
IBM System/360 Operating System

FORTRAN IV (E)

Program Logic Manual

Program Number 360S-FO-092

This publication describes the internal
design of the IBM System/360 Operating
System FORTRAN IV (E~ compiler program.
Program Logic Manuals are intended for use
by IBM customer engineers involved in pro
gram maintenance, and by system programmers
involved in altering the program design.
Program logic information is not necessary
for program operation and use; therefore,
distribution of this manual is limited to
persons with program maintenance or modi
fication responsibilities.

RESTRICTED DISTRIBUTION--SEE ABSTRACT

Y28-6601-1

Program Logic

PREFACE

This manual is organized into three
sections. section 1 is an introduction and
describes the overall structure of the
compiler and its relationship to the oper
ating system. section 2 discusses the
functions and logic of each phase of the
compiler. section 3 includes a series of
flowcharts that show the relationship among
the routines of each phase. Also provided
in this section are phase routine director
ies.

Appendixes at the end of this publica
tion provide information pertaining to:
(1) source statement scan, (2) intermediate
text formats, (3) table formats, (4) main
storage allocation, etc.

Prerequisite to the use of this publica
tion are:

IBM System/360 Operating System: Princi
ples of Operation, Form A22-6821

IBM System/360 Operating System: FORTRAN
IV (E) Language, Form C28-6513

IBM System/360 Operating System: Intro
duction to control Program Logic, Pro
gram Logic Manual, Form Y28-6605

IBM System/360 Operating System: FORTRAN
IV (E) Programmer's Guide, Form C28-6603
(sections "Job Processing" and
"Cataloged Procedures")

Second Edition

ALthough not prerequisite, the following
documents are related to this publication:

IBM System/360 Operating System: FORTRAN
IV (E) library Subprograms, Form
C28-6596

IBM System/360 Operating system: Sequen
tial Access Methods, Program Logic Manu
al, Form Y28-6604

IBM System/360 Operating System: Con
cepts and Facilities, Form C28-6535

IBM System/360 Operating System: Control
Program services, Form C28-6541

IBM System/360 Operating system: Linkage
Editor, Program Logic Manual, Form
Y28-6610

IBM System/360 Operating system: Data
Management, Form C28-6537

IBM System/360 Operating system: system
Generation, Form C28-6554

This compiler is similar in design to
the IBM System/360 Basic Programming sup
port FORTRAN IV Compiler.

This is a major rev~s~on of, and obsoletes, Form Y28-6601-0 (formerly
Z28-6601-0). Significant changes have been made throughout the text.
This edition should be reviewed in its entirety.

Significant changes or additions to the specifications contained in this
publication will be reported in subsequent revisions or Technical
Newsletters.

This pUblication was prepared for production using an IBM computer to
~pdate the text and to control the page and line format. Page
~mpressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, comments may be addressed to
IBM Corporation, Programming Systems publications, Department 058,
PO Box 390, Poughkeepsie, N. Y. 12602

SECTION 1: INTRODUCTION • 7

The Compiler and O~erating System/360.. 7
The Interface Mcdule. • 7
System Macro-Instructions • 7

compiler Organization. • • • • 7

communication Among Compiler Phases. 9
The Communicatien Area. 9
Intermediate Text • 9
Resident Tables . 9

Compiler Control Flow.
Compiler Input/Output Flow. •

9
• 11

Compiler Output -- The Object Module • • 13

Compiler Components ••
Phase 1 • • • • • •
Interface Module .•
Print Buffer Module
Performance Module.
Phase 7 •••
Phase 100 • • • • • • •
Phase 10E
Interlude 10E
Phase 12.
Phase 14.
Interlude 14. • ••••
Phase 15.
Interlude 15.
Phase 20.
Phase 25.
Source Symbol Module. •
otject Listing Module •
Phase 30. • • . . .

SECTION 2: DISCUSSION OF COMPILER
PHASES ••

Phase 1 (IEJFAAAO/IEJFAABO) ••
Initial Entry • • • • • • •

Loading the Interface Module
Loading the Print Buffer Module.
Processing Compiler Options. • •
Loading the Performance Module •
Opening Required Data Control

Blocks. • • • •
Loading Phase 7 •••••••

Subsequent Entries •••••••
Initiating a New Compilation
Terminating the Cerepilation.

Phase 7 (IEJFEAAO) • • • •
Ottaining Main Storage.
Allocating Main Storage

For SPACE Compilations •
For PRFRM Compilations •

Resident Table Construction
Dictionary and Overflow Table. •
SEGMAL • • • • • • • • • • • • •

• 13
• 13
· 14
• 14
• 14
· 14
· 14
• 14
• 15
• 15
• 15
· 15
• 15
• 16
• 16
• 16
• 16
• 16
• 16

• 11

• 17
• 17
• 17
• 19
• 19
• 19

• 20
• 20
• 21
• 21
• 21

• 21
• 21
• 22
• 22
• 22
• 23
• 23
• 23

CONTENTS

Patch Table. • • • • • • • • • 23
Blocking Table and BLDL Tatle. • . 23

Phase 10D (IEJFGAAO) • • . • . • . • 24
Internediate Text Preparation • • • • 24
Construction of Dictionary and

Overflow Table Entries • 25

Phase 10E (IEJFJAAO) • • • • • • • • 25
Interrrediate Text Preparation • • • • 26
Ccnstruction of Dictionary and

Overflow Table Entries • • . 26

Pha se 12 (IEJFLAAO). • • • • 27
Address Assignment. • •• • • 27
Equivalence Statement Processing. • • 28
Branch List Tatle Preparation •• 28
Card Image Preparation. • • • •• 29

Phase 14 (IEJFNAAO). • • • • • • 29
Ferrrat Statereent Precessing • • • 30
READ/WRITE Statement Processing • • • 30
Re~lacing Dictionary Pointers • • • • 31
Miscellaneous Statement Processing. • 31

Phase 15 (IEJFPAAO) ••••
Recrdering Intermediate Text.
Mcdifying Intermediate Text •
Assigning Registers • • • • •
Creating Argument lists • • •
Checking for Statement Errors • •

Phase 20 (IEJFRAAO) .••••••
Precessing of Staterrents That
Require Sutscript Optimization •

Processing of Statereents That
Affect, But Do Not Require,
Subscript Optimization • • •

DO and READ Statements • •
Referenced Statement Numbers •
Subprogram Argurrent. • • • • •

Creating the Argument List Tatle.

Phase 25 (IEJFVAAO).. • • • • •
Generation of Otject Module

• • 32
• • 32

33
• • 33
• • 34
• • 34

• • 34

• • 36

• • 36
• 36

• • 37
• • 37

37

• • 37

Instructions • • • • • • • • •• 38
Completion of Otject Module Tables •. 38

Branch List Table for Statement
Numbers . • • • • • • • • • • • • 39

Branch List Table for SF
Expansicns and DO Statements.

Base Value Table •

Phase 30 (IEJFXAAO) •••
Producing Error and Warning

Messages • • • • • • • • • •
Precessing the END Statement.

SECTION 3: CHARTS AND ROUTINE

39
• 39

• • 40

• • 40
• • 40

DIRECTORIES • •• •• • • • • • • • 41

APPENDIX A: DATA CONTROL BLOCK
MANIPULATION. • • • • • •

For SPACE Compilations. • • • •
For PRFRM Compilations. • • • •

APPENDIX B: TABLES USED BY PHASE LOAD
MODULES • • '. • • • • •

Allocation Table. • •
Routine Displacement Tables
Equivalence Table •
Forcing Value Table
Operations Table. •
Subscript Table • •
Index Mapping Table
Epilog Table. • • •
Message Length Table. •
Message Address Table •
Message Text Table. • •

APPENDIX C: RESIDENT TABLES •
The Dictionary. • • • • • •

Phase 7 Processing • • •
Phases 100 and 10E Processing .•
Phase 12 Processing. • •
Phase 14 Processing. • • • •
Dictionary Entry Format. • •

The Overflow Table. • • • • • •
Organization of the Overflow

Table • • • • • • • • • • •
Construction of the Overflow

Table • • . . • • • • • • •
Use of the Overflow Table ••
Overflow Table Entry • • • .

SEGMAL,. .• • • • • • • • • • • '.
Phase 7 Precessing • • • • •
Phases 100 and 10E Processing ••
Format of SEGMAL

Patch Table • • • • • •
Blocking Table. • •
BLDL Table. • • • •

APPENDIX D: INTERMEDIATE TEXT
An Entry in the Intermediate Text •

Adjective Code Field • • • • • •
Mode/Type Field. • '. . • • • • •
Pointer Field. . • • • • • • • •
An Example of an Intermediate

Text Entry. • • • • • • • •
Unique Forms of Intermediate

Text. • • • • • • • • •
Modifying Intermediate Text

Phase 14 • • • • • •
Phase 15 • • • • • •
Phase 20 •

APPENDIX E: ARRAY DISPLACEMENT
COMPUTATION

One Dimension • • • • •
Two Dimensions. •
Three Dimensicns.

General Subscript Form •
Array Displacement • • •

• 73
• 73
• 73

• 76
• 76
• 76
• 77
· 78
· 78
• 79
· 79
• 80
· 80
• 80
• 80

• 81
• 81
· 81
• 81
· 83
• 83
• 83
· 86

• 86

· 86
· 87
• 87
• 88
• 89
• 89
• 89
• 90
• 91
• 91

• 92
• 92
• 92
• 93
· 93

• 93

• 93
• 97
• 97
• 99
.102

.104

.104

.104

.104

.105

. 106

APPENDIX F: TABLES USED BY THE OBJECT
~ODULE ••••••••••••••••• 107

Branch List Table for Referenced
Statement Numters. • •• • • • • • .107

Branch List Table for SF Expansions
and DO Statements. • • • • • • • • .107

Argument List Table for Subprogram
and SF Calls. • • .108

Base Value Table. • • • • • • .108

APPENDIX G: OBJECT-TIME LIBRARY
SUBPROGRAMS • • • • • .109

IHCFCOME. • • • • • • • • • • • .109
READ/WRITE Routines. • .109
Examples of IHCFCOME READ/WRITE
Statement. Processing. • • • • • .113

I/O Device Manipulation Routines .115
Write-to-Operater Routines •••• 115
utility Routines •. 116

IHCFIOSH. • • • • • • .121
Table and Blocks Used. • .121
Buffering. • • • • • .123
CORmunication With the Control

Program •
Operation. • •••

IHCIBERR. • • • • • •

• .123
• .123
• .128

APPENDIX H: LINKAGES TO THE INTERFACE
MODULE AND THE PERFORMANCE MODULE ••• 130

Linkage to the Interface Module •.• 130
Input/Output Request Linkage •. ~130
End-Of-Phase/Interlude Request

Linkage ••••••••••••. 130
Patch Requests • • • • • • • • • .131
Print control Operations ••••. 131

Linkage to the Performance Module •• 131
Input/Output Request Linkage ••• 131
End-Of-Phase Request Linkage •.• 131

APPENDIX I: DIAGNOSTIC MESSAGES AND
STA!EMENT/EXPRESSION PROCESSING •••• 132

Diagnostic ~essages • • • • • • .132
Informative Messages. • • • .132
Error/Warning Messages. • .132

Statement/Expression Processing ••• 134

APPENDIX J: MAIN STORAGE ALLOCATION •• 137
For Space Compilations. • • .137
For PRFRM Compilations. • .139

APPENDIX K:
(FCC~M)

COMMUNICATION AREA
• .140

APPENDIX L: SOURCE STATEMENT SCAN ••• 143
Prelirrinary Scan. • • • • • •• 143
Classification Scan. • • • • .143
Reserved Word or Arithmetic Scan ••• 144

GLOSSARY • .147

INDEX. ' • • .151

Figure 1. Compiler InFut/Output
structure • • • • • • • • • • • . 11

Figure 2. Compiler Input/Output Flow. • 12
Figure 3. Creation of Object Module • 13
Figure 4. Phase 10D Data Flow . 25
Figure 5. Phase 10E Data Flow • 26
Figure 6. Phase 12 Data Flow. • 27
Figure 7. Phase 14 Data Flow. • 30
Figure 8. Phase 15 Data Flow. • 32
Figure 9. Phase 20 Data Flow. • 35
Figure 10. Phase 25 Data Flow • 38
Figure 11. Phase 30 Data Flow . 40
Figure 12. Data Control Block

Manipulation for SPACE Compilations • • 74
Figure 13. Data Control Block
Manipulation for PRFRM Compilations • • 75

Figure 14. Allocation Table Entry
Format. • • • • • • • • • • • • 76

Figure 15. Phase 100 Routine
Displacement Table Format • • • 77

Figure 16. Phase 10E Routine
DisFlacement Table Format • • • 77

Figure 17. EQUIVALENCE Table Entry
Format. • • • • • • • • • • • • • • 78

Figure 18. Forcing Value Table. • • 78
Figure 19. Operations Table Entry

Forrrat. • • • • • • • • • • • • • • 79
Figure 20. Subscript Table Entry

Format. • • • • • • • • • • • • • • 79
Figure 21. Index MaPFing Table Entry
Forrrat. • • • • • • • • • • • • • • • • 79
F~gure 22. Epilog Table Entry Format. • 80
Figure 23. The Dictionary as
Constructed by Phase 7. • • • • 82

Figure 24. Removing an Entry From the
End of a Dictionary Chain • • • • • 83

Figure 25. Removing an Entry From the
Middle of a Dictionary Chain. • • • 83

Figure 26. General Form of a
Dictionary Entry. • • • • • ~ • • • 83

Figure 21. Function of Each Subfield
in the Dictionary Usage Field • • • 84

Figure 28. The Various Mode/Type
Combinations. • • • • • • • • • • • 85

Figure 29. Phases That Enter
Information Into Specific Fields of a
Dictionary Entry. • • • • • • • . 85

Figure 30. ~he Overflow Table Index
as Constructed by Phase 1 • • • • • • • 86

FIGURES

Figure 31. Format of Dimension
Information in the Overflow Table • • • 87

Figure 32. Forrr-at of Subscript
Information in the Overflow Table • . . 88

Figure 33. Format of Statement Number
Information in the Overflow Table • • • 88

Figure 34. Interrrediate Text Word
Forrrat. • • • • • . • • • • • • • 92

Figure 35. Adjective Codes as Used in
Phases 100 and 10E. • • • • • • • 94

Figure 36. Example of Input to Phase
14.. •..• . • • • • • • • • 98

Figure 37. Example of Output from
Phase 14. • • • • • • • • • • • • • • . 98

Figure 38. Subscript Intermediate
Text Input Format • • • • • • • • • • .102

Figure 39. Subscript Intermediate
Text Output From Phase 20 -- SAOP
Adjective Code ••••••••••••• 103

Figure 40. Subscript Intermediate
Text Output from Phase 20 -- XOP
Adjective Code ••••••••••••• 103

Figure 41. Subscript Intermediate
Text Output from Phase 20 -- AOP
Adjective Code ••••••••••••• 103

Figure 42. Referencing a Specified
Element in Array •••••••••••• 105

Figure 43. Forrrat of Branch List
Table for Referenced Statement
Numbers. • • • • • • • • • .107

Figure 44. Format of Branch List
Table for SF Expansions and DO Loops •• 107

Figure 45. Format of Argument List
Tatle for Subprogram and SF Calls ••• 108

Figure 46. Format of Base Value Table .108
Figure 47. End of Phase 1 (initial
entry)..137

Figure 48. End of Phase 1 (subsequent
entries)137

Figure 49. End of Phase 7. . 137
Figure 50. Phases 100 and 10E, and

Interlude 10E • • • • • • • '. •• .138
Figure 51. Phases 12 and 14, and

Interlude 14. • • • • • • • • •• .138
Figure 52. Phase 15 and Interlude 15 •• 138
Figure 53. Phases 20, 25, and 30 •••• 138
Figure 54. Main Storage Allocation

for a PRFRM Compilation •••••••• 139

TABLES

Table 1. compiler CowFonents and
Their Major Functions • • . • 8

Table 2. Phase 1 ~ain
Routine/Subroutine Directory. • 43

Table 3. Phase 7 Main
Routine/Subroutine Directory. • 47

Table 4. Phase 10D Statement
Processing. • • • • • • • • • • 49

Table 5. Phase 10D Main
Routine/Subroutine Directory. • 50

Table 6. Phase 10E Statement
Processing. • • • • • • • • • • 52

Table 7. Phase 10E Main
Routine/Subroutine Directory. • 53

Table 8. Phase 12 Main
Routine/Subroutine Directory. • 55

Table 9. Phase 14 Statement
processing (FORMAT Statements
Excluded) • • • • • • • • • • • • • 57

Table 10. Phase 14 FORMAT Statement
Processing. • • • • • • '. • 58

Table 11. Phase 14 Main
Routine/Subroutine Directory. • 58

Table 12. Phase 15 Nonarithmetic
Statement Processing. • • • • • 61

Table 13. Phase 15 Arithmetic
Operator Proces sing • • • • • • 62

Table 14. Phase 15 Main
Routine/Subroutine Directory. • 63

Table 15. Phase 20 Nonsubscript
Optimization Processing • • . . 66

Table 16. Phase 20 SubscriFt
Optimization Processing _ • • • 66

CHARTS

Chart 00. Overall CowFiler Control
Flow. • • • • • • • • • • • • • • • • • 10

Chart 01. Phase 1 (IEJFAAAO/IEJFAABO)
Overall Logic Diagraro • • • • • • • • • 42

Chart 02. Interface Module (IEJFAGAO)
Routines. • • • • • • • • • • • 44

Chart 03. Performance Module
(IEJFAPAO) Routines • • • • • • 45

Chart 04. Phase 7 (IEJFEAAO) Overall
Logic Diagram • _ • • • • • • • • • • • 46

Chart 05. Phase 100 (IEJFGAAO)
Overall Logic Diagra~ • _ • • • . 48

Chart 06. Phase 10E (IEJFJAAO)
Overall Logic Diagram • • • • • 51

Chart 07. Phase 12 CIEJFLAAO) Overall
Logic Diagram • • • • • • . • • • • • . 54

Chart 08. Phase 14 (IEJFNAAO) Overall
Logic Diagram • • • • • • • • • • • • • 56

Chart 09. Phase 15 (IEJFPAAO) Overall
Logic Diagram • • 60

Table 17. Phase 20 Main
Routine/Subroutine Directory.

Table 18. Phase 25 Statement and
Adjective Code Processing • • •

Table 19. Phase 25 Main
Routine/Subroutine Directory ••

Table 20. Phase 30 Main
Routine/Subroutine Directory. •

Table 21. IHCFCOME FORMAT Code

• • 67

69

70

72

Processing. • • • • • • • • • • . .111
Table 22. IHCFCOME Processing for a

READ Requiring a Format. • • • .113
Table 23. IHCFCOME Processing for a

WRITE Requiring a Format. • • • .114
Table 24. IHCFCOME Processing for a

READ Not Requiring a Format. • .114
Table 25. IHCFCOME Processing for a

WRITE Not Requiring a Format. • .115
Table 26. IHCFCOME Routine/Subroutine
Directory ••••••••••••••• 120

Table 27. IHCFIOSH Routine/Subroutine
Directory • • • '. • • .128

Table 28. Operation Field Bit
Meanings. • • • • • • • • • • • • .130

Table 29. Data Set Disposition Field
Bit Meanings •.•••••••.•••. 130

Table 30. Symbolic and Actual Names
of Ccmpiler Components. . • • • • • • .131

Table 31. Informative Messages ••••• 132
Table 32. Error/Warning Messages •••• 132
Table 33. Statement/Expression

Processing. • • • • • • • • • • • .135
Table 34. Comrrunication Area. • • .140

Chart 10. Phase 20 (IEJFRAAO) Overall
Logic Diagram • • • • • • • • • • • • . 65

Chart 11. Phase 25 (IEJFVAAO) Overall
Logic Diagram • • • • • • • • • • . • . 68

Chart 12. Phase 30 (IEJFXAAO) Overall
Logic Diagram • • • • • • • • 71

Chart 13. IHCFCOME Overall Logic
Diagram and utility Routines~ • • .117

Chart 14. Implem~ntation of
READ/WRITE Source Statements. • • .118

Chart 15. Device Manipulation and
Write-to-Operator Routines. • • .119

Chart 16. IHCFIOSH Overall Logic
Diagram •••••••••••••••• 126

Chart 17. Execution-time I/O Recovery
Procedure

Chart 18.
Diagram •

Chart 19.

• .127
IHCIBERR Overall Logic
• • • • • • • '. • • • .129
READ Statement Scan Logic •• 146

The IBM System/360 Operating System
FORTRAN IV (E) compiler analyzes source
modules written in the FORTRAN IV (E)
language and transforms them into object
modules suitable for input to the linkage
editor for subsequent execution on the IBM
System/360. If the compiler detects errors
in the source module, appropriate error
messages are produced.

THE COMPILER AND OPERATING SYSTEM/360

The FORTRAN IV (E) compiler is a pro
cessing program of the IBM System/360 Oper
ating System. As a processing program, the
compiler communicates with the operating
system control program for input/output and
other services. A general description of
the control program is given in the publi
cation IBM System/360 Operating system:
Introduction to Control Program Logic, Pro
gram Logic Manual.

A compilation, or batch of compilations.,
is introduced as a job step under the
control of the operating system via the job
statement (JOB), the execute statement
(EXEC), and the data definition statements
(DO) for the input/output data sets. To
keep th€se statements at a minimum (in the
input job stream), cataloged procedures are
provided. A discussion of the introduction
of a FORTRAN IV (E) compilation as a job
step and of the available cataloged proce
dures is given in the publication IBM
System/360 Operating System: FORTRAN IV (E)
Programmer's Guide.

The compiler initially receives control
from a calling program of the operating
system (e,. g., the initiator/terminator) by
means of a supervisor-assisted linkage.
Once the compiler receives control, it
maintains communication with the operating
system through:

• The interface module
• system macro-instructions

THE INTERFACE MODULE

The interface module, a component of the
FORTRAN IV (E) compiler, resides on the
operating system library (SYS1.LINKLIB).

SECTION 1: INTRODUCTION

When the compiler receives control, it
loads, via the LOAD macro-instruction, the
interface module into main storage where it
remains throughout the job step. The
interface module processes all input/output
requests of the coropiler. The requests are
initiated by a linkage to the interface
module. The pararr.eters necessary for I/O
operations are passed to the interface
module via this linkage. The interface
module then links to the BSAM (basic
sequential access method) read/write rou
tine via the READ/WRITE macro-instruction.
(A description of BSAM and the correspond
ing read/write routines is given in the
publication IBM System/360 Operating Sys
tem: seguential Access Methods, Program
Logic ~anual.)

SYSTEM MACRO-INSTRUCTIONS

Whenever the XCTL, LOAD, DELETE, OPEN,
CLOSE, READ, WRITE, CHECK, RDJFCB, GETMAIN,
FREEMAIN, BLDL, SPIE, or TIME macro
instruction is issued, control is given
directly to the operating system to execute
the requested service.

when the job step (a single compilation
or batch of comp·ilations) is terminated,
control is returned to the calling program
via the RETURN macro-instruction.

COMPILER ORGANIZATION

The FORTRAN IV (E) compiler consists of
several components, each of which exists as
a separate load module on the operating
system library (SYS1.LINKLIB). The
components are:

• Phases (1, 7, 100, 10E, 12, 14, 15, 20,
25, and 30).

• Interludes (10E, 14, and 15).
• Performance module.
• Interface module.
• Print buffer module.
• Source symbol module.
• Object listing module.

The compiler components and their major
functions are shown in Table 1.

Section 1: Introduction 7

Table 1. Compiler Components and Their Major Functions

r--------------T--------------------------, r--------------T--------------------------,
I I I I I I
I COMPONENT I MAIN FUNCTION(s) I I COMPONENT I MAIN FUNCTION(s) I
I I I I' I I
~--------------+--------------------------~ .--------------+--------------------------~
IPhase 1 linitializes compiler I IPhase 14 Iprocesses FORMAT and READ/I
I (IEJFAAAO) I I I (IEJFNAAO) IWRITE statements I
~--------------+--------------------------~ I I I
I Interface I processes compiler 1/01 .--------------+--------------------------~
I module I requests for all compila-I I Interlude 14 I provides additional mainl
I (IEJFAGAO) Itions, and end-of-phase/l I (IEJFNGAO) I storage for Phase 151
I I interlude requests fori I I(executed only for SPACEI
I ISPACE compilations I I I compilations) I
~--------------+--------------------------~ ~--------------+--------------------------~
IPrint buffer I contains two 1/0 buffers I IPhase 15 I processes arithmetic I
I module I that are used for thel I (IEJFPAAO) I expressions I
I (IEJFAKAO) ISYSIN and SYSPRINT datal ~--------------+--------------------------~
I I sets I I Interlude 15 lensures that BSAM routines I
~--------------+--------------------------~ I (IEJFPGAO) I required in subsequent I
I Performance Ireduces compilation timel I I phases are present I
I module I (loaded into main storage I I I (executed only for SPACE I
I (IEJFAPAO) land executed only fori I I compilations) I
I l PRFRM option); deblocksl ~--------------+--------------------------~
I I compiler input and blocks I I Phase 20 . I optimizes subscript I
I Icompiler output if block-I I (IEJFRAAO) I expressions I
I ling is specified; andl I I I
I I processes end-of-phasel ~--------------+--------------------------~
I Irequests for PRFRM compi-I IPhase 25 Igenerates object coding I
I I lations I I (IEJFVAAO) I I
~--------------+--------------------------~ ~--------------+--------------------------~
IPhase 7 lobtains and allocates mainl ISource symbol lused ty Phase 12 to con-I
I (IEJFEAAO) I storage for resident I I module Itain the names of all var-I
I Itables and internal textl I (IEJFAXAO) liatles and constants usedl
I I buffers. (If the PRFRMI I lin the source modules andl
I foption and blocking arel I Itheir relative addresses I
I I specified, Phase 7 alsol I I (loaded into main storage I
I I obtains and allocates mainl I lonly if the object listingl
I I storage for 1/0 buffers tol I loption is specified and if I
I Ibe used by the block/l I Ithe object listing facili-I
I I deblock routine of thel I Ity is enabled) I
I I performance module.) I .--------------+--------------------------~
~--------------+--------------------------~ 10bject listinglused ty Phase 25 to gener-I
IPhase 10D I transforms nonexecutable I lmodule late the object module I
I (IEJFGAAO) Istatements into intermedi-I I (IEJFVCAO) I listing (loaded into mainl
I late text I I Istorage only if the objectl
~--------------+--------------------------~ I Ilisting option is speci-I
IPhase 10E I transforms executable I I Ified and if the objectl
I (IEJFJAAO) Istatements into intermedi-I I I listing facility isl
I late text I I I enabled) I
~--------------+--------------------------~ .--------------+--------------------------~
IInterlude 10E lopens data control blocks I IPhase 30 I generates error/warning I
I (IEJFJGAO) Irequired by Phases 12 andl I (IEJFXAAO) Imessages and processes thel
I 114 (executed only fori I lEND statement I
I ISPACE compilations) I .--------------+--------------------------~
~--------------+--------------------------~ IPhase 1 Iterminates compilation (inl
IPhase 12 I processes COMMON andl I (IEJFAABO) Ithe case of a batch compi~1
I (IEJFLAAO) I EQUIVALENCE statements, I I Ilation, Phase 1 performs I
I land assigns relative I I Itransitional processing tol
I laddresses to variables andl I I initiate the nextl
I I constants I I I compilation) I L ______________ ~ __________________________ J L _________ L _________________ J

8

COMMUNICATION AMONG COMPILER PHASES

When a compiler is divided into more
than one phase, communication among the
phases is required. Communication among
the phases of the FORTRAN IV (E) compiler
is implemented via:

• The communication area.
• Intermediate text.
• Resident tables.

THE COMMUNICATION AREA

The communication area (FCOMM) is a
central gathering area (a portion of the
interface module) for information common to
the phases. It is used to communicate this
information, when necessary, among the
phases.

INTERMEDIATE TEXT

Source module statements (executable and
nonexecutable) are converted into an inter
nal text format (intermediate text). This
intermediate text, once it is created, is
used as input to the subsequent phases of
the compiler. This text is eventually
transformed into machine language instruc
tions.

RESIDENT TABLES

The resident tables are the dictionary,
the overflow table, the segment address
list (SEGMAL) " the patch table, the block
ing table" and the BLDL table. The dic
tionary is a reference area containing
information about variables, arrays, con
stants, and data set reference numbers used
in the source module. The overflow table
contains all dimension, subscript" and
statement numb~r information within the
source module. SEGMAL is used for main
storage allocation wi thin the compiler .•
The patch table contains information to be
used to modify compiler components. The
blocking table contains information neces
sary for deblocking compiler input and
blocking compiler output for PRFRM compila
tions. The BLDL table provides the infor
mation necessary for transferring control
from one component to the next for PRFRM
compilations. (The blocking table and the
BLDL table reside in main storage only for
PRFRM compilations.)

COMPILER CONTROL FLOW

If the SPACE option is specified by the
user, control is passed among the compo
nents of the compiler via the interface
module. After each component has been
executed, that co~ponent branches to the
interface module with the name of the
component to be executed next. The inter
face module then issues an XCTL (transfer
control) macro-instruction to the next com
ponent.

If the PRFRM option is specified by the
user, control is passed among the compo
nents of the compiler via the performance
module. After each component has been
executed, that component branches to the
performance module with the name of the
component to be executed next. If the next
component is an interlude, the performance
module bypasses the execution of the inter
lude and transfers control, via the XCTL
macro-instruction, to the next phase of the
compiler. If the next component is a
phase, the performance module immediately
transfers control to that phase.

Note: The interludes are only executed if
the SPACE option is specified by the user.
(The SPACE option is chosen by the user if
the amount of main storage that is avail
able for compilation is limited.) Each
interlude first closes the data control
blocks for all the data sets that are open,
and then opens only those for the data sets
that are required by subsequent phases.
This process decreases the size of the
currently required BSAM routines and pro
vides the additional main storage necessary
to compile source modules in an environment
in which the amount of available main
storage is limited.

The performance module is loaded into
main storage and executed only if the PRFRM
option is specified by the user. (The
PRFRM option is chosen by the user if he
desires maximum compiler efficiency, and if
the amount of available main storage is not
a limitation.) A PRFRM compilation elimi
nates the execution of the interludes. The
execution of the interludes can be bypassed
because enough rr.ain storage is available to
allow Phase 1 to initially open the data
control blocks for all the data sets that
are required for the entire compilation.
The data control blocks are closed only at
the end of the compilation. Bypassing the
execution of the interludes decreases com
pilation time and therefore, increases
overall compiler efficiency.

The overall compiler control flow is
illustrated in Chart 00.

Section 1: Introduction 9

Chart 00. Overall Compiler Control Flow

****AI *********
* CALLING *
* PROGRAM

I
AS~~ ~TED I SUri~~!~~R

I
v

*****61**********
* * * * PHASE 1

* * *****************

I
v .*.

C1 * •
• * *.

.* *. YES

.~INAL ENTR~*'*~
. .

* •• * * NO

XC I TL RE TURN

V
*****01********** V
... ... ****02*********

* CALLING *
PHASE 7 PROGRAM *

* * *
* * *************** r ... · ..

v
.*. .*.

El *. E2 *.
• * *. .* * •

• * ENOUGH *. NO .* SPACE *. SPACE
.MAIN STORAGE .------->*. OR PRFRM .* .

. . *. .*
.. *..*

* •• * * •• *

xcj,:" iP""
v .*.

*****Fl********** F2 *.

***** * .,**********
* * * UNCONDITIONAL * • * GETMAI N :
********}********

... * .* *. ****F3*********

PHASE 10D

xcj"
v

*****G 1 **********
* *

PHASE 10E *
* *
* *****************

I v
• *.

HI * •
• * *.

• * SPACE *. *. OR PRFRM
. .

. .
* •• *

*SPACE

xclTL
I
v

:****J 1 *********:
* * * INTERLUDE IDE *
* *

* *****************

xcj;,
v

*****K1**********
* *

PRFRM

*XCTL

.* *. YES * XCTL TO *
.~LOCKED I/~*.*-------+.: PHASE 1

.... • * *************** * •• *

x<FO
V

****G2*********,
* PHASE I *
* (RESTART *
* COMPILATION) *

ALTER PRFRM RUN
TO SPACE RUN

TERMINATE
COMPILATION

*****A4**********
* * * * ,.--->: PHASE 14 *

* * *****************

I
v .*.

84 *.
.* * •

• * SPACE *. PRFRM
. OR PRFRM .-,

. .
. .

* •• *

"j::m
v

:****C4*********:
* * : INTERLUDE 14

* *****************

"j;,
v

*****04**********
* *

PHASE 15 *
* * * * *****************

I v .*.
E4 * •

• * * .
.* SPACE *. PRFRM

. OR PRFRM .
. .

. .
* •. *

"j::m
v

"****F4**********
* * * : INTERLUDE 15

* * *****************

xcj;,
v

*****G4**********
* * * * * PHASE 20 *

* *****************

I v
.*. .* .

H4 *. H5 *. NOLOAD
.* *. .* * •

.* ANY *. YES .* LOAD *.
.SOURCE MODULE.------->*. OR NOLOAD '*l

. ERRORS . *. .*
.. *..*

* •• * * •• *

jc'O i 'OAO w,

*****J~~!;******* *****J5********** J
* *... * ... * * ...
* PHASE 25 *----->* PHASE 30 *<
* ... * * * ... * ...
***************** *****************

XC TL

v
* ****K5********* *

PHASE 12 *--~ * PHASE 1

* *****************

10

INITIATE NEW COMPILATION OR
RETURN CONTROL TO CALLING PROGRAM

COMPILER INPUT/OUTPUT FLOW

The source modules to be compiled are
read into main storage by the compiler from
the SYSIN data set. The compiler uses
SYSUT1 and SYSUT2 as intermediate work data
sets. (If the buffers used for reading and
writing on these work data sets are large
enough to contain the source module, then
this data is retained in main storage.)
The SYSLIN, .SYSPRINT, and SYSPUNCH data

sets are used for the output of the compi
lation. (SYSLIN is used only if the LOAD
option is specified; SYSPUNCH is used only
if the DECK option is specified.)

Figure 1 shows the compiler input/output
structure.

Figure 2 shows the compiler input/output
flow and includes intermediate input to and
intermediate output from the various phases
of the compiler.

r------------,
'Source Module I
, (SYSIN) ,
L------T------J

1
I
I
I

SYSUT1
and

SYSUT2

r-----t-----, r------------,
I t-I ---t~~1 Intermedia te I
'COMPILER I Iwork data I
I I.. Isets I L-----T-----J L ____________ J

I
I
I

r---------T-------------T-------------t---T----------------T---------------,
1 1 I 1 I I

SOURCE MAP I DECK LOAD For all com- Object I listing
Option Option Option Option pilations Option($>

r----t---, r---t----, r------t--------, r------t--------, r-----t-----, r-------t-------,
I Source I IStorage I I Object Module I I Object Module I I Error and t I Object Module I
I Module I IMap I 1 (ESD,TXT,RLD, I I (ESD,TXT,RLD, I I Warning I I Listing (if I
I Listing \ \ I \ and END card \ I and END card I I Messages 1 I the object I
I I I I I images) I I images) I I (if any) I I listing facil-I
I I I I I I , I , I I ity is en- I
I I I I I I , 1 I I I abled> , L ________ J L ________ J L _______________ J L _______________ J L ___________ J L _______________ J

SYSPRINT SYSPRINT SYSPUNCH SYSLIN SYSPRINT SYSPRINT

Figure 1. Compiler Input/Output Structure

section 1: Introduction 11

SYSIN

SYSIN

SYSUT2 or
Main
Storage

Main
Storage

SYSUTl or
Main
Storage

Main
Storage

SYSUT2 or
Main
Storage

SYSUTl or
Main
Storage

Main
Storage

SYSUT2 or
Main
Storage

SYSUTl or
Main
Storage

Input to
Compiler
ComponenTs

Patch Records
if any

FORTRAN Source
Module

COMMON and
EQUIVALENCE

Text

Dictionary and
Overflow Table

Intermediate Text
for Statement

Functions and
Executable
Statements

Dictionary I
I

Intermediate Text I

Intermediate Text I

Overflow Table

I
Intermediate Text

I

Branch List Tables
and

Base Value Table

Campi ler Components
That Generate

Output from
Compiler
Components Campi ler Output

J Phase 7

-I

Declarative Statements I

~
Phase 10D

I Dictionary and 1M ' St
Overflow Table am orage

Statement Function:~
Executable Statements

Phase 10E

Phase 12

~
Phase 14

J
l

Phase 15

J Phase 20

1 Phase 25

J Phase 30

List of Patch Records if any,
Compiler Informative Messages y Dictionary and

Main Storage
Overflow Table

Intermediate
Text for FORMAT, SYSUn or Main

~ FUNCTlON,o", '''"'''' SUBROUTINE
Statements

Source Statement Li sti ng of Declarati ve
Statements if SOURCE option is in Effect

~ 1",.~.Ho" r",
For Declarative SYSUT2 or Main

Statements Storage

Di ctionary and
Main Storage Overflow Table

Intermediate Text
for Statement

SYSUTI or Main Functions and
Executable

Storage

Statements

Source Statement Listing of Statement
Functions and Executable Statements if
SOURCE Ootion is in Effect

~" Mop of Add,,~, A.,I,,,,,, by
ESD Card Images for Section

Phase 12 if MAP Option Is in Effect Definition, Entry Point,
External Symbols, and Entries
in COMMON; TXT Card

Dictionary and
Main Storage

Images for Dictionary
Overflow Table Constants; and RLD Card

images for Address Constants

SYSUT2 or Main TXT Card Images for H Modi'"
I ntermediate Text Storage FORMA T Statements

Potch Records, Source Object Module
Module Listing, Storage (ESD, RLD, and

Modified SYSUTl or Map, Object Module TXT Card Images)

Intermediate Text Main Listing, and Diagnostic

Storage Messages

SYSLIN
SYSPRINT and/or

~ Modlfl" SYSUT2 or SYSPUNCH
Intermediate Text Main

(Subscript Text Storage
Optimized)

~ Storage Map of External References and Generated
Literals if MAP Option is in Effect

~ ~~,h "'''obl.. mUTI ~ Mo'"
and ~~s~l:alue Storage

Storage Map of Referenced Statement Numbers if MAP
Option Is in Effect; and Object Module Listing if
Object Listing Option is in Effect

I

I List of ErrorjWarning Messages if any; and SIZE OF
COMMON, SIZE OF OBJECT MODULE Message

E SD and RLD Card I mages
for Externally Referenced
Library Subprograms; and
TXT and RLD Card Images
for Generated Literals
and Arguments List Table
Entries

TXT Card Images for Object
Module Instructions, and RLD
Card Images for Address
Constants

TXT and RLD Card Images
for Branch List Tables and
Base Value Table, and
END of Object Module
Indicator Onl (Y if Phase 30
is Entered From Phase 25 -
Refer to Chart 00)

Figure 2. Compiler In~ut/Output Flow

12

COMPILER OUTPUT -- THE OBJECT MODULE

The object module compiled from the
FORTRAN source module is not constructed in
its entirety by anyone phase; the various
components of the object module are gener
ated throughout the compilation. Figure 3
indicates what each phase contributes to
the generation of the object module. An
object module is created for use as input
to the linkage editor, which prepares
object modules for execution on the IBM
System/360.

An object module consists of control
dictionaries (external symbol dictionary
and relocation dictionary), text, and an
END statement. The external symbol dic
tionary (ESD) contains the external symbols
that are defined or referred to in the
module. The relocation dictionary (RLD)
contains information about address con
stants in the object module. (An address
constant designates the relative storage
address into which the address of a rou
tine, library subprogram, or sYRbol is to
be relocated.) The text (TXT) contains the
instructions and data of the object module.
The END statement indicates the end of the
object module.

The object module, after being processed
by the linkage editor, is executed on the
IBM system/360 in conjunction with the
following members of the FORTRAN system
library (SYS1.FORTLIB):

• IHCFCOME
• IHCFIOSH

I HCFCOME performs object-time implemen
tation of the following FORTRAN statements:

• READ and WRITE
• BACKSPACE, REWIND, and ENDFILE
• S'IOP and PAUSE

In addition, IHCFCOME converts input and
output data into the formats indicated by
the FORMAT statements. IHCFCOME also proc
esses object-time errors and arithmetic
type program interruptions and terminates
the execution of the load module.

IHCFCOME itself does not actually
perform the reading from and writing onto
data sets, or I/O device manipulations; it
submits requests for such operations to
IHCFIOSH (the FORTRAN Input/Output System).
IHCFIOSH interprets these requests and sub
mits them to the appropriate BSAM routines
for execution.

COMPILER COMPONENTS

The components of the compiler and their
main functions are discussed in the follow
ing paragraphs.

PHASE 1

Phase 1 is both the first and last phase
of the compiler. Initially, the phase is
entered from the calling program (e.g.,
initiator/terminator); subsequent entries
are made from either Phase 7 or Phase 30.
In addition, if a permanent I/O error
occurs, Phase 1 is entered from the phase
that requested the I/O operation.

OBJECT MODULE
r--,
IESD card images for section definition, entry point, referenced I

r----------, I subprograms, external symbols, and entries in COMMON. TXT card I
I Phase 12 ~------~images for constants entered in the dictionary. RLD card images fori
L __________ J Isubprograms and external symbols. . I

r----------, ~--~
I Phase 14 ~------~TXT card images for FORMAT statements. I
L __________ J ~---_______________ ~

r----------, IESD card images for implied external references. TXT and RLD card I
I Phase 20 ~------~images for generated literals and for entries in the argument list I
L ______ ----J I table. I
r----------, ~--~
I Phase 25 ~------~TXT card images for instructions. RLD card images for address I
L __________ J I constants. I

~--i r----------, ITXT card images for branch list tables and base value table. RLD I
I Phase 30 ~------~card images for branch list tables and base value table. END of I
L __________ J lobject module indicator. I L __ J

Figure 3. Creation of Object Module

Section 1: Introduction 13

At the initial entry, Phase 1 performs
compiler initialization; that is, it loads
the interface module and the print buffer
module into main storage; processes compil
er options; loads the PRFRM module into
main storage if the PRFRM option is speci
fied and if the value specified in the SIZE
option is at least 17504; opens required
data control blocks; and loads Phase 7 into
main storage. Upon completion of the ini
tial Phase 1 processing, control is passed
to Phase 7.

At subsequent entries, Phase 1 initiates
a new compilation if another source module
exists, or alternatively terminates the
compilation if no more input is present.
control is passed to Phase 7 or returned to
the calling program, as appropriate.

INTERFACE MODULE

The interface module contains:

• The communication area (required for
compiler communication>.

• The data control blocks and data event
control blocks for the data sets used
during a compilation (required for I/O
operations>.

• The interface routines (required for
implementation of compiler I/O requests
and end-of-phase requests, and for tem
porary modification of compiler
components) •

PRINT BUFFER MODULE

The print buffer module contains two I/O
buffers that are used for the SYSIN and
SYSPRINT data sets.

PERFORMANCE MODULE

The performance module, loaded into main
storage only if the PRFRM option is speci
fied, contains:

14

• An I/O routine, which deblocks compiler
input and blocks compiler output for
PRFRM compilations.

• An end-of-phase routine, which controls
the transferring of control from one
component of the compiler to the next
for PRFRM compilations.

• The blocking table, which provides the
I/O routine with the information neces
sary to deblock compiler input and to
block compiler output.

• The BLDL table, which provides the
end-of-phase routine with the informa
tion necessary to transfer control from
one component of the compiler to the
next.

PHASE 7

For both SPACE and PRFRM compilations,
Phase 1 obtains and allocates main storage
for the dictionary, the overflow table, and
four internal text buffers. For PRFRM
compilations, Phase 7 also obtains and
allocates main storage for special I/O
buffers to be used for deblocking compiler
input and for blocking compiler output if
blocking is specified by the user.

After main storage is obtained and allo
cated, Phase 7 constructs the resident
tables to be used by the compiler.

Upon completion of Phase 1 processing
control is passed either to Phase 10D or to
Phase 1.

PHASE 10D

Phase 10D converts COMMON and EQUIVA
LENCE source statements into a special form
of interJr,ediate text (referred to as COMMON
and EQUIVALENCE intermediate text) for pro
cessing by Phase 12. In addition, Phase
10D prepares intermediate text and creates
dictionary and overflow table entries for
specification, FORMAT, SUBROUTINE, and
FUNC~ION statements for use as input to
subsequent phases of the compiler. If the
SOURCE option is specified, Phase lOD pre
pares a list of the statements it processes
and writes therr on the SYSPRINT data set.

Upon completion of Phase lOD processing,
control is passed to Phase lOE.

PHASE lOE

Phase lOE converts statement function
definitions, executable statements, and any
FORMAT statements interspersed within those
statements into intermediate text, which is
used as input to subsequent phases of the
compiler. During the processing of the
above statements, entries are made into the

dictionary and overflow table for the vari
ables, statement numbers, etc., encountered
in the statements. If the SOURCE option is
specified, Phase 10E also prepares a list
of the statements it encounters and writes
them on the SYSPRINT data set immediately
following the list prepared by Phase 10D.

Upon completion of Phase 10E processing,
control is passed either to Interlude 10E
for SPACE compilations, or to Phase 12 for
PRFRM compilations.

INTERLUDE 10E

Interlude 10E closes and then opens the
appropriate data control blocks so that
only the BSAM input/output routines
required by Phases 12 and 14 are present in
as compact an area of main storage as
possible. These routines were not called
in earlier because storage for them did not
exist during the execution of Phases 100
and 10E.

Upon completion of Interlude 10E pro
cessing, control is passed to Phase 12.

PHASE 12

Phase 12 assigns relative' addresses to
symbols entered in the dictionary, overflow
table, and COMMON and EQUIVALENCE text.
The addresses assigned at this time indi
cate the relative addresses at which the
various symbols will reside in main storage
during execution of the load module (i.e.,
the object module after it has been pro
cessed by the linkage editor) '. Phase 12
also allocates storage for a branch list
table for referenced statement numbers and
assigns a relative number to each ref
erenced statement number it encounters.
Phase 12 generates and then writes ESD and
RLD card images for referenced subprograms,
and TXT card images for literals on the
SYSLIN data set if the LOAD option is
specified and/or the SYSPUNCH data set if
the DECK option is specified. In addition,
if the MAP option is specified, Phase 12
produces a storage map on the SYSPRINT data
set of all symbols and literals and their
relative addresses.

Upon completion of Phase 12 processing,
control is passed to Phase 14.

PHASE 14

Phase 14 reads the intermediate text
created by Phases 10D and 10E and replaces
any pointers to dictionary entries with
information obtained from the dictionary
(e.g., with addresses assigned to variables
by Phase 12). Phase 14 also converts
intermediate text for FORMAT statements
into an internal code that is used, at
object time, by IHCFCOME, a member of the
FORTRAN systero library (SYS1.FORTLIB), to
place input/output records into the speci
fied formats.

TXT card images for FORMAT statements
are generated and then written on the
SYSLIN data set if the LOAD option is
specified and/or the SYSPUNCH data set if
the DECK option is specified. In addition,
Phase 14 assigns a position in a second
branch list table for each statement func
tion (SF) expansion and DO statement
encountered. For SPACE compilations, Phase
14 also frees the storage occupied by the
dictionary. (The dictionary is no longer
needed after Phase 14 processing.)

Upon completion of Phase 14 processing,
control is passed either to Interlude 14
for SPACE compilations, or to Phase 12 for
PRFRN compilations.

INTERLUDE 14

Interlude 14, by closing and then open
ing the appropriate data control blocks,
reduces the size of the currently required
BSAM input/output routines. This reduc
tion, as well as the freeing of the dic
tionary area of storage by Phase 14, pro
vides the additional main storage that may
be needed for subsequent processing.

Upon completion of Interlude 14 process
ing, control is passed to Phase 15.

PHASE 15

Phase 15 primarily translates arithmetic
expressions into approximate machine code;
that is, it produces the data necessary to
allow text words to be translated into
machine instructions by Phase 25.

Upon completion of Phase 15 processing,
control is passed either to Interlude 15
for SPACE compilations, or to Phase 20 for
PRFRM compilations.

Section 1: Introduction 15

INTERLUDE 15

Interlude 15, by closing and then open
ing the appropriate data control blocks,
calls in the BSAM input/output routines
necessary for performing the I/O operations
for the remainder of the compilation.

Upon completion of Interlude 15 process
ing, control is passed to Phase 20.

PHASE 20

Phase 20 increases the efficiency of the
object coding by decreasing the amount of
computation associated with subscript
expressions. Phase 20 also creates an
argument list tacle to be used, at object
time, to provide the addresses of argument
lists to subprograms and SFs referenced by
the source module. Generated are: ESD card
images for any implicitly called library
subprograms (refer to the publication IBM
System/360 Operating System: FORTRAN IV (E)
Library Subprograms); and RLD and TXT card
images for any literals generated by the
phase and for each entry in the argument
list table. These are then written on the
SYSLIN data set if the LOAD option is
specified and/or the SYSPUNCH data set if
the DECK option is specified. In addition,
if the MAP option is specified, Phase 20
produces a storage map of the above gener
ated literals and references on the SYS
PRINT data set.

Upon completion of Phase 20 processing,
if the NO LOAD option is specified and
source statement errors were detected, con
trol is passed to Phase 30 to generate
error/warning messages; otherwise, control
is passed to Phase 25.

PHASE 25

Phase 25 analyzes the text produced by
the preceding phases of the compiler and
transforms that text into machine language
instructions; these instructions become
suitable for execution on the IBM
System/360 after being processed by the
linkage editor. The instructions are gen
erated and written on the SYSLIN data set
if the LOAD option is specified and/or the
SYSPUNCH data set if the DECK option is
specified. Phase 25 completes the assembly
of several tables (branch list table for
statement numbers, branch list table for SF

16

expansions and DO statements, and a base
value table) required for the execution of
the instructions generated by the phase.
In addition, if the MAP option is speci
fied, Phase 25 produces a list of the
referenced statement numbers on the SYS
PRINT data set.

Upon completion of Phase 25 processing,
control is passed to Phase 30 to generate
errcr/warning messages if necessary, and to
process the END staterrent.

SOURCE SYMBOL MODULE

The source symbol module is used to
contain the names of all the variables and
constants used in the source module and the
relative addresses assigned to t~em by
Phase 12. Phase 25 uses the source symbol
module tc produce an object module listing
if the user specifies the object listing
opticn ($) and if the object listing facil
ity is enabled.

OBJECT LISTING MODULE

The object listing module is loaded into
main storage by Phase 25. It is used by
Phase 25 to generate the object module
listing, if the user specifies the object
listing option ($) and if the object list
ing facility is enabled.

PHASE 30

Phase 30 may be entered from Phase 20 or
from Phase 25. When Phase 30 is entered
from Phase 20 or Phase 25, any
error/warning messages are generated by
examining the output text of the preceding
phases. Phase 30 also lists the size of
COMMON (in bytes), and the size of the
object module (in bytes) on the SYSPRINT
data set. In addition, if Phase 30 is
entered from Phase 25, Phase 30 processes
the END statement. This entails generating
and writing TXT and RLD card images for the
branch list tables, the base value table,
and the END card image on the SYSLIN data
set if the LOAD option is specified and/or
the SYSPUNCH data set if the DECK option is
specified.

Upon completion of Phase 30 processing,
control is passed to Phase 1.

Section 2 describes the logic and func
tions of each phase of the compiler.

PHASE 1 (IEJFAAAO/IEJFAABO)

Phase 1 is both the first and last phase
to be executed for each compilation. The
phase is initially entered from a calling
program (e.g., the initiator/terminator);
subsequent entries are made from either
Phase 7 if a PFRFM com~ilation is altered
to a SPACE compilation (restart condition),
or from Phase 30 the last processing
phase of the compiler.

At the initial entry (IEJFAAAO), Phase 1
initiates the first compilation and then
transfers control to Phase 7.

At subsequent entries (IEJFAABO), Phase
1 either initiates the next compilation if
other source modules are to be compiled, or
terminates the compilation (i.e., if no
.more source modules are present). If a new
compilation is initiated, Phase 1 transfers
control to Phase 7; if the compilation is
terminated, Phase 1 returns control to the
calling program.

Chart 01 illustrates the overall logic
and the relationship among the routines
used in Phase 1. Table 2, the routine
directory, lists the routines used in the
phase and their functions.

INITIAL ENTRY

At the initial entry, Phase 1 initiates
the first compilation. This entails:

• Loading the interface module.
• Loading the print buffer module.
• Processing compiler options.
• Loading the performance module if the

PRFRM option is specified and if the
value specified in the SIZE option is
at least 17504.

• Opening required data control blocks.
• Loading Phase 7.

SECTION 2: DISCUSSION OF COMPILER PHASES

Loading the Interface Module

When Phase 1 receives control from the
calling program, it loads the interface
module (IEJFAGAO) into main storage via the
LOAD macro-instruction. The interface
module contains:

• The communication area.
• DCBs (data control blocks) and DECBs

(data event control blocks).
• Interface routines.

COMMUNICATION AREA: The communication area
contains inforrration that must be communi
cated between the various components of the
compiler. The communication area contains
the following type of information:

• User~specified information, that is,
options and parameters chosen by the
user to tailor the output of a compila
tion to his specifications <e.g.,
DECK) •

• Default values for compiler options.
The interface module is assembled, and
processed by the linkage editor during
system generation. This allows the
user to specify default values for
compiler options (refer to the publica
tion IBM System/360 Operating System:
System Generation). These default
values will be assumed if the corres
ponding values in the PARM field of the
EXEC statement for a FORTRAN compila
tion are not included by the user.
<Refer to Appendix K for the default
values that may be specified during the
system generation process.)

• Information required for communication
between the compiler and the operating
system, such as:

1. Branch instructions to specific
routines in the interface module.
(For PRFRM compilations, these
branch instructions are, in effect,
replaced by branch instructions to
routines in the performance
module.)

2. A pointer to DCBs (data control
blocks) and the DECBs (data event
control blocks) needed for
input/output operations during the
compilation.

Section 2: Discussion of Compiler Phases 17

• compilation information, such as:

1. Type of program/subprogram being
compiled (i.e., main program, FUNC
TION subprogram, or SUBROUTINE
subprogram).

2. Size of internal text buffers.

3. Addresses of buffers, table index
es, certain tables, and work areas.

4. Indicators (e.g., indicators of any
errors encountered during the
compilation) •

• Object-time information, such as:

1. Size of COMMON to be used with the
object module, and of the tables
required for the object module exe
cution.

2. The location counter used, through
out the compilation, for the
assignment of object-time address
es.

DCBS AND DECBS: The DCBs and DECBs for the
data sets used during the compilation are
assembled into the interface module in
skeletal form. (For a description of the
DCBs and DECBs refer to the publication IBM
System/360 Operating System: IntroductIOn
to Control Program Logic, Program Logic
Manual.) The various fields of the DCBs
are filled in by the control program when
the data control blocks are opened (refer
to the publication IBM System/360 Operating
System: Concepts and Facilities). However,
the· DCB block size fields for data sets
SYSUTl and SYSUT2 are overlayed with values
computed by the compiler.

INTERFACE ROUTINES: The interface module
contains four interface routines: an I/O
routine, an end-of-phase routine, a print
control operations routine, and a patch
routine. (See Chart 02).

The I/O routine (SIORTN) processes I/O
requests of the compiler. For SPACE compi
lations, the I/O requests are initiated via
a linkage to this routine. (Refer to
Appendix H for a description of this lin
kage to the interface module.) For PRFRM
compilations, the I/O requests are initiat
ed via a linkage to the PIORTN routine in
the performance module. The PIORTN, in
turn, links to the SIORTN routine in the
interface module. The SIORTN routine:

18

• Analyzes the linkage parameters passed
to it by either the component of the
compiler requesting I/O, or other
interface module routines. These par-

arneters indicate: (1) the type
request (read, write, or check),
the address of the I/O buffer for
oferation, and (3) what data set is
be used for the operation.

of
(2)
the
to

• Fulfills the request by issuing the
afpropriate macro-instruction (READ,
WRITE, and/or CHECK).

The compile-time I/O error recovery pro
cedure is illustrated in Chart 02.

The end-of-phase routine (SNEXT) is the
means by which control is passed from one
component of the compiler to the next for
SPACE compilations. The transferring of
control between compiler components is ini
tiated via a linkage to this routine.
(Refer to Appendix H for a description of
this linkage to the interface module.) The
end-of-phase routine:

• Analyzes the linkage parameters passed
to it by the component of the compiler
relinquishing control. These paramet
ers indicate the name of the next
component to be executed and the dispo
sition of various data sets.

• RepOSitions the data sets indicated in
the linkage parameters.

• Transfers control to the next component
via the XCTL macro-instruction.

The print control operations (PRTCTRL)
routine allows the use of device
independent control operations for the
SYSPRINT data set. If the data set is
being placed onto an intermediate storage
device before being printed, the printer
control codes remain as part of the data
set (thereby retaining device
independence).

The patch routine (PATCH) allows tem
porary modification of the compiler
modules. (A module is modified for the
duration of a batch compilation.) Each
compiler module unconditionally branches to
the patch routine to check whether the
module being executed is to be modified.
(Refer to Appendix H for a description of
this linkage to the interface module.) If
it is, the patch routine overlays the
instructions or data of the module to be
modified with patch information for that
module. This information is placed in the
patch table (a lOa-byte portion of the
patch routine) by Phase 7. If there is no
patch information, control is immediately
returned to the module being executed.

Loading the Print Buffer Module

The print buffer module (IEJFAKAO) is
loaded into main storage during Phase 1.
It contains two I/O buffers that are used
by the SYSIN and SYSPRINT data sets. SYSIN
uses the I/O buffers during the source
statement scan. The card images of the
source module(s) to be compiled are alter
nately read into one of the two buffers.
The double-buffer scheme allows for over
lapping the scanning of a card image in one
buffer with the reading of the next card
image of the source module into the other
buffer.

SYSPRINT uses the I/O buffers for: (1)
writing patch records if any, (2) generat
ing the storage map, and (3) listing the
source module.

Processing Compiler Options

Options may be chosen by the user to
tailor the output of the compiler to his
specifications. Phase 1 checks these
options specified in the execute statement
(EXEC) for the compilation. This informa
tion was previously entered into an area
designated by the calling program. The
contents of this area are obtained by Phase
1 via an address in general register 1.
They are then encoded and entered in the
communication area. For a description of
the options and their use, refer to the
publication IBM system/360 Operating Sys
tem: FORTRAN IV (E) Programmer's Guide.

If the object listing facility of the
compiler has been enabled, Phase 1 also
checks whether the object listing option (a
$ in the PARM field of the EXEC statement)
is specified. (The object listing facility
is enabled by reassembling Phase 1 with the
branch instruction that disabl~s the facil
ity either removed or replaced with a no-op
instruction.) If the option is specified,
Phase 1: (1) sets the appropriate indicator
in the communication area, and (2) loads
the source symbol load module (SORSYM) into
main storage. SORSYM, a SYS1.LINKLIB load
module (IEJFAXAO), reserves an area in main
storage. The names of all variables and
constants used in the source module and
their corresponding relative addresses are
placed into this area by Phase 12.

If the object listing facility has not
been enabled, Phase 1 indicates an invalid
compiler option, by setting the invalid
option bit in the communication area, if
the object listing option is specified.

Loading the Performance Module

Phase 1 exarrines the PRFRM bit in the
comrr~nication area to determine if the
PRFR~ option has been specified by the
user. If the PRFRM option is specified,
and if the value specified in the SIZE
option is at least 17504, Phase 1 loads the
performance module (IEJFAPAO) into main
storage. The performance module reduces
phase-to-phase transition processing and
thereby decreases com~ilation time. The
performance module is composed of two rou
tines and two tables.

PERFORMANCE MODULE ROUTINES: The perfor
mance module contains an I/O routine, and
an end-of-phase routine. (See Chart 03.)

The I/O routine (PIORTN) is used to
deblock compiler infut on SYSINi and to
block compiler output on SYSLIN, SYSPRINT,
and SYSPUNCH, as required by the block
sizes specified for the above data sets.
I/O requests for a PRFRM compilation are
initiated via a linkage to this routine.
(Refer to Appendix H for a description of
this linkage to the ~erformance module.)
The I/O routine:

• Analyzes the linkage parameters passed
to it by the calling phase. These
parameters indicate: (1) the type of
request (read, write, check, or flush),
(2) the address of the area into Which,
or from which the logical record is to
be moved, and (3) the data set to be
used for the operation. (A flush
request forces the contents of the
current output buffer to be written
out.)

• Deblocks compiler input from SYSIN if a
blocking factor greater than 1 is spec
ified. The PIORTN routine reads (via a
linkage to the SIORTN routine in the
interface module) a block from the
SYSIN data set into an I/O buffer only
when an entire block has been deblocked
and moved into the area requested by
the calling phase. This reduces the
number of READ macro-instructions
issued for a compilation and thus
decreases compilation time.

• Blocks compiler output on the output
data sets if their corresponding block
ing factors are greater than 1. (Each
blocking factor is determined from the
BLKSIZE (block size) field in the DCB
~arameter of the associated DD state
ment.) In general, the PIORTN writes
(via a linkage to the SIORTN routine in

section 2: Discussion of Compiler Phases 19

the interface module) a block onto an
cut put data set only when the I/O
buffer containing that block has been
filled. (However, when Phase 1
requests a flush at the end of the last
compilation, the PIORTN will force a
truncated buffer to be written if the
buffer is only partially filled.) This
reduces the number of WRITE macro
instructions issued for a compilation
and thus decreases compilation time.

The end-of-phase routine (PNEXT) is the
means by which control is passed from one
component of the compiler to the next for
PRFRM compilations. The transferring of
control between compiler components is
initiated via a linkage to this routine.
(Refer to Appendix H for a description of
this linkage to the performance module.)
The end-of-phase routine:

• Analyzes the linkage parameters passed
to it by the component of the compiler
relinquishing control. These paramet
ers indicate the name of the next
component to be executed, and the dis
position of the various data sets.

• Repositions the data sets indicated in
the linkage parameters.

• Transfers control to the next component
via the XCTL macro-instruction. If the
next component is an interlude, the
performance module bypasses the execu
tion of the interlude and transfers
control to the next phase of the com
piler. If the next component is a
phase, the performance module immedi
ately transfers control to the next
phase.

PERFORMANCE MODULE TABLES: The performance
module contains two tables: the blocking
table, and the BLDL table.

Phase 1 constructs a blocking table
entry for each of the data control blocks
that are opened by Phase 1. The blocking
table provides the PIORTN routine with the
information necessary to deblock compiler
input, and to block corrpiler output.
(Refer to Appendix C for the format of the
blocking table.)

Phase 1 constructs the BLDL table via
the BLDL macro-instruction. The BLDL table
provides the PNEXT routine with the infor
mation necessary to transfer control from
one component of the compiler to the next.
(Refer to Appendix C for the format of the
BLDL table.)

20

Opening Required Data Control Blocks

The data control blocks that are opened
by Phase 1 depends upon the options speci
fied by the user.

If the SPACE option is specified, Phase
1 opens (via the OPEN macro-instruction)
only the data control blocks for the data
sets used by Phases 1, 10D, and 10E (SYSIN,
SYSU~l, SYSUT2, and SYSPRINT). The main
storage that is saved at this time by not
opening the data control blocks for SYSLIN
and SYSPUNCH is necessary for the execution
of Phases 10D and 10E. (The SYSLIN and
SYSPUNCH data sets are not needed by th~
compiler until the execution of Phase 12.
Therefore, their corresponding data control
blocks are not opened until the execution
of Interlude 10E.)

If the PRFRN option is specified, Phase
1 opens (via the OPEN macro-instruction)
the data control blocks for all the data
sets required by the compiler. Because all
the required data control blocks are opened
initially, the compiler can bypass the
execution of Interludes 10E, 14, and 15;
and can avoid repeated closing and re
opening of data control blocks. Bypassing
the execution of the interludes reduces
phase-to-phase transition time and thus
decreases compilation time.

If neither the SPACE nor the PRFRM
option is specified, Phase 1 assumes a
default value of SPACE and opens the data
control blocks accordingly.

The manipulation of data control blocks
by subsequent components of the compiler
for SPACE compilations as well as for PRFRM
compilations is illustrated in Appendix A.

Loading Phase 1

Phase 1 (IEJFEAAO) is loaded into main
storage by Phase 1, using the LOAD macro
instruction. This is not the normal
condition; norroally, the XCTL macro
instruction in the end-of-phase routine is
used to call a phase into main storage.

Phase 1 loads Phase 1 into the highest
area of available main storage, relative to
location zero. (The XCTL macro-instruction
would load Phase 1 into the lowest area of
available main storage.) This special
loading by Phase 1 permits Phase 1 to set
up the resident tables in the lowest area
of available main storage. The physical
locations occupied by the various compiler
components and resident tables are illus
trated in Appendix J.

SUBSEQUENT ENTRIES

At subsequent entries, Phase 1 either:

• Initiates a new compilation, or
• Terminates the compilation.

Initiating a New Compilation

If a new compilation is to be initiated,
Phase 1 first determines if a PRFRM or a
SPACE compilation is to be performed. If a
PRFRM compilation is to be performed, Phase
1 immediately loads (via the LOAD
macro-instruction) Phase 7 into main stor
age and then transfers control to Phase 7.

If a SPACE compilation is to be per
formed, Phase 1 determines if a restart
condition exists. That is, if a PRFRM
compilation was requested and Phase 7 det
ermined that the required main storage for
the PRFRM compilation was not available.
Phase 7 then alters the PRFRM compilation
to a SPACE compilation and returns control
to Phase 1.

If a restart condition exists, Phase 1:
(1) deletes (via the DELETE
macro-instruction) the performance module
from main storage, (2) closes (via the
CLOSE macro-instruction) the data control
blocks for all required compiler data sets
(opened by Phase 1 for the PRFRM option),
and (3) reopens (via the OPEN
macro-instruction) only the data control
blocks for the data sets required for
Phases 7, 10D, and 10E. Phase 1 then loads
(via the LOAD macro-instruction) Phase 7
into main storage and transfers control to
Phase 7.

If a restart condition does not exist
and if the SPACE option is in effect, Phase
1 first frees (via the FREEMAIN
macro-instruction) the main storage that
was previously allocated to the compiler
for the internal text buffers and the
overflow table during execution of Phase 7.
Subsequent Phase 1 processing except for
the deletion of the performance module is
the same as that described for the restart
condition.

Terminating the Compilation

If the last source module on the SYSIN
data set has been compiled, Phase 1 first
requests a flush operation for the SYSLIN,
SYSPUNCH, and SYSPRINT data sets. A flush
request forces the current output buffer

being used for a blocked data set to be
written. This insures that all compiler
output for blocked data sets is written.
In the case of an unblocked data set, the
flush request for that data set is ignored •
Phase 1 next closes (via the CLOSE
macro-instruction) the data control blocks
for all the data sets used by the compiler.
Phase 1 then: (1) frees (via the FREEMAIN
macrc-instruction) all the main storage
that was allccated to the compiler during
execution of Phase 7, and (2) deletes (via
the DELETE macro-instruction) the interface
module, the print buffer module, and, for a
PRFRM compilation, the performance module.
Control is then returned to the calling
program with the proper return code.

If internal errors (e.g., permanent I/O
errors) occur at any time, the current
compilation is immediately terminated by
calling Phase 1. Phase 1 then performs the
above processing and returns control to the
calling program with a return code of 16.

PHASE 7 (IEJFEAAO)

Phase 7, the second phase of the compil
er, is entered after the completion of
Phase 1. The functions of the phase are:

• Obtaining main storage for the compil-
er.

• Allocating main storage to the compil-
er.

• Constructing resident tables used by
the compiler.

At the conclusion of Phase 7 processing,
a delete routine is moved into the print
buffer module. Control is then passed to
the delete routine. The delete routine
deletes Phase 7 from main storage (via the
DELETE macro-instruction) and then passes
control to either Phase 1 (to restart or
terminate a compilation) or to Phase 10D
(to begin the scan of source module
statements).

Chart 04 illustrates: (1) the overall
logic and the relationship among the rou
tines of Phase 7, and (2) the overall logic
of the delete routine. Table 3, the rou
tine directory, lists the routines used in
the phase and their functions.

OBTAINING MAIN STORAGE

The amount of main storage required by
the compiler dependS on whether a SPACE or
a PRFRM compilation is being performed.
For a SPACE compilation, a minimum of

Section 2: Discussion of Compiler Phases 21

15,360 bytes is required. For a PRFRM
compilation, a minimum of approximately
19,500 bytes is required. (The exact
amount depends on the device configuration
of the user. That is, different I/O devi
ces require different access method rou
tines and different control blocks.)

The process of obtaining main storage is
actually started in Phase 1. Phase 1 has
already obtained main storage for:

• The interface module.
• The print buffer module.
• The performance module (if the PRFRM

option is specified).
• BSAM routines.
• Phase 7.

Phase'7, upon receiving control from
Phase 1, calculates the total amount of
main storage obtained by Phase 1, and
subtracts this amount from the value speci
fied in the SIZE option. (If the SIZE
option was not specified by the user, the
minimum amount required for a SPACE compi
lation is assumed as a default value for
the SIZE option.) The result of this
calculation is the amount of main storage
that Phase 7 attempts to obtain via the
GETMAIN macro-instruction. If more than
this amount is obtained, Phase 7 frees the
excess via the FREEMAIN macro-instruction.
If less than the minimum amount required
for a SPACE compilation is obtained, an
unconditional GETMAIN macro-instruction is
issued in order to obtain the minimum
amount.

ALLOCATING MAIN STORAGE

The procedure used by Phase 7 for allo
cating main storage depends on whether a
SPACE or a PRFRM compilation has been
initiated. Appendix J illustrates the main
storage allocated to the compiler for both
SPACE and PRFRM compilations.

For SPACE Compilations

For a SPACE compilation, the main stor
age obtained by Phase 7 is allocated, via
the storage allocation table, among the
transient work area (an SaO-byte area
required by the control program), the dic
tionary, the overflow table, and four
int'ernal text buffers. The storage alloca
tion table (refer to Appendix B) indicates
the amount of main storage to be allocated
to the text buffers, the dictionary, and
the overflow table.

22

The main storage allocated to the dic
tionary and the overflow table, except for
the reserved word portion of the dictio
nary, may be segmented. That is, the
dictionary and overflow table may occupy
more than one segment of main storage. The
location of the segments allocated to the
dictionary and overflow table are recorded
(sequentially by address) in a segment
address list (SEGMAL). SEGMAL resides at
the beginning of the first segment. The
location of the dictionary index and the
overflow table index as well as a pointer
to the ending location of the current
segment in which the dictionary and over
flow table are being built are recorded in
the communication area.

The dictionary portions are loaded into
the highest storage segment(s) and the
overflow table portions are loaded into the
lowest storage segment(s). This ensures
that the dictionary resides "above" the
overflow table. The dictionary must reside
above the overflow table because the stor
age allocated to the dictionary is freed
(via the FREEMAIN macro-instruction) at the
conclusion of Phase 14 processing. This
additional main storage is required for the
execution of subsequent phases, primarily
for Phase 15. (For PRFRM compilations, the
main storage allocated to the dictionary is
not freed until compilation is terminated
by Phase 1.)

The main storage allocated to the inter
nal text buffers may be segmented. Howev
er, the «ain storage for each buffer itself
must be contiguous. The location of the
segment assigned to each buffer is indicat
ed in the communication area.

For PRFRM Compilations

For a PRFRM compilation, the main stor
age allocation algorithm must determine if
blocked I/O is specified by the user.

BLOCKED I/O: If any blocked I/O is speci
fied, portions of the obtained main storage
must be allocated to special I/O buffers
required for blocking and deblocking.
Phase 7 allocates main storage for two I/O
buffers for each data set for which block
ing is requested. The size of each buffer
is determined by the BLKSIZE field in the
DCB parameter of the associated OD state
ment. If the BLKSIZE fields are not speci
fied, the compiler assumes the following
default values for the compiler data sets:

• SYSPRINT -- 121
• All others -- 80

After allocating main storage for the
special I/O buffers, Phase 7 determines if
sUfficient storage remains for the tran
sient work area, the dictionary, the over
flow table, and the four internal text
buffers. If there is sufficient storage,
subsequent main storage allocation for a
PRFRM compilation with blocked I/O is the
same as that described for a SPACE compila
tion.

In the event that the rema1n1ng main
storage is not sufficient, the compilation
is terminated and control is transferred to
Phase 1. Phase 1, in turn, passes control
to the scheduler to terminate the job step.

UNBLOCKED I/O: If all I/O is unblocked,
Phase 7 determines if the amount of main
storage obtained is sufficient for the
transient work area, the dictionary, the
overflow table, and the internal text buf
fers. If there is sufficient storage,
subsequent main storage allocation for a
PRFRM compilation with unblocked I/O is the
same as that described for a SPACE compila
tion.

If the amount of main storage obtained
is not sufficient, Phase 7 frees (via the
FREE~AIN macro-instruction) all the main
storage it obtained. Phase 7 then alters
the PRFRM compilation to a SPACE compila
tion (restart condition) and transfers con
trol to Phase 1 via the delete routine.
Phase 1 then initializes the compiler for a
SPACE compilation.

RESIDENT TABLE CONSTRUCTION

The resident tables of the compiler
(described in Appendix C) are:

• The dictionary and the overflow table.
• The segment address list (SEGMAL).
• The patch table.
• The blocking table and the BLDL table

(resident only for PRFRM compilations).

For the dictionary and the overflow
table, Phase 7 only constructs the portions
that are independent of the source module
being compiled. SEGMAL.is constructed as
main storage segments are allocated to the
dictionary and the overflow table. The
patch table, a portion of the interface
module, is constructed only if the patch
facility has been enabled and if patch
records precede the source statements of
the source module(s) being compiled. The
blocking table and the BLDL table, portions
of the performance module, are constructed
only for PRFRM compilations.

Dictionary and Overflow Table

Phase 7 constructs only those portions
of the dictionary and overflow table that
are independent of the source module being
compiled. In the dictionary, the index and
the reserved word portion are constructed.
In the overflow table, the overflow index
is constructed.

The index for the dictionary and the
index for the overflow table are used by
subsequent phases to enter information into
and obtain information from the respective
table. The reserved word portion of the
dictionary contains all the reserved words
of the FORTRAN IV (E) language.

SEGMAL

SEGMAL contains the starting and ending
addresses of each main storage segment
allocated to the dicticnary and the over
flow table. The starting address and the
length of each segrrent is obtained as a
result of the GETMAIN macro-instruction.
Phase 7 then computes the ending address of
each segment, and enters both the starting
and ending address for each segment into
SEGMAL. This sequence of addresses consti
tutes SEGMAL.

Patch Table

If the patch facility of the compiler
has been enabled, Phase 7 determines if the
first record read from SYSIN is a patch
record. (The patch facility is enabled by
reassembling Phase 7 with the branch
instruction that disables the patch facili
ty either removed or replaced with a no-op
instruction.) If the first record is a
patch record, it is first listed on SYS
PRINT and then posted in a patch table (100
bytes) in the interface module. Posting
consists of: (1) converting the contents of
a patch record into a format that is usable
to the patch routine, and (2) moving the
converted patch record to the patch table.
All subsequent patch records are processed
in this manner by Phase 7.

Blocking Table and BLDL Table

Phase 7 constructs the blocking table
and the BLDL table only for PRFRM compila
tions. The performance module contains the
main storage required for these tables.

Section 2: Discussion of Compiler Phases 23

Phase 7 constructs a blocking table
entry for each of the data control blocks
that were opened by Phase 1. Phase 7
places information into the blocking table
that is required for deblocking compiler
input and blocking compiler output. This
information includes such things as: logi
cal record length, tlocking factor, poin
ters to the special buffers allocated by
Phase 7, etc.

Phase 7 constructs the BLDL table via
the BLDL macro-instruction. (For a des
cription of the BLDL macro-instruction,
refer to the publication IBM System/360
Operating System: Data Management.) The
BLDL table contains the information neces
sary to transfer control from one component
of the compiler to the next. The construc
tion of the BLDL table reduces phase-to
phase transition time and thereby decreases
compilation time.

PHASE 10D (IEJFGAAO)

Phase 100, the first processing phase of
the compiler, is entered after the
completion of Phase 7. This phase process
es the specification statements of the
source module (plus the FUNCTION or SUBROU
TINE statement if a subprogram is being
compiled). These statements, which are
called declarative statements, are:

• COMMON
• DIMENSION
• EQUIVALENCE
• INTEGER
• REAL
• DOUBLE PRECISION
• EXTERNAL
• FORMAT
• SUBROUTINE or FUNCTION

Declarative statements, other than the
FORMAT statement, must precede the state
ment function definitions and the execut
able statements. The executable statements
are all FORTRAN IV (E) statements other
than those listed above and statement func
tion definitions.

In processing
ments, Phase 10D
functions:

the declarative state
performs the following

• Prepares intermediate text.
• Constructs dictionary and overflow

table entries.
• Prepares the first part of the source

statement listing (a minor fUnction).

Phase 100 and Phase 10E (the next phase
to be executed) convert each FORTRAN source
statement into usable input to subsequent

24

phases of the compiler. Phase 100 converts
the declarative statements; Phase 10E con
verts the statement function definitions
and the executable statements. The result
of this conversion is intermediate text (an
internal representation of the source
statements), and the dictionary and over
flow table that contain detailed informa
tion about specific portions of the state
ment.

The information in the dictionary and
overflow table supplements the intermediate
text in the generation of code by the
succeeding phases. This information is
associated with the intermediate te~t
entries via pointers that reside in the
text entries.

A com~lete listing of the declarative
statewents is prepared on the SYSPRINT data
set by Phase 100 if the SOURCE option has
been chosen.

When a statement function definition or
an executable staterrent is encountered in
the input stream, control is passed to
Phase 10E.

Figure 4 illustrates the data flow with
in the phase.

Chart 05 indicates the overall logic and
the relationship among the routines of
Phase 100. Table 5, the routine directory,
lists the routines used in the phase and
their functions.

INTERMEDIATE TEXT PREPARATION

Phase 100 produces intermediate text,
which is the form in which information is
transmitted from the source module to the
processing phases. (Refer to Appendix L
for a description of the source statement
scan required for intermediate text prepar
ation.)

Interrr-ediate text is prepared for FOR
MAT, FUNCTION, and SUBROUTINE declarative
statements. (Refer to Appendix D for the
intermediate text. format.) This text is
used to transmit these statements to Phases
14, 15, 20, and 25.

Two special forms of intermediate text,
COMMON and EQUIVALENCE text, are produced
for COMMON and EQUIVALENCE statements, res
pectively. (Refer to Appendix D for the
format.) These special forms of text
transmit the corresponding statements to
Phase 12.

SYSIN

r--------------,
I Declarative I
I Statements I
I of the Source I
I Module I L _____________ _

r--------------,
I COMMON and I SYSUT2 or
I EQUIVALENCE I Main Storage
I Text I
I I _ _____________ J

r--------------,
I Intermediate I
I Text for I

I FUNCTION, andl
I SUBROUTINE I
I Statements I

SYSUTl or
Main Storage

f1
FORMAT, I

____________ L ______________ J

I Phase lOD

I ------------~~~~r~~~~~r::-1 Main Storage

r--------------
Main storage I Dictionary I

I and Overflow I
I Table I I.. ______________ J

Figure 4. Phase lOD Data Flow

CONSTRUCTION OF DICTIONARY AND OVERFLOW
TABLE ENTRIES

Dictionary and overflow table entries
are made during Phase lOD for:

• Symbols appearing within declarative
statements.

• Statement numbers associated with
clarative statements.

de-

Entries are made to the dictionary
(refer to Appendix C) for symbols appearing
in all declarative stateroents except the
FORMAT statements. If any symbol is
already entered in the dictionary, that
entry is modified, if necessary, to reflect
any new information about the symbol under
consideration. For example, if the symbol
is in COMMON, an indicator in the diction
ary is set on.

Entries are made to the overflow table
(refer to Appendix C) for:

• Statement numbers.
• Dimension information.

I Table I L ______ - _______ J

--------------,
I Source I SYSPRINT
I Statement I
I Listing I L ______________ J

PHASE lOE (IEJFJAAO)

Phase 10E, the second processing phase
of the compiler, is entered after the
completion of Phase lODe The functions of
the phase are:

• Intermediate text preparation.

• Construction of dictionary and overflow
table entries.

• Completion of the
source statement
function).

preparation of the
listing (a minor

Phase 10E processes SFs (statement
functions), the executable statements of
the source module, and any FORMAT state
ments interspersed among them. As each SF,
executable, or FORMAT statement appears in
the input stream, intermediate text is
prepared and corresponding entries are made
to the resident tables. The intermediate
text prepared by Phase 10E represents the
executable source module statements. The
resident tables complement intermediate
text. (For the formats of the intermediate
text and the resident tables, refer to
Appendixes D and C, respectively.) If any
syntactical errors are encountered during

Section 2: Discussion of Compiler Phases 25

the processing of an SF, executable, or
FORMAT statement, error intermediate text
entries are made immediately following the
intermediate text entries for the statement
in which the error was detected.

As
from
Phase
added
begun

the intermediate text is prepared
the source statements processed by
10E, a list of these statements is

to the SYSPRINT data set, which was
by Phase lODe

When the END statement is encountered,
Phase lOE passes control either to Inter
lude lOE (IEJFJGAO) for SPACE compilations,
or to Phase 12 for PRFRM compilations.

Figure 5 illustrates the data flow with
in the phase. The data sets SYSIN, SYSUT1,
and SYSPRINT are not repositioned after
Phase lOD: therefore, Phase lOE can contin
ue to read from SYSIN or to add to SYSUTl
and SYSPRINT.

Chart 06 illustrates the overall logic
and the relationship among the routines of
Phase lOE. Table 7, the routine directory,
lists the routines used in the phase and
their functions.

INTERMEDIATE TEXT PREPARATION

Phase 10E produces intermediate text for
each SF and executable statement, and for
any FORMAT statements among them. (Refer
to Appendix L for a description of the
source statement scan required 'for inter
mediate text preparation.~

For a subscripted expression appearing
within a statement, a unique intermediate

text entry of two words is made <refer to
Appendix D). The offset of the subscripted
expression (for which a field in this
unique text entry is reserved) is computed
by Phase 10E. For a discussion of this
aspect of subscripted expressions, refer to
Appendix E.

The combination of the intermediate text
prepared by Phase 100 and the intermediate
text frepared by Phase lOE form the inter
mediate text that is manipulated in the
succeeding phases.

CONSTRUCTION OF DICTIONARY AND OVERFLOW
TABLE ENTRIES

Phase lOE makes entries to the diction
ary for:

• Variables.
• Constants.
• Subprograms.
• Data set reference numbers.

(Refer to Appendix C for the format and
content of these entries.)

Phase 10E makes entries to the overflow
table for:

• Subscripted expressions appearing in
the executable statements.

• Statement numbers associated with FOR
MAT staterrent's or executable stat e
ments.

(Refer to Appendix C for the format and
content of these entries.)

r---------------, r--------------,
SYSIN I SFs and Exe- I I Intermediate I SYSUTl or

I cutable state-I I Text I Main storage
I ments of the I I I
I Source Module I I I
L _______________ ~ ~--------------J

~------------~ r--------------,
I I I Dictionary I Main Storage
I Phase 10E I ~ and Overflow I
I I I Table I

~------------~ L ______________ J

r---------------~ ~--------------,
Main storage I Dictionary I I Source I SYSPRINT

I and Overflow I I Statement I
I Table I I Listing I L _______ ----____ J L ______________ J

Figure 5. Phase lOE Data Flow

26

PHASE 12 (IEJFLAAO)

Phase 12, the third processing phase of
the compiler, is entered either after the
completion of Interlude 10E for SPACE com
pilations, or after the completion of Phase
10E for PRFRM compilations. The functions
of the phase are:

• Address assignment.
• EQUIVALENCE statement processing.
• Branch list table preparation.
• Card image preparation.
• Preparation of a storage map if the MAP

option is specified (a minor function).

Address assignment is the allocation of
relative storage locations to:

• variables and arrays in COMMON.
• Equated variables.
• Nonequated variables and arrays in the

dictionary (dictionary entries).
• constants.
• variables in subscripted expressions.

Addresses are assigned in the order in
which they are listed above.

If the object listing facility of the
compiler bas been enabled and if the object
listing option is specified, Phase 12 plac
es the names of all variables and constants
used in the source module and their corres
ponding relative addresses into the SORSYM
load module. (SORSYM was previously loaded
into main storage by Phase 1,.)

Processing of the EQUIVALENCE text
occurs after the assignment of addresses to
variables and arrays in COMMON but before
the assignment of addresses to dictionary
entries.

EQUIVALENCE text processing assigns
relative positions to the variables within
the EQUIVALENCE staterr.ents. These relative
positions are indicated in a table, which
is created and used to assign relative
addresses to the variables according to
their position in the table.

After the assignment of addresses to
variables in subscripted expressions, Phase
12 prepares a branch list table, which is
used to control branching within the object
module.

During the assignment of a.ddresses by
Phase 12, ESD, TXT, and RLD card images are
generated for section definitions, entry
points, literals, and external references.

In addition to the preceding functions,
Phase 12 prepares a storage map to indicate
all address assignments made during the
phase.

After the completion of Phase 12 pro
cessing, control is passed to Phase 14.

Figure 6 illustrates the data flow with
in the phase.

Chart 07 illustrates the overall logic
of Phase 12 and the relationship among its
routines. Table 8, the routine directory,
lists the routines used in the phase and
their functions.

ADDRESS ASSIGN~ENT

An effective address in IBM System/360
Operating System (a base-displacement
address) is the displacement in an instruc
tion added to the value in a base register.
This yields a two-byte address wherein the

r--------------, r--------------,
Main Storage I Dictionary I I Dictionary I Main Storage

I and Overflow I I and Overflow I
I Table r I Table I
L ______________ ~ ~--------------J

~------------~ r--------------,
I I I ESD, TXT,RLD I SYSLIN
I Phase 12 I ~I card images I and/or
I I I I SYSPUNCH

~------------~ L ______________ J

r--------------~ ~--------------,
SYSUT2 or I COMMON and I I Storage I SYSPRINT
Main Storage I EQUIVALENCE I I Map I

I Text I I I L ______________ J L ______________ J

Figure 6. Phase 12 Data Flow

Section 2: Discussion of compiler Phases 27

first four bits represent a general reg
ister used as a base register and the last
twelve bits represent the displacement.
All symbols in the object module generated
by the compiler are referenced by this
two-byte address.

The base-displacement address is
assigned through the use of a location
counter, which is initialized and then
incremented by the number of bytes needed
in main storage to contain the variable,
array, constant, address constant, or
equated variable assigned an address. If
more than 4096 bytes are needed, a new base
register is assigned.

There are only two instances in which
the location counter may be incremented
when no address is assigned:

• The first occurs after the variables in
COMMON are assigned addresses. A new
base register is assigned to the loca
tion counter so that a variable in
COMMON has a different base register
than a variable not in COMMON.

• The second may occur after integer and
real constants are assigned addresses.
The location counter is adjusted to
accommodate the double-precision con
stants. Double-precision constants are
assigned addresses immediately after
real and integer constants.

When a variable is assigned an address,
that address is placed in the chain address
field of the dictionary entry for the
variable.

FORMAT statements are assigned
during the execution of Phase
phases after Phase 12 assign
whenever a constant or work
defined.

addresses
14. All
addresses
area is

EQUIVALENCE STATEMENT PROCESSING

The EQUIVALENCE text is
Phase 12 so that equated
assigned to the same address.

processed by
variables are

The following terms are used in the
description of EQUIVALENCE processing:

28

• EQUIVALENCE group the variable
and/or array names between a left and
right parenthesis in an EQUIVALENCE
statement.

• EQUIVALENCE class -- two or more EQUIV
ALENCE groups that have the following
characteristic. If any EQUIVALENCE
groups contain the same element, these

groups form an EQUIVALENCE class.
Further, if any other group contains an
element in this class, the other group
is part of this class, etc.

• Root -- the member of an EQUIVALENCE
group or class from which all other
variables in that group or class are
referenced by means of a positive dis
placement.

• Displacement -- the distance, in bytes,
between a variable and its root.

The root. of an EQUIVALENCE group is
assigned an address, and all other varia
bles in the group are assigned addresses
relative to that root.

To determine the root and the displace
ment cf the other elerrents in the group
frow the root, the first element in the
EQUIVALENCE group is established initially
as the root. The displacement for the
other elements (in relation to the root) is
calculated by subtracting the offset of the
root from the offset of the variable whose
displacement is being calculated. (The
offset for subscripted variables is con
tained in the EQUIVALENCE text created by
Phase 10D. The offset for nonsutsoripted
variables is zero.)

If the resulting displacement is nega
tive, the root is changed. The new root is
the variable whose displacement was being
calculated. Whenever a new root is
assigned to an EQUIVALENCE group, the pre
viously calculated displacements must be
recalculated.

The root and the displacements in each
group are entered in an EQUIVALENCE table,
which is used by the storage assignment
routines of Phase 12 to assign addresses to
equated variables. (Refer to Appendix B
for the table format.)

BRANCH LIST TABLE PREPARATION

The branch list table is initialized by
Phase 12 (and is completed by Phase 25).
This table is used by the object module to
control the branching process. (Refer to
Appendix F for the table format.) Each
statement number referenced in a control
statement is aSSigned a position relative
to the start of the branch table. This
position is indicated to Phase 25 by a
relative number, which replaces the chain
field of the corresponding statement number
entry in the overflow table.

In the assignment process, the statement
number chains in the overflow table are

scanned sequentially. Each time an entry
for a statement number indicates a ref
erenced statement other than the statement
number of a FOR~AT or specification state
ment, a counter associated with the branch
list table is incremented by 4. (Four
bytes are required for the referenced
statement number and the address that will
be assigned to the number by Phase 25.)
The current contents cf that counter are
then placed in the chain field of the
corresponding overflow table entry.

This counter is initialized to O.
Therefore, the first statement number in
the first chain is assigned the number 0,
the second statement number is assigned the
relative number 4, the third statement
number is assigned the relative number 8,
and so on. After all statement numbers are
assigned, the location counter is incre
mented by an amount equal to the size of
the branch list table (in bytes).

CARD IMAGE PREPARATION

Several card images are prepared during
the execution of Phase 12. This involves
setting up the proper formats for the card
images and inserting the pertinent informa
tion into those formats. The card images
prepared are indicated below, along with
their functions. For a more complete dis
cussion of the use and format of these
cards, refer to the publication IBM
Systeml360 Operating System: Linkage Edi
tor, Program Logic Manual.

The cards generated by Phase 12 are:

• ESD-O

• ESD-l

• ESD-2

• ESD-5

• TXT

This is the section definition
card for the source module being
compiled.

This card defines the entry
point for the source module
being compiled.

This card is produced for exter
nal subprogram names. There may
be several such cards.

This is the section definition
card for COMMON (if a COMMON
statement exists in the source
module being compiled).

This card is produced for con
stants that have been entered in
the dictionary. There may be
several such cards.

• RLD This card contains the address
of the location at which the
address of each external subpro
grarr. will be loaded at object
time. There may be several such
cards.

PHASE 14 (IEJFNAAO)

Phase 14, the fourth processing phase of
the compiler, is entered after the comple
tion of Phase 12. The functions of the
phase are:

• FORMAT statement processing.
• READ/WRITE statement processing.
• Replacing dictionary pointers.
• Miscellaneous statement processing.

The FORMAT statement processing converts
the intermediate text for FOR~illT statements
into a form acceptable to IHCFCOME and
creates ~XT card images. These card images
are used by IHCFCOME to set up the format
of the list items for the I/O operations of
the compiled source wodule. For a discus
sion of IHCFCO~E, refer to Appendix G.

The processing fer READ/WRITE statements
consists of checking the components of the
READ/WRITE state~ents for validity, pro
cessing implied DOs within the READ/WRITE
statements, and rearranging the intermedi
ate text for READ/WRITE statements.

Phase 14 replaces dictionary pointers in
the intermediate text with the appropriate
address aSSigned by Phase 12, a data set
reference number, or a statement function
number. (For SPACE compilations, the main
storage occupied by the dictionary is freed
by Phase 14.)

Upon completion of the Phase 14 process
ing, control is passed either to Interlude
14 (IEJFNGAO) for SPACE compilations, or to
Phase 15 for PRFRM compilations.

The input to Phase 14 is the dictionary
and the intermediate text. The intermedi
ate text has not changed since it was
created by Phases 10D and 10E. The dic
tionary has been modified by Phase 12.
Figure 7 illustrates the data flow within
the phase.

Chart 08 illustrates the overall logic
of Phase 14 and the relationship among its
routines. Table 11, the routine directory,
lists the routines used in the phase and
their functions.

Section 2: Discussion of Compiler Phases 29

r--------------,
I I

Main Storage I Dictionary I

r--------------,
I I
I Dictionary I lVlain Storage

I I I I
L ______________ ~ ~--------------J

~------------~ r--------------,
I I I Intermediate I SYSUT2 or

Main Storage I Phase 14 I ~I Text I
I I I Modified I ~ ____________ ~ L ______________ J

r--------------~ ~--------------,
I I I TXT Card I SYSLIN

and/or
SYSPUNCH

SYSUT1 or
Main storage

I Interroediate I I Images for I
I Text I I FORMAT I
I I I statements I L ______________ J L ______________ J

Figure 7. Phase 14 Data Flew

FORMAT STATEMENT PROCESSING

A FORMAT statement is composed of one or
more format specifications that define an
I/O format. For a discussion of the physi
cal structure of a FORMAT statement refer
to the publication IBM System/360 Operating
System: FORTRAN IV (E) Language.

Each FORMAT statement is examined begin
ning with the first FORMAT code. For each
FORMAT code obtained, a specific processing
routine is called (refer to Table 10). The
processing of each routine consists of
entering the required information for the
FORMAT code into TXT card images. These
images are composed of 1-byte units con
taining 2 hexadecimal digits. Each byte
contains one of the following:

• An adjective code, which indicates to
IHCFCOME the format conversion
(H,I,F,P,X, etc.), a group or field
count" or the end of a FORMAT state
ment.

• A number that represents the actual
field count, field length, group count,
or decimal length.

One of the following is entered into a
TXT card image:

30

• Adjective Code and Number. Entered for
FORMAT specifications P,I,T,A, and X,
and for entries made to indicate a
field or group count.

• Adjective Code. Entered for a slash"
the right parentheSis that ends a
group, or the right parenthesis that
ends a FORMAT statement.

• Adjective Code, Field Length, and Deci
rr.al Length. Entered for FORMAT speci
fications D, E, and F.

• Adjective Code, Field Length, and
Literal. Entered for FORMAT specifi
cations H and apostrophe.

As the specific information is entered
into TXT card images, addresses are
.assigned by incrementing the location
counter (according to the amount of storage
required to contain the contents of a TXT
card image).

During the processing of a FORMAT state
ment, various accumulators are used to
determine the record length. That length
is compared to the user-specified length
(indicated by the LINELNG option). If the
record length is greater than the specified
length, a warning indicator is placed in
intermediate text. If the user has not
specified a record length, the standard
length is used.

READ/WRITE STATEMENT PROCESSING

The READ/WRITE statement processing
involves four operations. The first is a
check for the validity of the symbol used
for the data set reference number. An
indicator for the end of the READ/WRITE
statement is made by entering an end-of
statement indicator in the intermediate
text before any entries for the I/O list.
This allows Phase 20 to handle the I/O list
as a separate statement in intermediate
text.

The second operation is the replacement
of dictionary pointers in intermediate text
(for the symbols in the I/O list) with
addresses assigned by Phase 12. This
includes a check for the validity of the
symbols in the I/O list. When an invalid
symbol (a symbol other thana variable or
array name) is encountered, an error condi
tion is noted in the intermediate text and
the remainder of the I/O list is deleted.

The third operation is to check for and
process implied DOs, which are recognized
by a left parenthesis within a READ/WRITE
statement. For each encounter, an implied
DO adjective code is inserted in the inter
mediate text for the READ/WRITE statement.
When the end of an implied DO is recognized
(right parenthesis), an end DO adjective
code is inserted in the intermediate text.

The fourth operation is to rearrange the
READ/WRITE staterrent entries so that later
phases can process the statement correctly.
The implied DO variable and pa'rameters are
placed ahead of any subscripted variables
(whose intermediate text is also
rearranged).

REPLACING DICTIONARY POINTERS

In the intermediate text entries for
FORTRAN statements, other than the END and
FORMAT statements, dictionary pointers are
replaced by:

• The address assigned and placed in the
dictionary chain field by Phase 12 if
the pointer refers to an entry for a
variable, constant, array, or external
function. (The assigned addresses are
obtained from the chain address fields
of the affected entries in the diction
ary.)

• A data set r~ference number if the
pointer refers to a data set reference
number.

• A statement function number if the
pointer refers to a statement function.

MISCELLANEOUS STATEMENT PROCESSING

Statement function (SF) definition
statements a.re assigned a unique SF number
by Phase 14. This number is used to
reference the SF within an associated
branch list table in the compiled source
module (refer to Phase 25). This unique
numcer is assigned, in sequence beginning
with 01, to each SF in the program and is
moved to the dictionary entry for the name
of that SF. This number also replaces the
pointer field of the intermediate text
entry for the SF.

The text for RETURN, DO, GO TO, IF,
PAUSE, and STOP statements is examined to
determine if the statement in question ends
a DC loop. If it does, an error condition
is noted in the intermediate text. In
addition to this error check, if the adjec
tive code for a RETURN statement appears
within a main program, that adjective code
is changed to the adjective code that
represents a STOP statement.

A statement number entry in the inter
mediate text, other than a FORMAT statement
number, is moved unchanged from the input
buffer to the output buffer. A FORMAT
statement number is treated as follows:

• If the number is
warning condition
intermediate text.

not referenced, a
is noted in the

• If the number is associated with a
FORMAT statement that ends a DO loop,
an error condition is noted in the
intermediate text.

• If neither a warning nor error condi
tion is noted for the number, the
contents of the location counter are
entered in the chain address field of
the associated overflow table entry.

BACKSPACE, REWIND, and END FILE state
ments are examined to verify that the data
set reference number is a valid symbol.

Intermediate text for computed GO TO
statements is rearranged, putting the vari
able and the number of statement numbers
before the statement numbers themselves.

Section 2: Discussion of Compiler Phases 31

PHASE 15 (IEJFPAAO)

Phase 15,
the compiler,
completion of
lations, or
14 for PRFRM
of the phase

the fifth processing phase of
is entered either after the
Interlude 14 for SPACE compi
after the completion of Phase

compilations. The functions
are:

• Reordering intermediate text.
• ~odifying intermediate text.
• Assigning registers.
• Creating argument lists.
• Checking for statement errors.

All of the above functions are performed
for the processing of statements that can
contain arithmetic expressions; only the
error checking function is performed for
the remaining statements.

Phase 15 reorders the sequence of inter
mediate text words within statements that
can contain arithmetic expressions
(arithmetic, arithmetic IF, CALL, and
statement functions) so that the resulting
object code generated by Phase 25 will
cause evaluation of arithmetic expressions
according to a hierarchy of operators. As
intermediate text words are being reor
dered, they are modified, depending on the
operators and operands, to a form closely
resembling an instruction format. When the
intermediate text words are modified, reg
isters are assigned, when necessary, to the
operands of all arithmetic operators.
Argument lists for subprogram and statement
function references are created, and in
line function references are processed by
generating the appropriate instruction
format intermediate text or intermediate
text word for an in-line function call.
During the input text processing, errors
pertaining to DO loops, arithmetic IF
statements, statement numbers, function
arguments, and operand usage and form are
recognized, and the appropriate error mes
sages are given.

Upon completion of Phase 15 processing,
control is passed either to Interlude 15
(IEJFPGAO) for SPACE compilations, or to
Phase 20 for PRFRM compilations.

Figure 8 illustrates the data flow with
in Phase 15.

Chart 09 illustrates the overall logic
of Phase 15 and the relationship among its
routines. Table 14, the routine directory,
lists the routines of the phase and their
functions.

REORDERING INTERMEDIATE TEXT

Phase 15 reorders the sequence of inter
mediate text words within arithmetic
expressions so that the resulting code
generated by Phase 25 will cause evaluation
of arithmetic expressions according to a
hierarchy of operators. The desired order
is defined by a hierarchy of the specific
operations as represented by adjective
codes and is determined by a comparison of
forcing values (a forcing value indicates
an operator's priority in the hierarchy of
operators). (Refer to Appendix B, Figure
18, for a list of the various operators and
their corresponding forcing values.)
Depending on the operator in an intermedi
ate text word and its relative pOSition in
the hierarchy of operators, that intermedi
ate text word is either:

• Processed (this consists of modifying
the intermediate text word by replacing
the adjective code field and the
rr.ode/type code field, when necessary,
with a machine operation code and a
register number, respectively), or

• Stored in an operations table or sub
script table (refer to Appendix B,
Figures 19 and 20).

The operations and subscript tables
function as pushdown tables in which the
top entry in the table is the most recently
entered item. (This process is known as
LIFO: last in, first out.)

The actual reordering of intermediate
text words is controlled by a routine
(FOSCAN) that scans the input intermediate
text words. This routine compares the
forcing values of the various adjective
codes under consideration to determine
their disposition. Each adjective code has
a left and a right forcing value. The
right forcing value applies to the adjec
tive code within the current input inter
mediate text word. The left forcing value
applies to the adjective code within the

r--------------, r------------, r--------------,
SYSUT2 OR I Intermediate I I I I Modified I SYSUTl or
Main storage I Text ~I-------~~I Phase 15 ~I--------~~I Intermediate I Main storage

I I I I I Text I l ______________ J l ____________ J l ______________ J

Figure 8. Phase 15 Data Flow

32

top entry in the operations table. The
adjective code of the first intermediate
text word of an arithmetic statement has
the highest left forcing value of any
adjective code except for the end-of
statement indicator.

The first intermediate text word of any
arithmetic statement is first written on
the output data set and then entered in the
operations table. The next word of the
input intermediate text for this statement
is then obtained and examined. If it is
subscript intermediate text, it is entered
in the subscript table. The following word
is then obtained and examined. When the
word (in the operations table) containing
the subscripted variable is processed, the
related subscript intermediate text is
obtained from the subscript table. The
related subscript intermediate text is
always the top entry in the subscript
table.

If the word obtained from the input
intermediate text is not a subscript inter
mediate text word, the right forcing value
of that word is compared to the left
forCing value of the top entry in the
operations table. If the right forcing
value is greater than or equal to the left
forcing value, the top entry of the opera
tions table is forced out, processed, and
written on the output data set. If the
right forcing value is less than the left
forcing value, the current word of the
input intermediate text is entered into the
operations table. The next input inter
rr.ediate text word is then obtained. This
comparison process continues until the
first entry (for the statement under
consideration) made in the o~erations table
is forced out (by the end mark) and proc
essed. In this way, the input data set is
reordered when it leaves Phase 15 as the
output data set.

If an attempt is made to enter informa
tion in the operations or subscript table
when they are full, an error condition is
recognized. An error intermediate text
word, which indicates that the statement is
too long and should be subdivided, is
generated and placed at the end of the
intermediate text words for the statement
containing the error.

MODIFYING INTERMEDIATE TEXT

As intermediate text words are being
reordered, they are modified, depending on
the operators and operands, to a form
closely resembling an instruction format.
The contents of the adjective code field
for arithmetic operators (unary minus (u),

+, , *, and /) are replaced by
appropriate machine operation code.
contents of the mode field are replaced
a register number when the operator
operands require a register assignment.

ASSIGNING REGISTERS

the
The

by
and

Registers are assigned by Phase 15
according to the adjective code encountered
and the mode of the operands. There are
eight registers (general registers 0, 1, 2,
and 3; floating-point registers 0, 2, 4,
and 6) that rr.ay be assigned by Phase 15.
When a.register is required for a particu
lar operation and one is not available, the
contents of the required register are
transferred to a work area. That register
acquires "available" status and is then
used for the operation.

Register assignments are made by Phase
15 according to the following rules:

• The instruction generated for the add
operator and the floating-point multi
ply operator requires that one of its
operands be in a register. The
instruction generated for the multiply
operator for integer quantities
requires that the multiplicand (left
operand) be in an odd register. The
even register that precedes the multi
plicand must be made available, unless
it already contains the multiplier.

• The instruction generated for the sub
tract operator and the divide operator
for real quantities requires that its
left operand be in a register.

• For integer division, the dividend must
be in an even-odd register pair.

• A work register is assigned to each
subscript expression to aid in the
computation of subscript expressions by
Phase 20.

• Exponentiation requires library subpro
grams; therefore, a specific register
is required to contain the result of
the subprogram execution.

• Registers are assigned to single and
double in-line functions, as follows:

There are eight single-argument, in
line functions: IFIX, FLOAT, DFLOAT,
SNGL, DBLE, ABS, lABS, and DABS.
Instructions are generated to perform
the functions of the SNGL and DBLE
in-line functions. For the remaining
Single-argument, in-line functions, a
word in the following format is gener
ated:

Section 2: Discussion of Compiler Phases 33

r----------T----T----T----------------,
lin-line I I Icode number I
Ifunction I R2 I Rl Ifor the I
ladjective I I lin-line function I
I code I I I I L __________ ~ ____ ~ ____ ~ ________________ J

1 byte 1 byte 2 bytes

Depending upon the specific in-line
function, up to three registers are
assigned by Phase 15,. For ABS, lABS,
and DABS, only an argument register is
required. This register is indicated
in the Rl field; the R2 field is made
zero. For IFIX, FLOAT, and DFLOAT,
three registers are required: an argu
ment register, a result register, and a
work register. The argument register
is indicated in the Rl field, the
result register 'in R2. The work reg
ister is the register preceding Rl.

For in-line functions with two argu
ments, an in-line call word is generat
ed with the same format as for single
argument, in-line functions. Phase 15
assigns a register to each argument in
a double-argument, in-line function.
The first argument register is
indicated in the Rl field; the second
argument register is indicated in the
R2 field. Rl is used as the result
register.

CREATING ARGUMENT LISTS

To assist Phase 25 in the generation of
the object module instructions,·a list of
arguments is created when an adjective code
is encountered that represents a call to a
subprogram or to a statement function. The
argument list is preceded by an intermedi
ate text word that defines the specific
function call. The first word of the
argument list contains the number of argu
ments in the list, and is followed by an
intermediate text word for each argument .•
The total number of arguments in all lists
created by Phase 15 is kept in the communi
cation area to be used by Phase 20 process
ing.

CHECKING FOR STATEMENT ERRORS

As each statement is processed., Phase 15
checks for specific error conditions. Gen
eral format errors as well as specific
errors connected with DO statements, arith
metic IF statements, statement numbers, and
argument lists are noted. Following are
the error checks performed by Phase 15:

34

• DO loops are examined to determine if
the DO variable is redefined, or if a
DO loop is nested to a depth greater
than 25.

• Arithmetic IF statements are examined
to determine if the arithmetic expres
sions contain valid symbols. They are
also examined to determine if more or
fewer than three statement numbers have
been specified.

• Statement numbers are examined to
ensure that they are uniquely defined
and do not indicate transfers to nonex
ecutable statements.

• If a FUNCTION subprogram is being com
piled, a check is made to determine
whether the subprogram name is defined.

• The members of an argument list are
examined to determine whether they are
valid. If a particular list has a
required length., that list is examined
to determine if it is of the required
length.

If any of the designated error condi
tions are encountered, an intermediate text
word, which contains an adjective code
indicating an error and a number represent
ing the specific error, is generated and
placed at the end of the intermediate text
words for the statement in which the error
was detected.

PHASE 20 (IEJFRAAO)

Phase 20, the sixth processing phase of
the compiler, is entered either after the
completion of Interlude 15 for SPACE compi
lations, or after the completion of Phase
15 for PRFRM compilations. The major func
tions of the phase are:

• Processing of statements that require
subscript optimization..

• Processing of statements that affect,
but do not require, subscript optimiza
tion.

• Creating the argument list table.

Phase 20 increases the efficiency of the
object module by decreasing the amount of
computation associated with subscript
expressions. A subscript expression can
recur frequently in a FORTRAN program.
Recomputation at each occurrence is time
consuming and results in an inefficient
object module. Therefore, Phase 20

performs the initial computation of any
given subscript expression and assigns a
register which, at object time, contains
the result of this computation. Phase 20
then modifies (that is, optimizes) the
intermediate text for subsequent occurren
ces of this subscript expression. This
intermediate text optimization consists
essentially of replacing the computation of
the subscript expression, at each recur
rence, with a reference to its initial
value (that is, to the register that con
tains the result of the initial
computation). The subscript intermediate
text for each subsequent occurrence of the
subscript expression can be optimized in
this manner as long as the values of the
integer variables in the expression remain
unchanged.

In addition, the following functions are
performed by Phase 20:

1. Generation of ESD card images for·:

a. Implied external references to
required library exponentiation
subprograms.

b. Implied external references to
IHCFCOME (that is, IBCOM#).

c. Implied external references to
IHCCGOTO (that is, CGOTO#).
(IHCCGOTO is an implicitly called
library subprogram that aids in
the execution of computed GO TO
statements by supplying the
object-time branch addresses.)

r--------------,
Main storage I Overflow I

I Table I L _____________ _

2. Generation of TXT and RLD card images
for literals generated by Phase 20 and
argument list tatle entries.

3. Generation of calling sequences to
IHCIBERR (that is, IBERR#) when source
statement errors are encountered.
(Refer to Appendix G for a description
of the IHCIBERR object-time library
subprograrr.)

4. Printing of a storage map for all
literals generated by Phase 20, and
for all implied external references
made by the source module being com-
piled, if the MAP option is specified.

5. Allocation of storag.e for the branch
list table for SF expansions and DO
statements.

Upon completion of Phase 20 processing,
control is passed either to Phase 30 (if
the NOLOAD option was specified and source
module errors were detected), or to
Phase 25.

Figure 9 illustrates the data flow with
in Phase 20.

Chart 10 illustrates the overall logic
and the relationship among the routines of
Phase 20. Table 17, the routine directory,
lists the routines used in the phase and
their functions.

r--------------,
I Intermediate I SYSUT2 or
IText (sub- I Main storage
I script text I
I optimized) I ______________ J

r--------------,
IESD card image I SYSLIN
Ifor implied I and/or
lexternal ref- I SYSPUNCH
lerences, and I
ITXT and RLD I

Phase 20 1------1~~~ card images I

r--------------
SYSUTl or I Intermediate I
Main storage I Text I L ______________ J

Figure 9. Phase 20 Data Flow

Ifor generated I
Iliterals and I
Ifor argument I
I list table I
I entries I L _____________ J

--------------,
IMap of genera-I SYSPRINT
Ited literals I
land external I
I references I L ______________ J

Section 2: Discussion of Compiler Pha.ses 35

PROCESSING OF STATEMENTS THAT REQUIRE
SUBSCRIPT OPTIMIZATION

Phase 20 scans the input text for state
ments that may require subscript optimiza
tion. Subscript expressions may occur in
the following statements:

• Arithmetic.
• CALL.
• Arithmetic IF.
• Input/output lists (input/output lists

are treated as statements by Phase 20).

When Phase 20 encounters one of these
statements containing a subscripted vari
able, the subscript optimization process
begins.

An index mapping table (refer to Appen
dix B, Figure 21), containing all informa
tion pertinent to a subscript express10n,
is used to aid subscript processing. When
the index mapping table indicates the first
occurrence of the current subscript expres
sion, a register is assigned and a corres
ponding entry is made in the index mapping
table. When a register is not available,
the register that is currently assigned to
the subscript expression of least dimension
is reassigned to the current subscript
expression.

If the current subscript expression has
been encountered previously, the intermedi
ate text for its computation can be
replaced effectively by a reference to the
register assigned at the first encounter.
However, redefinition of any integer vari
able in the expression invalidates the
previous computation and prohibits the
assignment of the same register to the
current subscript expression,. In this
case, recomputation is necessary and anoth
er register must be assigned for the sub
script expression.

During the subscript optimization pro
cess, Phase 20 may be required to generate
literals connected with the array displace
ment associated with any given subscript
expression. (Refer to Appendix E for a
discussion of the calculation of an array
displacement. This e~planation includes a
description of the offset andCDL
(constant, dimension, and length) portions
of an array displacement.) Literals are
generated by Phase 20 under the following
conditions:

36

• When the optimization routine encoun
ters a value outside the addressable
range of 0 through 4095 bytes as a
result of adding the offset (calculated
in Phase 10E) to the displacement of
the array variable (calculated in Phase
15), an offset literal is generated.

The generation of an offset literal
allows Phase 25 to produce instructions
involving these subscripted variables
without having to assign a new base
register.

• Phase 20 generates a literal for each
component of the COL portion of the
array displacement associated with a
subscript expression except for the
first component if it is a power of 2.
In this case, that power, instead of
the address for the literal Cl*L, is
placed in the subscript text.

The preceding discussion of subscript
optimization applies to subscript expres
sions that are neither constant nor asso
ciated with a dummy subscripted variable.
These two conditions are discussed in the
following paragraphs.

Phase 20 does not assign a register to a
constant subscript expression which, when
added to the offset portion of the array
displacement~ lies within the addressable
range of 0 through 4095 bytes. However, if
this computation lies outside the above
range, a register is assigned for this
constant and an entry is made in the index
mapping table.

In addition to norma1 optimization, a
base register is assigned to any dummy
variable so that the variable may be
addressed during execution of the object
module. This assignment is entered in the
index mapping table.

PROCESSING OF STATEMENTS THAT,AFFECT, BUT
DO NOT REQUIRE, SUBSCRIPT OPTIMIZATION

In addition to previously
statements that require subscript
tion, various other statements
affect the subscript optimization
are processed by Phase 20.

DO and READ Statements

mentioned
optimiza
that can

process

The DO and READ statements sometimes
cause the redefinition of the integer
variable(s) in a subscript expression. Any
integer variable that is redefined becomes
a bound variable. Any encounter of a bound
variable causes Phase 20 to examine the
subscript expressions that are assigned
registers in the index mapping table. A
bound variable in a subscript expression
invalidates any previous computation for
that expression and causes a new register
to be assigned for that expression.

Referenced Staterrent Numbers

When a statement number is referred to
in other statements (for example, a GO TO
statement), Phase 20 does not know if the
values of previously encountered integer
variables can still be used by subscript
expressions containing these variables.
Because any given variable may now be a
bound variable, Phase 20 deletes all reg
ister assignments (in the index mapping
table) for subscript expressions involving
that variable.

Subprogram Argument

Any subprogram argument that is an inte
ger variable causes redefiniticn of that
variable and, therefore, invalidates any
previous computations of subscript expres
sions containing that variable. All reg
ister assignments (in the index mapping
table) for subscript expressions involving
that variable are deleted.

CREATING THE ARGUMENT LIST TABLE

A count of the number of arguments
contained in the source module for subpro
gram and SF (statement function) calls is
passed to Phase 20 via the communication
area. This number is used by Phase 20 to
allocate storage for the argument list
table. Phase 20 allocates a word (4 bytes)
for each argument, and inserts the relative
address of each argument in the argument
list table.

If an argument is a subscripted
able, its address is not known at
time. Instructions are generated to
the address of this argument into
argument list table at object-time.

vari
this
load
the

The table is used at object-time to
provide the addresses of argument lists to
the subprograms and SFs being called.
Refer to Appendix F, Figure 45, for the
format of the argument list table.

For each subprogram name or SF name
encountered" Phase 20 generates the
appropriate calling sequence. A register
is used to supply the referenced sub~rogram
or SF with the address of its argument
list. Phase 20 also generates RLD and TXT
card images for each entry in the argument
list table.

PHASE 25 (IEJFVAAO)

Phase 25, the seventh processing phase
of the compiler, is entered after the
com~letion of Phase 20. The main functions
of the phase are:

• Generation of object module instruc
tions.

• Completion of object module tables.

Phase 25 creates the object coding for
the FORTRAN source module from the inter
mediate text entries and the overflow table
(refer to Appendix C). TXT card images for
instructions are generated and then written
on the SYSLIN data set (if the LOAD option
is specified) and/or the SYSPUNCH data set
(if the ~ECK option is specified).

Several tables (branch list table for
statement numbers, branch list table for SF
expansions and DO statements, and base
value table) are used by the object module
during execution of the instructions gener
ated by Phase 25. These tables are assem
bled in their final form by Phase 25.

In addition to the above functions,
Phase 25 generates: (1) a listing of ref
erenced statement numbers if the MAP option
is specified, and (2) an object module
listing if the object listing option is
specified and if the object listing facili
ty of the compiler has been enabled. The
object module listing contains the machine
language instructions generated by Phase 25
and their equivalent assembly language
instructions. The equivalent assembly lan
guage instructions are generated by an
object listing module (IEJFVCAO) that Phase
25 loads (via the LOAD macro-instruction)
into main storage.

Upon completion of Phase 25 processing,
control is passed to Phase 30 (to generate
error/warning messages and to process the
END statement).

Figure 10 illustrates the data flow
within Phase 25.

Chart 11 illustrates the overall logic
and the relationship among the routines of
Phase 25. Table 19, the routine directory,
lists the routines used in the phase and
their functions.

section 2: Discussion of Compiler Phases 37

r--------------,
Main storage I Overflow I

I Table I l _____________ _

r--------------,
ITXT card I
limages for I
I instructions I
land RLD card I
I images for I
I address I
I constants I
~ ______________ J

SYSLIN
and/or
SYSPUNCH

------------~ r--------------,
I I IMap of refer- I SYSPRINT
I Phase 25 I ~ enced state- I
I I lroent numbers I

~------------~ l ______________ J

r~-------------~ ~--------------,
SYSUT2 or
Main Storage

I Intermediate I IBranch List I SYSUT1 or
Main Storage I Text I ITables and I

l ______________ J IBase Value I

Figure 10. Phase 25 Data Flow

GENERATION OF OBJECT MODULE INSTRUCTIONS

Phase 25 creates the object module
instructions for the FORTRAN source module
from the intermediate text entries and the
overflow table. The resultant object
module instr~ctions are in the RR., RX, and
RS formats of the System/360 instructions.

The control routine (PRESCN) for Phase
25 obtains each intermediate text entry and
examines its adjective code. The adjective
code determines which Phase 25 subroutine
is to process the current entry or the next
series of entries. The processing subrou
tine generates the required object coding.

Intermediate text entries for operations
within arithmetic expressions are almost in
a final instruction format as a result of
Phase 15 processing. The intermediate text
words generated by Phase 15, for arithmetic
expressions, contain all the elements
required for the RX format instruction:
operation code, result register, base reg
ister, and displacement. When Phase 25
encounters an adjective code indicating an
arithmetic expression, control is passed to
the routine (RXGEN) that generates RX for
mat instructions.

Other intermediate text entries still
resemble the output generated by Phase 14.
An adjective code identifies the type of
entry and possibly several entries that
follow it. Various Phase 25 subroutines
analyze these entries and generate the
appropriate instructions.

38

I Table I l ______________ J

If a subprogram is being compiled, Phase
25 generates an epilog table when the
FUNCTION or SUBROUTINE adjective code is
encountered. The epilog table provides
Phase 25 (when it encounters the RETURN
statement) with the information necessary
for the generation of instructions that
return the new values of variables, used as
parameters, to the calling program. This
information consists of the following:

• Length and address of the variable in
the subprogram.

• The relative position of the variable
in the parameter list of the calling
program.

Refer to Appendix B, Figure 22, for the
format of the epilog table.

COMPLETION OF OBJECT MODULE TABLES

Several tables are used by the object
module during the execution of the instruc
tions generated by Phase 25. These tables,
assembled in their final form by Phase 25,
are:

• The tranch list table for referenced
statement numbers.

• The branch list table for SF expansions
and DO statements.

• The base value table.

Branch List Table for statement Numbers

Phase 12 allocated storage for a branch
list table (refer to Appendix F, Figure 43)
for referenced statement numbers. Each
statement number referenced by a GO TO,
computed GO TO, IF, or DO statement was
assigned a number relative to the start of
the branch table. This relative number was
placed in the chain field of the statement
number entry in the overflow table (refer
to Appendix C).

When an intermediate text entry for a
statement number definition is recognized
by Phase 25, the corresponding overflow
table entry is obtained, and the relative
number, assigned by Ppase 12, is used to
determine the position of the statement
number in the branch table. The value of
the location counter is placed in this
position and is the actual relative address
of that statement.

Two instructions are generated for the
portion of a FORTRAN statement that ref
erences a statement number. The first
instruction loads the address portion of
the proper entry in the branch table into a
general register; the second instruction
branches to the address placed in that
general register.

Branch List Table for SF Expansions and DO
Statements

A second branch list table is completed
by Phase 25 for statement function (SF)
expansions and DO statements. Phase 14
assigned a unique number to each SF and
placed"this number in the pointer field
portion of the intermediate ~ext entry for
each SF. Phase 25 uses this number to
assign a location in this second branch
list tatle when it encounters an SF adjec
tive code~ The address of the first
instruction in the SF expansion in question
is placed in this location. Any statement·
referencing this SF uses the number of the
SF to obtain this location in the branch
list table, and branches to the address in
the location (that is, to the beginning of
the SF expansion).

Phase 25 also assigns each DO statement
a location in this branch list table. The
address of the second instruction of the DO
loop in question is entered in the proper
location. The object module instruction
that controls the iteration of the DO loop
obtains this location in the branch list,
and branches to the address in the location
(that is, to the beginning of the DO loop).
Refer to Appendix F, Figure 44, for the

format of the branch list table for SF
expansions and DO statements.

Base Value Table

The base value table (refer to Appendix
F, Figure 46) is continually generated by
the various phases of the compiler as base
registers are required for the object cod
ing. An object module can only use general
registers 4, 5, 6, and 7 as base registers.
(When the object module is entered at
object-time, these registers are initial
ized from entries in the base value table.>
If the base register requirements for the
object module extend beyond the four avai
lable registers, the base value table is
used to take special action.

During compilation (prior to Phase 25),
the value for each base register to be used
by the object module is inserted in the
base value table# regardless of the general
register number used as the base register.
The first entry in the base value table is
the value placed in register 4; the second
refers to register 5; etc.

For a source module for which the com
piler assigns registers 4 and 5 to ref
erence data in COMMON and assigns registers
6, 7, and 8 to reference data and instruc
tions in the object module, the base value
table contains the following values:

r------------T---T------T---T------T------,
I Register I 4 I 5 I 6 I 7 I 8 I
.------------+---+------+---+------+------i
I Value I 0 I 4096 I 0 I 4096 I 8192 I L ____________ ~ ___ ~ ______ ~ ___ ~ ______ ~ ______ J

The value 8192 is initially assigned to
general register 8, and that register num
ber is entered in the intermediate text
entry requiring the case register.. Howev
er, when Phase 25 encounters this inter
mediate text entry with a base register
number of 8, an instruction is generated to
load the value 8192 into register 7, and
general register 7 is used as the base
register in this instruction.

In general, when a base register other
than 4, 5, 6, or 7 is encountered by Phase
25, the base value table is used to obtain
the value of that base register, and an
instruction is generated to load that value
into register 7. Register 7 is used as the
base register in the instruction at object
time.

section 2: Discussicn of Compiler Phases 39

PHASE 30 (IEJFXAAO)

Phase 30 is the eighth and last process
ing phase of the compiler. The phase may
be entered either after the completion of
Phase 20 processing if the NOLOAD option
was specified and errors were detected in
the source module or after the completion
of Phase 25 processing. The functions of
the phase are:

• Producing error and warning messages.
• Processing the END statement.

When Phase 30 is entered from Phase 20,
only the first function (producing error
and warning messages) is performed. Howev
er, when Phase 30 is entered from Phase 25,
both functions are carried out.

Upon the completion of Phase 30 process
ing, control is passed to Phase 1.

Figure 11 illustrates the data flow
within Phase 30.

Chart 12 illustrates the overall logic
and relationship among the routines of
Phase 30. Table 20, the routine directory,
lists the routines used in the phase and
their functions.

PRODUCING ERROR AND WARNING MESSAGES

Phase 30 checks the adjective code of
each intermediate text word for an error or
warning condition. If one is encountered,
Phase 30 obtains the error or warning
number (set up by the phase that detected

r----------------,
I Branch List I
I Tables and I
I Base Value I

the error or warning condition) from the
mode/type field of that intermediate text
word. This number is used as an indexing
value to obtain the length and address of
the actual message corresponding to the
specific error or warning detected.

The length of the message is obtained
from the message length table. The address
of the message is obtained from the message
address table. The actual message is
obtained from the message text table.
(Refer to Appendix B for a description of
the use and format of the message tables.>

When the message length and the message
address are obtained, Phase 30 then prints
the corresponding rressage on the SYSPRINT
data set. (For a description of the messa
ges capable of being generated by the
compiler refer to the publication IBM
System/360 Operating System: FORTRAN IV 1E)
Programmer's Guide.>

PROCESSING THE END STATEMENT

When the intermediate text entry for the
END statement is recognized by Phase 25,
control is passed to Phase 30. Phase 30
first produces any error or warning messa
ges detected by earlier phases of the
compiler. Phase 30 then writes both branch
list tables and the base value table onto
the output data set(s). Because all three
of these tables must be relocatable, all
entries in the tables are entered in RLD
card images, as well as in TXT card images.
Phase 30 also creates the END card image
for the object module.

r-----------------,
I Size of COMMON I SYSPRINT
I and Object I
I Module I

SYSUTl or
Main Storage
(only if
entered from
Phase 25) l_~::·~= __________ ~1 /I_~~~_~:~::~ ______ J

r-----------------,
------------ I List of Error I SYSPRINT

SYSUT2 or
Main storage

Figure 11.

40

I Phase 30 I I and Warning I
I I ~I messages I

L _________________ J

/
------------~I (if any) I

r---------------- -----------------,
I Intermediate I I TXT and RLD cardl
I Text I I images for I
L ________________ J I Branch Lists andl

Phase 30 Data Flow

I Base Value I
I Table, and END I
I card image I L _________________ J

SYSLIN
and/or
SYSPUNCH

SECTION 3: CHARTS AND ROUTINE DIRECTORIES

The following charts describe the overall logic of the major comfonents of the FORTRAN
IV (E) compiler. Routine directories are included for those components that contain
numerous routines and subroutines.

Flowchart Conventions

.******************* : ~~~:~~~~~~-~~~~~~~ : *

*

:****Al *********:
* PROCESS I NG *
: BLOCK :

* *

.*.
81 * •

• * * • • * DECISION *. *. BLOCK .*
. . *. .*

* *

****Cl********* * TERMINAL *
: BLOCK :

:****01 ******* ..
* MODIFICATION *
.. BLOCK ..

*
*

******E 1 ***********
* INPUT/OUTPUT *

BLOCK

:****F 1 *********:
--*-*-*-*-*-*-* * SUB ROUT I NE *
: aLOCK :

.. **Gl ******* ...
* PREDEFINED *

* PROCESS *
* * BLOCK

ON-PAGE
CONNECTOR

****j****
*~**

* *
: C3 :

OFF-PAGE

~~~~;~!~: 

I 
**~** 
* * 
* * 
* * * 

SAMPLE FLOWCHART 

**.*. 
*ZA * 
.. *c~* 

* * * : *~:* :-> I 
v 

.. ****C2********* .. :****C3*********: 
: USER ENTRY: * : 
*************** * 

.... I-------*-*-**-*-*-·r······ 
.V. 

03 * • 
• * *. 

.* *. *. .* *. .* 
*. .* 

*. *.* 

I 
GOTO V 

*****E3********** *SUBNM ZCAl* 
*-*-*-*-*-*-*-*-* 

* * ***************** 

1··-.V. 
F3 *. 

.* *. 

BLOCK C3 IS ENTERED FROM THIS CHART AND FROM 
AT LEAST ONE OTHER CHART • 

THE TERMINAL BLOCK IS USED TO SHOW USER ENTRY 
ANO EXIT POINTS WHEN THE PROGRAM BEING 
FLOWCHARTED I S AVAILABLE TO AN IBM CUSTOMER. 
IT IS ALSO USED AS AN EXIT CONNECTOR WHEN 
THE TO LOCATION IS TO NO SPECIFIC CHART AS IN 
A MULTIPLE USE SUBROUTINE • 

THE INSTRUCTION AT SYMBOLIC LOCATION GOTO 
CALLS A SUBROUTINE NAMED SUBNM. THE LOGIC OF 
SUBNM IS SHOWN ON CHART ZC STARTING AT BLOCK 
Al. 

* ****F2********* * .* *. * * 
USER EXIT *<

* L 
--*. .*-->* C3 * 

*. .* * * 
*************** I N 

E 
S 

C 
R 
o 
S 
S 
I 
N 
G 

*. .* 
*.* .* 

L.--___ > LINE .JUNCT I ON 

V 

* ****H2********* * ::::::::::::::::: 
:VARIABLE RETURN:<---: 

*************** * ***************** 
I 

**~** 
*ZB * 
* *A~* 

* 

ON-PAGE EXIT CONNECTOR-
CONTROL TRANSFERS TO BLOCK C3 ON THIS CHART. 

OFF-PAGE CONNECTOR-
CONTROL TRANSFERS TO BLOCK A2 ON CHART ZB. 

* * ********************************************************************************************************************************** 

section 3: Charts and Routine Directories 41 



Chart 01. Phase 1 (IEJFAAAO/IE~FAABO) Overall Logic Diagram 

IEJFAAAO 
(INITIAL ENTRY) 

****Al********* 
* * * CALLING * 
* PROGRAM * 

*************** 

V 
*****Bl********** 
* START 1 * 
*-*-*-*-*-*-*-*-* 
*LOAO INTERFACE * 
• MOOULE • 
• (IEJFAGAO) • ................. 

I 
v 

: •••• Cl* •••••••• : 

• LOAO PRINT • 
* BUFFER MODULE • 
• (IEJFAKAO) * · . ** •••••••••• **.** 

I 
V 

*****01******··*
* OPTN SCAN * 
*-*-*-*-*-*-*-*-* 
* PROCESS • 
* 'PARM' * 
* OPTIONS * 
.*.*.* ••••• **** •• 

1 v .*. 
El *. 

• * *. • * S *. YES 
•• OPTION • 

-.SPECIFIED.· 
*. .* 

* •• * 

! .;:* !_> *1 NO 

* * *... v .*. 
Fl·. 

.* *. 

SEE TABLE 2 FOR A BRIEF 
OESCRIPTION OF THE 
FUNCTION OF EACH PHASE 1 
,ROUT I NE/SUBROUTI NE. 

.****02***······· 
* START 1 * 
*-*-*-*-*-*-*-*-* 

>* LOAD SORSYM * 
* MODULE • 
* (IEJFAXAO) * 
*************.*** 

L *.** . . 
>* Fl • 
• * 
**** .*. 

E2 *. 
.·'SIZE' •• 

.* GREATER *. YES 
> •• THAN OR EQUAL.* 

*.TO 17504 .* 
-. .* 

* •• * 
• NO 

L .*** 
* * >* Gl * 
* * 

.* SPACE •• PRFRM 
*.OR PRFRM OPTN. 

*.SPECIFIED.· 

**·**F2********** 
* LOAD * 
*-*-*-*-*-*-*-*-* 
* LOAD PERFORM. *< 
* MODULE * 
* (IEJFAPAO) * *. .* 

•••• * 

: *::*:->1 · . **** SPACE 
V 

*****Gl*·*******· 
• OPNFILES • 
*-*-*-*-*-*-*-*-* 
• OPEN DCBS • 
* FOR SPACE * 
• COMPILATION • 
****** ••• ****** •• 

: ·::·:->1 
* * .... 

V 
···*·Hl* •• ••••• •• * STARTI * 
*-4-*-*-*-*-*-*-* 
• LOAO PHASE 7 .< 
• (IEJFEAAO) • · . ••••••••••••• * ••• 

XC TL 
V 

*·**Jl····*·*·. · . • PHASE 7 • • • • *****.* ••••• ** 

42 

........ j ....... . 

V ·····G2*·****···· • OPNFILES • 
*-*-*-*-*-*-*-*-* 
* OPEN DCBS 
* FOR PRFRM * 
• COMPILATION * 
..**** •• * ••• *.*.* 

IEJFAABO 
(SUBSEQUENT ENTRIES) 

****A3*****···· 
* * * CALLING * 
• PHASE * 
•• ********.**** 

I 
v .*. .*. 

63 *. 84 * • 
• * *. .* SPACE *. 

.* FINAL •• NO .* OR PRFRM •• PRFRM 
*. ENTRY •• ------->*. OPTION '\ 

•• •• ·.SPECIFIEO •• 
*..* *..* 

* •• * * •• * v i 'ES IsP,eE :::::: 

RUNCMPLT v ••• 
*****C3*******... C4 *. *****cs********** 
* .. .* *. .. * 
* FLUSH OUTPUT * .* RESTART *. NO * FREE ALL * 
* BUFFERS FOR * *. CONDITION • *-------> * MAIN 
* BLOCKED I/O * *. .* * STORAGE * 
* * *..* .. .. 
***************** *. .* ***************** 

I i 'ES 

v V 
*****03********** *****04*********-
* .. * * * CLOSE ALL * • DELETE * 
* OATA CONTROL * * PERFORMANCE * 
* BLOCKS. * MOOULE * 
* * * (IEJFAPAO) * 
•••• **.********.* *****.*********** 

I 1<--v V 
*****E3********** *****E4********** 
• •• RESTART • 
* FREE .. *-*-*-*-*-*-*-*-* 
* ALI. MA IN * * CLOSE ALL *---, 
: STORAGE: : DAT~Lgg~~ROL: I 
***************** **************... v 

I 
*.* •• * 

* Gl * 
* * **** 

V 
**··*F3********** 
* DELETE * 
* PERFORMANCE * 
*MODULE IF PRFRM* 
: COMPILATION : 

***************** 

I 
V 

···**G3********** 
* • 
* DELETE * 
* PRINT BUFFER • 
* MOOULE * 
* * ***************** 

I 
V 

*·*··H3****·*·*·· 
* * * DELETE * 
* INTERFACE • 

MODULE 
* * • •••••••••• ****** 

RET URN 

V 
··*·J3**·****** '* CALLING * 

* PROGRAM • 
• • *************** 



Table 2. Phase 1 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 
LOAD ILoads the performance module into rrain storage if the PRFRM option I 

lis specified. I 
I I 

OPNFILES I Opens data control blocks for compiler data sets as indicated byl 
Iswitches (in the communication area) for options. I 
I I 

OPTNSCAN IScans the compiler options and sets appropriate switches in thel 
Icorr.municaticn area. I 
I I 

RESTART ICloses all data control blocks for compiler data sets. I 
I I 

RUNCMPLT I Closes all data control blocks for compiler data sets, frees alII 
Imain storage allocated to the compiler, and returns control to thel 
Icalling program. I 
I I 

ISTARTl I Performs housekeeping and loads the interface module, print bufferl 
I Imodule# and Phase 7. I L __________________ ~ ____________________________________________________________________ J 

section 3: Charts and Routine Directories 43 



Chart 02. Interface Module (IEJFAGAO) Routines 

SNE.XT " 

****AI"'****"'·"'* 
: CALLING : 

" ROUTINE " 

······T······ 

v .*. 
B1 it. 

.* *. 

,,::~C~~~~~EgE .::lNO 
*. .* 

* •• * 
" YES 

..... c..! ....... . 
" TCLOSE THE" ***"C2"""""*""" 
" DATA SETS * V *NEXT PHASE/INT " 
" INDICATED IN *------>"AS INDICATED IN" 
"THE LINKAGE TO " " CALLING RTN " 
* THIS ROUTINE " ""**"*"""""**** 
***************** 

SIORTN " 

... ****01*********. 

" CALLING 
" ROUTINE "" " 

······T······ 

v 

PRTCTRL " 

****A3********* 
* * " CALLING 
" ROUTINE " 

*************** 

v 
:****83*********: 
" MOVE CARR I AGE " 
* CONTROL CHAR. " 
* TO OUTPUT * 
" BUFFER " 
***************** 

I 
V 

***""C3****"***** 
* SIORTN 02El * 
*-*-*-*-*-*-*-*-* 
*WRITE CONTENTS " 
* OF OUTPUT * 
" BUFFER " 
***************** 

.*. .*. 
El *. *****E2********** E3 * • 

• * *. * ... .* *. 
." CHECK it. YES "ISSUE CHECK " ." ERROR it. NO 

it. OPERATION • ,,-----> " MACRO- ,,----->". OR END-OF- ."1 it. ." " INSTRUCTION * ".DATA SET ." 
*..* * * *..* * .• * ***************** * •• * v 

:*::":->i NO "I YES :::::: 

""*,, v ••• V 
Fl *. *****F2********** *****F3********** 

. * *. ... ... * ... 
• " READ it. YES "ISSUE READ SET ERROR " 

*. OPERATION • ,,-----> " MACRO-" OR END-DF-
".". ."." : INSTRUCTION : ~~~~C~~6R : 

*. .* ***************** ***************** 

j'0 
V 

*****Gl*********-
* " " ISSUE WRITE 

MACRO-
" INSTRUCTION : 

***************** 

,--------> 

V 
****G2********

" NORMAL RETURN " 
* TO " "CALLING ROUTINE" 
*************** 

V 
****G3********

*ABNORMAL RETURN" 
* TO * 
"CALLING ROUTINE" 
*************** 

*****A4********** 
* SIORTN 02El " 
*-*-*-*-*-*-*-*-* 

>* CHECK RESULTS" 
" OF WRITE " 
* " ***************** 

1 
V .*. 

B4 *. 
.* *. ****85********* 

.* ERROR it. YES "ABNORMAL RETURN* 
*. OR END-OF- ."---->" TO " 

".DATA SET ." *CALLING ROUTINE" 
*. • * *************** * •• * 

j"" 
V 

****C4********* 
" NORMAL RETURN * 
" TO " "CALLING ROUTINE* 

*************** 

PATCH " 

****E5********* 
" CALLING " 

ROUTINE 

I 
v .". 

F5 * • 
.* * • 

" YES 

..... ".1 ....... . i
ND it::. :~:~I~::" .::" 

****G4*********'" ... 
* CALLING "V "PATCH INDICATED* 

ROUTINE *<-------*AREA IN CALLING* 

*************** 
* * ROUTINE * 

" * ***************** 

AN INSTRUCTION TO BRANCH TO THESE ROUTINES IS A 
PART OF THE COMMUNICATION AREA. THESE INSTRUCTIONS 
ARE LABELED FNEXT. FIORTN. FPRTCTRL. AND 
FPATCH FOR SNEXT. SIORTN. PRTCTRL. AND COMPILE-T~ME I/O RECOVERY PROCEDURE 
PATCH. RESPECTIVELY. WHEN THESE 
ROUTINES ARE NEEDED. A BRANCH TO ****H3********* 
THE PROPER INSTRUCTION IN THE * INTERFACE MOD * *** THE I/O SUPERVISOR IS 
COMMUNICATION AREA IS EXECUTED. * AND BSAM" ENTERED FROM THE SIORTN 

* ROUTINE "** * OF THE INTERFACE MODULE 

"* """""""""""""*" WHEN A READ. WRITE. OR """" THE CALLING ROUTINE MAY BE wITHIN A 

I 
CHECK MACRO-INSTRUCTION "" 

PHASE. WITHIN ANOTHER INTERFACE 
MODULE ROUTINE. OR WITHIN THE 
PERFORMANCE MODULE. 

IS ISSUED. * J2 " 
* " * ... ** 

/I 

44 

V I YES .*. .*. 
*****J2********** J3 *. *****J4********** J5 *. 

****Jl********* ... RETURN TO ... .* *. ... ... .* *. 
" "*BSAM. INTERFACE" NO." I/O it. YES " RETRY * ." HAS it. 
* CALLING * <-------* MODULE. AND *<l<--*. ERROR IN • *-------> * APPROPRIATE ,,---->*. ERROR BEEN ." 
" PHASE" "PHASE REQUEST- " *. lOS." * NUMBER OF * ".CORRECTED.* 

*************** ... ING I/O'" *..* ... TIMES'" *..* 
CONTINUES ***************** * •• * ***************** * •• * 
NORMAL ****" " NO 
PROCESSING " " 1 * J2 * 

" " **** 
v 

,,
""""Kl*"""""*** :****K2*****""**: :****K3****""***: :****K4*********: :*~~~~~~*::~~~**: 

" "PHASE 1 PASSES" " CALLING PHASE * " CALLING PHASE" " CODE TO BSAM. " 
" SCHEDULER "<-------,, ABORT CODE TO "<-------,, BRANCHES TO ,,<-------"SETS ABORT BIT "<-------,, INT MOD. AND " 

" "SCHEDULER" * PHASE 1" " IN COMM AREA * *PHASE REQUEST- " 
*************** ... ...... ...... ...... ING I/O * 
ISSUES ABEND ***************** ***************** *******"********* *********"**""*** 
MESSAGE AND 
THEN CONTINUES 
NORMAL PROCESSING 



Chart 03. Performance Module (IEJFAPAO) Routines 

PIORTN PNEXT 
*****A4********** *****A5********** 

.****Al*********. ****A3********* * BUILD TCLOSE * * TCLOSE THE * 
* * * LIST AS * * INDICATED 

CALLING * CALLING *---->* INDICATED IN *---->* DATA 
* PHASE * * PHASE * * LINKAGE * * CONTROL 

*************** *************** * PARAMETER * * BLOCKS * 

I 
***************** ***************** 

1 
v v 

• *. .* • 
B1 *. *****B2********** *****B4********** 85 *. 

.*i: BLOCKI~G*. NO :-*:!~~~~-~~;:*-: * * .* IS *. 
*OBTAIN NAME OF * YES.* NEXT *. 

*FACTOR GREATER ••• ------->* PERFORM * *NEXT PHASE FROM*<----*.COMPONENT AN .* 
*. *!HAN 1.*.* : ~~~~~n6~ * BLDL TABLE * *.INTERLUDE.* 

* *..* 
*. .* ***************** ***************** * •• * 

I ,:j,:O *1 YES *1.* 

* * 
*****C1*~******** : G2 : 
* OBTAIN LAST * 
*BUFFER ADDRESS * 
* FOR THE DATA ---------------------, 
* SET USED FOR * I * OPERATION * 
***************** 

V 
PTESTWR1 .*. .*. PTESTRD .*. 

*****01********** 02 *. 03 *. 04 *. 
* MOVE LOG RCD * .* WAS *. .* *. .* FIRST *. 
*INTO OUTPUT BUF* NO .LAST REQUEST*. YES.* CHECK *. NO .*1/0 REQUEST*. NO 
*UPOATE BUF PTR.*<-------*.FOR THIS DATA.*<-------*. REQUEST .*------->*.FOR THIS DATA.*, 
*. AND LOG RCD * *. SET A .* *. .* *. SET .* 
* COUNT * *.READ .* *..* *..* 
***************** * •• * * •• * * •• * v 

1 i YES * i YES : *::* : 

v v v 
.*. .*. .*. 

El *. E2 *. *****E3********** Ell. *. 
.* *. .* ANY *. * SIORTN 02El ... .* "'. 

v 
****C5********* 

* * 
* NEXT PHASE 
* * *************** 

:****ES*********: 
NO.* OUTPUT *. .* RECORDS *. NO *-*-*-*-*-*-*-*-* .* READ *. YES * SET 

*. BUFFER.* *. LEFT TO BE • *----> * INITIATE * *. REQUEST • *-------> * 'READ' 
*. FULL .* *.DEBLOCKED.* * CHECK-READ *..* * BIT 
*..* *..* * OPERATION * *..* * ... 

* •• * * •• * ***************** * •• * ***************** i '" :::::;-,j '" ! j NO ::::::_,1 
v PGETRCD v .*. V V 

"'*4**F1*"'''''''**''''''*''' *****F2********** F3 *. *****F4********** *****F5********** 
* * * MOVE NEXT LOG * .* *. * INITIALIZE * * SIORTN 02E1 * 
* RESET LOGICAL * * RCD INTO * .* ABNORMAL *. NO *LOGICAL RECORD * *-*-*-*-*-*-*-*-* 
* RECORD COUNT, *, *REQUESTED AREA.* *. RETURN '*, *COUNT TO VALUE n * PERFORM * 
*SET 'WRITE' BIT* * UPDATE LOG * *. .* * OF BLOCKING * * REQUESTED * 
* * * RCO COUNT * *...* * FACTOR * * OPERATION * 
***************** v ***************** *. .* v ***************** v ***************** 

****** :*::*: ****** *1 YES :*::*: :*::*: I 
: G1 :! * **** * : G2 :-> * **** * * **** * 

**** v **** V 
TSTF~USH .*. PNORMRET .*. 

G1 *. V G3 *. *****Ge********** 
.* *. ****G2********* .* *. ****G4********* * * 

.* WAS A *. NO * * .* END- *. YES * ABNORMA~ * * SWITCH * 
>*. F~USH " * CAL~ING * *. OF-F·ILE • *----> * RETURN TO * *BUFFER POINTERS* 

*'~::~:I ~;;:.. :-:;': • ••••• :mi ••••• • •.•. ··v*I·~~*·* J' · .;:;;m.::m.· L····
T

······: 
**** **** 

* * v .*. * G2 * 
:****H1*********: .*H3wAS*'*. * * 
*SET ·WRITE· BIT* .* A VALID *. NO 
* FOR TRUNCATED * *. SHORT BLOCK .* 
* BLOCK * *. READ .* 
* * *. .* 
***************** * •• * 

*1** *1 YES 

* * * F5 * V 
* * *****J3********** 

* SET LOGICAL * 
* RECORD COUNT * 
* ACCORDING TO *, 
* LENGTH OF' * 
* SHORT BLOCK * 
***************** v 

**** 
* * 
: F2 : 

section 3: Charts an~ Routine Directories 45 



Chart 04. Phase 7 (IEJFEAAO) Overall Logic Diagrare 

* IN ORDER TO DELETE 
PHASE 7 FROM MAIN 
STORAGE. PHASE 7 MUST 
TRANSFER CONTROL TO 
ANOTHER LOAD MODULE. 
PHASE 7 DOES THIS BY 
MOVING A ROUTINE THAT 
DELETES PHASE 7 INTO 
THE PRINT BUFFER MODULE 
AND BY TRANSFERRING CON
TROL TO THE PRINT BUFFER 
MODULE. THE LOGIC OF 
THE DELETE ROUTINE IS 
AS FOLLOWS. 

****Gl****····* 
• * 
* PHASE 7 * • • 

******.******** 

DELETE07 V 

46 

*****H 1 ********** 
* * * 
* * * 

DELETE 
PHASE 7 * 

* * * ***************** 

1 
v .*. 

Jl * • 
• * *. ****J2********* 

.* RESTART *. YES * * 
*.OR TERMINATE .*------->* PHASE 1 * 

*. .* * (IEJFAABO) * 
*..* *************** 

* •• * RESTART OR 
* NO TERMINATE 

1 CO'P'L"'O' 

V 
****Kl********* 

* * * PHASE 100 
* ( I EJFGAAO) 

*************** 

BEGIN SOURCE 
STATEMENT SCAN 

****A3********* 
* * * 
* 

PHASE 1 

*************** 
* 
* 

V 
*****83********** 
* START * 
*-*-*-*-*-4-*-*-* 
* PHASE * 
*INITIALIZATION * 
* * ***************** 

1 
v .*. 

C3 * • 
• * SPACE * • 

SEE TABLE 3 FOR A BRIEF 
OESCRIPTION OF THE FUNCTION 
OF EACH PHASE 7 ROUTINEI 
SUBROUTINE. 

• * OR PRFRM *. PRFRM 
*. COMPILATION '*1 *. .* 

*. .* * •.• 

rA« 
v v 

*****03********** *****04********** 
* GETSTRG * * GETSTRG * 
*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
* OBTAIN * * OBTAIN * 

MAIN MAIN . 
* STORAGE * STORAGE * ........ j........ . ....... j ....... . 

v V 
*****E3********** *****E4********** 
* FRSEGM * * FRSEGM * 
*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
* FREE * * FREE * 
* EXCESS MAIN * * EXCESS MAIN * 
* STORAGE * * STORAGE * ................. ·······T······· 

v .*. F4 *. *****F5********** 
.* *. * ... 

• * IS *. YES * ALLOCATE 
*. 1/0 .*------->* MAIN STORAGE * 

*. BLOCKED .* * FOR SPECIAL * 
*..* * 1/0 BUFFERS * 

··i·~O ········i········ 
**** 

* * 
: G3 :-> 

**** v v 
v .*. .*. 

*****G3********** G4 *. GS *. 
* ALLOCATE * .* *. .* *. 
* MAIN STORAGE * YES.* ENOUGH *. YES.* ENOUGH *. 
* TO RESIDENT *<-------*. STORAGE.* ,*. STORAGE .* 
* TABLES AND * *. LEFT .* *. LEFT .* 
* INT.TEXT BUFS * *..* *..* 
***************** * •• * v * •• * 

1 

*1 NO :*::*: i NO 

* * *~** 
* * v v * J3 * 

*****H3********** *****H4********** * ... 
:-*-~:~~;:~:*-*-: : FREE ALL : **** 
* CONSTRUCT * * MAIN STORAGE * 
* RESIDENT * * OBTAINED * 
* TABLES * .. * BY PHASE 7 * 
***************** ***************** 

:*::*:->1 1 

**** v v 
:****J3*********: :****J4*********: 

* MOVE DELETE * * ALTER PRFRM * 
* ROUTINE INTO * * COMPILATION * 
* PRINT BUFFER * * TO SPACE * 
* MODULE * * COMPILATION * 
***************.. ****************. 

XC TL * 
V 

****K3********* 
* DELETE RTN * 
* IN PRINT 
* BUFFER MOD * 

*************** 

I 
V 

**** 
* * * J3 * 
* * **** 

RESTART 
COMPILATION 

TERMINATE 
COMPILATION 



Table 3. Phase 7 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, I Routine/Subroutine I FUnction I 
~------------------+--------------------------------------------------------------------~ 
DELETE 07 Deletes Phase 7. I 

I 
FRSEGM Frees transient work area and any unusable main storage. I 

I 
GETSTRG Obtains main storage for the compiler. I 

I 
MESSGOUT writes messages on SYSPRINT. I 

I 
SEGALLOC Completes the construction of SEGMAL (begun in GETSTRG), and builds I 

necessary dictionary and overflow table structure (independent ofl 
the source module being compiled). I 

I 
START Performs Phase 7 initialization. I 

I 
ITEMPATCH Builds patch table by reading and then converting patch records. I L __________________ ~ ____________________________________________________________________ J 

Section 3: Charts and Routine Directories 47 



Chart 05. Phase 100 (IEJFGAAO) Overall Logic Diagram 

****A3********* 
* * * * 

PHASE 7 

*************** 
* 
* 

V 
*****B3********** 
* START * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
*INITIALIZATION * 
* * ***************** 

SEE TABLE 5 FOR A BRIEF 
DESCRIPTION OF THE 
FUNCTION OF EACH PHASE 100 
ROUTINE/SUBROUTINE. 

.-------> 
V 

*****C3********** 
* * * OBTAIN A * 
* SOURCE MODULE * 
* STATEMENT * 
* * ***************** 

I 
V 

*****03********** 
*ENTER STATEMENT* 
*ON SYSPRINT IF * 
* SOURCE OPTION * 
* IS SPECIFIEO * 
* * ***************** 

V 
*****E3********** 
* CLASS * 
*-*-*-*-*-*-*-*-* 
* DETERMINE * 
* STATEMENT * 
* TYPE * 
***************** 

I v .*. 
F3 * • 

• * *. ****F4********* 
.* SF OR *. YES * * 

*. EXECUTAB~E • *--------> * PHASE IOE * 
*. .* * * 

*. .* *************** 
* •• * ra 

v 
*****G3********** *****G4********** 
* * * EOSR * 
* * PROCESS * *-*-*-*-*-*-*-*-* 
* SOURCE * <-------> * CHECK FOR * 
* STATEMENT * * END-OF- * 
* * * STATEMENT * 
***************** ***************** 

I 

* SEE TABLE 4 FOR A LIST 

48 

OF THE STATEMENTS PROCESSED 
BY PHASE 100 AND THE MAIN 
ROUTINES AND SUBROUTINES 
THAT PROCESS THESE 
STATEMENTS. 



Table 4. Phase 10D Statement Processing 
r----------------T-----------------------T----------------------------------------------, 
IStatement Type IMain Processing Routine I Main Subroutines Used ++ 1 
~----------------+-----------------------+----------------------------------------------i 1 REAL IREAL/INTGER/DOUBLE **1 I 
~----------------+-----------------------~ I 
1 INTEGER IREAL/INTGER/DOUBLE **1 Control is ~assed to DIM 1 
~----------------+-----------------------~ 1 
IDOUBLE PRECISIONIREAL/INTGER/DOUBLE **1 1 
~----------------+-----------------------+----------------------------------------------i 
I DIMENSION IDIM **1 GETWD, RCOMA, CSORN, DIMSUB, WARN/ERRET I 
~----------------+-----------------------+----------------------------------------------i 
1 COMMON I COMMON **1 DIM, PUTBTXT I 
1 1 * I 1 
~----------------+-----------------------+----------------------------------------------i 
I EQUIVALENCE IEQUIV **1 GETWD, CSORN, WARN/ERRET, PUTBTXT, RCOMA 1 
1 1 * I I 
~----------------+-----------------------+----------------------------------------------i 
I EXTERNAL I EXTERN **1 GETWD, RCOMA, CSORN 1 
~----------------+-----------------------+---------~------------------------------------~ 
I FUNCTION I FUNCT * I I 
I I ** I I 
~----------------+-----------------------~ GETWD, CSORN, PUTX I 
I SUBROUTINE ISUBRUT * I I 
I I ** I I 
~----------------+-----------------------+---------------------~------------------------i 1 FORMAT 1 FORMAT * 1 GETWD, WARN/ERRET, PUTX I 
~----------------~-----------------------~----------------------------------------------i 1* Text is created when processing this statement. I 
1 I 
1** Table entries may be prepared when processing this statenent. I 
1 I 
1++ All routines except FORMAT use ERROR as an error exit for errors that cause termina-I 
I tion of the statement processing. FORMAT has nc error exit. I L _______________________________________________________________________________________ J 

Section 3: Charts and Routine Directories 49 



Table 5. Phase laD Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 
CLASS IDetermines which routine will ~rocess the staterr.ent type. May usel 

ILOADE and LABLU. I 
I I 

COMMON IProcesses COMMON statements. I 
I I 

CSORN I Processes names, constants, data set reference nurrbers, and DOl 
I parameters. May use LITCON and SYMTLU. I 
I I 

DIM Processes the variables of DIMENSION, COMMON, INTEGER, REAL, andl 
DOUBLE PRECISION statements. I 

DIMSUB 

EOSR 

ERROR 

EQUIV 

EXTERN 

FOR~AT 

FUNCT 

GETWD 

Scans the subscript portion cf a staterrent that is dimensioning an 
array. 

Processes the end of statement. 

Enters error intermediate text for errors that cause termination of 
the processing of that statement. 

Processes EQUIVALENCE statements. 

Processes EXTERNAL statements. 

Processes FORMAT statements. 

Processes the header card image for a FUNCTION. 

Obtains a word or element in a statement and gets a new card image, 
if necessary. Prints the card if SOURCE option requested. May use 
PRMBLD. 

INTGER/REAL/DOUBLE Processes INTEGER, REAL, and DOUBLE PRECISION statements. 

LABIU 

LABTLU 

LITCON 

LOADE 

PRMBLD 

PUTBTXT 

PUTX 

RCOMA 

START 

SUBRUT 

SYM'ILU 

Enters only statement number information into the overflow table. 
Uses L.ABTLU. 

Enters all information into the overflow table. 

Processes literals. 

performs end-of-phase processing and passes control to Phase lOE. 

Performs all operations associated with I/O interfacing and buffer 
switching. 

Puts CO~MON and EQUIVALENCE text into SYSUT2 text buffers. 

Puts entries into the SYSUTl text tuffers. 

Enables skipping of redundant commas in a parameter list. 

Performs initial phase housekeeping .• 

Processes the header card for a SUBROUTINE. 

Enters symbols and/or units into the dictionary. 

IWARN/ERRET Enters warning and error intermediate text for error and warning 

I 

I conditions that permit the continuation of the processing of thel 
I statement. I L __________________ ~ __________________________________ ----------------__________________ J 

50 



Chart 06. Phase 10E (IEJFJAAO) Overall Logic Diagram 

****A3********* 
* * 
* 
* 

PHASE 100 

*************** 
* 
* 

V 
*****B3********** 
* START * 
*-*-*-*-*-*-*-*-* 

PHASE * 
*INITIALIZATION * 
* * ***************** 

r----------> 
V 

*****C3********** 
* * *OBTAIN A SOURCE* 
* MODULE * 

STATEMENT * 
* * ***************** 

I 
V 

*****03********** 
*ENTER STATEMENT* 
*ON SYSPRINT IF * 
* SOURCE OPTION * 
* IS SPECIFIED * 
* * ***************** 

V 
*****E3********** 
* CLASS * 
*-*-*-*-*-*-*-*-* 
* DETERMINE * 
* STATEMENT * 
* TYPE * 
***************** 

I 
v .*. 

SEE TABLE 7 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 10E ROUTINE/ 
SUBROUTINE. 

F3 *. *****F4********** *****F5********** 
.* *. * END * * EXIT * 

.* END *. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
*. STATEMENT • *--------) * PROCESS *--------)*PERFORMS FINAL * 

*. .* * END * * PHASE lOE * 
*..* * STATEMENT * * PROCESSING * 

* •• * ***************** ***************** 

i Ne 

v 
*****G3********** *****G4********** 
* * * EOSR * 
* * PROCESS * *-*-*-*-*-*-*-*-* 
* SOURCE * <-------> * CHECK FOR * 
* STATEMENT * * END-OF- * 
* * * STATEMENT * 
***************** ***************** 

v .*. 
H5 *. 

****H4********* .* SPACE *. 
* * SPACE.* OR PRFRM *. 
* INTERLUDE 10E *<--------*. COMPILATION .* 

* SEE TABLE 6 FOR A LIST OF 
THE STATEMENTS PROCESSED 
BY PHASE 10E AND THE 
MAIN ROUTINES AND SUB
ROUTINES THAT PROCESS 
THESE STATEMENTS. 

* * *. .* 
*************** *..* 

* •• * 
*PRFRM 

V 
****J5********* 

* * 
* PHASE 12 * 
* * *************** 

Section 3: Charts and Routine Directories 51 



Table 6. Phase lOE Statement Processing 
r--------------T-----------------------T------------------------------------------------, 
IStatement Type I Main processing Routine I Main Subroutines Used ++ I 
~--------------t-----------------------t------------------------------------------------~ 
I ARITHMETIC IARITH * ICSORN, PUTX, GETWD, SUBS (ARITH may pass control I 
I I **Ito ASF, DC, and GO) I 
~--------------t-----------------------t------------------------------------------------~ 
ISF IASF * ICSORN, GETWD I 
I I ** I I 
~--------------t------~----------------t------------------------------------------------i 
ICALI I CALL * IPUTX, GETWD, CSORN (exits to ARITH) I 
I I ** I I 
~--------------t-----------------------t------------------------------------------------i 
100 100 * IARITH, CSORN, GETWD, LABLU, PUTX 1 
I I ** I I 
~--------------t-----------------------t------------------------------------------------i 
IGO TO IGO * I 1 
I I ** I I 
~--------------t-----------------------iARITH, GETWD, LABLU, PUTX, CSORN, WARN/ERRET I 
ICOMP GO TO IGO * I I 
I I ** I I 
t--------------t-----------------------t------------------------------------------------~ 
IIF ISUEIF * IGO, PUTX (exits to ARITH) I 
I I ** I I 
t--------------t-----------------------t------------------------------------------------i 
I READ I READ/WRITE * I I 
I I ** I I 
t--------------t-----------------------~GETWD, CSORN, PUTX, LABLU (exits to ARITH) 1 
IWRITE I READ/WRITE * I I 
I I ** I 1 
t--------------t-----------------------t------------------------------------------------~ 
I FORMAT I FORMAT * IGETWD, WARN/ERRET, PUTX I 
t--------------t-----------------------t------------------------------------------------i 
ICONT ICONT/RETURN * I I 
~--------------t-----------------------~GETWD, WARN/ERRET, PUTX I 
I RETURN ICONT/RETURN * I I 
~--------------t-----------------------t------------------------------------------------~ 
ISTOP I STOP/PAUSE * I 1 
t--------------t-----------------------~GETWD, PUTX (exits to CLASS) I 
1 PAUSE I STOP/PAUSE * 1 1 
t--------------t-----------------------t------------------------------------------------i 
I BACKSPACE IBKSP/ * I I 
1 1 ** I I 
t--------------~ I 1 
I REWIND I REWIND/ * ICSORN, GETWD, PUTX I 
I I ** I I 
t--------------~ 1 I 
IENDFILE IENDFIL * I I 
I I ** I I 
~--------------~-----------------------~------------------------------------------------~ 1* Text is created when processing this statement. I 
I I 
1** Table entries may be prepared when processing this state~ent. I 
I I 
1++ All routines except FORMAT and CONT/RETURN use ERROR as an error exit for errors I 
I that cause termination of the statement processing. I 
l _____________________________________________________ ---------------------------_______ J 

52 



Table 7. Phase lOE Main Routine/Subroutine Directory 
r-----------------------~--------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~-----------------------+---------------------------------------------------------------~ 
ARITH Processes arithmetic statements. May use SUBS. 

ASF 

BKSP/REWIND/ENDFIL 

CALI. 

CLASS 

CONT/RETURN 

CSORN 

DO 
1 

END 

EOSR 

ERROR 

EXIT 

FORMAT 

GETWD 

GO 

LABLU 

LABTLU 

LITCON 

PRMBLD 

PUTX 

READ/WRITE 

START 

STOP/PAUSE 

SUBIF 

SUBS 

SYMTLU 

Processes the parameter list of a statement function. 

Processes the BACKSPACE, REWIND, and ENDFILE statements. 

Processes the name of a CALL statement. 

Determines which routine will process the statement type. 

Processes CONTINUE and RETURN staterrents. 

Processes names, constants, data set reference numbers, and DO 
parameters. May use LITCCN and SyMTLU. 

Processes the DO statement and imFlied DOs. 

Processes the END statement. 

Processes the end of the statement. 

Enters error text into the intermediate text and terminates the 
processing of current statement. 

Performs end-of-phase processing. 

Processes FORMAT statements. 

Obtains a word or element in a statement and gets a new card 
image, if necessary. Prints the card if SOURCE option is 
requested. May use PRMBLD. 

Processes the statement number branched to by an IF, GO TO, or 
computed GO TO statement. 

Enters 
table. 

only statement 
Uses LABTLU. 

number information into the overflowl 

Enters all information into the overflow table. 

Processes literals. 

IPerforms all operations associated with I/O 
Ibuffer switChing. 
I 

interfacing and 

IPuts entries into the intermediate text buffers. 
I 
I Processes the portion of the staterrent preceding the I/O list. 
I 
Performs Phase lOE initialization. 

Processes the STOP and PAUSE statements. 

Begins the IF statement processing. 

Processes subscript variables. 

Enters symbols and/or units into the dictionary. 

I 
I 
I 
I 
I 
I 

IWARN/ERRET Processes warning and error conditions that do not prevent I 
I coropletion of the processing of the current statement,. I L _______________________ L-______________________________________________________________ J 

Section 3: Charts and Routine Directories 53 



Chart 07 .. Phase 12 (IEJFLAAO) Overall Logic Diagram 

.****Al*********. 
* PHASE lOE OR * 
* I NTERLUOE 10E * 

*************** 

V 
*****Bl********** 
* STARTA * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
*INITIALIZATION * 
* * ........ j ....... . 

v 
*****c 1 **********' 
* COMALO * 
*-*-*-*-*-*-*-*-* 
*ASSIGN ADDR TO * 
*VAR.AND ARRAYS * 
* IN COMMON * 
*.**.****** •• ** •• 

I 
V 

·****01********** 
*EQUIVP E4* 
.-.-*-*-*-*-*~*-* 
* PROCESSES * 
* EQUIVALENCE * 
* TEXT * ........ j ....... . 

V 
*****El********** 
* EXT COM * 
*-*-*-*-*-*-*-*-* 
* INCR.LOCATION * 
*CNTR BY SIZE OF* 
* COMMON * 
.*********.****** 

I 
V 

*****Fl********** 
* DPALOC * 
*-*-*-*-*-*-*-*-* 
* ASGN ADDR TO * 
* DBL-PREC VAR. * 
*ARRAYS IN DICT.* 
..... *****.******* 

I 
V 

*****G 1 ********** 
* SALO * 
*-*-*-*-*-*-*-*-* 
* ASGN ADDR TO * 
* REAL AND INT * 
*VAR AND ARRAYS * 
****.************ 

I 
V 

*****Hl********** 
* ALOC * 
*-*-*-*-*-*-*-*-* 
*ASGN ADDRESSES * 
* TO EQUATED * 
* VAR * ........ j ....... . 

V 
·****Jl********** 
* LDCN * 
*-*-*-*-*-*-*-*-* 
* PROC DICT ENT * 
*FOR EXT AND IN * 
*LINE FUNCTIONS * ........ j ....... . 

V 

SEE TABLE 8 FOR A BRIEF 
OESCRIPTION OF THE FUNCTION 
OF EACH PHASE 12 ROUTINE/ 
SUB ROUT I NE. 

COMALO USES THE 
ALOWRN/ALERET. 
SORSYM**. GETCOMI. 
AND GETCOM SUBROUTINES 

EXTCOM USES THE 
ALOWRN/ALERET 
SUBROUTINE 

DPALDC USE THE 
INTDCT. EQRSRCH. 
SORSYM**. AND 
DELETE SUBROUT I NES 

SALO USES THE 
INTDCT. EQSRCH. 
AND SORSYM** 
SUBRDUTI NES 

ALOC USES THE 
INTDCT. ALOWRN/ 
ALERET. EQSRCH. 
AND DELETE SUB
ROUTINES 

LDCON USES THE 
INTDCT. ESD*. 
DELETE. RLD*. 
AND GOFILE SUB
ROUTINES 

****J3********* 
* * * PHASE 14 * 

*************** 
" 

*****Kl ********** *****K2********** *****K3********** 
* ASGNBL * * SSCK * * SORL IT * 
*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
*PREPARES BR.LST*------->* REPL PTRS TO *------->* ASSIGN ADDR * 
* TABLE FOR * *VAR USED IN SUB* *TO LITERALS IN * 
* STAT. NOS. * *SCRIPT EXPR/ADR* * DICTIONARY * 
***************** ***************** ***************** 

54 

* CARD IMAGE 
PREPARATION 

STORAGE MAP 
PREPARA T I ON 

****04********-
* * 
* * 

COMALO 

*************** 

I 

* 
* 

V 
*****E4********** 
* EQUSOl * 
*-*-*-*-*-*-*-*-* 
*PROC.FIRST NAME* 
* IN AN EQUIV. * 

:*****;:~~~*****: 

I 
v 

*****F4********** 
* EQUS03 * 
*-*-*-*-*-*-*-*-* 
*PROC.REMAINDER * 
* OF EQUIV. * 
* GROUP * 
***************** 

I 
V 

*****G4********** 
* EQUS14 * 
*-*-*-*-*~*-*-*-* 
*PROC.ALL EQUAT-* 
* EO VAR AND * 
*ARRAYS IN COMM.* 
***************** 

V 
****H4********* 

* * * EXTCOM * 

SORLIT USES THE 
TXT*. ESO*. 
SORSYM**. GOFILE. 
AND RLO* SU8ROUT I NES 

EQUSOl USES THE 
GETEQUIV. EQSRCH. 
RENTER/ENTR. AND 
ALOWRN/ ALERET 
SUBROUTINES 

EQUS03 USES THE 
GETEGUI V. EQSRCH. 
RENTR/ENTR. AND 
ALOWRN/ALERET 
SUBRGUT I NES 

EQUS14 USES THE 
SWROOT. EQSRCH. 
AND ALOWRN/ALERET 
SUBROUTINES 



Table 8. Phase 12 Main Routine/Subroutine Directory 

r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 
IALOC IAssigns addresses to all equated variables. I 
I I I 
IALCWRN/ALERET IProcesses the error and warning conditions detected in Phase 12. I 
I I I 
I ASGNBL IAllocates a branch list position for each referenced stmt. no. I 
I I I 
ICOMALO Assigns addresses for variables or arrays to be placed in COMMON and 
I removes these variables from the appropriate dictionary chain. 
I 
I DELETE 
I 
DPALOC 

EQSRCH 

EQUIVP 

EQUSOl 

EQUS03 

EQUS14 

ESD 

EXTCOM 

GETCOM/GETEQUIV 

GETCOMI 

GOFlLE 

INTDCT 

LDCN 

RENTER/ENTR 

RID 

SALO 

SORIIT 

SORSYM 

SSCK 

STARTA 

SWROOT 

Removes dictionary entries from chain. 

Assigns addresses to all 
entered in the dictionary. 

double-precision variables 

Checks for variables previously equated to a root. 

Performs equivalence processing. 

Processes first name in an EQUIVALENCE group. 

or arrays 

Processes remainder of EQUIVALENCE group and switches root if 
necessary. 

Processes all equated variables and arrays in COMMON. 

Processes ESD card images. 

Enters size of COMMON in the corrmunication area. 

Updates COMMON or EQUIVALENCE text pointer and reads in text records 
when necessary. 

Initializes pointers and I/O parameters for COMMON-EQUIVALENCE text. 

Generates card images for data sets SYSLIN and/or SYSPUNCH. 

Retrieves entries from the dictionary. 

Processes dictionary entries for functions and external references. 
Also prepares ESD section definition card images for the object 
module and COMMON areas. 

Enters variables in the EQUIVALENCE table either as a root or as an 
equated variable. 

Processes RLD card images. 

Assigns addresses to real and integer variables and arrays. 

Assigns addresses and generates text card images for all literals; 
performs the final processing of the phase. 

Arranges and prints the storage map for all arrays, constants, and 
external references assigned addresses by Phase 12. 

Replaces pointers to variables used in subscript expressions with 
addresses assigned by Phase 12. 

Initializes Phase 12. 

Changes a root previously entered. 

I TXT Processes text card images. L __________________ ~ ____________________________________________________________________ J 

section 3: Charts and Routine Directories 55 



Chart 08. Phase 14 (IEJFNAAO) Overall Logic Diagram 

****A2********* 
* * 
* 
* 

PHASE 12 

*************** 
* 
* 

V 
*****B2********** 
* PHINT * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
*INITIALIZATION * 
* * ***************** 

**** 
* * * C2 *-> 
* * **** 

V 
*****C2********** 
* PRESCN * 
*-*-*-*-*-*-*-*-* 
* OBTAIN STATE- * 
* MENT AND OE- * 
* TERMINE TYPE * 
***************** 

I 
V 

SEE TABLE 11 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 14 ROUTINE/ 
SUBROUTINE. 

.*. .*. 
02 *. *****03********** 04 * • 

• * *. * END * .* SPACE *. ****05********* 
.* END *. YES *-*-*-*-*-*-*-*-* .* OR PRFRM *. PRFRM * * 

*. STATEMENT • *--------> * PERFORMS *-------->*. COMPILATION .*-------->* PHASE 15 * 
*. .* *FINAL PHASE 14 * *. .* * * 
*..* * PROCESSING * *..* *************** 

* .• * ***************** * •. * I NO jSPACE 

.*. V 
E2 *. *****E3********** *****E4********** 

.* *. * FORMAT * * * ****E5********* 
.* FORMAT *. YES *-*-*-*-*-*-*-*-* * DELETE MAIN * * * 

*. STATEMENT • *--------> * ** PROCESS * * STORAGE *-------->* INTERLUDE 14 * 
*. .* * FORMAT * OCCUPIED BY * 
*..* * STATEMENT * * DICTIONARY * 

* •• * 

j"" 
V 

*****F2********** 
* * * 
* * PROCESS * 
* STATEMENT * 
* * 
* * ***************** 

56 

I 
V 

**** 
* * * C2 * ..: * 

**** 

***~************* ***************** 

I 
V 

**** 
* * * C2 * 
* * 

* SEE TABLE 9 FOR A LIST 
OF THE STATEMENTS PROCESSED 
BY PHASE 14 AND THE ROUTINES 
AND SUBROUTINES THAT PROCESS 
THESE STATEMENTS. 

** SEE TABLE 10 FOR A LIST 
OF THE FORMAT CODES THAT 
MAY APPEAR IN A FORMAT 
STATEMENT AND THE SUB
ROUTINES THAT PROCESS 
THESE CODES. 

FORMAT USES THE 
CKENDO. GETWDA. 
INTCON. AND MSG/ 
MSGMEM SUBROUTINES 

* *************** 



Table 9. Phase 14 Statement Processing (FORMAT statements Excluded) 
r--------------------T-----------------------------T------------------------------------, 
I statement Type I Main Processing Routine I Main Subroutines Used I 
~--------------------+-----------------------------+------------------------------------~ 
I FORMAT I FORMAT I See Table 10 I 
~-~------------------+-----------------------------+------------------------------------~ 
I WRITE I READWR I I 
~--------------------+-----------------------------~ UNITCK, ERROR, MSGMEM I 
I READ I READ I 1 
~--------------------+-----------------------------+------------------------------------~ 
I SUBROUTINE I SUBFUN 1 I 
~--------------------+-----------------------------~ RDPOTA*., MSGMEM, RPTRB I 
I FUNCTION I SUBFUN 1 I 
~--------------------+-----------------------------+------------------------------------~ 
I CONTINUE I SKIP I MSGMEM I 
~--------------------+-----------------------------+------------------------------------~ 
I BACKSPACE I BSPREF I I 
~--------------------+-----------------------------~ I I REWIND I BSPREF I UNITCK, MSGMEM I 
~--------------------+-----------------------------~ I 
1 ENDFILE I BSPREF I I 
~--------------------+-----------------------------+------------------------------------~ 
I DO I DO I CKENDO, ERROR, MSGMEM, RDPOTA* I 
~--------------------+-----------------------------+------------------------------------~ 
I STATEMENT I LABEL I None 1 
I NUMBER I I 1 
~--------------------+-----------------------------+------------------------------------~ 
I SF I ASF 1 PASSON, CEM, RPTRB I 
~--------------------+-----------------------------+------------------------------------~ 
I RETURN 1 RETURN 1 CKENDO, MSGMEM, SKIP 1 
~--------------------+-----------------------------+------------------------------------~ 
I STOP I STOP I CKENDO, SKIP 1 
~--------------------+-----------------------------+------------------------------------i I PAUSE I PAUSE I CKENDO, SKIP, RDPOTA* 1 
~--------------------+-----------------------------+------------------------------------~ 
I INVALID I INVOP 1 None I 
~--------------------+-----------------------------+------------------------------------~ 
I ERROR I ERWNEM I I 
~--------------------+-----------------------------~ None I 
I WARNING I ERWNEM I I 
~--------------------+-----------------------------+------------------------------------~ 
I END MARK I MSG 1 None I 
~--------------------+-----------------------------+------------------------------------~ 
I IF I PASSON I I 
~--------------------+-----------------------------~ I 
I ARITH I PASSON I I 
~--------------------+-----------------------------i I 
I CALL I PASSON I CEM 1 
~--------------------+-----------------------------~ I 
I GO TO I PASSON I I 
~--------------------+-----------------------------+------------------------------------i 
I COMP GO TO I CGOTO I CKENDO, RDPOTA, MSG, MSGMEM I 
~--------------------~-----------------------------~------------------------------------~ 
1* Replacement of dictionary pointers I L _______________________________________________________________________________________ J 

section 3: Charts and Routine Directories 57 



Table 10. Phase 14 FORMAT statement Processing 
r---------------------------------------------------------------------------------------, 
I Processing the Various FORMAT Codes I 
~-------------------------------------------T-------------------------------------------~ 
I FORMAT Code I Main Subroutine Used I 
~-------------------------------------------+-------------------------------------------~ 
I blank I BLANKZ I 
~-------------------------------------------+-------------------------------------------~ 
I D I FMDCON I 
~-------------------------------------------+-------------------------------------------~ 
I E I FMECON I 
~-------------------------------------------+-------------------------------------------~ 
I F I FMFCON I 
~-------------------------------------------+-------------------------------------------~ 
I I I FMTINT I 
~-------------------------------------------+-------------------------------------------~ 
I A I FMACON I 
~-------------------------------------------+-------------------------------------------~ 
I X I FMXCON I 
~-------------------------------------------+-------------------------------------------~ 
I P I FSCALE I 
~-------------------------------------------+-------------------------------------------~ 
I + I FMPLUS I 
~-------------------------------------------+-------------------------------------------~ 
I I FMINUS I 
~-------------------------------------------+-------------------------------------------~ 
I ( I LPAREN I 
~-------------------------------------------+-------------------------------------------~ 
I / I FSLASH I 
r-------------------------------------------+-------------------------------------------~ 
I T I FSUBST I 
~-------------------------------------------+-------------------------------------------~ 
I H I FHOLER I 
~-------------------------------------------+-------------------------------------------i 
I' I FQUOTE I 
~-------------------------------------------+-------------------------------------------~ 
I, I FCOMMA I 
~-------------------------------------------+-------------------------------------------~ 
I) I RPAREN I L ___________________________________________ ~ _________ - _________________________________ J 

Table 11. Phase 14 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subrout ine I Function I 
~------------------+--------------------------------------------------------------------i 
IASF Processes the SF definition text. ~ 

I 
IBLANKZ 
I 
I BSPREF 
I 
CEM/RDPOTA/RPTRB 

CGO'IO 

CKENDO 

DO 

END 

ERROR 

Processes any blanks encountered while scanning a FORMAT statement. 

Processes BACKSPACE, REWIND, and ENDFILE statement text. 

Completes text processing for arithmetic, BACKSPACE, REWIND, 
FILE, GO TO, DO, CALL, IF, PAUSE, and SF definition statements. 

Processes text for computed GO TO statements. 

Determines if a statement has invalidly endec a DO loop. 

END-

Performs diagnostic checks on the DO variable and the DO parameter. 

Processes END text. 

Generates intermediate text entries for error conditions detected in 
Phase 14. 

IERWNEM Processes error and warning text. L __________________ ~ ___________________________________ ------------------_______________ J 

(Continued) 

58 



Table 11. Phase 14 Main Routine/Subroutine Directory (Continued) 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+------------------------------------~-------------------------------~ 
FCOMMA Processes any commas found in a FORMAT statement. I 

I 
FHOIER Processes the H specification in a FORMAT statement. I 

I 
FMACON Processes the A specification in a FORMAT statement. I 

I 
FMDCON Processes the D specification in a FORMAT stateroent. I 

I 
FMECON Processes the E specification in a FORMAT staterr.ent. I 

FMFCON 

FMINUS 

FMPIUS 

FMTINT 

FMXCON 

FORMAT 

FQUOTE 

FSCALE 

FSLASH 

FSUBST 

GETWDA 

INTCON 

INVOP 

LABEL 

LPAREN 

MSG/MSGlVjEM 

PASSON 

PAUSE 

PHINT 

PRESCN 

READ/READWR 

RETURN 

RPAREN 

SKIP 

STOP 

SUB FUN 

Precesses the F specification in a FORMAT statement. 

Processes the . -' specification in a FORMAT statement. 

Processes the • +' specification in a FORMAT statement. 

Processes the T specification in a FORMAT statement. 

Processes the X specification in a FORMAT statement. 

IPerforms and directs some FORMAT processing. May use INTCON. 

Processes the apostrophe specification in a FORMAT statement. 

Processes the P specification in a FORMAT' statement. 

Processes the slash format specification in a FORMAT statement. 

Processes the T specification in a FORMAT statement. 

Scans FORMAT statements. 

Converts integer constants to tinary and checks their validity. 

Processes invalid adjective codes. 

Processes statement number definition text. 

Processes left parentheses. 

Inserts error/warning messages into text and detects end of stmt. 

Processes CALL, IF, and arithmetic IF statement text. 

Processes PAUSE statement text. 

Performs phase initialization. 

Performs phase initialization and controls processing of int. text. 

Processes READ/WRITE text. 

Processes RETURN statement text. 

Processes any right parenthesis occurring in a ,FORMAT statement. 

Processes CONTINUE statement text. 

Processes STOP statement text. 

Processes SUBROUTINE and FUNCTION text entries. 

I 

IUNITCK Checks validity of symbols used to reference a DSRN. L __________________ ~ __________________________________ --________________________________ J 

section 3: Charts and Routine Directories 59 



Chart 09. Phase 15 (IEJFPAAO) Overall Logic Diagram 

****A3********* 
* * * PHASE 14 OR * 
* INTERLUDE 14 * 

*************** 

I 
**** I 

* * * B3 *-> 
* * I **** 

V 
*****83********** 
* PRESCN * 
*-*-*-*-*-*-*-*-* 
* OBTAIN STATE- * 
*MENT AND DETER-* 
*MINE STMT TYPE * 
***************** 

I 
V .*. 

SEE TABLE 14 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 15 ROUTINE/ 
SUBROUTINE. 

C3 *. *****C4********** 
.* *. * MOPUP * ****C5********* 

.* END *. YES *-*-*-*-*-*-*-*~* * * 
*. STATEMENT • *--------> * PERFORMS *-----. * INTERLUDE 15 * 

*. .* *FINAL PHASE 15 * I * * 

····i·~~· : .. ~~~~;~~!~: ••• : I ....... ,::::: .. 
. t I .1. 

*****02********** 03 *. *****04********** 05 *. 
* * .* *. * FOSCAN** * L .* SPACE *. 
* * PROCE"SS * NO.* CAN *. YES *-*-*-*-*-*-*-*-* .* OR PRFRM *. 
* STATEMENT *< *.STMT CONTAIN .*-------->* CONTROLS THE >*. COMPILATION .* 
* * *. ARITH .* * REORDER AND * 
* * *.EXPR .* *MOD OF INT TXT * 
***************** * •• * ***************** 

60 

I~ ..... E3.~........1 I 
MS~~~~~~;~~:~~~:~_: 

>* PROC REM OF *< I 
*STMT AND FORMS * 
*E/W TXT IF NEC * 
***************** 

I 
V 

**** 
* * * B3 * 
* * 

**** 

* SEE TABLE 12 FOR A LIST 
OF THE NONARITHMETIC 
STATEMENTS PROCESSED BY 
PHASE 15 AND THE MAIN 
ROUTINES AND SUBROUTINES 
THAT PROCESS THESE STATEMENTS. 

** FOSCAN PROCESSES ARITHMETIC. 
ARITHMETIC IF. STATEMENT FUNCTION 
AND CALL STATEMENTS. SEE TA8LE 13 
FOR A LIST OF THE OPERATORS THAT MAY 
APPEAR IN THE ABOVE STATEMENTS AND 
THE MAIN ROUTINES AND SUBROUTINES 
THAT PROCESS THESE OPERATORS. 

*. .* 
* •• * 

*PRFRM 

I 
V 

****E5********* 
* * * PHASE 20 * 
* * *************** 



Table 12. Phase 15 Nonarithmetic Statement Processing 
r--------------------------------T---------------------------T--------------------------, 
I Statement Type or Adjective Cd I Main Processing Routine 1 1 Main Sucroutines Used I 
~--------------------------------+---------------------------+--------------------------1 
I COMPUTED GO TO I CGOTO 1 LAB, CEM I 
~--------------------------------+---------------------------+--------------------------1 
I DO I DO I LAB1, CEM I 
~--------------------------------+---------------------------+--------------------------1 
I END MARK I MSG I None I 
~--------------------------------+---------------------------+--------------------------1 
I ERROR I ERWNEM I Non e I 
~--------------------------------+---------------------------+--------------------------1 
I GOTO I GOTO I LAB, CEM I 
~--------------------------------+---------------------------+--------------------------1 
I INVALID I INVOP I ERROR I 
~--------------------------------+---------------------------+--------------------------1 
1 I/O LIST I BEGIO 1 MSGMEM I 

~--------------------------------+---------------------------+--------------------------1 
1 STATEMENT NUMBER 1 LABEL I ERROR I 

~--------------------------------+---------------------------+--------------------------1 
1 WARNING I ERWNEM I None I 
~--------------------------------+---------------------------+--------------------------1 
1 READ/WRITE I D02 I CEM I 

~--------------------------------+---------------------------+--------------------------1 
I RETURN/CONTINUE I SKIP I None I 
~--------------------------------L---------------------------L--------------------------1 
11 Routine MSGNEM/MSGMEM/MSG is entered from all these routines except ERWNEM and LABEL. I 
I These two routines return control directly to PRESCN. I L _______________________________________________________________________________________ J 

section 3: Charts and Routine Directories 61 



Table 13. Phase 15 Arithmetic Operator Processing 
r------------------T--------------------T-----------------------------------------------, 
I I Main Processing I I 
I Operator I Routine I Main Subroutines Used I 
~------------------+--------------------+-----------------------------------------------~ 
I ADD I ADD I FREER, SAVER., SYMBOL, MODE, MVSBXX, FINDR, I 
I I I LOADRl I 
~------------------+--------------------+-------------------------~---------------------~ I ARGUMENT I COMMA I CKARG, ERROR, WARN, SAVER., INLIN2, INARG, I 
I I I MSGMEM I 
~------------------+--------------------+-----------------------------------------------~ 
I CALL FORCING I CALL I MSG I 
~------------------+--------------------+-----------------------------------------------i 
I I I SYMBOL, MODE, LOADR1, CHCKGR., SAVER., FREER, I 
I DIVIDE I MULT I DIV, MVSBXR, MVSBXX I 
~------------------+--------------------+-----------------------------------------------~ I EQUAL I EQUALS I ERROR, TYPE, MODE, MVSBRX, WARN, MVSBXR, I 
I I I ASFDEF I 
~---------------~--+--------------------+-----------------------------------------------~ 
I EXPONENTIATION I EXPON I SYMBOL, MODE, CKARG I 
~------------------+--------------------+-----------------------------------------------~ I FUNCTION ( I FUNC I CKARG, INLINl I 
~------------------+--------------------+----~------------------------------------------~ 
I ILLEGAL I INVOP I ERROR I 
~------------------+--------------------+-----------------------------------------------~ 
I LEFT PAREN I LFTPRN I CKARG, ERROR, ARTHIF, WARN, LOADRl I 
~------------------+--------------------+-----------------------------------------------i I MULTIPLY I MULT I SYMBOL, ~ODE, MVSBXX, LOADR1, CHCKGR., FREER I 
~------------------+----~---------------+-----------------------------------------------~ 
I RIGHT PAREN I RTPRN I ERROR I 
~------------------+--------------------+-----------------------------------------------~ 
I SUBTRACT I ADD I SYMBOL, MODE, MVSBXX, FINDR, LOADR1, FREER, I 
I I I SAVER· I 
~----~-------------+--------------------+-----------------------------------------------~ I UNARY MINUS I UMINUS I TYPE, FINDR, LOADR1, MVSBRX, INVOP I 
~------------------+--------------------+-----------------------------------------------~ 
I UNARY PLUS I UPLUS I INVOP I 
~------------------L--------------------~-------------__________________________________ ~ 
I • Specific sections of the SAVER and CHCKGR routines operate upon specific registers I 
I (general registers 0, 1, 2, 3; floating point registers 0, 2, 4, 6). I L _______________________________________________________________________________________ J 

62 



Table 14. Phase 15 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 
ADD IDetermines register assignment for add, subtract, multiply, and 

Idivide operators. 
I 

ARTHIF IProcesses the statement numbers of an arithmetic IF statement. 
I 

ASFDEF IProcesses statement function definitions. 

BEGIO 

CALI 

CEM 

CHCKGR 

CKARG 

COMMA 

CGOTO 

DIV 

DO 

D02 

END 

EQUALS 

ERROR 

ERWNEM 

EXPCN 

FINDR 

FaBCAN 

FREER 

FUNC 

GOTO 

INARG 

INLIN1 

INLIN2 

INVOP 

LAB 

Processes the I/O list of READ and WRITE statements. 

Precesses CALL statements. 

Checks for an end mark. 

Obtains a specific general register for assignment. 

Checks the argument in an external call for validity, and ensures 
that the argument has a storage location. 

Processes the argument lists. 

Processes the statement numbers in a computed GO TO statement. 

Processes integer operands of a divide operation. 

Processes DO statements. 

Writes out a text word if not an end mark. 

Determines if the arithmetic IF, arithmetic, and SF statements were 
processed. 

Processes equal adjective code text. 

Processes error conditions detected in the phase. 

Processes end mark, error, and warning text. 

Processes exponentiation text. 

Finds a register and indicates that it is a register. 

Checks the syntax of arithmetic, arithmetic IF, CALL, and SF 
statemerits, and orders the arithmetic expression text according to a 
hierarchy of operators. Uses END. 

Indicates a register is availa~le. 

Processes one-argument functions. 

Processes statement numbers referenced by a GO TO statement. 

Processes the argument of an in-line function. 

Processes one-argument, in-line functions. 

Processes two-argument, ifl-line functions. 

Processes invalid adjective codes. 

Checks for illegal statement number references. 

ILAB1 Checks whether label is defined. 
L _________________ ~~----------------------------------_________________________________ _ 

<Continued) 

section 3: Charts and Routine Directories 63 



Table 14. Phase 15 Main Routine/Subroutine Directory (Continued) 
r------------------T--------------------------------------------------------------------, 
\ Routine/Subroutine \ Function \ 
~------------------+--------------------------------------------------------------------i 
I LABEL Checks statement numbers used to indicate the end of a DO loop. 
\ 
ILFTPRN Process the text for a left parenthesis. 
I 
\ LOADR1 Enters an operand into a specific register. 
\ 
MODE Checks the mode of operands and changes them if necessary. 

MOPUP Performs final phase processing for Phase 15. 

MSGNEM/MSGMEM/MSG Processes the remaining text words of a statement and puts out any 
necessary error, warning, and end do text. 

MOLT 

MVSBXR/MVSBRX 

MVSBXX 

Aids in processing the operands of multiFly and divide instructions. 

Processes a left operand subscripted variable. 

Processes a left operand sutscripted variable if the right operand 
might also be a subscripted variable. 

PRESCN Determines what statement type is represented in the text and 
major routine will process it. 

which\ 

RTPRN 

SAVER 

SKIP 

SYMBOL 

TYPE 

UMINUS 

UPLUS 

Processes illegal use of right parenthesis as a delimiter. 

stores the contents of a specified register into the next 
work area space. 

Processes RETURN and CONTINUE statements. 

Checks the left and right operands of an operator. 

Checks each symbol used as an oferand. 

Processes unary minus operaticns. 

Processes unary plus operations. 

WARN Processes warning conditions detected in the phase. 

available 

L __________________ ~ ___________________________________________________________________ _ 

64 

I 
I 
I 
I 



Chart 10. Phase 20 (IEJFRAAO) Overall Logic Diagram 

****A3********* 
* * * PHASE 15 OR * 
* INTERLUDE 15 * 

*************** 

V 
*****B3********** 
* INIT * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
* INITILIZATION * 
* * ***************** 

:*::* :-J 
* * I **** 

V 
*****C3********** 
* STATA * 
*-*-*-*-*-*-*-*-* 
*OBTAIN STMT AND* 
*DETERMINE STMT * 
* TYPE * 
***************** 

I 
v 

• *. 
D3 *. 

.* *. 

SEE TABLE 17 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 20 ROUTINE/ 
SUB ROUT I NE .• 

*****84********** 
* PHEND * 
*-*-*-*-*-*-*-*-* 

* CESSING * **** r>*PERFORMS FINAL * 
* PHASE 20 PRO- * 

***************** * * 

I 
* C5 * 
* * I **** 

I v I .*. I 
C4 *. V 

.* ANY *. ****C5********* 
.* SOURCE *. NO * 

*. MODULE • *--------> * PHASE 25 
*. ERRORS .* * 
*..* *************** 

* •• * rES 
v 

.* • 
04 *. 

.* IS *. ****05********* 

* 
* 

.* END *. YES .* 'LOAD' *. NO * * 
*. STATEMENT .* *. OPTION • *--------> * PHASE 30 * 

*. .* *.SPECIFIED.* * * 

* •• * 

j"" 
v .*. 

*. .* 
* YES 

L **** 
* * >* C5 * 
* * 

**** 

*****E2********** E3 *. *****E4********** 
* * .* *. * * 
* * PROCESS * NO.* CAN *. YES * ** PROCESS * 
* STATEMENT *<--------*.STMT CONTAIN .*-------->* STATEMENT * 
* * *.SUBSCRIPT.* * * 
* * *.EXPR .* * * 
***************** 

I 
v 

**** 
* * * C3 * 
* * **** 

* 

***************** 

SEE TABLE 15 FOR A LIST OF- 1) 

I 
v 

**** 
* * * C3 * 
* * **** 

THE STATEMENTS PROCESSED BY PHASE 20 
THAT DO NOT CONTAIN SUBSCRIPT EXPRESSIONS, 
AND- 2) THE MAIN ROUTINE AND SUBROUTINES 
THAT PROCESS THESE STATEMENTS. 

** SEE TAB~E 16 FOR A ~IST OF- 1) 
THE STATEMENTS PROCESSED BY PHASE 
20 THAT MAY CONTAIN SUBSCRIPT EXPRESSIONS, 
AND- 2) THE MAIN ROUTINES AND SUB
ROUTINES THAT PROCESS THESE STATEMENTS. 

section 3: 

*************** 

Charts and Routine Directories 65 



Table 15. Phase 20 Nonsubscript Optimization Processing 
r----------------------T-----------------------------T----------------------------------, I statement Type I Main Processing Routine I ~ain Subroutines Used 1 
~----------------------+-----------------------------+----------------------------------~ 
1 DO 1 DO I BVLSR, RMVEVL I 
~----------------------+-----------------------------+----------------------------------i 
1 FND DO 1 ENDDO 1 None I 
~----------------------+-----------------------------+----------------------------------~ 
1 IMPLIED DO 1 IOLIST 1 BVLSR, CALSEQ, RMVBVL,SUBVP 1 
~----------------------+-----------------------------+----------------------------------~ 
1 READ 1 READ 1 None 1 
~----------------------+-----------------------------+----------------------------------~ 
1 STATEMENT I 1 1 
I NUMBER I LABEL 1 None 1 L ______________________ ~ _____________________________ ~ __________________________________ J 

Table 16. Phase 20 Subscri~t Optimization Processing 
r----------------------T-----------------------------T----------------------------------, I statement Type I Main processing Routine I Main Subroutines Used I 
~----------------------+-----------------------------+----------------------------------~ 
I AR1THMET1C* 1 AR1TH 1 CALSEQ, CKCOD, RMVBVL, SUBVP 1 
~----------------------+-----------------------------+----------------------------------~ 
1 CALL* I IFCALL 1 BVLSR, CALSEQ, RMVBVL, SUBVP 1 
~----------------------+-----------------------------+----------------------------------~ 
I IF* 1 1FCALL 1 None 1 
~----------------------+-----------------------------+----------------------------------~ 
1 1/0* 1 10LIST 1 BVLSR, CALSEQ, RMVBVL, SUBVP I 
~----------------------~-----------------------------~----------------------------------~ 
1* Whenever exponentiation is encountered subroutine ESDRLD processes the exponentiation 1 
I operands. I L _____________________________________________________ --________________________________ J 

66 



Table 17. Phase 20 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 
ARITH Optimizes arithmetic statement text. I 

I 
BVLSR Enters bound variables on the bound variable list. I 

I 
CAL SEQ Processes argument lists. I 

I 
CRCOD Assigns an area and a constant for use by the IFIX, FLOAT, and 

DO 

DUMPR 

ENDDO 

ESDRLD 

GENGEN 

IFCALL 

INIT 

IOLIST 

LABEL 

PHEND 

READ 

RMVBVL 

DFLOAT in-line functions. 

Processes DO statements. 

Processes dummy subscripted variables. 

Ensures that the end of a DO loop is recognized. 

Generates ESD and RLD card images. 

Begins the generation of literals. 

Optimizes the arithmetic expression of an arithmetic IF statement or 
a CALL statement. 

Performs Phase 20 initialization. 

Processes DO variables of an implied DO and I/O lists of READ/WRITE 
statements. 

Modifies register assignments due to referenced statement numbers. 

Performs final Phase 20 processing. 

Processes external references within a READ sta.tement. 

Removes register assignments from the index mapping table for 
subscript expressions that involve bound variables. 

STATA Checks the statement type represented by the text and determines thel 
correct Phase 20 proceSSing routine. I 

! 
!SUBVP Optimizes subscript expressions. ! L __________________ L ____________________________________________________________________ J 

Section 3: Charts and Routine Directories 67 



Chart 11. Phase 25 (IEJFVAAO) Overall Logic Diagram 

****A3********* 
* * 
* 
* 

PHASE 20 

*************** 

I 

* 
* 

*****83*~******** 
* START * 
*-*-*-*-*-*-*-*-* 
* PHASE * 
*INITIALIZATION * 
* * ***************** 

I 
I 

• v .*. 

SEE TABLE 19 FOR A BRIEF 
OESCRIPTION OF THE FUNCTION 
OF EACH PHASE 25 ROUTINE/ 
SUBROUTINE. 

C3 *. *****C4********** 
.* IS *. * * 

.* OBJECT *. YES * LOAD OBJECT * 
*.LISTING OPTN .*-------->*LISTING MODULE * 

*.SPECIFIED.* * (IEJFVCAO) * 
*..* * * 

*. .* ***************** i NO I 
r-----------> I < -

I 
v 

*****D4********** 
* END * 
*-*-*-*-*-*-*-*-* 

*****D3********** 
* PRESCN * 
*-*-*-*-*-*-*-*-* 
*OBTAIN TEXT WRD* 
*+ DET ADJ CODE * 
* OR STMT TYPE * 

r-->*PERFORMS FINAL * 
I * PHASE 25 * 
I * PROCESSING * 

***************** I ********j******** 

I I I 
.~. I ! 

E3 *. I 
.* *. I 

.* END *. YES 
*. STATEMENT .*~ 

*. .* 
*. .* 

* •• * 

r 
v 

*****F3********** 
* * * * PROCESS * 
* STATEMENT OR * 
*ADJECTIVE CODE * 
* * ***************** 

I 

* SEE TABLE 18 FOR A LIST 
OF THE STATEMENTS AND 
ADJECTIVE CODES PROCESSED 
BY PHASE 25 AND THE MAIN 
ROUTINES AND SUBROUTINES 
THAT PROCESS THE STATEMENTS 
OR ADJECTIVE CODES. 

68 

*****E4********** 
* * * DELETE OBJECT * 
*LISTING MODULE * 
* IF IT WAS * 
* LOADED * 
***************** 

I 
I 
V 

****F4********* 
* * * 
* 

PHASE 30 

*************** 
* 
* 



Table 18. Phase 25 Statement and Adjective Code Processing 
r-----------------------T----------------------------T----------------------------------, 
IStatement or Operation IMain Processing Routine ****1 ~ain Subroutines Used I 
~-----------------------+----------------------------+----------------------------------~ 
IAOP IAOP IBASCHK I 
~-----------------------+----------------------------+----------------------------------~ 
IArith expressions in I RXGEN/LM/STM IBASCHK/RROUT, RXOUT I 
lapproximate instr. forml I I 
~-----------------------+----------------------------+----------------------------------~ 
ISF DEFINITION IASFDEF* IIISTOUTB I 
~-----------------------+----------------------------+----------------------------------~ 
I SF USAGE I ASFUSE I BASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I BACKSPACE I RDWRT I BASCHK, ARGOU'I, GET, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I CALI I FUNGEN IBASCHK/RROUT I 
~-----------------------+----------------------------+----------------------------------~ 
ICOMPUTED GOTO ICGOTO IBASCHK/RROUT, ARGOUT I 
~-----------------------+----------------------------+----------------------------------~ 
IDO IDOl IBASCHK, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I END DO I ENDDO I BASCHK, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
lEND FILE IRDwRT IBASCHK, ARGOUT, RXOUT, GET I 
~-----------------------+----------------------------+----------------------------------~ 
I END I/O LIST I ENDIO I RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I ERROR IIBE~~ IBASCHK, RROUT I 
~-----------------------+----------------------------+----------------------------------~ 
I FUNCTION ISUBRUT** IGENBR, GET, RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I F'UNCTION CALL I FUNGEN I BASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
IGO TO ITRGEN IBASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
IIF IARITHI IBASCHK/RROUT I 
~-----------------------+----------------------------+----------------------------------~ 
IIMPIIED DO IDOl IBASCHK, RXOUT, LISTOUTB I 
~-----------------------+----------------------------+----------------------------------~ 
11/0 LIST ITEM I IOLIST IARGOUT, BASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I LABEL ILABEL*** IIISTOUTl I 
~-----------------------+----------------------------+----------------------------------~ 
ILOAD MULTIPLE ILM IBASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I PAUSE I PAUSE IBASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I READIWRITE I RDWRT I BASCHK/RROUT, ARGOUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I RETURN I RETURN IBASCHK/RROUT, RXOUT, LISTOUTl I 
~-----------------------+----------------------------+----------------------------------~ 
I REWIND IRDWRT IBASCHK, ARGOUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I STOP I STOP I None I 
~-----------------------+----------------------------+----------------------------------~ 
ISTORE MULTIPLE ISTM IBASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I SUBROUTINE ISUBRUT** IGENBR, BASCHK/RROUT, RXOUT I 
~-----------------------+----------------------------+----------------------------------~ 
I SUBSCRIPT ISAOP IBASCHK/RROUT, RXOUT I 
~-----_-----------------L----------------------------~-_________________________________ ~ 
1* Makes an entry in the statement function and DO branch list table. I 
1** Makes an entry in the epilog table. I 
1*** Makes an entry in the statement number branch list table. I 
1**** All of the above routines return control to the PRESCN routine to begin the I 
I processing of the next text word. I L _______________________________________________________________________________________ J 

Section 3: Charts and Routine Directories 69 



Table 19. Phase 25 Main Routine/Subroutine Directory 
r--------------------T------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~--------------------+------------------------------------------------------------------~ 
IAOP IProcesses subscript text when the entire subscript expression needl 
I Inot be calculated. I 
I I I 
IARGOUT I Inserts addresses for arguments into the object module. I 
I I I 
IARITHI IProcesses arithmetic IF statements. I 
I I I 
I ASFDEF I Processes the first text word of a statement function definition. 
I I 
I ASFUSE Generates instructions to use a statement function at object time. 
I 
IBASCHK/RROUT, RXOUT Generates RX and RR format instructions. 
I 
ICGOTO 
I 
IDOl 
I 
lEND 
I 
I END DO 
I 
IENDIO 
I 
I FUNGEN/IBERR 
I 
IGENBR 
I 
I GET 
I 
I IOLIST 
I 
I LABEL 
I 
ILISTOUTB/LISTOUTl 
I 
IPRESCN 
I 
I 

Processes computed GO TO statement text. 

Begins processing of the DO statement text. 

Performs the final Phase 25 processing. 

Generates instructions to end a DO loop. 

Processes the end I/O text. 

Processes in-line and library function calls. 

Makes entries to the branch list tables. 

Obtains intermediate text words. 

Processes the I/O list substatement text. 

Processes statement number definition text entries. 

Generates branch list" text. 

Determines which routine will 
intermediate text. 

process a particular portion of 

RDWRT Processes READ, WRITE, BACKSPACE, REWIND, and ENDFILE statements. 

RETURN 

RXGEN/LM/STM 

Processes RETURN statement text. 

Processes intermediate text entries with adjective codes between 
25 and SF (hexadecimal). 

SAOP Processes subscript text when the entire subscript ordering factor 
Imust be calculated. 
I 

START IPerforms phase initialization. 
I 

STOP/PAUSE IGenerates instructions for the STOP and PAUSE statement text. 
I 

SUBRUT IProcesses FUNCTION and SUBROUTINE header card text. 
I 

ITRGEN IGenerates branching instructions for GO TO statements. L ____________________ ~ ________________________________ ---_______________________________ J 

70 



Chart 12. Phase 30 (IEJFXAAO) Overall Logic Diagram 

****A2********* 
* * * PHASE 20 OR * 
* PHASE 25 * 

*************** 

v .*. 
B2 *. 

.* *. 
NO .*ANY ERRORS *. 

, *. OR WARNINGS .* 
*. .* 

*. .* 
v * •• * 

:*::*: *1 YES 

* * **** 
V 

*****C2********** 

SEE TABLE 20 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH PHASE 30 ROUTINE/ 
SUBROUTINE. 

*THIRTY * 
*-*-*-*-*-*-*-*-*<--> INCTXT 
* PRIME * TXTIN 
* TEXT * 
* BUFFERS * 
***************** 

..------> 
V 

*****02********** 
* ERR/WARN * 
*-*-*-*-*-*-*-*-*<-> PRINT 
* SET UP * 
* MESSAGE * 
* * ***************** 

I 
v .*. 

E2 *. 
.* *. 

NO.* LAST *. 
*. MESSAGE .* 

*. .* 
*. .* 

* •• * 
* YES 

**** 
* * * G2 *-> 
* * **** v .*. 

G2 *. 
.* *. 

.* DETERMINE *. PHASE 25 
*. ENTRANCE .*--------------------------------~ 

*. .* 
*. .* 

* •• * 
*PHASE 20 

i 
V 

*****B4********** 
* TWNFIV * 
*-*-*-*-*-*-*-*-* 
*PRIMES TEXT BFR* 
* COMPUTES SIZE * 
* OF BR LISTS * 
***************** 

V 
*****C4********** 
*GENTAB * 
*-*-*-*-*-*-*-*-* 
*BUILDS AND IN- * 
* TERNAL TABLE * 
* FOR 8R LISTS * 
***************** 

V 
*****04********** 
*CHKLBL * 
*-*-*-*-*-*-*-*-*<--> 
*GENERATE TXT + * 
*RLD CARD IMAGES* 
* FOR BR TABLES * 
***************** 

V 
*****E4********** 
*ZRTXT * 
*-*-*-*-*.-*-*-*-*<-> 
* GENERATE TXT * 
*CARD IMAGES FOR* 
*BASE VALUE T6L * 
***************** 

V 
*****F4********** 

NXTOUT 
ENDTXT<--->TXTOUT 
ANYRLD 

TXTOUT 

*BASRLD * 
*-*-*-*-*-*-*-*-*<-> TXTOUT 
* GENERATE RLD * 
*CARD IMAGES FOR* 
*BASE VALUE TBL * 
***************** 

V 
*****G4********** 
* ENDCRD * * 
*-*-*-*-*-*-*-*-*<--> 
* GENERATE END * 
*CARD IMAGE FOR * 
* OBJECT MODULE * 
***************** 

TXTOUT 
PRINT 

I 
<:--------------------------------------------~ 

* SUBROUT I NE ENDCRI 
ALSO SETS UP THE 
'SIZE OF COMMON 
AND THE SIZE OF 
OBJECT MODULE' 
MESSAGE. V 

****H2********* 
* * * PHASE 1 * 
* * *************** 

section 3: Charts and Routine Directories 71 



Table 20. Phase 30 Main Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I FUnction I 
~------------------+--------------------------------------------------------------------~ 
ANYRLD Generates RLD card images for tranch list tables. I 

I 
BASRLD Generates RID card images for base value table. I 

I 
CHKIBL Controls generation of TXT and RLD card images for branch lists. I 

I 
ENDCRD Generates END card image for object module. I 

I 
ENDTXT Switches input/output buffers. I 

I 
EOJ Sets up 'SIZE OF CO~MON' and 'SIZE OF PROGRAM' message. I 

I 
ERR/WARN Sets up error and warning messages. I 

I 
GENTAB Builds an internal table for branch list tables. 

INCTXT Increments intermediate text pointer. 

NXTCUT Generates TXT card images for tranch list tables. 

PRINT Interfaces with control program to print messages. 

THIR'IY Primes input text buffers. 

TWNF'IV Primes input text buffers. 

TXTIN Reads intermediate text. 

TXTOUT Outputs card images on SYSLIN and/or SYSPUNCH data sets. 

\ZRTXT Generates TXT card images for base value table. L __________________ ~ ___________________________________________________________________ _ 

72 



The manipulation of the data control 
blocks for the data sets required ty the 
compiler depends on whether a SPACE or a 
PRFRM compilation is being performed. For 
SPACE compilations, there is more data 
control block manipulation because of main 
storage limitations. (The main storage 
required to contain all the BSAM routines 
and the control blocks for I/O operations 
may not be available or may be restricted 
from the compiler by the value specified in 
the SIZE option.) For PRFRM compilations, 
the availability of main storage is not a 
l~mitation. Therefore, less data control 
block manipulation is required. 

FOR SPACE COMPILATIONS 

For a SPACE compilation, Phase 1 ini
tially opens only the data control blocks 
for the data sets used by Phases 7, 100, 
and 10E (SYSIN, SYSUT1, SYSUT2, SYSPRINT). 
For the remainder of the compilation, the 
data control blocks are opened by the 
interludes only when their corresponding 
data sets are to be used by a specific 
compiler component. Each interlude first 
closes all the data control blocks and then 
opens only those that are to be used. This 
process decreases the size of the resident 
BSAM routines and provides the compiler 
with the additional main storage necessary 
for compilation. 

Figure 12 illustrates the manipulation 
of data control blocks for SPACE compila
tions. OPEN indicates that the data con
trol block is opened during the execution 
of a compiler component. CLOSE indicates 
that the data control block is closed 
during execution of a compiler component. 
TCLOSE indicates that the corresponding 
data set is repositioned from the end of 
the data set to the beginning of the data 
set for subsequent reading or writing. IN, 
OUT, INOUT, and OUTIN indicate that the 
corresponding data set is used for initial 
or intermediate compiler input, for inter
mediate or final compiler output, for input 
followed by output, and for output followed 
by input. READ indicates that the corres
ponding data set is read from during execu-

APPENDIX A: DATA CONTROL BLOCK MANIPULATION 

tion of a compiler corr.ponent. WRITE indi
cates that the corresponding data set is 
written onto during execution of a compiler 
comronent. 

For a batch compilation (i.e., more than 
one source module), the SYSPRINT, SYSLIN, 
and SYSPUNCH data sets are manipulated so 
that each data set contains the output for 
the entire compilation (i.e., for all the 
source modules). However, if the SYSOUT 
pararr.eter is used on the DO statements 
associated with SYSPRINT, SYSLIN, and SYS
PUNCH; a new data set is created for the 
output of each of the compiled source 
modules. 

FOR PRFRM COMPILATIONS 

For PRFRM compilations, Phase 1 initial
ly opens the data control blocks for all 
the data sets required by the compiler. 
Because all the required data control 
blocks are opened initially, the compiler 
can typass the execution of Interludes 10E, 
14, and 15. Bypassing the execution of the 
interludes reduces data control block 
manipulation and phase-to-phase transition 
time; therefore, comrilation time is also 
reduced. 

Figure 13 illustrates the manipulation 
of data control blocks for PRFRM compila
tions. OPEN indicates that the data con
trol block is opened during execution of a 
compiler component. CLOSE indicates that 
the data control block is closed during 
execution of a compiler component. TCLOSE 
indicates that the corresponding data set 
is repOSitioned from the end of the data 
set to the beginning of the data set for 
subsequent reading or writing. IN, OUT, 
and OUTIN indicate that the corresponding 
data set is used for initial compiler 
input, for intermediate or final compiler 
output, and for output followed by input. 
READ indicates that the corresponding data 
set is read from during execution of a 
compiler component. WRITE indicates that 
the corresponding data set is written onto 
during execution of a compiler component. 

Appendix A: Data Control Block Manipulation 73 



r--------------------T---------T---------T---------T---------~----------T--------------, 
I I DeB for I DCB for I DCB for I DCB for I DCB for I DCB for I 
I Compiler Component I SYSIN I SYSUTl I SYSUT2 I SYSPRINT I SYSLIN * I SYSPUNCH ** I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Phase 1 (initial I OPEN I OPEN I OPEN I OPEN I I I 
I entry) I IN lOUT lOUT lOUT I I I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Phase 7 I READ I I I WRITE I I I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Phase 100 I READ I WRITE I WRITE I WRITE I , I 
I I' I I I I I 
~--------------------+---------+---------+---------+----------+----------+--------------i 
I Phase 10E I READ I WRITE I I WRITE I I I 

I I' I I I I I 
~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I CLOSE I CLOSE I CLOSE I CLOSE I I I 
I Interlude 10E I I OPEN I OPEN I OPEN I OPEN I OPEN I 
I I I IN I INOUT I OUT I OUT I OUT I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I I I READ I I I I 
I Phase 12 I I I TCLOSE I WRITE I WRITE I WRITE I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Phase 14 I I READ I WRITE I I WRITF I WRITE I 
I I I I I I I I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I 
I Interlude 14 I I OPEN I OPEN I I I I 
I I lOUT I IN I I I I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Phase 15 I I WRITE I READ I I I I 

I I I I I I I I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I I CLOSE I C LOSE I , I I 
I Interlude 15 I I OPEN I OPEN I OPEN I OPEN I OPEN I 
I I I INOUT I OUTIN lOUT lOUT lOUT I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I I READ I WRITE I I I I 
I Phase 20 I I TCLOSE I TCLOSE I WRITE I WRITE I WRITE I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I I WRITE I READ I I I I 
I Phase 25 I I TCLOSE I TCLOSE I WRITE I WRITE I WRITE I 
~--------------------+---------+---------+---------+----------+----------+--------------i 
I I I READ I READ I I I I 
, Phase 30 I I TCLOSE' TCLOSE I WRITE I WRITE I WRITE I 
~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Phase 1 (subsequent' I CLOSE I CLOSE I CLOSE , CLOSE 'CLOSE I 
, entries) I OPEN , OPEN I OPEN I OPEN I I I 

I I IN lOUT lOUT lOUT I I I 

~--------------------+---------+---------+---------+----------+----------+--------------i 
1 Phase 1 (f inal I I I I I I I 
I entry) I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I 

~--------------------~---------~---------~---------i---______ -i----------~--------______ ~ 
I * SYSLIN is used only if the LOAD option is specified,. I 
1** SYSPUNCH is used only if the DECK option is s~ecified. I L _______________________________________________________________________________________ J 

Figure 12. Data Control Block Manipulation for SPACE Compilations 

74 



r--------------------T---------T---------T---------T----------T----------T--------------, 
1 I CCB for I DCB for I DeB for I DeB for I DeB for I DeB for I 
1 Compiler Component I SYSIN 1 SYSUTl I SYSUT2 I SYSPRINT I SYSLIN * I SYSPUNCH ** I 
~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Phase 1 (initial 1 OPEN 1 OPEN I OPEN I OPEN I OPEN I OPEN 1 
1 entry) I IN I OUTIN I OUTIN lOUT lOUT lOUT 1 
~--------------------+---------+---------+---------+----------+----------+--------------~ 
1 Phase 7 1 READ 1 1 I WRITE 1 1 1 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
1 Phase 100 1 READ I WRITE I WRITE I WRITE I 1 I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I I WRITE I I I I I 
I Phase lOE 1 READ I TCLOSE I TCLOSE I WRITE 1 1 I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
1 Interlude lOE I I I I I I I 
I (net executed) I 1 1 I 1 I I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
1 I I I READ I I I I 
I Phase 12 I I I TCLOSE I WRITE I WRITE I WRITE I 
~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I I READ I WRITE I I I I 
I Phase 14 I I TCLOSE I TCLOSE I I WRITE I WRITE I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Interlude 14 I I I I I I I 
I (not executed) I I I I I I I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I I WRITE I READ I I I I 
I Phase 15 I I TCLOSE I TCLOSE I I I I 
~--------------------+---------+---------+---------+----------+----------+--------------~ 
1 Interlude 15 I I I I I I I 
I (not executed) I I I I I I I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
1 I 1 READ I WRITE I 1 1 1 
1 Phase 20 I I TCLOSE I TCLOSE I WRITE 1 WRITE 1 WRITE I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I I WRITE I READ I 1 I I 
1 Phase 25 I I TCLOSE I TCLOSE I WRITE I WRITE I WRITE I 

~--------------------+---------+---------+---------+----------+----------+--------------~ 
I I I READ I READ I I I I 
I Phase 30 I 1 TCLOSE I TCLOSE I WRITE 1 WRITE I WRITE I 
~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Phase 1 (restart I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I CLOSE I 
I condition) 1 OPEN I OPEN 1 OPEN I OPEN I I I 
I I IN lOUT lOUT I OUT I I I 
~--------------------+---------+---------+---------+----------+----------+--------------~ 
I Phase 1 (previous I I I 1 I I I 

I compilation - I I I I I I I 
I PRFRM) I I I I I I I 
~--------------------+---------+---------+---------+----------+----------+--------------~ 
1 Phase 1 1 CLOSE 1 CLOSE 1 CLOSE 1 CLOSE 1 CLOSE I CLOSE I 
1 (final entry) 1 I I I 1 I 1 

~--------------------~---------~---------~---------~----------~----------~--------------~ 
1 * SYSLIN is used only if the LOAD option is specified. 1 
1** SYSPUNCH is used only if the DECK option is specified. 1 L _______________________________________________________________________________________ J 

Figure 13. Data Control Block Manipulation for PRFRM Compilations 

Appendix A: Data Control Block Manipulation 75 



APPENDIX B: TABLES USED BY PHASE LOAD MODULES 

During a compilation, the compiler uses 
the following tables: 

• Allocation table. 
• Routine displacenlent tables. 
• EQUIVALENCE table. 
• Forcing value table. 
• Cperations table. 
• subscript table. 
• Index mapping table. 
• Epilog table. 
• Message length table. 
• ~essage address table. 
• ~essage text table. 

Some tables are actual segments of the 
phase load modules; others are created 
during the compilation. Each table is used 
only by the phase that contains it (as a 
part of the phase load module) or creates 
it. The following discussions describe the 
use and format of each table. 

ALLOCATION TABLE 

The allocation table is a part of the 
Phase 7 load module. It is used to allo
cate the amount of main storage obtained 
among buffer areas and resident tables. An 
entry in the allocation table has the form 
shown in Figure 14. 

ROUTINE DISPLACEMENT TABLES 

The routine disFlacement tables for re
served word processing routines are parts 
of the Phase 10D and Phase 10E load 
modules. Reserved words are those that 
indicate a specific FORTRAN statement. The 
Phase 10D and Phase 10E routine displace
ment tables are identical in structure and 
in purpose (locating the processing routine 
for a given reserved word). The Phase 10D 
table aids in the location of reserved word 
routines for declarative statements; the 
Phase 10E table aids in the location of 
reserved word routines for executable 
statements. 

Each reserved word causes an entry to be 
made in the dictionary by Phase 7 (refer to 
Appendix C). The address field of these 
entries contains a displacement, used as an 
indexing value, relative to the start of 
the a~propriate routine displacement table. 
This index is used to obtain the actual 
displacement, relative to a base register, 
of a specific reserved word routine located 
within the Phase 10D or Phase 10E load 
module. The effective address of the 
desired reserved word routine is obtained, 
by Phase 10D or Phase 10E, by adding this 
displacement to the value in the base 
register. 

Figures 15 and 16 illustrate the format 
of the routine displacement tables. 

r----------------T---------------------T---------------------T--------------------------, 
I I I Storage Used for I Storage Used for I 
I I Available storage I Dictionary and I the four I 
I Design Point lOver 15360 I Overflow Table I Internal Text Buffers I 
~----------------+---------------------+---------------------+--------------------------~ 
I 200K I 189440 I 65536 I 4x(3624) I 
I 108K I 95232 I 65536 I 4x(3624) I 
I 44K I 29696 I 20326 I 4x(3000) I 
I 15K I 0 I 2216 I 4x(104) I 
~----------------~---------------------~---------------------~--------------------------~ 
IThe design point may be 15, 44, 108, or 200 K (K = 1024 bytes). The remaining fields I 
lindicate amounts of storage in bytes. If the amount of main storage available is notl 
lat a design point, simple interpolation is performed to divide storage appropriately I 
lamong buffer areas and resident tables. I L _______________________________________________________________________________________ J 

Figure 14. Allocation Table Entry Format 

76 



r-----------------------------------------, 
IDisplacement from base register value ofl 
IREAL reserved word routine I 
t-----------------------------------------~ 
IDis~lacement from base register value ofl 
ICOM~ON reserved word routine I 
t-----------------------------------------~ 
IDisplacement from base register value ofl 
IFORMAT reserved word routine I 
t-----------------------------------------i 
IDisplacement from base register value ofl 
IDOUBLE reserved word routine I 
t-----------------------------------------~ 
IDisplacement fro~ base register value ofl 
IINTGER reserved word routine I 
t-----------------------------------------~ 
IDisplacement frqm base register value ofl 
IEXTERN reserved word routine I 
t-----------------------------------------i 
IDisplacement from base register value ofl 
IFUNCT reserved word routine I 
~-----------------------------------------i 
IDisplacement from base register value ofl 
IDIM reserved word routine I 
t-----------------------------------------~ 
IDisplacement from base register value ofl 
ISUBRUT reserved word routine I 
t-----------------------------------------i 
I Displacement from base register value ofl 
IEQUIV reserved word routine I L _________________________________________ J 

2 bytes 

Figure 15. Phase 100 Routine Displacement 
Table Format 

The following example illustrates how 
the GO reserved word routine is located. 

r------------------------------------, r----i Dictionary entry for GO I I L ____________________________________ J 

I 
I 
I 
I 
I 
I 

Phase 10E Routine Displacement 
Table 

r------------------------------------, 
I Displacement for DO I 
I reserved word routine I 

I ~------------------------------------~ 
L ___ ~ Displacement for GO I 
r----i reserved word routine I 

r------------------------------------i 
I I 
I I 
I - I 
t------------------------------------~ 
I Displacement for BKSP I 
I reserved word routine I L ____________________________________ J 

r------------------------------------, 
I GO reserved word I 

---~ processing routine I L ____________________________________ J 

r-----------------------------------------, 
I Displacement from base register value ofl 
IDO reserved word routine I 
t-----------------------------------------~ 
IDisplacement from base register value ofl 
IGO reserved word routine I 
t-----------------------------------------i 
I Displacement from base register value ofl 
IFORMAT reserved word routine I 
t-----------------------------------------i 
IDisplacement frorr. base register value ofl 
IIF reserved word routine I 
t-----------------------------------------~ 
IDisplacement from base register value ofl 
lEND reserved word routine I 
t-----------------------------------------i 
IDisplacement from base register value ofl 
ICALL reserved word routine I 
t-----------------------------------------~ 
I Displacement from base register value ofl 
IGOTO reserved word routine I 
t-----------------------------------------i 
IDisplacement froIT base register value ofl 
IREAD reserved word routine I 
t-----------------------------------------i 
IDis~lacement from base register value ofl 
ISTOP reserved word routine I 
t-----------------------------------------~ 
iDisplacement from base register value ofl 
IPAUSE reserved word routine I 
t-----------------------------------------i 
IDisplacement from base register value ofl 
IWRITE reserved word routine I 
t-----------------------------------------i 
IDisplacement from base register value ofl 
IRETURN reserved word routine I 
t-----------------------------------------i 
I Displacement from base register value ofl 
IREWIND reserved word routine I 
t-----------------------------------------~ 
IDisplacement from base register value ofl 
IENDFIL reserved word routine I 
t-----------------------------------------i 
I Displacement from base register value ofl 
ICONT reserved word routine I 
t-----------------------------------------i 
IDisplacement from base register value ofl 
IBKSP reserved word routine I L _________________________________________ J 

2 bytes 

Figure 16. Phase 10E Routine Displacement 
Table Format 

EQUIVALENCE TABLE 

The EQUIVALENCE table is constructed by 
Phase 12 for use by the Phase 12 storage 
allocation routines, which assign addresses 
to equated variables. This table is a 
serial list in which each rr.ember follows 
the preceding one. 

Appendix B: Tables Used by Phase Load Modules 77 



The format of a typical entry in the 
EQUIVALENCE table is shown in Figure 17. 

r-----------T-------T--------------T------, 
Ip(variable)lp(root) I displacement Isize I 
lor p (array) I lor address in I I 
I I I COMMON I I L ___________ ~ _______ ~ ______________ ~ ______ J 

2 bytes 2 bytes 2 bytes 2 bytes 

Figure 17.. EQUIVALENCE Table Entry Format 

Each field in an entry is two bytes in 
length. The first field contains a pointer 
to the entry for the variable or array in 
the dictionary. .The second field contains 
a pointer to the dictionary entry fer the 
root to which the variable or array is 
equated. (If the variable or array is the 
root of the EQUIVALENCE group, the first 
two fields contain the same ~ointer.) The 
third field contains the displacement or 
address assigned to the variable or array 
in COMMON. (The addresses for variarles 
and arrays are assigned before this table 
is constructed.) The fourth field is the 
size, in bytes, of the EQUIVALENCE group or 
class. 

The maximum number of entries in the 
EQUIVALENCE table is the larger of: 

• lOa, or 

• The largest unused segment of the dic
tionary and overflow table divided by 
eight (if this segment exceeds 800 
bytes) .• 

For example, if the compiler allocates 
5500 bytes to the dictionary and the over
flow table, and 3100 bytes are used, then 
the maximum number of entries in the EQUI
VALENCE table is: 

(5500 - 3100)/8 = 2400/8 = 300 

FORCING VALUE TABLE 

The forcing value table is not created 
or altered in any way by the compiler; it 
is loaded into main storage as a part of 
the Phase 15 load module. The forcing 
value table is used by Phase 15 as an aid 
in the reordering of intermediate text 
entries in arithmetic expressions. This 
table defines the relative position of each 
operator in the hierarchy of operators. 

Each entry in the forcing value table is 
five bytes in length. The forcing value 
table is illustrated in Figure 18. 

78 

r---------T-------~---------T------------, 
IAdjectivelLcft IAddress ofl Right I 
I Code I Forcing I Associated I Forcing I 
I IValue \Routine I Value \ 
~---------+-------+----------+------------~ 
I ( I 64 la(LFTPRN) I 01 I 
~---------+-------+-~--------+------------~ 
I ) I 00 I a (R'IPRN) I 69 I 
~---------+-------+----------+------------~ 
I I 7 a I a ( EQUALS) I 70 I 
~---------+-------+----------+------------~ 
I , I 49 I a ( CO~MA) I 48 I 
~---------+-------+----------+------------~ 
I n I 80 Inever I 01 I 
I I If 0 rced out I I 
~---------+-------+----------+------------~ 
I + I 09 la(ACD} I 09 I 
~---------+-------+----------+------------~ 
I I 09 la(ADD) I 09 I 
~---------+-------+----------+------------~ 
I * I 05 la(MULT) I 05 I 
~---------+-------+----------+------------~ 
I / I 05 la(MULT) I 05 I 
~---------+-------+----------+------------~ 
I ** I 04 la(EXPON) I 03 I 
~---------+-------+----------+------------~ 
I F( I 64 la(FUNC) I 01 I 
~---------+-------+----------+------------~ 
lunary - I 05 la(UMINUS) I 01 I 
~---------+-------+----------+------------~ 
lend mark I 00 I never I 80 I 
I I Iforced outl I 
~---------+-------+----------+------------~ 
I unary + \ 05 \ a (UPLUS) I 01 I 
.---------+-------+----------+------------i 
I SF I I I \ 
I Forcing \ 72 la(END) I 70 I 
~---------+-------+----------+------------~ 
I ARITH I I I \ 
I Forcing I 72 la(END) I 70 I 
~---------+-------+----------+------------~ 
I CALL I I I I 
I Forcing I 72 la(CALL) I 70 I 
~---------+-------+----------+------------i I IF I I I I 
I Forcing I 72 I a (END) I 70 I L _________ ~ _______ ~ __________ ~ ____________ J 

1 byte 1 byte 2 bytes 1 byte 

Figure 18. Forcing Value Table 

OPERATIONS TABLE 

The operations table is a temporary 
storage area (part of the Phase 15 load 
module) used during the reordering of oper
ations within statements that can contain 
arithmetic expressions. This table func
tions as a "pushdown table" (that is, a 
table in which the top entry is the most 
recently entered item) for storing inter
mediate text words that refer to the opera
tion in question. An exception is made for 
subscript text, which is stored in the 
subscript table. 



The operations table can contain no more 
than 50 entries. Entries are four bytes in 
length and are obtained by a pointer to the 
last entry in the table for the specific 
statement under consideration. The format 
of a typical entry in the oFerations table 
is shown in Figure 19. 

r--------T---------------T----------------, 
ladj codelmode/type fieldlpointer field I L ________ ~ _______________ ~ ________________ J 

1 byte 1 byte 2 bytes 

Figure 19. Operations Table Entry Format 

SUBSCRIPT TABLE 

The subscript table is a temporary stor
age area (part of the Phase 15 load module) 
used for subscript text encountered during 
the reordering of intermediate text words 
by Phase 15. This table functions as a 
'"pushdown table" (that is, a table in which 
the top entry is the most recently entered 
item) for storing subscript intermediate 
text words that refer to the o~eration in 
question. 

The subscript table can contain no more 
than 38 entries. Entries are eight bytes 
in length and are obtained by a pointer to 
the top entry in the table for the specific 
statement under consideration. The format 
of a typical entry in the subscript table 
is shown in Figure 20. 

The subscript adjective code indicates 
to other phases of the compiler that sub
script calculation is necessary. The off
set is an index used to find the correct 
element in an array associated with a 
particular subscript expression. The sec
ond word of an entry in the subscript table 

contains two pointers to information in the 
overflow table. The first points to the 
subscript information for the subscripted 
variable; the second ~oints to the dimen
sion information for the array indicated by 
the subscripted variable. 

INDEX MAPPING TABLE 

The index mapping table (part of the 
Phase 20 load rrodule) is used to aid the 
implementation of subscript optimization. 
This table maintains a record of all infor
mation pertinent to a subscript expression. 
Because the computation of any unique sub
scri~t expression is Flaced in a register, 
the number of entries in the table depends 
on the number of registers available for 
this purpose. The initial register 
assigned to a subscript expression is det
ermined during the initialization process 
for Phase 20. Each entry in the index 
map~ing table is eight bytes in length. 
The format of a typical entry in the index 
mapping table is shown in Figure 21. 

The register number field contains the 
number of the register assigned to the 
subscript expression. The dimension number 
field contains the number 1, 2, or 3, 
depending on the number of dimensions. The 
sta~us field indicates whether the register 
referenced by this entry is: (1) unas
signed, (2) assigned to a normal subscript 
expression for indexing computation, or (3) 
assigned to the address of a dummy vari
able. The offset field contains the offset 
index used to obtain the correct element of 
the array associated with a particular 
subscript expression.. The last two fields 
contain pointers to information in the 
overflow table. 

r----------T----------T---------------------T--------------------T----------------------, 
Isubscript Inot used I I I I 
ladjective Iby I offset I p(subscript) I p(dirnension) I 
I code IPhase 15 I \ I \ L __________ ~ __________ ~ _____________________ ~ ____________________ ~ ______________________ J 

1 byte 1 byte 2 bytes 2 bytes 2 bytes 

Figure 20. subscript Table Entry Format 

r------T------T----------T--------------------T--------------------T--------------------, 
IRegis-\Number\ \ \ \ I 
Iter lof I Status I Offset I p(subscript) I p(dimension) I 
InumberlDimen-1 I I I I 
I Isions I I I I I L ______ ~ ______ ~ __________ ~ ____________________ ~ ____________________ ~ ____________________ J 

1 byte 1 byte 2 bytes 2 bytes 2 bytes 

Figure 21. Index Mapping Table Entry Format 

Appendix B: Tables Used by Phase Load Modules 79 



EPILOG TABLE 

The epilog table is created by Phase 25 
when the FUNCTION or SUBROUTINE adjective 
code is encountered. An entry is made in 
the epilog table for each variable used as 
a parameter in the calling program. The 
instructions generated during Phase 25 for 
the RETURN entry in the intermediate text 
reference the epilog table to return the 
value of variables to the calling program. 

Each entry in the epilog table is four 
bytes in length. The format of a typical 
entry in the epilog table is shown in 
Figure 22. 

r----------T---------T--------------------, 
IL IS I address I L __________ ~ _________ ~ ____________________ J 

1 byte 1 byte 2 bytes 

Figure 22. Epilog Table Entry Format 

L is the field length of the variable in 
the subprogram, S is the relative position 
of the variable in the parameter list of 
the calling program, and address is the 
address of the variable in the subprogram. 

MESSAGE LENGTH TABLE 

The message length table is loaded into 
main storage as a part of the Phase 30 load 
module. It contains the lengths of all the 
messages capable of being generated by the 
compiler. The length of any message is 
obtained by using the number corresponding 
to that message as a dis~lacement from the 
start of the message length table. 

The message length table has the follow
ing format: 

r-----------------------------------------, 
I Length of first message I 
~-----------------------------------------~ 
I Length of second message I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------~ 
I Length of last message I L _________________________________________ J 

1 byte 

80 

MESSAGE ADDRESS TABLE 

The message address table is loaded into 
main storage as a part of the Phase 30 load 
module. It contains the displacements from 
the start of the message text table of all 
the wessages capable of being generated by 
the compiler. The displacement of any 
message is obtained by using the number 
corresponding to the message multiplied by 
two as a displacement from the start of the 
message address table. 

The message address table has the fol
lowing format: 

r-----------------------------------------, 
IDisplacement of text for first message I 
Ifrore start of the message text table I 
~-----------------------------------------1 
IDisplacement of text for second message I 
Ifrorr start of the message text table I 
~-----------------------------------------~ 
I • I 
I • I 
I • I 
~-----------------------------------------~ 
IDisFlacement of text for last message I 
Ifrom start of the message text table I L _________________________________________ J 

2 bytes 

MESSAGE TEXT TABLE 

The message text table is loaded into 
main storage as a part of the Phase 30 load 
module. It contains all the messages capa
ble of being generated by the compiler. 
Each message is obtained by using the 
displacements contained in the message 
address table. 

The message text table has the following 
format: 

r-----------------------------------------, 
IMessage text corresponding to first I 
Imessage number I 
~-----------------------------------------~ 
I Message text corresponding to second I 
Imessage number I 
~-----------------------------------------~ 
I . I 
I • I 
I • I 
~-----------------------------------------i 
IMessage text corresponding to last I 
Imessage number I L _________________________________________ J 

Variable length 



The resident tacles of the compiler are: 

• The dictionary. 
• The overflow table. 
• The segment address list <SEGMAL). 
• The patch table. 
• The blocking table <resident only for 

PRFRM compilations). 
• The BLDL table (resident only for PRFRM 

compilations). 

The dictionary is a reference area con
taining information about variables, 
arrays, constants, data set reference num
bers, etc., used in the source rrodule. The 
overflow table contains all dimension, sub
script, and statement number information 
within the source module. SEGMAL is used 
for main storage allocation within the 
compiler. The patch tacle contains infor
matien to be used to modify compiler compo-. 
nents. The blocking table contains the 
information necessary for deblocking com
piler input and blocking compiler output 
for PRFRM compilations. The BLDL table 
contains the information necessary for 
transferring contrel from one component of 
the compiler to the next for PRFRM compila
tions. 

THE DICTIONARY 

The dictionary (constructed by Phases 7, 
laD, and 10E) is used and modified by Phase 
12 in address aSSignment, and is further 
used by Phase 14 when addresses from the 
dictionary replace pointers to the diction
ary in the interrrediate text entries <refer 
to Appendix D). For SPACE compilations, 
Phase 14 frees the dictionary area of 
storage for use by subsequent phases. 

The dictionary is organized as a series 
of chains related by the dictionary index, 
which indicates the first entry in each 
chain. There are 15 chains, used for 
various entries, as follows: 

• Eleven are organized on the basis of 
length of the symbol being entered 
<e.g., DO has a length of 2, END has a 
length of 3, etc.). The first chain is 
for entries of length 1, the second is 
for entries of length 2, the third is 
for entries of length 3, and so on. 

These chains contain entries for re
served words (chains 2-11), in-line 
functions, variacles, and arrays. 

APPENDIX C: RESIDENT TABLES 

• Cne chain for real constants. 
• One chain for integer constants. 
• Cne chain for integer data set ref

erence numcers. 
• One chain for double-precision con

stants. 

Phase 7 Processing 

Phase 7 allocates storage for the dic
tionary, and then enters all reserved words 
(words that indicate a specific FORTRAN 
statement) into the dictionary. 

Figure 23 illustrates the dictionary 
after it is constructed by Phase 7. 

The dictionary, dictionary index, the 
overflow table, overflow table index, and 
SEGMAL are in rrain storage in the following 
relative positions. 

r---------------------------, 
Upper storage I Dictionary Index I 

~---------------------------~ 
I Dictionary I 
I I I 
~---------_--I--------------~ 
r------------l--------------1 

Lower storage I Overflow Table I 
~------T--------------------~ 
ISEGMAL\Overflow Tatle Index\ L ______ ~ ____________________ J 

This order is set up during Phase 7. 
(Refer to the Phase 7 discussion.) 

Phases laD and 10E Precessing 

Additions to the dictionary occur as 
entries are made to the various chains 
during Phases laD and 10E processing. To 
enter an item in the dictionary, the perti
nent chain is located via the dictionary 
index. The chain is searched until the 
last entry is found. The current end-of
chain indicator is replaced with a pointer 
to the new entry; the new entry is then 
marked as the end of the chain. 

For example, assume the variable ABC is 
to be entered in the dictionary. ABC 
belongs in the third chain of the diction
ary (length 3). USing the dictionary 
index, the first entry of the chain for 

Appendix C: Resident Tables 81 



length 3 is obtained. Assume that Figure 
23 indicates the condition of the diction
ary at this time. The chain for length 3 
is searched for the last entry (the entry 
for DIM), which is modified to appear as: 

The entry for ABC appears as: 

r--------------------T--------------------, 
lend of lentry for I 
I chain IABC I L ____________________ ~ ___________________ J 

r--------------------T--------------------, 
Ipointer to the entrylentry for I When the dictionary and overflow table 

overlap, a message is issued; no new 
entries are made; and compilation proceeds. 

Ifor ABC IDIM I L ____________________ ~ ____________________ J 

r-
r+-
II 
II 
II 
II 
II 
II 

r++-
r+++-
I 
I 
I 
I 
I 

DICTIONARY INDEX 
r---------------------------------------------------------------------------------, 
end of the chain of length 1 
pointer to the first entry in the chain of length 2 
pointer to the first entry in the chain of length 3 
pointer to the first entry in the chain of length 4 
painter to the first entry in the chain of length 5 
pointer to the first entry in the chain of length 6 
pointer to the first entry in the chain of length 7 
pointer to the first entry in the chain of length 8 
pointer to the first entry in the chain of length 9 
pointer to the first entry in the chain of length 10 
pointer to the first entry in the chain of length 11 
end of the chain for integer constants 
end of the chain for real constants 
end of the chain for data set reference nurr,rers 
end of the chain for double-precision constants 
~---------------------------------------------------------------------------------~ 
IThere are several chains that have no entries when the dictionary is constructed I 
I during Phase 7. That is, there are no reserved words of length 1, and no entries I 
Iwould be made in the data set reference number chain or constant chains. I L _____________________________________________________ -----_______________________ J 

r----------------------------------~ 
r-----~----T----------, r----------T----~-----, r----------T----------, 
Ipointer tolentry for I Ipointer tolentry for I I end of I entry for I 
Ithe entry I DO lithe entry I GO I I chain I IF I 
I for GO I I I for IF I I I I I 
L----------~----J-----J L-----T----~----------J L-_________ ~ ____ ~-----J L_______________________ L __________________________________ J 

r----------------------------------l 
r-----~----T----------, r----------T---- -----, r----------T----------, 
(pointer tolentry for ( Ipointer tolentry for I I end of lentry for I 
Ithe entry I END lithe entry I ABS I I chain I DIM I 
I for ABS I I I for DIM I I I I I 
L----------~----J----~J L-----T----~----------J L----------~----J-----J L________________________ L _________________________________ _ 

r----------T----------, 
I end of lentry for I 
I chain I SUBROUTINE I 

_________ ~==========~====J-----J 
r----------T----------, 
I end of lentry for I 
I chain IEQUIVA- I 
I I LENCE I 

r------------------------, 
INote: See Figure 26 fori 
Ithe general format of al 
Idictionary entry. I 

__________ ~====:==:==~====J-----J 
L ________________________ J 

Figure 23. The Dictionary as Constructed by Phase 7 

82 



Phase 12 Processing 

During the Phase 12 processing~ address
es are assigned to the symbols entered in 
the first six chains of the dictionary. In 
assigning these addresses, Phase 12 uses 
the contents of the dictionary entries. 
The addresses replace: (1) the pointers to 
following entries in the dictionary, and 
(2) the end-of-chain indicators. To ensure 
that the chain is not broken, the chain is 
continued by modifying the pointer to the 
entry just assigned an address. Figures 24 
and 25 illustrate two cases of the "before" 
and "after" in rewoving an entry from a 
dictionary chain. Figure 24 indicates 
removal of an entry from the end of the 
chain. Figure 25 indicates removal of an 
entry from the middle of the chain. 

Phase 14 Processing 

During Phase 14 processing, each pointer 
(in the intermediate text) to a dictionary 
entry is replaced by the address assigned 
to the symbol within the dictionary entry. 
Refer to Appendix D for the modification of 
the intermediate text. 

Dictionary Entry Format 

The entries to the dictionary may vary; 
however, they all have the same general 
form. Figure 26 indicates this general 
form. 

r--------T-----T-----T-----T-------T------, 
I Chain IUsagelMode IImagelAddresslSize I 
I addresslfieldlType Ifieldlfield Ifield I 
I field I Ifieldl I I I L ________ ~ _____ L-____ ~ _____ ~ _______ ~ ______ J 

2 1 1 1-11 2 2 
bytes byte byte tytes bytes bytes 

Figure 26. General Form of a Dictionary 
Entry 

Each field contains sFecific information as 
indicated below: 

CHAIN ADDRESS FIELD: The chain address 
field is used to maintain the linkage 
between the various elements of the chain. 
It either contains the relative pointer to 
the next entry or indicates that its asso
ciated entry is the last entry in the 
chain. 

r---------J----------T------t-------, r-------------T-------1------, 
"before" an address 
is assigned to the 
variable ABC 

"after" an address 
is assigned to the 
variable ABC 

I I I 
Ipointer to the entrylentry for DIM I 
I for ABC I I 
I I I L ____________________ ~ ______________ J 

r--------------------T------t-------, 
I I I 
lend of chain lentry for DIM I 
I I I 
I I I L ____________________ ~ ______________ J 

I I I 
I end of chainlentry for ABC I 
I I I 
I I I L _____________ ~ ______________ J 

r-------------T--------------, 
I I I 
I assigned ad-I entry for ABC I 
I dress of ABC I I 
I I I L _____________ ~ ______________ J 

Figure 24. Removing an Entry From the End of a Dictionary Chain 

"before" an address 
is assigned to 
the variable ABC 

"after" an address 
is assigned to 
the variable ABC 

r-----L----T--i --' 
Ipointer tolentryl 
Ithe entry Ifor I 
Ifor ABC IAAA I L __________ ~ _____ J 

r-----1----T--1--, 
Ipointer to I entry I 
Ithe entry Ifor I 
Ifor CCC IAAA I L __________ .L _____ J 

r----J-----T--t--' 
Ipointer tolentryl 
Ithe entry Ifor I 
Ifor CCC IABC I L __________ ~ _____ J 

r----------T-----' 
lassigned I entry I 
laddress oflfor I 
IABC I ABC I L __________ .L _____ J 

.. 
r-----L----T--i --' 
Ipointer tolentryl 
Ithe entry Ifor I 
Ifor DDD ICCC I L __________ ~ _____ J 

r----L-----T--t-~ 
Ipointer tolentryl 
Ithe entry Ifor I 
Ifor DDD ICCC I L __________ ~ _____ J 

Figure 25. Removing an Entry From the Middle of a Dictionary Chain 

Appendix C: Resident Tables 83 



USAGE FIELD: The usage field is divided 
into eight subfields. Each subfield is one 
bit long and is numbered from 0 through 7, 
inclusive. Figure 21 indicates the func
tion of each subfield in the usage field. 

r-----------T-----------------------------, 
IUsage fieldl Function of the field I 
I subfield I I 
~-----------+-----------------------------~ 
I Bit 0 IIndicates if the mode of thel 
I lentry has been defined I 
~-----------+-----------------------------~ 
I Bit 1 I Indicates if the type of thel 
I lentry has been defined I 
~-----------+-----------------------------~ 
I Bit 2 IIndicates if the entry is inl 
I I COMMON I 
~-----------+-----------------------------~ 
I Bit 3 I Indicates if the entry isl 
I I equated I 
~-----------+-----------------------------~ 
I Bit 4 I Indicates if the entry isl 
I lassigned an address I 
~-----------+-----------------------------~ 
I Bit 5 I Indicates if this is thel 
I lentry for the root of ani 
I IEQUIVALENCE group (see Phasel 
I 112) I 
~-----------+-----------------------------~ 
\ Bit 6 I Indicates if the entry rep-\ 
I \resents double precision I 
~-----------+-----------------------------~ 
I Bit 1 IIndicates if the entry is fori 
\ Ian in-line function or ani 
I lexternal reference. I L ___________ ~ _____________________________ J 

Figure 27. Function of Each Subfield in 
the Dictionary Usage Field 

MODE/TYPE FIELD: This field is divided 
into two parts (each four bits long). The 
first four bits are used to indicate the 
mode of an entry, while the last four bits 
are used to indicate the type. For exam-

84 

pIe, a real quantity has the mode code 1; 
therefore, the mode field for a real is 
0111 (the bit ccnfiguration for 1). Simi
larly, a subscripted variable has the type 
code C; therefore, the type field for a 
subscripted variable is 1100 (the bit con
figuration for C). The mode/type field for 
a real subscripted variable is 01111100. 
The various mode/type combinations possible 
are indicated in Figure 28. 

IMAGE FIELD: The image field contains the 
appropriate image of the symbol. The 
length of the symbol determines the length 
of the field. 

ADDRESS FIELD: The address field is pre
sent in dictionary entries for: 

• Reserved words -- to indicate the posi
tion of the disrlacement of the proc
essing routine for that reserved word 
in the Phase 10D or Phase 10E Routine 
Displacement Table (see Appendix B). 

• In-line functions -- to indicate the 
code value used within the compilation 
for that in-line function. 

• Arrays -- to indicate the displacement 
within the overflow table of the dimen
sion information for that array. 

SIZE FIELD: The size field is present for 
the dictionary entries that represent 
arrays. It indicates the size of the 
array. 

All fields are pcesent in each diction
ary entry, except the address field and the 
size field. The fields and the phases that 
enter information into the fields are indi
cated in Figure 29. 



r------T--T----------T--T----T--T-----------T--T--T---------T---------T--T--T--T--T--T--' 
IH\L I 1 I' 1 1 1 I' 1 1 1 1 1 1 1 , 
1 I\O 1 1 1 1 I 1 1 1 I I I I I I , I I 
1 G\W 10 I 1 12 I 3 14 I 5 16 17 I 8 I 9 IA IE IC 10 IE IF I 
I H\' I I I I I I I I , I I I I I I I 
~------+--+----------+--+----+--+-----------+--+--+---------+---------+--+--+--+--+--+--~ 
I 0 I I I I I I I I I I I I I I , I I 
~------+--+----------+--+----+--+-----------+--+--+---------+---------+--+--+--+--+--+--~ 
I 1 I I statement , lunitl ,*immediate, , ,*sub- I *dummy 1 1 1 1 1 1 , 
, 1 I number I 1 1 I constants, 1 , program 1 sub- I I I I 1 I , 
I I I I I I I I I I I prog ram I I I , I , I 
~------+--+----------+--+----+--+-----------+--+--+---------+---------+--+--+--+--+--+--~ 
121 * * * * * * * * 
~------i e 
I 3 I x 
I I t 
, I e 
~------i r 
I 4 I n 
I I a 
I I 1 
~------i g 
, 5 , e 
linte- I n 
Iger I e 
I 1 r 
~------~ a 
1 6 , t 
Idoutlel e 
Ipre- 1 d 
Icisionl 
~------i w 

s 
t 
a i 
t n 
e -
m 1 
e i 
n n 
t e 

& 

1 
i 
b 
r 
a 
r 
y 

d 
u 
m 
1'(1 

y 

d 
u 
m 
m 
y 

s s 
u u 
b b 
s s 
c Ic 
r r 

d i i 
u p p 
m t t 
m e e 
y d d 

171 0 c f f f f v v v v 
1 real I r 0 u u u u a a a a 
I I k n n n n n r r r r 

d 
u 
m 
m 
y 

1 I s c c c c iii i a a 
~------i a t t t t t a a a a r r 
18, r a iii i b b b b r r 
I len 000 0 1 1 1 1 a a 
I I I a t n n nne e e e y y 
~------~--~----------~--~----~-~-----------~--~--~---------~---------~--~--~--~--~--~--~ 
1* Subject to change after Phases 100 and 10E I L _______________________________________________________________________________________ J 

Figure 28. The Various Mode/Type Combinations 

r-----------------T-------T-------------------------------T---------T-----T-------T-----' 
I FIELD I Chain I Usage field I I I I I 
1 laddress~---T---T---T---T---T---T---T---~Mode/Typ€IImage,AddresslSize , 
lentries for: Ifield, 0 I 1 I 2 1 3 1 4 1 5 I 6 I 7 ,field Ifieldlfield Ifieldl 
~-----------------+-------+---+---+---+---+---+---+---+---+----T----+-----+-------+-----~ 
IReserved words I 7 1 7 I 7 I 1 , 1 1 1 I 7 ,7 1 7 1 7 I 1 
~-----------------+-------+---+---+---+---+---+---+---+---+----+----+-----+-------+-----i 
lIn-line functions 1 7 I 1 7 I 1 1 1 I I 7 I 7 I 7 I 7 I 7 I I 
~-----------------+-------+---+---+---+---+---+---+---+---+----+----+-----+-------+-----~ 
IVariables I 100 110DII0DI10DII0DI 112 112 110Dll0D 110D 1 100 1 I I 
I 1 10E 110E ll0EI I I 1 I IlOEll0E 110E I 10E I I I 
~-----------------+-------+---+---+---+---+---+---+---+---+----+----+-----+-------+-----i 
I Arrays 1 10D 110D II0DII0DI10DI 112 112 11001100 1100 I 100 I 100 1 100 I 
I I 10E I I 1 1 I I I 110EI10E 110E I 10E I I I 
~-----------------+-------+---+---+---+---+---+---+---+---+----+----+-----+-------+-----~ 
1 Constants 1 10D 110011001 I I I I I I I I 100 I I I 
I I 10E 110EI10EI I I I I I 110E IlOE I 10E I I I 
~-----------------+-------+---+---+---+---+---+---+---+---+----+----+-----+-------+-----~ 
IData set refer- I 10E 110EII0EI I I I I I I 110E I 10E I , , 
lence numbers I I I , I I I I I I I I I I , L _________________ ~-______ ~ ___ 4 ___ L ___ ~ ___ ~ ___ ~ ___ ~ ___ i-__ ~ ____ ~ ____ ~ _____ ~ _______ ~ _____ J 

Figure 29. Phases That Enter Information Into Specific Fields of a Dictionary Entry 

Appendix C: Resident Tables 85 



THE OVERFLOW TABLE 

The overflow table is constructed by 
Phases 7, lOD, and lOE. The overflow table 
subscript entries are modified by Phase 12 
during address assignment; statement number 
entries are assigned relative branch list 
numbers. The overflow table is used by: 

• Phase 12 -- to reserve storage for the 
l::ranch list. 

• Phase 20 -- for subscript optimization. 
• Phase 25 -- for the construction of 

object module cOding. 

Organization of the Overflow Table 

The overflow tal::le is organized as a 
series of chains related by the overflow 
index. The overflow index indicates the 
displacement of the first entry in each 
chain relative to the beginning of the 
table. There are 11 chains, used for 
various entries, as follows: 

• Three chains are organized for the 
dimension information of an array; that 
is, for 1-, 2-, and 3-dimensional 
arrays. 

• Three chains are organized for sub
script information: that is, for 1-, 
2- J and 3-dimensional subscripts. 

• Five chains are organized for statement 
number information. All statement num
l::ers ending in 0 and 1. are entered in 
the first chain. The remaining chains 
handle statement numbers ending in 2 
and 3, 4 and 5, 6 and 7, and 8 and 9, 
respectively. 

construction of the Overflow Table 

Phase 1 allocates storage for the over
flow table. Because there are no reserved 
words entered in the overflow table as in 
the dictionary, only the overflow index is 
actually constructed. The index contains 
the end-of-chain indicator for each chain, 
as no entries exist in any chain at this 
time. Figure 30 indicates the overflow 
table as it appears after it is constructed 
by Phase 1. 

Phases 100 and 10E construct all entries 
to the overflow table. Each entry is 
entered in an overflow table chain; e.g., 
assume the l-dimensional array ARRYl is the 
first array entered in Phase 10D. The 
first overflow index entry is modified to 
contain: 

86 

r-----------------------------------------, 
Ipointer to the dimension entry for ARRYl I L _________________________________________ J 

The overflow table entry (in the first 
array chain) afpears as: 

r-------------------T---------------------, 
lend of chain I entry for ARRYl I L __________________ ~ _____________________ J 

When the next l-dimensional array, ARRY2, 
is entered in the overflow table, the entry 
for ARRYl is w.odified as follows: 

r--------------------T--------------------, 
Ipointer to the entrylentry for ARRYl I 
I for ARRY2 I I L ____________________ ~ ____________________ J 

and the entry for ARRY2 afpears as: 

r--------------------T--------------------, 
lend of chain lentry for ARRY2 I L ____________________ ~ ____________________ J 

The entries to other 
like manner during 
Phase lOE processing. 

chains are made in 
the Phase lOD and the 

r-----------------------------------------, 
lend of chain for information ani 
Il-dinensional arrays I 
~-----------------------------------------~ 
lend of chain for information onl 
12-dimensional arrays I 
~-----------------------------------------~ 
lend of chain for information onl 
13-diRensional arrays I 
~-----------------------------------------~ 
lend of chain for information onl 
11-dimensional subscrifts I 
~-----------------------------------------~ 
lend of chain for information onl 
12-dimensional subscrifts I 
~-----------------------------------------~ 
lend of chain for information ani 
13-dimensional subscrifts I 
~-----------------------------------------~ 
lend of chain for information on statement I 
Inumters ending in 0 or 1 I 
~-----------------------------------------~ 
lend of chain for information on statement I 
Inumbers ending in 2 or 3 I 
~-----------------------------------------~ 
lend of chain for information on statement I 
Inumbers ending in 4 or 5 I 
~-----------------------------------------~ 
lend of chain for information on statement I 
Inumters ending in 6 or 1 I 
~-----------------------------------------~ 
lend of chain for information on statement I 
Inuml::ers ending in 8 or 9 I L-----------______________________________ J 

Figure 30. The Overflow Table Index as 
Constructed by Phase 1 



Use of the Overflow Table 

Phase 12 modifies the statement number 
chains when the branch list table for 
statement numbers (see Appendix F) is 
prepared initially by Phase 12. The chain 
field is replaced by a number that indi
cc.tes the position the statement number has 
in the branch list table. 

Phases 14 and 15 do not use the overflow 
table. 

Phase 20 uses the information about 
subscripted expressions in performing its 
function of subscript optimization. This 
information is obtained via a pointer, in 
the intermediate text, to the pertinent 
overflow table entry (in a subscript 
chain) • 

Phase 25 uses the branch list table 
number, assigned by Phase 12, to determine 
the fosition of a statement number in the 
branch table. (Phase 25 can then insert 
the object-time address, associated with 
the statement number, in the table.) The 
number is obtained via a pointer, in the 
statement number intermediate text entry, 
to the overflow table. 

Overflow Table Entry 

An entry in the overflow table has one 
of three formats: 

1. Dimension. 
2. Subscript. 
3. Statement number. 

DIMENSION ENTRY: A 
formed for each array. 
defined as: 

dimension entry 
An array may 

• i-dimensional, e.g., ARRAY (01). 
• 2-dimensional, e.g., ARRAY (01,D2). 

is 
be 

• 3-dimensional, e.g., ARRAY (01,02,03). 

One-dimensional arrays are entered in 
the first dimension chain of the overflow 
table, 2-dimensional arrays in the second, 
and 3-dimensional arrays in the third. The 
formats for the entries of 1-, 2-, and 
3-dimensional arrays are indicated in Fig
ure 31 .• 

r-----T-----T------, 
IChainl 1 I Length I 
.-----+-----+------+---------, 
IChainl 2 I LengthlDl*Lengthl 
~-----+-----+------+---------+------------, 
I Chain I 3 I LengthIDl*LengthIDl*D2*Lengthl L _____ ~ _____ i ______ i _________ i ____________ J 

2 2 2 
bytes bytes bytes 

2 
bytes 

2 
bytes 

Figure 31. Format of Dimension Information 
in the Overflow Table 

The fields of a di~ension entry contain 
the following information: 

• The first field contains the displace
ment (relative to the beginning of the 
overflow table) of the next element in 
the chain. 

• The second field is a digit, either 1, 
2, or 3, to indicate whether one, two, 
or three fields will follow. This is 
the same as the number of dimensions. 

• The next field is of the form: 

r---T------T--------------------------, 
I L I Dl*L I 01*D2*L I L ___ ~ ______ L-_________________________ J 

where: 

Dl*L and Dl*D2*L are optional fields 
depending on the dimension. 

1 indicates the length of an element in 
tytes (e.g., 4 for integer or real 
quantities and 8 for double-precision 
quantities). 

Dl represents the value of the first 
dimension of the array. 

D2 represents the value of the second 
dimension of the array. 

SUBSCRIPT ENTRY: A subscript entry 
formed for each subscripted variable. 
subscripted variable may be defined as: 

• i-dimensional, e.g., A(I) 
• 2-dimensional, e.g., A(I,J) 
• 3-dimensional, e.g., A(I,J,K) 

is 
A 

One-dimensional subscripts are entered 
in the first subscrip~ chain of the over
flow table, 2-dimensional subscripts in the 
second, and 3-dimensional subscripts in the 
third. The formats for the entries of 1-, 
2-, and 3-dimensional subscripts are illus
trated in Figure 32. 

Appendix C: Resident Tables 87 



r-------T------T------------------, 
I Chain I Cl I pointer to V1 in I 
I I I the dictionary I L _______ ~ ______ ~ __________________ J 

r-------T------T------------------T------T------------------, 
I Chain I Cl I pointer to Vl in I C2 I pointer to V2 in I 
, , I the dictionary I I the dictionary , L _______ ~ ______ ~ __________________ ~ ______ ~ __________________ J 

r-------T------T------------------T------T------------------T------T--------------------, 
, Chain, Cl I pointer to Vl in I C2 I pointer to V2 in I C3 I pointer to V3 in I 
I , I the dictionary I I the dictionary I I the dictionary I L _______ ~ ______ ~ __________________ ~ ______ ~ __________________ ~ ______ ~ ____________________ J 

2 bytes 2 bytes 2 bytes 2 bytes 2 tytes 2 bytes 2 bytes 

Figure 32. Format of Subscript Information in the Overflow Table 

The fields of a subscript entry contain 
the following information: 

• The first field ccntains the displace
ment (relative to the beginning of the 
overflow table) of the next element in 
the chain. 

• The second and third, fourth and fifth, 
and sixth and seventh fields represent 
the first, second, and third dimensions 
of the subscript. The explanation and 
use of Cl, Vl, C2, V2, C3, and V3 are 
given in Appendix E. 

STATEMENT NUMBER ENTRY: A statement number 
entry is constructed for each statement 
number encountered in the source state
ments. The format of an entry in the 
statement number chains is illustrated in 
Figure 33. 

r------T------T---------------------------, 
,Chain IUsage IPacked Statement Number I L ______ ~ ______ ~ ___________________________ J 

1 byte 1 byte 3 bytes 

Figure 33. Format of 
Information 
Table 

Statement Number 
in the Overflow 

The fields of a statement number entry 
contain the following information: 

88 

• The first field contains the displace
ment (relative to the beginning of the 
overflow table) of the next element in 
the chain. 

• The second field is a usage field where 
each bit represents the following: 

r-----T-------------------------------, 
IUsagel I 
IFieldl Function of the Field I 
IEit I I 
~-----+-------------------------------~ 
I 0 IIndicates if the statement num-I 
I Iber is defined I 
.-----+-------------------------------~ 
I 1 IIndicates if the statement num-I 
I ,ber is ref erenced I 
~-----+-------------------------------~ 
I 2 IIndicates if the statement num-I 
I Iber re~resents the end of a DOl 
I Iloop I 
~-----+-------------------------------~ 
I 3 IIndicates if the statement num-I 
I Iber represents a specification I 
I I statement I 
.-----+-------------------------------~ 
I 4 IIndicates if the statement num-I 
I Iber represents a FORMAT state-I 
I Iment I 
~-----+-------------------------------~ 
I 5 IIndicates if the statement num-I 
I Iber indicates DO nesting errors I 
.-----+-------------------------------~ 
I 6 INot used I 
~-----+-------------------------------~ 
I 7 INot used I L _____ ~ _______________________________ J 

• The third field contains the actual 
statement number (as it appeared in the 
source statement) in packed form. 

SEGMAL 

SEGMAL is constructed by Phase 1 and 
contains the beginning and ending address 
of each segment of main storage assigned to 
the dictionary and overflow table by Phase 
7. This main storage is assigned to the 
compiler as a result of the GETMAIN macro
instruction issued by the compiler during 
Phase 7. Phases 100 and 10E use SEGMAL as 



they enter various items in the dictionary 
and the overflow table. 

Phase 7 Processing 

When SEGMAL is constructed by Phase 7, 
the various segments are put into ascending 
order; that is, the segment entries of main 
storage are sorted. Contiguous segments 
are then combined into a single segment. 

The communication 
information to indicate 
currently being used for 
and which is currently 
dictionary. 

area contains 
which segment is 
the overflow table 
being used for the 

Phases lOD and 10E Processing 

Phases 10D and 10E use SEGMAL when new 
segments of the dictionary and overflow 

4 bytes 4 bytes 4 bytes 

table are required. For SPACE compila
tions, Phase 14 uses SEGMAL to free the 
main storage areas allocated to the dic
tionary. 

Format of SEGMAL 

SEGMAL has the following form for N 
segments, where each segment is entered in 
ascending sequence by address. The entry 
for each segment consists of the beginning 
address of the segment and the ending 
address of the segment. (The storage loca
tion containing the ending address of seg
ment N is adjacent to the storage location 
containing the starting address of the 
overflow index. The starting address of 
the overflow index is an entry in the 
communication area.) 

N~te: The ending address of segment N 
m1nus thE beginning address of segment 1 
must be less than or equal to 65536. 

4 bytes 4 bytes 4 bytes 

r--;~~i~~i~~--T--;~di~~-~d=-T--;~~i~~i~~--T--;~d~i~~-L-T--;~;i~~i~;--T--;~di~;-~d=--l 
I address of I dress of I address of I addr - - I address of I dress of I 

I segment 1 I segment 1 I segment 2 I seg I segment N I segment N I L _____________ ~ _____________ ~ _____________ ~_____ _ ____ ~ _____________ ~ ______________ J 

entry for seg~ent 1 entry for segment N 

Appendix C: Resident Tables 89 



PATCH TABLE 

The patch table (100 bytes) is a part of the interface module. It is used only if the 
patch facility has been enabled and if patch records precede the source statements of the 
FORTRAN source module being compiled. The patch table contains a converted form (for 
internal use) of the information contained in the Fatch records. The patch table has the 
following format: 

r--------------------------------------------------------------------------T------------, 
IIdentifier for first module to be modified I 2 bytes 1 

~--------------------------------------------------------------------------+------------~ 
IRelative address of first patch for this module 1 2 bytes 1 

~--------------------------------------------------------------------------+------------~ 
ILength (in bytes) of first patch for this module 1 2 bytes 1 

~--------------------------------------------------------------------------+------------~ 
IFirst patch for this module. I Variable I 
~--------------------------------------------------------------------------+------------~ 
1 • I I 
I • I I 
I . I I 
~--------------------------------------------------------------------------+------------~ 
IRelative address of last patch for this module I 2 bytes I 
~--------------------------------------------------------------------------+------------~ 
ILength (in bytes) of last patch for this module I 2 bytes I 
~--------------------------------------------------------------------------+------------~ 
ILast patch for this module I Variable I 
~--------------------------------------------------------------------------+------------~ 
100000001 (Indicates last patch for this module) 1 4 bytes 1 
~--------------------------------------------------------------------------+------------~ 
I • I I 
I . I I 
I • 1 1 
~--------------------------------------------------------------------------+------------~ 
IIdentifier for last module to be modified I 2 bytes I 
~--------------------------------------------------------------------------+------------~ 
IRelative address of first patch for this module I 2 bytes I 
~--------------------------------------------------------------------------+------------~ 
ILength (in bytes) of first patch for this module I 2 bytes I 
~--------------------------------------------------------------------------+------------~ 
IFirst patch for this module 1 Variable I 
~--------------------------------------------------------------------------+------------~ 
1 • I I 
I . I I 
I · I I 
~--------------------------------------------------------------------------+------------~ 
I Re.lati ve address of last patch for this module I 2 bytes I 
~--------------------------------------------------------------------------+------------~ 
ILength (in bytes) of last patch for this module 1 2 bytes I 

~--------------------------------------------------------------------------+------------~ 
ILast patch for this module I Variable 1 

~--------------------------------------------------------------------------+------------~ 
100000001 (Indicates last patch for this module) 1 4 bytes I 
~--------------------------------------------------------------------------+------------~ 
IZZ (Indicates last module to be patched) I 2 bytes I L _____________________________________________________ --------_____________ ~ ____________ J 

90 



BLOCKING TABLE 

The blocking table is constructed by 
Phas€ 7 only for PRFRM compilations. Phase 
7 constructs a blocking table entry for 
each of the data control blocks that were 
opened by Phase 1. The blocking table 
contains the information required for 
deblocking compiler input and for blocking 
compiler output. 

Each blocking table entry (24 bytes in 
length) has the following format: 

r-----------------------------------------, 
ILogical record length* I 
I (2 bytes) I 
~-----------------------------------------~ 
IBlocking factor I 
I (2 bytes) I 
~-----------------------------------------~ 
IAddress of buffer 2 I 
I (4 bytes) I 
~-----------------------------------------i 
IAddress of buffer 1 I 
I (4 bytes) I 
~------------------~----------------------~ 
IAddress of next logical record I 
Iwithin the current buffer I 
I (4 bytes) I 
~-----------------------------------------~ 
IAddress to or from which the next I 
Irecord is to be moved I 
I (4 bytes) I 
~-----------------------------------------~ 
INumber of logical records in current I 
Ibuffer that remain to be processed I 
I (2 bytes) I 
~-----------------------------------------i 
IIndicates if a READ or WRITE has I 
Ibeen issued for data set I 
I (1 byte) I 
~-----------------------------------------~ 
IIndicates whether data set has been I 
Ipreviously referenced I 
I (1 byte) I 
~-----------------------------------------~ 
1*80 for SYSIN, SYSLIN, and SYSPUNCHi I 
I 121 for SYSPRINT. I L _________________________________________ J 

BLDL TABLE 

The BLDL table is constructed by Phase 7 
only for PRFRM compilations. It is built 
using a BLDL macro-instruction. Phase 7 
supplies, as a parameter of the BLDL macro
instruction, the address of a skeleton BLDL 
table. The skeleton build table contains: 
(1) the names (8 bytes per name) of the 
compiler components to which control may be 
transferred via an XCTL macro-instruction, 
and (2) a 28-byte field for each of the 

above names. The corresponding build 
routine completes the skeleton BLDL table 
by placing information into these 28-byte 
fields. This information is obtained from 
the data set directory of the partitioned 
data set containing the FORTRAN IV (E) 
compiler. This information (such as the 
physical location of each compiler compo
nent in the partitioned data set) is 
required for transferring control for PRFRM 
compilations frorr. one component of the 
compiler to the next. 

Each entry in the BLDL table is 36 bytes 
in length. The format of the BLDL table is 
as follows: 

r---------------T-------------------------, 
ICompiler IDirectory information fori 
Ico~Fonent Icompiler component I 
I (8 bytes) I (28 bytes) I 
.---------------+-------------------------~ 
IIEJFAABO I I 
I (Phase 1- IDirectory information fori 
I subsequent IPhase 1 (subsequent I 
I entries I entries) I 
.---------------+-------------------------~ 
IIEJFAKAO I I 
I (Print buffer IDirectory information fori 
I module) IPrint buffer module I 
~---------------+-------------------------~ 
IIEJFEAAO IDirectory information fori 
I (Phase 7) IPhase 7 I 
.---------------+-------------------------~ 
IIEJFGAAO IDirectory information fori 
I (Phase 100) IPhase 100 I 
.---------------+-------------------------~ 
IIEJFJAAO IDirectory information fori 
I (Phase 10E) IPhase 10E I 
.---------------+-------------------------~ 
IIEJFJGAO IDirectory information fori 
I (Interlude 10E)IInterlude 10E I 
~---------------+-------------------------~ 
IIEJFLAAO IDirectory information fori 
I (Phase 12) IPhase 12 I 
~---------------+-------------------------~ 
IIEJFNAAO IDirectory information fori 
I (Phase 14) \Phase 14 I 
.---------------+-------------------------~ 
\IEJFNGAO \Directory information fori 
I (Interlude 14) I Interlude 14 I 
~---------------+-------------------------~ 
IIEJFPAAO IDirectory information fori 
I (Phase 15) IPhase 15 I 
.---------------+-------------------------~ 
IIEJFPGAO IDirectory information fori 
I (Interlude 15) IInterlude 15 I 
.---------------+-------------------------~ 
IIEJFRAAO IDirectory information fori 
I (Phase 20) IPhase 20 I 
~---------------+-------------------------~ 
IIEJFVAAO \Directory information fori 
I (Phase 25) \Phas~ 25 I 
~---------------+-------------------------~ 
IIEJFXAAO IDirectory information fori 
I (Phase 30) IPhase 30 I L _______________ ~ _________________________ J 

Appendix C: Resident Tables 91 



APPENDIX D: INTERMEDIATE TEXT 

Intermediate text is an internal rep
resentation of the source module from which 
the machine language instructions are pro
duced. The conversion froIT. intermediate 
text to machine language instructions 
requires information about variables, con
stants, arrays, statement numbers, in-line 
functions, and subscripts. This informa
tion, derived from the source statements, 
is contained in the dictionary and overflow 
table, and is referenced by the intermedi
ate text. The dictionary and overflow 
table supplement the intermediate text in 
the generation of machine instructions by 
the various phases of the compiler. 

Phases 10D and 10E create intermediate 
text for use as input to subsequent phases 
of the compiler. Intermediate text is 
created by Phase 100 for the following 
declarative statements: 

• FORMAT 
• SUBROUTINE or FUNCTION 

Phase 10E creates interrrediate text for 
all statement functions and executable 
statements in the source module and for 
FORMAT statements interspersed within the 
executable statements. 

Phase 12 does not use the intermediate 
text during its processing; all of the 
remaining phases (14,15,20,25, and 30) do 
use the intermediate text during process
ing. 

Phase 14 converts the FORMAT intermedi
ate text to a form acceptable to IHCFCOME. 
It also inserts the addresses assigned by 
Phase 12 to variables, constants, etc., 
into the intermediate text. In addition, 
Phase 14 rearranges the intermediate text 
entries of READ/WRITE statements and 
inserts implied DO and end DO adjective 
codes into the intermediate text when an 
implied DO is encountered in a READ/WRITE 
statement. 

Phase 15 reorders the sequence of inter
mediate text entries in statements that can 
contain arithmetic expressions, and modi
fies these entries to a format that closely 
resembles machine language instructions. 
Machine operation codes and registers (when 
required) are inserted in the intermediate 
text. Argument lists for external and 
function references are created by modify
ing the intermediate text for those state-

92 

ments. In-line function references are 
processed by generating the appropriate 
instruction format(s) and a word for the 
in-line function call. 

Phase 20 modifies the intermediate text 
entries that rerresent subscript expres
sions. Registers are assigned to subscript 
expressions (once they have been initially 
computed) and are inserted in the text 
entries for those expressions. 

Phase 25 uses the intermediate text in 
conjunction with the overflow table to 
generate the object module instructions. 

Phase 30 uses the intermediate text to 
generate any error and warning messages and 
to process the END statement. 

AN ENTRY IN THE INTERMEDIATE TEXT 

The intermediate text is constructed by 
Phases 10D and 10E for some declarative 
statements, all statement functions, and 
all executable statements. Each statement 
is represented in the intermediate text by 
one or more i nterrr,edi ate text words. (An 
intermediate text word is four bytes long.) 
This word normally contains three fields 
(as illustrated in Figure 34). 

r-----------------T------------T----------, 
I I I I 
I adjective code I mode/type I pointer I 
I field I field I field I 
I I I I L _________________ ~ ____________ ~ __________ J 

1 byte 1 byte 2 bytes 

Figure 34. Intermediate Text Word Format 

Adjective Code Field 

The adjective code field in the initial 
interrrediate text word indicates the type 
of statement for which the intermediate 
text entries are constructed, i.e.: 

• Reserved word, e.g., DO,CALL, GOTO. 
• Statement function (SF). 
• Arithmetic. 



The adjective 
intermediate text 
indicate: 

codes 
words 

in the subsequent 
for a statement 

• Delimiters, i.e., + - * / ** ( ) , 
• The end of a statement (end mark) 
• An error 

The adjective code is comrosed of two 
hexadecimal digits. The various adjective 
codes possible (and their use) are indicat
ed in Figure 35. 

Mode/Type Field 

The mode/type field indicates the mode 
and the type of a symbol; e.g., a real 
function for a function name, or dummy 
variable for the variable name. These 
mode/type codes are the same as those used 
in the dictionary entries (refer to Appen
dix C). 

In the word with an end mark adjective 
code, another indicator rray appear in the 
mode/type field. Normally, this field con
tains zeros; however, if any errors or 
warnings are detected in a statement, this 
field contains a hexadecimal 01. 

If errors or warnings were detected, the 
error/warning message number appears in the 
mode/type field of the word inserted in the 
intermediate text to represent that 
error/warning. Errors and warnings are 
detected by Phases 10D, 10E, 12, 14, 15, 
and 20. 

Pointer Field 

The pointer field consists of the last 
two tytes of the intermediate text word. 
It normally contains a relative pointer to 
the dictionary or overflow table entry for 
the symbol with which the adjective code is 
associated, e.g., the term +A has a + 
adjective code and an associated pointer 
field that contains a relative pointer to 
the dictionary entry for A. The pointer 
field may also be used to contain either 
the increment of a DO or implied DO vari
able, or the internal statement number in 
the word containing the end mark or the 
error/warning adjective code. 

The internal statement number is 
assigned during Phases 10D and 10E to each 
FORTRAN source statement. This number dif
fers frOID the user-assigned statement num
ber. It is assigned whether or not inter
mediate text is to be created for that 
statement; therefore, there may be gaps in 

the internal staterrent numbers appearing in 
the intermediate text. Errors in the 
source module rray cause the same statement 
numter to be assigned more than once. If 
the user has requested a source listing, 
the internal statement number assigned to 
each statement appears next to that state
ment in the listing. 

An Example of an Intermediate Text Entry 

For the statement 

3 IF (+19 - MART) 11, 7, 61 

the intermediate text created by Phase 10E 
is: 

r-----------------T------------T----------, 
I I I I 
I adjective code I mode/type I pointer I 
I field I field I field I 
I I I I 
~-----------------+------------+----------~ 
I statement I statement I p(3) I 
I number I number I I 
~-----------------+------------+----------~ 
I arithmetic IF I 00 I 0000 I 
~-----------------+------------+----------~ 
I ( I 00 I 0000 I 
~-----------------+------------+----------~ 
I unary + I integer I p (19) I 
I I constant I I 
~-----------------+------------+----------~ 
I I integer I p(MART) I 
I I variable I I 
~-----------------+------------+----------~ 
I) I statement I p(ll) I 
I I number I I 
~-----------------+------------+----------~ 
I' I statement I p (7) I 
I I number I I 
~-----------------+------------+----------~ 
I I statement I p(61) I 
I I number I I 
~-----------------+------------+----------~ 
I end mark I 00 I internal I 
I I I statement I 
I I I number I 
~-----------------+------------+----------~ 
I 1 byte I 1 byte I 2 bytes I 
~-----------------~------------~----------~ 
Ip(x) indicates a pointer to the overflow I 
Itatle entry or the dictionary entry fori 
I x. I l _________________________________________ J 

Unique Forms of Intermediate Text 

When the intermediate text is created, 
there are four unique forms: the text for 
FORMAT statements, sutscripted variables, 
COMMON statements, and EQUIVALENCE state
ments. 

Appendix D: Intermediate Text 93 



r----~-----T------T-----T-----T--------T------~------T-------r------T-------T------T-----T------T----T------T----------T-----------------~, ,'L, , , " , , , I I , I , I '" , 
lH\.o' I , " , I , I I , , I , "I , 
, i 'W 10 11 ,2 13 14 15 16 17 I 8 19 I A I B I C I D IE 'F I I 
, g' I , , " , I , , , , , , , I I' , 
I h" I , " , , , , , I , , , '" I 
.-----+-----+------+-----+-----+--------+-------+-------+-------~------+-------+------+-----+------+----+------+----------+------------------~ 
, 0, I , ,. '( I> ,= " ,:1.1END ,ILLEGAL,+ 1- '* '/ '** ,FUNC(, , 
, , , , 'I , , 1 ARGU- I MARK' I I I I I I' , 
, , 1 1 I 1 , , 'MENT I-------~ 1 , I , 'I' 1 
, , , , " , , I I N10, , I I I '" , 
.-----+-----+------+-----+-----+--------+-------+-------+-------~-------+-------+------+-----+------+----+------+----------+------------------~ 
I 1 IAOP lUNARY I ,SAOP I ISIZE OF' END , I I I I lUNARY 1 110 I' I I 
I , IMINUS I 1 I I ARRAY ,MARK, I 1 , I I PLUS I "APOSTROPHE' I 
.-----+-----+------+-----+-----+--------+-------+-------+-------~------+-------+------+-----+------+----+------+----------+----------~-------~ 
, 2, , I I IN-10, ARITH- I· I I I 1 , I , I I" , 
I I I ,STM, LINE ,METIC I LM , $ , I BLANK , , , , , I" , 
, , I , I FUNC I IF I I I I I I I I I I I I I 
~--+-----+------+-----+-----+--------+-------+-------+-------r------+-------+------+-----+------+----+------+----------+------------------~ 
I 3 I 1 I I I I I I I I I I I i I I I I 
.-----+-----+------+-----+-----+--------+-------+-------+-------~------+-------+------+-----+------+----+------+----------+------------------~ 
I 4 I S I I I I I , I BC10 I , , I I , I I I I 
.-----~ .------+-----+-----+--------+-------+-------+-------~------+-------+------+-----+------+----+------+----------+------------------~ 
, 5 I T I , , LCR I I I , I I , I S I M I I' , INTEGER , 
..-----~ .------+-----+-----+--------+-------+-------+-------~ , C , , U , U I .------+----------+------------------~ 
, 6 '0 I I I' , , I I 10 I IB ,L ID' I IDOUBLE PRECISION I 
..-----~ .------+-----+-----+--------+-------+_------+-------~ 1M' , TIT I I .------+----------+------------------~ 
I 7 , R I I 'I I I , I L , PI' R , I I V, I , REAL , 
.-----~ .------+-----+-----+--------+-------+-------+-------~ 0 , A I A , A , P , I .------+----------+------------------~ 
I 8 , E I I ,LCER , I I I I A , RID I C I LID I I I I 
I I I , 'I I , I I D , E I D I T I Y I E I SRDA10 'I I 
.-----+-----+------+-----+-----+--------+-------+-------+-------~------+-------+------+-----+------+----+------+----------+------------------~ 
I 9 I I I I IINTEGER IDOUBLE IREAL I I COMMONIEQUIVA-IEXTER-I IDIMEN-I I ISUBROU- I I 
I I I I 1 1 I I I I I LENCE I NAL 1 I SION I I 1 TI NE I I 
.-----+-----+------+_----+-----+--------+-------+-------+-------r------+-------+------+-----+------+----+------+----------+------------------~ 
I A IFUNC-IFORMATIEND ICON- IUNCONDI-ICOMPUT-IBACK- IREWIND I END I WRITE IREAD IWRI'IEIREAD IDO I STMT. I I I 
I I TICN I I DO I 'IINUE I TIONAL I ED , SPACE 1 I FILE 1 BINARY 1 BINARY I BCD I BCD I I NO. 1 I I 
I I I I I I GO TO I GO TO I 1 I I I I I I I DEF. I I I 
..-----+-----+------+-----+-----+--------+-------+-------+-------~------+-------+------+-----+------+----+------+----------+------------------~ 
I B lEND I 'CALL ISF I IARITH I 1 BEGIN I END IRETURN ISTOP IPAUSEIARITH lIMP IERROR IWARNING 1 I 
I I I I I 1 I I 1 I/O I I/O 1 I I I IF 1 DO 1 ~ESS- 'MESS- 1 I 
, , 1 I 'I I I I LIST 1 I.IST I I I I I I AGE I AGE 1 I 
.-----+-----+------+-----+-----+--------+-------+-------+-------~------+-------+------+-----+------+----+------+----------+------------------~ 
I C 1 1 I 1 I I I I I I I I I I I I I I 
I I I I I I I I I I I 1 I I I I I I I 
.-----+-----+------+-----+-----+--------+-------+-------+-------~------+-------+------+-----+------+----+------+----------+------------------~ 
I D I I I I I 1 I 1 I I I I I I I I' I 
.-----+-----+------+-----+-----+--------+-------+-------+-------~------+-------+------+-----+------+----+------+----------+------------------~ 
I E I I , I I I I I I I I I I I I I I I 
.-----+-----+------+-----+-----+--------+-------+-------+-------~------+-------+------+-----+------+----+------+----------+------------------~ 
I F I I I I I I I I I I I , I I I I I I • _____ ~ _____ ~ ______ ~ ____ ~ _____ ~ ________ ~ _______ ~ ______ ~ _______ ~ ______ ~ _______ ~ _____ _i _____ ~ ______ ~ ____ ~ ______ ~ __________ ~ __________________ ~ 

,10 Subject to change in later phases. I 
111 The '08' end mark is a transient code that exists in Phases 10D and 10E only. It is used to generate the '16' end reark in I 
I intermediate text. I 
L-______________________________________________________________ ----------------------------------------------------________________________ J 

Figure 35. Adjective Codes as Used in Phases 10D and IOE 



FORMAT STATEMENTS: For FORMAT statements, 
the adjective code field of the first 
intermediate text word of the statement 
indicates a FORMAT statement; the remaining 
two fields contain three bytes of the 
FORMAT statement card image. The remainder 
of the card image of the FORMAT statement 
appears in the following interrrediate text 
words. For example, the statement; 

12 FORMAT (F20.5,I6) 

appears in the intermediate text as: 

r-------------~-------------T------------, 

I I I I 
I adjective , mode/type , pointer I 
, code field ,field ,field , 
I I I I 
~--------------+-------------+------------~ 
, statement I statement I I 
'number 'number ,p(12) , 
~--------------+-------------+-----T------~ 
I FORMAT '( , F , 2 , 
~--------------+-------------+-----+------~ 
, 0 , , 5 I , I 
~--------------+-------------+-----+------~ 
I I , 6 , ) ,blank I 
~--------------~-------------~-----~------~ 
I blanks represent the remaining card I 
I columns to column 12 I 
, (each card column represents 1 byte) , 
~--------------T-------------T------------~ 
, , , internal I 
, end mark I 00 I statement I 
, I I number , L ______________ ~ _____________ ~ ____________ J 

1 byte 1 byte 2 bytes 

SUBSCRIPTED VARIABLE: When a subscripted 
variable is encountered in a source state
ment, an entry for a variable is made. 
That entry ~s followed by two additional 
intermediate text words to define the sub
scripted expression. The first word is of 
the form: 

r-----------------T------------T----------, 
, I I I 
I adjective code ,mode/type ,pointer I 
, field ,field, field I 
I , , I 
~-----------------+------------+----------~ 
, SAOP ,00 I offset , 
~-----------------+------------+----------~ 
I 1 byte ,1 byte I 2 bytes I 
~-----------------~------------~----------~ 
,SAOP represents the subscript arithmetic, 
I operator, and the offset represents al 
Ipart of the array displacement. (Referl 
Ito Appendix E for a discussion of arrayl 
I displacement.) , L _________________________________________ J 

The second word is of the form: 

r---------------T-----------T-------------, 
I I I I 
, adjective codel mode/type I pointer I 
, field I field I field I 
I I I I 
~---------------~-----------+-------------~ 
I p(subscrift If(dimension I 
, information) I information) I 
~---------------------------+-------------~ 
I 2 bytes , 2 bytes I 
~---------------------------~-------------~ 
The first field contains a relative poin-
ter to the subscript information in the 
overflow table if the subscripted expres
sion contains variables. If the sub
scripted expression does not contain 
variables, this field contains zeros. 

The second field ccntains a relative 
pointer to the dimension information in 
the overflow tabl.e for the array that 
contains the subscrifted expression. For 
exarofle, if A (I,J) is an element in 
array A, the field contains the pointerl 
to the dimension information for array A.I L _________________________________________ J 

The statement: 

APPLE = A(POT,3) + B(2,1) 

appears in the intermediate text as: 

r-------------T-----------T---------------, 
I I I I 
I adjective I mode/type I pointer I 
I cede field I field I field I 
I I , , 
~-------------+-----------+---------------~ 
,arithmetic I mode/type I I 
I statement 'of APPLE I p(APPLE) I 
~-------------+-----------+---------------~ 
I I mode/type I I 
, = , of A , peA) , 

~-------------+-----------+---------------~ 
I SACP I 00 I offset I 
~-------------~-----------+---------------~ 
, p(subscript I p(dimension I 
I information) I information) I 
~-------------T-----------+---------------~ 
, I mode/type I , 
, + I of B I p (B) I 
~-------------+-----------+---------------~ 
I SACP I 00 I offset I 
~-------------+-----------+---------------~ 
I I I p(dimension I 
, 00 I 00 I information) I 
~-------------+-----------+---------------~ 
I I I internal I 
I I I statement I 
I end mark : 00 I number I L _____________ ~ ___________ ~ _______________ J 

1 byte 1 byte 2 bytes 

Appendix D: Intermediate Text 95 



COMMON STATEMENTS: An entry in COMMON 
intermediate text reF resents a variable or 
an array encountered in a COMMON source 
statement. Phase 12 references these 
entries (serially) and assigns addresses to 
them in the COMMON area. (The assignment 
of addresses is discussed in detail in the 
Phase 12 description.) Each entry has the 
form indicated below: 

r--------------T-------------T------------, 
Ipointer to the I length of thelnot used I 
Ivariable or Iname of the I I 
larray entry inlvariable or I I 
Ithe dictionarylarray I I 
~--------------+-------------+------------i 
12 bytes 11 cyte 11 byte I 
~--------------~-------------~------------~ 
IThe first field contains the address ofl 
Ithe dictionary entry for that variable orl 
I array. I 
I I 
IThe second field contains the length ofl 
Ithe name of the variable or array inl 
I EBCDIC (Extended Binary Coded Decimal I 
I Interchange Code) characters. The length I 
lis used to determine in which chain ofl 
Ithe dictionary the variable or array isl 
Ito te entered. I l _________________________________________ J 

Termination of all COMMON intermediate 
text is indicated by a two-byte termination 
indicator of the form: 

r-----------------------------------------, 
I 0001 I l _________________________________________ J 

2 bytes 

This termination indicator appears whether 
or not COMMON intermediate text exists. 

An Example of COMMON Text: For the state
ment: 

COMMON (A" R, ARNONN) 

the COMMON intermediate text is: 

r---------------------T---------T---------, 
I p (A) I 1 I not used I 
~---------------------t---------+---------i 
I p (R) I 1 I not used I 
~---------------------t---------+---------~ 
I p (ARNONN) I 6 Inot used I l _____________________ ~ _________ ~ _________ J 

2 bytes 1 byte 1 byte 

EQUIVALENCE STATEMENTS: The EQUIVALENCE 
intermediate text is constructed by Phase 
laD as a series of entries (one for each 
variable or array in an EQUIVALENCE group). 
Phase 12 references these entries 
(serially) and assigns addresses to them. 
(The assignment of addresses is discussed 
in detail in the Phase 12 description.) 

96 

Each entry in the EQUIVALENCE intermedi
ate text has the following format: 

r-------------T------------T--------------, 
I pointer Isize loffset or 00001 
~-------------+------------t--------------i 
12 tytes 12 bytes 12 bytes I 
~-------------~------------~--------------~ 
The first field is a pointer to thel 
dictionary entry for the variable inl 
question. I 

I 
The second field contains the size of thel 
variable in bytes, or the size of thel 
array in bytes if the variable is dimen-I 
sioned. I 

I 
The third field contains the offset if I 
this particular variable is subscripted, I 
or 0000 if the variable is not subscript-I 
ed. I l _________________________________________ J 

Termination of an EQUIVALENCE group is 
indicated by a two-byte termination indica
tor of the following form: 

r-----------------------------------------, 
1 0001 I l _________________________________________ J 

2 bytes 

An Example of EQUIVALENCE Text: For the 
statement: 

EQUIVALENCE (GRW,KEL),(RBJ(1,9),AMV(2,4» 

there are two EQUIVALENCE groups: 

• GRW,KEL 
• RBJ (1,9), AMV (2,4) 

where: 

GRW is real 
KEL is integer 
RBJ is a real array dimensioned as (9,9) 
AMV is a real array dimensioned as (9,4) 

The EQUIVALENCE text is: 

r--------T-----T-----' 
I p(GRW) 1 4 1 a IDetail entry for GRW 
~--------+-----t-----i 
I p(KEL) I 4 I a IDetail entry for KEL • ________ + _____ ~ _____ J 

I 0001 1 EQUIVALENCE group 
I I termination indicator 
.--------t-----T-----' 
I p(RBJ) 1 324 I 288 IDetail entry for RBJ 
~--------+-----+-----~ 
1 p(AMV) I 144 I 112 IDetail entry for AMV 
.--------t-----~-----~ 
1 0001 I EQUIVALENCE group 
1 1 termination indicator l ________ J 

2 
bytes 

2 2 
bytes bytes 



MODIFYING INTERMEDIATE TEXT 

The intermediate text is created by 
Phases 10D and 10E, and is modified by 
Phases 14, 15, and 20. This modification 
prepares the intermediate text for use by 
Phase 25 in the generation of machine 
language instructions. The modifications 
made to the intermediate text are dis
cussed, phase by t:hase, in the following 
pages. 

Phase 14 

During Phase 14 processing, the inter
mediate text is modified in the following 
ways: 

• Replacement of dictionary pointers. 

• Modification of 
mediate text. 

• ~edification of 
mediate text. 

• ~odification of 
text. 

I/O statement inter-

computed GO TO inter-

RETURN intermediate 

REPLACEMENT OF DICTIONARY POINTERS: Dic
tiondry pointers in the intermediate text 
are replaced by inforrration essential for 
the ~rocessing to ce performed by subse
quent Fhases of the compiler. The follow
ing examples illustrate this modification 
to intermediate text entries. 

r-------------------------------------------T-------------------------------------------, 
I Input to Phase 14 I Output from Phase 14 I 
~-------------------------------------------+-------------------------------------------~ 
I For: I the dictionary pointer is replaced by: I 
~-------------------------------------------+-------------------------------------------~ 
I variables, constants, arrays, and external I the relative address assigned by I 
I functions, I Phase 12. I 
I I I 
I r-----------T-----------T-----------, I r-----------T-----------T-----------, I 
I ladjective I mode/type I I I I adjective I mode/type I I I 
I I code I of ACCESS I p(ACCESS) I I I code I of ACCESS I a (ACCESS) I I I L ___________ ~ ___________ ~ ___________ J I L ___________ ~ ___________ ~ ___________ J I 

I 1 byte 1 byte 2 bytes I 1 byte 1 byte 2 bytes I 
I I I 
~-------------------------------------------+-------------------------------------------~ 
I data set reference numbers, I tfie data set reference number. I 
I I I 
I I I 
I r-----------T-----------T-----------, I r-----------T-----------T-----------, I 
I I ( I mode/type I p(3) I I I C I mode/tyt:e I 3 I I I L ___________ ~ ___________ ~ ___________ J I L ___________ ~ ___________ ~ ___________ J I 

I 1 byte 1 byte 2 bytes I 1 byte 1 byte 2 bytes I 
I I I 
I I I 
~-----------------------------------------~-+-------------------------------------------~ 

statement functions, I the SF number assigned by Phase 14. 

definition 
r-----------T-----------T-----------, 
ISF defini- Ireal state-I I 
Ition adjec-Iment fUnc- I p(SF) I 
Itive code Ition I I L ___________ ~ ___________ ~ ___________ J 

1 byte 1 byte 2 bytes 

~ r-----------T-----------T-----------, 
I adjective Ireal state-I I 
I code Iment fUnc- I p(SF) I 
I Itien I I L ___________ ~ ___________ ~ ___________ J 

1 byte 1 byte 2 bytes 

I 
I 
I 
I 

r-----------T-----------T-----------, 
ISF defini- Ireal state-Ithe rela- I 
\tion adjec-Irrent func- Itive SF I 
\tive code Ition I number I L ___________ L ___________ ~ ___________ J 

1 byte 1 byte 2 bytes 

r-----------T-----------T-----------, 
\adjective Ireal state-Ithe rela- I 
I code Irrent fUnc- Itive SF I 
\ Itien I number I L ___________ ~ ___________ ~ ___________ J 

1 byte 1 byte 2 bytes 
___________________________________________ ~ ___________________________________________ J 

Appendix D: Intermediate Text 97 



MODIFICATION OF I/O STATEMENT INTERMEDIATE 
TEXT: An I/O statement is modified in two 
ways. The begin I/O intermediate text word 
is inserted in the intermediate text for 
each element of an I/O list. An elempnt is 
either an implied DO, or consecutive non
subscripted variables. Implied DOs are 
detected, and implied DO and end DO inter
mediate text words are entered in the text. 
An end I/O is placed at the end of the I/O 
list .• 

These modifications are illustrated in 
Figures 36 and 37, which show an indexed 
I/O list for a 2-dimensional array as it 
appears as input to and output from Phase 

r----------T------------T-----------------, 
I WRITE 100 10000 I 
~----------+------------+-----------------~ 
I I integer I I 
I ( Ivariable Ip(N) I 
~----------+------------+-----------------~ 
I> 100 10000 I 
~----------+------------+-----------------~ 
I ( 100 10000 I 
~----------+------------+-----------------~ 
I Ireal I 1 
I ( I subscripted I peA) I 
I I variable I I 
~----------+------------+-----------------~ 
ISAOP 100 IOffset I 
~----------~------------+-----------------~ 
Ip(subscript) Ip(di~ension) I 
~----------T------------+-----------------~ 
I I integer I I 
I, I variable I p (J) I 
~----------+------------+-----------------~ 
I limmediate DOl I 
1= I parameter 11 I 
~----------+------------+-----------------~ 
I limmediate 001 I 
I , I parameter 110 I 
~----------+------------+-----------------~ 
I, I parameter 11 I 
~----------+------------+-----------------~ 
I> 100 10000 I 
~----------+------------+-----------------~ 
I I integer I I 
I, I variable Ip(I) I 
~----------+------------+-----------------~ 
I limmediate DOl I 
1= I parameter 11 I 
~----------+------------+-----------------~ 
I limmediate DOl I 
I , I parameter 115 I 
~----------+------------+-----------------i 
I limmediate DOl I 
I, I parameter 11 I 
~----------+------------+-----------------~ 
I> 100 10000 I 
~----------+------------+-----------------~ 
I I I internal I 
lend mark 100 Istatement number I L __________ ~ ____________ ~ _________________ J 

Figure 36. Example of Input to Phase 14 

98 

14. The interrrediate text in these figures 
is developed from the following I/O state
ment: 

WRITE (N) «ACI,J) ,J=1,10), I=1,15) 

r----------T------------T-----------------, 
I WRITE 100 10000 I 
~----------+------------+-----------------i 
I I integer I I 
I ( I variable laddress(N) I 
t----------+------------+-----------------~ 
lend rrark 1100 10000 I 
~----------+------------+-----------------~ 
lim~lied DOIOO 10000 I 
~----------t------------+-----------------i 
I I integer I I 
I, I variable I address (I) I 
~----------+------------+-----------------~ 
I limmediate DOl I 
1= I parameter 11 I 
~----------+------------+-----------------~ 
I lirrnediate DOl I 
I, I parameter 115 I 
~----------+------------+-----------------~ 
I I immediate DOl I 
I, I parameter 11 I 
t----------+------------+-----------------~ 
lim~lied 00100 10000 I 
t----------t------------t-----------------i 
I I integer I I 
I, I variable laddress(J) I 
~----------+------------+-----------------i 
I I irrrrediate DO I I 
1= I parameter 11 I 
~----------+------------+-----------------~ 
I limrrediate DOl I 
I , I parameter 110 I 
t----------+------------+-----------------i 
I limnediate DOl I 
I, I parameter 11 I 
t----------+------------+-----------------i 
Ibegin I/O 100 10000 I 
t----------t------------t-----------------i 
ISAOP 100 I Offset I 

t----------~------------+-----------------i 
I pC subscript) IpCdimension) I 

t----------T------------+-----------------i 
I Ireal I I 
I ( Isubscripted laddress(A) I 
I I varia1:le I I 
~----------+------------+-----------------~ 
lend DO 100 10000 I 
~----------+------------+-----------------~ 
lend DO 100 10000 I 
~----------+------------+-----------------~ 
lend I/O 100 10000 I 
~----------t------------+-----------------~ 
I I I internal I 
lend mark 100 Istatement number I 
~----------~------------4-----------------~ 
11 An end mark is inserted prior to thel 
I I/O list. This allows Phase 20 tol 
I treat the I/O list as a separate state-I 
I mente I L---______________________________________ J 

Figure 37. Example of Output from Phase 14 



MODIFICATION OF COMPUTED GO TO STATEMENTS: 
During the Phase 14 processing, a count of 
the number of statement numbers in the 
computed GO TO statement is inserted into 
the intermediate text for that statement. 
This simplifies the processing of this 
intermediate text for the following phases. 
The intermediate text is rearranged so that 
the word containing the integer variable 
precedes the count word. 

A computed GO TO statement such as: 

GO TO (11,11,42,23,99),1 

appears in the input to Phase 14 as: 

r-----------------T------------T----------, 
I I I I 
I adjective code I mode/ty~e I pointer I 
I field I field I field I 
~-----------------+------------+----------~ 
I computed GO TO I 00 I 0000 I 
~-----------------+------------+----------~ 
I ( I statement I p(ll) I 
I I number I I 
~-----------------+------------+----------~ 
I I statement I p(ll) I 
I I number I I 
~-----------------+------------+----------~ 
I I statement I p(42) I 
I I number I I 
~-----------------+------------+----------~ 
I I statement I p(23) I 
I I number I I 
~-----------------+------------+----------~ 
I I statement I p(99) I 
I I number I I 
~-----------------+------------+----------~ 
I ) I 00 I 0000 I 
~-----------------+------------+----------~ 
I I integer I p(I) I 
I I variable I I 
~-----------------+------------+----------~ 
I end mark I 00 I internal I 
I I I statement I 
I I I number I L _________________ ~ ____________ i __________ J 

The output of Phase 14 for the above 
illustrated computed GO TO is: 

r-----------------~-----------T----------, 
I adjective code I mode/type I ~ointer I 
I field I field I field I 
~-----------------+------------+----------~ 
I computed GO TO I 00 I 0000 I 
~-----------------+------------+----------i 
I I integer I a (I) I 
I I variable I I 
~-----------------+------------+----------i 
I count I 00 I 5 I 
~-----------------+------------+----------~ 
I ( I statement I p(ll) I 
I I number I I 
~-----------------+------------+----------~ 
I I statement I p(ll) I 
I I number I I 
~-----------------+------------+----------i 
I I statement I p(42) I 

~I I nurr:ber I I 
~-----------------+------------+----------~ 
I I statement I p(23) I 
I I number I I 
~-----------------+------------+----------i 
I I statement I p(99) I 
I I number I I 
~-----------------+------------+----------~ 
I ) I 00 I 0000 I 
~-----------------+------------+----------~ 
I end mark I 00 I internal I 
I I I statement I 
I I I number I L _________________ i ____________ i __________ J 

MODIFICATION OF RETURN STATEMENT INTERMEDI
ATE TEXT: If a RETURN statement appears 
within a main program, Phase 14 modifies 
the adjective code field so that a STOP is 
indicated. If the RETURN statement is not 
within the main program, no modification is 
made. 

Phase 15 

During Phase 15 processing, the follow
ing intermediate text modifications are 
made: 

• Replacement of adjective codes and 
roode/type codes. 

• Reordering of intermediate text. 

Appendix D: Intermediate Text 99 



REPLACEMENT OF ADJECTIVE CODES AND 
MODE/TYPE CODES: During the processing of 
arithmetic expressions, Phase 15 replaces 
the adjective codes (within the intermedi
ate text entries for arithmetic 
expressions) by actual machine operation 
codes. Phase 15 also assigns registers to 
the operands in arithmetic expressions 
(when required); the corresponding register 
numbers are inserted in the mode/type code 
fields of the intermediate text that rep
resents those expressions. 

The result of the above modification is 
a transformation of the interwediate text 
entries for arithmetic expressions into a 
form that closely resembles the RX instruc
tion forIIlat. 

The following exarrple indicates the 
replacement of adjective codes by machine 
operation codes, and the replacement of 
mode/type codes by registers. The simple 
arithmetic statewent 

PRI = +VATE - VAR 

appears in the input to Phase 15 as: 

r------------T---------------T------------, 
I adjective I mode/type I pointer I 
I code field I code field I field I 
~------------+---------------+------------~ 
I arithmetic Ireal variable la(PRI) I 
I statement I I I 
~------------+---------------+------------~ 
1= 100 10000 I 
~------------+---------------+------------~ 
lunary plus Ireal variable la(VATE) I 
~------------+---------------+------------~ 
1- Ireal variable la(VAR) I 
~------------+---------------+------------i 
lend 100 I internal I 
Imark I I statement I 
1 I I number I L ____________ ~ _______________ ~ ____________ J 

1 byte 1 byte 2 bytes 

100 

The pointer field contains the address of 
the resultant field of the arithmetic 
statement. 

The output frOI[1 Phase 15 for this state
ment is: 

r------------T---------------T------------, 
I adjective I mode/type I pointer I 
I code field I code field I field I 
~------------+---------------+------------i 
I arithmetic Ireal variable la(PRI) I 
I statement I I I 
~------------+------T--------+------------~ 
IL Ireg.#3Ivariablela(VATE) I 
~------------+------+--------+------------i 
IS Ireg.*3I variablela(VAR) I 
~------------+------+--------+------------~ 
1ST Ireg.#3Ivariablela(PRI) I 
~------------+------~--------+------------i 
lend 100 I internal I 
Imark I I statement I 
I I I number I L ____________ ~ _______________ ~ ____________ J 

1 byte 1 byte 2 bytes 

The first operand VATE, is loaded into 
register #3. The second operand, VAR, is 
subtracted frorr VATE. The result is stored 
in the resultant field, PRI. 

In addition, registers are assigned and 
are inserted in the mode/type code field of 
the following: 

• Intermediate text entries for exponen
tiation. 

• Intermediate text entries for in-line 
functions, referenced subprograms, and 
statement function calls. 

• Intermediate text entries for subscript 
expressions. 

The following examples illustrate this 
modification to the intermediate text. 



r-------------------------------------------T-------------------------------------------, 
1 I 1 
1 Input To Phase 15 1 Output From Phase 15 I 
1 1 I 
~-------------------------------------------+-------------------------------------------~ 
1 For: 1 Phase 15 assigns: I 
~-------------------------------------------+-------------------------------------------~ 
1 exponentiation, 1 a register to contain the result of the 1 
1 I required library subprogram execution. I 
I I I 
1 r-----------T-----------T-----------, I r-----------T---T-------T-----------, I 
'I I mode/type I I I 1 I I result 1 1 1 
I 1** I information I a (POWER) I I 1** I a I reg I a (POWER) I I 1 L ___________ L ___________ L ___________ J I L ___________ L ___ L _______ i-__________ J I 

I 1 byte 1 byte 2 bytes I 1 byte 1 byte 2 bytes I 
~-------------------------------------------+-------------------------------------------~ 

in-line fUnctions, one or two registers (depending 
on the specific in-line function) 
to be used as argument registers. 
The register sfecified in the Rl 
field is used as the rEsult register. 

r-----------T-----------T-----------, r-----------T---T-------T-----------, 
lin-line I I code num- I I I I I I 
1 function Inot used Iber of in- I I I I not 1 I 
ladj. code I Iline funct. I ILoad IRl I used I a (argument) I 
~-----------+-----------+-----------~ ~-----------+---+-------+-----------~ 
1 I I I lin-line I 1 Icode num- 1 
IF( Inot used la(argument) I I function IR2 I Rl Iber of in- 1 
I I I 1 ladj. code 1 1 Iline funct·1 L ___________ L ___________ L ___________ J L ___________ L ___ L _______ ~ ___________ J 

1 byte 1 byte 2 bytes 1 byte 1 byte 2 bytes 
~-------------------------------------------+-------------------------------------------~ 
1 subscript expressions, I a work register (to be used by 1 
I I Phase 20) to aid in the computa- I 
1 1 tion of the subscript expression. I 
I I I 
1 r-----------T-----------T-----------, I r-----------T----T------T-----------, 1 
I I subscript I mode/type I I I Is~bscript I 'work I " 
, ladj. code I information 1 Offset I 1 ladj. code 10 Ireg. IOffset , , , L ___________ ~ ___________ ~ ___________ J I L ___________ ~ ____ ~ ______ ~ ___ - _______ J I 

I 1 byte 1 byte 2 bytes , 1 byte 1 byte 2 bytes 1 L ___________________________________________ ~ ___________________________________________ J 

REORDERING OF INTERMEDIATE TEXT: Phase 15 
reorders the intermediate text entries 
within arithmetic expressions so that the 
object module instructions produced by sub
sequent phases are generated according to a 
hierarchy of operators. 

The following example indicates this 
reordering process. 

The statement: 

DGM = BCR*(WRG+WAR) 

appears in the input to Phase 15 as: 

r----------T--------------------T---------, 
ladjective I mode/type 1 pointer I 
'code' code , field I 
~----------+--------------------+---------~ 
I arithmetic 1 real variable 1 a(DGM) 1 
~----------+--------------------+---------~ 
1= I real variable 1 a(BCR) 1 
~----------+--------------------+---------~ 
1 * I 00 1 0000 I 
~----------+--------------------+---------~ 
I ( 1 real variable 'a(WRG) 1 
~----------+--------------------+---------~ 
1+ 'real variable 1 a(WAR) 1 
~----------+--------------------+---------~ 
I) , 00 ,0000 I 
~----------+--------------------+---------i 
lend I linternal I 
Imark I 00 I statement I 
I I I number 1 L __________ ~ ____________________ ~ _________ J 

1 byte 1 byte 2 bytes 

Appendix D: Intermediate Text 101 



The output from Phase 15 for this state
ment is: 

r----------T--------------------T---------, 
ladjective 1 mode/type 1 pointer 1 

I code I code I field 1 
~----------+--------------------+---------~ 
1 arithmetic I real variable 1 a(DGM) I 
~----------+--------T-----------+---------~ 
ILE 1 register 1 variable 1 a (WRG) 1 

I 1 6 1 information 1 I 

~----------+--------+-----------+---------~ 
IAE I register I variable 1 a (WAR) I 
I I 6 I information I I 
~----------+--------+-----------+---------~ 
IME I register I variable \ a(BCR) \ 
I I 6 I information \ \ 
~----------+--------+-----------+---------~ 
ISTE Iregister\variable I a(DGM} I 
I I 6 I information I I 
~----------+--------~-----------+---------~ 
lend I linternal , 
Imark I 00 I statement 1 
I I I number I L __________ ~ ____________________ ~ _________ J 

1 byte 1 byte 2 bytes 

Phase 20 

Phase 20 optimizes the intermediate text 
entries for subscript expressions. This 
optimization consists of modifying portions 
of existing subscript intermediate text and 
creating new subscript intermediate text 
for literals that are generated during the 
subscript optimization process. The chan
ges made to subscript intermediate text 
will be discussed by examining a general 
subscript expression as it appears in the 
input to Phase 20 and by examining the 
subscript intermediate text output from 
Phase 20 for this expression. 

SUBSCRIPT INTERMEDIATE TEXT INPUT: The 
intermediate text input to Phase 20 for a 
general expression is shown in Figure 38. 

SUBSCRIPT INTERMEDIATE TEXT OUTPUT: Sub
script intermediate text output from Phase 
20 depends on the previous optimization (if 
any) of the subscript expression. Three 
adjective codes are used to indicate the 
different conditions that can be present in 
subscript intermediate text output. These 
conditions are explained in the following 
paragraphs. 

102 

r-----------------T----------T------------, 
I adjective code Imode/type I pointer I 
I field I field I field I 
~-----------------+-----T----+------------~ 
I adjective code I 0 IW loffset I 
~-----------------~----~----+------------~ 
I p(subscript) Ip(dimension) I 
~-----------------T-----T----+------------~ 
I OP 1 R ITypela(variable) 1 

~-----------------+-----~----+------------~ 
11 byte 11 byte 12 bytes 1 
~-----------------~---------~------------~ 
Adjective code contains the adjectivel 
code for a subscripted variable portion 
of text. 

o contains a zero value. 

W contains a work register aSSigned by 
Phase 15. 

Offset contains the value of the offset 
portion of the array displacement. 

p(subscript) contains the pointer to sub
script inforrration in the overflow table 
for this expression. 

p(dirnension) contains the pointer to 
Idimension information in the overflowl 
Itable for this expression. I 
1 I 
lOP contains the operation code assignedl 
Iby Phase 15. I 
I I 
IR contains a register assigned by Phasel 
115. I 
I I 
I Type contains the residual (since it isl 
ino longer necessary) type information fori 
Ithe subscripted variable. I 
I I 
la(variable) contains the address of thel 
Isubscripted variable. I L _________________________________________ J 

Figure 38. Subscript Intermediate Text 
Input Format 

SAOP (Subscript Arithmetic Operator) Adjec
tive Code: This code indicates that a 
subscript expression has not been previous
ly optimized, and that an offset literal 
was not generated for the value resulting 
from the addition of the offset portion of 
the array displacement to the subscripted 
variable address displacement. Subscript 
text output associated with an SAOP adjec
tive code is shown in Figure 39. 



r-----------------T---------T-------------, 
I adjective code I mode/type I pointer I 
I field I field I field I 
~-----------------+----T----+-------------~ 
I SAOP I N I W loffset I 
~-----------------~----~----+-------------~ I p(subscript) la(C1*L) I 
~---------------------------+-------------~ 
I a(C2*Ol*L) la(C3*Ol*02*L) I 
~-----------------T----T----+-------------~ 
I OP I R I X la(variable) I 
~-----------------+----~----+-------------~ 
11 byte 11 byte I 2. bytes I 
~-----------------~---------~-------------~ 
SAOP contains an adjective code designat-
ing the form of the intermediate sub
script text. 

N contains the number of dimensions of 
the subscripted variable. 

a(Cl*L), a(C2*Ol*L), and a(C3*Ol*D2*L) 
contain the addresses of the literals 
that combine to form the CDL portion (see 
Appendix E) of the array displacement. N 
determines which addresses must appear. 
For example, if N is 1, only a(Cl*L) 
appears. (If the first literal, Cl*L, is 
a power of 2, that power a~pears instead 
of the address of that literal.) 

X contains the register assigned to the 
subscript expression for computation by 
Phase 20. 

Note: All other entries are as definedl 
lin Figure 38. I L _________________________________________ J 

Figure 39. Subscript Intermediate Text 
Output From Phase 20 -- SAOP 
Adjective Code 

XOP (Offset Literal) Adjective Code: This 
code indicates that the subscript expres
sion has not been previously assigned a 
register and that an offset literal was 
generated for the value resulting from the 
addition of the offset portion of the array 
displacement to the displacement of the 
subscripted variable address. The sub
script intermediate text output associated 
with an XOP adjective code is shown in 
Figure 40. 

AOP (Arithmetic Operator Without Subscript) 
Adjective Code: This code indicates that 
the subscript expression has previously 
been assigned a register. The subscript 
intermediate text output associated with an 
AOP adjective code is shown in Figure 41. 

r-----------------~--------T-------------, 
I adjective code I mode/type I pointer I 
I field I field I field I 
~-----------------+----T----+-------------~ 
I XCF I N I W la(generated I 
\ I I I literal) I 
~-----------------L----~----+-------------~ 
I p(subscript) la(Cl*L) I 
~---------------------------+-------------~ 
I a(C2*Ol*L) la(C3*D1*D2*L)I 
~-----------------T----T----+-------------~ 
I OP I R I X la(variable) I 
~-----------------+----~----+-------------~ 
11 byte 11 byte 12 bytes I 
~-----------------L---------~-------------~ 
IXOP contains an adjective code designat-I 
ling the form of the subscript intermedi-I 
late text. I 
I I 
la(generated literal) contains the addressl 
lof the offset literal generated by Phasel 
1 20. I 

I 1 
I Note: All other entries are as defined inl 
IFigures 38 and 39. 1 L _________________________________________ J 

Figure 40. Subscript Intermediate Text 
Output from Phase 20 -- XOP 
Adjective Code 

r-----------------T---------T-------------, 
I adjective code 1 mode/type 1 pointer 1 
I field 1 field 1 field 1 
~-----------------+----T----+-------------~ 
I AOP I 0 I B loffset I 
.-----------------+----+----+-------------~ 
I OP I R 1 X la(variable) I 
~-----------------+----~----+-------------~ 
11 byte I 1 byte \2 bytes I 
~-----------------~---------~-------------~ 
AOP contains an adjective code designat-I 
ing the fora. of subscript intermediate 1 
text. I 

I 
o contains a zero value. I 

I 
B contains an indicator. A hexadecimal 01 
indicates that the actual offset is inl 
the offset field. A hexadecimal F indi-I 
cates that the address of the generated I 
offset literal appears in the offsetl 
field. I 

1 
Note: All other entries are as in Figures I 

\38 and 39. I L _________________________________________ J 

Figure 41. Subscript Intermediate Text 
Output from Phase 20 -- AOP 
Adjective Code 

Appendix 0: Intermediate Text 103 



APPENDIX E: ARRAY DISPLACEMENT COMPUTATION 

Array displacement is the distance 
between the first element in an array and 
a specified element to be referenced from 
the array. To increase compilation effi
ciency, the array displacement is divided 
into portions and com~uted during differ
ent ~hases. To tie these separate compu
tations into one coordinated presentation, 
the method of array displacement computa
tion is developed in the following text. 

Before discussing the actual computa
tion, it is desirable to understand how an 
element is referenced in a 1-, 2-, and 
3-dimensional array. 

ONE DIMENSION 

Assume a 1-dimensional array of five 
elements, expressed as A(5). To reference 
any given element in this array, the only 
factor to be considered is the length of 
each element. The third element, for 
example, is two element lengths from the 
beginning of the array. 

TWO DIMENSIONS 

For a 2-dimensional array, A(3,2), an 
element can no longer be thought of as a 
single array element. Instead, each ele
ment in a 2-dimensional array consists of 
the number of array elements designated by 
the first number in the subscript expres
sion used to dimension the array. For 
reference, an element in a 2-dimensional 
array will be called a dimension part. 
For example, in the array of A(3,2) : 

A(l,l) A(2,1) A(3,1)-, - Dimension Part 
r------------------·------J 

L>A(1,2) A(2,2) A(3,2) - Dimension Part 

the first dimension part consists of 
A(l,l), A(2~1), and A(3,1). Note that the 
number of elements in each dimension part 
is the same as the first number (3) in the 
subscript expression used to dimension 
array A. 

Dimension parts are consistent in 
length. Length is determined by multiply-

104 

ing the number of elements in a dimension 
part by the array element length. The 
resulting value is considered a dimension 
factor for the following discussion. (If 
the element length in array A is 4, the 
dimension factor is 3 times 4, or 12.) 
The dimension factor plays a significant 
role in referencing a specific element in 
a 2-diroensional array. 

Before discussing how a specified ele
ment is refe~enced, the hexadecimal number 
scheme used to address an array element 
must be considered. The first digit of 
the hexadecimal number scheme (as used in 
the compiler) is zero. The 16 hexadecimal 
digits are: 

0,1,2,3,4,5,6,7,8,9,A,B,C,D,E, and F. 

consider that the element A(1,2) is to 
be referenced from the array dimensioned 
as A(3,2). Observation shows one dimen
sion fart must be bypassed in order to 
reference the specified element. The com
putation to reference this element 
requires the values in the subscript 
expression (1,2). Each number must be 
decremented by 1 to compensate for the 
zero-addressing scheme used by the compil
er. This leaves an expression of (0,1). 
The second number (1) dictates the number 
of dirrension parts to be bypassed in order 
to arrive at the dimension part in which 
the Sfecified element is located. Once 
this dimension part is found, the first 
number (0) indicates the number of ele
ments in that dimension part that must be 
bypassed to reference the specified ele
ment. 

THREE DIMENSIONS 

The same reasoning can be projected 
into a 3-dimensional array,. For a 
3-dirnensional array, A(3,2,3), an element 
can neither be considered a single array 
element, nor thought of as a dimension 
part. Each element in a 3-dimensional 
array consists of the number of dimension 
parts designated by the second number in 
the subscript expression used to dimension 
the array. For reference, therefore, an 
element in a 3-dimensional array will be 
called a dimension section. For example, 
in the array A(3,2,3): 



Dimension Section 
A(l,l,l) A(2,1,1) A(3,1,1), 

I 
r-----------------------------J 

L)A(1,2,1) A(2,2,1) A(3,2,1), 
I 

r-----------------------------J 
I 
IDimension Section 
L)A(1,1,2) A(2,1,2) A(3,1,2), 

I 
r-----------------------------J 

L)A(1,2,2) A(2,2,2) A(3,2,2), 
I 

r-----------------------------J 

I 

- Dim.Part 

- Dim.Part 

- Dim.Part 

- Dim.Part 

IDimension Section 
L>A(1,1,3) A(2,1,3) A(3,1,3), - Dim.Part 

I 
r-----------------------------J 

L>A(1,2,3) A{2,2,3) A(3,2,3) - Dim.Part 

the first dimension section consists of 
the dimension part beginning with A 
(1,1,1) and the dimension part beginning 
with A(1,2,1). In this example, we have 
three dimension sections, as specified by 
the third number in the subscript 
expression used to dimension the array. 

Again, the length of the dimension 
sections is consistent. The length, in 
this case, is deter~ined by ITultiplying 
the number of elements in a dimension part 
by the number of dimension parts by the 
array element length. The resulting value 
is considered a dimension multiplier for 
the following discussion. (If the element 
length in array A is 4, the dimension 
multiplier is 3 times 2 times 4 or 24.) 

Consider that the element A (2,2,3) is 
to be referenced from the array dimen
sioned as A (3,2,3). Observation shows 
two dimension sections, one dimension 

part, and one array element must be 
bypassed in order to obtain the specified 
elerrent. The computation to reference 
this elerr:ent requires the values in the 
subscript expression (2,2,3). Each number 
must te decremented by 1 to compensate for 
the zero-addressing scheme used by the 
compiler. This leaves an expression of 
(1,1,2). The third number (2) indicates 
the number of dimension sections to bypass 
in order to arrive at the dimension sec
tion in which the specified element is 
located. The second number (1) indicates 
the number of dimension parts, within the 
referenced dimension section, that must be 
bypassed to arrive at the dimension part 
in which the specified element is located. 
Once this dirrension part is found, the 
first nu~ber (1) indicates the number of 
elements in that dimension part that must 
be typassed to reference the specified 
element. The preceding example is illus
trated in Figure 42. 

This concept of how a specified element 
is referenced from an array is generalized 
in the following text. 

General Subscript Form 

The general subscript form 
(Cl*Vl+Jl,C2*V2+J2,C3*V3+J3) refers to 
some array, A, with dimensions (Dl, D2, 
D3). The required nurrber of elements is 
specified by (Cl*Vl+Jl); (C2*V2+J2) *Dl; 
and (C3*V3+J3) *Dl*D2, representing the 
first, second, and third subscript param
eters multiplied by the pertinent dimen
sion information for each parameter. 
Therefore, the required number of elements 
for the general subscript form is: 

(Cl*Vl+Jl)+(C2*V2+J2)*Dl+(C3*V3+J3)*Dl*D2 

r---------------------------------------------------------------------------------------, 
A(2,2,3) 

I 
I Zero-addressing adjustment 
V 

A(1,1,2) 
I I I 

I : t ___ > 2 dimension sections\ 
I I Must be bypassed to 
I l _____ > 1 dimension part 
I obtain specified element 
l _______ > 1 array element 

---------------------------------------------------------------------------------------
Figure 42. Referencing a Specified Element in Array 

Appendix E: Array Displacement Computation 105 



Array Displacement 

The array displacement for a subscript 
expression, specifically stated, is the 
required number of array elements multi
plied by the array element length. There
fore, the array dis~laceroent is: 

[(Cl*Vl+Jl)+(C2*V2+J2)*Dl+ 

(C3*V3+J3)*Dl*02)1*L 

Because of the zero-addressing scheme, the 
displacement is: 

(Cl*Vl+Jl-l)*L+(C2*V2+J2-1)*Dl*L+ 
(C3*V3+J3-1)*Dl*D2*L 

This expression can be rearranged as: 

(Cl*Vl*L+C2*V2*Ol*L+C3*V3*Dl*D2*L)+ 
[(Jl-l)*L+(J2-1)*Dl*L+(J3-1)*Dl*D2*L)] 

The first portion of the array dis
placement is referred to as the CDL 
(constant, dimension, length) portion and 
is derived from: 

Cl*Vl*L+C2*V2+D1*L+C3*V3*D1*D2*L 

Vi, V2, and V3 are the variables of the 
expression and cannot be computed until 
the execution of the object module. This 
leaves the following components, which 
constitute the CDL ~ortion of the dis
placement: 

Cl*L is the first component, 
C2*Dl*L is the second component, and 
C3*Dl*D2*L is the third component. 

The second ~ortion of the array dis
placement: 

(Jl-1)*L+(J2-1)*Dl*L+(J3-1)*Dl*D2*L 

106 

is known as the offset portion and is 
calculated by Phase 10E. The offset is 
calculated using the following formulas 
for 1-, 2-, and 3- dimensional arrays. 

OFFSET= [Jl-1] *Length 
i-dimensional 

OFFSET=[(Jl-l)+(J2-1)*D11 
*Length 2-dimensional 

OFFSET=[(Jl-l)+(J2-1)*Dl 
+(J3-1)*Ol*021*Length 3-dimensional 

This calculation is performed 
result is entered in the offset 
the intermediate text entry for 
script. Refer to Appendix D 
intermediate text format. 

and the 
field of 
that sub
for the 

The COL corrponents are calculated dur
ing Phase 20. If the CDL component is a 
power of 2, that power replaces the offset 
field in the intermediate text entry. If 
the CDL component is not a power of 2, a 
literal is formed and assigned an addresB 
(by Phase 20). The address of the literal 
is then entered in the offset field of the 
intermediate text entry. Refer to Appen
dix D for the intermediate text form and 
content. 

Phase 25 corrbines the COL components, 
the variables, and the offset to produce 
the array displacement. The procedure is 
as follows: the first component of the COL 
multiplied by the first variable of the 
subscript expression (Cl*L)*Vl; plus the 
second component of the CDL multiplied by 
the second variable of the subscript 
expression (C2*Dl*L)*V2, plus the third 
component of the CDL multiplied by the 
third variable of the subscript expression 
(C3*Dl*02*L)*V3; plus the offset: 

(Jl-1)*L+(J2-1)*Ol*L+(J3-1}*Dl*02*L. 



The following tables are used by the 
object module to execute the instructions 
generated by the compiler: 

• Branch list tatle for referenced 
statement numbers 

• Branch list table for SF expansions 
and DO staterr.ents 

• Argument list table for subprogram and 
SF calls 

• Base value table 

The following discussions describe the 
use and format of each table. 

BRANCH LIST TABLE FOR REFERENCED STATEMENT 
NUMBERS 

Phase 12 allocates storage for the 
branch list table for referenced statement 
numbers and assigns a relative position 
(relative to the start of the branch 
table) to each executable statement that 
is referenced by other statements. Phase 
25 inserts the relative addresses, for 
these statements, into the positions dic
tated by Phase 12. The table is used, at 
object time, by the instructions generated 
to branch to executable statements. 

Each entry in the table is the address 
of a referenced staterrent number. The 
format of the branch list table for ref
erenced statement numbers is illustrated 
in Figure 43. 

r-----------------------------------------, 
I address of first referenced statement I 
I number I 
~-----------------------------------------~ I address of second referenced statement I 
I number I 
~-----------------------------------------~ 
\ \ 
I I 
I I 
~-----------------------------------------~ 
laddress of last referenced statement num-\ 
Iber I L _________________________________________ J 

4 bytes 

Figure 43. Format of Branch List Table for 
Referenced statement Numters 

APPENDIX F: TABLES USED BY THE OBJECT MODULE 

BRANCH LIST TABLE FOR SF EXPANSIONS AND DO 
STATEMENTS 

Phase 20 allocates storage for the 
branch list table for SF (statement 
function) expansions and DO statements. 
During Phase 25 processing, the relative 
addresses for the first executable instruc
tions in the SF expansions and DO loops are 
inserted into locations relative to the 
start of the branch table. The locations 
for the SF expansions were determined by 
Phase 14: the locations for the DO loops 
are determined by Phase 25. The table is 
used, at object time, either by the 
instructions generated to reference SF 
expansions or by the instructions generated 
to control the iteration of DO loops. 

Each entry in the table is either the 
address of the first instruction in an SF 
expansion or the address of the second 
instruction in a DO loop. (The first 
instruction of the DO loop initializes the 
DO counter.) The format and organization 
of the branch list table for SF expansions 
and DO statements is illustrated in Figure 
44. 

r-----------------------------------------, 
laddress of first instruction in SF expan-I 
Ision 1 I 
~-----------------------------------------~ 
I address of first instruction in SF expan-I 
ISion 2 I 
.-----------------------------------------~ 
I I 
I I 
\ I 
.-----------------------------------------~ 
laddress of first instruction in SF expan-I 
Ision N I 
~-----------------------------------------~ 
I address of second instruction in DO loopl 
11 I 
~-----------------------------------------i 
laddress of second instruction in DO loopi 
12 I 
.-----------------------------------------i 
\ I 
I I 
I I 
.-----------------------------------------i I address of second instruction in DO loopi 
1M I L _________________________________________ J 

4 bytes 

Figure 44. Format of Branch List Table for 
SF Expansions and DO Loops 

Appendix F: Tables Used by the Object Module 107 



All SF definitions must appear prior to 
the executable statements (this includes DO 
statements) in a source module. Therefore, 
Phase 25 encounters all the SF adjective 
codes prior to the first DO statement 
adjective code. This accounts for the 
placement of all SF expansion addresses 
into the branch table before the first DO 
loop address. 

ARGUMENT LIST TABLE FOR SUBPROGRAM AND SF 
CALLS 

Phase 20 allocates storage for the argu
ment list table for the arguments of sub
program and SF calls. During Phase 20 
processing, the relative addresses of the 

r-----------------------------------------, 
Ifirst argument of first subprogram or SFI 
Ireference encountered I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------~ 
Ilast argument of first subprogram or SFI 
Ireference encountered I 
~-----------------------------------------~ 
Ifirst argument of second subprogram or SFI 
Ireference encountered I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------~ 
Ilast argument of second subprogram or SFI 
Ireference encountered I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------~ 
Ifirst argument of last subprogram or SFI 
Ireference encountered I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------~ 
Ilast argument of last subprogram or SFI 
Ireference encountered I L _________________________________________ J 

4 bytes 

Figure 45. Format of Argument List Table 
for Subprogram and SF Calls 

108 

above arguments are inserted into the argu
ment list table. The starting address of 
the first argurrent of each argument list is 
passed as part of the intermediate text to 
Phase 25 (the total nurrber of SFs is passed 
in the communication area). 

Each entry in the argument list table is 
either the address of an argument used in a 
subFrogram or the address of an argument 
used in an SF. Entries are made in the 
table as Phase 20 encounters each subpro
gram or SF reference. The format and 
organization of the argument list table is 
illustrated in Figure 45. 

BASE VALUE TABLE 

The base value table is generated by the 
various phases of the compiler as base 
registers are required by the object cod
ing. The table is assembled in its final 
form by Phase 25. The compiler-generated 
instructions that load base registers, at 
object time, use the base value table in 
order to obtain the proper base register 
values. 

Figure 46 illustrates the format and 
organization of the base value table. 

r-----------------------------------------, 
Ivalue placed in the first base registerl 
lused to obtain data in COMMON I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------i 
Ivalue placed in the last base registerl 
lused to obtain data in COMMON I 
~-----------------------------------------i 
Ivalue placed in the first base registerl 
lused to obtain data in the oeject module I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------i 
Ivalue placed in the last base register I 
lused to obtain data in the object module I L _________________________________________ J 

4 bytes 

Figure 46. Format of Base Value Table 



The object module, compiled frem the 
FORTRAN source module, must be first pro
cessed by the linkage editor prior to 
execution on the IBM System/360. The lin
kage editor must combine certain FORTRAN 
library subprograms with the object module 
to ferm an executable load module. They 
are: 

• IHCFCOME (Object-time 
statement processor). 

I/O source 

• IHCFIOSH (Object-time FORTRAN I/O 
data management interface). 

• IHCIBERR (Object-time source statement 
error processor). 

IHCFCOME 

IHCFCOME, a member of the FORTRAN system 
library (SYS1.FORTLIB), performs object
time implementation of the following source 
statements: 

• READ and WRITE. 

• BACKSPACE, REWIND, and END FILE (I/O 
device manipulation). 

• STOP and PAUSE (write to operator). 

In addition, IHCFCOME processes object
time errors detected by various FORTRAN 
library subprograms, processes arithmetic
type program interruptions, and terminates 
load-module execution. (The load module is 
produced by the linkage editor, and 
contains the object module produced by the 
compiler, IHCFCOME, IHCFIOSH, IHCIBERR, and 
any required subprograrrs.) 

All linkages from the load module to 
IHCFCOME are compiler generated. Each time 
one of the above-mentioned source state
ments is encountered during compilation, an 
appropriate calling sequence to IHCFCOME is 
generated and is included as part of the 
load module. At object-time, these calls 
are executed, and control is passed to 
IHCFCOME to perform the specified opera
tion. 

The routines of IHCFCOME are divided 
into the following categories: 

APPENDIX G: OBJECT-TIME LIBRARY SUBPROGRAMS 

• READ/WRITE routines. 
• I/O device manipulation routines. 
• Write-to-oFerator routines. 
• utility routines. 

Charts 13, 14, and 15 illustrate the 
overall logic and the relationship among 
the routines of IHCFCOME. Table 26, the 
routine directory, lists the routines and 
their functions. 

Note: IHCFCOME itself does not perform the 
actual reading from or writing onto data 
sets, or I/O device manipulation. It sub
mits requests for such operations to an I/O 
interface module IHCFIOSH (that is, FIOCS~) 
by means of an implied external reference. 
IHCFIOSH, in turn, interprets the requests 
and submits thew to the appropriate BSAM 
(basic sequential access method) routines 
for execution. 

READ/WRITE Routines 

For the implementation of READ and WRITE 
statements, IHCFCOME consists of the fol
lowing three sections: 

• An opening section, which initializes 
data sets for reading or writing. 

• An I/O list section, which transfers 
data from an input buffer to the I/O 
list items or from the I/O list items 
to an output buffer. 

• A closing section, which terminates the 
I/O operation. 

Within the discussion of each section, a 
READ/WRITE operation is treated in one of 
two ways: 

• As a READ/WRITE operation requiring a 
format. 

• As a READ/WRITE operation not requiring 
a format. 

OPENING SECTION: The compiler generates a 
calling sequence to one of four entry 
points in the opening section of IHCFCOME 
each tiRe it encounters a READ or WRITE 
statement in the FORTRAN source module. 
These entry points correspond to the opera
tions of READ or WRITE, requiring or not 
requiring a format. 

Appendix G: Object-Time Library Subprograms 109 



READ/WRITE Requiring a Format: If the 
operation is a READ requiring a format, the 
opening section passes control to IHCFIOSH 
to initialize the unit number specified in 
the READ statement for reading. (The unit 
number is passed, as an argument, to the 
opening section via the calling sequence.) 
IHCFIOSH: (1) opens the data control block 
(via the OPEN macro-instruction) for the 
specified data set if it was not previously 
opened, and (2) reads a record (via the 
READ macro-instruction) containing data for 
the I/O list items into an I/O buffer that 
was obtained when the data control block 
was opened. IHCFIOSH then returns control 
to the opening section of IHCFCOME. The 
address of the buffer and the length of the 
record read are passed to IHCFCOME by 
IHCFIOSH. These values are saved for the 
I/O list section of IHCFCOME. The opening 
section then passes control to a portion of 
IHCFCOME that scans the FORMAT statement 
specified in the READ statement. (The 
address of the FORMAT statement is passed, 
as an argument, to the opening section via 
the calling sequence,.) The first format 
code (either a control or conversion type) 
is then obtained. 

For control type codes (e.g., an H 
format code or a grouF count), an I/O list 
item is not required. Control passes to 
the routine associated with the control 
code under consideration to perform the 
indicated operation. control then returns 
to the scan portion, and the next format 
code is obtained. This process is repeated 
until either the end of the FORMAT state
ment or the first conversion code is 
encountered. 

For conversion type codes (e.g., an I 
format code), an I/O list item is required. 
Upon the first encounter of a conversion 
code in the scan of the FORMAT statement, 
the opening section completes its process
ing of a READ requiring a format and 
returns control to the next sequential 
instruction within the load module. 

The action taken by IHCFCOME when the 
various format codes are encountered is 
illustrated in Table 21. 

If the operation is a WRITE requiring a 
format, the opening section passes control 
to IHCFIOSH to initialize the unit number 
specified in the WRITE statement for writ
ing. (The unit number is passed, as an 
argument, to the opening section via the 
calling sequence.) IHCFIOSH opens the data 
control block (via the OPEN 
macro-instruction) for the specified data 
set if it was not previously opened. 
IHCFIOSH then returns control to the open-

110 

ing section of IHCFCOME. The address of an 
I/O buffer that was oetained when the data 
control block was oFened is saved for the 
I/O list section of IHCFCOME. Subsequent 
opening section Frocessing, starting with 
the scan of the FORMAT statement, is the 
same as that described for a READ statement 
requiring a format. 

READ/WRITE Not Requirinq a Format: If the 
operation is a READ or WRITE not requiring 
a format, the oFening section processing 
exceFt for the scan of the FORMAT statement 
is the same as that described for a READ or 
WRITE requiring a forroat. (For a READ or 
WRITE not requiring a format, there is no 
FORMAT statement.) 

I/O LIST SECTION: The compiler generates a 
calling sequence to one of four entry 
points in the I/O list section of IHCFCOME 
each time it encounters an I/O list item 
associated with the READ or WRITE statement 
under consideration. These entry points 
correspond to a variable or an array list 
item for a READ and WRITE, requiring or not 
requiring a format. The I/O list section 
perforros the actual transfer of data from: 
(1) an input buffer to the list items if a 
READ statement is being implemented, or (2) 
the list items to an output buffer if a 
WRITE statement is being implemented. In 
the case of a READ or WRITE statement 
requiring a format, the data must be con
verted before it is transferred. 

READ/WRITE Requiring a Format: In process
ing a list iterr for a READ requiring a 
format, the I/O list section passes control 
to the conversion routine associated with 
the conversion code for the list item. 
(The aFpropriate conversion routine is det
ermined by the Fortion of IHCFCOME that 
scans the FORMAT statement associated with 
the READ statement. The selection of the 
conversion routine de~ends on the conver
sion code of the list item being 
processed.) The conversion routine obtains 
data from an input buffer and converts the 
data to the form dictated by the conversion 
code. The converted data is then moved 
into the main storage address assigned to 
the list item. 

In general, after a conversion routine 
has processed a list item, the I/O list 
section determines if that routine can be 
applied to the next list item or array 
element (if an array is being processed). 
The I/O list section examines a field count 
that indicates the number of times a parti
cular conversion code is to be applied to 
successive list items or successive ele
ments of an array. 



Table 21. IHCFCOME FORMAT Code Processing 
r------------T--------------T----------T------------------------------------------------, 
I I I I I 
IFOR~AT Code IDescription IType Icorresponding Action Upcn Cede by IHCFCOME I , , , , , 
~------------+--------------+----------+------------------------------------------------~ 

n( 

n 

nP 

Tn 

nX 

beginning of ,control Save location for possible repetition of the 
statement I format codes: clear counters. 

group count 

field count 

I 
I 
I control 
I 
I 
I 
I 
I control 
I 
I 
I 

scaling factor control 

coluron reset control 

skip or blank control 

Save n and location 
~ossible rere~i~ion 
group. 

of left parenthesis for 
of ~he format codes in the 

Save n fer 
follows. 

repetition of format code which 

Save n for use by F, E, and D conversions. 

Reset current position within record to nth 
column or byte. 

Skip n characters of an input record or insert n 
blanks in an output record. 

'text' or nH literal data control Move n characters froIT an in~ut record to the 
FORlf~T statement, er n characters from the 
FORMAT stateroent to an output record. 

Fw.d conversions conversion Exit to the load module to return control tol 
Ew.d subroutine FIOLF or FIOAF. USing information I 
Dw.d passed to the I/O list section, the address andl 
Iw length of the current list item are obtained I 
Aw and passed to the proper conversion routine I 

together with the current position in the 1/01 
buffer, the scale factor, and the values of w 
and d. Upon return from the conversion routine 
the current field count is tested. If it is 
greater than 1, another exit is made to the load 

Imodule to ottain the address of the next list 
litem. 
I 
I 

group end control ITest group count. If greater than 1, repeat 
Iformat codes in group: otherwise continue to 
I process FORMAT statement from current position. , 
I 

1/ record end control I Input or output one record via IHCFIOSH and 
I IREAD/WRITE macro-instruction. 
I I 
I I 
I end of control IIf no I/O list items remain to be transmitted, 
I Istateroent Ireturn control to the load module to link to the 
I I I closing section; if list items remain, input or 
I I loutput one record using IHCFIOSH and READ/WRITE 
I I I macro-instruction. Repeat format codes from 
I I Ilast left parenthesis. L ____________ ~ ______________ i __________ i ________________________________________________ J 

Appendix G: Object-Time Library Subprograms 111 



If the conversion code is to be repeated 
and if the previous list item was a vari
able, the I/O list section returns control 
to the load module. The load module again 
branches to the I/O list section and pass
es, as an argument, the main storage 
address assigned to the next list itew. 

The conversion routines that processed 
the previous list item is then given con
trol. This procedure is repeated until 
either the field count is exhausted or the 
input data for the READ statement is 
exhausted. 

If the conversion code is to be repeated 
and if an array is being processed, the I/O 
list section computes the main storage 
address of the next element in the array. 
The conversion routine that processed the 
previous element is then given control. 
This procedure is repeated until either all 
the array elements associated with a speci
fic conversion code are processed or the 
input data for the READ statement is 
exhausted. 

If the conversion code is not to be 
repeated, control is passed to the scan 
portion of IHCFCOME to continue the scan of 
the FORMAT statement. If the scan portion 
determines that a group of conversion codes 
is to be repeated, the conversion routines 
corresponding to those codes are applied to 
the next portion of the input data. This 
procedure is repeated until either the 
group count is exhausted or the input data 
for the READ statement is exhausted. 

If a group of conversion codes is not to 
be repeated and if the end of the FORMAT 
statement is not encountered, the next 
format code is obtained. For a control 
type code., control is passed to the asso
ciated control routine to perform the indi
cated operation. For a conversion type 
code, control is returned to the load 
module if the previous list item was a 
variable. The load module again branches 
to the I/O list section and passes, as an 
argument, the main storage address assigned 
to the next list item. Control is then 
passed to the conversion routine associated 
with the new conversion code. The conver
sion routine then processes the data for 
this list item. If the data that was just 
converted was placed into an element of an 
array and if the entire array has not been 
filled. the I/O list section computes the 
main storage address of the next element in 
the array and passes control to the conver
sion routine associated with the new con
version code. The conversion routine then 

112 

processes the data for this array element. 
Subsequent I/O list processing for a READ 
requ~r~ng a format proceeds at the point 
where the field count is examined. 

If the scan portion encounters the end 
of the FORMAT statement and if all the list 
items are satisfied, control returns to the 
next sequential instruction within the load 
module. This instruction (part of the 
calling sequence to IHCFCOME) branches to 
the closing section. If all the list items 
are not satisfied, control is passed to 
IHCFIOSH to read (via the READ 
macro-instruction) the next input record. 
The conversion codes starting from the last 
left farenthesis are then repeated for the 
remaining list items. 

If the operation is a WRITE requ~r~ng a 
format, the I/O list section processing is 
similar to that for a READ requiring a 
format. The main difference is that the 
conversion routines obtain data from the 
main storage addresses aSSigned to the list 
items rather than from an input buffer. 
The converted data is then transferred to 
an output buffer. If all the list items 
have not been converted and transferred 
prior to the encounter of the end-of-the 
FOR~AT statement, control is passed to 
IHCFIOSH. IHCFIOSH writes (via the WRITE 
macro-instruction) the contents of the cur
rent output buffer onto the output data 
set. The conversion codes starting from 
the last left parenthesis are then repeated 
for the remaining list items. 

READ/WRITE Not Requiring a Format: In 
processing a list item for a READ not 
requiring a format, the I/O list section 
must know the main storage address assigned 
to the list itero and the size of the list 
itere. Their values are passed, as argu
ments, via the calling sequence to the I/O 
list section. The list item may be either 
a variable or an array. In either case, 
the number of bytes specified by the size 
of the list item is moved from the input 
buffer to the rrain storage address assigned 
to the list item. The I/O list section 
then returns control to the load module. 
The load module again branches to the I/O 
list section and passes, as argureents, the 
main storage address aSSigned to the next 
list item and the size of the list item. 
The I/O list section moves the number of 
bytes specified by the size of the list 
item into the main storage address assigned 
to this list item. This procedure is 
repeated either until all the list items 
are satisfied or until the input data is 
exhausted. Control is then returned to the 
load rrodule. 



If the operation is a WRITE not requir
ing a format, the 1/0 list section process
ing is similar to that described for a READ 
not requiring a format. The ~ain differ
ence is that the data is obtained from the 
main storage addresses assigned to the list 
items and is then moved to an output 
buffer. 

CLOSING SECTION: The compiler generates a 
calling sequence to one ef two entry points 
in the closing section of IHCFCOME each 
time it encounters the end of a READ or 
WRITE statement in the FORTRAN source 
module. The entry points correspond to the 
operations of READ and WRITE, requiring or 
not requiring a format. 

READlwRITE Requiring a Format: If the 
operation is a READ requiring a format, the 
closing section simply returns control to 
the load module to continue load ~odule 
execution. If the operation is a WRITE 
requiring a format, the closing section 
branches to IHCFIOSH. IHCFIOSH writes (via 
the WRITE macro-instruction) the contents 
of the current 1/0 buffer (the final 
record) onto the out~ut data set. IHCFIOSH 
then returns contrel to the closing sec
tion. The closing section, in turn, 
returns control to the load module to 
continue load module execution. 

READ/WRITE Not Requiring a Format: If the 
operation is a READ not requiring a format, 
the closing section branches to IHCFIOSH. 
IHCFIOSH reads (via the READ 
macro-instruction) successive records until 
the end of the logical record being read is 
encountered. (A FORTRAN logical record 
consists of all the records necessary to 
contain the 1/0 list items for a WRITE 
statement not requiring a format.) When 
IHCFIOSH recognizes the end-of-Iogical
record indicator, control is returned to 
the closing sectien~ The closing section, 
in turn, returns control to the load module 
to continue load module execution. 

If the operation is a WRITE not requir
ing a format, the closing section inserts: 
(1) the record count (i.e., the numter of 
records in the logical record) into the 
control word of the 1/0 buffer to be 
written, and (2) an end-of-Iogical-record 
indicator into the last record of the 1/0 
buffer being written. The closing section 
then branches to IHCFIOSH. IHCFIOSH writes 
(via the WRITE macro-instruction) the con
tents of this 1/0 buffer onto the output 
data set. IHCFIOSH then returns control to 
the closing section. The closing section, 
in turn, returns control to the load module 
to continue load module exectuion. 

Examples of IHCFCOIvlE READ/\-:'RITE statement 
Processing 

The following examples illustrate the 
opening section, IIC list section, and 
closing sectien Frocessing performed by 
IHCFCCME for the operations of READ and 
WRITE, requiring or not requiring a format. 

READ REQUIRING A FOR~mT: 

performed by IHCFCOME for 
READ statement and FORMAT 
illustrated in Table 22. 

The processing 
the following 
statement is 

READ (1,2) A,B,C 
2 FORMAT (3F12.6) 

Table 22. IRCFCOME Processing for a READ 
Requiring a Format 

r-------~--------------------------------, 
10pening 11. Receives control from load I 
ISection I rrodule and branches tol 
I I IHCFIOSH to initialize datal 
I I set for reading. I 
I I I 
I 12. Passes control to scan por-\ 
I \ tion of IHCFCOME. I 
I I I 
I 13 • Returns control to loadl 
I I rrodule. I 
~--------+--------------------------------~ 
1/0 Listll. Receives control from load 
Section I rrodule, converts input data 

I for A, and moves converted 
I data to A. 
I 
12. Returns control to load 
I rrodule. 

3. Receives control from load 
rrodule, converts input data 
for B, and moves converted 
data to B. 

4. Returns control 
rrodule. 

to load 

5. 

6. 

Receives control from load 
module, converts input data 
for C, and moves converted 
data to C. 

Returns control to load 
module. 

~--------+--------------------------------~ 
IClosing 11. Receives control from load I 
ISection I rrodule and closes out 1/01 
I I operation. I 
I I I 
I 12 • Returns control to loadl 
I I module to continue loadl 
I I rrodule execution. \ l ________ ~ ________________________________ J 

Appendix G: oeject-Tiroe Library Subprograms 113 



WRITE REQUIRING A FORMAT: The processing 
performed by IHCFCOME for the following 
WRITE statement and FORMAT statement is 
illustrated in Table 23. 

WRITE (3,2) (0 (I), 1=1, 3) 
2 FORMAT (3F12.6) 

Table 23. IHCFCOME Processing for a WRITE 
Requiring a Format 

r--------T--------------------------------, 
10pening 11. Receives control from load I 
Isection I module and branches tol 
I I IHCFIOSH to initialize datal 
1 I set for writing. 1 
1 1 1 
1 12. Passes control to scan por-I 
1 1 tion of IHCFCOME. I 
1 I I 
I 13. Returns control to loadl 
I I wodule. I 
~--------+--------------------------------~ 
I/O List 1. Receives control from load 
section module, converts D(l), and 

moves D(l) to output buffer. 

2. Returns 
module. 

control to load 

3. Receives control from load 
module, converts 0(2), and 
moves D(2) to output buffer. 

4. Returns 
module. 

control to load 

5. Receives control from load 
module, converts 0(3), and 
moves D(3) to output buffer. 

6. Returns control to load 
module. 

~--------+--------------------------------~ 
IClosing 11. Receives control from load I 
Isection I module and branches tol 
1 I IHCFIOSH to write contents I 
I I of output buffer. I 
1 1 I 
I 12. Returns control to loadl 
1 I module to continue loadl 
I I module execution. I L ________ i ________________________________ J 

114 

READ NOT REQUIRING A FORMAT: The process
ing ~erformed by IHCFCOME for the following 
READ statement is illustrated in Table 24. 

READ (5) X,Y,Z 

Table 24. IHCFCOME Processing for a READ 
Not Req~iring a Format 

r--------T--------------------------------, 
10pening 11. Receives control from load I 
ISection I rrodule and cranches tol 
I I IHCFIOSH to initialize datal 
I 1 set for reading. I 
I I I 
I 12. Returns control to loadl 
1 I rrodule. 1 
1 I I 
.--------+--------------------------------~ 
I/O List 1. Receives control from load 
Section module and moves input data 

to x. 
2. Returns control to load 

nodule. 

3. Receives control from load 
rrodule and moves input data 
to Y. 

4. Returns control to load 
nodule. 

s. Receives control from load 
nodule and moves input data 
to z. 

6. Returns control to load 
rrodule. 

~--------+--------------------------------~ 
IClosing 11. Receives control from load I 
ISection I rrodule and branches tol 
I I IHCFIOSH to read successivel 
I I records until the end-of-I 
I I logical-record indicator isl 
I I encountered. I 
1 I 1 
I 12. Returns control to loadl 
I 1 reodule to continue loadl 
I I n,od ule execution. I L ________ i ________________________________ J 



WRITE NOT REQUIRING A FORMAT: The process
ing performed by IHCFCOME for the following 
WRITE statement is illustrated in Table 25. 

WRITE (6) (W(J),J=1,10) 

Table 25. IHCFCOME Processing for a WRITE 
Not Requiring a Format 

r--------T--------------------------------, 
10pening 11. Receives control from load I 
ISection I module and branches tol 
I I IHCFIOSH to initialize datal 
I I for writing. I 
I I I 
I 12. Returns control to loadl 
I I module. 1 
~--------+--------------------------------~ 
I/O List 1. Receives control from load 
Section module and moves W(l} to 

output buffer. 

2. Returns 
module. 

control 

3. Receives control 
module and moves 
output buffer. 

4. Returns 
module. 

control 

to load 

from load 
W(2) to 

to load 

t 
I 
I 
I 

5. Receives control from loadl 
module and moves W(lO) tol 
output buffer. I 

I 
6. Returns control to loadl 

module. I 
~--------+--------------------------------~ 
IClosing 11. Receives control from load I 
ISection I module and branches tol 
I I IHCFIOSH to write contents I 
I I of output buffer. I 
I I I 
I 12. Returns control to loadl 
1 I module to continue loadl 
1 I module execution. I L ________ ~ ________________________________ J 

I/O Device Manipulation Routines 

The I/O device manipulation routines of 
IHCFCOME implement the BACKSPACE, REWIND, 
and END FILE source statements. These 
routines receive control frore within the 
load module via calling sequences that are 
generated by the cempiler when these state
ments are encountered. 

The implementation of REWIND and END 
FILE statements 1S straightforward. The 
I/O device manipulation routines submit the 
aFproFriate control request to IHCFIOSH, 
the I/O interface module. After the 
request is executed, centrol is returned to 
the calling routine within the load module. 

The BACKSPACE statement is processed in 
a similar fashion. However, before control 
is returned to the calling routine, it is 
determined whether the record backspaced 
over is an elerrent of a data set that does 
not require a format. If the record is an 
element of such a data set, that record is 
read into an I/O buffer and the record 
count is obtained from its control word. 
Backspace control requests, equal in number 
to the record count, are then issued and 
control is returned to the calling routine. 
If the record is not an element of such a 
data set, control is returned directly to 
the calling routine. 

Write-to-Operator Routines 

The write-to-operator routines of 
IHCFCCME implement the STOP and PAUSE 
source statements. These routines receive 
control from within the load module via 
calling sequences generated by the compiler 
upon recognition of the STOP and PAUSE 
statements. 

Appendix G: Object-Time Library Subprograms 115 



STOP: A write-to-operator (WTO) macro
instruction is issued to display the 
message associated with the STOP statement 
on the console. Load module execution is 
then terminated cy passing control to the 
program termination routine of IHCFCOME. 

PAUSE: A write-to-operator-with-reply 
(WTOR) macro-instruction is issued to dis
play the message associated with the PAUSE 
statement on the console and to enacle the 
operator's reply to be transmitted. A WAIT 
macro-instruction is then issued to deter
mine when the operator's reply has been 
transmitted. After the reply has been 
received, control is returned to the call
ing routine within the load module. 

utility Routines 

The utility routines of IHCFCOME perform 
the following functions: 

• Process object-time error messages. 
• Process arithmetic-type program inter

ruptions. 
• Terminate load module execution. 

PROCESSING OF ERROR MESSAGES: Error mes
sage processing routine (IBFERR) receives 
control from various FORTRAN library sub
programs when they detect object-time 
errors. 

Error message processing consists of 
initializing the data set upon which the 
message is to be written and also of 
writing the message,. If the type of error 
requires load module termination, control 
is passed to the termination routine of 
IHCFCOMEi if not, control is returned to 
the calling routine. 

PROCESSING OF ARITHMETIC INTERRUPTIONS: 
The arithmetic-interrupt routine (IBFINT) 
of IHCFCOME initially receives control from 
within the load module via a compiler 
generated calling sequence. The call is 
placed at the start of the executable 
coding of the load module so that the 
interrupt routine can set up the program 
interrupt mask. Subsequent entries into 
the interrupt routine are made through 
arithmetic-type interruptions. 

116 

The interrupt routine sets up the pro
gram interrupt mask ry means of a SPIE 
macro-instruction. This instruction speci
fies the type of arithmetic interruptions 
that are to cause control to be passed to 
the interrupt routine, and the location 
within the routine to which control is to 
be passed if the specified interruptions 
occur. After the mask has been set, con
trol is returned to the calling routine 
within the load module. 

In processing an arithmetic interrup
tion, the first step taken by the interrupt 
routine is to determine its type. If 
exponential overflow or underflow has 
occurred, the appropriate indicators, which 
are referenced by OVERFL (a library 
subprogram), are set. If any type of 
divide check caused the interruption, the 
indicator referenced by DVCHK (also a 
library subprogram) is set. 

Regardless of the type of interruption 
that caused control to be given to the 
interrupt routine, the old program PSW is 
written out for diagnostic purposes. 

After the interruption has been pro
cessed, control is returned to the inter
rupted routine at the point of interrup
tion. 

PROGRAM 'TERMINATION: The load module ter
mination routine (IBEXIT) of IHCFCOME 
receives control from various library sub
progra~s (e.g., DUMP and EXIT) and from 
other IHCFCOME routines (e.g., the routine 
that processes the STOP statement). 

This routine terminates execution of the 
load module by the following means: 

• Calling IHCFIOSH to check (via the 
CHECK macrO-instruction) outstanding 
write requests. 

• Issuing a SPIE rracro-ihstruction with 
no parameters indicating that the 
FORTRAN object module no longer desires 
to give special treatment to program 
interruptions and does not want maska
ble interruptions to occur. 

• Returning to 
supervisor. 

the operating system 



Chart 13. IHCFCOME Overall Logic Diagram and utility Routines 

* IHCFCOME IS 
ENTERED VIA 
CALLING SE
QUENCES GEN
ERATED AT 
COMPILER TIME. 

****A3********* 
* * CALLING * 
*SEQUENCE WITHIN* 
* LOAD MODULE * 

*************** 

I 
V 

*****B3********** 
* * * DETERMINE * 
* REQUEST * 
* TYPE * 
* * ***************** 

I 
v 

SEE TABLE 26 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH IHCFCOME ROUTINE/ 
SUBROUTINE. 

*************************************************************************************** 
* * * * * * * * REQUEST TYPE * CHART* MAJOR PROCESSING * SUBROUTINES CALLED * 

* ID. * ROUTINES * * 
* * * * * *====================================================================================== 
* * * * * * READ/WRITE * 14A2 * FRDWF.FWRWF.FIoLF. * FCVII.FCVFo.FCVEI.FCVDI. * 
* REQUIRING A FORMAT * * FIoAF.FENDF * FCVEo.FCVDo.FCVIo.FCVFI.FCVAI.FCVAo* 
* * * * * 
*************************************************************************************** 
* * * * * * READ/WRITE NOT * 14F2 * FRDNF.FWRNF.FIOLN. * NONE 
* REQUIRING A FORMAT * * FIoAN.FENDN * * 
* * * * * 
*************************************************************************************** 
* * * * * 
* DEVICE * 15B3 * FBKSP.FRWND.FEoFM * NONE * 
* MANIPULATION * * * 
* *************************************************************************************** 
* * * * * 
* WRITE TO * 15G3 * FSToP.FPAUS * NONE * 
* OPERATOR * * * * 
* * * *************************************************************************************** 

UTILITY ROUTINES 

****Gl********* 
* FSTOP. * 
* IHCIBERR. OR * 
* IBFERR * 

****G2********* 
* FORTRAN * 
* LIB. * 
* SUBPRS. * 

****G4********* 
* LOAD * 
* 
* MODULE * 

* *************** 

V 
*****Hl********** 
* IBEXIT * 
*-*-*-*-*-*-*-*-* 
* CLOSE ALL * 
* oCBS * 
* (TERM EXEC) * 
***************** 

I 
V 

****..11********* 
* JOB * 
* * * SCHEDULER * 

*************** 

*************** 

V 
*****H2********** 
* IBFERR * 
*-*-*-*-*-*-*-*-* 
* PROCESS * 
* OBJECT TIME * 
* ERRORS * 
***************** 

V 
****..12********* 

* * 
* IBEXIT * 
* * *************** 

Appendix G: 

*************** 

I 
V 

*****H4********** 
* IBFINT * 
*-*-*-*-*-*-*-*-* 

PROCESS * 
* ARITHMETIC * 
* INTERRUPTIONS * 
***************** 

I 
V 

****..14********* 
* LOAD * 
* * * MODULE * 

*************** 

Object-Time Library Subprograms 117 



Chart 14. Implementation of READ/wRITE Source Statements 

***** IHCFCOME 
*'14 * LOAD MODULE 
* A2* FROWF/FWRWF 

* * *****A2********** 
* *PERFORM OPENING* 
L __ >:OP~~~;D~~iT~OR : 

* REQUIRING * 
* A FORMAT * 
***************** 

I 

~ 
.* • 

• *C4 *.*. ~ 
.* LAST *. NO 

*. LIST .* 
*. ITEM .* 

*. .* 
* .• * * YES 

I 
FENDF V 

*****02********** *****04********** 
* * * * CLOSE OUT * * CALL CLOSING * 

OPE~~~ION : <----------------: si~~~g~M~F : 

* ***************** 

I 
I 
v 

:****E4*********: 
* CONTINUE WITH * 
* LOAD MODULE * 

EXECUTION 

***** IHCFCOME 
* 14 * LOAD MODULE 
* F2* FRDNF/FWRNF 

... * *****F2********** 
* *PERFORM OPENING* 

~>:~~~~~~~~~~ ~g~ : 

118 

* REQUIRING * 
* A FORMAT * 
***************** 

I 
i 

FIOLN/FIOAN V 
*****G2********** *****G4********** ...... ...... 
* PERFORM I/O * *GET LIST ITEM. * 
*LIST OPERATIONS*<-----------------* CALL I/O LIST *<--, 

:.::.~:y::: .. : :..:!~;m:L.:J 

~ .*. 
H4 * • 

• * * • 
• * LAST *. NO 

*. LIST .* 
*. ITEM .* 

*. .* 
* .• * 

j'" 
FENDN V 

:****J2*********: :****J4*********: 
* CLOSE OUT * * CALL CLOS I NG 
** OPE~~~IDN : <:----------------: SECT ~g~M OF 

* IHCFCDME * 
***************** ***************** 

I 
i 
V 

*****K4********** 
* * * CONTINUE WITH * 
* LOAD MODULE * 
* EXECUTION * 
* * ***************** 

THIS CALL IS 
GENERATED BY 
COMPILER WHEN 
I/O LIST ITEM 
I S ENCOUNTERED 

THIS CALL IS 
GENERATED BY 
COMPILER WHEN 
ALL I/O LIST 
ITEMS PROCESSED 

THIS CALL IS 
GENERATED BY 
COMPILER WHEN 
I/O LIST ITEM 
IS ENCOUNTERED 

THIS CALL IS 
GENERATED BY 
COMPILER WHEN 
ALL I/O LIST 
ITEMS PROCESSED 



Chart 15. Device Manipulation and Write-to-Operatcr Rcutines 

I 
BACKSPACE 

I 
FBKSP 

V 
*****02********** 
* * * IMPLEMENT 

BACKSPACE 
* SOURCE 
* STATEMENT 
***************** 

**.*** 
* 15'* 

* *B~* 
* 

I 
v 

*****63********** 
* * *DETERMINE TYPE * 
* OF DEVICE * 
* MANIPULATION * 
* * ***************** 

I 
REWIND 

I 
FRWND 

V 
*****03********** 
* * IMPLEMENT * 

REWIND 
SOURCE 

STATEMENT * 
***************** 

I 
ENDFILE 

I 
FEDFM 

V 
*****04********** 
* * * IMPLEMENT 
* ENDFILE 
* SOURCE * 

STATEMENT * 
***************** 

****E3*~******* ~ 
* LOAD * L-_____________ >* *< 

*****~~~~~~****** 

***** 
*15 * 
* (;3* 
* * 
* 

I 
v 

:****G3*********: 
*DETERMINE TYPE * 
* OF WRITE TO * 
* OPERATOR * 
* * ***************** 

r-I -V-------.I 
STOP PAUSE 

I I 
FSTOP FPAUS 

V V 
*****J2********** *****~4********** ...... ... * 

IMPLEMENT * * IMPLEMENT * 
STOP * PAUSE * 

SOURCE * SOURCE 
* STATEMENT * * STATEMENT * 
***************** ***************** 

v 
****K2********* 

* * * IBEXIT * 
* * *************** 

v 
****K4********* 

* LOAD : 

****~~~~i;***** * 

Appendix G: Object-Time Library SUbprograms 119 



Table 26. IHCFCOME Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ 
FBKSP IImFlements the BACKSPACE source statement. 

FCVAI 

F'CVAO 

FCVDI 

FCVDO 

FCVEI 

FCVEO 

FCVFI 

FCVFO 
'I 
I FCVII 
I 
I FCVIO 
I 
IFENDF 
I 
IFENDN 
I 
IFEOFM 
I 
l"IOAF 

FIOAN 

FIOIF 

FIOIN 

F'PAUS 

FRDNF 

F'RDWF 

FRWND 

FSTOP 

FWRNF 

FWRWF 

IBEXIT 

IBFERR 

I 
IReads alFharreric data. 
I 
IWrites alphameric data. 
I 
IReads double-precision data with an external eXFcnent. 
I 
IWrites double-precision data with an external ex~onent. 
I 
IReads real data with an external exponent. 
I 
IWrites real data with an external exponent. 
I 
IReads real data without an external exponent. 
I 
IWrites real data without an external exponent. 
I 
IReads integer data. 
I 
Writes integer data. 

Closing section for a READ or WRITE requiring a format. 

Closing section for a READ or WRITE not requiring a forroat. 

Implements the ENDFILE source statement. 

I/O list section for list array of 
format. 

a READ or WRITE requiring a 

I/O list section for list array of a READ or WRITE not requiring a 
format. 

I/O list section for the list variable of a READ or WRITE requiring 
a format. 

I/O list section for the list variable of a READ or WRITE not 
requiring a format. 

lroFlements the PAUSE source statement. 

Opening section of a READ not requiring a format. 

Opening section of a READ requiring a format. 

Implements the REWIND source statement. 

Implements the STOP source statement. 

Opening section for a WRITE not requiring a format. 

Opening section for a WRITE requiring a format. 

Closes the data control blocks for all FORTRAN data sets that are 
still open and terminates the execution. 

Processes object-time errors. 

IIBFINT Processes arithmetic-type program interruptions. l __________________ L __________________________________ --________________________________ J 

120 



IHCFIOSH 

IHCFIOSH, the object-time FORTRAN 
input/output data management interface, 
receives input/output requests from 
IHCFCOME and submits them to the appropri
ate BSAM (basic sequential access method) 
routines and/or open and close routines for 
execution. Chart 16 illustrates the over
all logic and the relationship among the 
routines of IHCFIOSH. Table 27, the IHCFI
OSH routine directory, lists the routines 
and their functions. 

Table and Blocks Used 

IHCFIOSH uses the following table and 
blocks during its processing of 
input/output requests: (1) unit assignment 
table, and (2) unit blocks. The unit 
assignment table is used as an index to the 
unit blocks. The unit blocks are used to 
indicate I/O activity for each unit number 
(i.e., data set reference number) and to 
indicate the type of operation requested. 
In addition, the unit blocks contain skele
tons of the data event control blocks 
(DECB) and the data control blocks (DCB) 
needed for I/O operations. 

UNIT ASSIGNMENT TABLE: The unit assignment 
table (IHCUATBL) resides on the FORTRAN 
system library (SYS1.FORTIIB). Its size 
depends on the maximum number of units that 
can be referred to during the execution of 
any FORTRAN load module. This number is 
specified during the system generation pro
cess via the FOR'rLIB macro- instruction. 
The unit assignment table is included (by 
the linkage editor) in the FORTRAN load 
module as a result of an external reference 
to it within IHCFIOSH. 

The unit assignment table has the fol
lowing format: 

r--------------------T------------T-------, 
1 Reserved 1 * n x 4 + 414 bytes 1 
~--------------------+------------+-------~ 
1 Data set reference 1 1 1 
I nurr.ter of error 1 Reserved 14 bytes 1 
1 output device 1 1 1 
.--------------------~------------+-------~ 
1 ** Pointer to 1 1 
I first unit 14 bytes 1 
1 block I I 
.---------------------------------+-------~ 
I . I • I 
I • 1 • 1 
1 • 1 • I 
.---------------------------------+-------~ 
I ** Pointer to 1 1 
I last unit 14 bytes I 
I block I 1 
.---------------------------------+-------~ 
I Default values for first unit IS bytes I 
I block 1 1 
~---------------------------------+-------~ 
I • 1 • I 

1 • 1 • 1 
I • 1 • I 

~---------------------------------+-------~ 
I Default values for last unit IS bytes I 
1 block 1 1 
.---------------------------------~-------~ 
I *n is the maximum number of units that I 
1 can be referred to by the FORTRAN loadl 
I module. The size of the unit table isl 
I equal to (S + n x 12) bytes. I 
1**The pointers to the various unit blocks 1 
1 are inserted into the unit assignment I 
I table when the unit blocks are con-I 
I structed by IHCFIOSH. I L _________________________________________ J 

The default value section of the unit 
assignment table contains standard values 
that IHCFIOSH inserts into the appropriate 
fields (e.g., BUFNO) of the DCB skeleton 
section of the unit block if the user 
either: 

• Causes the load module to be executed 
via a cataloged procedure, or 

• Fails, in stating his own procedure for 
execution, to include in the DCB param
eter of his DD statements those subpar
ameters (e.g., BUFNO) he is permitted 
to include (refer to the publication 
IBM System/360 Operating System: 
FORTRAN IV (E) Programmer's Guide). 

Appendix G: Object-Time Library Subprograms 121 



Note: control is returned to IHCFIOSH 
during data control block opening so that 
it can determine if the user has included 
the subparameters in the DCB parameter of 
his DD statements. IHCFIOSH examines the 
DCB skeleton fields corresponding to user
permitted subparameters, and upon 
encountering a null field (indicating that 
the user has not specified the 
subparameter), inserts the standard value 
(i.e., the default value) for the subparam
eter into the DCB skeleton. (If the user 
has included these subparameters in his DD 
statement, the control program routine per
forming data control block opening inserts 
the subparameter values, before giving con
trol to IHCFIOSH, into the DCB skeleton 
fields reserved for those values.) 

UNIT BLOCKS: The first reference to each 
unit number (data set reference number) by 
an input/output operation within the 
FORTRAN load module causes IHCFIOSH to 
construct a unit block for each unit num
ber. The main storage for the unit blocks 
is obtained by IHCFIOSH via the GETMAIN 
macro-instruction. The addresses of the 
unit blocks are placed in the unit assign
ment table as the unit blocks are con
structed. All subsequent references to the 
unit numbers are then made through the unit 
assignment block. Each unit block has the 
following format: 

r-----T-----T-----T-------, 
IABYTEIBBYTEICBYTEILIVECNTI 
~-----~-----~-----~-------~ 
IAddress of Buffer 1 I 
~-------------------------~ Housekeeping 
IAddress of Buffer 2 I Section 
~-------------------------~ 
Icurrent buffer pointer I-
~-------------------------i 
IRecord offset I 
~-------------------------~ 
IDECB skeleton section I 
~-------------------------~ 
IDCB skeleton section I L _________________________ J 

Each unit block is divided into three 
sections: a housekeeping section, a DECB 
skeleton section, and a DCB skeleton sec
tion. 

Housekeeping Section: The housekeeping 
section is maintained by IHCFIOSH. The 
information contained in it is used to 
indi cat e data set type" to keep track of 
I/O buffer locations, and to keep track of 
addresses internal to the I/O buffers to 
enable the processing of blocked records,. 
The fields of this section are: 

• ABYTE. This field, containing the data 
set type passed to IHCFIOSH by 

122 

IHCFCOME, can be set to one of the 
following: 

FO - Input data set requiring a format. 
FF - Output data set requiring a for

mat. 
00 - Input data set not requiring a 

format. 
OF - Output data set not requiring a 

format. 

• EBYTE. This field contains bits that 
are set. and examined by IHCFIOSH during 
its processing. The bits and their 
rr.eanings are as follows: 

Bit on 

o - exit to IHCFCOME on I/O error 
1 - I/O errcr occurred 
2 - current buffer indicator 
3 - not used 
4 - end-of-current buffer indicator 
5 - blocked data set indicator 
6 variable record format switch 
7 - not used 

• CBYTE. This field also contains bits 
that are set and examined by IHCFIOSH. 
The bits and their meanings are as 
follows: 

Bit on 

o - data control block opened 
1 - data control block not TClOSEd 
2 - data control block not previously 

opened 
3 - buffer pool attached 
4 - data set not ~reviously rewound 
5 - data set not previously backspaced 
6 - concatenation occurring -- reiss'ue 

READ 
7 - not used 

• IIVECNT. This field indicates whether 
any I/O operation performed for this 
data set is unchecked. (A value of 1 
indicates that a previous read or write 
has not been checked; a value of 0 
indicates that all previous read and 
write operations for this data set have 
been checked.> 

• Address of Buffer 1 and Address of 
Buffer 2. These fields contain poin
ters to the two I/O buffers obtained 
during the opening of the data control 
block for this data set. 

• Current Buffer Pointer. This field 
contains a pointer to the I/O buffer 
currently being used. 

• Record Offset. This field contains a 
pointer to the current logical record 
within the current buffer. 



DECB Skeleton Section: The DECB {data 
event control block} skeleton section is a 
block of main storage within the unit 
block. It is of the same form as the DECB 
constructed by the control program for an L 
form of an S-type READ or WRITE macro
instruction (refer to the publication IBM 
Systeml360 Operating System: control 
Program Services). The various fields of 
the DECB skeleton are filled in by 
IHCFIOSH; the completed block is referred 
to when IHCFIOSH issues a read/write 
request to BSAM. The read/write field is 
filled in at open time. For each I/O 
operation, IHCFIOSH supplies IHCFCOME with: 
(l) an indication of the type of operation 
{read or write}, and (2) the length of and 
a pointer to the I/O buffer to be used for 
the operation. 

DCB Skeleton Section: The DCB (data con
trol block) skeleton section is a block of 
main storage within the unit block. It is 
of the same form as the DCB constructed by 
the control program for a DCB macro
instruction under BSAM (refer to the 
publication IBM system/360 Operating Sys
tem: Control Program Services). The var
ious fields of the DCB skeleton are filled 
in by the control program when the DCB for 
the data set is opened (refer to the 
publication IBM system/360 Operating Sys
tem: Concepts and Facilities). (Standard 
default values way also be inserted in the 
DCB skeleton by IHCFIOSH. Refer to "Unit 
ASSignment Table" for a discussion of when 
default values are inserted into the DCB 
skeleton.) 

Buffering 

All input/output operations are double 
buffered. {The double buffering scheme can 
be overriden by the user if he specifies in 
a OD statement: BUFNO=l.} This implies 
that during data control block opening, two 
buffers will be obtained. The addresses of 
these buffers are given alternately to 
IHCFCOME as pointers to: 

• Buffers to be filled (in the case of 
output) • 

• Information that has been read in and 
is to be processed (in the case of 
input) • 

Communication With the Control Program 

In requesting services of the control 
program, IHCFIOSH uses Land E forms of 
S-type macro-instructions (refer to the 
publication IBM System/360 Operating Sys
tem: control Program Services) '. 

Operation 

The processing cf IHCFIOSH is divided 
into five sections: initialization, read, 
write, device manipulation, and closing. 
When called by IHCFCOME, a section' 'of 
IHCFIOSH performs its function and then 
returns control to IHCFCOME. 

INITIALIZATION: The initialization action 
taken by IHCFIOSH depends upon the nature 
of the previous I/O o~eration requested for 
the data set. The previous operation pos
sibilities are: 

• No previous operation. 
• Previous operation read or write. 
• Previous operation backspace. 
• Previous operation write end-of-data 

set. 
• Previous operation rewind. 

No Previous Operation: If no previous 
operation has been performed on the unit 
specified in the I/O request, the initiali
.zation section generates a unit block for 
the unit number. The data set to be 
created is then opened (if the current 
operation is not rewind or backspace) via 
the OPEN macro-instruction. The addresses 
of the I/O buffers, which are obtained 
during the opening process and placed into 
the DCB skeleton, are placed into the 
appro~riate fields of the housekeeping sec
tion of the unit block. The DECB skeleton 
is then set to reflect the nature of the 
operation (read or write), the format of 
the records to be read or written, and the 
address of the I/O buffer to be used in the 
operation. 

If the requested oFeration is that of 
write, a pointer to the buffer position, at 
which IHCFCOME is to place the record to be 
written, and the block size or logical 
record length (to accommodate blocked logi
cal records) are placed into registers, and 
control is returned to IHCFCOME. 

If the requested operation is that of 
read, a record is read. via a READ macro
instruction, into the I/O buffer, and the 
operation is checked for completion via the 
CHECK macro-instruction. A pointer to the 
location of the record within the buffer, 
along with the number of bytes read or the 
logical record length, are placed into 
registers, and control is returned to 
IHCFCOME. 

Previous Operation Read or Write: If the 
previous operation performed on the unit 
specified in the present I/O request was 
either a read or write# the initialization 
section deterrrines the nature of the pre
sent I/O request. If it is a write, a 
pointer to. the buffer position, at which 

Appendix G: Object-Time Library Subprograms 123 



IHCFCOME is to place the record to be 
written, and the bleck size or logical 
record length are placed into registers, 
and control is returned to IHCFCOME. 

If the operation to be performed is 
read, a pointer to the buffer location of 
the record to be processed, along with the 
number of bytes read or logical record 
length, are placed into registers, and 
control is returned to IHCFCOME. 

Previous Operation Backspace: If the pre
vious operation performed on the unit spec
ified in the present I/O request was a 
backspace, the initialization section det
ermines the type of the present operation 
(read or write) and modifies the DECB 
skeleton, if necessary, to reflect the 
operation type. (If the operation type is 
the same as that of the operation that 
preceded the backspace request, the DECB 
skeleton need not be modified.) Subsequent 
processing steps are the sarr.e as those 
described for nNo Previous Operation,n 
starting at the point after the DECB skele
ton is set to reflect operation type. 

Previous Operation Write End-of-Data Set: 
If the previous operation performed on the 
unit specified in the present I/O request 
was that of write end-of-data set, a new 
data set using the same unit number is to 
be created. In this case, the initializa
tion section closes the data set. Then, in 
order to establish a correspondence between 
the new data set and the DD statement 
describing that data set, IHCFIOSH incre
ments the unit sequence number of the 
ddname. (The ddname is placed into the 
appropriate field of the DCB skeleton prior 
to the opening of the initial data set 
associated with the unit number.) During 
the opening of the data set, the ddname 
will be used to merge with the appropriate 
DD statement. The data set is then opened. 
Subsequent processing steps are the same as 
those described for "No Previous 
Operation,n starting at the point after the 
data set is opened. 

Previous Operation Rewind: If the previous 
operation performed on the unit specified 
in the present I/O request was rewind, the 
ddname is initialized (set to FTxxF001) in 
order to establish a correspondence between 
the initial data set associated with the 
unit number and the DO statement describing 
that data set. The data set is then 
opened. Subsequent processing steps are 
the same as those described for nNo Pre
vious Operation," starting at the point 
after the data set is opened. 

READ: The read section of IHCFIOSH per
forms two functions: (1) reads physical 
records into the buffers obtained during 
data set opening., and (2) makes the con-

124 

tents of these buffers 
IHCFCCME for processing. 

available to 

If the records being processed are 
blocked, the read section does not read a 
physical record each time it is given 
control. IHCFIOSH only reads a physical 
record when all of the logical records of 
the tlocked record under consideration have 
been processed by IBCFCOME. However, if 
the records being processed are either 
unblocked or of U-format, the read section 
of IHCFIOSH issues a READ macro-instruction 
each time it receives control. 

The reading of records by this section 
is overlapped. That is, while the contents 
of one buffer are being processed, a physi
cal record is being read into the other 
buffer. When the contents of one buffer 
have been processed, the read into the 
other buffer is checked for completion. 
Upon coropletion of the read operation, 
processing of that buffer's contents is 
initiated. In addition, a read into the 
secend buffer is initiated. 

Each time the read section is given 
control it makes the next record available 
to IHCFCOME for processing. (In the case 
of blocked records, the record presented to 
IHCFCOME is logical.) The read section of 
IHCFIOSH places: (1) a pointer to the 
record's location in the current I/O buf
fer, and (2) the number of bytes read or 
logical record length into registers, and 
then returns control to IHCFCOME. 

WRITE: The write section of IHCFIOSH per
forms two functions: (1) writes physical 
records, and (2) provides IHCFCOME with 
buffer space in which to place the records 
to l::e written. 

If the records being written are 
blocked, the write section does not write a 
physical record each time it is given 
control. IHCFIOSH only writes a physical 
record when all of the logical records that 
comprise the blocked record under consider
ation have been placed into the I/O buffer 
by IHCFCOME. However, if the records being 
written are either unblocked or of U
format, the write section of IHCFIOSH 
issues a WRITE macro-instruction each time 
it receives control. 

The writing of records by this section 
is overlapped. That is, while IHCFCOME is 
filling one buffer, the contents of the 
other l::uffer are being written. When an 
entire buffer has been filled, the write 
from the other buffer is checked for com
pletion. Upon completion of the write 
operation, IHCFCOME starts placing records 
into that buffer. In addition, a write 
from the second buffer is initiated. 



Each time the write section is given 
control, it provides IHCFCOME with buffer 
space in which to place the record to be 
written. IHCFIOSH places: (1) a pointer to 
the location within the current buffer at 
which IHCFCOME is to place the record, and 
(2) the block size or logical record length 
into registers, and then returns control to 
IHCFCOME. 

Error Processing: If an end-of-data set or 
an I/O error is encountered during reading 
or writing, the control ~rogram returns 
control to the location within IHCFIOSH 
that was specified during data set initial
ization. In the case cf an I/O error, 
IHCFIOSH sets a switch to indicate that the 
error has occurred. control is then 
returned to the control program. The con
trol program completes its processing and 
returns control to IHCFIOSH, which interro
gates the switch, finds it to be set, and 
passes control to the I/O error routine of 
IHCFCOME. 

In the case of an end-of-data 
IHCFIOSH simply passes control to the 
of-data set routine of IHCFCOME. 

set, 
end-

Chart 11 illustrates the execution-time 
I/O recovery procedure for any I/O errors 
detected by the I/O supervisor. 

DEVICE MANIPULATION: The device 
manipulation section of IHCFIOSH processes 
backspace, rewind, and write end-of-data 
set requests. 

Backspace: IHCFIOSH processes the back
space request by issuing a BSP (physical 
backspace) macro-instruction. It then 
places the data set type, which indicates 
the format requirement, into a register and 
returns control to IHCFCOME. (IHCFCOME 
needs the data set type to determine its 
subsequent processing.) 

Rewind: IHCFIOSH Frocesses the rewind 
request by issuing a CLOSE macro
instruction, using the REREAD option. This 
option has the sa~e effect as a rewind. 
Control is then returned to IHCFCOME. 

Write End-Of-Data Set: IHCFIOSH processes 
this request ty issuing a CLOSE macro
instruction, Type = T. It then frees the 
I/O tuffers by issuing a FREEPOOL macro
instruction. and returns control to 
IHCFCCME. 

CLOSING: The closing section of IHCFIOSH 
examines the entries in the unit assignment 
table to deter~ine which data control 
blocks are open. In addition, this section 
ensures that all write operations for a 
data set are completed before the data 
control block for that data set is closed. 
This is done by issuing a CHECK macro
instruction for all double-buffered output 
data sets. Control is then returned to 
IHCFCOME. 

Appendix G: Object-Time Library Subprograms 125 



Chart 16. IHCFIOSH Overall Logic Diagram 

**** * * INITIALIZATION 
: C1 : 

**** FINIT V 
*****C1********** 
* * * DECODE DSRN * 
*ANO BUILD UNIT * 
*BLOCK IF NECES-* 
* SARY * 
***************** 

READ 

I 
FREAD .v. 

C2 *. 
.* ANY -. 

YES .MORE RCDS IN*. 

I
*.THIS BLOCK TO.* 

BE PROCESSED* 
*. .* 

v * •• * 

****A3********* 

* * * IHCFCOME 

*************** 

I 
v .*. 

83 * • 
• * * . 

• * DETERMINE *. 
*. OPERATION .* 

*. TYPE .* 

FRITE 

*. .* 
* .• * 

* 
WRITE I 

I 
V .*. 

C3 *. 
.* -. 

NO.* OUTPUT *. 

1
*. BUFFER .* 

*. FULL .* 
*. .* 

v * .• * 

I 
****** *1 NO 
* K1 * 
* * 

:'::': j '" 
v 

*****01********** 
* OPEN DATA * 
* CONTROL BLOCK * 
*FOR DATA SET IF* 
*NOT PREVIOUSLY * 
* OPENED * 
***************** 

1 
V 

• *. 
El *. 

• * *. 
.* DCB *. NO 

*. OPENED • 
*.PROPERLY .* 

*. .* 
* •• * 

j''' 
V 

:****Fl*********: 

* DETERMINE * 
* RECORD FORMAT * 
* AND BLOCKING * 
* * ***************** 

1 
V .*. 

Gl *. 
.* IS *. 

.* CURRENT *. YES 
*. OP. DEVICE .*1 

*. MANIP. .* 
*. .* 

* •• * v 

*1 NO : *::*: 
* * 

V .*. 
HI *. 

.* *. 
.* READ *. WRITE 

*. OR 
*. WRITE .* 

*. .* 
* •• * j .," 

v 
******Jl*********** 

READ 
A 

BLOCK 

.************ 

:*::*:->1 <: ________ -J 

**** 
v 

*****K1********** 
* PASS CURRENT * 
*RECORD POINTER * 
* AND LOGICAL *-----. 
* RECORD LENGTH * V 

v 
*****02********** 
* READ * 
*NEXT BLOCK INTO* 
* THIS BUFFER. * 
* SWITCH BUFFER * 
* POINTERS * 
********.******** 

I 
v 

:****E2*********: 

* CHECK RESULT * 
* OF READ INTO *1 
* OTHER BUFFER * 
* * ***************** v 

*****F2********** 
* * * ISSUE * 

***** * 17 * 
* B2* 

4 * 

>* MESSAGE *:---' 
: IHC219C I 
***************** v 

***** *17 * 
* F2* 
* * * 

* TO IHCFCOME * ***** 
*********** •• **** *17 ... 

* B2* 

126 

* * * 

v 
*****03*********
* WRITE * 
* CONTENTS OF * 
* THIS BUFFER. * 
* SWITCH BUFFER * 
* POINTERS * 
**.****.********* 

I 
V 

*****E3********** 
* * * CHECK RESULT * 
* OF WRITE * 
* FROM OTHER * 
* BUFFER * 
***************** 

I 
V 

***** * 17 * 
* B2* 
* * 

SEE TABLE 27 FOR A BRIEF 
DESCRIPTION OF THE FUNCTION 
OF EACH IHCFIOSH ROUTINE. 

DEVICE 
MANIPULATION 

I 
FCNTL V 

:****C4*********: 
* CHECK * 
* STATUS OF * 
* UNIT : 
***************** 

L * **** * 
>* C1 * 
* * 

**** 
* * * E4 * 
* * **** 

I 
v 

.* • 

**** 

CLOSE 

I 
FCLOS V 

:****C5*********: 
* CHECK ANY * 

>* OUTSTANDING * 
* INPUT OR * 
* OUTPUT * ........ j ....... . 

V .*. 
05 *. 

.* *. 
NO.* LAST *. 

*. DSRN .* 
*. .* 

*. .* 
* •• * * YES 

L **** 
*17 * >: B2: 

**** 
E4 *. *****E5********** 

.* *. ... ... 
EOF .* DETERMINE *. RWND * ISSUE CLOSE * 

*. OPERATION • *-------> * WITH REREAD * 
*. TYPE.* * OPTION 

*. .* 
* •• * i 'KS' 

V 
*****F4********** * ISSUE * 
* BACKSPACE. * 
* INDICATE DATA *1 
* SET TYPE * 
* * ***************** v 

*****G4********** 
* * * ISSUE CLOSE. * 

>* TYPE=T WITH * 
* LEAVE OPTION * 
* * ........ j ....... . 

v 
*****H4********** 
* * * FREE I/O * 

***** 
*17 * 
* B2* 
* * 

* BUFFERS FOR n 
* THIS DATA SET * 
* * ***************** v 

***** * 17 * 
* B2* 
* * * 

***************** 

L **** 
*17 * 

>* B2 * 
* * 



Chart 17. Execution-time I/O Recovery Procedure 

THE I/O SUPERVISOR 
IS ENTERED VIA BSAM 
ROUTINE WHEN IHCFIOSH 
ISSUES A MACRO-INST. 

***** 
* 17 * 
* B2* 
* * * 
I 
v .*. 

B2 *. *****B3********** 
.* *. * * .* HAS AN *. YES * ISSUE * 

*. EOF BEEN • *--------> * MESSAGE ***1 
*. READ.* * IHC2171 
*..* * 

*. .* ***************** v 
* NO **** 

1 ** 

I 
* F2 * 
* * **** 

v 
.*. .*. 

*****Cl********** C2 *. *****C3********** C4 *. 
* RETURN TO * .* *. * BSAM RETRY * .* *. **** 
* BSAM, * NO.* I/O *. YES * APPROPRIATE * .* I/O *. YES * * 
* IHCFIOSH, AND *<l<----*. ERROR IN • *--------> * NUMBER OF *-------->*. ERROR BEEN .*---->* Cl * 
* IHCFCOME * *. IOS.* * TIMES * *.CORRECTED.* * * 
* * *..* * * *..* **** 
***************** * •• * ***************** * •• * 

V 
****01********* 

* FORTRAN * 
* LOAD * 
* MODULE * 

*************** 

CONTINUES 
NORMAL 
PROCESSING 

:*::*: * *1 NO 

**** 

v 
*****03********** *****04********** 
* IHCFCOME * * * 
* DETERMINES * * RETURN * 
* IF AN INVALID *<--------* ABORT CODE * 
* BUFFER HAS * * TO IHCFCOME * 
* BEEN READ * * * 
***************** ***************** 

1<-
V .*. 

*****E2********** E3 *. 
* * .* *. 
* ISSUE * YES.* HAS *. 
* MESSAGE *<--------*. BUFFER BEEN .* 
* IHC218I * *.READ YET .* 
* ***************** 

**** 
* 17 * 
* F2 *-> 
* * **** 

V 
*****F2********** 
* * * PASS * 
* ABORT CODE * 
* TO SCHEDULER * 
* * ***************** 

I 

****G2*~******* 
* * * SCHEDULER * 
* *************** 

ISSUES ABEND 
MESSAGE AND 
THEN CONTINUES 
NORMAL PRO
CESSING 

* 

*.* •• *.* I 

.r J F3 * • 
• * *. 

.* REWIND *. NO 
*.OR BACKSPACE .* 

*. BEEN .* 
*ISSUED.* 

* •• * rs 

V 
*****G3********** 
* * * VOID * 
* ABORT CODE * 
* IN IHCFCOME * 
* * ***************** 

V 
****H3********* 

* FORTRAN * 
* LOAD * 
* MODULE * 

*************** 

CONTINUES 
NORMAL 
PROCESSING 

Appendix G: Object-Time Library Subprograms 127 



Table 21. IHCFIOSH Routine/Subroutine Directory 
r------------------T--------------------------------------------------------------------, 
I Routine/Subroutine I Function I 
~------------------+--------------------------------------------------------------------~ I FCLCS ICHECKS double-buffered output data sets. I 
I I I 
I FCNTL IServices device manipulation requests. I 
I I I 
IFINIT IInitializes unit and data set. I 
I I I 
I FREAD IServices read requests. I 
I I I 
IFRITE IServices write requests. I L __________________ ~ ____________________________________________________________________ J 

IHCIBERR 

IHCIBERR, a member of the FORTRAN system 
library (SYS1.FORTLIB), processes object
time source statement errors if the LOAD 
option is specified. IHCIBERR is entered 
(via a calling sequence generated by Phase 
20) when an internal sequence number (ISN) 
cannot be executed because of a source 
statement error. 

The ISN of the invalid source statement 
is obtained (from information in the 
calling sequence) and is then converted to 

128 

decimal form. IHCIBERR 
IHCFCCME to im~lerr.ent the 
following error message: 

then links 
writing of 

IHC230I - SOURCE ERROR AT ISN 
XXXX - EXECUTION FAILED 

to 
the 

After the error message is written on 
the user-designated error output data set, 
IHCIEERR passes control to the IBEXIT rou
tine of IHCFCOME to terminate execution. 

Chart 18 illustrates the overall logic 
of IHCIBERR. 



Chart 18. IHCIBERR Overall logic Diagram 

****A3********* 
* CALLING * 
*SEQUENCE WITHIN* 
* LOAD MODULE * 

*************** 

V 
*****63********** 
* * *OBTAIN INTERNAL* 
*SEQUENCE NUMBER* 
* (ISN) * 
* * ***************** 

I 
V 

*****C3********** 
* * * CONVERT ISN * 
* TO DECIMAL * 
* FORMAT * 
* * ***************** 

I 
V 

*****03********** 
* BRANCH TO * 
* IHCFCOME TO * 
* HANDLE THE * 
* WRITING OF * 
* ERROR MESSAGE * 
***************** 

I 
V 

****E3********* 
* IBEXIT RTN * 
* OF * * IHCFCOME * 

*************** 

IHCIBERR IS 
ENTERED VIA 
CALLING SE
QUENCES GEN
ERATED BY 
PHASE 20 AT 
COMPILE TIME. 

Appendix G: Object-Time Library Subprograms 129 



APPENDIX H: LINKAGES TO THE INTERFACE MODULE AND THE PERFOR~ANCE MODULE 

LINKAGE TO THE INTERFACE MODULE 

Fer SPACE compilations, the components 
of the compiler link to the interface 
module (IEJFAGAO) for: 

• Input/output requests. 
• End-of-phase/interlude requests. 

In addition, for both SPACE and PRFRM 
compilations, the compiler components link 
to the interface module for patch requests 
and for print control operations. 

Input/Output Request Linkage 

The linkage to the interface module for 
an I/O request is: 

L 
BAL 

LNKREG,IOPARS 
15,FIORTN 

where 
• LNKREG is general register o. 
• IOPARS is the following 4-byte word: 

130 

r---------T---------------------------, 
10perationiAddress of the I/O buffer 1 
IField IFor this operation I L _________ ~ ___________________________ J 

1 byte 3 bytes 

The operation field bits and their 
meanings are illustrated in Table 28. 

Table 28. Operation Field Bit Meanings 
r--------T----------------------------, 
IBit 0 ICheck operation I 
~--------+----------------------------~ 
IBit 1 IRead operation I 

~--------+----------------------------i 
IBit 2 IWrite operation I 
~--------+----------------------------~ 
IBit 3 IFlush operation I 
~--------+----------------------------i 
IBit 4 INot used I 
~--------+----------------------------~ 
Bits 5-71000 - SYSIN is to be used I 

1001 - SYSPUNCH is to be usedl 
1010 - SYSLIN is to be used I 
1011 - SYSUTl is to be used I 
1100 - SYSUT2 is to be used I 
1101 - SYSPRINT is to be usedl 
1110 - Not used , 
1111 - Indicates that thel 
I address of the DECB tol 
I be used is supplied inl 
I PARREG,REG1. I ________ ~ ____________________________ J 

• FIOR'IN is the name of a branch instruc
tion in the comrrunication area that 
tranches to the I/O routine (SIORTN) of 
the interface module. 

End-Of-Phase/Interlude Request Linkage 

The linkage to the interface module for 
an end-of-phase/interlude condition is: 

L 
BC 

LNKREG,NXPARS 
15,FNEXT 

where 

• INKREG is general register o. 
• NXPARS is the following 4-byte word: 

r-------------------------T-----------, 
IEntry point identifier IData set I 
lof next phase/interlude Idispositionl 
I Ifield 1 L _________________________ ~ ___________ J 

3 bytes 1 byte 

The data set disposition field bits and 
their meanings are illustrated in Table 
29. 

Tatle 29. Data Set Disposition 
Field Bit Meanings 

r--------T----------------------------, 
IBits 0-11 Not used I 
~--------+----------------------------~ 
IBit 2 ITCLOSE the DCB for SYSIN I 

.--------t----------------------------i IBit 3 ITCLOSE the DCB for SYSPUNCH I 

.--------+----------------------------~ 
IBit 4 ITCLOSE the DCB for SYSLIN I 
~--------+----------------------------~ 
IBit 5 ITCLOSE the DCB for SYSUTl I 
.--------+----------------------------~ 
IBit 6 ITCLOSE the DCB for SYSUT2 I 
~--------+----------------------------~ 
IBit 7 ITCLOSE the DCB for SYSPRINT I L ________ ~ ____________________________ J 

• FNEXT is the name of a branch instruc
tion in the communication area that 
branches to the end-of-phase routine 
(SNEXT) of the interface nodule. 



Patch ReqUests 

The linkage to the interface module for 
a patch request is: 

LR WRKREG, BASEA 
BAL 15, FPATCH 
DC C'XX· 

where 

• WRKREG is general register 14. 

• BASEA contains the relative starting 
address of the comFonent to be tempo
rarily modified. 

• FPATCH is the name of a branch instruc~ 
tion in the communication area that 
branches to the patch routine (PATCH) 
in the interface module. 

• 'XX' is the fifth and sixth characters 
in the name of the com~onent to be 
temporarily modified. (That is, 'XX' 
indicates the component to be 
modified.) 

Print Control Operations 

The linkage to the interface module 
a print control operation is: 

BAL 15, FPRTCTRL 
DC B'xxxxxxxx' 
DC AL3 (IOERR) 

where 

for 

• FPRTCTRL is the name of a branch 
instruction in the coremunication area 
that cranches to the print control 
operations routine (PRTCTRL) of the 
interface module. 

• 'xxxxxxx' is the carriage control char
acter. 

• AL3 (IOERR) is an address constant 
containing the address of the I/O error 
routine of the component requesting the 
print control operation. 

LINKAGE TO THE PERFORMANCE MODULE 

For PRFRM compilations, the components 
of the compiler link to the performance 
module (IEJFAPAO) for: 

• Input/output requests. 
• End-of-phase requests. 

Input/Output Request Linkaqe 

ThE linkage to the performance module 
for an I/O request is tasically the same as 
that described for the linkage to the 
interface module for an I/O request. The 
only difference is that the address in the 
branch and link (BAI) instruction is, in 
effect, replaced by the address of the I/O 
routine (PIORTN) of the performance module. 
The PIORTN routine, in turn, links to the 
I/O routine (SIORTN) of the interface 
module when it is either ready to read or 
write, or to check the result of a previous 
read or write. 

End-Cf-Phase Request linkage 

The linkage to the performance module 
for an end-of-phase rEquest 1S basically 
the same as that described for the linkage 
to the interface module for an 
end-of-phase/interlude request. The only 
difference is that the address in the 
branch on conditicn (BC) instruction is, in 
effect, replaced by the address of the 
end-cf-phase routine (PNEXT) of the perfor
mance module. 

Note: Internally, the compiler components 
use symbolic narres when transferring con
trol to a subsequent component. The sym
bolic names and the actual names of the 
compcnents are illustrated in Table 30. 

Table 30. Symbolic and Actual Names of 
Compiler components 

r-------------T---------------------------, 
ISymtclic NarnelActual Name I 
~-------------+---------~-----------------~ 
IIEJFAAAO* Phase l-Initial entry 
IIEJFAABO Phase l-Subsequent entries 
IIEJFAGAO* Interface module 
IIEJFAKAO Print cuffer module 
IIEJFAPAO* Performance module 
IIEJFAXAO* Source symbol module 
IIEJFEAAO Phase 7 
IIEJFGAAO Phase 10D 
IIEJFJAAO Phase 10E 
IIEJFJGAO Interlude 10E 
IIEJFLAAO Phase 12 
IIEJFNAAO Phase 14 
IIEJFNGAO Interlude 14 
IIEJFPAAO Phase 15 
IIEJFPGAO Interlude 15 
IIEJFRAAO Phase 20 
IIEJFVAAO Phase 25 
IIEJFVCAO* Object listing module 
IIEJFXAAO Phase 30 • _____________ L __________________________ _ 

I*Never transferred to by another compilerl 
I corrponent. I l _________________________________________ J 

Appendix H: Linkages to the Interface ~odule and the Performance Module 131 



APPENDIX I: DIAGNOSTIC MESSAGES AND STATEMENT/EXPRESSION PROCESSING 

This appendix contains the names of the 
phases and the routines within the phases 
that: (1) generate diagnostic messages, and 
(2) process the various FORTRAN statements 
and expressions. 

DIAGNOSTIC MESSAGES 

Two types of diagnostic messages are 
generated by the FORTRAN compiler - infor
mative messages and error/warning messages. 
The messages produced by the compiler are 
explained in the IBM Systerr/360 Operating 
System: FORTRAN IV (E) Prograrrmer's Guide. 

Informative Messages 

Four informative messages are generated 
by the compiler to inform the programmer or 
operator of the status of the compilation. 
The messages and the fhases and subroutines 
in which they are generated are illustrated 
in Table 31. 

Table 31. Informative Messages 
r------------------------T-----T----------, 
I Message/number IPhaselSubroutinel 
~------------------------+-----+----------~ 
IIEJ001I I 7 IMESSGOUT I 
t----------------------~-+-----+----------~ 
I LEVEL: rmthyr I I I 
105/360 FORTRAN IV (E I I I 
ILEVEL SUBSET) COMPILATION I I I 
IDATE: yy.ddd I 7 IEJECTPRT I 
t------------------------+-----+----------~ 
lEND OF COMPILATION I 30 I EOJOB I 
t------------------------+-----+----------~ 
ISIZE OF COMMON and SIZE I 30 IENDCRD I 
IOF OBJECT MODULE I I I L ________________________ ~ _____ ~ __________ J 

Error/Warning Messages 

Each error/warning message produced by 
the compiler is identified by an associated 
number. Table 32 relates a message number 
with the phases and subroutines in which 
the corresponding message is generated. 

132 

Table 32. Error/Warning Messages 
r-------T-------T-------------------------, 
IMessagel Phase I Subroutine or Routine I 
INumber I I I 
~-------+-------+-------------------------~ 
IIEJ002I17 IMESSGOUT I 
t-------+-------+-------------------------~ 
IIEJ003I17 IMESSGOUT I 
~-------+-------+-------------------------~ 
IIEJ004I17 IMESSGOUT I 
~-------+-------+-------------------------~ 
IIEJ005I17 IMESSGOUT I 
t-------+-------+-------------------------~ 
IIEJ006I17 IMESSGOUT I 
~-------+-------+-------------------------~ 
IIEJ007I17 IMESSGOUT I 
~-------+-------+-------------------------~ 
IIEJ008I17 IMESSGOUT I 
t-------+-------+-------------------------~ 
IIEJ029II10D IDIMSUB I 
~-------+-------+-------------------------~ 
IIEJ030II10D ICOMMON, EQUIVP I 
~-------+-------+-------------------------~ 
IIEJ031I112 IEQUIVP I 
~-------+-------+-------------------------~ 
IIEJ032II10D,10EILITCON I 
t-------+-------+-------------------------~ 
IIEJ033II10D,10EIGETWD I 
t-------+-------+-------------------------~ 
IIEJ034II10D I FUNCT, SUBRUT I 
~-------+-------+-------------------------~ 
IIEJ035II10D I FUNCT, SUBRUT I 
~-------+-------+-------------------------~ 
IIEJ036II10E IARITH I 
~-------+-------+-------------------------~ 
IIEJ037II10D,10EICLASS, ARITH, ASF, IF I 
~-------+-------+-------------------------~ 
IIEJ038II10D IINTGER/REAL/DOUBLE, I 
I I I EXTERN, COMMON, EQUIV, I 
I I I DIM I 
t-------+-------+-------------------------~ 
IIEJ039II10D,10EISYMTlU I 
t-------+-------+-------------------------~ 
IIEJ041II10D,10EIASF, EXTERN, DIM I 
t-------+-------+-------------------------~ 
IIEJ043II10D,10EIINTGER/REAL/DOUBLE, GO I 
t-------+-------+-------------------------~ 
IIEJ0431112 IALOC I 
~-------+-------+-------------------------~ 
IIEJ044II10D,10EILITCON I 
t-------+-------+-------------------------~ 
IIEJ045II10D,10EILITCON I 
~-------+-------+-------------------------~ 
IIEJ046II10D,lOEILITCON I L _______ ~ _______ ~ _________________________ J 

(Continued) 



Table 32. Error/Warning Messages (Continued) 
r-------T--------T------------------------, r-------T-------T-------------------------, 
IMessagel Phase I Subroutine or Routine I IMessagel Phase I Subroutine or Routine I 
INumber I I I INurr.cer I I I 
~-------t--------t------------------------~ ~-------+-------+-------------------------~ 
IIEJ041II10D,10E I CLASS, DIM I I IEJ077I 114 I READ/READ~7R, DO, FILLEG, I 
~-------t--------+------------------------~ I I I SKPBLK I 
IIEJ048II10D IDIMSUB I .-------+-------t-------------------------~ 
~-------t--------+------------------------~ IIEJ018I114 I CKENDO I 
IIEJ049II10D IDIM, DIM90 I ~-------t-------+-------------------------~ 
~-------t--------+------------------------~ IIEJ019II10E I GO I 
IIEJ050II10D IEQUIV I ~-------+-------+-------------------------~ 
~-------+--------+------------------------~ IIEJ0791114 I READ/READWR, DO I 
IIEJ051II10D IEQUIV, DIM I .-------t-------t-------------------------i 
~-------t--------t------------------------~ I IEJ080I110E I GO I 
IIEJ0511114 I FCOMACHK I .-------+-------t-------------------------~ 
~-------t--------t------------------------~ IIEJ080II14 I READ/READWR I 
IIEJ052II10D ISUBS, EQUIV I .-------t-------t-------------------------~ 
~-------t--------+------------------------~ IIEJ081II10D,10EI ARIlH, EQUIV I 
IIEJ053II10D I SUBS I ~-------t-------+-------------------------~ 
~-------t--------+------------------------~ IIEJ081II14 I READ/READWR, FMDCON, I 
IIEJ054II10E IASF \ I I I FMECON, FMFCON, FMTINT, I 
~-------t--------+------------------------~ I I I FMACON, FORMAT I 
IIEJ055II10D \ FUNC, SUBRUT I ~-------+-------+-------------------------~ 
~-------t--------+------------------------~ IIEJ082II10D,lOEI LITCON I 
\IEJ056II10E IGO I ~-------t-------t-------------------------~ 
~-------+--------+------------------------~ IIEJ0821114 I NOFDCT, INTCON I 
IIEJ057I\10E I READ/WRITE I .-------t-------t-------------------------i 
~-------t--------+------------------------~ \IEJ083II10D,10EI CSORN, INTCON I 
IIEJ058II10E I READ/WRITE I .-------+-------t-------------------------~ 
~-------t--------t------------------------~ IIEJ083II14 I INTCON I 
IIEJ060II10D IEQUIV I .-------t-------t-------------------------~ 
~-------+--------+------------------------~ IIEJ084II10D,lOEI WARN/ERIlliT I 
IIEJ061II10D,10E \EOSR I ~-------+-------t-------------------------~ 
~-------+--------+------------------------~ IIEJ084II14 I ERROR, WARN I 
IIEJ063II10E \EQUIV I ~-------+-------+-------------------------~ 
t-------+--------+------------------------~ IIEJ084I\15 \ ERROR, WARN I 
IIEJ064II10D,10E,ILABTLU, SYMTLU, I .-------t-------+-------------------------~ 
~-------+--------+------------------------~ IIEJ085I112 I DPALOC, SALO \ 
\IEJ064II30 I TWNFIV I .-------t-------t-------------------------i 
~-------+--------+------------------------~ \IEJ085II14 I PRESCN I 
IIEJ065II10D,10E I CLASS, LABLU, PAKNUM I ~-------t-------t-------------------------i 
t-------t--------+------------------------~ IIEJ0861114 I BLANKZ I 
IIEJ066II10E IDO I ~-------t-------t-------------------------~ 
~-------t--------+------------------------~ IIEJ087I114 I FMDCON, FMECON, FMFCON, I 
IIEJ068II10D,10E ILITCON I I I I FMTINT, FMACON, FSUBST I 
~-------+--------+------------------------~ ~-------+-------+-------------------------~ 
IIEJ069II10E IASF I IIEJ088I114 I LPAREN I 
~-------+--------+------------------------~ .-------t-------t-------------------------~ 
IIEJ010II10D I FUNCT, SUBRUT I IIEJ089I114 I UNITCK I 
~-------+-~------+------------------------~ ~-------+-------+-------------------------~ 
I IEJ0111 110E I CALL I IIEJ090II14 I FQUOTE I 
~-------+--------+------------------------~ ~-------+-------+-------------------------~ 
IIEJ072II10E IARITH I IIEJ091I114 I FMINUS, FPLUS I 
~-------+--------+------------------------~ ~-------+-------+-------------------------~ 
IIEJ073II10D~lOE IPUTX I IIEJ092II14 I FCOMMA I 
~-------+--------+------------------------i .-------t-------t-------------------------~ 
IIEJ014II10D I COMMON I IIEJ094II14 I FMDCON, FMECON, FMFCON, I 
~-------+--------+------------------------~ I I I FMTINT, FMACON I 
IIEJ015I114 I FORMAT, CKLM I ~-------t-------t-------------------------~ 
~-------t--------+------------------------~ I IEJ095I 114 I READ/READWR I 
IIEJ016I114 IREAD/READWR, FORMAT I .-------t-------+-------------------------~ 
~-------t-------~+------------------------~ IIEJ096I114 I READ/READWR I 
IIEJ071II10D,10E IASF, READ/WRITE, EOSR, I .-------t-------t-------------------------~ 
I I IDO, SUBS, EQUIV, FUNCT, I IIEJ097I114 I INSAV I 
I I ISUBRUT, DIMSUB, DIM, I .-------+-------t-------------------------~ 
I I ISKPBLK I IIEJ098II14 I FQUOTE I L _______ ~ ________ ~ ________________________ J L _______ ~ _______ ~ _________________________ J 

(Continued) 

Appendix I: Diagnostic Messages and Statement/Expression Processing 133 



Table 32. Error/Warning Messages 
r-------T-------T-------------------------, 
1 Message 1 Phase I Subroutine or Routine I 
INumter I I I 
~-------+-------+-------------------------~ 
IIEJ0991114 I FQUOTE I 
~-------+-------+-------------------------~ 
IIEJ100II14 I DO, READ/READWR I 
~-------+-------+-------------------------~ 
IIEJ1231115 I MOPUP I 
~-------+-------+-------------------------~ 
IIEJ1241115 I COMMA I 
~-------+-------+-------------------------~ 
IIEJ1251115 I DO, BEGIO I 
~-------+-------+-------------------------~ 
IIEJ1261115 I CKARG I 
~-------+-------+-------------------------~ 
IIEJ1271112 I COMALO, AlOC I 
~-------+-------+-------------------------~ 
IIEJ1271115 I PRESCN, UMlNUS, UPlUS, I 
I I I FOSCAN I 
~-------+-------+-------------------------~ 
IIEJ1281115 I LFTPRN I 
~-------+-------+------------------------~~ 
IIEJ1291115 I TYPE I 
~-------+-------+-------------------------~ 
IIEJ130I115 I COMMA I 
~-------+-------+-------------------------~ 
IIEJ1311115 I INLINl I 
~-------+-------+-------------------------~ 
IIEJ1321115 I LABEL I 
~-------+-------+-------------------------~ 
IIEJ133I115 I EQUALS I 
~-------+-------+-------------------------~ 
IIEJ1351115 I COMMA. TYPE I 
~-------+-------+-------------------------~ 
IIEJ136II15 I LAB I 
~-------+-------+-------------------------~ 
IIEJ137I115 I COMMA, TYPE, RTPRN, I 
I I I FOSCAN I 
~-------+-------+-------------------------~ 
IIEJ139II15 I COMMA I 
~-------+-------+-------------------------~ 
IIEJ140I115 I FOSCAN I 
~----~--+-------+-------------------------~ 
IIEJ141I115 I COMMA I 
~-------+-------+-------------------------~ 
IIEJ1421115 I DO, BEGIO I 
~-------+-------+-------------------------~ 
IIEJ143II15 I EQUALS I 
~-------+-------+-------------------------~ 
IIEJ144I115 I ARTHIF I 
~-------+-------+-------------------------~ 
IIEJ142I112 I EXTCOM I 
~-------+-------+-------------------------~ 
IIEJ1451120 I PHEND I 
~-------+-------+-------------------------~ 
IIEJ1431112 I COMALO, RENTER/ENTER, I 
I I I SWROOT I 
~-------+-------+-------------------------~ 
IIEJ147II12 I EQUIVP I L _______ ~ _______ ~ _________________________ J 

134 

(Continued) 
r-------T-------T-------------------------, 
IMessagelPhase I Subroutine or Routine I 
INumber I I I 
~-------+-------+-------------------------~ 
IIEJ1481112 I RENTER/ENTER, SWROOT I 
~-------+-------+-------------------------~ 
IIEJ149II12 I COMALO I 
~-------+-------+-------------------------~ 
I IEJ150I 112 I ALOC I 
.-------+-------+-------------------------~ 
IIEJ1591115 I MOPUP I 
~-------+-------+-------------------------~ 
IIEJ1601114 I INTCCN I 
~-------+-------+-------------------------~ 
IIEJ160II15 I COMMA I 
.-------+-------+-------------------------~ 
IIEJ1611112 I EXTCOM I 
.-------+-------+-------------------------~ 
IIEJ162II10D,lOEI CLASS I 
~-------+-------+-------------------------~ 
IIEJ163II10D,lOEI LITCON I 
.-------+-------+-------------------------~ 
IIEJ164II10E I CON~/RETURN I 
.-------+-------+-------------------------i 
IIEJ164I114 I FORMAT I 
.-------+-------+-------------------------~ 
IIEJ166II100,lOEI EOSR, DO, FUNCT,SUBRUT I 
~-------+-------+-------------------------~ 
IIEJ1661114 I READ/READWR I 
~-------+-------+-------------------------~ 
I IEJ167I 114 I LINECK I 
.-------+-------+-------------------------i 
IIEJ168I110D,10EI EOSR I 
.-------+-------+-------------------------i 
IIEJ169IIIOD I DIMSUB I 
~-------+-------+-------------------------~ 
IIEJ1691115 I COMMA I 
~-------+-------+-------~-----------------i 
IIEJ171II100,10EI EOSR I 
.-------+-------+-------------------------i 
IIEJ171I114 I RPAREN I 
.-------+-------+-------------------------i 
IIEJ172IIIOE I ASF I 
~-------+-------+-------------------------~ 
IIEJ173III0E I ARITH I 
~-------+-------+-------------------------i 
I IEJ174I 115 I EQUALS. LFTPRN, INARG, I 
I I I TYPE I 
t-------+-------+-------------------------~ 
IIEJ175II14 I LABEL I L _______ 4-______ ~ _________________________ J 

STATEMENT/EXPRESSION PROCESSING 

Table 33 indicates the routine/ subrou
tine responsible for the processing of the 
statement/expression under consideration, 
and the phase in which it appears. 



Table 33. Statement/Expression Processing 
r-------------------T---------------T------T-~----T-------T-------T----------T----------, 
I Statement/ I Phase IPhase IPhase I Phase I Phase I Phase I Phase I 
I Expression I 10D/10E I 12 I 14 I 15 I 20 I 25 I 30 I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
IArithmetic Expres- I I I I I I I I 
I sion or statement I ARITH (E) I I PASSON I FOSCAN I ARITH I RXGEN I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I I I I I I FUNGEN/ I I 
IFUNCTION Call IARITH (E)ILDCN IPASSONIFOSCAN ICALSEQ IEREXIT I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I I I I FOSCAN, I I I I 
I Subscripted I I I IMVSBXX/I I I I 
IVariable I SUBS (E)ISSCK IPASSONIMVSBRX ISUBVP ISAOP, AOP I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
ISF definition and I I I I I I ASFDEF, I I 
I expansion IASF (E)ILDCN IASF IFOSCAN IARITH I ASFEXP I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
IStatement Number I I I I I I I I 
IDefinitions I CLASS (E) IASSNBLILABEL ILABEL I LABEL I LABEL I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
ISF Call IARITH (E)ILDCN IPASSONIFOSCAN ICALSEQ IASFUSE I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I IBKSP/REWIND I I I I I I I 
I BACKSPACE I END/ENDFIL (E) I I BSPREF I D02 I ESDRLD I RI::WRT I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I I I I ICALSEQ,IFUNGEN/ I I 
ICALL I CALL (E) ILDCN IPASSONIFOSCAN IIFCALL IEREXIT I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I COMMON I COMMON (D) ICOMAL I I I I I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
IComputed GOTO IGO (E)I ICGOTO ICGOTO ICOGOTO ICGOTO I I 
~-------------------+---------------+------+------+-------+-------+-------~--+----------~ 
I ICONT I I I I I I I 
I CONTINUE I RETURN (E) I ISKIP ISKIP I I I I 
~-------------------+---------------+--~---+------+-------+-------+----------+----------~ 
I DIMENSION IDIM (D) I I I I I I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I I I I I IDOl" I I 
IDO IDO (E) I 100 IDO IDO IENDDO I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I INTGER/ (D) I I I I I I I 
IDOUBLE PRECISION I READ/DOUBLE I DPALOCI I I I I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I IBKSP/REWIND/ I I I I I I I 
lEND IEND/ENDFIL (E)I lEND IMOPUP IPHEND lEND IENDCRD I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I IBKSP/REWIND/ I I I I I I I 
IENDFILE IEND/ENDFIL (E) I IBSPREFID02 IESDRLD IRDWRT I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I EQUIVALENCE IEQUIV (D) I EQUIVP I I I I I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
lEXTERNAL I EXTERN (D)ILDCN I I I \ I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
IFOR~AT I FORMAT (D,E) I \ FORMAT I I I I I 
~-------------------+---------------+------+------+-------+-------+----------+----------i 
I I FUNCT/SUBRUT I I I I I I I 
I FUNCTION I (D)ILDCN ISUBFUNIFHDR I ISUBRUT I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
IGO I.GO (E) I IENDOCKIGOTO I ITRGEN I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
IIF IIF (E)I IENDOCKIFOSCAN IIFCALL IARITHI I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I I I I I I FUNGEN/ I I 
lIn-line Functions IARITH (E) ILDCN IPASSONIFOSCAN ICKCOD IEREXIT I I L ___________________ L _______________ L ______ i ______ i _______ i _______ i __________ i __________ J 

(Continued) 

Appendix I: Diagnostic Messages and Statement/Expression Processing 135 



Table 33. Staterrent/Expression processing (Continued) 
r-------------------T---------------T------T------T-------T------~----------T----------, 
I statement/ I Phase IPhase IPhase I Phase I Phase I Phase I Phase I 
I Expression I 10D/10E I 12 I 14 I 15 I 20 I 25 I 30 I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I INTGER/ I I I I I I I 
I INTEGER I REAL/DOUBLE (D) I SALO I I I I I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I PAUSE I STOP/PAUSE (E) I IPAUSE ID02 I I STOP/PAUSE I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I I I I I READ, IRDWRT/ I I 
I READ I READ/WRITE (E) I I READ I D02 I LIST I IOLIST I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I IINTGER/ I I I I I I I 
I REAL I REAL/DOUBLE (D) I SALO I I I I I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I ICONT I I I I I I I 
I RETURN I RETURN (E) I IRETURNISKIP t I RETURN I I 
~-------------------+---------------+------+-~----+-------+-------+----------+----------i 
I IBKSP/REWIND/ I I I I I I I 
I REWIND IEND/ENDFIL (E)I IBSPREFID02 IESDRLD IRDWRT I I 
~-------------------+---------------+------+------+-------+-------+----------+----------i 
I STOP I STOP/PAUSE (E) I I STOP \ D02 I I STOP/PAUSE I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I FUNCI'/SUBRUT I I I I I I I 
I SUBROUTINE I (D)ILDCN \SUBFUN\D02 I ISUBRUT I I 
~-------------------+---------------+------+------+-------+-------+----------+----------~ 
I I I I I I IRDWRT/ I I 
I WRITE I READ/WRITE (E)I IREADWRID02 I LIST I IOLIST I I L ___________________ ~ _______________ ~ ______ ~ ______ L _______ ~ _______ L __________ L __________ J 

136 



APPENDIX J: MAIN STORAGE ALLOCATION 

The amount of main storage allocated to 
the compiler depends on whether a SPACE or 
a PRFRM compilation is being performed. 

contiguous only for each control section. 
Figures 47 through 53 reflect the main 
storage allocation associated with each 
successive phase/interlude as it performs 
its functions, when only a minimal amount 
of storage (15K bytes, where K = 1024) is 
available for compilation. FOR SPACE COMPILATIONS 

Fer SPACE compilations, the compiler 
requires main storage for: 

When the main storage allocated to the 
compiler (specified in the SIZE option) is 
greater than 15K bytes, the internal text 
buffers may be interspersed within the area 
occupied by the dictionary and the overflow 
table. In this case, there need be no 
relationship between the various areas 
required by the compiler. 

• Load modules (phases, interludes, print 
buffer, and interface). 

• Resident tables (dictionary, overflow 
table, SEGMAL). 

• Internal text buffers. 

• BSAM I/O routines. 

The main storage required by each 
phase/interlude of the cerepiler need be 

These figures are schematics showing the 
main storage allocated; proportional sizes 
within the diagrams do not necessarily 
indicate proporticnal amounts of main stor
age. 

32K r------------------------, 
I INTERFACE MODULE I 
~------------------------~ 
I PRINT BUFFER MODULE I 
~------------------------~ I BSAM ROUTINES I 
~------------------------~ I PHASE 7 I 
~------------------------~ 
I AVAILABLE MAIN I 
I STORAGE I 
I I 
I I 
I I 
~------------------------~ 
I I 
I PHASE 1 I 
I I 
I I 

17K~------------------------~ 

RESIDENT 
CONTROL 
PROGRAM 

o ------------------------
Figure 47. End of Phase 1 

(initial entry) 

32K r------------------------, 
I INTERFACE MODULE I 
~------------------------~ 
I PRINT BUFFER MODULE I 
~------------------------~ 
I BSAM ROUTINES I 
~------------------------~ 
I PHASE 7 I 
~------------------------~ I AVAILABLE MAIN I 
I STORAGE I 
~------------------------~ 
I PHASE 1 I 
I I 
I I 
~------------------------~ 
I OVERFLOW TABLE., SEGMAL I 
~------------------------~ 
I 4 INTERNAL TEXT BUFFERS I 

17K~------------------------~ 

I I 
I I 
I I 
I I 
I RESIDENT I 
I CONTROL I 
I PROGRAM I 
I I 
I I 
I I 
I I OL------------------------J 

Figure 48. End of Phase 1 
(subsequent entries) 

32K r------------------------, 
I INTERFACE MODULE I 
~------------------------~ 
I PRINT BUFFER MODULE I 
~------------------------~ 
I BSAM ROUTINES I 
~------------------------~ 
I PHASE 7 I 
~------------------------~ 
I AVAILABLE MAIN I 
I STORAGE I 
~------------------------~ 
I TRANSIENT WORK AREA I 
~------------------------~ 
I DICTIONARY I 
~------------------------~ I OVERFLOW TABLE, SEGMAL,I 
~------------------------~ 
I 4 INTERNAL TEXT BUFFERS I 

17K~------------------------~ 
I I 
I I 
I I 
I I 
I RESIDENT I 
I CONTROL I 
I PROGRAM I 
I I 
I I 
I I 
I I 

OL------------------------J 
Figure 49. End of Phase 7 

Appendix J: Main Storage Allocation 137 



138 

32K r-------------------------, 
I INTERFACE MODULE I 
~-------------------------~ 
I PRINT BUFFER MODULE I 
~-------------------------~ 
I BSAM ROUTINES I 
~-------------------------~ 
I TRANSIENT WORK AREA I 
~-------------------------~ 
I PHASE 10D, I 
I PHASE 10E, I 
I INTERLUDE 10E I 
~-------------------------~ 
I DICTIONARY I 
~-------------------------~ 
, OVERFLOW TABLE, SEGMAL I 
.-------------------------~ I 4 INTERNAL TEXT BUFFERS, 

17K .-------------------------~ 
I I 
, I 
I I 
I RESIDENT , 
I CONTROL I 
I PROGRAM I , , 
I I 
, I o L _________________________ J 

Figure 50. Phases 100 and 10E, 
and Interlude 10E 

32K r-------------------------, 
I INTERFACE MODULE I 
.-------------------------~ 
, PRINT BUFFER MODULE , 
.-------------------------~ I BSAM ROUTINES I 
~-------------------------~ 
, TRANSIENT WORK AREA I 
.-------------------------~ , I 
I PHASE 15., I 
I INTERLUDE 15 I 
.-------------------------~ I OVERFLOW TABLE, SEGMAL , 
t-------------------------~ 
I 4 INTERNAL TEXT ~UFFERSI 

17K ,~-------------------------~ 
I I 
, I 
, I 
I RESIDENT 1 
I CONTROL I 
1 PROGRAM 1 
I I 
I 1 
I 1 o L _________________________ J 

Figure 52. Phase 15 and Inter
lude 15 

32K r-------------------------, 
, INTERF~CE MODULE I 
~-------------------------~ 
J PRINT BUFFER MODULE I 
~-------------------------~ 
I BSAM ROUTINES I 
1 , 
.-------------------------~ 
I TRANSIENT WORK AREA , 
~-------------------------~ 
, PHASE 12,PHASE 14 I 
I INTERLUDE 14 I 
~-------------------------~ 
I DICTIONARY I 
.-------------------------~ 
, OVERFLOW TABLE, SEGMAL I 
t-------------------------~ 
I 4 INTERNAL TEXT BUFFERS, 

17K ~-------------------------~ 
I I 
I I 
I I 
, RESIDENT I 
I CONTROL I 
, PROGRAM I 
I , 
, I 
I , o L _________________________ J 

Figure 51. Phases 12 and 14, 
and Interlude 14 

32K r-------------------------, 
, INTERFACE ~ODULE 1 

t-------------------------~ 
I PRINT BUFFER MODULE I 
.-------------------------~ 
I BSAM ROUTINES 1 

t-------------------------~ 
I TRANSIENT WORK AREA , 
t-------------------------~ 
I PHASE 20, I 
I· PHASE 25, I 
I PHASE 30 I 
t-------------------------~ 
1 OVERFLOW TABLE, SEGMAL 1 
.-------------------------~ 
I 4 INTERNAL TEXT BUFFERS 1 

17K .-------------------------~ 
I I 
I 1 
1 1 
I RESIDENT 1 
I CONTROL I 
I PROGRAM I 
I I 
, I 
, I o L _________________________ J 

Figure 53. Phases 20~ 25, and 
30 



FOR PRFRM COMPILATIONS 

For PRFRM compilations, the compiler 
requires main storage for: 

• load modules (phases, interface, print 
tuffer" and perforrr,ance). 

• Resident tables (dictionary, overflow 
table, and SEGMAL). 

• Internal text buffers. 
• BSAM I/O routines. 
• Block/deblock buffers if blocking is 

specified. 

The main storage required by any given 
phase of the co~piler need be contiguous 
only for each control section within that 
phase. Figure 54 reflects the rr.ain storage 
allocation for the duration of a PRFRM 
compilation, when only a minimal amount of 
main storage (19K bytes, where K=1024) is 
available for compilation.. 

When the main storage allocated to the 
compiler (specified in the SIZE option) is 
greater than 19K bytes, the internal text 
buffers may be interspersed within the area 
occupied by the dictionary and the overflow 
table. In this case, there need be no 
relationship arr.ong the various areas 
required by the corrpiler. 

Figure 54 is a schematic showing the 
main storage allocated; proportional sizes 
within the diagram do not necessarily indi
cate proportional amounts of main storage. 

36K r--------------------------------------, 
I INTERFACE MODULE I 
.--------------------------------------~ 
I PRINT BUFFER ~ODULE I 
.--------------------------------------~ 
I PERFORMANCE MODULE I 
~--------------------------------------~ 
I BSAM ROUTINES I 
~--------------------------------------~ 
I I 
I PHASE 1, PHASE 7, I 
I PHASE 100, PHASE 10E, I 
I PHASE 12, PHASE 14, I 
I PHASE 15, PHASE 20, I 
I PHASE 25, OR PHASE 30 I 
I I 
~--------------------------------------~ 
I TRANSIENT WORK AREA I 
.--------------------------------------~ 
I DIC~IONARY, OVERFLOW I 
I TABLE, AND SEGMAl I 
.--------------------------------------~ I 4 INTERNAL TEXT BUFFERS I 
.--------------------------------------~ 
I BLOCK/DEBLOCK BUFFERS (IF I 
I BLOCKING IS SPECIFIED) I 

17K.--------------------------------------~ 
I I 
I I 
I RESIDENT I 
I CONTROL I 
I PROGRAM I 
I I 
I I Ol------------------------------________ J 

Figure 54. Main Storage Allocation for a 
PRFRM compilation 

Appendix J: ~ain Storage Allocation 139 



APPENDIX K: COMMUNICATION AREA (FCOMM) 

The communication area is a central 
gathering area used to communicate neces
sary information between the various phases 
of the compiler. The commllnication area, 
as a portion of the interface module, is 
resident throughout the compilation. 

1, the option has been specified, or the 
acticn is to be taken. 

Several entries in the communication 
area are equated to the addresses of other 
entries in the communication area used 
during earlier ~hases. Equating the 
entries keeps the size of the communication 
area to a rnininum. 

Various bits in the corrmunication area 
are examined by the ~hases of the compiler. 
The status of these tits determines the 
following: 

• Options specified by the source pro
grammer. 

• Specific action to be taken by a phase. 

If the bit in question is a 0, the 
option has not teen specified, or the 
action is not to be taken; if the bit is a 

Table 34. Communication Area 

The communicaticn area is assembled as a 
DSECT (dummy section) within each phase. 
This allows the phases to symbolically 
address the entries in the communication 
area without the communication area actual
ly residing in each phase. 

Tatle 34 indicates the format and organ
ization of the corrmunication area. 

r--------T--------------T---------------------------------------------------------------, 
I I I I 
I Entry I Size I Meaning I 
~--------+--------------+--------------------------------------------------------~------~ 
FCO~M DS XL4 BITO SOURCE * 

BITl DECK * 
BIT2 MAP * 
BIT3 ADJUST * 
BIT4 PRFRM * 
BITS 5-6 00 NOLOAD* 

BIT? 
BIT8 
BITS 

BIT11 
BIT12 
BIT13 
BIT14 
BIT15 
BIT16 
BIT1? 
BIT18 
BIT19 
BIT20 
BIT21 
BIT22 

BIT23 
BIT24 
BIT25 
BIT26 
BIT2? 
BITS28-31 

11 LOAD * 
BCD VERSION OF SCODE REQUESTED * 
NAME PARAMETER EXISTED 
9-10 00 MAIN PROGRAM 

10 SUBROU~INE SUBPROGRAM 
11 FUNCTION SUBPROGRAM 

FUNCTION NAME DEFINED 
OBJECT MODULE CALLS AN EXTERNAL SIP 
COMMON AND EQUIVALENCE TEXT ALL IN STORAGE 
LAST COMPILE OF THIS JOB STEP-PH lOE/1 
ERROR IN ANY COMPILE OF A BATCH RUN 
W.ARNING MESSAGES 
ERROR MESSAGES 
MESSAGE IN CURRENT STATE~ENT-PH 10D/lOE 
WARNING IN ANY COMPILE OF A BATCH RUN 
ABORT COMPILATION 
ALL INTERNAL TEXT IN STORAGE 
ONE INTERNAL TEXT RECORD-PH 10D/10E 
OBJ. MOD. USES A SPILL BASE REG-PH 12/25 
BRANCH LIST TEXT NOT ALL IN STORAGE-PH 25/30 
OBJECT LISTING 
OTHER THAN FIRS1 COMPILE 
COMPILATION RESTARTED 
INVALID OPTION(S) IN 'PARM' FIELD 
'NAME' OPTION '100 LONG-TRUNCATED 
SPARE 

--------~--------------~---------------------------------------------------------------
(Continued) 

140 



Table 34. Communication Area (Continued) 
r--------T--------------T---------------------------------------------------------------, 
I I I I 
I Entry I Size I Meaning I 
~--------+--------------+---------------------------------------------------------------~ 
IFSIZE IDS F IBYTES OF STORAGE REQUESTED E'OR COMPILER. I 
I FDATE IDS CL5 I YEAR (2 DIGITS), D.AY (3 DIGITS) I 
IFLlNELNGIDS X IOBJECT PROGRAM PRINT LINE LENGTH * I 
IFINDEX IDS H IDISPLACEMENT FROM FCOMM TO FDECBIN I 
IFMAXLINEIDS H IMAXIMU~ NUMBER OF LINES CN LISTING PAGE I 
I FCURLINE IDS H ICURRENT LINE ON LISTING PAGE I 
I FIEJF IDS CL4 I FORTRAN E INTERNAL COlilPONENT CODE - IEJF I 
\ FPHASE IDS CL4 IENTRY POINT OF PHASE IN CCNTRCL I 
IFDMRRDCDIDS X IHI-ORDER BYTE OF REREAD ITEM IN CLOSE LIST I 
I FDMLSTCDI DS X IHI-ORDER BYTE OF LAST ITE~ IN CLOSE LIST I 
I FPRTCTRLI DS 2H IBRANCH TO PRINT CONTROL ROUTINE I 
~--------~--------------+---------------------------T-----------------------------------~ 
ITHE CONTENTS OF THE IFOR SPACE IFOR PRFRM I 
INEXT 4 FIELDS DEPENDS ICOMPILATIONS - ICOMPILATIONS - I 
ION WHETHER A SPACE OR AI I I 
I PRFRM COMPILATION IS I I I 
I BEING PERFORMED. I I I 
~--------T--------------+---------------------------+-----------------------------------~ 
IFIORTN IDS 2H IB SIORTN IMVI FPRFRMDL,X'4' I 
IFNEXT IDS 2H IB SNEXT IL 13,FPRFR~DL I 
I IDS H I (NOT USED) I BR 13 I 
I FPRFRMDLIDS A I ZERO IADDR. OF IEJFAPAO I 
~--------+--------------+---------------------------~-----------------------------------~ 
I F'AGAOEND l:as A I ADDRESS OF (END OF INTERFACE z.:ODULE + ONE) 
IFSAVADDRIDS A IADDRESS OF CONTROL PROGRAM SAVE AREA 
IFTXTBFSZIDS H !SIZE OF INTERNAL TEXT BUFFERS 
IFTXTPTR IDS H IADDR. OF NEXT INT. TEXT RCD.-PH. 10D/E,12/14 
IFTXTBFAllDS A IADDRESS OF INTERNAL TEXT BUFFER 1 - SYSUTl 
IFTXTBFA21DS A IADDRESS OF INTERNAL TEXT EUFFER 2 - SYSUTl 
IFTXTBFBl DS A IADDRESS OF INTERNAL TEXT EUFFER 1 - SYSUT2 
IFTXTBFB2 DS A IADDRESS OF INTERNAL TEXT EUFFER 2 - SYSUT2 
IFPRTBUFl OS A IADDRESS OF FIRST PRINT BUFFER - PHASE 1/14 
IFPRTBUF2 DS A IADDRESS OF SECOND PRINT BUFFER - PHASE 1/14 
IFINITBFS DS 4A IINITIAL TEXT BUFFER POINTERS 
IFDICTNDX DS A IADDRESS OF DICTIONARY INDEX - PHASE 7/12 
IFOVFLNDX DS A IADDRESS OF OVERFLOW INDEX 
IFDICTBLK DS A IDICT. BLOCK NOW BEING BUILT - PH. 10D/E 
IFOVFLBLK DS A IOVFL. BLOCK NOW BEING BUILT - PH. 10D/E 
IFDICTNXT DS A IDICT. ENTRY NEXT TO BE BUILT - PH. 10D/E 
IFOVFLNXT DS A IOVFL. ENTRY NEXT TO BE BUILT - PH. 10D/14 
IFISNEX1 OS F IISN OF FIRST EXECUTABLE-PHASE 10D/E 
IFOBJPROG OS CL6 INAME OF OBJECT PROGRAM 
IFOBJREGS DS X IBIT 3, EXTERNAL FUNCTION HAS BEEN CALLED 
I IBITS 4-7, LOWEST INDEX REGISTER IN OBJ. PROG. 
IFASFCNT DS X ICOUNT OF SF'S IN OBJECT PROGRAM 
IFDOCOUNT OS H INUMBER OF DO STATEMENTS 
I DS H I SPARE I L ________ ~ ______________ ~ ______________________________________________________________ J 

(Continued) 

Appendix K: Comrr~nicaticn Area (FCOMM) 141 



Table 34. Communicaticn Area (Continued) 
r--------T--------------~--------------------------------------------------------------, 
FCO~SIZE EQU FDICTBLK ISIZE OF OBJECT PROGRAM COMMON - PH. 12/25 I 
FALSIZE EQU FDICTBLK+2jSIZE OF OBJ. PROG. ARGUMENT LIST - PH. 15/20 I 
FBLSIZE EQU FOVFLBLK ISIZE OF OBJ. PROG. BRANCH LIST - PH. 12/25 I 
FBLSTRT EQU FOVFLBLK+2IADDR. OF OBJ. PROG. BRANCH LIST - PH. 12/25 1 
FASFDOBL EQU FOVFLNXT+2IADDRESS OF ASF/DO BRANCH LIST - PH. 20125 
FBVSTRT EQU FDICTNXT IADDR. OF OBJ. PROG. BASE VAL. LIST - PH. 12/25 
FOBJSTRT EQU FDICTNXT+2ISTARTING ADDR. OF OBJECT PROGRAM - PH. 12/25 
FLOCCTR EQU FISNEX1 ILOCATION COUNTER FOR OBJ. PROG. - PH. 12/25 
FFNCADDR EQU FDICTBLK+2IADDRESS OF RESULT (FUNCTION SIP) - PH. 14/15 
FIBCOM EQU FOVFLNXT IADDRESS OF IBCOM - PHASE 20/25 
FOBJERR EQU FDICTBLK+2IADDR. OF OBJ. PROG. ERROR RTNE. - PH. 20/25 
FDECKSEQ EQU FDICTNDX IOBJECT PROGRAM DECK SEQUENCE NUMBER - PH. 12/25 
FESDSEQ EQU FOICTNDX+210BJECT PROGRAM ESD SEQUENCE NUMBER - PH. 12/20 

IFALSTRT OS F IDSRN ARGUMENT LIST ADDRESS 
IFDATEMP OS F IADDRESS OF DIRECT ACCESS 1/0 TEMPORARY AREA 
jFDEFILCT OS F j'DEFINE FILE' DSRN COUNT - PH. 10D/20 
IFDIOCS EQU FDEFILCT IADDRESS OF DIOCS - PH. 20/25 
I FPATCH DS 2H IBRANCH TO PATCH ROUTINE IN INTERFACE MODULE 
IFPTCHTBL OS A IADDRESS OF PATCH TABLE 
IFPTCHPTR DS A IPATCH TABLE ENTRY NEXT TO BE POSTED 
IFSORSYM1 DS A IADDRESS OF SORSYM,TABLE 
IFSORSYM2 DS A ISORSYM TABLE ENTRY NEXT TO BE BUILT 
~--------~--------------~---------------------------------------------------------------~ 
I*Default values for these compiler options may be specified by the user during the I 
I system generation process via the FORTRAN macro-instruction. The default values are I 
I assumed if the corresponding parameters in the PARM field of the user's EXEC I 
I statement are not included. I L _______________________________________________________________________________________ J 

142 



Phase 100 and Phase 10E convert each 
FORTRAN source statement into a form 
<intermediate text) usable to subsequent 
phases of the compiler. Inter~ediate text 
is developed by scanning the source state
ments from left-to-right and by construct
ing ene-word intermediate text entries for 
the source text contained in the state
ments. 

Phase 100 scans the declarative state
ments in the source module, and creates 
intermediate text for those statements. 
When Phase 100 encounters either the first 
statement function or the first executable 
statement, control is passed to Phase 10E 
via the interface module. Phase 10E con
tinues the scan of the source module and 
creates intermediate text for statement 
functions and executable statements. 

As source statements are scanned, 
entries are made to the dictionary and 
overflow table. The information in the 
dictionary and overflow table supplements 
the intermediate text in the generation of 
machine language instructions by subsequent 
phases of the compiler. This information 
is associated with the intermediate text 
entries by means of pOinters that reside in 
the text entries. 

Each source staterr.ent of the source 
module consists of one or more card images. 
To scan source statements, each card image 
of the source module is first read into one 
of two I/O buffers in the print buffer 
module CIEJFAKAO). The double-buffer 
scheme allows for overlapping the scanning 
of a card image in one buffer with the 
reading of the next card image of the 
source module into the other buffer. If 
the SOURCE option is specified, the I/O 
buffers are used to print a listing of the 
source module. 

In general, the processing of a source 
statement is divided into three operations: 

• Preliminary scan of the card image(s} 
for the statement. 

• Classification scan of the first card 
image for the statement. 

• Reserved word or arithmetic scan of the 
card image(s) for the statement, which 
scans the source text of the statement. 
(The reserved word or arithmetic scan 
also creates intermediate text.) 

APPENDIX L: SOURCE STATEMENT SCAN 

PRELI~INARY SCAN 

The preliminary scan first determines 
the address of the end of the source text 
in the card image to be processed. This 
address is obtained by examining the card 
image from right-to-left in groups of four 
bytes. The address of the last blank group 
encountered is used as the ending address 
of the card image. This address is used in 
the reserved word or arithmetic scan of the 
card image and indicates the point at which 
the scan of the card image and the creation 
of intermediate text for the card image is 
to terminate. In the case of the last card 
image for a statement, the ending address 
indicates the end of the statement. 

The preliminary scan then determines the 
type of the card image to re scanned. A 
card image may correspond to the start of a 
FORTRAN statement, the continuation of a 
FORTRAN statement, or a user's comment. 

If the card image corresponds to the 
start of a FORTRAN statement, a unique 
internal statement number is assigned to 
the statement. This number is placed in 
front of the card i~age in the buffer 
containing that card 1mage. Control is 
then ~assed to the classification scan. 

If the card image corresponds to a 
continuation of a FORTRAN statement, a new 
internal statement number is not assigned. 
Control is immediately passed to the clas
sification scan. 

If the card image corresponds to a 
user's comment, no further processing is 
required. The next card image of the 
source module is read into the buffer that 
contained the comments card image. The 
address of the other buffer (previously 
filled) is obtained from the communication 
area# and scanning starts for the card 
image in that buffer. 

In each case, if the SOURCE option is 
specified the buffer containing the card 
image is first written onto the SYSPRINT 
data set before any further processing. 

CLASSIFICATION SCAN 

The classification scan determines the 
type (arithmetic or reserved word) of the 
FORTRAN statement to be processed. The 

Appendix L: Source Statement Scan 143 



first action taken by the classification 
scan is to determine if a statement number 
defines the statement under consideration. 
If a statement number is associated with 
the statement, an overflow table entry for 
that statement number is created. 

The next item of the source statement is 
then obtained. If the item is a symbol, 
control is passed to a routine that scans 
arithmetic statements. If the item is a 
reserved word (e.g., READ), control is 
passed to the appro~riate reserved word 
routine. The arithmetic or reserved word 
routine controls the scanning of the 
remainder of the statement, and creates 
intennediate text for the statement. 

If the 
reserved 
question 
statement 
the next 
begins. 

item is neither a symbol nor a 
word, the source statement in 
is invalid. Processing of that 
is terminated, and processing of 
statement of the source module 

RESERVED WORD OR ARITHMETIC SCAN 

The main function of the reserved word 
or arithmetic scan is to scan the card 
image(s) for each statement of the source 
module. During this scan, dictionary and 
overflow table entries are constructed, and 
intermediate text entries are created. In 
addition, each statement is examined for 
correct use of the FORTRAN IV (E) language. 

The reserved word or arithmetic scan is 
performed by either a reserved word routine 
or the arithmetic routine. A reserved word 
routine exists for each of the reserved 
word source statements. certain reserved 
word routines, namely those that process 
statements that may contain arithmetic 
expressions (e.g., IF and CALL statements) 
and those that process stateme.nts that 
contain I/O lists (e.g., READ and WRITE 
statements) pass control to the arithmetic 
routine to complete the scanning of the 
associated reserved word statements. 

When the appropriate reserved word rou
tine or the arithmetic routine receives 
control, a left-to-right scan of the cur
rent card image is then initiated. The 
first operand of the card image is 
obtained" and a check is made to determine 
if a dictionary or overflow table entry has 
previously been created for the operand. 
If an entry has not been created, a dic
tionary or overflow table entry (depending 
on the operand) is created and entered in 
the appropriate resident table. Scanning 
is resumed and the first operator of the 
card image is obtained. 

144 

The intermediate text for each card 
image is develo~ed by constructing inter
mediate text entries for operator-operand 
pairs as they are scanned by a reserved 
word routine or the arithmetic routine. In 
this context, operator refers to commas, 
parentheses, etc., as well as to ari thnletic 
operations (e.g., + and -). Operand refers 
to variatles, constants, statement numbers, 
data set reference numbers, etc., that are 
operated on. 

The procedure of: (1) scanning operators 
and o~erands, (2) constructing dictionary 
or overflow table entries when necessary 
for the operands, and (3) developing inter
mediate text ~ntries for the operator
operand pairs is repeated until the end of 
the card image is recognized by the re
served word or arithmetic scan. 

When the address indicating the end of 
the card image is recognized by the re
served word or arithmetic scan, the next 
card image of the source module is read 
into the buffer that contained the card 
image just processed. The address of the 
other Luffer (previously filled) is 
obtained from the communication area, and 
processing starts for the card image in 
that buffer. 

When an entire source statement has been 
scanned, a special intermediate text entry 
indicating the end of the intermediate text 
representation for a given statement is 
generated and then written onto an inter
mediate storage data set at the end of the 
intermediate text re~resentation for the 
staterr.ent. This special text entry con
tains the internal statement number 
assigned to the statement by the prelimi
nary scan section. 

During the reserved word or arithmetic 
scan, each card image is examined for 
pro~er use of the FORTRAN IV (E) language. 
The format of the card image is checked to 
see if the statement associated with the 
card image has been coded properly by the 
source programrrer. 

If a serious error is encountered, scan
ning of the statement associated with the 
card image is terminated. An intermediate 
text word indicating the end of the inter
mediate text representation for the state
ment is generated and then written onto an 
intermediate storage data set. This text 
word also indicates that an error was 
encountered in the processing of the state
ment. An intermediate text word, rep
resenting the error, which contains a num
ber corresponding to the specific error 
detected, is generated and then written 
onto the intermediate storage data set at 
the end of the intermediate text represen-



taticn for the statement in which the error 
was detected. 

If an error is encountered that is not 
serious enough to terminate the scan of a 
statement, an interroediate text word rep
resenting a warning is generated. This 
word is saved and scanning is resumed. 
When the scan of the statement is terminat
ed (either when the end of the statement is 
recognized or when a serious error is 
encountered), the warning text word is 
written onto the intermediate storage data 
set immediately following the text word 
that indicates the end of the intermediate 

text representation for the statement and 
any intermediate text words generated for 
sericus errors. (A maximum of four warning 
text words per statement may be saved and 
then written onto the intermediate storage 
data set. If rrore than four warning condi
tions are encountered, an intermediate text 
word representing an error is generated and 
scanning of the statement is terminated.) 

The source statement scan for the fol
lowing READ statement is illustrated in 
Chart 19. 

READ (5,10) A,B(1),(C(I),I=1,10),D 

Appendix L: Source statement Scan 145 



Chart 19. READ statement Scan Logic 

***** 
*19 * 
* *A!* 

* 
I 

READ V 
:****Al*********: *****A2********** 

* GETWD * 
* SET UP * *-*-*-*-*-*-*-*-*OTHER 
* READ BCD *---->* GET *1 
* ADJ CODE * * OPERATOR * 
* ...... * 
***************** ***************** v 

1 

L PAREN **** 
* * * F5 * 
* * **** 

V 
*****82********** 
* GETWD * 
*-*-*-*-*-*-*-*-* 
* GET -OAT A SET 
* REFERENCE 
* NUMBER 
***************** 

I 
V 

*****C2********** 
* CSORN * 
*-*-*-*-*-*-*-*-* 
* ENTER * 
* DSRN IN * 

***~!~!!~~!~~***: 

I 

**** 
* * 
: A3 : 

**** 

I v 
*****A3********** 
* CSORN * 
*-*-*-*-*-*-*-*-* 
* ENTER * 
* VARIABLE IN * 
* DICTIONARY * 
***************** 

1 
V .*. 

83 *. *****84********** *****85********** 
.* *. * SUBS * * PUTX * 

.* VARIABLE *. YES *-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
*. DIMENSIONED .*------->* PROCESS *------->* ENTER * 

*. .* * SUBSCRIPT * * INTO * 
*..* * VARIABLE * * TEXT * 

* •• * ***************** ***************** 

*1 NO L>: *;;*: 

* * V **** .*. .*. 
C3 *. C4 *. *****CS*********. 

.*.* IS *.*. NO _*-* IS *.*. YES :-*-*-i~;~*_*_*_: 
*. OPERATOR .*------->*. OPERATOR • *-------> * END OF * 

*. .* *.END MARK .* A * STATEMENT * 
*..* *..* * PROCESSING * 

* •. * * •• * ***************** 

*1 YES J*:O 

* * v 
*****02********** 
* GETWD * 

*CHANGE AOJ CODE* R PAREN *-*-*-*-*-*-*-*-* 

004 V * K2 * CLASS 
:****01*********: 

* TO UNFORMATTED*<------* GET OPERATOR * 
: READ :: * 
***************** ***************** 

1 1'0'" 
v V 

*****El ********** *****E2********** 
:-*-*-~~!~*-*-*-: :-*-*-~~!~*-*-*-: 
* ENTER AOJ * * ENTER AOJ 

CODE INTO * CODE INTO 
* TEXT * TEXT 
***************** ***************** 

..t... I 
* K2 * V 
...... *****F2********** 

* GETWD * 
*-*-*-*-*-*-*-*-* 

GET FORMAT * 
STATEMENT 

NUMBER * 
***************** 

I 
V 

*****G2********** 
* LABLU * 
*-*-*-*-*-*-*-*-* 
* ENTER * 
* STMT NUMBER * 
* IN OVERFL TBL * 
***************** 

1 
V 

*****H2********** 
**** * GETWD * 

* *OTHER*-*-*-*-*-*-*-*-* 
* F5 *<--* GET * 
* * * OPERATOR 

* ************* ** ** 

lOP'"" 
V 

*****.J2********** 
* PUTX * 
*-*-*-*-*-*-*-*-* 
* ENTER PTR TO * 
* STMT NUMBER * 

...... :***!~!~*!~!!***: 
* K2 * I ... **** ... ... ****... <: _____ ...J 

A : K2 :-> 
I **** ARITHIO V 

*****Kl********** *****K2********** 
* * * GETWD * 

SET UP * ZERO*-*-*-*-*-*-*-*-* 
* ADJ CODE * <-------* GET * 
: FOR OPERATOR : : ~6~6 * 
***************** ***************** 

146 

I NON-ZERO 

*~** 
* * * A3 * 
* * **** 

*****03********** * * 
* GETWD * 
*-*-*-*-*-*-*-*-* 
* GET DO * <:----------, 
* PARAMETER : 

***************** 

1 
V 

*****E3********** 
* CSORN * 
*-*-*-*-*-*-*-*-* * ENTER * 
* PARAMETER IN * 
* DICTIONARY * 
***************** 

I 
V 

*****F3********** 
* PUT X * 
*-*-*-*-*-*-*-*-* 
* ENTER * 

PARAMETER 
* INTO TEXT 
***************** 

I 
V 

*****G3********** 
* GETWD * 
*-*-*-*-*-*-*-*-* 
* GET * 
* OPERATOR * 
* * ***************** 

1 
V .*. 

H3 *. 
.* *. 

YES.* THREE *. 
*. PARAMETERS .* 

*. .* 
*. .* 

* .. * i NO 

V .*. 
J3 *. *****J4********** 

.* *. * PUTX * 
.... t s *. YES *-*-*-*-*-*-*-*-* 

*. OPERATOR • *-------> * ENTER * 
*. R PAREN .* * OPERATOR * 

* •••••• * :.**!~!2*!;~!.**: i NO 

V .*. 
K3 *. *****K4********** 

.* *. * PUTX * 
.* TWO *. YES *-*-*-*-*-*-*-*-* 

*. PARAMETERS • *-------> * ENTER IMMED * 
*. .* * PARAMETER * 
*..* * OF ONE * 

*. .* ***************** i NO I 
V V 

**** **** 
* * * * * F5 * * K2 * 
* * * * **** **** 

V 
****05********* 

* START * 
ON NEXT 

* STATEMENT * 
***********.4** 

* * 
: F5 : 

**** 

I 
V 

*****F5********** 
* ERROR * 
*-*-*-*-*-*-*-*-* 
* GENERATE * 
* APPROPRIATE 
* ERROR TEXT * 
***************** 



a(xxxx): Indicates the address of the sym
bol within parentheses. 

adjective code field: A field of an inter
mediate text entry that contains either an 
adjective code assigned by the compiler or 
an actual machine operation code. 

allocation table: Used in Phase 7 to deter
mine the amount of additional rrain storage 
required by the compiler. 

argument list: A list containing the 
addresses of arguments constructed when an 
adjective code indicating a call to a 
subprogram or statement function is detect
ed. 

argument list table: Used at object-time to 
provide the starting address of the argu
ment list for each sucprogram or statement 
function called. 

base value table: Used at object-time to 
obtain case register values. 

BLDL table: Provides information necessary 
for transferring control from one phase to 
the next for PRFRM com~ilations. 

blocking table: Provides information neces
sary to deblock compiler input and to block 
compiler output for PRFRM compilations. 

bound variable: An integer variable in a 
subscript expression that is redefined. 

cranch list table for SFs and DOs: Used at 
object-time either by the instructions gen
erated to reference SF expansions or by the 
instructions generated to control the iter
ation of DO loops. 

branch list table for referenced statement 
numbers: Used at object-time by the 
instructions generated to branch to execu
table statements. 

CDL: A portion of the array displacement 
for subscripted variacles. 

COMMON text: An internal format used to 
transmit the inforroation in a COMMON source 
statement to Phase 12. 

communication area: A central gathering 
area used to communicate information 
between the various phases of the compiler. 

declarative statement: Anyone of the fol
lowing statements: COMMON, DIMENSION, EQUI
VALENCE, INTEGER, REAL, DOUBLE PRECISION, 

GLOSSARY 

EXTERNAL, FORMAT, and SUBROUTINE or FUNC
TION. 

dictionary: A resident table of the compil
er used to store information about symbols 
used in the source statements. For PRFRM 
com~ilations, the dictionary resides in 
main storage throughout the compilation; 
for SPACE corr~ilations, the dictionary 
resides in main storage only through Phase 
14. 

dictionary index: Consists of pointers to 
the first entries in the various chains 
that constitute the dictionary. 

end-of-statement indicator: An adjective 
code that signals the end of a particular 
staterrent to a processing phase. 

epilog table: Used during Phase 25 when 
generating the instructions that return the 
value of variables used as parameters to 
the calling ~rogram. 

EQUIVALENCE tacle: Used 
that assign addresses 
entries. 

by 
for 

the routines 
EQUIVALENCE 

EQUIVALENCE text: An internal format used 
to transmit the information in an EQUIVAL
ENCE source stateroent to Phase 12. 

error: Incorrect usage of the FORTRAN lan
guage that may force the end of compila
tion. 

ESD card image: A card image containing an 
external symbol that is defined or ·referred 
to in the source module. 

executable statement: 
causes the corrpiler to 
instructions. 

A statement that 
generate machine 

flush: A com~ile time I/O request that 
forces the current outFut buffer being used 
for a clocked output data set to be writ
ten. 

forcing value: A value that indicates an 
operator's relative position in the hierar
chy of operators. 

forcing value table: Used during Phase 15 
processing to aid in the reordering of 
intermediate text entries for arithmetic 
expressions. 

hierarchy of operators: Defines the order 
in which operations must be performed in an 
arith~etic expression. 

Glossary 147 



interface module: The 
between the cOII',piler 
system. 

communications link 
and the operating 

index mappinq table: Used during Phase 20 
processing of subscript expressions to 
maintain a record of all information perti~ 
nent to the subscript expression. 

interlude: A compiler component that closes 
and then reopens the various data sets used 
by the compiler for SPACE compilations. 
(Interludes do not perform source statement 
process ing. ) 

intermediate text: An internal representa
tion of the source statements that may 
eventually be converted to machine language 
instructions. 

internal staterr.ent number: A 
assigned to each FORTRAN statement 
compiler. 

number 
by the 

list item: A variable used in a READ or 
WRITE statement. 

load module: The output of the linkage 
editor; a program in a format suitable for 
loading into ffiain storage for execution. 

location counter: A caunter used to assign 
addresses. 

message address table: Used during Phase 30 
to aid in the generation of error and 
warning messages. 

message length table: Used during Phase 30 
to aid in the generation of error and 
warning messages. 

message text table: Used during Phase 30 to 
aid in the generation of error and warning 
messages. 

mode/type code field: A field used in the 
dictionary and intermediate text denoting 
the mode (real, integer, or double 
precision) and type (variable, array, fUnc
tion or constant) of a symbol. 

object module: The output 
execution of an assembler 
which constitutes input to 
editor .• 

of a single 
or compiler, 

the linkage 

offset: A calculated indexing factor used 
to find the correct element in an array for 
a particular subscript expression. 

operations table: A temporary storage area 
used during Phase 15 processing in the 
reordering of intermediate text entries for 
arithmetic expressions. 

overflow table: A resident table that con
tains all dimension, subscript, and state-

148 

ment nurrber information within the source 
module being ccmpiled. 

overflow table index: Consists of pointers 
to the first entries in the various chains 
that constitute the overflow table. 

p{xxxx): Indicates a pointer to the infor
mation (within the parentheses) as rep
resented in the dictionary or the overflow 
table. 

patch table: Used to contain patch records 
if the patch facility has been enabled and 
if patch records precede the FORTRAN source 
module tc be ccmpiled. 

perfcrmance module: Processes compiler I/O 
requests and end-of-phase requests for 
PRFR~ corrpilations. The performance module 
also contains the blocking table and the 
BLDL table. 

phase: Performs compiler initialization or 
actual source statement processing. 

pointer field: The last two bytes of an 
interlI'ediate text word. It normally con
tains a relative pointer to a dictionary or 
overflow table entry. 

print buffer module: ccntains two I/O buf
fers for SYSIN and SYSPRINT. 

resident table: A table that remains in 
main storage throughout an entire compila
tion cr throughout a part of a compilation. 
(The dictionary is resident only up to the 
end of Phase 14 fer SPACE compilations.) 

RLD card image: Contains information about 
an address constant used in the object 
module. 

routine displacement tables: Aid in the 
location of reserved word processing rou
tines in Phases 10D and 10E. 

SEGMAL: A resident table that contains the 
beginning and ending address of each seg
ment cf main storage assigned to the dic
tionary and overflow table by Phase 7. 

SF number: Assigned to each SF definition 
encountered by Phase 14. 

source module: A series of statements in 
the symbolic language of an assembler or 
compiler, which constitutes the entire 
input to a single execution of an assembler 
or coropiler. 

subscript table: Temporary storage area 
used for subscript text encountered during 
the reordering of intermediate text words 
by Phase 15. 

subscript 
replacing 

optimization: The process of 
the computation of a subscript 



expression at each recurrence with a ref
erence to its initial computation (that is, 
to the register assigned to contain the 
result of its initial computation). 

SYSIN data set: The source module, which is 
used as input to the ccmFiler. 

SYSLIN data set: The object module in card 
irrage form (if the LOAD option is 
specified). 

SYSUT1 data set: Used as a work data set by 
the compiler to contain intermediate text. 

SYSUT2 data set: Used as a work data set by 
the compiler to contain intermediate text. 

SYSPRINT data set: The source module list
ing (if the SOURCE oFtion was specified); a 
storage map (if the MAP option was 
specified); and a list of error and warning 
messages (if any). 

SYSPUNCH data set: 
card image form 
specified). 

The 
(if 

object module in 
the DECK option was 

SYS1.FOR~LIB: A partitioned data set that 
contains FORTRAN subFrograms (including 
IHCFCOME and IHCFIOSH in the form of load 
modules. 

SYS1.LINKLIB: A partitioned data set that 
contains executable load modules, which can 
be reached via the XCTL, ATTACH, LINK, and 
LOAD functions. The FORTRAN IV (E) compil
er resides on the SYS1.LINKLIB. 

TXT card image: A card image containing 
either an instruction of the object module 
or data used in the object module. 

unit assignment table: 
during processing of 
requests. 

Used by IHCFIOSH 
execution-time I/O 

unit blocks: Used by IHCFIOSH during proc
essing of exection tirre I/O requests. 

warning: Incorrect usage of the FORTRAN 
language that is not serious enough to 
prevent execution cf the object module. 

Glossary 149 





ABS in-line function 
compile time, processing of 33-34 

Address assignment 21-28 
Address constant 13 
Adjective code 

definition of 92-93 
forcing values of 32-33,78 
replacement of 32-33,100-101 

Adjective code field 
in intermediate text 92-93 

Allocation of storage 
for argument list table 37 
fer cranch list tables 28-29,35 
fer compiler 22-23,88-90,137-139 

Allocation table 76 
AOP adjective code 

in intermediate text 103 
Argument list count 34,37 
Argument list table 

format of 108 
generation of 37 
use of 108 

Argument list table entry 
generation of RLD and TXT card images 

for 37 
Argument lists 

creation of 34 
Arithmetic expressions 

generation of instructions for 38 
processing of 32-34,135 
reordering of 32-33,101-102 

Arithmetic scan 
of source statements 144-145 

Arithmetic-type interruptions 
object-time processing of 116 

Array displacement 
definition of 104 
computation of 104-106 

Array element 104-106 
Array I/O list iteres 

object-time processing of 110-113 
Arrays 

compile-time processing of 
28,31,36,104-106 

Assignment 
of registers 33-34,100-101 
of relative addresses 27-28 
of storage to the compiler 

22-23,88-90,137-139 

BACKSPACE statement 
31,135 compile time processing of 

oeject-time implementation 
Base-displacement address 

definition of 27-28 

of 115,125 

Base reg~sters 39 
Base value table 

format of 108 
generation of 39 
generation of RLD and TXT card images 

for 40 
object-time use of 39,108 

Basic sequential access method 
corrpi1e-time use of 7 
object-time use of 109 

Batch-compilations 
processing of 17,21 

BLDL macro-instruction 
compile-time use of 24,91 

BLDL table 
construction of 24,91 
format of 91 
in perforreance module 20 
use of 91 

Block/deblock I/O buffers 
allocation of rrain storage for 22-23 
use of 19 

Blocking table 
construction of 23-24,91 
format of 91 
in performance module 20 
use of 91 

Bound variable 
definition of 36 
subscript optimization processing of 

36-37 
Branch list table for referenced statement 

numbers 
allocation of storage for 28-29 
format of 107 
generation of 28-29 
object-time use of 107 

Branch list tatle for statement function 
expansions and DO statements 

allocation of storage for 35 
format of 107 
generation of 39 
object-time use of 107 

BSAM. 
(see basic sequential access method) 

BSP macro-instruction 
object-time use of 125 

Buffers 
compile-time use of 11,18,137,143 
for blocked I/O 19,22-23 
object-time use of 123-125 

Build table 
(see BLDL table) 

CALL statement 
compile-time processing of 32,135,144 

Card image generation 13,29-30,35,37-38,40 
Card images 

CDL 

END 13,40 
ESD 13,29,35 
RiD 13,29,35,40 
TXT 13,29-30,35,38,40 

calculation of 106 
definition of 105 
generation of literals for 36 

Chain address field 
in dictionary 84 
in overflow table 87-88 

Index 151 



Chaining 
in dictionary 81-83 
in overflow table 86-88 

CHECK macro-instruction 
compile-time use of 44 
object-time use of 116,124-125 

Classification scan 
of source statements 143-144 

CLOSE macro-instruction 
compile-time use of 15-16,21,74-15 
oeject-time use of 125 

CLOSE macro-instruction, type=T 
ccmpile-time use of 44,130 

Comments card image 
scanning of 133 

COMMCN intermediate text 
creation of 24 
format of 96 

COMMON statement 
compile-time processing of 

24-25,21-28,135 
Communication area 

definition of 9 
format of 140-142 
in interface module 11-18 

Compilation 
data sets used for 11-12 
PRFRM 9 
SPACE 9 

Compilation input 
deblocking of 19 

Compilation output 
blocking of 19 

Compiler 
components of 7-8,13-16 
control flow in 9-10 
data sets used by 11-12 
input/output requests of 1,130-131 
input to 11-12 
main storage allocation to 

22-23,78,131-139 
organization of 1 
output from 11-13 
relation to operating system 7 
system macro-instructions used by 7 
tables used by 76-80,81-91 

Compile-time I/O errors 
processing of 44 

Computation 
array displacement 104-106 
subscript 34-36 

Computed GO TO statement 
compile-time processing of 

31,35,39,99,135 
Constants 

address 13 
assignment of relative addresses to 

27-28 
dictionary entries for 26 
double-precision 28 

Construction of resident tables 
BLDL table 24 
blocking table 23-24 
dictionary 23,25-26,81-83 
overflow table 23,25-26,86 
patch table 23,90 
SEGMAL 23,88-89 

Continuation card image 

152 

scanning of 143 
CONTINUE stateroent 

compile-time processing of 135 
Control block, data 

(see data control block) 
Control block, data event 

(see data event control block) 
Control codes 

(see format codes) 
Centrol flow 

for PRFRM cc~pilatiens 9-10 
fer SPACE cempilaticns 9-10 

Control operations routine 
definition of 18 
in interface module 18,44 

Conversion 
of I/O list iterros 110,112 
of source statements 24,26,92 

Conversion codes 
(see format codes) 

Conversion routines 
in IHCFCOME 110,112 

Counter, location 
relative address assignment use of 28 

DABS in-line function 
compile-time processing of 33-34 

Data control blocks 
compile-tirroe manipulation of 

15-16,20-21,42,73-15,130 
object-time use of 121,123-126 

Data control block skeleton section 
in unit blocks 122-123 

Data definition (DD) statement 7,121 
Data event control block 

compile-time use of 18 
object-time use of 123 

Data event control block skeleton section 
in unit blocks 122-123 

Data flow 
corr.piler detail 12 
ccmpiler overall 11 
Phase 10D 25 
Phase 10E 26 
Phase 12 27 
Phase 14 30 
Phase 15 32 
Phase 20 35 
Phase 25 38 
Phase 30 40 

Data set reference nurrbers 
compile-time processing of 26,29,30,81 
object-time creation of unit blocks for 

122 
Data sets 

for compiler input 11-12 
for compiler output 11-12 
rr,anipulation of data control blocks for 

73-75 
object-time initialization of 123-124 

DBLE in-line function 
compile-time processing of 33 

DCB 
(see data control block) 

DCB skeleton section 
(see data control block skeleton 

section) 
DECB 



(see data event control block) 
DECB skeleton section 

(see data event control block skeleton 
section) 

DECK option 
compiler output for 11 

Declarative statements 
definition of 24 
intermediate text for 24,92 

Default values 
for compiler options 17 
oeject-time insertion of into DCB 

skeletons 122-123 
system generation sFecification of 

17,142 
DELETE macro-instruction 

ccmpile-time use of 21 
Delete routine 

in Phase 7 21,46 
Device manipulation 

object-time routines for 115-116,119 
DFLOAT in-line function 

compile-time processing of 33-34 
Diagnostic messages 

compiler informative 132 
error/warning 132-134 
generation of 40 

Dictionary 
chaining in 81-82 
definition of 9 
entry format 83 
freeing of main storage for 56,81 
index 82 
organization of 81 

Dictionary pointers 
replacement of 31,97 

Dimension entry 
in overflow table 87 

Dimension information 
array displacement use of 104-106 

Dimension part 104-106 
Dimension section 104-106 
DIMENSION statement 

compile-time. processing of 24,135 
Displacement 

base 27-28 
in arrays 104-106 

Displacement tables 
(see routine displacement tables) 

DO statement 
compile-time processing of 

31,34-36,39,135 
Double argument in-line functions 

compile-time processing of 33-34 
Double-precision constants 

assignment of relative addresses for 28 
DOUBLE PRECISION statereent 

compile-time processing of 24,135 
DSRN 

(see data set reference number) 
Dummy subscripted variables 

subscript optimization processing of 36 

Editor 
(see linkage editor) 

Element 
in arrays 104-106 

END card image 

generation of 40 
in object mcdule 13 

End DO adjective code 
insertion of into intermediate text 

31,98 
ENDFILE statement 

corrpile-time processing of 31,135 
crject-tirne imFlementation of 115,119 

End rrark 
in intermediate text 33,93 

End-of-FORMAT-statement indicator 
object-time encounter of 110,112 

End-of-logical-record indicator 
otject-time encounter of 113 

End-of-object rrodule indicator 
generation of 40 
in object module 13 

End-of-phase requests 
compile-time processing of 

7,18,44,130-131 
End-of-phase routine 

in interface module 19,44 
in performance rrodule 20,45 

End-of-statement indicator 
(see end rrark) 

END statement 
compile-time processing of 40,135 

Epilog table 
generation of 38 
format of 80 
use of 80 

EQUIVALENCE class 28 
EQUIVALENCE group 28 
EQUIVALENCE intermediate text 

creation of 24 
fcrroat of 96 

EQUIVALENCE root 28 
EQUIVALENCE staterrent 

corrpile-time proceSSing of 24,28,135 
EQUIVALENCE table 77-78 
Error intermediate text entry 

generation of 25-26,34,144-145 
Error messages 

compile-time generation of 40,132-134 
object-time generation of 116,127 

Error recovery procedures, I/O 
corrpile-time 44 
ctject-time 127 

Errors, source statement 
intermediate text for 25-26,34,144-145 
messages for 40,132-134 

ESD 
(see external symbol dictionary) 

ESD card images 
generation of 13,29,35 
in object module 13 

Executable statements 
definition of 24 
generation of intermediate text for 

25-26,92 
Execute (EXEC) statement 7,17,19 
External functions 

(See library subprograms) 
External references 

generation cf ESD and RLD card images 
for 29,35 

EXTERNAL statement 

Index 153 



compile-time processing of 24,135 
External symbol dictionary 13 

Files 
(see data sets) 

FLOAT in-line function 
compile-time processing of 33-34 

Flush requests 
definition of 19 
performance module processing of 21,45 

Forcing value 
definition of 32 
use of 32-33 

Forcing value table 78 
Format codes 

compile-time processing of 30,58 
otject-time processing of 110-112 

FORMAT intermediate text 
format of 95 
generation of 24,25,92 

FORMAT statement 
compile-time processing of 

24-25,30,58,135 
otject-time processing of 110-112 

FREE~AIN macro-instruction 
compile-time use of 21-23 

FREEPOOL macro-instruction 
otject-time use of 125 

Function calls 
compile-time processing of 32-34,135 

FUNCTION statement 
compile-time processing of 24,38,135 

GETMAIN macro-instruction 
compile-time use of 22~23,88 
object-time use of 122 

GO TO statement 
compile-time processing of 31,37,39,135 

Hierarchy of operators 32,78,101-102 

lABS in-line function 
compile-time processing of 33-34 

IF statement 
compile-time processing of 

32,34,36,39,135,144 
error checking for 34 
intermediate text for 93 

IFIX in-line function 
compile-time processing of 33-34 

IHCCGOTO library subprogram 35 
IHCFCOME library subprogram 

closing section of 113 
for.mat scan of 110-112 
function of 109 
generation of calling sequences to 109 
I/O device manipulation routines of 115 
I/O list section of 110,112-113 
opening section of 109-110 
overall logic of 111 
read/write routines of 109-115 
utility routines of 116 
write-to-operator routines of 115-116 

IHCFIOSH library subprogram 
buffering scheme of 123 
closing section of 125 

154 

communication with control program 123 
device manipulation section of 125 

functions of 121 
initialization section of 123-124 
I/O error processing of 125,127 
overall logic of 126 
read section of 124 
routines of 128 
tatle and blocks used in 121-123 
write section of 124-125 

IHCIEERR 
functions of 128 
generation of calling sequences to 35 
overall logic of 129 

III'ages 
(see card irrages) 

Irrmediate DO parameter 
insertion of into intermediate text 

98,146 
lroplied OOs 

checking of READ/WRITE statements for 
31,98 

insertion of adjective codes 31~98 
Index 

in dictionary 23,81~82 
in overflow table 23,81,86 

Index mapping table 
format of 79 
use of 38,79 

In-line functions 
coropile-tirre precessing of 

33-34,101,135 
Input/output buffers 

(see tuffers) 
Input/output data sets 

(see data sets) 
Instruction generation 38 
Integer constants 

assignment of relative addresses to 27 
INTEGER statement 

compile-time processing of 24,135 
Interface module 

components of 17-18,44 
functions of 7 
linkages to 130-131 
loaded into main storage 17 

Interface module routines 18,44 
Interlude 

definition of 9 
Interlude 10E 

functions of 15 
Interlude 14 

functions of 15 
Interlude 15 

functions of 16 
Intermediate text 

adjective code field 92-93 
COMMON intermediate text 96 
creation of 24,26.92 
definition of 9 
EQUIVALENCE intermediate text 96 
FORMAT intermediate text 95 
mode/type code field 93 
modification of 32-33,97-103 
pointer field 93 
reordering of 32-33,,101-102 
sutscript intermediate text 95,102-103 
use of 9 

Internal statement number 
compiler assigning of 93,128,143 



Internal text 
(see intermediate text) 

Interruptions" arithmetic 
object-time processing of 116 

I/O error recovery procedure 
compile-time 44 
object-time 127 

I/O list items 
object-time processing of 110-112 

I/O requests 
compile-time ~rocessing of 

7,18,44,130-131 
I/O routine 

in interface module 18,44 
in performance module 19-20,45 

I/O statements 
object-time implementation of 109-127 

ISN 
(see internal statement number> 

Job (JOB) statement 7 

Library exponentiation subprograms 
assignment of registers for 33 
generation of ESD card images for 35 

Library subprograms 
generation of ESD card images for 29,35 
IHCCGOTO 35 
IHCFCOME 109-120 
IHCFIOSH 121-127 
IHCIBERR 128-129 

Linkage editor 
processing of the object module 13 

Linkage parameters 129 
Linkages to interface reodule 7,130-131 
Linkages 'to performance module 132 
List items 

(see I/O list items) 
Literals 

generation of 36 
generation of TXT and RLD card images 

for 35 
LOAD macro-instruction 

compile-time use of 17,19-20 
LOAD option 

compiler output for 11-12. 
Loading modules 17,19-20,37 
Location counter 

used in assigning relative addresses 28 

Machine language instructions 
generation of 37-38 

Macro-instructions 
(see system macro-instructions) 

Main storage allocation 
for branch list tables 29,35 
for compiler 22-23,137-139 

Manipulation 
of compile-time data sets 73-75 
of object-time I/O devices 115~125 

MAP option 
compiler output for 11-12 

Mask, program interrupt 
otject-time setting of 116 

Message address table 80 
Message length table 80 
Message text table' 80 
Messages 

compile-time generation of 40,132-134 
object-time generation of 116,128 

Mode/type field 
in dictionary 84 
in intermediate text 93 

Modification of compiler modules 18 
Modification of intermediate text 

for arithmetic expressions 32-34,97-103 
for computed GO TO statements 99 
fer READ/WRITE statements 98 
fer RETURN statements 99 

NOLOAD option 10,35,40 
Nonexecutable statements 

(see declarative statements) 

Object listing facility 
enabling of 19 

Object listing module 19 
Object listing option 

compiler cutput for 11 
compiler proceSSing for 19,27,37 

object module 
components of 13 
creation of 13 

Object module instructions 
generation of 37-38 

Object module tables 107-108 
Object program 

(see object module) 
Object-time error messages 

generation of 116,128 
Object-time I/O errors 

precessing of 125,127 
Offset 

computation of 26,104-106 
generation of literal for 36 

1-dimensional array 
array displacement computation of 

104-106 
overflow ,table entry for 87 

Opening 
of data control blocks at compile-time 

20-21,73-75 
of data control blocks at object-time 

123-124 
OPEN macro-instruction 

compile-time use of 20-21,73-75 
object-time use of 110,123-124 

Operands 
source staterrent scan of 144-145 

Operations table 
format of 79 
use of 78 

Operators 
source statereent scan of 144-145 

Optimization, subscript 34-36 
Overflow table 

chaining in 86 
definition of 9 
entry formats in 87-88 
index for 23,81,86 
organization of 86 

Patch facility 
enabling of 23 

Patch requests 
compile~time processing of 18,44,131 

Index 155 



Patch routine 
functions of 18 
in interface module 18,44 

Patch table 
format of 90 
use of 18,90 

PAUSE statement 
compile-time processing of 31,136 
object-time implementation of 116 

Performance module 
components of 19-20 
functions of 19 
linkages to 131 
loaded into main storage 19 

Performance module routines 19-20 
Performance module tables 20,91 
Pointer field 

in intermediate text 93 
Preliminary scan 

of source statements 143 
PRFRM compilations 

blocking compiler output for 19 
control flow for 9-10 
data control block manipulation for 

73,15 
deblocking compiler input for 19 
linkages to performance module for 131 
main storage allocation for 22-23,139 
obtaining main storage for 21-22,139 
opening data control blocks for 20 
restart condition for 21,23 

Print buffer module 
functions of 19 
loaded into main storage 19 
used in source statement scan 143 

Print control operation requests 
compile-time processing of 18,131 

READ macro-instruction 
compile-time use of 7,44,73-15 
object-time use of 110-112,124,126 

READ statement 
compile-time processing of 

30-31,36,92#98,136,146 
object-time implementation of 

109-114,118,123-124,126 
Real constants 

assignment of relative addresses for 21 
dictionary chain for 81 

REAL statement 
compile-time processing of 24,136 

Recovery procedure, I/O error 
compile-time 44 
object-time 125,121 

Redefinition of integer variables 
in subscript expressions 36-37 

Referenced statement numbers 
branch list table for 101 

References, external 
generation of ESD card images for 29,35 

Registers 
assignment of 33-34,100-101 
base 21-28,,39 

Relative addresses 
assignment of 21-28 

Relocation dictionary 13 
Removing entries from chains 

in dictionary 83 

156 

Reordering of intermediate text 
for arithmetic expressions 

32-33,101-102 
for computed GO TO statements 31,99 
for READ/WRITE statements 30-31,92,98 

Replacement of dictionary pointers 31,97 
Reserved word 

dictionary section 23,76,81 
source staterrent scan 144-145 

Reserved word scan 
of source statements 144-145 

Resident tables 
BLDL table 20,24#91 
blocking table 20,23-24,91 
dictionary 81-85 
overflow table 81,86-88 
patch table 90 
SEGMAL 81,88-89 

Resident table construction 
BLDL table 24 
blocking table 23-24 
dictionary 23,25-26 
overflow table 23,25-26 
patch table 18 
SEGMAL 23 

Restart condition 
definition of 21 
processing for 21,23 

RETURN macro-instruction 
compile-time use of 7,10 

RETURN statement 
oompile-time processing of 

REWIND statement 
compile-time processing of 
otject-time implementation 

RLD 
(see relocation dictionary) 

RLD card images 
generation of 29,35,40 

Routine displacement tables 
format of 77 
use of 76 

SAOP adjective code 
in intermediate text 102 

Scan 

31,38,99,136 

31,136 
115,119,125 

of source statements 143-145 
SEGMAL 

SF 

construction of 23 
format of 89 
use of 88 

(see statement fUnctions) 
Single-argument in-line functions 

compile-time processing of 33-34 
SNGL in-line function 

compile-time processing of 33 
Source module 

input to corrpiler 11-12 
Source module listing 11-12,24,26 
SOURCE oI;tion 

compiler output for 11-12 
Source program 

(see source module) 
Source statement scan 143-146 
Source symbol rrodule 19 
SPACE corr.pilations 

control flow for 9-10 



data control block reanipulation for 
73-74 

linkages to interface module for 
130-131 

main storage allocation for 22,137-138 
obtaining main storage for 

21-22,137-138 
opening data control blocks for 

20,73-74 
SPIE macro-instruction 

otject-time use of 116 
statement function numbers 

assignment of 31 
Statement functions 

compile-time processing of 
26,31,32,39#108,135 

statement number definitions 
compile-time processing of 39,135 

Statement numbers 
overflow table entries for 25-26,88 

Statement processing, compile-time 
BACKSPACE 31,135 
CALL 32,135,144 
COMMON 24-25,27-28,135 
CONTINUE 135 
DIMENSION 24,135 
DO 31,34-36,39,135 
DOUBLE-PRECISION 24,135 
END 40,135 
ENDFILE 31,135 
EQUIVALENCE 24,,28,135 
EXTERNAL 24,135 
FORMAT 24-25,30,58,135 
FUNCTION 24,38,135 
GO TO 31,37,39,135 
IF 32,34,36#39,135,144 
INTEGER 24,135 
PAUSE 31,136 
READ 30-31,36,92,98,136,146 
REAL 24,136 
RETURN 31,38,99,136 
REWIND 31,136 
STOP 31,136 
SUBROUTINE 24,136 
WRITE 30-31#92,98,136 

Statement processing, object-time 
BACKSPACE 115,125 
ENDFILE 115,,119 
FORMAT 110-112. 
PAUSE 116 
READ 109-114,118,123-124,126 
REWIND 115,119,125 
STOP 115-116,119 
WRITE 109-115,118,123-126 

STOP statement 
compile-time processing of 31,136 
object-time implementation of 

115-116,119 
Storage allocation 

(see main storage allocation) 
Storage allocation schematics 

for PRFRM compilations 139 
for SPACE compilations 137-138 

storage map 
for assigned relative addresses 27 
for generated literals 35 
for implied external references 35 
for referenced statement numbers 37 

Subprograms 
address constants for 13 
argument lists for 37 
epilog table for 38,80 
ESD card images for 29,35 

SUBROUTINE statement 
compile-time processing of 24,136 

Subscript expressions 
computation of 104-106 
oFtimization of 34-36 
overflow tatle entries for 87-88 

Sutscript intermediate text 
AOP adjective code 103 
SAOP adjective code 102-103 
XOP adjective code 103 

Subscript optirrization 
statements subject to 34-36,66 
statements that affect 36-37,66 

Subscript table 79 
Symbols 

assignment of addresses for 27 
dictionary entries for 25 
validity check for 30-31 

SYSIN 
inFut data set for compiler 11-12 
manipulation of 26,73-75 
oFening of data control block for 

19,73-75 
SYSIIN 

manipulation of 26,73-75 
output data set for compiler 11-12 

SYSPRINT 
manipulation of 26,73-75 
oFening of data control block for 

19,73-75 
output data set for compiler 11-12 

SYSPUNCH 
manipulation of 73-75 
output data set for compiler 11-12 

System macro-instructions 
used cy compiler 7 

SYSU'Il 
manipulation of 26,73-75 
opening of data control block for 

19,73-75 
overlaying of DCB tlock size for 18 
work data set for compiler 11-12 

SYSUT2 
manipulation of 73-75 
opening of data control block for 19 
overlaying of DCB tlock size for 18 
work data set for compiler 11-12 

Tables 
allocation 76 
argument list 108 
case value 108 
BLDL 91 
blocking 91 
branch list 107 
dictionary 81-85 
epilog 80 
equivalence 77-78 
forcing value 78 
index mapping 79 
message address 80 
message length 80 
message text 80 

Index 157 



Y28-660l-l 

oFerations 18-19 
overflow 81,86-88 
patch 90 
resident 81-91 
routine displacement 16-11 
SEGMAL 88-89 
subscript 19 
unit assignment 121-122 
used by compiler 76-80 
used by object module 107-108 

Termination of compilation 
a l:norma 1 44 
normal 21,44 

Termination of load rr.odule execution 
116,127-128 

Text 
(see intermediate text) 

3-dimensional array 
array displacement corr.putation of 

104-106 
overflow table entry for 87 

TXT card image 
generation of 29-30,35,38,40 
in object module 13 

2-dimensional array 
array displacement computation of 

104-106 
overflow table entry for 87 

Unit assignment table 121 
Unit blocks 

construction of 122 
format of 122 
sections 122-123 
use of 121-122 

Unit number 
(see data set reference number) 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, New York 1060t 

Unit tables 
(see unit blocks) 

Variatles 
assignment of relative addresses for 21 
dictionary entries for 25-26 
sutscripted 32-33,36-37,19,81-88,95 

Warning 
definition of 145 

Warning messages 
generation of 40,92,145 

Work data sets 
for compiler 11-12 

WRITE macro-instruction 
compile-time use of 7,44,13-75 
object-time use of 111-11-3,126 

WRITE statement 
corrpile-time processing of 

30-31,92,98,136 
object-time implementation of 

109-115,118,123-126 
reordering of intermediate text for 

92,98 
Write-to-operator routines 115-116,119 
WTO rracro-instruction 

otject-time use of 116 

XCTL macro-instruction 
compile-time use of 1,18-19,44-45 

XOP adjective code 
in intermediate text 102 

Zero-addressing scheme 
used in array displacement computation 

104-106 

en . 
~ 

t< 
I\.,) 

00 
I 

0'1 
0'1 
o 
I-' 
I 

I-' 



READER'S COMMENTS 

Title:, IBM system/360 Operating System 
FORTRAN IV (E) 
Program Logic Manual 

Is the material: 
Easy to Read? 
Well organized? 
Complete? 
Well illustrated? 
Accurate? 
Suitable for its intended audience? 

How did you use this publication? 
___ As an introduction to the subject 

Yes 

Other ________________________________ _ 

Please check the items that describe your position: 

No 

Form: Y28-6601-1 

For additional knowledge 
fold 

___ Customer personnel _Operator 
_ IBM personnel _ Programmer 
_ Manager _Customer Engineer 

_ Sales Representative 
_ Systems Engineer 
_Trainee 

_ Systems Analyst _ Instructor Other ____________ __ 

Please check specific criticism(s), give page number(s),and explain below: 
_ Clarification on page (s) 
_ Addi tion on page (s) 

~ _ Deletion on page (s) 
~ _ Error on page (s) 
~ 

t-' Explana tion : 
z o 
~ 

Name ______________________________ ___ 
Company ________________________ __ 
Address ________________________ __ 

City 
State ______ Zip Code __ _ 

FOLD ON TWO LINES,STAPLE AND MAIL 
No Postage Necessary if Mailed in U.S.A. 

fold 



Y28-6601-1 

staple 

fold 
-------------------------------------------------------------------------------------~--~ 

r------------------------------------------------, 
I BUSINESS REPLY MAIL I 
I NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A. I L ________________________________________________ J 

POSTAGE WILL BE PAID BY 

IBM CORPORATION 
P.O. BOX 390 
POUGHKEEPSIE, N. Y. 12602 

ATTN: PROGRAMMING SYSTEMS PUBLICATIONS 
DEPT. D58 

r--------------------, 
I FIRST CLASS I 
I PERMIT NO. 81 I 
I I 
I POUGHKEEPSIE, N.Y. I L ____________________ J 

1III11 

11I1I1 

I111I1 

III! II 

111111 
"tI 

111111 Ii ..... 
t' 
cT 

111111 (1) 
0.. 

----------------------------------------------------------------------------------~. -~~--
told ;:: t6l~ 

TIrnllib 
<!) 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N. Y. 10601 

C/) 

• 
~ . 

staple 


	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	replyA
	replyB

