IBM System/360 Operating System
FORTRAN IV (G) Compiler

Program Logic Manual

Program Number 3605-F0-520

This publication describes the internal logic of the
FORTRAN IV (G) compiler.,

Program Logic Manuals are intended for wuse by IBM
customer engineers involved in program maintenance, and
by systems programmers involved in altering the program
design. Program logic information is not necessary for
program operation and use; therefore, distribution of
this manual is limited to persons with program main-
tenance or modification responsibilities.

The FORTRAN IV (G) compiler is a processing program
of the IBM System/360 Operating System. It translates
one or more source modules written in the FORTRAN
language into an object module that can be processed
into an executable load module by the linkage editor.

Restricted Distribution

File No. S360-25 (0S)
Form Y28-6638-1

Program Logic

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

PREFACE

This publication provides customer
engineers and other technical personnel
with information describing the internal

organization and operation of the FORTRAN
IV (G) compiler. It is part of an inte-
grated library of IBM System/360 Operating
System Program Logic Manuals. Other publi-
cations required for an understanding of
the FORTRAN IV (G) compiler are:

IBM System/360 Operating System:

Principles of Operation, Form A22-6821

FORTRAN IV Language, Form C28-6515

Introduction to Control Program Logic,
Program Logic Manual, Form ¥Y28-6605

FORTRAN IV (G and H) Programmer's Guide,
Form C28-6817

Any reference to a Programmer's Guide
in this publication applies to FORTRAN
IV (G _and H) Programmer's Guide, Form

C28-6817. The FORTRAN IV (G) Program-
mer's Guide, Form C28-6639, (to which
references may exist in this publica-

tion) has been replaced by the combi-
ned G and H Programmer's Guide.

Although not required, the following
publications are related to this publica-
tion and should be consulted:

IBM System/360 Operation System:

Sequential Access Methods, Program Logic

Manual, Form Y28-6604

RESTRICTED DISTRIBUTION:

Concepts _and Facilities, Form C28-6535

Supervisor and Data Management Macro-
Form C28-66U47

Linkage Editor,
Form Y28-6610

Program Logic Manual,

System Generation, Form C28-6554

This
sections:

publication consists of two

Section 1 is an introduction that
describes the FORTRAN IV (G) compiler as a
whole, including its relationship to the
operating system. The major components of
the compiler and relationships among them
are also described in this section.

Section 2 consists of a discussion of
compiler operation. Each component of the
compiler is described in sufficient detail
to enable the reader +to understand its
operation, and to provide a frame of
reference for the comments and coding supp-
lied in the program listing. Common data
such as tables, blocks, and work areas is
discussed only to the extent required to
understand the 1logic of each component.
Flowcharts are included at the end of this
section.

Following Section 2, are appendixes that
contain reference material.

detailed information is
required, the reader should see the com-
ments, remarks, and coding in the FORTRAN
IV (G) program listing.

If more

This publication is intended primarily for use
by IBM personnel involved in program design and maintenance.

It may not

be made available to others without the approval of local IBM management.

Second Edition (May 1968)

This is a major revision of, and makes obsolete, the previous edition,
Form ¥Y28-6638-0, and Technical Newsletters Y28-6384, Y28-6386, Y28-6388,

and Y28-6820.

Changes to the text, and small changes to illustrations,

are indicated by a vertical line to the left of the change; changed or
added illustrations are denoted by the symbol e to the left of the caption.

The specifications contained in this publication, as amended by TNL
Y28-6826, dated November 15, 1968, correspond to Release 17 of the IBM

System/360 Operating System.

Changes are periodically made to the specifications herein; any such
changes will be reported in subsequent revisions or Technical Newsletters.

Requests for copies of IBM publications should be made to your IBM
representative or to the IBM branch office serving your locality.

Address comments concerning the contents of this publication to
IBM Corporation, Programming Publications, 1271 Avenue of the

Americas, New York, N. Y., 10020.

SECTION 1:
Purpose of the Compiler . « .« «
Machine Configuration
compiler and System/360 Operat1ng
System « ¢ ¢ ¢ o ¢ o e o o o o @
Ccompiler Design « « o o « « o
Limitations of the Compiler . .
Compiler Implementation < « . .
POP LAanguUage « « o o o o o o @
Compiler Organization . . .
Ccontrol Phase:

Phase 1: Parse (IEYPAR) . .
Phase 2: Allocate (IEYALL) .
Phase 3: Unify (IEYUNF) . .
Phase 4: Gen (IEYGEN) . . .
Phase 5: Exit (IEYEXT) . . .

Roll (IEYROL) e e o o o o @

Compiler Storage Configuration

Compiler Output o« o« o« ¢ o « o @
Object Module . . .

Components of the Ob]ect Module

Object Module General Registe
USAgEe o« o ¢ o o o« o o o o s
Source Module Listing
Object Module Listing .« « « «
Storage MapsS « « o o o o o o o
Error MesSSagesS « « o« o o o o o
Common Error Messages .« « e
Compiler Data Structures
Rolls and Roll Controls . . «
ROLL ADR Table « o & & « o &«
BASE, BOTTOM, and TOP Tables
Special RO11IS & o o o « o &
Central Items, Groups,
StatS o o o o o o o o o o o
Other Variables . « o« o o o «
ANSWEY BOX o o o o o o o o o
Multiple Precision Arithmetic
Scan Control . . « « . « . .
FlagS e © e e e e e o e o o
QUOLES « o o o o o o o o o »
MESSAgeS & o« « o« ¢ o o o o o
Compiler Arrangement
Register Usage « o o« o o o « «
POinterS e @ @« e e o e o e o @
Drivers o« o« o o o o o o o o &
Operation Drivers .
Control Drivers

SECTION 2: COMPILER OPERATION .
Invocation Phase (IEYFORT) « «
IEYFORT, Chart 00
IEYPRNT, Chart 00A4 . . «
PRNTHEAD, Chart 01A2
IEYREAD, Chart 01A4
IEYPCH, Chart 02A3 . .
PRNTMSG, Chart 03A1
IEYMOR, Chart 01D1 &« « o «
JEYNOCR . o o 2 o o o o o @
IEYRETN, Chart 03A2 .« « o «
OPTSCAN, Chart AA
DDNAMES, Chart AB <« « o o «

r

and Group

INTRODUCTION TO THE COMPILER

Invocation (IEYFORT)

Phase 1 of the Compiler:

Phase 2 of the Compiler:
(IEYALL) « «

Phase 3 of the Compiler:

CONTENTS

HEADOPT, Chart AC . . « o« « o« &
TIMEDAT, Chart AD « « « « o o« o
Output from IEYFORT . . « « « .

Flow of Phase 1, Chart 04
PRINT and READ SOURCE, Chart BA
STA INIT, Chart BB . « « « « o
LBL FIELD XLATE, Chart BC .« .
STA XLATE, Chart BD . . . « . .
STA FINAL, Chart BE . « « « .
ACTIVE END STA XLATE, Chart BF .
PROCESS POLISH, Chart BG

Output from Phase 1 .« ¢« « « « o &«
Polish Notation . . . « o « . .
Source LisSting « o o« o o o o o &

Allocate

Flow of Phase 2 Chart 05 e o o o
ALPHA LBL AND L SPROGS, Chart CA
ALPHA SCALAR ARRAY AND SPROG,
Chart CA ¢ ¢« « o o o o o « o e
PREP EQUIV AND PRINT ERRORS,
CB o o @ o o o ¢ s o o o o o o o
BLOCK DATA PROG ALLOCATION, Chart
CC &« o« o & e o o o o o o .
PREP DMY DIM AND PRINT ERRORS,
Chart CD e« o o o o o
PROCESS DO LOOPS, Chart CE « « &
PROCESS LBL AND LOCAL SPROGS,
Chart CF « « ¢« e e o o e o @
BUILD PROGRAM ESD, Chart ¢G . .
ENTRY. NAME ALLOCATION, Chart CH
COMMON ALLOCATION AND OUTPUT,
Chart CI « .« & o
EQUIV ALLOCATION PRINT ERRORS,
Chart CK o« o o « - . o
BASE AND BRANCH TABLE ALLOC, Char
CL ¢« ¢« ¢ o o o o o o @ o o o
SCALAR ALLOCATE, Chart CM « o o
ARRAY ALLOCATE, Chart CN
PASS 1 GLOBAL SPROG. ALLOCATE,
Chart CO e o e o o
SPROG ARG ALLOCATION, Chart CP .
PREP NAMELIST, Chart CQ . « . .
LITERAL CONST ALLOCATION, Chart C
FORMAT ALLOCATION, Chart CS . .
EQUIV MAP, Chart CT 4« o« « « o o«
GLOBAL SPROG ALLOCATE, Chart CU
BUILD NAMELIST TABLE, Chart CV .
BUILD ADDITIONAL BASES, Chart CW
DEBUG ALLOCATE, Chart CX « « .

Output From Phase 2 e« o

Error Messages Produced by Allocate

Unclosed DO LOOPS =« .
Storage Maps Produced by Allocate
Subprogram List « « o« ¢ ¢« o o o
Cards Produced by Allocate . . .
Flow of Phase 3, Chart 07
ARRAY REF ROLL ALLOTMENT,
CONVERT TO ADR CONST, Chart DB .
CONVERT TO INST FORMAT, Chart DC

Parse (IEYPAR)

Chart

.

t

R

.

Unify (IEYUNF)

Chart DA .

35
35
35
36

DO NEST UNIFY, Chart DD
IEYROL Module « ¢« o o o o o
Phase 4 of the Compiler:
(IEYGEN) ¢« o o o« o o o o
Flow of Phase 4, Chart 0
ENTRY CODE GEN, Chart EA
PROLOGUE GEN, Chart EB .
EPILOGUE GEN, Chart EC .
GET POLISH, Chart ED . .
LBL PROCESS, Chart EF .
STA GEN, Chart EG . . «
STA GEN FINISH, Chart EH « o
Phase 5 of the Compiler: Exit (IEYEXT
Flow of Phase 5, Chart 09 . ¢« o« « &
PUNCH TEMP AND CONST ROLL, Chart F
PUNCH ADR CONST ROLL, Chart FB . .
PUNCH CODE ROLL, Chart FC « « o« o
PUNCH BASE ROLL, Chart FD ¢ « o o

®
e

e 8 o o 0 0 0 00 N o
e & o o o o o o

PUNCH BRANCH ROLL, Chart FE . .
PUNCH SPROG ARG ROLL,
PUNCH GLOBAL SPROG ROLL, Chart FG
PUNCH USED LIBRARY ROLL, Chart FH
PUNCH ADCON ROLL, Chart FI « « «
ORDER AND PUNCH RLD ROLL, Chart FJ
PUNCH END CARD, Chart FK « « o o o
PUNCH NAMELIST MPY DATA, Chart FL
Output From Phase 5 « « « o ¢ ¢ « o

Chart FF .

APPENDIX A: THE POP LANGUAGE . « «
POP INStruCtions « o« « « o o o o o o &
Transmissive Instructions . « « «
Arithmetic and Logical Instructions
Decision Making Instructions . . .
Jump InStructions =« « « « o o o o
Roll Control Instructions .« « «
Code Producing Instructions . . .
Address Computation Instructions .
Indirect Addressing Instruction .
LabelsS o « o o o o« o o o o o o o o o
Global Labels o « « ¢ « o « o o o
Local LabelS 4« o « « ¢ o o o o o @

P

Assembly and Operation « « « « « &
POP Interpreter =« « « o o« o o o
Assembler Language References to
Subroutines « « « ¢ ¢« ¢ ¢ ¢ ¢ o
Global Jump Instructions . « « « .
Local Jump Instructions . « « « «

(o)

.
.
)
.
.
.
.
.
.
.
o
P
.
.
3

APPENDIX B: ROLLS USED IN THE COMPILER
Rol1l 0: LIB Roll e e e e o & o o o o
Rol1l : SOURCE RO11l ¢« o o « o « o« o @
Roll 2: IND VAR RO11l ¢ o ¢ ¢ « o « @
Roll 2: NONSTD SCRIPT ROll =« « « o« o
Roll 3: NEST SCRIPT Roll e e o e o o
Rol1 4: POLISH ROIl ¢ ¢ o ¢ e « o o &«
Roll U4: LOOP SCRIPT RO1l .+ « o « o
Roll 5: LITERAL CONST RO1l 4« « ¢ « «
Roll 7: GLOBAL SPROG RO1l & o « o o«
Rol1l 8: FX CONST RO1l ¢ « ¢ ¢ ¢ o o @
Roll 9: FL CONST RO11l &« « o o ¢ o o &«
Roll 10: DP CONST ROI1l ¢ « « ¢ o o « o
Roll 11: COMPLEX CONST ROl1l &« « o o
Roll 12: DP COMPLEX CONST ROll « « .«
Roll 13: TEMP NAME ROll . ¢ « « « o« &
Roll 13: STD SCRIPT RO1l ¢ « o ¢ « o &
Roll 14: TEMP RO1lL ¢« ¢« ¢ ¢ o o o o & .
Roll 15: DO LOOPS OPEN ROll .« « o« o« o

Roll LOOPS OPEN RO1ll . .

e o o o o o o & o o o
wm
£

e o 6 6 6 o 6 s 06 0 s o
[S]
~

<127
«127
<127
<130
<131
<133
<133
<134
«134
. 135
<135
«135
<136
«136
<136

«137
<137
«138

.140
<140
. 140
L1481
<141
.161
141
142
.142
.142
.143
.143
.143
.143
.143
.143
L1484
.144
.144
.14

Ro1ll
RoO11
Rol1l
Rol1l
Roll
Roll
RoO1l1l
Ro1l1l
Ro1l1l
Rol1l
RoO1l1l
RoOl1l1l
Roll
Roll
Roll
Roll
Roll
RoO11
RoO11
RoOl1l
Ro1l1l
Ro1l1l
Roll
Roll
Rol1l
Roll
Roll
Roll
Rol1l
Rol1l
Roll
Roll
Ro1l1l
RoO1l1l
Roll
Rol1l
Ro1l1l
Roll
Roll
Ro1l1l
Rol1l
Roll
Roll
RoO1l1l
Roll
Rol1l1l
RoO11
Ro1l1l
Roll
Roll
Roll
Roll
RoO11
Roll
Rol1l
RoO1l1l
Roll
Roll
Roll
Ro1l1l
RoOl1l
Roll
Roll
Roll
Roll
Roll
RoO1l1l
Rol1l

16:

: COMMON ALLOCATION

: ARRAY REF Roll .

ERROR MESSAGE Roll
TEMP AND CONST Roll
ERROR CHAR Roll . .
ADCON RO1ll
INIT RO1l
DATA SAVE Roll . . .
EQUIVALENCE TEMP (EQUIV

...a . L] . .
=

EQUIVALENCE HOLD (EQUIV

e o o o o o o o -

REG ROl « e o o
BASE TABLE Roll .
ARRAY RO1ll . . .
DMY DIMENSION Roll
SPROG ARG Roll .

e o 8 o o

ENTRY NAMES Roll .
GLOBAL DMY Roll . .
ERROR RO1ll
ERROR LBL Roll . .
LOCAL DMY Roll . .
LOCAL SPROG Roll .
EXPLICIT Roll . . .
CALL LBL Roll . . .
ERROR SYMBOL Roll .
NAMELIST NAMES Roll
NAMELIST ITEMS Roll
ARRAY DIMENSION Roll
BRANCH TABLE Roll . .
TEMP DATA NAME Roll .
TEMP POLISH Roll . .
FX AC RoOll
EQUIVALENCE Roll . .
BYTE SCALAR Roll . .
USED LIB FUNCTION Roll
COMMON DATA Roll . .
HALF WORD SCALAR Roll
COMMON NAME RoOll . .
TEMP PNTR Roll . . .
IMPLICIT Roll
EQUIVALENCE OFFSET Roll
FLACRO1l
ILBL ROll
SCALAR Roll . . .
HEX CONST Roll .
DATA VAR RoOll . .

o 0o o o
o e o o

e o o s o o

LITERAL TEMP (TEMP LITERAL

e o o e o o o o o o o

COMMON DATA TEMP Roll .
FULL WORD SCALAR Roll .
COMMON AREA Roll . . .
NAMELIST ALLOCATION Roll

: COMMON NAME TEMP Roll .

EQUIV ALLOCATION Ro1ll .
RID RO1l .+ & o ¢ o o
Roll
LOOP CONTROL Roll . .

FORMAT Roll
SCRIPT Roll
LOOP DATA Roll . .
PROGRAM SCRIPT Roll
ARRAY PLEX Roll . .

ADR CONST Roll .
AT Roll
SUBCHK Roll
NAMELIST MPY DATA Rol
GENERAL ALLOCATION Roll
CODE Roll .

® o e s 0 s s e 0 e e “ o

e o o o o s 0 s e

o e

.

3. . . L] . .
o

[e]
t
o

e o o o o o

$ 8 & 0 0 5 8 0 8 & % 8 6 0 " 0 0 0 e 0 0

® 6 & 8 0 8 b e 0

® 6 0 8 8 0 e e 8 s e e

S 0 o o o 5 0 0 0 o s 0 " " e 0 s @

S 6 o o o o o e o o e o o e o o o

.14y
.144
. 145
.145
. 145
. 145

145

.145
<146
.146
.146
<147
147
. 147
.148
.148
.148
.148
.149
.149
.149
.149
.149
150
150
150
150
.151
.151
.151
.151
152
.152
.152
.152
.153
153
.153
.153
.153
.154
.154
.154

155
«155
.155
155
.155
.156
.156
.156
.156
.156
.157
157
.157
.158
.158
.159
.159

- +159

.160
.160
.160
160

Roll 63: AFTER POLISH Roll
Work and Exit Rolls .« . .
WORK RO1l . . « « o « &«
EXIT RO1l ¢ o o & o« o &«

APPENDIX C: POLISH NOTATION FORMATS .
General FOXM « o o ¢ o o o o« o o o o o
Labeled Statements . « « o ¢ o o o o o
Array References « « « « « o« o o o o o
ENTRY Statement . ¢ ¢ o o« o o o o o o«
ASSIGN Statement . . e e o e e e o o
Assigned GO TO statement e o o o o o
Logical IF Statement « « « « o « o o« o
RETURN Statement . . « ¢« o ¢ o ¢ o o @
Arithmetic and Logical Assignment
Statement . . . s o o o . e o o s o
Unconditional GO TO Statemenf e e e s
Computed GO TO Statement « « « ¢« ¢ « «
Arithmetic IF Statement .
DO Statement « « « « ¢ « o
CONTINUE Statement
PAUSE and STOP Statements
END Statement
BLOCK DATA Statement « « « ¢« ¢ o o o o
DATA Statement and DATA in Explicit
Specification Statements . « ¢« « o o .
IJ/0O LiSt ¢ o o o o o o o o a o o o o «
Input Statements « « ¢« ¢ « ¢ ¢ « o o o
FORMATTED READ ¢ 2 2 o ¢ o o o
NAMELIST READ . .
UNFORMATTED READ .
READ Standard Unit
Output Statements .
FORMATTED WRITE .
NAMELIST WRITE . .
UNFORMATTED WRITE
PRIM‘ L] L] L] L] . L] .
PUNCH . . . e o o o
Direct Access Statements
READ, Direct Access .
WRITE, Direct Access . . .
FIND ¢ o ¢ o ¢ ¢ o o o ¢ o o o
DEFINE FILE &« ¢« o o o o o o =
END FILE Statement . . .
REWIND Statement . .

e o o o

e o o o
e o o o o o
e o o o o 0
e o o o o o
e o o o o o
e o o o o o

e o o o o o o o o
.

AT ¢ o o o o o o o o«
TRACE ON .
TRACE OFF
DISPLAY .

BACKSPACE Statement . « « « « « ¢ <« &
Statement Function
FUNCTION Statement « « « « ¢« ¢ ¢ o o o
Function (Statement or Subprogram)
Reference . « o « ¢ o ¢ o o o o« o o @
SUBROUTINE Statement . . . ¢« « o o o« &
CALL Statement . « « « « &« .

Debug Facility Statements .

e e e o
e o o o
e e e o

APPENDIX D: OBJECT CODE PRODUCED
THE COMPILER &+ o o o o o o o o o o o o
Branches . « « « & ¢ o o o o o o
Computed GO TO Statement e e o o o o =
DO Statement L] o o . L] . L] . . . L] . .
Statement Functions o o
Subroutine and Function Subprograms .
Input/Output Operations .« « « o« o« o o«

Formatted Read and Write Statements

Second List Item, Formatted . . « &

.161
. 161
«161
.161

.163
<163
.163
<163
.164
<164
.164
<164
.164

.164
<165
«165
.165
«165
.166
<166
.166
<166

«166
.167
<167
«167
.168
.168
.168
.168
.168
<169
.169
<169
.169
<169
<169
.170
<170
.170
<170
.171
.171
.171
Ll 171

<171
.171
172
«172
«172
<172
172
«173

.175
<175
.175
<175
<176
.176
<177
<177
<177

Formatted . .
Formatted . .

Second List Array,
Final List Entry,

.178
.178

Unformatted Read and Write Statements 178

Unformatted .
Unformatted .

Second List Item,
Second List Array,
Final List Entry, Unformatted .
Backspace, Rewind, and Write Tape
Mark « ¢ o o o o o o @ e e o o
STOP and PAUSE Statements « o o
NAMELIST READ and WRITE
DEFINE FILE Statement .« « « « «
FIND Statement e« o
Direct Access READ and WRITE
Statements . ¢« ¢ ¢ ¢ ¢ ¢ o o o .
FORMAT Statements o
FORMAT Beginning and Endlng
Parentheses . « « ¢« ¢ ¢ o « &
Slashes « o« ¢ o ¢ ¢ « o o o &
Internal Parentheses . . .
Repetition of Individual FORMAT
Specifications . . . e o o
1,F,E, and D FORMAT Codes o o
A FORMAT Code . o o« o o o o @
Literal Data « « o « o o o« o«
X FORMAT Cod€ o o o o o o o »
T FORMAT COd€ 4« o o o o o o »
Scale FAactOr—P o« o o o o o o o
G FORMAT Cod€ .« o« o« o« o « o «
L FORMAT COd€ 4« o « o o o o &«
Z FORMAT Code . ¢ o o o o o o
Debug Facility « « « « o o o o &
DEBUG Statement« .
Beginning of Input/Output .
End of Input/Output
UNIT Option .« « .
TRACE Option . . .
SUBTRACE Option .

e o o o
.
.
.
.
.

INIT Option . .
SUBCHK Option .
AT Statement . . .
TRACE ON Statement . . . « . . .
TRACE OFF Statement . « « « « «
DISPLAY Statement

APPENDIX E: MISCELLANEOUS REFERENCE
DATA ¢« o« « @ e o e o o s o e o @
Parse Label LlSt e o o o o o o o @
Supplementary Parse Label List . .
Allocate Label List . . .
Supplementary Allocate Label LlSt
Unify Label List ¢« ¢« « ¢ « o « &
Supplementary Unify Label List .
Gen Label LiSt « ¢« ¢ ¢ ¢ « o o @
Supplementary Gen Label List . .
Exit Label List . . o« e
Supplementary Exit Label LlSt .

APPENDIX F: OBJECT-TIME LIBRARY

SUBPROGRAMS ¢« ¢ o o ¢ o o o o o &

TJHCFCOMH « o o ¢ 2 o o o o o o o »

READ/WRITE Routines . . .

READ/WRITE Statements Not Us1ng
NAMELIST ¢ « ¢ o o o o o o &
Examples of IHCFCOMH READ/WRITE
Statement Processing

* o o o o & o o

.178
.178
.178

.178
‘179
.179
<179
.179

<179
.180

.180
180
.180

.180
180
.180
180
.181
.181
.181
.181
.181
.181
.181
.181
.181
.181
.181
.182
.182
<182
.183
.183
.183
.183
.183

.185
.185
.185
<193
.193
.196
.196
.198
.198
. 208
. 208

.212
. 213
. 214
. 214

.218

READ/WRITE Statement Using NAMELIST 221

Input/Output Device Manipulation

ROULINES ¢ o o « « o o o o o «

221

Write-to-Operator Routines . 222 Operation « « « o « « o o o « o o o o233

Utility Routines . . . e o s e 222 File Definition Section 233
Cconversion Routines (IHCFCVTH) e o o o 223 File Initialization Section 233
IHCFIOSH . . . e o o o o o o o o224 Read Section « « « « o o o « o o o o234

Blocks and Table Used e o e o o o - <2204 Write Section . ¢« &« ¢ ¢« « « o o « 235
Unit BlOCKS ¢ o « o ¢ o ¢ o ¢ o o 224 EXror ProcesSing « « « o o o« « « o o 235
Unit Assignment Table . . . « . « .225 Termination Section236

Buffering e @ e e e e e e e o e o e 0226 JHCIBERH ¢ « ¢ ¢ e ¢ o « ¢ @ o e o o« o o 236

Communication with the Control JHCDBUG =« o o o o o o o o o o o« o o o 236

Program e e e e @ e & e e e o o o e «227 Items and Buffer « o« o« « o o o o o o 236

Operation .« o o o o ¢ o o o o o o o 227 Operation . « « o o« o o o o o« o o «236

Initialization « « o« o o o ¢ o o« o o227 SUbroutines =« « o « ¢« « o ¢ o o ¢ o237

Read « « o o o o o o o o« o o o o o 2228 THCTRCH =« o o o o o o o« o o o o o o « =238

Write e © e e e e e e e e e o & o .228 TJHCFINTH « « ¢ e e ¢ ¢ o o a o o« o o o @ 238

Device Manipulation . « « « ¢ « o 229 THCERRM . ¢ ¢ ¢ ¢ o ¢ o o o o o o o o =239

ClOSINg « o « o o ¢ o o ¢« o o o o «229 Alter Option Table Routine
TJHCDIOSE « o o o o @ e o o e o o o 229 (IHCFOPT) e o e o o e o o o e e e 240

Blocks and Table Used e ¢ o o o o o 230
Unit Blocks e e o o o o 2230 GLOSSARY « « o o o o s « o o o o o o o 259
Unit Assignment Table e o« o o o o 232
BUfferlng e o o ¢ ¢ e o e o o o o s 237 INDEX e 6 e 6 e @ e e e e e o o o o o e 263
Communication With the Control
Program « e o« « o o o o o o o o o o 233

FIGURES

Figure 1. Overall Operation of
the COmpiler e e ¢ e e e o o @ s o
Figure 2. Compiler Organization
Chart € @ e e o e e e e o o o e o
Figure 3. Compiler Storage
Configuration =« « « o« o o o « o o
Figure 4. Compiler Outpu « o
Figure 5. Object Module
Configuration . . « .
Figure 6. Example of Use of Save
Area e e e e e e e e e e s € e @
Figure 7. Roll Containing K
Bytes of Information e e e o e o
Figure 8. Roll Containing L
Bytes of Reserved Information and
K Bytes of New Information « o o
Figure 9. Roll With a Group Size
Of TWelve <« ¢ ¢ o ¢ o o o o @
Figure 10. Roll with Variable
Group Size e e ¢ o e o e o o o o

TABLES

Table 1. Internal Configuration
of Operation Drivers . « o« « « o «
Table 2. Internal Configuration
of Control Drivers .

Table 3. Rolls Used by Parse . .
Table 4. Rolls Used by Allocate
Table 5. Rolls Used by Unify . .
Table 6. Rolls Used by Gen . . .
Table 7. Rolls Used by Exit . .
Table 8. POP Instruction

Cross-Reference LisSt « « « « « o o
Table 9. IHCFCOMH FORMAT Code

Processing « « « o« o« o o o« o o o o
Table 10. IHCFCOMH Processing for
a READ Requiring a Format . « « &
Table 11, IHCFCOMH Processing for
a WRITE Requiring a Format « « « o

.« 15
« 16

32

uy
52
53
55

<139
.215
«219

<219

ILLUSTRATIONS

Figure 11. First Group Stats
Table « ¢ ¢ ¢ o o o o o o o o o &
Figure 12. Second Group Stats
Table .« ¢ ¢ ¢ ¢« o o o o o o o o @
Figure 13. Scan Control Variables
Figure 14, Quotes Used in the

Compiler e o o o o o o s s e o @
Figure 15. Compiler Arrangement
with Registers e e o o o o o o o
Figure 16. Relationship Between
IHCFCOMH and Input/Output Data
Management Interfaces . « « o« o« «
Figure 17. Format of a Unit Block
for a Sequential Access Data Set
Figure 18. Unit Assignment Table
Format e o .
Figure 19. CTLBLK Forma « o o
Figure 20. Format of a Unit Block
for a Direct Access Data Set - .
Figure 21. Unit Assignment Table
Entry for a Direct Access Data Set

Table 12. IHCFCOMH Processing for
a READ Not Requiring a Format . .
Table 13. IHCFCOMH Processing for
a WRITE Not Requiring a Format . .
Table 14. Description of Option

Table ENtry =« o o o o o o o o o &«

Table 15. Description of Option
Table Prefac€ .« o« « o o o o o « o
Table 16. IHCFCOMH Subroutine
Directory o o o . e o o o o o

Table 17. IHCFCVTH Subroutine
Directory . « o « o o o s o o o =
Table 18. IHCFIOSH Routin
DIirectory . « o o o o o o o o o »
Table 19. IHCDIOSE Routine
Directory . « « .

e e o o e o o

. 26

. 26
27

. 27

. 28

.« 213
. 224

«226
«227

« 230
232

. 220
« 220
2041
242
- 246
. 246
.251

251

CHARTS

00.
01.
02.
03.
AA.
AB.
AC.
AD.

Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart
Chart 04.
Chart BA.
SOURCE: « «
Chart BB.
PROCESSING
Chart BC.
Chart BD.
Chart BE.
MOVE POLISH
Chart BF.
Chart BG.
Chart 05.
(Part 1 of
Chart 06.
(Part 2 of
Chart CA.
ROLL « o «
Chart CB.
Chart CC.
Chart CD.
DIMENSIONS
Chart CE.
LOOPS . .
Chart CF.
ROLL o« ¢ @
Chart CG.

IEYFORT (Part 1 of 4) .
IEYFORT (Part 2 of 4) .
IEYFORT (Part 3 of 4) .
IEYFORT (Part 4 of 4) .
OPTSCAN @« o o ¢ e ¢ o o
DDNAMES L] L] L] L] L] - L] L]
HEADOPT L] L] L] L] L] L] L] Ll
TIMEDAT L] L] L] L] L] Ll L] L]
PHASE 1 - PARSE - L} . .
WRITE LISTING AND READ

INITIALIZE FOR
STATEMENT . . o o
PROCESS LABEL FIELD . e
PROCESS STATEMENT . « .
COMPLETE STATEMENT AND
PROCESS END STATEMENT .
PROCESS POLISH o o o« o
PHASE 2 - ALLOCATE

2) L] . L] . L] .

PHASE 2 - ALLOCATE
2) e« o o e e @ e e o

MOVE BLD NAMES TO BCD

& o 6 o o 0o o o o

PREPARE EQUIVALENCE DATA

ALLOCATE BLOCK DATA . .
PREPROCESS DUMMY

CHECK FOR UNCLOSED DO
CONSTRUCT BRANCH TABLE

e e e e o e e o e o o o

ALLOCATE HEADING AND

PUNCH ESD CARDS & ¢ o o o @ .« o

Chart CH. CHECK ASSIGNMENT OF
FUNCTION VALUE ¢ o« o o ¢ o o o o
Chart CI. COMMON ALLOCATION o o o
Chart CK. EQUIVALENCE DATA

ALLOCATION .

Chart

CL.

e o e e e e o o o

SAVE AREA, BASE AND

BRANCH TABLE ALLOCATION « « o o o

Chart
Chart
Chart

CM.
CN.
CO.

SUBPROGRAM
Chart CP.
-ARGUMENT LI
Chart CQ.
Chart CRe.
CONSTANTS
Chart Cs.
Chart CT.
Chart CU.
ADDRESSES
Chart CV.

ALLOCATE SCALARS « «
ALLOCATE ARRAYS ¢« ¢ «
ADD BASES FOR
ADDRESSES . L] . L] L] L3
ALLOCATE SUBPROGRAM
STS L] L] . Ll L] Ll
PREPARE NAMELIST TABLES
ALLOCATE LITERAL
ALLOCATE FORMATS . « &
MAP EQUIVALENCE ¢« « «
ALLOCATE SUBPROGRAM

BUILD AND PUNCH

NAMELIST TABLES &« ¢ o « ¢ ¢« ¢ o @

77
79
80
81
82
83

84
85

86
87
89
90

91
92

93
94
95

96
97

Chart CW. BUILD BASES « « « « o« « o« 98
Chart CX. DEBUG ALLOCATE . « « « « 99
Chart 07. PHASE 3 - UNIFY . . « . .100
Chart DA. BUILD ARRAY REF ROLL . .101
Chart DB. MAKE ADDRESS CONSTANTS .102
Chart DC. CONSTRUCT INSTRUCTIONS .103
Chart DD. PROCESS NESTED LOOPS . .104
Chart 08. PHASE 4 - GEN . « « « « 105
Chart EA. GENERATE ENTRY CODE . . .106
Chart EB. PROLOGUE CODE GENERATION 107
Chart EC. EPILOGUE CODE GENERATION 108
Chart ED. MOVE POLISH NOTATION . .109
Chart EF. PROCESS IABELS . . « . .110
Chart EG. GENERATE STMT CODE . . .111
Chart EH. COMPLETE OBJECT CODE . .112
Chart 09. PHASE 5 - IEYEXT113
Chart FA. PUNCH CONSTANTS AND

TEMP STORAGE « o « « o« o o « o « o o114
Chart FB. PUNCH ADR CONST ROLL . .115
Chart FC. PUNCH OBJECT CODE . « « 116
Chart FD. PUNCH BASE TABLE117
Chart FE. PUNCH BRANCH TABLE . . .118
Chart FF. PUNCH SUBPROGRAM

ARGUMENT LISTS o o 2 o « o « o « « <119
Chart FG. PUNCH SUBPROGRAM

ADDRESSES =« o o o o o o o o o« o o 2120
Chart FH. COMPLETE ADDRESSES FROM
LIBRARY &« ©o o o o o o o o o o o « 121
Chart FI. PUNCH ADDRESS CONSTANTS .122
Chart FJ. PUNCH RLD CARDS . « « « 123
Chart FK. PUNCH END CARDS . « « « o124
Chart FL. PUNCH NAMELIST TABLE
POINTERS © « o o o o o o o o« o o o 2125
Chart GO. IHCFCOMH OVERALL LOGIC

AND UTILITY ROUTINES o o o o o o o« o243
Chart Gl. IMPLEMENTATION OF
READ/WRITE/FIND . o o o o o o o o <244
Chart G2. DEVICE MANIPULATION AND
WRITE-TO-OPERATOR ROUTINES25
Chart G3. IHCFIOSH OVERALL LOGIC .247
Chart Gu. EXECUTION-TIME

INPUT/OUTPUT RECOVERY PROCEDURE . .2u48
Chart GS5. IHCDIOSE OVERALL

LOGIC - FILE DEFINITION SECTION . .249
Chart Gé6. IHCDIOSE OVERALL LOGIC

- FILE INITIALIZATION, READ,

WRITE, AND TERMINATION SECTIONS . .250
Chart G7. IHCIBERH OVERALL LOGIC .252
Charts G8. ERROR MONITOR OVERALL

LOGIC (Part 1 of 2) <253
Chart G9. ERROR MONITOR OVERALL

LOGIC (Part 2 of 2) . . e o 254
Chart G10. ALTER OPTION TABLE

ROUTINE OVERALL LOGIC (Part 1 of 3) 255
Chart G11. ALTER OPTION TABLE

ROUTINE OVERALL LOGIC (Part 2 of 3) 256

Chart G12. ALTER OPTION TABLE
ROUTINE OVERALL LOGIC (Part 3 of 3)

257

This section contains general informa-
tion describing the purpose of the FORTRAN
IV (G) compiler, the minimum machine confi-
guration required, the relationship of the
compiler to the operating system, compiler
design and implementation, and compiler
output. The various rolls,! variables,
registers, pointers, and drivers used by
the compiler are also discussed.

PURPOSE OF THE COMPILER

The IBM System/360 Operating System
FORTRAN IV (G) compiler is designed to
accept programs written in the FORTRAN IV

language as defined in the publication IBM
System/360: FORTRAN IV Langquage, Form
C28-6515.

The compiler produces error messages for
invalid statements, and, optionally, a
listing of the source module, storage maps,
and an object module acceptable to the
System/360 Operating System linkage editor.

MACHINE CONFIGURATION

The minimum system configuration
required for the use of the IBM System/360
Operating System with the FORTRAN IV (G)
compiler is as follows:

e An IBM System/360 Model 40 computer
with a storage capacity of 128K bytes
and a standard and floating-point
instruction set.

e A device for operator communication,
such as an IBM 1052 Keyboard Printer.

e At least one direct-access device
vided for system residence.

pro-

COMPILER _AND SYSTEM/360 OPERATING SYSTEM

The FORTRAN IV (G) compiler is a proces-
sing program of the IBM System/360

- - o ——————— ————

iMost of the tables used by the compiler

are called rolls. (Further explanation of
rolls is given in "Rolls and Roll
Controls.")

SECTION 1: INTRODUCTION TO_THE COMPILER

Operating System. As a processing program,
the compiler communicates with the control
program for input/output and other ser-
vices. A general description of the con-
trol program is given in the publication
IBM System/360 Operating System: Introduc-
tion to Control Program Logic, Program

Logic_Manual.

A compilation, or a batch of compila-
tions, is requested using the job statement
(JOB), the execute statement (EXEC), and
data definition statements (DD). Alterna-
tively, cataloged procedures may be used.
A discussion of FORTRAN IV compilation and
the available cataloged procedures is given
in the publication IBM System/360 Operating
System: FORTRAN IV (G) Programmer's Guide.

The compiler receives control initially
from the calling program (e.g., job sche-
duler or another program that CALLs, LINKs
to, or ATTACHes the compiler). Once the
compiler receives control, it uses the QSAM
access method for all of its input/output
operations. After compilation is com-
pleted, control is returned to the calling
program.

COMPILER DESIGN

The compiler will operate within a total
of 80K bytes of main storage. This figure
includes space for the compiler code, data
management access routines, and sufficient
working space to meet other storage
requirements stated throughout this
publication.

Any additional storage available is used
as additional roll storage.

LIMITATIONS OF THE COMPILER

The System/360 Operating System FORTRAN
IV (G) compiler and the object module it
produces can be executed on all System/360

models from Model 40 and above, under
control of the operating system control
program. All input information must be

written in either BCD or EBCDIC representa-
tion. The compiler is designed to process
all properly written programs so that the
object code produced by the compiler is
compatible with the existing mathematical
library subroutines.

Section 1: Introduction to the Compiler 9

If ten source read errors occur during

compilation, or if it is not possible
to wuse SYSPRINT, the operation of the
compiler is terminated. The operation of
the compiler is also limited by the availa-
bility of main storage space. The compila-
tion is terminated if:

the

e The roll storage area is exceeded

e Any single roll exceeds 64K bytes,
thereby making it unaddressable

e The WORK or EXIT roll exceeds its
allocated storage
Note: If any of these conditions occur

during the first phase of the compilation,
the statement currently being processed may
be discarded; in this case, the compilation
continues with the next statement.

COMPILER IMPLEMENTATION

The primary control and processing rou-
tines (hereafter referred to as "POP rou-
tines"™ or "compiler routines") of the com-
piler are primarily written in machine-
independent pseudo instructions called POP
instructions.

Interpretation of the pseudo instruc-
tions is accomplished by routines written
in the System/360 Operating System assembl-
er language. These routines (hereafter
referred to as "POP subroutines") are an
integral part of the compiler and perform
the operations specified by the POP ins-
tructions, e.g., saving of backup informa-
tion, maintaining data indicators, and gen-
eral housekeeping.

Control of the compiler operation is
greatly affected by source language syntax
rules during the first phase of the compil-
er, Parse, During this phase, identifiers
and explicit declarations encountered in
parsing are placed in tables and a Polish
notation form of the program is produced.
T ———

(For further information on Polish nota-
tion, see Appendix C, "Polish ©Notation
Formats.")

10

The compiler quite frequently uses the
method of recursion in parsing, analysis,
and optimization. All optimizing and code
generating routines, which appear in later
phases, operate directly on the tables and
Polish notation produced by Parse.

The compiler 1is also designed so that
reloading of the compiler is unnecessary in
order to accomplish multiple compilations.

POP LANGUAGE

The FORTRAN IV (G) compiler is written
in a combination of two 1languages: the
System/360 Operating System assembler lan-
guage, which is wused where it 1is most
efficient, and the POP language.

The POP 1language 1is a mnemonic macro
programming language whose instructions
include functions that are frequently per-
formed by a compiler. POP instructions are
written for assembly by the System/360
Operating System assembler, with the POP
instructions defined as macros. Each POP
instruction 1is assembled as a pair of
address constants which together indicate
an instruction code and an operand. A
statement or instruction written in the POP
language is called a POP. The POP instruc-
tions are described in Appendix A.

COMPILER ORGANIZATION

The System/360 Operating System FORTRAN

IV (G) compiler 1is composed of a control
phase, Invocation, and five processing
phases (see Figure 1): Parse, Allocate,

Unify, Gen, and Exit. The operating system
names for these phases are, respectively,
IEYFORT, IEYPAR, IEYALL, IEYUNF, IEYGEN,
and IEYEXT. (The first level control and
second 1level processing compiler routines
used in each phase are shown in Figure 2.)
In addition, Move is a pre-assembled work
area, IEYROL.

Source

Control |—

Program |

Figure

[
| Module |
L

®

]
!
I
V IEYPAR

r 1
| Parse prm———————
| (Phase 1) |
L]

T

]

|

|

V IEYALL
it 1
| Allocate |
| (Phase 2) |p--meeoeo——o
L 4

T

|

|

V IEYUNF
r R 1
| Unify]
| (Phase 3) |
L J

L]

I

V IEYGEN
r 1
| Gen |
| (Phase 4) |
| O e Nl

I

|

V IEYEXT
r 1
| Exit o ———— -
| (Phase 5) |
L J

T

|

I

V IEYFORT
r 1
| Invocation |
| Phase |
L J

.
- * .
K *,
.* Multiple %, NO
*. *Compilations* S FTTT T
. .
*

-
* YES
v

®

1. Overall Operation of the Compil

IEYFORT

1
Invocation |—-———-— > (:)

r
|
| Phase |
L 4

r 1
r———>|Source Module|

| |listing
L

]

SYSPRINT
| .

4

|
{
|
| r

1

L-—->| Source Module|
|diagnostics |
L

SYSPRINT

4

l L

"""" 1
r———>|Storage Maps

SYSPRINT

e —

4

r
L——>|ESD and TXT

|Cards
L

SYSPUNCH/SYSLIN

o e e

r
r——->|Object Module

|listing
L

SYSPRINT

I
|Object Module

SYSPUNCH/SYSLIN

[SRR R S ———

r 1
|ESD, RLD, and]

--->|END cards |
L

I
|
|
|
4+-—->| TXT cards
|
|
I
|
L

SYSPUNCH/SYSLIN

P

r

--—->|Control
| Program
L

S —— |

er

Section 1:

Introduction to the Compiler

11

Control Phase: Invocation (IEYFORT)

The Invocation phase (IEYFORT) is loaded
upon invocation of the compiler and remains
in core storage throughout compilation. It
is entered initially from the calling pro-
gram, from each module at the end of its
processing, and from Exit after compilation
is complete,

At the initial entry, the Invocation
phase initializes bits in IEYFORT1 from the
options specified by the programmer for the
compilation, opens data sets, and fetches
the modules IEYPAR, IEYALL, IEYUNF, IEYGEN,
and IEYEXT via a series of LOAD macro
instructions. These modules remain in core
storage for a series of main program and
subprogram compilations unless it is deter-
mined that additional space required for
tables is not available. When this occurs,
modules that precede the active one are
deleted, and compilation is resumed. If
more space is required, modules that follow
the currently active one are deleted.

When a module completes processing, it
returns to IEYFORT, which ensures the pre-
sence of the next module and transfers to
it. During initialization for a subpro-
gram, IEYFORT ensures that all modules are
loaded.

The last entry is made from the Exit
phase at the completion of a compilation.
When the entry is made from Exit, the
Invocation phase checks for multiple compi-
lations. If another compilation is
required, the compiler is reinitialized and
the main storage space allocated for the
expansion of rolls is assigned to the next
compilation; otherwise, control is returned
to the calling program.

Phase 1: Parse (IEYPAR)

Parse accepts FORTRAN statements in card
format from SYSIN and scans these to pro-
duce error messages on the SYSPRINT data
set, a source module 1listing (optional),
and Polish notation for the program. The
Polish notation is maintained on internal
tables for use by subsequent phases. In

addition, Parse produces the roll entries
defining the symbols used in the source
module.
Phase 2: Allocate (IEYALL)

Allocate, which operates immediately

after Parse, uses the roll entries produced

12

by Parse to perform the storage allocation
for the variables defined in the source
module. The addressing information thus
produced is then left in main storage to be
used by the next phase.

The ESD cards for the object module
itself, COMMON blocks and subprograms, and
TXT cards for NAMELIST tables, 1literal
constants and FORMAT statements are pro-
duced by Allocate on the SYSPUNCH and/or
SYSLIN data sets. Error messages for
COMMON and EQUIVALENCE statements, unclosed
DO loops and undefined labels are produced
on SYSPRINT; on the MAP option, maps of
data storage are also produced.

Phase 3: Unify (IEYUNF)

The Unify phase optimizes the
general registers within DO 1loops by
operating on roll data which describes
array references. The optimization applies
to references which include subscripts of
the form axtb, where a and b are positive
constants and x 1is an active induction
variable (that is, x 1is a DO-controlled
variable and the reference occurs within
the DO loop controlling it), and where the
array does not have any adjustable dimen-
sions. The addressing portion of the
object instruction for each such array
reference is constructed to minimize the
number of registers used for the reference
and the number of registers which must be
changed as each induction variable changes.

usage of

Phase 4: Gen (IEYGEN)

Gen uses the Polish notation produced by
Parse and the ‘memory allocation information
produced by Allocate. From this informa-
tion, Gen produces the code, prologues, and
epilogues required for the object module.
In order to produce the object code, Gen
resolves labeled statement references
(i.e., a branch target label) and subpro-
gram entry references.

The final output from Gen is a complete
form of the machine language code which is
internally maintained for writing by the
Exit phase.

Phase 5: Exit (IEYEXT)

Exit, which is the last processing phase
of the compiler, produces the TXT cards for
the remaining portion of the object module,
the RLD cards (which contain the relocat-
able information), and the END card. This
output is placed optionally on the SYSLIN
data set for 1linkage editor processing
and/or SYSPUNCH if a card deck has been
requested. Additionally, a listing of the
generated code may be written on the SYS-

PRINT data set in a format similar to that
produced by an assembly program.

Roll (IEYROL)

Roll contains static rolls and roll
information always required for compiler
operations. These are described under the

heading "Rolls and Roll Controls"™ later in
this section.

Section 1: Introduction to the Compiler 13

-

r

(-——START COMPILER
PARSE-———{

—_—

|
|
|
|
I |
L-—-STATEMENT PROCESS----{
L

r

ALLOCATE-----START ALLOCATE---——--—

e w

r

L

r
———START GEN |

L

—

r

-——PRINT AND READ SOURCE
STA INIT
LBL FIELD XLATE
STA XLATE
STA FINAL
REGISTER IBCOM
PROCESS POLISH
ACTIVE END STA XLATE
-—--STA FINAL END

~—~PREP EQUIV AND PRINT ERRORS
BLOCK DATA PROG ALLOCATION
PREP DMY DIN AND PRINT ERRORS
PROCESS DO LOOPS
PROCESS LBL AND LOCAL SPROGS
BUILD PROGRAM ESD
ENTRY NAME ALLOCATION
COMMON ALLOCATION AND OUTPUT
BASE AND BRANCH TABLE ALLOC
EQUIV ALLOCATION PRINT ERRORS
FORMAT ALLOCATION
SCALAR ALLOCATE
ARRAY ALLOCATE
PASS 1 GLOBAL SPROG ALLOCATE
SPROG ARG ALLOCATION
PREP NAMELIST
LITERAL CONST ALLOCATION
EQUIV MAP
GLOBAL SPROG ALLOCATE
BUILD NAMELIST TABLE
ALPHA LBL AND L SPROG
BUILD ADDITIONAL BASES
ALPHA SCALAR ARRAY AND SPROG
LITERAL CONST ALLOCATION
CALCULATE BASE AND DISP

—-—--DEBUG ALLOCATE

—--~ARRAY REF ROLL ALLOTMENT
DO NEST UNIFY
CONVERT TO ADR CONST
—-—~CONVERT TO INST FORMAT

-—--MOVE ZEROS TO T AND C
ENTRY CODE GEN
PROLOGUE GEN

---EPILOGUE GEN

—--GET POLISH
LBL PROCESS
STA GEN

---STA GEN FINISH

.‘

|

L

r——-PUNCH
| PUNCH
| PUNCH
| PUNCH
| PUNCH
| PUNCH
i PUNCH
| PUNCH
| PUNCH
| ORDER
| PUNCH
| PRINT
| PRINT
L——PRINT

EXIT—mmmm e EXIT PASS—mm—em——————

[o o . o . ——— — —— ——— — —— — — — — ————— —— — — — — —— — — — — — — _— —— — — — — —— — — — — — —— —— — —— — — — — — — —

TEMP AND CONST ROLL
ADR CONST ROLL

CODE ROLL

BASE ROLL

BRANCH ROLL

SPROG ARG ROLL
GLOBAL SPROG ROLL
USED LIBRARY ROLL
ADCON ROLL

AND PUNCH RLD ROLL
END CARD

HEADING

A LINE

TOTAL PROG REQMTS MESS

Figure 2. Compiler Organization Chart

14

e s s e s . — — —— — — — — ——— ——— ——— — — — ——— — — — — — — — — —— — — — —— —— —— — — — — — ——— — —— — t— o—— oo, e e]

I Li T

| Load |

| Module | |Content or
| Name | Components | Function

[{ 1

r 1
Low |IEYFORT|IEYFORT
Core| |

| |
| IEYFORT1

I
| IEYFORT2

IEYROL

I
I
I
I
|
|
I
|
I
I
I
I
I
I
I
|
I
]
I
| IEYINT
I

|

I

L\\\v/,A\\\\////”~4\\::2521551’//\\\\J

T
| Invocation and

| control

|Option bits

|Loads and deletes
| other modules

Roll statistics
(bases, tops,
bottoms)

Group statistics
(displacement
group sizes)

WORK roll

EXIT roll

Roll address table

POP Jump Table

POP machine
language sub-

— - — — —— — . S— —— — —— — ——— o — — U — —— o — e, e s, s s el e, cnise s)

Roll Storage is Allocated from this

Area

IEYPAR |IEYPAR

I

i

I

I

| I
|IEYALL |IEYALL
] I

| IEYUNF | IEYUNF
| I
|IEYGEN |IEYGEN

Core|IEYEXT |IEYEXT
L 4

|Parse phase

|Quotes and
| messages

|

|Allocate phase
|

|Unify phase

|

| Generate phase

e et s St s et s —— — —— — — —

|Exit phase
4

Figure 3. Compiler Storage Configuration

COMPILER STORAGE CONFIGURATION

Figure 3 illustrates the relative posi-
tions, but not the relative sizes of the
component parts of the FORTRAN compiler as
they exist in main storage. The component
parts of each phase are described in Sec-
tion 2.

COMPILER OUTPUT

The source module(s) to be compiled
appear as input to the compiler on the
SYSIN data set. The SYSLIN, SYSPRINT, and
SYSPUNCH data sets are used (depending on
the options specified by the wuser) to
contain the output of the compilation.

The output of the compiler is repre-
sented in EBCDIC form and consists of any
or all of the following:

Object Module (linkage editor input)

Source Module listing

Object Module listing

Storage maps

Error messages (always produced)

Relocatable card images for punching

The overall data flow and the data sets
used for compilation are illustrated in

Figure 4. The type of output is determined
by compile time parameters.,

Section 1: Introduction to the Compiler 15

o e e e e ——— ——— —— —————— —— ——— —— —— ———_—_ ————_—_—_—_——_——_——_——_—

r

—-——-For all

compilations

---LIST Option--

|

|

|

|

|

|

|

t

|

|

|

SYSIN |
—————-—- |
| Source | |
|Module | 3
s et
| |

| |

v |
[———————- 1|
| FORTRAN | |
1IV (G p->
|Compiler| |
L 1}
|

|

|

|

|

8

|

|

|

|

|

|

L

—--—-DECK Option--
LOAD Option-—-

-—-MAP Option---

———-SOURCE Option

[o e e o g

Error and

Warning

Messages
(if any)

R ——

\'
- ———-

Object
Module
listing

r
|Object Module

>| (EsD, TXT, RLD
|END) Card Image

L

L ——

e e e e el

r
|Object Module

>| (EsD, TXT, RLD,
|END) Card Images
L -

e e s e

r 1
>| Storage |
| Map |
L J
r 1
| Source |
>| Module |
| Listing |
L J

SYSPRINT

SYSPRINT

SYSPUNCH

SYSLIN

SYSPRINT

SYSPRINT

b e e s o — — ————— ——— ——— —— — ———— ——— — ——— —— — — — — — — — — — — —. s e et s}

Figure 4. Compil

16

er Output

OBJECT MODULE

The configuration of the object module
produced by the FORTRAN IV (G) compiler is
shown in Figure 5.

Entry point--->
Heading

Save area

Base table

Branch table

EQUIVALENCE variables

|l

Scalar variables

Arrays

Subprogram argument
lists

Subprogram addresses

e e e et o e e o S e g s e e e o Sy e

| NAMELIST tables
b——-
{Literal constants
| (except those used
]in DATA and PAUSE
| statements)

b-—-
| FORMAT statements
b

b
| Temporary storage
land constants

L

s
| Program text
Lo-

Object Module Configuration

[SRR SN U 1NN 1 S S T S S I S SRR SN WA SRR SRpR—— |

Figure 5.

Components of the Object Module

The following paragraphs describe the
components of the object module produced by
the FORTRAN IV (G) compiler.

HEADING: The object module heading
includes all initializing instructions
required prior to the execution of the body

of the object module. Among other func-
tions, these instructions set general
register 13 (see "Object Module General

Register Usage") and perform various opera-
tions, depending on whether the program is
a main program or a subprogram and on
whether it calls subprograms. (See "Code
Produced for SUBROUTINE and FUNCTION
Subprograms. ")

SAVE __AREA: The at maximum 72
bytes long, 1is reserved for information
saved by called subprograms. Figure 6
shows an example of the use of this area in
program Y, which is called by program X,

and which calls program Z.

save area,

The first byte of the fifth word in the
save area (Save Area of Y + 16) is set to
all ones by program Z before it returns to
program Y. Before the return is made, all
general registers are restored to their
program Y values.

BASE TABLE: The base table is a 1list of
addresses from which the object module
loads a general register prior to accessing
data; the general register is then used as
a base in the data referencing instruction.

Because an interval of 4096 bytes of
storage can be referenced by means of the
machine instruction D field, consecutive
values representing a single control sec-
tion 1in this table differ from each other
by at least 4096 bytes. Only one base
table entry is constructed for an array
which exceeds 4096 bytes in length; hence,
there is a possibility that an interval of
more than 4096 bytes exists between conse-
cutive values for a single control section
in the table.

The addresses compiled into this table
are all relative, and are modified by the
linkage editor prior to object module
execution. Those entries constructed for
references to COMMON are modified by the
beginning address of the appropriate COMMON

block; those entries constructed for
references to variables and constants
within the object module itself are modi-

fied by the beginning address of the appro-
priate object module.

Section 1: Introduction to the Compiler 17

<--—-4 bytes——-->

r
| Subprogram

Save Area of Y|epilogue address
t

r

+4 |Program X save
|area address
L

r

+8 |Program Z save
|area address
1

r
+12 |Register 14
I

r
+16 |Register 15
L

+20 |Register 0

+72 |Register 12

e D SIS PR SRR B S i S Sp——

[e g e e e s e g

[e o o . e s e ot S —— — —— . o . s, St . s e

<---Stored by initial entry code

<---Stored by program Y

<---Stored by program Z, if it calls subroutines

Values on leaving program Y,

stored by program Z.

b s o e o . — — ——— — — — — —— — — o— o— — —— . s,]

Figure 6. Example of Use of Save Area

BRANCH TABLE: This table contains one
fullword entry for each branch target label
(a label referred to in a branch statement)
and statement function in the source
module. In addition, one entry occurs for
each label produced by the compiler in
generating the object module. These labels
refer to return points in DO loops and to
the statement following complete Logical IF
statements, and are called made labels.

In the object module code, any branch is
performed by 1loading general register 14

(see "Object Module General Register
Usage") from this table, and using a BCR
instruction. The "values placed in this

table by the compiler are relative ad-
dresses. Each value 1is modified by the
base address of the object module by the

linkage editor.

EQUIVALENCE VARIABLES: This area of the
object module contains unsubscripted
variables and arrays, listed in EQUIVALENCE
sets which do not refer to COMMON.

SCALAR VARIABLES: All non-subscripted
variables which are not in COMMON and are
not members of EQUIVALENCE sets appear in
this area of the object module.

ARRAYS: All arrays which are not in
COMMON, and are not members of EQUIVALENCE
sets appear in this area of the object

module.

18

SUBPROGRAM ARGUMENT LISTS: This portion of
the object module contains the addresses of
the arguments for all subprograms called.
In calling a subprogram, the object module
uses general register 1 to transmit a
location in this table. The subprogram
then acquires the addresses of its arqu-
ments from that location and from as many
subsequent locations as there are argu-
ments. The sign bit of the word containing
the address of the last argument for each
subprogram is set to one.

SUBPROGRAM ADDRESSES: This 1list contains
one entry for each FUNCTION or SUBROUTINE
subprogram referenced by the object module.
The entry will hold the address of that
subprogram when it is supplied by the
linkage editor. The compiler reserves the
correct amount of space for the list, based
on the number of subprograms referred to by
the source module.

NAMELIST TABLES: For each NAMELIST name
and DISPLAY statement in the source module,
a NAMELIST table is constructed by the
compiler and placed in this area of the
object module. Each table consists of one
entry for each scalar variable or array
listed following the NAMELIST name oOr in
the DISPLAY statement, and begins with four
words of the following form:

Form Y28-6638-1
Page Revised 11/15/68 by THNL Y28-6826

b +
T , |
| | name field |
| 2 | |
! pmmm oo :
| 3 i]
| | not used 1
| 4 | |
b i S |
where the name field contains the NAMELIST
name, right Jjustified. For the DISPLAY
statement, the name is DBGnn#, where nn is
the nunber of the DISPLAY statement within
the source program or subprogram.

Table entries for scalar variables have
the following form:

T T T T T T T T T T T T T T T T T T T 1
| Byte]]
| Word | 1 2 3 4 |
¢ ¢ — -—-
T _ !
| | name field |
| 2 |
| T 1
| 3 | address field |
| b——— e T i
] 4 | type | mode | not used]
P W S]
where:
name field

contains the name of the scalar vari-

able, right justified.

address field
contains the relative address of the
variable within the object module.

field |
contains zero +to indicate a scalar
variable.

type

field
contains the mode
coded as follows:

mode

of the wvariable,

Logical,
Logical,

1 byte

fullword

Integer, halfword

Integer, fullword

Real, double precision

Real, single precision

Complex, double precision

Complex, single precision

Literal (not currently
compiler-generated)

POOdOULEWN
LI L T A N A |

NAMELIST table
the following form:

entries for arrays have

Section 1:

|

|
— -~ mmmmm e
| 1 ! I
1 | name field |
| 2 i |
| b 4
| | _ |
| 3 | address field |
! b= y--—-—=- R e 1
| | | | no. 1
| 4 ltype] mode |dimens. |length |
e oo e |
] l|indica-|first dimension factor |
| 5 |tor |field |
| T :
| jnot |second dimension factor|
| 6 |used |field |
| T e P 1
] |not |third dimension factor |
| 7 jused |field |
1 b e 4
| . . |
| . . I
] - . I
| etc. etc. |
L - 1
where:
name field

contains the name of the array, right

justified.

address field

contains the relative address of the
beginning of the array within the
object module.

mode field
contains the mode of the array ele-
ments, coded as for scalar variables,
above.

no. dimens.
contains the number of dimensions in

the array; this value may be 1-7.

length field
contains the length of the array
ment in bytes,

ele-

indicator field
is set to zero if the array has been
defined to have variable dimensions;
otherwise, it is set to nonzero.

first dimension factor field
contains the total size of the array
in bytes.

second dimension factor field
contains the address of the second
multiplier for the array (nl*L, where
nl is the size of the first dimension
in elements, and L is the number of
bytes per element).

Introduction to the Compiler 19

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

third dimension factor field

contains the address of the third
multiplier for the array (nl*n2*L,
where nl is the size of the first

dimension in elements, n2 is the size
of the second dimension, and L is the
number of bytes per element).

A final entry for each NAMELIST table is
added after the last variable or array name
to signify the end of that particular list.

This entry is a fullword in length and
contains all zeros.
LITERAL CONSTANTS: This area contains a

list of the literal constants used in the
source module, except for those specified
in DATA and PAUSE statements,

FORMAT STATEMENTS: The FORMAT statements
specified in the source module are con-
tained in this area of the object module.
The statements are in an encoded form in
the order of their appearance in the. source
module. (see "Appendix D: Code Produced
by the Compiler.") The information contains
all specifications of the statement but not
the word FORMAT.

TEMPORARY STORAGE AND CONSTANTS: This area
always begins on a double precision boun-
dary and contains, in no specific order,
the constants required by the object module
code and the space for the storage of
temporary results during computations. Not
all of the source module constants neces-
sarily appear in this area, since as many
constants as possible are used as immediate
data 1in the code produced. Some constants
may appear which are not present in the
source module, but which have been produced
by the compiler.

PROGRAM TEXT: If the object module con-
tains statement -functions, the code for
these statements begins the program text
and is preceded by an instruction that
branches around them to the first execut-
able statement of the program. (See
"Statement Functions" in Appendix D for
further explanation of this code.) Follow-
ing the code for the statement functions is
the code for the executable statements of
the source module.

Object Module General Register Usage

The object module produced by the
FORTRAN IV (G) compiler uses the System/360
general registers in the following way:

Register 0: Used as an accumulator.

Register 1: Used as an accumulator and

to hold the beginning address of the
argument 1list in branches to sub-
programs.

20

Register 2: Used as an accumulator.

Register 3: Used as an accumulator.

Registers 4 through 7: Contain index
values as required for references to
array variables, where the subscripts
are linear functions of DO variables and
the array does not have variable
dimensions.

Registers 8 and 9: Contain index values
as required for references to array
variables, where the subscripts are of
the form x#c, where x 1is a non DO-
controlled variable and c¢ is a constant.

Register 9: Contains index values as
required for references to array
variables where the subscripts are non-

linear of the form I*J, where I and J

are the variables.

Registers 1C through 12: Contain Dbase
addresses loaded from the base table.

Register 13: Contains the beginning
address of the object module save area;
this value is loaded at the beginning of
program execution., Register 13 is also
used for access to the base table, since
the base table follows the save area in
main storage.

Contains the return
and holds the

Register 14:
address for subprograms

address of branch target instructions
during the execution of branch
instructions.

Register 15: Contains the entry point
address for subprograms as they are
called by the object module.

SOURCE MODULE LISTING

The optional source module listing is a
symbolic listing of the source module; it
contains 1indications of errors encountered
in the program during compilation. The
error message resulting from an erroneous
statement does not necessarily cause ter-
mination of compiler processing nor the
discarding of the statement. Recognizable
portions of declaration statements are
retained, and diagnosis always proceeds
until the end of the program.

OBJECT MODULE LISTING

The optional object module listing uses
the standard System/360 Operating System

assembler mnemonic operation codes and,
where possible, refers to the symbolic
variable names contained in the source
module. Labels used in the source module
are indicated at the appropriate places in
the object code listing.

STORAGE MAPS

The optional storage map consists of six
independent listings of storage informa-
tion. Each listing specifies the names and
locations of a particular class of vari-
able. The listings are:

e COMMON variables

¢ EQUIVALENCE variables
e Scalar variables

e Array variables

e NAMELIST tables

® FORMAT statements

A list of the subprograms called is also
produced.

ERROR MESSAGES

Errors are indicated by 1listing the
statement in its original form with the
erroneous phrases or characters undermarked
by the dollar sign character, followed by
comments indicating the type of the error.
This method is described in more detail in
"Phase 1 of the Compiler: Parse (IEYPAR)."

Common Error Messages

The message NO CORE AVAILABLE is pro-
duced (through IEYFORT) by all phases of
the compiler when the program being com-
piled exhausts the main storage space
available to the compiler. This message is
produced only when the PRESS MEMORY routine
cannot provide unused main storage space on
request from the compiler.

The message ROLL SIZE EXCEEDED is pro-
duced (through the Invocation phase,
IEYFORT) by all phases of the compiler when
the size of any single roll or rolls is
greater than permitted. The following cir-
cumstances cause this message to be
produced:

e The WORK roll exceeds the fixed storage
space assigned to it.

e The EXIT roll exceeds the fixed storage
space assigned to it.

e Any other 1roll, with the exception of
the AFTER POLISH roll and the CODE
roll, exceeds 64K bytes of storage. 1In
this case, the capacity of the ADDRESS
field of a pointer to the roll is
exceeded and, therefore, the informa-
tion on the roll is unaddressable. The
AFTER POLISH and CODE rolls are
excepted, since pointers to these rolls
are not required.

The compilation terminates following the
printing of either of these messages.

COMPILER DATA STRUCTURES

The POP language is designed to manipul-
ate certain well-defined data structures.

Rolls, which are the tables primarily
used by the compiler, are automatically
handled by the POP instructions; that is,
when information is moved to and from
rolls, controls indicating the status of
the rolls are automatically updated.

Items (variables) with fixed structures
are used to maintain control values for
rolls, to hold input characters being pro-
cessed, and to record Polish notation, etc.
These item structures are also handled
automatically by the POP instructions.

The arrangement of the parts of the
compiler 1is significant because of the
extensive use of relative addressing in the
compiler. General registers are wused to
hold base addresses, to control some rolls,
and to assist in the interpretation of the
POP instructions.

ROLLS AND ROLL CONTROLS

Most of the tables employed by the
compiler are called rolls. This term de-
scribes a table which at any point in time
occupies only as much storage as is
required for the maximum amount of informa-
tion it has held during the present compi-
lation (exceptions to this rule are noted
later). Another distinctive feature of a
roll is that it is used so that the last
information placed on it 1is the first
information retrieved -- it uses a "push
up” logic. '

Section 1: 1Introduction to the Compiler 21

With the exception of the WORK and EXIT
rolls, the rolls of the compiler are main-
tained in an area called the roll storage
area. The rolls in this area are both
named and numbered. While the references
to rolls in this document and in the
compiler comments are primarily by name,
the names are converted to corresponding
numbers at assembly time and the rolls are
arranged in storage and referred to by
number.

If the roll storage area 1is considered
to be one block of continuous storage, the
rolls are placed in this area in ascending

sequence by roll number; that is, roll 0
begins at the base address of the roll
storage area; rolls 1, 2, 3, etc., follow

roll zero in sequence, with the roll whose
number 1is largest terminating the roll
storage area.

Initially, all rolls except roll 0 are
empty and occupy no space; this is accomp-
lished by having the beginning and end of
all rolls located at the same place. (Roll
0, the LIB roll, is a fixed-length roll
which contains all of its data initially.)
Wwhen information is to be placed on a roll
and no space is available due to a conflict
with the next roll, rolls greater in number
than the roll in question are moved down
(to higher addresses) to make the space
available. This is accomplished by physic-
ally moving the information on the rolls a
fixed number of storage locations and alt-
ering the controls to indicate the change.
Thus, roll O never changes in size, loca-
tion, or contents; all other rolls expand
to higher addresses as required. When
information is removed from a roll, the
space which had been occupied by that
information is left vacant; therefore, it
is not necessary to move rolls for each
addition of information.

With the exception of the area occupied
by roll O, the roll storage area actually
consists of any number of non-contiguous
blocks of 4096 bytes of storage. The space
required for 1roll 0 is not part of one of
these blocks. Additional blocks of storage
are acquired by the compiler whenever cur-
rent roll storage is exceeded. If the
system is unable to fulfill a request for
roll storage, the PRESS MEMORY routine is
entered to find roll space that is no
longer in |use. If 32 or more bytes are
found, the compilation continues. If fewer
than 32 bytes are found, the compilation of
the current program is terminated, the
message NO CORE AVAILABLE is printed, and
space is freed. If there are multiple
programs, the next one is compiled.

The following paragraphs describe the

controls and statistics maintained by the
compiler in order to control the storage

22

allocation for rolls and the functioning of
the "push up" logic.

ROLL _ADR Table

The ROLL ADR table is a 1000-byte table
maintained in IEYROL. Each entry in this
table holds the beginning address of a
block of storage which has been assigned to
the roll storage area. The first address
in the table 1is always the beginning
address of roll 0. The second address is
that of the first U4K-byte block of storage
and, therefore, the beginning address of
roll 1. Initially, the last address
recorded on the table is the beginning
address of a block which holds the CODE and

AFTER POLISH rolls, with the CODE roll
beginning at the first 1location in the
block.

As information 1is recorded on rolls
during the operation of the compiler, addi-
tional storage space may eventually be
required. Whenever storage is needed for a
roll which precedes the CODE roll, an
additional UK block is requested from the
system and its address is inserted into the
ROLL ADR table immediately before the entry
describing the CODE roll base. This inser-
tion requires that any entries describing
the CODE and AFTER POLISH rolls be moved
down in the ROLL ADR table. The informa-
tion on all rolls following (greater in
number than) the roll requiring the space
is then moved down a fixed number of words.
The roll which immediately precedes the
CODE roll moves into the new block of
storage. This movement of the rolls
creates the desired space for the roll
requiring it. The movement of rolls does
not respect roll boundaries; that is, it is
entirely possible that any roll or rolls
may bridge two blocks of storage.

When additional storage space is
required for the AFTER POLISH roll, a block
is requested from the system and its begin-
ning address is added to the bottom of the
ROLL ADR table. When the CODE roll
requires more space, a new block is added

in the same manner, the AFTER POLISH roll
is moved down into the new block, and the
vacated space 1is available to the CODE
roll.

The CODE and AFTER POLISH rolls are
handled separately because the amount of

information which can be expected to reside
on them makes it impractical to move them
frequently in order to satisfy storage
requirements for all other rolls. The CODE
roll is also somewhat unique in that it is
assigned a large amount of space before it
is used; that is, the AFTER POLISH roll

does not begin at the same location as does
the CODE roll.

BASE, BOTTOM, and TOP Tables

In order to permit dynamic allocation as

well as to permit the use of the "push up"
logic, tables containing the variables
BASE, BOTTOM, and TOP are maintained to

record the current status of each of the
rolls. These variables indicate addresses
of rolls. Information stored on rolls is
in units of fullwords; hence, these
addresses are always multiples of four.
The 1length of each of the tables is deter-
mined by the number of rolls, and the roll
number 1is an index to the appropriate word
in each table for the roll.

Each of the variables occupies a full-
word and has the following configuration:

11 12 3
0 12 9 0 1
B S B 1
| | Entry number| |
| |into the | Displacement |
| | ROLL ADR | (12 bits)]
| | Table | |
L i 1 J

The entry number points to an entry in the
ROLL ADR table and, hence, to the beginning
address of a block of roll storage. The
displacement 1is a byte count from the
beginning ofthe indicated storage block to

the 1location to which the variable (BASE,
BOTTOM, or TOP) refers.
It is significant to note that the

displacement field in these variables occu-
pies twelve bits. If the displacement
field is increased beyond its maximum value
(4095), the overflow increases the entry
number into the ROLL ADR table; this is the

desired result, since it simply causes the
variable to point to the next entry in the
table and effectively indicate the next
location in the roll storage area, the

beginning of the next block.

The first status variable for each roll,

BASE, indicates the beginning address of
that roll, minus four. The second vari-
able, BOTTOM, indicates the address of the

most recently entered word on the roll.

If the roll 1is completely empty, its
BOTTOM is equal to its BASE; otherwise,
BOTTOM always exceeds BASE by a multiple of
four. Figure 7 illustrates a 1roll which
contains information.

4 bytes

BASE (n) (I 1
-> | | <==——=- unused
TOP (m)) | |
% 4
prmmmmm - .
prmmm oo .
pomm o= .
| . | K bytes
| . |
| . |
e 4
BOTTOM(n)---=>| |
b 1
Figure 7. Roll Containing K Bytes of
Information

When information is to be added to a
roll, it is stored at the address pointed
to by BOTTOM, plus four, and BOTTOM 1is
increased by four. When a word is to be
retrieved from a roll, it is read from the
address specified by BOTTOM, and, under
most circumstances, BOTTOM is reduced by

four, thus indicating that the word is no
longer occupied by the roll. This altera-
tion of the wvalue of BOTTOM 1is termed

pruning. If the information retrieved from
a roll is to remain on the roll as well as
at the destination, BOTTOM is not changed.
This operation is indicated by the wuse of
the word “keep" in the POP instructions
that perform it.

The current length (in bytes) of a roll
is determined by subtracting its BASE from
its BOTTOM. Note that this 1is true even
though the entry number field appears in
these variables, since each increase 1in
entry number indicates 4096 bytes occupied
by the roll. Thus, there is no limitation
on the size of a roll from this source.

For each 1roll, an additional status
variable, calied TOP, is maintained. TOP
enables the program to protect a portion of
the roll from destruction, while allowing
the use of the roll as though it were
empty. Protecting a roll in this way is
called reserving the roll. The contents of
TOP (always greater than or equal to the
contents of BASE) indicate a false BASE for
the roll. The area between BASE and TOP,
when TOP does not equal BASE, cannot be
altered or removed from the roll. Ascend-
ing locations from TOP constitute the new,
empty roll.

Like BASE, TOP points to the word imme-
diately preceding the first word into which
information can be stored. A value is
automatically stored in this unused word
when the roll is reserved; the value is the
previous value of TOP, minus the value of
BASE and is called the reserve mark.
Storage of this value permits more than one
segment of the roll to be reserved.

Section 1: Introduction to the Compiler 23

A single roll (roll n), then, containing
K bytes of information, (where K is always
a multiple of four) and having no reserved
status, has the following settings for its
status variables:

BOTTOM = BASE + K = TOP + K

Figure 7 also illustrates this roll. 1If
the same roll contains L bytes reserved and
K additional bytes of information, the
settings of 1its status variables are as
follows:

BOTTOM = TOP + K = BASE + L + K + U4

This roll is shown in Figure 8, Note that
the relationships given above are valid
because of the structure of the BASE,

BOTTOM, and TOP variables.
4 bytes
r 1
BASE (n)-———-— >| | <=—-unused
b -4
| |
b d
r 1
| |
| 4
LB 1
I . |
| . | L bytes
| . |
pomm - 1
| |
IR 3
r 1
| I
b {
TOP (n)-————->| | <---previous
s - - TOP-BASE
| I
L d
r 1
I |
[]
r 1
| . |
| . | K bytes
I . |
L 4
r 1
| |
F -4
| |
t -
BOTTOM (n)-——->| |
Figure 8. Roll Containing L Bytes of Re-

served Infcrmation and K Bytes
of New Information

Special Rolls

The WORK roll and the EXIT roll are
special rolls in that they are not main-
tained in the roll storage area, but rather
appear in IEYROL with a fixed amount of
storage allocated to each. They are rolls

24

in the sense that they employ the same push
up logic which is used for the other rolls;
however, they are not numbered, and their
controls are, therefore, not maintained in
the tables used for the other rolls.

The WORK roll is used as a temporary
storage area during the operations of the
compiler. Because information is moved to
and from the roll frequently it is handled
separately from other rolls.

The EXIT roll warrants special treatment
because it is used frequently in maintain-
ing exit and entrance addresses for compil-
er routines.

The bottom of the WORK roll is recorded
in general register 4, WRKADR; general
register 5, EXTADR, holds the address of

the bottom of the EXIT roll. These values
are absolute addresses rather than in the
format of the BOTTOM variable recorded for
other rolls.

For a more detailed explanation of the
WORK and EXIT rolls, see Appendix B "Rolls
Used by the Compiler."

Central Items, Groups, and Group Stats

CENTRAL ITEMS: The items SYMBOL 1, SYMROL

2, SYMBOL 3, DATA 0, DATA 1, DATA 2, DATA 3
and DATA U4, two bytes each in length, and
DATA 5, eight bytes in 1length, contain
variable names and constants. These items
are called central due to the nature and
frequency of their use. They occupy
storage in the order listed, with DATA 1
aligned to a doubleword boundary.

In general, SYMBOL 1, 2, and 3 hold
variable names; DATA 1 and 2 are wused to
hold real constants, DATA 3 and 4 to hold
integer constants, DATA 1, 2, 3 and U to
hold double precision and complex con-

stants, and DATA 1, 2, 3, 4 and 5 to hold
double-precision complex constants.

GROUPS: While the basic unit of informa-
tion stored on rolls is a fullword, many
rolls contain logically connected informa-
tion which requires more than a singleword
of storage. Such a collection of informa-
tion is called a group and always occupies
a multiple of four bytes. A word of a
group of more than one word is sometimes
called a rung of the group.

Regardless of the size of the group on a
given roll, the item BOTTOM for the roll
always points to the last word on the roll.
Figure 9 shows a roll with a group size of
twelve.

4 bytes

TOP (n)

BASE (n)
L

~

1st group

2nd group

~

3rd group

<-- BOTTOM (n)

e e ey e ey —
|
|

[SR S SR SR SR SO SN S S S |

Roll With a
Twelve

Figure 9. Group Size of

For some rolls, the size of the group is
not fixed. In these cases a construct
called a "plex" is used. The first word of
each plex holds the number of words in the
plex, exclusive of itself; the remainder
holds the information needed in the group.
(See Figure 10.)

4 bytes

r 1

BASE (n) | |<---no. words
>} | in group

TOP (n)) p-—m—mmm————e]

| 3 |

t 1.

b i

| { [group

1 1(information

r

| i\

b~ 1

| b |

L J

v 1

| |

pommmmmm e 1

| | > plex

t 1

| |

b 1

| |

S 4

| 2 |{

8 4

r 1

| | > plex

b i
BOTTOM (n) | I

e 1

Figure 10. Roll with Variable Group Size

The assignment of roll storage does not
respect group boundaries; thus, groups may
be split between two Dblocks of roll
storage.

Section 1:

GROUP__STATS: Since the size of the group
varies from roll +to 1roll, this charac-
teristic of each roll must be tabulated in

order to provide proper manipulation of the
roll. 1In addition, the groups on a roll
are frequently searched against the values
held in the central items (SYMBOL 1, 2, 3,
etca,). Additional characteristics of the
roll must be tabulated in order to provide
for this function. Four variables tabu-
lated in the group stats tables are
required to maintain this information.
(See Section 2 "IEYROL Module.")

The first group stats table contains a
1-word entry for each roll. The entry is
divided into two halfword values. The
first of these is the displacement in bytes
from SYMBOL 1 for a group search; that is,
the number of bytes to the right of the
beginning of SYMBOL 1 from which a compara-
tive search with the group on the roll
should begin. This value is zero for rolls
which contain variable names (since these
begin in SYMBOL 1), eight for rolls which
contain real, double-precision, complex or
double-precision complex constants (since
these begin in DATA 1), and twelve for
rolls which contain integer constants.

The second value in the first group
stats table is also a displacement; the
distance in bytes from the beginning of the
group on the roll to the byte from which a
comparative search with the central items
should begin.

The second group stats table also holds
a 1-word entry for each roll; these entries
are also divided into two halfword values.
The first of these is the number of conse-
cutive bytes to be used in a comparative
search, and refers to both the group on the
roll and the group in the central items
with which it is being compared.

The second item in the second table 1is
the size of the group on the roll, in
bytes. For rolls which hold plexes, the
value of this item is four.

For example, the DP _CONST roll, which is
used to hold the double-precision constants
required for the object module, has an
8-byte group. The settings of the Group
Stats for +this roll are 8, 0, 8, and 8,
respectively. The first 8 indicates that
when this roll is searched in comparison
with the central items, the search should
begin eight bytes to the right of SYMBOL 1
(at DATA 1). The 0 indicates that there is
no displacement in the group itself; that
is, no information precedes the value to be
compared in the group. The second 8 is the
size of the value to be searched. The
final 8 is the number of bytes per group on
the roll.

Introduction to the Compiler 25

The group stats for the ARRAY roll
(which holds the names and dimension infor-
mation of arrays) are 0, 0, 6, and 20.
They indicate that the search begins at
SYMBOL 1, that the search begins 0 bytes to
the right of the beginning of the group on
the roll, that the number of bytes to be
searched is 6, and that the group 6 size on
the roll is 20 bytes.

Figures 11 and 12 show the two group
stats tables containing the information on
the DP CONST roll and the ARRAY roll
discussed above. It should be noted that
the information contained on these two
tables is arranged according to roll num-
bers. In other words, the group stats for
roll 5 are in the sixth entry in the tables
(starting with entry number 0).

4 bytes
r— T 1
L 4 4
r T 1
L L B |
r 1
| . |
I . !
| . |
— T e
DP CONST roll--->| 8] 0}
L 4 4
r 1
] . !
| . |
I . |
T :
r T
ARRAY roll-—->| 0} (0]
[N 1 4
r 1
| . |
I . |
I . |
t T i
L 1 J
Figure 11, First Group Stats Table
4 bytes
r T 1
t + 1
b 1 -
| . |
| . {
| . |
I8 1
r T 1
DP CONST roll-—->| 8] 8|
[N i 1
r 1
| . |
| . b
| . l
; {
ARRAY roll-—->| 6| 20]
L —_——L4 4
r 1
| . |
| . |
| . |
L 4
1) T 1
L L b

Figure 12. Second Group Stats Table

26

OTHER VARIABLES

In addition to the central items,
several other variables used in the compil-
er perform functions which are significant
to the understanding of the POP instruc-
tions. These are described in the follow-
ing paragraphs.

Answer Box

The variable ANSWER BOX, which 1is re-
corded in the first byte of the first word
of each EXIT roll group, is used to hold
the true or false responses from POP
instructions. The value "true" 1is repre-
sented by a nonzero value in this variable,
and "false" by zero. The value is checked
by POP jump instructions.

Multiple Precision Arithmetic

Most of the arithmetic performed in the
compiler is fullword arithmetic. When
double-precision arithmetic 1is required,
the variables MPAC 1 and MPAC 2, four bytes
each 1in 1length, are used as a double-
precision register. These variables are
maintained in main storage.

Scan Control

Several variables are used in the
character scanning performed by the first
processing phase of the compiler, Parse.
Their names, and terms associated with
their values, are frequently wused in
describing the POP instructions.

The variable CRRNT CHAR holds the source
statement character which is currently
being inspected; the variable is four bytes
long. The position (scan arrow) of the
current character within the input state-
ment (its column number, where a continuous
column count is maintained over each state-
ment) 1is held in the low-order bit posi-
tions of the fullword variable CRRNT CHAR
CNT.

characters are called "active
when 1literal or IBM

Non-blank
characters, " except

card code information 1is being scanned.
The variable LAST CHAR CNT, which occupies
one word of storage, holds the column

number of the active character previous to
the one in CRRNT CHAR.

Form ¥28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

1
Column number: 1234567890

DO 50 I =1, 4

A(I) = B(I)**2
DO 50 J=1, 5
50 C(J+1) = A(I)

In the processing of the source module
which contains the above statements, state-
ment 50 is currently being parsed. The

current character from the input buffer is
J. The settings of the scan control
variables are shown in Figure 13.
e s 1
| (EBCDIC) J |
e J
CRRNT CHAR
[T T T — e 1
| N
L - - i
CRRNT CHAR CNT
(scan arrow)
[T T e 1
| 1 8 |
L J

LAST CHAR CNT

Figure 13. Scan Control Variables

Flags

Several flags are used in the compiler.
These 1-word variables have two possible
values: on, represented by nonzero, and
off, represented by zero. The name of the
flag indicates the significance of the "on"
setting in all cases.

Quotes

Quotes are sequences of characters pre-
ceded by a halfword character count; they
are compared with the input data to deter-

mine a statement type during the Parse
phase. These constants are grouped
together at +the end of phase 1. The
location 1labeled QUOTE BASE is the begin-

ning location of the first quote; instruc-

tions which refer
with address fields
this location.

to quotes are assembled
which are relative to

Figure 14 shows some of the quotes used
by the compiler and how they -are arranged
in storage.

4 bytes
----- 1
QUOTE BASE | 00 02 N D |
______ - S |
| 00 08 I M |
frmm oo 1
| E N S I
frmm o m o m oo 1
| © N b b |
______________________________ 9
{ 00 07 M P |
frm o m e 1
| L 1 c I
fommm oo 4
| T b b b |
prmmm oo 1
| 00 07 L o |
frmmmmm oo 1
| & I C A |
prmm oo oo 1
| L b b b |
L 1
| . |
| . I
| . |
prom oo -
| 00 06 F o |
prmm e 1
| R M A T |
¢ o 1
| . [
| . |
! . |
Lo o d
Figure 14, Quotes Used in the Compiler
Messages

The messages used in the compiler, which
are also grouped together at the end of
Phase 1, are the error messages required by
Parse for the source module listing. The
first byte of each message holds the condi-
tion code for the error described by the
message. The second byte of the message is
the number of bytes in the remainder of the
message. The message follows this halfword
of information.

The location labeled MESSAGE BASE is the
beginning location of the first message;
instructions which refer to messages are
assembled with address fields relative to
this location.

Section 1: Introduction to the Compiler 27

Form ¥28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

COMPILER ARRANGEMENT AND GENERAL REGISTER
USAGE

Figure 15 shows the arrangement of the
compiler in main storage with the Parse
phase shown in detail. General registers

that hold base locations within the compil-
er are shown pointing to the locations they

General register 2, PGB2, holds the
beginning address of the global jump table,
a table containing the addresses of compil-
er routines which are the targets of jump
instructions. (See Appendix A for further
discussion of this table and the way in
which it is used.) The global Jjump table
appears in each phase of the compiler and
is labeled PROGRAM BASE 2; thus, the value

indicate. Note that the labels CBASE and held in general register 2 is changed at
PROGRAM BASE 2 appear in each phase of the the beginning of each phase of the
compiler; the general registers CONSTR and compiler.

PGB2 contain the locations of those labels

in the operating phase.

r T T TTTT T T T T T T 1

| Register | Label | Contents |

t ———i : {

| Invocation Phase]

¢ T B { low
] POPPGB--->| POP TABLE | POP Jump Table | storage
! | t i

] | POP SETUP | POP Machine Language Subroutines |

| | pommm—- o 4

| | | Data for POP Subroutines {

1 4 1 4

r T - T 1

| ROLLBR--->} ROLL BASE | Roll Statistics (Bases, Tops, Bottoms) |

| | b 1

|] | Group Stats (Displacements, Group Sizes) |

| ! F ‘ 1

| | | WORK Roll |

| | t —

| | | EXIT Roll]

| | t i

l | | ROLL ADR Table [

| | F — oo 4

I | | Roll storage 1
WWWVWMMWWMNW\W\MWW
SMNAANANANANANANNANANANANANANNANNANNANANAANANANANANANAANAANANANANANAANANANANANANANANANANANANNAANNAANAAANNNNANANANANANANNNANANANAN

|] | Roll Storage*]

b - : -{

] CONSTR--->| CBASE | Parse Data Items |

| | - e it

| | | Parse Routines |

| ! t i

| PGB2———-- >] PROGRAM BASE 2 | Parse Global Jump Table |

| | pmmmm- - - - -

] | | Parse Routines containing assembler |

]] | language branch targets |

l | . -4

| | QUOTE BASE | Ouotes |

| i . ' t 4

| | MESSAGE BASE | Messages |

3 4 - - e 4 high
] PHASE 2: Allocate | storage
pommmmm - !

] PHASE 3: Unify |

b--- e mm e 1

] PHASE 4: Gen |

N d

v 1

] PHASE 5: Exit |

B e e e e e e e e e o e e e e e e e e e e e e e e e e e et o e e e e e — o e e e e e e e e e e e e e e e o o e e e 2 S 2 e e o {

B

| *Roll storage is allocated in U4K-byte blocks, beginning from the higher end|

| of storage contiguous with Parse.

Additional blocks

are obtained, as|

| needed, from preceding (lower) Uu4K-byte blocks of storage. |

L

d

Figure 15.

28

Compiler Arrangement with Registers

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

Compiler routines which contain assem-
bler language instructions and are either
branched to by other assembler language
instructions or which themselves perform

internal branches, follow the global jump
table. General register 2 is used as a
base register for references to both the
global Jjump table and these routines.

Figure 15 shows this register in Parse.

General register 3, called POPADR in the
compiler code, is used in the sequencing of
the POP operations. It holds the address
of the current POP, and is incremented by 2
as each POP is interpreted.

General register 4, called WRKADR, holds
the address of the current bottom of the
WORK roll.

General register 5, called EXTADR, holds
the address of the current bottom of the
EXIT roll.

General
the return

register 6,
location for

called POPXIT, holds
POP subroutines.
When POPs are being interpreted by POP
SETUP, the return is to POP SETUP; when
machine language instructions branch to the

POPs, it is to the next instruction.
General register 7, called ADDR, holds
the address portion of the current POP
instruction (eight Dbits); it is also used
in the decoding of the operation code
portion of POP instructions.
General register 8, called POPPGB, holds

address of the machine lan-
for the POP instructions and the

the beginning
guage code

POP jump table. Figure 15 shows this
register, which 1is wused as a base for
references, to these areas.

General register 9, called CONSTR, holds
the beginning address of the data referred
to by the compiler routines., This area
precedes the routines themselves, and is

labeled CBASE, as indicated in Figure 15.
This register is, therefore, used as a base
register for references to data as well as
for references to the routines in the
compiler; its value 1is changed at the
beginning of each phase,

General register 10, ROLLBR, holds the
beginning address of the roll area; that
is, the beginning address of the base table
(see Figure 15). The value in this
register remains constant throughout the
operation of the compiler.

General register 11, RETURN, holds
return addresses for the POP subroutines.

The remaining general registers are used
temporarily for various purposes in the
compiler.

e Figure 15.1 TAG Field MODE and

POINTERS
Information defining a source module
variable (its name, dimensions, etc.) is

recorded by the compiler when the name of
the variable appears in an Explicit speci-
fication or DIMENSION statement. For
variables which are not explicitly defined,
this information is recorded when the first
use of the variable is encountered. All
constants are recorded when they are first
used in the source module.

All references to a given variable or
constant are indicated by a pointer to the
location at which the information defining
that variable or constant is stored. The
use of the pointer eliminates redundancy
and saves compiler space.

The pointer is a 1-word value in the
following format:

1 byte 1 byte 2 bytes
r T T TT T ST T T TSI 1
| TAG | OPERATOR | ADDRESS |
L 4 L 1
where:
TAG

is a 1-byte item whose value is repre-
sented in two parts: MODE, occupying
the upper four bits, indicates whether

the wvariable or constant is integer,
real, complex or logical; SIZE, indi-
cated in the lower four bits, speci-

fies the length of the variable or

constant (in bytes) minus one. (See

Figure 15.1).

v T T

|value | MODE | Value | SIZE |
e OO e T
| 0 | Integer | 0 | 1 byte |
] 1 | Real | 1 | 2 bytes |
| 2 | Complex | 3 | 4 bytes |
| 3 | Logical | 7 | 8 bytes |
1 4 | Literals/ | F | 16 bytes |
| | Hexadecimal | | |
L § P T — S —— 4

SIZE Values

OPERATCR
is a 1-byte item which contains the
roll number of the roll on which the
group defining the constant or vari-
able is stored.

ADDRESS
is a 2-byte item which holds the
relative address (in Dbytes) of the

group which contains the information
for the constant or variable; the
address 1is relative to the TOP of the
roll.

Section 1: Introduction to the Compiler 29

The pointer contains all the information
required to determine an absolute location
in the roll storage area. The roll number
(from the OPERATOR field) is first used as
an index into the TOP table. The ADDRESS
field of the pointer is then added to the
TOP, and the result is handled as follows:

1. Its entry number field (bits 12
through 19) 1is used as an index into
the ROLL ADR table.

2. Its displacement field (bits 20
through 31) is added to the base
address found in the ROLL ADR table.
The result of step 2 is the address
indicated by the pointer.

OPERATOR
and whose
and the

Example: Using a pointer whose
field contains the value 2
ADDRESS field contains the value 4,
following tables:

TOP ROLL ADR

-
-l

(=]
(=]

[y

20 1000

e e e e e o
o e

[y
_____.".__T
OSSR SO Sp——

[S —— S —
N
T

the location 1024 is determined. Note that
for larger values in the pointer and in
TOP, the entry number field of TOP can be
modified by the addition of ADDRESS, In
this case the result of the addition holds
2 and 24 in the entry number and displace-
ment fields, respectively.

.Since relative addresses are recorded in
pointers, it is not necessary to alter a
pointer when the roll pointed to is moved.
NoFe also that the relative address in the
pointer may exceed 4096 bytes with no
complication of the addressing scheme. The
only limitation on the size of a roll comes
apout because of the size of the ADDRESS
field of the pointer: 16 bits permit
values less than 64K bytes to be
represented.

30

For the purposes of object code genera-
tion, the mode and size of the constant or
variable is available to influence the type
of operations which can be employed, e.g.,
integer or floating, fullword, or
doubleword.

DRIVERS

In the generation of Polish notation
from the source language statements,
"drivers" are also used. These "drivers"
are values that are one word long and have
the same format as the pointer. The two
types of drivers used by the compiler are
discussed in the following paragraphs.

Operation Drivers

One type of driver is the operation
driver, which indicates arithmetic or log-

ical operations to be performed. The

fields of the driver are:

TAG
is a 1-byte item whose value is repre-
sented in two parts: MODE, occupying
the upper four bits, indicates the
mode of the operation, e.g., integer,
floating-point, complex or logical;
SIZE, indicated in +the 1lower four
bits, specifies the 1length of the
result of the operation (in bytes)
minus one.

OPERATOR
is a 1-byte item containing a value
which indicates the operation to be
performed, e.g., addition, subtrac-
tion, etc. The values for OPERATOR
are larger than the number of any
roll, and hence, also serve to distin-
guish a driver from a pointer.

ADDRESS

is a 2-byte item containing a value
which indicates the "forcing strength"

of the operation specified by the
driver; its values range from zero to
ten.

The forcing strengths associated with
the operation drivers are given in Table 1.

Table 1. Internal Configuration of Opera-
tion Drivers
r T T T |
| | | | ADDRESS |
| | | (Forcing]
|Driver | TAG* | OPERATOR| Strength) |
L i n SR S 4
v v T
| Sprog2] 00 | 40 | 00 00]
pmmmmmmmmm o= e ommmmmmmmm 1
| Power | 00 | 42] 00 01 |
1 1 1 4
T T T A
|Unary Minus | 00 | 43 | 00 02 |
e eem L fommm e em 4
|Multiply | 00 | 44 | 00 03 I
1 <4 1 1 4
v T T v A
|Divide | 00 | u5 | 00 03 |
—————————————— +-—t———t——————ey
|Add | 00 | 4o | 00 Ou]
L i 1 1 1
r T L T k)
| Subtract | 00 | 47 | 00 04]
b t--——t-— e 4
|GT 1 00 | 48 | 00 05 1
—————————————— G U :
|GE | 00] 49 | 00 05 i
-------------- e
|LT { 00 | un | 00 05 |
F e :
| LE | 00 | 4B | 00 05 1
—————————————— O
|EQ 1 00] uc | 00 05]
—————————————— +--——1 + 4
| NE | 00 | 4D | 00 05 |
F o S oo mm e 4
| NOT | 00 | u4E | 00 06]
-------------- +----1 + -—= -
| AND | 00 | uF | 00 07 |
— o e frmmmmmm e .
|OR | 00 | 50 | 00 08
—————————————— $--——4 + :
|Plus and Below|] | |
| Phony3] 00} 3F | 00 09 1
t -t $:
| EOE“ | 00 | 3F | 00 OA
} L 1 B .1

}1The MODE and SIZE settings are placed in|
| the driver when it is used. |
|2Indicates a function reference. |
|3Used to designate the beginning of an|
| expression. |
|“Means "end of expression" and is used]
|
L

for that purpose. 1
-J

Control Drivers

The other type of driver used in the
generation of Polish notation is called the
control driver. It is used to indicate the
type of the statement for which code is to
be written. The control driver may also
designate some other control function such
as an I/0 list, an array reference, or an
error linkage,

The fields of the control driver differ
from those of the operation driver in that
zero is contained in the TAG field, 255 in
the OPERATOR field (the distinguishing mark
for control drivers), and a unique value in
the ADDRESS field. The value 1in the
ADDRESS field is an entry number into a
table of branches to routines that process
each statement type or control function; it
is used in this way during the operations
of Gen. The formats of the operation
drivers and control drivers are given in
Appendix E.

Table 1 lists the operation drivers and
the values contained in each field. The
control drivers are given in Table 2. The
ADDRESS field 1is the only field given
because the TAG and OPERATOR fields are
constant, All values are represented in
hexadecimal,

Section 1: Introduction to the Compiler 31

Form Y28-6638-1

Page Revised 11/15/68 by TNL Y28-6826

eTable 2. Internal Configuration of Con- eTable 2. Internal Configuration of Con-
trol Drivers (Part 1 of 2) trol Drivers (Part 2 of 2)
e e i N 1 ettt TomTm T 1
| . | I , |
| Driver | ADDRESS | | Driver | ADDRESS |
| | | | I I
prmm === - I e rmmmo o eee 1
| AFDS] 8] | ERR= | 210 |
..................... 4 A - S |
T R
| ARRAY | 23cC] | EXP and ARG | 480 |
Nttty - i - S Bt 1
| AssicN | 20] | FIND | e |
b - + 1 - --+ -—==1
| ASSIGNED GOTO | 1c] | FORMAT I 208
prmmmm oo T e oo .
| ASSIGNMENT | 4 | | FORMAT STA | 30 |
—— e I e 1
| AT | 68 | | GOTO | 14 |
e e LI ommm oo .
| BSREF | 34 | | IF] 24 |
e 1 - -4 - B Bt 1
| CALL | 2C] | IOL DO CLOSE] 218 |
o 4 b L Sttt 1
| CGOTo | 18] | IOL DO DATA | 21c |
t po—— 1 ¢ -—= it 1
) L3 T
| CONTINUE] 28 | | IO LIST | 214]
ity - ! - B Sttt ittt)
| DATA | 3C] ! LOGICAL IF | 60 |
- 1 -1 - - t —
T T
| DEFINE FILE | by] | NAMELIST | 204 |
prmm == fommmm oo T f--mmcomm - .
| DIRECT IO] 200 | | PAUSE | 38 |
¢ — ¥ N - -—t —
T
| DISPLAY ID | T | | READ WRITE [48 I
prmm e oo R oo .
| DO] 10] | RETURN | 50 |
L 1 E | - ——— R | 1
v T a T
| DuUMMY] 68] | STANDARD PRINT UNIT | 234
prmmmm oo e I e —— T frmmm o meee 1
| END] c] { STANDARD PUNCH UNIT [238 [
F ¥ L e e o |
| END= | 20C | | STANDARD READ UNIT] 230 |
S SO . Y S
i 1 1 1 {
| ERROR LINK 1 | 54 | { STOP | 6U |
t } I v fommm e i
] ERROR LINK 2 | 58 | | SUBPROGRAM | 40 |
i — e T T o oo mm oo 1
| ERROR LINK 3 | 5C] { TRACE OFF | 70 [
L 1 J l 4 ____.'
L} T
| TRACE ON | 6C [
e e b J

32

This section describes in detail the
Invocation phase and the five processing
phases of the compiler and their operation.
The IEYROL module is also described.

INVOCATION PHASE (IEYFORT)

The Invocation phase is the compiler
control phase and is the first and last
phase of the compiler. (The logic of the
phase is illustrated in Chart 00.) If the
compiler is invoked in an EXEC statement,
control is received from the operating
system control program., However, control
may be received from other programs through

use of one of the system macro instruc-
tions: CALL, LINK, or ATTACH.
IEYFORT performs compiler initializa-

tion, expansion of roll storage assignment,
input/output request processing, and com-
piler termination. The following para-
graphs describe these operations in greater
detail.

IEYFORT, CHART 00

IEYFORT is the basic control routine of
the Invocation phase. Its operation is
invoked by the operating system or by
another program through either the CALL,
LINK, or ATTACH macro instructions. The
execution of IEYFORT includes scanning the
specified compiler options, setting the
ddnames for designated data sets, initia-
lizing heading information, and acquiring
time and date information from the system.

IEYFORT sets pointers and indicators to
the options, data sets, and heading infor-
mation specified for use by the compiler.
The options are given in 40 or fewer
characters, and are preceded in storage by
a binary count of the option information.
This character count immediately precedes
the first 1location which contains the
option data. The options themselves are
represented in EBCDIC.

On entry to IEYFORT, general register 1
contains the address of a group of three or
fewer pointers. Pointer 1 of the group
holds the beginning address of an area in
storage that contains the execute options
specified by the programmer (set in the
OPTSCAN routine).

SECTION 2: COMPILER OPERATION

Pointer 2 contains the address of the
list of DD names to be used by the compiler
(set in the DDNAMES routine).

Pointer 3 contains the address of the
heading information. Heading data may
designate such information as the continua-
tion of pages, and the titles of pages.

If the FORTRAN compiler is invoked by
the control program (i.e., called by the
system), pointers 2 and 3 are not used.
However, if the compiler is invoked by some
other source, all pointers may be wused.
The latter condition is determined through
an interrogation of the high order bit of a

pointer. If this bit is set, the remaining
pointers are nonexistent. Nevertheless,
pointers 1 and 3 may exist while pointer 2

is nonexistent; in this
contains all zeros.

case, pointer 2

During the operation of IEYFORT, the
SYSIN and SYSPRINT data sets are always
opened through use of the OPEN macro
instruction. The SYSLIN and SYSPUNCH data
sets are also opened depending upon the
specification of the LOAD and DECK options.
The block sizes of these data sets are set
to 80, 120, 80 and 80, respectively. These
data sets may be blocked or unblocked
(RECFM=F, FB, or FBA) depending wupon the
DCB specification in the DD statements.
IEYFORT concludes the compiler initializa-
tion process with a branch to the first
processing phase of the compiler, Parse
(IEYPAR).

From this point in the operation of the
compiler, each processing phase calls the
next phase to be executed. However, the
Invocation phase is re-entered periodically
when the compiler performs such input/
output operations as printing, punching, or
reading. The last entry to the Invocation
phase is at the completion of the compiler
operation.

IEYPRNT, Chart 00AY4

IEYPRNT is the routine that is called by
the compiler when any request for printing
is issued. The routine sets and checks the
print controls such as setting the 1line
count, advancing the line count, checking
the lines used, and controlling the spacing
before and after the printing of each line.
These control items are set, checked, and
inserted into the SYSPRINT control format,

Section 2: Compiler Operation 33

and the parameter information and print
addresses are initialized for SYSPRINT.

If there is an error during the printing
operation, EREXITPR sets the error code
resulting from the print error. Any error
occurring during an input/output operation
results in a termination of compiler
operation.

PRNTHEAD, Chart 01A2

PRNTHEAD is called by IEYPRNT after it
has been determined that the next print
operation begins on a new page. The pro-
gram name and the new page number placed
into the heading format and any parameter
information and origin addresses are
inserted into +the SYSPRINT format. If an
optional heading is specified by the pro-
grammer, it is inserted into the print line
format. A PUT macro instruction is issued
to print the designated line, and all print
controls are advanced for the next print
operation,

IEYREAD, Chart 01A4

IEYREAD is called by the compiler at the
time that a read operation is indicated.
It reads input in card format from SYSIN
using the GET macro instruction. IEYREAD
can handle concatenated data sets.

If an error occurs during the read
operation, the routine EREXITIN is called.
This routine checks the error code
generated and prints the appropriate error
message.

IEYPCH, Chart 02A3

When a punch output
requested by the compiler, control is tran-
sferred to the IEYPCH routine. The LOAD
and DECK options are checked to determine
what output to perform.

operation is

Any errors detected during output result

in a transfer of control to the EREXITPC,
for SYSPUNCH, or EREXITLN, for SYSLIN,
routine, The routine sets a flag so that

no further output is placed on the affected
file.

34

‘segment has

PRNTMSG, Chart 03A1l

PRNTMSG 1is called when any type of
message is to be printed. The print area
is initialized with blanks and the origin
and displacement controls are set. The
message is printed in two segments; each
segment is inserted into the print area
after the complete message length is deter-
mined and the length and origin of each
been calculated. Once the
entire message has been inserted, the car-
riage control for printing is set and
control is transferred to the system to
print the message.

IEYMOR, Chart 01D1

IEYMOR is called when additional roll
storage area is needed for compiler opera-
tion. This routine may be entered from any
of the processing phases of the compiler.
The GETMAIN mac¢ro instruction is issued by
this routine and transfers control to the
system for the allocation of one UK-byte
block of contiguous storage. The system
returns to IEYMOR with the absolute address
of the beginning of the storage block in
general register 1. Once the requested
storage space has been obtained, IEYMOR
returns to the invoking phase. If the
system is unable to allocate the requested
storage, inactive modules of the compiler
are deleted. Those preceding the currently
active module are deleted first; then those
following it are deleted, if necessary.
Should additional space be needed after all

inactive modules are deleted, compiler
operations are terminated.

When IEYMOR returns to the invoking
phase with the absolute address of the

storage block in general register 1, the
invoking phase then stores the contents of
register 1 in the ROLL ADR table.

The ROLL ADR table is wused by the
compiler to record the addresses of the
different blocks of storage that have been
allocated for additional roll capacity.
The contents of the table are later used in
IEYRETN for releasing of the same storage
blocks.

IEYNOCR

IEYNOCR is called by PRESS MEMORY
(IEYPAR) whenever it is unable to obtain at
least 32 bytes of unused storage. IEYNOCR
prints the message NO CORE AVAILABLE,
branches to a subroutine that checks to see
if there are any source language cards to
be disregarded, and then exits to IEYRETN.

IEYRETN, Chart 03A2

The compiler termination routine
(IFYRETN) is invoked by Exit (IEYEXT) or by
one of the input/output routines after the
detection of an error.

The routine first obtains the error
condition code returned by the compiler and
tests this value against any previous value
received during the compilation. The com-
piler communications area for the error
code 1is set to the highest code received
and a program name of "Main" is set in the
event of multiple compilations. The rou-
tine then checks general register 1 for the
address of the ROLL ADR table. Each entry
of the ROLL ADR table indicates the begin-
ning of a 4K-byte Dblock of roll storage
that must be released. A FREEMAIN macro
instruction is issued for each block of
storage indicated in the table until a zero
entry is encountered (this denotes the end
of the ROLL ADR table).

The presence of more than one source
module in the input stream is checked by
interrogating the end-of-file indication
and the first card following this notation.
If another compilation is indicated, the
line, card, and page count control items
are reinitialized and all save registers
used by the Invocation phase are restored.
The first processing phase of the compiler,
Parse (IEYPAR), is called and the operation
of the compiler proceeds as described in
the previous paragraphs and those pertain-
ing to the processing phases.

If another compilation is not indicated,
routine IEYFINAL closes the data set files
used by the compiler (by means of the CLOSE
macro instruction). The terminal error
condition code is obtained and set for the
return to the invoking program, and all
saved registers are restored before the
return is made.

Routine IEYFINAL also receives control

from other compiler routines when an input/
output error is detected.

OPTSCAN, Chart AA

OPTSCAN determines the existence of the
parameters specifying the compiler optioms.
If options are specified, the validity of
each option is checked against the parame-
ter table and the pointer to these options
is set once the options have been vali-

dated. The program name is noted depending

upon the presence or absence of the NAME
parameter, However, 1if these options are
not specified, the first pointer of the

group of three supplied to the compiler by
the system contains zero.

DDNAMES, Chart AB

DDNAMES scans the entries made for the
names of the data sets to be used by the
compiler, The entries corresponding to
SYSN, SYSIN, SYSPRINT, and SYSPUNCH are
checked; if an alternate name has been
provided, it is inserted into the DCB area.

HEADOPT, Chart AC

HEADOPT determines the existence of the
optional heading information. If such
information exists, its 1length is deter-
mined, it is centered for printing, and
then inserted into the Printmsg Table, with
pointer 3 being set.

TIMEDAT, Chart AD

TIMEDAT serves only to obtain the time
and date information from the system and
insert the data into the heading line.

OUTPUT FROM IEYFORT

The following paragraphs describe the
error messages produced during the opera-
tion of the Invocation phase. These mes-
sages denote the progress of the compila-
tion, and denote the condition which
results in the termination of the compiler.

IEY028I NO CORE AVAILABLE -
TERMINATED

COMPILATION

The system was unable to provide a
4K-byte block of additional roll
storage and PRESS MEMORY was
entered. It, too, was wunable to
obtain space. The condition code
is 16.

IEY029I DECK OUTPUT DELETED

The DECK option has been specified,
and an error occurred during the
process of punching the designated
output. No error condition code is
generated for this error.

Section 2: Compiler Operation 35

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

IEY030I LINK EDIT OUTPUT DELETED

The LOAD option has been specified,

and an error occurred during the
process of generating the load
module. The condition code is 16.

IEY031I ROLL SIZE EXCEEDED

This message is produced when: (1)
The WORK or EXIT roll has exceeded
the storage capacity assigned; or
(2) Another roll used by the com-
piler has exceeded 64K bytes of

storage, thus making it wunaddress-
able. (This condition applies to
all rolls except the AFTER POLISH
and CODE rolls.) The condition
code is 16.

IEY032I NULL PROGRAM
This message is produced when an

is encountered on
set prior to any
The condi-

end-of-data set
the input data
valid source statement.
tion code is 0.

IEYO34I I/O ERROR [COMPILATION TERMINATED]
XXXe o o« XXX

This message is produced when an
input/output error is detected dur-
ing compilation. If the error
occurred on SYSPUNCH, compilation
is continued and the COMPILATION
TERMINATED portion of the message
is not printed. The condition code
is 8. If the error occurred on
SYSIN, SYSPRINT, or SYSLIN, compi-
lation is terminated. The condi-
tion code is 16. XXX...XxX 1s the
character string formatted by the
SYNADAF macro instruction. For an
interpretation of this information,
see the publication IBM System/360
Operating System: Supervisor _and
Data Management Macro-Instructions,
Form C28-6647.

IEY035I UNABLE TO OPEN ddname

This message 1is produced when the
required ddname data definition
card is missing or the ddname is

misspelled.

PHASE 1 OF_THE_COMPILER: _PARSE (IEYPAR)

The first processing phase of the
FORTRAN IV (G) compiler, Parse, accepts
FORTRAN statements in card format as input
and translates them. Specification state-
ments are translated to entries on rolls
which define the symbols of the program.

36

Active statements are translated to Polish
notation. The Polish notation and roll
entries produced by Parse are its primary
output. In addition, Parse writes out all
erroneous statements and the associated
error messages. Parse produces a full
source module listing when the SOURCE

option is specified.

The following description of Parse con-
sists of two parts. The first part, "Flow
of Phase 1," describes the overall logic of
the phase by means of both narrative and
flowcharts.

The second part, "Output from Phase 1,"
describes the Polish notation produced by
Parse. The construction of this output,
from which subsequent phases produce object
code, 1is the primary function performed by
Parse. See Appendix C for the Polish .
format for each statement type.

The source listing format and the error
messages produced by Parse are also
discussed. -

The rolls manipulated by Parse are
listed in Table 3 and are mentioned in the
following description of the phase. At the
first mention of a 1roll, its nature is
briefly described. See Appendix B for a
complete description of a format of a roll.

Table 3. Rolls Used by Parse

ittt bttt Sttt ittt 1
jRoO11 jRoll |
No. Roll_ Name	No. Roll Name
0 Lib	28 Local Sprog
1 Source	29 Explicit
! 2 1Ind var	30 cCall Lbl
4 Polish	31 Namelist Names
5 Literal Const	32 Namelist Items
} 6 Hex Const	33 Array Dimension
7 Global	35 Temp Data Name
] 8 Fx Const	36 Temp Polish
] 9 F1l Cconst	37 Equivalence
10 Dp Const	38 Used Lib
] 11 Complex Const	Function
12 Dp Complex	39 Common Data
] const	40 Common Name
13 Temp Name	41 Implicit
14 Temp	42 Equivalence
14 Error Temp	Offset
15 Do Loops Open	43 Lbl
16 Error Message	44 Scalar
{ 17 Error Char	45 Data Var
18 1Init	46 Literal Temp

| 19 Xtend Lbl | 53 Format |
| 20 Xtend Target | 54 Script |
| Lbl | 55 Loop Data

22 Array	56 Program Script
24 Entry Names	59 At
25 Global Dmy	60 sSubchk
26 Error	63 After Polish
27 Local Dmy	
L 4 4

Form Y28-6638-1
Page Revised 11/15/68 by TNL ¥28-6826

FLOW OF PHASE 1, CHART 04

START COMPILER initializes the operation
of Parse, setting flags from the user
options, reading and writing out (on
option) any initial comment cards in the
source module, and leaving the first card
of the first statement in an input area.
This routine concludes with the transfer of
control to STATEMENT PROCESS.

STATEMENT PROCESS (G0631) controls the
operation of Parse. The first routine
called by STATEMENT PROCESS 1is PRINT AND

READ SOURCE. On return from that routine,
the previous source statement and its error
messages have been written out (as defined
by user options), and the statement to be
processed (including any comment cards)
plus the first card of the next statement
will be on the SOURCE _roll. (This roll
holds the source statements, one character
per byte.) STATEMENT PROCESS then calls
STA INIT to initialize for the processing
of the statement and LBL FIELD XLATE to
process the label field of the statement.

On return from LBL FIELD XLATE, if an
error has been detected in the label field
or in column 6, STATEMENT PROCESS restarts.

Otherwise, STA XLATE and STA FINAL are
called to complete the translation of the
source statement. On return from STA
FINAL, if the last statement of the source
module has not been scanned, STATEMENT
PROCESS restarts.

When the last card of a source module

has been scanned, STATEMENT PROCESS deter-
mines whether it was an END card; if not,
it writes a message. The routine then sets
a flag to indicate that no further card
images should be read, and calls PRINT AND
READ SOURCE to write out the last statement
for the source listing (depending on wheth-
er the SOURCE option was specified or was
indicated as the default condition at sys-
tem generation time).

When no END card appears, two tests are
made: (1) If the 1last statement was an
Arithmetic IF statement, the Polish nota-
tion must be moved to the AFTER POLISH
roll; (2) If the last statement was of a
type which does not continue in sequence to
the next statement (e.g., GO TO, RETURN),
no code is required to terminate the object

module, and the Polish notation for an END
statement is constructed on the POLISH
roll. If the NEXT STA LBL FLAG is off,

indicating that the last statement was not
of this type, the Polish notation for a
STOP or RETURN statement is constructed on

the POLISH roll, depending on whether the
source module 1is a main program or a
subprogram.

After the Polish notation for the STOP
or RETURN has been constructed on the
POLISH roll, the Polish notation for the

END statement is then constructed.

Parse keeps track of all inner DO loops
that may possibly have an extended range.
Parse tags the LABEL roll entries for those

labels within the DO loops that are poss-
ible re-entry points from an extended
range. These tags indicate the points at

which general registers 4 through 7 must be
restored. The appropriate LOOP DATA roll
groups are also tagged to indicate to the
Gen phase which of the inner DO loops may
possibly have an extended range. Gen then
produces object code to save registers 4
through 7.

After processing the last statement of

the source module, a pointer to the LOOP
DATA roll is placed on the SCRIPT roll, the
IND VAR roll is released, and, 1if the
source module was a main program, the

routine REGISTER IBCOM (G0707) is called to
record IBCOM as a required subprogram. For
all source modules, the information

required for Allocate is then moved to the
appropriate area, and the Parse phase is
terminated.

PRINT and READ SOURCE, Chart BA

PRINT AND READ SOURCE (G0837) serves

three functions:

1. It writes out the previous source
statement and its error messages as
indicated by user options.

2. It reads the new source statement to
be processed, including any comment
cards, as well as the first card of
the statement following the one to be
processed.

3. It performs an initial classification
of the statement to be processed.

The statement to be written out is found
on the SOURCE roll. One line at a time is
removed from this roll and placed in a
120-byte output area from which it is
written out. The new statement being read
into the SOURCE roll is placed in an

80-byte input area and replaces the state-
ment being written out as space on the
SOURCE roll becomes available. Any blank

card images in the source module are elimi-
nated before they reach the SOURCE roll.
Comment cards are placed on the SOURCE roll
exactly as they appear in the source
module. The last card image placed on the
SOURCE roll is the first card of the source
statement following the one about to be

Section 2: Compiler Operation 37

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

processed; therefore, any comment cards
that appear between two statements are
processed with the statement which precedes
them. When an END card has been read, no
further reading is performed.

The initial classification of the state-
ment that occurs during the operation of
this routine determines, at most, two
characteristics about the statement to be
processed: (1) If it is a statement of the
assignment type, i.e., either an arithmetic
or logical assignment statement or a state-
ment function, or (2) If it is a Logical IF
statement, whether the statement "S" (the
consequence of the Logical IF) is an
assignment statement. Two flags are set to
indicate the results of this classification
for later routines.

At the conclusion of this routine, all
of the previous source statements and their
errors have been removed from the SOURCE
roll and are written out., In addition, all
of the statements to be processed (up to
and including the first card of the state-
ment following it) have been placed on the
SOURCE roll.

STA INIT, Chart BB

STA INIT (G0632) initializes for the
Parse processing of a source statement. It
sets the CRRNT CHAR CNT and the LAST CHAR
CNT to 1, and places the character from
column 1 of the source card in the variable
CRRNT CHAR.

It then determines, from a count made
during input of the statement, the number
of card images in the statement; multiply-
ing this value by 80, STA INIT sets up a
variable (LAST SOURCE CHAR) to indicate the
character number of the last character in
the statement,

The routine finally releases the TEMP
NAME roll and sets several flags and
variables to constant initial values before
returning to STATEMENT PROCESS.

LBL_FIELD XLATE, Chart BC

LBL FIELD XLATE (G0635) first saves the

address of the current WORK and EXIT roll
bottoms. It then inspects the first six
columns of the first card of a statement.

It determines whether a label appears, and
records the 1label if it does. If any
errors are detected in the label field wor
in column 6 of the source card, LBL FIELD
XLATE records these errors for later print-

38

ing and returns to STATEMENT = PROCESS
(through SYNTAX FAIL) with the ANSWER BOX
set to false.

Pointers to all labels within DO 1loops
are placed on the XTEND LBL roll. Labels
that are jump targets (other than jumps
within the DO loop) are tagged to indicate
to Gen at which points to restore general
registers 4 through 7.

If the statement being processed is the
statement following an Arithmetic IF state-
ment, LBL FIELD XLATE moves the Polish
notation for the Arithmetic IF statement to
the AFTER POLISH roll after adding a point-
er to the label of the present statement to
it.

STA XLATE, Chart BD

Under the control of STA XLATE (G0636)
the source module statement on the SOURCE
roll is processed and the Polish notation
for that statement 1is produced on the
POLISH roll, which holds Polish notation
for source statements, one statement at a
time. Errors occurring in the statément
are recorded for writing on the source
module listing.

The addresses of the bottoms of the WORK
and EXIT rolls are saved. Then, if the
statement is of the assignment type (the
first flag set by PRINT AND READ SOURCE is
on), STA XLATE ensures that a BLOCK DATA
subprogram 1is not being compiled and falls
through to ASSIGNMENT STA XLATE (G0637).
If a BLOCK DATA subprogram is being com-
piled, STA XLATE returns after recording an
invalid statement error message. If the
statement is not of the assignment type, a
branch is made to LITERAL TEST (G0640),
which determines the nature of the state-
ment from its first word(s), and branches
to the appropriate routine for processing
the statement. The names of the statement
processing routines indicate their func-
tions; for example, DO statements are
translated by DO STA XLATE, while Computed
GO TO statements are translated by CGOTO
STA XLATE.

With the exception of LOGICAL IF STA
XLATE, the statement processing routines
terminate their operation through STA XLATE
‘EXIT. LOGICAL IF STA XLATE moves the
second flag set by PRINT AND READ SOURCE
(which indicates whether the statement "S"
is an assignment statement) into the first
flag, and calls STA XLATE as a subroutine

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

for the translation of the statement "S."
When all of the Logical IF statement,
including "S," has been translated, LOGICAL
IF STA XLATE also terminates through STA
XLATE EXIT.

STA XLATE
whether

EXIT
errors in

(G0723) determines
the statement are of a

severity level which warrants discarding
the statement. If such errors exist, and
the statement is active (as opposed to a
specification statement), the Polish nota-
tion produced for the statement is removed
and replaced by an invalid statement driver
before a return 1is made to STATEMENT
PROCESS. Otherwise, the Polish notation is
left intact, and a return is made to
STATEMENT PROCESS.

Section 2: Compiler Operation 38.1

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

STA FINAL, Chart BE

STA FINAL (G0633) increases the state-
ment number by one for the statement Jjust
processed. It then determines whether any
Polish notation has been produced on the
POLISH roll; 1if no Polish notation is
present, STA FINAL returns to STATEMENT
PROCESS.

If the statement produced Polish nota-
tion of a type which may not <close a DO

loop, STA FINAL bypasses the check for the
close of a DO loop. Otherwise, STA FINAL
determines whether the label (if there is
one) of the statement corresponds to the
label of the terminal statement of a DO
loop. If so, the label pointer (or poin-
ters, 1if the statement terminates several

DO loops) is removed from the DO _LOOPS OPEN
roll, which holds pointers to DO loop
terminal statements until the terminal
statements are found.

When the statement is the target of a DO
loop, extended range checking is continued.
DO loops which have no transfers out of the
loop are eliminated as extended range can-
didates. In addition, the nest level count
is reduced by one and the information
concerning the array references in the
closed 1loop is moved from the SCRIPT roll
to the PROGRAM SCRIPT roll.

STA FINAL then places the label pointer
(if it is required) on the Polish notation
for the statement, and, at STA FINAL END,
adds the statement number to the Polish.

Except when the statement just processed
was an Arithmetic IF statement, STA FINAL
END terminates its operation by moving the
Polish notation for the statement to the
AFTER POLISH roll. In the case of the
Arithmetic IF, the Polish notation is not
moved until the label of the next statement
has been processed by LBL FIELD XLATE.
When the Polish notation has been moved,
STA FINAL returns to STATEMENT PROCESS.

ACTIVE END_STA XLATE, Chart BF

ACTIVE END STA XLATE (G0642) is invoked
by STATEMENT PROCESS when the END card has
been omitted and the last statement in the

source module has been read. If the last
statement was not a branch, the routine
determines whether a subprogram or a main

program is being terminated. If it dis a
subprogram, the Polish notation for a
RETURN is constructed; if it 1is a main

program, the Polish notation for a STOP
statement is constructed. If the last
statement was a branch, this routine

returns without doing anything.

PROCESS POLISH, Chart BG

PROCESS POLISH (GO844) moves a count of
the number of words in the Polish notation
for a statement, and the Polish notation
for that statement, to the AFTER POLISH
roll.

OUTPUT FROM PHASE 1

The output from Parse is the Polish
notation and roll entries produced for
source module active statements, the roll
entries produced for source module specifi-
cation statements, and the source module
listing (on option SOURCE) and error mes-

sages., The following paragraphs describe
the Polish notation and the source and
error listings. See Appendix E for

descriptions of roll formats.

Polish Notation

The primary output from Phase 1 of the
compiler 1is the Polish notation for the
source module active statements. This
representation of +the statements is pro-
duced one statement at a time on the POLISH

roll. At the end of the processing of each
statement, the Polish notation is trans-
ferred to the AFTER POLISH roll, where it

is held wuntil it is
phases of the compiler.

required by later

The format of the Polish notation dif-
fers from one type of statement to another.
The following paragraphs describe the gen-
eral rules for the construction of Polish
notation for expressions. The specific
formats of the Polish notation produced for
the various FORTRAN statements are given in
Appendix C.

Polish notation 1is a method of writing
arithmetic expressions whereby the tradi-
tional sequence of "operand;" "operation”
"operand," is altered to a functional nota-
tion of "operation" "operand," "operand;."
Use of this notation has the advantage of
eliminating the need for brackets of

various 1levels to indicate the order of
operations, since any "operand" may itself
be a sequence of the form "operation"

"operand"™ "operand," to any level of
nesting.
Assuming expressions which do not

include any terms enclosed in parentheses,
the following procedure 1is used to con-
struct the Polish notation for an
expression:

Section 2: Compiler Operation 39

1. At the beginning of the expression, an
artificial driver is placed on the
WORK roll; this driver is the Plus and
Below Phony driver, and has a lower
forcing strength than any arith-
metic or 1logical operator. (Forcing
strengths are given in Table 1.)

2. As each variable name or constant in
the expression is encountered, a
pointer to the defining group is
placed on the POLISH roll.

3. When an operator is encountered, the
corresponding driver is constructed
and it is compared with the 1last

driver on the WORK roll:

a. If the current driver has a higher
forcing strength than the driver

on the bottom of the WORK roll
(the "previous" driver, for the
purposes of this discussion), the

current driver is added to the
WORK roll and the analysis of the
expression continues.

bs If the current driver has a forc-
ing strength which is lower than
or equal to the forcing strength
of the previous driver, then:

(1) If the previous driver is the
Plus and Below Phony driver,
the current driver replaces
the previous driver on the
WORK roll (this situation can
only occur when the current
driver is an EOE driver, indi-
cating the end of the expres-
sion) and the analysis of the
expression is terminated.

(2) If the previous driver is not
the Plus and Below Phony driv-
er, the previous driver is
removed from the WORK roll and
placed on the POLISH roll, and
the comparison of the current
driver against the previous
driver 1is repeated (that is,
using the same current driver,

this procedure is repeated
from 3).

The sequence of operations which occurs
when the analysis of an expression is
terminated removes the EOE driver from the
WORK roll.

Example 1: The expression A + B produces
the Polish notation

A

B

+

40

where:

A represents a pointer to the defining
group for the variable A

+ represents the Add driver. This nota-
tion is produced from the top down; when it
is read from the bottom up, the sequence

described above for Polish notation is
satisfied.
Explanation: The following operations

occur in the production of this Polish

notation:

1. The Plus and Below Phony driver is
placed on the WORK roll.

2., A pointer to A is placed on the POLISH
roll.

3. An Add driver is constructed and com-
pared with the Plus and Below Phony
driver on the bottom of the WORK roll;
the Add driver has a higher forcing
strength and is therefore added to the
WORK roll (according to rule 3a,
above) .

4, A pointer to B is placed on the POLISH
roll.

5. An EOE (end of expression) driver is
constructed and compared with the Add
driver on the bottom of the WORK roll;
the EOE driver has a lower forcing
strength, and the Add driver is there-
fore removed from the WORK roll and
added to the POLISH roll (rule 3b2).

6. The EOE driver is compared with the
Plus and Below Phony driver on the
bottom of +the WORK roll; the EOE
driver has a lower forcing strength,
and therefore (according to rule 3bl)
replaces the Plus and Below Phony
driver on the WORK roll.

7. The analysis of the expression is
terminated and the EOE driver is
removed from the WORK roll. The

Polish notation for the expression is
on the POLISH roll.

Example 2: The expression A + B / C

produces the Polish notation

+N\NQw»

which, read from the bottom up, is + 7 C B
A.

Explanation: The following operations
occur in the production of this Polish
notation:

1. The Plus and Below Phony driver is

2.

Example 3:

placed on the WORK roll.

A pointer to A is placed on the POLISH
roll.

An Add driver is constructed and com-
pared with the Plus and Below Phony
driver; the Add driver has the higher
forcing strength and is placed on the
WORK roll.

A pointer to B is placed on the POLISH
roll.

is constructed and
compared with the Add driver; the
Divide driver has the higher forcing
strength and 1is placed on the WORK
roll.

A Divide driver

A pointer to C is placed on the POLISH
roll.

An EOE driver is constructed and com-
pared with the Divide driver; since
the EOE driver has the 1lower forcing
strength, the Divide driver is moved
to the POLISH roll.

The EOE driver is compared with the
Add driver; since the EOE driver has
the lower forcing strength, the B2Add
driver is moved to the POLISH roll.

The EOE driver
Plus and Below Phony driver;
EOE driver has the lower forcing
strength, it replaces the Plus and
Below Phony driver on the WORK roll,
and the analysis of the expression
terminates with the removal of one
group from the WORK roll.

is compared with the
since the

The expression A / B - C

produces the Polish notation

which,

A.

Explanation:
occur in

QNP

read from the bottom up, is - C / B

The following
production of this

operations

the Polish

notation:

1.

The Plus and Below Phony driver is
placed on the WORK roll.

2. A pointer to A is placed on the POLISH
roll.

3. A Divide driver 1is constructed and
compared with the Plus and Below Phony
driver; the Divide driver has the
higher forcing strength and is added
to the WORK roll.

4, A pointer to B is placed on the POLISH
roll.

5. A Subtract driver is constructed and
compared with the Divide driver; the
Subtract driver has a lower forcing
strength, therefore the Divide driver
is moved to the POLISH roll.

6. The Subtract driver is compared with
the Plus and Below Phony driver; the
Subtract driver has the higher forcing
strength and is added to the WORK
roll.

7. A pointer to C is placed on the POLISH
roll.

8. An EOE driver is constructed and com-
pared with the Subtract driver; since
the EOE driver has a lower forcing
strength, the Subtract driver is moved
to the POLISH roll.

9. The EOE driver 1is compared with the

Plus and Below Phony driver; the EOE

driver replaces the Plus and Below

Phony driver on the WORK roll and the

analysis of the expression is ter-

minated.

Recursion is used in the translation of
an expression when a left parenthesis is
found; therefore, the term enclosed in the

parentheses 1is handled as a separate
expression. The following three examples
illustrate the resulting Polish notation
when more complicated expressions are
transformed:

Expression Polish_Notation

1. A-B*(C+D) -*+DCBA

2. (A-B)/(C*D) /*DC-BA

3. X/2/ (X-C) +C**X +**¥XC/-CX/ZX

The following should be noted with
spect to the exponentiation operation:

re-

e Exponentiations on the same level are
scanned right to 1left. Thus, the
expression A**B**C**D is equivalent to
the expression A*#* (B** (C*%*D)).

¢ Two groups are added to the POLISH roll
to indicate each exponentiation opera-
tion. The first of these is the Power
driver; the second is a pointer to the
group on the global subprogram roll
(GLOBAL SPROG roll) which defines the

Section 2: Compiler Operation 41

required exponentiation routine. Thus,
the expression A ** B produces the
following Polish notation:

Pointer to A
Pointer to B
Power driver
Pointer to exponentiation routine

The concept of Polish notation is
extended in the FORTRAN IV (G) compiler to
include not only the representation of
arithmetic expressions, but also the repre-
sentation of all parts of the active state-
ments of the FORTRAN language. The parti-
cular notation produced for each type of
statement is described in Appendix C. Once
an entire source statement has been pro-
duced on the POLISH roll, phase 1 copies
this roll to the AFTER POLISH roll and the
processing of the next statement begins
with the POLISH roll empty.

Source Listing

The secondary
source module listing.
is requested by the user (by means
option SOURCE), source module

output from Parse is the
If a source listing

of the
cards are

listed exactly as they appear on the input
data set with error messages added on
separate lines of the 1listing. If no

source module 1listing is requested, Parse
writes only erroneous statements and their
error messages.

The following paragraphs describe the
error recording methods used in phase 1,
the format of the source listing and the
error messages generated.

ERROR RECORDING: As a rule, Parse attempts
to continue processing source statements in
which errors are found. However, certain
errors are catastrophic and cause Parse to
terminate processing at the point in the
statement where the error occurred.

Statements which cannot be
properly are replaced by a
FORTRAN error routine IHCIBERH.

compiled
call to the

Throughout Parse,
error recording are used.
these is used when the error is
strophic. This method records the char-
acter position in the statement at which
the error was detected (by means of IEYLCE,
IEYLCT, or IEYLCF instructions) and the
number of the error type on the ERROR roll;
after recording this information, Parse
continues to scan the statement.

three techniques of
The first of
not cata-

The second and third techniques of error
recording are used when the error detected

42

is catastrophic, at least to part of the
statement being scanned. The second tech-
nique is a Jjump to an error recording
routine, such as ALLOCATION FAIL or SUB-
SCRIPTS FAIL, which records the error and
jumps to FAIL. The third technique is the
use of one of the instructions, such as
IEYCSF or IEYQSF, which automatically jump
to SYNTAX FAIL if the required condition is

not met. SYNTAX FAIL also exits through
FAIL.
If the statement being processed is

active and errors have been detected in it,
FAIL removes any Polish notation which has
been produced for the statement from the
POLISH roll, replacing it with an error
indicator. FAIL then restores WORK and
EXIT roll controls to their condition at
the 1last time they were saved and returns
accordingly.

Some translation routines modify the
action of the FAIL routine through the use
of the IEYJPE instruction so that FAIL
returns immediately to the location follow-
ing the IEYJPE instruction. The transla-
tion routine can then resume the processing
of the statement from that point.

FORMAT OF THE SOURCE MODULE LISTING: Error
information for a source module card con-
taining errors appears on the listing lines
immediately following that card. For each
error encountered, a $ sign is printed
beneath the active character preceding the
one which was being inspected when the
error was detected. The only exception
would be in the case of a SYNTAX error. In
such a case, the $ sign undermarks the
character being inspected when the error is
detected. The 1listing line which follows
the printed card contains only the § sign
markers.

The next 1line of the listing describes
the marked errors. The errors are numbered
within the card (counting from one for the
first error marked); the number is followed
by a right parenthesis, the error number,
and the type of the error. Three errors
are described on each 1line, for as many
lines as are required to 1list all the
marked errors on the source card.

The following is an illustration of the
printed output from phase 1:

DIMENSION ARY(200), BRY(200) CRY(5,10,10)
$
1) IEYOO4I COMMA

IF (AA + BB) 15, 20, 250000
$
1) IEY010I SIZE
ARY(J) = BRY
$
1) IEY002I LABEL 2) IEY012I SUBSCRIPT
GTO 30

$
1) IEY013I SYNTAX

ERROR_TYPES: The types of errors detected
and reported by Parse are described in the
following paragraphs. For each error type,
the entire message which appears on the
source output is given; the condition code
and a description of the causes of this
error follows the message.

IEY001I ILLEGAL _TYPE: This message is
associated with the source module statement
when the type of a variable is not correct
for its wusage. Examples of situations in
which this message would be given are: (1)
The variable in an Assigned GO TO statement
is not an integer variable; (2) In an
assignment statement, the variable on the
left of the equal sign is of 1logical type
and the expression on the right side is
not. The condition code is 8.

IEY002I LABEL: This message appears with a
statement which should be labeled and is
not. Examples of such statements are: (1)
A FORMAT statement; (2) The statement fol-
lowing a GO TO statement. The condition
code for the error is 0.

IEY003I NAME LENGTH: The name of a vari-
able, COMMON block, NAMELIST, or subprogram
exceeds six characters in length. If two
variable names appear 1in an expression
without a separating operation symbol, this
message is produced. The condition code is
q'

IEYOO4T COMMA: A comma 1is supposed to
appear in a statement and it does not. The
condition code is 0.

IEY005I ILLEGAL LABEL: The wusage of a
label is invalid for example, if an attempt
is made to branch to the label of a FORMAT
statement, ILLEGAL LABEL is produced. The
condition code is 8.

IEY006I DUPLICATE LABEL: A label appearing
in the 1label field of a statement is
already defined (has appeared in the label
field of a previous statement). The condi-
tion code is 8.

IEY007I ID CONFLICT: The name of a vari-

able or subprogram is used improperly, in
the sense that a previous statement or a
previous portion of the present statement
has established a type for the name, and
the present usage is in conflict with that
type. Examples of such situations are:
(1) The name listed in a CALL statement is
the name of a variable, not a subprogram;
(2) A single name appears more than once in
the dummy list of a statement function; (3)
A name listed in an EXTERNAL statement has

already been defined in another context.
The condition code is 8.

IEY008I ALLOCATION: Storage assignments
specified by a source module statement

cannot be performed due to an inconsistency
between the present usage of a variable
name and some prior usage of that name, or
due to an improper usage of a name when it
first occurs in the source module.
Examples of the situations causing the
error are: (1) A name listed in a COMMON
block has been 1listed in another COMMON
block; 2) A variable listed in an EQUIVA-
LENCE statement is followed by more than
seven subscripts. The condition code is 8.

IEY009I ORDER: The statements of a source

IEY010I SIZE:

module are wused in an improper sequence.
This message 1is produced, for example,
when: (1) An IMPLICIT statement appears as
anything other than the first or second
statement of the source module; (2) An
ENTRY statement appears within a DO loop.
The condition code is 8.

A number used in the source
module does not conform to the legal values
for its wuse. Examples are: (1) The size
specification in an Explicit specification
statement is not one of the acceptable
values; (2) A label which is used in a
statement exceeds the 1legal size for a
statement label; (3) An integer constant is
too large. The condition code is 8.

TEY011I UNDIMENSIONED: A variable name
indicates an array (i.e., subscripts follow
the name), and the variable has not been
dimensioned. The condition code is 8.

IEY012I SUBSCRIPT: The number of sub-

scripts used in an array reference is
either too 1large or too small for the
array. The condition code is 8.

IEY013I SYNTAX: The statement or part of a
statement to which it refers does not
conform to FORTRAN IV syntax. If a state-
ment cannot be identified, this error mes-
sage is used. Other cases 1in which it
appears are: (1) A non-digit appears in
the 1label field; (2) Fewer than three

labels follow the expression in an Arith-
metic IF statement. The condition code is
8.

Section 2: Compiler Operation 43

IEY014T CONVERT: In a DATA statement or in
an Explicit specification statement con-
taining data values, the mode of the con-
stant is different from the mode of the
variable with which it is associated. The
compiler converts the constant to the
correct mode. Therefore, this message is
simply a notification to the programmer
that the conversion 1is performed. The
condition code is 0.

IEYO015I NO END__CARD: The source module
does not contain an END statement. The
condition code is 0.

IEY016I ILLEGAL STA.: The statement to
which it is attached is invalid in the
context in which it has been used.
Examples of situations in which this mes-
sage. appears are: (1) The statement S in a
Logical IF statement (the result of the
true condition) is a specification state-
ment, a DO statement, etc.; 2) An ENTRY
statement appears in the source module and
the source module is not a subprogram. The
condition code is 8.

IEY017I ILLEGAL STA. WRN : A RETURN I
statement appears in any source module
other than a SUBROUTINE subprogram. The
condition code is 0.

IEY018I NUMBER ARG: A reference to a
library subprogram appears with the inco-
rrect number of arguments specified. The
condition code is 4.

IEY027I CONTINUATION CARDS DELETED: More
than 19 continuation lines were read for 1
statement. All subsequent lines are
skipped until the beginning of +the next
statement 1is encountered. The condition
code is 8.

IEY033I COMMENTS DELETED: More than 30
comment lines were read between the initial
lines of 2 consecutive statements. The
31st comment line and all subsequent com-
ment lines are skipped until the beginning
of the next statement is encountered.
(There 1is no restriction on the number of
comment lines preceding the first state-
ment.) The condition code is 0.

IEY036I ILLEGAL LABEL WRN: The label on
this nonexecutable statement has no valid
use beyond visual identification, and may
produce errors in the object module if the
same label is the target of a branch-type
statement, (Only branches to executable
statements are valid.) This message is
produced, for example, when an END state-
ment is labeled. The message is issued as
a warning only. The condition code is 4.

44

PHASE 2 OF THE COMPILER:

ALLOCATE

(IEYALL)

assignment of

Phase 2 of the

storage

for

compiler performs the
the variables

defined in the source module. The results
of the allocation operations are entered on
tables which are

next phase.

the TXT cards for NAMELIST tables,
and FORMAT statements, and pro-
and storage maps

constants,
duces

error messages

In addition,

left in storage for the

Allocate writes
(on option) the object module ESD cards,

(optionally) on the SYSPRINT data set.

The

following paragraphs

literal

describe the

operations of Allocate in two parts. The

first part,

the overall logic of the phase by means
narrative and flowcharts.

The
describes the

maps

second part,

"Flow of Phase 2," describes
of

"Output from Phase 2,"

error messages

which are produced
module listing during the operation of the
the ESD and TXT cards

phase, as well as
produced.
error

structures are given

and memory

on the source

It also describes the types

of

detection performed during Allocate.

Rolls manipulated
in Table 4, and are
context. Detailed

by Allocate are listed
briefly described
descriptions of roll
in Appendix B.

in

Table 4. Rolls Used by Allocate

r~ T H
|Ro11 |RO11 |
|No. RoOll_ Name {No. Roll Name |
| 1 Source] 39 Halfword |
| 5 Literal Const | Scalar |
| 7 Global Sprog | 40 Common Name |
| 14 Temp] 41 Implicit |
| 15 Do Loops Open | 42 Equivalence |
| 18 Init] Offset

| 19 Equiv Temp] 43 Lbl |
| 20 Equiv Hold | 44 Scalar |
| 21 Base Table | 45 Data Var |
| 22 Array { 47 Common Data |
| 23 Dmy Dimension | Temp |
| 24 Entry Names | 48 Namelist |
] 25 Global Dmy | Allocation |
] 26 Error Lbl | 48 Common Area |
27 Local Dmy	49 Common Name
28 Local Sprog	Temp
29 Explicit	50 Equiv Alloca-
30 Error Symbol	tion
31 Namelist Names	52 Common Alloca-
32 Namelist Items	tion
34 Branch Table	53 Format 1
] 37 Equivalence	60 Subchk
37 Byte Scalar	68 General Allo-
38 Used Lib] cation	
Function	
39 Common Data	

L 1 4

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

FLOW OF PHASE 2, CHART 05

START ALLOCATION (G0359) controls the
operation of the Allocate phase. The pri-
mary function of this routine is to call
the subordinate routines which actually
perform the operations of the phase.

The operation of Allocate is divided
into three parts: the first part performs
initialization; the second part (called
pass 1) makes an estimate of the number of
base table entries required to accommodate
the data in the object module; the third
part actually assigns storage locations for
the object module components, leaving indi-
cations of the assignment in main storage
for use by subsequent phases.

The first part of Allocate's operation
is performed by calling the routines ALPHA
LBL AND L SPROG, PREP EQUIV AND PRINT
ERRORS, BLOCK DATA PROG ALLOCATION, PREP
DMY DIM AND PRINT ERRORS, PROCESS DO LOOPS,
PROCESS LBL AND LOCAL SPROGS, BUILD PROGRAM
ESD, ENTRY NAME ALLOCATION, COMMON
ALLOCATION AND OUTPUT, and EQUIV ALLOCATION
PRINT ERRORS.

After return from EQUIV ALLOCATION PRINT
ERRORS, START ALLOCATION initializes for
and begins pass 1. The variable PROGRAM
BREAK, which is used to maintain the rela-
tive address being assigned to an object
module component, is restored after being
destroyed during the allocation of COMMON
and EQUIVALENCE. The groups in the BASE
TABLE roll (which becomes the object module
base table) are counted, and the value ten
is added to this count to provide an
estimate of the size of the object module
base table. The BASE TABLE roll is then
reserved so that groups added to the roll
can be separated from those used in the
count. The value one is assigned to the
variable AREA CODE, indicating that storage
to be assigned is all relative to the
beginning of the object module and carries
its ESD number.

When these operations are
START ALLOCATION calls
TABLE ALLOC, and upon
routine again increases the variable
PROGRAM BREAK by the amount of storage
allocated to EQUIVALENCE. START ALLOCATION
continues 1its operation by calling BUILD
ADDITIONAL BASES, PREP NEMELIST, SCALAR

complete,
BASE AND BRANCH
return from this

ALLOCATE, ARRAY ALLOCATE, PASS 1 GLOBAL
SPROG ALLOCATE, SPROG ARG ALLOCATION,
LITERAL CONST ALLOCATION and FORMAT
ALLOCATION.

After the operation of FORMAT
ALLOCATION, the last part of Allocate is
begun. The variable PROGRAM BREAK is re-

initialized to the value it was assigned

prior to pass 1. The BASE TABLE roll
groups are counted to determine the total
size of the roll after groups have been
added by pass 1; again, five extra groups
(or ten words) are added to the count to
provide for data values which will appear
in the object module, but which are not yet
defined. The PASS 1 FLAG is then turned
off, and START ALLOCATION calls DEBUG
ALLOCATE, ALPHA SCALAR ARRAY AND SPROG,
BASE AND BRANCH TABLE ALLOC, EQUIV MAP,
SCALAR ALLOCATE, ARRAY ALLOCATE, GLOBAL
SPROG ALLOCATE, SPROG ARG ALLOCATION, BUILD
NAMELIST TABLE, LITERAL CONST ALLOCATION,
and FORMAT ALLOCATION.

At RELEASE ROLLS, START ALLOCATION con-
cludes its operation by releasing rolls,
increasing the PROGRAM BREAK to ensure that
the next base begins on a doubleword boun-
dary, and calling CALCULATE BASE AND DISP
and BUILD ADDITIONAL BASES in order to
guarantee that at 1least three bases are
allotted for the TEMP_AND CONST roll.
After this calculation, Allocate prepares
for and relinguishes control to Unify.

ALPHA LBL AND L SPROGS, Chart CA

This routine (GO543) is the first rou-
tine called by START ALLOCATION. It moves
the binary labels from the LBL roll and the
statement function names from the LOCAL
SPROG roll to the DATA VAR roll. The order
of the labels and statement function names

on their respective rolls 1is maintained,
and the 1location on the DATA VAR roll at
which each begins is recorded. The names
are moved because Allocate destroys them in
storing allocation information, and Exit
needs them for writing the object module
listing.

ALPHA SCALAR ARRAY AND SPROG, Chart CA

This routine moves the names of scalars,
arrays, and called subprograms to the DATA
VAR roll from the rolls on which they are
placed by Parse. The order of names is
preserved and the beginning location for
each type of name on the DATA VAR roll is
saved.

PREP_EQUIV_AND PRINT ERRORS, Chart CB

OFFSET _roll (which indicates the subscripts
used in EQUIVALENCE statements in the
source module) is used by this routine

Section 2: Compiler Operation 45

Form ¥28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

(G0362) to
dresses of array é€lements
statements. (Pointers

calculate the relative ad-
referred to in
to the EQUIVALENCE

OFFSET roll are found on the EQUIVALENCE
roll for all subscripted references in
EQUIVALENCE statements.) The addresses

computed are relative to the beginning of
the array. When an array reference in a
source module EQUIVALENCE statement is out-
side the array, designates an excessive
number of dimensions, or specifies too few
dimensions, an error message is printed by
this routine.

BLOCK DATA PROG ALLOCATION, Chart CC

This routine (G0361) controls the allo-
cation of data specified in DATA, COMMON,
DIMENSION, EQUIVALENCE, and Type statements
in a BLOCK DATA subprogram. Since all data

specified in EQUIVALENCE must be allocated
under COMMON, this routine registers an
error upon encountering on the EQUIVALENCE

roll. The routine terminates with a jump
to RELEASE ROLLS (G0360), which, in turn,
terminates the Allocate phase.

PREP DMY DIM AND PRINT ERRORS, Chart CD

This routine (G0365) constructs the DMY
DIMENSION roll, placing a pointer to the
ENTRY NAMES roll group defining the ENTRY
with which a dummy array is connected, and
a pointer to the array for each dummy array
containing a dummy dimension.

Before the roll is
routine ensures that
dummy dimensions 1is itself a dummy, and
that each dummy dimension 1listed for the
array 1is either in COMMON or is a global

constructed, this
each array having

dummy variable in the same call. If any of
these conditions are not satisfied, error
messages are written.
PROCESS DO _LOOPS, Chart CE

This routine (G0371) inspects the DO
LOOPS OPEN roll for the purpose of deter-
mining whether DO loops opened by the

source module have been left unclosed; that
is, whether the terminal statement of a DO
loop has been omitted from the source
module, The DO LOOPS OPEN roll holds
pointers to labels of target statements for
DO loops until +the loops are closed. If
any information is present on this roll,
loops have been left unclosed. -

46

On encountering information on the DO
LOOPS OPEN roll, this routine records the
undefined 1labels for 1listing as DO loop
errors, and (on option) 1lists them. It
also sets the high order bit of the TAG
field of the LBL roll group which refers to
the undefined label to zero; this indicates
to Gen that the loop is not closed.

PROCESS_LBL_AND LOCAL SPROGS, Chart CF

This routine (G0372) constructs the
BRANCH TABLE roll, which is to become the
object module branch table. The routine
first processes the LBL roll. For each
branch target label found on that roll, a
new BRANCH TABLE roll group is constructed,
and the 1label on the LBL roll is replaced
with a pointer to the group constructed.
Undefined 1labels are also detected and
printed during this process.

When this operation is complete, the
LOCAL SPROG_roll (which lists the names of
all statement functions) is inspected, and
for each statement function, a group is
added to the BRANCH TABLE roll, and part of
the statement function name is placed with
a pointer to the constructed group.

BUILD PROGRAM ESD, Chart CG

This routine (GO0374) constructs and
punches the ESD cards for the object module

itself (the program name) and for each
ENTRY to the object module. It also
assigns main storage locations to the

increasing the
storage

object module heading by
PROGRAM BREAK by the amount of
required.,

ENTRY NAME ALLOCATION, Chart CH

This routine (G0376) does nothing if the

source module is other than a FUNCTION
subprogram. If, however, the source module
is a FUNCTION, this routine places the

names of all ENTRYs to the source module on
the EQUIVALENCE roll as a single
EQUIVALENCE set; it also ensures that the
ENTRY name has been used as a scalar in the

routine. If the variable has not been
used, an appropriate error message is
printed and the scalar variable is defined

by this routine.

COMMON ALLOCATION AND OUTPUT, Chart CI

This routine (G0377) allocates all COM-
MON storage, one block at a time, generat-
ing the COMMON ALLOCATION roll (which holds
the name, base pointer, and displacement
for all COMMON variables) in the process.
Groups are added to the BASE TABLE roll as
they are required to provide for references
to variables in COMMON. The ESD cards for
COMMON are constructed and written out,
All errors in COMMON allocation are written
on the source listing and the map of COMMON
storage is also written (on option).

EQUIV ALLOCATION PRINT ERRORS, Chart CK

This routine (G0381) allocates storage
for EQUIVALENCE variables, creating the
EQUIVALENCE ALLOCATION roll in the process.
For each variable appearing in an EQUIVA-
LENCE set, except for EQUIVALENCE variables
which refer to COMMON (which have been
removed from the EQUIVALENCE roll during
the allocation of COMMON storage), the name
of the wvariable and its address are
recorded.

The information pertaining to EQUIVA-
LENCE sets is stored on the EQUIV ALLOCA-
TION roll in order of ascending addresses.
Required bases are added to the BASE TABLE
roll, and all remaining EQUIVALENCE errors
are printed.

BASE_AND BRANCH TABLE ALLOC, Chart CL

This routine (Gou37) assigns main
storage for the object module save area,
base table, and branch table. The required
base table entries are added as needed,
PROGRAM BREAK is increased, and the base
pointer and displacement for each of these
areas is recorded in a save area for use by
Gen. During pass 1 of Allocate, this
assignment of storage 1is tentative and
depends on the estimate of the size of the
base table. The second time this routine
is operated, the actual number of base
table entries required in the object module
has been determined by pass 1 and the space
allocation is final.

SCALAR ALLOCATE, Chart CM

Each group on the SCALAR roll is
inspected by this routine (G0397), which
defines all nonsubscripted variables. It

allocates storage for the variables listed
on the roll, except for those which are in
COMMON or members of EQUIVALENCE sets. The
first time SCALAR ALLOCATE operates, it
determines the number of base table entries
required to accommodate references to the
object module scalar variables. The infor-
mation on the SCALAR roll is not altered,
nor is any other roll built or modified by
the routine.

At the second operation of the routine,
the SCALAR roll is modified, and the actual
storage locations (represented by the base
pointer and displacement) to be occupied by
the scalar variable are either computed and
stored on the SCALAR roll or copied from
the COMMON or EQUIV ALLOCATION roll to the
SCALAR roll.

All "call by name" dummy variables are
placed on the FULL WORD SCALAR roll; as
each remaining scalar 1is inspected, its

If it is of size 8 or
real or single- or

mode is determined.
16 (double-precision
double-precision complex), storage is allo-
cated immediately. If the wvariable does
not require doubleword alignment, it is
moved to one of three rolls depending on
its size: FULL WORD SCALAR, HALF WORD
SCALAR, or BYTE SCALAR.

When all groups on the SCALAR roll have

been processed in this manner, the
variables on the FULL WORD SCALAR roll,
then +the HALF WORD SCALAR roll, then the

BYTE SCALAR roll are assigned storage. The

map of scalars is produced (on option) by
this routine.

ARRAY ALLOCATE, Chart CN

This routine (GO401), like SCALAR ALLOC-
ATE, 1is called twice by START ALLOCATE.
The first time it is called, it determines
the number of base table entries required
for references to the object module arrays.
The second time the routine is operated, it
actually assigns storage for the arrays,
and records the appropriate base pointer
and displacement on the ARRAY roll.

As each array name is found on the ARRAY
roll, it is compared with +those on the
COMMON, EQUIV, and GLOBAL DMY rolls. For
COMMON and EQUIVALENCEd arrays, the alloca-
tion information is copied from the appro-
priate roll. Since all dummy arrays are
"call by name" dummies, dummy array groups
are always replaced with pointers to the
GLOBAL DMY roll. For each array to be
assigned storage, new base table entries
are constructed as required. In no case is
more than one base used for a single array.

Section 2: Compiler Operation 47

Since arrays are allocated in the order
of their appearance, some unused storage
space may appear between consecutive arrays
due to the required alignment. The array
map is produced (on option) by this
routine.

PASS_1 GLOBAL_ SPROG ALLOCATE, Chart CO

This routine (GO402) counts the groups
on the GLOBAL SPROG and USED LIB FUNCTION
rolls (which hold, respectively, the non-
library and library subprogram names
referred to in the source module) to deter-
mine the number of base table entries
required for references to the subprogram
addresses region of the object module. The
required BASE TABLE roll groups are added.

SPROG_ ARG _ALLOCATION, Chart CP

This routine (GO442) adds the number of
arguments to subprograms (and thus, the
number of words in the argument list area
of the object module) to the PROGRAM BREAK,
thus allocating storage for this portion of
the object module. BASE TABLE roll groups
are added as required.

PREP NAMELIST, Chart CQ

This routine (GO443) determines the
amount of main storage space required for
each object module NAMELIST table. The
NAMELIST ALLOCATION roll is produced during
this routine's operation; it contains, for
each NAMELIST data item, the name of the
item and a pointer to the SCALAR or ARRAY
roll group defining it. If any data name
mentioned in a NAMELIST is not the name of
a scalar or array, the appropriate error
message is printed by this routine.

The NAMELIST NAMES roll is left holding
the NAMELIST name and the absolute location
of the beginning of the corresponding
object module NAMELIST table. Required
BASE TABLE roll groups are added by this
routine.

LITERAL CONST ALLOCATION, Chart CR

This routine (GO4u44) is called twice by
START ALLOCATION. Its first operation de-
termines the number of BASE TABLE roll
groups which should be added to cover the

48

literal constants in the
The second operation of the routine
actually assigns storage for all literal
constants (except those appearing in source
module DATA and PAUSE statements) and
writes (on option) the TXT cards for them.

object module.

FORMAT ALLOCATION, Chart CS

This routine (GO445) is called twice by
START ALLOCATION. The first time it is
called 1is during the operation of pass 1.
In pass 1, the PROGRAM BREAK 1is increased
by the number of bytes occupied by each
FORMAT.

The second time that FORMAT ALLOCATION
is called, each FORMAT is written out and
the FORMAT roll is rebuilt. The base and
displacement information and a pointer to
the label of the FORMAT statement are the
contents of the rebuilt FORMAT group. The
map of the FORMAT statements used in the
object module 1is also written out (on
option) by this routine.

EQUIV_MAP, Chart CT

This routine (GO441) adjusts the values
on the EQUIVALENCE ALLOCATION roll to the
corrected (for the correct allocation of
the base table, since this routine operates
after the completion of pass 1) base point-
er and displacement, and constructs the
BASE TABLE roll groups required. The map
of EQUIVALENCE variables is produced (on
option) by this routine.

GLOBAL SPROG_ALLOCATE, Chart CU

This routine (GO403) goes through the
GLOBAL SPROG and USED LIB FUNCTION rolls,
inserting the base pointer and displacement
for each of the subprograms 1listed there;
this is the allocation of storage for the
subprogram addresses region of the object
module. The ESD cards for the subprograms
are written, the required BASE TABLE roll
groups are added, and a list of the subpro-
grams called is produced (on option).

.

BUILD NAMELIST TABLE, Chart CV

This routine (GO405) operates after pass
1 of Allocate. It uses the NAMELIST NAMES
roll in determining the base and displace-

each NAMELIST reference in the
The BASE TABLE roll groups
are added as required. The PROGRAM BREAK
is increased as 1indicated, and the TXT
cards are written out according to the base
and displacement calculations for each
entry on the NAMELIST ALLOCATION roll. A
map of the NAMELIST tables is produced (on
option) by this routine.

ment for
source module.

BUILD ADDITIONAL BASES, Chart CW

This routine (GO438) is called whenever
it may be necessary to construct a new BASE
TABLE roll group. It determines whether a
new base is required and, if so, constructs
it.

DEBUG_ALLOCATE, Chart CX

This routine (GO5u45) processes the
information on the INIT and SUBCHK rolls,
marking the groups on the SCALAR, ARRAY,
and GLOBAL DMY rolls which define the
variables listed. When all the information
on the SUBCHK roll has been processed, the

routine returns.

OUTPUT FROM PHASE 2

The following paragraphs describe the
output from Allocate: error messages,
maps, and cards. Allocate also produces
roll entries describing the assignment of
main storage. See Appendix B for descrip-
tions of the roll formats.

Error Messages Produced by Allocate

The source module 1listing, with error

indications and error messages for the
errors detected during initial processing
of the source statements, is produced by

phase 1 of the compiler. Certain program
errors can occur, however, which cannot be
detected until storage allocation takes
place. These errors are detected and
reported (if a listing has been requested),
at the end of the listing by ALLOCATE; the
error messages are described in the follow-
ing paragraphs.

FUNCTION ERROR: When the program being
compiled is a FUNCTION subprogram, a check
is made to determine whether a scalar with
the same name as the FUNCTION and each

ENTRY is defined. If no such scalars are
listed on the SCALAR roll, the message

IEY019I FUNCTION ENTRIES UNDEFINED

is written on the
The message is
undefined names.

source module 1listing.
followed by a list of the
The condition code is 0.

COMMON ERRORS:
exist in the

Errors of two types can
definitions of EQUIVALENCE
sets which refer to the COMMON area. The
first type of error exists because of a
contradiction in the allocation specified,
e.g., the EQUIVALENCE sets (A,B(6),C(2))
and (B(8),C(1)). The second error type is
due to an attempt to extend the beginning
of the COMMON area, as in COMMON A,B,C and
EQUIVALENCE (A,F(10)).

An additional error in the assignment of
COMMON storage occurs if the source program
attempts to allocate a variable to a loca-
tion which does not fall on the appropriate

boundary. Since each COMMON block is
assumed to begin on a double-precision
boundary, this error can be produced in

either (or both) the COMMON statement and
an EQUIVALENCE statement which refers to
COMMON,.

When each block of COMMON
been allocated, the message

storage has

IEY020I COMMON BLOCK / / ERRORS

is printed if any error has been detected
(the block name is provided). The message
is followed by a 1list of the variables
which could not be allocated due to the
errors. The condition code is 4.

Unclosed DO _Loops

If DO loops are initiated in the source
module, but their terminal statements do
not exist, Allocate finds pointers to the
labels of the nonexistent terminal state-
ments on the DO LOOPS OPEN roll. If
pointers are found on the roll, the message

TEY021TI UNCLOSED DO LOOPS

is printed, followed by a 1list of the
labels which appeared in DO statements and
were not defined in the source module. The
condition code is 8.

Section 2: Compiler Operation 49

UNDEFINED LABELS:
in the

If any labels are wused
source module but are not defined,
they constitute 1label errors. Allocate
checks for this situation. At the conclu-
sion of this check, the message

IEY022I UNDEFINED LABELS

is printed. If there are undefined 1labels
used in the source module, they are listed
on the lines following the message. The
condition code is 8.

EQUIVALENCE ERRORS: Allocation errors due

to the arrangement of EQUIVALENCE state-
ments which do not refer to COMMON
variables may have two causes. The first

of these is the conflict between two EQUIV-
ALENCE sets; for example, (A,B(6),C(3)) and
(B(8),cCc(1)).

The second is due to incompatible boun-
dary alignment in the EQUIVALENCE set. The
first variable in each EQUIVALENCE set is
assigned to its appropriate boundary, and a
record is kept of the size of the variable.
Then, as each variable in the set is
processed, if any variable of a greater
size requires alignment, the entire set is
moved accordingly. If any variable is
encountered of the size which caused the
last alignment, or of lower size, and that
variable is not on the appropriate boun-
dary, this error has occurred.

If EQUIVALENCE errors of either of these
types occur, the message

IEY023I EQUIVALENCE ALLOCATION ERRORS

is printed. The message is followed by a
list of the variables which could not be
allocated according to source module speci-
fications. The condition code is 4.

Another class of EQUIVALENCE error is
the specification, in an EQUIVALENCE set,
of an array element which is outside the
array. These errors are summarized under
the heading '

IEY024T EQUIVALENCE DEFINITION ERRORS

on the source module listing. The condi-

yion code is 4.

DUMMY DIMENSION ERRORS: If variables spe-
cified as dummy array dimensions are not in
COMMON and are not global dummy variables,
they constitute errors. These are summa-
rized under the heading

IEY025I DUMMY DIMENSION ERRORS

on the source module listing. The condi-

tion code is 4.

50

BLOCK _DATA ERRORS: If variables specified
within the BLOCK DATA subprogram have not
also been defined as COMMON, they consti-
tute errors. The message

IEY026I BLOCK DATA PROGRAM ERRORS
is produced on the source module 1listing
followed by a summarization of the

variables in error. The condition code for
this type of error is 4,

Storage Maps Produced by Allocate

Allocate produces the storage maps de-
scribed below during its operations; these
maps are printed only if the MAP option is
specified by the programmer.

COMMON __MAP: The map of each COMMON block
is produced by Allocate. The map is headed
by two title lines; the first of these is

COMMON / name / MAP SIZE n
and the second is the pair of words
SYMBOL LOCATION

printed five times across the 1line. The
title 1lines are followed by a list of the
variables assigned to the COMMON block and
their relative addresses, five variables
per line, in order of ascending relative
addresses. The name contained within the
slashes is the name of the COMMON block.
The amount of core occupied by the block
(n) is given in hexadecimal and represents
the number of bytes occupied.

SCALAR__MAP: The scalar map is produced by
Allocate and consists of two title 1lines,
the first of which reads

SCALAR MAP

and the second of which is identical to the
second title line of the COMMON maps. The
title is followed by a 1list of the non-
COMMON scalar variables, five variables per
line, and their relative addresses, in
order of ascending relative addresses.

ARRAY MAP: The first title 1line of the
array map reads

ARRAY MAP

In all other respects, the array map is

identical to the scalar map.

EQUIVALENCE MAP: The first title
the map of EQUIVALENCE sets reads

line of

EQUIVALENCE DATA MAP

The second line for both maps is standard.
The variables listed in the EQUIVALENCE map
are those not defined as COMMON.

NAMELIST MAP: This map shows the locations
of the NAMELIST tables. The first title
line reads

NAMELIST MAP

and the second 1line is standard. The
symbol listed is the NAMELIST name asso-
ciated with each of the tables.

FORMAT MAP: This map gives the labels and
locations of FORMAT statements. The first
title line is

FORMAT STATEMENT MAP
and the second +title is the same as the

others described. The symbol listed is the
label of the FORMAT statement.

Subprogram List

Allocate prints a list of the subpro-
grams called by the source module being
compiled. This list is printed only if the
MAP option is specified by the programmer.
The subprogram list is headed by the line

SUBPROGRAMS CALLED

and contains the names of the SUBROUTINES

and FUNCTIONs referred to in the source
module.
Cards Produced by Allocate

Allocate produces both ESD and TXT

cards, provided that a DECK option or a
LOAD option has been specified by the
programmer. All ESD cards required by the
object module are produced during this
phase. These include cards for the CSECT
in which the object module is contained for
each COMMON block and for each subprogram
referred to by the object module.

The ESD cards that are produced by
Allocate are given in the following order
according to type:

ESD, type 0 - contains the name of the
program and indicates the begin-
ning of the object module.

ESD, type 1 - contains the entry point to a
SUBROUTINE or FUNCTION subpro-
gram, or the name specified in
the NAME option, or the name
MAIN. The name designated on the
card 1indicates where control is
given to begin execution of the
module.

ESD, type 2 - contains the names of subpro-
grams referred to in the source
module by CALL statements,
EXTERNAL statements, explicit
function references, and implicit
function references.

ESD, type 5 - contains information about

each COMMON block.

The TXT cards produced during this phase
fill the following areas of the object
module:

¢ The NAMELIST tables

e The literal constants

¢ The FORMAT statements

The other TXT cards required for the
object module are produced by later phases
of the compiler.

PHASE 3 OF THE COMPILER: UNIFY (IEYUNF)

The third phase of the compiler opti-
mizes the subscripting operations performwed
by the object module by deciding, on the
basis of frequency of use, which subscript
expressions within DO loops are to appear
in general registers, and which are to be
maintained in storage.

The following paragraphs, "Flow of Phase
3," describe the operation of Unify by
means of narrative and flowcharts.

The rolls
listed
following discussion of the
rolls are briefly described
See Appendix B for a complete
of any roll used in the phase.

manipulated by Unify are
in Table 5 and are mentioned in the
phase; these
in context.
description

Section 2: Compiler Operation 51

Table 5. Rolls Used by Unify

r T 1
| Roll Number | Roll Name 1
| 2 | Nonstd Script]
| 3 | Nest Script |
| 4 | Loop Script 1
| 13 | Sstd Script]
| 14 | Temp |
| 20 | Reg I
| 21 | Base Table H
] 22 | Array |
| 52 | Loop Control |
] 54 | Script |
] 55 | Loop Data 1
56	Program Script
57	Array Ref
58	Adr Const
L L 3

FLOW OF PHASE 3, CHART 07

START UNIFY (G0111) controls the opera-
tion of this phase of the compiler. It
initializes for the phase by setting the
proper number of groups on the ARRAY REF
roll to zero (this function is performed by
the routine ARRAY REF ROLL ALLOTMENT) and
moving the information transmitted on the
PROGRAM SCRIPT roll to the SCRIPT roll.
When the initialization 1is complete, the
reserve blocks on the SCRIPT roll are in
order from the outermost loop of the last
source module DO nest (at the top of the
roll) to the innermost loop of the first
source module DO nest (at the bottom of the
roll).

After initialization, START UNIFY begins
the optimizing process by inspecting the
last group of a reserve block on the SCRIPT
roll; a value of zero in this group indi-
cates the end of 'the SCRIPT roll informa-
tion. When the value is nonzero, DO NEST
UNIFY is called to process the information
for an entire nest of DO loops. On return
from this routine, the nest has been pro-
cessed; the count of temporary storage
locations required 1is wupdated, and START
UNIFY repeats its operations for the next
nest of loops.

When all 1loops have been processed,
START UNIFY makes a complete pass on the
ARRAY REF roll, setting up the instruction
format for the array references from point-
ers which have been 1left on the roll
(CONVERT TO INST FORMAT actually sets up
the instruction fields). When all groups
on the ARRAY REF roll have been processed,
a jump is made to CONVERT TO ADR CONST.
This routine sets up groups as required on
the ADR_CONST roll from data on the LOOP
CONTROL roll. When the LOOP CONTROL roll
has been processed, this routine terminates
the Unify phase by calling Gen.

52

ARRAY REF ROLL ALLOTMENT, Chart DA

This routine (G0145) constructs the
ARRAY REF roll. The groups on this roll
are initialized with values of Z€ero.
Pointers to the .roll have been placed on
the SCRIPT roll and in the Polish notation
by Parse, but information has not actually
been put on the roll before this routine is
called. The number of groups required has
been transmitted from Parse.

CONVERT TO ADR _CONST, Chart DB

This routine (G0113) constructs the ADR
CONST roll from the base address informa-
tion on the LOOP CONTROL roll.

When the third word of the LOOP CONTROL
roll group contains an area code and dis-
placement, Unify requires a base address
which it does not find in the base table.
Since no values can be added to the base
table by Unify, the required value must be
placed in the temporary storage and con-
stant area of the object module. The ADR
CONST roll holds the information required
for Exit to place the value in a temporary
storage and constant location and to pro-
duce the RLD card required to get the
proper modification of the value in that
location at load time. This routine builds
that information on the ADR CONST roll by
allocating the temporary storage and con-
stant locations for the area codes and
displacement values it finds on the LOOP
CONTROL roll. See Appendix B for further
explanation of the rolls involved.

CONVERT TO INST FORMAT, Chart DC

This routine (G0112) sets up the first
word (zero rung) of each ARRAY REF roll
group by testing the contents of the later
words (the register rungs) of the same
roll. The result is the skeleton of the
instruction to be wused for an array
reference. When the second and third words
of the group point to a general register,
they are shifted into the appropriate posi-
tion and inserted into the zero rung. (See
Appendix B for +the configuration of the
ARRAY REF roll group.) At each entry to
this routine, one word is processed and
that word 1is cleared to zero before the
routine exits.

DO_NEST_UNIFY, Chart DD

This routine (G0115) first initializes
for the processing of one nest of DO loops.
For each DO loop, a reserve block exists on
the SCRIPT roll and one group exists on the
LOOP DATA roll. These blocks and groups
are ordered so that, reading from the
bottom of the rolls up, a nest level of one
indicates the end of a nest of loops; that
is, for each nest, the bottom block repre-
sents the inner 1loop and the top block
represents the outer loop.

DO NEST UNIFY serves a control function
in this phase, arranging information to be
processed by DO LOOP UNIFY and LEVEL ONE
UNIFY; it 1is these latter routines which
actually perform the optimization of sub-
scripting by means of register assignment.
The main result of the optimization is that
in the initialization code for each 1loop,
only that portion of each subscript which
depends on the DO loop variable is
computed.

DO LOOP UNIFY expects to find a reserved
block on the bottom of the NEST SCRIPT roll
describing a 1loop one mnest level deeper
than the 1loop described by the bottom
reserved block on the SCRIPT roll. More-
over, both the block on the SCRIPT roll and
the block on the NEST SCRIPT roll must
already reflect the allocation of arrays by
Allocate; that is, both blocks must have
been processed by NOTE ARRAY ALLOCATION
DATA, another routine called by DO NEST
UNIFY. This arrangement is required so
that DO LOOP UNIFY can pass information
from the loop being processed (on the NEST
SCRIPT roll) to the next outer loop (on the
SCRIPT roll).

A special case is made of the reserved
block describing a loop of nest level one,
since there is no outer 1loop to which
information can be passed. The routine
LEVEL ONE UNIFY processes in place of DO
LOOP UNIFY in this case; it expects to find
the reserved block describing the level one
loop on the NEST SCRIPT roll.

IEYROL. MODULE

The IEYROL module is loaded into main
storage by program fetch, along with the
Invocation phase and the five processing
phases. It contains two static rolls (the
WORK roll and the EXIT roll), roll statis-
tics, group stats, and the ROLL ADR table.
Throughout the operation of the compiler,
it maintains a record of the storage space
allocated by the control program to the
dynamic rolls.

. notation

Phase 4 of the Compiler: Gen (IEYGEN)

Gen produces object code from the Polish
and roll information left by pre-
vious phases of the compiler. The code
produced by this phase appears, one state-
ment at a time, on the CODE roll, and is
saved there until it 1is written out by
EXIT.

The following paragraphs, "Flow of Phase
4," describe the operation of this phase by
means of narrative and flowcharts.

The rolls manipulated by Gen are 1listed
in Table 6 and are mentioned in the follow-
ing description of the phase; these rolls
are briefly described in context. See
Appendix B for a complete description of
all of the rolls used in the phase.

Table 6. Rolls Used by Gen
r
|Ro1l |Ro11
|No. Roll_Name |No. Roll Name
1 Source 24 Entry Names
4 Polish 25 Global Dmy
8 Fx Const 34 Branch Table
9 Fl Const 36 Fx Ac
10 Dp Const 40 Temp Pntr
11 Complex Const 42 Fl Ac
12 Dp Complex 43 Lbl
Const 44 Scalar
14 Temp 45 Data Var

b ot e e e . e e . e v S . s e, e .)

o e e s i ot e i e oot o i o S i o et
[ur
(8]

[e o e i e o e et e o S M s i i e
wn
N

Do Loops Open Loop Control
15 Loops Open 55 Loop Data
16 Temp and Const 56 Array Plex
17 Adcon 57 Array Ref
18 Data Save 59 At
22 Array 62 Code
23 Dmy Dimension 63 After Polish
23 Sprog Arg

FLOW OF PHASE 4, CHART 08

START GEN (GO491) initializes for the
operation of the Gen phase. It then calls
ENTRY CODE GEN to produce the object head-
ing code and PROLOGUE GEN and EPILOGUE GEN
for the required prologues and epilogues.
On return from EPILOGUE GEN, START GEN
falls through to GEN PROCESS.

GEN PROCESS (GO0492) controls the repeti-
tive operations of Gen. It first calls GET
POLISH, which moves the Polish notation for
one statement from the AFTER POLISH roll to
the POLISH roll. Using the Polish notation
just moved, GEN PROCESS determines whether
the statement to be processed was labeled;
if it was, the routine LBL PROCESS is
called. If the source statement was not

Section 2: Compiler Operation 53

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

labeled, or when LBL PROCESS returns, GEN
PROCESS calls STA GEN and STA GEN FINISH.

On return from STA GEN FINISH, GEN PROCESS
restarts.

The termination of the Gen phase of the
compiler occurs when an END statement has
been processed. END STA GEN jumps directly
to TERMINATE PHASE after the object code is
produced, rather than returning to GEN
PROCESS. TERMINATE PHASE is described in
Chart EG and in the accompanying text.

ENTRY CODE_GEN, Chart_ EA

ENTRY CODE GEN (G0O499) first determines
whether the source module is a subprogram.
If it 1is not, the heading code for a main
program is placed on the CODE roll, the
location counter is adjusted, and the rou-
tine returns.,

If the source module is a subprogram,
ENTRY CODE GEN determines the number of
entries to the subprogram, generates code

for the main entry and for each secondary
entry and, when all required entry code has
been produced, it then returns.

PROLOGUE_GEN, Chart EB

PROLOGUE GEN (G0504) processes the main
entry and each additional ENTRY to the
source subprogram, producing the required
prologues, Prologue code transfers argu-
ments as required and is, therefore, not
produced if no arguments are listed for the
ENTRY. The prologue code terminates with a
branch to the code for the appropriate
entry point to the subprogram; in prepara-
tion for the insertion of the address of
that entry point, this routine records the
location of the branch instruction on the
ENTRY NAMES roll. If the source module is
not a subprogram, PROLOGUE GEN exits.

EPILOGUE_GEN, Chart EC

EPILOGUE GEN (G0508) processes the main
entry and each additional ENTRY to a sub-
program, producing the required epilogues.
Epilogue code returns argument values and
returns to the 'calling program. If this
routine determines that the source module
is not a subprogram, main program prologue
and epilogue code are produced.

GET_POLISH, cChart ED

This routine (G0712) moves the Polish
notation for a single statement from the

54

AFTER POLISH roll to the POLISH roll. The
Polish notation is moved from the beginning
of the AFTER POLISH roll, and a pointer is
maintained to indicate the position on the
roll at which the next statement begins.

Note: Unlike the other rolls, data from
the AFTER POLISH 1roll is obtained on a
first-in first-out basis (i.e., the BASE
rather than the BOTTOM pointer is used).
This is done to maintain the sequence of
the source program.

LBL_PROCESS, Chart EF

LBL PROCESS (GO493) stores the 1label
pointer 1left on the WORK roll by GEN
PROCESS in STA LBL BOX. It then inspects

the LBL roll group defining the label, and
determines whether the 1label is a Jjump
target. If so, the base register table is
cleared to indicate that base values must
be reloaded.

If the 1label is not the target of a
jump, or when the base register table has
been cleared, the AT roll is inspected.
For each AT roll entry (and, therefore, AT
statement) referring to the labeled state-
ment being processed, made labels are: con-
structed for the debug code and for the
next instruction in line, pointers to these
labels are recorded on the AT roll, and an
unconditional branch to the debug code is
placed on the CODE roll.

When all AT references to the present
label have been processed, an instruction
is placed on the CODE roll to inform Exit
that a label was present and that a branch
table entry may be required. Then, if the
trace flag is on (indicating the presence
of the TRACE option in the source DEBUG
statement), the debug linkage for TRACE and
the binary 1label are placed on the CODE

roll. If the trace flag is off, or when
the code has been completed, LBL PROCESS
returns.

STA_GEN, Chart EG

STA GEN (G0515) uses the control driver
left on the WORK roll by GEN PROCESS to
index into a jump table (STA RUN TABLE),
jumping to the appropriate routine for
constructing the object code for the spe-

cific type of statement being processed.
This operation is called a "run" on the
driver; other "runs" occur in Gen for
building specific instructions or for

generating data references.

The names of the code generating rou-
tines indicate the functions they perform;

for example, assignment statements are pro-
cessed by ASSIGNMENT STA GEN, while GO TO
statements are processed by GO TO STA GEN.
These routines construct the code for the
statement on the CODE roll and, when the
code is complete, return to GEN PROCESS.

END STA GEN processes the END statement
and provides the normal termination of the
Gen phase by jumping to TERMINATE PHASE
after producing the code. The code pro-
duced for the END statement is identical to
that for the STOP statement if a main
program 1is being compiled or a RETURN

statement if a subprogram is being com-
piled. If an AT statement precedes the
END, an unconditional branch instruction is

constructed to return from the debug code
to the main line of code.

TERMINATE PHASE (GO544) prepares for and
calls the Exit phase of the compiler.

STA GEN FINISH, Chart EH

STA GEN FINISH (GOu496) determines wheth-
er the present statement is the closing
statement of any DO loops; if it is, this
routine generates the code required for the
DO loop closing and repeats the check for
additional loops to be closed.

When all DO closings have
cessed, STA GEN FINISH resets pointers to
temporary locations, clears accumulators,
and returns to GEN PROCESS.

been pro-

PHASE 5 OF THE COMPILER: EXIT (IEYEXT)

Exit produces the SYSPUNCH and/or SYSLIN
output requested by the programmer, except
for the ESD cards and TXT card produced by
the Allocate phase. It also produces the
listing of the object module on SYSPRINT,
if it has been requested by the programmer.

The description of this phase of the
compiler is divided into two parts. The
first of these, "Flow of Phase 5," de-
scribes the overall logic of the phase by
means of narrative and flowcharts.

The second part of the description of
the phase, "Output from Phase 5," describes
the output written by the phase.

The rolls wused by Exit are listed in
Table 7, and are briefly described in
context. For further description of rolls,

see Appendix B.

Table 7. Rolls Used by Exit
r N H
| Roll Number | Roll Name |
| 7 | Global Sprog |
| 16 | Temp and Const
17	ADCON
20	CSECT
23	Sprog Arg
38	Used Lib Function
45	BCD
46	Base Table
51	RLD
52	Branch Table
58	Adr Const
62	Code
L 1 J
FLOW OF PHASE 5, CHART 09

The routine EXIT PASS (G0381) controls
the operation of this phase. After initia-
lizing, this routine calls PUNCH NAMELIST
MPY DATA and PUNCH TEMP AND CONST ROLL.
The routine PUNCH ADR CONST ROLL 1is then
called and, if an object module listing was
requested, the heading for that listing is
written out.

After this operation, EXIT PASS calls
PUNCH CODE ROLL, records the memory
requirements for the code, and prints the
corresponding message. PUNCH BASE ROLL,
PUNCH BRANCH ROLL, PUNCH SPROG ARG ROLL,
PUNCH GLOBAL SPROG ROLL, PUNCH USED LIBRARY
ROLL, PUNCH ADCON ROLL, ORDER AND PUNCH RLD
ROLL, and PUNCH END CARD are then called in
order. On return from the last of these,

EXIT PASS releases rolls and exits to the
Invocation phase of the compiler.
PUNCH TEMP AND CONST ROLL, Chart FA

This routine (G0382) 1initializes the
location counter for the temporary storage

and constant area of the object module. It
then initializes a pointer to the TEMP AND
CONST roll and begins the processing of
that roll from top to bottom. Each group
on the roll is moved to the output area;
when the output area is full, a TXT card is
written. When the entire TEMP AND CONST
roll has been processed, a jump is made to
PUNCH PARTIAL TXT CARD, which writes out
any partial TXT card remaining in the
output area and returns to EXIT PASS.

Section 2: Compiler Operation 55

PUNCH ADR _CONST ROLL, Chart FB

The information on the ADR CONST roll is
used by this routine (G0383) to produce TXT
cards for temporary storage and constant
area locations which contain addresses.
RLD roll entries are also produced to cause
correct modification of those locations by
the linkage editor. The beginning address
of the temporary storage and constant area
is computed. Then, for each ADR CONST roll
entry, the TEMP AND CONST roll pointer is
added to that value to produce the address
at which an address constant will be

stored. This address is placed in the TXT
card and on the RLD roll, the address
constant from the ADR CONST roll initial-

izes that location, and the area code from
the ADR CONST roll is placed on the RLD
roll. (See Appendix B for roll descrip-
tions.)

PUNCH CODE ROLL, Chart FC

PUNCH CODE ROLL (G0384) initializes a
location counter and a pointer to the CODE
roll. Inspecting one group at a time, it
determines the nature of the word. If it
is a statement number, PUNCH CODE ROLL
simply stores it and repeats the operation
with the next word.

If a group is a constant, it is placed
in the output area for SYSPUNCH and/orxr
SYSLIN. This category includes literals
which appear in-line and, thus, the con-
stant to be written may occupy several
groups on the roll.

Groups representing code are placed in

the output area and, if an object module
listing has been requested, the line
entered into the output area is listed

before it is punched. The contents of the
DATA VAR roll are used for the listing of
the operands.

If the group on the CODE roll is an
indication of the definition of an address
constant, the location counter is stored
accordingly, and the operation of the rou-
t}ne continues with the next group.

PUNCH CODE ROLL also determines whether
the group is an indication of the defini-
tion of a label, if it 1is, the routine
defines the label on the BRANCH TABLE roll
as required, inserts the 1label in the
output 1line for the object module listing
and repeats with the next group on the

roll.
When all groups on the roll have been
processed, a transfer to PUNCH PARTIAL TXT

56

CARD is made; that routine writes out any
incomplete TXT card which may be in the
output area, and returns to EXIT PASS.

PUNCH BASE ROLL, Chart FD

PUNCH BASE ROLL (G0399) initializes a
pointer to the BASE TABLE roll and initial-
izes the location counter to the beginning
address of the object module base table.
It then enters each group on the BASE TABLE
roll into the TXT card output area; it also
records the object module ESD number and
the 1location counter on the RLD roll for
later production of the RLD cards.
Whenever the output area is full, a TXT
card is written. When all 'groups on the
BASE TABLE roll have been processed, the
routine makes a jump to PUNCH PARTIAL TXT

CARD, which writes out any incomplete card
in the output area and returns to EXIT
PASS.

PUNCH BRANCH ROLL, Chart FE

This routine (GO400) first initializes a
pointer to the BRANCH TABLE roll, and the
location counter to the beginning location
of the object module branch table. When
these operations are completed, the routine
inspects the BRANCH TABLE roll from top to
bottom, making the requisite entries on the
RLD roll and entering the addresses from
the roll in the TXT card output area. TXT

cards are written when the output area is
full. When all BRANCH TABLE roll groups
have been processed, the routine jumps to

PUNCH PARTIAL TXT CARD, which writes out
any incomplete card in the output area and
returns to EXIT PASS.,

PUNCH SPROG_ARG ROLL, Chart FF

PUNCH SPROG ARG ROLL (GO402) initializes
a pointer to the SPROG ARG roll and ini-
tializes the location counter to the begin-
ning address of the subprogram arguments
area of the object module.

The routine then inspects the groups on
the SPROG ARG roll. If the first word of
the group contains the value zero (indicat-
ing an argument whose address will be
stored dynamically), the group is placed in
the TXT card output area, and the card is
written if the area is full. The routine
then repeats with the next group on the
roll.

If the SPROG ARG roll group does not
contain zero, the group is then inspected
to determine whether it refers to a tem-
porary location. If it does, the correct
location (address of the temporary storage
and constant area plus the relative address
within that area for this 1location) is
determined. The required RLD roll entries
are then made, the address is moved to the
output area, and PUNCH SPROG ARG ROLL
repeats this process with the next group on
the roll.

If the group from the SPROG ARG roll
contained neither a zero nor a temporary
location, the argument referenced must have
been a scalar, an array, a label or a
subprogram. In any of these cases, a base
table pointer and a displacement are on the
pointed roll. From these, this routine
computes the location of the variable or
label or the subprogram address, enters it

in the TXT card output area, and records
the RLD information required on the RLD
roll. The routine then repeats with the

next group on the SPROG ARG roll.
This routine exits to EXIT PASS through

PUNCH PARTIAL TXT CARD when all SPROG ARG
roll groups have been processed.

PUNCH GLOBAL SPROG ROLL, Chart FG

This routine (GO403) first inverts the
GLOBAL SPROG roll and moves one word from
that roll to the WORK roll. If these
actions indicate that there is no informa-
tion on the roll, the routine exits.

Otherwise, for each group on the GLOBAL
SPROG roll, this routine enters the ESD
number for the subprogram and the location
at which its address is to be stored on the
RLD roll. The routine also writes a word
containing the value zero for each subpro-
gram listed (these words become the object
module subprogram addresses region). When
all groups on the GLOBAL SPROG roll have
been processed, the routine exits through
PUNCH PARTIAL TXT CARD, which writes out
any incomplete card remaining in the output
area before returning to EXIT PASS.

PUNCH USED_LIBRARY ROLL, Chart FH

This routine (GO40U4) performs the same
function for the USED LIB FUNCTION 1roll
that the previous routine performs for the
GLOBAL SPROG roll, thus completing the
subprogram addresses region of the object
module. The techniques used for the two
rolls are identical.

PUNCH ADCON ROLL, Chart FI

This routine (GO405) returns immediately
to EXIT PASS if there is no information on
the ADCON roll. Otherwise, it writes out
one TXT card for each group it finds on the
roll, obtaining the area code, the address
constant, and the address of the constant
from the ADCON roll. The ESD number and
the address of the constant are placed on
the RLD roll for subsequent processing. A
TXT card is punched containing the con-
stant. The operation of PUNCH ADCON ROLL
terminates when all groups on the roll have
been processed.

ORDER _AND PUNCH RLD ROLL, Chart FJ

This routine (GO416) sorts the RLD roll
and processes the groups on that roll,
producing the object module RLD cards. The
card images are set up, and the RLD cards
are actually written out as they are com-
pleted. When all information on the roll
has been processed, this routine returns to
EXIT PASS.

PUNCH END CARD, Chart FK

PUNCH END CARD (GO424) produces the
object module END card. It moves the
required information into the card image

and initiates the write operation; it then
returns to EXIT PASS.

PUNCH NAMELIST MPY DATA, Chart FL

This routine (G0564) is responsible. for
the punching of TXT and RLD cards for those
words in the object module NAMELIST tables
which contain pointers to array dimension
multipliers. The multipliers themselves
are placed on the TEMP AND CONST roll. The
required information is found on the
NAMELIST MPY DATA roll; when all groups
have been processed, this routine returns
to EXIT PASS.

OUTPUT FROM PHASE 5

Three types of output are produced by
the Exit phase of the compiler: TXT cards,
RLD cards, and the object module listing.
The cards are produced on SYSPUNCH and or

SYSLIN, according to the user's options.
The listing, if requested, is produced on
SYSPRINT.

Section 2: Compiler Operation 57

The formats of the TXT and RLD cards are

described in the publication IBM System/360

Operating System:

Linkage Editor Program

Logic Manual. The object module 1listing
consists of the following fields:

58

e Location,

which is the hexadecimal
address, relative to the beginning of
the object module control section, of
the displayed instruction.

Statement number (entitled STA NUM),
which is the consecutive statement
number assigned to the source module
statement for which the displayed
instruction is part of the code pro-
duced. This value is given in decimal.

Label, which is the statement label, if
any, applied to the statement for which
the code was produced. The statement
label is given in decimal.

Operation code (entitled OP), which is
the symbolic operation code generated.

Operand, which is given 1in assembly
format but does not contain any vari-
able names.

Operand (entitled BCD OPERAND), which
contains the symbolic name of the vari-
able referred to in the source module
statement which resulted in the code.

Chart 00.

IEYFORT (Part 1 of 4)

okkE
* *
* A3 *
* *
ok
IEYFORT IEYFO1
AR RATERERRA AN
S VIS *TIMEDAT DA2*
Kok ko ke kKK
* IEYFORT * * INITIALIZE *
* * * TIME AND DATE *

AR RERAEF AR

RAREB2 AR AR KRR
* *
* INITIALIZE *
* AND SET SAVE *
* REGISTERS %
Y

ARRERCHREA TR A RA
*

run

HEFEAD2F KR KRR RAE
* *

* *
INITIALIZE BASE
* REGISTERS *

* INFORMATION *
AR Rk R K

FRRRRB IR RE AR

* SYSTEM OPEN #
FOR SYSIN AND
* SYSPRINT *

ERERR AR

IEYPRNT
LT Ve

* *
* IEYPRNT *
R kR R

AR KB KRk KRk
* *
* *
INITIALIZE SAVE
*" "REGISTERS *

FRRARRR AR AR AR A

AERRRCUY A AR

. * * SAVE *
*. LOAD OPTION + LINE COUNT *
+. . * ORIGIN *
.. - * M
.k L T P PR
+"YES e
. «
* E3 *
M M
.

#dk kR kD 3k aok kR Rk

* SYSTEM *
PEN FOR
* SYSLIN *

R R R AR RS R
wrer P
* * . *
* E3 *-> + E4 *->
* * + *
rex L
IEYFO0S o IEYF25
FAFRREIRREER AR E R E3 * EREE R e L L e
+OPTSC. A o .. * *
e ¥ * * ADVANCE *
* CAN . *IDECK OPTIONS *LINE COUNT ONE *
% COMPILER * *, o* + *
* OPTIONS * .. o * *
L T Y *. % Rk Rk kR Rk
+'YES e
* *
* G3 *
* *
e

F2° Tl
= *.
.+’ _DDNAMES ~*
*., SPECIFIED _

*

NO

EEERTTS X PRT TR PP

* SYSTEM *
OPEN FOR
* SYSPUNCH *

o.* AR
+"YES
* * wkak
* A3 * *
* + % G3 >
PETT R
*
IEYF10

EREEGOEEK A RE AR
DDNAMES ABA2
B = =t

* DDNAME *
* REPLACEMENTS *
AXEERRRE SRR AR

AREERT DA ERRE AN

HEADOPT ACA2
ittt St S
+ INITIALIZE *
* HEADING *

* INFORMATION *
LT E T O

ERERRGIERK KRR AR
* *
* INITIALIZE *
*LINES/PAGE FOR *
#PRINTING FORMATY
AR R

FEERHI R RS
*

* IEYPAR b

EERRREEREERRRE

.

o*
* CARRIAGE
CONTROL=

Ty

*xw
=]
)

e

Errey

IEYF22
A RADS ok Rk kK

*PRNTHEAD

Bt dut i
>* PRINT *
: PAGE HEADING :
Ak KR R KKK

hkk

akk

EEERRGERRRRF AR
* *
* ADVANCE *
~>*LINE COUNT ONE *

* *
AR AR RRRK

% *.
* MAX *
. LINES USED
*. o
* ¥

*

*
* NO

IEYF30
FEERRTU kR
* *
* STORE LINE *
* COUNT INTO *
: SYSPRT FORMAT :

P TP P

P S T P
* SET *
*PARAMETERS AND *
*PRINT AD]

* INTO SYSPRT

B LT T PP

DRESSES*—————m——>%
* *
M

%

P

* KK KRS R Rk Rk ok
RETURN *

TO COMPILER :
B Y

*

Section 2:

Compiler Operation 59

Chart 01.

EREXITPR
*kk kD] kkkkkkkokk
* *
* EREXITPR *
* *
Fkkokokkkokkkkkkkk

t****ﬁl**********

*RESULTING FROM *
PRINT ERROR :

ok kR kok ok ok ok Rk ok Kok

ok
*03 *
->*% A3 *
*
*h ok
IEYMOR
dk R C Lk kok ok ok ok ok kk
* *
* IEYMOR *
* *

dokdokkkkokkkkokkokk

Rk kD] Rk Rk Rk kR
* *

* ISSUE GETMAIN_ *
FOR UK BYTES OF<-—
: STORAGE *

*
ook ok ko Kk Rk Rk Kok kK

YES ¥ .

——Z+! SUCCESSFUL _.*
* *

*

*. .
* NO

Fxk kR FL Rk R Rk Rk
* *
* DELETE *
:INACTIVE-MODULE:

* *
kkkkkkkkkkkkkkkkk

P
Gl *,
*

. *.
B WERE *, YES
*.*ANY DELETED*.*-——

, L
*, .
* NO
F ok ok kH Rk ok k ok ok ok ok
* *
* RETURN WITH *

TIVE *
*CONDITION CODE *

***********t*****

ko kT Rk ok ok kk Kk
* RETURN *
* WITH *
* NON-POSITIVE *
:CONDITION CODE :
Aok ok ok ok ok ok Kok ok

60

IEYFORT (Part 2 of 4)

PRNTHEAD

EREE VAL ES S E
* *
* PRNTHEAD *
* *

ek ok ok ok Rk ok ok ok Rk ok ok

ek skok ok B 2 ok ok ok ok okok ok ok
* *
* ADVANCE *
* PRINT PAGE *
: COUNT :

ek ok ok ok ok ok ok ok ok ok ok ok ok kK

Hok ok ok ok C 2k k ok kokok Kok ok k
*

ok kR k kB3 kkkkkkk ok

* *
PRINT HEADING

sk kR kkRkk ok Rk

ook ok ok ok C 3ok Kok ok ok ok kK ok
* *

*
* CONVERT * * ADVANCE *
* PAGE_COUNT TO #* *LINE COUNT TWO *
* DECIMAL * * *
* * * *
ok ko kK kR Kk ok ok Hokokok ook ok ook Kok Rk ok
*ok kK
* *
* D3 *->
* *
dok kK
PRHDOS
ok Kok kD) 2 okok ok ok Kok Kok ok ****#931*********
* * *
*SLT PAGL COUNT * * SET LINE *
EADING * * COUNT AND *
* * IN *
* *
*

* *
*kkkkkkkkkkkkkkkk

ARRRKED KRR KR KKk
* *
SET PROGRAM *
* NAME INTO *
¥HEADING FORMAT *
ok ok ok kok kok ok ok ok Rk kk ¥k

*****FZ**********
*SET PARAMETERS *
* AND ADDRESSES *
: INTO SYSPRT *

Fokkkkkkkkkkkkkkkk

kKK GRK KR kK Rk
* “
* SET *
* LINE COUNT TO *
* TWO *

* *
ok sk ok ok ok ok ok ok kb ok Kk Kok

Lk *, *kk
*

. *, NO
, OPTIONAL WF—m—>% D3
. HEADING . *
* * EEE

¥, L%
* YES

Fhk Rk TR KRR kKA
* OBTAIN

* OFFSET AND

* CONTROL BLOCK
* INFORMATION

Aok ok ok koK kokokok ok ok K

(X2 R

ok ok kokok ok ok ok ok k ok kK

ok KE 3ok ko ok ok ok ok
* o *
* CARRIAGE *
* CONTROL TO *
: SKIPPING LINE :

ok ok ok ok ok ok Kok ok ok ok okok ok

ERE RSO EE LR L L L
* *
* RETURN *
* *

ok Kk ok ok ok Rk Kk ok K

*
*
*

*
*

IEYREAD
R VLR LS LY
* *
* IEYREAD *
* *
ok kR ok ok kKo k oAk

ok kok kB KKk ko kkok ok ok
SLT BASE
REGISTERS
Aok okok ok Kk ko Ok Rk ok

EXR TS
* K KRR

*

o X
* YES

READOUT2
dkkkok DUk Kk kokkkkokx
*

* OBTAIN CARD
* ORIGIN
: RESET FLAG

kKo ok ok Rk kR ok kK

KR

*kkk

** %

*

E4 *->
*

ko

Kk ok ok U ok ok ok kK ok ko ok
* *
* RESTORE *
:SAVE REGISTERS :

* *
ok ok ok ok ok ok koK kK Kok ok

dkokok Pl F Rk kR kK
* RETURN *
t TO COMPILER i
dokkokok ok K ok ok Rk
F kK
* *
* Gl *e—
* *
Hok kK
#Gu*********t
*
SAVE CARD *
* ORIGIN OR LOF :
*
*

Fook ok ok ok kKK Rk kKR Kk

Kk Kk

* ok
* B
=

* **

. “x. NO
. FIRST CARD .*
* *

*kokk

* C5 %—m

* *

*kok ok

F ok ok kO 5 ok ko okok ok ok

* *

*SET_ PARAMETERS *
>* AND ADDRESSES *

* FOR_SYSIN *

* FO. T *

skokokok ok ok Rk ok ok ok ok ok

ok dok kDS kKK ok k ok ko kok ok
* SYSTEM GET *
ROU iy
* OBTAINS EOF *
dok kR R Rk R Rk Kok

NO ¥’ .
—2%_CONCATENATED .*
.DATA SETS.

*, Lk
*okkk * YES
* *
* GU *
* *
Aok

Hokk K F SR kK kok Rk
* SET SWITCH 8
* FOR

*
*
* CONCATENATED *
: DATA SETS=0 :
ok ok ok okok kR ok kR kK k

¥k Kk

Chart 02.

EREXITIN

HRIRA] EEER RN RN
* *
* EREXITIN *
* *

L e T e e e

v
HRERRB] HREERERRRER
» *

OBTAIN
SYSIN ERROR
COUNT

ok
LEE LS

NN NN NN RNN

- *,
¥ *4 YES
.§RROR CODE 0 o

. -

v
HREHED] HEERRERERR
*

*
* SETUP BAD *
* CARD IMAGE *
* MESSAGE *
* *
EE RS T2 2 222222222

v
LA ISR LSS L2 2 s s 2]
*PRNTMSG 03A1%
L Bt et B B B et e
* PRINT *
* ERROR *
* MESSAGE *
EX 22T 222222222222

v
FE RN] KN R R
* *
* SET *
*TERMINAL ERROR *
* CoDE *
* *
EE 2222 2222222222 2]
v
E2 2222

*01 *
* CS*

IEYFORT (Part 3 of 4)

1EYPCH
FHRHATHENERNNN
* *
* IEYPCH *
* *

MR RNR

&53*!***1****
* *
* INITIALIZE *
* BASE AND SAVE *
* REGISTERS *

* *
HEEEEREEERRRHEERK

EREXINOS o¥a
HRERHC2HTRRRRHERN c3 *e
* *

* SET *
>*TERMINAL ERROR *
* CODE *

* *
S S T T T

v
EE 22
*
* G3
*
E2 22
v
ERRRED2 XN XK XN
* * .
SET UP BAD CARD# «* FILE *. YES
*AND ABORT COMP * *. TERMINATED .*
* MESSAGES * *. o*
* * g ¥
NI NN NN *e ¥
* NO EE 2 L]
‘ *
’ * G3
*
1 XN

v
HHRHRED W RN NN NN
PRNTMSG 03A1 *

R R XK N NN *SET PARAMETERS *
* PRINT * * AND ADDRESSES *
* MESSAGES * * FOR SYSPCH *
* *

*

v
ERREREI RN AR KRN
*

* *
HRRREREERRER RN e T T 2

v
L322 2]
*03 *
* A3% v
* * W N HE AN NN

SYSTEM
* PUT ROUTINE *
INSERTS
* PARAMETER *
ADDRESSES
AW N N
EE L2
* *
* G3 *—>
* *
FETeY v
IEYF60 N
G3

o *.

<—

o¥o
H *o
«% DECK %,
¥ FILE .
*o TERMINATED .
*o ¥ I
*e o ¥ 1
*o o¥ v
* NO ERER

’ XK

*****Ja*X********
* INSERT *
* PROGRAM *
* SEQUENCE *
* NUMBERS *
* *
* *

e e

v
EREEHKIHERR R ARRR
* *

*SET PARAMETERS *
* FOR SYSPCH *
* *

*
>%
*

* *
e e I e I]

EXRE

v
HR KW AL R RN KKK KRR

EXEEKBARRERXRHR XN
* *

* RESTORE
*SAVE REGISTERS
*

* kK K

EREXITPC

HHHHAS W W RN NN RN
* *
* EREXITPC *
* *

R RHAER XK KRR

o

HRHENEISHH IR KRN R
* *
* SET FLAG *
* TO TURN OFF %
* SYSPCH *
* *

*
*Ax

v
EREECHERERRRRRF
* *

* RETURN *
* TO COMPILER *
R TR T 2 s T

XX
*
A4

AR

*
*

Section 2:

v
EAREKCSERRERRRRNK
* *

SET
ERROR CODE
VALUE

* *
* *
* *
* *
* *

R

v
KK DS KR KKK KKK
* *

* SET FLAG TO
* TURN DFF LOAD
* LINKAGE
*
*

XK K

R R T R e T]

v
FEHRRESERH XK RERXN
* *

SET ERROR *
CODE _FOR_ LINK *
EDIT OUTPUT *
*

LEEL R

P s T

XX

XN

Compiler Operation 61

Chart 03.

IEYFORT (Part 4 of

PRNTMESG IEYRTN
FHHN AL RN RNN WA D RN H R
* * * *
* PRNTMSG * * IEYRETN *
* * * *
3636 363 3 I K XK EE R TS L 2SS L 2]
1
v v
B1 B2 EE 222
* * * *
* INITIALIZE * * INITIALIZE *
* PRINT BUFFER * * BASE AND SAVE *
* WITH BLANKS * * REGISTERS *
* * * *
AR 2SS ST R RS S 2SS SR SRS

|
I
M

v
Cc1 c2
* SET UP * * OBTAIN *
* PRINT BUFFER * * COMPILER *
* ORIGIN AND * *COMMUNICATIONS *
* DISPLACEMENT * * ORIGIN *
* * * *
R s s R T Y R

v
D1 D2

* * * *
* GET MESSAGE * * GET CONDITION ¥*
* LENGTH AND * * CODE RETURNED *
* ORIGIN * * BY COMPILER *
* * * *

' I

| |

v \
El E2%%XXXEHRRR
* * * *
* PLACE * *TEST LAST ERROR¥
1ST MSG SEGMENT * CODE VS *
* IN PRINT * * PREVIOUS *
* BUFFER * * SETTING *

v v
F1 EHER
* *

* *
* LENGTH AND *
* ORIGIN OF 2ND *
* MSG SEGMENT *
* *
* *

NI IN RN

* FINAL ERROR %
CODE TO HIGHEST
*VALUE RETURNED *
* *

L R T R T R

4)

v v
1 G2
* * * *
* PLACE 2ND * * INSERT *MAIN®' *
* SEGMENT IN * * FOR PROGRAM %
* PRINT BUFFER % * NAME OF NEXT *
* * * PGM * |
XXX v
*XRE
ERXR *
* * E4
* H2 ¥y *
* * | *RR
ERRR v
v IEYR60 ¥
Eaa S R e *,
* * . *o
* SET * % ANOTHER ¥, NO
* CARRIAGE * *o COMPILATION o%—
* CONTROL * *o o
* *
LR e e 22 v
EXRH
*
| * A3
*
| Pre)

v
R EHIE] RN KRR RN
* SYSTEM PUT *
ROUTINE WRITE
* MESSAGE *

R e e s e T

. v
HEEAK] HXREXENERE
* *
* RETURN *

e e 2]

62

|
I
v

HREREJ2HEERRERRER

*

* RE-INITIALIZE
*LLINE, CARD AND
* PAGE COUNT

*

ROk ok

EE ey

v
*i*i*KZ******i***

* RESTORE *
*SAVE REGISTERS *

* &
E e T2 22

IEYF INAL v

*FREEPOOL _ 03ASX *FREEPOOL 03AS5%
________ Lt s B B e et et B
M FREE STORAGE i * FREE STORAGE *——
* USED BY * * USED BY SYSIN #*
* SYSLIN * * AND SYSPRINT *
36333 3 3NN B3 W I IR NI RN \"2
] X XH
EE 22 *
* * * HS
* E4 * *
* * L2 22
v XK K v
o¥o 1EYRS0 o¥.
E3 *. E4 *.
- ¥ * g 3 * o
NO «* RELEASE *. NO
+SYSLIN OUTPUT.* *e STORAGE - %—
: .] *. o]
*e ¥] * g ¥
*o o v *e o% v
* YES KR * YES *EER
| * * EEEH | *
, * G3 * * * i * H2
* * % F4 ¥—> *
LAt d * * ¥ KN
‘ EEEH
v v
K HE R TN RN N ER 222 IS S22 L)
* *
* PRINT DATA * *03TAIN ADDRESS *
SET STATUS * OF BLOCK TO *
* MESSAGE * * RELEASE *
* *
I3 I3 I K K 33 36 333 3 K KX
* R |
* *
* G3 *—> |
* *]
EE 2 23 v l
IEYFNLOS +%. \
G3 - RS R X R R L L L
¥ * g * *
«* DECK *. NO *ISSUE FREEMAIN *
e OPTION o ¥FOR RELEASE OF *
oSPECIFIED. STORAGE *
o o ¥ *
e ¥ v E e Y
* YES 222
* * *
* * C4 *
* * * |
| X |
i v
v o¥e
EE Nk I R 2] Ha *,
* * - ¥ *
* I1SSUE * «* END OF *. YES
* CLOSE FOR * *. STORAGE TO o%——
* SYSPUNCH * %o RELEASE %
* * . .
E T R e o
* NO R
*] *
* | | * H2
* v *
’ R R XX
{ * *
v * F4 %
EE RS R NS S LS LS * *
FREEPOOL 03A5 HEXE i n
e E NN — N NN * *
* FREE STORAGE * >* A4 *
* USED BY * * *
* SYSPUNCH XN R

HRERKADEERERNHE R
* RE-INITIALIZE
* BASE AND
*SAVE REGISTERS
* FOR COMPILER

* TERMINATION
T e T

EEEE R X

B3 *o
*o
¥ LCAD *e N
o OPTION o

o SPECIFIED.
*e o

<—

HEEERCIHREERERE NN
*

* ISSUE

* CLOSE FOR
* SYSLIN
*
*

¥k ok K k ok

I e R T Y

v
HEXRHDIHH IR XK

**********i***i**

HHH KK SRR KKK
* *
>* IEYPAR *

R e ST

DECK
QUTPUT
STOPPED

v
R Y s a2

* PRINT DATA *
SET STATUS
* MESSAGE *

FEXERRRREEL NN
XXXH
* * X
* G3 * *
* * % Ca *-)l
XXXE *
XREH
IEYFNL1O

v
HRHURCH ERRR RN XRRHR
* *
* ISSUE CLOSE *
* FOR SYSIN AND *
* SYSPRINT *
* *
* *

P]

v
Y

FREEPOOL

* Kk

HHREASH N RN NHR
* 3*
* FREEPDOL *
* *

HEEHREH R RERR NN

<

EE SRR R R R R L 2
* *
* LOAD DATA *
* SET BUFFER *
* ADDRESS *
* *
3* *

KRN K RN

v
&{*cs********ﬁ*
COM *
SIZE OF AREA TO

*
*******x*********

v
&*l**DS**********
*1ssuz FREEMAIN *

FOR *
. SPORAGE | *
* *
EE ST XSS R R RS

<

XEERESHE XXX NN

*
* RETURN *
* *

NN KRR ERNN

v
*****HS**********

* SET ERROR
CODE FOR RETURN
* TO CALLER

|
|
v
EEEAYSEER XK RERR
*

*
* RETURN *
* *

HHERRH AN RRRR

Chart AA. OPTSCAN

HEEEADEREEERRRE
*

*
* OPTSCAN *
* *

RN RN NN

l

ET 22

A3

X RNN

* % %
* Kk

1
PRS20
HRRNEATENNN NN RN
* *

* SET INDICATOR *
*IN POINTER FOR *
* COMPILER *
*
*

*
T e R TS

v
v PRS22 o¥e PRS23
NG DN T RN NN NN - HREREBSHEN NN RHRRR
* * -¥ * . ¥ * . * *
* GET * o* *o NO o *. YES * *
PARAMETER LIST % o NAME= QUOTE % >%, LINECNT= o > SET FLAG *
* LENGTH * . o %« QUOTE * *
* * *g ¥ * g o* * *
LR 2 ST 22 R 22222 2 L3 *. oW K, o LR E S S22 2 22
X YES * NO
X HXH 1 |
* *
* C3 *—> '
| * *
v EXHR I
P PRS25 v
c2 * g T T ekt T T 2 XX E R
* * * * '
ANY * SET PROGRAM * |
OPTIONS - * NAME IN *
I *.SPECIFIED.* *COMPILER COMM. *
I *eo o * REA *
v ¥e ok LR e 2 a s
EXXR * YES |
* * R |
* E3 * * * |
* * * D3 *—>| v
X * * <
XN |
PRSOUT v
EE 2 RS S 2 2SS
- * g * *
YES % *o * RESET *
——%.COMMA PRESENT.* * SCAN CONTROL *
*o ¥ * FLAGS *
* g -¥* * *
*o o ¥ I I T T
* NO
EHEK 1
* *
* E3 *—>I
* *
| EE i ad
v OPTS10 v
RN D N NN HERRRETHRRNRNNX
* * * OBTAIN
* SET TO SCAN * * SYSTEM *
* ONLY CHAR. * *GENERATED NAME *
IGNORE ANY OVER¥ * OR PGM NAME *
* * * *
N3NNI NN RN NI IR NN
| f
v v
EHRHRF2HE XXX RN XN I Z KN NN
* * * SAVE *
* ADVANCE * * NAME FOR *
*PARAMETER SCAN * * MULTIPLE *
* POINTER * * COMPILATIONS *
* * * *
L R R SRR RS R L SR T] EE RS S22 S 2 S X
|
|
>
| |
v v
PROSSQT ¥ OPTS20
G3 *,
¥ * o * . HERRGLHE XN R HHH
+*¥ PROGRAM *. YES . WAS *e YES * *
*o NAME ¥y *o NAME OPTION % >* RETURN *
* o SPECIFIED* *o GIVEN o* * *
* g - - ¥ EEZ S S S L 22
¥o o v e o
* NO F XN * NO
| * * '
| * C3 *
I * *]
r EHHR i
v |
* v

H1 *g XHRERHD R HRXRRRE FEKRMH IR RN RR
* * *

. *. * COMPARE *
% LINECNT *. NO * PARAMETERS % * *
*. SPECIFIED % >*SPECIFIED WITH * * INSERT SYSTEM *
o * PARAM TABLE * * NAME *
o o * * * *
H, o ES 2SRRI S 22 E 36336 3 3 I XK R H

* YES

PRS30 v |
LR R L NER S 2SS S \2
* * HRHN JIHERR RN
* PREPARE * *
* 4+ CONVERT * * RETURN *
* LINECNT * * *
* * EEE IS 2SS 2223
EE S S22 2SS S22 222

v v
3 L2 2 2 N
* * * *
% D3 * * D3 *
* * * *
E2 22 L2 22

Section 2: Compiler Operation 63

Chart AB. DDNAMES

X
* *
* A4 ¥——y
* *
XX

v
K AL KK KKK NN
*

HERHA2HHERRE RN *

* * * INSERT *

* DDNAMES * *#*ENTRY INTO DCB *
* * FOR SYSIN *

L T * *
HRER RN AR AR KL RXES

v
HENKKBLHHWERRARTR
* *
* MOVE *
* POINTER TO %
* SIXTH ENTRY *
* *
* *

FERHERERRE KRN

v
EREERC2REREXR AR RS
* * o* x,

* OBTAIN * . DOES *
LENGTH OF DATA # *o ENTRY EXIST o
* SET NAMES * - ¥
* * *o ¥
e e T e o
* YES
|
|
v
*a EREXRDLG XA EXHEXAEX
*, * *
DOES *o NO * INSERT *
LIST EXIST o —_ *ENTRY INTO DCB *
*o o * FOR SYSPRT *
*e ¥ * *
Fe ok P e e R T
* YES |
i
v I

v
WK D IR R v WL NN KRN
* * HAEXKEIHREHHRHEHE * *
* ADVANCE LIST
* POINTER TO

* *MOVE POINTER TO*
3*

* FIRST ENTRY *

* *
*

* *
* RETURN * * SEVENTH ENTRY *
* * * *

L e e T

* *
L T TR

R

NO * *

EH XX

v v
RS SR 2 2 22 2 2 22 3 X XG4 N XK N
* * * *
* INSERT * * INSERT *
*ENTRY INTO DCB * *ENTRY INTO DCB *
* FOR SYSLIN % * FOR SYSPCH *
* * 3* *
33 363 3 I 3K X KR ES S 222 RS Ll
*HxH
* *
* H4 *—>
* *
L 223

v DDNMOUT J
I R KRN

v
* * EEEEHG FHEKRERKR,
* MOVE * *
* POINTER TO * * RETURN *
* FIFTH ENTRY % * *
* * FH KN THRIKNN

L e T ST S IR

e¥g
Jz2 *e
ok *, XXRR
* *
>#* H4 *
* *

*

DOES *e NO
ENTRY EXIST %
. *
e .. XK
*e o
* YES

64

Chart AC. HEADOPT

XX READ HHHREKR KRR KR

*
* HEADOPT *
* *

EE R RS R RS R R L RS S

& ——————.

L2 R 2 RSS2 RSS2

* *
* OBTAIN LENGTH *
* OF HEADING *
* OPTION *
* *
* *

NI NN RN

|
|
|
|
|
v
e ¥
c2 =,
o *.
o* *. NO
* HEADING LIST .%
e EXIST o
* g - *
*g o
* YES

Py —

KD 2 XN NN NN
*

*
* SET uP *
* CENTERING OF *
* PAGE HEADING *
* *
* *

LR R SR R 2 2 2 L L

v
R

*

*¥FORCE 119 CHAR
* LIMIT FOR

* OPTIONAL

* HEADING
NN XN HRN

* K ok K K K

v
N KK DK RHFHHHEKR
* SET *
*HEADING ORIGIN ¥
AND LENGTH INTO
#PRINT MSG TABLE®*
* *

96 I IR KRR

P —

X GDH R T

*
* RETURN *
* *

363 3636 363 3 363 I ¢3¢

*

>*
*

P HC 3R KN

RETURN

363 3 I I3 KX

*
*
*

Section 2:

Compiler Operation

65

Chart AD.

66

TIMEDAT

KRN A DK KRR
* *
* TIMEDAT *
* *

P e g
|

|
|
v

*****BZ**!"*******
* SET UP *
* UNIT *

* SPECIFICATION *
FOR TIME OF DAY#
* *

3363 3 I I I I XX

v
EREXRRC2HEXEHHXRHR
GET *
TIME AND DATE
FROM SYSTEM
SUPERVISOR

* ok ok Kk ok
* ok ok kK

33 3 I I I I XA N

v
KD D I I NN H
*

*
INSERT *
TIME INTO *
HEADING LINE *
*

*

33 36 36 33 3 I X XX

% %k ok K k

v
% I IE 2 K KN
* *
* INSERT *
*DATE INTO LINE *
* *
3* *
3 363 3 I I I I I ¢ 3

v
F IR 2 KN KN NN
* *
* RETURN *
* *

I3 I3 NN NN

Form Y28-6638-1

Page Revised 11/15/68 by TNL Y28-6826

s -
e Chart O4.1. PHASE 1 - PARSE (Part 1 of 2)
G0630
ARRED DR kKRR KR KR
* *
* IEYPAR *
* *
ok ok ok R ok ok ok ok ok ok ok Rk
* *
* By *
* *
*okkk
G0633
START ARk AP R Rk Rk Rk kk ok kokok Bl ok kokokkkkokkk
COMPILER * * *STA FINAL- BEA2*
* PROGRAM * o Kk R Rk ke Rk
*INITIALIZATION * *COMPLT POLISH. *
* * *CLOSE DO LOOPS. *
*, * * MOVE POLISH. *
kkkk kR ko kR kR k kR kK kokkkokkkkokkkkkkkkk
ok ok ok ok C 2 ok ko R ok ok ok THIS IS THE FIRST cu *.
CARD OF ‘THE rIKbL . LAST .
* READ ONE * STATEMENT. NO .* STMT F *,
CARD INTO COMMENTS ARE WRITTEN -—*. SOURCE MODULE.
* INPUT AREA * OUT IN THIS OPERATION. .EROChSSEE *
ke kkk Rk Rk K *,
EEE] * YES
* *
* E2 *
* *
EE L]
v KL
LRI YA LIRS LR 2] D4y *,
* TURN ON FLAGS * ¥ *.
* INDICATING * YES .* LAST *,
*FIRST STMT AND * ——%, STMT FLAG = .*
*PREVIOUS PRINT * *(END CARD) . *
* COMPLETE * . .
dkkEE Rk Rk Rk R kkkok Kk *, L%
* ko * NO
kK * *
* * * FUY *
* E2 *-> * *
* * * ok kok
*kkk
G0631
STATEMENT LR R S RS S RS L 2 2] AT COMPLETION OF Aok koo J g ok ke ok K Kok ok ok
PROCESS PRT/RD SRC-BAA2 PRINT AND READ * *
¥ ko koK ko k- k- ko SOURCE, STMT * RECORD *
PRINT OLD STMT BE PROCESSED IS * 'NO END CARD' *
* AND ERRORS * ON SOURCE ROLL. * ERROR MESSAGE *
READ NEW *
Fhkkkkokkkkkkkk dkkkkokkkkkkkkokkkk
* kK k
* Fy *->
*kkk
G0632
EEEEEOVES SRS Y ARk RFYkkk Rk kkkk
* STA INIT-BBA2 * * *
Aok k— kK ok ek -k k * SET INDICATOR *
* INITIALIZE * * READ *
* FOR NEW * * COMPLETE *
STATEMENT * * *
kkkkkok Rk kkk Rk kK kkkkkokkkkhkkkkkkkk
G0635
LR R e R L S 2] ek ko ok G L ok ok ok ok ok
LBL XLATE BCA2 *PRT/RD SRC-BAA2*
——————————— ok k— ke k— k— kX
* PROCDSS LABbL . *PRINT OLD STMT *
* FIELD AND * * AND ERRORS. *
* COL 6 * * READ NEW STMT *
Kk kkkkkkkokokkkkkkk ok 3k ok ok ok ko ok ok kok ok ok
* koK ok
* *
* * BS5 *
H2 * * *
.* LABEL *. *dokk
YES .* OR *,
——% COL 6 ¥
l *. ERRORS . *
* ¥
*, %
EEE L] * NO
* *
* E2 *
* *
* ok kk
G0636
ko kR Tk kkdokkokkk
:STA XLATE BDAl*
* PROCESS *
ENTIR!
STA

Section 2:

* o w

YES .*x WAS _ *.
—Z%THERE AN END .*
. CARD _.

Lo
ok * NO
*
HS *
*
kK
.h
i LAST *, NO
.STMT AN ARITH.———
*. IF X
*, oE
*, .
* YES
GO8u

[

R RKED S Rk KRR
PROC POL BGAZ
*mkm e Kk

* COPY POLISH *
* ROLL_TO AFTER *
* POLISH ROLL *
Aok ko ok kKRR Rk K

v
#063003 ¥
ES5

. *.
YES .* LAST *.
——%. STATEMENT A .*
. BRANCH .
*, L%

EREE] * NO

*
HS5 *

*
*kkk
GO

642 \
Hokokok & FSkokkk ko ok Rk ok
ACT END ST BFA2
R e It S S
* BUILD *
*RETURN OR STOP *
* POLISH *
Hokokok ok kKRR Aok ok

G0634 v

FEERKGORER KRR RKE .
#STA FN END BEDS*
Kok k kK k— kK
COMPLETE POLISH
* WITH STMT CNT *
* AND MOVE *
Fokokkkokkokkokok ok kk Rk k

(T]
* H5 *->
* *

dokk

4063004 v

Aok kR RS Rk Rk kR AKE
*

* %

PLACE *
* END DRIVER ON *
POLISH *

* %

Fkkkhkkkkk kR R RKK

G0634
*EERETSR AR K KR KK
*STA*FN END BEDb*
COMPLETE POLISH
* WITH STMT CNT *

* AND VE *
LR R T L e S L L

Fhkkk
*OU.2%
* B2*

Compiler Operation

67

Form ¥28-6638-1

Page Revised 11/15/68 by TNL Y28-

6826

e Chart O4.2. PHASE 1 - PARSE (Part 2 of 2)
Hok kK Ak
QU2 * *
* B2* * B3 *
* ¥ * *
* koK
S 63181
B2 . AERKKBI kAR Rk
. * *
% XTEND *. YES * CLEAR RESERVE *
* LBL ROLL o e >*MARK FROM XTEND*
* LBL ROLL *

"+ .RESERVED .*
* *

*, ¥
*'NO
EE LS
* *
£ C2 %>
* *
*kkk
$063178 \
EE RS S o LIRS LS
* *
* REMOVE +
* UP FROM *<e—mm—me

AEkkk kR kR Rk

*.
TEND *.ﬁYES

* *
AR Kk K Kok ok kR KRk kK

#063188

*. . * * RELEA *
. . * IND VAR ROLL *
*, ¥ kkkkkkkkkkkkRkkkk¥
* NO
l v
< *. $#063179 L Lk
E2 *. E3 *. EY4 *.
. * . . *. . *.
¥ END *. YES o F TEMP *, YES ¥ PGM A
*., OF DO LOOP . *———————m >*. ROLL EMPTY .*—— *. SUBPROGRAM . *————
*. L %, L * *. .
*. . *, ¥ *. .*
*, . *, L% . . L%
* NO * NO *okkk * NO
* *
* B3 *
* *
Hokkk
v
K WEL
HERAEPL R R AR RRER AR F2 *, ARk T3 Rk ok kK Ak Fu *.
* * .* GROUP *. * TAG GROUP As *
* REMOVE * NO .* TAGGED AS *. * POSSIBLE * ¥ BLOCK *.
* GROUP FROM b S *_. POSSIBLE o * *EXTENDED RANGE * *. ATA .
* WORK ROLL * * .RE-ENTRY .% * CANDIDATE ON * *. PROGRAM .*
* * - POINT. * *LOOP DATA ROLL #* . -
B T LT LY *, L # RRRRR Rk Rk P
* YES * NO
*kkk
* *
* C2 * #063180 '4
* * FRRRRGERR R KR RRK AR ARG IRk Rk Rk kAR FRRERGU R R Rk Rk R
EX LY * * * TAG THOSE * * *
* PUT * * LABELS ON LBL * *SET SYMBOL AND *
* GROUP ON TEMP * *ROLL WHICH MAY * *MODE FOR IBCOM *
* ROLL * * BE_RE-ENTRY * * ROUTINE CALL *
* * * PO S * * *
R e LT LR R R T T RS e e
*kkk
* *
* C2 *
* * ok kkk Ik okokkk ok kK dk ok H I Aok Kk ok Rk kK
*RkE * * * *
* * * MOVE IBCOM *
CLEAR TEMP ROLL# * POINTER TO *
: : * AFTER POLISH :
B e T T Y R e e T
[S—
Hkkk
* *
* B3 * #063001
* * B R e
EETES *

>*0ON SCRIPT ROLL, *

FREKRDY KRR KRR

* SET_LOOP *
* DATE POINTER *

FOR OPERATION *
OF ALLOCATE :

0
*
*
: INITIALIZE *
*
*
kkkkkkkkkkhkkkkkk

FARKKU kAR kA
* *
* IEYALL *
* *

FRRRERRRRAARRRE

Section 2:

Compiler Operation

67.1

Chart BA. WRITE LISTING AND

G0837
EHEHADK R KRN HRR
* PRINT *
AND READ SOURCE
* *

L e e e s T

v
e s T
* *

* TURN *
* OFF NO PRINT *
* FLA: *
*
*

*
HEEEREHEEREERERRR

v
¥
c2 *o
o ¥ *o
¥ DATA *e YES
*¥oON ERROR ROLL ¢ ¥—
*o

I
v
oo
D2 *o
* *
SOURCE
LISTING
* eREQUESTED o ¥

A
EEXRREDERENERRRRR
* *

* TURN *
* ON NO PRINT *
* FLAG *
* *
* *

EEEEERRERRINERR

$83707 v
FEREFF2RERERRRRRR
* *

INITIALIZE *
STATEMENT CD ¥
COUNT *

*

*

* kK

*
R L

483701 oxo
G2

o
¥ PRINT *o YES
. OF STMT .
* ¢ COMPLETE %

PRINT A CARD *

v
HEEERFHH RN RN RHHNE
* PRINT ONE *

CARD AND ITS
* ERROR MSGS #

I 2

I

68

READ SOURCE

XXX

XN

v
HEARERDLEEREREERR SR
INITIALIZE
* AND PRESCAN *

STMT
EEREERRRRERER

———>
v
$#083703 N
c4 #
o *.

o *
*¥+eMORE 7O READ
, o

$#83703 v
HEXEEFDLER AR R NE

* WAIT FOR LAST *
READ COMPLETE
*AND READ ONE *
CARD
EHEEXRRERERRR

|

S—

4083702
HRREXGCIHENTR RN XRE
* *

*¥ MOVE 1 CD TO *
>*SOURCE ROLL AND¥*
* SET CONTROL *

* *
R e T X

)
v
%o
H3 *,
¥ *o

o *. YES

END
- STATEMENT
o PROCESS .*

P pu—

* *
* B4 * #083704
* * EEXERR JLERRERERERR
*EEX * TURN OFF

* LAGS
* INDICATING NO
* MORE READ AND
* NO MORE PRINT
EREERRERE X EREER

v
R
*

PEX TR XY

*
* RETURN *
* *

e

INIT
READ A CARD

READ A CARD

Chart BB.

INITIALIZE FOR PROCESSING STATEMENT

G0632

HEERADERRHRRRRX

* *
* STA INIT *
* *

33 MK I KKK KK

KB D WK KK R
* *

* INITIALIZE *
* CHARACTER *
* COUNTS *
* *
LR e e e e e s

|

1

v
HEERKCONFK XL RRXRHN
* *
*SET CRRNT CHAR *
TO FIRST SOURCE
* CHARACTER *
*

*
36363 3 3 I3 3 K K H XX

l
|

v
HEEHKD DX H KR KK HR AKX
* SET *
*#*COUNT OF SOURCE*
STMT CHARACTERS
*#TO NOe. CARDS X *
* *

80
LR e T T

v
3% K HE 2 XX R XK
* *

* *
* CLEAR FLAGS *
* *
* *
* ¥*

I3 I I KR K

|
|
K XX 2 KX NN
* *
* RETURN *
* *

EE RS S R L RS E 2 RS

Section 2:

Compiler Operation

69

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

Chart BC1.

STATUS CONTROL

DIGIT
CONVERSION

CONVERT ONE DIGIT

REGISTER LABEL

70

PROCESS LABEL FIELD

G0635
KRN KRRk Rk R
* *
:LBL FIELD XLATE:
EE kR RR AR KRRk kK

v
*kkEkRBRR kKKK kKK

*
*
*
: ROLL_AND EXIT :
Fohk kR kR kR AR R Rk Rk

v
FRERRC2FRFRkF R kKX
SET_ STMT LABEL.
* POINTER TO 0 *
* AND SKIP TO *
FIRST NON-BLANK
* CHARACTER *
LRI T R R e

(Part 1 of 2)

Lx. 4063503 R
D2 . D3 *,
L* *. L *.
¥ CHAR *. NO .* MUST THIS #*. NO
. COUNT LESS .¥————eeem >%. STMT HAVE .*————eu
. HAN 6 . *, LABEL .*
. . *. Lx Rk
*, % *, . *BC2*
* YES * YES * C2%
* %
*
R SPE L S L S s *EXKFEIRERERRKERE
* * * *
* INITIALIZE * * LABEL MISSING *
* FOR DIGIT * * MESSAGE TO *
: CONVERSION : : ERROR ROLL *
*
Fhkkkkkkkkkkkkhkk kkkkkkkkkkkkkkk k¥
*kkk
* *
* F2 #*-> v
* * *kkkk
R kk *BC2*
#063501 ¥, * C2%
F2 *. * %
ok *, *
B *. NO
* CHAR A DIGIT .#¥——————mmmmm—mm -
*. Lx
* . ¥
*. *
* YES
(SYNTAX FAIL)
FRAAKG DR R KRR ARG RA R KAk R Ak
* CONVERT * * SYNTAX *
* DI * * MESSAGE TO *
BINARY. SKIP TO * OR ROLL. *
*NEXT N BLANK * * RESTORE WORK *

C
Fkkkkkkkkkkkkkkkk

v

AR T2RERR kR kRRE
* MOVE LABEL *
TO LBL ROLL AND
* LABEL POINTER *
* TO_STA LBL *

* POINTER *
kkkkkkkkkkkhkkkkkk

v

K2™ s

o ¥ *,
X LABEL *
. UNDEFINED .

* *

*. .
* YES

*EEEE
*BC2%
* A2x

Fokkkdokkok Rk ok kok kR Rk

Rk RHI Rk ok kk ko k
* RETURN *
: (EXIT FALSE) :
l FEA kKRR KR RRk
*EEE
*
F2 *
*
*hEE

Ak kR KK Rk ko Rk
* MULTIPLE
DEFINITION

*

. NO * *
.#————————>* ERROR MSG_TO *
* "ERROR ROLL ™ *

*

*kkkkkkkkkkkkkkk

HEEEE
BC2#
* AD#*

Form Y28-6638-1

Page Revised 11/15/68 by TNL Y28-6826

Chart BC2.

*hkhk
BC2
* C2%

PROCESS POLISH

NON- ACTIVE END

CODE FOR END STMT.

PROCESS LABEL FIELD

(Part 2 of 2)

* ERROR ROLL. *
RESTORE WORK
*AND EXIT ROLLS *
***#tk#t#*t*t**##

v
AERERT2 R AR E KR RR AR
* SCAN *
* '0 NEXT *
* NON—BLANK *
: CHARACTER t

kkk kb kR R kkkkkkkkk

v
HERER 2 kkkkkkkk
* RETURN *
: (EXIT FALSE) :
AR EEFRREE

EEEEE
*BC2#
* A2%
* *
*
$063502
FRERADFR AR REREER
* *
* *
* LAB AS *
: DEFINED :
RREKKEKBC kR KRR KK
2
Y
K. ¥,
B2 * B3 *, *EERRBURRRERRRRRE
* .* INNER *. * *
N . YES * DO *, NO * PUT LABEL *
* DO LOOP # e e >*. CLOSED FLAG .¥———————=D>% *
. - *. ON * *XTEND LBL ROLL *
*. ¥ *, * * *
*, L% *, % B e e e T
* NO * YES
——————————— >
<
A V
#063504 o *, oK #063581 ¥,
c3 *. cH4 *.
. *, ¥ IS * ¥ *.,
NO .* LAST *, NO .* LABEL NO .* LAB ON .
r———%.STMT AN ARITH.* r— <--*. PREVIOUS B *. XTEND TARG .*
*, IF ¥ *, TARGET .* . LBL .
*, F . o *.ROLL .*
.« WX *, % *. .
* YES * YES YES
y :
ARERAD 2R AR KRR KA ARERKDI Rk KR RREREE *, EAKEEDSKER KRR KKK
*PUT POINTER TO * * TAG GROUP ON * <* GROUP *. * TAG GROUP ON *
THIS LABEL. * *XTEND LBL ROLL #* .* TAGGED AS *. YES *XTEND LBL ROLL *
*MOVE POLISH TO * <~—--% AS POSSIBLE * ‘. POSSIBLE o ¥———m——_>% AS POSSIBLE *
AFTER POLISH * RE -ENTRY POINT * <RE-ENTRY .* *RE-ENTRY POINT *
ROLL % POINT.* * *
t*t***t##*##*t#t* SAP 4 I ok ko ok Rk Rk kR Rk
*"NO
b e >
$063505 \ v
*ERRKE DRk kR Rk kR AERRREY R Rk kR Rk
*SET NON-ACTIVE * * *
END FLAG TO_ NXT# * REMOVE GROUP *
* STA LBL FLAG * * L
*AND CLEAR_NEXT * *XTEND TARG LBL *
* LBL FLAG * * *
Rk RRRRRRRR R Rk L e
¥
F2 .
By
- * CHAR *. NO RETURN *
. COUNT B > (EXIT TRUE) :
. 6 .% ARk Rk Rk kK
*, %
1 YES
o *,
G2 *.
.‘ *, *EEEGIhEkhkk kR
. *. YES * RETURN *
*. CHAR A ZERO K >: (EXIT TRUE) :
“x, K L
£, %
* NO
V (SYNTAX FAIL)
kK DRk kR Rk kK
* SYNTAX MSG TO *

Section 2: Compiler Operation 70.1

Chart BD.

G0636
HEERALHRERRERRER
*
* STA XLATE *
* *

NI NN

EREEBHEREER AR
* *
* RETURN *<-
* *

RN NN RRR

G0637
RERRC]ERHEERRER
*ASSIGNMENT STA *
* XLATE *:
* *

L e ST T T

PROCESS STATEMENT

EEEERADRERRRR XA RS
* *
* SAVE *

>* LOCATIONS OF *
* WORK AND EXIT *

*

*
R e

FREKRDD R RN RREN
RECORD *
ILLEGAL *
MESSAGE *

*
NN NE NN

*
*
* STATEMENT *<
*
*
*

)
A3 %,
o* *e
<% ASSIGN— *. NO
>*. MENT TYPE
*.STATEMENT . %
, o

*. o
* YES

*o ROUTINE %

- F—

i

]

v
P R
* *
* SCAN STMT *
* TO DETERMINE *
* TYP *
*
*

*
R T T e

v
EERERGIEERARERERR
* *
* REMOVE POLISH *
* AND REPLACE *
WITH ERROR LINK¥
* *

I e R e T T

v
EEEFHIEEERREENR
*

* RETURN * EXIT
* *

R

v !
¥ \
c2 LR S R TR L 2 R 2 S 2
o * UPDATE ROLLS *
o* *. YE * AND/OR *
>%*.STMT FUNCTION.* ARITH FUNC % CONSTRUCT *
*o . DEF_STA * POLISH FOR *
*, - | XLATE * STATEMENT *
e o 1 HEEREEENARERERE NN
i |
| i
v v
D2 D3
* CONSTRUCT % * UPDATE ROLL *
* POLISH FOR % * AND CONSTRUCT *
* VARIABLE * + POLISH FOR *
* EXPRESSION % * FUNCTION *
* * * *
3R XN RR
|
|
>1
v
Go732 o¥e
E3 *.
¥ * o FRRHE 4 RN RN RN
o* *. NO * *
STA XLATE EXIT *.SEVERE ERRORS. >* RETURN * EXIT
* o¥ * -
.*. o* EEERREEEREERRRR
X, ¥
* YES
f
v
o*e
F3 %,
EEEEFLHHEEERERR
ACTIVE * *
STATEMENT >* RETURN * EXIT
- - *
*o o EEEEREREERXRERR
¥, oF
* YES

Section 2:

LITERAL TEST

THIS OPERATION

IS PERFORMED BY

THE STA XLATE
ROUTINES

Compiler Operation

71

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

eChart BE. COMPLETE STATEMENT AND MOVE POLISH
G0633
FRkRA] kR RERRE
*
: STA FINAL :
*kkhkhk kR kA kE Ekrk
* *
* B4 *
* *
EEET]
v #063302
*FRFXABLAR KK KRR ERE **t*tsut##*#***t#
* *
* INCREMENT * t GROUP *
STATEMENT COUNT# * BACK TO D
* * *LOOPS OPEN ROLL*

* * AEEEE
FRREEARR AR AR rrtrsserssrarret *BE *
D5 *
* k
& ——————————— >
ok #063303 . *.
c1 *, c4 *,
o * FRRAC2AARAEERES . .
% *. NO * . * ¥ THIS *,
*.*ANY POLISH *.* ———————— >: RETURN : *.fTMT LABELED'-‘l
Tk, e FREE R AR AR RE Tk, L
. % ..
* YES * YES
l THIS FLAG ON INDICATES STA FINAL END
¥, ONE OF THE STATEMENTS
p1’ T+ WHICH MAY NOT TERMINATE FEEARDUE R R FEARADSEREARAREAE
o * *, LOOPS * * * *
. * *. YES * PUT POINTER * * PUT STMT *
+.JUMP FLAG ON .+ * TO LABEL ON #————mm ——>+ NOUMBER ON #
'.‘ *.* : POLISH : * POLISH :
R FRER AR R P T T T T
*"NO
S
*
E1 : >
v
5\063301 ¥l .*.
El . B4 .
. *. * *ERKESHEERRREKE
DATA ON *., NO .* THIS STMT *. YES *
* TdE DO LOOPS .* *.AN ARITHMETIC. *¥———wee—u>% RETURN *
* .OPEN ROLL.* . F . * *
*. ¥ *. L EERAA AR
L.k *, L%
* YES * NO
e R e EEERRFUEE Rk
* * * * FARAFSHFF R ARER
* MOVE ONE * *MOVE POLISH FOR# *
* GROUP OFF THE ¥ * STMT TO AFTER *—————n —D% RETURN *
* ROLL * * POLISH ROLL * *
* * * FEREEERERRRER R
HRARRRR R AAERR AR
¥, o*. #063377
G2~ . 63~ . HresrGhasttaanies
*,
. . YES * INNER *, NO ANY *, NO
, P >. DO CLOSED .¥——me—ee>%. TRANSFERS OUT ‘————————)*XTEND LBL ROLL *
*. FLAG ¥ LooP
SEE . - *. ON .* . .
NOTE . .* . L% . PP
I NO * YES * YES
P P S
* *
* BU4 #* 4063388
* * IR CAbestt i ddiy FERRRHI R R R
e REMOVE * *
*GROUP DEFINING * * CLEAR *
DO VARIABLI * * XTEND TARGET *
* FROM_ IND VAR * * LBL ROLL *
* OLL * *
AEEERRR AR AR R
#063378
NOTE EEREET2HRARERASEE fRRACERA
RESERVE PROGRAM
THE TEST COMPARES * SCRIPT ROLL * * SET INNER DO *
STA LBL PNTR S IP& * —————*CLOSED FLAG ON F o e

WITH THE GROUP
FROM THE ROLL

72

* SCR OLL *
LR TP T T e T L

*ERRRK 2Rk Rk kEE

*
EE R T e e e
*¥k%
*
~>% E1 *
* *
¥k

t“**‘#***###*

Chart BF. PROCESS END STATEMENT

G0642

HERHA2ERREREXXR
*

* ACTIVE END *
* STA XLATE *
HEREEREEERRRERR

|
|
|
v
o¥a
B2 *e
¥ *
«% LAST
*o STATEMENT A %
. BRANCH o
* g - ¥
*e ¥
T NO

|
v
e ¥a
cz2 *o
o ¥ *o

«¥SUBPROGRAM *., NO

¥ BEING o ¥
*COMPILED <%
* g ¥

€ ———

HHXRHDD HHHEHF RN
* *

* PLACE *
RETURN DRIVER *
* ON POLISH *
* *
XX RNRHH X RXERR

.
*¥e YES

EEXEBIAEEREXRRR
* *
> RETURN *
* *

HREHERERERERXRK

XEXEXCITERHEE XK HN
* *
* BUILD
>* STOP POLISH

*
3*
I RN NER

d ok ok ok Kk

I
1
HAEKDIH AR AR

* *

>% RETURN *

* *
3363 3 3 I I X XX

Section 2:

Compiler Operation 73

Chart BG.

74

PROCESS POLISH

G0844

HHRERADKHEAEH RRH

*
* PROCESS
*

OLISH
EE T e s

P ——

ER R R IR T S S S R T S 2
*

* GET NUMBER

OF WORDS ON
* POLISH ROLL
*
*

3 3 3636 I 3 3 I I KX

*
*
*

*
*
*
¥*
*
¥*

v
ERXEKCO2 R XXX RS
*

* PLAC
¥COUNT ON AFTER
* POLISH ROLL

*
33 3 I 3 36 3 33 3 3 XX

P —

DD KRN N®
¥*

* COPY POLISH
* ROLL TO AFTER
* POLISH ROLL
*
¥*

SRS RS R L R Rl LS

*
3*
*
*
*
*

*
*
*
*
*
*

v
I HE D NN KN RH
* *

*

*RELEASE POLISH
* ROLL

*

336 36 3 3636 3 33 N XN X

v
D KKK RN

* RETURN
*

BRI NN KN KRR

*
*
*
*
*

¥*
*

Chart 05.

G0359

G054

HEEHALHERNXE R
TART *

* ALLOCATION *
* *

T e T

v
EERKEB] R A RHE R
* *

PHASE 2

- ALLOCATE

* *

* INITIALIZE *

* *

* * K

363 3 36 3 I RN NN * *
* C2 *
* *
KX

3 v

ERERRC] HHERRRFEH XK
A LBL/LSPG-CAA1%
e W — RN X — %
*PUT LABELS AND *
STMT FUNC NAMES
* ON BCD ROLL *
EE 2SS 22222 2 XS]

60362

v
NN] NN NN NN
¥PR_EQ/PTER-CBA1X
e W T W e Y e
CALC EQ DFFSETS
* AND PRINT IF *
* OUTSIDE ARRAY *
LA ZEZEE LSS 220

v
LEEERI-E L R L LSS L L)
*DMY/PNTERR—CDA2%
Fm W W — W H— N — -
ASSOCIATE DUMMY
DIMS WITH ENTS,
* PRINT ERRORS *
EE2Z ST RSS2 22T

G0365

1

v
HRRERDD R XX HE RN
*PRC DO LPS—CEA2%
L e Tt Tt e
CHECK FOR UNCLS
*DO LOOPS AND PR¥
* AND MARK ERRS ¥
R R TS S R e

G0371

| |
! 4

G0372 v
E1 %, R P
* *a *LBL/L SPGS—CFA2%
BLOCK *, NO B ST St
*a DATA - * CONSTRUCT *
eSPECIFIED. * BRANCH TABLE *
- - | * ROLL *
*o oX v e e L a s
* YES HERXR
| * *
1 * C2 *
v * * |
*RERE EHEE
*CC * |
* Al* GO361 G0374 v
* ¥ BLOCK EE e e s e
* DATA *BL PGM ESD-CGA2%*

[T
* ALLOC HEADING *
BLD AND PNH ESD¥
*FOR PRO AN ENT *
L

I
i
l

76 v

FEREHGERHH KR ER RN
*ENT NMALL—-CHA2 *
B e e e
* IF SOURCE A *
*FUNC, CHECK FOR¥
* ASGM OF VALUE *
[e st e s]

|
\

v
B T e
* *

PROG
ALLOCATION

G03

* SAVE OBJECT *
MUDULE LOCATION
OUNTER *

*
L e e e T R

|
|
|
|

|

G0377 v
HRFERJDHE R EHERHE
CM ALL/OUT'CIAZ
Kk Pt
* ALLOC CM STG. *
PRINT ERRORS AN¥
MAPS PCH ESDS
HHHH R HHHH TR KK

EX 223

X

(Part 1 of 2)

EXRN
* *
* A3 *——y
* *

*XEE i

G0381

v
EE RSV NE L LSRR LSS
*EQ AL PTER-CKA2%
Fem R BN NN — W
* ALLGCATE ADDR *
* FOR EQUIV *
* PRINT ERRORS *
LR 22 2222222222322

v
E R e T
* TURN ON FLAG
* FOR PASS 1,
*RESTORE OBJECT
* ODULE

vl
* LOC COUNTER
HRFHEEHERNIN LXK
|
|

FOR R Ok K

v
EE I STkt TR T T TR T
* DETM PRESENT *
SI1ZE BASE TABLE
ADD S GROUPS TO¥
* SIZEs RESERVE *

ROLL
ﬁlll**!*&***i

f

v
HHRERDIE NN RIH RN
* INDICATE *
* PRESENT *
* ALLOCATION IS *
* IN OBJECT *
* MODULE *
HEERHEEEEARERERRR

G0437

Go4

EHEEKE IR HHERRE R
*B/B TBL AL-CLA2¥%
Hm K RN NN K N
#USING SIZE EST,*
ALLOC SAVE AREA¥
*BASE T3L,,BRTBL *
HEEE KKK E RN R

i

v
HREEHF IR EHXERF
* *
* INCREASE *
* QCATION COUNT *
* BY EQUIV SIZE *

1&&}&**»**&****

i
l

38 v
HRRARGIHHXEREEH XN
*BLD AD BS—CWA2 *
s B et e S e Pt e
*® BUILD BASE *
* TABLE ENTRIES %
* INDICATED *
I M N R KN

G0443

v
E R N e
*PREP NMLST—CQA2%
e F R W R R R K
ALLOC NAME LIST
* TBL ADD BASES *
* REQUIRED *
R R e

|
I

G0397

v
FRHERHJFHHHA R RRH AR
#SCALAR ALL CUA1¥
e T
* ALLOC SCALARS *
* ADD REQ'D *
* BASES *
EHRRFEEERHEXHRR RN

X

LR
o]
&

* K K

R

*X %W
* B4 *
*

HHRN

|
|

v
FTZ - VET TR ST
*ARRAY ALL CNA2%
Ao KKKk K—k
ALLOCATE ARRAYS
* AND ADD *
* REQ'D BASES *
ERE S LRSS E S

G0401

EEER
* BS *
*

e

GO444

XX
%* B5 *
*

R

|
|

v
EHERRDSHERKERHRHK
*GBL SPG AL-CDA2%
[S Tk ST S
* ADD BASES FDOR *
* SUBPROGRAM *
* ADDRESSES *
R e s]

G0402

HEXRECSHXNHRHH KR
*SPG ARG AL-CPA2%
R e et el ek Tl e T
**ALLOCATE® ARG *
* LISTS* ADD *
*REQUIRED BASES *
EE 2SS RS SRS S S LRSS

G0442

P ——

HRKKKDSEH RN KKK KK R
*LIT CNS AL-CRA2%
R K N W H— N W N
* ALLOC LITERAL *
* CONSTANTS ADD *
*BASES REQUIRED *
FERERARKKEXEHKHHRR

|

G044s v

HHHHHES KR FHRHK R XH
*FORMAT ALL CSA2%
Fm oK W R K — KK
* ALLOC FORMAT *
STMTS. ADD REG.

THE ROUTINES
CALLED IN PASS
1 DETERMINE
THE NUMBER OF
BASE TABLE
ENTRIES
REQUIRED

FOR THE

OBJECT MODULE
DATA, AS |
WELL AS PER- |
FORMING SOME i
INITIAL
ALLOCATION

BASES
********i**&*****

v
EREEAESHE R K XL HERE
RESTORE OBT MOD
*LOC CNTER DETM ¥
#*TRUE SIZE BASE *
* TABLEs END *
* ASS 1 *
E T T e]

[

v
L e g
DEBUG ALL-CXA2 #

KRGS IR R KK KRR
#*ASCLR/SPRG-CAA3*

B e I e e
* MARK INIT *: >%* ENTER NAMES *
#* AND SUBCHK * CON BCD *
* VARIABLES * * ROLL *
FEEHHRRHE N R R RN EE I e T Y

60437 v

e S
B/B TBL AL-CLAZ
B e
ALLOC SAVE AREA
* BASE TBL AND ¥
* BRANCH TABLE *
NI HRH KK

I
|

1
GO441 \
HHH R YRR KR HKN
*¥EQUIV MAP CTA2%
XK R KRR K
* CORRECT ALLOC *
*¥EQUIV DATA AND *
* PRINT MAP *
P T

v
ERXHE
*06 *
* AR¥

Section 2: Compiler Operation 75

Chart 06.

76

PHASE 2 - ALLOCATE

G0397

GO4

XN

AR E 2P~ 2 2 2 L 8 Rk 2]
SCALAR ALL CMA1
W W e P W W W N
*CORRECT SCALAR *
* ALLOCATION, *
* PRINT MAP %
EE S22 S22 22 R T 2

01 v

HEEEEC2HR TR XX N
*ARRAY ALL CMA2 *
L e T e
* CORRECT ARRAY *
* ALLOCATION, *
* PRINT MAP *
LR s e s e

G0403

G0442

v

HREEED2 HEREXE XX XN
GBL SPG AL CUA2
L i St L 3
* ALLOC SUBRTN *
#ADDR PRINT MAP *
* PUNCH ESDS

*********&*******

*****Ez*x*****&**
*SP ARG ALL CPA2%
L e ST TS I B
* ALLOCATE *
* ARGUMENT *

* LISTS *
3 I KKK N

G0405

v

P T ey e R T T
*BLD NMLST CVA2 *
Hm N R— N — W
*CONSTR AND PCH *
*TXT CDS FOR NA—
* MELIST TBL
&!i&*******i****i

l

Go44ss

v
HAEERRG2 R ERER XXX
*LIT CNS AL—CRA2%
R e e e e e e
* ALLOC LITERAL *
* CONS_AND PNCH *
* TXT CARDS *
EaZ S22 S S 222222

G0445

v
I H D W W N K
*FORMAT ALL CSA2%
e B e T B T e 2
ALLOCATE FORMAT
* STMTS, PUNCH *
* ~ TXT CARDS *
RS2 E S SRS 2SS L T

v
X HH

%

(Part 2 of 2)

G0438

R

* B4*
* *

v
HEERRBLRREEHERHRRR
* RELEASE
* ROLLSs OBTAIN
* DOUBLE WORD
* BOUNDARY FOR
*

XK KK KK

BASES
KKK KKK

|

v
EXERNCLFREKRRARRR
*CALCULATE BASE *
AND D]SPLACEMNT
* FOR TEMP
* AND CONST *

*

* ROLL
F KKK KNI HEN

REEREDLHRERFEXRRH
*BLD AD BS CWAZ *
_______ *—

* BU!LD 3 BASES *
* FOR TEMP AND *
* CONST AREA *
I e e s T e R

P —

T e
* *

* PREPARE *
FOR UNIFY PHASE
* *

* *
HERHEREEREHRHRRAR

v
AERKFLRRXEHRRRS
* *
* TIEYUNF *
* *

I e T T

RELEASE
ROLLS

Form Y¥28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

Chart CA. MOVE BLD WAMES TO DATA VAR ROLL

GO543

SEARQ R EEE R R
* ALPHA *
* LBL AND L *
* SPROGS *

R L s L

*EK KRBl ERRRKER KKK

ttttAjtt*tt##tt
ALPHA
* SCALAR ARRAY *

*
R RS PR LR]

*kEkFRBIRRk kR kR Rk
* *

*kkkkBUR kR Rk Rk RS

*A{D VAR RL-CAFQ‘

* UP POINTER TO * * POINT: * *MOVE SUIPROGRAM‘
* NEW GROUP ON * * POINTER TO * * NAMES TO *
V. A * * DATA VAR ROLL *

* DATA VAR ROLL. *
*ERERERREERRARE KR

* SC. RS
FhkkkkkkkkkkkkhkS

*hkkkkkhk kb kkkEkErE

v
HEERRC LR bRk Rk Rk Rk Rk EACT hkkkrkkk ok kR RRCUR ke Rk Rk ok
* SAVE POINTER * * * * SAVE DATA VAR *
* TTO LABELS. * * SET_UP * *ROLL POINTER AS*
* SET * * POINTER TO * * POINTER
* POINTER * * SCALAR ROLL * * USED LIBRARY *
* TO LBL ROLL. * * * * NAMES *
ER T R PR L RS L 2] LR LRSS RS LR R L] kkkkk ko kkkkk
k&
* D1 *->
k¥
%, ALPHA L SPROG
D1 *, AAKKRDI R KRR KRR

¥ *,
¥ _ENTIRE *,
#. LBL ROL
‘.EROCESSE?.*

lt'*tDZ*‘*##tt#*#
* SAVE DATA VAR

*ROLL_POINTER AS‘
>* POINTER TO *

* STATEMENT
* FUNCTIONS *
LA T e P L

*A/D VAR RL—CAF“‘

0
SCALAR NAMES TO
*DATA VAR ROLLS *

Aok ok kDU ok kR ok ko
* *

:SET UP POINTER :

U. LIB
: FUNCTION ROLL :

. % ERE Rk kR RR R R B
* NO
#
*kkk
* *
* GY *
HERARE] KRk kR kR ARk AR RRRED kR hokok kR *t*t*E3* ttattmtt * *
* * * * *rkx
MOVE NEXT LABEL * SET UP * ' SAVE DATA VAR
* * * POINTER ROLL * *ROLL POINTER TO'
: DATA VAR ROLL : : : ARRAYS
B P ARk R Rk Rk Rk ttt#*tt**tttttltt
_kkk R
* * * *
* D1 * * G4 *
* * * * ERAKEFIRRA AR R AR
Xk LR * * RRRRFURRR ARk RRE
* SET UP * * ALPHA TO *
* POINTER TO * * DATA VAR ROLL #
* ARRAY ROLL * * *
* * kR kR kR kR Rk
kR Rk Rk KRRk
*REA
* *
* G4 *->
* *
T v
o *,
ERERRGIRR KRR REEE GY *.
*A/D VAR RL-CAF4% * * HRERGE KRR KRR RS

Fohoas * -k k—k

MO! *
:ARRAY NAMES TO :

.« ENTIRE *.

*. RO.
* . PROCESSED. *
*, *

*
—D>% RETURN *
* *

DATA ROLL . LR e s s T
ERE Rk Rk Rk . ux
* NO
ERRRKE Sk k Rk kKK Rk R LR Rk

* SAVE DATA VAR *
ROLL_POINTER AS
* POINTER TO *
* GLOBAL *

* SUBPROGRAM *
LRI S R S e 2

Hkk kR T IRk kR E
* *
SET UP POINTER #
* TO GLOBAL *
: SPROG ROLL :

EELE R LR E LI SR EE LS

*MOVE NEXT NAME ¥
* (8 BYTES) *

* TO *
: DATA VAR ROLL :
kAR AR R R

Section 2:

Compiler Operation

77

Chart CB.

G0362
FEERALHEEEXEERR
* PREP EQUIV *

* AND PRINT *

* ERRORS *
R e e L L

78

o *
>%,EQUIVALENCE

o¥e
A2 %,
¥ *o
. NO
*, o®
%, DATA
* g ¥
* YES
LA 2]
* *
* B2 *—>
* *
R

v
FERERBDHTRNENRHER

* CALCULATE *
* OFFSET FOR *
* EQUIVALENCE *
* VARIABLE AND *
* RECORD *
R e T e e]

¥ *o

T BAD *
*. DEFINITION

g o
*, o

e o¥

* NO

PREPARE EQUIVALENCE DATA

EREEAZHEIE R ERENR

* *
>% RETURN *
*

HHEER RN NN

HENRRCIHRER A HRRE
* *
* *
>*RECORD NAME AS *
* ERROR *

* *
e

<
v
o¥o
D2 *o
o¥® ALL ¥,
DATA *o NO
*o PROCESSED o« ¥—

v
EERRRE2HEXEREHNNR
*

SET UP
HEADING FOR
ERROR LIST

L e e]

kK K
* kK

v
ERERRHF2HRRRNREERR

PRINT LIST OF
EQUIVALENCE
x DEF ERRORS x

* *

NN X NN

v
HEAHG2HEEAERAER
* *
* RETURN *
* *

e

PRINT
ERROR SYMBOL

Chart CC.

G0361
HRNA]HRERRRNK K
* *
* BLOCK DATA *.

PROG ALLOCATION#
R R 2

#36102 oo
F

ALLOCATE BLOCK DATA

WA DWW NN NN
#CM ALL/0UT-CIA2%
W W Y W W W W N K
>% ALLOC ALL COM *
STRG,PRNT ERRS,
*MAPS PNCH ESDS *
LA SRS RS S S R S SR L E S

v
R T T

* PUNCH *
REMAINING
* ESDS IF ANY *

KK RK XK

v
HHERECOHERERE RN
SCALAR ALL CMA2¥
L e
*ALLOC SCALARS, *
* ADD REQUIRED *
* BASES *
R s R T

PP

R REDD KK KKK KK KK
ARRAY ALL CNA2
Fm N N — K N XK
ALLOCATE ARRAYS#
* *

* REQe BASES *
e R S

|
HRHRREDHH R HE KRR
* *

* FLIP
* EQUIVALENCE
* ROLL

3*

*

Xk KK K

R RRNR TR RNN KRN

LS 2 20
* *
* F2 *—>|
* *

XX HE v

*o
. NFO * o
¥ GROUP ON ¥
*e EQUIVALENCE
*o ROLL -®
*,. o®
Xe o

YES

v
KRR YD KRN HN RN

* PRINT *
BLOCK DATA
* ERRORS *

R

v
(22223
*06 *
* Ba*

L RELEASE
* ROLLS

EERRHEIHERHRRRRN
*

* RECORD
>% NAME + ERROR
* TYPE

*
BN NN NN N

*
*

PEE TR

BECAUSE

ALL EQUIV
DATA MUST

BE IN COMMON

Section 2:

Compiler Operation 79

Chart CD. PREPROCESS DUMMY DIMENSIONS

G0365
HEERADKHHRHHRHN
* PREP DMY DIM
* AND PRINT *

* ERRORS *
HEEEREREERER RN

v
EXERRB2ER I RE RN
*

*
* INITIALIZE * CHECK
* POINTER TO * DMY DIMENSION
* APPRO ROLL *
* * kR
3 I W * *
* C4 *
XK * *
* ' *x XK
* C2 *=> |
* |
XX \"2]
#036601 oo G0367 G0418 v
c2 *o I 33 H C 4 3 I3 336X X #
* . -
* ALL *o. YES o* * *
*e ARRAYS ¥ D%, > PRINT ERRORS
*.PROCESSED . % *. *
*o .
Ky o 33 I KK KN
* NO
} LR R]
1 * *
I * D3 *—>|
* *
v E v
¥ #36702 oo #36703
o *a D3 *

2 EEREEEDEFE XK HARH R
¥ NEXT ¥, * *
* RECCRDO MARKER

+*ARRAY HAVE *. NO *
* o DUMMY o ¥— >% ON NAMELIST *
*DIMENSTONS o % | * 1TEMS ROLL *
* g - [} * *
*e oF v HHERERERHARHHEERRH
* YES AR
* * XXX 1
* G2 * * *
* * * B4 *—>
i * XX * L |
v K v
o¥e v #36704 o¥e
E2 *o FHHRRE FHFRFH KK R ER E4 *o

* ARRAY

« A DUMMY OR

* o INCOMMON o %
*. ¥

P I—

EHEHEKFE2HKRHRER R
* *

* RECORD
* ARRAY NAME AS
* ERROR

LR R R R]

e e s 2 2

XXX |
#36602 v
HHRHHGH I H R RN
* *
* PREP ARE *
TO PROCESS NEXT
* ARRAY *

* *
FEEEFHH KR KKK H KRR

EHH

X223

80

* CLASSIFY NXT * % ANY ¥,
DMY IF ANY * «*MORE ARRAYS*. NO
>% WITH DMY DIM % *oWITH DMY DIM %
* PNTR TO ARRAY * %o IN THIS o3
* ON ERROR ROLL * ¥eLIST &%
HHEHRHHIIH TR T IR Foe oF
* YES
v
*RXH
* *
* D3 * v
* * HRERAF LXK RE R RN

HHXR * CHECK DMY DIM *
*NXT ARRAY-MUST *
*3E DMY IN SAME *
¥_IST OR IN COM-
MON RCD ERR'S *
EHEHRKREARRRKKHRNR

i
I

v
XK

XXX

HERHCOSHNREH AR H
*

>* RETURN
*

HH KK AR RRREKNRNK

436705 .%o
ES *.
o
o MORE
Sk, DUMMY -
*. LISTS %
* . o
*q

ok
I NO

v
*H RN

*Hk N

*
*

Chart CE. CHECK FOR UNCLOSED DO LOOPS

G0371
EEEERA2XEERER KRR
* PROCESS *
* DO LOOPS *
* *

LS 22 R S LR s s

v
HRRERBD X HXER XX
* *

FLIP THE
DO LOOPS OPEN
ROLL

% kK Kk K Xk
* ok Kk %k Xk

33 I 3 I XXX R

L8 &3

$#037101 oo $#037
cz

102

*o FRRENCIHERRRRRRNR

«¥ DATA *, *

«¥* ON THE *o NO *

#oD0 LOOPS OPENe ¥———D>%
oLL *

*q R . * ERROR LIST
* . ¥ *
*y o 363 3 3 I KX K XXX H
* YES
|
i |
v A
HEREEDD I H R HRRN XEEREEDIHHEX X XXX XX
* *
* MOVE BAD * * PRINT *
*LABEL TO ERROR * DO ERROR LIST
* LBL ROLL * * "
* *
I3 3 I I K HRXH ER E S R 2 2 kR 2]
1 |
v |
¥ |
E2 *q v
e¥ UNDE- ¥*, 33 K HE 3 MK H N
«*¥FINED MARK *. YES * *
e ON LBL ROLL o * RETURN *
*g ¥ *
*q ¥ I E R S s T TR
¥e o¥ v
* NO ¥ *
* *
* C2 *
| * *

v
LR RS 2R 2 2 2 22 2 X
*

* SET UNCLOSED
*DO MARK IN LBL
* ROLL GROUP

* ok kK Kk

*
S S ST 2 e]

|
|
|

v
% %%

¥

SET UP HEADING
FOR DO LOOPS

* %k K % %k %

PRINT ERROR LBL
ROLL

Section 2:

Compiler Operation

81

Chart CF.

G0372

W HIAD N KKK XHH
*PROCESS LBL AND¥
* LOCAL SPROG *
*

E e T T T

v
R]
* *

* FLIP *
* THE LBL ROLL *
* *
* *
33 I I I WK RN
EEE 23 l
* |
* Cc2 *—>‘
* *
X \"2
#037201 ok
ca *
* *.
«* DAT *. NO
*o ON THE LBL o%—
*a oL .
*o . |
*o ok v
* YES X
] * *
I * B4 *
] * *
1 EEER
|
v
XD D WM NN NN
* *
* MOVE *
* LABEL TO WORK *
* ROLL *
* *
9 3 I I I I RN
|
|
v
o¥a $037202
E2 333 E 33 I KN KK
¥ * o * *
«* LABEL *. YES * SET FIRST 1/2 %
o DEFINED o >* BYTE OF LABEL *
e o * GROUP TO ZEROD *
* g ¥ * *
¥ 33 33 36 3 36 36 I K KX
* NO
1
|
|
|
|
v
I D I WK
* CLEAR *
* FIRST BYTE OF *
* L L *
* GROUP-MOVE TO *
*ERROR LBL ROLL *
636 36 3 3 I I KKK
|
v
X XK
* *
* K3 ¥
* * G3
K o ¥
o* Jump
*.TARGET LABE
*o
*a
P
* * |
* H3 *—>|
* *
33 % ¥
#037203
B3 X H Z KKK
MAKE NEW BRANCH
* TABLE ROLL *
* ENTRY AND *
* RETURN PTR *
* TO IT *
33 3 33 3 I W KRR
|
|
HHRRE TR KRR R ERRR
THE TAG * REPLACE *
FIELD OF THE * LABEL GROUP *
POINTER STILL *WITH POINTER TO%
INDICATES THE * BRANCH TABLE *
TYPE OF LABEL * *
363 X I XN
R 223
* L |
* K3 *—>|
* *
XXER 1
$037205

82

v
RN TN NN R R
* *
*
*
*
*
*

*
IR

ok

CONSTRUCT BRANCH TABLE

MOVE *
GROUP TO TEMP *
ROLL *

1
v

ROLL

2323
s

#037206 v
EXT T -V SRR

*

*
* corPY *
* TEMP ROLL TO *
* LBL ROLL *
* *
363 3 3 3 3 3 I I N ¢ K

v
N K C G N NN H K
* *
*SET UP HEADING *
* FOR UNDEFINED *
* LABELS *
* *
33 3 I RN

v
HRHEEHDL X’ HX XK TR TR
* PRINT *
UNDEF INED
* LABEL LIST *

R H KKK KK KK

|

v
KKK 4 KKK N K
* *
* FLIP *
THE LOCAL SPROG
* ROLL *
* *
LR e e

XX

* Fa *—>|
* * |

kXX V]
$037207 .*.
Fa4

. ON THE
*o LOCAL SP
*o ROLL
*e o
*o

*

ROG
o*
T YES

|

I

v
KK GL R E KRR
MOVE NEXT

*
*
GROUP TO *
CENTRAL AREA %
*
*

K K KK K

R T T

|
: l
I

v
KRG KR KKK KKK
*MAKE NEW BRANCH
TABLE RGLL
* ENTRY AND *
* RETURN PTR *

*
*

*
*

* T0 IT
e

v
FHR KK LR KRR
* *

* PUT POINTER *
#ON COMMON DATA *
* TEMP ROLL *

* *
T TS

K

c2

PR

EERE

PRINT ERROR LBL
ROLL

4037208
RS RN RN RRK
* COPY THE *

* COMMON DATA ¥
>% TEMP ROLL TO %
THE LOCAL SPROG#
* *

ROLL
KR HH KR H KR
i
HH KRGS KKK H K
* *
* RETURN *
* *

NI NRH R

Chart CG.

G0374

WAL NN NN RN
* BUILD *
* PROGRAM ESD *
* *

EE O e e

v
P Y e e e e
*

INITIALIZE

* ok K kK

*
*
*
*
*

R R e e 2

a¥gy
*e
«¥* DATA %,
«% ON ENTRY %, NO
NAMES *
* ROLL o
*

¥

Ko o

T YES

Py

#037401
W IR 2 K KRR NN
* *

¥FLIP THE ENTRY *
*NAMES ROLL AND *
*MOVE ONE GROUP *
* *

*

F
L e e e

v
WD RN N RN
* SAVE *
*GROUP ON COMMON¥
*NAME TEMP ROLL »%
* ADD BLANKS TO *
*

* NAM
R T R T

EX

* ok K

*
G2 *—>
*
EE 223 |
#037002 v
****(;2 —}l*i*i**l*
* PUT 4 SYMBOL *
*IN FIRST BLANK *
* OF NAME *
*
*

*
T T e T T)

v
N]
* *
* PUT PROGRAM ¥
* NAME IN PUNCH 3
BUFFER *
*
*********’*i*****

|

i

v
R N

* *
PUNCH PROGRAM
* NAME *

P e

v
HHXR

XXX

ALLOCATE HEADING AND

PUNCH ESD CARDS

EHHKR

XX

v
P - S e
*

SET
UP FOR LD ESD

PEEE RS

*
*
*
*
*

L R e R T TR

v
R TS e]
* PUNCH *
PROGRAM NAME
* AS LD ESD *

e]

v
NI D TN KK KRN NI DL KR KRN H
* ADD *

* SET UP *
* PROGRAMMER % * LENGTH OF *
>*¥SPECIFIED NAME * * INITIAL PROG *
* IN CENTRAL * *CODE 1O PROGRAMX
* * BRE AK
EE 2222 SRR SRR SR 2SS ******‘l*ll‘lll*l*i
R 2]
l * *
v * E4 x—>
LR 2 * *
* * R Vv
* G2 * #037405 o%.
* * E4 * g
IR ¥ *
+* DATA LEFT *. NO
*. ON ENTRY o%—
*. NAMES %
* ¥
*e o
* YES
v
RN LW NN
* MOVE GROUP TO *
* CENTRAL AND *
* COMMON NAME %
* TEMP ROLL %
* *
I I NI NN
i
v
*;**lga*»»***&;**
*
¥ BLANKS TO
NAME, ADD ENTRY
* CCDE_TO PROG ¥
BREAK
i*****li{****iﬁ**
{
i
EE RS TR S S SRR LS
PUT
* ESD IN *
PUNCH ESD BUFFER—-PUNCH
* IF COMPLETE *
CARD
EEE RS R R SR LR L
|
|
v
K
* *
* E4 ®
* *
K

PUNCH REMAINING
ESD

Section 2:

#037406
i****ES*******!**
* oPY

* CDMMDN NAME *
>% TEMP ROLL TO *
¥ENTRY NAME ROLL#
* *

R e

v
MR HHE SN IH KRR
* PUNCH ANY *
REMAINING ESD
* CARDS *

P e

v
HHH KRGS H IR RN N

* *
* RETURN *
* *

L

Compiler Operation

Chart CH.

G0376

FEEEAD IR HE AR
*

*
* ENTRY NAME *
ALLOCATION *
FEREEXEXRRXERER

*

«* SOURCE
*.A SUBPROGRAM
*.

*

*o ¥

*.
o *. YES
*.A SUBROUTINE %

*.

o o

*a oF
* NO
|

v
AERKRDIEERRREREER
* *
* FLIP *
THE ENTRY NAMES
* ROLL *
* *
EE 2 2SS S S22 S 2 S
LR 23

* *
* E2 *¥=>
* *

*<—

EZ 2 23
#037601 .
E2 * o

* * o
- DATA ON « NO
*o THE ENTRY - ¥X——
*NAMES ROLL o % I
q o]

*o

P E———

Y s
* *
MOVE _NEXT GROUP
* TO THE COMMON *
*NAME TEMP ROLL *
*

*
HHH NI N HR RN REER

i
i

G2 *e

ok
«%* SCALAR *. YES

D RN XA
* *
* REGISTER NAME *
* OF ENTRY FOR *
* ERROR LIST *

*

*

*
s e

|

|

v
HEEERKJ2REXLER KR
* ADD *
* SCALAR ROLL ¥
GROUP FOR ENTRY#
* NAME — DEFINE *
* *

EEEERRERREXREHERR

XXX

X RE

8u

o v
* YES FERE

EEXY
o
>

XX

CHECK ASSIGNMENT OF FUNCTION VALUE

HREXDIEEREELEKRN
* *
>* RETURN *
* *

e

HAEECTHAERREERR
= *
>* RETURN *
* *

HEEEHEHEERR AR RN

* Kk

AKX
* *
* G3 *
* *
*xxx
|
|
|
#037602 v
FEERERGIHXXE RN
* *
* SET MODE *
>*% OF SCALAR IN *
* POINTER *
* *
33 3 NN KRN

P ———

XX HH T HR IR KN NR
* *
* PUT POINTER *
*ON COMMON NAME *
* TEMP ROLL *

*

*

*
e s

v
EEEEFJIEERRRXERER
* *
* ADD SCALAR *
*TO EQUIVALENCE *
* ROLL *
*
*

*
EEREREHEERRERRER

EXRE

* ok K
m
N

* k%

EEER

EXEE
* *
* B4 *
* *
*XER
#037603
EREXXDLAEXR XX RHXR
* COPY THE *
* COMMON *

*NAME TEMP ROLL *
* TO THE ENTRY %
* NAMES ROLL *
R e

[Py o—

EEERRCLEREERHRHRR
* *
* PUT A MARKER *
* SYMBOL ON_ *
* EQUIVALENCE *

*

*

* ROLL
HEEHEEERHEHEREHRK

|

v
XWX ED G R IR R R R
* *
*SET UP HEADING *
* FOR FUNCTION *
* ERROR LIST %
*
*

*
RN HH RN ERR

v
HEAEHRCHREERRERERRRE
* PRINT *
FUNCTION
* ERROR LIST *

EHAEEEEEERERKE

v
HERRFLEHE XK XKLL
* *
* RETURN *
* *

HREREEFEERNR N

ALL ENTRY NAMES
TO A FUNCTION

ARE
EQUIVALENCED

PRINT
ERROR SYMBOL
ROLL

Chart CI. COMMON ALLOCATION

G0377

R KA D KKK KN
* COMMON *
* ALLOCATION *
* AND OUTPUT *

L R e R e

|
v
FEEENGDHHNERR RN KR
* *
INITIALIZE

* *
* FOR COMMON *
* ALLOCATION *
* *
* *

IR K N KR

<=

KK D2 KKK KKK H N
* *

* MOVE NEXT *
*NAME TO COMMON *
* AREA ROLL *

* *
EEEEERRAEALEARRRN

XX

* *

* E2 ¥—>
*

ALREADY ON o® *o
COMMON ¥ NEXT *o NO
ALLOCATION *a VARIABLE IN o%——
ROLL INDICATES *o ANOTHER o%
THIS *.BLOCK*
Ko o
* YES

|

v
T
* *

* RECORD *
*NAME AS COMMON *
* ERROR *
* *
E T

I <
#037702
ER RS PEL RS S L 2l
* ALLOCATE *

* STORAGE FOR %
* VARIABLE, RE- *
* CORD ON GEN'L *
ALLOCATION ROLL¥
FHEH KNI KN

|

|

i

v
XK

EX

XK
* Bs *
*

L

$037706

#037709
3% W C NN RN
* CLEAR *
* CONTROLS AND *
># ROLLS FOR *
ALLOCATION *
*
*

* %

P2 I T I T 2 Y

v
R KDY NN RN K KRR
*

*
*COPY ALL BLOCK *
*NAMES AND DATA *
*BACK FROM TEMP *
* ROLLS *
R e s T

& —

HERKRCLHEEREKRERRHR
#* ALLOCATE ALL *
* EQUIVALENCE *®
*DATA REFERRING *
* TO COMMON *
* BLOCK *
[R R L

| 40377

v
AEREDIHERENEERH®
* *
* RETURN *
* *

HEEXEEEHEREERER

>%.

*oALLOCATED . * |
*o o %

o o% v
* NO Exx%
* *
I x E2 *
| * *
E2 X 2

4037703

v
HEEHHGIHH KN HAEN
*

COPY BLOCK
NAME AND DATA
TO TEMP ROLL

R LR
FEEE RS

HEEAEEEH KKK N
|
|
|

v
R

* kR

11 v
FHAR KDL HHKEIKAEH XK

* PUNCH *
ESD CARD FOR

* BLOCK *

EHERRHEHREHRE

|
v
¥,
E4 *.
o *.

* *e NI
*o MAP OPTION &%
»*

v
R e

* PRINT *
HEADING FOR
*MAP OF BLOCK *

HHREE KK ERK R

|
|
[«

v
EEE XS S RS R RS SR
% COPY GEN'L
* ALLOCATION
*ROLL TO COMMON
* ALLOCATION
* ROLL
LRSS SRS S

|
f
|

TR

v
e T

* *
PRINT MAP

WK KK IR

Py—

HEHKREH PG HEHHEREEH KK

* PRINT *
ERRORS FOR
BLOCK *

FHERERHRHRK KRR

v
XKL KKK R HHH
* COMMON *
*ALLOCATION AND *
* OoUTPUT *
HEEREKEEHEXRRFR

Section 2:

RETURN TO
PROCESS NEXT
COMMON BLOCK

Compiler Operation

85

Chart CK.

EQUIV
ALLCCATION

INTEGRATE

PRESENCE ON
GENL ALLOC
ROLL INDICATES
THIS

86

EQUIVALENCE DATA ALLOCATION

G0381

HEERAD R HRHE RN
* EQUIV. *
#* ALLOCATION *:
PRINT ERROR %

L Ry T

R E AT R RN RN

* CLEAR *
* OBJECT ¥*
>* MODULE *
3 LOCATION *
* OUNTER *
e s 2

. ON - NO
‘e EQUIVALENCE o¥—y
o ROLL o
* . ¥ 1
*e ok v
* YES EX 2 22
* C5

1 ERHKE

v
KK C 2R KKK
* FLIP *
* EQUIVALENCE
* ROLL AND
#* INITIALIZE
*

*

HRER v
#038501 %
D2 *.

ox *e
<% DATA *. NO
%#.T0 PROCESS ON¥——
. ROLL o
, - |
e o¥ v
* YES R R
* B4
*

XHRR

4038503

FHXFHF2HERRERHE XX
ALLOCATE *
* ABSOLUTE ADDR *
* RECORD ON GEN ¥
* ALLOC ROLL *
* *
*

*

AR e T

i
1

v
HHEAEG2IERHNXERHH
* *

* INCREMENT *
PTR TO GET NEXT#
* GROUP *

*
F KRNI KN

*

*

¥,
E3 *o
-¥ *e
<% CONFLICT ¥, NO
>* ¢WITH PRESENT o%—
o SET -
o o
Fa ¥
#* YES

P —

HH R HF FHEHEEHRK R
* *

* RECORD
*NAME FOR ERROR
* LIST

EEEE Y

*
I RE R

i<

|

I
438902 v
W NGT RN NN RN NN
* *
* PRUNE *
ENTRY FROM WORK
* *

* *
KA NK NN RH

R H

EEX S
@
»

EEEY

EHER

G0384 v

HRXHHDAIEIERE R
* ALLOCATE ALL *
* SETS WITH *
NAMES LISTED ON¥
*¥GEN ALLOC.ROLL *
* 4+ MOVE INFQ *
R e]

v
N 4 NN E N
* *
* INCREMENT %
*PROJECT MODULE *
* PROGRAM BREAK *
3 *

*

HRERM AR HERE RN RN

P ——

R e e s
*

*
*COPY INFO GENL *
#* ALLOC ROLL TO *
* SOURCE ROLL %
*

*
e T I e ST 2T

|
i

v
HEERKEGLAEXE XK ERHR
* MAKE FINAL *
*ALLOC AND MGVE *
* INFO TO EQUIV *
#ALLOC ROLL FROM
#* GEN ALLOC *
LR T T2 T

|
v
P

EX 223

*
*
*
*
*

*
*

**

*

*
*
*

EEKER

LR
a
w

* k%

XHER

v
HEHHCHHEE RS HRXKRN
SAVE LDCATION *
CNTR AS FIRST *
ADDRESS AFTER *
EQUIV DATA ¥*
*

HAEFHENERRR KRR
v
FREEDSHHEHHNEHEN N
PRINT *
EQUIV
* ERRORS *

HEEREFRRRRERR

|

|

|

i
EREKESKERERRERH

*
RETURN *

EXHEEEEERRR RN

Chart CL. SAVE AREA, BASE AND BRANCH TABLE ALLOCATION

G0437

oADK
* BASE AND

* BRANCH TABLE

* ALLOCATION
BN IN NN RN R

v
EE 2 2 2 VR L L R L s
*SAVE _BASE TBL.
* PTR_AND

* DISPLACEMENT

* FOR START OF

* SAVE AREA

EE 2 RS E S S S 22 R L)

|
l
l

* K K

EEEREE R

v
L e L e e THIS VARIABLE
* * IS USED
* INCREASE * TO HOLD OBJECT
* PROGRAM BREAK ¥* MODULE ADDRESSES
* BY SAVE AREA * BEING ALLOC.
* SI1ZE *
[et T Y

v
R 22 PR L Ll R L L S
* SAVE BASE TBL *
PTR_AND DISPLA—
* CEMENT FOR *
* START OF BASE *

*

* TABLE
L e e e e

v
P R
*

* INCREASE

* PROGRAM BREAK
* BY BASE TABLE
*

EEE RS

SIZE *
e

v
R e
* *

* CONSTRUCT

* REQUIRED BASE
* TABLE ENTRIES
*

BUILD
ADDITIONAL
BASES

* K %k

R s T T T 2

v
HXENHGD R TN KN NKR
* SAVE BASE TBL *
*PTR DISPLACEMT *
* FOR START OF *
* BRANCH TABLE *
* *

e

v
HEKERHD RH KRR XN NR
*INCREASE PROGe
* BREAK BY
* SIZE BRANCH
*TABLE AND MAKE
* LABEL ENTRIES
LR R s

* %k kK ok

< —

HRERE Y XK KN ER N
* * BUILD
* CONSTRUCT ADDITIONAL
* REQUIRED BASE BASES

* TABLE ENTRIES

LER]

* *
L e e e

v
EE 221 - 22 22 o kLt
* *
* RETURN *

*
W IH RN KRR

Section 2: Compiler Operation 87

Chart CM. ALLOCATE SCALARS

G0397
EXEERADHERRERXRR
EEREAL EREHERRRR *

* * *
¥SCALAR ALLOCATE¥—————>% INITIALIZE
* * *

ok Kok %

KKK EER *
KR TR NN

%X H
X HH
$039707 v
FRERED D HEHXNEEXEN
*

* SET
* MODE OF NEXT
* SCALAR

LEEREE]

*
HRERRNK R RN NRRRN

<=

«*SEE NOTE 1
NOTE 1- E2 *o
THESE QUESTIONS ¥
SEPARATE 8 AND o *e YES
16 BYTE *4,COMPLEX MODE o %————!
VARIABLES *g ¥ A

v
«*SEE NOTE 1 1
*o i
¥ *eo
DOUBLE *
*. PRECISION
*o MODE

YES

o ¥

. B

e o ¥
* NO

o¥g
G2 *o
¥ *eo
¥ *. YES
*oSHORT INTEGER. *:
*o *

H2 *eo
B *o
. *, YES
¢SHORT LOGICAL.
*g ¥

4039708 v
LS SRR NFE LR L LS L L s
*

*
* MOVE GROUP TO *
* FULL WORD *
* SCALAR ROLL *

* *
I I NN

LR L 22
* *
* K2 *—>
* *
* kN 1
4039705 v
PR DR AR
* *
* PREPARE *
TO PROCESS NEXT
* SCALAR *

* *
R RN RN NN

XX XX

LTS

88

$#039701 o¥e
A3 * o

% *o
o¥* ALL *o NO
D%, SCALARS o
o PROCESSED« %
*a .
X, oF
* YES

#039706 VSEE NOTE 2
HHRRRC FHHRNXEXRAR

* *

* ALLOCATE FULL *

* WORD SCALARS— *
*RECORD AND MAP *

* *

*

e T T

$#039704 SEE NOTE 2
R RIS E S S S 2SS 223
*

*

* ALLOCATE *
>% STORAGE AND %
* RECORDs PRINT *
* *
*

e e s

v
XX

* kK
x
N

kK

HRER

4039703
EREE RGN RN RN
* *
* MOVE GROUP TO *

>% HALF WORD *
* SCALAR ROLL * !
*

*
336N XH R H v
LS 2
* *
* K2 *
* *
E2 223
#039702

FREERHTHE TR RHERE

* *
* MOVE GROUP *
>%¥TO BYTE SCALAR *
* ROLL *

* *
HHEREERERRN RN AR

“x. ¥
¥o o ¥
* YES

v
222

EEE

*
* D2
*

EHXX

ERERHCHERAREH RN
* *

* ALLOCATE HALF *
>%* WORD SCALARS— *
*RECORD AND MAP *
* *

*

s T T o

NOTE 2-

IF DURING PASS ‘1,
NO MAP IS PRINTED
AND ALLOCATION IS
NOT RECORDED FOR

COMMON AND EQUI-

VALENCE SCALARS,

INFO IS PICKED UP
FROM OTHER ROLLS

* X
* *
* J2 *<—
*
EEER YES
o %o
AS *o
¥ *eo

ok *
>#4CALL BY NAME
. ¥

*o o
*e o¥
* NO

f

v

X e
* *
* D2 *
* *
*HER

SEE NOTE 2
EERAERCSHER IR HEXHIE
* *
* ALLOCATE *

>* BYTE SCALARS— *
*RECORD AND MAP *
* *

*

e T)

v
HREADS KR HHEREEH
* RETURN *
* *

LR O

Chart CN. ALLOCATE ARRAYS

G0401
HEHHAD KRN NRHN
* ARRAY
* ALLOCATE *
* *

HEREERHRN R TR NER

v
R - R e T T]
* *

* *
* INITIALIZE *
* *
* *
LR 22222 222 222

L2 2)
* *
* Cc2 *—>
* *

IS
#040101 $40104
c2 RN RRNC TR RN RN RN
¥ HREHCLHIRIR R IR
¥ ALL *. YES * PRINT * * *
o ARRAYS - H—> ANY PARTIAL —D> RETURN *
«PROCESSED« * LINE * * *
*o ¥ RN RN NN RN
Fe o L e
* NO
v
oo

D2 *a
o% NEXT %o
«* ARRAY IN *, YES
#oCOMMON EQUIV. o *——y
#*e0OR DUMMY <%

, o
X, o* v
* NO EXRE
* *
* H2 *
* *
R

«&ingz!&**&&&**
* *
* ALLOCATE *
* STORAGE AND *
RECORD LOCATION¥

*
L e e e T

v
ERRRF2 M N RN RENR

* ENTER *
* INFO IN ARRAY *
* MAP, PRINT *

* COMPLETE LINE *
* *

L e Sy s

v
RGN NN XREN
*

*
* CALCULATE AND *
RECORD BASE PTR¥
*AND DISPLMT IN *
* CENTRAL *
P e N I e T Y

EE T
* *
* H2 *—>
* *

XN v
#040102 ¥
H2

v
HREERJDEEEERHRRRR
* *
*
*
*

* *
L s

*
REPLACE GROUP *
ON ROLL *

LA E Sl
*
* K2 *—>
* *
LA A S
#040103 v
FHIER DK REHERN
* *
* PREPARE *
TO PROCESS NEXT#
* ARRAY * l
* *
LA 2SS RS s st v
L2
* *
* C2 *
* *
LA st

Section 2: Compiler Operation 89

Chart cCoO.

90

G0402

33 A D XK
* PASS 1 GLOBAL *
*SPROG ALLOCATE *
* *

33 36 9 I I 36 3 3 X I X H X

\
KRB K KR X
* #*

* ALIGN TO *
* FULL WORD *
* BOUNDARY *
* *
03I I N R AR

v
HHEEXNRCHHHRHH AR
*DETERMINE BASE *
* PTR AND *
* DISPLACEMENT *
FOR PRESENT LOC#
* *

3 I 3 33 I I I N KR

|

|

v
¥ XD 2 WX N HA NN
* COMPUTE *
* LENGTH OF *
* OBJECT MODULE *
*SUBPROGRAM ADR *
* *

*

3636 3 3 3 I3 I3 e XN R

WK 2 I RN
*COMPUTE LENGTH *
* OF OBJECT *

* MODULE ¥*
* SUBPROGRAM *
* DD *

A R
3 I K I I SN

1
\

R R D2 KRR H AR
* *
* RETURN *
*

*
33 36 3 33 I I I I K XK K

ADD BASES FOR SUBPROGRAM ADDRESSES

BUILD
ADDITIONAL
BASES

Chart CP.

G04a42

L2 22T V-ESZ I L2 222
* SPROG ARGe *
#* ALLOCATION *
* *

3 I3 I 3K XK

B2 *eo

¥ ZER
%o ARGUMENTS %
* o ¥
* g ¥
*e o
NO

e

WK C 2 W H NN
* *

* ALIGN TO A *
* FULL WORD *
* BOUNDARY *
* *
* *

36 3 I I I I X KN K

1
!

v
HERKRDD X EEE XX XK
* DETERMINE AND *
* SAVE BASE PTR *
* AND DISPLACE- *
*MENT FOR START *
* OF ARGUMENTS *
T e T e e e

v
W D NI RN
* INCREASE
* PROGRAM BREAK
* BY SIZE OF
*ARGUMENT LISTS
*

* ok k Ak ok K

3 33 3 9 3 I I I KX

v
HHH R D2 KRNI N R
* *
* CONSTRUCT *
* REQUIRED BASE *
* TABLE ENTRIES *
*

*
3 I I I NN

|
|

\
HERRG2 RN HH R RRN
* *
* RETURN *
* *

%3 36 I I I R H

*o
*e YES

ALLOCATE SUBPROGRAM ARGUMENT LISTS

*
> %
3*
R 22 S 222 S St

ER R RICR R SRR Skt
. *

Section 2:

Compiler Operation 91

Chart CQ.

92

R
$044301 %,
c2

*HHE
#044302 o¥e
H2

G0443

A D NN NRN
*
* PREP *
*

* NAMEL IST
EE R e e s]

v
FRRXAB2RE NN RXRRR
*

* FLIP NAMELIST
* NAMES AND
*NAMELIST ITEMS
*

L a2 22

KKKk

XXX
* *
* C2 x>
* *

v

*o
¥ *o
¥ *o NO
.ON THE NAMES ¥
LL o*

*. ¥
*

. o¥
* YES

v
ii*Dzi**ii***

* ALLIGN TO *
* FULL WORD *
* BOUNDARY *
* *
LR R L s s e

v
{EZ***I******
*

*NAMELIST NAMES
* ROLL GROUP TO
* COMMON DATA

* TEMP ROLL
FRHIRKEINR I HK N

* Rk Kk

v
HRERAF2HR KRR ERX R
*DETERMINE BASE
* POINTER AND
* DISPLACEMENT
* FOR PRESENT
* LOCATION
HRHAXIR N TR HRN

PEEETEY

\
B T
* *

* INCREASE *
* PROGRAM BREAK *
PUT ZERO #*

DN WORK *
**********«******

XK
* * |
* H2 *—)1
* *

v

*o
- *

o

*.0N THE lTEMS

*g ¥

¥ *o
<% ALREADY *. YES

*. DEFINED o%——
%o . |
* g ¥ |
*o o¥ v
* NO %
] *
1 * 8
*
XK
v
KRN W NN NN
* *
* R ISTER *
* VARIABLE AS A ¥*——y
* SCALAR * |
* * |
EE T IS 22222 SR \"2
EX 233
*
* B4
*
3R

PREPARE NAMELIST TABLES

#044307
LR SR Tect 2 S Rt st
* COPY THE *
* COMMDN DATA *

>* TEM

I3 *
*NAMELIST NAMES *

ROLL
l*ii*il}***l*&**l

v
D TN NN
* *
* RETURN *
* *

EREHERERRRNERHR

$#044306
T RN EE K
* MOVE MARKER
* SYMBOL TO
>% NAMELIST
* ALLOCATION

EEEE RS

* ROLL
R e s e

v
RS S NEE LSS 2 S
* *
* INCREASE *
* PROGRAM BREAK *
* BY ENTRY SIZE *
*
*

GN WOR! *
2 e e E s

*
* i
* v
*XRH
* *
* c2 *
* *
XRRR
*
*
*

¥

*
¥eo AN ARRAY
*o .
*. o
*e ¥
* NO

v
HRXHENDGIH X AN KKK
* *
RECORD VARIABLE®
* NAME AS *
*NAMELIST ERROR *
* *

LR

DS

HEER

*
*
*

#044304
WRERRCSH R NN NN
* DETERMINE
* NUMBER OF
>*DIMENSIONS FOR
* SIZE OF TABLE
=

'EEEEX]

ENTRY
HEEREEEXREERRR XN KRN

H XK
* *
* DS *—>|
* *

X
4044305

v
EARRERDSEK XX ER XK
*
ADD 12 TO *
SIZE OF ENTRY *
ON WORK *

K ok k

*
e e e S R

v
HHHHESHH KRN AW R RN
* MOVE NAMELIST *
* ITEMS ROLL *
* GROUP TO *
* NAMELIST *
ALLOCATION ROLL
EE T2 T T R

Chart CR.

THE PRESENT
POINTER IS

A NEW GROUP

ALLOCATE LITERAL CONSTANTS

GO44a

EHEEKADKEER LR
*LITERAL CONST. *
* ALLOCATION *
* *

R R T T T T

v
I R]
* *

* INITIALIZE *
PTRS TO LITERAL
* CONST ROLL *
*

R T e I TR)

EREN
* *
* C2 *—>
* *
E222S v
$044401 ok
c2

-¥

* ALL *e YES
*o CONSTANTS
* o PROCESSED « *
*, 3
E -
* NO

v
EEREEDD XX RERRERRR
*

COMPUTE AND
SAVE PTR FOR
NEXT GROUP ON

LR R
LEREE R

ROLL
LR s e e

v
¥

E2 *o
«* PAUSE %,
- OR DATA
*<STMT LITERAL
*, ¥

*

*, ¥
*o o
* NO

v
L I T N e A
* *

* INCREASE *
* PROGRAM BREAK *
*BY NOe. BYTES IN%

*

* PLEX
FI TN XKL

v
HRHARG2 RN NI NN RN
*DETERMINE BASE

* FOR PRESENT
* LOCATION

*
* PTR AND *
* DISPLACEMENT *
*
*
Ra R R e s e 2]

#044402
E 2 NPFEZISZ S22 223
*THROW AWAY BASE®
* PTR DISPLMT *
* AND PTRS TO *
* THIS LITERAL *
*

*
I NN RN N

XX

RN R

v
Ly T
MOVE LITERAL
*TO OUTPUT AREA *
PUNCH IF CARD
CORRECT

* *

)

v
W W I C QNI KR
* PUT BASE PTR *

* AND *
DISPLACEMENT ON#%
* LITERAL CONST *
* *

ROLL
LR e L T

X
* XN

XXX

* K K
m
>

* % %k

EEER

#044404

v
RN REL I HH RN RR R
* *

* THROW
* AWAY OLD
* POINTERS
*
*

EEE TR

e

*,
¥
*o PASS 1 - ¥——————>%
* * *

<—

HERRERGLERERER RN X RN
* PUNCH *
ANY PARTIAL

* CARD

EEEREXKREER AR

v

EE TS S 2 22 20
* *
* RETURN *
* *

e

Section 2:

HXRKEFSHHK KT
*

RETURN *

*

R

PUNCH
REMAINING
TXT CARD

Compiler Operation

93

Chart CS. ALLOCATE FORMATS

G044S
EEEEAZHHERERE SR
*

FORMAT *

ALLOCATION *
e e R 2 T

*
*

I

v
HRERKB2HR RN R
* *

SET
POINTER TO

*
BUILD FORMATS *
FORMAT ROLL ¥
*
*

* %k % ok

R S

X
* *
* C2 *—>
* *
HXXH v
#44601

¥

*o NO
*

HRRAEDDERER R AR K
* COMPUTE AND %
* SAVE POINTER ¥
* TO NEXT *
* FORMAT *
* *
* *

GROUP
L2 S e 2 2

I
f

v
HREKREDHHHEHRXEER
* INCREASE *
* PROGRAM *
* BREAK BY *
NUMBER OF BYTES¥
* IN FORMAT *
F I KN KR XH K

$44602

HEEHERG2REHR KR RHRHN
MOVE FORMAT

COMPLETE
S et 22

94

. *.
<% PASS *.
1 OPERATION %

*

FORMAT

*. TO PROCESS

* o ¥
*. o ¥
*e o

* YES

P ——

ERREKEIHRER KR REAR
¥* *
* OBTAIN *
NUMBER OF WORDS
* FOR FORMAT %
¥* *

R e e

v
HERERFIHRHE LR RE XK

*CALCULATE BASE *
* *

AND
* DISPLACEMENT *
* FOR FORMAT *

* *
R

v
HRKHRGIH TN HH RN
* *

* REBUILD

* FORMAT ROLL
*WITH BASE PNTR
*

ok ok kK

R S R 2

v
R e 3

* PRINT FORMAT %
MAP, IF
* OPTION *
SPECIFIED
KWK IR

R EE

* kK
o
w

LR

XRAE

« NO
o *—

$a4

i
|
I
|
|

#o4

502
EHEEEADLEHRHEIHE R
*

* NOTE

#* ADDITIONAL
*BASES REQUIRED
*

R TS e T T
v
FRHRCHRERAERERE

*

* RETURN
*

L R T 2T

4503

*
*

KoKk Kk

*
*
*

R e

>

* PUNCH ANY
DATA LEFT ON
* TXT CARD *

X R EHREHKE

*

ERHREEDSH XX KR HRR
* PRINT MAP *
> LINE

* REMAINING %

RN R KRR

P J—

HERXESEERREREER
* *
* RETURN *
*

R

Chart CT. MAP EQUIVALENCE

G044l
ARKKAZ KR FR X HHR
* *
* EQUIV *
* *

HHERRH R KR KRR

PP —

*. ARFABIHRRRERRRKR
*o NO

¥ ANY * *
+ EQUIVALENCE > RETURN *
*. DATA * * *

* o* HHH KKK E A ERR

v
P e

* PRINT *
HEADING FOR
* EQUIV MAP ¥

R R e

v
E o e T
DETERMINE DELTA¥
FOR EQUIVALENCE
* ADDRESSES DCB *
* TO BASE TABLE ¥
*

* SIZE
RS S e S L E]

\

v
HHRRIE DN XX HERERN
* *
* FLIP THE *
* EQUIV *
*ALLOCATION ROLL¥
* *
BN NN NN

EE 223
* *
* F2 *—>
* *

Pryey v
4044101 ox. $044102 v

F2 *, HXRRHE ZHRHHR RN RN

«*DATA ON¥%, * *

coP
COMMON NAME

o*

EQUIV
%o ALLOCATION
*o ROLL

o o

*
— *
o¥ * EQUIV ALLO-
*
*o *

o XHEEHHEHHHHTEH N
* YES

v v

EHEERG2EHEER XX XH ERERRGIHRRER XX R
DATA 1 HOLDS * MOVE NEXT * * *
THE ADDRESS * GROUP TO * * *
0OF THE * CENTRAL » * *UPDATE PROGRAM %
VARIABLE * INCREASE * * BREAK *

* *

* *

* *
R TS s R EE s T T

‘.
l
1

v v
33 H 2 R R RN 3 H T NN
* *
* ENTER INFO IN * * PRINT *
* MAP, PRINT IF * PARTIAL LINE
* LINE COMPLETE * * OF MAP *
* *
EE SR RS S S SRS EEZ ST 2 TS

i |

|

v |
WK PO KRR ER v
*DETERMINE BASE * R RN RN NN
* POINTER AND % * *
* DISPLACEMENT * * RETURN *

*

* FOR VARIABLE *
* * FHEREEEHHRRRRHRN N
R R L

I
l

v
HRRRRKDEHEE XN RRHR
* PUT GROUP *
* FOR VARIABLE *
* ON COMMON F——

* NAMES *

* TEMP ROLL *

e v
*EER
* *
* F2 *
* *
*wER

Section 2: Compiler Operation 95

Chart CU. ALLOCATE SUBPROGRAM ADDRESSES

G0403
HEREAEERRRXRER
* *
* GLOBAL SPROG *
*

* ALLOCATE
XEREEEEEERNHARR

v
EAEERBOREERRRREEN
* *
* FLIP THE *
* GLOBAL SPROG *
* ROLL *
* *
FHI NIRRT N RN
EERE

* *
* C2 *—>
* *

R v
#040301 P #040303
c2 *q HEHRKRCIEEEREERERR EERERCHRRER TR REXR
o* * COPY COMMON * * *
«* DATA ON * DATA TEMP * * FLIP *
*e THE GLOBAL > ROLL TO * >* THE USED LIB *
*. SPROG * GLOBAL SPROG * * ROLL *
*eROLL o% * oLL * * *
*, ¥ EE 22 2SS 22 Rl EE 22 222222 S22 22223
* YES
X XR
*
i * D4 ®—>|
l * *
L 2 2] \"2
v 4040304 ¥ 4040307
HERREDD RN RN D4 * g HRXRREDS R RN RN X RN
* * .* *o * COPY COMMON %
* MOVE NEXT % «* DATA ON *. NO * DATA TEMP x
*GROUP OFF ROLL * *oTHE USED LIB o*——————D>% ROLL TO *
* TO CENTRAL * *. ROLL o* * USED LIB *
* * *o ¥ * FUNCTION ROLL *
I I RN *, ¥ FRERREEXRERRREEEAR
T YES i
’ |
'
v |
o*e v
EEAKREIHHHRHERERE Ea %, EAXAXRKESHIXERRRERNR
* * ¥
* * % INLINE * PRINT PARTIAL *
>*INSERT ZERO TAG¥ *. FUNCTION LINE OF SPROG
* VALUE * *e i * LIST IF *
* * *. o* I REQUESTED
ESE 22 2 2222 222l 2 * e oF v ERFREREXEENRR
* YES 3% K
| o |
| * H3 * |
| * * |
R l
i
#040308 v v
ER S 2 2R S22 2 222 HEEERFLHERRR F5
* ALLOCATE * * *
* STORAGE FOR * * MARK GROUP * * PUNCH *
*ADDRESS RECORD * SPROG ALLOCATE * FOR INLINE * PARTIAL ESD
* (PRINT LIST) * AND QUTPUT * FUNCTION * *
* ° PUNCH ESD % * *
ES S S22 S S22 222 2] FHERRERERH XXX RRER RN RN RN
|
| |
|
v
<- XXE]
* * I
$040302 v * U3 *
ERERRG2ER XX ERHRR * *
* * XXX HEXEGCS XXX XXX XX
* PUT GROUP * * *
*ON COMMON DATA * * RETURN *
* TEMP ROLL * * *
* * 222 XN TN E IR R R
EE S LS R 2 S22 2T * *
* H3 *
1 * *
| XXX H
v |
i 2 23 |
* * |
* c2 * v
* * RN TR NN R R
XXX * ALLOCATE *
* STORAGE FOR * SPROG ALLOCATE
*ADDRESS RECORD s * AND OUTPUT

* PRINT LIST *
* PUNCH ESD *
EE 22 2222 2SS 2)
e |
* *
* J3 *—>
* *
HEEE]
v
EE L ENKE S S S22 222
* *
* PUT GROUP *
*#ON COMMON DATA *
* TEMP ROLL *
* *

EE e T

R

* K ok
o
&

* Kk

* XXX

96

Chart CvV.

G0405

W AD RN NN
* BUILD *
* NAMELIST *
* *

TABLE
R e e

[P P—

¥
B2 *o
*

*.
-* DATA ON *. NO
*, NAMEL IST -

v
HEEEXCOHREXRHRRNN
=

* LY

XNAMELIST NAMES *
* AND NAMELIST *
* ALLOCATION *
* oLLS *
P T

\
HEENRD2H KRR RN XHK

* PRINT HEADING *
FOR NAMELIST
* MAP IF *
REQUESTED
R LSRR RS EE
exx |
* *
* E2 *—>
* *

v

R e
ENTER NAME +

LOC IN MAP *

LINE PRINT
* IF LINE *

COMPLETE

HHERK R RN NN

*

v
EREERG2HEXHRRXEEE
* PUT BASE AND *
* DISPLACEMENT *
* OF NAMELIST *
* TABLE ON COM- *
* MON DATA TEMP *
L T

l

v

K E DR RN N NN
* MOVE NAMELIST
* NAME AND 2

* WORDS OF 0 TO
* CODE ROLL AND
* OoUTPUT

B T s

ok ok Kk ok ok

kR v
$#040502 X,
J2 *o

«*DATA ON*.
«% NAMELIST *. NO
o ALLOCATION o¥*——
ROLL

v
RN
* *
* H4 *
v * *
XX XX E XXX
* *
* B4 *
* *
EEXR

BUILD AND PUNCH NAMELIST TABLES

R

* *
> % RETURN *
* *

HRERERRERENRER R

THE LATTER
HOLDS THE
ITEMS FROM
THE NAMELIST
IST

#040505

HAEKHEIHIRNRRKE RN
* COPY COMMON

* DATA TEMP
>

* TO NAMELIST

* NAMES ROLL
KRNI RKRA R R

* K kK K K

v
R HHE FHHH KR KRN

PUNCH AND PRINT
* REMAINING *
INFO IF
* REQUESTED *

R s s T

1
v
HERKGIHHHERRREN
* *
* RETURN *
* *

L e e T T

THE NO
ANSWER IN-—
DICATES EITHER
NO DATA OR
A MARKER

#40506

LR RS EJcE L R S R LR S
* MOVE FIRST 4 *
* WORDS OF *
* ITEM ENTRY *
* *
* *
* *

HEREEHHHRERHRNN

%
*. VARIABLE AN
*. ARRAY -

*o
*e o

EREENDLEEEERKEARKR
* *
* MOVE ALL *
% DIMENSION %
FACTORS TO CODE
* ROLL *
EREHEEHRE AR AR HEHK
|
|
|
v
P
* g2 *
*

FH X

R
* Ha *
XX

v
LR e e e]
* *
* *
*UPDATE PROUGRAM 3
* BREAK *

* *
ER

|
|
|
v
XXX
* E2 *

XHHH

Section

2

Compiler Operation

97

Chart Cw.

98

BUILD BASES

G0438

KK AD F RN KKK

* BUILD *

* ADDITIONAL *
BASES

39 3636 3 K XK KX

¥ %

* *
* B2 *—>
* *

KK

v
I HB 2 KK KKK
* *

* OBTAIN *
PRESENT PROGRAM¥
* LOCATION *
* *

33 36 3 363 3 3 I I K KK

\
oe¥o
c2 *e
¥ *q
¥ MAX FOR %o YES
*o LAST BASE o
* o ¥
*q ¥
g, o
* NO

v
333 D 2 3 I K I ¢ H I
* ¥*
* INCREMENT *
BASE ALLOCATION
* *

* *
3 36 I I I I I KK

i*Ez*‘i’******
* *
* REGISTER *
* NEW BASE *
* ALLOCATION *
* *
* 3*

I I I I RN KK

v
¥ KK

¥ 3 X

*

>%

*

HEFKRCIH XA R XN
RETURN

3 3 3 I3 6 I XXX

*
*
*

Chart CX. DEBUG ALLOCATE

G0S545
HREERADHE XA EE X
* DEBUG *
* ALLOCATE *
* *

e e s s

<% DATA *
*<ON INIT ROLL
*.

*o ¥
®, o
T YES

|
|

v
R et S
* MOVE *
* VARIABLE NAME *
*OFF OF ROLL TO *
* CENTRAL AREA *

* *
P]

D2

-* *o
<% MATCHING *. NO
*o GROUP ON - ¥—
*e SCALAR
'oEOLL ¥

o*
* YES

I,

R s
* *
* SET_THE INIT *
* BIT IN THE *
* SCALAR ROLL *
* *
* *

ROUP
LR R SR e L

P —

HRHERG2HEHEHR XX RN
* *

* SET THE INIT *
* BIT IN THE *
* ARRAY ROLL *
* GROUP *
R e S e a2 T

PP u—

o ¥o
H2 *o
¥ *o
«* MATCHING *. NO
*GROUP ON GLOBAL ¥——
*.DMY ROLL o%
*a %

*o

* B2 *
*

|

|

v
KKK 2K KKK XHKH
* *
THE INIT BIT IN¥

*THE GLOBAL DMY *
* ROLL GROUP *
* *

L e

EE e

XX XE

o v
* YES XN R
*

EXNR

HHERRB IR NN
* *

* INV

ERT
>*THE SUBCHK ROLL*
* *

* *
]

EXRX I
* * '
* C3 *—>
* *

EENR v

ETT Y T T T EE
* *
>* RETURN *

*

e T TR

EREERDIHRIHKH MR NR
* MOVE *
* VARIABLE NAME *
*OFF OF ROLL TO *
* CENTRAL AREA *

*

*

*
TN NN KRR N

1
|
I
|
v
oxa

E3 *o

-® *o
«* MATCHING *. NO
GROUP ON GLOBAL-
*oDMY ROLL %
*o ¥
*o

o*
* YES

I

HHRE R JH RN KR NN
* SET *
*THE SUBCHK BIT *
* IN THE GLOBAL *
*DMY ROLL GROUP *
* *

*

P T

v
EE e

* *

*SET THE SUBCHK *

* BIT IN THE *

* ARRAY ROLL *

* GROUP *

R e Y s
|

v
KK

EERR

Section

Compiler Operation

Chart 07. PHASE 3 - UNIFY

Go111

EERRA2ERENEXHER
*

*
* START UNIFY *
* *

e

GO14S v

EEXXRBRRRRNERERR
*ARY REF AL-DAA2%
et O o 2t
* ALLOCATE *
GROUPS FOR ROLL
* *

HEEEERRRHRINRXRNR

R
* *
* C2 *—>
*
ERER v
o¥e
c2 *e ERERRCIHEREEREEER
* *COPY AREA FROM *
* DATA ON * RESERVE START *
PROGRAM >*¥TO SCRIPT ROLL *
SCRIPT * RESERVED AREA *
«ROLL o% * *
*e o¥ EREEREER AR REERN
* NO
' v
EHER
| * *
411106 v * c2 *
EHEEED2EEHIIK KN HN * *
* * XX
* RESERVE *
*PROGRAM SCRIPT *
* ROLL *
* *
D
*EXR
* *
* E2 *—>
X i
v
HRERREDHEXEREXNR
* *
* MOVE NEXT *
* GROUP FROM *
* SCRIPT ROLL *
* *
HEEERERIR R EIR RN
¥ END e YES
*#.0F ROLL DATA o¥%——
*. ok
S l
* s v
“x"No (2223
* *
* A4 *
* *
XXXE
v
XEEERG N HEHI NN
* *
* REPLACE *
GROUP ON SCRIPT#
* ROLL *
* *
B R et]
GO11S v
EREREH2HE TR RRRE
DO NEST UN,DDA2%
O et)
* PROCESS *
* NEST OP *
* LOOPS *
P L g
v
o*e
J2 *e HREER JITHEREEER R R
¥ *q * *
«* LOOP TEMP *. NO * SET REQ LOOP *
#eCNTS REQ LOOP¢ ¥—————>%TEMP CNT = LOOP¥
*oTEMP CNT o% * TEMP CNT *
*o o * *
*o ok B e]
* YES
v \
XXX *XER
* * * *
* E2 * * E2 *
* * * *
XXX *EXX

100

EEE VYRS S S S RS L2
* *
* RELEASE *
*PROGRAM SCRIPT *
* ROLL *
* *
ES 2222 S22 S S 22

v
EERKNDE RN X XA XH RN
* *
* SET uP *
* POINTER TO *
*ARRAY REF ROLL *
*
FHR RN RN RN
R 222
* *
* C4 *—>
* *
XK v

oo G0113
ca .

. AAREHCSEREIEXEXR
«%¥ POINTER *. YES * CONVERT TO *

eOUTSIDE ROLL % > ADDR CONST *
*, . * DBA2 *

*, o ¥ FRERERAREXRRRHR

HRRRRDLEE R HRERRE
*

*
*SET REG RUNG = *
*4 AND INCREASE *
* POINTER *

*
R e e Y

v
EE S S-S SRR S S SR
CNVT/FORMT-DCA2
L T B B Bt Tt et e
* CONSTRUCT %
* INSTRUCTION %
* FORM.FOR REG2 *
EEE S S s E L El)

I
|
l
|
v

R e
* *

Go112

*
* INCREASE REG
* RUNG BY 4
*
*

* K Kk

HHRHNHRERRNRHRRR

v
EE 2 RIS R S 2R RS R
CNVT/FORMT-DCA2
R e e e et P T e
*CONSTRUCT INST *
* FORMAT FOR *
* REGISTER 2 *
LRSS RS R RS S Sd

Go112

v
X KK

RN

Chart DA.

*HEE
#14501

GO145

33 3 3 A 2 3 3 3 3 3 3 3t 3 %
ARRAY REF

ROLL
ALLOTMENT
B AR RN

.

* *
* *
* *

Xe o 00 00

3333 B2 K KR H
* GET *
#* BEGINNING #*
#* ADDRESS OF #*
#*ARRAY REF ROLL =
#* ¥*
e

PO

33 3 0 2 4 3 3 3 3 396 3 3 3
* *
GET ADDRESS
* OF PARSE SAVE =
* AREA #*
* *
* #*

e

Xe o s 0 00

363 3 303 D2 3 3 3 3 3 3 3 3 3 3¢
#* *

* GET NUMBER *
* OF ARRAY REF
ROLL ENTRIES *
* *
* *

EE R

3* 3 3 ¥
* *

E2 ®.4.
* * e/ANseseese

X
3t 3 E 23 3 33 333 3 R
* *

#* LOAD_GROUP #*
#*INDICATED WITH =
*INITIAL ZEROS =
* *
R AR R AR

PO

D RN
* *
* INDEX TO *
NEXT ENTRY *
* POINT ON ROLL =
*
*

*
LR e e

BUILD ARRAY REF ROLL

o

ceesseeeX®. EQ
*

. E
S ST
*

333

E2

LR 2

*

EE T IR R R

*. YES

*
FeaeeoeeaXH RETURN
*

*
*
*

L S S 2]

3303t 3 4 3 3 3 3 3 3 3 3 3

. YES *
eFeesanosaX® RETURN
*

*
*
*

E R T T Y

Section 2:

Compiler Operation 101

Chart DB.

GO113
R A KRR R KR
* CONVERT TO *
* ADR CONST *
*

*
WK NN RN NN

v
*****82**********
*SET UP POINTER *
* FOR LOOP *
* CONTROL ROLL *
* *

*

R

XXXE
*

* C2 *—)‘
*

*HEH v

011301 ¥
c2

POINT ER *. YES
-OUTSIDE ROLL %
. .*
e o
*e o

v
ERERED2EKER KK KRR
* *
* *
* INCREASE *
* POINTER *
* *
* *

s e]

v
WA D N KKK KK
* *
* MOVE *
BASE INFO TO wo
* *

* *
e e T T

JF2oox

*.

Jx"REFER TO “*. YES
*. TEMP AND %

*o
«* GENERAL *, YES

*s REGISTER o
* *

v
ke
J2 *
«* WORD %o
«%* EQUAL TO
*. OR LARGER
*o THAN O
*g ¥
He o ¥
* NO

102

MAKE ADDRESS CONSTANTS

KK HC TR KN KRN KN N
* *

ET UP DATA *
)*AND INIYXALIZE *
*

* *
LR T T

I
v
K HD BN NN N R
* *
* IEYGEN *
* *

KKK NNK

$011302 v
ER R S NKEE L S S S EE]
* *

* *
>%* PRUNE WO *
* *
* *
R T

v
RN

XH R

HHHR
* A4
*

XNHK

$011303 v

W W AL WK R K
* *
*FOR BASE (EVEN *
* CODE *
* DISPLACEMENT) *

*

*

* IN DATA 3
LR R R T S R S TR

* L

B4 *o

o* *o
«*GRP MATCHES*
*.ON ADR CCNST
*. ROLL o

*

*e .

<—

*****ca**********

*SET POINTER TO *
* NEW GROUP ON %
*ADR CONST RGLL *
* *

*

R e R e T TR

v
lDA**********

* PLACE BASE AS *
*NEW GRP ON ADR *
* CONST ROLL *
* *

*

I KRR
|
|

v
NN HE LK K
*INCREASE PTR B8Y¥

* PUT ON ADR *
[ol}
i}*ll***ii**{

LR
¥* *
* F4 *—>
* *

HRRE i

$11304
RIS R E R RS S L SR
* REPLACE BASE
X WITH TEMP PTR *
ON LOOP *
M CONTROL ROLL %
* *
*

RN KN
|
|
|

v
EEE]
* *
* C2 *
* *
R RR
THE WORD
DOES NOT

CONTAIN AN

AREA CODE

AND DISPLACEMENT
INDICATING A
NEED FOR A
TEMPORARY
LOCATION

Chart DC. CONSTRUCT INSTRUCTIONS

Go112

A AD XK KRN N
* CONVERT TO *
* INST FORMAT *
* *

KKK IR

E
KRB 2 KKK XK
* GET
* REG RUN OFF
*ARRAY REF ROLL
* FROM POINTER

% s % ok Xk K

*
3339 3 AR

v
o¥a

cz2 *a
o *. EHERCIHERHHRE R
«%* GENERAL *o NO * *
*o REGe NOTED o ¥————>% RETURN *
*a o * *
*o o¥ e T T

¥y oF

*¥ YES
i
v

HEEERDDHHHH R AAXR
* *

* MASK *
REGe RUNG VALUE®
* *
* *
LR R S S S S S R

v
HEERRED X, RHREHX KR
PLACE
VALUE IN R2
POSITION FOR
INSERTION ON

He ok ok ok K K
Ak ok K ok Kk

ROLL
33 I I I I N XK

P

I3 G2 I KN
*

SHIFT
VALUE 7O R1
PCSITION

ook ok ok ok
sk ok ok ok ok Kk

s RS2 L R SR kLS

% %3
* * I
* H2 *—>|
* 3*

3 33

v
FRXFHH 2K RHAKAH K
* *
INSERT VALUE IN¥
* ZERD RUNG OF #
*ARRAY REF ROLL *
* *

396 36 W I 3 3 I X KK X XN

v
HHHEPDH R KK X RNR
* *
* RETURN *
3* *

LRSS 22 S RS Skt E

Section 2: Compiler Operation 103

Chart DD.

104

PROCESS NESTED LOOPS

GO115
KA K KRR KHN
* *
#* DO NEST UNIFY *
* *

R INRHN R

* kK
@
N
*
|
v

LR L]
v

HRERHB2 KRR KRN

* *

INITIALIZE LOOP

* TEMP CNT AND *

* NEXT LEVEL *

* *
R T T

!
|

v
I K C 2K WK N
* *

* PLACE INDe. *
*VARe. COEFF. OF *
* NEST IN WO *
*
*

*
L e T e

v
FRHRIHD D KRN
* *

* CONVERT
* ARRAY OFFSETS
*

EREEE R

*
O

EEE RS- R RIS L L L
*
*

* LOOP WITH _ *

* PREVIOUS NEST *

* LEVEL *

EE S ZE SRS SRS R TS 2

PE

* *

* F2 *—>

* *

EE v
$011502 o %.
F2 x

* 1s

XX

* R

v
FHHIR K AT KRN HHK
* *

* RESERVE *
* NEST SCRIPT *
* ROLL *
* *
* *

R T I T N

P JS—

L
*
* COPY SCRIPT

*¥ROLL ONTO NEST

*
*
*
* SCRIPT ROLL %
*
*

*
T R

v
o
c3
*
«% NEST *. YES
*. LEVEL =1
. e
¥
NO

R R
* PLACE INITIAL
*REGe COUNT AND

*

z

o

.

>

o

.
FEEE T

RIPT
I T TR T T

*H R

P
@
N

* Kk

R

. P
NL 2 *. NO *
LESS THAN o% >* H2 *
NL1 o * *
* g o ¥ * XN
*, *
* YES
i
|
v
ok #011504
G2 .

He o¥
* NO
EE 2 2
* *
* H2 *—>
*
EE 2 2
#011503

v
AR D KKK NN
* *
* SET *
* NEST LEVEL *
* INDICATOR *
* *
* *

IR KRN

|
N v
R RS S NPES S L LS R LSS
* *
* PLACE NEST
* LEVEL ON
*PROGRAM SCRIPT
¥ 1

* K XKk

P e e e T

v
XK

XWX

HHH KK G K NN NH
* *
* PLACE IND VAR *
>*0F INNER NESTED*
* LOOP IN WO *
*

*
I N X

v
P T R R R
*

* PLACE NEST

* LEVEL ON
*PROGRAM SCRIPT
*

EEEEE R

R T T R

|

v
IR L T NEL T T AR
* *
* PUT IND *
VAR COEFFICIENT
* IN W1 *

* *
EE e T R

XK

* K
n
&

* kK

HRRR

KKK C O KRN K KR H
SET OUTER LOOP #
* CONTROLS AND *

>% DETERMINE *
* SCRIPT *
* ALLOCATION *
e e

\4
HXXHD LB KN RRRRR
* *
* RETURN *
* *

O 2]

XXk
*
* F4 *——
* *
>k
v
2 e TR TR Y
* *
PUT POINTER

*
TO ARRAY, *
OFFSET IN WO *
*
*

LR

e T T

R NG LK KKK KK
*

*
* DETERMINE *
* SCRI *
* ALLOCATION *
* *
* *

]

v
I G R KN R
* SET *
* AVAILABLE *
*REGISTER COUNT *
¥ FOR SCRIPT *
* EXPRESSION *
R e

v
¥
Ja EE R L NS 2SS S 2 2220
* g * *
% MORE *. YES *SET NEST LEVEL *
<NESTED LOOPS o >*T0 PROCESS NEXT*
* g - * *
* . ¥ * *
*, ¥ EEE SR S SR L SRS LSS
* NO
v v
L2 223 EX 223
* * * *
* F2 % * F2 %
* * * *
EE 22 3K K

Chart 08. PHASE 4 - GEN

G0491
EEEKADKK XN RN
* *
* IEYGEN *
* *

W RN RN R

v
L e Y
* *

* *
START GEN * INITIALIZE *
* *
* *
* *

IR N KN

G0499 v

HHERRC2HEREREERRE
*ENT CD GEN-EAA2%
e N e W W — e W W N
* PRODUCE CODE *
* FOR HEADING *
* AND ALL ENTR. *
A E 2SS XS R LT RS RS

G0S04 v
HREHEDD N HIRK KN E R
*PROLOG GEN-EBA2%
e W W W e e B W N
* PRODUCE ALL *
* REQUIRED *
* PROLOGUE CODE *
A AR SR S LR R L)

I

1
G0508 v
FRRRHED KN IR R EE XN

*EPILOG GEN-ECA2%
Hm e K N W N W N N

* EPILOGUE CODE *
I KN XENR

RN ’
* *

* F2 *—>
* *

v
HHEXRE2REREKE XX XK
*GET POLISH EDA2%

L e o
GEN PROCESS * MOVE POLISH

* FOR STMT TO

* POLISH ROLL

HEFEERHHARRERHRR
i
I

v
FARERG2RKHEERER RN
* MOVE *
* STMT NUMBER *
*FROM POLISH TO *
* STORAGE *

*
*
*
*

* *
HRERNKERNE KRR XNRN

v
FHEMRHDHHHE RN RHER
* *
MOVE NEXT GROUP
* FROM. POLISH *
#* ROLL TO WORK *

* ROLL *
LR

[P

oo
Jz *o
o *o

¥ *a
#.LABEL POINTER.
B o
*a ¥

e oF
* YES

POLISH
NOTATION

IS ON AFTER
POLISH ROLL

=

XK
EXHR

|
G0493 \
FAEERALEIERERER KRR
*LBL PROC — EFA2%
B e et Tt
* REMOVE AND *
* PROCESS *

* LABEL *
LR R LRSS RS SRS
|
|
|
|

KRB KKK KRN
* *
MOVE NEXT GROUP
* FROM POLISH *
* ROLL TO WORK *
* ROLL *
ER R e R S S

XK
*

- T
* *
* INDICATE *
>* STATEMENT *
*NUMBER ON CODE *
* *

oLL
KNI K N K

*
* C4 *
* *
EX 2
15 v
W HHC LR KK KK T
* STA GEN-EGA2 *
W W W N — W N — R
*GEN OBJECT CODE¥
FOR STMT IF END
* STMT TERM PHS *
EE 2SS 2SR RS EE)
i
I

G0496 v

FEREKRDGEXRREKRRER
*STA GENFIN EHA2%
R e e e e et Bt T
* GEN CODE FOR %
*DO CLOSE RESET *
* TEMP PNTRS *
EEZ RS SRS ST RS RS TS S

GOS5

2]

XK

Section 2:

CODE IS
PRODUCED

ON THE CODE
ROLL

Compiler Operation 105

Chart

106

EAQ

G0499
K AD KK KRR XIER
*

*
* ENTRY *

* ODE GEN *
LRSS S S 222 22

#049901 v
HREREC2HEHEHE LR
* *
* INITIALIZE A *
*POINTER TO THE *
* ENTRY NAMES *
* ROLL *
33 I I W RN

* K e

a¥e
D2 *o
el *o
«*¥NOe GROUPS *. YES
*o ON ENTRY o F——y
¥ NAMES = 1e%
*o

P T
#* BUILD A LABEL *
RECORD INIT. *
* PGM LOC BUILD *
* CODE TO EXIT ¥
* FOR LABEL *
R IS s a2

GENERATE ENTRY CODE

JES—

$#049902 v
FERERE2HRHRRRRE TR
* *

* INSERT *
*PROGRAM NAME IN¥
* CODE *
* *
63 3636 3 W NN NN

3

v
HEFHRGD HHXE XX RNHN
* PUT. CODE *
* FOR INITIAL *
* SUBPROGRAM *
* ENTRY ON *
* *
*- *

CODE ROLL
e A s sl

GENERATE
X KR XK E KRR XX RS

GENERATE

ADDRESS

* *
* *
* FOR PROLOGUE *
* *
*-

*

v
EEE S S NP-E L S s Xt L)
* *
* BUILD SAVE %
* AREA AD CON %
* CODE FOR EXIT %
* *
*

R AT T TR SRS

V.
RN

ok
o
&

ko

ERER

XK EBIHKHH K KR KR
* *
* PUT MAIN *
>*PROGRAM HEADING*
* ON CODE ROLL *
* *

IR K RN R R

P S

SET UP
FHRRHCTHEEERHERHN
SET UuP *
SAVE AREA *
LOCATION AT *
CURRENT LOC #
*

*

ok ok ke K

SR

1

I

V.
KEEADIEERHHENRN

* *
* RETURN *
* *

RN RN R NR

4049903 -
D4

XXXKE
* *
* B4 *
* *
2223
|
|
v
¥
B4 *a
«% *o
¥ ALL *e YES
*e GROUPS - %
%« PROCESSED« %
*o o
*, oF
* NO

<

HEEEKCHEEHHREFRHR
* *

* REDUCE *
COUNT OF GROUPS
* TO PROCESS *
* *
L e T T T

AR =
* * |
* D& *—>|
* *
*HEH v
*o
*a
- *a
¥ ALL *. YES
*e GROUPS o %
* s PROCESSED « ¥
*

et
* NO
|

v
KRR L RN R NN
* *
* REDUC
XCOUNT OF

3 *
GROUPS*
TO PROCESS *

* *
KKK RR KKK

v
HEREKFLRERERRERKR
* *

Kk

* INSERT

* ENTRY NAME IN
* CODE

*
*

*
e e

|
|
v
AREKEGLEEREERERRR
*
PUT CGDE

*
* FOR ENTRY ON
* CODE ROLL
*
*

LR R R

HEERHHK KK KNI RKN

t

L

v
KRG XK R
* *
#* BUILD INITIAL *
* PROGRAM ENTRY #*
* AD CON. CODE *
* *
PR

V-
FHHEK JHEREEF RN ERR
* *

* GENERATE *
* PROLOGUE *
* +EPILOGUE *
* ADCONS *
* *

I e]

*
>#
*

>*
*

XX KSR K RN
RETURN

e

HARKDSHERHERERE

RETURN

R s T T

*
*
*

*
*
*

Chart EB.

PROLOGUE CODE GENERATION

G0504
AR AL H IR RN
* *
* PROLOGUE GEN *
= *

NI RN

l

v
RREARB2HRERRRRRRR
*

* INITIALIZE
* POINTER TO
* ENTRY NAMES
*
*

LR E R R

ROLL
iR S S e R

v
HERARCOHERREXRERE
*INITIALIZE CNT *
0OF GROUPS TO BE¥
* PROCESSED ON ¥
* ENTRY NAMES *

* ROLL *
R e S e L d]

L2 2 20
* *
* D2 *—>
* * 1
EE 2 2] v
#050401 ko
D2 %,
o% ALL %,
«% GROUPS *
*. PROCESSED
. o
*g ¥
*, ¥
* NO

!

|

v
HERERE2HEREHRERNR
*

*
* REDUCE COUNT #*
0F GROUPS TO BE
* PROCESSED *

*

*
E e]

EXRR
* *
* F2 #——
* *
*REH
v
EERERF2REEFAREHRR
*CONSTRUCT CODE *

* FOR LOADING %
* ARGUMENTS, IF *
* ANY *

* *
FEERRREREREXNXRRR

1

v
XEKEKGDHERERI AL N
* CONTRUCT CODE ¥
FOR COMPUTATION
* OF DUMMY *
*DIMENSIONS, IF *
* *

PETTTT T PR
1
|
1
{

v

FEEERHD RERHLH KX

* CONSTRUCT *
* CODE FOR *
* CLOSE OF *
* PROLOGUE *
* *
S R e 2t TR

!

v
K KN

X XR

#s50414 .
H3

XXX

XX

REERKBLEEEXRRFHEER
PUT LOCATION *
OF CLOSE OF %
PROLOGUE IN %
ENTRY NAMES %
ROLL GROUP *
I e s PEER R T

FEEEE R

* *
* UPDATE *
* POINTER TO *.
* ENTRY NAMES *
* ROLL *
EEEEERERRERNREERR

AE AR kTS L 2L L L
* *
>* RETURN *
* *

e T 2

HEERKEZRERER XN N KRR
* BUILD A *
* LABEL *

>®*INSTRUCTION FOR¥*
* PROLOGUE *

* *
EE e e e TR Y

1
v
a¥e
F3 *a
o ¥ *o
- ¥ DEBUG *. NO
UNIT SPECIFIED.
*a o
, o

ARREXGIRHHE KRR ERE
* BUILD DEBUG
* LINKAGEs UNIT
* CODE AND UNIT
* NOe IN CODE

EEEEE XY

* ROLL
IR KRR NR

[—

o *o XXX
e* SUBTRACE *. NO * *
*e SPECIFIED * >* F2 *
e o * *
*, ok *XHH
*o o
* YES

I

|

i

v

FRRNE JIH KRR R LI AR
* BUILD
* DEBUG LINKAGE
* AND SUBTRACE
* START CODE ON
* CODE ROLL
FEHEEEEEREEHRXRR
i
|
|

v
R

EEE R R

Rk

Section 2

-
-

csxx
* *
* CLEAR x
>* BASE REGISTER *
* TABLE *
*
*

*
e s

Compiler Operation 107

Chart EC.

108

60508
A2 R R R
* *
* EPILOGUE GEN =

*, *
HEHRWARE R RRR

%
E.
B2 *a
o *
+#SUBPROGRAM =,
*. ENTERING o %
#. PROCESS .=
. o
£, .%
* NO
X

i***&CZ*u{*f&**aa
E &

BEL
'INSTRUCTION FDR*
* MAINE§ROGRAM

*

*****&*******{{i&

e o s e e

HERRRD2HEE R R LR R
* *
#*BUILD CODE _FGR *
* C *

* EPILUGUE OF =
MAIN PROG
HEREERARRR R AR RAE

Xe oo e

E ey
*® *
* BUILD *
#* MAIN PROLOGUE =
* CODE *
* *
R

Xe o o0 ue

RrERF2RRRREERKR

* #*
* RETURN *
* *

wEnw R KR KRR
*
* Gl =
*
e
X
#50804 ¥
Gl *.
o *. sann
.* SUBTRACE #. NO *
. SPECIFIEDX* G4 *
*, - ¥
*. o .
.
#* YES
3* 3 3 LR At
* * LR
* * * *
= %...0X® G4 =
® * * *
* * LR
336 36 36 3 3 3 3 3 3 3F 3 3 3 3 3t 3

EPILOGUE CODE GENERATION

#050803
FRxIeBIeennnrnnes
»
YES # OBTAIN

NO *

.......-X* UF GRUUPS o =
OCESS *

*
*

&*&*{*i*ii*f

.o

#xan

* *
#= C3 %.X.
* *

wxxx X
#050801 ¥
*.
o
. ALL *o
*. GROUPS
#.PROCESSED. *
*, 3
*, o
NO

****;03;5;;*.&***
*SET BASE TABLE
AS REQUIEED FDR

*
;:{«*******4****&

e e o

HEE R C IR RN E R RS

#BUILD INSTRUCT
* FOR DUMMY
#*ARGUMENT VALUE
* TRANSFER

*
O

I EEEE R

*
NTRY
FINED =,
SCALA!

e s e e e %

*;..*33***,3;***«
* LD AD
* INSTRUCTIDN
*
* ACCUMULATOR
*
#*

HEREEERRE AR RN

TR

ErrxaCorexsrsenns

.*........X*LAST ENTRB FRDM*

*«;**;;n*iu*&&;u«

Xe e e oo

ErnaDABERERREER
» =
* RETURN *
* *

EEERBRB I TR R

#050802

{ii&*F4**llll!***
i

*
A EAREAREAREE RN
LA 2
*
® G4 *...
M

waw .

*
$050845 X

ERERRCLERRREE R KR
* *
#BUILD CODE _FOR =
* CL F *
* EPILOGUE OF =
*® SUBPROG *
HREEEEREEAE AR

PO

l&f*{HQ{{*{**i!{l
DECREASE NUMBER
*

*
*ll****l*i*i*{i**

RUNE
R .ﬁ........XiLAST ENTRY FRUM*....X* Gl *
* WOR oLL

*w**

%***

*
* OF GROUPS TO *....Xi c3 *
PRO CESS

xR

Chart ED.

MOVE POLISH NOTATION

G0712

HRERAD R ERFIK KRN
*

*
* GET POLISH. *
* *

EA S22 22222 ET 2

|
|

v
WD 2 W KN KRN
*

*
*SET UP POINTER *
TO AFTER POLISH
* ROLL *
* *
EE XS TSI ETI IS SR X

v
3N C 2 MR R
*

COPY _POLISH
FOR STMT TO
POLISH ROLL

* ok K ok Kk
* ok ok Kk K

36 363 3 33 I I K KX X

|

v
WREXNDD HR I HN WX NN
* *
UPDATE CONTROLS
* FOR AFTER *
* POLISH ROLL *

*

*
69 3 I I I I X I NN KK

\
ERRHEDHERXHX XX N
* *
* RETURN *
* *

36363 36363 I WKW XK

Section 2:

Compiler Operation 109

Chart EF.

110

#89302 ¥
J2

PROCESS LABELS

G0493

XREHAD K RRNEHER
*

*
* LBL PROCESS *
* *

AN EERRHEERR

i
!

v
HEXRAD2HERERE RN
*

*
* STORE POINTER *
*TO LABEL IN STAX
* LBL BOX *

* *
I T T S

HERRKEDHEERRHERRR
*

*
*
*
*
*
*

* CLEAR THE
* BASE REGISTER
* TABLE

*
e

1<
|

4049301

v
XXX 2R RRR XK
* *
* PUT L ABEL *
* CODE ON CODE *
* ROLL *
*
*

*
e I e T 2T

FXEH v

¥ *

¥ AT
*STMT. FOR
*o L ABE

L e*
* . -
*e ¥

* YES
i

i

v
KX

HRER

*e NO
TH!S-*———}

*ERE
* *
* B3 *
* *
F XXX
i
v
ERRXFBINRRERKRERN
*MAKE LABEL FOR

*DEBUG CODE-PUT
*BRANCH ON CODE
* R

*
R RTEERREKERKRHE

v
HRREHCIH RN EH XK
*PUT POINTER TO *
* MADE LABEL ON *
* AT ROLL-WORD *
* 2 OF GROUP *

* *
FREEREER IR ERNR RN

EEREEE R

223
* *
* Ca *
* *
AR
v
#a930s o¥a
.
* * g 3 EHCS AR NN XN
TRACE *. NO * *
SPECIFIED o%——>% RETURN *
*g ¥ * *
* g 369 3K I I K XX RN

v v
D3 D4 xx
* MAKE LABEL * * PUT DEBUG *
*FOR NEXT INST— * * LINKAGE FOR %
* RUCTION — PUT * * TRACE ON CODE %
* {ABEL CODE ON * * ROLL *
* CODE ROLL * * *
i]
’ 1
1 !
v v
XHRRNES E4
*PUT POINTER TO * * *
* MADE LABEL ON * * PUT BINARY *
* AT ROLL-WORD ¥ * LABEL ON *
* 3 OF GROUP * * CODE ROLL *
* * * *
* *%

v
RN RE 3NN AN
* *

* CLEAR WORD 1
* OF AT ROLL
* GROUP
*
*

* ok Xk k

e T T T Y

i
i

v
* XK

L2223

FIRST WCRD

Gf AT ROLL
GROUP 1S
COMPARED WITH
STA LBL BOX

v
AXREKFLHHERERXXNR
* *
* RETURN *

*

e e e

Chart EG. GENERATE STMT CODE

GOS15
FHEHHAD KR XK KRN
* *
* STA GEN *
*

LR R R LR R L LS

B2 *o
o¥ STMT %,
«* FUNCTION *. YES
%o MADE LABEL o%—
*e PTR = 0 %
*g P
* g ¥
* NO

v
oo
c2 *o
¥ STMT ¥,
«% FUNCTION *, YESV
%o DRIVER ON o %—
WORK ¥
-

v
XHHXRDD KR H XK HX
BUILD
CODE FOR
STATEMENT
FUNCTION MADE

LABEL
S E R SR 2 2

* ok Kk ok Kk
%k Kk % k %k

<

4051502 v
P X X E D F NN N R R
* *

* GENERATE
* CODE FOR
* STATEMENT
*
*

* ok k ok k

963 36 3 I 3 I I K XX

v
R 2 W IR XXX
*

*
* RETURN *
*- *

33 3639 I I XX XK

THE JUMP TO
APPROPRIATE
CODE GENERATION
THE CONTROL
DRIVER IN WO
AND THE STA

RUN TABLE.

GO0S44
FH KK AL EK KRR RN R
* TERMINATE *
* PHASE *
* *

EEZ 22T LSS 2SS

P —

WK DG KR RN H IR K
* *

* PREPARE
*FOR EXIT PHASE
*

*
3633 XK 3 3 3 K MK K

\
AR
*09 *
* A2 TO PHASE 5-—
EXIT

K K K K

Section 2: Compiler Operation

111

Chart EH. COMPLETE OBJECT CODE

G0496
HHRHEAD KR HHXEREH
* STA GEN *
* FINISH *
* *

W I I I IR N X

v
HRXRHCD HHRHIRXHHRHR
*
* MOVE
*¥GROUP OFF ROLL
*

*
36 3 3 3 3 3 K3 3K K K

v
*

*
*
*
*
*
*

D2

-
*o

¥ *,
% POINTER = ¥*, NO

¥LABEL OF THIS.
*o STMT ¥

KX RHED XK HEEH RN
* *
* CONSTRUCT *
DO CLOSING CODE#
* ON CODE ROLL *
* *

3636 36 3 3 363 6 I K 36 36 3 36k X

112

#049601

3 %3 D 3 KK KK

* *

* 3*

>% REPLACE OROUP *
* ON ROLL *

¥* *

3 3 3 3 I I3 I A K E N HH

E2 233 |
* *

* E3 %#—>|
* *

L2323 1

#049602 v
HHEHHE RN X HR
* *

* RESET TEMP *
* POINTERS AND *
* ACCUMULATORS *
3* ¥*

*

3 AKX KK

|
|
HHHXHF 3R KK HIEHRH X
* *
* RETURN *
* *

336 3 3 3 3 3 3 I3 KK ¢

Chart 09.

PHASE 5 - IEYEXT

G0381
HEEEADHEEERNNRE
*
* EXIT PASS *
* *

L I TR

l
I

v
ERERRB2EE RN RNER
* *

* *
* INITIALIZE *
* *
* *
* *

e Y

[

v
M C] NN
*PCH NMLMPY—-FLA2%
L B B et Bt S B e
*PCH NMLIST TBL *
* WORDS HLDNG. *
* POINTERS *
ES 2 ES 222222222 223

G0382

R e

*PCH TMP/CN-FAA2%

B

>* PCH TEMP STGE *
* AND CONSTANT *
* *

AREA
[

G0383 v

R
PCH ADCON- FBA2¥
R e Rt et et s et
* PCH RLD CARDS *
* FOR TEMP AND *
* CONST AREA *
HEEEEHEIRREIRHR KRN

v
*

F2 *e
¥

«* OBJECT
*o LISTING
*eREQUESTED « *

*, o

E—
T YES

|
|

v
EEREEKG2REXERK KR HHK

* PRINT *
HEADING FOR
* LISTING *

EREREREERRN RN

——]

Gos8ss v
FEEREH2EX ER R KR RE
*PCH CD RL— ***%x
s e S et e e e e
*PCH ALL OBJECT *
* CODE_AND LST *
* PCH RQD ESDS %
333 IR

v
EERRRJOHEXXERHEXE
*RECORD STORAGE
* REQUIRED FOR
* OBJECT MODULE
* AND PRINT MSG
*

kK K

HHERRREREREERNRER

v
ERER

* kK
»
W

* Kk

R XR

*. NO

o

EEXR

T
»
w

* K

XHER

G0399
LR R R E L E LS L 8L
PCH BSE RL-FDA2
Rt S TR I S S et e 3
* PCH 0BJ MOD. *
BASE TABLE,REC.
* RLD INFO *
R E 2222 S22 2 RS

G0400 v

HERRRBIHXEE RN RR
*PCH BR RL— FEA2%¥%
L s
*PCH 0BJ MODULE *
BR TABLE,RECORD

* RLD INFO *
R s

|
v
¥
c3 *o
¥ *o
«¥*SUBPROGRAM *. NO
*o ARGUMENTS ¥
*

G0402
AERRREDIREREREXR 2R
*PCH SP ARG-FFA2%
e et e e e ok e S
PCH SUBPRGR ARG
* LISTS RECORD *
* " RLD_INFO *
LR 2 E S SRS RS S

I
G0403 v
ERREREIHERRE RN RN
PCH GBL SP—-FGA2%
L e e e
* PCH SUBPRGR *
* ADDR AND RCD *
* RLD INFO *
22T 2 S S S

|
G04a04 v
EEEERFIHERERRRRRR
*PCH LIB RL—FHA2%
e
* COMPL SUBPRGR *
* ADRESSES AND *
* RECORD RLD *
EREREXEREEERRX R

G040S v
EERERGIHERREERR AR
*PCH ADCON- FIA2%
B o
* PCH ADR CONST *
*AND RECORD RLD *
*

INFO *
EARERRRRRRREH AR RE
i

G0416 v

FREAFHIEREERRRE RN
*PCH RLD RL—FJA2%
B e e
*PCH OBJECT MOD *
* RLD CARDS *

* *
R E s T2

|
G0424
AR JIHEEE XX RRXE
PCH END CD-FKA2%
e it
* PUNCH OBJECT *
MODULE END CARD¥
* *

ERERRERHERERHEREER

EXRR

EERR

v
ERRRNBLIX R ERERE
* *
* *
* RELEASE ROLLS *
* *
*
*

*
HEERERRERXRRRRN

v

FEARR

*03 *

* A2% TO INVOCATION
* % PHASE
*

Section 2:

compiler Operation 113

Chart FA. PUNCH CONSTANTS AND TEMP STORAGE

G0382

HHHFHADFKFR KK KK
* PUNCH TEMP *
*AND CONST ROLL *
* *

3 3 I 3 3 I XK

P —

3 G2 K XX NN HE
* *

* INITIALIZE *
* LOCATION *
¥COUNTER AND TXT
* *

CARD
KR H I KKK KR

v
HEEHEXC2HH T REHR
*. *
* INITIALIZE *
POINTER TO TEMP#
*AND CONST ROLL *
* TOP *
KKK KKK

3 3 3
* *
* D2 *#—>|
* * |
3 3k \"2
#038201 ot
D2 *o
o *.
o ROLL *. YES
*. PROCESSED %
* g ¥
* g ¥
g o
* NO

1
i

v
3% 3 3 R E 2 3 I XN
* *

* *
* INCREMENT *
* POINTER 3*
* *
2 e e e e s L]

l

v
K 2 KKK KRN
MOVE NEXT GROUP
* FROM ROLL TO *
#* BUFFER, PUNCH *
* IF CARD *
* COMPLETE *
IR EE KR RHE R ER

|

|

v
* XK

* %k ¥
o
n

* % X

R R 23

114

3636 363 3% D 3 N XA K

* PUNCH *
> ANY PARTIAL
* CARD

¥ 3 3 I I 3 I I 3 K *H

P JusT—

LA R RIS E R S LS 8L L
¥* ¥*
* RETURN *
* *

36 3 3 3 3 I KX K

PUNCH PARTIAL
TXT CARD

Chart FB.

#038301 .*.
c2

PUNCH ADR CONST ROLL

G0383

LR 2R T VES RS S22 L 2
*

*
PUNCH ADR *
* CONST ROLL %
E2 222222 2222 XL 2

i*l**Bzixili****l
* DETERMINE BE-
*GINNING ADR OF
* TEMPORARY STG
* AND CONST

* AREA

22 22222 2R S 22222 3

LR EEE R

RN

* *

* C2 *—>
* *
R v

* *

¥ DATA *o NO

*#oON ADR CONST
*

v
AERERDD A XXX RE XN
INITIALIZE
LOCATION
COUNTER FROM
POINTER AND
BEGINNING ADR
LRSS TR SR 22 2 2

k ok k K ok k
* ok kK ok K

|

v
FERAERED XXX ENEE
* PLACE AREA *
* CODE FROM *
* ADR CONST *
* ROLL ON *
* RLD ROLL *
e

|
l

A%
X D NN RN
* *

* SET LOC CTR
*#INTO RUNG 1 OF
* RLD ROLL

*

* %k ok %

363 3 3 3 W I KX

v
HEXEEG2HX XN LXRE
* PUT LOCATION
* FROM ADR
* CONST ROLL
* IN OUTPUT
* AREA
HRHRNNERRE XX RHR

|
|
|

v
W 2 XXX

LEERE R E RS

* PUNCH PARTIAL *
CARD
* *

W36 33 I I KX XK

LR ek L 22 2 2 28 2
*

>* RETURN
*

Ea 222 222 22 L S

WO TO TXT CARD

PUNCH PARTIAL
TXT CARD

*
*
*

Section 2:

Compiler Operation 115

Chart FC. PUNCH OBJECT CODE

G0384
EEERAD KRR KR ENN
* *
* PUNCH *

* CODE ROLL *
R R s

v
R R PR R e e e
* INITIALIZE
* LOCATICN
» COUNTER +
* CODE ROLL
* POINTER
I KK NN XN

* Kk K Kk

EXXN |
* *
* C2 *—>
* *
XHRR v
o¥e
c2 *o
o* *o
«¥DATA STILL *. NO
*o TO BE -
¥+PROCESSED«

*

o o¥
* YES

1

v
XKD NN HHHHIKERKR
GET *

NEXT
INSTRUCTION

*ok K K K K

*
*
*
*
*

NN R NN NN N

o

o *o

¥ A *o
+o PROGRAM BREAK.:
*e o¥

*

. ¥

*

*
* NO

*

o ¥

* NO
%
v
*

¥
* AN *

INSTRUCTION
*, ¥

X XE

116

*o YES

YES

XX

XXHN

v
¥

4 *o
«*ADDRESS* o
«% CONSTANT
%o DEFINITION o%
*, ¥
*o ¥

EHARXBSH R K RHX NN
* *

* STORE *
>% LOCATION *
* COUNTER *
* *
I W WX KN

FEEERNCIHERERRE NN ca
o* A *o
* PUNCH ANY * ¥ LABEL *e YES
> REMAINING *o INSTRUCTION %
*PARTIAL CARD * ¥ ¥
*, ¥
KRN RN K *o o¥

l 1

|

v

v HRHIEKDLERHEEREER R
FH KD T RN NN N
* * * MOVE INSTR TO *
* RETURN * QUTPUT AREA

* * *¥PUNCH IF FULL¥*
P

LR SR S22 R L RS

v
EHER

*

* C2 *
XHERKEIH R XN N AR * *
* * HE KRR

* *
>*STORE IT IN STA*
* NUM *]
* *
P L L v
XX
*
* C2 *

* *
XXX

HHERERFIRRERERERNNR HEHRRF LR RHANERHR
* REINITIALIZE *
* PUNCH ANY * *_OCATION COUNTR¥*
> REMAINING —_—D>% TO 1ST FULL ¥———q
*¥PARTIAL CARD * *WORD AFTER TEMP¥*
* + CONST AREA *
EERRREEREHR R

XERKE

FAXEEXGIRAER XX XK RNR

*MOVE TO OUTPUT *

> AREA PUNCH IF -
CARD COMPLETE '

HEEHEREEEERER v
HHRE

XXX

FEEXERHIHHERHH T EKRN
MOVE DATA TO
* OUTPUT AREA ¥
> PUNCH YF —_—
* COMPLETE *

I
FREEEREEHER KRR v
*

HREEERJIHREEHEEEREN

* *
> LIST CODE -
* *

EEXRRREREER R
XHRE

EXHE

R T v
XX

HEEXRCSHEREXNRN NN
* DEFINE LABEL *
* ON BRANCH *
>%* TABLE ROLL I= *
* NECESSARY PUT *
* IN LIST AREA %
e e R e

Chart FD.

SWEEP BASE
BRANCH ROLL

G0400 -

PUNCH BASE TABLE

G0399

K AD KRR
* PUNCH *
* BASE ROLL *
* *

EZE 22 RS2SR 2]

|

v
X WD WK KR XN
*

*
INITIALIZE *
BASE TABLE *

LOCATION *
COUNTER *
R KNI KR KRR R

* % K ok ok

.

3 C 2 KKK I KN
* *

* INITIALIZE *
*#POINTER TO BASE®#®
* TABLE ROLL *
¥* ¥*

I I NN N

A\
EHHEARRDDFHHRHR R AR
* *
* INITIALIZE *
*TXT CARD BUFFER¥
* *

* *
3636 36 3¢ 3E 36 9 I N 363 3 I K

EE 2 2] |
* *
* E2 ¥—>
* * |
EZ T3S v
*o
E2 *o
o ¥ * o
- ¥ ALL * o
*o ROLL ¥
oPROCESSED.
o o
X, o
* NO

v
EE R R RIS R L RS LS R LR S
* *

* INCREMENT *
¥POINTER TO ROLL¥*
* *

* *
RN KRR KH

& —

HERRRGHR AR KRN
* *

* RECORD ESD

* + LOC COUNTER
¥ ON RLD ROLL
*
*

' EELE]

I I I I N R H

|

i

v
T2 K KKK
* *
* MOVE GROUP TO *
¥BUFFER PUNCH IfF*
* CARD COMPLETE *
* *

3 33 36 % I I XX
|
|
1

A\
* 3% X ¥

% %

YES

FHRFREHE RN K R FHH

* PUNCH
> ANY PARTIAL
* CARD *

*
XXEEERRHEERRR
|
|
|
|
|
|
v
R FH KRN KRR
*

*
* RETURN *
* *

EE R R R R R EE L LSS S

Section 2:

Compiler Operation 117

Chart FE.

SWEEP BASE
BRANCH ROLL

118

#040001 oo
E2

PUNCH BRANCH TABLE

G0400

FH KA R R HF KR RRE
* PUNCH *
* BRANCH ROLL *
* *
I H KRR R
i
|

v
HHERHB2ER KRR XK H
*

INITIALIZE

BRANCH TABLE

*
* *
* *
LOC COUNTER *
* *
* 3*

3636 36 3 36 I 3 3 3 X X XK X

v
WX C 2 W NI RNE
* *
* INITIALIZE %
* POINTER TO *

*
*
*

#* BRANCH TABLE
*

ROLL
3363 3 3 3 I I I 3K X

i

v
33 I XD 2 I 3 I K H
* *

* INITIALIZE *
*TXT CARD BUFFER¥
* *

* *
33 3 36 3 I3 36 M 33 3 K H

L& X3
* *
* E2 *—)‘
* *
X XH v

*o
¥ *o
¥ ALL *o
*o ROLL .
* e PROCESSED . *
* *

. -

[Y—

LR SR 2R 2 2 2 S 2 22
* *

* INCREMENT *
POINTER TO ROLL#
¥* *

* *
A I W NI I I NN RN

|

v
EE S R ey R 2 2 2 2 2 52 kT
* *

* RECORD ESD *
*AND LOC COUNTERS®
* ON RLD ROLL *

*

*
NI RR XN

v

I I I 2 I XX H
* MOVE *
* GROUP TO *
* BUFFER, PUNCH *
* IF CARD *
* COMPLETE *
33 3 3 I I I XN XK KX

YES

N R IE JH KA KRN

* PUNCH *
> ANY PARTIAL
* CARD

3 3 33 3 I X KX H

1

1
v
N FH NN N
* 3*
* RETURN *
*

363 3 33 3 36 33 3 K

Chart FF.

G0402
HAKKA2HKRNKR KRN
* PUNCH *
* SPROG ARG *
* *

ROLL
B e e s

C——————

e PR T 2
INITIALIZE LOCa¥
* COUNTER, TXT *
* CARD OUTPUT *

* AREA AND *
* POINTER *
RS2SRSS SRS 2D

XX RH |
* *
* Cc2 *—>
* *
e v
$40201 ox
c2 *.
* * g
ALL *. YES
* g *.

ROLL .
*« PROCESSED & *
*a ¥
¥a o

T NO

v
HRWHHD 2NN NN RN
* *

* INCREMENT *
POINTER TO ROLL¥
* *

* *
e e e Y

|
|
v

#040204
EEERARG2ER RN RE RN
* *

* COMPUTE *
* APPROPRIATE *
* LOCATION *
* *
* *

HHAKERHERRRRRRR

|
|

PUNCH SUBPROGRAM ARGUMENT LISTS

HEERRNCIHERRR XA RN

* PUNCH ANY *
REMAINING
*¥PARTIAL CARD *

HERERH LKL REN

|
1
EXEKDIXEHRKIRNE
*

*
* RETURN *
* *

R e T T Y

HHAHEEZ RN LN EN
* MOVE GROUP *
* 10 TXT *
>% QUTPUT AREA *
* PUNGH IF *
* CARD COMPLETE *
3633 I NN

HEEHREIHEERRRERFHE
* *

* OMPUTE *
>3# APPROPRIATE *
* LOCATION *
* *
e e e s

1<
|

v
EEE R Rt PE S SR RS S
* *
* *
*RECORD RLD INFO¥
* *
* *
EE SRS XSS S RS2

|

‘

|

v
LR R RS NVES L EE LSS
* *

* INSURE *
* YMINUS®* TAG ¥
* MARK *
* *
* *

HREERERRXRRNEXR

v
R HHC 2N R RN XK
* *

* MOVE *
*DATA TO OUTPUT ¥——y
* AREA *®

*
KRN R RR

v
HHH K

XERR

>k E X

TXT CARD

Section 2:

Compiler Operation 119

Chart FG. PUNCH SUBPROGRAM

G0403
v
¥* PUNCH *
* GLOBAL SPROG *

L
F TR IR

i
I
l

v
P e
* *

FLIP THE *
GLOBAL SPROG *
ROLL *

*
*

Kok KKK

L e e T

v
¥
c2
o
¥ DATA *o
%o ON THE ROLL %
, o
*o o
*e o
* YES

v
EZ S 2 FESE S E L LSS
* *
* TURN OFF *
* SUBPROGRAM %
*FLAG, MOVE WORDX
* 3*

RN KRHKHH TN R RRRR

NO * * *

ADDRESSES

>t
* B4 *
. -

XE R

$040302 v
X K34 KKK KK H T
¥* ¥*

* STORE *
LOCATION ON RLD
* ROLL *
* *
R RN R RER NN

i

|

|

4040304
A HC G KRR RN XN
EERHCIEEHRHRHKAH *
0 TO OUTPUT
®AREA, PUNCH IF

*

*

> *
* * CARD COMPLETE *
* *
*

RETURN *
*

R e
K KR AKK

1
v
*

¥ *o

e o¥
T YES
i
i

| <
|
#040301 v
HEREEED M HRN N AN
*

MOVE ESD
NUMBER TO RLD
ROLL

I EEEE R

*
*
*
*
*

HHHHHR KR KRN ERR

v
R Y P]
* *

* DETERMINE *
* LOCATION OF %
*#SUBPGM ADDRESS *
* *

*

HEEEEREKERRRNAER

o
*.SUBPROG.
*a ON
*e .

¥

¥
o*

* NO
i

v
KR D KN XN
* *
* STORE *
#* LOCATION IN %
* LOCe COUNTER *
* *
RN XI A RN KK

|

|

|

|
HRRRR YD HREX NN RN
* *
* INITIALIZE *
* OUTPUT AREA, ¥
* TURN ON *

* SUBPROGe FLAG *
FI KRN RN HR

v
XA H

HERR

120

*. YES
FLAG o ¥——y

HEEREADSER R R I HELEHR

*
>

*
*
*

PUNCH
ANY PARTIAL
3* CARD

RN KR AR

P ——

HHRHESH R RREHE

RETURN

FHRE AR NRRR AR

*

*
*
*

Chart FH. COMPLETE ADDRESSES FROM LIBRARY

G0404

HREEAD HRH XK HRR
* PUNCH USED *

* LIBRARY *
* ROLL *
e L R
* *
* B4
* *
2323
|
|
i
v v
EARRRBARERRR RN EERKRBLENERHE R XN
* * * *
* FLIP * STORE *
* THE USED LIB *LOCATION CON RLD*
* ROLL * ROLL *

*
*
*
*
*

* * *
e T R e R TS [e e T e

v
REEKKCARK AR KRR R
*

c2
- EEEHRCITHAERE KK MOVE *
-* « NO * * x 0 TG COUTPUT *
*o DATA ON THE o¥%—D>% RETURN * *AREAs PUNCH IF *
o OL! o * * * CARD COMPLETE *
T s * *
T e R S T T o
XX
* *
* D4 *=>|
l XX KR $
v #40404 e
EERRRDDREAARRRE RN D4 *o HERKAKDSHHE AR AR RRRR
* TURN OFF * % *o
* SUBPROGRAM * O *. NO * PUNCH *
FLAG, MOVE WORD #*e DATA ON THE o¥———> ANY PARTIAL
* OFF ROLL * *o ROLL o® * CARD
* * .
) Ko oF R KK N H
* YES
XXX] |
x x | |
* E2 *—> v |
* * XXXR |
XE XN v * *
* E2 * |
HHERRE KRR E RN RRR * * v
* * RN REXRESHREXEXRKR
* MOVE NEXT * * *
>%¥ WORD OFF + *——y * RETURN *
* DESTROY * [* *
*, o * * RN RN RR
*e o P e v
* NO >3
1 * *
i * D4 *
| * *
I >k
|
$40402
EEREERF2RHEARRRE RN
* *
* MOVE *
* ESD NUMBER TO *
* RLD ROU *
* *
KRN RN

|
|
v

e
* *

* DETERMINE *
%* LOCATION OF %
* FUNCTION *
* ADDRESS *
PP

I
v
oo
H2
o
¥ *o YES
*#4SUBPROGR FLAG e ¥—
*o ON o
. o
*e ok
* NO EXRE
* *
* B4 *
i * *
i XK KR
!
v
HEEEK JDHEHRERHH RN
* *
* STORE *
*¥LOCATION IN LOCH
* COUNTER *
* *
R e
I
v
L S T Y
* INITIALIZE *
* QUTPUT AREA, *
* TURN ON ¥
SUBPROGRAM FLAG i
*
B s é
* %%
* *
* B4 *
* *
R

Section 2: Compiler Operation 121

Chart FI.

122

G0405

HRREAD KR KK RN
*

¥*

* PUNCH *
* ADCON ROLL *
33 3 33 N NN

E2 2 33 |
* ¥*
* B2 *—>
* *

%X H v
¥
B2 *o
o *o
¥ * o
*¥¢DATA ON ROLL %
%, o ¥
* o o
*e o
* YES

\
363 I 3 C 2 3 3% XK %K
*

* SET AREA
#CODE FROM LAST
* WORD ON ROLL
*

ek e e e ke

33 I3 I I NN

|

v
% D 2 MK I X S XK
* SET ADDRESS ¥
* WHERE CONST *
IS TO BE LOADED#
*FROM NEXT WORD *

* ON ROLL *
LR e R R

P ——

HRNKNHEDH AR KK XXX
* MOVE INFO *
TO OUTPUT
AREA AND PUNCH#*

3336 3 I WX KK

\%
33K 2 I NI H RN
* #*

SET
UP RLD ROLL
ENTRY

* ok ok ok
% % K Kk

I I 3 3 I X H K

I

|

v
L3223

* *

* B2 *

* *
*

PUNCH ADDRESS CONSTANTS

NO

*
>
*

333 36 3 39 3 36 3¢ K¢

RETURN

363636 36 36 36 3 36 36 3 3 3 3 ¢ 3¢

3*
¥*
¥*

Chart FJ. PUNCH RLD CARDS

G0565
R AD KNI KKK
HEERA]HEREERRER * * THE SORT PUTS
* ORDER AND * * SORT * ENTRIES WITH LIKE
* PUNCH RLD - >%* RLD CARDS ON * ESD NUMBERS TOGETHERS
ROLL * * ROLL * ADR< CONST AND
UK KT IR KKK * * TEMP AND CONST ROLLS
IR H NN KK N NN ARE USED AS TEMP
STORAGE

!

#41615 v

RS R RS- -EL RS LSS
*SET ESD NUMBER
*FROM AREA CODE
>* AND PUT IN

R *
*
*
* RLD CARD *
*
*

PUNCH RLD * *
ROLL * B2 *
*

Exxx * IMAGE
LA E ST RS SRS TS

py—

$41601
R e

*ER * SET
* * *
* C2 *
*

LAST LOAD
>% ADDRESS FROM
* RLD GROUP

*
*
*
XK *
*

*
e T T 2

|

v

e¥a
D2 *.

o *.

o *. NO *

*<MORE DATA ON o¥—>

*. ROLL o%

KD BH KK IR EE R

PUNCH *
REMAINING
* DATA *

R KK IR KK KE
|
|
|
|
1
|

E2 *o
o *eo FARRESH R AR HARER
«* ESD NO = %, NO *
e TO PREVIOUS o%—— *
* i *

*
RETURN *
3*

KNI K RN

LR
m
&

* % X

v
L R e E R]
* *
PUNCH AN RLD
* CARD

TR KKK K KKK

pa—

P S—

$41602
EEE SRR SRS RS SRS
*PLACE PREVIOUS. *
* VALUE IN CARD *
* MARKED FOR *
* CONTINUATION ¥
* AND UPDATE *
B XK IR KA KA KA H K

HEHE

HHHEE

Section 2:

P
* BS *
*
R
|
v
$41603 %o
s

o *o

-® *
*.ROOM ON CARD .
*e ox

P P—

XA KKK CS K KR KN

* *
PUNCH AN RLD
* CARD *

HEREEHRRERN R

PO
|
|

$#41604
EEZ X OISR S RS 22 2
*PLACE PREVIOUS
* VALUE IN CARD
* MARKED FOR NO
* CONTINUATION
* AND UPDATE
R R RS R R L R R

Xk kK K K

|
|
|
|
v
R
*.

ES
«%* ROOM *o

YES «.*FOR NEw ESD¥*
r—*e NOe ON CARD o%
o
* o*
v ke W%
>R * NO
* * |
* B2 * i
* * |
ek

v
e
*

*
* *
* SAVE NEW ESD *
* NO. *
*
*

*
P R T

< ————

e

* *
PUNCH AN RLD
* CARD

PX2222 T2 TR

*E xR

kR

Compiler Operation 123

Chart FK. PUNCH END CARDS

G0424
HHKHAD KRR KR NKRHE
*
3* PUNCH *
* END CARD *

39 3 I3 33 I K

& et e e e e

A XE 2 I KN
* *
#*

*
SET UP END CARD
3t *
¥* *
363 3 36 3 I I 33 I KK H X XK

v
X HC 2 IR XNXNR

* *
PUNCH END CARD
* *

333 K X KX KR

E
|
v
336 D 2 W KX KX K
*

3*
* RETURN *
3* 3*

3 9 3 I KN X HHE

124

Chart FL.

G0564
RN AD W NN NN N
* PUNCH *
* NAMELIST MPY #*
* *

R R T

¥
B2 *e
* *

«%* DATA ON *, NO

*oNAMELIST MPY %
.DATA ROLL o%
* ¥

.i. ¥
* YES

v
HHRHHCDHEERIR R RN

* *
*CALCULATE NEXT *
* ADDRESS IN *
* TEMPORARY *
* STORAGE AREA *
L e

WX
* *
* D2 *—>
* *

RN

#056401
WD) 2NN W NN
* MOVE LOCATION *
* OF POINTER *
* FROM NAMELIST *
* MPY DATA

* ROLL *
L e

|
v
o¥,
E2 *%.
o *

o *.
%o ANYTHING o%
. MOVED .
o o

*o o¥
* YES

v
BN D NN R
*

*INITIALIZE TXT
* CARD TO LOAD

* LOCATION

* INDICATED

EE e T I

PEEEETY

v
e P
* SET *

* UP RLD ENTRY
* FOR WORD IN
*NAMELIST TABLE
*

* % %k

I T T

v
DRI RN
* *
MOVE MULTIPLIER%
* TO TEMP AND *
* CONST ROLL *

* *
P

v

2T NPE R R TR 2
* *
* MOVE *
*POINTER TO TXT *
* CARD IMAGE *

*

*

*
IR REN

PUNCH NAMELIST TABLE POINTERS

HENKDIHHAREENN KN
* *

>%
*

*
>*
*

RETURN

TN NN

HREHE T RN KRR

RETURN

P R TS

»*
*

*
*
*

HH AR
* B4 *

EENR

v
ey
* *
PUNCH THE TXT
* CARD *

BN NN

|
|

v
HREHHCLHHH RN R ENHN
* *
* INCREASE *
* TEMPORARY *
STORAGE POINTER¥
* *

LR T

v

NN
* D2 *
*

X

Section 2:

Compiler Operation 125

This appendix deals with the POP lan-
guage, the language in which the FORTRAN IV
(G) compiler is written. The parts of the
appendix describe this lanquage in the
following way:

e The first part describes the POP
instructions, which are grouped accord-
ing to their functions.

e The second part describes the 1labels
used in the routines of the compiler.

e The third part discusses the assembly
and operation of the compiler, as it is
affected by the use of the POP 1lan-
guage. This part ends with a cross-
reference list giving the mnemonic for
each instruction, the hexadecimal code
which represents it, and the instruc-
tion group in which it is described.

POP_ INSTRUCTIONS

For the purpose of describing their
operation, the POP instructions have been
divided into groups according to the pri-
mary function which they perform. Where a
particular POP instruction pertains to more
than one group, it 1is described in the
group which discusses its most important
functions.

In the descriptions of the instructions,
the following notational conventions are
employed:

1. Parentheses are used to indicate "the
contents of;" thus (G) stands for the
contents of storage address G, where
all addresses are fullword addresses.

2. The arrow is used to indicate trans-
mission in the direction of the arrow;
(G) + 1 --> G reads: the contents of
storage address G, plus one, are
transmitted to storage address G.

refers to the
etc., words on

3. Wn (n=1,2,3,%0.)
BOTTOM, BOTTOM-1, ...
the WORK roll.

It should be noted that in many cases
the address field, G, of the instruction
contains a value other than a storage
address (for instance, a roll mname). In
most of these cases, the symbolic reference
which 1is used is defined in the program by
means of an EQU card.

APPENDIX A: THE POP LANGUAGE

The mnemonic codes for the POP instruc-
tions are of the form IEYxxxX. In the
following discussion, the characters IEY
are omitted from the mnemonics in the
interest of ease of reading, and only the
xxx portion of the code appears.

TRANSMISSIVE INSTRUCTIONS

The instructions described in this sec-

tion are primarily involved in moving
information from place to place in storage.
APH G: Assign and Prune Half
The upper halfword of (W0) --> the
lower halfword of G, where G is a
storage address; the upper halfword
of G remains unaltered; the BOTTOM
of the WORK roll 1is reduced by
four, thus pruning WO.
ARK G: Assign Relative to Pointer and Keep
(WO0) --> P + (G), where P is the
address defined by the pointer in
Wl and G is a storage address; the
BOTTOM of the WORK roll is reduced
by four, thus pruning the value
assigned and keeping the pointer.

Assign Relative to Pointer

(WO0) -——> P + (G), where P 1is the
address defined by the pointer in
Wl and G is a storage address; the
BOTTOM of the WORK roll is reduced
by eight, thus pruning the current
WO and Wi1.

ASK G: Assign to Storage and Keep

(W0) --> G, where G is a storage

address; the BOTTOM of the WORK

roll is unchanged.

ASP G: Assign to Storage and Prune

(W0) --> G, where G is a storage

address; the BOTTOM of the WORK

roll is reduced by four, thus prun-

ing the current WwO0.

BOP G: Build on Polish

The control driver G is built on
the POLISH roll, where the G field
of the instruction is the lower
eight bits of the ADDRESS portion

Appendix A: The POP Language 127

CAR G:

CLA G:

CNT G:

CPO G:

CRP G:

EAD G:

128

of the desired driver. (The TAG
field of the pointer contains zero,
and the OPERATOR field contains
255.)

Copy and Release

Copy roll G, where G is a roll
number, to roll T, and release roll
G (i.e., restore it to its condi-
tion before the last reserve); the
number T is found in W0; the BOTTOM
of the WORK roll is reduced by
four. If roll G is in the reserved
state when this instruction is
executed, the instruction sets its
BOTTOM to (TOP) minus four; if the
roll is not reserved, BOTTOM is set
to (BASE).

Clear and Add
Clear W0; (G) --> WO, where G is a

storage address; the BOTTOM of the
WORK roll is unchanged.

Count
The number of words om roll G -->
W0, where G is a roll number; the

BOTTOM of the WORK roll is

increased by four.
Copy Plex On

The plex pointed to by the pointer
in WO is copied to roll G, where G
is the number of the target roll,
except for the first word of the
plex (which holds the number of
words in the plex, exclusive of
itself). The BOTTOM of the WORK
roll is reduced by four, thus prun-
ing the pointer. The BOTTOM of
roll G is increased by four for
each word moved; the BOTTOM of the
original roll is unchanged.

Copy Relative to Pointer

Copy roll S to roll G, where G is a
roll number, beginning with the
group indicated by the pointer in
W0, to the BOTTOM of the roll. The
roll number S is also provided by
the pointer in WO. The BOTTOM of
roll S 1is decreased by the number
of bytes moved. The BOTTOM of roll
G is increased by the number of
bytes moved. The BOTTOM of the
WORK roll is unchanged; thus, the
pointer remains.

Extract Address

The ADDRESS portion of (G) --> WO,
where G is a storage address; the

EAW

ECW

EOP

ETA

FET

FLP

FRK

FTH

G:

G:

G:

BOTTOM of the WORK roll is
increased by four.

Effective Address to Work

G --> W0, where G is a storage
address; the BOTTOM of the WORK

roll is increased by four.

Effective Constant Address to Work

G --> W0, where G 1is a storage
address which refers to a constant
under a constant base. The BOTTOM
of the WORK roll is increased by

four.

Extract Operator

The OPERATOR portion of (G) --> WO
(right adjusted), where G 1is a
storage address; the BOTTOM of the
WORK roll is increased by four.

Extract Tag

TAG portion of (G) --> TAG portion
of W0, where G is a storage
address; the BOTTOM of the WORK
roll is increased by four.

Fetch

(G) --> W0, where G is a storage
address; the BOTTOM of the WORK
roll is increased by four.

Flip

Invert the order of roll G, where G
is a roll number, word for word.

Fetch Relative to Pointer and Keep

(P + (G)) --> WO, where P is the
address defined by the pointer in
WO and G is a storage address; the
BOTTOM of the WORK roll is
increased by four; thus, the
pointer remains in Wi.

Fetch Relative to Pointer
(P + (G)) --> W0, where P is the

address defined by the pointer in
W0 and G is a storage address; the

BOTTOM of the WORK roll is
unchanged; thus, the pointer is
destroyed.
Fetch Half

The lower halfword of (G) --> upper
halfword of WO, where G is a
storage address; the lower half-

IAD G:

IOP G:

ITA G:

ITM G:

LCE G:

LCF G:

LCT G:

word of WO is set to
BOTTOM of the WORK
increased by four.

zero; the
roll is

Insert Address

The ADDRESS portion of (G) --> the
ADDRESS portion of the pointer in
W0, where G is a storage address;
the BOTTOM of the WORK roll is
unchanged.

Insert Operator

G -—-> OPERATOR portion of the
pointer in WO, where the G field of
the instruction is the desired
OPERATOR value; the BOTTOM of the
WORK roll is unchanged.

Insert Tag

TAG portion of (G) --> TAG portion
of the pointer in W0, where G is a
storage address; the BOTTOM of the
WORK roll is unchanged.

Insert Tag Mode

Mode portion of the TAG field of
(G) --> mode portion of the TAG
field of the pointer in W0, where G
is a storage address; the BOTTOM of
the WORK roll is unchanged.

Last Character Error

The last character count and the
address G —--> ERROR roll, where G
is the address of the message for
the error. The count of errors of
the severity associated with the
message 1is increased by one, and
the MAX STA ERROR NUMBER (which
indicates the highest severity
level of errors for the present
statement) is updated as required.

Last Character Error if False

the last
and the address
where G 1is the
address of the message for the
error. The count of errors of the
severity associated with the mes-
sage is increased by one, and the
MAX STA ERROR NUMBER is updated as
required., If (ANSWER BOX) = true,
the instruction does nothing.

If (ANSWER BOX) =
character count
G --> ERROR roll,

false,

Last Character Error if True

If (ANSWER BOX) = true, the last
character count and the address
G --> ERROR roll, where G is the
address of the message for the

LGP G:

LSS G:

MOC G:

MON G:

error. The count of errors of the
severity associated with the mes-
sage 1is increased by one, and the
MAX STA ERROR NUMBER is updated as
required. If (ANSWER BOX) = false,
the instruction does nothing.

Load Group from Pointer

Loads the group specified by the
pointer in WO into SYMBOL 1, 2, and
3, bata 0, 1, 2, 3, 4, and 5. The
number G is the number of bytes to
be loaded; if G=0, the entire group
is loaded. The BOTTOM of the WORK
roll is unchanged; hence, the
pointer remains in WO.

Load Symbol from Storage

Loads the (G and G+4), where G is a
storage address, into SYMBOL 1, 2,
and 3, and DATA O.

Move on Code

G halfwords, where G 1is an even
number, are to be moved from the
WORK roll to the CODE roll. A word
containing a special value in the
first two bytes and the number of
words transferred in the last two
bytes are first placed on the CODE
roll. G/2 words of information are
then moved from the WORK roll to
the CODE roll; the BOTTCM of the
CODE 1roll is increased by four for
each word placed on the roll; the
BOTTOM of the WORK roll is reduced
by four for each word moved from
the roll. A location counter is
increased by the number of bytes of
object code placed on the roll.

Move on

(WO0) --> roll G, where G 1is the
roll number; the BOTTOM of roll G
is increased by four; the BOTTOM of
the WORK roll is decreased by four.

NOG G: Number of Groups

NOZ G:

The number of groups on roll G -->
W0, where G is the roll number; the
BOTTOM of the WORK roll is
increased by four.

Nonzero
A nonzero value --> G, where G is a

storage address.

Appendix A: The POP Language 129

PGO G:

PGP G:

PLD G:

PNG G:

POC G:

PST G:

SWT G:

130

Place Group On

A group from SYMBOL 1, 2, and 3 and
DATA O, 1, 2, 3, 4, and 5 --> roll
G, where G is the roll number, by
group status; the BOTTOM of roll G
is increased by group size.

Place Group from Pointer

The group in SYMBOL 1, 2, 3, DATA
o, 1, 2, 3, 4, and 5 is placed on a
roll according to the pointer in
WO0. The number G is the number of
bytes to be moved; if G=0, an
entire group 1is moved; the BOTTOM
of the WORK roll is unchanged.

Precision Load

(G and G+4) --> MPAC 1 and MPAC 2,
where G is a storage address.

Pointer to New Group

Builds a pointer to the first byte
of the next group to be added to
roll G, where G is the roll number,
and places the pointer in WO; the
BOTTOM of the WORK roll is
increased by four.

Place on Code

The data located at storage address
G+4 and following is to be moved to
the CODE roll. The number of half-
words to be moved is stored in
location G and is an even number.
A word containing a special value
in the first two bytes and the
number of words of data in the last
two bytes 1is first placed on the
CODE roll. The indicated data is
then moved to +the CODE roll, and
the BOTTOM of the CODE roll is
increased by four for each word
placed on the roll. A location
counter 1is increased by the number
of bytes of object code placed on
the roll.

Precision Store

(MPAC 1 and MPAC 2) --> G and G+4,
where G is a storage address. This
instruction performs a doubleword
store.

Switch

Interchanges (W0) and (G), where G
is a storage address; the BOTTOM of
the WORK roll is unchanged.

ZER G:

zZero

0 --> g,
address.

where G 1is a storage

ARITHMETIC AND LOGICAL INSTRUCTIONS

The following instructions are primarily
designed to perform arithmetic and logical

manipulations.

ADD G: Add
(G) + (WO) --> W0, where G is a
storage address; the BOTTOM of the
WORK roll is unchanged; hence, the
initial contents of WO are
destroyed.

AFS G:

AND G:

DIM G:

DIV G:

IOR G:

LLS G:

Add Four to Storage

(G) + 4 —-> G, where G is a storage
address.

And

(G) AND (W0) --> WO; that is, a
logical product is formed between

(G) and (WO0), and the result is
placed in WO. The BOTTOM of the
WORK roll is unchanged; hence, the
initial contents of WO are
destroyed.

Diminish

(G) - 1 --> G, where G is a storage
address.

Divide

(W0) 7 (G) --> G, where G is a

storage address; the remainder, if
any, from the division is 1lost; a
true answer is returned if there is
no remainder; the BOTTOM of the

WORK roll is unchanged; hence, the
initial contents of WO are
destroyed.

Inclusive Or

The inclusive OR of (W0) and (G),
where G 1is a storage location, is
formed, and the result is placed in
W0. The BOTTOM of the WORK roll is
unchanged; hence, the initial con-
tents of WO are destroyed.

Logical Left shift

(W0) are shifted left G places; the
result 1is left in WO; bits shifted
out at the 1left are 1lost, and
vacated bit positions on the right
are filled with zeros.

LRS G:

MPY G:

PSP G:

SUB G:

TLY G:

Logical Right sShift

(W0) are shifted right G places;
the result is 1left in WO0; bits
shifted out at the right are 1lost,
and vacated bit positions on the
left are filled with zeros.

Multiply

(G) * (WO) -—> WO, where G 1is a
storage address; the BOTTOM of the
WORK roll is unchanged; hence, the
initial contents of WO are
destroyed.

Product Sign and Prune

The exclusive OR of (W0) and (@),
where G is a storage 1location,
replace the contents of G; the

BOTTOM of the WORK roll is reduced
by four, thus pruning WO.

Subtract

(W0) - (G) --> W0, where G is a
storage address; the BOTTOM of the
WORK roll is unchanged; hence, the
initial contents of WO are
destroyed.

Tally

(6) + 1 --> G, where G is a storage
address.

DECISION MAKING INSTRUCTIONS

These instructions inspect certain con-

ditions and return either a true or false
answer in the ANSWER BOX. Some of the
instructions also transmit stored informa-

tion from place to place.

CSA G:

1GA G:

Character Scan with Answer

If G = (CRRNT CHAR), the scan arrow
is advanced and a true answer is
returned; otherwise, the scan arrow
is not advanced and a false answer
is returned.

Load Group with Answer

The group from the BOTTOM of roll
G, where G is the roll number and
roll G has been flipped, is loaded
into SYMBOL 1, 2, 3, DATA 0, 1, 2,
3, 4, and 5 (as many words as
necessary); if the roll is empty or
if the group is a marker symbol, a

MOA G:

QSA G:

SAD G:

SBP G:

SBS G:

false answer 1is 1returned; other-
wise, a +true answer is returned;
the BOTTOM of roll G is reduced by
group size.

Move off with Answer

If roll G, where G 1is the roll
number, is empty, a false answer is
returned. Otherwise, the BOTTOM of
roll G is reduced by four, pruning
the word moved; the BOTTOM of the
WORK roll is increased by four; a
true answer is returned.

Quote Scan with Answer

If the quotation mark (sequence of
characters) beginning at storage
address G (the first byte in the
quotation mark is +the number of
bytes in the quotation mark) is
equal to the quotation mark start-
ing at the scan arrow, advance the
scan arrow to the next active

character following the quotation
mark, and return a true answer;
otherwise, do not advance the scan

arrow and return a false answer.

Set on Address

If G = ADDRESS portion of the
pointer in WO, return a true answ-
er; otherwise, return a false
answer.

Search by Stats from Pointer

Search the 1roll specified by the
pointer in W0, beginning with the
group following the one specified
by the pointer for a group which is
equal to the group in the central
items SymBOL 1, 2, 3, etc., accord-
ing to the group stats values
stored at 1locations G+4 and G+8
(these values are in the same order
as those in the group stats
tables). The roll number multip-
lied by four is stored at location
G. If a match is found, return a
true answer, replace the pointer in
W0 with a pointer to the matching
group, and continue in sequence.
If no match is found, return a
false answer, prune the pointer in
W0, and continue in sequence. This
instruction is used to continue a
search of a roll according to group
stats values other than those norm-
ally used for the roll.

Search by Stats
If the roll, whose

lied by four is
location G, is

number multip-
in storage at
empty, return a

Appendix A: The POP Language 131

SCE G:

SCK G:

SFP G:

SLE G:

132

false answer. Otherwise, search
that roll against the central items
SYMBOL 1, 2, and 3 and DATA 0, 1,
2, 3, 4, and 5, as defined by the
group stats values stored at loca-
tions G+4 and G+8 (these values are
in the same order as those in the
group stats tables); if a match is
found, place a pointer to the
matching group in W0, increase the
BOTTOM of the WORK roll, and return
a true answer; if no match is
found, return a false answer. This
instruction is used to search a
roll according to group stats
values other than those normally
used for that roll.

Set if Character Equal

If G = (CRRNT CHAR), return a true
answer; otherwise, return a false
answer; in neither case is the scan
arrow advanced.

Set on Character Key

If (CRRNT CHAR) displays any of the
character keys of G, where G is a
character code whose bit settings
describe a group of characters,
return a true answer; otherwise, a
false answer is returned; in neith-
er case is the scan arrow advanced.

Search from Pointer

Search the 1roll specified by the
pointer in WO, beginning with the
group following the one specified
by the pointer in W0, for a group
which is equal to the group in
SYMBOL 1, 2, 3, DATA 0, 1..., etc.,
by roll statistics. If a match is
found, return a true answer,
replace the pointer in W0 with a
pointer to the matching group, and
jump to G, where G must be a 1local
address. If no match is found,
return a false answer, prune the
pointer in WO (reduce the BOTTOM of
the WORK roll by four), and con-
tinue in sequence.

Set if Less or Equal

If (W0) < (G), where G is a storage
address, a true answer is returned;
otherwise, a false answer is
returned. The comparison made con-
siders the two values to be signed
quantities.

SNE

SNZ

SOoP

SPM

SPT

SRA

SRD

STA

G:

G:

G:

Set if Not Equal

If (W0) # (G), where G is a storage
address, a true answer is returned;
otherwise, a false answer is
returned. '

Set if Nonzero
If (G #+# 0, where G is a storage

address, return a true answer;
otherwise, return a false answer.

Set on Operator

If G = OPERATOR portion of the
pointer in WO, return a true answ-
er; otherwise, return a false
- answer.

Set on Polish Mode

If the mode portion of the TAG
field of the (G) = the mode portion
of the TAG field of the pointer in
P1l, where G is a storage addess,
return a true answer; otherwise,
return a false answer,

Set on Polish Tag

If the TAG field of the (G) = the
TAG field of the pointer in P1,
where G 1is a storage address,

return a true answer; otherwise,
return a false answer.

Search

If roll G, where G 1is the roll
number, 1is empty, return a false
answer; otherwise, search roll G

against the central items SYMBOL 1,
2, and 3 and DATA 0, 1, 2, 3, 4,
and 5, as defined by the roll
statistics; if a match is found,
place a pointer to the matching
group in W0, increase the BOTTOM of
the WORK roll, and return a true
answer; if no match is found,
return a false answer.

Set if Remaining Data

If roll G, where G is the roll
number, is not empty, return a true

answer; otherwise, return a false
answer.

Set on Tag

If the TAG portion of (G) = the TAG

portion of the pointer in W0, where
G is a storage address, return a
true answer; otherwise, return a
false answer,

STM G:

Set on Tag Mode

If the mode portion of the TAG
field of the (G) = the mode portion
of the TAG field of the pointer in

W0, where G is a storage address,
return a true answer; otherwise,
return a false answer.
JUMP INSTRUCTIONS
The following instructions cause the
normal sequential operation of the POP
instructions to be altered, either uncondi-
tionally or conditionally. See the sec-

tions "Labels"™ and "Assembly and Operation"
in this Appendix for further discussion of
jump instructions.

CSF G:

JAF G:

JAT G:

JOW G:

JPE G:

Character Scan or Fail

If G =
scan arrow to the next
character; otherwise,
SYNTAX FAIL.

(CRRNT CHAR), advance the
active

jump to

Jump if Answer False

If (ANSWER BOX) = false, jump to G,
where G 1is either a global or a
local address; otherwise, continue
in sequence. One of two operation
codes is produced for this instruc-

tion depending on whether G is a
global or local label.

Jump if Answer True

If (ANSWER BOX) = true, jump to G,
where G is either a global or a
local address; otherwise, continue
in sequence. One of two operation

codes is produced for this instruc-
tion depending on whether G is a
global or a local label.

Jump on Work

If (W0) = 0, decrease the BOTTOM of
the WORK roll by four and jump to
G, where G is either a global or a
local address; otherwise, reduce
word 0 by one, —--> W0, and continue
in sequence. One of two operation
codes is produced for this instruc-
tion, depending on whether G is a
global or a local label.

Jump and Prepare for Error
The following values are saved in
storage: the location of the next
instruction, the last character

count, the BOTTOM of the EXIT roll,
and the BOTTOM of the WORK roll.

JRD

JSB

JUN

QSF

XIT

G:

G:

G:

G:

.

The JPE FLAG is set to nonzero, and
a Jjump is taken to G, which may
only be a local address.

Jump Roll Down

This instruction manipulates a
pointer in WO. If the ADDRESS
field of that pointer is equal to 0
(pointing to the word preceding the
beginning of a reserved area), the
ADDRESS field is increased to four.
If the ADDRESS field of the pointer
is equal to any legitimate value
within the roll, it is increased by
group size. If the ADDRESS field
of the pointer indicates a location
beyond the BOTTOM of the roll, the
pointer is pruned (the BOTTOM of
the WORK roll is reduced by four),
and a jump is made to the location
G, which must be a global address.

Jump to Subroutine

Return information is placed on the
EXIT roll; jump to G, which is a
global address.

Jump Unconditional

Jump to G, which is either a global
or a local address. One of two
operation codes is produced for
this instruction, depending on
whether G is a global or a 1local
label.

Quote Scan or Fail

If the quotation mark (sequence of
characters) beginning at storage
address G (the value of the first
byte in the quotation mark 1is the
number of Dbytes in the gquotation
mark) is equal to the guotation
mark starting at the scan arrow,
advance the scan arrow to the first
active character beyond the quota-
tion mark; otherwise, jump to SYN-
TAX FAIL.

Exit
Exit from the interpreter; the code

which follows is written in
assembler language.

ROLL CONTROL INSTRUCTIONS

the

These
con

concerned with
used in the

instructions
trol of the

are
rolls

compiler,

Appendix A: The POP Language 133

POW G: Prune off Work
Reduce the BOTTOM of the WORK roll
by four times G, where G is an
integer, thus pruning G words off
the WORK roll.

REL G: Release

Restore roll G, where G is the roll
number, to the condition preceding
the 1last reserve; this sets BOTTOM
to (TOP) reduced by four if the
roll is reserved, or to (BASE) if
the roll is not reserved; TOP is
set to the value it had before the
reserve,

RSV G: Reserve

Reserve roll G, where G is the roll

number, by storing (TOP) - (BASE)
on the 1roll, increasing BOTTOM by
four, and setting TOP to (BOTTOM) ;

this protects the area between BASE
and TOP, and allows ascending
addresses from TOP to be used as a
new, empty roll.

CODE PRODUCING INSTRUCTIONS

These POP instructions construct object
module code on the CODE roll. Each object
module instruction constructed results in
the placing of a 2-word group on the CODE
roll. The instruction generated, in bi-
nary, is left justified in this group. In
the case of halfword instructiomns, the
remainder of the first word is filled with
Z€ero. The second word contains a pointer
to the instruction operand, except in the
case of 6-byte instructions when the last
two bytes of the group contain the value
Z€ero.

BID G: Build Instruction Double

The instruction indicated by G,
where G is an instruction number
which indicates the exact instruc-

tion to be generated, is built on
the CODE roll, where WO contains a
pointer to the first operand and Wl
contains a pointer to the second
operand. The BOTTOM of the CODE
roll is increased by eight. The
BOTTOM of the WORK roll is reduced
by eight; thus, both pointers are
pruned. A location counter is in-
creased by one for each byte of the
instruction.

134

BIM G: Build Instruction by Mode

The instruction indicated by G,
where G is an instruction number
which indicates the class of the
instruction only. For example,
LOAD INSTR as opposed to LE INSTR
is built on the CODE roll, where WO
contains a pointer to +the second
operand. A pointer to the accumu-
lator which holds the first operand
is contained in the variable CRRNT
ACC. The instruction mode is
determined by inspecting the TAG
fields of the pointers; the BOTTOM
of the CODE roll is increased by
eight; the BOTTOM of the WORK roll
is reduced by four, thus pruning
the pointer. A location counter is
increased by one for each byte of
the generated instruction.

BIN G: Build Instruction

The instruction indicated by G,

where G 1is an instruction number
which indicates the exact instruc-

tion to be built, is constructed on
the CODE roll. The WORK roll holds

from zero to three words of infor-

mation required for producing the
instruction. For instructions

requiring no operands, nothing
appears on the WORK roll. For
instructions requiring one operand,

a pointer to that operand appears -
in WO. For two operand instruc-

tions, a pointer to the first

operand appears in WO and a pointer

to the second operand is in Wil.

For input/output instructions, Wil

holds a constant which' becomes part

of the instruction. For storage-
to-storage move instructions, W2
holds the 1length. The BOTTOM of

the CODE roll is increased by eight
to reflect the addition of the
group. The BOTTOM of the WORK roll
is reduced by four for each word of
information found on that roll;
thus, all the information is
pruned. A location counter is
increased by one for each byte of
the instruction.

ADDRESS COMPUTATION INSTRUCTIONS

The POP instructions whose G fields
require storage addresses may be used to
refer to WORK roll groups, provided the
storage address of the desired group is
first computed. This computation must be
performed at execution time, since the
location of WO, for example, varies as the
program is operated. The instructions in
this category perform these computations and
jump to the appropriate POP, which then op-
erates using the computed address.

WOP G: WO POP

Compute the address of the current
W0 and jump to the POP indicated by
G, where G is a POP instruction
which normally accepts a storage
address in its G field.

W1P G: W1l POP

Compute the address of the current
Wl and jump to the POP indicated by
G, where G is a POP instruction
which normally accepts a storage
address in its G field.

W2P G: W2 POP

Compute the address of the current
W2 and jump to the POP indicated by
G, where G 1is a POP instruction
which normally accepts a storage
address in its G field.
W3P G: W3 POP
Compute the address of the current
W3 and jump to the POP indicated by
G, where G is a POP instruction
which normally accepts a storage
address in its G field.
W4P G: W4 POP
compute the address of the current
W4 and jump to the POP indicated by
G, where G 1is a POP instruction

which normally accepts a storage
address in its G field.

INDIRECT ADDRESSING INSTRUCTION

Indirect addressing is provided for POP
instructions whose address fields normally
require storage addresses by means of the
following instruction.

IND G: Indirect

The address contained in the
storage address INDIRECT BOX is
transmitted to the POP indicated by
G, where G is a POP instruction
which requires a storage address in
its G field, and a jump is made to
that POP. The POP "G" operates in
its normal fashion, using the tran-
smitted address.

LABELS

In the POP language, storage locations
containing instructions or data may be
named with two types of 1labels, global
labels and local labels. Global labels are
unique within each phase of the compiler
(but not from one phase to another); these
labels may be referred to from any point in
the phase. Local labels are also unique
within each phase (but not between phases);
however, these labels may be referred to
only within the global area (that is, the
area between two consecutive global labels)
in which they are defined.

GLOBAL LABELS

The global 1labels which appear on a
System/360 assembler listing of the compil-
er are distinguished from local 1labels in
that the global labels do not begin with a
pound sign. Most of the global labels are
of the form Gdddd, where each d is a
decimal digit and the 4-digit value dddd is
unique for the global 1label. Labels of
this form are generally assigned in ascend-
ing sequence to the compiler routines. All
remaining global 1labels are limited to a
length of seven characters.

In contrast, the routine and data names
used throughout this publication are
limited only to a length of 30 characters.
A comment card containing the long name
used here precedes the card on which each
global 1label is defined. In addition, the
longer name appears as a comment on any
card containing a POP instruction which
refers to the global label.

Example:

G0336 STA GEN FINISH
G0336 IEYMOA GO494 MOA DO LOOPS OPEN ROLL

-
.

Explanation: The second card shown defines
the global label G0336. The first card, a
comment card, indicates the longer name of
the routine, STA GEN FINISH. The second
card contains a reference to the label
GO494; the longer form of this label is DO
LOOPS OPEN ROLL, as indicated by the
comment.

Occasionally, several comment cards with
identical address fields appear in sequence
on the listing. This occurs when more than
one long label has been applied to a single
instruction or data value. The long labels
are indicated in the comments fields of the
cards.

Appendix A: The PQP Language 135

Example:
* ACTEST AC TEST
* ACTEST TESTAC

ACTEST IEYSOP GO504 SOP FL AC OP MARK

Explanation: The three cards shown define
the global .label ACTEST. One long form of
this label is AC TEST, as indicated by the
comment on the first card. The second card
indicates that +the name TESTAC has also
been applied to this location, and that it
also corresponds to ACTEST.

LOCAL LABELS

All local labels consist of a pound sign
followed by six decimal digits. If the
preceding global 1label is of the form
Gdddd, the first four digits are identical
to those in the global name. The remaining
two digits of the local label do not follow
any particular sequence; they are, however,
unique in the global area.

The 1local 1label is defined by its
appearance in the name field of a card
containing a POP or assembler language
instruction.

Example:
* G0268 PROCESS SCALAR ROLL
G0268 IEYSRD GO432 SRD SCALAR ROLL

#026811 IEYJOW #026821
#026802 IEYITA G0359 ITA CED TAG MARK

Explanation: The global 1label G0268 is
defined by the second card in the sequence
shown. The next two cards define, respec-
tively, the 1local 1labels #026811 and
#026802. In addition, the third card in
the sequence contains a reference to the
local 1label #026821, which is presumably
defined elsewhere within the global area
shown here.

ASSEMBLY AND OPERATION

The compiler is assembled with each POP
instruction defined as a macro. Unless
"ouick Link" output has been designated to
the macro by means of the assembler
instruction SETC ‘'QLK', the resulting code

136

consists of two 1-byte address constants
per POP instruction. This 16-bit value
represents an 8-bit numeric operation code
and an 8-bit operand or relative address.

The definition of the 8-bit operand or
relative address varies according to the
POP instruction used. Roll numbers appear
in this field for instructions requiring
them, For instructions which refer to
storage locations relative to CBASE (see
"Compiler Arrangement and General Register
Usage") or to other base addresses, the
word number relative to the appropriate
base is used. The format for jump instruc-
tions is discussed in the following
paragraphs.

When OQuick Link is specified, machine
language instructions are generated for the
following POP instruction. (See "Assembler
Language References to POP Subroutines.")

POP INTERPRETER

The assembled POP code is interpreted by
a short machine 1language routine, POP
SETUP, which appears with the POP subrou-
tines at the beginning of the compiler.

POP SETUP inspects each pair of address
constants in sequence, and, using the 8-bit
operation code as an index into the POP
jump table, a table which correlates opera-
tion codes for the POPs with the addresses
of the POP subroutines, transfers control
to the appropriate POP subroutine.

Thus, on encountering the hexadecimal
value 081A, POP SETUP indexes into the POP
jump table (labeled POPTABLE) at the eighth
byte, counting from zero. The value found
at this 1location is 0158 (hexadecimal);
this is the address, relative to the base
of the POP jump table, of the POP subrou-
tine for the POP numbered 08 (IEYSUB).
When this wvalue is added to the beginning
address of the POP jump table, the absolute
address of IEYSUB is produced, and POP
SETUP performs a branch to that location.

IEYSUB then operates, using the relative
address 1A (which it finds in general
register 7, ADDR), and returns via POPXIT,
register 6; in this case the return is to
POP SETUP, which then continues with the
next POP in sequence. The register POPADR
is used to keep track of the location of
the POP being executed.

This sequential operation can be inter-
rupted by means of POP jump (branch)
instructions, which cause an instruction
other than the mnext in sequence to be
operated next. The XIT POP instruction

also alters the sequence by causing the
interpreter to release control, performing
a branch to the assembler language instruc-
tion following the XIT. This device is
employed to introduce assembler language
coding into the compiler routines when this
is more efficient than the use of POPs.
Assembler language sequences sometimes texr-
minate with a branch to POP SETUP, so that
it may resume the execution of POP
instructions.

ASSEMBLER LANGUAGE REFERENCES TO POP
SUBROUTINES

In some of the routines of the compiler,
the operation of POP SETUP is bypassed by
assembler language instructions which make
direct reference to the POP subroutines.
In these sequences, a pair of machine
language instructions performs the function
of a single POP instruction. For example,
the instructions

LA ADDR,ONE-CBASE(0,0)
BAL POPXIT, FETQ

accomplish the function of the POP

instruction
IEYFET ONE

but bypass the operation of POP SETUP. The
IEYFET routine, (referred to by its label
FETQ) returns, via POPXIT, to the mnext
instruction. Note that the first instruc-
tion of the pair sets ADDR to the correct
value for the operand of the IEYFET opera-
tion; this would be done by POP SETUP if it
interpreted IEYFET ONE.

GLOBAL JUMP INSTRUCTIONS

The labels referred to in POP global
jump instructions, jump instructions which
branch to global labels, always end with
the character J. These global labels refer

to the global Fjump table, a table whose
fullword entries contain the relative
addresses of global 1labels which are the

targets of branches. Each phase of the
compiler has a global Jjump table. The
table is labeled JUMP TABLE.

References in POP global
tions to the global jump table are
assembled as relative word addresses in
that table. Each entry in the table con-
tains the address, relative in bytes to
CBASE, of the 1label whose spelling is
identical to that of the global jump table
entry except that it does not include the
terminal J.

jump instruc-

Thus, the instruction IEYJUN G0192J is
assembled as 5002, for example, where the
global jump table begins:

r
G0075J7 | 520 |

t 1
G0111J | 752 |

G0192J

[—
|
|
|
|
|
|
|
|
e

On encountering this instruction, POP SETUP
loads its address field (02), multiplied by
four (08), into the register ADDR. It then
jumps to the POP subroutine for IEYJUN.

The IEYJUN subroutine uses ADDR as an
index into JUMP TABLE, finding the value
B02., This value is placed in the register
TP and a branch is made to the location
defined by the sum of the contents of TMP
and the contents of CONSTR, which holds the
location CBASE. Thus, if the location
CBASE is 10BO, the location branched to is
1BB2, the location of the routine labeled
G0192, and the instruction at that location
is operated next.

Since the POP subroutines for global
jumps branch directly to the target loca-
tion, the instruction at that location must
be a machine language instruction rather
than a POP. Moreover, all Jjump target
routines which contain 1local Jjumps must
reset POPADR to reflect the new location.
Thus, routines which are jump targets and
which are written in POPs begin with the
instruction

BALR POPADR, POPPGB

which sets POPADR to the location of the
first POP instruction in the routine and
branches to POP BASE, the address of which
is held in POPPGB. At POP BASE, the
contents of POPADR are saved in LOCAL JUMP
BASE, POPXIT is set to the beginning loca-
tion of POP SETUP, and POP SETUP begins
operating. For the sake of brevity, this
instruction is coded as

BALR A,B
in some routines.

Routines in which the POP instructions
have been replaced by pairs of assembler
language instructions and which contain
local jumps begin with the instruction

BALR A,0
orxr
BAIR POPADR, 0

Appendix A: The POP Language 137

instead of the instruction given above,
since the branch to POP SETUP is not
desired.

Because global jump targets begin with
this machine 1language code, it 1is not
possible for POP instructions to continue
in sequence into new global routines. When
this operation is intended, an IEYXIT or an

IEYJUN instruction terminates the first
routine.
ILOCAL JUMP INSTRUCTIONS
POP local jump instructions, Jjump

instructions which transfer control out of
the normal sequence to local labels, must
occur in the same global area as the one in

which the 1local 1label referred to is
defined.
The address portions of POP local jump

instructions are assembled to contain the
distance in halfwords from the beginning of
the global area plus two to the indicated
local label. This value is a relative
halfword address for the target, where the
base used is the location of the first POP
instruction in the global area.

Example:
Decimal Symbolic Hexadecimal
Location Label Instruction Instruction
100 G0245 BALR A,B
102 IEYCLA G0566 062A
120 #024503 IEYLGA GO0338 9a12
140 IEYJUN #024503 5809

138

Explanation: The 1local Jjump instruction
illustrated at location 140 is assembled so
that its address field contains the 1loca-
tion of the label #024503 (120), relative
in halfwords to the beginning location of
the global area plus two (102). Thus, the
address field of the IEYJUN instruction
contains the value 09.

When the POP local jump instruction is
interpreted, the contents of the location
LOCAL JUMP BASE are added to the address
field of the POP instruction to produce the
absolute address of the jump target. LOCAL
JUMP BASE is set to the beginning address
of the global area plus two as a result of
the BALR instruction which begins the glob-
al routine; this function is performed at
POP BASE, as described in "Global Jump
Instructions."

When local jumps are performed directly
in machine language, the relative address-
ing described above is also used; in this
case, however, the base address is in the
register POPADR as a result of the BALR
instruction heading the routine.

POP instruction mnemonics are listed in
Table 8.

Table 8.

POP Instruction Cross-Reference List

r T a
Mnemonic Hex Instruction Group	Mnemonic Hex Instruction Group
ADD o4 Arithmetic/Logical	LGA 9A Decision Making
AFS BC Arithmetic/Logical	LGP 80 Transmissive
AND B4 Arithmetic/Logical	LLS 98 Arithmetic/Logical
APH AL Transmissive i LRS B6 Arithmetic/Logical	
ARK 86 Transmissive	LSS BO Transmissive
ARP OE Transmissive	MOA 5C Decision Making
ASK 12 Transmissive	MOC 9E Transmissive
ASP 14 Transmissive	MON SE Transmissive]
BID 71E Code Producing	MPY 0A Arithmetic/Logical
BIM 7¢C Code Producing	NOG 1E Transmissive
BIN 7A Code Producing	NOZ 3E Transmissive
BOP 60 Transmissive	PGO 22 Transmissive
] CAR 1A Transmissive	PGP 9c Transmissive
CLA 06 Transmissive	PLD 90 Transmissive
CNT 1c Transmissive	PNG 20 Transmissive
CPO B2 Transmissive	POC 94 Transmissive
CRP 62 Transmissive	POW 16 Roll Control
CSA 24 Decision Making	PSP 92 Arithmetic/Logical
CSF 26 Jump	PST 8C Transmissive
DIM 8E Arithmetic/Logical	QSA 2A Decision Making
] DIV B8 Arithmetic/Logical	QSF 2c Jump
EAD 2E Transmissive i REL 64 Roll Control	
EAW 18 Transmissive	RSV 66 Roll Control
ECW 18 Transmissive	SAD 6A Decision Making
EOP 30 Transmissive	SBP BA Decision Making
ETA 32 Transmissive] SBS 96 Decision Making	
FET 34 Transmissive	SCE 28 Decision Making
FLP 46 Transmissive	SCK 6E Decision Making
FRK 84 Transmissive	SFP A6 Decision Making
FRP 10 Transmissive	SLE 70 Decision Making
FTH AE Transmissive	SNE 74 Decision Making
IAD 36 Transmissive] SNZ 72 Decision Making	
IND D2 Indirect Addressing	SOP 6C Decision Making
1op 38 Transmissive	SPM A2 Decision Making
IO0R 8A Arithmetic/Logical	SPT AC Decision Making
ITA 3A Transmissive	SRA 76 Decision Making
IT™ A0 Transmissive	SRD 78 Decision Making
JAF 4A Jump (global)	STA 68 Decision Making
56 Jump (local)	STM 3cC Decision Making
JAT 48 Jump (global)	SUB 08 Arithmetic/Logical
54 Jump (local)	SWT oc Transmissive
JOW 4E Jump (global)	TLY 42 Arithmetic/Logical
5A Jump (local)	WoP Cc8 Address Computation
JPE 52 Jump	Wip CA Address Computation
JRD 82 Jump	W2P ccC Address Computation
JSB 50 Jump	W3P CE Address Computation
JUN 4c Jump (global)] wup DO Address Computation	
58 Jump (local)	XIT 4y Jump
LCE 00 Transmissive	ZER 40 Transmissive
LCF AA Transmissive	
LCT A8 Transmissive	
L 1 1
Appendix A: The POP Language 139

APPENDIX B: ROLLS USED IN THE COMPILER

This appendix describes each of the
rolls used in the compiler, giving the
group size, the structure and content of
the information in the group, and the roll
number. Each roll 1is described as it
appears in each of the phases of the
compiler. This information is useful in
observing the actions taken by the various
phases, since a significant portion of the
work performed by the compiler is the
construction and manipulation of informa-
tion on rolls.

The rolls are ordered in this appendix
as they are in storage, by roll number. In
some cases, a single, number is assigned to

several rolls. In these cases, the rolls
with identical numbers are presented
chronologically, and the overlay of one

roll on another indicates that the previous
roll is no longer required when the new

roll is wused. The group stats values for
rolls with the same number are always
identical.

The roll number is the entry number in
the roll statistics tables for the appro-
priate set of statistics; that is, the roll
number multiplied by four is the relative
address of the correct entry in the group
stats, BASE, BOTTOM, and TOP tables.

ROLL 0O0: LIB ROLL

This 1roll contains one group for every
name by which a library subprogram can be
referred to in the source module. The roll
is contained in IEYROL and remains
unchanged in size and in content throughout
compilation.

The group size for the LIB roll is

twelve bytes. Each group has the form:
4 bytes

r 1
1< subprogram |
lr Al T '{
| name: > TAG | 0 |
1 4 L J
T T T 1
| TAG | flag | no. arguments |
L L 1 i]

The TAG appearing in the seventh byte of
the group provides the mode and size of the
FUNCTION value, if the subprogram is a
FUNCTION. The TAG in byte 9 indicates the
mode and size of the arguments to the
subprogram. For FUNCTIONs, the flag (byte

140

10) indicates either in-line (including
which generation routine must be used) or
that a call is to be generated (when the
flag is equal to zero).

This 1roll is used and then destroyed by
Allocate.
ROLL 1: SOURCE ROLL

This roll holds source module statements
while they are being processed during the
operations of Parse. The roll is not used
by any later phase of the compiler.

Source statements appear on this roll
one card column per byte. Thus, each card
of a source statement occupies 20 groups on
the roll. The group size 1is four bytes.
The statement ‘

A(I,J3)=B(I,J)*2+C(I,J) **2

would therefore
as:

appear on the SOURCE roll

4 bytes

I 1 1 L] 1
| b | b | b | D |
F 3 t 1
| b | b | A (|
} ; + 1
I I | ' | J) l
4

4

= B (I |

4

1

| | J |) |* |
1 1 4 4 4
v T] T b}
I 2 | + | c I« |
I 4 4 } J
¥ 1 1 3 1
| I | ' | J I) |
b 1 1 i 1
| * | * | 2 | b |
8 4 1 4 J
] 1] 1 1
| b | b | b | |
'l L 1 1 {
| . |
| . |
| . |
N J
] T L 1] 1
I b | b | b | b |
L 1 1 4 J

where b stands for the character blank, and
a total of 20 words is occupied by the
statement.

ROLL 2: IND VAR ROLL

This roll holds a pointer to the induc-
tion variable (the DO variable) wused in
each DO 1loop. The pointer specifies the
appropriate group on the SCALAR roll. Each
pointer is placed on the roll by Parse as
the DO 1loop is encountered in the source

module. When the 1loop is closed, the
pointer is deleted.
The roll is not used in subsequent

phases of the compiler. The group size for
the IND VAR roll is four bytes.

ROLL 2: NONSTD SCRIPT ROLL

This roll exists only in Unify; the
information held on it is taken from the
SCRIPT roll. The group size for the NONSTD
SCRIPT roll is variable, with a minimum of
20 bytes. Each group on the roll describes
an array reference.

The format of the
group is:

NONSTD SCRIPT roll

4 bytes

r)
ltraits ! frequency

¥
|pointer to ARRAY REF roll
!

1
|pointer to the ARRAY roll
|8

ioffset

nduction variable coefficient

e

-

s e S

induction variable coefficient

b s b e e e e s e e i e i e s e

where the first byte of the first word
contains the trait, which indicates either
joined or not joined; the value of this
item is always zero (not joined) for this
roll. The joined value indicates that the
subscript described must appear in a gener-
al register at the time of the reference.
The remaining three bytes of the first word
indicate the number of times this subscript
expression is used.

The next two words contain pointers to
rolls holding information on the array and
the array reference to which this group
refers. The fourth word holds the array
offset; this value accounts for element
size and includes all modification due to

constant subscripts. The remaining words
hold the induction variable coefficient
used in this reference for each loop in the
nest, beginning with nest 1level ome (the
outermost loop) and ending with the highest
nest level at this array reference.

ROLL__3: NEST SCRIPT ROLL

This roll contains information concern-
ing array references in nested DO loops.
The information for this roll is taken from
the SCRIPT roll as each nest of loops is
encountered, one nest at a time. The roll
exists only in Unify. The group size of
the NEST SCRIPT roll is variable with a
minimum of 20 Dbytes., The format of the
NEST SCRIPT roll is as follows:

4 bytes

r T
!traits | frequency

'}

1
|pointer to ARRAY REF roll
1

]
|pointer to the ARRAY roll
1

¥
|offset

-

|induction variable coefficient

induction variable coefficient

e e ki . s s el s i s e S— ok — e Sl

s aa e o

first word
joined. The

where the first byte of the
indicates joined or not
remaining three bytes of the first word
indicate the number of times that this
subscript expression is used. The next two
words of the group contain pointers to
rolls which hold information on the array
and the array reference to which this entry
refers. The fourth word holds the actual
adjusted offset for this array reference.
The last words of the group contain the
coefficients of induction variables used in
the array reference, beginning with the
nest level one variable and ending with the
highest nest level.

ROLL 4: POLISH ROLL

This roll is used to hold the Polish
notation generated by Parse, one statement
at a time. (The Polish notation is moved
to the AFTER POLISH roll at the end of each
statement.) Therefore, the roll contains

Appendix B: Rolls Used in the Compiler 141

pointers, drivers, and an occasional con-
stant. The terms PO and Pl are used to
refer to the bottom and next-to-bottom
groups on the POLISH roll, respectively.

In Gen, the Polish mnotation is moved
back onto the POLISH roll from the AFTER
POLISH roll, omne statement at a time. It
is used in the production of object code.

The group size for the POLISH roll is
four bytes. The format of the Polish
notation which appears on this roll is
described completely in Appendix C.

The POLISH roll is not used in the other
phases of the compiler and no information
is left on it through these phases.

ROLL_4: LOOP_SCRIPT ROLL

This roll contains information on array
references encountered in the source
module. The group size for the LOOP SCRIPT
roll is variable; the minimum is 20 bytes.
Its format is:

4 bytes

r N T

|traits |

}. 1

|pointer to the ARRAY REF roll
k

frequency

r

|pointer to the ARRAY roll
1

T
|offset

induction variable coefficient

induction variable coefficient

N e g

e e =t a

All items are the same as described for the
NEST SCRIPT roll (roll 3).

The LOOP SCRIPT roll exists only in
Unify. It is used by this phase to further
separate subscripts into two categories:
standard, those which must appear in gener-
al registers at the time of reference, and
nonstandard.

ROLL__5: LITERAL CONST ROLL

This roll holds literal constants, which
are stored as plexes, The group size for
the LITERAL CONST roll is variable. Each
plex has the form:

142

4 bytes

—

T
Ca | Cz | Cs | c
i

T

L

T
c |
i

S

s S e na rh
-
-

L e e o T g

|
|

where n is the number of words in the plex,
exclusive of the word which holds n, k is
the number of bytes in the literal con-
stant, and c (the k character) may fall in
any byte of the last word of the plex. If
the literal constant appeared in a source
module DATA or PAUSE statement, the high
order bit of the second word of the plex
(k) is set to one; otherwise, it is zero.

on the LITERAL CONST
It is used to hold

Entries are made
roll only during Parse.

the literal constants throughout the com-
piler; its format, therefore, does not
vary.

ROLL 7: GLOBAL SPROG ROLL

In Parse this roll holds the names of
all SUBROUTINEs and non-library FUNCTIONs
referred to in the source module. It also
holds the names of all subprograms listed
in EXTERNAL statements in the source
module, including library subprograms. In
addition, the compiler itself generates
calls to the 1library exponentiation rou-
tines; the names of these routines are
entered on the GLOBAL SPROG roll.

The group size for the GLOBAL SPROG roll
is eight bytes. 2ll groups placed on the
GLOBAL SPROG roll by Parse have the follow-
ing format:

4 bytes

r 1
| < subprogram |

name: > TAG 0

The TAG appearing in the seventh byte of
the group indicates the mode and size of
the FUNCTION value for FUNCTIONs; it has no
meaning for SUBROUTINEs.

In Allocate, the information on the roll
is altered to:

4 bytes

T
ESD number |
4

base table pointer

displacement

o —— c—
L

The ESD number is the one assigned to the
subprogram. The displacement and the base
table pointer, taken together, indicate the
location assigned by Allocate to hold the
address of the subprogram. The specified
BASE TABLE roll group holds an address; the
displacement is the distance in bytes from
that address to the location at which the
address of the subprogram will be stored in
the object module.

In Gen, the GLOBAL SPROG roll is used in
the construction of object code, but it is
not altered.

In Exit, the roll is used in the produc-
tion of RLD cards, but is not altered.

ROLL _8: FX CONST ROLL

This roll holds the fullword integer
constants which are wused in the source
module or generated by the compiler. The
constants are held on the roll in binary,
one constant per group. The group size for
the FX CONST roll is four bytes.

The format of the FX CONST roll is
identical for all phases of the compiler.
The 1roll remains in the roll area for all
phases, even though it is not actually used
in Allocate and Unify.

ROLL__9: FL CONST ROLL

This roll holds the single-precision
real (floating point) constants used in the
source module or generated by the compiler.
Constants are recorded on the roll in
binary (floating point format), each con-
stant occupying one group. The group size
for the FL CONST roll is four bytes.

The FL CONST roll remains in the roll
area for all phases of the compiler,
although it is not actually used in Alloc-
ate or Unify. The format of this roll is
identical for all phases.

Appendix B:

ROLL_10: DP CONST ROLL

This roll holds the double-precision
(8-byte) real constants used in the source
module or defined by the compiler.

The constants are recorded in binary
(double-precision floating point format),
one constant per group. The group size for
the DP CONST roll is eight bytes.

The DP CONST roll is present in this
format through all phases of the compiler.

ROLL 11: COMPLEX CONST ROLL

This roll holds the complex constants of
standard size (eight bytes) wused in the
source module or generated by the compiler.
Each complex constant is stored on the roll
as a pair of 4-byte binary floating-point
numbers, the first represents the real part
of the constant and the second represents
the imaginary part.

exists in the
all phases of

The COMPLEX CONST roll
format described above for

the compiler. The group size 1is eight
bytes.
ROLL 12: DP COMPLEX CONST ROLL

This roll holds the complex constants of
optional size (16 bytes) which are used in
the source module or generated by the
compiler. Each constant is stored as a
pair of double-precision binary floating
point values. The first value represents
the real part of the constant; the second
value represents the imaginary part. The
group size for the DP COMPLEX CONST roll is
16 bytes.

The DP COMPLEX CONST roll exists in this
format for all phases of the compiler.

ROLL 13: TEMP NAME ROLL

This roll
for names which are to be
ARRAY or EQUIVALENCE roll.
for the TEMP NAME roll is eight bytes.
format of the group is:

is used as temporary storage
placed on the
The group size
The

Rolls Used in the Compiler 143

4 bytes
¥ 1
I< name |
L d
LI T L] h
| >| TAG | 0 |
L L L J
The TAG appearing in the seventh byte of

the group indicates, in the format of the
TAG field of a pointer, the mode and size
of the variable.

The TEMP NAME roll is used only during
Parse and Allocate; it does not appear in
any later phase of the compiler.

ROLL 13: STD SCRIPT ROLL

The information on this roll pertains to
array references for which the subscript
expression must appear in a general regist-
er (joined).

The roll exists only in Unify and the
information contained therein is taken from
the SCRIPT roll. Its structure and con-
tents are identical to those of the NONSTD
SCRIPT roll (rxoll 2) with the exception
that the traits on this roll always indic-
ate Jjoined. The group size is variable
with a minimum of 20 bytes.

ROLL 14: TEMP_ ROLL

This roll is used as temporary storage
in Parse and is not used in any later phase
of the compiler. The group size for the
TEMP roll is four bytes.

This roll is used as temporary storage
for error information in Parse and is not
used in the other phases of the compiler.
The group size for the ERROR TEMP roll is
four bytes.

ROLL 15: DO LOOPS OPEN ROLL

In Parse, as DO statements are encoun-
tered, pointers to the target labels of the
DO statements are placed on this roll,
When the target statement itself is encoun-
tered, the pointer is removed.

In Allocate, the roll may contain some
pointers 1left from Parse; if any are pres-
ent, they indicate unclosed DO 1loops; the
roll is checked by Allocate and any infor-
mation on it is removed.

144

This roll is not used after Allocate.
The group size for the DO LOOPS OPEN roll
is four bytes.

ROLL 15: LOOPS OPEN ROLL

This roll contains the increment and
terminal values of the induction variable
used in a DO loop and transfer data for the
reiteration of the loop.

Gen creates the roll by establishing an
entry each time a DO loop is encountered.
The information is used in generating the
object code. As a loop is closed, the
bottom group from the LOOPS OPEN roll is
pruned.

The group size is four bytes. Four
groups are placed in the roll at one time.
The configuration of a LOOPS OPEN roll
group is as follows:

4 bytes

pointer to ni; (increment)

r
I
k
| pointer to n, (terminal value)
t
|

LOOP DATA pointer

pointer to return point made label

L e e)

ROLL 16: ERROR MESSAGE ROLL

This roll is used only in Parse. It is
used during the printing of the error
messages for a single card of the source
module, Each group holds the beginning
address of an error message required for
the card. It is used in conjunction with
the ERROR CHAR roll, whose corresponding
group holds the column number in the card
with which the error ‘'is associated. The
group size for the ERROR MESSAGE roll is
four bytes.

ROLL 16: TEMP AND CONST ROLL

This roll is produced in Gen and is used

in Gen and Exit. It holds all constants
required for the object module and zeros
for all temporary storage locations

required in the object module.

Binary constants are moved to this roll
by Gen from the various CONST rolls. This
roll becomes the object module's temporary

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

storage and constant area. The group size
for the TEMP AND CONST roll is four bytes.

ROLL_17: ERROR CHAR ROLL

This roll is used only during Parse, and
is not used in any subsequent phase of the
compiler.

While a single source module card and
its error messages are being prepared for
output, this roll holds the column number
with which an error message 1is to be
associated. The address of the error mes-
sage 1is held in the corresponding group on
the ERROR MESSAGE roll. The group size for
the ERROR CHAR roll is four bytes.

ROLL 17: ADCON ROLL

This roll is used only in Exit, and is

not used in previous phases of the compil-
er. It holds address constants, the loca-
tions at which they are to be stored, and

relocation information. The group size is
16 Dbytes. The first word of the group
holds an area code, indicating the control
section in which the constant exists. The
second word of the group holds the address
into which the constant is to be placed;
the third holds the constant. The last

word of the group indicates the relocation
factor (ESD number) to be used for the
constant.
ROLL 18: INIT ROLL

The group size for the INIT roll is
eight bytes. The roll 1is initialized in
Parse, and used and destroyed in Allocate.

Each group on the roll holds the name of a
scalar variable or array listed in the INIT
option of a DEBUG statement in the source

module, The format of the group is:

4 bytes
T 1
|<=———————————variable name |
b G {
|- ->] 0]
L 1 J

ROLL_18: DATA SAVE ROLL

This roll is used only in Gen, where it

holds the Polish notation for portions of
DATA statements or Explicit specification
statements which refer to control sections

different from the control section present-
ly in process. The 1roll 1is a temporary
storage location for this information,
since data values are written out for one
control section at a time. The group size
is four bytes.

ROLL 19: XTEND LABEL (XTEND_ LBL) ROLL

This roll is used only by Parse. It
holds the pointers to the LABEL_roll for
all labels defined within the innermost DO
loops that are possible extended range
candidates. The group size of the XTEND
LABEL_roll is four bytes. Each group holds
a pointer to the LABEL roll. The format of
the group on the roll is:

1 byte 3 bytes
T 1
{TAG |LABEL roll pointer |
b o N 4
If the 1label is a possible re-entry point
from the extended range of a DO 1loop, the
TAG byte contains a X'05', Otherwise, the

TAG byte contains a X'00'.

ROLL 19:
ROLL

EQUIVALENCE TEMP_ (EQUIV TEMP)

This roll is used to hold EQUIVALENCE
roll data temporarily in Allocate, and is
not used in any other phase of the
compiler. The group size for the
EQUIVALENCE TEMP or EQUIV TEMP roll is
twelve bytes. The format of the group on
the roll is:

4 bytes

=== - 1
1< variable |
- B Bttty 1
j-————— name———————-— >| 0

'8 1 N
v a1
| offset |
[e e e o e e e e e o 2 e e o o 2 o S < o 2 2 oo o o J
The offset is the relative address of the
beginning of the variable within the
EQUIVALENCE group (set) of which it is a
member. This roll holds this information
during the allocation of storage for

EQUIVALENCE variables.

Appendix B: Rolls Used in the Compiler 145

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

ROLL 20:
LBL) ROLL

XTEND TARGET LABEL (XTEND TARG

This roll is used only by Parse. The

group size of the XTEND TARGET LABEL roll
is four bytes. Each group holds a pointer
to the LABEL roll for each 1label that

appears in any transfer statement (e.g., GO
TO, Arithmetic IF statements) within a DO
loop. These groups indicate transfers out
of an innermost DO loop and a possible
extended range. The format of the group is
the same as Roll 19, XTEND LABEL roll.

1 byte 3 bytes

r T 1
| TAG {LABEL roll pointer |
L L - 3
If the TAG byte contains a X'40', this
indicates that the target label also

appears in a transfer statement outside the
DO loop and may be a possible re-entry
point (if the label is defined within the

loop). Otherwise, the TAG byte contains a
X*00°,

ROLL 20: EQUIVALENCE HOLD (EQUIV_ HOLD)
ROLL

This roll is used to hold EQUIVALENCE
roll data temporarily in Allocate, and is
not used in any other phase of the compil-
er. The group size for the EQUIVALENCE
HOLD roll is twelve bytes. The format of
the group on the roll is:

4 bytes
I 1
i< -—— variable |
I8 4
[T 5
i —-name > 0 |
b= —mmoed e
i offset |
L J
The offset 1is the relative address of the
beginning of +the variable within the
EQUIVALENCE group (set) of which it is a

information
storage for

member. This roll holds this
during the allocation of
EQUIVALENCE variables.

ROLL 20: REG ROLL

This roll contains information concern-
ing general registers required in the
execution of DO loops in the object module.

The group size of the REG roll is twelve

bytes. The roll is wused only in Unify.
Each group has the following format:

146

4 bytes

L]
traits |
L

ARRAY REF pointer

frequency

e Yy Sy |

{ LOOP CONTROL pointer

The frequency indicates how many times
within a loop the register is wused. The
registers are -symbolic registers that are
converted to real registers and/or tem-
porary storage locations. The pointer to
the ARRAY REF roll is actually a thread
which indicates each place that this
register is required in the loop. The last
word, the pointer to the LOOP CONITROL roll,
designates where the register in question
was initialized. (The particular informa-
tion is contained in the second word of the
entry on the LOOP CONTROL roll.)

ROLL 21: BASE TABLE ROLL

This roll is constructed by Allocate,
and remains in the roll area for all
remaining phases of the compiler. The BASE
TABLE roll becomes the object module base
table, which holds the base addresses used
in referring to data in the object module.

The group size for this roll is eight
bytes. One group at a time is added to
this roll by Allocate, The first word
holds the area code which indicates the
relocation factor by which the base table
entry must be modified at object time; each
unique area code also defines an object
module control section. The second word
holds a relative address within the control
section defined by the area code; this is
the value which 1is in the corresponding
base table entry prior to modification by
the linkage editor.

The entire BASE TABLE roll is
structed by Allocate.

con-

ROLL _22: ARRAY ROLL

This roll is used throughout the compil-
er to hold the required information de-

scribing arrays defined in the source
module.
In Parse, the name and dimension infor-

mation is added to the roll for each array
definition encountered. The group size for
the ARRAY roll is 20 bytes. The format of
the group is:

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

4 bytes
r ittt 1
1< -array name |
t T T i
| >| TaG [0 |
f---- — e d e 4
| ARRAY DIMENSION pointer]
b 4
T - 1
| number of elements |
frmm e oo - -
] array offset |
(I J
The TAG appearing in the seventh byte of

the group indicates, in the format of the
TAG field of a pointer, the mode and size
of the array variable. The pointer in the
third word of the group points to the
beginning of the plex on the ARRAY
DIMENSION roll, which describes the dimen-
sions of the array. The number of elements
in the array is a constant, unless the
array has dummy dimensions; in the latter
case, Parse puts a dummy pointer to a
temporary location in this word of the
group.

The array offset is the summation of the
multipliers for the array subscripts. If

Appendix B:

the array dimensions are nl, n2,...n7, then
the multipliers are 1, nl, nl*n2, nl*n2#*n3,
.+ .N1*n2*n3*nl*n5+%n6, where the size of the
element of the array 1is not considered.
This value, after it is multiplied by the
element size, 1is wused as a subtractive
offset for array references. The offset is
placed on the roll as a constant unless the
array has dummy dimensions; in the 1latter

case, a dummy pointer to a temporary loca-
tion is placed in the 1last word of the
group.

In Allocate, the first two words of the
ARRAY roll group are replaced with the

following:
4 bytes

r T r . K
| TAG |DBG/CEAD | displacement |
I i R — S, 4
| base table pointer |
L 1
The TAG is unchanged, except in location,

from Parse. The DBG/CEAD flag is logically

Rolls Used in the Compiler 146.1

split into two hexadecimal values. The
first of these indicates debug references
to the variable; its value is 1 for INIT, 2
for SUBCHK, 0 for neither, and 3 for both.
The second hexadecimal value is nonzero if
the array is in COMMON, a member of an
EQUIVALENCE set, used as an argument to a
subprogram, or a dummy; it is zero other-

wise. The displacement and the base table
pointer, taken together, indicate the
beginning address of the array. The base

table pointer specifies the BASE TABLE roll
group to be used in references to the
array; the displacement is the distance in
bytes from the address held in that group
to the location at which the array begins.
If the array is a dummy, the base table
pointer is replaced by a pointer to the
GLOBAL DMY roll group defining the array,
and the displacement is zero.

The third, fourth, and fifth words of
the ARRAY roll group are not modified by
Allocate.

The ARRAY roll remains
throughout the compiler, and
sulted, but not modified,
following Allocate.

in storage
it is con-
by the phases

ROLL 23: DMY DIMENSION ROLL

This roll is used first in Allocate,

where it holds pointers to the array
definition and the entry statement with
which dummy array dimensions are asso-

ciated. The group size of the DMY DIMEN-
SION roll is four bytes. Two groups are
added to the roll at a time to accommodate
this information; the format is:

4 bytes

ARRAY pointer

ENTRY NAMES pointer

[e g o g
b e et s el

In Gen, the DMY DIMENSION roll is used
in the generation of temporary locations
for the dummy dimensions. This operation
is performed when code is being produced
for the prologue with which the dJdummy
dimension is associated.

The DMY DIMENSION roll is
later phases of the compiler.

not used by

ROLL 23: SPROG_ARG ROLL

This roll becomes the subprogram argu-
ment list area of the object module. The

roll is constructed by Gen and holds point-
ers to the arguments to subprograms in the
order in which they are presented in the
subprogram reference. These pointers may,
therefore, point to the SCALAR, ARRAY,
GLOBAL SPROG, or TEMP AND CONST rolls (the
last roll holds arguments which are

expressions or constants). The value =zero
is placed on this roll for arguments whose
addresses are computed and stored in the
object module argument list area.

The TAG fields of
roll contain the value
TAG field of the last
subprogram reference; this
the value 80.

the pointers on this
zero except for the
pointer for a single
field contains

The contents of the SPROG ARG roll are

punched by Exit. The group size for the
SPROG ARG roll is four bytes.
ROLL 24: ENTRY NAMES ROLL

In Parse, this roll holds all ENTRY

names defined in the source subprogram, and
pointers to the locations on the GLOBAL DMY
roll at which the definitions of the dummy
arguments corresponding to the ENTRY begin.

The group size for the ENTRY NAMES roll is
16 bytes. The format of the group is:
4 bytes

r 1
| < ENTRY name |
b T i
| >| 0 |
= L 1
| dummy pointer |
k i
| 0 I
L]
The dummy arguments corresponding to the

ENTRY are listed on the GLOBAL DMY roll in
the order in which they are presented in
the ENTRY statement.

In Allocate, the ENTRY NAMES roll is
used in the check to determine that scalars
with the same names as all ENTRYs have been
set. A pointer to the scalar is placed in
the fourth word of the group by this phase.

In Gen, during the production of the
initialization code (the object module
heading), the first word of the group is

replaced by a pointer to the ADCON roll
indicating the 1location of the prologue,
and the second word is replaced by a
pointer to the ADCON roll indicating the
location of the epilogue. During the pro-
duction of code for the prologue, the first
pointer (the first word of the group) is
replaced by a pointer to the ADCON roll

Appendix B: Rolls Used in the Compiler 147

which indicates the

ENTRY.

entry point for the

This roll is not required after the Gen
phase.

ROLL 25: GLOBAL DMY ROLL

In Parse, each group on the roll con-
tains the name of a dummy listed in a dummy
argument list for the principle entry or
for an ENTRY statement in a source subpro-
gram. A flag also appears in each group
which indicates whether the dummy is a
"call by name" or a "call by value"™ dummy.
The group size is eight bytes. The format
of the group in Parse is:

4 bytes

< dummy name

WO T——

>1 flag
L

oo S sy ey

where the dummy name occupies the first six
bytes of the groupe.

Label dummies, indicated by asterisks in
the source module, are not listed on this
roll. With this exception, however, the
dummy lists from the source subprogram are
entered on this roll as they appear in the
source statements. The end of each dummy
list is signaled by a marker symbol on the
roll. Since each of the dummy 1lists is
represented on the 1roll, the name of a
single dummy may appear more than once.

In Allocate, the information in each
group is replaced by:

4 bytes

k) L}
TAG | DBG/flag | displacement
1 i

base table pointer

oo g c—
b s s e sl

where the base table pointer indicates the
group on the BASE TABLE roll to be used for
references to the dummy, and the displace-

ment (in the third and fourth bytes) indi-
cates the distance in bytes from the
address stored in that BASE TABLE roll

group to the location of the dummy. The
"flag" occupies the second hexadecimal
character of the second byte and is
unchanged from Parse, indicating call by
name if it is on. The first hexadecimal
value in that byte indicates debug
references to the variable; its value is 1
for INIT, 2 for SUBCHK, 0 for neither, and
3 for both. The TAG indicates the mode and
size of the dummy.

148

The GLOBAL DMY roll is used but unmodi-
fied in Gen and Exit.

ROLL_26: ERROR ROLL

This roll is used only in Parse and
holds the location within the statement of
an error, and the address of the error
message for all errors encountered within a
single statement. As the statement is
written on the source listing, the informa-
tion in the ERROR roll groups is removed,
leaving the roll empty for the processing
of the next statement.

The group size is four bytes. Two
groups are added to this roll at a time:
(1) the column number of the error, count-
ing from one at the beginning of the source
statement and increasing by one for every
card column in the statement, and (2) the
address of the message associated with the
particular error encountered.

ROLL 26: ERROR LBL ROLL

This roll is wused only in Allocate,
where it holds labels which are referred to
in the source module, but which are unde-

fined. These labels are held on this roll
prior to being written out as undefined
labels or unclosed DO 1loops. The group

size for the ERROR LBL roll is four bytes.

ROLL 27: LOCAL DMY ROLL

This roll holds the names of the dummy
arguments to a statement function while the
statement function is being processed by
Parse. The group size is eight bytes. The
format of the group is:

4 bytes

< dummy name

e =
b e i e suad

L]
> 0
1

The information 1is removed from the roll
when the processing of the statement func-
tion is complete.

This roll does not appear in any subse-
quent phase of the compiler; however,
pointers to it appear in the Polish nota-
tion produced by Parse and these pointers
are, therefore, processed by Gen.

ROLL 28: LOCAL SPROG ROLL

In Parse, the roll holds the names of
all statement functions as they are encoun-
tered in the source module. The group size
for the LOCAL SPROG roll is eight bytes.
The format of the group is:

4 bytes
r K 1
| <———————— stmt. function |
k T T i
| name >| TAG | 0 |
L L L J
The TAG appearing in the seventh byte of

the group indicates, in the format of the
TAG field of a pointer, the mode and size
of the function value.

In Allocate, the first four bytes of
each group are replaced by a pointer to the
BRANCH TABLE roll group which has been
assigned to hold the address of the state-
ment function.

The LOCAL SPROG roll is used by Gen and

Exit, but it is not modified in those
phases.
ROLL 29: EXPLICIT ROLL

in Parse and Allocate,
names of all variables
specification state-

This roll is used
where it holds the
defined by Explicit

ments. The group size for the EXPLICIT
roll is eight bytes. The format of the
group in both phases is:

4 bytes
r . 1
| <mmmmmm e variable name-- |
k T T i
| >| TAG | 0 |
L L 4 J

where the TAG (seventh byte) indicates the
mode and size of the variable.

Groups are entered on this roll by
Parse; the 1roll is consulted by Allocate,
but not altered.

ROLL 30: CALL LBL ROLL

This roll is used only in Parse, where
it holds pointers to the LBL roll groups
defining labels which are passed as argu-
ments in source module CALL statements.
The pointers are held on this roll only
temporarily, and are packed two pointers to

a group. Pointers are added to the roll
when the labels are found as arguments in
CALL statements. The group size for the
CALL LBL is eight bytes.

ROLL 30: ERROR SYMBOL ROLL

This roll is used only in Allocate,

where it holds any symbol which is in
error, in preparation for printing. The
group size for the ERROR SYMBOL roll is
eight bytes. The symbol (variable name,
subprogram name) occupies the first six
bytes of the group. The remaining two

bytes are set to zero.

ROLL 31: NAMELIST NAMES ROLL

In Parse, this roll holds the NAMELIST
names defined in the NAMELIST statement by

the source module. The group size for the
NAMELIST NAMES roll is twelve bytes. These
groups are placed on the roll in the
following format:
4 bytes

r -1
1< NAMELIST—- |
b T {
| name > | 0 |
¢ i 1
| pointer to NAMELIST items |
L § |

where the pointer indicates the first vari-
able 1in the list associated with the NAME-
LIST name. In Allocate, the content of the
group on the NAMELIST NAMES roll is changed
to reflect the placement of the correspond-
ing NAMELIST table in the object module.
The format of the first two words of the
modified group is:

4 bytes

T
0 |

4
base table pointer

displacement

s

b e e e

where the base table pointer indicates the
group on the BASE TABLE roll to be used for
references to the NAMELIST table, and the
displacement (bytes 3 and 4) indicates the
distance in bytes from the address in that
BASE TABLE roll group to the location of
the beginning of the NAMELIST table.

This roll is used, but not modified, in
Gen and Exit.
Appendix B: Rolls Used in the Compiler 149

ROLL 32: NAMELIST ITEMS ROLL

This roll holds the wvariable names
listed in the namelists defined by the
source module. The group size for the
NAMELIST ITEMS roll is eight bytes. Infor-

mation 1is placed on the roll by Parse in
the following form:

4 bytes

< variable-

T
name >1 0
L

e ST

r
I
L
r
|
L

A marker symbol separates namelists on the
roll.

The 1roll is wused in this
Allocate and is destroyed.
appear in later phases.

format by
It does not

ROLL _33: ARRAY DIMENSION ROLL

This roll is wused to hold dimension
information for the arrays defined in the
source module. The group size for the
ARRAY DIMENSION roll is variable. The
information 1is placed on the roll by Parse
in the form of a plex, as follows:

4 bytes
r 1
I n |
k 1
| dimension |
I - 1
| multiplier |
L 4
r _ . 1
| dimension |
} {
| multiplier |
| |
| . |
I . |
b 4
r . . 1
| dimension |
p-—mm - 1
l multiplier j

where n is the number of words in the plex,
exclusive of itself. As many dimensions
and corresponding multipliers appear as
there are dimensions declared for the
array.

Unless the array is a dummy and has
dummy dimensions, each dimension and multi-
plier is a constant. When dummy dimensions
do appear in the array definition, the
corresponding dimension on this roll is a

150

pointer to the dummy dimension variable om
the SCALAR roll, and all affected multip-
liers are pointers to temporary locations
(on the TEMP AND CONST roll). The multip-
liers for an array with dimensions nl, n2,
N3,eee, n7 are 1, nl, nl*n2,...,
nl*n2*n3*nl*n5*n6.

The ARRAY DIMENSION roll is present, but
not modified in Unify, Gen, and Exit.

ROLI_34: BRANCH TABLE ROLL

This roll becomes the object module
branch table. During Allocate, where the
roll is first used, the size of the roll is
determined, and some groups are actually
placed on it. These groups contain the
value zero, and each group refers to a
source module label.

In Gen, the information for the BRANCH
TABLE roll groups is supplied as each
labeled statement is processed. The group
size for the BRANCH TABLE roll is eight
bytes. The format of the group is:

4 bytes
r 1
| area code |
t 1
| relative address |
L -1
where the area code provides the reference

for 1linkage editor modification of the
corresponding branch table word, and the
relative address is the relative location
of the label in the control section (area)
in which it appears. Branch table (and,
hence, BRANCH TABLE roll) entries are pro-
vided for all branch target labels, state-
ment functions, and made labels (labels
constructed by the compiler to refer to
return points in DO loops and to the

statements following Logical IF state-
ments).
The roll 1is retained in the Gen format

until it is written out by Exit.

ROLL 35: TEMP DATA NAME ROLL

This roll is used only in Parse, where
it holds pointers and size information for
variables listed in DATA statements or in
Explicit specification statements which
specify initial valvues. Information is
held on this roll while the statement is
being processed.

The group size for the TEMP DATA NAME
roll is four bytes. Four groups are added
to the TEMP DATA NAME roll for each vari-
able listed in the statement being scanned.
They are in the following sequence:

4 bytes

element size (bytes)

pointer to variable

number elements set

o oy oy ——— ——
e e b e i e i e

element number

The third group specifies the number of
elements of the variable being set by the
DATA statement or the Explicit specifica-
tion statement. If a full array is set,
this is the number of elements in the
array; if a specific array element is set,
this word contains the value one,

The fourth group indicates the first
element number being set. If a full array
is being set, this word holds the value
zero; otherwise, it holds the element
number,

ROLL 36: TEMP POLISH ROLL

This roll is used only in Parse, where
it holds the Polish notation for a single
DATA group during the scanning of that

group. In an Explicit specification state-
ment, a DATA group is defined to be a
single variable and the associated con-

stants; in a DATA statement, a DATA group
is the set of variables listed between a
pair of slash characters and the constants
associated with that set.

This roll is wused because any error
encountered in a DATA group will cause the
Polish notation for the entire group to be
canceled. In an Explicit specification
statement, the type information on the
variable is retained when the data is bad;
if, however, the type information is bad,
the data is also lost. The group size is
four bytes.

ROLL 36: FX AC ROLL

This roll is used in Gen only and is a
fixed length roll of 16 groups. The groups
refer to the 16 general registers in order.

The group size for the FX AC roll is
four bytes. Each group on the roll con-

tains a pointer to the value which is held
in the corresponding general register at
the present point in the object module; as
the contents of the general registers are
changed, the pointers are changed. The
pointers are used primarily to indicate
that the general register is in use and the
mode of the value in it. They are used for
optimizing only in the case of the general
registers which are 1loaded from the base
table and the general registers used for
indexing. If the general register corre-
sponding to a specific group is not in use,
the group holds the value zero.

ROLL 37: EQUIVALENCE ROLL

In Parse, this roll holds the names of
all variables 1listed in source module
EQUIVALENCE statements. One group is used
for each variable name listed in the source

statement, and EQUIVALENCE sets are
separated from each other by a marker
symbol. The group size for the EQUIVALENCE

roll is The format of the

group is:

twelve Dbytes.

4 bytes
] 1
| < variable |
F T {
| -—-name >| Y |
t + 1
| EQUIVALENCE OFFSET pointer |
L B
The pointer to the EQUIVALENCE OFFSET roll

points to the first word of a plex on that
roll which holds the subscript information
supplied in the EQUIVALENCE statement. If
no subscript was used on the variable in
the EQUIVALENCE statement, the value zero
appears in the third word of the group on
the EQUIVALENCE roll.

The roll is used and destroyed in Alloc-
ate, during the assignment of storage for
EQUIVALENCE variables.

ROLL 37: BYTE SCALAR ROLL

This roll is used only in Allocate,
where it holds (temporarily) the names of
1-byte scalar variables. The group size
for the BYTE SCALAR roll is eight bytes.
The format of the group is:

Appendix B: Rolls Used in the Compiler 151

4 bytes

< scalar name

[o oy o
e s i e

T T
>| TAG | o
1 L

where the TAG field indicates the mode and

size of the variable.

ROLL 38: USED LIB FUNCTION ROLL

In Parse, the roll holds the names and
other information for all library FUNCTIONSs
which are actually referenced in the source
module. The group size for the USED LIB
FUNCTION roll is twelve bytes. The infor-
mation is placed on the roll in the follow-
ing format:

4 bytes
r
I< FUNCTION
IL T T
| name > TAG | 0 |
L } L 4
) L] T 1
| TAG | flag | no. arguments |
L L L J
The TAG appearing in byte 7 indicates the
mode and size of the function value. The

TAG appearing in byte 9 indicates the mode
and size of the arguments to the FUNCTION.
The flag in byte 10 indicates whether the
FUNCTION is in-line and, if it is, which
generation routine should be used. If the

flag 1is =zero, a call is to be generated.
The last two bytes hold the number of
arguments to the FUNCTION. The maximum

number of arguments allowed for the MIN and
MAX FUNCTIONs is 16,000.

In Allocate, the information in the
first two words of the group is altered to:

4 bytes

T T
TAG | 0 1

1 1
base table pointer

displacement

o o g —
T

where the base table pointer indicates the
group on the BASE TABLE roll to be used in
referring to the address of the subprogram.
The displacement is the distance in bytes
from the contents of the base table entry
to the location at which the address of the
subprogram will be stored. The TAG byte is
unchanged, except in location, from Parse.

The USED LIB FUNCTION roll is consulted
by Gen in the construction of object code,
but it is not modified. It is also pre-
sent, but not modified, in Exit.

152

ROLL 39: COMMON DATA ROLL

This roll holds the names of all COMMON
variables as defined in source module COM-
MON statements. A marker symbol separates
COMMON blocks on this roll. All informa-
tion is placed on this roll in Parse.

The group size 1is eight bytes. The
first six bytes of each group hold the
nameof the COMMON variable; the remaining
two bytes are set to zerxo, as follows:

4 bytes
[A i |
| <~ variable name |
t T 1
| >| 0 |
L i -—d
In Allocate, the information on this

roll is wused and destroyed. The roll is

not used in later phases.

ROLL 39: HALF WORD SCALAR ROLL

The roll is used only in Allocate, where
it holds (temporarily) the names of half-
word scalar variables defined in the source
module. The group size for the HALF WORD
SCALAR roll is eight bytes. The format of
the group is:

4 bytes
r 1
| < scalar name |
} L] i "
| > TAG | 0 |
L L J

where the TAG indicates the mode and size
of the variable.

ROLL 40: COMMON NAME ROLL

In Parse, this roll holds the name of
each COMMON block, and a pointer to the
location on the COMMON DATA roll at which
the specification of the variables in that
block begins. The group size for the

COMMON NAME roll is twelve bytes. The
format of the group is:
4 bytes

] 1
1< block name |
k T i
I >| 0 |
} L. 4
) L}
| |
L J

COMMON DATA pointer

The pointer points to the first variable in
the list of names which follows the block
name in the COMMON statement; since a
single COMMON block may be mentioned more
than once in source module COMMON state-
ments, the same COMMON name may appear more
than once on this roll. The information is
placed on this roll as COMMON statements
are processed by Parse,

In Allocate, the roll is rearranged and
the last word of each group is replaced by
the size of the COMMON block in bytes,
after duplicate COMMON names have been
eliminated. The size is written out by
Allocate and the roll is destroyed.

ROLL 40: TEMP PNTR ROLL

The group size for the TEMP PNTR roll is
four bytes. This roll is used only in Gen,
and holds pointers to those groups on the
TEMP AND CONST roll that represent object
module temporary storage locations. The
information recorded on this roll is main-
tained so that temporary storage created
for one statement can be reused by subse-
quent statements.

ROLL 41: IMPLICIT ROLL

This roll is wused only in Parse and

Allocate, where it holds the information
supplied by the source module IMPLICIT
statement. The group size for the IMPLICIT
roll is four bytes. Its format is:
1 byte 1 byte 1 byte 1 byte

r T h] T 1
| letter | 0 | TAG | 0 |
L L L L J
This information is placed on the roll by

Parse. The TAG field in the third byte of
the group indicates, in the format of the
TAG field of a pointer, the mode and size
assigned to the 1letter by means of the
IMPLICIT statement.

The IMPLICIT roll is used by Allocate,
and destroyed.

ROLL_ 42: EQUIVALENCE OFFSET ROLL

This roll is constructed during the
operation of Parse and holds the subscripts
from EQUIVALENCE variables in the form of

plexes. The group size for the EQUIVALENCE
OFFSET roll is variable. Each plex has the
form:

4 bytes

n

subscript 1

subscript 2

subscript n

el el s e
e e PP P A

where n is the number of words in the plex
exclusive of itself and, therefore, also
the number of subscripts. Each subscript
is recorded as an integer constant.

The connection between a plex on this
roll and the corresponding EQUIVALENCE
variable is made by a pointer which appears
on the EQUIVALENCE roll and points to the
first word of the appropriate plex on this
roll.

the EQUIVALENCE OFFSET roll
is used in the allocation of storage for
EQUIVALENCE variables., It is destroyed
during this phase, and does not appear in
the later phases of the compiler.

In Allocate,

ROLL 42: FL AC ROLL

This roll is used in Gen only, and is a
fixed length roll of four groups. The
groups refer to the four floating-point

registers, in order.

The group size for the FL AC 1roll is
four bytes. Each group on the roll con-
tains a pointer to the value which is held
in the register at the present point in the
object program; as the contents of the
registers change, the pointers are changed.
These pointers are used primarily to indic-
ate that the register is in wuse and the
mode of +the value in it. If the register
is not in use, the corresponding group on
this roll contains zero.

ROLL 43: IBL ROLL

This roll holds all labels used and/or
defined in the source module. Each 1label
is entered on the roll by Parse when it is
first encountered, whether in the 1label
field or within a statement.

The group size for the LBL roll is four
bytes. In Parse, the format of +the LBL
roll group is:

Appendix B: Rolls Used in the Compiler 153

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

1 byte 3 bytes
T T . 1
| TAG | binary label |
L ——— 4 e e e e e e e J
where the first byte is treated as the TAG

field of a pointer,
bytes contain the
binary integer.

and the remaining three
label, converted to a

In the TAG field, the mode portion (the

first four bits) is used to indicate
whether the 1label has been defined; the
remainder of the TAG field is wused to

indicate whether the label is the target of
a jump, the label of a FORMAT, or neither.

The leftmost four bits of the
are used as follows:

TAG byte

8 Label is defined

1]

0 = Label is undefined

The rightmost four bits of the TAG byte
indicate the following:

1 = This is the label of the target
of a jump (GO TO) statement.

3 = This is the
statement.

label of a FORMAT

5 = This label 1is a possible re-
entry point within an innermost
DO loop that may have a possible
extended range. (Parse inserts
the hexadecimal 5 to indicate to
Gen that the label is a possible
re-entry point; the Gen phase
then restores those registers
that were saved before the
extended range was entered.)

0 = None of the above conditions.

In Allocate, the lower three bytes of
each LBL roll group defining a jump target
label are replaced by the lower three bytes
of a pointer to the BRANCH TABLE roll
group, which will hold the location of the
label at object time. Each group defining
a FORMAT statement label is replaced (lower
three bytes only) with a pointer to the
FORMAT roll group which holds the base
pointer and displacement for the FORMAT.
Groups defining the targets of unclosed DO
loops are cleared to zero.

In Gen, the LBL roll is used to find the
pointers to the BRANCH TABLE and FORMAT
rolls, but it is not altered.)

154

ROLL 44: SCALAR ROLL

In Parse, the names of all unsubscripted
variables which are not dummy arguments to
statement functions are listed on the roll
in the order of their appearance in active
(non-specification) statements in the
source module. Variables which are defined
in specification statements, but which are
never used 1in the source module, are not
entered on the roll. The group size for
the SCALAR roll is eight bytes. The format
of the group is:

4 bytes

I< scalar name

b-—- -

T
>| TAG
1

R T |

The TAG field appearing in the seventh byte
of the group indicates the mode and size of

. the variable in the format of the TAG field

of a pointer.

In Allocate, the information left on the
SCALAR roll by Parse is replaced by infor-
mation indicating the storage assigned for
the variable. The resulting format of the

group is:
4 bytes
T T - T . 1
TAG DBG/CEAD displacement
p

- 1 _ Y . 4
) base table pointer |
Lt]

The TAG field appearing in the first byte
is wunchanged, except in location, from the
TAG field held in the SCALAR roll group

during Parse. The DBG/CEAD flag (in the
second byte) is logically split into two
hexadecimal values. The first of these

‘indicates debug references to the variable;

the value is 1 for a scalar referred to in
the INIT option; otherwise, the value is
zero. The second hexadecimal value is
nonzero if the variable is in COMMON, a
member of an EQUIVALENCE set, or an argu-
ment to a subprogram or a global dummy;
otherwise, it is zero. The displacement in
bytes 3 and 4, and the base table pointer
in the second word, function together to
indicate the storage location assigned for
the variable. 'The base table pointer spe-
cifies a BASE TABLE roll group; the dis-
placement is the distance in bytes from the
location contained in that group to the
location of the scalar variable. If the
scalar 1is a call by name dummy, the base
table pointer is replaced by a pointer to
the GLOBAL DMY roll group defining it, and
the displacement is zero.

Form ¥Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

The SCALAR roll is checked, but modi-
fied, during Unify, Gen, and Exit.

ROLL 44: HEX CONST ROLL

This roll holds the hexadecimal con-
stants used in source module DATA
statements.

The format of the roll is identical for
all phases of the compiler. The group size
is 16 bytes. Two hexadecimal characters
are packed to a byte, and constants which

Appendix B:

occupy fewer than 16 characters are right-
adjusted in the group with leading zeros.

ROLL 45: DATA VAR ROLL

this roll holds the names of
variables listed in DATA statements and
variables for which data values are pro-
vided in Explicit specification statements.
The names are entered on the roll when they
are found in these statements. The group
size for this roll 1is eight bytes. The
groups have the following form:

In Parse,

Rolls Used in the Compiler 154.1

4 bytes

r 1
| <= variable name i
5 T i
| > | 0 |
L 1 J

This information is used to ensure that

no data values are provided in the source
module for dummy variables. The informa-
tion is left on the roll throughout Parse,
but is cleared before Allocate operates.

In Allocate, binary labels and the names
of statement functions, scalar variables,
arrays, global subprograms, and used
library functions are placed on the roll in
order. The group size for this roll is
four bytes. Each label entered on the roll
occupies one word; the names occupy two
words each and are left-justified, leaving
the last two bytes of each name group
unused.

The encoded information is placed on
this roll by BAllocate as its operations
modify the rolls on which the information
was originally recorded by Parse. Thus,
all the 1labels appear first, in the order
of their appearance on the LBL roll, etc.
The information 1is used by the Exit phase
in producing the object module listing (if
the LIST option is specified by the user).

ROLL 46: LITERAL TEMP (TEMP LITERAL) ROLL

This roll is used only in Parse, where
it holds 1literal constants temporarily
while they are being scanned. The group
size for the LITERAL TEMP or TEMP LITERAL
roll is four bytes. Literal constants are
placed on the roll one character per byte,
or four characters per group.

ROLL 47: COMMON DATA TEMP ROLL

ROLL 47: FULL WORD SCALAR ROLL

This roll is wused only
where it holds the names of
scalar variables defined by the source
module. The group size is eight bytes.
The format of the group on the roll is:

in Allocate,
all fullword

4 bytes

< scalar name

[=]
O S

o e ey e oy

T
>| TAG
L

the TAG indicates the mode and size
of the variable. This information is held
on this roll only temporarily during the
assignment of storage for scalar variables.

where

ROLL 48: COMMON AREA ROLL

This roll 1is wused only in Allocate,
where it holds COMMON block names and sizes
temporarily during the allocation of COMMON
storage. The group size for the COMMON

AREA roll is twelve bytes. The format of
the group on the roll is:

4 bytes
H -=1
| < block name |
t T 1
| > 0 I
t = -
| block size (bytes) |
L 4
ROLL 48: NAMELIST ALLOCATION ROLL

This roll is wused only in Allocate,
where it holds information regarding NAME-
LIST items temporarily during the alloca-
tion of storage for the NAMELIST tables.

This roll holds the information from the The group size for this roll is twelve
COMMON DATA roll temporarily during the bytes. The format of the group is:
operation of Allocate, which is the only
phase in which this roll is wused. The 4 bytes
group size for the COMMON DATA TEMP roll is r 1
eight bytes. The format of the group is R e ———— variable name |
identical to that of the COMMON DATA roll, F T 1
namely: | > 0 |

.L i 4
4 bytes | pointer |
L J
r h
1< variable
b T § where the pointer indicates the group
——————— name———————=>| 0 | defining the variable on either the SCALAR
]

Appendix B:

or ARRAY roll.

Rolls Used in the Compiler 155

ROLL _49: COMMON NAME TEMP ROLL

This roll is wused only in Allocate,
where it holds the information from the
COMMON NAME roll temporarily. The group
size for the COMMON NAME TEMP roll is
twelve bytes. The format of the group is

therefore identical to that of the COMMON
NAME roll:

4 bytes
< block name

¥
> 0
1

COMMON DATA pointer

o e e o g e g

T T,

where the COMMON DATA pointer points to the
list of variables in the COMMON block.

ROLL 50: EQUIV ALLOCATION ROLL

This roll is used only during Allocate,
and is not used in any other phase of the
compiler. When the allocation of storage
for EQUIVALENCE variables has been com-
pleted, the information which has been
produced on the GENERAL ALLOCATION roll is
moved to this roll. The group size for the
EQUIV ALLOCATION roll is twelve bytes. The
format of the group is, therefore, ident-

4 bytes
) T a
| area code | ESD # |
L 4 J
r 1
| address |
L 1
where the area code indicates the control

section in which the variable or constant
is contained. The ESD number governs the
modification of the location by the linkage
editor, and the address is the location
requiring modification.

Information is placed on this roll by
both Allocate and Exit, and the RLD cards
are written from the information by Exit.
The entries made on the RLD roll by Alloc-
ate concern the NAMELIST tables; all
remaining entries are made by Exit.

ROLL 52: COMMON ALLOCATION ROLL

This roll is used only in Allocate and
is not used in any other phase of the
compiler. When the allocation of COMMON
storage has been completed, the information
which has been produced on the GENERAL
ALLOCATION roll is moved to this roll. The
group size for the COMMON ALLOCATION roll
is twelve bytes. The format of the group
is, therefore, identical +to that on the
GENERAL ALLOCATION roll:

ical to that on the GENERAL ALLOCATION 4 bytes

roll: T 1
| < variable |

4 bytes H T 1

r 1 | name >| displacement |

1< variable | 2 1 4

3 T 4 | base table pointer |

| name >| displacement | L 4

L i N J

v 1

| base table pointer | where the base table pointer indicates the

L 4 group on the BASE TABLE roll which will be
used for references to the variable.

where the base table pointer indicates the

group on the BASE TABLE roll which will be
used for references to the variable. The
displacement is the distance in bytes from
the 1location indicated in the BASE TABLE
roll group to the location of the variable.

ROLL 51: RLD ROLL

This roll is used only in Allocate and
Exit; it is not wused in Parse. In both
Allocate and Exit, the 1roll holds the

information required for the production of
RLD cards. The group size for the RLD roll
is eight bytes. The group format is:

156

The displacement is the distance in
bytes from the location indicated in the
BASE TABLE roll group to the 1location of
the variable.

ROLL 52: TLOOP CONTROL ROLL

This roll is created by Unify and is
used by Gen. The information contained on
the roll indicates the control of a loop.

The group size for the LOOP CONTROL roll
is twelve bytes. The format of the LOOP
CONTROL roll group in Unify and Gen is:

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y26-6826

coefficient

base or register (outer loop)

e s et e i e

r
|
s
| register (this loop)
H
]
L

where the first byte of the first word
(traits) indicates whether the coefficient
is initiated by a direct load. The remain-
ing three Dbytes is the coefficient, which
is the multiplier for the induction vari-
able. The second four bytes is the regis-
ter where the coefficient is required. The
base is the source of initialization of the
register; it can be either a constant,
register, or an address.

ROLL 53: FORMAT ROLL

This roll is first used in Parse, where
the FORMAT statements are placed on it.
See Appendix D for the description of the
encoding of the FORMAT statement.

Each group of the FORMAT roll is in the

form of a plex (the group size is given in
word 0)., The configuration of a FORMAT
group in Parse is:
4 bytes

r SU 1
] size of the group)]
p-—-- — |
] pointer to the LBL roll 1
1 4
1 3 a
| number of bytes in the FORMAT |
—-- -1
| . |
I . |
| .]
L J

Word 0 contains a value which indicates the
number of words in the group on the roll.
The pointer to the LBL roll points to the
label of the corresponding FORMAT state-
ment. The next word gives the number of
bytes of storage occupied by this particu-
lar FORMAT statement. The ellipses denote
that the encoded FORMAT follows this con-
trol information.

In Allocate,
the following:

the FORMATs are replaced by

4 bytes
T
0]

L
base table pointer

displacement

[i e e

|
[—

which, taken together, indicate the begin-
ning 1location of the FORMAT statement.
These groups are packed to the BASE of the
roll; that is, this information for the
first FORMAT appears in the first two words
on the roll, the information for the second
FORMAT appears in words 3 and 4, etc.

The LBL roll group which defines the
label of the FORMAT statement holds a
pointer to the displacement recorded for
the statement on this roll.

The FORMAT roll is retained in this form
for the remainder of the compilation.

ROLL 54: SCRIPT ROLL

This roll 1is created by Parse as each
appropriate array reference is encountered.
The array reference indicated includes sub-
scripts (one or more) which use the
instruction variable in a linear fashion.
Unify uses the contents of the roll.

The group size of the SCRIPT roll is 16

bytes, plus an additional 4 bytes for each
DO loop that is open at the point of tne
array reference represented by the entry.

The group format of the SCRIPT roll in
Parse and Unify is as described for the
NONSTD SCRIPT roll.

ROLL 55: LOOP DATA ROLL

This roll contains the initializing and
terminating data, and indicates the induc-
tion variable and the nesting level of the
particular 1loop from which this entry was
created.

The roll is created in Parse at the time
that the loop is encountered, The group
size of the 1LOOP DATA roll is 20 bytes.
The group format of the roll in Parse is:

4 bytes

r~ e ittt 1
] TAG | nest level |
% 4

! pointer to induction variable |
b——- U
1 pointer to n, (initial value) |
L J

where the TAG byte contains a X'80' when an
inner DO loop contains a possible extended
range. The X'80' is placed there by Parse
and tested by Gen. The Gen phase then
produces object code to save general regis-

ters U4 through 7 at the beginning of this
DO loop so that the registers are not
Appendix B: Rolls Used in the Compiler 157

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

altered in the extended range. The next
three bytes indicate the nest level of the

loope. The second word is a pointer to the
SCALAR roll group which describes the
induction variable. The third word of the

group points to the initializing value for
the induction variable, which may be repre-
sented on the FX CONST roll or the SCALAR
roll.

During the operation of the Unify phase,
the roll is completed with pointers to the
LOOP CONTROL roll. During Unify, the LOOP
CONTROL roll is also created; therefore,
insertion of the pointers is done while the
loop control data is being established.

The following illustration shows the
configuration of the LOOP DATA roll as it
is used in Unify:

4 bytes

nest level

SCALAR pointer {(induction variable)

FX CONST pointer or SCALAR pointer

LOOP CONTROL pointer (start init,)

LOOP CONTROL pointer (end init.)

e

The last two words (eight bytes) of the
group are inserted by Unify. These point-
ers point to the first and 1last LOOP
CONTROL roll groups concerned with this

loop.
ROLL 56: PROGRAM SCRIPT ROLL

This 1roll is a duplicate of the SCRIPT
roll. The contents of the SCRIPT roll are

transferred to the PROGRAM SCRIPT roll in
Parse as each loop is closed. Each loop is
represented by a reserved block on the

roll.
The group size of the PROGRAM SCRIPT
roll is 16 Dbytes, plus an additional &

bytes for each nest level up to and includ-
ing the one containing the reference repre-
sented by the entry. The format of the
PROGRAM SCRIPT roll group in Parse and
Unify is as follows:

158

4 bytes
| Sttt et s 1
| traits | frequency]
F L i
| ARRAY REF pointer |
T .
] ARRAY pointer |
¢ -4
L}
! ARRAY offset pointer |
frmmmm oo oo 1
] induction variable coefficient |
i
t 1
| induction variable coefficient |
] {(nest level = 2) |
¢ 1
L}
| . |
] . |
| . |
U 1
| induction variable coefficient |
| (nest level = n) |
e e J
See the NONSTD SCRIPT roll for further
description.
ROLL 56: ARRAY PLEX ROLL

This roll is used only in Gen, where it
handles subscripts (array references) which
are not handled by Unify. The group size

for the ARRAY PLEX roll 1is twelve Dbytes.
The format of the group on the roll is:
4 bytes

f - 1
| pointer to array |
e :
i pointer to index |
t 1
|

displacement]

The pointer in the first word of the group
points to the ARRAY REF roll when the
subscript used contains DO dependent linear
subscripts (which are handled by Unify) and
non-linear variables. Otherwise, the
pointer refers to the ARRAY roll.

The second word of the
pointer to the index value to be used in
the subscripted array reference. This
pointer points to general register 9 on the

group holds a

FX AC roll if +the index value has been
loaded into that register; if the index
value has been stored in a temporary loca-

tion, the pointer indicates the proper
location on the TEMP AND CONST roll; if the
index value is a fixed constant, the
pointer indicates the proper group on the
FX CONST roll. When the information in
this word has been used to construct the
proper instruction for the array reference,
the word is cleared to zero.

The displacement, in the third word of
the group, appears only when the first word
of the group holds a pointer to the ARRAY
roll. Otherwise, the displacement is on
the ARRAY REF roll in the group indicated
by the pointer in the first word, and this
word contains the value zero. This value
is the displacement value to be used in the

instruction generated for the array
reference.
ROLL 57: ARRAY REF ROLL

Pointers to this roll are inserted into
the Polish notation by Parse. At the time
that these pointers are established, the
ARRAY REF 1roll is empty. The pointer is

inserted into the Polish notation when an
array reference includes 1linear loop-
controlled subscripts.

The roll is initially created by Unify
and completed by Gen. The group size of
the ARRAY REF roll is 16 bytes. The format
of the ARRAY REF roll group as it appears
in Unify is as follows:

11 11 12 3
12 56 90

L] T L)

|IRsy Rz | offset
L iy 4

pointer to register (Ry) or to the

TEMP AND CONST roll

pointer to register (R,;) or to the
TEMP AND CONST roll

pointer to the ARRAY roll

e E s e =
e W S

The first word of the group contains the
low 20 bits of an instruction which is
being formatted by the compiler. R, and R,
are the two register fields to be filled
with the numbers of the registers to be
used for the array reference. Word 2 of
the group contains the pointer indicating
the register to be assigned for R,. Word 3
of the group indicates the register R..
When R; and R, have been assigned, the
second and third words are set to zero.

Gen completes the entry by adding the
operation code to the instruction that is
being built, The format of an ARRAY REF
roll group in Gen is:

11 11 12 3
0 12 56 90 1
] K] T T 1
|op code |IRa. |R2 | offset |
% 4 i 4 %
| 0 or TEMP AND CONST roll |
| pointer |
t i
| 0 or TEMP AND CONST roll |
| pointer |
5 1
|ARRAY pointer |
L]
ROLL 58: ADR CONST ROLL
This roll contains relocatable informa-

tion that is to be used by Exit.

Unify creates the roll which contains a
pointer to the TEMP AND CONST roll and an
area code and displacement. The pointer
indicates an entry on the TEMP AND CONST
roll which must be relocated according to
the area code. The displacement is the
value to be placed in that temporary
storage and constant area location.

The group size of the ADR CONST roll is
eight bytes. The format of the ADR CONST
roll group in Unify is:

4 bytes

T
area code | displacement
i -

TEMP AND CONST pointer

= e ey o oy
[Spe——

These groups are constructed by Unify to

provide additional base table values for
indexing.
ROLL 59: AT ROLL

This roll is constructed in Parse and
used in Gen. It is not wused in the

remaining phases. The group size for this

roll is twelve bytes. The format of the
group is:
4 bytes

r -1
| AT label pointer |
s . J
r 1
| debug label pointer |
L 4
v 1
| return label pointer |
L 1

All three of the pointers in the group

point to the LBL roll. The first points to
the label indicated in the source module AT

Appendix B: Rolls Used in the Compiler 159

statement. The second points to the made
label supplied by the compiler for the code
it has written to perform the debugging
operations. The third label pointer indi-
cates the made label supplied for the point
in the code to which the debug code
returns; that is, the code which follows
the branch to the debugging code.

ROLL 60: SUBCHK ROLL

This roll is initialized in Parse and
used in Allocate. It does not appear in
later phases. The group size for this roll
is eight bytes., The format of the group
is:

4 bytes
)) 1
| <= variable name |
b T 1
| >| Y |
L XL i |
Each group holds the name of an array
listed in the SUBCHK option of a source

module DEBUG statement.

ROLL . 60: NAMELIST MPY DATA ROLL

This roll is set up during the construc-
tion of the NAMELIST tables in Allocate.
In Exit, the roll is used to complete the
information in the NAMELIST tables. The
roll is not used in the other phases of the

compiler, The group size for the NAMELIST

MPY DATA roll is eight bytes. The format
of the group on this roll is:

4 bytes

1) 1

| multiplier constant |

4

1

address |

J

The multiplier constant refers to an
array dimension for an array mentioned in a
NAMELIST list. The address is the location
in a NAMELIST table at which a pointer to
the multiplier constant must appear. In
Exit, the constant is placed in the tem-
porary storage and constant area of the
object module, and a TXT card is punched to
load its address into the location speci-
fied in the second word of the group.

160

ROLL 62: GENERAL ALLOCATION ROLL

This roll is used only during Allocate,
and is not used in any other phase of the
compiler. During the various allocation
operations performed by this phase, the
roll holds the information which ultimately
resides on the remaining ALLOCATION rolls.

The group size for the GENERAL ALLOCATION
roll is twelve bytes. The format of the
group is:
4 bytes

< variable-

T

name > displacement
1

base table pointer

b e s v e e g

atats e

where the base table pointer indicates the
group on the BASE TABLE roll which will be
used for references to the variable.

The displacement 1is the distance in
bytes from the location indicated in the
BASE TABLE roll group to the location of
the variable.

During the allocation of COMMON, the
third word of each group holds a relative
address until all of a COMMON block has
been allocated, when the relative address
is replaced by the pointer as indicated
above. During the allocation of EQUIVA-
LENCE variables, relative addresses within
the EQUIVALENCE variables are used and then
replaced by pointers as for COMMON.

ROLL 62: CODE ROLL
This roll holds the object code

generated by the compiler, in binary. This
roll is first used in Gen, where the object
code for the entire source module is built
up on the roll.

The group size for the CODE roll is
eight bytes. Two types of groups are
placed on the roll during the operations of
Gen. The first type of group is added to
the roll by the instructions IEYBIN, IEYBIM
and IEYBID. In this +type of group, the
binary instruction is left-justified in the
eight bytes. When the instruction occupie-
sonly two bytes, the first word is com-
pleted with zeros. When the instruction
occupies two or four bytes, the second word
of the group holds a pointer to the defin-
ing group for the operand of the instruc-
tion. When the instruction is a 6-byte
instruction, the last two bytes of the
group contain zero, and no pointer to the

operand appears. A unique value is placed
on the CODE roll by these instructions to
indicate the beginning of a new control
section.

The second type of group entered on the
CODE roll appears as a result of the
operation of one of the instructions IEYPOC
and IEYMOC. These groups do not observe
the 8-byte group size of the roll, but
rather begin with a woxrd containing a
special value in the upper two bytes; this
value indicates an unusual group. The
lower two bytes of this word contain the
number of words in the following informa-
tion. This word is followed by the binary
instructions.

code is written out
Exit phase of the

The object module
from this roll by the

compiler.
ROLL 63: AFTER POLISH ROLL
This roll is constructed in Parse,

remains untouched until Gen, and is de-

stroyed in that phase.

The AFTER POLISH roll holds the Polish
notation produced by Parse. The Polish for
one statement is moved off of the POLISH
roll and added to this roll when it is
completed; thus, at the end of Parse, the
Polish notation for the entire source
module is on this roll.

In Gen, the Polish notation is returned
to the POLISH roll from the AFTER POLISH
roll for the production of object code. At
the conclusion of the Gen phase, the roll
is empty and is no longer required by the
compiler. The group size for this roll is
four bytes.

WORK AND EXIT ROLLS

Because of the nature and frequency of
their use, the WORK roll and the EXIT roll
are assigned permanent storage locations in
IEYROL, which is distinct from the storage
area reserved for all other rolls. As a
result, these rolls may never be reserved
and are manipulated differently by the POP
instructions. The group stats and the
items BASE and TOP are not maintained for
these rolls. The only control item main-
tained for these rolls corresponds to the
item BOTTOM, and is carried in the general
register WRKADR (register 4) for +the WORK
roll and EXTADR (register 5) for the EXIT
roll.

WORK ROLL

often used to hold
intermediate values. The group size for
this roll is four bytes. The name W0 is
applied to the bottom of the WORK roll (the
last meaningful word), Wl refers to the
next-to-bottom group on the WORK roll, etc.
In the POP instructions these names are
used 1liberally, and must be interpreted
with care. Loading a value into W0 is
storage into the next available word,
(WRKADR) + 4, unless specifically otherwise
indicated, while storage from WO to another
location involves access to the contents of
the last word on the roll, (WRKADR) .
WRKADR is normally incremented following a
load operation and decremented following a
store.

The WORK roll is

EXIT ROLL

roll holds exit addresses for
subroutines and, thereby, provides for the
recursion used throughout the compiler.
The ANSWER BOX is also recorded on the EXIT
roll. The group size for the EXIT roll is
twelve bytes. The first byte is the ANSWER
BOX. The remaining information on the roll
is recorded when a subroutine Jjump is
performed in the compiler code; it is wused
to return to the instruction following the

The EXIT

jump when the subroutine has completed its
operation.
The values placed on the EXIT roll

differ, depending on the way in which the
subroutine Jjump is performed. As a result
of the interpretation of the IEYJSB POP
instruction, the 1last three bytes of the
first word contain the location of the
IEYJSB plus two (the location of the POP
instruction following the IEYJSB, the
return point); the second word of the group
holds an address within the IEYJSB subrou-
tine; the third word contains the location
of the global 1label for the routine from
which the subroutine jump was made plus two
(the value of LOCAL JUMP BASE in that
routine).

As an example of how a subroutine jump
is accomplished by means of machine 1lan-
guage instructions, the following instruc-
tions are used:

L TMP, G0052J
BAL ADDRy,JSB STORE IN EXIT
to replace the POP instruction

IEYJSB G0052J

Appendix B: Rolls Used in the Compiler 161

In this case, no value 1is placed in the
last three bytes of the first word; the
second word holds the address of the
instruction following the BAL; the third
word holds the location of the global label
immediately preceding the BAL plus two (the
value of POPADR when the Jjump is taken,
which is also the value of LOCAL JUMP BASE,

162

the base address to be used for local jumps
in the routine from which the subroutine
jump was made).

On return from a subroutine, these
values are used to restore POPADR and LOCAL
JUMP BASE and they are pruned from the EXIT
roll.

This appendix shows the format of the
Polish notation which is generated by the
compiler for each type of statement in the
FORTRAN IV (G) language.

GENERAL FORM

The format of the Polish notation
depends on the statement type, but always
terminates with the control driver which
indicates the type of statement:

4 bytes

Polish for
statement

control driver

statement number

i i s S S
b s b e b ks s e e e ad

The statement number is an integer whose
value is increased by one for each state-
ment processed. This value is wused only
within the compiler.

LABELED STATEMENTS

For labeled statements, a pointer to the
label is inserted between the control driv-
er and the statement number:

4 bytes

Polish for
statement

3
e el ot s s o ot

control driver

label

pointer to statement label

statement number

s B a e E m e

I
|
1
|
]

The label information is not included in
the following descriptions of the Polish
notation for individual statement types.

APPENDIX C: POLISH NOTATION FORMATS

ARRAY REFERENCES

The Polish notation for an array
reference whose subscripts are all linear
functions of DO variables consists simply
of a pointer to the appropriate group on
the ARRAY REF roll. The Polish notation
generated for all other references to an
array element is:

Polish for
subscript 2

4 bytes
I N 1
|array driver |
t i
r
pointer to array
| - |{ Polish for
| . | »subscript 1
] . I
b 1
L 4
r . 1
|multiplier |
1 J
v 1
|argument driver |
b |
L 4
¥ 1
I |
| |
|
L
.
L

multiplier

argument driver

Polish for
subscript 7

multiplier

argument driver

dummy array pointer

[e Sy e g s B (s . e o e M e Sy S o
.
b e b s it s e e e e s e e . s . e . b

The pointer to the array may indicate
either (1) the ARRAY roll, when none of the
subscripts used in the array reference are
linear functions of DO wvariables, or (2)
the ARRAY REF roll, when some, but not
all, of the subscripts are linear functions
of DO variables. The subscripts for which
Polish notation appears are those which are

Appendix C: Polish Notation Formats 163

not linear functions of DO variables. Only
the required number of subscripts appear.

The multiplier following each subscript
is the multiplier for the corresponding
array dimension. This value is an integer
unless the array is a dummy including dummy
dimensions which affect this array dimen-
sion; in this case, the multiplier is
represented by a pointer to the TEMP AND
CONST roll.

ENTRY STATEMENT

The Polish notation generated for the
ENTRY statement is:

4 bytes

pointer to ENTRY name

ENTRY driver

statement number

o ey . ap s oy
b e s s s e el

The pointer points to the ENTRY NAMES

roll.

ASSIGN STATEMENT

The Polish notation generated for the
ASSIGN statement is:

4 bytes

r
| pointer to label
I

r
|pointer to variable
L

¥
|ASSIGN driver
1

DY S TS T ——

v
| statement number
L

ASSIGNED GO _TO STATEMENT

The Polish notation generated for this

statement is:

4 bytes

— el

pointer to variable

LOGICAL IF STATEMENT

The Polish notation generated for this
statement is:

4 bytes
r 1
: 4
| . |{f Polish for
| . | logical
| . |Sexpression
i
i
I 4
L) 1 .
| . |f Polish for
| . |> statement
| - l ﬂsll
|logical IF driver |
!
b 1
| statement number |
L 4

RETURN STATEMENT

The following Polish notation is
duced for the RETURN statement:

pro-

4 bytes

I
|pointer to I
[}

v
|RETURN driver
I

e e e o s e

¥
| statement number
L

The pointer to I does not appear if the
statement is of the form RETURN.

ARITHMETIC AND LOGICAL ASSIGNMENT STATEMENT

The Polish notation produced for this
statement is:

4 bytes

pointer to variable to be set

Polish for
right side

e e s ety —

assigned GO TO driver

assignment driver

statement number

e B E |

.

L]
R S A L. T Sps——

| statement number
L

[y
[=))
=3

The Polish notation for the right side
of the assignment statement is in the
proper form for an expression, and includes
array references where they appear in the
source statement. The variable to be set
may also be an array element; in this case,
the pointer to the variable to be set is

ARITHMETIC IF STATEMENT

The following Polish
duced for this statement:

notation is pro-

replaced by the Polish notation for an 4 bytes
array reference, r 1
L i
r 1
| N I Pclish for
| . |» expression
| . |
k -1
t -
UNCONDITIONAL GO _TO STATEMENT |pointer to x1 |
t i branch
|pointer to x2 | Ypoints
The Polish notation produced for this } 4
statement is: | pointer to x3 |
[1]
L} 1
|pointer to label next stmt. |
! i
r
4 bytes |IF driver |
r 1 . Y|
|pointer to label | | statement number |
L J L i]
r a
|GO TO driver |
L 1
r 1
|statement number | The 1label of the next statement is
L 4 inserted following the IF driver because
the next statement may be one of the branch
points referenced; if it is, code will be
generated to fall through to that statement
in the appropriate case(s).
COMPUTED GO TO STATEMENT
DO _STATEMENT
The following Polish notation is pro-

duced for this statement:

4 bytes

r
{pointer to x1 |

~— .
|pointer to x2

. branch
points

L e
.

|pointer to xn

number of branch points

| pointer to variable
L

v
|computed GO TO driver
L

N s T

L)
|statement number
L

The following is the Polish notation
produced for the statement DO x i = ml, m2,
m3:

4 bytes

r
|pointer to M, (test value)
L

r
|pointer to Mj; (increment)

L
T

|pointer to LOOP DATA roll
|8

b
|pointer to LBL roll
N

t
|DO driver
L

D e T S e e P

:
| statement number
L

The pointer to m3 appears, even if the
increment value is implied.
Appendix C: Polish Notation Formats 165

CONTINUE STATEMENT

The Polish notation produced for this
statement is:

4 bytes

r
| CONTINUE driver
i

g

r
|statement number
L

PAUSE AND STOP_STATEMENTS

The Polish notation produced for these

statements is:

4 bytes

pointer to constant

PAUSE or STOP driver

statement number

s el
R el

For both the PAUSE
STOP statement, the constant appears on the
LITERAL CONST roll, regardless of its
nature in the source statement. If no
constant appears in the statement, the
pointer to the constant points to the
literal constant zero.

END_STATEMENT

The Polish notation generated for the
END statement is:

4 bytes

r
|END driver

statement number

O

BLOCK DATA STATEMENT

The Polish notation generated for the
BLOCK DATA statement is:

4 bytes

r
| BLOCK DATA driver
L

R

t
| statement number
L

166

statement and the

DATA STATEMENT AND DATA IN EXPLICIT
SPECIFICATION STATEMENTS

For each statement (DATA or Explicit
specificdtion) in which data values for
variables are specified, a Polish record is
produced. This record ends with a DATA
driver and a statement number. For each
variable initialized by the statement, the
following appears:

4 bytes

)
|pointer to variable
L

1 3
|offset
L

b o e e il

The offset 1is the element number at which
initialization begins; if it does not
apply, this word contains the value zero.

This information is followed by the pair
of groups

4 bytes

r
|repetition count
|8

e

L)
|pointer to constant
L

or, when the constant is literal, the three
groups

4 bytes

T
|repetition count
|8

v
|pointer to constant
I

[s R S

v
|number of elements
L

where the 1last group indicates the number
of elements of an array to be filled by the
literal constant. For array initializa-
tion, one or more of the "constant" groups
may appear.

I/0_LIST

notation for an I/0 List
contains pointers to the variables in the
list, Polish notation for array references
where they appear, and pointers and drivers
to indicate implied DO loops.

The Polish

The I/0 list
((c(1),1=1,10),A7,B)

for example, results in the following

Polish notation:

4 bytes

r
|pointer to M, (test value)
I

r
|pointer to M; (increment)

|implied DO driver
B e e e e e e e e e e e e e e e e o e e e e e e e e e e e e e e e e e e

|pecinter to a (data set) |
! 1
L}

| FORMAT driver]

|pointer to FORMAT |

t -
r
|END= driver |

Ottt 1
|pointer to END label |
F -1
T

|ERR= driver |
T LR 1
|pointer to ERR label |
b :
r

|IOL driver |
T :
frmm -

. Polish for

I/0 1list

r
|pointer to C

,
!
J,
!
.|
|
4'
|
{
|
b -
|
{
!
{
|
.{
|
JI
!
{

|1 (number of subscripts)

|pointer to I (subscript)

e e
b

|argument driver

|array driver
L

T
|IOL DO Close driver

|pointer to A |
L 4
1
|

!
|pointer to B
e J

The area between, and 1including, the
implied DO driver and the array driver is

an array reference, as it would appear
wherever C(I) was referred +to in source

module statements.

INPUT STATEMENTS

The following paragraphs discuss the
Polish notation produced for all forms of
the READ statement except direct access.

FORMATTED READ

For the form READ (a,b) list, the for-
matted READ, the Polish notation generated
is:

|
|
|
1
L}
L
U
|code word
t
|
kL
L]
|

pointer to IBCOM

|READ WRITE driver
L
r

I

I

|

4

4

|

4

IBCOM entry, formatted READ |
4

I

4

|

¥

| statement number |
J

The pointer to the FORMAT points either
to the label of the FORMAT statement or to
the array in which the FORMAT 1is stored.
The END= and ERR= drivers and the pointers
following them appear only if the END and
ERR options are wused in the statement;
either one or both may appear, and in any
order with respect to each other. If no
I/0 list appears 1in the statement, the
Polish for the I/0 list is omitted, but the
IO0L driver appears nonetheless.

zero in its
low-

The code word contains
high-order three bytes, and, 1in its

order byte, a unique code specifying the
operation and wunit for the input/output
statement. This code word distinguishes

among the various READ statements and is
inserted in the code produced for them.

Input/output operations are performed by
the RUNTIME routines. IBCOM is a transfer
routine in RUNTIME through which all input/
output except NAMELIST is performed. The
IBCOM entry for formatted READ indicates an
entry point to this routine. (See Appendix
D for further discussion of IBCOM.) The
pointer to IBCOM points to the routine on
the GLOBAL SPROG roll.

Appendix C: Polish Notation Formats 167

NAMELIST READ

For the form READ (a,x), the NAMELIST
READ, the following changes are made to the
Polish notation given above:

1. The FORMAT driver is
NAMELIST driver.

replaced by a

2. The pointer to the FORMAT is replaced
by a pointer to the NAMELIST.

3. The code word value is changed.

4, The IBCOM entry is replaced by the
value zero, since NAMELIST input/

output is not handled through IBCOM.

5. The pointer to IBCOM is replaced by a
pointer to the NAMELIST READ routine.

6. No I/0 list may appear.

UNFORMATTED READ

For the form READ (a) list, the unfor-
matted READ, the following changes are made
to the Polish notation given above:

1. The FORMAT driver is removed.
2. The pointer to the FORMAT is removed.
3. The IBCOM entry,

replaced by the
matted READ.

formatted READ, is
IBCOM entry, unfor-

READ STANDARD UNIT

For the form READ b, 1list, the standard
unit READ statement, the following changes
are made to the Polish notation given
above:

1. No END= or ERR= drivers may appear,
nor may the corresponding pointers to
labels.

2. The code word value is changed.

OUTPUT STATEMENTS

The following paragraphs discuss the
Polish notation produced for all forms of
the WRITE statement except direct access,
and for the PRINT and PUNCH statements.

168

FORMATTED WRITE

For the form WRITE (a,b) 1list, the
formatted WRITE, the Polish notation
generated is:

4 bytes
r . 1
|pointer to a data set |
.............................. 4
| FORMAT driver |
b 1
L}
|pointer to FORMAT |
—————— - -—-1
|END= driver |
} 4
r 1
|pointer to END label |
.............................. i
{ERR= driver |
) y
T 1
|pointer to ERR label |
.............................. 4
| IOL driver |
i 4
L} L)
t 4
L} a R
| . |f Polish for
! . I} I70 list
| . I
R 4
prm e 1

] code word

IBCOM entry, formatted WRITE

prmm o e i
|pointer to IBCOM
1

LB
|READ WRITE driver

| statement number
L

The pointer to the FORMAT points either
to the label of the FORMAT statement or to
the array in which the FORMAT is stored.
The END= and the ERR= drivers and the
pointers following them appear only if the
END and ERR options are used in the state-
ment; either one or both may appear, and in
any order relative to each other, If no
I/0 1list appears in the statement, the
Polish for the I/0 list is omitted, but the
IOL driver appears nonetheless.

The code word contains zero in its
high-order three bytes, and, in its low-
order byte, a unique code specifying the
operation and unit for the input/output
statement. This code word distinguishes
among the various output statements and is
inserted in the code produced for them.

Input/output operations are performed by
the runtime routines. IBCOM# is the ini-
tial entry of a transfer vector in IHCFCOMH
through which all input/output except NAME-
LIST is performed. (IHCFCOMH is further
discussed in Appendix F.) The pointer to

IBCOM# points to the routine on the GLOBAL
SPROG roll.

NAMELIST WRITE

For the form WRITE (a, x), the NAMELIST
WRITE, the following changes are made to
the Polish notation given above:

1. The FORMAT driver is
NAMELIST driver.

replaced by a

2. The pointer to the FORMAT is replaced
by a pointer to the NAMELIST.

3. The code word value is changed.

4. The IBCOM# entry is replaced by the
value zero, since NAMELIST input/

output is not handled through IBCOM.

5« The pointer to IBCOM# is replaced by a
pointer to the NAMELIST WRITE routine.

6. No I/O list may appear.

UNFORMATTED WRITE

For the form WRITE (a) list, the unfor-
matted WRITE, the following changes are
made to the Polish notation given above:

1. The FORMAT driver is removed.

2. The pointer to the FORMAT is removed.

3. The IBCOM# entry, formatted WRITE, is
replaced by the IBCOM# entry, unfor-
matted WRITE.

PRINT

The Polish notation generated for the
form PRINT b, list is identical +to that
given for the formatted WRITE statement,
with the following changes:

1. No END= or ERR= drivers may appear,
nor may the corresponding pointers to
labels.

2. The code word value is changed.

PUNCH

The Polish notation for the statement
PUNCH b, 1list is as given for the formatted
WRITE with the following changes:

1. No END= or ERR= drivers may appear,
nor may the corresponding pointers to
labels.

2. The code word value is changed.

DIRECT ACCESS STATEMENTS

discuss the
direct

The following paragraphs
Polish notation produced for the
access input/output statements.

READ, DIRECT ACCESS

For the forms READ (a'b,b) list and READ
(a'r) 1list, the following Polish notation
is generated:

4 bytes
r——- 1
|pointer to a |
p--- T 4
|direct IO driver |
¢ 1
| I
b .
| . |[Polish for
I . r
I . |
L 4
r 1
I |
pmm=- -—m e 1
|expression driver |
F 1
|pointer to b |
_— ——————————————— ¥
|ERR= driver |
i J
r 1
|pointer to ERR label |
...... _— ———
| IOL driver |
L 4
1] 1
1 |
prmm oo i
| . || Polish for
| . |) I/0 list
! . {
|8 d
[} n
| |
- - -4
|code word |
F 4
| IBCOM entry, READ |
L
} —
|pointer to IBCOM# |
L 4
v 1
{READ WRITE driver |
L
b - i
| statement number |
L J

Appendix C: Polish Notation Formats 169

The END= and ERR= drivers and the point-

ers following them appear only if the END
and ERR options are used in the source
statement; either one or both may appear,
and in any order with respect to each
other. If b does not appear in the source
statement (the second form), the corres-
ponding pointer does not appear in the
Polish notation, If the I/0 list does not
appear in the source statement, the Polish

notation for the I/O list is omitted from
the Polish, but the IOL driver appears
nonetheless,

The code word contains zero in its
high-order three bytes, and, in its low-
order Dbyte, a unique code specifying the
operation and unit for the input/output
statement., This code word distinguishes
the direct access statements from other
input/output statements and is inserted in

the code produced for them.

WRITE, DIRECT ACCESS

The Polish notation
forms WRITE (a'r,b) 1list and WRITE (a'r)
list is identical to that produced for the
corresponding forms of the READ, direct
access statement with the following
exceptions:

produced for the

1. The
the

IBCOM entry,
appropriate IBCOM entry,

READ is replaced by
WRITE.

2. The value of the code word is changed.

FIND

The Polish notation produced for this

statement is identical to that for an
unformatted direct access READ statement
given above, with the exception that the

code word is changed to indicate the FIND

statement.

DEFINE FILE

The form of this statement is:

DEFINE FILE al (mi1,11,f1,vl),a2
(m2,12,f2,v2),ece,an(mn, in, £fn, vn)

The Polish notation produced for it is:

170

T
|pointer

|pointer

4
|
b i
|
.‘

t
|pointer file 1 da
L N

v

|E, Lor U |
- 4
|pointer |

|pointer to wvn

{
|
L i
|
.{

r
|DEFINE FILE driver

| statement number
L 1

where the fourth word of each set

ta

file 2 data

file n data

of file

data holds the BCD character E, L, or U in
the high-order byte and zeros in the
remaining bytes.
END FILE STATEMENT

The Polish notation produced for END
FILE is:

4 bytes

=== ———m— - --= T mmme e 1
|pointer to a (data set) |
L J
r 1
|IBCOM entry for END FILE |
... 4
|pointer to IBCOM
P
t i
| BSREF driver |
b oo 1

| statement number
L

REWIND STATEMENT

The Polish notation produced for the
REWIND statement 1is identical to that for
the END FILE statement with the exception
that the IBCOM entry for END FILE is
replaced by the IBCOM entry for REWIND.

BACKSPACE STATEMENT

The Polish notation produced for the
BACKSPACE statement is identical to that
for the END FILE statement, except that the
IBCOM entry for END FILE is replaced by the
IBCOM entry for BACKSPACE.

STATEMENT FUNCTION

The Polish notation generated for a
statement function is:

4 bytes

pointer to function name

Polish for
right side

A S
t
|
|

|
%,_ -
|statement function driver

| statement number
L 4

FUNCTION STATEMENT

The Polish notation
FUNCTION statement is:

produced for the

4 bytes

pointer to ENTRY name
F

UNCTION driver

statement number

ey e o e oy

e s .

where the pointer points to the ENTRY NAMES
roll.

FUNCTION (STATEMENT OR_SUBPROGRAM)
REFERENCE

The Polish notation generated for a
reference to a function is:

4 bytes

[T T T 1
| subprogram driver |

b 1

r

|pointer to function name |

b oo 3

|number of arguments |

L

t 1

|expression driver |

b e :

| I

L 1

r 1 .

1 . || Polish for
| . |\ argument 1
! . |
e 1
|expression driver |

t i

| |

prmm oo i

| . |[Polish for
| . |) argument 2
| . |

¢ - :

|expression driver |

t 1

| . I

! . |

| . |

pom oo m oo 1

| |

1 J

r 1 .

| . |[Polish for
| . |) argument n
| . [

e , —
|expression driver [

1 4

r 1

|pointer to function name |

L e e e e e e e e e e e e e o e e e e e J

This Polish notation 1is part of the
Polish notation for the expression in which
the function reference occurs,

SUBROUTINE STATEMENT

The Polish notation generated for the
SUBROUTINE statement is:

4 bytes

r
|pointer to ENTRY name

| SUBROUTINE driver
L

|
|

L, e R |

r
| statement number
L

where the pointer points to the ENTRY NAMES
roll.

Appendix C: Polish Notation Formats 171

CALL STATEMENT

The Polish notation for the CALL state-

ment is:
4 bytes
) 1
|subprogram driver |
L i |
1) 1
|pointer to subprogram name |
1 3
r 1
|number of arguments |
L J
v 1
|expression driver |
| {
| |
L J
r H .
| . || Polish for
| . |} argument 1
I e
expression driver

| |

1 J

r 1 .

| - | Polish for
| - |y argument 2
| . |

I , ,

|expression driver

|

| .

| .

‘ .

[l

¥

|

r

| . Polish for
| . argument n
l .

v

|expression driver

1]
|pointer to subprogram name
L

b
|pointer to x1
1

pointer to x2

label
arguments

—— o T —m—m" N m— —— e~ —m——

— - e . s . g
.

pointer to xn

el e o s s s et e il s b . b et ke e s e i v .

T

umber of label arguments

computed GO TO driver

CALL driver

statement number

Y
L

Label arguments are not counted in the
"number of arguments" which appears as the
third word of the Polish notation, and no

172

representation of them appears in the
Polish notation for the arguments. 2ll
label arguments are grouped together at the
bottom of the Polish as indicated. If no
label arguments exist, the section from the
"pointer to x1" to and including the "com-
puted GO TO driver" does not appear.

DEBUG FACILITY STATEMENTS

The following paragraphs describe the
Polish notation produced for the statements
of the debug facility.

AT

The Polish notation generated for the AT
statement is:

4 bytes

-1
pointer to AT group

AT driver

statement number

oo e g e g aon.
R el

The pointer points to the AT roll group
which contains the information relating to
the AT statement represented by the Polish
notation.

TRACE ON

The Polish notation
TRACE ON statement is:

generated for the

4 bytes

TRACE ON driver

statement number

o e S e ey
T Vp—

TRACE OFF

The Polish notation generated for the
TRACE OFF statement is:

4 bytes

TRACE OFF driver

statement number

o s g s oy
[S

DISPLAY

The Polish notation generated for
DISPLAY statement is:

4 bytes

the

pointer to NAMELIST WRITE

0

NAMELIST pointer

DISPLAY driver

statement number

s o e e nl

e e e e i e e e e e)

where the pointer to NAMELIST WRITE points
to this routine on the GLOBAL SPROG roll;
the value zero is placed on the roll for
conformity with other NAMELIST input/output
statements; the NAMELIST pointer points to
a group constructed for the DISPLAY state-
ment on the NAMELIST NAMES roll.

Appendix C: Polish Notation Formats 173

APPENDIX D:

OBJECT CODE PRODUCED_ BY THE COMPILER

This appendix describes the code pro-
duced by the FORTRAN IV (G) compiler for
various types of source module statements.

BRANCHES

All Dbranch instructions in the object
module consist of a load from the branch
table, followed by a BCR instruction, eith-
er conditional or unconditional, which uses
the branch table value as its target.

The production of this code depends on
the operation of Allocate, which replaces
all jump target labels on the LBL roll with
pointers to entries in the object module
branch table. Using this information, Gen
can write the load and branch instructions
even though the address of the target may
not yet be known.

When Gen encounters a labeled statement
which is a jump target, it sets the appro-
priate entry in the branch table to the

address of the first dinstruction
duces for that statement.

it pro-

COMPUTED_GO_TO STATEMENT

The following code is generated for the
Computed Go To statement:

L 15,variable

SLL 15,2

BALR 14,0

LTR 15,15

BNH Un+22(0,14)

LA 1,4n(0,0)

CR 15,1

BH 4n+22(0,14)

L 1,18(15,14)

BR 1

L]
n address constants

where variable is the Computed Go To vari-
able, n is the number of branch points, and
4n is the length of the list of n address
constants.

DO_STATEMENT

The use of
program can
example:

a DO 1loop in a FORTRAN
be described by the following

DO 51 =ml,m2,m3

5 CONTINUE

When the DO statement is processed dur-
ing phase 4, the following takes place:

1. The code

L RO, ml
A ST RO,I

is generated, where the 1label A is

constructed by Gen.

2. The address of the instruction labeled
A is placed in the branch table.

3. An entry is made on the DO LOOPS OPEN
roll which contains pointers to m2,
m3, the label A, I, and the label 5.

On receiving the Polish notation for the
CONTINUE statement in the example, phase 4
produces the following code:

L RO, I

L R1, branch table
L R2,m3

L R3,m2

BXLE RO,R2,0(R1)

where the 1load from the branch table sets
R1 to the address of the made 1label A.
When this code has been completed, phase U4
removes the bottom entry from the DO LOOPS
OPEN roll.

Appendix D: Object Code Produced by the Compiler 175

STATEMENT FUNCTIONS

The following code is generated at the
beginning of each statement function:

STM 14,6,14(0,15)
LR 7,14

LR 9,1

LR 6,15

B 42(0,15)

seven word buffer

The buffer is followed by the code for

the statement function itself, including
the code to load the return value. The
following code closes the statement
function:

LR 14,7

LM 6,12,104(6)

BR 14
SUBROUTINE AND FUNCTION SUBPROGRAMS

The following code is generated to save

required information at the main entry to
each SUBROUTINE and FUNCTION subprogram:

B X(0,15)

DC ALl1(length of Ident)
DC CLp (Ident)

STM 14,12,12(13)

LM 2,3,40(15)

LR 4,13

L 13,36(0,15)

ST 13,8(0,4)

STM 3,4,0(13)

BR 2

DC (ADDRESS SAVE ARER)
DC (ADDRESS PROLOGUE)
DC (ADDRESS EPILOGUE)

This code is followed by the following
code for saving required information for
each of the ENTRYs to the subprogram (the
sequence of code appears once for each

ENTRY, in the order of the ENTRYs):
B X(0,15)
DC ALl (length of ident)
DC CLn(Ident)
STM 14,12,12(13)
M 2,3,32(15)
L 15,28(0,15)
B 20(0,15)
DC (ADDRESS PROLOGUE)
DC (ADDRESS EPILOGUE)

176

The save code for the ENTRYs to the
subprogram is followed by a PROLOGUE, which
transfers arguments to the subprogram, and
an EPILOGUE, which returns arguments to the

calling routine for the main entry to the
subprogram and for each ENTRY to the
subprogram.

The following code is produced for the

RETURN statement:

SR 15,15
L 14,0(0,13)
BR 14

which branches to the appropriate EPILOGUE.

The following
RETURN I statement:

code is produced® for the

L 15,1

SLL 15,2

L 14,0(0,13)
BR 14

which also branches to the appropriate
EPILOGUE.

The PROLOGUE code generated for each
entry point to the subprogram moves argu-
ments as required and branches to the

entry. The following code is generated to
move each call by name argument:

L 2,n(0,1)

ST 2,g9lobal dmy
where n is the argument number (the argu-

ments for each entry point are numbered

from one) multiplied by four.

The following code is generated to move
each call by value argument:

L 2,n(0,1)

MVC global dmy (x),0(2)

where n is the argument number multiplied
by four, and x is the size of the dummy.

code to calculate dummy dimensions fol-
lows the code to move arguments.

The following code is generated at the
close of all PROLOGUES:

BALR 2,0

L 3,6(0,2)

BR 3

DC (ADDRESS OF CODE ENTRY POINT)
The EPILOGUE code generated for each

entry point to a subprogram moves arguments
back to the calling routine and returns to
it, as dictated by the RETURN or RETURN I
statement.

Form Y¥28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

The first instructions in each EPILOGUE

are:

L 1,4(0,13)
L 1,24€0,1)

The following code 1is generated to
return each call by value argument:

L 2,n(0,1)
MvC 0(x, 2),global dmy
where n 1s the argument number multiplied

by four and x is the size of the dummy.

For FUNCTION subprograms, the
instruction is generated:

following

Lx 0, entry name

where x 1is the instruction mode. If the
FUNCTION is complex, two load instrnctions
are required.

The following code is generated for the
closing of each EPILOGUE:

L 13,4(0,13)
L '14,12(0,13)
LM 2,12,28(13)
MVI 12(13), 255
BR 14

INPUT/OUTPUT OPERATIONS

The following paragraphs describe the
code produced for the FORTRAN input/output
statements. The generated instructions set
up necessary parameters and branch into the
IBCOM# transfer table. This table has the
following format:

formatted READ

formatted WRITE
+8 Second list item, formatted
+12 Second list array, formatted
+16 Final entry, end of I/0 list

+20 Main entry, unformatted READ
+24 Main entry, unformatted WRITE

+28 Second list item, unformatted

+32 Second list array, unformatted

+36 Final entry, end of I/0 list
+40 Backspace tape

+44 Rewind tape

+48 Write tapemark

+52 STOP

+56 PAUSE

+60 IBERR execution error monitor

+64 IBFINT interruption processor

+68 IBEXIT job termination

. IBCOM# Main entry,

+4 Main entry,

FORMATTED READ AND WRITE STATEMENTS

The code produced for these statements

is:
CNOP 0,4
L 15,=V(IBCOM#)
BAL 14,N(15)
DC XLO. 4'PI*',XLO.4'UI",AL3(UNIT)
DC AL1(FI),AL3 (FORMAT)
DC ALY4 (EOFADD) "optional"
DC AL4 (ERRADD) "optional"
where:
PI = 0 if neither EOF nor ERR is
specified
= 1 if EOF only is specified
= 2 if ERR only is specified
= 3 if both EOF and ERR are
specified
Ul 0 if unit is an integer constant

1 if unit is a variable name

4 if unit is the standard system
unit
FI = X'00' if FORMAT is a statement
label
= X'01' if FORMAT is an array name

0 for READ
4 for WRITE

=
L]

UI = 4 is used for debug and for READ b,

list, PRINT b, list and PUNCH b, list.
SECOND LIST ITEM, FORMATTED
The code produced is:
L 15,=V(IBCOM#)
BAL 14,8(15)
DC XL1'L',LX0 . 4°'T' . XLO. 4*'X"
XLO.4'B', XL1.4'D"
where:
L = the size in bytes of the item
T = 2 for a logical 1l-byte item
= 3 for a logical fullword item
= 4 for a halfword integer item
= 5 for a fullword integer item
= 6 for a double-precision real item
= 7 for a single-precision real item
= 8 for a double-precision complex
item)
= 9 for a single-precision complex
item

= A for a literal item (not currently
compiler-generated)

Avpendix D: Object Code Produced by the Compiler 177

X, B, and D are, respectively, the
index, base, and displacement which
specify the item address.
SECOND LIST ARRAY, FORMATTED
The code produced is:
L 15,=V(IBCOM#)
BAL 14,12(15)
DC LX1'SPAN',AL3 (ADDRESS)
DC XL1'L',XLo.4°'T*,XL2, 4* ELEMENTS"
where:

SPAN (not used)

ADDRESS = the beginning location of the

array
L = the size in bytes of the array
element

T = the values given for items

ELEMENTS = the number of elements in the
array

FINAL LIST ENTRY, FORMATTED

The code produced is:

L 15, =V{IBCOM#)
BAL 14,16(15)

UNFORMATTED READ AND WRITE STATEMENTS

The code produced for these statements
is:

CNOP O, 4

L 15,=V{IBCOM#)

BAL 14,N(15)

DC XLO.4'PI*,XL0. 4" UI,AL3(UNIT)

DC ALU4(EOFADD) "optional"

DC AL4 (ERRADD) "optional"
where:

PI, UI, UNIT, EOFADD and ERRADD have the

same values as those given 1in the for-

matted READ/WRITE definition.
N 20 for READ
24 for WRITE

178

SECOND LIST ITEM, UNFORMATTED

The code produced is:

L 15,=V(IBCOM#)
BAL 14,28(15)
DC XL1'L',XLO.4'0', XLO. 4 X",

XLO. 4'B',XL1.4°'D"
where:
L = the size in bytes of the item

the
which

X, B and D are, respectively,
index, base, and displacement
specify t+he address of the item.

SECOND LIST ARRAY, UNFORMATTED

The code produced is:

L 15, =V(IBCOM#)

BAL 14,32(L)

DC XL1'SPAN', AL3 (ADDRESS)

DC XL1'L*,AL3 (ELEMENTS)
where SPAN, ADDRESS, L, and ELEMENTS have
the meanings described in second list
array, formatted.

FINAL LIST ENTRY, UNFORMATTED

The code produced is:

L 15, =V{(IBCOM¥#)
BAL 14,36(15)
BACKSPACE, REWIND, AND WRITE TAPEMARK

The code produced is:

CNOP 0,4
L 15, =V (IBCOM#)
BAL 14,N(15)
DC XL1'FLAG', AL3(UNIT)
where:
FLAG = 0 if unit is an integer
= any other bit pattern if unit is
a variable.
N 40 for BACKSPACE

44 for REWIND
48 for write tapemark

STOP AND PAUSE STATEMENTS

The code produced for these statements
is:

L 15,=V(IBCOM#)

BAL 14,N(15)

DC AL1 (LENGTH)

DC C*'TEXT*
where:

LENGTH is the number of bytes in the

'TEXT' message

TEXT is an alphameric number or message

(TEXT = '80404040F0' if ‘the STOP or
PAUSE message is blank).

N 52 for STOP

56 for PAUSE

[[]

NAMELIST READ AND WRITE

The code produced is:*

CNOP o,u4
L 15,=V (FWRNL#)
BAL 14,0 (15)
DC XLO. 4'PI*,XL0.4°'UI",AL3(UNIT)
DC AL4 (NAMELIST)
DC AL4 (EOFADD)
DC ALL4 (ERRADD)
where:
PI, UI, and UNIT are as described for
formatted READ and WRITE
* The "L 15,=V(FWRNL#)" shown is for
write; the code produced for read is
"L 15,+V (FRDNL#) . "

DEFINE FILE STATEMENT

The form of the parameters specified in
the statement is:

as(my ,£4,Y14V4)gecceanmp,fn,rn,vn)

The following code is generated in the
object module prologue:

LA Ry, LIST

L L, =V(DIOCS#)

BALR Ro,L
where:

Ry = 1

L =15

Ry, = 14

Appendix D: Object Code Produced by the Compiler

The following parameter 1list 1is also
generated:
DC X'a,',AL3 (my)
DC C'f,',AL3(r,)
DC X'00" ,AL3(v,)
DC X'ap',AL3 (my)
DC Cc'fn',AL3(xp)
DC X'80",AL3 (vp)

The third DC in the group is changed to

DC X'01',AL3(vi)
if the associated variable is a halfword
variable. In the last group, it becomes
X*81*',AL3(vp) in this case.
FIND STATEMENT
The code produced is:
CNOP 0,4
L 15,=V(IBCOM#)
BAL 14,20(15)
DC XL0.4'PI*,XL0.4'UI",AL3 (UNIT)
DC XL1'VI',AL3 (1)
PI = C
UL = 0 if the unit is a constant
= 1 if the unit is a variable name
VI = 00 if the record number is a
constant
= 01 if the record number is a vari-
able name
Note that 20 is the IBCOM entry point

for an unformatted READ.

DIRECT ACCESS READ AND WRITE STATEMENTS

The code produced for these statements
is:

CNOP 0.4

L 15,=V(IBCOM#)

BAL 14,N(15)

DC XL0.4'PI',XL0. 4 "UI'AL3 (UNIT)

DC AL1(FI) ,AL3 (FORMAT)

DC AL1(VI) ,AL3(x)

DC AL4 (ERRADD) "may only appear for

READ" :

179

where:
PI = 8 if ERR is not specified
= A if ERR 1is specified, which is
(only possible for READ
UI = 0 if the wunit is an integer
constant
= 1 if the unit is a variable name
FI = 00 if the FORMAT is a statement

label
= 01 if the FORMAT is an array name

VI = 00 if r (the record number) is a
constant
= 01 if r is a variable name

The entry points which may appear (N)
are 0, 4, 20, or 24, If 20 or 24 appears
(indicating an unformatted operation), the
second DC does not appear.

FORMAT STATEMENTS

FORMAT statements are stored after 1lit-

eral constants in the object module.

The FORMAT specifications are recoded
from their source module form so that each
unit of information in the FORMAT statement
occupies one byte of storage. Each integer
which appears in the FORMAT statement
(i.e., a scale factor, field width, number
of fractional digits, repetition count) is
converted to a 1-byte binary value. Decim-
al points used to separate field width from
the number of fractional digits in the
source module FORMAT statement are dropped;
all other characters appearing in the
source module statement are represented by
1-byte hexadecimal codes. The following
sections describe the encoding scheme which
is used.

FORMAT Beginning and Ending Parentheses

The beginning and ending parentheses of
the FORMAT statement are represented by the

hexadecimal codes 02 and 22, respectively.
Slashes
The slashes appearing in the FORMAT

statement are represented by the hexadec-
imal code 1E.

180

Internal Parentheses

Parentheses used to enclose groups of
FORMAT specifications within the FORMAT
statement are represented by the codes 04
and 1C for the left and right parenthesis,
respectively. The code for the left paren-
thesis is always followed by the 1-byte
value of the repetition count which pre-
ceded the parenthesis in the source module
statement. A value of one is inserted if
no repetition count appeared.

Repetition of Individual FORMAT
Specifications

Whenever the source module FORMAT state-
ment contains a field specification of the
form aIw, aFw.d, aEw.d, aDw.d, or ahw,
where the repetition count "a" is present,
the hexadecimal code 06 1is produced to
indicate the field repetition. This code
is followed by the 1-byte value of "a".

I,F,E, and D FORMAT Codes

The I and F FORMAT codes are represented
by the hexadecimal values 10 and OA, re-
spectively. The I code is followed by the
1-byte field width value; the F code is
followed by two bytes, the first containing
the field width (w) and the second contain-
ing the number of fractional digits (d).

E and D FORMAT codes are represented by
the hexadecimal values 0C and OE, respec-
tively. This value is always followed by
two bytes which represent the field width
and the number of fractional digits,
respectively.

A _FORMAT Code

The A FORMAT code is represented by the
hexadecimal value 14, This representation-
is always followed by the 1-byte value of
w, the number of characters of data.

Literal Data

The H FORMAT code and the quotation
marks used to enclose literal data are both
represented by the hexadecimal value 1A.
This code is followed by the character
count (w in the case of the H specifica-

the number of characters enclosed in
quotation marks in the case of the use of
quotation marks). The literal data follows
the character count.

tion,

X _FORMAT Code

The specification wX results in the
production of the hexadecimal code 18 for
the X; this is followed by the 1l-byte value
of w.

T FORMAT Code

The T FORMAT code is represented by the
value 12. The print position, w, is repre-
sented by a 1-byte binary value.

Scale Factor-P

The P scale factor in the source module
FORMAT statement is represented by the
hexadecimal wvalue 08, This code is fol-
lowed by the value of the scale factor, if
it was positive. If the scale factor was
negative, 128; is added to it before it is
stored following the P representation.

G_FORMAT cCode

The G FORMAT Code is represented by the
hexadecimal value 20. This value is always
followed by two bytes which represent the
field width and the number of significant
digits, respectively.

L _FORMAT Code

The L FORMAT code is represented by the
hexadecimal value 16. This value is fol-
lowed by the 1-byte field width.

Z_FORMAT Code

The Z FORMAT code is represented by the
hexadecimal value 24. This value is fol-
lowed by the 1-byte field width.

DEBUG_FACILITY

The following paragraphs describe the
code produced for the FORTRAN Debug Facili-
ty statements. The generated instructions
set up parameters and branch into the
DEBUG# transfer table. The object-time
routines which support the Debug Facility
are described in Appendix E.

DEBUG STATEMENT

When the source module includes a DEBUG
statement, debug calls are generated before
and after each sequence of calls to IBCOM

for source module input/output statements.
Additional debug calls are generated to
satisfy the options 1listed in the DEBUG

statement.

Beginning of Input/Qutput

The following code appears before the
first call to IBCOM for an input or output
operation:

L 15, =V (DEBUG#)

CNOP 0,4
BAL 14,44(0,15)

End of Input/Output

The following code appears after the
last call to IBCOM for an input or output
operation:

L 15,=V (DEBUGH)
CNOP 0,1
BAL 14,48(0,15)

UNIT Option

When the DEBUG statement does not
include the UNIT option, the object-time
debug routine automatically writes debug
output on SYSOUT. When UNIT is specified,
the following code is generated at the
beginning of the object module:

L 15,=V (DEBUGH)
CNOP 0,8

BAL 14,12(0,15)
DC F'DSRN"

Appendix D: Object Code Produced by the Compiler 181

where DSRN is the data set reference number
to be used for all subsequent debug output.

TRACE Option

When the TRACE option is specified in

the source module DEBUG statement, the
TRACE call is inserted immediately before
the code for every labeled statement. The
code is:

L 15,=V(DEBUG#)

CNOP 0,4

BAL 14,0(0,15)

DC F'LABEL'

where LABEL is the label of the following
statement.

SUBTRACE Option

When the SUBTRACE option is listed in
the source DEBUG statement, two sequences
of code are produced: omne at the entry to
the object module, and one prior to each
RETURN.

SUBTRACE ENTRY:
the beginning of the
call is:

The debug call is made at
object module, The

L 15,=V(DEBUG#)
CNOP 0,4
BAL 14, 14(0,15)

At the time of the call, register 13
contains the address of the SAVE AREA, the
fifth word of which contains the address of
the subprogram identification. Bytes 6
through 11 of the subprogram identification
are the subprogram name.

SUBTRACE RETURN:
immediately before
The call is:

The debug call is made
the RETURN statement.

L 15,=V (DEBUGH#)
CNOP 0,4
BAL 14,8(0,15)

INIT Option

When the INIT option is given in the
source module DEBUG statement, a debug call
is produced for every assignment to a
variable, or to a listed variable if a list
is provided. The call immediately follows
each assignment, including those which
occur as a result of a READ statement or a

182

subprogram call. Three calls may occur,
depending on the type of variable (scalar
or array) and the method of assignment.

INIT SCALAR VARIABLE: The following code
is produced after each assignment of wvalue

to a scalar variable covered by the INIT
option:
L 15,=V(DEBUG#)
CNOP o,u
BAL 14,16(0,15)
DC CL6"NAME',CL2" ¢
DC XL1'L' , XLO.4° T, XLO. 4" X', XLO. 4" B",
XLl1l.4*D*
where:
NAME is the name of the variable which
was sete.
L is the 1length of the variable in
bytes.

T is the type code for the variable:

= 2 for a logical 1-byte item

= 3 for a logical fullword item

= 4 for a halfword integer item

= 5 for a fullword integer item

= 6 for a double-precision real item

= 7 for a single-precision real item

= 8 for a double-precision complex
item

= 9 for a single-precision complex
item

A for a literal item (not currently
compiler generated)

X, B, and D are, respectively, the
index, base, and displacement which loc-
ate the item.

INIT ARRAY TITEM: The following code is
produced after each assignment of value to
an array element:

L 15,=V(DEBUG#H)

CNOP 0,4

BAL 14,20(0,15)

DC CL6'NAME',CL2' !

DC XL1'L', XLO0. . 4°'T',XLO. 4'X* ,X1O. 4"'B',
XLl1.4°'D"

DC XL1'TAG',AL3 (ADDRESS)

where:

ADDRESS IS THE LOCATION OF THE FIRST
array element if TAG = 0, or ADDRESS is a
pointer to the location of the first
array element if TAG # O.

NAME, L, T, X, B, and D are as described
for a scalar variable.

INIT FULL ARRAY: The following code is
produced when a full array is set by means
of an input statement specifying the array

name or when the array name appears as an
argument to a subprogram:

L 15,=V(DEBUGH#)
CNOP o,
BAL 14,24(0,15)
DC CL6*'NAME', CL2' °
DC A(ADDRESS)
DC XL1'L' , XLO 4°*T',XL2.4'00000"
DC A(ELEMENTS)
where:
ADDRESS is the location of the first

array element.

ELEMENTS is a pointer to a word contain-
ing the number of elements in the arraye.

NAME, L, and T are as described for a
scalar variable.

SUBCHK Option

A debug call is produced for each
reference to an array element when the
SUBCHK option appears without a 1list of
array names; when the list is given, only
references to the 1listed arrays produce
debug calls. The debug call appears before

the reference to the array, and is:

L 15, =V(DEBUGH#)

CNOP O,

BAL 14,28(0,15)

DC CL6‘NAME‘;CL2' s

DC XL1'TAG',AL3 (ADDRESS)
DC ALU4 (ELEMENTS)

where:

NAME is the array name.

ADDRESS is the location of the first
array element if TAG = 0, or ADDRESS is
a pointer to the location of the first
array element if TAG # O.

ELEMENTS is a pointer to a word contain-
ing the number of elements in the array.

AT STATEMENT

The AT statement specifies the label, L,
of a statement whose operation should be

immediately preceded by the operation of
the statements following the AT. As a
result of +the AT statement, an uncondi-
tional branch to the location of the first
statement following the AT is inserted
before the first instruction generated for
the statement labeled L. This branch pre-
cedes any TRACE or SUBTRACE calls which may
be written for statement L.

The branch,
in the object module,
from the branch table, followed by a
instruction. The branch table entry
referred to is one constructed for a 1label
which the compiler provides for the state-
ment following the AT.

like all branches performed
consists of a load
BCR

TRACE ON STATEMENT

The debug call produced for the TRACE ON
statement appears at the location of the
TRACE ON statement itself; the call is:

L 15,=V (DEBUGH#)
CNOP 0,4
BAL 14,32(0,15)

TRACE OFF STATEMENT

The debug call produced for the TRACE
OFF statement appears at the location of
the TRACE OFF statement itself; the call
is:

L 15, =V (DEBUG#)
CNOP 0,4
BAL 14,36(0,15)

DISPLAY STATEMENT

The code for the DISPLAY statement is:

L 15,=V(DEBUG#)
CNOP 0,4

BAL 14,40(0,15)
DC A(NAMELIST)
DC A (FWRNL#)

where NAMELIST is the address of the NAME-
LIST table generated from the DISPLAY list
by the compiler. This code appears at the
location of the DISPLAY statement itself.

Appendix D: Object Code Produced by the Compiler 183

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

The information provided in this appen-
dix has its primary use in connection with
a listing of the compiler. The label lists
indicate the chart on which a specific
label can be found, or, for routines which
are not flowcharted, they provide a
description of the routine.

PARSE LABEL LIST

The 1labels enumerated in the following
list are used in the flowcharts provided
for the illustration of the major routines
used in Parse.

Chart
Label ID Routine Name
G0630 oy START COMPILER
G0631 o4 STATEMENT PROCESS
G0837 BA PRINT AND READ SOURCE
G0632 BB STA INIT
G0635 BC LBL FIELD XLATE
G0636 BD STA XLATE
G0633 BE STA FINAL
Go6U2 BF ACTIVE END STA XLATE
Gosuuy BG PROCESS POLISH

SUPPLEMENTARY PARSE LABEL LIST

The routines described in this section
are listed by G number labels which are
presented in ascending order. These rou-
tines are those used in the operation of
Parse which are not shown in the section of
flowcharts for the phase.

Routine
Label Name
G0287 REASSIGN

MEMORY

Comments

Obtains additional core
storage, 1if possible,
for a specific roll by
pushing up the rolls
that precede the re-
questing roll in the
block of storage. If
this is not possible,
it requests more core
storage and, if none is

available, enters PRESS
MEMORY.
G0637 ASSIGNMENT Constructs the Polish

STA XLATE notation for an assign-

ment statement.

G0638 ARITH FUN Constructs the Polish
DEF STA notation for an arith-
XLATE metic function defini-

tion statement.

APPENDIX E: MISCELLANEOUS REFERENCE DATA
Routine
Label Name Comments
G0639 ASSIGNMENT Checks the mode of as-
VAR CHECK signment variable and
the expression for con-
flict in type speci-
fication.
GO640 LITERAL Determines the statement
TEST type and transfers to
the indicated statement
processing routine.
GO641 END STA Determines the nature of
XLATE the statement and
transfers to the appro-
priate translation rou-
tine for non-END;
translates END.
GO0643 DO STA Constructs the Polish
XLATE notation for the DO
statement. Locates the
innermost DO statement
in a nest of DO's, and
sets up extended range
checking.
GO644 DO STA Interprets the loop
CONTROL control specification
XLATE in the DO statement and
constructs the Polish
notation for these
controls.
GO0645 DIMENSION Determines the validity
STA XLATE of the specifications
in the DIMENSION state-
ment and constructs
roll entries.
GO646 GOTO STA Determines the type of
XLATE GO TO statement, and
constructs the Polish
notation for a GO TO
statement.
G0647 CGOTO STA Constructs the Polish
notation for a Computed
GO TO statement.
G0648 ASSIGNED Cconstructs the Polish
GOTO STA notation for an As-
XLATE signed GO TO statement.
GO649 ASSIGN STA Controls the construc-
XLATE tions of the Polish
notation for an ASSIGN
statement.

Appendix E: Miscellaneous Reference Data

185

Label

Routine
Name

G0650

G0651

G0652

G0653

G0654

G0655

G0656

G0657

G0658

G0659

G0660

G0661

G0662

G0663

186

IF STA
XLATE

LOGICAL IF
STA XLATE

IMPLICIT
STA XLATE

REGISTER
RANGE

REGISTER
IMPLICIT
CHAR

SCAN FOR

TYPE QT
AND SIZFE

CONTINUE
STA XLATE

CALL STA
XLATE

EXTERNAL
STA XLATE

FORMAT STA
XLATE

FORMAT STA
END

FORMAT
LIST SCAN

FORMAT
BASIC SCAN

ISCAN TEST

Comments

Constructs the Polish
notation for an IF
statement.

Constructs the Polish
notation for a 1logical
IF statement.

Checks the IMPLICIT
statement and controls
the construction of the
roll entries for the
statement.

Controls character en-
tries for an IMPLICIT
statement.

Places the characters in

the IMPLICIT statement
on the IMPLICIT roll.

Determines the mode and
size of the wvariables
in specification state-
ments.

Constructs the Polish
notation for a continue
statement.

Constructs the Polish
notation for a CALL
statement.

Validates the use of the

EXTERNAL statement and
constructs roll en-
tries.

Validates the use of the
FORMAT statement and
controls the construc-
tion of the Polish
notation for the state-
ment.

Builds the FORMAT roll
from the information
obtained from the proc-

essing of the state-
ment.
Checks the form of the

literal content of the
FORMAT statement.

Interprets the FORMAT
list and constructs the
Polish notation for the
list.

Checks the size of the
inteter constant or
variable specified.

Label

Routine
Name

GO66U

G0665

G0666

G0667

G0668

G0669

G0670

G0671

G0672

G0673

G0674

G0675

G0676

G0677

G0678

PACK H CODE

PACK FORMAT
QUOTE

REWIND STA
XLATE

BACKSPACE
STA XLATE

END FILE
STA XLATE

END FILE
END

BLOCK DATA
STA XLATE

STOP STA
XLATE

STOP CODE
ENTRY

PAUSE STA
XLATE

PAUSE STOP
COMMON

PAUSE STOP
END

INIT
LITERAL
FOR STOP
PAUSE

NAMELIST
STA XLATE

COMMON STA
XLATE

Comments

Interprets the specifica-
tion for the H format
code.

Controls the registering
of the contents of a
literal quote specified

in a FORMAT statement.
Constructs the Polish
notation for a REWIND
statement.
Constructs the Polish
notation for a

BACKSPACE statement.

Constructs the Polish
notation for an END
FILE statement.

Completes the Polish
notation for input/
output control state-
ments.

Validates the use of the

BLOCK DATA statement.

Sets up the Polish nota-
tion for the STOP
statement.

Sets up the Polish nota-
tion for the STOP
statement.

Controls the interpreta--
tion of the PAUSE
statement.

Checks the form of the

specified statement and

controls the construc-
tion of the Polish
notation for the
statement.

Registers the constructed
Polish notation on the
POLISH roll.

Controls the interpreta-
tion of the message
specified in the PAUSE
statement.

roll
the

Constructs the
entries for
NAMELIST statement.

Constructs the roll
entries for the COMMON
specification.

Label

Routine
Name

G0679

G0680

G0681

G0682

G0683

G0684

G0685

G0686

G0687

G0688

G0689

G0690

G0691

TEST ID
ARRAY OR
SCALAR

DOUBLE PRE
STA XLATE

TYPE STA
XLATE

SCAN FOR
SIZE

TYPE
SEARCH TEST
AND REG

ENTRY STA
XLATE

FUNCTION
STA XLATE
TYPED
FUNCTION
STA XLATE
FUNCTION
ENTRY STA
XLATE
XLATE

SUBROUTINE
STA XLATE

SUBROUTINE
ENTRY STA

XLATE

SUBPROGRAM
END

SPROG NAME
SCAN AND
REG

Comments

Validates the identifica-
tion of the array or
scalar used in COMMON.

Checks the use of the
DOUBLE PRECISION state-
ment and controls the
interpretation of the
statement.

Interprets and constructs

the roll entries for
the type specification
statement.

Checks the size specifi-
cation for the wvari-
ables in type state-
mentse.

Checks the identification
of the variables in the

type specification
in statement for pre-
vious definition and

defines if correct.

Constructs the Polish
notation and roll
entries for an ENTRY
statement.

These routines control

the construction of the
Polish notation for a

FUNCTION subprogram by
invoking the routines
which interpret the

contents of the state-
ment.

These routines control
the construction of the
Polish notation for a
SUBROUTINE subprogram
by invoking the routine
which interprets the
contents of the state-
ment.

common closing routine
for ENTRY, FUNCTION,
and SUBROUTINE state-
ments.

Checks the identification
of the SUBROUTINE or
FUNCTION subprogram for
conflicts in defini-
tion.

Label

Routine
Name

G0692

G0693

G0694

G0695

G0696

G0697

G0698

G0699

G0700

G0701

G0702

GO704

G0705

Appendix E: Miscellaneous Reference Data

TEST ORDER

DMY SEQ
SCAN

GLOBAL DMY
SCAN AND
TEST

DEFINE
FILE STA
XLATE

DATA STA
XLATE

DATA CONST
XLATE

INIT DATA
VAR GROUP

DATA CONST
ANALYSIS

DATA VAR
TEST AND
SIZE

MOVE TO
TEMP
POLISH ROLL

READ STA
XLATE

READ WRITE
STA XLATE

END QT
XLATE

Comments

Checks the order in which
the SUBROUTINE or FUNC-
TION statement appears
in the source module.

Checks the designation of
the dummy variables for
call by name or call by
value.

Checks the identification
of the global dummy for
a possible conflict in
definition.

constructs the Polish
notation for the DEFINE
FILE statement.

Constructs the Polish
notation and roll
entries for the DATA
statement.

Interprets the constants
specified in the DATA
statement.

Determines and sets up
the number of elements
specified in the DATA
statement.

vValidates the specifica-
tion of the constants
used in the DATA
statement.

Checks the definition of
the variables specified
in the DATA statement
for usage conflict, and
registers the variables

if no conflict is
found.
Moves information for

DATA statement to TEMP
POLISH roll from WORK
roll.

Checks the type of READ
statement and controls
the interpretation of
the statement.

Interprets the elements
of the READ or WRITE
statement and con-
structs the Polish
notation for the
statement.

Constructs the Polish

notation for the END=
quote.

187

Routine
Label Name Comments
G0706 ERR QT Constructs the Polish
XLATE notation for the ERR=
quote in the READ
statement.
GO0707 REGISTER Inserts a roll entry for
IBCOM a call to IBCOM.
G0708 REGISTER Sets the roll entry for
ERROR LINK the generation of error
linkage.
GO0709 READ B STA Initialize for the con-
XLATE struction of the Polish
G0710 PUNCH STA notation for the in-
XLATE dicated statement.
G0711 PRINT STA
XLATE
G0712 F2 I0 Constructs the Polish
XLATE notation for the in-
dicated input/output
statement and inter-
prets FORMAT designa-
tions associated with
the input/output state-
ment.
G0713 IOL LIST Interprets and constructs
XLATE the Polish notation for
the list associated
with the indicated
input/output statement.
GO0714 FIND STA Constructs the Polish
XLATE notation for the FIND
statement.
G0715 RETURN STA Constructs the Polish

G0716

G0717

G0718

G0719

G0720
G0721
G0722

188

XLATE

EQUIVALENCE
STA XLATE

DIMENSION
SEQ
XLATE

TEMP MAKER

SPECIFI-
CATION
STA EXIT
JUMP END
ACTIVE END
HEAD STA
EXIT

notation for the RETURN
statement.

roll en-
EQUIVA-

Constructs the
tries for the
LENCE statement

Constructs the roll en-
tries for the dimen-
sions designated for an
array.

Increments pointer for
temporary locations
used for dummy dimen-
sions.

Set flags and return.

Routine

Label Name Comments

G0723 STA XLATE Replaces the Polish nota-
EXIT tion for a statement

with error 1linkage if
indicated.

G0724 ILLEGAL These routines set up
STA FAIL diagnostic messages for

G0725 ORDER FAIL the type of error indi-

G0726 ALLOCATION cated by the routine
FAIL name.

G0727 ILLEGAL
NUMBER
FAIL

G0728 SUBSCRIPT
FAIL

G0729 ID CONFLICT
FAIL

G0730 TYPE
CONFLICT
FATIL

G0731 VAR SCAN Checks definition of

variables in the source
module; defines as
scalar if undefined.

G0732 ARRAY SCAN Constructs the Polish

notation and roll
entries for array re-
ferences.

G0733 SUBSCRIPT Determines the nature of
ANALYSIS an array reference for

purposes of subscript
optimization.

G0734 SCRIPT ITEM Determines whether a
ANALYSIS subscript expression is

a linear function of a
DO variable, and sets
ANSWER BOX.

G0735 NOTE LINEAR Registers a 1linear sub-

SCRIPT script expression on
SCRIPT roll.

G0736 RESTORE Builds the Polish nota-
NONLINEAR tion for a nonlinear
SCRIPT subscript expression on

Polish roll.

G0737 MOVE ON Moves one group from WORK

EXIT FALSE roll to POLISH roll,
sets ANSWER BOX to
false, and returns.

G0738 SCRIPT Determines whether a
SCALAR scalar used in a sub-
ANALYSIS script is a DO variable

and sets ANSWER BOX.

Routine
Label Name Comments
G0739 SCRIPT Separates constant used
CONST in a subscript expres-
ANALYSIS sion as either induc-
tion variable coeffi-
cient or additive
constant.
GO740 DEFINE Creates new group con-
SCRIPT taining zeros on the
GROUP SCRIPT roll.
GO0741 REGISTER Defines a subscript ex-
SCRIPT pression on the SCRIPT
GROUP roll by setting the
traits, displacement,
and array reference.
GO744 TERM SCAN Initializes the construc-
tion of Polish notation
for a new term in an
expression.
GO745 ELEMENT OP Constructs the Polish
SEQ SCAN notation for a term in
an arithmetic ex—
pression.
GO746 UNAPPENDED Exits from expression
SPROG ARG scanning on finding an
array or subprogram
name not followed by a
left parenthesis; en-
sures reference is
correct.
GO0747 FUNCTION Determines whether a
ELEMENT function call in an
expression is to a
statement function, a
library function, or a
global subprogram;
calls SPROG ARG SEQ
SCAN to scan arguments,
GO748 CONST Scanning expression, if
ELEMENT compiler finds non-
letter, non-left paren-
thesis, it goes here;
determines if really a
constant.
GO749 SCALAR Ensures that scalar is
ELEMENT registered.
G0750 ELEMENT Moves pointer +to POLISH
MOVE roll for any element in
expression.
G0751 OP SCAN Determines the operation
CHECK indicated in an expres-
DEPOSIT sion, sets up the

appropriate driver, and
falls through +to OP
CHECK AND DEPOSIT.

Label

Routine
Name

Comments

G0752

G0753

GO754

G0755

G0756

G0757

G0758

G0759

G0760

G0761

G0762

G0763

Appendix E: Miscellaneous Reference Data

OP CHECK
AND DEPOSIT

GEN AND REG
EXPON SPROG

REG COMPLEX
SPROG

A MODE PICK
AND CHECK

MODE PICK

B MODE PICK
AND CHECK

MODE CHECK

NUMERIC EXP
CHECK

NUMERIC EXP
CHECK AND
PRUNE

SPROG ARG
SEQ SCAN

ARG TEST
AND PRUNE

TEST FOR
ALTERABLE

The current and previous
operations are set up

according to a prece-
dence, and a Polish
notation is con-
structed.

Determines the nature of

an exponentiation, and
records the required
subprogram on the

GLOBAL SPROG roll.

Determines the nature of
an operation involving
complex variables' and
registers the appropri-
ate routine on the
GLOBAL SPROG roll.

Checks and sets mode of
operator by inspecting

the first of a pair of
operands.
Actually places mode

field in driver.

With second operand and
driver set by A MODE
PICK AND CHECK, resets
driver mode; if complex

raised to a power,
ensures power is
integer.

Determines whether modes
of operands are valid
in relational and 1log-
ical operations.

Determines that an opera-

tion or an expression
is numeric, as opposed
to logical, for
compatibility.

Uses NUMERIC EXP CHECK,
then prunes bottom of
POLISH roll.

Constructs the Polish

notation for the argu-
ment list designated
for a subprogram.

Tests the number and type
of arguments to library
routine; moves label

arguments to CALL LBL
roll.

Determines whether a
scalar has been passed
as a subprogram
argument.

189

Routine

Label Name comments
GO764 ID SCAN Sets a flag tested in
NO USE MODE SET so that 1low-
order bits of roll are
not altered when vari-
able is defined; state-
ment does not use
variable.
G0765 ID CLASSIFY Goes to ID CLASSIFY after
NO USE setting flag to indi-
cate variable has not
been used and mode
should not be set.
G0766 ID SCAN Compiles name from source
in central area and
goes to ID CLASSIFY.
G0767 ID CLASSIFY Determines the classifi-
cation of a name --
scalar, array, subpro-
gram, etc., and leaves
pointer in WO; exits
false if name not
defined.
G0768 REGISTER Records new name on
SCALAR SCALAR roll.
G0769 REGISTER Determines if name is
GLOBAL already a defined sub-
SPROG program; if not re-
REGISTER cords it on GLOBAL
RUNTIME GS SPROG roll.
GO0770 REGISTER Records .name on GLOBAL
GLOBAL SPROG roll.
SPROG ROLL
GO0771 MODE SET Determines the mode of
the indicated variable,
logical, integer, com-
plex, etc., and inserts
code in pointer in WO.
G0772 CONST SCAN Controls the translation
and recording of
constants.
G0773 REGISTER Records complex and
COMPLEX double-precision com—
CONST plex constants not pre-
viously defined on
appropriate roll.
GO0774 REGISTER Records single- and
FL CONST double-precision real
constants on appropri-
ate roll when not pre-
viously defined.
GO0775 REGISTER Records constant in WO as
WORK CONST new integer constant if

190

not defined.

Label

Routine
Name

G0776

G0777

G0778

G0779

G0780

G0782

G0783

G0784

G0785

G0786

G0787

G0788

G0789

G0790

G0791

G0792

REGISTER
FX CONST

CONST
ANALYSIS

CPLX CONST
ANALYSIS

CHECK CONST
SIGN

SCAN CONST
SIGN

HEXADECIMAL
CONST SCAN

REGISTER
HEX CONST

LBL ARG
SCAN

SCAN
HOLLERITH
ARGUMENT

LITERAL
CONST SCAN

LITERAL
CONST SCAN
PAUSE

REGISTER
LITERAL
CONST

INIT PACK
LITERAL

PACK
LITERAL
COMPLETE

PACK
LITERAL
CONST

LOOK FOR
ONE QUOTE

Comments

Records new integer con-
stant if not previosuly
defined.

Determines the type of a
constant and Jjumps to
proper conversion rou-
tine.

complex

Converts a
constant.
Checks for wunary minus

sign on constant.

Scans first character of
a constant for a sign;
sets up driver if unary
minus.

Converts a hexadecimal
constant.
Records new c¢ onstant on

HEX CONST roll if not
previously defined.

Checks validity of a
label argument to a
subprogram and records
label as jump target.

Scans an IBM card code
argument to a sub-
program, and records as

literal constant.

Distinguishes literal
constants from logical;
converts and records.

Packs a literal constant.

Records literal constant
on LITERAL CONST roll
if not previously de-
fined.

Initializes for conver-
sion of a literal
constant.

Moves literal constant

onto TEMP LITERAL roll
if packed.

Converts a literal con-
stant from source
input.

Checks for a quotation

mark not followed by a
second quotation mark;
sets ANSWER BOX.

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

Routine
Label Name Comments
G0793 PACK TWO Packs low-order byte from
FROM WORK last one or two groups
G0794 PACK ONE on WORK roll onto
FROM WORK LITERAL TEMP roll.
G0795 PACK CRRNT Packs current character
CHAR onto LITERAL TEMP roll.

G0796 PACK CHAR General routine to actu-
ally place a byte in a
word which, when com-
plete, is placed on the
LITERAL TEMP roll.

G0797 SYMBOL SCAN Assembles identifier from
input in SYMBOL 1, 2,
and 3, and returrs.

G0798 LOGICAL Scans logical constants

CONST SCAN from source input and
records as integers.

G0799 JUMP LBL Scans label, defines it

SCAN AND as jump target and

MOVE pointer on POLISH roll.
Locates transfers from
innermost DO loops that
are possible extended
range candidates. Also
checks for possible
re-entry points into
innermost DO loops, and
tags such points.

G0800 FORMAT LBL Scans a label, registers

SCAN it if necessary, and
ensures that it is a
FORMAT label if already
defined.

G0801 FORMAT LBL Tests that pointer in WO

TEST indicates format label
(vs. jump target
label); if not, there
is an error.

G0802 LBL SCAN Scans referenced label,
defines on LBL roll if
required, produces er-
ror messages, leaves
pointer in WO.

G0803 REGISTER Records label on LBL roll

LBL if not previously
defined; leaves pointer
in WO,

G0804 NEXT ZERO Scans source input to

LEVEL COMMA next comma not in

NEXT ZERO parentheses or to close

COMMA off a pair of paren-

OR R PAREN theses.

G0805 NEXT ZERO Scans source input until

COMMA next comma or slash

OR CS not in parentheses.

Routine
Label Name Comments
G0806 NEXT Scans source input until
CLOSING second of the next pair
SLASH of slashes not enclosed
in parentheses.

G0807 NEXT ZERO Scans source input until

COMMA SLASH next comma or slash not

OR CRP enclosed in parentheses
or a closing right
parenthesis.

G0808 NEXT ZERO Scans source input until

R PAREN next zero 1level right
parenthesis.

G0809 COMMA TEST Advances scan arrow and
returns ANSWER BOX true
if next active charac-
ter is a comma; if it
is a letter, sets up
missing comma message,
does not advance, and
returns true; if it is
neither, returns false.

G0810 INTEGER Scans integer constant or

TERM variable, defines on

SCAN AND appropriate roll, puts

MOVE pointer on POLISH roll.

G0811 INTEGER Scans integer constant;
CONST SCAN defines on FX CONST

AND MOVE roll if required; puts
pointer on POLISH roll.

G0812 INTEGER VAR Scans integer variable;

SCAN AND defines on roll if re-

MOVE quired; puts pointer on
POLISH roll.

G0813 INTEGER Determines whether a

TEST pointed to variable or

constant is an integer.

G0814 SIGNED Scans and converts signed

INTEGER integer constant; de-
SCAN fines on FX CONST roll
if required.

G0815 INTEGER Scans and converts an

SCAN unsigned integer con-
stant and register on
FX CONST roll if
required.

G0816 DP CONST Builds a double-precision

MAKER constant from source
input.

G0817 DP ADJUST Used in converting float-

CONST ing point numbers;
adjusts for E or D
field.

Appendix E: Miscellaneous Reference Data

191

Form Y28-6638-1
Page Revised 11/15/68 by TNL Y28-6826

Label

Routine
Name

G0818

G0820

G0821

G0823

G0824

G0825

G0826

G0827

G0829

G0832

G0833

G083y

G0835

G0836

G0838

192

CONVERT TO
FLOAT

CLEAR TWO
AND EXIT
TRUE
CLEAR ONE
AND EXIT
TRUE

EXIT TRUE
EXIT TRUE
ML

CLEAR ONE
AND EXIT
FALSE

EXIT FALSE

CLEAR TWO
AND EXIT
CLEAR ONE
AND EXIT

EXIT
EXIT ML

Comments
Converts integer constant
to floating point.

Remove the specified num-
ber of groups from the
WORK roll, set ANSWER
BOX to true, and re-
turn.

Sets ANSWER BOX to true
and returns.

Removes one
WORK roll,
BOX to
returns.

group from
sets ANSWER
true, and

Sets ANSWER BOX to fals
and returns. .
Remove specified number

of groups from WORK
roll and return.

Returns.

EXIT ON ROLL

SYNTAX FAIL Records syntax error mes-

ML
ILLEGAL

SYNTAX FAIL
SYNTAX FAIL

FAIL

STATUS
CONTROL

DIGIT CONV
SCAN

CONV ONE
DIGIT

PRINT A
CARD

sage and goes to FAIL,

If JPE flag off, restores
WORK and EXIT 1roll
addresses from last
status control, house-
keeps Polish notation
through STA XLATE EXIT,
and returns with ANSWER

BOX set to false; if
the flag is on, values
are restored for JPE
and exit 1is to the

location following last
JPE POP instruction.

saves addresses of WORK
and EXIT roll bottoms.

from
and

converts integer
decimal to binary,
leaves in DATA area.

Converts decimal digit to

binary, and 1leaves in
DATA area.

controls printing of
source listing and

error messages.

Label

Routine
Name

G0839

G0840

Gosul

Go8u2

Gos8u3

Go8u5

GO8u6

Go8u7

Go8us

Go849

G0850

G0851

G1034

G1035

G1037

TEST FOR
ERROR
MESSAGE

PRINT
MESSAGES

TEST AND
ZERO PRINT
BUFFER

INIT READ
A CARD

READ A
CARD

SKIP TO
NEXT CHAR
MASK

REENTRY

Determines whether error
messages are to be
printed; if so, prints
dollar sign markers.

Prints line of

messages.

error

clears output for

printer,

area

Scans source input for
assignment statement
(flag 1) or Logical IF
with assignment for
consequence (flag 2).

Puts card onto SOURCE
roll and re-enters INIT
READ A CARD at proper
point.

Scans input to next
source character not of
a class of characters
specified as input to
routine.

Entry point used to con-

SKIP TO NEXT tinue masking operation

CHAR MASK

NEXT CHAR
NEXT
CHARACTER
NEXT CHAR
ML .

on a new card.

arrow to
character.

Advance scan
next active

NEXT CHARACTER

ML

BCD TO
EBCDIC

DIGIT CONV
INITIAL

MAPT1 TO
TMP1

BUILD LOOP
DATA GROUP

DATA TERM
ANALYSIS

CONST
REGISTER
EXIT

Converts CRRNT CHAR from
BCD to EBCDIC.

Initializes for the con-
version of a number
from decimal to binary
(resets digit counts,
clears DATA area, etc.)

Converts value in format
of TOP oxr BOTTOM, a
virtual address, to a

true address.

Constructs group on LOOP
DATA roll.

Checks for and sets flag
if it finds unary minus
in DATA statement.

Common exit routine for
constant recording rou-
tines; leaves pointer
to constant in WO.

Routine
Label Name Ccomments
G1038 T AND F Scans for logical con-
CONST SCAN stants T and F in DATA
statements.
G1039 EXIT ANSWER General routine used by
all EXITs which set
ANSWER BOX to store
value in ANSWER BOX and
return.
G1040 DEBUG STA Translates DEBUG state-
XLATE ment.
G1041 AT STA Constructs AT roll entry
XLATE from AT statement.
G1042 TRACE STA Constructs Polish nota-
XLATE tion for TRACE state-
ment.
G1043 DISPLAY STA Constructs Polish nota-
XLATE tion and roll entries
for DISPLAY statement.
Gl0o44 IEYSKP Calls IEYFORT to skip to
SKIP TO end of present source
NEXT module when roll stor-
PROGRAM age is exhausted.
G1070 PRESS Called by REASSIGN MEMORY
MEMORY to obtain additional
core storage from roll

space that is no longer

in use. If it obtains
32 or more bytes, exit
is back to REASSIGN
MEMORY. Otherwise,
exit is to IEYNOCR in
IEYFORT to print NO

CORE AVAILABLE message.

ALLOCATE LABEL LIST

The labels enumerated in the following
list are used in the flowcharts provided
for the illustration of the major routines
used by Allocate.

Chart
Label D Routine Name
G0359 05 START ALLOCATION
Gou51 CA ALPHA LBL AND L SPROGS
CA ALPHA SCALAR ARRAY AND
SPROG
G0362 CB PREP EQUIV AND PRINT
ERRORS
G0361 CcC BLOCK DATA PROG ALLOCATION
G0365 CD PREP DMY DIM AND PRINT
ERRORS
G0371 CE PROCESS DO LOOPS
G0372 CF PROCESS LBL AND LOCAL
SPROGS
G0374 CG BUILD PROGRAM ESD

Chart

Label D Routine Name

G0376 CH ENTRY NAME ALLOCATION

G0377 CI COMMON ALLOCATION AND
ouTPUT

G0381 CK EQUIV ALLOCATION PRINT
ERRORS

Gou37 CL BASE AND BRANCH TABLE
ALLOC

G0397 CM SCALAR ALLOCATE

GOou401 CN ARRAY ALLOCATE

GOu402 CcO PASS 1 GLOBAL SPROG
ALLOCATE

Gcouy?2 CP SPROG ARG ALLOCATION

Gcouu3 CcQ PREP NAMELIST

Gouuy CR LITERAL CONST ALLOCATION

Gcouys CS FORMAT ALLOCATION

Gouy1 cT EQUIV MAP

G0403 CU GLOBAL SPROG ALLOCATE

G0ou05 Ccv BUILD NAMELIST TABLE

G0ou3s CW BUILD ADDITIONAL BASES

GO545 CX DEBUG ALLOCATE

SUPPLEMENTARY ALLOCATE LABEL LIST

The
are listed by G number
in ascending order.
tines are those used in the

presented

routines

described in this section
labels which are
These rou-
operation of

Allocate which are not shown in the section
of flowcharts for the phase.

Routine
Label Name Comments
G0363 PREPROCESS Checks the data contained
EQUIV on the EQUIVALENCE roll
and computes the
required addresses.
|G036u REGISTER Checks the ERROR SYMBOL
ERRORS roll for the presence
SYMBOL of the error just
detected. All dupli-
cate entries are pruned
from the roll and all
new entries placed on
the roll.
G0366 CHECK DMY The dummy dimension is
DIMENSION checked for definition
as a global dummy vari-
able, or in COMMON.
G0367 GLOBAL DMY Sets a pointer to the
TEST dummy array on the
ENTRY roll; a pointer
to the ARRAY roll is
also set for each dummy
arraye
G0368 DMY DIM The DMY DIMENSION roll is
. TEST AND rebuilt with the infor-
REG mation obtained from

Appendix E: Miscellaneous Reference Data

the COMMON DATA TEMP,
TEMP, and GLOBAL DMY
rolls.

193

Routine

Label Name Comments

G0369 DMY DIM The dimension data is
TEST checked for having been

' previously defined on
the NAMELIST ITEMS and
COMMON DATA rolls.

G0370 DMY Classifies a dummy, de-

CLASSIFY fining it as scalar if
undefined; if it is an
array sets call by name
tag.

G0373 REGISTER Places work containing
BRANCH Zexro on the BRANCH
TABLE TABLE roll.

G0375 PUNCH Punches a card.

REMAINING
ESD BUFFER
PUNCH
REMAINING
CARD

G0378 SEARCH The GENERAL ALLOCATION
ROLL BY roll is searched to
MAGNITUDE check if the largest

equivalenced area has
been allocated.

G0379 PRINT Sets up for, and prints,
COMMON COMMON allocation er-
ERRORS rorse.

G0380 PRINT COMMON storage map head-
COMMON ing is printed.

HEADING

G0382 EQUIV Builds the EQUIV

ALLOCATION ALLOCATION roll from
the boundary calcu-
lated; records the
absolute address as-—
signed to the vari-
ables.

G0383 FLP AND Inverts the contents of
PROCESS the EQUIVALENCE roll.
EQUIV

G0384 PROCESS Constructs complete
EQUIV EQUIVALENCE sets on the

the GENERAL ALLOCATION
roll using information
on the EQUIVALENCE
roll.

G0385 INTEGRATE Assigns locations rela-

194

tive to the first vari-
able listed for all
variables in an EQUIVA-
LENCE set if not al-
ready allocated.

Routine

Label Name Comments

G0386 TEST FOR Sets and checks the
BOUNDARY smallest equivalenced

area and highest bound-
ary required for allo-
cation of the variables
indicated; resets pro-
gram break according to
requirement.

G0387 CSECT EQUIV Controls the allocation
ALLOCATION of EQUIVALENCE sets

equal to or greater
than 3K bytes into a
new control section.

G0388 PRINT CSECT Sets up and formats the
EQUIV MAP printing of the storage

map for EQUIVALENCE
sets equal to or great-
er than 3K bytes.

G0389 BUILD Calculates the base and
COMMON displacement for EQUIV-
ALL ROLL ALENCE sets equal to or

greater than 3K bytes
and registers these
sets on the COMMON
ALLOCATION roll.

G0391 SEARCH FOR Determines the size of
LARGE arrays not defined as
ARRAYS EQUIVALENCE or COMMON.

Obtains the arrays that
are equal to or greater
than 3K bytes.

G0392 BUILD A Sets the program name and
NEW CSECT obtains a new control

section for the alloca-
tion of arrays and
EQUIVALENCE sets.

G0393 PRINT A Sets the information for
ARRAY the printing of the map
CSECT MAP for arrays equal to or

greater than 3K bytes.

G0394 CONV TEMP3 Converts the contents of
TO HEX the temporary register

to hexadecimal.

G0395 GLOBAL DMY Assigns storage for glob-
ALLOCATE al dummy variables;

expands the contents of
the BASE TABLE roll, as
required.

G0396 TEST FOR Determines whether the
CALL BY indicated variable was
NAME called by name or

called by value.

Label

Routine
Name

G0398

G0399

G0400

Gcouou

Gouoe

Gouo7

Gou08

GOouo9

G0o410

Gou11

GOou12

ALLOCATE
SCALAR
BOUNDARY

ALLOCATE
SCALAR

CED SEARCH

ALLOCATE
SPROG

ADJUST AND
OUTPUT NAME

PUNCH NAME
LIST AND
FIELD

OUTPUT MODE
WORD

ADVANCE
PROG BREAK
AND PUNCH

PUNCH
LITERAL

MOVE TO

PUNCH BUFF

PUNCH TXT
CARD

Comments

Sets up allocation of
scalars according to
the .size of the
variable.

Formats the allocation of
scalars not defined as
global dummies in COM-
MON or in EQUIVALENCE
sets. Initializes for
the printing of the
scalar map and calcu-
lates the base and
displacement.

Determines if the vari-
able is defined as a
global dummy, in COMMON
or in an EQUIVALENCE
set. If it is, it sets
the ANSWER BOX = true.

Sets the type of the ESD
cards that are to be
punched and initializes
for the allocation of
subprogram addresses.

Sets the format for the
punching of the
NAMELIST name, and

adjusts for storage.

Sets the format for the
punching of the address
allocated for each
NAMELIST according to
storage required.

Sets the format for the
punching of the mode of
the NAMELIST variable.

Increases the item PRO-
GRAM BREAK according to
the storage allocation
required for the
variables indicated.

Obtains the number of
bytes and the address
