEE R R

HERRRGUEERERERREE
N 'PRT/RD SRC BAQZ:
'PRINT %LD STMT *

t READ NEW STMT t
EEAEERRBREEREEREE

Section 2:

*nn

HEH
* *
* B5 *
* *
*hEE
. *
BS *
*
*.
- THERE AN END .*
e et
*hkH
*
HS *
*
EEE
v
. ¥,
Cc5 *.

L
* YES

G084y
FREEADSERFRERERER
*PROC POL .

#063003 *.
E5 *.
¥ *.
YES .* LAST *.
——*. STATEMENT A .*
. BRANCH .*
- 4“
EEEE * NO

HS
PR
G0642

AXEERFSRERREE R KRS
ACT END ST BPAZ

‘e

*

:RETURN OR STOP :
LR RS L e L

G0634 \'
FEEEACSREREREREEE

STA FN END BEDS
D e e T put e

*COMPLETE POLISH'

* WITH STMT
Al M E

tttttt‘t##ttt##t‘

*EEE
* *
* HS *->
* *

*REE
#063004

/
FRERRSERRRKEEERE

PLACE
END DRIVER ON
POLISH

"k

*
*
*
*
*
*

*EEFEEEXEEREREEE

G0634
EERERTSERRRERERRR

*STA FN END BEDb'

COMPLETE POLISH
* WITH STMT CNT *

* AND MOVE *
EERERERRKRRRRREER

S
*04.2%
* B2#%

Compiler Operation

67

Chart O4.2., PHASE 1 - PARSE
AkkEEK
0Ua2
* B2*
%
*
.£.
B2 *,
o
o ¥ XTEND
*. LBL ROLL .
*-EESERVED o¥
.
* NO
e
* *
* 02 %>
* *

*HkE

#063178

FERRRC2RRRR KRR KK
*

*
* REMO
* GROUP

:XTEND LBL ROLL :
FERRRERRREAA R KRR

“+. YES
.

VE *
FROM * e

(Part 2 of 2)

LT e
* *
* B3 *
* *
*H Rk
63181 .
* ¥Rk KB kbR kkkkkkH
* *

* CLEAR RESERVE *
——>*MARK FROM_ XTEND*
: LBL ROLL :

EEARES SR IS S L]

#06318

. EMPTY .
*

*

. %
NO

FREKEFLERRRRERERS F2 *
* *

No
*

.* GROUP *. °
REMOVE * .* TAGGED AS #.
GROUP FROM #<— POSSIBLE

*
*
: WORK ROLL *
*

. S
.RE-ENTRY .

* *,POINT. *
FEEFRRERRARERRRE *, %
* YES

*ERE
* *
* C2 * #063180
* * ARRRAGERRERRE RS
*EEE *

*
* PUT *
* GROUP ON TEMP *
* ROLL *
*
*

*
EEERERERERRRREAR

EE LY

Rk

$063179 ¥
E3 *.

. *.
¥ ‘TEMP s o*
————>*.*ROLL EMPTY .

*

*

*, ¥
* NO

EEEEAFIRERRRAREEE
: ‘TAG GROUP AS :

ATA ROLL *

HERE R KRR AR AR R KA
v

FEREXGIRRRRRRRERE

* ‘TAG TROSE *

* PO *
*hkkkkkkkkkrhkr kR

AR KL EL EE L LS L]
* *

* *
:CLEAR TEMP ROLL:

* *
AR R RIS LT S22 2

e

8
FEAKRDUR R E KRR R ®
*

* RELEAS
* IND VAR ROLL *
FEEARRRRERRRE AR E

*EU. Te.
YES + pGM A #. YES
+1 SUBPROGRAM I#--————- >
%, '
*, ¥
*kkk * NO
* *
* B3 #*
* *
*kEE
v
oEL
Fu e,
o*.
*.
*,
S
*"NO
ERREAGURRRRRRRRESE
* *
#SET SYMBOL AND *
*MODE FOR IBCOM *
% ROUTINE CALL™ *
LR RS RS RS RSS2 X L)
*kExERHUK kR R kK F %
* *
* MOVE IBCOM *
*+ POINTER TO *
* AFTER POLISH #
EEZI S EL RS S22 RS 2 L)
G e
#063001

AERERTURFFE RS RS
* *
* INITIALIZE *
* FOR OPERATION #*
: OF ALLOCATE :
*

LR 2 R S

FERERYRREEEE SR F
* *
* IEYALL *
* *

AEREEERRREEENRE

Section 2:

Compiler Operation

Chart BA.

PRINT A CARD

68

WRITE LISTING AND

G0837
HREEAD R RN RE N
* PRINT *
#AND READ SOURCE#
* *

EERERRERERRE RN

v
EEXRADO2RRARNNRERN
- »
* TURN *
OFF NO PRINT #*
* FLAG *
*
*

*
T TN NN

v
o¥e
c2 *,
ok *q
o DATA *e YES
<ON ERROR ROLL«
*g ¥
*, ¥
Xy oF
* NO

I
v
ok

D2 *o

o *o
«* SOURCE *o YESV
*e LISTING o H—y
*oREQUESTED + %
- -
g o
* NO

L
*

*

* TURN *
* ON NO PRINT *
* FLAG *
* *

HRWRNERE RN N RN

<—

#83707

ERRERF2RERNRRERRR
*

INITIALIZE
STATEMENT CD

Py
kR

NN NN RN

>

v

483701 ke
G2

*

*o
- *o
¥ PRINT *o. YES
. OF STMT o
*.COMPLETE %
*

*o

»

.
*, o
* NO

v
HRERRRHOE R RERR AR R
* PRINT ONE *

CARD AND ITS
* ERROR MSGS *

EEREERERERE RN

READ SOURCE

v
ERERRADARERERREEE SN
INITIALIZE
* FOR NEW STMT, *
READ ONE CARD
* AND PRESCAN *

STMT
HRREERRRE RN

v

4083703 ke
ca

o* *.

ok *a NO
#eMORE TO READ o %—
* *

#8370

3 v
ERRERADLEERREERER RN

* WAIT FOR LAST *
READ COMPLETE
*AND READ ONE *

HEAEEER R RE RN
$083702
EERAEGIREERR AR RN
* *
»* MOVE 1 CD TO #*
>#SOURCE ROLL AND¥*
* SET CONTROL *
* »*
LR 22T 2222222222 2]
v
a¥e
H3 *e
o ¥ *o
o END « YES
*o STATEMENT . <
#*o. PROCESS o*%*
. ¥
He ¥
* NO
v
222
* *
* B4 * #083704 v
* * FERRR ORI R N RRR
R * TURN OFF *
* FLAGS *
#* INDICATING NO *
#* MORE READ AND *
* NO MORE PRINT #*
e
v
L2 2 ¢S 2222222
* *
* RETURN *
* *

HEERARRB RS E

INIT
READ A CARD

READ A CARD

Chart BB.

INITIALIZE FOR PROCESSING STATEMENT

G0632

%A D NN A NE R
* *
* STA INIT »
* *

39 3 3 3 3 IR E X

|

v
WREHHB2 NN NN XN RN
*

*
* INITIALIZE *
* CHARACTER *
* COUNTS *
* *

3% I 3% I N

P —

HRERRC2ER X% W XKW
* *
*SET CRRNT CHAR *
TO FIRST SOURCE®
* CHARACTER *
* *

W3 I I IR RN R

v
A s 2 R A s S22 2 2 22
* SET *
COUNT OF SOQURCE®
STMT CHARACTERSH
*TO NO. CARDS X *

* 80 *
EA S X222 SR 222

v
a2 2R 2 22 2 22 22 s
* *

* *
* CLEAR FLAGS *
* *
* *
* *

23 3 3 3 W XX

\%
ERKRE2RERRIEREN
* *
* RETURN *
* *

93 3 3 I IR

Section 2:

Compiler Operation

69

Chart BCl. PROCESS LABEL FIEL
G0635
ttttAzttt**t#‘#
‘LBL FIELD XLATE*
ttt*#tt*tt*tt**

HRRERBRRRERKA KKK
* SAVE ADDRESS *

*# OF CURRENT *
*BOTTOM OF WORK *
* ROLL AND EXIT *
* ROLL *
LR R E s L

STATUS CONTROL

EERERCOR AR R RERREE
*SET_STMT LABEL *
* POINTnR 0 0 :

KI
'FIRST NON BLANK*
t:t*att*a*ttt:ttt

D2
¥ *
* CHAR *
COUNT LESS
*. THAN 6

*.

. ¥
* YES

*EEEXEQR
INITIALIZE
R DIGIT
CONVERSION

EE R R e R s L g)

EREERERK

DIGIT
CONVERSION

LEE

*
*
*
*
*

Rk

* *
¥ F2 %>
* *

Ak
#063501
*

*.

T *
*.CHAR A DIGIT
.. o*
" *

*

.« o*
* YES

v
EERKEGE AR KRR R R XN
* C NV%RT

CONVERT ONE DIGIT

* CHA ER *
FEEARERRRRRRRA Rk

¥

¥ CHAR *.
. COUNT LESS .
. THAN 6 .

* NO

RN PAT IS LR S L
REGISTER LABEL

PO. ER
kkkkahk kR kR kRhhkk

K2~

.*" LABEL ¥
+. UNDEFINED

*. oF

, o

. .*
* YES

*EEkR
*BC2%
* A2+

70

D (Part 1 of 2)

4063503 R

D3
o *.
.* MUST THIS *.

STMT HAVE . %
LABEL .

*.

*

w.
*

ok

YES

t:sm*E3tttt*ttttt

* LABEL MISSING *

* ESSAGE T
ERROR ROLL

* *
LR R R R s RS]

(SYNTAX FAIL)
Ak RkER

*
*
*
*
*

ROLLS
EEE TS

'
HERKHT R R Rk
* RETURN

* (EXIT FALSE)

*

R T

*
*

YES
*

RS
*
* F2
*
Rk

AEERARI Rk kR k¥

ERROR ROLL

*
*
*
*
* *
ERR L R s LT S L)

Chart BC2. PROCESS LABEL FIELD (Part 2 of 2)
FEERE
*BC2#
* A2%
* *
*
#063502
EEEERRIEERRERRREE
* *
* *
* LABEL AS *
: DEFINED :
AR RERPCRKFEE S %
A2
EEEE
BC2
* C2*
* ¥ ¥ < *,
* B2 . B *, *EkEXBUREEERERERE
-* INNER *. *
. * IN . ¥ DO *. NO * PUT LABEL *
. DO LooP e F e >. CLOSED FLAG .¥*———————e >* *
. - *. ON oF N *XTEND LBL ROLL *
*. ¥ *, .* * *
%, % *, L% FERREERKKERRERERE
* NO * YES
T l(
A
#063504 ., KL #063581 .
c2 *, C3 *. cy .
¥ . . S *, -.* IS *.
NO .#* LAST *, NO .* LABEL *. NO .* LABEL ON *.
———%*_STMT AN ARITH.* r— <-—%. PREVIOUS o ¥ *. XTEND TARG .*
*. IF ¥ *. TARGET .* *. LBL ¥
*. ¥ . . *.ROLL .*
LI . % *, %
* YES * YES * YES
L*.
SERERD2EERERRERES FRREADIRERERERRRE *,
*PUT POINTER TO * * TAG GROUP ON «*¥ GRO *.
* THIS LABEL. *# *XTEND LBL ROLL * .* TAGGED AS *. YES
PROCESS POLISH *MOVE POLISH TO * <-——-* AS POSSIBLE * *. POSSIBLE o F e
* AFTER POLISH * *RE-ENTRY POINT # * . RE-ENTRY .*
* ROLL * * * *_.POINT.*
FERREERRERRRERRRE EREERERRRERERREEE L.
* NO
b e >
#063505 s v
NON-ACTIVE END FERREEQ kR ARk KRR HEREKEL kP RRERERE
INDICATES *SET NON-ACTIVE * * *
PREVIOUS STMT *END FLAG TO NXT* * REMOVE GROUP *
ALWAYS BRANCHES * STA LBL FLAG *# * ROM o St
WHEN IT IS ON. *AND CLEAR_NEXT * *XTEND TARG LBL *
USED IN TEXT FOR * STA LBL FLAG * * *
GENERATION OF RERkERRRSRREERRRE LR TR T PR L
CODE FOR END STMT.
F2° s,
. *, *ERRFIRkSERREES
* CHAR *. * RETURN *
*. COUNT ‘.'-———————>: (EXIT TRUE) :
*. = -
£, 6 .* FrERRERRRRRRRRE
*, L%
I YES
o ¥
G2 .
o* *, FRERGIREERRRERE

¥ *
. CHAR A ZERO .
* *

*

/
RERRR2 Rk kR Rk k

RE WORK
:AND EXIT ROLLS :
R R R R AR AR

FEERRTORRRRREERRE

TO NEXT
NON-BLANK
CHARACTER
SERERRER R AR RRE

L XX XY
PEE'R 2

L S e T
* RETURN *

: (EXIT FALSE) :
B

RETURN *
(EXIT TRUE) :
EERBRERERRREERE

{SYNTAX FAIL)
*%

Section 2:

EEFREDSKEEXESRTER

:RE-ENTRY POINT :
REEFERERERKERRERE

Compiler Operation 70.1

Chart BD. PROCESS STATEMENT

G0636

BRRERADERRRERRERR
ERBEALRERERRERE * *
- »

* SAVE -
#——————># LOCATIONS OF *
*

- STA XLATE
* * WORK AND EXIT #

AERERERRRBEERRE * *
REEABREERERRERR R

HBERBDORRERRR AR RN
RECORD

.+" assiG
>%2 MENT TYPE

*, o
* YES

¥ *o
»

IN
BLOCK DATA
*o ROUTINE %

%, o

LY

* NO

|

RERRS] ERRERRERE - »*
» * * ILLEGAL *
* RETURN *<: * STATEMENT *<
» » * MESSAGE *

EERRRERRREERRER * *

ARERRREREEEERR AR RN
r
v
G0637 o¥e
cz2 *o

REERC] ERRERR SRR ¥ * g
#ASSIGNMENT STA * o ¥ *o YES
- XLATE * >#¢STMT FUNCTION. ¥

* *g - ¥

REFRFRERRRRRREY g ¥

g, oW
* NO

v
ERRERDOREERARERRS
* *
* *
* VARIABLE *
* EXPRESSION *
* »
* *

EERERRERERRRRRE

> ARITH FUNC
I DEF STA

XLATE

l

v
EERRRDIAAAREARE RS
UPDATE ROLL
AND CONSTRUCT
POLISH FOR
FUNCTION

ISEEEE]
IR TR T

EERERRERERR RS

N
o
*oSTATEMENT o *
*, ¥ I

v
ERRNRDLEEXRRRERRN
* *

* SCAN STMT *
* TO DETERMINE *
* TYPE *
» *
FEEREERRERERRERRN

I

v
RRERRCLEERR RN ENRN
* UPDATE ROLLS *
* AND/OR *
* CONSTRUCT *
#* POLISH FOR *
* STATEMENT *
E e e S T

STA XLATE EXIT

Go732 ¥
E3
o .

34 *o NO
#,SEVERE ERRORS.#
*

- o*

o,

F3 *o

¥ *o

«* ACTIVE *s NO

*o STATEMENT *
*

v
EERREGIHERRRRRERR
* *
* REMOVE POLISH *

AND REPLACE *
WITH ERROR LINK®
» »

ER e e

v
EEREHIARRERRR RN
* *
* RETURN * EXIT
* *

EREREERERRRRERN

EARRELGHRRRRERRN
*

*
> * RETURN * EXIT
* >

EEEEEERANE R R R

RN R L R RN N RN
* *
>% RETURN * EXIT
* *

AEEERERERRER RS

Section 2:

LITERAL TEST

THIS OPERATION
1S PERFORMED BY
THE STA XLATE
ROUTINES

Compiler Operation 71

Chart BE.

60633
EEEEDLAREERRAAS
*
* STA FINAL *
* *
FREREEAREERERRS

HEERRPL AR ERRRRE
* *

* INCREMENT *
:STATEMENT COUNT:

* *
FERRERREERRRRRERE

D1 *.
* *

*.

COMPLETE STATEMENT

YES

AERACE AR OB RS

* *

—=>% RETURN *
* *
AR FER KSR RRERE

THIS FLAG ON INDICATES
ONE OF THE STATEMENTS
WHICH MAY NOT TERMINATE
DO LOOPS

AND MOVE POLISH

4063302
*

e .
.JUMP FLAG ON .
.. L%

* *

L+
* NO

kxS
4063301 .
El

*
*

* .OPLN ROLL.*

L
* YES

FREIAF] 6 FARRRES
* *

MOVE ONE
‘GROUP OFF THF
ROLL

P T

*
*
*
*
*

EEEEEEERERERRERS

*
SEL -
NOTE *, .*
* NO
CREes
* *
* By #*
* *
ERR
NOTE

THE TEST COMPARES
STA LBL PNTR
WITH THE GROUP
FROM THE ROLL

72

.+ DATA ON %, NO
*ITdE_DO LOOPS .+

4063388

¥
G2 *.
*

.*
* INNER
DO _CLOSED
. FLAG
. ON

* *

"+ yEs

<-

1
EREERHREFR AR AR R
* REMOVE *
*GROUP DEFINING *
* DO VARIABLE #*
*« FROM IND VAR *
* ROLL *
EEEERERERRRAR LA

AERERTORREERAR SR
‘RESE?g% PROGRAM*

* SCRIPT ROLL *
FEEREERRRORRREREE

EEREAKD SRR R AT REES

& NXT LVL COUNT *
EEEEEFERRERERTRES
ek
* *
->% E1 #
* *
wEER

xR CHI kR ke kI RERE
* *

* CLEAR *
* XTEND TARGET *
* LBL ROLL *
* *
* *

FEERFREEESETEEY

#063378
AREERTIRNRMkEE
*

*
* SET INNER DO *

-—-———:CLOSED FLAG ON;*<——-——————---—-——-

* *
FREEERERREFRES

*EA*4BUEEEEREEERR

*
* MOVE GROUP *
* BACK TO DO *
:LOOPS OPEN ROLL:

FREXEFRFXEEEREERE R

o>

#063303 . .*.
cu” T

. *.
. ¥ THIS *. NO
‘.§TMT LABELED‘.‘
‘e, s
., %
* YES

STA

v
*ERRFDUSFF R R TS E
* *

PUT_ POINTER *
TO_LABEL ON : ________

- rw

- *
FEERRRRERRERERERS

FINAL END‘
EEEEEDSEERERERESE
*

* PUT STMT
>* NUMBER ON
* POLISH

*
EERERERRREREREEE

¥,
El *.
*.
<% THIS STMT *.
.AN ARITHMETIC.~——————n
*, IF ¥
*

¥

, .
* NO

FEEXEFYRRRRREEREE

* *
MOVE POLISH FOR#
* STMT _TO AFTER #*
: POLISH ROLL :

AEEREEERERRRESERE

#063377

CEERRGUREEE R SRS
* *

* CLEAR *
_-f->:XTEND LBL ROLL :

* *
*EkEREERERERTREERS

FEEIESHERF KRR KR

*
>: RETURN
EREEEREEREKERRE

*HEEFPSEE kR RhEk

>: RETURN
EREEFERERRRER R

*

LR 2

*

*
*
*

*
*

Chart BF. PROCESS END STATEMENT

G0642
ERRRADHERERE AR
* *
* ACTIVE END

*
* STA XLATE *
HERRRERERRER AR

[ryp=o—

-
B2 *e
¥ *o
-k LAST *o YES
#, STATEMENT A .%*
*o BRANCH o
*g ¥
*, %
#* NO

1
v
oty
c2 *,
- ¥ *q
« ¥*SUBPROGRAM *. NO
*o BEING o
#oCOMPILED o#%
*o -
L U

* YES

i

v
ERRERD2 R HNARRRAR
* *
P

* LAC

RETURN DRIVER
* ON POLISH
*
*

* kK

*
E2 R RS E2 22 2 L]

FI R RE JR NN R R RN
* *
>* RETURN *
* *

FRRERREREREEERR

HRARRC TR TR RNR AR
* *

* BUILD
>% STOP POLISH
*

* ok ok ok

*
E2 222 T2 T S22 S 53

I

v
HRAXDIARBRLERLR
* *
> % RETURN *
* *

333 3 3 33 XXX

Section 2: Compiler Operation 73

Chart BG.

74

PROCESS POLISH

G0844

HRRRAERERFRRRN
*

*
PROCESS *

-
* POLISH *
(222 22T 22 2]

v
XX RWB 2NN N A NN
*

*
GET NUMBER *
OF WORDS ON %
POLISH ROLL *
*
*

L2222 22222 L2

w ok ok ok

v
ERERRC2HRRXRRRR RN
* *
* PLACE »
#COUNT ON AFTER *
POLISH ROLL *
* *

W TN NTRRRRRRE

v
HXRRRD2HNRHRR AR
» »

COPY POLISH
ROLL TO AFTER
POLISH ROLL

*
333 3 3 IR XXX R

* %k
* ok ok ok

v
AR RE DWW R RN
* *

* % K

*
*RELEASE POLISH
* ROLL

* *
3 I I KRN R X

v
R D MR E
*

*
* RETURN *
* *

ERZTZT XIS RS2 S

chart 05.
G03S9
ooo.n1000.oooto.

.GO543

G0362

y
sessaplessces

INITIALIZE

XX XYY
200002

2606900000000

4
OOO..C1OH.OOO‘.
LBL/!

UT LABELS AND
®STMT FUNC NAMESe

ON BCD ROLL ¢
e0000e0s000000000

1ses08000
AL

'SIDE ARRAY
ooocQooooooooooto

n’

¢, SPECIPIED

*. o
Te. .0’

* YES

eseeDlessesosee
: CHART CC :
. Al .
s9s060000000000

.® ‘e,
. $3LOCK DATA' e, NO
.

G037

G037

G0376

G0377

608000000000 OOS

.100.D20.0....0..
‘PRC DO LPS-C!A2°
—3-e-¢ -z-o-

*CHECK POR UNCLS!

*DO_LOOPS AND PR'
¢AND MARK ERRS ¢
LI Y L R Y T T 1]

‘z..'!z‘”...“...

PGS-CPA2¢
D e oy 2
. CONSTRUCT .
* BRANCH TABLE :

0006000088800 0800

n

SFOR
2406000004 000800 ¢

$6008G266084056%¢
*

VZ.LUE
.tooooooonoooo‘

sseoef2e
.

4
*6998 ¢ e
L d

20000008

v
se0000008d
T-CIA2¢
SARREAARAARNANEAY
SALLOC CM STG,
. S .

0009
-

- I3 E! °
¢sss0leossesessre

————-

PHASE 2 - ALLOCATE (Part 1 of 2)

2060080800000 00000

y
00000510858 08000¢
o TURN ON FLAG ¢
¢ "FOR PASS .
*RESTORE OBJELT *
s MODULE LOC *

* COUNTER .
000004040800 00000

: SIZ
0600040008508 00¢

s
s0es8DIed0cEG0eS
* INDICATE ‘
. RESENT
0 ALLOCATION IS ‘

IN OBJECT .
‘0..0‘.00.‘.0.0‘0

GOu37
$9000F 30000000000
*B/B TBL AL-CLA2#
$-0-0-0-0-0-0-0-8

.
¢ BASE TBL, BRT ¢
sescescsssbensene

eseeer3

.
. INCREASE .
¢LOCATION COUNT *
:BY EQUIV SIZE :
ssccsesesetsece

GO438
08840530604 000080

AD BS-CWA2 *

¢ INDI
$0400080084000080

[LY) /
onoooaacuoaoooooo
SPREP

o-o-o-o_o-o-o-o-o
ALLOC NAME- *
LIST TBL ADD :
00600040080 000800

SCALAR ALL C
o-o [e T

.
‘ SCALARS AN| .
¢ REG'D BASES
904400008000 80000

GO4OL G0802

ss00splesessOs000
SARRAY ALL CNA? .
P piv ey Yo o-o-‘-
*ALLOCATE Al

‘ AND ADD REO'D

.“0..‘.‘..0

GOua2

GO4 &Y
esssepSe
sL

GOuusS

S6840B56000064000 0
OGBL SPG AL—CDAZ'

_-----—>. ADD FOR ‘

0 SUBPROGRAH 0
ADDRFESSES
ooooooooooooooooo

ess0sC5eess0 0000
*SPG ARG AL-CPA2¢
S-8-0--0-b-b-8-0
"ALLOCATE' ARG *

ROD ®
oasou:azb BASES ¢
200800600088 400¢ 0

S860EE5892 0600000
THE_ ROUTINES ‘PORHAT ALL CSA2¢
ALLED IN PASS $-0-b-0-0-8-0-¢
DETZRMINE ALLOC F RMAT ¢
NUMBER O ‘ STMTS .
TABLE . REQ'D SES 4
'RIES ssssdossesstesete
REQUIRED
THE
OBJECT MODULE

Se0SOFS5000 004
*RESTORE DBI
SLOC CNTER DEIM !
¢TRUE SIZE BASE ¢
:TABL! END PASS '

““....‘..O.‘..O

06008GLIISICES0S *E000G580000 00000
EBUG XA2 ¢ :A§C& /s AA3
ND ‘---o----)'ENTER NAHBS ON ‘

BCD ROLL

¢ VARIABLES
€000000400800000¢

280880000000 80000

GO&03 G0&37
$8008HS0000 00000 0005080000008
*GBL SPG AL CUAZ‘ ’B/B TBL AL-CLA2¢
$=b-0-0-0-0-0-0-¢ .- —0-8-0-0-9
SUBRTN ----—---'ALLDC SAVE AREA®
SADDR PRINT ¢ BASE TBL AND ¢
H DS . * BRANCH 1 E ¢
008000646800 00080 28886640 088008004
G042

o.oooynoooooooooo
P ARG C

“ALLOCAT! -
SARGOMERT LISTS .
“‘..."‘...‘....

Section 2:

GOaYl1
.oo.oas~oa.ooo‘oo
A

SEQUIV DATA_AND :
tO...‘t..‘....‘..

o0oox5.ooo.ooo.‘
I3
+ CHART ng s

*
4080808000008

Compiler Operation 75

Chart 06.

76

PHASE 2 - ALLOCATE (Part 2 of 2)

60397

. ALAR L
[Ny TNT Y v Y

G0401

Go&

Goaay

SCORRECT SCALAR *
H ToN, ¢

0084830000000 0800

S6600C 20000000808

ECT
¢ ALLOCATION, ¢
¢ PRIN .
084400080050 000

/
92...02. se00080d
$BLD NMLST-CVA2 *
Pty putJu ud it Y
*CONSTR AND PCH ¢
& TXT CDS FOR ¢
¢ NAMELIST TBL ¢
pr e 1 Ty

'4
SESEEE26 000000000

*
LRI T YT R I T2 g

60845

SESSSF 20650806860
SFORMAT ALL CSA2¢
L R L o T T e d
*ALLOCATE_FOI
o STMTS, PUNCH *
o “TXT CARDS .
9050008080000 ¢08

ootooazoooocoobo;"
*SC, .

Go438

$860SRUEsESE0ES0E
SRELEASE ROLLS,
* OBTALN

.
*
¢ - DOUBLEWORD q
¢ BOUNDARY FOR :

.

L d
8200652309000

SEGSSCUSEIEN 04S¢

¢ FOR T! .
: COKST ROLLS :
Se88s0s00000 00080

4
88 EDUISESIIIELS
B! AD

¢ FOR TE RMD ¢
¢ C AREA .
000000000000

SEGSSEASESUESRE
*

¢ PREPARE FOR
: ONRIFY PHASE -

LX XX XY

*
SOSSSCEEF IS LOESS

SOPOF st oee
.

* IEYUNF :
LTI TT YL T LIS

RELEASE
ROLLS

Chart CA.

GO543
REEAQ R ERE R R
* ALPHA *
* LBL AND L *
SPROGS
*EFEREEEER SR H

v
FHERRBL EFREEERRER

ROLL. *
FEEERRRERRRRERRAS

FRERECLREERHR SR RS
* S%VE POINTER

*
*
M SET UP *
* POINTER *
* TO LBL ROLL. *
LR R e 2]

EEE

*
*EEE b
¥

D1 *.

¥ *.

¥ ENTIRE *.

*, ROLL
Te. PROCESSED +

R
)

. *

FEREAELRERE R RS
* *
;MOVE NEXT LABEL:

: DATA VAR ROLL #
*
FEEERRRERRRRERRESE

MOVE BLD

ALPHA L SPROG
IS VRS T TSN

* SAVE DATA VAR *
YES +ROLL_POINTER AS*
—=Z—————>% POINTER TO *
* STAT ENT *
+ FUNCTIONS *
L2 RS L] KEXERENEK

J
EEKEFEDRRERERERER
*

SET UP
POINTER ROLL

PR T

*
*
*
*

EE R LR R RS s L LS

* *
* G4 *

*R¥E

NAMES TO DATA VAR ROLL

R RAT R R K Rk E

* ALPHA

* SCALAR ARRAY *
* ND SPR *
SRR kRS R E IR

SR E kB IR kR R R

+ POINTE
+ DPOINTER TO *
+ SCALARS *
FERK R AR ERRER RS

FREICTH e RN R kS

SCALAR ROLL
AEEER ARk RRER R

FE XYY

*
*

* SET UP

: POINTER TO
*

*

FREEEDTHE RS RN RE
‘A/D VAR RL-CAF“*

R L
t*#t“ti"‘*t“‘*

*ttttE}t it*t#ttt

* SAVE DATA VAR *
‘ROLL POINTER TO‘

#ttt*#t*#*##**i#t

PEERRF IR KRR ERREER
* *

* SET UP *
* POINTER TO *
* ARRAY ROLL *
* *
* *

EERBEREREEKERES

FEEIRGIEF R e ER R kS
#A/D VAR RL-CAFU*
—*—t- Bt B B B
MOVE *
‘ARRAY NAMES TO *
DATA VAR ROLL
tt#t“**#“*#‘t#ﬁ

Ll Eh bbbl
* SAVE DATA VAR #*
ROLL POINTER AS
* POINTER TO *
* GLOBAL *

* SUBPROGRAM *
R ERFREEFREEERE

FEREETIHEEEAERA SR

*
*SET UP POINTER #
* T0 G +
: SPROG ROLL :
B

HEREEDUEERRRRERES

‘A/D VAR R&-gagut

‘MOVE SUBPROGRAM‘
NAME

TO
* DATA VAR ROLL #
FEEERRKRERERRRRER

HREERCYR AR R RERRE
* SAVE DATA VAR #
*ROLL POINTER AS#
* POINTER TO *
: USED LIBRARY :
LRI TR TR LES SR

RERARDUESREERIRRS
* *
*SET UP POINTER *
* T LIB *
: FUNCTION ROLL‘:
L I s PR T

* PHA TO
‘ DATA VAR ROLL ‘

#“t#ttt##‘#t#t

#C#tFu#t#ti‘t‘t
ALP)

¥ *,
* ENTIRE *. YES

FEXRGORER KRR KSR

. *
.. RO P e —— RETURN *
* .PROCESSED. * * *
*. ¥ FREKERRREEREREE
, .
* NO
LRl : L bt
*MOVE NEXT NAME *
* (8 BYTES) *

* *
: DATA VAR ROLL :
FEEARE AR R

Section 2:

Compiler Operation

77

Chart CB. PREPARE EQUIVALENCE DATA

60362 oo
A2 *e .
RRERALRAER RS ERR ok . RRRRATEHARE R R ARE
* PREP EQUIV - .4 *o NO * *
- AND PRINT #—>5% EQUIVALENCE s—— > RETURN " #
. ERRORS - *e OATA Lo * *
ARARBRARERRRRR R -, o AERBRERRRRBERERE
*, o®
* YES
RER
»* *
* B2 *—>
* -
E X223

ARERRB2EFRRRERE NN
* CALCULATE #
* OFFSET FOR #
* EQUIVALENCE *
* VARIABLE AND #
- RE! *

*

ERREARBERRER AR

ety .
c2 *, ERRRRCITHARRRRERRS
s *. * »
o® 8AD *e YES * . -
*o DEFINITION o#———>#RECORD NAME AS *
*ao -® * ERROR *
", -® N B
*, oW T O RAREERRRRERRRRE R

* NO

% ALL o
*o NO

ATA
PROCESSED <%
., ot I
-, ¥

v
ERRRFEORRRARRRERRN
-

SET Ul
HEADING FOR
ERROR LIST

AERFEARARRRRERRR

LE LR
LR R E RN)

‘i‘}llelX&!lll.l.ﬁ
PRINT LIST OF

EQUIVALENCE

DEF ERRORS &

* -

PRINT
ERROR SYMBOL

ERBBARRRER RN

v
ERRRGOARBARERRS
*

* RETURN *
- . *

RERERRRERRRRRRN

78

Chart CC. ALLOCATE BLOCK DATA

60361
S RRARALRERRRERER
- -
® BLOCK DATA *.

#PROG ALLOCAVION®
HERERRRRBRBBRRS

FYYYs
#36102 o,
F2

v
#36101 oo
G2

RERBRANEFERERARS
#CM ALL/0UT-CIA2%
L e el
># ALLOC ALL COM #
#STRGsPRNT ERRS#
#MAPS PNCH ESDS #
XTI T2 Y S e

v
RERBRRB2ARBBRNBRRES

- PUNCH -
REMAINING
#* ESDS IF ANY #

AEBBRBRBRRBER

v
BERRRCOABRRRERERS
#SCALAR ALL CMA2#
o She=ais S
#ALLOC SCALARS, #
#* ADD REQUIRED *

* BASES el
FARRBERARRBERBRNN

OQQ.‘Dle!.lQ!OlQ
*ARRAY ALL CNA2#®
L D e bt T 2 o
ALLOCATE ARRAYS#
* AND *

REQ. BASES i
R e 2

v
ERRRBE2ARBRRB AR
- -

FLIP
EQUIVALENCE
ROLL

LR RS
LER R]

ERRREBRFRRBRRREER

L2222

-
* F2 #—>
» *

v

*o
<% INFO *,

«* GROUP ON
#o EQUIVALENCE
e ROLL .

. ¥

*o
o-®
g MORE
#<DATA ON ROLL
» o*

v
ARRBREJORR AR RERNRERS

» PRINT
BLOCK DATA
* ERRORS »

ARBRBBRBRER NN

v
LX)
#06 *
* Baw

- RELEASE
» ROLLS

FERBEFIFRRBERBRRS
*

* RECORD
>* NAME + ERROR
* TYPE

»
ARRBABERBBRBRBNS

.
*. YES

BECAUSE

ALL EQUIV
DATA MUST

BE IN COMMON

Section 2:

Compiler Operation 79

Chart CD. PREPROCESS DUMMY DIMENSIONS

G036S5

ERRRADHRNE G R AN
* PREP DMY DIM #
* AND PRINT *
* ERRORS *
ARRBEIREARBANDN “.o.

v
ARREBOERARARERNE
*

*
*
= INITIALIZE * CHECK
POINTER TO * DMY DIMENSIDN
% APPRO ROLL * .
® » ERRR
FRARRFEBRRRRTRRRR * *
] * C4 ¥
R | * *
* * R
 c2 -~>I
- *
EYY Yy v i
4036601 o*a G0367 ke G0s18 v
c2 * g c3 *g EERRRDCHLFFFIRNBRRERRE
o® g TEERFCSURRRB RN NN
.t ALL *. YES * * ®
*< ARRAYS ot > PRINY ERRORS >% RETURN #
.PROCESSED . # - T *
*, o ¥ AR LR RERE R R
e o REXBBERRLRRRE
NO
23 2] 1
* *
i * D3 *—>'
| * *
v *%NE v
oFe #36702 ate $36703
02 * g D3 *q FRFERDLER RV TR RN RN
o# NEXT #, o * *
<*ARRAY HAVE #. NO * END YES * RECORD MARKER #
. DUMMY oE——y . *, OF A DUMMY >#% ON NAMELTST +
#DIMENSIONS.% l *e LIST * ITEMS RGLL *
g o *, - £ * EREE
*. o v e oF REFRERRERRREERERE - *
% YES L2213 & NO * D3 #
* - 1 *EEE | * *
G2 * * & N HREE
* = ‘ * Ea c—>l A
RS - -
v ' ERR v
a¥e v #36704 a¥e $#36705
E2 LY ERBRREIHER RN RS R Ea * g
o L * CLASSIFY NXT oE ANY ¥, o
% ARRAY #. YES * DMY IF ANY @ «*MORE ARRAYS*. NO % MORE
%o A DUMMY DR % >#% wiTH DMY DIM & E.WITH DMY DIM <% ->#, DUMMY
* INCOMMON % # PNTR TO ARRAY # £. IN THIS o% ' *, LISTS
e o # ON ERROR ROLL * *.LIST % L ot
B, oF FRARRBEENAARDRORD E, oF ke oF
i NO i * YES o * NG
|
EE 2 T3 FRRE
I * # * "
v * D3 * v = Ccq ou
ABBBRFO2PRDBRERBER * * FERFEFQRERE SRR ERS * -
» * R #*# CHECK CMY DIM *# R

2 RECDRD ® #NXT ARRAY-MUST %
ARRAY NAME AS # : *3E DMY IN SAME *
» ERROR = *LIST OR IN COM-*
" “ * MON RCD ERR'S #
RERRGRDRD R RS RT (A2 2222222222 2.2 3
EE 2 2]
» # l
* G2 #—> v
® * L R 2]
T RE * *
#36602 v * Ea ®
RBTRRG2ABILO BRI RY * ° @
% & wRER

e PREPARE *
#70 PROCESS NEXT#
* ARRAY &

" %
EEARBERUBPENG RO R

tERE

£ Y

80

Chart CE,

G0371
ERRFAHRBRDRERD
* PROCESS ®
*® DO LOOPS *
* i*

HERBERBARNBRFR IS

v
WREFRB2 R R RRNR RS
C* W
* FLIP THE *
% DO LODPS OPEN #
* ROLL *

3 #*
403 3 4 3 3 9 3 3 30 5 B % ¥4

Lz 223
* *
C2 *—>
* *
BRER v
$037101 oty
2

o
o% DATA #,

«¥ ON THE *g
#+D0 LOOPS OPENe#
#o ROLL ot
%, o

°

o o
* YES

REFEAD2ARERBRF RIS
* #*

* MOVE BAD e
*_ABEL TO ERROR #
* LBL ROLL &

#* *
HREXRFRFHERRR XL RS

B -

°
E2 o
o¥ UNDE~ ¥,

CHECK FOR UNCLOSED DO LOOPS

$#037102
FWHEHC IR RN AR
* *

*SET UP HEADING #
>% FDR DO LOOPS #
ERROR LIST *
*

NI KX TR RRD AR

v
R ERERDI R EFR AR REY
* PRINT *
DO ERROR LIST
* *

FREUFWENERRER

[PJ——

HUGREIREXVEXARS

«#FINED MARK #.o YES * *
#o ON LBL ROLL o% - e RETURN #*
e o - #* . *
%o o ’ T IR LY I Y
"o oF v

%* NO LT3

* #

i % Cc2 #

* *

| RRE

v

RERBRF2HERRRN AR
* : *
SET UNCLOSED *®
#D0D MARK IN tLBL *®
% ROLL GROUP *

®

#

#*
AREERLERRREITRRERRE

!

v
EYTTY
* Cc2 *
* #

R A2 2]

PRINT ERROR LBL
ROLL .

Section 2:

Compilex Cperation 81

Chart CF.

G0372

BRERADERRRER BN
PROCESS LBL AND®
% LOCAL SPROG :

BERERBRBERERBRS

EREERBARIRREBNES
- : -

» FLIP *
* THE LBL ROLL *
* -
» »
(2221222122222 22 2)
R a2l
- -
* Cc2 >
. -
“uNn
$037201 ote
c2 w.
ot .,
«* DATA *. NO
#. ON THE LBL = o%—y
#. ROLL % |
- -
e o v
* YES HERS
» -
* By #
- *
“ann

v
BRRBRAD2AEBABR DN
- -
bl MOVE -
* LABEL TO WORK *
- ROLL *

*
ERRRBRB RS ERRB BB

#037206

CONSTRUCT BRANCH TABLE ROLL

e

LY
@
»

o x

| wuan

LT e ey
- »

. coPY
#* TEMP ROLL T
» LBL ROLL
-

RRERRBRBRRRARRE

-
o =
-
»
L]

HABRRCOBBRRRBBRES
-

-
#SET UP HEADING #
* FOR UNDEFINED #
* LABELS bt

BREBABEBBERRABRNN

oV
RRBERADY AR BRRB RN

» PRINT *
UNDEF INED
* LABEL LIST *

RRBREARREREEN

v
o*e 2 v
E2 g REEJHERRRRRE RS REBERRELERRBERREAR
- g - N » - -
«% LABEL ®. YES * SET FIRST 1/2 * . FLIP *
. DEFINED % ># BYTE OF LABEL # #THE LOCAL SPROG
. o * GROUP TO ZERO * » ROLL »
*g -t » - * -
T oW * L
* NO ’
BEEE
* *
* Fa %>
P YY) v
v 4037207 oWo
RREBBF2ARRERRBERRS * g
CLEAR * DATA %,
* FIRST BYTE OF # : ON THE %, NO
- L ABEL - « LOCAL SPROG o*
*# GROUP-MOVE TO + *. ROLL
#ERROR LBL ROLL *# .
EAZ22 22222222222 2 3 * e
* YES
]
v
EEEE
- -
* K3 * ote v
- - G3 *, RRERERGLARRRBERERN
ETT 23 o -, * »
«* JumMP *. NO # MOVE NEXT #
#.TARGET LABEL * GROUP TO *
*. . # CENTRAL AREA *
*, ¥ » *
e oW REREBRABRRERBERERS
YES .
E2 22 - -
» * K3 #
* H3 #=> » -
» * La AL d
RRER
#037203 v
H3 Ha
#MAKE NEW BRANCH#* *MAKE NEW BRANCH#*
TABLE ROLL * # TABLE ROLL *
ENTRY AND * * ENTRY AND
* RETURN PTR * # RETURN PTR *
- T0 1T * - 10 1T *
]
BERER P IHABARERBRS RERBE JOERRBERRR RS
THE TAG - REPLACE * * *
FIELD OF THE % LABEL GROUP % * PUT POINTER *
POINTER STILL #WITH POINTER TO® #0ON COMMON DATA *
INDICATES THE # BRANCH TABLE * * TEMP ROLL *
TYPE OF LABEL = - »
RN
» *
* K3 #—> v
* * RN
ERRN * -
4037205 v * Fa »
FEERAKIFRERBRRRRR - *
* - L2 22

82

- MOVE

* GROUP TO TEMP
* ROLL

*
»

FEBBARBARBERBBRS

-

»
*
’__1

]
v
ey

*

* C2 »
- »

BERE

PRINT ERROR LBL
ROLL

$#037208
, ERERBFSERRBEERERS
. COPY THE *

#*#THE LOCAL SPROG*
» »

ROLL
RERBRANBRBRA RN

|

v
RRRRGSHERRRB RN
» »
» RETURN *
* *

FERERBBERRRERRN

Chart CG.

ALLOCATE HEADING AND PUNCH ESD CARDS

GO0374
BRERADERBRRBRER

* BUILD *
PROGRAM ESD
- -

FRRERRERBERD RS

ARRREB2HBRBRRRRRE
* -

INITIALIZE

LR R
LA RN

RRRRERBEEERRE RN

D2 *o
o% DATA #,

«% ON ENTRY %, NO
* NAMES ot
ROLL o

-

.
*o

YES

#037401 v
HERBRE2HRRRBRRRER
* *

#FLIP THE ENTRY #*
#NAMES ROLL AND #
#*MOVE ONE GROUP #

*

* OFF
RERBRBERBRERERRERR

v
BERBEAFORRERRRRRR S
» SAVE *
#GROUP ON_COMMON#
#NAME TEMP ROLL +*
*# ADD BLANKS TO *
- NAME *
HARARRBRERRRERERER

RER
»* *
* G2 *—>
- »*
HEER

#037402 v
ERRERGO2RERE R RR RN
* *
pPuUT 4 syMBOL
#IN FIRST BLANK #
* OF NAME *

*
ARRBERERRERRERRRR

v
FRBRRHOER R LR RR RN
* »*
* PUT PROGRAM *
* NAME IN PUNCH *
* BUFFER -
»

*
ERERBERER RN RN

I
|

v
RERRERPOREREREERR NS
= *
PUNCH PROGRAM
* NAME *

ERREBRREENE RS

EERRRDIRNERRE R RN NS
* SET upP

* PROGRAMMER
>*SPECIFIED NAME
* IN CENTRAL

ERARRRERBRERERER

kR ERE R

v
EREE

LR]
(2]
N

LR X]

L2223

PUNCH ESOD

PUNCH REMAINING
ESD

*nan

LR S
@
>

EX R

ene

v
FRARBDARA AR B RBRER
- -

SET e

UP FOR LD ESD :
»
AREFRRABBRBBR AR

LR R R]

ARRBRRCHABRBRRBRRRS

* PUNCH
PROGRAM NAME
* AS LD ESD *

RERRBRRAEB BB RS

FRBBRDA AR BB RN BEDY
ADOD -

* LENGTH OF *
* INITIAL PROG #°
#CODE TO PROGRAM#®
»

» BREAK
RERRBRRRRERRRRRRR
RN

» -

* E4 #—>

* -

EREE v

#037405 o*e
E4 %,

o* *q
«* DATA LEFT #. NO
*. ON ENTRY -t
*e NAMES o®

Fe oW
* YES

v
ARERRFARR AR RRRRRR
* MOVE_GROUP TO #
* CENTRAL AND *
COMMON NAME * -
* TEMP ROLL #
* *

CRERBEFRERRRRRRERE

v
HRERRGARRRB AR RERE
‘x0T ADD *

* BLANKS TO *
"#NAME, ADD ENTRY#*
* CCDE TO PROG ¥
- *
RARRBERRERRRAERREN

v
EERIERHL A FEARERRE R
C T PUY

* ESD IN *
BUFFER-PUNCH
“# IF COMPLETE *

CARD
REEREERBE R NN

Section 2:

$037406
L ERERRESEERERRRENE
* COPY hd
* COMMON NAME #
>%*. TEMP ROLL TO %
) :ENTRYVNAME RDLL:

ERARBBARRBERREERN

|
l

v
AERARAFSHERREIR RSN
* PUNCH ANY *
REMAINING ESD
‘ CARDS -

RERBERBEREERE

. v
RERRGSHERRRRRED
* *
* RETURN -
* -

REERERBERERRRD N

Compiler Operation

83

Chart CH.

G0376
FRERADERRBREERD
* *
® ENTRY NAME

-
* ALLOCATION »
RERERBRRRRRE RS

CHECK ASSIGNMENT OF FUNCTION VALUE

v
ate
B2 *o
o* *, ERERBIRREARERNS
<% SOURCE *o. NO * *
+A SUBPROGRAM . >* RETURN bl
LES «® * -
*, o ¥ HERRRRBERRE RN
*, oW
* YES

-

ERRRCIRRAARRRNR
‘w -

* RETURN :
HBBERBRRERRENRR
v
RERRRD2ARRERRRE AR
* »
* FLIP *
#*THE ENTRY NAMES#*
* ROLL *
- -
BEEFARBARRRRRRR RN
LA R 2]
* *
* g2 >
» »
L2 L2 v
#037601 ot
E2 %,
Ed *o
«* DATA ON *. NO
#. THE ENTRY
¥NAMES ROLL.*]
*o o® i
o o v
* YES ERER
] » *
* B4 *
' * »
' LA 2 23
v
REBRRFORAFARBRRESR
- -
®MOVE NEXT GROUP®
* TO THE COMMON *
#NAME TEMP ROLL *
- * RERE
REREERE AR, » *
* G3 %
* *
ERER
|
I
v
et #037602 v
G2 - ERRRAGINARRRERERS
» g *
* SCALAR _ *. YES * SEV MODE
. WITH SAME % > OF SCALAR IN #
*e NAME o% * POINTER -
g o - »
y ¥ FRARERARBEDIRERERED
* NO

v
FRERRHOEERARB RN N
- »

* REGISTER NAME
* OF ENTRY FOR
* ERROR LIST

-

LR R

REREEERRRERBERN D

v
RREEBYOIIBARRERES
- »
SCALAR ROLL *
#*GROUP FOR ENTRY#*
* NAME - DEFINE *

L]

* .
FRRBEAR BB RRRRER RN

84

BERBEHIRERRERRRER
- -
PUT POINTER *
¥ON COMMON NAME *
* TEMP ROLL *

* »
BRABBABERRARRER BN

ERBREJIRERRRRRR RN
» »
* ADD SCALAR

*TO EQUIVALENCE
ROLL

L]

*
* *
*
*

AERRAARERRERDRE

v
EERE

LR R
m
N
LR R

rEER

RN

LR XY
o
s

LR

LYY Ty

#037603

ERERRDLERRRERRENN
* COPY THE b
* COMMON *
#*NAME TEMP ROLL *
* TO THE ENTRY *

*

*

e e L

RRRRRCLERRRRRNBRE

» »

PUT A MARKER

SYMBOL ON

EQUIVALENCE
oLL

*
FRARBAARRERRERRR S

* ok ok
XX

RERREDLRREBERRRR R
- *
*SET UP HEADING *
FOR FUNCTION
* ERROR LIST :

*

»
ERRRRERRERERERDD

ERERRREGRERBRERRR RN
» PRINT *
FUNCTION
* ERROR LIST %

ERERERRERERER

v
RERRFLARERRRERY
- *
* RETURN »
* *

RERBRERBEEERRRR

ALL ENTRY NAMES
TO A FUNCTION

ARE
EQUIVALENCED

PRINT
ERROR SYMBOL
ROLL

Chart CI. COMMON ALLOCATION

60377

RERBADHBREAR RN
COMMON
ALLOCATION *
AND CQUTPUT b4
FEAEBRERENRR R

LY

ERRBRBORAARB RN
- *
» INITIALIZE
FOR COMMON
ALLOCATION
»
»

FRARERRRRRBD AR

L2

o N
o ¥

*,
ON ROLL <%
- .
o o
* YES

v
BRERRD2RRRRERRENR
* y ‘ »

* MOVE NEXT *
*NAME TO COMMON #
® ' AREA ROLL *
* : *
lll‘l'll'*?i"“l
ERRE
- *
* E2 %=
- *
P
$037701 o%.
€2

.
*

.
*. YES
ok

" END OF
*.

ALREADY ON o *s

o® NEXT
ALLOCATION *. VARIABLE IN
ROLL INDICATES *. ANOTHER %
THIS *.BLOCK.*
*, o#
* YES

v
ERRRRGOARRRRRAB RS
*

*. NO
o —

L RECORD *
#NAME AS COMMON *
* ERROR #*
»
»

»
ERARBRR AR AR RN

<

#037702 v
ERRRRHO R AR ARRRE RN
* ALLOCATE »

STORAGE FOR
* VARIABLE.,

#03

>

7709
RRRRRCIRRRRBRREAR

CLEAR *
* CONTROLS AND *
* ROLLS FOR *
* ALLOCATION *
* OF COMMON *
L Y

v
FRRRDINERRE R AN R
*

*
* RETURN *
* *

#03

>

$03

FEERRERARRERRAN

R
» *
* E3 *——y
* B 2 l
o v
7705 ke
) €3 w,

¥ MORE
%+ BLOCK NAMES
*, ON ROLL, %
*o .
#, oM
? YES

v
ot
£33«
o * NEXT #*.
o#% NAME SAME #
*.AS LAST NAME

YES

o
#.ALLOCATED . *
'S N3 i

L

NO

7703 v
ERARACIHRAR BRI RSN
»

COPY BLOCK -
NAME AND DATA *
TO YEMP ROLL :

FRARERSEXRBRRE RS

EE ok kW

v
XL}

“nas

v
(223

FY2s

$037706 v
FEERDORERRRENEERR
* *

COPY ALL BLOCK #
*NAMES AND DATA *
BACK FROM TEMP #
*
*

* ROL
ERRBABERERR IR RN

v
RERRRCHAEXARBRI RS
* ALLOCATE ALL %
* EQUIVALENCE *
DATA REFERRING ¥
* TO COMMON *

* BLOCK
RERRREERERR RN RN RN

4037711 v
ERERRRDLARR N RK RN RN
* »

»

PUNCH
ESD CARD FGR
. 8LOCK »*

EEREERERERRAR

|
v
*

ot .
Ea -
ot
o « NO .
*, MAP DPTION o%— B . . R
*e * * N .
*, o
*, ok
* YES
*
*
* f
|
v
BRBRBAFLAFRA AR RN RN
* PRINT | v
HEADING FOUR .
*MAP OF BLOCK *
HERERAERRRRER s
*
» < —i
»

v
ERRRBGLEERRR R R RN
* COPY GEN'L *
ALLOCATION *
#ROLL ,TO COMMON *
* ALLOCATION :

*

* ROLL .
EERRERARFARARRAN

BURBRRHGR AR R R R AR RR

*
PRINT MAP

REBBRREANBREE

ERARERJOAERRR R BRSNS
* PRINY -
ERRORS FOR

BLOCK *

FERRERERA AR

v
RERRKGER RN RN,
- COMMON * RETURN TO
#ALLOCATION AND # PROCESS NEXT
* ouTPUT * COMMON BLOCK

ERHBARAB RN RN

Section 2: Compiler Operation

85

Chart CK.

Go381

HERBAHRBERERRRE

EQUIV. *
#* ALLOCATION *
* PRINT ERROR *
HRRERRBRRRRR N

(2323

* -
* B2 =
* -

EQUIVALENCE DATA ALLOCATION

ERERRATHRERRB R RS
* CLEAR *
* OBJECT b
>* MODULE *
* . LOCATION *

-

»

* COUNTER
L2 T T R T S T 2

[I223 v
60382 %o

«* DATA *.
" N - NO
‘e EQUIVALENCE o%——
#. ROLL o* %
- -

EQUIV
ALLOCATION

v
ERERRC2EERERRERRS
* *

LiP
EQUIVALENCE
ROLL AND
INITIALIZE

LR R R]
ok k K

ERRRRERARRRBRRERR

R
* *
* D2 *—>I
- *
ErT2 v
4038501 *.
D2 %,
o* .
<% DATA *. NO
#.70 PROCESS ON.*——
o ROLL o% i
*g -
*o

INTEGRATE

¥ v
* YES *EER

PRESENCE ON o g

GENL ALLOC ENTRY
ROLL INDICATES ALLOCATED
THIS « BEFORE

%
*o .
., o
* NO

#038503 v

-
E3

o *o
«®* CONFLICYT *. NO
># oWITH PRESENT o #%—
*o SEY o

<

F2

* ALLOCATE *
* ABSOLUTE ADDR *
* RECORD ON.GEN *
ALLOC ROLL *
- »
L]

ARRRERARBRRERRRR

v

F3
»

*
* RECORD *
#*NAME FOR ERROR #
* LIST -
*
*

EERRARERARRRBRRN

|<

G2

» *
» INCREMENT *
#PTR TO GET NEXT#
bl GROUP -

#38902 v
3
* »

* PRUNE *
#ENTRY FROM WORK#*
» *

- . -
rRER LX TS

- * - -

* D2 * * D2 *

- - * »
une nEn

86

G0384

RRERRBLGRRRRRRRRER
* ALLOCATE ALL %
* ITH i
NAMES LISTED ON
#GEN ALLOC.ROLL #
* 4 MOVE INFG #
AERRBARRERR RN

FERBRCHRREERRARRR
- -
* INCREMENT #
*PROJECT MODULE *
* PROGRAM BREAK #
* -

*

ERRFRBRLRERER RSN

v
ARBARCQAR RN RRER

- »
*#COPY INFO GENL *
* ALLOC ROLL TO *
SOURCE ROLL *
* »

*

RERARAABARE R DA

V.
ERBRRGLARRE RN RN NS
MAKE FINAL *
#ALLOC AND MGVE #
* INFO TO EQUIV #
#ALLOC ROLL FROM#*
* LLOC *
ERBRRAEBRBRRE R

v
*RER

LR R
@
n
xx

rnunw

REARRCSERERRRRRRE
* SAVE LOCATION #
CNTR AS FIRST #»
* ADDRESS AFTER *
* EQUIV. DATA -
*
»

*
EEARRERRRERRERNN

l

v
EERRREDSRRARARRRERR
* PRINT *
EQUIV
* ERRORS -

RERRBRERARREN

I
v
ARRRESHARBRRRERN
» -
* RETURN .
» *

ARERERAREAREE NN

Chart CL.

SAVE AREA,

G0437

RRREAZEBRRRABER
BASE AND

LRIy Ty s 2

v
ARRRRBIRRRRRBRRES
#SAVE BASE T8L.
-

* DISPLACEMENT
* FOR START OF
- SAVE AREA
RRRRRERRRRRRRNRE

LR R RN

.l.cz.x.l'.l.ll
- -
* INCREASE
* PROGRAM BREAK
* BY SAVE AREA
»
-

s1z »
FRERFARRRRRBBRRE

LR R

v
ARBRRD2ERRBBRRRRE
SAVE BASE TBL #*
#PTR _AND DISPLA~%
CEMENT FOR
START OF BASE

* T
FRBRBBBERRERRRD RN

v
RRARRBE2RBRRRERR AR
-

»

INCREASE hd
PROGRAM BREAK #
BY BASE TABLE *
304 *

R e R L

XY

v
RERRREORRRERRRRS
- *
* CONSTRUCT
* REQUIRED BASE
* TABLE ENTRIES
*
*

ARBRABARBRBRRR RS

[EE Y]

v
BRERREG2RRABRRRERE
* SAVE BA 8
*PTR DISPLACEMT
FOR START OF
#* BRANCH TABLE
*

IR E R

FRERABERRRR AR AR

v
EFRFRRHO AR AR RE RN

#INCREASE PROG. *
» REAK BY *
SIZE BRANCH
#TABLE AND MAKE #
#* LABEL ENTRIES *

ARERARBRRBRERE

v
FRRBEJORRERRRARRE
* »
el CONSTRUCT *
* REQUIRED BASE #
: TABLE ENTRIES #

»

FRRRBRBERBE R AR

v
RRREKEBARBR RS
- -
el RETURN -
- -

FERERRBRRRRNRRS

THIS VARIABLE

BASE AND BRANCH TABLE ALLOCATION

IS USED

TO HOLD OBJECT
MODULE ADDRESSES
BEING ALLOC.

BUILD
ADDITIONAL
BASES

BUI
AD

0
BASES

LD
ITIONAL
E

Section 2:

Compiler Operation

87

Chart CM. ALLOCATE SCALARS

G0397
ERRBALRRAEERRAR
- -

RRBERAHARRRERNEE
® -

- »
#SCALAR ALLOCATE®: ># INITIALIZE *:
» - * *

BRERRRAABARNRRS * *
ERERBEREREARR AN
Hean
- *
* D2 »
* *
nax
$039707
BERRRDOARREERNRRR
* *
. SEY *
®* MODE OF NEXT *
» SCALAR *
. =
ERRRBRNRRRER RN
|
¥
«®*SEE NOTE 1
NOTE 1~ E2 *,
THESE QUESTIONS o ® °
SEPARATE 8 AND 3 *e YES
16 BYTYE ®.COMPLEX MODE %
VARIABLES ., o
*, o
., et
#* NO

v
+*#SEE NOTE 1
2 »

-® *q
<% DQUBLE . *. YES

%o PRECISION %
. MODE o

LY -
LI

-t *e

o *. YES
#.SHORT INTEGER. *
o *

LY ¥
LT
i NO
M
ot
H2 *e
.. .

RER

- -

e g2 ¥->
* ®
*RER

4039708 Vv
BRBRD JOREKERREBD D

* ®
® MOVE GROUP TQ *
* " FULL MORD *
* SCALAR ROLL ®
*® *
RABRRRRAR R AR
LA X3
- « !
* K2 &=>
* -

LA LR

#039705 v
BRLBEBL BN RRNBCD R
- *

- PREPARE “
#®TO PROCESS NEXT®
b SCALAR *

-
BERBRRERERRDE RS

88

v
#039701 oo
A3

A
|

312}

LR R]
>
W
LR

ey
i
!

o
o
>%, SCALARS o
#4.PROCESSED®
. o
*e oF
* YES

#039706
FREREC MR NR R
* *

* ALLOCATE FuLL *
* WORD SCALARS- #*
*RECORD AND MAP. *
- *

»

LIRS SRS]

4039704
RBREBRETRRREDBRE RS
*

*
+ ALLOCATE -«
># STORAGE AND *
* RECORD, PRINT *

EABRBRRRRRPEARRRR

v
ERRRE

«xx
=
N

LR R

LXets

$039703
RRRRRGIRRRERE RN WL
- *

* MOVE GROUP TQ *
> HALF WQRD *;
: SCALAR ROLL :

EEFRRRR AR SRE L RN

$039702
RERRBHIF AR RS R RN
* -

* MOVE GROUYP *

FHRRREBRRUDE SRR N

*a
%o NO

VSEE NOTE 2

SEE NOTE 2

*

v
ERE

-

* K2 %

*

>*T0 BYTE SCALAR ¥———
* ROLL ®

L1

*

¥

o® A .‘. NO
>#oDUMMY SCALAR %
* o

RBBERCH R BRRTRR
» - s

(% ALLOCATE HALF -#

>% WORD SCALARS-— - %
#RECORD AND MAPR -*
* .

- *
RREBXERAERERERER KR

NOTE 2-

IF DURING PASS 1.
NO MAP 1S PRINTED
AND ALLOCATION IS
NOT RECORDED FOR

FROM OTHER ROLLS

ot *o
>#4CALL BY NAME %
' *a

SEE NQTE 2
FERRRCSHRRREHE RS
PO *®
* ALLOCATE *

>* BYTE SCALARS— #

*RECORD AND MAP #
* -

RRRRBBAAREERERRER

- v
L RRREDSEERRERE RN
* . *

% RETURN *
* *

HEREERER RN

Chart CN. ALLOCATE ARRAYS

G040t
RRBRAOKRRRRERER
* ARRAY -

* ALLOCATE :

»

AREARBBERRRR R

v
ERRRREI2AERRERRRAER
* »

INITIALIZE

R T

»
M
*
*

AERFRARRRERTRR R RN

*RBR
=
® C2 *>
* *
R v
4040101 L%,
c2” Tw.
- ¥
.
*, ARRAYS o
.PROCESSED.
L) -
Ry o
* NO

v
eke

nz2
o¥% NEXT #,

#40104
ARERRNCITRARFRERRRR S

*o
ALL *. YES

<% ARRAY IN *, YES
*

\"*"52‘:““"“
* *
* ALLOCATE *®
* TORAGE AND #
:RECORD LOCATIDN:

REBREEEBBRSHERIER

v

RRABREIRFRFERARER

ENTER *
* INFO IN ARRAY #
* MAR, PRINT »
* COMPLEYE LINE *
* *
*

ARARRARBR ARSI RS

v
BRBRRG2RAARBRARRN
* -

* CALCULATE AND %
RECORD BASE PTR#%
#AND DISPLMY IN *
* ENTRAL e
RERRERRERRBT RO N

REn
* 3
* H2 *=>
* *

R
#040102 .
H2

o®
*e PASS 1
..

v
RERSRJORFARERRERS
* *

* *
® REPLACE GROUP *
* ON ROLL ®
* =
RERRRBRERPERRRR RN
REBR
- -

® K2 #->

* ®

ERE

#040103

v
RERRRKORFRRRR N AR
® ®
* PREPARE *
*#70: PROCESS NEXTH®
hd ARRAY *

- *
EERBRARBERBDIERRE S

v
AR

c2

LA LSS

PRy
EE R

RRRRCLEFRRFRRER
*

RETURN *

*

RERREERBRRFRREY

Section 2:

Compiler Operation 89

Chart CO.

20

G0402

WA D RN R
PASS 1 GLOBAL *
SPROG ALLOCATE #
* *

B30 T3 36 I WX XN

v
XX RB 2 XN IR T RN
*

*
* ALIGN TO *
FULL WORD *
* BOUNDARY *
* *
P NN RRRR

v
EERERCD NI RR RSN
*DETERMINE BASE *
* PTR AND *
#* DISPLACEMENT #*
FOR PRESENT LOC
* *

ES 22222222 st X2 s d

v
FHEERD2EERE RN RN RN

* OBJECT MODULE
*SUBPROGRAM ADR
*

L2222 2 2222 XL 2]

LEREERE]

v
ARRRRE2ARRERRRERRR
*COMPUTE LENGTH %

* OF OBJECT *
* MODULE *
* SUBPROGRAM *
* ADDR *
I s e I e R I]

v
HRERF2RERRRERRR
* *
* RETURN *
» *

PN RN RER

ADD BASES FOR SUBPROGRAM ADDRESSES

BUILD
ADDITIONAL
BASES

Chart CP.

ALLOCATE SUBPROGRAM ARGUMENT LISTS

G0442

WA D RN RN R
* SPROG ARGe *
ALLOCATION *
* *

2333 3 3 26 3 R

e

oo
82 *o
o

.
o *o

ZERO Y
#*o ARGUMENTS %

- o
*o o ¥

e oF
* NO

v
RRRRRC2HRRERRRERRE
*

*
#*# ALIGN TO A *
* FULL WORD *
* BOUNDARY *
* *
» *

PR IR

v
AR HD2 RN
#* DETERMINE ANOD #
SAVE BASE PTR
AND OISPLACE-
#MENT FOR START #
#* OF ARGUMENTS #
ARERRRFERERRERRRE

v
RRRERERRARBRERRE
* INCREASE
#* PROGRAM BREAK
* BY SIZE OF
*#*ARGUMENT LISTS
*

LR R R R]

v
HRERRF2RFERRRRERE

»*

* CONSTRUCT

REQUIRED BASE
TABLE ENTRIES
*

LE R ER R

v
RERRG2AERRREERE
» »
* RETURN *
* »

RERRRFRERRRERRR

3D F %N NN

*
A2 22222222l ssdd

Section 2:

Compiler Operation 91

Chart CQ.

92

PREPARE NAMELIST TABLES

G04a3
FREBADERARARRES
» -
.. PREP -
-

- NAMELIST
BRERERERERBERR S

v
II.I!BZ‘.Q!"QQQ‘

' FLIP NAMELIST #
- NAMES AND *
#NAMELIST ITEMS #
*

»
EARRARRRRERRNRRA S

*ENR

- »
* C2 *—>
- -
wenn v

2044301 ..
c2 w.

NO
.ON THE NAMES o®

, ROLL o
-, o*

. ot
* YES

v
Q.‘llDz'Qll.iQG.l

ALLIGN TO i
FULL WORD »
BOUNDARY *
*
*

L EERE]

RERBERRERBERRRRN

v
RERRREHBHRRR RN
- MOVE *
#NAMELIST NAMES #*
ROLL GROUP TO *
* COMMON DATA *

- TEMP ROLI *
LTI R I e Ty R)

v
RARRRFORRERBRRR R
'DETERM!NE BASE *
* OINTER AND #
* DISPLACEMENT *
* FOR PRESENT #

»

LOCATION
L R T e

v
SERBRG2ARARANER NS
* . *

* INCREA »

' PROGRAM BREAK »
16 PUT ZERO '
ON WORK

Q‘l'.i'l‘ll"‘l.l

- ..
*
* H2 *—>
* *

Ex Y] v
#oaa302 o*eo
H2

o* .
o* *e

NO
*.0N TKE ITEMS I3
»

#0a4307
RERBUCIARRRRRRR RS
»*

- COPY THI

COMMON DATS *

GNAMEL]ST NAMES *
»

ROLL
.&CCGGQ*Q}}Q.I!I'

v
FEREDIRRRERRERN
»*
* RETURN *
* *

EERRERBRERRR NN

#044306
ARBRBHIHERRE R
* MOVE MARKER
e SYNBOL TO
>* NAME

SO L. REL
o® .auce-nlaitunnﬁ-
*“veS
v i
ote v
Jz n. ERERRYIARBARRRE R
* »

o ALREADY *
*, DEFINED

* INCREASE *
* PROGRAM BREAK *

-
*

LIST *
" ALLDC&TIDN :
»

. . # BY ENTRY SIZE *
*e o * CN WORK -
*, ow AERRARRERRAERRR AR
* NO l
|
v
rne
* *
® C2 *
SRRBRCOERBRE R RO » *
» * nun
- REGISTER *
* VARIABLE AS A *—my
- SCALAR *
- *
RERAAEREBERAERR N v
2T
» *
* Ba »
«
- 2T

« YES
T
v
*ere
* *
* DS *
* R
-
v .
ot #044304
c4 *o BRI CSIE NN
¥ . * DETERMINE *
o *o YES * NUMBER OF -
*o AN ARRAY @ WS #DIMENSIONS FOR *
. . OF TABLE #*
e o * ENTRY »*
Re oW HRRERERERRER AR RN
* NO

v
ARRERDLRERFRERRERR
* *
#RECORD VARIABLE*
» NAME AS »
#NAMELIST ERROR #
* *

AR
* *
* D5 . #wd>
* -

HERR

404

4305 V.
R RRDSE WU

EX R R]

ADD 12 TO
SIZE OF ENTRY
ON WORK

R KK KK

. v
HRRRRESE NI TN RN
#* .MOVE NAMELIST *

‘#* ITEMS ROLL :

*. NAMELIST *
#ALLOCATIDN ROLL#*
LT I R R Tty

Chart CR.

THE PRESENT
POINTER IS
COMPARED TO
A PDINTER TO
A NEW GROUP

ALLOCATE LITERAL CONSTANTS

Goasa
ERREADRRAERER SR
LITERAL CONST. #
* ALLOCATION *
*

RAEREBRERRSE RS

|
|

v
ARBREDDIERARERRRRR
* »

* INITIALIZE *
#*PTRS TO LITERAL®
* CONST ROLL e

* »
EREREERBRREXDRRNR

i 22
- *
* C2 #—>|
- *
Ty v
$044401 %,
c2

*,
*y
- ALL *o YES
#o CONSTANTS ¥
<PROCESSED. l
L - ¥
%, o v
* NO EXTEs

v
FERREDDORARAE R AN
* *

COMPUTE AND *
SAVE PTR FOR *
NEXT GROUP ON :

FEEREREREREERT RN

LER R

v

E2 %,

o# PAUSE #. sexn

.* OR DATA *. YES * -
#.STMT LITERAL o* >% C2 *
*, o® » »

. o anwn
B, L%
* NO

v
RARREFORERRBRR AR
- *
* INCREASE *
* PROGRAM BREAK #*
#BY NO. BYTES IN¥

-

» P
EE2 2 ES S S22 22 S22 22 3

v
AERBAGORBARABRRER
*DETERMINE BASE #
* PTR AND *
* DISPLACEMENT *
* FOR PRESENT #

»

LOCATION
FRBABRGAERAERRERR

#04a44a02
L Ry e
#THROW AWAY BASE®
* PTR DISPLMT *
AND PTRS TO ®
* THIS LITERAL #*

- »
FERRRREANBEBBEER

(2323

LR
Lo
&

LR RS

R

FERENRDL IR RN RN RE
MOVE LITERAL

*TO OUTPUT AREA *
PUNCH IF CARD
» CORRECT *

NN RRER

i

1
v
ERERRCEERREREER RN

*. PYT BASE PTR *
* Al -

ND
DI'SPLACEMENT ON¥
* LITERAL CONST %
* »

ROLL
FERERERRREERREXEN

v
R RN

* Cc2 *
*

ERER

#024404 v
HREERRCLRE RN RRRR RS
* *
* THROW *
* AWAY OLD »
* POINTERS *
* *
FERRERRREERRERRES
v
%,
Fa .
o *, ERERESEER AR AN
*. YES * *
*. PASS 1 * > RETURN *
. . * *
* g -k ERRTRRRER AR RN
*, G ®
NO
A
FRARRBCAERERRR T AR
PUNCH * PUNCH :
ANY PARTIAL REMAINING
* CARD TXT CARD
ERBFREFRERRRRER

REBEHARFREREERE
* *
* RETURN *
* -

RABREBBERERERNN

Section 2: Compiler Operation

93

Chart Cs.

BUILD FORMATS

”n"

ALLOCATE FORMATS

Go4as
REBRBADHRRRERRER
»*
FORMAT *
ALLOCATION =
EA 22222222222 223

v
FRREAOHABARREERR
» *

»
»

SET
POINTER TO
FORMAT ROLL

LEE R
XX T

FERRAERREERRR R RN

LA s 2]
* »*
* c2 -->l
* -
EE 2 2] v
#44601 %
c2 %,
o .
«% DATA
*. TO PROCESS
g
g ¥
B, oW
* YES

*

v
HERRUDI R R R RN
COMPUTE AND *
* SAVE POINTER #
- TO NEXT -
- FORMAT -
- »
- *

GROUP
SEREABER RN A

RERRFEDRRBBREERER

- INCREASE *
- PROGRAM bl
- BREAK BY -
#NUMBER OF BYTES#®
» -

IN FORMAT
ARBERRRRRRERERBEE

L I
* NO nnn

» *

* c2 *

» *

“nun

$44602 v
RRRRRRG2ARRB AR BN
MOVE FORMAT
Ad ¥0 QUTPUT -
AREA PUNCH
- 1F CARD *

COMPLETE
_.Il.'l..lll.l

v
ARBEERHIIBERRERS

$44502
FRRRNGARRRERREREE
* -

* NOTE

—>*% ADDITIONAL
*BASES REQUIRED
*

LR

ERRBRERRERARRRNE

v
FRBRCHRERBERRAS
- *
* RETURN *
* *

RERBREIRRE Y

»

#044503

RERERRDARRRERRERBEE ERRRREDSHEERERRRRER

- *.
'. FORMAT *#. NO * PUNCH ANY - - PRINT MAP -
TO PROCESS #———————> DATA LEFT ON —> LINE
- - * TXT CARD - * REMAINING -
. -
., .'. AEBARAERB IR RRABRRERRERRN
* YES
i
: i
FERAFEIHRRRBREN S v
- » HERRESHERREARRS
* OBTAIN - - -
#*NUMBER OF WORDS#* - RETURN »
FOR FORMAT - - -

- - ARRRRABRERERERS
AERRERBEAEB R SRR AR

v
ARRRSFIHERRRRURES
®*CALCULATE BASE *
* -

AND
* DISPLACEMENT
#* FOR FORMAT ol

- =
ARRRERRBRRERRRE RN

. v
ERERRGIRNERER DAY
» »

* REBUILD

* FORMAT ROLL
*WITH BASE PNTR
-

FRABARBBEBRBRRDS

LR RN

* PRINT. FORMAT #
.- APy IF -
% QPTIEN e
© T 'SPECIFtED

SBRRBIRBE SRS

Chart CT.

DATA 1 HOLDS
THE ADDRESS

OF THE
VARIABLE

$044101 _ o*.
F

MAP EQUIVALENCE

GOAs)

ARRRADRRBERR RS
-

-
* EQUIV *

FREBRBERBERBRRD S

oo
B2 *e
o

*e
-* ANY *. NO
#o EQUIVALENCE o%
*e DATA o®

*, .
., oW
* YES

v
ERRBERCO2ARBRAR AR

- -

PRINT
HEADING FOR
* EQUIV MAP *

AERBBARRERR N

v
RRARRD2HARBER NSRS
DETERMINE DELTA#%
FOR EQUIVALENCE®
* ADDRESSES DCB *
#* TO BASE TABLE *

»

»
RFRERBRERRRRRERE NN

FERBREORRRRRERRER
* *
* FLIP THE *
* EQUIV *
¥ALLOCATION ROLL¥
-
(2222212222222 22 22
L2223

*

. F2 >
- *

“nuw

.
+*DATA ON*.

-
g o*

a, o
* YES

BERERG2REREERERRE
MoV

* E NEXV -
* GROUP TO *
* CENTRAL o *
- INCREASE d
e ADDRESS *
FERERRERERRR RN

BEREBH2RR AR R AR
-

»
* ENTER INFQ IN *
* MAP, PRINT IF #
LINE COMPLETE #*
* »

REBRBBABRARBRRRRE

AERER JORRRBRRRRES
#*DETERMINE BASE *
#* POINTER AND &
#* DISPLACEMENT #
* FOR VARIABLE *
-

*
RERERRRRERRRE RN

v
FREBELOARRRREAE R
PUT GROUP *
FOR VARIABLE *
ON_ COl

EQUIV *. NO
ALLOCATION o¥%———
ROLL o*

MMON Wy

-
-
-
- NAMES -
* TEMP ROLL *
ABRTARBRBARRRERRR

v
RN

annn

ARERDIARRRBEBRE
*

ERRBERERRRRBRRS

#044102

v
HRREREIARBERRBE AR
* _COPY bl
COMMON NAME
* TEMP ROLL TO
* EQUIV ALLO-
* CATION ROLL
PR T e]

LT]

FERRRGIRRRE R RN RS
» -
- »
*UPDATE PROGRAM #
* BREAK -

- *
ARABBERRBRRR SRS

RRBRERHIFERBEARRBE S

* PRINT
PARTIAL LINE
L OF MAP *

ARBRBERRERERE

v
ARRRJIRRERR SRS
- *
* RETURN *
* *

EEEERERERRERENE

»
>* RETURM e
- »*

Section 2:

Compiler Operation 95

Cchart CU.

G0403;
RRRBADHRRES RRAE
*

* GLOBAL SPROG
. L1 GCATE .
EARRAERERE S AR

d

v
ERRRBBIARRBIRARDR
» -
» FLIP THE »
* GLOBAL SPROG *
* ROLL -
* *
WA RN

LTS
- *; 3
* C2 *—>}
- *

wnnn \

#04030.1 o®e
c2 *o

.. L2
% DATA ON #. NO
%o THE GLOB
« SPROG %
% ROLL %
e ow
* YES

\i
RERRRD2 B RDER BN NS,
» -
* MOVE NEXT *
*GROUP- OFF ROLL *
*® 'TO CENTRAL -

* *
P T

#040308. V.
T ORRRRREORANERRER N R
" ALLOCATE by

* STORAGE FOR *
#*ADDRESS. RECORD. *
* (PRINT LIST) =%
% ' PUNCH'ES %
LA T TE R R

AL a2 R

ALLOCATE SUBPROGRAM ADDRESSES

4040303

N RERERCIHERRFXRLER
* COPY. COMMON %
* DATA TEMP ®

> ROLL TO. .

* GLOBAL SPROG %

»

* ROLL
HRREAE RN RE RN

EAE X Ty S LRSS 2SS
. *an :
», »
)*kNSERT~ZEROvIAGﬁ
* VALUE %

* *
AW R

SPROG ALLQCATE |
AND OUTPUT

4040302 v

A BREGO R R RN R

* i *

® PUT GROUR, *

*ON, COMMON. DATA, *

= TEMP ROLL ®
*

#, 1
L A R NS

%ADDRESS RECORD.W®
* PRINT LIST *

* PUNCH: ESD. *.
P TR

V.
AR TR RN,
* : *

%= PUT GROUR ®
SON. COMMON, DAT.
- TEMP. ROLL *

* *
LA A A LY

» FLIP
># THE USED L18
* ROLL

4040304 o
04

EERERCLERER AR RRRS
* . *

o

RN NI
wean

* * _

* D4 %—>

* = |

AW V.
*

DATA ON #*. NO

% b
*

. ¥
LIRS
i YES
|
v
e
Ea *,
o® *a
o* INLINE %o NO .
*e -FUNCTION o F——y,
* g ¥
e ok :
Ky oR v
* YES. R
1 . *
| % H3 ®
| * *
I .

HERERFLRERELNREEE
»

MARK GROUP
FOR INLINE
FUNCTLON,

P Y R T T

aan
TR

14
M
AR
* *
® J3 *
* Y
frY 2y

SPROG: ALLOCATE
AND. OUTPUT

*
%JTHE USED L1B % —
ROLL

. . 4040307

HNIR R DS KK NN, N
* CORY COMMON *
o DATA TEME. *
233 ROLL TO *.
* USED: L I8 *
* FUNCTION ROLL #*
L e

ERENMRES RN I IN KRN

* PRINT PARTLAL %
LINE OF SPROG
* LIST IF *

EREERAEARRERR RN

. v
MR G MR TR

* ‘PUNCH *
PARTIAL ESD
* CARD *

L S e

v
H B GS AN RN IR
»

% RETURN
*,

3 . *
P Y

Chart CV.

G0405
ERRBAZREERXRERE
BUILD *
* NAMEL IST »
" c

TABLE *
EASS S AL LSl

SUN—

Ve
ok,
g2 *e
¥ *o

<% DATA ON %, NO
* NAMEL }ST ¥
%o NAMES o*
2.ROLL o
*

o o®
% YES
¥

|
f

BUILD AND PUNCH NAMELIST TABLES

440506

HHERRRDE R RERRRE NN

RRRAEGTE R NR NN R * MOVE FIRST 4 »

* * * WORDS OF *
>% RETURN * * ITEM ENTRY *
* * * TO CODE ROLL *
HRE KRR AR * AND. RUNCH *
L s

v
e Y ey ca .
- Ly * THE LATTER ¥ *o
*NAMEL 1ST NAMES * HOLDS THE -* %*q NO
* AND NAMELIST * ITEMS. FROM *o VARIABLE AN o#*———
* ALLOCATION * THE NAMELEFST *. ARRAY o% |
* ROLLS * LIST L o |
EREEREEER BRI E XA o o* v
| * YES *rE
i » *
I | ® g2 =
* »
{; 3 e
k I
R V- v
HEERRRDD AR EE NN E ERARADL I RI AT E R
* *
* PRINT HEADING * * MOVE ALL *
FOR NAMELIST * DEIMENSION *
* MAP IF *FACTORS TO CODE*
REQUESTED * ROLL *
WMWK XN B e LT e
i
[
]
v
P
* *
4040505 ® g2
HRERRE TH RN AN * *
. *e * CORY COMMON, = WX A
LEFT: ON %, NO * RATA TEMP- »*
NAMEL IST o* > ROLL *
NAMES % % TO NAMELIST %
«<ROLL o% * NAMES ROLL *
Ea ok L e i
* YES
|
13
k
;
RERA R H AR N AR BN, R BN T NI WK - B -
ENTER NAME + -RUNCH AND; PRENT . -
% LOC IN_ MAR: * * REMAINING. *® -
LINE PRIEN: INFO LF
»* IF L INE * % REQUESTED: *
COMPLETE
P R e e R e
] i
| ¢ :
j i
F [
: I
I r
v 1
W GO v
* PUT BASE AND # WG TR
* DISPLACEMENT * * *
% QOF NAMELIST * * RETURN: *
* TABLE ON: COM— * * *®
* MON: DATA TEMP % P T e R
L e T R T * *
I: * Ha *
: * %
Iv bas ol
| i
% V:
B e ey L e B e R R e
* MOVE NAMELIST * * *
* NAME AND 2 » * *,
% WORDS. OF O: TO * *YPDATE PROGRAM. *
* CODE ROLL AND ® *, BREAK: *
* PUT: * * *
e Y Ty L L T
. I
* * | k
®x gz w—> v
* * N
Py * *
4040502 LN ® E2 %
; *, * *
«*DATA QN¥. THE NGO ERRE
«¥* NAMELIST *, NO ANSWER: TN-- -

%o ALLOCATLON.
ROLL, - I:

*a

[e
NO:

'S, ELTHER:
R:

Sectiom 2 é,ompiélzers Operation 97

Chart CW. BUILD BASES

G0438

WAL N RR AR EER
* BUILD *
* ADDITIONAL *
* BASES *

E
(22 21 T s 222]

2223

* *

* B2 #*—>
* *
R

v .
L2 222022 2222 X222
* *
* BTAIN - *
#*PRESENT PROGRAM¥*
* LOCATION *

* *
EA 2222222 2222222l

v
¥,
c2 *q .
o * g EE 2 2 leci s S 2R 2L 2L]
«* MAX FOR *., YES * RETURN *
%o LAST BASE % >* »
. o * *
*q ¥ E2 22222222 2222 2
*e oF
* NO

v
3R D 2 R RN RN
* *
* INCREMENT *
BASE ALLOCATION
* *

* *
2222212 s 222l t)

\
IR D NN
* *
* REGISTER *
* NEW BASE *
* ALLOCATION *
* *
* *

EA 2222 S22 S22 2]

v
L2222

L2 2 2]

Chart CX.

DEBUG ALLOCATE

G0S545

HEERAD RN RN
DEBUG

*xx

»*
bt ALLOCATE
»

L e e e T

ETT
L2223 v

. .
- DATA #*. NO
*.0ON INIT ROLL %
*o .
*e ¥
*.

o®
: YES

v
HRERBC RN RN AR
» MOVE hd
* VARIABLE NAME *
*#0FF OF ROLL TO *
#* CENTRAL AREA *
* »

*

e e T

02 *o

¥ *o
«® MATCHING *. NO
- GROUP ON o ¥y
*o SCALAR -®
*oROLL o%
*e ¥
* YES

v
HRRAHED RN RN
* *
* SET THE INIT *
* BIT IN THE *
* SCALAR ROLL *
*
*

* GROUP
La 2 e e e e e L

v
o

F2 *o

o* .
«* MATCHING *. NO
*o GROUP ON - H—
*o ARRAY ok
*oROLL o
*

*e o
* YES

|

v
RERRRGO2RERRER RN
* *
* SET _THE INIT #*
* BIT IN THE *
* ARRAY ROLL *
- -
* -

GROUP
L e T Ty

o® *,
o* MATCHING #*. NO
#*GROUP .ON GLOBAL #——
#.DMY ROLL %
, o

.- % v
* YES EEEE
*

* B2 *

>
L XYT Y

v
RERERJORRERRE RN RN

SET *
*THE INIT BIT IN®
®*THE GLOBAL OMY #
* ROLL GROUP *

- »
LR R

v
222

EXE TS

HERREBIHRRERRRENR
* *
* INVERT *

>*THE SUBCHK ROLL#*
* *
* *
EEXZZTERSE2 222222]
E2 2 2]

* *

* €3 *—>

* *

ERw v

HERERD TN NN
» MOVE *
* VARIABLE NAME #*
*OFF OF ROLL TO #
* CENTRAL AREA *

*

»

P R E T

v
oo
E3 *o

o* *e
e«* MATCHING *, NO
#*GROUP ON GLOBAL #—
*oDMY ROLL o%
*o -
L
* YES

|
ERERRETHEEE RN NN
SET
*THE SUBCHK BIT *
* IN THE GLOBAL *
*DMY ROLL GROUP *
* *
*

TSI TR Y

|<——————-——
|

v

LY
G3 *eo

¥
* MATCHING
GROUP ON

I R

v
TR TR NN
* *
#SET THE SUBCHK #
* BIT IN THE *
* ARRAY ROLL *
* - GROUP *
HEERERERRRAR AR

|

|

|

v
L

XL

*
>
*

HERRCHHEE R RN E RN

»
RETURN *
*

HRRERERERRNR RN

Section 2:

Compiler Operation 99

Chart 07. PHASE 3 - UNIFY

GO111
RRRBADBRRERRRR R
» *
* START UNIFY #
- *

ARRAREBRRRRARER

G014S v
ARRBRCORERABRERE
ARY REF AL-DAAZ
R Y LD S Y

* ALLOCATE ‘
#*GROUPS FOR RDLL'
»

n!nu.ilau!lni{i&a

rnw
- »
* C2 *=>

Er YR v
ok,
c2 *o
o *e
«* DATA ON #, YES
.

*, PROGRAM
“.

#11106 M

ARBRRADOEAFRBR RS RS

- »
» RESERVE *
#PROGRAM SCRIPT #
* ROLL *
» *
ERRRABERRERRRBRRS
rnun

- -

* E2 *—>

* »

Nuun
HERBEERRARRR AR NS
» »
* MOVE NEXT *
* GROUP FROM *
* SCRIPT ROLL *
* »
* »*

AEBRBRBERRRA RN

v
ot
F2 .,
o »
- END YES
*#,0F ROLL DATA
-, o* i
., o
., o
» NO EREE
L3 .
{ MY
» *
| runw

v
RERBRGRARERRN AR LR
» »*
* REPLACE -
GROUP ON SCRIPT#
* ROLL fod

ARRARARARRRRRRRERR

GO11S
SERRBHOIRRRARE AR RS

#D0 NEST UN.DDA2#%

Lol 2t AT T petot ot
- PROCESS -
* NEST QP L

* LOOPS -
EERRRTEARAREE RS

v
¥
J2 l-
OOP TEMP *+ NO
.CNTS REQ LOOP., #
*#TEMP CNT L%

*, .
o ot
* YES
v
aaaw
- "

* E2 »

L2223

100 . o : .

* RESERVE START

>*TO SCRIPT ROLL
* RESERVED AREA
*

RERRACTHEREA RN AR
*COPY AREA FROM

IEX TR

ERURRRRRRERE RSN

EERERYIRFERERER NN
» *

SET REQ LOOR %

>RTEMP _CNT = LOOP#*

* TEMP CNT *
*

EERERARRERARRRR RS

v
ann

LR XY
™m
N

'Ex]

P

Go11

Go11

EEEERALEHNEEERRNF
* *
* RELEASE *
#*PROGRAM SCRIPT ¥
* ROLL *
*
*

A e T

v
EEEERDLEFRERRAXER
* *
* SET UP *
* POIN T0 *
*ARRAY REF ROLL *
D&&il;«nu«unl;;n*

L
* ®
* C4 >
»* *
23] v
.x, G0113

o FRRUCSERERNEE AR
»* PO1 TER *- YES * CONVERT YD *
.DUTS!DE ROLL % >* ADDR CONST *
* * *

DBA2
AEEREARRERREN NN

v
HEFERDL AR AERERRNE
» *

#SET REG RUNG = #*
*#4 AND INCREASE *
* POINTER :

EREERAEERARBRERRE

v
l%l'iﬁalilﬂ!il"*
*CNVT/FORMT-DCA2%
Lt T B =t Bt B P 2t 3
® CONSTRUCT ¥
* INSTRUCTION *
* FORM.FOR REG2 *
L2 X2 222222222 2

v
HERREFLARRRRERRRR

INCREASE REG
RUNG BY 4

LR T2
LEE RS

EERREERRERBRENERS
2 v

ERERBGLIEAR RN RRNN
*CNVY/FORMT-DCA2#¥
L S St e
*CONSTRUCT INST *
* FORMAT FOR *

* REGISTER 2 *
ERREEREREER AL EREY

Chart DA. BUILD ARRAY REF ROLL

GO0145
EE Y Y. PR T TR T 2NN
* ARRAY REF -
® ROLL *
L4 ALLOTMENT »

FRAEBRAFRBRERRR S

e e s 0 s e

EXERRB2RERBRE R RN
* GET *
BEGINNING *
DDRESS OF
rARRAY REF ROLL *
*
Il*.#}l!l'ii&*l.&

e e s 0 e

Illl}CZi!ii{}&l*i
*

GET ADDRESS .=
= OF PARSE SAVE =
* AREA *
& *
EREREERARARRERR R
X e,
EZ T HIVET TR TS D3 *,
* * +.#NO. OF *. . s ERD4 AU AR ERER R
* GET NUMBER # : +# ENTRIES #. YES o *
* OF ARRAY FeeeeseooX®, EQUAL ZERO #.ici,eeoX® RETURN #*
ROLL ENTRIES * *, o * *
* * *, o ERERREARRRIEERER
RERFRRED R AR EERDRE #e o
* NO
X w .
* * -
* E2 1.., .
s (Keoecsecaratntiacnnrononne
"14501 X
sxnreaflannnnnnnny
» *
LOAD_GROUP *
#INDICATED WITH =
#=INITIAL ZEROS #
* *
HREE DR AR RN N
X ..
AR BRF 2 RE R BB RN F3 *o .
* * : « % ALL =, BRREFLERRFRHRRER
* *® INDEX TO #* .# ENTRIES =*. YES * -
- NEXT ENTRY *oeseeeesX¥. PROCESSED e%cevcansoX® RETURN *
POINT ON ROLL = : *, % * *
* * . %, o REARRERER R ERER
EREERREBEREERR AR *, L ®
* NO
X
Yy
*
* £2
* »*
(X2

Section 23 Compiler Operation 101

Chart DB.

G0113

RERBADEEERRERER
* CONVERY TQO *
® ADR CONST
* *

EARERRRRRREE RN

I
I

!nniiazu!lulio-u-
*SET uP PO!NTER '
‘ CDN?RDL ROLL '
-aoa;aa«aauaa;na-
RN

* *
* Cc2 *—>
* *
EEER v
011301 ke
i
& .
0IN e
.nursxos ROLL
*a .
*e ¥
. ow
* NO

v
FERBRD2ENRARRRERS

INCREASE
POINTER

EREAERRARRRNB RS

IR R R R}
L ER R R

v
RERRRESRRERREREES
- *
* MOVE *
:BASE INFO TO WO¥

*

» -
RARRRRRERERRERBRS

*o

3 *o
«®* REFER TO *®,

oo
G2 *e

¥
* GENERAL
REGISTER »
, o
-, o

o* *e
o® *e
#.TAG FIELD = O.*
*, o®
, o
LI
* NO

v
oo
J2 L
«* WORD #
«% EQUAL TO
*o OR LARGER
*e. THAN O

*,
ot
o

102

MAKE ADDRESS CONSTANTS

ll!llc3l{i&iii.}l

YES DATA

SE
"————>'AND lNlTlALIZE '

EN

}
a«*u:wi;:*:«u;»ui

v
ERREDIFRRRBEERE
* *
* 1EYGEN b
* »

RERRBERBRABRRRE

YES

YES

>

4011302 v
HREBREE YR RBRRERRRE
- -

YES

* *
>* PRUNE WO .
- *
*
»

1
AEBFRRAREBERRRE N

v
EER

s AR

[T2T)
x A4 *

xuER

$011303 v
ERRARAGRRRENERAR R

* *
*FOR SASE (CVEN *
* CODE *
* DISPLACEMENT) *
* IN DATA 3 ~ *

EEEREREARARBERARR

- *,
«*GRP MATCHES*.
*.0ON ADR CCNST %
*o oLL .

. ok
. o@

* NO
|

-y—

EEERRCLRERRARRENR
»

*SET POINYER TU *
* NEW GROUP *
‘ADR CONST RDLL *
*
*

‘I.lil*’ll’lllll

v
l’liloqliiillllli

' PLACE BASE AS *
*NEW GRP ON ADR *
#* CONST ROLL -
* »

L T e

\
RARRARCLARRRRERE RS
INCREASC PTR 3Y

RERBABBRB AR AR NN

RER
* * |
* Fa x>
- »

EE 2 2]
#11304
REREAFHGARARRRRRED
REPLACE BASE
WITH TEMP PTR

IR R

-
*

ON LOooP *
CONTROL ROLL *
»

*

FRERRBARARER NN

THE WORD

DOES NOT

CONTAIN AN

AREA CODE

AND DISPLACEMENT
INDICATING A
NEED FOR A
TEMPORARY
LOCATION

- xx

YES

:]
I

I

v .
xxw

A

o w

Chart DC.

GOo112

FRREAD KRN RN
* CONVERT TO *
* INST FORMAT #*
* *

R RRRERER

P Jom—

RN RBD R EN NI NR
* GET

* REG RUN OFF
*ARRAY REF ROLL
FROM POINTER

% %k ok K ok K

*
LA 2222222 2L s s s

v
ok
c2 *o

o ® *o
«* GENERAL *. NO
*o REGe NOTED %
* *

HREERD 2 NN NN NN RN
* *

* MASK *
REGes RUNG VALUE¥
* *
* *
BTN IR

.{*4:52*!&*{**;*{
PLACE *
VALUE IN R2 *
POSITION FOR *
INSERTION ON *
*

*

ok Rk

ROLL
HEEERERERERRRER

CONSTRUCT INSTRUCTIONS

v
oto
F2 -
o ¥ *e
- R1 *. R2
*q OR o H——
*o R2 - |
*, o]
e oF v
* R1 R
* .
* H2
*
XRER

v .
HEBRRG2HRERRERE RN
* *
* SHIFT *
VALUE TO R1 *
* POSITION »
* *
33 36 3 3 3 3 33 XX NN

* % %%
#* *
* H2 *—>
* *
E2 2 2]
v
R D RN R RERR

* *
*INSERT VALUE IN%
* ZERO RUNG OF #
#ARRAY REF ROLL *
*

*
B33 33T 3R

A\
S22 L NVE L2 s s sl
*

*
* RETURN *
- *

ARBABREAERERRRRR

HERERCITHERRFRERRE
*

RETURN

LR SRS R R 2 LS L L L &

Section 2:

Compiler Operation 103

Chart DD.

104

PROCESS NESTED LOOPS

GO0115
RRERADHRRRRE RN
» .
* DO NEST UNIFY #
- -
ARRBABBERRARBES

wnn |
- * |
+ 82 #=>|
- *
“hnw

v
REARBEIRBRERERRRR
* *
INITIALIZE LOOP
* TEMP CNY AN *
*+ NEXT LEVEL #

- »
AERBBANSARRERARRS

< e

RERRBCOREEARR RN
- *
* PLACE IND. -
#VAR. COEFFe OF *
® NEST IN WO *

ERAREBERRBRERER Y

v
*D2ENEBRRRRRS
* »
. CONVERT »
* ARRAY OFFSETS *
- -
»-

-

»
SRRRBEBRARRRER N

l‘ll!Ele(i.illll
* COMPARE

* NEST LEVEL OF
* ooP WITH

: PREVIOUS NEST
*

BRERNERNRNER AN

*
*
.
»
L]
.

L2213
- » |
» F2 w>

» *
“nnn v
$011502 %,
F2
o s e,
o NL2
*., LESS THAN

-t

rarw

XL

v
ERRERATERESIRR AR
»* »

* RESERVE *
* NEST SCRIPT #
* ROLL *
- *
* *

AEERARRRERENREE

lnllla}b!nallll.d
» *
* COPY SCRIPT #
#ROLL ONTO NEST *
* SCRIPT ROLL *

.

]

*
REARBRUBR BN AR R

v
oo
3 *,
¥ *

-* NEST
*e LEVEL =1 o
*

. o
L

BRRARDIHFARRARRAN
* PLACEC INITIAL *
*REGs COUNY AND ¥
» INDs VAR *

. o [T EEY

o*e $011504

- *.
o® NL2 ®. YES
*o NOT EQUAL %
*. YO NL1

L33 2)
- -
® H2 w->]
» -

EXX 23 1

#011503

RERBRPOREREARNBE.
- *
» €T *
®* NEST LEVEL *
- INDTCATOR »
- -
* -

BREBERBRBARRDREY

|

{

V.
RERBRJOUBBRRR BN
» »
* PLACE NEST »
® LEVEL ON »
*PROGRAM SCRIPT »
»

LL -
ARRRVBVLEREBO BN

wwew

L
»
o

[EX

Tene

tRAERGIRRRER RN NN
» -

PLACE IND VAR *

-
>*0F TNNER NESTED*
* L0

OP IN WO b

. »
BERAANEREARE RN NN

v
FRRREHIARNBER SRR
» »
* PLACE NEST #
* LEVEL -
*PROGRAM SCRIPT #
* f -

-

ERRRRRBRABRSIUDY

& s i b

RRRBR)IRFRNRERRRR
- -
» PUT IND *
#VAR COEFFICIENTS®
e IN Wl -

» -
SREBRBRBUBBR R RS

v
»ane
» -
* Fa
- »
wEre

RERRRCHARARNRRRRR
*#SET QUTER LOOP

* ALLOCATION

*
M
-
* SCRIPT »
-
SARBREARBERRRRARES

v
EERRDARERRRRERD
* *
» RETURN *
» -

ERERRREREERR R

v
FERARFLARSEERZRERR
. M
*+ PUT POINTER *
* TD ARRAY, *
* OFFSET IN WO *
* »

-

EERREERBARRER AN
i
1
|

v
FERBEGRRR NSRRI
* . *

DETERMINE *
PY *
ALLOCATION *
*

»

e

RARRABERABRERANS

v
RERERHAR RN AR A RS
T

SE
e AVAILABLE
*REGISTER COUNT
* FDOR SCRIPT
* EXPRESSION
ERBERARBRRRRAREN

I EE L]

x,
LN §

«® MORE ES
#.NESTED LOOPS %
»

- .
*, ¥

BRRER JERARERFREEE
»

-
*SET NEST LEVEL »
>#T0 PROCESS NEXT*
- Lo0P -

» -
SRR ARRERRBRERRRY

v
R

e

Chart 08.

START GEN

GEN PROCESS

60504

PHASE 4 - GEN

G0491

RREERADARRBRERE N
* -
* IEYGEN »
» *

AERRBBBRRRED R

|
|
1

v
EREREGOARRRAARERR
* *

* »
* INITIALIZE *
* -
* *
* *

L R Y Y Y]

G0a99

v
ERERRCOARAABARR RS
*ENT CD GEN-EAA2%
L e e
* PRODUCE CODE *
* FOR HEADING #
* AND ALL ENTR. *
AEREAERERERERRERS

FRRBEDOERARAERERR
*PROLOG GEN-EBA2#%
* * *

D ot T PP
* PRODUCE ALL *
- REQUIRED *

* PROLOGUE CODE *
FEEBRREARRBRRRERN

G0508

v
ARRARAFOHERARRERER
*EPILOG GEN-ECA2%
PR B Bt P B B B e
» PRODUCE *
* REQUIRED *
* EPILOGUE CODE *
AEBARRRERARRARRERER

wnns I
- -
* F2 %=>]|
- »
wens ‘

Go712

v
R I e T)
®#GET POLISH EDA2#*
O el ST)
MOVE POLISH
#* FOR STNT TO #
* POLISH ROLL #*
ARERERBERERERRRES

i

|

I

v
ERERRCGORARSEERA RS
- M *

VE
#* STMT NUMBER
#FROM POLISH TO
* STORAGE

PR

»
ERERRRAGERARRRE N

!

1

v
BERRBHORRER BN RN
» -
®*MOVE NEXT GROUP#
* FROM POLISH #
* ROLL TO WORK #

» ‘ROLL
E R R e e T 2

i
v
oo
32 "o
o® .

- *e
#.LABEL POINTER.#®

-, -

-

POLISH
NOTATION

IS ON AFTER
POLISH ROLL

*REn

3123

G0493

ll}{&Aqu.&llllli
*LBL PROC — EFA2%
Ruom N T -
* REMOVE AND *
* PROCESS *

* LABEL
FEREERRERRRRBRERR

v
ARRRRCL AR SRR ERRER

» *
MOVE NEXT GROUP#
®* FROM POLISH %
* ROLL TO WORK *
e ROLL *
R s A T

*ERE
- *
* C4 *—y
= »

>* STATEMENT

EREREBSARERRBERRE
*

* INDICATE
#NUMBER ON CODE
*

LR R

ROLL -
REERERARFARAERES

RERERCHLEREERRRER S
STA GEN-EGA2 *
POR- AR D e
GEN OBJECT CODE
FOR STMT IF END
* STMT TERM PHS *
tZ 2222222222222 2 3

G0496

EREERDLGERRRRXERNR
#STA GENFIN EHA2%*
L e bt i
* GEN CODE FOR *
*DO_ CLOSE RESET *
* TEMP PNTRS ol
EEEEERFERRRREERER

i

v
RRE

E 222

Section 23

CODE IS
PRODUCED
ON THE CODE
ROLL

Coppiler Operation 105

Chart EA. GENERATE ENTRY CODE

G0a99
ERRRADRRREERRRR
» »
* ENTRY
. * CODE GEN
L Lt T T Y

|

*
*

v

oo
B2 *o EEERXDIRAXERRERRR
o* * * *
«* SOURCE *o NO * PUT MAIN *
oA SUBPROGRAM % >#PROGRAM HEADINGH
*o ¥ * ON CODC ROLL *

»* *
ERARRARRAARRARRES

. #049901 v SET uP v

ERRERC2ARRERRRRRR ERRERCIHERRR AR RE
* * * SET uP *
* INITIALIZE A * * SAVE AREA *
#POINTER TO THE * # LOCATION AT *
* ENTRY NAMES * * CURRENT LOC- *

ROLL * *
HERERRERRRRRR RN RR ERRAERBFRRARRERRRR

v
ot
D2 g . Y2 .
o¥ *g ERERDIHERBRRREN
+*NO. GROUPS *, YES * *
#*#, ON ENTRY - ¥— * RETURN *
*oNAMES = 1.% * »
*e -® EREARRERRRRERRR
*, o
* NO

v
HERERE2REREAERRRE
BUILD A LABEL

LR R
o
z
r
oo
[s]
@
(=
r
o

*
»

1 *

CODE TO EXIT #*
L »

-

EERRERRERRRERRR

<

#049902 v
RERERFEIRERERE RN RS
* *

* INSERT *
PROGRAM NAME IN#
b CODE *

» *
EREERRARRERRRARRSE

v
RERRRGO2ARRRER RS AR
PUT CODE *
FOR INITIAL *
SUBPROGRAM *
ENTRY ON *
CODE ROLL *
FERRRERARERE R RR

LA R]

GENERATE v
RERREHDER RN RN
GENERATE
ADDRESS
ONSTANT
FOR _PROLOGUE
+EPILOGUE

EERRREERRRRARRR

[EEE R
LR R RN

v
EEREBJORRERRE NN NN
»

BUILD SAVE
AREA AD CON
CODE FOR EXIT

ERERBERER RN NNN

LR R R
EE RS

106 . TR S

X)
* *
* B4 *
» *
22T 3
|
|
v
¥
B4 *e
o* *, AERADSEEERRERNE
o® ALL *eo YES * *
*e GROUPS -® > * RETURN *
%o PROCESSED«#* * *
, o ARRAREERRRRAE R
*e ¥
* NO

v
AEERECOHRERERRERRR
* *

* REDUCE *
#COUNT OF GROUPS
* TO PROCESS *

- »*
ERERERABREREERERSE

¥ *. AREADSHERRRBERR
*s YES * »
o GROUPS o > RETURN »
* o PROCESSED* * *
o o ERERARRERRERR AR
LI
* NO .
] .
|
i
v

ERBARELRRERRA AR
»* *

- REDUCE *
*COUNT OF GROUPS#®
* TO PROCESS *

* »
AERRERARRRRRE TR AR

v
RERREFOARRRREE RN NN
* *

INSERT
ENTRY NAME IN
CODE

[EERE]

»
»
*
»*

AERERRERABRERRRS

l!l{iGAlXillhIlh.
* *
* PUT CODE *
* FOR_ENTRY ON *
CODE ROLL

*

*

»
RHERREERERERRRREN

v
ARG AR R R R RR
- »
* BUILD INITIAL *
* PROGRAM ENTRY #
* AD CON CODE *
» *
» *

ERAARBRRRERRRRR

v
EREREJLRRREBRRE R, ..
* *

GENERATE *
PROLOGUE »
+EPILOGUE *
-
-

TR E R

ADCONS
ARBRBERRRRRRERRR

Chart EB.

PROLOGUE CODE GENERATION

G0504
RERBAZHERAER RS
» -
#* PROLOGUE GEN #
- »

HRBBRRBERRRRBRE

v
HRREB2 R RN RN RN
»

»

»

* INITIALIZE
POINTER TO
#* ENTRY NAMES
-
*

* kR

ROLL
HERBRRER RN RN

v
EERERC2EERRERRERE
*INITIALIZE CNT #
#0F GROUPS TO BE®
* PROCESSED ON %
* ENTRY NAMES *

* ROLL *
LR 2 2 RS ST 222

ERRR
» *
* D2 #—=>
» *

LA 2 2] v
#050401 ots
*,
o* ALL *, .
«* GROUPS *. YES
*. PROCESSED %
*g -¥
* g ¥
e oW
* NO

v
ERURRE2HRRRRRRRNS
»

*
* REDUCE COUNT #
0F GROUPS TO BE¥
* PROCESSED *

* *
ERRERREEEERANRRE

EXE Y
* »

* F2
* *
L2 22

v
HRARRFORERRRENERE
#CONSTRUCT CODE *

* FOR LOADING *
* ARGUMENTS, IF +*
* ANY *

* »
EREERRERRERN R RN RR

I
I

v
REERRG2HRARNE RN
* CONTRUCT CODE *
*FOR COMPUTAT ION#®
* OF DUMMY »
*DIMENSIONS, IF *
* Y »

LR Y T Y

v
RERREHORR R AR NN
* CONSTRUCT *
* CODE FOR *
* CLOSE OF *
* PROLOGUE *
* »
* *

L Y R T)

ERERDIHARER RN
*

>* RETURN *
* *

R R S

HREURETHRRRN R RN
* BUILD A *

* LABEL *
>* INSTRUCTION FOR*
* PROLOGUE *

* »
EERERERR RN RN RN

|
v
*

o¥e
F3 *o
*
o DEBUG *. NO
*UNIT SPECIFIED.#——
o o
*, o
X, o®
* YES

. v
HERERGIHRRER NN NN
* BUILD DEBUG *
* LINKAGE, *
* CODE AND UNIT *
NOe .IN CODE ¥
* ROLL *
EERREEREERER RN RN

#s50414 LN
H3 %,

o* *e
«* SUBTRACE
*. SPECIFIED

PSS

RREERYTHRRE RN RN
* BUILD

* DEBUG LINKAGE
* AND SUBTRACE

* START CODE ON
* CODE ROLL

LR T Ty e}

IR LT

v
N

ETTYS

#054

v
HRARARBLERRRERERER
PUT LOCATION *
* OF CLOSE OF *
* PROLOGUE IN #
* | ENTRY NAMES *
ROLL GROUP
RERARRRRERRREERRR

02 v

ERRERCORRBERERRRN HRREECSHENERIRN RN
* * * ‘ *
* UPDATE -
* POINTER TO *.
* ENTRY NAMES #
* *
* *

* CLEAR *
>%* BASE REGISTER #*
i TABLE *

ROLL * *
LI I R I AR AR T I R R]

v
X2 TS

* ok
o
n

* Kk

"

Section 2:

Compiler Operation 107

Chart EC. EPILOGUE CODE GENERATION

G0508
L
»
! EPILOGUE GEN =
»

o---wu---u--noo

X
N #050803
B2 .-, ErranBleansnnnes
. » -
. *SUBPROGRA M *. YES BTAIN NO. *
*. ENTERING TO .0........)(! GF GROUPS 0 =
#. PROCESS .+ *
.. .. -
", . .utonql.n;nu.alo.
+ NO .
. 2] .
. * . .
. * C3 ».X.
. * .
. - X
X #050201 o*.
.-..-cz.-n--..‘.. . c3 . .-...c4.-.‘..¢.-.
SET o *. "
ABEL - -* ALL *. YES NE
'l STRUCTION FOR# *. GROUPS .i........X'LAST ENTRY FRUMD
» MAIN PROGRAM * #.PROCESSED.* WORK ROLL
- ENTRY * *. . i
P IR ., .* Qo.uub.n!iiil.i.o
. * NO .
X X .
srenaD2ennnnnnnny .aa«i03o.n|{|§il* X
» - #xnaDinnnnnannn
#BUILD CODE FCR = ET BASE TABLE i * *
- [% » 'AS REQUIRED FDR' * RETURN *
« EPILOGUE OF = ILOGUE . »
* MAIN PROG * - a EERRREERERRRRRE
EREERRERRAR AR R ERRBERRRBRRRRNRRS
3 .
srxwsC2enennnnnnn snnrsE3nnnsnnnnny
- #BUILD INSTRUCT #
. BUILD - * FOR DUMMY *
MAIN PROLOGUE #ARGUMENT VALUE =
. CODE . * TRANSFER »
. . - -
rEREEREERERRERRES P L T YT R Y 3
: X
. a*. #050802
X F3 ., cunu}:z,nuuunqn;
sreaF2unnnnnnny «* ENTRY =, ' N QI!‘
- - .* DEFINED =+, NO RUNE
* RETURN * #. AS SCALAR .G........X-LAST ENTRY FROMO....X! Gl- M
* * .. . ROLL
e “rBERERERRROREY ., o -nu
- . . onuuu-pscnu-nu
*« Gl » * YES
. . nen
wann . - »
. . * G4 =...
. . - *
X . nnn .
#50804 o*. X #050845 X
(31 .. ErrsrGIenEsaranen RGO R R RERS
. L * BUILDL LOAD * - *
% SUBTRACE «. NO * - INSTRUCT!ON * #BUILD CODE _FOR =
*. SPECIFIED .O....X- G4 = 3 ND CLEAR * * C F -
.. .. » ACCUMULATGR » * EPILOGUE OF =+
.. .. “enen’ - - - SUBPROG
. L. EEAERREERRRRNARRE &lbiinl.oullnnn.{
* YES B .
: X .
. nne .
. * * .
X * Gl # X,
wnnneHlerannnnensn * - sessaHGerRsnnnnen
= BUILD DEBUG = raew reee » - “rnn
« LINKAGE AND = - * - *DECREASE NUMBER# * *
. SUBTRACE ®oeasX® G4 » * OF GROUPS TO #....X® C3 #
* END_COCE . - . * PROCESS * * *
. (RETURN) - cenn . . » T
R X Y 2

srree RRBEBERBRBB RGNS

108

Chart ED.

MOVE POLISH NOTATION

Go712

RN QD ER TR RER
*

*
GET POLISH *
* *

W3R RN

|
|
|

v
HRRRRB2EE RN RRS
* *
#SET UP POINTER %
#TO0 AFTER POLISH*
* ROLL *
* *
R

|
!

v
Ea 222 et- 22 2222222 23
* *
* COPY POLISH *
* FOR STMT TO *
POLISH ROLL *
* *
* *

ER S22 22222222

|

v
HEERRD2ER KRR NEER
* *
#*UPDATE CONTROLS#*
* FOR AFTER *
* POLISH ROLL *
* *
RN R R

|

l

v
W RED KW N NN RN
* *
* RETURN *
* *

IR RRR

Section 2:

Compiler Operation 109

Chart EF. PROCESS LABELS

G0493
HERRADRR AR ARR
» *
* LBL PROCESS *
* *

EERRABBEARERRSS

ARRERDERARERRRES

» »
* STORE POINTER *
#*TO LABEL IN STA#*

BL 80X *

*ARR

LR
@
o

L]

EEER

HEARRDIRERERRBR RS
#*MAKE LABEL FOR
*DEBUG CODE-PUT
*BRANCH ON CODE
* ROLL

LR R R R}

* [
*
L
v
¥
D2 *.
. .
- L
JUMP TARGET o%——
) ¥
*g o
g, -
* YES

EERRREOARRRE RS
»

ial;gcga!&n*nan&*
*#PUT POINTER TO *
* MADE LABEL ON *
* AT ROLL-WORD *
* 2 OF GROUP *
* *

EREBABBRERERRR RS

v
RARRRDIEF AR BRR R
* MAKE LABEL *
#FOR NEXT INST-— *
* RUCTION — PUT *
* LABEL CODE ON *
* CODE ROLL
R e e e

i

v
ARRAREIRFARERRR NN

* *PUT POINTER YO *

* CLEAR THE b #* MADE LABEL ON #*
* BASE REGISTER #* * AT ROLL-WORD *
- TABLE * * 3 OF GROUP -
* * * »*
E22 22222223

<
$049301 v

ARERACORER AR XRRR FERFRFIRARARBRRRE
* * » -
* PUT LABEL * % CLEAR WORD 1 *
* CODE ON CODE * * OF AT ROLL *
* ROLL * * GROUP =
* * * *
FERARRERARRRRERRRN HEAFERRARBER AR

v
LIS R

EXT S

110

FIRST WORD

COMPARED WITH
STA L8L BOX

ET 2]

ca

Y EL

v
$#a9305 e
ca =

o .
«* TRACE

®*. SPECIFIED .
*

-
> xx

RREREDLHAEFRRERNRR
* PUT DEBUG *
* LINKAGE FOR *
TRACE ON CODE ¥
* ROLL *

*

*

EEERRBRARBERBA N

EEEERELERR RN
- -
PUT BINARY *
* LABEL ON *
* CODE ROLL *
* *
- -

HEEARERRRARRRER

v
EERBFLERBEERBEN

*
* RETURN
L3

AEAARRER AR AR RN

RRRACSHERRRRR R
- *

> * RETURN
*

EREEERBBEARARAN

Chart EG. GENERATE STMT CODE

GO051S

W AD NN E N
* *
* STA GEN *
* *

336 36 3 33 3 3 3 3 % 3 X X

v
o¥q
B2 *o
o¥ STMT ¥,
«* FUNCTION *, YES
#o MADE LABEL o¥%*—
*e PTR = 0 o%
*g ¥
Ko o
* NO

v
ok,
c2 *o
o* STMT *,
¥ FUNCTION ¥, YESV
%e DRIVER ON o%—
%o WORK o ¥
*, ¥
Ko o
* NO

I

v
RERRRDORENERERRERL
BUILD *
CODE FOR *
STATEMENT *
FUNCTION MADE *
*

LABEL
NI RN R RN

LR EREE]

P S——
#051502 v
E2 * * %
* *
* GENERATE *
* CODE FOR *
* STATEMENT *
* *
Ea 22 2222222222222

v
REREF DR EER
* *
* RETURN *
* #*

Ea 2 2222222222223

THE JUMP TO
APPROPRIATE
CODE GENERATION
THE CONTROL
ORIVER IN WO
AND THE STA

RUN TABLE.

G0544
AL XXX
* TERMINATE *
* PHASE =
* *

L2 222222 22 22222

[P S —

L2232 27822222222 23
*

. *
* PREPARE *
*FOR EXIT PHASE *
* *

*

*
THEERBERNRERRFRERS

FREER
*09 *
* A%

Section 2:

TO PHASE 5-
EXIT

Compiler Operation 111

Chart EH.

COMPLETE OBJECT CODE

G0496
****Azii***i14¥
* STA GEN *
* FINISH *
»* *

LA RSS2 RS Sl L S]

\
HREERCD R RN RN
* *

* MOVE *
#GROUP OFF ROLL *
* *
* *
HRREREERR RN
|
v
e¥e #049601
D2 *. HERRRDIHHHE R XNKNR
¥ *, * *
«* POINTER = %*. NO * *
*LABEL OF THIS.¥—————>% REPLACE OROUP ¥
*, STMT o * ON ROLL *
*, ¥ * *
Xy o# IS T RS 2222 22T
* YES
1 L2 22 |
* *
* E3 *—>
| * *
| XXRH 1
v #049602 v
AEERREDER R ERXERN ARREREIRREREERR AR
* * *

*
* CONSTRUCT * * RESET TEMP *
DO CLOSING CODE * POINTERS AND *
* ON CODE ROLL #* * ACCUMULATORS *
* * * *

* *

LR RS RS RS EEZ S22 R 2 LR RS2 S22

|
; |
ER] 1
* * 1
* B2 * |
»* * \
EX 23 HXEWE ZHERR N RRR

* *

* RETURN *

* *

HRERERERERRNR

Chart 09,

PHASE

GO

GO

G0383

G088Y

5 - IEYEXT

381

SEOAR2EEL IS
. .
¢ EXIT PASS .
. .

deossNbesNEOORS

S0SCR2EIUBEEREES
.

] .
* INITIALIZE *
* .
. .
. .

BEOEEIOSEIIDESS

J
P00 4C2SL BSR4 S
‘PCH NHLMPY'"LA2‘

'PCH hML!ST TBL '
* WORDS HLDNG, *

. POINTERS *
LAY PR Y SR LY

382

s ttDZ.“.‘O‘OOO
*PCH TMP FAAZ
[e P P o
* PCH TEMP STGE ¢
: AND CONSTANT :

SHISEIEEBISEIN IS

>

v
SSBSSE2 440300804
‘PCH ADCON PBAZ '
‘ PCH RLD CARDS ‘
* FOR TEMP AND *
¢ CONET AREA *
LR PP R PY T TR T T

*.

F2 .,
« *OBJECT *
+«* LISTING
‘..RBQUESTED

» .

., L0
* YES

LI T YepI A2 RS TR T Y 1)

® PRINT HEADING ¢
+FOR LISTING

Sesssssssnves

<-

v
OSSR GSIERER
‘PCE CD RL—“" *

OSP4 8000 000000

.OOOOJZQ‘.QQQ...O
SRECORD STORAGE *
3oREQOIRED FOR 2
MODULE, ‘¢

opnxnr COMPILER *»
STATISTICS o
o.oooooo 989

G0O400

GOou

Gouo3

Gouou

GOu0S

GOU1

GOu2%

399
S

.PCH‘BSE RL-FDAZ‘

IR T T TR AL 2 2 1)

onn.053oyoat-oo¢.
«PCH BR RL-FEA2 *
L B e e e
*PCH OBJ MODULE ‘
* R TABLE

*RECORD. RLD-inFov
XTI T I RIS 2 2

c3 s
.oéuapROGRAn v. NO
ARGUMENT

. -
.

.

02

SessaDIEER008 40
*PCH SP ARG-FFA2%
LR B 2 P 2 T B Sl
PCH SUBPRGR ARG
* LISTS RECORD *
o R I .

INF
SEOTESHEIIESOIILD

<

$240SE300 408008

¢PCE GBL SP-FGA2*

e I e e rd

¢ PCH SUBPRGR *
AND

* RLD INFO .
SE9ESP0CTLOBNEIES

v
S+e0F 38000848000
PCH LIB RL-FHA2
-F--B--0-%-0-0
* COMPL SUBPRGR ‘
0 ADDRESSES AND '

RECO!
.o..Otooooooocttt

v
24820G30680000080
¢PCH ADCON-FIA2 *
o D o e et S

PCH _ADR CONST *
‘AND RECORD RLD ’

....’...‘.‘O.““

6
‘.‘.‘83...0000.‘0

-
* PURCH OBJECT .
.HOD ‘RLD CARDS :

FEEE VN0 0008085D

1
seeveJIseesesesen
’PCB ‘END CD-FKA2¢

b i e L L
» PUNCH OBJECT
‘HODULE END CARD‘

O..’.Q‘b'.“.'..‘

“.’.B“.."‘““..
* *
* .
$RELEASE ROLLS *
: :
*
L]

* .
SEPRIEEBIIOEIRLIS

Ly
* .
* CHART 03 ¢
. A2 .
PEEFXSBNSERSBED

TO INVOCATION

PHASE

Section 2:

Compiler Operation

113

Chart FA. PUNCH CONSTANTS AND TEMP STORAGE

G0382

BRRDARBRIRRAR S
PUNCH TEMP *
:AND CONSYT ROLL &

-

FRERABRRBRIERARRNSR

v
ABBRA[2ARNEERERREN
- *

® INITIALIZE -
-* LOCATION b
#COUNTER AND TXT#®
* -

C
EX 2222222222222 2]

v
SHOBBRC2ARNBRDRBRNEN
- -«

® INITIALIZE #
#POINTER TO TEMP#
#AND CONST ROLL #
» ToP v
SRBDAERBRBRBNERREE

nne
- »
® D2 #—>
- »
Y YY) v
4038201 o,
02 ., RRRRVIDINERRINBARES
. .
..' ROLL ° - PUNCH - PUNCH PARTIAL
®, PROCESSED % —D ANY PARTIAL TXY CARD
*e ® * CARD .
., e
e o FRBBRBRRTRNERN
* NO

v
BEFBRE2RRRBRRARERS v
* - Ei Ik 22222222 %
-

INCREMNENT
POINTER

(222X 22222222222 4

-
* RETURN -
- -
LIZ T RIT LT Y 2

88
(R R

v
WRBVEF2NBBRRNEBUN
#HMOVE NEXT GROUP®
FROM ROLL TO &
® BUFFERs PUNCH #
- 1F _CARD -
bt COMPLETE .
SBBRNIBRERNBRINGS

114

Chart FB.

$038301 o*a
c2

PUNCH ADR CONST ROLL

G0383

A D KR R
*

*

PUNCH ADR *

® CONST ROLL *
3 3 335 3 3 X% H H

v
XM RB 2NN NN
DETERMINE BE-
GINNING ADR OF #
* TEMPORARY STG *
* AND CONST *
* AREA *
IR RN AR

PrT TS

* *

* C2 *—>

* *

ERXR v

o

¥ *e
*

o* DATA « NO
#4ON ADR CONST %
*

v
HEEEEDD R R R TR
INITIALIZE *
LOCATION *
COUNTER FROM *
POINTER AND *
BEGINNING ADR #
e e e e s

R ERE]

v
B33 2 kRN R X

* PLACE AREA *
* CODE FROM *
* ADR CONST *
* ROLL ON *
* RLD ROLL *
L2 S e T e 2]

v
HERRRFE2HRERREXERR
*

*
* SET LOC CTR_*
*INTO RUNG 1 OF *
* RLD ROLL *

* *
3363 3 3 3 I I 3 I3 XWX X

v
G2 W AR R
* PUT LOCATION
* FROM ADR
* CONST ROLL
* IN OUTPUT
* AREA
e 2 X222 S22]

% ok ok ok ok Kk

\
RRERERH2 R REIT R EER

* PUNCH PARTIAL *
CARD
*
ES S22 T2 22 2]
|
v
*HER
* C2 *
* *

3 %%

*
D> %
*

ERRRCIHRRRERNRR

RETURN

B3 IR X ®

WO TO TXT CARD

PUNCH PARTIAL
TXT CARD

*
*
*

Section 2: Compiler Operation 115

Chart FC. PUNCH OBJECT CODE

G0384

ERBRADRERERR RN
* *
* PUNCH e

* CODE ROLL
AEFRARRBRERNE RN

v
EERRRDONERRRE RN
INITIALIZE

2]

o

(=

z
z -
“3m

b

+
R

*

»

"

* CODE ROLL

» 1

LR ZE TSRS RS RZE]

rwn |

* *

* C2 #—>

* *

. v
*

c2 . ERERRRRCIHRRRE R RN N

PUNCH ANY *
REMAINING
*PARTIAL CARD *

HEREERRRRNRNN

o* *o
«*DATA STILL *e NO *
*e TO BE o R—
JPROCESSED.
., o

*, oo
* YES

| |

v
EREBAD2HARRAR RN
»

v
HERUDIHRRERRREN
* *
RETURN *

*

*

NEXT »
INSTRUCTION #* *
* *
* HREHRA AN NN N

*

*
*
»
»
*

RERRBE AR AR RRE

ERERREIH NN NN
* *

* *. YES * »
o >*STORE IT IN STA*
*. * NUM *
* *
HRER RN RN NN v
R
» *
* C2 »
* *
LX)
ERARBERFTHRERRR AR RRR
o .
o A *. YES * PUNCH ANY
.PROGRAM BREAK. > REMAINING
*. o *PARTIAL CARD *
* g -®
*, o HEREERRRERRERR
* NO
REBBRAGCGIARRRRRR RN
*.
*. YES *MOVE TO QUTPUT #
o¥———————> AREA PUNCH IF
o *CARD COMPLETE*
AEREREERRE NN v
,ERR
* *
* C2 *
* *
*RER
ERRRE R TR LR R
. MOVE DATA TO
AN *. YES * OUTPUT AREA *
INSTRUCTION o% > PUNCH 1F —
» o * COMPLETE * {
*e o]
. ¥ ERERRARAE RN R v
* NO ERN
»
® Cc2
* -
I Eraw
v
oo
J2 -, LAZ R R NKEZ S ZIEST TR
o *.
o *. YES * *
*.LIST FLAG ON o %> LIST CODE —
. ot -
'™ o# l
*, o# EEERRERAER R AN v
* NO T
: » *
» B4
v » »
*ERR e
- -
* B4 =
» -
Enan

116

ERRR
* *
* B4 *
* »*
AR
v
o*e
*o EARNRDSHEEREERERN
«*ADDRESS#*. * »
«% CONSTANT *, YES * STORE *
o DEFINITION % > LOCATION *
*o - * COUNTER *
*a o * »
Xy o® HARN RN RRRNE
* NO
<
v
¥,
ca *, ERRERCSHEREERER RN
o *o * DEFINE LABEL
*o YES * ON BRANCH

o LABEL
*e INSTRUCTION o%
* *

v
R RIDE RN TN RN
* MOVE INSTR TO *
OUTPUT AREA
PUNCH IF FULL

RN NN

v
L2 1

223

HRNREFL RN RRNR
* REINITIALIZE *
LOCATION COUNTR¥

>* TABLE ROLL 1=
* NECESSARY PUT
* IN LIST AREA

R I IR e e]

EEE RS X

v
ERAR
* C2 *
* *

AR

Chart FD.

SWEEP BASE
BRANCH ROLL

PUNCH BASE TABLE

G0399

REEEAD KRR ERRRE
» PUNCH *
* BASE ROLL *
* *

HHFRRE R RN RN

€ e e e e g e

R X RGN ERR
* *

* INITIALIZE
* BASE TABLE
* LOCATION
* COUNTER
RN NN
|
|

'EELE]

v
HERERC2REREEE RN
* *

®* INITIALIZE *
POINTER TO BASE
* TABLE ROLL *
* *
RREREERR TR NN TR R

v
FHRERED2HE XN RRERR
* *

* INITIALIZE *
TXT CARD BUFFER%
* *
* *
RSS2 S22 2T E 2]

EE 22

R
G0400 .
E

¥ ALL *o YES

*o ROLL ok
* ePROCESSED.*
, o
oW

* NO

P ——

RERERFDERHHEE XX ER
* *

* INCREMENT *
POINTER TO ROLL
* *

* *
EII IS S S S22 23

& e

ERERRGORERRENRRER
* *
* RECORD ESD *
* + LOC COUNTER *
* ON RLD ROLL *
* -
HEAR AR DN N

v
EREDBRHO R RN RRRE
* *
* MOVE GROUP TO *
BUFFER PUNCH IF#
* CARD COMPLETE *
» *
ERRAEEREERBRE AR

|

i

I

v
L2 2 2]

RRN

W RETF RN TR RN
* PUNCH *
> ANY PARTIAL
* CARD

HRREREERERRAR

P —

ERERFIHRRREREN X
* *
* RETURN *
* *

EEEREEREERRERR R

Section 2:

Compiler Operation 117

Chart FE.

SWEEP BASE
BRANCH ROLL

118

#040001 o¥g
E2

PUNCH BRANCH TABLE

G0400

FRJWPD RN RNRER
* PUNCH *
* BRANCH ROLL *
* *

EZ 22222 2223 22 22

|

v
HREREBD R X R HENR

*

* INITIALIZE
* BRANCH TABLE
* LOC COUNTER
*
*

'R

263 3 KN E XX

|

v
EREERCOERRXRX R RR

INITIALIZE
POINTER TO

*
*
*
* BRANCH TABLE
*
*

LEREEE R

ROLL
ERAEREERRRRERRR

v
RRRRRDD X RN X NN
* *
* INITIALIZE *
*#TXT CARD BUFFER¥
* *

* *
EERRENRERRRERER RN
R R

* *
* E2 *—>
* *

XXX v

*,
o *o
o ¥ ALL *o
*o ROLL -
* ¢ PROCESSED . *
* g ot
X, o
* NO

v
R TR D RN RN RN
* *
* INCREMENT *
POINTER TO ROLL
* *
* *
A2 2222222222 22223

v
HHERRG2H LR HE XN NN
* *
* RECORD ESOD *
#AND LOC COUNTER®#
* ON RLD ROLL *

*

*
W NN R RN RRER

v
FRRRRHD R R XERE

BUFFER, PUNCH
1F _CARD
COMPLETE
I2E 2222222222 2 2 2 3
|
|
|

v
xR

ok kK
* ok ok k ok K

xR

ERRRBREIHRRXRRXRRAR
* PUNCH *
> ANY PARTIAL

* CARD

EE 222 222 222 2]

i
i
1
v
AR IERREXRHRR
*

*
* RETURN *
* *

EZ 22 S 2 22 2 2L

Chart FF. PUNCH SUBPROGRAM ARGUMENT LISTS

Go0402
EERRADHENRAEE RN
* UNCH *
* SPROG ARG *
* *

ROLL
EEERARARRARRRRR

v
RERRRDOAEFRERREER
*INITIALIZE LOC.#¥
* COUNTER, TXT *
* CARD OUTPUT *

* AREA AND *
» POINTER »
HERERRERERERR RN
nux l
* *
* c2 *»—>
ET TS v)
$40201 ot
c2 *o ERERRRCITERERERRRRRD
- *o) PUNCH
g ALL * PUNCH ANY » PARTIAL
ROLL ————> REMAINING TXT CARD
*+PROCESSED . * *PARTIAL CARD *
*, o ¥ .

* ERREREAREERSEE

l
l
I I

v
ARFADIEREREERER
*

o
* NO

v
EEERRDEERRRERERE
* *

* INCREMENT * *
POINTER TO ROLL * RETURN »
» * » *

» * EEEREEERBRREES R
ERRREERRRRRERERRS

v
¥
E2 * g HRREREIREERRRRERR
o . * MOVE GROUP *
- *. YES = TO TXT *
*. GROUP=0C .= >% OUTPUT AREA *
*. o * PUNCH IF *
. o* * CARD COMPLETE * i
*, ¥ HERRERAERBRRRBRRE v
* NO REEE
* »*
I * C2
* -
I xR

#40203 oo
F2

* g EERREEFIARREER R ER
- -y * »*
-* TEMP *. YES * COMPUTE »
. AND CONST . >* APPROPRIATE *
*. POINTER % * LOCATION *
*, - - =
*, % LA 22 2222222222 3
* NO
#040204 v
ERERRGORREREXRRERR
* *
* COMPUTE *
* APPROPRIATE. *
* LOCATION *
* *
REXEREBARERERRER RN

|
|
=<

N v
FEREEHOERER AR AR
- *

* *
*RECORD RLD INFO#®
* *

* »
EEERBREREERRERENR

v
ERERRJORERRRERRER
* *

* INSURE *
* *MINUS®' TAG =
* MARK »
» »
* *

REFRREBERRER AN

v
ERRERKOHRRRRERR RN
*

* MOvE *
*DATA TO OUTPUT #
- AREA *

» *
EREARREAERRER R RE

Section 2: Compiler Operation 119

Chart FG. PUNCH SUBPROGRAM ADDRESSES

G0403
ARRRADHERERRAERE
» PUNCH *
* GLOBAL SPROG *
* R *

ERERRERBEERRR NN

& e e e e

FEARRB2ERREREANRN
* -

- FLIP THE *
* GLOBAL SPROG *
* ROLL *
* »
EREEARARRRA AR TRN R
i
v
o*a
c2 *a
- . ERERCIEARERRR RN
*. NO *

o®

DATA
*. ON THE ROLL

*
> RETURN »

* * »
EREARRRREAREER S

v
FERRADO AR EARRARS
* *
* TURN OFF *
» SUBPROGRAM *
:FLAG. MOVE WORD#*

*

EEERARRAREARERERN

$040302 v
HRERERLARERE R RN
* *

* STORE »
LOCATION ON RLD¥
* ROLL *

* *
EERARERREEREE RN
|
|
|

$#040304 v
MMM RCHE NN TR RN
* MOVE *
* 0 TO OUTPUT *
*AREAs PUNCH IF %
* CARD COMPLETE *
* *
*

EREERRERERRRRE RN

FEARERDSEEREERRRRRN

o ¥ .
o* DATA *o NO * PUNCH *
+ ON THE ROLL . > ANY PARTIAL
*o % * CARD

* g ¥
*e o ERREERREFEERS

<

PP

%oa
RE2RRRARERENR

[

*

»* *
* MOVE ESD »
* NUMBER TO RLD *
* ROLL *
* »
* *

FARAERRR AR RN

P,

FEERREOEN AR RN
* *
* DETERMINE *
* LOCATION OF *
*SUBPGM ADDRESS *
- -

»

ERRARRREBAN SR NE Y

1
|
1
v
*

G2 -
o
e . YES
#.SUBPROG. FLAG*——
*. ON -]
oy 3 ‘
v
ERRW
-
* B4
* »
aw

FRRRRHORER R R B AR
» .
* ‘STORE *
* LOCATION IN *
* 'LOCe COUNTER *
* .
EE AR R R ERER SRR TR

1

»
* INITIALIZE *
* QUTPUT AREA, ¥
N ON *

-

*

* TURN

120

P ——

ERERESHERARRRNR
» *
* RE TURN e
* *

ERERBERNENRRRAR

Chart FH. COMPLETE ADDRESSES FROM LIBRARY

Goao4
RRBEADHFARRRRRR
* PUNCH USED
» LIBRARY
*
FRRAERERERRRE RN R 2222
* *
* B4 *
* *
P
v v
ARBREBORRRERE AR ERERRTL AR RN RN
* * * *
- FLIP - » STORE »
* THE USED LIB * *LOCATION CN RLD#*
* ROLL » » ROLL »
* » * *
EZ R 22222 222 20 A2 22222222222 tE s

v
FARRACHARRERRRRRS

EERRCIRRERRANEE = MOVE ®
* * * 0 TO DUTPUT *

> RETURN * *AREAs PUNCH IF *
* *

CARD COMPLETE *
* *

EEEBERENERHRRER NS

FEEERNEREN RN RN

AR

v
ERREEDOEFREERRR NN Da *, EERRRRDSHREXRERERR N
o TURN OFF * ¥ *o
* SUBPROGRAM * -
FLAGy MOVE WORD *o DATA ON THE
* OFF ROLL * « ROLL Ll

* PUNCH
> ANY PARTIAL
* CARD

* * . o
ARXRERERERRERE R AR *e ¥ EERBEEEEARRRN
* YES |
xun | i |
* * |
® E2 *—> v i
* = | Exxx |
*xEn v » *
E2 *. EEREREIHRRR A RERN * * & .
- . » * *EnN EAARESHRF AR LR R
ESD *, YES * MOVE NEXT * * *
= 0 (IGNORE) o%——————>% WORD OFF + * * RETURN *
. o * * * *
* |
* v
*

DESTROY
, o EEEREREEERRRR R

*
Fe o# HEXEERRRREREAR LR
* NO EET s
* *
* D4 *
* *

xR

P ——

$40402
RERERF2ARRARR RN RN
» »

* MOVE hed
* ESD NUMBER TO *
* RLD ROU *
* »
* *

ERREARREER AR AN
|
1
|

v
HRUERGOER AR AR RN
* *

* DETERMINE *
* LOCATION OF *
hd FUNCTION *
* ADDRESS *
EERBRRRAR AR RN

i
!

-® *s YES
.SUBPROGR FLAGe——
*e ON S
*y o

*e &

* v
NO EERR

ES SR

o i
o
o
>
ok

ERERE YRR EXRR RN
» »
* STORE: o
LOCATION IN LOC
* ‘COUNTER *
* »
REBERBRRERTRR R AR

i

v
ERRRAKORRBAFT RN

* INITTALTZE *
* ‘CUTPUT AREA, +* .

* URN ON ey

YSUBPROGRAM FLAGY 1

ARFERRR AR R R RN v
e

‘Ba

*
PR 2

W

Section 2: <Compiler ‘Operation 121

Chart FI.

122

G0405

LA A2 VRS ST S R 2R

* *
* PUNCH *
* ADCON ROLL *
NN RN

XN

|

» * ‘

* B2 *—>|
* *

LT v

*

o¥e
B2 *o
¥ *o
o ¥ *e
*<DATA ON ROLL %
*o .
* g ¥
Ky oF
T YES

v
HHFRNC2HEHENRRE RN
»* *

* SET AREA
*CODE FROM LAST
* WORD ON ROLL
*

* ok ok K K

L2222 2SS E

|

i
HHRREDD TR XN AR
* SET ADDRESS *
* WHERE CONST *
#IS TO BE LOADED*
*FROM NEXT WORD *
* ON ROLL *
NI NN XN XK

v
HRRHXEE DN RRNE RN L NN
* MOVE INFO *

TO OUTPUT
AREA AND PUNCH#*

EE 22222 22 2 2 X2

v
FREERF DR RRRE
*

SET
UP RLD ROLL
ENTRY

* ok K ok

*
*
*
*
*
33 IR N R

v
CEEER

e 23

PUNCH ADDRESS CONSTANTS

NO

*
>
*

ERRRGIHRERRAERN

RETURN

Ea 22 R 2SS 2]

*
*

Chart FJ. PUNCH RLD CARDS

G0565

ERRRALRERERE RN
* ORDER AND *
* PUNCH RLOD :

ERERRADREARNNNR NS
* * THE SORT PUTS

* SORT *

>%* RLD CARDS ON *

* ROLL * ADR .

EERRBERARRRAEEN * *

REEERERRRERRRRE RN ARE USEC AS
STCRAGE

41615 v
FERRRABOEERERE AR AR

R *SET ESD NUMBER *
PUNCH RLD * » *FROM AREA CODE *
ROLL * B2 * >% AND PUT IN *
» * RLDO CARD hd
EEER * IMAGE »
P e T
I
$#41601 v
ERRERCOEERERRRERR
(212 * SET »*
* * * LAST LOAD *
* C2 = >* ADDRESS FROM *
* * * RLD GROUP *
xR * *
P R

|
v
oo
D2 EEARRADIHARRRRRRRER
o
o* *o NO * PUNCH *
*oMORE DATA ON —D REMAINING
*o oL o * DATA *
T EEERAE RN TR
* YES
! |
|
v I
o*, !
E2 *o v
o* . ARRREIRARERRARR
«* ESD NDO = *, NO *
e TO PREVIOUS o#——y * RETURN »
x, o* i * =
*, or | EREAERERERERRER
*e o oF v
* YES xR
P22 T »
* * % BS *
> E4 * » *
* * EEEE

ENTRIES WITH LIKE

ESD NUMBERS TOGETHER,

CONST AND

TEMP AND CONST ROLLS
T

¥
E4 *o
o *.
o *. YES
r—>%*.RO0M ON CARD o%*——
l .. o
] L
ER * NO
* *]
* E4 * i
* * |
R

v
RERERRELRRAR RN RNN

»* »
PUNCH AN RLD
* CARD

R R S T T Y

PLrm——

#41602
RERERGARERNER XX RN
*PLACE PREVIOQUS
* VALUE IN CARD
* MARKED FOR
* CGNTINUATION
* AND UPDATE
ERRRREERERRREERN

22T R

LTSS
* C2 ®
»

e 1

Section 2:

e

$41603 .
B8S

¥ *o
% *o YES
*eRO0OM ON CARD o ¥———

*, ¥

*, o ¥
L
* NO

v
EEFRRUCSRERRR RN AR

*

*
PUNCH AN RLD
* CARD *

EEERERRE AR NN

#41604
ARXRADOEAERANRRNK
*PLACE PREVIOUS *
* VALUE IN CARC *

. * MARKED FOR NO *
* CONTINUATION *
* AND UPDATE *
EERARREEERARERRAR

I
|
|
|
v
%
- ..
% RDOM %,
+«*FOR NEW ESD¥.
NO. ON CARD o*
| *e o
| *e ¥
*.

YES

r—*e

v o
2223 * NO
* *

* B2 * ’
* * |
R R ,

v
FARRERFSARRRAERRRR
*

*
* *
* SAVE NEW ESD *
M .
M *
* *

ARERERREARRENRE

i

|

|

v
ERRRERGSAARRAEARRNS
*

»
PUNCH AN RLD
* CARD

EEERAEBERARARN

ERER

Exw

Compiler Operation 123

Chart FK. PUNCH END CARDS

Goaz2a
ERREAD R RN RER
* *
* PUNCH *
* END CARD *

EE 2222 SRR S 20 S

P —

FH X REB D RN RN
* *

* *
SET UP END CARD
* *

* *
EE SRS s

P

FRXERRC2 FHRRTEEREER

* *
PUNCH END CARD
* *

I IR R

P —

ARXRDDERRERRXER
* *
* RETURN *
* *

22222 2R Ll S

124 . :

Chart FL. PUNCH NAMELIST TABLE POINTERS

G0S64
EERRADERAEBE RN
PUNCH *
* NAMELIST MPY #

*

*
FERREERRTERR RN

v
¥
B2 *e
o* * FERRDIREREEERNN
+* DATA ON « NO * *
*#.NAMELIST MPY . > * RETURN *
#oDATA ROLL % *
#e o* ERREEEEERERRR N
e oF
* YES

v
HRRRRCD RN RN R
*

*
CALCULATE NEXT #
* ADDRESS IN *
* TEMPORARY *
* STORAGE AREA #
MM NN AR NN

E2 22

* *

* D2 *->

* *

RER

$056401

ERRERDDE R ER RN
* MOVE LOCATION *
* OF POINTER #
* FROM NAMELIST *
* MPY DATA *

» LL *
LA 222222222 2Lt d

¥ ERRFEIRERERENRE
* *

*
#e ANYSHING >* RETURN :
* M *
“w. - e e TS
*e ok
* YES

v
BEREAF2RRBRERRRRS
* *
#INITIALIZE TXT *

* INDICATED *
FEARARBAERRER RN

.QillGZ&Xi!l!&'l’
* *
UP RLD ENTRY
FOR WORD IN
:NAMELIST TABLE

EEEBERRERREBRRRY

LEE R R

|

v
ERERRHOERER AR RR RS
* »
*MOVE MULTIPLIER®
* 70 TEMP AND #
* CONST ROLL *
* *

ERERBERUBEBERER RN

v
ERARRJOHBRERERERE
»

*
g MOVE *
*POINTER TO TXT #
* CARD IMAGE :

FAEERRRRERBRRRRBR

v
R

rnun

v
R 222 S VR L T2 2SS s 2 d

* *
PUNCH THE TXT
* CARD *

REREERERREEER

v
EEAERCLHERAREN RN NN
* *
* INCREASE *
* TEMPORARY *
STORAGE POINTER
* *

EERRERRARRERRIERE

Section 2:

Compiler Operation 125

This appendix deals with +the POP 1lan-
guage, the language in which the FORTRAN IV
(G) compiler is written. The parts of the
appendix describe this 1language in the
following way:

e The ficrst part describes the POP
instructions, which are grouped accord-
ing to their functions.

e The second part describes the 1labels
used in the routines of the compiler.

e The third part discusses the assembly
and operation of the compiler, as it is
affected by the use of +the POP lan-
guage. This part ends with a cross-
reference list giving the mnemonic for
each instruction, the hexadecimal code
which represents it, and the instruc-
tion group in which it is described.

POP INSTRUCTIONS

For the purpose of describing their
operation, the POP instructions have been
divided into groups according to the pri-
mary function which they perform. Where a
particular POP instruction pertains to more
than one group, it is described in the
group which discusses its most important
functions.

In the descriptions of the instructions,
the following notational conventions are
employed:

1. Parentheses are used to indicate "the
contents of;®" thus (G) stands for the
contents of storage address G, where
all addresses are fullword addresses.

2. The arrow is used to indicate trans-
mission in the direction of the arrow;
(G) + 1 --> G reads: the contents of

storage address G, plus one, are
transmitted to storage address G.
3. Wn (n=1,2,3,e0.) refers to the

BOTTOM, BOTTOM-1, ...
the WORK roll.

etc., words on

It should be noted that in many cases
the address field, G, of the instruction
contains a value other than a storage
address (for instance, a roll name). In
most of these cases, the symbolic reference
which is used is defined in the program by
means of an EQU card.

APPENDIX A: THE POP LANGUAGE

The mnemonic codes for the POP instruc-
tions are of the form IEYxxX. In the
following discussion, the characters IEY
are omitted from the mnemonics in the
interest of ease of reading, and only the
xxx portion of the code appears.

TRANSMISSIVE INSTRUCTIONS

The instructions described in this sec-
tion are primarily involved in moving
information from place to place in storage.
APH G: Assign and Prune Half
The upper halfword of (W0) --> the
lower halfword of G, where G is a
storage address; the upper halfword
of G remains unaltered; the BOTTOM
of the WORK roll is reduced by
four, thus pruning WO.

ARK G: Assign Relative to Pointer and Keep
(W0) --> P + (G), where P is the
address defined by the pointer in
Wl and G is a storage address; the
BOTTOM of the WORK roll is reduced
by four, thus pruning the value
assigned and keeping the pointer.
ARP G: Assign Relative to Pointer

(WO0) --> P + (G), where P is the
address defined by the pointer in
Wl and G is a storage address; the
BOTTOM of the WORK roll is reduced
by eight, thus pruning the current
WO and Wi.

ASK G: Assign to Storage and Keep

(W0) --> G, where G is a storage
address; the BOTTOM of ' the WORK
roll is unchanged.

ASP G: Assign to Storage and Prune

(W0) --> G, where G is a storage
address; the BOTTOM of the WORK
roll is reduced by four, thus prun-
ing the current WO.

BOP G: Build on Polish

The control driver G is built on
the POLISH roll, where the G field

of the instruction is the lower
eight bits of the ADDRESS portion

Appendix A: The POP Language 127

CAR G:

CLA G

CNT G

CPO G

CRP G

EAD G

128

-
.

-
.

of the desired driver. (The TAG
field of the pointer contains zero,
and the OPERATOR field contains
255.)

Copy and Release

Copy roll G, where G is a roll
number, to roll T, and release roll
G (i.e., restore it to its condi-
tion before the last reserve); the
number T is found in WO; the BOTTOM
of the WORK roll is reduced by
four., If roll G is in the reserved
state when this instruction is
executed, the instruction sets its
BOTTOM to (TOP) minus four; if the
roll is not reserved, BOTTOM is set
to (BASE).

Clear and Add
Clear W0; (G) --> WO, where G is a

storage address; the BOTTOM of the
WORK roll is unchanged.

Count

The number of words on roll G -->
W0, where G is a roll number; the
BOTTOM of the WORK roll is

increased by four.
Copy Plex On

The = plex pointed to by the pointer
in W0 is copied to roll G, where G
is the number of the target roll,
except for the first word of the
plex (which holds the number of
words in the plex, exclusive of
itself). The . BOTTOM of the WORK
roll is reduced by four, thus prun-
ing the pointer. The BOTTOM of
roll G is increased by four for
each word moved; the BOTTOM of the
original roll is unchanged.

Copy Relative to Pointer

Copy roll S to roll G, where G is a
roll number, beginning "with the
group indicated by the pointer in
W0, to the BOTTOM of the roll. The
roll number @ S is also provided by
the pointer in WO. The BOTTOM of
roll S is decreased by the number
of bytes moved. The BOTTOM of roll
G is increased by the number of
bytes moved. The BOTTOM of the
WORK roll is unchanged; thus, the
pointer remains. ~

Extract Address

The ADDRESS portion of (G) --> WO,
where G is a storage address; the

ECW

EOP

ETA

FET

FLP

FRK

FTH

G:

G:

BOTTOM of the WORK roll is
increased by four.

Effective Address to Work

G --> W0, where G 1is a storage
address; the BOTTOM of the WORK

roll is increased by four.

Effective Constant Address to Work

G --> W0, where G 1is a storage
address which refers to a constant
under a constant base. The BOTTOM

of the WORK
four.

roll is increased by

Extract Operator

The OPERATOR portion of (G) --> WO
(right adjusted), where G is a
storage address; the BOTTOM of the
WORK roll is increased by four.

Extract Tag

TAG portion of (G) --> TAG portion
of WO, where G 1is a storage
address; the BOTTOM of the WORK
roll is increased by four.

Fetch

(G) --> W0, where G 1is a storage
address; the BOTTOM of the WORK
roll is increased by four.

Flip

Invert the order of roll G, where G
is a roll number, word for word.

Fetch Relative to Pointer and Keep

(P + (G))
address

--> W0, where P 1is the
defined by the pointer in

W0 and G is a storage address; the
BOTTOM of the WORK roll is
increased by four; thus, the

pointer remains in W1.
Fetch Relative to Pointer

(P + (G)) --> WO, where P is the
address defined by the pointer in

W0 and G is a storage address; the
BOTTOM of the WORK roll is
unchanged; thus, +the pointer is
destroyed.
Fetch Half

The lower halfword of (G) --> upper
halfword of WO, where G is a
storage address; the 1lower half-

IAD G:

IOP G:

ITA G:

ITM G:

ILCE G:

ICF G:

LCT G:

zexro; the
roll is

word of WO is set to
BOTTOM of the WORK
increased by four.

Insert Address

The ADDRESS portion of (G) --> the
ADDRESS portion of the pointer in
W0, where G is a storage address;
the BOTTOM of the WORK 1roll is
unchanged.

Insert Operator

G --> OPERATOR portion of the
pointer in W0, where the G field of
the instruction is the desired
OPERATOR value; the BOTTOM of the
WORK roll is unchanged.

Insert Tag

TAG portion of (G) --> TAG portion
of the pointer in W0, where G is a
storage address; the BOTTOM of the
WORK roll is unchanged.

Insert Tag Mode

Mode portion of the TAG field of
(G) --> mode portion of the TAG
field of the pointer in W0, where G
is a storage address; the BOTTOM of
the WORK roll is unchanged.

Last Character Error

The last character count and the
address G --> ERROR roll, where G
is the address of the message for
the error. The count of errors of
the severity associated with the
message 1is increased by one, and
the MAX STA ERROR NUMBER (which
indicates the highest severity
level of errors for the present
statement) is updated as required.

Last Character Error if False

If (ANSWER BOX) = false, the last
character count and the address
G --> ERROR roll, where. G 1is the
address of the message for the

error. The count of errors of the
severity associated with the mes-
sage is increased by one, and the
MAX STA ERROR NUMBER is updated as
required., If (ANSWER BOX) = true,
the instruction does nothing.

Last Character Error if True

If (ANSWER BOX) = true, the last
character count and the address
G --> ERROR roll, where G is the
address of the message for the

IGP G:

LSS G:

MOC G:

MON G:

error. The count of errors of the
severity associated with the mes-
sage 1is increased by one, and the
MAX STA ERROR NUMBER is updated as
required. If (ANSWER BOX) = false,
the instruction does nothing.

Load Group from Pointer

Loads the group
pointer in WO into SYMBOL 1, 2, and
3, DATA O, 1, 2, 3, 4, and 5. The
number G is the number of bytes to
be loaded; if G=0, the entire group
is loaded. The BOTTOM of the WORK
roll is unchanged; hence, the
pointer remains in WO.

specified by the

Load Symbol from Storage

Loads the (G and G+4), where G is a
storage address, into SYMBOL 1, 2,
and 3, and DATA O.

Move on Code

G halfwords, where G 1is an even
number, are to be moved from the
WORK roll to the CODE roll. A word
containing a special value in the
first two bytes and the number of
words transferred in the last two
bytes are first placed on the CODE
roll. G/2 words of information are
then moved from the WCORK roll to
the CODE roll; the BOTTCM of the
CODE roll is increased by four for
each word placed on the 1roll; the
BOTTOM of the WORK roll is reduced
by four for each word moved from
the roll. A location counter is
increased by the number of bytes of
object code placed on the roll.

Move on
(W0) --> roll G, where G 1is the
roll number; the BOTTOM of roll G

is increased by four; the BOTTOM of
the WORK roll is decreased by four.

NOG G: Number of Groups

NOZ G:

The number of groups on roll G -->
W0, where G is the roll number; the
BOTTOM of the WORK roll is
increased by four.

Nonzero

" A nonzero value --> G, where G is a

storage address.

Appendix A: The POP Language 129

PGO G:

PGP G:

PLD G:.

PNG G:

POC G:

PST G:

SWT G:

130

~ words

Place Group On

A group from SYMBOL 1, 2, and 3 and
DATA O, 1, 2, 3, 4, and 5 --> roll
G, Wwhere G is the roll number, by
group status; the BOTTOM of roll G
is increased by group size.

Place Group from Pointer

The group in SYMBOL 1, 2, 3, DATA
0o, 1, 2, 3, 4, and 5 is placed on a
roll according to the pointer in

WO. The number G is the number of
bytes to be moved; if G=0, an
entire group is moved; the BOTTOM

of the WORK roll is unchanged.

Precision Load

(G and G+4) --> MPAC 1 and MPAC 2,
where G is a storage address.

Pointer to New Group

Builds a pointer to the first byte
of the next group to be added to
roll G, where G is the roll number,
and places the pointer in W0; the
BOTTOM of the WORK . roll is
increased by four.

Place on Code

The data located at storage address
G+4 and following is to be moved to
the CODE roll. The number of half-
to be moved is stored in
location G and is an even number.
A word containing a special value
in the first +two bytes and the
number of words of data in the last
two bytes is first placed on the
CCDE roll. The indicated data is
then moved +to the CODE roll, and
the BOTTOM of the CODE roll is
increased by four for each word
placed on the roll. A location
counter 1is increased by the number
of bytes of object code placed on
the roll.

Precision Store

(MPAC 1 and MPAC 2) --> G and G+4,
where G is a storage address. This
instruction performs a doubleword
store.

Switch

Interchanges (W0) and (G), where G
is a storage address; the BOTTOM o
the WORK roll is unchanged.)

ZER G:

zero

0 --> g,
address.

where G is a storage

ARITHMETIC AND LOGICAL INSTRUCTIONS

The following instructions are primarily
designed to perform arithmetic and logical

manipulations.

ADD G: Add
(G) + (WO) --> WO, where G is a
storage address; the BOTTOM of the
WORK roll is unchanged; hence, the
initial contents of WO are
destroyed.

AFS G:

AND G:

DIM G:

DIV G:

IOR G:

LLS G:

Add Four to Storage

(G) + 4 --> G, where G is a storage
address.

And

(G) AND (W0) --> WO;
logical product

that is, a
is formed between

(G) and (W0), and the result is
placed in WO. The BOTTOM of the
WORK roll is unchanged; hence, the
initial contents of WO are
destroyed.

Diminish

(G) - 1 --> G, where G is a storage
address.

Divide

(W0) / (G) --> G, where G 1is a
storage address; the remainder, if
any, from the division is 1lost; a

true answer is returned if there is

no remainder; the BOTTOM of the
WORK roll is unchanged; hence, the
initial contents of WO are
destroyed.

Inclusive Orx

The inclusive OR of (W0) and (Q),
where G 1is a storage location, is
formed, and the result is placed in
W0. The BOTTOM of the WORK roll is
unchanged; hence, the initial con-
tents of WO are destroyed.

Logical Left shift

(W0) are shifted left G places; the
result 1is left in WO0; bits shifted
out at the 1left are 1lost, and
vacated bit positions on the right
are filled with zeros.

LRS G:

MPY G:

PSP G:

SUB G:

TLY G:

Logical Right Shift

(W0) are shifted right G places;
the result is 1left in WO0; bits
shifted out at the right are 1lost,
and vacated bit positions on the
left are filled with zeros.

Multiply

(G) * (W0) ——> WO, where G 1is a
storage address; the BOTTOM of the
WORK roll is unchanged; hence, the
initial contents of WO are
destroyed.

Product Sign and Prune

The exclusive OR of (W0) and (G),
where G 1is a storage 1location,
replace the contents of G; the

BOTTOM of the WORK roll is reduced
by four, thus pruning WO.

Subtract

(WO0) - (G) --> WO, where G is a

storage address; the BOTTOM of the
WORK roll is unchanged; hence, the
initial contents of WO are
destroyed.

Tally

(G) + 1 --> G, where G is a storage
address.

DECISION MAKING INSTRUCTIONS

These instructions inspect certain

con-

ditions and return either a true or false
answer in the ANSWER BOX. Some of the
instructions also transmit stored informa-

tion from place to place.

CSA G:

LGA G:

‘into SYMBOL 1, 2, 3,

Character Scan with Answer

If G = (CRRNT CHAR), the scan arrow
is advanced and a true answer is
returned; otherwise, the scan arrow
is not advanced and a false answer
is returned.

Load Group with Answer

The group from the BOTTOM of roll
G, where G is the roll number and
roll G has been flipped, is 1loaded
DATA 0, 1, 2,
3, 4, and 5 (as many words as
necessary); if the roll is empty or
if the group is a marker symbol, a

MOA G:

QSA G:

SAD G:

SBP G:

SBS G:

false answer is returned; other-
wise, a true answer is returned;
the BOTTOM of roll G is reduced by
group size.

Move off with Answer

If roll G, where G 1is the roll
number, is empty, a false answer is
returned. Otherwise, the BOTTOM of
roll G is reduced by four, pruning
the word moved; the BOTTOM of the
WORK roll is increased by four; a
true answer is returned.

Quote Scan with Answer

If the quotation mark (sequence of
characters) beginning at storage
address G (the first byte in the
quotation mark is the number of
bytes in the quotation mark) is
equal to the gquotation mark start-
ing at the scan arrow, advance the
scan arrow to the next active

character following the quotation
mark, and return a true answver;
otherwise, do not advance the scan

arrow and return a false answer.

Set on Address

If G = ADDRESS portion of the
pointer in W0, return a true answ-
er; otherwise, return a false
answer.

Search by Stats from Pointer

Search the roll specified by the
pointer in W0, beginning with the
group following the one specified
by the pointer for a group which is
equal to the group in the central

items SYMBOL 1, 2, 3, etc., accord-
ing to the group stats values
stored at locations G+4 and G+8

(these values are in the same order
as those in the group stats
tables). The roll number multip-
lied by four is stored at location
G. If a match is found, return a
true answer, replace the pointer in

W0 with a pointer to the matching
group, and continue in sequence,
If no match is found, return a

false answer, prune the pointer in
W0, and continue in sequence. This
instruction is wused to continue a
search of a roll according to group
stats values other than those norm-
ally used for the roll.

Search by Stats
If the roll, whose number multip-

lied by four is in storage at
location G, 1is empty, return a

Appendix A: The POP Language 131

SCE G:

SCK G:

SFP G:

SLE G:

132

- which is

false answer. Otherwise, search
that roll against the central items
SYMBOL 1, 2, and 3 and DATA 0, 1,
2, 3, 4, and 5, as defined by the
group stats values stored at loca-
tions G+4 and G+8 (these values are
in the same order as those in the
group stats tables); if a match is
found, place a pointer to the
matching group in WO, increase the
BOTTOM of the WORK roll, and return
a true answer; if no match is
found, return a false answer. This
instruction is used to search a
roll according to group stats
values other than those normally
used for that roll.

Set if Character Equal

If G = (CRRNT CHAR), return a true
answer; otherwise, return a false
answer; in neither case is the scan
arrow advanced. i

Set on Character Key

If (CRRNT CHAR) displays any of the
character keys of G, where G is a
character code whose bit settings
describe a group of characters,
return a true answer; otherwise, a
false answer is returned; in neith-
er case is the scan arrow advanced.

Search from Pointer

Search the roll specified by the
pointer in W0, beginning with the
group following the one specified
by the pointer in W0, for a group
equal to the group in
SYMBOL 1, 2, 3, DATA 0, 1l..., etc.,
by roll statistics. If a match is
found, return a true answer,
replace the pointer in W0 with a
pointer to the matching group, and
jump to G, where G must be a local
address. If no match is found,
return a false answer, prune the
pointer in WO (reduce the BOTTOM of
the WORK roll by four), and con-
tinue in sequence.

Set if Less or Equal

If (W0) < (G), where G is a storage
address, a true answer is returned;
otherwise, a false answer is
returned, ' The comparison made con-
siders the two values to be signed
quantities., ’

SNE G:

SNZ G:

SOP G:

SPM G:

SPT G:

SRD G:

STA G:

Set if Not Equal

If (W0) # (G), where G is a storage
address, a true answer is returned;
otherwise, a false answer is
returned. : .

Set if Nonzero

If (G # 0, where G is a storage
address, return a true answer;
otherwise, return a false answer.

Set on Operator

If G = OPERATOR portion of the
pointer in W0, return a true answ-
er; otherwise, return a false
answer.

Set on Polish Mode

If the mode portion of the TAG
field of the (G) = the mode portion
of the TAG field of the pointer in
Pl, where G is a storage addess,
return a true answer; otherwise,
return a false answer,

Set on Polish Tag

If the TAG field of the (G) = the
TAG field of the pointer in P1,
where G 1is a storage address,

return a true answer; otherwise,
return a false answer.

Search

If roll G, where -G is the roll’
number, is empty, return a false
answer; otherwise, search 1roll G

against the central items SYMBOL 1,

2, and 3 and DATA O, 1, 2, 3, &4,
and 5, as defined by the roll
statistics; if a match is found,

place a pointer to the matching
group in W0, increase the BOTTOM of
the WORK roll, and return a true
answer; if no match is found,
return a false answer.

Set if Remaining Data

If roll G, where G is the roll
number, is not empty, return a true
answer; otherwise, return a false
answer.

Set on Tag

If the TAG portion of (G) = the TAG
portion of the pointer in WO, where
G 1is a storage address, return a
true answer; otherwise, return a
false answer.

STM G:

Set on Tag Mode

If the mode . portion of the TAG
field of the (G) = the mode portion
of the TAG field of the pointer in

JUMP INSTRUCTIONS

~ The
normal
instructions to be altered,
tionally or

W0, where G is a storage address,
return a +true answer; otherwise,
return a false answer.

following instructions cause the

sequential operation of the POP
either uncondi-

conditionally. See the sec-

tions "Labels" and "Assembly and Operation"
in this Appendix for further discussion of
jump instructions.

CSF G:

JAF G:

JAT G:

JOW G:

JPE G:

Character Scan or Fail

If G = (CRRNT CHAR), advance the
scan arrow to .the next active
character; otherwise, jump to

SYNTAX FAIL.
Jump if Answer False

If (ANSWER BOX) = false, jump to G,
where G is either a global or a
local address; otherwise, continue
in sequence. One of two operation
codes is produced for this instruc-
tion depending on whether G is a
global or local label.

Jump if Answer True

If (ANSWER BOX) = true, jump to G,
where G is either a global or a
local address; otherwise, continue
in sequence.
codes is produced for this instruc-
tion depending on whether G is a
global or a local label.

Jump on Work

If (W0) = 0, decrease the BOTTOM of
the WORK roll by four and jump to
G, where G is either a global or a
local address; otherwise, reduce
word 0 by one, =-> W0, and continue
in sequence. One of two operation
codes is produced for this instruc-
tion, depending on whether G 1is a
global or a local label.

Jump and Prepare for Error
The following values are saved in

storage: the location of the next
instruction, the last character

count, the BOTTOM of the EXIT roll,

and the BOTTOM of the WORK roll.

One of two operation

JRD G:

JSB G:

JUN G:

QSF G:

XIT

The JPE FLAG is set to nonzero, and
a' jump 1is taken to G, which may
only be a local address.

Jump Roll Down

This 1instruction manipulates a
pointer in WO. If the ADDRESS
field of that pointer is equal to 0
(pointing to the word preceding the
beginning of a reserved area), the
ADDRESS field is increased to four.
If the ADDRESS field of the pointer
is equal to any legitimate value
within the roll, it is increased by
group size. If the ADDRESS field
of the pointer indicates a location
beyond the BOTTOM of the roll, the
pointer is pruned (the BOTTOM of
the WORK roll is reduced by four),
and a jump is made to the location
G, which must be a global address.

Jump to Subroutine

Return information is placed on the
EXIT roll; jump to G, which is a
global address.

Jump Unconditional

Jump to G, which is either a global
or a 1local address., One of two
operation codes 1is produced for
this instruction, depending = on
whether G is a global or a 1local
label. ‘

Quote Scan or Fail

If the quotation mark (sequence of
characters) beginning at storage
address G (the value of the first
byte in the quotation mark is the
number of bytes in the quotation
mark) is equal to the quotation
mark starting at the scan arrow,
advance the scan arrow to the first
active character beyond the quota-
tion mark; otherwise, jump to SYN=
TAX FAIL.

Exit
Exit from the interpreter; the code

which follows is written! in
assembler language.

ROLL CONTROL INSTRUCTIONS

These instructions are concerned with
the control of the rolls used in the
compiler.

Appendix A: The POP Language 133

POW G: Prune off Work
Reduce the BOTTOM of the WORK roll
by four times G, where G is an
integer, thus pruning G words off
the WORK roll.

REL G: Release
Restore roll G, where G is the roll
number, to the condition preceding
the 1last reserve; this sets BOTTOM
to (TOP) reduced by four if the
roll is reserved, or to (BASE) if
the roll is not reserved; TOP is
set to the value it had before the
reserve.

RSV G: Reserve

Reserve roll G, where G is the roll

number, by storing (TOP) - (BASE)
on the roll, increasing BOTTOM by
four, and setting TOP to (BOTTOM);

this protects the area between BASE
and TOP, and allows ascending
addresses from TOP to be used as a
new, empty roll.

CODE PRODUCING INSTRUCTIONS

These POP instructions construct object
module code on the CODE roll. ‘Each object
module instruction constructed results in
the placing of a 2-word group on ‘the CODE
roll. The instruction generated, in bi-
nary, is left justified in this group. In
the case of halfword instructions, the
remainder of the first word is filled with
ZEeroO. The second word contains a pointer
to the instruction operand, except ' in the
case of 6-byte instructions when the last
two bytes of the group contain the value
zZero. :

BID G: Build Instruction Double
‘The instruction indicated by G,
where G is an instruction number
which indicates the exact instruc-

tion to be generated, is built on
the CODE roll, where WO contains a
pointer to the first operand and Wl

contains a pointer to the second
operand. The BOTTOM of the CODE
roll is increased by -eight. The
BOTTOM of the WORK roll is reduced

by eight; thus, both pointers are
pruned. A location counter is in-

creased by one for each byte of the
instruction.

134

BIM G: Build Instruction by Mode

The instruction indicated by G,
where G is an instruction number
which indicates the class of the
instruction only. For example,
LOAD INSTR as opposed to LE INSTR
is built on the CODE roll, where WO
contains a pointer to the second
operand.. A pointer to the accumu-
lator which holds the first operand
is contained in the variable CRRNT
ACC. The instruction mode is
determined by inspecting the TAG
fields of the pointers; the BOTTOM
of the CO<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>