File No. S360-25(0S)
Form GY28-6642-4

Program Logic

IBM System/360 Operating System
FORTRAN IV (H) Compiler

Program Logic Manual

Program Number 360S-F0-500

This publication describes the internal design of
the IBM System/360 Operating System FORTRAN IV (H)
compiler program. This compiler transforms source
modules written in the FORTRAN IV language into object
modules that are suitable for input to the linkage
editor for subsequent execution on System/360. At the
user's option, the compiler optimizes its object
modules so that they can be executed with improved
efficiency.

This manual is directed to IBM customer engineers
who are responsible for program maintenance. It can be
used to locate specific areas of the program and to
relate these areas to the corresponding program
listings. Because program logic information is not
necessary for program operation and use, distribution
of this manual is restricted to persons with
program-maintenance responsibilities.

Fifth Edition (June 1970)

This is a major revision of, and makes obsolete, the previous edition,
Form Y28-6642-3. Changes to the text, and small changes to
illustrations, are indicated by a vertical line to the left of the
change; changed or added illustrations are denoted by the symbol e to
the left of the caption.

The specifications contained in this publication correspond to Release
19 of the IBM System/360 Operating System.

Changes are periodically made to the specifications herein; any such
changes will be reported in subsequent revisions or Technical
Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning the contents of this publication to IBM
Corporation, Programming Publications, 1271 Avenue of the Americas, New
York, N. Y. 10020.

This publication provides information
describing the internal organization and
operation of the FORTRAN IV (H) compiler.
It is part of an integrated library of IBM
System/360 Operating System Program Logic
Manuals. Other publications required for
an understanding of the FORTRAN IV (H)
compiler are:

IBM System/360:
Form A22-6821

Principles of Operation,

IBM System/360 Operating System:

FORTRAN IV Language, Form C28-6515

Introduction to Control Program Logic,
Program Logic Manual, Form Y28-6605

FORTRAN IV _(G and H) Programmer's Guide,
Form C28-6817

Although not required, the following
publications are related to this
publication and should be consulted:

IBM System/360 Operating System:

Sequential Access Methods, Program Logic

Manual, Form Y28-6604

Concepts and Facilities, Form C28-6535

Supervisor and Data Management Macro
Instructions, Form C28-6647

Linkage Editor, Form C28-6538

Linkage Editor, Program Logic Manual,

Form ¥Y28-6610

System Generation, Form C28-6554

This manual consists of two sections.

PREFACE

Section 1 is an introduction that
describes the FORTRAN IV (H) compiler as a
whole, including its relationship to the
operating system. The major components of
the compiler and the relationships among
them are also described.

Section 2 consists of a discussion of
the major components. Each component is
discussed in terms of its functions; the
level of detail provided is sufficient to
enable the reader to understand the general
operation of the component. In the
discussion of each function of a component,
the routines that implement that function
are identified by name. The inclusion of a
compound form of the routine names provides
a frame of reference for the comments and
coding supplied in the program listing.

The program listing for each identified
routine appears on the microfiche card
having the second portion of the compound
name of that routine in its heading. For
example, the routine referred to in this
manual as STALL-IEKGST is listed on the
microfiche card headed IEKGST. This
section also discusses common data, such as
tables, blocks, and work areas, but only to
the extent required to understand the logic
of the components. Flowcharts and routine
directories are included at the end of this
section.

Following Section 2 are a number of
appendixes, which contain descriptions of
tables used by the compiler, intermediate
text formats, the overlay structure of the
compiler, and other reference material.

XIf more detailed information is
required, the reader should refer to the
comments and coding in the FORTRAN IV (H)
program listing.

SECTION 1: INTRODUCTION . .
Purpose of the Compiler . .
The Compiler and Operating S
Input/Output Data Flow . . .
Compiler Organization . «

.

w

e 8 o 8 9 &6 ¢ 5 ¢ ONG o

~
ne »
o
3
o

s & s & o 8 +» (D

FORTRAN System Director
Phase 10 - L] L] L] L L
Phase 15

Phase 20

P8 0 8 s 0 *
s o o 8 o o o

Phase 25 e o o A

Phase 30 .
Structure of

the

Compiler

SECTION 2: DISCUSSION OF MAJOR
COMPONENTS . L] L] - L] L] - L] L] . -
FORTRAN System Director . . .

Compiler Initialization . .
Parameter Processing . . .
Storage Acquisition . . .
Data Field Initialization

Phase Loading . .

Storage Dlstrlbutlon (Chart 02)
Phase 10 Storage « « « o« o »
Phase 15 StOrage « « « « ¢ o o
Phase 20 Storage ¢« o« o o« « o

Input/Output Request Processing
Request FOrmat « « o« o o o o« »
Request ProcessSing « « o« ¢ « «

Generation of Initialization

INStXUCLIONS o o o o o ¢ o o o o @
Entry Coding for a Main Program .
Entry Coding for Subprograms with
No Secondary Entry Points « « «
Main Entry Coding for Subprograms
with Secondary Entry Points o+ . .
Subprogram Secondary Entry Coding

Deletion of a Compilation . .

Compiler Termination &

e & o & 9 o
" e » & s &
a » & o 8 a2 & o 0 o & s o

¢ o 8 o & o & 2 6 o & & & 0

Phase 10 . . . L] - . . . - L] .
Source Statement Processing
Dispatcher Subroutine . .
Preparatory Subroutine . .
Keyword Subroutine(s) . .
Arithmetic Subroutine(s) ..
Utility Subroutine(s) . . -
Subroutine STALL-IEKGST (Chart
Constructing a Cross Reference .
Phase 10 Preparation for XREF
Processing « « o « o o -
XREF Processing
Phase 15 -
PHAZ15 Processing

* o & @

s s o & o &
s OO0 8 s 6 8 s s »
i~
s~ 8 s 8 8 s s e s

Text Blocking
Arithmetic Translation .
Gathering Constant/Varlable Usage
Information =« « ¢ o « ¢ o« o o o
Gathering Forward-Connection
Information . . « « o o o o o ¢ o
Reordering the Statement Number
Chain . ¢« ¢ o o ¢ o ¢ o o o o o =
Gathering Backward-Connection
Information . « o« o ¢« ¢ o o o o o

14
14
14

14
15
15
15
15
15
16
16
16
16

35
36

37

CONTENTS

CORAL ProcesSSing « « « o« « o s ¢ o« « o« 39
Translation of Data Text . . « . . « U0
Relative Address Assignment .« « « « 40
Rechaining Data Text . « . . « « . « 43
DEFINE FILE Statement Processing . . 43
NAMELIST Statement Processing . . 43
Initial Value Assignment « « ¢« « o « U4
Reserving Space in the Adcon Table . 4i4
Creating Relocation Dictionary
ENtri@sS .« o« o o o o o o o o o o o o« U4
Creating External Symbol
Dictionary Entries . « o« ¢« « « « . o U5

Phase 20 « o« o o e @ o ¢ ¢ @ o« o« o« o o o« U5

Control FIOW « o o o o o o o o« « » o » U6

Register Assignment . « o « « ¢ o o o U7
Basic Register Assignment -- OPT=0 . 47
Full Register Assignment -- OPT=1
(Chart 14) L] . L] . L] e - L] . e . - . 50

Branching Optimization -- OPT=1 . . . 54
Reserved Reglsters « o e s« o o ¢« 55
Reserved Register Addresses e « o« o 55
Block Determination and Subsequent
ProcesSSing « o o s o o s s o o o o 55

Structural Determination « « « « « « « 55

" Determination of Back Dominators . . 57
Determination of Back Targets and
Depth Numbers . . o ¢ « « o ¢ o » o 58
Identifying and Ordering Loops for
Processing « « » « o o o o o = « o &« 59

Busy-On-Exit Information 59

Structured Source Program Listing . « 61

Loop Selection « o 4 o o « o o o« & o« « 61
Pointer to Back Target « « « o« « o« o 62
Pointers to First and Last Blocks . 62
Loop Composite Matrixes . « o« « « « 62

Text Optimization -- OPT=2 63
Common Expression Elimination =--

OPT=2 4 & o o o o o o o o o o« » o« « b4
Backward Movement -- OPT=2 . « « « « 65
Strength Reduction -- OPT=2 66

Full Register Assignment -- OPT=2

(Chart 18) ¢« ¢« o o o « o« o ¢« o« o o« o« o« 67

Branching Optimization -- OPT=2 . . . 68

Phase 25 . . . L] L] L] L] L] e . . . L] . L] - 68
Text Information . . « ¢« « ¢« o« « &« o« « 69
Address Constant Reservation « « « « 69
Text Conversion . « ¢« &+ o o « « o « 10
Storage Map Production « « « « o « o« TH
Prologue and Epilogue Generation . . 74
Phase 30 ¢« ¢« « o« « o« o ¢« ¢ ¢ ¢« s o« ¢« o « 15

Message Processing « » « o« « » » o « 15
APPENDIX A: TABLES « o ¢ o « o o« o « o 115
Communication Table (NPTR) . . + « . . .115
Classification Tables .+ « « « « o o« « «115
NADCON Table o « o « o ¢ o o o & o « » +119
Information Table « « « o o o o« o o o 4120

Information Table Chains . . « « « . .120

Chain Construction « « « « o « « «120

Operation of Information Table Chalns 121
Dictionary Chain Operation « « « « 121
Statement Number Chain Operation . .122

Common Chain Operation
Equivalence Chain Operation . .
Literal Constant Chain Operation
Branch Table Chain Operation . .
Information Table Components .
Dictionary « « « « .+
Statement Number/Array
COMMON Table . .
Literal Table .
Branch Tables .
Function Table « . . [
Text Optimization Bit Tabl
Register Assignment Tables
Register Use Table . .
NAMELIST Dictionaries . .
Diagnostic Message Tables
Error Table . . « « «
Message Pointer Table .,

Table

s 8 & o 8 & (N8 & o
® o & & 8 3 3 & o s &
e« s & 3 8 o s @
& 5 2 8 & 3 3 8 ¢ & 8 & 3 @
e & 85 0 & & a2 & s & 8 & 5 & o 9 o

& » B ¢ & & 3 o

APPENDIX B: INTERMEDIATE TEXT « « o
Phase 10 Intermediate Text .« « «
Intermediate Text Chains « « « « o
Format of Intermediate Text Entry
Examples of Phase 10 Intermediate
TEXL « o« ¢ ¢ ¢ o o o« o o« & & & o @
Phase 15/Phase 20 Intermediate Text
Modifications e e & @ @ ® e ® e e @ o
Phase 15 Intermediate Text
Modifications =« « « o« o @
Unchanged Text « . « « o«
Phase 15 Data Text « «
Statement Number Text .
Phase 20 Intermediate Text
Modification . « o o o o o o o o o o
Standard Text Formats Resulting From
Phases 15 and 20 Processing . « . «

APPENDIX C: ARRAYS . ¢ o o o o o o o

APPENDIX D:

.123
123
<124
L 12‘4
.124
124
.128
«132
134
.135
«136
137
«139
«139
<1041
<142
<142
<142

.43
143
<143
<144
<146
«151
«151
«151
<151
«152
«156
<157

«167

TEXT OPTIMIZATION EXAMPLES 175

Example 1: Common Expression
Elimination .« « « o« o« o o o &«

Example 2:

Backward Movement .

. 175
«176

Example 3: Simple-Store Elimination 177

Example U:

APPENDIX E:

Strength Reduction

ADDRESS COMPUTATION

ARRAY ELEMENTS + o s o o o o o o o
Absorption of Constants in
Subscript Expressions
Arrays as Parameters « « « o o

APPENDIX F:
APPENDIX G:

APPENDIX H:
FACILITIES .
Trace «
Dump « « =

APPENDIX I: FACILITIES

COMPILER o+ o

Structure Statement
Built-in Functions .

LAND . .
LOR « &
LXOR . .«
LCOMPL .

SHFTL and SHFTR

TBIT L] L
MOD 24 .

Bit-Setting Facilitie

BITON .
BLITOFF .
BITFLP .
APPENDIX J:

INDEX . . &

COMPILER STRUCTURE .
DIAGNOSTIC MESSAGES .

THE TRACE AND DUMP

USED BY THE

¢« o o o

e o o o
« e o o
s e =
e« e o @
¢« e e o

-
)
L3
L]
L)
°
*
»
»
e o e o @
S

® 5 o & v 8 ¢ e o+ s o &
® & s & » a o e v s e

e 2 o e 5 & s & 2 & o o o o
® 8 ® 8 o s v 8 v & o s & &

MICROFICHE DIRECTORY

FOR

s 8 » & o 8 s & s 8 s s

.178

.180

.180
.181

.182

187

.192
«192
.193

. 19“
194
«195
.195
«195
196
.196
.1906
«197
197
<197
.197
.198
.198

.199

. 207

FIGURES

Figure 1. Input/Output Data Flow 12
Figure 2. Format of Prepared

Source Statement e o o o o o o o o 21
Figure 3. Text Blocking . « « « « 30
Figure U4, Text Reordering via

the Pushdown Table e e o ¢ &« o o o 32
Figure 5. Forward-Connection
Information e e e o ¢ o o s o e o o 37
Figure 6. Backward-Connection
Information e o o o s e o o s « o o 39
Figure 7. Back Dominators . « « « 56
Figure 8. Back Targets and Depth
Numbers e o o s o e o e e s s s o & 57
Figure 9. Storage Layout for

Text Information Construction . « « 70
Figure 10. An example of

information Table Chains e o o o o121
Figure 11. Dictionary Chain e o ¢122
Figure 12. Format of Dictionary

Entry for Variable ® o o e e e o <125
Figure 13. Function of Each

Subfield in the Byte A Usage Field

of a Dictionary Entry for a

Variable or Constant e o« s o o o ¢125
Figure 14, Function of Each

Subfield in the Byte B Usage Field

of a Dictionary Entry for a

Variable L] - - - e L] . e L] . . . L] .125
Figure 15. Format of Dictionary

Entry for Variable After

CSORN-IEKCCR Processing for XREF «127
Figure 16. Format of Dictionary

Entry for Variable After Coordinate
Assignment e e e o o o o o s o o «127
Figure 17. Format of Dictionary

Entry for vVariable After COMMON

Block Processing e s s e o e« o« o «127
Figure 18. Format of Dictionary

Entry for a Variable After Relative
Address Assignment « e « o o o ¢ o128
Figure 19. Format of Dictionary

Entry for Constant « o o s ¢ o o 128
Figure 20. Format of a Statement
Number Entry e e ® ¢ e & o e e o .128
Figure 21. Function of Each

Subfield in the Byte A Usage Field

of a Statement Number Entry . « « «129
Figure 22, Function of Each

Subfield in the Byte B Usage Field

of a Statement Number Entry e« « « «129
Figure 23. Format of a Dictionary
Entry for Statement Number After
Subroutine LABTLU-IEKCLT

Processing for XREF « « « o o« o « 129
Figure 24. Format of Statement

Number Entry After the Processing

of Phases 15, 20, and 25 e ¢ o« o <130
Figure 25. Function of Each

Subfield in the Block Status Field 130
Figure 26. Format of Dimension

FNEYXY o o o o o o o s o o s o o o «131

ILLUSTRATIONS

Figure 27. Format of a COMMON

Block Name Entry e e o o o o o o 2132
Figure 28. Format of COMMON Block

Name Entry After COMMON Block
Processing e o s o o o s o o o & 2133
Figure 29. Format of an

Equivalence Group Entry133
Figure 30. Format of Equivalence

Group Entry After Equivalence
Processing c e o e o o s o o s s 2133
Figure 31. Format of Equivalence
Variable Entry e o o o o s s o e o134
Figure 32. Format of Equivalence
Variable Entry After Equivalence
Processing e e o o o & ¢ s e ¢ s 4134
Figure 33. Format of Literal

Constant Entry e s e s o s o s o 2134
Figure 34, Format of Literal

Constant Entry After Literal

Processing e o o s e e o &« s« o & #135
Figure 35. Format of Literal Data

ENtrY o o o o o o o o o o o o o o o135
Figure 36. Format of Initial

Branch Table Entry e ¢« o o o o & 4135
Figure 37. Format of Initial

Branch Table Entry After Phase 25
Processing e o ¢ e o e « s s « e 4136
Figure 38. Format of Standard
Branch Table Entry After Phase 25
Processing e o e o s o o o = o o 2136
Figure 39. Format of Namelist

Name Entry e e s s e s & & o & o o141
Figure 40. Format of Namelist

Variable Entry e o o o o s & o o o141
Figure 41, Format of Namelist

Array Entry . o o o o o o o o o o o141
Figure 42, Intermediate Text

Entry Format e s e e o & o o o o J1U4
Figure 43. Phase 10 Normal Text . .1U46
Figure 44, Phase 10 Data Text . o147
Figure 45, Phase 10 Namelist Text 148
Figure 46, Phase 10 Define File

Text .- . s e s o o s o o 21049
Figure 47. 10 SF skeleton

Text - L] L . . L] L . L] L] 1“9
Figure 48, Phase 10 Format Text .150
Figure 49, Format of Phase 15

Data Text Entry . « « « « « « o o o151
Figure 50. Function of Each

Subfield in Indicator Field of

Phase 15 Data Text Entry « ¢ &« o <151
Figure 51. Format of Statement

Number Text Entry . « o« o ¢ « « » 152
Figure 52. Function of Each

Subfield in Indicator Field of
Statement Number Text Entry152
Figure 53. Format of a Standard

Text ENEXY ¢« o o o o o o o o o o o 2156
Figure 54. Format of Phase 20

Text Entry e e s o o e o o s & » o157
Figure 55. Compiler Overlay

Structure ¢ « o s+ « o o o 2182

Phase

TABLES

Table 1. FORMAT Statement

Translation .« « « « o« o o o «
Table 2. Operators and Forcing
Strengths e 4 & & e e a @ a o o
Table 3. Base and Operand

Register Assignment (OPT=0) . .
Table U4. Text Entry Types .

Table 5. Operand Characteristics

That Permit Simple-Store
Eliminatlon e @ ¢ e e e & ¢ o @
Table 6. FSD Subroutine
Directory (Part 1 of 2) . « + &
Table 7. Phase 10 Source
Statement Processing « « s« « o o
Table 8. Phase 10 Subroutine
Directory (Part 1 of 3) . « « &
Table 9. Phase 15 Subroutine
Directory (Part 1 of 2) .+ « « &«
Table 10. Phase 15 COMMON Areas
Table 11. Criteria for Text
Optlmlzation e @ @« e o @ e o e e
Table 12. Phase 20 Subroutine
Directory (Part 1 of 2) ¢« « «
Table 13. Phase 20 Utility
Subroutines . . . « e o o o o
Table 14, Phase 25 Subroutine
Directory (Part 1 of 2) < o« o «
Table 15. Phase 30 Subroutine
DireCtOry « « o« s o o o« s a ¢ «
Table 16. Communication Table
[NPTR(2‘36)] - - L] . L] . L] < - L]
Table 17. Keyword Pointer Table
(IPTR) - L] - . L] . L] L] - L] L] - -
Table 18. Keyword Table (ITBLE)
(Part10f2).....--..
Table 19. Classification Codes
Assigned During Source Statement
Packing .« ¢ ¢ o o ¢ o o o o o @

. U8
.« 6L

«105
«106
.108
<111
<112
<116
«118

«118

«119

Table 20, NADCON Table119
Table 21. Operand Modes126
Table 22, Operand Types . « « « « +126
Table 23. Function Table -- IEKLFT
(12, 128) o« o o o o o o o o « « « o136
Table 24, Text Optimization Bit

TablesS o o = o o o =« o o & « « « « o138
Table 25, Local Assignment Tables .139
Table 26. BVA Table 140
Table 27. Global Assignment Tables 140
Table 28. Adjective Codes (Part 1

of 3) . e
Table 29, Phase 15720 Operators

(Part 1 of 5) . & &« ¢ « o o o o« « o153
Table 30, Meanings of Bits in

Mode Field of Standard Text Entry
Status Mode WOord « « « o ¢« « o« o« o« <156
Table 31, Status Field Bits and

Their Meanings . . . « « « « » . .158
Table 32. Phases and Their

Segments . ¢ +« o + e o o o o o o o o183
Table 33. Segment 1 Composition . .183
Table 34. Segment 2 Composition . .183
Table 35. Segment 4 Composition . .184
Table 36. Segment 5 Composition . .184
Table 37. Segment 6 Composition . .184
Table 38. Segment 7 Composition . .184
Table 39. Segment &€ Composition . .185

Table 40. Segment 9 Composition . .185
Table 41. Segment 10 Composition .185
Table 42. Segment 11 Composition .185
Table 43. Segment 12 Composition .186
Table 44. Segment 13 Composition .186
Table 45. Basic TRACE Keyword

Values and Output Produced192
Table 46, Microfiche Directory

(Part 1 of 8) & & ¢« &« o« .199

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Flow .
Chart

Generation

Chart
Chart
Chart

00.
01.
02.
03.
04.
05,
06.
07.

08.

09.
10.
11.

Compiler Control Flow .

FSD Overall Logic « «

FSD Storage Distribution

Phase 10 Overall Legic

Subroutine STALL-IEKGST

Phase 15 Overall Logic
PAAZ15 Overall Legic
ALTRAN-IEKJAL Control
GENER-IEKLGN Text
CORAL Overall Logic «
Phase 20 Overall Logic
Common Expression

Elimination (XPELIM-IEKQXM) . .

Chart

12.

Backward Movement

(BACMOV' I EKQBM)) - . . L) e e .

89
90
91
95
96

97

Chart 13. Strength Reduction
(REDUCE=IEKQSR) o & o « o o o o«
Chart 14. Full Register
Assignment (REGAS-IEKRRG) . . .
Chart 15. Table Building
(FWDPAS~-IEKRFP) s o & o s & e o
Chart 16. Local Assignment
(BKPAS-IEKRBP) « « 4 o« « & o o
Chart 17. Global Assignment
(GLOBAS-IEKRGB) .+ .« & « o « o o«
Chart 18. Text Updating
(STXTR-IEKRSX) « o o o s o o o &
Chart 19. Text Updating
(STXTR-IEKRSX) (Continued) . . .
Chart 20. Phase 25 Processing .
Chart 21. Subroutine END-IEKUEN
Chart 22. Phase 30 (IEKP30)
overall Logic « ¢ « & o o o o &

CHARTS

. 100
. +101
« 2102
. 103
. 104
. .109
. «110

. +113

This section contains general
information describing the purpose of the
FORTRAN IV (H) compiler, its relationship
to the operating system, its input/output
data flow, its organization, and its
overlay structure.

PURPOSE_OF_THE_COMPILER

The IBM Systemn/360 Operating System
FORTRAN IV (H) compiler transforms source
modules written in the FORTRAN IV language
into object modules that are suitable for
input to the linkage editor for subsequent
execution on the System/360., At the user's
option, the compiler produces optimized
object modules (modules that can be
executed with improved efficiency).

THE COMPILER_AND OPERATING SYSTEM/360

The FORTRAN IV (H) compiler is a
processing program that communicates with
the System/360 Operating System control
program for input/output and other
services. A general descrlptlon of the
control program is given in the publlcatlon
IBM System/360 Operating System:
Introduction to_Control Program Logic,
Program Logic Manual, Form Y28-6605.

A compilation, or a batch of
compilations, is requested using the job
statement (JOB), the execute statement
(EXEC), and data definition statements
(DD). Cataloged procedures may also be
used. A discussion of FORTRAN IV
compilation and the available cataloged
procedures is given in the publication IBM
System/360 Operating System: FORTRAN IV (G
and H) Programmer's Guide, Form C28-6817.

The compiler receives control from the
calling program (e.g., job scheduler or
another program that calls, links to, or
connects the compiler). Once the compiler
receives control, it communicates with the
control program through the FORTRAN system
director, a part of the compiler that
controls compiler processing. After
compiler processing is completed, control
is returned to the calling program.

.read in from the SYSIN data set.

FORTRAN source module.

source module,

SECTION 1: INTRODUCTION

' INPUT/QUTPUT DATA FLOW

The source modules to be compiled are
Compiler
output is placed on the SYSLIN, SYSPRINT,
SYSPUNCH, SYSUT1, or SYSUT2 data set,
depending on the options specified by the
FORTRAN programmer. (The SYSPRINT data set
is always required for compilation.)

The overall data flow and the data sets

- used for the compilation are illustrated in

Figure 1,

COMPILER ORGANIZATION

The IBM System/360 Operating System
FORTRAN IV (H) compiler consists of the
FORTRAN system director, four logical
processing phases (phases 10, 15, 20, and
25), and an error-handling phase (phase
30).

control is passed among the phases of
the compiler via the FORTRAN system
director. After each phase has been
executed, the FORTRAN system director
determines the next phase to be executed,
and calls that phase. The flow of control
within the compiler is illustrated in Chart
00. (Charts are located at the end of
Section 2.)

The components of the compiler operating
together produce an object module from a
The object module
is acceptable as input to the linkage
editor, which prepares object modules for
relocatable loading and execution.

The object module consists of control
dictionaries (external symbol dictionary
and relocation dictionary), text
(representing the actual machine
instructions and data), and an END
statement, The external symbol dictionary
(ESD) contains the external symbols that
have been defined or referred to in the
The relocation dictionary
(RLD) contains information about address
constants in the object module.

The functions of the components of the
compiler are described in the following
paragraphs.

Section 1: Introduction 11

SYSIN

Source
Medule(s)

FORTRAN TV
(H) Compiler
SOURCE EDIT MAP LOAD DECK LIST XREF For A!.L .
Option Option Option Option Option Option Option Compilations
Source Intermediate Object Module Object Madule Object Intermediate Error 'cmd
Storage (ESD, TXT, (ESD, TXT, P Outout f Warning
Module Output for rogram utput for M
s EDIT Map RLD, and END RLD, and END Listing XREF Messages
Listing card images) card images) (if Any)
SYSPRINT SYSUTI SYSPRINT SYSLIN SYSPUNCH SYSPRINT SYSUT2 SYSPRINT
Structured Cross-
Source Reference
Listing Listing
SYSPRINT SYSPRINT

Figure 1. Input/Output Data Flow

FORTRAN SYSTEM DIRECTOR

The FORTRAN system director (FSD)
controls compiler processing. It
initializes compiler operation, calls the
phases for execution, and distributes and
keeps track of the main storage used during
the compilation. In addition, the FSD
receives the various input/output requests
of the compiler phases and submits them to
the control program.

PHASE 10

Phase 10 accepts as input (from the
SYSIN data set) the individual source
statements of the source module. If a
source module listing is requested, the
source statements are recorded on the
SYSPRINT data set. If the XREF option is
selected, a two-part cross reference is
recorded on the SYSPRINT data set
immediately following the source listing.
If the EDIT option is selected, the source
statements are recorded on the SYSUT1 data
set, which phase 20 uses as input to
produce a structured source listing. If
the ID option is selected, calls and

12

function references are assigned an
internal statement number (ISN).

Phase 10 converts each source statement
into a form usable as input by succeeding
phases. This usable input consists of an
intermediate text representation (in
operator-operand pair format) of each
source statement. In addition, phase 10
makes entries in an information table for
the variables, constants, literals,
statement numbers, etc., that appear in the
source statements. Phase 10 also places
data about COMMON and EQUIVALENCE
statements in the information table so that
main storage space can be allocated
correctly in the object module. During
this conversion process, phase 10 also
analyzes the source statements for
syntactical errors. If errors are
encountered, phase 10 passes to phase 30
(by making entries in an error table) the
information needed to print the appropriate
error messages.

PHASE 15

Phase 15 gathers additional information
about the source module and modifies some

intermediate text entries to facilitate
optimization by phase 20 and instruction
generation by phase 25. Phase 15 is
divided into two segments that perform the
following functions:

e The first segment translates phase 10
intermediate text entries (in
operator-operand pair format)
representing arithmetic operations into
a four-part format, which is needed for
optimization by phase 20 and
instruction-generation by phase 25,
This part of phase 15 also gathers
information about the source module
that is needed for optimization by
phase 20.

e The second segment of phase 15 assigns
relative addresses and, where
necessary, address constants to the
named variables and constants in the
source module. This segment also
converts phase 10 intermediate text (in
operator-operand pair format)
representing DATA statements to a
variable-initial value format, which
makes later assignment of a constant
value to a variable easier.

Phase 15 also passes to phase 30 the
information needed to print appropriate
messages for any errors detected during
phase 15 processing. (This is done by
making entries in the error table.)

PHASE 20

Phase 20 processing depends on whether
or not optimization has been requested and,
if so, the optimization level desired.

If no optimization is specified, phase
20 assigns registers for use during
execution of the object module. However,
phase 20 does not take full advantage of
all registers and makes no effort to keep
frequently used quantities in registers to
eliminate the need for some machine
instructions.

If the first level of optimization is
specified, phase 20 uses all available
registers and keeps frequently used
quantities in registers wherever possible.
Phase 20 takes other measures to reduce the
size of the object module, and provides
information about operands to phase 25,

If the second level of optimization is
specified, phase 20 uses other techniques
to make a more efficient object module,
The net result of these procedures is to
eliminate unnecessary instructions and to
eliminate needless execution of
instructions.

If both the EDIT option and the second
level of optimization are selected, phase
20 produces a structured source program
listing on the SYSPRINT data set.

PHASE 25

Phase 25 produces an object module from
the combined output of the preceding phases
of the compiler.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine language format. It
may contain unresolved external symbolic
cross references (i.e., references to
symbols that do not appear in the source
module). The external symbol dictionary
contains the information required by the
linkage editor to resolve external symbolic .
cross references, and the relocation
dictionary contains the information needed
by the linkage editor to relocate the
absolute text information.

Phase 25 places the object module
resulting from the compilation on the
SYSLIN data set if the LOAD option is
specified, and on the SYSPUNCH data set if
the DECK option is specified. Phase 25
produces an object module listing on the
SYSPRINT data set if the LIST option is
specified. In addition, phase 25 produces
a storage map if the MAP option is
specified.

PHASE 30

Phase 30 is called after phase 25
processing is completed only if errors are
detected by previous phases., Phase 30
records messages describing the detected
errors on the SYSPRINT data set.

STRUCTURE OF THE COMPILER

The FORTRAN IV (H) compiler is
structured in a planned overlay fashion,
which consists of 13 segments. One of
these segments constitutes the FORTRAN
system director and is the root segment of
the planned overlay structure. Each of the
remaining 12 segments constitutes a phase
or a logical portion of a phase. ' A
detailed discussion of the compiler's
planned overlay structure is given in
Appendix F.

Section 1: Introduction 13

SECTION 2: DISCUSSION OF MAJOR COMPONENTS

The following paragraphs and associated
flowcharts at the end of this section
describe the major components of the
FORTRAN IV (H) compiler. Each component is
described to the extent necessary to
explain its function(s) and its general
operation.

FORTRAN_ SYSTEM DIRECTOR

The FORTRAN system director (FSD)
controls compiler processing; its overall
logic is illustrated in Chart 01. (For a
complete list of FSD subroutines, see Table
6.) The FSD receives control from the job
scheduler if the compilation is defined as
a job step in an EXEC statement. The FSD
may also receive control from another
program through use of one of the system
macro instructions (CALL, LINK, or ATTACH).

The FSD:

Initializes the compiler.

Loads the compiler phases.
Distributes storage to the phases.
Processes input/output requests.
Generates entry code (initialization
instructions) for main programs,
subprograms, and subprogram secondary
entries.

Deletes compilation.

¢ Terminates compilation.

COMPILER INITIALIZATION

The initialization of compiler
processing by the FSD consists of three
steps:

e Parameter processinge.

e Storage acquisition.
e Data field initialization.

Parameter Processing

When the FSD is given control, the
address of a parameter list is contained in
a general register. If the compiler
receives control as a result of either an
EXEC statement in a job step or an ATTACH
or CALL macro instruction in another
program, the parameter list has a single

14

entry, which is a pointer to the main
storage area containing an image of the
options (e.g., SOURCE, MAP) specified for
the compilation. If the compiler receives
control as a result of a LINK macro
instruction in another program, the
parameter list may have a second entry,
which is a pointer to the main storage area
containing substitute ddnames (i.e.,
ddnames that the user wishes to substitute
for the standard ones of SYSIN, SYSPRINT,
SYSPUNCH, SYSLIN, SYSUT1, and SYSUT2.

COMPILER OPTIONS: To determine the options
specified for the compilation and to inform
the various compiler phases of these
options, the FSD scans and analyzes the
storage area containing their images and
sets indicators to reflect the ones
specifieds These indicators are placed
into the communication table —-- IEKAAA (see
Appendix A, "Communication Table") during
data field initialization. The various
compiler phases have access to the
communication table and, from the
indicators contained in it, can determine
which options have been selected for the
compilation.

SUBSTITUTE DDNAMES: If the user wishes to
substitute ddnames for the standard ones,
the FSD must establish a correspondence
between the DD statements having the
substitute ddnames and the DCBs (Data
control Blocks) associated with the ddnames
to be replaced. To establish this
necessary correspondence, the FSD scans the
storage area containing the substitute
ddnames, and enters each such ddname into
the DCBDDNM field of the DCB associated
with the standard ddname it is to replace.

Storage Acquisition

The FSD issues GETMAIN's to obtain main
storage for work and table areas the
compiler will need. Usually, the FSD
acquires the entire remaining region (MVT),
partition (MFT), or machine (PCP).

However, if the user has included a SIZE
parameter on his EXEC card, the FSD
acquires main storage equal (approximately)
to this figure minus compiler code size,

Data Field Initialization

Data field initialization affects the
communication table, which is a central
gathering area used to communicate
information among the phases of the
compiler., The table contains information
such as:

e User specified options.

e Pointers indicating the next available
locations within the various storage
areas.

e Pointers to the initial entries in the
various types of chains (see "Appendix
A, Information Table" and "Appendix B,
Intermediate Text").,

e Name of the source module being
compiled.,

e An indication of the phase currently in
control.

The various fields of the communication
table, which are filled during a
compilation, must be initialized before the
next compilation. To initialize this
region, the FSD clears it and places the
option indicators into the fields reserved
for them.

PHASE LOADING

The FSD loads and passes control to each
phase of the compiler by means of a
standard calling sequence. The execution
of the call causes control to be passed to
the overlay supervisor, which calls program
fetch to read in the phase. Control is
then returned to the overlay supervisor,
which branches to the phase. The phases
are called for execution in the following
sequence: phase 10, phase 15, phase 20,
and phase 25. However, if errors are
detected by previous phases, phase 30 is
called after the completion of phase 25
processing.

STORAGE DISTRIBUTION (CHART 02)

Phases 10, 15, and 20 require main
storage space in which to construct the
information table (see Appendix A,
"Information Table") and to collect
intermediate text entries. These phases
obtain this storage space by submitting
requests to the FSD (at entry point
IEKAGC), which allocates the required

Section 2:

space, if available, and returns to the
requesting phase pointers to both the
beginning and end of the allocated storage
space.

Phase 10 Storage

Phase 10 can use all of the available
storage space for building the information
table and for collecting text entries. At
each phase 10 request for main storage in
which to collect text entries or build the
information table, the FSD reallocates a
portion (i.e., a subblock) of the storage
for text collection, and returns to phase
10 either via the communication table or
the storage area P10A-IEKCAA (depending
upon the type of text to be collected in
the subblock; see Appendix B, "Phase 10
Intermediate Text") pointers to both the
beginning and end of the allocated storage
space. If the subblock is allocated for
phase 10 normal text or for the information
table, the pointers are returned in the
communication table. If the subblock is
allocated for a phase 10 text type other
than normal text, the pointers are returned
via the 'storage area P10A-IEKCAA. After
the storage has been allocated, the FSD
adjusts the end of the information table
downward by the size of the allocated
subblock. This process is repeated for
each phase 10 request for main storage
space.

Subblocks to contain phase 10 text or
dictionary entries are allocated in the
order in which requests for main storage
are received. (When phase 10 completely
fills one subblock with text entries, it
requests another.) A request for a
subblock to contain a particular type of
entry may immediately follow a request for
a subblock to contain another type of
entry. Consequently, subblocks allocated
to contain the same type of entries may be
scattered throughout main storage. The FSD
must keep track of the subblocks so that,
at the completion of phase 10 processing,
unused Or unnecessary storage may be
allocated to phase 15.

Phase 15 Storage

Phase 15, in collecting the text or
dictionary entries that it creates, can use
only those portions of main storage that
are (1) unused by phase 10, or (2) occupied
by phase 10 normal text entries that have
been processed by phase 15. The FSD first
allocates all unused storage (if necessary)
to phase 15, If this is not sufficient,

Discussion of Major Components 15

the FSD then allocates the storage occupied
by phase 10 normal text entries that have
undergone phase 15 processing. If either
of these methods of storage allocation
fails to provide enough storage for phase
15, the compilation is terminated.

Pointers to both the beginning and end
of the allocated subblock portion are
passed to phase 15 via the communication
table. If an additional request is
received after the last subblock portion is
allocated, the FSD determines the last
phase 10 normal text entry that was
processed by phase 15. The FSD then frees
and allocates to phase 15 the portion of
storage occupied by phase 10 normal text
entries between the first such text entry
and the last entry processed by phase 15.

Phase 15 Storage Inventory: After the
processing of PHAZ15, the first segment of
phase 15, is completed, the FSD recovers
the subblocks that were allocated to phase
10 normal text. These subblocks are
chained as extensions to the storage space
available at the completion of PHAZ15
processing. The chain, which begins in the
FSD pointer table, connecting the various
available portions of storage is scanned
and when a zero pointer field is
encountered, a pointer to the first
subblock allocated to phase 10 normal text
is placed into that field. The chain
connecting the various subblocks allocated
to phase 10 normal text is then scanned and
when a zero pointer field is encountered, a
pointer to the first subblock allocated to
SF skeleton text is placed into that field.
Once the subblocks are chained in this
manner, they are available for allocation
to CORAL, the second segment of phase 15,
and to phase 20,

After the processing of CORAL is
completed, the FSD likewise recovers the
subblocks allocated for phase 10 special
text. The chain connecting the various
portions of available storage space is
scanned and when a zero pointer field is
encountered, a pointer to the first
subblock allocated for phase 10 special
text is placed into that field. After the
subblocks allocated for phase 10 special
text are linked into the chain as described
above, they, as well as all other portions
of storage space in the chain, are
available for allocation to phase 20.

Phase 20 Storage

Each phase 20 request for storage space
is satisfied with a portion of storage
available at the completion of CORAL
processing. The portions of storage are

16

allocated to phase 20 in the order in which
they are chained. Pointers to both the
beginning and end of the storage allocated
to phase 20 for each request are placed
into the communication table.

INPUT/OUTPUT REQUEST PROCESSING

The FSD routine IEKFCOMH receives the
input/output requests of the compiler
phases and submits them to QSAM (Queued
Sequential Access Method) for
implementation (see the publication IBM
Systemn/360 Operating System: Sequential
Access Methods, Program Logic Manual, Form
Y28-6604).

Request Format

Phase requests for input/output services
are made in the form of READ/WRITE
statements requiring a FORMAT statement.
The format codes that can appear in the
FORMAT statement associated with such
READ/WRITE requests are a subset of those
available in the FORTRAN IV language. The
subset consists of the following codes: Iw
(output only), Tw, Aw, wX, wH, and Zw
(output only).

Request Processing

To process input/output requests from
the compiler phases, the FSD performs a
series of operations, which are a subset of
those carried out by the IEKFCOMH/IEKFIOCS
Library routines to implement sequential
READ/WRITE statements requiring a format.

GENERATION OF INITIALIZATION INSTRUCTIONS

The FSD subroutine IEKTLOAD works with
STALL to generate the machine instructions
for entry into a program. These
instructions are referred to as
initialization instructions and are divided
into three catagories:

e Entry coding for a main program.

* Entry coding for subprograms with no
secondary entry points.

e Main entry coding for subprograms with
secondary entry points.

Once generated, these instructions are
entered into TXT recorxrds (see "Phase 25,
Text Information" for a discussion of TXT
records) .

Entry Coding for a Main Program

The initialization instructions
generated by subroutine IEKTLOAD for a main
program perform the following functions:

e Branch past the eight-byte name field
to the store multiple instruction.

e Save the contents of registers 14
through 12 in the save area of the
calling program.

¢ TLoad the address of the prologue into
register 2 and the address of the save
area into register 3.

e Store the location of the called
program's save area into the third word
of the calling program's save area.

e Store the location of the calling
program's save area into the second
word of the called program's save area.

e Branch to the prologue. (For an
explanation of prologue and epilogue,
see "Phase 25, Prologue and Epilogue
Generation.")

The prologue instructions perform the
following functions:

e Load register 12,
used.

if register 12 is

e Load register 15 for the following call
to IBCOM.

e Call IBCOM for main program
initialization.

e Load register 13 with the address of
the called program's save area.

e Branch to the first instruction in the
body of the program.

Section 2:

Entry Coding for Subprograms with No
Secondary Entry Points

The initialization instructions
generated by subroutine IEKTLOAD for the
entry points into a subprogram with no
secondary entry points perform the
following functions:

» Branch past the eight-byte name field
to the store multiple instruction.

® Save the contents of general registers
14 through 12 in the save . area of the
calling program.

¢ Load the address of the calling
program's save area into register 4.

o Load the address of the prologue into
register 12 and the address of the save
area into register 13.

#» Store the location of the calling
program's save area into the second
word of the called program's save area.

» Store the location of the called
program's save area into the third word
of the calling program's save area.

» Branch to the prologue. (For an
explanation of prologue and epilogue,
see "Phase 25, Prologue and Epilogue
Generation.")

The prologue instructions perform the
following functions:

e Initialize call by value arguments (if
any) and also initialize adcons for
call by name arguments (if any).

® Branch to the first instruction in the
body of the called program.

Main Entry Coding for Subprograms with
Secondary Entry Points

The initialization instructions
generated by subroutine IEKTLOAD for the
main entry point into a subprogram with
secondary entry points perform the
following functions:

s Branch past the eight-byte name field
to the store multiple instruction.

e Save the contents of registers 14
through 12 in the save area of the
calling programe

e Toad the address of the prologue into

register 2 and the address of the
epilogue into register 3.

Discussion of Major Components 17

e Toad the location of the calling
program's save area into register 4.

e Load the location of the called
program's save area into register 13.

e Store the address of the epilogue into
the first word of the called program's
save area and the location of the
calling program's save area into the
second word of the called program's
save area.

¢ Store the liocation of the called
program's save area into the third word
of the calling program's save area.

e Branch to the prologue.

The main entry prologue instructions
(generated by phase 25) perform the same
functions described previously under "Entry
coding for Subprograms with No Secondary
Entry Points."

Subprogram Secondary Entry Coding

This coding is generated entirely by
phase 25 but is mentioned here for
completeness. The requirements of
secondary entry coding are essentially the
same as main entry coding. For this reason
many of the main entry instructions are
used by phase 25 through an unconditional
branch into that section of code. Main
entry instructions that precede and include
the instruction which loads the prologue
and epilogue addresses cannot be used,
since each secondary entry point has its
own associated prologue and epilogue.
Therefore, secondary entry instructions
perform the following functions:

e Branch past the eight-byte name field
to the store multiple instruction.

¢ Save the contents of registers 14
through 12 in the save area of the
calling programe.

e Load the address of the prologue into
register 2 and the address of the
epilogue into register 3.

e Ioad register 15 with the address of
the instruction in the main entry
coding that loads register 4.

e Branch into the main entry coding.

The secondary entry prologue
instructions (generated by phase 25)
perform the same functions described
previously for subprogram main entry
coding, except that the branch is directed

18

to the desired entry point in the body of
the called program rather than the first
instruction.

Subprogram secondary entry coding does
not occupy storage within the
"Initialization Instructions" section of
text information. That section is reserved
for:

e Main program entry coding, if the
source module being compiled is a main
program.

® Subprogram main entry coding, if a
subprogram is being compiled.

The secondary entry coding is generated for
each occurrence of an ENTRY statement,
followed immediately by its associated
prologue and epilogue. Secondary entry
coding follows the main prologue and
epilogue which, in turn, follow the main
body of the program. For each additional
secondary entry point, equivalent
instructions will be generated.

DELETION OF A COMPILATION

The FSD deletes a compilation if an
error of error level code 16 (see the
publication IBM System/360 Operating
System: FORTRAN IV (G and H) Programmer's
Guide, Form C28-6817) is detected during
the execution of a processing phase.

The phase detecting the error passes
control to the FSD at entry point
SYSDIR-IEKAA9. If the error was detected
by phase 10, the FSD deletes the
compilation by having phase 10 read records
(without process- ing them) until the END
statement is encountered., If the error was
encountered in a phase other than phase 10,
the FSD simply deletes the compilation.

COMPILER TERMINATION

The FSD terminates compiler processing
when an end-of-file is encountered in the
input data stream or when a permanent
input/output error is encountered. If,
after the deletion of a compilation orx
after a source module has been completely
compiled, the first record read by the FSD
from the SYSIN data set contains an
end-of-file indicator, control is passed to
the FSD (at the entry point ENDFILE), which
terminates compiler processing by returning
control to the operating system. If a
permanent error is encountered during the
servicing of an input/output request of a

phase, control is passed to the FSD (at
entry point IBCOMRTN), which writes a
message stating that both the compilation
and job step are deleted. The FSD then
returns control to the operating system.
In either of the above cases, the FSD
passes to the operating system as a
condition code the value of the highest
error level code encountered during
compiler processing. The value of the code
is used to determine whether or not the
next job step is to be performed.

PHASE 10

The FSD reads the first record of the
source module and passes its address to
phase 10 via the communication table.
Phase 10 converts each FORTRAN source
statement into usable input to subsequent
phases of the compiler; its overall logic
is illustrated in Chart 03. Phase 10
conversion produces an intermediate text
representation of the source statement
and/or detailed information describing the
variables, constants, literals, statement
numbers, data set reference numbers, etc.,
appearing in the source statement. During
conversion, the source statement is
analyzed for syntactical errors.

The intermediate text is a strictly
defined internal representation (i.e.,
internal to the compiler) of a source
statement. It is developed by scanning the
source statement from left to right and by
constructing operator-operand pairs. In
this context, operator refers to such
elements as commas, parentheses, and
slashes, as well as to arithmetic,
relational, and logical operators. Operand
refers to such elements as variables,
constants, literals, statement numbers, and
data set reference numbers. An
operator-operand pair is a text entry, and
all text entries for the operator-operand
pairs of a source statement are the
intermediate text representation of that
statement.

The following six types of intermediate
text are developed by phase 10:

e Normal text is the intermediate text
representation of source statements
other than DATA, NAMELIST, DEFINE FILE,
FORMAT, and statement functions.

e Data text is the intermediate text
representation of DATA statements and
initialization values in type
statements.

Section 2:

e Namelist text is the intermediate text
representation of NAMELIST statements.

e Define file text is the intermediate
text representation of DEFINE FILE
statements.

e Format text is the intermediate text
representation of FORMAT statements.

e SF_skeleton text is the intermediate
text representation of statement
functions using sequence numbers as
operands of the intermediate text
entries. The sequence numbers replace
the dummy arguments of the statement
functions. This type of text is, in
effect, a "skeleton" macro instruction.

The various text types are discussed in
detail in Appendix B, "Intermediate Text."

The detailed information describing
operands includes such facts as whether a
variable is dimensioned (i.e., an array)
and whether the elements of an array are
real, integer, etc. Such information is
entered into the information table.

The information table consists of five
components, as follows:

e The dictionary contains information
describing the constants and variables
of the source module.

e The statement number/array table
contains information describing the
statement numbers and arrays of the
source module,

e The common table contains information
describing COMMON and EQUIVALENCE
declarations.

e The literal table contains information
describing the literals of the source
module.

e The branch table contains information
describing statement numbers that
appear in computed GO TO statements.

A detailed discussion of the information
table is given in Appendix A, "Information
Table. "

The intermediate text and the
information table complement each other in
the actual code generation by the
subsequent phases. The intermediate text
indicates what operations are to be carried
out on specific operands; the information
table provides the detailed information
describing the operands that are to be
processed.

Discussion of Major Components 19

SOURCE STATEMENT PROCESSING

To process source statements, each
record (one card image) of the source
module is first read into an input buffer
by a preparatory subroutine (GETCD-IEKCGC).
If a source module listing is requested,
the record is recorded on an output data
set (SYSPRINT). If both the EDIT option
and the second level of optimization
(OPT=2) are selected, the record and some
control information used by phase 20 to
produce a structured source listing are
recorded on the SYSUT1 data set. Records
are moved to an intermediate buffer until a
complete source statement resides in that
buffer., Unnecessary blanks are eliminated
from the source statement, and the
statement is assigned a classification
code, A dispatcher subroutine
(DSPTCH-IEKCDP) determines from the code
which subroutine is to continue processing
the source statement. Control is then
passed to that subroutine, which converts
the source statement to its intermediate
text representation and/or constructs
information table entries describing its
operands (see Table 7 for a list of the
subroutines that process each type of
statement). After the entire source
statement has been processed, the next
statement is read and processed as
described above. The recognition of the
END statement causes phase 10 to complete
its processing and return control to the
FSD, which then calls phase 15 for
execution.

The functions of phase 10 are performed
by six groups of subroutines:

e Dispatcher subroutine

¢ Preparatory subroutine

e Keyword subroutine(s)

e Arithmetic subroutine(s)

e Utility subroutine(s)

e STALL-IEKGST subroutine

Dispatcher Subroutine

The dispatcher subroutine
(DSPTCH-IEKCDP) controls phase 10
processing. Upon receiving control from
the FSD, the DSPTCH-IEKCDP subroutine
initializes phase 10 processing and then
calls the preparatory subroutine
(GETCD-IEKCGC) to read and prepare the
first source statement. After the

20

statement is prepared, control is returned
to DSPTCH-IEKCDP, which determines whether
or not a statement number is associated
with the source statement being processed.
If there is a statement number, the
XCLASS-IEKDCL subroutine is called to
construct a statement number entry (see
Appendix A, "Information Table") and a
corresponding text entry. DSPTCH-IEKCDP
then determines, from the classification
code assigned to the source statement (see
"Preparatory Subroutine"), which subroutine
(either keyword or arithmetic) is to
continue the processing of the statement,
and passes control to that subroutine.
When the source statement is completely
processed, control is returned to the
DSPTCH-IEKCDP subroutine, which calls the
preparatory subroutine to read and prepare
the next source statement.

Preparatory Subroutine

The preparatory subroutine
(GETCD-IEKCGC) reads each source statement,
records it on the SYSPRINT data set if the
SOURCE option is selected, and on the
SYSUT1 data set if the EDIT option and the
second level of optimization are selected,
packs and classifies it, and assigns it an
internal statement number (ISN).1 Packing
eliminates unnecessary blanks, which may
precede the first character, follow the
last character, or be imbedded within the
source statement. Classifying assigns a
code to each type of source statement. The
code indicates to the DSPTCH-IEKCDP
subroutine which subroutine is to continue
processing the source statement. A
description of the classifying process,
along with figures illustrating the two
tables (the keyword pointer table and the
keyword table) used in this process, is
given in Appendix A, "Classification
Tables.®" The ISN assigned to the source
statement is an internal sequence number
used to identify the source statement. The
source statement and classification
information about the source statement
reside in the storage areas, NCDIN and
NCARD of the phase 10 common area, as
illustrated in Figure 2.

v —— - ——— -

ilogical IF statements are assigned two
internal statement numbers. The IF part
is given the first number and the
"trailing®™ statement is given the next.

| Ncarp
r 1
|Pointer to first character of (1 word) |
|packed source statement beyond |
| keyword2* |
t i
|Internal statement number (1 word) |
| (ISN) |
b {
|statement number indicator (#0 (1 word) |
|if present; 0 if not present) |
L 4
1 b
|Classification code (1 word) |
L Jd
| ~cpin

r 1
| statement number (5 bytes) |
1 J
¥ 1
| Packed source statement (n bytes) |
L

r

| Gxoup mark=2 (1 byte)
L

r

|*For arithmetic statements and statement
| functions, this field points to the first
|character of the packed statement.

|2End of statement marker ('4F' in

| hexadecimal).

L

Figure 2. Format of Prepared Source
Statement

Keyword Subroutine(s)

A keyword subroutine exists for each
keyword source statement. A keyword source
statement is any permissible FORTRAN source
statement other than an arithmetic
statement or a statement function. The
function of each keyword subroutine is to
convert its associated keyword source
statement (in NCDIN) into input usable by
subsequent phases of the compiler. These
subroutines make use of the utility
subroutines and, at times, the arithmetic
subroutines in performing their functions.
To simplify the discussion of these
subroutines, they are divided into two
groups:

1. Those that construct only information
table entries.

2. Those that construct information table
entries and develop intermediate text
representations.

Table Entry Subroutines: Only one keyword
subroutine belongs to this group (see Table
8). It is associated with a COMMON,
DIMENSION, EQUIVALENCE, or EXTERNAL keyword
statement.

This subroutine scans its associated
statement (in NCDIN) from left to right and
constructs appropriate information table
entries for each of the operands of the

statement. The types of information table
entries that can be constructed by these
subroutines are:

‘s Dictionary entries for variables and
external names.,

» Common block name entries for common
block names.

» Equivalence group entries for
equivalence groups.

» Equivalence variable entries for the
variables in an equivalence group.

®» Dimension entries for arrays.

The formats of these entries are given
in Appendix A, "Information Table."

Table Entry and Text Subroutines: The
keyword subroutines, other than the table
entry subroutine, belong to this group (see
Table 8). Each of these subroutines
converts its associated statement by
developing an intermediate text
representation of the statement, which
consists of text entries in
operator-operand pair format, and
constructing information table entries for
the operands of the statement. The
processing performed by these subroutines
is similar and is described in the
following paragraphs.

Upon receiving control from the
DSPTCH-IEKCDP subroutine, the keyword
subroutine associated with the keyword
statement being processed places a special
operator into the text area. This operator
is referred to as a primary adjective code
and defines the type (e.g., DO, ASSIGN) of
the statement. A left-to-right scan of the
source statement is then initiated. The
first operand is obtained, an information
table entry is constructed for the operand
and entered into the information table
(only if that operand was not previously
entered), and a pointer to the entry's
location in that table is placed into the
text area. The mode (e.g., integer, real)
and type (e.g., negative constant, array)
of the operand are then placed into text.

Scanning is resumed and the next
operator is obtained and placed into the
text area. The next operand is then
obtained, an information table entry is
constructed for the operand and entered
into the information table (again, only if
that operand was not previously entered),
and a pointer to the entry's location is
placed into the text entry work area. The
mode and type of the operand are placed
into the work area. The text entry is then
placed into the next available location in

Section 2: Discussion of Major Components 21

the subblock allocated for text entries of
the type being created.

This process is terminated upon
recognition of the end of the statement,
which is marked by a special text entry.
The special text entry contains an end mark
operator and the ISN of the source
statement as an operand.

Note: Certain keyword subroutines in this
group, namely those that process statements
that can contain an arithmetic expression
(e.ge., IF and CALL statements) and those
that process statements that contain I/0
list items (e.g., READ/WRITE statements),
pass control to the arithmetic subroutines
to complete the processing of their
associated keyword statements.

Arithmetic Subroutine(s)

The arithmetic subroutine or subroutines
(see Table 8) receive control from the
DSPTCH-IEKCDP subroutine, or from various
keyword subroutines. These subroutines
make use of the utility subroutines in
performing their functions, which are to:

e Process arithmetic statements.
e Process statement functioms.

e Complete the processing of certain
keyword statements (READ, WRITE, CALL,
and IF).

Arithmetic subroutines are processed
according to their functions, as follows:

Arithmetic Statement Processing: In
processing an arithmetic statement, the
arithmetic subroutines develop an
intermediate text representation of the
statement, and construct information table
entries for its operands. These
subroutines accomplish this by following a
procedure similar to that described for
keyword (table entry and text) subroutines.

If one operator is adjacent to another,
the first operator does not have an
associated operand. In the example
A=B(I)+C, the operator + has variable C as
its associated operand, whereas the
operator) has no associated operand. If
an operator has no associated operand, it
is assumed that the operand is a zero
(null).

Statement Function Processing: In
converting a statement function to usable
input to subsequent phases of the compiler,
the arithmetic subroutines develop an
intermediate text representation of the

22

statement function using sequence numbers
as replacements for dummy arguments. These
subroutines also construct information
table entries for those operands that
appear to the right of the equal sign and
that do not correspond to dummy arguments.
The following paragraphs describe the
processing of a statement function by the
arithmetic subroutines.

When processing a statement function,
the arithmetic subroutines:

e Scan the portion of the statement
function to the left of the equal sign,
obtain each dummy argument, assign each
dummy argument a sequence number (in
ascending order), and save the dummy
arguments and their associated sequence
numbers for subsequent use.

* Scan the portion of the statement
function to the right of the equal sign
and obtain the first (or next) operand.

e Determine whether or not the operand
corresponds to a dummy argument. If it
does correspond, its associated
sequence number is placed into the text
area. If it does not correspond, a
dictionary entry for the operand is
constructed and entered into the
information table, and a pointer to the
entry's location is placed into the
text area. (An opening parenthesis is
used as the operator of the first text
entry developed for each statement
function and a closing parenthesis is
used as the operator of the last text
entry developed for each statement
function.)

e Resume scanning, obtain the next
operator, and place it into the text
area.

e Obtain the operand to the right of this
operator and process it as described
above.

Keyword Statement Completion: In addition

to processing arithmetic statements and
statement functions, the arithmetic
subroutines also complete the processing of
keyword statements that may contain
arithmetic expressions or that contain I/O
list items. The keyword subroutine
associated with each such keyword statement
performs the initial processing of the
statement, but passes control to the
arithmetic subroutines at the first
possible occurrence of an arithmetic
expression or an I/0 list item. (For
example, the keyword subroutine that
processes CALL statements passes control to
the arithmetic subroutines after it has
processed the first opening parenthesis of
the CALL statement, because the argument

that follows this parenthesis may be in the
form of an arithmetic expression.) The
arithmetic subroutines complete the
processing of these keyword statements in
the normal manner., That is, they develop
text entries for the remaining
operator-operand pairs and construct
information table entries for the remaining
operands.

Utility Subroutine(s)

The utility subroutines (see Table 8)
aid the keyword, arithmetic, and
DSPTCH-IEKCDP subroutines in performing
their functions., The utility subroutines
are divided into the following groups:

Entry placement subroutines,
Text generation subroutines.
Collection subroutines.
Conversion subroutines.

Entry Placement Subroutines: The utility
subroutines in this group place the various
types of entries constructed by the
keyword, arithmetic, and DSPTCH-IEKCDP
subroutines into the tables or text areas
(i.e., subblocks) reserved for them.

Text Generation Subroutines: The utility
subroutines in this group generate text
entries (supplementary to those developed
by the keyword and arithmetic subroutines)
that:

e Control the execution of implied DOs
appearing in input/output statements.

¢ Increment DO indexes and test them
against their maximum values,

e Signify the end of a source statement.

Collection Subroutines: These utility
subroutines perform such functions as
gathering the next group of characters
(i.e., a string of characters bounded by
delimiters) in the source statement being
processed, and aligning variable names on a
word boundary for comparison to other
variable names.

conversion Subroutines: These utility
subroutines convert integer, real, and
complex constants to their binary
equivalents.

Section 2:

Subroutine STALL-IEKGST (Chart 04)

The STALL-IEKGST subroutine completes
phase 10 processing by:

e Generating entry code for the object
module.

e Translating phase 10 format text into
object code for the object module and
freeing space formerly occupied by the
format text.

e Checking to see if any literal data
text exists and, if it does, generating
object code for the literal data text.

e Processing any equivalence entries that
were equivalenced before being
dimensioned.

e Setting aside space in the object
module for the problem program save
area and for computed GO TO statement
branch tables created by phase 10.

e Checking the statement number section
of the information table for undefined
statement numbers.,

* Rechaining variables in the dictionary
by sorting alphabetically the entries
in each chain.

* Assigning coordinates based on the
usage count set by phase 10 when the
OPT option is greater than zero.

e Processing common entries in the
information table by computing the
displacement of each variable in the
common block from the start of the
common block.

e Processing equivalence entries in the
information table.

Generating FORMAT code: If the source
module contains READ/WRITE statements
requiring FORMAT statements, the associated
phase 10 format text must be put into a
form recognizable by the IHCFCOMH Library
routine. The STALL-IEKGST subroutine calls
subroutine FORMAT-IEKTFM which develops the
necessary format by obtaining the phase 10
intermediate text representation of each
FORMAT statement, and translating each
element (e.g., H format code and field
count) of the statement according to Table
1. The FORMAT-IEKTFM subroutine enters the
translated statement along with its
relative address into TXT records.
inserts the relative address of the
translated statement into the address

It also

Discussion of Major Components 23

Table 1. FORMAT Statement Translation

T T - o T e e e e e e e e i e 1
| | | Translated Format (in hexadecimal) |
| FORMAT | t T T 1
| Specification | Description | 1st byte 2nd byte | 3rd byte |
; + 4 1 {
| | beginning of statement | 02 i]
n(group count	ou	n	
n	field count	06	n	
nP	scaling factor	08	n*	
Fw.d	F-conversion	OA W	d	

| Ew.d | E-conversion | ocC W | 4

Dw.d	D-conversion	OE w	da	
Iw	I-conversion	10 i w		
Tn	column set	12	n {	
Aw	A-conversion	14	w	
Lw	L-conversion	16	w i	
nX	skip or blank	18	n i	
[nHtext		l		
or	literal data	1a	n] text	
'text!			I	
)	group end	ic	i	
/	record end	1E	{	
} Gw.d	G-conversion	20	w	d
	end of statement	22		
Zw	Hexadecimal conversion	24	W i	

} L 1 R 1 L _Jl
| *The first hexadecimal bit of the byte indicates the scale factor sign (0 if positive, |
| 1 if negative). The next seven bits contain the scale factor magnitude, |
[Jd

constant for the statement number
associated with the FORMAT statement.

Processing Equivalence Entries: The
STALL~IEKGST subroutine completes the
processing of any equivalence entries in
the information table that were not
completed by prior routines in phase 10.
These equivalence entries are the ones that
were equivalenced before being dimensioned.
The STALL-IEKGST subroutine computes
displacements for each variable in the
equivalence group.

Processing Literal Constants Used as
Arguments: The STALL-IEKGST subroutine
checks a pointer in the communication table
(NPTR (1,27)) to see whether or not there
are literal constants to process. If there
are, the STALL-IEKGST subroutine calls
IEKTLOAD and passes to it the location and
length of the literal string that is used
by the IEKTLOAD subroutine to generate
literal text in the object module. All
literal constants used as arguments are put
on a double word boundary.

The STALL-IEKGST subroutine follows the
chain in the literal constant dictionary

24

entry and continues to call subroutine
IEKTLOAD to process this text. After all
the literal data text has been generated,
the STALL-IEKGST subroutine adjusts the
location counter by the amount of text
generated. Literals used in DATA
statements are not chained, and are not
processed until CORAL is invoked.

Reserving Space for the Save Area: The
STALL-IEKGST subroutine sets aside 76 bytes
for the save area of the program being
compiled.

Space in the object module for branch
tables created by phase 10 for computed GO
TO statements is also reserved by the
STALL-IEKGST subroutine.

Checking for Undefined Statement Numbers:
The STALL-IEKGST subroutine performs a
dictionary scan for undefined statement
numbers, This action is taken to ensure
that every statement number that is
referred to is also defined. The
STALL-IEKGST subroutine scans the chain of
statement number entries in the information
table (see Appendix A: "Statement
Number/Array Table") and examines a bit in
the byte A usage field of each such entry.
This bit is set by phase 10 to indicate
whether or not it encountered a definition

of that statement number. If the bit
indicates that the statement number is not
defined, the STALL~IEKGST subroutine places
an entry in the error table for later
processing by phase 30.

Rechaining Entries for Variables: The
STALL-IEKGST subroutine scans dictionary
entries for variables. Previously executed
routines in phase 10 sorted each variable
chain alphabetically and left the pointer
at the mid-item of the chain (for
dictionary search speed). The STALL-IEKGST
subroutine resets the pointer to the first
(alphabetically lowest) item in the chain.
The rechaining frees storage in each entry
for later use by CORAL in phase 15. It
then sets the adcon field of each
dictionary entry for a variable to zero.
The STALL-IEKGST subroutine also constructs
dictionary entries for the imaginary parts
of complex variables and constants.

Assigning Coordinates: The STALL-IEKGST
subroutine calls subroutine IEKKOS which
assigns coordinates to variables and
constants in the following manner:

¢ The first 59 unique variables and/or
constants that appear in the text
created by phase 10 are assigned
coordinates 2 through 60,
respectively.1 The coordinates are
assigned in order of increasing
coordinate number. (A coordinate
between 2 and 60 may be assigned to a
base variable if fewer than 59 unique
variables and constants appear in the
text.)

e The next 20 unique variables are
assigned coordinates 61 through 80,
respectively. The coordinates are
assigned in order of increasing
coordinate number., (If constants are
encountered after coordinate 60 has
been assigned, they are not assigned
coordinates.)

e The coordinates 81 through 128 are
reserved for assignment to base
variables (see "Adcon and Base Variable
Assignment®™ under "CORAL Processing").

Subroutine IEKKOS assigns to the first
variable or constant in phase 10 text a
coordinate number of 2, which indicates
that the usage information for that
variable or constant, regardless of the

1The coordinate 1 is assigned to items such
as unit numbers (i.e., data set reference
numbers), complex variables in COMMON,
arrays that are equivalenced, variables
that are equivalenced to arrays, and
variables that are equivalenced to
variables of different modes.

Section 2:

block in which it appears, is to be
recorded in bit position 2 of the MVS, MVF,
and MVX fields. The IEKKOS subroutine
assigns to the second variable or constant
a coordinate number of 3 and records its
usage information in bit position 3 of the
three fields. Subroutine IEKKOS continues
this process until coordinate 60 has been
assigned to a variable or constant. When
coordinate number 60 has been assigned, the
IEKKOS subroutine only assigns coordinates
to the next 20 unique variables.

Subroutine IEKKOS does not assign
coordinates to or gather usage information
for unique constants encountered after
coordinate number 60 has been assigned. It
assigns these variables coordinates 61
through 80,

respectively. It records the usage
information for each variable at the
assigned bit location in the three fields.
The IEKKOS subroutine does not assign
coordinates to or gather usage information
for unique variables encountered after
coordinate number 80 has been assigned.

Subroutine IEKKOS uses a combination of
the MCOORD vector, the MVD table, and the
byte-C usage fields of the dictionary
entries (see Appendix A, "Dictionary") to
assign, keep track of, and record
coordinate numbers. The MCOORD vector
contains the number of the last coordinate
assigned. The MVD table is composed of 128
entries, with each entry containing a
pointer to the dictionary entry for the
variable or constant to which the
corresponding coordinate number is assigned
or to the information table entry for the
base variable to which the corresponding
coordinate is assigned. The coordinate
number assigned to a variable or constant
is recorded in the byte-C usage field of
the dictionary entry for that variable or
constant.

Subroutine IEKKOS does not assign
coordinates to or record usage information
for unique constants encountered in text
after coordinate number 60 has been
assigned and unique variables encountered
in text after coordinate number 80 has been
assigned. If subroutine IEKKOS encounters
a new constant after coordinate 60 has been
assigned or a new variable after coordinate
80 has been assigned, it records a zero in
the byte-C usage field of its associated
dictionary entry. Phase 20 optimization
deals only with those constants and
variables that have been assigned
coordinate numbers greater than or equal to
2 and less than or equal to 80.

Processing Common Entries in the

Information Table: The STALL-IEKGST

subroutine processes common entries in the
information table. It computes the
displacements of variables and arrays from

Discussion of Major Components 25

the start of the common block that contains
them and calculates the total size in bytes
of each common block. Subroutine
STALL-IEKGST records the displacements in
the dictionary entries for the variables
and the block size in the common table
entry for the name of the common block.

The displacements are used later to assign
relative addresses to common variables.

The block size is used by phase 25 to
generate a control section for the common
block (see Appendix A: "Common Table™),
The STALL-IEKGST subroutine also places a
pointer to the common table entry for the
block name in the dictionary entry for each
variable or array in that common block.

Processing Equivalence Entries in the
Information Table: Subroutine STALL-IEKGST
gathers additional information about
equivalence groups and the variables in
them. It computes a group head* and the
displacement) of each variable in the group
from this head. It records this
information in the common table entries for
the group and for the variables,
respectively (see Appendix A: "“Common
Table"™)., Subroutine STALL-IEKGST
identifies and flags in their dictionary
entries variables and arrays put into
common via the EQUIVALENCE statement. It
also checks the variables and arrays for
errors to verify that the associated common
block has not been improperly extended
because of the EQUIVALENCE declaration. If
a common block is legitimately enlarged by
an equivalence operation, the STALL-IEKGST
subroutine recomputes the size of the
common block and enters the size into the
common table entry for the name of the
common block.

If the name of a variable or array
appears in more than one equivalence group,
subroutine STALL-IEKGST recognizes the
combination of groups and modifies the
dictionary entries for the variables to
indicate the equivalence operations. The
STALL-IEKGST subroutine checks arrays that
appear in more than one equivalence group
to verify that conflicting relationships
have not been established for the array
elements.

During the processing of both common and
equivalence information, a check is made to
ensure that variables and arrays fall on
boundaries appropriate to their defined
types. If a variable or array is
improperly aligned, subroutine STALL-IEKGST
places an entry in the error table for
processing by phase 30.

iThe head of an equivalence group is that
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.

26

CONSTRUCTING A CROSS REFERENCE

If the XREF option is selected, a
two-part cross reference is constructed and
written on the SYSPRINT data set
immediately following the source listing.
The first part of the cross reference is a
list of all symbols used by the program and
the ISNs of the statements in which each
symbol appears. The symbols are written in
alphabetic order and §rouped by character
length, first one-character symbols in
alphabetic order, then two-character
symbols in alphabetic order, etc. The
second part of the cross reference is a
sequential list of the statement numbers
used on the program each followed by the
ISN of the statement in which the statement
number is defined and also by a list of the
ISNs of statements that refer to the
statement number.

XREF processing occurs during phase 10
and in a small separate overlay segment
between phases 10 and 15. This segment,
XREF-IEKXRF, is called only if the XREF
option is selected.

Phase 10 Preparation for XREF Processing

If the XREF option is chosen, phase 10
subroutines LABTLU~IEKCLT and CSORN-IEKCCR
perform additional processing for statement
numbers and symbols. Also, phase 10
subroutine IEKXRS, which is not used unless
the XREF option is chosen, is called.

The LABTLU-IEKCLT subroutine fills the
adcon table, which is used as an XREF
buffer, with XREF entries for statement
number definitions and statement number
references. The format of an XREF entry
for statement numbers and symbols is:

< 4 bytes >

T T
|Pointer to next | |

|XREF entry# | ISN i
L S d

* Relative to the beginning of the buffer.

Each time the buffer is full, the
LABTLU-IEKCLT subroutine calls IEKXRS to
write the buffer on SYSUT2. (The contents
of SYSUT2 is later read in by subroutine
XREF-IEKXRF and processed to produce a
cross reference.) A count of the number of
times the buffer is written out is kept in
the communication table NPTR (2,20). Each
time it finishes writing the buffer on
SYSUT2, subroutine IEKXRS returns control
to the LABTLU-IEKCLT subroutine.

Subroutine LABTLU-IEKCLT uses parts of
the dictionary entries for statement
numbers as pointers to keep track of its
processing. It also adds a word (word 9)
to each statement number dictionary entry
to be used as a sequence chain field so
that subroutine XREF-IEKXRF can create a
sequential list of statement numbers used
in the program.

The words used by the LABTLU-IEKCLT
subroutine in dictionary entries for
statement numbers are:

Word 5 - A pointer to the most recent
statement number entry in the
adcon table (XREF buffer) if the
statement number reference being
processed by subroutine
LABTLU-IEKCLT is not a definition
of a statement number. Word 5 is
not used for statement number
entries that correspond to
definitions of statement numbers.

Word 6 - Bytes 1 and 2 -- The number of
times the XREF buffer has been
written on SYSUT2 at the time the
statement number entry is
processed by subroutine
LABTLU-IEKCLT.

Bytes 3 and 4 -- A pointer to the
first XREF buffer entry for the
statement number.

Word 7 - Contains an ISN if the reference
is to a definition of a statement
number; contains -1 if the
statement number has been
previously defined.

Word 9 - Statement number sequence chain
fieldc

The CSORN-IEKCCR subroutine processes
symbols for XREF much the same way as sub-
routine LABTLU-IEKCLT processes statement
numbers. However, for symbols, no
processing is required for definitions and
there is no sequencing.

The CSORN-IEKCCR subroutine adds one
word to the dictionary entries for
variables making a total of ten words in
each entry. Word 10 for a variable entry
is used in the same way as word 6 for a
statement number entry. The first half of
word 10 indicates the number of times the
buffer has been written on SYSUT2 at the
time the variable entry is processed by
subroutine CSORN-IEKCCR. The second half
of word 10 contains a pointer to the first
XREF buffer entry for the symbol. The
first half of word 8 is used as a pointer

Section 2:

to the last (most recent) XREF buffer entry
for the symbol.

Subroutine IEKXRS is also used during
symbol processing to write the XREF buffer
out on SYSUT2 whenever the buffer becomes
full.

XREF Processing

If the XREF option is selected, the FSD
calls the XREF-IEKXRF subroutine after the
completion of subroutine STALL-IEKGST
processing and before phase 15. The
XREF-IEKXRF subroutine is a separate
overlay segment that overlays phase 10 and
is owverlaid by phase 15.

Subroutine XREF-IEKXRF reads from SYSUT2
all buffers that were written out by IEKXRS
during subroutine LABTLU-IEKCLT and
subroutine CSORN-IEKCCR processing. It
then sets up linkage between buffers for
the symbol or statement number to create
one sequential chain of ISNs and writes out
the symbol or statement number with its
ISNs on SYSPRINT. This process continues
until all symbols and statement numbers
with their ISNs are written on SYSPRINT.
control is then returned to the FSD that
calls phase 15.

PHASE 15

Before phase 15 gains control, phase 10
has read the source statements, built the
information table, and restructured the
source statements into operator-operand
pairs., When given control, phase 15
translates the text of arithmetic
expressions, gathers information about
branches and variables, converts phase 10
data text to a new text format, assigns
relative addresses to constants and
variables, and generates address constants
when needed, to serve as address
references. Thus, phase 15 modifies and
adds to the information table and
translates phase 10 normal and data text to
their phase 15 formats.

Phase 15 is divided into two overlay
segments, PHAZ15, and CORAL. Chart 05
shows the overall logic of the phase.
Table 9 is a directory of all the
subroutines used by phase 15.

PHAZ15 translates and reorders the text
entries for arithmetic expressions from the
operator-operand format of phase 10 to a
four-part format suitable for phase 20
processing. The new order permits phase 25

Discussion of Major Components 27

to generate machine instructions in the
correct sequence. PHAZ15 blocks the text
and collects information describing the
blocks. The information, needed during
phase 20 optimization, includes tables on
branching locations and on constant and
variable usage.

CORAL, the second overlay segment of
phase 15, performs a number of functions.
It first converts phase 10 data text to a
form more easily evaluated by subroutine
DATOUT-IEKTDT. CORAL then assigns relative
addresses to all variables, constants, and
arrays. During one phase of relative
address assignment, CORAL rechains phase 15
data text in order to simplify the
generation of text card images by
subroutine DATOUT-IEKTDT. CORAL also
assigns address constants, when needed, to
serve as address references for all
operands.

PHAZ15 PROCESSING

The functions of PHAZ15 are text
blocking, arithmetic translation,
information gathering, and reordering of
the statement number chain. Information
gathering occurs only if optimization
(either intermediate or complete) has been
selected; it takes:place concurrently with
text blocking and arithmetic tramnslation
during the same scan of intermediate text.
Reordering of the statement number chain
occurs after PHAZ15 has completed the
blocking, arithmetic translation, and
information gathering.

PHAZ15 divides intermediate text into
blocks for convenience in obtaining
information from the text. Each block
begins with a statement number definition
and ends with the text entry just preceding
the next statement number definition. An
attempt is made to limit blocks to less
than 80 text items as an aid to register
routines in phase 20. PHAZ15 records
information describing a text block in a
statement number text entry and in an
information table statement number entry.

During the same scan of text in which
blocking occurs, PHAZ15 translates
arithmetic expressions. The conversion is
from the operation-operand pairs of phase
10 to a four-part format (phase 15 text).
The new format follows the sequence in
which algebraic operations are performed.
In general, phase 15 text is in the same
order in which phase 25 will generate

28

machine instructions.* PHAZ15 copies,
unchanged (except for rearrangement) into
the text area, phase 10 text that does not
require arithmetic translation or other
special handling.

During the building of phase 15 text for
a given block (if optimization has been
selected), PHAZ15 constructs tables of
information on the use of constants and
variables in that text block. It stores
information on variables and constants that
are used within a block, and variables that
are defined within a block. If complete
optimization has been selected, PHAZ15 also
gathers information on variables not first
used and then defined. The foregoing usage
information is recorded in the statement
number text for each block for later use by
phase 20.

Concurrently with text blocking,
arithmetic translation, and gathering of
constant/variable usage information, PHAZ15
discovers branching text entries and
records the branching or connection
information. This information, consisting
initially of a table of branches from each
text block (forward connections), is stored
in a special array. Branching (connection)
information is used during phase 20
optimization.

After PHAZ15 has completed the
previously mentioned processing, it
reorders the statement number chain of the
information table. The original sequence
of statement numbers, as phase 10 recorded
them, was in the order of their occurrence
in source statements as either definitions2
or operands. Phase 15 reorders the
statement numbers in the same sequence as
they appeared as definitions in the source
program. The new sequencing is established
to facilitate phase 20 processing.

Last, PHAZ15 acquires a table of
backward connection information consisting
of branches into each statement number or
text block. PHAZ15 derives this
information from the forward connection
information it previously obtained. Thus,
connection information is of two types,
forward and backward. PHAZ15 records a
table of branches from each text block and
a table of branches into each text block.
connection information of both types is
used during phase 20 optimization.

1If optimization is selected, phase 20 may
further manipulate the phase 15 text.

2A statement number occurs as a definition
when that statement number appears to the
left of a source statement.

Charts 06, 07, and 08 depict the flow of
control during PHAZ15 execution. Table 10
lists the COMMON areas of phase 15.

Text Blocking

During its scan and conversion of phase
10 text, PHAZ15 sections the module into
text blocks, which are the basic units upon
which the optimization and register
assignment processes of phase 20 operate.
A text block is a series of text entries
that begins with the text entry for a
statement number and ends with the text
entry that immediately precedes the text
entry for thenext statement number. (The
statement number may be either programmer
defined or compiler generated.) Wwhen
PHAZ15 encounters a statement number
definition (i.e., the phase 10 text entry
for a statement number), it begins a text
block. It does this by constructing a
statement number text entry (refer to
Appendix B, "Phase 15 Intermediate Text
Modifications"). PHAZ15 also places a
pointer to the statement number text entry
into the statement number entry
(information table) for the associated
statement number.

PHAZ15 resumes its scan and converts the
phase 10 text entries following the
statement number definition to their phase
15 formats. After each phase 15 text entry
is formed and chained into text, PHAZ15
places a pointer to that text entry into
the BLKEND field of the previously
constructed statement number text entry.
This field is, thereby, continually updated
to point to the last phase 15 text entry.

When the next statement number
definition is encountered, PHAZ15 begins
the next text block in the previously
described manner. A pointer to the text
entry that ends the preceding block has
already been recorded in the BLKEND field
of the statement number text entry that
begins that block. Thus, the boundaries of
a text block are recorded in two places:
the beginning of the block is recorded in
the associated statement number entry
(information table); the end of the block
is recorded in the BLKEND field of the
associated statement number text entry.
All text blocks in the module are
identified in this manner.

Section 2:

Note: For each ENTRY statement in the
source module, phase 10 generates a
statement number text entry and places it
into text preceding the text for the ENTRY
statement. Phase 10 also ensures that the
statement following an ENTRY statement has
a statement number; if a statement number
is not provided by the programmer, phase 10
generates one. Thus, the text entries for
each ENTRY statement form a separate text
block, which is referred to as an entry
block.

Figure 3 illustrates the concept of text
blocking. In the illustration, two text
blocks are shown: one beginning with
statement number 10; the other with
statement number 20. The statement number
entry for statement number 10 contains a
pointer to the statement number text entry
for statement number 10, which contains a
pointer to the text entry that immediately
precedes the statement number text entry
for statement number 20. Similar pointers
exist for the text block starting with
statement number 20.

Arithmetic Translation

Arithmetic translation is the reordering
of arithmetic expressions in phase 10 text
format to agree with the sequence in which
algebraic operations are performed.
Arithmetic expressions may exist in IF,
CALL, and ASSIGN statements and
input/output data-lists, as well as in
arithmetic statements and statement
functions.

When PHAZ15 detects a primary adjective
code for a statement that needs arithmetic
translation, it passes control to the
arithmetic translator (ALTRAN-IEKJAL). If
the phase 10 text for the statement does
not require any type of special handling,
ALTRAN-IEKJAL reorders it into a series of
phase 15 text entries that reflect the
sequence in which arithmetic operations are
to be carried out. During the reordering
process, ALTRAN-IEKJAL calls various
supporting routines that perform checking
and resolution (e.g., the resolution of
operations involving operands of different
modes) functions.

Discussion of Major Components 29

INFORMATION TABLE Statement Number Entry for

Statement Number 10

L[1 [wl

PHASE 15 TEXT

Statement Number Entry for
Statement Number 20

[T=T T T T 1+

[

LDF* — 10

LDF* — 20

* LDF is the mnemonic for the statement number operator
t This field exists only if the XREF option is used (see Figure 24).

Figure 3. Text Blocking

Throughout the reordering process,
ALTRAN-IEKJAL is checking for text that
requires special handling before it can be
placed into the phase 15 text area.
[Special handling is required for complex
expressions, terms involving unary minuses
(e.g., A=-B), subscript expressions,
statement function references, etc.] If
special text processing is required,
ALTRAN-IEKJAL calls one or more subroutines
to perform the required processing.

During reordering and, if required,
special handling, subroutine GENER-IEKLGN
is called to format the phase 15 text
entries and to place them into the text
area.

REORDERING ARITHMETIC EXPRESSIONS: The
reordering of arithmetic expressions is
done by means of a pushdown table. This
table is a last-in, first-out list. After
the table is initialized (i.e., the first
operator-operand pair of an arithmetic
expression is placed into the table), the
arithmetic translator (ALTRAN-IEKJAL)
compares the operator of the next
operator-operand pair (term) in text with
the operator of the pair at the top of the
pushdown table. As a result of each
comparison, either a term is transferred
from phase 10 text to the table, or an
operator and two operands (triplet) are
brought from the table to the phase 15 text
area, eliminating the top term in the
pushdown table.

The comparison made to determine whether
a term is to be placed into the pushdown

30

LDF* -

table or whether a triplet is to be taken
from the pushdown table is always between
the operator of a term in phase 10 text and
the operator of the top term in the table.
Each comparison is made on the basis of
relative forcing strength., A forcing
strength is a value assigned to an operator
that determines when that operator and its
associated operands are to be placed in
phase 15 text. The relative values of
forcing strengths reflect the hierarchy of
algebraic operations. The forcing
strengths for the various operators appear
in Table 2.

When the arithmetic translator
(ALTRAN-IEKJAL) encounters the first
operator-operand pair (phase 10 text entry)
of a statement, the pushdown table is
empty. Since the translator cannot yet
make a comparison between text entry and
table element, it enters the first text
entry in the top position of the table.

The translator then compares the forcing
strength of the operator of the next text
entry with that of the table element. If
the strength of the text operator is
greater than that of the top (and only)
table element, the text entry
(operator-operand pair) becomes the top
element of the table. The original top
element is effectively "pushed down" to the
next lower position. In Figure 4, the
number-1 section of the drawing shows the
pushdown table at this time.

The operator of the next text entry
(operator C--operand C at section 2) is
compared with the top table element

(operator B--operand B at section 1) in a
similar manner.

Table 2. Operators and Forcing Strengths
r T k|
| | Forcing |
| Operator | Strength |
b - . 1
|End Mark | 1 |
|= | 2 |
R [3 [
le | 6 |
< OR.	7
- AND.	8
« NOT.	9
-EQ., .NE.,	10
l.GT.' QLT.'	l
-GE., .LE.	
+, -, minus(11
[*, 7/	12
++	13
(£ -- left parenthesis after	14
a function name	
(s -- left parenthesis after	15
an array name	
¢ I 16	
L L d

When a comparison of forcing strengths
indicates that the strength of the text
operator (operator C, section 2), is less
than or equal to that of the top table
element (operator B), the table element is
said to be "forced." The forced operator
(operator B) is placed in the new phase 15
text entry (section 3 of the illustration)
with its operand (operand B) and the
operand of the next lower table entry
(operand A). Note that subroutine
ALTRAN-IEKJAL has generated a new operand t
(see section 3) called a "temporary." A
temporary is a compiler-generated operand
in which a preliminary result may be held
during object-module execution.1 With
operator B, operand B, and operand A (a
triplet) removed from the pushdown table,
the previously entered operator-operand
pair (operator A, section 1) now becomes
the top element of the table (section u4).
The ALTRAN-IEKJAL subroutine assigns the
previously generated temporary t as the
operand of this pair. This temporary
represents the previous operation (operator
B--operand A--operand B).

1A given temporary may be eliminated by
phase 20 during optimization.

Section 2:

Comparisons and text-to-table exchanges
continue, a higher strength text operator
"pushing" a phase 10 text entry into the
table and a lower strength text operator
"forcing" the top table operator and its
operands (triplet) from the table. In each
case, the forced table items become the new
phase 15 text entry. An exception to the
general rule is a left parenthesis, which
has the highest forcing strength.

Operators following the left parenthesis
can be forced from the table only by a
right parenthesis, although the intervening
operators (between the parentheses) are of
lower forcing value. When the translator
reaches an end mark in text, its forcing
strength of 1 forces all remaining elements
from the table.

SPECIAL PROCESSING OF ARITHMETIC
EXPRESSIONS: As stated before, arithmetic
translation involves reordering a group of
phase 10 text entries to produce a new
group of phase 15 text entries representing
the same source statement. Certain types
of entries, however, need special handling
(for example, subscripts and functions).
When it has been determined that special
handling is needed, control is passed to
one or more other subroutines (see Chart
07) that perform the desired processing.

The following expressions and terms need
special handling before they are placed in
phase 15 text: complex expressions, terms
involving a unary minus, terms involving
exponentiation, commutative expressions,
subscript expressions, subroutine or
function subprogram references, statement
function references, and expressions
involved in logical IF statements.

Complex Expressions: A complex expression
is converted into two expressions, a real
expression and an imaginary one. For real
elements in the expression, complex
temporaries are generated with zero in the
imaginary part and the real element in the
real part. For example, the complex
expression B + C + 25, 1is treated as:

) 1
| B + C + 25, |
| real real real |
b 4
I B + C + O. I
| imag imag imag |
L. 1]

Discussion of Major Components 31

1. Text in Pushdown Table

2. Phase 10 Text Entries

Operator Operand Operator Operand
Top Element OpB Oprnd B —— - OpC Oprnd C Current phase 10 text entry
Op A Oprnd A Op D Oprnd D Next phase 10 text entry
4. New Top Element of Pushdown 3. New Phase 15 Text Entry
Op A t - OpB l t Oprnd A Oprnd B
Operator Operand 1 Operand 2 Operand 3
NOTE: A phase 15 text entry having an arithmetic operator may be envisioned as
operand 1 = operand 2 - operator - operand 3, where the equal sign is implied.
Figure U4, Text Reordering via the Pushdown Table

An expression is not treated as complex
if the "result" operand (left of the equal
sign in the source statement) is real. In
this case, the translator places only the
real part of the expression in phase 15
text. But if a complex multiplication,
division, or exponentiation is involved in
the expression, the real and imaginary
parts will appear in phase 15 text, but
only the real part of the result will be
used at execution time.

Terms Containing a Unary Minus: In terms
that contain unary minuses, the unary
minuses are combined with additive
operatoxrs (+, -) to reduce the number of
operators. This combining, done by
subroutine UNARY-IEKKUN, may result in
reversed operators or operands or both in
phase 15 text. For example, -(B-C) becomes
Cc-B, and A+(-B) becomes A-B, This process
reduces the number of machine instructions
that phase 25 must generate.

Operations Involving Powers: Several kinds
of special handling are provided by
subroutine UNARY-IEKKUN for operations
involving powers. Multiplications by
powers of two are converted to left shift
operations. A constant integer power of
two raised to a constant integer power is
converted to the equivalent left shift
operation. Last, a constant or variable
raised to a constant integer power is
converted to a series of multiplications
(and a division operation into 1, if the
power is negative). This conversion is a
function of the level of optimization
selected. This handling requires less
execution time than using an exponentiation
subroutine.

32

Commutative Operations: If an operation is
commutative (either operand can be operated
upon, such as in adding or multiplying),
the two operands are reordered to agree
with their absolute locations in the
dictionary.

Subscripts: Subroutines SUBMULT-IEKKSM and
SUBADD-IEKKSA perform subscript processinge.
Subscripted items are processed one at a
time throughout the subscript. If the
subscript itself is an expression, it is
first processed via the translator. Text
entries are then generated to multiply the
subscript variable by the dimension factor
and length. Each subscript item is handled
in a similar manner. When all subscript
items have been processed, phase 15 text
entries are generated to add all subscript
values together to produce a single
subscript value.

In general, during compilation,
constants in subscript expressions are
combined, and their composite value is
placed in the displacement field of the
phase 15 text entry for the subscript item
(see Appendix B, "Phase 15/Phase 20
Intermediate Text Modifications®"). Phase
25 uses the value in the displacement field
to generate, in the resultant object
instructions, the displacement for
referring to the elements in the array.
This combining of constants reduces the
number of instructions needed during
execution to compute the subscript value.

Expressions Referring to In-Line Routines
or Subprograms: Expressions containing
references to in-line routines or
subprograms are processed by the following
subroutines: FUNDRY-IEKJFU, BLTNFN-IEKJBF,
and DFUNCT-IEKJDF.

Arguments that are expressions are
reduced by the translator to a single
temporary, which is used as the argument.
If an argument is a subscripted variable,
subscript processing (previously discussed)
reduces the subscript to a single
subscripted item. Either subroutine
DFUNCT-IEKJDF (for references to library
routines) or subroutine BLTNFN-IEKJBF (for
references to in-line routines) then
conducts a series of tests on the argument
and performs the processing determined by
the results of the tests,

If a function is not external and is in
the function table (IEKLFT) (see Appendix
A, "Function Table"), it is determined if
the required routine is in-line. If the
function is in-line and its mode (or the
mode of its arguments) is not as expected,
it is assumed that the function is
external. If there are no error
conditions, subroutine BLTNFN-IEKJBF either
generates text or substitutes a special
operator (such as those for ABS or FLOAT)
in the phase 15 text so that phase 25 can
later expand the function. Phase 15
provides some in-line routines itself.?1
Instead of placing a special operator in
text, phase 15 inserts a regular operator,
such as the operator for AND or STORE.

If the mode of arguments in a library
function is not as expected, another test
is performed. The test determines whether
or not a previous reference was made
correctly for these arguments. If the
previous reference was as expected, it is
assumed that an error exists. Otherwise,
the function is assumed to be external.

If a function is assumed to be external
(either used in an EXTERNAL statement or
does not appear in the function table),
text is generated to load the addresses of
any arguments that are subscripted
variables into a parameter list. (If none
of the arguments are subscripted variables,
the load address items are not required.)

A text entry for a subroutine or a function
call is then generated. The operator of
the text entry is for an external function
or subroutine reference. The entry points
to the dictionary entry for the name. The
text representation of the argument list is
then generated and placed into the phase 15
text chain.

1BLTNFN-IEKJBF expands the following
functions: TBIT, SNGL, REAL, AIMAG,
DCMPLX, DCONJG, and CONJG.

Section 2:

If a function is in the function table,
but does not represent an in-line routine,
text is generated to load the addresses of
any arguments that are subscripted
variables into a parameter list. (Load
address items are not required if none of
the arguments are subscripted variables.)
A text entry having a library function
operator is generated. This entry points
to the dictionary entry for the function.
The text representation of the argument
list is then generated and placed into the
phase 15 text chain.

Parameter List Optimization: Subroutine
DFUNCT-IEKJDF performs parameter list
optimization. If two or more parameter
lists are identical, all but one can be
eliminated. Likely candidates for
optimization are those parameter lists with
(1) the same number of parameters and (2)
the same nonzero parameters. When two such
lists are found, individual parameters are
compared to determine whether the lists are
actually identical or merely of the same
formate.

To make the comparison easier, the
Parameter List Optimization Table is
formed. 1Its format is:

r L) T T .

			Pointer
			to next
		entry of	
	Number of	Pointer	like for-
Number of	nonzero	to NADCON	mat in
parameters	parameters	table	this
in l1list	in 1list	entry	table
L 4 4] 4			
Ll ! T T 1			
1 byte	1 byte	1 byte	1 byte
R — N — I . J

For each unique parameter list, an entry is
made in the table describing the number of
parameters in the list, the number of non
zero parameters in the list, a pointer to
the adcon table (see Appendix A: "NADCON
Table") and a pointer to the next parameter
list optimization table entry that contains
a like parameter 1list format, but unlike
individual parameters. When a new
parameter list is generated, the parameter
list optimization table is scanned for a
possible identical list. If one is found,
the parameters in the new list are compared
with the parameters in the old list. If
the lists are identical, a pointer to the
old list is used as the new list's pointer.
If the lists are not identical, an entry
for the new list is made in the table and
chained to the last like (in format) entry.
For example:

Discussion of Major Components 33

v T 1

| | [

| Number of |NADCON |Next Entry I

Number of |Nonzero Table of Like I
Parameters!parameters PointerlFormat J
L}

T
|Pointer to

s s e e e

| |
| | I
T 'lr T
20 [16 | | ——|1
i L i
53 1 1
O—20 | 16 | |
L) 1 1
T h T T
|10 [7 | !
b= 1 + + i
| 30 | 25 | | +
[+ { $ 4
H—s20 | 16 | | |
L L + + T
H—=10 | 7 | —
! 4 4 1 4
U—20 [16 |] — |
i 1 4 4 4
r T T 1 T
| f | | |
| | I | |
k b ' + 4
L—s30 | 25 I | I
L 4 i 1 -d

Parameter list optimization is limited
to (1) 100 entries in the parameter list
optimization table or (2) 255 entries in
the adcon table. No further parameter list
optimization is attempted if either limit
is exceeded.

Expressions Containing Statement Function
References: For expressions containing
statement function references, the
arguments of the statement function text
are reduced to single operands (if
necessary). These arguments and their mode
are stored in an argument save table
(NARGSV), which serves as a dictionary for
the statement function skeleton pointed to
by the dictionary entry for the statement
function name. The argument save table is
used in conjunction with the usual pushdown
procedure to generate phase 15 text items
for the statement function reference. When
the translator encounters an operand that
is a dummy argument, the actual argument
corresponding to the dummy is picked up
from the argument save table and replaces
the dummy argument.

Logical Expressions: Subroutines
ALTRAN-IEKJAL, ANDOR-IEKJAN, and
RELOPS-IEKKRZ perform a special process,
called anchor point, on logical expressions
containing relational operators, ANDs, ORs,

and NOTs, so that, at object time, unneces-
sary logical tests are eliminated. With
anchor-point "optimization," only the

minimum number of object-time logical tests
are made before a branch or fall-through

34

occurs. For example, with anchor-point
handling, the statement IF(A.AND.B.AND.C)
GO TO 500 will produce (at object time) a
branch to the next statement if A is false,
because B and C need not be tested. Thus,
only a minimum number of operands will be
tested., Without anchor-point handling of
the expression during compilation, all
operands would be tested at object time.
Similar special handling occurs for text
containing logical ORs.

When a primary adjective code for a
logical IF statement or an end-of-DO IF is
placed in the pushdown table, a scan of
phase 10 text determines whether or not the
associated statement can receive
anchor-point handling. The statement can

‘receive anchor-point handling if two

conditions are met. There must not be a
mixture of ANDs and ORs in the statement.

A logical expression, if it is in
parentheses, must not be negated by the NOT
operator. If these two conditions are not
met, special handling of the logical
expression does not occur.

Gathering Constant/Variable Usage
Information

During the conversion of the phase 10
text entries that follow the beginning of a
text block (i.e., the text entries that
follow a statement number definition) to
phase 15 format, the PHAZ15 subroutine
MATE-IEKLMA gathers usage information for
the variables and constants in that block.
This information is required during the
processing of the optimizer path through
phase 20 (see "Phase 20"). If optimizer
processing is not selected, this
information is not compiled. Subroutine
MATE-IEKLMA records the usage information
in three fields (Mvs, MVF, and MVX), each
128 bits long, of the statement number text
entry for the block (see Appendix B, "Phase
15 Intermediate Text Modifications"). The
MVS field indicates which variables are
defined (i.e., appear in the operand 1
position of a text entry) within the text
of the block. The MVF field indicates
which variables, constants, and base
variables (see "Adcon and Base Variable
Assignment" under "CORAL Processing") are
used (i.e., appear in either the operand 2
or operand 3 position of a text entry)
within the text of the block. The MVX
field indicates which variables are defined
but not first used (not busy-on-entry)
within the text of the block. The MVX
information is gathered for the second
level of optimization only.

Subroutine MATE-IEKLMA records the usage
information for a variable or constant at a
specific bit location within the three
fields. (Base variables are processed
during CORAL processing.) The bit location
at which the usage information is recorded
is determined from the coordinate assigned
to the variable or constant by subroutine
IEKKOS.

After a phase 15 text entry has been
formed, subroutine MATE-IEKLMA is given
control to determine and record the usage
information for the text entry. It
examines the text entry operands in the
order: operand 2, operand 3, operand 1.
If operand 2 has not been assigned a
coordinate, subroutine MATE-IEKLMA assigns
it the next coordinate, enters the
coordinate number into the dictionary entry
for the operand, and places a pointer to
that dictionary entry into the MVD table
entry associated with the assigned
coordinate number, After MATE-IEKLMA has
assigned the coordinate, or if the operand
was previously assigned a coordinate, it
records the usage information for the
operand. The operand's associated
coordinate bit in the MVF field (of the
statement number text entry for the block
containing the text entry under
consideration) is set to on, indicating
that the operand is used in the block.
Subroutine MATE-IEKLMA executes a similar
procedure to process operand 3 of the text
entry.

If operand 1 of the text entry has not
been assigned a coordinate, the MATE-IEKLMA
subroutine assigns the next coordinate to
it and records the following usage
information for operand 1:

e Its associated coordinate bit in the
MVX field is set to on only if the
associated coordinate bit in the MVF
field is not on. (If the associated
MVF bit is on, operand 1 of the text
entry was previously used in the block
and, therefore, is not not busy-on-
entry.)

e Tts associated coordinate bit in the
Mvs field is set to on, indicating that
it is defined within the block.

This process is repeated for all of the
phase 15 text entries that are formed
following the construction of a statement
number text entry and preceding the
construction of the next statement number
text entry. When the next statement number
text entry is constructed, all of the usage
information for the preceding block has
been recorded in the statement number text
entry that begins that block. The same
procedure is followed to gather the usage
information for the next text block.

Section 2:

Gathering Forward-Connection Information

An integral part of the processing of
PHAZ15 is the gathering of
forward-connection information, which
indicates the specific text blocks that
pass control to other specified text
blocks. Forward-connection information is
used during phase 20 optimization.

Forward-connection information is
recorded in a table called RMAJOR. Each
RMAJOR entry is a pointer to the statement
number entry associated with a statement
number that is the object of a branch or a
fall-through. Because each statement
number entry contains a pointer to the text
block beginning with its associated
statement number (see "Text Blocking"),
each RMAJOR entry points indirectly to a
text block.

For each new text block, PHAZ15 places a
pointer to the next available entry in
RMAJOR into the forward-connection field of
the associated statement number entry (see
Appendix A, "Statement Number/Array
Table"). Thus, the statement number entry
associated with the text block points to
the first entry in RMAJOR in which the
forward-connection information for that
block 'is to be recorded.

After starting a text block, PHAZ15
converts the phase 10 text following the
statement number definition to phase 15
text. As each phase 15 text entry is
formed, it is analyzed to determine whether
it is a GO TO or compiler generated branch.
If it is either, a pointer to the statement
number entry for each statement number to
which a branch may be made as a result of
the execution of the GO TO or generated
branch is recorded in the next available
entry in RMAJOR. (If two or more branches
to the same statement number appear in the
block only one entry is made in RMAJOR for
the statement number to which a branch is
to be made.)

When PHAZ15 encounters the next
statement number definition, it starts a
new blocke If the new block is an entry
block, PHAZ1S5 saves a pointer to its
associated statement number entry for
subsequent use and processes the text for
the block.

If the new block is neither an entry
block nor an entry point (i.e., a block
immediately following an entry block),
PHAZ15 records the fall-through connection

Discussion of Major Components 35

information (if any) for the previous
block. If the previous block is terminated
by an unconditional branch, it does not
fall-through to the new block. If the
previous block can fall-through to the new
block, PHAZ15 records a pointer to the
statement number entry for the new block in
the next location of RMAJOR., It then flags
this as the last forward connection for the
previous block.

If the new block is an entry point
(i.e., a block immediately following an
entry block), PHAZ15 records the
fall-through connection (if any) for the
previous non-entry block. It does this in
the manner described in the previous
paragraph. It then records the
forward-connection information for all
intervening entry blocks (i.e., entry
blocks between the previous non-entry block
and the new block). (PHAZ15 has saved
pointers to the statement number entries
for all intervening entry blocks.) Each
such entry block passes control directly to
the new block and therefore has only one
forward connection. To record the forward
connection information for the intervening
entry blocks, PHAZ15 places a pointer to
the next available entry in RMAJOR into the
forward connection field of the statement
number entry for the first intervening
entry block. In this RMAJOR entry, PHAZ15
records a pointer to the statement number
entry for the new block. It flags this
entry as the last, and only, RMAJOR entry
for the entry block. PHAZ15 repeats this
procedure for the remaining intervening
entry blocks (if any). PHAZ15 then
proceeds to process the new text block.

When all the connection information for
a block has been gathered, each RMAJOR
entry for the block, the first of which is
pointed to by the statement number entry
for the block and the last of which is
flagged as such, points indirectly to a
block to which that block may pass control.

Figure 5 illustrates the end result of
gathering forward-—-connection information
for sample text blocks. Only the
forward-connection information for the
blocks beginning with statement numbers 10

36

and 20 is shown. In the illustration, it

is assumed that:

 The block started by statement number
10 may branch to the blocks started by
statement numbers 30 and 40 and will
fall-through to the block started by
statement number 20 if neither of the
branches is executed.

e The block started by statement number
20 may branch to the blocks started by
statement numbers 40 and 50 and will
fall-through to the block started by
statement number 30 if neither of the
branches is executed.

Reordering the Statement Numbexr Chain

After text blocking, arithmetic
translation, and if complete optimization
has been specified, the gathering of
constant/variable usage information, been
completed, subroutine PHAZ15-IEKJA reorders
the statement number chain of the
information table (see Appendix 3,
"Information Table"). The original
sequence of the entries in this chain, as
recorded by phase 10, was in the order of
the occurrence of their associated
statement numbers as either definitions or
operands. The new sequence of the entries
after reordering is made according to the
occurrence of their associated statement
numbers as definitions only.

Although the actual reordering takes
place after the scan of the phase 10 text,
preparation for it takes place during the
scan. As each statement number definition
is encountered, a pointer to the related
statement number entry is recorded. Thus,
during the course of processing, a table of
pointers to statement number entries, which
reflects the sequence in which statement
numbers are defined in the module, is
built. The order of the entries in this
table also reflects the sequence of the
text blocks of the module.

INFORMATION TABLE

PHASE 15 TEXT

Statement

Statement

RMAJOR
—= 30

Statement

- 40 1

* —= 20

— 40

- 50
* - 30

Statement

LDF ’ | | — 10
Statement Number Entry for 10 [
l -1 LDF 1 | | — 20
10 | 1
-J ‘
Number Entry for 20
-1 LDF l | I - 30
20 | J il
Number Entry for 30
| -
B) or || e
]
Number Entry for 40
| =
40 |
-J
Number Entry for 50 ™
-q LDF l | | — 50
50 |]
| _J
|
L

e Figure 5. Forward-Connection Information

After the scan, subroutine PHAZ15-IEKJA
uses this table to reorder the statement
number entries, It places the first table
pointer into the appropriate field of the
communication table (see Appendix A,
"Communication Table™); it places the
second table pointer into the chain field
of the statement number entry that is
pointed to by the pointer in the
communication table; it places the third
table pointer into the chain field of the
statement number entry that is pointed to
by the chain field of the statement number
entry that is pointed to by the pointer in
the communication table; etc. When
subroutine PHAZ15-IEKJA has performed this
process for all pointers in the table, the
entries in the statement number chain are
arranged in the sequence in which their
associated statement numbers are defined in
the module. The new order of the chain
also reflects the sequence of the text
blocks of the module.

Gathering Backward-Connection Information

After the statement number chain has
been reordered, and if optimization has

Section 2:

been specified, subroutine PHAZ15-IEKJA
gathers backward-connection information.
This information indicates the specified
text blocks that receive control from
specific other text blocks.
Backward-connection information is used
extensively throughout phase 20
optimization.

Subroutine PHAZ15-IEKJA uses the
reordered statement number chain and the
information in the forward connection table
(RMAJOR) to determine the backward
connections. It records
backward-connection information in a table
called CMAJOR in subroutine C1520-IEKJA2,
Each CMAJOR entry made by subroutine
PHAZ15-IEKJA for a particular text block
(block I) is a pointer to the statement
number entry for a block from which block I
may receive control. Because each
statement number entry contains a pointer
to its associated text block (see "Text
Blocking"), each CMAJOR entry for block I
points indirectly to a block from which
block I may receive control.

Subroutine PHAZ15-IEKJA gathers
backward-connection information for the
text blocks according to the order of the
statement number chain. It first

Discussion of Major Components 37

determines and records the
backward-connections for the text block
associated with the initial entry in the
statement number chain, then gathers the
backward-connection information for the
block associated with the second entry in
the chain; etc.

For each text block, subroutine
PHAZ15-IEKJA initially records a pointer to
the next available entry in CMAJOR in the
backward-connection field (JLEAD) of the
associated statement number entry (see
Appendix A, "Statement Number/Array
Table®"). Thus, the statement number entry
points to the first entry in CMAJOR in
which the backward-connection information
for the block is to be recorded.

Then, to determine the
backward-connection information for the
block (block I), subroutine PHAZ15-IEKJA
obtains, in turn, each entry in the
statement number chain. (The entries are
obtained in the sequence in which they are
chained.) After the PHAZ15-IEKJA
subroutine has obtained an entry, it picks
up the forward-connection field (ILEAD) of
that entry. This field points to the
initial RMAJOR entry for the text block
associated with the obtained statement
nunber entry. (Note: RMAJOR entries for a
block indicate the blocks to which that
block may pass control.) Subroutine
PHAZ15-IEKJA searches all RMAJOR entries
for the block associated with the obtained
entry for a pointer to the statement number
entry for block I. If such a pointer
exists, the text block associated with the
obtained statement number entry may pass
control to block I. Therefore, block I may
receive control from that block and
subroutine PHAZ15-IEKJA records a pointer
to its associated statement number entry in
the next available entry in
CMAJOR. Subroutine PHAZ15-IEKJA repeats
this procedure for each entry in the
statement number chain., Thus, it searches
all RMAJOR entries for pointers to the
statement number entry for block I and

38

records in CMAJOR a pointer to the
statement number entry for each text block
from which block I may receive control.
The PHAZ15-IEKJA subroutine flags the last
entry in CMAJOR for block I. When the
statement number chain has been completely
searched, subroutine PHAZ15-IEKJA has
gathered all the backward-connection
information for block I. Each entry that
the PHAZ15-IEKJA subroutine has made for
block I, the first of which is pointed to
by the statement number entry for block I
and the last of which is flagged, points
indirectly to a block from which block I
may receive control.

Subroutine PHAZ15-IEKJA gathers the
backward-connection information for all
blocks in the aforementioned manner. When
all of this information has been gathered,
control is returned to the FSD, which calls
CORAL, the second segment of phase 15,

Figure 6 illustrates the end result of
the gathering of backward-connection
information for sample text blocks. Only
the backward-connections for the blocks
beginning with statement numbers 40 and 50
are shown. In the illustration, it is
assumed that:

e The block started by statement number
40 may receive control from the
execution of branch instructions that
reside in the blocks started by
statement numbers 10 and 20 and that it
may receive control as a result of a
fall-through from the block started by
statement number 30.

e The block started by statement number
50 may receive control from the
execution of a branch instruction that
resides in the block started by
statement number 20 and that it may
receive control as a result of a
fall-through from the block started by
statement number 40,

INFORMATION TABLE PHASE 15 TEXT

Statement Number Entry for 10 LDE I | l — 10
1 7 -
10
|
LDF I | ‘ —= 20
Statement Number Entry for 20 |
= -
20 | L o
-4
LDF ‘ [— 30
CMAJOR —
N > 10 Statement Number Entry for 30
— 20 l -
* —» 30 30 J‘ >
—» 20 - LDF ‘ | \ —» 40
* —» 40 1
Statement Number Entry for 40
O -
40 |
-
o
LDF ‘ | —= 50
Statement Number Entry for 50 J
| -
50 !
J
L
e Figure 6. Backward-Connection Information
CORAL PROCESSING to accomplish various functions. These
routines are:
CORAL, the second segment of phase 15,
performs the following functions: o IEKGCZ, which keeps track of space
being allocated; generates adcons
e Data text conversion needed for address computation in the
object module; rechains data text in
e Relative address assignment ‘ the. sequence of variable assignment;
generates adcons necessary for COMMON,
¢ Data text rechaining EQUIVALENCE, and EXTERNAL references;
and sets up error table entries to be
¢ Namelist statement processing used by phase 30 if errors occur.
e Define file text processing o NDATA-IEKGDA, which processes phase 10

data text.
e Initial value assignment

e EQVAR-IEKGEV, which handles COMMON and

¢ Adcon table space reservation EQUIVALENCE space allocation.
¢ NLIST-IEKTNL, which processes namelist
CORAL consists of a main subroutine, text.
CORAL-IEKGCR, which controls the flow of
space allocation for variables, constants, ¢ DFILE-IEKTDF, which processes define
and any adcons necessary for local file text.
variables, COMMON, EQUIVALENCE, and
EXTERNAL references. Embedded in e DATOUT-IEKTDT, which processes data
subroutine CORAL-IEKGCR are the routines text.
that process constants, local variables,
and external references. The CORAL-IEKGCR Chart 09 shows the overall logic flow of

subroutine calls other routines in phase 15 CORAL.

Section 2: Discussion of Major Components 39

Translation of Data Text

The first section of CORAL, subroutine
NDATA-IEKGDA, translates data text entries
from their phase 10 format to a form more
easily processed by another CORAL
subroutine, DATOUT-IEKTDT. Each phase 10
data text entry (except for initial
housekeeping entries) contains a pointer to
a variable or constant in the information
table, Each variable in the series of
entries is to be assigned to a constant
appearing in another entry. Placed in
separate entries, variable and constant
appear to be unrelated. In each phase 15
data text entry, after translation, each
related variable and constant are paired
(they appear in adjacent fields of the same
entry).

The following example shows how a series
of phase 10 data text entries are
translated by the NDATA-IEKGDA subroutine
to yield a smaller number of phase 15 text
entries, with each related constant and
variable paired. Assume a statement
appearing in the source module as DATA
A,B/2%0/. The resulting phase 10 text
entries appear as follows (ignoring the
chain, mode, and type fields, and the
initial housekeeping entry):

r _ - T |
| Adjective | |
| Ccode for: | Pointer |
- B 1
| 0 | Pointer to A |
| | in dictionary |
F 1 1
| ‘ | Pointer to B |
| | in dictionary |
L 4 {
r T

| / I 2 |
1] d
r T - 1
| * | Pointer to 0 |
| | in dictionary |
b ¢ {
I / | 0 |
L L 4

Note that the variables A and B and the
constant value 0 appear in separate text
entries, The NDATA-IEKGDA subroutine
translation of the above phase 10 entries
(ignoring the contents of the indicator and
chain fields, and two optional fields
needed for special cases) appears as
follows:

40

] T T - T - 1
|Indicator| Chain |P1 Field |P2 Field |
L 4 L —_—t 4
I] T . T R A
		pointer	pointer
		[to A in	to 0 in
		dictionary	{dictionary
t : - $-—- i			
		pointer	pointer
		to B in	to 0 in
		dictionary	dictionary
L L 1 AL —_—d

In this case, each variable and its
specified constant value appear in adjacent
fields of the same phase 15 text entry.

For the detailed format of the phase 15
data text entry and the use of the special
fields not discussed, see Appendix B,
"Phase 15720 Intermediate Text
Modification".

Relative Address Assignment

The chief function of CORAL is to assign
relative addresses to the operands
(constants and variables) of the source
module. The addresses indicate the
locations, relative to zero, at which the
operands will reside in the object module
resulting from the compilation. The
relative address assigned to an operand
consists of an address constant and a
displacement. These two elements, when
added together, form the relative address
of the operand. The address constant for
an operand is the base address value used
to refer to that operand in main storage.
Address constants are recorded in the adcon
table (NADCON) and are the elements to
which the relocation factor is added to
relocate the object module for execution.
The displacement for an operand indicates
the number of bytes that the operand is
displaced from its associated address
constant. Displacements are in the range
of 0 to 4095 bytes., The relative address
assigned to an operand is recorded in the
information table entry for that operand in
the form of:

1. A numeric displacement from its
associated address constant.

2, A pointer to an information table
entry that contains a pointer to the
associated address constant in the
adcon table.

Relative addresses are assigned through
use of a location counter. This counter is
continually updated by the size (in bytes)
of the operand to which an address is
assigned. The value of the location
counter is used to:

e Compute the displacement to be assigned
to the next operand.

e Determine when the next address
constant is to be established. (If the
displacement reaches a value in excess
of 4095, a new address constant is
established.)

CORAL assigns addresses to source module
operands in the following order:

® Constants.

e Variables.

e Arrays.

e Equivalenced variables and arrays.

e COMMON variables and arrays, including
variables and arrays made common using
the EQUIVALENCE statement,

The manner in which addresses are assigned
to each of these operand types is described
in the following paragraphs. Because
constants and variables are processed in
the same manner, they are described
together,

constants and Variables: Subroutine
CORAL-IEKGCR first assigns relative
addresses to the constants of the module.
As each constant is assigned a relative
address, subroutine CORAL-IEKGCR calls the
FSD subroutine, IEKTLOAD, to place the
constant in the object module in the form
of TXT records. Addresses are then
assigned to variables. (In the subsequent
discussion, constants and variables are
referred to collectively as operands.) The
first operand is assigned a displacement of
zero plus the length of the save area,
parameter list, and branch table. Operands
that are assigned locations within the
first 4096 bytes of the range of base
register 13 are not explicitly assigned an
address constant. Such operands use the
base address value loaded into reserved
register 13 as their address constant. The
displacement is recorded in the information
table entry for that operand. The location
counter is then updated by the size in
bytes of the operand.

The next operand is assigned a
displacement equal to the current value of
the location counter minus the base address
value in register 13, The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated, and the value of the displacement
is tested to see whether or not it exceeds
4095. If it does not, the next operand is
processed as described above,

Section 2:

If sufficient operands exist to cause
the displacement to achieve a value in
excess of 4095, the first address constant
is established. The value of this address
constant equals the location counter value
that caused its establishment. This
address constant becomes the current
address constant and is saved for
subsequently assigned relative addresses.
The displacement value is then reset to
zero and the next operand is considered.

After the first address constant is
established, it is used as the address
constant portion of the relative addresses
assigned to subsequent operands.

When the value of the displacement again
reaches a value in excess of #4095, another
address constant is established. Its value
is equal to the current address constant
plus the displacement that caused the
establishment of the new address constant.
This new address constant then becomes
current and is used as the address constant
for subsequent operands. The displacement
is then reset to zero and the next operand
is processed. This overall process is
repeated until all operands (constants and
variables) are processed. Source module
arrays are then considered for relative
address assignment.

Arrays: Subroutine CORAL-IEKGCR then
assigns to each array of the source module
that is not in COMMON a relative address
that is less than (by the span of the
array) the relative address at which the
array will reside in the object module.
(The concept of span is discussed in
Appendix E.) The actual relative address
at which an array will reside in the object
module is derived from the sum of address
constant and displacement that are current
at the time the array is considered for
relative address assignment. The array
span is subtracted from the relative
address to facilitate subscript
calculations.

Subroutine CORAL-IEKGCR subtracts the
span in one of two ways. If the span is
less than the current displacement, it
subtracts the span from that displacement,
and assigns the result as the displacement
portion of the relative address for the
array. In this case, the address constant
assigned to the array is the current
address constant. If the span is greater
than the current displacement, the
CORAL-IEKGCR subroutine subtracts the span
from the sum of the current address
constant and displacement. The result of
this operation is a new address constant,
which does not become the current address
constant. Subroutine CORAL-IEKGCR assigns
the new address constant and a displacement
of zero to the array. It then adds the

Discussion of Major Components 41

total size of the array to the location
counter, obtains the next arxrray, and tests
the value of the displacement. If the
value of the displacement does not exceed
4095, the CORAL-IEKGCR subroutine does not
take any additional action before it
processes the next array. If the
displacement value exceeds 4095, the
CORAL-IEKGCR subroutine establishes a new
address constant, resets the displacement
value and processes the next array. After
all arrays have relative addresses,
subroutine CORAL-IEKGCR calls subroutine
EQVAR-IEKGEV to assign address to
equivalence variables and arrays that are
not in common.

Equivalence Variables and Arrays Not in
COMMON: In assigning relative addresses to
equivalence variables and arrays,
subroutine EQVAR-IEKGEV attempts to
minimize the number of required address
constants by using, if possible, previously
established address constants as the base
addresses for equivalence elements.
Subroutine EQVAR-IEKGEV processes
equivalence information on a group-by-group
basis, and assigns a relative address, in
turn, to each element of the group. Prior
to processing, subroutine EQVAR-IEKGEV
determines the base value for the group.
The base value is the relative address of
the head®? of the group. The base value
equals the sum of the current address
constant and displacement (location counter
value). After the EQVAR-IEKGEV subroutine
has determined the base value, it obtains
the first (or next) element of the group
and computes its relative address. The
relative address for an element equals the
sum of the base value for the group and the
displacement of the element. The
displacement for an element is the number
of bytes that the element is displaced from
the head of the group (see "COMMON and
EQUIVALENCE Processing"). The EQVAR-IEKGEV
subroutine then compares the computed
relative address to the previously
established address constants. If an
address constant is such that the
difference between the computed relative
address and the address constant is less
than 4095, the EQVAR-IEKGEV subroutine
assigns that address constant to the
equivalence element under consideration.
The displacement assigned in this case is
the difference between the computed
relative address of the element and the
address constant. Subroutine EQVAR-IEKGEV
then processes the next element of the
group.

1The head of an equivalence group is the
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.

42

If the desired address constant does not
exist, subroutine EQVAR-IEKGEV establishes
a new address constant and assigns it to
the element. The value of the new address
constant is the relative address of the
element. The EQVAR-IEKGEV subroutine then
assigns the element a displacement of zero,
and processes the next element of the
group. When all elements of the group are
processed, subroutine EQVAR-IEKGEV computes
the base value for the next group, if any.
This base value is equal to the base value
of the group just processed plus the size
of that group. The next group is then
processed.

COMMON Variables and Arrays: Subroutine
EQVAR-IEKGEV considers each COMMON block of
the source module, in turn, for relative
address assignment. For each COMMON block,
subroutine EQVAR-IEKGEV assigns relative
addresses to (1) the variables and arrays
of that block, and (2) the variables and
arrays equivalenced into that COMMON blocke.
(The processing of variables and arrays
equivalenced into COMMON is described in a
later paragraph.)

Because COMMON blocks are considered
separate control sections, the EQVAR-IEKGEV
subroutine assigns each COMMON block of the
source module a relocatable origin of zero.
It achieves the origin of zero by assigning
to the first element of a COMMON block a
relative address consisting of an address
constant and a’displacement whose sum is
zero. For example, both the address
constant and the displacement for the first
element in a block can be zero. Also, the
address constant can be -16 and the
displacement +16. Note that the address
constant in the latter case is negative.
Negative address constants are permitted,
and may be a by-product of the assignment
of addresses to COMMON variables and
arrays. They evolve from the manner in
which the relative addresses are assigned
to arrays. A relative address assigned to
an array is equal to its actual relative
address minus the span of that array. The
actual relative address of each array in a
common block is equal to the displacement
computed for it during COMMON and
EQUIVALENCE processing. From the
displacement of each array in the COMMON
block under consideration, subroutine
EQVAR-IEKGEV subtracts the span of that
array. The result then replaces the
previously computed displacement for the
array. If the result of one or more of
these computations yields a negative value,
the EQVAR-IEKGEV subroutine uses the most
negative as the initial address constant
for the COMMON block. It then assigns each
element (variable or array) in the COMMON
block a relative address. This address
consists of the negative address constant
and a displacement equal to the absolute

value of the address constant plus the
displacement of the element.

If the computations that subtract spans
from displacements do not yield a negative
value, subroutine EQVAR-IEKGEV establishes
an address constant with a value of zero as
the initial address constant for the COMMON
block. It then assigns each element in the
block a relative address consisting of the
address constant (with zero value) and a
displacement equal to the displacement of
the element.

If at any time the displacement to be
assigned to an element exceeds #4095, the
EQVAR-IEKGEV subroutine establishes a new
address constant., This address constant
then becomes the current address constant
and is saved for inclusion in subsequently
assigned addresses. After the new address
constant is established, the relative
address assigned to each subsequent element
consists of the current address constant
and a displacement equal to the
displacement of that element minus the
value of the current address constant.
After the entire common block is processed,
variables and arrays that are equivalenced
into that common block are assigned
relative addresses.

Variables and Arrays Equivalenced into
Common: Subroutine EQVAR-IEKGEV processes
variables and arrays that are equivalenced
into common in much the same manner as
those that are equivalenced, but not into
common, However, in this case, the base
value for the group is zero. Only those
address constants established for the
common block into which the variables and
arrays are equivalenced are acceptable as
address constants for those variables and
arrays.

Adcon and Base Variable Assignment: As
CORAL establishes a new address constant
and enters it into the adcon table, it also
places an entry in the information table.
This special entry, called an "adcon
variable," points to the new address
constant. All operands that have been
assigned relative addresses will have
pointers to the adcon variable for their
address constant. The adcon variables
generated for operands are assigned
coordinates, via the MCOORD vector and the
MVD table. Coordinates 81 through 128 are
reserved for base variables; however, some
base variables may be assigned coordinates
less than 81 if less than 80 coordinates
are assigned during the gathering of
variable and constant usage information
(see PHAZ15, "Gathering Constant/ Variable
Usage Information®). Having been assigned
coordinates, the adcon variables are now
called base variables. Only those operands
receiving coordinate assignments are

Section 2:

available for full register assignment
during phase 20,

Rechaining Data Text

During the assignment of relative
addresses to variables, subroutine IEKGCZ
rechains the data text entries. Their
previous chaining (set by phase 10) was
according to their sequence in the source
program., The IEKGCZ subroutine now chains
the data text entries according to the
sequence of relative addresses it assigns
to variables. Thus, data text entries are
now chained in the same relative sequence
in which the variables will appear in the
object module. This sequence simplifies
the generation of text card images by phase
25.

DEFINE_FILE Statement Processing

If the source module contains DEFINE
FILE statements, subroutine DFILE-IEKTDF
converts phase 10 define file text to
object-time parameters. These parameters
provide the Library routine IHCFDIOSE with
the information required to implement
direct access READ, WRITE, and FIND
statements.

A parameter entry is made for each unit
specified in a DEFINE FILE statement. This
entry contains the unit number, the
relative address of the number of records,
a character ('L', 'E', or 'U') indicating
the type of formatting to be used, the
relative address of the maximum record
size, an indicator for the size (four bytes
or two bytes) of the associated variable,
and the relative address of the associated
variable.

Subroutine DFILE-IEKTDF places the
parameter entries along with their relative
addresses into TXT records. It also places
the relative address of the first define
file entry into the communication table for
later use by phase 25.

NAMELIST Statement Processing

If the source module contains READ/WRITE
statements using NAMELIST statements,
subroutine NLIST-IEKTNL converts phase 10
namelist text to object-time namelist
dictionaries. The object-time namelist
dictionaries provide the Library routine
TIHCFCOMH with the information required to

Discussion of Major Components 43

implement READ/WRITE statements using
namelists (see Appendix A, "Namelist
Dictionaries®"). The dictionary developed
for each 1list in a NAMELIST statement
contains the following:

¢ An entry for the namelist name.

* Entries for the variables and arrays
associated with the namelist name.

e An end mark of zeros terminating the
list.

Each entry for a variable contains the
name, mode (e.g., integer*2 or real#*4), and
relative address of the variable. Both the
address and the mode are obtained from the
dictionary entry for the variable.

Each entry for an array contains the
name of the array, the mode of its
elements, the relative address of its first
element, and the information needed to
locate a particular element of the array.
Subroutine NLIST-IEKTNL obtains the
foregoing information from the information
table.

The NLIST-IEKTNL subroutine places the
entries of the namelist dictionary along
with their relative addresses into TXT
records. It also places the relative
address of the beginning of the namelist
dictionary into the address constant for
the namelist name.

Initial Value Assignment

CORAL assigns the initial values
specified for variables and arrays in phase
15 data text in the following manner:

1. The relative address of the variable
or array to be assigned an initial
value(s) is obtained and placed into
the address field of a TXT record.

2. Each constant (one per variable) that
has been specified as an initial value
for the variable or array is then
obtained and entered into a TXT
record. (A number of TXT records may
be required if an array is being
processed.)

Such action effectively assigns the
initial value, because the relative address
of the initial value has been set to equal
the relative address of its associated
variable or array element.

uy

Reserving Space in the Adcon Table

After relative address assignment is
completed, subroutine CORAL-IEKGCR calls
the IEKTLOAD subroutine (via IEKGCZ) to
place an adcon in the object module for
special references. Subroutine
CORAL-IEKGCR scans the operands of the
information table to detect any of these
references: call-by-name variables, names
of library routines, namelist names, and
external references. The byte-A and byte-B
usage fields of each information table
entry informs subroutine CORAL-IEKGCR
whether or not a particular reference
belongs to one of these categories. For
each special reference that the
CORAL~IEKGCR subroutine detects, subroutine
IEKGCZ calls subroutine IEKTLOAD to place
the needed address constants in the
reserved spaces of the object module.

Creating Relocation Dictionary Entries

The relocation dictionary is composed of
entries for the address constants of the
object module. One relocation dictionary
entry (an RLD record) is constructed by
subroutine CORAI-IEKGCR for each address it
encounters. If the address constant is for
an external symbol, the RLD record
identifies the address constant by
indicating:

e The control section to which the
address constant belongs.

e The location of the address constant
within the control section.

e The symbol in the external symbol
dictionary whose value is to be used in
the computation of the address
constant.

If the address constant is for a local
symbol (i.e., a symbol that is located in
the same control section as the address
constant), the RLD record identifies the
address constant by indicating the control
section to which the address constant
belongs and its location within that
section.

For a more detailed discussion of the
use and format of an RLD record, refer to
the publication IBM System/360 Operating
System: Linkage Editor, Program Logic
Manual, Form Y28-6610.

Creating External Symbol Dictionary Entries

The external symbol dictionary contains
entries for external symbols that are
defined or referred to within the module.
An external symbol is one that is defined
in one module and referred to in another.
One external symbol dictionary entry (an
ESD record) is constructed by subroutine
IEKGCZ for each external symbol it
encounters. The entry identifies the
symbol by indicating its type and location
within the module. The ESD records
constructed by subroutine IEKGCZ are:

* ESD-0 -- This is a section definition
record and an entry point definition
record for the source module being
compiled.

e ESD-2 -- This record is generated for
an external subprogram name.

e ESD-5 -- This record is a section
definition record for a common block
(either named or blank).

For a more complete discussion of the
use and the format of these records, refer
to the publication IBM System/360 Operating

System: Linkage Editor, Program Logic
Manual.

PHASE 20

The primary function of phase 20 is to
produce a more efficient object module
(perform optimization). However, even if
the applications programmer has specified
no optimization, phase 20 assigns registers
for use during execution of the object
module,

For a given compilation, the
applications programmer may specify OPT=0
(no optimization), or either of the
following levels of optimization: OPT=1 or
OoPT=2, Thus, the functions performed by
phase 20 depend on the optimization
specified for the compilation.

e If no optimization (OPT=0) has been
specified, phase 20 assigns to
intermediate text entry operands the
registers they will require during
object module execution (this is called
basic_register assignment). As part of
this function, phase 20 also provides
information about the operands needed
by phase 25 to generate machine
instructions. Both functions are
implemented in a single,
block-by-block, top-to-bottom (i.e.,
according to the order of the statement

number chain), pass over the phase 15
text output. The end result of this
processing is that the register and
status fields of the phase 15 text
entries are filled in with the
information required by phase 25 to
convert the text entries to machine
language form (see Appendix B, "Phase
20 Intermediate Text Modifications").
Basic register assignment does not take
full advantage of the available general
and floating-point registers, and it
does not specify the generation of
machine instructions that keep operand
values in registers (wherever possible)
for use in subsequent operations
involving them.

If the OPT=1 level of optimization has
been specified, two processes are
carried out:

1. The first process, called full
register assignment, performs the
same two functions as basic
register assignment. However,
full register assignment takes
greater advantage of available
registers and provides information
that enables machine instructions
to be generated that keep operand
values in registers for subsequent
operations. An attempt is also
made to keep the most frequently
used operands in registers
throughout the execution of the
object module. Full register
assignment requires a number of
passes over the phase 15 text.

The basic unit operated upon is
the text block (see Phase 15,
"Text Blocking®”). The end result
of full register assignment, like
that of basic register assignment,
is that the register and status
fields of the phase 15 text
entries are filled in with the
information required by phase 25.

2. The second process, called branch
optimization, generates RX-format
branch instructions in place of
RR-format branch instructions
wherever possible. The use of
RX-format branches eliminates the
need for an instruction to load
the branch address into a general
register, However, branch
optimization first requires that
the sizes of all text blocks in
the module be determined so that
the branch address can be found.

» If the OPT=2 level of optimization has

been specified, optimization is
performed on a "loop-by-loop" basis.
Therefore, before processing can be
initiated, phase 20 must determine the

Section 2: Discussion of Major Components 45

structure of the source module in terms
of the loops within it and the
relationships (nesting) among the
loops. Then phase 20 determines the
order in which loops are processed,
beginning with the innermost (most
frequently executed) loop and
proceeding outward. The second level
of optimization involves three general
procedures:

1. The first, called text
optimization, eliminates
unnecessary text entries from the
loop being
processed. For example, redundant
text entries are removed and,
wherever possible, text entries
are moved to outer loops, where
they will be executed less often.

2. The second procedure is full
register assignment, which is
essentially the same as in the
first level of optimization, but
is more effective, because it is
done on a loop-by-loop basis.

3. The final procedure is branching
optimization, which is the same as
in the OPT=1 path.

CONTROL FLOW

In phase 20, control flow may take one
of three possible paths, depending on the
level of optimization chosen (see Chart
10). Phase 20 consists of a control
routine (LPSEL-IEKPLS) and six routine
groups. (Table 12 is a directory of the
subroutines used by these six groups. In
addition, Table 13 contains the list of
utility routines called by the subroutines
in the various groups.) The control
routine controls execution of the phase.
All paths begin and end with the control
routine., The first group of routines
performs basic register assignment. This
group is executed only in the control path
for non-optimized processing. The second
group performs full register assignment.
control passes through this group in the
paths for both levels of optimization. The
third group of routines performs branch
optimization and is also used in the paths
for both levels of optimization. The
fourth group determines the structure of
the source module and is used only in the
path for OPT=2 optimization. The fifth
group performs loop selection and again is
only executed in OPT=2 optimization. The
final group performs text optimization and
is used only in OPT=2 optimizatione.

46

The control routine governs the sequence
of processing through phase 20. The
processing sequence to be followed is
determined from the optimization level
specified by the FORTRAN programmer.
optimization is specified, the basic
register assignment routines are brought
into play. The unit of processing in this
path is the text block. When all blocks
are processed, the control routine passes
control to the FSD, which calls phase 25.

If no

When OPT=1 optimization is specified,
the control routine passes the entire
module to the full register assignment
routines and then to the routine that
computes the size of each text block and
sets up the displacements required for
branching optimization. Control is then
passed to the FSD.

When the control path for OPT=2
optimization is selected, the unit of
processing is a loop, rather than a block.
In this case, the control routines
initially pass control to the routines of
phase 20 that determine the structure of
the module. When the structure is
determined, control is passed to the loop
selection routines, to select the first
(innermost) loop to be processed. The
control routines then pass control to the
text-optimization routines to process the
loop. When text optimization for a loop is
completed, the control routine marks each
block in the loop as completed. This
action is taken to ensure that the blocks
are not reprocessed when a subsequent
(outer) loop is processed. The control
routine again passes control to the loop
selection routines to select the next loop
for text optimization. This process is
repeated until text optimization has
processed each loop in the module,
entire module is the last loop.)

(The

After text optimization has processed
the entire module, the control routine
removes the block-completed marks and
control is passed to the loop selection
routines to reselect the first loop.
Control is then passed to the full register
assignment routines. When full register
assignment for the loop is complete, the
control routine marks each block in the
loop as completed and passes control to the
loop selection routines to select the next
loop. This process is repeated for each
loop in the module. (The entire module is
the last loop.) When all loops are
processed, the control routine passes
control to the routine that computes the
size of each text block and sets up the
displacements required for branching
optimization. Control is then passed to
the FSD.

REGISTER ASSIGNMENT

Two types of register assignment can be
performed by phase 20: basic and full.
Before describing either type, the concept
of status, which is integrally connected
with both types of assignment, is
discussed.

Each text entry has associated operand
and base address status information that is
set up by phase 20 in the status field of
that text entry (see Appendix B, "Phase 20
Intermediate Text Modification"). The
status information for an operand or base
address indicates such things as whether
ornot it is in a register and whether or
not it is to be retained in a register for
subsequent use; this information indicates
to phase 25 the machine instructions that
must be generated for text entries.

The relationship of status to phase 25
processing is illustrated in the following
example. Consider a phase 15 text entry of
the form A = B + C. To evaluate the text
entry, the operands B and C must be added
and then stored into A. However, a number
of machine instruction sequences could be
used to evaluate the expression. If
operand B is in a register, the result can
be achieved by performing an RX-format add
of C to the register containing B, provided
that the base address of C is in a
register. (If the base address of C is not
in a register, it must be loaded before the
add takes place.) The result can then be
stored into A, again, provided that the
base address of A is in a register.

If both B and C are in registers, the
result can be evaluated by executing an
RR-format add instruction. The result can
then be stored into A. Thus, for phase 25
to generate code for the text entry, it
must have the status of operands and base
addresses of the text entry.

The following facts about status should
be kept in mind throughout the discussions
of basic and full register assignment:

1. Phase 20 indicates to phase 25 when it
is to generate code that loads
operands and base addresses into

Section 2:

registers, whether or not it is to
generate code that retains operands
and base addresses in registers, and
whether or not operand 1 is to be
stored.

2. Phase 20 notes the operands and base
addresses that are retained in
registers and are available for
subsequent use.

Basic Register Assignment -- OPT=0

Basic register assignment involves two
functions: assigning registers to the
operands of the phase 15 text entries and
indicating the machine instructions to be
generated for the text entries. 1In
performing these functions, basic register
assignment does not use all of the
available registers, and it restricts the
assignment of those that it does use to
special types of items (i.e., operands and
base addresses). The registers assigned
during basic register assignment and the
item(s) to which each is assigned are
outlined in Table 3.

Basic register assignment essentially
treats System/360 as though it had a single
branch register, a single base register,
and a single accumulator. Thus, operands
that are branch addresses are assigned the
branch register, base addresses are
assigned the base register, and arithmetic
operations are performed using a single
accumulator. (The accumulator used depends
upon the mode of the operands to be
operated upon.)

The fact that basic register assignment
uses a single accumulator and a single base
register is the key to understanding how
text entries having an arithmetic operator
are processed. To evaluate the arithmetic
interaction of two operands using a single
accumulator, one of the operands must be in
the accumulator. The specified operation
can then be performed by using an RX-format
instruction. The result of the operation
is formed in the accumulator and is
available for subsequent use., Note that in
operations of this type, neither of the
interacting operands remains in a register.

Discussion of Major Components 47

| B T 1
|Register |Use |
- -= ---+ ettt e 4
|General Purpose| |
| | l
| 0 | Integer or logical operand |
| 1 |Integer or logical operand |
| 2 |Not assigned |
| 3 |Not assigned |
| 4 | Integer mult. for subscripting |
! | |
| 5 | 1. Branch register |
| | 2. Increment and comparand (BT and BF) |
| | 3. Operand 3 (I*2 divide) |
| | 4. Integer mult. for subscripting |
| I |
| 6 | 1. Operand representing an index value |
| | 2. Secondary spill base for data |
| | 3. Spill base for branching (BT and BF) |
| | |
| 7 |Primary spill base for data |
| 8 |Logical result of compare operations |
] 9 |Not assigned |
| 10 |Not assigned |
| 11 |NMot assigned |
| 12 |Secondary reserved base register |
| 13 |Primary reserved base register |
| | l
| 14 | 1. Number of elements (computed GO TO) |
| | 2. spill base for branching (computed GO TO)
| | 3. Branch register (computed GO TO) |
] 15 | Index (computed GO TO) |
| | |
| Floating-Point | |
I | |
| 0 | 1. Real operand |
| | 2. Real part of complex function result |
| 2 | imaginery part of complex function result |
L L 1
Applying this concept to the processing e ILoads the base address of A into the
of text entries that are arithmetic in base register (if necessary).
nature, consider that a phase 15 text entry
representing the expression A = B + C is ¢ Stores the accumulated result in A.
the first of the source module. For this
text entry to be evaluated using a single If this coding sequence were executed,
accumulator and base register, basic two items would remain in registers: the
register assignment must tell phase 25 to last base address loaded and the
generate machine code that: accumulated result. These items are
available for subsequent use.
Now consider that a text entry of the
e Loads the base address of B into the form D = A + F immediately follows the
base register. above text entry. In this case, A, which
corresponds to the result operand of the
¢ Loads B into the accumulator. previous text entry, is in the accumulator.
Thus, for this text entry, basic register
e Loads the base address of C into the assignment specifies code that:
base register., (This instruction is
not necessary if C is assigned the same ¢ Loads the base address of F into the
base address as B.) base register. (If the base address of
F corresponds to the last loaded base
e Adds C to the accumulator (RX-format address, this instruction is not
add) . necessary.)

48

¢ Adds F to the accumulator (RX-format
add) -

® Loads the base address of D into the
base register (if necessary).

¢ Stores the accumulated result in D.

The foregoing coding sequences are the
basic ones specified by basic register
assignment for arithmetic operations. The
first is specified for text entries in
which neither operand 2 nor operand 3 (see
Table 3) corresponds to the result operand
(operand 1) of the preceding text entry.
The second is specified for text entries in
which either operand 2 or operand 3
corresponds to the result operand. If
operand 3 corresponds to the result
operand, the two operands exchange roles,
except for division. In the case of
division, operand 3 is always in main
storage,

If both operands 2 and 3 correspond to
the result operand of the previous text
entry, an RR-format operation is specified
to evaluate the interactions of the
operands.

In the actual process of basic register
assignment, a single pass is made over the
phase 15 text output. The basic unit
operated upon is the text block, As the
processing of each block is completed, the
next block is processed. When all blocks
are processed, control is returned to the
FSD.

Text blocks are processed in a
top-to-bottom manner, beginning with the
first text entry in the block. When all
text entries in a block are processed, the
next text block is processed similarly.

For any text entry, the machine code to
be generated is first specified by setting
up the status field of the text entry.
Registers are then assigned to the operands
and base addresses by filling in the
register fields of the text entry.

Status Setting: Subroutine SSTAT-IEKRSS
sets the operand and base address status
information for a text entry in the
following order: operand 2, operand 2 base
address, operand 3, operand 3 base address,
operand 1, and operand 1 base address.

Section 2:

To set the status of operand 2,
subroutine SSTAT-IEKRSS determines the
relationship of that operand to the result
operand (operand 1) of the previous text
entry. If operand 2 is the same as the
result operand, the SSTAT-IEKRSS subroutine
sets the status of operand 2 to indicate
that it is in a register and, therefore,
need not be loaded; otherwise, it sets the
status to indicate that it is in main
storage. Subroutine SSTAT-IEKRSS uses a
similar procedure to set the status of
operand 3.

To set the status of the base address of
operand 2, subroutine SSTAT-IEKRSS
determines the relationship of that base
address to the current base address (see
note). Ifthey correspond, the SSTAT-IEKRSS
subroutine sets the status of the base
address of operand 2 to indicate that it is
in a register and, therefore, need not be
loaded; otherwise, it sets the status to
indicate that it is in main storage.

Subroutine SSTAT-IEKRSS sets the
statuses of the base addresses of operands
3 and 1 in a similar manner.

Note: The current base address is the last
base address loaded for the purpose of
referring to an operand. This base address
remains current until a subsequent operand
that has a different base address is
encountered. When this occurs, the base
address of the subsequent operand must be
loaded. That base address then becomes the
current base address, etc.

The SSTAT-IEKRSS subroutine sets status
of operand 1 to indicate whether or not the
result of the interaction of operands 2 and
3 is to be stored into operand 1. If
operand 1 is either an actual operand (a
variable defined by the programmer) or a
temporary that is not used in the
subsequent text entry, it sets the status
of operand 1 to indicate that the store
operation is to be performed; otherwise, it
sets the status to indicate that a store
into operand 1 is unnecessary.

Register Assignment: After the status
field of the text entry is completed,
subroutine SPLRA-IEKRSL assigns registers
to the operands of the text entry and their
associated base addresses in the same order
in which statuses were set for them.

The assignment of registers depends upon
the statuses of the operands of the text
entry. To assign a register to operand 2,

Discussion of Major Components 49

subroutine SPLRA-IEKRSL examines the status
of that operand, and, if necessary, of
operand 3. If the status of operand 2
indicates that it is in a register or if
the statuses of operands 2 and 3 indicate
that neither is a register, subroutine
SPLRA-IEKRSL assigns operand 2 to a
register. It selects the register
according to the type of operand (see Table
3), and places the number of that register
into the R2 field of the text entry.

To assign a register to the base address
of operand 2, subroutine SPLRA-IEKRSL
determines the status of operand 2. If the
status of that operand indicates that it is
not in a register, it assigns a register to
the base address of operand 2., The
appropriate register is selected as shown
in Table 3, and the register number is
placed into the B2 field of the text entry.
If the status of operand 2 indicates that
it is in a register, subroutine
SPLRA-IEKRSL does not assign a register to
the base address of operand 2. The
SPLRA-IEKRSL subroutine uses a similar
procedure in assigning a register to the
base address of operand 3.

If the status of operand 3 indicates
that it is in a register, subroutine
SPLRA-IEKRSL assigns the appropriate
register (see Table 3) to that operand, and
enters the number of that register into the
R3 field.

Operand 1 is always assigned a register.
Subroutine SPLRA-IEKRSL selects the
register according to the type of operand 1
(see Table 3), and places the number of
that register into the R1 field.

The base address of operand 1 is
assigned a register only if the status of
operand 1 indicates the result is to be
stored into operand 1. If such is the
case, subroutine SPLRA-IEKRSIL selects the
appropriate register, and records the
number of that register in the Bl field.
If the status of operand 1 indicates that
the result is not to be stored into operand
1, subroutine SPLRA-IEKRSL does not assign
a register to the base address of operand
1.

When all the operands of the text entry
and their associated base addresses are
assigned registers, the next text entry is
obtained, and the status setting and
register assignment processes are repeated.
After all text entries in the block are
processed, control is returned to IEKRSS,
which then makes the next block available

50

to the basic register assignment routines.
When the processing of all blocks is
completed, control is passed to IEKPLS, and
then to the FSD.

Full Register Assignment -- OPT=1 (Chart
14)

During full register assignment (also
refer to "Full Register Assignment --
OPT=2"), as during basic register
assignment, registers are assigned to the
text entry operands and their associated
base addresses, and the machine code to be
generated for the text entries is
specified. To improve object module
efficiency, these functions are performed
in a manner that reduces the number of
instructions required to load base
addresses and operands. This process
reduces the number of required load
instructions by taking greater advantage of
all available registers, by assigning the
registers as needed to both base addresses
and operands, by keeping as many operands
and base addresses as possible in registers
and available for subsequent use, and by
keeping the most active base addresses and
operands in registers where they are
available for use throughout execution of
the entire object module.

During full register assignment,
registers are assigned at two levels:
"locally" and "globally." Local assignment
is performed on a block-by-block basis.
Global assignment is performed on the basis
of the entire module (if intermediate
optimization has been specified).

For local assignment, an attempt is made
to keep operands whose values are defined
within a block in registers and available
for use throughout execution of that block.
This is done by assigning an available
register to an operand at the point at
which its value is defined. (The value of
an operand is defined when that operand
appears in the operand 1 position of a text
entry.) The same register is assigned to
subsequent uses (i.e., operand 2 or operand
3 appearances) of that operand within the
block, thereby ensuring that the value of
the operand will be in the assigned
register and available for use. However,
if more than one subsequent use of the
defined operand occurs in the block,
additional steps must be taken to ensure
that the value of that operand is not
destroyed between uses. Thus, when the
text entries in which the defined operand
is used are processed, the code specified
for them must not destroy the contents of

the register containing the defined
operand.

Because all available registers are used
during full register assignment, a number
of operands whose values are defined within
the block can be retained in registers at
the same time.

Applying the above concept to an
example, consider the following sequence of
phase 15 text entries;

PN

A
C
F

+ + +
QONK

A register is assigned to A at the point at
which its value is defined, namely in the
text entry A = X + Y. The same register is
assigned to the subsequent uses of A. The
value of A will be accumulated in the
assigned register and can be used in the
subsequent text entry C = A + 2, However,
because A is also used in the text entry

F =1A + C, the contents of the register
containing A cannot be destroyed by the
code generated for the text entry

C=A+ Z. Thus, when the text entry

C =A + Z is processed, instructions are
specified for that text entry that use the
register containing A, but that do not
destroy the contents of that register.

In the example, C is also defined and
subsequently used, To that defined operand
and its subsequent uses, a register is
assigned. The assigned register is
different from that assigned to A. The
value of C will be accumulated in the
assigned register and can be used in the
next text entry. The text entry F = A + C
can then be evaluated without the need of
any load operand instructions, because both
the interacting operands (A and C) are in
registers.

This type of processing typifies that
performed during local assignment for each
block. When all blocks are processed,
global assignment for the source module is
carried out.

Global assignment increases the
efficiency of the object module as a whole
by assigning registers to the most active
operands and base addresses. The
activities of all operands and base
addresses are computed during local
assignment prior to global assignment.
first register available for global
assignment is assigned to the most active

The

Section 2:

operand or base address; the next available
register is assigned to the next most
active operand or base address; etc. As
each such operand or base address is
processed, a text entry, the function of
which is to load the operand or base
address into the assigned register, is
generated and placed into the entry
block(s) of the module. When the supply of
operands and base addresses, or the supply
of available registers, is exhausted, the
process is terminated.

All global assignments are recorded for
use in a subsequent text scan, which
incorporates global assignments into the
text entries, and completes the processing
of operands that have neither been locally
nor globally assigned to registers (e.g.,
an infrequently used operand that is used
in a block but not defined in that block).

The full register assignment process is
divided into five areas of operation:
control (subroutine REGAS-IEKRRG), table
building (subroutine FWDPAS-IEKRFP), local
assignment (subroutine BKPAS-IEKRBP),
global assignment (subroutine
GLOBAS-IEKRGB), and text updating
(subroutine STXTR-IEKRSX). The control
routine of phase 20 (LPSEL-IEKPLS) passes
control to subroutine REGAS-IEKRRG that
directs the flow of control among the other
full register assignment routines.

The actual assignment of registers is
implemented through the use of tables built
by the table-building routine, with
assistance from the control routine.
Tables are built using the set of
coordinate numbers and associated
dictionary pointers created by phase 15
(the MCOORD vector and MVD) for indexing.
The table-building routine constructs two
sets of parallel tables. One set, used by
the local assignment routine, contains
information about a text block; the second
set, used by the global assignment
routines, contains information about the
entire module. (The local assignment and
global assignment tables are detailed in
Appendix A, "Register Assignment Tables.")

The flow of control through the full
register assignment routines is, as
follows:

1. The control routine (REGAS-IEKRRG)
makes a pass over the MVD table and
the dictionary entries for the
variables and constants in the loop
passed to it, and constructs the
eminence table (EMIN) for the module,

Discussion of Major Components 51

which indicates the availability of
the variables for global assignment.
Then the REGAS-IEKRRG subroutine calls
the table building routine to process
the blocks in the loop (the complete
module for OPT=1).

2. The table-building routine
(FWDPAS-IEKRFP) builds the required
set of local assignment tables and
adds information to the global
assignment tables under construction.
Subroutine FWDPAS-IEKRFP selects the
first block of the loop and builds the
tables for that block. It then passes
control to the local assignment
routine to
process the block and the tables (see
Chart 15).

3. The local assignment routine
(BKPAS-IEKRBP) uses the tables
supplied for the block to perform
local register assignment, and returns
control to subroutine FWDPAS-IEKRFP
when its
processing is completed (see Chart
16).

4, The FWDPAS-IEKRFP subroutine selects
the next block of the loop and again
builds tables. This process continues
until all blocks of the loop have been
processed. Control is then returned
to the REGAS-IEKRRG subroutine.

5. Subroutine REGAS-IEKRRG passes control
to the global assignment routine
GLOBAS-IEKRGB, which performs global
assignment for the module (see Chart
17 .

6. When global assignment is complete,
the control routine calls the text
updating routine, STXTR-IEKRSX, to
complete register assignment by
entering the results of global
assignment into the text entries for
the module. Control is then returned
to the LPSEL-1EKPLS subroutine.

Table Building for Register Assignment
(Chart 15): The table-building routine,
FWDPAS-IEKRFP, performs a forward scan of
the intermediate text entries for the block
under consideration and enters information
about each text entry into the local and
global tables (see Appendix A, "Register
Assignment Tables"). The local assignment
tables can accommodate information for 100
text entries. If, however, a block

52

contains more than 100 text entries, the
table-building routine builds the local
tables for the first 100 text entries and
passes this set of tables to the local
assignment routine. The local assignment
routine processes the text entries
represented in the set of local tables.

The table-building routine then creates the
local tables for the next 100 text entries
in the block and passes them to the local
assignment routine. When the
table-building routine encounters the last
text entry for the block, it passes control
to the local assignment routine, although
there may be fewer than 100 entries in the
local tables.

The global tables contain information
relating to variables and constants
referred to within the module, rather than
to text entries. The global tables can
accommodate information for 126 variables
and constants in a given module. Variables
and constants in excess of this number
within the module are not processed by the
global assignment routine.

Local Assignment (Chart 16): Local
assignment is implemented via a backward
pass over the text items for the block (or
portion of a block) under consideration.
The text items are referred to by using the
local assignment tables, which supply
pointers to the text items.

The local assignment routine,
BKPAS~IEKRBP, examines each operand in the
text for a block and determines (from the
local assignment tables) whether or not the
operand is eligible for local assignment.
To be eligible, an operand must be defined
and used (in that order) within a block.
Because local assignment is performed via a
backward pass over the text, an eligible
operand will be encountered when it is used
(i.e., in the operand 2 or 3 position)
before it is defined.

When an operand of a text entry is
examined, the local assignment routine
(BKPAS~-IEKRBP) consults the local
assignment tables to determine that
operand's eligibility. If the operand is
eligible, subroutine BKPAS-IEKRBP assigns a
register to it. The register assigned is
determined by consulting the register usage
table for local assignment (TRUSE). TRUSE
is a work table that contains an entry for
every register that may be used by the
local assignment routine. A zero entry for
a particular register indicates that the
register is available for local assignment.
A nonzero entry indicates that the register
is unavailable and identifies the variable

to which the register is assigned. The
register usage table is modified each time
a register is assigned or freed. The first
time a register is assigned, a
corresponding entry in the register usage
table for global assignment (RUSE) is set.
This entry implies that the register is
unavailable for global assignment.

Subroutine BKPAS-IEKRBP records the
register assigned to the used operand in
the local assignment tables and in the text
item containing the used operand. It sets
the status of the operand in the text entry
to indicate that it is in a register. If
subsequent uses of the operand are
encountered prior to the definition of the
operand, the BKPAS-IEKRBP subroutine uses
the register assigned to the first use, and
records its identity in the text item. It
then sets the status bits for the operand
to indicate that it is in a register and is
to be retained in that register.

When a definition of the operand is
encountered, subroutine BKPAS-IEKRBP enters
the register assigned to the operand into
the text item and sets the status for the
operand to indicate its residence in a
register. Once the register is assigned to
the operand at its definition point, the
BKPAS-IEKRBP subroutine frees the register
by setting the entry in the register usage
table to zero, making the register
available for assignment to another
operand.

If the block being processed contains a
CALL statement or a reference to a function
subprogram, common variables, arguments,
and real operands cannot be assigned to
registers across that reference. The local
assignment routine assumes that:

1. All mathematical functions return the
result in general register 0 or
floating-point register 0, according
to the mode of the function.

2., The imaginary portion of a complex
result is returned in floating-point
register 2.

If no register is available for
assignment to an eligible operand, an
overflow condition exists. In this case,
subroutine BKPAS-IEKRBP must free a
previously assigned register for assignment
to the current operand. It scans the local
assignment tables and selects a register.
It then modifies the local assignment
tables, text entries for the block, and
register usage table to negate the previous
assignment of the selected register. The
required register is now available, and
processing continues in the normal fashion.

Section 2:

Global Assignment (Chart 17): The global
assignment routine (GLOBAS-IEKRGB), unlike
the local assignment routine, does not
process any of the text entries for the
module. The global assignment routine
operates only through the set of global
tables., The results of global assignments
are entered into the appropriate text
entries by the text updating routine.

Before assigning registers, the global
assignment routine modifies the global
assignment tables to produce a single
activity table for all operands and base
addresses in the module.

Global assignment is then performed
based on the activity of the eligible
operands and base addresses.

The GLOBAS-IEKRGB routine determines the
eligibility of an operand or base address
by consulting the appropriate entry in the
global assignment tables. Eligible
operands are divided into two categories:
floating point and fixed point. The two
categories are processed separately, with
floating-point quantities processed first.

The register usage table for global
assignment (RUSE) is of the same type as
described under local assignment (TRUSE).
For each category of operands, the
GLOBAS-IEKRGB routine selects the eligible
operand with the highest total activity and
assigns it the first available register of
the same mode. It records the assignment
in the register usage table and in the
global assignment tables. The
GLOBAS-IEKRGB routine then selects the
eligible operand with the next highest
activity and treats it in the same manner.
Processing for each group continues until
the supply of eligible operands or the
supply of available registers is exhausted.

If the module contains any CALL
statements or function subprogram
references, arguments and real and common
variables are ineligible for global
assignment. In other words, if a module
contains either a reference to a subroutine
or to a function subprogram, global
assignment is restricted to integer and
logical operands that are not in common or
in the parameter list.

Text Updating (Charts 18 and 19): The text

updating routine (STXTR-IEKRSX) completes
full register assignment. It scans each
text entry within the series of blocks
comprising the module, looking at operands
2, 3, and 1, in that order, within each
text entry. As each operand is processed,
subroutine STXTR-IEKRSX interrogates the
completed global assignment table to
determine whether or not a global
assignment has been made for the operand.

Discussion of Major Components 53

If it has, subroutine STXTR-IEKRSX enters
the register assigned into the text entry
and sets the operand status bits to
indicate that the operand is in a register
and is to be retained in that register.

If both a local and a global assignment
have been made for an operand, the global
assignment supersedes the local assignment
and the STXTR-IEKRSX subroutine records the
globally assigned register in the text
items pertaining to that operand. It also
sets the status bits for such an operand to
indicate that it is in a register and is to
be retained in that register.

If a register has not been assigned
either locally or globally for an operand,
subroutine STXTR-IEKRSX determines and
records in the text entry the required base
register for the base address of that
operand. If the base address corresponds
to one that has been assigned to a register
during global assignment, the STXTR-IEKRSX
subroutine assigns the same register as the
base register for the operand. If a
register has not been assigned to the base
address of the operand during global
assignment, it assigns a spill register
(register 15) as the base register of the
operand. Subroutine STXTR-IEKRSX sets the
operand's base status bits to indicate
whether or not the base address is in a
register. (The base address will be in a
register if one was assigned to it during
global assignment.) It then assigns the
operand itself a spill register (general
register 0 or 1 or floating-point register
0, depending upon its mode).

As part of its text updating function,
subroutine STXTR-IEKRSX allocates temporary
storage where needed for temporaries that
have not been assigned to a register, keeps
track of the allocated temporary storage,
and completes the register fields of text
entries to ensure compatibility with phase
25. On exit from the text updating
routine, all text items in the module are
fully formed and ready for processing by
phase 25. The text updating routine
returns control to subroutine REGAS-IEKRRG
upon completion of its functions. The
REGAS-IEKRRG subroutine, in turn, returns
control to subroutine LPSEL-IEKPLS.

BRANCHING OPTIMIZATION -- OPT=1

This portion of phase 20 optimizes
branching within the object module. The
optimization is achieved by generating
RX-format branch instructions in place of
RR-format branch instructions wherever
possible.

54

The use of RX-format branches eliminates
the need for an instruction to load the
branch address into a general register
preceding each branching instruction.
Thus, branching optimization decreases the
size of the object module by one
instruction for each RR-format branch
instruction in the object module that can
be replaced by an RX-format branch
instruction. It also decreases the number
of address constants required for
branching.

Phase 20 optimizes branching
instructions by calculating the size of
each text block (number of bytes of object
code to be generated for that block) and by
determining those blocks that can be
branched to via RX-format branch
instructions.

Subroutine BLS~IEKSBS calculates the
sizes of all text blocks after full
register assignment for the module is
completed. It then uses the gathered block
size information to determine the blocks to
which a branch can be made by means of
RX-format branch instructions. The
BLS-IEKSBS subroutine calculates the number
of bytes of object code by:

1. Examining each text item operation
code and the status of the operands
(i.e., in registers or not).

2. Determining, from a reference table,
the number of bytes of code that is to
be generated for that text item.

The BLS-IEKSBS subroutine accumulates these
values for each block in the module. 1In
addition, it increments the block size
count by the appropriate number of bytes
for each reference to an in-line routine
that it encounters.

Next, subroutine BLS-IEKSBS computes all
block sizes and determines those text
blocks to which a branch can be made via
RX-format branch instructions. Once
converted to machine code, a branch can be
made to a text block via an RX-format
branch instruction if the relative address
of the beginning of that block is displaced
less than 4096 bytes from an address that
is loaded into a reserved register.

The following text discusses reserved
registers, the addresses loaded into them,
and the processing performed by subroutine
BLS-IEKSBS to determine the source module
blocks to which a branch can be made via
RX-format branch instructions.

Reserved Registers

Reserved registers are allocated to
contain the starting address of the adcon
table and subsequent 4096-byte blocks of
the object module. The criterion used by
" phase 20 in reserving registers for this
purpose is the number of text entries that
result from phase 15 processing. (Phase
15counts the number of text entries that
result from its processing and passes the
information to phase 20.) For small source
modules (up to 880 text entries), phase 20
reserves only one register in addition to
register 13. For large source modules
(more than 1760 text entries), a maximum of
four additional registers is reserved. The
registers are reserved, as needed, in the
following order: register 13, 12, 11, 10,
and 9.

Reserved Register Addresses

The addresses placed into the reserved
registers as a result of the execution of
the initialization instructions (see
"Generation of Initialization Instructions"
under "FORTRAN System Director") are:

® Register 13 -- address of the save
area.
e Register 12 (if reserved) -- address of

the save area plus 4096 or address of
the first adcon for the programe.

e Register 11 (if resexrved) -- address of
the register 12 plus 4096.

e Register 10 (if reserved) -- address of
the register 12 plus 2(4096).

e Register 9 (if reserved) -- address of
the register 12 plus 3(4096).

Block Determination and Subsequent
Processing

Because the instructions resulting from
the compilation are entered into text
information immediately after the "B" block
labels (see Figure 9), certain text blocks
are displaced less than 4096 bytes from an
address in a reserved register. A branch
can be made to such blocks by RX-format
branch instructions that use the address in
a reserved register as the base address for
the branch.

Section 2:

To determine the blocks to which a
branch can be made via RX-format branch
instructions, subroutine BLS-IEKSBS
computes the displacement (using the block
size information) of each block from the
address in the appropriate reserved
register. The first reserved register
address considered is that in register 13.
For each block that has a displacement of
less than 4096 bytes from that address,
subroutine BLS-IEKSBS enters the
displacement into the statement number
entry for that block. It also places in
that statement number entry an indication
that a transfer can be made to the block
via an RX-format branch instruction, and
records the number of the reserved register
to be used in that branch instruction.

When subroutine BLS-IEKSBS has processed
all blocks displaced less than 4096 bytes
from the address in register 13, it
processes those that are displaced less
than 4096 bytes from the addresses in
registers 12, 11, 10, and 9 (if reserved)
in a similar manner,

The information placed in the statement
number entries is used during code
generation, a phase 25 process, to generate
RX-format branch instructions.

STRUCTURAL DETERMINATION

To achieve OPT=2 optimization, the
structural determination routines of phase
20 (TOPO-IEKPO and BAKT-IEKPB) identify
module loops and specify the sequence in
which they are to be processed. Loops are
identified by analyzing the block
connection information gathered by phase 15
and recorded in the forward-connection
(RMAJOR) and backward-connection (CMAJOR)
tables. The connection information
indicates the flow of control within the
module and, therefore, reflects which
blocks pass control among themselves in a
cyclical fashion.

Loops are oxdered for processing
starting with the innermost, or most often
executed, loop and working toward the
outermost. The inner-to-outer loop
sequence is specifed so that:

Discussion of Major Components 55

¢ Text entries will not be relocated into
loops that have already been
processed.®

¢ The full register capabilities of
System/360 can first be applied to the
most frequently executed (innermost)
loope.

Loop identification is a sequential
process, which requires that a back
dominator be determined for each text
block. The back dominator of a text block
(block I) is defined as the block nearest
to block I through which control must pass
before block I receives control for the
first time. The back dominators of all
text blocks must be determined before loop
identification can be continued. After all
back dominators have been determined, a
chain of back dominators is effectively
established for each block. This chain
consists of the back dominator of the
block, the back dominator of the back
dominator of the block, etc.

Figure 7 illustrates the concept of back
dominators. Fach block in the illustration
represents a text block. The blocks are
identified by single letter names. The
back dominator of each block is identified
and recorded above the upper right-hand
corner of that block.

When all back dominators are identified,
a back target and a depth number for each
text block is determined. A block (block
I) has a back target (block J) if:

e There exists a path from block I to
itself that does not pass through block
Je

e Block J is the nearest block in the
chain of back dominators of block I
that has only one forward connection.

The text blocks constituting a loop are
identifiable because they have a common
back target, known as the back target of
the loop.

The depth number for a block indicates
the degree to which that block is nested
within loops. For example, if a block is

iThe text optimization process relocates
text entries from within an inner loop to
an outer loop. Thus, if an outer loop
were processed first, text entries from an
inner loop might be relocated to the outer
loop, thereby requiring that the outer
loop be reprocessed.

56

an element of a loop that is contained
within a loop with a depth number of one,
that block has a depth number of two. All
blocks constituting the same loop (i.e.,
all blocks having a common target) have the
same depth number.

The depth numbers computed for the
blocks that comprise the various loops are
used to determine the sequence in which the
loops are to be processed.

Figure 8 illustrates the concepts of
back targets and depth numbers. Again each
block in the illustration represents a text
block, which is identified by a single
letter name. In this illustration, the
back target of each block is identified and
recorded above the upper right-hand corner
of that block. The depth number for the
block is recorded above the upper left-hand
corner of the block. Note that blocks that
pass control among themselves in a looping
fashion have a common back target and the
same depth number. Also note that the
blocks of the two inner loops have the same
depth numbers, although they have different
back targets.

Entry
0

A
1A
B

O [O
0
Z
l‘ T__]

L — —» X
0]

ol

I

H

Exit

Figure 7. Back Dominators

Exit

Figure 8. Back Targets and Depth Numbers

When the back target and depth number of
each text block has been determined, loops
are identified and the sequence in which
they are to be processed is specified. The
loops are sequenced according to the depth
number of their blocks. The loop whose
blocks have the highest depth number is
specified as the first to be processed, the
loop whose blocks have the next highest
depth number is specified as the second to
be processed, etc. When the processing
sequence of all loops has been established,
the innermost loop is selected for
processing.

The following paragraphs describe the
processing performed by the structural
determination routines to:

e Determine the back dominator of each
text block.

s Determine the back target and depth
number of each text block.

e Tdentify and sequence loops for
processing.

Determination of Back Dominators

Subroutine TOPO-IEKPO determines the
back dominator of each text block by

Section 2:

examining the connection information for
that block. The first block processed by
subroutine TOPO-IEKPO is the first block
(entry block) of the module. Blocks on the
first level (i.e., blocks that receive
control from the entry block) are processed
next. Second-level blocks (i.e., blocks
that receive control from first-level
blocks) are then processed, etc.

The TOPO-IEKPO subroutine assigns to the
entry block a back dominator of zero,
because it has no back dominator; it
records the zero in the back dominator
field of the statement number entry for
that block (see Appendix A, "Statement
Number/Array Table"). The TOPO-IEKPO
subroutine assigns each block on the first
level either its actual back dominator or a
provisional back dominator. If a
first-level block receives control from
only one block, that block must be the
entry block and is the back dominator for
the first-level block. Subroutine
TOPO-IEKPO records a pointer to the
statement number entry for the entry block
in the back dominator field of the
statement number entry for the first-level
block. If a first-level block receives
control from more than one block,
subroutine TOPO-IEKPO assigns to it a
provisional back dominator, which is the
entry block of the module. All blocks on
the first level are processed in this
manner.

Subroutine TOPO-IEKPO also assigns each
block on the second level either its actual
back dominator or a provisional back
dominator. If a second-level block
receives control from only one block, its
back dominator is the first-level block
from which it receives control. The
TOPO-IEKPO subroutine records a pointer to
the statement number entry for the
first-level block in the back dominator
field of the statement number entry for the
second-level block. If more than one block
passes control to a second-level block,
subroutine TOPO-IEKPO assigns to that block
a provisional back dominator. The
provisional back dominator assigned is a
first-level block that passes control to
the second-level block under consideration.
Processing of this type is performed at
each level until the last, or exit, block
of the module is processed. Subroutine
TOPO-IEKPO then determines the actual back
dominators of blocks that were assigned
provisional back dominators.

For each block assigned a provisional
back dominator, subroutine TOPO-IEKPO makes
a backward trace over each path leading to
the block (using CMAJOR). The blocks at
which two or more of the paths converge are
flagged as possible candidates for the back
dominator of the block. When all paths

Discussion of Major Components 57

have been treated, the relationship of each
possible candidate to the other possible
candidates is examined. The TOPO-IEKPO
subroutine assigns the candidate at the
highest level (i.e., closest to the entry
block of the module) as the back dominator
of the block under consideration; it
records a pointer to the statement number
entry for the assigned back dominator in
the back dominator field of the statement
number entry for the block under
consideration. After the back dominators
of all text blocks are identified,
subroutine BAKT-IEKPB determines the back
target and depth number of each text block.

Determination of Back Targets and Depth
Numbers

Subroutine BAKT-IEKPB determines the
back target of each text block through an
analysis of the backward connection
information (in CMAJOR) for that block.
Block J is the back target of block I if:

1. A path exists from block I to itself,
and block J is the nearest block, in
the chain of back dominators of block
I, not on that path.

2. Block J has only one forward
connection.

If a block J exists that satisfies
condition 1 but not condition 2, then the
back target of block J is also the back
target of block I.

If a block J satisfying condition 1 does
not exist, then the back target of block I
is zero.

When the back target of a block is
identified, that block is also assigned a
depth number.

Back targets and depth numbers are
determined for text blocks in the same
sequence as back dominators are determined
for them. The first block of the module is
the first processed, first-level blocks are
considered next, etc.

The BAKT-IEKPB subroutine assigns the

first or entry block both a back target and
depth number of zero, because it does not
have a back target and is not in a loop.
It records the depth number (zexro) in the
loop number field of the statement number
entry for the entry block (see Appendix A,
"sStatement Number/Array Table").

The processing performed by subroutine

BAKT-IEKPB for each of the other blocks
depends upon whether one or more than one

58

block passes control to that block. If
more than one block passes control to the
block under consideration, subroutine
BAKT-IEKPB makes a backward trace over all
paths leading to that block to locate its
primary path. The primary path of a block
(if one exists) is a path that starts at
that block and converges on that block
without passing through any block in the
chain of back dominators of that block.

If such a path exists, subroutine
BAKT-IEKPB obtains and examines the nearest
block in the chain of back dominators of
the block under consideration. If the
obtained block has a single forward
connection, subroutine BAKT-IEKPB assigns
that block as the back target of the block
under consideration. The BAKT-IEKPB
subroutine then assigns a depth number to
the block. The number is one greater than
that of its back target, because the block
is in a loop, which must be nested within
the loop containing the back target.
Subroutine BAKT-IEKPB records the depth
number in the loop number field of the
statement number entry for the block.

If the obtained block has more than one
forward connection, subroutine BAKT-IEKPB
assigns its back target as the back target
of the block under consideration. The
BAKT-IEKPB subroutine then records in the
statement number entry for the block a
depth number one greater than that of its
back target.

If a block that receives control from
two or more blocks does not have an
associated primary path, that block, if it
is in a loop at all, is in the same loop as
one of the blocks in its chain of back
dominators., To identify the loop
containing the block (block I), subroutine
BAKT-IEKPB obtains and examines the nearest
block to block I in its chain of back
dominators that has two or more forward
connections. The BAKT-IEKPB subroutine
makes a backward trace over all paths
leading to the obtained block to determine
whether or not block I is an element of
such a path. If block I is an element of
such a path, it is in the same loop as the
obtained block, and subroutine BAKT-IEKPB,
therefore, assigns block I the same back
target and depth number as the obtained
block; it records the depth number in the
statement number entry for block I.

If block I is not an element of any path
leading to the obtained block, subroutine
BAKT-IEKPB obtains the next nearest block
to block I in its chain of back dominators
that has two or more forward connections
and repeats the process. If block I is not
an element of any path leading to any block
in its chain of back dominators, block I is
not in a loop, and the BAKT-IEKPB

subroutine assigns it both a back target
and depth number of zero.

A block that receives control from only
one block, if it is in a loop at all, is in
the same loop as one of the blocks in its
chain of back dominators. To identify the
loop containing a block (block I) that
receives control from only one block,
subroutine BAKT-IEKPB obtains and examines
the nearest block to block I in its chain
of back dominators that receives control
from two or more blocks. The BAKT-IEKPB
subroutine makes a backward trace over all
paths leading to the obtained block to
locate its primary path (if any). If the
obtained block has a primary path,
subroutine BAKT-IEKPB retraces it to
determine whether or not block I is an
element of the path. If it is, block I is
in the same loop as the obtained block,
and, BAKT-IEKPB therefore assigns block I
the same back target and depth number as
the obtained block; BAKT-IEKPB then records
the depth number in the statement number
entry for block I.

If the obtained block does not have a
primary path, or if it does have a primary
path, which, however, does not have block I
as an element, the BAKT-IEKPB subroutine
considers the next nearest block to block I
in its chain of back dominators that
receives control from two or more blocks.
The process is repeated until a primary
path containing block I is located (if any
such path exists). If block I is not in
the primary path of any block in its chain
of back dominators, block I is not in a
loop and subroutine BAKT-IEKPB assigns it
both a back target and depth number of
ZE€YO,

Identifying and Ordering Loops for
Processing

Subroutine BAKT-IEKPB orders blocks for
processing on the basis of the determined
back target and depth number information.
Blocks that have a common back target and
the same depth number constitute a-loop.
The BAKT-IEKPB subroutine flags the loop
with the highest depth number (therefore,
the most deeply nested loop) as the first
loop to be processed. It assigns the
blocks constituting that loop a loop number
of one, indicating that they form the
innermost loop, which is the first to
undergo optimization. (Subroutine
BAKT-IEKPB records the value 1 in the loop
number field of the statement number entry
for each block in that loop.) The
BAKT-IEKPB subroutine flags the loop with
the next highest depth number as the second
loop to be processed. It assigns the

Section 2:

blocks in that loop a loop number of two,
indicating that they form the second (or
next outermost) loop to be processed. (A
value of 2 is recorded in the loop number
field of the statement number entry for
each block in that loop.) Subroutine
BAKT-IEKPB repeats this procedure until the
loop with a depth number of one is
processed. It then assigns the highest
loop number to the blocks with a depth
number of zero, indicating that they do not
form a loop.

If at any time, groups of blocks with
the same depth number but different back
targets are found, each group is in a
different loop. Therefore, each such loop
is, in turn, processed before blocks having
a lesser depth number are considered.

Thus, if the blocks of two loops have the
same depth number, subroutine BAKT-IEKPB
assigns the blocks of the first loop the
next loop number. It assigns the blocks of
the second loop a loop number one greater
than that assigned to the blocks of the
first loop.

When loop numbers are assigned to the
blocks of all module loops, the sequence in
which the loops are to be processed has
been specified. Control is passed to the
routine that determines the busy-on-exit
information and then to the loop selection
routine to select the first (innermost)
loop to be operated upon. This loop
consists of all blocks having a loop number
of one.

BUSY-ON-EXIT INFORMATION

Before the module can be processed on a
loop-by-loop basis, the variables in each
block must be classified as either
busy-on-exit from the block or not
busy-on-exit from the block. A variable is
busy immediately preceding a use of that
variable, but is not busy immediately
preceding a definition of that variable.
Thus, a variable is busy-on-exit from the
blocks that are along all paths connecting
a use and a prior definition of that
variable. This means that in subsequent
blocks the variable can be used before it
is defined. The busy-on-exit condition for
a variable assures that its proper value
exists in main storage or in a register
along each path in which it is subsequently
used.

Information about the regions in which a
variable is busy or not busy determines
whether or not a definition of that
variable can be moved out of a loop. For
example, if a variable is busy-on-exit from
the back target of a loop, text

Discussion of Major Components 59

optimization (see "Text Optimization")
would not attempt to move to the back target
a redefinition of that variable, because if
moved, the value of the variable, as it is
processed along various paths from the back
target, might not be the desired value.
Conversely, if the variable is not
busy-on-exit, the redefinition can be moved
without affecting the desired value of the
variable. Thus, text optimization respects
the redefinitions of variables that are
busy-on-exit from the back target of a
loop.

The information about regions in which a
variable is busy or not busy also
determines whether or not load and store
operations of a register assigned to the
variable are required. For example, in
full register assignment (see "Full
Register Assignment--OPT=2"), variables
that are assigned registers during global
assignment and that are busy-on-exit from
the back target of the loop must have an
initializing load of the register placed
into the back target. The load is required
because the variable may be used before its
value is defined. Conversely, if the
globally assigned variable is not
busy-on-exit from the back target, an
initializing load is unnecessary.

Phase 15 provides phase 20 with not
busy-on-entry information for each operand
that is assigned a coordinate (an MVD table
entry). The not busy-on-entry information
is recorded in the MVX field of the
statement number text entry for each text
block (see Phase 15, "Gathering
Constant/Variable Usage Information"). An
operand is not busy-on-entry to a block, if
in that block that operand is defined but
not used or defined before it is used.
Phase 20 converts the not busy-on-entry
information to busy-on-entry information.
An operand is busy-on-entry to a block, if
in that block that operand is used but not
defined or used before it is defined.
Finally, phase 20 converts the
busy-on-entry information to busy-on-exit
information. The backward-connection
information in CMAJOR is used to make the
final conversion.

The routine that performs the
conversions is BIZX-IEKPZ. This routine
determines busy-on-exit information for
each constant, variable, and base variable
having an associated MVD table entry or
coordinate. However, because only
constants and base variables are used,
are busy-on-exit throughout the entire
module. Therefore, the remainder of this
discussion deals with the determination of
busy-on-exit information for variables.

they

60

Because RETURN statements (exit blocks)
and references to subprograms not supplied
by IBM constitute implicit uses of
variables in common, all common variables
and arguments to such subprograms are first
marked as busy-on-entry to exit blocks and
blocks containing the references. The
common variables and arguments are found by
examining the information table entries for
all variables in the MVD table. The module
is then searched for blocks that are exit
blocks and that contain references to
subprograms not supplied by IBM. The
coordinate bit for each previously
mentioned variable is set to on in the MVF
field of the statement number text entry
for each such block, while the same
coordinate bit in the MVX field is set to
off. This defines the variable tc be
busy-on-entry to such a block. During this
process, a table, consisting of pointers to
exit blocks, is built for subsequent use.

After the previously discussed blocks
have been appropriately marked for common
variables and arguments, subroutine
BIZX-IEKPZ, working with the coordinate
assigned to a variable, converts the not
busy-on-entry information for the variable
to a table of pointers to blocks to which
the variable is busy-on-entry. (The not
busy-on-entry information for the variable
is contained in the MVX fields of the
statement number text entries for the
various text blocks.) At the same time,
the variable's coordinate bit in each MVX
field is set to off. The busy-on-entry
table and CMAJOR are then used to set to on
the MVX coordinate bit in the statement
number text entry for each block from which
the variable is busy-on-exit. This
procedure is repeated until all variables
have been processed. Control is then
returned to the LPSEL-IEKPLS subroutine.

To convert not busy-on-entry information
to busy-on-entry information, subroutine
BIZX-IEKPZ starts with the second MVD table
entry, which contains a pointer to the
variable assigned coordinate number two,
and works down the chain of text blocks.
The associated MVX coordinate bit in the
statement number text entry for each block
is examined. If the coordinate bit is off,
the corresponding MVF coordinate bit is
inspected. If the MVF coordinate bit is
on, a pointer to the associated text block
is placed into the busy-on-entry table.
This defines the variable to be
busy-on-entry to the block (i.e., the
variable is used in the block before it is
defined). If the associated MVX coordinate
bit is on, indicating that the variable is
not busy-on-entry, subroutine BIZX-IEKPZ
sets the bit to off and proceeds to the
next block. This process is repeated until
the last text block has been processed.

After the BIZX-IEKPZ subroutine has set
to off the MVX coordinate bit (associated
with the variable under consideration) in
each statement number text entry and built
a table of pointers to blocks to which the
variable is busy-on-entry, it determines
the blocks from which the variable is
busy-on-exit.

Starting with the first entry in the
busy-on-entry table, subroutine BIZX-IEKPZ
obtains (from CMAJOR) pointers to all
blocks that are backward connection paths
of that entry. Each backward-connecting
block is examined to determine whether or
not it meets one of three criteria, as
follows:

e The block contains a definition of the
variable (i.e., the variable's MVS
coordinate bit is on).

» The variable has already been marked as
busy-on-exit from the block.

e The block corresponds to the
busy-on-entry table entry being
processed.

If the block meets one of these
criteria, the variable is busy-on-exit from
the block and its associated MVX coordinate
bit is set to on. (The backward connection
paths of that block are not explored.)

If the backward-connecting block does
not meet any one of these criteria, the
variable is marked as busy-on-exit from
that block and that block's backward
connection paths are, in turn, explored.
The same criteria are then applied to the
backward-connecting blocks. The backward
connection paths are explored in this
manner until a block in every path
satisfies one of the criteria.

If, during the examination of the
backward connection paths, an entry block
(i.e., a block lacking backward connection
paths) is encountered, the blocks in the
table of exit blocks, which was previously
built by subroutine BIZX-IEKPZ are used as
the backward connection paths for the entry
block. Processing then continues in the
normal fashion.

When blocks in all backward connection
paths have satisfied one of the criteria,
the BIZX-IEKPZ subroutine obtains the next
entry in the busy-on-entry table and
repeats the process. This continues until
the busy-on-entry table has been exhausted.

When the busy-on-entry table has been
exhausted, the procedure of building the
busy-on-entry table and converting it to
busy-on-exit information is repeated for

Section 2:

the next MVD table entry. When all MVD
table entries have been processed,
subroutine BIZX-IEKPZ passes control to the
LPSEL-IEKPLS subroutine, which calls the
loop selection routines.

STRUCTURED SOURCE PROGRAM LISTING

If both the EDIT option and OPT=2
optimization are selected, after subroutine
BIZX-IEKPZ has compiled the busy-on-exit
information, control is passed to
subroutine SRPRIZ-IEKQAA, which records on
the SYSPRINT data set a structured source
program listing. This listing indicates
the loop structure and logical continuity
of the source program. (A complete
description of the structured source
listing is given in the publication IBM
Systen/360 Operating System: FORTRAN IV (G
and H) Programmer's Guide, Form C28-6817.)

To produce the listing, subroutine
SRPRIZ-IEKQAA reads the SYSUT1 data set
prepared by phase 10 and associates, by
means of statement numbers, the individual
source statements with the text blocks
formed from them. By analysis of the loop
number information gathered for the text
blocks, the SRPRIZ-IEKQAA subroutine then
identifies the source statements that make
up a particular loop and flags them on the
listing by corresponding loop number.
Subroutine SRPRIZ-IEKQAA also uses the
previously gathered back dominator
information to compute listing indentions
for the statements. The indentions show
dominance relationships; that is,
subroutine SRPRIZ-IEKQAA indents the
statements that form a text block from the
statements that form the back dominator of
that block.

LOOP SELECTION

The phase 20 loop selection routine
(TARGET-IEKPT) selects the loop to be
processed and provides the text
optimization and full register assignment
routines with the information required to
process the loop.

The loop to be processed is selected
according to the value of a loop number
parameter, which is passed to the loop
selection routine. The phase 20 control
routine (LPSEL-IEKPLS) sets this parameter
to one after the process of structural
determination is complete., The
TARGET-IEKPT routine is called to select
the loop whose blocks have a corresponding
loop number. The selected loop is then

Discussion of Major Components 61

passed to the text optimization routines.
When text optimization for the loop is
completed, the control routine increments
the parameter by one, sets the loop number
of the blocks in the loop just processed to
that of their back target, and marks those
blocks as completed. The LPSEL-IEKPLS
routine again calls the TARGET-IEKPT
routine, which selects the loop whose
blocks correspond to the new value of the
parameter., The selected loop is then
passed to the text optimization routines.
This process is repeated until the
outermost loop has been text-optimized.

After text optimization has processed
the entire module (i.e., the last loop),
the control routine removes the block
completion marks, initializes the loop
number parameter to 1, and passes control
to the TARGET-IEKPT routine to reselect the
first loop. Control is then passed to the
full register assignment routines. When
full register assignment for the loop is
completed, the control routine marks the
blocks of the loop as completed, It then
increments the parameter by 1 and passes
control to the TARGET-IEKPT routine to
select the next loop. Full register
assignment is then carried out on the loop.
This process is repeated until the
outermost loop has undergone full register
assignment. (When full register assignment
has been carried out on the outermost loop,
the LPSEL-IEKPLS routine passes control to
the routine that computes the size of each
text block and also the displacements
required for branching optimization.)

The TARGET-IEKPT routine uses the value
of the loop number parameter as a basis for
selecting the loop to be processed. The
TARGET-IEKPT routine compares the loop
number assigned to each text block to the
parameter. It marks each block having a
loop number corresponding to the value of
the parameter as an element of the loop to
be processed. It does this by setting on a
bit in the block status field of the
statement number entry for the block (see
Appendix A, "Statement Number/Array
Table™). When all such blocks are marked,
the loop has been selected.

The information required by the text
optimization and full register assignment
routines to process the loop consists of
the following:

e A pointer to the back target of the
loop (if any).

¢ Pointers to both the first and last
blocks of the loop.

e The loop composite matrixes.

62

After the loop has been selected, this
required information is gathered.

Pointer to Back Target

The text optimization and full register
assignment routines place both relocated
and generated text entries into the back
target of the loop. Although the back
target of the loop was previously
identified during structural determination,
it was not saved. Therefore, its identity
must be determined again.

The TARGET-IEKPT routine determines the
back target of the loop by obtaining the
first block of the selected loop. It then
analyzes the blocks in the chain of back
dominators of the first block to locate the
nearest block in the chain that is outside
the loop and that passed control to only
one block. That block is the back target
of the loop, and the TARGET-IEKPT routine
saves a pointer to it for use in the
subsequent processing of the loop.

Pointers to First and Last Blocks

The pointers to the first and last
blocks of the selected loop indicate to the
text optimization and full register
assignment routines where they are to
injtiate and terminate their processing.

To make these pointers available, the
TARGET-IEKPT routine merely determines the
first and last blocks of the selected loop
and saves pointers to them for use in the
subsequent processing of the loop. To
determine the first and last blocks, the
TARGET-IEKPT routine searches the statement
number chain for the first and last entries
having the current loop number. The blocks
associated with those entries are the first
and last in the loop.

Loop Composite Matrixes

The loop composite matrixes, LMVS, LMVF,
and LMVX, provide the text optimization and
full register assignment routines with a
summary of which operands are defined
within the selected loop, which operands
are used within that loop, and which
operands are busy-on-exit from that loop.
(An operand is busy-on-exit from the loop
if it is used before it is defined in any
path along which control flows from the
loop.)

The LMVS matrix indicates which operands
are defined within the loop. The
TARGET-IEKPT routine forms LMVS by
combining, via an OR operation, the
individual MVS fields in the statement
number text entry of every block in the
selected loop.

The LMVF matrix indicates which operands
are used within the loop. The TARGET-IEKPT
routine forms it by combining, via an OR
operation, the individual MVF fields in the
statement number text entry of every block
in the selected loop.

The LMVX matrix indicates which operands
are busy-on-exit from the selected loop.
LMVX is formed by the TARGET-IEKPT routine.
It examines the text entries of each block
that is not in the selected loop and that
receives control from a block in that loop.
Any operand in the text entries of such a
block that is either used but not defined
in the block or used before it is defined
is busy-on-exit from the loop. The
TARGET-IEKPT routine sets to on the bit in
the LMVX matrix that corresponds to the
coordinate assigned to each such operand to
reflect that it (i.e., the operand) is
busy-on-exit from the loop.

TEXT OPTIMIZATION -- OPT=2

The text optimization process of phase
20 detects text entries within the loop
under consideration that do not contribute
to the loop's successful execution. These
non-essential text entries are either
completely eliminated or are relocated to a
block outside of the current loop. Because
the most deeply nested loops are presented
for optimization first, the number of text
entries in the most strategic sections of
the object module will approach a minimum.

The processing of text optimization is
divided into three logical sections:

e Common expression elimination optimizes
the execution of a loop by eliminating

Section 2:

unnecessary recomputations of identical
arithmetic expressions.

e Backward movement optimizes the
execution of a loop by relocating to
the back target computations essential
to the module but not essential to the
current loop.

o Strength reduction optimizes the
incrementation of DO indexes and the
computation of subscripts within the
current loop. Modification of the DO
increment may allow multiplications to
be relocated into the back target. If
the DO increment is not busy-on-exit
from the loop, it may be completely
replaced by a new DO increment that
becomes both a subscript value and a
test value at the bottom of the DO
loop.

The first two of the foregoing sections
are similar in that they examine text
entries in strict order of occurrence
within the loop.

The last section does not examine
individual text entries within the loop;
instead, the TYPES table, constructed prior
to their execution, is consulted for
optimization possibilities. Furthermore,
an interaction of entries in the TYPES
table must exist before processing can
proceed. The TYPES table contains pointers
to type 3, 5, 6, and 7 text entries., The
various types, their definitions, and the
section(s) of text optimization that
process them are outlined in Table 4.
Pointers to type 1 and type 2 text entries
are not entered into the TYPES table. The
reason is that such types have already been
processed during backward@ movement.

The following text describes the
processing performed by each of the
sections of the text optimization. Table
11 summarizes the criteria for performing
text optimization in each section. An
example illustrating the type of processing
of each section is given in Appendix D.
These examples should be referred to when
reading the text describing the processing
of the sectioms.

Discussion of Major Components 63

Table 4, Text Entry Types

Definition

Processed by |

Type 1

position.

A text entry having an absolute constant?
in both the operand 2 and operand 3

Backward Movement (elimination)

Type 2

A text entry having stored constants2 in
both the operand 2 and operand 3 positions.

Backward Movement (movement)

3

3
®

An inert text entry (i.e., a text entry
that is a function of itself and an addi-

Strength Reduction

-|————-"'——-I-———-I——-I

5

=
]
el
0]

and a constant,
multiplicative (* or /).

A text entry whose operand 1 (a temporary)
is a function of a variable (or temporary)
and whose operator is

Strength Reduction

6

H
v
o]

(14

and a constant,
additive (+ or -).

A text entry whose operand 1 (a temporary)
is a function of a variable (or temporary)
and whose operator is

Strength Reduction

A branch text entry

-—-
I
i
T
|
|
|
L
T
|
|
1
1
|
| et
| tive constant; e.g., J=J+1).
+
|
|
|
|
1
T
|
|
|
|
1
T

Type 7 |
L

T
I
1

+4
I
|
|
1

T
|
I
i
T
|
|
!

———] ———

T
I
|
|
|
1

+
|
|
|
!
!

T
|

4

—— S e G A . . gmpon o s e s

iAbsolute constants are those that agree with the definition of numerical constants as
stated in the publication IBM System/360 Operating System:

FORTRAN IV Language, Form

| c28-6515.

|2A stored constant is a variable that is not defined within a loop and,
| value remains constant throughout execution of that loop.
L

thus, its

|
|
|
|
|
|
|
|
|
|
|
|
|
i
|
|
|
|
S S Sy S Sy S S,

Common Expression Elimination -- OPT=2

The object of common expression
elimination, which is carried out by
subroutine XPELIM-IEKQXM, is to get rid of
any unnecessary arithmetic expressions.
This is accomplished by eliminating text
entries, one at a time, until the entire
expression disappears. An arithmetic text
entry is unnecessary if it represents a
value (calculated elsewhere in the loop)
that may be used without modification. A
value may be used without modification if,
between appearances of the same
computation, operands 2 and 3 of the text
entry are not redefined. The following
paragraphs discuss the processing that
occurs during common expression
elimination.

Within the current loop, subroutine
XPELIM-IEKQXM examines each uncompleted
block (i.e., a block that is not part of an
inner loop) for text entries that are
candidates for elimination. A text entry
is a candidate if it contains an
arithmetic, binary, logical, or subscript
operator. Once a candidate is found, the
XPELIM-IEKQXM subroutine attempts to locate
a matching text entry. A text entry
matches the candidate if operand 2, operand
3, and the operator of that text entry are

o4

identical to those of the candidate. If
either operand 2 or 3 of the matching text
entry is redefined between that text entry
and the candidate, the match is not
accepted. The search for the matching text
entry takes place in the following
locations:

* In the same block as the candidate,
between the first text entry and the
candidate.

e In a back dominator (see note) of the
block in which the candidate resides.

Note: Only back dominators that are
not elements of previously processed
loops and that are within the confines
of the current loop are considered.
The first back dominator considered is
the one nearest to the block being
processed. The next considered is the
back dominator of the nearest back
dominator, etc.

when a matching text entry is found,
subroutine XPELIM-IEKQXM performs
elimination in the following way:

e Tf operand 1 of the matching text entry
is not redefined between that text
entry and the candidate, subroutine
XPELIM-IEKQXM substitutes that operand

for operand 2 of the candidate and
converts the operator to a store.

e If, however, operand 1 is redefined,
subroutine XPELIM-IEKQXM generates a
text entry to save the value of operand
1 in a temporary and inserts this text
entry into text immediately after the
matching text entry. It then replaces
operand 2 of the candidate with this
temporary, and converts the operator to
a store,

¢ Finally, if operand 1 of the candidate
is a temporary generated by phase 15,
the XPELIM-IEKQXM subroutine replaces
all uses of the temporary with the new
operand 2 of the candidate and deletes
the candidate. Thus, the value of the
matching text entry is propagated
forward for a possible match with
another candidate. This provides the
link to the next text item of the
complete common expression.

All text entries in the block under
consideration are processed in the
previously described manner. When the
entire block is processed, the next
uncompleted block in the loop is selected
and its text entries undergo common
expression elimination. When all
uncompleted blocks in the loop are
processed, control is returned to the phase
20 control routine, which passes control to
the portion of phase 20 that continues text
optimization through backward movement.

The overall logic of common expression
elimination is illustrated in Chart 11. An
example of common expression elimination is
given in Appendix D.

Backward Movement -- OPT=2

Backward movement, which is performed by
subroutine BACMOV-IEKQBM, moves text
entries from a loop to an area that is
executed less often, the back target of the
loop. During backward movement, each
uncompleted block in the loop being
processed is examined for text entries that
are candidates for backward movement. To
be a candidate for backward movement, a
text entry must be type 2. Therefore, it
must:

e Contain an arithmetic or logical
operator.

e Have operands 2 and 3 that are not
defined within the loop.

Section 2:

When a candidate is found, subroutine
BACMOV-IEKQBM carries out backward movement
of that candidate in one of two ways:

e Tf operand 1 of the candidate is not
busy-on-exit from the back target of
the loop and if operand 1 of the
candidate is not defined elsewhere in
the loop, the BACMOV-IEKQBM subroutine
moves the entire candidate to the back
target of the loop. (An operand is not
busy-on-exit from the back target if
that operand is defined in the loop
before it is used.)

e If operand 1 of the candidate is
busy-on-exit from the back target of
the loop or if it is defined elsewhere
in the loop, subroutine BACMOV-IEKQBM
generates a text entry to perform the
computation of the expression in the
candidate and store the result in a new
temporary. It moves this text entry to
the end of the back target of the loop
and then replaces the expression in the
candidate with operand 1, the new
temporary, of the generated text entry.

All the text entries in the block under
consideration are processed in the
previously described manner. When the
entire block is processed, the next
uncompleted block in the loop is selected
and its text entries undergo backward
movement. When all uncompleted blocks in
the loop are processed, control is returned
to the phase 20 control routine, which
passes control to the portion of phase 20
that continues text optimization through
strength reduction.

The overall logic of backward movement
is illustrated in Chart 12. An example of
backward movement is given in Appendix D.

Two additional optimization processes
are performed concurrently with backward
movement. They are the elimination of
simple stores and of arithmetic expressions
that appear in text entries and are
functions of constants.

Elimination of Simple Stores: The
BACMOV-IEKQBM subroutine effects the
removal of unnecessary simple stores (i.e.,
text entries of the form "operand 1 =
operand 2") from the block that is
currently undergoing backward movement.

The following paragraph describes the
processing.

Subroutine BACMOV-IEKQBM selects as
candidates for elimination any simple store
in which operand 1 is a nonsubscripted
variable. Pointers to the candidates are
passed to the SUBSUM-IEKQSM subroutine,
which determines if elimination is indeed
possible according to the conditions

Discussion of Major Components 65

illustrated in Table 5. At the same time,
subroutine SUBSUM-IEKQSM replaces all uses
of operand 1 of the candidate with operand
2 of the candidate in text entries between
either:

* The candidate and the first
redefinition of either operand.

¢ The candidate and the end of the block.

The BACMOV-IEKQBM subroutine then deletes
those candidates so marked by subroutine
SUBSUM-IEKQSM. An example of simple-store
elimination is illustrated in Appendix D.

Table 5. Operand Characteristics That
Permit Simple-Store Elimination
r T T 1
		Operand 2	Operand 1
operand 1}jOperand 1l	Redefined	Used After	
Busy-on—-	Redefined	Before	Ooperand 2
Exit from	Later in	Operand 1	Redefined
Block	Block	Redefined	
b + { : 4			
No	No	No	X
b } 1			
[No No Yes	No		
= 4			
No	Yes	No	X
i 4 (] (] _'			
r) T T			
No i Yes	Yes	No	
k- t t t i			
Yes	Yes	No i X	
- 1
L T
Yes Yes Yes | No
L

= condition cannot exist because of
revious characteristics of operands.

- — e —
ol
o —

Elimination of Text Entry Expressions
Involving Integer Constants (Type 1):
During the scan of a block for text entries
to be moved to the back target, subroutine
BACMOV-IEKQBM also checks for text entries
whose operators are arithmetic and whose
operands 2 and 3 are both integer
constants. When such a text entry is
found, the BACMOV--IEKQBM subroutine
eliminates the arithmetic expression in the
text entry by:

¢ Calculating the result of the
expression.

e Creating a new dictionary entry for the
result, which is a constant.

e Replacing the arithmetic expression
with the result.

The text entry is thereby reduced to a

simple store, which may be eliminated by
simple-store elimination.

66

Strength Reduction -- OPT=2

Strength reduction, which is performed
by subroutine REDUCE-IEKQSR, optimizes
loops that are controlled by logical IF
statements. (DO loops are converted to
loops controlled by logical IF statements
during phase 10 processing.) Such loops
are optimized by modifying the expression
(e.g., J < 20) in the IF statement; this
enables certain text entries to be moved
from the loop to the back target of the
loop, an area executed less frequently.
Strength reduction processing is divided
into two sections:

e Elimination of multiplicative text.
e Elimination of additive text.

Both of these sections perform strength
reduction, but each has a separate set of
criteria for considering a loop as a
candidate for reduction. However, the
manner in which each section implements
reduction essentially is the same.

Elimination of Multiplicative Text: To
eliminate multiplicative text, subroutine
REDUCE-IEKQSR examines the loop being
processed to determine whether or not it is
a candidate for strength reduction. The
loop is a candidate if:

¢ The loop contains an inert text entry
(type 3).

e Operand 1 of the inert text entry is
used in another text entry (in the
loop) whose operator indicates
multiplication and whose other used
operand is a constant® (type 5).

e Operand 1 of the inert text entry is
the variable appearing in the
expression of the logical IF statement
that controls the loop.

If the loop is a candidate, subroutine
REDUCE-IEKQSR implements strength reduction
in one of two ways:

1. If the constants in the inert text
entry and the multiplicative text
entry are both absolute constants, the
REDUCE-IEKQSR subroutine:

a. Calculates a new constant (K)
equal to the product of the
absolute constants.

1This other text entry is referred to as a
multiplicative text entry.

2.

b. Generates another inert text entry
and inserts it into the loop
immediately after the original
inert text entry. The additive
constant in this text entry is K.

c. Modifies the expression in the
logical IF statement by:

(1) Replacing the branch variable
(see note) with operand 1 of
the generated inert text
entry.

(2) Replacing the branch constant
(see note) with a constant
equal to the product of the
branch constant and the
absolute constant in the
multiplicative text entry.

d. Deletes the original inert text
entry if operand 1 of that text
entry is not busy-on-exit from the
loop.

e. Moves the multiplicative text
entry to the back target of the
loop.

f. Replaces operand 1 of the
multiplicative text entry with
operand 1 of the generated inert
text entry.

g. Replaces the uses of operand 1 of
the multiplicative text entry that
remain in the loop with operand 1
of the generated inert text entry.

Note: The branch variable is the
variable in the expression of the
logical IF statement that is
tested to determine whether or not
the loop is to be re-executed.
The branch constant is the
constant with which the branch
variable is compared. For
example, in IF (J < 3) where J is
the branch variable and 3 is the
branch constant.

If either of the constants in the
inexrt text entry or the multiplicative
text entry is a stored constant, the
REDUCE-IEKQSR subroutine performs
similar processing to that described
above. However, prior to generating
the inert text entry, it generates an
additional text entry and places it
into the back target of the loop.

This text entry multiplies the two
constants. Operand 1 of this text
entry becomes the additive constant in
the generated inert text entry. In
the case where the constant in the
multiplicative text entry is a stored
constant, a second additional text

Section 2:

entry is generated and placed into the
back target of the loop. This second
text entry multiplies the branch
constant by the constant in the
multiplicative text entry. Operand 1
of the second text entry becomes the
new branch constant of the logical IF.

If additional multiplicative text
entries exist within the loop, the
foregoing process is repeated. Repetitive
processing of this type results in a number
of generated inert text entries, which may
be eliminated from the loop by the
processing of the second section of
strength reduction.

Elimination of Additive Text: To eliminate
additive text, subroutine REDUCE-IEKQSR
examines the loop being processed to
determine whether or not it is a candidate
for strength reduction. The loop is a
candidate if:

e The loop contains an inert text entry
(type 3).

e Operand 1 of the inert text entry is
used in the loop in another text entry
whose operator indicates addition?
(type 6).

If the loop is a candidate, the
processing performed by subroutine
REDUCE-IEKQSR to eliminate the additive
text entry is essentially the same as that
performed to eliminate a multiplicative
text entry.

The overall logic of strength reduction
is illustrated in Chart 13. An example
showing both methods of strength reduction
is given in Appendix D.

FULL REGISTER ASSIGNMENT -- OPT=2 (CHART
i4)

During OPT=2 optimization, full register
assignment is carried out on module loops,
rather than on the entire module, as is the
case for OPT=1 optimization. Regardless of
whether a loop or the entire module is
being processed, the full register
assignment routines operate essentially in
the same manner. However, the optimization
effect of full register assignment, when
carried out on a loop-by-loop basis, is
more pronounced. Because the most deeply
nested loops are presented for full
register assignment first, the number of

1This text entry is referred to as an
additive text entry.

Discussion of Major Components 67

register loads in the most strategic
sections ofthe object module approaches a
minimum. The processing of a loop by full
register assignment differs from the
processing of the entire module only in the
area of global assignment. An
understanding of the processing performed
on a loop, other than

global assignment, can be derived from the
previous discussion of full register
assignment (see "Full Register Assignment
-- OPT=1"). Global assignment for a loop
is described in the following text.

When processing a loop, the global
assignment routine (GLOBAS-IEKRGB)
incorporates into the current loop,
wherever possible, the global assignments
made to items (i.e., operands and base
addresses) in previously processed loops.
It does this to ensure that the same
register is assigned in both loops if an
item eligible for global assignment in the
current loop was globally assigned in a
previously processed loop.

Before the global assignment routine
assigns an available register to the most
active item of the current loop, it
determines whether that item was globally
assigned in a previously processed loop.
(As global assignment is carried out on
each loop, all global assignments for that
loop are recorded and saved for use when
the next loop is considered.) If the item
was not globally assigned in a previously
processed loop, the GLOBAS-IEKRGB routine
assigns it the first available register.
If the item was globally assigned in a
previously processed loop, the global
assignment routine then determines whether
or not the register assigned to the item in
the previously processed loop is currently
available. If that register is available,
the GLOBAS-IEKRGB routine also globally
assigns it to the same item in the current
loop. If the register is not available,
the global assignment of that item in the
previously processed loop cannot be
incorporated into the current loop. The
GLOBAS-IEKRGB routine, therefore, assigns
the item an available register different
from that assigned to it in the previously
processed loop. The GLOBAS-IEKRGB routine
selects the eligible item with the next
highest activity in the current loop and
treats it in the same manner. Processing
continues in this fashion until the supply
of eligible items or the supply of
available registers is exhausted.

As each global assignment is made to an
active item, the GLOBAS-IEKRGB routine
checks to determine whether or not that
item is busy-on-exit from the back target
of the loop. If the item is busy-on-exit,
the GLOBAS-IEKRGB routine generates a text
entry to load that item into the assigned

68

register and inserts it into the back
target of the loop. The load is required
t0 guarantee that the item is in a register
and available for subsequent use during
loop execution. If the item is not
busy-on-exit, the text item is not required
to be loaded. 1If any globally assigned
item is defined within the loop and is also
busy-on-exit from the loop, the
GLOBAS-IEKRGB routine generates a text
entry to store that item on exit from the
loop. The generated store is needed to
preserve the value of such an operand for
use when it is required during the
execution of an outer loop.

The GLOBAS-IEKRGB routine records all
global assignments made for the current
loop for use in the subsequent updating
scan (see "Full Register Assignment --
OPT=1") and also for incorporation,
wherever possible, into subsequently
processed loops.

BRANCHING OPTIMIZATION -- OPT=2

During OPT=2 optimization, branching
optimization is carried out in the same
manner as during OPT=1 optimization. After
all loops have undergone full register
assignment, subroutine BLS-IEKSBS is given
control to calculate the size of each
block. When the sizes of all blocks have
been calculated, the BLS-IEKSBS subroutine
uses the block size information to
determine the blocks to which a branch can
be made by means of RX-format branch
instructions.

PHASE 25

Phase 25 completes the production of an
object module from the combined output of
the preceding phases of the compiler. An
object module consists of four elements:

Text information.

External symbol dictionary.
Relocation dictionary.
Loader END record.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine language format. It
may contain unresolved external symbolic
cross references (i.e., references to
symbols that do not appear in the object
module). The external symbol dictionary
contains the information needed to resolve
the external symbolic cross references that
appear in the text information. The

relocation dictionary contains the
information needed to relocate the text
information for execution. The END record
informs the linkage editor of the length of
the object module and the address of its
main entry point.

An object module resulting from a
compilation consists of a single control
section, unless common blocks are
associated with the module. An additional
control section is included in the module
for each common block.

The object module produced by phase 25
is recorded on the SYSLIN data set if the
LOAD option is specified by the FORTRAN
programmer, and on the SYSPUNCH data set if
the DECK option is specified. If the LIST
option is specified, phase 25 develops and
records on the SYSRINT data set a
pseudo-assembler language listing of the
instructions and data of the object module.
If the MAP option is specified, phase 25
also produces a storage map. If the ID
option is specified, phase 25 inserts
information into the object module which is
used by the object-time traceback routine
of the Library.

TEXT INFORMATION

Text information consists of the machine
language instructions and data resulting
from the compilation. Each text
information entry (a TXT record)
constructed by phase 25 can contain up to
56 bytes of instructions and data, the
address of the instructions and data
relative to the beginning of the control
section, and an indication of the control
section that contains them. A more
detailed discussion of the use and format
of TXT records is given in the publication
IBM System/360 Operating System: Linkage
Editor, Program Logic Manual, Form -
Y¥28-6610.

The major portion of phase 25 processing
is concerned with text information
construction. In building text
information, phase 25 obtains each item
that is to be placed into text information,
converts the item to machine language
format wherever necessary, enters the item
into a TXT record, and places the relative
address of the item into the TXT record.

Phase 25 assigns relative addresses by
means of a location counter, which is
continually updated to reflect the location
at which the next item is to be placed into
text information. Whenever phase 25 begins
the construction of a new TXT record, it

Section 2:

inserts the current value of the location
counter into the address field of the TXT
record. Thus, the address field of the TXT
record indicates the relative address of
the instructions and data that are placed
into the record.

Figure 9 shows the layout of storage
that phase 25 assumes in setting up text
information.

Phase 25 constructs text information by:

¢ Reserving address constants for the
referenced statement numbers of the
module.

e Completing the processing of the adcon
table entries and entering the
resultant entries into TXT records.

s Generating the prologue and epilogue
instructions and entering these
instructions into TXT records.

e Converting phase 15/phase 20 text into

System/360 machine code and entering
the code into TXT records.

Chart 20 shows the overall logic of
phase 25 processing.

Address Constant Reservation

Before it constructs text information,
subroutine MAINGN-IEKTA reserves address
constants for the referenced statement
numbers of the module and for the statement
numbers appearing in computed GO TO
statements. The address constants are
reserved so that the relative addresses of
the statements associated with such
statement numbers can be recorded and,
subsequently, obtained during execution of
the object module, when branches to those
statements are required.

To reserve address constants for
statement numbers, subroutine MAINGN-IEKTA
scans the chain of statement number entries
in the statement number/array table. For
each encountered statement number to which
reference is made, subroutine MAINGN-IEKTA
inserts a base and displacement into the
associated statement number entry. When
the text representation of that statement
number is encountered, a relative address
is placed in the statement number entry.

Note: If branching optimization is being
implemented, subroutine MAINGN-IEKTA does
not perform the processing described in the
previous paragraph.

Discussion of Major Components 69

Phase which
uses space

Phase which
allocates space

STALL-IEKGST STALL-IEKGST
Entry Code phase 10 and phase 25
Format Text STALL-IEKGST STALL-IEKGST
Register 13 o phase 10 phase 10
STALL-IEKGST
Save Area phase 10 phase 25
STALL-IEKGST
Adcon for Register 12 phase 10 phase 25
Branch Tables STALL-IEKGST phase 25
phase 10
Parameter Lists f:}t‘:;ez]]55 phase 25
fecister 12 Constants, Variables, Arrays gﬁf:'ll-S :ﬁf::‘s
(F nesded)* CORAL CORAL
Adcons phase 15 phase 15
Myt CORAL CORAL
Namelist Dictionaries phase 15 phase 15
. CORAL CORAL
DEFINE FILE Parameter Lists phase 15 phase 15
Phase 20 Temporaries phase 20 phase 25
'B' Block Label Adcons phase 25 phase 25
Object Program Instructions phase 25 phase 25
Epilogue phase 25 phase 25
Prologue phase 25 phase 25
Entry Code for Secondary Entry Point** phase 25 phase 25
Epilogue for Secondary Entry Point** phase 25 phase 25
Prologue for Secondary Entry Point** phase 25 phase 25

*See "Relative Address Assignment” under "CORAL Processing."

**See last paragraph of "Generation of Initialization Instructions" under "FORTRAN System Director."

e Figure 9.

After all statement numbers are
processed, bases and displacements are
likewise assigned to adcons for the
statement numbers appearing in computed GO
TO statements. The MAINGN-IEKTA subroutine
scans the branch table chain (see Appendix
A, "Branch Tables"), and assigns a base and
displacement for each branch table.
Subroutine MAINGN-IEKTA does not record
pointers to the address constants set aside
for the actual statement numbers of the
computed GO TO statements in their
associated standard branch table entries.
The values to be placed into the address
constants for statement numbers in computed
GO TO statements are also determined during
text conversion,

Text Conversion

Phase 25 converts intermediate text into
System/360 machine code. (The text

70

Storage Layout for Text Information Construction

conversion process is controlled by
subroutine MAINGN-IEKTA.) In converting
the text, phase 25 obtains each text entry
and, depending upon the nature of the
operator in the text entry, passes control
to one of six processing paths to convert
the text entry.

The six processing paths are:

Statement Number Processing.
Input/output Statement Processing.
CALL Statement Processinge.

Code Generation.

RETURN Statement Processing.

END Statement Processing.

See Table 14 for the complete list of
subroutines called by phase 25.

STATEMENT NUMBER PROCESSING: When the
operator of the text entry indicates a
statement number, subroutine MAINGN-IEKTA
passes control to subroutine LABEL-IEKTLB.
The LABEL-IEKTLB subroutine then inserts

the current value of the location counter,
which is the relative address of the
statement associated with the statement
number, into the statement number entry.
All branches to that statement are made
through the use of the relative address for
that statement number.

Note: If branching optimization is being
implemented, only statement numbers to
which a branch cannot be made via RX-format
branch instructions (i.e., statement
numbers that are not within the range of
registers 13, 12, 11, 10, and 9) are
processed as described above.

After the relative address has been
placed into the statement number entry,
subroutine LABEL-IEKTLB determines whether
or not that statement number appears in a
computed GO TO statement. If it does,
subroutine LABEL-IEKTLB also inserts the
relative address into the appropriate field
of the branch table entry, or entries, for
that statement number. The relative
address recorded in the branch table entry
is placed into the storage reserved for it
within text information (see "END Statement
Processing®™) when the text representation
of the END statement is encountered.

INPUT/OUTPUT STATEMENT PROCESSING: When
the operator of the text entry indicates an
input/output statement, an I/0 list item,
or the end of an I/0 list, the MAINGN-IEKTA
subroutine passes control to subroutine
IOSUB-IEKTIS, which generates an
appropriate calling sequence to IHCFCOMH to
perform, at object-time, the indicated
operation.

The calling sequence generated for an
input/output statement depends on the type
of the statement (e.g., READ, BACKSPACE).
The calling sequence generated for an I/O
list item depends on the input/output
statement type with which the list item is
associated and on the nature of the 1list
item, i.e., whether the item is a variable
or an array. The calling sequence
generated for an end of an I/0 list depends
on whether the end 1I/0 list operator
signals:

¢ The end of an I/0 list associated with
a READ/WRITE that requires a FORMAT
statement.

e The end of an I/0 list associated with
a READ/WRITE that does not require a
FORMAT statement.

Once the calling sequence is generated,
subroutine IOSUB-IEKTIS enters it into TXT
records.

Section 2:

CALL STATEMENT PROCESSING: When the
operator of the text entry indicates a CALL
statement, subroutine MAINGN-IEKTA passes
control to subroutine FNCALL-IEKVFN to
generate a standard direct-linkage calling
sequence, which uses general register 1 as
the argument register. The argument list
is located in the adcon table in the form
of address constants. Each address
constant for an argument contains the
relative address of the argument. The
FNCALL-IEKVFN subroutine enters the calling
sequence into TXT records.

CODE_GENERATION: Code generation converts
text entries having operators other than
those for statement numbers, ENTRY, CALL,
RETURN, END, and input/output statements
into System/360 machine code. To convert
the text entry, code generation uses four
arrays and the information in the text
entry. The four arrays are:

e Register array. This array is reserved
for register and displacement
information.

e Directory array. This array contains
pointers to the skeleton arrays and the
bit-strip arrays associated with
operators in text entries that undergo
code generation.

e Skeleton array. A skeleton array
exists for each type of operator in an
intermediate text entry that is to be
processed by code generation. The
skeleton array for a particular
operator consists of all the machine
code instructions, in skeleton form and
in proper sequence, needed to convert
the text entry containing the operator
into machine code. These instructions
are used in various combinations to
produce the desired object code. (The
skeleton arrays are shown in Appendix
c.)

¢ Bit-strip array. A bit-strip array
exists for each type of operator in a
text entry that is to undergo code
generation. One strip is selected for
each conversion involving the operator.
The bits in each strip are preset
(either on or off) in such a fashion
that when the strip is matched against
the skeleton array, the strip indicates
the combination of instructions that is
to be used to convert the text entry.
(The bit strip arrays are shown with
their associated skeleton arrays in
Appendix C.)

In code generation, the actual base
registers and operational registers (i.e.,
registers in which calculations are to be
performed), assigned by phase 20 to the
operands of the text entry to be converted

Discussion of Major Components 71

to machine code, are obtained from the
textentry and placed into the register
array. Any displacements needed to load
the base addresses of the operands are also
placed into the register array. The
displacements referred to in this context
are the displacements of the base addresses
of the operands from the start of the adcon
table that contains the base addresses.
These displacements are obtained from the
information table entries for the operands.
This action is taken to facilitate
subsequent processing,

The operator of the text entry to be
converted is used as an index to the
directory array. The entry in this
directory array, which is pointed to by the
operator index, contains pointers to the
skeleton array and the bit-strip array
associated with the operator.

The proper bit strip is then selected
from the bit-strip array. The selection
depends on the status of operand 2 and
operand 3 of the text entry. This status
is set up by phase 20 and is indicated in
the text entry by four bits (see Appendix
A, "Phase 20 Intermediate Text
Modifications™): the first two bits
indicate the status of operand 2; the
second two bits indicate the status of
operand 3.

The status of operand 2 and/or operand 3
can be one of the following:

00 The operand is in main storage and
is to remain there after the present
code generation. Therefore, if the
operand is loaded into a register
during the present code generation,
the contents of the register can be
destroyed without concern for the
operand.

01 The operand is in main storage and
is to be loaded into a register,
The operand is to remain in that
register for a subsequent code
generation; therefore, the contents
of the register are not to be
destroyed.

10 The operand is in a register as a
result of a previous code
generation. After the register is
used in the present code generation
process, its contents can be
destroyed.

11 The operand is in a register and is
to remain in that register for a
subsequent code generation. The
contents of the register are not to
be destroyed.

72

This four-bit status field is used as an
index to select a bit strip from the bit-
strip array associated with the operator.
The combination of instructions indicated
in the bit strip conforms to the operand
status requirements: 1i.e., if the status
of operand 2 is 11, the generated
instructions make use of the register
containing operand 2 and do not destroy its
contents. The combination, however,
excludes base load instructions and the
store into operand 1.

Once the bit strip is selected, it is
mnoved to a work area. The strip is
modified to include any required base load
instructions. That is, bits are set to on
in the appropriate positions of the bit
strip in such a way that, when the strip is
matched to the skeleton array, the
appropriate instructions for loading base
addresses are included in the object code.
The skeletons for these load instructions
are part of the skeleton array.

The code generation process determines
whether or not the base address of operand
2 and/or operand 3 must be loaded into a
register by examining the status of these
base addresses in the text entry. Such
status is indicated by four bits: the
first two bits indicate the status of the
base address of operand 2; the second two
bits indicate the status of the base
address of operand 3. If this status field
indicates that a base address is to be
loaded, the appropriate bit in the bit
strip is set to on. (The bit to be
operated upon is known, because the format
of the skeleton array for the operator is
known.)

Before the actual match of the bit strip
to the skeleton array takes place, the code
generation process determines:

e Tf the base address of operand 1 must
be loaded into a register.

e If the result produced by the actual
machine code for the text entry is to
be stored into operand 1.

This information is again indicated in the
text entry by four bits: the first two
bits indicate the status of the base
address of operand 1; the second two bits
indicate whether or not a store into
operand 1 is to be included as part of the
object code. If the base address of
operand 1 is to be loaded and/or if operand
1 is to be stored into, the appropriate
bit(s) in the bit strip is set to on.

The bit strip is then matched against
the skeleton array. Each skeleton
instruction corresponding to a bit that is

set to on in the bit strip is obtained and
converted to actual machine code. The
operation code of the skeleton instruction
is modified, if necessary, to agree with
the mode of the operand of the instruction.
The mode of the operand is indicated in the
text entry. The symbolic base, index, and
operational registers of the skeleton
instructions are replaced by actual
registers, The base and operational
registers to be used are contained in the
register array. If an operand is to be
indexed, the index register to be used is
obtained. (The index register is saved
during the processing of the text entry
whose third operand represents the actual
index value to be used.) The displacement
of the operand from its base address, if
needed, is obtained from the information
table entry for the operand. (The contents
of the displacement field of the text entry
are added to this displacement if a
subscript text entry is being processed.)
These elements are then combined into a
machine instruction, which is entered into
a TXT record. (If the skeleton instruction
that is being converted to machine code is
a base load instruction, the base address
of the operand is obtained from the
object~-time adcon table. The register (12)
containing the address of the adcon table
and the displacement of the operand's base
address from the beginning of the adcon
table are contained in the register array.)

Branch Processing: The code generation
portion of phase 25 generates the machine
code instructions to complete branching
optimization. The processing performed by
code generation, if branching optimization
is being implemented, is essentially the
same as that performed to produce an object
module in which branching is not optimized.
However, before a skeleton instruction
(corresponding to an on bit in the selected
and modified bit strip) is assembled into a
machine code instruction, code generation
determines whether or not that instruction:

e Loads into a register the address of an
instruction to which a branch is to be
made and which is displaced less than
4096 bytes from the address in a
reserved register.?t

e Is an RR-format branch instruction that
branches to an instruction that is
displaced less than 4096 bytes from the
address in a reserved register.2

iThis type of text entry is subsequently
referred to as a load candidate.

2This type of text entry is subsequently
referred to as a branch candidate.

Section 2:

Note: A load candidate usually
immediately precedes a branch candidate
in the skeleton array.

Code generation determines whether or
not the instruction to which a branch is to
be made is displaced less than 4096 bytes
from an address in a reserved register by
interrogating an indicator in the statement
number entry for the statement number
associated with the block containing the
instruction to which a branch must be made.
This indicator is set by phase 20 to
reflect whether or not that block is
displaced less than 4096 bytes from an
address in a reserved register.

The completion of branching optimization
proceeds in the following manner. If a
skeleton instruction corresponding to an on
bit in the bit strip is a load condidate,
it is not included as part of the
instruction sequence generated for the text
entry under consideration. If a skeleton
instruction corresponding to an on bit in
the bit strip is a branch candidate, it is
converted to an RX-format branch
instruction. The conversion is
accomplished by replacing operand 2 (a
register) of the branch candidate with an
actual storage address of the format D
(0,Br). D represents the displacement of
the instruction (to which a branch is to be
made) from the address that is in the
appropriate reserved register (Br).

If the instruction to which a branch is
to be made is the first in the text block,
both the displacement and the reserved
register to be used for the RX-format
branch are obtained from the statement
number entry associated with the block
containing the instruction. (This
information is placed into the statement
number entry during phase 20 processing.)

If the instruction to which a branch is
to be made is one that is subsequently to
be included as part of the instruction
sequence generated for the text entry under
consideration,?® the displacement of the
instruction from the address in the
appropriate reserved register is computed
and used as the displacement of the
RX-format branch instruction. The reserved
register used in such a case is the one
indicated in the statement number entry
associated with the block containing the
text entry currently being processed by
code generation.

3gkeleton arrays for certain operators
contain RR format branch instructions that
transfer control to other instructions of
that skeleton.

Discussion of Major Components 73

RETURN STATEMENT PROCESSING: When the
operator of the text entry indicates a
RETURN statement, subroutine MAINGN-IEKTA
passes control to subroutine RETURN-IEKTRN,
which generates a branch to the epilogue.
The epilogue address is obtained from the
save area. The address of the epilogue is
placed into the save area during the
execution of either the subprogram main
entry coding or the subprogram secondary
entry coding. The address of the epilogue
is placed into the save area during the
compilation of a main program or subprogram
with no secondary entry points (refer to
the section "Initialization Instructions").

END STATEMENT PROCESSING (CHART 21): When
the operator of the text entry indicates an
END statement, subroutine MAINGN-IEKTA
passes control to subroutine END-IEKUEN,
which completes the processing of the
module by entering the address constants
(i.e., relative addresses) for statement
numbers and statement numbers appearing in
computed GO TO statements into text
information and by generating the END
record.

Subroutine END-IEKUEN calls the
ENTRY-IEKTEN subroutine to determine
whether or not the program being compiled
is a main program or a subprogram and to
take the appropriate action. If it is a
subprogram, the ENTRY-IEKTEN subroutine
calls subroutine EPILOG-IEKTEP and
PROLOG-IEKTPR (see "Prologue and Epilogue
Generation®”). If it is a main program,
subroutine ENTRY-IEKTEN generates code to
call IHCFCOMH and generates a branch to the
appropriate place in text. If there are
secondary entry points, text is scanned to
determine where they are located. An
epilogue and prologue are generated for
each entry point with a branch to the
corresponding point in the object code.
Subroutine ENTRY-IEKTEN returns control to
the END-IEKUEN subroutine.

Subroutine END-IEKUEN places TXT and RLD
records in the object module for the
following: adcon for the save area, adcon
for the prologue, adcon for the epilogue,
adcon for register 12 (if needed), adcons
for branch tables, adcons for parameter
lists, and adcons for 'B' block labels.

The END-IEKUEN subroutine generates TXT
information for each temporary. Subroutine
END-IEKUEN calls IEND (FSD entry point) to
generate the loader END record that must be
the last record of the object module. 1Its
functions are to signal the end of the
object module and to inform the linkage
editor of the size (in bytes) of the
control section and the address of the main
entry point of the control section. The
END-IEKUEN subroutine then returns control
to the FSD through subroutine MAINGN-IEKTA.

T4

Storage Map Production

As a user option, subroutine IEKGMP
produces a storage map of the symbols used
in the source program. The map contains
the following information:

Name Symbol
Tag S

Explanation

The variable appeared to the
left of an equal sign in the
source program. (stored
into)

F The variable appeared to the
right of an equal sign in the
source program. (fetched)

A The variable was used as an
argument.

C The variable appeared in a
COMMON statement.

E The variable appeared in an
EQUIVALENCE statement.

XR The variable is a
call-by-name parameter to the
source programe

XF The variable is a subroutine
or function name.

The variable is the name of
an arithmetic statement
function.

ASF

Identifies the type of variable --
Type * length -- in bytes.

Type

Add. Is the relative address of the
variable within the object module

(in hexadecimal).

The total size of the object module is
also given.

A map of each COMMON block is generated
to give the relative location of each
variable in that COMMON block. A map of
variables equivalenced into common is also
provided.

In addition, subroutine TENTXT-IEKVTN
generates a map of statement numbers.

Prologue and Epilogue Generation

Phase 25 generates the machine code:
(1) to transmit parameters to a subprogram,
and (2) to return control to the calling
routine after execution of the subprogram.
Parameters are transmitted to the

subprogram by means of a prologue. Return

is made to the calling routine by means of
an epilogue. Prologues and epilogues are
provided for subprogram secondary entry
points as well as for the main entry point.

Prologque: A prologue (generated by
subroutine PROLOG-IEKTPR) is a series of
load and store instructions that transmit
the values of "call by value" parameters
and the addresses of "call by name"
parameters to the subprogram. (These
parameters are explained in the publication
IBM System/360 Operating System: FORTRAN
IV_Language, Form C28-6515.)

When subroutine PROLOG-IEKTPR generates
a prologue, it enters the prologue into TXT
records and inserts its relative address
into the address constant reserved for the
prologue address during the generation of
initialization instrxuctions.

Epilogue: An epilogue (generated by
subroutine EPILOG-IEKTEP) is a series of
instructions that (1) return to the calling
routine the values of "call by value"
parameters (if they are stored into or used
as arguments), (2) restore the registers of
the calling routine, and (3) return control
to the calling routine. (If "call by
value" parameters do not exist, an epilogue
consists of only those instructions
required to restore the registers and to
return control.)

When subroutine EPILOG-IEKTEP generates
an epilogue, it enters the epilogue into
TXT records and inserts its relative
address into the address constant reserved
for the epilogue address during the
generation of initialization instructions.
(When phase 25 encounters the text
representation of a RETURN statement, a
branch to the epilogue is generated.)

PHASE 30

Phase 30 records appropriate messages
(on the SYSPRINT data set) for syntactical
errors encountered during the processing of
previous phases; its overall logic is
illustrated in Chart 22. (Table 15 shows
the subroutines called by phase 30.) As
errors are encountered by these phases,
error table entries are created and placed
into an error table. Each such entry
consists of two parts. The first part
contains a message number. (If the error
cannot be localized to a particular
statement, no internal statement number is
entered in the error table entry. Phase 30
simulates the internal statement number
with a zero.) The second part contains
either an internal statement number if the
entry is for a statement that is in error,

Section 2:

a dictionary pointer to a variable if the

entry is for a variable that is in error,

or an actual statement number if the entry
is for an undefined statement number.

Message Processing

Using the message number in the error
table entry multiplied by four, phase 30
locates, within the message pointer table
(see Appendix A, "Diagnostic Message
Tables"), the entry corresponding to the
message number. This message pointer table
entry contains (1) the length of the
message associated with the message number,
and (2) a pointer to the text of the
message associated with the message number.
After phase 30 obtains the pointer to the
message text, it constructs a parameter
list, which consists of:

¢ Either the internal statement number,
dictionary pointer, or statement number
appearing in the error table entry.

e A pointer to the message text
associated with the message number.

¢ The length of the message.
* The message number.
* The error level.

Having constructed the parameter list,
phase 30 calls subroutine MSGWRT-IEKP31,
which writes the message on the SYSPRINT
data set, After the message is written,
the next error table entry is obtained and
processed as described above.

As each error table entry is being
processed, the error level code (either 4,
8, or 16) associated with the message
number is obtained from the error code
table (GRAVERR) by using the message number
in the error table entry as an index. The
error level code indicates the seriousness
of the encounter error. (For explanations
of all the messages the compiler generates,
see the publication IBM System/360
Operating System: FORTRAN IV (G and H)
Programmer's Guide, Form C28-6817.) The
obtained error level code is saved for
subsequent use only if it is greater than
the error level codes associated with
message numbers appearing in previously
processed error table entries, Thus, after
all error table entries have been
processed, the highest error level code
(either 4, 8, or 16) has been saved. The
saved error level code is passed to the FSD
when phase 30 processing is completed.

This code is used as a return code by the
scheduler to determine whether or not
succeeding steps are to be executed.

Discussion of Major Components 75

Chart 00.

L S L s]
* FROM CALLING
* PROGRAM

ko odok b dokok ok dok ok

76

Compiler Control Flow

TERBAQQ
HERERADRER kR Rk ERE
*F! 2+
* LR BT T ot D8 T Bt T
#emee—_->% INITIALIZE, *
*calL PHASE 10 %

LA LTRSS 22 Pl)

4
A - VL LTS L T T

*PH10

*TABLE TEXT
TR P D L L

4
AEREHC2H ttttttit
*'SD 01A2
tnt—t-t-t-t-t-t-t

*
*CALL PHASE 15 *
* *

LIRS L]

v
ShRRAD2A RS RS RR Sk S
*PH15 05A3 *

* AD
Aotkokok kb okokk kR dokokokok

J
EAESSE2RE SR AR RS

*
:CALL PHASE 20
AREAAERR SRR R Ah

.
-
-
.
-
-
-
.
-
.
.
-
.
.
.
.
.
.
.

tttt#EB‘ttttt.#tt
PH20
1-4 deaatlC2 2

et >* %SSIGN REGIS- *

‘ERS. OPTIMIZE
* IF RE! TED

*
‘tt#t"gttt“ii“

NOTE:

OPERATIONS

WITHIN DOTTED LINES
ARE PERFORMED BY FSD.

AERRAEEL Rk
*FSD 01 *
LT Bt B B LS T

AREAKES KRR K
H25 20A1

L e et T Tk ToE

LT

* Ko >%* BUILD OBJECT
:CALL PHASE 25 : * MODULE
LTI e e e T LT R P e P
et e b T I LY Sk ok 5 ok ok ko
H3 22B3 * *F 01A2 *
L e Tt et *
* QUTPUT ERROR #¥<- SALL *
* MESSAGES * RS * :
[T ET RS S L PR e et T d
NO
IERRORS
csscescscasn sruea
>
/
H5" .
tttt Lk *,
* NO LAS] *.
: A2 '(—---* COMPILATION *.*
tttt '*. L
*, %
* YES
SRRE TRk kR Rk ko
: TO OPERkFING :
* *
EERRRRE Rk R kR

BetesecescatasancscseansesnassateaantcasactssaaatsenastanaNssecsa0asaeresan s

R R R T T T T T T T T O

Chart 01. FSD

IEKAROO
T INEI I T T T
* FROM CaLLING *

*
kokkkkkRkoR ok Rk

SEE TABLE 6 FOR
BRIEF DESCRIPTION
OF EACH SUBROUTINE
OF THE FSD.

IEKAAY
ARk kD] kokk ke kk ok

* FROM CALLING * PH.
* PHASE

ENTRY POINT FOR
10

* SUBROUTINE OR

ook ok ok kR

ENTRY
FOR I/

FOR SERIOUS
ERROR (LEVEL 16)

-IEKIORTN
P PRI TP
POINT *
0 : FROM IBCOM :

Wk ok koo k kR

QUIT

4
EadddderA R LS L2 LS T4
*

* WRITE_ERROR
e > ¥ MESSAGE _WITH
* CODE

LE R X2)

ok k ko kkkEkkk

/

2" s,
o* *.
.*EOFSSWITCB *,

KARRRT2hA R RR AR K RA
*

* READ TO 'END*
* CARD IF

: NECESSARY
Ak Rk Rk

YT

Rk

* *

* A3 *

3 * *

Overall Logic S,

AGAIN
SRR EA2 N bk Rk Ak kkk tttt#A3tt**ttttt*
* *
}*_ EEfAENET_*_: >*INI£EALIZE FOR *
------- >¥ PROCESS §-——————->% COMPILATION *-----

* PARAMETERS # t *
LRSS 2T 222 28] I'TT 1]

03A
‘ttttkqtttt#ttgtt
*DSPTCH—IEKCOP :

———>*BUILD TEXT AND *
MA *

TION
t

ke kk

ENTRY POINT
FOR END-OF-FILE
ENCOUNTER

0un2
AEEERBIERRA RN KR KR
*STALL-IEKGST *
il e i
*PROCESS COMMON *
* AND ULVAL- :

*
EERERE Rk RRR ke Rk EE

*
C3 *,
.*BLOCK DATA *, YES
*.’SUBPROG RAM ‘.t-_-

, o
*

v
ARRAEDIRRRE RS E RN
*PHAZ1S = 06B2 *
et o B o e
* PROCESS PHASE *
* 10 TEXT :

Lia L]

ENDFILE

*kRkBO Rk kEkk Kk
* FROM PHASE 10 *
* OR 01A3 *

*
RAE AL EL R L Sl

v
p5" %,
.* %,
YES ,*IS END FILE*.

*, MISPLACED ¥
*, W%

e ot
* NO

ouT

*Ek¥ *tttES.‘ltti*t.
*

v
bty b e ALd

* ASSIGNMENT *
AEAARRRRERRAR RN E

EEL L]
b4

S * *
*____>% E5 *
* *

EE L L

‘Section 2:

TURN
: E5 :-———>*CALLING PROGRAM*
k% t#‘tt#*tt.tt#t*

bk kP kkkrERkhkk

:AND NORMAL TEXT*
tttt‘#tt*#t*tttlt

G4 T,

L * *.
YES_.*BLOCK DATA *,
[--—* SUBPROGRAM I«

*, o

*

GO ON J
P (LT
*LPSEL-IEKPLS *
LT T et D T R B
* ASSIGN REGS. *
: OPTIMIZE IF ¢

REQUESTED *
LT Tt Sl 2

* BUILD QOBJECT
* MODULE

ek R kR Rk Rk K

/

Ku' "k ERRAARG R AR
*. 'IEKP30 22B3 *
. ERROR OR *, YES ek —k -"‘-‘-'-‘
*, WARNL Iy O —
* MESSBGES ¥ :WRITE MESSAGES :
T, .*' Ty
* NO
J<
Y
* *
% A3 %
* *
e

Discussion of Major Components

77

Chart 02,

MAIN
STORAGE
* AVAILABLE. *

*, o H
*,

¥
* YES

v

KRR ARD 2Rk Rk
* *
DETERMINE
TYPE AND
AMOUNT
T e P T T

X
-

4

LRI VEEEL ELE L 2L]
* *
*
*
*

CHAIN ONTG
BLOCKS TO

RECOVER :
kErkgokkkkkdkokkrRkk

N

78

ENTRY_ POINT
FOR MAIN
STORAGE
REQUEST

IEKAGC

YES

*k kAR R kR KRR
* FROM
: REQUESTING
kR Rk

*
*

¥,
c3 *,

¥ *.
»* IS FREE *.
« BLOCK ¥
.QVAILABLE.

FSD Storage Distribution

*, Lk
* NO
v
OVERRITE . *.
D4 *,
¥ .
.* PHASE 20 *. YES
*, CALLING o Foee
*, L *
*, L%
*" NO oAk
*01 *
£ G2%
* %
*
kA KEI Rk RR kR Rk R LR Rk Rk
* CONVERT MAIN * * DETERMINE *
*STORAGE LIMITS * * AMOUNT OF *
>* TO SUBSCRIPTS *<-— * PHASE 10 TEXT *
* AND STORE * * PROCESSED *
*okk ko kR ok R ok Rk Ak kA ARk ok Rk
ok,
F4 *,
LI ST L ok *
* ZERO BLOCK * YES . * I *. NO
* AND RETURN * o e . STORAGE o Home
* *,AVAILABLE. *
ELTE T TR P Y *, o*
*, %
* ko k
*01 *
* G2%
* %
*

e Table 6.

FSD Subroutine Directory (Part 1 of 2)

) v a
| Ssubroutine | Function |
___________ - 4

k)

| ADCON- | Internal adcon table. |
| IEKAAD | |
I | |
AFIXPI-	Performs exponentiation of integers.
IEKAFP	
(AFIXPI)#*	
(FIXPI)*	
(FIXPI#)*	
DCLIST-	Prints out assembly listing of source program.
IEKTDC	
ERCOM-	Error message table.
IEKAER	
IEKAAA	Communication table,
I	[
IEKAAOQOO	Initializes compiler processing and calls the phases for execution.
	Entry point for compiler.
(ENDFILE)*	Receives control when end of data set is detected on input. Returns
	control to operating system.
(IEKAA9)*	IEKAAY9 deletes compilation if requested.
(IEKAGC)*	IEKAGC allocates and keeps track of main storage used in the
	construction of the information table and for collecting text entries.
(IEKIORTN)*	Entry from IBCOM on I/0 error.
IEKAAO1	Defines default options.
IEKAAQ02	Defines DDNAMES for the compiler and page headings. Common area for
(PAGEHEAD)*	IEKAAQO and IEKAINIT.
I	I
IEKAINIT	Processes parameters for 0S/360 and gets core for the compiler.
IEKATB	Provides diagnostic dumps of internal text and tables.
	I
IEKATM	Timing routine.
(PHASB)*	
(PHASS)*	
(PHAZSS)*	
(TIMERC)*	
(TOUT) *	
(TSP)*	
(TST)*	
!	
IEKFCOMH	Controls formatted compile-time input/output. (Corresponds to Library
(IBCOM)*	routine IHCFCOMH.)
(IBCOM#)*	
IEKFIOCS	Interface between compiler, IEKFCOMH, and QSAM.
(FIOCS)*	
(FIOCS#)#*	
b L {	
*Secondary entry point	
L ——— J
Section 2: Discussion of Major Components 79

Table 6. FSD Subroutine Directory (Part 2 of 2)

Subroutine Function

1) [}

| |

’ ¥

| IEKTLOAD | Builds ESD, TXT, RLD, and loader END records.
| (ESD)=* |
| (IEKUND)* |
| (IEKURL)* |
| (IEKUSD)* |
| (IEKTXT)* |
| (IEND) * |
| (RLD)* |
| (TXT)#* |
| |
| |
| |
| !
|
L

Maximizing service routine for integers and reals, diagnostic trace
routine; bypasses IEKFCOMH for some error messages.

PUTOUT-
IEKAPT
(PUTOUT) *

*Secondary entry point

L e Ly S SA——

80

e Chart 03.

Phase 10 Overall Logic

RY IS TO DIS?A{CHER

(SPTCH- LEKCD!

ENT RY POINT IEKCIN

DOTTED LINES

SEE TAB. FOR A
DESCRIPTION THE
SUBROUTINES OF PHASE 10.

FROM
‘CLASSIFICATION *

4****#*****#***#*

kK
* «
* B3 *
* *
ok
eeeesscerttntserrtcasananas
dokdok kB Kok ok ok ok ko : kkkk kB Rokkokkkkk Rk : HoAok R kR J ok ok ok ok ko k Rk
: : . : : . *GETCD-IERCGC :
* FROM FSD o ~=>*% INITIALIZE * e, —>*READ LIST, AND#*
x o x x *pREPARE SOURCE +
e ok ok ok ok ok ook ok ok ok ok koK : ok kok koK ok ok ok ok ok ko - *i‘**************
. .
. .
: & .
. o ¥, .
: 2" s, FRRARC ARk
. o* * *XCLASS-IEKDCL *
. Lk %, YES . #---ooZ_ZSooZll *
. +2" sraveumn CoeIESl__sk PROCESS *
. *. NUMBER . * STATEMENT *
: A . PP T T T T
. * NO .
. .
. < :
DISPATCHER . Stk AR D2 Ak ok kKK ke
(DISPTCH-IEKCDP) . *DETERMINE ROUTEX
IS WITHIN .
.
.
.

.
.
.
.
.
.

cesesssenssessssessscsens

v
Aok K 20 ok ok ok kK

*
*PROCESS SQURCE *
* STATEMENT :

* *
o a3 ok ok ok ok ok KOk KOOk

SEE TABLE 7

r2" " Atokkk P 3 kkok ok okok ok
ok *, *
o ¥ END *. YES *TO PHASE 15 VIA#%
* STATEMENT 4 %——————wm >* FSD *
*. ok * *
W, oK * *
*, . x Ak A oR ok ok ok R kK AOk
l NO
ook
* *
* B3 *
* *
sk

Section 2:

Discussion of Major Components

81

Chart 04.

SERMAD RN KRRk
* FROM Fg? *
: CHART :

LAA AL A2 L L])

/
U RBI Rk R h ke kk
*

Subroutine STALL-IEKGST

KTLOAI
T e
* GENERATE *
: ENTRY CODE :
LRI AT 22 1L]
v
“u, tt‘ltc3“titt‘*t*
«% ANY *, IEKTLOAD
o LITERAL *, YES ' LI '—i-‘—.—‘-'—‘
*, CONSTANTS o#——-=me—==>% GENERATE TEXT *
‘-‘ ‘.‘ * FOR CONSTANTS :
“h. oot R AR
* NO
<.
.*-
tttitbl#t*ttt.‘.: MR C LTl
‘ Up SPACE FOR * RO .‘UNF%NIS D *, YES ‘COMPUTE OFF—SET'
SAVE AREA AND #<eccemmeuo# EQU ------- FOR UNFIN,

: BRANCH TABLES #* ‘. o ' * EQUIV ENTRIES *
ey 't,‘.t' P
v

DICTIONARY SEARCH .
L AR T TR Y) E2 . SRR AEI o bk ki
* o ., . *
*RESET POINTER * ot ANY ., SET *
—->‘FOR EACH CHAIN ‘<—-*—-—-—‘ UNDEFINED o #——ox—aaaD>¥ UP_ERROR *
OF TABLE *,.STMT. NOS.* MESSAGE *
ENTRIES . o* *
bR 1.) 233 ., % Iy
I'l
F1© s, grestEzeetsrsenes
«% ANY », * GE ERA *
«% COMPLEX #. YES - * CHAIN
. oI se TMRGiNARY
‘-EN CHAIN..‘ : PORTIONS INTO :
“He o M I e
* NO
<.
¥, o,
G1 o G2" . HARRRGIA MR RRE RO
¥ *, . . * I S *
NO . % ’.I‘ABLB *. YES . ¥ES PR L
———%. _CHAIN P ¥ OPT=2 bt ASSIGN
*, PROCESSED. . . * COORDINATES
., . *, ¥ *BASED ON USAGE *
. ook RERRERAERA RN
* * NO
<
I.l s T
H1 ., H2 . .titlﬂ3tttttttt#t
. *, * *, TE
¥ ANY *, NO . * *, YES DISP LACEMENT ‘
—==%, EQUIVALENCE .#<-w———--=%, ANY COMMON -‘—---————)'AND ENTRY LOCK‘
*, ¥ *, . POINTERS
., o ¥ *, W
. .t . e Rk
«'YES *
baddacE AL LAt
*
* COMPUTE .
* OFF-SETS AND #
: GROUP HEADS :
LIRS 222 12222 2]
L mmmee>
CARAKLOR R AR E
: RETURN :
CHART 01 *
AR ER AR

82

Table 7.

Phase 10 Source Statement Processing

T T 1
| | Main Processing]
| Statement Type | Subroutine Subroutines Used |
1 1 4
r v b}
| Arithmetic | XARITH-IEKCAR IEKCCR, IEKCDP, IEKCGW, IEKCPX, IEKCS1, |
| | IEKCS?2 |
b + {
| Statement | DSPTCH-IEKCDP IEKCCR, IEKCDP, IEKCGW, IEKCPX, IEKCS1, |
| Function | XARITH-IEKCAR IEKCS2 |
|8 1 J
] T 1
| DIMENSION, | XSPECS-IEKCSP IEKCCR, IEKCDP, IEKCGW, IERCLC, IEKCS1l, IEKCS2, |
| EQUIVALENCE, | IEKCS3 |
| COMMON l |
F 4 -- —omme- 1
| EXTERNAL | DSPTCH-IEKCDP IEKCGW, IEKCS3 |
L 1 4
U]]
| Type, DATA | XDATA-IEKCDT IEKCGW, IEKCLC, IEKCDP, IEKCCR, IEKCPX, I
| [IEKCS3, IEKCSP, IEKCS2 |
L 4 J
] 1]
| DO | XDO-IEKCDO IEKCGW, IEKCDP, IEKCLT, IEKCS3, IEKCCR, |
| | IEKCS2, IEKCPX ‘ |
t 1 . 4
v T L]
| SUBROUTINE, CALL,| XSUBPG-IEKCSR IEKCGW, IEKCDP, IEKCS3, IEKCLC, IEKCLT |
| ENTRY, FUNCTION | IEKCPX |
1 1 |
r] 1
| READ, WRITE, | XIOOP-IEKCIO IEKCAR, IEKCCS, IERCDP, IEKCGW, IEKCLT, |
| PRINT, PUNCH, | IEKCPX, IEKCS1, IEKCS2, IEKCS3 |
| FIND l |
b e ettt e 1
| DEFINE FILE, | XTNDED-IEKCTN IEKCGW, IEKCDP, IEKCCR, IEKCSl1l, IEKCIC, |
| IMPLICIT, | IEKCS2, IEKCPX, IEKCS3 i
| STRUCTURE, | |
| NAMELIST | |
1 1 — e e e e e e e e e el e et e o — —_— e e e e e e et .l
r T

BACKSPACE,	
REWIND,	XIOPST-IEKDIO IEKCGW, IEKCDP, IEKCPX, IEKCCR, IEKCLT,
END FILE,	IEKCS2, IEKCS3
RETURN, ASSIGN,	
FORMAT, PAUSE,	
STOP, END I I	
b 4 e :	
IF, CONTINUE,	DSPTCH-IEKCDP IEKCPX
BLOCK DATA l	
I b e 1	
GO TO	XGO-IEKCGO IEKCDP, IEKCGW, IEKCLT, IEKCPX, IEKCS3
L L]

Section 2:

Discussion of Major Components 83

Table 8. Phase 10 Subroutine Directory (Part 1 of 3)

r
| Subroutine
L

T
| Type

T
| Function
]

) T]
| CSORN-IEKCCR |Utility (collection, conversion, |Secondary entry point IEKCCR directs the

| (IERCLC) *
| (IERCS1) *
| (IERCS2) *
| (IEKCS3) *

(IEKCIN)*

(IEKAREAD) *

IEKKOS

|entry placement)

DSPTCH-IEKCDP|Dispatcher, Keyword, and

jutility (entry placement)

FORMAT-IEKTFM|Miscellaneous

|
GETCD-IEKCGC |Preparatory

GETWD-IEKCGW |Utility (collection)

|
|Uutility (table entry)
|

1

|entering of variables and constants into
|information table

| Secondary entry point IEKCLC converts
|integer, real, and complex constants to
|their binary equivalents.

|

| Secondary entry point IEKCS1 places
|variable names on full word boundaries
|for comparison to other variable names.
|

|Secondary entry point IEKCS2 places
|dictionary entries constructed for
|variables and constants of the source
|module into the information table.

|

| Secondary entry point IEKCS3 combines
|the functions of entries IEKCS1 and
|IEKCS2 (above) for variable names.

e — —— —— —— —————— —— — — ———— — e kot e)

|Controls phase 10 processing, passes
|control to the preparatory subroutine to]
|prepare the source statement, determines|
|from the code assigned to the statement |
|which subroutine is to continue process-|
|ing the statement, and passes control to|
| that subroutine.

|

|Develops intermediate text
|representations of the BLOCK DATA,
|CONTINUE, EXTERNAL, and IF statements
land that portion of a statement function
|to the left of the equal sign; builds
|information table entries for the
|operands of these statements; and
|analyzes these statements for

| syntactical errors.

|

|Builds error table entries for the
|syntactical errors detected by phase 10
|and places them in the error table.

|
|IEKCIN is the initial entry point to
| IEKCDP.

|Generates format text from phase 10
|intermediate text.

|
|Reads, lists (if requested), packs, and
|classifies each source statement.

|

| IEKAREAD is a secondary entry point to
| IEKCGC.

|

|Obtains the next group of characters in
|the source statement being processed.

|Assigns coordinates based on usage count
|to variables and constants.
L

[S e s . s S S O . o S S S — —— — — — — ———— — — — — —— ——— — —— o S —— —_ — ot SO .) S S et S e S S e . S s S .

*Secondary entry point

b e e e e e e s e S S o S S ————— — — e ——" ——— — ——

84

e Table 8,

Phase 10 Subroutine Directory (Part 2 of 3)

- " T i - - -

| Subroutine | Type | Function

L 1]

) T T

| IEKXRS |Miscellaneous |Writes XREF buffer on SYSUT2.

| I

|LABTLU-IEKCLT|Utility (entry placement) |Places statement number entries into the

PH10-IEKCAA Utility (common data area)

PUTX-IEKCPX

|
|
|
|
|
|Utility (entry placement)
|
1
|
|

STALL-IEKGST |Utility (table entry and text
|generation)

—————— e S———— .t o .

XARITH-IEKCAR|Arithmetic

XCLASS-IEKDCL|Utility (text generation)

XDATYP-IEKCDT|Keyword (table entry and text
generation)

generation)

———— ————— — ————— — . — — ——. ————— T ——— — — — S_— — . Do S S STt s st S et e e . s, Sl . S, . SO e, i S . Pt

|
|
|
%
XDO-IEKCDO |Keyword (table entry and text
|
|
|
|
L

|information table.

|

| Work area and communication region for
|phase 10.

|Places text entries into the appropriate
|subblocks, obtains the next operator
|from the source statement, and places
|the operator in the text entry work
|area.

|

|Generates entry code for object module,
|calls IEKTFM to translate format text to
|object code, generates object code for
|literal data text, processes equivalence
|lentries (those that were equivalenced
|before being dimensioned), sets aside
|space in the object module for the
|problem program save area and for
|computed GO TO branch tables, checks for
|undefined statement numbers, rechains
|variables, assigns coordinates based on
|usage count, processes COMMON entries,
{and processes EQUIVALENCE entries.

|Controls the processing of arithmetic
| statements, CALL arguments, expressions
|in IF statements, I/0 list items, the
|expression portion of a statement
|{function, and the branch tables of an
|arithmetic IF statement. Builds
|information table entries for the
|operands of the previously mentioned
|statements, and analyzes the statements
|for syntactical errors.

|

|Controls the processing of source and
|compiler-generated statement numbers,
|generates the intermediate text required
|to increment a DO index and to compare
|the index with its maximum value, and
|processes CALL arguments of the form
|&label.

|

|Develops intermediate text representa-
|tions of DATA and TYPE statements,
|information table entries for the
|operands of DATA and TYPE statements,
|and analyzes these statements for

| syntactical errors.

|

|Develops the intermediate text and
|information table entries for the DO
|statement and implied DOs appearing in
|input/output statements and analyzes
|them for syntactical errors.

1

o —— ————————— —— —— ——————— ——— —— —— —— ———— — — — {— ————— —— —— {—— ———— — —— — —— S — {— ——— —— i, s . s 1)

b

Section 2:

Discussion of Major Components 85

Table 8. Phase 10 Subroutine Directory (Part 3 of 3)

T

Type | Function
}
Rl

Keyword (table entry and text |Develops intermediate text representa-

generation) |tions of the GO TO (unconditional,
|assigned, and computed) statements,
|constructs information table entries for
|the operands of these statements, and
|analyzes these statements for
|syntactical errors.

Subroutine

- —-

XGO-IEKCGO

generation) |tions of input/output statements,

|constructs information table entries for

|their operands, and analyzes
input/output statements for syntactical
errors., (I/0 list items are processed
by subroutine XARITH-IEKCAR.)

|

XREF-IEKXRF Miscellaneous |Reads in XREF buffer from SYSUT2.
|Prints out a cross-reference listing

T

|

+

|

|

|

|

|

|

! |
XTIOOP-IEKCIO |Keyword (table entry and text |Develops intermediate text representa-

|

|

|

|

|

|

|

|

|

| directly after the source listing.

|

|

XSPECS-IEKCSP|Keyword (table entry) Constructs information table entries for
| |variables and arrays appearing in
| | COMMON, DIMENSION, and EQUIVALENCE
| |statements and analyzes these statements
| |for syntactical errors.
|
|

XSUBPG-IEKCSR|Keyword (table entry and text |Develops intermediate text representa-
| generation) |tions of CALL, SUBROUTINE, ENTRY, and
| |FUNCTION statements; constructs
| |information table entries for the
| |operands of these statements; and
| |analyzes these statements for
| | syntactical errors. (This subroutine
| |passes control to subroutine
| | XARITH-IEKCAR to process the arguments
| |appearing in CALL statements.)

I

I

XTNDED-IEKCTN|Keyword (table entry and text %Develops intermediate text for NAMELIST

generation) |and DEFINE FILE statements; constructs
|information table entries for variables
|and arrays appearing in the NAMELIST,
|DEFINE FILE, and STRUCTURE statements;
|resets the implicit mode table according
|to the specification of the IMPLICIT
|statement; and analyzes these statements
|for syntactical errors.

|
|
I
|
|
|
|
|
XIOPST~-IEKDIO|Keyword (table entry and text |Develops intermediate text representa-

| generation) | tions of ASSIGN, RETURN, FORMAT, PAUSE,

| | BACKSPACE, REWIND, END FILE, STOP, and

| |END statements; constructs information

| |table entries for the operands of the

| |ASSIGN, BACKSPACE, REWIND, and END FILE

| |statements; and for the operands (if

| |any) of the RETURN, PAUSE, and STOP

| | statements; and analyzes all of these

| |statements for syntactical errors.

L AL —-

[e e S e . e et . S s T S o — . o . B o — o —_ . S—c—— — — o—— — ——— — . —— —— —_ — t— — — . S T T T e, " s, S B
e s i . e it s S St e S it . S — — ———— ——— T— —— — — A —— — — f— —— — ——— — — Y— _— —— — s— — {—— S . S o, s e s, e, s, i, wed

-

86

Chart 05. Phase 15 Overall Logic

Wtk ok T ok ko ko
FROM FSD *

* SEE TABLE 9 FOR A
* * BRIEF DESCRIPTION
* * OF THE SUB§OUTINES
gk kR OF PHASE 15.
v

Ak kR B3 dokk ok okdokk

*PHAZ15 06B2%

Mk hm ke ke — =

* PROCESS *
* PHASE 10 *

* TEXT *
ok sl o o o ok ok ok ok ok okok

v
Ak R C 3 ok ok Aok Rk
CORAL 09A1
Dt etk Tt T]
* RELATIVE *
* ADDRESS *
* ASSIGNMENT *
Fob Aok Aok kK ok

J
*READIRRRRKKKEK
* TO_PHASE *
: 20 VIA FSD :

Aok ok ok ok ok ok ok ko

Section 2: Discussion of Major Components 87

Chart 06.

PHAZ15 Overall Logic

PHAZ1S5

LR VAL SISl
* FROM FSD *
: CHART 01 :

ARRRR R Ehh kR kR R

v
EIIELS: VRIS RIS L2
* *

INITIALIZE

LTy
EX T X

Ak kdoh Rk kkokok Rk Rk k

20
AEERRC2R R b hukkh bk
*

tok ko
* * * GET A PHASE *
* C2 K D% 10 TEXT *
* * * ENTRY *
whkk *
e kbR bk ko khkpks
0
D *, *RREED IR e kR RRERER
«*STATE- *, % INDICATE IF *
« *MENT NUMBER*. YES * STATEMENT *
*. TEXT ENTRY +%-——wwe—- * NUMBER IS *
t_. ‘,t :FOR ENTRY POINT:
Tk, o AR RO ROk
* NO
100 08B2 ¥,
SRk AE] AR hkk kR E2 *,
* GENER-IEKLGN # *,
ittt e ol d YES . Is .
* OUTPUT b *, OPERATOR ok
* NI . END
* STATEMENT = *, o*
AR SRR PR PR L2) . 2 ¥
I NO
¥ 07
F2 *, Rk R R E Ik ke Rk ok
o* *, * ALTRAN-IEKJAL *
. *ARITHMETIC *. YES Ho ek k-
*, TRANSLATION ,¥————m——] > * PERFORM
*, NEEDED '.‘ : ARITHMETIC
‘e, Lk BRRRR kR R
* NO
} J,
¥ ¥
Gl "%, G2" ", R hhRK
oE *, L& *, * *
NO .* *, o ¥ |PROC= *, YES * PROCESS *
—=—%, OPTIMIZATION .%* *, { ESSING P T *
’.§ELECTED ¥ *.‘NEEDED ‘.‘ * ENTRY :
“k, o T Ty
* YES * NO
101 '4 23 v 08B2 08B2
Rk rHIRE Rk ke REF wkkrRH2kEhokkkkkdd Ak kI ke Rk kK
* * * GENER-IEKLGN * * GENER-IEKLGN #*
* ¥ LS B T L B 2T EEE R B T P T B
* BUILD *® * PASS ON * * COMPLETE TEXT *
* CMAJOR *® * PHASE 10 * * ENTRY OUTPUT *
* * * TEXT ENTRY * * T ITRY *
P e T I] EREERR R R AARERR RN
> <.
q
ok
* -
* C2 *
v * *
kT ok ko ok ok ok &
* TO_CORAL *
: VIA FSD t
LRSI RS TSI LS L]

88

08B2
kAR AD Rk ARk
* GENER-IEKLGN ¥
Ak o e

=——=>% CREATE NEW *
: TEXT BLOCK :
PO Y

*kkk
* *
* C2 %
* *
T
ETTTS

Chart 07.

ALTRAN-IEKJAL Control Flow

ALTRAN - [EKJAL

|

Adjective Code

IEKJFI

Primary Function Arithmetic Subscript Relational Logical
References Operators Operators Operators Operators
IEKJDF IEKJAN
(IEKKPR)* IEKKRE (IEKKNO)*
IEKKPA IEKKSA
IEKLOK IEKKUN
(IEKJEX)* IEKJGR
IEKJBF IEKJCP IEKKSM
A
(IEKIMO)* IEKKST
IEKLGN

*Secondary entry point of routine immediately above

NOTE:

The logic and flow of the arithmetic translator is too complex to be represented on one or two conventional flowcharts. Chart 07 indicates
the relationship between the arithmetic translator (subroutine ALTRAN) and its lower-level subroutines. An arrow flowing between two
subroutines indicates that the subroutine at the origin of the arrow may, in the course of its processing, call the subroutine indicated by
the arrowhead. In some cases, a subroutine called by ALTRAN may, in turn, call one or more subroutines to assist in the performance of
its function. The level and sequence of subroutines is indicated by the lines and arrowheads.

In reality, all of the pathways shown connecting subroutines are two-way; however, to simplify the chart, only forward flow has been
indicated by the arrowheads. Allof the subroutines return control to the subroutine that called them when they complete their processing.
(If a subroutine detects an error serious enough to warrant the deletion of the compilation, the subroutine passes control to the FSD, rather
than return control to the subreutine that called it.)

The specific functions of each of the subroutines associated with the arithmetic translator are given in the subroutine directory following
the charts for phase 15.

Section 2: Discussion of Major Components

89

Chart 08.

GENER- IEKLGN

RISy VIS]
* FROM *
* CALLING *
* ROUTINE *

kR Rk Rk

b
SERRAB2 AR RR Rk
* *

* *

* INITIALIZE *

* *

* *

REEER R AR R R AR
9004

20

HRRRRC2RRRR ARk

* *
* GET STORAGE *
* FO *
* TEXT BNTRY ¥
kkk ek kR ko k Rk
\
2" T,
ok S *
.+ OPERATOR *. NO
%, PHASE 1
. 'TEM -
. .
*, %
YES
v
E2° s,

o ¥ *,
.* STATEMENT *. YES

19

4
’.ttttD3tt####‘t##
* »
PASS ON *
PHASE 10 *
* TEXT ENTRY :

bk hkkd bk bk ko

1]
X5k REI0 SRk hkbk kS

* TXTLAB-IEKLAB *
Ao e e e e B B

*. NUMBER D e RECORD
*. TEXT ¥ * CONNECTION
*. - * INFORMATION * *
*, L% LI IR e Ty Tl
* NO
\'
L P LI I

* TXTREG-IEKLRG *
Hom o K e e K
* PROCESS *
* REGULAR *
* TEXT ENTRY #** %
LR ETTE L PR TP IS L L

\
FREREGRRANERERER
* *

SET TEXT
* CHAIN, BLOCK *
* gIzk,AND %
: BLOCK END :
EEZ R R AL LRSS S L L]

L L L

LX X
(=)
[

EXY)

LE L L]

20

GENER-IEKLGN Text Generation

9000
ek kRDY sk rkkk ik
SET TEXT *+
* CHAIN, BLOCK * .
-------- >% SIZE, AND #———————D>%
* BLOck END : *
PRI RIS LSS 2L 2

ek
*

#emeuD>* D5 *
* *

Ak

*TXTLAB-IEKLAB

ﬁ' FALL-THROUGI

*

**TXEREG—IEKLRG RECORDS CONNECTION

RMATION

SPACE FOR TEMPORARIES AN

S MVS

D_U.
AND va [§°2

DATE MVEF
SUBROUTINE MATE-TEKLMA

OBTAINS DICTIONARY

P—
A A CALL TO

L2

*uw
=)
o«

* % ®

®khE

AEREDSRAEERRR AR
RETURN

kR Rk kk kb

RECORDS
B _CONNECTIONS
AND SETS UP STATEMENT
NUMBER TEXT ENTRIES.

* %

Chart 09. CORAL

CORAL-IEKGCR

Overall Logic

* OPERATIONS WITHIN
DOTTED LINES ARE
PERFORMED BY
CORAL-IEKGCR

AR EARBRERK AR KRR
* NDATA IEKGDA :

__-—>* PROCESS PHASE *
10 DATA TEXT :

****t******#**’l‘*#

##ttgl*****t**‘ .
* FROM FS! * -
: CHART 01 : .

R AR :

\ :
B1 T*. :
Lx .
. YES.
*. ANY DATA]
Tk, o :
- ¥ .
NO .
{
RARERCLERREARRE LR

* ASSIG]

* RELATIVE

* ADDRESSES TO

: CONSTANTS :
FEKEKRERRRKEREAER

s sasss it

*
A
|
]
]

IEKTLOAD
* & ek

\
Rk kDL R R KAk Rk Aok D2k K kR Rok K
ASSIGN * * IEKGCZ *
RELATIVE * K Rk Km km K
* ADDRESSES TO *<wmmm——a >* COMPUTE BASE *<——.

LOCAL VARIABLES
****t**t#*tt***t*

* AND DISPLACE- *

* MENT *

LR EL I EETTEL L EET I
A

T T T T T T T T T T T T T T S A T
*

E1" . . AARAKE AR Ak
<* ANY %, . * EQVAR-IEKGEV *
.* COMMON OR *. YES. Hm ke ke ke kK
. EQUIVALENCE ,#--—,———->*ASSIGN REL ADDR*¥
*, o ¥ . *TO COMMON/EQUIV*
, o . * LE: *
Lk . M T T LT
< :
AT LRk .
* P -
* CESS * .
* EXTERNAL *<
: REFERENCES : .
P L L LI T
c1’ . N AR RGRRERAR AR
o* *, - * NLIST IEKTNL *
o* ANY *, YES., = Kok k—kok-k—ke *
. NAMELIST .———.——-—)‘ PROCESS NAME * e
*. ¥ . *LIST AND GENER-#*
*, o ¥ . *ATE DICTIONARY *
P : IEREARR AR R AR KAk
* NO .
: FSD
< . R R R R
RN : . .
H1® . : FRARRH2AR AR KA T ARRRRHIARR AR |
* . * DATOUT-IEKTDT * —r——D% IEKTLOAD *
. ANY %, YES. = k—k—k— ke ke bk * P e et T
. DATA - ———.————> PROCESS DATA *<————-——>* PLACE TEXT * .
. . L. * AND GENERATE * . IN OBJ MOD *
*. ok . * CONSTANTS * ——— *
P N M T AR AR |
* NO . - .
< :
g1 . . ok kT 2Rk Ak Rk ok
o ¥ *, . * DFILE IEKTDF *
* ANY *, YES. = F—F¥—k-k—kek-k-k- *
. DEFINE FILE .———.———->* PROCESS DEF *
, o . * FILE AND *
*, ok . * GENERATE TEXT *
. ok . AR A AR KR
* NO -
< :
AR KLRFRRRRREA N
* TO FSD * .
: CHART 01 : .
ARk :

Section 2:

Discussion of Major Components

91

Table 9. Phase 15 Subroutine Directory (Part 1 of 2)

r T - T T T T T s et 1
	Asssociated	
	Phase 15	
Subroutine	Segment	Function
IR 4 L]		
L} T T]		
ALTRAN-IEKJAL	PHAZ15	Controls the arithmetic translation process.
e		
ANDOR-IEKJAN	PHAZ15	Checks the mode of the arguments passed to it, decomposes IF
(CIERKNO) *	(5)	statements, and generates text entries for AND and OR

		operations.
BLTNFN-IEKJBF	PHAZ15	Generates phase 15 text for in-line functions by either
	(5)	expanding the function or creating a phase 15 text item
		(which is expanded by phase 25).
	i	
CNSTCV-IEKKCN	PHAZ1S5	Performs compile time conversion of constants.
o		
CORAL-IEKGCR	CORAL	Controls the flow of space allocation for variables,
	(6)	constants, and adcons necessary for local variables, COMMON,
		EQUIVALENCE, and external references; processes constants,
		local variables, and external references.
CMSIZE-IEKGCZ	CORAL	Keeps track of space being allocated; generates adcons for
	(6)	address computation; rechains data text, generates adcons for
		COMMON, EQUIVALENCE, and external references; and sets up
1		error table entries for phase 30.
CPLTST-IEKJCP	PHAZ15	Checks the mode of the operands in an arithmetic triplet mak-
(IEKIMO) *	(5)	ing adjustments where necessary and controls text generation
		for the triplet.

| | | |
| DATOUT-IEKTDT | CORAL |Puts phase 15 data text into object module, |
| | 6) | I
		.
DFILE-IEKTDF	CORAL	Processes define file text.
	6)	
' ' ' . . . L .		
DFUNCT-IEKJDF	PHAZ15	Determines if a reference is to an in-line, library, or ex-
(IEKKPR) *	(5)	ternal function, and determines the validity of arguments to
		the subprogram; inserts the appropriate function operator
		into phase 15 text and builds the parameter list in the adcon
		table and in text for the subprogram referred to; performs
		parameter list optimization.
DUMP15-IEKLER	PHAZ15	Records errors detected during PHAZ15 processing.
o		
EQVAR-IEKGEV	CORAL	Handles COMMON and EQUIVALENCE space allocation.
	(6)	{

FINISH-IEKJFI	PHAZ15	Completes the processing required for a statement when its
	(5)	primary adjective code is forced from the pushdown table.
FUNRDY-IEKJFU	PHAZ15	Creates pushdown entries for references to implicit library
	(5)	functions.
GENER-IEKLGN	PHAZ15	Generates phase 15 text consisting of unchanged phase 10
] (5)	text, phase 15 standard text, and phase 15 statement number	
		text.
		.
GENRTN-IEKJGR	PHAZ1S	Builds appropriate phase 15 text entries for simple items

l. ______________

(5)

.

| *Secondary entry point

L

(P T

92

T

able 9. Phase 15 Subroutine Directory (Part 2 of 2)

*Secondary entry points.

Section 2: Discussion of Major Components 9

r Ll . T 1
	Associated]	
	Phase 15	
Ssubroutine	Segment	Function
1 L []

r T - T === === == mTTTEmET T 1
| LOOKER-IEKLOK | PHAZ15 |Searches the function table (IEKLTB) to determine if a given |
| | (5) |function is FORTRAN supplied. i
| o] |
| MATE- IEKLMA | PHAZ15 |[Records usage information in the MVS, MVF, and MVX fields if |
| | (5) |one of the optimizer paths through phase 20 is selected. |
| o | :
NDATA-IEKGDA	CORAL	Converts phase 10 data text to phase 15 data text.
	6)	
		.
NLIST-IEKTNL	CORAL	Processes namelist text.
	6) I	
[.	
OPLCHK-IEKKOP	PHAZ15	Determines whether or not operand 1 should be a temporary
(IEKKNG) #	(5)]and checks for negative arguments.	
PAREN-TIEKKPA	PHAZ15	Removes the (or -(from the pushdown table when the corre-
	(5)	sponding) is encountered.
! I		
PHAZ15-TIEKJA	PHAZ15	Controlling routine of PHAZ15. Determines if the phase 10
	(5)	text for a statement needs arithmetic translation. If so,
		ALTRAN-IEKJAL is called. Otherwise GENER-IEKLGN is called to]
		put out unchanged phase 10 text. Builds CMAJOR if OPT=2.
I		
RELOPS-IEKKRE	PHAZ15	Calls subroutine GENER-IEKLGN to generate text entries for
	(5)	relational operators. (Output may be either a relational or
		branch operation.) i
STTEST-IEKKST	PHAZ15	Builds text for replacement statements [e.g., A=B, A=B(I),
	(5)	A(I)=B, A(I)=B(I) 1.
		_
SUBADD-IEKKSA	PHAZ15	Generates text to add the terms in a subscript computation,
	(5)	determines if a subscript text entry in the pushdown table
]	should be entered into phase 15 text, and calls subroutine	
		GENER-IEKLGN to generate the text entry when appropriate.
o		
SUBMLT-IEKKSM	PHAZ15	Generates the text to multiply the first term of a subscript
	(5)	computation by its associated length factor, or, in the case
		of variable dimension, to multiply the nth dimension by
N	1length.	
TXTLAB-IEKLAB	PHAZ15	Processes statement number text entries for subroutine
	(5)	GENER-IEKLGN and creates entries in RMAJOR.]
	i	
TXTREG-IEKLRG	PHAZ15	Processes standard phase 15 text entries for subroutine
	(5)	GENER-IEKLGN and makes RMAJOR entries.
UNARY-IEKKUN	PHAZ15 {Optimizes arithmetic triplets and processes the exponentia-	
(IEKKSW) *	(5)	tion operator.
(IEKJEX) *		
1 L L d		
r a		
fl J

3

Table 10. Phase 15 COMMON Areas

Function information tables.

Function table COMMON area.

? Name 1 Function

{ IEKGA1 T CORAL COMMON data area.

: PH15-IEKJAl1 : Phase 15 COMMON data area.
= CMAJOR-IEKJA2 = Backward connection table.
{ IEKJA3 :

= RMAJOR-IEKJAU ‘ Forward connection table.
= IEKLTB {

| W L

b e e e s — s ———— e)

94

Chart 10. Phase 20 Overall Logic

LPSEL-1EKPLS

FERRQ]KAARARA RN

* FROM FSD * SEE TABLE 12 FOR A BRIEF
* CHAIN 01 * DESCRIPTION OF THE MAJOR
* * SUBROUTINES OF PHASE 20.

LIRS LSS]
ey
. *
* C5 #—u
* »
4 l NO T
ok, 1001 B 9010
c1” s, FRRRRC2ARRR AR ARERHC TERAR AR AR cu” T,
o 'R * * + SSTAT-IEKRSS % . . EERACSERRRRRA R
ok *, YES * OBTAIN FIRST * = k== dekok—dokok * o LAST *, YES * *
l OPT=0 e >t THERT) DLOGK Mmmmm——m—>e SET STATUS & #mmmmm ——t BLOCK D T >+ TO FS *
LI o ¥ * * * AND ASSIGN * *, o * CHART *
*, o ¥ * * * REGISTERS * *, . wREARRERRERERED
*, % I AR R KRRk P
I NO .
¥,
pL° s, ARRERDDRRRA AR AR ARARAD JH R
o* *, * TQPO-IEKPO * * BAKT~IEKPB *
- ¥ *. YES He ke R B B A e B o e e K ek
, OPT=2 e > DETERMINE ¥{mmmm e D>*DETERMINE BACK #
, o *BACK DOMINATORS* *TARGET AND LOOP#*
*, % * FOR BLOCKS * *NUMBR FOR BLKS #*
L P T T ARARAARRRA AR AR
* NO
7000
FAEREELA AR AR AR E 244 AR A K FARARETRREARARENL
* * * ~TEKPZ * * *
*INITIALIZE FOR * Pl Y * SET LOOP *
* OPTIMIZED * * DETERMINE Fm e D H UMBER *
* REGISTER * * BUSY-ON-EXIT * * PARAMETER *
* ASSTIGNMENT * * * * T0 *
AR AR AR Py
e
* *
* F3 ®_>
T » *
. * rnn
* J3 %
* * Aok Rk R G ko ok ook
ETT T * TARGET-IEKPT *
Pl Se P
* SELECT LOOP. *
* GET BACK TAR- ‘
* GET OF LOOP
PO PR
11B1 12a2
FRERRGIRRR RN R RRRRRGS AR ARk
: ‘ BACMOV-IEK BM ‘
* >‘ BACK“ARD ‘
: : MOVEMENT :
* AR AR AR
ks
* *
* H3 ¥
* L] L
00 Ases Y
AR HL AR AR 2ER R 130 H3' R AAARRERRE R R
* * * * ¥ * REDUCE-IEK SR *
* INCREMENT * * MARK BLOCKS * NO .* LAST *, Wbk kR ak
* LOOP NUMBER S —— IN LOOP b Gt *, LOOP PR STRENGTH *
: PARAMET : : COMPLETED * ‘.' ‘-‘ : REDUCTION :
SRR AR AR ML LY '*.*.;' AR
B
T S
* J3 ‘—)i
ehkk
¥, 2000 205 ok, .,
J1° . AARRRT2ARRRAER AR 33" e, Ju” e, ARRARTCSRRA AR AR RR
«* PRO- *, * BLS~IEKSBS * o *, ok *, * =
% CESSING *. REG bt At e ot YES -' REGISTER *, NO % COMPLETE- *. * SET LOOP *
*, TEXT O o Fme * COMPUTE BLOCK #<——werm—e ASSIGNMENT . #————e—===3>%, OPTIMIZED . * NUMBER *
*. REGS. l : SIgE DET. RX * x COMPLETED. ‘-‘ PATH ‘.* : PARAMETER :
Sk, ttt#t#tttttttt##t 't. .t. T N A AR ARk
Cx TEXT R * *
» * arnn an I
L * K5 * * * (* - * *
* * —>* C5 % =>% K5 # * K5 *=>
kkk EE LS * * * * * *
* * s n hnn
* F3 * 14B2 23
* * L L Tt L AREARKSERR R AR
hEER * REGAS-IEKRRG * * TARGET-~IEKPT *
KRR & K it g et P
- FULL *< * SELECT LOOP. *
* REGISTER - * GET BACK_ TAR- *
* ASSIGNMENT * * GET OF LOQOP #*
LI TIPS T TR L] LI ETEE PRI EE TR L]
T
*
~>% H3 *

Rk

Section 2:

Discussion of Major Components

Chart 11.

XPELIM-IEKQXM
Rk EA] kkk koo k
* FROM *
* LPSEL-IEKPLS *
* C *
AER R kR R RRE

Common Expression Elimination (XPELIM-IEKQXM)

1000
#hkk kBl kkkkrkhkk EI I : PRI EL P LS Y
* * * *
« GET * # GET FIRST *
* FIRST [——— ~—=>% TEXT ENTRY IN *
* BLOCK * * BLOCK * .
Fhkkkkkkkkkk kR kkkkdkokkokkokokokkokkk
>
NO
oA 9800 RN
5100 C2 *, Rk R QT kkkok ok kR cy
ok *, * * .* END . Hokk kOS5 kohk ok kkokk
o* *. YES * GET NEXT * OF . YES
* END OF BLOCK .%*—————emm >* TEXT BLOCK *———————m >%. CURRENT . #%——c———em >% LPSEL-IEKPLS
*, o * . LOOB _.* * T CH 0
*, ok * * . . R RRK R
*, L * FhkkkEp kR kR Rk *, L%
*"No
000 2000 .*SEE TABLE 11 1900
kD] Fkkkkkkhokk D2 *, :‘###D3*il‘#‘iﬁi:
* * .
* GET * NO .*° BASIC *. YES * SCAN FOR *
~>#*NEXT TEXT ENTRY*<-———ooem *. CRITERIA o%——-———em >% LOCAL COMMON *
* H *o, MET . * 'TEXT ENTRY ¥
EEEEZ IS IS 2SS ", ,#‘ wkkk ko h ko kR
*k
* * A ko
* D1 #* * *
* * * E2 k——
*kkk * *
ok
4800 o, 4000
Rk R B KRRk kR Rk E3 . PR T T e T
* * ¥ *, * *
* GET FIRST * RO .* *, YES * ELIMINATE *
* (NEXT) BACK *<———————v %, ENTRY FOUND o*~————=—->%* EXPRESSION ON *——
* DOMINATOR * -, ot * TTEXT ENTRY %
bk kkk kR ko kEk .l, .*. kkkkkkkok koo kk
* A EE2 T]
* *
* D1 %
* *
k%
v
o 3100
F2 *, ko k3 ko ko kok K
. *, * *
YES . % END *, NO * FIRST TEXT *
---------------- —w—¥*, CURRENT LOOP ,*———————->*% ENTRY IN BACK *
., e * " DOMINATOR ~ #
‘w, %' ok R ok ok Rk
*
------------- ———
o E.
RERRE N
NO ,* OPERANDS _*.
———*2+3 USED ELSE-.*
\WHERE IN .
*,LOOP .
"+ YES
YES
3200 .*SEE TABLE 11 2100 ox,
H3" W, JR:CRN P
.+ PRIMARY *. Y .+’ SECONDARY' *,
#. CRITERIA _.*- ——>#, CRITERIA _.* SEE TABLE 11
. MET % . MET *
*, . ., .
L) "
*"NO *"NO
T R >
<.
4600
Rk kRk T Ik kdok ok kokok
* *

96

* GET NEXT TEXT *
* ENTRY IN BACK :

: DOMINATOR
ook ok ook ok
¥
K3 *,
o* *.
NO «* END BACK *. YES
lee——em——————#%. DOMINATOR _.*¥—w==
. e l
®, Lk
* Aokrk
* *
* E2 %
* *
ok

*

Chart 12. Backward Movement (BACMOV-IEKQBM)

BACMOV~-IEKQBM
Rk DL ok kokok ok ok ok ok

* FROM *
* LPSEL-IEKPLS : ------

*
FkF Rk kokok ko kkkokk

5000
FEERICLER R Y

*
* GET NEXT * +PROCESSING *. YES
* TEXT ENTRY IN * LIBR o Sl
* BLOCK * "% FUNCTION .*
* *.ARGS .*
Kk AERERRRRFRE RN K *, ok
NO
*kkE
<% C1 *
*kkk
9100 00
*##*tblt“*itti'*# kkkRED 2k bk kkkkk
* KORAN-IEKQKO *
* TEMP' YES*—%—%—k—k-k—%k—k=-%kNO
% PRONOTE SPLIT *<—— <-mm-¥ VALID Fme e
* PR OMOCRARTES ERBNCH *
kkkkkkckkkdkkrkkkok ‘*##**##*#t#*#***
*
* * *okkk
* Dl ¥ * *
* * % E2 #ee.
*kkk * * l
*kkk

- %o
2400 E1 *.
*,

o *. NO
->% STORE ITEM l¥-————z—o >%. FUNCTION . *——m—-
.* A *. o
*. ¥ *, ¥
[¥, % *, .*
*kokok * YES * NO
* *
* E1 *
* *
*kkk
\ 8200
FREARFLRERERAKA R HRRRRF2 AR R AR KR A*
* * * *
* TRY TO * * OPERANDS *
* ELIMINATE * * ND *
* SIMPLE STORE ¥ * cOMBINED :
hpkkkggkkkkkkk kK hkkkkhkhkhkkkkkk
[N
R *,
. STORE _ *. NO
*. ELIMINATED o T
Tx, Y
*, ..,
«"YES
*kkE
Lo
>k C1 *
* *
EE L]
4200 I
'Hl '.* :wt*tnztt*t#*¢¢¢:
.+ SECONDARY *. NO *TRY TO PERFORM *
~>*%. CRITERIA _.%——————mm >#%_ COMPUTATION #————o
[*. MET L% +IN BACK TARGET %
R ke kb dok R Aok
ke * YES
* *
* H1 *
* *
kkkok
380
*hkEET] R kkEREESE HRRERTO ARk kR hkE
* * *_LORAN-IEKQLO *
* MOVE TEXT * P a2 *
* ENTRY TO S >+ UPDATE VECTOR #—mmm
* BACK TARGET * * FIELDS FOR *
* * * TEXT BLOCKS _*
Akkkhh ek ke kRkk kb ok ok ok koK kR ok

1000 -
Fekkokkp Dok kokkokkokkkk #***‘A3¢‘##*$*$*i
* *
* GET * GET_FIRST
—>% FIRST | ——— >* TEXT ENTRY IN *<----------------
* BLOCK * BL
Fkkkkkkrkrkkkkkkk ko kkokkkkkkokkkk
v YES
L. N R
5100 B2 *. B3 *. B4 x,
ok * o ¥ ¥ L,
YES +PROCESSING *. o .* IS THERE *. NO
——>%_END OF BLOCK . ¥——————— >*. LIBRARY .+ ¥——————— >+ "ANOTHER o ¥—mm—-mu —>%
. . *.FUNCTION .+ *, "BLOCK _.*
*, ¥ ARGS *, .k Aok ok okok ok ok
*, ¥ *, *, %
0] «"YEs *
Hkedok
* *
* C2 %>
EX T2
ox.

o ¥,
2000 C2 *.

¥
3000 E2 *,
ok *,
.* LIBRARY *. YES

¥
~=—>%. CRITERIA
* MET

——=>#. FUNCTION _ i#=——-———v > TOQ l
*

o
-——>*.* FUNCTION

8100 c3" "#.,
*ARGUMENT " +. YES

———D%, PROCESSING o ¥
* FI ISHEI D ¥
*, SEE TABLE 11.
ER
0 Rk
\ aokkk *
* * % HL *
D% E2 & % *
* * wkkk
T
200
Ak D 3 dckok ok kokkdok
* KORAN—IEKQKO * *EkE

NO * *
——-)* VALID BACK— *eem>% ClL *
* WARD VE * * *

* CANDIDATE _ * Lt
*kkkrkkkkkrkokhkkk

s

ko k

* *

—>* E1 *

* *

kkkk
ek EEIakRh bk rrhk
* *

* SAVE *
———>*POINTER TQ TEXT*-—-
* ENTRY * l

kR Rk kR kkkkkkkhk
kR

Cc1i
Rk

EE X
LX)

3100 ¥, *,
F3 %, 9000 F“ *.
* * *,

PRIMARY *. NO *PROCESSING *. YES

P P Pt
*.FUNCTION ¥
*, ok *.,ARGS .*
*

ES * NO EXT 1)

-
e

¥
4000 G3 *.
* *

.+' LIBRARY *. YES
#] FUNCTION .#=—-
* .ARGOMENT .* l

. .
*, ok
NO hEE
e
* *
->% H1 *
* *
ok

*n3' 't.‘ :##‘tﬂu##tttt*t*t
" LIBRARY *. YES *MOVE ARGUMENTS '
. o * BACK TARGET #

% PR R
kR
c2

ko

1
*
*
*
*
EX X
EX X

L
J3 *,
*

* t*#‘
LIBRARY

YES *
———>% c2 a

*
%, * Teree”
*

*
1 NO
ok
*
* Cl
*
LRI L]

K

EX X

Section 2: Discussion of Major Components

ERRADSERERAERER
TO LPSEL—IEKPLS
CHART 10

NOTE: FOR OPTIMIZATION CRITERIA
FOR BACKWA MOVE

97

Chart 13,

Strength Reduction (REDUCE-IEKQSR)

TREE
* *
* A3 *
* *
k%
PI——)
LEGEND --
REDUCE-IEKQSR . 9000
A2" . ADD == ADDITIVE
HREAD] EERREREE * ' R AT Rk kR MULT == MULTIPLICATIVE
* FRQM * DOES *. NO * TO *
LPSEL-IEKPLS *—o————mm >+ BACK Do >* LPSEL-IEKPLS
* * *. TARGET Nk *
dkk AR R R kR *.EXIST. P Pt il TS
"o YES
¥,
B2 *
_% CANY
.*+" INERT
! TEXT
*. ENTRIES .
, o *hkd
.. + *
+"YES * ClU ¥
xERE * *
* * *kkE
* C2 *-> l
* *
LS 2]

SEE TABLE 11 1000 % 3500 wk, 6100
*kEkRClebkkkkkkkE Cc2 * Cc4 * *****CS**********
+_TYPLOC-IEKQTL * . . .*IS MULT*. *

-------- YES .*'ANY MULT # OR ADD CALCULATE *
2T INVESTICATE s<mom— e eI TERT EMIRIES *. CONSTANT --—>* NEW (BRANCH) *
* T PRIMARY = * E R E 705 N AB! . CONSTANT =~ *
* CRITERIA _ * i *
T T £, % *, % Iy

* *No
%, SEE TABLE 11 J 6200
D1 *, HED3kkkk ek rkkk kR Dl ok kok ok kk
* *. ek + IYPLOC-IEKQTL, & * GENERATE 2ND *
.*" PRIMARY ~*. NO B et i B A * TEXT ENT FOR *
+. CRITERIA .+ + INVESTIGATE * NEW BR CON AND *
. o * PRIMARY * * PLACE IN BACK *
.. . *ah * CRITERIA __ * *
*, % kR ko hkh ko k ok *kkkkkkdkkkkkkkkd
*"YES
‘l) <
ok, 7100 ok,
'S ***t*Eztkt**itttt E3" “x, kR Bl koo kkok ok
ok ARE L * ¥ *, * *
.+ CONSTANTS "*. CQL ULATE _ * .*' PRIMARY *. NO * _ REPLACE _ *
*. IN BOTH . ——>tNEw {AoprTive) ¥ #CRITERIA MET .#-— *ORIGINAL BR CON*
. ENTRIES . STAN * *. o *RITH NEW BR CON#
« ABS .#% * *, % * *
o % EES AL 2L RS 222 RS - hkhRkok kR kR R RRER
* NO * YES
7200 60090 v SEE TABLE 11__.*%. 50
ERI SR RS L E L L] *hkRkF2kkhkkkkkkk F3 *, ‘*t*‘F“#“***‘**#.
+ GENERATE NEW * * * * . DELET
+ TEXT ENTRY + GENERATE _ + YES .* SECONDARY *. NO ¥ ORTGINAL *
+ AND BLACE ————>*NEW INERT TEXT *<-———————*.CRITERIA MET * INERT *
* IN BACK * ENTRY * % . * TEXT *
* TARGET * * ., .* * ENTRY *
*hkhkkkrkkkhkkhkhkkh EEEEE LIRS Y) « o« kkkkbkkkkkrhkkkkk
*
v
2700 . 00
NOTE & G * kR GUR ek ek hkE
OPERAND 1 .x I BR *. *REPLACE OPND 1 *
BECOMES .x R = '*. NO + OF NOLT. OR * (ALL OTHER USES
NEW *. ORIGINAL .* >* " ADD TEXT ¥ ‘OPND_1, WHICH
(ADDITIVE) *.INERT VAR.#+ *ENTRY WITH NEW " REMAIN IN'THE
CONSTANT *. o* INERT VAR * LOOP, WILL ALSO
. ¥ kkkkkkkkkbk bk kkkk BE RtPLACED
«"YES
7000 ok,
*. amutgut nnnnn-n
018 Tk
.+ BRANCH *. YES AMULTIPLICATIVE *
*. VARIABLE * TEXT ENTRY TO *
.BUSY-ON- . BACK TARGET *
CEXIT .* *
. ¥ ek kkkhkkokrhkkkkkk
+"No
HEEART 2R AR AR J4
* * .* WAS e
* REPLACE _ +* *NONCIRERT #. MULT *
QRIGINAL BR VAR * ENTRY iy OR:#——wi>% C2 *
+WITH NEW TNERT * *. o* « Cox
* * . Ak
kkkkkkkhkdkhkrhkk *
‘+"ADD
*hkk 1
* *
% CO4 % ¥,
* *
L L L] - AS *,
o+ BRANCH *. NO
*, VARIABLE - F .
*. RhPLACED‘.‘ l
*,
* YES ok
98 *cas
* C3 *
* *
*kokk kK
* *
* A3 *
* *

L LS

Chart 14. Full Register Assignment (REGAS-IEKRRG)

REGAS-IEKRRG
LAY WALIAEEL LT
* FROI *
* LPSEL-IEKPLS *
ART *

* CHAR'
AT T T Tl L]

4 80 ¥
AR R B2k Rk Kk . B3 *.
* *
* BUILD *
* EMIN ARRAY *
: FOR LOOP :
e

v v
AR AR AR ARk ARARACT KRR kK
* * * MA COMMON *
+ DETERMINE * * VARIABLES IN- *
* RESERVED * * ELIGIBLE FOR *
* REGISTERS * * SLOBAL *
* * * ASSIGNMENT *
kkkkk kR dokokok kkokok

B —,

\
AARAID2 kR AR ARk E
* *

* SET POINTERS * i e e Ay bt et
* TO START OF * * PERFORM *
* FIRST BLOCK * * LOBA *

* * ASSIGNMENT *
AR ARk LA T e e T L

AREERE TRk Rkokkkkdk
* *

* SET POINTER *
* TO START OF *
: FIRST BLOCK :
B TP T
) 15a1) 18B2
AR T 2k Ak KRR AR RT3k kA Kk
* FWDPAS-IEKRFP * * STXTR-IEKRSX *
O ke S Y ek oKk K e K Rk
#BUILD REGISTER *———o-J * PERFORM N —
* ASSIGNMENT * * TEXT_ UP- *
* TABLES * * DATING *
T T PR L LR E T T e
A
AERERGREEE SRR EREERGHEREERNEREE
* BKPAS-IEKRBP ¥ * *
B 2 e e * SET POINTER *
* PERFORM * * TO START OF *
* LOCAL * * NEXT BLOCK *
* ASSTIGNMENT * * *
P T T T E R ARRERCERRERER R RS
A
'
H3 Tx.
¥ *,
o* END *, NO
% P e S—.
*. LOOP ¥
*, ok
*, .k
* YES
TAAAT IR kA ARk
* TO *
: LPSEL-LEKPLS :
Pt T T Y T

Section 2: Discussion of Major Components 99

Chart 15. Table Building (FWDPAS-IEKRFP)
ok
* *
* A2 *
* *
ok
FWDPAS-IEKRFP o e
AERRRA2 MR ER AR A AR T ARk ARk Ay s,
RRRRALARE R AR * » * * o *,
FROI * * * * INITIALIZE * +*DPROCESSING *,
* REGAS~IEKRRG #—weac——->* TINITIALIZE #mome > % FOR _PROCESSING *- ——=->%, COMPLETE ¥
* * * * * TEXT BLOCK * . .
FEEREE SRR * » *, .
dhkkkkkdkkk bk bk h whkkkb kb kkkhkkk *, %
* NO
v
700 ¥, 11 690
Bl %, ERRERB2ERRERRR R FERRKDIRERRRRRR A ERABY SRR RRRR R
IS *, * * * * * *
. *BLOCK BACK *, YES * * * INITIALIZE * * *
TARG, OF INNER,#-———=~=—->% UPDATE RUSE *~- —->% TRUSE TABLE #— —->% INITIALIZE WJ *
‘.* LOOP . * TABLE * : : * TABLE *
't. .*. dokgokkkbkkkhkhbkhdk EEL LRSS LIS L) AL RS R L Y]
* NO
o*.
c2 *, ARk RC Ik kkkdokkok kR ECUR ke ke rk
Rk +*¥ CAN *, * FWDPS1-IEKRF1 #* * *
* * YES .*NEXT BLK_OF*. It S e it ekt * GET FIRST *
* A2 Ak, BE PUT . *<—— LD AL —— (NEXT) TEXT *
,IN TABLES. *ASSGNMT TABLES * *ENTRY IN BLOCK *
EEk *, . * THE X * * *
*, % LI EITR T T T] kR Rk kRN kR hkk
* NO
601 16A2
KRR KEG KRR AR
* BKPAS-IEKRBP *
WK R o o
* PERFORM *
* Ci *
* *

ASSIGNMENT
LT R AR LT 1

100

LRI CEE L L
T
-->: REGAS- LEKRRG
sk ook Rk Rk
I\l

Chart 16.

Local Assignment (BKPAS-IEKRBP)

BKPAS~-IEKRBP LN
TERRAR2EARRRRRRS REIE ARERAAG R RN
JEPORRLE sy * *, * PREVENT *
FROM * GET ‘ * EXTERNAL *, YES * TLOCAL *
‘ FWDPAS IEKRFP ‘--—-———-)* BLOCK TO BE *———m————o>%, CALL IN BLOCK. * >*ASSIGNMENT FOR *
* * PROCESSED * * EXTERNAL *
APPSR, R Y * VARIAB .
FoR KRR K KRR *, o AARRARKRRRRARE AR
* NO
[s|<
v
10 LN
HRRRKBL AR AR R AR BS %,
* * . *,
* GET FIRST * NO .* ALL *,
* (NEXT) TEXT *< *, TEXT ENTRIES .*
*ENTRY IN BLOCK * *. PROCESSED. *
* * T * ok
AR AR R R AR * * ., ok
* C3 * * YES
* *
41**
.'- 20 -*- ¥,
HERERCL AR A AR KKK c2 c3 cu” e,
* * o “x, o ", o *, ERERCSRAR AR A
* INITIALIZE * .* OPERAND 1 *. NO .+ op PERAND 2 *. NO .*" OPERAND 3 *, NO * *
: FOR TEXT : -------- >k, OF INTEREST K Sk, OF INTEREST o Fmmm e >k, OF INTEREST o ¥ : FWDPAS-IEKRFP :
* * “u, o T, o ‘e, % AR R R
R KRR R KK , < ok . ook
l YES * YES * YES
v
22 .., N 20
p1~ & D2 “#. ttt*tD3$#*tt‘#**# AEERADS AR AR R AR
1s 15 Tk, RECOR * *
.*' OPERAND ~*. NO .*"OPERAND A’ *. NO ' DEFINITION . * ACCQUNT = *
. ERO P >%. TEMPORARY .+ ¥——mmmmme># * ——>% FOR SPECIAL *
‘Y . *, ot ONMBORARY x * CASES *
*, ok oo HREEERRR R AR AR
* YES * YES
FTT] HY T
l * * l * -
>4 C3 * > C3 *
- * * M ——————— e
T o v
99930 .. o ...
TEREIELEKRRK bRk E B2" %, B3 ', B4 T, KRS Sk bRk
* SET OP1 o* *. P *, o ¥ *, * UPDATE TEXT *
* SUBSCR. ' YES .* CASE 2 *, NO *PROCESSING *. YES NO .‘ OPERAND 1'# * ENTRY WITH *
* AND CURRENT #<eme—ce-e¥, SUBSCRIPT ,#*<e-=e-—e-%, OPERAND 1 ,%*-—- ——y USI. IN BLOCK- * REGISTER AND #———
* OPER; *, -’ . . *. * STATUS *
2 * *, ¥ *, o *, ot * INFORMATION #*
P T L] o Lk o h ., . SRR Rk KRk
* NO * YES
Y —_
* *
* C3 * 34 ¥, 37
* * F2© a, attttpan.tttmtttt
™ PREVENT
EFINI- NO LOCAL .
. TION POLNT IN.*--—----->'ASSIGNMENT FOR *
BLOCK .* MPORARY :
‘x, . RARRRR SRR R R
* YES
ok
* .
>4 C3 *
*
kA 0 v
y ok,
REAARGRARAR AR AR LS T FRARRGS R AR R
FLAG DEFINITION * RP *
«POINT FOR TEMP,* . +BROCESSING' *. YES PR i B
* USED * >#. OPERAND 1 +%=—mmmmmm >+ IGN *
*« IN BLOCK . *, o * REGISTER TO *
. . ., o * RA *
R R R . o H kR R KRR
NO
o
* .
->: c3 :
¢ e
100 ¥, 30 300 o,
H1® %, AR 2Rk kAR u3 . TEELUS AL EARR R K Paadds: AL I R
* * * oL Ca, RYTo ASSIGN * *
. EVIOUS *. YE * RECORD * % ASSIGNED —*. YES CURRENT * ECORD *
#ASSIGNMENT IN:*—moe-mmmm >% REGISTER * —->*. FIXED-PO: t—------->#0PRND THE SAME #-------->* ASSIGUMENT 4
FFECT * ASSIGNMENT * EGISTER REG, AS x A PCEMARION +
. . * * . . OPERAND 1 *
*, ok AR AR RN .. PR 20 L IR BRRR AR SRR RS
* NO * NO
e
* «
—>% C3 *
* . rhr
T * *
o ¥o 320 51 * C3 *
J1° e, ERRR AT IR et * *
Lt -, SEARCH * * * Ak Erkk
«* FLOATING #*, NO * FOR AVAILABLE * * RECORD * * *
*, POINT o ¥ * REG, FREE ONE *-——e—ee- >* ASSIGNMENT o>k C3 *
. MADE t" ‘ IF NECESSARY * * TINFORMATION * **“*
, . b M
* YES
v
40 o, 30
pidads <RSI x2' s, MR RRRRK T h R Rk AR AR ARG ARk R R Rk
SEARCH «* WAS *, * 'RY TO * * * ““
‘ FOR AVAILABLE * NO .* OPERAND 1 *. YES * SIGN TO R *
REG, FREE ONE *<—we———ew-%, ASSIGNED A +%*——caee-- >%* CURRENT OPRND #——e—eeeo >* ASSTGNME! *——--)* c3 *
‘ IF NECESSARY * . . ¥ * T SAME REG. * A * INFORMATION * *
* *, ¥ * AS OPERAND 1 * * tttt
A, *, Lk AR R AR R AR R RK HRR KRR R R K
*

Section

2: Discussion of Major Components

101

Chart 17.

Global Assignment (GLOBAS-IEKRGBE)

GLOBAS- IEKRGB 8000 00
sokokodok A 2ok ok ok Aok R ttt*tABtttttttt*# R RAL kR kR Rk **t*iAs‘tt‘ttt#*k
*tt#Altt*tttitt * * * *COMPUTE NUMBER *
FROM * * COMPUTE * * OQF OPERANDS * CALCULATE *
* REGAS-IEKRRG * ————————— >% INITIALIZE et >‘ GISTER = *=—ee——m—e H ARE *———-————)* BASE REGISTER *
* CHART 14 * * * * AVAILABILITY * *CANDIDATES FOR * * ACTIVITY *
whr kR R RE * * * * ASSTH * *
Ak OR KR Rk R #tt#tt*ttttt#**t* L T T T T PR T T T
9200 o*, 25
AR AR KB kR kR ok B2 *, FHARRDI Rk kR Rk
*PREVENT GLOBAL * o* IS * * NGRADE ALL *
* ASSIGNMENT TO * o* HIS AN *. YES *VARIABLES THAT *
* BUSY-ON-EXIT, l——————n—)t OUTERMOST . *w=—————— ARE STORED IN *
* STORED « LOO . *THIS OUTERMOST *
* VARIABLES *, ¥ *
*tttt’tti“tt!t‘! ¥, % t*t*tttt*t*#*tt**
* NO
>l
10 ¥, 27 ¥
c2 *, c3 *, 8
<* ANY «* ANY *, FHERCYRRE KR KR
. *FLOATING PT‘ NO +.* FIXED PTS *. NO * TO *
REGS AND ELIGI-~w~=e—m— ——>%, REGS_AND P >% REGAS-IEKRRG *
*.B ¥ A *.ELIGIBLE .* * *
t_ *,VARS .* T P T
%, L% . e X A
* YES * YES
11 s v
EREARD 2k F R KRR R R ERAD IR AR KR EER KK
* * * SEARCH-IEKRS *
* SEARCH FOR * kK ke e K
*CANDIDATE WITH * * GET CANDIDATE *
* HIGHEST * * FOR BXH OR *
* ACTIVITY * * BXLE INST *
EEE T T e Ty e Y Lt e T
hkk
* *
* E3 *->
* *
4 EZITY
¥ 11 v
PR A R PR R E2 *, FrERAESH Rk kAR
* * oF *, * *
* UPDATE TEXT * «* VARTABLE *. NC * SEARCH FOR *
* '0 RE FLECT * *, OR CONSTANT .¥—=—=> *CANDIDATE WITH *
* ASSIG * *, FOUND .* * HIGHEST
* * * * * ACTIVITY
Rk Rk koA kA kR K x, L4 t*tt*tttttt*tt*tt
A * YES
18
tttttFZtt#*t#t**t
*
* SEARCH FOR ‘
* AVAILABLE *
: REGISTER :
P P T P T
v
¥, 34 k¥, 46
LY R e G2 *, *G3 *, :*t#*Gut t*t**ttt
* * ¥ . . .
* * XES ¥ (o] *, NO *IF BXH OR BXLE.
*ASSIGN REGISTER¥<————wuwwmw *, REGISTER o ¥ *. FOUND *--——--—->* NAL =~ ¥<emmmem e
: : * OUN! LN '.‘ : PROCESSING :
T T e T fa, Lt) *" ARk kR Rk Ok
* * YES
v NO
ok, L 35 ok, ok,
1 . H2 *, FRRARH IR kh kR Rkk HY4 *, H5
+* REG, *. +*¥ IS *, * TRY TO * ¥ *, ok *
«% ASSIGNED *. NO ¥ ITEM *, YES * ASSIGN THE 3 * * *. YES ¥ MORE *,
*, ITEM IN ., *———ermnee] > %, INCREMENT FOR, ¥=w—=————m. >*REGS NECESSARY *~——me——-! >*%, ASSIGNMENT ,¥we——eoe- >*, CANDIDATES .*
, INNER . *.BXLE,BXH .* *FOR BXLE OR BXH* *,SUCCESS- . * A *, ¥
*,LOOP . * *, ¥ * * *, FUL .* *, ¥
.« . *, % e TR e P P *, o F *, o *
* YES * NO l YES
> ARk
* +
43 \ * E3 ¥
FRERkT YRRk Rk * *
* 3 * * kK

102

*ASSIGN VARIABLE¥
*OR CONSTANT TO *
: REGISTER *

Aok ook ok ok o o ok ok ok ok ok ok ok

3
ke Rl ok ok kAR K
*

UPDATE TEXT *
TO REFLECT]
ASSIGNMENT :

LR AL SRS LS S S]

XY

Chart 18. Text Updating (STXTR-IEKRSX)
STXTR-IEKRSX
JERRZE R
FROM *
: REGAS—-IEKRRG :
Tt T
HARRRB2RE AR AR R AR
* M
* INITIALIZE *
*GET FIRST TEXT *
* ENTRY *
Py
>
10 o %,
c2 .
Jx * JCareateas
¥ *, YES *
.END OF BLOCK "’—-—-————>"l REGAS-1EKRRG :
‘x, o RPTRL ,
.
* NO
30
HREERD D HAAA AR
* GET ANY
* COMPLETED *
ASSIGNMENTS FOR¥
: TEXT ENTRY :
P Ly
27 35
ARAEKELRFRRRERRA FRRRAE2FRRRRER R
* * *
* GET * *INITIALIZE FOR *
NEXT TEXT ENTRY * PROCESSI. *
: : : ACCORDI%G TO :
FR AR AR RR R My
A I
*18 *
* P2 x>
* x <
M
538 ok, l
HRERKFLRARARA AR 130 ., EHPEAPIORE KRR AHERRFS R AR AR RA AR
* * *ookSn o b * *
* STORE * . OP;] 2 %, YES * UPDATE TEXT *
* RESULTS INTO * *, TO BE PROC -*—————-——>*INITIALIZE FOR ‘—————— *TO_ SHOW GLOBAL *
: TEXT : O ESSEI! OPERAND 2 ‘ ASSIGNMENT
T “x, ,*' ok ok ok R Kok P
A * A
v « YES
FRRERGLE kAR RRRR K G2’ "+, HERKRGS kR AR 22 4"t G5~ “*,
* «* IS *. * * L IS ¥ OP, *
* AVE INFO. «* OPRND 3 *, YES * * v «* OPERAND A *. NO «* GLOBALLY
* RELATIN TO *, TO BE PROC~ . #—weee—n. «>*INITIALIZE FOR *=———. ——Dk, MPO! o ¥ >*. ASSIGNED o*
*NEXT TEXT ENTRY‘ *, SSED . ¥ : OPERAND 3 : [e L .
. “hy ok P nnm * %" T
n * NO 1 YES NO
i P ERARE
19 % 19 _
ok, * B3#% * B3%
e] Sk K 3R Rk Rk 5t
* PERFORM FINAL * IS . * * *
*PROCESSING FOR * No .+ OPRND 1 "#. YES * *
* SBECIAL Ham e . BE PROC= . %=——nmee=>*INITIALIZE FOR *=—e-d
: CASES : *, SSED o * * OPERAND 1 *
Sor AR AR ‘e, o T I

Section 2:

Discussion of Major Components

103

Chart 19.

B *
WHICH
2 *OPRND BEING* ‘3

Text Updating (STXTR-IEKRSX) (Continued)

N
cl %,
.* WAS _*.
¥ PRND 2 _*., YES
*, ASSIGNED BY -
*, KPA
Che a
+"NO It
*18 %
* F2%
* %
l *
¥
*, HRHKED kR k&
. Is * * *
«* OPRND = *, YES * SAME REG. AS *
*. OPRND 1 OF ¢%——————— >*0P1 OF PREVIOUS*
,PREVIOUS . * TEXT ENTRY *
ENTRY. * =
o P T T E T
NO
%,
E2 .
*,
YES .
Lo s e e %. REG. 0 %
Tk, o
*, &
* NO
*kk
S l
* F1 *->
R
ok v *18 *
o ¥, * F2%
325 1 * %
«* IS * *
¥ BASE *, YES
'.*REGISTER OK‘-*---
*, %
* NO ST et
*18 *
* F2%
*
*
¥,
10325 G1 *, EEERRG2 KAk Ak Rk Rk
* IS

‘ RECOR IEKRRL :

o* OPRND YES ~ kekekek—k—k—k—k
*, A TEMPORARY *-———————>‘ FREE STORAGE *
*, o ¥ * FOR TEMPORARY *
. o + IF POSSIBLE *
*, wkkk Rk kkokkk ok

*. PROCESSED .
*, ok
*, S
* *”

1

.1.
* HAS *,
.* OPRND 1_ *. NO

310

N
, ASSIGNED BY o-——w-
*, KPA. ¥

'OPRND 1 BE *. NO

104

*, L *
* YES ek
*18 *
* F
v
10330 v 10350 ok
wpkkkEIkkkkokdokdokk *,
* * «% MUST *,
* SET STATUS * YES .* OPRND 1 *.
* TO GENERATE #<{—cmmmmme *, BE STORED .*
* STORE * *, ¥
* *, L *
kR kR ko ko *,
* NO
v
K, 10370
F3 *, AR RRERY Rk Rk kR Rk
«% IS *, * *
.* OPERAND #, NO * SET STATUS *
*, A TEMPORARY . *=——q * TO PREVENT *
*, ..‘ : STORE :
“he ok P T T e
* YES
Aok ko
%18 *
* o
RRARRG IRk Rk Rk Rk £ x
* * *
* ALLOCATE *
* STORAGE FOR *
: TEMPORARY :
ook ook ok ok dokdok bk ok
P I
>
360
ARERRE IRk ARk Rk
* *
* FIND BASE *
* REG. FOR *
: OPERAND :

Aok kg koo dop R Rk kR

titt*J3tttttt$ttt
*

* BASE INFO. ‘
* FOR *
: APPROPRIATE '

t*tt*h*t*tt*ttttt

330

YES

NO

ok

* % *
]
=

*kkk

o ¥

5 *,
% WAS _*,
«% OPRND 3_ %,
, ASSIGNED BY .
. BKPAS .

. .
L TopRRD = 4.
%, OPRND 1 OF .*
+. PREVIOUS .*

*, ENTRY, *

‘+'YES
*

*
*

v
omm#qgs; E‘#t‘ttt
* snug BBG *
$oBL OF EREVIOUS*
kR kokkok ok ok
30 S,

-,

. *I
*. REG. 0 e
.*. .'.

*, LK

+"YES
P
*

*
LET L]
*18 *
* F2%
* *
*

Table 11.

Criteria for Text Optimization

) T L) 1
| Process | Basic T Primary | Secondary |
'r 1 4 1 - 4
common	Subscript, arithmetic,	Matching operand 2,	Matching operand 2,
Expression	logical, or	operand 3, and	operand 3, and
Elimination	binary operator	operator	operator with
			no intervening
			redefinitions I
b 1 + 1 4			
Backward	Arithmetic or logical	Operand 2 and	Operand 1 not busy
Movement	operator	operand 3 undefined	on exit from target;
]in the loop	operand 1 undefined	
			elsewhere in the loop
b ¢ ¢ $ 4			
Strength	Additive operator;	Interaction of inert	Function of absolute
Reduction	inert variable	variable with additive	constants or stored
		or multiplicative	constants
{		operator	
L L L J			

Section 2: Discussion of Major Components 105

BLS-IEKSBS

CXIMAG-IEKRCI

Computes the total size of each block in the module and|Branching

determines which module blocks can be reached via
RX-format branch instructions.

Processes imaginary parts of complex functions during
local register assignment.

Joptimization
|
L
|Register

|assignment

Table 12. Phase 20 Subroutine Directory (Part 1 of 2)

r T T 1

| Subroutine | Function | Type |
- -—1- -4-- -4

| BACMOV-IEKQBM | controls backward movement, produces new inert text | Text |

| entries for strength reduction, builds type tables for |optimization |

| strength reduction, and performs compile-time mode | |

| conversions. | {

| | |

| BAKT-IEKPB Computes the loop number of each module blocke. | Structural |

| |determination

|

| BIZX-IEKPZ Computes the proper MVX setting for each variable in Structural

| each block of the module, | determination|

| | I

| BKDMP-IEKRBK Produces TRACE for full register assignment. |Register |

| assignment

|

| BKPAS-IEKREP Controls local register assignment. Register

| assignment

|

|

|

|

i

|

|

|

| FCLT50-TEKRFL

| (TNSFM-IEKRTF) #
| (RELCOR~-IEKRRL) *

FREE-IEKRFR

FWDPAS-IEKRFP

FWDPS1-IEKRF1

GLOBAS-IEKRGB

IEKPBL

LOC-IEKRL1

LPSEL-IEKPLS

REDUCE-IEKQSR

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
l
|
|
|
!
|
|
!
!
l
!
|
|
|
!
!
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
|
!
|
|
!
|
|

Performs special checks on text items whose function
codes are less than 50.

Secondary entry point TNSFM-IEKRTF performs special
checks on text items whose function codes are in the
range of 50 to 55 inclusive.

Secondary entry point RELCOR-IEKRRL releases temporary
main storage so it can be reused.

Releases busy registers during overflow conditions
(local assignment).

Table-building routine for full register assignment.
Determines whether or not text operands are register
candidates prior to local register assignment.

Assigns most active variables to registers across the
loop.

BLOCK DATA subroutine for register assignment.

COMMON data area for structural determination.

|
|Register

| assignment
|
|
|Register

| assignment
|
|
|Register

| assignment

| assignment
|
|Register
| assignment
|
| Register
| assignment
|
| Register
| assignment
|
| Register
|assignment

| Structural
|determination

Controls sequencing of loops and passes control to text|Control

optimization and register assignment routines

Controls strength reduction.

[S e S - — . ——— T — — — — ——— —— . — — — — — —— f— —— ——— —— —

*Secondary entry point

| routine
I
| Text

|optimization

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
[
|
|
|
|Register |
|
|
|
[
|
|
|
|
(
|
|
|
|
|
|
|
|
|
|
|
|
|

S S s, .{

- |

106

Table 12, Phase 20 Subroutine Directory (Part 2 of 2)

— - T T e e) Attt 1
| Subroutine | Function | Type |
[} 1] 4
1 T) 1
REGAS-IEKRRG	Controls full register assignment.	Register
		assignment
	I	
SEARCH~IEKRS	Provides register loads upon entering the module.	Register
		assignment]
SPLRA-IEKRSL	Assigns registers during basic register assignment.	Register
		assignment
SSTAT-IEKRSS	Sets status information for operands and base addresses	Register
	of text entries.	optimization
I		
STXTR-IEKRSX	Controls text updating.	Register
		assignment
	I	
TALL-IEKRLL	Assigns storage for temporaries.	Register
		assignment
		[
TARGET-IEKPT	Identifies the members of a loop and its back target.	Text
		optimization
TOPO-IEKPO	Computes the immediate back dominator of each block in	Structural
	the module.	determination
XPELIM~IEKQXM	Controls common expression elimination.	Text
		optimization
b 4 : {		
*Secondary entry point		
L —_—— ——— I —_— o o o e e o . e e e e e e o e e e o e e J

Section 2: Discussion of Major Components 107

e Table 13. Phase 20 Utility Subroutines

T

—
| Subroutine Function

|option are specified.

I

| XSCAN-IEKQXS |Performs local block scan for backward movement, for common expression
| (YSCAN-IEKQYS)* |[elimination, and for strength reduction.

| (ZSCAN-IEKQZS) * |

r
*Secondary entr point
Y b4

e e e e e e e e e e e S i e e T s o e P e e

1
| |
______ 1 -
e -
| CIRCLE-IEKQCL | |
| (FOLLOW-IEKQF) * |Examines composite vectors, or each local vector if necessary. |
| |
| CLASIF-IEXQCF |Classifies operands of the current text entry, changes parameter list |
| (PARFIX-IEKQPX) *|to correspond to text replacements, and adjusts text entry for |
| (MODFIX-IEKQMF) * |[possible mode change.
GETDIK-IEKPGK	Fills text space according to the arguments, gets space for tem-
(FILTEX-IEKPFT) *	poraries, gets space for constants, and obtains previous text entry.
(GETDIC-IEKPGC) *	
(INVERT-IEKPIV) *	
	(OVFL-IEKPOVI*
1	
IEKARW	Calls FIOCS# to rewind the required data set.
IEKPOP	Common data area for phase 20.
KORAN-IEKQKO	Performs bit manipulation for text optimization, updates composite
(LORAN-IEKQLO) ¥	LMVS and LMVF matrixes.
!	
MOVTEX~IEKQMT	Moves text entries, deletes current text entry by rechaining, and
(DELTEX-IEKQDT) *	updates MVS and MVF vectors.
PERFOR-IEKQPF	Performs combination of constants at compile time.
SRPRIZ-IEKQAA	Records structured source program listing on the SYSPRINT data set.
1 ¢ -IEKQAB) *	
SUBSUM-IEKQSM	Replaces operands with equivalent values and, if possible, operand
	values with equivalent values.
I	
TYPLOC-IEKQTL	Locates interaction of text entries for strength reduction.
WRITEX-IEKQWT	Prints diagnostic trace information when text optimization and TRACE
J	
J

108

Chart 20, Phase 25 Processing

NOTE ¢ SUBROUTINE
MATN

IEKTA ¥ GN-TEKTA
A2 . *Rkokok D3 akokkkiokR Rk CONTROLS TEXT
R RS NE RS T I] . *, * * CONVERSICON
* FROM FSD * ¥ ANY *. YES * ASSIGN _BASE *
* CHART 01 ¥emmoeme D%, "B' BLOCK o ¥ee— e >* AND DISP. *
* *. LABELS .* * TO ‘B' BLOCK *
I e LT E L] . . * LABEL ADCONS *
*, % bk Rk ko
* NO
*kkk
* *
* Bl %——
* * <.
ETTTY l
. .k,
Bl *, B2 - dokokok B 3ok dokokokokokk R L LY R L LRt
. *. . *, * * * RETURN IEKTRN :
. * LAST *, NO ¥ ANY *. YES * ASSIGN_BASE * i e bt et ik e
*. TEXT A *. BRANCH e¥e———————>* AND DISP, @ * L% GENERATE .
*. ENTRY . *, TABLES TO RANCH * BRANCH TO *
. . ., o * TABLES * * EPILOGUE *
- . - kR ko koh Rk kR E T T T LT T
* YES * NO
----------- >
<
TREFEC2EER R KRR R Rk HRRERCSERR kR hkE
Aok ko C ok ko Kk Ak * * # IOSUB-IEKTIS *
* * * GET FIRST xR ke Rk e ke R *
* CHART 01 * * (NEXT) TEXT * <———>*GENERATE BRANCH*
* * * ENTRY * * TO IHCFCOMH #
T T R T * *
P T T T L e e P Y
o ¥,
D2 ok ok D) T ok ok bk ok ok R EEDSERERERR KRS
«*RETURN *, * TENTXT IEKVTN * * LABEL-IEKTLB *
+% I/0, END, *. YES = = #-—¥—dk—K—d—k—hak— Ho k= kR ke e hk
. SEMT. P)' ENT E *(LmmmD¥ ENTER LOC. *
. NO. . *PRODUCE LBL MAP* TR._IN *
. . *IF END OF TEXT * * TABEL ENTRY *
*, P TR T T T T PR P Er T F T
* NO
ko
* *
->% Bl *
* *
aex
21a2
ERek kB2 kkbkkkkkk AR RKESERRE R Rk hR
* * * END-IEKUEN *
* SET UP * B e it 1o e B *
* REGISTER * L—mmD ¥ COMPLETE *
: ARRAY : : PROCESSINg :
kkkxkkk bk kkhkk R E RS R LS 2L
v
ek RF2 ok bk hhkdokk Ll i st R R L AL L
* * *TEKGMP
* SELECT * et Bt T D et Bt DL
* BIT * LD ¥ PRODUCE *
* STRIP * STORAGE *
* * * AP *
Fokkkkkkkkkkk ko ok kk kR kR Rk ki kK
R REG2REER ARk RkE
* *
* MODIFY STRIP #*
* FOR BASE *
* LOADS AND *
* ST *
kA kk ke a kR k Rk
A
H2 *, oAk AR E D Ak Aok kK
¥ . ' FNCALL—IEXVFN *
. *. YES =~ ko d— bk kb *
, CALL [> GENERATE *
- . CALLING *
*, ¥ SEgUENCE *
*, % eI T O TR M
* NO
*REE
* *
~>% Bl *
* *
3 ok
J2° ", kAT ok Rk Rk kK
* * SUBGEN-IEVSU *
1/0 *. YES = k—d—k—b—k ke *
*, LIST PR GENERATE *
%, ITEM .+ * XT FOR *
* o* IT
*, % b i B R R L L L
* NO
*kkk
* *
~>% Bl *
* *
ko
R AR 2%k Aok
* + PERFORMED BY APPROPRIATE
ket K e K R K CODE GENERATION SUBROUTINE
* GENERATE *
* INSTRUCTIONS *
* FROM SKELETON
tt*tttttttt*#tt#t
Aokkk
* *
~>% Bl *
* *
TS

Section 2:

Discussion of Major Components

Chart 21.

et d Vhbdb b A
REFEDTRHERREERE * ENTR 1 KTEN
*

* FROM

* MAINGN-IEKTA

* CH [
AT EET TEE L L

O
‘*“t‘ttttl“".l

kKR RK KRR RREEE
* QUTPUT ADCONS *
* FOR PROLOGUE, *
* SAVE AREA, *

Subroutine END-IEKUEN

SERRRA TRk RRARR Rk
: E ILOG-IEKTEP *

GENERATE ‘
EPILOGUE :

RS RS S Ed

ARSI R Rk ARk
: PROLOG-IEKTPR :

GENERATE *

: EPILOGUE : PROLOGUE :
AR R AR R
kL
c2 . IRRACTE R L
* *
ANY . * OUTPUT ADCONS ‘
BRANCH a¥———wew>* FOR BRANCH *
.‘TABLES ‘. TABLES *
“k, % P I S LI I T
* NO
<
P
D2 . kR kD Ik hkkkk
* *

. *.
PR ANY *,
- PARAMETER .

.. LISTS .*

YES

*

* OUTPUT ADCONS *
~>* FOR PARAMETER *
* LISTS *

. % B LT P
* N
ER
Aok AR R E 3wk Aok bk
.* . * *
B *. YES * OUTPUT *
#*,ANY P20 TEMP..*————em >* P20 TEMP. *
*, X * *
*, % * *
. .4 P T TP T T
* NO
l(
%
F2© s, FARARFT AR kR Rk
ok * *
o *. YES * OUTPUT *
*, 'B' BLOCK %= >*ADCONS FOR *'B' *
, LABELS . * BLOCK LABELS :
“x. % ok Rk R kR Rk
* NO
<
HAARKG AR AR
* *
* OUTPUT END *
* CARD FOR OBJ. *
: MODULE :

Ftokdkdkok ook Rk

P e T T S
* TO
* MAINGN-IEKTA

*
* CHART 20 *
kkk ko kok ko kkk g

110

Table 14,

Phase 25 Subroutine Directory (Part 1 of 2)

Subroutine

Function

—
|
i
v
|
I
I
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
I
|
|
|
|
|
|
|
I
|
|
|
|
|
|
I
|
|
|
|
|
|
I
I
|
|
|
|
|
|
!
I
!
|
I
|
|
|
I
|
I
|

ADMDGN-IEKVAD2

BITNFP-IEKVFP1

BRLGL-IEKVBLY

CGEN-IEKWCN

END-IEKUEN

ENTRY-TIEKTEN

EPILOG-IEKTEP

FAZ25~-IEKP25

FNCALL-IEKVFN

GOTOKK~IEKWKK

IOSUB-IEKTIS/

TOSUB2-IEKTIO

LABEL-IEKTLB

LISTER-1IEKTLS

MAINGN-IEKTA/

MATINGN2-IEKVM2

PACKER-IEKTPK

PLSGEN-IEKVPL*

PROLOG-IEKTPR

RETURN-IEKTRN

STOPPR-IEKTSR

|
|
|
!
|
|
|
|
!
|
|
|
|
|
I
|
|
|
|
|
|
|
|
|
|
I
|
|
!
!
[
|
I
|
|
|
|
|
I
|
I
|
|
|
|
|
|
|
!
I
|
!
|
!
!
|
|

Generates instructions for the amoD, DMOD, ABS, IABS, DABS, AND, OR,
COMPL, LCOMPL, and DBLE in-line functions.

Generates instructions for the following text entries: BITON,
BITOFF, BITFLP, TBIT, MOD24, SHFTR, and SHFTL in-line functions.

Generates instructions for the following text entries: Operator is
a relational operator operating upon two operands or upon one
operand and zero, assigned GO TO operators, computed GO TO
operators, unconditional branching, branch true and branch false
operations, and ASSIGN statement.

Common data area in which the arrays used during code generation are
initialized.

Performs final processing of the object module.

Calls routines PROLOG-IEKTPR and EPILOG-IEKTEP to generate prologues

and epilogues for subroutines and secondary entry points. Generates
prologues and epilogues for the main program.

Generates the epilogues associated with a subprogram and its
secondary entry points (if any).

Common data area used by phase 25.

Generates calling sequences for CALL statements (other than those to
IHCFCOMH) and function references. Generates the instructions to
store the result returned by a function subprogram.

Used by subroutine MAINGN-IEKTA to branch to the code generation
subroutines.

Generates calling sequences for calls to IHCFCOMH.

Processes statement numbers by entering the current value of the
location counter into the statement number entry in the dictiomary.

Produces a listing of the final compiler-generated instructions.

Assign base and displacement for 'B' block label adcons and branch
tables. Control the text conversion process of phase 25.

Packs the various parts of each instruction produced during code
generation into a TXT record.

Generates the instructions for the following text entries: real

multiplication and division operations, addition and subtraction

operations, half- and full-word integer multiplication, half- and
full-word integer division, and MOD in-line function.

Generates prologues for subroutines and secondary entry points (if
any).

Processes the RETURN statement by generating a branch to the
epilogue.

Generates character strings in calls to IHCFCOMH for STOP and PAUSE
statements.

|*Code generation subroutines.

L

e o s e e s e s e S . i . s o — i i i, o o — A S— — — T — P— — ol S —— T . T T SSP—— o — — {—T— — {—— — — — — e S S— — p———— —— — ——. —— i aare. u]

Section 2: Discussion of Major Components 111

Table 14. Phase 25 Subroutine Directory (Part 2 of 2)

r - T

| Subroutine | Function

- —=4-- T

SUBGEN-IEKVSU1 Generates instructions for the following text entries: subscript
operations, right and left shift operations, store operations, and
list item operations.

|
|
{
TENTXT-IEKVTN | Controls the processing of END, RETURN, and input/output statements,
| statement numbers, and end of I/O list indicators. Produces label
| map.
|
TSTSET-IEKVTSY* | Generates the instructions to (1) compare two operands across a
| relational operator, and (2) set operand 1 to either true or false
| depending upon the outcome of the comparison. Generates the
| following in-line functions: FLOAT, DFLOAT, INT, IDINT, IFIX, HFIX,
| bIM, IDIM, SIGN, ISIGN, DSIGN, MAX2, and MIN2.
|
UNRGEN-IEKVUN® | Generates the instructions for the following text entries: unary
| minus operations (e.g., A=-B), logical NOT operations, load byte
| operations, load address operations, AND, OR, and XOR operations.
|
|
1

IEKGMP Produces a storage map.

1Code generation subroutines.

Table 15. Phase 30 Subroutine Directory

e e e e s e e s - — e e o — it S it et et st e el e]

T
| Subroutinej| Function

L 1 e o e e o £ o e 2 S S o o S o o e . o O S e o o o e . o e o e . S o - o 3 T o 02 " T o 2o 7 o o
| T

| IEKP30 | Controls phase 30 processing.

| |

| MSGWRT- | Writes the error messages using the FSD.

| IEKP31 |

L 1

112

chart 22. Phase 30 (IEKP30) Overall Logic
IEKP30

wkEkR IRk kR Rk k SEE TABLE_15

* FROM * FOR_A BRIEF

: : DESCRIPTION OF

CHART 01 EACH_SUBROUTINE
ok ddoolok Rk R 30,

OF PHASE

REREKBI AR EERERK

INITIALIZE

R
EX T

Aok ok ok kR ok ok ok ok ok

ARk RRCIRERRER R KK
'OBTAIN MAXIMUM ‘

NTRIES AND
‘ACTUAL ENTRIES :

FROM COMMON
ARk AR R
o *
D3’ % HRAKRDI k& AN R A
« *ACTUAL *, * SET UP ERROR *
.*NO, GREATER*. YES * MESSAGE *
#. THAN THAT .%e—m————m >% AND N —
. ALLOWED.* : LENGTH *
Tk, o AR AR KRk K
* NO
e
* .
* E3 %>
* *
ok
LDERCOM
IEEEAEDHErrrRaE
* BTAIN FIRST ‘
* (NEXT) ERROR *
: TABLE ENTRY :
HRREE R AR R AR
Py
* *
* F5 *->
* *
akk
¥, STRESS1 OFFSET v
F3° %, AREEAT U bk kok Aok REH AT DAk Ak
+« *MESSAGE*, * SET UP * * MSGWRT-IEKP31 ‘
oE *, NO * ADDRESS * K e K= kK e
,L/T 1000 AND ,¥ecm—eeeaD> FOR ERROR Ho e —-—% WRITE *
, G/T 0 . * MESSAGE * * ERROR *
-, o* * * * MESSAGE *
*, ok Rk R Rk Sk R R R Ak
* YES
v
Rk kKRG R kk kAR dkk G5 *.
* OBTAIN * * LAST = *,
* ERROR LEVEL * NO .* ERROR *,
* FROM * -, L o®
* RA * *, ENTRY .*
. BN * . o*
P T T T T *
s * YES
* *
* E3 *
* *
P
¥, ouT A4
., AR LA A HR KR E S ok kR
ok ERR OR VE * * PASS SAVED *
« *LEV] CODE *, YES ERROR * * ERROR *
*,G6/T PREVIOUS *—---————>* LEVEL * * LEVEL *
*, ONES .‘ * CODE : : CODE :
R T Ly Aok R R K
* NO
<
HASH
ALkttt v
GET LI I NET I LIS T T
* ASSOCIATED * *
* * * FSD *
* POINTER TABLE #* * CHART 01
* * I T L]
AR Rk
X
HR AR AR D Rk
* *
« BUILD *
% DPARAMETER *——-
* LIST l
Py
Y
« »
* F5 *
* *

Section 2:

Discussion of Major Components

113

This appendix contains text and figures
that describe and illustrate the major
tables used and/or generated by the FORTRAN
System Director and the compiler phases.
The tables are discussed in the order in
which they are generated or first used. 1In
addition, table modifications resulting
from the compilation process are explained,
where appropriate, after the initial
formats of the tables have been explained.

COMMUNICATION TABLE (NPTR)

The communication table (referred to as
the NPTR table in the program listing), as
a portion of the FORTRAN System Director,
resides in main storage throughout the
compilation. It is a central gathering
area used to communicate necessary
information among the various phases of the
compiler.

Various fields in the communication
table are examined by the phases of the
compiler. The status of these fields
determines:

e Options specified by the source
programmer.

¢ Specific action to be taken by a phase,

If the field in question is null, the
option has not been specified or the action
is not to be taken. If the field is not
null, the option has been specified or the
action is to be taken. Table 16
illustrates the organization of the
communication table,

CLASSIFICATION TABLES

Classifying, a function of the
preparatory subroutine (GETCD-IEKCGC) of
phase 10, involves the assignment of a code
to each type of source statement. This

APPENDIX A: TABLES

code indicates to the DSPTCH-IEKCDP
subroutine which subroutine (either keyword
or arithmetic) is to continue the
processing of that source statement. The
following paragraph describes the
processing that occurs during classifying.
The tables used in the classifying process
are the keyword pointer (IPTR) and the
keyword table (ITBLE), which exist in
GETCD-IEKCGC., They are illustrated in
Tables 17 and 18, respectively.

The source statement might be classified
during source statement packing if the
statement classification is one of those
listed in Table 19. For example, an
arithmetic statement would be assigned the
code 56 (see note). Otherwise, the
classifying process determines the type of
the source statement by comparing the first
character of the packed source statement
with each character in the keyword pointer
table. If that first character corresponds
to the initial character of any keyword,
the keyword pointer table is then used to
obtain a pointer to a location in the
keyword table. This location is the first
entry in the keyword table for the group of
keywords beginning with the matched
character. All characters of the source
statement, up to the first delimiter, are
then compared with that group of
keywords.If a match results, the
classification code associated with the
matched entry is assigned to the source
statement. If a match does not result, or
if the first character of the source
statement does not correspond to the first
character of any of the keywords, the
source statement is classified as an
invalid statement.

Note: The packing process, which precedes
classifying, marks a source statement as
arithmetic if, in that statement, an equal
sign that is not bounded by parentheses is
encountered. If the source statement has
been marked as arithmetic, it is classified
accordingly by the classification process.

Appendix A: Tables 115

Table 16. Communication Table [NPTR(2,36)]1 (Part 1 of 2)

g - B e et 1
[1 (4 bytes) | 2 (4 bytes)
i 4

r-—t--- T H
| 1|Relative location of temporary for |Pointer to l-character symbol chain |
| |FLOAT/FIX (CORAL, phase 25) | |
s s + -4
2	Previous classification code (phase 10);	Pointer to 2-character symbol chain
Jregister currently assigned (phase 20,		
	OoPT=0 only)	
-+ - oo e .		
3	Options: DUMP, XL, XREF, ID, EDIT, MAP,	Pointer to 3-character symbol chain
	LOAD, DECK, LIST, BCD, SOURCE	
F-—4-—- T o e i		
4]Pointer to most recently generated	Pointer to 4-character symbol chain	
	EQUIVALENCE group entry (phase 10);	
	relative location of first temporary	
	(CORAL, phase 25).	
-4 -- -- T .		
5	Current NADCON index (PHAZ15); NADCON	Pointer to 5-character symbol chain
lindex for first adcon (CORAL); NADCON		
lindex for first temporary (phase 20, 25).		
[] 1 [] 4		
T t §		
6	Maximum line count	Pointer to 6-character symbol chain
e B T O o 1		
7	NADCON index for last statement number	Pointer to last dictionary entry in stmt
1		number chain (XREF--phase 10); number of
1		reserved registers set aside for data
I		plus RX branching, in addition to
-	register 13 (phase 20 prior to Branching	
		Optimization, OPT # 0, optimization not
I	downgraded) ; number of reserved registers]	
	Jused for data plus RX branching, in	
		addition to registers 13 & 12 (phase 25,
I 1	OPT # 0, optimization not downgraded).	
S T T f-m--mm - -		
8]Type of text (phase 10); pointer to next		
	phase 10 text item (PHAZ 15); pointer to	
	.TXX or .QXX temporary chain (phase 20);	
	text creation indicator: set to 254	i
	during processing of a case 2 subscript	
	which regquires an adcon text item to be	
I	inserted before (phase 20, OPT=0 only).	
L L } 4		
T T r 1		
9	Pointer to next available text entry	Pointer to end of text.
[1 e e e e e e e e e e e e . e e e e e o A e e e e e e e e e e e e e o o e e e e e o o e e o e e e 2 e e o _I		
r T		
110} Name of routine		
I 1 (subprogram/main program)		
1 e e e e e e e e e s e e o ot o e e e e e e e e . S e ot o o o 2 o e o O e . e 2 . e o o o e e e e e e e . o i i S 2 e o o i _l		
) 1 T		
11	Phase in control indicator	Trace switch; optimization downgrade
1 1	switch-bit 13 (PHAZ15, phase 20).	
-1 o -—= B ittt 1		
12	Index to last available error table entry.	
[4 L __.'		
T T		
13	END card indicator (phase 10)	Pointer to first card of source pgm.
o T T e]		
14	Relative location of parameter lists	Pointer to U-byte constant chain
	(PHAZ15, phase 25)	
b=+ T — " T :		
15	NADCON index for 1st parameter list	Pointer to 8-byte constant chain
	(PHAZ15, phase 25)	
-+ o oo o 1		
16 Page count	Pointer to 16-byte constant chain	
L 4 4 d
r T T 1
[17|Current line count |Pointer to statement number chain |
IO S 4

116

Table 16. Communication Table [NPTR(2,36)] (Part 2 of 2)

- T et 1
] 1 | 2 |
=+ 1 i
| 8|Relative location for register 13 |Number of branch table entries (STALL); |
1 |relative location for register 12. |
b4 : {
|19|Active base register: 0 for reg. 13, |NADCON index for first temporary |
| (4096 for reg. 12. | (phase 20). |
[} [d
v L) v 1
|20|Secondary entry points if nonzero |Number of times XREF buffer has been |
[|written out (phase 10); pointer to |
I 1 | temporary used for subscript index |
(. |eva1uation (Register Optimization). |
L L i
r T T 1
|21|Location counter, except in phase 20 |NADCON index for first COMMON area |
| | (other than branching optimization) where |
| |it is relative location for active base | i
| |register | |
b=+ 4 4
|22|Pointer to dictionary entry for IBCOM |Index to next available error table entry|
. B -- 1 -- - T
|23 | External function and/or CALL indicator |Pointer to end of stmt. number chain |
[| (STALL) |
S — -~ T T .
|24 | Program uses FLOAT/FIX or MOD functlon if |Optimization level |
| |Inonzero; arithmetic interrupt indicator; | |
| |text optimization (IBCOM); pointer to .SXX| |
| |temporary chain (phase 20, OPT=0 only). | |
L A
L Y - t-———————— 1
|25|P01nter to first dictionary entry |Pointer to COMMON chain |
1 [4
r T 1
|26|P01nter to DEFINE FILE text (phase 10); |Pointer to EQUIVALENCE chain]
| lrelative location of DEFINE FILE parameter| |
| {lists (CORAL, phase 25). | |
e —— —mmmmmeee T — - -4
|27 | Pointer to 11teral constant chain |Pointer to data text chain; subscript of |
[|required skeleton (phase 25). |
L 1 l
T - - == T T T T T T 1
|28} Pointer to DIOCS entry |Pointer to normal text chain |
L N L ___|
F——1 1
|29{Pointer to branch table chain |Pointer to next available information |
| | |table entry |
b0l e . . —
| 30| BLOCK DATA subprogram switch |Pointer to end of information table |
L de e e e e e e e e e e e e s o e e o e e e e e e e e . o o o o o e oo + ___ *
1 3]
|31 | FUNCTION SUBPROGRAM SWltch | SUBROUTINE SUBPROGRAM switch |
[} 1 1 i |
| t |
|32|Pointer to namelist text chain; local |Pointer to format text chain; local |
| |variable (phase 25). |variable (phase 25) |
L A1 1 4
L) 1 T 1
|33|size of constants; relative location of |Size of variables; relative location of |
| |epilogue (CORAL, phase 25). |epilogue (CORAL, phase 25). |
L] } ..._.l
I 1 T
| 34| Current displacement from active reg. |NADCON index for first adcon (CORAL); |
| | (phase 20) |current NADCON index (phase 20). |
[l (] 4 4
= : 1 1
|35]Relative location of adcon for first |Delete/error switch | |
| |statement number; branching optimization | |
| | (phase 25). | |
S O e LR e i
36 | Number of source statements | |
L 1 1 J

Appendix A: Tables 117

|2This field contains the displacement

| from the beginning of the keyword table
| for the group of keywords associated

I

with the character.

| Table 17. Keyword Pointer Table (IPTR) e Table 18. Keyword Table (ITBLE) (Part 1

r PR S 1 of 2)
| Character | Number? | Displacement2 | r T T
| (1 byte) | (1 byte) | (2 bytes) | | Length-11| Key Wordz2 |code3 |
t + } -- 1 ¥ et 4 1
] A | 2 | 0 | | 5 |ASSIGN | 1 |
				1	AT	9
B	2	12				
				8	BACKSPACE	2
		[[
C	5	34		8	BLOCKDATA	3
		I			o	
				7	CONTINUE	5
D I 8	84 [I		
I		I 5	COMMON	7		
E	5	175				
				3	CALL	8
F	3	220	I			
				14	COMPLEXFUNCTION] 4	
G	1	244				
				6	COMPLEX	6
H	0	0 [I	I [
]				8	DIMENSION	14
I	3 [250				I	
				3	DATA	17
J	0	0 [
				22	DOUBLEPRECISIONFUNCTIONl 10	
K	0	Y]			
				14	DOUBLEPRECISION	11
L	2	286	I			
				1	DO	18
M I 1	312					
				9	DEFINEFILE	13
N	2	318		I	I	
				6	DISPLAY	15
o	0	0	I I	I		
				4	DEBUG	16
P	3	336				I
				10	EQUIVALENCE	19
Q	0	0				l
		i	6	ENDFILE	21	
R	5 [357 .					
				3	END (followed by group	23
S	3	399			mark)“	
T	2] 428		4	ENTRY	22	
					I [
U	0	0		7	EXTERNAL	20
v	0	0		5	FORMAT	25
			p=——m - e e Ao i			
W	1	uy7		1This part of the entry for each keyword		
				is one byte in length and contains a		
X	0	0		value equal to the number of characters		
				in that keyword minus one.		
Y	0	0		2This part of the entry for each keyword		
				contains an image of that keyword at one		
Z	0	0		byte per character.		
b 41— 1 9	3This part of the entry for each keyword					
2This field contains the number of key-		is one byte in length and contains the				
words beginning with the associated		classification code for that keyword.				
character.		“Represented in hexadecimal as '4F'				

] e e e e e e e e e e e e e e e e J

[

|

|

1

Table 18, Keyword Table (Part 2 of 2)

r) Bttt A 1
| Length-11| Key Word= |Code3 |
% t 4 {
7	FUNCTION	24
3	FIND	12
I		
3	GoTO	27
7	IMPLICIT I 29	
14	INTEGERFUNCTION	28
I	I	
6	INTEGER	30
]		
14	LOGICALFUNCTION	33
6	LOGICAL	35
3	MOVE	34
I	I	
7	NAMELIST	36
	I	
5	NORMAL	37
4	PAUSE	38
4	PRINT 39	
		I
4	PUNCH	4o
3	READ	s
5	RETURN	43
5	REWIND	42
11	REALFUNCTION	u1
3	REAL	45
I		
3	sTOP	u8
9	SUBROUTINE	u6
8	STRUCTURE	47
I		
I 7	TRACEOFF	49
6	TRACEON 1 50	
u	WRITE	51
b ¢ L 1		
2*This part of the entry for each keyword		
is one byte in length and contains a		
value equal to the number of characters		
in that keyword minus one.		
2This part of the entry for each keyword		
contains an image of that keyword at one		
byte per character.		
3This part of the entry for each keyword		
is one byte in length and contains the		
classification code for that keyword.		
— J

Table 19. Classification Codes Assigned

During Source Statement Packing

- T~ 1
| statement Classification/Condition] Code? |
[

b e
Logical IF	31
Arithmetic IF	32
Arithmetic	56

| |
Excessive continuation cards	57
Unclassifiable	59
Unbalanced parentheses	61
[
Bad label	62
t L 1	
2*These codes are not in the keyword	
tables.	
L J

NADCON TABLE

The NADCON table, built by PHAZ15 and
CORAL and partially overwritten by phase
20, contains:

1. Parameter list pointers.

2. Adcons for local variables and
constantse.

3. Adcons for variables in COMMON and for
those equivalenced into COMMON.

4. Adcons for external references.

The information in the table is used by
CORAL and phase 25. Each table entry is
one word in length; the format of the table
is shown in Table 20.

Table 20. NADCON Table

r -
|Paxrameter list pointer entries (one word |
|per entry) |
T 1
|Adcon entries for local variables and]
|constants (one word per entry) |

|Adcon entries for variables in COMMON and|
|those equivalenced into COMMON (one word |
|

|per entry)
1 5

|
L b
|Adcon entries for external references

| (one word per entry) |
L J—

Appendix A: Tables 119

Parameter entries are created by PHAZ1S.
Each entry is a pointer to the dictionary
entry for the parameter. Indicators denote
ends of parameter lists and also parameters
shared by more than one function or
subroutine call.

Adcon entries are created by CORAL and
then inserted by CORAL into the adcon
portion of the object module (see Figure
9). Pointers to temporaries are created by
phase 20 and placed in the portion of the
table used previously by CORAL.

Phase 25 inserts the parameters and
temporaries into the object module. The
right-hand portion of Figure 9 indicates
the sequence in which storage is assigned
in the object module and the data which is
entered into that storage.

INFORMATION TABLE

The information table (referred to as
NDICT or NDICTX) is constructed by Phase 10
and modified by subsequent phases. This
table contains entries that describe the
operands of the source module. The
information table consists of five
components: dictionary, statement
number/array table, common table,
table, and branch table.

literal

INFORMATION TABLE CHAINS

The information table is arranged as a
number of chains. A chain is a group of
related entries, each of which contains a
pointer to another entry in the group.
Each chain is associated with a component
of the information table.

The information table can contain the
following chains:

* A maximum of nine dictionary chains:
one for each allowable FORTRAN variable
length (1 through 6 characters) and one
for each allowable FORTRAN constant
size (4, 8, or 16 bytes). Each
dictionary chain for variables contains
entries that describe variables of the

120

same length. Each dictionary chain for
constants contains entries that
describe constants of the same size.

e One statement number/array chain for
entries that describe statement
numbers.

¢ Two common table chains: one for
entries describing common blocks and
their associated variables, and one for
entries describing equivalence groups
and their associated variables,

e One literal table chain for entries
that describe literal constants used as
arguments in CALL statements.

¢ One branch table chain composed of
entries for statement numbers appearing
in computed GO TO statements.

Entries describing the various operands
of the source module are developed by Phase
10 and placed into the information table in
the order in which the operands are
encountered during the processing of the
source module. For this reason, a
particular chain's entries may be scattered
throughout the information table and
entries describing different types of
operands may occupy contiguous locations
within the information table. Figure 10
illustrates this concept.

CHAIN CONSTRUCTION

The construction of a chain requires:
(1) initialization of the chain, and (2)
pointer manipulation. Chain initialization
is a two-step process:

1. The first entry of a particular type
(e.g., an entry describing a variable
of length one) is placed into the
information table at the next
available location.

2. A pointer to this first entry is
placed into the communication table
entry (see "Communication Table")
reserved for the chain of which this
first entry is a member.

subsequent entries are linked into the
chain via pointer manipulation, as
described in the following paragraphs.

e R p——

N gL g S
\\ l | // L/ / /s /7

r I T T T K T T L T‘-i“l%—‘4“14144—JL‘4—‘AL1
[| i | | STMT/ | { STMT/ | | | | 3
| DICT | COMM | BRAN|DICT | ARRAY | LIT | ARRAY | COMM|LIT|BRAN|DICT
(L T R N T N Ty 2 (2 212 |3 |
Lj’ ;' LA} . I I i 1 LA} i 1 1 1__1
VA ’ 1 <

/s 7/ / Ve

e e s s — s e et s . e e i e e

|
|

Figure 10.

The communication table entry containing
the pointer to the initial entry in the
chain is examined and the first entry in
the chain is obtained., The item that is to
be entered is compared to the initial
entry. If the two are equal, the item is
not re-entered; if they are unequal, the
first entry in the chain is checked to see
if it is also the last. (An entry is the
last in a chain if its "chain" field is
Zero.)

If the chain entry under consideration
is the last in the chain, the new item is
entered into the information table at the
next available location, and a pointer to
its location is placed into the chain field
of the last chain entry. The new entry is
thereby linked into the chain and becomes
its last member.

If the entry under consideration is not
the last in the chain, the next entry is
obtained by using its chain field. The
item to be entered is compared to the entry
that was obtained. If the two are equal,
the item is not re-entered; if they are
unequal, the entry under consideration is
checked to see if it is the last in the
chain; etc.

This process is continued until a
comparable entry is found or the end of the
chain is found. If a comparable entry is
found, the item is not reentered. If the
new item is not found in the chain, it is
then linked into the chain.

OPERATION OF INFORMATION TABLE CHAINS

The following paragraphs describe the
operation of the various chains in the
information table.

An Example of Information Table Chains

Dictionary Chain Operation

The operation of a dictionary chain is
based upon "balanced tree" notation. This
notation provides two chains, high and low
(with a common midpoint), for the entries
describing variables of the same length or
constants of the same size. The initial
midpoint is the first entry placed into the
information table for a variable of a
particular length or a constant of a
particular size. When two entries have
been made on the high side of the midpoint,
the first entry on the current midpoint's
high~chain becomes the new midpoint,
Similarly, when two entries have been made
on the low side of the midpoint, the first
entry on the current midpoint's low-chain
becomes the new midpoint.

A change of midpoint for a variable of a
particular length or a constant of a
particular size causes a pointer to the new
midpoint to be recorded in the
communication table. The following example
illustrates the manner in which phase 10
employs the balanced tree notation to
construct a dictionary chain.

Assume that the following variables
appear in the source module in the order
presented.

D ¢C E F A B

When phase 10 encounters the variable D,
it constructs a dictionary entry for it
(see "Dictionary"), places this entry at
the next available location in the
information table, and records a pointer to
that entry into the appropriate field of
the communication table (see "Communication
Table"). The entry for D is the initial
nmidpoint for the chain of entries
describing variables of length one.

a dictionary entry is placed into the

(When

Appendix A: Tables 121

information table, both the high- and
low-chain fields of that entry are zero.)

When phase 10 encounters the variable C,
it constructs a dictionary entry for it.
Phase 10 then obtains the dictionary entry
that is the initial midpoint and compares C
to the variable in that entry. If the two
are unequal, phase 10 determines whether or
not the variable to be entered is greater
than or less than the variable in the
obtained entry. In this case, C is less
than D in the collating sequence, and,
therefore, phase 10 examines the low-chain
field of the obtained entry, which is that
for D. This field is zero, and the end of
the chain has been reached. Phase 10
places the entry for C into the next
available location in the information table
and records a pointer to that entry in the
low-chain field of the dictionary entry for
D. The entry for C is thereby linked into
the chain.

When the variable E is encountered,
phase 10 carries out essentially the same
procedure; however, because E is greater
than D, phase 10 examines the high-chain
field of the entry for D. It is zero,
which denotes the end of the chain.
Therefore, phase 10 places the dictionary
entry for E into the next available
location in the information table and
records a pointer to that entry in the
high-chain field of the dictionary entry
for D.

When the variable F is encountered,
phase 10 constructs a dictionary entry for
it and compares it to the variable in the
entry that is the common starting point for
the chain. Because F is greater than D,
phase 10 examines the high-chain field of
the entry for D. This field is not zero
and, hence, the end of the chain has not
yet been reached. Phase 10 obtains the
entry (for E) at the location pointed to by
the nonzero chain field (of the entry for
D) and compares F to the variable in the
obtained entry. The variable F is greater
than the variable E. Therefore, phase 10
examines the high-chain field of the entry
for E. This field is zero and the end of
the chain has been reached. Phase 10
places the entry for F into the next
available location in the information table
and records a pointer to that entry in the
high-chain field of the entry for E. Since
two entries have now been made on the high
side of the current midpoint, the first
variable on D's high-chain becomes the new
midpoint.

Phase 10 carries out similar procedures
to link the entries for the variables A and
B into the chain.

122

(If one of the comparisons made between
a variable to be entered into the
dictionary and a variable in an entry
already in the dictionary results in a
match, the variable has previously been
entered and is not reentered.)

Figure 11 illustrates the manner in
which the entries for the variables are
chained after the entry for B has been
linked into the chain.

(9]
3]
|
>
o

\&_/w
|tst and 2nd

B S —— |

|3rd mid- mid-point

|points

|

|

|Note: High and low chains are maintained|

|for all entries. 4hen the entry for F is|
|made, the mid-point shifts from D to E. |
|{When the entry for A is made, the mid-

|
|point shifts from E to D. |
[—— 4

Figure 11. Dictionary Chain

Statement Number Chain Operation

The statement number chain constructed
by phase 10 is linear; that is, each
statement number entry (see "Statement
Number/Array Table") is pointed to by the
chain field of the previously constructed
statement number entry. The first
statement number entry is pointed to by a
pointer in the communication table.

To construct the statement number chain,
phase 10 places the statement number entry
constructed for the first statement number
in the module into the next available
location in the information table. It
records a pointer to that entry in the
appropriate field of the communication
table. (When a statement number entry is
placed into the information table, its
chain field is zero.) Phase 10 links all
other statement number entries into the
chain by scanning the previously

constructed statement number entries (in
the sequence in which they are chained)
until the last entry is found. The last
entry is denoted by a zero chain field.
Phase 10 then places the new entry at the
next available location in the information
table and records a pointer to that entry
in the zero chain field of the last entry
in the chain. The new entry is thereby
linked into the chain and becomes its last
member. (Throughout the construction of
the statement number chain, phase 10 makes
comparisons to insure that a statement
number is entered only once.)

Common Chain Operation

The chain constructed by phase 10 due to
COMMON statements appearing in the source
module is bi-linear; that is, phase 10
links together:

1. The individual COMMON block name
entries (see "COMMON Table") that it
develops for the COMMON block names
appearing in the module.

2. The dictionary entries (see
"Dictionary") that it develops for the
variables appearing in a particular
common block. (The dictionary entry
for the first variable appearing in a
COMMON block is also pointed to by the
COMMON block name entry for the COMMON
block containing the wvariable.)

To construct the COMMON chain, phase 10
places the COMMON block name entry that it
constructs for the first COMMON block name
appearing in the module at the next
available location in the information
table., It records a pointer to this entry
in the appropriate field of the
communication table. Phase 10 then obtains
the first variable in the COMMON block,
constructs a dictionary entry for it,
places the entry at the next available
location in the information table, and
records a pointer to that entry in the P1
and P2 field of the COMMON block name entry
for the COMMON block containing the
variable. Phase 10 obtains the next
variable in the common block, constructs a
dictionary entry for it, places the entry
in the information table, records a pointer
to that entry in the COMMON chain field of
the dictionary entry constructed for the
variable encountered immediately prior to
the variable under consideration (this
entry location is obtained from the P2
field of the COMMON block name entry), and

records a pointer to the information table
for the new COMMON variable in the P2
field. Thus, the P2 field of the COMMON
block name entry always contains a pointer
to the information table entry for the last
variable of a given COMMON block. Phase 10
obtains the next variable in the COMMON
block, etc.

When phase 10 encounters a second unique
COMMON block name, it constructs a COMMON
block name entry for it, places the entry
in the information table, and records a
pointer to that entry in the chain field of
the last COMMON block name entry, which is
found by scanning the chain of such entries
until a zero chain field is detected.

Phase 10 then links the dictionary entries
that it constructs for the variables
appearing in the second COMMON block into
the chain in the previously described
manner.

If a COMMON block name is repeated in
the source module a number of times, phase
10 constructs a COMMON block name entry
only for the first appearance. However, it
does include as members of the COMMON block
the variables associated with the second
and subsequent mentions of the COMMON block
name, Phase 10 constructs a dictionary
entry for the first variable associated
with the second mention of the COMMON block
name and places it into the information
table. It then records a pointer to the
dictionary entry for the new variable in
the COMMON chain field of the last variable
associated with the first mention of the
COMMON block name. Phase 10 links the
dictionary entry it constructs for the
second variable associated with the second
mention of a COMMON block name to the
dictionary entry for the first variable
associated with the second mention of that
name; etc,

If a third mention of a particular
COMMON block name is encountered, phase 10
processes the associated variables in a
similar manner. It links the dictionary
entries constructed for these variables as
extensions to the dictionary entries
developed for the variables associated with
the second mention of the COMMON block
name,

Equivalence Chain Operation

The chain constructed by phase 10 due to
EQUIVALENCE statements appearing in the
source module is also bi-linear. Phase 10
links together:

Appendix A: Tables 123

1. The individual equivalence group
entries (see "COMMON Table") that it
constructs for the equivalence groups
appearing in the module.

2. The equivalence variable entries (see
"COMMON Table") that it constructs for
the variables appearing in a
particular equivalence group. (The
equivalence variable entry for the
first variable appearing in an
equivalence group is pointed to by the
equivalence group entry for the group
containing the variable.)

The construction of the equivalence
chain by phase 10 parallels its
construction of the COMMON chain. It links
the equivalence group entries in the same
manner as it does COMMON block name
entries, and links equivalence variable
entries in the same manner as the
dictionary entries for the variables in a
COMMON block. (The location of the last
EQUIVALENCE group entry generated is
recorded in the appropriate field of the
communication table; the location of the
last EQUIVALENCE wvariable entry generated
is recorded locally in the keyword
subroutine that processes the EQUIVALENCE
statement).

Literal Constant Chain Operation

The chain constructed by phase 10 for
the literal constant information appearing
in the source module is linear. The
literal constants are chained in reverse
order of occurrence., Phase 10 records a
pointer to the most recent literal constant
entry generated. As each new entry is
made, it is chained to the previous entry
and it, in turn, is recorded as the most
recent, ‘

124

Branch Table Chain Operation

The phase 10 construction of the branch
table chain parallels that of the statement
number chain. It records a pointer to the
first branch table entry (see "Branch
Table") that is placed into the information
table in the appropriate field of the
communication table. In the chain field of
the previously developed branch table
entry, phase 10 records a pointer to the
location in the information table for any
new branch table entry. Unlike statement
number entry processing, no label
comparison is necessary. Thus, scanning
the chain is avoided by recording the
location of the last branch table entry in
the P2 field of the first Initial Branch
Table entry.

INFORMATION TABLE COMPONENTS

The following text describes the
contents of each component of the
information table and presents
illustrations of phase 10 formats of the
entries for each component. Modifications
made to these entries by subsequent phases
of the compiler are also illustrated.

Dictionary

The dictionary contains entries that
describe the variables and constants of the
source module. The information gathered
for each variable or constant is derived
from an analysis of the context in which
the variable or constant is used in the
source module.

VARIABLE ENTRY FORMAT: The format of the
dictionary entries constructed by phase 10
for the variables of the source module is
illustrated in Figure 12,

< 4 bytes >
r- - 1
| High-chain field |
IL' L) T 'l
|Byte A |Byte B | |
|usage field|usage field|DIS field |
L 1 L J
r 1
| Low-chain field |
L 4
r t L)
|Mode field | Type field |
b ; t {
|Used by | |
| subroutine | |
| STALL- |
| IEKGST |P1 field |
Il] .'
1)

| COMMON displacement field |
L 4
r T 1
| Store-Fetch|COMMON chain field |
|field | |
b L T {
|Used for XREF |Name field |
|processing | |
- : 4
| Name field |
b ——
b

|Note: This field exists only if the XREF|
| option is used (see Figure 15). |
e J

Figure 12. Format of Dictionary Entry for

Variable

High-Chain Field: The high-chain field is
used to maintain linkage between the
various entries in the chain. It contains
either a pointer to an entry that collates
higher in the collating sequence or an
indicator (zero), which indicates that
entries in the chain that collate higher
than itself have not yet been encountered.

Byte A Usage Field: This field is
contained in the first byte of the second
word. This field indicates a portion of
the characteristics of the variable for
which the dictionaty entry was created.
The byte A usage is divided into eight
subfields, each of which is one bit long.
The bits are numbered from 0 through 7.
Figure 13 indicates the function of each
subfield in the byte A usage field.

Byte B Usage Field: The byte B usage field
is contained in the second byte of the
second word. This field indicates
additional characteristics of the variable
entered into the dictionary. It is divided
into eight subfields, each of which is one
bit long. The bits are numbered from 0
through 7. Figure 14 illustrates the
function of each subfield in the byte B
usage field.

r T 1
| subfield | Function |
[1 .l
L} T
| Bit 0 *on' | variable appears in a |
| STRUCTURE statement |
1 R i
T
Bit 1 ‘on' | symbol referred to |
-- e m oo 1
Bit 2 'on' | variable is in COMMON |
L
b mmmmmmm oo {
Bit 3 'on' | not used
f———————————- T —m——————————
Bit 4 'on' | variable is equivalenced |
L 4 4
I T 1
Bit 5 *on'	variable has appeared in an
	EQUIVALENCE group that has
	been processed by
	subroutine STALL-IEKGST
! l (used by phase 15) }	
b R	
Bit 6 'on'	variable .is an external {
	subprogram name
L 4 ——	
r T	
Bit 7 'on'	variable appears in Type
	statement
L —— e e e e e o ———————— J	
Figure 13. Function of Each Subfield in	
the Byte A Usage Field of a	
Dictionary Entry for a Variable	
or Constant	
r R T R 1	
Subfield	Function
T oo oo 1	
Bit 0 'on'	variable is "call by value"
	parameter
pmmmm oo 4- e i	
Bit 1 'on'	variable is "call by name"
	parameter
’ P i	
Bit 2 'on'	variable is used as an
	argument
P o 1	
Bit 3 'on'	variable has appeared in a
	previous DATA statement
	(phase 15)
prmmm oo o i	
Bit 4 'on'	not used
L 4 4	
v T]	
Bit 5 'on'	variable is used as a
	subscript
b 4 4	
Bit 6 'on'	variable is in COMMON, or
	in an EQUIVALENCE group andj
	has been assigned a
	relative address (phase 15)
%]	
r T a	
Bit 7 *on'	variable appears in DATA
	statement
L—— - L O J
Figure 14, Function of Each Subfield in

the Byte B Usage Field of a
Dictionary Entry for a Variable

Appendix A: Tables 125

DIS Field: The DIS field contains either
the displacement of a structured variable
from the head of its structure group or the
number of dummy arguments for a statement
function name. If the variable is neither
structured nor a statement function name,
this field contains a count of the number
of times the variable appears in the source
program.

Low-Chain Field: The low-chain field is
used to maintain linkage between the
various entries in the chain. It contains
either a pointer to an entry that collates
lower in the collating sequence or an
indicator (zero), which indicates that
entries in the chain that collate lower
than itself have not yet been encountered.

Mode/Type Field: The mode/type field is
divided into two subfields, each two bytes
long. The first two bytes (mode subfield)
are used to indicate the mode of the
variable (e.g., integer, real); the second
two bytes (type subfield) are used to
indicate the type of the variable (e.g.,
array, external function). Both the mode
and type are numeric quantities and
correspond to the values stated in the mode
and type tables (see Tables 21 and 22).

Pl Field: The P1 field contains either a
pointer to the dimension information in the
statement number/array table if the entry
is for an array (i.e., a dimensioned
variable), or a pointer to the text
generated for the statement function (SF)
if the entry is for an SF name. If the
entry is neither for the name of an array
nor the name of a statement function, the
field is zero.

COMMON Displacement Field: The
displacement of the variable, if it is in
COMMON, is placed in this field by phase
10. This information will be moved to the
DIS field by CORAL and replaced with a
pointer to the dictionary entry for its
COMMON block.

Store-Fetch Field: The Store-Fetch field
contains information about the variable.

If the variable is stored into, bit 0=1; if
the variable is fetched, bit 1=1.

126

Table 21. Operand Modes

Internal
Representation
(in hexadecimal)

Mode of Operand

r T
| |
| |
I I
b +
| No mode (e.g., base| 0
| variables) |
| Logical*1l |
| Logical*4 |
| Integer*2 |
| Integer |
| Realx*8 |
| Real*t |
| Complex*16 |
| Complex*8 |
| Literal |
| Statement number |
| Hexadecimal |
| Namelist |
| Repeat constant |
L L

HOUAEPOONOULE WN
et s . e e . . v — — —— . G— — — i, e S em—)

Table 22.
r

|
| Type of Operand
1

Operand Types

Internal
Representation
(in hexadecimal)

v

|Scalar

|Dummy scalar

|Array

|Dummy array
|External subprogram
|Constant

| statement function
|Negative scalar
|Negative dummy scalar
|Negative array
|Negative dummy array
|Negative external

| subprogram
|Negative constant
|Negative statement
| function

| QXX temporary

| (created by text
| optimization)

[|

H HUO QoWPYoocunfwhRo
b e e e e e S e o . — — — — ——— — . s, el e Bt e, ame]

e . e s i e B i St . s At e T s S e, e e st s s,]

COMMON Chain Field: This field is used to
maintain linkages between the variables in
a COMMON block. It contains a pointer to
the dictionary entry for the next variable
in the COMMON block. (If the variable for
which a dictionary entry is constructed is
not in COMMON, this field is not used.)

This field contains the name

Name Field:
for which

of the variable (right~justified)
the dictionary entry was created.

MODIFICATIONS TO DICTIONARY ENTRIES FOR
VARIABLES: During compilation, certain
fields of the dictionary entries for
variables may be modified. The following
examples illustrate the formats of

co-ordinate assignment by the STALL-IEKGST
subroutine is illustrated in Figure 16.

dictionary entries for variables at various < 4 bytes >
stages of phase 10 and phase 15 processing. T ——————m - - -=1
Only changes are indicated; #* stands for | * i
unchanged. t T T |
[* I* i * |
Dictionary Entry for Variable After L 4 4
Preparation for XREF Processing: The * |
format of a dictionary entry for a variable {———— e ——————— 9
after subroutine CSORN-IEKCCR processing is * | * |
illustrated in Figure 15. T 1 |
Coordinate|* |
XREF Buffer Pointer ~- Last Entry: This |number for| |
field contains a pointer to the most recent |variable | |
XREF buffer entry for the symbol. I 4 4
|* |
XREF Buffer Count: This field contains a F —_—— --
count of the number of times the XREF | * |
buffer has been written out on SYSUT2 at i 8|
the time that this dictionary entry is | * |
modified by subroutine CSORN-IEKCCR. e ———- - - -1
%*
! | ;
Figure 16. Format of Dictionary Entry for
< 4 bytes > Variable After Coordinate
———— 1 Assignment
I1* |
l[T T - %
|* |* | * |
F L L i Dictionary Entry for Variable After COMMON
| * | Block Processing: The format of a
I T q dictionary entry for a variable after
| * | * | COMMON block processing is illustrated in
| T L 9 Figure 17.
| * | * |
L 1 d
T 1
|* |
[T 9 L 4 bytes—————-—e— e >
[* | * | -
b : T L |
| XREF buffer point | * | T T 1
|-—- last entry i | | * | * |Displacement from |
t 1 4 | |start of COMMON |
[* 1 | |block |
-r T 1 : L -
| XREF buffer count | XREF buffer pointer | | * |
| |-- first entry | } - S 1
' + e |+ |
Figure 15. Format of Dictionary Entry for --- T 4 - 9
Variable After CSORN-IEKCCR | * | * [
Processing for XREF t L 4
|COMMON block pointer |
- -—- —mmmmmm
* |
XREF Buffer Pointer -- First Entry: This ¢ 4
field contains a pointer to the first XREF | * |
buffer entry for this symbol. I3 4
|* |
L 4
Dictionary Entry for Variable After Figure 17. Format of Dictionary Entry for

co-ordinate Assignment: The format of a
dictionary entry for a variable after

Variable After COMMON Block
Processing

Appendix A: Tables 127

< 4 bytes >
— - 1
I* I
I e e e [
] T T b
| * | * |Displacement from |
| | |base value |
— . -1 3
| Pointer to entry for address constant |
| of variable |
- -7 4
[* | * l
L i 4
) T |
| * | * |
’ — - 1
|* I
L 4
T 1
|* |
pmmmm - - 1
|* |
L 4
v)
| * |
L - -
Figure 18. Format of Dictionary Entry for
a Variable After Relative
Address Assignment
e ———— 4 bytes —_—
r 1
| Backward chain field |
b T 1
| Byte A |Byte B |
|Usage field|Usage field|Used by phase 15 |
I__ 4 - A .I
| Forward chain field |
— 1
v T
| Mode field |Type field |
b T e 1
|Used by | |
| subroutine | zero |
| STALL~ | |
| IEKGST I |
I L , i
| Constant field |
= -—-- 1
| Constant field |
k- -y
| Constant field |
b 1
1)
| Constant field |
L —]

Format of Dictionary Entry for
Constant

Figure 19.

Dictionary Entry for Variable After
Relative Address Assignment: The format of
a dictionary entry for a variable after
relative address assignment is illustrated
in Figure 18.

CONSTANT ENTRY FORMAT: The format of the
dictionary entries constructed by phase 10
for the constants of the source module is

128

illustrated in Figure 19. It is similiar
to that for a variable. The changes the
entry undergoes during processing are the
same except that a constant does not under-
go XREF or COMMON processing. Also, for
constants referred to implicitly, PHAZ1S
sets a referenced bit to on. (Bit 1 in the
byte A usage field; see Figure 13.)

Statement Number/Array Table

The statement number/array table
contains statement number entries, which
describe the statement numbers of the
source module, and dimension entries, which
describe the arrays of the source module.

STATEMENT NUMBER ENTRY FORMAT: The format
of the statement number entries constructed
by phase 10 is illustrated in Figure 20.

Chain Field: The chain field is used to
maintain linkage between the various
entries in the chain. It contains either a
pointer to the next statement number entry
in the chain or an indicator (zero), which
indicates the end of the statement number
chain.

< 4 bytes
Chain Field
1 T T
Byte A | Byte B | Used by | Used by
Usage | Usage | phase 20 | phase 20
L 1 L

Pointer field

Image field

—— e ——

Used for XREF processing

Used for XREF processing

Used for XREF processing

Used by phase 20

| Note: This field exists only if the XREF

| option is used (see Figure 23).
L

Figure 20.

(PRI SN SRy SIS = I I S Ay Sp—— v

Format of a Statement Number
Entry

Byte A Usage Field: This field is
contained in the first byte of the second
word. This field indicates a portion of
the characteristics of the statement number
for which the entry was created. The byte

MODIFICATIONS TO STATEMENT NUMBER ENTRIES:
During the processing of subroutines
LABTLU-IEKCLT and STALL-IEKGST in phase 10,
phases 15, 20, and 25, each statement
number entry created by phase 10 is updated
with information that describes the text
block associated with the statement number.
During phase 10, if the XREF option is
selected, subroutine LABTLU-IEKCLT makes
changes in statement number dictionary
entries for later use by subroutine
XREF-IEKXRF (see Figure 23).

A usage field is divided into eight
subfields, each of which is one bit long.
The bits are numbered from 0 through 7.
Figure 21 indicates the function of each
subfield of this field.

Byte B Usage Field: This field is
contained in the second byte of the second
word. The byte B usage field indicates
additional characteristics of the statement
number for which the entry was constructed.
The byte B usage field is divided into

Zeros. Bit 6 'on' statement number appears in|

END or ERR parameter of |
READ statement (branching |

I T 1
eight subfields, each of which is one bit | Subfield | Function |
long. The bits are numbered 0 through 7. t + |
Figure 22 indicates the function of each | Bit 0 'on' | statement number is within |
subfield in the byte B usage field. | | a DO loop and is |

| | transferred to from outside]

| | the range of the DO loop |

L 1 e e e e € et et et . S e e e S e e o S

f Bit 1 *on' 1 compiler generated 1
Pointer Field: If the entry is for the | | statement number |
first statement number, this field contains - - —————— 1
a pointer to the last statement number Bits 2-5 | not used |
entry. Otherwise, the field contains + - -1

|
|
|
|
4
|
|
L

optimization) |
_____________ 9
Image Field: This field contains the | Bit 7 'on' statement number is used in|
binary representation of the statement | a computed GO TO statement |
number for which the entry was created. L -)
Figure 22. Function of Each Subfield in
the Byte B Usage Field of a
Statement Number Entry
1] L} 1
| subfield | Function |
————————— : i
| Bit 0 'on' | statement number defined |
} 4 | < 4 bytes >
| Bit 1 'on' | statement number referred | r 1
| | to | |
b f i T T —y-- -4
| Bit 2 'on' | referred to in an ASSIGN | | * | * | * | * |
| | statement | I i L L 4
- 1 {0 |
| Bit 3 | not used | b - -—q
b t i I+ |
| Bit 4 "on' | statement number of a | 3 |
| | FORMAT statement | | XREF buffer pointer -- last entry |
F + - 1 ——= L S 1
| Bit 5 'on' | statement number of a GO | | XREF buffer count |XREF buffer pointer |
| | TO, PAUSE, RETURN, STOP, or| | | -- first entry I
| | DO statement | - L —————————— o 4
b + 4 |[Definition field |
| Bit 6 'on' | statement number used as an| - . 4
| | argument | | * |
= 1 ——- 1t 1
| Bit 7 'on' | statement number is the | | Sequence chain field |
| | object of a branch | b - e 4
L 1 J Figure 23. Format of a Dictionary Entry
Figure 21. Function of Each Subfield in for Statement Number After
the Byte A Usage Field of a Subroutine LABTLU-IEKCLT
Statement Number Entry Processing for XREF
Appendix A: Tables 129

XREF Buffer Pointer -- Last Entry: This
field contains a pointer to the most recent
XREF buffer entry for this statement
number, unless this dictionary entry is a
definition of a statement number. If this
dictionary entry is a definition of a
statement number, this field is not used.

XREF Buffer Count: This field contains a
count of the number of times the XREF
buffer has been written out on SYSUT2 at
the time this dictionary entry is modified
by subroutine LABTLU-IEKCLT.

XREF Buffer Pointer -- First Entry: This
field contains a pointer to the first XREF
buffer entry for this statement number.

Definition Field: This field contains an
ISN if this statement number dictionary

immediately after the statement number for
which the statement number entry under
consideration was constructed. (The
STALL-IEKGST subroutine modifies the phase
10 chain pointer when it rechains the
statement number entries to correspond to
the order in which statement numbers are
defined in the source module.) This field
is not modified by subsequent phases.

Block Status Field: The block status field
indicates the status of the text block
associated with the statement number entry
under consideration. The block status
field is divided into eight subfields, each
of which is one bit long. The bits are
numbered 0 through 7. Figure 25 indicates
the function of each subfield in the block
status field.

entry corresponds to a definition of a r P ——— e 1
statement number. The field contains -1 if | Subfield | Function |
the statement number has been previously t + i
defined. | Bit 0 | Used for various reasons |
| | by the routines that |
| | explore connections (e.g., |
Sequence Chain Field: This field chains | | the associated block has |
the statement numbers in numerical order. | | previously been considered|
| Bit 1 | in the search for the back]|
Figure 24 illustrates the format of a | | dominator of the block) |
statement number entry after the processing } 4 9
of the STALL-IEKGST subroutine and phases | Bit 2 *on' | the associated block exits|
15, 20, and 25. Only changes are | | from a loop
indicated; * stands for unchanged. } + i
| Bit 3 Yon' | the associated block is a |
< 4 bytes > | | fork (i.e., it has two or |
M ! | more forward connections) |
| New Chain field | } 4
F T T T 94 | Bit & same as bits 0 and 1 |
|* |+ | Block | Loop I i
i | | status [number | | Bit 5 'on'* | the associated block is in|
| | | Field | | | | the current loop |
; L ' : T : {
| Address constant pointer field | | Bit 6 'on' | the associated block has |
t 4 | | been completely processed |
| * | | | along the OPT=2 path |
1 4 L ! 4
T h r T 1
{Loop | Text pointer field | | Bit 7 *on' | the associated block is an|
| number | | | | entry block
|save area | | L L 4
—_ i - q Figure 25. Function of Each Subfield in
| Forward connection field (ILEAD) | the Block sStatus Field
L -
iBackward connection field (JLEAD) 1
—————————— E— q Loop Number Field: The loop number field
|Block size field (BSZ) | contains the number of the loop to which
- - 1 the text block (associated with the
| * | statement number entry under consideration)
L 4 belongs. This field is set up and used by
Figure 24. Format of Statement Number phase 20. Just before the loop number is

Entry After the Processing of
Phases 15, 20, and 25

New Chain Field: The new chain field
contains a pointer to the entry for a
statement number. The number is the one
that is defined in the source module

130

assigned, this field contains a depth
number.

Back Dominator Field: The back dominator
field contains a pointer to the statement
number entry associated with the back
dominator of the text block associated with
the statement number entry under

consideration. This field, set up and used
by phase 20, occupies the address constant
pointer field.

Address Constant Pointer Field: The
address constant pointer field (after phase
25 processing) contains either of the
following:

¢ An indication of a reserved register
and a displacement of the address
constant for the statement number (see
Phase 25, "Address Constant
Reservation").

e Zero, if:
1. unreferenced

2. referenced, but not by END or ERR
parameter of a READ statement, and
within range of a reserved
register.

Text Pointer Field: The text pointer field
contains a pointer to the phase 15 text
entry for the statement number with which
the statement number entry under
consideration is associated. This field is
not used by phase 10; it is filled in by
phase 15, and is unchanged by subsequent
phases.

Forward Connection Field (ILEAD): The
forward connection field contains a pointer
to the initial RMAJOR entry for the blocks
to which the text block associated with the
statement number entry under consideration
connects. This field is set up by phase 15
and used by phase 20. The base and
displacement of the block are stored in
this field by phase 20, Branching
Optimization.

Backward Connection Field (JLEAD): The
backward connection field contains a
pointer to the initial CMAJOR entry for the
blocks that connect to the text block
associated with the statement number entry
under consideration. This field is set up
by phase 15 and used by phase 20. During
phase 25 the relative location of the block
is stored in the field.

Block Size Field (BSZ): The block size
field contains the number of bytes of code
generated in the block associated with the
statement number entry under consideration.
It does not include the padding for the
first occurence in the block of required
boundary alignment. This field is set up
and used by phase 20, Branching
Optimization. The following flags are set
in this field:

bit 1, for branch true or false in
this block;

bit 4, if block is B-block;

bit 5, if block ends with branch other
than computed GO TO;

bit 8, if the conditional NOP follows
an even number of half-words in
the block;

bit 9, for conditional NOP in this
block.

DIMENSION ENTRY FORMAT: The format of the
dimension entries constructed by phase 10
is illustrated in Figure 26.

Array Size Field: The array size field
contains either the total size of the
associated array or zero, if the array has
variable dimensions.

Dimension Number Field: The dimension
number field contains the number of
dimensions (1 through 7) of the associated
arraye

Element Length Field: The element length
field contains the length of each element
(first dimension factor) in the associated
array.

< 4 bytes >
[T T e e e e e 1
| Array size field |
I J
) T 1
|Dimension number |Element length field |
|field | i
’ e e :
| FPirst subscript pointer field |
I d
r 1
| Second subscript pointer field |
I
e R T T y
| Third subscript pointer field |
8
¢ -1
| Fourth subscript pointer field |
oo 1
| Fifth subscript pointer field |
i
Sixth subscript pointer field |
e o 1
| Used only for variable
| dimensions]
L ot o o e S = D — e o o e o e o e e Al e e B e o e e J

Figure 26, Format of Dimension Entry

First Subscript Pointer Field: The field
contains either a pointer to the dictionary
entry for the second dimension factor,
which has a value of D1*L (see "Appendix F:
Address Computation for Array Elements™),
or a pointer to the dictionary entry for
the first subscript parameter used to
dimension the associated array if that
array has variable dimensions. This field
is not used if the associated array has a
single non-variable dimension.

Appendix A: Tables 131

Second Subscript Pointer Field: This field
contains either a pointer to the dictionary
entry for the third dimension factor, which
has a value of D1#D2*1, or a pointer to the
second subscript parameter used to
dimension the associated array if that
array has variable dimensions. This field
is not used if the associated array has a
single dimension, or has two non-variable
dimensions.

Third Subscript Pointer Field: This field
contains either a pointer to the dictionary
entry for the fourth dimension factor,
which has a value of D1*D2*D3*L, or a
pointer to the third subscript parameter
used to dimension the associated array if
that array has variable dimensions. This
field is not used if the associated array

has fewer than three dimensions, or has
three non-variable dimensions.
Fourth Subscript Pointer Field: This field

contains either a pointer to the dictionary
entry for the fifth dimension factor, which
has a value of D1*D2*D3*Du4*L, or a pointer
to the dictionary entry for the fourth
subscript parameter used to dimension the
associated array if that array has variable
dimensions. This field is not used if the
associated array has fewer than four
dimensions, or has four non-variable
dimensions.

Fifth Subscript Pointer Field: This field
contains either a pointer to the dictionary
entry for the sixth dimension factor, which
has a value of D1*D2*D3#D4*D5%L, or a
pointer to the dictionary entry for the
fifth subscript parameter used to dimension
the associated array if that array has
variable dimensions. This field is not
used if the associated array has fewer than
five dimensions, or has five non-variable
dimensions.

Sixth Subscript Pointer Field: This field
contains either a pointer to the dictionary
entry for the seventh dimension factor,
which has a value of D1*D2*D3*D4*D5*D6*L,
or a pointer to the dictionary entry for
the sixth subscript parameter used to
dimension the associated array if that
array has variable dimensions. This field
is not used if the associated array has
fewer than six dimensions, or has six
nonvariable dimensions.

Pointer to Last Subscript Parameter: This
field contains a pointer to the dictionary
entry for the seventh subscript parameter
used to dimension the associated array if
that array has variable dimensions. This
field is ncot used if the associated array
has fewer than seven dimensions, or has
seven nonvariable dimensions.

132

1SN Field:

COMMON Table

The COMMON table contains: (1) COMMON
block name entries, which describe COMMON
blocks; (2) equivalence group entries,
which describe equivalence groups; and (3)
equivalence variable entries, which
describe equivalence variables.

COMMON BLOCK NAME ENTRY FORMAT:
of the COMMON block name entries
constructed by phase 10 is illustrated in
Figure 27.

The format

Chain Field: The chain field is used to
maintain linkage between the various COMMON
block name entries. It contains either a
pointer to the next COMMON block name entry
or an indicator (zero), which indicates
that additional common blocks have not yet
been encountered.

Pl Field: The P1 field contains a pointer
to the dictionary entry for the first
variable in this COMMON block.

P2 Field: The P2 field contains a pointer
to the dictionary entry for the last
variable in this COMMON block.

Name Field: The name field contains the
name (right-justified) of the COMMON block
for which this COMMON block name entry was
constructed.

Character Number Field: The character
number field contains the number of
characters in the COMMON block name.

The ISN field contains the ISN
assigned to the statement in which this
COMMON block name first occurs.

A
=
o
v
o
®
0
v

Chain field

r——

P1 field

P2 field

Name field

|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
1
|
]
i
|
|
[S ST SRS SR |

Name field

Sy o e . e . g s S e

. —_—

|Character number |ISN field |

| field | i

| —_— e i

Figure 27. Format of a COMMON Block Name
Entry

MODIFICATIONS TO COMMON BLOCK NAME ENTRIES:

ISN Field: The ISN field contains the ISN

During compilation, certain fields of
COMMON block name entries may be modified.
Figure 28 illustrates the format of a
COMMON block name entry after COMMON block
processing by subroutine STALL-IEKGST and
CORAL., Only changes are indicated;
*stands for unchanged.

assigned to the statement in which any name
of the EQUIVALENCE group first occurs.

MODIFICATIONS TO EQUIVALENCE GROUP ENTRIES:
During compilation, certain fields of
equivalence group entries may be modified.
Figure 30 illustrates the format of an
equivalence group entry after equivalence
processing by subroutine STALL-IEKGST.

Rt 4 bytes——— -~ > Only changes are indicated; * stands for

r 1 unchanged.

|* |

b-—- {

1* |

R— 4

i Total size of COMMON block | < -4 bytes———— >
% ‘Jl I T -1
f * 1 | * l
o --- i e .
| * | 1* |
b T it {
| * | ESDID | |Pointer to the "head" of the equivalence |
| I L 4 |group

Figure 28. Format of COMMON Block Name F

Entry After COMMON Block
Processing

EQUIVALENCE GROUP ENTRY FORMAT:
of the equivalence group entries
constructed by phase 10 is illustrated in
Figure 29,

The format

Indicator Field: The indicator field is
nonzero if a variable in this group is
subscripted and its DIMENSION statement has
not been processed.

Chain Field: The chain field is used to
maintain linkage between the various
equivalence groups. It contains a pointer
to the next equivalence group entry.

<~ - 4 bytes- - >
I T a
|Indicator | Chain field |
|field | |
.L L 4
| P1 field |
T 1
1 Used by phase 15 }
- 1
| IsN field |
| —— J

Figure 29. Format of an Equivalence Group

Entry

P1 Field: The P1 field contains a pointer
to the equivalence variable entry for the

first variable in the equivalence group or
for the first variable in the COMMON block.

Figure 30. Format of Equivalence Group
Entry After Equivalence

Processing

EQUIVALENCE VARIABLE ENTRY FORMAT: The
format of the equivalence variable entries
constructed by phase 10 is illustrated in
Figure 31.

Indicator Field: The indicator field is
nonzero if the equivalence variable is
subscripted prior to being dimensioned.

P1 Field: The P1 field contains a pointer
to the dictionary entry for this
equivalence variable.

Number of Subscripts Field: The number of
subscripts field contains the total number
of subscripts used by a variable being
equivalenced, with subscripts, prior to
being dimensioned.

Appendix A: Tables 133

< 4 bytes > < 4 bytes———————mmmmm >
. -= | r T 1
|Indicator | Pl field | | * | * |
|field | I E—— R]
.L t 10 |+ !
| Number of | Chain field i } 1 i
|subscripts]| | |Displacement of variable from group head |
'r L _ e T B - e 1
| Offset field | | * |
b -= 1 i
] Subscript field | | . |
- e i i I . |
| . | I . |
| . | t |
[- I [* |
} i L e 1
| Subscript field | Figure 32. Format of Equivalence Variable
- 1 Entry After Equivalence
Figure 31. Format of Equivalence Variable Processing

Entry

Chain Field: The chain field is used to
maintain linkage between the various
variables in the equivalence group. It
contains a pointer to the equivalence
variable entry for the next variable in the
equivalence group.

Offset Field: The offset field contains
the displacement of this variable from the
first element in the equivalence group.

Subscript Field: The subscript field(s)
contains the actual subscript(s) specified
for a variable being equivalenced, with
subscripts, prior to being dimensioned.

MODIFICATIONS TO EQUIVALENCE VARIABLE
ENTRIES: During compilation, certain
fields of equivalence variable entries may
be modified. Figure 32 illustrates the
format of an equivalence variable entry
after equivalence processing by the
STALL-IEKGST subroutine. Only changes are
indicated; * stands for unchanged.

134

Literal Table

The literal table contains literal
constant entries, which describe literal
constants used as arguments in CALL
statements, and literal data entries, which
describe the literal data appearing in DATA
statements. (Entries for literal data
appearing in DATA statements are not
chained. They are pointed to from data
text.)

LITERAL CONSTANT ENTRY FORMAT: The format
of the literal constant entries constructed
by phase 10 is illustrated in Figure 33,

< _—

| Literal constant field |
| (variable length) |

Format of Literal Constant
Entry

Figure 33.

Chain Field: The chain field is used to
maintain linkage between the various
literal constant entries., It contains a
pointer to the previous literal constant
entry.

Length Field: The length field contains
the length (in bytes) of the literal
constant.

Literal Constant Field: The literal
constant field contains the actual literal
constant for which the entry was
constructed. The field ranges from 1 to
255 bytes (1 character/byte,
left-justified) depending on the size of
the literal constant.

MODIFICATIONS TO LITERAL CONSTANT ENTRIES:
During compilation, certain fields of
literal constant entries may be modified.
Figure 34 illustrates the format of a
literal constant entry after literal
processing by STALL-IEKGST. Only changes

each computed GO TO statement of the source
module. Standard branch table entries are
constructed by phase 10 for each statement
nunber appearing in the computed GO TO
statement.

INITIAL BRANCH TABLE ENTRY FORMAT: The
format of the initial branch table entries
constructed by phase 10 is illustrated in
Figure 36,

are indicated; * stands for unchanged. < 4 bytes——————mmee = >
r) 1
|Indicator |Chain field |
|field | |
< 4 bytes > t L 4
— 1 | P1 field]
I* |t -
} T T - - 4 | Used by phase 25 |
| * | * |Relative location | I |
| | |in object module | | Used by phase 25 |
L 1 1 — .| L e e e e . T 2 o e o . S P S . e S o A o i e 2 o e e J
| * | Figure 36. Format of Initial Branch Table
L 4 Entry
Figure 34. Format of Literal Constant

Entry After Literal Processing

LITERAL DATA ENTRY FORMAT: The format of
the literal data entries constructed by
phase 10 is illustrated in Figure 35.

T 1
| Length field (1 word) |
1 J
r - h]
| Literal data field (1-255 bytes) |
L J
Figure 35. Format of Literal Data Entry

Length Field: The length field contains
the length (in bytes) of the literal data
for which the entry was constructed.

Literal Data Field: The literal data field
contains the actual literal data. The
field ranges from 1 to 255 bytes (1
character/byte, left-justified) depending
on the size of the literal data.

Branch Tables

The branch tables contain initial branch
table entries and standard branch table
entries. An initial branch table entry is
constructed by phase 10 as it encounters

Indicator Field: The indicator field is
nonzero for an initial branch table entry.
This indicates that the entry is for
compiler-generated statement number for the
"fall-through" statement. (The
fall-through statement is executed if the
value of the control variable is equal to
zero or larger than the number of statement
numbers in the computed GO TO statement.)

Chain Field: The chain field is used to
maintain linkage between the various branch
table entries. It contains a pointer to
the next branch table entry.

Pl Field: The P1 field contains a pointer
to the statement number/array table entry
for the compiler-generated statement number
for the fall-through statement.

MODIFICATIONS TO INITIAL BRANCH TABLE

ENTRIES: During compilation, certain
fields of initial branch table entries may
be modified., Figure 37 illustrates the
format of an initial branch table entry
after phase 25 processing is complete.
Only changes are indicated; * stands for
unchanged.

Appendix A: Tables 135

< 4 bytes——-

|Relative address of statement associated
|with fall-through statement number

L
r

|Pointer to address constant reserved for
| fall-through statement number

L

[SIS S B R

Format of Initial Branch Table
Entry After Phase 25
Processing

Figure 37.

STANDARD BRANCH TABLE ENTRY FORMAT: The
format of the standard branch table entries
constructed by phase 10 is the same as the
format for initial branch table entries.

Indicator Field: This field is zero for
standard branch table entries.

Chain Field: This field is used to
maintain linkage between the various branch
table entries. It contains a pointer to
the next branch table entry.

Pl Field: The P1 field contains a pointer
to the statement number/array table entry
for the statement number (appearing in a
computed GO TO statement) for which the
standard branch table entry was
constructed..

MODIFICATIONS TO STANDARD BRANCH TABLE
ENTRIES: During compilation, certain
fields of standard branch table entries may
be modified. Figure 38 illustrates the
format of a standard branch table entry
after the processing of phase 25 is
complete. Only changes are indicated; *
stands for unchanged.

< 4 bytes >
oS b it e 1
| * | * I
1 1 1
r h]
I* |

4

|

|Relative address of statement associated
|with this statement number |
PR ——d
Figure 38. Format of Standard Branch Table
Entry After Phase 25
Processing

136

FUNCTION TABLE

The function table (IEKLFT) contains
entries for the IBM supplied function
subprograms and in-line routines. The
subprograms reside on the
FORTRAN system library (SYSl.FORTLIB),
while the in-line routines are expanded at
compile time. The function table is used
by phase 15 to determine the validity of
the arguments to the function subprogram.

Each entry in the function table (see
Table 23) contains two fields: an index
field (2 bytes) and a function name field

Function Name Field: This field contains
the names of all library and in-line
functions. It is searched in ascending
order beginning with field 1 and then with
field 2. Field 1 contains the four
low-order characters of the name; field two
contains the two high-order characters of
the name.

Table 23. Function Table -- IEKLFT
(12, 128)
le— 2 bytes 6 bytes
1]
I
Field 1 : Field 2

Index
Function Name

\/—’T-"VW

|
|
|
|
128 1

Index Field: This field contains a pointer
to entries in the following tables:

FUNTB1(128) -- This table contains 128
1-byte entries pointing back
to the function table.

FUNTB2(128) -- This table contains 128
1-byte entries which give
the mode of the arguments
for all library and in-line
functions.

FUNTB3(128) -- This table contains 60
1-byte entries which give
the mode of the result for
all in-line functions. The
first 68 bytes of the table
are not used.

This table contains 68
4-byte locations reserved
for dictionary pointers to
library routines.

FUNTB4 (68) --

TEXT OPTIMIZATION BIT TABLES

There are nine major bit tables used
extensively throughout text optimization.
These tables (each four words or 128 bits
in length) contain bits that are preset.
Only the first 86 bit positions in each
table are meaningful and each of these is
associated with a particular text entry
operator. The settings (on or off) given
to these bits indicate either the validity
of operand positions in a text entry with a
particular operator or the candidacy of a
text entry with a particular operator for
text optimization procedures.

Three of these tables, MVW, MVU, and MVV
are tested by subroutine KORAN-IEKQKO and
indicate the validity of the operand
positions in a text entry with a given
operator. The MVW table indicates the
validity of the operand 1 position; the MVU
table indicates the wvalidity of the operand

2 position; and the MVV table indicates the
validity of the operand 3 position. For
example, if the bit in MVW that corresponds
to a particular operator is set to on, then
the operand 1 position of a text entry
having that operator contains a valid or
actual operand. If the bit is set to off,
the operand 1 position of the text entry
does not contain an actual operand. (In
the latter case, the operand 1 position may
still contain information that is pertinent
to the text entry; however, it does not
contain an actual operand.)

The remaining six tables, MBM, MSGM,
MGM, MXM, MSM, and MBR are also tested by
subroutine KORAN-IEKQKO and indicate the
candidacy of a text entry with a particular
operator for text optimization procedures.
The MBM table indicates whether or not text
entries with a particular operator are to
be considered for backward movement; the
MXM table indicates whether or not text
entries with a particular operator are to
be considered for common expression
elimination; the MSM table indicates
whether or not text entries with a
particular operator are to be considered
for strength reduction; and the MBR table
indicates whether or not the operator is a
branch.

The text optimization bit tables are
illustrated in Table 24. In this table,
the operator associated with each bit
position in the bit tables is identified.
The bits settings for each operator as they
appear in the bit tables is also shown. An
x signifies that the bit is on; a blank
signifies that the bit is off.

Appendix A: Tables 137

Table 24.

Text Optimization Bit Tables

Bit Tables Bit Tables

Bit Op Bit Op

MVW | MV | MVV [MSGM | MBM | MXM | MSM | MBR |MGM MVW | MVU | MVV | MSGM | MBM | MXM | MSM | MBR | MGM
1| +NOTe X X | X 44 | LIBF X X | x
2 | UNARYMINUS | X | X x | x 45 | RS X X X x [x X
3 46 | LS X | X X X | x X
4 {+AND+ x | x | x x | x 47 | BXHLE
5|y 48
6 | *ORe X x | x X 49
7 | +xoR+ x | x| x x | x | x 50 | eLEe x | x | x x | x
8 | st x [x 51 | +GEs X | x | x X | X
9 | ., (ARG) x | x | x X 52 | «EQe X | x | x X [x
10|+ x | x [x X x | x| x x il 53 |oL1e X | x| x x I ox
ni- x | x | x X X | x| x X || 54 |+cTe X | x| x x | x
12 | * X | x X X X | x x || 55 | eNEe x | x| x x | x
13|/ x | x | x X x [x x || 56 | max2 x | x| x X [x
14 | LA X | x | x X 57 | MIN2 X x | x x | x
15 | ExT X 58 | DIM X X X X X
16 | BG x | x X x | x 59 | IDIM x | x| x X | x
17 | L X | X X x | x 60 | DMOD X | X | x X | x
18 | BNE X X X 61 | MOD x | x| x X | x
19 | BGE X | x X 62 | AMOD X | X X X | x
20 | BLE x | x X x | x 63 | DSIGN X X | x x | x
21 | BE X X X 64 | SIGN x| x| x x| x
22 | sc X x | x X X | x x |l 65 | 1s1GN x | x| x x | x
23 | 1/0 LIST X X X 66 | DABS X X X X
24 | BCOMP X X 67 | ABS X X X | X
25 | (68 | IABS X | x X | x
2 | EM 69 [1DINT X | x X | x
27 | 8 70
28 | BA X X 71 [INT X X X | x
29 | seT X | x X 72 | HFIX X | X X | x
30 | BBF X X 73 | IFIX x | x X | x
31 | T x | x x | x X 74 | DFLT x | x X | x
32 | BGZ X X 75 | FLT X | X X | x
33 | BLZ X X 76 | DBLE X | X X | X
34 BNEZ X X 77 BITON X X
35 | BGEZ X X 78 | BITOFF x | x
36 | BLEZ X X 79 | BITFLP X | X
37 | BEZ X X 80 | ANDF X x [x X | x
38 81 | ORF X | x | x X | x B
39 | NmLsT X X 82 | compL X | x x | x
40 83 | MOD24 X X X X
41 | BF 84 | LCOMPL x | x X | x
42 | 8T X 85 | SHFTR X | x | x X | X
43 | DB X X X 86 | SHFTL X X X | X

138

REGISTER ASSIGNMENT TABLES

The register assignment tables are a set
of one-dimensional arrays used by the full
register assignment routines of phase 20.
There are three types of tables: 1local
assignment tables (see Table 25), global
assignment tables (see Table 27), and
register usage tables. The register usage
tables are work tables used by the local
and global assignment routines in the
process of full register assignment.

Register Use Table

The format of the register use tables,
TRUSE and RUSE, are the same for the local
and global assignment routines. Each table
is 16 words long. Words 2 through 11
represent general registers 2 through 11;
words 12, 14, and 16 represent
floating-point point registers 2, 4, and 6;
words 1, 13, and 15 are unused.,

If the contents of TRUSE(i) and RUSE(i)
is equal to zero, then register i is
available for assignment. If the value
contained in TRUSE(i) or RUSE(i) is between
2 and 128, inclusive, then the register i
is assigned to the variable whose MCOORD
value is equal to the contents of TRUSE(i)
or RUSE(i). If the contents of TRUSE(i) or
RUSE(i) has a value between 252 and 255,
register i is unavailable for assignment
and is reserved for special use (see next
paragraph).

Register Use Considerations: Registers 15
and 14 are not available for use by
register assignment. They are reserved and
used for branching during the execution of
the object module resulting from the
compilation.

Table 25. Local Assignment Tables

T 1
Function |Origin?|
|J | Serves as index to TXP, BVP, |FWDPAS-|
| BVRA, BVA. | IEKRFP |
|
TXP |Gives the storage location
|of the text item associated |IEKRFP
|with each value of J. |
|
|Contains the MCOORD value
|associated with operand 1 of|IEKRFP
|the text item represented by|

| FRDPAS-

|
| FRDPAS-

3

|

|

| |
I I
| |
| |
| |
| |
| |
o o
BVRA	Indicates the register	BRPAS-
	locally assigned to the	IEKRBP
	quantity represented by J.	
BVA	Represents the activity	FRDPAS-
jwithin the block of the	IEKRFP	
	quantity represented by J;	
	also contains indicator bits	
	describing the quantity (see]	
	Table 25).	i
WJ2	Indicates whether a variable	FWDPAS-
	is eligible for local	IEKRFP
	assignment. Indexed via the	
	MCOORD values obtained from	
	BVP. Text item number of	
	first definition = J.	
s 1 e L		
*This column indicates the name of the		
register assignment routine that		
initially creates the particular table.		
2Although WJ is distinctly a local		
assignment table, it is indexed by the		
quantity MCOORD (which is used to index		
the global assignment tables) rather		
than by the local assignment table		
index, J.		
e e J

Appendix A: Tables 139

Table 26. BVA Table Table 27. Global Assignment Tables

r T 1 r——=--= B ettt T 1

|Bit] Meaning | |Name | Function |0rigin |

b-——1 i 1 1 1

| 0 |Not used. | |MCOORD | Serves as an index to | Phase 15|

| | | | |MVD, EMIN, RA, RAL, WABP,| |

] 1 |Text item is candidate for forward | | |WA and WJ. | |

| | movement. | | | | |

| | | | I | |

| 2 |P1 is a temporary used as an | | MVD |Gives the location of the|Phase 15|

| | argument., | | |dictionary entry for the | |

| | | |variable associated with | |

| 3 |{Inhibit 'inter-block! register | | |the given value of |

| |assignment for text item.] | | MCOORD. |

| | | | | |

| 4 |Text item is candidate for | | | | |

| |*inter-block' register assignment, | |EMIN |Indicates whether the |REGAS- |

| | | | | variable associated with |IEKRRG |

| 5 |Text item is candidate for | | |a particular MCOORD value| |

| | floating-point downgrading if a CALL | | |is eligible for global |

| | statement is found. | | | assignment. |

| | | | I | [

| 6 |Text item is candidate for register | | | | |

| fclassification. | |RA |Indicates the number of |GLOBAS- |

| | | |the first register |IEXKRGB |

| 7 |P1 is the result of an integer mod | | |globally assigned to the |

| | function. | | |variable represented by |

| | | | | the MCOORD value; | |

| 8 |The operand has been encountered | | |provides continuity in |

| | before. | | |global assignment from | |

| | | | inner to outer loops. !

| 9 |Text item is the imaginary result of | | | i |

| |a complex function. | | | | |

|] | |RAL |Indicates the register {GLOBAS- |

|10 |The operand is defined by a function | | |globally assigned to the |IEKRGB |

| |call. | | | variable represented by |

| | | |the MCOORD value. | |

|11 |P1 is floating-point. | | | | |

| | | | I |

|12 |One of the operands is the result of | | WA |Indicates the total | FWDPAS~- |

|]an integer multiply or divide. | | |activity for the variable|IEKRFP |

| | | |represented by the MCOORD|

|13 |Zero length temporary indicator. | | |value. Calculated by |

| | | |adding 4. to the value |

|14 |Case II subscript indicator. Text | | |each time a definition of}

| |item was changed to a Case II from | | | the variable is

| |Case I. | | |encountered and adding 3. |

| | | | |to the value for a use of| |

115 | | | |the variable. | |
o | | | I | |

: . |BVA - Local Activity. | | | | |

| « | | |WABP |Indicates the activity of |FWDPAS- |

|31 | | | | base variables. | IEKRFP |

e 4 | |Calculated in the same |

|Note: The BVA table consists of a | | |manner as the WA table. |

| fullword for each text in the block. | L L1 1 J

L J

140

Register 13 is not available for use by
register assignment. It is reserved and
used during the execution of the object
nmodule to contain the address of the save
area set aside for the object module (see
"Generation of Initialization Instructions"”
under "Section 2: Discussion of Major
Components®™ in this publication). Register
13 is also used to:

e Branch tables for computed GO TO
statements

¢ Parameter list for external references

Local constants, variables, and arrays

e Adcons for external references

If the above items exceed #4096 bytes,
the adcons are referred to by register 12.

Register 12 is not available for use by
register assignment.

Registers 11, 10, and 9 may or may not
be available for use by register
assignment. Their use depends upon the
number of required reserved registers (see
Phase 20, "Branching Optimization").

NAMELIST DICTIONARIES

Namelist dictionaries are developed by
CORAL for the NAMELIST statements appearing
in the source module. These dictionaries
provide IHCNAMEL with the information
required to implement READ/WRITE statements
using NAMELIST statements. The namelist
dictionary constructed by CORAL from the
phase 10 namelist text representation of
each NAMELIST statement contains an entry
for the namelist name and entries for the
variables and arrays associated with that
name.

NAMELIST NAME ENTRY FORMAT: The format of
the entry constructed for the namelist name
is illustrated in Figure 39.

r - - 1
| Name field (2 words) |
1

L
Figure 39.

Format of Namelist Name Entry

Name Field: The name field contains the
namelist name, right-justified, with
leading blanks.

NAMELIST VARIABLE ENTRY FORMAT: The format
of the entry constructed for a variable
appearing in a NAMELIST statement is
illustrated in Figure 40.

| ittt - 1
| Name field (2 words) |
1 J
L) 1
| Address field (1 word) |
p--—- T qrmmmm ==
Item Type	Mode	Not used
field	field	(2 bytes)
(1 byte)	(1 byte)	
L L 1 o |
Figure 40. TFormat of Namelist Variable

Entry

Name Field: The name field contains the
name of the variable, right-justified, with
leading blanks.

Address Field: The address field contains
the relative address of the variable.

Item Type Field: This field is zero for a

variable.

Mode Field: The mode field contains the
mode of the variable.

NAMELIST ARRAY ENTRY FORMAT: The format of
the entry constructed for an array
appearing in a NAMELIST statement is
illustrated in Figure u41,

r

| Name field (2 words) |
L 4
r 1
| Address field (1 word) |
b T T momm———m {
Item Type	Mode	Number of	Element
field	field	dimensions	length
		field	field
(1 byte)	(1 byte)	(i1 byte)	(1 byte)
F ————+ " Ao :			
Indicator	First dimension factor field		
field	(3 bytes)		
(1 byte)			
; 1 4			
Not used	Second dimension factor field		
(1 byte)	(3 bytes)		
b 1-- T 1			
Not used	Third dimension factor field		
(1 byte)	(3 bytes)		
[L 4			
I 1			
Etc. (refer to "Dimension Entry Format")			
e e e J
Figure 41, Format of Namelist Array Entry

Name Field: The name field contains the
name of the array, right-justified, with
leading blanks. .

Address Field: The address field contains
the relative address of the beginning of
the array.

Appendix A: Tables 141

Item Type Field: This field is nonzero for

an arraye.

Mode Field: This field contains the mode
of the elements of the array.

Number of Dimensions Field: This field
contains the number of dimensions (1
through 7) of the associated array.

Element Length Field: The element length
field contains the length of each element
in the associated array.

Indicator Field: This field is zero if the
associated array has variable dimensions;
otherwise, it is nonzero.

First Dimension Factor Field: If the
associated array does not have variable
dimensions, this field contains the total
size of the array. If the array has
variable dimensions, this field contains
the relative address of first subscript
parameter used to dimension the array.

Second Dimension Factor Field: If the
associated array does not have variable
dimensions, this field contains the
location of the second dimension factor
(D1*L). If the array has variable
dimensions, this field contains the
relative address of the second subscript
parameter used to dimension the array.

Third Dimension Factor Field: If the
associated array does not have variable
dimensions, this field contains the
location of the third dimension factor
(D1*D2*#L)., If the array has variable
dimensions, this field contains the
relative address of the third subscript
parameter used to dimension the array.

DIAGNOSTIC MESSAGE TABLES

There are two major diagnostic tables
associated with error message processing by

142

phase 30: the error table and the message
pointer table,

ERROR TABLE

The error table is constructed by phases
10 and 15. As source statement errors are
encountered by these phases, corresponding
entries are made in the error table. Each
error table entry consists of 2 one-word
fields. The first field contains the
message number associated with the
particular error., The message numbers that
can appear in the error table are those
associated with messages of error code
levels 4 and 8 (refer to the publication
IBM System/360 Operating System: FORTRAN
IV (G and H) Programmer's Guide). The
second field contains either an internal
statement number, if the entry is for a
statement that is in error, a dictionary
pointer, if the entry is for a symbol that
is in error (e.g., a variable that is
incorrectly used in an EQUIVALENCE
statement), or a statement number, if the
entry is for an undefined statement number.

MESSAGE POINTER TABLE

The message pointer table contains an
entry for each message number that may
appear in an error table entry. Fach entry
in the message pointer table consists of a
single word. The high-order byte of the
word contains the length of the message
associated with the message number. The
three low-order bytes contain a pointer to
the text for the message associated with
the message number.

Intermediate text is an internal
representation of the source module from
which the machine instructions of the
object module are generated. The
conversion from intermediate text to
machine instructions requires information
about variables, constants, arrays,
statement numbers, in-line functions, and
subscripts. This information, derived from
the source statements, is contained in the
information table, and is referred to by
the intermediate text. The information
table supplements the intermediate text in
the generation of machine instructions by
phase 25.

PHASE 10 INTERMEDIATE TEXT

Phase 10 creates intermediate text (in
operator-operand pair format) for use as
input to subsequent phases of the compiler.
There are six types of intermediate text
produced by phase 10:

e Normal text -- the operator-operand
pair representations of source
statements other than DATA, NAMELIST,
DEFINE FILE, FORMAT, and Statement
Functions (SF).

e Data text -- the operator - operand
pair representations of DATA statements
and the initialization constants in
explicit type statements.

e Namelist text -- the operator-operand
pair representations of NAMELIST
statements.

e Define file text -- the
operator-operand pair representation of
DEFINE FILE statements.

e SF skeleton text -- the
operator-operand pair representations
of statement functions using sequence
nunbers as operands of the intermediate
text entries. The sequence numbers
replace the dummy arguments of the
statement functions. This type of text
is, in effect, a "skeleton" macro,

e Format text -- the internal
representations of FORMAT statements.

Note:
are,
only two main types:
NAMELIST, DEFINE FILE,

Intermediate text representations
for subblock allocation, divided into
special (DATA,

FORMAT, and SF

APPENDIX B: INTERMEDIATE TEXT

skeleton text), and normal (text other than
special text). The intermediate text
representations are comprised of individual
text entries. EFach intermediate main text
type is allocated unique subblocks of main
storage. The subblocks that constitute an
intermediate text area are obtained by
phase 10, as needed, via requests to the
FSD (see "Storage Distribution"™ under
"FORTRAN System Director").

Intermediate Text Chains

Each intermediate text area (i.e., the
subblocks allocated to a particular type of
text) is arranged as a chain that links
together (1) the text entries that are
developed and placed into that area, and
(2) in some cases, the intermediate text
representation for individual statements.

The normal text chain is a linear chain
of normal text entries; that is, each
normal text entry is pointed to by the
previously developed normal text entry.

The data text chain is bi-linear. This

means that:

1. The text entries that constitute the
intermediate text representation of a
DATA statement are linked by means of
pointers. Each text entry for the
statement is pointed to by the
previously developed text entry for
the statement.

2. The intermediate text representations
of individual DATA statements are
linked by means of pointers, each
representation being pointed to by the
previously developed representation.
(A special chain address field within
the first text entry developed for
each DATA statement is reserved for
this purpose.)

The namelist text chain operates in the
same manner as the data text chain.

The define file text chain is a linear
chain of define file text entries, each
define file text entry is pointed to by a
previously developed define file text
entry. A zero chain signals the end of all
define file text for a program.

The SF_skeleton text chain is linear
only in that each text entry developed for

Appendix B: Intermediate Text 143

an operator-operand pair within a
particular statement function is pointed to
by the previous text entry developed for
that same statement function. The
intermediate text representations for
separate statement functions are not
chained together. However, a skeleton can
readily be obtained by means of the pointer
contained in the dictionary entry for the
name of the statement function.

The format text chain consists of
linkages between the individual
intermediate text representations of FORMAT
statements. The pointer field of the
second text entry in the intermediate
representation of a FORMAT statement points
to the intermediate text representation of
the next FORMAT statement. (The individual
text entries that make up the intermediate
text representation of a FORMAT statement
are not chained.)

Format of Intermediate Text Entry

Those statements that undergo conversion
from source representation to intermediate
text representation are divided into
operator-operand pairs, or text entries.
Figure 42 jllustrates the format of an
intermediate text entry constructed by
phase 10.

< 4 bytes
r -=T -
|Adjective |

|code field|Chain field
| toperator) |

[- 1

SRR S S S V'

[
|Mode field
i

r
|0 iPointer field (operand)
L 1

Figure 42, Intermediate Text Entry Format

Adijective Code Field: The adjective code
field corresponds to the operator of the
operator-operand pair. Operators are not
entered into text entries in source form;
they are converted to a numeric value as
specified in the adjective code table (see
Table 28). It is the numeric
representation of the source operator that
actually is inserted into the text entry.
Primary adjective codes (operators that
define the nature of source statements)
also have numeric values.

Chain Field: The chain field is used to
maintain linkage between intermediate text
entries. It contains a pointer to the next
text entry.

144

Mode and Type Fields: The mode and type
fields contain the mode and type of the
operand of the text entry. Both items
appear as numeric quantities in a text
entry and are obtained from the mode and
type table (see Tables 21 and 22).

Pointer Field: The pointer field contains
a pointer to the information table entry
for the operand of the operator-operand
pair. However, if the operand is a dummy
argument of a statement function, the
pointer field contains a sequence number,
which indicates the relative position of
the argument in the argument list.

Note: The text entries for FORMAT
statements are not formatted as described
in the foregoing. FORMAT text entries
consist of the characters of the FORMAT
statement in source format packed into
successive text entries.

Table 28.

Adjective Codes (Part 1 of 3)

r T T

| Mnemonic |

|Code (in|(where |

|decimal) |applicable) |
4

1
|
|

Meaning |
L 1 4
L] 1 T 1
1	+NOT.	NOT
	I	
4	.AND.	AND
I	I	
5 I)	Right arithmetic	
		parenthesis
	I [
6	.OR.	OR
I [I		
7	«XOR.	Exclusive OR
8	=	Equal sign
	[!	
9		Comma
[
10	+	Plus
		[
11	-	Minus
	I	
12	*	Multiply
13	7	Divide
I I	I	
14	**	Exponentiation
I	I [
15	(£	Function parenthesis]
16	«LE.	Less than or equal
		!
17	«GE.	Greater than or
I		equal
!		
18	<EQ.	Equal
19 { .LT.		
L i 1

| Less than
L

Table 28. Adjective Codes (Part 2 of 3)

Table 28. Adjective

codes (Part 3 of 3)

r T A T 1 r - T 1
	Mnemonic		Mnemonic			
Code (in	(where		Code (in	(where		
decimal)	applicable)	Meaning		decimal)	applicable)	Meaning
— L 1 1 I 1 e e e e e e 1
r L} T r T T

20	«GT.	Greater than		223	GLDF	Generated statement
					number definition	
21	«NE,	Not equal				
			225	WRITE using NAMELIST		
22	(s	Left subscript				
		parenthesis		226		READ using NAMELIST
i 25	¢	Left arithmetic		227		FIND
		parenthesis				
	i		230		I70 end-of-file	
26		End mark				parameter
71		GO TO, and implied		231		I/0 error parameter
		branches				
			232		BLANK	
193		BLOCK DATA				
	[233	RET	RETURN	
205		DATA				
]			234	sTOP	STOP	
208		SUBROUTINE,				
		FUNCTION, or ENTRY	235		PAUSE	
209		FORMAT (text)	238		ASSIGN	
210]End of I/0 list	240		Beginning of DO	
211		CONTINUE		241		Arithmetic
				assignment statement		
212		Relative record				
		number	242	NDOIF	End of DO 'IF*	
213		Object time format	243		Arithmetic IF	
		variable				
			2u4		Relational IF	
214		BACKSPACE				
				246		caLL
215		REWIND				
			247	LIST	I/0 or NAMELIST list	
216		END FILE			item	
217		WRITE unformatted		2u8		NAMELIST
218		READ unformatted		249	END	END
219		WRITE formatted		250		Computed GO TO]
220		READ formatted		251		I/0 unit number
221		Beginning of I/0		252		FORMAT (statement
		list				numbers)
222	LDF	Statement number		253		NAMELIST name
		definition	L i L e -———r			
L L i (]

Appendix B:

Intermediate Text 145

Examples of Phase 10 Intermediate Text The phase 10 normal text representation

of the arithmetic statement

An example of each type of phase 10 text
(normal, data, namelist, define file for-
mat, and SF skeleton) is presented below. 100 A=B+C*D/E
For each type, a source language statement
is first given. This is followed by the
phase 10 text representation of that

statement. is illustrated in Figure 43.
r B Bt T~ I T T —1
| Adjective | [| | | |
| Code | Chain | Mode | Type | 0 | Pointer
o e e - t——1 -4
Statement		{			
number		Statement			
definition		number	0		— 100
= ¥ e 1 - -
Arithmetic | | Real | Scalar? | | — 2 |
T — ——— —_— - ——— 4+ _+ EN — ____'
r T 1 T T
[-q = | Real | Scalar? | | —B |
= R L A R 1
+ | Real | Scalar? | |—C |
e e e e mm oo + - 1
* | | Real | Scalar' | | —1D |
T— —-- oo -+ -
/ | | Real | Scalar? | | — E |
—== + e 1- e 1
| To next normal |] | | |
End mark? | text entry | 0 | 0 | | ISN3 |
T — N 1 4 O, _.'
T Bl T T
[| | 1 |
1 byte | 3 bytes | 2 bytes | 2 bytes |byte] 3 bytes |
00 JF I 1 Y N S {

TNonsubscripted variable. |
20perator of the special text entry that signals the end of the text representation |
of a source statement. |
3Compiler generated sequence number used to identify each source statement. |

]

b ——————

igure #43. Phase 10 Normal Text

146

the DATA statement

DATA A,B/2.1,3HABC/,C,D/1l.,1./

is illustrated in Figure g4,

Bt T T T T T 1
| Adjective | | | | | |
| Code | Chain | Mode | Type | 0 | Pointerxr |
frmm e - t— f-— e -~
| | | | | | To text for |
| | | | | | —»next DATA F
| DATA | | 0 | ISN | | statement |
T f-—mam e frommm e 4-—- S s 1
| 0 | | Real | Scalar | | —=A | 4
——— - 1 p— ____+ i I, 4 1 4
T 1 T T 1
Lﬂ ’ | | Real | Scalar | |—=B |
F + T +-- $-———1t |
/ | | Real | Constant| |— 2.1 |
S e Fo-—- e + ——— {
' | | Literal | Constant | | — 3HABC |
T oo e R - + .
/ | | Real | Scalar | | —»C |
T e - -4 +--——1 1
' | | Real | Scalar | | —»D |
=== oo e e S 1
/ | | Real | Constant | | —1. |
L;I ——————— T - e e +———1 1
‘ | 0 | Real | Constant | | —» 1. |
— -t } 4 - .
| | | | | 1 |
| 1 byte | 3 bytes | 2 bytes | 2 bytes |byte]| 3 bytes
L —_— B 1 —_d L L J
Figure 44, ©Phase 10 Data Text

Appendix B:

Intermediate Text 147

The phase 10 namelist text representa-
tion of the NAMELIST statement

NAMELIST /NAME1/A, B, C/NAME2/D,E, F/NAME3/G

where A and F are arrays is illustrated in

I

Figure 45,
r - == T T T T-——=T
| Adjective | | | | |
L Code ! Chain | Mode ! Type ! 0 i Pointer
——————— T - - - T s 1 -
| NAMELIST | | NAMELIST I 0 | | —» NAME1
I —F oo + oo
/ | | 0 | 0 | | To text for
| | | [| | —»next NAMELIST
block
= - R -
Lﬂ LIST | | Real | Array | | — 2
[== $-—- ¥ S -
LIST | | Real | Scalar | |—=B
== Frmmm e mmeem +— + - $-—-14
LIST | 0 | Real | Scalar | j—=C
=== =¥ -- T
NAMELIST | | NAMELIST | 0 | | — NAME2
F =¥ e s e -t f————t——
/ | | 0 | 0 | | To text for
| | | [I |— next NAMELIST
block
== === S S
LIST | | Real | Scalar | |—D
=== Fom e e B e
LIST | | Real | Scalar | |—E
F == 1 -1 "
LIST | 0 | Real | Array | |—F
T — ___I_ ________ i ———] 4 4
I T T T)
I_,' NAMELIST [| NAMELIST | 0 | | — NAME3
i ——F— - e s e -
/ | | 0 | 0 | | To text for
[| | | I | —=next NAMELIST
| | | | | | statement
i Frm e t s B p-—-t 1
Lq LIST | 0 | Real | Scalar | | —G |
— — i - fommmm p— e —— 1
I I I | [1 |
| 1 byte | 3 bytes | 2 bytes | 2 bytes |byte| 3 bytes
L —l L e ——d — L —d —_d

Figure 45. Phase 10 Namelist Text

148

- —

The phase 10 define file text
representation of the DEFINE FILE statement

DEFINE FILE a;(my,Ts,fs,Ve)

where a4 is the input/output unit number,
my is the number of records, r, is the
maximum record length, £, is the format
code, and v, is the associated variable, is
illustrated in Figure 6.

- - T T T B I 1
| Adjective | [[| | |
| Code | Chain | Mode | Type | 0 | Pointer

——— 4 4 4 —— _+__] __<|
T T | T
| I/0 unit number| | Integer | Constant | | ——— a,
- T oo o mm e e 1
’ | | Integer | Constant | | —— m, |
F + oo fmmmmm - e i
. | | Integer | Constant | | ——— 1,
== ======F I R +-- -1 -
format code (f£4) | pointer to next | Integer | Scalar | | ——— v,
| | define file text| | | |
| i A— S - .

e = —+---- + S S e
I | I | 1 | |
| 1 byte | 3 bytes | 2 kytes | 2 bytes |byte] 3 bytes |
L —— L —_— —_ 4 —_——1 i I, 4
Figure 46. Phase 10 Define File Text

The phase 10 SF_skeleton text
representation of the statement function
ASF (A,B,C) = A+D*B*E/C
is illustrated in Figure 47,
r S it - T T T T =1
I Adjective | | | | | I
| Code | Chain | Mode | Type | 0 | Pointer
b m oo fmmmmmm oo 1 - S !
| (| | Y Y | | 1 |
=== TR oo 1 $——-} -4
+ | | Real | Scalar | | —*D
Mgy e + — ——4-———1 -4
* | | 0 I 0 | | 2 |
—= = e P $—-—- o SR]
* | | Real | Scalar | | —=E |
N T . 1 S S 1
/ | | 0 | 0 | I 3 |
Ry = T fomm - +-—- -+ -y
) | I 0 | 0 | | |
=== ¥ } e s 1
End mark | 0 | 0 | 0 | | 0 |
" T T T . i
|
| 1 byte | 3 bytes | 2 bytes | 2 bytes |byte] 3 bytes
t ——— e PO B, L L - -d

Figure 47, Phase 10 SF Skeleton Text

Appendix B: Intermediate Text 149

The phase 10 format text representation

of the FORMAT statement

5 FORMAT (2HOA,RA6//5X,3
(I4,E12.5,3F12.3,'ABC'))

is illustrated in Figure 48,

150

igure 48.

Phase 10 Format Text

|l L3 T T T T 1
| Pointer | | | | | |
| Code | Chain | Mode | Type | 0 | Pointer |
O $--- 1 e e N 1
Statement					
number					Statement
definition		11	o §	number 5	
& T L 4 4 4					
L>{ i { i i I To text —					
					for next
					FORMAT I
FORMAT		ISN	0		statement
T - 1 1 1 4					
F T + T T T 1					
.	.	.	. I« .	1	
.	.	.	.	R .	
I -	L] I L]	e e l e I			
b 1 $---—- } s e e					
({ 2H0] A,	a6 /	/5% [
} ___,.l. L ! 1 4					
r v T Kl L]					
’	3(1	4,	EL 2 1.5		
b mmmmm- - rmmmmmmm - T 1					
3	F12	-3	A	BC	
b 4 ¢ $ ¥ {					
)	For	g il	5	5	Bb8
1 ——— 1 — — —— 4 ——— [1 +_,___ - J					
r T T T T A					
				1 1	
1 byte	3 bytes I 2 bytes	2 bytes	byte	3 bytes	
	= n [i 1 L ='				
1*Group mark ('4F' in hexidecimal)					
L 4
o F

PHASE 15/PHASE 20 INTERMEDIATE_ TEXT
MODIFICATIONS

During phase 15 and phase 20 text
processing, the intermediate text entries
are modified to a format more suitable for
optimization and object-code generation.
The intermediate text modifications made by
each phase are discussed separately in the
following paragraphs.

PHASE 15 INTERMEDIATE TEXT MODIFICATIONS

The intermediate text input to phase 15
is the intermediate text created by phase
10. The intermediate text output of phase
15 is an expanded version of phase 10
intermediate text. The intermediate text
output of phase 15 is divided into four
categories:

e Unchanged text
® Phase 15 data text
¢ Statement number text

¢ Standard text

Unchanged Text

The unchanged text is the phase 10
normal text that is not changed but
rearranged in format by phase 15 (see
Figure 42). Unchanged text is passed on to
subsequent phases with these modifications:

1. The mode and type fields are each
expanded to a fullword.

2. A new word is inserted between the
chain field and the mode field.

3. The adjective code is moved from the

first byte of the chain field to the
third byte of this new word.

Phase 15 Data Text

To facilitate the assignment of initial
data values to their associated wvariables,
phase 15 converts the phase 10 data text
for DATA statements to phase 15 data text,
which is in variable-constant format. The
format of the phase 15 data text entries is
illustrated in Figure u49.

Indicator Field: The indicator field

indicates the characteristics of the
initial data value (constant) to be
assigned to the associated variable. This
field is one byte in length. The indicator
field is divided into eight subfields, each
of which is one bit long. The bits are
nunbered from 0 through 7. Figure 50
indicates the function of each subfield in
the indicator field.

< 4 bytes >
v . L - R K -1
|Indicator | Chain field |
|field i |
e e 1
Pl field |
4
1
|P2 field |
L. e ___,,{
r .
|offset field |
4
]
Number field |
- _—
Figure 49, Format of Phase 15 Data Text
Entry
r R - T K - I |
| Subfield | Function |
- ¥ 1
| Bit 0O | not used |
— 1 4
| Bit 1 | not used |
s T 1
]
| Bit 2 not used |
I]
) 1
| Bit 3 | not used |
o oo 1
| Bit 4 'on' | initial data value is |
| | negative constant |
t 1
F T T T e St :
| Bit 5 'on' | initial data value is a |
| | literal constant |
b T i
| Bit 6 *on' | initial data value is in |
| | hexadecimal form |
L 1
r B
| Bit 7 *on' | data table entry is six |
| | words long (variable is an |
| | array element). |
L L J
Figure 50. Function of Each Subfield in

Indicator Field of Phase 15
Data Text Entry

Chain Field: The chain field is used to
maintain linkage between the various phase
15 data text entries. It contains a
pointer to the next such entry.

Appendix B: Intermediate Text 151

Pl Field: The P1 field contains a pointer
to the dictionary entry for the variable to
which the initial data value is to be
assigned.

P2 Field: The P2 field contains a pointer
to the dictionary entry for the initial
data value (constant) which is to be
assigned to the associated variable.

Offset Field: The offset field contains
the displacement of the subscripted
variable from the first element in the
array containing that variable. If the
variable to which the initial data wvalue is
to be assigned is not subscripted, this
field does not exist.

Number Field: The number field contains an
indication of the number of successive
items to which the initial data value is to
be assigned. If the initial data value is
not to be assigned to more than one item,
this field does not exist.

Statement Number Text

The statement number text is an expanded
version of the phase 10 intermediate text
created for statement numbers. It is
expanded to provide additional fields in
which statistical information about the
text block associated with the statement
number is stored. The format of statement
number text entries is illustrated in
Figure 51.

< 4 bytes >
r 1
|Chain field |
e e e
) s L}

|Text item count |Operator |Indicator |
| |field |field]
b -t 4 i
|P1 field |
; |
|BLKEND field |
L (]
r a1
|Use vector field (MVF) (4 words) |
L 4
r 1
|[Definition vector field (MVS) (4 words) |
F 1
r

| Busy-on-exit (4 words) |

| vector field (MVX) |
L 4

Format of Statement Number Text
Entry

Figure 51,

152

Chain Field: The chain field is used to
maintain the linkage between the various
intermediate text entries. It contains a
pointer to the next text entry.

Text Item Count: The text item count is
the total number of text items in the
block, including the statement number text
item itself and any end marks.

Operator Field: The operator field
contains an internal operation code
(numeric) for a statement number definition
(see Table 29).

Indicator Field (ABFN): The indicator
field is one byte long. This field
indicates some of the characteristics of
the text entries in the associated block.
The indicator field contains eight
subfields, each of which is one bit long.
The subfields are numbered 0 through 7.
Figure 52 indicates the function of each
subfield in the indicator field.

r T 1
| Subfield | Function |
prmmm e e i
| Bits 0-3 | not used |
L I]
L] T 1
| Bit 4 'on' | associated block contains |
| | an input/output operation |
i 4 -
T T
Bit 5 'on'	associated block contains
	a reference to a library
	function
]	
1	
Bit 6 not used	
[m—— == i - 1	
Bit 7 'on'	associated block contains
	an abnormal function
	reference
L L -
Figure 52. Function of Each Subfield in
Indicator Field of Statement
Number Text Entry
Pl Field: The P1 field contains a pointer

to the statement number/array table entry
for the statement number.

BLKEND Field: The BLKEND field contains a
pointer to the last intermediate text entry
within the block.

Use Vector Field (MVF): The use vector
field is used to indicate which variables
and constants are used in the associated
block. Variables and constants, as they
are encountered in the module by subroutine
STALL-IEKGST are assigned a unique

co-ordinate (1 bit) in this vector field.
In general, if the ith bit is set to on
(1), the variable or constant assigned to
the ith coordinate is used in the
associated block. This field is used for
oPT=1, 2 only.

Definition Vector Field (MVS): The
definition vector field is used to indicate
which variables are defined in a block.
Variables and constants, as they are
encountered by subroutine STALL-IEKGST are
assigned a unique coordinate (1 bit) in
this vector field. 1In general, if the ith
bit is set to on (1), the variable assigned
to the jith coordinate is defined in the
associated block. This field is used for
oPT=1, 2 only.

Busy-On-Exit Vector Field (MVX): The
busy-on-exit vector field in phase 15
indicates which variables are not first
used and then defined within the text block
(not busy-on-entry). This field is
converted by phase 20 to busy-on-exit data,
which identifies those operands that are
busy-on-exit from the block. Variables and
constants, as they are encountered by
subroutine STALL-IEKGST are assigned a
unique coordinate (1 bit) in this vector
field. 1In general, during phase 15, if the
ith bit is set to on (1), the variable
assigned to the coordinate is not
busy-on-entry to the block. During phase
20, if the ith bit is set to on, the
variable or constant assigned to the ith
coordinate is busy-on-exit from the block.
This field is used for OPT=2 only.

Table 29. Phase 15/20 Operators (Part 1
of 5)
r T R T
| | Mnemonic |
|Code (in| (where |
|decimal) |applicable) | Meaning
b + 1 -
| 1 | «NOT. | NOT
| | |
| | |
| 2 | U |Unary minus
| | |
| 4 | «AND. |.AND., LAND in-line
| | | routine
| | |
| 5 |) |Right parenthesis
| | |
| 6 «OR. |«ORey LOR in-line
| | routine
|
| 7 « XOR. | «XOR., LXOR in-line
| | | routine
| | |
| 8 | ST | Load/store
| |
| 9 ' Argument
|
| 10 | + Plus
11 - Minus
12 * Multiply
13 {7 |Divide
|
14 | LA | Load address
| |
15 | EXT |External function or
| | subroutine CALL
| |
16 | BG | Branch greater than
|
17 | BL | Branch less than
| |
18 | BNE | Branch not equal
| |
| 19 | BGE |Branch greater than
| | |or equal
| |
| 20 | BLE |Branch less than or
! | |equal
| | |
| 21 | BE |Branch equal
| |
| 22 | SUB | Subscript
| | |
{ 23 | LIST |I/0 list
| | |
| 24 | BC |Branch computed
| | |
| 25 |« | Left parenthesis
| | {
| 26 | EM |End mark
| | |
| 27 | B | Branch
| |
| 28 | BA
L i

|Branch assigned
L

Appendix B:

Intermediate Text

153

i I, J—

154

e Table 29. Phase 15/20 Operators (Part 2 e Table 29. Phase 15/20 Operators (Part 3
of 5) of 5)

r T . LB] I A R] L}
{Mnemonic				Mnemonic		
code (in	(where			Code (in	(where	
decimal)	applicable)	Meaning		decimal)	applicable)	Meaning
L L] L 1 4 1						
r L] T " 1) T T - A						
29	BBT	Branch bit true		58	DIM	DIM in-line routine
						[
		-		o o		
30	BBF	Branch bit false		59	IDIM	IDIM in-line routine
31	LBIT	Logical value of bit		60	DMOD	DMOD in-line routine
32	BGZ	Branch greater than		61	MoOD	MOD in-line routine
1	zero		l o _			
				62	AMOD	AMOD in-line routine
33	BLZ	Branch less than				
		zexo		63	DSIGN	DSIGN in-line
					jroutine	
34	BNEZ	Branch not equal to				
		zero		6l	SIGN	SIGN in-line routine
35	BGEZ	Branch greater than		65	ISIGN	ISIGN in-line
		or equal to zero				routine
	“ l					
36	BLEZ	Branch less than or		66	DABS	DABS in-line routine]
		equal to zero				
	(67	ABS	ABS in-line routine		
37	BEZ	Branch egqual to zero				
				68	IABS	IABS in-line routine
i 39	NMLS	NAMELIST operands				
		(phase 20 only)		69	IDINT IDINT in-line	
					routine	
41	BF	Branch false				
			71	INT	INT in-line routine	
42	BT	Branch true				
1			72 HFIX HFIX in-line routine			
} 43	LDB	Load byte				
				73 IFIX IFIX in-line routine		
4y	LIBF	Library function				
		call		T4	DFLOAT	DFLOAT in-line
			routine			
45 { RS	Right shift					
i		75 FLOAT FLOAT in-line				
{ 46	Ls	Left shift			routine	
47	BXHLE	Branch on index		76	DBLE	DBLE in-line routine
ug	ASSIGN	Assign		77	BITON	BITON in-line
					routine]	
50	LE	Less than or equal				
			78	BITOFF	BITOFF in-line	
51	GE	Greater than or	i		routine	
		equal [I .			
				79	BITFLP	BITFLP in-line
52	EQ	Equal				routine
]						
] 53	1T	Less than		80	AND	AND in-line routine
54	GT	Greater than		81	OR	OR in-line routine
						i
55	NE	Not equal		82	COMPL	COMPL in-line
		N		routine		
56	MAX2	MAX2 in-line routine				
				83	MoD24	MOD24 in-line
57	MIN2	MIN2 in-line routine				routine
L 1 L L 1

L

Table 29. Phase 15/20 Operators (Part 4

Table 29, Phase 15/20 Operator (Part 5 of

of 5) 5)
I L] 1] 1 r T LD a
| | Mnemonic | 1 | | Mnemonic |
|code (in| (where | | |code (in| (where |
|decimal) |applicable) | Meaning | |decimal) |applicable) | Meaning
3 + + | I + 4 - -—
84	LCOMPL	LCOMPL in-line		218		READ unformatted
		routine				
			219		WRITE formatted	
85	SHFTR SHFTR in-line					
	routine					
		220		READ formatted		
i 86	SHFTL SHFTL in-line					
	routine	221		Begin input/output		
			[list			
100	LR	Load register (phase	222	LDF	Statement number	
		20 only)				definition
	(
101	RC	Restore main storagej}	223 GLDF Generated statement			
]	(phase 20 only)		number definition			
102	RR	Restore register	225		WRITE using NAMELIST	
i	(phase 20 only)					
[
		226 READ using NAMELIST				
103		Register usage				
		(phase 20 only)				
		227 FIND				
104		STORE (phase 20				
	.	only) R13 as 230	Input/output end-of-			
		operand 2	file parameter			
{			231		Input/output error	
203		Register usage				parameterxr
		(phase 20 only)				
	{	233 RET	RETURN			
(
208		FUNCTION or		234	sToP	sToP
		SUBROUTINE or ENTRY				
		i	235		PAUSE	
[[
210		END input/output		249	END	END
		list				
				251		Input/output unit
211		CONTINUE				number
}		= 252 }	FORMAT statement {			
212		Relative record i			number	
		number				
				253		NAMELIST name
] 213]	Variable FORMAT	L L 1 4				
214		BACKSPACE				
			Standard Text			
215		REWIND				
			The standard text is an expanded and			
216		END FILE	modified form of phase 10 intermediate text			
			that is more suitable for optimization.			
217		WRITE unformatted	The format of standard text entries is			
L L L (]

illustrated in Figure 53,

Appendix B: Intermediate Text 155

4 bytes—--

Chain field

oy

T]
|Operator |Mode
| field |field
L L

|Set by phase 20
|Used by phase 25
L

r T
|Set by phase 20 |
|Used by phase 25|P1 field
L (1

r T
|Set by phase 20 |
|Used by phase 25|P2 field
[} 1

r T

|Set by phase 20 |

|Used by phase 25|P3 field
L L
]
| Displacement field
L -

Figure 53.

e e e e s e e e e e e e e/

Format of a Standard Text Entry

Chain Field: The chain field is used to

maintain the linkage between the various

intermediate text entries. It contains a
pointer to the next text entry.

Operator Field: The operator field
contains an internal operation code
(numeric) that indicates either the nature
of the statement or the operation to be
performed (see Table 29).

Pl Field: The Pl field contains either a
pointer to the dictionary entry or
statement number/array table entry for
operand 1 of the text entry, or zero (0) if
operand 1 does not exist.

P2 Field: The P2 field contains either a
pointer to the dictionary entry for operand
2 of the text entry or zero (0) if operand
2 does not exist.

P3 Field: The P3 field contains either a
pointer to the dictionary entry for operand
3 of the text entry, a pointer to a
parameter list in the adcon table, an
actual constant (for shifting operations),
or zero (0) if operand 3 does not exist.

Mode Field: The mode field indicates the
general mode of the expression and the mode
of the operands. The bits are set by phase
15. The mode field can be referred to only
as the fourth byte of the status mode word,
which consists of a status field (2 bytes),
an operator field (1 byte), and the mode
field (1 byte). The status portion of the
status mode word is explained later under
"Phase 20 Intermediate Text Modification."
The meanings of the bits in the mode field
are given in Table 30.

Displacement Field: The displacement field
appears only for subscript and load address
text entries; it contains a constant
displacement (if any) computed from
constants in the subscript expression.

PHASE 20 INTERMEDIATE TEXT MODIFICATION

The intermediate text input to phase 20
is the output text from phase 15, The
intermediate text output of phase 20 is of
the same format as the standard text output
of phase 15. The format of the phase 20
output text is illustrated in Figure 54,

Rl, R2, and R3 Fields: The R1, R2, and R3
fields (each 4 bits long) are filled in by
phase 20 during register assignment, and
are referred to by phase 25 during the code
generation process. The assigned registers
are the operational registers for operand
1, operand 2, and operand 3, respectively.

Table 30. Meanings of Bits in Mode Field of Standard Text Entry Status Mode Word

r L] o —_——1
| Mode | Bits | Meaning |
F : } -- T 1
| general | 26 | 1 - indicates to phase 20 that this text entry is part of a {
| | | subscript computation. |
{ 1 1 ——————————— - 4
) T T 1
| general | 27-28 | 00 - LOGICAL |
| | | 01 - INTEGER |
[| | 10 - REAL or COMPLEX [
L Il 1 4
T L] L] h)
| operand 1| 29 | 0 - short mode (LOGICAL*1, INTEGER*2, REAL*Y4, COMPLEX*8) |
| | | 1 - long mode (LOGICAL*4, INTEGER*4, REAL*8, COMPLEX*16) |
1 1 ! d
r Rl T 1
| operand 2| 30 | 0 - short mode (LOGICAL*1, INTEGER*2, REAL#*4, COMPLEX*8) |
[i | 1 - long mode (LOGICAL*4, INTEGER*U4, REAL*8, COMPLEX*16) |
L] | K
) T T 1
| operand 3| 31 l 0 - short mode (LOGICAL*1, INTEGER#2, REAL*l4, COMPLEX*8) |
| I | 1 - long mode (LOGICAL*Y4, INTEGER*4, REAL*8, COMPLEX#*16) [
L L 1 J

156

< - - --4 bytes———-- —_—— —_——
| 1
| Chain field2 |
o T - S B :
| status field | Operator field* | Mode fieldr |
[N L 1 J
) 1 1} 1
| R1 | B1 | P1 fielda |
[N [L et e e e o o e e A e S S e -— e o e e e e e e e e e e e e e e e {
r t T

| R2 I B2 | P2 fieldt I
(8 | [] J
r T 1 H
| R3 | B3 | P3 fieldt |
= L. 1 P —_ __{
| Displacement field?1 |
t J
) 1
|*The chain field, mode field, operator field, Pl field, P2 field, P3 field, and |
| displacement field are as defined in a phase 15 standard text entry. (Phase 20 does |
| not alter these fields.) |
L — — @ e o e o o o e ot e e e e e e 3

Figure 54, Format of Phase 20 Text Entry

Bl, B2, and B3 Fields: The B1, B2, and B3
fields (each 4 bits long) are filled in by
phase 20 during register assignment, and
are referred to by phase 25 during the code
generation process. The assigned registers
are the base registers for operand 1,
operand 2, and operand 3, respectively.

Status Field: The status field, the first
two bytes of the status mode word, is set
by phase 20 to indicate the status of the
operands and the status of the base
addresses of the operands in a text entry.
The information in the status field is used
by phase 25 to determine the machine
instructions that are to be generated for
the text entry. The status field bits and
their meanings are illustrated in Table 31,

STANDARD TEXT FORMATS RESULTING FROM PHASES
15 AND 20 PROCESSING

The following formats illustrate the
standard text entries developed by phase 15
and phase 20 for the various types of
operators. When the fields of the text
entries differ from the standard
definitions of the fields, the contents of
the fields are explained. 1In addition,
notes that explain the types of
instructions generated by phase 25 are also
included to the right of the text entry
format, when appropriate. For an
explanation of the individual operators see
Table 29,

Appendix B: Intermediate Text 157

e Table 31. Status Field Bits and Their Meanings
r T T - B st i 1
| Operand/ | | |
| Base Address | Bit | Meaning |
p--—- 1 o :
| | 0 | 1 subscript text item has been examined but not
| | | completely processed (internal to Register
| | | Optimization)
| | 1 | 1 text item contains inert variable. Set by
| | l Register Optimization and used for
| | | communication with Text Optimization; text
| | | item is to be ignored.
| | 2 | 0 base address in storage
| Operand 2 | | 1 base address in register
| base address | |
| status | 3 | 0 do not retain base address in register
| | | 1 retain base address in register
8 e e e
| T 4 T 0 base address in storage
| Operand 3 | | 1 base address in register
| base address | |
| status | 5 | 0 do not retain base address in register
| | | 1 retain base address in register
e t +
| | 6 | 0 operand in storage
| Operand 2 | | 1 operand in register
| status | i
| | 7 | 0 do not retain operand in register
| | | 1 retain operand in register
’ } e
| | 8 | 0 operand in storage
| Operand 3 | | 1 operand in register
| status |
| | 9 | 0 do not retain operand in register
| | | 1 retain operand in register
b 1 ¢ ——-
| | 10 | 0 base address in storage
| Operand 1 | | 1 base address in register
| base address | |
| status | 11 | 0 do not retain base address in register
| | | 1 retain base address in register
: 1 1 == e
| Operand 1 | 12 | 0 generate store into operand 1
| status | | 1 do not generate store into operand 1
- t S —- P
| | 13 | 1 if bits 6 & 7 are set to 1 and bit 12 is set
| | | to 0, generate register to register load in
| | | addition to store.
| | 14 | 1 divide item actually MOD function (set and
| | | used by Register Optimization). If FC=44 or
| | | 15, load addresses precede.
| | 15 | 1 -0XX temporary created for this item
L L L

158

Branch Operator (B)

< 4 bytes >
r - 1
| Chain |
b 1
r k] T
| status | Branch | Mode |
| |operator | i
1 AL L J
T T T h |
| R1 | | P1 |
L i 1 .‘
v T T
| | | |
L L L d
] T T 4
| | | |
L 1 L 1
! 1
| |
L]
Logical Branch Operators (BT, BF)
< —_— 4 bytes—————cmme >
) . 1
| Chain |
b 1
) T . +
status	Logical	Mode
	branch	
	operator	
b= T T 4 .		
R1		P1
== -- 1		
R2 B2	P2	
L 4 L 4		
v T T]		
L 1 L - 4		
Binary Operators (+, -, *, /, OR, and AND)		
<= 4 bytes >		
1		
Chain		
————————————————— T -——1- 1		
sStatus	Binary	Mode
	operator	
L 1. B TR ,'		
¥ T T		
R1	B1	P1
Lt —_—d 1 .		
r T T		
R2	B2	P2
t 1 I .'		
L T]		
R3	B3	P3
(. i i 4

P1l: The P1 field contains a pointer to the
statement number/array table entry for the
statement number to which a branch was
made.

~

Note: Phase 25 decides whether an RR or an
RX branch instruction should be generated.

Pl: The P1 field contains a pointer to the
statement number/array table entry for the

statement number to which a branch is being
made.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

Note: The test of the logical variable

will be done with a BXH or BXLE for BT and
BF, respectively.

Appendix B: Intermediate Text 159

Test and Set Operators (GT, LT, GE, LE, EQ,

and NE)

< 4 bytes >
r R 1
| chain |
L 4
T T T 1
| Status |Test and | Mode |
I |set | I
] |operator | |
I 1 L ,'
1} T

| R1 |B1 |P1 |
[4 4 4
r T T A
| R2 |B2 | P2 i
1 1 I — .'
r T L]

| R3 |B3 |P3 I
t L 4 4

In-line Functions (MAX2, MIN2, DIM, IDIM,
DMOD, MOD, AMOD, DSIGN, SIGN, ISIGN, LAND,
LOR, LCOMPL, IDIM, BITON, BITOFF, AND, OR,
COMPL, MODZ4, SHFTR, and SHFTL)

< 4 bytes— >
———= —-—= 1
| Chain |
| :
r T . T
| Status | Function | Mode |
| |operator | |
1 L 1 .'
r T T
| R1 |B1 | P1 |
p————- S 1 i
| R2 |B2 |P2 |
[l L —— j
r 1 |
| R3 |B3 |P3 |
T 1
I | | |
L L 1 J

Testing a Byte Logical Variable (LDB)

< 4 bytes >
Note: The LDB operator is used to load a

f 1 S9TE

| Chain | register with a byte logical variable.
- T T 1

| Status | LDB 1 Mode |

operator

A =

| R1 |B1 | |

pommmm gt 1

| R2 B2 | |

1 1 1 - — 4

r T T 1

| R3 |B3 | |

| R X L —— J

160

Branch on Index Low or Equal, or Branch on
Index High

< 4 bytes >

r 1

| Chain |

R J

r T T T

| Status |adad | Mode |

| |operator| |
e Y : 1

| R1 | B1 | P1 |

L L 1 J

v T] 1

| R2 | B2 | P2 | Text

I b + { Entry 1
| R3 | B3 | P3 |

L 1 L J

< 4 bytes >
r==—-———= t

| Chain |

| 4

T T T]

| Status |Branch |Mode |

| |operator| |

L L L _‘

v T T

| R | | P1 |

1 4 1 3

T] ¥ 1

| R2 | B2 | P2 | Text
prommepe et { Entry 2
| R3 | B3 | P3 |

L 1 L]
Computed GO TO Operator

D S — 4 bytes—-— - >
r R h}
| Chain |
L]
I T i) 1
status	Computed	Mode
jGo TO		
	operator	
: L 1		
R1		P1
1 1 N 1		
r T T t		
R2		P2
I I + i —_ {
1) T t

| R3 |B3 | P3 |
| L L J

Note: A BXHLE instruction will be
generated by phase 25 when an add operator
is followed by a branch operator.

P1 and P2 of text entry 1 equals P2 of
text entry 2.

Pl: The P1 field of text entry 2 contains
a pointer to the statement number/array
table entry for the statement number to
which a branch is being made.

Pl: Pl contains the number of items in the
branch table that are associated with the
computed GO TO operator,

P2: P2 contains a pointer to the
information table entry for the branch
table.

P3: P3 contains a pointer to the indexing
value for the computed GO TO statement.

Appendix B: Intermediate Text 161

Branch Operators (BL, BLE, BE, BNE, BGE,
BG, BLZ%, BLEZ, BEZ, BNEZ, BGEZ, and BGZ)
{o—mmmmmmmm e 4 bytes-=-----vooeee————o >
r .) |
| Chain |
L N |
r T T 1
| Statues | Branch |Mode |
k T T L 1 1
| R1 |B1 |P1 l
I L 4 d
1) T T 1
| R2 |B2 | P2 |
L [[l 4
1)] T 1
| R3 |B3 |P3 |
L L L J
Binary Shift Operators (RS, LS)
< 4 bytes— >
r 1
| Chain |
e T 1
r T—7 T
| Status | Binary | Mode |
| | shift | |
| |operator | |
L L L {
v T T
| R1 |B1 | P1 |
t [1 - - 1
r T T
| R2 |B2 | P2 |
L 1 1 4
r T v . . 1
| | | shift quantity |
L i A J
Load Address Operator (LA)
< 4 bytes - >
r 1
| Chain |
______ T T {
| Status | Load | Mode |
1 |address | |
| |operator | |
L L L 4
r v T |
| R1 |B1 |P1 |
i 1 i .'
L L] T
| R2 |B2 |P1 |
[4 4 d
¥ T T 1
{ R3 |B3 | P3 |
|r 1 L .'
| Displacement |
L J

162

Pl: The Pl field contains a pointer to the
statement number/array table entry for the
statement number to which a branch is being
made.

Note: Operands 2 and 3 must be compared
before the branch. For the BLZ, BLEZ, BEZ,
BNEZ, BGEZ, and BGZ operators, operand 3 is
zero and a test on zero is generated.

Note: The purpose of the load address
operator is to store an address of an
element of an array in a parameter list.

If bit 7 of the status field is 1, the LA
stores the last argument into the parameter
list.

The P1 field points to a dictionary
entry which points to the adcon table.

LA (14) is always followed by CALL (15)
or a library function (44),.

Subscript Text Entry -- Case 1

< 4 bytes———- >
I R 1
| Chain |
F T . L) "
| Status | Subscript |Mode |
| |operator | i
L L 1 {
T T w

| R1 (Bl |P1 i
L [l 8 i)
' 1} T 1
| R2 |B2 | P2 |
b 1
| R3 |B3 P3 |
t {
| Displacement |
L 4
Subscript Text Entry -- Case 2

< 4 bytes >
r K 1
| Chain |
L 4
Lo T . T a
| Status | Subscript |Mode |
| |operator | |
L L AL _,
1} T k)

| | Pl |
[l } 1

I T ¥

| R2 |B2 | P2

L L 1 p—

r T T

| R3 |B3 | P3 |
o — |
| Displacement |
L J
In-line routines (DABS, ABS, IABS, IDINT,
INT, HFIX, DFLOAT, FLOAT, DBLE)

< 4 bytes >
r N |
| Chain |
3 T T 1
| Status |Operator |Mode |
v , ' L

| Rl |B1 Pl

t

1)

| R2 B2 P2 |
k 1
| | |Not used |
L 1 4L J

P2: The P2 field contains a pointer to the

dictionary entry for the variable being
indexed.

P3: The P3 field contains a pointer to the

dictionary entry for the indexing value
unless the indexing value is a constant;
then P3 # 0 and the displacement field
contains a displacement.

Note: For Case 2 subscript text entries,
the subscript text entry is combined with
the next text entry to form a single RX
instruction. (Case 2 will be formed by
phase 15 only when the second text entry
has the store operator. Phase 20 will
change Case 1 text entries to Case 2 text
entries when appropriate.)

Pl is zero and either P2 or P3 of the
next text entry will be zero.

If the operator of the next text entry
is a store, the subscript applies to P1,
If the next operator is not a store, the
subscript applies to operand = 0.

If the next operator is a 'LIST,' the
subscript applies to P1 for READ or to P2
for WRITE.

Appendix B: Intermediate Text 163

EXT and LIBF Operators

< 4 bytes >
T . a
| Chain |
- -—- T S S 1
| Status |operator |Mode |
b= T L L {
| R1 | B1 |P1]
L 1 [l - {
r T T

| R2 | B2 | P2 |
L [i 4
v T T a1
| R3 | B3 | P3 |
L i L —— 4
Arguments for Functions and Calls

< 4 bytes >
1
| Chain |
i1 4
r T L) 1
| Status | Argument |Mode |
| |operator | |
L L AL J
1) T T 3
| | |P1 |
1 [l 3 ..'
L] T T

| | | P2 |
L L 4 J
r ¥ T 1
| | |P3 (for complex) |
L 1 L J
Special Argument Text Entry for Complex
Statements
< 4 bytes >
H - 1
| Chain |
L 4
| T T 1
| Status |Argument |Mode |
| |operator | |
L L A J
T T T 1
| R1 |B1 | P1 |
L A 4 .|
[} T T

| | | |
L [4]
13 T) 1
| | | |
L. A1 L]

164

Pl: Pl is zero for the EXT operator of a
subroutine call.

P2: The P2 field contains either a pointer
to the dictionary entry for an external

function or a subroutine name, or a pointer
to the IFUNTB entry for a library function.

P3: The P3 field contains either zero or a
symbolic register number and a displacement
that points to the object-time parameter
list of the external function, library
function, or subroutine.

Note: No registers are needed for this
type of text entry.

For calls and ABNORMAL functions, Pl =
P2. For NORMAL functions and library
functions, P1 = 0,

See the next text entry for the case of
complex statements.

Note: For complex statements, the first
text entry of the argument list contains
the register information for the imaginary
part of the complex result.

Assigned GO TO

Operator (BA)

< 4 bytes- >
)

| Chain

- T

| status |Assigned |Mode |
| |GO TO | i
| |operator | |
L. L L d
T hl 1 |
| I | |
L (1 [N]
T L} ¥ 1
| R2 |B2 | P2 |
L 1] d
1) T T 1
I | | |
L L i d
READ Operator for I/O List

< 4 bytes >
f - 1
| Chain |
= T T

| | READ |

| |operator |

L [[}

1] T T

| R1 |B1 |P1

L 1 L

¥) T

| | |

1 4 [N

) T T

I | | P3

L d L (]
WRITE Operator for I/O List

< 4 bytes >
L .

| Chain

lL T L)

| Status | WRITE |Mode |
| |operator | |
L L 1 1
r T L) |
| R1 |B1 | |
L 1 1 - 3
LI T L} 1
| | | P2 |
[N 1 1]
v T T]
| | |P3 |
L 1 1 - 3

P2: The P2 field contains a pointer to the
variable being used in the assigned GO TO
statement.

Pl: The P1 field contains a pointer to the
I/0 list for the READ statement. If this
is an indexed READ, R1 is the register to
be used.

Note: If the P3 field contains a nonzero,
an entire array is being read. This causes
a different instruction sequence to be
generated.

P2: The P2 field contains a pointer to the
I/0 list for the WRITE statement. R1 and
Bl are the index and base registers to be
used for the WRITE.

Note: If the P3 field contains a nonzero,
an entire array is being written. This
causes a different instruction sequence to
be generated.

Appendix B: Intermediate Text 165

Logical Branch Operators (BBT, BBF)

< 4 bytes >
r " 1
| Chain |
- - === T 1
| Status |Logical | Mode |
| | Branch | |
| |operator | |
L L]]
T T T 1
| R1 | |P1 [
{ } [4
LI v T 1
| | B2 |p2 |
[} 1 4 4
~ T T A
| | IP3 |
L L 1 d
LBIT Operator

< 4 bytes—— >
r

| Chain

F v T

| Sstatus |LBIT | Mode |
| |operator | |
L 1 1 4
¥ T k) 1
| R1 |B1 | P1 |
L (| [l 4
1) T 1 |
| B2 |P2 |
L] i]
v T T 1
| | 1P3 I
L £ L |

166

Pl: The Pl field contains a pointer to the
statement number/array table entry for the
statement number to which a branch is being
made.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

P3: The P3 field contains a pointer to the
dictionary entry for the number of the bit
being tested.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

P3: The P3 field contains a pointer to the
dictionary entry for the number of the bit
being tested.

The major arrays of the compiler are the
bit-strip and skeleton arrays, which are
used by phase 25 during code generation.
The following illustrations detail the
bit-strip and skeleton arrays associated
with the operators of text entries that
undergo code generation. The skeleton
array for each operator is illustrated by a
series of assembly language instructions,
consisting of a basic operation code, which
is modified to suit the mode of the
operands, and by operands, which are in
coded form. The operand codes and their
meanings are, as follows:

Bn -- base register for operand n

BD -- base register used for loading an
operand's base address

Rn —-- operational register for operand n

X -- index register when necessary

To the right of the skeleton array for
an operator is the bit-strip array for the
operator. Each bit strip in the bit-strip
array consists of a vertical string of 0's,
1*'s, and X's. A particular strip is
selected according to the status
information, which is shown above that
strip. For example, if the combined status
of operands 2 and 3 is 1010 (reading
downward), the bit strip under that status
is to be used during code generation. (The
status of operand 2 is indicated in the
first two vertical positions, reading
downward; the status of operand 3 is
indicated in the second two vertical
positions, reading downward.?) The meanings
of the various bit settings in each bit
strip are, as follows:

0 -- The associated skeleton array
instruction is not to be included
as part of the machine code
sequence. If a horizontal line
containing all zeros appears after
an instruction in a skeleton, the
zero may be changed to a one to
perform the desired function. This
usually happens for base register
loads and result stores,

1Tn some cases, operand 3 does not exist
and only the status of operand 2 is
indicated.

APPENDIX C: ARRAYS

1 -- The associated skeleton array
instruction is to be included as
part of the machine code sequence.

X -- The associated skeleton instruction
may or may not be included as part
of the machine code sequence,
depending upon whether or not the
associated base address is to be
loaded, or whether or not a store
into operand 1 is to be performed.

Note 1. KK is an indexing parameter used
by Phase 25 which has a unique
value for each skeleton.

Note 2. FC refers to the Phase 15720
operators in Table 29.

IEKVPL: Used for All Subtract Operations

r T 1l 1

| | Skeleton | |
| Index| Instructions | Status |

e 1 ==

	10000000011111111	
	10000111100001111	
	10011001100110011	
	10101010101010101	
1 L B2,D(0,BD)	XXXXXXXX00000000	
2	LH R2,D(0,B2) 10000111100000000	
3	1H R1,D(X,B2) 11100000000000000	
4 L B3,D(0,BD)	XX00XX00XX00XX00	
5	LCR R3,R3 10010001000000010	
6	LR R1,R2 10000110100001101	
7	LH R3,D(0,B3) {0100010001000100	
8	LCR R1,R3 10001000000000000	
9	SH R1,D(X,B3) [{1000100010001000	
10	SR Ri,R3	0100010101110101
13	AH R3,D(X,B2) 10010000000000000)	
12	AH R1,D(X,B2) 10001000000000000	
13	AR R3,R2 10000001000000010	
14	L B1,D(0,BD)	XXXXXXXXXXXXXXXX
15	sTH R1,D(0,B1)	RXXXXXXXXXXXXXXX
L e e e e e e e A —— J
Appendix C: Arrays 167

IEKVTS: Used for the INT, IDINT, IFIX, and IEKVTS: Used for the MAX2 and MIN2 In-Line
HFIX In-Line Routines Routines
r Ll 1 b r 1 L] 1
| | | INT, | | | Skeleton | |
| | | IFIX, | |Index| Instructions | Status |
| | Skeleton | HFIX IDINT| } } + q
| Index| Instructions | Status Status| | | 10000000011111111|
b + + - 4 | | 10000111100001111
		0011 0011			10011001100110011	
		0101 0101		l 10101010101010101		
1	sbr 0,0	1111 0000 }	1	L B2,D(0,BD)] XXXXXXXX00000000		
2	L B2,D(0,BD)	XX00 XX00		2	LH R2,D(0,B2) 10000111100000000	
3	LD R2,D(0,B2)	0100 0100		3	LH R1,D(0,B2) 11100000000000000	
4	LD 0,D(0,B2)	1000 1000		4	CR R1,R2 1000000100000001.0	
5	LDR O,R2	0111 0111		5	CH R3,D(0,B2)]0001000000000000	
6	AW 0,60€0,12)	1111 1111		6	CH R1,D(0,B2)	0010000000000000
7	sTD 0,64(0,13)	1111 1111	1 7	L B3,D(0,BD)	XX00XX00XX00XX00	
8	L R1,68(0,13)	1111 1111		8	LH R3,D(0,B3) 10100010001000100	
9	BALR 15,0] 1111 1111	1 9	CR R2,R3 10100010101110101			
10	BC 10,6(0,15)	1111 1111		10	cH R2,D(0,B3) {0000100000001000	
] 11	LNR R1,R1	1111 1111		11	CH R1,D(0,B3) 11000000010000000	
] 12 (L B1,D(0,BD)	XXXX XXXX		12 IR R1,R2	10000110100001101}		
13	STH R1,D(0,B1)	XXXX XXXX		13	LR R1,R3 10001.000000000000	
L 1 1 4	14	BALR 15,0 1111111131111121311				
15	BC N,6(0,15)2 111111113113131111					
16	LR R1,R2 {0000001000000010					
IEKVAD: Used for the ABS (FC=67), IABS	17	LR R1,R3 [0100010101110101				
(FC=68), and DABS (FC=66) In-Line	18	LH R1,D(0,B2) 10011000000000000				
Routines (KK=25)	19	LH R1,D(0,B3) 11000100010001000				
r - T 1	20 L B1,D(0,BD)	XXXXXXXXXXXXXXXX				
Skeleton			22	sTH R1,D(0,B1)	KXXXXXXXXXXXKXXX	
Index	Instructions	sStatus	I i 1 e			
F + } 1	*For MAX2,N=2; for MIN2,N=i4.					
		0011	L - -			
		0101				
1	L B2,D(0,BD)	XX00				
2	IH R2,D(0,B2)	1100	IEKVFP: Used for the SHFTR and SHFTL			
3	LPR R1,R2	1111	In-Line Routines			
4	L B1,D(0,BD)	XXXX] p T T				
5	STH R1,D(0,Bl)	XXXX	i i Skeleton	i		
L L —_t 4	Index] Instructions	Status				
e S R TTr T 4						
	10000000011121111					
IEKVFP: Used for the MOD24 In-Line Routine		10000111100001111				
r T T 1		10011001100110011}				
	Skeleton				10101010101010101	
Index	Instructions	Status				
b + + q	1	L B2,D(0,BD)	XXXXXXXX00000000			
i i	0011		2 L R2,D2(X,B2) [1111111100000000			
		0101		3	LR R1,R2 10000111100001111	
		I	4	L B3, D(0, BD)	XX00XX00XX00XX00	
1	L B2,D(0,BD)	XX00		5	LH R3,D3(X,B3) {1100110011001100}	
2	L R2,D(X,B2)	1100		6	SRL R1,0(0,R3) 1111113121113111211]	
[3	1A R1,0(0,R2)	1111		7 L B1,D(0,BD)	XXX XXXXXXXXXKXKXXX	
n	L B1,D(0,BD)	XXXX		8	sT R1,D(0,B1)	KXXXXXXXKXXXXXXX
5	sT R1,D(0,B1)	XXXX	L L T -			
T e J						

168

IEKVAD: Used for the DBLE In-Line Routines
r - T T —=71
| | skeleton | |
| Index | Instructions | status |
L e e e e ————
t ¥ 1 -]
		0011
	[0101	
1	L B2,D(0,BD)	XX00
2	SDR R1,R1	1111
I 3	LER O0,R2	0010
4	LE R1,D(0,B2)	1100
5	LER R2,R1] 0100	
6	LDR R1,0	0010
7	LER R1,R2 i 0001	
8	L B1,D(0,BD)	XXXX
9	STD R1,D(0,B1)	XXXX
O —— 4 1 3
IEKVAD: Used for DMOD (FC=60) and AMOD
(FC=62) In-Line Routines (KK=22)

r~—--- L Attt 1
|] Skeleton | |
| Index| Instructions | Status |
F } ¥ -
| | 10000000011111111|
| | 10000111100001111 |
| | 10011001100110011]
| | 10101010101010101 |
| I | |
I 1 |L B2,D(0,BD) | XXXXXXXX00000000 |
| 2 |1D R2,D(0,B2) 10000111100000000
! 3 |1D R1,D(0,B2) 1{11111000000000000|
| 4 |L B3,D(®, BD) | XX00XX00XX00XX00 |
{ 5 |LD R3,D(0,B3) 10100010001000100 |
6	LDR R1,R2 10000111111111111
7	DDR R1,R3 10111011101110111
8	DD R1,D(0,B3) 11000100010001000]
9	AD Ri,n(0,13)*% [1111111111111111}{
10	MDR R1,R3 10111011101110111
11	MD R1,D(0,B3) 11000100010001000
12	LCDR R1,R1 11111111111131311§
13	AD R1,D(0,B2) 11111111100000000
14	ADR R1,R2 10000000011111111}
15	L B1,D(0, BD)
16	sTD R1,D(0,B1)
b : L =	
#Note that n is the displacement assigned	
by the compiler to the constant	
4E00000000000000. Note also that this	
instruction is generated twice with the	
operation code changed to AW for the	
first of the two generations.	
L J

IEKVTS: Used for SIGN, ISIGN, and DSIGN
In-Line Routines
L T T=" -1
| | Skeleton | |
| Index| Instructions | Status |
p-—--- oo fommmmmmmm oo 1
| |]0000000011111111
| | 10000111100001111
| | {0011001100110011 |
| | {0101010101010101 |
| |
} 1 {L B2,D(0,BD) | XXXXXXXX00000000 |
| 2 |1H R2,D(0,B2) 10000111100000000 |
! 3 |LTR R3,R3 10010001000100010 |
4	1H R1,D(0,B2) 11111000000000000	
5	L B3,D(0,BD)	XX00XX00XX00XX00
6	1LH R3,D(0,B3) 10100010001000100	
{ 7	LR R1,R2 [0000001000000010	
8	LPR R1,R2 {0000110100001101	
9	LPR R1,R1 11101000011010000	
10	LTR R3,R3 10101010101010101	
112	T™ 128,D(0,B3) (1000100010001000	
12	BALR 15,0 11111113121111312173)	
13	BC 14,6(0,15) 11000100010001000	
14	BC 10,6(0,15) 10111011101110111	
15	LR R1,R1 11111111112111111	
16	BC 15,12(0,15) }(0010001000100010]	
17	LPR R1,R1	10010001000100010
18	L B1,D(0,BD) [XXXXXXXXXXXXXXXX	
19	sTH R1,D(0,B1)	KXXXXXXXXXXXXXXX
L 5 4L —d		
IEKVTS: Used for DIM and IDIM In-Line		
Routines		
r T T -1		
	Skeleton	
Index1 Instructions	Status	
b + - 1		
	[0000000011111111	
	10000111100001111}	
	10011001100110011	
	10101010101010101	
I		
1	L B2,D(0,BD)	XXXXXXXX00000000
2	LH R2,D(0,B2)	0000111100000000
3	1H R1,D(0,B2) 11101000000000000	
&	JLCR R1,R3 {0010001000000010	
5	AH R1,D(0,B2) {0010000000000000	
6	L B3,D(0,BD)	XX00XX00XX00XX00
7	1H R3,D(0,B3) 10100010001000100	
8	LR R1,R2]0000110100001101	
9	SH R1,D(0,B3) 11000100010001000	
10 [AR R1,R2 {0000001000000010	
] 11	SR R1,R3 10101010101110101	
12	BALR 15,0 1111111131312111111}	
13	BC 10,6€0,15) {1111121131111111	
14	SR R1,R1 11111111111111111	
15	L B1,D(0,BD) [XXXXXXXXXXXXXXXX	
16	sTH R1,D(0,Bl)	XXX XXXXXXXXXXKXX
Lo N S J
Appendix C: Arrays 169

IEKVUN: Used for NOT Operations
o= T == B 1
| | Skeleton | |
| Index | Instructions | Status |
k t e i
| | | 0011 |
| | | 0101 |
| i I |
1	L B2,D(0,BD)	XX00
2	La R1,1(0,0)	1101
3	BCTR R1,0	0010
i	LCR R1,R1	0010
5	X R1,D(X,B2)	1000
6	L R2,D2(0,B2)	0100
7	XR R1,R2	0101
8	L B1,D(0,BD)	XXXX
9	sT R1,D(0,B1)	XXXX
L L R 4		
IEKVUN: Used for All Load Address		
Operations		
———-- L Sttt B ittt bt 1		
	Skeleton	
Index	Instructions	Status
R -- —mmmemmee		
	10000000011111111§	
	10000111100001111	
I I [0011001100110011]		
	10101010101010101	
I		
1	L B3,D(0,BD)	0000000000000000
2	1LH R3,D(0,B3) 11100110011001100	
3	L B2,D(0, BD)	0000000000000000
4	1A R1,D(R3,B2)	1111111111111111
5	L B1,D(0,BD) 10000000000000000	
6	ST R1,D(0,B1) 111111111111121111§	
7	1LA 0,128(0,0) 10000000000000000 }	
8	Mvi 128,D(0,B1) }0000111100000000]	
L I L J		
IEKVUN: Used for All Load Byte Operations		
it k Atttk T=—= 1		
	Skeleton	
Index	Instructions	Status
— - —- + --		
	10000000011111111	
	10000111100001111	
]	[0011001100110011	
I	10101010101010101	
‘ 1 =L B3,D(0,BD) {0000000000000000:		
2	{SR R3,R3 11111111100000000}	
3	IC R3,D(X,B3) 111111111311111131§	
¢ L B1,D(0, BD) [0000000000000000		
5	ST R3,D(0,B1) 10000000000000000	
L L L ———— J

170

IEKVAD:

Used for COMPL
Routines

and LCOMPL In-Line

e ——— e s o e e . e S . —
VCONOUVEWNR

Instructi

B2, D(
R2,D(
R1,1(
R1,R1
R1, D2
R1,R2
R1, 0
B1,D(
R1,D(

LA
LCR

XR
BCTR

ST

e e e e e

Skeleton

Status

ons

0,BD)
0,B2)
0,0)

(X,B2)

0,BD)
0,B1)

e

IEKVBL:

U EWN P

I
L

Used for All Branch True and
Branch False Operations

Skeleton
Instructions

B2,D(0, BD)
R2,D(0,B2)
R3,R3

B1,D(0,BD)
R2, 0(R3,B1)
BXLE R2,0(R3,B1)

|0000000011111111
|]0000111100001111
{10011001100110011
10101010101010101

|

[0000000000000000
|]11113111100000000
|1100110011001100
j1111111111111111
[111111111213133111%*
11111111111111111%
L

[e e o . . et . S . o . i . e, s,

*One of these two instructions will be
added to the bit strip by subroutine
MAINGN-IEKTA depending on the
operation.

"
I
I

IEKVPL: Used for all Half-Word Integer IEKVUN: Used for All Unary Minus
Division Operations and for the Operations
MOD In-Line Routine r T I -
r T 1 | | Skeleton | |
| | Skeleton | | | Index| Instructions | Status
| Index| Instructions | Status | b-———- $———————————— e e D 4
b + i i | | {0000000011111111|
| | 10000000011111111| | | 10000111100001111 |
[| 10000111100001111 |] 10011001100110011{
	10011001100110011			10101010101010101	
	10101010101010101]				
				1	L B2,D(0,BD) {0000000000000000
1	L B2,D(0,BD) 10000000000000000		2	1H R2,D2(X,B2) (1111111100000000	
2	LH R2,D(0,B2) 10000111100000000	3	JLCR R1,R2 111111311111311111		
! 3	LH R1,D(0,B2) 111110000000000001	& L B1,D(0,BD)]00000000060000000			
4	L B3,D(0, BD) 10000000000000000		5	STH R1,D1(X,Bl)	0000000000000000
5	LH R3,D(X,B3) 11100110011001100] e 4t -				
6	LR R1,R2 10000111100001111				
7	SRDA R1,32(0,0) 111111111112111111				
8	DR R1,R3 111112111111232111				
9	D R1,D(X,B3) 10000000000000000				
10	L B1,D(0,BD) 10000000000000000 IEKVBL: Used for All Assigned GO TO				
11	STH R1+1,D(0,B1)	0000000000000000	Operations		
12	STH R1,D(0,Bl)*	0000000000000000	r———-- et e ettt T 1		
I L 4	i Skeleton				
*For MOD in-line routine only.		Index	Instructions	Status	
_______________________ J } + 4 e					
	[0000000011111111				
IEKVSU: Used for Case 1 and Case 2]0000111100001111			
Subscript Operations		10011001100110011			
r T T —————— 1		10101010101010101			
Skeleton]		
Index	Instructions	Status		1	L B2,D(0, BD)
S ettt A A 4	2	L R2,D(0,B2) 11111111100000000			
Case 1		3	BCR 15,R2	1111111111111111	
e : I					
	}10000000011111111				
	10000111100001111}				
]	10011001100110011				
	10101010101010101				
b-—--- $-——- - 4 4 IEKVBL: Used for All Computed GO TO					
I 1 L B3,D(0,BD) 10000000000000000	Operations				
2	LH R3,D(0,B3) 11100110000000000] r———-- J———m—m e B 1				
3	L B2,D(0,BD) 10000000000000000]			Skeleton	
4	LH R2,D(R3,B2) (1111111100000000}	Index	Instructions	Status	
5	L B1,D(0,BD) 10000000000000000] p=——- f-m——————————— e e L				
6	STH R2,D(0,B1l)	0000000000000000	[[10000000011111111		
- e | | | 10000111100001111}
| Case 2 | | | 10011001100110011 |
b T ——— e ——————————— 4 | | |0101010101010101 |
| | |0000000011111111| | | | |
| | 10000111100001111 | 1 |L B3,D(0,BD) | 0000000000000000 |
| | 10011001100110011 | | 2 |L R3,D3(0,B3) [1100110011001100]|
| | 10101010101010101 | | 3 |JLR R1,R3]0101010101010101|
8 e | % {1LA R2,P1(0,0) 11111111111121111|
| 1 L B3,D(0, BD) {0000000000000000| | 5 |CLR R1,R2 111111111111121111
| 2 |LH R3,D(0,B3) 11100110011001100 | 6 |BALR R2,0 11111111111111111 |
| 3 |L B2,D(0, BD) 10000000000000000}| | 7 |sSLL R1,2(0,0) 11111111121112111§
| & |LH R2,D(R3,B2) 10000000000000000 | | 8 |BC 2,14(0,R2) 111111111121111111§
| 5 L B1,D(0,BD) 10000000000000000 | | 9 |L R2,D(R1,B) [1111111111111111 |
| 6 |STH R2,D(0,B1) |0000000000000000| | 10 |BCR 15,R2 |1111111111111111|
| W R W | I b 1
Appendix C: Arrays 171

IEKVSU: Used for All Store Operations
r - -—-1
| | Skeleton | |
| Index| Instructions | Status |
e — + 4
	10000000011111111	
	[]0000111100001111	
	10011001100110011	
	10101010101010101	
1	L B2,D(0,BD) [0000000000000000	
2	LH R2,D(0,B2) 11111111100001000]	
3	L B1,D(0,BD) 10000000000000000	
4	STH R2,D(X,B1)	0000000000000000
L L e e ———————		
IEKVAD Used for the AND and OR In-Line		
Routines		
r T s T T T T T T		
]	Skeleton	
Index	Instructions	Status
T S oo oo		
	10000000011111111	
i	10000111100001111	
	10011001100110011	
	10101010101010101	
	I	
1	L B2,D(0, BD) 10000000000000000	
2	L R1,D(X,B2) 11111111100000000	
3	L B3,D(0, BD) {0000000000000000	
4	N R1,D(X,B3) 11111111111111111	
5	L B1,D(0,BD)	1 0000000000000000
6	ST R1,D(0,B1) 10000000000000000]	
[i - 1 4		
IEKVSU: Used for All Right- and Left-Shift		
Operations		
r——=== T T i		
I] skeleton	I	
Index	Instructions	Status
L (] + —		
r T v		
	10000000011111111	
	}0000111100001111]	
	1]0011001100110011	
	10101010101010101	
1	L B2,D(0,BD) 10000000000000000	
2	LH R2,D(0,B2) 11111111100000000]	
3	LR R1,R2 10000111100001111	
] 4	SRA R1,P3(0,0) 11111111111111111	
5	HDR R1,R2 10000000000000000	
6	L B1,D(0, BD) 10000000000000000	
7	STH 1,D(0,B1)	0000000000000000
[R— i ————— e

172

Used for the FLOAT and DFLOAT
In-Line Routines

Skeleton
Instructions

IEKVTS:

|
i
i
|
|
|
|
|
|
1
-

Status

—

=
=
=
=
e e e ————————————————————

0011
0101
L B2,D (0, BD) XX00
LH R2,D(0,B2)

LD R1,60(0,12)
R1,72(0,13)
R2,R2

15,0

BC 4,16(0,15)

ST R2,76(0,13)
AD R1,72(0,13)
BC 15,26 (0,15)
0,R2

ST 0,76(0,13)

SD R1,72(0,13)
L B1,D(0,BD)

R1,D(0,B1)

—— e e e ey
[ss
2
e e ——
=
-
=
[

Used for All Fixed Point
Multiplication Operations

---------------- R Sttt
Skeleton |

Instructions Status

|
I
+
[0000000011111111 |
[0000111100001111 |

|]0011001100110011 |
10101010101010101 |

—_————— Ty

[

vwoNdoumswNh R
%L—‘L"t‘t'r"t*
AT EmI

| MR

B2,D(0,BD)
R2,D(0,B2)
R1,D(X,B2)
B3,D(0, BD)
R3,D(0,B3)
R1,R2
R1,R3
R1-1,R3
R1-1,R2
R1,D(X,B3)
R1,D(X,B2)
B1,D(0,BD)
R1,D(0,B1)

| [
| 0000000000000000 |
[0000111100000000 |
[{1100000000000000 |
| 0000000000000000 |
[0100010001000100 |
10000110100001101 |
| 0001000000000000 |
[0100010101110101 |
[0000001000000010 |
[1000100010001000 |
10011000000000000 |
|0000000000000000 |
|0000000000000000|

IEKVPL: Used for all Full-Word Integer
Division Operations and for the
MOD In-Line Routine

F T L It |
| | Skeleton | |
| Index| Instructions | Status |
prmm 4o " 1
I I 10000000011111111 |
| | 10000111100001111 |
| | 10011001100110011 |
| | 10101010101010101
1	L B2,D(0, BD)]0000000000000000	
2	LH R2,D(0,B2) 10000111100000000	
3	LHE Ri,D(0,B2) 11111000000000000	
& L B3,D(0,BD) {0000000000000000		
5	LH R3,D(X,B3) 10100010001000100]	
6	LR R1,R2 10000111100001111]	
7 -	SRDA R1,32(0,0) 111111111311111111§	
8	DR R1,R3 10111011101110111	
9	D R1,D(X, B3) 11000100010001000]	
10	L B1,D(0,BD)	0000000000000000
11	STH R1l+1,D(0,B1)	0000000000000000]
12	STH R1,D(0,Bl)*]0000000000000000}	
U S _— L _———

|* For MOD in-line routine only.

e

IEKVTS: Used to Compare Operands AcCross a
Relational Operator and Set the
Result to True or False
- T—== T 1
| | Skeleton | |
| Index| Instructions | Status |
b F f 1
| | |0000000011111111
| | 10000111100001111
| I 10011001100110011 |
| | 10101010101010101 |
i 1 {L B2,D(0,BD) {0000000000000000}
| 2 |LH R2,D(X, B2) 11111111100000000}
| 3 |L B3,D(0, BD) [0000000000000000 |
| 4 |LH R3,D(0,B3) 10100010001000100]
| 5 |CcH R2,D(X,B3) 11000100010001000 |
| 6 |CR R2,R3 10111011101110111 |
| 7 |LA R1,1(0,0) 111111113113131111113
| 8 |BALR 15,0 11111111112111111§
| 9 |BC M,6(0,15) 111111111121211111 |}
| 10 |SR R1,R1 111111112111111111|
| 11 |L B1,D(0, BD) [0000000000000000]
| 12 |sT R1,D(0,B1) |0000000000000000}
| IS, Ao O

IEKVUN: Used for All Logical Operations
£z T -1
| | Skeleton | |
| Index| Instructions | Status |
— frmmmmooommmmmeee 1
| | |00000000111111121§
| | {0000111100001111 |
| | 10011001100110011|
|] 10101010101010101 |
| I | |
| 1 |L B2,D(0,BD)]0000000000000000 |
I 2 |L R2,D(0,B2) [0000111100000000 |
| 3 |L R1,D2(0,B2)]1101000000000000|
| 4 L B3,D(0,BD) | 0000000000000000 |
| 5 |L R3,D(0,B3) 10100010001000100
6	L R1,D3(X,B3) {0000100000001000	
7	LR R1,R2 {0000010100000101	
8	NR R1,R2 [0000101000001010	
9	NR R1,R3 10101010101110101	
10	N R1,D2(0,B2)	0010000000000000
11	N R1,D3(X,B3).	1000000010000000
12	L B1,D(0,BD) 10000000000000000	
13	sT R1,D1(0,B1)	0000000000000000}
L L L J		
IEKVPL: Used for All Addition Operations		
and for Real Multiplication and		
Real Division Operations		
] T="" T 1		
	Skeleton	
Index	Instructions	Status
— -~		
		0000000011111111}
{0000111100001111		
10011001100110011		
10101010101010101		
% 1 =L B2,D(0,BD) :xxxxxxxxoooooooog		
2 LH R2,D(0,B2)]0000111100000000		
3 LH R1,D(X,B2) 12101000000000000		
4	L B3,D(0, BD)	XX00XX00XX00XX00
5	LH R3,D(0,B3)]0100010001000100}
6	1H R1,D(X,B3) {0000000000000000	
7	LR R1,R2 10000110100001101	
8	AR R1,R2	0000001000000010
{ 9	AR R1,R3 1]0101010101110101	
10	AH R1,D(X,B2) [0010000000000000	
11	AaH R1,D(X,B3) [1000100010001000	
12	L B1,D(0,BD)	XXXXXXXXXXXXXXXX
13	sTH R1,D(0,Bl)	XXXXXXXXXXXXXXXX
- O L e 4
|Note: For real multiplication and |
|division operations, the basic operation |
|codes will be replaced by the required |
| codes. |
e e i
Appendix C: Arrays 173

IEKVBL: Used for Text Entries Whose IEKVBL: Used for Text Entries Whose
Operator is a Relational Operator Operator is a Relational Operator
Operating on Two Nonzero Operands Operating on One Operand and Zero

r T - T D | r T T -

| | Skeleton | | | | Skeleton | |

| Index| Instructions | Status | | Index| Instructions | Status |

p-——--1 ¥ i b1 1 1

| i]0000000011111111 | | 10000000011111111 |

[10000111100001111				0000111100001111
	10011001100110011			10011001100110011
	10101010101010101			10101010101010101

| | | | | | | I

| 1 L B2,D(0, BD) 10000000000000000]| | 1 |L B2,D(0,BD) |0000000000000000 |

2	LH R2,D(0,B2) 11111111100000000		2	LH R2,D(0,B2) 11111111100000000	
3	L B3,D(0, BD) 10000000000000000]	3	L B3,D(0,BD) 10000000000000000		
4	LH R3,D(X,B3) 10100010001000100		4	LH R3,D(X,B3)	0000000000000000
5	CH R2,D(X, B3) 110600100010001000}	5	cH R2,D(X,B3) 10000000000000000		
6	CR R2,R3 10111011101110111		6	CR R2,R3] 0000000000000000	
7	LTR R2,R2 10000000000000000{	7	LTR R2,R2 111111111171111111		

| 8% |L R1,P1 11111121121111111131 | | 8% |L R1,P1 [11111111211311111

| 9 |BCR M,R1 111111121111111111} | 9 |BCR M,R1 111111211111111211|

p-———- B e } L - 1 - ¥

| *IEKVBL will generate instruction 8 only | | #IEKVBL will generate instruction 8 only |

| if P1 points to a B-block. | | if P1 points to a B-block. |

L _— —d e __ - -

IEKVFP: Used for the LBIT, BBT, and BBF In-Line Routines

r————--- B i bt T L et 1

| i | BBT, BBF i LBIT |

| I ittty e ey P ———
| | Skeleton | Simple | Subscripted | Simple | Subscripted |
| Index | Instructions | Variable | Variable | Variable | Variable |

o T fommmmmm - e Tt e T .

| 1 | L B2,D(0, BD) | X | X | X | X |

| 2 | 1A 15,D+N/8(X,B2) | 0 | 1 [0 | 1 I

| 3 | ™ M, D+N/8(B2) | 1 | 0 | 1 | 0 |

| 4 | ™ M, 0(15) | 0 | 1 | 0 | 1

| 5 | ™ M, D+N/8(R2) | 0 | 0 | 0 I 0 I

| 6 | L 15,P1 | 1 | 1 | 0 | 0 |

} 7 | BCR MM, 15 | 1 | 1 | 0 | 0 |

| 8 | BALR 15,0 | 0 | 0 i 1 | 1

| 9 | LA R1,1¢(0,0) | 0 | 0 | 1 | 1 |

{ 10 | BC 1,10(€0,15) I 0 | 0 i 1 I 1 |

| 11 | SR R1,R1 | 0 | 0 | 1 | 1 |

| 12 | L B1,D(0,BD) i 0 | 0 | X | X

| 13 | sT R1,D(0,B1) | 0 I 0 I X | X [

p—————— B i B A S 4

| N = The bit to be loaded or tested.

| |

| M = MSKTBL(MOD(N,8)+1). MSKTBL is an array of masks used by IEKVFP. |

| |
| MM = 1 FOR BBT. |

l I

| MM = 8 FOR BBF. |

| I ——— J

174

APPENDIX D: TEXT OPTIMIZATION EXAMPLES

This appendix contains examples that illustrate the effects of text optimization on

sample text entry sequences, An example is presented for each of the four sections of
text optimization.

Example 1: cCommon Expression Elimination

This example illugtrates the concept of common expression elimination. The text
entries in block A are to undergo common expression elimination. Block B is a back
dominator of block A. Block B contains text entries that are common to those in block A.

m @ ®

Block B B B

TI=1*4
T2=J%*12
T3=T1+T2 Unchanged Unchanged
T4=X (s T3
A =T4+Y
- Eliminate Eliminate

T7=1*4 T8=1J%*12

> > —
Block A A A
7=1%4
8=J*12 T8=J*12
T9=T7+T8 T9=T1+T8 T9=T1+T2
TI0O=X (s T9 TI0O=X (s T9 TI0=X (s T2
B=TI0O+Z B=TI0O+Z B=TIO+Z
@) ©)
B B
Unchanged Unchanged
Eliminate Eliminate
T9=T1+T12 TI0=X (s T3 N
A A 3
TI0O=X (s T3
B=TI0O+Z B=T4+2Z

NOTE: The items Ti are temporaries and (s represents a subscript operator

Appendix D: Text Optimization Examples 175

Example 2: Backward Movement

This example illustrates both
methods of backward movement.
The text entries in block A are
to undergo backward movement.
Block B is the back target of the
loop containing block A.

176

NOTE:

Move
T2=T1+C

m @
Block B
I.E;\'N'+Z E=W+Z
%I.=.A:+B
Move
Ti=A+B
A
X=E+U X=E+U
Tt=A+B
T2=T1+C T2=T1+C
E=T2+D E=T2+D
3 ()
B
E-W+Z E=W+Z
if;A+B %f;A+B
T2=T1+C Move the T2=T1+C
expression Ti=T2+D
T2+ D
— -
A
X=E+U X=E+U
E=T2+D E=Tj
The text entry X = E + U cannot be moved, because its operand 2 is

defined elsewhere in the loop. The text entry £ = T2 + D cannot be
moved, because operand 1 (E) is busy-on-exit from the back target;
however, the expression T2 + D can be moved.

Example 3:

Simple-Store Elimination

The following example illustrates the concept of simple-store elimination,

integral part of the processing of backward movement.

Eliminate Z = X

Y

A=X+8B
D=F*X
X=2*M
Z=Y /4
i\l.='Z'+G

an

Note: Uses of operand 1 of the simple store that appear below the redefinition of

either operand of the simple store are not replaced.

e e e e e e . — ———— ——— —— ———— — p— —— —— f— w— — e

Appendix D:

Text Optimization Examples 177

Example U4: Strength Reduction

This example illustrates both methods of strength reduction.
The evolution of the text entries that

strength reduction is applied to a DO loop.

In the example,

represent the DO loop and the functions of these text entries are also shown. The

formats of the text entries in all cases are not exact.

manner to facilitate understanding.
Consider the DO loop:

1=3
DO 10 J=1,3
A=X(I,J)

10 CONTINUE

They are presented in this

As a result of the processing of phases 10 and 15, and backward movement, the DO loop
has been converted to the following text representation.

Text Entry Function

I =3 Initializes I

Initializes J
Back
Target

jiijii:i::hx,__,

o

n

[
———— e e e e e e

TL = I * 4 |Multiplies first

|by its dimension
| factor

| subscript parameter

T
| Evolution
[N
T

|stated in source module, converted to
|phase 10 text and then to phase 15
|text.It resides in the back target of the
|loop because of text blocking.

|Generated phase 10 text entry, converted
|to phase 15 text entry. It resides in the
|back target of the loop because of text
|blocking.

|

|Generated by phase 15 when it encounters
| the subscript parameter I during its
|processing of phase 10 text. It resides
|in the back target of the loop as a
|result of the processing of backward
|movement.

1

|Multiplies second

|by its dimension

T~

| factor.
T3 =

| variable X.

|

|

Loop A =X (s T3 |

|

|

|

|
J=J+ 1 |

|

|

IF(J<3)GOTO Y|Tests DO index

— e e e e e e e e s e e e . S e . G S S G, o . S . S it

| ing.

| subscript parameter

|
Tl + T2 |Computes index value|Generated by phase 15 after the last sub-
|for the subscripted |script parameter in the phase 10 text

Stores X(I,J) into A|The phase 10 text entry forced and

Increments DO index. |Generated by phase 10 and converted to

|against its maximum |phase 15 text representation.
|and controls branch-|

} -
|Generated by phase 15 when it encounters
| the subscript parameter J during its
|processing of phase 10 text.

|representation of the subscripted
| variable has been processed.

|converted to phase 15 text after the
|index value for the subscripted variable
|has been established.

|phase 15 text representation.

|Generated by phase 10 and converted to

1

f———————————————— i I
|Note:

(length 4).

I
L D

178

The statement number Y is generated by phase 10.
|that the array X is of the format X(3,3) and that its elements are real

Also, it is assumed

e e et . . . e . — ——— — —— ——— — — —— — —— ——— a— o c— T—— —— — — —— — ——— — — . S, S e s, s

The following illustration shows the application of strength reduction to the loop.

(1)

_— W .

- -
M
il

. .
~

3

Eliminate
Multiplicative
Text from Loop

)

—_H e -
- il .
o lw.
- —
* * *
—

<

Eliminate
Additive
Text from Loop

YT2=J%*12
T3=T1+T2
A=X (T3
J=J+1
IF J£3) GOTOY

|

3

YT3=TI+M
A=X(sT3
M=M+12
IF (M£36) GOTOY

L]

Appendix D:

l A

YA=X(sP
P=P+12
IF (P £N) GOTOY

—_

Text Optimization Examples

179

APPENDIX E:

ADDRESS COMPUTATION FOR ARRAY ELEMENTS

LR ipﬁfr
e B

it

Data references in the form of
subscripted variable expressions in FORTRAN
are converted into object code that
includes addréss arithmetic and indexed
references to main storage addresses.

Since the conversion involves all phases of
the compiler, a summary of the method is
given here.

Consider an array A of n dimensions
whose element length is L, and whose
dimensions are D1, D2, D3, ...,Dn. If such
an array is assigned main storage starting
at the address P11, then the element A(J1,
J2, J3,...,dn) is located at:

i

P = P11 + (J1-1)*L + (J2-1)*D1*L +
(J3-1)*D1*D2*L + ... + (IJn-1)*D1%*D2*D3*
eeoe*D(n-1)*L

This may be expressed as:

P = P00 + J1*L + J2*(D1#*L) + J3%(D1*D2*L)
+ eee t+ In¥(D1%D2#D3* ... *D(n-1)*L)

where:

P00 = P11l - (L+D1*L + D1#*D2*L + ... +
D1*D2#* ... *D(n-1)*L)

For fixed dimensioned arrays, the
quantities D1*L, D1*D2*L, D1#D2*D3*L, ...
, which are referred to as dimension
factors, are computed at compile time. The
sum of these quantities, which is referred
to as the span of the array, is also
computed at compile time. (Phase 15
assigns to an array a relative address
equal to its actual relative address minus
the span of the array.)

In the object code, P is finally formed
as the sum of a base register, an index
register, and-s+a displacement. The phase 15
segment CORAL assocjiates an address
constant with each fixed dimensioned array
such that PasP00<Pa+4095, where Pa is the
address inserted into the address constant
at program fetch time. The effective
address is then formed using a base
register containing the address constant, a
displacement equal to P00 - Pa, and an
index register, which contains the result
of a computation of the form:

180

L 2,31 \\J

d

SLL 2,1l0gaL |

L 1,32

M 0,L*D1

AR 2,1

L 1,33

M 0,D1*D2*L

AR 2,1

L 1,Jdn

M 0,D1#D2%...*D(n~-1)
AR 2,1

Absorption of Constants in Subscript
Expressions

Subscript expressions may include
constant parts whose contribution to the
final effective address is computed at
compile time. For example,

B(I-2,J+4,3*5-(L+7)-6)

would usually be treated in such a way that
the effect of the 2, the 4, and the 6 would
be absorbed into the displacement at
compile time.

consider an example of the form

A(J1+K1,J2+K2, ... ,Jn+Kn),

where:

A is a fixed dimensioned array
K1, K2, Kn are integer constants

Phase 15 will insert the quantity

K1*L + K2*%(D1*L) + K3#*(D1#D2*L) +
+ Kn(D1*D2%* *D(n-1)*L)

into the displacement (DP) field of the
corresponding subscript or load address
text entry. The constants will not
otherwise be included in the subscript
expression. When phase 25 generates
machine code, the contents of the DP field
are added to the displacement. To ensure
that the resultant expression lies within
the range of 0 to 4095, phase 20 performs a
check. If the result is not within the
range, a dictionary entry is reserved for
the result of the addition, and a suitable

Appendix E:

add text entry is inserted to alter the
index register immediately before the
reference.

Arrays as Parameters

When an array is used as an argument,
the location of its first element, P11, is
passed in the parameter list. The prologue
of the called subroutine contains machine
code to compute the corresponding P00
location. When an array has variable
dimensions, no constant absorption takes
place and the dimension factors are
computed for each reference to the array.

Address Computation for Array Elements 181

APPENDIX F: COMPILER_ STRUCTURE

The FORTRAN (H! compiler is structured
in a planned overlay fashion. A planned
overlay structure is a single load module,
created by the linkage editor in response
to overlay control statements. These
statements, a description of the planned
overlay structure, and instructions in
specifying such a program structure are
presented in the publication IBM System/360
Operating System: Linkage Editor. The
processing performed by the linkage editor
in response to overlay control statements
is described in the publication IBM
System/360 Operating System: Linkage
Editor, Program Logic Manual.

The compiler's planned overlay structure
consists of 13 segments, one of which is
the root. The root segment contains the
FSD and includes the processing units

routines) and data areas (e.g.,
communication region) that are used by two
or more phases. The root segment remains
in main storage throughout the execution of
the compiler.

Each of the remaining 12 segments
constitutes a phase or a major portion of a
phase. Phase segments are overlaid as
compiler processing requires the services
of another segment.

Figure 55 illustrates the compiler's
planned overlay structure. In the
illustration, each segment is identified by
a number. Segments that originate from the
same horizontal line overlay each other as
needed. The illustration also indicates
the approximate size (in bytes) of each

v (56.2)

(e.g., the compile-time input/output segment,
[a)
w
W
)
L (8.6
4-15/20
6.1
(=3
3 o~
Q
8 .
9 £ |67
- 1
9 ~ o
@
8 Q 2
S 9 2
b] i &
% © 1 (20.9) £ 0.9 &
o | (30.2) ' = v(m.s)
Y S
Q
8
a
1
w
~N
Q
g
5 : Q
N o~ [
_ i *(%ﬁ) £
= e -
2 " o
:]
& v
wy

* (62.4)

“The number in parentheses times 1,000 equals the approximate segment length.

v (56.2)

Figure 55. Compiler Overlay Structure

182

10 - Phase 20

(53.7)
Y

The longest pathl of this structure is
formed by segments 1, 4, 7, and 10 because,
when they are in main storage, the compiler
requires approximately 81,000 bytes. Thus,
the minimum main storage requirement for
the compiler is approximately 89,000 bytes.

The linkage editor assigns the
relocatable origin of the root segment (the
origin of the compiler) at 0. The
relocatable origin of each segment is
determined by summing the length of all
segments in the path. For example, the
origin of segment 10 is equal to the length
of segment 1 plus the length of segment 4
plus the length of segment 7.

The segments that constitute each phase
of the compiler are outlined in Table 32.
The remainder of this appendix is devoted
to a discussion of the segments of the
compiler's planned overlay structure.

Table 32, Phases and Their Segments

r —————o———T——— - 1
| Phase |Segment(s) Constituting Phase |
; -
v

Phase 10	8egment 2
XREF	Segment 3
Phase 15	Segments 4, 5, 6
Phase 20	Segments 4, 7, 8, 9, 10, 11
Phase 25	Segment 13
Phase 30	Segment 12
t L __-.'
b

|Note: Segment # is loaded whenever |
|phases 15, 20, or 30 are loaded. It |
|conta1ns data areas used by 15 and 20. |
___ 1
Segment 1: This segment is the root
segment of the compiler's planned overlay
structure. Segment 1 is the FSD. It has a

relocatable origin at 0 and is not overlaid
by other compiler phases. The composition
of segment 1 is illustrated in Table 33,

Segment 2: This segment is phase 10. The
origin of the segment is immediately
following segment 1. At the completion of
phase 10 operation, segment 2 is overlaid
by segment 3 if the XREF option was chosen
or by segment 4 if the option was not
chosen. The composition of segment 2 is
illustrated in Table 34,

1A path consists of a segment, all segments
between it and the root segment, plus the
root segment.

Table 33. Segment 1 Composition

——————— e 1
|Control SectlonlEntry Point(s) |
__ 4
LEKATB	IEKATB
IEKAAOL	
IEKAAQ2	PAGEHEAD
ADCON-IEKAAD	
PUTOUT-IEKAPT	PUTOUT I
IEKATM	PHAZSS, PHASB, TST, PHASS,
	TSP,TOUT,TIMERC i
DCLIST-IEKTDC	IEKTDC
AFIXPI-IEKAFP	FIXPI,AFIXPI,FIXPI#
IEKAROO	IEKAGC, ENDFILE, IEKAAY,
	IEKIORTN I
IEKFIOCS	FIOCS#, FIOCS
IEKFCOMH	IBCOM#, IBCOM
IEKTLOAD	IEKUSD, ESD, TXT, IEKTXT,
	RLD,IEKURL,IEND, IEKUND
ERCOM-IEKAER i	
IERAAR	
_______________ R	
Table 34. Segment 2 Composition	
__ 1	
Control Sect10n	Entry Point(s)
__ 9	
IEKAINIT	IEKAINIT
STALL-IEKGST	LEKGST
XSUBPG-IEKCSR	IEKCSR [
LABTLU-IEKCLT	IEKCLT
XARITH-IEKCAR	IEKCAR
DSPTCH-IEKCDP	IEKCDP, IEKCIN
XIOPST-IEKDIO	IEKDIO
GETCD-IEKCGC	LEKAREAD
CSORN-IEKCCR	ITERCCR, IEKCS3, IEKCS1,
	IEKCS2,IEKCLC
XTNDED-IEKCTN	IEKCTN
IEKKOS	IEKKOS
XIOOP-IEKCIO	IEKCIO
PUTX-IEKCPX	IEKCPX
XDATYP-IEKCDT	IEKCDT
GETWD-IEKCGW	
XCLASS-IEKDCL	IEKDCL
FORMAT-IEKTFM	IEKTFM {
XSPECS-IEKCSP	IEKCSP I
XGO-IEKCGO	ITEKCGO
XDO-IEKCDO	IEKCDO
PH10-IEKCAA	
IIEKXRS | |
_______________ R
Segment 3: This segment contains

subroutine XREF-IEKXRF, Its origin is
immediately following segment 1. If the
XREF option is chosen, segment 3 overlays
segment 2. If the XREF option is not
selected, segment 3 is not used and segment
2 is overlaid by segment 4.

Appendix F: Compiler Structure 183

Segment 4: This segment is considered a
portion of both phases 15 and 20. It
contains data areas used by both phases.
The origin of segment 4 is immediately
following segment 1. Segment 4 is overlaid
by segment 13. The composition of segment
4 is illustrated in Table 35.

________ This segment is a portion of
phase 15. It contains the subroutines that
implement the CORAL functions of the phase.
The origin of segment 6 is immediately
following segment 4., Segment 6 overlays
segment 5 and is overlaid by segment 7.

The composition of segment 6 is illustrated
in Table 37.

Table 35. Segment 4 Composition

____________________ 1

|Control SectlonlEntry Point (s) |

—————————————e e 4 Table 37. Segment 6 Composition

| CMAJOR-IEKJA2 | | e 1

|RMAJOR-IEKJA4 | | |Control SectlonlEntry Point(s) |

_______________ Ao J ——————t— -
IDFILE IEKTDF | IEKTDF |
| NLIST-IEKTNL | IEKTNL |
| CORAL-IEKGCR | TEKGCR |
|NDATA-IEKGDA |IEKGDA i
| EQOVAR-IEKGEV | IEKGEV |

Segment 5: This segment is a portion of |CMSIZE-IEKGC2 |IEKGCZ |

phase 15, It contains subroutines that |DATOUT-IEKTDT |IEKTDT |

implement the PHAZ15 functions of that |IEKGA1 |

phase which are arithmetic translation, = = Ll oo Lt 4

text blocking, and information gatheringe.

The origin of segment 5 is immediately

following segment 4, Segment 5 is overlaid

by segment 6. The composition of segment 5

is illustrated in Table 36.
Segment 7: This segment is a portion of
phase 20, It contains the controlling

Table 36. Segment 5 Composition
----- 1
|Control SectlonlEntry Point (s) |
e —— oo e :
| IEKLTB] |
LOOKER-IEKLOK	
GENRTN-IEKJGR	IEKJGR
FUNRDY-IEKJFU	IEKJFU
CNSTCV-IEKKCN	IEKKCN
OP1CHK-IEKKOP	IEKKOP, IEKKNG
SUBMULT-IEKKSM	IEKKSM
PHAZ15-IEKJA	IEKJA
BLTNFN-IEKJBF	IEKJBF
STTEST-IEKKST	IEKRKST
RELOPS-IEKKRE	IEKKRE
FINISH-IEKJFI	IEKJFI
DFUNCT-IEKJDF	IEKJDF, IEKKPR
MATE- IEKLMA	IEKLMA
ANDOR-IEKJAN	IEKJAN, IEKKNO
CPLTST-IEKJCP	IEKJCP, IEKJMO
UNARY-IEKKUN	IEKKUN, IEKKSW, IEKJEX
DUMP15-IEKLER	IEKLER
PAREN-IEKKPA	IEKKPA
GENER- IEKLGN	IEKLGN i
ALTRAN-IEKJAL	IEKJAL
.	TXTLAB-IEKLAB
TXTREG-IEKLRG	IEKLRG
SUBADD-IEKKSA	IEKKSA
PH15-IEKJAL {	
IEKJA3 i	
_______________ 1o —— _

subroutine of that phase, the loop
selection routine, and a number of
frequently used utility subroutines. The
origin of segment 7 is immediately
following segment 4. Segment 7 overlays
segment 6. The composition of segment 7 is
illustrated in Table 38.

Table 38. Segment 7 Composition

ety St et 1
|Control SectlonlEntry Point(s) |
__ 4
| LPSEL-IEKPLS | IEKPLS |
| IEKARW | I
| TARGET-IEKPT | LEKPT [
| GETDIK-IEKPGK | IEKPGK, IEKPGC, IEKPIV, |
| | LEKPFT, IEKPOV [
|IEKPOP | I
_______________ R |
Segment 8: This segment is a portion of
phase 20. It consists of the subroutines

that determine (1) the back dominator, back
target, and loop number of each source
module block, and (2) the busy-on-exit
data. Segment 8 is executed only if the
OPT=2 path through phase 20 is followed.

The segment is executed only once and is
overlaid by segment 9. The origin of
segment 8 is immediately following segment
7. The composition of segment 8 is
illustrated in Table 39.

Segment_10: This segment is a portion of
phase 20, It contains full register
assignment subroutines, the utility
subroutines used by them, and the
subroutine that calculates the size of each
text block and determines which text blocks
can be branched to via RX-format branch
instructions. Segment 10 is executed in
the optimized paths through phase 20. The
origin of segment 10 is immediately
following segment 7. The composition of
segment 10 is illustrated in Table 41.

Table 39. Segment 8 Composition

0 1
|Control SectlonlEntry Point(s)

i
|SRPRIZ—IEKQAA |IEKQAA,IEKQAB |
| TOPO- IEKPO | IEKPO [
| BAKT~ IEKPB | IEKPB |
| BIZX-1EKPZ | IERKPZ |
IIEKPBL | | Table 41, Segment 10 Composition
__________ ——— _—— S
{Control Sect10n|Entry Point(s) |
——-- -
BLS-IEKSBS	IEKSBS
CXIMAG-IEKRCI	IEKRCI
BKPAS-IEKRBP	ZEKRBP
GLOBAS-IEKRGB	IEKRGB
FWDPS1-IEKRF1	IEKRF1
LOC-IEKRL1 [I	
segment 9: This segment is a portion of | FCLT50-IEKRFL |IEKRFL, IEKRRL, IEKRTF |
phase 20. It contains subroutines that | STXTR-IEKRSX | IEKRSX |
perform common expression elimination and | FWDPAS-IEKRFP |IEKRFP |
strength reduction as well as the major | SEARCH-IEKRS | IEKRS |
portion of the utility subroutines used | REGAS-IEKRRG | IEKRRG |
during text optimization. Segment 9 is | FREE-IEKRFR | IEKRFR |
executed only if the OPT=2 path through | BKDMP-IEKRBK | IZEKRBK |
phase 20 is specified. The origin of L 1 -

segment 9 is immediately following segment
7. During the course of optimization,
segment 9 overlays segment 8 and is
overlaid by segment 10 after all module
loops have been text-optimized. The
composition of segment 9 is illustrated in

Table 40. Segment 11: This segment is a portion of
phase 20. It consists of the subroutines
that perform basic register assignment.
Segment 11 is executed only in the OPT=0
path through phase 20. The origin of
segment 11 is immediately following segment

Table 40. Segment 9 Composition 7. Segment 11 does not overlay any other

——————— 1 segment in phase 20, nor is it overlaid by
|Control SectlonlEntry Point(s) | another segment in phase 20. The
-- i composition of segment 11 is illustrated in

| KORAN-IEKQKO | IEKQLO ! Table 42.

| WRITEX-IEKQWT |IEKQWT |

| CIRCLE-IEKQCL | IEKQCL, IEKQF |

| PERFOR-IEKQPF | IEKQPF |

| TYPLOC-IEKQTL | IEKQTL |

| XSCAN-IEKQXS | IEKQXS, IEKQYS, IEKQZS |

| XPELIM-IEKQXM | IEKQXM |

| MOVTEX-IEKQMT |IEKQMT, IEKQDT | Table 42, Segment 11 Composition

| CLASIF-IEKQCF | IEKQCF, IEKQPX, IEKQMF | pemmem e 1

| BACMOV-IEKQBM | IEKQBM | |Control SectlonlEntry Point(s)

| REDUCE-IEKQSR |IEKQSR | ——————————————— 9

| SUBSUM-IEKQSM |IEKQSM | |SSTAT-IEKRSS IIEKRSS

L S - 4 | TALL-IEKRLL | IEKRLL {
| SPLRA-IEKRSL |IEKRSL |
L XL —dd

Appendix F: Compiler Structure 185

Segment 12: This segment is phase 30. The
origin of segment 12 is immediately
following segment 4. Segments 4 and 12
overlay segment 13, if errors are
encountered during the processing of
previous phases. The composition of
segment 12 is illustrated in Table 43.

Table 43. Segment 12 Composition

== -7/

|Control SectlonlEntry Point (s) |

b 1
| MSGWRT-IEKP31 |IEKP31 |

| LEKP30-IEKP30 | |
_______________ R |

Segment_13: This segment is phase 25. The
origin of segment 13 is immediately
following segment 1. Segment 13 overlays
segment 4, 7, and either 10 or 11; segment
11 is used for OPT=0 only; segment 10 is
used for OPT=1,2 only. The composition of

segment 13 is illustrated in Table 44,

186

Table 44, Segment 13 Composition

L Sttt et e b D D

IMAINGNZ-IEKVMZ
| PACKER-IEKTPK
| LABEL-IEKTLB
| RETURN- IEKTRN
| FNCALL-IEKVFN
| GOTOKK- IEKWKK
| LISTER-IEKTLS
| STOPPR-IEKTSR
| ENTRY-IEKTEN
| CGEN-IEKWCN

| BRLGL-IEKVBL
| IOSUB-IEKTIS
| PROLOG-IEKTPR
| MAINGN-IEKTA
| TENTXT-IEKVTN
| IOSUB2-IEKTIO
| END- IEKUEN

| EPILOG-IEKTEP
| IEKGMP

| ADMDGN-IEKVAD
| TSTSET-IEKVTS
| PLSGEN- IEKVPL
| SUBGEN-IEKVSU
| UNRGEN-IEKVUN
| BITNFP-IEKVFP
|FAZ25 -IEKP25

|IEKVM2
| IEKTPK
| IEKTLB
| IEKTRN
| IEKVFN
| IEKWKK
| IEKTLS
| IEKTSR
| IEKTEN

IIEKVBL
| IEKTIS
| IEKTPR
| IEKTA

| LERVTN
| IEKTIO
| IEKUEN
| IEKTEP

‘IEKVAD
| LEKVTS
| IEKVPL
| IEKVSU
| IEKVUN
| IEKVFP
|

The messages produced by the compiler
are explained in the publication IBM
System/360 Operating System: FORTRAN IV (G
and _H) Programmer's Guide. Each message is
identified by an associated number. The
following table associates a message number
with the phase and subroutine in which the
corresponding message is generated.

APPENDIX G: DIAGNOSTIC MESSAGES

As part of its processing of errors,
whenever the compiler encounters an error
that is serious enough to cause deletion of
a compilation, it prints out: COMPILATION
DELETED. (For a more detailed explanation,
refer to Appendix D of the aforementioned
publication.)

--------- N Sttt tataiatuinietut Sttt ettt
|Routine in Which|Phase in Which|

Message |Message Number |[Message Number |

r a T
	Routine in Which	Phase in Which
Message	Message Number	Message Number
Number	Is Generated	Is Generated
L 1 ,l		
r 1		
IEKOO1I	IEKP30 PHASE 30	
e e 1		
TEK002I	XCLASS-IEKDCL	
IEKOO3I	XARITH-IEKCAR	
IEKOO5I	XARITH-IEKCAR	
IEK0O06I	XARITH—IEKCAR,	
LABTLU-IEKCLT,		
DSPTCH-IEKCDP,		
XIOOP-IEKCIO,		
XCLASS~-IEKDCL		
IEKOO7I	XARITH-IEKCAR	
IEKO0O8I	CSORN-IEKCCR	
TIEKQ09I	CSORN-IEKCCR	
IEKO10I |CSORN-IEKCCR
PHASE 10

|
IEKO11I |XARITH-IEKCAR

|

IEKO13I |XARITH-IEKCAR,
| PUTX-IEKCPX,
| CSORN-IEKCCR,
| XCLASS-IEKDCL

|
IEKO14I |XDATYP-IEKCDT,

I

|

|

|

I

|

|

|

|

I

I

|

|

I

|

[

|

|

|

|

I

|

[

l

|

|

[

|

{

| XSPECS-IEKCSP |

| I

IEKO15I |XARITH-IEKCAR |
I |

IEKO16I |XGO-IEKCGO |
IEK0171 {XGO—IEKCGO ,
| !

IEK019I |XGO-IEKCGO |
| |

IEK020I |XGO-IEKCGO |
I
I
J

|
IEK021I |XGO-IEKCGO
L

|
|
|
|
|
|
I
|
[
|
|
|
|
I
|
|
I
l
|
I
|
| I
| IEK012I |CSORN-IEKCCR#
|
|
I
|
[
|
!
|
I
|
|
|
I
I
|
|
|
|
|
!
L

Number |Is Generated |Is Generated |
TER0221 |xGo-TERCG0 |

IEK023I :XTNDED—IEKCTN

IEKO24I :XTNDED—IEKCTN

IEK025I }XTNDED—IEKCTN

IEKO026I %XTNDED—IEKCTN

IEK027I :XIOPST—IEKDIO

IEK028I |XIOPST-IEKDIO

IEKO30I IXDO—IEKCDO

IEKO31I |XDO-IEKCDO

TEKO34I |DSPTCH-IEKCDP

|
| DSPTCH-IEKCDP

|
IEK0361 |DSPTCH-IEKCDP
{ PHASE 10
IEKO039I |XTNDED-IEKCTN

I
IEKO40I |XCLASS-IEKDCL

IEKO47I |XARITH-IEKCAR,
| XDATYP-IEKCDT

I
IEKO50I |XARITH-IEKCAR

I
IEK052I |DSPTCH-IEKCDP

|
| XARITH- IEKCAR,

| DSPTCH-IEKCDP

IERK053I

|

IEK056I |XSUBPG-IEKCSR
|

IEKO57I |XSUBPG-IEKCSR

|
| XSUBPG-IEKCSR

r
|

|

I

k

|

|

|

|

|

[

[

|

|

|

|

|

!

|

|

|

I

I

I

| IEK035I
|

I

|

I

!

|

I

|

|

|

|

|

|

I

|

|

|

[

|

:

| IEK058I
[
|
L

_JI
I
[
|
[
I
|
|
I
|
|
I
I
I
|
[
|
|
|
|
|
|
|
|
[
|
|
|
I
I
|
I
I
I
I
|
|
!
|
I
I
|
I
|
|
[
-dJ

o e e e e s . s ——— — et i it e e i . — . S o i it . e o g, . S bt . s s, S e, . . S, e s, .

|
IEK059I |XSUBPG-IEKCSR
L

Appendix G: Diagnostic Messages 187

[mo——————= b ittt et Sttt
[Routine in whlchlPhase in Wthhl

| Message |Message Number
| Number |Is Generated
I TER060T |XARITA-TERCAR,
| | DSPTCH-IEKCDP
I IEKO061I }STALL—IEKGST
: IEK062T {XSPECS"IEKCSP
| | STALL~IEKGST
1 IEKO6U4I {XTNDED«IEKCTN
: IEK0651 }XTNDED"IEKCTN
! IEK0661I IXTNDED—IEKCTN
} IEKO067I }XTNDED"IEKCTN
I IEKO69I iXSPECS"IEKCSP
: TIEKO70I IXSPECS"IEKCSP
: IEKO0721 }XSPECS"IEKCSP
: IEK073I IXSPECS«IEKCSP
} IEKO74T }XSPECS"IEKCSP
: IEKO0751 {XSPECS—IEKCSP
} IEKO761 {XTNDEDmIEKCTN
: IEKO77I IXTNDED"IEKCTN
: IEK078I |XTNDED-IEKCTN
= IEKO0791I }XTNDEDnIEKCTN
l TEK080I }XTNDED»IEKCTN
{ IEK081I :XTNDED"IEKCTN
: IEK082I {XTNDED~IEKCTN
: IEK083I {XTNDED*IEKCTN
: TIERKO84I }XTNDED—IEKCTN
: IEKO0861I =XSPECS~IEKCSP
l IEK0871 {XSPECS—IEKCSP
{ IEK088I IXSPECS"IEKCSP
: IEKO090I }DSPTCH~IEKCDP
‘ TIEK091I IDSPTCH“IEKCDP
: IEK0921 IXDATYPmIEKCDT
: IEK093I :XDATYP~IEKCDT
i IEKO94T |XDATYP-IEKCDT

188

| Message Number |
|Is Generated |

PHASE 10

I e e e e e . ——— ——— — ———— —————————————————————
R ———

{ |Rout1ne in Whlch|Phase in Whlchl
Message	Message Number	Message Number
Number	Is Generated	Is Generated
Tekoss1 [xoarve-imkcoT		
: IEK0961I }XDATYP-IEKCDT ‘ }		
{ IEK097I :XTNDED—IEKCTN : }		
= IEK098I {XTNDED—IEKCTN ; {		
: IEK099I :XTNDED-IEKCTN : :		
: IEK100I {XTNDED—IEKCTN : :		
I IEK101I }XDO-IEKCDO : {		
: IEK102I	XIOPST-IEKDIO : :	
I IEK104I }XIOPST—IEKDIO ; :		
l IEK109I EXIOPST—IEKDIO : I		
: IEK110I :XIOPST—IEKDIO : }		
} IEK1111I :XIOPST—IEKDIO : l		
		PHASE 10
IEK112I	XGO-IEKCGO,	
	XSPECS-IEKCSP	
I IEK1131I 1XIOPST-IEKDIO t }
I IEK1151 :XIOPST-IEKDIO : :
l IEK116I :XDO—IEKCDO , l
I IEK1171 }DSPTCH—IEKCDP : I
: IEK120I |DSPTCH-IEKCDP : :
= IEK1211 }XDATYP-IEKCDT { I
= IEK122T }XDATYP-IEKCDT : :
: IEK123I :XDATYP-IEKCDT : :
: IEK124I |XDATYP-IEKCDT : :
: IEK1251 }XDATYP—IEKCDT : :
: IEK1291I :XDATYP—IEKCDT : =
: IEK132I IXDATYP-IEKCDT : =
I IEK1331 IXDO-IEKCDO : {
{ IEK1341 iXDO—IEKCDO : }
} IEK1351I IXDO—IEKCDO } :
{ IEK1361 }XDO—IEKCDO i f
: IEK1371 :XDO—IEKCDO { :
: IEK138I :XDO-IEKCDO ; }
L 4 e ——————— J

Message
Number

IEK140I

IEK141T
IEK143T
IEK144T
IEK145T
IEK146T
IEK1471
IEK1481
IEK1491
IEK150T
IEK1511

IEK152T

IEK1561
IEK157I
IEK1581
IEK1591

IEK160I

IEK1611I

IEK1631

IEK164T

IEK165T
IEK1661I

|

|

|

|

|

|

|

|

|

|

i

|

|

|

|

|

|

|

|

i

|

|

|

|

|

|

|

|

{

| IEK153I
|

|

|

|

|

|

]

|

|

|

|

(

|

|

|

|

|

|

(

|

|

|

|

|

| IEK1671
|
[
|
|
|

e

i |

T +
|Routine in Which|Phase in Whichj|

| Message Number
]Is Generated

.l.

| DSPTCH-IEKCDP,
| XSPECS-IEKCSP,
| XDATYP-TEKCDT,
| XTNDED-IEKCTN

|
| DSPTCH- IEKCDP,
| XIOPST-IEKDIO

:XIOPST-IEKDIO
{DSPTCH-IEKCDP
HDSPTCH-IEKCDP
:DSPTCH—IEKCDP
=DSPTCH-IEKCDP
}DSPTCH-IEKCDP
:XSPECS—IEKCSP
=XIOPST—IEKDIO
IXSPECS—IEKCSP
{XSPECS—IEKCSP
:XSUBPG-IEKCSR
IXARITH—IEKCAR
}XIOOP—IEKCIO
}XARITH-IEKCAR
}XDO-IEKCDO

=XIOPST-IEKDIO

|
| XIOOP-IEKCIO,
| XDO~- IEKCDO

|
| XIOOP-IEKCIO

I
| XDO- IEKCDO,
| XARI TH-IEKCAR

|

| XARITH-IEKCAR,
| XDO-IEKCDO,

| XIOOP-IEKCIO

|
| XIOOP-IEKCIO
I
| XIOOP-IEKCIO

|

| XARITH- IEKCAR,
| XSPECS~-IEKCSP,
| XIOPST-IEKDIO,
| DSPTCH-IEKCDP,
| XSUBPG-IEKCSR,
| XDO- IEKCDO

4

| Message Number |
|Is Generated |

PHASE 10

S B

Message |Message Number

To-TTTTTT T TT T 1
|

LB
|Routine in Which|Phase in Which

|Message Number|

Number |Is Generated |Is Generated |
poommmm o T f---mmommm e 4
| IEK168I |XSUBPG-IEKCSR | |
| | | I
| IEK169I |XIOOP-IEKCIO [|
| | | I
| IEK1701 |XIOOP-IEKCIO | I
|] | |
| IEK171I |XSUBPG-IEKCSR | |
| | | I
| IEK176I |XDO-IEKCDO | |
| | | |
| IEK192I |XGO-IEKCGO, i [
	XCLASS-IEKDCL	
	I	
IEK193I	XCLASS-IEKDCL	
		I
IERK194I	XDATYP-IEKCDT	I
		I
IEK1971	XIOPST-IEKDIO	I
IEK199I	XSUBPG-IEKCSR	
	! I	
IEK200I	XARITH-IEKCAR	I
	I	
IEK202I	XDATYP-IEKCDT,	[
	XSPECS-IEKCSP	l
IEK203I	DSPTCH-IEKCDP	I
		I
IEK204I	XIOPST-IEKDIO	
[I	
IEK205I	XGO-IEKCGO	
[I	I	
IEK206I	XARITH-IEKCAR	
		PHASE 10
IEK207I	DSPTCH-IEKCDP	I
I		
IEK208I	DSPTCH-IEKCDP	
	I	
IEK209I	XDATYP-IEKCDT	[
		I
IEK211I	CSORN-IEKCCR l	
		I
IEK212I	XIOPST-IEKDIO	
	I	
IEK224I	XCLASS-IEKDCL,	I
	DSPTCH-IEKCDP	
	I I	
IEK225I	DSPTCH-IEKCDP	
IEK226I	CSORN-IEKCCR I I	
I I		
IEK229I	XARITH-IEKCAR	
e + oo 1		
IEK302I	STALL-IEKGST [
		I
IEK303I	STALL-IEKGST	
I	PHASE 10 [
IEK304I	STALL-IEKGST	(STALL-IEKGST)
		and
IEK306I	STALL-IEKGST	PHASE 15
	(CORAL) I	
IEK307I	CORAL-IEKGCR	
R R J

Appendix G: Diagnostic Messages 189

IRoutlne in Whlch|Phase in Whlchl

r
[

| Message |Message Number |Message Number |
| Number |Is Generated | Is Generated |
; t t 1
IEK308I	STALL-IEKGST i	
IEK310I	STALL-IEKGST	
I I		
IEK312I	STALL-IEKGST { PHASE 10	
i	(STALL-IEKGST)	
IEK314I	STALL-IEKGST	and
		PHASE 15
IEK315I	STALL-IEKGST	(CORAL) [
I		
IEK317I	STALL-IEKGST	
I [I	
IEK318I	NDATA-IEKGDA] I	
IEK3191	NDATA-IEKGDA	
		i
IEK3201	NDATA-IEKGDA	
I		
IEK322I	STALL-IEKGST	
I		
IEK323I	STALL-IEKGST	
I	[
IEK332I	STALL-IEKGST]
	1	
IEK334I	STALL-IEKGST]	
I I		
IEK350I	NDATA-IEKGDA i	
	I	
IEK352I	NDATA-IEKGDA	

[| I |
| IEK353I |CORAL-IEKGCR | I
[| l |
IEK355I	CMSIZE-IEKGCZ	
I		
IEK3561I	STALL—IEKGST	
e B Fommm oo 1		
IEK402I	IEKFIOCS	
{ I [I		
IEK403I	IEKFIOCS] FSD	

IEK4O4I	IEKFIOCS	
IEKU10I	IEKAINIT	
e e -1		
IEK500I	BLTNFN -IEKJBF	
	DFUNCT-IEKJDF	
[I]		
IEK501I	DFUNCT-IEKJDF,	i
i	UNARY-IEKKUN	
	(EXPON)	
I I		
IEK502I	UNARY-IEKKUN	PHASE 15
	(EXPON)	(PHAZ15)
		I
IEK503I	ALTRAN-IEKJAL	
I	I I	
IEK504I	UNARY-IEKKUN [
I		
IEK505I	PHAZ15-IEKJA]	
		I
IEK5061I	ALTRAN -IFEKJAL	
I S . i

190

|Rout1ne in WhlchlPhase in Whlch]

r
|

| Message |Message Number |Message Number |
| Number |Is Generated |Is Generated |
- { . -
| IEK507I |BLTNFN-IEKJBF | |
| | | I
| IEK508I |BLTNFN-IEKJBF | |
| I | |
| IEK509I |PHAZ15-IEKJA [|
| | | |
| IEK510I |ANDOR-IEKJAN | |
| | | |
| IEK512I |FINISH-IEKJFT | [
[| | I
| IEK515I |RELOPS-IEKKRE | |
| | | I
| IEK516I |FINISH-IEKJFI | |
| | | PHASE 15 |
| IEK520I |ALTRAN-IEKJAL | (PHAZ15) |
I | | [
| IEK521I |ALTRAN-IEKJAL | [
| | | |
| IEK522I |ALTRAN-IEKJAL | |
| I | |
| IEK523I |ALTRAN-IEKJAL] |
| I | I
| IEK524I |ALTRAN-IEKJAL i |
I | | I
| IEK525I |ALTRAN-IEKJAL | |
| | RELOPS-IEKKRE | |
| I I |
| IEK529I |DFUNCT-IEKJDF | |
| | (IEKKPR) | [
| | | |
| IEK530I |SUBADD-IEKKSA | |
| | | |
| IEK531I |ALTRAN-IEKJAL | |
| | | |
| IEK541I |DFUNCT-IEKJDF | |
[I | [
| IEK542I |ALTRAN-IEKJAL | |
I I I |
| IEK550I |ALTRAN-IEKJAL, | |
| | DFUNCT- IEKJDF | |
| | (EKKPR) | |
I | | |
| IEK552I |DFUNCT-IEKJDF | [
| I | I
| IEK570I |GENER-IEKLGN, | |
| | TXTLAB-IEKLAB, | i
[| TXTREG- IEKLRG [!
| | | !
| IEK580I |ALTRAN-IEKJAL, | [
| | SUBMLT-IEKKSM, | |
| | PHAZ15-1EKJA, i |
| |MATE-IEKLMA, | |
| |FINISH-IEKJFI | [
e Satnre —- - -—
| IEK600I |TOPO-IEKPO | |
| | | PHASE 20 |
| IEK610I |TOPO-IEKPO | |
I I | I
| IEK620I |TOPO-IEKPO | |
I (U T J

| T =TT T T T T - - ';

|Routine in Which|Phase in Which

|

| Message |[Message Number |Message Number|
| Number |Is Generated |Is Generated |
'r -===t - + -1
IEK630I	TOPO-IEKPO	
IEK640T	GETDIK-IEKPGK	
	PHASE 20	
IEK650I	GETDIK-IEKPGK	
IEK660I [RELCOR-IEKRFL		
I		
IEK661I	FREE-IEKRFR	
	i	
IEK662I	FWDPS1-IEKRF1	i
IEK670I	BAKT-IEKPB	[
	[
IEK6711	BIZX-IEKPZ i	
L	S RS	
; -+ e 1		
IEK710I	IEKTFM	
IEK720I	IEKTFM	
IEK730I	IEKTFM	
		PHASE 10
IEK740I	IEKTFM I [
I I I		
IEK750I	IEKTFM]	
IEK760I	IEKTFM i	
IEK770I	IEKTFM	
promoom - frmmmmmmom e 1		
IEK800I	MAINGN-IEKTA,] PHASE 25 i	
	TSTSET-IEKVTS,	[
	ADMDGN-IEKVAD	
prmmm oo m oo fommmmommmoomem 1
{ IEK1000I|IEKP30 | PHASE 30

L 1 T J

Appendix G:

Diagnostic Messages

191

APPENDIX H: THE TRACE AND DUMP FACILITIES

Included in the FORTRAN IV (H) compiler
are two optional facilities which provide
output that can be used to analyze compiler
operation and to diagnose compiler
malfunction. These two facilities are
TRACE and DUMP.

TRACE

The TRACE facility can be used to trace
the creation of and the modifications made
to the information table and intermediate
text, and to provide various other types of
diagnostic information. This facility is
activated by the inclusion of the TRACE
keyword parameter in the PARM field of the
EXEC statement used to invoke the compiler.
The format of this parameter is:

TRACE=value
where:

value may be either: (1) any one of

the basic keyword values that appear

in Table 45, or (2) any value that is
formed by adding two or more of these
basic keyword values.

The type of diagnostic information to be
provided by the compiler for a given
compilation or batch of compilations is
determined according to the value specified
for the TRACE keyword. Table 45 defines
the type of diagnostic information produced
for each of the basic keyword values for
the TRACE keyword. If one of these values
is specified, the corresponding information
is provided by the compiler. For example,
if the basic keyword value of 4 is
specified, the compiler generates PHAZ15
diagnostic information.

If the value given to the TRACE keyword
is the sum of two or more basic keyword
values, then the compiler will produce the
type of information that corresponds to
each basic keyword value that was added to
form that value. For example, if the wvalue
20 (the sum of basic keyword values 4 and
16) is specified, the compiler will
generate both PHAZ15 diagnostic information
and Phase 20 diagnostic information.

192

Table 45,

Basic TRACE Keyword Values and

r

|Basic

| Keyword
|values

Ooutput Produced

Phase 10 diagnostic information

‘+—_————— ., ——————— e

PHAZ15 diagnostic information
P

hase 20 diagnostic information

|
|
|
!
[}
|
|
1
[}
1
[}
|
]
[}
t
[}
[}
|
|
[}
1
]
|
!
1
1
[}
1
|
|
1
]
!
i

Printout of:

1.

2.

3.

u.

Information table
intermediate text
appear before the
of STALL in Phase

Information table
appears after the
of STALL in Phase

Intermediate text
appears after the

and

as they
execution
10.

as it
execution
10.

as it
execution

of PHAZ15 in Phase 15.

Information table
appears after the
of CORAL in Phase

Information table
intermediate text
appears after the
of Phase 20.

as it
execution
15.

and
as it
execution

128

|Block size information
|text block (Phase 20)
(]

for each

20)

T

|Diagnostic information from the
|register assignment routines

| (Phase 20)

|Diagnostic information from the
|text optimization routines (Phase

b e e ks (oo o e e, — — — — — — —— — — — N o— . " a— e, o a—

+

| Busy-on-exit information for each
| text block (Phase 20)
1

= — e

}
|Additional diagnostic information
|from the register assignment
|routines (Phase 20)
|Printout of intermediate text and|
|information table before and
|after the execution of Phase 20
L

I
|
|
4
i
|
[
i |
1
[
|
|

3

DUMP

The dump facility, if activated, will
cause abnormal termination of compiler
processing if a program interrupt occurs
during compilation. It will also cause the
main storage areas occupied by the
compiler, as well as any associated data
and system control blocks to be recorded on
an external storage device. The dump
facility is activated by including in the
compile step of the job: (1) the word DUMP

Appendix H:

as a parameter in the PARM field of the
EXEC statement, and (2) a SYSABEND data
definition (DD) statement.

Note: If the DUMP parameter is specified
but the SYSABEND DD statement is omitted,
abnormal termination, accompanied by an
indicative dump, will occur if a program
interrupt is encountered. If a program
interrupt occurs and the DUMP parameter is
not specified, the current compilation will
be deleted and the next compilation will be
attempted.

The Trace and Dump Facilities 193

APPENDIX I: FACILITIES USED BY THE COMPILER

The following statement, built-in functions and bit-setting
facilities are used by the compiler to produce more efficient object
code and more efficient use of storage when compiling the compiler. To
invoke those routines within the compiler which implement the facilities
requires the inclusion of an additional option to the compiler. The
option as specified below is coded:

PARM. procstep=(ese ¢XLyeas)

(Note: The XL subparameter is not positional.)
Failure to pass the XL option to the compiler will result in its failure
to process these features as documented below., The STRUCTURE statement

will be unrecognized and the remaining extensions will be considered as
external functions.

STRUCTURE STATEMENT

.
| GENERAL FORM |

k== o s 1
'STRUCTURE//V:_:_,Vlz,Vla, .o -//V21,V22,V23, e .//an, 'Vnz,vns, e .Vn n

|WHERE: V344Vi2+VisreeeVa1sVazyVaaseeeVn n

I
|
represent names of variables that will be equated to |
displacement values. If these variables are declared in a |
Type statement, this statement must precede the STRUCTURE |
statement. 1

J'

|

Note: The // immediately following the word STRUCTURE may be omitted.

- —— — o — — i e T —————— T ———_———— T — ———— > 1o T o 0m

[— s e e e e

The variables may be implicitly or explicitly declared as any type or
length. They must not be dimensioned and must not appear in COMMON or
EQUIVALENCE statements., A variable may appear more than once in
STRUCTURE statements within a single program or subprogram provided it
is given the same displacement by each program.

If D is the name of a structured variable, it must always appear in
an executable statement with a single subscript, e.g., D(I). An
expression such as D(I) refers to a variable of the type specified for D
which is located in main storage at the base address specified by the
value of the subscript expression, I, plus a displacement equal to the
total number of bytes in the length specification of all the variables
preceding D in the STRUCTURE statement in which it appears. .For the
object program to execute successfully, it is essential that the value
of the subscript plus the displacement always be an integral multiple of
the length of the referenced field. Displacements may not exceed 255.
The subscript expression must be declared as integer or logical.

EXAMPLE:
LOGICAL*1 ADJ, MT
INTEGER CH, PTR
STRUCTURE CH, PTR//ADJ//CH, MT

194

Here the STRUCTURE statement is used to define a 2-word structure
where the high-order byte of each word is overlapped by a 1-byte field.

r T - T Attt - —==1
| | [| |
I | | | |
| b e A e 4
N~ Na—

ADJ MT
~—~—— — e,

CH PTR

If J contains a pointer to such a structure, its fields may be
referenced as ADJ(J), CH(J), MT(J), and PTR(J).

If a structured variable is used incorxrectly the compiler may issue a
diagnostic message. A complete list of the FORTRAN IV (H) compiler
messages appears in the publication IBM System/360 Operating System:
Messages and Codes, Form C28-6631.

BUILT-IN FUNCTIONS

LAND

r=.
GENERAL FORM *

WHERE: a, b may be any 1-byte, 2-byte, or U4-byte logical or integer

|

L

8

|
IIII=QQ.LAND(a'b)0.Q
|

l .

| expression.

b et . e . e sl e

The value of LAND is obtained by adding the individual bits of the
arguments. The resulting value will be considered to be Logical*i4 but
may be used as an integer.

LOR

r
GENERAL FORM |

!
t
r
|
|
|
|
|

—-- -1

|
eee=essLOR(a, ble.. |
[

WHERE: a, b may be any 1l-byte, 2-byte, or U-byte logical or integer |
expression. |

]

The value of LOR is obtained by oring the individual bits of the
arguments. The resulting value will be considered to be Logical#*4 but
may be used as an integer.

Appendix I: Facilities Used By The Compiler 195

LXOR

p -
| GENERAL FORM |

essTFees LXOR(a, b)...

WHERE: a, b may be any l-byte, 2-byte, or U-byte logical or integer
expression.

The value of LXOR is obtained by exclusive oring the individual bits
of the arguments. The resulting value will be considered to be
Logical*4 but may be used as an integer.

LCOMPL

r 1
| GENERAL FORM |
e i
| |
|eee=e..LCOMPL(a) [
| |
|WHERE: a may be any 1-byte, 2-byte, or 4-byte logical or integer |
| expression. |
L J

The value of LCOMPL is obtained by complementing the individual bits
of the argument. The resulting value will be considered to be Logical#*l
but may be used as an integer.

SHFTL and SHFTR

|

| _ _ |
|WHERE: J is a U4-byte variable.

| K is the actual number of bits to be shifted.

L 4

The values of SHFTL and SHFTR are obtained by shifting the first
argument left or right the number of bits specified by K. The resulting
value will be considered to be Logical*# but may be used as an integer.

196

TBIT

r
GENERAL FORM

«ee TBIT(A;K)uwuo

WHERE: A is any variable 4-bytes or less in length.
K is the number assigned to the bit to be tested.

e e s e e b e

|
L
)
|
|
|
|
L

The value of TBIT is .TRUE. or .FALSE. depending on whether bit
position K of the variable A is on or off. Bit 0 is the leftmost bit of
variable A. The resulting value will be declared as Logicalx*l.

MoD_24

GENERAL FORM

]
| |
o e 1
|eoe=eesMOD 24(A) |
I |
|WHERE: A must be a U4-byte integer variable. |
T 4
The value of MOD 24 is the same as its argument except that the
high-order byte is set to zero., The resulting value will be declared
Integer*l,
BIT-SETTING FACILITIES
BITON
[T T T e e e e e e o 1
| GENERAL FORM |
b -—- -1
{
|V = BITON(V,K) |
| |
|WHERE: V must be a single variable; it may be subscripted. |
| K is the number assigned to the bit to be set. |
L J

This facility sets the bit at position K in the variable V "on." Bit
0 is the leftmost bit of variable V.

Appendix I: Facilities Used By The Compiler 197

r
| V=BITOFF(V, K)
I

|WHERE: V must be a single variable; it may be subscripted.
| K is the number assigned to the bit to be set.

e e e S

R SR

This facility sets the bit at position K in the variable V "off."
Bit 0 is the leftmost bit of variable V.

BITFLP

r
| GENERAL FORM

| V=BITFLP(V, K)

|
|WHERE: V must be a single variable; it may be subscripted.
| K is the number assigned to the bit to be set.

This facility sets the bit at position K in the variable V to its
inverse. Bit 0 is the leftmost bit of variable V.

In all of the bit-setting facilities K is restricted to integer
values from 0 to 63 (0<K<63). If V is subscripted, the value of the
subscript must be the same in both uses, to insure that only a single
variable is referenced.

198

APPENDIX J:_ _MICROFICHE DIRECTORY

The microfiche directory (Table 46) is designed to help find named areas of code in
the program listing, which is contained on microfiche cards at installation. Microfiche
cards are filed in alphameric order by object module name. If a control section, entry
point, or table is to be located on microfiche, find the name in column one and note the
associated object module name. You can then find the item on microfiche, via the object
module name; for example, object module IEKOBJT1 is on card IEKOBJT1-1.

The other columns provide a description of the item, its phase, its overlay segment,
its flowchart ID (where applicable), and its subroutine directory table number.

Table 46. Microfiche Directory (Part 1 of 8)

[T e i T T B i e i
| | | | Jchart |
| |Object | | |ID | Sub-
| |Module | I {routine
| | Name and| | |* - Only |Directory
| | CSECT |Overlay|Mentioned|Table

|

_",4"__"__"_

1
|
|
[
|

: I I |
| Symbolic Name |Description |Name |Phase Segment|1n Chart |Number |
___ —_——— 4 _________I

T T T

| ADMDGN-IEKVAD [Code generation routine |IEKVAD |25 | 13 | - |Tab1e 14 |

| I | | | I |

AFIXPI	Entry point	IEKAFP	FSD	1	--	Table 6
AFIXPI-IEKAFP	Exponentiation Routine	IEKAFP	FSD	1	--	Table 6

I I I | | I | I

| ALTRAN-IEKJAL |Ar1thmetlc translation | IEKJAL |15 | 5 | 07 |Table 9 |

o	PR					
ANDOR-IEKJAN	Text generation routine for	IEKJAN	15	5	07+	Table 9
	logical operators					

| | ! | | | I I

| BACMOV-IEKQBM |Text optimization routine | IEKQBM |20 | 9 | 12 |Table 12 |

| | | | | | | I

| BAKT-IEKPB |Structural determination | LEKPB 120 | 8 | 10+% |Table 12 |

e	T					
BITNFP-IEKVFP	Code generation routine	IERKVFP	25	13	--	Table 14
.	[I					
BIZX-1EKPZ	MVX routine	IEKPZ	20	8	10%*	Table 12
BKDMP-IEKRBK	TRACE routine for full	IEXKRBK	20	10	--	Table 12
	register assignment]		
BKPAS-IEKRBP	Local register assignment	IEKRBP	20	10	16	Table 12
S U R						
BLS~IEKSBS	Branching optimization	IEKSBS	20	10	10%*	Table 12
o	PR					
BLTNFN-IEKJBF	In-line function routine	IERIJBF	15	5	07+	Table 9
BRLGL-IEKVBL	Code generation routine	IEKVBL	25	13	--	Table 14
I						
CGEN-IEKWCN	Array initialization area	IEKWCN	25	13	--	Table 14

I | [I | | | |

|CIRCLE-IEKQCL |Utility subroutine | IEKQCL |20 | 9 | - | Table 13 |

| | | | | | | |
| CLASIF-IEKQCF |Ut111ty subroutine | IEKQCF 120 | 9 | - | Table 13 |

e S, N O I N N T, J

Appendix J: Microfiche Dictionary 199

Table 46. Microfiche Directory (Part 2 of 8)

__________________ -T T T T T |
[1 [| | |Chart | |
		Object			ID	Sub-
		Module	I {routine			
		Name and			* - Only	Directory]
		CSECT		overlay	Mentioned	Table
Symbolic Name	[Description	Name	Phase	Segment	in Chart	Number
I i						
r R T --=--—- e 1						
CMAJOR-IEKJA2	Backward connection table	IEKJA2	15/20] 4	-	Table 10	
[I	I				
CMSIZE-IEKGCZ	Base and displacement routine	IEKGCZ	15	6	09%*	Table 9
			I	I		
CNSTCV-IEKKCN	Constant conversion routine	IEKKCN {15	5	-	Table 9	
			I			
CORAL-IEKGCR	Control routine for CORAL	IEKGCR	15] 6	09	Table 9	
	segment of phase 15.					
CPLTST-IEKJCP	Arithmetic triplet routine	IERJCP	15	5	07+	Table 9
I			i [I			
CSORN-IEKCCR	Collection, conversion, and	IEKCCR	10	2	--	Table 8
	entry placement routine					
	I	I	I			
CXIMAG-IEKRCI	Local register assignment	IEKRCI	20	10	-=	Table 12
o	o					
DATOUT-IEKTDT	DATA statement processing	IEXTDT	15	6	09%*	Table 9
A T A A						
I						
[DCLIST-IEKTDC	[Listing routine	IEKTDC	FSD	1 [--	Table 6	
	I					
DELTEX-IEKQDT	Entry point	IERQMT	20	9	--	Table 13
				f I		
DFILE-IEKTDF	DEFINE FILE statement routine	IEKTDF	15	6	09*	Table 9
i	[
DFUNCT-IEKJDF	In-line, external subprogram,	IEKJDF	15	5	07%*	Table 9
Jand library function routine						
	I	I	I			
DSPTCH-IEKCDP	Dispatcher, key word, and	IEKCDP	10	2	03	Table 8
[utility routine						
	I				I	
DUMP15-IEKLER	Error recording routine	IEKLER	15	5	-	Table 9
	I		I I I			
ENDFILE	Entry point	IEKAAQO	FSD	1	01	Table 6
END- IEKUEN]Object module completion	IEKUEN	25	13	21	Table 14
e]					
ENTRY-IEKTEN	Epilogue and prologue	IEKTEN	25	13	21%*	Table 14
	generating routine					
I !				!		
EPILOG-IEKTEP	Subprogram epilogue	IEKTEP	25	13	21%*	Table 14
	generating routine					
	I			I		
EQVAR-IEKGEV	COMMON and EQUIVALENCE	IEKGEV	15 [6	09*	Table 9	
	processing routine]					
I] !			I		
ESD	Entry point	IEKTLOAD	{FSD	1	-	Table 6
		[
FAZ25-IEKP25	COMMON data area	IEKP25	25	13	-	Table 14
		I I				
FCLT50-IEKRFL	Text checking routine	IEKRFL	20	10	--	Table 12
I					[
FILTEX~IEKPFT lEntry point	IEKPGK	20	7 [--	Table 13		
1 L iy 1 L PR						

200

e Table 46.

Microfiche Directory (Part 3 of 8)

mo————=- T ittt it Fom———— K Sutiedtd L it B ittt B Bttt 1
					chart	
	[Object			ID	Sub-	
		Module	I pem———— {routine			
		Name and			* - Only	Directory
		CSECT		Overlay	Mentioned	Table
Symbolic Name	Description	Name	Phase	Segment	[in Chart	Number
e —— fommmmmmmeee- . : $=---—1 1 + 1						
FINISH-IEKJFI	Statement completion routine JIEKJFI	15	5	07+	Table 9	
		I	I			
FIOCS, FIOCS#	Entry points	IEKFIOCS	FSD	1	-	Table 6
					I	
FIXPI, FIXPI#	Entry points	IEKAFP	FSD	1	-	Table 6
FNCALL-IEKVEN	Calling sequence generating	IEKVFN	25	13	20%	Table 14
	routine				I	
[[_						
FOLLOW-IEKQF	Entry point IERKQCL	20	9	-—	Table 13	
			I I			
FORMAT-IEKTFM	Generates format text for	IEKTFM	10	2	-	Table 8
	object module					
					I	
FREE-IEKRFR	Local register assignment IEKRFR	20	10	—=	Table 12	
	routine					
[o ,						
FUNRDY~-IEKJFU	Implicit library function	IEKJFU	15	5	- [Table 9	
	reference routine					
						I
FWDPAS-IEKRFP	Table building routine	IEKRFR	20	10	15	Table 12
FWDPS1-IEKRF1	Local register assignment	IEKRF1	20	10	15%*	Table 12
	routine '			I I		
GENER-IEKLGN	Text output routine]IEKLGN	15	5	08	Table 9
					I	
GENRTN-IEKJGR	Text entry routine	IEKJGR	15	5	07*	Table 9
					! [
GETCD-IEKCGC	Preparatory subroutine	IERKCGC	10	2	03%	Table 8
			I I			
GETDIC-IEKPGC	Entry point	[IEKPGK (20	7	--	Table 13
				I		
GETDIK-IEKPGK	Utility subroutine	IEKPGK	20	7	--	Table 13
			I			
GETWD-IEKCGW	Utility subroutine	IEKCGW	10 [2	-	Table 8	
GLOBAS—-IEKRGB	Global register assignment	IEKRGB	20	10	17	Table 12
	routine			I		
	I				I	
GOTOKK-IEKWKK	Branching routine	IEKWKK	25	13	--	Table 14
				I [
IBCOM, IBCOM#	Entry points	IEKFCOMH	[FSD	1] -	Table 6	
IEKAAOO	Compiler initialization	IEKAROO	FSD	1	01	Table 6
I U A						
IEKAAOL	Default options.	IEKAAOL	FSD	1	-	Table 6
		I	I			
IEKAAQ2	DDNAMES for compiler	IEKAAO2	FSD	1		Table 6
I [I I]				
IEKAA9	Entry point	IEKAAOQO	FSD	1	01%*	Table 6
		I	I I I			
IERAGC	Entry point	IEKAAOOQ	FSD .	1	02%	Table 6
		!	[
IEKAINIT	Processes parameters, gets	IEKAINIT	FSD	2		Table 6
	core		[
R, A e T Ao_——_ N T e J

Appendix J: Microfiche Dictionary 201

|
|
[
|
|
[

e Table 46, Microfiche Directory (Part 4 of 8)
=TT T =" I e T T T T T -/
I I I | [Chart |
| | |Object | | | ID | Sub-
| | |Module | | p——————— {routine
| | | Name and| | |* - Only |Directory
| | | CSECT | |Overlay |Mentioned|Table
|Symbolic Name |Description | Name | Phase|Segment |in Chart |Number
L 4
L} I et bt K g + ----- + ------- 'l' ------------------
| | IEKAREAD | Entry point | IEKCGC |10 | 2 { - | Table 8
l | | | | | |
| IEKARW |Utility subroutine |IEKARW |20 | 7] - |Table 13
| | | | [| |
| IEKATB |Diagnostic trace routine |IEKATB |FSD | 1 | - |Table 6
| | I | | | [
| IEKATM | Timing routine | IEKATM |FSD | 1 | -- |Table 6
| | I | | | !
| IEKCIN |Entry point |IEKCDP |10 | 2 | 03* | Table 8
| | I | | | |
| IEKCLC |Entry point |IEKCCR |10 | 2 | - |Table 8
| | ! I | I
| IEKCS1, |Entry points |IEKCCR |10 | 2 | - |Table 8
| IEKCS2, IEKCS3| | l | | |
| | I | I |
| IEKFCOMH |Formatted compile-time I/0 | IEKFCOMH|FSD | 1 | -- |Table 6
| | routine | | | | |
I | | [I |
| IEKFIOCS | Interface between compiler, |IEKFIOCS|FSD | 1 | - |Table 6
| | IEKFCOMH and QSAM I I I | |
| | I ! I [|
| IEKGA1 |COMMON data area for CORAL |IEKGA1l {15 | 6 | -- |Table 10
[I | | | | |
| IEKGMP | Storage map routine | IEKGMP |25 | 13 | 20% |Table 14
I | | I | |
| TEKIORTN |Entry point | IEKAAQOO |FSD | 1 | -- |Table 6
I I | I | |
| IEKJAZ2 | Backward connection table | IEKJA2 [|15/20] 4 | -- | Table 10
[I | | [
| IEKJA3 |Function information tables |IEKJA3 |15 | 5 | - |Table 1
| I | I | | |
| IEKJAL | Forward connection table | IERJAL4 |15/20] 4 | -- |Table 10
I | | | I [I
IEKJEX	Entry point	IEKKUN	15	5	07*
IEKIMO	Entry point	IEKJCP	15 [5 07+		
	I	I			
IEKKNG	Entry point	IEKKOP	15	5	--
	I			I	
ZEKKNO	Entry point	IERJAN	15	5	07%*
IEKKOS	Coordinate assignment routine	IEKKOS	10	2	o4 *
I		I I [
IEKKPR	Entry point	IEKJDF	15	5	07+ I
I		I I			
LEKKSW	Entry point	IEKKUN	15	5	-—
	I				
IEKLTB	Function table	IEKLTB	15	5	--
[I	I I			
	IEKPOV	Entry point	IERPGK	20	7
!	I I I				
IEKP30	Controlling routine	IEKP30	30	12	22
[I				
' | IEKQAB |Entry point | IEKQAA |20 | 8 | -—- | Table 13
b SO A o R T, N [

202

e Table 46. Microfiche Directory (Part 5 of 8)

r T T T T T T -1
					Chart	
		Object			ID	sub-
		Module		b {routine		
i		Name and			* - Only	Directory
		CSECT		overlay	Mentioned	Table
Symbolic Name	Description	Name	Phase	Segment	in Chart	Number
[N]						
r ¥ G eiet Dem et et f-mmmm- T 1						
IEKTLOAD	ESD, TXT, RLD, and loader END	IEKTLOAD	FSD	1	09%*	Table 6
	record building routine					
I I I						
IEKTXT	Entry point	IEKTLOAD	FSD	1	-	Table 6
I						
IEKUND	Entry point	IEKTLOAD	FSD	1	-	Table 6
IEKURL	Entry point	IEKTLOAD	FSD	1	-	Table 6
I						
IEKUSD	Entry point	IEKTLOAD	FSD	1	-	Table 6
I						
IEKXRS	Uutility routine for XREF	IEKXRS	10 l 2	-	Table 8	
ZEND	Entry point	IEKTLOAD	FSD	T] --	Table 6	
	I					
INVERT-IEKPIV	Entry point	IEKPGK	20	7	-	Table 13
IOSUB-IEKTIS	Calling sequence generating	IEKTIS	25	13	20%	Table 14
A I T						
IOSUB2-IEKTIO	Calling sequence generating	IEKTIO	25	13	-	Table 14
o	R					
KORAN-IEKQKO	Utility subroutine	IEKQKO	20	9	12+#	Table 13
LABEL-IEKTLB	Statement number routine	IEKTLB	25	13	20%*	Table 14
LABTLU~IEKCLT	Statement number utility	IERKCLT	10	2	-	Table 8
	routine I					
	,					
LISTER-IEKTLS	Listing routine	IEKTLS	25	13	-	Table 14
LOC-IEKRL1	Register assignment data area	IEKRL1	20	10	--	Table 12
	I I I	I				
LOOKER-IEKLOK	Subprogram table look up	TEKLOK	15	5	07+	Table 9
	routine I I					
	I					
LORAN-IEKQLO	Entry point	IEKQKO	20	9 [12%	Table 13	
I						
LPSEL-IEKPLS	Control routine	IEKPLS	20	7	10	Table 12
	' !					
MAINGN-IEKTA	Control routine	IEKTA	25	13	20	Table 14
	I				1	
MAINGN2-IEKVM2 [Control routine	IEKVM2	25	13	--	Table 14	
I	I					
.	MATE-IEKLMA	MVS, MVF, and MVX routine	ITEKLMA	15	5	--
MODFIX-IEKQMF	Entry point	IEKQCF	20	9	-	Table 13
MOVTEX-IEKQMT	Utility subroutine	IEKQMT	20	9	-—	Table 13
U e N I N i S N S J
Appendix J: Microfiche Dictionary 203

e Table U46. Microfiche Directory (Part 6 of 8)

L Ittt T-———=——= T~ b Sntiniuiniutnd Setniedabuindebeiets Sttt 1
					Chart	
	[Object			ID	Sub-	
		Module		b= {routine		
		Name and			* - Only	Directory
		CSECT		Overlay	Mentioned	Table
Symbolic Name	Description	Name	Phase	Segment	1n Chart	Number
--------------- e -—- 1 f=mmmt oo						
MSGWRT-IEKP31	Error message writing rout1ne	IEKP31	30	12	22%	Table 15
I						I
NDATA-IEKGDA	Data text routine	IEKGDA	15	6	09+*	Table 9
		I				
OPACHK~IEKKOP	Operand one routine	IEKKOP	15	5	-	Table 9
I		I I		I		
NLIST-IEKTNL	NAMELIST statement routine	IEKTNL	15	6	09%*	Table 9
PACKER-IEKTPK	TXT record packing routine	IEKTPK	25	13	--	Table 14
I I		I		I		
PAGEHEAD	Entry point	IEKAAOL	[FSD	1	-	Table 6
I						
PAREN-IEKKPA	Parenthesis routine	IEKKPA	15	5	07	Table 9
] [I		!		
PARFIX-IEKQPX	Entry point [IERQCF	20	9	~--	Table 13	
		I				
PERFOR-IEKQPF	Constant routine	IEKQPF	20	9	--	Table 13
I	[
PHASB	Entry point	IEKATM	FSD	1	--	Table 6
PHASS	Entry point {IEKATM	[FSD	1	- [Table 6		
	!					
PHAZSS	Entry point	IEKATM	FSD	1	--	Table 6
		I				
I	PHAZ15-IEKJA	Control routine for PHAZ15	IEKJA	15	5	06
	segment of phase 15]]		
					I	
PH10-IEKCAA	COMMON data area	IEKCAA	10	2	-	Table 8
	[[I			
PH15-IEKJA1	COMMON data area	IEKJA1	15	5	-	Table 1
I I			I l			
PLSGEN-IEKVPL	Code generation routine	IERKVPL	25	13	--	Table 14
I I	[I I			
PROLOG-IEKTPR	Subprogram prologue	IEKTPR	25	13	21+#	Table 14
	generating routine					
I I	I					
PUTOUT	Entry point	IEKAPT	FSD	T	--	Table 6
	[[
PUTOUT-IEKAPT	Service routine	IEKAPT	FSD	1 --	Table 6	
		I		[
PUTX-IEKCPX	Entry placement utility	IEKCPX	10	2 l -	Table 8	
	routine I [I	I			
	_ ,			[
REDUCE-IEKQSR	Strength reduction routine	IEKQSR	20	9	13	Table 12
I	I I		!			
REGAS-IEKRRG	Full register assignment	IEKRRG	20	20	14	Table 12
: S I IO R						
RELCOR-IEKRRL	Entry point	IEKRFL	20 [10	19%	Table 12	
	I	I [
RELOPS-IEKKRE	Relational operator routine	IEKKRE [15	5	07*	Table 9	
I I I I I						
RETURN-IEKTRN	RETURN statement routine	IEKTRN	25	13	20%*	Table 14
				I	I	
RLD	Enfry point	IEKTLOAD	FSD	1	--	Table 6
L e e R F B — I I J

204

Table 46. Microfiche Directory (Part 7 of 8)

T f—p—

Symbolic Name escription

RMAJOR-IEKJAH rward connection table

De

Fo
SEARCH-IEKRS Register loading routine
B

SPLRA-IEKRSL asic register assignment
routine

SRPRIZ-IEKQAA |Structured source program
listing routine

SSTAT-I1EKRSS Status setting routine

.--——————._._—-———-h-_.__——_

STALL-IEKGST |COMMON and EQUIVALENCE
| statement processing routine

|
STOPPR-IEKTSR |STOP and PAUSE statement
| routine

|
TXTR-IEKRSX |Text updating routine

n w

|
SUBGEN-IEKVSU |Code generation routine

|
SUBSUM-IEKQSM |Operand and operand value
| replacement routine

|
TALL-IEKRLL |Assigns storage for
| temporaries

|
TARGET-IEKPT |Loop and back target routine

|
TENTXT-IEKVIN |Statement number processing
|and label map routine

|
|
|
|
|
|
t
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| | _
| TIMERC |Entry point
|

|

|

|

|

|

|

|

|

|

|

|

|

|

T

TNSFM-IEKRTF }Entry point

TOPO-IEKPO |Back dominator routine
TOU |Entry point

TSP =Entry point

TST ‘Entry point
TSTSET-IEKVTS lCode generation routine
TXT {Entry point

s MM O U U P e

T

|
STTEST-IEKKST |Replacement statement routine|IEKKST
. . .
UBADD-IEKKSA |Subscript computation routine|IEKKSA

| |
SUBMLT-IEKKSM |Subscript computation routine|IEKKSM

SR —

|Phase|Segment|{in Chart |Number

!
|
|
|

T T
|Chart |
| ID | Sub-

-l

f————————— {routine

|Overlay|Mentioned|Table

|Object

|Module

| Name: and |

|CSECT |

| Name

|IEKJA4 |15/720
|

| IEKRS 120
|

|IEKRSL |20

I |

| |

|IEKQAA |20

I |

| |

|IEKRSS |20

| !

|IEKGST |10

| |

| !

| IEKTSR |25

| |

| |
115

| |

|IEKRSX |20
|
|15
|

|IEKVSU |25
|
115

| |

|IERQSM |20

| |

| |

| IEKRLL |20

| |

| !

| IEKPT |20

l |

|IEKVTN |25

| |

| |

| IEKATM |FSD

| |

| IEKRFL |20

| |

| IEKPO 120

| |

| IEKATM |FSD

| |

| IEKATM |FSD

! |

| IEKATM |FSD

! |

| IERVTS |25

| |

| IEKTLOAD | FSD

B L

Appendix J:

|
|
|* - only |Directory|
|
1

domm -
4 | -- | Table
| |
10 | 17%* | Table
| |
11 | -- | Table
| |
| |
8 | -- | Table
| !
| |
11 | 10%* | Table
| |
2 | ou | Table
| |
| |
13 | -- | Table
| |
| |
5 | 07%* |Table
| |
10 | 18 | Table
| |
5 | 07%* | Table
| I
13 | 20%* | Table
I |
5 | 07+ |Table
|
9 | - |Table
I |
| I
11 | -- | Table
| |
| |
7 | 10% | Table
| |
13 | 20% |Table
| |
| |
1 | -- | Table
| |
10 | - | Table
| |
8 | 10% | Table
| |
1 | -- |Table
| |
1 | -- | Table
| |
1 | -- |Table
| |
13 | -- | Table
| |
1 | -- | Table
B [

Microfiche Dictionary

12

14

12

14

13

12

12

14

12

12

205

Table #46.

r
I
|
|
|
I
[

Symbolic Name

|
| TXTLAB- IEKLAB

I
| TXTREG- IEKLRG
|

I
| TYPLOC-IEKQTL

|

| UNARY-IEKKUN
UNRGEN-IEKVUN
WRITEX-IEKQWT

XARITH-IEKCAR

XCLASS-IEKDCL

| XDATYP- IEKCDT
|

| XDO-IEKCDO

|

| XGO- IEKCGO

|
| XIOOP-IEKCIO

XIOPST-IEKDIO

XPELIM-IEKQXM

REF-IEKXRF

X

SCAN-IEKQXS

XSPECS-IEKCSP

XSUBPG-IEKCSR

XTNDED-IEKCTN

| YSCAN-IEKQYS

|
| ZSCAN POINT

S R

206

Microfiche Directory .(Part 8 of 8)

P T e e q-——————= T E taduiniatuinbe SetubteintebeieS Situtututuindainte
1 | | | |chart | |
[|Object | | | ID | Sub- |
	Module		p-—————— {routine		
	Name and			* - Only	Directory
	CSECT		overlay	{Mentioned	Table
Description	Name	Phase	Segment	in Chart	Number
+---— + + + + +-—-- 1					
				[
Statement number processing	IEKLAB		5	08%*	Table 9
]		
standard text processing	IEKLRG		5	08*	Table 9
routine					
. .					
Strength reduction routine	IEKQTL	20	9	13%	Table 13
I		[I		
Arithmetic triplet and	IEKKUN	15	5	07%*	Table 9
exponentiation operator					
routine					
[[
Code generation routine	IEKVUN	25	13	-	Table 14
[[
Diagnostic trace printing	IEKQWT	20	9	-	Table 13
xroutine					
[[I					
Arithmetic routine	IEKCAR	10	2	-	Table 8
			{		
Text generation utility	IEKDCL	10	2	03%	Table 8
routine					
,	l				
DATA and TYPE keyword routine	IEKCDT	10	2	--	Table 8
[[I	[
DO keyword routine	IERKCDO	10	2	-	Table 8
				[
GO TO keyword routine	IEKCGO	10	2	-	Table 8
[[
Input/output statement	IEKCIO	10	2	-—	Table 8
routine					
ASSIGN, RETURN, FORMAT,	IEKD10	10	2	-—	Table 8
PAUSE, BACKSPACE, REWIND, END					
FILE, STOP, and END table					
entry routine					
				[
Common expression elimination	IEKQXM	20	9	11	Table 12
routine					
[_					
XREF routine	IEKXRF	10	3	-—	Table 8
Local block scan routine	IEKQXS	20	9	-—	Table 13
COMMON, DIMENSION, and	IEKCSP	10	2	i	Table 8
EQUIVALENCE table entry					
routine]
CALL, SUBROUTINE, ENTRY, and	IEKCSR	10	2	bdad	Table 8
FUNCTION table entry routine					
		[
DEFINE FILE, NAMELIST,	IEKCTN	10	2	-	Table 8
IMPLICIT, andSTRUCTURE table					
entry routine					
			I		
Entry point	IEKQXS		9	-	Table 13
[I		
Entry point	TEKQXS		9	-	Table 13
P, i i L i R J

ABS 33
Absolute constant 64
Activity table, global register
assignment 53
Adcon table 40,73,119
space reservation 39,44
starting address of 55
in XREF processing 26
ADCON-IEKAAD 79
Adcon variable 43
Addition, skeleton instructions 173
Additive text, elimination of 67
Address
computation for array elements 180
constant 11,13,41-42
reservation of 69
field of TXT record 69
relative 39
assignment of 13
Adjective codes 144-145
ADMDGN-IEKVAD 111,199
AFIXPI 79,199
AFIXPI-IEKAFP 79,199
AIMAG 33
ALTRAN-IEKJAL 29,34,89,92,199
Anchor point 34
AND 31,34
ANDOR-IEKJAN 34,92,199
Argument save table 34
Arithmetic
expressions
elimination of 6U4-65
reordering 31-32
special processing 31
operations, basic register
assignment 47-48
statements, processing 22
subroutines 22-23
translation 28,29-30,40
Array 19
elements, address computation 181
relative address for 41
Arrays 167
bit strip 71-72
as parameters 181
ASSIGN statement 21,29
Assigned GO TO operator 165

Back dominators 56
determination of 56,57
in common expression elimination 64

Back targets 56,57,184
determination of 58-59
pointer to 62

BACKSPACE statement 71

Backward connections 28
field 39
table 40,52

Backward movement 65-66,105
example of 176

INDEX

BACMOV-IEKQBM 65,66,106,199
BAKT-IEKPB 55,58,59,106,199
Balanced tree notation 121
Base value of equivalence group U2
Base variables 44
Basic register assignment 47,185
Binary
operators 159
shift operation 162
Bit-setting facilities 197
Bit strip arrays 71
BITFLP 198
BITNFP-IEKVFP 111,199
BITOFF 198
BITON 197
BIZX-IEKPZ 60,106,199
BKDMP-IEKRBK. 106,199
BKPAS-IEKRBP. 52,53,106,199
Blanks, in source statements 20
BLKEND field 29,152
Block determination for branching
optimization 55
BLS-IEKSBS b54,55,68,106,199
BLTNFN-IEKJBF 32,33,92,199
Branch :
candidatei 73
constant | 67
instruction optimization 54
operator ﬁB) 153,159
operator (other) 162
optimization 45
OoPT=1 54
OPT=2 68
processing, phase 25 73
table 135-136
entry 71
text entry 64
true or false skeleton instructions 170
variable 67
Branch on index high, low, or equal 161
Branching optimization 45
block determination for 55
OPT=1 5U4-55
OPT=2 68
BRLGL-IEKVBL 111,199
Built-in functions 195
Busy-on-entry 60
table 60-61
Busy-on-exit
criteria 60
data 184-185
full register assignment OPT=2 68
table 59-60
vector field 153
BVA table 140
Byte A usage field
for statement numbers 128-129
for variables 125
Byte B usage table field
for statement numbers 129
for variables 125

Index 207

CALL 22,29

in global register assignment 53

phase 25 processing of 71
Call arguments 164
Call-by-name

parameters 74

variables 44
calling sequence 71
Cataloged procedures 11
CGEN-IEKWCN 111,199
CIRCLE-IEKQCL 108,199
CLASIF-IEKQCF 108,199
Classification

code 20,21

tables 118-119
CMAJOR 37,38,55,57,60,61

CMAJOR-IEKJAZ 94,184,200
CMSIZE-IEKGCZ 92,200
CNSTCV-IEKKCN 92,200

code generation, phase 25 71-73
Collection subroutines 23
common 12,19,21,74
areas table 94
block
name 21
size 25
chain 123
displacement field 123
entries 23,25
expression elimination
example of 175
table 132
Communication table 14,15,79
contents of 14,115-117
commutative operations 32
Compiler
initialization
I/0 flow 11-13
generated branch 35
organization of 11
purpose of 11
size of 14
structure of 13
termination 18-19
Complex
expressions
variables 25
Computed GO TO
operators 161
skeleton instructions 171
CONJG 33
Constant
complex 25
dictionary entry 128
relative addresses for 41
Constant/variable usage information
phase 15 27
constructing text information 69-70
control flow, phase 20 46
conversion subroutines 23
Coordinates 25
assignment of 23,25
CORAL 16,39-u44,184
CORAL-IEKGCR 39,41,42,44,92,200
CPLTST-IERJCP 92,200
Cross reference 12
CSORN-IEKCCR 84,200
in XREF 27

64-65,105

14-15

31-32

34-35

208

Current base address, in register
assignment 48

CXIMAG-IEKRCI 106,200
C1520-IEKJA2 37

Data definition statements 11
DATA statement 13,19,24,143
Data text
phase 10 19
format 6 147
phase 15 format 151
rechaining 39,43
translation 40
DATOUT-IEKTDT 39,40,92,200
DCB 1t
DCBDDNM field 14
DCLIST-IEKTDC 79, 200
DCMPLX 33
DCONJG 33
DECK option 12,13,69
DEFINE FILE
statement 19,39,143
phase 10 19
format 149
text 19
Definition vector field 152,153
Deletion, of compilation 18
DELTEX-IEKQDT 108,200
Depth numbers 56-59
determination of 58
DFILE-IEKTDF 39,43,92,200
DFUNCT-IEKJDF 32,33,92,200

Diagnostic message 187-191
tables
error table 79,142

message pointer 142
DIMENSION statement 21
Direct-linkage calling sequence 71
Directory array 71
Dispatcher subroutine 20
Displacement for adcon 40
Division skeleton instruction 173
DO 23

implied 23

in strength reduction 66
DSPTCH-IEKCDP 20,21,22,23,84,200
Dummy arguments 22
Dump 192-193
DUMP15-IEKLER 92,200

EDIT option 12,13,19,20
EMIN table 51
Eminence table 51
End mark operator 21
End of DO IF 34
End of file 18
END statement 11,18

phase 25 processing of 74
ENDFILE entry point 79,200
ENDFILE statement 18,200

END-IEKUEN 110,200
Entry block 29,35,56-57
Entry coding
main program 16
subprogram main 17
subprogram secondary 19
Entry placement subroutine 22
ENTRY statement 18,29
ENTRY-IEKTEN 110,200
EPILOG-IEKTEP 74,75,111,200
Epilogue 17,19,69,74
Equivalence 24,26
group 21
head 26
variable 21
EQUIVALENCE statement 12,19,21,26,42,
74,118
EQVAR~IEKGEV 39,42,43,92,200
ERCOM-IEKAER 79
Error
code table 75
levels 18,75
phase 10 response to 12
phase 15 response to 13
table 12,75,79
ESD entry point 80,200
ESD record U5
Execute statement 11,14
Exit block 58,60
EXT operator 164
EXTERNAL statement 21,33
External symbol dictionary 11,13,45,68

FAZ25-IEKP25 111,200
FCLT50-IEKRFL 106,200
Field count 24
FILTEX-IEKPFT 108,200
FINISH-IEKJFI 92,201
FIOCS,FIOCS# 79,201
Fixed point multiplication skeleton
instructions 172
FIXPI,FIXPI# 79,201
FLOAT 33
FNCALL-IEKVFN 71,111,201
FOLLOW-IEKQF 108,201
Forcing strength 30-31
definition of 30
table 31
Format
codes with READ/WRITE 16
of source statement after phase 10
text 143
phase 10 19
format 150
translation 24
FORMAT statement 16,19,23,24,143
FORMAT-IEKTFM 23,84,201
FORTRAN system director 11,14-18
Forward
connection 28,35-36,37
table 37,56
target 63
FREE-IEKRFR 106,201
FSD 183
pointer table (see NPTR)

Full register assignment 46,185
control 52
global 51,53
local 50-53
OPT=1 50-54
OPT=2 67-68
table building 52
text updating 52,54
Full-word integer division skeleton
instructions 173
Function arguments 164
Function table 33,136
FUNRDY-IEKJFU 32,922,201

FUNTB1 136
FUNTB2 136
FUNTB3 137

FUNTB4 137
FWDPAS-IEKRFP 52,106,201
FWDPS1-IEKRF1 106,201

GENER-IEKLGN 30,922,201
GENRTN-IEKJGR 92,201
GETCD-IEKCGC 19,84,201
GETDIC-IEKPGC 108,201
GETDIK-IEKPGK 108,201
GETWD-IEKCGW 84,201
GLOBAS-IEKRGB 51,52,53,68,106,201
Global assignment 50-52,53
full register assignment OPT=2 67-68
tables 140
GO TO statement
computed 19,69,135
in gathering forward connection
information 35
GOTOKK-IEKWKK 111,201
GRAVERR 75

H format code 23

Half-word integer division skeleton
instructions 171

Head of equivalence group 42

IBCOM, IBCOM#¥ 79,201
IBCOMRTN 19

ID option 69,116
IEKAAA 14,79
IEKAAD 79
IEKAAQOO0 79,201
IEKAAQO1 79,201
IEKAAO2 79,201
IEKAA9 18,79,201
IEKAER 79

IEKAGC 15,79,201
TEKAINIT 79,201
IEKAPT 80
IEKAREAD 84,202

Index

IEKARW 108,202
IEKATB 79,202
IEKATM 79,202
IEKCAA 15

IEKCDP 20

IEKCIN 84,202
IEKCLC 84,202
IEKCS1l, €S2, CS3 84,202
IEKFCOMH 16,79,202
IEKFIOCS 16,79,202
IEKGALl 94,202
IEKGCZ 40, 44,45,92
IEKGMP 74,112,202
IEKIORTN 79,202
IEKJA2 202

IEKJA3 94,202
IEKJA4 202

IEKJEX 93,202
IEKJMO 92,202
IEKKNG 93,202
IEKKNO 92,202
IEKKOS 25, 84,202
IEKKPR 92,202
IEKKSW 93,202
IEKLFT 33,136
IEKLTB 94,202
IEKPBL 106

Initial value assignment
Initialization

of compiler 14-15

of data fields 14-15

instructions, generation of 16-18

In-line routine 32-33,163

39,43

in branching optimization 55

functions 160
skeleton instructions

167-174
Integer constants, elimination of 66

Intermediate text 12,19,143-166

chains 144-145
phase 20 modifications
Intermediate text entry
format of 144
modifications by phases
20 150-166
Internal statement number
in phase 30 75
IOSUB-IEKTIS 71,111,203
IOSUB2-IEKTIO 111,203
I/0 data list 29
I/0 list items 22
Input/Output requests
processing of 16
request format 16
Input/Output statement 22

156

15 and

12,20

IEKPOP 108 phase 25 processing of 70-71
IEKPOV 108,202 INVERT-IEKPIV 108
IEKP30 112,202 ISN 12,20
IEKP31 112
IEKQAB 108,202
IEKTDC 79
IEKTFM 85 JLEAD 39,131
IEKTLOAD 16,17,80,203 Job statement 11
generating literal data text 24
in relative address assignment 42
space reservation 45
IEKTXT 80,203 Reyword
IEKUND 80,203 pointer table 118-119
IEKURL 80,203 source statement 21
IEKUSD 80,203 subroutines 21
IEKVBL 170 table entry 21
IEKXRS 26,85,203 table entry and text 21
IEND 74,80,203 table 118-119
INVERT-IEKPIV 108,203 KORAN-IEKQKO 108,137,203
IF statement 22,29
IHCFCOMH 23,44
ILEAD 38,131
Implied DO 23
Index register 73
Inert text entry 63,65 LABEL-IEKTLB 70,111,203
Information table 12,15 LABTLU-IEKCLT 85,203
chains 120 in XREF 26
construction of 120 LAND 195
operation of LBIT operator 166
branch table 124 LCOMPL 196
common 122 LIBF operator 164
dictionary 121 Library function 33
equivalence 123 Linkage editor 11,13
literal constant 123 LISTER-IEKTLS 111,203
statement number 25,26,27,122 LIST option 12,13,69

components 19 Listing, structured source program 61
branch table 19,135-136 Literal
common table 19,25,132-134 data text 24
dictionary 19,12u4-129 table 134
literal table 19,134 LMVF 62
entries constructed by phase 10 21 LMVS 62

210

LMVX 62
Load address
operator 162
skeleton instructions 170
Load byte skeleton instructions 170
Load candidate 73
LOAD option 12,13
Loader END record 68,74
Local
assignment tables 139
register assignment 50,52
symbol 44
Location counter 40,75
in relative address assignment 41
LOC-IEKRL1 106,203
Logical
branch operations 159,166
expressions 34
IF statements 20,34
in strength reduction 66
skeleton instructions 173
LOOKER-IEKLOK 93,203
Loop 184
composit matrixes 62
identification 55
number 58
field 58
parameter 61
selection 61-63
Loops
depth numbers of 58
identifying and reordering 59
module 55
LOR 195
LORAN-IEKQLO 108,203
LPSEL-IEKPLS 46,51,53,60,106,203
LXOR 196

Main storage, requests for
phase 10 15
phase 15 15-16
phase 20 15
MAINGN-IEKTA 69-70,71,111,203
MAINGN2-IEKVM2 111,203
MAP option 13,69
Map, storage 13,74
MATE-IEKLMA 34,35,93,203
MBM 137
MBR 137
MCOORD vector 25,43,51,139
Message
number 75,142,187-191
processing 75
tables 142
Messages, error
after phase 25 13
phase 30 processing of 75
MGM 137
Microfiche directory 199-206
Mid-point of dictionary chain 122
Mode 21
Mode field in status mode word 156
MODFIX-IEKQMF 108,203
MoD24 197

MOVTEX-IERKQMT 108,203
MsGM 137

MSGWRT-IEKP31 75,112,204
MSM 137

Multiplicative text, elimination of 66

MVD table 25,43,51
in busy-on-exit 60

entry 35
MVF 25,34,35,152
field 60
MVS 25,34,35,153
MYVU 137
MVV 137
MVW 137

MVX 25, 34,35,153
field in busy-on-exit 60
MXM 137

NADCON table 40,119
use in parameter list optimization
Namelist
dictionaries 43,141-142
entry 44
text 43,143
phase 10 19
format 148
NAMELIST statement 19,43,143
NARGSV 34
NCARD/NCDIN 20,21
NDATA-IEKGDA 39,40,93,204
Negative address constants 22
NLIST-IEKTNL 39,44,93,204
Normal text 15,143
phase 10 19
format 146
NOT 34
operations, skeleton instructions
Not busy on entry, definition of 34
NPTR 24,26,116-118
Null operand 22

Object module
definition of 11
elements of 68-69
generation of entry code 23
Operand 19

modes 126
status for code generation 72
types 126

Operator-operand pair 19
Operators 19
phases 15 and 20 153-155

OPT=0 45
OPT=1 45
OoPT=2 19

structural determination 55-58
Optimization 13

first level 13

levels U6

none 13

second level 13,19

Index

33

170

211

Options
DECK 12,13
determining 16
EDIT 14,15,21,22
Ip 70,115
LIST 12,13,69
Loap 12,13
MAP 13,69
SOURCE 20
XREF 12,26
OP1CHK-IEKKOP
OR 34
Overlay 182-186
supervisor 15

93,204

PACKER-IEKTPK 111,204
Packing 20
PAGEHEAD 79,204
Parameter list
optimization
table 33
processing of 14

33-34

PAREN-IEKKPA 93,204
PARFIX-IEKQPX 108,204
PERFOR-IEKQPF 108,204

Permanent I/0 error 18
PHASB 79,204
Phase loading 15
Phase 10 12
constructuring a cross-reference
control 20
initialization 20
intermediate text 19
Phase 15 13-14
CORAL processing 14,39-45
intermediate text 27
PHAZ15 processing 12,27-38
Phase 20 13
Branching optimization
OPT=1 54-56
OPT=2 68
busy-on-exit information
control flow 46
loop selection 62-63
register assignment
basic OPT=0 47-49
full OPT=1 49-53
full OPT=2 67-68
structural determination 55-58
structured source program listing 60
text optimization OPT=2 63-68
Phase 25 13,68
address constant reservation
prologue and epilogue generation
storage map production 74
text conversion 70-74
Phase 30 13,75
PHASS 79,204
PHAZSS 79,204
PHAZ1S5 15,204
PHAZ15-IEKJA 36,93, 204
PH10-IEKCAA 15,85,204
PH15-IEKJA1l 94,204
Planned overlay structure 182

26-27

59-60

69-70
Tu4-75

212

PLSGEN-IEKVPL 111,204
Powers 32

Preparatory subroutine
Primary adjective code
Primary path 58,59
Problem program save area 24
Program fetch 15

Prologue 17,18,69,7u4-75
PROLOG-IEKTPR 74,111,204
Pushdown table 30

PUTOUT 80,204

PUTOUT-IEKAPT
PUTX-IEKCPX

19,20
21,29

80, 204
85,204

QSAM 14

READ/WRITE
operator for I/O lists 165
statement 16,21,23,44,71
REAL 33
Real multiplication skeleton
instructions 173
REDUCE-IEKQSR 66-67,106,204
REGAS-IEKRRG 52,54,107,204

Register
array 71
assignment
basic OPT=0 u47-49
full OPT=1 49-53
full OPT=2 67-68
phase 20 u45-55,67-68
tables 139
usage 139,141
table 51-52
Registers

reserved 16-17
saving at main program entry 16-17
saving at subprogram program entry 17
Relational operators 34
Relative address assignment 13,39,40-43
RELCOR-IEKRRL 106,204
Relocation
dictionary 11,13,44,68-69
factor 40
of text entries for structural
determination 56
RELOPS-IEKKRE 34,93,204
Reserved registers 54
RETURN statement 60
phase 25 processing of 73
RETURN-IEKTRN 73,111,204
RLD

entry point 80,204
record U5
RMAJOR table 35,38,55
RMAJOR-IEKJAL4 94,205

Root segment 13,182
RUSE table 52,139

Save areas 16-18
Scale factor 24
SEARCH-IEKRS 107,205
Secondary entry point 17
Sequence numbers 22
SF skeleton text 16,143
phase 10 19
format 149
shift skeleton instructions 172
SHFTL 196
SHFTR 196
Simple stores
elimination of 65
example of 177
SIZE parameter 14

Skeleton
array 71
instructions 71-72
SNGL 33
Source

module, listing of 12
program, structured listing of 60
statement processing table 83
SOURCE option 20
Space
allocation, phase 15 39
reservation of adcon table 44
Span 41,180
Special argument text 164
Special text 144
Spill register 53
SPLRA-IEKRSL 49,107,205
SRPRIZ-IEKQRA 60,108,205
SSTAT-IEKRSS 49,50,107,205
STALL-IEKGST 20,85,136,205
functions of 23-26
Standard text, phase 15 format of 157
Statement
functions 29,30,143
processing of 22
skeleton 34
number
chain reordering 28,36-37
as a definition 28
phase 15 format 151
phase 25 processing of 69-70
processing for XREF 26
Statement number/array table 69,128-132
block status field 130
dimension entry format 131
entry format 128
after XREF 121
after phases 15, 20, and 25 130
Status
field in status mode word 156-157
information 46
mode word u8
of operands for code generation 72
in register assignment 49
STOPPR-IEKTSR 111,205
Storage distribution
phase 10 15
phase 15 15
phase 20 16
Storage map
contents of 74
production of 74
Store skeleton instructions 172

Store-fetch information 125
Stored constant 67
Strength reduction 65-67
example of 178-179
STRUCTURE statement 194
Structured source listing 12,13,19-20
STTEST-IEKKST 93,205
STXTR-IEKRSX 49,51,53,107,205
SUBADD-IEKKSA 32,93, 205
SUBGEN-IEKVSU 112,205
SUBMLT-IEKKSM 32,93, 205
Subprograms 17-18,32
not supplied by IBM 59
Subroutine directory
FSD 79-80
phase 10 8u4-86
phase 15 92-93
phase 20 106-107
phase 25 111-112
phase 30 112
Subscript
expressions 31-32
absorption of constants in 180-181
operators, skeleton instructions 171
text entry 69,163
Substitute ddnames 14
SUBSUM IEKQSM 64,108, 205
Subtract operations, skeleton instructions
for 167
Symbol entry for XREF 26
Symbols, processing for XREF 26
SYSDIR-IEKAA9 18
SYSIN data set 11-12,18
SYSLIN data set 11-12,13
SYSPRINT data set 11-12,13,19,26,27,61
SYSPUNCH data set 11-12,13
SYSUT1 data set 11-12,19,60
SYSUT2 data set 11-12,26,27

Table entry subroutines 21
TALL-IEKRLL 107,205
TARGET-IEKPT 61-62,107,205
TBIT 33,197
TENTXT-IEKVTN 74,112,205
Temporary 31
in common expression elimination 64
storage allocation in register
assignment 53
Termination of compiler 14,18-19
Test and set operators 158
Testing a byte logical variable 161
Text
additive text, elimination of 67
block, definition of 29-30
blocking 28
conversion, phase 25 70-71
data 19
define file 19
entry
phase 20 format 157
types 64
format 19
generation subroutines 22-23
information, phase 25 69
intermediate 19
namelist 19
normal, phase 10 15,19

Index 213

optimization #45,62-68 base 43

bit tables 138-139 dictionary entry 125
criteria for (table) 105 after common block processing 128
SF skeleton 16,19 after coordinate assignment 128
special, phase 10 16 after dictionary rechaining 127
TIMERC 79,205 after relative address
TNSFM-IEKRTF 106,205 assignment 128
TOPO-1EKTPO 55-57,106,205 after XREF 127
TOUT 79,205 equivalence 26,124
TRACE 192 Variables
Translation of data text 40 rechaining 25
Tree notation, balanced 122 relative addresses for 40-u43

Triplet 30

TRUSE table 52,135,140-141

TSP 79, 205 WRITEX-IEKQWT 108,206
TST 79,205

TSTSET-IEKVTS 112,205

TXT entry point 80,205 XARITH-IEKCAR 83,85,206
TXT records 23,69,80 XCLASS-IEKRDCL 85,206
TXTLAB-IEKLAB 93,206 XDATYP-IEKCDT 85,206
TXTREG-IEKLRG 93,206 XDO-IEKCDO 85,206

TYPES table 62 XGO-IEKCGO 86,206
TYPLOC-IEKQTL 108,206 XIOOP-IEKCIO 86,206

XIOPST-IEKDIO 86,206
XPELIM-IEKQXM 64-65,96,107,206

XREF

Unary minus 30,32 buffer 26,86

skeleton instructions 170 option 12,26-27,125,127,129,130
UNARY-IEKKUN 32,93,206 phase 10 preparation for 26
Undefined statement numbers 24 processing 26-27,125-130
UNRGEN-IEKVUN 112,206 XREF-IEKXRF 26-27,86,183,206
Usage count 23 XSCAN-IEKQXS 108,206
Use vector field 154 XSPECS-IEKCSP 86,206
Utility XSUBPG-IEKCSR 86,206

subroutines 22-23 XTNDED-IEKCTN 86, 206

list of 108
YSCAN-IEKQYS 108,206

Variable
adcon 43 ZSCAN-IEKQZS 108,206

214

GY28-6642-4

B

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corparation
821 United Nations Plaza, New York, New York 10017
[International}

*¥*s*n UT pa3juTId

7-CH99-8CAD

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216

