
IBM System/360 Operating System

FORTRAN IV (G) Compiler

Program Logic: Manual

Program Number 3605-F0-520

This publication describes the internal logic of the
FORTRAN IV (Gl compiler.

Program Logic Manuals are intended for use by IBM
customer engineers involved in program maintenance, and
by systems programmers involved in altering the program
design. Program logic information is not necessary for
program operation and use; therefore, distribution of
this manual is limited to persons with program main­
tenance or modification responsibilities.

The FORTRAN IV (G) compiler is a processing program
of the IBM System/360 Operating System. It translates
one or more source modules written in the FORTRAN
language into an object module that can be processed
into an executable load module by the linkage editor.

Restricted Distribution

File No. 8360-25 (OS)
Form Y28-6638-1

Program Logic

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and operation of the FORTRAN
IV (GI compiler. It is part of an inte­
grated library of IBM System/360 Operating
System Program Logic Manuals. Other publi­
cations required for an understanding of
the FORTRAN IV (G) compiler are:

IBM System/360 Operating System:

~~igcip!~~-Qf_Qp~r~!iQg, Form A22-6821

Introduction to control Program Logic,
Program Logic Manual, Form Y28-6605

EQ8!~~-!Y_i~-~~-tll_PrQgr~~~E~~-Gu~£~,
Form C28-6817

Any reference to a Programmer's Guide
in this publication applies to FORTRAN
IV (G and H) Programmer's Guide, Form
C28-6817. The FORTRAN IV (G) Progre!!t:.
mer's Guide, Form C28-6639• {to which
references may exist in this publica­
tion) has been replaced by the combi­
ned G and H Programmer's Guide.

Although not required, the following
publications are related to this publica­
tion and should be consulted:

IBM System/360 Operation System:

sequential Access Methods, Program Logic
Manual, Form Y28-6604

.§.vstem Generation, Form C28-6554

This publication
sections:

consists Of two

Section 1 is an introduction that
describes the FORTRAN IV (G) compiler as a
whole, including its relationship to the
operating system. The major components of
the compiler and relationships among them
are also described in this section.

Section 2 consists of a discussion of
compiler operation. Each component of the
compiler is described in sufficient detail
to enable the reader to understand its
operation, and to provide a frame of
reference for the comments and coding supp­
lied in the program listing. Common data
such as tables, blocks, and work areas is
discussed only to the extent required to
understand the logic of each component.
Flowcharts are included at the end of this
section.

Following Section 2, are appendixes that
contain reference material.

If more detailed information is
required, the reader should see the com­
ments, remarks, and coding in the FORTRAN
IV (GI proqram listing.

RESTRICTED DISTRIBUTION: This publication is intended primarily for use
by IBM personnel involved in program design and maintenance. It may not
be made available to others without the approval of local IBM management.

Second Edition (May 1968)

This is a major revision of, and makes obsolete, the previous edition,
Form Y28-6638-0, and Technical Newsletters Y28-6384, Y28-6386, Y28-6388,
and· Y28-6820. Changes to the text, and small changes to illustrations,
are indicated by a vertical line to the left of the change; changed or
added illustrations are denoted by the symbol • to the left of the caption.

The specifications contained in this publication, as amended by TNL
Y28-6826, dated November 15, 1968, correspond to Release 17 of the IBM
System/360 Operating System.

Changes are periodically made to the specifications herein; any such
changes will be reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning the contents of this publication to
IBM Corporation, Programming Publications, 1271 Avenue of the
Americas, New York, N. Y. 10020.

SECTION 1: INTRODUCTION TO THE COMPILER
Purpose of the Compiler

9
9
9 Machine configuration

Compiler and system/360 Operating
System • • • • • • • • • • • 9
Compiler Design • • • • • • 9
Limitations of the Compiler 9
Compiler Implementation • 10

POP Language • • • • • • • 10
Compiler Organization 10

Control Phase: Invocation (IEYFORT) 12
Phase 1: Parse (IEYPAR) •••• 12
Phase 2: Allocate (IEYALL) • 12
Phase 3: Unify (IEYUNF) 12
Phase 4: Gen (IEYGEN) • 12
Phase S: Exit (IEYEXT) • • 13
Roll (IEYROL) • • • • • 13

Compiler Storage Configuration • • • • lS
Compiler Output • • • • • • lS

Object Module •••••••••••• 17
Components of the Object Module 17
Object Module General Register
Usage • • • • • • •

source Module Listing
Object Module Listing
Storage Maps • • • • • • • • •
Error Messages • • • •

common Error Messages
Compiler Data Structures • •

Rolls and Roll controls • • • • •
ROLL ADR Table • • • • •
BASE, BOTTOM, and TOP Tables
Special Rolls • • • •

• • 20
20
20
21
21
21

• • 21
21
22
23

• 24
central Items, Groups, and Group
stats • • • • •

Other Variables
24
26

Answer Box • • • • • • • 26
Multiple Precision Arithmetic 26
Scan Control • • • • • • • 26
Flags • • • • 27
Quotes • • • • • • • • 27
Messages • • 27

Compiler Arrangement and General
Register Usage • • • • • •
Pointers • • • • • • •
Drivers •.•••••••••

Operation Drivers
control Drivers ••••

SECTION 2: COMPILER OPERATION
Invocation Phase (IEYFORT> •

IEYFORT, Chart 00
IEYPRNT, Chart OOA4
PRNTHEAD, Chart 01A2 •
IEYREAD, Chart 01A4 • • • •
IEYPCH, Chart 02A3 • • • • •
PRNTMSG, Chart 03Al
IEYMOR, Chart 01Dl •
IEYNOCR
IEYRETN, Chart 03A2
OPTSCAN, Chart AA
DDNAMES, Chart AB

• • 28
29
30
30
31

• • 33
33

• • 33
33

• • 34
• • 34
• • 34

34
• • 34

• 34
3S

• • 3S
3S

CONTENTS

• 3S HEADOPT, Chart AC
TIMEDAT, Chart AD

Output from IEYFORT
• • • • • • • 3 5

Phase 1 of the Compiler: Parse (IEYPAR>
Flow of Phase 1, Chart 04

PRINT and READ SOURCE, Chart BA
STA !NIT, Chart BB ••
LBL FIELD XLATE, Chart BC
STA XLATE, Chart BD
STA FINAL, Chart BE
ACTIVE END STA XLATE, Chart BF
PROCESS POLISH, Chart BG •

Output from Phase 1
Polish Notation
source Listing • • •

Phase 2 of the Compiler: Allocate
(IEYALL) • • • • • • • • • • • • • • •

Flow of Phase 2, Chart OS
ALPHA LBL AND L SPROGS, Chart CA •
ALPHA SCALAR ARRAY AND SPROG,
Chart CA • • • • •
PREP EQUIV AND PRINT ERRORS, Chart
CB • • • •
BLOCK DATA PROG ALLOCATION, Chart
cc • • • • • • •
PREP DMY DIM AND PRINT ERRORS,
Chart CD • • • • • • • • • • •
PROCESS DO LOOPS, Chart CE • •
PROCESS LBL AND LOCAL SPROGS,
Chart CF • • • • • • • • • • •

• 3S
36
37
37
38

• 38
38

• 39
• 39

39
• 39
• 39
• 42

• 44
• 4S
• 4S

• 4 s

.-4S

• 46

• 46
• 46

• 46
• 46 BUILD PROGRAM ESD, Chart CG

ENTRY.NAME ALLOCATION, Chart CH
COMMON ALLOCATION AND OUTPUT,

• • 46

Chart CI • • • • • • • • • 47
EQUIV ALLOCATION PRINT ERRORS,
Chart CK • • • • • • • • • • • 47
BASE AND BRANCH TABLE ALLOC, Chart
CL • • • • • • • • • • • •
SCALAR ALLOCATE, Chart CM
ARRAY ALLOCATE, Chart CN •
PASS 1 GLOBAL SPROG ALLOCATE,

• 47
• 47

• • • 47

Chart co • • • • • • . . . • • • 48
SPROG ARG ALLOCATION, Chart CP • 48
PREP NAMELIST, Chart CQ •••••• 48
LITERAL CONST ALLOCATION, Chart CR • 48
FORMAT ALLOCATION, Chart CS • 48
EQUIV MAP, Chart CT • • • • • • • • 48
GLOBAL SPROG ALLOCATE, Chart CU • • 48
BUILD NAMELIST TABLE, Chart CV • • • 48
BUILD ADDITIONAL BASES, Chart CW • • 49
DEBUG ALLOCATE, Chart ex • • • • • • 49

Output From Phase 2 • • • • • • • • • 49
Error Messages Produced by Allocate 49
Unclosed DO Loops • • • • • • 49
Storage Maps Produced by Allocate • SO
Subprogram List • • • • • • • • • • Sl
cards Produced by Allocate • • • • • Sl

Phase 3 of the compiler: Unify (IEYUNF> Sl
Flow of Phase 3, Chart 07 •••••• S2

ARRAY REF ROLL ALLOTMENT, Chart DA • S2
CONVERT TO ADR CONST, Chart DB • • • S2
CONVERT TO INST FORMAT, Chart DC •• 52

DO NEST UNIFY, Chart DD
IEYROL Mod11le • • • • •

Phase 4 of the Compiler: Gen
(IEYGEN) ••••••••••••

Flow of Phase 4, Chart 08
ENTRY CODE GEN, Chart EA
PROLOGUE GEN, Chart EB •
EPILOGUE GEN, Chart EC •
GET POLISH, Chart ED •
LBL PROCESS, Chart EF
STA GEN, Chart EG
STA GEN FINISH, Chart EH

53
53

53
53
54
54
54
54
54
54
55

Phase 5 of the Compiler: Exit (IEYEXTl • 55
55
55
56
56
56
56
56

Flow of Phase 5, Chart 09 • • • •
PUNCH TEMP AND CONST ROLL, Chart FA
PUNCH ADR CONST ROLL, Chart FB •
PUNCH CODE ROLL, Chart FC
PUNCH BASE ROLL, Chart FD
PUNCH BRANCH ROLL, Chart FE

• 57
PUNCH SPROG ARG ROLL, Chart FF •
PUNCH GLOBAL SPROG ROLL, Chart FG
PUNCH USED LIBRARY ROLL, Chart FH
PUNCH ADCON ROLL, Chart FI • •
ORDER AND PUNCH RLD ROLL, Chart FJ •
PUNCH END CARD, Chart FK

• 57
57
57
57

PUNCH NAMELIST MPY DATA, Chart FL
Output From Phase 5 • • • •

APPENDIX A: THE POP LANGUAGE • •
POP Instructions • • • • • • • •

Transmissive Instructions ••••
Arithmetic and Logical Instructions
Decision Making Instructions •
Jump Instructions • • • • • •
Roll control Instructions • • • •
Code Producing Instructions
Address Computation Instructions
Indirect Addressing Instruction

• 57
57

• • 127
.127

• • 127
• 130
.131

•• 133
•• 133
•• 134

.134

.135

.135 Labels • • • • •
Global Labels
Local Labels •

Assembly and Operation •

•• 135
••• 136

.136
• 136 POP Interpreter • • • • , • • •

Assembler Language References to POP
Subroutines •••• , • • • • • .137
Global Jump Instructions •••••• ,137
Local Jump Instructions ••••••• 138

APPENDIX
Roll 0:
Roll 1:
Roll 2:
Roll 2:
Roll 3:
Roll 4:
Roll 4:
Roll 5:
Roll 7:
Roll 8:
Roll 9:
Roll 10:
Roll 11:
Roll 12:
Roll 13:
Roll 13:
Roll 14:
Roll 15:
Roll 15:

B: ROLLS USED
LIB Roll
SOURCE Roll •

IN THE COMPILER ,140
• • • • • .140

IND VAR Roll • • • • •
NONSTD SCRIPT Roll
NEST SCRIPT Roll
POLISH Roll • • • • •

• • 140
•••• 141
•••• 141

.141
•• 141

LOOP SCRIPT Roll , • • •
LITERAL CONST Roll • • • •
GLOBAL SPROG Roll •

.142
• • 142
•• 142
•• 143
•• 143

FX CONST Roll •
FL CONST Roll
DP CONST Roll
COMPLEX CONST Roll
DP COMPLEX CONST Roll
TEMP NAME Roll
STD SCRIPT Roll • •
TEMP Roll • , • • • •
DO LOOPS OPEN Roll
LOOPS OPEN Roll • •

••• 143
•••• 143
••• 143

• 143
• • 144
• • 144
• • 144

• 144

Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll
Roll

16: ERROR MESSAGE Roll •••••• 144
16: TEMP AND CONST Roll • • .144
17: ERROR CHAR Roll •••••••• 145
17: ADCON Roll ••••••• 145
18: INIT Roll • • • • • .145
18: DATA SAVE Roll • • • • • .145
19: EQUIVALENCE TEMP (EQUIV TEMP)

.145
20: EQUIVALENCE HOLD (EQUIV HOLD)

20:
21:
22:
23:
23:
24:
25:
26:
26:
27:
28:
29:
30:
30:
31:
32:
33:
34:
35:
36:
36:
37:
37:
38:
39:
39:
40:
40:
41:
42:
42:
43:
44:
44:
45:
46:

47:
47:
48:
48:
49:
50:
51:
52:
52:
53:
54:
55:
56:
56:
57:
58:
59:
60:
60:
62:
62:

••••• • 145
REG Roll • • • • • •
BASE TABLE Roll • • • • • •
ARRAY Roll • • • • • • • •
DMY DIMENSION Roll • • , •
SPROG ARG Roll • • • •

•• 146
•• 146
•• 146
• .147
•• 147
•• 147 ENTRY NAMES Roll

GLOBAL DMY Roll •
ERROR Roll

••••••• 148
•• 148

ERROR LBL Roll
LOCAL DMY Roll • • • •
LOCAL SPROG Roll • • • • •

•• 148
•• 148
•• 149
• .149

• • • • • • 149
EXPLICIT Roll • • •
CALL LBL Roll • • •
ERROR SYMBOL Roll •
NAMELIST NAMES Roll •
NAMELIST ITEMS Roll •

.149

.149
•• 150

ARRAY DIMENSION Roll
BRANCH TABLE Roll • •

••••• 150
• .150

TEMP DATA NAME Roll •
TEMP POLISH Roll

••••• 150

FX AC Roll • • • •
EQUIVALENCE Roll • • • •
BYTE SCALAR Roll
USED LIB FUNCTION Roll
COMMON DATA Roll
HALF WORD SCALAR Roll
COMMON NAME Roll
TEMP PNTR Roll
IMPLICIT Roll • • • •
EQUIVALENCE OFFSET Roll •
FL AC Roll
LBL Roll
SCALAR Roll

•• 151
•• 151

.151
•• 151
•• 152

.152

.152

.152
••• 153

.153

.153
••• 153

.153

HEX CONST Roll • • • • • •
DATA VAR Roll • • • • • •
LITERAL TEMP (TEMP LITERAL)

.154
•• 154

.154

••••• 155
COMMON DATA TEMP Roll • •
FULL WORD SCALAR Roll
COMMON AREA Roll
NAMELIST ALLOCATION Roll
COMMON NAME TEMP Roll
EQUIV ALLOCATION Roll • •
RLD Roll • • • • • • • •
COMMON ALLOCATION Roll
LOOP CONTROL Roll •
FORMAT Roll • • • • • • •

.155
••• 155

.155

.155

.156

.156

.156

.156

.156
• • .157

.157 SCRIPT Roll • • •
LOOP DATA Roll
PROGRAM SCRIPT Roll •
ARRAY PLEX Roll

•••• • 157

ARRAY REF Roll • • • • •

.158

.158

.159
ADR CONST Roll ••••• 159
AT Roll • • • • • • • • •
SUBCHK Roll • • •
NAMELIST MPY DATA Roll
GENERAL ALLOCATION Roll •
CODE Roll • • • • • • • •

.159

.160

.160

.160

.160

Roll 63: AFTER POLISH Roll •
Work and Exit Rolls

• ••• 161
•• 161

WORK Roll • • • • •••••• 161
EXIT Roll

APPENDIX C: POLISH NOTATION FORMATS
General Form • • • • • • • •
Labeled Statements •
Array References • •
ENTRY Statement
ASSIGN Statement • •
Assigned GO TO Statement
Logical IF Statement • •
RETURN Statement • • • • • • • •
Arithmetic and Logical Assignment

•• 161

•• 163
•• 163
• • 163
•• 163
•• 164
•• 164
•• 164
•• 164
•• 164

Statement • • • • • • • • • • • • .164
Unconditional GO TO Statement ••••• 165
computed GO TO Statement •• 165
Arithmetic IF Statement •• 165
DO Statement • • • • • • • ••••• 165
CONTINUE Statement • • • .166
PAUSE and STOP Statements •• 166
END statement • • • • • • • • .166
BLOCK DATA Statement • • • • • .166
DATA statement and DATA in Explicit
Specification Statements
I/O List • • • •

•• 166
•• 167
• • 167 Input Statements

FORMATTED READ
NAMELIST READ

•••• 167

UNFORMATTED READ •
READ Standard Unit • •

Output Statements
FORMATTED WRITE
NAMELIST WRITE • •
UNFORMATTED WRITE
PRINT • • • • • •
PUNCH • • • • • •

Direct Access Statements •
READ, Direct Access
WRITE, Direct Access •
FIND • • • • • • •
DEFINE FILE

END FILE Statement •
REWIND Statement • •
BACKSPACE Statement
Statement Function •
FUNCTION Statement •

•• 168
• • 168
•• 168
•• 168
•• 168
•• 169
• .169
•• 169
•• 169
• .169
•• 169
• .170

• • • • • • 1 70
•••• 170

•• 170
• .171
•• 171
• .171
•• 171

Function (Statement or subprogram)
Reference • • • • • •• 171
SUBROUTINE Statement •
CALL Statement • • • •
Debug Facility Statements

AT • • • • •
TRACE ON •
TRACE OFF • • • •
DISPLAY • • • • •

APPENDIX D: OBJECT CODE PRODUCED BY
THE COMPILER •
Branches • • •
Computed GO TO Statement •
DO Statement • • • • • •
Statement Functions • • • • • •
Subroutine and Function Subprograms
Input/Output Operations • • • • • •

• .171
• • 172
• • 172
• • 172
• • 172
• • 172
•• 173

•• 175
•• 175
•• 175
• .175
•• 176
•• 176
•• 177

Formatted Read and Write Statements
Second List Item, Formatted • • • •

.177

.177

Second List Array, Formatted ••••• 178
Final List Entry, Formatted ••••• 178
Unformatted Read and Write Statements 178
Second List Item, Unformatted •• 178
Second List Array, Unformatted •••• 178
Final List Entry, Unformatted .178
Backspace, Rewind, and Write Tape
Mark • • • • • • • • • • •
STOP and PAUSE Statements
NAMELIST READ and WRITE
DEFINE FILE Statement
FIND statement • •
Direct Access READ and WRITE
Statements • • • •
FORMAT Statements

FORMAT Beginning and Ending
Parentheses
Slashes • • • •
Internal Parentheses
Repetition of Individual FORMAT
Specifications • • • • • •
I,F,E, and D FORMAT Codes
A FORMAT Code • • • •
Literal Data ••
x FORMAT Code • • • • •
T FORMAT Code
Scale Factor-P •
G FORMAT code • • • • • • • •
L FORMAT code
z FORMAT Code

Debug Facility ••••
DEBUG Statement • • • •

Beginning of Input/Output
End of Input/Output
UNIT Option
TRACE Option • •
SUBTRACE Option • • • •
INIT Option • • • •
SUBCHK Option

AT Statement • • •
TRACE ON Statement •
TRACE OFF Statement
DISPLAY Statement

APPENDIX E: MISCELLANEOUS REFERENCE
DATA • • • • • • • • • • • • • •
Parse Label List • • • • • • •
Supplementary Parse Label List • •
Allocate Label List • • • •
Supplementary Allocate Label List
Unify Label List • • • • • • • •
Supplementary Unify Label List
Gen Label List • • • • • • • •
Supplementary Gen Label List •
Exit Label List ••••

.178

.179
• • • 179

.179

.179

• • • 179
••• 180

.180
• • • 18 0

.180

•• 180
• 180
• 180

• • • 18 0
.18i
.181

••• 181
.181
.181

••• 181
• 181
.181

••• 181
• 181
• 181

• • • 18 2
• 18 2
• 182
• 183
.183
• 18 3
.183

••• 183

• 185
• 18 5
• 18 5
• 193
.19 3
• 196
• 196
.198
.198
• 208

Supplementary Exit Label List •••• • 208

APPENDIX F: OBJECT-TIME LIBRARY
SUBPROGRAMS • • • • • • • 212
IHCFCOMH • • • • • • • • • • • • • • 213

• 214 READ/WRITE Routines • • • • • •
READ/WRITE Statements Not Using
NAMELIST •••••••••••••• 214
Examples of IHCFCOMH READ/WRITE
Statement Processing •••••••• 218
READ/WRITE Statement Using NAMELIST 221
Input/Output Device Manipulation
Routines ••••••••••••• • 221

Write-to-Operator Routines •
Utility Routines ••••••

conversion Routines (IHCFCVTH) •
IHCFIOSH • • • •

Blocks and Table Used • • • •
Unit Blocks ••••
Unit Assignment Table

Buffering • • • •
Communication with the Control
Program • • • • • • • •
Operation • • • • • •

Initialization •
Read •
Write • • • • •
Device Manipulation
Closing

IHCDIOSE • • • • •
Blocks and Table Used • • • •

Unit Blocks ••••
Unit Assignment Table

Buffering • • • •
Communication With the Control
Program • • • •

• 222
.222
• 223

•• 224
• 224

•• 224
.225

•• 226

•• 227
• • 227
• • 227

• 228
•• 228
•• 229
•• 229
•• 229
• .230
•• 230
•• 232
• •232

• • 233

Operation • • • • • • • • • • •
File Definition section
File Initialization Section
Read Section • • • • • • •
Write Section • • • • • •••
Error Processing • •
Termination Section

IHCIBERH • • • • • •
IHCDBUG • • • • • • •

Items and Buffer • •
Operation • • • •
Subroutines • • • • • • • •

IHCTRCH • • • •
IHCFINTH • • • •
IHCERRM • • • •

Alter Option Table Routine
(IHCFOPT)

GLOSSARY •

INDEX

• 233
• 233
• 233
• 234
• 235
• 235
• 236
• 236
• 236
• 236

236
• 237
· n8
• 238
• 239

• 240

• 259

• 263

FIGURES

Figure 1. Overall Operation of
the Compiler • • • • • • • • • • 11
Figure 2. Compiler Organization
Chart • • • • • • • • • • • • • • • 14
Figure 3. Compiler Storage
Configuration • • • • • 15
Figure 4. Compiler Output •••• 16
Figure 5. Object Module
configuration • • • • 17
Figure 6. Example of Use of save
Area • • • • • • • • • • • 18
Figure 7. Roll Containing K
Bytes of Information • • • • 23
Figure 8. Roll containing L
Bytes of Reserved Information and
K Bytes of New Information • • • • 24
Figure 9. Roll With a Group Size
of Twelve ••••••••••••• 25
Figure 10. Roll with Variable
Group Size • • • • • • • • • • 25

TABLES

Table 1. Internal Configuration
of Operation Drivers •••••••• 31
Table 2. Internal Configuration
of Control Drivers 32
Table 3. Rolls Used by Parse • • • 36
Table 4. Rolls Used by Allocate • 44
Table 5. Rolls Used by Unify • • • 52
Table 6. Rolls Used by Gen • 53
Table 7. Rolls Used by Exit 55
Table 8. POP Instruction
Cross-Reference List. • • • •• 139
Table 9. IHCFCOMH FORMAT Code
Processing • • • • • • • • • .215
Table 10. IHCFCOMH Processing for
a READ Requiring a Format .219
Table 11. IHCFCOMH Processing for
a WRITE Requiring a Format • • • 219

ILLUSTRATIONS

Figure 11.
Table

First Group Stats

Figure 12. Second Group Stats
26

Table • . • • • • • • • • • • • 26
Figure 13. Scan Control Variables 27
Figure 14. Quotes Used in the
Compiler • • • • • • • • • • • 27
Figure 15. compiler Arrangement
with Registers •••••••••• 28
Figure 16. Relationship Between
IHCFCOMH and Input/Output Data
Management Interfaces • • 213
Figure 17. Format of a Unit Block
for a Sequential Access Data Set .224
Figure 18. Unit Assignment Table
Format • • • • • • • • • • .226
Figure 19. CTLBLK Format ••••• 227
Figure 20. Format of a Unit Block
for a Direct Access Data Set .230
Figure 21. Unit Assignment Table
Entry for a Direct Access Data set 232

Table 12. IHCFCOMH Processing for
a READ Not Requiring a Format • 220
Table 13. IHCFCOMH Processing for
a WRITE Not Requiring a Format ••• 220
Table 14. Description of Option
Table Entry •••••••••••• 241
Table 15. Description of Option
Table Preface ••••••••••• 242
Table 16. IHCFCOMH Subroutine
Directory
Table 17.
Directory
Table 18.
Directory
Table 19.
Directory

IHCFCVTH Subroutine

IHCFIOSH Routine

IHCDIOSE Routine

•• 246

•• 246

••• 251

•• 251

CHARTS

Chart oo. IEYFORT (Part 1 of 4) . . 59
Chart 01. IEYFORT (Part 2 of 4) 60
Chart 02. IEYFORT (Part 3 of 4) 61
Chart 03. IEYFORT (Part 4 of 4) 62
Chart AA. OPTSCAN • 63
Chart AB. DDNAMES • 64
Chart AC. HEADOPT • . 65
Chart AD. TIMEDAT • . 66
Chart 04. PHASE 1 - PARSE 67
Chart BA. WRITE LISTING AND READ
SOURCE • 68
Chart BB. INITIALIZE FOR
PROCESSING STATEMENT • 69
Chart BC. PROCESS LABEL FIELD • . . 70
Chart BD. PROCESS STATEMENT • . . . 71
Chart BE. COMPLETE STATEMENT AND
MOVE POLISH 72
Chart BF. PROCESS END STATEMENT 73
Chart BG. PROCESS POLISH 74
Chart os. PHASE 2 - ALLOCATE
(Part 1 of 2) 75
Chart 06. PHASE 2 - ALLOCATE
(Part 2 of 2) 76
Chart CA. MOVE BLD NAMES TO BCD
ROLL • 77
Chart CB. PREPARE EQUIVALENCE DATA 78
Chart cc. ALLOCATE BLOCK DATA • 79
Chart CD. PREPROCESS DUMMY
DIMENSIONS 80
Chart CE. CHECK FOR UNCLOSED DO
LOOPS 81
Chart CF. CONSTRUCT BRANCH TABLE
ROLL • • • • • • • • • • • • • • 82
Chart CG. ALLOCATE HEADING AND
PUNCH ESD CARDS • • • • • • • • • • 8 3
Chart CH. CHECK ASSIGNMENT OF
FUNCTION VALUE • • • • • • • • 84
Chart CI. COMMON ALLOCATION • • 85
Chart CK. EQUIVALENCE DATA
ALLOCATION • • • • • • • • • • • 86
Chart CL. SAVE AREA, BASE AND
BRANCH TABLE ALLOCATION 87
Chart CM. ALLOCATE SCALARS • • • • 88
Chart CN. ALLOCATE ARRAYS • • • 89
Chart co. ADD BASES FOR
SUBPROGRAM ADDRESSES • • • • • 9 0
Chart CP. ALLOCATE SUBPROGRAM
ARGUMENT LISTS • • • • • • • • • • • 91
Chart CQ. PREPARE NAMELIST TABLES • 92
Chart CR. ~LOCATE LITERAL
CONSTANTS • • • • • • • • • • • 93
Chart cs. ALLOCATE FORMATS 94
Chart CT. MAP EQUIVALENCE • • • 95
Chart cu. ALLOCATE SUBPROGRAM
ADDRESSES 96
Chart cv. BUILD AND PUNCH
NAMELIST TABLES 97

Chart CW. BUILD BASES • • • • 98
Chart ex. DEBUG ALLOCATE •• 99
Chart 07. PHASE 3 - UNIFY •• 100
Chart DA. BUILD ARRAY REF ROLL •• 101
Chart DB~ MAKE ADDRESS CONSTANTS .102
Chart DC. CONSTRUCT INSTRUCTIONS .103
Chart DD. PROCESS NESTED LOOPS •• 104
Chart 08. PHASE 4 - GEN •••••• 105
Chart EA. GENERATE ENTRY CODE ••• 106
Chart EB. PROLOGUE CODE GENERATION 107
Chart EC. EPILOGUE CODE GENERATION 108
Chart ED. MOVE POLISH NOTATION •• 109
Chart EF. PROCESS LABELS ••••• 110
Chart EG. GENERATE STMT CODE ••• 111
Chart EH. COMPLETE OBJECT CODE •• 112
Chart 09. PHASE 5 - IEYEXT .113
Chart FA. PUNCH CONSTANTS AND
TEMP STORAGE •••••••••••• 114
Chart FB. PUNCH ADR CONST ROLL •• 115
Chart FC. PUNCH OBJECT CODE. .116
Chart FD. PUNCH BASE TABLE • • 11 7
Chart FE. PUNCH BRANCH TABLE .118
Chart FF. PUNCH SUBPROGRAM
ARGUMENT LISTS • • • • • • • • .119
Chart FG. PUNCH SUBPROGRAM
ADDRESSES • • • • • • • .120
Chart FH. COMPLETE ADDRESSES FROM
LIBRARY • • • • • • • • • • • • • .121
Chart FI. PUNCH ADDRESS CONSTANTS .122
Chart FJ. PUNCH RLD CARDS ••••• 123
Chart FK. PUNCH END CARDS ••••• 124
Chart FL. PUNCH NAMELIST TABLE
POINTERS. • ••••••••• 125
Chart GO. IHCFCOMH OVERALL LOGIC
AND UTILITY ROUTINES •••••••• 243
Chart Gl. IMPLEMENTATION OF
READ/WRITE/FIND •••••••••• 244
Chart G2. DEVICE MANIPULATION AND
WRITE-TO-OPERATOR ROUTINES • • .245
Chart G3. IHCFIOSH OVERALL LOGIC .247
Chart G4. EXECUTION-TIME
INPUT/OUTPUT RECOVERY PROCEDURE •• 248
Chart GS. IHCDIOSE OVERALL
LOGIC - FILE DEFINITION SECTION •• 249
Chart G6. IHCDIOSE OVERALL LOGIC
- FILE INITIALIZATION, READ,
WRITE, AND TERMINATION SECTIONS •• 250
Chart G7. IHCIBERH OVERALL LOGIC .252
Charts G8. ERROR MONITOR OVERALL
LOGIC (Part 1 of 2) •••••••• 253
Chart G9. ERROR MONITOR OVERALL
LOGIC (Part 2 of 2) •••••••• 254
Chart GlO. ALTER OPTION TABLE
ROUTINE OVERALL LOGIC (Part 1 of 3) 255
Chart Gll. ALTER OPTION TABLE
ROUTINE OVERALL LOGIC (Part 2 of 3) 256
Chart G12. ALTER OPTION TABLE
ROUTINE OVERALL LOGIC (Part 3 of 3) 257

This section contains general informa­
tion describing the purpose of the FORTRAN
IV CG) compiler, the minimum machine confi­
guration required, the relationship of the
compiler to the operating system, compiler
design and implementation, and compiler
output. The various rolls,1 variables,
registers, pointers, and drivers used by
the compiler are also discussed.

PURPOSE OF THE COMPILER

The IBM System/360 Operating system
FORTRAN IV CG) compiler is designed to
accept programs written in the FORTRAN IV
language as defined in the publication IBM
System/360: FORTRAN IV Language, Form
C28-6515.

The compiler produces error messages for
invalid statements, and, optionally, a
listing of the source module, storage maps,
and an object module acceptable to the
System/360 Operating System linkage editor.

MACHINE CONFIGURATION

The minimum system configuration
required for the use of the IBM system/360
Operating System with the FORTRAN IV (G)
compiler is as follows:

• An IBM System/360 Model 40 computer
with a storage capacity of 128K bytes
and a standard and floating-point
instruction set.

• A device for operator communication,
such as an IBM 1052 Keyboard Printer.

• At least one direct-access device pro­
vided for system residence.

COMPILER AND SYSTEM/360 OPERATING SYSTEM

The FORTRAN IV CG) compiler is a proces-
sing program of the IBM System/360

1Most of the tables
are called rolls.
rolls is given
controls.">

used by the compiler
(Further explanation of

in "Rolls and Roll

Operating System. As a processing program,
the compiler communicates with the control
program for input/output and other ser­
vices. A general description of the con­
trol program is given in the publication
IBM System/360 Operating System: Introduc­
tion to control Program Logic, ProgE~
Logic Manual.

A compilation, or a batch of compila­
tions, is requested using the job statement
(JOB), the execute statement (EXEC>, and
data definition statements (DD). Alterna­
tively, cataloged procedures may be used.
A discussion of FORTRAN IV compilation and
the available cataloged procedures is given
in the publication ~_§y~tem/3§.Q_Oper~~inq
System: FORTRAN IV (G) Programmer's Guide.

The compiler receives control initially
from the calling program Ce.g., job sche­
duler or another program that CALLs, LINKs
to, or ATTACHes the compiler). Once the
compiler receives control, it uses the QSAM
access method for all of its input/output
operations. After compilation is com­
pleted, control is returned to the calling
program.

COMPILER DESIGN

The compiler will operate within a total
of SOK bytes of main storage. This figure
includes space for the compiler code, data
management access routines, and sufficient
working space to meet other storage
requirements stated throughout this
publication.

Any additional storage available is used
as additional roll storage.

LIMITAT.!£lli§_QF THE COMPILER

The System/360 Operating System FORTRAN
IV (G) compiler and the object module it
produces can be executed on all System/360
models from Model 40 and above, under
control of the operating system control
program. All input information must be
written in either BCD or EBCDIC representa­
tion. The compiler is designed to process
all properly written programs so that the
object code produced by the compiler is
compatible with the existing mathematical
library subroutines.

Section 1: Introduction to the compiler 9

If ten source read errors occur during
the compilation, or if it is not possible
to use SYSPRINT, the operation of the
compiler is terminated. The operation of
the compiler is also limited by the availa­
bility of main storage space. The compila­
tion is terminated if:

• The roll storage area is exceeded

• Any single roll exceeds 64K bytes,
thereby making it unaddressable

• The WORK or EXIT roll exceeds its
allocated storage

~: If any of these conditions occur
during the first phase of the compilation,
the statement currently being processed may
be discarded; in this case, the compilation
continues with the next statement.

COMPILER IMPLEMENTATION

The primary control and processing rou­
tines (hereafter referred to as "POP rou­
tines" or "compiler routines") of the com­
piler are primarily written in machine­
independent pseudo instructions called POP
instructions.

Interpretation of the pseudo instruc­
tions is accomplished by routines written
in the System/360 Operating system assembl­
er language. These routines <hereafter
referred to as "POP subroutines") are an
integral part of the compiler and perform
the operations specified by the POP ins­
tructions, e.g., saving of backup informa­
tion, maintaining data indicators, and gen­
eral housekeeping.

control of the compiler operation is
greatly affected by source language syntax
rules during the first phase of the compil­
er, Parse. During this phase, identifiers
and explicit declarations encountered in
parsing are placed in tables and a Polish
notation form of the program is produced~
(For further information on Polish nota­
tion, see Appendix c, "Polish Notation
Formats.")

10

The compiler quite frequently uses the
method of recursion in parsing, analysis,
and optimization. All optimizing and code
generating routines, which appear in later
phases, operate directly on the tables and
Polish notation produced by Parse.

The compiler is also designed so that
reloading of the compiler is unnecessary in
order to accomplish multiple compilations.

POP LANGUAGE

The FORTRAN IV (G) compiler is written
in a combination of two languages: the
System/360 Operating System assembler lan­
guage, which is used where it is most
efficient, and the POP language.

The POP language is a mnemonic macro
programming language whose instructions
include functions that are frequently per­
formed by a compiler. POP instructions are
written for assembly by the System/360
Operating System assembler, with the POP
instructions defined as macros. Each POP
instruction is assembled as a pair of
address constants which together indicate
an instruction code and an operand. A
statement or instruction written in the POP
language is called a POP. The POP instruc­
tions are described in Appendix A.

COMPILER ORGANIZATION

The system/360 Operating System FORTRAN
IV (G) compiler is composed of a control
phase, Invocation, and five processing
phases <see Figure 1): Parse, Allocate,
Unify, Gen, and Exit. The operating system
names for these phases are, respectively,
IEYFORT, IEYPAR, IEYALL, IEYUNF, IEYGEN,
and IEYEXT. (The first level control and
second level processing compiler routines
used in each phase are shown in Figure 2.l
In addition, Move is a pre-assembled work
area, IEYROL.

IEYFORT
r-------------1 r-------------1 r-------------1

SYSIN----------->I Source 1----->I Control 1----->I Invocation 1-----> ~
I Module I I Program I I Phase I l _____________ J l _____________ J l _____________ J

®
I r-------------1
I r--->ISource Module!
I I I listing I
V IEYPAR l L-------------J

r-------------1 I
Parse ~-----------~

I CPhase 1> I I
L------T ______ J I r-------------1

I L--->ISource Module!
l !diagnostics I I L _____________ J

V IEYALL r-------------1
r-------------1 r--->IStorage Maps I
I Allocate I I L-------------J
I (Phase 2) ~-----------~
L------T ______ J I r-------------1

I L--->IESD and TXT
I I Cards I
V IEYUNF L-------------J

r-------------1
I Unify I
I (Phase 3) I L ______ T ______ J

I
V IEYGEN

r-------------1
I Gen I
I (Phase 4> I
L------T ______ J

I
I
V IEYEXT

r-------------1
r--->IObject Module!
I I listing I I L _____________ J

I r-------------1
r-------------1 I)Object Module!

Exit ~-----------+--->ITXT cards I
I (Phase 51 I I L-------------J L ______ T ______ J I

I I r-------------1
I I IESD, RLD, andl
V IEYFORT L--->IEND cards I

r-------------1
I Invocation I
I Phase I
L------r-----J

. * .
. * *.

L-------------J

·* *· * Multiple * NO r-------------1
:Compilations :-------------->!Control I

*· • *)Program I
* • • * L-------------J * .. * * YES v

C)
Figure 1. Overall Operation of the Compiler

SYS PRINT

SYS PRINT

SYS PRINT

SYSPUNCH/SYSLIN

SYS PRINT

SYSPUNCH/SYSLIN

SYSPUNCH/SYSLIN

Section 1: Introduction to the Compiler 11

Control Phase: Invocation (IEYFORT)

The Invocation phase <IEYFORT) is loaded
upon invocation of the compiler and remains
in core storage throughout compilation. It
is entered initially from the calling pro­
gram, from each module at the end of its
processing, and from Exit after compilation
is complete.

At the initial entry, the Invocation
phase initializes bits in IEYFORT1 from the
options specified by the programmer for the
compilation, opens data sets, and fetches
the modules IEYPAR, IEYALL, IEYUNF, IEYGEN,
and IEYEXT via a series of LOAD macro
instructions. These modules remain in core
storage for a series of main program and
subprogram compilations unless it is deter­
mined that additional space required for
tables is not available. When this occurs,
modules that precede the active one are
deleted, and compilation is resumed. If
more space is required, modules that follow
the currently active one are deleted.

When a module completes processing, it
returns to IEYFORT, which ensures the pre­
sence of the next module and transfers to
it. During initialization for a subpro­
gram, IEYFORT ensures that all modules are
loaded.

The last entry is made from the Exit
phase at the completion of a compilation.
When the entry is made from Exit, the
Invocation phase checks for multiple compi­
lations. If another compilation is
required, the compiler is reinitialized and
the main storage space allocated for the
expansion of rolls is assigned to the next
compilation; otherwise, control is returned
to the calling program.

Phase 1: Parse (IEYPAR)

Parse accepts FORTRAN statements in card
format from SYSIN and scans these to pro­
duce error messages on the SYSPRINT data
set, a source module listing (optional),
and Polish notation for the program. The
Polish notation is maintained on internal
tables for use by subsequent phases. In
addition, Parse produces the roll entries
defining the symbols used in the source
module.

Phase 2: Allocate (IEYALL)

Allocate, which operates immediately
after Parse, uses the roll entries produced

12

by Parse to perform the storage allocation
for the variables defined in the source
module. The addressing information thus
produced is then left in main storage to be
used by the next phase.

The ESD cards for the object module
itself, COMMON blocks and subprograms, and
TXT cards for NAMELIST tables, literal
constants and FORMAT statements are pro­
duced by Allocate on the SYSPUNCH and/or
SYSLIN data sets. Error messages for
COMMON and EQUIVALENCE statements, unclosed
DO loops and undefined labels are produced
on SYSPRINT; on the MAP option, maps of
data storage are also produced.

The Unify phase optimizes the usage of
general registers within DO loops by
operating on roll data which describes
array references. The optimization applies
to references which include subscripts of
the form ax+b, where a and b are positive
constants and x is an active induction
variable (that is, x is a DO-controlled
variable and the reference occurs within
the DO loop controlling it>, and where the
array does not have any adjustable dimen­
sions. The addressing portion of the
object instruction for each such array
reference is constructed to minimize the
number of registers used for the reference
and the number of registers which must be
changed as each induction variable changes.

Phase 4: Gen (IEYGEN)

Gen uses the Polish notation produced by
Parse and the·rnemory allocation information
produced by Allocate. From this inf orma­
tion, Gen produces the code, prologues, and
epilogues required for the object module.
In order to produce the object code, Gen
resolves labeled statement references
(i.e., a branch target label) and subpro­
gram entry references.

The final output from Gen is a
form of the machine language code
internally maintained for writing
Exit phase.

complete
which is

by the

Phase 5: Exit (IEYEXT)

Exit, which is the last processing phase
of the compiler, produces the TXT cards for
the remaining portion of the object module,
the RLD cards (which contain the relocat­
able information>, and the END card. This
output is placed optionally on the SYSLIN
data set for linkage editor processing
and/or SYSPUNCH if a card deck has been
requested. Additionally, a li~ting of the
generated code may be written on the SYS-

PRINT data set in a format similar to that
produced by an assembly program.

Roll CIEYROL)

Roll contains static rolls
information always required for
operations. These are described
heading "Rolls and Roll controls"
this section.

and roll
compiler

under the
later in

Section 1: Introduction to the Compiler 13

r--~---------------------------------------1

r---START COMPILER
PARSE----~
-- I

I

r---PRINT AND READ SOURCE I
I STA !NIT I
I LBL FIELD XLATE I
I STA XLATE I
I STA FINAL I
I REGISTER IBCOM I
I PROCESS POLISH I I

L---STATEMENT PROCESS----~ ACTIVE END STA XLATE
l---STA FINAL END

r---PREP EQUIV AND PRINT ERRORS
I BLOCK DATA PROG ALLOCATION
I PREP DMY DIN AND PRINT ERRORS
I PROCESS DO LOOPS
I PROCESS LBL AND LOCAL SPROGS
I BUILD PROGRAM ESD
I ENTRY NAME ALLOCATION
I COMMON ALLOCATION AND OUTPUT
I BASE AND BRANCH TABLE ALLOC
I EQUIV ALLOCATION PRINT ERRORS
I FORMAT ALLOCATION
I SCALAR ALLOCATE
I ARRAY ALLOCATE

ALLOCATE-----START ALLOCATE-------~ PASS 1 GLOBAL SPROG ALLOCATE
SPROG ARG ALLOCATION
PREP NAMELIST
LITERAL CONST ALLOCATION
EQUIV MAP
GLOBAL SPROG ALLOCATE
BUILD NAMELIST TABLE
ALPHA LBL AND L SPROG
BUILD ADDITIONAL BASES
ALPHA SCALAR ARRAY AND SPROG
LITERAL CONST ALLOCATION
CALCULATE BASE AND DISP

---DEBUG ALLOCATE

r---ARRAY REF ROLL ALLOTMENT
UNIFY--------START UNIFY----------i DO NEST UNIFY

r---START GEN
I
I

GEN------1

I CONVERT TO ADR CONST
l---CONVERT TO INST FORMAT

r---MOVE ZEROS TO T AND C
I ENTRY CODE GEN
I PROLOGUE GEN
l---EPILOGUE GEN

I I r---GET POLISH
I L---GEN PROCESS----------~ LBL PROCESS
I I STA GEN
I L---STA GEN FINISH
I r---PUNCH TEMP AND CONST ROLL
I I PUNCH ADR CONST ROLL
I I PUNCH CODE ROLL
I I PUNCH BASE ROLL
I I PUNCH BRANCH ROLL
I I PUNCH SPROG ARG ROLL
IEXIT---------EXIT PASS------------~ PUNCH GLOBAL SPROG ROLL
I I PUNCH USED LIBRARY ROLL
I I PUNCH ADCON ROLL
I I ORDER AND PUNCH RLD ROLL
I I PUNCH END CARD
I I PRINT HEADING
I I PRINT A LINE
I L---PRINT TOTAL PROG REQMTS MESS

l--------~--~---
Figure 2. Compiler Organization Chart

14

Low
core

r-------T----------T------------------1
!Load I I I
I Module I I Content or I
I Name f Componentsf Function I
~-------+----------+------------------~
IEYFORT IEYFORT Invocation and

IEYFORTl

IEYFORT2

IEYROL

control

Option bits

Loads and deletes
other modules

Roll statistics
(bases, tops,
bottoms>

Group statistics
(displacement
group sizes)

WORK roll
I
!EXIT roll
I

I
I
I
I
I
I

jRoll address table I

IEYINT
I
jPOP Jump Table
I
IPOP machine
I language sub-
1 routines

Roll Storage is Allocated from this

IIEYPAR
I
I
I
I
jIEYALL
I
IIEYUNF
I
IIEYGEN

IEYPAR

IEYALL

IEYUNF

IEYGEN

Parse phase

Quotes and
messages

Allocate phase

Unify phase

Generate phase

I
I
I
I
I
I

High I

I
I
I
I
I
I
I
I
I
I
I

corelIEYEXT IEYEXT Exit phase I
L-------i----------i------------------J

Figure 3. Compiler Storage Configuration

COMPILER STORAGE CONFIGURATION

Figure
tions, but
component
they exist
parts of
tion 2.

3 illustrates the relative posi­
not the relative sizes of the
parts of the FORTRAN compiler as
in main storage. The component
each phase are described in Sec-

COMPILER OUTPUT

The source module<s> to be compiled
appear as input to the compiler on the
SYSIN data set. The SYSLIN, SYSPRINT, and
SYSPUNCH data sets are used (depending on
the options specified by the user) to
contain the output of the compilation.

The output of the compiler is repre­
sented in EBCDIC form and consists of any
or all of the following:

Object Module (linkage editor input)

Source Module listing

Object Module listing

Storage maps

Error messages (always produced)

Relocatable card images for punching

The overall data flow and the data sets
used for compilation are illustrated in
Figure 4. The type of output is determined
by compile time parameters.

Section 1: Introduction to the Compiler 15

r---1
I I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

r----------------1
I Error and I

r----For all-------------->I Warning I
I compilations I Messages I
1- I <if any> I I L ________________ J

I
I
I
I
~----LIST
I
I
I

SY SIN I
r--------, I
I Source I I
!Module I ~----DECK
L ____ T ___ J I

I I
I I
v I

r--------, I
!FORTRAN I I
I IV (G) ~->~
ICompilert I
L ________ J ~----LOAD

I
I
I
I

r----------------1
I Object I

Option----------> I Module I
I listing I
L----------------J

r----------------1
!Object Module I

Option----------> I (ESD, TXT, RLD I
IEND) Card Images!
L----------------J

r----------------,
!Object Module I

Option----------> I (ESD, TXT, RLD, I
IEND) Card Images!
L----------------J

r----------------,

SY SPRINT

SYSPRINT

SYS PUNCH

SYSLIN

I
~----MAP Option----------->! Storage I SYSPRINT
I
I
I
I
I
I
L----SOURCE

Figure 4. Compiler output

16

I Map I
L----------------J

r----------------1
I Source I

Option--------> I Module I SY SPRINT
I Listing I
L----------------J

OBJECT MODULE

The configuration of the object module
produced by the FORTRAN IV (G) compiler is
shown in Figure 5.

Entry point---> r---------------------1
!Heading I
r---------------------~
!Save area I
r---------------------~
!Base table l
~---------------------~
!Branch table l
r---------------------~
!EQUIVALENCE varictLlest
~---------------------~
!Scalar variables I
~---------------------~
I Arrays I
~---------------------~
!Subprogram argument l
I lists I
~---------------------~
!Subprogram addresses I
~---------------------~
INAMELIST tables I
r---------------------~
!Literal constants I
l (except those used I
lin DATA and PAUSE I
I statements I I
r---------------------~
]FORMAT statements I
~---------------------~
!Temporary storage I
land constants I
r---------------------~
!Program text I
L---------------------J

Figure 5. Object Module Configuration

components of the Obj~~~_Mog~!~

The following paragraphs describe the
components of the object module produced by
the FORTRAN IV (G) compiler.

HEADING: The object module heading
includes all initializing instructions
required prior to the execution of the body

of the object module. Among other func­
tions, these instructions set general
register 13 (see "Object Module General
Register Usage") and perform various opera­
tions, depending on whether the program is
a main program or a subprogram and on
whether it calls subprograms. (See "Code
Produced for SUBROUTINE and FUNCTION
Subprograms.")

SAVE AREA: The save area, at maximum 72
bytes-long, is reserved for information
saved by called subprograms. Figure 6
shows an example of the use of this area in
program Y, which is called by program X,
and which calls program z.

The first byte of the fifth word in the
save area (Save Area of Y + 16) is set to
all ones by program Z before it returns to
program Y. Before the return is made, all
general registers are restored to their
program Y values.

~~~~~~~1~: The base table is a list of 
addresses from which the object module 
loads a general register prior to accessing 
data; the general register is then used as 
a base in the data referencing instruction. 

Because an interval of 4096 bytes of 
storage can be referenced by means of the 
machine instruction D field, consecutive 
values representing a single control sec­
tion in this table differ from each other 
by at least 4096 bytes. Only one base 
table entry is constructed for an array 
which exceeds 4096 bytes in length; hence, 
there is a possibility that an interval of 
more than 4096 bytes exists between conse­
cutive values for a single control section 
in the table. 

The addresses compiled into this table 
are all relative, and are modified by the 
linkage editor prior to object module 
execution. Those entries constructed for 
references to COMMON are modified by the 
beginning address of the appropriate COMMON 
block; those entries constructed for 
references to variables and constants 
within the object module itself are modi­
fied by the beginning address of the appro­
priate object module. 

Section 1: Introduction to the Compiler 17 



r---------------------------------------------------------------------------------------1 
I <---4 bytes----> 
I 
I 
!Save Area of 

r----------------1 
!Subprogram I 

Yjepilogue address! 
~----------------~ 

<---Stored by initial entry code 

I 
I +4 !Program X save I <---stored by program Y 

1area address I 
~----------------~ 

+8 !Program Z save I <---Stored by program z, if it calls subroutines 
!area address I 
~----------------~ 

+12 !Register 14 I 
~----------------i 

+16 !Register 15 I 
~----------------~ 

+20 !Register 0 I 
~----------------i Values on leaving program Y, stored by program z. 
I I 
I I 
I I 
~----------------~ 

+72 !Register 12 I I L ________________ J 

L---------------------------------------------------------------------------------------
Figure 6. Example of Use of Save Area 

BRANCH TABLE: This table contains one 
fullword entry for each branch target label 
{a label referred to in a branch statement) 
and statement function in the source 
module. In addition, one entry occurs for 
each label produced by the compiler in 
generating the object module. These labels 
refer to return points in DO loops and to 
the statement following complete Logical IF 
statements, and are called ~~de l~be!~· 

In the object module code, any branch is 
performed by loa~ing general register 14 
{see "Object Module General Register 
Usage"> from this table, and using a BCR 
instruction. The values placed in this 
table by the compiler are relative ad­
dresses. Each value is modified by the 
base address of the object module by the 
linkage editor. 

E~UIVALENCE~ABLES: This area of the 
o ject module contains unsubscripted 
variables and arrays, listed in EQUIVALENCE 
sets which do not refer to COMMON. 

SCALAR VARIABLES: All non-subscripted 
variables which are not in COMMON and are 
not members of EQUIVALENCE sets appear in 
this area of the object module. 

~RRAY§: All arrays which are not in 
COMMON, and are not members of EQUIVALENCE 
sets appear in this area of the object 
module. 

18 

SUBPROGRAM ARGUMENT LISTS: This portion of 
the object module contains the addresses of 
the arguments for all subprograms called. 
In calling a subprogram, the object module 
uses general register 1 to transmit a 
location in this table. The subprogram 
then acquires the addresses of its argu­
ments from that location and from as many 
subsequent locations as there are argu­
ments. The sign bit of the word containing 
the address of the last argument for each 
subprogram is set to one. 

SUBPROGRAM ADDRESSES: This list contains 
one entry for each FUNCTION or SUBROUTINE 
subprogram referenced by the object module. 
The entry will hold the address of that 
subprogram when it is supplied by the 
linkage editor. The compiler reserves the 
correct amount of space for the list, based 
on the number of subprograms referred to by 
the source module. 

NAMELIST TABLES: For each NAMELIST name 
and DISPLAY statement in the source module, 
a NAMELIST table is constructed by the 
compiler and placed in this area of the 
object module. Each table consists of one 
entry for each scalar variable or array 
listed following the NAMELIST name or in 
the DISPLAY statement, and begins with four 
words of the following form: 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

---------T--------------------------~---1 

I Byte I l 
!Word l 1 2 3 4 ] 
r--------~ ------~------------------~---~ 
I 1 I I 
I l name field I 
I 2 I I 
I r-------------------------------~ 
I 3 l l 
I l not used l 
I 4 I l 
L----~---L--------------------------~---J 

where the name field contains the NAMELIST 
name, right justified. For the DISPLAY 
statement, the name is DBGnn#, where nn is 
the number of the DISPLAY statement within 
the source program or subprogra~. 

Table entries for scalar variables have 
the following form: 

----~---T-------------------------------1 

I Byte I l 
lWord l 1 2 3 4 l 
!---------- -------------------------------~ 
I 1 I I 
I I name field I 
I 2 I l 
I r-------------------------------~ 
I 3 I address field l 
I 1------~-------T-----------------~ 

I 4 I type I mode I not usei I 
l---------L~-----L-------i----------------J 

where: 

name field 
contains the name of the scalar vari­
able, right justified. 

address field 
contains the relative address of the 
variable within the object module. 

type field 
contains zero to indicate a scalar 
variable. 

mode field 
contains the mode of the variable, 
coded as follows: 

2 Logical, 1 byte 
3 Logical, fullword 
4 Integer, halfword 
5 Integer, fullword 
6 Real, double precision 
7 Real, single precision 
8 Complex, double precision 
9 complex, single precision 
A Literal (not currently 

compiler-generated) 

NAMELIST table entries for arrays have 
the following form: 

---------T-------------------------------1 
I Byte I I 
]Word I 1 2 3 4 I 
!---------- -------------------------------1 
I 1 I I 
I I name field I 
I 2 I I 
I !--------------------------------~ 
I I I 
I 3 I address field I 
I 1--------T-------T-------T-------1 
I I I I no. I I 
I 4 ] type l mode l dimens. I length I 
l ~-------+-------i _______ i _______ 1 
l jindica-Jfirst dimension factor I 
] 5 I tor !field I 
I !--------+-----------------------~ 
] jnot Jsecond dimension factor! 
I 6 Jused !field I 
l l--------+-----------------------1 
] Jnot !third dimension factor I 
I 7 Jused !field I 
I L-------i-----------------------1 
l I 
I I 
l I 
I etc. etc. I 
L-----------------------------------------J 

where: 

name field 
contains the name of the array, right 
justified. 

address field 
contains the 
beginning of 
object module. 

relative address of the 
the array within the 

mode field 
contains the mode of the array ele­
ments, coded as for scalar variables, 
above. 

no. dimens. 
contains the number of dimensions in 
the array; this value may be 1-7. 

length field 
contains the length of the array ele­
ment in bytes. 

indicator field 
is set to zero 
defined to have 
otherwise, it is 

if the array has been 
variable dimensions; 
set to nonzero. 

first dimension factor field 
contains the total size of the array 
in bytes. 

second dimension factor field 
contains the address of the second 
multiplier for the array Cnl*L, where 
nl is the size of the first dimension 
in elements, and L is the number of 
bytes per element). 

Section 1: Introduction to the Compiler 19 



Form ¥28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

third dimension factor field 
contains the address of the third 
multiplier for the array Cnl*n2*L, 
where nl is the size of the first 
dimension in elements, n2 is the size 
of the second dimension, and L is the 
number of bytes per element). 

A final entry for each NAMELIST table is 
added after the last variable or array name 
to signify the end of that particular list. 
This entry is a fullword in length and 
contains all zeros. 

LITERAL CONSTANTS: This area contains a 
list--of--the-Iiteral constants used in the 
source module, except for those specified 
in DATA and PAUSE statements. 

EQB~I __ §I~IEM~~Is: The FORMAT statements 
specified in the source module are con­
tained in this area of the object module. 
The statements are in an encoded form in 
the order of their appearance in the source 
module. {See "Appendix D: Code Produced 
by the Compiler.") The information contains 
all specifications of the statement but not 
the word FORMAT. 

TEMPORARY STORAGE AND CONSTANTS: This area 
always begins on a double precision boun­
dary and contains, in no specific order, 
the constants required by the object module 
code and the space for the storage of 
temporary results during computations. Not 
all of the source module constants neces­
sarily appear in this area, since as many 
constants as possible are used as immediate 
data in the code produced. Some constants 
may appear which are not present in the 
source module, but which have been produced 
by the compiler. 

~RO§B~--I~~I: If the object module con­
tains statement functions, the code for 
these statements begins the program text 
and is preceded by an instruction that 
branches around them to the first execut­
able statement of the program. (See 
"Statement Functions" in Appendix D for 
further explanation of this code.) Follow­
ing the code for the statement functions is 
the code for the executable statements of 
the source module. 

The object module produced by the 
FORTRAN IV (G) compiler uses the system/360 
general registers in the following way: 

20 

Register 0: Used as an accumulator. 

Register 1: Used as an accumulator and 
beginning address of the 
in branches to sub-

to hold the 
argument list 
programs. 

Register 2: Used as an accumulator. 

Register 3: Used as an accumulator. 

Registers 4 through 7: contain index 
values as required for references to 
array variables, where the subscripts 
are linear functions of DO variables and 
the array does not have variable 
dimensions. 

Registers 8 and 9: Contain index values 
as required for references to array 
variables, where the subscripts are of 
the form x+c, where x is a non DO­
controlled vir~able and c is a constant. 

Register 9: Contains index values as 
required for references to array 
variables where the subscripts are non­
linear of the form I*J, where I and J 
are the variables. 

Registers 10 through 12: Contain base 
addresses loaded from the base table. 

Register 13: Contains the beginning 
address of the object module save area; 
this value is loaded at the beginning of 
program execution. Register 13 is also 
used for access to the base table, since 
the base table follows the save area in 
main storage. 

Register 14: Contains the return 
address for subprograms and holds the 
address of branch target instructions 
during the execution of branch 
instructions. 

Register 15: Contains the entry point 
address for subprograms as they are 
called by the object module. 

SOURCE MODULE LISTING 

The optional source module listing is a 
symbolic listing of the source module; it 
contains indications of errors encountered 
in the program during compilation. The 
error message resulting from an erroneous 
statement does not necessarily cause ter­
mination of compiler processing nor the 
discarding of the statement. Recognizable 
portions of declaration statements are 
retained, and diagnosis always proceeds 
until the end of the program. 

OBJECT MODULE LISTING 

The optional object module listing uses 
the standard System/360 Operating System 



assembler mnemonic operation codes and, 
where possible, refers to the symbolic 
variable names contained in the source 
module. Labels used in the source module 
are indicated at the appropriate places in 
the object code listin9. 

STORAGE MAPS 

The optional storage map consists of six 
independent listings of storage informa­
tion. Each listing specifies the names and 
locations of a particular class of vari­
able. The listings are: 

• COMMON variables 

• EQUIVALENCE variables 

• Scalar variables 

• Array variables 

• NAMELIST tables 

• FORMAT statements 

A list of the subprograms called is also 
produced. 

ERROR MESSAGES 

Errors are indicated by listing the 
statement in its original form with the 
erroneous phrases or characters undermarked 
by the dollar sign character, followed by 
comments indicating the type of the error. 
This method is described in more detail in 
"Phase 1 of the Compiler: Parse (IEYPAR)." 

Common Error Messages 

The message NO CORE AVAILABLE is pro­
duced (through IEYFORT) by all phases of 
the compiler when the program being com­
piled exhausts the main storage space 
available to the compiler. This message is 
produced only when the PRESS MEMORY routine 
cannot provide unused main storage space on 
request from the compiler. 

The message ROLL SIZE EXCEEDED is pro­
duced (through the Invocation phase, 
IEYFORT> by all phases of the compiler when 
the size of any single roll or rolls is 
greater than permitted. The following cir­
cumstances cause this message to be 
produced: 

• The WORK roll exceeds the fixed storage 
space assigned to it. 

• The EXIT roll exceeds the fixed storage 
space assigned to it. 

• Any other roll, with the exception of 
the AFTER POLISH roll and the CODE 
roll, exceeds 64K bytes of storage. In 
this case, the capacity of the ADDRESS 
field of a pointer to the roll is 
exceeded and, therefore, the informa­
tion on the roll is unaddressable. The 
AFTER POLISH and CODE rolls are 
excepted, since pointers to these rolls 
are not required. 

The compilcttion terminates following the 
printing of either of these messages. 

COMPILER DATA STRUCTURES 

The POP language is designed to manipul­
ate certain well-defined data structures. 

Rolls, which are the tables primarily 
used by the compiler, are automatically 
handled by the POP instructions; that is, 
when information is moved to and from 
rolls, controls indicating the status of 
the rolls are automatically updated. 

Items (variables) with fixed structures 
are used to maintain control values for 
rolls, to hold input characters being pro­
cessed, and to record Polish notation, etc. 
These item structures are also handled 
automatically by the POP instructions. 

The arrangement of the parts of the 
compiler is significant because of the 
extensive use of relative addressing in the 
compiler. General registers are used to 
hold base addresses, to control some rolls, 
and to assist in the interpretation of the 
POP instructions. 

ROLLS AND ROLL CONTROLS 

Most of the tables employed by the 
compiler are called rolls. This term de­
scribes a table which at any point in time 
occupies only as much storage as is 
required for the maximum amount of informa­
tion it has held during the present compi­
lation <exceptions to this rule are noted 
later>. Another distinctive feature of a 
roll is that it is used so that the last 
information placed on it is the first 
information retrieved it uses a "push 
up" logic. 

Section 1: Introduction to the Compiler 21 



With the exception of the WORK and EXIT 
rolls, the rolls of the compiler are main­
tained in an area called the roll storage 
area. The rolls in this area are both 
named and numbered. While the references 
to rolls in this document and in the 
compiler comments are primarily by name, 
the names are converted to corresponding 
numbers at assembly time and the rolls are 
arranged in storage and ref erred to by 
number. 

If the roll storage area is considered 
to be one block of continuous storage, the 
rolls are placed in this area in ascending 
sequence by roll number; that is, roll 0 
begins at the base address of the roll 
storage area; rolls 1, 2, 3, etc., follow 
roll zero in sequence, with the roll whose 
number is largest terminating the roll 
storage area. 

Initially, all rolls except roll 0 are 
empty and occupy no space; this is accomp­
lished by having the beginning and end of 
all rolls located at the same place. (Roll 
o, the LIB roll, is a fixed-length roll 
which contains all of its data initially.) 
When information is to be placed on a roll 
and no space is available due to a conflict 
with the next roll, rolls greater in number 
than the roll in question are moved down 
<to higher addresses) to make the space 
available. This is accomplished by physic­
ally moving the information on the rolls a 
fixed number of storage locations and alt­
ering the controls to indicate the change. 
Thus, roll 0 never changes in size, loca­
tion, or contents; all other rolls expand 
to higher addresses as required. When 
information is removed from a roll, the 
space which had been occupied by that 
information is left vacant; therefore, it 
is not necessary to move rolls for each 
addition of information. 

with the exception of the area occupied 
by roll O, the roll storage area actually 
consists of any number of non-contiguous 
blocks of 4096 bytes of storage. The space 
required for roll 0 is not part of one of 
these blocks. Additional blocks of storage 
are acquired by the compiler whenever cur­
rent roll storage is exceeded. If the 
system is unable to fulfill a request for 
roll storage, the PRESS MEMORY routine is 
entered to find roll space that is no 
longer in use. If 32 or more bytes are 
found, the compilation continues. If fewer 
than 32 bytes are found, the compilation of 
the current program is terminated, the 
message NO CORE AVAILABLE is printed, and 
space is freed. If there are multiple 
programs, the next one is compiled. 

The following paragraphs describe the 
controls and statistics maintained by the 
compiler in order to control the storage 

22 

allocation for rolls and the functioning of 
the "push up" logic. 

ROLL ADR Table 

The ROLL ADR table is a 1000-byte table 
maintained in IEYROL. Each entry in this 
table holds the beginning address of a 
block of storage which has been assigned to 
the roll storage area. The first address 
in the table is always the beginning 
address of roll O. The second address is 
that of the first 4K-byte block of storage 
and, therefore, the beginning address of 
roll 1. Initially, the last address 
recorded on the table is the beginning 
address of a block which holds the CODE and 
AFTER POLISH rolls, with the corm--roll 
beginning--at the first location in the 
block. 

As information is recorded on rolls 
during the operation of the compiler, addi­
tional storage space may eventually be 
required. Whenever storage is needed for a 
roll which precedes the CODE roll, an 
additional 4K block is requested from the 
system and its address is inserted into the 
ROLL ADR table immediately before the entry 
describing the CODE roll base. This inser­
tion requires that any entries describing 
the CODE and AFTER POLISH rolls be moved 
down in the ROLL ADR table. The inf orma­
tion on all rolls following (greater in 
number than) the roll requiring the space 
is then moved down a fixed number of words. 
The roll which immediately precedes the 
CODE roll moves into the new block of 
storage. This movement of the rolls 
creates the desired space for the roll 
requiring it. The movement of rolls does 
not respect roll boundaries; that is, it is 
entirely possible that any roll or rolls 
may bridge two blocks of storage. 

When additional storage space is 
required for the AFTER POLISH roll, a block 
is requested from the system and its begin­
ning address is added to the bottom of the 
ROLL ADR table. When the CODE roll 
requires more space, a new block is added 
in the same manner, the AFTER POLISH roll 
is moved down into the new block, and the 
vacated space is available to the CODE 
roll. 

The CODE and AFTER POLISH rolls are 
handled separately because the amount of 
information which can be expected to reside 
on them makes it impractical to move them 
frequently in order to satisfy storage 
requirements for all other rolls. The CODE 
roll is also somewhat unique in that it is 
assigned a large amount of space before it 
is used; that is, the AFTER POLISH roll 



does not begin at the same location as does 
the CODE roll. 

BASE, BOTTOM, and TOP Tables 

In order to permit dynamic allocation as 
well as to permit the use of the "push up" 
logic, tables containing the variables 
BASE, BOTTOM, and TOP are maintained to 
record the current status of each of the 
rolls. These variables indicate addresses 
of rolls. Information stored on rolls is 
in units of fullwords; hence, these 
addresses are always multiples of four. 
The length of each of the tables is deter­
mined by the number of rolls, and the roll 
number is an index to the appropriate word 
in each table for the roll. 

Each of the variables occupies a full­
word and has the following configuration: 

0 

1 1 
1 2 

1 2 
9 0 

3 
1 

r-------------T------------T--------------1 
I I Entry number! l 
I !into the I Displacement I 
I I ROLL ADR I (12 bits) l 
I !Table I I 
L-------------~------------~--------------J 

The entry number points to an entry in the 
ROLL ADR table and, hence, to the beginning 
address of a block of roll storage. The 
displacement is a byte count from the 
beginning ofthe indicated storage block to 
the location to which the variable (BASE, 
BOTTOM, or TOPI refers. 

It is significant to note that the 
displacement field in these variables occu­
pies twelve bits. If the displacement 
field is increased beyond its maximum value 
(40951, the overflow increases the entry 
number into the ROLL ADR table; this is the 
desired result, since it simply causes the 
variable to point to the next entry in the 
table and effectively indicate the next 
location in the roll storage area, the 
beginning of the next block. 

The first status variable for each roll, 
BASE, indicates the beginning address of 
that roll, minus four. The second vari­
able, BOTTOM, indicates the address of the 
most recently entered word on the roll. 

If the roll is completely empty, its 
BOTTOM is equal to its BASE; otherwise, 
BOTTOM always exceeds BASE by a multiple of 
four. Figure 7 illustrates a roll which 
contains information. 

4 bytes 

BASE (n) t-> r---------------1<-----unused 

TOP (n) ) I I 
r---------------~ 
r---------------~ 
r---------------~ 
r---------------~ 
I I K bytes 
I I 
I I 
r---------------~ 

BOTTOM(nl---->I I 
L---------------J 

Figure 7. Roll Containing K Bytes of 
Information 

When information is to be added to a 
roll, it is stored at the address pointed 
to by BOTTOM, plus four, and BOTTOM is 
increased by fou~. When a word is to be 
retrieved from a roll, it is read from the 
address specified by BOTTOM, and, under 
most circumstances, BOTTOM is reduced by 
four, thus indicating that the word is no 
longer occupied by the roll. This altera­
tion of the value of BOTTOM is termed 
E~~~~~g. If the information retrieved from 
a roll is to remain on the roll as well as 
at the destination, BOTTOM is not changed. 
This operation is indicated by the use of 
the word "keep" in the POP instructions 
that perform it. 

The current length (in bytes) of a roll 
is determined by subtracting its BASE from 
its BOTTOM. Note that this is true even 
though the entry number field appears in 
these variables, since each increase in 
entry number indicates 4096 bytes occupied 
by the roll. Thus, there is no limitation 
on the size of a roll from this source. 

For each roll, an additional status 
variable, called TOP, is maintained. TOP 
enables the program to protect a portion of 
the roll from destruction, while allowing 
the use of the roll as though it were 
empty. Protecting a roll in this way is 
called reserving the roll. The contents of 
TOP (always greater than or equal to the 
contents of BASE) indicate a false BASE for 
the roll. The area between BASE and TOP, 
when TOP does not equal BASE, cannot be 
altered or removed from the roll. Ascend­
ing locations from TOP constitute the new, 
empty roll. 

Like BASE, TOP points to the word imme­
diately preceding the first word into which 
information can be stored. A value is 
automatically stored in this unused word 
when the roll is reserved; the value is the 
previous value of TOP, minus the value of 
BASE and is called the reserve mark. 
Storage of this value permits-more than-one 
segment of the roll to be reserved. 

Section 1: Introduction to the Compiler 23 



A single roll (roll n), then, containing 
K bytes of information, (where K is always 
a multiple of four) and having no reserved 
status, has the following settings for its 
status variables: 

BOTTOM = BASE + K = TOP + K 

Figure 7 also illustrates this roll. If 
the same roll contains L bytes r~served and 
K additional bytes of information, the 
settings of its status variables are as 
follows: 

BOTTOM = TOP + K = BASE + L + K + 4 

This roll is shown in Figure 8. 
the relationships given above 
because of the structure of 
BOTTOM, and TOP variables. 

4 bytes 
r---------------, 

Note that 
are valid 

the BASE, 

BASE <nl----->I !<---unused 
~---------------~ 
I I 
~---------------~ 
I I 
~---------------~ 
I I 
I I L bytes 
I I 
~---------------~ 
I I 
~---------------~ 
I I 
~---------------~ 

TOP (n)------>I !<---previous 
~--------------- TOP-BASE 
I I 
~---------------~ 
I I 
~---------------~ 
I I 
I I K bytes 
I I 
~---------------~ 
I I 
~---------------~ 
I I 
~---------------~ 

BOTTOM (nl--->I I 
l---------------

F i gure 8. Roll Containing L Bytes of Re-
served Information and K Bytes 
of New Information 

Special Rolls 

The WORK roll and the EXIT roll are 
special rolls in that they are not main­
tained in the roll storage area, but rather 
appear in IEYROL with a fixed amount of 
storage allocated to each. They are rolls 

24 

in the sense that they employ the same push 
up logic which is used for the other rolls; 
however, they are not numbered, and their 
controls are, therefore, not maintained in 
the tables used for the other rolls. 

The WORK roll is used as a temporary 
storage area during the operations of the 
compiler. Because information is moved to 
and from the roll frequently it is handled 
separately from other rolls. 

The EXIT roll warrants special treatment 
because it is used frequently in maintain­
ing exit and entrance addresses for compil­
er routines. 

The bottom of the WORK roll is recorded 
in general register 4, WRKADR; general 
register 5, EXTADR, holds the address of 
the bottom of the EXIT roll. These values 
are absolute addresses rather than in the 
format of the BOTTOM variable recorded for 
other rolls. 

For a more detailed explanation of the 
WORK and EXIT rolls, see Appendix B "Rolls 
Used by the Compiler." 

CENTRAL ITEMS: The items SYMBOL 1, SYMBOL 
2 1 SYMBOL 3, DATA O, DATA 1, DATA 2, DATA 3 
and DATA 4, two bytes each in length, and 
DATA 5, eight bytes in length, contain 
variable names and constants. These items 
are called central due to the nature and 
frequency of their use. They occupy 
storage in the order listed, with DATA 1 
aligned to a doubleword boundary. 

In general, SYMBOL 1, 2, and 3 hold 
variable names; DATA 1 and 2 are used to 
hold real constants, DATA 3 and 4 to hold 
integer constants, DATA 1, 2, 3 and 4 to 
hold double precision and complex con­
stants, and DATA 1, 2, 3, 4 and 5 to hold 
double-precision complex constants. 

GROUPS: While the basic unit of inforwa­
tion stored on rolls is a fullword, many 
rolls contain logically connected informa­
tion which requires more than a singleword 
of storage. Such a collection of inforwa­
tion is called a group and always occupies 
a multiple of four bytes. A word of a 
group of more than one word is sometiwes 
called a rung of the group. 

Regardless of the size of the group on a 
given roll, the item BOTTOM for the roll 
always points to the last word on the roll. 
Figure 9 shows a roll with a group size of 
twelve. 



4 bytes 
r---------------1 
I I 

1st group I f ==============1 

<--{BASE (n) 

TOP (n) 

t---------------~ 
I I 

2nd group 1 r=============1 
r---------------~ 
I I 

3rd group~· f ===============1 
r---------------i 
I I <-- BOTTOM 
L---------------J 

(n) 

Figure 9. Roll 
Twelve 

With a Group Size of 

For some rolls, the size of the group is 
not fixed. In these cases a construct 
called a "plex" is used. The first word of 
each plex holds the number of words in the 
plex, exclusive of itself; the remainder 
holds the information needed in the group. 
(See Figure 10.) 

4 bytes 

BASE 
r-------------, 

Cn)f I I <---no. words 
->r-------------~ in group 

{n) r-------------~ TOP 
I 3 I 
r-------------~. 
t-------------~( 

f-------------11 r~~~imation 
r-------------~ 
I 4 1 
r-------------~ 

I I 
r-------------~ 
I I plex 
r-------------~ 
I I 
r-------------~ 

I 1 
r-------------i, 
r,1 ______ : ______ ~1J 

~ plex 

BOTTOM (n) r-------------1~ 
L-------------J 

Figure 10. Roll with Variable Group Size 

The assignment of roll storage does not 
respect group boundaries; thus, groups may 
be split between two blocks of roll 
storage. 

GROUP STATS: Since the size of the group 
varies from roll to roll, this charac­
teristic of each roll must be tabulated in 
order to provide proper manipulation of the 
roll. In addition, the groups on a roll 
are frequently searched against the values 
held in the central items (SYMBOL 1, 2, 3, 
etc.,>. Additional characteristics of the 
roll must be tabulated in order to provide 
for this function. Four variables tabu­
lated in the group stats tables are 
required to maintain this information. 
(See Section 2 "IEYROL Module."> 

The first group stats table contains a 
1-word entry for each roll. The entry is 
divided into two halfword values. The 
first of these is the displacement in bytes 
from SYMBOL 1 for a group search; that is, 
the number of bytes to the right of the 
beginning of SYMBOL 1 from which a compara­
tive search with the group on the roll 
should begin. This value is zero for rolls 
which contain variable names (since these 
begin in SYMBOL 1>, eight for rolls which 
contain real, double-precision, complex or 
double-precision complex constants (since 
these begin in DATA 1), and twelve for 
rolls which contain integer constants. 

The second value in the first group 
stats table is also a displacement; the 
distance in bytes from the beginning of the 
group on the roll to the byte from which a 
comparative search with the central items 
should begin. 

The second group stats table also holds 
a 1-word entry for each roll; these entries 
are also divided into two halfword values. 
The first of these is the number of conse­
cutive bytes to be used in a comparative 
search, and refers to both the group on the 
roll and the group in the central items 
with which it is being compared. 

The second item in the second table is 
the size of the group on the roll, in 
bytes. For rolls which hold plexes, the 
value of this item is four. 

For example, the DP CONST roll, which is 
used to hold the double-precision constants 
required for the object module, has.an 
8-byte group. The settings of the Group 
Stats for this roll are 8, O, 8, and 8, 
respectively. The first 8 indicates that 
when this roll is searched in comparison 
with the central items, the search should 
begin eight bytes to the right of SYMBOL 1 
(at DATA 1). The 0 indicates that there is 
no displacement in the group itself; that 
is, no information precedes the value to be 
compared in the group. The second 8 is the 
size of the value to be searched. The 
final 8 is the number of bytes per group on 
the roll. 

Section 1: Introduction to the Compiler 25 



The group stats for the ARRAY roll 
(which holds the names and dimension infor­
mation of arrays) are O, O, 6, and 20. 
They indicate that the search begins at 
SYMBOL 1, that the search begins 0 bytes to 
the right of the beginning of the group on 
the roll, that the number of bytes to be 
searched is 6, and that the group 6 size on 
the roll is 20 bytes. 

Figures 11 and 12 show the two group 
stats tables containing the information on 
the DP CONST roll and the ARRAY roll 
discussed above. It should be noted that 
the information contained on these two 
tables is arranged according to roll num­
bers. In other words, the group stats for 
roll 5 are in the sixth entry in the tables 
(starting with entry number 0). 

4 bytes 
r-----------T------------1 
~-----------+------------~ 
~-----------L------------~ 
I I 
I I 
I I 
~-----------T------------~ 

DP CONST roll---> I 81 0 I 
~-----------L------------~ 
I I 
I I 
I I 
~-----------T------------~ 

ARRAY roll--->! OI OI 
~-----------L------------~ 
I I 
I I 
I I 
t-----------T------------~ l ___________ i ____________ J 

Figure 11. First Group Stats Table 

4 bytes 
r-----------T------------1 
r-----------+------------~ 
r-----------L------------~ 
I I 
I I 
I I 
~-----------T------------~ 

DP CONST roll---> I 81 81 
t-----------L------------~ 
I I 
I • 
I I 
r-----------T------------~ 

ARRAY roll---> I 61 20 I 
r-----------L------------~ 
I I 
I I 
I I 
r-----------T------------~ l ___________ i ____________ J 

Figure 12. Second Group Stats Table 

26 

OTHER VARIABLES 

In addition to the central items, 
several other variables used in the compil­
er perform functions which are significant 
to the understanding of the POP instruc­
tions. These are described in the follow­
ing paragraphs. 

Answer Box ----------

The variable ANSWER BOX, which is re­
corded in the first byte of the first word 
of each EXIT roll group, is used to hold 
the true or false responses from POP 
instructions. The value "true" is repre­
sented by a nonzero value in this variable, 
and "false" by zero. The value is checked 
by POP jump instructions. 

Most of the arithmetic performed in the 
compiler is fullword arithmetic. When 
double-precision arithmetic is required, 
the variables MPAC 1 and MPAC 2, four bytes 
each in length, are used as a double­
precision register. These variables are 
maintained in main storage. 

Scan Control 

Several variables are used in the 
character scanning performed by the first 
processing phase of the compiler, Parse. 
Their names, and terms associated with 
their values, are frequently used in 
describing the POP instructions. 

The variable CRRNT CHAR holds the source 
statement character which is currently 
being inspected; the variable is four bytes 
long. The position (scan arrow> of the 
current character within the input state­
ment Cits column number, where a continuous 
column count is maintained over each state­
ment> is held in the low-order bit posi­
tions of the fullword variable CRRNT CHAR 
CNT. 

Non-blank characters are called "active 
characters," except when literal or IBM 
card code information is being scanned. 
The variable LAST CHAR CNT, which occupies 
one word of storage, holds the column 
number of the active character previous to 
the one in CRRNT CHAR. 



Form Y28-6638-1 
Page Revised 11/15168 by TNL Y28-6826 

1 
Column number: 1234567890 

DO 50 I = 1, 4 
ACI) = BCI) **2 
DO 50 J=l, 5 

50 C(J+l) = A(l) 

In the processing of the source module 
which contains the above statements, state­
ment 50 is currently being parsed. The 
current character from the input buffer is 
J. The settings of the scan control 
variables are shown in Figure 13. 

r-----------------------------------------1 
I (EBCDIC) J I l _________________________________________ J 

CRRNT CHAR 

r-----------------------------------------1 
I 9 I 
L-----------------------------------------J 

CRRNT CHAR CNT 
(scan arrow) 

r-----------------------------------------1 
I 1 8 I l _________________________________________ J 

LAST CHAR CNT 

Figure 13. Scan Control Variables 

Several flags are used in the compiler. 
These 1-word variables have two possible 
values: on, represented by nonzero, and 
off, represented by zero. The name of the 
flag indicates the significance of the "on" 
setting in all cases. 

Quotes 

Quotes are sequences of characters pre­
ceded by a halfword character count; they 
are compared with the input data to deter­
mine a statement type during the Parse 
phase. These constants are grouped 
together at the end of phase 1. The 
location labeled QUOTE BASE is the begin­
ning location of the first quote; instruc-

tions which ref er to quotes are assembled 
with address fields which are relative to 
this location. 

Figure 14 shows some of the quotes used 
by the compiler and how they are arranged 
in storage. 

4 bytes 
r------------------------------1 

QUOTE BASE I 00 02 N D I 
r------------------------------~ 
I 00 08 I M I 
·------------------------------~ 
I E N s I I 
·------------------------------i 
I 0 N b b I 
r------------------------------~ 
I 00 07 M p I 
·------------------------------~ 
I L I c I I 
r------------------------------~ 
I T b b b I 
·------------------------------~ 
I 00 07 L 0 I 
·------------------------------~ 
I G I c A I 
·------------------------------~ 
I L b b b I 
·------------------------------~ 
I I 
I I 
I I 
·------------------------------~ 
I 00 06 F 0 I 
·------------------------------~ 
I R M A T I 
·------------------------------~ 
I I 
I I 
I I l ______________________________ J 

Figure 14. Quotes Used in the Compiler 

Messages 

The messages used in the compiler, which 
are also grouped together at the end of 
Phase 1, are the error messages required by 
Parse for the source module listing. The 
first byte of each message holds the condi­
tion code for the error described by the 
message. The second byte of the message is 
the number of bytes in the remainder of the 
message. The message follows this halfword 
of information. 

The location labeled MESSAGE BASE is the 
beginning location of the first message; 
instructions which ref er to messages are 
assembled with address fields relative to 
this location. 

Section 1: Introduction to the Compiler 27 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

COMPILER ARRANGEMENT AND GENERAL REGISTER 
USAGE 

Figure 15 shows the arrangement of the 
compiler in main storage with the Parse 
phase shown in detail. General registers 
that hold base locations within the compil­
er are shown pointing to the locations they 
indicate. Note that the labels CBASE and 
PROGRAM BASE 2 appear in each phase of the 
compiler; the general registers CONSTR and 
PGB2 contain the locations of those labels 
in the operating phase. 

General register 2, PGB2, holds the 
beginning address of the g1Qba1_i~~E-~~bl~, 
a table containing the addresses of compil­
er routines which are the targets of jump 
instructions. (See Appendix A for further 
discussion of this table and the way in 
which it is used.> The global jump table 
appears in each phase of the compiler and 
is labeled PROGRAM BASE 2; thus, the value 
held in general register 2 is changed at 
the beginning of each phase of the 
compiler. 

r------------T------------------T--------------------------------------------1 
I Register I Label I contents I 
t------------~------------------i--------------------------------------------i 
I Invocation Phase I 
~------------T------------------T--------------------------------------------i 
I POPPGB--->I POP TABLE I POP Jump Table I 
I I t--------------------------------------------i 
I 1 POP SETUP I POP Machine Language subroutines I 
I I t--------------------------------------------i 
I I I Data for POP Subroutines I 
·------------+------------------+--------------------------------------------i 
I ROLLBR--->I ROLL BASE I Roll Statistics (Bases, Tops, Bottoms> I 
I I t--------------------------------------------i 
I I I Group Stats <Displacements, Group Sizes> I 
I I •--------------------------------------------i 
1 1 1 woRK Roll 1 
I I •--------------------------------------------i 
I l I EXIT Roll I 
I I t--------------------------------------------i 
I I I ROLL ADR Table I 
I I •--------------------------------------------i 
I I I Roll Storage I 

I I I Roll Storage* I 
·------------t------------------+--------------------------------------------i 
I CONSTR--->I CBASE I Parse Data Items I 
I I •--------------------------------------------i 
I I l Parse Routines I 
I I •--------------------------------------------i I PGB2----->I PROGRAM BASE 2 I Parse Global Jump Table I 
I I t--------------------------------------------i 
I I I Parse Routines containing assembler l 
I I I language branch targets I 
I I t--------------------------------------------i 
I I QUOTE BASE I Quotes I 
I I t----------------~---------------------------i 
I I MESSAGE BASE I Messages I 
·------------i------------------i--------------------------------------------i 
I PHASE 2: Allocate I 
·----------------------------------------------------------------------------i 
I PHASE 3: Unify I 
·----------------------------------------------------------------------------i 
I PHASE 4: Gen I 
t--------------------------------------------------~-------------------------i 
I PHASE 5: Exit I 
t---------~------------------------------------------------------------------i 
!*Roll storage is allocated in 4K-byte blocks, beginning from the higher end! 
j of storage contiguous with Parse. Additional blocks are obtained, asl 
I needed, from preceding (lower) 4K-byte blocks of storage. I 
L----------------------------------------------------------------------------J 

• Figure 15. Compiler Arrangement with Registers 

28 

low 
storage 

high 
storage 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

Compiler routines which contain assem­
bler language instructions and are either 
branched to by other assembler language 
instructions or which themselves perform 
internal branches, follow the global jump 
table. General register 2 is used as a 
base register for references to both the 
global jump table and these routines. 
Figure 15 shows this register in Parse. 

General register 3 1 called POPADR in the 
compiler code, is used in the sequencing of 
the POP operations. It holds the address 
of the current POP, and is incremented by 2 
as each POP is interpreted. 

General register 4, called WRKADR, holds 
the address of the current bottom of the 
WORK roll. 

General register 5, called EXTADR, holds 
the address of the current bottom of the 
EXIT roll. 

General register 6 1 called POPXIT 1 holds 
the return location for POP subroutines. 
When POPs are being interpreted by POP 
SETUP, the return is to POP SETUP; when 
machine language instructions branch to the 
POPs, it is to the next instruction. 

General register 7, called ADDR, 
the address portion of the current 
instruction (eight bits>; it is also 
in the decoding of the operation 
portion of POP instructions. 

holds 
POP 

used 
code 

General register 8 1 called POPPGB, holds 
the beginning address of the machine lan­
guage code for the POP instructions and the 
POP jump table. Figure 15 shows this 
register, which is used as a base for 
references to these areas. 

General register 9 1 called CONSTR, holds 
the beginning address of the data referred 
to by the compiler routines. This area 
precedes the routines themselves, and is 
labeled CBASE, as indicated in Figure 15. 
This register is, therefore, used as a base 
register for references to data as well as 
for references to the routines in the 
compiler; its value is changed at the 
beginning of each phase. 

General register 10, 
beginning address of the 
is, the beginning address 
<see Figure 15). The 
register remains constant 
operation of the compiler. 

ROLLER, holds the 
roll area; that 
of the base table 

value in this 
throughout the 

General register 11, RETURN, holds 
return addresses for the POP subroutines. 

The remaining general registers are used 
temporarily for various purposes in the 
compiler. 

POINTERS 

Information defining a source module 
variable (its name, dimensions, etc.> is 
recorded by the compiler when the name of 
the variable appears in an Explicit speci­
fication or DIMENSION statement. For 
variables which are not explicitly defined, 
this information is recorded when the first 
use of the variable is encountered. All 
constants are recorded when they are first 
used in the source module. 

All references to a given variable or 
constant are indicated by a pointer to the 
location at which the information defining 
that variable or constant is stored. T.he 
use of the pointer eliminates redundancy 
and saves compiler space. 

The pointer is a 1-word value in the 
following format: 

1 byte 1 byte 2 bytes 
r---------T----------~--------------------1 

I TAG I OPERATOR I ADDRESS I 

L---------i----------i--------------------J 

where: 

TAG 
is a 1-byte item wnose value is repre­
sented in two parts: MODE, occupying 
the upper four bits, indicates whether 
the variable or constant is integer,, 
real, complex or logical; SIZE, indi­
cated in the lower four bits, speci­
fies the length of the variable or 
constant <in bytes) minus one. (See 
Figure 15.1>. 

r-------~-------------T-------T-----------1 

!Value I MODE I Value I SIZE I 

~-------+-------------+-------+-----------~ 
I o I Integer I o I 1 byte I 
I 1 I Real I 1 I 2 bytes I 

I 2 I Complex I 3 I 4 bytes I 
I 3 I Logical I 7 I 8 bytes I 

I 4 I Literal/ I F I 16 bytes I 
I I Hexadecimal I I I 
L-------~-------------i-------~-----------J 

• Figure 15.1 TAG Field MODE and SIZE Values 

OPERATOR 
is a 1-byte item whi.ch contains the 
roll number of the roll on which the 
group defining the constant or vari­
able is stored. 

ADDRESS 
is a 2-byte item which holds the 
relative address (in bytes> of the 
group which contains the information 
for the constant or variable; the 
address is relative to the roP of the 
roll. 

Section 1: Introduction to the Compiler 29 



The pointer contains all the information 
required to determine an absolute location 
in the roll storage area. The roll number 
(from the OPERATOR field) is first used as 
an index into the TOP table. The ADDRESS 
field of the pointer is then added to the 
TOP, and the result is handled as follows: 

1. Its entry number field (bits 12 
through 19) is used as an index into 
the ROLL ADR table. 

2. Its displacement 
through 31) is 
address found in 
The result of 
indicated by the 

field 
added to 

the ROLL 
step 2 is 
pointer. 

(bits 20 
the base 

ADR table. 
the address 

~ple: Using a pointer whose OPERATOR 
field contains the value 2 and whose 
ADDRESS field contains the value 4, and the 
following tables: 

TOP ROLL ADR 
,----T~--T-----1 r---------------1 

o I I I I o I I 
l----t----+-----i ~---------------i 

1 I I I I 1 I I 
2 I I 2 I 20 I 2 I 1000 I 

1----i----i-----i ~---------------i 
I I I I 
I I I l 
I I I l 
I I I I 

the location 1024 is determined. Note that 
for larger values in the pointer and in 
TOP, the entry number field of TOP can be 
modified by the addition of ADDRESS. In 
this case the result of the addition holds 
2 and 24 in the entry number and displace­
ment fields, respectively. 

Since relative addresses are recorded in 
po~nters, it is not necessary to alter a 
pointer when the roll pointed to is moved. 
Note also that the relative address in the 
point7r ~ay exceed 4096 bytes with no 
complication of the addressing scheme. The 
only limitation on the size of a roll comes 
a?out because of the size of the ADDRESS 
field of the pointer: 16 bits permit 
values less than 64K bytes to be 
represented. 

30 

For the purposes of object code genera­
tion, the mode and size of the constant or 
variable is available to influence the type 
of operations which can be employed, e.g., 
integer or floating, fullword, or 
doubleword. 

DRIVERS 

In the generation of Polish notation 
from the source language statements, 
"drivers" are also used. These "drivers" 
are values that are one word long and have 
the same format as the pointer. The two 
types of drivers used by the compiler are 
discussed in the following paragraphs. 

Operation Drivers 

One type of driver 
driver, which indicates 
icar--operations to be 
fields of the driver are: 

is the operation 
arithmetic or log-

performed. The 

TAG 
is a 1-byte item whose value is repre­
sented in two parts: MODE, occupying 
the upper four bits, indicates the 
mode of the operation, e.g., integer, 
floating-point, complex or logical; 
SIZE, indicated in the lower four 
bits, specifies the length of the 
result of the operation (in bytes) 
minus one. 

OPERATOR 
is a 1-byte item containing a value 
which indicates the operation to be 
performed, e.g., addition, subtrac­
tion, etc. The values for OPERATOR 
are larger than the number of any 
roll, and hence, also serve to distin­
guish a driver from a pointer. 

ADDRESS 
is a 2-byte item 
which indicates the 
of the operation 
driver; its values 
ten. 

containing a value 
"forcing strength" 
specified by the 
range from zero to 

The forcing strengths associated with 
the operation drivers are given in Table 1. 



Table 1. Internal configuration of Opera-
tion Drivers 

r-------------·-T----T--------T------------1 
I I I I AD)2RE.§.§ I 
I I I I <Forcing J 
I Dr!_~r 11'.~§1 I QE:§BATQE I strength> I 
·--------------+----+--------+------------~ 
1sprog2 I oo I 40 I oo oo I 
·--------------+----+--------+------------~ 
!Power I oo I 42 I oo 01 I 
·--------------+----+--------+------------1 
!Unary Minus I 00 I 43 I 00 02 I 
·--------------+----+--------t------------i 
I Multiply I oo I 44 I oo 03 I 
·----~--------+----+--------+------------~ 
!Divide I oo I 45 I oo 03 I 
·--------------+----+--------+------------~ 
I Add I o o I 4 6 I o o o 4 I 
·--------------+----+--------+------------~ 
!Subtract I 00 I 47 I 00 04 l 
·--------------+----+--------+------------i 
I GT I 0 0 I 4 8 I 0 0 0 5 I 
·--------------+----+--------+------------~ 
I GE I 00 I 49 I 00 05 I 
·--------------+----+--------+---~--~-----~ 
I LT I 00 I 4A I 00 05 I 
·--------------+----+--------+------------~ 
I LE l 00 I 4B I 00 05 I 
·--------------+----+--------+------------~ 
I EQ ! 0 0 I 4 c I 0 0 0 5 I 
·--------------+----+--------+------------~ 
INE I 00 I 4D I 00 05 I 
·--------------+----+--------+------------i 
I NOT I 0 0 I 4 E l 0 0 0 6 I 
·--------------+----+--------+------------~ 
IAND I 00 I 4F I 00 01 I 
·--------------+----+--------+------------~ 
IOR I 00 I 50 I 00 08 I 
·--------------+----+--------+------------~ 
!Plus and Below! I I I 
1Phony3 I oo I 3F I oo 09 I 
·--------------+----+--------+------------~ 
IEOE 4 I 00 I 3F I 00 OA I 
·----~--------~----~--------~------------~ 
)1The MODE and SIZE settings are placed in! 
I the driver when it is used. I 
l 2 Indicates a function reference. I 
l 3 Used to designate the beginning of anl 
I expression. I 
j 4 Means "end of expression" and is used! 
1 for that purpose. I 
L-----------------------------------------J 

control Drivers 

The other type of driver used in the 
generation of Polish notation is called the 
control driver. It is used to indicate the 
type-Of~he-statement for which code is to 
be written. The control driver may also 
designate some other control function such 
as an I/O list, an array reference, or an 
error linkage. 

The fields of the control driver differ 
from those of the operation driver in that 
zero is contained in the TAG field, 255 in 
the OPERATOR field (the distinguishing mark 
for control drivers), and a unique value in 
the ADDRESS field. The value in the 
ADDRESS field is an entry number into a 
table of branches to routines that process 
each statement type or control function; it 
is used in this way during the operations 
of Gen. The formats of the operation 
drivers and control drivers are given in 
Appendix E. 

Table 1 lists the operation drivers and 
the values contained in each field. The 
control drivers are given in Table 2. The 
ADDRESS field is the only field given 
because the TAG and OPERATOR fields are 
constant. All values are represented in 
hexadecimal. 

Section 1: Introduction to the compiler 31 



Form Y28-6638-1 
Paqe Revised 11/15/68 by TNL Y28-6826 

•Table 2. Internal Configuration of Con- •Table 2. Internal configuration of Con-
trol Drivers (Part 1 of 2) trol Drivers (Part 2 of 2> 

r----------------------------T------------1 r----------------------------T------------1 
I I I I I I 
I QEiV~E I ~QE.~SS I I Qri~ I fil2Q~£!§.§. I 
I I I I I I 
r------------------~---------+------------i r----------------------------+------------i 
I AFDS I 8 I I ERR= I 210 I 
r----------------------------+------------i r----------------------------+------------i 
I ARRAY I 23C I I EXP and ~RG I 480 I 
r----------------------------+------------i r----------------------------+------------i 
I ASSIGN I 20 I I FIND I 4C I 
r----------------------------+------------1 t----------------------------+------------1 
I ASSIGNZD GOTO I lC I I FORMAT I 208 I 
r----------------------------+------------i r----------------------------+------------i 
I ASSIGNMENT I 4 I I FORMAT STA I 30 I 
r----------------------------+------------i ·----------------------------+------------1 
I AT I 68 I I GOTO I 14 I 
r----------------------------+------------i r----------------------------+------------i 
I BSREF I 34 I I IF I 24 I 
r----------------------------+------------i r----------------------------+------------1 
I CALL I 2C I I IOL DO CLOSE I 218 I 
r----------------------------+------------i r----------------------------+------------i 
I CGOTO I 18 I I IOL DO DATA I 21C I 
r----------------------------+------------i ·----------------------------+------------1 
I CONTINUE I 28 I I IO LIST I 214 I 
r----------------------------+------------i r----------------------------+------------i 
I DATA I 3C I I LOGICAL IF I 60 I 
r----------------~----------+------------i ·----------------------------+------------1 I DEFINE FILE I 4 4 I I NAMELIST I 204 I 
r----------------------------+------------i r----------------------------+------------i 
I DIRECT IO I 200 I I PAUSE I 38 I 
r----------------------------+------------i r----------------------------+------------1 
I DISPLAY ID I 74 I I READ WRITE I 48 I 
r----------------------------+------------~ r-------~--------------------+------------i 
I DO I 10 ] I RETURN I 50 I 
r----------------------------+------------i r----------------------------+------------1 
I DU~~~y I 68 I I STANDARD PRINT UNIT I 234 I 
r----------------------------+------------~ r----------------------------+------------i 
I END I c I I STANDARD PUNCH UNIT I 238 I 
r----------------------------t------------i ·----------------------------+------------1 
I END= I 20C I I STANDARD READ UNIT I 230 I 
r----------------------------+------------i r----------------------------+------------i 
I ERROR LINK 1 I 54 I l STOP I 64 I 
r----------------------------+------------i r----------------------------+------------i 
I ERROR LINK 2 I 58 I I SUBPROGRAM I 40 I 
r----~----------------------+------------~ r----------------------------+------------i 
I ERROR LINK 3 I SC I I TRACE OFF I 70 I 
L----~----------------------~------------J r----------------------------+------------i 

I TRACE ON I 6C I 
L----------------------------~------------J 

32 



This section describes in detail the 
Invocation phase and the five processing 
phases of the compiler and their operation. 
The IEYROL module is also described. 

INVOCATION PHASE (IEYFORT) 

The Invocation phase is the compiler 
control phase and is the first and last 
phase of the compiler. (The logic of the 
phase is illustrated in Chart 00.) If the 
compiler is invoked in an EXEC statement, 
control is received from the operating 
system control program. However, control 
may be received from other programs through 
use of one of the system macro instruc­
tions: .CALL,, LINK, or ATTACH. 

IEYFORT performs compiler initializa­
tion, expansion of roll storage assignment, 
input/output request processing, and com­
piler termination. The following para­
graphs describe these operations in greater 
detail. 

IEYFORT, CHART 00 

IEYFORT is the basic control routine of 
the Invocation phase. Its operation is 
invoked by the operating system or by 
another program through either the CALL., 
LINK, or ATTACH macro instructions. The 
execution of IEYFORT includes scanning the 
specified compiler options, setting the 
ddnames for designated data sets, initia­
lizing heading information, and acquiring 
time and date information from the system. 

IEYFORT sets pointers and indicators to 
the options,, data sets, and heading infor­
mation specified for use by the compiler. 
The options are given in 40 or fewer 
characters, and are preceded in storage by 
a binary count of the option information. 
This character count immediately precedes 
the first location which contains the 
option data. The options themselves are 
represented in EBCDIC. 

On entry to IEYFORT, general register 1 
contains the address of a group of three or 
fewer pointers. Pointer 1 of the group 
holds the beginning address of an area in 
storage that contains the execute options 
specified by the programmer (set in the 
OPTSCAN routine). 

SECTION 2: COMPILER OPERATION 

Pointer 2 contains the address of the 
list of DD names to be used by the compiler 
(set in the DDNAMES routine). 

Pointer 3 contains the address of the 
heading information. Heading data may 
designate such information as the continua­
tion of pages, and the titles of pages. 

If the FORTRAN compiler is invoked by 
the control program (i.e., called by the 
system), pointers 2 and 3 are not used. 
However, if the compiler is invoked by some 
other source, all pointers may be used. 
The latter condition is determined through 
an interrogation of the high order bit of a 
pointer. If this bit is set, the remaining 
pointers are nonexistent. Nevertheless, 
pointers 1 and 3 may exist while pointer 2 
is nonexistent; in this case, pointer 2 
contains all zeros. 

During the operation of IEYFORT, the 
SYSIN and SYSPRINT data sets are always 
opened through use of the OPEN macro 
instruction. The SYSLIN and SYSPUNCH data 
sets are also opened depending upon the 
specification of the LOAD and DECK options. 
The block sizes of these data sets are set 
to 80,, 120, 80 and 80, respectively. These 
data sets may be blocked or unblocked 
(RECFM=F, FB, or FBA) depending upon the 

DCB specification in the DD statements. 
IEYFORT concludes the compiler initializa­
tion process with a branch to the first 
processing phase of the compiler, Parse 
(IEYPAR). 

From this point in the operation of the 
compiler, each processing phase calls the 
next phase to be executed. However, the 
Invocation phase is re-entered periodically 
when the compiler performs such input/ 
output operations as printing,, punching., or 
reading. The last entry to the Invocation 
phase is at the completion of the compiler 
operation. 

IEYPRNT1 Chart OOA4 

IEYPRNT is the routine that is called by 
the compiler when any request for printing 
is issued. The routine sets and checks the 
print controls such as setting the line 
count, advancing the line count, checking 
the lines used, and controlling the spacing 
before and after the printing of each line. 
These control i terns are set,, checked, and 
inserted into the SYSPRINT control format, 

Section 2: Compiler Operation 33 



and the parameter information and print 
addresses are initialized for SYSPRINT. 

If there is an error during the printing 
operation, EREXITPR sets the error code 
resulting from the print error. Any error 
occurring during an input/output operation 
results in a termination of compiler 
operation. 

PRNTHEAD, Chart 01A2 

PRNTHEAD is called by IEYPRNT after it 
has been determined that the next print 
operation begins on a new page. The pro­
gram name and the new page number placed 
into the heading format and any parameter 
information and origin addresses are 
inserted into the SYSPRINT format. If an 
optional heading is specified by the pro­
grammer, it is inserted into the print line 
format. A PUT macro instruction is issued 
to print the designated line, and all print 
controls are advanced for the next print 
operation. 

IEYREAD, Chart 01A4 

IEYREAD is called by the compiler at the 
time that a read operation is indicated. 
It reads input in card format from SYSIN 
using the GET macro instruction. IEYREAD 
can handle concatenated data sets. 

If an error occurs during the read 
operation, the routine EREXITIN is called. 
This routine checks the error code 
generated and prints the appropriate error 
message. 

IEYPCH, Ch~t 02A3 

When a punch output operation is 
requested by the compiler, control is tran­
sferred to the IEYPCH routine. The LOAD 
and DECK options are checked to determine 
what output to perform. 

Any errors detected during 
in a transfer of control to 
for SYSPUNCH, or EREXITLN, 
routine. The routine sets a 
no further output is placed on 
file. 

34 

output result 
the EREXITPC, 
for SYSLIN, 
flag so that 
the affected 

PRNTMSG, Chart 03A1 

PRNTMSG is called when any type of 
message is to be printed. The print area 
is initialized with bianks and the origin 
and displacement controls are set. The 
message is printed in two segments~ each 
segment is inserted into the print area 
after the complete message length is deter­
mined and the length and origin of each 

·segment has been calculated. once the 
entire message has been inserted, the car­
riage control for printing is set and 
control is transferred to the system to 
print the message. 

IEYMOR, Chart 0101 

IEYMOR is called when additional roll 
storage area is needed for compiler opera­
tion. This routine may be entered from any 
of the processing phases of the compiler. 
The GETMAIN macro instruction is issued by 
this routine and transfers control to the 
system for the allocation of one 4K-byte 
block of contiguous storage. The system 
returns to IEYMOR with the absolute address 
of the beginning of the storage block in 
general register 1. Once the requested 
storage space has been obtained, IEYMOR 
returns to the invoking phase. If the 
system is unable to allocate the requested 
storage, inactive module~ of the compiler 
are deleted. Those preceding the currently 
active module are deleted first~ then those 
following it are deleted, if necessary. 
Should additional space be needed after all 
inactive modules are deleted, compiler 
operations are terminated. 

When IEYMOR returns to the invoking 
phase with the absolute address of the 
storage block in general register 1, the 
invoking phase then stores the contents of 
register 1 in the ROLL ADR table. 

The ROLL ADR table is used by the 
compiler to record the addresses of the 
different blocks of storage that have been 
allocated for additional roll capacity. 
The contents of the table are later used in 
IEYRETN for releasing of the same storage 
blocks. 

IEYNOCR 

IEYNOCR is called by PRESS MEMORY 
CIEYPAR) whenever it is unable to obtain at 
least 32 bytes of unused storage. IEYNOCR 
prints the message NO CORE AVAILABLE, 
branches to a subroutine that checks to see 
if there are any source language cards to 
be disregarded, and then exits to IEYRETN. 



IEYRETN, Chart 03A2 

The compiler termination routine 
(IEYRF.TN) is invoked by Exit (IEYEXT) or by 
one of the input/output routines after the 
detection of an error. 

The routine first obtains the error 
condition code returned by the compiler and 
tests this value against any previous value 
received during the compilation. The com­
piler communications area for the error 
code is set to the highest code received 
and a program name of "Main" is set in the 
event of multiple compilations. The rou­
tine then checks general register 1 for the 
address of the ROLL ADR table. Each entry 
of the ROLL ADR table indicates the begin­
ning of a 4K-byte block of roll storage 
that must be released. A FREEMAIN macro 
instruction is issued for each block of 
storage indicated in the table until a zero 
entry is encountered (this denotes the end 
of the ROLL ADR table). 

The presence of more than one source 
module in the input stream is checked by 
interrogating the end-of-file indication 
and the first card following this notation. 
If another compilation is indicated, the 
line, card, and page count control items 
are reinitialized and all save registers 
us.ea by the Invocation phase are restored. 
The first processing phase of the compiler, 
Parse (IEYPARl, is called and the operation 
of the compiler proceeds as described in 
the previous paragraphs and those pertain­
ing to the processing phases. 

If another compilation is not indicated, 
routine IEYFINAL closes the data set files 
used by the compiler (by means of the CLOSE 
macro instruction>. The terminal error 
condition code is obtained and set for the 
return to the invoking program, and all 
saved registers are restored before the 
return is made. 

Routine IEYFINAL also receives control 
from other compiler routines when an input/ 
output error is detected. 

OPTSCAN determines the existence of the 
parameters specifying the compiler options. 
If options are specified, the validity of 
each option is checked against the parame­
ter table and the pointer to these options 
is set once the options have been vali-

dated. The program name is noted depending 
upon the presence or absence of the NAME 
parameter. However, if these options are 
not specified, the first pointer of the 
group of three supplied to the compiler by 
the system contains zero. 

DDNAMES scans the entries made for the 
names of the data sets to be used by the 
compiler. The entries corresponding to 
SYSN, SYSIN, SYSPRINT, and SYSPUNCH are 
checked; if an alternate name has been 
provided, it is in~erted into the DCB area. 

HEADOPT determines the existence of the 
optional heading information. If such 
information exists, its length is deter­
mined, it is centered for printing, and 
then inserted into the Printmsg Table, with 
pointer 3 being set. 

TIMEDAT serves only to obtain the time 
and date information from the system and 
insert the data into the heading line. 

OUTPUT FROM IEYFORT 

The following paragraphs describe the 
error messages produced during the opera­
tion of the Invocation phase. These mes­
sages denote the progress of the compila­
tion, and denote the condition which 
results in the termination of the compiler. 

IEY028I NO CORE AVAILABLE 
TERMINATED 

COMPILATION 

The system was unable to provide a 
4K-byte block of additional roll 
storage and PRESS MEMORY was 
entered. It, too, was unable to 
obtain space. The condition code 
is 16. 

IEY029I DECK OUTPUT DELETED 

The DECK option has been specified, 
and an error occurred during the 
process of punching the designated 
output. No error condition code is 
generated for this error. 

Section 2: Compiler operation 35 



Form Y28-6638-l 
Page Revised 11/15/68 by TNL Y28-6826 

IEY030I LINK EDIT OUTPUT DELETED 

The LOAD 
and an 
process 
module. 

option has been 
error occurred 
of generating 

The condition 

IEY031I ROLL SIZE EXCEEDED 

specified, 
during the 
the load 

code is 16. 

This message is produced when: (1) 
The WORK or EXIT roll has exceeded 
the storage capacity assigned; or 
(2) Another roll used by the com­
piler has exceeded 64K bytes of 
storage, thus making it unaddress­
able. (This condition applies to 
all rolls except the AFTER POLISH 
and CODE rolls.) The condition 
code is 16. 

IEY032I NULL PROGRAM 

This message is produced when an 
end-of-data set is encountered on 
the input data set prior to any 
valid source statement. The condi­
tion code is o. 

IEY034I I/O ERROR [COMPILATION TERMINATED] 
xxx ••• xxx 

This message is produced when an 
input/output error is detected dur­

Active statements are translated to Polish 
notation. The Polish notation and roll 
entries produced by Parse are its EEi~~EY 
out2~t· In addition, Parse writes out all 
erroneous statements and the associated 
error messages. Parse produces a full 
source module listing when the SOURCE 
option is specified. 

The following description of Parse con­
sists of two parts. The first part, "Flow 
of Phase 1," describes the overall logic of 
the phase by means of both narrative and 
flowcharts. 

The second part, "Output from Phase 1," 
describes the Polish notation produced by 
Parse. The construction of this output, 
from which subsequent phases produce object 
code, is the primary function performed by 
Parse. See Appendix c for the Polish 
format for each statement type. 

The source listing format and the error 
messages produced by Parse are also 
discussed. 

The rolls manipulated by Parse are 
listed in Table 3 and are mentioned in the 
following description of the phase. At the 
first mention of a roll, its nature is 
briefly described. See Appendix B for a 
complete description of a format of a roll. 

ing compilation. If the error 
occurred on SYSPUNCH, compilation • Table 3. Rolls Used by Parse 
is continued and the COMPILATION 
TERMINATED portion of the message 
is not printed. The condition code 
is 8. If the error occurred on 
SYSIN, SYSPRINT, or SYSLIN, compi­
lation is terminated. The condi­
tion code is 16. xxx ••• xxx is the 
character string formatted by the 
SYNADAF macro instruction. For an 
interpretation of this information, 
see the publication IBM_§ystem/3£Q 
QE~E~tirrg_~Y2t~~~~-~~E~EYi~QE __ ~rrg 
Q~t~-~~rr~g~~~gt_~~£EQ~In2tr~£ti2g2, 
Form C28-6647. 

IEY035I UNABLE TO OPEN g{!~J.!!~ 

This message is 
required g~g~~~ 
card is missing 
misspelled. 

produced when the 
data definition 
or the ddname is 

The first processing phase of the 
FORTRAN IV (G) compiler, Parse, accepts 
FORTRAN statements in card format as input 
and translates them. Specification state­
ments are translated to entries on rolls 
which define the symbols of the program. 

36 

r-------------------T---------------------1 
I Roll )Roll 
!No~ Roll Name jNo. Roll Name 
I 0 Lib I 28 Local Sprog 
I 1 source I 29 Explicit 
I 2 Ind Var I 30 Call Lbl 
I 4 Polish I 31 Namelist Names 
I 5 Literal Const I 32 Namelist Items 
I 6 Hex Const I 33 Array Dimension 
I 7 Global I 35 Temp Data Name 
I 8 Fx Const I 36 Temp Polish 
I 9 Fl Const I 37 Equivalence 
I 10 Dp Const I 38 Used Lib 
I 11 complex Const I Function 
I 12 Dp Complex I 39 Common Data 
I Const I 40 common Name 
I 13 Temp Name I 41 Implicit 

14 Temp I 42 Equivalence 
14 Error Temp I Offset 
15 Do Loops Open I 43 Lbl 
16 Error Message I 44 scalar 
17 Error Char I 45 Data Var 
18 Init I 46 Literal Temp 
19 Xtend Lbl I 53 Format 
20 Xtend Target I 54 Script 

Lbl I 55 Loop Data 
22 Array I 56 Program Script 
24 Entry Names I 59 At 
25 Global Dmy I 60 Subchk 
26 Error I 63 After Polish 
27 Local Dmy I I 

-------------------i---------------------J 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

FLOW OF PHASE 1, CHART 04 

START COMPILE~ initializes the operation 
of Parse, setting flags from the user 
options, reading and writing out Con 
option) any initial comment cards in the 
source module, and leaving the first card 
of the first statement in an input area. 
This routine concludes with the transfer of 
control to STATEMENT PROCESS. 

STATEMENT PROCESS (G0631) controls the 
operation of Parse. The first routine 
called by STATEMENT PROCESS is PRINT AND 
READ SOURCE. On return from that routine, 
the previous source statement and its error 
messages have been written out (as defined 
by user options), and the statement to be 
processed (including any comment cards) 
plus the first card of the next statement 
will be on the SOURCE roll. (This roll 
holds the source statements, one character 
per byte.) STATEMENT PROCESS then calls 
STA INIT to initialize for the processing 
of the statement and LBL FIELD XLATE to 
process the label field of the statement. 

On return from LBL FIELD XLATE, if an 
error has been detected in the label field 
or in column 6, STATEMENT PROCESS restarts. 
Otherwise, STA XLATE and STA FINAL are 
called to complete the translation of the 
source statement. On return from STA 
FINAL, if the last statement of the source 
module has not been scanned, STATEMENT 
PROCESS restarts. 

When the last card of a source module 
has been scanned, STATEMENT PROCESS deter­
mines whether it was an END card; if not, 
it writes a message. The routine then sets 
a flag to indicate that no further card 
images should be read, and calls PRINT AND 
READ SOURCE to write out the last statement 
for the source listing (depending on wheth­
er the SOURCE option was specified or was 
indicated as the default condition at sys­
tem generation time>. 

When no END card appears, two tests are 
made: Cll If the last statement was an 
Arithmetic IF statement, the Polish nota­
tion must be moved to the AFTER POLISH 
roll; (2l If the last statement-Was-of a 
type which does not continue in sequence to 
the next statement (e.g., GO TO, RETURN), 
no code is required to terminate the object 
module, and the Polish notation for an END 
statement is constructed on the POLISH 
roll. If the NEXT STA LBL FLAG iS-off, 
indicating that the last statement was not 
of this type, the Polish notation for a 
STOP or RETURN statement is constructed on 
the POLISH roll, depending on whether the 
source module is a main program or a 
subprogram. 

After the Polish notation for the STOP 
or RETURN has been constructed on the 
POLISH roll, the Polish notation for the 
END statement is then constructed. 

Parse keeps track of all inner DO loops 
that may £OSsibly have an extended range. 
Parse tags the LABEL roll entries for those 
labels within the DO loops that are poss­
ible re-entry points from an extended 
range. These tags indicate the points at 
which general registers 4 through 7 must be 
restored. The appropriate LOOP DATA roll 
groups are also tagged to indicate to the 
Gen phase which of the inner DO loops may 
possibly have an extended range. Gen then 
produces object code to save registers 4 
through 7. 

After processing the last statement of 
the source module, a pointer to the LOOP 
DATA roll is placed on the SCRIPT roll,-the 
IND VAR~roll is released;--and;--if the 
source-!liodule was a main program, the 
routine REGISTER IBCOM (G0707) is called to 
record IBCOM as a required subprogram. For 
all source modules, the information 
required for Allocate is then moved to the 
appropriate area, and the Parse phase is 
terminated. 

PRINT and READ SOURCE, Chart BA 

PRINT AND READ SOURCE (G0837) serves 
three functions: 

1. It writes out the previous source 
statement and its error messages as 
indicated by user options. 

2. It reads the new source statement to 
be processed, including any comment 
cards, as well as the first card of 
the statement following the one to be 
processed. 

3. It performs an initial classification 
of the statement to be processed. 

The statement to be written out is found 
on the SOURCE roll. one line at a time is 
removed from this roll and placed in a 
120-byte output area from which it is 
written out. The new statement being read 
into the SOURCE roll is placed in an 
80-byte input area and replaces the state­
ment being written out as space on the 
SOURCE roll becomes available. Any blank 
card images in the source module are elimi­
nated before they reach the SOURCE roll. 
comment cards are placed on the SOURCE roll 
exactly as they appear in the source 
module. The last card image placed on the 
SOURCE roll is the first card of the source 
statement following the one about to be 

Section 2: compiler Operation 37 



Form Y28-6638-1 
Page Revised 11115/68 by TNL Y28-6826 

processed; therefore, any comment cards 
that appear between two statements are 
processed with the statement which precedes 
them. When an END card has been read, no 
further reading is performed. 

The initial classification of the state­
ment that occurs during the operation of 
this routine determines, at most, two 
characteristics about the statement to be 
processed: (1 > If it is a statement of the 
assignment type, i.e., either an arithmetic 
or logical assignment statement or a state­
ment function, or (2) If it is a Logical IF 
statement, whether the statement "S" {the 
consequence of the Logical IF) is an 
assignment statement. Two flags are set to 
indicate the results of this classification 
for later routines. 

At the conclusion of this routine, all 
of the previous source statements and their 
errors have been removed from the SOURCE 
roll and are written out. In addition, all 
of the statements to be processed Cup to 
and including the first card of the state­
ment following it) have been placed on the 
SOURCE roll. 

STA INIT, Chart BB 

STA INIT {G0632) initializes for the 
Parse processing of a source statement. It 
sets the CRRNT CHAR CNT and the LAST CHAR 
CNT to 1, and places the character from 
column 1 of the source card in the variable 
CRRNT CHAR. 

It then determines, from a count made 
during input of the statement, the number 
of card images in the statement; multiply­
ing this value by 80, STA INIT sets up a 
variable {LAST SOURCE CHAR) to indicate the 
character number of the last character in 
the statement. 

The routine finally releases the TEMP 
NAME roll and sets several flags -and 
variables to constant initial values before 
returning to STATEMENT PROCESS. 

LBL FIELD XLATE (G0635) first saves the 
address of the current WORK and EXIT roll 
bottoms. It then inspects the first six 
columns of the first card of a statement. 
It determines whether a label appears, and 
records the label if it does. If any 
errors are detected in the label field ·or 
in column 6 of the source card, LBL FIELD 
XLATE records these errors for later print-

38 

ing and returns 
{through SYNTAX 
set to false. 

to STATEMENT PROCESS 
FAIL) with the ANSWER BOX 

Pointers to all labels within DO loops 
are placed on the XTEND LBL roll. Labels 
that are jump targets--(other--than jumps 
within the DO loop) are tagged to indicate 
to Gen at which points to restore general 
registers 4 through 7. 

If the statement being processed is the 
statement following an Arithmetic IF state­
ment, LBL FIELD XLATE moves the Polish 
notation for the Arithmetic IF statement to 
the AFTER POLISH roll after adding a point­
er to the label of the present statement to 
it. 

ST~-~~ATEL Chart BD 

Under the control of STA XLArE (G0636) 
the source module statement on the SOURCE 
roll is processed and the Polish notation 
for that statement is produced on the 
POLISH roll, which holds Polish notation 
for source statements, one statement at a 
time. Errors occurring in the statement 
are recorded for writing on the source 
module listing. 

The addresses of the bottoms of the WORK 
and EXIT rolls are saved. Then, if the 
statement is of the assignment type {the 
first flag set by PRINT AND READ SOURCE is 
on), STA XLATE ensures that a BLOCK DATA 
subprogram is not being compiled and falls 
through to ASSIGNMENT STA XLATE {G0637). 
If a BLOCK DATA subprogram is being com­
piled, STA XLATE returns after recording an 
invalid statement error message. If the 
statement is not of the assignment type, a 
branch is made to LITERAL TEST (G0640>, 
which determines the nature of the state­
ment from its first word{s), and branches 
to the appropriate routine for processing 
the statement. The names of the statement 
processing routines indicate their f unc­
tions; for example, DO statements are 
translated by DO STA XLATE, while Computed 
GO TO statements are translated by CGOTO 
STA XLATE. 

With the exception of LOGICAL IF STA 
XLATE, the statement processing routines 
terminate their operation through STA XLATE 
EXIT. LOGICAL IF STA XLATE moves the 
second flag set by PRINT AND READ SOURCE 
{which indicates whether the statement "S" 
is an assignment statement) into the first 
flag, and calls STA XLATE as a subroutine 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

for the translation of the statement "S." 
When all of the Logical IF statement, 
including "S," has been translated, LOGICAL 
IF STA XLATE also terminates through STA 
XLATE EXIT. 

STA XLATE EXIT (G0723) determines 
whether errors in the statement are of a 

severity level which warrants discarding 
the statement. If such errors exist, and 
the statement is active (as opposed to a 
specification statement>, the Polish nota­
tion produced for the statement is removed 
and replaced by an invalid statement driver 
before a return is made to STATEMENT 
PROCESS. Otherwise, the Polish notation is 
left intact, and a return is made to 
STATEMENT PROCESS. 

Section 2: compiler Operation 38.1 





Form Y28-6638-l 
Page Revised 11/15/68 by TNL Y28-6826 

~TA_[INALL_fhaEt_~g 

STA FINAL (G0633) increases the state­
ment number by one for the statement just 
processed. It then determines whether any 
Polish notation has been produced on the 
POLISH roll; if no Polish notation is 
present, STA FINAL returns to STATEMENT 
PROCESS. 

If the statement produced Polish nota­
tion of a type which may not close a DO 
loop, STA FINAL bypasses the check for the 
close of a DO loop. Otherwise, STA FINAL 
determines whether the label (if there is 
one) of the statement corresponds to the 
label of the terminal statement of a DO 
loop. If so, the label pointer (or poin­
ters, if the statement terminates several 
DO loops) is removed from the DO LOOPS OPEN 
roll, which holds pointers "-to-[)o--loop 
terminal statements until the terminal 
statements are found. 

When the statement is the target of a DO 
loop, extended range checking is continued. 
DO loops which have no transfers out of the 
loop are eliminated as extended range can­
didates. In addition, the nest level count 
is reduced by one and the information 
concerning the array references in the 
closed loop is moved from the SCRIPT roll 
to the PROGRAM SCRIPT roll. 

STA FINAL then places the label pointer 
(if it is required) on the Polish notation 
for the statement, and, at STA FINAL END, 
adds the statement number to the Polish. 

Except when the statement just processed 
was an Arithmetic IF statement, STA FINAL 
END terminates its operation by moving the 
Polish notation for the statement to the 
AFTER POLISH roll. In the case of the 
Arithmetic IF, the Polish notation is not 
moved until the label of the next statement 
has been processed by LBL FIELD XLATE. 
When the Polish notation has been moved, 
STA FINAL returns to STATEMENT PROCESS. 

ACTIVE END STA XLATE (G0642) is invoked 
by STATEMENT PROCESS when the END card has 
been omitted and the last statement in the 
source module has been read. If the last 
statement was not a branch, the routine 
determines whether a subprogram or a main 
program is being terminated. If it is a 
subprogram, the Polish notation for a 
RETURN is constructed; if it is a main 
program, the Polish notation for a STOP 
statement is constructed. If the last 
statement was a branch, this routine 
returns without doing anything. 

PROCESS POLISH (G0844) moves a count of 
the number of words in the Polish notation 
for a statement, and the Polish notation 
for that statement, to the AFrER POLISH 
roll. 

OUTPUT FROM PHASE 1 

The output from Parse is the Polish 
notation and roll entries produced for 
source module active statements, the roll 
entries produced for source module specifi­
cation statements, and the source module 
listing (on option SOURCE) and error mes­
sages. The following paragraphs describe 
the Polish notation and the source and 
error listings. See Appendix B for 
descriptions of roll formats. 

Polish Notation 

The primary output from Phase 1 of the 
compiler is the Polish notation for the 
source module active statements. This 
representation of the statements is pro­
duced one statement at a time on the POLISH 
roll. At the end of the processing of each 
statement, the Polish notation is trans­
ferred to the AFTER POLISH roll, where it 
is held until it is required by later 
phases of the compiler. 

The format of the Polish notation dif­
fers from one type of statement to another. 
The following paragraphs describe the gen­
eral rules for the construction of Polish 
notation for expressions. The specific 
formats of the Polish notation produced for 
the various FORTRAN statements are given in 
Appendix c. 

Polish notation is a method of writing 
arithmetic expressions whereby the tradi­
tional sequence of "operand1 " "operation" 
"operand 2 " is altered to a functional nota­
tion of "operation" "operand2 " "operand1 ." 

Use of this notation has the advantage of 
eliminating the need for brackets of 
various levels to indicate the order of 
operations, since any "operand" may itself 
be a sequence of the form "operation" 
"operand" "operand," to any level of 
nesting. 

Assuming expressions which do not 
include any terms enclosed in parentheses, 
the following procedure is used to con­
struct the Polish notation for an 
expression: 

Section 2: compiler Operation 39 



1. At the beginning of the expression, an 
artificial driver is placed on the 
WORK roll; this driver is the Plus and 
Below Phony driver, and has a lower 
forcing strength than any arith­
metic or logical operator. (Forcing 
strengths are given in Table 1.> 

2. As each variable name or constant in 
the expression is encountered, a 
pointer to the defining group is 
placed on the POLISH roll. 

3. When an operator is encountered, the 
corresponding driver is constructed 
and it is compared with the last 
driver on the WORK roll: 

a. If the current driver has a higher 
forcing strength than the driver 
on the bottom of the WORK roll 
(the "previous" driver, for the 
purposes of this discussion)., the 
current driver is added to the 
WORK roll and the analysis of the 
expression continues. 

b. If the current driver has a forc­
ing strength which is lower than 
or equal to the forcing strength 
of the previous driver, then: 

{1) If the previous driver is the 
Plus and Below Phony driver, 
the current driver replaces 
the previous driver on the 
WORK roll <this situation can 
only occur when the current 
driver is an EOE driver, indi­
cating the end of the expres­
sion) and the analysis of the 
expression is terminated. 

(2) If the previous driver is not 
the Plus and Below Phony driv­
er, the previous driver is 
removed from the WORK roll and 
placed on the POLISH roll, and 
the comparison of the current 
driver against the previous 
driver is repeated (that is, 
using the same current driver, 
this procedure is repeated 
from 3). 

The sequence of operations which occurs 
when the analysis of an expression is 
terminated removes the EOE driver from the 
WORK roll. 

Ex~ple_l: The expression A + B produces 
the Polish notation 

40 

A 
B 
+ 

where: 

A represents a pointer to the defining 
group for the variable A 

+ represents the Add driver. This nota­
tion is produced from the top down; when it 
is read from the bottom up, the sequence 
described above for Polish notation is 
satisfied. 

Explana!;ion: 
occur in the 
notation: 

The following 
production of 

operations 
this Polish 

1. The Plus and Below Phony 
placed on the WORK roll. 

driver is 

2. A pointer to A is placed on the POLISH 
roll. 

3. An Add driver is constructed and com­
pared with the Plus and Below Phony 
driver on the bottom of the WORK roll; 
the Add driver has a higher forcing 
strength and is therefore added to the 
WORK roll {according to rule 3a,, 
above>. 

4. A pointer to B is placed on the POLISH 
roll. 

s. 

6. 

7. 

An EOE (end of expression) driver is 
constructed and compared with the Add 
driver on the bottom of the WORK roll; 
the EOE driver has a lower forcing 
strength, and the Add driver is there­
fore removed from the WORK roll and 
added to the POLISH roll {rule 3b2). 

The EOE driver is compared with the 
Plus and Below Phony driver on the 
bottom of the WORK roll; the EOE 
driver has a lower forcing strength, 
and therefore (according to rule 3b1) 
replaces the Plus and Below Phony 
driver on the WORK roll. 

The analysis of the expression is 
terminated and the EOE driver is 
removed from the WORK roll. The 
Polish notation for the expression is 
on the POLISH roll. 

Example 2: The expression A + B / c 
produces the Polish notation 

A 
B 
c 
/ 
+ 

which, read from the bottom up, is + / c B 
A. 



Explanation: 
occur in the 
notation: 

The following operations 
production of this Polish 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

The Plus and Below Phony driver is 
placed on the WORK roll. 

A pointer to A is placed on the POLISH 
roll. 

An Add driver is constructed and com­
pared with the Plus and Below Phony 
driver; the Add driver has the higher 
forcing strength and is placed on the 
WORK roll. 

A pointer to B is placed on the POLISH 
roll. 

A Divide driver is constructed and 
compared with the Add driver; the 
Divide driver has the higher forcing 
strength and is placed on the WORK 
roll. 

A pointer to c is placed on the POLISH 
roll. 

An EOE driver is constructed and com­
pared with the Divide driver; since 
the EOE driver has the lower forcing 
strength, the Divide driver is moved 
to the POLISH roll. 

The EOE driver is compared with the 
Add driver; since the EOE driver has 
the lower forcing strength, the Add 
driver is moved to the POLISH roll. 

9. The EOE driver is compared with the 
Plus and Below Phony driver; since the 
EOE driver has the lower forcing 
strength, it replaces the Plus and 
Below Phony driver on the WORK roll, 
and the analysis of the expression 
terminates with the removal of one 
group from the WORK roll. 

Example 3: The expression A / B - c 
produces the Polish notation 

A 
B 
/ 
c 

which, read from the bottom up, is - c / B 
A. 

Explanation: 
occur in the 
notation: 

The following operations 
production of this Polish 

1. The Plus and Below Phony driver is 
placed on the WORK roll. 

2. 

3. 

4. 

5. 

6. 

7. 

a. 

9. 

A pointer to A is placed on the POLISH 
roll. 

A Divide driver is constructed and 
compared with the Plus and Below Phony 
driver; the Divide driver has the 
higher forcing strength and is added 
to the WORK roll. 

A pointer to B is placed on the POLISH 
roll. 

A Subtract driver is constructed and 
compared with the Divide driver; the 
Subtract driver has a lower forcing 
strength, therefore the Divide driver 
is moved to the POLISH roll. 

The Subtract driver is compared with 
the Plus and Below Phony driver; the 
Subtract driver has the higher forcing 
strength and is added to the WORK 
roll. 

A pointer to c is placed on the POL~SH 
roll. 

An EOE driver is constructed and com­
pared with the Subtract driver; since 
the EOE driver has a lower forcing 
strength, the Subtract driver is moved 
to the POLISH roll. 

The EOE driver is compared with the 
Plus and Below Phony driver; the EOE 
driver replaces the Plus and Below 
Phony driver on the WORK roll and the 
analysis of the expression is ter-
minated. 

Recursion is used in the translation of 
an expression when a left parenthesis is 
found; therefore, the term enclosed in the 
parentheses is handled as a separate 
expression. The following three examples 
illustrate the resulting Polish notation 
when more complicated expressions are 
transformed: 

Exp~22ion 
1. A-B*(C+D) 
2. (A-B)/(C*D) 
3. X/Z/(X-C)+C**X 

Polish Notation 
-*+DCBA 
/*DC-BA 
+**XC/-CX/ZX 

The following should be noted with re­
spect to the exponentiation operation: 

• Exponentiations on the same level are 
scanned right to left. Thus, the 
expression A**B**C**D is equivalent to 
the expression A**(B**(C**D)). 

• Two groups are added to the POLISH roll 
to indicate each exponentiation opera­
tion. The first of these is the Power 
driver; the second is a pointer to the 
group on the global subprogram roll 
(GLOBAL SPROG roll) which defines the 

Section 2: Compiler Operation 41 



required exponentiation routine. Thus, 
the expression A ** B produces the 
following Polish notation: 

Pointer to A 
Pointer to B 
Power driver 
Pointer to exponentiation routine 

The concept of Polish notation is 
extended in the FORTRAN IV (G) compiler to 
inclupe not only the representation of 
arith;metic expressions, but also the repre­
sentation of all parts of the active state­
ments of the FORTRAN language. The parti­
cular notation produced for each type of 
statement is described in Appendix c. Once 
an entire source statement has been pro­
duced on the POLISH roll, phase 1 copies 
this roll to the AFTER POLISH roll and the 
processing of the next statement begins 
with the POLISH roll empty. 

Source Listing 

The secondary output from Parse is the 
source module listing. If a source listing 
is requested by the user (by means of the 
option SOURCE), source module cards are 
listed exactly as they appear on the input 
data set with error messages added on 
separate lines of the listing. If no 
source module listing is requested, Parse 
writes only erroneous statements and their 
error messages. 

The following paragraphs describe the 
error recording methods used in phase 1, 
the format of the source listing and the 
error messages generated. 

ERROR RECORDING: As a rule, Parse attempts 
to continue processing source statements in 
which errors are found. However, certain 
errors are catastrophic and cause Parse to 
terminate processing at the point in the 
statement where the error occurred. 

Statements which cannot be compiled 
properly are replaced by a call to the 
FORTRAN error routine IHCIBERH. 

Throughout Parse, three techniques of 
error recording are used. The first of 
these is used when the error is not cata­
strophic. This method records the char­
acter position in the statement at which 
the error was detected (by means of IEYLCE, 
IEYLCT, or IEYLCF instructions) and the 
number of the error type on the ERROR roll; 
after recording this information, Parse 
continues to scan the statement. 

The second and third techniques of error 
recording are used when the error detected 

42 

is catastrophic, at least to part of the 
statement being scanned. The second tech­
nique is a jump to an error recording 
routine, such as ALLOCATION FAIL or SUB­
SCRIPTS FAIL, which records the error and 
jumps to FAIL. The third technique is the 
use of one of the instructions, such as 
IEYCSF or IEYQSF, which automatically jump 
to SYNTAX FAIL if the required condition is 
not met. SYNTAX FAIL also exits through 
FAIL. 

If the statement being processed is 
active and errors have been detected in it, 
FAIL removes any Polish notation which has 
been produced for the statement from the 
POLISH roll, replacing it with an error 
indicator. FAIL then restores WORK and 
EXIT roll controls to their condition at 
the last time they were saved and returns 
accordingly. 

Some translation routines modify the 
action of the FAIL routine through the use 
of the IEYJPE instruction so that FAIL 
returns immediately to the location follow­
ing the IEYJPE instruction. The transla­
tion routine can then resume the processing 
of the statement from that point. 

FORMAT OF THE SOURCE MODULE LISTING: Error 
information for a source module card con­
taining errors appears on the listing lines 
immediately following that card. For each 
error encountered, a $ sign is printed 
beneath the active character preceding the 
one which was being inspected when the 
error was detected. The only exception 
would be in the case of a SYNTAX error. In 
such a case, the $ sign undermarks the 
character being inspected when the error is 
detected. The listing line which follows 
the printed card contains only the $ sign 
markers. 

The next line of the listing describes 
the marked errors. The errors are numbered 
within the card (counting from one for the 
first error marked>; the number is followed 
by a right parenthesis, the error number, 
and the type of the error. Three errors 
are described on each line, for as many 
lines as are required to list all the 
marked errors on the source card. 

The following is an illustration of the 
printed output from phase 1: 



'\ 

' ) 

DIMENSION ARY(200), BRY(200) CRY(5,10,10) 
$ 

1) IEY004I COMMA 

IF (AA + BB) 15, 20, 250000 
$ 

1) IEYOlOI SIZE 
ARY(J) = BRY 

$ $ 
1) IEY002I LABEL 2) IEY012I SUBSCRIPT 

GTO 30 
$ 

1) IEY013I SYNTAX 

ERROR TYPES: The types of errors detected 
and reported by Parse are described in the 
following paragraphs. For each error type, 
the entire message which appears on the 
source output is given; the condition code 
and a description of the causes of this 
error follows the message. 

IEY001I ILLEGAL TYPE: This message is 
associated with the source module statement 
when the type of a variable is not correct 
for its usage. Examples of situations in 
which this message would be given are: (1) 
The variable in an Assigned GO TO statement 
is not an integer variable; (2) In an 
assignment statement, the variable on the 
left of the equal sign is of logical type 
and the expression on the right side is 
not. The condition code is 8. 

IEY002I LABEL: This message appears with a 
statement which should be labeled and is 
not. Examples of such statements are: (1) 
A FORMAT statement; (2) The statement fol­
lowing a GO TO statement• The condition 
code for the error is O. 

IEY003I NAME LENGTH: The name of a vari­
able, COMMON block, NAMELIST, or subprogram 
exceeds six characters in length. If two 
variable names appear in an expression 
without a separating operation symbol, this 
message is produced. The condition code is 
4. 

IEY004I COMMA: A comma is supposed 
appear in a statement and it does not. 
condition code is o. 

to 
The 

IEY005I ILLEGAL LABEL: The usage of a 
label is invalid for example, if an attempt 
is made to branch to the label of a FORMAT 
statement, ILLEGAL LABEL is produced. The 
condition code is 8. 

IEY006I DUPLICATE LABEL: A label appearing 
in the label field of a statement is 
already defined (has appeared in the label 
field of a previous statement>. The condi­
tion code is 8. 

IEY007I ID CONFLICT: The name of a vari­
able or subprogram is used improperly, in 
the sense that a previous statement or a 
previous portion of the present statement 
has established a type for the name, and 
the present usage is in conflict with that 
type. Examples of such situations are: 
(1) The name listed in a CALL statement is 
the name of a variable, not a subprogram; 
( 2) A single name a.ppears more than once in 
the dummy list of a statement function; (3) 
A name listed in an EXTERNAL statement has 
already been defined in another context. 
The condition code is 8. 

IEY008I ALLOCATION: Storage assignments 
specified by a source module statement 
cannot be performed due to an inconsistency 
between the present usage of a variable 
name and some prior usage of that name, or 
due to an improper usage of a name when it 
first occurs in the source module. 
Examples of the situations causing the 
error are: (1) A name listed in a COMMON 
block has been listed in another COMMON 
block; 2) A variable listed in an EQUIVA­
LENCE statement is followed by more than 
seven suEscripts. The condition code is 8. 

IEY009I ORDER: The statements of a source 
module are used in an improper sequence. 
This message is produced, for example, 
when: (1) An IMPLICIT statement appears as 
anything other than the first or second 
statement of the source module; (2) An 
ENTRY statement appears within a DO loop. 
The condition code is 8. 

IEY010I SIZE: A number used in the source 
module does not conform to the legal values 
for its use. Examples are: (1) The size 
specification in an Explicit specification 
statement is not one of the acceptable 
values; (2) A label which is used in a 
statement exceeds the legal SI'Ze for a 
statement label; (3) An integer constant is 
too large. The condition code is 8. 

IEY011I UNDIMENSIONED: A variable name 
indicates an array (i.e., subscripts follow 
the name), and the variable has not been 
dimensioned. The condition code is 8. 

IEY012I SUBSCRIPT: 
scripts used in an 
either too large or 
array. The condition 

The number of sub­
arra y reference is 
too small for the 

code is 8. 

IEY013I SYNTAX: The statement or part of a 
statement to which it refers does not 
conform to FORTRAN IV syntax. If a state­
ment cannot be identified, this error mes­
sage is used. Other cases in which it 
appears are: (1) A non-digit appears in 
the label field; (2) Fewer than three 
labels follow the expression in an Arith­
metic IF statement. The condition code is 
8. 

Section 2: Compiler Operation 43 



IEY014I CONVERT: In a DATA statement or in 
an Explicit specification statement con­
taining data values, the mode of the con­
stant is different from the mode of the 
variable with which it is associated. The 
compiler converts the constant to the 
correct mode. Therefore, this message is 
simply a notification to the programmer 
that the conversion is performed. The 
condition code is o. 

IEY015I NO END CARD: 
does not contain an END 
condition code is O. 

The source module 
statement. The 

IEY016I ILLEGAL STA.: The statement to 
which it is attached is invalid in the 
context in which it has been used. 
Examples of situations in which this mes­
sage. appears are: Cl) The statement S in a 
Logical IF statement Cthe result of the 
true condition) is a specification state­
ment, a DO statement, etc.; 2> An ENTRY 
statement appears in the source module and 
the source module is not a subprogram. The 
condition code is 8. 

IEY017I ILLEGAL STA. WRN A RETURN I 
statement appears in any source module 
other than a SUBROUTINE subprogram. The 
condition code is o. 

IEY018I NUMBER ARG: A reference 
library subprogram appears with the 
rrect number of arguments specified. 
condition code is 4. 

to a 
inco­

The 

IEY027I CONTINUATION CARDS DELETED: More 
than 19 continuation lines were read for 1 
statement. All subsequent lines are 
skipped until the beginning of the next 
statement is encountered. The condition 
code is 8. 

IEY033I COMMENTS DELETED: More than 30 
comment lines were read between the initial 
lines of 2 consecutive statements. The 
31st comment line and all subsequent com­
ment lines are skipped until the beginning 
of the next statement is encountered. 
(There is no restriction on the number of 
comment lines preceding the first state­
ment.> The condition code is o. 

IEY036I ILLEGAL LABEL WRN: The label on 
this nonexecutable statement has no valid 
use beyond visual identification, and may 
produce errors in the object module if the 
same label is the target of a branch-type 
statement. Conly branches to executable 
statements are valid.) This message is 
produced, for example, when an END state­
ment is labeled. The message is issued as 
a warning only. The condition code is 4. 

44 

PHASE 2 OF THE COMPILER: ALLOCATE CIEYALL) 

Phase 2 of the compiler performs the 
assignment of storage for the variables 
defined in the source module. The results 
of the allocation operations are entered on 
tables which are left in storage for the 
next phase. In addition, Allocate writes 
Con option) the object module ESD cards, 
the TXT cards for NAMELIST tables, literal 
constants, and FORMAT statements, and pro­
duces error messages and storage maps 
(optionally) on the SYSPRINT data set. 

The following paragraphs describe the 
operations of Allocate in two parts. The 
first part, "Flow of Phase 2," describes 
the overall ·logic of the phase by means of 
narrative and flowcharts. 

The second part, "Output from Phase 2," 
describes the error messages and memory 
maps which are produced on the source 
module listing during the operation of the 
phase, as well as the ESD and TXT cards 
produced. It also describes the types of 
error detection performed during Allocate. 

Rolls manipulated 
in Table 4, and are 
context. Detailed 
structures are given 

by Allocate are listed 
briefly described in 
descriptions of roll 
in Appendix B. 

Table 4. Rolls Used by Allocate 
r--------------------T--------------------1 
I Roll I Roll I 
!No. Roll Name IIB2!.. Roll Name I 
I 1 source l 39 Halfword 
I 5 Literal Const Scalar 
) 7 Global Sprog 40 Common Name 
I 14 Temp 41 Implicit 
I 15 Do Loops Open 42 Equivalence 
I 18 !nit Offset 
I 19 Equiv Temp 43 Lbl 
I 20 Equiv Hold 44 Scalar 
I 21 Base Table 45 Data Var 
I 22 Array 47 Common Data 
I 23 Droy Dimension Temp 
J 24 Entry Names 48 Namelist 
l 25 Global Dmy Allocation 
) 26 Error Lbl 48 Common Area 
I 27 Local Dmy 49 common Name 
I 28 Local Sprog Temp 
I 29 Explicit 50 Equiv Alloca-
1 30 Error Symbol tion 
I 31 Namelist Names 52 Common Alloca-
1 32 Narnelist Items tion 
I 34 Branch Table 53 Format 
I 37 Equivalence 60 Subchk 
I 37 Byte Scalar 68 General Allo-
1 38 Used Lib cation 
I Function 
I 39 Common Data I I l ____________________ .J_ ___________________ J 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

FLOW OF PHASE 2, CHART 05 

START ALLOCATION (G0359) controls the 
operation of the Allocate phase. The pri­
mary function of this routine is to call 
the subordinate routines which actually 
perform the operations of the phase. 

The operation of Allocate is divided 
into three parts: the first part performs 
initialization; the second part (called 
pass 1) makes an estimate of the number of 
base table entries required to accommodate 
the data in the object module; the third 
part actually assigns storage locations for 
the object module components, leaving. indi­
cations of the assignment in main storage 
for use by subsequent phases. 

The first part of Allocate•s operation 
is performed by calling the routines ALPHA 
LBL AND L SPROG, PREP EQUIV AND PRINT 
ERRORS, BLOCK DATA PROG ALLOCATION, PREP 
DMY DIM AND PRINT ERRORS, PROCESS DO LOOPS, 
PROCESS LBL AND LOCAL SPROGS, BUILD PROGRAM 
ESD, ENTRY NAME ALLOCATION, COMMON 
ALLOCATION AND OUTPUT, and EQUIV ALLOCATION 
PRINT ERRORS. 

After return from EQUIV ALLOCATION PRINT 
ERRORS, START ALLOCATION initializes for 
and begins pass 1. The variable PROGRAM 
BREAK, which is used to maintain the rela­
tive address being assigned to an object 
module component, is restored after being 
destroyed during the allocation of COMMON 
and EQUIVALENCE. The groups in the BAS~ 
TABLE roll <which becomes the object module 
base table) are counted, and the value ten 
is added to this count to provide an 
estim.ate of the size of the object module 
base table. The BASE TABLE roll is then 
reserved so that groups added to the roll 
can be separated from those used in the 
count. The value one is assigned to the 
variable AREA CODE, indicating that storage 
to be assigned is all relative to the 
beginning of the object module and carries 
its ESD number. 

When these operations are complete, 
START ALLOCATION calls BASE AND BRANCH 
TABLE ALLOC, and upon return from this 
routine again increases the variable 
PROGRAM BREAK by the amount of storage 
allocated to EQUIVALENCE. START ALLOCATION 
continues its operation by calling BUILD 
ADDITIONAL BASES, PREP NEMELIST, SCALAR 
ALLOCATE, ARRAY ALLOCATE, PASS 1 GLOBAL 
SPROG ALLOCATE, SPROG ARG ALLOCATION, 
LITERAL CONST ALLOCATION and FORMAT 
ALLOCATION. 

After 
ALLOCATION, 
begun. The 
initialized 

the operation of FORMAT 
the last part of Allocate is 

variable PROGRAM BREAK is re­
to the value it was assigned 

prior to pass 1. The BASE TABLE roll 
groups are counted to determine the total 
size of the roll after groups have been 
added by pass 1; again, five extra groups 
(or ten words> are added to the count to 
provide for data values which will appear 
in the object module, but which are not yet 
defined. The PASS 1 FLAG is then turned 
off, and START ALLOCATION calls DEBUG 
ALLOCATE, ALPHA SCALAR ARRAY AND SPROG, 
BASE AND BRANCH TABLE ALLOC, EQUIV MAP, 
SCALAR ALLOCATE, ARRAY ALLOCATE, GLOBAL 
SPROG ALLOCATE, SPROG ARG ALLOCATION, BUILD 
NAMELIST TABLE, LITERAL CONST ALLOCATION, 
and FORMAT ALLOCATION. 

At RELEASE ROLLS, START ALLOCATION con­
cludes its operation by releasing rolls, 
increasing the PROGRAM BREAK to ensure that 
the next base begins on a doubleword boun­
dary, and calling CALCULATE BASE AND DISP 
and BUILD ADDITIONAL BASES in order to 
guarantee that at least three bases are 
allotted for the TEMP AND CONST roll. 
After this calculation, Allocate prepares 
for and relinquishes control to Unify. 

This routine (G0543) is the first rou­
tine called by START ALLOCATION. It moves 
the binary labels from the LBL roll and the 
statement function names from the LOCAL 
SPROG roll to the DATA VAR roll. The order 
of the labels and-Statement-function names 
on their respective rolls is maintained, 
and the location on the DATA VAR roll at 
which each begins is recorded. The names 
are moved because Allocate destroys them in 
storing allocation information, and Exit 
needs them for writing the object module 
listing. 

ALPHA SCALAR ARRAY AND SPROG, Chart CA 

This routine moves the names of scalars, 
arrays, and called subprograms to the DATA 
VAR roll from the rolls on which they are 
placed by Parse. The order of names is 
preserved and the beginning location for 
each type of name on the DATA VAR roll is 
saved. 

PREP EQUIV AND PRINT ERRORS, Chart CB 

subscript information on the ~QQ!~~~~Q~ 
OFFSET roll (which indicates the subscripts 
used in EQUIVALENCE statements in the 
source module) is used by this routine 

Section 2: Compiler Operation 45 



Form ¥28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

(G0362) to calculate the relative ad­
dresses of array elements referred to in 
statements. (Pointers to the EQUIVALENCE 
OFFSET roll are found on the EQUIVALENCE 
~oll for all subscripted references in 
EQUIVALENCE statements.) The addresses 
computed are relative to the beginning of 
the array. When an array reference in a 
source module EQUIVALENCE statement is out­
side the array, designates an excessive 
number of dimensions, or specifies too few 
dimensions, an error message is printed by 
this routine. 

BLOCK DATA PROG ALLOCATION, Chart CC 

This routine {G0361l controls the allo­
cation of data specified in DATA, COMMON, 
DIMENSION, EQUIVALENCE, and Type statements 
in a BLOCK DATA subprogram. Since all data 
specified in EQUIVALENCE must be allocated 
under COMMON, this routine registers an 
error upon encountering on the EQUIVALENCE 
roll. The routine terminates with a jump 
to RELEASE ROLLS (G0360), which, in turn, 
terminates the Allocate phase. 

This routine (G0365l constructs the DMY 
QIMgNSIO~_roll, placing a pointer to the 
ENTRY NAMES roll group defining the ENTRY 
with which a dummy array is connected, and 
a pointer to the array for each durr~y array 
containing a dummy dimension. 

Before the roll is constructed, this 
routine ensures that each array having 
dummy dimensions is itself a dummy, and 
that each dummy dimension listed for the 
array is either in COMMON or is a global 
dummy variable in the same call. If any of 
these conditions are not satisfied, error 
messages are written. 

PROCESS DO LOOPSL_£gar~_CE 

This routine (G0371) inspects the DO 
LOOPS OPEN roll for the purpose of deter­
mining whether DO loops opened by the 
source module have been left unclosed; that 
is, whether the terminal statement of a DO 
loop has been omitted from the source 
module. The DO LOOPS OPEN roll holds 
pointers to labels of target statements for 
DO loops until the loops are closed. If 
any information is present on this roll, 
loops have been left unclosed. 

46 

On encountering information on the DO 
LOOPS OPEN roll, this routine records the 
undefined labels for listing as DO loop 
errors, and (on option) lists them. It 
also sets the high order bit of the TAG 
field of the LBL roll group which refers to 
the undefined label to zero; this indicates 
to Gen that the loop is not closed. 

PROCESS LBL AND LOCAL SPROGS, Chart CF 

This routine CG0372) constructs the 
BRANCH TABLE roll, which is to become the 
object module branch table. The routine 
first processes the LBL roll. For each 
branch target label found on that roll, a 
new BRANCH TABLE roll group is constructed, 
and the label on the LBL roll is replaced 
with a pointer to the group constructed. 
Undefined labels are also detected and 
printed during this process. 

When this operation is complete, the 
LOCAL SPROG roll (which lists the names of 
all statement-functions) is inspected, and 
for each statement function, a group is 
added to the BRANCH TABLE roll, and part of 
the statement function name is placed with 
a pointer to the constructed group. 

BUILD PROGRAM ESD, Chart CG 

This routine (G0374) constructs and 
punches the ESD cards for the object module 
itself (the program name) and for each 
ENTRY to the object module. It also 
assigns main storage locations to the 
object module heading by increasing the 
PROGRAM BREAK by the amount of storage 
required. 

This routine (G0376) does nothing if the 
source module is other than a FUNCTION 
subprogram. If, however, the source module 
is a FUNCTION, this routine places the 
names of all ENTRYs to the source module on 
the EQUIVALENCE roll as a single 
EQUIVALENCE set; it also ensures that the 
ENTRY name has been used as a scalar in the 
routine. If the variable has not been 
used, an appropriate error message is 
printed and the scalar variable is defined 
by this routine. 



COMMON ALLOCATION AND OUTPUT, Chart CI 

This routine (G0377) allocates all COM­
MON storage, one block at a time, generat­
ing the COMMON ALLOCATION roll (which holds 
the name-;-base--pointer;--and- displacement 
for all COMMON variables) in the process. 
Groups are added to the BASE TABLE roll as 
they are required to provide for references 
to variables in COMMON. The ESD cards for 
COMMON are constructed and written out. 
All errors in COMMON allocation are written 
on the source listing and the map of COMMON 
storage is also written Con option). 

EQUIV ALLOCATION PRINT ERRORS, Chart CK 

This routine (G0381) allocates storage 
for EQUIVALENCE variables, creating the 
EQUIVALENCE ALLOCATION roll in the process. 
For each variable appearing in an EQUIVA­
LENCE set, except for EQUIVALENCE variables 
which refer to COMMON (which have been 
removed from the EQUIVALENCE roll during 
the allocation of COMMON storage), the name 
of the variable and its address are 
recorded. 

The information pertaining to EQUIVA­
LENCE sets is stored on the EQUIV ALLOCA­
TION roll in order of ascending addresses. 
Required bases are added to the BASE TABLE 
roll, and all remaining EQUIVALENCE errors 
are printed. 

BASE AND BRANCH TABLE ALLOC, Chart CL 

This routine (G0437) assigns main 
storage for the object module save area, 
base table, and branch table. The required 
base table entries are added as needed, 
PROGRAM BREAK is increased, and the base 
pointer and displacement for each of these 
areas is recorded in a save area for use by 
Gen. During pass 1 of Allocate, this 
assignment of storage is tentative and 
depends on the estimate of the size of the 
base table. The second time this routine 
is operated, the actual number of base 
table entries required in the object module 
has been determined by pass 1 and the space 
allocation is final. 

SCALAR ALLOCATE, Chart CM 

Each group on the SCALAR roll is 
inspected by this routine (G0397), which 
defines all nonsubscripted variables. It 

allocates storage for the variables listed 
on the roll, except for those which are in 
COMMON or members of EQUIVALENCE sets. The 
first time SCALAR ALLOCATE operates, it 
determines the number of base table entries 
required to accommodate references to the 
object module scalar variables. The infor­
mation on the SCALAR roll is not altered, 
nor is any other roll built or modified by 
the routine. 

At the second operation of the routine, 
the SCALAR roll is modified, and the actual 
storage locations (represented by the base 
pointer and displacement) to be occupied by 
the scalar variable are either computed and 
stored on the SCALAR roll or copied from 
the COMMON or EQUIV ALLOCATION roll to the 
SCALAR roll. 

All "call by name" dummy variables are 
placed on the FULL WORD SCALAR roll; as 
each remaining scalar is inspected, its 
mode is determined. If it is of size 8 or 
16 (double-precision real or single- or 
double-precision complex>, storage is allo­
cated immediately. If the variable does 
not require doubleword alignment, it is 
moved to one of three rolls depending on 
its size: FULL WORD SCALAR, HALF WORD 
SCALAR, or BYTE SCALAR. 

When all groups on the SCALAR roll have 
been processed in this manner, the 
variables on the FULL WORD SCALAR roll, 
then the HALF WORD SCALAR roll, then the 
BYTE SCALAR roll are assigned storage. The 
map of scalars is produced (on option) by 
this routine. 

ARRAY ALLOCATE, Chart CN 

This routine (G0401), like SCALAR ALLOC­
ATE, is called twice by START ALLOCATE. 
The first time it is called, it determines 
the number of base table entries required 
for references to the object module arrays. 
The second time the routine is operated, it 
actually assigns storage for the arrays, 
and records the appropriate base pointer 
and displacement on the ARRAY roll. 

As each array name is found on the ARRAY 
roll, it is compared with those on the 
COMMON, EQUIV, and GLOBAL DMY rolls. For 
COMMON and EQUIVALENCEd arrays, the alloca­
tion information is copied from the appro­
priate roll. Since all dummy arrays are 
"call by name" dummies, dummy array groups 
are always replaced with pointers to the 
GLOBAL DMY roll. For each array to be 
assigned storage, new base table entries 
are constructed as required. In no case is 
more than one base used for a single array. 

Section 2: Compiler Operation 47 



Since arrays are allocated in the order 
of their appearance, some unused storage 
space may appear between consecutive arrays 
due to the required alignment. The array 
map is produced Con option> by this 
routine. 

This routine (G0402) counts the groups 
on the GLOBAL SPROG and USED LIB FUNCTION 
rolls (which hold, respectively, the--ri:on­
library and library subprogram names 
referred to in the source module> to deter­
mine the number of base table entries 
required for references to the subprogram 
addresses region of the object module. The 
required BASE TABLE roll groups are added. 

SPROG ARG ALLOCATION, Chart CP 

This routine (G0442) adds the number of 
arguments to subprograms (and thus, the 
number of words in the argument list area 
Of the object module) to the PROGRAM BREAK, 
thus allocating storage for this portion of 
the object module. BASE TABLE roll groups 
are added as required. 

PREP NAMELIST, Chart CQ 

This routine (G0443) determines the 
amount of main storage space required for 
each object module NAMELIST table. The 
NAMELIST ALLOCATION roll is produced during 
this routine's operation; it contains, for 
each NAMELIST data item, the name of the 
item and a pointer to the SCALAR or ARRAY 
roll group defining it. If any data name 
mentioned in a NAMELIST is not the name of 
a scalar or array, the appropriate error 
message is printed by this routine. 

The NAMELIST NAMES roll is left holding 
the NAMELIST name and the absolute location 
of the beginning of the corresponding 
object module NAMELIST table. Required 
BASE TABLE roll groups are added by this 
routine. 

LITERAL CONST ALLOCATIONL Ch~~t CB 

This routine (G0444) is called twice by 
START ALLOCATION. Its first operation de­
termines the number of BASE TABLE roll 
groups which should be added to cover the 

48 

literal constants in the object module. 
The second operation of the routine 
actually assigns storage for all literal 
constants (except those appearing in source 
module DATA and PAUSE statements) and 
writes (on option) the TXT cards for them. 

This routine (G0445) is called twice by 
START ALLOCATION. The first time it is 
called is during the operation of pass 1. 
In pass 1, the PROGRAM BREAK is increased 
by the number of bytes occupied by each 
FORMAT. 

The second time that FORMAT ALLOCATION 
is called, each FORMAT is written out and 
the FORMAT roll is rebuilt. The base and 
displacement information and a pointer to 
the label of the FORMAT statement are the 
contents of the rebuilt FORMAT group. The 
map of the FORMAT statements used in the 
object module is also written out Con 
option> by this routine. 

This routine CG0441> adjusts the values 
on the EQUIVALENCE ALLOCATION roll to the 
corrected (for the correct allocation of 
the base table, since this routine operates 
after the completion of pass 1) base point­
er and displacement, and constructs the 
BASE TABLE roll groups required. The map 
of EQUIVALENCE variables is produced (on 
option) by this routine. 

GLOBAL SPROG ALLOCATE, Chart cu 

This routine (G0403) goes through the 
GLOBAL SPROG and USED LIB FUNCTION rolls, 
inserting the base pointer and displacement 
for each of the subprograms listed there; 
this is the allocation of storage for the 
subprogram addresses region of the object 
module. The ESD cards for the subprograms 
are written, the required BASE TABLE roll 
groups are added, and a list of the subpro­
grams called is produced Con option). 

BUILD NAMELIST TABL~£har! CV 

This routine (G0405) operates after pass 
1 of Allocate. It uses the NAMELIST NAMES 
roll in determining the base and displace-



ment for each NAMELIST reference in the 
source module. The BASE TABLE roll groups 
are added as required. The PROGRAM BREAK 
is increased as indicated, and the TXT 
cards are written out according to the base 
and displacement calculations for each 
entry on the NAMELIST ALLOCATION roll. A 
map of the NAMELIST tables is produced (on 
option> by this routine. 

This routine (G0438) is called whenever 
it may be necessary to construct a new BASE 
TABLE roll group. It determines whether a 
new base is required and, if so, constructs 
it. 

DEBUG ALLOCATE, Ch~_£~ 

This routine (G0545) processes the 
information on the INIT and SUBCHK rolls, 
marking the groups on the SCALAR, ARRAY, 
and GLOBAL DMY rolls which define the 
variables listed. When all the information 
on the SUBCHK roll has been processed, the 
routine returns. 

OUTPUT FROM PHASE 2 

The following paragraphs describe the 
output from Allocate: error messages, 
maps, and cards. Allocate also produces 
roll entries describing the assignment of 
main storage. See Appendix B for descrip­
tions of the roll formats. 

The source module listing, with error 
indications and error messages for the 
errors detected during initial processing 
of the source statements, is produced by 
phase 1 of the compiler. Certain program 
errors can occur, however, which cannot be 
detected until storage allocation takes 
place. These errors are detected and 
reported (if a listing has been requested>, 
at the end of the listing by ALLOCATE; the 
error messages are described in the follow­
ing paragraphs. 

FUNCTION 
compiled 
is made 
the same 

ERROR: When the program being 
is a FUNCTION subprogram, a check 
to determine whether a scalar with 
name as the FUNCTION and each 

ENTRY is defined. If no such scalars are 
listed on the SCALAR roll, the message 

IEY019I FUNCTION ENTRIES UNDEFINED 

is written on the 
The message is 
undefined names. 

source module listing. 
followed by a list of the 
The condition code is o. 

COMMON ERRORS: Errors of two types can 
exist in the definitions of EQUIVALENCE 
sets which refer to the COMMON area. The 
first type of error exists because of a 
contradiction in the allocation specified, 
e.g., the EQUIVALENCE sets (A,B(6),C(2)) 
and (B(8),C(l)). The second error type is 
due to an attempt to extend the beginning 
of the COMMON area, as in COMMON A,B,C and 
EQUIVALENCE (A,F(10)). 

An additional error in the assignment of 
COMMON storage occurs if the source program 
attempts to allocate a variable to a loca­
tion which does not fall on the appropriate 
boundary. Since each COMMON block is 
assumed to begin on a double-precision 
boundary, this error can be produced in 
either <or both> the COMMON statement and 
an EQUIVALENCE statement which refers to 
COMMON. 

When each block of COMMON storage has 
been allocated, the message 

IEY020I COMMON BLOCK / / ERRORS 

is printed if any error has been detected 
(the block name is provided). The message 
is followed by a list of the variables 
which could not be allocated due to the 
errors. The condition code is 4. 

Unclosed DO Loops 

If DO loops are initiated in the source 
module, but their terminal statements do 
not exist, Allocate finds pointers to the 
labels of the nonexistent terminal state­
ments on the DO LOOPS OPEN roll. If 
pointers are found on the roll, the message 

IEY021I UNCLOSED DO LOOPS 

is printed, followed by a list of the 
labels which appeared in DO statements and 
were not defined in the source module. ~he 
condition code is 8. 

Section 2: Compiler Operation 49 



UNDEFINED LABELS: If any labels are used 
in the source module but are not defined, 
they constitute label errors. Allocate 
checks for this situation. At the conclu­
sion of this check, the message 

IEY022I UNDEFINED LABELS 

is printed. If there are undefined labels 
used in the source module, they are listed 
on the lines following the message. The 
condition code is 8. 

EQUIVALENCE ERRORS: Allocation errors due 
to the arrangement of EQUIVALENCE state­
ments which do not ref er to COMMON 
variables may have two causes. The first 
of these is the conflict between two EQUIV­
ALENCE sets; for example, (A,B(6),C(3)) and 
(B(8) 1 C(l)). 

The second is due to incompatible boun­
dary alignment in the EQUIVALENCE set. The 
first variable in each EQUIVALENCE set is 
assigned to its appropriate boundary, and a 
record is kept of the size of the variable. 
Then, as each variable in the set is 
processed, if any variable of a greater 
size requires alignment, the entire set is 
moved accordingly. If any variable is 
encountered of the size which caused the 
last alignment, or of lower size, and that 
variable is not on the appropriate boun­
dary, this error has occurred. 

If EQUIVALENCE errors of either of these 
types occur, the message 

IEY023I EQUIVALENCE ALLOCATION ERRORS 

is printed. The message is followed by a 
list of the variables which could not be 
allocated according to source module speci­
fications. The condition code is 4. 

Another class of EQUIVALENCE error is 
the specification, in an EQUIVALENCE set, 
of an array element which is outside the 
array. These errors are summarized under 
the heading 

IEY024I EQUIVALENCE DEFINITION ERRORS 

on the source module listing. 
tion code is 4. 

The condi-

DUMMY DIMENSION ERRORS: If variables spe­
cified as dummy array dimensions are not in 
COMMON and are not global dummy varia•bles, 
they constitute errors. These are summa­
rized under the heading 

IEY025I DUMMY DIMENSION ERRORS 

on the source module listing. 
tion code is 4. 

50 

The condi-

BLOCK DATA ERRORS: If variables specified 
within the BLOCK DATA subprogram have not 
also been defined as COMMON, they consti­
tute errors. The message 

IEY026I BLOCK DATA PROGRAM ERRORS 

is produced on the source module listing 
followed by a summarization of the 
variables in error. The condition code for 
this type of error is 4. 

Storage MaEs Produced by_Allocate 

Allocate produces the storage maps de­
scribed below during its operations; these 
maps are printed only if the MAP option is 
specified by the programmer. 

COMMON MAP: The map of each COMMON block 
is produced by Allocate. The map is headed 
by two title lines; the first of these is 

COMMON / name / MAP SIZE n 

and the second is the pair of words 

SYMBOL LOCATION 

printed five times across the line. The 
title lines are followed by a list of the 
variables assigned to the COMMON block and 
their relative addresses, five variables 
per line, in order of ascending relative 
addresses. The name contained within the 
slashes is the name of the COMMON block. 
The amount of core occupied by the block 
(n) is given in hexadecimal and represents 
the number of bytes occupied. 

SCALAR MAP: The scalar map is produced by 
Allocate and consists of two title lines, 
the first Of which reads 

SCALAR MAP 

and the second of which is identical to the 
second title line of the COMMON maps. The 
title is followed by a list of the non­
COMMON scalar variables, five variables per 
line, and their relative addresses, in 
order of ascending relative addresses. 

ARRAY MAP: The first title line of the 
array map reads 

ARRAY MAP 

In all other respects, the array map is 
identical to the scalar map. 



EQUIVALENCE MAP: The first title line of 
the map of EQUIVALENCE sets reads 

EQUIVALENCE DATA MAP 

The second line for both maps is standard. 
The variables listed in the EQUIVALENCE map 
are those not defined as COMMON. 

NAMELIST MAP: This map shows the locations 
of the NAMELIST tables. The first title 
line reads 

NAMELIST MAP 

and the second line is standard. The 
symbol listed is the NAMELIST name asso­
ciated with each of the tables. 

FORMAT MAP: This map gives the labels and 
lOCations of FORMAT statements. The first 
title line is 

FORMAT STATEMENT MAP 

and the second title is the same as the 
others described. The symbol listed is the 
label of the FORMAT statement. 

Subprogram List 

Allocate prints a list of the subpro­
grams called by the source module being 
compiled. This list is printed only if the 
MAP option is specified by the programmer. 
The subprogram list is headed by the line 

SUBPROGRAMS CALLED 

and contains the names of the SUBROUTINES 
and FUNCTIONS ref erred to in the source 
module. 

Cards Produced by Allocate 

Allocate oroduces both ESD and TXT 
cards, provided that a DECK option or a 
LOAD option has been specified by the 
programmer. All ESD cards required by the 
object module are produced during this 
phase. These include cards for the CSECT 
in which the object module is contained for 
each COMMON block and for each subprogram 
referred to by the object module. 

The ESD cards that are produced by 
Allocate are given in the following order 
according to type: 

ESD, type 0 - contains the name of the 
program and indicates the begin­
ning of the object module. 

ESD, type 1 - contains the entry point to a 
SUBROUTINE or FUNCTION subpro­
gram, or the name specified in 
the NAME option, or the name 
MAIN. The name designated on the 
card indicates where control is 
given to begin execution of the 
module. 

ESD, type 2 - contains the names of subpro­
grams referred to in the source 
module by CALL statements, 
EXTERNAL statements, explicit 
function references, and implicit 
function references. 

ESD, type 5 - contains information about 
each COMMON block. 

The TXT cards produced during this phase 
fill the following areas of the object 
module: 

• The NAMELIST tables 

• The literal constants 

• The FORMAT statements 

The other TXT cards required for the 
object module are produced by later phases 
of the compiler. 

The third phase of the compiler opti­
mizes the subscripting operations performed 
by the object module by deciding, on the 
basis of frequency of use, which subscript 
expressions within DO loops are to appear 
in general registers, and which are to be 
maintained in storage. 

The following paragraphs, "Flow of Phase 
3 1 " describe the operation of Unify by 
means of narrative and flowcharts. 

The rolls manipulated by Unify are 
listed in Table 5 and are mentioned in the 
following discussion of the phase; these 
rolls are briefly described in context. 
See Appendix B for a complete description 
of any roll used in the phase. 

Section 2: Compiler Operation 51 



Table 5. Rolls Used by Unify 
r--------------------T--------------------1 
I Roll Number Roll Name I 
I 2 Nonstd Script I 
I 3 Nest Script I 
I 4 Loop Script I 
I 13 Std Script I 
I 14 Temp I 
I 20 Reg I 
I 21 Base Taule I 
I 22 Array I 
I 52 Loop Control I 
I 54 Script I 
I 55 Loop Data I 
I 56 Program Script I 
I 57 Array Ref I 
I 58 Adr Const I 
l ____________________ i ____________________ J 

FLOW OF PHASE 3, CHART 07 

START UNIFY (G0111) controls the opera­
tion of this phase of the compiler. It 
initializes for the phase by setting the 
proper number of groups on the ARRAY REF 
roll to zero (this function is performed by 
the routine ARRAY REF ROLL ALLOTMENT) and 
moving the information transmitted on the 
PROGRAM SCRIPT roll to the SCRIPT roll. 
When the initialization is complete, the 
reserve blocks on the SCRIPT roll are in 
order from the outermost loop of the last 
source module DO nest (at the top of the 
roll) to the innermost loop of the first 
source module DO nest (at the bottom of the 
roll). 

After initialization, START UNIFY begins 
the optimizing process by inspecting the 
last group of a reserve block on the SCRIPT 
roll; a value of zero in this group indi­
cates the end of 'the SCRIPT roll informa­
tion. When the value is nonzero, DO NEST 
UNIFY is called to process the information 
for an entire nest of DO loops. On return 
from this routine, the nest has been pro­
cessed; the count of temporary storage 
locations required is updated, and START 
UNIFY repeats its operations for the next 
nest of loops. 

When all loops have been processed, 
START UNIFY makes a complete pass on the 
ARRAY REF roll, setting up the instruction 
format for the array references from point­
ers which have been left on the roll 
(CONVERT TO INST FORMAT actually sets up 
the instruction fields>. When all groups 
on the ARRAY REF roll have been processed, 
a jump is made to CONVERT TO ADR CONST. 
This routine sets up groups as required on 
the ADR CONST roll from data on the LOOP 
CONTROL roll. When the LOOP CONTROL roll 
has been processed, this routine terminates 
the Unify phase by calling Gen. 

52 

ARRAY REF ROLL ALLOTMEN!L_fgart DA 

This routine (G0145) constructs the 
ARRAY REF roll. The groups on this roll 
are initialized with values of zero. 
Pointers to the roll have been placed on 
the SCRIPT roll and in the Polish notation 
by Parse, but information has not actually 
been put on the roll before this routine is 
called. The number of groups required has 
been transmitted from Parse. 

CONVERT TO ADR CONST, Chart DB 

This routine (G0113) constructs the ADR 
CONST roll from the base address informa­
tion on the LOOP CONTROL roll. 

When the third word of the LOOP CONTROL 
roll group contains an area code and dis­
placement, Unify requires a base address 
which it does not find in the base table. 
Since no values can be added to the base 
table by Unify, the required value must be 
placed in the temporary storage and con­
stant area of the object module. The ADR 
CONST roll holds the information required 
for Exit to place the value in a temporary 
storage and constant location and to pro­
duce the RLD card required to get the 
proper modification of the value in that 
location at load time. This routine builds 
that information on the ADR CONST roll by 
allocating the temporary storage and con­
stant locations for the area codes and 
displacement values it finds on the LOOP 
CONTROL roll. See Appendix B for further 
explanation of the rolls involved. 

CONVERT TO INST FORMAT, Ch~£ 

This routine (G0112l sets up the first 
word (zero rung) of each ARRAY REF roll 
group by testing the contents of the later 
words (the register rungs) of the same 
roll. The result is the skeleton of the 
instruction to be used for an array 
reference. When the second and third words 
of the group point to a general register, 
they are shifted into the appropriate posi­
tion and inserted into the zero rung. (See 
Appendix B for the configuration of the 
ARRAY REF roll group.) At each entry to 
this routine, one word is processed and 
that word is cleared to zero before the 
routine exits. 



DO NEST UNIFY, Chart DD 

This routine CG0115) first initializes 
for the processing of one nest of DO loops. 
For each DO loop, a reserve block exists on 
the SCRIPT roll and one group exists on the 
LOOP DATA roll. These blocks and groups 
are ordered so that, reading from the 
bottom of the rolls up, a nest level of one 
indicates the end of a nest of loops; that 
is, for each nest, the bottom block repre­
sents the inner loop and the top block 
represents the outer loop. 

DO NEST UNIFY serves a control function 
in this phase, arranging information to be 
processed by DO LOOP UNIFY and LEVEL ONE 
UNIFY; it is these latter routines which 
actually perform the optimization of sub­
scripting by means of register assignment. 
The main result of the optimization is that 
in the initialization code for each loop, 
only that portion of each subscript which 
depends on the DO loop variable is 
computed. 

DO LOOP UNIFY expects to find a reserved 
block on the bottom of the NEST SCRIPT roll 
describing a loop one nest level deeper 
than the loop described by the bottom 
reserved block on the SCRIPT roll. More­
over, both the block on the SCRIPT roll and 
the block on the NEST SCRIPT roll must 
already reflect the allocation of arrays by 
Allocate; that is, both blocks must have 
been processed by NOTE ARRAY ALLOCATION 
DATA, another routine called by DO NEST 
UNIFY. This arrangement is required so 
that DO LOOP UNIFY can pass information 
from the loop being processed (on the NEST 
SCRIPT roll) to the next outer loop Con the 
SCRIPT roll). 

A special case is made of the reserved 
block describing a loop of nest level one, 
since there is no outer loop to which 
information can be passed. The routine 
LEVEL ONE UNIFY processes in place of DO 
LOOP UNIFY in this case; it expects to find 
the reserved block describing the level one 
loop on the NEST SCRIPT roll. 

IEYROL MODULE 

The IEYROL module is loaded into main 
storage by program fetch, along with the 
Invocation phase and the five processing 
phases. It contains two static rolls (the 
WORK roll and the EXIT roll), roll statis­
tics, group stats, and the ROLL ADR table. 
Throughout the operation of the compiler, 
it maintains a record of the storage space 
allocated by the control program to the 
dynamic rolls. 

Gen produces object code from the Polish 
notation and roll information left by pre­
vious phases of the compiler. The code 
produced by this phase appears, one state­
ment at a time, on the CODE roll, and is 
saved there until it is written out by 
EXIT. 

The following paragraphs, "Flow of Phase 
41 " describe the operation of this phase by 
means of narrative and flowcharts. 

The rolls manipulated by Gen are listed 
in Table 6 and are mentioned in the follow­
ing description of the phase; these rolls 
are briefly described in context. See 
Appendix B for a complete description of 
all of the rolls used in the phase. 

Table 6. Rolls Used by Gen 
r--------------------T--------------------1 
!Roll !Roll 
I No. Eoll_~~~ 1~2.!.. Roll Name 
I 1 Source I 24 Entry Names 
I 4 Polish I 25 Global Dmy 
I 8 Fx Const I 34 Branch Table 
I 9 Fl Const I 36 Fx Ac 
I 10 Dp Const I 40 Ten:p Pntr 
I 11 complex Const I 42 Fl Ac 
I 12 Dp Complex 1 43 Lbl 
I Const I 44 Scalar 
I 14 Temp I 45 Data Var 
I 15 Do Loops Open I 52 Loop Control 
I 15 Loops Open I 55 Loop Data 
I 16 Temp and Const I 56 Array Plex 
I 17 Adcon l 57 Array Ref 
I 18 Data save I 59 At 
I 22 Array I 62 code 
I 23 Droy Dimension I 63 After Polish 
I 23 Sprog Arg I 
L--------------------i--------------------

FLOW OF PHASE 4, CHART 08 

START GEN (G0491) initializes for the 
operation of the Gen phase. It then calls 
ENTRY CODE GEN to produce the object head­
ing code and PROLOGUE GEN and EPILOGUE GEN 
for the required prologues and epilogues. 
on return from EPILOGUE GEN, START GEN 
falls through to GEN PROCESS. 

GEN PROCESS (G0492) controls the repeti­
tive operations of Gen. It first calls GET 
POLISH, which moves the Polish notation for 
one statement from the AFTER POLISH roll to 
the POLISH roll. Using the Polish notation 
just moved, GEN PROCESS determines whether 
the statement to be processed was labeled; 
if it was, the routine LBL PROCESS is 
called. If the source statement was not 

Section 2: Compiler Operation 53 



Form Y28-6638-1 
Page Revised 11115168 by TNL Y28-6826 

labeled, or when LBL PROCESS returns, GEN 
PROCESS calls STA GEN and STA GEN FINISH. 
On return from STA GEN FINISH, GEN PROCESS 
restarts. 

The termination of the Gen phase of the 
compiler occurs when an END statement has 
been processed. END STA GEN jumps directly 
to TERMINATE PHASE after the object code is 
produced, rather than returning to GEN 
PROCESS. TERMINATE PHASE is described in 
Chart EG and in the accompanying text. 

ENTRY CODE GEN (G0499) first determines 
whether the source module is a subprogram. 
If it is not, the heading code for a main 
program is placed on the CODE roll, the 
location counter is adjusted, and the rou­
tine returns. 

If the source module is a subprogram, 
ENTRY CODE GEN determines the number of 
entries to the subprogram, generates code 
for the main entry and for each secondary 
entry and, when all required entry code has 
been produced, it then returns. 

PROLOGUE GEN (G0504) processes the main 
entry and each additional ENTRY to the 
source subprogram, producing the required 
prologues. Prologue code transfers argu­
ments as required and is, therefore, not 
produced if no arguments are listed for the 
ENTRY. The prologue code terminates with a 
branch to the code for the appropriate 
entry point to the subprogram; in prepara­
tion for the insertion of the address of 
that entry point, this routine records the 
location of the branch instruction on the 
ENTRY NAMES roll. If the source module is 
not a subprogram, PROLOGUE GEN exits. 

EPILOGUE GEN CG0508> processes the main 
entry and each additional ENTRY to a sub­
program, producing the required epilogues. 
Epilogue code returns argument values and 
returns to the calling program. If this 
routine determines that the source module 
is not a subprogram, main program prologue 
and epilogue code are produced. 

This routine (G0712) moves the Polish 
notation for a single statement from the 

54 

AFTER POLISH roll to the POLISH roll. The 
Polish notation is moved from the beginning 
of the AFTER POLISH roll, and a pointer is 
maintained to indicate the position on the 
roll at which the next statement begins. 

Note: Unlike the other rolls, data from 
the AFTER POLISH roll is obtained on a 
first-in first-out basis (i.e., the BASE 
rather than the BOTTOM pointer is used>. 
This is done to maintain the sequence of 
the source program. 

LBL PROCESS (G0493) stores the label 
pointer left on the WORK roll by GEN 
PROCESS in STA LBL BOX. It then inspects 
the LBL roll group defining the label, and 
determines whether the label is a jump 
target. If so, the base register table is 
cleared to indicate that base values must 
be reloaded. 

If the label is not the target of a 
jump, or when the base register table has 
been cleared, the AT roll is inspected. 
For each AT roll entry (and, therefore, AT 
statement) referring to the labeled state­
ment being processed, made labels are· con­
structed for the debug code and for the 
next instruction in line, pointers to these 
labels are recorded on the AT roll, and an 
unconditional branch to the debug code is 
placed on the CODE roll. 

When all AT references to the present 
label have been processed, an instruction 
is placed on the CODE roll to inform Exit 
that a label was present and that a branch 
table entry may be required. Then, if the 
trace flag is on (indicating the presence 
of the TRACE option in the source DEBUG 
statement>, the debug linkage for TRACE and 
the binary label are placed on the CODE 
roll. If the trace flag is off, or when 
the code has been completed, LBL PROCESS 
returns. 

STA GEN CG0515> uses the control driver 
left on the WORK roll by GEN PROCESS to 
index into a jump table (STA RUN TABLE), 
jumping to the appropriate routine for 
constructing the object code for the spe­
cific type of statement being processed. 
This operation is called a "run" on the 
driver; other "runs" occur in Gen for 
building specific instructions or for 
generating data references. 

The names of the code generating rou­
tines indicate the functions they perform; 



for example, assignment statements are pro­
cessed by ASSIGNMENT STA GEN, while GO TO 
statements are processed by GO TO STA GEN. 
These routines construct the code for the 
statement on the CODE roll and, when the 
code is complete, return to GEN PROCESS. 

END STA GEN processes the END statement 
and provides the normal termination of the 
Gen phase by jumping to TERMINATE PHASE 
after producing the code. The code pro­
duced for the END statement is identical to 
that for the STOP statement if a main 
program is being compiled or a RETURN 
statement if a subprogram is being com­
piled. If an AT statement precedes the 
END, an unconditional branch instruction is 
constructed to return from the debug code 
to the main line of code. 

TERMINATE PHASE (G0544) prepares for and 
calls the Exit phase of the compiler. 

STA GEN FINISH, Chart EH 

STA GEN FINISH (G0496) determines wheth­
er the present statement is the closing 
statement of any DO loops; if it is, this 
routine generates the code required for the 
DO loop closing and repeats the check for 
cdditional loops to be closed. 

When all DO closings have been pro­
cessed, STA GEN FINISH resets pointers to 
temporary locations, clears accumulators, 
and returns to GEN PROCESS. 

PHASE 5 OF THE COMPILER: EXIT (IEYEXT) 

Exit produces the SYSPUNCH and/or SYSLIN 
output requested by the programmer, except 
for the ESD cards and TXT card produced by 
the Allocate phase. It also produces the 
listing of the object module on SYSPRINT, 
if it has been requested by the programmer. 

The description of this phase of the 
compiler is divided into two parts. The 
first of these, "Flow of Phase 5, " de-
scribes the overall logic of the phase by 
means of narrative and flowcharts. 

The second part of the description of 
the phase, "Output from Phase 5," describes 
the output written by the phase. 

The rolls used by Exit are listed in 
Table 7, and are briefly described in 
context. For further description of rolls, 
see Appendix B. 

Table 7. Rolls Used by Exit 
r------------------T----------------------1 
I Rol!._B~mb~ Roll~~!!!~ I 
I 7 Global Sprog I 
I 16 Temp and Const I 
I 17 ADCON I 
I 20 CSECT I 
I 23 Sprog Arg I 
I 38 Used Lib Function I 
I 45 BCD I 
I 46 Base Table I 
I 51 RLD I 
l 52 Branch Table I 
I 58 Adr Const I 
I 62 code I 
l __________________ i ______________________ J 

FLOW OF PHASE 5, CHART 09 

The routine EXIT PASS (G0381) controls 
the operation of this phase. After initia­
lizing, this routine calls PUNCH NAMELIST 
MPY DATA and PUNCH TEMP AND CONST ROIL. 
The routine PUNCH ADR CONST ROLL is then 
called and, if an object module listing was 
requested, the heading for that listing is 
written out. 

After this operation, EXIT PASS calls 
PUNCH CODE ROLL, records the memory 
requirements for the code, and prints the 
corresponding message. PUNCH BASE ROLL, 
PUNCH BRANCH ROLL, PUNCH SPROG ARG ROIL, 
PUNCH GLOBAL SPROG ROLL, PUNCH USED LIBRARY 
ROLL, PUNCH ADCON ROLL, ORDER AND PUNCH RLD 
ROLL, and PUNCH END CARD are then called in 
order. On return from the last of these, 
EXIT PASS releases rolls and exits to the 
Invocation phase of the compiler. 

PUNCH TEMP AND CONST ROLL, Chart FA 

This routine (G0382) initializes the 
location counter for the temporary storage 
and constant area of the object module. It 
then initializes a pointer to the TEMP AND 
CONST roll and begins the processing of 
that roll from top to bottom. Each group 
on the roll is moved to the output area; 
when the output area is full, a TXT card is 
written. When the entire TEMP AND CONST 
roll has been processed, a jump is made to 
PUNCH PARTIAL TXT CARD, which writes out 
any partial TXT card remaining in the 
output area and returns to EXIT PASS. 

Section 2: Compiler Operation 55 



PUNCH ADR CONST ROLL, Chart FB 

The information on the ADR CONST roll is 
used by this routine (G0383) to produce TXT 
cards for temporary storage and constant 
area locations which contain addresses. 
RLD roll entries are also produced to cause 
corr~ modification of those locations by 
the linkage editor. The beginning address 
of the temporary storage and constant area 
is computed. Then, for each ADR CONST roll 
entry, the TEMP AND CONST roll pointer is 
added to that value to produce the address 
at which an address constant will be 
stored. This address is placed in the TXT 
card and on the RLD roll, the address 
constant from the ADR CONST roll initial­
izes that location, and the area code from 
the ADR CONST roll is placed on the RLD 
roll. (See Appendix B for roll descrip­
tions.) 

PUNCH CODE ROLL., Chart FC 

PUNCH CODE ROLL (G0384) initializes a 
location counter and a pointer to the CODE 
roll. Inspecting one group at a time, it 
determines the nature of the word. If it 
is a statement number, PUNCH CODE ROLL 
simply stores it and repeats the operation 
with the next word. 

If a group is a constant, it is placed 
in the output area for SYSPUNCH and/or 
SYSLIN. This category includes literals 
which appear in-line and,, thus, the con­
stant to be written may occupy several 
groups on the roll. 

Groups representing code are placed in 
the output area and, if an object module 
listing has been requested., the line 
entered into the output area is listed 
before it is punched. The contents of the 
DATA VAR roll are used for the listing of 
the operands. 

If the group on the CODE roll is an 
indication of the definition of an address 
constant, the location counter is stored 
accordingly, and the operation of the rou­
tine continues with the next group. 

PUNCH CODE ROLL also determines whether 
the group is an indication of the defini­
tion of a label, if it is, the routine 
defines the label on the BRANCH TABLE roll 
as required, inserts the label in the 
output line for the object module listing 
and repeats with the next group on the 
roll. 

When all groups on the roll have been 
processed, a transfer to PUNCH PARTIAL TXT 

56 

CARD is made; that routine writes out any 
incomplete TXT card which may be in the 
output area., and returns to EXIT PASS. 

PUNCH BASE ROLLL Ch~FD 

PUNCH BASE ROLL (G0399) initializes a 
pointer to the BASE TABLE roll and initial­
izes the location counter to the beginning 
address of the object module base table. 
It then enters each group on the BASE TABLE 
roll into the TXT card output area; it also 
records the object module ESD number and 
the location counter on the RLD roll for 
later production of the RLD cards. 
Whenever the output area is full, a TXT 
card is written. When all ·groups on the 
BASE TABLE roll have been processed, the 
routine makes a jump to PUNCH PARTIAL TXT 
CARD, which writes out any incomplete card 
in the output area and returns to EXIT 
PASS. 

This routine (G0400) first initializes a 
pointer to the BRANCH TABLE roll, and the 
location counter to the beginning location 
of the object module branch table. When 
these operations are completed, the routine 
inspects the BRANCH TABLE roll from top to 
bottom, making the requisite entries on the 
RLD roll and entering the addresses from 
the roll in the TXT card output area. TXT 
cards are written when the output area is 
full. When all BRANCH TABLE roll groups 
have been processed, the routine jumps to 
PUNCH PARTIAL TXT CARD, which writes out 
any incomplete card in the output area and 
returns to EXIT PASS. 

PUNCH SPROG ARG ROLL (G0402) initializes 
a pointer to the SPROG ARG roll and ini­
tializes the location counter to the begin­
ning address of the subprogram arguments 
area of the object module. 

The routine then inspects the groups on 
the SPROG ARG roll. If the first word of 
the group contains the value zero (indicat­
ing an argument whose address will be 
stored dynamically>, the group is placed in 
the TXT card output area, and the card is 
written if the area is full. The routine 
then repeats with the next group on the 
roll. 



If the SPROG ARG roll group does not 
contain zero, the group is then inspected 
to determine whether it refers to a tem­
porary location. If it does, the correct 
location (address of the temporary storage 
and constant area plus the relative address 
within that area for this location) is 
determined. The required RLD roll entries 
are then made, the address is moved to the 
output area, and PUNCH SPROG ARG ROLL 
repeats this process with the next group on 
the roll. 

If the group from the SPROG ARG roll 
contained neither a zero nor a temporary 
location, the argument referenced must have 
been a scalar, an array, a label or a 
subprogram. In any of these cases, a base 
table pointer and a displacement are on the 
pointed roll. From these, this routine 
computes the location of the variable or 
label or the subprogram address, enters it 
in the TXT card output area, and records 
the RLD information required on the RLD 
roll. The routine then repeats with the 
next group on the SPROG ARG roll. 

This routine exits to EXIT PASS through 
PUNCH PARTIAL TXT CARD when all SPROG ARG 
roll groups have been processed. 

PUNCH GLOBAL SPROG ROLL, Chart FG 

This routine (G0403) first inverts the 
GLOBAL SPROG roll and moves one word from 
that roll to the WORK roll. If these 
actions indicate that there is no informa­
tion on the roll, the routine exits. 

Otherwise, for each group on the GLOBAL 
SPROG roll, this routine enters the ESD 
number for the subprogram and the location 
at which its address is to be stored on the 
RLD roll. The routine also writes a word 
containing the value zero for each subpro­
gram listed (these words become the object 
module subprogram addresses region). When 
all groups on the GLOBAL SPROG roll have 
been processed, the routine exits through 
PUNCH PARTIAL TXT CARD, which writes out 
any incomplete card remaining in the output 
area before returning to EXIT PASS. 

PUNCH USED LIBRARY ROLLL-Chart FH 

This routine (G0404) performs the same 
function for the USED LIB FUNCTION roll 
that the previous--rGutine performS-for the 
GLOBAL SPROG roll, thus completing the 
subprogram addresses region of the object 
module. The techniques used for the two 
rolls are identical. 

PUNCH ADCON ROLL, Chart FI 

This routine (G0405) returns immediately 
to EXIT PASS if there is no information on 
the ADCON roll. Otherwise, it writes out 
one TXT-card for each group it finds on the 
roll, obtaining the area code, the address 
constant, and the address of the constant 
from the ADCON roll. The ESD number and 
the address of the constant are placed on 
the RLD roll for subsequent processing. A 
TXT card is punched containing the con­
stant. The operation of PUNCH ADCON ROLL 
terminates when all groups on the roll have 
been processed. 

ORDER AND PUNCH RLD ROLL, Chart FJ 

This routine (G0416) sorts the RLD roll 
and processes the groups on that roll, 
producing the object module RLD cards. The 
card images are set up, and the RLD cards 
are actually written out as they are com­
pleted. When all information on the roll 
has been processed, this routine returns to 
EXIT PASS. 

PUNCH END CARD, Chart FK 

PUNCH END CARD (G0424) produces the 
object module END card. It moves the 
required information into the card image 
and initiates the write operation; it then 
returns to EXIT PASS. 

PUNCH NAMELIST MPY DATA, Chart FL 

This routine (G0564) is responsible for 
the punching of TXT and RLD cards for those 
words in the object module NAMELIST tables 
which contain pointers to array dimension 
multipliers. The multipliers themselves 
are placed on the TEMP AND CONST roll. The 
required information is found on the 
NAMELIST MPY DATA roll; when all groups 
have been processed, this routine returns 
to EXIT PASS. 

OUTPUT FROM PHASE 5 

Three types of output are produced by 
the Exit phase of the compiler: TXT cards, 
RLD cards, ang the object module listing. 
The cards are produced on SYSPUNCH and or 
SYSLIN, according to the user's options. 
The listing, if requested, is produced on 
SYSPRINT. 

Section 2: compiler Operation 57 



The formats of the TXT and RLD cards are 
described in the publication IBM System/360 
Operating System: Linkage Editor Program 
Logic Manual. The object module listing 
consists of the following fields: 

58 

• Location, which is the hexadecimal 
address, relative to the beginning of 
the object module control section, of 
the displayed instruction. 

• statement number (entitled STA NUM>, 
which is the consecutive statement 
number assigned to the source module 
statement for which the displayed 
instruction is part of the code pro­
duced. This value is given in decimal. 

• Label, which is the statement label, if 
any, applied to the statement for which 
the code was produced. The statement 
label is given in decimal. 

•Operation code (entitled OP), which is 
the symbolic operation code generated. 

• Operand, which is given in assembly 
format but does not contain any vari­
able names. 

• Operand (entitled BCD OPERAND>, which 
contains the symbolic name of the vari­
able referred to in the source module 
statement which resulted in the code. 



Chart 00. IEYFORT (Part 1 of 4) 

IEYFORT 

* ****A2********"' * 
: IEYFORT : ............... 

1 
:••••s2•••••••••: 
* INITIALIZE * * AND SET SAVE * 
: REGISTERS : 

•••••••+••······· 

l 
;~ ** *C2** * **"'"'* *: 
* ENABLE * * INTBRRUPTS BY * 
: SPIE MACRO : ..................... 

**** . . 
: A3 : 

**** 

IEYFOl 1 
*****A3*****••••• 
:-:;~~~~:·-·-~~~~= 
+ INITIALIZE * 
• TIME AND DATE * 
: •• H~~~~~nz~**: 

1 
******B3*********** 
* SYSTEM OPEN * 

FOR SYSIN AND 
* SYSPRINT * 
************* 

1 
·'· ('1 *-.. - .. 

• * *· NO *. LOAD OPTION • *---1 *· .• • . ·* . .. • 

IEYPRNT 

* ****A4********* * 

: IEYPRNT : 

*************** 

1 
!****B4* ** ** * ***! . . 
*INITIALIZE SAVE* 
: REGISTERS : 

* **************** 

l 
!****C4 ** **** "**: 

* SAVE * 
* LINE COUNT 
: ORIGIN * 

l i YES :-:;•: """"i'"'"" 
·'· IEYF22 l 

:••••02•********! . . 
*INITIALIZE BASE* 
* REGISTERS : 

""""f """' 
*****E2********** 
=~~:~c:~~·-·-~~~= * SCAN * * COMPILER * 
!u *"' z;nz~~*** .: 

••••••o3•****•••••• 
SYSTEM 

OPEN FOR 
SYSLIN 

············· .... l . . 
* E3 *-> . . .... 

IEYF05 * 
• * E3 *. * 

. * *· NO *.DECK OPTIONS .*---1 *. . * 
*· . * *. ·* 

*** * *D5** ******** *D4 * *· *PRNTHEAD 01A2* 
. * *· YJ:;S •-•-•-•-•-•-•-•-• 

*. BEGIN NEW • •-------->* PRINT * 
*. PAGE • * PAGE HEADING * 

*· . • * * 
*· . * ***************** 

::::: :->l NO )., ' 

IEYP~·•E4*********! : E4 : 

* ADVANCE * 
:LINE COUNT ONE : . . 
* **************** 

l 
lYES :•::•: l . •. 

F2 

·* *· . * DDNAMES *· NO 

*. . * *· . * 

* **** *F3*********** 

SYSTEM 
OPEN FOR 

* SYSPUNCH 
*. SPECIFIED • *---i 

* •• * ************* 

1' YES ! ::~:: : :::: :->1 
IEYF10 

=~~~~~::::;~g: !**::~~::::::***! 
* SCAN * *LINES/PAGE FOR * 

L~~;~g~~~~n**! :::~:~~::.:~:::~: 

HJ•. 1 
·*·* *·*.NO •****H3*********• 

*.HEADING DATA • *---1 * IEYPAR * 
*· . * * * *· . * *************** 

*· . * 
iYES :•::•: 

*****J2* ** ******* 

:~~~~~r~·-·-~:E: 
* I NI TI ALI ZE * 
* HEADING * 
* INFORMATION * ....... T ...... 

. . 
: A3 : 

**** 

Flt *· . * *· .* MAX *· YES * * 
*.*LINES USED ... *---->: DS : 

*· . * ·ro 
.•. 

G4 *· . * •. !** **G5*********! 

NO • * CARRIAGE *· YES * ADVANCE * 
---*. CONTROLo:::Q • *-------->*LINE COUNT ONE * 

*· . * * • 
*·. •·• : ................ : 

. :~------------------------] 
·'· H4 *· 

. * *·· • * MAX *. YES * * 
*· LINES USED .*---->* 05 * 

* -• * * .. 
*· ·* 

' NO 

::::::----> l 
!****J4 ****** ···: 
* STORE LINE * 
* COUNT INTO * 
: SYSPRT FORMAT : 

***************** 

l 
*****Kit********** 
* SET * ****KS********* 
*PARAMETERS AND * * RETURN * 
*PRINT ADDRESSES*-------->* TO COMPILER * 
: INTO SYSPRT : • *************** * 
•••• **** ........ .. 

Section 2: Compiler Operation 59 



Chart 01. IEYFORT (Part 2 of 4) 

ERBXITPR 

****Al********* • • * EREXITPR * • • 
*************** 

j 
*****Bl********** * SET * * ERROR CODE * 
*RESULTING FROM * * PRINT ERROR * • • ***************** 

l :~;· * ->* A3 * • • 
**** IEYMOR 

****Cl********* . . 
* IEYMOR * • • 
*************** 

j 
*****Dl********** • • * ISSUE GETMAIN * 
*FOR 4K BYTES OF*<-­
* STORAGE * • • 
***************** 

l . •. 
El *· 

·* *· 
YES ·* *· ---*. SUCCESSFUL • * 

*· .. * *· ·* *· ·* 

ro 
*****Fl********** • • * DELETE * 
*INACTIVE-MODULE* • • * • 
***************** 

l .•. 
Gl *· . •. 

·* WERE *· YES 
*· ANY DELETED .*---

*· ·* *.. • * 
*· ·* 

ro 
*****Hl********** 
• * * RETURN WITH * * POSITIVE * 
*CONDITION CODE * • • 
***************** 

-----------i 

60 

*****Jl********** * RETURN * * WITH * * NON-POSITIVE * 
*CONDITION CODE * • • ***************** 

PRNTHEAD 

****A2********* • • * PR NT HEAD * 
* • 

*************** 

j 
*****B2********** • • * ADVANCE * * PRINT PAGE * * COUNT * • • ***************** 

j 
*****C2********** . . 
* CONVERT * * PAGE COUNT TO * * DECIMAL * • • ***************** 

j 
*****D2*'********* . . 
*SET PAGE COUNT * * INTO HEADING * * FORMAT * . . 
***************** 

j 
*****E2********** . . 

SET PROGRAM * 
* NAME INTO * 
*HEADING FORMAT * . . 
***************** 

j 
** ***F2********** • • *SET PARAMETERS * * AND ADDRESSES * 
* INTO SYSPRT * • • ***************** 

j 
**** *G2********** . .. 
* SET * * LINE COUNT TO * 
* TWO * • • ****************'* 

l .•. 
H2 *· 

**** • • * B3 * • • **** 

l 
******B3*********** 

PRINT HEADING • • 
************* 

j 
*****C3********** . . 
* ADVANCE * 
*LINE COUNT TWO * • • • • ***************** 

: ·::· =->! . . 
**** 

PRHDOS 
*****D3********** • • * SET LINE * * COUNT AND * * ORIGIN • • ***************** 

j 
*****E3********** * SET * * CARRIAGE * * CON'l'ROL TO * * SKIPPlNG LINE * • • ***************** 

j 
****F3********* • • * RETURN * • • *************** 

·* *· **** 
·* *· NO * * *· OPTIONAL .*---->* D3 * 
'*· HEADING·* * * 

*· ·* **** 
*· . * r 

*****J2********** * OBTAIN * * OFFSET AND * * CONTROL BLOCK * * INFORMATION * • • ***************** 

l 
**** • • * B3 * . . 
**** 

IEYREAD 
****A4********* • • * IEYREAD * • • *************** 

j 
*****B4********** • • * SET BASE * * AND SAVE * * REGISTERS * • • ***************** l ~··· . . 

: cs :--i 
**** . •. 

C4 +. *****CS********** 
. * *· * * ·* *· NO *SET PARAMETERS* 

*· FIRST CARD .*-------->* AND ADDRESSES * *· READ • * * FOR SYSIN * 
*· ·* * FORMAT * 

M~m, ·r., ·······r······ 
*****D4********** * *****D5*********** • • * OBTAIN CARD * * ORIGIN AND * 
* RESET FLAG * • * 
***************** 

: ·::· =->! . . 
**** 

*****E4********** • • * RESTORE * 
*SAVE REGISTERS * . . 
• • ***************** 

l 
****F4********* * RETURN * * TO COMPIL~R * . . 
*************** 

**** * • 
* G4 *--i • • **** 
*****G4********** . . 
* SAVE CARD * * ORIGIN OR EOF * * NOTATION * • • *************'**** 

l 
**** . . 

* E4 * • • ***'* 

SYSTEM GET 
ROUTINE, * OBTAINS EOF * 

************* 

l ... 
ES *· 

·* *· NO ·* *• I--* .CONCATENATED • * 
+.DATA SETS.* 

*. . * * .. * 
* **** * 1. YES 

* G4 * . . 
**** 

*****F5********** * SET SWITCH B * * E'OR * * CONCATENATED * * DATA SETS=O * . . 
***************** 

l 
**** • • * cs * • • **** 



Chart 02. IEYFORT (Part 3 of 4) 

EREXITIN 

••••·A 1 ********• 
* * * EREXITIN 

* *************** 

I 
v 

•****Bl********** 
* * * OBTAIN * 

SYSIN ERROR 
COUNT 

***************** 

I 
v 

•*• EREXINOS 
Cl *• "*****C2********** 

•* *• • * 
•* *• YES * SET * 

*•ERROR CODE 0 .•~~~->•TERMINAL ERROR * 
*• •* * CODE * 

*• •• 
*• ·* 

ro 
v 

*****DI********** 
* * * SETUP BAD * * CARD IMAGE 
* MESSAGE 

* * ***************** 

I 
v 

*****El***•****** 
*PRNTMSG 03Al * 
·-·-•-*-•-·-·-·-· * PRINT 
* ERROR * * MESSAGE * 
***************** 

I 
v 

*****F 1 ********** 
* * * SET * 
*TERMINAL ERROR * 
* CODE * 
* * ***************** 

I 
v ....... 

•01 * 
• cs• 
* * 

..•••••••..•..... 

I 
v 

*****02********** 
* * *SET UP BAD CARD* 
*AND ABORT COMP * 
* MESSAGES * 
* * .•.••...........• 

I 
v 

*****E2********** 
*PRNTMSG 03Al* 

·-·-·-·-·-·-·-·-· * PRINT * 
* MESSAGES * 
* ***********•***** 

I 
v 

***** 
*03 * 
* A3* 
* * 

IEYPCH 

****A3********* 
* * * IEYPCH * 

**** 
* * * A4 *---, 
* * I I 

v 
******A4 ******** *** 

SYSTEM 
* PUT ROUTINE, 

INSERT FILE 
* PARAMETERS 

************* 

I 
• • I 
: 84 :->, 

**** 
v 

*****83********** 
* * * INITIALIZE * 

IEYF70 V 

* BASE AND SAVE * 
* REGISTERS * 

***************** 

I 
v 

•*• 
C3 *• 

•* *• 
•* *• NO 

*• LOAD OPTION •*-----, 
*• •* I 

*• •* I 
*• •* v 

* YES **** 
I * * I : G3 : 

v .•. 
03 *• 

•* LOAO *• 
•* FILE *• YES 

*• *!ERMINATED •* •*1 

*• •* I 
*• •* v 

* NO **** 
I * * I : G3 : 

**** 

v 
*****E3********** 
* * *SET PARAMETERS * 
* AND ADDRESSES * 
* FOR SYSPCH * 

***************** 

I 
v 

******F3*********** 
SYSTEM 

PUT ROUTINE 
INSERTS 

PARAMETER 
ADDRESSES 

************* 

:·::·:_>, 
* * **** v 

IEYF60 •*• 
G3 *• 

•* *· 
•* *• NO 

*• DECK OPTION •*1 
*• •* 

*• •* 
*· ·* v 

*I YES : •::•: 

* * **** 
v 

•*• 
H3 *• 

•* DECK *• 
•* FILE *• YES 

*• TERMINATED •*1 
*· •* 

*• •* *• •* v 

*II NO : •::•: 

* * 
v 

*****J3********** 
* INSERT * 
* PROGRAM 
* SEQUENCE 

NUMBERS * 
* ***************** 

I 
v 

*****K3********** 
* * 

*****84********** 
* • 
* RESTORE * 
*SAVE REGISTERS * . 
***************** 

I 
v 

****C4********* . . 
RETURN 

* TO COMPILER * 
*************** 

*SET PARAMETERS * * * 
* FOR SYSPCH *-->* A4 * 

* * * * * ***************** 

EREXITPC 

****AS********* 
* • 

EREXITPC 

*************** 

I 
v 

*****BS********** 
* * * SET FLAG * 
* TO TURN OFF * 

SYSPCH 

***************** 

I 
v 

*****CS********** 
* * * SET 

ERROR CODE 
* VALUE 
* ************ ... **** 

I 
v 

*****05********** 
* * * SET FLAG TO * 
* TURN OFF LOAD * 
* LINKAGE * 

* ***************** 

I 
v 

*****ES********** 
* * * SET ERROR * 
* CODE FOR LINK * 
* EDIT OUTPUT * 

***************** 

I 
v 

**** 
* * * 84 * 
* * 

section 2: compiler Operation 61 



Chart 03. IEYFORT (Part 4 of 4) 

PRNTMESG 

****Al********* 
* * PRNTMSG 

*************** 

I 
v 

*****Bl********** 
* * * INITIALIZE * PRINT BUFFER * WITH BLANKS * 

* ***************** 

I 
v 

*****Cl********** * SET UP * * PRINT BUFFER * * ORIGIN AND * * DISPLACEMENT * 
* ***************** 

I 
v 

*****01********** 
* * * GET MESSAGE * 

LENGTH AND 
* ORIGIN 
* * ***************** 

I 
v 

*****El********** 
* * * PLACE * 
*lST MSG SEGMENT* 
* IN PRINT * 

BUFFER * 
***************** 

I 
v 

*****Fl********** 
* GET * * LENGTH ANO * 
* ORIGIN OF 2ND * 
* MSG SEGMENT * 
***************** 

I 
v 

*****GI********** 
* * * PLACE 2NO * SEGMENT IN * PRINT BUFFER * 
* * ***************** 

I 
v 

*****HI********** 
* * * SET 

CARRIAGE * 
CONTROL * 

* * ***************** 

I 
v 

******Jl*********** 

62 

SYSTEM PUT 
ROUTINE WRITE 

* MESSAGE * 
************* 

I 
. v 

****Kl********* 
* * * RETURN 

* * * A3 * * * **** 

I 
* * 
: A4 :-1 

IEYRTN IEVFINAL V 
*****A3********** 
* RE-INITIALIZE * 
* BASE AND * 
*SAVE REGISTERS * 
* FOR COMPILER * 
* TERMINATION 
***************** 

****' v 
•*• 

A4 *'• 
FREEPOOL 

****A2********* 
* * * IEVRETN 

*************** 

I 
v 

*****B2********** 
* * * INITIALIZE * 
* BASE AND SAVE * 
* REGISTERS * 

* ***************** 

I 
v 

*****C2********** 
* OBTAIN * 
* COMPILER * 
*COMMUNICATIONS * 
* ORIGIN * 

***************** 

I 
v 

*****D2********** 
* * * GET CONDITION * 
* CODE RETURNED * 
* BY COMPILER * 

* ***************** 

I 
v 

*****E2********** 
* * *TEST LAST ERROR* 
* CODE VS * 

PREVIOUS 
* SETTING * 
***************** 

I 
v 

*****F2********** 
* SET * 
* FINAL ERROR * 
*CODE TO HIGHEST* 
*VALUE RETURNED * 
* * ***************** 

I 

I 
v 

·*· 63 *• 
•* *• 

•* LOAD *• NO 
*• OPTION •*1 

*•SPECIFIED.* 
*• •* 

•* *• 
•* DECK *• NO 

...... ~~6~~~0 .• ··-1 
*'• •* I 

*• •* v 
* YES 

I 
v 

******B4*********** 

PRINT DATA 
SET STATUS 

MESSAEE 

* C4 * . . 

*• •* v ************* 
* YES **** I 
I * * *****• 
I * G3 * I 
I * * * C4 *-> 

* * I 
V IEYFNLlO V 

*****C3********** *****C4********** 
* * * * 
* ISSUE * ISSUE CLOSE * 

CLOSE FOR * * FOR SYSIN AND * 
SYSLIN * * SYSPRINT * 

***************** 

I 
v 

*****03********** 
*FREEPOOL 03A5* 

I 
v 

*****04********** 
*FREEPOOL 03A5~ 

·-·-·-·-·-·-·-·-· ·-·-·-·-·-·-·-·-· * FREE STORAGE * * FREE STORAGE --------, 
* USED BY 
* SVSLIN * 
***************** 

I 
v 

•*• 
E3 *• 

·* *• 
•* *• NO 

*eSYSLIN OUTPUT•*I 
*• •* 

*• .... 
*• •* v 

* YES 

! ~~~ 0s~~P~i~fN: I 
***************** v 

**** 
**** 

* * 
: E4 :1 

**** v 
IEYRSO •*• 

E4 *• 
•* *• 

* * * HS * . . 
**** 

•* RELEASE *• NO 
*• STORAGE •*1 

*• ·* *• •* 
*• •* v 

* YES ***• 

I 
* * I * * 

v 
******F3*********** 

PRINT DATA 
SET STATUS 

MESSAGE 

************* 
•••• I 

: G3 :_>, 
* * **** v 

* G3 * * * I * H2 * 

* * :.::.:->1 
v 

•****F4********** 
* • 
•OBTAIN ADDRESS * 
* OF BLOCK TO * 

RELEASE 

*******•*'**•**•*'* 

I 
v 

*****G2********** 
IEYFNLOS •*• 

G3 *• 
v 

*****G4********** 
* * *ISSUE FREEMAIN * 
*FOR RELEASE OF * 
* STORAGE 4 

* * * INSERT •MAIN' * 
* FOR PROGRAM *I * NAME OF NEXT * 
* PGM * 
***************** v 

**** 
* * * H2 *--, 
* * I 

**** v 
IEYR60 •*• 

H2 *• 
·* *• 

**** 
* * * E4 * 
* * 

•* ANOTHER *• NO 
*• COMPILATION •*---, 

•·•. .•·• I 
*• •* v i YES :*::*: 

v 
*****J2********** 
* * * RE-INITIALIZE * 
*LINEt CARD AND * 
* PAGE COUNT * 
* • 
***************** 

I 
v 

*****K2********** 

•* *• 
•* DECK *• NO 

*•SPECIFIED.* 
*• OPTION •*1 

*· •* *• •* v * **•*•***•*****•** 
* YES **** 

I 
v 

*****H3********** 
* * 

* • 
4 C4 * 
• * I 

v 
•*• 

H4 *• 
•* *• 

ISSUE 
CLOSE FOR 
SYSPUNCH * 

* 
•* ENO OF •. YES 

*• STORAGE TO •*---, 

* * ***************** 

I 
v 

*****J3**********' 
*FREEPOOL 03A5* **** 

·-·-·-·-·-·-·-·-· * * * FREE STORAGE •-->* A4 * 
* USED BY * * * 
* SYSPUNCH * **** 
***************** 

*• RELEASE •* I 
*• •* I 

*· •* v 
* NO **** 

I : H2 : 
v * * 

**** 
* * * F4 * * • 

* * ****K3********* 
* RESTORE * * * 
*SAVE REGISTERS •~~~->* IEYPAR 
* * * * * *************** 

****AS********* 
* * FREEPOOL 

*************** 

I 
v 

*****85********** 
• * 

LOAD DATA 
SET BUFFER 

ADDRESS 

***************** 

I 
v 

*****C5********** . . 
* COMPUTE * 
*SIZE OF AREA TO* 
* BE FREED * . 
········********* 

*****OS********** 
* • 
*ISSUE FREEMAIN * 
* FOR DATA SE.T * 
* STORAGE . 
***************** 

I 
v 

****E5********* . . 
RETURN : 

*************** 

**** 
* • 
* HS * 
* * **** 

I 
v 

*****HS********** . . 
* SET ERROR * 
*CODE FOR RETURN* 
* TO CALLER * 

***************** 

I 
v 

****JS********* 
* • 
* RETURN 
* 



Chart AA. OPTSCAN 

****A2********* 
• * 

OPTS CAN * 
* *******•••····· 

I 
v 

*****B2********** . . 
* GET * 
*PARAMETER LIST * 
* LENGTH * 

l v ... 
C2 *• 

•* *• 
NO •* ANY *• I *• OPTIONS •* 

•.SPEC!FIEDe* 
*• •• 

v *• •* 
**** * YES . . 

* E3 * . . I 
I 
v .... 

02 *• 
•* *• 

YES •* *• 
.--•.COMMA PRESENT•* 
I *• •* 

I •· •..• ·• 
* NO 

I I 
I •••••E2*1 •••••••• 
I : SET TO SCAN * 

* ONLY 8 CHAR. * 
*IGNORE ANY OVER* 
• 8 • 
***************** 

I 
v 

*****F2********** . . 
* ADVANCE * 
*PARAMETER SCAN * 
* POINTER * 
***************** 

I >I 
v 

PROSSQT •*• 
G2 *• 

•• *• 
•* PROGRAM *• YES 

*• NAME .•----, 
··;~ECIFI~~-· I 

*• •* v * NO **** 

. . 
* A3 * • * 

**** 

I 
PRS20 V 

*****A3********** . . 
* SET INDICATOR * 
+IN POINTER FOR * 
* COMPILER * 

***************** 

I 
v 

PRS22 •*• PRS23 •*• 
83 *• 84 *• 

•* *· •* *· •* *• NO •* *• YES 

*****85********** . . 
*• NAME= QUOTE .•~~~->*• LINECNT= .•~~~->• SET FLAG 

*• •* *• QUOTE •* * .. .. .. .. 
*• •* •• •* 

• YES * NO 
* **** * I I 

: .~:.:->I I 
PRS25 v I *****C3********** 

* SET PROGRAM * i;' * NAME IN * 
*COMPILER COMM. * 
* AREA * 
***************** 

= ·::·=->I v • • <•~~~~~~~~~~~~~~~~~~~ 

**** 
PRSOUT V 

*****03********** 
• * 
* RESET 
* SCAN CONTROL 
* FLAGS 

**********•****** 
I 

* **** * I 

* E3 •->I . . 
**** I 

OPTSlO V 
*****E3********** 
* OBTAIN * 
* SYSTEM * 
•GENERATED NAME * 
* OR PGM NAME 

***************** 

I 
v 

*****F3********** 
* SAVE * 

NAME FOR 
MULTIPLE 

* COMPILATIONS 
• * 
***************** 

I 
v 

•*• OPTS20 
G3 *• 

•* *• ****G4********* 
•* WAS *• YES * * 

*• NAME OPTION .+~~~-)* RETURN 
*• GIVEN •* * 

*· •* *************** 
*• •* * NO 

. 
***************** 

I : C3 : 

I v .•. 
Hl *• *****H2********** 

•* *• * COMPARE * 
•* LINECNT *• NO * PARAMETERS * 

*• SPECIFIED •*-~~~>•SPECIFIED WITH * 
*• •* * PARAM TABLE * 

*• •* 
*• •• 

* YES 

I 
PRS30 V 

*****Jl********** . . 
PREPARE 

+ CONVERT * 
LINECNT * 

***************** 

I 
v 

***• . . 
* 03 * . . 

***************** 

I 
I 
v .•. 

J2 *• 
•* *· 

YES •* PARAM *• 

I *• IN TABLE •* 
*• •* 

*• ·* 
v *• ·* 

**** * NO 
* * I * A3 * I 
* * v 

**** . . 
* 03 * . . 

v 
*****H3********** 
* • . . 
* INSERT SYSTEM * 
* NAME * . 
***************** 

I 
v 

****J3********* 
* • * RETURN 
* 

Section 2: Compi1er Operation 63 



Chart AB. 

64 

DD NAMES 

****A2********* 
* * DONA MES 

*************** 

I 
v 

*****C2********** 
* * OBTAIN 
*LENGTH OF DATA * 
* SET NAMES * 

* 
***************** 

I 
v 

•*• 
02 *• 

•* *• 
•* DOES *• NO 

*• LIST EXIST .•·~~~~~~~~ 
*• 

*• •* 
*• •* * YES 

I I v 
*****E2********** 
* * * ADVANCE LIST 

v 
****E3********* 

* * * POINTER TO 
FIRST ENTRY 

v 
*****G2********** . . 
* INSERT * 
*ENTRY INTO DCB * 
* FOR SYSLIN * 
************••••• 

I 
v 

*****H2********** 
* . * 
* MOVE * POINTER TO 

FIFTH ENTRY 

I 
v 

·*· 
J2 *· 

•* *• **** 
•* DOES *• NO * * 

*• ENTRY EXIST .•-->* H4 * 
*• •* * * 

*• •* 
*• •* * YES 

I 
v 

**** * * * A4 * 
* * 

RETURN 

**** 
* * * A4 *--, 
* * I 

v 
*****A4********** 
* * * INSERT 
*ENTRY INTO DCB * 
* FOR SYSIN * 

I 
v 

*****B4********** 
* MOVE 

POINTER TO 
SIXTH ENTRY . 

***************** 

I 
v .•. 

C4 *• 
•* *• **** 

•* DOES *• NO * * 
*• ENTRY EXIST .•-->* H4 * 

*• •* * * 
*• •* 

*· •* * YES 

I 
v 

*****04********** 

* * * INSERT * 
*ENTRY INTO DCB * 
* FOR SYSPRT * 

I 

I 
v 

*****E4********** 

* * *MOVE POINTER TO* 
* SEVENTH ENTRY * 

* * 
***************** 

I 
v ... 

F4 *• 
•* *• 

•* DOES *• NO * * 
*• ENTRY EXIST •*-->* H4 * 

*• •* * * 
*• •* 

*. •* r•s 
v 

*****-G4********** 

* * * INSERT * 
*ENTRY INTO DCB * 
* FOR SYSPCH * 

* ***************** 

• **** * I 
* H4 •->I 
• ****. I 

DDNMOUT I 
v 

****H4********* 

* * RETURN 



Chart AC. HEADOPT 

****A2********* 
* * * HE ADOPT * 
* * *************** 

I 
v 

*****82********** 
* * * OBTAIN LENGTH * 
* OF HEADING 
* OPTION 

***************** 

•* 

I 

I 
I 
v 

• *. 
C2 *• 

****C3********* 
•* *• NO * * 

*•HEADING LIST .•----->* RETURN * 
*• EXIST •* * 

*• ·* 
*· ·* * YES 

I 
v 

*****02********** 
* * * SET UP 
* CENTERING OF * 
* PAGE HEADING * 
***************** 

I 

I 
v 

*****E2********** 
* * *FORCE 119 CHAR* 
* LIMIT FOR * * OPTIONAL * 
* HEADING * 
***************** 

I 
I 

I 
v 

*****F2********** 
* SET * 
*HEADING ORIGIN * 
*AND LENGTH INTO* 
*PRINT MSG TABLE* 
* * ***************** 

I 
v 

****G2********* 

RETIJRN 

*************** 

*************** 

Section 2: compiler Operation 65 



Chart AD. 

66 

TIMEDAT 

****A2********* 
* * * TIMEDAT * 
* * *************** 

I 
y, 

*****B2********** 
* SET UP * 
* UNIT * 
* SPECIFICATION * 
*FOR TIME OF DAY* 
* * ***************** 

v 
*****C2********** 
* GET * 
* TIME AND DATE * 
* FROM SYSTEM * 
* SUPERVISOR * 
* * ***************** 

I 
v 

*****02********** 
* * * INSERT * * TIME INTO * * HEADING LINE * 
* * ***************** 

I 
v 

*****E2********** 
* * * INSERT * 
*DATE INTO LINE * 
* * 
* * ***************** 

v 
****F2********* 

* * * RETURN * 
* * *************** 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

•Chart 04.1. 

START 
COMPILER 

STATEMEN'1' 
PROCESS 

PHASE 1 - PARSE (Part 1 of 2) 

G0630 

****A2********* . . 
* IEYPAR * . . ................. 

l 
*****B2********** . . 
* PROGRAM * 
*INITIAL! ZATION * . . 
: ................ : 

l 
******C2*********** 

READ ONE 
CARD INTO * INPUT AREA 

............. 

l 
*****02********** 
+ TURN ON FLAGS * * INDICATING * 
+FIRST STMT AND * 
*PREVIOUS PRINT * 
* COMPLETE * 
***************** . . 
* E2 *-> . . .... .... l 

G0631 
******E2*********** 

PRT/RD SRC-BAA2 

* -·-·-·-·-·-·-·· PRINT OLD STMT 
* AND ERRORS * 

READ NEW 
************* 

G0632 l 
*****F2********** * STA INIT-BBA2 * 
·-·-·-·-·-·-·-·-· * INITIAL! ZE * 
:+ FOi\. NEW * * STATEMENT * 
***************** 

G0635 l 
*****G2********** * LBL XL.ATE BCA2 * 
·-·-·-·-·-·-·-·-· * PROCESS LABEL * * FIELD AND * 
* COL 6 * 
***************** 

1 .•. 
H2 *· ·* LABEL *· 

YE.S • * OR *· !--*· COL 6 .. + *· ERRORS • * 
*.. ·* * .. * ,••••, 

1
. NO 

* E2 * . . 
**** 

G0636 
•••••J2********** 
*STA XI.ATE- BDAl* ·-·-·-·-·-·-·-·-· * PROCESS * * ENTIRE * 
* STATEMENT * 
***************** 

1 
**** . . 

* B4 * . . .... 

THIS IS THE FIRST 
CARD 01'' 'I'HE FIRST 
STATEMENT. INITIAL 
COMMENTS ARE WRITTEN 
OUT IN THIS OPERATION. 

AT COMPLETION OF 
PRINT AND READ 
SOURCE,. STMT TO 
BE PROCESSED IS 
ON SOURCE ROLL. 

**** . . 
* B4 * • • 

**** 

G0633 l 
*****B4********** 
*STA FINAL- BEA2* ·-·-·-·-·-·-·-·-· •COMPLT POLISH. * 
*CLOSE DO LOOPS.* * MOVE POLISH. * 
***************** 

1 . . . 
C4 *· 

• +. LAST *· 
NO .+ STMT OF *· !--*.SOURCE MODULE. * 

*.PROCESSED.* 
*. . * * ... * 

* **** * 1. YES 

* E2 * . . 
**** . •. 

D4 *· ·* *. 
YES .• LAST *· !--*. STMT FLAG = .. * 

*(END CARD)·* 
*. .. * *. . * 

* **** * 1. NO 

* F4 * • • 
**** 

*****E4********** • • * RECORD * * 'NO END CARD' * * ERROR MESSAGE * . . 
***************** .... l • • * F4 *-> . . 

**** 
*****F4********** • • * SET INDICATOR * * FOR READ * * COMPLETE * . . 
***************** 

l 
*****G4********** 
*PRT/I<D SRC-BAA2* 

·-·-·- ·- ·-·- ·-·-* *PRINT OLD STMT * * AND ERRORS.. * * READ NEW STMT * 
***************** 

l 
**** . . 

* BS * • • 
**** 

Section 2: 

**** • • 
* B5 * • • 

**** 

! . •. 
B5 *· . * *· 

YES ·* WAS *· l--*. THERE AN END • * *· CARD • * • .. ·* 
*· • * 

::::: ! l NO 

. • . 
cs *· • *· "t • 

·* LAST *· NO 
+.STMT AN ARITH.*---

*. IF . * 
*· . * * ... * 

G0844 i YES 

*****D5********** 
*PROC POL BGA2* ·- ·- ·-·-·-·-·-·-· * COPY POLISH * * ROLL TO AFTER * * POLISH ROLL * 
***************** 

1 <----------

# 063003 .•. 
E5 *· . * *· 

YES • * LAST *· 
r--*. STATEMENT A .. * 

*· BRANCH .. * 
*· ·* *· . * :•:;•: 1. NO . . 

**** 
G0642 

*****F5********** 
*ACT END ST BFA2* 

·-·-·- ·- ·- ·-·- ·- * * BUILD * 
*RETURN OR STOP * * POLISH * 
***************** 

G0634 l 
*****GS********** 
*STA FN END BED~* ·-·-·-·-·-·-·-·-· *COMPLETE POLISH* * WITH STMT CNT * * AND MOVE * 
***************** 

:·::·:->! . . 
**** 

# 063004 
*****H5********** • • * PLACE * * END DRIVER ON * * POLISH * . . 
***************** 

I 
G0634 t 

*****J5********** 
*STA FN END BED~* 

·-·-·-·- ·-·- ·- ·- * *COMPLETE POLISH* 
* WITH STMT CNT * * AND MOVE * 
***************** 

1 
***** 
•04..2• 
* B2* .. 

• 

Compiler Operation 67 





Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

• Chart 04.2. PHASE 1 - PARSE (Part 2 of 2) 

***** **** ~q~· * * * B2* * B3 * 
* * * • 
* **** 

J. #63181 l 
B2 *· *****B3********** .• *. * * ·* XTEND *· YES * CLEAR RESERVE * *. LBL ROLL • *-------->*MARK FROM XTEND* 

•.RESERVED .• * LBL ROLL * •. . • • * 
*· ·* ***************** 

: •:;• =->l* NO . . 
**** # 063178 

*****C2********** . . 
* REMOVE * * GROUP FROM *<---------------­* XTEND LBL ROLL * • • 
***************** 

l 
• •• #063188 

02 *. *****DIJ.********** .. • *· * SET LOOP * 
.+ XTEND *· YES * DATE POINTER * * LBL ROLL • *---------------------------------->*ON SCRIPT ROLL,* 
*· EMPTY • * * RELEASE * 

*.. ·* * IND VAR ROLL * 
··.·;a ········r······· 
1 v 
·*· \\063179 ·*· ·*· 

E2 *. E3 *. El.J *. 
·* *· ·* *· ·* *· . * END *. YES • * TEMP *. YES • * PGM A * . YES *· OF DO LOOP • *-------->*. ROLL EMPTY • *-1 *. SUBPROGRAM • *-------> 

*· ... *· .• *· ·* 
*· •• *· ·* *· •• 

•• ·* *· ·* ' *· ·* r i., :::::: r 
*****Fl********** F2 *· *****F3********** .F'Q *· 
* * ·* GROUP *· * TAG GROUP AS * ·* *· 
* REMOVE * NO • * TAGGED AS *. * POSSIBLE * • * BLOCK *. YES * GROUP FROM *<--------*. POSSIBLE • * *EXTENDED RANGE * *. DATA • *-------> * WORK ROLL * *.RE-ENTRY • it. * CANDIDATE ON * *. PROGRAM • * 
* * *.POINT.* *LOOP DATA ROLL * *. .. * ·······:c······ ··1· -;ES ········[········· ··1· -~o 

: C2 : * 063180 
* * *****G2********** *****G3********** *****G4********** 

**** * * * TAG THOSE * * * 
* PUT * * LABELS ON LBL * *SET SYMBOL AND * 
* GROUP ON TEMP * *ROLL WHICH MAY * *MODE FOR IBCOM * 
* ROLL * * BE RE-ENTRY * * ROUTINE CALL * 
• * • PMNft * • * ······::c:····· ········1········· ········i········· 

* C2 * • * *****H3********** *****H4********** •••• • * * • 
* * * MOVE IBCOM * 
*CLEAR TEMP ROLL* * POINTER TO * 
* * * AFTER POLISH * 
* * * ROLL * ········1 .. ······ ········1·:::::::: ________ _ 

**** • • * B3 * ft063001 • • •••••J4•••······· •••• * * * INITIALIZE * 
* FOR OPERATION * 
* OF ALLOCATE * . . ................. 

I 
****KQ********* • • * IEYALL * . . ............... 

Section 2: compiler Operation 67.1 



Chart BA. 

PRINT A CARD 

68 

WRITE LISTING AND READ SOURCE 

G0837 

****A2********* 
PR I NT * 

*AND READ SOURCE* . . 
****·IHI-********* 

*****B2********** . . 
TURN 

* OFF NO PRINT 
* FLAG 

** * ****-IHI-******** 

I 
v ... 

C2 *• 

•* DATA *• YES 
*.ON ERROR ROLL.*--, 

*• ·* I 

·J::: 1,1 

•* *• 
•* SOURCE *• YESV 

*• LI STING •*--, 
*•REQUESTED•* 

*• •* 
*• •* 

* NO 

I 
v 

*****E2********** . . 
TURN 

ON NO PRINT 
FLAG 

I 
I<·----~ 

I 
#83707 v 

*****F2 ********** . 
INITIALIZE 

* STATEMENT CD 
• COUNT * . 
•**************** 

I 
~---->I 
I v 
I "#83701 •*• "#083702 
I G2 *• *****G3********** 
I ·* *• * * 

I •* PRINT *• YES * MOVE 1 CO TO * 

I 
*· ... cg~PC~~~ ·*·*--~->:so~~~Ec~~~~o~No: 

*• •* * 
*• •* ***************** 

i NO I 

-JHHHf . . 
* 64 * . . 

** ****64** ** ***** * * 
INITIALIZE 

* FOR NEW STMT, * 
READ ONE CARD 

* AND PRESCAN * 
SHIT 

********••*** 
I 

,-----,! 
I v 
1#083703 C 4 •*•*• 

I •* *• 
I •* *• NO I ·-~~RE TO REA~.··1 

I *· •• ... ·* I I i YES I 
I I I 

1#.3703 ! I I ******D4*********** I 
I • =~~b ~g~pt~i~ * I 
I *AND READ ONE * I 
I CARD I 
J ************* I 

I 
I 

Il

l ·····::::!-::;····· .. -<'.>-.. "' 
CARD ANO ITS *• STATEMENT •*-------~<----~ 

* ERROR MSGS * *• PROCESS •* I ... .• I 
************* *• .... 

* NO 

. ! . I 
* B4 * #083704 V 
* * *****J4********** * TURN OFF * 

* FLAGS * * INDICATING NO * 
* MORE READ AND * 
* NO MORE PRINT * 
***************** 

I 
v 

****K4********* . . 
RETURN 

INIT 
READ A CARD 

READ A CARD 



Chart BB. INITIALIZE FOR PROCESSING STATEMENT 

G0632 

****A2********* 
* * * STA INIT * 

*************** 

I 
I 

* 

v 
*****B2********** 
* * * INITIALIZE * 
* CHARACTER * 
* COUNTS * 
* * ***************** 

I 
v 

*****C2********** 
* * *SET CRRNT CHAR * 
*TO FIRST SOURCE* 
* CHARACTER * 
* * ***************** 

I 
v 

*****02********** 
* SET * 
*COUNT OF SOURCE* 
*STMT CHARACTERS* 
*TO NO. CARDS X * 
* 80 * 
***************** 

I 
v 

*****E2********** 
* * 
* * * CLEAR FLAGS * 
* 
* 

* 
* ***************** 

I 
v 

****F2********* 
* * 
* 
* 

RETURN 

*************** 
* 
* 

Section 2: Compiler Operation 69 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

• Chart BCl. 

STATUS CONTROL 

DIGIT 
CONVERSION 

CONVERT ONE DIGIT 

REGISTER LABEL 

70 

PROCESS LABEL E'IELD (Part 1 of 2) 

G0635 

****A2********* . . 
*LBL FIELD XLATE* . . 
*************** 

j 
*****B2********** * SAVE ADDRESS * * OF CURRENT * 
*BOTTOM. OF WORK * * ROLL AND BX IT * 
* ROLL * 
***************** 

j 
*****C2********** 
*SET STMT LABEL * * POINTER TO 0 * 
* AND SKIP TO * 
*FIRST NON-BLANK* 
* CHARACTER * 
***************** 

1 
·*· ~063503 ·*· 

02 *· 03 * . 
. * * . * * . . * CHAR *· NO ·* MUST THIS *. NO 

* .• ::o~~iNL~SS. * ·*-------->*. *. ST~rB~tVE. *. *-------~ 
*· ·* *· ·* ***** *. . * * * *BC2* i YES i YES * * ~ ~* 

*****E2********** *****E3********** 
* * * * IN'ITIALIZE * * LABEL MISSING * 

FOR DIGIT * * MESSAGE TO * 
CONVERSION ERROR ROLL . . 

***************** 

: ·;:· =->l . . 
**** 

# 063501 • •. 
F2 *. 

. * *· ·* *· NO 

. . 
***************** 

l 
***** 
*BC2* * C2* . . 

' I~'.• '.i :;:;'.· •---- ---J ,,w,•• ""' 

*****G2********** *****G3********** * CONVERT * * SYNTAX * * ONE DIGIT TO * * MESSAGE TO 
*BINARY. SKIP TO* * ERROR ROLL. 
*NEXT NON-BLANK * * RESTORE WORK * CHARACTER * *AND EXIT ROLLS * 
***************** ***************** 

J I 
H2 *· V 

·* *· ****H3********* 
. * CHAR *· YES * RETURN * *. COUNT LESS • *---i * (EXIT FALSE) * *. THAN 6 • * * * 

*· ·* *************** 
*· . * 

. . l*NO :*;:*: 

*****J2******* *** * MOVE LABEL * 
*TO LBL ROLL AND* 
* LABEL POI N'I·ER * 
* TO STA LBL * * POINTER * 
***************** 

1 . •. 
K2 *. *****K3********** . * *· * MULTIPLE * . * LABEL *. NO * DEFINITION * *· UNDEFINED • *-------->* ERROR MSG TO * 

*· ·* * ERROR ROLL * 
*· . * * * 

* · 1 ·;ES ********f ******* 

***** ***** 
*BC2>t: *BC2* 
* A2• * A.2* 

* * * * . . 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

• Chart BC2. 

PROCESS POLISH 

NON-ACTIVE END 
FLAG INDICATES 
PREVIOUS STMT 
ALWAYS BRANCHES 
WHEN IT IS ON. 
USED IN TEXT FOR 
GENERATION OF 

PROCESS LABEL FIELD (Part 2 of 2) 

••••• *BC2• * C2• • • • 

.. 
• 

t063502 ! 
*****A2••••****** • • * MARK * * LABEL AS * * DEFINED * • • 
*******BC2******* r .. . .• . 

B2 *• B3 *. ***++aq+++++***** .• *. . * INNER *• * + 
• • IN A *. YES • * DO *. NO * PUT LABEL * *. DO LOOP • *-------->*. CLOSED FLAG • *-------->* ON * 

*• • * *. ON • * +XTEND LBL ROLL * •. .• *· ·* • • 
* NO * YES .. . . .. .. ········i········ 

------------~---->l<------------A ___________ / 
1063504 • •. j .•. #063581 .•. 

C2 *. C3 *· Clf *· . * *· . . * IS *• .+ IS *• 
NO • * LAST *. NO • * LABEL * . NO • * LABEL ON * . 

---•.STMT AN ARITH.* - <--*· PREVIOUS • •<--------*· XTEND TARG .+ *. IF • * * . TARGET • * *. LBL • * *. ..+ *· •* +.ROLL •* •. . . . . . . . ... r r· .c 
*****D2********** *****D3********** 04 *· *****DS********** 
*PUT POINTER TO * * TAG GROUP ON * . * GROUP •. * TAG GROUP ON * 
* THIS LABEL. • •XTEND LBL ROLL • .• TAGGED AS •. YES *XTEND LBL ROLL * 
•MOVE POLISH TO * <----* AS POSSIBLE * *. POSSIBLE • *-------->* AS POSSIBLE * * AFTER POLISH * *RE-ENTRY POINT * •.RE-ENTRY ·* *RE-ENTRY POINT * 
* ROLL * * * •.POINT.• *· * ___ ::::::::1········· ............... .. . . r =o ................ . 

"063505 '(/ 
*****E2********** *****E4********** 
*SET NON-ACTIVE * * * 
•END FLAG TO NXT* • REMOVE GROUP • 
* STA LBL FLAG * --~-----~-----~-------------* FROM *<----------------*AND CLEAR NEXT * *XTEND TARG LBL * * STA LBL FLAG * * ROLL * ••••••••••••••••• • •••••••••••••••• 

CODE FOR END STMT. 

1 .•. 
F2 *· ·* *· ****F3********* 

• * CHAR *. NO * REI'URN * 
•. COUNT • *------->* IEXIT TRUE) * •. ·* • • • • 6 • • • •••••••••••••• 

•. ·* 
rES 

... 
G2 *· ·* *· ****Gl********* .. * *.. YES * RETURN * 

*. CHAR A ZERO • •------>* (EXIT TRUE) * .. '.. . . . . .. . ............. . .. .. . 
j ::Y~AX FAIL) 

*****H2********** 
• SYNTAX MSG TO • 
• ERROR ROLL. * * RESTORE WORK * 
*AND EXIT ROLLS • • • ••••••••••••••••• 

I •••••J2••········ * SCAN * * TO NEXT * * NON-BLANK * * CHARACTER * • • ••••••••••••••••• 

l 
****K2********* * RETURN * * (EXIT FALSE) o • • ••••••••••••••• 

Section 2: Compiler Operation 70.1 





Chart BD. PROCESS STATEMENT 

G0636 •*• 
*****A2********** A3 *. 

****Al********* * * •* *• * * * SAVE •* ASSIGN- *• NO 
STA XLATE *---->* LOCATIONS OF *---->*• MENT TYPE .+---------, 

*WORK AND EXIT* *•STATEMENT.* l 
I 

*************** * * *• •* 

*****B2********** 
****Bl********* * RECORD * 

* * * ILLEGAL 

*. •* * YES 

I 
v .•. 

83 *• 
·* *· YES •* IN *• 

I 
v 

*****B4********** . 
RETURN *<----* STATEMENT 

* MESSAGE 
*<----*• BLOCK DATA •* 

*• ROUTINE •* 

SCAN STMT 
* TO DETERMINE 

TYPE 

v 
G0637 .•. 

C2 *• 
****C 1 ********* • * * • 

*ASSIGNMENT STA * •* *• YES 

*• •* 
*• •* * NO 

****~C4********** 
* UPDATE ROLLS * 

AND/OR 
* XLATE *---->•.STMT FUNCTION.•-------~ ARITH FUNC CONSTRUCT 

* * *• •* .. .. 
*• •* * NO 

I 
I 
v 

*****02********** 
CONSTRUCT * 

POLI SH FOR 
VARIABLE 

EXPRESSION 

DEF ST A POL I SH FOR 

1 
XLATE •••• ~!=!r:=:! .... 

l I 
*****D3•********* I * UPDAT~ ROLL * 
* AND CONSTRUCT * 

POLISH FOR * I 

:. .. ::::r:····· J 
~----------->!<--------~ 

ST A XL ATE EX IT 

v 
G0732 •*• 

E3 *• 
.-11- *• ****E4********* 

•* *• NO * * 
*•SEVERE ERRORS.•---->* RETURN EXIT 

*· •* * 
*• •* *************** *. •* * YES 

I 
v .•. 

F3 *• 
•* *• ****F4********* 

•* ACTIVE *• NO * * 
*• STATEMENT .•---->* RETURN EXIT 

*• •* * 
*• •* *. •* * YES 

I 

I 
v 

*****G3********** . . 
* REMOVE POLISH * 
* AND REPLACE * 
*WITH ERROR LINK* . . 
***************** 

****H3********* . 
RETURN EXIT 

Section 2: 

LITERAL TEST 

THIS OPERATION 
IS PERFORMED BY 

THE STA XLATE 
ROUTINES 

Compiler Operation 71 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

•Chart BE. COMPLETE STATEMENT AND MOVE POLISH 

G0633 

****Al********* . . 
* STA FINAL * . . ............... 

l 
*****Bl********** • • * INCREMENI' * 
*STATEMENT COUNT* . . 
• • ................. 

l . •. 
Cl *· .+ *· ****C2********* 

·* *· NO * * *. ANY POLISH • *-------->* RETURN * 
*· ·* • * . . .• .............. . • ... 

rES 

.•. 
01 •. 

·* *· . * *• YES 

THIS FLAG ON INDICATES 
ONE OF THE STATEMENTS 
WHICH MAY NOT TERMINATE 
DO LOOPS 

•••• • • * B4 * • • •••• 
t063302 ! 

*****B4********** 
• * * MOVE GROUP * 
• BACK TO DO • 
*LOOPS OPEN ROLL* • • ••••••••••••••••• 

---------> 1 
* 063303 .• • 

C4 *• .. . . 
• • THIS *· NO 

••••• 
*BE * 
•DS * •• • 

*.STMT LABELED .+-------------> . . . . .. .. • .. • 

1• YES STA FINAL END 

G0634 
*****04********** *****05********** . . . . 
• PUT POINTER • • PUT STMT • 

+.JUMP FLAG ON .•--------------------------~---~-----~-------------> * TO LABEL ON *------->* NUMBER ON * •. .. . . . . 
. . 
•••• 

•. . * 
* POLISH * * POLISH * • • * • ••••••••••••••••• • •••••••••••••••• 

: •:;• :_>1. NO 

~ 0&3301 ••• 
~----------------------J . .. 

SEE 
NOTE 

NOTE 

El *· . . .. 
.• DATA ON *· NO 

•.THE DO LOOPS .•----------------------------~--------------~---------*.OPEN ROLL.* •. . . .. . • 
rES 

*****Fl********** • • * MOVE ONE * * GROUP OFF THE * 
* ROLL * . . ................. 

l 

E4 *· 
•* *. ****ES********* 

•* THIS S'IMT *· YES * * 
•.AN ARITHMETIC.*-------->* RETURN * 

*· IF ·* * * .. .• .............. . • ... 
ro 

*****F4********** 
* * ****F5********* 
*MOVE POLISH FOR* * * * STMT TO AFl'ER *------>* RETURN * * POLISH ROLL * * * • • ••••••••••••••• ••••••••••••••••• 

• • • • •• .•. *063377 
Gl *. G2 *. G3 *· *****G4********** .. .. . . .. .• .. . . 

• * THIS *· YES .+ INNER *. NO • * ANY *· NO * CLEAR * *· STMT TARGET .•-------->•. DO CLOSED .•------->•.TRANSFERS OUT .. +------>*XTEND LBL ROLL * *· OF LOOP .+ *· FLAG ·* *· OF LOOP •* * * 
*· • * *· ON ·* *• .. • * * • . .• • •. * • • .• • •••••••••••••••• ).:: i <:::___ i YES 

: B4 : ft 063~~~**H2********** *****Hl********** 
**** * REMOVE * * * 

*GROUP DEFINING * * CLEAR * 
* DO VARIABLE * * XTEND TARGET * * FROM IND VAR * * LBL ROLL * 
* ROLL * * '* ••••••••••••••••• • •••••••••••••••• 

l """' l •••••J2•••······· •••••J3••••••• *RESERVE ROGRAM* * * 
THE TEST COMPARES 
STA LBL PNTR 

* SCRIPT * * SET INNER DO * * COPY * -----*CLOSED FLAG ON *<----------------
.WITH THE GROUP 
FROM THE ROLL 

72 

: R~~~f LfE! : •* 
•••••••• •••••••• • ••••••••••••• 

l 
*****K2********** 
•MOVE NEXT GROUP• 
* FROM SCRIPT • 
• ROLL TO LOOP • 

!0~I~ rUProllM°! ••••••••••••••••• l .... 
• • ->* El * • • •••• 



Chart BF. PROCESS END STATEMENT 

G0642 

****A2********* 
* * ACTIVE END 

STA XLATE 
*************** 

I 
I 
v 

82 *• 
****83********* 

•* LAST *• YES * * 
*• STATEMENT A .•~~~~->* RETURN * 

*• BRANCH •* * * 
*. . * 

* NO 

I 
I 
v 

. *. 

*************** 

C2 *• *****C3********** 
·* *• * 

•*SUBPROGRAM *• NO * BUILD * 
*• BEING .•~~~~->* STOP POLISH * 

*.COMPILED •* * 
*• •* * 

*• ·* ***************** i YES I 
l I 

*****02********** v 
* * ****03********* 
* PLACE * * * * RETURN DRIVER •~~~~->* RETURN * 
* ON POLISH * 
* *************** 
***************** 

Section 2: Compiler Operation 73 



Chart BG. 

74 

PROCESS POLISH 

G0844 

****A2********* 
* * * PROCESS * * POLISH 

*************** 

I 
I 
I 
v 

*****B2********** 
* * * GET NUMBER * * OF WORDS ON 
* POLISH ROLL 
* ***************** 

I 

I 
I 
v 

*****C2********** 
* * * PLACE * 
*COUNT ON AFTER * 
* POLISH ROLL * 

* ***************** 

l 
I 
v 

*****02********** 
* * * COPY POLISH * 
* ROLL TO AFTER * 
* POLISH ROLL * 
***************** 

I 

I 
v 

*****E2********** 
* * 
* * *RELEASE POLISH * 
* ROLL * 
***************** 

I 
I 
I 
v 

****F2********* 
* * * RETURN * 
* * *************** 



Chart 05. PHASE 2 - ALLOCATE (Part 1 of 2) 

G0359 

****Al********* 
START 

ALLOCATION 

I 
v 

*****Bl********** . . 
INITIALIZE 

I 
G054-3 V 

*****CI********** 
*A LBL/LSPG-CAAl* 
·-·-·-·-·-·-·-·-· *PUT LABELS AND * 
*STMT FUNC NAMES* 
* ON BCD ROLL 
***************** 

I 
G0362 V 

*****DI********** 
*PR EQ/PTER-CBAI* 

·-·-·-·-·-·-·-·-· *CALC EQ OFFSETS* 
* AND PRINT IF * 
* OUTSIDE ARRAY * 
***************** 

I 
v .•. 

El *• 
•* *· 

•* BLOCK *• NO 

*• •.sP~~j~IED.* •*j 
*· .. * I *· •* v 

* YES **** 

. . 
* C2 * . . 
**** I 

I 
G0365 V 

*****C2********** 
*DMY /PNTERR-COA2* 
*-*-•-•-*-•-•-*-* 
*ASSOCIATE DUMMY* 
*DIMS WITH ENTS9* 
* PRINT ERRORS * 
***************** 

G0371 
*****D2********** 
*PRC DO LPS-CEA2* 
*-*-*-*-*-*-*-*-* 
*CHECK FOR VNCLS* 
*DO LOOPS AND PR* 
* AND MARK ERRS * 
***************** 

I 
G0372 V 

*****E2****** **** 
*LBL/L SPGS-CFA2* 
·-·-·-·-·-·-•-*-* 
* CONSTRUCT * 
* BRANCH TABLE 
* ROLL 
***************** 

I : C2 : 
v • • 

***** **** 
*CC * * Al* G0361 
* * BLOCK * DATA 

PROG 
ALLOCATION 

G0374 
*****F2********** 
*BL PGM ESD-CGA2* 
*-*-•-•--11---11---11---11---11-
* ALLOC HEADING * 
*BLD AND PNH ESD* 
*FOR PRO AN ENT * 
***************** 

I 
I 

G0376 V 
*****G2********** 
*ENT NMALL-CHA2 * 
*-*-*-·-·-·-·-·-· 
* IF SOURCE A * 
*FUNC~ CHECK FOR* 
* ASGM OF VALUE * 
***************** 

I 
v 

*****H2********** . . 
SAVE OBJECT 

*MODULE LOCATION* 
* COUNTER * . . 
***************** 

I 

l 
G0377 V 

*****J2********** 
*CM ALL/OUT-CIA2* 

*-•-•-·-·-·-·-·-· * ALLOC ~M STG. * 
*PRINT ERRORS AN* 
* MAPS PCH ESDS * 
******* ** **** ** * * 

l 
v 

**** 
* • 
* A3 * . . 

. 
* A3 *----, 
• * I 

I 
G0381 V 

*****A3********** 
*EQ AL PTER-CKA2* 
*-*-·-·-·-·-•-*-* 
* AL LDC A TE ADDR * 
* FOR EQUIV * 
* PR I NT ERRORS 
***************** 

I 
I 
v 

*****B3********** 
* TURN ON FLAG * 
* FOR PASS 1, 
*RESTORE OBJECT * 

MODULE 
LDC COUNTER * 

***************** 

*****C3********** 
* DETM PRESENT * 
*SIZE BASE TABLE* 
*ADD 5 GROUPS TO* 
* SIZE, RESERVE * 

ROLL * 
***************** 

I 
I 
v 

*****03********** 
* INDICATE * 

PRESENT * 
* ALLOCATION IS * 

IN OBJECT * 
MODULE * 

***************** 
I 

I 
G0437 V 

*****E3********** 
*B/B TBL AL-CLA2* 
·-·-·-·-·-·-·-*-* 
*USING SIZE EST,* 
*ALLOC SAVE AREA* 
*BASE TSL ,BRTBL * 
***************** 

*****F3********** 
* * INCREASE * 

*LOCATION COUNT * 
* BY EQUIV SIZE * 

I 
G0438 V 

*****G3********** 
*BLD AD bS-CWA2 * 
*-*-*-*-*-*-*-*-* 

BUILD BASE 
* TABLE ENTRIES * 

INOICATED 
**** ****-ll--Jf-** ***** 

I 
G0443 V 

*****H3********** 
*PREP NMLST-CQA2* 
*-*-*-*-*-*-*-*-* 
*ALLOC NAME LIST* 
* TBL ADD BASES * 
* REQUIRED * 
***************** 

G0397 
*****J3********** 
*SCALAR ALL CUA 1 * 
*-*-*-*-*-*-*-*-* 
* ALLOC SCALARS * 
* ADD REQ'D * 

BASES * 
***************** 

l 
v 

**** 
• * 
* 84 * . . 

**** 
* • 
* B4 * . . 

G040 I 
*****B4********** 
*ARRAY ALL CNA2* 
*-*-•-•-•-•-*-*-* 
*ALLOCATE ARRAYS* 

AND ADD 
REQ' D BASES * 

***************** 

I 
v 

**""'* • * 
* 85 * 
* • 

THE ROUTINES 
CALLED IN PASS 
1 DETERMINE 
THE NUMBER OF 
BASE TABLE 
ENTR JES 
REQUIRED 
FOR THE 
OBJECT MODULE 
DATA, AS 
WELL AS PER­
FORM I NG SOME 
INITIAL 
ALLOCATION 

r 
v 

**** . . 
* 85 * . . 
I 

G0402 V 
*****65********** 
*GBL SPG AL-CDA2* 

·-·-·-·-·-·-·-•-* * ADD BASES FOR * 
SUBPROGRAM 

ADDRESSES * 
***************** 

I 

I 
G0442 V 

*****C5********** 
*SPG ARG AL-CPA2* 
·-·-·-·-·-·-*-*-* 
*'ALLOCATE' ARG * 
* LISTS• ADD * 
*REQUIRED BASES * 
** *'** *** ** *** * * ** 

G0444 
*****05********** 
*LIT CNS AL-CRA2* 
*-*-*-*-*-*-*-*-* 
* ALLOC LITERAL * 
* CONSTANTS ADD * 
*SASES REQUIRED * 
***************** 

I 

I 
G0445 V 

*****E5********** 
*FORMAT ALL CSA2* 
*-*-•-•-•-*-*-*-* 
* ALLOC FORMAT * 
*STMTS, ADD REQ .. * 

BASES * 
***************** 

*****F5********** 
*RESTORE OBT MOD* 
*LDC CNTER DETM * 
*TRUE SIZE BASE * 
* TABLE, END * 

PASS 1 * 
***************** 

*****G4********** *****G5********** 
*DEBUG ALL-CXA2 * *ASCLR/SPRG-CAA3* 
*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 

MARK INIT *~~~->* ENTER NAMES 
AND SUGCHK * ON BCD 

VARIABLES ROLL 

Section 2: 

l 
G0437 V 

****-*H5******** ** 
*B/B TBL AL-CLA2* 
*-*-*-*-*-*-*-*-* 
*ALLOC SAVE AREA* 
* BASE TBL AND * 
* BRANCH TABLE 
***************** 

G0441 
*****JS********** 
*EQUIV MAP CTA2* 
*-*-*-*-*-*-*-*-* 
* CORRECT ALLDC * 
*EOUIV DATA AND * 

PRINT MAP * 
****'*'************ 

***** 
*06 ,.__ 
* A2* .. 

Compiler Operation 75 



Chart 06. 

76 

PHASE 2 - ALLOCATE (Part 2 of 2) 

*-**** 
*06 * * B2* 
* * 
* 

I 
G0397 V 

*****B2********** 
*SCALAR ALL CMAl* 
·-·-·-·-·-·-•-*-* *CORRECT SCALAR * 

ALLOCA-TION. * 
* PRINT MAP 
***************** 

I 

I 
G0401 V 

*****C2********** 
*ARRAY ALL CMA2 * 
·-·-·-·-·-·-·-·-· * CORRECT ARRAY * * ALLOCATION. * 
* PRINT MAP * 
***************** 

l 
G0-403 V 

*****D2********** 
*GBL SPG AL CUA2* ·-·-·-·-·-·-•-*-* * ALLOC SUBRTN 
*ADDR PRINT M-AP * 
* PUNCH ESDS * 
***************** 

G0442 
*****E2 **iHI-** **** 
*SP ARG ALL CPA2* 

·-·-·-·-·-·-·-·-· * ALLOCATE * 
ARGUMENT 

LISTS * 
***************** 

l 
G0405 V 

*****F2********** 
*BLD NMLST-CVA2 * 
·-·-·-·-·-·-·-·-· *CONSTR AND PCH * 
*TXT CDS FOR NA-* 
* MELIST TBL * 
***************** 

I 
I 

G0444 V 

*****G2********** *LlT CNS AL-CRA2* 
*-*-*-*-*-*-*-*-* 
* ALLOC LITERAL * 
* CONS AND PNCH * 
* TXT CARDS * 
***************** 

r 
G0445 V 

*****H2********** *FORMAT ALL CSA2* 
*-*-*-*-*-*-*-*-* 
*ALLOCATE FORMAT* 
* STMTS, PUNCH * 
* TXT CARDS * 
***************** 

I 
v 

**** 
* * * 84 * 
* * 

* * * 84* • * . 
I 
v 

*****B4iHE-** ****** * RELEASE * * ROLLS, OBTAIN * 
* DOUBLE WORD 
* BOUNDARY FOR 
*- BASES * 
***************** 

I 
v 

*****C4********** *CALCULATE ~ASE * 
*AND DJSPLACEMNT* 
* FOR TEMP * 

AND CONST 
ROLL 

I 
G0438 V 

*****04********** *BLD AD BS-CWA2 * 
*-*-*-·-·-·-·-·-· * BUJLD 3 BASES * 
* FOR TEMP AND 
* CONST AREA * 
***************** 

*****E4********** . . 
PREPARE 

*FOR UNIFY PHASE* . . 

****F4********* 
IE YU NF 

RELEASE 
ROLLS 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

Chart CA. MOVE BLD NAMES TO DA'I'A VAR ROLL 

••••Al********* * ALPHA * * LBL AND L * * SPROGS * ............... 
j 

*****Bl·********** * RELEASE DATA * 
: ~~Rpg~~~fRs~ ! 
* NEW GROUP ON * * DATA VAR ROLL. * ••••••••••••••••• 

I 
" *****Cl********** • SAVE POINTER • * TO LABELS.. * * SET UP * * POINTER * 

• TO LBL ROLL. • 

;::::;::1········· 
• • .... .•. 

Dl *· .. . • .. 
• • ENTIRE •. YES *ROLL P 

*• LBL ROLL .•-------->* 
•.PROCESSED.* * 

*· .• • • ·r ·······r······ 
*****El********** *****E2********** • • • • •MOVE NEXT LABEL* * SET UP * * TO * * POINTER ROLL * * DATA VAR ROLL * * * • • • • ••••••••••••••••• • •••••••••••••••• 

! ! •••• • ••• . . . . 
* Dl * * G4 * • • • • .... . ... 

****A3********* * ALPHA * * SCALAR ARRAY * 
• AND SPROG • 

·······r····· 
*****Bl********** * SAVE * 
• DATA VAR ROLL • * POINTER AS * * POINTER TO * * SCALARS * . ............... . 

j 
•••••cJ•••••••••• • • 
• SET UP * 
• POINTER TO • 
* SCALAR ROLL • • • ••••••••••••••••• 

l 
*****D3********** 
*A/D VAR RL-CAF4* ·-·-·-·-·-·-·-·-· * MOVE * 
*SCALAR NAMES TO• 
•DATA VAR ROLLS * ••••••••••••••••• 

j 
*****E3********** • • • SAVE DATA VAR * 
•ROLL POINTER TO* * ARRAYS • • • ••••••••••••••••• 

j 
*****F3********** • • *SETUP • * PO~NTER TO * * ARRAY ROLL * • • ••••••••••••••••• 

j 
*****Gl********** 
*A/D VAR RL-CAF4* ·-·-·-·-·-·-·-·-· • MOVE • 
*ARRAY NAMES TO * * DATA VAR ROLL * ••••••••••••••••• 

j 
*****Hl********** 
• SAVE DATA VAR • 
*ROLL POINTER AS• 
• POINTER TO * * GLOBAL * * SUBPROGRAM * ••••••••••••••••• 

j 
•••••JJ••········ • • 
•SET UP POINTER * 
• TO GLOBAL • * SPROG ROLL * • • ................. 

! •••• • • • 84 • 
• • •••• 

•••• • • * B4 * • • T. 
•••••.04••········ •A/D VAR RL-CAF4• ·-·-·-·-·-·-·-·-· *MOVE SUBPROGRAM* 
* NAMES TO * * DATA VAR ROLL * ·······r······ 
*****C4********** 
• SAVE DATA VAR * 
*ROLL POINTER AS* * POINTER TO * 
• USED LIBRARY • 
* NAMES * • •••••••••••••••• 

l 
*****D4********** . . 
•SET UP POINTER • * TO USED LIB * * FUNCTION ROLL * . . 
• •••••••••••••••• 

l •••• . . 
* Gq * • • •••• 

****Fq********* * ALPHA TO * 
• DATA VAR ROLL • . . 
: :~~::::·1 ······· 
• • •••• v .•. 

G4 *· 
·* *· ****GS********* 

.• ENTIRE *· YES * * *. ROLL • •------->* RETURN * 
*.PROCESSED.* * * .. .• .............. . 

•. ·* 

ro 
*****H4********** 
*MOVE NEXT NAME * 
* (8 BYTES) • 
• TO * * DATA VAR ROLL * • • ········r······· 

•••• • • * Gil * • • .... 

section 2: compiler Operation 77 



Chart CB. PREPARE EQUIVALENCE DATA 

G0362 •*• 
A2 *• 

****At********* •* *• ****A3****•**** * PREP EQUIV * •* *• NO * * 
AND PRINT *---->•.EQUIVALENCE •*"---->* RETURN * 

* ERRORS * *• DATA •* * * 
*************** *• •* *************** 

78 

*• •* 

: ·::• =-> *' YES 
* * **** v 
*****82********** * CALCULATE * 

OFFSET FOR * EQUIVALENCE * * VARIABLE ANO * * RECORD * 
***************** 

I 
v 

•*• C2 *• *****C3********** 
•* *• * * •* BAO *• YES * * 

*• DEFINITION .•---->*RECORD NAME AS * 
*• •* * ERROR * 

*• •* 
*• •* ro 

v 
•*• 

02 *• 
.• ALL *• 

•* DATA *• NO 
*• PROCESSED •*I 

*• ·* *• •* 
*• ·* v 

*I YES : •::•: 

* * 
v 

*****E2********** 
* * SET UP * HEADING FOR * * ERROR LIST * 
***************** 

l 
v 

******F2*********** 
PRINT LIST OF 

* EQUIVALENCE * 
* DEF ERRORS * 

...................... 

I 
v 

****G2********* 
* * * RETURN * 

* *************** 

***************** 

I 

PRINT 
ERROR SYMBOL 



Chart cc. ALLOCATE BLOCK DATA 

G0361 
*****A2********** 

****Al********* *CM ALL/OUT-CIA2* 
* * ·-·-·-·-·-·-·-·-· * BLOCK DATA •~~~->• ALLOC ALL COM * 
*PROG ALLOCATION* *STRG.PRNT ERRS•* 

*************** *MAPS PNCH ESDS * 
***************** 

l 
v 

******82*********** 
PUNCH 

REMAINING 
* ESDS IF ANY * 

************* 

I 
v 

*****C2********** 
*SCALAR ALL CMA2* 
·-·-·-·-·-·-·-·-· *ALLOC SCALARS. * 
* ADD REQUIRED * 

BASES 

***************** 

I 
v 

*****02********** 
*ARRAY ALL CNA2* 

·-·-·-·-·-·-·-·-· *ALLOCATE ARRAYS* 
* AND * 

REQ,. BASES 

***************** 

I 
v 

*****E2********** 
* * FLIP 

EQUIVALENCE 
ROLL 

***************** 

* * I 
: F2 :->1 
**** v 

#36102 •*• 
F2 * • -11-****F3********** 

•* INFO *• * * 
•* GROUP ON *• YES * RECORD * 

*• EQUIVALENCE .•~~~->• NAME + ERROR * 
*• ROLL •* * TYPE * 

*• •* 
*• ·* * NO 

***************** 

I 
v 

#36101 

•* MORE *• YES * 
*.DATA ON ROLL ·*-->* F2 * 

*• •* * * 

*• •* * NO 

v 
******J2*********** 

PRJNT 
BLOCK DATA 

ERRORS 

I 
v 

***** 
*06 * 
* 84* 
* • 
* 

RELEASE 
ROLLS 

I 
v 

* * * F2 * 
* * 

BECAUSE 
ALL EQUIV 
DATA MUST 
BE l N COMMON 

Section 2: Compiler Operation 79 



Chart CD. 

80 

PREPROCESS DUMMY DIMENSIONS 

G0365 

****A2********* * PREP DMY DIM * 
* AND PRINT * 
* ERRORS * 

*************** 

I 
v 

*****82********** 
• * 
* INITIALIZE * 
* POINTER TO * 

APPRO ROLL 

***************** 
I 

**** I 
: C2 !->I 
* * **** v 

CHECK 
DMY DIMENSION 

#036601 •*• G0367 •*• 
C2 *• C3 *• .. *• •* *• 

. . 
* C4 * . . 
**** 

I 
G0418 v 

******C4 ** ********* 
****CS********* 

•* ALL *• YES •* ANY *• NO * . . . 
*• ARRAYS .•---->*• GLOBAL .•----> PRINT ERRORS ---->* RETURN 

*•PROCESSED.* *• DUMMIES •* . 
*• ·* *• •* *************** 

*• •* *• •* * NO * YES 

II : 03 :_>f 
* • I 

v **** v 
•*• #36702 •*• #36703 

02 *• 03 *• *****04*****"***** 
•* NEXT *• •* *• * * 

•*ARRAY HAVE *• NO •* END *• YES * RECORD MARKER * 
*• DUMMY •*---, *• OF A DUMMY .•---->* ON NAMELIST * 
*D!:eNsto~;·• J *•*·LIST •* •* * JTEMs ROLL * 

*• •* v *• •* I YES :·::·: i NO 

•*• v 
E2 *• *****E3********** 

•* *• * CLASSIFY NXT * 
•* ARRAY *• YES * DMY IF ANY 

*• A DUMMY OR •*---->* WITH OMV DIM * 
*•INCOMMON •* * PNTR TO ARRAY * 

*• •* * ON ERROR ROLL * 
*• •* ***************** 

* NO I 
I .. ~ ... 
v * 03 * 

*****F2********** * * 
• * * RECORD * * ARRAY NAME AS * 
* ERROR * 
***************** 

I 

: ·::· :->ll 
**** #36602 v 

*****G2********** . . 
* PREPARE * 
*TO PROCESS NEXT* 
* ARRAY * 
***************** 

I 
v 

**** . . 
* C2 * . . 

I 
. . 
* D3 * 

* * I **** * E4 *->I A 
* * I I **** V I YES 

#36704 •*• #36705 •*• 
E4 * • ES *• 

•* ANY *• •* *• 
•*MORE ARRAYS*• NO •* MORE *• 

•.WITH DMY DIM •*---->*• DUMMY •* 
*• IN THIS •* *• LISTS •* 

*•LIST •* *• •* 
*• •* *• •* * YES * NO 

I I 
I v 
I **** 
I • • 
V * C4 * 

*****F4********** * * * CHECK OMV DIM * 
*NXT ARRAY-MUST * 
+aE OMV IN SAME * 
*LIST OR IN COM-* 
* MON RCD ERR'S * 
***************** 

I 
v 

**** . . 
* E4 * . . . 



Chart CE. CHECK FOR UNCLOSED DO LOOPS 

G0371 

****A2********* 
* PROCESS * * DO LOOPS 
* *************** 

I 
I 
v 

*****82********** 
* * * FLIP THE * 
* DO LOOPS OPEN * 
* ROLL * 
***************** 

**** I 
: C2 :->I 
* * **** v 

#037101 ·*· #037102 
C2 *• *****C3********** 

•* DATA *• * * 
•* ON THE *• NO *SET UP HEADING * 

•.oo LOOPS OPEN.•~~~~->• FOR DO LOOPS 
*• ROLL •* * ERROR LIST 

*· ·* * YES 

I 
v 

*****02********** 
* * * MOVE BAD * 
*LABEL TO ERROR * 
* LBL ROLL * 
* * ***************** 

I 
! 
v 

·"· 
E2 *• 

•* UNDE- *• 
•*FINED MARK *• YES 

*• ON LBL ROLL •*1 *. . * 
*· •* 

*· •* v 
* NO **** I * * * C2 * I ****** 
v 

*****F2********** 
* * SET UNCLOSED * 
*DO MARK IN LBL * 
* ROLL GROUP * 
* * ***************** 

I 
v 

**** 
* * * C2 * 
* * 
**** 

* ***************** 

I 
I 
v 

******D3*********** 

PRINT * 
DO ERROR LIST 

* 
************* 

I 
v 

****E3********* 
* * 
* 
* 

RETURN 

*************** 
* 
* 

PRINT ERROR LBL 
ROLL 

Section 2: Compiler Operation 81 



Chart CF. CONSTRUCT BRANCH TABLE ROLL 

G0372 

****A2********* 
*PROCESS LBL AND* 
: LOCAL SPROG : 

*************** 

I 

. . 
* B4 * . . 

**** 

v 
*****B2********** . . I 

#·037206 v 

* FLIP * THE LBL ROLL . 
***************** 

I 
•****• I 
: C2 :->I 
**** v 

#037201 •*• 
C2 *• 

•* *· 
•* DATA *• NO 

*• ON THE LBL •*---i 
*• ROLL •* I 

*• •* I 
*• •* * YES 

I 
v 

*****02********** 
* * * MOVE * LABEL TO WORK * 
* ROLL * 
***************** 

I 
v 

v . . 
* 84 * . . 

•*• #037202 
E2 *• *****E3********** 

•* *• * * 
•* LABEL *• YES * SET FIRST 1/2 * 

*• DEFINED .•~~~->* BYTE OF LABEL * 
*• •* * GROUP TO ZERO * .. .. 

*• •* * NO 

I 
. . 

**"***B4******"**** . . 
* COPY * * TEMP ROLL TO * 
* LBL ROLL 

***************** 

I 
v 

*****C4********** . . 
*SET UP HEADING * 
* FOR UNDEFINED * 
* LABELS * 
***************** 

I 
v 

******04 ****** ***** 

PRINT 
UNDEFINED 

* LABEL LIST 

************* 

l 
v 

*****E4********** 
* • 
* FLIP * 
*THE LOCAL SPRDG* 
* ROLL * . 
***************** 

I 

• • I 
* F4 *->I 
* * I 

**** v 

PRINT ERROR LBL 
ROLL 

v 
*****F2********** * CLEAR * * FIRST BYTE OF * 
* LABEL 

***************** 

v 

#037207 ..... #037208 

82 

* GROUP-MOVE TO * 
*ERROR LBL ROLL * 
***************** 

I 
v 

* • 
* K3 * . . 

THE TAG 
FIELD OF THE 
POINTER STILL 
INDICATES THE 
TYPE OF LABEL 

.•. 
G3 *• 

•• *• 
•* JUMP *• NO 

*•!~RGET LASE:* •*1 
*• •* I 

*• •* v * YES 
I 

• * I 
* H3 *->I • • I 

#037203 v 
*****H3********** 
*MAKE NEW BRANCH* 
* TABLE ROLL * 

ENTRY AND 
RETURN PTR 

* TO IT * 
***************** 

I 

I 
v 

*****J3********** 
* REPLACE * 
* LABEL GROUP * 
*WITH POINTER TO* 
* BRANCH TABLE * . . 
***************** 

.****. I 
: K3 :->I 

**** I 
#037205 v 

*****K3********** . . 
* MOVE * 

• * 
* K3 * . . 

* GROUP TO TEMP *I * ROLL * . . 
***************** v 

• * 
* C2 * * • 

F4 *• *****F5********** 
•* DATA *~ * COPY THE * 

•* ON THE *• NO * COMMON DATA * 
*• LOCAL SPROG .•~~~->* TEMP ROLL TO * 

*• ROLL •* *THE LOCAL SPROG* 
*• •* * ROLL * 

*• •* ***************** 
* YES 

I 
v 

*****G4********** . . 
MOVE NEXT 
GROUP TO 

* CENTRAL AREA 

***************** 

I 
v 

*****H4********** 
*MAKE NEW BRANCH* 
* TABLE ROLL * 

ENTRY AND 
RETURN PTR 

TO IT 
***************** 

I 
v 

*****J4********** . . 
* PUT POINTER * 
*ON COMMON DATA * 
* TEMP ROLL * 
***************** 

I 
v 

• * 
* F4 * . . 

I 
v 

****GS********* . . 
RETURN 



Chart CG. ALLOCATE HEADING AND PUNCH ESD CARDS 

G0374 

****A2********* 
* BUILD * * PROGRAM ESO 

v 
*****82********** 
* * 

INITIALIZE 

* ***************** 

v 
•*• 

02 *• *****03********** 
•* DATA *• * SET UP * 

•* ON ENTRY *• NO * PROGRAMMER * 
*• NAMES --~~~>*SPECIFIED NAME * 

*• ROLL •* * IN CENTRAL * 
*• •* * 

*• ·* ***************** * YES I 

I I 
I * .~ ••• 

#037401 V • G2 * 
*****E2********** * * 
* * **** *FLIP THE ENTRY * 
*NAMES ROLL AND * 
*MOVE ONE GROUP * 
* OFF * 
***************** 

I 
v 

*****F2•********* 
* SAVE * 
*GROUP ON COMMON* 
*NAME TEMP ROLL•* 
* ADD BLANKS TO * 
* NAME * 
***************** 

:*::*:->! 
**** I #037402 v 

*****G2********** 
* * * PUT .J SYMBOL * 
*IN FIRST BLANK * 
* OF NAME * 
***************** 

I 
v 

*****H2********** 
* * * PUT PROGRAM * * NAME IN PUNCH * 
* BUFFER * 
***************** 

I 
v 

******J2*********** 

PUNCH PROGRAM 
NAME * 

************* 

I 
v 

**** 
* * * 84 * 
* * 

PUNCH ESD 

PUNCH REMAINING 
ESD 

**** 
* * * B4 * 
* * **** 

I 
v 

*****84********** 
* * * SET * * UP FOR LO ESD * 
* * 
***************** 

I 
v 

******C4*********** 

PU~Cl-t 
PROGRAM NAME 

AS LO ESD 

************* 

I 
v 

*****04********** 
* ADD * * LENGTH OF 
* INITIAL PROG * 
*CODE TO PROGRAM* 
* BREAK * 
***************** 

**** I 
: E4 !->I * • 

**** v 
# 03740S •*. i037406 

E4 *• *****ES********** 
•* *• * COPY * 

•* DATA LEFT *• NO * COMMON NAME 
*• ON ENTRY .•~~~->* TEMP ROLL TD * 

*• NAMES •* *ENTRY NAME ROLL* 
*• •* * * 

*• •* ***************** i YES I 
v v 

*****F 4** ******** ** ****F 5*****,.* **** 
* MOVE GROUP TO * 

CENTRAL AND 
COMMON NAME 

TEMP ROLL . . 
***************** 

I 
v 

*****G4********** 
* ADD * * BLANKS TO * 
*NAME9 ADD ENTRY* * CODE TO PROG * 
* BREAK * 
***************** 

I 
v 

******H4*********** 
PUT 

ESD IN 
BUFFER-PUNCH 

* IF COMPLETE * 
CARD 

************* 

I 
v 

**** • * 
* E4 * 
* * 

Section 2: 

PUNCH ANY 
REMAINING ESD 

* CARDS * 
************* 

I 
v 

****GS********* 
* * RETURN 

*************** 

Compiler Operation 83 



Chart CH. 

84 

CHECK ASSIGNMENT OF FUNCTION VALUE 

G0376 

****A2****** *** 
ENTRY NAME 
ALLOCATION * 

*************** 

I 
v ... 

82 *· 
•* *· ****83********* 

•* SOURCE *• NO * 
*•A SUBPROGRAM •*~~~->* RETURN 

*• •* * .. .. 
*. •* 

* YES 

... 
C2 *• 

•* *• *-***C3********* 
•* *• YES * 

*•A SUBROUTINE •*~~~->* RETURN 
*· ·* * .. .. 

* NO 

I 
v 

*****D2********** 
* • 

FLIP 
*THE ENTRY NAMES* 
* ROLL 

******-*********** 
I 

* -IHHHI- * I 

: E2 :->f 
**** v 

#037601 •*• 
E2 *• 

•* * -•* DATA ON *• NO 
*• THE ENTRY ·*~ 

*NAMES ROLL.* 

* • 
* 84 * 
• * 

#037603 
*****84********** * COPY THE * 
* COMMON * 
*NAME TEMP ROLL * 
*- TO THE ENTRY * 
* NAMES ROLL 

* *"*********** **** 

*****C4*"********* . . 
* PUT A MARKER 
* SYMBOL ON * EQUIVALENCE 

ROLL 

***************** 

I 
I 
v 

*****D4·1HHHI-** **** 
• * 
*SET UP HEAD I NG * 
* FOR FUNCTION 

ERROR LIST 

***************** 

I 
v 

******E4****** ***** 

PRINT 
FUNCTION 

* ERROR LIST 

*• •* ************* 
* YES 

I 
v 

*****F2********** 
• * 
*MOVE NEXT GROUP* 
* TO THE COMMON * 
*NAME TEMP ROLL * 
* • 
***************** 

.•. 
G2 *• 

**** 
* * * 64 * • * 

**** 

* • 
* G3 * 
* * 

I 
#037602 v 

*****G3********** 
·* *• * * •* SCALAR *• YES * SET MODE 

*• WITH SAME •*~~~->* OF SCALAR IN 
*• NAME •* * POINTER 

*• •* * 
*• •* ***************** 

* NO 

! 
v 

*****H2********** 

* * * REGISTER NAME * 
* OF ENTRY FOR * 

ERROR LIST 

***************** 

I 

I 
v 

*****J2********** 
* ADD * * SCALAR ROLL * 
*GROUP FOR ENTRY* 
* NAME - DEFINE * 
***************** 

I 
v . . 

* G3 * * • 

*****H3********** 

* * PUT POINTER * 
*ON COMMON NAME * 

TEMP ROLL 

***************** 

l 
v 

*****J3********** 

* * * ADD SCALAR * 
*TO EQUIVALENCE * 
* ROLL * . 
***************** 

I 
v 

* * * E2 * 
* * 

****F4********* 

* RETURN * 

ALL ENTRY NAMES 
TO A FUNCTION 

ARE 
EQUIVALENCED 

* 

PRINT 
ERROR SYMBOL 

ROLL 



Chart CI. 

ALREADY ON 
COMMON 

ALLOCATION 
ROLL INDICATES 

THIS 

COMMON ALLOCATION 

G0377 

****A2********* 
COMMON * 

ALLOCATION 
AND OUTPUT * 

*************** . . 
* 84 * . . 

I 
I 

#037706 v 
*****82********** . . 

INITIALIZE 
FOR COMMON 
ALLOCATION 

•*• #037709 
C2 *• *****C3********** 

•* *• * CLEAR * 
.~ ANY *• NO * CONTROLS AND 

*• BLOCK 1\IAMES •*---->* ROLLS FOR 
*• ON ROLL •* ALLOCATION 

*• •* * OF COMMON * 
*• •* ***************** * YES 

*****84********** . . 
*COPY ALL BLOCK * 
*NAMES AND DATA * 
*BACK FROM TEMP * 
:*****~~;;;****** 

I 
v 

*****C4********** 
* ALLOCATE ALL * 

E.QUl VALENCE:. * 
*DATA REFERRING * 
* TO COMMON * 
* BLOCK * 
***************** 

! 
I 

#037711 v 
·IHl--1-**02 il--11--11-******* . . 
* MOVE NEXT 
*NAME TD COMMON * 

AREA ROLL * 
***************** I 
* **** * I 
* E2 *->l 
• • I 
**** v 

#037701 •*· 
E2 *• .. .. 

****D3********* . 
RETURN 

**** . . 
* E3 *--, 
• • I 

**** v 
#037705 ·*· 

E3 *• .. .. 
•* END OF *• YES •* MORE *• NO 

*• DATA FOR .•---->*• BLOCK NAMES .•-----, 
*• BLOCK •* *• ON ROLL •* I 

*• •* *· •* I 
*· ·* *· ·* v * NO * YES **** 

I * • 
I * B4 * I .. • 
v .•. 

F2 .. .. .. 
•* NEXT *• NO 

*• VARIABLE IN .•-, 
*• ANOTHER •* I 

•.BLOCK.* I 
*• ·* I * YES 

I 
I 
v 

*****G2********** . . 
* RECORD 
*NAME AS COMMON * 
* ERROR * 

I 
I 
I 

l<-----

1 
#037702 v 

*****H2********** 
ALLOCATE * 

* STORAGE FOR * 
* VARIABLE. RE- * 
* CORD ON GEN'L * 
*ALLOCATION ROLL* 
***************** 

**** . . 
* E2 * . . 

. .. 
F3 *• 

•* NEXT *• 
•* NAME SAME *• YES 

*.AS LAST NAME •*--------, 
*•ALLOCATED•* I 

*• ·* I 
*. ·* v * NO 

#037703 
*****G3********** . . 
* COPY BLOCK * 
* NAME AND DATA * 
* TO TEMP ROLL * 

**** . . 
* E3 * . . 

. . 
* E2 -11-

* • 

******D4** -!:·*** ***** 

PUNCH 
E SD CARD FOR 

BLOCK 

... 
E4 *• 

·* *· 
•* *• NO 

*·*~AP OPTION·*·*1 

I .. .. 
*• •* i YES I 

******F4*********** I 

PRINT 1' 

HEADING FUR 
*MAP OF BLOCK * I .... 'l-· ·_·_·_·__ j 

I 
v 

*****G4********** 
* COPY GEN'L * * ALLOCATION * 
*ROLL TD COMMON * 
* ALLOCATION -11-

* ROLL * 
***************** 

I 
I 

I 
v 

***-ll-**H4**********-ll-

PRINT MAP 

I 
I 
v 

******J4*********** 

PRINT 
ERRORS FOR 

BLOCK 

I 
I 
I 
v 

****K4 ********* 
* COMMON * 
*ALLOCATION AND * 
* OUTPUT * 

*************** 

Section 2: 

RETURN TO 
PROCESS NEXT 
COMMON BLOCK 

compiler Operation 85 



Chart CK. 

EQUIV 
ALLCCATION 

INTEGRATE 

PRESENCE ON 
GENL ALLOC 
ROLL INDICATES 
THIS 

86 

EQUIVALENCE DATA ALLOCATION 

G0381 
*****A3********** 

****A2********* * CLEAR * * EQUIV. * * OBJECT 
ALLOCATION *---->* MODULE 

* PRINT ERROR * LOCATION 
*************** * COUNTER * 

***************** 
**** * . * 62 *---, 

* * I<-----------~ 
v 

G0382 
B2 *• 

•* DATA *• 
•* ON *• NO 

'• EQUIVALENCE .*--, 
*• ROLL •* I 

*• •* I 
*• ·* v 

* YES **** 
I * * I :*~:*: 
v 

*****C2********** 
FLIP * 

EQUIVALENCE 
ROLL AND 

INITIALIZE 

***************** 
I 

• • I 
: 02 :->1 
**** v 

#038501 •*• 
D2 *• 

·* *· •* DATA *• NO 
*.TO PROCESS ON.*--, 

*• ROLL •* I 
*• •* I 

*• •* v 
* YES **** 

I 
v 

·*· 
E2 *• 

. . 
* 84 * . . 

... 
E3 *• 

•* *• •* *• 
•* ENTRY *• YES •* CONFLICT *• NO 

*• ALLOCATED •*---->*.WITH PRESENT ,.-11---, 
*• BEFORE •* *• SET •* J 

*• •* *• ·* I 

*•1·~0 *·,V,·~ES 1111,! 

#038503 v 
*****F2 ********** *****F3********** * ALLOCATE * * * 
* ABSOLUTE ADDR * RECORD * 
* RECORD ON GEN * *NAME FOR ERROR * 
* ALLOC ROLL * * LIST * 

I 
I 
v 

*****G2********** . . 
* INCREMENT * 
*PTR TO GET NEXT* 
* GROUP * . 
***************** 

I 
v 

• * 
* 02 * . . 

**** 

I I 
I<----~ 
I 

I 
#38902 v 

****-ll-G3********** . . 
PRUNE 

*ENTRY FROM WORK* . 
***************** 

I 
v 

**** . . 
* 02 * . . 

**** . . 
* 64 * . . 

G0384 
*****84********** 
* ALLOCATE ALL * 
* SETS WITH * 
*NAMES LISTED ON* 
*GEN ALLOC.ROLL * 
* + MOVE INFO * 
***************** 

I 
I 

I 
I 

I 
I 
v 

*****E4********** . . 
* INCREMENT 
*PROJECT MODULE * 
* PROGRAM BREAK * 
***************** 

I 

I 
v 

••***F4********** 
* • 
*COPY INFO GENL * 
* ALLOC ROLL TO * 
* SOURCE ROLL * 

l 
v 

*****G4*•******** 
* MAKE FINAL * 
*ALLOC AND MOVE * 
* INFO TO EQUIV * 
*ALLOC ROLL FROM* 
* GEN ALLOC * 
**** ***·**** ****** 

I 
v 

**** * • 
* 82 * . . 

**** . . 
* C5 * • * 

*****C5********** 
* SAVE LOCATION * 
* CNTR AS FIRST * 
* ADDRESS .aFTER * 

EQUIV DATA 

******D5* ******* ** * 
PRINT 
EOUl V 

ERRORS 

************* 

I 
I 
I 
I 
v 

****E5********* . . 
RETURN 



Chart CL. SAVE AREA, BASE AND BRANCH TABLE ALLOCATION 

G0437 

****A2********* * BASE ANO * * BRANCH TABLE 
* ALLOCATION * 
****•********** 

I 
v 

*****82********** 
*SAVE BASE TBL. * 
* PTR ANO * * DISPLACEMENT * FOR START OF 
* SAVE AREA * 
***************** 

I 
v 

*****C2********** . . 
* INCREASE * * PROGRAM BREAK * 
* BY SAVE AREA * 
* SIZE * 
***************** 

I 
v 

*****02********** * S~VE BASE TBL * 
*PTR ANO OISPLA-* 
* CEMENT FOR * * START OF BASE * 
* TABLE * 
***************** 

I 
v 

*****E2********** . . 
* INCREASE * * PROGRAM BREAK * * BY BASE TABLE * 
* SIZE * 
***************** 

I 
v 

*****F2********** . . 
* CONSTRUCT * * REQUIRED BASE * * TABLE ENTRIES * . . 
***************** 

I 
v 

*****62********** * SAVE BASE TBL * 
*PTR DISPLACEMT * 
* FOR START OF * * BRANCH TABLE * 
• * 
***************** 

I 
v 

*****H2********** 
*INCREASE PROG. * 
* BREAK BY 
* SIZE BRANCH * 
*TABLE ANO MAKE * 
* LABEL ENTRIES * 
***************** 

I 
v 

!****J2*********! 
* CONSTRUCT * * REQUIRED BASE * 
* TABLE ENTRIES * 
• * 
***************** 

I 
v 

•****K2*********• 
RETURN * 

* 

THIS VARIABLE 
IS USED 
TO "HOLD OBJECT 
MODULE" ADDRESSES 
BEING ALLOC. 

BUILD 
ADDITIONAL 
BASES 

BUILD 
ADDITIONAL 
BASES 

section 2: Compiler Operation 87 



Chart CM. ALLOCATE SCALARS 

**** * * * A3 * 
* * **** * * I : J 2 :<1 

V I YES 

#039701 ·*· •*• •*• 
G-039:***Al********* !****A2*********! •*A3 *•*• •*A4 *•*• •*AS *••. 

* * 4 * •* ALL *• NO •* A *• NO •* *• 

88 

:scALAR ALLOCATE:~~~->: INITIALIZE :~~~->• .•. P~~~~;~~o.···~~~->··~~MMY SCALA~.-·~~~->•·;~LL BY NAM~··* 

*************** * * *• •* *• ·* *• ·* 

NOTE 1-
THESE QUESTIONS 

f ~P~~~~E 8 AND 
VARIABLES 

***************** *• •* *• •* *• •* 
·~ ·~ ·~ 
I I I l *~** .~ •• 

* * * * * 02 * * 02 * 
* * * * 

#039706 VSEE NOTE 2 SEE NOTE 2 
*****C3********** *****C4********** *****CS********** 
* * * * * * * ALLOCATE FULL * * ALLOCATE HALF * * ALLOCATE * * WORD SCALARS- •~~~->+ WORD SCALARS- >* BYTE SCALARS- * 
*RECORD ANO MAP * *RECORD AND MAP * *RECORD ANO MAP * 
* * * * * * * * * 02 * 

* * **** 

I 
#039707 v 

*****02********** 
* * * SET * * MODE OF NEXT * 
* SCALAR * 
* * ***************** 

I 
v 

•*SEE NOTE 1 #039704 SEE NOTE 2 
E2 *• *****E3********** 

•* *• * * •* *• YES * ALLOCATE 
*•COMPLEX MODE .•---->* STORAGE AND * 

*• •* A * RECORD. PRINT * 
*• •* I * MAP * 

*• •* I ***************** 

* NO I I 
I j ... ~ .. 

• ~SEE NOTE 1 ! K2 : 
F2 *• * * 

•* *• 
•* DOUBLE *• YES 

*• PRECISION •* 
*• MODE •* 

*• •* 
*• •* ro 

v 
•*• t039703 

G2 *• *****G3********** 
•* *• * * •* *• YES * MOVE GROUP TO * 

*•SHORT INTEGER.•~~~->* HALF WORD 
4
**1 

* • • * * SCALAR ROLL 
*• •* *• •* ***************** v ro (::·: 

v 
•*• #039702 

H2 *• *****H3********** 
•* *· * * •* *• YES * MOVE GROUP * 

*•SHORT LOGICAL.•~~~->*TO BYTE SCALAR *I 
*• •* * ROLL * 

*• •* * * 
*· •* ***************** v 

* NO **** 

: ·:: ... :->I 
* * **** 

#·039708 v 
*****J2********** 
* * * MOVE GROUP TO * 
* FULL WORD * 
* SCALAR ROLL * 
* • 
***************** 

• • I 
* K2 *->, 
* * **** 

#-039705 v 
*****K2********** 
* * * PREPARE * 
*TO PROCESS NEXT* 
* SCALAR * 
• * 
***************** 

I 
v 

* * * A3 * 
* * 

* * * K2 * • * 

NOTE 2-
IF DURING PASS 1. 
NO MAP IS PRINTED 
AND ALLOCATION IS 
NOT RECORDED FOR 
COMMON AND EQUI­
VALENCE SCALARS. 
INFO IS PICKED UP 
FROM OTHER ROLLS 

***************** 

I 
v 

.****05*********. 
RETURN 



Chart CN. ALLOCATE ARRAYS 

G0401 

****A2********* * ARRAY * * ALLOCATE 

............... 

I 
v 

*****62*******•** 
* * 
* INITlALIZE * 
* * * * ......•........•• 

:·::·:->I 
•••• v 

#040101 •*• 
C2 *• 

·* •• 
#40104 

******C3*********** 
•* ALL *• YES * ****C4********* . . 

*• ARRAYS .•----> 
PRINT 

ANY PARTIAL 
LINE 

---->* RETURN * 
•.PROCESSED.• 

*• •• .. .. 
ro 
v 

·*· 02 •• 
•* NEXT *• 

•* ARRAY IN *• YES 
*•COMMON EQUIV••*--, 

·-~~ DUMM~.·· I 
*• •* v ro :·::·: 

v 
*****E2********** 
* * ALLOCATE 
* STORAGE AND * 
*RECORD LOCATION* 

* * ***************** 

I 
v 

*****F2********** 
* ENTER * * INFO IN ARRAY * * MAPt PRINT * * COMPLETE LINE * 
* * ***************** 

I 
v 

*****G2********** • * * CALCULATE AND * 
*RECORD BASE PTR* 
*ANO OISPLMT IN * 
* CENTRAL * 
***************** 

:·::·:->I 
* * •••• v 

#040102 ••• 
H2 *• 

•* •• 
•* *• YES 

*• PASS 1 •*1 •• •* 
*• •• 

•• •• v 

*I NO : •::•: 

* * 

v 
*****J2********** 
* * 
* * * REPLACE GROUP * 
* ON ROLL * 
* * ***************** 

: ·::*=->I 
* * **** 

#040103 v 
*****K2********** 
* * * PREPARE * 
*TO PROCESS NEXT*! 
* ARRAY * 
* * ***************** v 

**** 
* * * C2 * 
* * 

• * 
************••• 

Section 2: Compiler Operation 89 



Chart co. 

90 

ADD BASES FOR SUBPROGRAM ADDRESSES 

G0402 

****A2********* 
* PASS 1 GLOBAL * 
*SPROG ALLOCATE * 
* * *************** 

v 
*****82********** 
* * 
* 
* 
* 
* 

ALIGN TO 
FULL WORD 
BOUNDARY 

* 
* 
* * ***************** 

I 
v 

*****C2********** 
*DETERMINE BASE * 
* PTR AND * 
* DISPLACEMENT * 
*FOR PRESENT LDC* 
* * ***************** 

I 
v 

*****02********** 
* COMPUTE * 
* LENGTH OF * 
* OBJECT MODULE * 
*SUBPROGRAM ADR * 
* * ***************** 

I 
v 

*****E2********** 
*COMPUTE LENGTH * 
* OF OBJECT * 
* MODULE * 
* SUBPROGRAM * 
* ADDR * 
***************** 

I 
v 

****F2********* 
* * 
* 
* 

RETURN 

*************** 
* * 

BUILD 
ADDITIONAL 
BASES 



Chart CP. ALLOCATE SUBPROGRAM ARGUMENT LISTS 

G0442 

****A2********* 
* SPROG ARG. * 
* ALLOCATION * 
* *************** 

I 
v 

•*• 
62 *• 

* 

·* *• ****63********* 
•* ZERO *• YES * * 

*• ARGUMENTS .•~~~~->* RETURN * 
*• ·* * * 

*• •* *************** 
*• •* * NO 

I 
v 

*****C2********** 
* * * ALIGN TO A * * FULL WORD * 
* BOUNDARY * 
* * ***************** 

v 
*****02********** * DETERMINE AND * 
* SAVE BASE PTR * 
* AND DISPLACE- * 
*MENT FDR START * 
* OF ARGUMENTS * 
***************** 

I 
v 

*****E2********** * INCREASE * 
* PROGRAM BREAK * 
* BY SIZE OF * 
*ARGUMENT LISTS * 
* * ***************** 

I 
v 

*****F2********** 
* * * CONSTRUCT * * REQUIRED BASE * 
* TABLE ENTRIES * 
* * ***************** 

I 
v 

****G2********* 
* * * RETURN * 
* * *************** 

Section 2: compiler Operation 91 



Chart CQ. 

92 

PREPARE NAMELIST TABLES 

G0443 

****A2********* 

* * * PREP * 
NAMELIST * 

*************** 

I 
v 

*****B2********** 
* * * FLIP NAMELIST * 
* NAMES AND * 
*NAMELI ST ITEMS * 
* ROLLS * 
***************** 

: *::*:->I 
**** v 

t044301 •*• "#044307 
C2 *• *****C3********** 

•* *• * COPY THE * 
•* DATA *• NO * COMMON DATA * 

•.ON THE NAMES •*---->* TEMP ROLL TO * 
*• ROLL •* *NAMELIST NAMES * 

*• •* * ROLL * 

*• i 0 ~ES ********[******** 
v I 

*****02********** v 
* * ****03********* * ALLIGN TO * * * * FULL WORD * * RETURN 

BOUNDARY * 
***************** 

I 
v 

*****E2********** 
* MOVE * 
*NAMELIST NAMES * 
* ROLL GROUP TO * * COMMON DATA * 
* TEMP ROLL * 
***************** 

I 
v 

*****F2********** 
*DETERMINE BASE * 
* POINTER AND * * DISPLACEMENT * * FOR PRESENT 
* LOCATION * 
***************** 

I 
v 

*****G2********** 
* * * INCREASE * 
* PROGRAM BREAK * 
*BY 16 PUT ZERO * 
* ON WORK * 
***************** 

:·::·:->l 
**** v 

#044302 •*• #044306 
H2 *• *****H3********** 

•* *• * MOVE MARKER * 
•* DATA *• NO * SYMBOL TO * 

*•ON THE ITEMS .•---->* NAMELIST * 
*• ROLL •* * ALLOCATION * 

*• •* * ROLL * 
*• •* ***************** I YES I 

•*• v 
J2 *• *****J3********** 

•* *· * * 
•* ALREADY *• YES * INCREASE * 

*• DEFINED •*1 * PROGRAM BREAK * 
*• •* * BY ENTRY SIZE * 

*• •* * ON WORK * 
*• •* v ***************** 

i NO : 84: **!*** 
V * C2 * 

*****K2********** * * 
* * **** 
* REGISTER * 
* VARIABLE AS A *---, 
* SCALAR * I 
***************** v 

**** 
* * * 84 * 
* * **** 

#044303 

**** * * • 64 * 
* * **** 

J 
v 

•*• 
84 *• 

·* *• 
•* *• YES 

*• A SCALAR .-----, 

•·•. .•·• I 
*• •* v i NO :*::*: 

v 
•*• #044304 

C4 *• *****CS********** 
•* *• * DETERMINE * 

•* *• YES * NUMBER OF * 
*• AN ARRAY ~--->*DIMENSIONS FOR * 

*• •* * SIZE OF TABLE * 
*• •·* * ENTRY * 

*• •* ***************** 
* NO 1 
I : ·::· :-> 

* * l 
v t044305 v 

*****04********** *****D5********** 
* * * * *RECORD VARIABLE* * ADD 12 TO * 
* NAME AS * * SIZE OF ENTRY * 
*NAMELIST ERROR * * ON WORK * 
* -* * * 
~**************** ***************** 

.L l1 

* * * H2 * V 
* * *****ES********** 

* MOVE NAMELIST * 
ITEMS ROLL 

GROUP TO 
* NAMELIST * 
*ALLOCATION ROLL* 
***************** 

l 
v 

**** 
* * * H2 * 
* * 



Chart CR. 

THE PRESENT 
POINTER IS 
COMPARED TO 
A POINTER TO 
A NEW GROUP 

ALLOCATE LITERAL CONSTANTS 

G044-4 

****A2********* 
*LITERAL CONST. * 
* ALLOCATION * . 

*************** 

I 
v 

*****82********** . . 
* INITIALIZE * 
*PTRS TO LITERAL* 
* CONST ROLL * . 
***************** 

:·::·:->! . . 
**** v 

#044401 •*• 
C2 *• 

·* *· •* ALL *• YES 
tt. CONSTANTS •*1 

*•PROCESSED.• .. .. 
*• •* v ro (::·: 

v 
*****02********** . . 
* COMPUTE AND * 
* SAVE PTR FOR * 
* NEXT GROUP ON * 
* ROLL * 
***************** 

I 
v .•. 

E2 *• 
•* PAUSE *• 

•* OR DATA *• YES * * 
•.STMT LITERAL .•-->* C2 * 

*• •* * * 
*• •* **** 

•• •* 
* NO 

I 
v 

*****F2********** . . 
* INCREASE * * PROGRAM BREAK * 
*BY NO. BYTES IN* 
* PLEX * 
***************** 

I 
v 

*****G2********** 
*DETERMINE BASE * * PTR AND * DISPLACEMENT 
* FOR PRESENT * LOCATION * 
***************** 

I 
v .•. 

H2 *• 
•• *• 

•* *• NO 
*• PASS 1 .11-, 

*• •• 
•• •* 

*• •* i YES 

#044402 v 
*****J2********** 
*THROW AWAY BASE* 
* PTR DISPLMT * 
* ANO PTRS TO * * THIS LITERAL * . . 
***************** 

I 
v 

**** . . 
* C2 * * • 

v 
**** . . 

* 64 * . . 
**** 

.... . . 
* 84 * . . 
**** 

I 
v 

******84*********** 
MOVE LITERAL 

*TO OUTPUT AREA * 
PUNCH IF CARO 

* CORRECT * 
************* 

I 
v 

*****C4********** * PUT BASE PTR * 
* AND * 
*DISPLACEMENT ON* 
* LITERAL CONST * 
* ROLL * 
***************** 

I 
v 

**** . . 
* C2 * . . 
. . 
* E4 * . . 
I 

#04.4404 v 
*****E4********** . . 
* THROW 

AWAY OLD 
POINTERS 

***************** 

I 
v .•. 

F4 *• 
•* *• ****F5********* 

•* *• YES * * 
*• PASS l .•---->• RETURN 

*• •* * *• •* *************** 
*• •* * NO 

I 
v 

******G4****'******* 

PUNCH 
ANY PARTIAL 

CARD 

************* 

I 
v 

****H4********* . . 
RETURN 

Section 2: 

PUNCH 
REMAINING 
TXT CARD 

Compiler Operation 93 



Chart CS. 

BUILD FORMATS 

94 

ALLOCATE FORMATS 

G0445 

****A2********* 
* * * FORMAT 
* ALLOCATION * 

*************** 

v 
*****B2********** 
* • 
* SET * 

POINTER TO 
FORMAT ROLL 

:j;44502 
*****84********** 
* * * NOTE * I >* ADDITIONAL * 
*BASES REQUIRED * 
* * 

•••••• I *
·····*····!········ I ·········1········ 
* C2 •->I 

#446~;** .~. ·*· ~ I 
C2 *• C3 *• V 

•* *• •* *• ****C4********* 
•* DATA *• NO •* PASS *• YES * * 

*• TO PROCESS .•---->*• 1 OPE~ATION •* RETURN 
*• •* *• •* *· •* *• •* 

*• •* *• •* * YES * NO I * **** * I 

I : 03 :->I 
**** v v f.044501 •*• 

*****02********** 03 *• 
* COMPUTE AND * •* *• 

fl.044503 
******04*********** ******D5*** ******** 

* SAVE POINTER * •* FORMAT *• ND PUNCH ANY * * PRINT MAP 
LINE 

REMAINING 
* TO NEXT * *• TO PROCESS .•----> DATA LEFT ON ----> 

FORMAT *• .... TXT CARD 
* GROUP * *• •* 
***************** *• •* 

l rES 
v v 

*****E2********** *****E3********** 
* INCREASE * * * 

PROGRAM * OBTAIN * 
* BREAK BY * *NUMBER OF WORDS* 
*NUMBER OF BYTES* * FOR FORMAT * 
* IN FORMAT * * 
***************** ***************** 

l I 
•*· v 

F2 *• *****F3********** 
•* *• *CALCULATE BASE * 

•* *• YES * AND * 
*• PASS 1 •*1 * DISPLACEMENT * 

*• •* * FOR FORMAT 
*· •* *• •* v I NO ::~::: 

:jt.44602 v 
******G2*********** 

MOVE FORMAT 
TO OUTPUT 

AREA PUNCH 
IF CARO 

COMPLETE 
************* 

I 
v 

**** * • 
* C2 * 
* * 

***************** 

I 
v 

*****G3********** * • 
REBUILD 

* FORMAT ROLL * 
*WITH BASE PNTR * 
* • 
***************** 

I 
v 

******H3*********** 

* PRINT FORMAT 
MAP1 IF 
OPTION 

SPECIFIED 
************* 

I 
v 

**** * • 
* 03 * 
* * 

************* 

I 
v 

****ES********* 
* * RETURN 



Chart CT. 

DATA 1 HOLDS 
THE ADDRESS 
OF THE 
VARIABLE 

MAP EQUIVALENCE 

G0441 

****A2********* . . 
EQUIV 

* MAP * 
*************** 

I 
v .•. 

82 *· 
•* *• ****B3********* 

•* ANY *• NO * * 
*• EQUIVALENCE .+~~~->+ RETURN * 

*• DATA •* 
*• •* 

*• •* * YES 

I 
v 

******C2*********** 
PRINT 

HEADING FOR 
EQUIV MAP 

************* 

I 
v 

*****02********** 
*DETERMINE DELTA* 
*FOR EQUIVALENCE* * ADDRESSES DCB * 
* TO BASE TABLE * 
* SIZE * 
***************** 

I 
v 

*****E2********** . . 
FLIP THE 

* EQUIV * 
*ALLOCATION ROLL* . . 
***************** 

• • I 
: F2 :->1 
**** v 

#044101 ·*· 1#044102 v 
F2 *• I *****F3********** 

.• ••0~~~1eN• .•• No I : coM~g~vNAMe : 
*• ALLOCATION •*-----' * TEMP ROLL TO 

*• ROLL •* * EQUIV ALLO-
*• •* * CATION ROLL * 

*• •* ***************** i YES I 
v v 

*****G2********** *****G3********** * MOVE NEXT * * * 
GROUP TO * * 
CENTRAL, *UPDATE PROGRAM * 
INCREASE * * BREAK * 

* ADDRESS * 
***************** 

I 
v 

*****H2********** . . 
* ENTER INFO IN * 
* MAP, PRINT IF * 
* LINE COMPLETE * . . 
***************** 

I 
v 

*****J2********** 
*DETERMINE BASE * 
* POINTER AND 
* DISPLACEMENT * 
* FOR VARIABLE * . 
***************** 

I 
v 

*****K2********** 
* PUT GROUP * * FOR VARIABLE 

ON COMMON *--, 

* TE~~M~5LL : I 
***************** v . . 

* F2 * . . 

***************** 

I 
v 

******H3*********** 

PRINT 
PARTIAL LINE 

OF MAP 

************* 

I 
v 

****J3********* . . 
RETURN * . 

Section 2: Compiler Operation 95 



chart cu. 

96 

ALLOCATE SUBPROGRAM ADDRESSES 

G0403 

****A2********* 
* * * GLOBAL SPROG 
* ALLOCATE * 

*************** 

I 
v 

*****82********** 
* * * FLIP THE 
* GLOBAL SPROG 
* ROLL 

***************** 

• ****. I 
: C2 :->I 
**** v 

#·040301 •*• #040303 
C2 *• *****C3********** *****C4********** 

•* *• * COPY COMMON * * * 
•* DATA ON *• NO * DATA TEMP * * FLIP 

*• THE GLOBAL .•~~~->* ROLL TO •~~~->* THE USED LIB * 
*• SPROG •* * GLOBAL SPROG * ROLL * 

*.ROLL •* ROLL 
*• •* * YES 

I 
v 

*****D2********** . . 
* MOVE NEXT * 
*GROUP OFF ROLL * 
* TO CENTRAL * 
***************** 

I 
v ... 

E2 *• .. .. 

****************• 

*****E3******•*** . . .. *• YES * 
*• DUMMY .•~~~->*INSERT ZERO TAG* 

•. •* * VALUE * 
*• •* 

*· •* * NO 

t 
*040308 v 

*****F2********** 
* ALLOCATE * 

STORAGE FOR * 
*ADDRESS RECORD * 
*(PRINT LIST) 
* PUNCH ESD * 
**** .. ************ 

! 
l<----
1 

#040302 v 
*****G24**4****** . . 
* PUT GROUP * 
*ON COMMON DATA * 
* TEMP ROLL * 
***************** 

I 
v . . 

* C2 * . . 

I 
SPROG ALLOCATE! 
AND OUTPUT f 

I 

. . 
* H3 * . . 

**** 

I 
v 

*****H3********** 
* ALLOCATE * * STORAGE FOR * 
*ADDRESS RECORD•* 
* PRINT LIST * 

PUNCH ESO * 
***************** 

I 
* **** * I 
• J3 *->I 
* • I 

I 
v 

*****J3********** . . 
* PUT GROUP 
*ON COMMON DATA * 
* TEMP ROLL * 

**** 
• * 
* D4 * * • 

I 
• • I 
* 04 *->I 
* * I 

**** v 
#040304 •*• #040307 

04 * • *****DS********** 
•* *• * COPY COMMON * 

•* DATA ON *• NO DATA TEMP 
*•THE USED LIB .•~~~->* ROLL TO 

*• ROLL •* * USED LIB 
*• •* * FUNCTION ROLL * 

*• •* ***************** 
* YES 

I 
v .•. 

E4 *• 
•* *• 

•* INLINE *• NO 
*• FUNCTION *---, 

··.... . ... ·•· I 
*• •* v 

*- YES 

I 
v 

*****F4********** . . 
MARK GROUP 
FOR INL!NE 

FUNCTION 

**** . . 
* J3 * . . 

SPROG ALLOCATE 
ANO OUTPUT 

* . 

. . 
* H3 * . . 

**** 

******ES*********** 

* PRINT PARTIAL * 
LI-NE OF SPROG 

* LIST IF * 
REQUESTED 

****·IHI·******* 

I 
v 

******FS*********** 

PUNCH 
PART! AL ESD 

CARD 

************* 

I 
v 

****GS********* 

RETURN 



Chart CV. BUILD AND PUNCH NAMELIST TABLES 

G04-05 

****A2********* * BUILD 
NAMEL I ST 

* TABLE * 
*************** 

.•. 
t12 *• 

•* *• ****B3"** ******* 
•* DATA ON *• NO 

*• NAMELJST ,.•~~~->• 

*• NAMES •* 
RETURN 

•,.ROLL •* 
*· •* * YES 

*****C2** ******** 
FLIP 

*NAMELI ST NAMES * 
* AND NAMELIST * 
* ALLOCATION 
* ROLLS * 
***************** 

I 
v 

** * * * *02 **** ** ***** 
* PRINT HEADING * 

FDR NAMELIST 
MAP IF 

•• ~;~~~~!~~ •• 
I 

* **** * I 
* E2 •->I 
• • I 
**** v 

THE L!'ITTEP­
HOLDS THE 
ITEMS FROM 
THE NAMEL I 5 T 

LIST 

#040501 •*• #040505 
E2 *• *****E3********** 

•* DATA -If., COPY COMMON 
•* LEFT ON *• NO DATA TEMP 

*• NAMELIST .•~~~->* ROLL 
* • NAMES •* * TD NAMEL I ST 

*•ROLL •* * NAMES ROLL * 
*• •* * YES 

I 
v 

******F2*********** 
ENTER NAME + 

LDC IN MAP 
LINE PRINT 

IF LINE 
COMPLETE 

************* 

I 
v 

*****G2********** * PUT BASE ANO 
* DISPLACEMENT 

OF NAMELIST * 
* TABLE ON COM- * 
* MON DATA TEMP * 
***************** 

I 

I 
v 

*****H2********** 
* MOVE NAMELIST * 
* NAME AND 2 * * WORDS OF 0 TO * 
* CODE ROLL AND * 
* OUTPUT * 
*****•*•********* 

I 
* **** * l 
* J2 ·->I 
• • I 

**** v 
#040502 •*• 

J2 *• 
•*DATA ON*• 

•* NAMELIST *• NO 
* • ALLOCATION • *---, 

*• ROLL •* l 
*· •* I 

*· •* v * YES 

I 
v 

**** . . 
* 84 * . . 

**** . . 
* H4 * . . 

*******-II- -ll-·lHl--1- ***** 
I 

I 
v 

******F 3*********** 
PUNCH AND PRINT 

* REMAINING * 
INFO IF 

REQUESTED 

************* 
I 

I 
I 
v 

****G3********* 

RETURN 

THE NO 
ANSWER IN­

DICATES EITHER 
NO DATA OR 

A MARKER 

. . 
* 64 * . . 

#40506 
*****84********** 
* MOVE FIRST 4 * 

WORDS OF 
ITEM ENTRY 

* TO CODE ROLL 
* AND PUNCH 
***************** 

... 
C4 

. ,. *. 
.• *• NO 

*• VARIABLE AN .,•----. 
*• ARRAY •* J 

-11., ·* I 
*• • * v 

* YES **** 

I 
I 
I 
v 

*****04********** . 
MOVE ALL 

* DIMENSION * 
*FACTORS TO CODE* 
* ROLL * 
******•**** ****** 

I 
I 
v 

**** . . 
* J2 * . . 

**** . 
* H4 * . . 

*****H4********** . . 
*UPDATE PRCrGRAM * 
* BREAK -if 

**** . . 
* E2 * . . 

. . 
* J2 * . . 

Section 2: Compiler Operation 97 



Chart CW. 

98 

BUILD BASES 

G0438 

****A2********* 
* BUILD * 
* ADDITIONAL * 
* BASES * 

*************** 

**** I 
* * I 
* B2 *->1 * * **** v 
*****82********** 
* * * OBTAIN * 
*PRESENT PROGRAM* 
* LOCATION * 
* * ***************** 

I 
v 

•*• 
C2 *• 

•* *• ****C3********* 
•* MAX FOR *• YES * RETURN * 

*• LAST BASE .•·~~~~->* * 
*· ·* * * 

*• ·* *************** 
*· •* 

j"" 
v 

*****02********** 
* * * INCREMENT * 
*BASE ALLOCATION* 
* * 
* * ***************** 

v 
*****E2********** 
* * * REGISTER * 
* NEW BASE * 
* ALLOCATION * 
* * ***************** 

I 
v 

**** 
* * * 82 * 
* * 
**** 



chart ex. DEBUG ALLOCATE 

G0545 

****A24-********" 
DEBUG * 

* ALLOCATE . 
I 

* * I 
: 82 :->1 
**** v ... 

82 *• *****83********** 
·* *· * * •* DATA *• NO * INVERT 

*•ON INIT ROLL •*---->*THE SUBCHK ROLL* 
*• •* * 

*• •* 
*• ·* * YES 

I 
***************** 

I 
* **** * I 
* C3 *->I 
• • I 

v .•. 
C3 *• 

v 
*****C2********** 
* MOVE * * VARIABLE NAME * 
*OFF OF ROLL TO * 
* CENTRAL AREA * 

• * * • ****C4********* 

•* MATCHING *• NO 
*• GROUP ON *------, 

*• SCALAR •*• I 
•.ROLL ·* I *· •* * YES 

*****E2********** 
* • * SET THE !NIT 

BIT IN THE * 
SCALAR ROLL * 

GROUP * 
***************** 

I 
I< 
I 
I 
v 

·*· F2 .. 
•* *• 

I 
I 

•* MATCHING *• NO 
* • GROUP ON • *------, 

*• ARRAY •* ( 
•.ROLL ·* I 

•. (~ES I 

I I 
*****G2*~******** I 
* * I * SET THE INIT 

BIT IN THE 
ARRAY ROLL 

* GROUP * 
***************** 

I 
I 
I 

I<:----~ 

I 
v .•. 

H2 *• 
•* *• 

•* MATCHING *• NO 
*GROUP ON GLOBAL*--, 

•.DMY ROLL •* I 
*· ·* I * .. ·* v * YES 

I 

! 
I 
v 

*****.J2********** 
SET * 

*THE:. !NIT BIT IN* 
*THE GLOBAL DMY * 
* ROLL GROUP * . 
***************** 

**** . . 
* 82 * . . 

**** . . 
* 82 * . . 

•* DATA *• NO * * 
*• ON SUBCHK .. •---->* RETURN 

*• ROLL •* .. 
* ..... 

* YES 

*****D3********** 
* MOVE * * VARIABLE NAME * 
*OFF OF ROLL TO * 
* CENTRAL AREA * 

.•. 
E3 *• 

• * ... 
•* MATCHING *• NO 

*GROUP ON GLOBAL*--, 
•.OMY ROLL ·* I 

*• •* l 
*• ·* I 

* YES I 

*****F3********** 
* SET * 
*THE SUBCHK BIT * 
* IN THE GLOBAL * 

Ill 

*DMY ROLL GROUP * j 

=·······1·······: I 
I< 
I 
I 
v .•. 

G3 * • 
•* *• 

•* MATCHING *• NO 
*. GROUP ON • *----i 

*• ARRAY •* I 
*.ROLL ·* I 

*· ·* * YES 

*****H3********** . . 
*SET THE SUBCHK * 
* BIT IN THE * 

ARRAY ROLL 
* GRO\JP * 
***************** I 

I 
v 

**** . . 
* C3 * . . 

v 
**** . . 

* C3 * 
* • 

Section 2: Compiler Operation 99 



Chart 07. 

100 

PHASE 3 - UNIFY 

GOll l 

****A2********* . . 
* START UNIFY 

I 
G0145 V 

*****B2********** 
*ARY REF AL-DAA2* *-*-·-·-·-·-·-·-· * ALLOCATE * 
*GROUPS FOR ROLL* . . 
***************** 

:·::·:->! 
**** v ... 

C2 *• *****C3********** 
•* * • *COPY AREA FROM * 

•* DATA ON *• YES * RESERVE START I!· 
*• PROGRAM .,-11-~~~->•TO SCRIPT ROLL * 

*• SCRIPT •* * RESERVED AREA * 
*•ROLL •* * * 

*• •* ***************** 

ro 
#11106 v 

*****02********** . . 
* RESERVE * 
*PROGRAM SCRIPT * 
* ROLL * . . 
***************** 

: ·::· :->11 . . 
**** I v 

*****E2********** . . 
MOVE NEXT 

GROUP FROM * 
SCRIPT ROLL * 

***************** 

I 
v .•. 

F2 *• 
·* *• 

•* END *• YES 
*.OF ROLL DATA •*1 

*· •* 
*· •* *·.·:-ta v 

I * * I : A4 : 

v 
*****G2********** . . 
* REPLACE * 
*GROUP ON SCRIPT* 
* ROLL * . 
***************** 

I 
GO 115 V 

*****H2********** 
*DO NEST UN,OOA2* ·-·-·-·-·-·-·-·-· PROCESS 

NEST OP 
* LOOPS * 
***************** 

I 
v .•. 

. . 
* C2 * . . 

J2 *• *****J3********** 
·* *• * * •* LOOP TEMP *• NO * SET REQ LOOP * 

•.CNTS REQ LOOP.•~~~->*TEMP CNT = LOOP* 
*•TEMP CNT •* * TEMP CNT * 

*• •* 
*• •* * YES 

I 
v . . 

* E2 * . . . . 
* E2 * . . 

. . 
* A4 * . . 
I 
v 

"***"**A4********** . . 
* RELEASE 
*PROGRAM SCRIPT * 
* ROLL * 

*****B4********** . . 
SET UP 

POINTER TO 
*ARRAY REF ROLL * . . 
***************** 

• **** * I 
: C4 :->f 

**** v .•. G0113 
C4 *• 

•* *· 
•* POINTER *• YES 

*•OUTSIDE ROLL ,.-11-~~~->• 

*• •* *· •* 
*• •* 

* NO 

I 
v 

*****D4********** . . 
*SET REG RUNG = * 
*4 AND INCREASE * 
* POINTER * . 
***************** 

GOl 12 
*****E4********** 
*CNVT/FORMT-DCA2* ·-·-·-·-·-·-·-·-· CONSTRUCT 
* INSTRUCTION * 
* FORM.FOR REG2 * 
***************** 

I 
v 

*****F4********** . . . . 
* INCREASE REG * 

RUNG BY 4 

I 
G0112 V 

*****G4********** 
*CNVT/FORMT-DCA2* 
·-·-·-·-*-•-•-*-* 
*CONSTRUCT INST * * FORMAT FOR * 

REGISTER 2 * 
***************** 

. . 
* C4 * . . 

****C5********* 
CONVERT TO 
ADDR CONST 

DBA2 



Chart DA. BUILD ARRAY REF ROLL 

G0145 

****A2********* 
* ARRAY REF * 

ROLL 
ALLOTMENT 

*************** 

x 
*****B2********** 
* GET * 
* BEGINNING * 

ADDRESS OF * 
*ARRAY REF ROLL * 

x 
*****C2********** 
* * GET ADDRESS * 
* OF PARSE SAVE * 

AREA 

x ·*· 
*****D2********** 03 *· 
* .*NO. OF *· ****04********* 
* GET NUMBER • ·* ENTRIES *· YES * 
*OF ARRAY REF *••••••••X*. EQUAL ZERO •*••••••••X* RETURN 
* ROLL ENTRIES *• ·* 

* * * EZ *•.. . * * . x ••••••••••••••••••••••••• 
**** . #14501 x 

*****EZ********** 

* LOAD GROUP * 
•INDICATED WITH * 
*I NI Tl AL ZEROS 

x ·*· 
*****F2********** F3 *· 
* ·* ALL *· ****F4********* 
* INDEX TO .• ENTRIES •. YES 

NEXT ENTRY *••••••••X*. PROCESSED .• •••••••• X* RETURN * 
* POl~T ON ROLL • *· .• * 

* *· ·* *************** 
***************** * ... * 

* NO 

x 
**** 

* * * EZ * 

Section 2: Compiler Operation 101 



Chart DB. 

102 

MAKE ADDRESS CONSTANTS 

GOl 13 

****A2********* * CONVERT TO * 
ADR CONST 

·-•************* 

I 
v 

*****82********** . . 
*SET UP POINTER * 
* FOR LOOP * * CONTROL ROLL . 
***************** 

: ·::· !->! . . 
•••• v 

iOl 1301 •*• 
C2 *• *****C3********** 

•* *• * * 
•* POINTER *• YES * SET UP DATA * 

*•OUTSIDE ROLL .•~~~->*AND INITIALIZE * 
*• •* * FOR GEN * 

*· •* 
*• •* 

ro 
v 

*****02********** • * 
I 
v 

****03*********· 
* • 

INCREASE 
POINTER 

. 
* * * ***************** 

I 
v 

*****E2********** 
* * * MOVE * 
*BASE INFO TO WO* 
* * * ***************** 

l 
v ... 

F2 *• 
•* *· 

•* REFER TO *• YES 

. 
* 

IEYGEN 

*• TEMP ANO .•·-------~ 
*• CONST •* I 

•.ROLL •* I 

·:i:;" II 

G2 *• 
·* *• 

•* GENERAL *• YES >I *• REGISTER .•·--------
*• ·* 

····i·;;· I 

v I ... 
H2 *• 

•* *• 
•* *• YES 

*•TAG FIELD = O.•--------> 

·····r··· I 
•*• :jl:Ot 1302 v 

* 
* 

J2 *• *****J3********** 
•* WORD *• * * •* EQUAL TO *,. YES * 

*• OR LARGER •*~~~->• PRUNE wfO 
*• THAN 0 •* * 

*• •* 
*• •* * NO 

************•**** 

I 
v 

**** 
* * * A4 * * • 

I 
v 

**** . . 
* C2 * 
* * 

**** . . 
* A4 * . . 

**** 

I 
#011303 v 

*****A4********** 
* • 
*FOR dASE {EVEN * 
* CODE * * DISPLACEMENT) * 
* IN DATA 3 * 
***************** 

I 
v ... 

84 *• 
•* *• 

•*GRP fJ.ATCHES*• YES 
*.ON ADR CONST .*-, 

*• ROLL •* I 
*• •* I 

*· •* v * NO 

I 
v 

*****C4********** . . 
*SET POINTER TO * 
* NEW GROUP ON * 
:ADR CONST ROLL : 

***************** 

I 
v 

*****04********** 
* • * PLACE BASE AS * 
*NEW GRP ON AOR * 
* CONST ROLL * 
***************** 

I 
v 

*****E4********** 
*INCREASE PTH BY* 
* TEMP LOC FOR * 
*LOOPS BY 4 AND * 
* PUT ON ADR * 
* CONST * 
***************** 

I 
• • I 
* F4 *->I • • I 

:fi:11304 v 
*****F4********** * REPLACE BASE * * WITH TEMP PTR * 
* ON LOOP * * CONTROL ROLL 

* ***************** 

I 
v 

**** . . 
* C2 * . . 

**** 

THE WORD 
DOES NOT 
CONTAIN AN 
AREA CODE 
AND DISPLACEMENT 
INDICATING A 
NEED FOR A 
TEMPORARY 
LOCATION 

• * 
* F4 * • * 



Chart DC. CONSTRUCT INSTRUCTIONS 

G0112 

****A2********* 
* CONVERT TO * 
* INST FORMAT 
* *************** 

I 
v 

*****82********** 
* GET * * REG RUN OFF 
*ARRAY REF ROLL * 
* FROM POINTER * 

* ***************** 

I 
v 

·*· 
C2 *• 

•* *• ****C3********* 
•* GENERAL *• NO * * 

*• REG. NOTED .•~~~~>* RETURN * 

*• •* 
* YES 

I 
v 

*****D2*W******** 
* * * MASK * 
*REG. RUNG VALUE* 
* * 
* ***************** 

I 
v 

*****E2********** 
* PLACE * 
* VALUE IN R2 * 
* POSITION FOR * * INSERTION ON * 
* ROLL * 
***************** 

I 
v 

•*• 
F2 *• 

•* Rl *• R2 *·.. g~ .• ·*----,1 
*• ·* 

*• ·* v 
* Rl **** 

l 
v 

*****G2********** 
* * * SHIFT * * VALUE TO Rl * 
* POSITION * 
* * ***************** 

**** I 
: H2 =->1 * * 
**** v 

*****H2********** 
* * *INSERT VALUE IN* 
* ZERO RUNG OF * 
*ARRAY REF ROLL * 
* * ***************** 

I 
v 

****J2********* 
* * * RETURN 
* *************** 

* 
* 

* * * H2 * 
* * 
**** 

* * *************** 

Section 2: Compiler Operation 103 



Chart DD. 

104 

PROCESS NESTED LOOPS 

G0115 

****A2********* . . 
* DO NEST UNIFY * 
* • 

*************** 

! 
* * I * B2 *->I 
* * I 

I 
v 

*****82********** 
• * 
*INITIA~IZE LOOP* 
* TEMP CNT ANO * * NEXT LEVEL . 
***************** 

I 

• * 
* A3 * 
* • 
**** 

I 
v 

*****A3********** . . 
RESERVE 

NEST SCRIPT 
ROLL 

***************** 

I 
v 

*****83********** . . 
COPY SCRIPT 

*ROLL ONTO NEST * 
* SCRIPT ROLL * 
• * 
***************** 

I 
v ... v 

*****C2********** 
* * * PLACE IND. * 

C3 *• *****C4********** 
•* *• *SET OUTER LOOP * 

•* NEST *• YES * CONTROLS AND 
*VAR. COEFF. OF * 
·• NEST IN WO * 

*• LEVEL =1 .•~~~->* DETERMINE 

***************** 

I 
v 

*****D2********** . . 
* CONVERT * * ARRAY OFFSETS * . . 
***************** 

I 
v 

*****E2********** * COMPARE * * NEST LEVEL OF * 
* LOOP WITH * * PREVIOUS NEST * 
* LEVEL * 
***************** 

I 
* * I 
: F2 :->1 
**** v 

:fl:011502 •*• 
F2 *• 

*• •* 
*· •* 

*• •* * NO 

I 
v 

*****03********** 
* PLACE INITIAL * 
*REG. COUNT AND * 
* IND. VAR. * 
*COEFF. ON NEST * 
* SCRIPT * 
***************** 

I 
v 

**** 
• * 
* B2 * * • 

•* IS *• **** 
•* NL2 * • NO * * *• LESS THAN •*-->* H2 * 
*• NLl •* 

*• •* 
*· •* * YES 

I 
v ·*· #011504 

G2 *• *****G3********** 
•* *• * * 

•* NL2 *• YES * PLACE IND VAR * 
*• NOT EQUAL .+~~~->*OF INNER NESTED* 

*• TO NLl •* * LOOP IN WO * 
*• •* 

*· •* 

: •::• :-> •
1 

NO 

**** 
:#-o 11so3 v 

*****H2********** . . 
SET 

NEST LEVEL 
* INDICATOR . 
***************** 

I 
*****J2*~******** 
* " PLACE NEST 
* LEVEL ON * 
*PROGRAM SCRIPT * 
* ROLL' * 
***************** 

I 
v . . 

* A3 * * • 

***************** 

I 
I 
v 

*****H3********** . . 
PLACE NEST 

* LEVEL ON * 
*PROGRAM SCRIPT * 
* ROLL * 
***************** 

I 
v 

*****J3********** . . 
* PUT IND * 
*VAR COEFFICIENT* 
* IN Wl * 
***************** 

! 
v 

**** 
• * 
* F4 * * • 

* SCRIPT 
* ALLOCATION * 
***************** 

I 
v 

****D4********* . . 
RETURN 

* **•************ 

* • * F4 *--, • • I 
v 

*****F4********** 
* * * PUT POINTER * 
* TO ARRAY. * 
* OFFSET IN WO . 
***************** 

I 
v 

*****G4********** . . 
DETERMINE 

SCRIPT 
ALLOCATION 

I 
v 

*****H4********** 
* SET * 
* AVAILABLE * 
*REGISTER COUNT * 

FOR SCRIPT * 
* EXPRESSION * 
***************** 

I 
v .•. 

J4 *• *****JS********** 
·* *· * * •* MORE *• YES *SET NEST LEVEL * 

*•NESTED LOOPS .+---->*TO PROCESS NEXT* 
*• •* * LOOP * 

*• •* • 
*• •* ***************** 

• NO I 
I 
v v 

* * * F2 * . . **** . . 
* F2 * • * 



Chart 08. 

START GEN 

GEN PROCESS 

PHASE 4 - GEN 

G0491 

****A2********* 
* IEYGEN 

*****B2********** 
* * 

INITIALIZE 

G0499 
*****C2********** 
*ENT CD GEN-EAA2* 
*-*-*-*-*-*-•-·-· * PRODUCE CODE 
* FOR HEADING * 
* AND ALL ENTR. * 
******* ** ******** 

I 
! 

G0504 V 
*****02********** 
*PROLOG GEN-EBA2* 
*--ll---ll---ll---ll---ll---11---11---ll-

PRODUCE ALL 
RE QUI RED 

* PROLOGUE CODE * 
***********•***** 

GO SOB 
*****E2********** 
*EPILOG GEN-ECA2* ·-·-·-·-·-·-•-*-* PRODUCE 
* REQUIRED * 
* EPILOGUE CODE * 
***************** 

I 
* * I * F2 *->I 
* * I 

I 
G0712 v 

*****F2********** 
*GET POLISH EDA2* 
*-*-*-*-*-*-*-*-* 

MOVE POL I SH * 
FDR STMT TO 
POLISH ROLL * 

***************** 

I 
I 
v 

*****G2********** 
* MOVE * 

STMT NUMBER 
*FROM POLISH TO * 
* STORAGE * 

I 
v 

*****H2********** 
* * *MOVE NEXT GROUP* 
* FROM POLISH * 
* ROLL TO WORK 
* ROLL 
***************** 

I 
v ... 

J2 *• 
·* *• 

•* *• NO 

POLISH 
NOTATION 
IS ON AFTER 
POLISH ROLL 

*.LABEL POINTER.*--, 

~-.. • .. ·* I 
*· •* v 

* YES **** 
I * C4 : 
v * * 

* • 
* A4 * * • 

G0493 

* * * A4 * . . 
*** **A4********** 
*LBL PROC - EFA2* 
*-*-*-*-*-*-*-*-* * REMOVE AND * 

PROCESS 
* LABEL * 
***************** 

*****84********** 
* * 

*****85********** 
* *MOVE NEXT GROUP* INDICATE 

FROM POLISH *---->* STATEMENT * 
* ROLL TO WORK *NUMBER ON CODE * 
* ROLL ROLL 

i 
* C4 *---, I 
• * I<------------, 

G0515 V 
*****C4********** 
* STA GEN-EGA2 * 
*-*-*-*-*-*-*-*-* 
*GEN OUJECT CODE* 
*FOR STMT IF END* 
* STMT TERM PHS * 
***************** 

I 
G0496 V 

*****04********** 
*STA GENFIN EHA2* 
*-*-*-*-*-*-*-*-* 
* GEN CODE FDR * 
*DO CLOSE RESET * 
* TEMP PNTRS * 
***************** 

i 
I 
v 

**** 
• * 
* F2 * 
* * 

Section 2: 

CODE IS 
PRODUCED 
ON THE CODE 
ROLL 

Compiler Operation 105 



Chart EA. 

106 

GENERATE ENTRY CODE 

G0499 

****A2********* . . 
* ENTRY 
* CODE GEN * 
*************** 

... 
82 *• *****83********** 

•* *· * * •* SOURCE *• NO * PUT MAlN * 
*•A SUBPROGRAM .-11----->*PROGRAM HEADING* 

*• •* * ON CODC ROLL * 
*· •* * 

*• •* 
* YES 

I 
#049901 v 

*****C2********** . . 
* INITIALIZE A * 
*POINTER TO THE * 
* ENTRY NAMES * 

ROLL 
***************** 

l 
v 

•*• 
02 *• 

·* *• •*NO. GROUPS *• YES 
*• ON ENTRY •*----, 

*·NAMES= 1.-11- I 

*****E2********** * BUILD A LABEL * * RECORD !NIT. 
* PGM LOC BUILD * * CODE TO EXIT * 

F-OR LABEL 
***************** 

I 

! 

I<----~ 

I 
#049902 v 

*****F2.****** **** . . 
* INSERT * 
*PROGRAM NAME IN* 
* CODE * 
***************** 

I 
I~ 
v 

*****G2 ********-** * PUT- CODE * 
FOR INI-TI-AL 

* SUBPROGRAM * 
* ENTRY ON * 

CODE ROLL 

***************** 

GENERATE 
*****HZ********** * GENERATE * 

ADDRESS * 
CON'S TANT *-

• FOR PROLOGUE 

:***!;~;;~~~;**** 
I 

l 
v 

***** J2 *****'* ** .... . 
BU-ILD SAVE 
AREA AD CON * 

* CODE FOR EXIT * . . 
**-**"********* **** 

I 
v . . 

* 64 * . . 

I 
I 

SET UP V 
*****C3********** 
* SET UP * 
* SAVE AREA 

LOCATION AT 
G:URRENT LDC 

***************** 

. . 
I 
v 

****D3********* . 
RETURN * . 

. . 
-II- 84 * . . 
.•. 

84 .... 
•* *• ****BS********* 

•* ALL •., YES * 
*• GROUPS .*---->* 

*•PROCESSED .. * 

*· ·* * NO 

I 
I 
I 
v 

*****C4********** . . 
* REDUCE 
*COUNT OF GROUPS* 
* TO PROCESS * 
***************** 

I 
* • I * D4 *->I 
• • I 

**** v 
#049903 •*. 

D4 *. 

RETURN 

•* * • ****D5********-I-
•* ALL *• YES * * 

*• GROUPS .•---->* RETURN 
*.PROCESSED•* 

*****E4********** . . 
* REDUCE 
*COUNT OF GROUPS* 
* TO PROCESS * 

I 
v 

**·lHl *F 4** ** ** **** . . 
* INSERT * 
* ENTRY NAME IN * 
* CODE * 
..... -••• ******* ****** 

I 

I 
v 

***"*"*G4*********"* . . 
* PUT CODE * FOR ENTRY ON 
* CODE ROLL 

***************** 

I 
v 

*****H4********** . . 
* BUILD INITIAL * 
* PROGRAM ENTRY * 

AD CON_ CODE 

*****"*"*********** 

I 
v 

***** J4********** . . 
GENERATE 
PROLOGUE 
+EPILOGUE 

* AD CONS * 
***************** 

* • 
* 04 * . . 



Chart EB. PROLOGUE CODE GENERATION 

G0504 

****A2********* . 
* PROLOGUE GEN * . . 
*************** 

I 
v 

***il-*82********** . . 
INITIALIZE * 
POINTER TO * 
ENTRY NAMES 

* ROLL * 
***************** 

I 
v 

*****C2********** 
*INITIALIZE CNT * 
*OF GROUPS TO BE* 
* PROCESSED ON * 

ENTRY NAMES 
* ROLL 
***************** 

:·::·:->! 
• • 1 
**** v 

#050401 •*· 
02 *• 

•* ALL *• ****03********* 
•* GROUPS *• YES * * 

*• PROCESSED .•~~~->* RETURN 
*• ·* 

*• •* 
*• •* 

* NO 

l 
v 

*****E2********** *****E3********** 
* * * BUILD A * * REDUCE COUNT * * LABEL * 
*OF GROUPS TO BE+~~~->*INSTRVCTION FOR* 
* PROCESSED * * PROLOGUE * 

. . 
* F2 *--, 
• * I 
**** I v 

*****F2********** 
*CONSTRUCT CODE * * FOR LOADING 
* ARGUMENTS. IF * 
* ANY * 

I 
I 
I 
I 
v 

*****G2*******•** * CONTRUCT CODE * 
*FOR COMPUTATION* 
* OF DUMMY * 
*DIMENSIONS. IF * 
* ANY * 
-II-**************** 

I 
v ... 

F3 *• 
.. * *• 

•* DEBUG *• NO 
*UNIT SPECIFIED .. *--, 

*• •* I 
*· ...... ·* I 

* YES I 

I I 
*****G3*~******** ,1 

* BUILD DEBUG * 
* LINKAGE, UNIT * I 
* c~g~ t~o cg~JT * 111 

* ROLL * 
***************** I 

I I 
l< 
I 
I 
v 

#50414 •*• 
H3 *• 

**** . . 
* 84 * . . 
l 
v 

*****B4********** 
* PUT LOCATION * 

OF CLOSE OF 
PROLOGUE IN 
ENTRY NAMES 

:**~~;;*~~~~~**** 

1 
# 05402 v 

*****C4********** *****CS********** 
* * * * 

UPDATt * CLEAR 
POINTER TO •~~~->* BASE REGISTER * 
ENTRY NAMES * * TABLE * 

ROLL 

I 
v . . 

* D2 * . . 
**** 

*****H2********** 
* CONSTRUCT * 
* CODE FOR 

•* *• **** 

* CLOSE OF 
PROLOGUE 

***************** 
I 

l 
v 

**** . . 
* 84 * . . 

•* SUbTRACE *• NO * 
*• SPECIFIED .,*-->* F2 * 

*• •* 
*• •* 

*· •* * Y-ES 

I 
I 
v 

*****J3********** 
* BUILD * 
* DEBUG LINKAGE * 
* AND SUE3TRACE * 
* ST ART CODE ON * 
* CODE ROLL * 
***************** 

I 
v 

**** . . 
* F2 * . . 

Section 2: Compiler Operation 107 



Chart EC. EPILOGUE CODE GENERATION 

. . 
* Gl * 

x 

G0508 

***·*AZ********* . . 
* EPILOGUE GEN 

•*• #050803 
82 *· *****B3********** 

•• $~BPROGRAM·*· YES : OBTAIN NO. 
*• ENTERING TO • *• •••••• ~X* OF GROUPS TO 

*• PROCESS ·* PROCESS 

x 
****•CZ********** 
* SET * * LABEL * 
•INSTRUCTION FOR* 
* MAIN PROGRAM * 

ENTRY 
***************** 

x 
*****DZ********** . . 
-11-BUI LO CODE FOR * 
* CLOSE OF 

EPILOGUE OF 
MAIN PROG 

***************** 

x 
***** E2 ********** . . 
* BUILD * 
* MAIN PROLOGUE * 
* CODE * 

x 
****FZ********* 

RETURN 

. . . 
* C3 -11-.X. . . 
**** #050801 ·*· 

C3 .. .. .. *****C4*****" **** . . 
•* ALL *• YES * PRUNE * 

*· GROUPS •*•• ....... X*LAST ENTRY FROM* 
*.PROCESSED.* * WORK ROLL * 

* •• * 
• NO 

x 
*****D3********** . . 
•SET BASE TABLE * 
*AS REQUIRED FDR* 
* EPILOGUE * 

x 
*****E3********** 
*BUILD INSTRUCT * 
* FOR DUMMY * 
*ARGUMENT VALUE * 
* TRANSFER * 

... 

x 
****D4********* 

RETURN 

iD50802 
F3 *· *****F4********** 

•* ENTRY *• * * **** 
•* DEFINED *• NO * PRUNE * * * 

*• AS SCALAR •*•••• •••• X*LAST ENTRY FRDM*••••X* Gl * 
*· •* * WORK ROLL * * * .. 

x 
*****G3********** 
* BUILD LOAD * 

INSTRUCT I ON 
AND CLEAR 

ACCUMULATOR . 
***************** 

. . 
* G4 *··· . . 

#0508~5* x 
****•G4********** . . 
•BUILD CODE FOR * 

CLOSE OF 
EPILOGUE OF 

:****;~~~~~~****: 

x 
*****H 1 *******"*** 

. . 
* Gl * . . *****H4********** . . BUILD DEBUG 

LINKAGE AND * * * 
SUBTRACE *••••X* G4 * 
END CODES * * 
!RETURNJ 

***************** 

108 

•DECREASE NUMBER• * * 
* OF GROUPS TO • •••• X* C3 * 
* PROCESS * * 



Chart ED. MOVE POLISH NOTATION 

G0712 

****A2********* 
* * * GET POLISH. * 
* * *************** 

I 
v 

*****B2********** 
* * *SET UP POINTER * 
*TO AFTER POLISH* 
* ROLL * 
* * ***************** 

I 
v 

*****C2********** 
* * * COPY_POLISH * 
* FOR STMT TO * 
* POLISH ROLL * 
* * ***************** 

I 
v 

*****02********** 
* * *UPDATE CONTROLS* 
* FOR AFTER * * POLISH ROLL * 
* * ***************** 

v 
****E2********* 

* * * RETURN * * * *************** 

Section 2: compiler Operation 109 



Chart EF. 

110 

PROCESS LABELS 

G-0493 

****A2*•******* 
• * 

LBL PROCESS * 
• * 

*************** 

I 
v 

*****B2********** 
* * * STORE POINTER * 
*TO LABEL JN STA* 
* LBL BOX * 
***************** 

I 

I 
v 

•*• 
02 *• 

•* ..... 
•* *• NO 

*• JUMP TARGET •*----i ·· ........ ·· I i VES I 

v 
*****E2********** 
* * * "CLEAR THE * * BASE REGISTER * 
* TABLE * 

* ***************** 
I r 

#049301 'fl 

*****F2********** 
* * * PUT LABEL * CODE ON CODE 
* ROLL 

***************** 

v 
•*• 

H2 *• 
•* *"· •* DATA *• NO 

*• ON AT •*--i 
*• ·ROLL •* I 

*• •* 
*• •* 

:*::·:->i YES 
**** v #49302 ...... 

J2 *• 
·* *• 

I 
v 

**** * • 
* C4 * . . 

•* AT *• NO 
*STMT. FOR THJS.*1 

*• LABEL •* 
*· •* *• •* v 

* YES **** 
J : C4 : 

v * * 
**** • * 

* 53 * 
* * 

**** 
* * * 83 ... 
• * 
**** 

1 
v 

*****83********** 
*MAKE LABEL F-OR * 
*DEBUG CODE-PUT * 
*BRANCH ON C.QOE * 
* ROLL * 
***************** 

I 
v 

*****Cl********** 
*PUT POINTER TO * * MADE LABEL ON * 
* AT ROLL-WOf~O * * 2 OF G.ROUP 

***************** 

I 
v 

*****03********** * MAKE LABEL * 
*FOR .NEXT INST- * 
* RUCTION - PUT * 
* LABEL COOE ON * 
* CODE ROLL * 
***************** 

I 
I 
v 

*****E3********** 
*PUT POINTER TO * 
* MADE LABEL ON * 
* AT ROLL-WORD * * 3 DF GROUP 

***************** 

l 
v 

*****F3********** . . 
* CLEAR WORD 1 
* OF AT ROLL 

GROUP 

*********'******** 

I 
v 

**'** * • 
* J2 * 
* * 

FIRST -WORD 
OF AT ROLL 
GROUP -IS 
COMPARED WITH 
STA LBL BOX 

#49305 

**** 
* * * C4 * 
* * **** 

l 
v .•. 

C4 *• 
•* *• ****CS********* 

•* TRACE *• NO * * 
*• SPECIFIED .•~~~->* RETURN * 

*• •* * 
+. •* *************** 

*• •* 
rES 

v 
*****04********** * PlJT DEBUG * * L l 1'4KAGE FOR * * TRACE ON CODE * 
* ROLL * . 
***************** 

l 
v 

*****E4********** 
* * * PUT BI NARY 

LASEL ON 
CODE ROLL * . 

***************** 

I 
v 

****F4********* * • 
RETURN 



Chart EG. GENERATE STMT CODE 

G0515 

****A2********* 
* * 
* STA GEN * 
* * *************** 

I 
v 

•*• 
62 *· 

•* STMT *• 
•* FUNCTION *• YES 

*• MADE LABEL •*-------, 
*• PTR = 0 •* I 

*• •* 
*• •* 

.. 'i;!;::.. I 
•* FUNCTION *• YESV 

*• DRIVER ON •*-------, 
*• WORK ·* I 

.... ::::i::'.:....1 I 
* BUILD * * CODE FOR * 
* STATEMENT * 
* FUNCTION MADE * 
* LABEL * 
***************** 

l<-
1 

#051502 v 
*****E2********** 
* * * GENERATE * 
* CODE FOR * 
* STATEMENT * 
* * ***************** 

v 
****F2********* 

* * 
* *" 

RETURN 

*************** 
* 
* 

THE JUMP TO 
APPROPRIATE 
CODE GENERATION 
THE CONTROL 
DRIVER IN WO 
AND THE STA 
RUN TABLE. 

G0544 

****A4********* 
* TERMINATE * * PHASE 
* * *************** 

I 
v 

*****B4********** 
* * * PREPARE * 
*FOR EXIT PHASE * 
* * 
* * ***************** 

I 
v 

***** 
*09 * 
* A2* 
* * 
* 

TO PHASE 5-
EX IT 

Section 2:- Compiler Operation 11:1 



Chart EH. 

112 

COMPLETE OBJECT CODE 

G0496 

****A2********* 
* STA GEN * 
* FINISH * 
* *************** 

I 

**** I 
* * * B2 *->I 
* * I **** v 

#049603 •*• 
82 *· 

•* DATA *• 

* 

•* ON DO *• NO 
*• LOOPS OPEN •*----i 

*• ROLL •* I 
*• ·* 

*• •* v 
* YES **** 

I 
v 

*****C2********** 
* * * MOVE * 
*GROUP OFF ROLL * 
* * 
* * ***************** 

I 
v 

* * * E3 * 
* * **** 

•*• #049601 
02 *· *****03********** 

•* *· * * •* POINTER = *• NO * * 
*•LABEL OF THIS.•·~~~~->* REPLACE OROUP * 

*• STMT •* * ON ROLL * 
*• •* 

*· ·* * YES 

I 
v 

*****E2********** 
* * * CONSTRUCT * 
*DD CLOSING CODE* 
* ON CODE ROLL * 
* * ***************** 

I 
v 

**** 
* * * 82 * 
* * **** 

* * ***************** 
**** I 

* * I * E3 *-> 
* * I **** I 

#049602 v 
*****E3********** 
* * * RESET TEMP * 
* POINTERS AND * 
* ACCUMULATORS * 
* ***************** 

I 
v 

****F3********* 
* * 
* 
* 

RETURN 

*************** 
* 
* 



Chart 09. PHASE 5 - IEYEXT 

G0381 

****A2*•******* . . 
EXIT PASS 

*****B2"********** . 
* INITIALIZE . 

v G0382 
*****CI********** *****C2********** 
*PCH NMLMPV-FLA2* *PCH TMP/CN-FAA2* 
*-*-*-*-*-*-*-*-* *-*-*-*-*-*-*-*-* 
*PCH NMLIST TBL •~~~->* PCH TEMP STGE * 
* WORDS HLDNG. * * ANO CONSTANT * 
* POINTERS * AREA 
**~************** ***************** 

G0383 v 
*****E2********** 
*PCH ADCON- FBA2* 
•-•-*-*-*-*-*-*-* * PCH RLD CARDS * 
* FOR TEMP AND * 

CONST AREA * 
***************** 

.•. 
F2 *• 

•* *· 
•* OBJECT *• NO 

*• LISTING •*-----, 
*·REQUESTED.* I 

*• •* 
*• ·* * YES 

••••••G2*!......... II 

PRINT 
HEADING FOR I 

••• ~::::::... I 

I< 
G0884 V 

*•***HZ********** 
*PCH CD RL- ***** 
*-•-•-*-*-*-*-*-* 
*PCH ALL OBJECT * 
* CODE AND LST * 
* PCH RQD ESDS * 
***************** 

I 
v 

*****J2********** 
*RECORD STORAGE * 
* REQUIRED FOR * 
* OBJECT MODULE * 
* AND PRINT MSG * . . 
***************** 

I 
v 

**** 
* • 
* A3 * . . 

**** 

**** . . 
* A3 * . . 
I 

G0399 V 
*****A3********** 
*PCH BSE RL-FDA2* 
•-•-*-*-*-*-*-*-* 
* PCH OBJ MOD. * 
*BASE TABLE1REC.* 
* RLD INFO * 
***************** 

G0400 
*****B3********** 
*PCH BR RL- FEA2* 
*-*-*-*-•-·-·-·-· 
*PCH OBJ MODULE * 
*BR TABLE.RECORD* 
* RLD INFO * 
***************** 

I 
I 
I 
v .•. 

C3 *• 
•* *• 

•*SUBPROGRAM *• NO 
*. ARGUMENTS • *---, 

*• •* I .. .. 
*· ·* 

YES 

G0402 
*****D3********** 
*PCH SP ARG-FFA2* ·-·-·-·-·-·-·-·-· *PCH SUBPRGR ARG* 
* LISTS RECORD * 

: ••• ~;~.!~~~***** 

G0403 
*****E3********** 
*PCH GBL SP-FGA2* ·-·-·-*-·-·-·-·-· * PCH SUBPRGR 
* ADDR AND RCD 

RLD INFO 
***************** 

G0404 
*****F3********** 
*PCH LIB RL-FHA2* ·-·-·-·-·-·-·-·-· * COMPL SUBPRGR * 
* ADRESSES AND * 
* RECORD RLD * 
***************** 

G0405 
*****G3********** 
*PCH AD CON- FI A2* 
-ll---ll--•-·-·-·-·-·-* 
* PCH AOR CONST * 
*AND RECORD RLD * 

INFO * 
***************** 

I 
G0416 V 

*****H3********** 
*PCH RLD RL-F JA2* 
·-·-·-·-·-•-*-*-* 
*PCH OBJECT MOO * 
* RLD CARDS * . 
***************** 

I 
I 

G0424 V 
*****J3********** 
*PCH END CO-FKA2* ·-·-·-·-·-·-·-·-· * PUNCH OBJECT 
*MODULE END CARD* . . 
***************** 

I 
v 

**** . . 
* 84 * . . 

I 
I 

I 

I 

. . 
* 84 * . . 

**** 

! 
v 

*****84******•*** . . 
* RELEASE ROLLS * 

! 
v ..... 

*03 * 
* A2* TO INVOCATION 

* * PHASE . 

Section 2: compiler Operation 113 



Chart FA. 

114 

PUNCH CONSTANTS AND TEMP STORAGE 

G0382 

****A2********* * PUNCH TEMP * 
*AND CONST ROLL * 
* * *************** 

v 
*****82********** 
* * * INITIALIZE * 
* LOCATION * 
*COUNTER AND TXT* 
* CARD * 
***************** 

I 
v 

*****C2********** 
*· * * INITIALIZE * 
*POINTER TD TEMP* 
*AND CONST ROLL * 
* TOP * 
***************** 

: ·::·=->I. 
* * **** v 

#038201 ·*· 
02 *• 

•* *· 
******03*********** 

•* ROLL *• YES * PUNCH * 
*• PROCESSED •*~~~~-> ANY PARTIAL 

*• •* CARO 
*• ·* 

*• •* i NO 

I 
v 

*****E2********** 
* * 
* 
* 
* 
* 

INCREMENT 
POINTER 

* 
* 
* 
* ***************** 

I 
v 

*****F2**********. 
*MOVE NEXT GROUP* 
* FROM ROLL TO * 
~ BUFFER, PUNCH·* 
* IF CARD * 
* COMPLETE * 
***************** 

I 
v 

**** 
* * * 02 * 
* * 
**** 

************* 

I 
v 

****E3********* 
* * * RETURN * 
* * *************** 

PUNCH PARTIAL 
TXT CARD 



Chart FB. PUNCH ADR CONST ROLL 

G0383 

****A2********* 
* * * PUNCH AOR * 
* CONST ROLL * 
*************** 

I 
v 

*****B2********** 
* DETERMINE BE- * 
*GINNING ADR OF * 
* TEMPORARY STG * 
* AND CONST * 
* AREA * 
***************** 

:·::·=->I 
* * **** v 

#038301 •*• 
C2 *• 

•* *• ****C3********* 
•* DATA *• NO * * 

*•ON ADR CONST •*-~~~~>* RETURN * 
*• •* * * *• •* *************** 

*· •* 

j'" 
v 

*****02********** 
* INITIALIZE * 
* LOCATION * * COUNTER FROM * 
* POINTER ANO * 
* BEGINNING ADR * 
***************"** 

v 
*****E2********** 
* PLACE AREA * 
* CODE FROM * 
* ADR CONST * 
* ROLL ON * 
* RLD ROLL * 
***************** 

v 
*****F2********** 
* * * SET LDC CTR * 
*INTO RUNG 1 OF * 
* RLD ROLL * 
* * ***************** 

I 
v 

*****<i2********** 
* PUT LOCATION * 
* FROM ADR * 
* CONST ROLL * 
* IN OUTPUT * 
* AREA * 
***************** 

v 
******H2*********** 

* PUNCH PARTIAL * 
CARD 

* 
************* 

I 
v 

**** 
* * * C2 * * .. 
**** 

* 

WO TO TXT CARO 

PUNCH PARTIAL 
TXT CARO 

Section 2: Compiler Operation 115 



Chart FC. 

116 

PUNCH OBJECT CODE 

G0384 

****A2********* 
* * PUNCH 
* CODE ROLL * 
*************** 

*****B2********** 
* lNITIALIZE * 

LOCATION 
COUNTER + 
CODE ROLL 

POINTER * 
***************** 

I 
.. ****,._I 
* C2 *->I 
* * I 
**** v .•. 

C2 *• 
•* *• 

•*DATA STILL *• NO 

******C3* ********** 

*• TO BE •*----> 
PUNCH ANY 
REMAINING 

*PART I AL CARD * *•PROCESSED.* 
*• •* 

*• •* * YES 

I 
v 

*****02********** 
GET * 

NEXT 
INSTRUCTION 

* ***************** 

I 
v .•. 

************* 

I 
I 
v 

****03********* • * 
RETURN 

E2 *• *****E3********** 
•* *• * * 

• * A * • YES * * 
*• *• S~C~§~~NT •* .-11---->:STDRE ~~MIN STA:1 

*· •* * * I 
*. . * ***************** v * NO **** 

I * * I * C2 * 
I • • 
v .•. 

F2 .. ******F3*********** 
•* *• 

**** . . 
* 84 * 
* * 

... 
84 *· *****85********** 

•*ADDRESS•. * 
•* CONSTANT *• YES STORE 

*• DEFINITION •*---->* LOCATION 
*• •* * COUNTER 

*• •* * 
*• •* ***************** 

L'o J 
v .•. 

C4 *• *****CS********** 
•* A *• * DEFINE LABEL * 

•* LABEL *• YES * ON BRANCH * 
*• INSTRUCTION .•---->* TABLE ROLL I= * 

*• •* * NECESSARY PUT * 
*• •* * IN LIST AREA * 

*• •* * NO 

I 
v 

** ****D4 *********** 

* MOVE INSTR TO * 
OUTPUT AREA 

*PUNCH IF FULL* 

************* 
I 

I 
v 

**** . . 
• C2 * . . 

*****F4********** 
* REINITIALIZE * 

**** . . 
* C2 * . . 

• * A *• YES * PUNCH ANY 
REMAINING 

*PART I AL CARD * 

* *LOCATION COUNTR* 
*•PROGRAM BREAK.•----> 

*• ·* 
---->* TO lST FULL *---, 

*WORD AFTER TEMP* I .. .. 
*· .. 

* NO 

I 
I 
v .•. 

G2 .. ******G3*********** 
•* *• 

•* *• YES *MOVE TO OUTPUT * 
*• A CONSTANT .•----> AREA PUNCH IF ---, 

*· •• •* •* *CARD COMPLETE* I 
*· ·* ************* v 

* NO 

I 
v .•. 

H2 *• 
•* *• 

•* AN *• YES 

***** *H3********** * 
MOVE DATA TO 

OUTPUT AREA 
PUNCH JF 
COMPLETE 

*• INSTRUCTION •*----> 
*· •* *• •* 

*· ·* * NO 

I 
v .•. 

J2 .. ****** J3* ********** 

•* *• YES * 

. 
* C2 * . . 

**** . . 
* C2 * . . 

*•LIST FLAG ON .•----> LIST CODE 
*• ·* 

*· •* I 
*• •* ************* 

* NO 

I 
v 

**** . . 
* B4- * . . 

v 

* • 
* 84 * . . 

* + CONST AREA * 
***************** v 

**** . . 
* C2 * . . 



Chart FD. 

SWEEP BASE 
BRANCH ROLL 

PUNCH BASE TABLE 

G0399 

****A2********* 
* PUNCH * * BASE ROLL * 
* * *************** 

I 
v 

*****B2********** 
* * * INITIALIZE * 
* BASE TABLE * 

LOCATION * 
COUNTER * 

***************** 

I 
v 

*****C2********** 
* * * INITIALIZE * 
*POINTER TO BASE* 
* TABLE ROLL * 
* * ***************** 

I 
v 

*****02********** 
* * * INITIALIZE * 
*TXT CARD BUFFER* 

* * 
* * ***************** 

**** ' * * I * E2 *-> 
* * I 
**** v 

G0400 •*• 
E2 *• 

•* *• 
******E3*********** 

•* ALL *• YES PUNCH 
*• ROLL .•-----> ANY PARTIAL 

*•PROCESSED.* * CARD * 
*• •* 

* NO 

I 
v 

*****F2********** 
* * * INCREMENT * 
*POINTER TO ROLL* 

* * 
* * ***************** 

I 
v 

*****G2********** 
* * * RECORD ESD * 
* + LDC COUNTER * 
* ON RLD ROLL * 
* * ***************** 

I 
v 

*****H2********** 
* * * MOVE GROUP TO * 
*BUFFER PUNCH IF* 
* CARD COMPLETE * 
* * ***************** 

I 
v 

**** 
* * * E2 * 
* * 
**** 

************* 

I 
I 
v 

****F3********* 
* * * RETURN * 
* * *************** 

section 2: compiler Operation 117 



Chart FE. 

SWEEP BASE 
BRANCH ROLL 

118 

PUNCH BRANCH TABLE 

G0400 

****A2********* 
* PUNCH * * BRANCH ROLL * 
* * *************** 

I 
v 

*****82********** 
* .. * INITIALIZE * * BRANCH TABLE * 
* LOC COUNTER * 
* .. 
***************** 

I 
v 

*****C2********** 
* * * INITIALIZE * 
* POINTER TO * 
* BRANCH T.ABLE * 
* ROLL * 
***************** 

v 
*****02********** 
* * * INITIALIZE * 
*TXT CARO BUFFER* 
* * 
* * ***************** 

**** 1 
: E2 !->j 
* * **** v 

11040001 •*• 
E2 *• 

•* *· 
******E3*********** 

•* ALL *• YES ~ PUNCH * 
*• ROLL •*·-----> ANY PARTIAL 

*•PROCESSED.* * CARD * 
*• •* 

* NO 

I 
v 

*****F2***~****** 

************* 

I 
v 

****F3********* * * * INCREMENT * * * *POINTER TO ROLL* 
* 
* 

.. 
* ***************** 

I 
v 

*****G2********** 
* * * RECORD ESO * 
*AN-0 LOC -COUNTER-* 
* ON RLO ROLL * 
* * ***************** 

v 
*****H2********** 
* MOVE * * GROUP TO * * BUFFER. PUNCH * 
* IF CARO * 
* COMPLETE * 
***************** 

J 
v 

**** 
* * * E2 * .. * 
**** 

.. 
* 

RETURN 

*************** 
* 
* 



Chart FF. PUNCH SUBPROGRAM ARGUMENT LISTS 

G0402 

****A2********* * PUNCH 
SPROG ARG 

ROLL 

I 
v 

*****82********** 
*INITIALIZE LDC•* 
* COUNTER, TXT * * CARD OUTPUT 

AREA AND 
POINTER 

***************** I 
* **** * I 
: C2 :->1 
**** v 

:jf40201 •*• 
C2 *• ******C3* **** * ***** 

·* *· •* ALL *• YES 
*• ROLL •*----> 

+.PROCESSED.+ 

*• •* * NO 

I 
v 

*****02********** 
* * * INCREMENT * 
*POINTER TO ROLL* 
* 
* ****•************ 

I 
v 

•*• 

PlJNCH ANY 
REMAINING 

*PARTIAL CARD * 

I 
v 

****03********* 
* * RETURN 

E2 *• *****E3********** 
•* *• * MOVE GROUP * 

•* *• YES * TO TXT 
*• *• GROUP=O •* .+---->: O~G~~~ ~~EA :1. 

*• •* * CARO COMPLETE * I 
*• * .~0 ******* .. •*•****** v 

I * * I : C2 : 

v 
# 40203 •*• 

F2 *• ***'**F3+++++4++++ 
•* *• * * 

•* TEMP *• YES * COMPUTE *• AND CONST ,.+---->+ APPROPRIATE 
*• POINTER •* LOCATION 

*· •* 
*• •* * NO 

l 
#040204 v 

*****G2********** 
* * COMPUTE 

APPROPRIATE 
LOCATION 

***************** 

I 
········1········ I 

l<c--------'I 
I 
v 

*****H2********•+ 
* * 
* * *RECQRD RLD INFO* 

* 
************"**•** 

I 
v 

*****J2********** 
* * INSURE 
* ,.MINUS 1 TAG 
* MARK 

***************** 

I 
v 

*****K2*-********* 
• * 

MOVE 
*DATA TO OUTPUT *-----, 
: AREA W ~ 

***************** v 

* * C2 * 
* * 

PUNCH 
PARTIAL 
TXT CARD 

Section 2: Compile.r Operation 119 



Chart FG. 

120 

PUNCH SUBPROGRAM ADDRESSES 

G0403 

****A2********* * PUNCH * * GLOBAL SPROG 
ROLL 

*•************* 

I 
v 

*****82********** . . 
* FLIP THE * GLOBAL SPROG 
* ROLL 

***************** 

l 
v ... 

C2 *• 
•* *• ****C3********* 

•* DATA *• NO 
*• ON THE ROLL .•~~~->* RETURN 

*• •* * 
*• •* *************** 

*• •* 

**** . . 
* B4 * . . . ...... 
I 

#040302 v 
*****d4********** 
* * STORE 
*LOCATJON ON RLD* 
* ROLL * . 
***************** 

I 
i040304 v 

*****C4********** 
* MOVE * 

0 TO OUTPUT 
*AREA, PUNCH IF * 
* CARD COMPLETE * 

i YES 1 
v •*• 

*****D2********** 04 *• 
* * •* *• * TURN OFF * •* DATA *• NO 

******05*********** 

* SUBPROGRAM * *• ON THE ROLL .•~~~-> 
PUNCH 

ANY PARTIAL 
CARD *FLAG. MOVE WORD* *• •* 

* OFF ii- *• •* 
***************** *• •* 

l<----_JYES 
:#040301 v 

*****E2********** . . 
* MOVE ESD * * NUMBER TO RLD * 
* ROLL * . 
***************** 

l 
v 

*****F2********** . . 
DETERMINE 

* LOCATION OF * 
*SUBPGM ADDRESS * . . 
***************** 

I 
v .•. 

G2 *• 
•* *• 

•* *• YES 
*•SUBPROG. FLAG•*1 

*• ON •* 
*• •* 

*• •* v 
* NO **** 

I 
v 

*****H2********** . . 
* STORE * LOCATION IN * LDC. COUNTER . . 
***************** 

I 
v 

*****J2********** . . 
* INITIALIZE 
* OUTPUT AREA• * TURN ON 

:.~~~~~~~;*~;:~*: 

I 
v 

**** . . 
* 64 * . . 

. . 
* 84 * . . 

**** 

************* 

I 
v 

****E5********* . . 
RETURN . 

*************** 



Chart FH. COMPLETE ADDRESSES FROM LIBRARY 

G0404 

****A2********* * PUNCH USED * 
LIBRARY 

* ROLL * 
*************** 

v 
*****82********** 
* * * FLIP * THE USED LIB 
* ROLL 

***************** 

I 
v ... 

C2 *• 
•* *• ****C3********* 

•* *• NO * • *• DATA ON THE .+~~~->• RETURN 
*• ROLL •* * 

*• •* 
•• •* 

* YES 

I 

• * 
* 84 * . . 

**** 

I 
v 

*****84********** . . 
* STORE * 
*LOCATION ON RLD* 
* ROLL * 
***************** 

I 
v 

*****C4********** 
* MOVE * 
~ 0 TO OUTPUT + 
*AREA, PUNCH IF * 
* CARD COMPLETE * 
* ***************** 

I 
* * I 
: 04 :->1 

**** v 
#40404 •*• v 

*****02********** * TURN OFF * * SUBPROGRAM * 
*FLAG. MOVE WORD* 

04 *• ******05*********** 

* OFF ROLL * 
* * ***************** I 
* **** * I 
• E2 •->I 
* * I v 

•*• 
E2 *• 

•* •• 
*****E3********** 

* •* ESD *• YES * MOVE NEXT 
WORD OFF + 

DESTROY 
*•= 0 (IGNORE).+~~~->• 

*• •* * :1 
*• •• * I 

*• •* ***************** v 
* NO 

I 
#40402 v 

*****F2********** 
* * * MOVE + 
* ESD NUMBER TO * 
* RLD ROU * 
***************** 

I 
v 

*****G2********** . 
DETERMINE 

LOCATION OF 
FUNCTION 

ADDRESS 
***************** 

I 
v .•. 

H2 *• 
•* •• 

•* *• YES 
*•SUBPRDGR FLAG.+----, 

*• ON ·* I 
*• •* I 

*• •* v 
* NO **** I * * 
I : B4 : 

v 
*****J2********** 
• * * STORE * 
*LOCATION IN LDC* 
* COUNTER * . . 
***************** 

I 
I 
v 

*****K2********** * INITIALIZE * * OUTPUT AREA, * 
* . TURN ON *I *SUBPROGRAM FLAG* 
* * ***************** v 

**** . . 
* 84 * . . 

. . 
* D4 * • * 

•* *• 
•* *• NO 

*• DATA ON THE ,.+~~~-> 
*• ROLL •* 

*• •* 
*• •* * YES 

I 
v 

• * 
: E2 : 

Section 2: 

PUNCH 
ANY PARTIAL 

CARD 

************* 

I 
v 

****ES********* . 
RETURN 

Compiler Operation 121 



Chart FI. 

122 

PUNCH ADDRESS CONSTANTS 

G0405 

****A2********* 
* * * PUNCH * * ADCON ROLL * 

*************** 
I 

**** I 
* * I * 82 •-> 
* * I 
**** v ·*· 

B2 *• 
•* *· ****~3********* 

•* *• NO * * 
*•DATA ON ROLL .•~~~~->* RETURN * 

*• •* * * 
*· •* *************** 

*· •* 

i"' 
v 

*****C2********** 
* * * SET AREA * 
*CODE FROM LAST * 
* WORD ON ROLL * 
* * ***************** 

I 
v 

*****02********** 
* SET ADDRESS * 
* WHERE CONST * 
*IS TO BE LOADED* 
*FROM NEXT WORD * 
* ON ROLL * 
***************** 

I 
v 

******E2*********** 

* MOVE INFO * 
TO OUTPUT 

AREA ANO PUNCH* 

*********** ** 

I 
v 

*****F2********** 
* * * SET * * UP RLD ROLL * 
* ENTRY * 
* * ***************** 

I 
v 

**** 
* * * 82 * 
* * 
**** 



Chart FJ. PUNCH RLD CARDS 

60565 
*****A2********** 

****Al**•****** * * * ORDER AND * * SORT 
PUNCH RLD •~~~->* RLD CARDS ON 

* ROLL * * ROLL 
*************** * 

PUNCH RLD 
ROLL 

I 
#41615 v 

*****B2********** 
•SET ESO NUMBER * 

* * *FROM AREA CODE * 
* B2 •-->* ANO PUT IN * 
* * * RLO CARD * * IMAGE 

***************** 

I 
#41601 v 

*****C2 ********** * SET * 
4 * * LAST LOAD 
* C2 •-->* ADDRESS FROM 
* + * RLO GROUP 

***************** 

I 
v 

•*• 
02 *• 

·* *• 

THE SORT PUTS 
ENTRIES WITH LIKE 
ESD NUMBERS TOGETHER. 
AOR. CONST AND 
TEMP AND CONST ROLLS 
ARE USED AS TEMP 
STORAGE 

** ****03* *** ******* 

#41603 

**** . . 
* BS * 
* * 

**** 

I 
v 

•*• 
85 .. 

•* *• 
•* *• YES 

*•~~OM ON CAR~*.•---,, 

*• •* 
*• ·* 

......... :,1.~...... ,,,I 

PUNCH AN RLD 
* CARD 

************* 

I <--------1 

I 
#4lb04 v 

•* *• NO * PUNCH 
REMA!NING 

DATA 

*****DS********** 
*PLACE PREVI DUS * 
* VALUE IN CARD * 
* MARKED FOR NO * 
* CONTINUATION * 
* AND UPDATE 
***************** 

*.MORE DATA ON .•~~~-> 
*• ROLL .+ 

*• •* 
*• •* * YES 

! 
v 

•*• 
E2 *• 

•* *• • * ESD NO = * • NO *• TO PREVIOUS •*-----, 
•·•. .• .• I 

*• •* v * YES **** 
I **** * * 
I * * • es • 
L->* E4 * * * 

* * 

I 
v 

****E3********* 
* RETURN 

I 
v 

•*• •*· 
E4 *• ES *• 

.• *• •* ROOM *• 
•* *• YES YES •*FOR NEW ESD*• 

.-->*.ROOM ON CARD ·*---. r-*· NO. ON CARD •* 

I *·*· ·*·· I I *·.. .•·• 
I *• •* I v *• •* 

**** * NO I **** * NO 
* * I I* * I 
: E4 : ,1 l: 82 : 11 

I **** 

******F4*:********* II ~****FS*:*******: 
PUNCH AN RLO * SAVE NEW ESD 

CARD * NO. 

******7****** ! :***************: 

1<-__J II 

I 
#41602 v v 

*****G4********** ******GS*********** 
*PLACE PREV I DUS. * 
* VALUE IN CARD * 
* MARKED FOR 
* CONTINUATION 
* AND UPDATE 
***************** 

I 
v 

* * * C2 * * • 
**** 

section 2: 

PUNCH AN RLD 
* CARi) 

* * * C2 * . . 
**** 

Compiler Operation 123 



Chart FK. 

124 

PUNCH END CARDS 

G0424 

****A2********* 
* * * PUNCH * 
* END CARD * 

*************** 

I 
v 

*****82********** 
* * * * *SET UP END CARD* 
* * 
* * ***************** 

I 
v 

******C2*********** 

* * PUNCH END CARD 
* * 

************* 

I 
v 

****02********* 
* * 
* 
* 

RETURN 

*************** 
* 
* 



Chart FL. PUNCH NAMELIST TABLE POINTERS 

G0564 

****A2********* * PUNCH * * NAMELIST MPV * 
* DATA 

*************** 

I 
v ... 

B2 *• 
•* *• ****B3********* 

•* DATA ON *• NO * * 
*•NAMELIST MPY .•~~~->• RETURN 

•.DATA ROLL.* * *• •• • ............... . 
*• •* * YES 

I 
v 

*****C2********** . . 
*CALCULATE NEXT • 
* ADDRESS IN * * TEMPORARY * STORAGE AREA * 
***************** 

:·::·:_>, . . 
**** #056401 v 

*****02********** * MOVE LOCATION * 
* OF POINTER * * FROM NAMELIST * 
* MPV DATA * 
* ROLL * 
***************** 

l 
v .•. 

E2 *• 
•* *• ****E3********* 

•* *• NO * * *• ANYTHING .•~~~->• RETURN 
*• MOVED •* * 

•• • * *************** *• •• 
* YES 

l 
v 

*****F2********** . . 
*INITIALIZE TXT * 
* CARO TO LOAD * * LOCATION * * INDICATED * 
***************** 

I 
v 

*****G2********** 
* SET * * UP RLD ENTRY * * FOR WORD IN * 
*NAMELIST TABLE * . . 
***************** 

I 
v 

*****H2********** . . 
*MOVE MULTIPLIER* 
* TO TEMP AND * * CONST ROLL . 
········i········ 

v 
*****J2********** . . 
* MOVE * 
*POINTER TO TXT * 
* CARD IMAGE * . . 
***************** 

I 
v 

**** . . 
* 64 * . . 

**** . . 
* 64 * . . 

**** 

I 
v 

******84 ****** ***** 

PUNCH THE TXT 
* CARO * 

I 
v 

*****C4********** . . 
INCREASE 

* TEMPORARY * 
*STORAGE POINTER* . . 
***************** 

I 
v 

• * 
* 02 * 
* * 

Section 2: Compiler Operation 125 





This appendix deals with the POP lan­
guage., the language in which the FORTRAN IV 
(G) compiler is written. The parts of the 
appendix describe this language in the 
following way: 

• The ficst part describes the POP 
instructions., which are grouped accord­
ing to their functions. 

• The second part describes the labels 
used in the routines of the compiler. 

• The third part discusses the assembly 
and operation of the compiler, as it is 
affected by th~ use of the POP lan­
guage. This part ends with a cross­
reference list giving the mnemonic for 
each instruction, the hexadecimal code 
which represents it, and the instruc­
tion group in which it is described. 

POP INSTRUCTIONS 

For the purpose of describing their 
operation, the POP instructions have been 
divided into groups according to the pri­
mary function which they perform. Where a 
particular POP instruction pertains to more 
than one group, it is described in the 
group which discusses its most important 
functions. 

In the descriptions of the instructions, 
the following notational conventions are 
employed: 

1. Parentheses are used to indicate "the 
contents of;" thus (G) stands for the 
contents of storage address G, where 
all addresses are fullword addresses. 

2. The arrow is used to indicate trans­
mission in the direction of the arrow; 
(G) + 1 --> G reads: the contents of 
storage address G, plus one, are 
transmitted to storage address G. 

3. Wn (n=1,2,3, ••• ) 
BOTTOM, BOTTOM-1, 
the WORK roll. 

refers to the 
etc., words on 

It should be noted that in many cases 
the address field, G, of the instruction 
contains a value other than a storage 
address (for instance, a roll name). In 
most of these cases, the symbolic reference 
which is used is defined in the program by 
means of an EQU card. 

APPENDIX A: THE POP LANGUAGE 

The mnemonic codes for the POP instruc­
tions are of the form IEYxxx. In the 
following discussion, the characters IEY 
are omitted from the mnemonics in the 
interest of ease of reading, and only the 
xxx portion of the code appears. 

TRANSMISSIVE INSTRUCTIONS 

The instructions described in this sec­
tion are primarily involved in moving 
information from place to place in storage. 

APH G: Assign and Prune Half 

The upper halfword of (WO) --> the 
lower halfword of G, where G is a 
storage address; the upper halfword 
of G remains unaltered; the BOTTOM 
of the WORK roll is reduced by 
four, thus pruning WO. 

ARK G: Assign Relative to Pointer and Keep 

(WO) --> P + (G), where Pis the 
address defined by the pointer in 
W1 and G is a storage address; the 
BOTTOM of the WORK roll is reduced 
by four, thus pruning the value 
assigned and keeping the pointer. 

ARP G: Assign Relative to Pointer 

(WO) --> P + (G), where P is the 
address defined by the pointer in 
W1 and G is a storage address; the 
BOTTOM Of the WORK roll is reduced 
by eight, thus pruning the current 
WO and W1. 

ASK G: Assign to storage and Keep 

(WO) --> G, where G is a storage 
address; the BOTTOM of the WORK 
roll is unchanged. 

ASP G: Assign to Storage and Prune 

(WO) --> G, where G is a storage 
address; the BOTTOM of the WORK 
roll is reduced by four, thus prun­
ing the current WO. 

BOP G: Build on Polish 

The control driver G is built on 
the POLISH roll, where the G field 
of the instruction is the lower 
eight bits of the ADDRESS portion 

Appendix A: The POP Language 127 



of the 
field of 
and the 
255.) 

desired driver. (The TAG 
the pointer contains zero, 

OPERATOR field contains 

CAR G: Copy and Release 

Copy roll G, where G is a roll 
number, to roll T, and release roll 
G <i.e., restore it to its condi­
tion before the last reserve); the 
number T is found in WO; the BOTTOM 
of the WORK roll is reduced by 
four. If roll G is in the reserved 
state when this instruction is 
executed, the instruction sets its 
BOTTOM to (TOP) minus four; if the 
roll is not reserved, BOTTOM is set 
to (BASE). 

CLA G: Clear and Add 

Clear WO; (G) --> wo, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged. 

CNT G: count 

of words on roll G --> 
G is a roll number; the 
the WORK roll is 

The number 
wo, where 
BOTTOM of 
increased by four. 

CPO G: Copy Plex On 

The plex pointed to by the pointer 
in WO is copied to roll G, where G 
is the number of the target roll, 
except for the first word of the 
plex (which holds the number of 
words in the plex, exclusive of 
itself). The BOTTOM of the WORK 
roll is reduced by four, thus prun­
ing the pointer. The BOTTOM of 
roll G is increased by four for 
each word moved; the BOTTOM of the 
original roll is unchanged. 

CRP G: copy Relative to Pointer 

Copy roll s to roll G, where G is a 
roll number,, beginning with the 
group indicated by the pointer in 
WO,, to the BOTTOM of the roll. The 
roll number s is also provided by 
the pointer in WO. The BOTTOM of 
roll s is decreased by the number 
of bytes moved. The BOTTOM of roll 
G is increased by the number of 
bytes moved. The BOTTOM of the 
WORK roll is unchanged; thus,, the 
pointer remains. 

EAD G: Extract Address 

128 

The ADDRESS portion of (G) --> wo, 
where G is a storage address; the 

EAW G: 

BOTTOM of the WORK 
increased by four. 

Effective Address to work 

roll is 

G --> WO, where G is a storage 
address; the BOTTOM of the WORK 
roll is increased by four. 

ECW G: Effective constant Address to Work 

G --> WO, where G is a storage 
address which refers to a constant 
under a constant base. The BOTTOM 
of the WORK roll is increased by 
four. 

EOP G: Extract Operator 

The OPERATOR portion of (G) --> WO 
(right adjusted), where G is a 
storage address; the BOTTOM of the 
WORK roll is increased by four. 

ETA G: Extract Tag 

TAG portion of CG) --> TAG portion 
of WO, where G is a storage 
address; the BOTTOM of the WORK 
roll is increased by four. 

FET G: Fetch 

(G) --> WO, where G is a storage 
address; the BOTTOM of the WORK 
roll is increased by four. 

FLP G: Flip 

Invert the order of roll G, where G 
is a roll number, word for word. 

FRK G: Fetch Relative to Pointer and Keep 

(P + (G)) -->WO, where P is the 
address defined by the pointer in 
WO and G is a storage address; the 
BOTTOM of the WORK roll is 
increased by four; thus, the 
pointer remains in Wl. 

FRP G: Fetch Relative to Pointer 

(P + (G)) -->WO, where P is the 
address defined by the pointer in 
WO and G is a storage address; the 
BOTTOM of the WORK roll is 
unchanged; thus, the pointer is 
destroyed. 

FTH G: Fetch Half 

The lower halfword of (G) --> upper 
halfword of WO, where G is a 
storage address; the lower half-



IAD G: 

IOP G: 

word of WO is set 
BOTTOM of the 
increased by four. 

to 
WORK 

zero; 
roll 

the 
is 

Insert Address 

The ADDRESS portion of (G) --> the 
ADDRESS portion of the pointer in 
WO, where G is a storage address; 
the BOTTOM of the WORK roll is 
unchanged. 

Insert Operator 

G --> OPERATOR portion 
pointer in WO, where the G 
the instruction is the 
OPERATOR value; the BOTTOM 
WORK roll is unchanged. 

of the 
field of 
desired 
of the 

ITA G: Insert Tag 

TAG portion of (G) --> TAG portion 
of the pointer in WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged. 

ITM G: Insert Tag Mode 

Mode portion of the TAG field of 
(G) --> mode portion of the TAG 
field of the pointer in WO, where G 
is a storage address; the BOTTOM of 
the WORK roll is unchanged. 

LCE G: Last Character Error 

The last character count and the 
address G --> ERROR roll, where G 
is the address of the message for 
the error. The count of errors of 
the severity associated with the 
message is increased by one, and 
the MAX STA ERROR NUMBER (which 
indicates the highest severity 
level of errors for the present 
statement) is updated as required. 

LCF G: Last Character Error if False 

If (ANSWER BOX) = false, the last 
character count and the address 
G --> ERROR roll, where G is the 
address of the message for the 
error. The count of errors of the 
severity associated with the mes­
sage is increased by one, and the 
MAX STA ERROR NUMBER is updated as 
required. If (ANSWER BOX) = true, 
the instruction does nothing. 

LCT G: Last Character Error if True 

If (ANSWER BOX) = true, 
character count and the 
G --> ERROR roll, where 
address of the message 

the last 
address 

G is the 
for the 

error. The count of errors of the 
severity associated with the mes­
sage is increased by one, and the 
MAX STA ERROR NUMBER is updated as 
required. If (ANSWER BOX) = false, 
the instruction does nothing. 

LGP G: Load Group from Pointer 

Leads the group specified by the 
pointer in WO into SYMBOL 1, 2, and 
3, DATA O, 1, 2, 3, 4, and 5. The 
number G is the number of bytes to 
be loaded; if G=O, the entire group 
is loaded. The BOTTOM of the WORK 
roll is unchanged; hence, the 
pointer remains in WO. 

LSS G: Load Symbol from Storage 

Loads the (G and G+4), where G is a 
storage address, into SYMBOL 1, 2, 
and 3, and DATA O. 

MOC G: Move on Code 

G halfwords, where G is an even 
number, are to be moved from the 
WORK roll to the CODE roll. A word 
containing a special value in the 
first two bytes and the number of 
words transferred in the last two 
bytes are first placed on the CODE 
roll. G/2 words of information are 
then moved from the WORK roll to 
the CODE roll; the BOTTOM of the 
CODE roll is increased by four for 
each word placed on the roll; the 
BOTTOM of the WORK roll is reduced 
by four for each word moved from 
the roll. A location counter is 
increased by the number of bytes of 
object code placed on the roll. 

MON G: Move on 

(WO) --> roll G, where G is the 
roll number; the BOTTOM of roll G 
is increased by four; the BOTTOM of 
the WORK roll is decreased by four. 

NOG G: Number of Groups 

NOZ G: 

The number of groups on roll G --> 
WO, where G is the roll number; the 
BOTTOM of the WORK roll is 
increased by four. 

Nonzero 

A nonzero value --> G, where G is a 
storage address. 

Appendix A: The POP Language 129 



PGO G: Place Group On 

A group from SYMBOL 1, 2, and 3 and 
DATA O, 1, 2, 3, 4, and 5 --> roll 
G, where G is the roll number, by 
group status; the BOTTOM of roll G 
is increased by group size. 

PGP G: Place Group from Pointer 

The group in SYMBOL 1, 2, 3, DATA 
o, 1, 2, 3, 4, and 5 is placed on a 
roll according to the pointer in 
WO. The number G is the number of 
bytes to be moved; if G=O, an 
entire group is moved; the BOTTOM 
of the WORK roll is unchanged. 

PLO G: Precision Load 

(G and G+4) --> MPAC 1 and MPAC 2, 

ZER G: Zero 

0 --> G, where G is a storage 
address. 

ARITHMETIC AND LOGICAL INSTRUCTIONS 

The following instructions are primarily 
designed to perform arithmetic and logical 
manipulations. 

ADD G: Add 

(G) + (WO) --> WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

AFS G: Add Four to Storage 

where G is a storage address. (G) + 4 --> G 1 where G is a storage 
address. 

PNG G: Pointer to New Group 

Builds a pointer to the first byte 
of the next group to be added to 
roll G, where G is the roll number, 
and places the pointer in WO; the 
BOTTOM of the WORK roll is 
increased by four. 

POC G: Place on code 

The data located at storage address 
G+4 and following is to be moved to 
the CODE roll. The number of half­
words to be moved is stored in 
location G and is an even number. 
A word containing a special value 
in the first two bytes and the 
number of words of data in the last 
two bytes----rs- first placed on the 
CODE roll. The indicated data is 
then moved to the CODE roll, and 
the BOTTOM of the CODE roll is 
increased by four for each word 
placed on the roll. A location 
counter is increased by the number 
of bytes of object code placed on 
the roll. 

PST G: Precision store 

(MPAC 1 and MPAC 2) --> G and G+4, 
where G is a storage address. This 
instruction performs a doubleword 
store. 

SWT G: Switch 

130 

Interchanges (WO) and (G), where G 
is a storage address; the BOTTOM of 
the WORK roll is unchanged. 

AND G: And 

(G) AND (WO) --> WO; that is, a 
logical product is formed between 
(G) and (WO), and the result is 
placed in WO. The BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

DIM G: Diminish 

(G) - 1 --> G, where G is a storage 
address. 

DIV G: Divide 

(WO) / (G) --> G1 where G is a 
storage address; the remainder, if 
any, from the division is lost; a 
true answer is returned if there is 
no remainder; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

IOR G: Inclusive or 

The inclusive OR of (WO} and (G), 
where G is a storage location, is 
formed, and the result is placed in 
WO. The BOTTOM of the WORK roll is 
unchanged; hence, the initial con­
tents of WO are destroyed. 

LLS G: Logical Left Shift 

(WO) are shifted left G places; the 
result is left in WO; bits shifted 
out at the left are lost, and 
vacated bit positions on the right 
are filled with zeros. 



LRS G: Logical Right Shift 

(WO) are shifted right G places; 
the result is left in WO; bits 
shifted out at the right are lost, 
and vacated bit positions on the 
left are filled with zeros. 

MPY G: Multiply 

(G) * (WO) --> WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

PSP G: Product Sign and Prune 

The exclusive OR of (WO) and (G), 
where G is a storage location, 
replace the contents of G; the 
BOTTOM of the WORK roll is reduced 
by four, thus pruning WO. 

SUB G: Subtract 

(WO) - (G) --> WO, where G is a 
storage address; the BOTTOM of the 
WORK roll is unchanged; hence, the 
initial contents of WO are 
destroyed. 

TLY G: Tally 

(G) + 1 --> G, where G is a storage 
address. 

DECISION MAKING INSTRUCTIONS 

These instructions inspect certain con­
ditions and return either a true or false 
answer in the ANSWER BOX. some of the 
instructions also transmit stored informa­
tion from place to place. 

CSA G: Character Scan with Answer 

If G = (CRRNT CHAR), the scan arrow 
is advanced and a true answer is 
returned; otherwise, the scan arrow 
is not advanced and a false answer 
is returned. 

I.GA G: Load Group with Answer 

The group from the BOTTOM of roll 
G, where G is the roll number and 
roll G has been flipped, is loaded 
into SYMBOL 1, 2, 3 1 DATA O, 1, 2, 
3, 4, and 5 (as many words as 
necessary); if the roll is empty or 
if the group is a marker symbol, a 

false answer is returned; other­
wise, a true answer is returned; 
the BOTTOM of roll G is reduced by 
group size. 

MOA G: Move off with Answer 

If roll G, where G is the roll 
number, is empty, a false answer is 
returned. Otherwise, the BOTTOM of 
roll G is reduced by four, pruning 
the word moved; the BOT'rOM of the 
WORK roll is increased by four; a 
true answer is returned. 

QSA G: Quote Scan with Answer 

If the quotation mark (s0equence of 
characters) beginning at storage 
address G (the first byte in the 
quotati?n mark is the number of 
bytes in the quotation mark) is 
equal to the quotation mark start­
ing at the scan arrow, advance the 
scan arrow to the next active 
character following the quotation 
mark, and return a true answer; 
otherwise, do not advance the scan 
arrow and return a false answer. 

SAD G: Set on Address 

If G ADDRESS portion of the 
pointer in WO, return a true answ­
er; otherwise, return a false 
answer. 

SBP G: Search by Stats from Pointer 

Search the roll specified by the 
pointer in WO, beginning with the 
group following the one specified 
by the pointer for a group which is 
equal to the group in the central 
items SYMBOL 1, 2, 3 1 etc., accord­
ing to the group stats values 
stored at locations G+4 and G+8 
(these values are in the same order 
as those in the group stats 
tables). The roll number multip­
lied by four is stored at location 
G. If a match is found, return a 
true answer, replace the pointer in 
WO with a pointer to the matching 
group, and continue in sequence. 
If no match is found, return a 
false answer, prune the pointer in 
WO, and continue in sequence. This 
instruction is used to continue a 
search of a roll according to group 
stats values other than those norm­
ally used for the roll. 

SBS G: Search by Stats 

If the roll, whose number multip­
lied by four is in storage at 
location G, is empty, return a 

Appendix A: The POP Language 131 



false answer. Otherwise, search 
that roll against the central items 
SYMBOL l,, 2, and 3 and DATA 0, 1, 
2, 3, 4, and 5, as defined by the 
group stats values stored at loca­
tions G+4 and G+8 (these values are 
in the same order as those in the 
group stats tables); if a match is 
found, place a pointer to the 
matching group in WO, increase the 
BOTTOM of the WORK roll, and return 
a true answer; if no match is 
found, return a false answer. This 
instruction is used to search a 
roll according to group stats 
values other than those normally 
used for that roll. 

SCE G: Set if Character Equal 

If G = .(CRRNT CHAR), return a true 
answer; otherwise, return a false 
answer; in neither case is the scan 
arrow advanced. 

SCK G: set on Character Key 

If (CRRNT CHAR) displays any of the 
character keys of G, where G is a 
character code whose bit settings 
describe a group of characters, 
return a true answer; otherwise, a 
false answer is returned; in neith­
er case is the scan arrow advanced. 

SFP G: search from Pointer 

Search the roll specified by the 
pointer in WO, beginning with the 
group following the one specified 
by the pointer in WO, for a group 
which is equal to the group in 
SYMBOL 1, 2 1 3 1 DATA O, 1 ••• , etc., 
by roll statistics. If a match is 
found, return a true answer, 
replace the pointer in WO with a 
pointer to the matching group, and 
jump to G, where G must be a local 
address. If no match is found, 
return a false answer, prune the 
pointer in WO (reduce the BOTTOM of 
the WORK roll by four), and con­
tinue in sequence. 

SLE G: Set if Less or Equal 

132 

If (WO) ~ (G), where G is a storage 
address, a true answer is returned; 
otherwise, a false answer is 
returned. The comparison made con­
siders the two values to be signed 
quantities. 

SNE G: Set if Not Equal 

If (WO) * (G), where G is a storage 
address, a true answer is returned; 
otherwise, a false answen is 
returned. 

SNZ G: Set if Nonzero 

If (G) * O, where G is a storage 
address, return a true answer; 
otherwise, return a false answer. 

SOP G: Set on Operator 

If G = OPERATOR portion of the 
pointer in WO, return a true answ­
er; otherwise, return a false 

- answer. 

SPM G: Set on Polish Mode 

If the mode portion of the TAG 
field of the (G) = the mode portion 
of the TAG field of the pointer in 
Pl, where G is a storage addess, 
return a true answer; otherwise, 
return a false answer. 

SPT G: Set on Polish Tag 

If the TAG field of the (G) the 
TAG field of the pointer in Pl, 
where G is a storage address, 
return a true answer; otherwise, 
return a false answer. 

SRA G: Search 

If roll G, where G is the roll 
number, is empty, return a false 
answer; otherwise, search roll G 
against the central items SYMBOL 1, 
2, and 3 and DATA O, 1, 2, 3, 4, 
and 5, as defined by the roll 
statistics; if a match is found, 
place a pointer to the matching 
group in WO, increase the BOTTOM of 
the WORK roll, and return a true 
answer; if no match is found, 
return a false answer. 

SRD G: Set if Remaining Data 

STA G: 

If roll G, where G is the roll 
number, is not empty, return a true 
answer; otherwise, return a false 
answer. 

Set on Tag 

If the TAG portion of (G) = the TAG 
portion of the pointer in WO, where 
G is a storage address, return a 
true answer; otherwise, return a 
false answer. 



STM G: Set on Tag Mode 

If the mode portion of the TAG 
field of the (G) = the mode portion 
of the TAG field of the pointer in 
WO, where G is a storage address, 
return a true answer; otherwise, 
return a false answer. 

JUMP INSTRUCTIONS 

The following instructions cause the 
normal sequential operation of the POP 
instructions to be altered, either uncondi­
tionally or conditionally. See the sec­
tions "Labels• and "Assembly and Operation" 
in this Appendix for further discussion of 
jump instructions. 

CSF G: character scan or Fail 

If G (CRRNT CHAR), advance the 
scan arrow to the next active 
character; otherwise, jump to 
SYNTAX FAIL. 

JAF G: Jump if Answer False 

If (ANSWER BOX) = false, jump to G, 
where G is either a global or a 
local address; otherwise, continue 
in sequence. One of two operation 
codes is produced for this instruc­
tion depending on whether G is a 
global or local label. 

JAT G: Jump if Answer True 

If (ANSWER BOX) = true, jump to G, 
where G is either a global or a 
local address; otherwise, continue 
in sequence. One of two operation 
codes is produced for this instruc­
tion depending on whether G is a 
global or a local label. 

JOW G: Jump on Work 

If (WO) = o, decrease the BOTTOM Of 
the WORK roll by four and jump to 
G, where G is either a global or a 
local address; otherwise, reduce 
word 0 by one, --> WO, and continue 
in sequence. One of two operation 
codes is produced for this instruc­
tion, depending on whether G is a 
global or a local label. 

JPE G: Jump and Prepare for Error 

The following values are saved in 
storage: the location of the next 
instruction, the last character 
count, the BOTTOM of the EXIT roll, 
and the BOTTOM of the WORK roll. 

The JPE FLAG is set to nonzero, and 
a jump is taken to G, which may 
only be a local address. 

JRD G: Jump Roll Down 

JSB G: 

This instruction manipulates a 
pointer in WO. If the ADDRESS 
field of that pointer is equal to 0 
(pointing to the word preceding the 
beginning of a reserved area), the 
ADDRESS field is increased to four. 
If the ADDRESS field of the pointer 
is equal to any legitimate value 
within the roll, it is increased by 
group size. If the ADDRESS field 
of the pointer indicates a location 
beyond the BOTTOM of the roll, the 
pointer is pruned (the BOTTOM of 
the WORK roll is reduced by four), 
and a jump is made to the location 
G, which must be a global address. 

Jump to Subroutine 

Return information is placed on the 
EXIT roll; jump to G, which is a 
global address. 

JUN G: Jump Unconditional 

QSF G: 

XIT 

Jump to G, which is either a global 
or a local address. One of two 
operation codes is produced for 
this instruction, depending on 
whether G is a global or a local 
label. 

Quote Scan or Fail 

If the quotation mark (sequence of 
characters) beginning at storage 
address G (the value of the first 
byte in the quotation mark is the 
number of bytes in the quotation 
mark) is equal to the quotation 
mark starting at the scan arrow, 
advance the scan arrow to the first 
active character beyond the quota­
tion mark; otherwise, jump to SYN­
TAX FAIL. 

Exit 

Exit from the interpreter; the code 
which follows is written in 
assembler language. 

ROLL CONTROL INSTRUCTIONS 

These instructions are 
the control of the rolls 
compiler. 

concerned with 
used in the 

Appendix Ai The POP Language 133 



POW G: Prune off Work 

Reduce the BOTTOM of the WORK *oll 
by four times G, where G is an 
integer, thus pruning G words off 
the WORK roll. 

REL G: Release 

Restore roll G1 where G is the roll 
number, to the condition preceding 
the last reserve; this sets BOTTOM 
to (TOP) reduced by four if the 
roll is reserved1 or to (BASE) if 
the roll is not reserved; TOP is 
set to the value it had before the 
reserve. 

RSV G: Reserve 

Reserve roll G1 where G is the roll 
number, by storing (TOP) (BASE) 
on the roll 1 increasing BOTTOM by 
four, and setting TOP to (BOTTOM); 
this protects the area between BASE 
and TOP, and allows ascending 
addresses from TOP to be used as a 
new. empty roll. 

CODE PRODUCING INSTRUCTIONS 

These POP instructions construct object 
module code on the CODE roll. Each object 
module instruction constructed results in 
the placing of a 2-word group on the CODE 
roll. The instruction generated, in bi­
nary, is left justified in this group. In 
the case of halfword instructions, the 
remainder of the first word is filled with 
zero. The second word contains a pointer 
to the instruction operand, except in the 
case of 6-byte instructions when the last 
two bytes of the group contain the value 
zero. 

BID G: Build Instruction Double 

13~ 

The instruction indicated by G, 
where G is an instruction number 
which indicates the exact instruc­
tion to be generated, is built on 
the CODE roll, where WO contains a 
pointer to the first operand and Wl 
contains a pointer to the second 
operand. The BOTTOM of the CODE 
roll is increased by eight. The 
BOTTOM of the WORK roll is reduced 
by eight; thus, both pointers are 
pruned. A location counter is in­
creased by one for each byte of the 
instruction. 

BIM G: Build Instruction by Mode 

BIN G: 

The instruction indicated by G, 
where G is an instruction number 
which indicates the class of the 
instruction only. For--example, 
LOAD INSTR as opposed to LE INSTR 
is built on the CODE roll, where WO 
contains a pointer to th~ second 
operand. A pointer to the accumu­
lator which holds the first operand 
is contained in the variable CRRNT 
ACC. The instruction mode is 
determined by inspecting the TAG 
fields of the pointers; the BOTTOM 
of the CODE roll is increased by 
eight; the BOTTOM of the WORK roll 
is reduced by four. thus pruning 
the pointer. A location counter is 
increased by one for each byte of 
the generated instruction. 

Build Instruction 

The instruction indicated by G, 
where G is an instruction number 
which indicates the exact instruc­
tion to be built1 is constructed on 
the CODE roll. The WORK roll holds 
from zero to three words of infor­
mation required for producing the 
instruction. For instructions 
requiring no operands, nothing 
appears on the WORK roll. For 
instructions requiring one operand, 
a pointer to that operand appears · 
in WO. For two operand instruc­
tions. a pointer to the first 
operand appears in WO and a pointer 
to the second operand is in Wl. 
For input/output instructions, Wl 
holds a constant which' becomes part 
of the instruction. For storage­
to-storage move instructions. W2 
holds the length. The BOTTOM of 
the CODE roll is increased by eight 
to reflect the addition of the 
group. The BOTTOM of the WORK roll 
is reduced by four for each word of 
information found on that roll; 
thus, all the information is 
pruned. A location counter is 
increased by one for each byte of 
the instruction. 

ADDRESS COMPUTATION INSTRUCTIONS 

The POP instructions whose G fields 
require storage addresses may be used to 
refer to WORK roll groups, provided the 
storage address of the desired group is 
first computed. This computation must be 
performed at execution time, since the 
location of WO, for example, varies as the 
program is operated. The instructions in 
this category perform these computations and 
jump to the appropriate POP, which then op­
erates using the computed address. 



WOP G: WO POP 

compute the address of the current 
WO and jump to the POP indicated by 
G, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W1P G: W1 POP 

Compute the address of the current 
W1 and jump to the POP indicated by 
G, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W2P G: W2 POP 

Compute the address of the current 
W2 and jump to the POP indicated by 
G, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W3P G: W3 POP 

compute the address of the current 
W3 and jump to the POP indicated by 
G., where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

W4P G: W4 POP 

Compute the address of the current 
W4 and jump to the POP indicated by 
G,, where G is a POP instruction 
which normally accepts a storage 
address in its G field. 

INDIRECT ADDRESSING INSTRUCTION 

Indirect addressing is provided for POP 
instructions whose address fields normally 
require storage addresses by means of the 
following instruction. 

IND G: Indirect 

The address contained in the 
storage address INDIRECT BOX is 
transmitted to the POP indicated by 
G, where G is a POP instruction 
which requires a storage address in 
its G field, and a jump is made to 
that POP. The POP "G" operates in 
its normal fashion, using the tran­
smitted address. 

LABELS 

In the POP language, storage locations 
containing instructions or data may be 
named with two types of labels, global 
labels and local labels. Global labels are 
unique within each phase of the compiler 
{but not from one phase to another); these 
labels may be referred to from any point in 
the phase. Local labels are also unique 
within each phase {but not between phases); 
however, these labels may be referred to 
only within the global area {that is, the 
area between two consecutive global labels) 
in which they are defined. 

GLOBAL LABELS 

The global labels which appear on a 
System/360 assembler listing of the compil­
er are distinguished from local labels in 
that the global labels do not begin with a 
pound sign. Most of the global labels are 
of the form Gdddd, where each d is a 
decimal digit and the 4-digit value dddd is 
unique for the global label. Labels of 
this form are generally assigned in ascend­
ing sequence to the compiler routines. All 
remaining global labels are limited to a 
length of seven characters. 

In contrast, the routine and data names 
used throughout this publication are 
limited only to a length of 30 characters. 
A comment card containing the long name 
used here precedes the card on which each 
global label is defined. In addition, the 
longer name appears as a comment on any 
card containing a POP instruction which 
refers to the global label. 

Example: 

G0336 STA GEN FINISH 
G0336 IEYMOA G0494 MOA DO LOOPS OPEN ROLL 

Explanation: The second card shown defines 
the global label G0336. The first card, a 
coxmnent card, indicates the longer name of 
the routine, STA GEN FINISH. The second 
car~ contains a reference to the label 
G0494; the longer form of this label is DO 
LOOPS OPEN ROLL, as indicated by the 
coxmnent. 

Occasionally, several comment cards with 
identical address fields appear in sequence 
on the listing. This occurs when more than 
one long label has been applied to a single 
instruction or data value. The long labels 
are indicated in the comments fields of the 
cards. 

Appendix A: The POP Language 135 



EXample: 

* ACT EST AC TEST 

* ACTEST TESTAC 

ACTEST IEYSOP G0504 SOP FL AC OP MARK 

EXplanation: The three cards shown define 
the global.label ACTEST. One long form of 
this label is AC TEST, as indicated by the 
conunent on the first card. The second card 
indicates that the name TESTAC has also 
been applied to this location, and that it 
also corresponds to ACTEST. 

LOCAL LABELS 

All local labels consist of a pound sign 
followed by six decimal digits. If the 
preceding global label is of the form 
Gdddd, the first four digits are identical 
to those in the global name. The remaining 
two digits of the local label do not follow 
any particular sequence; they are., however, 
unique in the global area. 

The local 
appearance in 
containing a 
instruction. 

EXample: 

label 
the 

POP 

is defined 
name field 

or assembler 

by its 
of a card 

language 

* G0268 
G0268 PROCESS SCALAR ROLL 

IEYSRD G0432 SRD SCALAR ROLL 
• 

#026811 IEYJOW #026821 
#026802 IEYITA G0359 ITA CED TAG MARK 

Explanation: The global label G0268 is 
defined by the second card in the sequence 
shown. The next two cards define, respec­
tively, the local labels #026811 and 
#026802. In addition, the third card in 
the sequence contains a reference to the 
local label #026821, which is presumably 
defined elsewhere within the global area 
shown here. 

ASSEMBLY AND OPERATION 

The compiler is assembled with each POP 
instruction defined as a macro. Unless 
•Quick Link• output has been designated to 
the macro by means of the assembler 
instruction SETC 'QLK', the resulting code 

136 

consists of two 1-byte address constants 
per POP instruction. This 16-bit value 
represents an 8-bit numeric operation code 
and an 8-bit operand or relative address. 

The definition of the 8-bit operand or 
relative address varies according to the 
POP instruction used. Roll numbers appear 
in this field for instructions requir~ng 
them. For instructions which refer to 
storage locations relative to CBASE (see 
•compiler Arrangement and General Register 
Usage•) or to other base addresses, the 
word number relative to the appropriate 
base is used. The format for jump instruc­
tions is discussed in the following 
paragraphs. 

When Quick Link is specified, machine 
language instructions are generated for the 
following POP instruction. (See •Assembler 
Language References to POP Subroutines.•) 

POP INTERPRETER 

The assembled POP code is interpreted by 
a short machine language routine, POP 
SETUP, which appears with the POP subrou­
tines at the beginning of the compiler. 

POP SETUP inspects each pair of address 
constants in sequence, and, using the 8-bit 
operation code as an index into the ~ 
jump table, a table which correlates opera­
tion codes for the POPs with the addresses 
of the POP subroutines, transfers control 
to the appropriate POP subroutine. 

Thus, on encountering the hexadecimal 
value 081A, POP SETUP indexes into the POP 
jump table (labeled POPTABLE) at the eighth 
byte, counting from zero. The value found 
at this location is 0158 Chexadecimal>1 
this is the address, relative to the base 
of the POP jump table, of the POP subrou­
tine for the POP numbered 08 (IEYSUB). 
When this value is added to the beginning 
address of the POP jump table, the absolute 
address of IEYSUB is produced, and POP 
SETUP performs a branch to that location. 

IEYSUB then operates, using the relative 
address 1A (which it finds in general 
register 7, ADDR), and returns via POPXIT, 
register 6; in this case the return is to 
POP SETUP, which then continues with the 
next POP in sequence. The register POPADR 
is used to keep track of the location of 
the POP being executed. 

This sequential operation can be inter­
rupted by means of POP jump (branch) 
instructions, which cause an instruction 
other than the next in sequence to be 
operated next. The XIT POP instruct-ion 



also alters the sequence by causing the 
interpreter to release control, performing 
a branch to the assembler language instruc­
tion following the XIT. This device is 
employed to introduce assembler language 
coding into the compiler routines when this 
is more efficient than the use of POPs. 
Assembler language sequences sometimes ter­
minate with a branch to POP SETUP, so that 
it may resume the execution of POP 
instructions. 

ASSEMBLER LANGUAGE REFERENCES TO POP 
SUBROUTINES 

In some of the routines of the compiler, 
the operation of POP SETUP is bypassed by 
assembler language instructions which make 
direct reference to the POP subroutines. 
In these sequences, a pair of machine 
language instructions performs the function 
of a single POP instruction. For example, 
the instructions 

LA ADDR,ONE-CBASEC0,0) 
BAL POPXIT,FETQ 

accomplish the 
instruction 

IEYFET ONE 

function of the POP 

but bypass the operation of POP SETUP. The 
IEYFET routine, (referred to by its label 
FETQ) returns, via POPXIT, to the next 
instruction. Note that the first instruc­
tion of the pair sets ADDR to the correct 
value for the operand of the IEYFET opera­
tion; this would be done by POP SETUP if it 
interpreted IEYFET ONE. 

I GLOBAL JUMP INSTRUCTIONS 

The labels referred to in POP global 
jump instructions, jump instructions which 
branch to global labels, always end with 
the character J. These global labels refer 
to the global jump table, a table whose 
fullword entries contain the relative 
addresses of global labels which are the 
targets of branches. Each phase of the 
compiler has a global jump table. The 
table is labeled JUMP TABLE. 

References in POP global jump instruc­
tions to the global jump table are 
assembled as relative word addresses in 
that table. Each entry in the table con­
tains the address, relative in bytes to 
CEASE, of the label whose spelling is 
identical to that of the global jump table 
entry except that it does not include. the 
terminal J. 

Thus, the instruction IEYJUN G0192J is 
assembled as 5002, for example, where the 
global jump table begins: 

r--------, 
G0075J I SAO I 

·--------~ G0111J I 752 I 

·--------~ G0192J I B02 I 

·--------~ I I 
I I 
I I 

on encountering this instruction, POP SETUP 
loads its address field (02), multiplied by 
four (08), into the register ADDR. It then 
jumps to the POP subroutine for IEYJUN. 

The IEYJUN subroutine uses ADDR as an 
index into JUMP TABLE, finding the value 
B02. This value is placed in the register 
TMP and a branch is made to the location 
defined by the sum of the contents of TMP 
and the contents of CONSTR, which holds the 
location CEASE. Thus, if the location 
CEASE is lOBO, the location branched to is 
1BB2, the location of the routine labeled 
G0192, and the instruction at that location 
is operated next. 

Since the POP subroutines for global 
jumps branch directly to the target loca­
tion, the instruction at that location must 
be a machine language instruction rather 
than a POP. Moreover, all jump target 
routines which contain local jumps must 
reset POPADR to reflect the new location. 
Thus, routines which are jump targets and 
which are written in POPs begin with the 
instruction 

BALR POPADR, POPPGB 

which sets POPADR to the location of the 
first POP instruction in the routine and 
branches to POP BASE, the address of which 
is held in POPPGB. At POP BASE, the 
contents of POPADR are saved in LOCAL JUMP 
BASE, POPXIT is set to the beginning loca­
tion of POP SETUP, and POP SETUP begins 
operating. For the sake of brevity, this 
instruction is coded as 

BALR A,B 

in some routines. 

Routines in which the POP instructions 
have been replaced by pairs of assembler 
language instructions and which contain 
local jumps begin with the instruction 

BALR A,O 
or 
BALR POPADR, 0 

Appendix A: The POP Language 137 



instead of 
since the 
desired. 

the instruction given above, 
branch to POP SETUP is not 

Because global jump targets begin with 
this machine language code, it is not 
possible for POP instructions to continue 
in sequence into new global routines. When 
this operation is intended, an IEYXIT or an 
IEYJUN instruction terminates the first 
routine. 

I LOCAL JUMP INSTRUCTIONS 

POP local jump instructions, jump 
instructions which transfer control out of 
the normal sequence to local labels, must 
occur in the same global area as the one in 
which the local label ref erred to is 
defined. 

The address portions of POP local jump 
instructions are assembled to contain the 
distance in halfwords from the beginning of 
the global area plus two to the indicated 
local label. This value is a relative 
halfword address for the target, where the 
base used is the location of the first POP 
instruction in the global area. 

Example: 

Decimal 
Location Label 

100 G0245 
102 

symbolic 
Instruction 
BALR A,B 
IEYCLA G0566 

120 #024503 IEYLGA G0338 

140 IEYJUN #024503 

138 

Hexadecimal 
Instruction 

062A 

9A12 

5809 

Explanation: The local jump instruction 
illustrated at location 140 is assembled so 
that its address field contains the loca­
tion of the label #024503 (120), relative 
in half words to the beginning location of 
the global area plus two (102). Thus, the 
address field of the IEYJUN instruction 
contains the value 09. 

When the POP local jump instruction is 
interpreted, the contents of the location 
LOCAL JUMP BASE are added to the address 
field of the POP instruction to produce the 
absolute address of the jump target. LOCAL 
JUMP BASE is set to the beginning address 
of the global area plus two as a result of 
the BALR instruction which begins the glob­
al routine: this function is performed at 
POP BASE, as described in "Global Jump 
Instructions." 

When local jumps are performed directly 
in machine language, the relative address­
ing described above is also used: in this 
case, however, the base address is in the 
register POPADR as a result of the BALR 
instruction heading the routine. 

POP instruction mnemonics are listed in 
Table 8. 



Table B. POP Instruction Cross-Reference List 
r-------------------------------------------T-------------------------------------------1 

Mnemonic Hex Instruction Group Mnemonic Hex Instruction Group 
ADD 04 Arithmetic/Logical LGA 9A Decision Making 
AFS BC Aritlunetic/Logical LGP BO Transmissive 
AND B4 Arithmetic/Logical LLS 9B Arithmetic/Logical 
APH A4 Transmissive LRS B6 Arithmetic/Logical 
ARK B6 Transmissive LSS BO Transmissive 
ARP OE Transmissive MOA SC Decision Making 
ASK 12 Transmissive MOC 9E Transmissive 
ASP 14 Transmissive MON SE Transmissive 
BID 7E code Producing MPY OA Arithmetic/Logical 
BIM 7C code Producing NOG lE Transmissive 
BIN 7A Code Producing NOZ 3E Transmissive 
BOP 60 Transmissive PGO 22 Transmissive 
CAR lA Transmissive PGP 9C Transmissive 
CLA 06 Transmissive PLD 90 Transmissive 
CNT lC Transmissive PNG 20 Transmissive 
CPO B2 Transmissive POC 94 Transmissive 
CRP 62 Transmissive POW 16 Roll Control 
CSA 24 Decision Making PSP 92 Arithmetic/Logical 
CSF 26 Jump PST Bc Transmissive 
DIM BE Arithmetic/Logical QSA 2A Decision Making 
DIV BB Aritlunetic/Logical QSF 2C Jump 
EAD 2E Transmissive REL 64 Roll control 
EAW lB Transmissive RSV 66 Roll Control 
ECW lB Transmissive SAD 6A Decision Making 
EOP 30 Transmissive SBP BA Decision Making 
ETA 32 Transmissive SBS 96 Decision Making 
FET 34 Transmissive SCE 2B Decision Making 
FLP 46 Transmissive SCK 6E Decision Making 
FRK B4 Transmissive SFP A6 Decision Making 
FRP 10 Transmissive SLE 70 Decision Making 
FTH AE Transmissive SNE 74 Decision Making 
IAD 36 Transmissive SNZ 72 Decision Making 
IND D2 Indirect Addressing SOP 6C Decision Making 
IOP 3B Transmissive SPM A2 Decision Making 
IOR BA Arithmetic/Logical SPT AC Decision Making 
ITA 3A Transmissive SRA 76 Decision Making 
ITM AO Transmissive SRD 7B Decision Making 
JAF 4A Jump (global) STA 6B Decision Making 

S6 Jump <local) STM 3C Decision Making 
JAT 4B Jump (global) SUB OB Arithmetic/Logical 

S4 Jump <local> SWT oc Transmissive 
JOW 4E Jump (global) TLY 42 Arithmetic/Logical 

SA Jump (local) WOP C8 Address Computation 
JPE S2 Jump WlP CA Address Computation 
JRD B2 Jump W2P cc Address Computation 
JSB so Jump W3P CE Address Computation 
JUN 4C Jump (global) W4P DO Address Computation 

S8 Jump (local) XIT 44 Jump 
LCE 00 Transmissive ZER 40 Transmissive 
LCF AA Transmissive 
LCT A8 Transmissive 

-------------------------------------------i-------------------------------------------

Appendix A: The POP Language 139 



APPENDIX B: ROLLS USED IN THE COMPILER 

This appendix describes each of the 
rolls used in the compiler, giving the 
group size, the structure and content of 
the information in the group, and the roll 
number. Each roll is described as it 
appears in each of the phases of the 
compiler. This information is useful in 
observing the actions taken by the various 
phases, since a significant portion of the 
work performed by the compiler is the 
construction and manipulation of informa­
tion on rolls. 

The rolls are ordered in this appendix 
as they are in storage, by roll number. In 
some cases, a single, number is assigned to 
several rolls. In these cases, the rolls 
with identical numbers are presented 
chronologically, and the overlay of one 
roll on another indicates that the previous 
roll is no longer required when the new 
roll is used. The group stats values for 
rolls with the same number are always 
identical. 

The roll number is the entry number in 
the roll statistics tables for the appro­
priate set of statistics; that is, the roll 
number multiplied by four is the relative 
address of the correct entry in the group 
stats, BASE, BOTTOM, and TOP tables. 

ROLL 0: LIB ROLL 

This roll contains one group for every 
name by which a library subprogram can be 
referred to in the source module. The roll 
is contained in IEYROL and remains 
unchanged in size and in content throughout 
compilation. 

The group 
twelve bytes. 

size for the LIB roll 
Each group has the form: 

4 bytes 

is 

r-----------------------------------------1 
!<--------------subprogram--------------- I 
l--------------------T----------T---------~ 
1-------narne-------->I TAG I 0 I 
~---------T----------f----------i---------~ 
I TAG I flag I no. arguments I 
L---------~----------~--------------------J 

The TAG appearing in the seventh byte of 
the group provides the mode and size of the 
FUNCTION value, if the subprogram is a 
FUNCTION. The TAG in byte 9 indicates the 
mode and size of the arguments to the 
subprogram. For FUNCTIONs, the flag (byte 

140 

10) indicates either in-line 
which generation routine must 
that a call is to be generated 
flag is equal to zero). 

(including 
be used) or 

(when the 

This roll is used and then destroyed by 
Allocate. 

ROLL 1: SOURCE ROLL 

This roll holds source module statements 
while they are being processed during the 
operations of Parse. The roll is not used 
by any later phase of the compiler. 

Source statements appear on this roll 
one card column per byte. Thus, each card 
of a source statement occupies 20 groups on 
the roll. The group size is four bytes. 
The statement 

A(I,J)=BCI,J)*2+C(I,J)**2 

would therefore appear on the SOURCE roll 
as: 

4 bytes 
r---------T----------T----------T---------1 
I b I b I b I b I 
~---------t----------t----------+---------1 
I b I b I A I ( I 
~---------t----------t----------+---------1 
I I I , I J I > I 
~---------t----------t----------t---------1 
I I B I ( I I I 
~---------t----------t----------+---------1 
I , I J I > I * I 
~---------t----------t----------t---------1 
I 2 I + I c I < I 
~---------+----------t----------+---------1 
I I I , I J I > I 
~---------t----------t----------+---------1 
I * I * I 2 I b I 
~---------+----------+----------+---------1 
I b I b I b I b I 
~---------i-----------'-----------'---------1 
I I 
I I 
I I 
~---------T----------T----------~---------1 
I b I b I b I b I 
L---------i-----------'----------.L---------J 
where b stands for the character blank, and 
a total of 20 words is occupied by the 
statement. 



ROLL 2: IND VAR ROLL 

This roll holds a pointer to the induc­
tion variable (the DO variable) used in 
each DO loop. The pointer specifies the 
appropriate group on the SCALAR roll. Each 
pointer is placed on the roll by Parse as 
the DO loop is encountered in the source 
module. When the loop is closed, the 
pointer is deleted. 

The roll is not used in subsequent 
phases of the compiler. The group size for 
the IND VAR roll is four bytes. 

ROLL 2 : NONSTD SCRIPT ROLL 

This roll exists only in Unify; the 
information held on it is taken from the 
SCRIPT roll. The group size for the NONSTD 
SCRIPT roll is variable, with a minimum of 
20 bytes. Each group on the roll describes 
an array reference. 

The format Of the NONSTD SCRIPT roll 
group is: 

4 bytes 

,--------T--------------------------------1 
!traits I frequency I 
1--------i--------------------------------i 
!pointer to ARRAY REF roll I 
·-----------------------------------------i !pointer to the ARRAY roll I 
·-----------------------------------------i I offset I 
·-----------------------------------------i 
Jinduction variable coefficient I 
1-----------------------------------------i 
I I 
I I 
I I 
·-----------------------------------------i !induction variable coefficient I 
L-----------------------------------------J 
where the first byte of the first word 
contains the trait, which indicates either 
joined or not joined; the value of this 
item is always zero (not joined) for this 
roll. The joined value indicates that the 
subscript described must appear in a gener­
al register at the time of the reference. 
The remaining three bytes of the first word 
indicate the number of times this subscript 
expression is used. 

The next two words contain pointers to 
rolls holding information on the array and 
the array reference to which this group 
refers. The fourth word holds the array 
offset; this value accounts for element 
size and includes all modification due to 

constant subscripts. The remaining words 
hold the induction variable coefficient 
used in this reference for each loop in the 
nest, beginning with nest level one (the 
outermost loop) and ending with the highest 
nest level at this array reference. 

ROLL 3: NEST SCRIPT ROLL 

This roll contains information concern­
ing array references in nested DO loops. 
The information for this roll is taken from 
the SCRIPT roll as each nest of loops is 
encountered, one nest at a time. The roll 
exists only in Unify. The group size of 
the NEST SCRIPT roll is variable with a 
I11J.n1mum of 20 bytes. The format of the 
NEST SCRIPT roll is as follows: 

4 bytes 
r--------T--------------------------------1 
Jtraits I frequency I 
·--------.J--------------------------------i 
Jpointer to ARRAY REF roll I 
~---------------------------------------i 
!pointer to the ARRAY roll I 
·-----------------------------------------i I offset I 
·-----------------------------------------i 
!induction variable coefficient I 
·-----------------------------------------i 
I I 
I I 
I I 
·-----------------------------------------i 
!induction variable coefficient I L_ ________________________________________ J 

where the first byte of the first word 
indicates joined or not joined. The 
remaining three bytes of the first word 
indicate the number of times that this 
subscript expression is used. The next two 
words of the group contain pointers to 
rolls which hold information on the array 
and the array reference to which this entry 
refers. The fourth word holds the actual 
adjusted off set for this array reference. 
The last words of the group contain the 
coefficients of induction variables used in 
the array reference, beginning with the 
nest level one variable and ending with the 
highest nest level. 

ROLL 4: POLISH ROLL 

This roll is used to hold the Polish 
notation generated by Parse, one statement 
at a time. (The Polish notation is moved 
to the AFTER POLISH roll at the end of each 
statement.) Therefore, the roll contains 

Appendix B: Rolls Used in the Compiler 141 



pointers, drivers, and an occasional con­
stant. The ~erms PO and Pl are used to 
refer to the bottom and next-to-bottom 
groups on the POLISH roll, respectively. 

In Gen, the Polish notation is moved 
back onto the POLISH roll from the AFTER 
POLISH roll, one statement at a time. It 
is used in the production of object code. 

The group size for the POLISH roll is 
four bytes. The format of the Polish 
notation which appears on this roll is 
described completely in Appendix c. 

The POLISH roll is not used in the other 
phases of the compiler and no information 
is left on it through these phases. 

ROLL 4: LOOP SCRIPT ROLL 

This roll contains information on 
references encountered in the 
module. The group size for the LOOP 
roll is variable; the minimum is 20 
Its format is: 

4 bytes 

array 
source 
SCRIPT 
bytes. 

r--------T--------------------------------1 
!traits I frequency I 
~--------i--------------------------------i 
!pointer to the ARRAY REF roll I 
~-----------------------------------------i 
!pointer to the ARRAY roll I 
r-----------------------------------------i 
I offset I 
~-----------------------------------------i 
!induction variable coefficient I 
r-----------------------------------------i 
I I 
I I 
I I 
~-----------------------------------------i 
!induction variable coefficient I 
L----------------------------------------J 
All items are the same as described for the 
NEST SCRIPT roll (roll 3). 

The LOOP SCRIPT roll exists only in 
Unify. It is used by this phase to further 
separate subscripts into two categories: 
standard, those which must appear in gener­
al registers at the time of reference, and 
nonstandard. 

ROLL 5: LITERAL CONST ROLL 

This roll holds literal constants, which 
are stored as plexes. The group size for 
the LITERAL CONST roll is variable. Each 
plex has the form: 

142 

4 bytes 
r----------------------------------------1 
I n I 
~----------------------------------------i I . k I 
~----------T---------T---------T----------i 
I C1 I C2 I C3 I c I 
r---------.l---------.1---------.1---------i 
I I 
I I 
I I 
~----------T---------T---------T----------i 
I c I I I I L_ _________ .._ _______ .._ ________ .._ _________ J 

where n is the number of words in the plex, 
exclusive of the word which holds n, k is 
the number of bytes in the literal con­
stant, and c (the k character) may fall in 
any byte of the last word of the plex. If 
the literal constant appeared in a source 
module DATA or PAUSE statement, the high 
order bit of the second word of the plex 
(k) is set to one; otherwise, it is zero. 

Entries are made on the LITERAL CONST 
roll only during Parse. It is used to hold 
the literal constants throughout the com­
piler; its format, therefore, does not 
vary. 

ROLL 7: GLOBAL SPROG ROLL 

In Parse this roll holds the names of 
all SUBROUTINES and non-library FUNCTIONS 
referred to in the source module. It also 
holds the names of all subprograms listed 
in EXTERNAL statements in the source 
module, including library subprograms. In 
addition, the compiler itself generates 
calls to the library exponentiation rou­
tines; the names of these routines are 
entered on the GLOBAL SPROG roll. 

The group size 
is eight bytes. 
GLOBAL SPROG roll 
ing format: 

for the GLOBAL SPROG roll 
All groups placed on the 

by Parse have the follow-

4 bytes 
r-----------------------------------------1 
l<-------------subprogram---------------1 
r-------~------------T----------T---------i 
1------name--------> I TAG I 0 I L_ _________________ .._ _________ i ________ J 

The TAG appearing in the seventh byte of 
the group indicates the mode and size of 
the FUNCTION value for FUNCTIONS; it has no 
meaning for SUBROUTINES. 

In Allocate, the information on the roll 
is altered to: 



4 bytes 
r--------------------T--------------------1 
I ESD number I displacement I 
~--------------------~--------------------~ I base table pointer I 
L-----------------------------------------J 

The ESD number is the one assigned to the 
subprogram. The displacement and the base 
table pointer, taken together, indicate the 
location assigned by Allocate to hold the 
address of the subprogram. The specified 
BASE TABLE roll group holds an address; the 
displacement is the distance in bytes from 
that address to the location at which the 
address of the subprogram will be stored in 
the object module. 

In Gen, the GLOBAL SPROG roll is used in 
the construction of object code, but it is 
not altered. 

In Exit, the roll is used in the produc­
tion of RLD cards, but is not altered. 

ROLL 8: FX CONST ROLL 

This roll holds the fullword integer 
constants which are used in the source 
module or generated by the compiler. The 
constants are held on the roll in binary, 
one constant per group. The group size for 
the FX CONST roll is four bytes. 

The format of the FX CONST roll is 
identical for all phases of the compiler. 
The roll remains in the roll area for all 
phases, even though it is not actually used 
in A1locate and Unify. 

ROLL 9: FL CONST ROLL 

This roll holds the single-precision 
real (floating point) constants used in the 
source module or generated by the compiler. 
constants are recorded on the roll in 
binary (floating point format), each con­
stant occupying one group. The group size 
for the FL CONST roll is four bytes. 

The FL CONST roll remains 
area for all phases of 
although it is not actually 
ate or Unify. The format 
identical for all phases. 

in the roll 
the compiler, 

used in Alloc­
of this roll is 

ROLL 10: DP CONST ROLL 

This roll holds the double-precision 
(8-byte) real constants used in the source 
module or defined by the compiler. 

The constants are recorded in binary 
(doUble-precision floating point format), 
one constant per group. The group size for 
the DP CONST roll is eight bytes. 

The DP CONST roll is present in this 
format through all phases of the compiler. 

ROLL 11: COMPLEX CONST ROLL 

This roll holds the complex constants of 
standard size (eight bytes) used in the 
source module or generated by the compiler. 
Each complex constant is stored on the roll 
as a pair of 4-byte binary floating-point 
numbers, the first represents the real part 
of the constant and the second represents 
the imaginary part. 

The COMPLEX 
format described 
the compiler. 
bytes. 

CONST roll exists in the 
above for all phases of 
The group size is eight 

ROLL 12: DP COMPLEX CONST ROLL 

This roll holds the complex constants of 
optional size (16 bytes) which are used in 
the source module or generated by the 
compiler. Each constant is stored as a 
pair of double-precision binary floating 
point values. The first value represents 
the real part of the constant; the second 
value represents the imaginary part. The 
group size for the DP COMPLEX CONST roll is 
16 bytes. · 

The DP COMPLEX CONST roll exists in this 
format for all phases of the compiler. 

ROLL 13: TEMP NAME ROLL 

This roll is used as temporary storage 
for names which are to be placed on the 
ARRAY or EQUIVALENCE roll. The group size 
for the TEMP NAME roll is eight bytes. The 
format of the group is: 

Appendix B: Rolls Used in the compiler 143 



4 bytes 
r-----------------------------------------1 
l<---------------name-----------------1 
l--------------------T----------T---------~ 
1-------------------> I TAG I 0 I 
L--------------------L----------L---------J 

The TAG appearing in the seventh byte of 
the group indicates, in the format of the 
TAG field of a pointer, the mode and size 
of the variable. 

The TEMP NAME roll is used only during 
Parse and Allocate; it does not appear in 
any later phase of the compiler. 

ROLL 13: STD SCRIPT ROLL 

The information on this roll pertains to 
array references for which the subscript 
expression must appear in a general regist­
er (joined). 

The roll exists only in Unify and the 
information contained therein is taken from 
the SCRIPT roll. Its structure and con­
tents are identical to those of the NONSTD 
SCRIPT roll <roll 2) with the exception 
that the traits on this roll always indic­
ate joined. The group size is variable 
with a minimum of 20 bytes. 

ROLL 14: TEMP ROLL 

This roll is used as 
in Parse and is not used 
of the compiler. The 
TEMP roll is four bytes. 

temporary storage 
in any later phase 
group size for the 

This roll is used as temporary storage 
for error information in Parse and is not 
used in the other phases of the compiler. 
The group size for the ERROR TEMP roll is 
four bytes. 

ROLL 15: DO LOOPS OPEN ROLL 

In Parse, as DO statements are encoun­
tered, pointers to the target labels of the 
DO statements are placed on this roll. 
When the target statement itself is encoun­
tered, the pointer is removed. 

In Allocate, the roll may contain some 
pointers left from Parse; if any are pres­
ent, they indicate unclosed DO loops; the 
roll is checked by Allocate and any infor­
mation on it is removed. 

144 

This roll is not used after Allocate. 
The group size for the DO LOOPS OPEN roll 
is four bytes. 

ROLL 15: LOOPS OPEN ROLL 

This roll contains the increment and 
terminal values of the induction variable 
used in a DO loop and transfer data for the 
reiteration of the loop. 

Gen creates the roll by establishing an 
entry each time a DO loop is encountered. 
The information is used in generating the 
object code. As a loop is closed, the 
bottom group from the LOOPS OPEN roll is 
pruned. 

The group size is four bytes. Four 
groups are placed in the roll at one time. 
The configuration of a LOOPS OPEN roll 
group is as follows: 

4 bytes 
r----------------------------------------1 
I pointer to n 3 <increment) I 
~----------------------------------------1 
I pointer to n 2 (terminal value) I 
~-----------------------------------------1 
I LOOP DATA pointer I 
~-----------------------------------------~ 
I pointer to return point made label I 
L-----------------------------------------J 

ROLL 16: ERROR MESSAGE ROLL 

This roll is used only in Parse. It is 
used during the printing of the error 
messages for a single card of the source 
module. Each group holds the beginning 
address of an error message required for 
the card. It is used in conjunction with 
the ERROR CHAR roll, whose corresponding 
group holds the column number in the card 
with which the error ·is associated. The 
group size for the ERROR MESSAGE roll is 
four bytes. 

ROLL 16: TEMP AND CONST ROLL 

This roll is produced in Gen and is used 
in Gen and Exit. It holds all 
required for the object module 
for all temporary storage 
required in the object module. 

constants 
and zeros 
locations 

Binary constants are moved to this roll 
by Gen from the various CONST rolls. This 
roll becomes the object module's temporary 



Form Y28-6638-l 
Page Revised 11/15/68 by TNL Y28-6826 

storage and constant area. The group size 
for the TEMP AND CONST roll is four bytes. 

ROLL 17: ERROR CHAR ROLL 

This roll is used only during Parse, and 
is not used in any subsequent phase of the 
compiler. 

While a single source module card and 
its error messages are being prepared for 
output, this roll holds the column number 
with which an error message is to be 
associated. The address of the error mes­
sage is held in the corresponding group on 
the ERROR MESSAGE roll. The group size for 
the ERROR CHAR roll is four bytes. 

This roll is used only in Exit, and is 
not used in previous phases of the compil­
er. It holds address constants, the loca­
tions at which they are to be stored, and 
relocation information. The group size is 
16 bytes. The first word of the group 
holds an area code, ~ndicating the control 
section in which the constant exists. The 
second word of the group holds the address 
into which the constant is to be placed; 
the third holds the constant. The last 
word of the group indicates the relocation 
factor (ESD number> to be used for the 
constant. 

The group size for the INIT roll is 
eight bytes. The roll is initialized in 
Parse, and used and destroyed in Allocate. 
Each group on the roll holds the name of a 
scalar variable or array listed in the INIT 
option of a DEBUG statement in the source 
module. The format of the group is: 

4 bytes 
r-----------------------------------------1 
!<------------variable name---------------1 
r--------------------T--------------------~ 
!------------------->! 0 l 
L----~----------~--i--------------------J 

ROLL 18: DATA SAVE ROLL 

This roll is used only in Gen, where it 
holds the Polish notation for portions of 
DATA statements or Explicit specification 
statements which refer to control sections 
different from the control section present­
ly in process. The roll is a temporary 
storage location for this information, 
since data values are written out for one 
control section at a time. The group size 
is four bytes. 

RQ~~_1~~--~!g~D LABEL (XTEND LBL) ROLL 

This roll is used only by Parse. It 
holds the pointers to the ~ABg~-~2±± for 
all labels defined within the innermost DO 
loops that are possible extended range 
candidates. The group size of the ~!§~Q 
LABE~ roll is four bytes. Each group holds 
a pointer to the LABEL roll. The format of 
the group on the roll is: 

1 byte 3 bytes 
r--------T--------------------------------1 
jTAG !LABEL roll pointer I 
L--------i--------------------------------J 
If the label is a possible 
from the extended range of a 
TAG byte contains a X'OS'. 
TAG byte contains a x•oo•. 

re-entry point 
DO loop, the 
Otherwise, the 

ROLL 19: EQUIVALENCE TEMP (EQUIV TEMP) 
ROLL 

This roll is used to hold EQUIVALENCE 
roll data temporarily in Allocate, and is 
not used in any other phase of the 
compiler. The group size for the 
EQUIVALENCE TEMP or EQUIV TEMP roll is 
twelve bytes. The format of the group on 
the roll is: 

4 bytes 
r-----------------------------------------1 
j<---------------variable-----------------1 
r--------------------,--------------------~ 
1-------name--------> I 0 I 
r--------------------i--------------------~ 
I offset I 
L-----------------------------------------J 
The offset is the relative address of the 
beginning of the variable within the 
EQUIVALENCE group (set) of which it is a 
member. This roll holds this information 
during the allocation of storage for 
EQUIVALENCE variables. 

Appendix B: Rolls Used in the Compiler 145 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

ROLL 20: XTEND TARGET LABEL (XTEND TARG 
LBL) ROLL 

This roll is used only by Parse. The 
group size of the XTEND TARGET LABEL roll 
is four bytes. Each group holds a pointer 
to the LABEL roll for each label that 
appears in any transfer statement (e.g., GO 
TO, Arithmetic IF statements) within a DO 
loop. Thes~ groups indicate transfers out 
of an innermost DO loop and a possible 
extended range. The format of the group is 
the same as Roll 19, ~TEND LABEL_~ol!. 

1 byte 3 bytes 
r----~--r~-----~-----------------------1 
ITAG f LABEL roll pointer I 
L--------L-------~-----------------------J 
If the TAG byte contains a X' 40'1 , this 
indicates that the target label also 
appears in a transfer statement outside the 
DO loop and may be a possible re-entry 
point (if the label is defined within the 
loop). Otherwise, the TAG byte contains a 
x•oo•. 

B,OL!:!_f.Q..t_._!:2UIVALENCE HOLD (EQUIV HOLD) 
ROL!:! 

This roll is used to hold EQUIVALENCE 
roll data temporarily in Allocate, and is 
not used in any other phase of the compil­
er. The group size for the EQUIVALENCE 
HOLD roll is twelve bytes. The format of 
the group on the roll is: 

4 bytes 

r----------------~-----------------------1 
l<---------------variable-----------------1 
·---~--------------y--------------------1 
1-------name-----~->I 0 I 
·----~--------------L--------------------1 I offset I 
L-----------------------------------------J 
The offset is the relative address of the 
beginning of the variable within the 
EQUIVALENCE group (set) of which it is a 
member. This roll holds this information 
during the allocation of storage for 
EQUIVALENCE variables. 

ROLL 20: REG ROLL 

This roll contains information concern­
ing general registers required in the 
execution of DO loops in the object module. 

The group size of the REG roll is twelve 
bytes. The roll is used only in Unify. 
Each group has the following format: 

146 

4 bytes 
,-----------T-----------------------------1 I traits I frequency I 
·-----------"-----------------------------i I ARRAY REF pointer I 
f-----------------------------------------i f LOOP CONTROL pointer I 
L-----------------------------------------J 

The frequency indicates how many times 
within a loop the register is used. The 
registers are symbolic registers that are 
converted to real registers and/or tem­
porary storage locations. The pointer to 
the ARRAY REF roll is actually a thread 
which indicates each place that this 
register is required in the loop. The last 
word, the pointer to the LOOP CONrROL roll, 
designates where the register in question 
was initialized. (The particular informa­
tion is contained in the second word of the 
entry on the LOOP CONTROL roll.) 

ROLL 21: BASE TABLE ROLL 

This roll is constructed by Allocate,, 
and remains in the roll area for all 
remaining phases of the compiler. The BASE 
TABLE roll becomes the object module base 
table, which holds the base addresses used 
in ref erring to data in the object module. 

The group size for this roll is eight 
bytes. One group at a time is added to 
this roll by Allocate. The first word 
holds the area code which indicates the 
relocation factor by which the base table 
entry must be modified at object time; each 
unique area code also defines an object 
module control section. The second word 
holds a relative address within the control 
section defined by the area code; this is 
the value which is in the corresponding 
base table entry prior to modification by 
the linkage editor. 

The entire BASE TABLE roll is con­
structed by Allocate. 

This roll is used throughout the compil­
er to hold the required information de­
scribing arrays defined in the source 
module. 

In Parse, the name and dimension infor­
mation is added to the roll for each array 
definition encountered. The group size for 
the ARRAY roll is 20 bytes. The format of 
the group is: 



Form Y28-o638-1 
Page Revised 11/15/68 by TNL Y28-6826 

4 bytes 
r-----------------------------------------1 
!<--------------array name----------------1 
r-------------------T----------T----------i 
!------------------>! TAG I 0 I 
r-------------------~----------~----------i 
I ARRAY DIMENSION pointer I 
t----------------~-----------------------i 
I number of elements I 
r-----------------------------------------i 
I array offset I 
L----------------~-----------------------J 

The TAG appearing in the seventh byte of 
the group indicates, in the format of the 
TAG field of a pointer, the mode and size 
of the array variable. The pointer in the 
third word of the group points to the 
beginning of the plex on the ARRAY 
DIMENSION roll, which describes the dimen­
sions of the array. The number of elements 
in the array is a constant, unless the 
array has dummy dimensions; in the latter 
case, Parse puts a dummy pointer to a 
temporary location in this word of the 
group. 

The array offset is the summation of the 
multipliers for the array subscripts. If 

the array dimensions are nl, n2, ••• n7, then 
the multipliers are 1, nl, nl*n2~ nl*n2*n3, 
••• nl*n2*n3*n4*n5*n6, where the size of the 
element of the array is not considered. 
This value, after it is multiplied by the 
element size., is used as a subtractive 
offset for array references. The off set is 
placed on the roll as a constant unless the 
array has dummy dimensions; in the latter 
case, a dummy pointer to a temporary loca­
tion is placed in the last word of the 
group. 

In Allocate, the first two words of the 
ARRAY roll group are replaced with the 
following: 

4 bytes 
r---------T----------T--------------------1 
I TAG IDBG/CEAD I displacement I 
~---------~----------~--------------------i 
I base table pointer I 
L-----------------------------------------J 

The TAG is unchanged, except in location, 
from Parse. The DBG/CEAD flag is logically 

Appendix B: Rolls Used in the Compiler 146.1 





split into two hexadecimal values. The 
first of these indicates debug references 
to the variable; its value is 1 for INIT, 2 
for SUBCHK, 0 for neither, and 3 for both. 
The second hexadecimal value is nonzero if 
the array is in COMMON, a member of an 
EQUIVALENCE set, used as an argument to a 
subprogram, or a dummy; it is zero other­
wise. The displacement and the base table 
pointer, taken together, indicate the 
beginning address of the array. The base 
table pointer specifies the BASE TABLE roll 
group to be used in references to the 
array; the displacement is the distance in 
bytes from the address held in that group 
to the location at which the array begins. 
If the array is a dummy, the base table 
pointer is replaced by a pointer to the 
GLOBAL DMY roll group defining the array, 
and the displacement is zero. 

The third, fourth, 
the ARRAY roll group are 
Allocate. 

and fifth words of 
not modified by 

The ARRAY roll remains 
throughout the compiler, and 
sulted, but not modified, 
following Allocate. 

ROLL 23: DMY DIMENSION ROLL 

in storage 
it is con­

by the phases 

This roll is used first in Allocate, 
where it holds pointers to the array 
definition and the entry statement with 
which dummy array dimensions are asso­
ciated. The group size of the DMY DIMEN­
SION roll is four bytes. Two groups are 
added to the roll at a time to accommodate 
this information; the format is: 

4 bytes 
r-~---------------------------~---------, 
I ARRAY pointer I 
l-----------------------------------------~ I ENTRY NAMES pointer I 
L-----------------------------------------J 

In Gen, the DMY DIMENSION roll is used 
in the generation of temporary locations 
for the dummy dimensions. This operation 
is performed when code is being produced 
for the prologue with which the dummy 
dimension is associated. 

The DMY DIMENSION roll is not used by 
later phases of the compiler. 

ROLL 23: SPROG ARG ROLL 

This roll becomes the subprogram argu­
ment list area of the object module. The 

roll is constructed by Gen and holds point­
ers to the arguments to subprograms in the 
order in which they are presented in the 
subprogram reference. These pointers may, 
therefore, point to the SCALAR, ARRAY, 
GLOBAL SPROG, or TEMP AND CONST rolls (the 
last roll holds arguments which are 
expressions or constants). The value zero 
is placed on this roll for arguments whose 
addresses are computed and stored in the 
object module argument list area. 

The TAG fields of the pointers on this 
roll contain the value zero except for the 
TAG field of the last pointer for a single 
subprogram reference; this field contains 
the value 80. 

The contents of the SPROG ARG roll are 
punched by Exit. The group size for the 
SPROG ARG roll is four bytes. 

ROLL 24: ENTRY NAMES ROLL 

In Parse, this roll holds all ENTRY 
names defined in the source subprogram, and 
pointers to the locations on the GLOBAL DMY 
roll at which the definitions of the dummy 
arguments corresponding to the ENTRY begin. 
The group size for the ENTRY NAMES roll is 
16 bytes. The format of the group is: 

4 bytes 
r-----------------------------------------1 
!<--------------ENTRY name----------------1 
~~------------------T--------------------1 
1------------------->I o I 
~--------------------.J._-------------------~ 
I dummy pointer I 
~-----------------------------------------1 
I o I 
L~---------------------------------------J 

The dummy arguments corresponding to the 
ENTRY are listed on the GLOBAL DMY roll in 
the order in which they are presented in 
the ENTRY statement. 

In Allocate, the ENTRY NAMES roll is 
used in the check to determine that scalars 
with the same names as all ENTRYs have been 
set. A pointer to the scalar is placed in 
the fourth word of the group by this phase. 

In Gen, during the production of the 
initialization code (the object module 
heading), the first word of the group is 
replaced by a pointer to the ADCON roll 
indicating the location of the prologue, 
and the second word is replaced by a 
pointer to the ADCON roll indicating the 
location of the epilogue. During the pro­
duction of code for the prologue, the first 
pointer (the first word of the group) is 
replaced by a pointer to the ADCON roll 

Appendix B: Rolls Used in the compiler 147 



which indicates the entry point for the 
ENTRY. 

This roll is not required after the Gen 
phase. 

ROLL 25: GLOBAL DMY ROLL 

In Parse, each group on the roll con­
tains the name of a dwnmy listed in a dummy 
argument list for the principle entry or 
for an ENTRY statement in a source subpro­
gram. A flag also appears in each group 
which indicates whether the dwnmy is a 
•call by name• or a •call by value• dummy. 
The group size is eight bytes. The format 
of the group in Parse is: 

4 bytes 

r-----------------7-----------------------1 
l<--------------dwnmy name----------------1 
~--------------------T--------------~-----i 1------------------->I flag I 
L--------------------i----------~---------J 
where the dwnmy name occupies the first six 
bytes of the group. 

Label dunnnies, indicated by asterisks in 
the source module, are not listed on this 
roll. With this exception, however, the 
dwnmy lists from the source subprogram are 
entered on this roll as they appear in the 
source statements. The end of each dunnny 
list is signaled by a marker symbol on the 
roll. Since each of the dummy lists is 
represented on the roll., the name of a 
single dummy may appear more than once. 

In Allocate, the information in each 
group is replaced by: 

4 bytes 

r---------T----------T--------------------1 I TAG I DBG/flag I displacement I 
~--------i----------i--------------------i I base table pointer I 
L-----------------------------------------J 
where the base table pointer indicates the 
group on the BASE TABLE roll to be used for 
references to the dwnmy, and the displace­
ment (in the third and fourth bytes) indi­
cates the distance in bytes from the 
address stored in that BASE TABLE roll 
group to the location of the dunnny. The 
•flag• occupies the second hexadecimal 
character of the second byte and is 
unchanged from Parse, indicating call by 
name if it is on. The first hexadecimal 
value in that byte indicates debug 
references to the variable; its value is 1 
for INIT, 2 for SUBCHK, 0 for neither, and 
3 for both. The TAG indicates the mode and 
size of the dunnny. 

148 

The GLOBAL DMY roll is used but unmodi­
fied in Gen and Exit. 

ROLL 26: ERROR ROLL 

This roll is used only in Parse and 
holds the location within the statement of 
an error, and the address of the error 
message for all errors encountered within a 
single statement. As the statement is 
written on the source listing, the informa­
tion in the ERROR roll groups is removed, 
leaving the roll empty for the processing 
of the next statement. 

The group size is four bytes. Two 
groups are added to this roll at a time: 
(1) the column number of the error, count­
ing from one at the beginning of the source 
statement and increasing by one for every 
card column in the statement, and (2) the 
address of the message associated with the 
particular error encountered. 

ROLL 26: ERROR LBL ROLL 

This roll is used only in Allocate, 
where it holds labels which are referred to 
in the source module, but which are unde­
fined. These labels are held on this roll 
prior to being written out as undefined 
labels or unclosed DO loops. The group 
size for the ERROR LBL roll is four bytes. 

ROLL 27: LOCAL DMY ROLL 

This roll holds the names of the dummy 
arguments to a statement function while the 
statement function is being processed by 
Parse. The group size is eight bytes. The 
format of the group is: 

4 bytes 

r-----------------------------------------1 
!<--------------dummy name----------------1 
~--------------------T--------------------i 1----------------->I o I L__ __________________ i_ ___________________ J 

The information is removed from the roll 
when the processing of the statement f unc­
ti on is complete. 

This roll does not appear in any subse­
quent phase of the compiler; however, 
pointers to it appear in the Polish nota­
tion produced by Parse and these pointers 
are, therefore, processed by Gen. 



ROLL 28: LOCAL SPROG ROLL 

In Parse, the roll holds the names of 
all statement functions as they are encoun­
tered in the source module. The group size 
for the LOCAL SPROG roll is eight bytes. 
The format of the group is: 

4 bytes 
r-----------------------------------------1 
l<------------stmt. function-------~-----1 
~-------------------T----------T----------~ 
1-------name------->I TAG I 0 I 
L-------------------~----------~----------J 

The TAG appearing in the seventh byte of 
the group indicates, in the format of the 
TAG field of a pointer, the mode and size 
of the function value. 

In Allocate, the first four bytes of 
each group are replaced by a pointer to the 
BRANCH TABLE roll group which has been 
assigned to hold the address of the state­
ment function. 

The LOCAL SPROG roll is used by Gen and 
Exit, but it is not modified in those 
phases. 

ROLL 29: EXPLICIT ROLL 

This roll is used 
where it holds the 
defined by Explicit 
ments. The group 
roll is eight bytes. 
group in both phases 

in Parse and Allocate, 
names of all variables 
specification state­

size for the EXPLICIT 
The format of the 

is: 

4 bytes 
r-----------------------------------------1 
!<------------variable name---------------1 
~-------------------T----------T----------~ 
1------------------>I TAG I 0 I 
L-------------------~----------~----------J 

where the TAG (seventh byte) indicates the 
mode and size of the variable. 

Groups are entered on this roll by 
Parse; the roll is consulted by Allocate, 
but not altered. 

ROLL 30: CALL LBL ROLL 

This roll is used only in Parse, where 
it holds pointers to the LBL roll groups 
defining labels which are passed as argu­
ments in source module CALL statements. 
The pointers are held on this roll only 
temporarily, and are packed two pointers to 

a group. Pointers are added to the roll 
when the labels are found as arguments in 
CALL statements. The group size for the 
CALL LBL is eight bytes. 

ROLL 30: ERROR SYMBOL ROLL 

This roll is used only in Allocate, 
where it holds any symbol which is in 
error, in preparation for printing. The 
group size for the ERROR SYMBOL roll is 
eight bytes. The symbol (variable name, 
subprogram name) occupies the first six 
bytes of the group. The remaining two 
bytes are set to zero. 

ROLL 31: NAMELIST NAMES ROLL 

In Parse, this roll holds the NAMELIST 
names defined in the NAMELIST statement by 
the source module. The group size for the 
NAMELIST NAMES roll is twelve bytes. These 
groups are placed on the roll in the 
following format: 

4 bytes 
r-----------------------------------------1 
l<---------------NAMELIST-----------------1 
~--------------------T--------------------~ 
1-------name-------->I 0 I 
~---------------------'--------------------~ 
I pointer to NAMELIST items I 
L-----------------------------------------J 
where the pointer indicates the first vari­
able in the list associated with the NAME­
LIST name. In Allocate, the content of the 
group on the NAMELIST NAMES roll is changed 
to reflect the placement of the correspond­
ing NAMELIST table in the object module. 
The format of the first two words of the 
modified group is: 

4 bytes 
r--------------------T--------------------1 
I 0 I displacement I 
~---------------------'--------------------~ 
I base table pointer I 1._ ________________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE roll to be used for 
references to the NAMELIST table, and the 
displacement (bytes 3 and 4) indicates the 
distance in bytes from the address in that 
BASE TABLE roll group to the location of 
the beginning of the NAMELIST table. 

This roll is used, but not modified, in 
Gen and Exit. 

Appendix B: Rolls Used in the Compiler 149 



ROLL 32: NAMELIST ITEMS ROLL 

This roll holds the variable names 
listed in the namelists defined by the 
source module. The group size for the 
NAMELIST ITEMS roll is eight bytes. Infor­
mation is placed on the roll by Parse in 
the following form: 

4 bytes 
r-----------------------------------------1 
l<---------------variable-----------------1 
~--------------------T--------------------i 
1-------name-------->I O I 
L--------------------i--------------------J 
A marker symbol separates namelists on the 
roll. 

The roll is used in 
Allocate and is destroyed. 
appear in later phases. 

this 
It 

ROLL 33: ARRAY DIMENSION ROLL 

format by 
does not 

This roll is used to hold dimension 
information for the arrays defined in the 
source module. The group size for the 
ARRAY DIMENSION roll is variable. The 
information is placed on the roll by Parse 
in the form of a plex, as follows: 

4 bytes 
r-----------------------------------------1 
I n I 
~-----------------------------------------i 
I dimension I 
~-----------------------------------------i 
I multiplier I 
~----------------------------------------i 
I dimension I 
~-----------------------------------------i 
I multiplier I 
~-----------------------------------------i 
I I 
I I 
I I 
~-----------------------------------------i 
I dimension I 
~----------------------------------------i 
I multiplier I 
L-----------------------------------------J 

where n is the number of words in the plex, 
exclusive of itself. As many dimensions 
and corresponding multipliers appear as 
there are dimensions declared for the 
array. 

Unless the array is a dummy and has 
dummy dimensions, each dimension and multi­
plier is a constant. When dummy dimensions 
do appear in the array definition, the 
corresponding dimension on this roll is a 

150 

pointer to the dummy dimension variable on 
the SCALAR roll, and all affected multip­
liers are pointers to temporary locations 
(On the TEMP AND CONST roll). The multip­
liers for an array with dimensions nl, n2, 
n3, ••• , n7 are 1, nl, nl•n2, ••• , 
nl•n2•n3•n4•n5•n6. 

The ARRAY DIMENSION roll is present, but 
not modified in Unify, Gen, and Exit. 

ROLL 34: BRANCH TABLE ROLL 

This roll becomes the object module 
branch table. During Allocate, where the 
roll is first used, the size of the roll is 
determined, and some groups are actually 
placed on it. These groups contain the 
value zero, and each group refers to a 
source module label. 

In Gen, the information for the BRANCH 
TABLE roll groups is supplied as each 
labeled statement is processed. The group 
size for the BRANCH TABLE roll is eight 
bytes. The format of the group is: 

4 bytes 
r-----------------------------------------1 
I area code I 
~----------------------------------------i 
I relative address I t_ ________________________________________ J 

where the area code provides the reference 
for linkage editor modification of the 
corresponding branch table word, and the 
relative address is the relative location 
of the label in the control section (area) 
in which it appears. Branch table (and, 
hence, BRANCH TABLE roll) entries are pro­
vided for all branch target labels, state­
ment functions, and made labels (labels 
constructed by the compiler to ref er to 
return points in DO loops and to the 
statements following Logical IF state­
ments). 

The roll is retained in the Gen format 
until it is written out by Exit. 

ROLL 35: TEMP DATA NAME ROLL 

This roll is used only in Parse, where 
it holds pointers and size information for 
variables listed in DATA statements or in 
Explicit specification statements which 
specify initial values. Information is 
held on this roll while the statement is 
being processed. 



The group size for the TEMP DATA NAME 
roll is four bytes. Four groups are added 
to the TEMP DATA NAME roll for each vari­
able listed in the statement being scanned. 
They are in the following sequence: 

4 bytes 
r-----------------------------------------1 
I element size (bytes) I 
~-----------------------------------------i 
I pointer to variable I 
1-----------------------------------------i 
I number elements set I 
~-----------------------------------------i 
I element number I 
L-----------------------------------------J 

The third group specifies the number of 
elements of the variable being set by the 
DATA statement or the Explicit specifica­
tion statement. If a full array is set, 
this is the number of elements in the 
array: if a specific array element is set, 
this word contains the value one. 

The fourth group indicates the first 
element number being set. If a full array 
is being set, this word holds the value 
zero: otherwise, it holds the element 
number. 

ROLL 36: TEMP POLISH ROLL 

This roll is used only in Parse, where 
it holds the Polish notation for a single 
DATA group during the scanning of that 
group. In an Explicit specification state­
ment, a DATA group is defined to be a 
single variable and the associated con­
stants: in a DATA statement, a DATA group 
is the set of variables listed between a 
pair of slash characters and the constants 
associated with that set. 

This roll is used because any error 
encountered in a DATA group will cause the 
Polish notation for the entire group to be 
canceled. In an Explicit specification 
statement, the type information on the 
variable is retained when the data is bad: 
if, however, the type information is bad, 
the data is also lost. The group size is 
four bytes. 

ROLL 36: FX AC ROLL 

This roll is used in Gen only and is a 
fixed length roll of 16 groups. The groups 
refer to the 16 general registers in order. 

The group size for the FX AC roll is 
four bytes. Each group on the roll con-

tains a pointer to the value which is held 
in the corresponding general register at 
the present point in the object module: as 
the contents of the general registers are 
changed, the pointers are changed. The 
pointers are used primarily to indicate 
that the general register is in use and the 
mode of the value in it. They are used for 
optimizing only in the case of the general 
registers which are loaded from the base 
table and the general registers used for 
indexing. If the general register corre­
sponding to a specific group is not in use, 
the group holds the value zero. 

ROLL 37: EQUIVALENCE ROLL 

In Parse, this roll holds the names of 
all variables listed in source module 
EQUIVALENCE statements. One group is used 
for each variable name listed in the source 
statement, and EQUIVALENCE sets are 
separated from each other by a marker 
symbol. The group size for the EQUIVALENCE 
roll is twelve bytes. The format of the 
group is: 

4 bytes 
r-----------------------------------------1 
l<---------------variable-----------------1 
~--------------------T--------------------~ 
1---name------------>I 0 I 
~---------------------'--------------------~ 
I EQUIVALENCE OFFSET pointer I 
L-----------------------------------------J 
The pointer to the EQUIVALENCE OFFSET roll 
points to the first word of a plex on that 
roll which holds the subscript information 
supplied in the EQUIVALENCE statement. If 
no subscript was used on the variable in 
the EQUIVALENCE statement, the value zero 
appears in the third word of the group on 
the EQUIVALENCE roll. 

The roll is used and destroyed in Alloc­
ate, during the assignment of storage for 
EQUIVALENCE variables. 

ROLL 37: BYTE SCALAR ROLL 

This roll is used only in Allocate, 
where it holds (temporarily) the names of 
1-byte scalar variables. The group size 
for the BYTE SCALAR roll is eight bytes. 
The format of the group is: 

Appendix B: Rolls Used in the Compiler 151 



I.I bytes 
r-----------------------------------------1 
!<-------------scalar name----------------1 
1--------------------T----------T---------~ 
1-------------------> I TAG I 0 I 
L-------~-----------i __________ i _________ J 
where the TAG field indicates the mode and 
size of the variable. 

ROLL 38: USED LIB FUNCTION ROLL 

In Parse, the roll holds the names and 
other information for all library FUNCTIONS 
which are actually referenced in the source 
module. The group size for the USED LIB 
FUNCTION roll is twelve bytes. The infor­
mation is placed on the roll in the follow­
ing format: 

I.I bytes 
r-----------------------------------------1 
l<---------------FUNCTION-----------------1 
~-------------------T----------T----------i 
1-------name------->I TAG I 0 I 
~---------T---------t----------..1----------i 
ITAG I flag I no. arguments I 
L---------i---------i---------------------J 
The TAG appearing in byte 7 indicates the 
mode and size of the function value. The 
TAG appearing in byte 9 indicates the mode 
and size of the arguments to the FUNCTION. 
The flag in byte 10 indicates whether the 
FUNCTION is in-line and, if it is, which 
generation routine should be used. If the 
flag is zero, a call is to be generated. 
The last two bytes hold the number of 
arguments to the FUNCTION. The maximum 
number of arguments allowed for the MIN and 
MAX FUNCTIONS is 16,000. 

In Allocate, the information in the 
first two words of the group is altered to: 

I.I bytes 
r---------T----------T--------------------1 
I TAG I 0 I displacement I 
~---------i __________ i ____________________ i 
I base table pointer I 
L-----------------------------------------J 
where the base table pointer indicates the 
group on the BASE TABLE roll to be used in 
ref erring to the address of the subprogram. 
The displacement is the distance in bytes 
from the contents of the base table entry 
to the location at which the address of the 
subprogram will be stored. The TAG byte is 
unchanged, except in location, from Parse. 

The USED LIB FUNCTION roll is consulted 
by Gen in the construction of object code, 
but it is not modified. It is also pre­
sent, but not modified, in Exit. 

152 

ROLL 39: COMMON DATA ROLL 

This roll holds the names of all COMMON 
variables as defined in source module COM­
MON statements. A marker symbol separates 
COMMON blocks on this roll. All informa­
tion is placed on this roll in Parse. 

The group size is eight bytes. The 
first six bytes of each group hold the 
nameof the COMMON variable; the remaining 
two bytes are set to zero, as follows: 

I.I bytes 
r-----------------------------------------1 
!<------------variable name---------------1 
~-------------------T---------------------i 
1------------------>I o I 
L-------------------i---------------------J 

In Allocate, the information on this 
roll is used and destroyed. The roll is 
not used in later phases. 

ROLL 39: HALF WORD SCALAR ROLL 

The roll is used only in Allocate, where 
it holds (temporarily) the names of half­
word scalar variables defined in the source 
module. The group size for the HALF WORD 
SCALAR roll is eight bytes. The format of 
the group is: 

4 bytes 
r-----------------------------------------1 
!<-------------scalar name----------------1 
~-------------------T----------T----------i 
1------------------>I TAG I 0 I 
L-------------------.1.----------i----------J 
where the TAG indicates the mode and size 
of the variable. 

ROLL 4 0: COMMON NAME ROLL 

In Parse, this roll holds the name of 
each COMMON block, and a pointer to the 
location on the COMMON DATA roll at which 
the specification of the variables in that 
block begins. The group size for the 
COMMON NAME roll is twelve bytes. The 
format of the group is: 

4 bytes 
r-----------------------------------------1 
f <--------------block name----------------1 
~--------------------T--------------------i 
!------------------->! o I 
~--------------------1--------------------i 
I COMMON DATA pointer I 
L-----------------------------------------J 



The pointer points to the first variable in 
the list of names which follows the block 
name in the COMMON statement; since a 
single COMMON block may be mentioned more 
than once in source module COMMON state­
ments, the same COMMON name may appear more 
than once on this roll. The information is 
placed on this roll as COMMON statements 
are processed by Parse. 

In Allocate, the roll is rearranged and 
the last word of each group is replaced by 
the size of the COMMON block in bytes, 
after duplicate COMMON names have been 
eliminated. The size is written out by 
Allocate and the roll is destroyed. 

ROLL 40: TEMP PNTR ROLL 

The group size for the TEMP PNTR roll is 
four bytes. This roll is used only in Gen, 
and holds pointers to those groups on the 
TEMP AND CONST roll that represent object 
module temporary storage locations. The 
information recorded on this roll is main­
tained so that temporary storage created 
for one statement can be reused by subse­
quent statements. 

ROLL 41: IMPLICIT RO~ 

This roll is used only in Parse and 
Allocate, where it holds the information 
supplied by the source module IMPLICIT 
statement. The group size for the IMPLICIT 
roll is four bytes. Its format is: 

1 byte 1 byte 1 byte 1 byte 
r----------T---------T---------T----------1 
I letter I 0 I TAG I 0 I 
L __________ i _________ i _________ i __________ J 

This information is placed on the roll by 
Parse. The TAG field in the third byte of 
the group indicates, in the format of the 
TAG field of a pointer, the mode and siz~ 
assigned to the letter by means of the 
IMPLICIT statement. 

The IMPLICIT roll is used by Allocate, 
and destroyed. 

ROLL 42: EQUIVALENCE OFFSET ROLL 

This roll is constructed during the 
operation of Parse and holds the subscripts 
from EQUIVALENCE variables in the form of 
plexes. The group size for the EQUIVALENCE 
OFFSET roll is variable. Each plex has the 
form: 

4 bytes 
.-----------------------------------------, 
I n I 
~-----------------------------------------~ I subscript 1 I 
~-----------------------------------------i 
I subscript 2 I 
~-----------------------------------------~ 
I I 
I I 
I I 
~-----------------------------------------i 
I subscript n I 
L-----------------------------------------J 
where n is the number of words in the plex 
exclusive of itself and., therefore., also 
the number of subscripts. Each subscript 
is recorded as an integer constant. 

The connection between a plex on this 
roll and the corresponding EQUIVALENCE 
variable is made by a pointer which appears 
on the EQUIVALENCE roll and points to the 
first word of the appropriate plex on this 
roll. 

In Allocate, the EQUIVALENCE OFFSET roll 
is used in the allocation of storage for 
EQUIVALENCE variables. It is destroyed 
during this phase, and does not appear in 
the later phases of the compiler. 

ROLL 42: FL AC ROLL 

This roll 
fixed length 
groups refer 
registers, in 

is used in Gen only, and is a 
roll of four groups. The 
to the four floating-point 

order. 

The group size for the FL AC roll is 
four bytes. Each group on the roll con­
tains a pointer to the value which is held 
in the register at the present point in the 
object program; as the contents of the 
registers change, the pointers are changed. 
These pointers are used primarily to indic­
ate that the register is in use and the 
mode of the value in it. If the register 
is not in use, the corresponding group on 
this roll contains zero. 

ROLL 43: LBL ROLL 

This roll holds all labels used and/or 
defined in the source module. Each label 
is entered on the roll by Parse when it is 
first encountered, whether in the label 
field or within a statement. 

The group size for the LBL roll is four 
bytes. In Parse, the format of the LBL 
roll group is: 

Appendix B: Rolls Used in the compiler 153 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

1 byte 3 bytes 
r---------T-------------------------------1 
I TAG I binary label I 
l ________ _..L _______________________________ J 

where the first byte is treated as the TAG 
field of a pointer, and the remaining three 
bytes contain the label, converted to a 
binary integer. 

In the TAG field, the mode portion (the 
first four bits> is used to indicate 
whether the label has been defined; the 
remainder of the TAG field is used to 
indicate whether the label is the target of 
a jump, the label of a FORMAT, or neither. 

The leftmost four bits of the TAG byte 
are used as follows: 

8 Label is defined 

0 Label is undefined 

The rightmost four bits of the TAG byte 
indicate the following: 

1 = This is the label of the target 
of a jump (GO TO> statement. 

3 This is the label of a FORMAT 
statement. 

5 = This label is a possible re­
entry point within an innermost 
DO loop that may have a possible 
extended range. (Parse inserts 
the hexadecimal 5 to indicate to 
Gen that the label is a possible 
re-entry point; the Gen phase 
then restores those registers 
that were saved before the 
extended range was entered.) 

0 = None of the above conditions. 

In Allocate, the lower three bytes of 
each LBL roll group defining a jump target 
label are replaced by the lower three bytes 
of a pointer to the BRANCH TABLE roll 
group, which will hold the location of the 
label at object time. Each group defining 
a FORMAT statement label is replaced Clower 
three bytes only) with a pointer to the 
FORMAT roll group which holds the base 
pointer and displacement for the FORMAT. 
Groups defining the targets of unclosed DO 
loops are cleared to zero. 

In Gen, the LBL roll is used to find the 
pointers to the BRANCH TABLE and FORMAT 
rolls, but it is not altered. 

154 

In Parse, the names of all unsubscripted 
variables wnich are not dummy arguments to 
statement functions are listed on the roll 
in the order of their appearance in active 
(non-specification) statements in the 
source module. variables which are defined 
in specification statements, but which are 
never used in the source module, are not 
entered on the roll. The group size for 
the SCALAR roll is eight bytes. The format 
of the group is: 

4 bytes 
r-----------------------------------------1 
J<-------------scalar narne----------------1 
·--------------------T----------T---------~ 
1------------------->I TAG I 0 I 
L--------------------i----------i---------J 

The TAG field appearing in the seventh byte 
of the group indicates the mode and size of 

. the variable in the format of the TAG field 
1 of a pointer. 

In Allocate, the information left on the 
SCALAR roll by Parse is replaced by inf or­
ma tion indicating the storage assigned for 
the variable. The resulting format of the 
group is: 

4 bytes 
r---------T-~--------T--------------------1 
I TAG IDBG/CEAD I dis~lacement I 
·---------i __________ i-----~--------------~ 
I base table pointer I 
L-----------------------------------------J 
The TAG field appearing in the first byte 
is unchanged, except in location, from the 
TAG field held in the SCALAR roll group 
during Parse. The DBG/CEAD flag Cin the 
second byte> is logically split into two 
hexadecimal values. The first of these 

.indicates debug references to the variable; 
the value is 1 for a scalar re'ferred to in 
the INIT option; otherwise, the value is 
zero. The second hexadecimal value is 
nonzero if the variable is in COMMON, a 
member of an EQUIVALENCE set, or an argu­
ment to a subprogram or a global dummy; 
otherwise, it is zero. The displacement in 
bytes 3 and 4, and the base table pointer 
in the second word, function together to 
indicate the storage location assigned for 
the variable. The base table pointer spe­
cifies a BASE TABLE roll group; the dis­
placement is the distance in bytes from the 
location contained in that group to the 
location of the scalar variable. If the 
scalar is a call by name dummy, the base 
table pointer is replaced by a pointer to 
the GLOBAL DMY roll group defining it, and 
the displacement is zero. 



Form Y28-6638-l 
Page Revised 11/15/68 by TNL Y28-6826 

The SCALAR roll is checked, but modi­
fied, during Unify, Gen, and Exit. 

ROLL 44: HEX CONST ROLL 

This roll holds the hexadecimal con­
stants used in source module DATA 
statements. 

The format of the roll is identical for 
all phases of the compiler. The grou? size 
is 16 bytes. Two hexadecimal characters 
are packed to a byte, and constants which 

occupy fewer than 16 characters are right­
adjusted in the group with leading zeros. 

In Parse, this roll holds the names of 
variables listed in DATA statements and 
variables for which data values are pro­
vided in Explicit specification statements. 
The names are entered on the roll when they 
are found in these statements. rhe group 
size for this roll is eight bytes. The 
groups have the following form: 

Appendix B: Rolls Used in the Compiler 154.1 





4 bytes 
r-~--------------------------------------1 
!<------------variable name---------------1 
1--------------------T--------------------i 
1------------------->I o I 
l------------~------~--------------------J 

This information is used to ensure that 
no data values are provided in the source 
module for dwmny variables. The informa­
tion is left on the roll throughout Parse, 
but is cleared before Allocate operates. 

In Allocate, binary labels and the names 
of statement functions, scalar variables, 
arrays, global subprograms, and used 
library functions are placed on the roll in 
order. The group size for this roll is 
four bytes. Each label entered on the roll 
occupies one word; the names occupy two 
words each and are left-justified, leaving 
the last two bytes of each name group 
unused. 

The encoded information is placed on 
this roll by Allocate as its operations 
modify the rolls on which the information 
was originally recorded by Parse. Thus, 
all the labels appear first, in the order 
of their appearance on the LBL roll, etc. 
The information is used by the Exit phase 
in producing the object module listing (if 
the LIST option is specified by the user). 

ROLL 46: LITERAL TEMP (TEMP LITERAL) ROLL 

This roll is used only in Parse, where 
it holds literal constants temporarily 
while they are being scanned. The group 
size for the LITERAL TEMP or TEMP LITERAL 
roll is four bytes. Literal constants are 
placed on the roll one character per byte, 
or four characters per group. 

ROLL 4 7: COMMON DATA TEMP ROLL 

This roll holds the information from the 
COMMON DATA roll temporarily during the 
operation of Allocate, which is the only 
phase in which this roll is used. The 
group size for the COMMON DATA TEMP roll is 
eight bytes. The format of the group is 
identical to that of the COMMON DATA roll, 
namely: 

4 bytes 
r-----------------------------------------1 
l<--------------variable------------------1 
1-~------------~---T--------------------i 
1-------name-------->I 0 I 
l-~-----------------~--------------------J 

ROLL 47: FULL WORD SCALAR ROLL 

This roll is used only in Allocate, 
where it holds the names of all fullword 
scalar variables defined by the source 
module. The group size is eight bytes. 
The format of the group on the roll is: 

4 bytes 
r-----------------------------------------1 
!<-------------scalar name----------------1 
~--------------------T----------T---------i 
1------------------->I TAG I 0 I i_ ___________________ i_ _________ ..i..__ _______ J 

where the TAG indicates the mode and size 
of the variable. This information is held 
on this roll only temporarily during the 
assignment of storage for scalar variables. 

ROLL 48: COMMON AREA ROLL 

This roll is used only in Allocate, 
where it holds COMMON block names and sizes 
temporarily during the allocation of COMMON 
storage. The group size for the COMMON 
AREA roll is twelve bytes. The format of 
the group on the roll is: 

4 bytes 
r-----------------------------------------1 
l<--------------block name----------------1 
~--------------------T--------------------i 
1------------------->I o I 
~--------------------..l--------------------i I block size (bytes) I 
'-----~-----------------------------------J 

ROLL 48: NAMELIST ALLOCATION ROLL 

This roll is used only in Allocate, 
where it holds information regarding NAME­
LIST items temporarily during the alloca­
tion of storage for the NAMELIST tables. 
The group size for this roll is twelve 
bytes. The format of the group is: 

4 bytes 
r-----------------------------------------1 
!<------------variable name---------------1 
f--------------------T--------------------i 
1------------------->I o I 
~--------------------..l--------------------i 
I pointer I 
l-----------~-------------------~-------J 

where the pointer indicates the group 
defining the variable on either the SCALAR 
or ARRAY roll. 

Appendix B: Rolls Used in the Compiler 155 



ROLL 49: COMMON NAME TEMP ROLL 

This roll is used only in Allocate, 
where it holds the information from the 
COMMON NAME roll temporarily. The group 
size for the COMMON NAME TEMP roll is 
twelve bytes. The format of the group is 
therefore identical to that of the COMMON 
NAME roll: 

4 bytes 
r-----------------------------------------1 
!<--------------block name----------------1 
~--------------------T--------------------~ 
1------------------->I o I 
1-~-----------------i--------------------~ 
I COMMON DATA pointer I 
l-~--------------------------------------J 

where the COMMON DATA pointer points to the 
list of variables in the COMMON block. 

ROLL 50: EQUIV ALLOCATION ROLL 

This roll is used only during Allocate, 
and is not used in any other phase of the 
compiler. When the allocation of storage 
for EQUIVALENCE variables has been com­
pleted, the information which has been 
produced on the GENERAL ALLOCATION roll is 
moved to this roll. The group size for the 
EQUIV ALLOCATION roll is twelve bytes. The 
format of the group is, therefore, ident­
ical to that on the GENERAL ALLOCATION 
roll: 

4 bytes 
.-----------------------------------------1 
l<---------------variable-----------------1 
1--------------------T--------------------~ 
1-------name------~>I displacement I 
~--------------------i-------------~------~ 
I base table pointer I l _________________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE roll which will be 
used for references to the variable. The 
displacement is the distance in bytes from 
the location indicated in the BASE TABLE 
roll group to the location of the variable. 

ROLL 51: RLD ROLL 

This roll is used only in Allocate and 
Exit; it is not used in Parse. In both 
Allocate and Exit, the roll holds the 
information required for the production of 
RLD cards. The group size for the RLD roll 
is eight bytes. The group format is: 

156 

4 bytes 
r------------------------------T----------1 
I area code I ESD # I 
~------------------------------i----------~ 
I address I l _________________________________________ J 

where the area code indicates the control 
section in which the variable or constant 
is contained. The ESD number governs the 
modification of the location by the linkage 
editor, and the address is the location 
requiring modification. 

Information is placed on this roll by 
both Allocate and Exit, and the RLD cards 
are written from the information by Exit. 
The entries made on the RLD roll by Alloc­
ate concern the NAMELIST tables; all 
remaining entries are made by Exit. 

ROLL 52: COMMON ALLOCATION ROLL 

This roll is used only in Allocate and 
is not used in any other phase of the 
compiler. When the allocation of COMMON 
storage has been completed, the information 
which has been produced on the GENERAL 
ALLOCATION roll is moved to this roll. The 
group size for the COMMON ALLOCATION roll 
~s twelve bytes. The format of the group 
is, therefore, identical to that on the 
GENERAL ALLOCATION roll: 

4 bytes 
r-----------------------------------------1 
l<---------------variable-----------------1 
~--------------------T--------------------~ 
1-------narne-------->I displacement I 
~--------------------..1,_-------------------~ 
I base table pointer I t._ ________________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE roll which will be 
used for references to the variable. 

The displacement is the distance 
bytes from the location indicated in 
BASE TABLE roll group to the location 
the variable. 

ROLL 52: LOOP CONTROL ROLL 

in 
the 

of 

This roll is created by Unify and is 
used by Gen. The information contained on 
the roll indicates the control of a loop. 

The group size for the LOOP CONTROL roll 
is twelve bytes. The format of the LOOP 
CONTROL roll group in Unify and Gen is: 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

4 bytes 
r---~------T-----------------------------1 

I traits I coefficient I 
r-----------L-----------------------------1 
I register (this loop) I 
r-----------------------------------------~ 
] base or register (outer loop> I 
L----~-----------------------------------J 

where the first byte of the first word 
(traits) indicates whether the coefficient 
is initiated by a direct load. The remain­
ing three bytes is the coefficient, which 
is the multiplier for the induction vari­
able. The second four bytes is the regis­
ter where the coefficient is required. The 
base is the source of initialization of the 
register; it can be either a constant, 
register, or an address. 

This roll is first used in Parse, where 
the FORMAT statements are placed on it. 
see Appendix D for the description of the 
encoding of the FORMAT statement. 

Each group of the FORMAT roll is in the 
form of a plex (the group size is given in 
word 0). The configuration of a FORMAT 
group in Parse is: 

4 bytes 
r-----------------------------------------1 
I size of the group I 
r-----------------------------------------~ 
I pointer to the LBL roll I 
·-----------------------------------------~ I number of bytes in the FORMAT I 
r-----------------------------------------~ 
I I 
I I 
I I 
L-----------------------------------------J 
word 0 contains a value which indicates the 
number of words in the group on the roll. 
The pointer to the LBL roll points to the 
label of the corresponding FORMAT state­
ment. The next word gives the number of 
bytes of storage occupied by this particu­
lar FORMAT statement. The ellipses denote 
that the encoded FORMAT follows this con­
trol information. 

In Allocate, the FORMATS are replaced by 
the following: 

4 bytes 
r----~--------------T--------------------1 

I 0 I displacement I 
~----~------------~-L--------------------~ 
I base table pointer I 
L-----------------------------------------J 

which, taken together, indicate the begin­
ning location of the FORMAT statement. 
These groups are packed to the BASE of the 
roll; that is, this information for the 
first FORMAT appears in the first two words 
on the roll, the information for the second 
FORMAT appears in words 3 and 4, etc. 

The LBL roll group which defines the 
label of the FORMAT statement holds a 
pointer to the displacement recorded for 
the statement on this roll. 

The FORMAT roll is retained in this f orrn 
for the remainder of the compilation. 

This roll is created by Parse as each 
appropriate array reference is encountered. 
The array reference indicated includes sub­
scripts Cone or more> which use the 
instruction variable in a linear fashion. 
Unify uses the contents of the roll. 

The group size of the SCRIPT roll is 16 
bytes, plus an additional 4 bytes for each 
DO loop that is open at the point of the 
array reference represented by the entry. 
The group format of the SCRIPT roll in 
Parse and Unify is as described for the 
NONSTD SCRIPT roll. 

ROLL 55: LOOP DATA ROLL 

This roll contains the initializing and 
terminating data, and indicates the induc­
tion variable and the nesting level of the 
particular loop from which this entry was 
created. 

The roll is created in Parse at the time 
that the loop is epcountered, rhe group 
size of the LOOP DATA roll is 20 bytes. 
The group format of the roll in Parse is: 

4 bytes 
r---------T-------------------------------1 
I TAG I nest level I 
·---------~-------------------------------~ 
I pointer to induction variable I 
~-----------------------------------------~ 1 pointer to n 1 (initial value) I 
"-----------------------------------------J 
where the TAG byte contains a x•ao• when an 
inner DO loop contains a possible extended 
range. The x•ao• is placed there by Parse 
and tested by Gen. The Gen phase then 
produces object code to save general regis­
ters 4 through 7· at the beginning of this 
DO loop so that the registers are not 

Appendix B: Rolls Used in the Compiler 157 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

altered in the extended range. The next 
three bytes indicate the nest level of the 
loop. The second word is a pointer to the 
SCALAR roll group which describes the 
induction variable. The third word of the 
group points to the initializing value for 
the induction variable, which may be repre­
sented on the FX CONST roll or the SCALAR 
roll. 

During the operation of the Unify phase, 
the roll is completed with pointers to the 
LOOP CONTROL roll. During Unify, the LOOP 
CONTROL roll is also created; therefore, 
insertion of the pointers is done while the 
loop control data is being established. 

The following illustration shows the 
configuration of the LOOP DATA roll as it 
is used in Unify: 

4 bytes 
r----------------~-----------------------1 

I nest level I 
~----~-----------------------------------i 
I SCALAR pointer (induction variable) I 
r-----------------------------------------i 
l FX CONST pointer or SCALAR pointer l 
~----------------~-----------------------i 
) LOOP CONTROL pointer (start init.) I 
r-----------------------------------------i 
I LOOP CONTROL pointer (end init.) I 
L----------------~-----------------------J 

The last two words (eight bytes) of the 
group are inserted by Unify. These point­
ers point to the first and last LOOP 
CONTROL roll groups concerned with this 
loop. 

This roll is a duplicate of the SCRIPT 
roll. The contents of the SCRIPT roll are 
transferred to the PROGRAM SCRIPT roll in 
Parse as each loop is closed. Each loop is 
represented by a reserved block on the 
roll. 

The group size of the PROGRAM SCRIPT 
roll is 16 bytes, plus an additional 4 
bytes for each nest level up to and includ­
ing the one containing the reference repre­
sented by the entry. The format of the 
PROGRAM SCRIPT roll group in Parse and 
Unify is as follows: 

158 

4 bytes 
r----------T------------------------------1 
I traits I frequency I 
·----------~------------------------------1 I ARRAY REF pointer I 
·-----------------------------------------1 
J ARRAY pointer I 
·-----------------------------------------1 I ARRAY off set pointer I 
·----------------------------~------------1 l induction variable coefficient I 
·-----------------------------------------1 I induction variable coefficient I 
] (nest level = 2> I 
·-----------------------------------------1 
I I 
I I 
I I 
r-----------------------------------------1 l fnduction variable coefficient I 
I (nest level = n> I 
L-----------------------------------------J 
See the NONSTD SCRIPT roll for further 
description. 

ROLL 56: ARRAY PLEX ROLL 

This roll is used only in Gen, where it 
handles subscripts (array references> which 
are not handled by Unify. The group size 
for the ARRAY FLEX roll is twelve bytes. 
The format of the group on the roll is: 

4 bytes 
;-----------------------------------------, I pointer to array I 
·-----------------------------------------1 
I pointer to index I 
·-----------------------------------------1 I displacement I 
L-----------------------------------------J 
The pointer ih the first word of the group 
points to the ARRAY REF roll when the 
>ubscript used contains DO dependent linear 
subscripts (which are handled by Unify) and 
non-linear variables. Otherwise, the 
pointer refers to the ARRAY roll. 

The second word of the group holds a 
pointer to the index value to be used in 
the subscripted array reference. 'I'his 
pointer points to general register 9 on the 
FX AC roll if the index value has been 
loaded into that register; if the index 
value has been stored in a temporary loca­
tion, the pointer indicates the proper 
location on the TEMP AND CONST roll; if the 
index value is a fixed constant, the 
pointer indicates the proper group on the 
FX CONST roll. When the information in 
this word has been used to construct the 
proper instruction for the array reference, 
the word is cleared to zero. 



The displacement, in the third word of 
the group, appears only when the first word 
of the group holds a pointer to the ARRAY 
roll. otherwise, the displacement is on 
the ARRAY REF roll in the group indicated 
by the pointer in the first word, and this 
word contains the value zero. This value 
is the displacement value to be used in the 
instruction generated for the array 
reference. 

ROLL 57: ARRAY REF ROLL 

Pointers to this roll are inserted into 
the Polish notation by Parse. At the time 
that these pointers are established., the 
ARRAY REF roll is empty. The pointer is 
inserted into the Polish notation when an 
array reference includes linear loop­
controlled subscripts. 

The roll is initially created by Unify 
and completed by Gen. The group size of 
the ARRAY REF roll is 16 bytes. The format 
of the ARRAY REF roll group as it appears 
in Unify is as follows: 

0 
1 1 1 1 1 2 
1 2 5 6 9 0 

3 
1 

r---------------T----T----T---------------1 
I IR1 IR2 I offset I 1---------------i ____ i ____ i _______________ ~ 
I pointer to register (R1 ) or to the I 
I TEMP AND CONST roll I 
!-----------------------------------------~ 
I pointer to register (R2 ) or to the I 
I TEMP AND CONST roll I 
!-----~------~---------------------------~ 
I pointer to the ARRAY roll I 
L-----------------------------------------J 
The first word of the group contains the 
low 20 bits of an instruction which is 
being formatted by the compiler. R1 and R2 
are the two register fields to be filled 
with the numbers of the registers to be 
used for the array reference. Word 2 of 
the group contains the pointer indicating 
the register to be assigned for R1 • Word 3 
of the group indicates the register R2 • 

When R1 and R2 have been assigned, the 
second and third words are set to zero. 

Gen completes the entry by adding the 
operation code to the instruction that is 
being built. The format of an ARRAY REF 
roll group in Gen is: 

0 
1 1 1 1 1 2 
1 2 5 6 9 0 

3 
1 

r---------------T----T----T------~-------1 
lop code IR1 IR2 I offset I 
·---------------..l.-----'----.L.--------------~ 
I 0 or TEMP 1!.ND CONST roll I 
I pointer I 
·--------------·---------------------------~ 
I 0 or TEMP J!,ND CONST roll I 
I pointer I 
·--------------·---------------------------~ 
!ARRAY pointer I 
L-----------------------------------------J 

ROLL 58: ADR CONST ROLL 

This roll contains relocatable informa­
tion that is to be used by Exit. 

Unify creates the roll which contains a 
pointer to the TEMP AND CONST roll and an 
area code and displacement. The pointer 
indicates an entry on the TEMP AND CONST 
roll which must be relocated according to 
the area code. The displacement is the 
value to be placed in that temporary 
storage and constant area location. 

The group size of the ADR CONST roll is 
eight bytes. The format of the ADR CONST 
roll group in Unify is: 

4 bytes 
r--------------------T--------------------1 
I area code I displacement I 
1--------------------..l.--------------------~ 
I TEMP AND CONST pointer I ._ ________________________________________ J 

These groups are constructed by Unify to 
provide additional base table values for 
indexing. 

ROLL 59: AT ROLL 

This roll is constructed in Parse and 
used in Gen. It is not used in the 
remaining phases. The group size for this 
roll is twelve bytes. The format of the 
group is: 

4 bytes 
r-----------------------------------------1 
I AT label pointer I 
·~~---_...;,.----------------~---------------~ 
I debug label pointer I 
·-----------------------------------------~ 
I return label pointer I 
L-----------------------------------------J 

All three of the pointers in the group 
point to the LBL roll. The first points to 
the label indicated in the source module AT 

Appendix B: Rolls Used in the Compiler 159 



statement. The second points to the made 
label supplied by the compiler for the code 
it has written to perform the debugging 
operations. The third label pointer indi­
cates the made label supplied for the point 
in the code to which the debug code 
returns; that is, the code which follows 
the branch to the debugging code. 

ROLL 6 0: SUBCBK ROLL 

This roll is initialized in Parse and 
used in Allocate. It does not appear in 
later phases. The group size for this roll 
is eight bytes.. The format of the group 
is: 

4 bytes 
r---~-------------------------------------1 
!<-----------~variable name---------------1 
1--------------------T--------------------i 
1------------~----->I o I 
L--------------------i--------------------J 
Each group holds the name of an array 
listed in the SUBCHK option of a source 
module DEBUG statement. 

ROLL 60: NAMELIST MPY DATA ROLL 

This roll is set up during the construc­
tion of the NAMELIST tables in Allocate. 
In Exit, the roll is used to complete the 
information in the NAMELIST tables. The 
roll is not used in the other phases of the 
compiler. The group size for the NAMELIST 
MPY DATA roll is eight bytes. The format 
of the group on this roll is: 

4 bytes 
r-----------------------------------------1 I multiplier constant I 
~-----------------------------------------~ I address I 
L-----------------------------------------J 

The multiplier constant refers to an 
array dimension for an array mentioned in a 
NAMELIST list. The address is the location 
in a NAMELIST table at which a pointer to 
the multiplier constant must appear. In 
Exit,, the constant is placed in the tem­
porary storage and constant area of the 
object module, and a TXT card is punched to 
load its address into the location speci­
fied in the second word of the group. 

160 

ROLL 62: GENERAL ALLOCATION ROLL 

This ~oll is used only during Allocate, 
and is not used in any other phase of the 
compiler. During the various allocation 
operations performed by this phase, the 
roll holds the information which ultimately 
resides on the remaining ALLOCATION rolls. 
The group size for the GENERAL ALLOCATION 
roll is twelve bytes. The format of the 
group is: 

4 bytes 

r-----------------------------------------1 
l<---------------variable-----------------1 
1------------------~---------------------i 
1-------name------->I displacement I 
l-------------------i---------------------1 I base table pointer I L__ _______________________________________ J 

where the base table pointer indicates the 
group on the BASE TABLE roll which will be 
used for references to the variable. 

The displacement is 
bytes from the location 
BASE TABLE roll group 
the variable. 

the distance in 
indicated in the 
to the location of 

During the allocation of COMMON, the 
third word of each group holds a relative 
address until all of a COMMON block has 
been allocated, when the relative address 
is replaced by the pointer as indicated 
above. During the allocation of EQUIVA­
LENCE variables, relative addresses within 
the EQUIVALENCE variables are used and then 
replaced by pointers as for COMMON. 

ROLL 62: CODE ROLL 

This roll holds the object code 
generated by the compiler, in binary. This 
roll is first used in Gen, where the object 
code for the entire source module is built 
up on the roll. 

The group size for the CODE roll is 
eight bytes. Two types of groups are 
placed on the roll during the operations of 
Gen. The first type of group is added to 
the roll by the instructions IEYBIN, IEYBIM 
and IEYBID. In this type of group, the 
binary instruction is left-justified in the 
eight bytes. When the instruction occupie­
sonly two bytes, the first word is com­
pleted with zeros. When the instruction 
occupies two or four bytes, the second word 
of the group holds a pointer to the defin­
ing group for the operand of the instruc­
tion. When the instruction is a 6-byte 
instruction, the last two bytes of the 
group contain zero, and no pointer to the 



operand appears. A unique value is placed 
on the CODE roll by these instructions to 
indicate the beginning of a new control 
section. 

The second type of group entered on the 
CODE roll appears as a result of the 
operation of one of the instructions IEYPOC 
and IEYMOC. These groups do not observe 
the 8-byte group size of the roll, but 
rather begin with a word containing a 
special value in the upper two bytes; this 
value indicates an unusual group. The 
lower two bytes of this word contain the 
number of words in the following informa­
tion. This word is followed by the binary 
instructions. 

The object module 
from this roll by the 
compiler. 

code is written out 
Exit phase of the 

ROLL 63: AFTER POLISH ROLL 

This roll is constructed in Parse, 
remains untouched until Gen, and is de­
stroyed in that phase. 

The AFTER POLISH roll holds the Polish 
notation produced by Parse. The Polish for 
one statement is moved off of the POLISH 
roll and added to this roll when it is 
completed; thus, at the end of Parse, the 
Polish notation for the entire source 
module is on this roll. 

In Gen, the Polish notation is returned 
to the POLISH roll from the AFTER POLISH 
roll for the production of object code. At 
the conclusion of the Gen phase, the roll 
is empty and is no longer required by the 
compiler. The group size for this roll is 
four bytes. 

WORK AND EXIT ROLLS 

Because of the nature and frequency of 
their use, the WORK roll and the EXIT roll 
are assigned permanent storage locations in 
IEYROL, which is distinct from the storage 
area reserved for all other rolls. As a 
result, these rolls may never be reserved 
and are manipulated differently by the POP 
instructions. The group stats and the 
items BASE and TOP are not maintained for 
these rolls. The only control item main­
tained for these rolls corresponds to the 
item BOTTOM, and is carried in the general 
register WRKADR (register 4) for the WORK 
roll and EXTADR <register 5) for the EXIT 
roll. 

WORK ROLL 

The WORK roll is often used to hold 
intermediate values. The group size for 
this roll is four bytes. The name WO is 
applied to the bottom of the WORK roll (the 
last meaningful word>, Wl refers to the 
next-to-bottom group on the WORK roll, etc. 
In the POP instructions these names are 
used liberally, and must be interpreted 
with care. Loading a value into WO is 
storage into the next available word, 
(WRKADR) + 4, unless specifically otherwise 
indicated, while storage from WO to another 
location involves access to the contents of 
the last word on the roll, (WRKADR). 
WRKADR is normally incremented following a 
load operation and decremented following a 
store. 

EXIT ROLL 

The EXIT roll holds exit addresses for 
subroutines and, thereby, provides for the 
recursion used throughout the compiler. 
The ANSWER BOX is also recorded on the EXIT 
roll. The group size for the EXIT roll is 
twelve bytes. The first byte is the ANSWER 
BOX. The remaining information on the roll 
is recorded when a subroutine jump is 
performed in the compiler code; it is used 
to return to the instruction following the 
jump when the subroutine has completed its 
operation. 

The values placed on the EXIT roll 
differ, depending on the way in which the 
subroutine juinp is performed. As a result 
of the interpretation of the IEYJSB POP 
instruction, the last three bytes of the 
first word contain the location of the 
IEYJSB plus two (the location of the POP 
instruction following the IEYJSB, the 
return point); the second word of the group 
holds an address within the IEYJSB subrou­
tine; the third word contains the location 
of the global label for the routine from 
which the subroutine jump was made plus two 
(the value of LOCAL JUMP BASE in that 
routine). 

As an example of how a subroutine jump 
is accomplished by means of machine lan­
guage instructions, the following instruc­
tions are used: 

L TMP,G0052J 

BAL ADDR,JSB STORE IN EXIT 

to replace the POP instruction 

IEYJSB G0052J 

Appendix B: Rolls Used in the compiler 161 



In this case, no value is placed in the 
last three bytes of the first word1 the 
second word holds the address of the 
instruction following the BAL1 the third 
word holds the location of the global label 
immediately preceding the BAL plus two (the 
value of POPADR when the jump is taken, 
which is also the value of LOCAL JUMP BASE, 

162 

the base address to be used for local jumps 
in the routine from which the subroutine 
jump was made). 

On return from a subroutine, these 
values are used to restore POPADR and LOCAL 
JUMP BASE and they are pruned from the EXIT 
roll. 



This appendix shows the format of the 
Polish notation which is generated by the 
compiler for each type of statement in the 
FORTRAN IV (G) language. 

GENERAL FORM 

The format of the Polish notation 
depends on the statement type, but always 
terminates with the control driver which 
indicates the type of statement: 

4 bytes 

r------------------------------1! l------------------------------i 
I . I Polish for 
I • I statement 

I • I 
~----------~------------------~ 
l------------------------------i 
!control driver I 
~------------------------------i 
!statement number I 
L------------------------------J 

The statement number is an integer whose 
value is increased by one for each state­
ment processed. This value is used only 
within the compiler. 

LABELED STATEMENTS 

For labeled statements, a pointer to the 
label is inserted between the control driv­
er and the statement number: 

4 bytes 

r------------------------------1! l------------------------------i 
I • I I • I Polish for 
I • I statement 
l------------------------------i 
l------------------------------i 
!control driver I 
l------------------------------i 
I label I 
~------------~----------------i 
!pointer to statement label I 
l------------------------------i 
!statement number I 
L----------------------~------' 

The label information is not included in 
the following descriptions of the Polish 
notation for individual statement types. 

APPENDIX C: POLISH NOTATION FORMATS 

ARRAY REFERENCES 

The Polish notation for an array 
reference whose subscripts are all linear 
functions of DO variables consists simply 
of a pointer to the appropriate group on 
the ARRAY REF roll. The Polish notation 
generated for all other references to an 
array element is: 

4 bytes 
.-----------------~----------1 

!array driver I 
~-----------------------------i 

~~~~--::::=::::::::~{Polish for 
l~~--~~:---~~~~---1~subscript 1

~-----------------------------i
!multiplier I
~~---------------------------i
!argument driver I

~:::::::::::~::::::-_:::::::::1t~~~~r2
~--------------------~-------i~
~~---------------------------i
!multiplier I
~-----------------------------i
!argument driver I
~~----------------~--~-----i
I I
I I

~~~~~~:~l}=~~~i~r7 
~-----------------------------i 
I multiplier I 
~-----------------------------i 
!argument driver I 
~-----------------------------i 
!dummy array pointer I 
L-----------------------------J 

The pointer to the array may indicate 
either (1) the ARRAY roll, when none of the 
subscripts used in the array reference are 
linear functions of DO variables, or (2) 
the ARRAY REF roll, when some, but not 
all, of the subscripts are linear functions 
of DO variables. The subscripts for which 
Polish notation appears are those which are 

Appendix C: Polish Notation Formats 163 



not linear functions of DO variables. Only 
the required number of subscripts appear. 

The multiplier following each subscript 
is the multiplier for the corresponding 
array dimension. This value is an integer 
unless the array is a dUlllllly including dUlllllly 
dimensions which affect this array dimen­
sion; in this case, the multiplier is 
represented by a pointer to the TEMP AND 
CONST roll. 

ENTRY STATEMENT 

The Polish notation generated for the 
ENTRY statement is: 

4 bytes 
r-----------------------------------------1 
!pointer to ENTRY name I 
·-----------------------------------------i 
!ENTRY driver I 
~----------------------------------------i 
!statement number I l _________________________________________ J 

The pointer points to the ENTRY NAMES 
roll. 

ASSIGN STATEMENT 

The Polish notation generated for the 
ASSIGN statement is: 

4 bytes 
r-----------------------------------------1 
!pointer to label I 
~----------------------------------------~ 
!pointer to variable I 
·-----------------------------------------i 
!ASSIGN driver I 
~----------------------------------------i 
!statement number I 
l-----------------------------------------J 

ASSIGNED GO TO STATEMENT 

The Polish notation generated for this 
statement is: 

4 bytes 
r-----------------------------------------1 
!pointer to variable I 
~----------------------------------------i 
!assigned GO TO driver I 
~-----------------------------------------i 
!statement number I l _________________________________________ J 

164 

LOGICAL IF STATEMENT 

The Polish notation generated for this 
statement is: 

4 bytes 
r------------------------------1( 
~-----------------------------i I • I Polish for 
I • I logical 

~--------------:---------------~~expression 
r--::::::::::::~:::::::::::::::1!Polish for 

l--------------~---------------l ~~~tement 
·------------------------------i 
!logical IF driver I 
·------------------------------i !statement number I 
l------------------------------J 

RETURN STATEMENT 

The following Polish notation is pro­
duced for the RETURN statement: 

4 bytes 
r-----------------------------------------1 
!pointer to I I 
~----------------------------------------i 
!RETURN driver I 
·-----------------------------------------i 
!statement number I 
l-----------------------------------------J 

The pointer to I does not appear if the 
statement is of the form RETURN. 

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT 

The Polish notation produced for this 
statement is: 

4 bytes 
r------------------------------1 

~~~~:~·~~!Polish for 
I . I right side
I • I ·------------------------------i
~-----------------------------i !assignment driver I
·------------------------------i
!statement number I l ______________________________ J

The Polish notation for the right side
of the assignment statement is in the
proper form for an expression, and includes
array references where they appear in the
source statement. The variable to be set
may also be an array element; in this case,
the pointer to the variable to be set is
replaced by the Polish notation for an
array reference.

UNCONDITIONAL GO TO STATEMENT

The Polish notation produced for this
statement is:

4 bytes
,..---1
!pointer to label I
1---~
IGO TO driver I
~-------~--------------------------------~
!statement number I
L---J

COMPUTED GO TO STATEMENT

The following Polish notation is pro­
duced for this statement:

4 bytes
r------------------------------1
!pointer to xl I
1------------------------------~
!pointer to x2 I
1------------------------------~
I I branch
I I points
I I
~------------------------------~
!pointer to xn I
~------------------------------~
!number of branch points I
~-------~---------------------~
!pointer to variable I
1------------------------------~
!computed GO TO driver I
~-------~-------------~------~
!statement number I
L------------------------------J

ARITHMETIC IF STATEMENT

The following Polish notation is pro­
duced for this statement:

4 bytes

r------------------------------1}
~------------------------------~
I • I Polish for
I • I expression

I • I
~------------------------------~
~------------------------------~

~~~~~==-~~-~~-----------------~}branch 
!pointer to x2 I points 
~------------------------------~ 
!pointer to x3 I 
~~----------------------------~ 
!pointer to label next stmt. I 
~------------------------------~ 
!IF driver I 
1------------------------------~ 
tstatement number I 
L------------------------------J 

The label of the next statement is 
inserted following the IF driver because 
the next statement may be one of the branch 
points referenced; if it is, code will be 
generated to fall through to that statement 
in the appropriate case(s). 

DO STATEMENT 

The following is the Polish notation 
produced for the statement DO x i = ml, m2, 
m3: 

4 bytes 
r-----------------------------------------1 
!pointer to M2 (test value) I 
!-----------------------------------------~ 
!pointer to M3 (increment) I 
~-----------------------------------------~ 
!pointer to LOOP DATA roll I 
~-----------------------------------------~ 
!pointer to LBL roll I 
~-----------------------------------------~ 
!DO driver I 
~-----------------------------------------~ 
!statement number I 
L------------------~---------------------J 

The pointer to m3 appears, even if the 
increment value is implied. 

Appendix C: Polish Notation Formats 165 



CONTINUE STATEMENT 

The Polish notation produced for this 
statement is: 

4 bytes 
,.-----------------------------------------1 
!CONTINUE driver I 
~-----------------------------------------i 
!statement number I L._ ________________________________________ J 

PAUSE AND STOP STATEMENTS 

The Polish notation produced for these 
statements is: 

4 bytes 
r-----------------------------------------1 
!pointer to constant I 
t-----------------------------------------i 
!PAUSE or STOP driver I 
~-----------------------------------------i 
!statement number I 
l-----------------------------------------J 

For both the PAUSE statement and the 
STOP statement, the constant appears on the 
LITERAL CONST roll, regardless of its 
nature in the source statement. If no 
constant appears in the statement, the 
pointer to the constant points to the 
literal constant zero. 

END STATEMENT 

The Polish notation generated for the 
END statement is: 

4 bytes 
,.-----------------------------------------1 
IEND driver I 
~-------~-------------------------------i 
!statement number I l _________________________________________ J 

BLOCK DATA STATEMENT 

The Polish notation generated for the 
BLOCK DATA statement is: 

4 bytes 
r-----------------------------------------1 
!BLOCK DATA driver I 
t-----------------------------------------i 
!statement number I L._ ________________________________________ J 

166 

DATA STATEMENT AND DATA IN EXPLICIT 
SPECIFICATION STATEMENTS 

For each statement (DATA or Explicit 
specification) in which data values for 
variables are specified, a Polish record is 
produced. This record ends with a DATA 
driver and a statement number. For each 
variable initialized by the statement, the 
following appears: 

4 bytes 
r-----------------------------------------1 
!pointer to variable I 
~-----------------------------------------i 
I offset I 
L-----------------------------------------J 

The off set is the element number at which 
initialization begins; if it does not 
apply, this word contains the value zero. 

This information is followed by the pair 
of groups 

4 bytes 
r-----------------------------------------1 
!repetition count I 
t-----------------------------------------~ 
!pointer to constant I 
L-----------------------------------------J 

or, when the constant is literal, the three 
groups 

4 bytes 
r-----------------------------------------1 
!repetition count I 
~-----------------------------------------i 
!pointer to constant I 
t-----------------------------------------i 
!number of elements I L,_ ________________________________________ J 

where the last group indicates the number 
of elements of an array to be filled by the 
literal constant. For array initializa­
tion, one or more of the "constant" groups 
may appear. 



I/O LIST 

The Polish notation for an I/O List 
contains pointers to the variables in the 
list, Polish notation for array references 
where they appear, and pointers and drivers 
to indicate implied DO loops. 

The I/O list 

( ( C (I), I=l, 10), A, B) 

for example, results in the following 
Polish notation: 

4 bytes 
r-----------------------------------------1 
!pointer to M2 (test value) I 
~-----------------------------------------~ 
!pointer to M3 (increment> I 
~-----------------------------------------~ 
!pointer to LOOP DATA roll I 
~-----------------------------------------~ 
!implied DO driver I 
~-----------------------------------------~ 
!pointer to C I 
~-----------------------------------------~ 11 (number of subscripts! I 
~--------------------·--------------------~ 
!pointer to I (subscript) I 
r-----------------------------------------~ 
!argument driver I 
~-----------------------------------------~ 
!array driver I 
r------------------------~----------------~ 
IIOL DO Close driver I 
~-----------------------------------------~ 
!pointer to A I 
~-----------------------------------------~ 
!pointer to B I 
L--------------~--------------------------J 

The area between, and including, the 
implied DO driver and the array driver is 
an array reference, as it would appear 
wherever C(I) was referred to in source 
module statements. 

INPUT STATEMENTS 

The following paragraphs discuss the 
Polish notation produced for all forms of 
the READ statement except direct access. 

FORMATTED READ 

For the form READ Ca,bl list, the for­
matted READ, the Polish notation generated 
is: 

4 bytes 
r------------------------------1 
!pointer to a Cdata set) I 
~------------------------------~ 
!FORMAT driver I 
~------------------------------~ 
!pointer to FORMAT I 
r------------------------------~ 
IEND= driver I 
r------------------------------~ 
!pointer to END label I 
r------------------------------~ 
!ERR= driver I 
r------------------------------~ 
!pointer to ERR label I 
r------------------------------~ 
IIOL driver I 
r------------------------------~ 

t--------------~---------------1~Polish for 

I • I I/O list 
I • I 
r------------------------------~ 
r------------------------------~ 
!code word I 
r------------------------------~ 
IIBCOM entry, formatted READ I 
r------------------------------~ 
!pointer to IBCOM I 
r------------------------------~ 
IREAD WRITE driver I 
r------------------------------~ 
!statement number I 
L------------------------------J 

The pointer to the FORMAT points either 
to the label of the FORMAT statement or to 
the array in which the FORMAT is stored. 
The END= and ERR= drivers and the pointers 
following them appear only if the END and 
ERR options are used in the statement; 
either one or both may appear, and in any 
order with respect to each other. If no 
I/O list appears in the statement, the 
Polish for the I/O list is omitted, but the 
IOL driver appears nonetheless. 

The code word contains zero in its 
high-order three bytes, and, in its low­
order byte, a unique code specifying the 
operation and unit for the input/output 
statement. This code word distinguishes 
among the various READ statements and is 
inserted in the code produced for them. 

Input/output operations are perf·ormed by 
the RUNTIME routines. IBCOM is a transfer 
routine in RUNTIME through which all input/ 
output except NAMELIST is performed. The 
IBCOM entry for formatted READ indicates an 
entry point to this routine. (See Appendix 
D for further discussion of IBCOM.l The 
pointer to IBCOM points to the routine on 
the GLOBAL SPROG roll. 

Appendix c: Polish Notation Formats 167 



NAMELIST READ 

For the form READ (a., x) I the NAMELIST 
READ, the following changes are made to the 
Polish notation given above: 

1. The FORMAT driver is replaced by a 
NAMELIST driver. 

2. The pointer to the FORMAT is replaced 
by a pointer to the NAMELIST. 

3. The code word value is changed. 

4. The IBCOM entry is replaced by the 
value zero, since NAMELIST input/ 
output is not handled through IBCOM. 

5. The pointer to IBCOM is replaced by a 
pointer to the NAMELIST READ routine. 

6. No I/O list may appear. 

UNFORMATTED READ 

For the form READ (al list, the unfor­
matted READ, the following changes are made 
to the Polish notation given above: 

1. The FORMAT driver is removed. 

2. The pointer to the FORMAT is removed. 

3. The IBCOM entry,, 
replaced by the 
matted READ. 

READ STANDARD UNIT 

formatted READ, is 
IBCOM entry,, unfor-

For the form READ b, list,, the standard 
unit READ statement, the following changes 
are made to the Polish notation given 
above: 

1. No END= or ERR= drivers may appear, 
nor may the corresponding pointers to 
labels. 

2. The code word value is changed. 

OUTPUT STATEMENTS 

The following paragraphs discuss the 
Polish notation produced for all forms of 
the WRITE statement except direct access, 
and for the PRINT and PUNCH statements. 

168 

FORMATTED WRITE 

For the form WRITE 
formatted WRITE, the 
generated is: 

4 bytes 

<a,b) list, the 
Polish notation 

r------------------------------1 
!pointer to a data set I 
·------------------------------~ 
!FORMAT driver I 
·------------------------------~ 
!pointer to FORMAT I 
·------------------------------~ 
!END= driver I 
·------------------------------~ 
!pointer to END label I 
·------------------------------~ 
IERR= driver I 
·------------------------------~ 
!pointer to ERR label I 
·------------------------------~ 
IIOL driver I 
·------------------------------~ 

~~~~~~~~~~~~~~I~~~~~~~~~~~~~~Jl~~i~~s~or 
1------------------------------1\
!code word I
·------------------------------~
1 IBCOM entry,, formatted WRITE I
·------------------------------~
!pointer to IBCOM I
·------------------------------~
!READ WRITE driver I
·------------------------------~
Jstatement number l l ______________________________ J

The pointer to the FORMAT points either
to the label of the FORMAT statement or to
the array in which the FORMAT is stored.
The END= and the ERR= drivers and the
pointers following them appear only if the
END and ERR options are used in the state­
ment; either one or both may appear, and in
any order relative to each other. If no
I/O list appears in the statement, the
Polish for the I/O list is omitted, but the
IOL driver appears nonetheless.

The code word contains zero in its
high-order three bytes, and, in its low­
order byte., a unique code specifying the
operation and unit for the input/output
statement. This code word distinguishes
among the various output statements and is
inserted in the code produced for them.

Input/output operations are performed by
the runtime routines. IBCOM# is the ini­
tial entry of a transfer vector in IHCFCOMH
through which all input/output except NAME­
LIST is performed. (IHCFCOMH is further
discussed in Appendix F.) The pointer to

IBCOM# points to the routine on the GLOBAL
SPROG roll.

NAMELIST WRITE

For the form WRITE (a, x>, the NAMELIST
WRITE, the following changes are made to
the Polish notation given above:

1. The FORMAT driver is replaced by a
NAMELIST driver.

2. The pointer to the FORMAT is replaced
by a pointer to the NAMELIST.

3. The code word value is changed.

4. The IBCOM~ entry is replaced by the
value zero, since NAMELIST input/
output is not handled through IBCOM.

5. The pointer to IBCOM# is replaced by a
pointer to the NAMELIST WRITE routine.

6. No I/O list may appear.

UNFORMATTED WRITE

For the form WRITE (al list, the unfor­
matted WRITE, the following changes are
made to the Polish notation given above:

1. The FORMAT driver is removed.

2. The pointer to the FORMAT is removed.

3. The IBCOM# entry, formatted WRITE, is
replaced by the IBCOM# entry, unfor­
matted WRITE.

PRINT

The Polish notation generated for the
form PRINT b, list is identical to that
given for the formatted WRITE statement,
with the following changes:

1. No END= or ERR= drivers may appear,
nor may the corresponding pointers to
labels.

2. The code word value is changed.

PUNCH

The Polish notation for the statement
PUNCH b, list is as given for the formatted
WRITE with the following changes:

1. No END= or ERR= drivers may appear,
nor may the corresponding pointers to
labels.

2. The code word value is changed.

DIRECT ACCESS STATEMENTS

The following paragraphs discuss the
Polish notation produced for the direct
access input/output statements.

READ; DIRECT ACCESS

For the forms READ (a'b,b) list and READ
(a'r) list, the following Polish notation
is generated:

4 bytes
r------------------------------1
!pointer to a I
r------------------------------~
!direct IO driver I
r------------------------------~
I I
r------------------------------~
I I Polish for
I I r
I I
r------------------------------i
I I
r------------------------------~
!expression driver I
~------------------------------i
!pointer to b I
r------------------------------~
IERR= driver I
~------------------------------i
!pointer to ERR label I
r------------------------------i
IIOL driver I
~------------------------------~
1 I
~------------------------------~
I I Polish for
I I I/O list
I 1
~------------------------------~
I I
r------------------------------~
!code word I
~------------------------------~
IIBCOM entry, READ I
r------------------------------~
!pointer to IBCOM# I
~------------------------------i
!READ WRITE driver I
r------------------------------~
!statement number I
L------------------------------J

Appendix C: Polish Notation Formats 169

The END= and ERR= drivers and the point­
ers following them appear only if the END
and ERR options are used in the source
statement; either one or both may appear,
and in any order with respect to each
other. If b does not appear in the source
statement Cthe second form>, the corres­
ponding pointer does not appear in the
Polish notation. If the I/O list does not
appear in the source statement, the Polish
notation for the I/O list is omitted from
the Polish, but the IOL driver appears
nonetheless.

The code word contains zero in its
high-order three bytes, and, in its low­
order byte, a unique code specifying the
operation and unit for the input/output
statement. This code word distinguishes
the direct access statements from other
input/output statements and is inserted in
the code produced for them.

WRITE, DIRECT ACCESS

The Polish notation produced for the
forms WRITE Ca'r,b) list and WRITE (a'r>
list is identical to that produced for the
corresponding forms of the READ, direct
access statement with the following
exceptions:

1. The IBCOM entry, READ is replaced by
the appropriate IBCOM entry, WRITE.

2. The value of the code word is changed.

FIND

The ~olish notation produced for this
statement is identical to that for an
unformatted dir.ect access READ statement
given above, with the exception that the
code word is changed to indicate the FIND
statement.

DEFINE FILE

170

The form of this statement is:

DEFINE FILE al Cml,11,fl,vll,a2
Cm2,12,f2,v2>, ••• ,an(mn,1n,fn,vn>

The Polish notation produced for it is:

4 bytes
r------------------------------1
!pointer to al I
~-------------------------·._ ____ ~
!pointer to ml I
·------------------------------~
!pointer to 11 I file 1 data
·------~-----------------------~ IE, L or u I
·------------------------------~
!pointer to vl I
·------------------------------~
!pointer to a2 I
·------------------------------i
I I
I I file 2 data
I I
·------------------------------~
!pointer to v2 I
·------------------------------~
I I
I I
I I
·------------------------------~ I pointer to an I
·------------------------------i
I I
I I file n data
I
·------------------------------~
jpointer to vn I
·------------------------------~
!DEFINE FILE driver I
·------------------------------~
!statement number I
L------------------------------J

where the fourth word of each set of file
data holds the BCD character E, L, or u in
the high-order byte and zeros in the
remaining bytes.

END FILE STATEMENT

The Polish notation produced for END
FILE is:

4 bytes
r---1
!pointer to a (data set) I
·---i
IIBCOM entry for END FILE I
~---~
!pointer to IBCOM I
·---i
IBSREF driver I
·---~
!statement number I
L---J

REWIND STATEMENT

The Polish notation produced for the
REWIND statement is identical to that for
the END FILE statement with the exception
that the IBCOM entry for END FILE is
replaced by the IBCOM entry for REWIND.

BACKSPACE STATEMENT

The Polish notation produced for the
BACKSPACE statement is identical to that
for the END FILE statement, except that the
IBCOM entry for END FILE is replaced by the
IBCOM entry for BACKSPACE.

The Polish notation generated for a
statement function is:

4 bytes
r------------------------------1
!pointer to function name I
~------------------------------~
I I
~------------------------------~
I I Polish for
I I right side
I I
~------------------------------~
I I
~------------------------------~
!statement function driver I
~------------------------------~ !statement number I
L------------------------------J

FUNCTION STATEMENT

The Polish notation produced for the
FUNCTION statement is:

4 bytes
r---1
!pointer to ENTRY name I
~---~
!FUNCTION driver I
~--~
!statement number I
L---J
where the pointer points to the ENTRY NAMES
roll.

FUNCTION (STATEMENT OR SUBPROGRAM)
REFEBENC~--~------------~--~~

The Polish notation generated for a
reference to a function is:

4 bytes
r------------------------------1
Jsubprogram driver I
~------------------------------~
!pointer to function name I
~------------------------------~
Jnumber of arguments I
~------------------------------~
!expression driver I
~------------------------------~
I I
~------------------------------~
'I I Polish for
I I argument 1
I I
~------------------------------~
!expression driver I
~------------------------------~
l I
~------------------------------~
I I Polish for
I I argument 2
I I
~------------------------------~
texpression driver I
~------------------------------~
I I
I I
I I
~------------------------------~
I I
~------------------------------~
I I Polish for
I I argument n
I I
~------------------------------~
!expression driver r
~------------------------------~
!pointer to function name I
L------------------------------J

This Polish notation is part of the
Polish notation for the expression in which
the function reference occurs.

SUBROUTINE STATEMENT

The Polish notation generated for the
SUBROUTINE statement is:

4 bytes
r---1
!pointer to ENTRY name I
~---~
!SUBROUTINE driver I
~---~
!statement number I
L---J
where the pointer points to the ENTRY NAMES
roll.

Appendix C: Polish Notation Formats 171

CALL STATEMENT

The Polish notation for the CALL state­
ment is:

4 bytes
r------------------------------1
!subprogram driver I
l------------------------------i
!pointer to subprogram name I
l------------------------------i
!number of arguments I
~------------------------------i
!expression driver I
l------------------------------i
I I
~------------------------------i
I I Polish for
I I argument 1
I
l------------'--~---------------i
!expression driver I
~------------------------------i
I I
~------------------------------i
I I Polish for
I I argument 2
I I
l------------------------------i
!expression driver I
~------------------------------i
I I
I I
I I
~------------------'------------i
I I
~------------------------------i
I I Polish for
I I argument n
I I
~------------------------------i
!expression driver I
l------------------------------i
!pointer to subprogram name I
~------------------------------i
tpointer to xl I
~------------------------------~
!pointer to x2 I
~------------------------------i
I I label
I I arguments
I I
~------------------------------i
!pointer to xn I
l------------------------------i
!number of label arguments I
~------------------------------i
!computed GO TO driver I
l------------------------------i
!CALL driver I
~------------------------------i
tstatement number I
L------------------------------J

Label arguments are not counted in the
"number of arguments" which appears as the
third word of the Polish notation, and no

172

representation of them appears in the
Polish notation for the arguments. All
label arguments are grouped together at the
bottom of the Polish as indicated. If no
label argilinents exist, the section from the
"pointer to xl" to and including the "com­
puted GO TO driver" does not appear.

DEBUG FACILITY STATEMENTS

The following paragraphs describe the
Polish notation produced for the statements
of the debug facility.

AT

The Polish notation generated for the AT
statement is:

4 bytes
r---1
I pointer to AT group I
~---i
I AT driver I
~---i
I statement number I
L---J

The pointer points to the AT roll group
which contains the information relating to
the AT statement represented by the Polish
notation.

TRACE ON

The Polish notation generated for the
TRACE ON statement is:

4 bytes
r---1 I TRACE ON driver I
~---i
I statement number I
L---J

TRACE OFF

The Polish notation generated for the
TRACE OFF statement is:

4 bytes
r---1
I TRACE OFF driver I
l---i
I statement number I
L---J

DISPLAY

The Polish notation generated for the
DISPLAY statement is:

4 bytes
r---1
I pointer to NAMELIST WRITE I
~---~
I o I
~---~
I NAMELIST pointer I
~---~
I DISPLAY driver I
~---~
I statement number I l ___ J

where the pointer to NAMELIST WRITE points
to this routine on the GLOBAL SPROG roll;
the value zero is placed on the roll for
conformity with other NAMELIST input/output
statements; the ~AMELIST pointer points to
a group constructed for the DISPLAY state­
ment on the NAMELIST NAMES roll.

Appendix C: Polish Notation Formats 173

APPENDIX D: OBJECT CODE PRODUCED BY THE COMPILER

This appendix describes the code pro­
duced by the FORTRA.N IV (G) compiler for
various types of source module statements.

All branch instructions in the object
module consist of a load from the branch
table, followed by a BCR instruction, eith­
er conditional or unconditional, which uses
the branch table value as its target.

The production of this code depends on
the operation of Allocate, which replaces
all jump target labels on the LBL roll with
pointers to entries in the object module
branch table. Using this information, Gen
can write the load and branch instructions
even though the address of the target may
not yet be known.

When Gen encounters a labeled statement
which is a jump target, it sets the appro­
priate entry in the branch table to the
address of the first instruction it pro­
duces for that statement.

COMPUTED GO TO STATEMENT

The following code is generated for the
Computed Go To statement:

L
SLL
BALR
LTR
BNH
LA
CR
BH
L
BR

15,variable
15,2
14,0
15,15
4n+22CO, 14)
1,4n(O,Ol
15,1
4n+22 <O, 14)
1,18(15,14)
1

n address constants

where var~able is the Computed Go To vari­
able, n is the number of branch points, and
4n is the length of the list of n address
constants.

DO STATEMENT

The use of a DO loop in a FORTRAN
program can be described by the following
example:

DO 5 I ml,m2,m3

5 CONTINUE

When the DO statement is processed dur­
ing phase 4, the following takes place:

1. The code

L RO,ml
A ST RO,I

is generated, where the label A is
constructed by Gen.

2. The address of the instruction labeled
A is placed in the branch table.

3. An entry is made on the DO LOOPS OPEN
roll which contains pointers to m2,
m3, the label A, I, and the label 5.

On receiving the Polish notation for the
CONTINUE statement in the example, phase 4
produces the following code:

L
L
L
L
BXLE

RO,I
Rl, branch table
R2,m3
R3,m2
RO,R2,0(Rl)

where the load from the branch table sets
Rl to the address of the made label A.
When this code has been completed, phase 4
removes the bottom entry from the DO LOOPS
OPEN roll.

Appendix D: Object code Produced by the Compiler 175

STATEMENT FUNCTIONS

The following code is generated at the
beginning of each statement function:

STM 14,6,14(0,15)
LR 7 1 14
LR 9,1
LR 6 1 15
B 42<0,15)

seven word buff er

The buffer is followed by the code for
the statement function itself, including
the code to load the return value. The
following code closes the statement
function:

LR 14,7
LM 61 12,14(6)
BR 14

SUBROUTINE AND FUNCTION SUBPROGRAMS

The following code is generated to save
required information at the main entry to
each SUBROUTINE and FUNCTION subprogram:

B XC0,15)
DC AL1Uength of !dent)
DC CLn (!dent)
STM 14,12,12(13)
LM 2,3,40(15)
LR 4,13
L 13, 36(0, 15)
ST 13,8<0,4)
STM 3, 4, 0(13)
BR 2
DC (ADDRESS SAVE AREA)
DC (ADDRESS PROLOGUE)
DC (ADDRESS EPILOGUE)

This code is followed by the following
code for saving required information for
each of the ENTRYs to the subprogram (the
sequence of code appears once for each
ENTRY, in the order of the ENTRYs):

B xco, 15)
DC ALl(length Of ident)
DC CLn(Ident)
STM 14,12,12(13)
LM 2,3,32(15)
L 15, 28 (o, 15)
B 20C0,15)
DC (ADDRESS PROLOGUE}
DC (ADDRESS EPILOGUE)

176

The save code for the ENTRYS to the
subprogram is followed by a PROLOGUE, which
transfers arguments to the subprogram, and
an EPILOGUE, which returns arguments to the
calling routine for the main entry to the
subprogram and for each ENTRY to the
subprogram.

The following code is produced for the
RETURN statement:

SR
L
BR

15,15
14,0C0,13)
14

which branches to the appropriate EPILOGUE.

The following code is produced•for the
RETURN I statement:

L 15,I
SLL 151 2
L 14,0(0 1 13)
BR 14

which also branches to the appropriate
EPILOGUE.

The PROLOGUE code generated for each
entry point to the subprogram moves argu­
ments as required and branches to the
entry. The following code is generated to
move each call by name argument:

L
ST

2,nC0,1)
2,global dmy

where n is the argument number (the argu­
ments for each entry point are numbered
from one) multiplied by four.

The following code is generated to move
each call by value argument:

L 2,nC0,1)
MVC global dmy(x),0(2)

where n is the argument number multiplied
by four, and x is the size of the dummy.

code to calculate dummy dimensions fol­
lows the code to move arguments.

The following code is generated at the
close of all PROLOGUES:

BALR
L
BR
DC

2,0
3,6C0,2)
3
(ADDRESS OF CODE ENTRY POINT)

The EPILOGUE code generated for each
entry point to a subprogram moves arguments
back to the calling routine and returns to
it, as dictated by the RETURN or RETURN I
statement.

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

The first instructions in each EPILOGUE
are:

L
L

1,4(0,13)
1,24<0,11

The following code is generated
return each call by value argument:

L 2,nco, 11
MVC O<x,2),global dmy

to

where n is the argument number multiplied
by four and x is the size of the dummy.

For FUNCTION subprograms, the
instruction is generated:

following

Lx O,entry name

where x is the instruction mode. If the
FUNCTION is complex, two load instr11ctions
are required.

The following code is generated for the
closing of each EPILOGUE:

L 13,4(0 1 131
L 14,12(0,13)
LM 2,12,28(13)
MVI 12(13),255
BR 14

The following paragraphs describe the
code produced for the FORTRAN input/output
statements. The generated instructions set
up necessary parameters and branch into the
IBCOM# transfer table. This table has the
following format:

.IBCOM# Main entry, formatted READ
+4 Main entry, formatted WRITE
+8 Second list item, formatted

+12 Second list array, formatted
+16 Final entry, end of I/O list
+20 Main entry, unformatted READ
+24 Main entry, unformatted WRITE
+28 Second list item, unformatted
+32 second list array., unformatted
+36 Final entry, end of I/O list
+40 Backspace tape
+44 Rewind tape
+48 Write tapemark
+52 STOP
+56 PAUSE
+60 IBERR execution error monitor
+64 IBFINT interruption processor
+68 IBEXIT job termination

FORMATTED READ AND WRITE STATEMENTS

is:
The code produced for these statements

CNOP
L
BAL
DC
DC
DC
DC

0,4
15,=V(IBCOM#I
14,N(15)
XL0.4 1 PI 1 1 XL0.4'UI 1 ,AL3(UNIT)
AL1(Fil,AL3(FORMAT)
AL4(EOFADD)
AL4 CERRADDI

"optional"
"optional"

where:

PI = 0 if neither
specified

EOF nor ERR is

UI =
=

FI

1 if EOF only
2 if ERR only
3 if both
specified

0 if unit is
1 if unit is
4 if unit is
unit

is specified
is specified
EOF and ERR are

an integer constant
a variable name
the standard system

x•oo• if FORMAT is a statement
label
x•o1• if FORMAT is an array name

N = 0 for READ
4 for WRITE

UI = 4 is used for debug and for READ b,
list, PRINT b, list and PUNCH b, list.

SECOND LIST ITEM, FORMATTED

The code produced is:

L 15,=VCIBCOM#)
BAL 14,8(15)
DC XL1 1 L1 ,LX0.4 1 T'.XL0.4'X'

XL0.4 1 B',xL1.4'D1

where:

L the size in bytes of the item

T 2 for a logical 1-byte item
= 3 for a logical fullword item

4 for a halfword integer item
= 5 for a fullword integer item

6 for a double-precision real item
7 for a single-precision real item
8 for a double-precision complex
item

= 9 for a single-precision complex
item
A for a literal item (not currently
compiler-generated)

Aopendix D: Object Code Produced by the compiler 177

x, B, and D are, respectively, the
index, basE::, and displacement which
specify the item address.

SECOND LIST ARRAY, FORMATTED

The code produced is:

15, =VCIBCOM#) L
BAL
DC
DC

14,12(15)
LX1 1 SPAN',AL3(ADDRESS)
XL1'L',XL0.4'T',XL2.4'ELEMENTS'

where:

SPAN (not used)

ADDRESS = the beginning location of the
array

L the size in bytes of the array
element

T = the values given for

ELEMENTS = the number of
array

FINAL LIST ENTRY, FORMATTED

The code produced is:

L
BAL

15, =V{ IBCOM#)
14,16(151

items

elements in

UNFORMATTED READ AND WRITE STATEMENTS

the

The code produced for these statements
is:

CNOP
L
BAL
DC
DC
DC

where:

o, 4
15,=V(IBCOM#I
14, NC15)
XL0.4'PI',XL0.4'UI,AL3CUNIT)
AL4 {EOFADD) "optional"
AL4 (ERRADD) "optional"

PI, UI, UNIT, EOFADD and ERRADD have the
same values as those given in the for­
matted READ/WRITE definition.

N

178

20 for READ
24 for WRITE

SECOND LIST ITEM, UNFORMATTED

The code produced is:

L
BAL
DC

where:

15, =V <IBCOM#)
14, 28 (15)
XL1'L',XL0.4'0',XL0.4'X',
XL0.4'B',XL1.4'D'

L = the size in bytes of the item

X, B and D are, respectively, the
index, base, and displacement which
specify The address of the item.

SECOND LIST ARRAY, UNFORMATTED

The code produced is:

L 15,=V(IBCOM#)
BAL 14,32(L)
DC XL1 1 SPAN',AL3(ADDRESS)
DC XL1'L',AL3(ELEMENTS)

where SPAN, ADDRESS, L, and ELEMENTS have
the meanings described in second list
array, formatted.

FINAL LIST ENTRY, UNFORMATTED

The code produced is:

L 15,=V(IBCOM#I
BAL 14,36(15)

BACKSPACE, REWIND, AND WRITE TAPEMARK

The code produced is:

CNOP
L
BAL
DC

where:

FLAG

N

0,4
15, =V<IBCOM#)
14, N<15)
XLl'FLAG', AL3(UNIT>

0 if unit is an integer
any other bit pattern if unit is
a variable.

40 for BACKSPACE
44 for REWIND
48 for write tapemark

)

STOP AND PAUSE STATEMENTS

The code produced for these statements
is:

L
BAL
DC
DC

where:

151 =V<IBCOM#)
14,N(15)
ALl(LENGTH)
C1 TEXT'

LENGTH is the number of bytes in the
'TEXT' message

TEXT is an alphameric number or message
(TEXT 1 40404040F0 1 if the STOP or
PAUSE message is blank).

N = 52 for STOP
= 56 for PAUSE

NAMELIST READ AND WRITE

The code produced is:*

CNOP
L
BAL
DC
DC
DC
DC

where:

0,4
15,=V(FWRNL#)
14,0 (15)
XL0.4'PI',XL0.4'UI',AL3(UNIT)
AL4(NAMELIST)
AL4(EOFADD)
AL4(ERRADD)

PI, UI, and UNIT are as described for
formatted READ and WRITE

* The 0 L
write;
"L

15,=V(FWRNL#)" shown is
the code produced for read

15,+V(FRDNLit)."

DEFINE FILE STATEMENT

for
is

The form of the parameters specified in
the statement is:

The following code is generated in the
object module prologue:

LA
L
BALR

where:

L = 15

R2 = 14

R1 1 LIST
L,=V(DIOCS#)
R2,L

The following parameter list is also
generated:

DC
DC
DC

DC
DC
DC

x•a 1 1 ,AL3Cm1>
C'f1 ' ,AL3 <r1>
X1 00',AL3(v1)

X'an' 1 AL3(mn>
C 1 fn 1 ,AL3 <rn>
X'80';AL3<vn>

The third DC in the group is changed to

DC X'01',AL3(vi)

if the associated variable is a halfword
variable. In the last group, it becomes
X'81'1AL3Cvn> in this case.

FIND STATEMENT

The code produced is:

CNOP
L
BAL
DC
DC

PI c

0,4
15,=V(IBCOM#)
14, 20 (15)
XL0.4'PI',XL0.4'UI',AL3(UNIT)
XL1 1 VI' ,AL3(r)

UI 0 if the unit is a constant
= 1 if the unit is a variable name

VI 00 i:f the record number is a
constant

= 01 if the record number is a vari­
able name

Note that 20 is the IBCOM entry point
for an unformatted READ.

DIRECT ACCESS READ AND WRITE STATEMENTS

is:
The code produced for these statements

CNOP
L
BAL
DC
DC
DC
DC

o. 4
15,=V(IBCOMit)
14, N(15)
XL0.4 1 PI',XL0.4'UI'AL3(UNIT)
ALl (FI) ,AL3 (FORMAT)
ALl (VI) 1 AL3 (r)
AL4CERRADD) •may only appear for
READ"

Appendix D: Object Code Produced by the Compiler 179

where:

PI = 8 if ERR is not specified

UI

FI

VI

= A if ERR is specified, which is
(only possible for READ

= 0 if the unit is an integer
constant

= 1 if the unit is a variable name

= 00 if the FORMAT is a statement
label

= 01 if the FORMAT is an array name

00 if r (the record number) is a
constant

= 01 if r is a variable name

The entry points which may appear (N)
are O, 4, 20, or 24. If 20 or 24 appears
(indicating an unformatted operation), the
second DC does not appear.

FORMAT STATEMENTS

FORMAT statements are stored after lit­
eral constants in the object module.

The FORMAT specifications are recoded
from their source module form so that each
unit of information in the FORMAT statement
occupies one byte of storage. Each integer
which appears in the FORMAT statement
<i.e., a scale factor, field width, number
of fractional digits, repetition count) is
converted to a 1-byte binary value. Decim­
al points used to separate field width from
the number of fractional digits in the
source module FORMAT statement are dropped;
all other characters appearing in the
source module statement are represented by
1-byte hexadecimal codes. The following
sections describe the encoding scheme which
is used.

FORMAT Beginning and Ending Parentheses

The beginning and ending parentheses of
the FORMAT statement are represented by the
hexadecimal codes 02 and 22, respectively.

Slashes

The slashes appearing in the FORMAT
statement are represented by the hexadec­
imal code lE.

180

Internal Parentheses

Parentheses used to enclose groups of
FORMAT specifications within the FORMAT
statement are represented by the codes 04
and lC for the left and right parenthesis,
respectively. The code for the left paren­
thesis is always followed by the 1-byte
value of the repetition count which pre­
ceded the parenthesis in the source module
statement. A value of one is inserted if
no repetition count appeared.

Repetition of Individual FORMAT
Specifications

Whenever the source module FORMAT state­
ment contains a field specification of the
£orm aiw, aFw.d, aEw.d, aDw.d, or aAw,
where the repetition count "a" is present,
the hexadecimal code 06 is produced to
indicate the field repetition. This code
is followed by the 1-byte value of •a".

I,F,E, and D FORMAT Codes

The I and F FORMAT codes are represented
by the hexadecimal values 10 and OA, re­
spectively. The I code is followed by the
1-byte field width value; the F code is
followed by two bytes, the first containing
the field width (w) and the second contain­
ing the number of fractional digits (d).

E and D FORMAT codes are represented by
the hexadecimal values OC and OE, respec­
tively. This value is always followed by
two bytes which represent the field width
and the number of fractional digits,
respectively.

A FORMAT Code

The A FORMAT code is represented by the
hexadecimal value 14. This representation­
is always followed by the 1-byte value of
w, the number of characters of data.

Literal Data

The H FORMAT code and the quotation
marks used to enclose literal data are both
represented by the hexadecimal value 1A.
This code is followed by the character
count <w in the case of the H specifica-

\
)

tion, the number of characters enclosed in
quotation marks in the case of the use of
quotation marks). The literal data follows
the character count.

The specification wx results in the
production of the hexadecimal code 18 for
the X; this is followed by the 1-byte value
of w.

T FORMAT Code

The T FORMAT code is represented by the
value 12. The print position, w, is repre­
sented by a 1-byte binary value.

Scale Factor-P

The P scale factor in the source module
FORMAT statement is represented by the
hexadecimal value 08. This code is fol­
lowed by the value of the scale factor, if
it was positive. If the scale factor was
negative, 128 1 is added to it before it is
stored following the P representation.

G FORMAT Code

The G FORMAT Code is represented by the
hexadecimal value 20. This value is always
followed by two bytes which represent the
field width and the number of significant
digits, respectively.

L FORMAT Code

The L FORMAT code is represented by the
hexadecimal value 16. This value is fol­
lowed by the 1-byte field width.

Z FORMAT Code

The Z FORMAT code is represented by the
hexadecimal value 24. This value is fol­
lowed by the 1-byte field width.

DEBUG FACILITY

The following paragraphs describe the
code produced for the FORTRAN Debug Facili­
ty statements. The generated instructions
set up parameters and branch into the
DEBUG# transfer table. The object-time
routines which support the Debug Facility
are described in Appendix E.

DEBUG STATEMENT

When the source module includes a DEBUG
statement, debug calls are generated before
and after each sequence of calls to IBCOM
for source module input/output statements.
Additional debug calls are generated to
satisfy the options listed in the DEBUG
statement.

Beginning of Input/Output

The following code appears before the
first call to IBCOM for an input or output
operation:

L
CNOP
BAL

15,=V(DEBUG#)
0,4
14,44(0,15)

End of Input/Outpu~

The following code appears
last call to IBCOM for an input
operation:

L
CNOP
BAL

15,=V(DEBUG#)
0,4
14,48(0,15)

UNIT Option

after the
or output

When the DEBUG statement does not
include the UNIT option, the object-time
debug routine automatically writes debug
output on SYSOUT. When UNIT is specified,
the following code is generated at the
beginning of the object module:

L
CNOP
BAL
DC

15,=V(DEBUG#)
0,4
14,12(0,15)
F 1 DSRN'

Appendix D: Object Code Produced by the Compiler 181

where DSRN is the data set reference number
to be used for all subsequent debug output.

TRACE Option

When the TRACE option is specified in
the source module DEBUG statement, the
TRACE call is inserted immediately before
the code for every labeled statement. The
code is:

L
CNOP
BAL
DC

15,=V(DEBUG#)
0,4
14,0(0,15)
F 1 LABEL1

where LABEL is the label of the following
statement.

SUBTRACE Option

When the SUBTRACE option is listed in
the source DEBUG statement, two sequences
of code are produced: one at the entry to
the object module, and one prior to each
RETURN.

SUBTRACE ENTRY: The debug call is made at
the beginning of the object module. The
call is:

L
CNOP
BAL

15, =VCDEBUG#)
0,4
14,4(0,15)

At the time of the call, register 13
contains the address of the SAVE AREA, the
fifth word of which contains the address of
the subprogram identification. Bytes 6
through 11 of the subprogram identification
are the subprogram name.

SUBTRACE RETURN: The debug call is made
immediately--before the RETURN statement.
The call is:

L
CNOP
BAL

15,=V(DEBUG#)
0,4
14,8(0,15)

When the INIT option is given in the
source module DEBUG statement, a debug call
is produced for every assignment to a
variable, or to a listed variable if a list
is provided. The call immediately follows
each assignment, including those which
occur as a result of a READ statement or a

182

subprogram call. Three calls may occur,
depending on the type of variable (scalar
or array) and the method of assignment.

INIT SCALAR VARIABLE: The following code
is produced after each assignment of value
to a scalar variable covered by the INIT
option:

L
CNOP
BAL
DC
DC

15 1 =V <DEBUG#)
o, 4
14,16(0,15)
CL6'NAME 1 ,CL2'
XL1 1 L';XL0.4 1 T',XL0.4 1 X1 iXL0.4 1 B1 ,

XL1.4'D'

where:

NAME is the name of the variable which
was set.

L is the length of the variable in
bytes.

T is the type code for the variable:

2 for a logical 1-byte item
3 for a logical fullword item
4 for a halfword integer item
5 for a fullword integer item
6 for a double-precision real item
7 for a single-precision real item
8 for a double-precision complex
item
9 for a single-precision complex
item
A for a literal item (not currently
compiler generated)

x, B, and D are, respectively, the
index, base, and displacement which loc­
ate the item.

INIT ARRAY ITEM: The following code is
produced after each assignment of value to
an array element:

L
CNOP
BAL
DC
DC

DC

where:

15,=V(DEBUG#)
o, 4
14,20(0,15)
CL6 I NAME' ; CL2 I
XL1'L',XL0.4'T',XL0.4'X',XL0.4'B',

XL1. 4'D'
XL1'TAG',AL3(ADDRESS)

ADDRESS IS THE
array element if
pointer to the
array element if

LOCATION OF THE FIRST
TAG = o, or ADDRESS is a
location of the first
TAG * O.

NAME, L, T, x, B, and D are as described
for a scalar variable.

INIT FULL ARRAY: The following code is
produced when a full array is set by means
of an input statement specifying the array

name or when the array name appears as an
argument to a subprogram:

L
CNOP
BAL
DC
DC
DC
DC

where:

15, =V <DEBUG#)
0,4
14,24<0,15)
CL6' NAME', CL2'
A(ADDRESS)
XL1'L',XL0.4 1 T 1 ,XL2.4'00000 1

A(ELEMENTS)

ADDRESS is the location of the first
array e;t.ement.

ELEMENTS is a pointer to a word contain­
ing the number of elements in the arr2y.

NAME, L, and T are as described for a
scalar variable.

A debug call is produced for each
reference to an array element when the
SUBCHK option appears without a list of
array names; when the list is given, only
references to the listed arrays produce
debug calls. The debug call appears before
the reference to the array, and is:

L
CNOP
BAL
DC
DC
DC

where:

15,=V(DEBUG#)
0,4
14,28(0,15)
CL6 1 NAME', CL2'
XL1'TAG',AL3(ADDRESS)
AL4(ELEMENTS)

NAME is the array name.

ADDRESS is the location of the first
array element if TAG = o, or ADDRESS is
a pointer to the location of the first
array element if TAG * o.

ELEMENTS is a pointer to a word contain­
ing the number of elements in the array.

AT STATEMENT

The AT statement specifies the label, L,
of a statement whose operation should be

immediately preceded by the operation of
the statements following the AT. As a
result of the AT statement, an uncondi­
tional branch to the location of the first
statement following the AT is inserted
before the first instruction generated for
the statement labeled L. This branch pre­
cedes any TRACE or SUBTRACE calls which may
be written for statement L.

The branch, like all branches performed
in the object module, consists of a load
from the branch table, followed by a BCR
instruction. The branch table entry
referred to is one constructed for a label
which the compiler provides for the state­
ment following the AT.

TRACE ON STATEMENT

The debug call produced for the TRACE ON
statement appears at the location of the
TRACE ON statement itself; the call is:

L
CNOP
BAL

15,=V(DEBUG#)
o, 4
14,32(0,15)

TRACE OFF STATEMENT

The debug call produced for the TRACE
OFF statement appears at the location of
the TRACE OFF statement itself; the call
is:

L
CNOP
BAL

15, =V<DEBUG#)
0,4
14,36(0,15)

DISPLAY STATEMENT

The code for the DISPLAY statement is:

L
CNOP
BAL
DC
DC

15, =V (DEBUG#)
o, 4
14,40(0,15)
A<NAMELIST)
A{FWRNL#)

where NAMELIST is the address of the NAME­
LIST table generated from the DISPLAY list
by the compiler. This code appears at the
location of the DISPLAY statement itself.

Appendix D: Object Code Produced by the Compiler 183

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

The information provided in this appen­
dix has its primary use in connection with
a listing of the compiler. The label lists
indicate the chart on which a specific
label can be found, or, for routines which
are not f lowcharted, they provide a
description of the routine.

PARSE LABEL LIST

The labels enumerated in the following
list are used in the flowcharts provided
for the illustration of the major routines
used in Parse.

Label
G0630
G0631
G0837
GP632
G0635
G0636
G0633
G0642
G0844

Chart
ID
~
04
BA
BB
BC
BD
BE
BF
BG

Routi!!_~ Na!!!~
START COMPILER
STATEMENT PROCESS
PRINT AND READ SOURCE
STA INIT
LBL FIELD XLATE
STA XLATE
STA FINAL
ACTIVE END STA XLATE
PROCESS POLISH

SUPPLEMENTARY PARSE LABEL LIST

The routines described in this section
are listed by G number labels which are
presented in ascending order. These rou­
tines are those used in the operation of
Parse which are not shown in the section of
flowcharts for the phase.

Routine
~bel ~ame _
G0287 REASSIGN

MEMORY

G0637 ASSIGNMENT
STA XLATE

G0638 ARITH FUN
DEF STA
XLATE

Comments
Obtains additional core

storage, if possible,
for a specific roll by
pushing up the rolls
that precede the re­
questing roll in the
block of storage. If
this is not possible,
it requests more core
storage and, if none is
available, enters PRESS
MEMORY.

Constructs the Polish
notation for an assign-
ment statement.

constructs the Polish
notation for an arith-
metic function defini-
tion statement.

APPENDIX E: MISCELLANEOUS REFERENCE DATA

Routine
Label ~am~-­
G0639 ASSIGNMENT

VAR CHECK

G061.10 LITERAL
TEST

G06lll END STA
XLATE

G061.13 DO STA
XLATE

G061.14 DO STA
CONTROL
XLATE

G06ll5 DIMENSION
STA XLATE

G0646 GOTO STA
XLATE

G0647 CGOTO STA

GO 6. ll 8 ASSIGNED
GOTO STA
XLATE

G0649 ASSIGN STA
XLATE

comments
Checks--the mode of as­

signment variable and
the expression for con­
flict in type speci­
fication.

Determines the statement
type and transfers to
the indicated statement
processing routine.

Determines the nature of
the statement and
transfers to the appro­
priate translation rou­
tine for non-END;
translates END.

Constructs
notation
statement.
innermost

the Polish
for the DO

Locates the
DO statement

in a nest of oo•s, and
sets up extended range
checking.

Interprets the loop
control specification
in the DO statement and
constructs the Polish
notation for these
controls.

Determines the validity
of the specifications
in the DIMENSION state­
ment and constructs
roll entries.

Determines the type of
GO TO statement, and
constructs the Polish
notation for a GO TO
statement.

constructs the Polish
notation for a Computed
GO TO statement.

Constructs the Polish
notation for an As­
signed GO TO statement.

Controls the construc­
tions of the Polish
notation for an ASSIGN
statement.

Appendix E: Miscellaneous Reference Data 185

Label
G"o65o

Routine
Name -------IF STA
XLATE

G0651 LOGICAL IF
STA XLATE

G0652 IMPLICIT
STA XLATE

G0653 REGISTER
RANGE

G0654 REGISTER
IMPLICIT
CHAR

G0655 SCAN FOR
TYPE QT
AND SIZE

G0656 CONTINUE
STA XLATE

G0657 CALL STA
XLATE

G0658 EXTERNAL
STll. XLATE

G0659 FORMAT STA
XLATE

G0660 FORMAT STA
END

G0661 FORMAT
LIST SCAN

G0662 FORMAT
BASIC SCAN

G0663 ISCAN TEST

186

Comments --------Constructs
notation
statement.

the
for

Constructs the
notation for a
IF statement.

Polish
an IF

Polish
logical

Checks the IMPLICIT
statement and controls
the construction of the
roll entries for the
statement.

Controls character en­
tries for an IMPLICIT
statement.

Places the characters in
the IMPLICIT statement
on the IMPLICIT roll.

Determines the mode and
size of the variables
in specif ica~ion state­
ments.

Constructs the Polish
notation for a continue
statement.

constructs the
notation for a
statement.

Polish
CALL

Validates the use of the
EXTERNAL statement and
constructs roll en­
tries.

Validates the use of the
FORMAT statement and
controls the construc­
tion of the Polish
notation for the state­
ment.

Builds the FORMAT roll
from the information
obtained from the proc­
essing of the stnte­
ment.

Checks the form of the
literal content of the
FORMAT statement.

Interprets the FORMAT
list and constructs the
Polish notation for the
list.

Checks the size of the
inteter constant or
variable specified.

Routine
Label Name
G0664 PACK~CODE

Comments
Interprets the specif ica­

tion for the H format
code.

G0665 PACK FORl'-1AT Controls the registering
QUOTE of the contents of a

literal quote specified
in a FORL';AT statement.

G0666 REWIND STA
XLATF

G0667 BACKSPACE
STA XLATE

G0668 END FILE
STA XLATE

G0669 END FILE
END

G0670 BLOCK DATA
STA XLA'I'E

G0671 STOP STA
XLATE

G0672 STOP CODE
ENTRY

G0673 PAUSE S'I'A
XLATE

G0674 PAUSE STOP
COMMON

G0675 PAUSE STOP
END

G0676 INIT
LITERAL
FOR STOP
PAUSE

G0677 NAMELIST
STA XLATE

G0678 COMMON STA
XLATE

Constructs the
notation for
statement.

a
Polish
REWIND

Constructs the Polish
notation for a
BACKSPACE statement.

Constructs the
notation for
FILE statement.

Completes the
notation for
output control
ments.

Polish
an END

Polish
input/
state-

Validates the use of the
BLOCK DATA statement.

Sets up the Polish nota­
tion for the STOP
statement.

Sets up the Polish nota­
tion for the STOP
statement.

Controls the
ti on of
statement.

interpreta­
the PAUSE

Checks the form of the
specified statement and
controls the construc­
tion of the Polish
notation for the
statement.

Registers the constructed
Polish notation on the
POLISH roll.

Controls the interpreta­
tion of the message
specified in the PAUSE
statement.

constructs the
entries for
NAMELIST statement.

roll
the

constructs the roll
entries for the COMMON
specification.

Routine
Label Name
G0679 TEST ID

ARRAY OR
SCALAR

comments
Validates the identifica­

tion of the array or
scalar used in COMMON.

G0680 DOUBLE PRE Checks the use of the
STA XLATE DOUBLE PRECISION state­

ment and controls the
interpretation of the
statement.

G0681 TYPE STA Interprets and constructs
XLATE the roll entries for

the type specification
statement.

G0682 SCAN FOR
SIZE

G0683 TYPE
SEARCH TEST
AND REG

G0684 ENTRY STA
XLATE

G0685

G0686

G0687

G0688

G0689

FUNCTION
STA XLATE
TYPED
FUNCTION
STA XLATE
FUNCTION
ENTRY STA
XLATE
XLATE

SUBROUTINE
STA XLATE
SUBROUTINE
ENTRY STA
XLATE

G0690 SUBPROGRAM
END

G0691 SPROG NAME
SCAN AND
REG

Checks the size specifi-
cation for the vari-
ables in type state-
ments.

checks the identification
of the variables in the
type specification
in statement for pre-
vious definition and
defines if correct.

Constructs
notation

the
and

entries for an
statement.

Polish
roll

ENTRY

These routines control
the construction of the
Polish notation for a
FUNCTION subprogram by
invoking the routines
which interpret the
contents of the state­
ment.

These routines control
the construction of the
Polish notation for a
SUBROUTINE subprogram
by invoking the routine
which interprets the
contents of the state­
ment.

common
for
and

closing routine
ENTRY, FUNCTION,

SUBROUTINE state-
ments.

Checks the identification
of the SUBROUTINE or
FUNCTION subprogram for
conflicts in defini­
tion.

Routine
Label Name
G0692 TEST ORDER

G0693 DMY SEQ
SCAN

G0694 GLOBAL DMY
SCAN AND
TEST

G0695 DEFINE
FILE STA
XLATE

G0696 DATA STA
XLATE

G0697 DATA CONST
XLATE

G0698 INIT DATA
VAR GROUP

G0699 DATA CONST
ANALYSIS

G0700 DATA VAR
TEST AND
SIZE

G0701 MOVE TO
TEMP
POLISH ROLL

G0702 READ STA
XLATE

G0704 READ WRITE
STA XLATE

G0705 END QT
XLATE

comments
Checks the order in which

the SUBROUTINE or FUNC­
TION statement appears
in the source module.

Checks the designation of
the dummy variables for
call by name or call by
value.

Checks the identification
of the global dummy for
a possible conflict in
definition.

constructs the Polish
notation for the DEFINE
FILE statement.

Constructs the Polish
notation and roll
entries for
statement.

Interprets the
specified in
statement.

Determines and
the number of
specified in
statement.

the DATA

constants
the DATA

sets up
elements
the DATA

Validates the
tion of the
used in
statement.

specifica­
constants

the DATA

Checks the definition of
the variables specified
in the DATA statement
for usage conflict, and
registers the variables
if no conflict is
found.

Moves information for
DATA statement to TEMP
POLISH roll from WORK
roll.

Checks the type of READ
statement and controls
the interpretation of
the statement.

Interprets the elements
of the READ or WRITE
statement and con-
structs the Polish
notation for the
statement.

Constructs the
notation for
quote.

Polish
the END=

Appendix E: Miscellaneous Reference Data 187

Routine
Label Name
G0706 ERR QT

XLATE

G0707 REGISTER
IBCOM

G0708 REGISTER
ERROR LINK

G0709 READ B STA
XLATE

G0710 PUNCH STA
XLATE

G0711 PRINT STA
XLATE

G0712 F2 IO
XLATE

G0713 IOL LIST
XLATE

G0714 FIND STA
XL ATE

G0715 RETURN STA
XLATE

G0716 EQUIVALENCE
STA XLATE

G0717 DIMENSION
SEQ
XLATE

G0718 TEMP MAKER

Comments
Constructs the Polish

notation for the ERR=
quote in the READ
statement.

Inserts a roll entry for
a call to IBCOM.

Sets the roll entry for
the generation of error
linkage.

Initialize for the con­
struction of the Polish
notation for the in­
dicated statement.

Constructs the Polish
notation for the in­
dicated input/output
statement and inter­
prets FORMAT designa­
tions associated with
the input/output state­
ment.

Interprets and constructs
the Polish notation for
the list associated
with the indicated
input/output statement.

constructs
notation
statement.

Constructs

the
for

the

Polish
the FIND

Polish
notation for the RETURN
statement.

Constructs the roll en-
tries for the EQUIVA-
LENCE statement

Constructs the roll en­
tries for the dimen­
sions designated for an
array.

Increments
temporary
used for
sions.

pointer for
locations

dummy dimen-

G0719 SPECIFI- set flags and return.
CATION
STA EXIT

G0720 JUMP END
G0721 ACTIVE END
G0722 HEAD STA

EXIT

188

Routine
Label Name
G0723 STA XLATE

EXIT

G0724 ILLEGAL
STA FAIL

G0725 ORDER FAIL
G0726 ALLOCATION

FAIL
G0727 ILLEGAL

NUMBER
FAIL

G0728 SUBSCRIPT
FAIL

G0729 ID CONFLICT
FAIL

G0730 TYPE
CONFLICT
FAIL

G0731 VAR SCAN

G0732 ARRAY SCAN

G0733 SUBSCRIPT
ANALYSIS

G0734 SCRIPT ITEM
ANALYSIS

G0735 NOTE LINEAR
SCRIPT

G0736 RESTORE
NONLINEAR
SCRIPT

G0737 MOVE ON
EXIT FALSE

G0738 SCRIPT
SCALAR
ANALYSIS

comments
Replaces the Polish nota­

tion for a statement
with error linkage if
indicated.

These routines set up
diagnostic messages for
the type of error indi­
cated by the routine
name.

Checks definition of
variables in the source
module; defines as
scalar if undefined.

Constructs
notation
entries for
ferences.

the Polish
and roll
array re-

Determines the nature of
an array reference for
purposes of subscript
optimization.

Determines whether a
subscript expression is
a linear function of a
DO variable, and sets
ANSWER BOX.

Registers a linear sub­
script expression on
SCRIPT roll.

Builds the Polish nota­
tion for a nonlinear
subscript expression on
Polish roll.

Moves one group from WORK
roll to POLISH roll,
sets ANSWER BOX to
false, and returns.

Determines whether a
scalar used in a sub­
script is a DO variable
and sets ANSWER BOX.

'\
)

Routine
Label Name
G0739 SCRIPT

CONST
ANALYSIS

G0740 DEFINE
SCRIPT
GROUP

G0741 REGISTER
SCRIPT
GROUP

G0744 TERM SCAN

G0745 ELEMENT OP
SEQ SCAN

G0746 UNAPPENDED
SPROG ARG

G0747 FUNCTION
ELEMENT

G0748 CONST
ELEMENT

G0749 SCALAR
ELEMENT

G0750 ELEMENT
MOVE

G0751 OP SCAN
CHECK
DEPOSIT

comments
Separates constant used

in a subscript expres­
sion as either induc­
tion variable coeffi­
cient or additive
constant.

Creates new group con­
taining zeros on the
SCRIPT roll.

Defines a
pression
roll by
traits,
and array

subscript ex-
on the SCRIPT
setting the
displacement,
reference.

Initializes the construc­
tion of Polish notation
for a new term in an
expression.

Constructs the Polish
notation for a term in
an arithmetic ex­
pression.

Exits from expression
scanning on finding an
array or subprogram
name not followed by a
left parenthesis; en­
sures reference is
correct.

Determines whether a
function call in an
expression is to a
statement function, a
library function, or a
global subprogram;
calls SPROG ARG SEQ
SCAN to scan arguments.

Scanning expression, if
compiler finds non­
letter, non-left paren­
thesis, it goes here;
determines if really a
constant.

Ensures that scalar is
registered.

Moves pointer to POLISH
roll for any element in
expression.

Determines the operation
indicated in an expres­
sion, sets up the
appropriate driver, and
falls through to OP
CHECK AND DEPOSIT.

Routine
Label Name
G0752 OP CHECK

AND DEPOSIT

Comments
The current and

operations are
according to
dence, and a
notation is
structed.

previous
set up

a prece­
Pol is h

con-

G0753 GEN AND REG Determines the nature of
EXPON SPROG an exponentiation, and

records the required
subprogram on the
GLOBAL SPROG roll.

G0754 REG COMPLEX
SPROG

Determines the nature of
an operation involving
complex variables• and
registers the appropri­
ate routine on the
GLOBAL SPROG roll.

G0755 A MODE PICK Checks and sets mode of
AND CHECK operator by inspecting

the first of a pair of
operands.

G0756 MODE PICK

G0757 B MODE PICK
AND CHECK

G0758 MODE CHECK

Actually places mode
field in driver.

With second operand and
driver set by A MODE
PICK AND CHECK, resets
driver mode; if complex
raised to a power,
ensures power is
integer.

Determines whether
of operands are
in relational and
ical operations.

mod~s
valid

log-

G0759 NUMERIC EXP Determines that an opera-
CHECK tion or an expression

is numeric, as opposed
to logical, for
compatibility.

G0760 NUMERIC EXP Uses NUMERIC EXP CHECK,
CHECK AND then prunes bottom of
PRUNE POLISH roll.

G0761 SPROG ARG
SEQ SCAN

G0762 ARG TEST
AND PRUNE

G0763 TEST FOR
ALTERABLE

constructs the Polish
notation for the argu­
ment list designated
for a subprogram.

Tests the number and type
of arguments to library
routine; moves label
arguments to CALL LBL
roll.

Determines whether a
scalar has been passed
as a subprogram
argument.

Appendix E: Miscellaneous Reference Data 189

Routine
Label ~~e __
G0764 ID SCAN

NO USE

G0765 ID CLASSIFY
NO USE

G0766 ID SCAN

comments
Sets_a_ flag tested in

MODE SET so that low­
order bits of roll are
not altered when vari­
able is defined: state­
ment does not use
variable.

Goes to ID CLASSIFY after
setting flag to indi­
cate variable has not
been used and mode
should not be set.

Compiles name from source
in central area and
goes to ID CLASSIFY.

G0767 ID CLASSIFY Determines the classifi­
cation of a name
scalar, array, subpro­
gram, etc., and leaves
pointer in WO: exits
false if name not
defined.

G0768 REGISTER
SCALAR

G0769 REGISTER
GLOBAL
SPROG
REGISTER
RUNTIME GS

G0770 REGISTER
GLOBAL
SPROG ROLL

Records new name on
SCALAR roll.

Determines
already a
program:
cords it
SPROG roll.

Records .name
SPROG roll.

if name is
defined sub­
if not re-

on GLOBAL

on GLOBAL

G0771 MODE SET Determines the mode of
the indicated variable,
logical, integer, com­
plex, etc., and inserts
code in pointer in WO.

G0772 CONST SCAN controls the translation

G0773 REGISTER
COMPLEX
CONST

G0774 REGISTER
FL CONST

G0775 REGISTER
WORK CONST

190

and recording of
constants.

Records complex
double-precision
plex constants not
viously defined
appropriate roll.

and
com­
p re­

on

Records single- and
double-precision real
constants on appropri­
ate roll when not pre­
viously defined.

Records constant in WO as
new integer constant if
not defined.

Routine
Label Na~
G0776 REGISTER

FX CONST

G0777 CONST
ANALYSIS

comments
Records new integer con­

stant if not previosuly
de:f ined.

Determines
constant
proper
tine.

the type of a
and jumps to

conversion rou-

G0778 CPLX CONST Converts a complex
ANALYSIS constant.

G0779 CHECK CONST Checks for unary minus
SIGN sign on constant.

G0780 SCAN CONST
SIGN

Scans first character of
a constant for a sign:
sets up driver if unary
minus.

G0782 HEXADECIMAL Converts a hexadecimal
CONST SCAN constant.

G0783 REGISTER
HEX CONST

G0784 LBL ARG
SCAN

G0785 SCAN
HOLLERITH
ARGUMENT

G0786 LITERAL
CONST SCAN

G0787 LITERAL
CONST SCAN
PAUSE

G0788 REGISTER
LITERAL
CONST

G0789 INIT PACK
LITERAL

G0790 PACK
LITERAL
COMPLETE

G0791 PACK
LITERAL
CONST

G0792 LOOK FOR
ONE QUOTE

Records new c onstant on
HEX CONST roll if not
previously defined.

Checks validity of a
label argument to a
subprogram and records
label as jump target.

Scans an IBM card code
argument to a sub­
program, and records as
literal constant.

Distinguishes literal
constants from logical:
converts and records.

Packs a literal constant.

Records literal constant
on LITERAL CONST roll
if not previously de­
fined.

Initializes
sion of
constant.

for conver­
a literal

Moves literal constant
onto TEMP LITERAL roll
if packed.

Converts a
stant
input.

literal con-
from source

Checks for a quotation
mark not followed by a
second quotation mark:
sets ANSWER BOX.

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

Routine
Label Name Comments
G0793 PACK TWO Packs low-order byte from

FROM WORK last one or two groups
G0794 PACK ONE on WORK roll onto

FROM WORK LITERAL TEMP roll.

G0795 PACK CRRNT Packs current character
CHAR onto LITERAL TE~1P roll.

G0796 PACK CHAR General routine to actu­
ally place a byte in a
word which, when com­
plete, is placed on the
LITERAL TEMP roll.

G0797 SYMBOL SCAN Assembles identifier from
input in SYMBOL 1, 2,
and 3, and returr.s.

G0798 LOGICAL
CONST SCAN

G0799 JUMP LBL
SCAN AND
MOVE

G0800 FORMAT LBL
SCAN

G0801 FORMAT LBL
TEST

G0802 LBL SCAN

G0803 REGISTER
LBL

G0804 NEXT ZERO
LEVEL COMMA
NEXT ZERO
COMMA
OR R PAREN

G0805 NEXT ZERO
COMMA
OR CS

Scans logical constants
from source input and
records as integers.

scans label, defines it
as jump target and
pointer on POLISH roll.
Locates transfers from
innermost DO loops that
are possible extended
range candidates. Also
checks for possible
re-entry points into
innermost DO loops, and
tags such points.

Scans a label, registers
it if necessary, and
ensures that it is a
FORMAT label if already
def in ed.

Tests that pointer
indicates format
(vs. jump
label) ; if not,
is an error.

in WO
label

target
there

scans referenced label,
defines on LBL roll if
required, produces er­
ror messages, leaves
pointer in WO.

Records label on LBL roll
if not previously
defined; leaves pointer
in WO.

Scans source input to
next comma not in
parentheses or to close
off a pair of paren­
theses.

Scans source input until
next comma or slash
not in parentheses.

Routine
Label Na!!!~--
G0806 NEXT

CLOSING
SLASH

G0807 NEXT ZERO
COMMA SLASH
OR CRP

G0808 NEXT ZERO
R PAREN

G0809 COMMA TEST

G0810 INTEGER
TERM
SCAN AND
MOVE

G0811 INTEGER
CONST SCAN
AND MOVE

G0812 INTEGER VAR
SCAN AND
MOVE

G0813 INTEGER
TEST

G0814 SIGNED
INTEGER
SCAN

G0815 INTEGER
SCAN

G0816 DP CONST
MAKER

G0817 DP ADJUST
CONST

Co!!!!!!~!:.2
scans source input until

second of the next pair
of slashes not enclosed
in parentheses.

scans source input until
next comma or slash not
enclosed in parentheses
or a closing right
parenthesis.

Scans source input until
next zero level right
parenth·esis.

Advances scan arrow and
returns ANSWER BOX true
if next active charac­
ter is a comma; if it
is a letter, sets up
missing comma message,
does not advance, and
returns true; if it is
neither, returns false.

scans integer constant or
variable, defines on
appropriate roll, puts
pointer on POLISH roll.

Scans integer constant;
defines on FX CONST
roll if required; puts
pointer on POLISH roll.

Scans integer variable;
defines on roll if re­
quired; puts pointer on
POLISH roll.

Determines whether a
pointed to variable or
constant is an integer.

Scans and converts signed
integer constant; de­
fines on FX CONST roll
if required.

Scans and converts an
unsigned integer con-
st ant and register on
FX CONST roll if
required.

Builds a double-precision
constant from source
input.

Used in converting float­
ing point numbers;
adjusts for E or D
field.

Appendix E: Miscellaneous Reference Data 191

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

Routine
Label Name
G0818 CONVERT TO

FLOAT

G0820 CLEAR TWO
AND EXIT
TRUE

G0821 CLEAR ONE
AND EXIT
TRUE

G0823 EXIT TRUE
EXIT TRUE
ML

G0824 CLEAR ONE
AND EXIT
FALSE

Comments
Converts integer constant

to floating point.

Remove the specified num­
ber of groups from the
WORK roll., set ANSWER
BOX to true, and re­
turn.

Sets ANSWER BOX to true
and returns.

Removes one
WORK roll,
BOX to
returns.

group from
sets ANSWER

true, and

G0825 EXIT FALSE Sets ANSWER BOX to false
and returns.

G0826 CLEAR TWO
AND EXIT

G0827 CLEAR ONE
AND EXIT

Remove specified number
of groups from WORK
roll and return.

G0.829 EXIT Returns.
EXIT ML
EXIT ON ROLL

G0832 SYNTAX FAIL
ML
ILLEGAL
SYNTAX FAIL
SYNTAX FAIL

G0833 FAIL

G0834 STATUS
CONTROL

Records syntax error mes­
sage and goes to FAIL.

If JPE flag off, restores
WORK and EXIT roll
addresses from last
status control, house­
keeps Polish notation
through STA XLATE EXIT,
and returns with ANSWER
BOX set to false; if
the flag is on, values
are restored for JPE
and exit is to the
location following last
JPE POP instruction.

saves addresses of WORK
and EXIT roll bottoms.

G0835 DIGIT CONV Converts integer from
SCAN decimal to binary, and

leaves in DATA area.

G0836 CONV ONE
DIGIT

G0838 PRINT A
CARD

192

Converts decimal digit
binary, and leaves
DATA area.

controls printing
source listing
error messages.

to
in

of·
and

Routine
Label ~~~-
GOS39 TEST FOR

ERROR
MESSAGE

G0840 PRINT
MESSAGES

G0841 TEST AND
ZERO PRINT
BUFFER

G0842 INIT READ
A CARD

G0843 READ A
CARD

G0845 SKIP TO.
NEXT CHAR
MASK

COITI!!!~§.
Determines whether error

messages are to be
printed; if so, prints
dollar sign markers.

Prints line of error
messages.

cf ears output area for
printer.

Scans source input for
assignment statement
(flag 1) or Logical IF
with assignment for
consequence (flag 2).

Puts card onto SOURCE
roll and re-enters INIT
READ A CARD at proper
point.

Scans input to next
source character not of
a class of characters
specified as input to
routine.

G0846 REENTRY Entry point used to con-
SKIP TO NEXT tinue masking operation
CHAR MASK on a new card.

G0847 NEXT CHAR Advance scan arrow to
NEXT next active character.
CHARACTER

G0848 NEXT CHAR
ML
NEXT CHARACTER
ML

G0849 BCD TO
EBCDIC

G0850 DIGIT CONV
INITIAL

GO 8 51 J\'l.APTl TO
TMPl

Converts CRRNT CHAR from
BCD to EBCDIC.

Initializes for the con­
version of a number
from decimal to binary
(resets digit counts,
clears DATA area, etc.)

Converts value in format
of TOP or BOTTOM, a
virtual address, to a
true address.

G1034 BUILD LOOP constructs group on LOOP

G1035

Gl037

DATA GROUP DATA roll.

DATA TERM
ANALYSIS

CONST
REGISTER
EXIT

Checks for and 'sets flag
if it finds unary minus
in DATA statement.

Common exit routine for
constant recording rou­
tines; leaves pointer
to constant in WO.

Routine
Label Name Comments
G1038 T AND F Scans for logical con-

CONST SCAN stants T and F in DATA
statements.

G1039 EXIT ANSWER General routine used by

G1040 DEBUG STA
XLATE

G1041 AT STA
XLATE

G1042 TRACE STA
XLATE

G1043 DISPLAY STA
XLATE

G1044 IEYSKP
SKIP TO
NEXT
PROGRAM

G1070 PRESS
MEMORY

all EXITS which set
ANSWER BOX to store
value in ANSWER BOX and
return.

Translates DEBUG state-
ment.

Constructs AT roll entry
from AT statement.

Constructs Polish nota-
ti on for TRACE state-
ment.

Constructs Polish nota­
tion and roll entries
for DISPLAY statement.

Calls IEYFORT to skip to
end of present source
module when roll stor­
age is exhausted.

Called by REASSIGN MEMORY
to obtain additional
core storage from roll
space that is no longer
in use. If it obtains
32 or more bytes, exit
is back to REASSIGN
MEMORY. Otherwise,
exit is to IEYNOCR in
IEYFORT to print NO
CORE AVAILABLE message.

ALLOCATE LABEL LIST -------------

The labels enumerated in the following
list are used in the flowcharts provided
for the illustration of the major routines
used by Allocate.

Chart
Label ID Routine Name
G0359 -05- START~LOCATION
G0451 CA ALPHA LBL AND L SPROGS

CA ALPHA SCALAR ARRAY AND
SPROG

G0362 CB PREP EQUIV AND PRINT
ERRORS

G0361 cc BLOCK DATA PROG ALLOCATION
G0365 CD PREP DMY DIM AND PRINT

ERRORS
G0371 CE PROCESS DO LOOPS
G0372 CF PROCESS LBL AND LOCAL

SPROGS
G0374 CG BUILD PROGRAM ESD

Chart
Label ID Routine Name
G0376 CH ENTRY NAME ALLOCATION
G0377 CI COMMON ALLOCATION AND

OUTPUT
G0381 CK EQUIV ALLOCATION PRINT

ERRORS
G0437 CL BASE AND BRANCH TABLE

ALLOC
G0397 CM SCALAR ALLOCATE
G0401 CN ARRAY ALLOCATE
G0402 co PASS 1 GLOBAL SP ROG

ALLOCATE
G0442 CP SPROG ARG ALLOCATION
G0443 CQ PREP NAMELIST
G0444 CR LITERAL CONST ALLOCATION
G0445 cs FORMAT ALLOCATION
G0441 CT EQUIV fvl.AP
G0403 cu GLOBAL SPROG ALLOCATE
G0405 CV BUILD NAMELIST TABLE
G0438 CW BUILD ADDITIONAL BASES
G0545 ex DEBUG ALLOCATE

SUPPLEMENTARY ALLOCATE LABEL LIST

The routines described in this section
are listed by G number labels which are
presented in ascending order. These rou­
tines are those used in the operation of
Allocate which are not shown in the section
of flowcharts for the phase.

Routine
Label Name
G0363 PREPROCESS

EQUIV

I G0364 REGISTER
ERRORS
SYMBOL

G0366 CHECK DMY
DIMENSION

G0367 GLOBAL DMY
TEST

G0368 DMY DIM
TEST AND
REG

Comments
Checks the data contained

on the EQUIVALENCE roll
and computes the
required addresses.

Checks the ERROR SYMBOL
roll for the presence
of the error just
detected. All dupli-
cate entries are pruned
from the roll and all
new entries placed on
the roll.

The dummy dimension is
checked for definition
as a global dummy vari­
able, or in COMMON.

sets a pointer to the
dummy array on the
ENTRY roll; a pointer
to the ARRAY roll is
also set for each dummy
array.

The DMY DIMENSION roll is
rebuilt with the infor­
mation obtained from
the COMMON DATA TEMP,
TEMP, and GLOBAL DMY
rolls.

Appendix E: Miscellaneous Reference Data 193

Routine
Label Name
G0369 DMY DIM

TEST

G0370 DMY
CLASSIFY

G0373 REGISTER
BRANCH
TABLE

G0375 PUNCH
REMAINING
ESD BUFFER
PUNCH
REMAINING
CARD

G0378 SEARCH
ROLL BY
MAGNITUDE

G0379 PRINT
COMMON
ERRORS

G0380 PRINT
COMMON
HEADING

G0382 EQUIV
ALLOCATION

G0383 FLP AND
PROCESS
EQUIV

G0384 PROCESS
EQUIV

G0385 INTEGRATE

194

Conunents
The dimension data is

checked for having been
previously defined on
the NAMELIST ITEMS and
COMMON DATA rolls.

Classifies a dummy, de­
fining it as scalar if
undefined; if it is an
array sets call by name
tag.

Places work
zero on
TABLE roll.

containing
the BRANCH

Punches a card.

The GENERAL ALLOCATION
roll is searched to
check if the largest
equivalenced area has
been allocated.

Sets up for, and prints,
COMMON allocation er­
rors.

COMMON storage map head­
ing is printed.

Builds the EQUIV
ALLOCATION roll from
the boundary calcu­
lated; records the
absolute address as­
signed to the vari­
ables.

Inverts the contents of
the EQUIVALENCE roll.

Constructs complete
EQUIVALENCE sets on the
the GENERAL ALLOCATION
roll using information
on the EQUIVALENCE
roll.

Assigns locations rela­
tive to the first vari­
able listed for all
variables in an EQUIVA­
LENCE set if not al­
ready allocated.

Routine
Label Name
G0386 TEST FOR

BOUNDARY

G0387 CSECT EQUIV
ALLOCATION

G0388 PRINT CSECT
EQUIV MAP

G0389 BUILD
COMMON
ALL ROLL

G0391 SEARCH FOR
LARGE
ARRAYS

G0392 BUILD A
NEW CSECT

G0393 PRINT A
ARRAY
CSECT MAP

G0394 CONV TEMP3
TO HEX

G0395 GLOBAL DMY
ALLOCATE

G0396 TEST FOR
CALL BY
NAME

Conunents
sets and checks the

smallest equivalenced
area and highest bound­
ary required for allo­
cation of the variables
indicated; resets pro­
gram break according to
requirement.

Controls the allocation
of EQUIVALENCE sets
equal to or greater
than 3K bytes into a
new control section.

Sets up and formats the
printing of the storage
map for EQUIVALENCE
sets equal to or great­
er than 3K bytes.

Calculates the base and
displacement for EQUIV­
ALENCE sets equal to or
greater than 3K bytes
and registers these
sets on the COMMON
ALLOCATION roll.

Determines the size of
arrays not defined as
EQUIVALENCE or COMMON.
Obtains the arrays that
are equal to or greater
than 3K bytes.

Sets the program name and
obtains a new control
section for the alloca­
tion of arrays and
EQUIVALENCE sets.

Sets the information for
the printing of the map
for arrays equal to or
greater than 3K bytes.

Converts the contents of
the temporary register
to hexadecimal.

Assigns storage for glob­
al dununy variables;
expands the contents of
the BASE TABLE roll, as
required.

Determines whether the
indicated variable was
called by name or
called by value.

Routine
Labe! Name_

G0398 ALLOCATE
SCALAR
BOUNDARY

G0399 ALLOCATE
SCALAR

Comments -----
Sets up allocation

scalars according
the .size of
variable.

of
to

the

Formats the allocation of
scalars not defined as
global dummies in COM­
MON or in EQUIVALENCE
sets. Initializes for
the printing of the
scalar map and calcu­
lates the base and
displacement.

G0400 CED SEARCH Determines if the vari­
able is defined as a
global dummy, in COMMON
or in an EQUIVALENCE
set. If it is, it sets
the ANSWER BOX = true.

G0404 ALLOCATE
SPROG

G0406 ADJUST AND
OUTPUT NAME

G0407 PUNCH NAME
LIST AND
FIELD

Sets the type of the ESD
cards that are to be
punched and initializes
for the allocation of
subprogram addresses.

Sets the format for the
punching of the
NAMELIST name, and
adjusts for storage.

Sets the format for the
punching of the address
allocated for each
NAMELIST according to
storage required.

G0408 OUTPUT MODE Sets the format for the
WORD punching of the mode of

the NAMELIST variable.

G0409 ADVANCE
PROG BREAK
AND PUNCH

G0410 PUNCH
LITERAL

Increases the item PRO­
GRAM BREAK according to
the storage allocation
required for the
variables indicated.

Obtains the number of
bytes and the address
of the roll indicated
for punching of literal
constants.

G0411 MOVE TO Moves the indicated data
PUNCH BUFF to the appropriate

punch buffer.

G0412 PUNCH TXT
CARD

Punches the indicated
TXT card after setting
up the address and
buffer information.

Routine
Label Name
G0413 PUNCH

REMAINING
TXT CARD

G0414 PUNCH ESD
G0415 PUNCH LD

ESD

comments
Punches the remaining

card indicated, after
the area from which
data was being taken
has been punched.

Punches the indicated ESD
cards for the program
area indicated.

G0416 PRINT ERROR Prints the contents of
roll which con­
the errors noted
operation.

LBL ROLL this
ta ins
during

G0417 CONVERT LBL Converts the label of an
erroneous statement to
BCD for printing.

G0418 PRINT ERROR Prints the contents of
SYMBOL the ERROR SYMBOL roll.

G0420 PRINT
SCALAR OR
ARRAY MAP

G0421 PRINT INIT
MAP

G0422 TEST AND
PRINT MAP

G0423 PRINT MAP
HEADING

G0424 PRINT
FORMAT MAP

G0425 PRINT
HEADING
MESSAGE

G0426 PRINT MAP
PRINT MAP
ML

G0431 PRINT
REMAINING
BUFFER

G0432 PRINT ERROR
REMAINING
BUFFER

G0433 ALLOCATE
FULL WORD
MEMORY

G0434 ALLOCATE
MEMORY

G0435 ALLOCATE
BY TYPE

Prints the indicated map.

Checks the existence of
processing of a storage
map. Initiates the
printing of the indi­
cated map if one is not
already being printed.

Prints the heading of the
indicated storage map
for the variables
designated.

Prints map of FORMAT
statements.

Prints the
dicated
messages.

heading in­
f or error

Prints the variables as­
sociated with the stor­
age map heading from
the rolls indicated.

Print the remaining in­
formation in the print
buffer after the data
has been obtained from
the indicated storage
area.

Initializes for
allocation of a
word of storage.

the
full

Allocate storage accord­
ing to the type of the
variable indicated;
fullword, halfword, or
byte.

Appendix E: Miscellaneous Reference Data 195

Label
G0436

Routine
Name -----CALCULATE
SIZE AND
BOUNDARY

G0439 CALCULATE
BASE AND
DISP

G0440 REGISTER
BASE

G0446 BUILD
FORMATS

G0447 INCREMENT
PNTR

comments
Determines the size and

the boundary required
for the variable indi­
cated.

Determines the base table
entry and displacement
for variable being
allocated, constructing
a new base table entry
if necessary.

Constructs a new BASE
TABLE roll group.

The base and displacement
for FORMAT statements
are calculated and the
PROGRAM BREAK increased
as required.

Increases the address
field of the pointer to
the indicated roll so
that the pointer points
to the next group on
the roll.

G0448 ID CLASSIFY Variables are checked for
a previous classifica­
tion as a global dummy,
a scalar, an array,
global sprog, used
library function, or a
local sprog.

G0449 REGISTER
SCALAR

G0450 MODE SET

G0455 CLEAR THREE
AND EXIT
TRUE

G0456 CLEAR TWO
AND EXIT
TRUE

G0457 CLEAR ONE
AND EXIT
TRUE

G0458 EXIT TRUE
EXIT TRUE
ML

196

Builds new group onto the
SCALAR roll.

Sets the
variable
floating,
implicit,

mode of the
to fixed or
explicit or

or not used.

Prunes three groups from
the WORK roll, and
exits with a true ans-
wer in ANSWER BOX.

Prunes two groups from
the WORK roll, and
exits with a true
answer in ANSWER BOX.

Prunes one group from the
WORK roll, and exits
with a true answer in
ANSWER BOX.

Set ANSWER BOX to true
and exit.

Routine
Label Name
G0460 CLEAR TWO

AND EXIT
FALSE

G0461 CLEAR ONE
AND EXIT
FALSE

G0462 EXIT FALSE

G0464 CLEAR FOUR
AND EXIT

comments
Prunes two groups from

the WORK roll, and
exits with a false
answer in ANSWER BOX.

Prunes one group from the
WORK roll, and exits
with a false answer in
ANSWER BOX.

Sets ANSWER BOX to false,
and exits.

Prunes four groups from
the WORK roll, and
exits.

G0465 CLEAR THREE Prunes three groups from
AND EXIT the WORK roll, and

exits.

G0466 CLEAR TWO Prunes two groups from
AND EXIT the WORK roll, and

exits.

G0467 CLEAR ONE Prunes one group from the
AND EXIT WORK roll, and exits.

G0468 EXIT Obtains return address
from the EXIT roll, and
transfers to that
address.

UNIFY LABEL LIST

The labels enumerated in the following
list are used in the flowcharts provided
for the illustration of the major routines
used by Unify.

Chart
Label _m__ Routine Name
G0111 07 START UNIFY

G0145 DA ARRAY REF ROLL ALLOTMENT

G0113 DB CONVERT TO ADR CONST

G0112 DC CONVERT TO INST FORMAT

G0115 DD DO NEST UNIFY

SUPPLEMENTARY UNIFY LABEL LIST

The routines described in this section
are listed by G number labels which are
presented in ascending order. These rou­
tines are those used in the ·operation of
Unify which are not shown in the section of
flowcharts for the phase.

\
i

Routine
Labe! Name
G0114 CALL GEN

G0116 NOTE ARRAY
ALLOCATION
DATA

G0117 LEVEL ONE
UNIFY

I G0118 DO LOOP
UNIFY

G0119 SWEEP
SCRIPT
EXP NOTE

G0120 ZERO COEF
UNIFY

G0121 NOTE SCRIPT
EXP

G0122 ESTABLISH
STD SCRIPT
EXP

G0123 NOTE HI
FREQ STD

G0124 SCRIPr EXP
UNIFY

comments
Transfers to

phase of the
the Gen

compiler.

Processes SCRIPT roll
block to reflect stor­
age allocation.

Sets variables for the
processing of a single
loop or the outer loop
of a nest of loops.

Controls the processing
of script data asso­
ciated with current
innermost loop.

compares the area code
and the outer coeffi­
cient of all other
entries on the NEST
SCRIPr roll to the bot­
tom entry on the roll.

sweeps the script entries
for the innermost loop,
determining whether the
outer coefficient is
zero and that the inner
coefficients are also
the same. Depending
upon the condition, the
loops are re-registered
on the LOOP SCRIPT
roll.

Establishes the nature of
the script entries as
standard or non­
standard.

Forms the LOOP CONTROL
and REG roll entries
for each STD SCRIPT
pointer found in wo,
also registering the
STD SCRIPT LOOP CONTROL
rung.

Checks the frequency used
for a particular stand­
ard script expression,
and sets the frequency
count.

Controls the processing
of innermost LOOP
SCRIPr roll entries
with matching area code
and outer coefficients;
also links each NONSTD
roll entry with each
STD roll entry,· compar­
ing the induction
coefficients.

Routine
Label Name
G0126 STANDARD

EXPS UNIFY

G0127 CONVERT
NONSTD
SCRIPT TO
STD

G0128 SIGN ALLOC
DISPLACE­
MENT

G0129 DELTA GE
4087 UNIFY

G0130 DELTA LE
4087 UNIFY

G0131 ESTABLISH
REG
STRUCTURE

G0132 EST. REG
GROUP

G0133 ESTABLISH
LOOP
CONTROL

G0134 EST. LOOP
CONTROL

G0135 FORM OUTER
SCRIPT

G0136 NOTE SECOND
REG THREAD

Comments
Processes STD SCRIPT roll

when NONSTD roll
entries have all been
processed or have never
existed. Moves entries
to next outermost loop.

Picks a NONSTD roll entry
with a minimum dis­
placement and processes
it as if it were a
standard script.

Utility routine to spread
the sign of negative
displacements.

Processes paired STD or
NONSTD roll entries
with DELTA greater than
4087 bytes. Generates
second register and
LOOP CONTROL entries.

Processes paired STD or
NONSTD roll entries
with DELTA less than
4087 bytes. DELTA is
placed in each ARRAY
REF entry in the chain.

Controls formation of
LOOP CONTROL and REG
roll groups for SCRIPr
pointer in WO.

Forms REG roll entry for
SCRIPT pointer in WO.

Entry to establish loop
control which sets up
stamps for impending
LOOP CONTROL group.

Forms LOOP CONTROL group
for SCRIPT entry in W1.

Processes paired STD or
NON STD roll entries
with best match in
inner coefficients.
Forms SCRIPT entry for
next outermost loop
with coefficient dif­
ferences in coefficient
slots.

Runs the ARRAY REF
thread, removing. each
link to provide for the
second register.

Appendix E: Miscellaneous Reference Data 197

Routine
Label Name Comments
G0137 UPDATE sums the frequencies of

FREQS the STD or NONSTD pair
to indicate increased
usage.

G0138 REG SCRIPT Registers the STD or
EXP NONSTD in WO on the STD

or NONSTD roll.

G0139 PRUNE Utility routine to remove
SCRIPT REL SCRIPT groups.
TO PNTR

G0140 NOTE ARRAY Adjusts the information
REF DELTA indicated from the

SCRIPT allocation ac­
cording to the displa­
cement to the asso­
ciated ARRAY REF roll
entries.

G0141 REALIZE Sweeps the REG roll, as-
REGISTERS signing available reg-
SWEEP isters to the registers

and temps, according to
the frequency of use of
the registers in the
REG roll.

G0142 NOTE HI
FREQ REG

G0143 ASSIGN
TEMPS FOR
REGS

G0144 CONVERT REG
'l'O USAGE

GEN LABEL LIST

which
roll
the
of

Utility routine
notes the REG
group indicating
highest frequency
use.

Places next temp into the
ARRAY REF run and ad­
justs the LOOP CONTROL
stamps to reflect temp
usage.

Performs the actual
transfer of REG or TEMP
roll entries into the
ARRAY REF threads.

The labels contained in the following
list are illustrated in the flowcharts
provided with the description of the Gen
phase of the compiler.

198

Chart
Label ID Routine Name
G0491 ---OS START GEN

G0499 EA ENTRY CODE GEN

G0504 EB PROLOGUE GEN

G0508 EC EPILOGUE GEN

G0712 ED GET POLISH

G0493 EF LBL PROCESS

G0515 EG STA GEN

G0496 EH STA GEN FINISH

SUPPLEMENTARY GEN LABEL LIST

The routines described in this section
are listed by G number labels which are
presented in ascending order. These rou­
tines are those used in the operation of
Gen but not shown in the section pertaining
to the phase.

Routine
Label Name
G0494 CLINCH

G0497 ZERO THE
ACS

G0498 MOVE ZEROS
TO T AND C

comments
Clears the base register

table.

Clears the accumulators
to be used.

Fills
number
TEMP

the indicated
of groups on the
AND CONST roll

with zeros.

G0500 INSERT PROG Puts name of source
NAME IN module on CODE roll.
CODE

G0501 MAIN
PROGRAM
ENTRY

G0502 PRO AND EPI
ADCON GEN

Builds instructions for
the entry into the main
program.

Determines the address
constant for prologues
and epilogues for the
instruction that is
created.

G0503 ADCON MAKER Builds ADCON roll group
GEN and places ad con

instruction on CODE
roll.

G0505 LOAD DMYS
GEN

Builds the code to load
the dummy arguments
specified in a
subprogram.

Routine
Label Name
G0506 BUILD DMY

ARRAY DIM

G0507 CALCULATE
DMY DIM

Comments
Determines the dummy

array dimensions speci­
fied in the arguments
for the subprogram.

Calculates the dummy
array dimensions speci­
fied as arguments to a
subprogram, and builds
the appropriate in­
structions.

G0509 RESTORE DMY Restores the dummy argu-
GEN ments for value trans­

fer at the end of a
subprogram.

G0510 TEST CALL
BY NAME

G0511 BUILD A
MOVE DMY
GROUP

G0512 BUILD A
STORE DMY
ADD

G0513 INCREMENT
DMY PNTR

G0514 BUILD A
LOAD TWO

G0516 ASSIGNMENT
STA GEN

G0517 AFDS STA
GEN

G0518 AFDS !NIT

G0519 ASSIGN STA
GEN

G0520 IF STA GEN

G0521 LOGICAL IF
STA GEN

Determines whether the
arguments to a subpro­
gram were designated as
call by name values.

These routines build
the instructions that
transmit the indicated
values transferred by
the dummy arguments to
subprogram.

controls the construction
of the code for an
assignment statement.

Controls and constructs
the instructions for an
arithmetic function
definition statement.

Initializes the construc­
tion of the code for an
arithmetic function
definition statement by
constructing the label
and jump instructions.

Constructs
code for
statement.

the
an

object
ASSIGN

Constructs the object
code for
statement.

Constructs
code for
statement.

an IF

the object
a LOgical IF

Routine
Label Name
G0522 BUILD JUMP

INST

G0523 GO TO STA
GEN

G0524 ASSIGN GO
TO STA GEN

G0525 GO TO JUMP
GEN

G0526 CG OTO STA
GEN

G0527 CG OTO FOR
CALL RETURN
GEN

G0528 CONTINUE
STA GEN

G0529 BLOCK DATA
GEN

G0530 STA INIT

G0531 DATA STA
GEN

comments
constructs a branch in­

struction, with input
indicating type and
branch point.

These routines control
and construct the
object code required to
execute the indicated
type of GO TO state­
ment.

These routines construct
the object code for a
GO TO statement that is
the subprogram return.

Returns.

Sets up the rolls and
data used in the con­
struction of the object
code for the BLOCK DATA
statement.

Stores the statement
number and leaves
statement drives in WO.

Determines the use
mode of the
variables and
structs the object
based on
information.

and
data
con­
code
this

G0532 ALIGN DATA Adjusts the data for
instruction format.

G0533 INIT FOR
VAR

G0534 MOVE DATA

G0535 MOVE TO
CARD IMAGE

Obtains the base, size,
displacement, and area
code of the indicated
variable and adjusts
the instruction format
for the variable
according to the infor­
mation obtained.

Sets
the

up the beginning of
data for card

format.

Obtains the location of
the indicated data for
transfer to instruction
format.

Appendix E: Miscellaneous Reference Data 199

Routine
Label, Name
G0536 MOVE TO

CARD REPEAT

G0537 PUNCH A TXT
CARD

G0538 PUNCH A TXT
CARD ML

G0539 PUNCH TXT
ENTRY2

G0542 CALCULATE
VAR SIZE

G0543 END STA GEN

G0547 BS REF STA
GEN

G0548 STOP PAUSE
STA GEN

Comments
controls the insertion of

the data into the card
format and the punching
of the appropriate TXT
card.

Write a TXT card from
data whose location is
provided.

Determines size of a
variable from TAG field
of pointer in WO.

Builds code for AT if
required and branches
to TERMINATE PHASE.

Controls the construction
of the object code for
a BACKSPACE, REWIND, or
END FILE statement.

Constructs the object
code for a STOP or
PAUSE statement.

G0549 LOAD IBCOM Builds an instruction for
a call to the IBCOM
routine.

GOSSO RETURN STA Builds the object code
GEN for a RETURN statement.

G0551 ENTRY STA
GEN
SPROG
STA GEN

constructs the label in­
struction for an ENTRY
statement or the entry
into a subprogram.

G0552 DEFINE FILE Constructs the object
STA GEN code instructions for

G0553 GRNTEE A
TEMP

G0554 ILLEGAL
AFDS STA
GEN

the DEFINE FILE
statement.

Ensures that the constant
from DEFINE FILE is
registered on the TEMP
AND CONST roll.

Generates an error link
for a statement func­
tion which was invalid.

G0555 ILLEGAL STA Constructs a no-operation

200

GEN ENTRY instruction and an
error link for the
statement in error.

Routine
Label Name
G0556 IO STA GEN

G0557 INIT IO
LINK GEN

G0558 UNIT IO
ARG

G0559 DIRECT IO
ARG

G0560 FORMAT IO
ARG

G0561 IO INITIAL
ENTRY GEN

G0562 BUILD UNIT
ARG

G0563 BUILD A
LINK ARG

G0564 BUILD
FORMAT ARG

G0565 GRNTEE IO
LINK ADD

G0566 IOL DO
CLOSE GEN

G0567 IO LIST
GEN RUN

comments
Determines the type of

input/output statement
that is indicated and
transfers to the rou­
tines that process that
particular type of
statement.

Initiates and sets data
for the generation of
the input/output link­
age.

Determines the logical
unit number of the
input/output device.

Sets up controls for the
construction of the
object code for direct­
access input/output
statements.

Sets up data pertaining
to the FORMAT for the
construction of the
object code of an
input/output statement
under format control.

Sets up code for the call
to IBCOM to control
execution of the indi­
cated input/output
statement.

Constructs argument pass­
ed for unit number in
input/output linkages.

Constructs the
code for the
designated
input/output
men ts.

object
arguments
in the

state-

constructs the object
code for the designated
format control of an
input/output statement.

Constructs
code for
linkage.

the object
input/output

Generates object code for
closing of implied DO
in I/O list.

Determines whether I/O
list is DO implied.

Routine
Label Name
G0568 IOL DO

OPEN GEN

G0569 IOL ARRAY
GEN

G0570 IO LIST
PNTR GEN
IOL PNTR
GEN

G0571 IO LIST
ARRAY PNTR
GEN

G0572 BUILD
ELEMENTS
ARG

comments
Sets up the data for the

generation of instruc­
tions for input/output
DO loop.

Generates linkage for
secondary array entry
to IBCOM.

Determines the type of
the I/O list, and con­
trols the construction
of the object code for
the list.

Sets up the data and
determines the type of
array list.

Builds an argument for
input/output linkage
for a single element in
an I/O list.

G0573 IO LIST DMY Builds the object code
ARRAY for a dummy array I/O

list.

G0574 GLOBAL DMY
TEST

G0575 IO STA END
IO STA END
GEN

G0576 BUILD IO
LINK

G0577 LOAD
ADDRESS
IBCOM

G0578 !NIT IBCOM
PNTR AND
ENTRY

G0579 CALCULATE
LENGTH AND
TYPE

G0580 DO STA GEN

Determines whether the
variable in question
has been defined in
usage as a global
dummy.

Generates call for end of
I/O list.

Controls construction of
the object code to ter­
minate an input/output
operation.

Inserts the absolute call
to the system input/
output routine, IBCOM.

Initializes for process­
ing of input/output
statements by storing
code word and IBCOM
pointer from POLISH
roll.

Determines the length and
type of variables de­
signated in input/
output statements.

Determines the nature of
the DO statement, sets
up the data for the
code of the statement.

Routine
Label Name
G0581 LOOPS OPEN

GEN

G0582 INIZ LOOP
GEN

G0583 INIZ GIVEN
COEFF GEN

G0584 DO CLOSE
SBR

G0585 FIND COEFF
INSTANCE

G0586 NOTE TEMP
REQ

G0587 INITIALIZE
BY LOAD GEN

comments
Obtains the DO control

data and controls the
construction of the
appropriate instruc­
tions.

Determines the nature of
the indicated DO loop
after determining
whether a loop exists.

Constructs the
code for the
zation of the
induction
coefficient.

object
initiali­
indicated
variable

constructs the object
code for the close of a
DO loop after setting
up controls for the
increment and terminal
values of the loop
iteration.

Determines the existence
of the indicated nature
of a loop through com­
parison of the desig­
nated traits and
coefficient.

Determines whether a
register has been
assigned for the script
expression in question
or whether a temporary
storage is required.

Generates the load of
registers to be used
throughout a DO loop.

G0588 GRNTEE TEMP Builds a store instruc-
STORED GEN tion for the temporary

storage used by the
script expression.

G0589 GRNTEE
SOURCE REG
LOADED

G0590 !NCR GIVEN
COEFF GEN

Determines the area and
location for the regis­
ter to be used by the
script expression, and
generates the load
instruction for the
indicated temporary
storage.

Determines the nature and
use of the loop incre­
ment and builds the
appropriate instruc­
tions for the execution
of the increment.

Appendix E: Miscellaneous Reference Data 201

Routine
Labe1 Name
G0607 CALL STA

GEN

G0608 FLP AND
PREP VAR

G0609 EXP GEN
BY MODE

Comments
Calls the routines which

build the object code
for the CALL statement.

Flips POLISH roll and
moves first variable to
WORK roll.

Controls the determining
of the mode of the
indicated expression.

G0610 EXP GEN AND Generates code for ex-
GRNTEE AC pression on bottom of

POLISH roll and ensures
that result is in a
register.

G0611 GRNTEE EXP Guarantees that the mode
of the expression is
positive.

G0612 EXP GEN

G0613 GEN RUN

G0614 NOT GEN
UNARY MINUS
GEN

G0615 DIV GEN

G0616 INTEGER
DIV GEN

G0617 SUB GEN

G0618 ADD GEN

G0619 MPY GEN

Obtains the expression
for GEN processing.

Determines the operation
mode of the entity in
question.

Inverts sign indicator
for variable on bottom
of WORK roll.

Contro1s production of
object code for divide
operation.

Generates code for inte­
ger divide.

Generates code for sub­
tract operation.

Generates code for add
operation.

Contro1s production of
object code for multi­
ply operation.

G0620 INTEGER MPY Generates code for inte-
GEN ger multiply.

G0621 INTEGER MPY common end for multiply
divide generation DIV END and

G0622 SUM OR PROD
GRNTEE

202

routines; records
register usage.

Guarantees that one of
the two elements on
WORK roll is in a
register and that mode
of operator is correct.

Routine
Label Name
G0623 DRIVER GEN

G0624 AND GEN

G0625 AND FINISH
GEN

G0626 OR GEN

G0627 OR FINISH
GEN

comments
If an array driver, goes

to SCRIPT PREP; if not,
exits false indicating
end of an expression.

Generates code for an AND
operation.

Actual1y builds an AND
operation on CODE ro11.

Generates code for an OR
operation.

Actually bui1ds an OR
operation on CODE ro11.

G0628 PREPARE FOR Sets up the data for the
LOGICAL GEN statement containing a

logical operation.

G0629 EQ GEN

G0630 NE GEN

G0631 LT GEN

G0632 GT GEN

G0633 GE GEN

G0634 LE GEN

G0635 RELATIONAL
GEN

Generates code for an EQ
re1ational operation.

Generate~ code for an NE
relational operation.

Generates code for an LT
relationa1 operation.

Generates code for a GT
relationa1 operation.

Generates code for a GE
relationa1 operation.

Generates code for an LE
relationa! operation.

Builds the object code
instructions based on
the relational condi­
tion specified in the
logical operation.

G0636 PREPARE FOR converts and adjusts data
RELATIONAL for construction of the

object code of a rela­
tional comparison.

G0637 POWER GEN

G0638 POWER AND
COMPLEX MPY
DIV GEN

Builds
1inkage
ro11.

exponentiation
on the CODE

Sets up the data for
operations invo1ving
mu1tip1ication or divi­
sion of exponentiated
or comp1ex variables.

Routine
Label Name
G0639 INTEGER

POWER GEN

G0640 SPROG GEN

GC641 S:PRCC GE~?
SUB

G0642 SPROG END
GEN

G0643 SPROG ARG
SEQ GEN

G0644 REG SPROG
ARG

G0645 GRNTEE ADR
GEN

G0646 TEST CONST
ARG

G0647 TEST AND
STORE REGS

G0648 GRNTEE AC
GEN

G0649 GRNTEE NEW
AC GEN

G0650 PICK A NEW
AC

G0651 PICK FL
AC

G0652 PICK A
COMPLEX AC

Comments
Builds the appropriate

load and multiply
instructions for expo­
nentiation depending on
the mode of the
operation.

Determines the nature of
the operand of a CALL
statement or of a
subprogram.

Generates th~ r.oae for a
subprogram call includ­
ing argument calcu­
lations.

Constructs the object
code for the return or
close of a subprogram.

controls the interpreta­
tion of the sequence of
arguments designated to
a subprogram.

Controls the register
assignment to sub­
program arguments as
they are encountered in
sequence.

Guarantees that the
subprogram arguments
are assigned and builds
the indicated load and
store instructions.

Determines mode of a con-
stant subprogram
argument.

Tests to determine if any
register used as an
accumulator contains
data; if so, generates
code to store the con­
tents in a temporary
location.

Stores the contents of
WO in an accumulator if
not already designated.

These routines deter-
mine the accumulator to
be used in an indicated
operation depending
upon the mode of the
variable in question.

Routine
Label Name
G0653 CLEAR A

PAIR
G0654 PICK A

PAIR
G0655 PICK A

PAIR END

G0656 TEST FOR
BEST PAIR

G0657 GRNTEE
POSITIVE
GEN

G0658 COMP FX
CONST

G0659 COMP FL
CONST

G0660 COMP DP
CONST

G0661 COMP
COMPLEX
CONST

Comments
These-r0utines determine

and clear a pair of
fixed or floating ac­
cumulators depending on
the type of the reg­
ister in WO. These
routines are used in
integer, multiply,
divide, and complex
operations.

Determines the two opti­
mal accumulators to be
used for the operation
indicated.

Sets the mode of the
indicates accumulator
to positive if not
already set, and
generates appropriate
code.

Set the mode of the in­
dicated constant.

Sets the mode of the
indicated constant.

G0662 CORRECT FOR Complements the value
SIGN DATA 1 DATA1.

in

G0663 INCLINE
FUNCTION
GEN

G0664 CONVERSION
FUNCTION
GEN

G0665 ABS
FUNCTION
GEN

G0666 MOD
FUNCTION
GEN

G0667 INT FUNC­
TION GEN

G0668 AIMAG FUNC­
TION GEN

G0669 CMPLEX
FUNCTION
GEN

G0670 TWO ARG
INLINE
COMMON

G0671 CONJG FUNC-
TION GEN

Sets up table for the
generation of code for
in-line functions.

Generates code to perform
an in-line mode conver­
sion.

These routines generate
the object code in­
structions for the in­
line function indicated
by the name of the rou­
tine.

Appenqix E: Miscellaneous Reference Data 203

Routl,ne
Label Name /
G0672 SIGN FUNCT

GEN
G0673 DIM FUNCT

GEN

G0674 GRNTEE
BOTH MODES

G0675 GRNTEE
MODE Wl

G0676 LOGIC.AI.­
CONVERSION

G0677 FX
CONVERSION

G0678 FL
CONVERSION

G0679 CONVERT TO
COMPLEX
END

G0680 TEST A FL
CONST

G0681 DP
CONVERSION

204

comments
(see Label G0665)

Sets the mode of the data
in WO and W1 to posi­
tive if not already
set.

Determines the mode of
the variable in Wl and
transfers to the appro­
priate conversion rou­
tine depending on the
mode of WO.

Places the logical vari­
able contained in WO
into an accumulator.

Places the variables con­
tained in WO and Wl in
an accumulator if the
mode is I*2; otherwise,
a conversion to float­
ing point is made.

Tests the contents of WO
and Wl for floating
variables or constants.
If the contents are not
floating variables or
constants, it deter­
mines the nature of the
data, registers the
variable or constant,
and assigns an accumu­
lator for the oper­
ation.

Generates code to clear
the imaginary register
and loads the real
register in real to
complex conversion.

Exits false if pointer in
WO is not to a floating
constant; otherwise, it
loads the constant into
central area and exits
true.

Determines the nature of
the double-precision
variable or constant
indicated, converts
into the indicated for­
mat, assigns an accumu­
lator, depending on the
mode of the variable.

Routine
Label Name
G0682 TEST DP

CONST

G0683 COMPLEX
CONVERSION

G0684 DP COMPLEX
CONVERSION

G0685 COMPLEX
AC TEST

G0686 AC END AND
CONV RETEST

G0687 CONVERT
RETEST

G0688 REGISTER
WORK CONST

Comments
Exits false if pointer in

WO is not to a double­
precision constant;
otherwise, loads con­
stant into central area
and exits true.

Determines the mode and
nature of the two com­
ponents of the complex
variable or constant.

Determines the mode and
registers the indicated
double-precision com­
plex variable or
constant.

Sets up
proper
value
complex.

FL AC roll for
pointers to a
converted to

Used during conversion,
to set up AC roll, and
to determine whether
conversion is complete.

Sets up WORK roll so that
GRNTEE MODE W1 can
determine whether a
conversion is complete.

Records constant in WO as
an integer constant.

G0689 REGISTER FX Register the constant
CONST from DATA area on the

G0690 REGISTER FL indicated roll if not
CONST already defined; con-

G0691 REGISTER DP stant is compiler gen-
CONST erated.

G0692 REGISTER
COMPLEX CONST

G0693 REGISTER DO
COMPLEX CONST

G0695 FLOAT A FX

G0696 FIX A FL

G0697 FLOAT AND
FIX COMMON

G0708 TEST AC
AC TEpT

converts a floating con­
stant or generates code
to convert a floating
variable to fixed mode.

converts a fixed mode
constant or generates
code to convert a fixed
variable to floating
mode.

Common exit for routines
which write code to
float or fix variables.

Determines whether the
mode of the indicated
accumulator is fixed or
floating.

Routine
Label Name
G0709 AC END

G0710 GRNTEE AC
ZERO

G0711 SPOIL STO
REG

G0713 CLEAR THREE
AND EXIT
TRUE

G0714 CLEAR TWO
AND EXIT
TRUE

G0715 CLEAR ONE
AND EXIT
TRUE

G0716 EXIT TRUE
EXIT TRUE
ML

Comments
Determines whether one or

two accumulators are
being used.

Assures that the accumu­
lator being used in the
operation is register
zero.

Clears appropriate entry
on AC roll for a
register which has been
stored.

Remove indicated
of groups from
roll, set ANSWER
true, and return.

number
WORK

BOX to

Sets ANSWER BOX to true
and returns.

G0718 CLEAR THREE Remove indicated number
AND EXIT of groups from WORK
FALSE roll, set ANSWER BOX to

G0719 CLEAR TWO false, and return.
AND EXIT
FALSE

G0720 CLEAR ONE
AND EXIT
FALSE

G0721 EXIT FALSE
EXIT FALSE
ML

Sets ANSWER BOX to false
and returns.

G0723 CLEAR THREE Remove indicated
EXIT of groups from
CLEAR THREE roll and return.
AND EXIT

G0724 CLEAR TWO
EXIT
CLEAR TWO
AND EXIT

G0725 CLEAR ONE
EXIT
CLEAR ONE
AND EXIT

G0727 EXIT
EXIT ML

Returns.

number
WORK

G0728 EXIT ANSWER Sets ANSWER BOX and exits
ML for EXIT routines which

set ANSWER BOX.

Routine
Label Name --- ------G0730 ADCON MADE

LBL MAKER

G0731 CHECK JUMP
LBL

G0732 MADE LBL
MAKER

comments
Builds ADC ON roll and

returns a pointer to
the start of a group on
the roll.

Determines whether point­
er in WO refers to a
jump target label.

creates entry
TABLE roll
label, and
pointer to
created.

on BRANCH
for made

returns
group

G0733 SCRIPT PREP Sets up the data for
calculation of
indicated script
press ion.

the
the
ex-

G0734 CALCULATE
SCRIPT

G0735 TEST END
SCRIPT

G0736 CALCULATE
OFFSET AND
SIZE

G0737 GRNTEE REG
9

G0738 TEST AND
STORE REG 9

G0739 BUILD A
SHIFT 9

G0744
G0745
G0746

G0747

G0748

BID INIT
BIM INIT
BIM BID
INIT

EXIT FULL

BID
BIDPOP

Determines the mode and
operation of the vari­
ables contained in the
script expression.

Determines the end of the
script expression.

Determines the size of
each element contained
within an expression,
and the displacement
pertaining to each
array.

Place the index values
for arrays in register
9 if not already set.

Builds a shift register 9
instruction for sub­
scripting; shift length
is determined by array
element size.

Initializes data for the
contsruction of the in­
struction designated by
the BID, BIN, or BIM
POP instructions.

Used on entry to BIN when
BIN fills the EXIT
roll.

This is the assembler
language routine which
constructs the instruc­
tion designated by the
BIDPOP instruction.

Appendix E: Miscellaneous Reference Data 205

Routine
Label Name
G0750 BIN

BINPOP

G0751 NOTE A
CSE CT

G0752 BIM
BIMPOP

G0753 RX FORMAT

G0754 RR FORMAT

G0755 ADDRESS
MAKER

G0756 BUILD A
BASE REG

G0757 SCALAR
OPERAND

ARRAY
OPERAND

GLOBAL
SP ROG
OPERAND

USED FUNC­
TION LIB
OPERAND

NAMES LIST
OPERAND

FORMAT LBL
OPERAND

GLOBAL DMY
OPERAND

G0758 DMY LBL
COMMON

comments
This is the assembler

language routine which
constructs the instruc­
tion designated by the
BINPOP instruction.

This routine obtains the
control section in
which the current
instruction being gen­
erated is to be placed.

This is the assembler
language routine which
constructs the instruc­
tion designated by the
BIMPOP instruction.

General routine used to
build all RX type
instructions.

This routine implements
the RR format designa­
tion for the instruc­
tion being generated.

Used to build all base,
displacement, and index
type addresses.

Determines the base loca­
tion within a particu­
lar control section at
which the object code
instructions begin.

Builds address for the
specified type of oper­
and.

Generates address for
FOMAT references.

G0759 LBL OPERAND Builds address for refer­
LOCAL SPROG ences to labels and
OPERAND statement functions.

206

Routine
Label ~~!!!~­
G0760 SPROG ARG

OPERAND

G0761 BRANCH
TABLE
OPERAND

G0762 BRANCH
TABLE
COMMON

G0763 BRANCH
SPROG
COMMON

G0764 T AND C
OPERAND

G0765 T AND C
COMMON

G0766 T AND C B
COMMON

G0767 LOCAL DMY
OPERAND

G0768 FX CONST
OPERAND

Omen ts
Builds address for refer-

ence to subprogram
argument list.

Builds address for refer­
ences to made labels.

Used by LBL and BRANCH
TABLE OPERAND routines
to contstruct address.

Used by LBL, BRANCH TABLE
and SPROG ARG OPERAND
to construct address.

constructs address for
references to temporary
storage or constants.

Used for T AND c OPERAND
and pointers to con­
stant rolls.

common
branch
and

exit for all
and temporary

constant operand
routines.

Determines the base loca­
tion for the indicated
operand and builds the
code data from this
information.

Determines the size of
the fixed constant
operand and constructs
the instruction depend­
ing upon this infor­
mation.

G0769 FX FL CONST Moves single-precision
SEARCH AND constant pointed to
REG TEMP AND CONST roll if
FL CONST
OPERAND

not already on roll.

G0770 FX FL CONST Performs part of move of
COMMON constant to TEMP AND

CONST roll.

G0771 SEARCH AND
REG SP
CONST
SEARCH AND
REG FX
CONST
SEARCH AND
REG FL
CONST

Searches TEMP AND CONST
roll, registers con­
stant if not already
there, and returns
pointer to TEMP AND
CONST roll group.

Routine
Label Name
G0772 REGSP

CONST

Comments
Registers single-preci­

sion constant on TEMP
AND CONST roll.

G0773 DP FL CONST Construct address for
to double-OPERAND references

COMPLEX
CONST
OPERAND

precision real and
single-precision com­
plex constants.

G0774 SEARCH AND Ensures that a double­
REG DP CONST precision real or
SEARCH AND single-precision com­
REG COMPLEX plex constant is on the
CONST TEMP AND XONST roll and

G0775 REG DP
CONST

G0776 DP COMPLEX
CONST
OPERAND

G0777 SEARCH AND
REG DP
COMPLEX
CONST

G0778 REG DP
COMPLEX
CONST

G0779 TEST DOUBLE
WORD
BOUNDARY

G0780 ARRAY REF
OPERAND

G0781 LOAD REG
FROM TEMP

G0782 ARRAY PLEX
OPERAND

returns a pointer to
it.

Registers a new double­
precis ion constant on
the TEMP AND CONST
roll.

Constructs address for
reference to a double­
precision complex con­
stant.

Ensures that a double­
precision complex con­
stant is on the TEMP
AND CONST roll and
returns a pointer to
it.

Registers a new double­
precision complex con­
stant on the TEMP AND
CONST roll.

Determines if the address
designated to the vari­
able or constant in WO
begins on a doubleword
boundary.

Handles array reference
pointers to obtain
scripted arrays ad­
dresses.

Generates a load of a
base register from a
temporary storage loca­
tion.

Handles building address­
es when array plex is
the indicated operand.

G0783 SRCH AND ST Stores register 9 in a
X9 FROM temporary register if
ARRAY PLEX ne~ded for generation

of array plex address­
es.

Routine
Label Name
G0784 STORE IN

TEMP

G0785 STORE AND
RETURN
TEMP

G0786 SEARCH
TEMP ROLL

Comments
Generates code to store

that register in a tem­
porary location if WO
is a pointer to a
register.

Uses a temporary location
in checking temporary
pointers for the indi­
cated constants.

Beginning with a pointer
to the TEMP PNTR roll
in WO, searches for an
available t6mpvraLy al­
ready defined. Returns
true, with pointer to
TEMP AND CONST roll if
found; otherwise, re­
turns false.

G0787 OPERAND RUN Selects processing rou-
tine for present
operand from pointer.

G0930 SPOIL
VAR
SPOIL
VAR

STO Determines whether point­
ed to variable is being

STORE used in subscript which
is now contained in
register 8 or 9; if so,
spoils that register.

G0931 SPOIL STORE
VAR NON
READ IO

G0932 CLEAR ONE
AND SPOIL
CEAD

G0933 SPOIL CEAD

Determines whether a
stored variable which
has not appeared in a
READ should be stored.

Determines if pointed to
variable is COMMON,
EQUIVALENCE, alterable,
or dummy; if so, spoils
any register containing
a subscript which uses
any CEAD variable; and
prunes one group from
WORK.

Same as
SPOIL
does
roll.

CLEAR ONE AND
CEAD except it
not prune WORK

G0934 TEST A CEAD Tests to determine if
variable pointed to by
WO is COMMON, EQUIVA­
LENCE, alterable, or
dummy.

G0935 NO ARG
SPROG END
GEN

Entry point for generat­
ing a subprogram call
without arguments.

Appendix E: Miscellaneous Reference Data 207

Routine
Label Name
G0937 SIMPLE

SCRIPT PREP

G0938 CLEAR 3
EXIT BIN

G0939 CLEAR 1
EXIT BIN

comments
BuildS--ARRAY PLEX roll

for subscripts handled
in registers 8 and 9.

Exits from BIN, BIM and
BID POP subroutines
which remove the indi­
cated number of groups
from WORK.

G0940 EXIT BIN Exits from BIN, BIM, and
BID POP subroutines.

G0941 SUBCHK GEN Builds code for SUBCHK
entry if required.

G0942 SIMPLE
SCRIPT
OPERAND

G0943 TEST FOR
HIT

G0944 LOAD
SIMPLE X
REG

G0945 PICK A NEW
SIMPLE X
REG

G0946 CALC ELEM
SIZE AND
SHIFT

G0947 AT STA GEN

G0948 TRACE ON
STA GEN

G0949 TRACE OFF
STA GEN

G0950 DEBUG
INITIAL
LINKAGE GEN

G0951 DEBUG VAR
ADR GEN

G0952 DEBUG
ELEMENTS
GEN

208

Generates the
compute a
value to be

code to
subscript
held in

register 8 or 9.

Determines whether reg-
ister 8 or 9 already
contains the present
subscript.

Generates code to set up
register 8 or 9.

Determines whether regis­
ter 8 or 9 will be used
for subscript which
must be loaded.

Calculates array element
size and the length of
shift necessary to mul­
tiply by that value.

Generates the object code
for an AT statement.

Generates DEBUG linkage
for a TRACE ON
statement.

Generates DEBUG linkage
for a TRACE OFF
statement.

Generates initial linkage
to DEBUG.

Generates address for
INIT or SUBCHK
variable.

Generates number of ele­
ments for DEBUG link­
age.

Routine
Label Names
G0953 BIN

VARIABLE
NAME

G0954 RETURN
SCALAR OR
ARRAY PNTR

G0955 DEBUG INIT
GEN

comments
Puts name of

CODE roll.
variable on

Returns pointer to a
SCALAR or ARRAY roll
group from less direct
reference.

Generates DEBUG linkage
for INIT variables.

G0956 DEBUG SHORT Generates DEBUG linkage
LIST INIT for INIT of a full ar-
GEN ray.

G0957 DEBUG DMY Generates DEBUG linkage
INIT GEN for INIT of a dummy

variable.

G0958 DISPLAY STA Generates DEBUG linkage
GEN for a DISPLAY

statement.

G0959 DEBUG INIT Generates DEBUG calls
ARG GEN after a CALL statement.

EXIT LABEL LIST

The labels enumerated in the following
list are used in the flowcharts provided
for the illustration of the major routines
used by Exit.

Label
G0381
G0382
G0383
G0384
G0399
G0400
G0402
G0403
G0404
G0405
G0416
G0424
G0564

Chart
ID

---o9
FA
FB
FC
FD
FE
FF
FG
FH
FI
FJ
FK
FL

Routine Name
EXIT PASS
PUNCH TEMP AND CONST ROLL
PUNCH ADR CONST ROLL
PUNCH CODE ROLL
PUNCH BASE ROLL
PUNCH BRANCH ROLL
PUNCH SPROG ARG ROLL
PUNCH GLOBAL SPROG ROLL
PUNCH USED LIBRARY ROLL
PUNCH ADCON ROLL
PUNCH RLD ROLL
PUNCH END CARD
PUNCH NAMELIST MPY DATA

SUPPLEMENTARY EXIT LABEL LIST

The routines described in this section
are listed by G number labels which are
presented in ascending order. These rou­
tines are those used in the operation of
Exit which are not shown in the section of
flowcharts for the phase.

Routine
Label Name
G0385 SWEEP CODE

ROLL
SWEEP CODE
ROLL ML

G0386 PUNCH INST
PUNCH INST
ML

G0388 PUNCH TWO
HALFWORDS

G0389 PUNCH ONE
HALFWORD

G0390 PUNCH
THREE
HALFWORDS

G0391 PUNCH CODE

G0392 ABS PUNCH

G0393 RELOC
CONST
PUNCH

G0394 ABS CONST
PUNCH
ABS CONST
PUNCH ML

Comments
Determines the nature of

a word on the CODE roll
and processes it ac-
cording to type.

Determines the type of
instruction to be
punched (one, two, or
three halfwords).

Sets up a two halfword
instruction format.

Sets up a one halfword
instruction format.

Sets up a three halfword
instruction format.

Punches the indicated
instruction in the
indicated format.

Sets up for the punching
of object module abso­
lute constants.

sets the format for the
punching of a relocat-
able absolute constant.

Punches the indicated ab-
solute constants in
the object module.

G0396 DEFINE LBL Defines indicated label
on BRANCH TABLE roll.

G0397 ADCON PUNCH Punches the address con­
stant indicated in WO.

G0398 POC DATA
PUNCH

G0401 SWEEP BASE
BRANCH
ROLL

G0406 HALF WORD
WO TO TXT
CARD

G0407 WO TO TXT
CARD
WO TO TXT
CARD ML

Sets up the information
needed for the listing
and punching of code
contained on the CODE
roll.

Initializes for the
punching of the groups
contained on the BASE
and BRANCH TABLE rolls.

A halfword instruction
format is set up for
the contents of WO.

Transfers the contents of
WO to the output area
to be punched.

Routine
Label Name
G0409 MOVE CODE

TO TXT CARD

G0410 INITIALIZE
TXT CARD

G0411 INITIALIZE
TXT CARD ML

G0412 PUNCH
PARTIAL
TEXT CARD

G0413 PUNCH A
CARD ML

G0414 PUNCH AN
ESD CARD

G0417 DEPOSIT
LAST ESD
NO. ON
RLD CARD

G0418 DB SECOND
RLD WORD
WITH CONT

G0419 DB SECOND
RLD WORD
WITH NO
CONT

G0420 DB SECOND
RLD WORD

G0421 DEPOSIT
WORD ON
RLD CARD

G0422 PUNCH AN
RLD CARD

G0423 TERMINATE
RLD
PUNCHING

G0425 LIST CODE

G0426 RS OR SI
FORMAT

Comments
Transfers the indicated

code to the output area
to be punched.

Initialize the format
for the punching of the
TXT cards.

Punches any part of a TXT
card.

1-'unches a cumplet..:: TXT
card.

Sets the format for the
punching of an ESD
card.

Obtains and deposits the
last ESD number on the
indicated RLD card for
punching.

Sets the format of a card
with a continuation to
a second card.

Turns off the continua­
tion indicator for the
punching of the RLD
card.

Places the second word
into the RLD format in
the output area.

Places the indicated word
into the appropriate
location in ·the RLD
format.

Punches the indicated RLD
card.

Determines whether the
RLD card is full and
sets controls accord-
ingly.

Sets up the format for
the object module list­
ing, and determines the
instruction format for
each indicated instruc­
tion to be printed.

Determines whether the
indicated instruction
is RS or SI format.

Appendix E: Miscellaneous Reference Data 209

Routine
Label Name
G0427 RS FORMAT

G0428 SI FORMAT

G0429 RX FORMAT

G0430 RR FORMAT

G0431 SS FORMAT

comments
Sets up the RS format for

the indicated instruc­
tion.

sets up the SI format for
the indicated instruc­
tion.

Sets up the RX format for
the indicated instruc­
tion.

Sets up the RR format for
the indicated instruc­
tion.

Sets up the SS format for
the indicated instruc­
tion.

G0432 ADCON LIST Sets up the format (DC
format) for the address
constants in the object
module that are to be
listed.

G0433 DC LIST Lists DC constants.

G0434 PRINT ADCON Sets controls for the
LBL printing of the indi­

cated address constant.

G0435 PRINT A
MADE LBL

G0436 MADE LBL
ADCON LBL
COMMON

sets controls
printing of
cated label
been created
compiler.

Inserts the
label into
output area.

for the
the indi­

which has
by the

indicated
the print

G0437 PRINT A LBL Prints the indicated

G0438 PRINT BCD
OPERAND

G0439 PRINT A
LINE
PRINT A
LINE PLUS
ONE ML

G0440 PRINT A
LINE ML

210

label on the object
module listing.

Inserts the indicated op­
erand into the appro­
priate position of the
object listing in the
output area.

Print the indicated line
once a full line has
been set up in the out­
put area.

Routine
Label Name
G0443 PRINT

HEADING
PRINT
HEADING
ML

Comments
Prints this indicated

heading that is to ap­
pear on the object mod­
ule listing.

G0444 PRINT TOTAL Sets up this
PROG REQMTS message in

indicated
the print

MESS output area.

G0445 PRINT CSECT
MEMORY
REQMTS
MESS

G0446 PRINT
CSECT
TOTAL
MESSAGE ML

G0447 PRINT
CSECT
MESSAGE

G0448 CONV AND
PRINT
D2(B2) ML

G0449 CONV AND
PRINT
D1B1 ML

G0450 CONV AND
PRINT D2
CONV AND
PRINT Dl

G0452 CONV AND
PRINT Bl
CONV AND
PRINT B2

ML

ML

ML

ML

G0453 CONV AND
PRINT R2 ML
CONV AND
PRINT X2 ML

G0454 CONV AND
PRINT 12 ML

G0455 CONV AND
PRINT Rl ML
CONV AND
PRINT Ll ML

G0456 CONV WO AND
PRINT
CONVERT WO
AND PRINT

sets up the
message in
output area.

Sets up this
message in
output area.

Sets up this
message in
output area.

indicated
the print

indicated
the print

indicated
the print

converts the indicated
general register desig­
nation for the RX, RS,
and RR formats.

converts
address
register
for the
formats.

the indicated
and general

designation
SI and SS

converts the indicated
address and general
register designations
to instruction format.

Converts the indicated
address and general
register designations
to instruction format.

Converts the indicated
address and general
register designations
to instruction format.

converts the indicated
address and general
register designations
to instruction format.

converts the indicated
address and general
register designations
to instruction format.

converts the contents of
WO to decimal and in­
serts into print output
area.

Routine
Label Name
G0458 CONV AND

PRINT PLUS
ONE ML

G0459 PRINT A
COMMA ML

G0460 PRINT A
LEFI' PAREN
ML

Comments
Converts a number to dec­

imal and places in
print buffer.

Places a comma into print
output area.

Places a left parenthesis
into the print output
area.

G0461 PRINT A Places right paren­
print RIGHT PAREN thesis into the

ML

G0462 PRINT A
CHAR ML

G0464 CLEAR ONE
EXIT
CLEAR ONE
AND EXIT

Places the indicated
character into the
print output area.

Prunes one word from the
WORK roll and exits.

Routine
Label Name
G0465 EXIT

EXIT ML
EXIT
ANSWER ML

G0566 RLD ALIGN
SWEEP TE

<::0'167 "RT.D AT.TGN

TEST
SWEEP TEST

G0569 GET ADR
FROM PNTR
ML

Comments
Obtains the last entry on

the EXIT roll and
transfers to the indi­
cated location.

Sorts RLD entries so that
all RLDs in one CSECT
appear together.

whether pres­
is in the
being con-

Di:>t-PrminPs
ent RLD
CSECT now
structed.

Gets location on DATA VAR
roll from pointer in
WO.

Appendix E: Miscellaneous Reference Data 211

APPENDIX F: OBJECT-TIME LIBRARY SUBPROGRAMS

This appendix describes the logic of
some of the object-time library subprograms
that may be referenced by the FORTRAN load
module. Included at the end of this appen­
dix are flowcharts that describe the logic
of the subprograms. (G is the first
character in the chart identification for
each flowchart associated with a library
subprogram.>

Each object module compiled from a
FORTRAN source module must first be pro­
cessed by the linkage editor prior to
execution on the IBM System/360. The link­
age editor must combine certain FORTRAN
library subprograms with the object module
to form an executable load module. The
library subprograms exist as separate load
modules on the FORTRAN system library
(SYS1.FORTLIB). Each library subprogram
that is externally referenced by the object
module is included in the load module by
the linkage editor. Among the library
subprograms to which such references may be
made are:

• IHCFCOMH (object-time input/output
source statement processor) entry
name IBCOM#. If the extended error
message facility is specified, this
module is replaced by IHCECOMH.

• IHCFIOSH (object-time sequential access
input/output data management interface)

entry name FIOCS#. If the extended
error message faciltiy is specified,
this module is replaced by IHCEFIOS.

• IHCNAMEL
tines)
FWRNL#.

(object-time
entry names

namelist
FRDNL#

rou­
a nd

• IHCDIOSE (object-time direct access
input/output data management interface>
-- entry name DIOCS#. If the extended
error message facility is specified,
this module is replaced by IHCEDIOS.

• IHCIBERH (object-time source statement
error processor) -- entry name IBERH#.

• IHCFCVTH (object-time conversion rou­
tine) -- entry name ADCON#.

• IHCDBUG (object-time debug
support routine) -- entry name

facility
DEBUG#.

• IHCTRCH
message
tine)
extended

212

(object-time terminal error
and diagnostic traceback rou­

entry name IHCTRCH. If the
error message facility is

specified, this module is replaced by
IHCETRCH.

• IHCADJST
alignment.

processing boundary mis-

• IHCFINTH (object-time program interrupt
processor). If the extended error mes­
sage facility is specified, this module
is replaced by IHCEFNTH.

• IHCERRM (object-time error message pro­
cessor. The module monitors all
execution-time errors).

Module names used in the following dis~
cussions are those in effect when the
extended error message facility has not
been specified. However, the descriptions
apply also with the extended error message
facility, unless otherwise stated.

IHCFCOMH receives input/output requests
from the FORTRAN load module via compiler­
generated calling sequences. IHCFCOMH, in
turn, submits these requests to the appro­
priate data management interface (IHCFIOSH
or IHCDIOSE).

IHCFIOSH receives sequential
input/output requests from IHCFCOMH
turn, submits those requests to the
priate BSAM (basic sequential
method) routines for execution.

access
and, in
appro­
access

IHCDIOSE receives direct access input/
output requests from IHCFCOMH and, in turn,
submits those requests to the appropriate
BDAM (basic direct access method) routines
for execution.

If source statement errors are detected
during compilation, the compiler generates
a calling sequence to the IHCIBERH subpro­
gram. IHCIBERH processes object-time
errors resulting from improperly coded
source statements. IHCFCVTH contains the
various object time conversion routines
required by IHCFCOMH and IHCNAMEL. IHCTRCH
processes terminal object-time error mes­
sages and produces a diagnostic traceback I for IHCFCOMH. IHCADJST processes object­
time specification exceptions if the bound­
ary alignment option is specified by the
user during system generation.

IHCFCOMH

IHCFCOMH performs object-time implemen­
tation of the following FORTRAN source
statements.

• READ and WRITE
input/output)

(for sequential

• READ, FIND, and WRITE (for direct
access input/output)

• BACKSPACE, REWIND, and ENDFILE (sequen­
tial input/output device manipulation)

• STOP and PAUSE (write-to-operator)

In addition. IHCFCOMH: (1) initializes
a:Lithilletic-type p.c09..LctuL .i1ite.t:C.U.f/i:..iuno, ctnd
(2) terminates load module execuion.

All linkages from the load module to
IHCFCOMH are compiler generated. Each time
one of the above-mentioned source state­
ments is encountered during compilation,
the appropriate calling sequence to
IHCFCOMH is generated and is included as
part of the object module. At object-time,
these calling sequences are executed, and
control is passed to IHCFCOMH to perform
the specified operation.

Note: IHCFCOMH itself does not perform the
actual reading from or writing onto data
sets. It submits requests for such opera­
tions to the appropriate input/output
data management interface (IHCFIOSH or IHC­
DIOSE). The input/output interface. in
turn, interprets and submits the requests
to the appropriate access method (BSAM or
EDAM) routines for execution. Figure 16
illustrates the relationship between
IHCFCOMH and the input/output data manage­
ment interfaces.

Charts GO, Gl, and G2 illustrate the
overall logic and the relationship between
the routines of IHCFCOMH. Table 16, the
IHCFCOMH routine directory, lists the rou­
tines used in IHCFCOMH and their functions.

The routines of IHCFCOMH are divided
into the following categories:

• Read/write routines

• Input/output device manipulation rou­
tines

• Write-to-operator routines

• Utility routines

The read/write routines implement both
the sequential input/output statements
(READ and WRITE) and the direct access
input/output statements (READ, FIND, and
WRITE>. <The direct access FIND statement
is treated as a READ statement without
format and list.)

r---------,
I FORTRAN I
I Load I
I Module I
L ____ T ____ J

I
I

Input/output I
Request I

I
I

r-------L------1 r----------1

Submit
Sequential
Access
Input/output
Request to
IHCFIOSH

I IHCFCOMH I I IHCFCVTH I
I (Determine ~--iConversionl
I request type) I I Routines I L_T _________ T_J L __________ J

i i
I I
I I
I I
I I
I I
I I
I I
I I
I I

Submit
Direct
Access
Input/output
Request to
IHCDIOSE

r-----------i-, r-i-----------1
I IHCFIOSH I I IHCDIOSE I
I (Sequential I I (Direct I
I Access I I Access I
I Input/output! I Input/output!
I Interface) I I Interface) I
L------T _____ J l-----T _______ J

I I
I I

Interpret I I Interpret
and Submit I I and Submit
Request to I I
Appropriate I I
BSAM Routine! I

Request to
Appropriate
BSAM/BDAM

I I Routine
I I

r-----i-----1 r-----i-----,
I BSAM I I BSAM/BDAM I
I Routines I I Routines I
L-----------J L-----------J

Figure 16. Relationship Between IHCFCOMH
and Input/Output Data Manage­
ment Interfaces

The input/output device manipulation
routines implement the BACKSPACE, REWIND,
and END FILE source statements for sequen­
tial data sets. These statements are
ignored for direct access data sets.

The write-to-operator routines implement
the STOP and PAUSE source statements.

The utility routines: (1)
errors detected by FORTRAN library
grams. (2) process arithmetic-type
interrupts, and (3) terminate load
execution.

process
subpro­
program
module

Appendix F: Object-Time Library Subprograms 213

READ/WRITE ROUTINES

The READ/WRITE routines of IHCFCOMH
implement the various types of READ/WRITE
statements of the FORTRAN IV language. For
simplicity, the discussion of these rou­
tines is divided into two parts:

• READ/WRITE
NAMELIST

statements using

• READ/WRITE statements using NAMELIST

READ/WRITE Statements Not Using NAMELIST

For the implementation of both sequen­
tial and direct access READ and WRITE
statements, the READ/WRITE routines of
IHCFCOMH consist of the following three
sections:

1. An opening section, which initializes
data sets for reading and writing.

2. An I/O list section, which transfers
data from an input buffer to the I/O
list items or from the I/O list items
to an output buffer.

3. A closing section, which terminates
the input/output operation.

Within the discussion of each section, a
read/write operation is treated in one of
two ways:

• As a read/write requiring a format.

• As a read/write not requiring a format.

Note: In the following discussion, the
term "read operation" implies both the
sequential access READ statement and the
direct access READ and FIND statements.
The term "write operation" implies both the
sequential access WRITE statement and the
direct access WRITE statement.

OPENING SECTION: The compiler generates a
calling sequence to one of four entry
points in the opening section of IHCFCOMH
each time it encounters a READ or WRITE
statement in the FORTRAN source module.
These entry points correspond to the opera-

214

tions of read or write, requiring or not
requiring a format.

Read/Write Requiring a Format: If the
operation is a read requiring a format, the
opening section passes control to the
appropriate input/output data management
interface to initialize the unit number
specified in the READ statement for read­
ing. (The unit number is passed, as an
argument, to the opening section via the
calling sequence.) The input/output inter­
face: (1) opens the data control block
<via the OPEN macro instruction) for the
specified data set if it was not previously
opened, and (2) reads a record (via the
READ macro instruction) containing data for
the I/O list items into an input/output
buffer that was. obtained when the data
control block was opened. The input/output
interface then returns control to the open­
ing section of IHCFCOMH. The address of
the buffer and the length of the record
read are passed to IHCFCOMH by the input/
output interface. These values are saved
for the I/O list section of IHCFCOMH. The
opening section then passes control to a
portion of IHCFCOMH that scans the FORMAT
statement specified in the READ statement.
(The address of the FORMAT statement is
passed, as an argument, to the opening
section via the calling sequence.) The
first format code (either a control or
conversion type> is then obtained.

For control type codes <e.g., an H
format code or a group count), an I/O list
item is not required. control passes to
the routine associated with the control
code under consideration to perform the
indicated operation. Control then returns
to the scan portion, and the next format
code is obtained. This process is repeated
until either the end of the FORMAT state­
ment or the first conversion code is
encountered.

For conversion type codes <e .. g., an I
format code), an I/O list item is required.
Upon the first encounter of a conversion
code in the scan of the FORMAT statement,
the opening section completes its proces­
sing of a read requiring a format and
returns control to the next sequential
instruction within the load module.

The action taken by IHCFCOMH when the
various format codes are encountered is
illustrated in Table 9.

•Table 9. IHCFCOMH FORMAT Code Processing
r------------T--------------T----------T--1
!FORMAT Code !Description !Type !Corresponding Action Upon Code by IHCFCOMH I
l------------+--------------t----------+---------------------------------------~-------1
I !beginning of control Save location for possible repetition of thel
I !statement format codes; clear counters. I
I I I
I I I
In< !group count control Save n and location of left parenthesis for
I I possible repetition of the format codes in
I I the group.
I I
I I
In !field count control
I I I "
I
lnP scaling factor control
I
I
Tn

nX

•text' or

column reset

skip or blank

nHlliteral data
I
I
I

control

control

control

Save n for
follows.

repetition of format code

Save n for use by F, E, and D conversions.

that

Reset current position within record to gthl
column or byte. I

I
I

Skip n characters of an input record, or insert nl
blanks in an output record. I

Move n characters from an input record to
FORMAT statement, or n characters from
the FORMAT statement to an output record.

I
I

the I
the I

I
I

FW.d
Ew.d
Dw~d

IF-conversion
IE-conversion
ID-conversion
II-conversion
IA-conversion
IG-conversion

conversion Exit to the load module to return control toj

Iw
Aw
Gw.d
Lw.d
Zw

)

L-conversion
z-conversion

group end

conversion
conversion
conversion I
conversion I
conversion I
conversion I
conversion

lcontrol

entries FIOLF or FIOAF in IHCFCVTH. Using in-I
formation passed to the I/O list section, thel
address and length of the current list iteml
are obtained and passed to the proper conver-1
sion routine together with the current posi-1
tion in the input/output buffer, the scalel
factor, and the values of w and d). Uponl
return form the conversion routine the current!
field count is tested. If it is greater thanl
1, another exit is made to the load module tot
obtain the address of the next list item. I

Test group count. If it is greater than 1,
repeat format codes in group: otherwise,
continue to process FORMAT statement from
current position.

I
I
I
I
I
I

I/ record end control Input or output one record via input/output I
I interface and READ/WRITE macro instruction. I
I I
I end of control If no I/O list items remain to be transmitted, I
I statement return control to load module to link to the I
I the clo~ing section; if list items remain, I
I input or output one record using input/outout I
I interface and READ/WRITE macro instruction. I
I Repeat format codes from last parenthesis. I
l------------.1.----~--------i __________ ..._ ___ J

If the operation is a write requiring a
format, the opening section passes control
to the input/output interface to initialize
the unit number specified in the WRITE
statement for writing. (The unit number is

passed, as an argument, to the opening
section via the calling sequence.) The
input/output interface opens the data con­
trol block (via the OPEN macro instruction>
for the specified data set if it was not

Appendix F: Object-Time Library Subprograms 215

previously opened. The input/output inter­
face then returns control to the opening
section of IHCFCOMH. The address of an
input/output buffer that was obtained when
the data control block was opened is saved
for the I/O list section of IHCFCOMH.
Subsequent opening section processing,
starting with the scan of the FORMAT state­
ment, is the same as that described for a
read requ~ring a format.

Read/Write Not Requiring a Format: If the
operation is a read or write not requiring
a format., the opening section processing
except for the scan of the FORMAT statement
is the same as that described for a read or
write requiring a format. (For a read or
write not requiring a format, there is no
FORMAT statemen~.)

I/O LIST SECTION: The compiler generates a
calling sequence to one of four entry
points in the I/O list section of IHCFCOMH
each time it encounters an I/O list item
associated with the READ or WRITE statement
under consideration. These entry points
correspond to a variable or an array list
item.for a read and write, requiring or not
requiring a format. The I/O list section
performs the actual transfer of data from:
(1) an input buffer to the list items if a
READ statement is being implemented, or (2)
the list items to an output buffer if a
WRITE statement is being implemented. In
the case of a read or write requiring a
format, the data must be converted before
it is transferred.

Read/Write Requiring a Format: In proces­
sing a list item for a read requiring a
format, the I/O list section passes control
to the conversion routine associated with
the conversion code for the list item.
(The appropriate conversion routine is de­
termined by the portion of IBCFCOMH that
scans the FORMAT statement associated with
the READ statement. The selection of the
conversion routine depends on the conver­
sion code of the list item being pro­
cessed.) The selected conversion routine
obtains data from an input buff er and
converts the data to the form dictated by
the conversion code. The converted data is
then moved into the main storage address
assigned to the list item.

In general, after a conversion routine
has processed a list item, the I/O list
section determines whether or not that
routine can be applied to the next list
item or array element (if an array is being
processed). The I/O list section examines
a field count that indicates the number of
times a particular conversion code is to be
applied to successive list items or succes­
sive elements of an array.

216

If the conversion code is to be repeate
and if the previous list item was a vari·
able, the·I/O list section returns contra.
to the load module. The load module agai1
branches to the I/O list section anc
passes, as an argument, the main storagt
address assigned to the next list item.

The conversion routine that processec
the previous list item is then given con­
trol. This procedure is repeated until
either the field count is exhausted or the
input data for the READ statement is
exhausted.

If the conversion code is to be repeated
and if an array is being processed, the I/O
list section computes the main storage
address of the next element in the array.
The conversion routine that processed the
previous element is then given control.
This procedure is repeated until either all
the array elements associated with a spe­
cific conversion code are processed or the
input data for the READ statement is
exhausted.

If the conversion code is not to be
repeated, control is passed to the scan
portion of IHCFCOMH to continue the scan of
the FORMAT statement. If the scan portion
determines that a group of conversion codes
is to be repeated, the conversion routines
corresponding to those codes are applied to
the next portion of the input data. This
procedure is repeated until either the
group count is exhausted or the input data
for the READ statement is exhausted.

If a group of conversion codes is not to
be repeated and if the end.of the FORMAT
statement is not encountered, the next
format code is obtained. For a control
type code, control is passed to the asso­
ciated control routine to perform the indi­
cated operation. For a conversion type
code, control is returned to the load
module if the previous list item was a
variable. The load module again branches
to the I/O list section and passes, as an
argument, the main storage address assigned
to the next list item. Control is then
passed to the conversion routine associated
with the new conversion code. The conver­
sion routine then processes the data for
this list item. If the data that was just
converted was placed into an element of an
array and if the entire array has not been
filled, the I/O list section computes the
main storage address of the next element in
the array and passes control to the conver­
sion routine associated with the new conv­
ersion code. The conversion routine then
processes the data for this array element.
Subsequent I/O list processing for a READ
requiring a format proceeds at the point
where the field count is examined.

\,
J

If the scan portion encounters the end
of the FORMAT statement and if all the list
items are satisfied, control returns to the
next sequential instruction within the load
module. This instruction (part of the
calling sequence to IHCFCOMH) branches to
the closing section. If all the list items
are not satisfied, control is passed to the
input/output interface to read (via the
READ macro instruction) the next 'input
record. The conversion codes starting from
the last left parenthesis are then repeated
for the remaining list items.

If the operation is a write requiring a
foJ..~1m~tt .. :., l..he r,..-o list sectiou processing is
similar to that for a read requiring a
format. The main difference is that the
conversion routines obtain data from the
main storage addresses assigned to the list
items rather than from an input buffer.
The converted data is then transferred to
an output buffer. If all the list items
have not been converted and transferred
prior to the encounter of the end-of-the
FORMAT statement, control is passed to the
input/output interface. The input/output
interface writes Cvia the WRITE macro
instruction) the contents of the current
output buffer onto the output data set.
The conversion codes starting from the last
left parenthesis are then repeated for the
remaining list items.

Read/Write Not Requiring a Format: In
processing a list item for a read not
requiring a format, the I/O list section
must know the main storage address assigned
to the list item and the size of the list
item. Their values are passed, as argu­
ments, via the calling sequence to the I/O
list section. The list item may be either
a variable or an array. In either case,
the number of bytes specified by the size
of the list item is moved from the input
buffer to the main storage address assigned
to the list item. The I/O list section
then returns control to the load module.
The load module again branches to the I/O
list section and passes, as arguments, the
main storage address assigned to the next
list item and the size of the list item.

The I/O list section moves the number of
bytes specified by the size of the list
item into the main storage address assigned
to this list item. This procedure is
repeated either until all the list items
are satisfied or until the input data is
exhausted. Control is then returned to the
load module.

If the operation is a write not requir­
ing a format, the I/O list section proces­
sing is similar to that described for a
read not requiring a format. The main
U.iffert:11ce is LhaL t.he data is obtained
from the main storage addresses assigned to
the Jist items and is then moved to an
output buffer. In addition, the segment
length Ci.e., the number of bytes in the
record segment> and a code indicating the
position of this segment relative to other
segments, if any, of the logical record are
inserted in the segment control.word.

CLOSING SECTION: The compiler generates a
calling sequence to one of two entry points
in the closing section of IHCFCOMH each
time it encounters the end of a READ or
WRITE statement in the FORTRAN source
module. The entry points correspond to the
operations of read and write, requiring or
not requiring a format.

Read/Write Requiring a Format: If the
operation is a read requiring a format, the
closing section simply returns control to
the load module to continue load module
execution. If the operation is a write
requiring a format, the closing section
branches to the input/output interface.
The input/output interface writes (via the
WRITE macro instruction) the contents of
the current input/output buffer (the final
record) onto the output data set. The
input/output interface then returns control
to the closing section. The closing sec­
tion, in turn, returns control to the load
module to continue load module execution.

Appendix F: Object-Time Library subprograms 217

Read/Write Not Requiring a Format: If the
operation is a read not requiring a format,
the closing section branches to the input/
output interface. The input/output inter­
face reads <via the READ macro instruction)
successive records until the end of the
logical record being read is encountered.
CA FORTRAN logical record consists of all
the records necessary to contain the I/O
list items for a WRITE statement not
requiring a format.) When the input/output
interface recognizes the end-of-logical­
record indicator, control is returned to
the closing section. The closing section,
in turn, returns control to the load module
to continue load module execution.

If the operation is a write not requir­
ing a format, the closing section inserts:
(1) the segment length (i.e., the number of
bytes in the record segment) and, a code
indicating that this segment is either the
last or the only segment of the logical
record into the segment control word of the
input/output buffer to be written, and (2)
an end-of-logical-record indicator into the
last record of the input/output buffer
being written. The closing section then
branches to the input/output interface.

218

The input/output interface writes (via the
WRITE macro instruction) the contents of
this input/output buffer onto the output
data set. The input/output interface then
returns control to the closing section.
The.cJ()sing section, in tur11, ret~ns con~
trol to the load module to continue load
module execution.

Exam:ele§__Qf IHC!:~OMH READ/WRITE Stat~men:t
Process!.!!9:

The following examples illustrate the
opening section, I/O list section, and
closing section processing performed by
IHCFCOMH for sequential access READ and
WRITE statements, requiring or not requir­
ing a format.

Note: IHCFCOMH processing for the direct
access READ, FIND, and WRITE statements is
essentially the same as that described for
the sequential access READ and WRITE state­
ments. The main difference is that for
direct access statements, IHCFCOMH branches
to the direct access input/output interface
(IHCDIOSE) instead of to the sequential
access input/output interface (IHCFIOSH).

READ REQUIRING A FORMAT:
performed by IHCFCOMH for
READ statement and FORMAT
illustrated in Table 10.

The processing
the. following
statement is

READ (1,2} A,B,C
2 FORMAT (3Fl2.6)

Table 10. IHCFCOMH Processing for a READ
Requiring a Format

r--------T--------------------------------1
!Opening 11. Receives control from loadl
!Section I module and branches tol
1 I IHCFICSH to initialize datal
I I set for reading. I
I I I
I 12. Passes control to scan por-1
I I tion of IHCFCOMH. I
I I I
I 13. Returns control to load!
I I module. I
!--------+--------------------------------~
I/O List 1. Receives control from load!
Section module, converts input datal

for A using IHCFCVTH, andl
moves converted data to A. I

2.

3.

4.

5.

Returns
module.

control

Receives control
module, converts
for B, and moves
data to B.

Returns
module.

control

Receives control
module, converts
for c, and moves
data to c.

I
to load!

I
I

from loadl
input data!
converted I

I
I

to loadl
I
I

from load!
input datal
converted I

I
I

6. Returns control to loadl
module. I

~--------+--------------------------------~
!Closing 11. Receives control from loadl
!Section I module and closes out input/I
I I output operation. I
I I I
I 12. Returns control to loadf
I I module to continue loadl
I I module execution. I
L--------..L.-------------------------------J

WRITE REQUIRING A FORMAT: The processing
performed by IHCFCOMH for the following
WRITE statement and FORMAT statement is
illustrated in Table 11.

WRITE (3 1 2) (O(I} 1 I=l 1 3}
2 FORMAT C3F12.6)

Table 11. IHCFCOMH Processing for a WRITE
Requiring a Format

r--------T--------------------------------1
fopening f 1. Receives control from !oadl
!Section I module and branches tol
I ; IHCPIOSH tc initialize datal
I I set for writing. I
I I I
I f 2. Passes control to scan por-1
I I tion of IHCFCOMH. I
I I I
I 13. Returns control to loadl
I I module. I
~--------+--------------------------------~
I/O Listll. Receives control from loadl
Section I module, converts OCl>, andf

I moves 0(1} to output buffer. I
I I
12. Returns control to load!
I module. I
I I
I I
13. Receives control from loadf

module, converts 0(2), andl
moves 0(2) to output buffer. I

I
I

4. Returns control to load!
module. I

I
5. Receives control from load!

module, converts 0(3), andl
moves 0(3) to output buffer. I

I
6. Returns control to loadl

module. I
~--------+--------------------------------~
!Closing 11. Receives control from loadl
!Section I module and branches tol
I I IHCFIOSH to write contents I
I I of output buffer. I
I I I
I 12. Returns control to loadl
I I module to continue loadf
I I module execution. I
L--------i--------------------------------J

Appendix F: Object-Time Library Subprograms 219

READ NOT REQUIRING A FORMAT: The proces­
sing performed by IHCFCOMH for the follow­
ing READ statement is illustrated in Table
12.

READ (5) X,Y,Z

Table 12. IHCFCOMH Processing for a READ
Not Requiring a Format

r--------T---------------------~---------1
!Opening 11. Receives control from load!
!Section I module and branches toj
I I IHCFIOSH to initialize datal
I I set for reading. I
I I I
I 12. Returns control to loadl
I I module. I
I I I
r--------+--------------------------------~
II/O Listll. Receives control from load
!Section I module and moves input data
I I to x.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

2.

3.

4.

5.

I
I
16.

Returns control to load
module.

Receives control from load
module and moves input data
to Y.

Returns
module.

control to load

Receives control from load
module and moves input data
to z.

Returns control to load
I I module.
r--------+--------------------------------~
!Closing jl. Receives control from load!
!Section I module and branches tol
I I IHCFIOSH to read successive!
I I records until the end-of-I
I I logical-record indicator isl
I I encountered. I
I I I
I 12. Returns control to load!
I I module to continue load!
I I module execution. I l ________ i ________________________________ J

220

WRITE NOT REQUIRING A FORMAT: The proces­
sing performed by IHCFCOMH for the follow­
ing WRITE statement is illustrated in Table
13.

WRITE (6) (W(J),J=l,10)

Table 13. IHCFCOMH Processing for a WRITE
Not Requiring a Format

r--------T--------------------------------1
!Opening jl. Receives control from load!
!Section I module and branches tol
I I IHCFIOSH to initialize data!
I I for writing. I
I I I
I j2. Returns control to load!
I I module. I
t--------+--------------------------------1
I/O List 1. Receives control from load!
Section module and moves W(l) tol

2.

3.

4.

5.

output buffer. I

Returns
module.

control

Receives control
module and moves
output buffer.

Returns
module.

control

to
I

load I
I
I

from load!
W(2) tol

I
I

to loadl
I
I
I
I
I

Receives control from loadl
module and moves W(10) tol
output buffer. I

I
6. Returns control to loadl

module. I
~--------+--------------------------------1
!Closing 11. Receives control from loadl
!Section I module and branches tol
I I IHCFIOSH to write contents!
I I of output buffer. I
I I I
I 12. Returns control to load!
I I module to continue load!
I I module execution. I l ________ i ________________________________ J

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

READ/WRITE Statement Usi~NAMELIST

Included in the calling sequence to
IHCNAMEL1 generated by the compiler when it
detects a READ or WRITE using a NAMELIST is
a pointer to the object-time namelist dic­
tionary associated with the READ or WRITE.
This dictionary contains the names and
addresses of the variables and arrays into
which data is to be read or from which data
is to be written. The dictionary also
contains the information needed to select
the conversion routine that is to convert
the data to be placed into the variables or
arrays, or to be taken from the variables
and arrays.

READ USING NAMELIST: The data set contain­
ing the data to be input to the variables
or arrays is initialized and successive
records are read until the one containing
the namelist name corresponding to that in
the naroelist dictionary is encountered.
The next record is then read and processed.

The record is scanned and the first name
is obtained. The name is compared to the
variable and array names in the namelist
dictionary. If the name does not agree, an
error is signaled and load module execution
is terminated. If the name is in the
dictionary, processing of the matched vari­
able or array is initiated.

Each initialization constant assigned to
the variable or an array element is
obtained from the input record. (One con­
stant is required for a variable. A number
of constants equal to the number of ele­
ments in the array is required for an
array. A constant may be repeated for
successive array elements if appropriately
specified in the input record.) The appro­
priate c-onversion routine is selected
according to the type of the variable or
array element. control is then passed to
the conversion routine to convert the con­
stant and to enter it into its associated
variable or array element.

The process is repeated for the second
and subsequent names in the input record.
When an entire record has been processed,
the next record is read and processed.

Processing is terminated upon recogni~
tion of the &END record. Control is then
returned to the calling routine within the
load module.

1IHCNAMEL is included in the load module
only if reads and writes using NAMELISTs
appear in the compiled program. Calls are
made directly to FRDNL# (for READ) or to
FWRNL# (for WRITE).

WRITE USING NAMELIST: The data set upon
which the variables and arrays are to be
written is initialized. The namelist name
is obtained from the namelist dictionary
associated with the WRITE, moved to an
input/output buffer, and written. The pro­
cessing of the variables and arrays is then
initiated.

The first variable or array name in the
dictionary is moved to an input/output
buffer followed by an equal sign. The
appropriate conversion routine is selected
according to the type of the variable or
array elements. Control is then passed to
the conversion routine to convert the con­
tents of the variable or the first array
element and to enter it into the input/
output buff er. A comma is inserted into
the buffer following the converted quanti­
ty. If an array is being processed, the
contents of its second and subsequent ele­
ments are converted, using the same conver­
sion routine, and placed into the input/
output buffer, separated by commas. When
all of the array elements have been pro­
cessed or if the item processed was a
variable, the next name in the dictionary
is obtained. The process is repeated for
this and subsequent variable or array
names.

If, at any time, the record length is
exhausted, the current record is written
and processing resumes in the normal
fashion.

When the last variable or array
processed, the contents of the
record are written, the characters
moved to the buffer and written,
trol is returned to the calling
within the load module.

has been
current

&END are
and con­
routine

Input/Output Device Manipulation Routines

The input/output device manipulation
routines of IHCFCOMH implement the
BACKSPACE, REWIND, and END FILE source
statements. These routines receive control
from within the load module via calling
sequences that are generated by the compil­
er when these statements are encountered.

Note: Backspace, rewind, and end file
requests are honored only for sequential
data sets, and are ignored for direct
access data sets. However, these state­
ments are device independent and can be
used for sequential data sets on either
sequential or direct access devices.

Appendix F: Object-Time Library Subprograms 221

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

The implementation of REWIND, BACKSPACE,
and END FILE statements is straightforward.
The input/output device manipulation rou­
tines submit the appropriate control re­
quest to IHCFIOSH, the input/output inter­
face module. After the request i8
executed, control is returned to the cal­
ling routine within the load module.

Write-to-oeerator Routines

The write-to-operator routines of
IHCFCOMH implement the STOP and PAUSE
source statements. These routines receive
control from within the load module via
calling sequences generated by the compiler
upon recognition of the STOP and PAUSE
statements.

STOP: A write-to-operator (WTO) macro
instruction is issued to display the mes­
sage associated with the STOP statement on
the console. Load module execution is then
terminated by passing control to the pro­
gram termination routine of IHCFCOMH.

PAUSE: A write-to-operator-with-reply
(WTOR> macro instruction is issued to dis­
play the message associated with the PAUSE
statement on the console and to enable the
operator's reply to be transmitted. A WAIT
macro instruction is then issued to deter­
mine when the operator's reply has been
transmitted. After the reply has been
received, control is returned to the
calling routine within the load module.

The utility routines of IHCFCOMH perform
the following functions:

• Process arithmetic-type program inter­
ruptions

• Process specification interruptions

• Terminate load module execution

222

PROCESSING OF ERROR MESSAGES: The error
message processing routine (IHCERRM)
receives control from various FORTRAN
library subprograms when they detect ter­
minal object-time errors.

Error message processing consists of
initializing the data set upon which the
message is to be written and writing the
message and a diagnostic traceback. After
the traceback is completed for error mes­
sage IHC218I, control is passed to the
statement designated in the ERR parameter
of a FORTRAN READ statement, if that para­
meter was specified. In all other cases,
control is passed to the termination rou­
tine, a routine that will terminate the
job. Program interrupts will cause a mes­
sage to be printed, but execution will
continue. When the extended error message
facility has been specified, execution may
continue after the detection of an error.

PROCESSING OF ARITHMETIC INTERRUPTIONS:
The interrupt routine (IBFINT) Of IHCFCOMH
initially receives control from within the
load module via a compiler-generated
calling sequence. The call is placed at
the start of the executable coding of the
load module so that the interrupt routine
can set up the program interrupt mask.
Subsequent entries into the interrupt rou­
tine are made through specification or
arithmetic-type interruptions.

The interrupt routine sets up the pro­
gram interrupt mask by means of a SPIE
macro instruction. This instruction speci­
fies the type of interruptions that are to
cause control to be passed to the interrupt
routine, and the location within the rou­
tine to which control is to be passed if
the specified interruptions occur. After
the mask has been set, control is returned
to the calling routine within the load
module.

In processing an interruption, the first
step taken by the interrupt routine is to
determine its type.

A. __ ~!:~th!!!~:!:.~£-1.!!:!:.~E!:~E:!:.~2!!§.: If exponen­
tial overflow or underflow has occurred,
the appropriate indicators, which are

referred to by OVERFL (a library
gram>, are set. If any type of
check caused the interruption, the
tor referred to by DVCHK (also a
subprogram) is set.

subpro­
di vide

indica-
1 ibrary

Regardless of the type of interruption
that caused control to be given to the
interrupt routine, the old program PSW is
written out for diagnostic purposes.

After the interruption has been pro­
cessed, control is returned to the inter­
rupted routine at the point of
interruption.

B. s2ecification Interru2tions: If an
interrupt is caused by a specification
exception and the boundary alignment option
was specified by the user during system
generation, the boundary adjustment routine
CIHCADJST) is loaded from the link library
(SYSl. LINKLIB).

This routine determines whether or not
the interrupt was caused by an instruction
that referred to improperly aligned data.
If not, the routine causes abnormal ter­
mination of the load module. If so, the
routine:

1. Causes message IHC210I, which contains
the main program, PSW, to be
generated.

2. Moves the misaligned data to a prop­
erly aligned boundary.

3. Re-executes the instruction
refers to the data.

that

If no interruption occurs when the
instruction is re-executed, the data is
moved back to its original location. If
there is a new condition code, it is placed
in the PSW of the Program Interruption
Element (PIE). The boundary adjustment
routine then returns control to the control
program, which loads the PSW of the PIE to
effect a return to the interrupted program.

If a divide check, exponential overflow
or underflow interruption occurs when the
instruction is re-executed, the interrup­
tion will be handled as described under
"Arithmetic Interruptions."

If a data, protection, or addressing
interruption occurs when the instruction is
re-executed, the boundary adjustment rou­
tine generates the message IHC210I. The
PSW information in this message gives the
cause of the interruption and the location
of the instruction in the main program that
caused the interruption. Then, since pro­
cessing cannot continue, the routine issues
a SPIE macro instruction to remove specifi­
cation interrupts from those interruptions

handled by this routine and re-executes the
instruction. This causes abnormal termina­
tion of the load module because of the
original specification error.

PROGRAM TERMINATION: The load module ter­
mination routine (IBEXIT) of IHCFCOMH
receives control from various library sub­
programs (e.g., DUMP and EXIT) and from
other IHCFCOMH routines (e.g., the routine
that processes the STOP statement>.

This routine terminates execution of the
load module by the following means:

• Calling the appropriate input/output
interface<s> to check {via the CHECK
macro instruction) outstanding write
requests.

• Issuing a SPIE macro instruction with
no parameters indicating that the
FORTRAN object module no longer desires
to give special treatment to program
interruptions and does not want mask­
able interruptions to occur.

• Returning to the
supervisor.

operating system

The conversion routines either convert
data to be placed into I/O list items or
convert data to be taken from I/O list
items.

These routines receive control either
from the I/O list section of IHCFCOMH
during its processing of list items for
READ/WRITE statements requiring a format,
from the routines that process a READ/WRITE
statements using a NAMELIST, or from the
DUMP and PDUMP subprograms.

Each conversion routine is associated
with a conversion type format code and/or a
type. If an I/O list item for a READ/WRITE
statement requiring a format is being pro­
cessed, the conversion routine is selected
according to the conversion type format
code which is to be applied to the list
item. If a list item for a READ/WRITE
using a NAMELIST is being processed, the
conversion routine is selected according to
the type of the list item.

If a READ statement is being imple­
mented, the conversion routine obtains data
from the input/output buffer, converts it
according to its associated conversion type
format code or type, and enters the con­
verted data into the list item. The pro­
cess is reversed if a WRITE statement is
being implemented.

Appendix F: Object-Time Library Subprograms 223

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

For the DUMP and PDUMP subprograms, the
format code parameter passed to them deter­
mines the selection of the output conver­
sion routine to be used to place the output
in the desired form.

Chart G3 illustrates the overall logic
and the relationship among the routines of
IHCFIOSH. Table 18, the IHCFIOSH routine
directory, lists the routines used in
IHCFIOSH and their functions.

See Table 17, at the end of this appen­
dix, for a complete directory of the sub­
routines used by IHCFCVTH.

IHCFIOSH
BLOCKS AND TABLE USED

IHCFIOSH, the object-time FORTRAN
sequential access input/output data manage­
ment interface, receives input/output
requests from IHCFCOMH and submits them to
the appropriate BSAM (basic sequential
access method) routines and/or open and
close routines for execution.

When the extended error message facility
has been specified at system generation
time, IHCFIOSH will include programming to
allow execution to continue after an error
occurs.

IHCFIOSH uses the following blocks and
table during its processing of sequential
access input/output requests: (1) unit
blocks, and (2) unit assignment table. The
unit blocks are used to indicate input/
output activity for each unit number (i.e.,
data set reference number> and to indicate
the type of operation requested. In addi­
tion, the unit blocks contain skeletons of
the data event control blocks (DECB) and
the data control blocks (DCB) that are
required for input/output operations. The
unit assignment table is used as an index
to the unit blocks.

r------------y---~-------T------------T------------T------------~

I ABYTE I BBYTE I CBYTE I DBYTE I 4 bytes I
r-~-~------L------------L------------i------------+------------~
I Address of Buffer 1 I 4 bytes I
r---+------------~
I Address of Buffer 2 I 4 bytes I
r--------~------~---------------------------------+------------~
I Current buffer pointer* I 4 bytes I
r-------------------------------~-------------------+------------~
I Record offset (RECPTR}* I 4 bytes I
r----------------~---------------------------------+------------i
I Address of last DECB I 4 bytes I
r---+------------~
I Mask for alternating buffers I 4 bytes I
r----~---+------------i
I DECBl skeleton section I 20 bytes I
r--------------------------------------T------------f------------i
I Not used I LIVECNTl I 4 bytes I
r----~----------~---~---------------i------------+------------i
I DECB2 skeleton section I 20 bytes I
r-------------------------T------------T------------f------------i
I Work space ~ Not used I LIVECNT2 I 4 bytes I
·---------~~---~-------L------------i------------+------------i
J DCB skeleton section I 88 bytes I
r---i------------i
I I
I *Used only for variable length and/or blocked records. I
I I
L----~--J

•Figure 17. Format of a Unit Block for a Sequential Access Data Set

224

Housekeeping
section

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

The first reference to each unit number
(data set reference number> by an input/
output operation within the FORTRAN load
module causes IHCFIOSH to construct a unit
block for each unit number. The main
storage for the unit blocks is obtained by
IHCFIOSH via the GETMAIN macro instruction.
The addresses of the unit blocks are placed
in the unit assignment table as the unit
blocks are constructed. All subsequent
references to the unit numbers are then
made through the unit assignment table.
Figure 1? illustrates the format of a unit
block for a unit that is defined as a
sequential access data set.

Each unit block is divided into four
sections: a housekeeping section, two DECB
skeleton sections, and a DCB skeleton
section.

HOUSEKEEPING SECTION: The housekeeping
section is maintained by IHCFIOSH. The
information contained in it is used to
indicate data set type, to keep track of
input/output buffer locations, and to keep
track of addresses internal to the input/
output buffers to enable the processing of
blocked records. The fields of this sec­
tion are:

ABYTE
This field, containing the data set
type passed to IHCFIOSH by IHCFCOMH,
can be set to one of the following:

FO -- Input data set requiring a
format

FF -- output data set requiring a
format

00 -- Input data set not requiring a
format

OF -- output data set not requiring a
format

Appen~ix F: Object-Time Library Subprograms 224.1

Form ¥28-6638-1
Page Revised 11/15/bB by TNL Y28-6826

BBYTE

CBYTE

DBYTE

This field contains bits that are set
and examined by IHCFIOSH during its
processing. The bits and their mean­
ings, when on, are as follows:

0 -- Exit to IHCFCOMH on input/output
error

1 Input/output error occurred

2 Current buffer indicator

3 Not used

4 End-of-current buffer indicator

5 Blocked data set indicator

6 Variable record format switch

7 Not used

This field also contains bits that are
set and examined by IHCFIOSH. The
bits and their meanings, when on,. are
as follows:

0 Data control block opened

1 Data control block not TCLOSEd

2 Data control block not previously
opened

3 Buff er pool attached

4 Data set not previously rewound

5 Not used

6 Concatenation occurring
reissue READ

7 -- Data set is DUMMY

This field contains bits that are set
and examined by IHCFIOSH dur~ng the
processing of an input/output opera­
tion involving a backspace request.
The bits and their meanings, when on,
are as follows:

0 A physical BACKSPACE has occurred

1 Previous operation was BACKSPACE

2 Not used

3 End of file routine should retain
buffers

4 -- Not used

5 Not used

6 END FILE followed by BACKSPACE

7 Not used

Addresses of Buffer 1 and of Buffer 2
These fields contain pointers to the
two input/output buffers obtained dur­
ing the opening of the data control
block for this data set.

Current Buff er Pointer
This field contains a pointer to the
input/output butter currently being
used.

Record Offset (RECPTR)
This field contains a pointer to the
current logical record within the cur­
rent buffer.

Address of Last DECB
This field contains a pointer to the
DECB last used.

Mask for Alternating Buffers
This field contains the bits which
enable an Exclusive Or operation to
alternate the current buffer pointer.

DECB SKELETON SECTIONS CDECBl AND DECB2J:
The DECB (data event control block> skele­
ton sections are blocks of main storage
within the unit block. They have the same
format as the DECB constructed by the
control program for an L format of an
S-type READ or WRITE macro instruction (see
the publication IBM System/360 0~£atinq
§ystem: Supervisor and Data Management
Macro-Instructions, Form C28-6647). The
various fields of the DECB skeleton are
filled in by IHCFIOSH; the completed block
is referred to when IHCFIOSH issues a
read/write request to BSAM. The read/write
field is filled in at open time. For each
input/output operation, IHCFIOSH supplies
IHCFCOMH with: (1) an indication of the
type of operation <read or write>, and (2)
the length of and a pointer to the input/
output buffer to be used for the operation.

LIVECNT1 and LIVECNT2
These fields indicate whether any
input/output operation performed for
the data set is unchecked. (A value
of 1 indicates that a previous read or
write has not been checked; a value of
0 indicates that all previous read and
write operations for the data set have
been checked.)

Work Space
This field is used to align the logi­
cal record length of a variable record
segment on a fullword boundary.

Appendix F: Object-Time Library Subprograms 225

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

QCB _fil5EL£!'!Q~ __ §£!£TIQ!:!: The DCB (data con­
trol block) skeleton section is a block of
main storage within the unit block. It is
of the same form as the DCB constructed by
the control program for a DCB macro
instruction under BSAM (see the §!!Eery!22.!:
~nd_~~~~g~ggmgg:!;_~~£I_Q-Igstruct!Qg2 pub­
lication, Form C28-6647). The various
fields of the DCB skeleton are filled in by
the control program when the DCB for the
data set is opened (see the publication IBM
Sys~eroL~~Q __ QE.eratinq System: Concepts and
Facilities>. Standard default values may
also be inserted in the DCB skeleton by
IHCFIOSH. See "Unit Assignment Table" for
a discussio:n u.L wu~u default VetlUeti art!
inserted into the DCB skeleton.

The unit assignment table (IHCUATBL)
resides on the FORTRAN system library

(SYSl.FORTLIB>. Its size depends
maximum number of units that
referred to during execution of any
load module. This number ($ 99) is
fied by the user during the system
tion process via the FORTLIB
instruction.

on the
can be
FORTRAN
speci­

genera­
macro

The unit assignment table is designed to
be used by both IHCFIOSH and IHCDIOSE. It
is included once, by the linkage editor, in
the FORTRAN load module as a result of an
external reference to it within IHCFIOSH
c1nu/ur I.HCDIOSE.

The unit assignment table contains a 16-
byte entry for each of. the unit numbers
that can be referred to by the user. These
entries differ in format depending on
whether the unit has been defined as a
sequential access or a direct access data
set.

Appendix F: Object-Time Library subprograms 225.1

Figure 18 illustrates the format of the
unit assignment table.

r----------------------T----------T-------1
I Unit number (DSRN) I 5 I I
.J being used for current I I I
I operation I n x 16 J 4 bytes I
t--------~-------T-----L-T--------f-------i
I ERRMSG I READ I PRINT I PUNCH I I
I DSRN1 I DSRN2 I DSRN3 I DSRN'+ 14 bytes!
t--------~-------L-------L--------f-------1
IUBLOCKOl field 14 bytes!
t-------------~------------------+-------i
IDSRNOl default values 18 bytesj
t---------------------------------+-------i
JLISTOl field 14 bytes!
~------~---------~---------------+-------i
I I I
l I I
I I I
I I I
I I I
t----------------~---------------+-------i
IUBLOCKn field 6 14 bytesf
~---------------------------------t-------i
IDSRNn default values 7 18 bytes]
t---------------------------------+-------i
lLISTn field 8 14 bytes!
t----~--~-----------------------~-------i
l 1 Unit number CDSRN) of error output!
I device. I
l 2 Unit number CDSRN) of input device for al
I read of the form: READ Q1 1ist. I
l 3 Unit number (DSRN> of output device forl
I a print operation of the form: PRINT!
I Q., lie_:!:_. I
l'+Unit number CDSRN> of output device forl
I a punch operation of the form: PUNCHI
I Q., list.. I
l 5 n is the maximum number of units that!
I can be referred to by the FORTRAN load!
I module. The size of the unit table isl
I equal to (8 + n x 16) bytes. I
l 6 The UBLOCKn field contains either al
I pointer to the unit block constructed!
I for unit number n if the unit is being!
I used at object time, or a value of 1 ifl
I the unit is not being used. I
17 The default values for the various unitl
I numbers are specified by the user andl
I are assembled into the unit assignment!
I table entries during the system genera-I
I tion process. The default values arel
I used only by IHCFIOSH; they are ignored!
I by IHCDIOSE. I
l 8 If the unit is defined as a direct!
I access data. set, the LISTn field con-I
I tains a pointer to the parameter list!
I that defines the direct access data set.)
I Otherwise, this field contains a value]
I of 1. I
L----~-----------------------------------J
Figure 18. Unit Assignment Table Format

226

Because IHCFIOSH deals only with sequen­
tial access data sets, the remainder of the
discussion on the unit assignment table is
devoted to unit assignment table entries
for sequential access data sets. If
IHCFIOSH encounters a reference to a direct
access data set, it is considered as an
error, and control is passed to the load
module termination routine of IHCFCOMH.

The pointers to the unit blocks created
for sequential data sets are inserted into
the unit assignment table entries by
IHCFIOSH when the unit blocks are
constructed.

Note: Default values are standard values
that IHCFIOSH inserts into the appropriate
fields Ce.g., BUFNO) of the DCB skeleton
section of the unit blocks if the user does
either of the following:

1. Causes the load module to be executed
via a cataloged procedure, or

2. Fails, in stating his own procedure
for execution, to include in the DCB
parameter of his DD statements those
subparameters (e.g., BUFNO) that he is
permitted to include (see the publica­
tion !~~_§ystem/36Q_0Eerating system:
FORTRAN IV (G) Programmer's Guide).

Control is returned to IHCFIOSH during
data control block opening so that it can
determine whether or not the user has
included the subparameters in the DCB para­
meter of his DD statements. IHCFIOSH
examines the DCB skeleton fields corres­
ponding to user-permitted subparameters
and, upon encountering a null field (indi­
cating that the user has not specified the
subparameter>, inserts the standard value
<i.e., the default value) for the subparam­
eter into the DCB skeleton. (If the user
has included these subparameters in his OD
statement, the control program routine per­
forming data control block opening inserts
the subparameter values, before transfer­
ring control to IHCFIOSH, into the DCB
skeleton fields reserved for those values.)

BUFFERING

All input/output operations are double
buffered. (The double buffering scheme can
be overridden by the user if he specifies
in a DD statement: BUFNO=l.) This implies
that during data control block opening, two
buffers will be obtained. The addresses of
these buffers are given alternately to
IHCFCOMH as pointers to:

• Buffers
output)

to be filled (in the case of

• Information that has been read in and
is to be processed Cin the case of
input)

COMMUNICATION WITH THE CONTROL PROGRAM

In requesting services of the
program, IHCFIOSH uses L and E
S-type macro instructions (see the
tion ~BM System/360 Operating
0uperv1sor ana uata Management
Instructions, Form C28-6647).

OPERATION

control
forms of
publica­

System:
Macro-

The processing of IHCFIOSH is divided
into five sections: initializati-on, read,
write, device manipulation, and closing.
When called by IHCFCOMH, a section of
IHCFIOSH performs its function and then
returns control to IHCFCOMH.

Initialization ---------

The initialization
IHCFIOSH depends upon
previous input/output
for the data set. The
possibilities are:

action taken by
the nature of the
operation requested
previous operation

• No previous operation

• Previous operation.read or write

• Previous operation backspace

• Previous operation write end-of-data
set

• Previous operation rewind

NO PREVIOUS OPERATION: If no previous
operation has been performed on the unit
specified in the input/output request, the
initialization section generates a unit
block for the unit number. The data set to
be created is then opened (if the current
operation is not rewind or backspace) via
the OPEN macro instruction. The addresses
of the input/output buffers, which are
obtained during the opening process and
placed into the DCB skeleton, are placed
into the appropriate fields of the house­
keeping section of the unit block. The
DECB skeleton is then set to reflect the
nature of the operation (read or write},
the format of the records to be read or

written, and the address of
output buff er to be used in the

the input/
operation.

If the requested operation is a write, a
pointer to the buffer position, at which
IHCFCOMH is to place the record to be
written, and the block size or logical
record length (to accommodate blocked log­
ical records) are placed into registers,
and control is returned to IHCFCOMH.

If the requested operation is a read, a
record is read, via a READ macro instruc­
tion, into the input/output buffer, and the
operation is checked for completion via the
CHECK macro instruction. A pointer to the
location ot: the record within the inif.L.::r,
along with the number of bytes read or the
logical record length, are placed into
registers, and control is returned to
IHCFCOMH.

Note: During the opening process, control
is returned to the IHCDCBXE routine in
IHCFIOSH. This routine determines if the
data set being opened is a 1403 printer.
If it is, the RECFM field in the DCB for
the data set is altered to machine carriage
control (FM). In addition, a pointer to
the unit block generated for the printer,
and the physical address of the printer are
placed into a control block area (CTLBLK}
for the printer within IHCFIOSH. CTLBLK
also contains a third print buffer. This
buffer is used in conjunction with the two
buffers already obtained for the printer.

Figure 19 illustrates the format of
CTLBLK.

r-------------------------,---------1
CTLBLKlaCBUF 3) I 4 bytes!

~-------------------------+---------~
laCunit block) I 4 bytes!
~-----------T-------------+---------~
laCprinter) !record length! 4 bytes!
~-----------i-------------+---------~
11 FTOO I 4 bytes!
~-------------------------+---------~
11 FOOl I 4 bytes!
~-------------------------+--------~

BUF3 !third print buffer 1144 bytes!
~-------------------------i---------~
11used in the task input/output!
I table CTIOT) search. I
L-----------------------------------J

Figure 19. CTLBLK Format

PREVIOUS OPERATION READ OR WRITE: If the
previous operation performed on the unit
specified in the present input/output requ­
est was either a read or write, the initia­
lization section determines the nature of
the present input/output request. If it is
a write, a pointer to the buffer position,
at which IHCFCOMH is to place the record to
be written, and the block size or logical

Appendix F: Object-Time Library subprograms 227

record length are placed into registers,
and control is returned to IHCFCOMH.

If the operation to be performed is a
read, a pointer to the buff er location of
the record to be processed, along with the
number of bytes read or logical record
length, are placed into registers, and
control is returned to IHCFCOMH.

PREVIOUS OPERATION BACKSPACE: If the pre­
vious operation performed on the unit spe­
cified in the present input/output request
was a backspace, the initialization section
determines the type of the present opera­
tion <read or write) and modifies the DECB
skeleton, if necessary, to reflect the
operation type. (If the operation type is
the same as that of the operation that
preceded the backspace request, the DECB
skeleton need not be modified.) Subsequent
processing steps are the same as those
described for "No Previous Operation,•
starting at the point after the DECB skele­
ton is set to reflect operation type.

PREVIOUS OPERATION WRITE END-OF-DATA SET:
If the previous operation performed on the
unit specified in the present input/output
request was a write end-of-data set, a new
data set using the same unit number is to
be created. In this case, the initializa­
tion section closes the data set. Then, in
order to establish a correspondence between
the new data set and the DD statement
describing that data set, IHCFIOSH incre­
ments the unit sequence number of the
ddname. (The ddname is placed into the
appropriate field of the DCB skeleton prior
to the opening of the initial data set
associated with the unit number.) During
the opening of the data set, the ddname
will be used to merge with the appropriate
DD statement. The data set is then opened.
subsequent processing steps are the same as
those described for "No Previous Opera­
tion," starting at the point after the data
set is opened.

PREVIOUS OPERATION REWIND: If the previous
operation · performed on the unit specified
in the present input/output request was a
rewind, the ddname is initialized (set to
FTxxFOOl) in order to establish a corres­
pondence between the initial data set asso­
ciated with the unit number and the DD
statement describing that data set. The
data set is then opened. Subsequent pro­
cessing steps are the same as those de­
scribed for "No Previous Operation," start­
ing at the point after the data set is
opened.

228

The read section of IHCFIOSH performs
two functions: (1) reads physicai records
into the bUff ers obtained during data set
opening, and (2) makes the contents of
these buffers available to IHCFCOMH for
processing.

If the records being processed are
blocked, the read section does not read a
physical record each time it is given
control. IHCFIOSH only reads a physical
record when all of the logical records of
the blocked record under consideration have
been processed by IHCFCOMH. However, if
the records being processed are• either
unblocked or of U-f ormat, the read section
of IHCFIOSH issues a READ macro instruction
each time it receives control.

The reading of records by this section
is overlapped. That is, while the contents
of one bUffer are being processed, a phys­
ical record is being read into the other
bUffer. When the contents of one buffer
have been processed, the read into the
other buff er is checked for completion.
Upon completion of the read operation,
processing of that buffer's contents is
initiated. In addition, a read into the
second buffer is initiated.

Each time the read section is given
control it makes the next record available
to IHCFCOMH for processing. (In the case
of blocked records, the record presented to
IHCFCOMH is logical.) The read section of
IHCFIOSH places: (1) a pointer to the
record's location in the current input/
output buffer, and (2) the number of bytes
read or logical record length into regis­
ters, and then returns control to IHCFCOMH.

The write section of IHCFIOSH performs
two functions: (1) writes physical reco­
rds, and (2) provides IHCFCOMH with buffer
space in which to place the records to be
written.

If the records being written are
blocked, the write section does not write a
physical record each time it is given
control. IHCFIOSH only writes a physical
record when all of the logical records that
comprise the blocked record under consi­
deration have been placed into the input/
output buffer by IHCFCOMH. However, if the
records being written are either unblocked
or of U-format, the write section of
IHCFIOSH issues a WRITE macro instruction
each time it receives control.

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

The writing of records by this section
is overlapped. That is, while IHCFCOMH is
filling one buffer, the contents of the
other buffer are being written. when an
entire buffer has been filled, the write
from the other buff er is checked for com­
pletion. Upon completion of the write
operation, IHCFCOMH starts placing records
into that buffer. In addition, a write
from the second buffer is initiated.

Each time control is transferred to the
write section, it provi1es IHCFCOMH with
buffer space in which to place the record
to be written. IHCFIOSH places: (11 a
pointer to the location within the current
buffer at which IHCFCOMH is to place the
record, and (2) the block size or logical
record length into registers, and then
returns control to IHCFCOMH.

Note: The write section checks to see if
the data set being written on is a 1403
printer. If it is, ~he carriage control
character is changed to machine code, and
three buffers, instead of the normal two,
are used when writing on the printer.

ERROR PROCESSING WITHOUT EXTENDED ERROR
~~~~~~g==[~~l~I!x:---An-error number-Is-put 
into a parameter list and register 13 is 
set up to point to a save area in IBCOM. 
The user's save area is linked to this save 
area. The error monitor is then called to 
print a message on the object error unit. 

ERROR PROCESSING WITH EXTENDED ERROR MES­
SAGE--FACILITY=---A--cornrnon--subroutlne--ls 
called--to--prepare for a call to the error 
monitor. The common subroutine: 

1. Converts the data set reference and 
puts it into the last four bytes of 
the message. 

2. Links save areas as described when no 
error message facility has been 
specified. 

3. Calls the error monitor CIHCERRMl• 

The error monitor may return to continue 
execution. 

For error conditions 214 and 217, 218, 
219, 220, and 231 if user corrective action 
is taken, and for error 214 if the opera­
tion was input, the remainder of the I/O 
list is ignored upon return from the common 
subroutine. For error condition 214 under 
any other condition, the record format is 
changed to V and execution continues. 

For any error condition except 214 and 
217, upon return from the error monitor, 
IHCFIOSH returns an indication that an 
error hos occurred to the caller. 

In the case of an end-of-data set, 
IHCFIOSH simply passes control to the end­
of-data set routine of IHCFCOMH. 

Chart G4 illustrates the execution-time 
input/output recovery procedure for any 
input/output errors detected by the input/ 
output supervisor. 

Device Manioulation 

The device manipulation section of 
IHCFIOSH processes backspace, rewind, and 
write end-of-data set requests. 

B~CKSPACE: IHCFIOSH processes the back­
space-request by issuing the appropriate 
number of BSP (physical backspace) macro 
instructions CO, 1, 2, or 3) and adjusting 
the RECPTR in the unit block to point to 
the preceding logical record. The number 
of BSP's issued will depend on the number 
of buffers used, the previous input/output 
operation, and the position of RECPTR prior 
to the backspace. 

For unformatted records, the processing 
of a backspace request also includes 
examining the SDW (segment descriptor word) 
of ea.ch record segment in order to locate 
the first segment of a spanned record 
(i.e., a logical record which causes more 
than one physical input/output operation to 
be performed). Control is then returned to 
IHCFCOMH. 

REWI~Q: IHCFIOSH processes the rewind 
request by issuing a CLOSE macro instruc­
tion, using the REREAD option. This option 
has the same effect as a rewind. Control 
is then returned to IHCFCOMH. 

WRITE END-OF-DATA SET: IHCFIOSH processes 
this request by issuing a CLOSE macro 
instruction, type=T. It then frees the 
input/output buffers by issuing a FREEPOOL 
macro instruction, and returns control to 
IHCFCOMH. 

The closing section of IHCFIOSH examines 
the entries in the unit assignment table to 
determine which data control blocks are 
open. In addition, this section ensures 
that all write operations for a data set 
are completed before the data control block 
for that data set is closed. This is done 
by issuing a CHECK macro instruction for 
all double-buffered output data sets. con­
trol is then returned to IHCFCOMH. 

Appendix F: Object-Time Library subprograms 229 



Form Y28-6638-1 
Page Revised 11/15/68 by TNL Y28-6826 

Note: If a 1403 printer is being used, a 
write from the last print buffer is issued 
to ensure that the last line of output is 
written. 

IHCDIOSE 

IHCDIOSE, the object-time FORTRAN direct 
access input/output data management inter­
face, receives input/output requests from 
IHCFCOMH and submits them to the appropri­
ate BDAM (basic direct access method) rou­
tines and/or open and close routines for 
execution. (For the first input/output 
request involving a nonexistent data set, 
the appropriate BSAM routines must be 
executed prior to linking to the BDAM 
routines. The BSAM routines format and 
create a new data set consisting of blank 
records.) 

IHCDIOSE receives control from: (1) the 
initialization section of the FORTRAN load 
module i~ a DEFINE FILE statement is 
included in the source module, and (2) 
IHCFCOMH whenever a READ, WRITE, or FIND 
direct access statement is encountered in 
the load module. 

Charts GS and G6 illustrate the overall 
logic and the relationship among the rou­
tines of IHCDIOSE. Table 19 1 the IHCDIOSE 
routine directory, lists the routines used 
in IHCDIOSE and their functions. 

BLOCKS AND TABLE USED 

IHCDIOSE uses the following blocks and 
table during its processing of direct 
access input/output requests: (1) unit 
blocks, and (2) unit assignment table. The 
unit blocks are used to indicate input/ 
output activity for each unit number (i.e., 
data set reference number) and to indicate 
the type of operation requested. In addi­
tion, each unit block contains skeletons of 
the data event control blocks {DECB) and 
the data control block {DCB> that are 
required for input/output operations. The 
unit assignment table is used as an index 
to the unit blocks. 

Unit Blocks 

The first reference to each unit number 
(i.e., data set reference number) by a 
direct access input/output operation within 
the FORTRAN load module causes IHCDIOSE to 
construct a unit block for each of the 

230 

.referenced unit numbers. The main storage 
for the unit blocks is obtained by IHCDIOSE 
via the GETMAIN macro instruction. The 
addresses of the unit blocks are inserted 
into the corresponding unit assignment 
table entries as the unit blocks are con­
structed. Subsequent references to the 
unit numbers are then made through the unit 
assignment table. 

Figure 20 illustrates the format of a 
unit block for a unit that has been defined 
as a direct access data set. 

r-------T--------T-----T------T-----------1 
I I I Not I Not I I 
IIOTYPE ISTATUSU !used I used I 4 bytes I 
·-------L--------i-----i------f-----------1 
I RECNUM I 4 bytes I 
·-------T---------------------f-----------1 
I STATt1SAI. CURBUF I 4 bytes I 
·-------L---------------------f-----------1 
I BLKREFA I 4 bytes I 
·-------T---------------------f-----------~ 
ISTATUSAI CURBUF I 4 bytes I 
·-------L---------------------f-----------1 
I BLKREFB I 4 bytes I 
·-----------------------------+-----------~ 
1 DECBA I 28 bytes I 
·-----------------------------+-----------1 
I DECBB I 28 bytes I 
·-----------------------------+-----------1 
l DCB I 104 bytes I 
L-----------------------------i ___________ J 

Figure 20. Format of a Unit Block for a 
Direct Access Data Set 

The meanings of the various 
fields -are outlined below. 

IOTYPE 
This field, containing 
type passed to IHCDIOSE 
can be set to one of the 

FO -- Input data set 
format 

FF -- output data set 
format 

unit block 

the data set 
by IHCFCOMH, 
following: 

requiring a 

requiring a 

00 -- Input data set not requiring a 
format 

OF -- Output data set not requiring a 
format 



Form Y28-6638-1 
Page Revised 11/15/68 bv TNL Y28-6826 

STATUSU 
This field specifies the status of the 
associated unit number. The bits and 
their meanings, when on, are as 
follows; 

0 -- Data control block for data set 
is open for BSAM 

1 Error occurred 

2 Two buffers are being used 

3 Data control block for data set 
is open for BDAM 

4-5 -- 10 - U-form specified in DEFINE 
FILE statement 

01 - E-form specified in DEFINE 
FILE statement 

11 - L-form specified in DEFINE 
FILE statement 

6-7 -- Not used 

Appendix F: Object-Time Library Subprograms 230.1 





Note: IHCDIOSE references only bits 1, 2, 
and 3. 

RECNUM 
This field contains the number of 
records in the data set as specified 
in the parameter list for the data set 
in a DEFINE FILE statement. It is 
filled in by the file initialization 
section after the data control block 
for the data set is opened. 

STATUSA 
This field specifies the status of the 
buffer currently being used. The bits 
and their meanings, when on, are as 
follows: 

0 -- READ macro-instruction has been 
issued 

1 -- WRITE macro instruction has been 
issued 

2 -- CHECK macro instruction has been 
issued 

3-7 -- Not used 

CURBUF 
This field contains the address of the 
DECB skeleton currently being used. 
It is initialized to contain the 
address of the DECBA skeleton by the 
file initialization section of 
IHCDIOSE after the data control block 
for the data set is opened. 

BLKREFA 
This field contains an integer that 
indicates either the relative position 
within the data set of the record to 
be read, or the relative position 
within the data set at which the 
record is to be written. It is filled 
in by either the read or write section 
of IHCDIOSE prior to any reading or 
writing. In addition, the address of 
this field is inserted into the DECBA 
skeleton by the file initialization 
section of IHCDIOSE after the data 
control block for the data set is 
opened. 

STATUSB 
This field specifies the status of the 
next buffer to be used if two buffers 
are obtained for this data set during 
data control block opening. The bits 
and their meanings are the same as 
described for the STATUSA field. 
However, if only one buffer is 

obtained during data control block 
opening, this field is not used. 

NXTBUF 
This field contains the address of the 
DECB skeleton to be used next if two 
buffers are obtained during data con­
trol block opening. It is initialized 
to contain the address of the DECBB 
skeleton by the file initialization 
section of IHCDIOSE after the data 
control block for the data set is 
opened. However, if only one buffer 
is obtained during data control block 
opening, this field is not used. 

BLKREFB 
The contents of this field are the 
same as described for the BLKREFA 
field. It is filled in either by the 
read or the write section of IHCDIOSE 
prior to any reading or writing. In 
addition, the address of this field is 
inserted into the DECBB skeleton by 
the file initialization section of 
IHCDIOSE after the data control block 
for the data set is opened. However, 
if only one buffer is obtained during 
data control block opening, this field 
is nqt used. 

DECBA Skeleton 
This field contains the DECB (data 
event control block) skeleton to be 
used when reading into or writing from 
the current buffer. It is of the same 
form as the DECB constructed by the 
control program for an L form of an 
s-type READ or WRITE macro instruction 
under EDAM (see the publication IBM 
Systern/360 O£erating System: SuperVI= 
sor and Data Management Macro­
Instructions. 

The various fields of the DECBA skeleton 
are filled in by the file initialization 
section of IHCDIOSE after the data control 
block for the data set is opened. The 
completed DECB is ref erred to when IHCDIOSE 
issues a read or a write request to BDAM. 
For each input/output operation, IHCDIOSE 
supplies IHCFCOMH with the address of and 
the size of the buffer to be used for the 
operation. 

DECBB Skeleton 
The DECBB skeleton is used when read­
ing into or writing from the next 
buffer. Its contents are the same as 
those described for the DECBA skele-

Appendix F: Object-Time Library Subprograms 231 



ton. The DECBB skeleton is completed 
in the same manner as described for 
the DECBA skeleton. However, if only 
one buffer is obtained during data 
control block opening, this field is 
not used. 

DCB Skeleton 
This field contains the DCB (data 
control block) skeleton for the asso­
ciated data set. It is of the same 
form as the DCB constructed by the 
control program for a DCB macro 
instruction under BDAM (see the publi­
cation IBM System/360 Operating Sys­
tem: Supervisor and Data Management 
Macro-Instructions). 

The various fields of the DCB skeleton 
are filled in by the control program when 
the DCB for the data set is opened (see the 
publication IBM system/360 Operating Sys­
tem: concepts and Facilities). 

Unit Assignment Table 

The unit assignment table (IHCUATBL) 
resides on the FORTRAN system library 
(SYSl.FORTLIB). Its size depends on the 
maximum number of units that can be 
referred to during execution of any FORTRAN 
load module. This number (~99) is speci­
fied by the user during the system genera­
tion process via the FORTLIB macro 
instruction. 

The unit assignment table is designed to 
be used by both IHCFIOSH and IHCDIOSE. It 
is included once, by the linkage editor, in 
the FORTRAN load module as a result of an 
external reference to it within IHCFIOSH 
and/or IHCDIOSE. 

The unit assignment table contains a 
16-byte entry for each of the unit numbers 
that can be referred to by either IHCDIOSE 
or IHCFIOSH. These entries differ in for­
mat depending on whether the unit has been 
defined as a direct access or as a sequen­
tial access data set. Because IHCDIOSE 
deals only with direct access data sets, 
only the entry for a direct access unit is 
shown here. (See the IHCFIOSH section 
"Table and Blocks Used", for the format of 
the unit assignment table as a whole.) If 
IHCDIOSE encounters a reference to a 
sequential access data set, it is consi­
dered as an error, and control is passed to 
the load module termination routine of 
IHCFCOMH. 

Figure 21 illustrates the unit assign­
ment table entry format for a direct access 
data set. 

232 

r---------------------------------T-------1 
f Pointer to unit block xx f 4 bytes! 
I (UBLOCKxx) I I 
1---------------------------------+-------1 
f Default values for DSRNxx Capp- f 8 bytes! 
I lies only to sequential access I I 
I data sets not used by I I 
I IHCDIOSE) I I 
1---------------------------------+-------1 
I Pointer to parameter list xx 14 bytes! 
I (LISTxx) I I 
~~-------------------------------i-------1 
I UBLOCKxx is the unit block generated I 
f for unit number xx. I 
I I 
I DSRNxx is the unit number for the I 
I direct access data set (xx~99). I 
I I 
I LISTxx is the parameter list that I 
I defines the direct access data set I 
f associated with unit number xx. I 
L-----------------------------------------J 
Figure 21. Unit Assignment Table Entry for 

a Direct Access Data Set 

The pointers to the unit blocks are 
inserted into the unit assignment table 
entries by IHCDIOSE when the unit blocks 
are constructed. 

The pointers to the parameter lists are 
inserted into the unit assignment table 
entries by IHCDIOSE when it receives con­
trol from the initialization section of the 
FORTRAN load module being executed. 

BUFFERING 

All direct access input/output opera­
tions are double buffered. (The double 
buffering scheme may be overridden by the 
user if he specifies in his DD statements: 
BUFNO=l.) This implies that during data 
control block opening, two buffers will be 
obtained for each data set. The addresses 
of these buffers are given alternately to 
IHCFCOMH as pointers to: 

• Buffers to be filled in the case of 
output 

• Data that has been read in and is to be 
processed in the case of input 

Each buffer has its own DECB. This 
increases input/output efficiency by over­
lapping of input/output operations. 



COMMUNICATION WITH THE CONTROL PROGRAM 

In requesting services of the control 
program BSAM and BDAM routines, IHCDIOSE 
uses L and E forms of S-type macro instruc­
tions (see the publication IBM System/360 
Operating System: Supervisor and Data 
Management Macro-Instructions). 

OPERATION 

The processing of IHCDIOSE is divided 
into five sections: file definition, file 
initialization, read, write, and termina­
tion. When a section receives control, it 
performs its functions and then returns 
control to the caller (either the FORTRAN 
load module or IHCFCOMH). 

File Definition Section 

The file definition section is entered 
from the FORTRAN load module, via a 
compiler-generated calling sequence, if a 
DEFINE FILE statement is included in the 
FORTRAN source module. The file definition 
section performs the following functions: 

• Checks for the redefinition of each 
direct access unit number. 

• Enters the address 
access unit number's 
into the appropriate 
table entry. 

of each direct 
parameter list 
unit assignment 

• Establishes addressability for IHCDIOSE 
within IHCFCOMH. 

Each direct access unit number appearing 
in a DEFINE FILE statement is checked to 
determine whether it has.been defined pre­
viously. If it has been defined previous­
ly, the current definition is ignored. If 
it has not been defined previously, the 
address of its parameter list (i.e., the 
definition of the unit number) is inserted 
into the proper entry in the unit assign­
ment table. The next unit number, if any, 
is then obtained. 

When the last unit number has been 
processed in the above manner, the file 
definition section stores the address of 
IHCDIOSE into the FDIOCS field within 
IHCFCOMH. This enables IHCFCOMH to link to 
IHCDIOSE when IHCFCOMH encounters a direct 
access input/output statement. Control is 
then returned to the FORTRAN load module to 
continue normal pr~cessing. 

File Initialization Section 

The file initialization section receives 
control from IHCFCOMH whenever input or 
output is requested for a direct access 
data set. The processing performed by the 
initialization section depends on whether 
an input/output operation was previously 
requested for the data set. 

NO PREVIOUS OPERATION: If no operation was 
previously requested for the data set spe­
cified in the current input/output request, 
the file initialization section first con­
structs a unit block for the data ~~t. 

(The GETMAIN macro instruction is used to 
obtain the main storage for the unit 
block.) The address of the unit block is 
inserted into the appropriate entry in the 
unit assignment table. 

The file initialization section then 
reads the JFCB (job file control block) via 
the RDJFCB macro instruction. The value in 
the BUFNO field of the JFCB is inserted 
into the DCB skeleton in the unit block. 
This value indicates the number of buffers 
that are obtained for this data set when 
its data control block is opened. If the 
BUFNO field is null (i.e., if the user did 
not include the BUFNO subparameter in the 
DD statement for this data set), or other 
than 1 or 2 1 the file initialization sec­
tion inserts a value of 2 into the DCB 
skeleton. 

The file initialization section next 
examines the JFCBIND2 field in the JFCB to 
determine if the data set specified in the 
current input/output request exists. If 
the JFCBIND2 field indicates that the 
specified data set does not exist, and if 
the current request is a write, a new data 
set is created. (If the current request is 
a read, an error is indicated and control 
is returned to IHCFCOMH which may terminate 
load module execution. If the current 
request is a find, the request is ignored, 
and control is returned to IHCFCOMH.) If 
the JFCBIND2 field indicates that the 
specified data set already exists, a new 
data set is not created for EDAM use. 

If the specified data set is already 
opened when the file initialization section 
is entered, the following checks are made: 
(1) If the data set is already opened for 
BDAM, the appropriate branch is taken to 
perform a READ or WRITE operation. (2) If 
the specified data set has been opened for 
BSAM, the data set is then closed, since an 
input/output error must have occurred dur­
ing the formatting of the data set. The 
data set is then reopened to provide a 
fresh start. 

Appendix F: Object-Time Library Subprograms 233 



The file initialization section proces­
sing for a data set to be created, and for 
a data set that already exists is discussed 
in the following paragraphs. 

Data Set to be created: The data control 
block for the new data set is first opened 
for the BSAM, load mode, WRITE macro 
instruction. The BSAM WRITE macro instruc­
tion is 'used to create a new data set 
according to the format specified in the 
parameter list for the data set in a DEFINE 
FILE statement. The data control block is 
then closed. Subsequent file initializa­
tion section processing after creating the 
new data set is the same as that described 
for a data set that already exists (see the 
section "Data Set Already Exists"). 

Data Set Already Exists: The data control 
block for the data set is opened for direct 
access processing by the BDAM routines. 
After the data control block is opened, the 
file initialization section fills in 
various fields in the unit block: 

• The number of records in the data set 
is inserted into the RECNUM field. 

• The address of 
(DECBA and DECBB) 
CURBUF and the 
spectively. 

the DECB skeletons 
are inserted into the 
NXTBUF fields, re-

• The addresses of the input/output buf­
fers obtained during data control block 
opening are inserted into the appropri­
ate DECB skeletons. 

• The address of 
BLKREFB fields 
inserted into 
skeletons. 

the 
in 

the 

BLKREFA and the 
the unit block are 
appropriate DECB 

Note: If the user specifies BUFNO=l in the 
DD statement for this data set, only one 
input/output buffer is obtained during data 
control block opening. In this case, the 
NXTBUF field, the BLKREFB field, and the 
DECBB skeleton are not used. 

Subsequent file initialization section 
processing for the case of no previous 
operation depends upon the nature of the 
input/output request (FIND, READ, or 
WRITE). This processing is the same as 
that described for the case of a previous 
operation (see the section "Previous 
Operation"). 

PREVIOUS OPERATION: If an operation was 
previously requested for the data set 
specified in the current input/output requ­
est, the file initialization section pro­
cessing depends upon the nature of the 
current input/output request. 

234 

If the current request is either a find 
or a read, control is passed to the read 
section. 

If the current request is a write, 
control is passed to the secondary entry in 
the write section. 

Read Section 

The read section of IHCDIOSE processes 
read and find requests. The read section 
may be entered either from the file initia­
lization section of IHCDIOSE, or from 
IHCFCOMH. In either case, the processing 
performed is the same. In processing read 
and find requests, the read section per­
forms the following functions: 

• Reads physical records into the 
buffer(s) obtained during data control 
block opening. 

• Makes the contents of these buffers 
available to IHCFCOMH for processing. 

• Updates the associated variable that is 
defined in the DEFINE FILE statement 
for the data set. 

Upon receiving control, the read section 
first checks to see whether the record to 
be found or read is already in an input/ 
output buffer. Subsequent read section 
processing depends upon whether the record 
is in the buffer. 

RECORD IN BUFFER: If a record is in the 
buffer, the read section determines whether 
the current request is a find or a read. 

If the current request is a find, the 
associated variable for the data set is 
updated so that it points to the relative 
position within the direct access data set 
of the record that is in the buffer. 
Control is then returned to IHCFCOMH. 

If the current request is a read, the 
read operation that read the record into 
the buffer is checked for completion. The 
read section then places the address of the 
buffer and the size of the buffer into 
registers for use by IHCFCOMH. The asso­
ciated variable for the data set is updated 
so that it points to the relative position 
within the direct access data set of the 
record following the record just read. 
Control is then returned to IHCFCOMH. 

RECORD NOT IN BUFFER: If a record is not 
in the buffer, the read section first 
obtains the address of the buff er to be 
used for the current request. The relative 
record number of the record to be read is 



) 
/ 

then inserted into the appropriate BLKREF 
field in the unit block (i.e., BLKREFA or 
BLKREFB). The proper record is then read 
from the specified data set into the buff­
er. Subsequent read section processing for 
the case of a record not in the buff er is 
the same as that described for a record in 
the buffer (see the section "Record In 
Buffer"). 

Note 1: Record retrieval can proceed 
currently with CPU processing only if 
user alternates FIND statements with 
statements in his program. 

con­
the 

READ 

Note 2: If an input/olJtpu.t error occurs 
during reading, the control program returns 
control to the synchronous exit routine 
(SYNADR) within IHCDIOSE. The SYNADR rou­
tine sets a switch to indicate that an 
input/output error has occurred, and then 
returns control to the control program. 
The control program completes its proces­
sing and returns control to IHCDIOSE. 
IHCDIOSE interrogates the switch, finds it 
to be set, and passes control to the 
input/output error routine of IHCFCOMH <see 
"Error Processing"). 

Write Section 

The write section of IHCDIOSE processes 
write requests. The write section may be 
entered either from the file initialization 
section of IHCDIOSE or from IHCFCOMH. The 
processing performed by the write section 
depends upon where it is entered from. 

PROCESSING IF ENTERED FROM FILE INITIALIZA­
TION SECTION: If the write section is 
entered from the file initialization sec­
tion of IHCDIOSE, no writing is performed. 
The write section only provides IHCFCOMH 
with buffer space in which to place the 
record to be written. The relative record 
number of the record to be written is 
inserted into the appropriate BLKREF field 
(i.e., BLKREFA or BLKREFB). (The record is 
written the next time the write section is 
entered.) For a formatted write, the buff­
er is filled with blanks. For an unfor­
matted write, the buffer is filled with 
zeros. The write section then places the 
address of the buffer and the size of the 
buff er into registers for use by IHCFCOMH. 
control is then returned to IHCFCOMH. 

PROCESSING IF ENTERED FROM IHCFCOMH: Each 
time the write section is entered from 
IHCFCOMH, it writes the contents of the 
buffer onto the specified data set. Subse­
quent write section processing for 
entrances from IHCFCOMH is the same as that 
described for entrances from the file 
initialization section of IHCDIOSE (see the 

section "Processing if Entered from File 
Initialization section">. In addition, the 
associated variable is modified prior to 
returning to IHCFCOMH. The associated 
variable for the data set is updated so 
that it points to the relative position 
within the direct access data set of the 
record following the record just written. 

Note 1: The writing of physical records by 
this section is overlapped. That is, while 
IHCFCOMH is filling buffer A, buffer B is 
being written onto the output data set. 
When buffer A has been filled, the write 
from buff er B is checked for completion. 
Upon comoletion of the write operation, 
IHCFCOMH starts placing data into buff er B. 
In addition, a write from buffer A is 
initiated. 

Note 2: If an input/output error occurs 
during writing, the control program returns 
control to the synchronous exit routine 
(SYNADR) within IHCDIOSE. The SYNADR rou­
tine sets a switch to indicate that an 
input/output error has occurred, and then 
returns control to the control program. 
The control program completes its proces­
sing and returns control to IHCDIOSE. 
IHCDIOSE interrogates the switch, finds it 
to be set, and passes control to the 
input/output error routine of IHCFCOMH (see 
"Error Processing"). 

Error Processin~ 

The way in which errors are processed is 
dependent upon whether or not the extended 
error message facility was specified at 
system generation time. 

WITHOUT EXTENDED ERROR MESSAGE FACILITY: 
An error number is put into a parameter 
list and register 13 is set up to point to 
a save area in IBCOM. The user's save area 
is linked to this save area. The error 
monitor is then called. 

WITH EXTENDED ERROR MESSAGE FACILITY: A 
2-part common subroutine is called to pre­
pare for a call to the error monitor. The 
first part of the subroutine links save 
areas as described when no error message 
facility has been specified. It is used 
only when an error occurs in the portion of 
IHCDIOSE which was called directly from the 
problem program i.e., for error condi-
tions 234 and 235. The second part of the 
common subroutine is used for those errors 
as well as for errors detected in that 
portion of IHCDIOSE called from IHCFCOMH -
i.e., error conditions 231 through 233, and 
236 through 237. It puts the data set 
reference number into the last four bytes 
of the error message and links to the error 
monitor. 

Appendix F: Object-Time Library Subprograms 235 



For error condition 232, the number of 
the record requested is placed in the 
parameter list before calling the common 
subroutine. For error conditions 218 and 
237, the DCB address is placed in the 
parameter list. 

Termination Section 

The termination section of IHCDIOSE 
receives control from the load module ter­
mination routine of IHCFCOMH. The function 
of this section is to terminate any pending 
input/output operations involving direct 
access data sets. The unit blocks asso­
ciated with the direct access data sets are 
examined by IHCDIOSE to determine if any 
input/output is pending. CHECK macro 
instructions are issued for all pending 
input/output operations to ensure their 
completion. 

The data control blocks for the direct 
access data sets are closed, and the main 
storage occupied by the unit blocks is 
freed via the FREEMAIN macro instruction. 
control is then returned to the load modu­
letermination routine of IHCFCOMH to com­
plete the termination process. 

IHCIBERH 

IHCIBERH, a member of the FORTRAN system 
library (SYS1.FORTLIB), processes object­
time source statement errors. IHCIBERH is 
entered when an internal sequence number 
(ISN) cannot be executed because of a 
source statement error. 

The ISN of the invalid source statement 
is obtained (from information in the call­
ing sequence) and is then converted to 
decimal form. IHCIBERH then links to 
IHCFCOMH to implement the writing of the 
following error message: 

IHC230I - SOURCE ERROR AT ISN xxxx -
EXECUTION FAILED AT SUBROUTINE 
(xxxx) 

After the error message is written .on 
the user-designated error output data set, 
IHCIBERH passes control to the IBEXIT rou­
tine of IHCFCOMH to terminate execution. 

Chart G7 illustrates the overall logic 
of IHCIBERH. 

236 

IHCDBUG 

IHCDBUG performs the object-time opera­
tions of the debug facility statements. 
All linkages from the load module 
to IHCDBUG are compiler generated. 

Items and Buffer 

The following items in IHCDBUG are 
initialized to zero at load time: 

DSRN -- the data set reference number 

TRACFLAG -- trace flag 

IOFLAG -- input/output in progress flag 

DATATYPE -- variable type bits 

assembled for 
70-byte area 
character of 

blank for 

Whenever information is 
output, it is placed in a 
called DBUFFER. The first 
this area is permanently set to 
single spacing. 

The first portion of IHCDBUG, called by 
entry name DEBUG#, is a transfer table; 
this table is referred to by the code 
generated for the debug facility state­
ments, and branches to the 13 sections of 
IHCDBUG. These sections are discussed 
individually. 

TRACE ENTRY: If TRACFLAG is off, this 
routine-exits. otherwise, the characters 
'TRACE' are moved to DBUFFER + 1, the 
subroutine OUTINT converts the statement 
label to EBCDIC and places it in DBUFFER, 
and a branch is made to OUTBUFFR. 

SUBTRACE ENTRY: The characters 'SUBTRACE' 
and the name of the program or subprogram 
are moved to DBUFFER and a branch is made 
to OUTBUFFR. 

SUBTRACE RETURN ENTRY:, The characters. 
1 SUBTRACE *RETURN*' :are moved to DBUFFER 
and a branch is made to OUTBUFFR. 

UNIT ENTRY: The unit number argument is 
placed in DSRN and the routine exits. 

INIT SCALAR ENTRY: The data type is-saved, 
the location of the scalar is computed, 
subroutine OUTNAME places the name of the 
scalar in DBUFFER, and a branch is made to 
OUTITEM. 



INIT ARRAY ELEMENT ENTRY: This routine 
saves the data type, computes the location 
of the array element, and (via the subrou­
tine OUTNAME) places the name of the array 
in DBUFFER. It then computes the element 
number as follows: 

element number 
first array 
size) + 1 

((element location 
location) / element 

and places a left parenthesis, the element 
number (converted to EBCDIC by subroutine 
OUTINT), and a right parenthesis in DBUFFER 
following the array name. A branch is then 
made to OUTITEM. 

INIT FULL ARRAY ENTRY: If IOFLAG is on, 
the character X'FF' is placed in DBUFFER, 
followed by the address of the argument 
list, and a branch is made to OUTBUFFR. 
otherwise, a call to the !NIT ARRAY ELEMENT 
entry is constructed, and the routine loops 
through that call until all elements of the 
array have been processed. 

SUBSCRIPT CHECK ENTRY: The location of the 
array elementiscomputed; if it is less 
than or equal to the maximum array loca­
tion, the routine exits. If the array 
element location is outside the bounds of 
the array, the element number is computed 
and the characters 1 SUBCHK 1 are placed in 
DBUFFER. The subroutine OUTNAME then 
places the name of the array in DBUFFER, 
OUTINT supplies the EBCDIC code for the 
element number (which is enclosed in paren­
theses), and a branch is made to OUTBUFFR. 

TRACE ON ENTRY: TRACFLAG is turned on (set 
to nonzero) and the routine exits. 

TRACE OFF ENTRY: TRACFLAG is turned off 
(set to zero> and the routine exits. 

DISPLAY ENTRY: If IOFLAG is on, the char-
acters ___ 0DISPLAY DURING INPUT/OUTPUT 
SKIPPED' are moved to DBUFFER and a branch 
is made to OUTBUFFR. Otherwise, a calling 
sequence for the NAMELIST write routine is 
constructed. If DSRN is equal to zero, the 
unit number for SYSOUT (in IHCUATBL + 6) is 
used as the unit passed to the NAMELIST 
write routine. On return from the NAMELIST 
write, this routine exits. 

STAR'.!;'.__J_NPUT/OUTPQ'.L_ENTRY: The BYTECNT is 
set to 252 to indicate that the current 
area is full, the IOFLAG is set to X'80' .to 
indicate that input/output is in progress, 
the CURBYTLC is set to the address of 
SAVESTRT (where the location of the first 
main block will be), and the routine exits. 
(See the discussion of ALLOCHAR.) 

END INPUT/OUTPUT ENTRY: The IOFLAG is 
saved in TEMPFLAG and IOFLAG is reset to 
zero so that this section may make debug 

calls that result in output to a device. 
If no information was saved during the 
input/output, this routine exits. 

The subroutine FREECHAR is used to 
extract one character at a time from the 
save area. If an X'FF' is encountered 
(indicating the output of a full array), 
the next three bytes give the address of 
the call to INIT FULL ARRAY entry. A call 
to the DEBUG INIT FULL ARRAY entry is then 
constructed and executed. If X'FF' is not 
encountered, characters are placed in 
DBUFFER until an X'15' is found, indicating 
the end of a line. When this code is 
found, the subroutine OUTPUT is used to 
write out the line. 

If no main storage or insufficient main 
storage was available for saving informa­
tion during the input/output, the char­
acters 'SOME DEBUG OUTPUT MISSING' are 
placed in DBUFFER after all saved informa­
tion (if any) has been written out. The 
subroutine OUTPUT is then used to write out 
the message, and this routine returns to 
the caller. 

Subroutines -------

The following subroutines are used by 
the routines in IHCDBUG. 

OUTITEM: First, the characters • = are 
moved to DBUFFER. Four bytes of data are 
then moved to a work area on a doubleword 
boundary to avoid any boundary alignment 
errors when registers are loaded for 
logical or integer conversion. A branch on 
type then takes place. For fixed point, 
the routine OUTINT converts the value to 
EBCDIC and places it in DBUFFER. A branch 
to OUTBUFFR then takes place. 

For floating values, subroutine OUTFLOAT 
places the value in DBUFFER. A branch to 
OUTBUFFR then takes place. 

For complex values, two calls to 
OUTFLOAT are made -- first with the real 
part, then with the imaginary part. A left 
parenthesis is placed in DBUFFER before the 
first call, a comma after the first call, 
and a right parenthesis after the second 
call. A branch to OUTBUFFR then takes 
place. 

For logical values, a T is placed in 
DBUFFER if the value was nonzero; other­
wise, an F is placed in DBUFFER. A branch 
to OUTBUFFR then takes place. 

OUTNAME: This is a closed subroutine. Up 
to six-characters of the name are placed in 
DBUFFER. However, the first blank in the 
name causes the routine to exit. 

Appendix F: Object-Time Library Subprograms 237 



OUTINT: This is a closed subroutine. If 
the value (passed in R2) is equal to zero, 
the character •o• is placed in DBUFFER and 
the routine exits. If it is less than 
zero, a minus sign is placed in DBUFFER. 
The value is then converted to EBCDIC and 
placed in DBUFFER with leading zeros sup­
pressed. The routine then exits. 

OUTFLOAT: This subroutine calls the 
library module IHCFCVTH to put the 
floating-point number out under G conver­
sion with a format of Gx+?.x, where: 

x 
x 

7 for single precision 
16 for double precision 

OUTBUFFR: If IOFLAG is not set, the rou­
tine -calls the subroutine OUTPUT and then 
exits. Otherwise, IOFLAG is set to indic­
ate that debug output during input/output 
occurred. Then, a call is made to ALLOCHAR 
for each character in DBUFFER, and finally, 
a call to ALLOCHAR with X'15' indicating 
the end of the line. The routine then 
exits. 

ALLO~HAR: This is a closed subroutine. If 
BYTECNT is equal to 252 bytes, indicating 
the current block is full, a new block of 
256 bytes is obtained by a GETMAIN macro 
instruction. If no storage was available, 
an X'07', indicating the end of core 
storage, is placed in the last available 
byte position, IOFLAG is set to full, and 
the routine exits. Otherwise, the address 
of the new block is placed in the last 
three bytes of the previous block, preceded 
by X'37' indicating end of block with new 
block to follow. CURBYTLC is then set to 
the address of the new block and BYTECNT is 
set to zero. The character passed as an 
argument is then placed in the byte pointed 
to by CURBYTLC, one is added to both 
CURBYTLC and BYTECNT, and the routine 
exits. 

FREECHAR: This is a closed subroutine. If 
the -current character extracted is X'37', 
the next three bytes are placed in CURBYTLC 
and the current block is freed. If the 
current character is X1 07' the block is 
freed and a branch is made to the end 
input/output exit. Otherwise, the current 
character is passed to the calling routine 
and CURBYTLC is incremented by one. 

OUTPUT: This is a closed subroutine. If 
DSRN is zero, the SYSOUT unit number is 
obtained from IHCUATBL + 6. A call is then 
made to FIOCS# output initialize, DBUFFER 
is transferred to the FIOCS# buffer, and a 
call is made to FIOCS# output. The routine 
then exits. 

238 

IHCTRCH, a member of the FORTRAN system 
library (SYS1.FORTLIB), processes terminal 
errors detected by FORTRAN library subrou­
tines at object time. IHCTRCH is entered 
when an error is detected in order to print 
a traceback map. After this is accomp­
lished, the job is terminated unless the 
extended error message facility has been 
requested. 

IHCTRCH issues the following message: 

IHCxxxI 
TRACEBACK FOLLOWS ROUTINE ISN REG. 14 
REG. 15 REG. 0 REG. 1 

where xxx is the error code 
form) -that it obtains from 
sequence. 

(in decimal 
the calling 

If the error occurred in IHCFCOMH, 
IHCFCVTH, IHCNAMEL, IHCDIOSE, or IHCFIOSH, 
IHCTRCH sets up an area which can be 
processed as a standard save area for the 
first traceback line. 

For each traceback line, IHCTRCH 
the name of the called routine, 
internal statement number, if any, of 
call within the calling routine, and 
contents of registers 14, 15, O, and 1 
hexadecimal. 

gets 
the 
the 
the 
in 

After printing each line, IHCTRCH checks 
to determine whether or not the called 
routine was the main FORTRAN routine. If 
it was, the entry point is printed in 
hexadecimal and a branch is made to IBEXIT. 
If it was not, a traceback loop-check 
routine is entered, which builds and checks 
a table of save area addresses. If the 
table is full or if a loop is detected, 
IHCTRCH prints TRACEBACK TERMINATED and 
then prints the main FORTRAN routine entry 
point and branches to IBEXIT. 

IHCTRCH uses IHCFCVTH to convert to 
printable hexadecimal format, and it uses 
IHCFIOSH for printing. 

Further information about traceback, 
including an example of output, is con­
tained in the publication IBM System/360 
Operating System, FORTRAN IV (G) Program­
mer'$ Guide, Form C28-6639. 

IHCFINTH 

The module IHCFINTH processes asynch­
ronous program interrupts. Every FORTRAN 
main program notifies the system's first 
level interrupt handler Cvia a SPIE macro 



instruction) to transfer to the entry point 
ARITH# in module IHCFINTH in the event of a 
program interrupt. 

FORTRAN requests interrupt service for 
the program interrupts listed below. All 
others cause job termination by the system. 
(For a description of program interrupts. 
see the publication IBM system/360: Prin­
ciples of Operation, Form A22-6821.) 

Code 
-9-

11 
12 
13 
15 

Description 
Fixed-point divide 
Decimal divide 
Exponeui:; ove.r:flow 
Exponent underflow 
Floating-point divide 

Codes 8 and 
interrupt occurs. 

14 are masked so that no 

If boundary alignment adjustments were 
requested when the system was created• then 
interrupt 6 specification ·is also re­
quested. The processing for specification 
interrupts is handled by the module 
IHCADJST, however. 

The services performed by the interrupt 
processing routine IHCFINTB are as follows: 

1. A message is printed that identifies 
the interrupt. 

2. 

3. 

switches are set for exponent over­
flow. exponent underflow and. divide 
check for the FORTRAN subprograms CALL 
OVERFL(J) and CALL DVCBK(J). 

Result registers are 
exponent overflow and 
follows: 

overflow maximum 
numb~r. 

Underflow -- zero. 

altered for 
underflow as 

floating-point 

In addition, if the operation was an 
add or subtract and exponent underflow 
occurre~. then the condition code is 
set to o. 

When the extended error message facility 
has been requested, then the module 
IBCFINTB has the ability to accept a user 
exit and to control the printing of mes­
sages and the number of occurrences of the 
various interrupts. The user exit m~y 
provide an alternate value to be placed in 
the result register for underflow and over­
flow before execution continues. 

IHCERRM 

IHCERRM is the execution error monitor. 
Each FORTRAN library program that detects 
an error calls the IHCERRM module for error 
message service. The service available is 
dependent upon which of two options, basic 
message facility or extended error message 
facility, was selected at system 
generation. 

When the basic message facility is 
requested. each error causes job termina­
tion and a traceback map is produced. The 
messages printed on the object error unit 
will contain a description of the error 
situation if the error was detected by the 
mathematical library. For other error 
situations, only an error code is printed. 
For a full description of these error 
codes, see the FORTRAN (G) Programmer's 
Guide publication. 

When the extended error message facility 
is present. the error monitor is directed 
by the option table to perform one or more 
of the following actions: 

• Print a message 

• Terminate the job 

• Call a user-written routine for 
corrective action. Upon return from 
the user-written routine. the return is 
made to the caller of the error 
monitor. 

• Return to the caller of the error 
monitor an indication that standard 
corrective action is required. The 
routine that called the error monitor 
has the programming to provide the 
standard corrective action. 

To enable dynamic control of error 
occurrences and printing suppression. rou­
tines can be called from the FORTRAN source 
language. 

Because error message printing can be 
suppressed, a summary of error occurrences 
is given before return is made to the 
system. 

The FORTRAN library provides 
message facility through the 
services: 

the error 
following 

1. Each module that detects an error 
calls the error monitor. The module 
can accept a return from the error 
monitor and supply a standard correct­
ive action. 

2. An error monitor is supplied. 

Appendix F: Object-Time Library subprograms 239 



3,,, Routines are supplied to change the 
option table. 

4. An option table is supplied. 

5. The exit code of the FORTRAN library 
provides for the printing of an error 
summary. 

The following is a description of the 
error monitor: 

On initial entry, the error monitor will 
set a switch. If entered again before the 
switch is set to off, a recursive situation 
is detected and -the job is terminated. 

The error monitor then retrieves the 
error entry from the option table and makes 
the following actions and tests them in the 
order listed: 

1. 

2. 

3. 

240 

Updates the current count of errors 
encountered. 

Does the 
exceed the 
indicating 
terminated? 

current count of errors 
number of allowable errors, 
that the job should be 

Does the current count of messages 
printed exceed the number of messages 
to be printed, indicating that message 
printing is to be suppressed? 

4. Should a traceback map be printed? 

5. Is a user exit specified? If it is, 
the exit routine, which must return to 
the error monitor, is called. 

6. Return to the caller of the error 
monitor after turning off the switch 
that indicates that the error monitor 
has been entered. 

Charts G8 and G9 show the overall logic 
of the error monitor. 

IHCFOPT, the routine that allows the 
user to alter the option table thereby 
achieving dynamic control over error occur­
rence, has three entry points: ERRSTR, 
ERRSAV, and ERRSET. 

The option table consists of an entry 
for each error number and a pref ace of 
eight bytes. An option table entry for an 
error number is described in Table 14. 

If the extended error message facility 
has not been specified at system generation 
time, the option table is reduced to the 
preface alone. The option table preface is 
described in Table 15. 



• Table 14. Description of Option Table Entry 
r-----T--------T---------T--------------------------------------------------------------1 
I I !Default I I 
IFieldlLength 1Settings1 1 Description I 
~-----+--------+---------+--------------------------------------------------------------~ 
I 1 11 byte 10 2 contains a count. When the count in this field matches fieldl 
I I 3, the job is terminated. The maximum count is 255. Al 
I I count of zero means unlimited number of occurrences. 3 Anyl 
I I count greater than 255 supplied by ERRSET will set thisl 
I I field to zero. I 
I I I 
I 2 11 byte 54 A count of the number of messages to be printed~ message! 
I I printing is suppressed after the count is exceeded. A count! 
I of zero means no messages are to be printed. I 

1 hyt-.e 0 

1 byte 

bit 0 0 

1 1 

2 0 
3 <see 

Note 
4 0 
5 0 

6 1 

7 0 

5 4 bytes 1 

6) 

I 
I 
I 

count of number of errors that have occurred, where 0 means no 
errors have occurred. 

Eight option bits defined as follows: 

control character indicator 
0 = none, 1 = single space 

Table entry modifiable 
0 = no, 1 = yes (See Note 5) 

Extension of count of errors that have occurred 
Buffer contents to be printed 

0 = no, 1 = yes 
Unused (reserved) 
Unlimited number of messages allowed 

0 = no, 1 = yes 
Traceback required 

0 = no, 1 = yes 
Unused <reserved) 

!Address of user's exit routine. If the value of entry is odd, 
I standard corrective action is indicated. 

I 

~-----..L-_______ .,1._ ________ i _____ ~--------------~------------------------------~-------~ 

l 1 The default values shown apply to all error numbers unless excepted by a footnote. I 
l 2 Errors 208 1 210 1 and 215 are set as unlimited, and errors 217 and 230 are set to 1. I 
l 3 When the user sets the count of allowed errors as unlimited, the FORTRAN job may loop! 
I endlessly unless the operator intervenes. I 
l 4 Error 210 is set to 10, and errors 217 and 230 are set to 1. I 
l 5 The entry for error 230 is not modifiable. I 
l 6 This entry is set to 0 except for error numbers 212 1 215, 218, 221, 222, 223, 224, andl 
I 225. I 
L---------------------------------------------------------------------------------------J 

Appendix F: Object-Time Library subprograms 241 



•Table 15. Description of Option Table Preface 
.------T------T---------T----------------------------------------------------------------1 
I I Length I I I 
I I <in I I I 
fFieldfbytes)f Default I Description I 
~-----+------+---------+----------------------------------------------------------------i 
I 1 4 95 Contains the count of the number of entries in the option 
I table. 
I 
I 2 
I 
I 
I 
~ 
I 3 
I 
I 
I 
I 4 
I 
I 

1 l=bit 1 

1 0 

1 0 

Boundary alignment switch 
1 ALIGN 
0 = NOALIGN 

Bit 1 of this byte contains the switch. 

Error message handling selected 
FF = no, 00 = yes 

For no error message facility, the default will be FF. 

For no error message facility, boundary 
here. Default is then 10. 

align count is keptf 
I 
I 

I 5 1 0 Not used (reserved). I 
L------L------i---------i-------~-------------------------------------------------------J 

To obtain an entry from the option 
table, the source program calls IHCFOPT 
through its entry name ERRSAV.· When the 
requested entry is located in the option 
table, it is placed in the address passed 
in the call to ERRSAV. If the requested 
entry is not in the option table, a message 
is printed. 

To store an entry in the option table, 
the source program calls IHCFOPT through 
its entry name ERRSTR. If the requested 
entry exists in the option table, it is 
checked to see whether or not that entry 
can be modified. If it can be modified, 
the entry passed to ERRSAV is placed in the 
option table to replace the previous entry. 
If the existing entry is unmodifiable, a 
message stating this is printed. 

242 

To change individual fields in the 
option table, the source program calls 
IHCFOPT through its entry name ERRSET. If 
the requested entry exists in the option 
table, each field of the entry for which an 
alteration is requested is checked to see 
whether or not it contains a value of zero. 
(The !RANGE field error IHC215I is an 
exception.) If it does, that field will 
not be altered. If it does not, the field 
is replaced with the new field passed in 
the call to ERRSET. As parameters are 
processed, a check is made for an early end 
to the parameter list. 

Charts GlO, G11, and G12 show the over­
all logic of the routine to alter the 
option table. 



) 

•Chart GO. IHCFCOMH OVERALL LOGIC AND UTILITY ROUTINES 

IBEXIT 

****Fl********* * FROM FSTOP OR * * IBFERR * • • 
**"' ******** ** * * 

j 
*****Gl********** * IBEXIT * 
·-·-·-·-·-·-·-·-· * CLOSE DATA * 
*SETS (TERMINATE* * EXECUTION) * 
***************** 

j 
****Hl********* * TO * * OPERATING * * SYSTEM * 
*************** 

****A3********* * LOAD * * MODULE * • • 

······r····· 
*****B3********** . . 
* DETERMINE * * REQUEST TYPE * . . 
• • 
************** *** 

j 

THE LOAD MODULE ENTERS 
IHCFCOMH VIA A COMPILER­
GENERATED CALLING SEQUENCE, 

REQUEST TYPE CHART MAJOR PROCESSING 
ROUTINES WITHIN 
IHCFCOMH/IHCNAMEL 

EXTERNAL SUBROUTINES CALLED 

G1A2 FROWF, FWRWF, FIOLF, 
FI OAF, FENDF 

SEQUENTIAL AND G1F2 FRO NF, FWRNF, FIOLN, 
DIRECT ACCESS FIOAN, FENDN 

IHCFIOSH I SEQUENTIAL) 
IHCFIOSE \DIRECT ACCESS I 

READ/WRITE NOT 
REQUIRING A FORMAT 

READ USING 
NAMELIST 

G2El FRNDL 

G2E5 FWD NL WRITE USING 
NAMELIST FCVGO, FCVCO, FCVIO, FCVFO 

DEVICE 
MANIPULATION 

G2B3 

WRITE TO OPERATOR G2G3 

ERRMON 

****F2********* * FROM MODULE * 
*DETECTING ERROR* . . 

*************** 

j 
*****G2********** * IHCERRM * 
•-•-*-•-•-•-*-*-* * CALL * * ERROR MONITOR * . . 
***************** 

j 
****f-12********* * TO * * IBEXIT * . . 
*************** 
IF EXECUTION 
IS TO CONTINUE, 
RETURN TO CALLER 

FBKSP, FRWND, 
FEOFM 

FSTOP, FPAUS 

EXCEPT 

IHCFIOSH 

NONE 

****F3********* 
* FROM * * IHCFIOSH OR * * IHCDIOSE * 
*************** 

j 
*****G3********** * EXCEPT/FERROR * ·-·-·-·-·-·-·-·-· * DETERMINE * * IF PARAMETER * 
* SPECIFIED * 
***************** 

j 
****H3********* * TO * * LOAD MODULE * * IF SPECIFIED * 
*************** 
IF PARAMETER NOT 
SPECIFIED, EXIT IS 
TO ERRMON 

IBFINT 

****F4********* * FROM * * LOAD MODULE * • • *************** 

l 
*****G4********** * IBFINT * 
•-*-*-*-•-·-·-·-· * PROCESS * * ARITHMETIC * * INTERRUPTIO~ * 
***************** 

l 
****H4********* 

* TO * * LOAD MODULE * • • *************** 

FERROR 

****FS********* * FROM * * IHCFCOMH • ...... T ..... 
*****GS********** * FERROR. * 
·-·-·-·-·-·-•-*-* * DETERMINE IF * 
* ERR PARAMETER * * SPECIFIED * 
***************** 

j 
****HS********* * TO * * LOAD MODULE * * IF SPECIFIED * 
*************** 
IF PARAMETE'< NOT 
SPECIFIED, EXIT IS 
TO ERRMON 

Appendix F: Object-Time Library Subprograms 243 



Chart Gl. 

READ/WRITE 
REQUIRING A 

FORMAT 

READ/WRITE NOT 
REQUIRING A 

FORMAT 

244 

IMPLEMENTATION OF READ/WRITE/FIND 

***** 
*Gl * 

IHCFCOMH LOAD MODULE 

* A2* FRDWF/FWRWF 
* * *****A2********** * *PERFORM OPENING* 

L__>!OP~~:6;~~iT~OR : 

***** 
*Gl * 

* REQUIRING * 
* A FORMAT * 
***************** 

I 

FIOAF/FIOLF V 
*****82********** *****B4********** * PERFORM I/O * *GET LIST ITEM. * 
* LIST SECTION * * CALL I/O LIST * * OPERATIONS *<•~~~~~~~- -~~~~~~~-+ SECTION OF *<~, 

* ON LIST ITEM IHCFCOMH * I 

I 
***************** 

I 
. I ... 

C4 *• 
•* *• 

.:* t~~i *:.~_J 
*• ITEM .. 

*• • * 

.. .. 
* YES 

I 
FENDF V 
*****02********** *****04********** 
* * * * CLOSE OUT * * CALL CLOS 1 NG 

1/0 *<•~~~~~~~- -~~~~~~~-+ SECTION OF 
OPERATION * * IHCFCOMH * 

***************** 
I 

IHCFCOMH 

. 
********:II******** 

v 
*****E4********** . . 
* CONTINUE WITH * 
* LOAD MODULE * 

EXECUTION 

LOAD MODULE 

* F2* FRDNF/FWRNF 
* * *****F2********** * *PERFORM OPENING* 

L__>!~:~~~~~~~~/~~~o! 
* NOT REQUIRING * 
* A FORMAT . * 
***************** 

I 

I 
FIOLN/FIOAN V 
*****G2********** *****G4********** 
* PERFORM 1/0 * *GET LIST ITEM. * * LIST SECTION * * CALL l/O LIST * 
: o~PE~~i 1 ?~~M :<·~~~~~~~- -~~~~~~~-: si~~~~~M~F :<1 
***************** ***************** I 

I ---------H-.~... .. I 
·* *• I 

*:* t~~::: *:*~_J 
*• ITEM •* 

*• •* 
*· ·* * YES 

I 
FENDN V 
*****J2********** *****J4********** 
* * * * CLOSE OUT * * CALL CLOSING 

I/O *<•~~~~~~~- -~~~~~~~~* SECTION OF 
OPERATIONS * IHCFCOMH . 

***************** 

v 
*****K4********** . . 
* CONTINUE WITH * 
* LOAD MODULE * 

EXECUTION 

THIS CALL IS 
GENERATED 8Y 
COMPILER WHEN 
I/O LIST ITEM 
IS ENCOUNTERED 

THIS CALL IS 
GENERATED SY 
COMPILER WHEN 
ALL l/O LIST ITEMS 
ARE PROCESSED 

THIS CALL IS 
GENERATED BY 
COMPILER WHEN 
1/0 LIST ITEM 
IS ENCOUNTERED 

THIS CALL IS 
GENERATED BY 
COMPILER WHEN 
ALL 1/0 LIST ITEMS 
ARE PROCESSED 



) 

Chart G2. DEVICE MANIPULATION AND WRITE-TO-OPERATOR ROUTINES 

READ USING 
NAMELIST 

***** 
*G2 * * El* . . . 
I 
v 

*****El********** * FRDNL * 
·-·-·-·-·-·-·-·-· * IMPLEMENT * READ USING 

NAMELIST * 
***************** 

I 
v 

****Fl********* 
* TO * 

LOAD * 
* MODULE * 

*************** 

BACKSPACE 

FBKSP V 
*****02********** * IMPLEMENT * 

BACKSPACE 
SOURCE 

STATEMENT 

***************** 

I 

DEVICE MANIPULATION 

***** 
*G2 * * B3* . . . 
I 
v 

*****B3********** * DETERMINE * 
TYPE OF 

* DEVICE * MANIPULATION 
* (SEE NOTE) * 
***************** 

REWIND 

FRWND V 
*****03********** * IMPLEMENT * 

REWIND * 
SOURCE 

STATEMENT 

***************** 

I 
v 

****E3********* * TO * 

NOTE--

THE DEVICE MANIPULATION 
ROUTINES ONLY APPLY TO 
SEQUENTIAL ACCESS DATA SETS. 
DEVICE MANIPULATION REQUESTS 
FOR DIRECT ACCESS DATA 
SETS ARE 1 GNORED • 

I 
END FILEI 

I 
FEOFM V 
*****04********** * IMPLEMENT * * ENO FILE 
* SOURCE * STATEMENT 

***************** 

WRITE USING 
NAMELIST 

***** 
*G2 * 
* ES* .. . 
I 

I 
v 

*****ES********** * FWRNL * 
*-*-*-•-·-·-·-·-· 

~~~~~~~~>* LOAD *<·~~~~~~~~ IMPLEMENT 
WRITE USING

STOP

I
FSTOP V
*****H2********** * IMPLEMENT *
* STOP

SOURCE * STATEMENT
• *

I
v

****J2*********
* TO * IBEX IT *

*

* MODULE *

WRITE TO OPERATOR

*G2 *
* G3*
• * .
I
v

*****G3********** * DETERMINE *
TYPE OF

* NAMELIST *

I
v

****FS*********
* TO *

LOAD
* MODULE *

WRITE TO *·~~~~~~~~

OPERATOR *

Appendix F:

PAUSE I
I FPAUS V

*****H4**********
* IMPLEMENT * * PAUSE

SOURCE
STATEMENT

I
v

****J4*********
TO *

LOAD
MODULE

Object-Time Library Subprograms 245

Table 16. IHCFCOMH Subroutine Directory
r-------~-T-~---~------------~---1

1subroutinel Function I
!----------+--~

EXCEPT Checks for presence of END= parameter, and passes control to the load module!

FENDF
FENDN
FEOFM
FERR OR

FI OAF
FIOAN
FIOLF
FIOLN

if present. I
Closing section for a READ or WRITE requiring a format. I
Closing section for a READ or WRITE not requiring a format. I
Implements the END FILE source statement. I
Checks for the presence of the ERR= parameter, and passes control to thel

load module if present. I
I/O list section for list array of a READ or WRITE requiring a format. I
I/O list section for list array of a READ or WRITE not requiring a format. I
I/O list section for a list variable of a READ or WRITE requiring a format.I
I/O list section for a list variable of a READ or WRITE not requiring a

format.
FPAUS Implements the PAUSE source statement.
FRDNF !Opening section of a READ not requiring a format.
FRDWF !Opening section of a READ requiring a format.
FRWND !Implements the REWIND source statement.
FSTOP !Implements the STOP source statement.
FWRNF !Opening section for WRITE not requiring a format.
FWRWF !Opening section for WRITE requiring a format.
IBEXIT !Closes all data sets and terminates execution.
IBFERR !Calls IHCTRCH to process terminal object-time errors.
IBFINT !Processes program interruptions.
FBKSP !Implements the BACKSPACE source statement.

__________ J_ ________________ ~---------------~-------------------------------~-------

Table 17. IHCFCVTH Subroutine Directory
r-----~---T-----------------------------------~---------------------------------------1

I Subroutine I Function I
~----------+-----------------------------------~---------------------------------------~

FCVAI !Reads alphameric data.
FCVAO !Writes alphameric data.
FCVCI Reads complex data.
FCVCO Writes complex data.
FCVDI Reads double-precision data with an external exponent.
FCVDO Writes double-precision data with an external exponent.
FCVEI Reads real data with an external exponent.
FCVEO Writes real data with an external exponent.
FCVFI Reads real data without an external exponent.
FCVFO Writes real data without an external exponent.
FCVGI Reads general type data.
FCVGO writes general type data.
FCVII Reads integer data.
FCVIO Writes integer data.
FCVLI Reads logical data.
FCVLO writes logical data.
FCVZI Reads hexadecimal data.
FCVZO Writes hexadecimal data. I

----------i-------------------~---J

246

Chart G3. IHCFIOSH OVERALL LOGIC

INITIALIZATION READ

****A3********* .
FROM

I HCFCOMH
* *** ***********

*****B3********** . .
OETERMI NE
GPERATI ON

TYPE

* ****************
I

WRITEI

-------------,------------,1,

FINIT V
*****CI •***4-11-**** .
* DECODE DSRN
*AND BUILD UNIT *<----,
* BLOCK (IF * I

NECESSARY) I
***************** .! ••

FREAO . v.
C2 *•

•* AN'I' *•
•* MORE RCOS *• YES

•THIS BLOCK TO.----,
•.BE PROCES.* I

• SED · I
• • v

• NO

FRITE
C3

*· . .
•* OUTPUT *• NO .•--, *• BUFF Er~
• FULL · I

• • I
· • v * YES

DEV ICE
MANIPULATION

FCNTL
:****C4*********:

CHECK
STATUS OF *---,

UNIT * I
***************** v

CLOSE

FCLOS
:****CS*********!

* CHECK ANY *
OUTSTANDING *<--,

INPUT OR * I

*****~~~~~!****** I
I • •
I :.:~.: I

. .
* K 1 *

. .
* Kl *

**** . . **** . .
* c 1 *

I
v

*****D 1 **********
*OPEN DAT A CON- *
*TROL BLOCK FOR *
DATA SET IF NOT
* PREVIOUSLY *
* OPENED *
* ****************

I
I
v .•.

El *•
•* DCB *• NO

*· •• P~~~~~Ev .• ··--------,
*· • * I

• · I
* YES I

l I

v
*****02**********
* READ *
NEXT BLOCK INTO
* THIS BUFFER.
* SWITCH BUFFER *
* PDlNTERS *
** ***************

j
v

*****EZ********** .
* CHECK RESULT
* OF READ INTO
* OTHER BUFFER :1

* I
***************** v

*G4 *
* 82* . . .

*****Fl********** I *****F 2**********

DETER Ml NE : L : ISSUE *
* RECORD FORMAT * >* MESSAGE •---------------
* AND BLOCKING * IHC219C * V

*****D3* *********
*WRITE CONTENTS
* OF THIS BUF-

FER. SWITCH
BUFFER

* POINTERS *

I
I
v

*****E3**********
• *
* CHECK RESULT *
* OF WRITE FROM *
* OTHER BUFFER *

I
v

*G4 *
* 82* .. .

* * ***** •**************** ***************** *G4 *

I
v ...

GI *•
•* IS *•

•* CURRENT *• YES
• OP. DEVICE •---,

• MANIP. • I *• ·*
*· . * v

* NO

I
**** . .

* 04 * . .
v .•.

Hl *• READ *• WRITE
• OR .---,

• WRITE • I

···r;:, 1111

******J 1 ***********

READ
A

BLOCK

**** I
: Kl :_>f < • • I

v
*****Kl********** * PASS CURRENT *
*RECORD POINTER *

I

* AND LOGICAL *--------------,
* RECORD LENGTH * V
* TO I HCFCOMH * *****
***************** *G4 *

-II- 82* .. .

* F2*

* 04 *---,
• • I

v ...
04 ..

• * *• ·*
os···.... II

~ .. :* M~~~E~;;- *:*~ *:* t~~~ *:*~-J
I *·*~~~~~0~··* I *·*· ·*·*

I .. (~" 1,1 ··c~~~:·.
II *****E4*~******** *****E5**********

* ISSUE * * *
BACKSPACE. I * ISSUE I INDICATE L.__._>* CLOSE

I
I * DA~CP~ET WI~~T~~:EAO

*** * ***** * * ** **** * **** **** •**'** ***

I I *G4 • I L->~.::··
I *****F4•*********

L : ISSUE CLOSE
>* (TYPE=T)
* WITH LEAVE
* OPTION

I
v

*****G4****** **** . .
FREE 1/0

BUFFERS
FOR THIS

* DATA SET
********•********

I **•• L *G4 *
>* B2 * . .

I

I *G~ *
L->* 82 -JI-

* *

Appendix F: Object~Time Library subprograms 247

Chart G4.

**** . .
* Cl * . .

EXECUTION-TIME INPUT/OUTPUT RECOVERY PROCEDURE

THE I/O SUPERVISOR
IS ENTERED VIA BSAM
ROUTINE WHEN IHCFIOSH
ISSUES A MACRO-INSTRUCTION

***** -
*G4 * * B2* •• •

x ...
B2 *· *****B3**********

. * *· * * **** . * HAS * . YES * ISSUE * * * *· AN EOF BEEN •*•••• •••• X*MESSAGE IHC217I* X* F2 *
*· READ • * * * * *

· · * * **** *. ·* ***************** * NO

x
x . *· . *·

*****Cl********** C2 *· *****C3********** C4 *.
* * ·* *· * BSAM * ·* *· **** * RETURN ro * NO • * I/O *. YES * RETRY * . * I/O ERROR *. YES * *
BSAM, IHCFIOSH,•x.~ -..-····ERROR IN IOS .• •••••••• .x• APPROPRIATE • •••••••• x•. BEEN .• •••• X* Cl*
* AND IHCFCOtv~H * *· . * *NUMBER OF TII'-lES* *.CORRECTED.* * *
* * *· ·* * * *· ·* **** ***************** * .. * ***************** * .. *

x
****Dl********* • • * FORTRAN LOAD * * MODULE *

CONTINUES
NORMAL
PROCESSING

* * NO

x
*****D3********** *****D4********** * IHCFCOMH * * * * DETERMINES IF * * RETURN * * AN INVALID *X •••••••• * ABORT CODE TO *
BUFFER HAS BEEN * IHCFCOt-rn *
* READ * * *
***************** *****************

x .•.
*****E2********** E3 *·
* * . * *· * ISSUE * YES ·* tlAS *·
*MESSAGE IHC218I*X •••••••• *· BUFFER BEEN .*X •••
* * *.READ YET ·*
* * *. . *
***************** *· ·*

+ NO
**** . . .

* F2 *.X.

• •••• * x x
. *· .•.

F2 *. F3 *·
****Fl********* ·* *· . * *· * TO STATEMENT * YES • * ERR *. * SPECIFIED IN *X •••••••• *· PARAM • * * ERR PARAM * *.SPECIFIED.*
*************** *· ·*

248

*· . * * NO

*G4 * . * G2 *.X. • •
**** x
*****G2********** • • * PASS ABORT *

CODE TO *
SCHEDULER * • •

x
****H2******* ** • • * TO SCHEDULER * . .

ISSUES ABEND
MESSAGE AND
THEN CONTINUES
NORMAL PROCESS ING

·* REWIND OR*· NO . *· BACKSPACE ·*
.BEEN IS- ·

.SUED·
. · * YES

x
*****G3********** • • * VOID ABORT * * CODE IN * * IHCFCOMH * • •

x
****H3********* • • * FORTRAN LOAD * * MODULE *

CONTINUES
NORMAL
PROCESSING

Chart G5. IHCDIOSE OVERALL LOGIC - FILE DEFINITION SECTION

NOTE--

THE FILE DEFINITION
SECTION IS ENTERED
FROM THE FORTRAN
LOAD MODULE VIA A
COMPILER-GENERATED
CALLING SEQUENCE.

****A3il-********
* FORTRAN LOAD *

MODULE
* (SEE NOTE) *

I
I

I
v

*****83**********
GET FIRST *

UNIT NUMBER *
(DSRN) FROM

*PARAMETER LIST *
*

I
I

I
l<------
1
v

*****C3**********
* INSERT UNIT *
* NUMBER'S *
*PARAMETER LIST *
ADDRESS IN UNIT
*ASSIGNMENT TBL *

I
I
I
v

·*·
03 *• *****D4* ********

•* *• * GET NEXT *
•* LAST UNIT *• NO * UNIT NUMBER *

• NUMBER IN •----->* (DSRN) FROM
•PARAMETER. *PARAMETER LlST *

•LIST • *
• · *****************

* YES

I
I
v

*****E3**********
* * * ESTABLISH
LINKAGE BETWEEN
* IHCOIOSE AND *

IHCFCOME *

I
I
v

****F3*********
* FORTRAN * * LOAD

MODULE *

CONTINUE NORMAL
PROCESSING

Appendix F: Object-Time Library Subprograms 249

Chart G6. IHCDIOSE
SECTIONS

OVERALL LOGIC - FILE INITIALIZATION, READ, WRITE, AND TERMINATION

FILE INITJALIZATION
SECTION

I
DASI NIT • v.

Bl *•
•* *•

YES •* PREVIOUS *•
r-*• OPERATION •*
I *· •*
I *• •*
v *• •*

-11-iHH- * NO . .
* K4 * . . I

v
*****Cl**********
*CONSTRUCT UNIT *
* BLOCK.INSERT * * ADDR OF UNIT *
BLOCK INTO UNIT
*ASSIGNMENT TBL *

I
v

*****Dl********** * READ JOB FILE * * CONTROL BLOCK *
* (JFCB).INSERT *
* BUFNO VALUE *

INTO DCB *
*******•**•******

I
v

*****El********** . .
* EXAMINE *
*JFCBIND2 FIELD *
* IN JFCB *

I
v .•.

Fl *•
•* *•

DASTRA •*•
A3 *•

****A2********* •* *•
* •* DETCRMINE *•

IHCFCOMH -11---->*• OPERATION •*
* *• TYPE •*

*************** *• •*

DASREAD

READ
SECTION

.v •
82 *•

•* *•

• ·
I
v

*****83********** . .
•* IS *• NO OBTAIN

r->*• RECORD IN •*---->* ADDRESS OF
I *• BUFFER •* * INPUT BUFFER

.!.. *···*·::: *****************

: s2 : I 1

1

1

• * I<----~
v I I .•.

C2 *•
•* *•

YES •* IS THIS *•

1*"• *• ~E60~~T ·* •*
• •

• NO

I
v

*****D2********** . .
CHECK *

FOR I/O
COMPLETION .

I

I v
I *****C3**********

I =~~~E~6. R~~A~~6E:

111

1 :ToB~~R~~~Do~NTO:
* BLKREFB FIELD *

I
I I
II • v • *****-*D3* ***** ** ***

L___ READ A RECORD . .

WRITE SECTION
(PR I MARY ENTRY
FROM I HCFCOMH)

DASWRI TE
******84***********

WRITE A RECORD

I
I SECONDARY

* * I ENTRY
: C4 :->1

**** I
v

*****C4**********
* OBTAIN NEXT *
*OUTPUT 8UFFERt *
* BLANK OR ZERO *
DEPNDNG ON DATA

SET FORMAT *

*****04**********
INSERT RELATIVE
*RCD NO. OF RCO *
* TO SE WRITTEN *
INTO BLKREFA OR
* BLKREFB FIELD *

... v
*****E2**********
* PLACE *
*BUFFER POINTER *
ANO BUFFER SIZE
* IN REGISTERS *

*****E3********** E4 *•
* * •* *.
* PLACE BUFFER * IHCFCOMH •* *•

r----!eu~~J~T;~z~N~N :<----*·*·~~~~~~~~c·*·*
I * REGISTERS * *• •*

TE.RMI NATION
SECT ION

I
DAS TERM .v.

85 *•
•* ANY *•

•*PENDING 1/0*• ~O

• OPERATIONS •--1
• • l

*• • * I •. .• I
i YES I

l *****CS*~******** 1111

WAIT
FOR 1/0

COMPLETION

********i******** I
1<-------J
I
I
v

*****05********** . .
*CLOSE ocas FOR *
* DIRECT ACCESS *

DATA SETS

I
v

*****ES*-*********
* FREE MAIN *

STORAGE
* OCCUPIED BY
* UNIT BLOCKS

I ***************** *· * ·* *****************

I IFILE INITIALIZATION Ill _____ T_____ LION >I

v ••• 1 I
*****F2********** F3 *• *****F4********** I v

•* NEW DATA *• NO * VARIABLE•S * •* IS THIS *• YES *ASSOCIATED VAR *
*GET ASSOCIATED * •* *• * UPDATE * I ****F5*********

•. SET TO BE .,•-,
• CREATED • YES

I
v

•*•

I
v

• *
* K2 * . .

* ADDRESS AND *---->*• A FIND .-11----->* SO THAT IT *--> IHCFCOMH
* CURRENT * *• REQUEST •* * POINTS TO RCD * I
* RECORD NUMBER * *• •* * JUST READ * J
***************** *·.·:a ***************** I

I

G 1 *• *****G2********** *****G3**********
* INSERT RECORD *

v
*****G4**********
* UPDATE * I •* *• * *

•* *• YES * OPEN NUMBER INTO
•WRITE REQUEST.•----> DCB FOR NEW

• • * DATA SET 1>: REC~~M U~~ ~LD *
*ASSOCIATED VAR * I
SO THAT IT PNTS-------'

TO NEXT RCD
*• ••

• • * NO

I
v .•.

Ht *-•
•* *•

FIND •* READ *•
,------•. OR FIND •* I *• REQUEST •*

• •
• ·

* READ
I

I •••••JI•!
I * •

I
.
*INDICATE ERROR •
* *

I
~---->I

I
v

"K 1 ******"*** . .
IHCFCOMH

250

I :*****~;~;~*****: IN DATA SET *

*****H2**********
* CREATE *
*AND FORMAT NEW *
*DATA SET,USING *
* BSAM WRITE *

MACRO *

I
v

*****J2**********
• *

CLOSE
* DCB FOR DATA
* SET

• • I
: K2 :->1

. .
I
I

*****K2*~******** I
* OPEN DCB FOR *_J
* DATA SET FOR *
-II- DIRECT ACCESS *

PROCESSING

I
v

*****H3**********
*INSERT ADDR OF *
*DECBA SKELETON *

*****H4**********
*INSERT ADDR OF *
* BLKREFA INTO *

INTO CURBUF *
FJELD OF *

,-->*DECBA SKELETON *

I * IN UNIT *
* BLOCK *
***************** : •• ~~!!*~;~;~***:

1

1

1 I
*****J3*:******** II
*INSERT ADDR OF *
*DECBB SKELETON * I
* INTO NXTBUF *
* FJELD OF UNIT * I * BLK IF 2 BFRS *
***************** I

..... J........ I
: I NS'i~~ ~~~~ OF : I
* INTO DECB •---,
*SKELETON(S) IN *
* UNIT BLOCK *

*****J4**********
*INSERT ADDR OF *
* BLKREFB INTO
*DECBB SKELETON *
* IN UNIT BLOCK *
* IF TWO BFRS *

I
• • I
-II- K4 •~>I

• • I
v .•.

K4 *.
·* *•

•* *• YES * *
•WRITE REQUEST.•--> C4 *

• • * *
• •

· · i NO

v
**** . .

* B2 * . .

)

Table 18. IHCFIOSH Routine Directory
r----------T---------------------------------------~-----------------------------------1

I Routine I Function I
~-------~f-----------~----------------------~---------------------------------------1
IFCLOS !CHECKS double-buffered output data sets. I
I I I
IFCNTL !Services device manipulation requests. I
I I I
IFINIT !Initializes unit and data set. I
I I I
IFREAD !Services read requests. I
I I I
IFRITE !Services write requests. I
L----------i--J

Table 19. IHCDIOSE Routine Directory
r----------T-----------------------------------~------------------------------~-------1

I Routine I Function I
~----------+------~--~
DASDEF !Processes DEFINE FILE statements: enters address of parameter lists intol

I unit assignment table, checks for redefinition of direct access unitl
I numbers, and establishes addressability for IHCDIOSE within IHCFCOMH. I
I I

DASINIT !Constructs unit blocks for non-opened direct access data sets, creates andl
I formats new direct access data sets, and opens data control blocks forl
I direct access data sets. I
I I

DASREAD !Reads physical records, passes buffer pointers and buffer size to IHCFCOMH,I
I and updates the associated variable. I
I I

DASTERM !Checks pending input/output operations, closes direct access data sets, andl
I frees main storage occupied by unit blocks. I
I I

DASTRA !Determines operation type and transfers control to appropriate routine. I
I I

IDASWRITE !Writes physical records, provides IHCFCOMH with buffer space, and updates!
I I the associated variable. I
L-----~---i-----------~----------------------~---------------------------------------J

Appendix F: Object-Time Library Subprograms 251

Chart G7. IHCIBERH OVERALL LOGIC

252

****A3*********
* FORTRAN *
--* LOAD *
* MODULE *

I
v

*****83**********
* * *OBTAIN INTERNAL*
SEQUENCE NUMBER
* (ISN) *
* * *****************

I
v

*****C3**********
* * * CONVERT ISN * * TO DECIMAL *
* FORMAT *
* * *****************

v
*****03********** * BRANCH TO * * IHCFCOMH TO *
* HANDLE THE *
* WRITING OF * * ERROR MESSAGE *

v
****E3********* * IBEXIT RTN *

* OF * * IHCFCOMH *

IHCIBERH IS
ENTERED VIA
CALLING SE­
QUENCES GEN­
ERATED AT
COMPILE-TIME.

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

•Chart G8. ERROR MONITOR OVERALL LOGIC (Part 1 of 2)

**** . .
* A3 * . .

1HCERRE l
*****Al********** *****Al**********
* * * PRINT * * INDICATE * *TERMINATION DUE* * ENTRY FOR * * TO DUPLICATE *
* SUMMARY * * ENTRY *
* * * MESSAGE *

········1········· ~;i:~:::i·········
•••• ERROR MONITOR

*****Bl********** *****B3**********
* * • •
*SAVE REGISTERS * * PRINT *

**** • • * A5 * . .

1
*****AS********** . .
* GET ADDRESS * * OF LAST ENTRY *
* IN TABLE * . .

l
*****BS********** . .

* ANO LINK * • MESSAGE FOR * GET
NUMBER OF

ENTRIES * SAVE AREAS * * THIS ERROR *
* * * * *

········1········· ········1········· ~:;;:~::1•*****"'**

*****Cl********** *****C3********** *****CS**********
* * • * * * * MAKE INITIAL * * * * GET NUMBER * * CALL TO FIOCS * * GIVE * * OF ERRORS FOR * * (GET BUFFER * TRACEBACK * THIS ENTRY *
* ADDRESS) * * * * *
********i******** ********i******** ********i********

. *· . *· . *.
Dl *· 03 *. *****D4********** 05 *·

• * *. **** • * *· * * . * *. ·* ENTRY *· YES * * ·* PREE *·YES * ISSUE * ·* ANY *· NO
* .. FOR SUMMARY , • *---->* AS * *. BUFFER AREA • *-------->* FREEMAIN * *. ERRORS OF • *---~

· · * * *· ·* * * *.THIS TYPE.*
· · *· ·* * * *· ·*

..... J.::..... · r-------~;;~;!: ::: :::: .: c
* * ****E3•******** * * ·* *· * GET ERROR * * TERMINATE JOB * PRINT * NO • * HAS *. * NUMBER * * VIA IBEXIT * HEADING *<--------*.HEADING BEEN • *
* * * * * *· PRINTED • * * * *************** • * *· ·*

********i******** ******** [:::::: _______________ :~1*. ;ES

·*· ·*· Fl *· ***~*F2********** F3 *· *****F4********** *****F5**********
·* *· * * ·* *• * INDICATE * * PUT ERROR * . * I/O *. YES * GEI' EXIT * . * *. YES * BUFFER AREA * * NUMBER AND *

· ERROR ·-------->* ADDRESS IF *-------->*. I/O ERROR .•-------->* FOR MESSAGE * ERROR COUNT * *. (218) • * * SPECIFIED * *. (218) • * * MUST BE * IN MESSAGE *
*. . * * * *. . * * FREED * * * .. I ~~: ____________ ::::::::::::::::: ______________ ~~J~~: ______________ ::::::::J........ ·1·

·*· Gl *· *****G5**********
. * *· **** * * . * *· YES * * * * *· DUPLICATE • *---->* A3 * * PRINT LINE *

· ENTRY · * * * * *· ·* **** * *
*· ... ***************** i"]4---

*****Hl********** *****HS********** * SET ENTRY * * * * SWITCH * * DECREMENT * * AND * * TO NEXT ENTRY *
* STORE * * * * ENTRY NUMBER * * *
***************** *****************

1 l
·*· ·*· Jl *· *****J2********** JS *·

·* *· * PRINT MESSAGE * **** ·* *· ·* ERROR *· NO * THAT ERROR * * * YES ·* *··
*· ... NU~~~LEIN.• .. *------->: N~N ~~B£gr :-------v : CS :<----*·~?RE ENTRIE~··*

· · * * ***** **** *· ·* *· ·* ***************** *G9 * *· ·* i YES • * :~· 1. NO

*****K1**********
* GET TABLE * ****KS********* * ENTRY FOR * * *
: TH~MB~OR :-------v : RETURN :

* • ***** ***************
***************** *G9 * * A1* ••

*
Appendix F: Object-Time Library Subprograms 253

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

•Chart G9. ERROR MONITOR OVERALL LOGIC (Part 2 of 2)

***** *G9 * * Al* . .
•
! .•.

Ai *. *****A2**********
. * I/O *· * * **** •* ERROR *· YES * SET * * *

•.EXIT ADDRESS .•-------->* SPECIAL EXIT *---->* Cl * *· GIVEN ·* * SWITCH * * *
· · * * **** *. ·* ***************** ro

.•.
Bl *· *****B2**********

.+ *· * P NT * ·* CONTINUE *· NO * ION *
•· •. 1 ~~lims~N .•. •-------->:~ ~u~¥E:-----~

• · * GE * ***** * ... • ******* ***** **** *G8 * * YES * B3*

:·::·=->l ·.· • • ••••
·*· Cl *· *****C2********** ****•C3********** ·* PRINT *• * * * *

NO ·* MESSAGE *• YES * GET ADDRESS * * PRINT MESSAGE * r--*· (BASED ON .+-------->* AND LENGTH OF *-------->•AND SET MESSAGE* *. COUNTS) .. * * MESSAGE * * PRINTED * *. . * * * * INDICATION *
*· ... ***************** *****************

:::~:: :~-----~-----------~~-------------~----------1 .•.
Dl *• *****02********** *****03**********

·* *· • * * * • * PRINT *. YES * GET ADDRESS * * * *· BUFFER .. •------>* AND LENGTH OF *----->* PRINT BUFFER *
•.CONTENTS ·* *CURRENT BUFFER * * *

· · * * * *

··1~~:_ ____________ ::::::::::::::::: ______ ::::==1········
. •.

El *· *****E2********** *****E3********** *****E4**********
• * •• • * * * * *

·* TRACEBACK *· YES * REMOVE ONE * •-•-•-•-•-•-•-•-• * RESTORE * *· REQUESTED .+------>*SAVE AREA FROM *-------->* *------>* ONE SAVE *
* • • * * CHAIN * * CALL TRACE * * AREA TO CHAIN *

*· . • * * • * * • ! •::• !:~1• ·;o ***************** ***************** ••••••••1•••••••••

•••• .•.
Fl *. *****F2********** *****F4**********

·* *· * * • * .. • USER *· NO * SET * * *
.REQUESTED. * 0 * * FIOCS *

*. EXIT .. *------->*RETURN CODE TO *-l * REINITIALIZE *--i

*· .. • • * * * •• ·* *****************

1
* YES :~;·. :·::•: •****• :•;:•:

* G2 *--i * * * G4 *--i * • • • •••• • • ****
**** ••••

. *· ·*· *****Gl********** G2 *· *****G3********** G4 *· • • ·* *· • • ·* •. • ••• * SET * ·* FREE *· YES * * •* MESSAGE *• NO * *
*RETURN CODE TO * *· BUFFER AREA • *------>*ISSUE FREEMAIN * *. PRINTED • •---->* G2 *
• 1 • *. ·* * • *. •• * • * * *· . * • • •. .• • •••

254

········i········· ··i:~~~~~::::i········ ··i·;.,
·*· .•.

*****Hl********** H2 *· *****H3********** H4 *· *****H5********** • • ·* •. • • .• •. • * •-•-•-•-•-•-•-•-+ . * TAKE * .. YES * * . * USER *. YES * * * * •.SPECIAL EXIT .•-------->* * *· EXIT TAKEN .+----~-->•INDIC USER*
*CALL USER EXIT * *. • * *T Y * *. . . * * *
* * *• ·* *SW * *• •* * * ······::c:····· .. ·1· ·:o ········1········· ··1· ·;o ······::c:·····

+Gq.+ *G2* • • •••••J2••········ •••••Jq.••••• "**** * •
**** * ·* ****J3********* * PRINT * "'*** * TURN * * EXIT * * MESSAGE * * OFF ENTRY * • TO SPECIFIED • * INDICATING *

* SWITCH * * POINT * *STANDARD FIXUP * • * ••••••••••••••• • •

········1········· ········r·······
•••• • • * G2 * • • ••••I<2••······· •••• • • * * RETURN * • • •••••••••••••••

• Chart GlO. ALTER OPTION TABLE ROUTINE OVERALL LOGIC (Part 1 of 3)

ERR SET
*****Al********** . .

**** . .
: A2 :

i ...

A2 *·
. * *·

: * * **A3* * * * ** * * *: . . . * L~O. OF *, NO * SET ENTRY *
*SAVE REGISTERS * *. MESSAG:E.S TO • *-------->* TO PRINT NO * . . *PRINT EQ 0. * * MESSAGES * . . *· . * * * ** ** ** + * ****** ** * * .. * *****************

l !-~~~-------------------->[* **** * ->* C4 * . .
!**+*Bl*********!
* GET ERROR *
NUMBER AND SAVE
: IT :

~: ~: :~::1~··· ** ** *
**** NEXT

*****Cl**"'******* * FINDENTRY * ·-·-·-·-·-·-·-·-· * GET ADDRESS * * OF ENTRY FOR *
*THIS ERROR NO. * *
***************** * •

* E2*

I •98 *

V
··~·· 1 YES

01 .•... IGNORITE~2 .•... 03 • '•,

, * TABLE *, , * FIRST *· . * *•
•* ENTRY *•NO ,+ TIME *• YES •* ERROR +, *· MODIFIABLE • ·-------->•. THROUGH • ·-------->• .cmmITION 212. *
*· , * *· lSWITCH • * *· • * *· ·* *• ON) ·* *• ·* •.. * * .. * * •••

j'ES).:~ l"O
V * HS * • *·

*****El********** * * E3 *·
* GETENTRY * **** • * *• *-•-•-•-•-•-•-•-• NO ·* SIX *·
* GET NO. * l--*. PARAMATERS • *
* OF ERRORS * *.SUPPLIED • *
* ALLOWED * * • • *

********!**'***'** ::ii! 'l ~ES
* *****

*9B *
Fl·*·.. *.E?;*

. * *· *
YES •* *·
---*·PARAMETER LT • *

*OR EQ TO 0,•
*· . * *· . *

ro
!* ** *G1* **** ** * *:

* STORE NO. OF *
*ERRORS ALLOWED *
:IN TABLE ENTRY : r

. •.
Hl *· *****H2********** • * NO *• * SET *

, * ALLOWED *. YES *ERROR COUNT TO *
*. GT OR EQ • *-------->* ALLOW TO ZERO *

*· TO 256 * * lALLOW ALL *
*• • * * ERRORS) * ____ ·: i :~--------=]

** ** •Jl*** ****** * * GETENTRY * ·-·-·-·-·-·-·-·-· * GET NUMBER OF * * MESSAGES TO * * PRINT * ········r·······
.•.

Kl *· • * NO *• . * MESSAGES *. YES * * * • TO PRINT LT • *---->* A2 *
*OR EQ TO 0. * * *

*· • * ****
*· . * * NO

l
**** . .

* A4 * . .

**** . .
: A4 :

l
!* ** +A4 * ** * * ** **!

* STORE NO. OF * * MESSAGES TO *
*PRINT IN TABLE * * ENTRY *
** ** ****** ***** * *

1
·'· 84 *· *****BS**********

. * *· * * • * NUMBER *· YES * INDICATE *
*· GT OR EQ TO • *-------->* PRINT ALL *

*· 256 • * * MESSAGES *
*· . * * * *· ·* *****************

• NO I

;;~:: •->l<------------------------j

**** *C4 ** ** ** * * * *
* GETENTRY * ·-·-·-·-·-·-·-·-· * GE'l' *
* TRACEBACK *
* INDICATION * r

·'· 04 *· . • *· • * CODE LT *, YES
*· OR E8 TO • *---1 *· . * *· . * *· . *

*NO •****•

1 : G4 :

**** ...
• * 1!:4 *• *· !****ES*********!

GT • * *• * INDICATE *

l--*. * • CODE 2 '*. +-------->: ~~~5~~~~~

*· . * * * *· • * ***************** : •::•: 1. LT . .

*** **F4***** * *** * . .
* INDICATE *
* NO TRACEBACK *
** **** *** *** ****.

: :~~: :-> l <-----------------------
** ***G4+ * ***** *'* *
* GETENTRY *
·-·-·-*-•-·-·- •-* * GET USER * * ADDRESS * 1 .. ······

·'· H4 *·
• * *·

YES ·* *· ---*. ZERO • *
*· . * *· . * *· . *

ro
!* ***J4******* * ·:
* STORE ADDRESS * * IL>i TABLE *

ENTRY * .
___ :::::::: r ·

. •.
K4 *• . * FIRST *, . * TIME *· NO

*. THROUGH • *---1
•SWITCH ON. ... • *

*· . *

•9A * * HS* .. .
l

*****HS**********
* UPDATE ERROR * * NO. BY ONE *
* (TURN FIRST *
* TIME THROUGH *
* SWITCH ON * r

.•.
JS *· , * ERROR *·

NO ·* NUMBER GT *· r--* •MAXIMUM TO BE.*
*· CHANGED • *

*· . * *· . *
, ****, !* YES

* Cl * . .

*9B *
* * E~* .

* YES ****
I : HS : v • •

•9B * * Al* .. .

Appendix F: Object-Time Library Subprograms 255

e Chart Gll. ALTER OPTION TABLE ROUTINE OVERALL LOGIC {Part 2 of 3)

***** *9B * * Al* . .
•
t .•.

Al *· *****A2**********
•* *• * GETENTRY * . * *• YES •-•-•-•-+-+:-•-•-* *. ERROR 212 • *-------->* GET CONTROL * *. . * * CHARACTER *

• · * INDICATION *
pi:: .:~1··~0 ********!*********

*****Bl********** *****B2********** * GETENTRY * * INDICATE NO * •-•-•-•-•-•-•-*-* * CONTROL * * GET UPPER * *CHARACTER TO BE*
RANGE OF NO. TO * SUPPLIED *
* BE CHANGED * * *
***************** *****************

j J
*****Cl********** C2 *• * TURN ON * . * *•

SWITCH NO •* *•
INDICATING r--*.CODE EQUALS 1 • *
FIRST TIME *. . * * THROUGH * *• • *

********!********* :·:~·= *·1··~ES

*****Dl********** *****D2********** * * * INDICATE * * STORE UPPER * * CONTROL * * RANGE AS * *CHARACTER TO BE* * MAXIMUM TO BE * * SUPPLIED * * CHANGED * * *
***************** *****************

256

! :;i:. •->! ***** * •
*9A * **** * HS* FINISHED
* * *****E2********** . . .

* TURN OFF * * SWITCHES * • • • • *****************

j
****F2********* • • * RETURN * • • ***************

ERRSAV
*****A3********** • • . .
+SAVE REGISTERS *

l
*****B3********** • • * GET * * ERROR NUMBER * • • • • *****************

l
*****C3********** * FINDENTRY *
·-·-·-·-·-·-·-·-· * GET * * ADDRESS OF * * TABLE ENTRY *

l
*****D3********** . .
* GET ADDRESS * * OF WHERE TO * * SAVE ENTRY * • • *****************

l
*****E3********** • • * MOVE * * TABLE ENTRY * • • • • *****************

l **** • • ->* E2 * • • ****

ERRSTR
*****A4********** • • . .
*SAVE REGISTERS * • • . .
········1········

*****84********** • • * GET * * ERROR NUMBER * • • • • *****************

l
*****C4********** * FINDENTRY *
·-·-·-·-·-·-·-·-· * GET * * ADDRESS OF * * TABLE ENTRY *

1 .•.
04 *·

·* *· •* ENTRY *• NO
*. MODIFIABLE • *---! •. . .

*· . * * .. * l* YES : •:~*:
• • ****

*****E4********** * GET * * ADDRESS OF * * WHERE TO * * RESTORE TABLE * * ENTRY FROM *
•************

j
*****F4********** . .
• • * RESTORE TABLE *
* ENTRY * • • *****************

l **** • • ->* E2 * • • ****

• Chart G12. ALTER OPTION TABLE ROUTINE OVERALL LOGIC (Part 3 of 3)

FINDENTR • *.
A1 *• *****A2********** . * ERROR *. * * . * NO. LT OR *· YES * SETUP * *. EQ TO FIRST • *--------> * FOR ERROR *· TABLE • * f\ * NO. 902

,ENTRY. *
* .. * *****************

.J."" l
Bl *· **+**B2**********

•* *· * WRITE *
• *ERR NO, GT *· YES *-*-•-•-:+:-*-*-*-*

*.NO. OF TABLE • *----- * WRITE * *· ENTRIES • * * ERROR MESSAGE *
• · * NO, 902 *

*· . * *****************
., NO •• L

•9B *
V * E2*

*****Cl********** * * • • *
GET *

TABLE ENTRY
ADDRESS

* * ** ** ****** ** ** ** *

1
. *·

Dl *•
·*TABLE*· ****02********* • * ENTRY *. YES * *

• MODIFIABLE .-------->* RETURN
*. . * f\ * * *· ·* ***************

*· . * ro
. *·

El *· . * *. ·* *• YES
*,IS IT ERRSAV • *-----

* • . * *. . * *. . *

ro
*****Fl********** * •
SETUP FOR ERROR
* NO. 90 3 * .
* * *****************

l
"'1RITE ·*·

Gl *· *****G2**********
. * *. * *

• * FIOCS *· NO * MAKE *
*· INITIALIZED • *-------->*INITIALIZATION *

*, , * * CALL TO FIOCS *
*. . * * *

• ..

1
.~ES ********j*********

<------------------------

v
*****Hl********** * •

PUT ERROR
NO. INTO

MESSAGE
* •
** * ***** ** ** ** ** *

l
*****Jl**********
* * WRITE

MESSAGE VIA
FIOCS

j
****Kl*********

* • * RETURN * • *

GETENTRY , *,
A3 *,

. * *· ·* LAST *· YES
*, * • P~~~~~ER • *, *-------v

*? • * ***** •. , * *9B * * NO * E2* I *.*

l
*****B3********** . .

UPDATE
TO NEXT

PARAMETER
• *

j
*****C3**********
* • * GET *
*NEXT PARAMETER *
• *
* * *****************

j
****D3********* * •

RETURN
* •

Appendix F: Object-Time Library Subprograms 257

~
I

active character: A significant character
in the interpretation of a source state­
ment. Always non-blank except during pars­
ing of literal or IBM card code infor­
mation.

ADDR: contains the address portion of the
current nnn ..: _....,.-.... -..a....: -­.r v.r ..&.&&O '-.I.. U.V (,.....&. V.1..1. •

ADDRESS (field): A 2-byte item that is
part of the pointer (indicating an address
on a roll) and a driver (indicating the
forcing strength of an operation).

ANSWER BOX:
false answer
which use
execution.

An item used to hold a true or
for those POP instructions

or return an answer in their

BASE: A status variable maintained for
each roll used by the compiler which con­
tains the beginning address of that roll
minus 4.

Base Table: A list of absolute addresses
from which the object module loads a
general register prior to accessing data.

BOTTOM: A status variable maintained for
each roll which holds the address of the
last word on the roll containing
information.

· =B..-r_.a n ... c h..__T""a""'b=l...-.e: A list
address of each branch
statement function used
module.

containing the
target label and
in the source

branch target label: A label which is the
target of a branch instruction or
statement.

central Items: Another name for SYMBOL 1-3
and DATA 0-5.

compiler phase: A program consisting of
several routines written in machine lan­
guage and/or POP language; each phase per­
forms a well-defined function in the trans­
formation of the source module to the
object module.

compiler routines: The routines that com­
prise each phase of the compiler and which
may be written in machine language and/or
POP language.

CONSTR: Contains the beginning address of
the data referred to by the compiler
routines.

GLOSSARY

control driver: A driver in Polish nota­
tion to indicate types of statements and
other control functions.

CRRNT CHAR: Contains the character (from
the input statement} that is currently '---=-- .,: ______ ...__.:1
.IJC.L.l&~ ..L&.1-=:lt-"C'\,,.. CUe

CRRNT CHAR CNT: contains the column number
of the contents of CRRNT CHAR; also called
the 'scan arrow•.

DATA O, 1, 2, 3, 4, 5:
(except DATA 5, which is
used to hold constants
module and other data.

Halfword variables
two words long)

used in the source

error listing: The display of messages
indicating error conditions detected in the
processing of the source module.

EXIT roll: A special roll used by the
compiler for maintaining exit addresses
from compiler routines when a POP subrou­
tine jump instruction is executed.

EXTADR: contains the address of the cur­
rent •bottom" of the EXIT roll.

forcing strength: A value contained in the
driver which indicates the order of the
indicated operation (e.g., multiplication
and division operations precede addition
and subtraction}.

global dwmny variable: A dummy argument to
a SUBROUTINE or FUNCTION subprogram.

global label: A label used to define a
program block. These labels may be
referred to from any point in the program.

group: The logical collection of informa­
tion maintained on rolls; an entry on a
roll.

group size: The number of bytes of infor­
mation constituting the group on a roll.

Group Stats: Information maintained for
each roll used by the compiler; pertains to
comparative search operations.

heading: Initializing instructions
quired prior to the execution of the
of the object modµle.

re­
body

IEYALL: The system name for the compiler
phase Allocate.

Glossary 259

IEYEXT: The system name for
phase Exit.

the compiler

IEYFORT: The system name for the compiler
Invocation phase.

IEYGEN: The system name for the compiler
phase-Gen.

IEYPAR: The
phase Parse.

system name for the compiler

IEYROL: The system name for that area of
the compiler which holds the WORK and EXIT
rolls and the roll controls and group
stats.

IEYUNF: The system name for the compiler
phase Unify.

indirect ·addressing: A method of obtaining
information held at one location by refer­
ring to another location which contains the
address of the value in question.

INDIRECT BOX: Used to contain the address
needed In the indirect addressing operation
performed by the POP instructions.

~: Contains the "operation code" por­
tion of the current POP instruction.

item: Synonymous with variable.

jump: Synonymous with branch.

keep: Indicates the moving of information
contained on a roll to another storage
location and retaining the original infor­
mation on the roll.

LAST CHAR CNT: This item contains the
column number of the last active character,
i.e., the active character preceding the
one currently being inspected.

loca!__QU!!!!!!Y_Y!!!:iable: A dummy argument to
a statement function.

local label: A label defined within a
program block which may be referred to only
within that block.

MPAC 1, MPAC 2: Two fullword items used by
the compiler in double-precision arithmetic
operations.

NAMELIST Table: A table which holds the
name, address, etc., for
listed in a single NAMELIST
source module.

each
list

variable
in the

operation driver: A 1-word variable which
is an element of Polish notation and indi­
cates arithmetic and logical operations
designated in source module statements.

260

OPERATOR (field}: A 1-byte item that is
part of the pointer and driver indicating
the roll used (pointer) or type of opera­
tion to be performed (driver).

optimization: The reduction and re­
organization of object code for the
increased efficiency of the object module.

PGB2: contains the beginning
the global jump table.

address of

plex: A variable length group on a roll;
the first word holds the number of words
exclusive of itself.

pointer: This item is one element of
Polish notation used to indicate references
to variables or constants; indicates loca­
tion of additional information on a roll.

Polish notation: An intermediate language
into which the source module is translated
during processing and generation of the
object module.

POPADR: Holds the address of the POP
instruction presently being executed.

POP instruction: A component part of the
POP language defined as a macro.

POP interpreter: A program written in
machine language for the purpose of execut­
ing the POP subroutines; labeled POP SETUP.

POP jump table: A table used by the POP
interpreter in transferring control to the
POP subroutines. Holds addresses of these
routines.

POPPGB: contains the beginning address
the machine language code for the
instructions and the POP jump table.

of
POP

POP~OP language: A macro language in
which most of the compiler is written.

POP subroutines: The subroutines used by
the POP interpreter to perform the opera­
tions of each POP instruction.

P!:Q9_ram text: The object code produced for
the object module.

prune, pruni!!9:: A method of removing
information from a roll, thereby making it
inaccessible in subsequent operations.

guote: A sequence of characters preceded
by a character count; used for comparisons
with the input data.

QUOTE BASE: The initial address of the
first quote (Parse).

recursion: A method of call and recall
employed-by the routines and subroutines of
the compiler whereby routine X may call
routine Y which, in turn, calls routine X.

releasing rolls: The
information reserved on
for use by the compiler.

method
a roll

of making
available

~rve_~ark: The 1-word value placed on a
roll as a result of a reserve operation.

reserving rolls: A method of roll manipu­
lation whereby information contained on a
roll remains unaltered regardless of other
operations involving the roll.

RETURN: Contains the return addresses for
the POP subroutines.

roll: A type of table used by the compiler
whose location and size are changed
dynamically.

ROLLER: Contains the beginning address of
the base table.

roll control: A term applied collectively
to those-items used in roll maintenance and
manipulation.

roll number: A number
roll in the compiler
internal reference.

assigned to each
for the purpose of

roll status items: Those variables main­
tained for each roll which contain the
statistics needed in roll manipulation.

roll_sto!:~g~area: An area of the compiler
in main storage that is allocated to the
rolls.

rung:
roll.

A word of a multiword group on a

RUNTIME operations: Several routines which
support object code produced by the com­
piler.

Save Area: An area of the object module
used in linking to and from subprograms.

scalar variables:
ables.

Nonsubscripted vari-

scan arrow: An item which refers to the
position of the source statement character
currently being scanned.

source module listing: The display of the
statements constituting the source module.

storage allocation: The assignment of main
storage to variables used in the source
module.

stora~~~: The logical organization of a
program or module and its components as
they are maintained in main storage. (This
map may also be displayed on an output
device.)

SYMBOL 1,2,3: Halfword variables used to
hold variable names used in the source
module and other data.

TAG (field): A 1-byte item that is part of
the pointer (indicating mode and size of
the object pointed to) and driver (indicat­
ing mode of operation).

temporaEY_~to!:~g~: An area of main storage
used by the compiler to temporarily main­
tain information for subsequent use.

terminal errors: Errors internal to the
compiler causing termination of compilation
of the source module.

TOP: A status variable maintained for each
roll which indicates the new BASE of the
roll when reserved information is contained
on the roll.

traits: The TAG field (uppermost byte) of
a word on a roll.

translation: The conversion from one type
of language to another.

WORK roll: A special roll used by the
compiler for maintaining values temporarily
during processing.

WRKADR: The address maintained for the
WORK roll that indicates the last word into
which information has been stored; the
"bottom" of the roll.

W0,Wl,W2, •••• : Acronyms used to refer to
the last groups of the WORK roll.

Glossary 261

active characters
definition 259
description 26

ACTIVE END STA XLATE routine 14,39
active statements 36,39
ADCON roll 57,, 145
ADDR register

definition 259
description 29

add!:'ess ~omp1.!t::!.tion inst~1J.cti0ns 1~u;11s

cross-reference list 139
address constants 17,20,52*56,57
ADDRESS field

definition 258
description 29-30

addressing
indirect 136,259
relative 29,, 138

ADR CONST roll
description 159
in Exit 56
in Unify 52

AFTER POLISH roll
description 23*161
in Gen 53,54
in Parse 37-40~42

Allocate label lists 193-196
Allocate phase (IEYALL)

cards produced 51
definition 258
detailed description 44-51
general description 12
location in storage 17
rolls used by 44
subprogram list 51

ALLOCATION FAIL routine 42
allocation of main storage 28
A.LPHA LBL AND L SPROG routine 14, 4 5
ALPHA SCALAR ARRAY AND SPROG routine 14,45
ALTER OPTION TABLE routine 240
ANSWER BOX variable

definition 258
description 26
in Parse 38

AREA CODE variable 45,55,57,146
arithmetic and logical instructions
130,131,139

array
description 18
dummy 47,48
in Allocate 48,49
listing of 21
position in object module 17
roll 26,, 47, 146

ARRAY ALLOCATE routine 14,45,47
ARRAY DIMENSION roll 150
ARRAY PLEX roll 158
ARRAY REF roll 52,, 159
ARRAY REF ROLL ALLOTMENT 14,52
ARRAY REF ROLL ALLOTMENT routine 52

ARRAY roll
assigning storage for 47
description 146
group stats for 25

artificial drivers 40
ASSIGNMENT STA GEN routine 54
AT roll 54,159

base addresses 28
BASE AND BRANCH TABLE ALLOC routine
14, 45, 47

BASE, BOTTOM, and TOP tables 23,28
base table

assigning storage for 47
definition 259
description 17
position in object module 17
use in Allocate 48
use in Exit 57

BASE TABLE roll
description 146
in Allocate 45-48
in Exit 56

BASE variable 23
definition 259

BCD roll 45
BLOCK DATA PROG ALLOCATION routine 14,46
BLOCK DATA subprogram

allocation for 46
Parse processing of 39

BOTTOM variable 23
definition 259

branch table
assigning storage for 47
description 18
position in object module 17
use in Allocate 47
use in Exit 56

BRANCH TABLE roll
description 150
in Allocate 47
in Exit 56

branch target label 12,18
BUILD ADDITIONAL BASES routine 14,45,49
BUILD NAMELIST TABLE routine 14,45,48
BUILD PROGRAM ESD routine 14,45,46
BYTE SCALAR roll 47,151

CALCULATE BASE AND DISP routine 14,45
CALL LBL roll 149
central items

DATA 24, 192, 259
definition 259
description 24
SYMBOL 24,191,259

CGOTO STA XLATE routine 38

Index 263

character scanning 26-27
code producing instructions 134
CODE roll

description 160
in Exit 56
in Gen 53,54
location 22

COMMON ALLOCATION AND OUTPUT routine
14,, 45,, 47

COMMON ALLOCATION roll 47,156
COMMON AREA roll 155
COMMON data 12
COMMON DATA roll
COMMON DATA TEMP
COMMON NAME roll

152
roll

152
155

COMMON NAME TEMP roll 156
COMMON statements

allocation for 45
COMMON variables

allocation of storage for 45
listing of 21

compiler
arrangement 28-29
assembly and operation of 136
code produced by 175-183
data structures 22
design of 9
flags used 27
general register usage 28
initialization of 33
limitations of 9
machine configuration for 9
messages 27
organization of 10,14
output from 16
purpose of 9
receiving control 33
relationship to system 19
rolls used in 140-162
storage configuration 15
termination of 33,35

COMPLEX CONST roll 143
CONSTR register

definition 259
description 28

control block area (CTLBLK) 227
control driver

definition 259
description 31
formats of 185-211

CONVERT TO ADR CONST routine 14,52
CONVERT TO INST FORMAT routine 14,52
CRRNT CHAR CNT variable

definition 259
description 26
in Parse 38

CRRNT CHAR variable
definition 259
description 26
j,n Parse 38

data items 24,192,259
DATA SAVE roll 145
data sets

264

SYSIN 15,, 33
SYSLIN 15,33
SYSPRINT 15,33
SYSPUNCH 15,33

DATA statements
allocation for 45

DATA VAR roll 56,, 154
DDNAMES routine 35
DEBUG ALLOCATE routine 14,45,49
decision making instructions 131,132
DECK option 51
DIMENSION statement

allocation for 46
variables specified on 29

DISPLAY statement
NAMELIST table for 18,19

DMY DIMENSION roll 14,46,147
DO loops

in Allocate 46
in Gen 55
tn Parse 39
in Unify 12,, 51, 52,, 53

DO LOOPS OPEN roll
description 144
in Allocation 46
in Parse 39

DO LOOP UNIFY routine 53
DO NEST UNIFY 14,53
DO STA XLATE routine 38
DP COMPLEX CONST roll 143
DP CONST roll

description 143
general 25

drivers
ADDRESS field 30
artificial 40
control 31,185-211,259
definition of 30
EOE 40,41
formats of 185-211
operation 30,260
OPERATOR field 30
plus and below phony 40,41
TAG field 30

dummy array 46,47
dummy dimension 46

END card 13
omission of 39
produced by Exit 57

END STA GEN routine 54,55
ENTRY CODE GEN routine 14,53,54
ENTRY NAME ALLOCATION routine 14,45,46
ENTRY NAMES roll 54,, 147
ENTRY roll 46
EOE driver 40,41
EPILOGUE GEN routine 14.53,54
epilogues 12,53,54
EQUIV ALLOCATION PRINT ERRORS routine
14.,45,47

EQUIV MAP routine 14,, 45,, 48
EQUIVALENCE (EQUIV) ALLOCATION roll

47, 48,, 156
EQUIVALENCE (EQUIV) HOLD
EQUIVALENCE (EQUIV) roll
EQUIVALENCE (EQUIV) TEMP
EQUIVALENCE OFFSET roll
EQUIVALENCE statements
EQUIVALENCE variables

roll 145
46., 47I151

roll 145
45,152

12, 45

allocation of storage for 45
description 18

listing of 21
map of 48
position in object module

EREXITPR routine 34
ERROR CHAR roll 144
ERROR LBL roll 148
ERROR MESSAGE roll 144
error messages 21
error recording 42
ERROR roll 42,148
errors

detection of 42
recording of 21,42

ERROR SYMBOL roll 149
ERROR TEMP roll 144
ESD cards

general 12

17

produced by allocate 44., 47,, 51
Exit label list 208-211
EXIT PASS routine 14,55
Exit phase (IEYEXT)

definition 259
detailed description 55-58
general description 13
location in storage 15
rolls used by 55

exit roll
definition 259
description 24,, 161
general 10
in IEYROL 53
in Parse 38
location in storage 15

EXPLICIT roll 149
EXTADR register

definition 259
description 29

extended error message facility 229,235

FL AC roll 153
FL CONST roll 143
flags 27
forcing strength

definition 259
description 30,31
in Parse 40
table 31

FORMAT ALLOCATION routine 14,45,48
FORMAT roll 48,157
FORMAT statements

description 20
in Allocate 12,44,48
listing of 21
position in object module 17

FORTRAN error routine (IHCIBERH) 42,, 212
FULL WORD SCALAR roll 47,155
FUNCTION subprogram 46,49
FX AC roll 151
FX CONST roll 143

Gen label list 198-208
Gen phase (IEYGEN)

definition 259
detailed description
general description
location in storage
rolls used by 53

53 ... 55
12
15

GEN PROCESS routine 14., 53
GENERAL ALLOCATION roll 160
general register usage

used by compiler 28-29
used by object module 20

GET POLISH routine 14,53,54
global area 136
GLOBAL DMY roll 47,, 49., 148
global jump table 28,137,138
global jumps 137,138
global label 136,137,259
GLOBAL SPROG ALLOCATE routine
GLOBAL SPROG roll

14,, 45, 48

description 142
general 42
in Allocate 48
in Exit 56

GO TO STA GEN routine 55
GO TO statements, processing of 54,, 55
group

definition 259
description 24,25

group stats
definition 25,259
description 26
location in storage 15
sizes 25

group stats table 26

HALF WORD SCALAR roll 47,152
heading

position in object module 17
HEADOPT routine 35
HEX CONST roll 154

IBEXIT routine 223
IBFINT routine 222
IEYALL (see Allocate phase>
IEYEXT (see Exit phase)
IEYFINAL routine 35
IEYFORT (see Invocation phase)
IEYGEN (see Gen phase>
IEYJUN subroutine 138
IEYMOR routine 34
IEYPAR (see Parse phase)
IEYPCH routine 34
IEYPRNT routine 33
IEYREAD routine 34
IEYRETN routine 35
IEYROL (see roll module)
IEYUNF (see Unify phase>
IF statement 37.38,39
IHCDBUG 212,236
IHCDIOSE 212,229-236

routine directory 251
IHCERRM 212,229,239
IHCFCOMH 213-223

subroutine directory 246
IHCFCVTH 212,223

subroutine directory 246
IHCFINTH 212., 239
IHCFIOSH 212,224

routine directory 251
IHCFOPT 240
IHCIBERH 42,212
IHCNAMEL 212,221

Index 265

IMPLICIT roll 153
indirect addressing 13~,260
indirect addressing instruction 135
IND VAR roll

description 141
in Parse 37

!NIT roll 49~145
Invocation phase CIEYFORT)

definition 260
detailed description 33-36
general description 12
location in storage 15

jump instructions 132,133

keep
definition 260
general 23

label lists
Allocate 193-196
Exit 208-211
Gen 198-208
Parse 185-193
Unify 196-198

labeled statement references 12
labels

branch target 12,18
detailed description 135,136
global 135,136
local 135., 136
mode 17,54

LAST CHAR CNT variable
definition 259
description 26
in Parse 38

LAST SOURCE CHAR variable 38
LBL FIELD XLATE routine 14,37,38
LBL process routine 14, 53., 54
LBL roll 45,46,54,153
LEVEL ONE UNIFY routine 53
LIB roll 140
LITERAL CONST ALLOCATION routine 14.45,47
literal constants

description 20
in Allocate 12,44,45
position in object module 17

LITERAL CONST roll 143
LITERAL TEMP (TEMP LITERAL) roll 155
LOAD and DECK options 33
LOCAL DMY roll 148
local label 136,137,259
LOCAL SPROG roll 45, 46., 149
LOGICAL IF STA XLATE routine 38
LOOP CONTROL roll 52,156
LOOP DATA roll

description 157
in Parse 38
in Unify 53

LOOP SCRIPT roll 142

made labels 17,54
map

of scalars 47
storage 21,44,50,260

MAP option 51

266

messages
description 27
location in storage 15
printing of (IEYPRNT) 33
produced by Allocate 48,49
produced by Invocation 35,36
produced by Parse 43,44

minimum system configuration 9
MOVE ZEROS TO T AND c routine 14
MPACl and MPAC2 variables

definition 259
description 26

multiple precision arithmetic 26

NAMELIST ALLOCATION roll 48,49,155
NAMELIST ITEMS roll 149,150
NAMELIST MPY DATA roll 57., 160
NAMELIST name

roll 48
table for 19

NAMELIST NAMES roll 48,149
NAMELIST tables

definition 259
description 19
in Allocate 12,44,47
in Exit 57
listing of 20,48
position in object module 20

NEST SCRIPT roll
description 141
in Unify 53

NONSTD SCRIPT roll 141

object module
configuration of 17
description of 17
general register usage 20
listing of 20,21,541 57
writing of 49

object-time library subprograms 212-240
operation driver

definition 259
description 30
formats of 185-211

OPERA'I'.OR field
definition 259
description 30-32

optimization 52,53,259
option table 241
ORDER AND PUNCH RLD ROLL routine 14,55,57

Parse phase CIEYPAR)
definition 260
detailed description
general description
location in storage
rolls used by 37

36-42
12
15

PASS 1 GLOBAL SPROG ALLOCATE
14,, 45,, 48

phases
Allocate 12,15.44-51
components of 14
Exit 13,15,55-57
Gen 12, 15, 53-55
Invocation 12,15,33-35
Parse 12.15,36-44
Unify 12,15,51-53

routine

pl ex
definition 260
description 25

plus and below phony driver 40,41
pointer

ADDRESS field 29
definition 260
description 29
OPERATOR field 29
TAG field 29

Polish notation
arithmetic and logical assignment

statement 164
arithmetic expressions 39
arithmetic IF statement 165
nrrny references 1h1
ASSIGN statement 164
assigned GO TO statement 164
BACKSPACE statement 171
BLOCK DATA statement 166
CALL statement 172
computed GO TO statement 165
CONTINUE statement 165
DATA statement 166
debug statements 172-173
DEFINE FILE statement 170
definition of 259
direct-access statements 170
DO statement 165
END FILE statement 171
END statement 166
ENTRY statement 164
Explicit specification statements
FIND statement 170
formats 163-173
FUNCTION statement 171
general 10
in Gen 12,53,54
in Parse 13.36~39
input/output lists 167-168
labeled statements 163
logical IF statement 164
PAUSE and STOP statements 165
PRINT statement 169
PUNCH statement 169
READ statement 167,168.169
RETURN statement 164
REWIND statement 171
statement function 171
SUBROUTINE statement 171
unconditional GO TO statement 165
WRITE statement 168,, 169, 170

POP instructions
ADD 130
AFS 130
AND 130
APH 127
ARK 127
ARP 127
ASK 127
ASP 127
BID 134
BIM 134
BIN 134
BOP 127
CAR 128
CLA 128
CNT 128

CPO 128
cross reference list 139
CRP 128
CSA 131
CSF 133
definition 259
detailed description 127-135
DIM 130
DIV 130
EAD 128
EAW 128
ECW 128
EOP 128
ETA 128
FET 128
FT_.P 128
FRK 128
FRP 128
FTH 128
general description 10
IAD 129
IND 135
!OP 129
IOR 130
ITA 129
ITM 129
JAF 133
JAT 133
JOW 133
JPE 133
JRD 133
JSB 133

166 JUN 133
LCE 129
LCF 129
LCT 129
LGA 131
LGP 129
LLS 130
LRS 131
LSS 129
MOA 131
MOC 129
MON 129
MPY 131
NOG 129
NOZ 129
PGO 130
PGP 130
PLD 130
PNG 130
POC 130
POW 134
PSP 131
PST 130
QSA 131
QSF 133
REL 134
RSV 134
SAD 131
SBP 131
SBS 131
SCE 132
SCK 132
SFP 132
SLE 132
SNE 132
SNZ 132

Index 267

SOP 132
SPM 132
SPT 132
SRA 132
SRO 132
STA 132
STM 133
SUB 131
SWT 130
TLY 131
WOP 135
WlP 135
W2P 135
W3P 135
W4P 135
XIT 133
ZER 130

POP interpreter
definition 260
description 136
general 10

POP jump table
definition
description
location in

{POPTABLE)
260

28,137
storage 15

POP language
cross-reference list
definition 260
detailed description
general description
notation used 127

POP SETUP routine 137
POP subroutines

139

127-138
10

assembler references to 137
definition 260
general 10
location in storage 15

POPADR register
definition 260
description 29

POPPGB register
definition 260
description 29

POPXIT register
description 29

PREP DMY DIMAND PRINT ERRORS routine 14,,45
PREP EQUIV AND PRINT ERRORS routine 14,45
PREP NAMELIST routine 14,,45,48
PRESS MEMORY 21,22,193
PRINT A LINE routine 14
PRINT AND READ SOURCE routine 14,37
PRINT HEADING routine 14
PRINT TOTAL PROG REQMTS MESS routine 14
printmsg table 35-36
PRNTHEAD routine 34
PRNTMSG routine 34
PROCESS DO LOOPS routine 14,,45,46
PROCESS LBL AND LOCAL SPROGS routine

14, 45, 46
PROCESS POLISH routine 14,39
production of object code

branches 175
computed GO TO statement 175
DEFINE FILE statement 179
direct-access READ and WRITE statements

179
DO loops 175
DO statement 175

268

FIND statements 179
FORMAT statements 180,,181
formatted arrays 177
formatted list items 177
functions 176
input/output· 177
PAUSE statement 179
READ and WRITE statements 177
statement functions 176
STOP statement 179
subroutines 176
unformatted arrays 178
unformatted READ and WRITE statements

178
PROGRAM BREAK variable 45,46,,47,,48,49
PROGRAM SCRIPT roll

description 158
in Parse 39
in Unify 52

program text
definition 260
description 20
position in object module 17

prologue 12,53,54
PROLOGUE GEN routine 14,, 53, 54
pruning

definition 260
description 23

pseudo instructions 10,, 127
PUNCH ADCON ROLL routine 14,55,57
PUNCH ADR CONST ROLL routine 14.55,56
PUNCH BASE ROLL routine 14 1 55,56
PUNCH BRANCH ROLL routine 14,55,56
PUNCH CODE ROLL routine 14, 55,, 56
PUNCH END CARD routine 14., 55, 57
PUNCH GLOBAL SPROG ROLL routine 14,, 55, 57
PUNCH NAMELIST MPY DATA routine 55,57
PUNCH PARTIAL TXT CARD routine 55,56
PUNCH SPROG ARG ROLL routine 14,55,56
PUNCH TEMP AND CONST ROLL .routine 14,, 55,, 5.6
PUNCH USED LIBRARY ROLL routine 14., 55, 57

quick link output 136
quote

definition 260
description 27
location in storage 15
QBASE 27

quote base {QBASE)
definition 260
description 27

REASSIGN MEMORY 185
recursion

definition 261
in compiler 10

REG roll 146
REGISTER IBCOM routine 14,37
register usage

by compiler 28
by object module 20

relative addressing 29,137
releasing rolls

definition 261
in Allocate 45
in Invocation 35

reserve mark
definition 261
description 23

RETURN register
definition 261
description 29

RETURN statement
Polish notation for 37

RLD cards 13~56

RLD roll 55, 56,, 57, 156
ROLL ADR table

in IEYROL 53
in Invocation 35
location in storage 15
use in allocating storage 22,35
use iu finding uddr~ss af variable 30
use in releasing storage 35

roll control instructions 133
roll controls

general 21
roll module CIEYROL)

definition 261
detailed description 53
general description 13
location in storage 15

roll statistics
BASE,, BOTTOM, TOP 2 2
location in storage 15

roll storage area
definition 261
general description 21

ROLLER register
definition 261
description 29

rolls
ADCON 57,145
ADR CONST 52, 56,, 159
AFTER POLISH 23,37-40,42,53,54,161
allocating storage for 21.22,34
ARRAY 26,47,146
ARRAY DIMENSION 150
ARRAY PLEX 158
ARRAY REF 52,159
AT 54,159
BASE TABLE 45-48, 56,, 146
BCD 45
BRANCH TABLE 47,, 56, 150
BYTE SCALAR 47,151
CALL LBL 149
CODE 22,53,54 1 56,160
COMMON ALLOCATION 47,156
COMMON AREA 155
COMMON DATA 152
COMMON DATA TEMP 155
COMMON NAME 152
COMMON NAME TEMP 156
COMPLEX CONST 143
DATA SAVE 145
DATA VAR 56,154
definition of 261
detailed description 140-162
DMY DIMENSION 14,, 46, 147
DO LOOPS OPEN 39,46,144
DP COMPLEX CONST 143
DP CONST 25,143
ENTRY 46
ENTRY NAMES 54,, 147
EQUIV ALLOCATION 43, 47, 48.1 156

EQUIVALENCE (EQUIV)
EQUIVALENCE (EQUIV)
EQUIVALENCE (EQUIV)
EQUIVALENCE OFFSET
ERROR 42,, 148
ERROR CHAR 144
ERROR LBL 148
ERROR MESSAGE 144
ERROR SYMBOL 149
ERROR TEMP 144

46,47,,151
HOLD 145
TEMP 145
45,, 152

EXIT 10,15,24,38,53,161,259
EXPLICIT 149
FL AC 153
FL CONST 143
FORMAT 48,157
formats ~U0-162

FULL WORD SCALAR 47,155
FX AC 151
FX CONST 143
GENERAL ALLOCATION 160
general description 10,21
GLOBAL DMY 47, 49,, 148
GLOBAL SPROG 42,48,56,142
HALF WORD SCALAR 47,152
HEX CONST 154
IMPLICIT 153
IND VAR 37,141
INIT 49,145
LBL 45,46,54,153
LIB 140
LITERAL CONST 143
LITERAL TEMP 155
LOCAL DMY 148
LOCAL SPROG 45,46,149
location in storage 15
LOOP CONTROL 52,156
LOOP DATA 38,, 53, 157
LOOP SCRIPT 142
NAMELIST ALLOCATION 48,49,155
NAMELIST ITEMS 149,150
NAMELIST MPY DATA 57,160
NAMELIST NAMES 48,149
NEST SCRIPT 53,141
NONSTD SCRIPT 141
POLISH 36-42,53,54
PROGRAM SCRIPT 39,52 1 158
pruning of 23
REG 146
releasing of 35,45,260
reserving of 23,261
RLD 55,56,57,156
SCALAR 47, 48, 154
SCRIPT 36,37,52,53,157
size limitations 22
SOURCE 37,38 1 140
special 24
SPROG ARG 56,147
STD SCRIPT 144
SUBCHK 49,160
TEMP 144
TEMP AND CONST 45,55,57,144
TEMP DATA NAME 150
TEMP NAME 36,143
TEMP PNTR 153
TEMP POLISH 151
used by Allocate 44
used by Exit 55
used by Gen 53

Index 269

used
used
USED
WORK

by Parse 36
by Unify 52
LIB FUNCTION 48, 55., 152
10,15,24,38-41,53#54,161,,261

rungs
definition 261
description 24

save area
assigning storage for 47
definition 261
position in object module 17

SCALAR ALLOCATE routine 14,45,47
SCALAR roll 47. 48,, 154
SCALAR routine 14
scalar variable

definition 261
listing of 21
position in object module 17

scan arrow
definition 261
description 26

scan control variables 2611 27
SCRIPT roll

description 157
in Parse 36,, 37
in Unify 52,53

source module listing
definition 261
description 20,42
format of 42

SOURCE option 36
SOURCE roll

description 140
in Parse 37,,38

special rolls 24
specification statements 35
SPROG ARG ALLOCATION routine 14,, 45., 4 8
SPROG ARG roll 56,147
STA FINAL routine 14., 37,, 39
STA GEN FINISH routine 1411 54,1 55
STA GEN routine 14,54.55
STA INIT routine 1411 38
STA LBL BOX 54
STA RUN TABLE 54
STA XL'ATE EXIT routine 38
STA XLATE routine 14,, 37' 38,, 39
START ALLOCATION routine 14
START COMPILER routine 14,, 37
START GEN routine 14,53
START UNIFY routine 14,, 52
STATEMENT PROCESS routine 14, 37,, 39
status variable 23
STD SCRIPT roll 144
STOP statement

Polish notation for 37
storage map

compiler 14
definition 261
description 21
object module 17
produced by Allocate 44,, 50

SUBCHK roll 49,,160
subprogram addresses

position in object module 17

270

subprogram argument lists
position in object module 17,51

SUBSCRIPTS FAIL routine 42
SYMBOL item 24,261
syntax error 42
SYNTAX FAIL routine 38 1 42
system names 11

tables
base 17,47,56,259
BASE,, BOTTOM, and TOP 23,, 28
branch 18, 46,, 56
global jump 28,137
group stats 25,26
NAMELIST 12,, 18,1 19,, 20,1 44,1 48, 49,, 57,1 260
POP jump 15,28,1361 260 .
printmsg 35
ROLL ADR 15,22,28,34,53
STA RUN 54
unit assignment 225,232

TAG field
definition 261
description 29-31

TEMP AND CONST roll
description 144
in Allocate 45
in Exit 55,, 57

TEMP DATA NAME roll 150
TEMP NAME roll

description 143
in Parse 38

TEMP PNTR roll 153
TEMP POLISH roll 151
TEMP roll 144
temporary storage and constants

description 20
position in object module 17

TERMINATE PHASE routine 54,55
termination of compiler 33~35
TIMEDAT routine 35
TOP variable 23

definition 261
TRACE option 54
transmissive instructions 127-130
TXT cards

general 12
produced by Allocate 44,49,51
produced by Exit 55,56,57,58

type statements
allocation for 46

Unify label list 196-198
Unify phase (IEYUNF)

definition 260
detailed description 51-53
general description 12
location in storage 15
rolls used by 52

unit assignment table (IHCUATBL) 225,232
unit blocks 224,, 230
USED LIB FUNCTION roll

description 152
in allocation 48
in Exit 55

variables
ANSWER BOX 26,1 38,, 259
AREA CODE 45., 56, 57, 146
BASE 23,259
BOTTOM 23,259
COMMON 21,46
CRRNT CHAR 26,38,259
CRRNT CHAR CNT 26,38,259
EQUIVALENCE 18,21,44,45,48
LAST CHAR CNT 26,38,260
LAST SOURCE CHAR 38
MPACl and MPAC2 26,260
PROGRAM BREAK 45, 46., 47, 48
scalar 18~21.261
scan control 2 6., 27

status 23
TOP 23,, 261

WORK roll
definition
description
general 10
in Exit 57
in Gen 54
in IEYROL

261
24,161

53
in Parse 38,40,41
location in storage

WRKADR register
definition 261
description 29

15

Index 271

Y28-6638-1

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Technical Newsletter File Number S360-25

Re: FormNo. Y28-6638-1

This Newsletter No. Y28-6826

Date November 15, 1968

IBM System/360 Operating System
FORTRAN IV (G) Compiler
n----~WY'll T --~ - 1\!f,..._ 1
L..L.V':j.L.QJ.U .UV~..&.."-' J."J.Q,U.UQ..L

Previous Newsletter Nos.

This Technical Newsletter, a
System/360 Operating System,
S stem/360 Operating System:

part of Release 17 of the IBM
provides replacement pages for IBM

FORTRAN IV (G) Compiler Prograro--
Logic Manua , Form Y
effect for subsequent
to be replaced and/or

T ese rep acement pages remain in
releases unless specifically altered. Pages
added are listed below.

Pages

Cover, preface
19-20
27-32
35-38.1
39-40
45-46
53-54
67-68 (67.1 added)
69-70.1
71-72
77-78

145-146.1
153-154.1
157-158
177-178
185-186
191-192
221-224.1
225-226 (225.1 added)
229-230.1
253-254

Changes to the text, and small changes to illustrations, are
indicated by a vertical line to the left of the change~ changed or
added illustrations are denoted by the symbol • to the left of the
caption.

Summary of Amendments

New information about innermost DO loops with a possible extended
range has been added. The information includes descriptions of
two new routines, XTEND LABEL and EXTND TARGET LABEL, and changes
to existing routines and flowcharts involved in phase 1 processing.
There is also additional information about the NAMELIST table
entries and the GET POLISH routine, and a description of the
improvements made by the FORTRAN object-time library in the pro~
cessing of BACKSPACE statements.

File this cover letter at the back of the publication to provide
a record of changes.

IBM Corporation, Programming Publications, 1271 Avenue of the Americas, New York, N.Y. 10020

PRINTED IN U.S. A.

Restricted Distribution

None

