
IBM System/360 Operating System

FORTRAN IV (H) Compiler

Program Logic Manual

Program Number 360S-F0-500

File No. 8360-25
Form No. Y28-6642-1

Program Logic

This publication describes the internal design of
the IBM System/360 Operating system FORTRAN IV (H) com
piler program which transforms source modules written
in the FORTRAN IV language into object modules that are
suitable for input to the linkage editor for subsequent
execution on System/360. At the user's option, the
compiler produces optimized object modules (modules
that can be executed with improved efficiency).

This program logic manual is directed to the IBM
customer engineer who is responsible for program main
tenance. It can be used to locate specific areas of
the program and it enables the reader to relate these
areas to the corresponding program listings. Because
program logic information is not necessary for program
operation and use, distribution of this manual is
restricted to persons with program-maintenance
responsibilities.

This revision reflects the 5.1 version of the FOR
TRAN IV (H) compiler program. A number of table for
mats and intermediate text formats have been changed.
The overall operation of the compiler has not changed
significantly, but some routines within the program
have been changed, new routines have been added, and
some routines have been deleted or combined with other
routines.

Restricted Distribution

Second Edition (November 1967)

This publication corresponds to Release 14. It is a major revision of
and makes obsolate, Form Y28-6642-0. New appendixes headed "Microfiche
Directory" and •Facilities used by the Compiler" are added. Significant
changes have been made throughout this publication to reflect changes in
the program. New or modified material is indicated by a vertical line
in the left-hand margin. The symbol • to the left of a caption indi
cates a revision to the illustration.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and tc control the page and line format. Page impres
sions for photo-offset printing were obtained from an IBM 1403 Printer
using a special print chain.

A form for readers' comments appears at the tack of this publication.
It may be mailed directly to IBM. Address any additional comments con
cerning this publication to the IBM Corporation, Prograwming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

\
)

)

This publication provides customer
engineers and other technical personnel
with information describing the internal
organization and operation of the FORTRAN
IV (H) compiler. It is part of an inte
grated library of IBM System/360 Operating
System Program Logic Manuals. Other publi
cations required for an understanding of
the FORTRAN IV (H) compiler are:

IBM System/360: Principles of Opera
tion, Form A22-6821

IBM System/360 Operating System:

FORTRAN IV, Form C28-6515

Introduction to Control Program Logic,
Program Logic Manual, Form Y28-6605

FORTRAN IV (H) Programmer's Guide, Form
C28-6602

Although not required, the following
manuals are related to this publication and
should be consulted:

IBM System/360 Operating System:

Sequential Access Methods, Program Logic
Manual, Form Y28-6604

Concepts and facilities, Form C28-6535

Supervisor and Data Management Macro
Instructions, Form C28-6647

Linkage Editor, Program Logic Manual,
Form Y28-6610

System Generation, Form C28-6554

This manual consists of two parts:

1. An Introduction, describing the FOR
TRAN IV (H) compiler as a whole,
including its relationship to the

PREFACE

operating system. The major com
ponents of the compiler and the rela
tionships among them are also
described.

2. A Body, containing a description of
each component. Each component is
discussed in terms of the functions it
performs and the level of detail pro
vided is sufficient to enable the
reader to understand the general
operation of the component. In the
discussion of each function of a com
ponent, the routines that implement
that function are identified by name.
The inclusion of a compound form of
the routine names provides a frame of
reference for the comments and coding
supplied in the program listing. The
program listing for each identified
routine appears on the microfiche card
having the second portion of the com
pound name of that routine in its
heading. For example, the routine
ref erred to in this manual as STALL
IEKGST is listed on the microfiche
card headed IEKGST. This section also
discusses common data, such as tables,
blocks, and work areas, but only to
the extent required to understand the
logic of the components. Flowcharts
and routine directories are included
at the end of this section.

Following the second part are a number
of appendixes, which contain descriptions
of tables used by the compiler, intermedi
ate text formats, a section on object-time
library subprograms, the overlay structure
of the compiler, and other reference
material.

If more detailed information is
required, the reader should refer to the
comments and coding in the FORTRAN IV (H)
program listing.

/

SECTION 1: INTRODUCTION •••••••• 11
Purpose of the Compiler •••••••• 11
The Compiler and Operating System/360 • 11
Input/Output Data Flow • • 11
Compiler Organization • • • • • 11

FORTRAN System Director 11
Phase 10 • • • • • • • • 12
Phase 15 • 12
Phase 20 • 13
Phase 25 • • ••• 13
Phase 30 • • • • • 13

Structure of the Compiler 13

SECTION 2: DISCUSSION OF MAJOR
COMPONENTS • • • • • • • • 14
FORTRAN System Director • • • • • • 14

Compiler Initialization 14
Parameter Processing • 14
Data Field Initialization 14

Phase Loading • • • • 15
Storage Distribution 15

Phase 10 Storage •••••••••• 15
Phase 15 Storage • • • • • • 15
Phase 20 Storage • 16

Input/Output Request Processing 16
Request Format • • • • • • 16
Request Processing • • • • 16

Generation of Initialization
Instructions • • • • • • • • • • • • • 16

17
17
18
18
19
19

Deletion of a Compilation
Compiler Termination • • •

Phase 10 •••••••••••
Source Statement Processing

Dispatcher Subroutine
Preparatory Subroutine •
Keyword Subroutines
Arithmetic S~broutines •
Utility Subroutines

• • • • • 20

Subroutine STALL-IEKGST
Constructing a Cross Reference

Phase 10 Preparation for XREF
Processing • • • •
XREF Processing • • • • • •

Phase 15 • • • • • • • • • • •
PHAZ15 Processing

Text Blocking

• • 20
• • 21
• • 22
• • 25

• 25
• • 25
• • 26

• • • • 26
27

Arithmetic Translation •
Gathering Constant/Variable Usage

• • 27

Information • • • • • • • • • • 32
Gathering Forward Connection
Information • • • • • •
Reordering the Statement Number

33

Chain • • • • • • • • • • • • • • • 34
Gathering Backward Connection
Information • • • • • • ~5

CORAL Processing • • • • • • • • • 36
Translation of Data Text • • • • 37
Relative Address Assignment 37
Rechaining Data Text • • • • • • 40
DEFINE FILE Statement Processing • • 40
NAMELIST Statement Processing 40
Initial Value Assignment • • • • 41

CONTENTS

Reserving Space in the Adcon Table • 41
Creating Relocation Dictionary
Entries • • • • • • • • • • •• 41
Creating External Symbol
Dictionary Entries • • ••••• 41

Phase 20 • • • • • • • • ••••• 41
Control Flow • • • • • • • • • • 42
Register Assignment • • • • • • 43

Basic Register Assignment - OPT=O • 44
Full Register Assignment - OPT=1 • • 46

Branching Optimization - OPT=1 • • • • 49
Reserved Registers • • • • • • • • • 50
Reserved Register Addresses • 50
Block Determination and Subsequent
Processing • • • • • • • • • • • • • 50

Structural Determination • • • • • • • 51
Determination of Back Dominators • • 52
Determination of Back Targets and
Depth Numbers • • • • • • 53
Identifying and Ordering Loops for
Processing • • • • • • • • • • • • • 54

Busy-On-Exit Information • • • • • • • 54
Structured Source Program Listing • • 56
Loop Selection • • • • • • • • • • 56

Pointer to Back Target • • • • 57
Pointer to Forward Target • • • • • 57
Pointers to First and Last Blocks • 57
Loop Composite Matrixes •••••• 57

Text Optimization - OPT=2 • • • • • • 58
Common Expression Elimination -
0PT=2 • • • • • • • • • • • • • • • 58
Backward Movement - OPT=2 • 60
Strength Reduction - OPT=2 ••• 61

Full Register Assignment - OPT=2 • • • 62
Branching Optimization - OPT=2 • • 63

Phase 25 • • • • • • • • • • • • 63
Text Information • • • • • • • 63

Address Constant Reservation • • 64
'Main Program Entry Coding •• 65
Text Conversion • • • • • • • • 65
Storage Map Production • • • • • 69
Prologue and Epilogue Generation • • 69

Phase 30 • • • • • • • • • • • • • • 69
Message Processing • • • • 70

APPENDIX A: TABLES • • • • • .109
Communication Table (NPTR) • • • • • • • 1 09
Classification Tables ••••••••• 109
NADCON Table •••••••••••••• 112
Information Table ••••••••••• 112

Information Table Chains ••••• 112
Chain Construction • • • • • .113
Operation of Information Table Chains 114

Dictionary Chain Operation • • .114
Statement Number Chain Operation •• 115
Common Chain Operation ••••••• 115
Equivalence Chain Operation •• 116
Literal Constant Chain Operation •• 116
Branch Table Chain Operation •• 116

Information Table Components • • .116
Dictionary • • • • • • • .116
Statement Number/Array Table •• 120

Common Table • • • • •
Literal Table
Branch Table •

Subprogram Table • • • • • •
Text Optimization Bit Tables •
Register Assignment Tables • •

Register Use Table • •
NAMELIST Dictionaries

• .123
•• 125
• .125
•• 126
• .127
•• 129
•• 129
•• 130

.131 Diagnostic Message Tables
Error Table • • • • • •
Message Pointer Table

••••• 131
••••• 131

APPENDIX B: INTERMEDIATE TEXT. • .132
Phase 10 Intermediate Text •• 132

Intermediate Text Chains •••••• 132
Format of Intermediate Text Entry .133
Examples of Phase 10 Intermediate
Text • • • • • • • • • • •

Phase 15/Phase 20 Intermediate Text
Modifications • • • • • • • • •

Phase 15 Intermediate Text
Modifications • •

Unchanged Text • • • • • • •
Phase 15 Data Text ••••
Statement Number Text

Phase 20 Intermediate Text

•• 135

• .140

•• 140
•• 140
•• 140
• • 141

Modification ••••••••••••• 145
Standard Text Formats Resulting From
Phases 15 and 20 Processing •• 146

APPENDIX C: ARRAYS •• 155

APPENDIX D: TEXT OPTIMIZATION EXAMPLES 162
Example 1: Common Expression
Elimination •••••••••••• 162
Example 2: Backward Movement •••• 163
Example 3: Simple-Store Elimination 164
Example 4: Strength Reduction .165

APPENDIX E: OBJECT-TIME LIBRARY
SUBPROGRAMS • • • • • • • • • •
IHCFCOMH • • • • • • • • • • • •

READ/WRITE Routines • • • • •
READ/WRITE Statements Not Using

•• 167
•• 167
• .168

NAMELIST •••••••••••••• 168
Examples of IHCFCOMH READ/WRITE
Statement Processing •••••••• 172
READ/WRITE Statement Using NAMELIST 175
I/O Device Manipulation Routines •• 175
Write-to-Operator Routines. • .176
Utility Routines •••••••••• 176

Conversion Routines (IHCFCVTH) • • • • • 177

IHCFIOSH • • • • • • • • • • • • • •
Blocks and Tables Used • •

Unit Blocks • • • • •
Unit Assignment Table • • • • •

Buffering • • • •
Communication With the Control

•• 177
•• 177
• .178
• • 179
•• 180

•• 180 Program • • • •
Operation • • • • • • •••• 180

Initialization •• .180
Read • • • • • • •
Write ••••••

• ••••• 181

Device Manipulation
Closing • • • • •

IHCDIOSH • • • • • • • • • • • • • •
Blocks and Table Used

Unit Blocks • • • ••••
Unit Assignment Table

Buffering • • • • • • • • •
Coromunication With the Control
Program • • • • • • • • • • •
Operation • • • • • • • • • • • •

File Definition Section ••
File Initialization Section
Read Section • • • • •
Write Section • • • • •
Termination Section

.182
•• 182

.182
•• 183
•• 183

.183
•• 184

.185

•• 185
•• 185
•• 185

.186
• .187

.187
•• 188
•• 188
•• 188

IHCIBERH • • • • • • •
IHCDBUG • • • • • • •

Items and Buffer •
Operation • • • •
Subroutines

••••• • 188

IHCTRCH • • • • • •

•• 188
•• 189
•• 190

APPENDIX F: ADDRESS COMPUTATION FOR
ARRAY ELEMENTS • • • • • • • • • • • 2O1

Absorption of Constants in
Subscript Expressions • • • .201
Arrays as Parameters • • • • • .201

APPENDIX G:

APPENDIX H:

APPENDIX I:
FACILITIES •

Trace
Dump •

APPENDIX J:
COMPILER

APPENDIX I<:

INDEX

COMPILER STRUCTURE .202

DIAGNOSTIC MESSAGES •••• 206

THE TRACE AND DUMP

FACILITIES USED BY ~HE

.210

.210
• 211

••••••••••••• • 212

MICROFICHE DIRECTORY .213

.221

12 Figure 1. Input/Output Data Flow
Figure 2. Format of P~epared
Source Statement • • • • • • •
Figure 3. Text Blocking

19
•• 28

Figure 4. Text Reordering Via
the Pushdown Table • • • • • • •• 29
Figure 5. Forward Connection
Information • • • • • • • • • • • • 34
Figure 6. Backward Connection
Information • • • • • • • • 36
Figure 7. Back Dominators •• 51
Figure 8. Back Targets and Depth
Numbers • • • • • • • • • •
Figure 9. Storage Layout for
Text Information Construction
Figure 10. Information Table

52

• • 64

Chains •••••••••••••• 113
Figure 11. Dictionary Chain ••• 115

• • 117
Figure 12. Format of Dictionary
Entry for Variable • • • •
Figure 13. Function of Each
Subfield in the Byte A Usage Field
of a Dictionary Entry for a
Variable or Constant
Figure 14. Function of Each
Subfield in the byte B Usage Field
of a Dictionary Entry for a

• 111

Variable • • • • • • . • • • • • 117
Figure 15. Format of Dictionary
Entry for Variable After
CSORN-IEKCCR Processing for XREF
Figure 16. Format of Dictionary
Entry for Variable After

• 118

Rechaining ••••••••• 119
Figure 17. Format of Dictionary
Entry for Variable After Coordinate
Assignment ••••••••• 119
Figure 18. Format of Dictionary
Entry for Variable After Common
Block Processing ••••••••• 119
Figure 19. Format of Dictionary
Entry for a Variable After Relative
Address Assignment •••••••• 119
Figure 20. Format of Dictionary
Entry for Constant •••••••• 120
Figure 21. Format of a Statement
Number Entry • • • • • • 120
Figure 22. Function of Each
Subfield in the Byte A Usage Field
of a Statement Number Entry
Figure 23. Function of Each
Subfield in the Byte B Usage Field
of a Statement Number Entry

• 120

.121
Figure 24. Format of a Dictionary
Entry for Statement Number After
LABTLU-IEKCLT processing for XREF .121
Figure 25. Format of Statement
Number Entry After the Processing
of Phases 15, 20, and 25 ••••• 121
Figure 26. Function of Each
Subfield in the Block Status Field 122
Figure 27. Format of Dimension
Entry ••••••••••••••• 122

FIGURES

.123
Figure 28. Format of a Common
Block Name Entry • • • • • •
Figure 29. Format of Common Block
Name Entry After Common Block
Processing • • • • • • •••• 124
Figure 30. Format of an
Equivalence Group Entry •• 124
Figure 31. Format of Equivalence
Group Entry After Equivalence
Processing ••••••••• 124
Figure 32. Format of Equivalence
Variable Entry •••••••••• 124
Figure 33. Format of Equivalence
Variable Entry After Equivalence
Processing • • • • • • • 125
Figure 34. Format of Literal
Constant Entry •••••••••• 125
Figure 35. Format of Literal
Constant Entry After Relative
Address Assignment • • • •
Figure 36. Format of Literal Data
Entry • • • • • • • • • • • •
Figure 37. Format of Initial

.125

.125

Branch Table Entry •••••••• 126
Figure 38. Format of Initial
Branch Table Entry After Phase 25
Processing • • • • • •
Figure 39. Format of Standard
Branch Table Entry After Phase 25
Processing • • • • • •
Figure 40. Format of Namelist

• 126

.126

Name Entry ••••••••• 130
Figure 41. Format of Namelist
Variable Entry •••••••••• 130
Figure 42. Format of Namelist
Array Entry •••••• 131
Figure 43. Intermediate Text
Entry Format • • • • • •
Figure 44. Phase 10 Normal Text
Figure 45. Phase 10 Data Text •
Figure 46. Phase 10 Namelist Text
Figure 47. Phase 10 Define File

•• 133
• 135
.136

137

Text ••••••••••••• 138
Figure 48. Phase 10 Format Text .138
Figure 49. Phase 10 SF Skeleton
Text •• •••••••••••••• 139
Figure 50. Format of Phase 15
Data Text Entry •••••••••• 140
Figure 51. Function of Each
Subfield in Indicator Field of
Phase 15 Data Text Entry •• 140
Figure 52. Format of Statement
Number Text Entry ••••••••• 141
Figure 53. Function of Each
Subfield in Indicator Field of
Statement Number Text Entry
Figure 54. Format of a Standard

• • 144

Text Entry ••••••••••••• 144
Figure 55. Format of Phase 20
Text Entry •••••••••••• 145
Figure 56. Relationship Between
IHCFCOMH and I/O Data Management
Interfaces •• 168

Figure 57. Format of a Unit Block
for a Sequential Access Data Set
Figure 58. Unit Assignment Table
Format • • • • • • • • • •
Figure 59. CTLBLK Format • • • •
Figure 60. Format of a Unit Block
for a Direct Access Data Set
Figure 61. Unit Assignment Table
Entry for a Direct Access Data Set
Figure 62. Compiler Overlay
Structure • • • • • • • • • •

• 178

.179
• 1 81

.183

185

.202

Chart 00.
Chart 01.
Chart 02.
Chart 03.
Chart 04.
Chart 05.
Chart 06.
Chart 07.
Flow • • •
Chart 08.

Compiler Con-i:rol Flow •• 71
FSD Overall Logic • • • • 72
FSD Storage Distribution 73
Phase 10 Overall Logic • 75
Subroutine STALL-IEKGST • 76
Phase 15 Overall Logic • 81
PHAZ15 Overall Logic 82
ALTRAN-IEKJAL Control 83
GENER-IEKLGN Text

Generation • • • • • • • • • • • • • 84
Chart 09. CORAL Overall Logic ••• 85
Chart 10. Phase 20 Overall Logic • 89
Cha~t 11. Common Expression
Elimination (XPELIM-IEKQXM) •• 90
Chart 12. Backward Movement
(BACMOV- IEKQBM) • • • • • • • • 9 1

Chart 13. Strength Reduction
(REDUCE- IEKQSR) • • • • •

Chart 14. Full Register
Assignment (REGAS-IEKRRG)
Chart 15. Table Building
(FWDPAS- IEKRFP) • • • • •
Chart 16. Local Assignment
(BKPAS- IEKRBP) • • • • • • • •

Chart 17. Global Assignment
(GLOBAS- IEKRGB) • • • • • • •

• • 92

93

• • 94

• 95

96

CHARTS

• 97
Chart 18. Text Updating
(STX'l'R-IE.t<RSX) • • • • •
Chart 19. Text Updating
(STXTR- IEKRSX) (Continued) • • • 98

Chart 20. Phase 25 Processing
Chart 21. Subroutine END-IEKUEN •
Chart 22. Phase 30 (IEKP30)

• 103
.104

Overall Logic ••••••••••• 107
Chart 23. IHCFCOMH Overall Logic
and Utility Routines •••••••• 191
Chart 24. Implementation of
READ/WRITE/FIND Source Statements .192
Chart 25. Device Manipulation,
Write-to-Operator, and READ/WRITE
Using NAMELIST Routines •••••• 193
Chart 26. IHCFIOSH Overall Logic .195
Chart 27. Execution-Time I/O
Recovery Procedure ••••••••• 196
Chart 28. IHCDIOSH Overall Logic
- File Definition Section ••••• 197
Chart 29. IHCDIOSH Overall Logic
- File Initialization, Read,
Write, and Termination Sections •• 198
Chart 30. IHCIBERH Overall Logic .200

TABLES

Table 1. FORMAT Statement
Translation • • • • • • 23
Table 2. Operators and Forcing
Strengths • • • • • • • • • • • • • 29
Table 3. Item Types and Registers
Assigned in Basic Register
Assignment • • • • • • • • • • • • • 44
Table 4. Text Entry Types • 59
Table 5. Operand Characteristics
That Permit Simple-Store
Elimination • • • • • • • • • • • • 60
Table 6. FSD Subroutine Directory 74
Table 7. Phase 10 Source
Statement Processing • • • • •
Table 8. Phase 10 Subroutine

77

Directory • • • • • • • • 78
Table 9. Phase 15 Subroutine
Directory • • • • • • • • • • 86
Table 10. Phase 15 COMMON Areas •• 88
Table 11. Criteria for Text
Optimization • • • • • • • • • • 99
Table 12. Phase 20 Subroutine
Directory • • • • • • .100
Table 13. Phase 20 Utility
Subroutines • • • • • • .102
Table 14. Phase 25 Subroutine
Directory •••••••••• 105
Table 15. Phase 30 Subroutine
Directory •••••••••• 108
Table 16. Communication Table
(NPTR (2, 3 5)) • • • •

Table 17.. Keyword Pointer Table •
• 109
.111
• 111 Table 18. Keyword Table •

Table 19. NADCON Table
Table 20. Operand Modes •
T~ble 21. Operand Types •
Table 22. Subprogram

••• 112
• • 118

••• 118

Table - IEKLFT (2, 128) • • • • • • • 127
Table 23. Text Optimization Bit
Tables. • • • • • • • • • • • .128
Table 24. Local Assignment Tables .129
Table 25. BVA Table • • • • .129
Table 26. Global Assignment Tables 130

Table 27. Adjective Codes ••••• 133
Table 28. Phase 15/20 Operators •• 141
Table 29. Meanings of Bits in
Mode Field of Standard Text Entry
Status Mode Word. • • • • • • .145
Table 30. Status Field Bits and
Their Meanings • • • • • • .146
Table 31. IHCFCOMH FORMAT Code
Processing ••••••••••••• 170
Table 32. IHCFCOMH Processing for
a READ Requiring a Format .173
Table 33. IHCFCOMH Processing for
a WRITE Requiring a Format. • .173
Table 34. IHCFCOMH Processing for
a READ Not Requiring a Forwat .174
Table 35. IHCFCOMH Processing for
a WRITE Not Requiring a Format ••• 174
Table 36. IHCFCOMH Subroutine
Directory ••••••••••••• 194
Table 37. IHCFCVTH Subroutine
Directory
Table 38.
Directory
Table 39.
Directory
Table 40.
Segments •
Table 41.
Table 42.
Table 43.
Table 44 •
Table 45 •
Table 46.
Table 47 •
'Table 48.
Table 49.
Table 50.
Table 51.
Table 52.
Table 53.
Values and
Table 54.

• • 194
IHCFIOSH Routine

•• 199
IHCDIOSH Routine

•• 199
Phases and Their
• • • • • .203
Segment - 1 Composition .203
Segment - 2 Composition .203
Segment - 4 Composition .203
Segment - 5 Composition .204
Segment - 6 Composition .204
Segment - 7 Composition .204
Segment - 8 Composition .204
Segment - 9 Composition .205
Segment - 10 Composition.205
Segment - 11 Composition.205
Segment - 12 Composition.205
Segment - 13 Composition.205
Basic TRACE Keyword
Output Produced ••••• 210
Microfiche Directory •• 213

This section contains general informa
tion describing the purpose of the FORTRAN
IV (H) compiler, its relationship to the
operating system, its input/output data
flow, its organization, and its overlay
structure.

PURPOSE OF THE COMPILER

The IBM System/360 Operating System
FORTRAN IV (H) compiler transforms source
modules written in the FORTRAN IV language
into object modules that are suitable for
input to the linkage editor for subsequent
execution on the System/360. At the user's
option, the compiler produces optimized
object modules (modules that can be
executed with improved efficiency).

THE COMPILER AND OPERATING SYSTEM/360

The FORTRAN IV (H) compiler is a proces
sing program which communicates with the
System/360 Operating System control program
for input/output and other services. A
general description of the control program
is given in the publication IBM System/360
Operating System: Introduction to Control
Program Logic, Program Logic Manual.

A compilation, or a batch of compila
tions, is requested using the job statement
(JOB) , the execute statement (EXEC) , and
data definition statements (DD) • Cataloged
procedures may also be used. A discussion
of FORTRAN IV compilation and the available
cataloged procedures is given in the publi
cation IBM System/360 Operating System:
FORTRAN IV (H) Programmer's Guide.

The compiler receives control from the
calling program (e.g., job scheduler or
another program that calls, links to, or
attaches the compiler) • Once the compiler
receives control, it communicates with the
control program through the FORTRAN system
director, a part of the compiler that con
trols compiler processing. After compiler
processing is completed, control is
returned to the calling program.

INPUT/OUTPUT DATA FLOW

The source modules to be compiled are
read in from the SYSIN data set. Compiler
output is placed on the SYSLIN, SYSPRINT,
SYSPUNCH, SYSUT1, or SYSUT2 data set,

SECTION 1: INTRODUCTION

depending on the options specified by the
FORTRAN programmer. (The SY SPRINT data set
is always required for compilation.)

The overall data flow and the data sets
used for the compilation are illustrated in
Figure 1.

COMPILER ORGANIZATION

The IBM System/360 Operating System
FORTRAN IV (H) compiler consists of the
FORTRAN system director, four logical pro
cessing phases (phases 10, 15, 20, and 25),
and an error-handling phase (phase 30) •

Control is passed among the phases of
the compiler via the FORTRAN system direc
tor. After each phase has been executed,
the FORTRAN system director determines the
next phase to be executed, and calls that
phase. The flow of control within the co~
piler is illustrated in Chart 00. (Charts
are located at the end of Section 2.)

The components of the compiler operating
together produce an object module from a
FORTRAN source module. The object module
is acceptable as input to the lfnkage edi
tor, which prepares object modules for
relocatable loading and execution.

The object module consists of control
dictionaries (external symbol dictionary
and relocation dictionary) , text (repre
senting the actual machine instructions and
data) , and an END statement. The external
symbol dictionary (ESD) contains the
external symbols that have been defined or
referred to in the source module. The
relocation dictionary (RLD) contains inf or
mation about address constants in the
object module.

The functions of the components of the
compiler are described in the following
paragraphs.

FORTRAN SYSTEM DIRECTOR

The FORTRAN system director (FSD) con
trols compiler processing. It initializes
compiler operation, calls the phases for
execution, and distributes and keeps track
of the main storage used during the compi
lation. In addition, the FSD receives the
various input/output requests of the com
piler phases and submits them to the con
trol program.

Section 1: Introduction 11

SYSIN

Source
Module(s)

SOURCE
Option

l
Source
Module
Listing

SYSPRINT

EDIT
Option

Intermediate
Output for
EDIT

SYSUTl

Structured
Source
Listing

SYSPRINT

MAP
Option

Storage
Map

SYSPRINT

• Figure 1. Input/Output Data Flow

PHASE 10

LOAD

01on

Object Module
(ESD, TXT,
RLD, and END
card images)

SYSLIN

Phase 10 accepts as input (from the
SYSIN data set) the individual source
statements of the source module. If a
source module listing is requested, the
source statements are recorded on the SYS
PRINT data set. If the XREF option is
selected, a two-part cross reference is
recorded on the SYSPRINT data set immedi
ately following the source listing. If the
EDIT option is selected, the source state
ments are recorded on the SYSUT1 data set,
which phase 20 uses as input to produce a
structured source listing. If the ID
option is selected, calls and function
references are assigned an internal state
ment number (ISN) •

Phase 10 converts each source statement
into a form usable as input by succeeding
phases. This usable input consists of an
intermediate text representation (in
operator-operand pair format) of each
source statement. In addition, phase 10
makes entries in an information table for
the variables, constants, literals, state
ment numbers, etc., that appear in the
source statements. Phase 10 also places
data in the information table about COMMON
and EQUIVALENCE statements so that main

12

DECK LIST XREF For ALL
Option Option Option Compitions

Object Module
Object Intermediate Error and

(ESD, TXT,
Program Output for Warning

RLD, and END
Listing XREF Messages

card images) (if Any)

SYSPUNCH SYSPRINT SYSUT2 SYSPRINT

Cross-
Reference
Listing

SYSPRINT

storage space can be allocated correctly in
the object module. During this conversion
process, phase 10 also analyzes the source
statements for syntactical errors. If
errors are encountered, phase 10 passes to
phase 30 (by making entries in an error
table) the information needed to print the
appropriate error messages.

PHASE 15

Phase 15 gathers additional information
about the source module and modifies some
intermediate text entries to facilitate
optimization by phase 20 and instruction
generation by pha~e 25. Phase 15 is
divided into two segments that perform the
following functions:

• The first segment translates phase 10
intermediate text entries (in operator
operand pair format) representing
arithmetic operations into a four-part
form, which is needed for optimization
by phase 20 and instruction-generation
by phase 25. This part of phase 15
also gathers information about the
source module that is needed for opti
mization by phase 20.

• The second segment of phase 15 assigns
relative addresses, and where neces
sary, address constants to the named
variables and constants in the source
module. This segment also converts
phase 10 intermediate text (in
operator-operand pair format) repre
senting DATA statements to a variable
ini tial value form, which makes later
assignment of a constant value to a
variable easier.

Phase 15 also passes to phase 30 the
information needed to print appropriate
messages for any errors detected during
phase 15 processing. (This is done by mak
ing entries in the error table.)

PHASE 20

Phase 20 processing depends on whether
or not optimization has been requested and,
if so, the optimization level desired.

If no optimization is specified, phase
20 assigns registers for use during execu
tion of the object module. However, phase
20 does not take full advantage of all
registers and makes no effort to keep fre
quently used quantities in registers to
eliminate the need for some machine
instructions.

If the first level of optimization is
specified, phase 20 uses all available
registers and keeps frequently used quanti
ties in registers wherever possible. Phase
20 takes other measures to reduce the size
of the object module, and provides informa
tion about operands to phase 25.

If the second level of optimization is
specified, phase 20 uses other techniques
to make a more efficient object module.
The net result of these procedures is to
eliminate unnecessary instructions and to
eliminate needless execution of
instructions.

During processing, phase 20 records
directly on the SYSPRINT data set messages
describing any errors it detects and, if
both the EDIT option and the second level
of optimization are selected, produces, on
the SYSPRINT data set, a structured source
program listing.

PHASE 25

Phase 25 produces an object module from
the combined output of the preceding phases
of the compiler.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine language form. It
may contain unresolved external symbolic
cross references (i.e., references to sym
bols that do not appear in the source
module) • The external symbol dictionary
contains the information required by the
linkage editor to resolve external symbolic
cross references, and the relocation dic
tionary contains the information needed by
the linkage editor to relocate the absolute
text information.

Phase 25 places the object module
resulting from the compilation on the SYS
LIN data set if the LOAD option is speci
fied, and on'the SYSPUNCH data set if the
DECK option is specified. Phase 25 pro
duces an object module listing on the SYS
PRINT data set if the LIST option is speci
fied. In addition, phase 25 produces a
storage map if the MAP option is specified.
Messages for any errors detected during
phase 25 processing are also recorded
directly on SYSPRINT.

PHASE 30

Phase 30 is called after phase 15 pro
cessing is completed only if errors are
detected by phases 10 or 15. Phase 30
records on the SYSPRINT data set messages
describing the detected errors. Serious
errors cause the compilation to be deleted
before phase 20 processing begins.

STRUCTURE OF THE COMPILER

The FORTRAN IV (H) compiler is struc
tured in a planned overlay fashion, which
consists of 13 segments. One of these seg
ments constitutes the FORTRAN system direc
tor and is the root segment of the planned
overlay structure. Each of the remaining
12 segments constitutes a phase or a logic
al portion of a phase. A detailed discus
sion of the compiler's planned overlay
structure is given in Appendix G.

Section 1: Introduction 13

SECTION 2: DISCUSSION OF MAJOR COMPONENTS

The following paragraphs and associated
flowcharts at the end of this section
describe the major components of the FOR
TRAN IV (H) compiler. Each component is
described to the extent necessary to
explain its function(s) and general
operation.

FORTRAN SYSTEM DIRECTOR

The FORTRAN System Director (FSD) con
trols compiler processing; its overall
logic is illustrated in Chart 01. The FSD
receives control from the job scheduler if
the compilation is defined as a job step in
an EXEC statement. The FSD may also
receive control from another program
through use of one of the system macro
instructions (CALL, LINK, or ATTACH) •

The FSD:

• Initializes the compiler.
• Loads the compiler phases.
• Distributes storage to the phases.
• Processes input/output requests.
• Generates entry code (initialization

instructions) for main programs, sub
programs, and subprogram secondary
entries.

• Deletes compilation.
• Terminates compilation.

COMPILER INITIALIZATION

The initialization of compiler proces
sing by the FSD consists of two steps:

• Parameter processing.
• Data field initialization.

Parameter Processing

When the FSD is given control, the
address of a parameter list is contained in
a general register. If the compiler
receives control as a result of either an
EXEC statement in a job step or an ATTACH
or CALL macro instruction in another pro
gram, the parameter list has a single
entry, which is a pointer to the main
storage area containing an image of the
options (e.g., SOURCE, MAP) specified for
the compilation. If the compiler receives
control as a result of a LINK macro
instruction in another program, the parame
ter list may have a second entry, which is
a pointer to the main storage area contain
ing substitute ddnames (i.e., ddnames that
the user wishes to substitute for the stan-

14

dard ones of SYSIN, SYSPRINT, SYSPUNCH,
SYSLIN, SYSUT1, and SYSUT2.

COMPILER OPTIONS: To determine the options
specified for the compilation and to inform
the various compiler phases of these
options, the FSD scans and analyzes the
storage area containing their images and
sets indicators to reflect the ones speci
fied. These indicators are placed into the
communication table - IEKAAA (refer to
Appendix A, "Communication Table") during
data field initialization. The various
compiler phases have access to the communi
cation table, and, from the indicators con
tained in it, can determine which options
have been selected for the compilation.

SUBSTITUTE DDNAMES: If the user wishes to
substitute ddnames for the standard ones,
the FSD must establish a correspondence
between the DD statements having the sub
stitute ddnames and the DCBs (Data Control
Blocks) associated with the ddnames to be
replaced. To establish this necessary
correspondence, the FSD scans the storage
area containing the substitute ddnames, and
enters each such ddname into the DCBDDNM
field of the DCB associated with the stan
dard ddname it is to replace.

Data Field Initialization

Data field initialization is Goncerned
with the communication table, which is a
central gathering area used to communicate
information among the phases of the compil
er. The table contains information such
as:

• User specified options.

• Pointers indicating the next available
locations within the various storage
areas.

• Pointers to the initial entries in the
various types of chains (refer to
Appendix A, "Information Table" and
Appendix B, "Intermediate Text") •

• Name of the source module being
compiled.

• An indication of the phase currently in
control.

The various fields of the communication
table, which are filled during a compila
tion, must be initialized before the next
compilation. To initialize this region,
the FSD clears it and places the option

indicators into the fields reserved for
them.

PHASE LOADING

The FSD loads and passes control to each
phase of the compiler by means of a stan
dard calling sequence. The execution of
the call causes control to be passed to the
overlay supervisor, which calls program
fetch to read in the phase. Control is
then returned to the overlay supervisor,
which branches to the phase. The phases
are called for execution in the following
sequence: phase 10, phase 15, phase 20,
and phase 25. However, if errors are
detected by phase 10 or phase 15, phase 30
is called after the completion of phase 15
processing.

STORAGE DISTRIBUTION

Phases 10, 15, and 20 require main
storage space in which to construct the
information table (refer to Appendix A,
"Information Table") and to collect inter
mediate text entries. These phases obtain
this storage space by submitting requests
to the FSD (at entry point IEKAGC) , which
allocates the required space, if available,
and returns to the requesting phase point
ers to both the beginning and end of the
allocated storage space.

Phase 10 Storage

Phase 10 can use all of the available
storage space for building the information
table and for collecting text entries. At
each phase 10 request for main storage in
which to collect text entries or build the
information table, the FSD reallocates a
portion (i.e., a sub-block) of the storage
for text collection, and returns to phase
10 either via the communication table or
the storage area PlOA-IEKCAA (depending
upon the type of text to be collected in
the sub-block; refer to Appendix B, "Phase
10 Intermediate Text") pointers to both the
beginning and end of the allocated storage
space. If the sub-block is allocated for
phase 10 normal text or for the information
table, the pointers are returned in the
communication table. If the 'sub-block is
allocated for a phase 10 text type other
than normal text, the pointers are returned
via the storage area P10A-IEKCAA. After
the storage has been allocated, the FSD
adjusts the end of the information table
downward by the size of the allocated sub
block. This process is repeated for each
phase 10 request for main storage space.

Sub-blocks to contain phase 10 text or
dictionary entries are allocated in the
order in which requests for main storage

are received. (When phase 10 completely
fills one sub-block with text entries, it
requests another.) A request for a sub
block to contain a particular type of
entries may immediately follow a request
for a sub-block to contain another type of
entries. Consequently, sub-blocks allo
cated to contain the same type of entries
may be scattered throughout main storage.
The FSD must keep track of the sub-blocks
so that, at the completion of phase 10 pro
cessing, unused or unnecessary storage may
be allocated to phase 15.

Phase 15 Storage

Phase 15, in collecting the text or dic
tionary entries that it creates, can use
only those portions of main storage that
are (1) unused by phase 10, or (2) occupied
by phase 10 normal text entries that have
been processed by phase 15. The FSD first
allocates all unused storage (if necessary)
to phase 15. If this is not sufficient,
the FSD then allocates the storage occupied
by phase 10 normal text entries that have
undergone phase 15 processing. If either
of these methods of storage allocation
fails to provide enough storage for phase
15, the compilation is terminated.

Pointers to both the beginning and end
of the storage are passed to phase 15 via
the communication table. Pointers to both
the beginning and end of the allocated sub
block portion are passed to phase 15 via
the communication table. If an additional
request is received after the last sub
block portion is allocated, the FSD deter
mines the last phase 10 normal text entry
that was processed by phase 15. The FSD
then frees and allocates to phase 15 the
portion of storage occupied by phase 10
normal text entries between the first such
text entry and the last entry processed by
phase 15.

Phase 15 Storage Inventory: After the pro
cessing of PHAZ15, the first segment of
phase 15, is completed, the FSD recovers
the sub-blocks that were allocated to phase
10 normal text. These sub-blocks are
chained as extensions to the storage space
available at the completion of PHAZ15 pro
cessing. The chain, which begins in the
FSD pointer table, connecting the various
available portions of storage is scanned
and when a zero pointer field is encoun
tered, a pointer to the first sub-block
allocated to phase 10 normal text is placed
into that field. The chain connecting the
various sub-blocks allocated to phase 10
normal text is then scanned and when a zero
pointer field is encountered, a pointer to
the first sub-block allocated to SF skele
ton text is placed into that field. Once
the sub-blocks are chained in this manner,
they are available for allocation to CORAL,

Section 2: Discussion of Major Components 15

I the second segment of phase 15, and to
phase 20.

After the processing of CORAL is com
pleted, the FSD likewise recovers the sub
blocks allocated for phase 10 special text.
The chain connecting the various portions
of available storage space is scanned and
when a zero pointer field is encountered, a
pointer to the first sub-block allocated
for phase 10 special text is placed into
that field. After the sub-blocks allocated
for phase 10 special text are linked into
the chain as described above, they, as well
as all other portions of storage space in
the chain, are available for allocation to
phase 20.

Phase 20 Storage

Each phase 20 request for storage space
is satisfied with a portion of storage
available at the completion of CORAL pro
cessing. The portions of storage are allo
cated to phase 20 in the order in which
they are chained. Pointers to both the
beginning and end to the storage allocated
to phase 20 for each request are placed
into the communication table.

INPUT/OUTPUT REQUEST PROCESSING

The FSD routine IEKFCOMH receives the
input/output requests of the compiler
phases and submits them to QSAM (Queued
Sequential Access Method) for implementa
tion (refer to IBM System/360 Operating
System: Sequential Access Methods, Program
Logic Manual.)

Request Format

Phase requests for input/output services
are made in the form of READ/WRITE state
ments requiring a FORMAT statement. The
format codes that can appear in the FORMAT
statement associated with such READ/WRITE
requests are a subset of those available in
the FORTRAN IV language. The subset con
sists of the following codes: Iw (output
only) , Tw, Aw, wX, wH, and zw (output
only) • - - - -

Request Processing

To process input/output requests from
the compiler phases, the FSD performs a
series of operations, which are a subset of
those carried out by the IEKFCOMH/IEKFIOCS
combination (refer to Appendix E) to imple
ment sequential READ/WRITE statements
requiring a format.

16

GENERATION OF INITIALIZATION INSTRUCTIONS

The FSD subroutine IEKTLOAD works with
phase 25 to generate the machine instruc
tions for entry into a main program, a sub
program, or a subprogram secondary entry
point. These instructions are referred to
as initialization instructions and are
divided into three catagories:

• Main program entry coding.
• Subprogram main entry coding.
• Subprogram secondary entry coding.

Once generated, these instructions are
entered into TXT records. See "Phase 25,
Text Information" for a discussion of TXT
records.

Main Program Entry Coding:
tion instructions generated
IEKTLOAD for a main program
following functions:

The initializa
by subroutine
perform the

• Save the contents of general registers
14 through 12.

• Load the reserved registers with their
associated addresses. ~he address
loaded into register 13 is that of the
save area. The address loaded into
register 11, if reserved, is that of
the save area plus 4096 bytes. The
address loaded into register 10, if
reserved, is that of the save area plus
8192 bytes. The address loaded into
register 9, if reserved, is that of the
save area plus 12,288 bytes.)

• Load the address of the main program
save area into register 4, and store
register 4 into the save area of the
calling program.

• Save register 13 in the new save area.

Subprogram Main Entry Coding: The initial
ization instructions generated by subrou
tine IEKTLOAD for the main entry point into
a subprogram perform the following
functions:

• Save the contents of general registers
14 through 12.

• Load the addresses of the prologue and
epilogue of the subprogram into regis
ters. ~or an explanation of prologue
and epilogue, refer to "Phase 25, Pro
logue and Epilogue Generation.")

• Load the reserved registers with their
associated addresses.

• Load the address of the save area of
the subprogram into register 13.

I
)

• Save the address of the save area of
the calling routine and the address of
the epilogue of the subprogram in the
save area of the subprogram.

• Branch to the prologue.

• Set up a save area in which the con
tents of the registers used by the sub
program are saved, should that subpro
gram, in turn, call another subprogram.

• Set up address constants in which the
addresses of the prologue and epilogue
of the subprogram and the addresses to
be placed into the reserved registers
are inserted.

Subprogram Secondary Entry Coding: The
initialization instructions for a subpro
gram secondary entry point are essentially
the same as those required for the main
entry point. For this reason, IEKTLOAD
makes use of a number of the initialization
instructions for the main entry point in
processing secondary entry points.

Main entry point initialization instruc
tions that precede and include the instruc
tion that loads the prologue and epilogue
addresses cannot be used, because each
secondaty entry point has its own asso
ciated prologue and epilogue. Therefore,
for secondary entry points, subroutine IEK
TLOAD generates initialization instructions
that perform the following functions:

• Save the contents of general registers
14 through 12.

• Load the addresses of the prologue and
epilogue of the secondary entry point
into registers.

• Branch to the subprogram main entry
point initialization instruction that
loads the reserved registers with their
associated addresses.

• Set up address constants in which the
addresses of the prologue and epilogue
of the secondary entry point are
placed.

Subprogram secondary entry coding does
not occupy storage within the "Initializa
tion Instructions" section of text informa
tion. That section is reserved for:

• Main program entry coding, if the
source module being compiled is a main
program.

• Subprogram main entry coding, if a sub
program is being compiled.

The initialization instructions for
secondary entry points are generated when

the text representation of an ENTRY state
ment is encountered during the last scan of
intermediate text. These instructions
reside in the "Instructions" section of
text information.

DELETION OF A COMPILATION

The FSD deletes a compilation if either
of the following occurs:

• An error of error level code 16 (refer
to the publication IBM System/360
Operating System: FORTRAN IV (H) Pro
grammer's Guide) is detected during the
execution of a processing phase.

• The value of the error level code
returned from phase 30 is 8 and the
LOAD option has not been specified.

In the former case, the phase detecting
the error passes control to the FSD at
entry point SYSDIR-IEKAA9. If the error
was detected by phase 10, the FSD deletes
the compilation by having phase 10 read
records (without processing them) until the
END statement is encountered. If the error
was encountered in a phase other than phase
10, the FSD simply deletes the compilation.

In the latter case, phase 30 returns
control to the FSD at the next sequential
instruction. If the error level code
passed to the FSD is 8 and the LOAD option
has not been specified, the FSD continues
processing.

Note: Phase 25 returns an error level code
of 8 to the FSD if errors are detected dur
ing the translation of FORMAT statements.
However, in this case, the FSD does not
delete the compilation if the LOAD option
has not been specified.

COMPILER TERMINATION

The FSD terminates compiler processing
when an end-of-file is encountered in the
input data stream or when a permanent
input/output error is encountered. If,
after the deletion of a compilation or
after a source module has been completely
compiled, the first record read by the FSD
from the SYSIN data set contains an end-of
f ile indicator, control is passed to the
FSD (at the entry point ENDFILE) , which
terminates compiler processing by returning
control to the operating system. If a per
manent error is encountered during the
servicing of an input/output request of a
phase, control is passed to the FSD (at
entry point IBCOMRTN), which writes a mes
sage stating that both the compilation and
job step are deleted. The FSD then returns
control to the operating system. In either

Section 2: Discussion of Major Components 17

of the above cases, the FSD passes to the
operating system as a condition code the
value of the highest error level code
encountered during compiler processing.
The value of the code is used to determine
whether or not the next job step is to be
performed.

PHASE 10

The FSD reads the first record of the
source module and passes its address to
phase 10 via the communication table.
Phase 10 converts each FORTRAN source
statement into usable input to subsequent
phases of the compiler; its overall logic
is illustrated in Chart 03. Phase 10
conversion produces an intermediate text
representation of the source statement and/
or detailed information describing the
variables, constants, literals, statement
numbers, data set reference numbers, etc.,
appearing in the source statement. During
conversion, the source statement is ana
lyzed for syntactical errors.

The intermediate text is a strictly
defined internal representation (i.e.,
internal to the compiler) of a source
statement. It is developed by scanning the
source statement from left to right and by
constructing operator-operand pairs. In
this context, operator refers to such ele
ments as commas, parentheses, and slashes,
as well as to arithmetic, relational, and
logical operators. Operand refers to such
elements as variables, constants, literals,
statement numbers, and data set reference
numbers. An operator-operand pair is a
text entry, and all text entries for the
operator-operand pairs of a source state
ment are the intermediate text representa
tion of that statement.

The following six types of intermediate
text are developed by phase 10:

18

• Normal text is the intermediate text
representation of source statements
other than DATA, NAMELIST, DEFINE FILE
FORMAT, and statement functions.

• Data text is the intermediate text
representation of DATA statements and
initialization values in type
statements.

• Namelist text is the intermediate text
representation of NAMELIST statements.

• Define file text is the intermediate
text representation of DEFINE FILE
statements.

• Format text is the intermediate text
representation of FORMAT statements.

• SF skeleton text is the intermediate
text representation of statement func
tions using sequence numbers as
operands of the intermediate text
entries. The sequence numbers replace
the dummy arguments of the statement
functions. This type of text is, in
effect, a "skeleton" macro.

The various text types are discussed in
detail in Appendix B, •Intermediate Text."

The detailed information describing
operands includes such facts as whether a
variable is dimensioned (i.e., an array)
and whether the elements of an array are
real, integer, etc. Such information is
entered into the information table.

The information table consists of five
components:

• The dictionary contains information
describing the constants and variables
of the source module.

• The statement number/array table con
tains information describing the state
ment numbers and arrays of the source
module.

• The common table contains information
describing COMMON and EQUIVALENCE
declarations.

• The literal table contains information
describing the literals of the source
module.

• The branch table contains information
describing statement numbers appearing
in computed GO TO statements.

A detailed discussion of the information
table is given in Appendix A, "Information
Table."

The intermediate text and the informa
tion table complement each other in the
actual code generation by the subsequent
phases. The intermediate text indicates
what operations are to be carried out on
what operands; the information table pro
vides the detailed information describing
the operands that are to be processed.

SOURCE STATEMENT PROCESSING

To process source statements, each rec
ord (one card image) of the source module
is first read into an input buffer by a
preparatory subroutine (GETCD-IEKCGC) • If
a source module listing is requested, the
record is recorded on an output data set
(SYSPRINT) • If both the EDIT option and
the second level of optimization (OPT=2)
are selected, the record and some control

information used by phase 20 to produce a
structured ~ource listing are recorded on
the SYSUT1 data set. Records are moved to
an intermediate buffer until a complete
source statement resides in that buffer.
Unnecessary blanks are eliminated from the
source statement, and the statement is
assigned a classification code. A dis
patcher subroutine (DSPTCH-IEKCDP) deter
mines from the code which subroutine is to
continue processing the source statement.
Control is then passed to that subroutine,
which converts the source statement to its
intermediate text representation and/or
constructs information table entries
describing its operands. After the entire
source statement has been processed, the
next is read and processed as described
above. The recognition of the END state
ment causes phase 10 to complete its pro
cessing and return control to the FSD,
which calls phase 15 for execution.

The functions of phase 10 are performed
by six groups of subroutines:

• Dispatcher subroutine

• Preparatory subroutine

• Keyword subroutines

• Arithmetic subroutines

• Utility subroutines

• STALL-IEKGST subroutine

Dispatcher Subroutine

The dispatcher subroutine (DSPTCH
IEKCDP) controls phase 10 processing. Upon
receiving control from the FSD, DSPTCH
IEKCDP subroutine initializes phase 10 pro
cessing and then calls the preparatory sub
routine ~ETCD-IEKCGq to read and prepare
the first source statement. After the
statement is prepared, control is returned
to DSPTCH-IEKCDP, which determines if a
statement number is associated with the
source statement being processed. If there
is a statement number, the DSPTCH-IEKCDP
subroutine constructs a statement number
entry (refer to Appendix A, "Information
Table") for the statement number. A text
entry for the statement number is also
created. The DSPTCH-IEKCDP subroutine then
determines, from the classification code
assigned to the source statement (ref er to
"Preparatory Subroutine") , which subroutine
(either keyword or arithmetic) is to con-
tinue the processing of the statement, and
passes control to that subroutine. When
the source statement is completely pro
cessed, control is returned to the DSPTCH
IEKCDP subroutine, which calls the prepara
tory subroutine to read and prepare the
next source statement.

Preparatory Subroutine

The preparatory subroutine (GETCD
IEKCGC) reads each source statement,
records it on the SYSPRINT data set if the
SCURCE option is selected, and on the
SYSUT1 data set if the EDIT option and the

I second level of optimization are selected,
packs and classifies it, and assigns it an
internal statement number (ISN) 1 • Packing
eliminates unnecessary blanks, which may
precede the first character, follow the
last character, or be imbedded within the
source statement. Classifying assigns a
code to each type of source statement. The
code indicates to the DSPTCH-IEKCDP subrou
tine which subroutine is to continue pro
cessing the source statement. A descrip
tion of the classifying process, along with
figures illustrating the two tables (the
keyword f Ointer table and the keyword
table) used in this process, is given in
Appendix A, "Classificatiop Tables." The
ISN assigned to the source statement is an
internal sequence number used to identify
the source statement. The source state
ment, after being prepared, resides in the

'

storage area NCARD/NCDIN in the format
illustrated in Figure 2.

r---1
INCARD I
I I
I I
I Pointer to first character of (1 word) I
!packed source statement beyond I
lkeywordt I
~---~
I Internal statement number (1 word) I
~---~
I Statement number indicator (iO (1 word) I
lif fresent; 0 if not present) I
~---~
I Classification code (1 word) I
L---J
r---1
INCDIN I
I I
I I
I Statement number (5 bytes) I
~---~
I Packed source stateroent (n bytes) I
~---~
I Group roark 2 (1 byte) I
~----------------------~-----------------~
l 1 For arithmetic statements and statement I
!functions, this field points to the first!
!character of the packed statement. I
l 2 End of statement marker. I
L---J

•Figure 2. Format of Prepared Source
Statement

1 Logical IF statements are assigned two
internal statement numbers. The IF part is
given the first number and the "trailing"
statement is given the next.

Section 2: Discussion of Major Comfonents 19

Keyword Subroutines

A keyword subroutine exists for each
keyword source statement. A keyword source
statement is any permissible FORTRAN source
statement other than an arithmetic state
ment or a statement function. The function
of each keyword subroutine is to convert
its associated keyword source statement (in
NCDIN) into input usable by subsequent
phases of the compiler. These subroutines
make use of the utility subroutines and, at
times, the arithmetic subroutines in per
forming their functions. To simplify the
discussion of these subroutines, they are
divided into two groups:

1. Those that construct only information
table entries.

2. Those that construct information table
entries and develop intermediate text
representations.

Table Entry Subroutines: Only one keyword
subroutine belongs to this group (refer to
Table 8) • It is associated with a COMMON,
DIMENSION, EQUIVALENCE, or EXTERNAL keyword
statement.

This subroutine scans its associated
statement (in NCDIN) in a left-to-right
fashion and constructs appropriate informa
tion table entries for each of the operands
of the statement. The types of information
table entries that can be constructed by
this subroutine are:

• Dictionary entries for variables and
external names.

• Common block name entries for common
block names.

• Equivalence group entries for equiva
lence groups.

• Equivalence variable entries for the
variables in an equivalence group.

• Dimension entries for arrays.

The formats of these entries are given
in Appendix A, "Information Table."

Table Entry and Text Subroutines: The key
word subroutines, other than the table
entry subroutine, belong to this group
(refer to Table 8) • Each of these subrou-
tines converts its associated statement by
developing an intermediate text representa
tion of the statement, which consists of
text entries in operator-operand pair for
mat, and constructing information table
entries for the operands of the statement.
The processing performed by these subrou
tines is similar and is described in the
following paragraphs.

20

Upon receiving control from the DSPTCH
IEKCDP subroutine, the keyword subroutine
associated with the keyword statement being
processed places a special operator into
the text area. This operator is referred
to as a primary adjective code and defines
the type (e.g., DO, ASSIGN) of the state
ment. A left-to-right scan of the source
statement is then initiated. The first
operand is obtained, an information table
entry is constructed for the operand and
entered into the information table (only if
that operand was not previously entered) ,
and a pointer to the entry's location in
that table is placed into the text area.
The mode (e.g., integer, real) and type
(e.g., negative constant, array) of the

operand are then placed into text.

Scanning is resumed and the next opera
tor is obtained and placed into the text
area. The next operand is then obtained,
an information table entry is constructed
for the operand and entered into the infor
mation table (again, only if that operand
was not previously entered) , and a pointer
to the entry's location is placed into the
text entry work area. The mode and type of
the operand are placed into the work area.
The text entry is then placed into the next
available location in the sub-block allo
cated for text entries of the type being
created.

This process is terminated upon recogni
tion of the end of the statement, which is
marked by a special text entry. The spe
cial text entry contains an end mark opera
tor and the ISN of the source statement as
an operand.

Note: Certain keyword subroutines in this
group, namely those that process statements
that can contain an arithmetic expression
(e.g., IF and CALL statements) and those
that process statements that contain I/O
list items (e.g., READ/WRITE statements},
pass control to the arithmetic subroutines
to complete the processing of their asso
ciated keyword statements.

Arithmetic Subroutines

The arithmetic subroutines (refer to
Table 8) receive control from the DSPTCH
IEKCDP subroutine, or from various keyword
subroutines, and make use of the utility
subroutines in performing their functions,
which are to:

• Process arithmetic statements.

• Process statement functions.

• Complete the processing of certain key
word statements (READ, WRITE, CALL, and
IF.)

The following paragraphs describe the
processing of the arithmetic subroutines
according to their functions.

Arithmetic Statement Processing: In pro
cessing an arithmetic statement, the arith
metic subroutines develop an intermediate
text representation of the statement, and
construct information table entries for its
operands. These subroutines accomplish
this by following a procedure similar to
that described for keyword (table entry and
text) subroutines.

If one operator is adjacent to another,
the first operator does not have an asso
ciated operand. In the example A=B(I) +C,
the operator + has variable C as its asso
ciated operand, whereas the operator) has
no associated operand. If an operator has
no associated operand, a zero (null)
operand is assumed.

Statement Function Processing: In convert
ing a statement function to usable input to
subsequent phases of the compiler, the ari
thmetic subroutines develop an intermediate
text representation of the statement func
tion using sequence numbers as replacements
for dummy arguments. These subroutines
also construct information table entries
for those operands that appear to the right
of the equal sign and that do not corres
pond to dummy arguments. The following
paragraphs describe the processing of a
statement function by the arithmetic
subroutines.

When processing a statement function,
the arithmetic subroutines:

• Scan the portion of the statement func
tion to the left of the equal sign,
obtain each dummy argument, assign each
dummy argument a sequence number (in
ascending order) , and save the dummy
arguments and their associated sequence
numbers for subsequent use.

• Scan the portion of the statement func
tion to the right of the equal sign and
obtain the first (or next) operand.

• Determine if the operand corresponds to
a dummy argument. If it does corre
spond, its associated sequence number
is placed into the text area. If it
does not correspond, a dictionary entry
for the operand is constructed and
entered into the information table, and
a pointer to the entry's location is
placed into the text area. (An opening
parenthesis is used as the operator of
the first text entry developed for each
statement function and a closing paren
thesis is used as the operator of the
last text entry developed for each
statement function.)

• Resume scanning, obtain the next opera
tor, and place it into the text area.

• Obtain the operand to the right of this
operator and process it as described
above.

Keyword Statement Completion: In addition
to processing arithmetic statements and
statement functions, the arithmetic subrou
tines also complete the processing of key
word statements that may contain arithmetic
expressions or that contain I/O list items.
The keyword subroutine associated with each
such keyword statement performs the initial
processing of the statement, but passes
control to the arithmetic subroutines at
the first possible occurrence of an arith
metic expression or an I/O list item. (For
example, the keyword subroutine that pro
cesses CALL statements passes control to
the arithmetic subroutines after it has
processed the first opening parenthesis of
the CALL, because the argument that follows
this parenthesis may be in the form of an
arithmetic expression.) The arithmetic
subroutines complete the processing of
these keyword statements in the normal
manner. That is, they develop text entries
for the remaining operator-operand pairs
and construct information table entries for
the remaining operands.

Utility Subroutines

The utility subroutines (refer to Table
8) aid the keyword, arithmetic, and DSPTCH
IEKCDP subroutines in performing their
functions. The utility subroutines are
divided into the following groups:

• Entry placement subroutines.
• Text generation subroutines.
• Collection subroutines.
• Conversion subroutines.

Entry Placement Subroutines: The utility
subroutines in this group place the various
types of entries constructed by the key
word, arithmetic, and DSPTCH-IEKCDP subrou
tines into the tables or text areas (i.e.,
sub-blocks) reserved for them.

Text Generation Subroutines: The utility
subroutines in this group generate text
entries (supplementary to those developed
by the keyword and arithmetic subroutines)
that:

• Control the execution of implied DO's
appearing in I/O statements.

• Increment DO indexes and test them
against their maximum values.

• Signify the end of a source statement.

Section 2: Discussion of Major Components 21

Collection Subroutines: These utility sub
routines perform such functions as gather
ing the next group of characters (i.e., a
string of characters bounded by delimiters}
in the source statement being processed,
and aligning variable names on a word boun
dary for comparison to other variable
names.

Cofiversion Subroutines: These utility sub
routines convert integer, real, and complex
constants to their binary equivalents.

Subroutine STALL-IEKGST

STALL-IEKGST completes phase 10 proces
sing by:

• Generating entry code for the object
module.

• Translating phase 10 format text into
object code for the object module and
freeing space formerly occupied by the
format text.

• Checking to see if any literal data
text exists and if it does, generating
object code for the literal data text.

• Processing any equivalence entries that
were equivalenced before being
dimensioned.

• Setting aside space in the object
module for the problem program save
area and for computed GO TO stateITent
branch tables created by phase 10.

• Checking the statement number section
of the information table for undefined
statement numbers.

• Rechaining variables in the dictionary
by sorting alphabetically the entries
in each chain.

• Assigning coordinates based on the
usage count set by phase 10 when the
OPT option is greater than zero.

• Processing common entries in the inf or-
mation table by computing the off set
(displacement) of each variable in the

common block from the start of the com
mon block.

• Processing equivalence entries in the
information table.

Generating FORMAT Code: If the source
module contains READ/WRITE statements
requiring FORMAT statements, the associated
phase 10 format text must be put into a
form recognizable by IHCFCOMH. STALL
IEKGST calls subroutine FORMAT-IEKTFM which
develops the necessary form by obtaining

22

the phase 10 intermediate text representa
tion of each FORMAT statement, and trans
lating each element (e.g., H format code
and field count) of the statement according
to Table 1. FORMAT-IEKTFM enters the
translated statement along with its rela
tive address into TXT records. It also
inserts the relative address of the trans
lated statement into the address constant
for the statement number associated with
the FORMAT statement.

STALL-IEKGST reserves storage within
text information for the variables and
arrays of the module between the last con
stant and the first translated FORMAT
statement, or the first object-time name
list dictionary, if FORMAT statements do
not exist in the module. To accomplish
this, STALL-IEKGST assigns to the first
translated FORMAT statement (or object-time
namelist dictionary} a relative address
equal to the number of bytes occupied by
the constants, variables, and arrays of the
module. ·

Processing Equivalence Entries: STALL
IEKGST completes the processing of any
equivalence entries in the information
table which were not completed by prior
routines in phase 10. These equivalence
entries are the ones that were equivalenced
before being dimensioned. STALL-IEKGST
computes offsets for each variable in the
equivalence group.

Processing Literal Data Text: S~ALL-IEKGST
checks a pointer in the communication table
(NPTR (1,27)) to see if there are literal

constants to process. If there are, STALL
IEKGST calls IEKTLOAD and passes it the
location and length of the literal string
which IEKTLOAD uses to generate literal
data text in the object module.

STALL-IEKGST follows the chain in the
literal constant dictionary entry and con
tinues to call IEKTLOAD to process this
text. After all the literal data text has
b~en generated, STALL-IEKGST adjusts the
relative object location counter by the
amount of text generated.

Reserving Space for the Save Area: STALL
IEKGST sets aside space for the save area
of the program being compiled. ~he amount
of space reserved depends on the type of
program being processed. For a program
with no external CALLs, 16 bytes are
required for the save area. A program with
external CALLS needs a save area 76 bytes
long.

Space in the object module for branch
tables created by phase 10 for computed GO
TO statements is also reserved by
STALL-IEKGST.

•Table 1. FORMAT Statement Translation
r-------------------T----------------------------T--------------------------------------1
I I I Translated Form (in hexadecimal) I

I FORMAT I ~------------T------------T------------~
I Specification I Description I 1st byte I 2nd byte I 3rd byte I

t-------------------+----------------------------+------------+------------+----------~-~
I beginning of statement 02 I
I n (group count 04 I n
I n field count 06 n
I nP scaling factor 08 n*
I Fw.d F-conversion OA w d
I Ew.d E-conversion oc w d
I Dw.d D-conversion OE w d
I Iw I-conversion 10 w
I Tn column set 12 n
I Aw A-conversion 14 w
I Lw L-conversion 16 w
I nX skip or blank 18 n
I nHtext
I or literal data 1A n text
I 'text'
I) group end 1C
I / record end 1E
I Gw.d G-conversion 20 w d
I end of statement 22
I Zw Hexadecimal conversion I 24 I w I I r-------------------i ____________________________ i ____________ i ____________ i------------~
l*The first hexadecimal bit of the byte indicates the scale factor sign (0 if positive, I
11 if negative). The next seven bits contain the scale factor magnitude. I l ___ J

Checking for Undefined Statement Numbers:
STALL-IEKGST performs a dictionary scan for
undefined statement numbers. This action
is taken to ensure that every statement
number that is referred to is also defined.
STALL-IEKGST scans the chain of statement
number entries in the information table
(refer to Appendix A: "Statement Number/

Array Table") and examines a bit in the
byte A usage field of each such entry.
This bit is set by phase 10 to indicate
whether or not it encountered a definition
of that statement number. If the bit indi
cates that the statement number is not
defined, STALL-IEKGST places an entry in
the error table for later processing by
phase 30.

Rechaining Entries for Variables: STALL
IEKGST scans dictionary entries for
variables. Previously executed routines in
phase 10 sorted each variable chain alpha
betically and left the pointer at the mid
i tern of the chain (for dictionary search
speed) • STALL-IEKGST resets the pointer to
the first (alphabetically lowest) iterr in
the chain. The rechaining frees storage in
each entry for later use by CORAL in phase
15. It then sets the adcon field of each
dictionary entry for a variable to zero.
STALL-IEKGST also constructs dictionary
entries for the imaginary parts of complex
variables and constants.

Assigning Coordinates: STALL-IEKGST calls
subroutine IEKKOS which assigns coordinates

to variables and constants in the following
manner:

• The first 59 unique variables and/or
constants appearing in the text created
by phase 10 are assigned coo~dinates 2
through 60, respectively. 1 The coor
dinates are assigned in order of
increasing coordinate number. ~ coor
dinate between 2 and 60 may be assigned
to a base variable if fewer than 59
unique variables and constants appear
in the text.)

• The next 20 unique variables are
assigned coordinates 61 through 80,
respectively. The coordinates are
assigned in order of increasing coor
dinate numter. (If constants are
encountered after coordinate 60 has
been assigned, they are not assigned
coordinates.)

• The coordinates 81 through 128 are
reserved for assignment to base
variables (refer to CORAL Processing,
"Adcon and Base Variable Assignment") •

1 The coordinate 1 is assigned to items such
as unit numbers (i.e., data set reference
numbers) , complex variables in common,
arrays that are equivalenced, variables
that are equivalenced to arrays, and
variables that are equivalenced to
variatles of different modes.

Section 2: Discussion of Major Components 23

Subroutine IEKKOS assigns the first
variable or constant in phase 10 text a
coordinate number of 2, which indicates
that the usage information for that vari
able or constant, regardless of the block
in which it appears, is to be recorded in
bit position 2 of the MVS, MVF, and MVX
fields. IEKKOS assigns the second variable
or constant a coordinate number of 3 and
records its usage information in bit posi
tion 3 of the three fields. IEKKOS con
tinues this process until coordinate 60 has
been assigned to a variable or constant.
After coordinate number 60 has been
assigned, IEKKOS only assigns coordinates
to the next 20 unique variables. IEKKOS
does not assign coordinates to or gather
usage information for unique constants
encountered after coordinate number 60 has
been assigned. It assigns these variables
coordinates 61 through 80, respectively.
It records the usage information for each
variable at the assigned bit location in
the three fields. IEKKOS does not assign
coor.dinates to or gather usage information
for unique variables encountered after
coordinate number 80 has been assigned.

Subroutine IEKKOS uses a combination of
the MCOORD vector, the MVD table, and the
byte-C usage fields of the dictionary
entries (refer to Appendix A, "Dictionary")
to assign, keep track of, and record coor
dinate numbers. MCCORD contains the number
of the last coordinate assigned. The MVD
table is composed of 128 entries, with each
entry containing a pointer to the dic
tionary entry for the variable or constant
to which the corresponding coordinate num
ber is assigned or to the information table
entry for the base variable to which the
corresponding coordinate is assigned. The
coordinate number assigned to a variable or
constant is recorded in the byte-C usage
field of the dictionary entry for that
variable or constant.

Subroutine IEKKOS does not assign coor
dinates to or record usage information for
unique constants encountered in text after
coordinate number 60 has been assigned and
unique variables encountered in text after
coordinate number 80 has been assigned. If
IEKKOS encounters a new constant after
coordinate 60 has been assigned or a new
variable after coordinate 80 has been
assigned, it records a zero in the byte-C
usage field of its associated dictionary
entry. Phase 20 optimization deals only
with those constants an.a variables that
have been assigned coordinate numbers
greater than or equal to 2 and less than or
equal to 80.

Processing Common Entries in the Informa
tion Table: STALL-IEKGST processes common
entries in the information table. It com
putes the offsets (displacements) of

24

variables and arrays from the start of the
common block containing them and calculates
the total size in bytes of each common
block. STALL-IEKGST records the offsets in
the dictionary entries for the variables
and the block size in the common table
entry for the name of the common block.
The offsets are used later to assign rela
tive addresses to common variables. The
block size is used by phase 25 to generate
a control section for the common block.
(Refer to Appendix A: "Common Table.")

STALL-IEKGST also places a pointer to the
common table entry for the block name in
the dictionary entry for each variable or
array in that common block.

Processing Equivalence Entries in the
Information Table: STALL-IEKGST gathers
additional information about equivalence
groups and the variables in them. It com
putes a group head 1 and the offset (dis
placement} of each variable in the group
from this head. It records this informa
tion in the common table entries for the
group and for the variables, respectively.
(Refer to Appendix A: "Common Table".)

STALL-IEKGST identifies and flags in their
dictionary entries variables and arrays put
into common via the EQUIVALENCE statement.
It also checks the variables and arrays for
errors to verify that the associated common
block has not been improperly extended
because of the EQUIVALENCE declaration. If
a common block is legitimately enlarged by
an equivalence operation, STALL-IEKGST
recomputes the size of the common block and
enters the size into the common table entry
for the name of the common block.

If the name of a variable or array
appears in more than one equivalence group,
STALL-IEKGST recognizes the combination of
groups and modifies the dictionary entries
for the variables to indicate the equiva
lence operations. STALL-IEKGST checks
arrays appearing in more than one equiva
lence group to verify that conflicting
relationships have not been established for
the array elements.

During the processing of both common and
equivalence information, a check is made to
ensure that variables and arrays fall on
boundaries appropriate to their defined
types. If a variable or array is improper
ly aligned, STALL-IEKGST places an entry in
the error table for processing by phase 30.

1 The head of an equivalence group is that
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive displacement.

CONSTRUCTING A CROSS REFERENCE

If the XREF option is selected, a two
part cross reference is constructed and
written on the SYSPRINT data set immediate
ly following the source listing. The first
part of the cross reference is a list of
all symbols used by the program and the
ISNs of the statements in which each symbol
appears. The symbols are written in alpha
betic order and grouped by character
length, first one-character symbols in
alphabetic order, then two-character sym
bols in alphabetic order, etc. The second
part of the cross reference is a sequential
list of the statement numbers used on the
program each followed by the ISN of the
statement in which the statement number is
defined and also by a list of the ISNs of
statements that ref er to the statement
number.

XREF processing occurs during phase 10
and in a small separate overlay segment
between phases 10 and 15. This segment,
XREF-IEKXRF, is called only if the XREF
option is selected.

Phase 10 Preparation for XREF Processing

If the XREF option is chosen phase 10
subroutines LABTLU-IEKCLT and CSORN-IEKCCR
perform additional processing for statement
numbers and symbols. Also, phase 10 sub
routine IEKXRS, which is not used unless
the XREF option is chosen, is called.

LABTLU-IEKCLT fills the adcon table,
which is used as an XREF buffer, with XREF
entries for statement number definitions
and statement number references. The for
mat of an XREF entry for statement numbers
and symbols is:

---------4 bytes----------
r-------------------T---------------------1
I Pointer to next I I
IXREF entry* I ISN I
L-------------------i---------------------J
* Relative to the beginning of the buffer.

Each time the buffer is full, LABTLU
IEKCLT calls IEKXRS to write the buffer on
SYSUT2. (The contents of SYSUT2 is later
read in by XREF-IEKXRF and processed to
produce a cross reference.) A count of the
number of times the buffer is written out
is kept in the communication table NPTR
(2,20). Each time it finishes writing the
buffer on SYSUT2, IEKXRS returns control to
LABTLU-IEKCLT.

LABTLU-IEKCLT uses parts of the dic
tionary entries for statement numbers as
pointers to keep track of its processing.
It also adds a word (word 9) to each state
ment number dictionary entry to be used as

a sequence chain field so that XREF-IEKXRF
can create a sequential list of statement
numbers used in the program.

The words used by LABTLU-IEKCLT in dic
tionary entries for statement numbers are:

Word 5 - A pointer to the most recent
statement number entry in the
adcon table (XREF buff er) if the
statement number reference being
processed by LABTLU-IEKCLT is not
a definition of a statement numb
er. Word 5 is not used for state
ment number entries that corres
pond to definitions of statement
numbers.

Word 6 - Bytes 1 and 2 - The number of
times the XREF buffer has been
written on SYSUT2 at the time the
statement number entry is pro
cessed by LABTLU-IEKCLT.

Bytes 3 and 4 - A pointer to the
first XREF buffer entry for the
statement number.

Word 1 - Contains an ISN if the reference
is to a definition of a statement
number; contains -1 if the state
ment number has been previously
defined.

Word 9 - Statement number sequence chain
field.

CSORN-IEKCCR processes symbols for XREF
much the same way as LABTLU-IEKCLT pro
cesses statement numbers. However, for
symbols, no processing is required for
definitions and there is no sequencing.

CSORN-IEKCCR adds one word to the dic
tionary entries for variables making a
total of ten words in each entry. Word 10
for a variable entry is used in the same
way as word 6 for a statement number entry.
The first half of word 10 indicates the
number of times the buffer has been written
on SYSUT2 at the time the variable entry is
processed by CSORN-IEKCCR. The second half
of word 10 contains a pointer to the first
XREF buffer entry for the symbol. The
first half of word 8 is used as a pointer
to the last (most recent) XREF buff er entry
for the symbol.

Subroutine IEKXRS is also used during
symbol processing to write the XREF buffer
out on SYSUT2 whenever the buff er becomes
full.

XREF Processing

If the XREF option is selected, the FSD
calls XREF-IEKXRF after the completion of
STALL-IEKGST processing and before phase

Section 2: Discussion of Major Components 25

15. XREF-IEKXRF is a separate overlay seg
ment that overlays phase 10 and is overlaid
by phase 15.

XREF-IEKXRF reads from SYSUT2 all buff
ers that were written out by IEKXRS during
LABTLU-IEKCLT and CSORN-IEKCCR processing.
It then sets up linkage between buffers for
the symbol or statement number to create
one sequential chain of ISNs and writes out
the symbol or statement number with its
ISNs on SYSPRINT. This process continues
until all symbols and statement numbers
with their ISNs are written on SYSPRINT.
Control is then returned to the FSD which
calls phase 15.

PHASE 15

Before phase 15 gains control, phase 10
has read the source statements, built the
information table, and restructured the
source statements into operator-operand
pairs. When given control, phase 15 trans
lates the text of arithmetic expressions,
gathers information about branches and
variables, converts phase 10 data text to a
new text format, assigns relative addresses
to constants and variables, and generates
address constants when needed, to serve as
address references. Thus, phase 15 modi
fies and adds to the information table and
translates phase 10 normal and data text to
their phase 15 formats.

Phase 15 is divided into two overlay
segments, PHAZ15, and CORAL. Chart 05
shows the overall logic of the phase.

PHAZ15 translates and reorders the text
entries for arithmetic expressions from the
operator-operand format of phase 10 to a
four-part form suitable for phase 20 pro
cessing. The new order permits phase 25 to
generate machine instructions in the
correct sequence. PHAZ15 blocks the text
and collects information describing the
blocks. The information, needed during
phase 20 optimization, includes tables on
branching locations, and on constant and
variable usage.

CORAL, the second overlay segment of
phase 15, performs four functions. It
first converts phase 10 data text to a form
more easily evaluated by subroutine DATOUT
IEKTDT. CORAL then assigns relative
addresses to all variables, constants, and
arrays. During one phase of relative
address assignment, CORAL rechains phase 15
data text in order to simplify the genera
tion of text card images by subroutine
DATOUT-IEKTDT. CORAL also assigns address
constants, when needed, to serve as address
references for all operands.

26

PHAZ15 PROCESSING

The functions of PHAZ15 are text block
ing, arithmetic translation, information
gathering, and reordering of the statement
number chain. Information gathering occurs
only if optimization (either intermediate
or complete) has been selected; it takes
place concurrently with text blocking and
arithmetic translation during the same scan
of intermediate text. Reordering of the
statement number chain occurs after PHAZ15
has completed the blocking, arithmetic
translation, and information gathering.

PHAZ15 divides intermediate text into
blocks for convenience in obtaining infor
mation from the text. Each block begins
with a statement number definition and ends
with the text entry just preceding the next
statement number definition. An attempt is
made to limit blocks to less than 100 text
items as an aid to register routines in
phase 20. PHAZ15 records information
describing a text block in a statement
number text entry and in an information
table statement number entry.

During the same scan of text in which
blocking occurs, PHAZ15 translates arith
metic expressions. The conversion is from
the operation-operand pairs of phase 10 to
a four part format (phase 15 text). The
new format follows the sequence in which
algebraic operations are performed. In
general, phase 15 text is in the same order
in which phase 25 will generate machine
instructions. 1 PHAZ15 copies, unchanged
into the text area, phase 10 text that does
not require arithmetic translation or ether
special handling.

During the building of phase 15 text for
a given block (if optimization has been
selected), PHAZ15 constructs tables of
information on the use of constants and
variables in that text block. It stores
information on variables and constants that
are used within a block, and variables that
are defined within a block. If QPT=2
optimization has been selected, PHAZ15 also
gathers information on variables not first
used and then defined. The foregoing usage
information is recorded in the statement
number text for each block for later use by
phase 20.

Concurrently with text blocking, arith
metic translation, and gathering of
constant/variable usage information, PHAZ15
discovers branching text entries and reco
rds the branching or connection informa
tion. This information, consisting ini
tially of a table of branches from each

1 If optimization is selected, phase 20 may
further manipulate the phase 15 text.

text block (forward
in a special array.
information is used
opti:m.ization.

connections} , is stored
Branching (connection}

during phase 20

After PHAZ15 has completed the previous
ly mentioned processing, it reorders the
statement number chain of the information
table. The original order of statement
numbers, as phase 10 recorded them, was in
order of their occurrence in source state
ments as either definitions 1 or operands.
The new sequence after phase 15 reordering
is according to source statement occurrence
as definitions only. The new order is
established to facilitate phase 20
processing.

Lastly, PHAZ15 acquires a table of back
ward connection information consisting of
branches into each statement number, or
text block. PHAZ15 derives this informa
tion from the forward connection inf orma
tion it previously obtained. Thus, connec
tion information is of two types, forward
and backward. PHAZ15 records a table of
branches from each text block and a table
of branches into each text block. Connec
tion information of both types is used dur
ing phase 20 optimization.

Charts 06, 07, and 08 depict the flow of
control during PHAZ15 execution.

Text Blocking

During its scan and conversion of phase
10 text, PHAZ15 sections the module into
text blocks, which are the basic units upon
which the optimization and register assign
ment processes of phase 20 operate. A text
block is a series of text entries that
begins with the text entry for a statement
number and ends with the text entry that
immediately precedes the text entry for the
next statement number. (The statement
number may be either programmer defined or
compiler generated.) When PHAZ15 encoun
ters a statement number definition (i.e.,
the phase 10 text entry for a statement
number) it begins a text block. It does
this by constructing a statement number
text entry (refer to Appendix B, "Phase 15
Intermediate Text Modifications"). PHAZ15
also places a pointer to the statement
number text entry into the statement number
entry (information table} for the asso
ciated statement number.

PHAZ15 resumes its scan and converts the
phase 10 text entries following the state
ment number definition to their phase 15
formats. After each phase 15 text entry is

1 A statement number occurs as a definition
when that statement number appears to the
left of a source statement.

formed and chained into text, PHAZ15 places
a pointer to that text entry into the
BLKEND field of the previously constructed
statement number text entry. This field is
thereby continually updated to point to the
last phase 15 text entry.

When the next statement number defini
tion is encountered, PHAZ15 begins the next
text block in the previously described
manner. A pointer to the text entry that
ends the preceding block has already been
recorded in the BLKEND field of the state
ment number text entry that begins that
block. Thus, the boundaries of a text
block are recorded in two places: the
beginning of the block is recorded in the
associated statement number entry (inforroa
tion table} ; the end of the block is
recorded in the BLKEND field of the asso
ciated stateroent number text entry. All
text blocks in the module are identified in
this manner.

Note: For each ENTRY statement in the
source module, phase 10 generates a state
ment number text entry and places it into
text preceding the text for the ENTRY
statement. Phase 10 also ensures that the
statement following an ENTRY statement has
a statement number; if a statement number
is not provided by the prograromer, phase 10
generates one. The text entries for each
ENTRY statement therefore form a separate
text block, which is referred to as an
entry block.

Figure 3 illustrates the concept of text
blocking. In the figure, two-text blocks
are shown: one beginning with statement
number 10; the other with statement number
20. The statement number entry for state
ment number 10 contains a pointer to the
statement number text entry for statement
number 10, which contains a pointer to the
text entry that immediately precedes the
statement number text entry for statement
number 20. Similar pointers exist for the
text block starting with statement number
20.

Arithmetic Translation

Arithmetic translation is the reordering
of arithmetic expressions in phase 10 text
format to agree with the order in which
algetraic operations are performed. Arith
metic expressions may exist in IF, CALL,
and ASSIGN statements and I/O data-list, as
well as in arithmetic statements and state
ment functions.

When PHAZ15 detects a primary adjective
code for a statement that needs arithmetic
translation, it passes control to the
arithmetic translator (ALTRAN-IEKJAL} • If
the phase 10 text for the statement does
not require any type of special handling,

Section 2: Discussion of Major Components 27

Statement Number Entry for
Statement Number 20

l l l I I 20 J

Statement Number Entry for
Statement Number 10

10

* LDF is the mnemonic for the statement number operator

Figure 3. Text Blocking

ALTRAN-IEKJAL reorders it into a series of
phase 15 text entries that reflect the
sequence in which arithmetic operations are
to be carried out. During the reordering
process, ALTRAN-IEKJAL calls various sup
porting routines that perform checking and
resolution (e.g., the resolution of opera
tions involving operands of different
modes) functions.

Throughout the reordering process,
ALTRAN-IEKJAL is checking for text that
requires special handling before it can be
placed into the phase 15 text area. (Spe
cial handling is required for complex
expressions, terms involving unary minuses
(e.g., A=-B) , subscript expressions, state-

ment function references, etc.) If special
text processing is required, ALTRAN-IEKJAL
calls one or more subroutines to perform
the required processing.

During reordering and, if required, spe
cial handling, subroutine GENER-IEKLGN is
called to format the phase 15 text entries
and to place them into the text area.

REORDERING ARITHMETIC EXPRESSIONS: The
reordering of arithmetic expressions is
done by means of a pushdown table. 'I'his
table is a last-in, first-out list. After
the table is initialized (i.e., the first
operator-operand pair of an arithmetic
expression is placed into the table) , the
arithmetic translator (ALTRAN-IEKJAL) com
pares the operator of the next operator
operand pair (term) in text with the opera
tor of the pair at the top of the pushdown
table. As a result of each comparison,
either a term is transferred from phase 10

28

PHASE 15 TEXT

LDF* l l -L
J-10

~

LDF* l l -L
l-20

~

LDF* l l l --

text to the table, or an operator and two
operands (triplet) are brought from the
table to the phase 15 text area, eliminat
ing the top term in the pushdown table.

The comparison made to determine whether
a term is to be placed into the pushdown or
whether a triplet is to be taken from the
pushdown is always between the operator of
a term in phase 10 text and the operator of
the top term in the table. Each comparison
is made on the basis of relative forcing
strength. A forcing strength is a value
assigned to an operator that determines
when that operator and its associated
operands are to be placed in phase 15 text.
The relative values of forcing strengths
reflect the hierarchy of algebraic opera
tions. The forcing strengths for the
various operators appear in Table 2.

When the arithmetic translator (ALTRAN
IEKJAL) encounters the first operator
operand pair (phase 10 text entry) of a
statement, the pushdown table is empty.
Since the translator cannot yet make a com
parison between text entry and table ele
ment, it enters the first text entry in the
top position of the table. The translator
then compares the forcing strength of the
operator of the next text entry with that
of the table element. If the strength of
the text operator is greater than that of
the top (and only) table element, the text
entry (operator-operand pair) becomes the
top element of the table. The original top
element is effectively "pushed down" to the
next lower position. In Figure 4, the
number-1 section of the drawing shows the
pushdown ta·ble at this time.

Table 2. Operators and Forcing Strengths
r----------------~----------T------------1

I I Forcing I
I Operator I Strength I
~----------------~----------+------------~
IEnd Mark 1
I= 2
I> 3
1, 6
I .OR. 7
I -AND. 8
I -NOT. 9
I . EQ • , • NE. , 1 0
I • GT. , • LT. ,
I -GE., • LE.
I +, - minus (
I*, /
I**
I Cf --left parenthesis after

a function name I
I
I

(s --left parenthesis after
an array name

I (

11
12
13
14

15

16
l----------------------------i------------

The operator of the next text entry
(operator C--operand C at section 2) is

compared with the top table element (opera
tor B--operand B at section 1) in a similar
manner.

When a comparison of forcing strengths
indicates that the strength of the text
operator (operator C, section 2) , is less
than or equal to that of the top table ele
ment (operator B) , the table element is
said to be •forced." The forced operator
(operator B) is placed in the new phase-15
text entry (section 3 of the figure) with
its operand (operand B) and the operand of
the next lower table entry (operand A) •
Note that ALTRAN-IEKJAL has generated a new
operand t (see section 3) called a "tem
porary." A temporary is a compiler-

1. Text in Pushdown Table

Operator Operand

Top Element Op B Oprnd B

Op A Oprnd A

4. New Top Element of Pushdown

Op A

generated operand in which a preliminary
result may be held during object-module
execution. 1 With operator B, operand B, and
operand A (a triplet) removed from the
pushdown table, the previously entered
operator-operand pair (operator A, section
1) now becomes the top element of the table
(section 4) • ALTRAN-IEKJAL assigns the

previously generated temporary t as the
operand of this pair. This temporary
represents the previous operation (operator
B--operand A--operand B) •

Comparisons and text-to-table exchanges
continue, a higher strength text operator
"pushing• a phase 10 text entry into the
table and a lower strength text operator
"forcing" the top table operator and its
operands (triplet) from the table. In each
case, the forced tatle items tecome the new
phase 15 text entry. An exception to the
general rule is a left parenthesis, which
has the highest forcing strength. Opera
tors following the left parenthesis can be
forced from the table only by a right
parenthesis, although the intervening
operators (between the parentheses) are of
lower forcing value. When the translator
reaches an end mark in text, its forcing
strength of 1 forces all remaining elements
from the table.

SPECIAL PROCESSING OF ARITHMETIC EXPRES
SIONS: As stated before, arithmetic trans
lation involves reordering a group of phase
10 text entries to produce a new group of
phase 15 text entries representing the same
source statement. Certain types of
entries, however, need special handling
(for example, subscripts and functions) •

1 A given temporary may be eliminated by
phase 20 during optimization.

2. Phase 10 Text Entries

Operator Operand

OpC Oprnd C Current phase 10 text entry

Op D Oprnd D Next phase 10 text entry

3. New Phase 15 Text Entry

Op B Oprnd A Oprnd B

Operator Operand 1 Operand 2 Operand 3

NOTE: A phase 15.text entry having an arithmetic operator may be envisioned as
operand 1 =operand 2 - operator - operand 3, where the equal sign is implied.

Figure 4. Text Reordering Via the Pushdown Table

Section 2: Discussion of Major Compuuents 29

When it has been determined that special
handling is needed, control is passed to
one or more other subroutines (ref er to
Chart 07) that perform the desired
processing.

The following expressions and terms need
special handling before they are placed in
phase 15 text: complex expressions, terms
involving a unary minus, terms involving
powers, commutative expressions, subscript
expressions, subroutine or function subpro
gram references, statement function
references, and expressions involved in
logical IF statements.

Complex Expressions: A complex expression
is converted into two expressions, a real
expression and an imaginary one. For real
elements in the expression, complex tem
poraries are generated with zero in the
imaginary part and the real element in the
real part. For example, the complex
expression B + C + 25. is treated as:

r---1
I B + c + 25. I
I real real real I
~---~
I B + c + o. I
I imag imag irnag I
L---J

An expression is not treated as complex
if the "result" operand (left of the equal
sign in the source statement) is real. In
this case, the translator places only the
real part of the expression in phase 15
text. But if a complex multiplication,
division, or exponentiation is involved in
the expression, the real and imaginary
parts will appear in phase 15 text, but
only the real part of the result will be
used at execution time.

Terms Containing a Unary Minus: In terms
that contain unary minuses, the unary
minuses are combined with additive opera
tors (+,-) to reduce the number of opera
tors. This combining, done by subroutine
UNARY-IEKKUN, may result in reversed opera
tors or operands or both in phase 15 text.
For example, -(B-C) becomes C-B, and A+(-B)
becomes A-B. This process reduces the
number of machine instructions that phase
25 must generate.

Operations Involving Powers: Several kinds
of special handling are provided by subrou
tine UNARY-IEKKUN for operations involving
powers. Multiplications by powers of two
are converted to left shift operations. A
constant integer power of two raised to a
constant integer power is converted to the
equivalent left shift operation. Lastly, a
constant or variable raised to a constant
integer power is converted to a series of
multiplications (and a division into one,

30

if necessary) • This conversion is a func
tion of the level of optimization selected.
This handling requires less execution time
than using an exponentiation subroutine.

Commutative Operations: If an operation is
commutative (either operand can be operated
upon, such as in addition or multiplica
tion) , the two operands are reordered to
agree with their absolute locations in the
dictionary.

Subscripts: Subroutines SUBMULT-IEKKSM and
SUBABD-IEKKSA perform subscript processing.
Subscripted items are processed one at a
time throughout the subscript. If the sub
script itself is an expression, it is first
processed via the translator. Text entries
are then generated to multiply the sub
script variable by the dimension factor and
length. Each subscript item is handled in
a similar manner. When all subscript items
have been processed, phase 15 text entries
are generated to add all subscript values
together to produce a single subscript
value.

In general, during compilation, con
stants in subscript expressions are combi
ned, and their composite value is placed in
the displacement field of the phase 15 text
entry for the subscript item. (Refer to
Appendix B, "Phase 15/Phase 20 Intermediate
Text Modifications.") Phase 25 uses the
value in the displacement field to gener
ate, in the resultant object instructions,
the displacement for referring to the ele
ments in the array. This combining of con
stants reduces the number of instructions
needed during execution to compute the sub
script value.

Expressions Referring to In-Line Routines
or Subprograms: Expressions containing
references to in-line routines or subpro
grams are processed by the following sub
routines: FUNDRY-IEKJFU, BLTNFN-IEKJBF,
and DFUNCT-IEKJDF.

Arguments that are expressions are
reduced by the translator to a single tem
porary, which is used as the argument. If
an argument is a subscripted variable, sub
script processing (previously discussed)
reduces the subscript to a single sub
scripted item. Either subroutine DFUNC~
IEKJDF (for references to library routines)
or subroutine BLTNFN-IEKJBF (for references
to in-line routines) then conducts a series
of tests on the argument and performs the
processing determined by the results of the
tests.

If a function is not external and is in
the subprogram table (IEKLFT) (refer to
Appendix A, "Subprogram Table"), it is
determined if the required routine is in
line. Then the mode is tested. If the

routine is in-line and the mode is as
expected, BLTNFN-IEKJBF either generates
text or substitutes a special operator
(such as those for ABS or FLOAT} in the

phase 15 text so that phase 25 can later
expand the function. Phase 15 provides
some in-line routines itself.~ Instead of
placing a special operator in text, phase
15 inserts a regular operator, such as the
operator for AND or STORE.

If the mode and/or number of arguments
in an in-line function is not as expected,
the function is assumed to be external.

If the mode and/or number of arguments
in a library function is not as expected,
another test is performed. The test deter
mines if a previous reference was made
correctly for these arguments. If the pre
vious reference was as expected, it is
assumed that an error exists. Otherwise,
the function is assumed to be external.

If a function is assumed to be external
(either used in an EXTERNAL statement or

does not appear in the subprogram table) ,
text is generated to load the addresses of
any arguments that are subscripted
variables into a parameter list in the
adcon table. (If none of the arguments are
subscripted variables, the load address
items are not required.) A text entry for
a subroutine or a function call is then
generated. The operator of the text entry
is for an external function or subroutine
reference. The entry points to the dic
tionary entry for the name. The text
representation of the argument list is then
generated and placed into the phase 15 text
chain.

If a function is not external, is in the
subprogram table, but does not represent an
in-line routine, text is generated to load
the addresses of any arguments that are
subscripted variables into a parameter list
in the adcon table. ~oad address items
are not required if none of the arguments
are subscripted variables.) A text entry
having a library function operator is
generated. This entry points to the dic
tionary entry for the function. The text
representation of the argument list is then
generated and placed into the phase 15 text
chain.

Parameter List Optimization: Subroutine
DFUNCT-IEKJDF performs parameter list opti
mization. If two or more parameter lists
are identical, all but one can be eli
minated. Likely candidates for optimiza
tion are those parameter lists with (1) the

~BLTNFN-IEKJBF expands the following func
tions: TBIT, LAND, LOR, LXOR, ADDR, SNGL,
REAL, AIMAG, DCMPLX, DCONJG, and CONJG.

same number of parameters and (2) the same
nonzero parameters. When two such lists
are found, individual parameters are com
pared to determine of the lists are actual
ly identical or merely of the same format.

To make the comparison easier, the
Parameter List Optimization Table is for
med. Its format is:

r----------T----------T---------T---------1
!Number of !Number of !Pointer !Pointer I
lparameterslnonzero Ito NADCONlto next I
!in list lparametersltable !entry of I
I lin list !entry !like for-I
I I I lmat in I
I I I I this I
I I I I table I
~----------+-----~---+---------+---------~
I 1 byte I 1 byte I 1 byte I 1 byte I
l----------i-----~---i _________ i _________ J

For each unique parameter list, an entry is
made in the table describing the number of
parameters in the list, the numter of non
zero zero parameters in the list, a pointer
to the adcon table (refer to Appendix A:
"NADCON Table") and a pointer to the next
parameter list optimization table entry
that contains a like parameter list format,
but unlike individual parameters. When a
new parameter list is generated, the param
eter list optimization table is scanned for
a possible identical list. If one is
found, the parameters in the new list are
compared with the parameters in the old
list. If the lists are identical, a point
er to the old list is used as the new
list's pointer. If the lists are not
identical, an entry for the new list is
made in the tatle and chained to the last
like (in format) entry. For example:

r----------T----------T-------T-----------1
!Number of !Number of INADCON !Pointer to I
f parametersf nonzero f Table !next entry I
I lparameterslpointerlof like I
I I I I format I
~----------+----------+-------+-----------~
I 20 I 16 I I ~

c:i=-=:2a _____ t ____ 16----t-------t-----------~ I
~----------+----------+-------+-----------
! 1 o I 7 I I
~----------+----------+-------+-----------~
I 30 I 25 I I

20 16 I
---------- ---------- ------- -----------

10 7 I

20 I 16 I I - I
~----------+----------+-------+-----------~
I I I I I
I I I I I
---------- ---------- ------- -----------

30 I 25 I I I l __________ i __________ i _______ i ___________ J

Section 2: Discussion of Major Components 31

Parameter list optimization is limited
to (1) 100 entries in the parameter list
optimization table or (2) 255 entries in
the adcon table. No further parameter list
optimization is attempted if either limit
is exceeded.

Expressions Containing Statement Function
References: For expressions containing
statement function references, the argu
ments of the statement function text are
reduced to single operands (if necessary) •
These arguments and their mode are stored
in an argument save table (NARGSV) , which
serves as a dictionary for the statement
function skeleton pointed to by the dic
tionary entry for the statement function
name. The argument save table is used in
conjunction with the usual pushdown proce
dure to generate phase 15 text items for
the statement function reference. When the
translator encounters an operand that is a
dummy argument, the actual argument corre
sponding to the dummy is picked up from the
argument save table and replaces the dummy
argument.

Logical Expressions: Subroutines ALTRAN
IEKJAL, ANDOR-IEKJAN, and RELOPS-IEKKRE
perform a special process, called anchor
point, on logical expressions containing
relational operators, ANDs, ORs, and NOTs,
so that, at object time, unnecessary logic
al tests are eliminated. With anchor-point
"optimization," only the minimum number of
object-time logical tests are made before a
branch or fall-through occurs. For
example, with anchor-point handling, the
statement IF(A.AND.B.AND.C) GO TO 500 will
produce (at object time) a branch to the
next statement if A is false, because B and
C need not be tested. Thus, only a minimum
number of operands will be tested. Without
anchor-point handling of the expression
during compilation, all operands would be
tested at object time. Similar special
handling occurs for text containing logical
ORs.

When a primary adjective code for a log
ical IF statement or an end-of-DO IF is
placed in the pushdown table, a scan of
phase 10 text determines if the associated
statement can receive anchor-point hand
ling. The statement can receive anchor
point handling if two conditions are met.
There must not be a mixture of ANDs and ORs
in the statement. A logical expression, if
it is in parentheses, must not be negated
by the NOT operator. If these two condi
tions are not met, special handling of the
logical expression does not occur.

Gathering Constant/Variable Usage
Information

During the conversion of the phase 10
text entries that follow the beginning of a

32

text block (i.e., the text entries that
follow a statement number definition) to
phase 15 format, the PHAZ15 subroutine
MATE-IEKLMA gathers usage information for
the variables and constants in that block.
This information is required during the
processing of the optimized path through
phase 20 (refer to "Phase 20") • If opti
mized processing is not selected, this
information is not compiled. Subroutine
MATE-IEKLMA records the usage information
in three fields (MVS, MVF, and MVX), each
128 bits long, of the statement number text
entry for the block (refer to Appendix B,
"Phase 15 Intermediate Text Modifica
tions") • The MVS field indicates which
variables are defined (i.e., appear in the
operand 1 position of a text entry) within
the text of the block. The MVF field indi
cates which variables, constants, and base
variables (refer to CORAL PROCESSING,
"Adcon and Base Variable Assignment") are
used (i.e., appear in either the operand 2
or operand 3 position of a text entry)
within the text of the block. The MVX
field indicates which var~ables are defined
but not first used (not busy-on-entry)
within the text of the block. MVX informa
tion is gathered for the second level of
optimization only.

Subroutine MATE-IEKLMA records the usage
information for a variable or constant at a
specific bit location within the three
fields. (Base variables are processed dur
ing CORAL processing.) The bit location at
which the usage information is recorded is
determined from the coordinate assigned to
the variable or constant by subroutine
IEKKOS.

After a phase 15 text entry has been
formed, subroutine MATE-IEKLMA is given
control to determine and record the usage
information for the text entry. It
examines the text entry operands in the
order: operand 2, operand 3, operand 1.
If operand 2 has not been assigned a coor
dinate, subroutine MATE-IEKLMA assigns it
the next coordinate, enters the coordinate
number into the dictionary entry for the
operand, and places a pointer to that dic
tionary entry into the MVD table entry
associated with the assigned coordinate
number. After MATE-IEKLMA has assigned the
coordinate, or if the operand was previous
ly assigned a coordinate, it records the
usage information for the operand. The
operand's associated coordinate bit in the
MVF field (of the statement number text
entry for the block containing the text
entry under consideration) is set on, indi
cating that the operand is used in the
block. MATE-IEKLMA executes a similar pro
cedure to process operand 3 of the text
entry.

If operand 1 of the text entry has not
been assigned a coordinate, MATE-IEKLMA
assigns it the next and records the follow
ing usage information for operand 1:

• Its associated coordinate bit in the
MVX field is set on only if the asso
ciated coordinate bit in the MVF field
is not on. (If the associated MVF bit
is on, operand 1 of the text entry was
previously encountered in the block as
a use and therefore is not not
busy-on-entry.)

• Its associated coordinate bit in the
MVS field is set on, indicating that it
is defined within the block.

This process is repeated for all the
phase 15 text entries that are formed fol
lowing the construction of a statement
number text entry and preceding the con
struction of the next statement number text
entry. When the next statement number text
entry is constructed, all the usage infor
mation for the preceding block has been
recorded in the statement number text entry
that begins that block. The same procedure
is followed to gather the usage information
for the next text block.

Gathering Forward Connection Information

An integral part of the processing of
PHAZ15 is the gathering of forward connec
tion information, which indicates which
text blocks pass control to which other
text blocks. Forward connection inf orma
tion is used during phase 20 optimization.

Forward connection information is reco
rded in a table called RMAJOR. Each RMAJOR
entry is a pointer to the statement number
entry associated with a statement number
that is the object of a branch or a fall
through. Because each statement number
entry contains a pointer to the text block
beginning with its associated statement
number (refer to "Text Blocking") , each
RMAJOR entry points indirectly to a text
block.

For each new text block, PHAZ15 places a
pointer to the next available entry in RMA
JOR into the forward connection field of
the associated statement numbe~ entry
(refer to Appendix A, "Statement Number/

Array Table") • The statement number entry
associated with the text block therefore
points to the first entry in RMAJOR in
which the forward connection information
for that block is to be recorded.

After starting a text block, PHAZ15 con
verts the phase 10 text following the
statement number definition to phase 15
text. As each phase 15 text entry is for
med, it is analyzed to determine if it is a

GO TO or compiler generated branch. If it
is either, a pointer to the statement num
ber entry for each statement number that
may be branched to as a result of the
execution of the GO TO or generated branch
is recorded in the next available entry in
RMAJOR. (If two or more branches to the
same statement number appear in the text
following a statement number definition and
before the next, only one entry is made in
RMAJOR for the statement number to be
branched to.)

When PHAZ15 encounters the next state
ment number definition, it starts a new
block. If the new block is an entry block,
PHAZ15 saves a pointer to its associated
statement number entry for subsequent use
and processes the text for the block.

If the new block is neither an entry
block nor an entry point (i.e., a block
immediately following an entry block) ,
PHAZ15 records the fall-through connection
information (if any) for the previous
block. If the previous block is terminated
by an unconditional branch, it does not
fall-through to the new block. If the pre
vious block can fall-through to the new
block, PHAZ15 records a pointer to the
statement number entry for the new block in
the next location of RMAJOR. It then flags
this as the last forward connection for the
previous l:::lock.

If the new l:::lock is an entry point
(i.e., a block immediately following an
entry block), PHAZ15 records the fall
through connection (if any) for the pre
vious non-entry block. It does this in the
manner described in the previous paragraph.
It then records the forward connection
information for all intervening entry
blocks (i.e., entry blocks between the pre
vious non-entry block and the new block) •
(PHAZ15 has saved pointers to the statement

numl:::er entries for all intervening entry
blocks.) Each such entry block passes con
trol directly to the new block and there
fore has only one forward connection. To
record the forward connection information
for the intervening entry blocks, PHAZ15
places a pointer to the next available
entry in RMAJOR into the forward connection
field of the statement number entry for the
first intervening entry block. In this
RMAJOR entry, PHAZ15 records a pointer to
the statement number entry for the new
l:::lock. It flags this entry as the last,
and only, RMAJOR entry for the entry block.
PHAZ15 repeats this procedure for the
remaining intervening entry blocks (if
any). PHAZ15 then proceeds to process the
new text block.

When all the connection information for
a block has been gathered, each RMAJOR
entry for the block, the first of which is

Section 2: Discussion of Major Components 33

pointed to by the statement number entry
for the block and the last of which is
flagged as such, points indirectly to a
block to which that block may pass control.

Figure 5 illustrates the end result of
gathering forward connection information
for sample text blocks. Only the forward
connection information for the blocks
beginning with statement numbers 10 and 20
is shown. In the figure, it is assumed
that:

• The block started by statement number
10 may branch to the blocks started by
statement numbers 30 and 40 and will
fall-through to the block started by
statement number 20 if neither of the
branches is executed.

• The block started by statement number
20 may branch to the blocks started by
statement numbers 40 and 50 and will
fall-through to the block started by
statement number 30 if neither of the
branches is executed.

Reordering the Statement Number Chain

After text blocking, arithmetic transla
tion, and, if complete optimization has
been specified, the gathering of constant/

variable usage information have been com
pleted, subroutine PHAZ15-IEKJA reorders
the statement number chain of the informa
tion table (refer to Appendix A, "Informa
tion Table•) • The original order of the
entries in this chain, as recorded by phase
10, was in the order of the occurrence of
their associated statement numbers as
either definitions or operands. The new
sequence of the entries after reordering is
according to the occurrence of their asso
ciated statement numbers as definitions
only.

Although the actual reordering takes
place after the scan of the phase 10 text,
preparation for it takes place during the
scan. As each statement number definition
is encountered, a pointer to the related
statement number entry is recorded. Thus,
during the course of processing, a table of
pointers to statement number entries, which
reflects the order in which statement num
bers are defined in the module, is built.
The order of the entries in this table also
reflects the order of the text blocks of
the roodule.

After the scan, PHAZ15-IEKJA uses this
table to reorder the statement number
entries. It places the first table pointer

PHASE 15 TEXT

LDF l l I - 10

[
Statement Number Entry for 10

LDF l l I - 20 [JI ITI 10 J T

[
Statement Number Entry for 20

LDF I l I - 30 J±lllJ20J J

Statement Number Entry for 30
L___+.

JIJITI3o] LDF l 1 l -40

RMAJOR J

L-.+ -30 !-------' I Statement Number Entry for 40

-40 fI I I1I40 J . -20 I--- '

J ~ -40

-so ~

l . -30 Statement Number Entry for 50
-a. LDF 11 1-so

{l J l1lsoJ J

L___+.

Figure 5. Forward Connection Information

34

into the appropriate field of the communi
cation t«ble (ref er to Appendix A, "Com
munication Table") ; it places the second
table pointer into the chain field of the
statement number entry that is pointed to
by the pointer in the communication table;
it places the third table pointer into the
chain field of the statement number entry
that is pointed to by the chain field of
the statement number entry that is pointed
to by the pointer in the communication
table; etc. When PHAZ15-IEKJA has per
formed this process for all pointers in the
table, the entries in the statement number
chain are arranged in the order in which
their associated statement numbers are
defined in the module. The new order of
the chain also reflects the order of the
text blocks of the module.

Gathering Backward Connection Information

After the statement number chain has
been reordered, and if optimization has
been specified, subroutine PHAZ15-IEKJA
gathers backward connection information.
This information indicates which text
blocks receive control from which other
text blocks. Backward connection informa
tion is used extensively throughout phase
20 optimization.

Subroutine PHAZ15-IEKJA uses the reor
dered statement number chain and the infor
mation in the forward connection table
(RMAJOR) to determine the backward connec
tions. It records backward connection
information in a table called CMAJOR in
C1520-IEKJA2. Each CMAJOR entry made by
PHAZ15-IEKJA for a particular text block
(block I) is a pointer to the statement

number entry for a block from which block I
may receive control. Because each state
ment number entry contains a pointer to its
associated text block (refer to "Text
Blocking") , each CMAJOR entry for block I
points indirectly to a block from which
block I may receive control.

Subroutine PHAZ15-IEKJA gathers backward
connection information for the text blocks
according to the order of the statement
number chain; it first determines and
records the backward connections for the
text block associated with the initial
entry in the statement number chain; it
then gathers the backward connection infor
mation for the block associated with the
second entry in the chain; etc.

For each text block, PHAZ15-IEKJA ini
tially records a pointer to the next avail
able entry in CMAJOR in the backward con
nection field (JLEAD) of the associated
statement number entry (ref er to Appendix
A, "Statement Number/Array Table"). The
statement number entry thereby points to
the first entry in CMAJOR in which the

backward connection information for the
block is to be recorded.

Then, to determine the backward connec
tion information for the block (block I) ~
PHAZ15-IEKJA obtains, in turn, each entry
in the statement number chain. (The
entries are obtained in the order in which
they are chained.) After PHAZ15-IEKJA has
obtained an entry, it picks up the forward
connection field (ILEAD) of that entry.
This field points to the initial RMAJOR
entry for the text block associated with
the obtained statement number entry.
(Recall that the RMAJOR entries for a block
indicate the blocks to which that block may
pass control.) PHAZ15-IEKJA searches all
RMAJOR entries for the block associated
with the obtained entry for a pointer to
the statement number entry for block I. If
such a pointer exists, the text block asso
ciated with the obtained statement number
entry may pass control to block I. There
fore, block I may receive control from that
block and PHAZ15-IEKJA records a pointer to
its associated statement number entry in
the next available entry in CMAJOR.
PHAZ15-IEKJA repeats this procedure for
each entry in the statement number chain.
Thus, it searches all RMAJOR entries for
pointers to the statement number entry for
block I and records in CMAJOR a pointer to
the statement number entry for each text
block from which block I may receive con
trol. PHAZ15-IEKJA flags the last entry in
CMAJOR for block I. When the statement
number chain has been completely searched,
PHAZ15-IEKJA has gathered all the backward
connection information for block I. Each
entry that PHAZ15-IEKJA has made for block
I, the first of which is pointed to by the
statement number entry for block I and the
last of which is flagged, points indirectly
to a block from which block I may receive
control.

Subroutine PHAZ15-IEKJA gathers the
backward connection information for all
blocks in the above manner. When all of
this information has been gathered, control
is returned to the FSD, which calls CORAL,
the second segment of phase 15.

Figure 6 illustrates the end result of
the gathering of backward connection infor
mation for sample text blocks. Cnly the
backward connections for the blocks begin
ning with statement numbers 40 and 50 are
shown. In the figure, it is assumed that:

• The block started by statement number
40 may receive control from the execu
tion of branch instructions that reside
in the blocks started by statement num
bers 10 and 20 and that it may receive
control as a result of a fall-through
from the block started by statement
number 30.

Section 2: Discussion of Major Components 35

Statement Number Entry for 10
l-~----------

----------{.----.l,...----,l----rl--+-1 -.-I ___,10 J

Statement Number Entry for 20
J_

CMAJOR

rl.___ _____ -+ __ l_O---< Statement Numberlntry for 30

I---* -=-----I~~ ,________,___{ l l I T I 30 l
.-+-+I* - 20 >-------------<

- 40
Statement Number Entry for 40

J_

'---+1-----.--------.-------1

Statement Number Entry for 50 LDF I :J- I - 50

Figure 6. Backward Connection Information

• The block started by statement number
50 may receive control from the execu
tion of a branch instruction that
resides in the block started by state
ment number 20 and that it may receive
control as a result of a fall-through
from the block started by statement
number 40.

CORAL PROCESSING

CORAL, the second segment of phase 15,
performs the following functions:

• Data text conversion
• Relative address assignment
• Data text rechaining
• Namelist statement processing
• Define File text processing
• Initial value assignment
• Adcon table space reservation

CORAL consists of a main subroutine,
CORAL-IEKGCR, which controls the flow of
space allocation for variables, constants,
and any adcons necessary for local
variables, common, equivalence, and exter
nal references. Embedded in CORAL-IEKGCR
are the routines which process constants,
local variables, and external references.

36

l

CORAL-IEKGCR calls other routines in phase
15 to accomplish various functions. These
routines are:

• IEKGCZ which keeps track of space being
allocated, generates adcons needed for
address computation in the object
module, rechains data text in the order
of variable assignment, generates
adcons necessary for common, equiva
lence, and external references, and
sets up error table entries to be used
by phase 30 if errors occur.

• NDATA-IEKGDA which processes phase 10
data text.

• EQVAR-IEKGEV which handles cororoon and
equivalence space allocation.

• NLIST-IEKTNL which processes namelist
text.

• DFILE-IEKTDF which processes define
file text.

• tATOUT-IEKTDT which processes data
text.

Chart 09 shows the overall logic flow of
CORAL.

Translation of Data Text

The first section of CORAL, subroutine
NDATA-IEKGDA, translates data text entries
from their phase 10 format to a form more
easily processed by another CORAL subrou
tine, DATOUT-IEKTDT. Each phase 10 data
text entry (except for initial housekeeping
entries) contains a pointer to a variable
or constant in the information table. Each
variable in the series of entries is to be
assigned to a constant appearing in another
entry. Placed in separate entries, vari
able and constant appear to be unrelated.
In each phase 15 data text entry, after
translation, each related variable and con
stant are paired (they appear in adjacent
fields of the same entry) •

The following example shows how a series
of phase 10 data text entries are trans
lated by NDATA-IEKGDA to yield a smaller
number of phase 15 text entries, with each
related constant and variable paired.
Assume a statement appearing in the source
module as DATA, A,B/2*0/. The resulting
phase 10 text entries appear as follows
(ignoring the chain, mode, and type fields,
and the two initial housekeeping entries) :

r--------------------T----------~--------1

I Adjective I I
I Code for: I Pointer I
~--------------------+--------------------~
I I Pointer to A I
I I in dictionary I
~--------------------+--------------------~
I I Pointer to B I
I I in dictionary I
~--------------------+--------------------~
I / I 2 I
~--------------------+----------~--------~
I * I Pointer to 0 I
I I in dictionary I
~--------------------+--------------------~
I / I o I
L--------------------i--------------------J
Note that the variables A and B and the
constant value 0 appear in separate text
entries. The NDATA-IEKGDA translation of
the above phase 10 entries (ignoring the
contents of the indicator and chain fields,.
and two optional fields needed for special
cases) appears as follows:

r---------T---------T----------T----------1
!Indicator! Chain IP1 Field IP2 Field I
~---------+---------+----------+----------~
I I !pointer !pointer I
I I Ito A in Ito o in I
I I ldictionaryldictionaryl
~---------+~--------+----------+----------~
I I !pointer !pointer I
I I Ito B in Ito o in I
I I I dictionary I dictionary!
L-----~--i---------i----------i----------J

In this case, each variable and its speci
fied constant value appear in adjacent
fields of the same phase 15 text entry.
The reader should refer to Appendix B,
•phase 15/20 Intermediate Text Modifica
tion" for the detailed format of the phase
15 data text entry and the use of the spe
cial fields not discussed.

Relative Address Assignment

The chief function of CORAL is to assign
relative addresses to the operands (con
stants and variables) of the source module.
The addresses indicate the locations, rela
tive to zero, at which the operands will
reside in the object module resulting from
the compilation. The relative address
assigned to an operand consists of an
address constant and a displacement. These
two elements, when added together, form the
relative address of the operand. The
address constant for an operand is the base
address value used to refer to that operand
in main storage. Address constants are
recorded in the adcon table (NADCON) and
are the elements to which the relocation
factor is added to relocate the object
module for execution. The displacement for
an operand indicates the number of bytes
that the operand is displaced from its
associated address constant. Displacements
are in the range of 0 to 4095 bytes. The
relative address assigned to an operand is
recorded in the information table entry for
that operand in the form of:

1. A numeric displacement from its asso
ciated address constant.

2. A pointer to an information table
entry that contains a pointer to the
associated address constant in the
adcon table.

Relative addresses are assigned through
use of a location counter. This counter is
initially set to zero and is continually
updated by the size (in bytes) of the
operand to which an address is assigned.
The value of the location counter is used
to:

• Contain the displacement to be assigned
to the next operand.

• Deterroine when the next address con
stant is to be established. ~hen the
location counter achieves a value in
excess of 4095, a new address constant
is established.)

CORAL assigns addresses to source module
operands in the following order:

• Constants.

• Variables.

Section 2: Discussion of Major Components 37

• Arrays.

• Hollerith character strings when used
as arguments.

• Equivalenced variables and arrays.

• Common variables and arrays, including
variables and arrays made common using
the EQUIVtlLENCE statement.

The manner in which addresses are assigned
to each of these operand types is described
in the following paragraphs. Because con
stants, variables, and Hollerith character
strings are processed in the same manner,
they are described together.

Constants, Variables, and Hollerith
Character Strings Used as Arguments: Sub
routine CORAL-IEKGCR first assigns relative
addresses to the constants of the module.
As each constant is assigned a relative
address, CORAL-IEKGCR calls the FSD subrou
tine, IEKTLOAD, to place the constant in
the object module in the form of TXT
records. Addresses are then assigned to
variables. (In the subsequent discussion,
constants, variables, and Hollerith
character strings are referred to collec
tively as operands.) The first operand is
assigned a displacement of zero plus the
length of the save area, parameter list,
and branch table. Operands that are
assigned locations within the first 4096
bytes of the object module are not explic
itly assigned an address constant. Such
operands use the base address value loaded
into reserved register 12 as their address
constant (refer to Phase 20, "Branching
Optimization") • The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated by the size in bytes of the
operand.

The next operand is assigned a displace
ment equal to the current value of the
location counter. The displacement is
recorded in the information table entry for
that operand. The location counter is then
updated, and tested to see if it exceeds
4095. If it does not, the next operand is
processed as described above.

If sufficient operands exist to cause
the location counter to aohieve a value in
excess of 4095, the first address constant
is established. The value of this address
constant equals the location counter value
that caused its establishment. This
address constant becomes the current
address constant and is saved for subse
quently assigned relative addresses. The
location counter is then reset to zero and
the next operand is considered.

38

After the first address constant is
established, it is used as the address con
stant portion of the relative addresses
assigned to subsequent operands. The dis
placement for these operands is equal to
the value of the location counter at the
time they are considered for relative
address assignment.

When the location counter again reaches
a value in excess of 4095, another address
constant is established. Its value is
equal to the current address constant plus
the displacement that caused the establish
ment of the new address constant. This new
address constant then becomes current and
is used as the address constant for subse
quent operands. The location counter is
then reset to zero and the next operand is
processed. This overall process is
repeated until all operands (constant,
variables, and Hollerith strings) are pro
cessed. Source module arrays are then con
sidered for relative address assignment.

Arrays: CORAL-IEKGCR then assigns each
array of the source module that is not in
common a relative address that is less than
(by the span of the array) the relative
address at which the array will reside in
the object module. (The concept of span is
discussed in Appendix F.) The actual rela
tive address at which an array will reside
in the object module is derived from the
sum of address constant and displacement
that are current at the time the array is
considered for relative address assignment.
The array span is subtracted from the rela
tive address to facilitate subscript
calculations.

CORAL-IEKGCR subtracts the span in one
of two ways. If the span is less than the
current displacement, it subtracts the span
from that displacement, and assigns the
result as the displacement portion of the
relative address for the array. In this
case, the address constant assigned to the
array is the current address constant. If
the span is greater than the current dis
placement, CORAL-IEKGCR subtracts the span
from the sum of the current address con
stant and displacement. The result of this
operation is a new address constant, which
does not become the current address con
stant. CCRAL-IEKGCR assigns the new
address constant and a displacerrent of zero
to the array. It then adds the total size
of the array to the location counter,
obtains the next array, and tests the value
of the location counter. If the value of
the location counter does not exceed 4095,
CORAL-IEKGCR does not take any additional
action before it processes the next array.
If the location counter value exceeds 4095,
CORAL-IEKGCR establishes a new address con
stant, resets the location counter, and
processes the next array. After all arrays

)

have relative addresses, CORAL-IEKGCR calls
subroutine EQVAR-IEKGEV to assign address
to equivalence variables and arrays that
are not in common.

Equivalence Variables and Arrays Not in
Common: In assigning relative addresses to
equivalence variables and arrays, subrou
tine EQVAR-IEKGEV attempts to minimize the
number of required address constants by
using, if possible, previously established
address constants as the base addresses for
equivalence elements. EQVAR-IEKGEV pro
cesses equivalence information on a group
by-group basis, and assigns a relative
address, in turn, to each element of the
group. Prior to processing, EQVAR-IEKGEV
determines the base value for the group.
The base value is the relative address of
the head' of the group. The base value
equals the sum of the current address con
stant and displacement (location counter
value) • After EQVAR-IEKGEV has determined
the base value, it obtains the first (or
next) element of the group and computes its
relative address. The relative address for
an element equals the sum of the base value
for the group and the off set of the ele
ment. The off set for an element is the
number of bytes that the element is dis
placed from the head of the group (ref er to
"Common and Equivalence Processing•) •
EQVAR-IEKGEV then compares the computed
relative address to the previously estab
lished address constants. If an address
constant exists such that the difference
between the computed relative address and
the address constant is less than 4095,
EQVAR-IEKGEV assigns that address constant
to the equivalence element under considera
tion. The displacement assigned in this
case is the difference between the computed
relativ~ address of the element and the
address constant. EQVAR-IEKGEV then pro
cesses the next element of the group.

If the desired address constant does not
exist, EQVAR-IEKGEV establishes a new
address constant and assigns it to the ele
ment. The value of the new address con
stant is the relative address of the ele
ment. EQVAR-IEKGEV then assigns the ele
ment a displacement of zero, and processes
the next element of the group. When all
elements of the group are processed, EQVAR
IEKGEV computes the base value for the next
group, if any. This base value is equal to
the base value of the group just processed
plus the size of that group. The next
group is then processed.

1 The head of an equivalence group is the
variable in the group from which all other
variables or arrays in the group can be
addressed by a positive dis~lacement.

Common Variables and Arrays: Subroutine
EQVAR-IEKGEV considers each 'common block of
the source module, in turn, for relative
address assignment. For each common block,
EQVAR-IEKGEV assigns relative addresses~to
(1) the variables and arrays of that block,

and (2) the variables and arrays equiva
lenced into that common block. (The pro
cessing of variables and arrays equiva
lenced into common is described in a later
paragraph.)

Because common blocks are considered
separate control sections, EQVAR-IEKGEV
assigns each common block of the source
module a relocatable origin of zero. It
achieves the origin of zero by assigning to
the first element of a common block a rela
tive address consisting of an address con
stant and a displacement whose sum is zero.
For example, both the address constant and
the displacement for the first element in a
block can be zero. Also, the address con
stant can be -16 and the displacement +16.
Note that the address constant in the lat
ter case is negative. Negative address
constants are permitted, and may be a by
product of the assignment of addresses to
common variables and arrays. They evolve
from the manner in which the relative
addresses are assigned to arrays. A rela
tive address assigned to an array is equal
to its actual relative address minus the
span of that array. The actual relative
address of each array in a common block is
equal to the offset computed for it during
common and equivalence processing. Frott
the offset of each array in the common
block under consideration, EQVAR-IEKGEV
subtracts the span of that array. The
result then replaces the previously com
puted offset for the array. If the result
of one or more of these computations yields
a negative value, EQVAR-IEKGEV uses the
most negative as the initial address con
stant for the common block. It then
assigns each element (variable or array) in
the common block a relative address. This
address consists of the negative address
constant and a displacement equal to the
absolute value of the address constant plus
the offset of the element.

If the computations which subtract spans
from offsets do not yield a negative value,
EQVAR-IEKGEV establishes an address con
stant with a value of zero as the initial
address constant for the common block. It
then assigns each element in the block a
relative address consisting of the address
constant (with zero value) and a displace
ment equal to the offset of the element.

If at any time the displacement to be
assigned to an element exceeds 4095, EQVAR
IEKGEV establishes a new address constant.
This address constant then becomes the cur
rent address constant and is saved for

Section 2: Discussion of Major Components 39

inclusion in subsequently assigned
addresses. After the new address constant
is established, the relative address
assigned to each subsequent element con
sists of the current address constant and a
displacement equal to the offset of that
element minus the value of the current
address constant. After the entire common
block is processed, variables and arrays
that are equivalenced into that common
block are assigned relative addresses.

Variables and Arrays Equivalenced into Com
!!!Q!!= Subroutine EQVAR-IEKGEV processes
variables and arrays that are equivalenced
into common in much the same manner as
those that are equivalenced, but not into
common. However, in this case, the base
value for the group is zero. Only those
address constants established for the com
mon block into which the variables and
arrays are equivalenced are acceptable as
address constants for those variables and
arrays.

Adcon and Base variable Assignment: As
CORAL establishes a new address constant
and enters it into the adcon table, it also
places an entry in the information table.
This special entry, called an "adcon vari
able," points to the new address constant.
All operands that have been assigned rela
tive addresses will have pointers to the
adcon variable for their address constant.
The adcon variables generated for operands
are assigned coordinates, via MCCORD and
the MVD table. Coordinates 81 through 128
are reserved for base variables; however,
some base variables may be assigned coor
dinates less than 81 if less than 80 coor
dinates are assigned during the gathering
of variable and constant usage information.
(Refer to PHAZ15, "Gathering Constant/

Variable Usage Information.") Having been
assigned coordinates, the adcon variables
are now called base variables. Only those
operands receiving coordinate assignments
are available for full register assignment
during phase 20.

Rechaining Data Text

During the assignment of relative
addresses to variables, subroutine IEKGCZ
rechains the data text entries. Their pre
vious chaining (set by phase 10) was
according to their order of appearance in
the source program. IEKGCZ now chains the
data text entries according to the order of
relative addresses it assigns to variables.
Thus data text entries are now chained in
the same relative order in which the
variables will appear in the object module.
This order simplifies the generation of
text card images by phase 25.

40

DEFINE FILE Statement Processing

If the source module contains DEFINE
FILE statements, subroutine DFILE-IEKTDF
converts phase 10 define file text to
object-time parameters. These parameters
provide IHCFDIOSE with the inforrnation
required to implement direct access READ,
WRITE, and FIND statements.

A parameter entry is made for each unit
specified in a DEFINE FILE statement. This
entry contains the unit number, the rela
tive address of the number of records, a
character ('L', 'E', or 'u') indicating the
type of formatting to be used, the relative
address of the maximum record size, an
indicator for the size (four bytes or two
bytes) of the associated variable, and the
relative address of the associated
variable.

DFILE-IEKTDF places the parameter
entries along with their relative addresses
into TXT records. It also places the rela
tive address of the first define file entry
into the communication table for later use
by phase 25.

NAMELIST Statement Processing

If the source module contains READ/WRITE
statements using NAMELIST statements, sub
routine NLIST-IEKTNL converts phase 10
namelist text to object-time namelist dic
tionaries. The object-time namelist dic
tionaries provide IHCFCOMH with the infor
mation required to implement READ/WRITE
statements using namelists (refer to Appen
dix A, "Namelist Dictionaries") • The dic
tionary developed for each list in a NAME
LIST statement contains the following:

• An entry for the namelist name.

• Entries for the variables and arrays
associated with the namelist name.

• An end mark of zeros terminating the
list.

Each entry for a variable contains the
name, mode, ~.g., integer*2 or real*~,
and relative address of the variable. Both
the address and the mode are obtained from
the dictionary entry for the variable.

Each entry for an array contains the
name of the array, the mode of its ele
ments, the relative address of its first
element, and the information needed to loc
ate a particular element of the array.
NLIST-IEKTNL obtains the above inforrnation
from the information table.

NLIST-IEKTNL places the entries of the
namelist dictionary along with their rela
tive addresses into TXT records. It also

places the relative address of the begin
ning of the namelist dictionary into the
address constant for the namelist name.

Initial Value Assignment

CORAL assigns the initial values speci
fied for variables and arrays in phase 15
data text in the following manner:

1. The relative address of the variable
or array to be assigned an initial
value or values is obtained and placed
into the address field of a TXT
record.

2. Each constant (one per variable) that
has been specified as an initial value
for the variable or array is then
obtained and entered into a TXT
record. (A number of TXT records may
be required if an array is being
processed.)

Such action effectively assigns the ini
tial value, because the relative address of
the initial value has been set to equal the
relative address of its associated variable
or array element.

Reserving Space in the Adcon Table

After relative address assignment is
completed, CORAL-IEKGCR calls IEKTLOAD (via
IEKGCZ) to place an adcon in the object
module for special references. CORAL
IEKGCR scans the operands of the informa
tion table to detect any of these
references: call-by-name variables, names
of library routines, namelist names, and
external references. The byte-B usage
field of each information table entry
informs CORAL-IEKGCR if a particular
reference belongs to one of these cate
gories. For each special reference that
CORAL-IEKGCR detects, IEKGCZ calls IEKTLOAD
to place the needed address constants in
the reserved spaces of the object module.

Creating Relocation Dictionary Ent~ies

The relocation dictionary is composed of
entries for the address constants of the
object module. One relocation dictionary
entry (an RLD record) is constructed by
CORAL-IEKGCR for each address it encoun
ters. If the address constant is for an
external symbol, the RLD record identifies
the address constant by indicating:

• The control section to which the
address constant belongs.

• The location of the address constant
within the control section.

• The symbol in the external symbol dic
tionary whose value is to be used in
the computation of the address
constant.

If the address constant is for a local
symbol (i.e., a symbol that is located in
the same control section as the address
constant) , the RLD record identifies the
address constant by indicating the control
section to which the address constant
belongs and its location within that
section.

For a more detailed discussion of the
use and format of an RLD record, refer to
the publication IBM System/360 Operating
System: Linkage Editor, Program Logic
Manual.

Creating External Symbol Dictionary Entries

The external symbol dictionary contains
entries for external symbols that are
defined or referred to within the module.
An external symbol is one that is defined
in one module and referred to in another.
One external symbol dictionary entry (an
ESD record) is constructed by IEKGCZ for
each external symbol it encounters. The
entry identifies the symbol by indicating
its type and location within the module.
The ESD records constructed by IEKGCZ are:

• ESD-0 - This is a section definition
record and an entry point definition
record for the source module being
compiled.

• ESD-2 - This record is generated for an
external subprogram name.

• ESD-5 - This record is a section
definition record for a common block
(either named or blank) •

For a more complete discussion of the
use and the format of these records, refer
to the publication IBM System/360 Operating
System: Linkage Editor, Program Logic
Manual..

PHASE 20

The primary function of phase 20 is to
produce a more efficient object module
{perform optimization). However, even if
the applications programmer has specified
no optimization, phase 20 assigns registers
for use during execution of the object
module.

For a given compilation, the applica
tions programmer may specify OPT=O (no
optimization), or either of the following
levels of optimization: OPT=1 or OPT=2.
Thus, the functions performed by phase 20

Section 2: Discussion of Major Components 41

depend on the optimization specified for
the compilation.

42

• If no optimization (OPT=O) has been
specified, phase 20 assigns to interme
diate text entry operands the registers
they will require during object module
execution (this is called basic regis
ter assignment) • As part of this func
tion, phase 20 also provides informa
tion about the operands needed by phase
25 to generate machine instructions.
Both functions are implemented in a
single, block-by-block, top-to-bottom
(i.e., according to the order of the
statement number chain) , pass over the
phase 15 text output. The end result
of this processing is that the register
and status fields of the phase 15 text
entries are filled in with the informa
tion required by phase 25 to convert
the text entries to machine language
form (refer to Appendix B, "Phase 20
Intermediate Text Modifications") •
Basic register assignment does not take
full advantage of the available general
and floating-point registers, and it
does not specify the generation of
machine instructions that keep operand
values in registers (wherever possible)
for use in subsequent operations
involving them.

• If the OPT=1 level of optimization has
been specified, two processes are car
ried out:

1. The first process, called full
register assignment, performs the
same two functions as basic regis
ter assignment. However, full
register assignment takes greater
advantage of available registers
and provides information that
enables machine instructions to be
generated that keep operand values
in registers for subsequent opera
tions. An attempt is also made to
keep the most frequently used
operands in registers throughout
the execution of the object
module. Full register assignment
requires a number of passes over
the phase 15 text. The basic unit
operated upon is the text block
(refer to phase 15, "Text Block

ing") • The end result of full
register assignment, like that of
basic register assignment, is that
the register and status fields of
the phase 15 text entries are
filled in with the information
required by phase 25.

2. The second process, called branch
optimization, generates RX-format
branch instructions in place of
RR-format branch instructions

wherever possible. The use of
RX-format branches eliminates the
need for an instruction to load
the branch address into a general
register. However, branch optimi
zation first requires that the
sizes of all text blocks in the
module be determined so that the
branch address can be found.

• If the OPT=2 level of optimization has
been specified, optimization is per
formed on a "loop-by-loop" basis.
Therefore, before processing can be
initiated, phase 20 must determine the
structure of the source module in terms
of the loops within it and the rela
tionships (nesting) among the loops.
Then phase 20 determines the order in
which loops are processed, beginning
with the innermost (most frequently
executed) loop and proceeding outward.
The second level of optimization
involves three general procedures:

1. The first, called text optimiza
tion, eliminates unnecessary text
entries from the loop being pro
cessed. For example, redundant
text entries are removed and,
wherever possible, text entries
are moved to outer loops, where
they will be executed less often.

2. The second procedure is full reg
ister assignment, which is essen
tially the same as in the first
level of optimization, but is more
effective, because it is done on a
loop-by-loop basis.

3. The final procedure is branching
optimization, which is the same as
in the OPT=1 path.

CCNTROL FLOW

In phase 20, control flow may take one
of three possible paths, depending on the
level of optimization chosen (ref er to
Chart 10). Phase 20 consists of a control
routine (LPSEL-IEKPLS) and six routine
groups. The control routine controls
execution of the phase. All paths begin
and end with the control routine. The
first group of routines performs basic reg
ister assignment. This group is only
executed in the control path for non
optimized processing. The second group
performs full register assignment. Control
passes through this group in the paths for
both levels of optimization. The third
group of routines performs branch optimiza
tion and is also used in the paths for both
levels of optimization. The fourth group
determines the structure of the source
module and is used only in the path for

OPT=2 optimization. The fifth group per
forms loop selection and again is only
executed in OPT=2 optimization. The final
group perf orrns text optimization and is
only used in OPT=2 optimization.

The control routine governs the sequence
of processing through phase 20. The pro
cessing sequence to be followed is deter
mined from the optimization level specified
by the FORTRAN programmer. If no optimiza
tion is specified, the basic register
assignment routines are brought into play.
The unit of processing in this path is the
text block. When all blocks are processed,
the control routine passes control to the
FSD, which calls phase 25.

When OPT=1 optimization is specified,
the control routine passes the entire
module to the full register assignment rou
tines and then to the routine that computes
the size of each text block and sets up the
displacements required for branching opti
mization. Control is then passed to the
FSD.

When the control path for OPT=2 optimi
zation is selected, the unit of processing
is a loop, rather than a block. In this
case, the control routines initially pass
control to the routines of phase 20 that
determine the structure of the module.
When the structure is determined, control
is passed to the loop selection routines,
to select the first (innermost) loop to be
processed. The control routines then pass
control to the text-optimization routines
to process the loop. When text optimiza
tion for a loop is completed, the control
routine marks each block in the loop as
completed. This action is taken to ensure
that the blocks are not reprocessed when a
subsequent (outer) loop is processed. The
control routine again passes control to the
loop selection routines to select the next
loop for text optimization. This process
is repeated until text optimization has
processed each loop in the module. (The
entire module is the last loop.)

After text optimization has processed
the entire module, the control routine
removes the block completed marks and con
trol is passed to the loop selection rou
tines to reselect the first loop. Control
is then passed to the full register assign
ment routines. When full register assign
ment for the loop is complete, the control
routine marks each block in the loop as
completed and passes control to the loop
selection routines to select the next loop.
This process is repeated for each loop in
the module. (The entire module is the last
loop.) When all loops are processed, the
control routine passes control to the rou
tine that computes the size of each text
block and sets up the displacements

required for branching optimization. Con
trol is then passed to the FSD.

REGISTER ASSIGNMENT

Two types of register assignment can be
performed by phase 20: basic and full.
Before describing either type, the concept
of status, which is integrally connected
with both types of assignment, is
discussed.

Each text entry has associated operand
and base address status information that is
set up by phase 20 in the status field of
that text entry (refer to Appendix B,
"Phase 20 Intermediate Text Modification") •
The status information for an operand or
base address indicates such things as
whether or not it is in a register and
whether or not it is to be retained in a
register for subsequent use; this informa
tion indicates to phase 25 the machine
instructions that must be generated for
text entries.

The relationship of status to phase 25
processing is illustrated in the following
example. Consider a phase 15 text entry of
the form A = B + c. To evaluate the text
entry, the operands B and C must be added
and then stored into A. However, a number
of machine instruction sequences could be
used to evaluate the expression. If
operand B is in a register, the result can
be achieved by performing an RX-format add
of C to the register containing B, provided
that the base address of C is in a regis
ter. (If the base address of C is not in a
register, it must be loaded before the add
takes place.) The result can then be
stored into A, again, provided that the
base address of A is in a register.

If both B and C are in registers, the
result can be evaluated by executing an
RR-format add instruction. The result can
then be stored into A. Thus, for phase 25
to generate code for the text entry, it
must have the status of operands and base
addresses of the text entry.

The following facts about status should
be kept in mind throughout the following
discussions of basic and full register
assignment:

1. Phase 20 indicates to phase 25 when it
is to generate code that loads
operands and base addresses into reg
isters, whether it is to generate code
tl:lat retains operands and base
addresses in registers, and whether
operand 1 is to be stored.

2. Phase 20 makes note of the operands
and base addresses that are retained
in registers and are available for
subsequent use.

Section 2: Discussion of Major Components 43

Basic Register Assignment - OPT=O

Basic register assignment involves two
functions: assigning registers to the
operands of the phase 15 text entries and
indicating the machine instructions to be
generated for the text entries. In per
forming these functions, basic register
assignment does not use all of the avail
able registers, and it restricts the
assignment of those that it does use to
special types of items (i.e., operands and
base addresses) • The registers assigned
during basic register assignment and the
item(s) to which each is assigned are out
lined in Table 3.

Table 3. Item Types and Registers
Assigned in Basic Register
Assignment

r~-------------T-----------~------------1

!Register I Item Type I
~---------------+----------~-------------~
!Floating-Point I
!Register I
I 0 !Arithmetic text entry
I !operands that are real.
I I
I 2 !Imaginary part of the
I !result of a complex
I I function.
I I
!General Purpose!
Register I

0-1 Arithmetic text entry
operands that are inte
ger, or logical operands.

5

6

7

14

Branch addresses and
selected logical operands

Operands that represent
index values.

Base addresses

1. Used for computed GO
TO operations.

2. Logical result of
comparison opera
tions.

15 Used for computed GO TO
operations. _______________ i _________________________ J

Basic register assignment essentially
treats Systern/360 as if it had a single
branch register, a single base register,
and a single accumulator. Thus, operands
that are branch addresses are assigned the
branch register, base addresses are
assigned the base register, and arithmetic
operations are performed using a single
accumulator. (The accumulator used depends
upon the mode of the operands to be ·
operated upon.)

44

The fact that basic register assignment
uses a single accumulator and a single base
register is the key to understanding how
text entries having an arithmetic operator
are processed. To evaluate the arithmetic
interaction of two operands using a single
accumulator, one of the operands must be in
the accumulator. The specified operation
can then be performed by using an RX-format
instruction. The result of the operation ·
is formed in the accumulator and is avail
able for subsequent use. Note that in
operations of this type, neither of the
interacting operands remains in a register.

Applying this concept to the processing
of text entries that are arithmetic in
nature, consider that a phase 15 text entry
representing the expression A = B + C is
the first of the source module. For this
text entry to be evaluated using a single
accumulator and base register, basic regis
ter assignment must tell phase 25 to gener
ate machine code that:

• Loads the base address of B into the
base register.

• Loads B into the accumulator.

• Loads the base address of C into the
base register. (This instruction is
not necessary if C is assigned the same
base address as B.)

• Adds C to the accumulator (RX-format) •

• Loads the base address of A into the
base register (if necessary) •

• Stores the accumulated result in A.

If this coding sequence were executed,
two items would remain in registers: the
last base address loaded and the accumu-
1 ated result. These items are available
for subsequent use.

Now consider that a text entry of the
form D = A + F immediately follows the
above text entry. In this case, A, which
corresponds to the result operand of the
previous text entry, is in the accumulator.
Thus, for this text entry, basic register
assignment specifies code that:

• Loads the base address of F into the
base register. (If the base address of
F corresponds to the last loaded base
address, this instruction is not
necessary.)

• Adds F to the accumulator (RX-format
add) •

• Loads the base address of D into the
base register (if necessar~ •

• Stores the accumulated result in D.

The above coding sequences are the basic
ones specified by basic register assignment
for arithmetic operations. The first is
specified for text entries in which neither
operand 2 nor operand 3 (see Figure 3)
corresponds to the result operand (operand
1) of the preceding text entry. The second
is specified for text entries in which
either operand 2 or operand 3 corresponds
to the result operand. If operand 3 corre
sponds to the result operand, the two
operands exchange roles, except for divi
sion. In the case of division, operand 3
is always in main storage.

If both operands 2 and 3 correspond to
the result operand of the previous text
entry, an RR-format operation is specified
to evaluate the interactions of the
operands.

In the actual process of basic register
assignment, a single pass is made over the
phase 15 text output. The basic unit
operated upon is the text block. As the
processing of each block is completed, the
next is processed. When all blocks are
processed, control is returned to the FSD.

Text blocks are processed in a top-to
bottom manner, beginning with the first
text entry in the block. When all text
entries in a block are processed, the next
text block is processed similarly.

For any text entry, the machine code to
be generated is first specified by setting
up the status field of the text entry.
Registers are then assigned to the operands
and base addresses by filling in the
register fields of the text entry.

Status Setting: Subroutine SSTAT-IEKRSS
sets the operand and base address status
information for a text entry in the follow
ing order: operand 2, operand 2 base
address, operand 3, operand 3 base address,
operand 1, and operand 1 base address.

To set the status of operand 2, SSTAT
IEKRSS determines the relationship of that
operand to the result operand (operand 1)
of the previous text entry. If operand 2
is the same as the result operand, SSTAT
IEKRSS sets the status of operand 2 to
indicate that it is in a register and,
therefore, need not be loaded; otherwise,
it sets the status to indicate that it is
in main storage. SSTAT-IEKRSS uses a simi
lar procedure to set the status of operand
3.

To set the status of the base address of
operand 2, SSTAT-IEKRSS determines the
relationship of that base address to the
current base address (see note) • If they

correspond, SSTAT-IEKRSS sets the status of
the base address of operand 2 to indicate
that it is in a register and, therefore,
need not be loaded; otherwise, it sets the
status to indicate that it is in main
storage.

SSTAT-IEKRSS sets the statuses of the
base addresses of operands 3 and 1 in a
similar manner.

Note: The current base address is the last
base address loaded for the purpose of
referring to an operand. This base address
remains current until a subsequent operand
that has a different base address is
encountered. When this occurs, the base
address of the subsequent operand must be
loaded. That base address then becomes the
current base address, etc.

SSTAT-IEKRSS sets status of operand 1 to
indicate whether or not the result of the
interaction of operands 2 and 3 is to be
stored into operand 1. If operand 1 is
either an actual operand (a variable
defined by the programmer) or a temporary
that is not used in the subsequent text
entry, it sets the status of operand 1 to
indicate that the store is to be performed;
otherwise, it sets the status to indicate
that a store into operand 1 is unnecessary.

Register Assignment: After the status
field of the text entry is completed, sub
routine SPLRA-IEKRSL assigns registers to
the operands of the text entry and their
associated base addresses in the same order
in which statuses were set for them.

The assignment of registers depends upon
the statuses of the operands of the text
entry. To assign a register to operand 2,
SPLRA-IEKRSL examines the status of that
operand, and, if necessary, of operand 3.
If the status of operand 2 indicates that
it is in a register or if the statuses of
operands 2 and 3 indicate that neither is a
register, SPLRA-IEKRSL assigns operand 2 a
register. It selects the register accord
ing to the type of operand (ref er to Table
3) , and places the number of that register
into the R2 field of the text entry.

To assign a register to the base address
of operand 2, SPLRA-IEKRSL determines the
status of operand 2. If the status of that
operand indicates that it is not in a
register, it assigns a register to the base
address of operand 2. The appropriate
register is selected according to Table 3,
and the register number is placed into the
B2 field of the text entry. If the status
of operand 2 indicates that it is in a
register, SPLRA-IEKRSL does not assign a
register to the base address of operand 2.
SPLRA-IEKRSL uses a similar procedure in

Section 2: Discussion of Major Components 45

assigning a register to the base address of
operand 3.

If the status of operand 3 indicates
that it is in a register, SPLRA-IEKRSL
assigns the appropriate register (refer to
Table 3) to that operand, and enters the
number of that register into the R3 field.

Operand 1 is always assigned a register.
SPLRA-IEKRSL selects the register according
to the type of operand 1 (refer to Table
3) , and places the number of that register
into the Rl field.

The base address of operand 1 is
assigned a register only if the status of
operand 1 indicates that it is to be stored
into. If such is the case, SPLRA-IEKRSL
selects the appropriate register, and
records the number of that register in the
Bl field. If the status of operand 1 indi
cates that it is not to be stored into,
SPLRA-IEKRSL does not assign a register to
the base address of operand 1.

When all the operands of the text entry
and their associated base addresses are
assigned registers, the next text entry is
obtained, and the status setting and regis
ter assignment processes are repeated.
After all text entries in the block are
processed, control is returned to the con
trol routine of phase 20, which then makes
the next block available tc the basic reg
ister assignment routines. When the pro
cessing of all blocks is completed, control
is passed to the FSD.

Full Register Assignment - OPT=l

During full register assignment, also
refer to "Full Register Assignment -
OPT=2", as during basic register assign
ment, registers are assigned to the text
entry operands and their associated base
addresses, and the machine code to be
generated for the text entries is speci
fied. To improve object module efficiency,
these functions are performed in a manner
that reduces the number of instructions
required to load base addresses and
operands. This process reduces the number
of required load instructions by taking
greater advantage of all available regis
ters, by assigning the registers as needed
to both base addresses and operands, by
keeping as many operands and base addresses
as possible in registers and available for
subsequent use, and by keeping the most
active base addresses and operands in reg
isters where they are available for use
throughout execution of the entire object
module.

During full register assignment, regis
ters are assigned at two levels: "locally"
and "globally." Local assignment is per-

46

formed on a block-by-block basis. Global
assignment is performed on the basis of the
entire module (if intermediate- optimiza
tion has been specified) •

For local assignment, an attempt is made
to keep operands whose values are defined
within a block in registers and available
for use throughout execution of that block.
This is done by assigning an available reg
ister to an operand at the point at which
its value is defined. (The value of an
operand is defined when that operand
appears in the operand 1 position of a text
entry.) The same register is assigned to
subsequent uses (i.e., operand 2 or operand
3 appearances) of that operand within the
block, thereby ensuring that the value of
the operand will be in the assigned regis
ter and available for use. However, if
more than one subsequent use of the defined
operand occurs in the block, additional
steps must be taken to ensure that the
value of that operand is not destroyed
between uses. Thus, when the text entries
in which the defined operand is used are
processed, the code specified for them must
not destroy the contents of the register
containing the defined operand.

Because all available registers are used
during full register assignment, a number
of operands whose values are defined within
the block can be retained in registers at
the same time.

Applying the above concept to an
example, consider the following sequence of
phase 15 text entries;

A = X + Y
C A + Z
F A + C

A register is assigned to A at the point at
which its value is defined, namely in the
text entry A = X + Y. The same register is
assigned to the subsequent uses of A. The
value of A will be accumulated in the
assigned register and can be used in the
subsequent text entry C = A + z. However,
because A is also used in the text entry
F = A + C, the contents of the register
containing A cannot be destroyed by the
code generated for the text entry C = A +
z. Thus, when the text entry C = A + z is
processed, instructions are specified for
that text entry that use the register con
taining A, but that do not destroy the con
tents of that register.

In the example, C is also defined and
subsequently used. To that defined operand
and its subsequent uses, a register is
assigned. The assigned register is dif
ferent from that assigned to A. The value
of C will be accumulated in the assigned
register and can be used in the next text

entry. The text entry F = A + C can then
be evaluated without the need of any load
operand instructions, because both the
interacting operands (A and C) are in
registers.

This type of processing typifies that
performed during local assignment for each
block. When all blocks are processed,
global assignment for the source module is
carried out.

Global assignment increases the effi
ciency of the object module as a whole by
assigning registers to the most active
operands and base addresses. The activi
ties of all operands and base addresses are
computed during local assignment prior to
global assignment. The first register
available for global assignment is assigned
to the most active operand or base address;
the next available register is assigned to
the next most active operand or base
address; etc. As each such operand or base
address is processed, a text entry, the
function of which is to load the operand or
base address into the assigned register, is
generated and placed into the entry block(s)
of the module. When the supply of
operands and base addresses, or the supply
of available registers, is exhausted, the
process is terminated.

All global assignments are recorded for
use in a subsequent text scan, which incor
porates global assignments into the text
entries, and completes the processing of
operands that have neither been locally or
globally assigned to registers (e.g., an
infrequently used operand that is used in a
block but not defined in that block) •

The full register assignment process is
divided into five areas of operation: con
trol (subroutine REGAS-IEKRRG) , table
building (subroutine FWDPAS-IEKRFP) , local
assignment (subroutine BKPAS-IEKRBP) , glob
al assignment (subroutine GLOBAS-IEKRGB) ,
and text updating (subroutine STXTR
IEKRSX) • The control routine of phase 20
(LPSEL-IEKRSX) passes control to REGAS-

IEKRRG which directs the flow of control
among the other full register assignment
routines.

The actual assignment of registers is
implemented through the use of tables built
by the table-building routine, with assis
tance from the control routine. Tables are
built using the set of coordinate numbers
and associated dictionary pointers created
by phase 15 (MCOORD and MVD) for indexing.
The table-building routine constructs two
sets of parallel tables. One set, used by
the local assignment routine, contains
information about a text block; the second
set, used by the global assignment rou
tines, contains information about the

entire module. (The local assignment and
global assignment tables are outlined in
Appendix A, "Register Assignment Tabl~s.")

The flow of control through the full
register assignment routines is as follows:

1. The control routine (REGAS-IEKRRG)
makes a pass over the MVD table and
the dictionary entries for the
variables and constants in the loop
passed to it, and constructs the
eminence table (EMIN) for the module,
which indicates the availability of
the variables for global assignil'ent.
Then REGAS-IEKRRG calls the table
building routine to process the blocks
in the loop (the complete module for
OPT=1) •

2. The table-building routine (FWDPAS
IEKRFP) builds the required set of
local assignment tables and adds
information to the global assignment
tables under construction. FWDPAS
IEKRFP selects the first block of the
loop and builds the tables for that
block. It then passes control to the
local assignment routine to process
the block and the tables.

3. The local assignment routine (BKPAS
IEKREP) uses the tables supplied for
the block to perform local register
assignment, and returns control to
FWDPAS-IEKRFP when its processing is
completed.

4. FWDPAS-IEKRFP selects the next block
of the loop and again builds tables.
This process continues until all
blocks of the loop have been pro
cessed. Control is then returned to
REGAS-IEKRRG.

5. REGAS-IEKRRG passes control to the
global assignment routine GLCBAS
IEKRGB, which performs global assign
ment for the module.

6. When global assignment is complete,
the control routine calls the text
updating routine (STXTR-IEKRSX) to
complete register assignment by enter
ing the results of global assignment
into the text entries for the module.
Control is then returned to
(LPSEL- IEKPLS) •

Table Building for Register Assignment:
The table-building routine, FWDPAS-IEKRFP,
performs a forward scan of the intermediate
text entries for the block under considera
tion and enters information about each text
entry into the local and global tables
(refer to Appendix A, "Register Assignment

Tables") • The local assignment tables can
accommodate information for 100 text

Section 2: Discussion of Major Components 47

entries. PHAZ15 attempts to limit blocks
to less than 100 text items. If, however,
a block contains more than 100 text
entries, the table-building routine builds
the local tables for the first 100 text
entries and passes this set of tables to
the local. assignment routine. The local
assignment routine processes the text
entries represented in the set of local
tables. The table-building routine then
creates the local tables for the next 100
text entries in the block and passes them
to the local .assignment routine. When the
table-building routine encounters the last
text entry for the block, it passes control
to the local assignment routine, although
there may be fewer than 100 entries in the
local tables.

The global tables contain information
relating to variables and constants
referred to within the module, rather than
to text entries. The global tables can
accommodate information for 126 variables
and constants in a given module •. Variables
and constants in excess of this number
within the module are not processed by the
global assignment routine.

Local Assignment: Local assignment is
implemented via a backward pass over the
text items for the block (or portion of a
block) under consideration. The text items
are referred to by using the local assign
ment tables, which supply pointers to the
text items.

The local assignment routine, BKPAS
IEKRBP, examines each operand in the text
for a block and determines (from the local
assignment tables) if the operand is elig
ible for local assignment. To be eligible,
an operand must be defined and used (in
that order) within a block. Because local
assignment is performed via a backward pass
over the text, an eligible operand will be
encountered when it is used (i.e., in the
operand 2 or 3 position) before it is
defined.

When an operand of a text entry is
examined, the local assignment routine
(BKPAS-IEKRBP) consults the local assign

ment tables to determine that operand's
eligibility. If the operand is eligible,
BKPAS-IEKRBP assigns a register to it. The
register assigned is determined by consult
ing the register usage table (TRUSE) •
TRUSE is a work table that contains an
entry for every register that may be used
by the local assignment routine. A zero
entry for a particular register indicates
that the register is available for local
assignment. A nonzero entry indicates that
the register is unavailable and identifies
the variable to which the register is
assigned. The register usage table is
modified each time a register is assigned

48

or freed. The first time a register is
assigned, a corresponding entry in the
register usage table for global assignment
(RUSE) is set. This entry implies that the
register is unavailable for global
assignment.

BKPAS-IEKRBP records the register
assigned to the used operand fn the local
assignment tables and in the text item con
taining the used operand. It sets the sta
tus of the operand in the text entry to
indicate that it is in a register. If sub
sequent uses of the operand are encountered
prior to the definition of the operand,
BKPAS-IEKRBP uses the register assigned to
the first use, and records its identity in
the text item. It then sets the status
bits for the operand to indicate that it is
in a register and is to be retained in that
register.

When a definition of the operand is
encountered, BKPAS-IEKRBP enters the
register assigned to the operand into the
text item and sets the status for the
operand to indicate its residence in a
register. Once the register is assigned to
the operand at its definition point, BKPAS
IEKRBP frees the register by setting the
entry in the register usage table to zero,
making the register available for assign
ment to another operand.

If the block being processed contains a
CALL statement, common variables and real
operands cannot be assigned to registers
across that reference. In addition, if the
block contains a reference to a function
subprogram, no local assignment may be made
for real operands across the reference to
that function. The local assignment rou
tine assumes that:

1. All mathematical functions return the
result in general register 0 or
floating-point register 0, according
to the mode of the function.

2. The imaginary portion of a complex
result is returned in floating-point
register 2.

If no register is available for assign
ment to an eligible operand, an overflow
condition exists. In this case, BKPAS
IEKRBP must free a previously assigned
register for assignment to the current
operand. It scans the local assignment
tables and selects a register. It then
modifies the local assignment tables, text
entries for the block, and register usage
table to negate the previous assignment of
the selected register. The required
register is now available, and processing
continues in the normal fashion.

Global Assignment: The global assignment
routine (GLOBAS-IEKRGB) , unlike the local
assignment routine, does not process any of
the text entries for the module. The glob
al assignment routine operates only through
the set of global tables. The results of
global assignments are entered into the
appropriate text entries by the text updat
ing routine.

Before assigning registers, the global
assignment routine modifies the global
assignment tables to produce a single acti
vity table for all operands and base
addresses in the module.

Global assignment is then performed
based on the activity of the eligible
operands and base addresses.

GLOBAS-IEKRGB determines the eligibility
of an operand or base address by consulting
the appropriate entry in the global assign
ment tables. Eligible operands are divided
into two categories: floating point and
fixed point. The two categories are pro
cessed separately, with floating-point
quantities processed first.

A register usage table (RUSE) of the
same type as described under local assign
ments (TRUSE) is used by the global assign
ment routine. For each category of
operands, GLOBAS-IEKRGB selects the elig
ible operand with the highest total activi
ty and assigns it the first available
register of the same mode. It records the
assignment in the register usage table and
in the global assignment tables. GLOBAS
IEKRGB then selects the eligible operand
with the next highest activity and treats
it in the same manner. Processing for each
group continues until the supply of elig
ible operands or the supply of available
registers is exhausted.

If the module contains any CALL state
ments, real and common variables are
ineligible for global assignment. If the
module contains any references to function
subprograms no global assignment can be
performed for real quantities. In other
words, if a module contains both a
reference to a subroutine and to a function
subprogram, global assignment is restricted
to integer and logical operands that are
not in common.

Text Updating: The text updating routine
(STXTR-IEKRSX) completes full register
assignment. It scans each text entry
within the series of blocks comprising the
module, looking at operands 2, 3, and 1, in
that order, within each text entry. As
each operand is processed, STXTR-IEKRSX
interrogates the completed global assign
ment table to determine if a global assign
ment has been made for the operand. If it

has, STXTR-IEKRSX enters the register
assigned into the text entry and sets the
operand status bits to indicate that the
operand is in a register and is to be
retained in that register.

If both a local and a global assignment
have been made for an operand, the global
assignment supersedes the local assignment
and STXTR-IEKRSX records the globally
assigned register in the text items per
taining to that operand. It also sets the
status bits for such an operand to indicate
that it is in a register and is to be
retained in that register.

If a register has not been assigned
either locally or globally for an operand,
STXTR-IEKRSX determines and records in the
text entry the required base register for
the base address of that operand. If the
base address corresponds to one that has
been assigned a register during global
assignment, STXTR-IEKRSX assigns the same
register as the base register for the
operand. If a register has not been
assigned to the base address of the operand
during global assignment, it assigns a
spill register (register 15) as the base
register of the operand. STXTR-IEKRSX sets
the operand's base status bits to indicate
whether or not the base address is in a
register. (The base address will be in a
register if one was assigned to it during
global assignment.) It then assigns the
operand itself a spill register (general
register 0 or 1 or floating-point register
0, depending upon its mode).

As part of its text updating function,
STXTR-IEKRSX allocates temporary storage
where needed for temporaries that have not
been assigned to a register, keeps track of
the allocated temporary storage, and com
pletes the register fields of text entries
to ensure compatibility with phase 25. On
exit from the text updating routine, all
text items in the module are fully formed
and ready for processing by phase 25. The
text updating routine returns control to
REGAS-IEKRRG upon completion of its func
tions. REGAS-IEKRRG, in turn, returns con
trol to (LPSEL-IEKPLS) •

BRANCHING OPTIMIZATION - OPT=1

This portion of phase 20 optimizes
branching within the object module. The
optimization is achieved by generating RX
format branch instructions in place of RR
format branch instructions wherever
possible.

The use of RX-format branches eliminates
the need for an instruction to load the
branch address into a general regis.ter pre
ceding each branching instruction. Thus,

Section 2: Discussion of Major Components 49

branc;:hing optimization decreases the size
of the object module by one instruction for
each RR-format branch instruction in the
object module that can be replaced by an
RX-format branch instruction. It also
decreases the number of address constants
required for branching.

Phase 20 optimizes branching instruc
tions by calculating the size of each text
block (number of bytes of object code to be
generated for that block) and by determin
ing those blocks that can be branched to
via RX-format branch instructions.

Subroutine BLS-IEKSBS calculates the
sizes of all text blocks after full regis
ter assignment for the module is completed.
It then uses the gathered block size inf or
mati on to determine the blocks that can be
branched to by means of RX-format branch
instructions. BLS-IEKSBS calculates the
number of bytes of object code by:

1. Examining each text item operation
code and the status of the operands
(i.e., in registers or not).

2. Determining, from a reference table,
the number of bytes of code that is to
be generated for that text item.

BLS-IEKSBS accumulates these values for
each block in the module. In addition, it
increments the block size count by the
appropriate number of bytes for each
encountered reference to an in-line
routine.

Next BLS-IEKSBS computes all block sizes
and determines those text blocks that can
be branched to via RX-format branch
instructions. A text block, once converted
to machine code, can be branched to via an
RX-format branch instruction if the rela
tive address of the beginning of that block
is displaced less than 4096 bytes from an
address that is loaded into a reserved
register.

The following text discusses reserved
registers, the addresses loaded into them,
and the processing performed by BLS-IEKSBS
to determine the source module blocks that
can be branched to via RX-format branch
instructions.

Reserved Registers

Reserved registers are allocated to con
tain the starting address of the adcon
table and subsequent 4096-byte blocks of
the object module. The criterion used by
phase 20 in reserving registers for this
purpose is the number of text entries that
result from phase 1 5 processing. (Phase 15
counts the number of text entries that
result from its processing and passes the

50

information to phase 20.) For relatively
small source modules (approximately 70
source statements) , phase 20 reserves only
one register. For sufficiently large
source modules (approximately 280 source
statements) , a maximum of five is reserved.
The registers are reserved, as needed, in
the following order: register 13, 12, 11,
10, and 9.

Reserved Register Addresses

The addresses placed into the reserved
registers as a result of the execution of
the initialization instructions (refer to
Fortran System Director, •Generation of
Initialization Instructions") are:

• Register 13 - address of the save area.

• Register 12 (if reserved) - address of
the save area plus 4096 or address of
the first adcon for the program.

• Register 11 (if reserved) - address of
the register 12 plus 4096.

• Register 10 (if reserved) - address of
the register 12 plus 2(409~.

• Register 9 (if reserved) - address of
the register 12 plus 3 (4096) •

Block Determination and Subsequent
Processing

Because the instructions resulting from
the compilation are entered into text
information immediately after the adcon
tatle (see Figure 11), certain text tlocks
are displaced less than 4096 bytes from an
address in a reserved register. Such
blocks can be branched to by RX-format
branch instructions that use the address in
a reserved register as the base-address for
the branch.

To determine the blocks that can be
branched to via RX-format branch instruc
tions, BLS-IEKSBS computes the displacement
(using the block size information) of each

block from the address in the appropriate
reserved register. The first reserved reg
ister address considered is that in regis
ter 13. If a block displaced less than
4096 bytes from that address exists, BLS
IEKSBS enters the displacement of that
block (from the address) into the statement
number entry. It also places in that
statement number entry an indication that
the block can be transferred to via an RX
format branch instruction, and records the
number of the reserved register to be used
in that branch instruction.

When BLS-IEKSBS has processed all blocks
displaced less than 4096 bytes from the
address in register 13, it processes those

displaced less than 4096 bytes from the
addresses in registers 12, 11, 10, and 9
(if reserved) in a similar manner.

The information placed in the statement
number entries is used during code genera
tion, a phase 25 process, to generate RX
format branch instructions.

STRUCTURAL DETERMINATION

To achieve OPT=2 optimization, the
structural determination routines of phase
20 (TOPO-IEKPO and BAKT-IEKPB) identify
module loops and specify the order in which
they are to be processed. Loops are iden
tified by analyzing the block connection
information gathered by phase 15 and reco
rded in the forward connection (RMAJOR) and
backward connection (CMAJOR) tables. The
connection information indicates the flow
of control within the module and, there
fore, reflects which blocks pass control
among themselves in a cyclical fashion.

Loops are ordered for processing start
ing with the innermost, or most often
executed, loop and working outward. The
inner-to-outer loop sequence is specif ed so
that:

• Text entries will not be relocated into
loops that have already been
processea.1

• The full register capabilities of
System/360 can first be applied to the
most frequently executed (innermost)
loop.

Loop identification is a sequential pro
cess, which first requires that a back
dominator be determined for each text
block. The back dominator of a text block
(block I) is defined as the block nearest
to block I through 'Nhich control must pass
before block I receives control for the
first time. The back dominators of all
text blocks must be determined before loop
identification can be continued. After all
back dominators have been determined, a
chain of back dominators is effectively
established for each block. This chain
consists of the back dominator of the
block, the back dominator of the back
dominator of the block, etc.

1 The text optimization process relocates
text entries from within a loop to an outer
loop. Thus, if an outer loop were pro
cessed first, text entries from an inner
loop might be relocated to the outer loop,
thereby requiring that the outer loop be
reprocessed.

Figure 7 illustrates the concept of back
dominators. Each block in the figure
represents a text block. The blocks are
identified by single letter names. The
back dominator of each block is identified
and recorded above the upper right-hand
corner of that block.

Entry
0

Exit

Figure 7. Back Dominators

When all back dominators are identified,
a back target and a defth number for each
text block are determined. A block (block
I) has a back target (block J) if:

• There exists a path from block I to
itself that does not pass through block
J.

• Block J is the nearest block in the
chain of back dominators of block I
that has only one forward connection.

The text blocks constituting a loop are
identifiable because they have a common
back target, known as the back target of
t_he loop.

The depth number for a block indicates
the degree to which that block is nested
within loops. For example, if a block is
an element of a loop that is contained
within a loop with a depth number of one,
that block has a depth number of two. All
blocks constituting the same loop (i.e.,
all blocks having a common target) have the
same depth number.

Section 2: Discussion of Major Components 51

The depth numbers computed for the
blocks that comprise the various loops are
used to determine the order in which the
loops are to be processed.

Figure 8 illustrates the concepts of
back targets and depth numbers. Again each
block in the figure represents a text
block, which is identified by a single
letter name. In this figure, the back tar
get of each block is identified and record
ed above the upper right-hand corner of
that block.. The depth number for the block
is recorded above the upper left-hand cor
ner of the block. Note that blocks that
pass control among themselves in a looping
fashion have a common back target and the
same depth number. Also note that the
blocks of the two inner loops have the same
depth numbers, although they have different
back targets.

Entry
0 0

A

Exit

Figure 8. Back Targets and Depth Numbers

When the back target and depth number of
each text block has been determined, loops
are identified and the order in which they
are to be processed is specified. The
loops are ordered according to the depth
number of their blocks. The loop whose
blocks have the highest depth number is
specified as the first to be processed; the
loop whose blocks have the next highest
depth number is specified as the second to
be processed; etc. When the processing
order of all loops has been established,

52

the innermost loop is selected for
processing.

The following paragraphs describe the
processing performed by the structural
determination routines to:

• Determine the back dominator of each
text tlock.

• Determine the back target and depth
number of each text block.

• Identify and order loops for
processing.

Determination of Back nominators

Subroutine TOPO-IEKPO determines the
back dominator of each text block by
examining the connection information for
that block. The first block processed by
TOPO-IEKPO is the first block (entry block)
of the module. Blocks on the first level
(i.e., blocks that receive control from the
entry block) are processed next. Second
level blocks (i.e., blocks that receive
control from first-level blocks) are then
processed, etc.

TOPO-IEKPO assigns the entry block a
back dominator of zero, because it has no
back dominator; it records the zero in the
back dominator field of the statement num
ber entry for that block (ref er to Appendix
A, "Statement Number/Array Table"). TOPO
IEKPO assigns each block on the first level
either its actual back dominator or a pro
visional tack dominator. If a first-level
block receives control from only one block,
that block must be the entry tlock and is
the back dominator for the first-level
block. TOPO-IEKPO records a pointer to the
statement number entry for the entry block
in the back dominator field of the state
ment number entry for the first level
block. If a first-level block receives
control from more than one block, TOPO
IEKPO assigns it a provisional back domina
tor, which is the entry block of the
module. All blocks on the first level are
processed in this manner.

TOPO-IEKPO also assigns each block on
the second level either its actual back
dominator or a provisional back dominator.
If a second-level block receives control
from only one block, its back dominator is
the first-level block from which it
receives control. TOPO-IEKPO records a
pointer to the. statement number entry for
the first-level block in the back dominator
field of the statement number entry for the
second-level block. If more than one block
passes control to a second-level block,
TOPO-IEKPO assigns that block a provisional
tack dominator. The provisional tack
dominator assigned is a first-level block
that passes control to the second-level
block under consideration. Processing of

this type is performed at each level until
the last, or exit, block of the module is
processed. TOPO-IEKPO then determines the
actual back dominators of blocks that were
assigned provisional back dominators.

For each block assigned a provisional
back dominator, subroutine TOPO-IEKPO makes
a backward trace over each path leading to
the block (using CMAJOR) • The blocks at
which two or more of the paths converge are
flagged as possible candidates for the back
dominator of the block. When all paths
have been treated, the relationship of each
possible candidate to the other possible
candidates is examined. TOPO-IEKPO assigns
the candidate at the highest level (i.e.,
closest to the entry block of the module)
as the back dominator of the block under
consideration; it records a pointer to the
statement number entry for the assigned
back dominator in the back dominator field
of the statement number entry for the block
under consideration. After the back
dominators of all text blocks are identi
fied, subroutine BAKT-IEKPB determines the
back target and depth number of each text
block.

Determination of Back Targets and Depth
Numbers

Subroutine BAKT-IEKPB determines the
back target of each text block through an
analysis of the backward connection infor
mation (in CMAJOR) for that block. Block J
is the back target of block I if:

1. Block J is the nearest block in the
chain of back dominators of block I.

2. Block J has only one forward
connection.

3. There exists a path from block I to
itself that does not pass through
block J.

If a block J exists that satisfies all
the above conditions except the second,
then the back target of block J is also the
back target of block I.

If a block J satisfying conditions 1 and
3 does not exist, then the back target of
block I is zero.

When the back target of a block is iden
tified, that block is also assigned a depth
number.

Back targets and depth numbers are
determined for text blocks in the same
order as back dominators are determined for
them. The first block of the module is the
first processed; first-level blocks are
considered next; etc.

EAKT-IEKPB assigns the first or entry
block both a back target and depth number
of zero, because it does not have a back
target and is not in a loop. It records
the depth number (zero) in the loop number
field of the statement ilUmber entry for the
entry block (refer to Appendix A, "State
ment Number/Array Table") •

The processing performed by BAKT-IEKPB
for each other block depends upon whether
one or more than one block passes control
to that block. If more than one block
passes control to the block under consi
deration, BAKT-IEKPB makes a backward trace
over all paths leading to that block to
locate its primary path. The primary path
of a block (if one exists) is a path that
starts at that block and converges on that
block without passing through any block in
the chain of back dominators of that block.

If such a path exists, BAKT-IEKPB
obtains and examines the nearest block in
the chain of back dominators of the block
under consideration. If the obtained block
has a single forward connection, BAKT-IEKPB
assigns that block as the back target of
the block under consideration. BAKT-IEKPB
then assigns a depth number to the block.
The number is one greater than that of its
back target, because the block is in a
loop, which must be nested within the loop
containing the back target. BAKT-IEKPB
records the depth number in the loop number
field of the statement number entry for the
block.

If the obtained block has more than one
forward connection, BAKT-IEKPB assigns its
back target as the back target of the block
under consideration. BAKT-IEKPB then
records in the statement number entry for
the block a depth number one greater than
that of its back target.

If a block that receives control from
two or more blocks does not have an asso
ciated primary path, that block, if it is
in a loop at all, is in the same loop as
one of the blocks in its chain of back
dominators. To identify the loop contain
ing the block (block I) , BAKT-IEKPB obtains
and examines the nearest block to block I
in its chain of back dominators that has
two or more forward connections. BAKT
IEKPB makes a backward trace over all paths
leading to the obtained block to determine
whether or not block I is an element of
such a path. If block I is an elereent of
such a path, it is in the same loop as the
obtained block, and BAKT-IEKPB therefore
assigns block I the same back target and
depth number as the obtained block; it
records the depth number in the statement
number entry for block I.

Section 2: Discussion of Major Components 53

If block I is not an element of any path
leading to the obtained block, BAKT-IEKPB
obtains the next nearest block to block I
in its chain of back dominators that has
two or more forward connections and repeats
the process. If block I is not an element
of any path leading to any block in its
chain of back dominators, block I is not in
a loop, and BAKT-IEKPB assigns it both a
back target and depth number of zero.

A block that receives control from only
one block, if it is in a loop at all, is in
the same loop as one of the blocks in its
chain of back dominators. To identify the
loop containing a block (block I) that
receives control from only one block, BAKT
IEKPB obtains and examines the nearest
block to block I in its chain of back
dominators that receives control from two
or more blocks. BAKT-IEKPB makes a tack
ward trace over all paths leading to the
obtained block to locate its primary path
(if any) • If the obtained block has a pri

mary path, BAKT-IEKPB retraces it to deter
mine if block I is an element of the path.
If it is, block I is in the same loop as
the obtained block, and, BAKT-IEKPB there
fore assigns block I the same back target
and depth number as the obtained block; it
records the depth number in the statement
number entry for block I.

If the obtained block does not have a
primary path, or if it does have a primary
path, which, however, does not have block I
as an element, BAKT-IEKPB considers the
next nearest block to block I in its chain
of back dominators that receives control
from two or more blocks. The process is
repeated until a primary path containing
block I is located (if any such path
exists) • If block I is not in the primary
path of any block in its chain of back
dominators, block I is not in a loop and
BAKT-IEKPB assigns it both a back target
and depth number of zero.

Identifying and Ordering Loops for
Processing

Subroutine BAKT-IEKPB orders blocks for
processing on the basis of the determined
back target and depth number information.
Blocks that have a common back target and
the same depth number constitute a loop.
BAKT-IEKPB flags the loop with the highest
depth number (therefore, the most deeply
nested loop) as the first .loop to be pro
cessed. It assigns the blocks constituting
that loop a loop number of one, indicating
that they form the innermost loop, which is
the first to undergo optimization. (BAKT
IEKPB records the value 1 in the loop num
ber field of the statement number entry for
each block in that loop.) BAKT-IEKPB flags
the loop with the next highest depth number
as the second loop to be processed. It

54

assigns the blocks in that loop a loop num
ber of two, indicating that they form the
second (or next outermost) loop to be pro
cessed. (A value of 2 is recorded in the
loop number field of the statement number
entry for each block in that loop.) BAKT
IEKPB repeats this procedure until the loop
with a depth number of one is processed.
It then assigns the highest loop number to
the blocks with a depth number of zero,
indicating that they do not form a loop.

If at any time, groups of blocks with
the same depth number but different back
targets are found, each group is in a dif
ferent loop. Therefore, each such loop is,
in turn, processed before blocks having a
lesser depth number are considered. Thus,
if the blocks of two loops have the same
depth number, BAKT-IEKPB assigns the blocks
of the first loop the next loop number. It
assigns the blocks of the second loop a
loop number one greater than that assigned
to the blocks of the first loop.

When loop numbers are assigned to the
blocks of all module loops, the order in
which the loops are to be processed has
been specified. Control is passed to the
routine that determines the busy-on-exit
information and then to the loop selection
routine to select the first (innermost)
loop to be operated upon. This loop con
sists of all blocks having a loop number of
one.

BUSY-ON-EXIT INFORMATICN

Before the module can be processed on a
loop-by-loop basis, information indicating
which variatles are busy-on-exit from which
text blocks roust be gathered. A variable
is busy irrmediately preceding a use of that
variable, but is not busy immediately pre
ceding a definition of that variable.
Thus, a variable is busy-on-exit from the
blocks which are along all paths connecting
a use and a prior definition of that vari
able. This means that in subsequent blocks
the variable can be used before it is
defined. The busy-on-exit condition for a
variable assures that its proper value
exists in main storage or in a register
along each path in which it is subsequently
used.

Information about the regions in which a
variable is busy or not busy determines
whether or not a definition of that vari
able can te moved out of a loop. For
example, if a variable is busy-on-exit from
the tack target of a loop, text optimiza
tion (see "Text Optimization") would not
attempt to move to the back target a redef
inition of that variable, because, if
moved, the value of the variable, as it is
processed along various paths from the back

target, might not be the desired one. Con
versely, if the variable is not busy-on
exit, the redefinition can be moved without
affecting the desired value of the vari
able. Thus, text optimization respects the
redefinitions of variables that are busy
on-exi t from the back target of a loop.

The information about regions in which a
variable is busy or not busy also deter
mines whether or not loads and stores of a
register assigned to the variable are
required. For example, in full register
assignment (see "Full Register Assignment
OPT=2 ") , variables that are assigned regis
ters during global assignment and that are
busy-on-exit from the back target of the
loop must have an initializing load of the
register placed into the back target. The
load is required because the variable may
be used before its value is defined. Con
versely, if the globally assigned variable
is not busy-on-exit from the back target,
an initializing load is unnecessary.

Phase 15 provides phase 20 with not
busy-on-entry information for each operand
that is assigned a coordinate (an MVD table
entry) • The not busy-on-entry information
is recorded in the MVX field of the state
ment number text entry for each text block
(see phase 15, "Gathering Constant/Variable

Usage Information") • An operand is not
busy-on-entry to a block, if in that block
that operand is only defined or defined
before it is used. Phase 20 converts the
not busy-on-entry information to busy-on
entry information. An operand is busy-on
entry to a block, if in that block that
operand is only used or used before it is
defined. Finally, phase 20 converts the
busy-on-entry information to busy-on-exit
information. The backward connection
information in CMAJOR is used to make the
final conversion.

The routine that performs the conver
sions is BIZX-IEKPZ. This routine deter
mines busy-on-exit information for each
constant, variable, and base variable hav
ing an associated MVD table entry or coor
dinate. However, because constants and
base variables are only used, they are
busy-on-exit throughout the entire module.
Therefore, the remainder of this discussion
deals with the determination of busy-on
exi t information for variables.

Because RETURN statements (exit blocks)
and references to subprograms not supplied
by IBM constitute implicit uses of
variables in common, all common variables
and arguments to such subprograms are first
marked as busy-on-entry to exit blocks and
blocks containing the references. The com
mon variables and arguments are found by
examining the information table entries for
all variables in the MVD table. The module

is then searched for blocks that are exit
blocks and that contain references to sub
programs not supplied by IBM. The coordin
ate bit for each previously mentioned vari
able is set on in the MVF field of the
statement number text entry for each such
block, while the same coordinate bit in the
MVX field is set off. This defines the
variable to be busy-on-entry to such a
block. During this process, a table, con
sisting of pointers to exit blocks, is
built for subsequent use.

After the blocks discussed above have
been appropriately marked for common
variables and arguments, BIZX-IEKPZ, work
ing with the coordinate assigned to a vari
able, converts the not busy-on-entry infor
mation for the variable to a table of
pointers to blocks to which the variable is
busy-on-entry. (The not busy-on-entry
information for the variable is contained
in the MVX fields of the statement number
text entries for the various text blocks.)
At the same time, the variable's coordinate
bit in each MVX field is set off. The
busy-on-exit table and CMAJOR are then used
to set on the MVX coordinate bit in the
statement number text entry for each block
from which the variable is busy-on-exit.
This procedure is repeated until all
variables have been processed. Control is
then returned to LPSEL-IEKPLS.

To convert not busy-on-entry information
to busy-on-entry information, BIZX-IEKPZ
starts with the second MVD table entry,
which contains a pointer to the variable
assigned coordinate number two, and works
down the chain of text blocks. The asso
ciated MVX coordinate bit in the statement
number text entry for each block is
examined. If the coordinate bit is off,
the corresponding MVF coordinate bit is
inspected. If the MVF coordinate bit is
on, a pointer to the associated text block
is placed into the busy-on-entry table.
This defines the variable to be busy-on
entry to the block (i.e., the variable is
used in the block before it is defined) •
If the associated MVX coordinate bit is on,
indicating that the variable is not busy
on-entry, BIZX-IEKPZ sets the bit off and
proceeds to the next block. This process
is repeated until the last text block has
been i:;rocessed.

After EIZX-IEKPZ has set off the MVX
coordinate bit (associated with the vari
able under consideration) in each statement
number text entry and built a table of
pointers to blocks to which the variable is
busy-on-entry, it determines the blocks
from which the variable is busy-on-exit.

Starting with the first entry in the
busy-on-entry table, BIZX-IEKPZ obtains
(from CMAJOR) pointers to all blocks that

Section 2: Discussion of Major Components 55

are backward connections of that entry.
Each backward connecting block is examined
to determine whether or not it meets one of
three criteria, which are:

• The block contains a definition of the
variable (i.e., the variable's MVS
coordinate bit is on).

• The variable has already been marked as
busy-on-exit from the block.

• The block corresponds to the busy-on
entry table entry being processed.

If the block meets one of these cri
teria, the variable is busy-on-exit from
the block and its associated MVX coordinate
bit is set on. (The backward connections
of that block are not explored.)

If the backward connecting block does
not meet any one of these criteria, the
variable is marked as busy-on-exit from
that block and that block's backward con
nections are, in turn, explored. The same
criteria are then applied to the backward
connecting blocks. The backward connection
paths are explored in this manner until a
block in every path satisfies one of the
criteria.

If, during the examination of the back
ward connections, an entry block (i.e., a
block lacking backward connections) is
encountered, the blocks in the table of
exit blocks, which was previously built by
BIZX-IEKPZ are used as the backward connec
tions for the entry block. Processing then
continues in the normal fashion.

When blocks in all backward connecting
paths have satisfied one of the criteria,
BIZX-IEKPZ obtains the next entry in the
busy-on-entry table and repeats the pro
cess. This continues until the busy-on
entry table has been exhausted.

When the busy-on-entry table has been
exhausted, the procedure of building the
busy-on-entry table and converting it to
busy-on-exit information is repeated for
the next MVD table entry. When all MVD
table entries have been processed, BIZX
IEKPZ passes control to LPSEL-IEKPLS, which
calls the loop selection routines.

STRUCTURED SOURCE PROGRAM LISTING

If both the EDIT option and OPT=2 opti
mization are selected, after subroutine
BIZX-IEKPZ has compiled the busy-on-exit
information, control is passed to subrou
tine SRPRIZ-IEKQAA, which records on the
SYSPRINT data set a structured source pro
gram listing. This listing indicates the
loop structure and logical continuity of

56

the source program. (A complete descrip
tion of the structured source listing is
given in the publication IBM System/360
Operating System: FORTRAN IV (H) Proqram
mer' s Guide.)

To produce the listing, SRPRIZ-IEKQAA
reads the SYSUT1 data set prepared by phase
10 and associates, by means of statement
numbers, the individual source statements
with the text blocks formed from them. By
analysis of the loop number information
gathered for the text blocks, SRPRIZ-IEKQAA
then identifies the source statements that
make up a particular loop and flags them on
the listing by corresponding loop number.
SPRRIZ-IEKQAA also uses the previously
gathered back dominator information to com
pute listing indentations for the state
ments. The indentations show dominance
relationships; that is, SRPSIZ-IEKQAA
indents the statements that form a text
block from the statements that form the
back dominator of that block.

LOOP SELECTION

The loop selection routine of phase 20
(TARGET-IEKPT) selects the loop to be pro
cessed and provides the text optimization
and full register assignment routines with
the information required to process the
loop.

The loop to be processed is selected
according to the value of a loop number
parameter, which is passed to the loop
selection routine. The control routine of
phase 20 (LPSEL-IEKPLS) sets this parameter
to one after the process of structural
determination is complete. The loop selec
tion routine TARGET-IEKPT is called to
select the loop whose blocks have a corre
sponding loop number. The selected loop is
then passed to the text optimization rou
tines. When text optimization for the loop
is completed, the control routine incre
ments the parameter by one, sets the loop
number of the blocks in the loop just pro
cessed to that of their back target, and
marks those blocks as completed. The con
trol routine again calls TARGET-IEKPT,
which selects the loop whose blocks corre
spond to the new value of the parameter.
The selected loop is then passed to the
text optimization routines. This process
is repeated until the outermost loop has
been text-optimized.

After text optimization has processed
the entire module (i.e., the last loop) ,
the control routine removes the block com
pletion marks, initializes the loop number
parameter to 1, and passes control to
TARGET-IEKPT to reselect the first loop.
Control is then passed to the full register
assignment routines. When full register

assignment for the loop is completed, the
control routine marks the blocks of the
loop as completed. It then increments the
parameter by 1 and passes control to
TARGET-IEKPT to select the next loop. Full
register assignment is then carried out on
the loop. This process is repeated until
the outermost loop has undergone full
register assignment. (When full register
assignment has been carried out on the out
ermost loop, the control routine passes
control to the routines that compute the
size of each text block and then to the
routine that computes the displacements
required for branching optimization.)

The loop selection routine TARGET-IEKPT
uses the value of the loop number parameter
as a basis for selecting the loop to be
processed. TARGET-IEKPT compares the loop
number assigned to each text block to the
parameter. It marks each block having a
loop number corresponding to the value of
the parameter as an element of the loop to
be processed. It does this by setting on a
bit in the block status field of the state
ment number entry for the block (refer to
Appendix A, "Statement Number/Array
Table") • When all such blocks are marked,
the loop has been selected.

The information required by the text
optimization and full register assignment
routines to process the loop consists of
the following:

• A pointer to the back target of the
loop (if any) •

• A pointer to the forward target of the
loop (if any) •

• Pointers to both the first and last
blocks of the loop.

• The loop composite matrixes.

After the loop has been selected, this
required information is gathered.

Pointer to Back Target

The text optimization and full register
assignment routines place both relocated
and generated text entries into the back
target of the loop. Although the back tar
get of the loop was previously identified
during structural determination, it was not
saved. Therefore, its identity must be
determined again.

The loop selection routine TARGET-IEKPT
determines the back target of the loop by
obtaining the first block of the selected
loop. It then analyzes the blocks in the
chain of back dominators of the first tlock
to locate the nearest block in the chain

that is outside the loop and that passed
control to only one block. That block is
the back target of the loop, and TARGET
IEKPT saves a pointer to it for use in the
subsequent processing of the loop.

Pointer to Forward Target

The text optimization and full register
assignment routines place both relocated
and generated text entries into the forward
target of the loop. The forward target of
a leap (if it exists) is the single block
to which the loop passes control after its
execution is complete.

To locate the forward target (if any) ,
the loop selection routine TARGET-IEKPT
analyzes the backward connection informa
tion (in CMAJOR) for each block that is not
in the selected loop. It marks all such
tlocks that receive control directly from a
block in the selected loop as exit blocks.
If only one exit block exists, that tlock
is the forward target of the loop. (The
forward target must not be entered from a
block not in the loop.) TARGET-IEKPT saves
a pointer to the forward target for use in
the subsequent processing of the loop.

If the above condition is not met, the
loop ~oes not have a defined forward
target.

Pointers to First and Last Blocks

The pointers to the first and last
blocks of the selected loop indicate to the
text optimization and full register assign
ment routines where they are to initiate
and terminate their processing. To make
these pointers available, and loop selec
tion routine TARGET-IEKPT merely determines
the first and last blocks of the selected
loop and saves pointers to them for use in
the subsequent processing of the loop. To
determine the first and last blocks,
TARGET-IEKPT searches the statement number
chain for the first and last entries having
the current loop number. The blocks asso
ciated with those entries are the first and
last in the loop.

Loop Composite Matrixes

The loop composite matrixes, LMVS, LMVF,
and LMVX, provide the text optimization and
full register assignment routines with a
summary of which operands are defined
within the selected loop, which operands
are used within that loop, and which
operands are busy-on-exit from that loop.
(An operand is busy-on-exit from the loop
if it is used before it is defined in any
path along which control flows from the
loop.)

Section 2: Discussion of Major Components 57

The LMVS matrix indicates which operands
are defined within the loop. The loop
selection routine TARGET-IEKPT forms LMVS
by combining, via an OR operation, the
individual MVS fields in the statement
number text entry of every block in the
selected loop.

The LMVF matrix indicates which operands
are used within the loop. TARGET-IEKPT
forms it by eombining, via an OR operation,
the individual MVF fields in the statement
number text entry of every block in the
selected loop.

The LMVX matrix indicates which operands
are busy-on-exit from the selected loop.
TARGET-IEKPT forms it during its search for
the forward target of the loop. TARGET
IEKPT examines the text entries of each
block that is not in the selected loop and
that receives control from a block in that
loop. Any operand in the text entries of
such a block that is either only used in
the block or used before it is defined is
busy-on-exit from the loop. TARGET-IEKPT
sets on the bit in the LMVX matrix that
corresponds to the coordinate assigned to
each such operand to reflect that it (i.e.,
the operand) is busy-on-exit from the loop.

TEXT OPTIMIZATION - OPT=2

The text optimization process of phase
20 detects text entries within the loop
under consideration that do not contribute
to the loop's successful execution. These
non-essential text entries are either com
pletely eliminated or are relocated to a
block outside of the current loop. Because
the most deeply-nested loops are presented
for optimization first, the number of text
entries in the most strategic sections of
the object module will approach a minimum.

The processing of text optimization is
divided into three logical sections:

58

• Common expression elimination optimizes
the execution of a loop by eliminating
unnecessary re-computations of identic
al arithmetic expressions.

• Backward movement optimizes the execu
tion of a loop by relocating to the
back target computations essential to
the module but not essential to the
current loop.

• Strength reduction optimizes the incre
mentation of DO indexes and the compu
tation of subscripts within the current
loop. Modification of the DO increment
may allow multiplications to be relo
cated into the back target. If the DO
increment is not busy-on-exit from the
loop, it may be completely replaced by

a new DO increment that becomes both a
subscript value and a test value at the
bottom of the DO.

The first two of the above sections are
similar in that they examine text entries
in strict order of occurrence within the
loop.

The last section does not examine indi
vidual text entries within the loop;
instead, the TYPES table, constructed prior
to their execution, is consulted for opti
mization possibilities. Furthermore, an
interaction of entries in the TYPES table
must exist before processing can proceed.
The TYPES table contains pointers to type
3, 4, 5, 6, and 7 text entries. The
various types, their definitions, and the
section(s) of text optimization that pro
cess them are outlined in Table 4. Point
ers to type 1 and type 2 text entries are
not entered into the TYPES table. The
reason is that such types have already been
processed during backward movement.

The following text describes the proces
sing performed by each of the sections of
the text optimization. An example illus
trating the type of processing of each sec
tion is given in Appendix D. These
examples should be referred to when reading
the text describing the processing of the
sections.

Common Expression Elimination - OPT=2

The object of common expression elimina
tion, which is carried out by subroutine
XPELIM-IEKQXM , is to eliminate any unne
cessary arithmetic expressions. This is
accomplished by eliminating text entries,
one at a time, until the entire expression
disappears. An arithmetic text entry is
unnecessary if it represents a value (cal
culated elsewhere in the loop) that may be
used without modification. A value may be
used without modification if, between
appearances of the same computation,
operands 2 and 3 of the text entry are not
redefined. The following paragraphs dis
cuss the processing that occurs during com
mon expression elimination.

Within the current loop, XPELIM-IEKQXM
examines each uncompleted block (i.e., a
block that is not part of an inner loop)
for text entries that are candidates for
elimination. A text entry is a candidate
if it contains an arithmetic, logical, or
subscript operator. Once a candidate is
found, XPELIM-IEKQXM attempts to locate a
matching text entry. A text entry matches
the candidate if operand 2, operand 3, and
the operator of that text entry are ident
ical to those of the candidate. If either
operand 2 or 3 of the matching text entry
is redefined between that text entry and

•Table 4. Text Entry Types
r--------T----~---------------------------------------T--------------------------------1

I Type I Definition I Processed by I

~-----~-+---+--------------------------------!
I Type 1 I A text entry having an absolute constant1 I I
I I in either the operand 2 or operand 3 I Backward Movement I
I I position. I I
~--------+------------------------------~-------------+--------------------------------~
I Type 2 I A text entry having stored constants2 in I Backward Movement I
I I both the operand 2 and operand 3 positions. I I
~--------+---+--------------------------------~
I Type 3 I An inert text entry (i.e., a text entry I I
I I that is a function of itself and an addi- I Strength Reduction I
I I tive constant; e.g., J=J+l). I I

~--------+-----------------~--------------------------+-------~-----------------------~
I Type 4 I A subscript text entry. I I
~--------+------------------~-------------------------+---------------~---------------~
I Type 5 I A text entry whose operand 1 (a temporary) I I
I I is a function of a variable (or temporary) I Strength Reduction I
I I and a constant, and whose operator is I I
I I multiplicative (* or /) • I I
~--------+---+-------~-----------------------~
I Type 6 I A text entry whose operand 1 (a temporary) I I
I I is a function of a variable (or temporary) I Strength Reduction I
I I and a constant, and whose operator is I I
I I additive (+ or -) • I I
~--------+------------------------------~-------------+--------------------------------~
I Type 7 I A branch text entry I Strength Reduction I
~--------i ___ i _____________ ~-----------------~

l 1 Absolute constants are those that agree with the definition of numerical constants as I
I stated in the publication IBM System/360 Operating System: FORTRAN IV. I
I I
l 2 A stored constant is a variable that is not defined within a loop, and thus its value I
I remains constant throughout execution of that loop. I l ___ J

the candidate, the match is not accepted.
The search for the matching text entry
takes place in the following locations:

• In the same block as the candidate,
between the first text entry and the
candidate.

• In a back dominator (see note) of the
block in which the candidate resides.

Note: Only back dominators that are not
elements of previously processed loops and
that are within the confines of the current
loop are considered. The first back
dominator considered is the one nearest to
the block being processed. The next consi
dered is the back dominator of the nearest
back dominator, etc.

When a matching text entry is found,
XPELIM-IEKQXM performs elimination in the
following way:

• If operand 1 of the matching text entry
is not redefined between that text
entry and the candidate, XPELIM-IEKQXM
substitutes that operand for operand 2
of the candidate and converts the
operator to a store.

• If, on the other hand, operand 1 is
redefined, XPELIM-IEKQXM generates a
text entry to save the value of operand
1 in a temporary and inserts this text
entry into text immediately after the
matching text entry. It then replaces
operand 2 of the candidate with this
temporary, and converts the Operator to
a store.

• Finally, if operand 1 of the candidate
is a temporary generated by phase 15,
XPELIM-IEKQXM replaces all uses of the
temporary with the new operand 2 of the
candidate and deletes the candidate.
Thus, the value of the matching text
entry is propagated forward for possi
ble participation in another candidate.
This provides the link to the next text
item of the complete common expression.

All text entries in the block under con
sideration are processed in the previously
described manner. When the entire block is
processed, the next uncompleted block in
the loop is selected and its text entries
undergo common expression elimination.
When all uncompleted blocks in the loop are
processed, control is returned to the con-

Section 2: Discussion of Major Components 59

trol routine of phase 20, which passes con
trol to the portion of phase 20 that con
tinues text optimization through backward
movement.

The overall logic of common expression
elimination is illustrated in Chart 11. An
example of common expression elimination is
given in Appendix D.

Backward Movement - OPT=2

Backward movement, which is performed by
subroutine BACMOV-IEKQBM, moves text
entries from a loop to an area that is
executed less often, the back target of the
loop. During backward movement, each
uncompleted block in the loop being pro
cessed is examined for text entries that
are candidates for backward movement. To
be a candidate for backward movement, a
text entry must:

• Contain an arithmetic or logical
operator.

• Have operands 2 and 3 that are not
defined within the loop.

When a candidate is found, BACMOV-IEKQBM
carries out backward movement of that can
didate in one of two ways:

• If operand 1 of the candidate is not
busy-on-exit from the back target of
the loop and if operand 1 of the candi
date is not defined elsewhere in the
loop, BACMOV-IEKQBM moves the entire
candidate to the back target of the
loop. (An operand is not busy-on-exit
from the back target if that operand is
defined in the loop before it is used.)

• If operand 1 of the candidate is busy
on-exi t from the back target of the
loop or if it is defined elsewhere in
the loop, BACMOV-IEKQBM generates a
text entry to perform the computation
of the expression in the candidate and
store the result in a new temporary.
It moves this text entry to the end of
the back target of the loop and then
replaces the expression in the candi
date with operand 1, the new temporary,
of the generated text entry.

All the text entries in the block under
consideration are processed in the pre
viously described manner. When the entire
block is processed, the next uncompleted
block in the loop is selected and its text
entries undergo backward movement. When
all uncompleted blocks in the loop are pro
cessed, control is returned to the control
routine of phase 20, which passes control
to the portion of phase 20 that continues
text optimization through strength
reduction.

60

The overall logic of backward movement
is illustrated in Chart 12. An example of
backward movement is given in Appendix D.

Two additional optimization processes
are performed concurrently with backward
movement. They are the elimination of
simple stores and of arithmetic expressions
that appear in text entries and are func
tions of constants.

Elimination of Simple Stores: BACMOV
IEKQBM effects the removal of unnecessary
simple stores (i.e., text entries of the
form "operand 1 = operand 2") from the
clock that is currently undergoing backward
movement. The following paragraph
describes the processing.

BACMOV-IEKQBM selects as candidates for
elimination any simple store in which
operand 1 is a non-subscripted variatle.
Pointers to the candidates are passed to
SUBSUM-IEKQSM which determines if elimina
tion is indeed possible according to the
conditions illustrated in Table 5. At the
same time, SUBSUM-IEKQSM replaces all uses
of operand 1 of the candidate with operand
2 of the candidate in text entries between
either:

• The candidate and the first redefini
tion of either operand.

• The candidate and the end of the block.

BACMOV-IEKQBM then deletes those candidates
so marked by SUBSUM-IEKQSM. An example of
simple-store elimination is illustrated in
Appendix D.

• Tatle 5. Operand Characteristics That
Permit Simple-Store Elimination

r---------T---------T----------T----------1
!Operand 110perand 110perand 2 ICperand 1 I
!Busy-on- IRedefinedlRedefined !Used Below!
!Exit From!Below in !Before !Operand 2 I
!Block !Block !Operand 1 IRedefini- I
I I IDefinitionltion I
~---------+---------+----------+----------~
I 1 • No I No I No I X I
~---------+---------+--~-------+----------~
12. No I No I Yes I No I
~---------+---------+----------+----------~
13. No I ¥es I No I X I
~---------+---------+----------+----------~
14. No I Yes I Yes I No I
~---------+------~-+--~------+----------~
15. Yes I Yes I No I X I
~---------+---------+----------+----------i
16. Yes I Yes I Yes I No I
~---------i---------i----------i----------~
IX = condition cannot exist because of I
!previous characteristics of operands. I
L---J

Elimination of Text Entry Expressions
Involving Integer Constants: During the
scan of a block for text entries to be
moved to the back target, BACMOV-IEKQBM
also checks for text entries whose opera
tors are arithmetic and whose operands 2
and 3 are both integer constants. When
such a text entry is found, BACMOV-IEKQBM
eliminates the arithmetic expression in the
text entry by:

• Calculating the result of the
expression.

• Creating a new dictionary entry for the
result, which is a constant.

• Replacing the arithmetic expression
with the result.

The text entry is thereby reduced to a
simple store, which may be eliminated by
simple-store elimination.

Strength Reduction - OPT=2

Strength reduction, which is performed
by subroutine REDUCE-IEKQSR , optimizes
loops that are controlled by logical IF
statements. (DO loops are converted to
loops controlled by logical IF statements
during Phase 10 processing.) Such loops
are optimized by modifying the expression
(e.g., J~20) in the IF statement; this
enables certain text entries to be moved
from the loop to the back target of the
loop, an area executed less frequently.
Strength reduction processing is divided
into two sections:

• Elimination of multiplicative text.
• Elimination of additive text.

Both of these sections perform strength
reduction, but each has a separate set of
criteria for considering a loop as a candi
date for reduction. However, the manners
in which these sections implement reduction
are essentially the same.

Elimination of Multiplicative Text: To
eliminate multiplicative text, REDUCE
IEKQSR examines the loop being processed to
determine if it is a candidate for strength
reduction. The loop is a candidate if:

• The loop contains an inert text entry
(a type 3 text entry) •

• Operand of the inert text entry is
used in another text entry (in the
loop) whose operator indicates multi
plication and whose other used operand
is a constant1 (a type 5 entry) •

1 This other text entry is referred to as a
multiplicative text entry.

• Operand 1 of the inert text entry is
the variable appearing in the expres
sion of the logical IF statement that
controls the loop.

If the loop is a candidate, REDUCE
IEKQSR implements strength reduction in one
of two ways:

1. If the constants in the inert text
entry and the multiplicative text
entry are both absolute constants,
REDUCE-IEKQSR:

a. Calculates a new constant (K)
equal to the product of the abso
lute constants.

b. Generates another inert text entry
and inserts it into the loop imme
diately after the original inert
text entry. The additive constant
in this text entry is K.

c. Modifies the expression in the
logical IF by:

(1) Replacing the branch variable
(see note) with operand 1 of
the generated inert text entry.

(2) Replacing the branch constant
(see note) with a constant
equal to the product of the
branch constant and K.

d. Deletes the original inert text
entry if operand 1 of that text
entry is not busy-on-exit from the
looi;:.

e. Moves the multiplicative text
entry to the back target of the
loop.

f. Replaces operand 1 of the multi
plicative text entry with operand
1 of the generated inert text
entry.

g. Rei;:laces the uses of operand 1 of
the multiplicative text entry that
remain in the loop with operand 1
of the generated inert text entry.

Note: The branch variable is the
variable in the expression of the
logical IF that is tested to
determine if the loop is to be
reexecuted. The branch constant
is the constant to which ·the
branch variable is compared. For
example, in IF (J~3) where J is
the branch variable and 3 is the
branch constant.

2. If either of the constants in the
inert text entry or the multiplicative

Section 2: Discussion of Major Components 61

text entry is a stored constant,
REDUCE-IEKQSR performs similar proces
sing to that described above. Howev
er, prior to generating the inert text
entry, it generates two additional
text entries and places them into the
back target of the loop. The first
text entry multiplies the two con
stants. Operand 1 of this text entry
becomes the additive constant in the
generated inert text entry. The
second text entry mul~iplies operand
of the first generated text entry by
the branch constant. Operand 1 of the
second text entry becomes the new
branch constant of the logical IF.

If additional multiplicative text
entries exist within the loop, the above
process is repeated. Repetitive processing
of this type results in a number of
generated inert text entries, whic~ may be
eliminated from the loop by the processing
of the second section of strength
reduction.

Elimination of Additive Text: To eliminate
additive text, REDUCE-IEKQSR examines the
loop being processed to determine if it is
a candidate for strength reduction. The
loop is a candidate if:

• The loop contains an inert text entry
(type 3) •

• Operand of the inert text entry is
used in the loop in another text entry
whose operator indicates addition 1

(type 6) •

If the loop is a candidate, the proces
sing performed by REDUCE-IEKQSR to elimin
ate the additive text entry is essentially
the same as that performed to eliminate a
multiplicative text entry.

The overall logic of strength reduction
is illustrated in Chart 13. An example
showing both methods of strength reduction
is given in Appendix D.

FULL REGISTER ASSIGNMENT - OPT=2

During OPT=2 optimization, full register
assignment is carried out on module loops,
rather than on the entire module, as is the
case for OPT=1 optimization. Regardless of
whether a loop or the entire module is
being processed, the full register assign
ment routines operate essentially in the
same manner. However, the optimization
effect of full register assignment, when
carried out on a loop-by-loop basis, is

1 This text entry is referred to as an addi
tive text entry.

62

more pronounced. Because the most deeply
nested loops are presented for full regis
ter assignment first, the number of regis
ter loads in the most strategic sections of
the object module approaches a minimum.
The processing of a loop by full register
assignment differs from the processing of
the entire module only in the area of glob
al assignment. An understanding of the
processing performed on a loop, other than
global assignment, can be derived from the
previous discussion of full register
assignment. (Refer to "Full Register
Assignment - OPT=1") • Global assignment
for a loop is described in the following
text.

When processing a loop, the global
assignment routine (GLOBAS-IEKRGB) inco
rporates into the current loop, wherever
possible, the global assignments made to
items (i.e., operands and base addresses)
in previously processed loops. It does
this to ensure that the same register is
assigned in both loops if an item eligible
for global assignment in the current loop
was globally assigned in a previously pro
cessed loop.

Before the global assignment routine
assigns an available register to the most
active item of the current loop, it deter
mines whether that item was globally
assigned in a previously processed loop.
(As global assignment is carried out on

each loop, all global assignments for that
loop are recorded and saved for use when
the next loop is considered.) If the item
was not globally assigned in a previously
processed loop, GLOBAS-IEKRGB assigns it
the first available register. If the item
was globally assigned in a previously pro
cessed loop, the global assignment routine
then determines whether the register
assigned to the item in the previously pro
cessed loop is currently available. If
that register is available, GLOBAS-IEKRGB
also globally assigns it to the same item
in the current loop. If the register is
not available, the global assignment of
that item in the previously processed loop
cannot be incorporated into the current
loop. GLOBAS-IEKRGB therefore assigns the
item an available register different from
that assigned to it in the previously pro
cessed loop. GLOBAS-IEKRGB selects the
eligible item with the next highest activi
ty in the current loop and treats it in the
same manner. Processing continues in this
fashion until the supply of eligible items
or the supply of available registers is
exhausted.

As each global assignment is made to an
active item, GLOBAS-IEKRGB checks to deter
mine whether or not that item is busy-on
exit from the back target of the loop. If
the item is busy-on-exit, GLOBAS-IEKRGB

generates a text entry to load that item
into the assigned register and inserts it
into the back target of the loop. The load
is required to guarantee that the item is
in a register and available for subsequent
use during loop execution. If the item is
not-busy-on-exit, the load text item is not
required. If any globally assigned item is
defined within the loop and is also busy
on-exit from the loop, GLOBAS-IEKRGB
generates a text entry to store that item
on exit from the loop. The generated store
is needed to preserve the value of such an
operand for use when it is required during
the execution of an outer loop.

GLOBAS-IEKRGB records all global assign
ments made for the current loop for use in
the subsequent updating scan (see "Full
Register Assignment-OPT=1•) and also for
incorporation, wherever possible, into sub
sequently processed loops.

BRANCHING OPTIMIZATION - OPT=2

During OPT=2 optimization, branching
optimization is carried out in the same
manner as during OPT=1 optimization. After
all loops have undergone full register
assignment, BLS-IEKSBS is given control to
calculate the size of each block. When the
sizes of all blocks have been calculated,
BLS-IEKSBS uses the block size information
to determine the blocks that can be
branched to by means of RX-format branch
instructions.

PHASE 25 -----
Phase 25 completes the production of an

object module from the combined output of
the preceding phases of the compiler. An
object module consists of four elements:

• Text information.
• External symbol dictionary.
• Relocation dictionary.
• Loader END record.

The text information (instructions and
data resulting from the compilation) is in
a relocatable machine language form. It
may contain unresolved external symbolic
cross references (i.e., references to sym
bols that do not appear in the object
module) • The external symbol dictionary
contains the information needed to resolve
the external symbolic cross references
appearing in the text information. The
relocation dictionary contains the informa
tion needed to relocate the text inf orma-·
tion for execution. The END record informs
the linkage editor of the length of the
object module and the address of its main
entry point.

An object module resulting from a compi
lation consists of a single control sec
tion, unless common blocks are as.sociated
with the module. An additional control
section is included in the module for each
common block.

The object module produced by Phase 25
is recorded on the SYSLIN data set if the
LOAD option is specified by the FORTRAN
programmer, and on the SYSPUNCH data set if
the DECK option is specified. If the LIST
option is specified, Phase 25 develops and
records on the SYSPRINT data set a pseudo
assembler language listing of the instruc
tions and data of the object module. If
the MAP option is specified, phase 25 also
produces a storage map. Error messages
produced during phase 25 (if any) are also
recorded on the SYSPRINT data set.

TEXT INFORMATION

Text information consists of the machine
language instructions and data resulting
from the compilation. Each text informa
tion entry (a TXT record) constructed by
phase 25 can contain up to 56 bytes of
instructions and data, the address of the
instructions and data relative to the
beginning of the control section, and an
indication of the control section that con
tains them. A more detailed discussion of
the use and format of TXT 0 records is given
in the putlication IBM System/360 Operating
System: Linkage Editor, Program Logic
Manual.

The major portion of phase 25 processing
is concerned with text information con
struction. In building text lnformation,
phase 25 attains each item that is to be
placed into text information, converts the
item to machine language form wherever
necessary, enters the item into a TXT rec
ord, and places the relative address of the
item into the TXT record.

Phase 25 assigns relative addresses by
rreans of a location counter, which is con
tinually updated to reflect the location at
which the next item is to be placed into
text information. Whenever phase 25 begins
the construction of a new ~XT record, it
inserts the current value of the location
counter into the address field of the TXT
record. The address field of the TXT rec
ord thereby indicates the relative address
of the instructions and data that are
placed into the record.

Figure 9 shows the layout of storage
that Phase 25 assumes in setting up text
inforrraticn.

Section 2: Discussion of Major Components 63

Phase which
al locates space

Entry Code
STALL-IEKGST
phase 10

Format Text and Li tera I Constants
STALL-IEKGST
phase 10

Phase which
uses space

STALL-IEKGST
and phase 25

STALL-IEKGST
phase 10 "";"" "f 1---- _ ----~'=''2...~r_!:_g_!_s~r_l~ _____________

Epilogue Save Area
STALL-IEKGST

phase 25
!--------------------------------

phase 10

4096
bytes

.,,;"" ,,l
(if needed)

Adcon for Register 12

Branch Tables

Parameter Lists

Constants, Variables, Arrays

Ad cons

Namelist Dictionaries

Phase 20 Temporaries

'B' Block Labels

Obiect Program Instructions

Epilogue

Prologue

Epilogue Secondary Entry Points

Prologue Secondary Entry Points

STALL-IEKGST
phase 10 phase 25

phase 15 phase 25

CORAL CORAL
phase 15 phase 15

CORAL CORAL
phase 15 phase 15

CORAL CORAL
phase 15 phase 15

phase 20 phase 25

phase 25 phase 25

phase 25 phase 25

phase 25 phase 25

phase 25 phase 25

phase 25 phase 25

phase 25 phase 25

eFigure 9. Storage Layout for Text Information Construction

Phase 25 constructs text information by:

• Reserving dictionary entries for the
referenced statement numbers of the
module.

• Completing the processing of the adcon
table entries and entering the resul
tant entries into TXT records.

• Generating the prologue and epilogue
instructions for a subprogram and
secondary entry points and entering
these instructions into TXT records.

• Converting phase 15/20 standard text
into System/360 machine code and enter
ing the code into TXT records.

Chart 20 shows the logic of phase 25
processing, down to, but not including,
conversion of text to machine code.

Address Constant Reservation

Before it constructs text information,
subroutine MAINGN-IEKTA reserves address
constants for the referenced statement num-

64

bers of the module and for the statement
numbers appearing in computed GO TO state
ments. The address constants are reserved
so that the relative addresses of the sta
tements associated with such statement num
bers can be recorded, and subsequently
obtained during execution of the object
module, when branches to those statements
are required.

To reserve address constants for state
ment numbers, subroutine MAINGN-IEKTA scans
the chain of statement number entries in
the statement number/array table. For each
encountered statement number that is
referred to MAINGN-IEKTA inserts a base and
displacement into the associated statement
number entry. When the text representation
of that statement number is encountered, a
relative address is placed in the statement
number entry.

Note: If branching optimization is being
implemented, MAINGN-IEKTA only assigns a
base and displacement for statement numbers
that are associated with text blocks that
can not be branched to via RX-format branch
instructions.

After all statement numbers are pro
cessed, bases and displacements are like
wise assigned for the statement numbers
appearing in computed GO TO statements.
MAINGN-IEKTA scans the branch table chain
(refer to Appendix A, nBranch Tablen) , and

assigns a base and displacement for each
branch table entry. MAINGN-IEKTA does not
record pointers to the address constants
set aside for the actual statement numbers
of the computed GO TO statements in their
associated standard branch table entries.
The values to be placed into the address
constants for statement numbers in computed
GO TO statements are also determined during
text conversion.

Main Program Entry Coding

To generate main program entry coding,
phase 25 works with the FSD subroutine IEK
TLOAD. After IEKTLOAD saves the contents
of the general registers and loads reserved
registers with their associated addresses,
subroutine ENTRY-IEKTEN (phase 25)
generates instructions that perform the
following functions:

• Load register 15 with the address of
IHCFCOMH.

• Branch and link to subroutine IBFINT
(arithmetic interruption subroutine of

IHCFCOMH) so that it can set the inter
ruption mask.

• Load register 13 from register 4.

• Branch to apparent entry point.

• Load register 15 with the address of
IHCFCOMH.

• Branch and link to STOP entry point in
IHCFCOMH.

• Generate constant for STOP 0.

• Set up a save area that receives the
contents of the main program registers,
if a subprogram is called.

• Set up the address constants to be
loaded into the reserved registers.

Note: At execution time, subroutine IBFINT
is given control to set the interruption
mask.

Text Conversion

Phase 25 converts intermediate text into
Operating System/360 machine code. (The
text conversion process is controlled by
subroutine MAINGN-IEKTA.) In converting
the text, phase 25 obtains each text entry
and, depending upon the nature of the
operator in the text entry, passes control
to one of six processing paths to convert
the text entry.

The six processing paths are:

• Statement Number Processing.
• I/O Statement Processing.
• CALL Statement Processing.
• Code Generation.
• RETURN Statement Processing.
• END Statement Processing.

The logic of text conversion is illus
trated in Chart 21.

STATEMENT NUMBER PROCESSING: When the
operator of the text entry indicates a
statement number, MAINGN-IEKTA passes con
trol to subroutine LABEL-IEKTLB. LABEL
IEKTLB then inserts the current value of
the location counter, which is the relative
address of the statement associated with
the statement number, into the statement
number entry. All branches to that state
ment are effected through the use of the
relative address for that statement number.

Note: If branching optimization is being
implemented, only statement number that can
not be branched to via RX format branch
instructions (i.e., statement numbers that
are not within the range of registers 13,
11, 10, and 9) are processed as described
above.

After the relative address has been
placed into the statement number ent.ry,
subroutine LABEL-IEKTLB determines if that
statement number appears in a computed GO
TO statement. If it does, LABEL-IEKTLB
also inserts the relative address into the
appropriate field of the branch table
entry, or entries, for that statement num
ber. The relative address recorded in the
branch table entry is placed into the
storage reserved for it within text infor
mation (refer to "END Statement Proces
sing") when the text representation of the
END statement is encountered.

I/O STATEMENT PROCESSING: When the opera
tor of the text entry indicates an I/O
statement, an I/O list item, or the end of
an I/O list, MAINGN-IEKTA passes control to
subroutine IOSUB-IEKTIS, which generates an
appropriate calling sequence to IHCFCOMH to
perform, at object-time, the indicated
operation.

Section 2: Discussion of Major Components 65

The calling sequence generated for an
I/O statement depends on the type of the
statement (e.g., READ, BACKSPACE). The
calling sequence generated for an I/O list
item depends on the I/O statement type with
which the list item is associated and on
the nature of the list item, i.e., whether
the item is a variable or an array. The
calling sequence generated for an end of an
I/O list depends on whether the end I/O
list operator signals:

• The end of an I/O list associated with
a READ/WRITE requiring a FORMAT
statement.

• The end of an I/O list associated with
a READ/WRITE not requiring a FORMAT
statement.

Once the calling sequence is generated,
subroutine IOSUB-IEKTIS enters it into TXT
records.

CALL STATEMENT PROCESSING: When the opera
tor of the text entry indicates a CALL
statement, MAINGN-IEKTA passes control to
subroutine FNCALL-IEKVFN to generate a
standard direct-linkage calling sequence,
which uses general register 1 as the argu
ment register. The argument list is
located in the adcon table in the form of
address constants. Each address constant
for an argument contains the relative
address of the argument. FNCALL-IEKVFN
enters the calling sequence into TXT
records.

CODE GENERATION: Code generation converts
text entries having operators other than
those for statement numbers and ENTRY,
CALL, I/O, RETURN, and END statements into
System/360 machine code. To convert the
text entry, code generation uses four
arrays and the information in the text
entry. The four arrays are:

66

• Register array. This array is reserved
for register and displacement
information.

• Directory array. This array contains
pointers to the skeleton arrays and the
bit strip arrays associated with opera
tors in text entries that undergo code
generation.

• Skeleton array. A skeleton array
exists for each type of operator in an
intermediate text entry that is to be
processed by code generation. The
skeleton array for a particular opera
tor consists of all the machine code
instructions, in skeleton form and in
proper sequence, needed to convert the
text entry containing the operator into
machine code. These instructions are
used in various combinations to produce

the desired object code. (The skeleton
arrays are shown in Appendix C.)

• Bit strip array. A bit strip array
exists for each type of operator in a
text entry that is to undergo code
generation. One strip is selected for
each conversion involving the operator.
The bits in each strip are preset
(either on or off) in such a fashion
that when the strip is matched against
the skeleton array, the strip indicates
the combination of instructions that is
to be used to convert the text entry.
(The bit strip arrays are shown with
their associated skeleton arrays in
Appendix C.)

In code generation, the actual base
registers and operational registers (i.e.,
registers in which calculations are to be
performed) , assigned by phase 20 to the
operands of the text entry to be converted
to machine code, are obtained from the text
entry and placed into the register array.
Any displacements needed to load the base
addresses of the operands are also placed
into the register array. The displacerrents
referred to in this context are the dis
placements of the base addresses of the
operands from the start of the adcon table
that contains the base addresses. These
displacements are obtained from the infor
mation table entries for the operands.
This action is taken to facilitate subse
quent processing.

The operator of the text entry to be
converted is used as an index to the direc
tory array. The entry in this directory
array, which is pointed to by the operator
index, contains pointers to the skeleton
array and the bit strip array associated
with the operator.

The proper bit strip is then selected
from the bit strip array. The selection
depends on the status of operand 2 and
operand 3 of the text entry. This status
is set up by phase 20 and is indicated in
the text entry by four bits (see Appendix
A, "Phase 20 Intermediate Text Modifica
tions") : the first two bi ts indicate the
status of operand 2; the second two bits
indicate the status of operand 3.

The status of operand 2 and/or operand 3
can be one of the following:

00 The operand is in main storage and
is to remain there after the present
code generation. Therefore, if the
operand is loaded into a register
during the present code generation,
the contents of the register can be
destroyed without concern for the
operand.

01 °The operand is in main storage and
is to be loaded into a register.
The operand is to remain in that
register for a subsequent code
generation; therefore, the contents
of the register are not to be
destroyed.

10 The operand is in a register as a
result of a previous code genera
tion. After the register is used in
the present code generation process,
its contents can be destroyed.

11 The operand is in a register and is
to remain in that register for a
subsequent code generation. The
contents of the register are not to
be destroyed.

This four bit status field is used as an
index to select a bit strip from the bit
strip array associated with the operator.
The combination of instructions indicated
in the bit strip conforms to the operand
status requirements: i.e., if the status
of operand 2 is 11, the generated instruc
tions make use of the register containing
operand 2 and do not destroy its contents.
The combination, however, excludes base
load instructions and the store into
operand 1.

Once the bit strip is selected, it is
moved to a work area. The strip is modi
fied to include any required base load
instructions. That is, bits are set on in
the appropriate positions of the bit strip
such that, when the strip is matched to the
skeleton array, the appropriate instruc
tions for loading base addresses are
included in the object code. The skeletons
for these load instructions are part of the
skeleton array.

The code generation process determines
if the base address of operand 2 and/or
operand 3 must be loaded into a register by
examining the status of these base
addresses in the text entry. Such status
is indicated by four bits: the first two
bits indicate the status of the base
address of operand 2; the second two bits
indicate the status of the base address of
operand 3. If this status field indicates
that a base address is to be loaded, the
appropriate bit in the bit strip is set on.
(The bit to be operated upon is known,
because the format of the skeleton array
for the operator is known.)

Before the actual match of the bit strip
to the skeleton array takes place, the code
generation process determines:

• If tne base address of operand 1 must
be loaded into a register.

• If the result produced by the actual
machine code for the text entry is to
be stored into operand 1.

This information is again indicated in the
text entry by four bits: the first two
bits indicate the status of the base
address of operand 1; the second two bits
indicate whether or not a store into
operand 1 is to be included as part of the
object code. If the base address of
operand 1 is to be loaded and/or if operand
1 is to be stored into, the appropriate
bit(s) in the bit strip is set on.

The bit strip is then matched against
the skeleton array. Each skeleton instruc
tion corresponding to a bit that is set on
in the bit strip is obtained and converted
to actual machine code. The operation code
of the skeleton instruction is modified, if
necessary, to agree with the mode of the
operand of the instruction. The mode of
the operand is indicated in the text entry.
The symbolic base, index, and operational
registers of the skeleton instructions are
replaced by actual registers. The base and
operational registers to be used are con
tained in the register array. If an
operand is to be indexed, the index regis
ter to be used is obtained. {The index
register is saved during the processing of
the text entry whose operand 1 represents
the actual index value to be used.) The
displacement of the operand from its base
address, if needed, is obtained from the
information table entry for the operand.
(The contents of the displacement field are

added to this displacement if a subscript
text entry is being processed.) ~hese ele
ments are then combined into a machine
instruction, which is entered into. a TXT
record. (If the skeleton instruction that
is being converted to roachine code is a
base load instruction, the base address of
the operand is obtained from the object
time adcon table. The register (13) con
taining the address of the adcon table and
the displacerrent of the operand's base
address from the beginning of the adcon
table are contained in the register array.)

Branch Processing: The code generation
portion of phase 25 generates the machine
code instructions to complete branching
optiroization. The processing performed by
code generation, if branching optimization
is being impleroented, is essentially the
same as that performed to produce an object
module in which branching is not optimized.
However, before a skeleton instruction
(corresponding to an on bit in the selected

and roodified bit strip) is assembled into a
machine code instruction, code generation
determines if that instruction either:

Section 2: Discussion of Major Components 67

• Loads into a register the address of an
instruction to which a branch is to be
made and which is displaced less than
4096 bytes from the address in a
reserved registert.

• Is an RR-format branch instruction that
branches to an instruction that is dis
placed less than 4096 bytes from the
address in a reserved register2.

Note: A load candidate usually immediately
precedes a branch candidate in the skeleton
array.

Code generation determines if the
instruction to be branched to is displaced
less than 4096 bytes from an address in a
reserved register by interrogating an indi
cator in the statement number entry for the
statement number associated with the block
containing the instruction to be branched
to. This indicator is set by phase 20 to
reflect whether or not that block is dis
placed less than 4096 bytes from an address
in a reserved register.

The completion of branching optimization
proceeds in the following manner. If a
skeleton instruction corresponding to an on
bit in the bit strip is a load candidate,
it is not included as part of the instruc
tion sequence generated for the text entry
under consideration. If a skeleton
instruction corresponding to an on bit in
the bit strip is a branch candidate, it is
converted to an RX-format branch instruc
tion. The conversion is accomplished by
replacing operand 2 (a register) of the
branch candidate with an actual storage
address of the form D (0,Br) D represents
the displacement of the instruction (to be
branched to) from the address that is in
the appropriate reserved register (Br) •

If the instruction to be branched to is
the first in the text block, both the dis
placement and the reserved register to be
used for the RX-format branch are obtained
from the statement number entry associated
with the block containing the instruction.
(This information is placed into the state

ment number entry during phase 20
processing.)

If the instruction to be branched to is
one that is subsequently to be included as
part of the instruction sequence generated

1 This type of text entry is subsequently
referred to as a load candidate.
2This type of text entry is subsequently
referred to as a branch candidate.

68

for the text entry under consideration 3 ,

the displaaement of the instruction from
the address in the appropriate reserved
register is computed and used as the dis
placement of the RX-format branch instruc
tion. The reserved register used in such a
case is the one indicated in the statement
number entry associated with the block con
taining the text entry currently being pro
cessed by code generation.

RETURN STATEMENT PROCESSING: When the
operator of the text entry indicates a
RETURN statement, MAINGN-IEKTA passes con
trol to subroutine RETURN-IEKTRN, which
generates a branch to the epilogue. The
epilogue address is obtained from the sub
program save area. The address of the epi
logue is placed into the save area during
the execution of either the subprogram main
entry coding or the subprogram secondary
entry coding (refer to the section
•Initialization Instructions") •

END STATEMENT PROCESSING: When the opera
tor of the text entry indicates an END
statement, MAINGN-IEKTA passes control to
subroutine END-IEKUEN, which completes the
processing of the module by entering the
address constants (i.e., relative
addresses) for statement numbers and state
ment numbers appearing in computed GO TO
statements into text information and by
generating the END record.

Subroutine END-IEKUEN calls ENTRY-IEKTEN
to determine if the program being compiled
is a main program or a subprogram and to
take the appropriate action. If it is a
subprogram, ENTRY-IEKTEN calls EPILOG
IEKTEP and PROLOG-IEKTPR. (Refer to "Pro
logue and Epilogue Generation.") If it is a
main program, ENTRY-IEKTEN generates code
to call IBFINT (arithmetic interruption
subroutine of IHCFCOMH) and generates a
branch to the appropriate place in text.
If there are secondary entry points, text
is scanned to determine where they are
located. An epilogue and prologue are
generated for each entry point with a
branch to the corresponding point in the
object code. ENTRY-IEKTEN returns control
to END-IEKUEN.

END-IEKUEN places TXT and RLD records in
the object module for the following: adcon
for the save area, adcon for the Epilogue,
adcon for register 12, if needed, adcons
for branch tables, adcons for parameter
lists, and adcons for 'B' block labels.
END-IEKUEN generates TXT information for
each temporary. END-IEKUEN calls IEND (FSD

3 Skeleton arrays for certain operators con-'
tain RR format branch instructions that
transfer control to other instructions of
that skeleton.

entry point) to generate the loader END
record which must be the last record of the
object module. Its functions are to signal
the end of the object module and to inform
the linkage editor of the size (in bytes)
of the control section and the address of
the main entry entry point of the control
section. END-IEKUEN then returns control
to the FSD through MAINGN-IEKTA.

Storage Map Production

As a user option, subroutine IEKGMP pro
duces a storage map of the symbols used in
the source program. The map contains the
following information:

Name

Tag

Type

s The variable appeared to the
left of an equal sign in the
source program. (stored
into)

F The variable appeared to the
right of an equal sign in the
source program. (fetched)

A The variable was used as an
argument.

C The variable appeared in a
COMMON statement.

E The variable appeared in an
EQUIVALENCE statement.

XR - The variable is a call-by
name parameter to the source
program.

XF - The entry is a subroutine or
function to the source
program.

ASF- The variable is the name of
an arithmetic statement
function.

Identifies the type of variable
Type * length -- in bytes.

Add. Is the relative address of the
variable within the object module
(in hex) •

The total size of the object module is
also given.

A map of each common block is generated
to give the relative location of each
variables in that common block. A map of
variable equivalenced into common is also
provided.

In addition, TENTXT-IEKVTN generates a
map of statement numbers.

Prologue and Epilogue Generation

Phase 25 generates the machine code:
(1) to transmit parameters to a subprogram,

and (2) to return control to the calling
routine after execution of the subprogram.
Parameters are transmitted to the subpro
gram by means of a prologue. Return is
made to the calling routine by means of an
epilogue. Prologues and epilogues are pro
vided for subprogram secondary entry points
as well as for the main entry point.

Prologue: A prologue (generated by subrou
tine PROLOG-IEKTPR) is a series of load and
store instructions that transmit the values
of "call by value• parameters and the
addresses of "call by name" parameters to
the subprogram. (These parameters are
explained in the publication IBM System/360
Operating System: FORTRAN IV.)

When subroutine PROLOG-IEKTPR generates
a prologue, it enters the prologue into TXT
records and inserts its relative address
into the address constant reserved for the
prologue address during the generation of
initialization instructions.

Epilogue: An epilogue (generated by sub
routine EPILOG-IEKTEP) is a series of
instructions that (1) return to the calling
routine the values of "call by value"
parameters (if they are stored into or used
as arguments) , (2) restore the registers of
the calling routine, and (3) return control
to the calling routine. (If "call by
value" parameters do not exist, an epilogue
consists of only those instructions
required to restore the registers and to
return control.)

When subroutine EPILOG-IEKTEP generates
an epilogue, it enters the epilogue into
TXT records and inserts its relative
address into the address constant reserved
for the epilogue address during the genera
tion of initialization instructions. ~hen
phase 25 encounters the text representation
of a RETURN statement, a branch to the epi
logue is generated.)

PHASE 30

Phase 30 records (on the SYSPRINT data
set) appropriate messages for syntactical
errors encountered during the processing of
phases 10 and 15; its overall logic is
illustrated in Chart 22. As errors are
encountered by these phases, error table
entries are created and placed into an
error table. Each such entry consists of
two parts: the first part contains either
an internal statement number, if the entry
is for a statement that is in error, a dic
tionary pointer to a variable, if the entry
is for a variable that is in error, or an

Section 2: Discussion of Major Components 69

actual statement number, if the entry is
for an undefined statement number~ the
second part contains a message number. (If
the error cannot be localized to a particu
lar statement, no internal statement number
is entered in the error table entry. Phase
30 simulates the internal statement number
with a zero.)

Message Processing

Using the message number in the error
table entry multiplied by four, phase 30
locates, within the message pointer table
(refer to Appendix A, "Diagnostic Message

Tables") , the entry corresponding to the
message number. This message pointer table
entry contains (1) the length of the mes
sage associated with the message number,
and (2) a pointer to the text of the mes
sage associated with the message number.
After phase 30 obtains the pointer to the
message text, it constructs a parameter
list, which consists of:

10

• Either the internal statement number,
dictionary pointer, or statement number
appearing in the error table entry.

• A pointer to the message text asso-
ciated with the message number.

• The length of the message.
• The message number.
• The error level.

Having constructed the parameter list,
phase 30 calls subroutine MSGWRT-IEKP31
which writes the message on the SYSPRINT
data set. After the message is written,
the next error table entry is obtained and
processed as described above.

As each error table entry is being pro
cessed, the error level code (either 4 or
8) associated with the message number is
obtained from the error code table (GRA
VERR) by using the message number in the
error table entry as an index. The error
level code indicates the seriousness of the
encountered error. (See the publication
IBM System/360 Operating System: FORTRAN
IV (H) Programmer's Guide for explanations
of all the messages the compiler
generates.) The obtained error level code
is saved for subsequent use only if it is
greater than the error level codes asso
ciated with message numbers appearing in
previously processed error table entries.
Thus, after all error table entries have
been processed, the highest error level
code (either 4 or 8) has been saved. The
saved error level code is passed to the FSD
when phase 30 processing is completed.
This code is used by the FSD to determine
whether or not the compilation is to be
deleted.

• Chart 00. Compiler Control Flow
**** . .

* A2 * . .
••••

IEKAAOO l
• A2*** ******* ****Al********* *FSO 01A2* * FROM * •-•-•-•-•-•-•-•-• * CllLillG *------>* INITIALIZE. * * PROGBA" * * CA Ll *

*************** * PHASE 10 *
l

*****82**********
PH10 OJA2 ·-·-·-·-·-·-·-·-· *CCNVEBT SOURCE *
*TO INFOllMATION *
*TABLE AND TEXT *•............

! •••••c2••••••••••
FSD 01A2 ·-·-·-·-·-·-·-·-· * CALL * * PHASE 1~ * • • ...•.............

l
*****D2**********
PH1~ 05A3 ·-·-·-·-·-·-·-·-· * CONVERT PHASE *
*10 TEXT.ASSIGN *
* ADDRESSES * ****
***************** • • I * EJ * . .

i ••••
!

** * **E 2 4<• ***** *** ** *** E 3*** ** ***** *****Eq * ** ******* *****E5********** *PSD 01A2* *PH20 1oc1• *FSD 01A2* •PH2~ 2011•
•-•-•-•-*-*-*-*-*NO *-*-*-•-•-•-•-•-* •-•-•-•-•-•-•-*-* •-•-•-•-•-•- *-•-•
*IF EREWRSflCALl *----->* ASSIGN REGIS- *------>* CALL *---->* BUILD *
:3gAL~cp~~s~F~o :ERROR : i~R~Eg~~~~~fiE : : PHASE 2!:1 : : gg~3ii :
***************** ************ ***************** ***************** I ERROR !

I ••••
I : J~ : I · ·
l ············:~:·······················:::·····································

*****G2********** G3 *· Gij *· *****G~**********
PH30 22E3 -* •.. . * *· * *
•-•-•-•-•-•-•-•-• .. •* ANY *· YES .. • LOAD *• NO * DELETE * * OUTPUT *--.->•. EH.BOBS OF .. *----->*.. OPTION .. *---->* CO~PILATIO!I *
* ERiiOR * *• LEVEL 8 .. * *·SPECIFIED.* * *
* MESSAGES * *· .. * •.. ·* * *
***************** *.. ... • •.. .. * ***************** i NO r YES 1

i<~--~-~~--~_J 1
*****H::i********** *****H~********** * * * CALL PHlU * * CALL * TO BEAD TO * PHASE 20 * END CARD * * •(IF NECESSARY) •
• * * * ***************** ***************** ! • ••••• I

1/ • J~ *->l
• * ••••
* E3 * .. *· * * J~ • .. **** •••• • * *·

OPEBATIONS
WITHIN DOTTED

LINES ARE
PERFOR~ED EY

FSD.

Section 2:

* * NO .. • LAST *• * A2 *<--• .. COMPILATION •*
* * •. ... •..

• .. ·*

!'"
****KS*********

* TO * * OPERATING * * SYSTEPI *

Discussion of Major Components 71

• Chart 01.

IEKAAOO

FSD Overall Logic
* Aj •

I
AGAIN i O::U.2

*****A2********** *****A3********** *****All********** ENTRY POIBT
****J.1 ********* * * * * * DSPTCH-IEKCDP * FOR END-OP-PILE

ENCOOlfTER * FBOPl. * * PROCESS * * INITIALIZE * •-•-•-•-•-*-*-*-* * CALLING *---->* PARAMETERS *----->*FOR COMPILATION*----->*BUILD TEXT AND * * PROGRAM * * * * * * INf'OtH'IATION *
*************** * * * * * TABLE * •• •••• ••••••••••• ••••• ••••••• ••• •• *****************

SF.E TABLE 6 FOR J
ERIEF DESCRIPTION
OF EACH StJE!ROUTINE
OF THE FSD.

ENTRY POINT FOR
PHASE 10
SUEBOUTINE OR
FOB Sl!RIOOS
ERROR (LEVEL 1b)

HKAA9

****D1********* * 'PRCPl * * CALLING * * PHASE * ······*········

ENTRY PCINT
FOR 1/0
F.RRCJI

IBCOl'IFTN

****F2********* . .
* FROM IBCOl'I * . .
*. * ********** **

....... I
:oJ:/ *->1 . .

QUIT
*****G2********** . .
* WRITE * ------->* ERROR MESSAGE *

72

* WITH CODE * . .
***** ************

l ...
Hl *·

·* *· ·* EOF *· YES
*• SWITCH .. *-1 *· SET • *

· · • .. ·* * NO **** I : E5 :

I ••••• •
~

** •• *J2*** ******* . .
* READ TO 'END' *
* CARD IP * * NECESSARY * . .
*****. *** *** ** •••

1
* A3 * . .

I r-----------'
V 04A2

*****B3********** * STALL-IEKGST *
·- ,.._ ·-·- *- ·- ·-·-· *PROCESS COl'll'ION * * AND EQUlVAL- * * ENCE *

1 . •.
C3 • .. • * BLOCK *·

,,* I:ATA *· YES
*· *~UEPROGRAl'l ·*· *-1

*• .. * I *· .. * I
.. o I
l I

*****D3**********
PHAZ1~ Ob82 •-•-*-·-·-·-·-·-· * PROCESS * * PHASE 10 * * TEXT *

,< ___]

I

ENDFILE

****85********* . .
* PROl'J. PHASE 10 *
* OB 01AJ *

I

-•.
D~ *· .. * IS *·

YES .. * END FlLB *·
r-*· • .. MISPLACED .. • .. *
~ •. • ... -·

**** * NO
• * I
: G2 : I

**** I

OUT J
****ES********* * RETURN TO *

[
>* CALLING * * PROGRAa *

* E~ * . .
"' *F J * **** ** *****Fii**********
COB AL 09A 1 * REASSIGN AREA *
•-•-•-•-•-•-*--*-* *PREY. USED FOR * * RELATIVE *---->* PH10 SPECIAL * * ADDRESS * * AND NORMAL * * ASSIGNMENT * * TEXT * •• ** * ••••••• *** •• •• *** •• * * ••• ****.

l .•.
Gii *· *****G~********** • * ERROR *. *lEKPjQ llBJ*

.•OR WARNING *· YES •-•-•-•-•-*-*-*-* *· /'!ESSAGES • *---->* WRITE *· .. * * l'IESSAGES •.. ··r;0 ········r·······
! i

Hll •.. H~ *·
•* BLOCK *· ·* *·

YES .. * DAT A *· NO .. * DELETE *· r-*· SUBPROGRAM .. *<----* .. COl'IPILATION ·*
*· .. * *· ... •.. ..• * I ... -· •..•

I l. NO .L:··
IGO ON 10C1 : 13 :

*****JI.I••········ • * I * LPSEL-IEKPLS * **** ·-·-·-·-·-·-•-*-• * ASSIGN REGS. * * OP'l'HIIZE IF * * REQU'ESTED *
I -------->1
v ;.we1

*****Kl.I**********
=-~~!~:!;~~!I~._:
* BUILT * * OBJF.CT * * !'JODUlE *

.L . .
: A3 :

• Chart 02. FSD Storaqe Distribution

IEKAGC

ENTRY POINT
FOR MAIN
STORAGE
REQUEST

****B3********* * FROM * * REQUESTING *
* EH ASE *

I
• *.. • •.

C2 *· C3 *· • * •. • • *·
NO ·* MAIN *· YES ·* IS FREE *·
r--*· STORAGE .*<-----*· BLOCK ·*

.~VAJLABLP. •.AVAILABLE.*
· · *· ·* v •• ·* *· ·*

***** * YES * NO

! 0d2! I I
•• L * I --------------l

V OVERBITE • *·
•****D2********** D4 *· • * • * •.
* DETERMINE * •* PHASE 20 *• YES
• TYPE AND * *· CALLING ·*--1 * AMOUNT * *· ·* • * *· ••
***************** *· .• v

I * NO ***** I *01 *
I I * G2*
I I • * l ~ *

*****E2********** *****E3********** *****E4********** * * * CONVERT MAIN * * DETERMINE * * CHAIN ONTO * *STORAGE LIMITS * * AMOUNT OF *
* BLOCKS TO * >* TO SUBSCRIPTS *<--

1
* PHASE 10 TEXT *

* RECOVER * * AND STORE * * PROCESSED *
* LATER * * * * * ••••••••••••••••• ***************** *****************

I J
I FQ *·

. * *·
+

****P3********* * ZERO BLOCK * * AND RETURN * L IES ·* MAIN *· NO
--*· STORAGE ·*--l

* * *.AVAILABLE.*
*· .•

*· . * v
* *****

Section 2:

*01 * * G2* • *
*

Discussion of Major Components 73

• Table 6. FSD Subroutine Directory
r----------T-----~-----------~---1

I Subroutine I Function I
~----------+---~-----~-----------1

AFIXPI- I Performs exponentiation of integers by integers. I
IEKAFP I I

IEKAAA

IEKAAD

IEKAAO<J

IEKAA01

IEKAA9

IEKAER

IEKAGC

IE KA PT

IE KA TB

IEKATM

IEKFCOMH

IEKFIOCS

IEKTDC

I I
Communication table.

Internal adcon table.

I
I
I
I

Initializes compiler processing and calls the phases for execution.
point for compiler.

Entry I

Default options, 6 DDNAMES for compiler, PAGEHEAD.

Deletes compilation if requested.

Error message table.

Allocates and keeps track of main storage used in the construction of the
information table and for collecting text entries.

Maximizing service routine for integers and reals, diagnostic trace rou
tine; bypasses IEKFCOMH for some error messages.

Provides diagnostic dumps of internal text and tables.

Timing routine.

Controls formatted compile-time I/O.
Appendix E.)

(Corresponds to IHCFCOMH; refer to

Interface between compiler, IEKFCCMH, and QSAM.

Listing routine.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I IEKTLOAD Builds ESD, TXT, RLD, and loader END records. I
l----------~--J

74

• Chart. 03.
ENTRY IS TO
DISPATCHER
(IEKCIN).

IEKCIN

Phase 10 Overall Logic

*****A2**********
****A1********* * * DISPATCHER (DSPTCH

IF.KCDP) IS WITHIN DOTTED
LINES. DSFTCH-IEKCDF
CALLS THE PHEPAFATOFY
SUBROUTINE.

SEE TABLE 8 FCR A
DESCRIPTION OF THE
SUBROUTINES OF
PHASE 10.

* FRCM * • * *
* FSD *----.--->• INITIALIZE *
* * * * *************** * *

I

**** I * • * 82 •->I • • I
**** 4~ v

*****82********** *****B3********** * GETCD-IEKCGC * * XCLASS-IEKDCL *

·-·-·-·-·-·-·-·-· ·-·-·-·-·-·-·-·-· *READ,LIS'I, AND *-------->*PROCESS STATE- *
*PREPARE SOURCE * * MENT NUMBER *
* STATEMENT * * UIF PRESENT) *
***************** *****************

I
)
v

*****CJ********** * DETERMINE *
* ROUTE FROM *
*CLASSIFICATION •
* CODE *
* * *****************

································· ······i·--·········
I

i
*****D3********** * * SEF TABLE J
* PROCESS * * SOURCE • * STATEMENT *
* * *****************

I
1 v

. *·
E3 *·

·* *· ****E4********* ·* END *· YES * TO PHASE 1~ *
· STATEMENT .•~--~--> VIA FSD *

*·.. • .. • • ••••••••••••••• •
• * * NO

I **** • *
l-)* 62 *

* * ****

Section 2: Discussion of Major Coro~onents 75

• Chart 04. Subroutine STALL-IEKGST
****AL********* * FRC~ FSD *

CHART 01
* •

I
I v

*****E2********** * IEKTLCAD *
·-·-·-·-·-·-·- ·- * * ~ENERA1E *

FNTRY CODE . .
• * * *** *** * *******

C:l *· *****CJ********** * ANY *· * IEKTLOAD *
·* LITERAL *· YES *-*-*-*-*-*-*-*-* * .. CCNSTANTS .*-------->* GF.NEBATF TFXT *
· · *FOR CCNSTANTS *

•.. ·* * *
*· . * ***************** * ~o I

I I
I I
I<------------------------""
v ...

*****D1********** D:l *· *****D3**********
* SET * .. * ANY *· * *
*UP SPACE FOP * NO .. *UNFINISHED *· YES *COMPUTE OFF-SET* * SAVE AREA AND *<--------*· EQUIVALENCE .. *------>* FOR UNPIN. *
* ER.ANCll TABLES* /I *· ·* * EQUIV ENTRIES *
* *I** * * ***************** I *· ·* *****************

I * I
I L~-~-------------------~-----------J L ____________________ _,

v
DICTIONABY SEARCH ·*·

*****El********** E2 *· *****E3**********
* * * *· * * *RESET FOINTERS * NO.*.. ANY *· YFS * SFT *

f"-->*FOR EACH CHAIN *<-------*.. UNDEFINED .*------>* UP ERROR *

I
I
I

!
I
I

* OF TABLE * *.STM'I. NOS .. * * I'!ESSAGE
* ENTRIES * *· ·* * * **** ************* *· .. * .. * ••••• *** *** "***

!
t

. *·

*

Fl * *****FL**********
·* ANY *· * GENERATE * .. * COMPLEX *· YES * AND CHAIN *

I'IEMS IN CHAIN.------->* IMAGINARY *
*· .. * * FORTIONS INTO *

· · * TABLE * * * *****************
* NO
I

I I
1 <---------------------J
~ .•.

I ·*G 1 A11*· •• G2 * . *****G3**********
*· * IEKKOS *

I NO ·* TAELE *· YES .. *
L---*CHA INS PROC ES- .. *-------->*. *· YES *-•-•-•-•-*-*-*-*

.. *------>* ASSIGN * OPT=L
*· SED .. * *· ·* * COORDINATES *

· · * ·* *BASEC ON USAGE *
* ... * *· • * ***************** • * NC I

I I
I I
I I
I <-----------------------J
v

... *· -*-H 1 * HL * *****HJ**********
·* *· .. * *· * CC~fUTE *

NO .. * ANY *· NO·* *·YES * DISfLACEMENT *
r---*· EQUIVALENCE .*<--------*-· A~Y coro,MON .. *------->*AND ENTRY BLOCK*
I *· .. * /I *· . * POINTERS *
I *· .. * 1 *. . * * I ·-.-;ES I *·.-* ********7********
I I L ________________________________ J
I I
I i
I *****Jl**********
I * * I * CCMFUTE
t * CFF-SETS AND

!I : GROUP HEACS 0

I
I I L __________ >I

1
****K1*********

* R~TURN * * TC FSt * * CHART 01 *
*****-**********

76

• Tabl·e 7. Phase 10 Source Statement Processing
r------------------T-------------------T~--1
I I Main Processing I I
I Statement Type I Subroutine I Subroutines Used I

~---~~----------+~-----------------+--------------------------------------~--------~
I ARITHMETIC I XARITH - IEKCAR I IEKCCR, IEKCDP, IEKCGW, IEKCPX, IEKCS1, I
I I I IEKCS2 I

~-------------~---+-------------------+--~
f STATEMENT I DSPTCH - IEKCDP I IEKCCR, IEKCDP, IEKCGW, IEKCPX, IEKCS1, I
I FUNCTION I XARITH - IEKCAR I IEKCS2 f
~------------------+-------------------+-----------------------------------~-----------~
I DIMENSION,EQUIV-1 XSPECS - IEKCSP f IEKCCR, IEKCDP, IEKCGW, IEKCLC, IEKCS1, IEKCS2,f
I ALENCE, COMMON I I IEKCS3 I
~------------------+-------------------+--~
I EXTERNAL I DSPTCH - IEKCDP f IEKCGW, IEKCS3 I
~------------------+-------------------+--~------~
f TYPE, DATA I XDATA - IEKCDT f IEKCGW, IEKCLC, IEKCDP, IEKCCR, IEKCPX, f
I I I IEKCS3, IEKCSP, IEKCS2 I

~------------------+-------~---------+--~
I DO f XDO - IEKCDO f IEKCGW, IEKCDP, IEKCLT, IEKCS3, IEKCCR, I
I I I IEKCS2, IEKCPX I
~------------------+---~--~---------+--~
f SUBROUTINE, CALLI XSUBPG - IEKCSR I IEKCGW, IEKCDP, IEKCS3, IEKCLC, IEKCLT I
I ENTRY, FUNCTION I f IEKCPX I
~------------------+---~-~~--------+--~
I READ, WRITE I XIOOP - IEKCIO I IEKCAR, IEKCCS, IEKCDP, IEKCGW, IEKCLT, I
I PRINT, PUNCH, I I IEKCPX, IEKCS1, IEKCS2, IEKCS3 I
I FIND I I I

~------------------+-------------------+~--~
I DEFINE, I I I
I DEFINE FILE, I XTNDED - IEKCTN I IEKCGW, IEKCDP, IEKCCR, IEKCS1, IEKCLC, I
I IMPLICIT, I I IEKCS2, IEKCPX, IEKCS3 I
I STRUCTURE, I I I
I NAMELIST I I I

~------------------+-------------------+-----------------------------~-----------------~
I BACKSPACE, I I I
I REWIND, I XIOPST - IEKDIO I IEKCGW, IEKCDP, IEKCPX, IEKCCR, IEKCLT, I
I END FILE, I I IEKCS2, IEKCS3 I
I RETURN, ASSIGN, I I I
I FORMAT, PAUSE, I I I
I STOP, END I I I
~------------------+-------------------+--~
I IF, CONTINUE, I DSPTCH - IEKCDP I IEKCPX I
I BLOCK DATA I I I
t--~;-;;-----------t--~~;-=-~;;c~;-----t-~;;c~;:-~;;c~;:-~;;c~;:-~;;c;~:-~;;c~3---------1
l-------~---------i ___________________ i __ J

Section 2: Discussion of Major Components 77

•Table 8. Phase 10 Subroutine Directory
r-------------T--------------------------------T---------------------~-----------------1

I Subroutine I Type I Function I
~-------------+-------------------------------~+--~
CSORN-IEKCCR Utility (collection, conversion,IEntry IEKCCR directs the entering of I

entry placement) !variables and constants into the infor
lmation table.

DSPTCH-IEKCDPIDispatcher, Key Word, and
IUtili ty (entry placement)
I

GETCD-IEKCGC Preparatory

GETWD-IEKCGW Utility (collection)

IEKKOS Utility (table entry)

IEKXRS I Miscellaneous
I

LABTLU-IEKCLTIUtility (entry placement)
I
I

PH10-IEKCAA !Utility (common data area)
I

IPUTX-IEKCPX
I

!Utility (entry placement)
I
I
I

I
I

I
!Entry IEKCLC converts integer, real, and
f complex constants to their binary

I

equivalents.

Entry IEKCS1 places variable names on
full word boundaries for comparison to
other variable names.

Entry IEKCS2 places dictionary entries
constructed for variables and constants
of the source module into the informa
tion table.

Entry IEKCS3 combines the functions of
entries IEKCS1 and IEKCS2 (above) for
variable names.

Controls phase 10 processing, passes
control to the preparatory subroutine to
prepare the source statement, determines!
from the code assigned to the statement I
which subroutine is to continue proces- I
sing the statement, and passes control I
to that subroutine. I
Develops intermediate text representa
tions of the BLOCK DATA, CONTINUE,
EXTERNAL, and IF statements and that
portion of a statement function to the
left of the equal sign, builds informa
tion table entries for the operands of
these statements, and analyzes these
statements for syntactical errors.
Builds error table entries for the syn
tactical errors detected by phase 10 and
places them in the error table.

Reads, lists (if requeste~, packs, and
classifies each source statement.

Obtains the next group of characters in
the source statement being processed.

Assigns coordinates based on usage count
to variables and constants.

Writes XREF buffer on SYSUT2.

Places statement number entries into the
information table.

Phase 10 COMMON area.

Places text entries into the appropriate!
sub-blocks, obtains the next operator I
from the source statement, and places I
the operator in the text entry work I

I I area. I
L-------------i--------------------------------i--J

(Continued)

18

•Table- 8. Phase 10 Subroutine Directory (Continued)
r-------------T--------------------------------T--1
I Subroutine I Type I Function I
~-------------+-----------------------~-------+-----------------------------------~----~
ISTALL-IEKGST !Utility (table entry and text !Generates entry code for object module,
I !generation) !translates format text to object code,
I I !generates object code for literal data
I I ltext, processes equivalence entries
I I I (those that were equivalenced before
I I I being dimensioned), sets aside space in
I I lthe object module for the problem pro-
1 I !gram save area and for computed GO TO
I I !branch tables, checks for undefined
I I !statement numbers, rechains variables,
I I assigns coordinates based on usage
I I count, processes common entries, and

I processes equivalence entries.
I

XARITH-IEKCARIArithmetic
I
I
I
I
I
I
I
I
I
I

XCLASS-IEKDCLIUtility (text generation)
I
I
I
I
I
I

I I
IXDATYP-IEKCDTIKey Word (table entry and text)
I I
I I
I I
I I
I I
I I
IXDO-IEKCDO !Key Word (table entry and text)
I I
I I

XGO-IEKCGO

I
I
I
IKey Word (table entry and text)
I
I
I
I
I
I
I

XIOOP-IEKCIO IKey Word (table and text entry)
I
I
I
I
I

Controls the processing of arithmetic
statements, CALL arguments, expressions
in IF statements, I/O list i terr.s, the
expression portion of a statement func
tion, and the branch tables of an arith-1
metic IF statement. Builds information I
table entries for the operands of the I
previously mentioned statements, and I
analyzes the statements for syntactical I
errors. I

!Controls the processing of source and
I
I

compiler-generated statement numbers, 1
generates the intermediate text required!
to increment a DO index and to compare I
the index with its maximum value, and I
processes CALL arguments of the form & I
label. I

I
I
I

Develops intermediate text representa
tions of DATA and TYPE statements,
constructs information table entries
the operands of DATA and TYPE state
ments, and analyzes these statements

for!
I

for I
syntactical errors.

Develops the intermediate text ·and
information table entries for the DO
statement and implied DOs appearing in
I/O statements and analyzes them for
syntactical errors.

Develops intermediate text representa-

I
I
I
I
I
I
I
I
I

tions of the GO TO (unconditional, I
assigned, and compute~ statements, con-I
structs information table entries for I
the operands of these statements, and I
analyzes these statements for syntactic-I
al errors. I

Develops intermediate text representa
tions of I/O statements, constructs
information table entries for their

I
I
I
I

operands, and analyzes I/O statements I
for syntactical errors. (I/O list items I
are processed by subroutine I

I I XARITH-IEKCAR.) I l _____________ i ________________________________ i __ J

(Continued)

Section 2: Discussion of Major Components 79

•Table 8. Phase 10 Subroutine Directory (Continued)
r-------------T-------------~-----------------T--1
I Subroutine l Type I Function I
~------------+-------~------------------------+--~
lXSPECS-IEKCSPlKey Word (table entry) !Constructs information table entries for
I I !variables and arrays appearing in COM-
1 l IMON, DIMENSION, and EQUIVALENCE state-
1 I lments and analyzes these statements for
I I !syntactical errors.
I I I
XSUBPG-IEKCSRIKey Word (table and text entry) !Develops intermediate text representa-

l ltions of CALL, SUBROUTINE, ENTRY, and
!FUNCTION statements, constructs informa
ltion table entries for the operands of
!these statements, and analyzes these
!statements for syntactical errors.

I
l
I

XTNDED-IEKCTN Key Word (table entry and text)

IXIOPST-IEKDIOIKey Word (table entry and text)
I I
I I
I I
I I
I I
I I
I I
I I

I (This subroutine passes control to sub
! routine XARITH-IEKCAR to process the
arguments appearing in CALL statements.)

Develops intermediate text for NAMELIST
and DEFINE FILE statements, constructs
information table entries for variables
and arrays appearing in the NAMELIST,
DEFINE FILE, and S'IRUCTURE statements,
resets the implicit mode table according
to the specification of the IMPLICIT
statement, and analyzes these statements
for syntactical errors.

Develops intermediate text representa
tions of ASSIGN, RETURN, FORMAT, PAUSE,

!BACKSPACE, REWIND, END FILE, STOP, and
IEND statements, constructs information
!table entries for the operands of the
!ASSIGN, BACKSPACE, REWIND, and END FILE
!statements, and for the operands (if
!any) of the RETURN, PAUSE, and STOP
!statements, and analyzes all of these

I I !statements for syntactical errors.
L-------------i------------~------------------i--

80

•Chart 05. Phase 15 Overall Logic

****A3********• * FROM FSD * * CHART 00 *
* * •••••••••••••••

I
*****B3**********
PHAZ15 06B2

·-·-·-·-·-·-·-·-· * PBOCESS * * PHASE 10 *
* TEXT * •••••••••••••••••

l
*****C3**********
COBAt 09A1
·-·-·-*-*-*-•-·-· * RELATIVE * * ADD BESS * * ASSIGNMENT *

{
I y

••••n3••••••••• * TO PHAS! * * 20 VIA FSD *
* * •••••••••••••••

SEE TABLE 9 FOR A
BRIEF DESCRIPTION
OF THE SUBROUTINES
OP PHASE 1~.

Section 2: Discussion of Major Com~onents 81

• Chart D6. PHAZ15 Overall Logic

PAAZ1~

****A2*********
* FROM FSD * * CHART 01 *
* * ***************

I
I
I
t

*****B2**********
* * * * * INITIALIZE *
* •
* * *****************

I
I

120 i
*****C2**********

**** * * * * * GET A PHASE * * C2 *---->* 10 TEXT *
* * * ENTRY *
**** * * *****************

I
i

·*· 20 0882
D2 *· *****D3********** *****D4**********

.*STATE- *· * INDICATE IF * * GENER-IEKLGN *
• *MENT NUMBER*. YES * STATEMENT * *-*-•-•-•-*-•-*-*

· TEXT ENTRY .•------> NU~EER IS *----->* CREATE NEW *
· · *FOR ENTRY POINT* * TEXT BLOCK *

· · * * * * *· ·* ***************** *****************
* NO I
ii i

**** * •
100 0882 •*• * C2 *

*****E1********** E2 *· * *
* GENEE-IEKLGN * ·* *· **** •-•-•-•-•-•-*-*-* YES ·* IS *·
* OUTPUT *<-------*. OPERATOR *
* END * * END • *
* STATEMENT * *· ·*
***************** *· . *

I

• *· G1 *·
.. * *·

NO • * *·
r---*.OPTIMIZATION ·*

*·SELECTED • *
•.. ·* • * I • YES

1,,, l I *****Hl**********
I * * l *: * BUILD *

CMAJOR *
I * * l ___ ~:::::i********

82

l
****Jl*********

* TO CORAL * * VIA FSD * • *

23

* NO

I
v

.•. 07
F2 *· *****F3**********

·* *· * ALTRAN-IEKJAL * ****
• *ABITH~ETIC *· YES •-•-*-*-*-*-*-*-* * *

*· TRANSLATION • *----->* PERFORM *--->* C2 *
• NEEDED · * ARITHMETIC * * *

· · * TRANSLATION * ****
· · ***************** * NO

l
. *·

G2 *· *****GJ**********
·* *· * * ·* PRO- *· YES * PROCESS *

· CFSSING ·------>* TFXT *
· NEEDED · * ENTRY *

· · * * *· ·* ***************** * NO
I

I
l 08B2

*****H2**********
* GENER-IEKLGN *
·-·-·-·-·-·-·-·-· * PASS ON * * PHASE 10 *
* TEXT ENTRY *

! "" *****Hj**********
* GENER-IEKLGN *
·-·-·-·-·-·- *-*-* * CO~PlETE TEXT *
* ENTRY OUTPUT * * TEXT ENTRY *

I I
!<-----------------'
v

**** * * * C2 *
* * ****

• Chart 07. ALTRAN-IEKJAL Control Flow

Primary
Adjective Code

!
IEKJFI

!
IEKLOK

Function
References

!
IEKJDF

(IEKIR)*

IEKJBF

IEKKUN
(IEKJEX)*

ALTRAN - IEKJAL

Arithmetic
Operators

T
IEKKPA

IEKLGN

Subscript
Operators

IEKKSA

IEKKSM

Relational
Operators

!
IEKKRE

T
IEKLGR

Logical
Operators

!
IEKJAN
(IEKKNO)*

*Secondary entry point of routine immediately above

NOTE: The logic and flow of the arithmetic translator is too complex to be represented on one or two conventional flowcharts. Chart 07 indicates
the relationship between the arithmetic translator (subroutine ALTRAN) and its lower-level subroutines. An arrow flowing between tYA:>
subroutines indicates that the subroutine at the origin of the arrow may, in the course of its processing, cal I the subroutine indicated by
the arrowhead. In some cases, a subroutine called by ALTRAN may, in turn, call one or more subroutines to assist in the performance of
its function. The level and sequence of subroutines is indicated by the lines and arrowheads.

In reality, all of the pathways shown connecting subroutines are two-way; however, to simplify the chart, only forward flow has been
indicated by the arrowheads. All of the subroutines return control to the subroutine that called them when they complete their processing.
(If a subroutine detects an error serious enough to warrant the deletion of the compilation, the subroutine passes control to the FSD, rather
than return control to the subroutine that called it.)

The specific functions of each of the subroutines associated with the arithmetic translator are given in the subroutine directory following
the charts for phase 15.

Section 2: Discussion of Major Components 83

• Chart 08. GENER-IEKLGN Text Generation
GENFR-IEKLGN

****A2********* * FROM * * CALLING * * ROUTINE *

l
*****B2**********
• * • * * INITIALIZE *
* •
* * *****************

I
9ooq t

20

84

*****C2**********
* * * GET STORAGE *
* FCR NEW * * TEXT ENTRY *
* * *****************

j
·*· 199

D2 *· *****D3********** *****Dq**********
·* IS *· * * * SET TEXT * ·* OPERATOR *· NO * PASS ON * * CHAIN, BLOCK *

9000

**** * * * D!; *
* * ****

1
****D~*********

* RETURN * *· PHASE 1~ .•-~~~->* PHASE 1U *~--~-->* SIZE, AND "'-~~~- >* TO *
• ITEM · * TEXT ENTRY * * BLOCK END * * CALLER *

· · * * * * ***************
· · ***************** ***************** * YES

l
·*· 10

E2 *· *****E3********** . * *· * TXTLAB-IEKLAB * **** . * STATE!!ENT *· YES *-*-•-•-•-*-*-*-* * * *· NUMBER .•-~~~->* RECORD *~~>* D~ *

TXTLAB-IEKLAB RECORDS
FALL-THROUGH CONHECTIOHS
AND SETS UP STATEMENT
NUllBER TEXT ENTRIES.

· TEXT · * CONNECTION * * *
· · * INFORMATION * ****

· · ***************** * NO

I

!
*****F2********** * TXTREG-IEKLRG *
·-·-·-·-·-·-·-·-· * PBOCESS * * REGULAR * * TEXT ENTRY *

l
*****G2********** * SET TEXT *
: CH~i~~ Big~K :
* BLOCK END *
* * *****************

!
**** • * * D5 * • •

TXTREG-IEKLRG RECORDS CONNECTION
~~xg~l'l~6~ 0¥El'l~8~~~~~s 0~~51g~~RY
DATES l'IVS 1 llV.F._ AND !!VX jVlA A CALL
SUBROUTIN~ !'!AT~ - IEKLMA •

TO

• Chart 09. CORAL Overall Logic
--------------------1 I CORAL-IEKGCR I
I ****A1********* I * FROl'l FSD * * CHART 01 * I • ••••••••••••••• • I
I l I
I I I

I Bl.~... '1 *****Bi•·········
J ·* *· * NCATA-IFKGDA *
I • * *· YES •-•-•-•-•-•-•-•-•
I *· ANY DATA .. *-- ---->* PROCESS PHASE * I •·•. ·* * I : 10 CA'[A 'IF.XT :

*· . * I ***************** I • NO I I
I 1(---------,-----------J FSD

'! r··:mh~:····: I r-;~:~~;~~~~i~:~:;-,11
* ADDRESSES TO *<------->*GENERllTF. 'I'EXT/ * I . CONSTANTS * I I * ADCCNS FOR * • • I * OBJ MCD. * I
***************** I *******'~******** I

I I I '---------1------1
I l I I
I ~ I I

*****D1********** I *****D2*~********
: R~iiJ~~E : I =-·-·~;~~:J_._._:
:L~~~rE~~~iA~~ES:<-,--->: i~~pgi~pf:~~- :<--1 • • I • MEN'I • I

***************** ********~········ 1 I I I \
J I I I

El·*·... I *****E2*!******** I
•• ·*co~~6N ·- ... YEsl :_;~!~~=~~~~~~·-= I

OR EQUIVAlENCE.--1---->*ASSIGN REL ADtS.* I *· .. * I *'1'0 COMMON/EQUIV* I
· · I * VARIABLES * I

* .. ·* *****************
• NO I I

1<-------l ________ J I
i I I

!****F1*********! I I
* FROCESS * I I : .. :::!:~:~:: ... r-r _________________ ,

i I
G1·*·•.. ' *****G2**********

... ·* ANY *· ... YEsl =-~~~~;:;~~~::._:
· NAMF.LIST .. •---i----> PBOCESS NAME *<I *· .. * *LIST AND GENEBA*

*· .. * *-TE DICTIONARY *
* .. ·* ***************** I * NO I I

i <-----L _________ J 1,-----------_::1
H1·*·*· I *****H2********** t l *****H3********** I

.. •·* ANY *·• .. YES =-~~;~~_!;~;!:;~;_: t-1-->:_._~:~~;~~~*-*-=
... DATA ·*- _.;,.._). PROCESS DA'U. *<----->* PLACE TEXT * I

·•.. .•· I : ANg 0i~~~~~§E : 1->! IN OBJ ~en ! *·.·:o I *********1******** J ***************** 11 I I c__ ________ _

!<---l----------1 I
J,···*· I ····•J2•*········ l .. * *• * tFILE-IEKTDF *

.: * DEFI~~y FILE*:.::~ -->=- •p:o~E;s·n;;·-:<_J
*· .. * I •FILE AND GENER-• I *• •* * ATE TEXT *

· · *****************
• NO I

1
11: l<------l _________ J

****K 1********* * TO FSD *
* CHART 01 * . .

*************** l ________________ j

Section 2: Discussion of Major Cow~onerits 85

•Table 9. Phase 15 Subroutine Directory

r--------------T----------T---1
I I Associated I I
!Subroutine !Phase 15 I Function I
I I segment I I
~--------------+----------+---~----------------~
ALTRAN-IEKJAL PHAZ15 !Controls the arithmetic translation process.

ANDOR-IEKJAN
{IEKKNO) *

BLTNFN-IEKJBF

CNSTCV-IEKKCN

CORAL-IEKGCR

CPLTST-IEKJCP
{IEKJMO)

DATOUT-IEKTDT

DFILE-IEKTDF

DFUNCT-IEKJDF
(IEKKPR) *

DUMP15-IEKLER
I

EQVAR-IEKGEV

FINISH-IEKJFI

FUNRDY-IEKJFU

GENER-IEKLGN

GENERTN-IEKJGR

(5) I
I

PHAZ15 !Checks the mode of the arguments passed to it, decomposes IF
(5) !statements, and generates text entries for AND and OR

I operations.
I

PHAZ15 !Determines whether or not a given name represents a valid in-
(5) lline function, and generates phase 15 text for that in-line

I function.
I

PHAZ15 !Performs compile time conversion of constants.
C5> I

CORAL
(6)

I
!Controls the flow of space allocation for variables,
!constants, and adcons necessary for local variables, corrmon,
!equivalence, and external references; processes constants,
!local variables, and external references.
I

PHAZ15 !Checks the mode of the operands in an arithmetic triplet mak-
(5) ling adjustments where necessary and controls text generation

CORAL
(6)

CORAL
(6)

lfor the triplet.
I
!Processes data text.
I
I
!Processes define file text.
I
I

PHAZ15 !Determines if a reference is to an in-line, library, or ex-
(5) I ternal function, and determines the validity of arguments to

PHAZ15
(5)

CORAL
(6)

PHAZ15
(5)

PHAZ15
(5)

PHAZ15
(5)

PHAZ15
(5)

lthe subprogram; inserts the appropriate function operator
linto phase 15 text and builds the parameter list in the adcon
!table and in text for the subprogram referred to; performs
!parameter list optimization.
I
Records errors detected during PHAZ15 processing.

Handles common and equivalence space allocation.

Completes the processing required for a statement when its
primary adjective code is forced from the pushdown table.

Creates pushdown entries for references to implicit library
functions.

Outputs phase 15 text consisting of unchanged phase 10 text,
phase 15 standard text, and phase 15 statement number text.

Builds appropriate phase 15 text entries for simple items
forced from the pushdown table.

IIEKGCZ CORAL Keeps track of space being allocated, generates adcons for
I (6) address computation, rechains data text, generates adcons forl
I common, equivalence, and external references, sets up error I
I table entries for phase 30. I
L--------------i----------i-------------~---------------------------~-----------------J

(Continued)

86

•Table 9. Phase 15 Subroutine Directory (Continued)
r--------------T----------T---1
I I Associated I I
!Subroutine !Phase 15 I Function I
I !Segment I I
~--------------+----------+---~
IMATE-IEKLMA PHAZ15 !Records usage information in the MVS, MVF, and MVX fields if
I (5) lone of the optimized paths through phase 20 is selected.
I I
JNDATA-IEKGDA CORAL !Processes data text.

NLIST-IEKTNL

OP1CHK-IEKKOP
(IEKKNG) *

PAREN-IEKKPA

RELOPS-IEKKRE

STTEST-IEKKST

SUBADD-IEKKSA
I

SUBMLT-IEKKSM

(6) I
I

CORAL
(6)

!Processes namelist text.

PHAZ15
(5)

PHAZ15
(5)

PHAZ15
(5)

PHAZ15
(5)

PHAZ15
(5)

PHAZ15
(5)

I
I
Determines if operand 1 should be a temporary and checks for
negative arguments.

Removes the (or -(from the pushdown table when the corre
sponding) is encountered.

Calls subroutine GENER-IEKLGN to output text entries for re
lational operators. (Output may be either a relational or
branch operation.)

Builds text for replacement statements (e.g., A=B, A=B(I),
A (I) =B, A (I) =B (I)) •

Generates text to add the terms in a subscript computation;
determines if a subscript text entry in the pushdown table
should be entered into phase 15 text, and calls subroutine
GENER-IEKLGN to output the text entry when appropriate.

Generates the text to multiply the first term of a subscript
computation by its associated length factor, or, in the case
of variable dimension, to multiply the nth dimension by
length.

TXTLAB-IEKLAB PHAZ15 !Processes statement number text entries for subroutine
(~ IGENER-IEKLGN; creates entries in RMAJOR.

I
TXTREG-IEKLRG PHAZ15 !Processes standard phase 15 text entries for subroutine

(~ IGENER-IEKLGN and makes RMAJOR entries.
I

UNARY-IEKRUN PHAZ15 !Optimizes arithmetic triplets and processes the expcnentia-
(IEKKSW) * (5) I ti on operator.
(IEKJEX) * I

~-~------------i----------i---~
I *Secondary entry points. I
L---J

Section 2: Discussion of Major Components 87

•Table 10. Phase 15 COMMON Areas
r---------------T---1
I PH15-IEKJA1 I Phase 15 common data area. I
I I I
I CMAJOR-IEKJA2 I Backward connection table. I
I I I
I IEKJA3 I Function information tables. I
I I I
I RMAJOR-IEKJA4 I Forward connection table. I
I I I
I IEKLFT I Subprogram table. I
l _______________ i ___ J

88

• Chart 10. Phase 20 Overall Logic
LFS"EL-IEKPLS

****A1********* * FROM FSC *
* CHAIN 01 * . .

I

I

SEE 1ABIE 11 FOR A ERIEF
DESCRIPTION OF THF. MAJOR
SUEBOOTlNES OF PHASE 20.

I ****
I * * .!. [~~~~----------~-~~~--~---~~--------~--~--~~--~--~.NO 901:.~:.:~l

C1 * t *****CL********** *****C3********** cq •.. 1 .. * ••• * * * SSTAT-IEKBSS * ·* *· ****C~*********
.. • ·- n:s • CBTAIN FIRST • ·-·-·-·-·-·-·-·-· ·* LAST •. YES • TO FSD *· OPT=O .. •----->* (NEXT) BT.CCI< *----->* SET STAT OS *----->*.. BLOCK .. *----->* CHART Ul
*· * * * * AND ASSIGN * *· ·* *

•.. .. * * * * REGISTERS * * • * **********"'**** *· .. • ••••••••••••••••• ••••••••••••••••• •
* NC *

1 . •.
Dl *· *****D2********** *****DJ**********

·* * * TOPO-IEKPC * * BA~T-IEKPE *
·* *· YES •-•-•-•-•-•-*-*-* •-•-•-•-•-•-•-•-•

*• OPT=2 • *------->* DETERMINE *<----->*DE'l':E'.R!HNE BACK *
· · *EACK COMINATOES* •TARGET AND LOOP•

· · * FOB BLOCKS * *NOl'JPF FOR ELKS*

·· ·····*··········· ***************** * NO

7000 l
*****E1 ********** • • *INITIALIZE FOR * * OPTIMIZED *
* REGISTFR * * ASSIGNMENT *

i
**** . .

* J3 • . .

I
i

*****F.l********** *****EJ********** * EIZX-IFKPZ * * *
•-•-•-•-•-•-•-*-* * SET IOOP * DETERMINE *-----)* NUftBER
* EUSY-ON-FXIT * * PAHAMETEB
* CATA * * TO 1 *
***************** *****************

:·::· :J
• •••• • 1

2 v
*****P3********** *****FLJ********** *****F~********** * TABGE'I-IEKPT * * * * *
•-•-•-•-•-•-*-*-* *SET EftlN ARRAY * * DETERMINE *
* SELECT LOOP. *------>* FORM LMVS AND *---->* FORWARD * * GE'l BACK TAR- * * Ll'JVF * * TARGET *
* GET OF LOOP * * * * *
**** •••••• *. ***** ***************** ************ *****

I
,.------------------------------_]
t 11B1 UAl

*****G 3* ********* *****GS********** * XPELIM-IEKQXl"I * * BiCl'IOV-IEKQBM *
·-·- ·-·-·-·-·-·-· ·-·-·-·- ·-·-·-·- * * COMMON *--------------------~-~-~->* BACKWARD

EXPRFSSION * * MOVEl'."IENT
* ELifHNATION * * *
***************** *****************

**** v
500 .•.. 15A1

(::· :--1 1,1

*****H1********** *****H2********** 130 HJ *· *****Hq**********
* * * * •* *· * REOUCE-IEKQSR *
* INCREMENT * * MARK BLOCKS * NO .. * LAST *• •-•-•-•-•-•-•-*-* I * LOOP NU MEER *<------* IN LOOP *<------•.. IOOP ... *<--------* STRENGTH *<--------.J * PARAMETER * * CCMFLE1ED * *· .. * * REDUCTION *
* * * •.. .. * * * ********** ******* ********** ******* • • .. • *****************

I * YES I **** I I :J3:->I
v * **** * t

.•.. 2000 20~ .. •.. .• ..
J1 •.. *****J2********** JJ *· J4 •.. *****J~********** • * PRO- *· * EI.S-IEKSES * .. * *• • * *• * *

·* CESSING *· REG •-•-•-•-•-•-•-•-* YES ·* REGISTER *· NO .. * COMPLETE- *• YES * SET LOOP *
*· TEXT OR • *--, * COMPUTE ELOCR *<-----*· ASSIGNl'IENT .. *----->*· OPTIMIZED • *----->* NUl"IBER *

*· REGS. * t * SIZE .. DE'I .. BX * •.CCP:PlETED-* *.. PATH ·* * PARAMETER *
*• * ERANCHES * *· ·* *· .. * * TO l *

• ... * ***************** *· .. * • .. - * *****************
* TEXT **** I • • l I * * I **** ****

V : KS : ~->= C~ : t_>: K~ : : K5 =->
**** •••• * * * * * *

: FJ : **** 1482 **** 2JO **** i
* + *****K.3********** *****K!:>**********

**** * REGAS-IEKRRG * * TARGET-IEKPT * ·-·-·-·-·-·-·-·-· ·-·-·-·-·-·-·-·-· FULL *<-------------------------* SELECT LOOP. *
REGISTER * * GET BACK TAR- *

* ASSI~NMfNT * * GET OF LOOP *
***************** *****************

l ••••••
L->* H.3 * . .

Section 2: Discussion of Major Coroponents 89

• Chart 11. Common Expression Elimination (XPELIM-IEKQXM)
XPELIM-IEKQXM

****A 1********* * FFOM * * LPSEI-IFKPLS * * CHART 10 *

j r----~-
···••B1•········· lOO£****E2*~******** l
: GET : : GET FIRST : I

FIFST *-------->* 'IEX'I ENTRY IN * I
BlCCR * * BLOCK * I

: ;:·:.,·~---:""·::_r_ : l ..
I s1oc c2 •. 980 ~****C3•••••••••• c4· • •.
I * *... * * . * END *· ****C!>*********
I • * *· YES * GE'I NEXT * • * OF *· Y.ES * TO * I *·END OF BLOCK .•------>* TEXT EIOcK :---->•. *· c~5g~NT . *. •---->: LP~~kBiE~~Ls :
I *· *· . *.. : * •.. • * ***************

· · ***************** *· ... •
f ; NO *

I I
I v

~oo~••••D1•.l........ 2000 D2··s~~ TABLE 11 190~****DJ••········
* * ·* •.. * * * GET * NO ·* EASIC *· YES * SCAN FOR *

,.->*NEXT TEXT FNTRY*<--------*· CRITERIA .*------>* LOCAL COMMON *
I * * *· MET .. * * TEXT ENTRY * l * * *· ·* • * ***************** "" .. ·* *****************

•:*D:*:. Al •****• * VIII

**** * *
* E2 *-1

90

I ****
I 4800 ·*· 4000
I *****F2********** E3 *· *****E4**********
I : GET FIRST : NO •• ·* *· •• YES : ELIMINATE :
I * (NEXT) BACK *<-----*. ENTRY FCUND .*--->* EXPRESSION ON*! I : DOMINATOR : *·.. ..·* : TEXT ENTRY :

I ***************** *· • * *****************
I * " **** I I : Dl :

I i ~ ····'
I YES .• ··F 2 ~~~·- •.•. NO JlO~··;:::¥;i:::···: I
L--------------*.CURREN'f LOOP ·*---->* ENTRY IN BACK * I

·· ·*·* : DOMINATOR :
1
,

· · ***************** . I
r------------> i
1 G3• *· *·
I NO .. * .. ;PERANDS*· ••

r---*<oJ USED ELSE-.*
l I • .. :~~~6P 1 ~··*

I I ·- ... ~ES
I I

I I I I I '9' YES ! 3200 .. •SEE TABLE 11 2100 ·*·
I ·*H3 •••• ·*H4 •• ...

I I •: * c~~~~~¥l *: •~-=--->*: * ~~~~~~~~Y *: * SEE TABLE 11

I II *· ~ET •* *· MET •* *· .. * *· .. *
I *· .. * •,. ·* I J * NO * NO

I L _____ t __________ _j
I 0600 ~
I *****J3********** I • •

* GET NEXT TFXT * * ENTRY IN BACR *

~':
: DOMINATOR :

1
. • *· ! o·*· •.

NO .. * ENC BACK *· YES
l----------*· DOMINATOR .*--,

*· •.. . *. * ' * v
* **** . .

* E2 * . .

• Chart 12. Backward Movement (BACMOV-IEKQBM)
BACKMOV-IEKQBM 1000

*****A2********** *****AJ**********
****A1********* * * * * * FHOM * * GE1 * * GET FIRST * * LPSEL-IEKPLS *------->* FIRST *--~-->* TEXT ENTRY 18 *<--~~-~-1 * CHART 10 * * ELOCK * * BLOCK * ••••••••••••••• * • • ••........... . •.....••..•..•..

I I r----------------------.J I
.!. ·*· .l.YES

5100 B2 *.. BJ •.. B1' *· .. * •.. .. * FBC- •.. .. * *· ****B~*********
•* • .. YES ·* CESSING *• NO ·*IS THERE * .. NO *TO LPSEL-IEKPLS* r----------->*.END CF BLOCK .. •------->*.. LIBRARY .. •---->*• ANOTHER .. •---->* CHABT 10 * *· . * • .. FUNCTION • * *• BLOCK • * * *

· • *.ARGS ·* *• •* *************** *· .. • •. .. • • * NO * YES *

1 (::·:->I I
•••• y v

5000 ·*.. .. • ..
*****Cl* ******** 2000 C2 •.. 8100 C3 *• * * .. * ERO~ •.. .. * • .. * GET NEXT * . • CFSSING *· YES .. • ARGOPIENT *· YES * TEXT ENTRY IN *<--1 •.LIBRARY fUNC-.*---->* .. PROCESSING .. *-l * BI.CCr< * •.TICN ABGS .. • • .. fINISHED ·* . . •. . . •. . . ••••••••••••••••• • • •. • • v

Al :* c ~·: i NO L:~ ·::·: (:~·:
9100 •••• 1500 ! 2200 • ••••• • •••

*****D1• ******** *****D2********** *****D3********** * * * RORAN-IEll:QKO * * KORAN-IEKQKO * **** * ATTE1'PT TO * . YES•-•-•-•-•-•-•-•-•NO •-•-•-•-•-•-•-•-•NO * * * PRC~OTE SPLIT *<------* VALID >* VALID EACr<- *-->* C1 * * TEt'IPORARIES * * EBANCH * * WABD MOVE * * *
* * * ITEt'I * * CANDIDATE * ****•......•......•....

•••• IYES····
• • L>! El :
: E2 :-, * *
•••• v ••••

• *· ·*·
2lrnO E 1 *• 3000 E2 *· *****El********** .. • •. . • *· • * • * *· NO .. * LIER ARY •. YES * SAVE *

[
>* .. STORF ITEM .•--->*. FUNCTION .. *----->*POINTER TO TEIT•-1

*• • * fl *• .. * * ENTRY * I •. ·* • •. • •••••••••••••••••
:·F,·: i YES I ., NO :·:~·:

NOTE - FOR OPTIMIZATION CRITERIA
FOR BACKWARD MOVEMENT•
SEE TABLE 11.

•••• 1 I *••••*
'O' 3100 ·*·

*****F1********** •****F2*****•**** F3 *• 9000 pq *• * * * * ·* *.. ·* PRO- *• **** * TB! TO * * OPERANDS * .. * PRIMARY *· NO ·* CESSING *• YES * * * ELiftlNATR * * 2 AND J •----->*. CRITERIA .•------>*.LIBRARY FUNC-.•-->* C2 *
* SIMFLE STORE * * COMBINED * *· MET .. • •.TION ARGS.* * * • * • • *· .. • ... ·* •••• ••••••••••••••••• ••••••••••••••••• •. . • *· ... I • YES *

i 1
.. •.. .. ·-

G 1 *• 4000 G3 *·
·* *· ·* •. •* STORE *• RO I •* LIBRARY • .. YRS

• EtlMINATFD .---.J •. FUNCTION .. *-1
· · • .. ARGUMENT .. • ... ·* • •.. .. . •

• YlS * NO **** l •••• L •••• • •
* * * * * Cl * ->* C 1 * >* H 1 * * * • • * • • •••
•••• • •••

4200 • •. ..•.
81 *• *****H2*******••• 83 *• *****Hq********** •.. • * ·* *· • • ·* SECONDARY *· NO *THY TO PE6FOBft * ·* LIBRARY *· YES *MOVE ARGUMENTS *

[
>*. CRITERIA .. •---~>* COl'!PUTATION *---->*.. FUNCTION .. •~~~->* TO •~1 *• l'!ET •* *IN EACK TARGET * *· •* * BACK TARGET * *· .. • • • • * * *· .. • ••••••••••••••••• "· ... ••••••••••••••••• v

:* E1.: ., YES L:;·::·: :-::·:
•••• • • **** ••••

3800 v .•.
*****J1••········ *****J2••········ Jl • .. * * * lORAN-IEKQLO * ·* *· **** * MOVE TEXT * •-•-•-•-•-•-•-•-• • * LIBRARY *• YES * * * ENTRY TO *----->* UPDATE VECTOE *----->*. FUNCTION .. •-->* C2 * * BACK TARGET * * FIELDS POR * *.. .. * * * * • * !EXT ELOCKS * *• •* ****
•**************** •••••••••• ******* •.. .. * * NO

l
* * * C1 * • *

Section 2: Discussion of Major Com~onents 91

• Chart 13. Strength Reduction (REDUCE-IEKQSR)

•••• • • * ALI * • •
l

REDUCE-IEKQSR ,,-•·.. 9UUU i
****A 1 ********* .. • DOES *· ****A4********* * FROM * .. * EACI< *• NO * TO * * LPSEL-IEKPLS *---->•. TARGET .. •------------------>* LPSEL-IEKPLS *

* CHART 10 * *· EXIST •* A * CHART 10 *
••••••••••••••• • ·• I ·······~·······

* YES I

J I
.:~;:::mi~:~·=~~------------> I *· ...

•.. .• ****

:•::·:~~i·;ES =.r!.: l
**** ~ v SEE TABLE 11 1000 •*• 3000 .•.

:·;;;rJ~~~;:~;~·: .•c2ANY··.. .•c3 ANY··.. '

:-•-;;;~T*f~ff*-*-:< ___ :.::.: ;NTBI~~TWI'IH *: *~-->*:;NTBi~~'lWI':tH *: *~~--J
* PBit1ABY * *· * OPER- •* /I *• + OPEB- •*
* CRITERIA * •.ATORS.• I •.ATOBS.•
***************** •. • • *· ... I . i YES I

• !. t SEE TABLE 11 .1. NO

D 1 *· *****DJ********** DQ *•
.•·* *·•. NO :_;!~:~~-;:~!¥:;_: .. •·* *·• ..

*· CBIT!RIA .. *------------------> * TEST FOR •---->•.CRITERIA t'IET •* *· !HT .• * PliIPIABY * •. ·* *· • * * CBITERIA * *• ·* ·- .• •.......•.......• ·- .• i YES i YES

.•. 7100 ·*· .•. 8800
E1 *• E2 *• EQ *• *****E~**********

•* *· •* INEET *• •* *· * *
·* BOTH *· YES .•AND FRANCH *• NO •*SECONDARY *• NO * DO BOT * *· CONSTANTS .*------>•. VARIABIE .*--- SEE TAELE 11 *• CRITEIUA .•---->* CONSIDER TEXT *

*•ABSOLUTE .. * *• SAME • * *· !"ET • * * ENTRY * *· . • •. ·* •. .• • • • • ... ·* *· ·* •••••••••••••••••

l >* CJ *
* * ••••

i NO ·1 YE s ·1 YES L ..•.••
7200 .•. ·*· .•. 8~00 ·*·

Pl *· *****F2********** Fl *• Fq *• F~ *· • * *• * * ·* l!'IOD *· ·* INERT *· •* OTHER *·
•* INERT AND *· NO * CCftPOTE * BUSY •* LOGICAL *• YES .•AND BRANCH *• NO ·* USES OF *• YES

*• BRANCH .•--i * NEW INCB'HIENT * .---*· EXPBES .. IND .. •<----*· VARIABLE .•---->•.. OPERAND 1 • .__,
,.VABIAELE • * FOB BRANCH * I •.BUSYNESS·* *· SAPIE •* *• II LOOP·*

• .. SAM!.• * * I *· .. • *· ·* *· ·* •.. .. • ••••••••••••••••• } •.. . • •. .. • •. ·* i YRS ::~~:: I I ,B~g~ • i NO

v 2200 i l v v *****G1********** *****G2********** *****G3********** *****G~********** * GENERATE 'lEXT * * * * * * * * TO COMPUTE * * * * D!lETE * * DELETE * * ADDITIVE AND * • ESTABLISH NEW * *ORIGINAL INEBT * *OBIGI!Ut INERT *
* E!RANCB * * CONSTANT * l * TEX".f ENT.RY * * TEIT ERTRI * * CONSTAN7S * * * * * * * ••• • •••• •••• ••••• • •••••••• *** ••••• ••• •• •• • •• • • ••• • • • ••••••••••••••••

l
I t _____ >I l<----_J

"/500 l 8400 8700 i
*****H1********** *****H2********** *****H3********** *****H~********** * • • • • • • * * CHAIN * * GENERATE * * !'IOVE ADDITIVE * * ftOVE ADDITIVE * * !EXT TO EACK *-~-->* INEBT TEXT * * TRXT TO BACK .___1 r* TEXT TO BACK * * TARGFT * * ENT.RY * * TABGET * * TARGET *
: ••••••••••••••• : : ••••••••••••••• : : ••••••••••••••• : v ' : ••••••••••••••• :

I * ••••• • •••••

l * A4 * * C3 * * • •
. •.

J2 •.. •••••JJ••········
•* MOD *• * * ·* LOGICAI *• NOT * DELETE *

*• f.XPRES .. IND .•---->*ORIGINAL .INERT *
• .. BUSYNESS .. • EUSY * TEXT ENTBY *

•.. .. * * •
··r;USY ········r··· .. ··
LI 7700 t

*****K3**********
* flOV! * ****
*MDtTIFtICATIVE * * * ------->* TEXT ENTRY TO *---->* C2 * * BACK TABG!T * * * * • • •••

92

• Chart 14. Full Reqister Assignment (REGAS-IEKRRG)
FEGAS-IFKRRG

****A2******* ** * PROJ!ll * * LPSEI-IEKPLS *
* CHART 10 *

l •••••02••········ * • * BUILD * * EMIN ARRAY * * FOB LOOP * . . **••·············
I •••••c2•••••••••• • • * CETEFMINE * * BESERVED * * REGISTF.IIS *
I

*****D2********** • • * SET FCIN~EFS * * TO START OP * * FIBST ELOCK * • •

I

I "" *****F2********** l * F'ifDPA.S-IEKRFF *
!E~t~n·;;c;s;E;-: __ _J
* ASSIGNJ!llENT * * TA EL ES *

l
80 . ·-BJ *· ..• •.

•* CALL *· NO
*• *~ll I~U~~5~0~ ... *-1 ... •. . • . • I

........ 1.:::.... 1' * MAK! COI'IPION * * VAEIAELFS IN- * * ELIGIBLE FCB * * GLOBAL * * ASSIGN!IEN'I *
········i········ I

1<-----·
I

8~ ' 17A2 *****Dl********** * GLOBAS-IEKRGB * ·-·-·-·-·-·-·-·-· * PEElfOBM •
• GlOBAL • "' * ASSJGN~EHT *

l
*****El**********
• *
* SET FOINTER * * TO S'IART OP * * FIRST ELOCK *

l 18B2
*****P3********** * STXTR-IEKRSX * ·-·-·-·-·-·-·-·-· * PEBPORf'I *<--------------i * 'IEXT UP- * I
• DATING • I•.•..•.•...•

l I

I I
II *****G4*l********

* * * SET POINTER * * TO START OF * * NEXT BLOCK *
* • .•...........•...

A

! J I
H::I *· I

.:··· 5~0 ···:.~---------J
*· tOOP • * •. .. . • .. • * YES

I
****J3 •••••••••

* TC * * LPSl!L-IEKPlS * * CHART 10 *

Section 2: Discussion of Major Components 93

• Chart 15. Table Building (FWDPAS- IEKRFP)

**** * • * A2 * • *

FWDFAS-IEKRFP ! . •.

94

*****A2********** *****A3********** A4 *·
****A1********* * * * * ·* *· ****A5*********

* FFOll * * * * INITIALIZE * .*PROCESSING *· YES * TO *
* REGAS-IEKRRG *----->* INITIALIZE *----->*FOR PROCESSING *------>*. COllPLETE .•----->* REGAS-IEKRBG *
* CHAFT.14 * * * * TEXT ELOCK * *· .• * CHART 14 *

*************** * * * * *· ·* *************** ***************** ***************** *· ·* A

700

i NO I
B 1° ~~---------:::::~:::::::::-----~!::B3*****==-.----~~.==******** I

• * IS *· * * * * * * I .*BLOCK BACK *· YES * * * INITIALIZE * * * I
TARG. OF INNER.------>* UPDATE RUSE *----->* TRUSE TABLE •------>• INITIALIZE WJ • I

· LOOP · * TABLE * A * * * TABLE *
*· · * * * I * * * * I

* NO I I *· ·* ***************** I ***************** ***************** I

L _______________________ _J I
. • . l I

**** •• c2CAN*·.. :•;;~~§~~~::;;~·: !****C4**********!! I
* * YES • *NEXT BLK OF*. *-*-*-*-*-*-*-*-* * GET FIRST * A2 *<---*· LOOP BE PUT .*<-----* BUIID LOCAL *<-----* (NEXT) TEXT
* * •.IN TABLES.* *ASSGNllT TAEIES * *ENTRY IN BLOCK

**** *· ·* * FOF THE BLOCK * * *
· · ***************** *****************

i NO II

'~,;
l----------~-~---------~-------i

601 V 16A2
*****EQ**********
* BKPAS-IEKRBP *
•-•-*-·-·-·-·-·-·
* PER FOR~ *
* LOCAL * * ASSIGNftENT *

l
. *.

F4 *·
. * *·

I

•=* ~~D *:~ J
*· LOOP • *

*· •
· · * NO

i
**** • *

* A2 * • •

• Chart 16. Local Assignment (BKPAS-IEKRBP)
ERFAS-IERBEP .•.

*****A2********** AJ *•
****A1********* * * .• *•

*****A5********** * PREVENT * * FRCL'! * * GET * .. * IXTERNAL *· YES • LOCAL * * FWDPAS-IF.KBFP *-------->* ELOCK 'IO BE *----->•.CALl I~ BLOCK.•------ ------->*ASSIGN~ENT FOH *
* EXTERNAL * * VARIABLES * •...•..••........

* CHART 1~ * * FROCESSED * *• .. • •.. ..
***************** • * NO

L J ___ _
v

10 • • ..
*****B1********** B~ *·
* • ·* *· * GET FIRST * NO .. * ALL *· * ~NEXT< TF.XT *<----------------------~--------------------------~-~-------*.TEXT ENTRlES •*
*RN'IR'Y IN El OCR * * .. PROCESSED .. * • • •••• *· .• ••••••••••••••••• • * •. ·* l : •i:•: i YES

' • • • 20 • •. • •• l
•****C1 ********** C2 *· CJ *· Cll *• V
* * ·* *· ·* *· ·* *· ****C.'J********* * INITIALIZE • ·*OPERAND 1 *· NO •* CPEBAND 2 •. NO ·* OPERAND j *· NO * TO *
: 1o;Ni~~T :------>· •• ~F INTEREs:.··--->• •• ~F INTEBEs:.··---->· ... ~F INTEREs:.·*---, : pwg~~~TI~~RFP :

* * *· .. * *· .. * *· ·* I ***************
***************** *· ·* *· ·* *· ·* I * YES • y ES * YES I

! I I I v ________________________________ _! ________________ J I

22 01*·•.. 02·*·•. *****D.:t********** 11lO*****D~**********
•* IS *· ·* IS *· * RECORD * * * ·* OPERAND *· NO ·*OPERAND A *· NO * DEFINITION * * ACCOUNT *

*• ZERO .. •------->•. TEMPORJ.RY .. *------>* POINT OF * L-)* FOR SPECIAL * *· .. • *· •* * TE~PCRARY * * CASES •. .. • •.. • • • • * •
• •• • • • ***************** ***************** L Y!i.... i Y:i.... 1 I

>: C.i : l-): C3 : r------, I
**** I · V I

*****E 1*•******** 9Y9JO E2 .. *· *· EJ·*· *· \ EQ. • *• *· *****E~*!********
! s~~§c~: 1 I¥iM ! YES .• .. *CASE 2 *·•.. NO .•P:acESSIN~· •• YF.sl No •• ·;PERAND ~-... : M~~:iBwi~~T :
* AND CURRF.NT *<----*· SUBSCRIPT .*<-------*· OPERAND 1 .. •-.J r-•:.USED IN BLOCK.* * REGISTER AND *--.J * OPERAND TO * *• •* *• •* *· •* * STATUS *
* ZERO * *• .• *• ·* *• ·* * INFORf1ATION * ••••••••••••••••• • ... • • .. * •.. • ***************** I r NO • r YES

= ·::· = 34 J]7 r ________ J I
* * F2 *• *****F J*****"**** I

**** •* *• * FllEVENT * I
.;;1o~E~6~~T r::.~~---->!AssIG~~i~i POR : I

*• ELOCK • * * TE!'IPORARY • I

•. • ·• : ••••••••••••••• : I
r YES , I ·**· ~111 I ..__>: C3 :

• • i **** 40 .. •.
*****G2********** G4 *· *****Gt'**********
*Fl AG DEFINITION• .. * *· * IEl<RP1 *
POINT FOR TF.f'lP. • *PROCESSING *• YES •-•-•-•-•-•-•-•-•
* USED *------------------------>*. OPEHAND 1 .. *---->* ASSIGN * * IN ELCCK * *· * * REGISTER TO * * * *· . * * OPERAND * ••••••••••••••••• • ... * **********•••••••

* NO I

I l • • I L->* CJ *
~--' * •••••

100 ... •. 130 300 .• ...
H 1 *• *****H::!***•****** H3 *• *****H4********** *****H~**********

•* *· * * • * OP 1 *.. * TRY TO ASSIGN * * *
·* PREVIOUS *• YES * EECORD * •* ASSIGNED *• YES * TO CURFENT * * RECORD *

• ASSIGNMEN'I IN.------>* REGIS'IER * I>* .. FIXED-PCINT • *---->*OPRND THE SAME *------>* ASSIGNMENT
• EFFECT · * ASSIGN!'IENT * *.REGISTER •* * REG. AS * * iNFOR~ATION

*· .. * * * *· . * * OPERAND 1 * * *
*· .. * ***************** I *· .. * ***************** *****************

1
. NO l II i NO I

->= C3 : ! ~ * • • ••• •••• • *
·*• 320 3~1 * CJ * J1 •.. J •••••J::t••········ •••••JQ.•••······· * •

• * *• * SEARCH * * * **** ****
.. • FLOATING *• NO * FOR AVAilAell * * RECORD * * *

• FCINT .---------------- * REG. PREE ONE *----->* ASSIGNMENT *-->* C.i * *· MACE • * * IF NECESSARY * * INFORMATION * * * *· .. • • • * • • ••• • •• * ••••••••••••••••• *****************
* YES

~-----------------v
1140 .. •.. 130

*****Kl*****•**** K2 *• *****K3********** *****K4**********
* SEARCH * ·* WAS *· * 'IRY TO * * * **** * FOR AVAILABLE * NO ·* OPERANC 1 *• YES * ASSIGN TC * * RECOBD * * *
* REG. PRE! ONE *<-------*. ASSIGNED A -*---~>* CURRENT OFBND *---~->• ASSIGN~ENT *-~>* C3 * * IF NECESSARY * *· REG. ..* *THE SAME REG. * ~ * INFORMATION * * *
* • *· ·* * AS OFEEAND 1 * I * * ****
••*************** *· • * ***************** I ***************** [__ ______________ : __________________________ ~J

Section 2: Discussion of Major Components 95

• Chart 17. Global Assignment (GLOBAS-IEKRGB)
GJ.OEAS-IEKRGB HOOO ~OU

96

*****AL********** *****A3********** *****A4********** *****AS**********
****Al********* * * * * *CO~PUTE NUMBER * * * * FFCM * * * COMPUTE * OP OPERANDS * * CALCULATE * * BEGAS-1E¥RRG *------>* INITil\.llZE *------>* REGISTER *--->* THAT ARE *------->* AASE REGISTER * * CHART 1q * * * AVAlIAEllITY * *CANDIDATES FOR * * ACTIVITY *
*************** * * * * ASSIGNMENT * *

***************** ***************** ***************** *****************

I
i----------------~~~-----~:~---------------~~--~

*****Bl********** BL *****Bj**********
*PFEVENT GICEAl * ·* IS * * DCWNGEADE ALI * * ASSIGNME~T TO * ·* 1PIS AN *· YES *VARIAELES THAT * * BUSY-ON-EXIT,.. *-------->*. OUTERMOST .*------->* ABF STORED IN * * S'l'CF.E'D * *.. lOCP • * *THIS OUTERMOST *
* VARI.ABT.ES * *· * * lCOP *
***************** *· ·* ***************** * NO I

I 11

I ,--------------------> * t
t 10 c2·"'·. 27 c3·*·... 4H

• * ANY *· • * ANY *· ****C4*********
.*FLOATING PT* .. NO •* FIXED PTS *• NO * TO *

REGS AND F.LIGI------>*. REGS AND • *------->* REG.AS-IP.KRRG
.BLE VARS· A *.ELIGIBLE .* * CHART 1ij • . I •.VARS ·* *************** •.. . • *· .. * f\.

* YES * YES I
I
I I I I

I I I
11 * 11 i I
:****DL*********! I :·;;:~2~~;:~;;··: I
!c11.~6~~i~EF~~1p : I :-~E;-~i:n~n:T~-: I
: A~~~~i~i : \ : ~~~E 8~:s¥~ : l
********f******** I ***************** I

I II • • I
ii * E3 *->I

I • * I

~··:::::!·::::··: .. -:::::::.·- .. NO I l~··:::::!·:::···i
* TO RFFL'ECT *· GR CCNSTANT .*---->I *CANDIDATE WITH *
: ASSIGNMENT * • FOUND ••• * I : A2~~~i~i :
***************** * ... * l *****************

f' * YFS I

l:,; ·; J : I
SEARCH FCR

11

1
AVAilAELE
REGISTER

•****************

..... , .. !........ ,. ·- I

1

1
i I

J .. I
34 GJ • *· *· *****GU*!:********

* * •* *· I * * YES • * *· NC J
ASSIGN FEGlSTER<--------*.. REGIS'TE!l .*-----J
* * *· FOUND .. *
* * *· . * ***************** *· ·* .

. * *· * * .* *· NO *IF BY.H OR BXLE..-* *· FCUND .. *------->* DO FINAL *<--------,
·.. ·*·* : PROCESSING : !I

*· ... * ***************** * YES

I I
~---.J f NO

·*· ·*· 3~ .. •.. ·*·
H1 *· H2 *· *****HJ********** H4 *• HS *·

.. * REG. *.. ~* IS *.. * TFY TO * •* *., ·* *·
·* ASSIGNED • NO ·* I1F.M *· YES * ASSIGN THE J * .. * *· YES ·* MORE *·

*· TO ITEM IN • *------->*. INCREME~T FOR. *------->*REGS NECESSARY *-------->*. ASSIGNMENT .. *--->* .. CANDIDATES • *
· INNER · * .. BXLE,EXH .. * *POR EXlE OR BXH* * .. SUCCFSS- .* A *· ·*

* .. LCCP ·* *· * * * ... FUL ·* I *· .. • • * ***************** • ... * *· .. * * YES * NC * NO * YES

[__ _____________________ _! __ > ! l .. L ..
4 J V l * E3 *
*****J4********** * *
* * **** *ASSIGN VARIABLE* I
*OR CONSTANT TO * * REGISTER *
* * ········;········ I

I I
I I

i I
*****K4********** I
: UPDATE TRXT : I * TO REFLECT *----1 * ASSIGNMENT *
* •

• Chart 18. Text Updating (STXTR-IEKRSX)
STXTR-IEKRSX

****A2********* * FRO~ * * REGAS-IEKRRG * * CHART 14 *

I •••••a2•••••••••• • • * INITIALIZE *
*GET FIBST TEXT * * ENT HY *

I
!---------------------> !

10 .. •.
C2 *· .. • •. ••••c3•••••••••

•* *~ YP.~ * TO *
• .. END OF BLOCK .•------>* REGAS-IEIHHW *

*• .. • * CHART 1Q * •.. .. * ••••••••••••••• •
• NO

JO 1 •••••02•········· * GET ANY * * COl'lPlETED *
ASSIGNMENTS FOR * tEX~ EN1RY *

I
1]' ~ 2l****E1* ******** *****E2**********

* GET * *INITIALIZE FOB *
NEXT '!'EXT ENTHY * PROCESSING *
* * * ACCORD! NG TO * * * * OPFRATOB * ••••••••••••••••• • ••••••••••••••••

*18 •

• • < I" I
* F2 *->i l

538 *****P1* ******** 130 Fi·*·.. *****P3********** *****F~* ********
• * •* IS *· * * * * * STORE * ·* OPRND 2 *· YES * * * UPDATE TEXT *
: BESUi~iTIHTO : • •• ~a c~~s~~o- .. * .. ·------>:INI5~~~~~g ~OR :--1 :To A~~¥~Ngi~~At :
* • •. ..• • • • • ••••••••••••••••• •. ·* ••••••••••••••••• • ••••••••••••••••

/\ * HO f\

........ !........ .J •. ,.......... "" ". '· •. .J '.'.'
: SAVF INFO.. : ... ··op~~D 3·· •• YES : : ~ •• ·;PE~isn :· ... NO ... ·;LogiitY·· ...
* RELATING TO * *· TO BE PRO- .•---->•INITIALIZE FOR *------>*. TE"PORABY .•---->*.. ASSIGNED .. •
NEXT TEXT !NTBY *· CESS!D • * * OPBBUlD 3 * f\ *· . * *• .. *
* * •. ·* * • I •.. ..• •.. ·* I

/\ * NO * YES * . RO

I ti l .. L .. L
•19 • •19 •

. *· * B3* * B3*
*****H 1* ******** H2 *• *****R.3********** * * * *
!PE~~~g~qN~1J~~ ! NO •• ·*ae~~n ,• YES ! ! I * *
* Sl?ECI-AL *<----*· TO BE PRO- .*---->*INITIALIZE fOR *----.J
* CASES * *· CESSED .. • * OP!BAND 1 * . . •.. ..• . . ••••••••••••••••• • .. ·* •••••••••••••••••

•

Section 2: Discussion of Major Com~onents 97

• Chart 19. Text Updating (STXTR-IEKRSX) (Continued)

***** *19 * * BJ* * • .
!

300 ·*·
BJ *•

·*WHICH * ..
2 .. *OPRND BEING* .. 3 ,-----------------------------------*· PROCESS EC .. *-

I *· .. *
I *· .. * I ~
I I
I I t v

·*· 310 ·*·
C1 *· CJ *·

.. * WAS *· ·* WAS *· ·* OPRND 2 *• YES ·* OPRND l *· NO
• ... ~ss~*~i~ s:.·*--l • ... ~ss~~~i~ s:.-•---------1

... * •• * ·· ·· I
* NO ***** * YES I : 1 ~2: I I

* * I I * I I v v I

o1*'"•. *****D2********** D3·*·•. 1
·*IS*· * USE * .*M-UST *· I ·* OPRND = *· YES * SAME REG. AS * .. •OPRND 1 BE *· NO I

-.~~~~~1ciu~F-··------->:OFJE~~ ~~~~~ous: *· •. STCRED •• ··--, 1·
• .. ENTRY .. • * * *· ·* I I

*· .. * ***************** *· .. • v I
* NO 1 * ***** I I I I *18 * 1

VI I * F2* I I • • I
I 10330 i 103~0 .. ! .. I ... *E2 *·... !****E3*********! ... E~UST·· ••

l<-------~:.:* REG. 0 *:. i~TG~~~~~iE :< __ __:::*:* B~p~~8a~o *:.
I *· -* STORE * *· ·*
I *.. ·* * * *· ·*
I *· • * ***************** "'· .. *
I * NO l * NO

!F1:-> t I \ **** ! I I I

* * ***** I I * *** v * 1 !:I • v ' .. •.. * F2* .. *.. 10370 V
325 F1 •.. * * F-3 *· *****F~**********

·* IS *• * -* IS *· * * .. * BASF *· YES .. * OPEBAND *· NO * SET STATUS
·.~EGISTER 0~··--1 *·.~ TB!1PORAB~*·*--i * TO ~¥~~~NT

· · I *- ·* 1 * * *· ·* V *· .. * I *****************
~ NO :;:·: 7 YES 1 ,
l ?~* I I !

• I l ***** J_ v : 1 ~2:
103L5 G1 *· *****G2********** *****G3********** I * *

98

... ·* o~~ND *·•. YES =-~~~~~:~:~~~:._: ! ALLOCATE : f
*· A TEMFORARY .. *---->* FREE STORAGE * STOBAGE F'OR * I

*• .. * * FOR ~EMFOHARY * * TE~POBARY * I *· .. * * IF POSSIBLE * * * t
*· .. * ***************** ***************** I

* NO I I I

I I l<----J
L _____________ v -------->!

3&0 v
*****HJ**********
* * * FIND BASE * * REG .. fOR * * OPERAND * • *

!
*****J3********** * RECORD *

BAS! INFO. *
FOR

APPROPRIATE
* OPERAND *

l
***** * 18 * * F2* ..

*

l
330 -•.

c~ *· .. * WAS *·
YES .. * OPBND j *·
{-*· ASSIGNED BI .. * *· BKPAS • *

· · *· ...
***** * NO
*18 *
* F2* .. 1 -·-DS *•

,. * IS *·
NO •* OPRND I *· ,--*. OPRND 1 OF •*

I * .. PREVIOUS .. *
l •.ENTRY.*
v •

* **** * *i YES
* F1 *
* * l

*****ES**********
* USE * * SAHE REG. AS *
OP1 OF PREVIOUS
* TEXT ENTRY * . .

l
90330 .• ..

F~ *·
.. * *·

N·O .. * *·
r-*· REG. 0 ·*
1 *· .. *
I *· .. * v • *

**** * YES

: Fl : \
• • v
**** *****

*1B * * F2* ..
*

•Table 11. Criteria for Text Optimization
r------------------T----------------------T----------------------T---~-----------------1
I Process I Basic I Primary I Secondary I
~------------------+----------------------+----------------------+----------------------~
I Common I Subscript, arithmetic !Matching operand 2, !Matching operand 2, I
I Expression jor logical operator; !operand 3, and joperand 3, and I
I Elimination !binary operator !operator joperator with I
I I I lno intervening I

I I I !redefinitions I

~------------------+----------------------+----------------------+----------------------~
I Backward !Arithmetic or logical !Operand 2 and !Operand 1 not busy I
I Movement joperator !operand 3 undefined jon exit from target; I
I I lin the loop joperand 1 undefined I
I I I !elsewhere in the loop I
~------------------+----------------------+----------------------+----------------------~
I Strength !Additive operator; !Interaction of inert !Function of absolute I
I Reduction !inert variable !variable with additivelconstants or stored I
I I jor multiplicative !constants I
I I I operator I I

l------------------L----------------------i----------------------i----------------------J

Section 2: Discussion of Major Components 99

•Table 12. Phase 20 Subroutine Directory
r-------------T---T-------------1
I Subroutine I Function I Type I
~-------------+---+-------------~
IBACMOV-IEKQBMIControls backward movement, produces new inert text !Text I
I !entries for strength reduction, builds type tables for !optimization I
I !strength reduction, and performs compile-time mode I I
I I conversions. I I
I I I I
IBAKT-IEKPB !Computes the loop number of each module block. !Structural I
I I I determination I
I I I I
IBIZX-IEKPZ !Computes the proper MVX setting for each variable in each !Structural
I lblock of the module. !determination
I I I
IBKDMP-IEKRBK !Printing routine for full register assignment. !Register
I I I assignment
I I I
IBKPAS-IEKRBP !Control local register assignrrent. Register
I I assignment
I I
IBLS-IEKSBS !Computes the total size of each block in the module and Branching
I !determines which module blocks can be reached via RX branch optimization
I I instructions.
I I
ICXIMAG-IEKRCIIProcesses imaginary parts of complex functions during
I !local register assignment.
I I
IFCLT50-IEKRFLIPerforms special checks on text items whose function codes
I lare less than 50.
I I

Register
assignment

IFOLLOW-IEKQF jDetermines if intervening block causes redefinition of a
I I variable.

Structural
determination I

I I
IFREE-IEKRFR !Releases busy registers during overflow conditions (local !Register
I I assignment) • assignment
I I
IFWDPAS-IEKRFPITable-building routine for full register assignment.
I I
I I
IFWDPS1-IEKRF11Determines if text operands are register candidates prior
I Ito local register assignment.
I I
IGLOBAS-IEKRGBIAssigns most active variables to registers across the
I I loop.
I I
INVERT-IEKPIVIGets text pointers in a backward direction.

I
I

LOC-IEKRL1 !Block data for register assignment.
I

LPSEL-IEKPLS !Controls sequencing of loops and passes control to text
!optimization and register assignment routines
I

REDUCE-IEKQSRIControls strength reduction.
I
I

Register
assignment

Register
assignment

Register
assignment

Text
optimization

Control
routine

Text
optimization

REGAS-IEKRRG !Controls full register assignment. Register
I jassignment
I I

IRELCOR-IEKRRLIReleases temporary main storage so it can be reused. I
I I I
ISEARCH-IEKRS !Provides register loads upon entering the module. I
I I I
ISPLRA-IEKRSL !Assigns registers during basic register assignment. !Register
I I I assignment l _____________ i ___ i ____________ _

I
I
I
I
I
I
I
I

(Continued)

100

eTable 12. Phase 20 Subroutine Directory (Continued)
r-------------T-------------------------~--------------------------------T-------------1
I Subroutine I Function I Type I
~-------------+---------------------------------~-------------------------+-------------~
SSTAT-IEKRSS !Sets status information for OFerands and base addresses !Text I

!of text entries. !optimization I
I I I

STXTR-IEKRSX !Controls text updating. Register I
I assignment I
I I

TARGET-IEKPT !Identifies the members of a loop and its back target. Text I
I optimization I
I

TOPO-IEKPO !Computes the immediate back dominator of each block in the Structural
!module. determination
I

ITNSFM-IEKRTF !Performs special checks on text items whose function codes
I !are in the range of 50 to 55 inclusive.
I I
f TYPLOC-IEKQTLf Locates interactions of text entries for strength
I !reduction.
I I

Text
optimization

IXPELIM-IEKQXMIControls common expression elimination. Text
I I optimization
L-------------i---i-------------J

Section 2: Discussion of Major Components .101

•Table 13. Phase 20 Utility Subroutines
r----------------T--1
I Subroutine I Function I
~----------------+--------------------~--i
CIRCLE-IEKQCL
(FOLLOW-IEKQF)* Examines composit vectors, or each local vector if necessary.

CLASIF-IEKQCF Classifies operands of the current text entry, changes parameter list
(PARFIX-IEKQPX) * to correspond to text replacements, adjusts text entry for possible
(MODFIX-IEKQMF) * mode change.

GETDIK-IEKPGK
(FILTEX-IEKPFT) *
(GETDIC-IEKPGC) *
(INVERT-IEKPIV) *

Fills text space according to the arguments, gets space for tem
poraries, gets space for constants, obtains previous text entry.

KORAN-IEKQKO Performs bit manipulation for text optimization, updates composit LMVS
(LORAN-IEKQLO) * and LMVF matrixies.

I
MOVTEX-IEKQMT !Moves text entries, deletes current text entry by rechaining, and
(DELTEX-IEKQDT) *!updates MVS and MVF vectors.

I
PERFOR-IEKQPF !Performs combination of constants at compile time.

I
SRPRIZ-IEKQAA !Structured source program listing routine.

I
SUBSUM-IEKQSM !Replaces operands with equivalent values and, if possible, operand

jvalues with equivalent values.
I

WRITEX-IEKQWT !Diagnostic trace printing routine for text optimization.
I

XSCAN-IEKQXS !Performs local block scan for backward movement, for common expression
(YSCAN-IEKQYS)* jelimination, and for forward ~overnent.
(ZSCAN-IEKQZS) * I

~----------------~--i
!*Secondary entry point I
L---J

102

• Chart 20. Phase 25 Processing
i------------------------------------~~--------------1

I <-1----->SUBROUTIME

f IEK!A A2·*·.. *****A]********** ' ~~~~igi~E~i~T
1 ****Al********* ·* *· * * I CONVERSION
II * FROM FSD * •* ANY *· YES * ASSIGN EASE * l

CHART 01 *------>*.. ELOCK .•--->* AND DISP *
' • ••••••••••••••• • ·-.:AEFLs * : TO 'f~a~tOCK * I
I * * :a ***************** 1

Ill : ·:~• :--1 vi <------------------J Ill

**** v
I s1·*..... s:c·*·.. .*****B3**********• jl
I .. * *· * *·
I ·* LAST *· NO ·* ANY *· YES * ASSIGN BASE *
I *· •. ~~i~Y ... ··----1 •· ... ¥:~~~~ ... -·----->: ~~DE~i~~H 1
I *· ~* *· ·* * TABlES * I
f *·•·;Es I • .. • .. :a ********j******** I
! l L-------> I i !
t ! t <-------------------' I

II =.···:~i:i;s~····.= ~··~;;i:i:;;~:··;
1

11

* ENTRY *
*************** * * I ········i········ !

I l I
i . • .. I I D2 *· *****D3********** ! .*R~TURN *· * TENTXT-IEKVTN *

: 11 sTM¥~D, *:~-E-5 ~->=-~E;M*E:T*T;p;-:<--1
*· NO.. .. * *PRODUCE LBL PIAP* I

I *~ .. * *IF END OF TEXT * I
I * * ***************** I I * NO I I
1 I l * **** * l

I ' '

*****B~********** * RETUBN-IEKTRM * *-•-•-•-•-•-*-•-• I<-->* GENERATE * * BRANCH TO *
* EPILOGUE *

I
I •••••cs•••••••••• * IOSUB-IEKTIS *
I <->:;;;;;;:T:-;a:N~u: I : TO IHCFCOPIH :

I *****************

*****D~********** I * LABEL-IEKTLB * ·-·-·-·-•-*-•-•-• > <-->* ENTEB LOC.. * * CTR .. IN *
* LABEL ENTBY * •................

I I ,_,. E 1 • I
~ V **** 21A2
l E2·*·... *****E3********** I *****E!>********** I * •.. • FNCAlL-IERVFN * I * END-IE~UEN •
I * .. YES *-*-•-•-*-*-•-•-• •-•-•-*-*-*-*-*-* I *· ... CALL ·------>: G~~i~~]~ ' , <-->: Pig~~~rI:G :

l- *.. ·* * SECUENCE • I I . OF l"IODULE •
* * *************'**** *****************

• *.NO I * • I I
!f L-)* Bl *

I ' * I

I r .. ·:::·:: : NO •• • F2::~ •• •• •• YES ::mm;~;~ii~:: I ::m~Eii~~ii::: I rnEm:::::::::
I ! Ri~~iljR :<-----* ~~~~ .. .-·*------>! TEi~N~g~Tf1sT :<--J---->: G~~f~"i5 :<->'-<->! ~¥8E~~~

I ***************** *· .. • ***************** ***************** *****************
I * * *· .. * * ITEPI * l * IHCFCOMH * * l"IAP *

! viii • L: e1 ! I I
J *****G1********** I I • SELFCT : I
I * BIT * I I * STEIP * I • *

**** ** ***********

l
*****Hl********** . .
* MODIFY STRIP * * FOB EASE * * LOADS AND * * STORES *

I
*****J1********** * * PERFORMED BY APPROPRIATE •-•-•-•-•-•-•-*-* CODE GENERATION SUEROOTINE
: IN~~:5~-~f6Ns :--1
:.~~~~.~~~~;;~~.: '

* B 1 * I . .

I • •••• • I L __ J

Section 2: Discussion of Major Components 103

•Chart 21. Subroutine END-IEKUEN

.•.
*****A2********** *****A3********** A4 *•

****A1********* * ENTRY-IEKTEN * * PROLOG-IEKTPR * ·* *• * FROM * •-•-•-•-•-*-*-*-* •-•-•-•-•-•-•-•-• • * 2ND *· YES
* !IAINGN-IEKTA *------>*DETERMiflE TYPE *<----->* GENERATE *----~>•.ENTRY POINTS ·*-1 * CHART 20 * * CF PROLOGUE * A * PROLOGUE * *· ·*

*************** *EPILOGUE TO GEN* I * * *· ·*
***************** 1 ***************** •. ·*

104

I I t NO I

I 1 < 1 I
*****B2********** j *****B3********** * I l * OUTPUT ADCONS * I * EPILCG-IEJITEP *
: F~~v~B~ig~~E, ! l ___ :-·-~E:E;i;E•-•-:<
* EPILOGUE * * EPILOGUE * • * • •
***************** *****************

I
. *· C2 *· *****C3**********

·* *· * * ·* ANY *· YES * OUTPUT ADCCNS *
· BRANCH · >* FCR ERANCH *

*· TA EL ES • * * TABLES *
· · • * *· ·* *****************

* NO I

1(--------------------_j v .•.
D2 *• *****D3********** .• •. • *

·* ANY *· YES * OUTPUT ADCONS * *· PARAMETER .•-------->* FOR PARAMETER *
• LISTS · * LISTS *

· · • * *· ·* ***************** 7 NO I

1(-----------------j v
·*· E2 *~ *****E3**********

·* *· * • ·* *· YES * OUTPUT *
*.ANY P20 TEMP •• *------>*ADCONS FOR P20 *

· · * TEMf. *
· · * * *· ·* ***************** * NO I

I <----------------J v
. *· F2 *· *****F3**********

·* *· * * .• ANY *· YES * OUTPUT * *· 1 E' BLOCK -*----->*ADCONS FOR 'B' *
· LABELS · *BLOCK LABELS *

· · * * *· ·* ***************** * NO

I<
v

*****G2**********
* * * OUTPUT END *
* CARD FOB OEJ. * * MODULE * • *

j
****H2********* * TO * * ~AINGN-IEKTA * * CHART 20 *

I ________ ,

• Table 14. Phase 25 Subroutine Directory
r----------------T--1
I Subroutine I Function I
~----------------+--~

ADMDGN-IEKVAD 1 Generates instructions for the AMOD, DMOD, ABS, IABS, DABS, AND, OR,

BITNFP-IEKVFP1

BRLGL-IEKVBL 1

CGNDTA-IEKWCN

END-IEKUEN

ENTRY-IEKTEN

EPILOG-I~KTEP

FAZ25-IEKP25

'

COMPL, LCOMPL, and DBLE in-line functions.

Generates instructions for the following text entries: BITCN,
BITOFF, BITFLP, TBIT, MOD24, SHFTR, and SHFTL in-line functions.

Generates instructions for the following text entries: operator is
a relational operator operating upon two operands or upon one
operand and zero, assigned GC TC operators, computed GO TO opera
tors, unconditional branching, branch true and branch false opera
tions, and ASSIGN statement.

Initializes the arrays used during code generation.

Performs final processing of the object module.

Calls routines PROLOG-IEKTPR and EPILOG-IEKTEP to generate prologues
and epilogues for subroutines and secondary entry points. Generates
prologues and epilogues for the wain program.

Generates the epilogues associated with a subprogram and its secon
dary entry points (if any) •

Common data area used by phase 25.

FNCALL-IEKVFN I Generates calling sequences for CALLS (other than those to IHCFCOMH)
I and function references. Generates the instructions to store the
I result returned by a function subprogram.
I

GOTOKK-IEKWKK I Used by MAINGN-IEKTA to branch to the code generation subroutines.

' IOSUB-IEKTIS/ I Generate calling sequences for calls to IHCFCOMH.
IOSUB2-IEKTIO I

I
LABEL-IEKTLB I Processes statement numbers ty entering the current value of the

I location counter into the statement number entry in the dictionary.
I

LISTER-IEKTLS I Produces a listing of the final compiler-generated instructions.

' MAINGN-IEKTA/ I Assign base and displacement for 'B.' block labels and branch table
MAINGN2-IEKVM2 I entries. Control the text conversion process of phase 25.

I
PACKER-IEKTPK I Packs the various parts of each instruction produced during code

I generation into a TXT record.
I

PLSGEN-IEKVPL1 I Generates the instructions for the following text entries: real
I multiplication and division operations, subtraction operations,
I half- and full-word integer multiplication, and half- and full-word
I integer division.
I

PROLOG-IEKTPR I Generates prologues for subroutines and secondary entry points (if
I any) •
I

RETURN-IEKTRN I Processes the RETURN statement by generating a branch to the
I epilogue.
I

STOPPR-IEKTSR1 I Generates character strings in calls to IHCFCOMH for STOP and PAUSE
I statements.
I

SUBGEN-IEKVSU1 I Generates instructions for the following text entries: subscript
I operations, right and left shift operations, store operations, and
I list item operations. I ________________ i __ J

(Continued)

Section 2: Discussion of Major Components 105

eTable 14. Phase 25 Subroutine Directory (Continued)
r----------------T--1
I Subroutine I Function I
~----------------+----------~--~
TENTXT~IEKVTN Controls the processing of END, RETURN, and I/O statements, state-

TSTSET-IEKVTS1

UNRGEN-IEKVUN1

ment numoers, and end of I/C list indicators. Produces label map.

Generates the instructions to (1) compare two operands across a
relational operator, and (2) set operand 1 to either true or false
depending upon tne outcome of the comparison. Generates the follow
ing in-line functions: FLOAT, DFLOAT, INT, !DINT, IFIX, HFIX, DIM,
IDIM, SIGN, !SIGN, DSIGN, MAX2, and MIN2.

Generates the instructions for the fellowing text entries: unary
minus operations (e.g., A=-B), logical NOT operations, load byte
operations, load address operations, AND, OR, and XOR operations.

IEKGMP Produces a storage map.
~----------------.J._---~
I ~code generation subroutines. I
L---J

106

• Chart 22. Phase 30 (IEKP30) Overall Logic
IEKPJO

****A3*********
* F llOM *

FSD *
CHAR'! 01 *

I
*****B .:!***"'* ***** . .
• • * INITIALIZF . . .

l
*****C3**********
*OBTAIN MAXIMUM *
* ENTBIES AND *
*ACTUAL ENTBIF.S * * FROM CO~MON * . .

i ...

SEE TABLE 1~
FOR A PRIEF

DESCRIPTION OF
EACH SfJTIROUTINF

OF PHASE JD ..

Dj *· *****Dij**********
., *ACTUAL *· * SET UP ERROR *

.. *NO. GRF.A'T'FR*. YES * MESSAG~ * * THAN THA'I .•------->* AND *---------, *· AlLOWED .. * * LENGTH * I
•.. • * * * I *· .. • ***************** I * NO l

• **** * I I
* EJ *->I 1

1
1

* * I **** I LOFPCO~ V
*****E.:l**********
: OBTAIN FIRST : I
: {~~~ti ~:~~~ : '1' . .

I ••.• I
I : F~ :_,I
'tr * ****. I . *· STRESS 1 OFFSET V

F3 *· *****FLJ********** *****F!:>**********
• *MESSAGE*.. * SF:T UP * * [l!SGWRT-IEKP31 * .. * NUMBER *· NO * ADDRESS * •-•-•-•-•-•-*-*-* *· l/T 1000 AND .. *------->* FOR ERHOR *----->* WRITE *

• G/T 0 · * MESSAGF. * * ERROR *
• · * * * "IESSAGH * *· .. * ***************** *****************

im J
*****G.:l********** G~ *· * OBTAIN * .. * LAST *• * F.FROR LEV~L * NO •* ERROR *·
: c8~~v~=*P! : r--·· ... ~:~~~ ... ·•
* TABLE * I *· ·*
***************** v *· ·* I **** * YES

: E.i : '

.!. ··:::· !
H::I *• *****HI.I********** *****H~**********

•* ERROR *· * SAVI! * * PASS SAVED *
.. •LEVEL CODE *• YES * ERROR * ERROB

• .. G/T EfffVIOOS .. *----->* LEVEL * LEVEL * *· ONES .. • * CODE * cone: * • * * • *
•.. ... ***************** *****************

* NO I II

I I
I <--------------------J ii

HASll ~
*****J3********** * GET * ****J~********* * ASSOCIATE£ * * TO * * MESSAGE * FSD
• POINTFB TAELF * * CHART 01 *
* ~NTRY * ***************•.•••..•...•.

l
*****K3********** . .
* BUitD *
: PA.~}~~TE R :---,

: •••••••• *******: ~
**** . .

* F~ * . .

Section 2: Discussion of Major Components 107

Table 15. Phase 30 Subroutine Directory
r----------T-----------------------~--1

I Subroutine I Function I
~----------+--~
I IEKP30 I Controls phase 30 processing. I
I I I
I MSGWRT- I Writes the error messages using the FSD. I
I IEKP31 I I
l __________ i __ J

108

This appendix contains text and figures
that describe and illustrate the major
tables used and/or generated by the FORTRAN
System Director and the compiler phases.
The tables are discussed in the order in
which they are generated or first used. In
addition, table modifications resulting
from the compilation process are explained,
where appropriate, after the initial for
mats of the tables have been explained.

COMMUNICATION TABLE (NPTR)

The communication table (referred to as
the NPTR table in the program listing) , as
a portion of the FORTRAN System Director,
resides in main storage throughout the .com
pilation. It is a central gathering area
used to communicate necessary information
among the various phases of the compiler.

Various fields in the coromunication
table are examined by the phases of the
compiler. The status of these fields
determines:

• Options specified by the source
programmer.

APPENDIX A: TABLES

stateroent by comparing the first character
of the packed source statement with each
character in the keyword pointer table. If
that first character corresponds to the
initial character of any keyword, the key
word pointer table is then used to obtain a
pointer to a location in the keyword table.
This location is the first entry in the
keyword table for the group of keywords
beginning with the matched character. All
characters of the source stateroent, up to
the first delimiter, are then coropared with
that group of keywords. If a match
results, the classification code associated
with the matched entry is assigned to the
source statement. If a match does not
result, or if the first character of the
source statement does not correspond to the
first character of any of the keywords, the
source statement is classified as an inval
id stateroent.

Note: The packing process, which precedes
classifying, marks a source stateroent as
arithmetic if, in that statement, an equal
sign that is not bounded by parentheses is
encountered. If the source stateroent has
been marked as arithmetic, it is classified
accordingly by the classification process.

•Specific action to be taken by a phase. eTable 16. Communication Table (NPTR(2,35))

If the field in question is null, the
option has not been specified or the action
is not to be taken. If the field is not
null, the option has been specified or the
actiQn is to be taken. Table 16 illus
trates the organization of the communica
tion table.

CLASSIFICATION TABLES

Classifying, a function of the prepara
tory subroutine (GETCD-IEKCGC) of phase 10,
involves the assignment of a code to each
type of source statement. This code indi
cates to the DSPTCH-IEKCDP subroutine which
subroutine (either keyword or arithmetic)
is to continue the processing of that
source statement. The following paragraph
describes the processing that occurs during
classifying. The tables used in the clas
sifying process are the keyword pointer
table and the keyword table. They are
illustrated in Tables 17 and 18,
respectively.

If the source statement has not been
signaled as arithmetic during source state
ment packing (see note) , the classifying
process determines the type of the source

r--T------------------T-------------------1
I 11Pointer to tempo- !Pointer to 1-char- I
I lrary for FLOAT/FIXlacter syrobol chain I
~--+------------------+~-----------------~
I 21Previous classifi-IPointer to 2-char- I
I !cation code (phaselacter symbol chain I
I I 10) ; Reg used on I I
I llast ARITH (phase I I
1 120,0PT=O) I I
~--+------------------+-------------------~
I 310ptions: SOURCE, !Pointer to 3-char- I
I IMAP, ID, EDIT, lacter symbol chain I
I I LOAD, DECK, LIST, I I
I I ECD, XREF I I
~--+------------------+-------------------~
I 41Pointer to most !Pointer to 4-char- I
I !recently generatedlacter symbol chain I
I !EQUIVALENCE group I I
I I entry (phase 1 0) ; I I
I !Relative location I I
I lof first temporary! I
I I (phase 20) I I
~--+------------------+-------------------~
I SINADCON index for f Pointer to 5-char- I
I !first temporary lacter symbol chain I
t I (phase 20) I t
~--+----------~------+-------------------i
I 61Maximum line countf Pointer to 6-char- I
I I lacter syrobol chain I
L--i-------------~---i-------------------J

(Continued)

Appendix A: ~ables 109

•Table 16. Communication Table (NPTR(2,35))
(Continued)

r--T------------------T-------------------1
I 71NADCON index for !Pointer to last I
I !last statement !dictionary entry I
I I number I in stmt number I
I I I chain (XREF-phase I
I I 110); Number of reg-I
I I listers reserved fort
I I I RX branches (phases I
I I I 20 and 2 5) I
~--+------------------+-------------------i
I 81 Type of text I I
I I (phase 10) ; Pointer I I
I I to next phase 1 0 I I
I I text i tern (phase I I
I I 15); Pointer to I I
I I • QXX temporary I I
I I chain (phase 20) I I
!--+----------------~+-------------------~
I 91Pointer to next !Pointer to last I
I tavailable phase 101available phase 10 I
I !text entry !text entry I
~--+------------------+-------------------i
11 0 I Name of routine I
I I (subprogram/main program) I
~--+------------------+-------------------i
l111Phase in control !Trace switch; opt- I
I !indicator limization downgrade!
I I !switch I
~--+------------------+-------------------~
l121Last error table I I
I tentry I I
~--+------------------+-------------------i
1131END card indicatortPointer to first I
I I (phase 10) I card of source pgm I
~~+------------------+-------------------1
1141Pointer to !Pointer to 4-byte I
I !parameters !constant chain I
~--+------------------+-------------------i
l151NADCON index for !Pointer to 8-byte I
I !first parameter !constant chain I
I I list I I
~--+------------------+~~--------------i
l161Page count !Pointer to 16-byte I
I I I constant chain I
~--+------------------+-------------------1
1171Current line countlPointer to state- I
I I tment number chain I
~--+------------------+-------------------i
1181Relative location !Number of branch I
I lfor register 13 !table entries; rel-I
I I I ati ve location of I
I I !register 12 I
~--+------------------+------------------i
1191Active register: INADCON index for I
I tzero for reg 13, !statement number I
I !nonzero for Reg 12ladcons I L __ i __________________ i~-----------------J

(Continued)

110

•Table 16. Communication Table (NPTR(2,35))
(Continued)

r--T------------------T-------------------1
l201Secondary entry !Number of times I
I l~oints if nonzero IXREF buffer has I
I I !been written out I
l I I (phase 1 0) I
~--+------------------+-------------------i
l211Location counter INADCON index for I
I I !first COMMON area I
~--+------------------+-------------------i
l221Pointer to die- !Next available I
I ltionary entry for terror table entry I
I IIBCOM I I
~--+------------------+~-----------------i
l231External function !Pointer to end of I
I land/or CALL ind- !statement number I
I I icator I chain I
~--+------------------+-------------------i
1241Program uses !Optimization level I
I I FLOAT/FIX or MOD I I
I I function if non- I I
I tzero; arithmetic I I
I I interrupt indica- I I
I ltor I I
~--+------------------+-------------------i
l251Pointer to first !Pointer to common I
I !dictionary entry !chain I
~--+------------------+-------------------i
l261Pointer to DEFINE !Pointer to equiva- I
I !FILE text llence chain I
~--+------------------+-------------------i
l271Pointer to literallPointer to data I
I !constant chain !text chain I

I t29t;~1~~~~-~~-~i~~;--t;~1~~~~-~~-~~~~~1--1 I !entry !text chain I
~--+----------~------+-------------------i
l291Pointer to branch !Pointer to next I
I !table chain !available informa- I
I I ltion table entry I
~--+------------------+-------------------~
1301ELOCK DATA sub- !Pointer to end of I
I !program switch !information table I
~--+-------------~---+---------~--------i
1311FUNCTION SUB- !SUBROUTINE SUB- I
I !PROGRAM switch !PROGRAM switch I
~--+----------------+------------------1
1321Pointer to name- !Pointer to format I
I !list text chain !text chain I
~--+------------------+------------------i
l331Size of constants ISize of variables I
~--+-~---------------+-------------------i
1341Current displace- IAdcon entry number I
I I ment from active I I
I !register (phase I I
I 12oi I I
~--+----------~--~---+-------------------i
l351Relative location !Delete/error switch!
I lfor first state- I I
I lment number I I
L--i------------------i-------------------J

•Table 17. Keyword Pointer Table
r------------T-----------T----------------1
I Character I Number• I Displacement2 I
I (1 byte) I (1 byte) I (2 bytes) I
~------------+-----------+----------------~

A 2 I 0
I

B 2 I 12
I

c s I 34
I

D 8 I 84
I

E 5 I 175
I

F 3 I 220

G 244

H 0 0

I 3 250

I J o o
I
I K 0 0
I
I L 2 286
I
I M 312
I
I N 2 318
I
t 0 0 0
I
I P 3 336
I
I Q o o
I
I R 5 357
I
I s 3 399
I
I T 2 428
I
I u o o
I
I v o o
I
I w 447
I
I x o o
I
I Y o o
I
I z o I o
~------------i-----------i----------------~
l 1 This field contains the number of key I
I words beginning with the associated I
I character. I
f 2This field contains the displacement I
I from the beginning of the key word tablel
I for the group of key words associated I
I with character. I
L---J

eTable 18. Keyword Table
r----------T-----~----------------T------1

I Length-1• I Key Word2 ICode 3 I
~----------+-----------------------+------~

5 ASSIGN 1

8

8

7

5

3

14

6

8

3

22

14

9

6

4

10

6

3

4

7

5

7

AT

BACKSPACE

BLOCKDATA

CONTINUE

COMMON

CALL

COMPLEXFUNCTION

COMPLEX

DIMENSION

DATA

DOUBLEPRECISIONFUNCTION

DOUBLEPRECISION

DO

DEFINEFILE

I DISPLAY
I
I DEBUG
I
I EQUIVALENCE

ENDFILE

END (group mark)*

ENTRY

EXTERNAL

FORMAT

FUNCTION

9

2

3

5

7

8

4

6

14

17

10

11

18

13

15

16

19

21

23

22

20

25

24

3 FIND I 12
I

3 GOTO I 27
I

7 IMPLICIT I 29
I

14 INTEGERFUNCTION I 28
I

6 INTEGER f 30
I

14 LOGICALFUNCTION I 33 f
~----------i-----~----~----------i------~
I *Represented in hex as 'C5D5C44F' I
L--------~---~----------------------~--J

(Continued)

Appendix A: ~ables 111

•Table 18. Keyword Table (Continued)
r-----~---T---------------~------T------1
I Length-1 1 1 Key Word2 1Code3 I
~----------+---------------~------+------~

6 LOGICAL 35

3 MOVE 34

7 NAMELIST 36

5 NORMAL 37

4 PAUSE 38

4 PRINT 39

4 PUNCH 40

3 READ 44

5 RETURN 43

5 REWIND 42

11 REALFUNCTION 41

3 REAL 45

3 STOP 48

9 SUBROUTINE 46

8 STRUCTURE 47

7 TRACE OFF 49

6 TRACE ON 50

4 WRITE 51
~----------i-----------------------i------~
l 1 This part of the entry for each keyword I
I is one byte in length and contains a I
I value equal to the number of characters I
I in that keyword minus one. I
l 2 This part of the entry for each keyword I
I contains an image of that keyword at onel
I byte per character. I
l 3 This part of the entry for each keyword I
I is one byte in length and contains the I
I classification code for that keyword. I
L-------------------------------~--------J

NADCON TABLE

The NADCON table, built by PHAZ15 and
CORAL and partially overwritten by phase
20, contains:

1. Parameter list pointers.

2. Adcons for local variables and
constants.

3. Adcons for variables in COMMON and for
those equivalenced into COMMON.

4. Adcons for external references.

112

The information in the table is used by
CORAL and phase 25. Each table entry is
one word in length; the format of the table
is shown in Table 19.

•Table 19. NADCON Table
r---1
!Parameter list pointer entries (one word I
!per entry) I
·---~
IAdcon entries for local variables and I
!constants (one word per entry) I
·---~
IAdcon entries for variables in COMMON andl
!those equivalenced into COMMON (one word I
lper entry) I
·----------------------~-----------------~
IAdcon entries for external references I
I (one word per entry) I
L---J

Parameter entries are created by PHAZ15.
Each entry is a pointer to the dictionary
entry for the parameter. Indicators denote
ends of parameter lists and also parameters
shared by more than one function or subrou
tine call.

Adcon entries are created by CORAL and
then inserted by CORAL into the adcon por
tion of the object module as shown in
Figure 9. Pointers to temporaries are
created by phase 20 and placed in the por
tion of the table used previously by CORAL.

Phase 25 inserts the parameters and tem
poraries into the object module. The
right-hand portion of Figure 9 indicates
the order in which storage is assigned in
the object module and the data which is
entered into that storage.

INFORMATION TABLE

The information table (referred to as
NDICT or NDICTX) is constructed by Phase 10
and modified by subsequent phases. This
table contains entries that describe the
operands of the source module. The infor
mation table consists of five components:
dictionary, statement number/array table,
common table, literal table, and branch
table.

INFORMATION TABLE CHAINS

The information table is arranged as a
number of chains. A chain is a group of
related entries, each of which contains a
pointer to another entry in the group.
Each chain is associated with a component
of the information table.

The information table can contain the
following chains:

• A maximum of nine dictionary chains:
one for each allowable FORTRAN variable
length (1 through 6 characters) and one
for each allowable FORTRAN constant
size (4, 8, or 16 bytes). Each dic
tionary chain for variables contains
entries that describe variables of the
same length. Each dictionary chain for
constants contains entries that
describe constants of the same size.

• One statement number/array chain for
entries that describe statement
numbers.

• Two common table chains: one for
entries describing common blocks and
their associated variables, and one for
entries describing equivalence groups
and their associated variables.

• One literal table chain for entries
that describe literal constants used as
arguments in CALL statements.

• One branch table chain composed of
entries for statement numbers appearing
in computed GO TO statements.

Entries describing the various operands
of the source module are developed by Phase
10 and placed into the information table in
the order in which the operands are encoun
tered during the processing of the source
module. For this reason, a particular
chain's entries may be scattered throughout
the information table and entries describ
ing different types of operands may occupy
contiguous locations within the information
table. Figure 10 illustrates this concept.

CHAIN CONSTRUCTION

The construction of a chain requires (1)
initialization of the chain, and (2) point
er manipulation. Chain initialization is a
two step process:

1. The first entry of a particular type
(e.g., an entry describing a variable

of length one) is placed into the
information table at the next avail
able location.

2. A pointer to this first entry is
placed into the communication table
entry (refer to the section, "Communi
cation Table") reserved for the chain
of which this first entry is a member.

Subsequent entries are linked into the
chain via pointer manipulation, as
described in the following paragraphs.

The communication table entry containing
the pointer to the initial entry in the
chain is examined and the first entry in
the chain is obtained. The item that is to
be entered is compared to the initial
entry. If the two are equal, the item is
not reentered; if unequal, the first entry
in the chain is checked to see if it is
also the last. (An entry is the last in a
chain if its "chain" field is zero.)

If the chain entry under consideration
is the last in the chain, the new item is
entered into the information table at the
next available location, and a pointer to
its location is placed into the chain field
of the last chain entry. The new entry is
thereby linked into the chain and beco~es
its last rrember.

If the entry under consideration is not
the last in the chain, the next entry is
obtained by using its chain field. The
item to be entered is compared to the entry
that was obtained. If the two are equal,
the item is not reentered: if unequal, the
entry under consideration is checked to see
if it is the last in the chain; etc.

This process is continued until a com
parable entry is found or the end of the
chain is found. If a comparable entry is

r---1
I I
I I
I '· L L / / ~ I
I r-_L-~----T-~-T--Z~~-l __ T_J_T __ }_1T~....L'~~~i-4~~./'~~~/ I
I I I I I I STMT/ I I STMT/ I I I I I I
I IDICTICOMMIBRANIDICTIARRAYILITIARRAYICOMMILITIBRANIDICTI I
I 11 11 11 12 I 1 111212 1212 13 I I
1 L-.,--~-c-i-,..--i--r-i-----=.-z--i-----i--,-i---i----i-T_J 1
I // / - ,L - I
I / / / / I
I I
I I
I I L._ __ J

Figure 10. Information Table Chains

Appendix A: ~ables 113

found, the item is not reentered. If the
new item is not found in the chain, it is
then linked into the chain.

OPERATION OF INFORMATION TABLE CHAINS

The following paragraphs describe the
operation of the various chains in the
information table.

Dictionary Chain Operation

The operation of a dictionary chain is
based upon "balanced tree" notation. This
notation provides two chains, high and low
(with a common mid-point) , for the entries

describing variables of the same length or
constants of the same size. The initial
mid-point is the first entry placed into
the information table for a variable of a
particular length or a constant of a parti
cular size. When two entries have been
made on the high side of the mid-point, the
first entry on the current mid-point's high
chain becomes the new mid-point. Similar
ly, when two entries have been made on the
low side of the mid-point, the first entry
on the current mid-point's low chain becom
es the new mid-point.

A change of mid-point for a variable of
a particular length or a constant of a par
ticular size causes a pointer to the new
mid-point to be recorded in the communica
tion table. The following example illus
trates the manner in which phase 10 employs
the balanced tree notation to construct a
dictionary chain.

Assume that the following variables
appear in the source module in the order
presented.

D C E F A l3

When phase 10 encounters the variable D,
it constructs a dictionary entry for it
(refer to "Dictionary") , places this entry
at the next available location in the
information table, and records a pointer to
that entry into the appropriate field of
the communication table (refer to "Communi
cation Table") • The entry for D is the
initial mid-point for the chain of entries
describing variables of length one. (When
a dictionary entry is placed into the
information table, both the high and low
chain fields of that entry are zero.)

When phase 10 encounters the variable C,
it constructs a dictionary entry for it.
Phase 10 then obtains the dictionary entry
that is the initial mid-point and compares
C to the variable in that entry. If the
two are unequal, phase 10 determines if the
variable to be entered is greater than or
less than the variable in the obtained

114

entry. In this case, C is less than D in
the collating sequence, and, therefore,
phase 10 examines the low chain field of
the obtained entry, which is that for D.
This field is zero, and the end of the
chain has been reached. Phase 10 places
the entry for C into the next available
location in the information table and
records a pointer to that entry in the low
chain field of the dictionary entry for D.
The entry for C is thereby linked into the
chain.

When the variable E is encountered,
phase 10 carries out essentially the same
procedure; however, because E is greater
than D, phase 10 examines the high chain
field of the entry for D. It is zero,
which denotes the end of the chain. Phase
10 therefore places the dictionary entry
for E into the next available location in
the information table and records a pointer
to that entry in the high chain field of
the dictionary entry for D.

When the variable F is encountered,
phase 10 constructs a dictionary entry for
it and compares it to the variable in the
entry that is the initial mid-point for
the chain. Because F is greater than D,
phase 10 examines the high chain field of
the entry for D. This field is not zero
and, hence, the end of the chain has not
yet been reached. Phase 10 obtains the
entry (for E) at the location pointed to by
the nonzero chain field (of the entry for
D) and compares F to the variable in the
obtained entry. The variable F is greater
than the variable E. Therefore, phase 10
examines the high chain field of the entry
for E. This field is zero and the end of
the chain has been reached. Phase 10
places the entry for F into the next avail
able location in the information table and
records a pointer to that entry in the high
chain field of the entry for E. Since two
entries have now been made on the high side
of the current mid-point, the first vari
able on D's high chain becomes the new
mid-point.

Phase 10 carries out similar procedures
to link the entries for the variabl~s A and
B into the chain.

(If one of the comparisons made between
a variable to be entered into the dic
tionary and a variable in an entry already
in the dictionary results in a match, the
variable has previously been entered and is
not reentered.)

Figure 11 illustrates the manner in
which the entries for the variables are
chained after the entry for B has been
linked into the chain.

r---1
I I
I ~ I
I A B I
I ~I
I I
llst and 2nd I
!3rd mid- mid-point I
I points I
I 1
I I
~---~
!Note: High and low chains are maintained!
!for all entries. when the entry for F isl
!made, the mid-point shifts from D to E. I
!When the entry for A is made, the mid- I
!point shifts from E to D. I
l---J
Figure 11. Dictionary Chain

Statement Number Chain Operation

The statement number chain constructed
by phase 10 is linear; that is, each state
ment number ·entry (refer to "Statement
Number/Array Table") is pointed to by the
chain field of the previously constructed
statement number entry. The first state
ment number entry is pointed to by a point
er in the communication table.

To construct the statement number chain,
phase 10 places"the statement number entry
constructed for the first statement number
in the module into the next available loca
tion in the information table. It records
a pointer to that entry in the appropriate
field of the communication table. (When a
statement number entry is placed into the
information table, its chain field is
zero.) Phase 10 links all other statement
number entries into the chain by scanning
the previously constructed statement number
entries (in the order in which they are
chained) until the last entry is found.
The last entry is denoted by a zero chain
field. Phase 10 then places the new entry
at the next available location in the
information table and records a pointer to
that entry in the zero chain field of the
last entry in the chain. The new entry is
thereby linked into the chain and becomes
its last member. (Throughout the construc
tion of the statement number chain, phase
10 makes comparisons to insure that a sta
tement number is only entered once.)

Common Chain Operation

The chain constructed by phase 10 for
the common information appearing in the
source module is bi-linear; that is, phase
10 links together:

t. The individual common block name
entries (refer to "Common Table") that
it develops for the common block names
appearing in the module.

2. The dictionary entries (refer to "Dic
tionary") that it develops for the
variables appearing in a particular
common block. (The dictionary entry
for the first variable appearing in a
common block is also pointed to by the
common block name entry for the common
block containing the variable.)

To construct the common chain, phase 10
places the common block name entry that it
constructs for the first common block name
appearing in the module at the next avail
able location in the information table. It
records a pointer to this entry in the
appropriate field of the communication
table. Phase 10 then obtains the first
variable in the common block, constructs a
dictionary entry for it, places the entry
at the next available location in the
information table, and records a pointer to
that entry in the Pl and P2 field of the
common block name entry for the common
block containing the variable. Phase 10
obtains the next variable in the common
block, constructs a dictionary entry for
it, places the entry in the information
table, records a pointer to that entry in
the common chain field of the dictionary
entry constructed for the variable encoun
tered immediately prior to the variable
under consideration, (this entry location
is obtained from the P2 field of the common
block name entry) , and records a pointer to
the information table for the new common
variable in the P2 field. Thus, the P2
field of the common block name entry always
contains a pointer to the information table
entry for the last variable of a given com
mon block. Phase 10 obtains the next vari
able in the common block, etc.

When phase 10 encounters a second unique
common block name, it constructs a common
block name entry for it, places the entry
in the information table, and records a
pointer to that entry in the chain field of
the last corrmon block name entry, which is
found by scanning the chain of such entries
until a zero chain field is detected.
Phase 10 then links the dictionary entries
that it constructs for the variables
appearing in the second common block into
the chain in the previously described
manner.

If a common block name is repeated in
the source module a number of times, phase
10 constructs a common block name entry
only for the first appearance. However, it
does include as members of the common block
the variables associated with the second
and subsequent mentions of the common block
name. Phase 10 constructs a dictionary
entry for the first variable associated
with the second mention of the corrmon block
name and places it into the information
tal::le. It then records a pointeD to the

Appendix A: Tal::les 115

dictionary entry for the new variable in
the common chain field of the last variable
associated with the first mention of the
common block name. Phase 10 links the dic
tionary entry it constructs for the second
variable associated with the second mention
of a common block name to the dictionary
entry for the first variable associated
with the second mention of that name; etc.

If a third mention of a particular com
mon block name is encountered, phase 10
processes the associated variables in a
similar manner. It links the dictionary
entries constructed for these variables as
extensions to the dictionary entries devel
oped for the variables associated with the
second mention of the common block name.

Equivalence Chain Operation

The chain constructed by phase 10 for
the equivalence information appearing in
the source module is also bi-linear. Phase
10 links together:

1. The individual equivalence group
entries (ref er to "Common Table•) that
it constructs for the equivalence
groups appearing in the module.

2. The equivalence variable entries
(refer to "Common Table") that it con
structs for the variables appearing in
a particular equivalence group. (The
equivalence variable entry for the
first variable appearing in an equiva
lence group is pointed to by the
equivalence group entry for the group
containing the variable.)

The construction of the equivalence
chain by phase 10 parallels its construc
tion of the common chain. It links the
equivalence group entries in the same man
ner as it does common block name entries,
and links equivalence variable entries in
the same manner as the dictionary entries
for the variables in a common block. (The
location of the last EQUIVALENCE group
entry generated is recorded in the appro
priate field of the communication table;
the location of the last EQUIVALENCE vari
able entry generated is recorded locally in
the keyword subroutine which processes the
EQUIVALENCE statement) •

Literal Constant Chain Operation

The chain constructed by phase 10 for
the literal constant information appearing
in the source module is linear. The liter
al constants are chained in reverse order
of occurrence. Phase 10 records a pointer
to' the most recent literal constant entry
generated. As each new entry is made it is
chained to the previous entry and it in
turn is recorded as the most recent.

116

Branch Tatle Chain Operation

The phase 10 construction of the branch
· table chain parallels that of the statement

number chain. It records a pointer to the
first branch table entry (refer to "Branch
Table") it places into the inforroation
table·in the appropriate field of the com
munication table. For each other branch
table entry, phase 10 records a pointer to
its location in the information table in
the chain field of the previously developed
branch table entry. Unlike statement num
ber entry processing, no label comparison
is necessary. Scanning the chain is there
fore avoided by recording the location of
the last branch table entry in the P2 field
of the first Initial Branch Table entry.

INFORMATION TABLE COMPONENTS

The following text describes the con
tents of each component of the information
table and presents figures illustrating the
phase 10 formats of the entries of each
components. Modifications made to these
entries by subsequent phases of the compil
er ~re also illustrated in figure form.

Dictionary

The dictionary contains entries that
describe the variables and constants of the
source module. The information gathered
for each variable or constant is derived
from an analysis of the context in which
the variable or constant is used in the
source module.

VARIABLE ENTRY FORMAT: The format of the
dictionary entries constructed by phase 10
for the variables of the source module is
illustrated in Figure 12.

High Chain Field: The high chain field is
used to maintain linkage between the
various entries in the chain. It contains
either a pointer to an entry that collates
higher in the collating sequence or an
indicator (zero) , which indicates that
entries in the chain that collate higher
than itself have not yet been encountered.

Byte A Usaqe Field: This field is con-

1 tained in the first byte of the second
word. This field indicates a portion of
the characteristics of the variable for
which the dictionaty entry was created.
The byte A usage is divided into eight sub
fields, each of which is one bit long. The
bits are numbered from 0 through 7. Figure
13 indicates the function of each subfield
in the byte A usage field.

--~~~~~~~~4 bytes~~~~~~~~--

r-----------T-----------------------------1
I !High chain field I
t-----------f-----------T-----------------1
I Byte A I Byte B I I
!usage fieldlusage fieldlDIS field I
t-----------+-----------i-----------------1
I !Low chain field I
t-----------i-----------T-----------------1
!Mode field !Type field I
t-----------T-----------i-----------------1
!Used by I I
I STALL- I I
IIEKGST IP1 field I
t-----------i-----------------------------~
INot used I
t-----------T-----------------------------1
ISF field !Common chain field I
t-----------i-----------------------------1
I Name field I
t----------------------~-----------------~
I Name field I l ___ J

Figure 12. Format of Dictionary Entry for
Variable

r------------T----------------------------1
I Subfield I Function I
t------------+----------------------------1
I Bit 0 'on' I variable is structured I
t------------+----------------------------1
I Bit 1 'on' I symbol referred to I
t------------+----------------------------~
I Bit 2 'on' I variable is in common I
t------------+----------------------------1
I Bit 3 'on' I not used I
t------------+----------------------------1
I Bit 4 'on' I variable is equated I
t------------+----------------------------1
I Bit 5 'on' I variable has appeared in anl
I I equivalence group that has I
I I been processed by STALL- I
I I IEKGST (used by phase 15) I
t------------+----------------------------~
I Bit 6 'on' I variable is an external I
I I function name I
t------------+----------------------------~
I Bit 7 'on' I not used I l ____________ i ____________________________ J

• Figure 13. Function of Each Subfield in
the Byte A Usage Field of a
Dictionary Entry for a Variable
or Constant

Byte B Usage Field: The byte B usage field
is contained in the second byte of the
second word. This field indicates addi
tional characteristics of the variable
entered into the dictionary. It is divided
into eight subfields, each of which is one
bit long. The bits are numbered from 0
through 7. Figure 14 illustrates the func
tion of each subfield in the byte B usage
field.

r------------T----------------------------1
I Subfield I Function I
t------------+----------------------------~
I Bit 0 'on' I variable is "call by value"I
I I parameter I
t------------+----------------------------1
I Bit 1 'on' I variable is "call by name" I
I I parameter I
t------------+----------------------------~
I Bit 2 'on' I variable is used as an I
I I argument I
t------------+----------------------------~
I Bit 3 'on' I not used I
t------------+----------------------------1
I Bit 4 'on' I variable has appeared in a I
I I previous DATA statement I
I I (phase 15) I
t------------+----------------------------~
I Bit 5 'on' I variable is used as a I
I I subscript I
t------------+----------------------------~
I Bit 6 'on' I variable is in common, or I
I I in an equivalence group andl
I I has been assigned a rela- I
I I ti ve address (phase 1 5) I
t------------+----------------------------~
I Bit 7 'on' I variable appears in DATA I
I I statement I l------------i ____________________________ J

•Figure 14. Function of Each Subfield in
the Byte B Usage Field of a
Dictionary Entry for a Variable

DIS Field: The DIS field contains either
the displacement of a structured variable
from the head of its structure group or the
number of dummy arguments for a statement
function name. If the variable is neither
structured nor a statement function name,
this field contains a count of the number
of times the variable appears in the source
program.

Low Chain Field: The low chain field is
used to maintain linkage between the
various entries in the chain. It contains
either a pointer to an entry that collates
lower in the collating sequence or an indi
cator (zero) , which indicates that entries
in the chain that collate lower than itself
have not yet been encountered.

Mode/Type Field: The mode/type field is
divided into two subfields, each two bytes
long. The first two bytes (mode subfield)
are used to indicate the mode of the vari
able (e.g., integer, real); the second two
bytes (type subfield) are used to indicate
the type of the variable (e.g., array,
external function) • Both the mode and type
are numeric quantities and correspond to
the values stated in the mode and type
tables (see Tables 20 and 21).

P1 Field: The P1 field contains either a
pointer to the dimension information in the
statement number/array table if the entry
is for an array (i.e., a dimensioned vari-

Appendix A: Tables 117

able) , or a pointer to the text generated
for the statement function (SF) if the
entry is for an SF name. If the entry is
neither for the name of an array nor the
name of a statement function, the field is
zero.

• Table 2U. Operand Modes
r---------------------T-------------------1
I Mode of Operand I Internal I
I I Representation I
I I (in hexadecirr.al) I
t---------------------+-------------------~
I Logical*1 2
I Logicdl*4 3
I Integer*2 4
I Integer 5
I .R.eal*<J 6
I Real•4 7
I Complex*16 8
I Complex*B 9
I Literal A
I Statement number B
I ilexadecimal C
I Name~ist D
I Repeat constant F
L-----------~---------i-------------------J

• Table 21. Operand Types
r---------------------T-------------------1
I Type of Operand I Internal I
I I Representation I
I I (in hexadecirral) I
t---------------------+-------------------~
!Scalar 0
!Dummy scalar 1
Array 2
Dummy array 3
External function 4
Constant 5
Statement function 6
Negative scalar 8
Negative dummy scalar 9
Negative array A
Negative dummy array B
Negative external C

function
Negative constant D
Negative statement E
function
QXX temporary F
(created by text

I optimization) I
L---------------------i-------------------J

SF Field: The SF field contains STORE
FETCH information for the variatle. If the
variable is stored into, bit 0=1; if the
variable if fetched, bit 1=1.

Common Chain Field: This field is used to
maintain linkages between the variables in
a common block. It contains a pointer to
the dictionary entry for the next variable
in the common block. (If the variable for
which a dictionary entry is constructed is
not in common, this field is not used.}

118

Name Fieli: This field contains the name
of the variable (right-justified) for which
the dictionary entry was created.

MODIFICATIONS TO DICTIONARY ENTRIES FOR
VARIABLES: During compilation, certain
fields of the dictionary entries for
variables may be modified. The following
examples illustrate the formats of dic
tionary entries for variables at various

I stages of phase 10 and phase 15 processing.
Only changes are indicated; * stands for
unchanged.

Dictionary Entry for Variable After Pre
paration for XREF Processing: The format
of a dictionary entry for a variable after
CSORN-IEKCCR processing is illustrated
Figure 15.

--~~~~~~~~4 bytes
r----------T------------------------------1
I I* I
t----------f---------T--------------------~
I* I* I* I
t----------+---------i--------------------~
I I* I
t----------i---------T--------------------~
I* I* I
t----------T---------i--------------------~
I* I* I
t----------i------------------------------~
I* I
t----------T------------------------------~
I* I* I
t----------i---------T--------------------~
IXREF buffer pointer-I* I
llast entry I I
t--------------------i--------------------~
I* I
t--------------------T--------------------~
IXREF buffer count IXREF buffer pointer-I
I lfirst entry I
L--------------------i--------------------J

•Figure 15. Format of Dictionary Entry for
Variable After CSORN-IEKCCR
Processing for XREF

XREF Buffer Pointer - Last Entry: This
field contains a pointer to the rrost recent
XREF buffer entry for the symbol.

XREF Buffer Count: This field contains a
count of the number of times the XREF buff
er has been written out on SYSUT2 at the
time the time this dictionary entry is
modified ty CSCRN-IEKCCR.

XREF Buffer Pointer - First Entry: This
field contains a pointer to the first XREF
l:;uffer entry for this symbol.

Dictionary Entry for Variable After Dic
tionary Rechaining: The forrrat of a dic
tionary entry for a variable after the dic
tionary has been rechained during STALL
IEKGST is illustrated in Figure 16.

----------4 bytes----------
r----------T------------------------------1
I I New chain field I
r----------+----------T-------------------~
I* I* I* I
r----------+----------i-------------------~
I I* I
r----------i----------T-------------------~
I* I* I
r----------T----------i-------------------~
I* I* I
r----------i------------------------------~
I* I
r---1
I* I
r---~
I* I
r---~
I* I
L---J

• Figure 16. Format of Dictionary Entry for
Variable After Hechaining

Dictionary ~ntry for Variable After Coor
dinate Assignment: The format of a uic
tionary entry for a variable after coordin
ate assignment by STALL-IEKGST is illus
trated in Figure 17.

----------- 4 bytes----------
r----------T------------------------------,
I I* I
r----------f----------T-------------------~
I* I* I* I
r----------+----------i-------------------~
I I* I
r----------i----------T-------------------1
I* I* I
r----------T----------i-------------------~
I Coordinate I* I
I nuElber for I I
jvariable I I
r----------i------------------------------~
I* I
r---1
I* I
r---~
I* I
r---1
I* I
L---J

• Figure 17. Format of Dictionary Entry for
Variable After Coordinate
Assignrrent

Dictionary Entry for Variable After Common
Block Processing: The format of a dic
tionary entry for a variable after corrmon
block processing is illustrated in Figure
18.

Dictionary Entry for Variable After Rela
tive Address Assignment: The format of a
dictionary entry for a variable after rela
tive address assignment is illustrated in
F'igure 19.

---------- 4 bytes ----------.
r----------T------------------------------1
I I New chain field I
r----------+----------T-------------------~
I* I* IDisplacerrent from I
I I !start of common I
I I !block I
r----------+----------i-------------------~
I I* I
r----------i----------T-------------------~
I* I* I
r----------T----------i-------------------~
I* I* I
r----------i------------------------------~
I* I
r---~
I* I
r---~
I* I
r---~
I* I
L---J

•Figure 18. Format of Dictionary Entry for
Variable After Corrrron Block
Processing

+---------- 4 bytes----------+
r----------T------------------------------1
I I New chain field I
t----------f----------T-------------------~
I* I* !Displacement from I
I I jstart of common I
I I !block I
r----------+----------i-------------------~
I !Pointer to entry containing I
I I rointer to ad(lress constant I
I !for variable I
t----------i----------T-------------------~
I* I* I
t----------T----------i-------------------~
I* I* I
r----------i------------------------------~
I* I
r---~
I* I
t---~
I* I
r---~
I* I
L---J

•Figure 19. Format of Dictionary Entry for
a Variable After Relative
Address Assignment

CONSTANT ENTRY FORMAT: The format of the
dictionary entries constructed by phase 10
for the constants of the source module is
illustrated in Figure 20.

The format of a dictionary entry for a
constant is the same as for a variable.
Tne changes the entry undergoes during pro
cessing are the same except that bytes 3
and 4 of word two contain a displacement
from an associated address constant and a
constant does not undergo XREF processing.
Also, for constants referred to implicitly,

Appendix A: Tables 119

PHAZ15 sets a referenced bit on. {bit in
byte A usage field), see Figure 13.

._~~~~~~~~4 bytes~~~~~~~~-.

r-----------T-----------------------------1
I I Chain field I

t-----------f-----------T-----------------1
!Byte A !Byte B !Used by phase 15 I
!Usage fieldjUsage fieldl I
t-----------+-----------i-----------------1
I I I
t-----------i-----------T-----------------1
I Mode field !Type field I
t-----------T-----------i-----------------1
!Used by I zero I
I STALL- I I
I IEKGST I I
t-----------i-----------------------------1
I Constant field I
t---1
I Constant field I
t---~
I Constant field I
t---1
I Constant field I
L---J

• Figure 20. Format of Dictionary Entry for
Constant

Statement Number/Array Table

The statement number/ array table con
tains statement number entries, which
describe the statement numbers of the
source module, and dimension entries~ which
describe the arrays of the source module.

STA'l'EMENT NUMBER ENTRY FORMAT: The format
of the statement number entries constructed
by phase 10 is illustrated in Figure 21.

.-~~~~~~~~4 bytes~~~~~~~~-.

r--------T--------------------------------1
I I Chain Field I

t--------f--------T----------T------------1
I Byte A I Byte B I Used by I Used by I
I Usage I Usage I phase 20 I phase 20 I

t--------+--------i----------i------------1
I I Pointer field I
t--------i--------------------------------1
I Image field I
t----------------~------------------------1
I I
t---------------------------------~-------1
I Used by phase 15 I
t---1
I Used by phase 15 I
L---J

•Figure 21. Format of a Statement Number
Entry

Chain Field: The chain field is used to
maintain linkage between the various
entries in the chain. It contains either a
pointer to the next statement number entry
in the chain or an indicator {zero) , which
indicates the end of the statement number
chain.

120

Byte A Usage Field: This field is con
tained in the first byte of the second
word. This field indicates a portion of
the characteristics of the statement number
for which the entry was created. The byte
A usage field is divided into eight sub
fields, each of which is one bit long. The
bits are numbered from 0 through 7. Figure
22 indicates the function of each subfield
of this field.

r------------T----------------------------1
I Subfield I Function I
t------------+---------~-----------------1
I Bit 0 'on' I statement number defined I

t------------+----------------------------1
I Bit 1 'on' I statement number referred I
I I to I

t------------+----------------------------1
I Bit 2 'on' I referred to in an ASSIGN I
I I statement I
~------------+----------------------------1
I Bit 3 I not used I
~------------+---~-----------------------1
I Bit 4 'on' I statement number of a FOR- I
I I MAT statement I
~------------+----------------------------1
I Bit 5 'on' I statement number of a GO I
I I TO, PAUSE, RETURN, STOP, orl
I I DO statement I
~------------+----------------------------1
I Bit 6 'on' I statement number used as anl
I I argument I
~------------+----------------------------1
I Bit 7 'on' I statement number is the I
I I object of a branch I
L------------i----------------------------J
Figure 22. Function of Each Subfield in

the Byte A Usage Field of a
Statement Number Entry

Byte B Usage Field: This field is con-

1 tained in the second byte of the second
word. The byte B usage field indicates
additional characteristics of the statement
number for which the entry was constructed.
The byte B usage field is divided into
eight subfields, each of which is one bit
long. The bits are numbered 0 through 7.
Figure 23 indicates the function of each
subfield in the byte B usage field.

Pointer Field: This field contains a
pointer to the text entry constructed by
phase 10 for the associated statement
number.

Image Field: This field contains the
binary representation of the statement num
ber for which the entry was created.

MODIFICATIONS TO STATEMENT NUMBER ENTRIES:
During the processing of subroutine LABTLU
IEKCLT and STALL-IEKGST in phase 10, phases
15, 20, and 25, each statement number entry
created by phase 10 is updated with infor
mation that describes the text block asso-

1 ciated with the statement number. During

phase 10, if the XREF option is selected,
LABTLU-IEKCLT makes changes in statement
number dictionary entries for later use by
XREF-IEKXRF. (See Figure 24.)

r------------T----------------------------1
I Subfield I Function I
t------------+----------------------------~
I Bit 0 'on' I statement number is within I
I I a DO loop and is trans- I
I I ferred to from outside the I
I I range of the DO loop I
r------------+----------------------------~
I Bit 1 'on' I compiler generated state- I
I I ment number I
t------------+----------------------------~
I Bits 2-5 I not used I
t------------+----------------------------~
I Bit 6 'on' I statement number appears inl
I I END or ERR parameter of I
I I READ statement I
t------------+----------------------------~
I Bit 7 'on' I statement number is used inl
I I a computed GO TO staterrent I
L------------i----------------------------J
Figure 23. Function of Each Subfield in

the Byte B Usage Field of a
Statement Number Entry

--~~~~~~~~4 bytes~~~~~~~~-.

r---------T-------------------------------1
I I * I
t---------f---------T---------T-----------~
I* I * I* I* I
t---------+---------i---------i-----------~
I I * I
r---------i-------------------------------~
I* I
t---~
IXREF ouffer pointer - last entry I
t-------------------T---------------------~
IXREF buffer count IXREF buffer pointer- I
I !first entry I
t-------------------i---------------------~
!Definition field I
r---~
I* I
r---~
!Sequence chain field I
L------------------~----------------------J

• Figure 24. Format of a Dictionary Entry
for Statement Number After
LABTLU-IEKCLT processing for
XREF

XREF Buffer Pointer - Last Entry: This
field contains a pointer to the most recent
XREF buffer entry for this statement number
unless this dictionary entry is a defini
tion of a statement number. If this dic
tionary entry is a definition of a state
ment number, this field is not used.

XREF Buffer Count:
count of the number
er has been written
time this dictionary
LABTLU-IEKCLT.

This field contains a
of times the XREF buff
out on SYSUT2 at the
entry is modified by

XREF Buffer Pointer - First Entry: This
field contains a pointer to the first XREF
buffer entry for this statement number.

Definition Field: This field contains an
ISN if this statement number dictionary
entry corresponds to a definition of a
statement number. The field contains -1 if
the statement number has been previously
defined.

Sequence Chain Field: This field chains
the statement numbers in numerical order.

Figure 25 illustrates the format of a
statement number entry after the processing
of SiALL-IEKGST and phases 15, 20, and 25.
Only changes are indicated; * stands for
unchanged.

-..~~~~~~~~4 bytes~~~~~~~~-+

r----------T------------------------------1
I !New Chain field I
r----------f---------T----------T---------~
I* I * I Block I Loop I
I I I Status !number I
I I I Field I I
r----------+---------i----------i---------~
I !Address constant pointer fieldl
t----------i------------------------------~
I Image field I
t----------T------------------------------~
!Loop !Text pointer field I
I number I I
!save area I I
r----------i------------------------------~
!Forward connection field (ILEAD) I
r---~
!Backward connection field (JLEAD) I
r---~
!Block size field (BSZ) I
L---J

•Figure 25. Format of Statement Number
Entry After the Processing of
Phases 15, 20, and 25

New Chain Field: The new chain field con
tains a pointer to the entry for the state
ment number that is defined in the source
module irrmediately after the statement
number for which the statement number entry
under consideration was constructed.
(STALL-IEKGST modifies the phase 10 chain
pointer when it rechains the statement
number entries to correspond to the order
in which statement numbers are defined in
the s"ource rrodule.) This field is not
modified by subsequent phases.

Block Status Field: The block status field
indicates the status of the text block
associated with the statement number entry
under consideration. The block status
field is divided into eight subfields, each
of which is o~e bit long. The bits are
numbered 0 through ?. Figure 26 indicates
the function of each subfield in the block
status field.

Appendix A: Tables 121

r-------------T---------------------------1
I Subfield I Function I

t-------------+---------------------------1
I Bit 0 I Used for various reasons I
I I by the routines that I
I I explore connections (e.g.,!
I I the associated block has I

I I previously been considered!
I Bit 1 I in the search for the back!
I I dominator of the block) I
t-------------+---------------------------1
I Bit 2 'on' I the associated block exits I
I I from a loop I
t-------------+---------------------------1
I Bit 3 'on' I the associated block is a I
I I fork (i.e., it has two or I
I I more forward connections) I

t-------------+---------------------------1
I Bit 4 I same as bits 0 and 1 I

t-------------+---------------------------1
I Bit 5 'on' I the associated block is inl
I I the current loop I

t-------------+---------------------------1
I Bit 6 'on' I the associated block has I

I I been completely processed I

I I along the OPT=2 path I

t-------------+---------------------------1
I Bit 7 'on' I the associated block is anl
I I entry block I

L-------------i---------------------------J
• Figure 26. Function of Each Subfield in

the Block Status Field

Loop Number Field: The loop number field
contains the number of the loop to which
the text block (associated with the state
ment number entry under consideration)
belongs. This field is set up and used by
phase 20. Just before the loop number is
assigned, this field contains a depth
number.

Back Dominator Field: The back dominator
field contains a pointer to the statement
number entry associated with the back
dominator of the text block associated with
the statement number entry under considera
tion. This field, set up and used by phase
20, occupies the address constant pointer
field.

Address Constant Pointer Field:
address constant pointer field
25 processin~ contains either:

The
(after phase

• An indication of a reserved register
and a displacement, if branching opti
mization is being implemented and if
the text block (associated with the
statement number entry under considera
tion) can be branched to via an RX
format branch instruction (ref er to the
phase 20, "Branching Optimization").

• A pointer to the address constant
reserved for the statement number
(refer to phase 25, "ADCON Table Entry

Reservation") •

122

Text Pointer Field: The text pointer field
contains a pointer to the phase 15 text
entry for the statement number with which
the statement number entry under considera
tion is associated. This field is not used
by phase 10; it is filled in by phase 15,
and is unchanged by subsequent phases.

Forward Connection Field (ILEAD) : The for
ward connection field contains a pointer to
the initial RMAJOR entry fer the blocks to
which the text block associated with the
statement number entry under consideration
connects. This field is set up by phase 15
and used by phase 20. A relative address
of the block is stored in this field by
phase 20.

Backward Connection Field (JLEAD) : The
backward connection field contains a point
er to the initial CMAJOR entry for the
blocks that connect to the text block asso
ciated with the statement number entry
under consideration. This field is set up
by phase 15 and used by phase 20. During
phase 25 a relative location is stored in
the field.

DIMENSION ENTRY FORMAT: The format of the
dimension entries constructed by phase 10
is illustrated in Figure 27.

+----------4 bytes----------+
r---1
I Array size field I
r-------------------T---------------------1
!Dimension number !Element length field I
!field I I
t----------T--------i---------------------1
I !First subscript pointer field I
t----------+------------------------------1
I !Second subscript pointer field!
r----------+------------------------------1
I !Third subscript pointer field I
t----------+------------------------------1
I !Fourth subscript pointer field!
r----------+------------------------------1
I !Fifth subscript pointer field I
t----------+------------------------------1
I !Sixth subscript pointer field I
t----------+------------------------------~
I !Used only for variable I
I I dimensions I
L----------i------------------------------J

•Figure 27. Format of Dimension Entry

Array Size Field: The array size field
contains either the total size of the asso
ciated array or zero, if the array has
variable dimensions.

Dimension Number Field: The dimension
number field contains the number of dimen
sions (1 through 7) of the associated
array.

Element Length Field: The element length
field contains the length of each element
(first dimension factor) in the associated
array.

First Subscript Pointer Field: The field
contains either a pointer to the dictionary
entry for the second dimension factor,
which has a value of D1*L, (Refer to
"Appendix F: Address Computation for Array
Elements") or a pointer to the dictionary
entry fer the first subscript parameter
used to dimension the associated array, if
that array has variable dimensions.

Second Subscript Pointer Field: This field
contains either a pointer to the dictionary
entry for the third dimension factor, which
has a value of D1*D2*L, or a pointer to the
second subscript parameter used to dimen
sion the associated array, if that array
has variable dimensions. This field is not
used if the associated array has a single
dimension.·

Third Subscript Pointer Field: This field
contains either a pointer to the dictionary
entry for the fourth dimension factor,
which has a value of D1*D2*D3*L, or a
pointer to the third subscript parameter
used to dimension the associated array, if
tha~ array has variable dimensions. This
field is not used if the associated array
has fewer than three dimensions.

Fourth Subscript Pointer Field: This field
contains either a pointer to the dictionary
entry for the fifth dimension factor, which
has a value of D1*D2*D3*D4*L, or a pointer
to the dictionary entry for the fourth sub
script parameter used to dimension the
associated array, if that array has vari
able dimensions. This field is not used if
the associated array has fewer than four
dimensions.

Fifth Subscript Pointer Field: This field
contains either a pointer to the dictionary
entry for the sixth dimension factor, which
has a value of D1*D2*D3*D4*D5*L, or a
pointer to the dictionary entry for the
fifth subscript parameter used to dimension
the associated array, if that array has
variable dimensions. This field is not
used if the associated array has fewer than
five dimensions.

Sixth Subscript Pointer Field: This field
contains either a pointer to the dictionary
entry for the seventh dimension factor,
which has a value of D1*D2*D3*D4*D5*D6*L,
or a pointer to the dictionary entry for
the sixth subscript parameter used to
dimension the associated array, if that
array has variable dimensions. This field
is not used if the associated array has
fewer than six dimensions.

Pointer To Last Subscript Parameter: This
field contains a pointer to the dictionary
entry for the seventh subscript parameter
used to dimension the associated array, if
that array has variable dimensions. This
field is not used if the associated array
has fewer than seven dimensions.

Common Table

The common table contains: 1) common
block name entries, which describe common
blocks, 2) equivalence group entries, which
describe equivalence groups, and 3) equiva
lence variable entries, which describe
equivalence variables.

COMMON BLOCK NAME ENTRY FORMAT: The format
of the common block name entries con
structed by phase 10 is illustrated in
Figure 28.

Chain Field: The chain field is used to
maintain linkage between the various common
block name entries. It contains either a
pointer to the next common block name entry
or an indicator (zero) , which indicates
that additional common blocks have not yet
been encountered.

P1 Field: The P1 field contains a pointer
to the dictionary entry for the first vari
able in this common block.

P2 Field: The P2 field contains a pointer
to the dictionary entry for the last vari
able in this common block.

Name Field: The name field contains the
name (right-justified) of the common block
for which this common block name entry was
constructed.

Character Number Field: The character
number field contains the number of charac
ters in the common block name.

ISN Field: The ISN field contains the ISN
assigned to the statement in which this
common block name first occurs.

----------- 4 bytes ---------•
r----------T------------------------------1
I !Chain field I
~----------+------------------------------~
I IP1 field I
~----------+-----------------------------~
I IP2 field I
~----------i------------------------------~
I Name field I
~---~
I Name field I
~--------------------T--------------------~
!Character Number IISN field 1·
!field I I
L--------------------i--------------------J

•Figure 28. Format of a Common Block Name
Entry

Appendix A: Tables 123

MODIFICATIONS TO COMMON BLOCK NAME ENTRIES:
During compilation, certain fields of com
mon block name entries may be modified.
Figure 29 illustrates the format of a com
mon block name entry after common block
processing by STALL-IEKGST. Only changes
are indicated; * stands for unchanged.

--------- 4 bytes---------
r----------T------------------------------1
I I* I
r----------+------------------------------~

I I* I
r----------+------------------------------~
I !Total size of common block I
r----------~------------------------------~

I* I
r---~

I* I
r--------------------T--------------------~

I* I* I
L--------------------i--------------------J

• Figure 29. Format of Common Block Name
Entry After Common Block
Processing

EQUIVALENCE GROUP ENTRY FORMAT: The format
of the equivalence group entries con
structed by phase 10 is illustrated in
Figure 30.

Indicator Field: The indicator field is
nonzero if a variable in this group is sub
scripted and its dimension statement has
not been processed.

Chain Field: The chain field is used to
maintain linkage between the various equiv
alence groups. It contains a pointer to
the next equivalence group entry.

+--------~4 bytes----------
r----------T------------------------------1
!Indicator I Chain field I
!field I I
r----------~------------------------------~
I P1 field I
r---~
I Used by phase 15 I
r---i
I ISN field I
L---J

• Figure 30. Format of an Equivalence Group
Entry

P1 Field: The P1 field contains a pointer
to the equivalence variable entry for the
first variable in the equivalence group or
for the first variable in the common block.

ISN Field: The ISN field contains the ISN
assigned to the statement in which any name
of the LQUIVALENCE group first occurs.

124

MODIFICATIONS TO EQUIVALENCE GRCUP ENTRIES:
During compilation, certain fields of __ _
equivalence group entries may be modified.
Figure 31 illustrates the format of an
equivalence group entry after equivalence
processing by STALL-IEKGST. Only changes
are indicated; * stands for unchanged.

---------4 bytes----------
r----------T------------------------------1
I* I I
r----------i------------------------------~

I* I
r---~
!Pointer to the "head" of the equivalence I
jgroup I
r----------------------~-----------------~

I* I
L---J

•Figure 31. Format of Equivalence Group
Entry After Equivalence
Processing

.fil:!UIVALENCE VARIABLE ENTRY FORMAT: The
format of the equivalence variable entries
constructed by phase 10 is illustrated in
Figure 32.

Indicator Field: The indicator field is
nonzero if the equivalence variable is sub
scripted prior to being dimensioned.

P1 Field: The Pl field contains a pointer
to the dictionary entry for this equiva
lence variable.

Number of Subscripts Field: The number of
subscripts field contains the total number
of subscripts used by a variable being
equivalenced, with subscripts, prior to
being dimensioned.

+--------~4 bytes---------
r----------T------------------------------1
I Indicator I P1 field I
I field I I
r----------+------------------------------~
!Number of I Chain field I
jsubscriptsj I
r----------i------------------------------~
I Off set field I
r---~
I Subscript field I

~===~ I Subscript field I
L---J

• Figure 32. Format of Equivalence Variable
Entry

Chain Field: The chain field is used to
maintain linkage between the various
variables in the equivalence group. It
contains a pointer to the equivalence vari
able entry for the next variable in the
equivalence group.

Offset Field: The offset field contains
the displacement of this variable from the
first element in the equivalence group.

Subscript Field: The subscript field(s)
contains the actual subscript(s) specified
for a variable being equivalenced, with
subscripts, prior to being dimensioned.

MODIFICATIONS TO EQUIVALENCE VARIABLE
ENTRIES: During compilation, certain
fields of equivalence variable entries may
be modified. Figure 33 illustrates the
format of an equivalence variable entry
after equivalence processing by STALL
IEKGST. Only changes are indicated; *
stands for unchanged.

...-~~~~~~~~4 bytes~~~~~~~~-.

r----------T------------------------------1
I* I* I
~----------+------------------------------~
I I* I
~----------i------------------------------~
!Displacement of variable from group head I
~---~
I* I
~---~
I* I
L---J

• Figure 33. Format of Equivalence Variable
Entry After Equivalence
Processing

Literal Table

The literal table contains literal con
stant entries, which describe literal con
stants used as arguments in CALL state
ments, and literal data entries, which
describe the literal data appearing in DATA
statements. (Entries for literal data
appearing in DATA statements are not
chained. They are pointed to from data
text.)

LITERAL CONSTANT ENTRY FORMAT: The format
of the literal constant entries constructed
by phase 10 is illustrated in Figure 34.

...-~~~~~~~~4 bytes~~~~~~~~-.

r-------------------.~--------------------,

f Chain field I
~----------T---------T--------------------~
!Length 1255 !Used by phase 15 I
I field I I I
~----------i _________ i ____________________ ~
I Literal constant field I
L---J

• Figure 34. Format of Literal Constant
Entry

Chain Field: The chain field is used to
maintain linkage between the various liter
al constant entries. It contains a pointer
to the previous literal constant entry.

Length Field: The length field contains
the length (in bytes) of the literal
constant.

Literal Constant Field: The literal con
stant field contains the actual literal
constant for which the entry was con
structed. The field ranges from 1 to 255
bytes (1 character/byte, left-justified)
depending on the size of the literal
constant.

MODIFICATIONS TO LITERAL CONSTANT ENTRIES:
During compilation, certain fields of lit
eral constant entries may be modified.
Figure 35 illustrates the format of a lit
eral constant entry after relative address
assignment by CORAL, the second segment of
phase 15. Only changes are indicated; *
stands for unchanged.

...-~~~~~~~~4 bytes~~~~~~~~-+

r---1
I* I
~----------T---------T--------------------~
I* I !Displacement from I
I I !associated address I
I I !constant I
~----------~---------~--------------------~
I* I
L---J

•Figure 35. Format cf Literal Constant
Entry After Relative Address
Assignment

LITERAL DATA ENTRY FORMAT: The format of
the literal data entries constructed by
phase 10 is illustrated in Figure 36.

r---1
I Length field (1 byte) I
~---~
I Literal data field (1-255 bytes) I
L---J

•Figure 36. Format of Literal Data Entry

Length Field: The length field contains
the length (in bytes) of the literal data
for which the entry was constructed.

Literal Data Field: The literal data field
contains the actual literal data. The

I field ranges from 1 to 255 bytes (1
character/byte, left-justified) depending
on the size of the literal data.

Branch Table

The branch table contains initial branch
table entries and standard branch table
entries. An initial branch table entry is
constructed by phase 10 as it encounters
each computed GO TO statement of the source
module. Standard branch table entries are
constructed by phase 10 for each statement
number appearing in the computed GO TO
statement.

Appendix A: Tables 125

INITIAL BRANCH TABLE ENTRY FORMAT: The
format of the initial branch table entries
constructed by phase 10 is illustrated in
Figure 37.

--------- 4 bytes---------
r----------T------------------------------,
!Indicator !Chain field I
I field I I
~----------i------------------------------~
I P1 field I
~---~
I Used by phase 25 I
~----------------------~--------~--------~
I Used by phase 25 I
L-------------------------------------~--J

• Figure 37. Format of Initial Branch Table
Entry

Indicator Field: The indicator field is
nonzero for an initial branch table entry.
This indicates that the entry is for
compiler-generated statement number for the
"fall-through" statement. (The fall
through statement is executed if the value
of the control variable is larger than the
number of statement numbers in the computed
GO TO statement.)

Chain Field: The chain field is used to
maintain linkage between the various branch
table entries. It contains a pointer to
the next branch table entry.

P1 Field: The P1 field contains a pointer
to the statement number/array table entry
for the compiler-generated statement number
for the fall-through statement.

MODIFICATIONS TO INITIAL BRANCH TABLE
ENTRIES: During compilation certain fields
of ihitial branch table entries may be
modified. Figure 38 illustrates the format
of an initial branch table entry after the
processing of phase 25 is complete. Only
changes are indicated; * stands for
unchanged.

--------- 4 bytes---------
r----------T------------------------------1
I* I* I
~----------i------------------------------~
I* I
~---~
!Relative address of statement associated I
jwith fall-through statement number I
~---~
!Pointer to address constant reserved for I
!fall-through statement number I
l ___ J

• Figure 38. Format of Initial Branch Table
Entry After Phase 25
Processing

STANDARD BRANCH TABLE ENTRY FORMAT: The
format of the standard branch table entries
constructed by phase 10 is the same as the
format for initial branch table entries.

126

Indicator Field: This field is zero for
standard branch table entries.

Chain Field: This field is used to main
tain linkage between the various branch
table entries. It contains a pointer to
the next branch table entry.

P1 Field: The P1 field contains a pointer
to the statement number/array table entry
for the statement number (appearing in a
computed GO TO statement) for which the
standard branch table entry was
constructed.

MODIFICATIONS TO STANDARD BRANCH TABLE
ENTRIES: During compilation, certain
fields of standard branch table entries may
be modified. Figure 39 illustrates the
format of a standard branch table entry
after the processing of phase 25 is com
plete. Only changes are indicated; *
stands for unchanged.

..._-------~4 bytes---------+
r----------T------------------------------1
I* I* I
~----------i------------------------------~
I* I
~---~
!Relative address of statement associated I
jwith this statement number I
L---J

•Figure 3 9. Format of Standard Branch Table
Entry After Phase 25
Processing

SUBPROGRAM TABLE

The subprogram table (IEKLFT) contains
entries for the IBM supplied subprograms
and in-line routines. The subprograITs
reside on,the FORTRAN system library (SYS1.
FORTLIB) , while the in-line routines are
expanded at compile time. The subprogram

I table is used by phase 15 to determine the
validity of the arguments to the
subprogram.

Each entry in the subprogram table

I Table 22) contains two fields: index
(2 bytes) and function name field (6
bytes) •

(see
field

Function Name Field: This field contains
the names of all library and in-line func
tions. It is searched in ascending order
beginning with field 1 and then with field
2. Field 1 contains the four low-order
characters of the name; field two contains
the two high-order characters of the name.

• Table 22. Subprogram Table - IEKLF'I'
(2,128)

I 2 bytes 6 bytes

Field 1 Field 2
Index

Function Name
I
I

Index Field: This field contains a pointer
to entries in the following tables:

FUNTB1 (128) - This table contains 128 1-
byte entries pointing back to
the subprograru table.

FUNT B2 (128) - 'I'hi s table contains 12 8 1-
byte entries which give the
mode of the arguments for all
library and in-line
functions.

FUNTB3 (128) - 'I'his table contains 60 1-byte
entries which give the mode
of the result for all in-line
functions. The first 68
bytes of the table are not
used.

FUNTB4(68) - This table contains 68 4-byte
locations reserved for dic
tionary pointers to library
routines.

TEXT OPTIMIZATION BIT TABLES

There are nine major bit tables used
extensively throughout text optimization.
These tables (each four words or 128 bits
in length) contain bits that are preset.
Only the first 86 bit positions in each
table are meaningful and each of these is
associated with a particular text entry

operator. 'Ihe settings (on or off) given
to these nits indicate either the validity
of operand positions in a text entry with a
particular operator or the candidacy of a
text entry with a particular operator for
text optimization procedures.

Three of these tables, MVW, MVU, and MVV
are tested by subroutine KORAN-IEKQKO and
indicate the validity of the operand posi
tions in a text entry with a given opera
tor. The MVW table indicates the validity
of the operand 1 position; the MVU table
indicates the validity of the operand 2
position; and the MVV table indicates the
validity of the operand 3 position. For
example, if the bit in MVW that corresponds
to a particular operator is on, then the
operand 1 position of a text entry having
that operator contains a valid or actual
operand. If the bit is off, the operand 1
position of the text entry does not contain
an actual operand. (In the latter case,
the operand 1 position may still contain
information that is pertinent to the text
entry; however, it does not contain an
actual operand.)

The remaining six tables, MBM, MSGM,
MGM, MXM, MSM, and MBR are also tested by
subroutine KORAN-IEKQKO and indicate the
candidacy of a text entry with a particular
operator for text optimization procedures.
The MBM table indicates whether or not text
entries with a particular operator are to
be considered for backward movement; the
MXM table indicates whether or not text
entries with a particular operator are to
be considered for corrmon expression elimi
nation; the MSM table indicates whether or
not text entries with a particular operator
are to be considered for strength reduc
tion; and the MBR table indicates whether
or not the operator is a branch.

The text optimization bit tables are
illustrated in Table 23. In this table,
the operator associated with each bit posi
tion in the bit tables is identified. The
bits settings for each operator as they
appear in the bit tables is also shown. An
x signifies that the bit is on; a blank
signifies that the bit is off.

Appendix A: 'Iables 127

• Table 23. Text Optimization Bit Tables

Bit Tables Bit Tables

Bit Operator Bit Operator

MVW MVU MW MSGM MBM MXM MSM MBR MGM MVW MVU MW MSGM MBM MXM MSM MBR MGM

1 •NOT• x X, x x 44 LIBF x x x
2 UNARY MINUS x x x x 45 RS x x x x x x
3 46 LS x x x x x x
4 •AND• x x x x x 47 BXHLE

5) 48

6 •OR• x x x x x 49

7 50 •LE• x x x x x
8 ST x x x 51 •GE• x x x x x
9 , (ARG) x x x x 52 •EQ• x x x x x

10 + x x x x x x x x 53 •LT• x x x x x
11 - x x x x x x x x 54 •GT• x x x x x
12 . x x x x x x x 55 •NE• x x x x x
13 I x x x x x x x 56 MAX2 x x x x x
14 LA x x x x 57 MIN2 x x x x x
15 EXT x 58 DIM x x x x x
16 BG x x x x x 59 IDIM x x x x x
17 BL x x x x x 60 DMOD x x x x x
18 BNE x x x 61 MOD x x x x x
19 BGE x x x x x 62 AMOD x x x x x
20 BLE x x x x x 63 DSIGN x x x x x
21 BE x x x 64 SIGN x x x x x
22 SC x x x x x x x 65 !SIGN x x x x x
23 1/0 LIST x x x 66 DABS x x x x
24 BCOMP x x 67 ABS x x x x
25 (68 IABS x x x x
26 EM 69 IDINT x x x x
27 B 70

28 BA x x 71 INT x x x x
29 BBT x x x 72 HFIX x x x x
30 BBF x x x 73 IFIX x x x x
31 LBIT x x x x x 74 DFLT x x x x
32 BGZ x x 75 FLT x x x x
33 BLZ x x 76 DBLE x x x x
34 BNEZ x x 77 BITON x x
35 BGEZ x x 78 BITOFF x x
36 BLEZ x x 79 BITFLP x x
37 BEZ x x 80 ANDF x x x x x
38 81 ORF x x x x x
39 NMLST x x 82 COM PL x x x x
40 83 MOD24 x x x x
41 BF x x ' 84 LC OM PL x x x x
42 BT x x 85 SHFTR x x x x x
43 LOB x x x 86 SHFTL x x x x x

128

REGISTER ASSIGNMENT TABLES

The register assignment tables are a set
of one-dimensional arrays used by the full
register assignment routines of phase 20.
There are three types of tables: local
assignment tables (ref er to Table 24) ,
global assignment tables (refer to 1atle
26) , and register usage tables. The
register usage tables are work tables used
by the local and global assignment routines
in the process of full register assignment.

Register Use Table

The format of the register use tables,
TRUSE and RUSE, are the same for the local
and global assignment routines. Each table
is sixteen words long. Words 1 through 11
represent general registers 1 through 11,
words 12, 14, and 16 represent floating
point registers 2, 4 and 6, and words 13
and 15 are unused.

• Table 24. Local Assignment Tables
r----T----------------------------T-------1
INamef Function IOrigin 1 1
~----+----------------------------+-------~
IJ f Serves as index to TXP, BVP, FWDPAS-
1 I BVRA, BVA. IEKRFP
I I
ITXP Gives the storage location FWDPAS-
1 of the text item associated IEKRFP
I with each value of J.
I
f BVP
I
I
I
I
IBVRA
I
I
I
BVA

Contains the MCOORD value
associated with operand 1
the text item represented
J.

FWDPAS
of IEKRFP
by

Indicates the register
locally assigned to the
quantity represented by J.

Represents the activity
within the block of the
quantity represented by J;
also contains indicator bits
describing the quantity.
See Table 25.

BKPAS
IEKRBP

FWDPAS
I EKRFP

WJ2 Indicates whether a variable FWDPAS-
is eligible for local IEKRFP
assignment. Indexed via the
MCOORD values obtained from
BVP.

~----L----------------------------L-------~
l 1 This column indicates the name of the I
I register assignment routine that ini- I
I tially creates the particular table. I
l 2 Although WJ is distinctly a local I
l assignment table, it is indexed by the I
I quantity MCOORD (which is used to index I
I the global assignment tables) rather I
I than by the local assignment table I
I index, J. I
L----------------------~-----------------J

eTable 25. BVA Table
r---T-------------------------------------1
I Bit I Meaning I
~---+-------------------------------------~

0 Not used.

Text item is candidate for forward
wovement.

2 Not used.

3 Inhibit 'inter-block' register
assignment for text item.

4 Text item is candidate for 'inter
block' register assignroent.

5 Text item is candidate for floating
point downgrading if a CALL is found.

6 !Text item is candidate for register
classification.

7 P1 is the result of an integer mod
function.

8 The operand has been encountered
before.

9 Text item is the imaginary result of
a complex function.

10 The operand is defined by a function
call.

11 P1 is floating point.

12 P1 is the result of an integer mul
tiply or divide.

13 Zero length temporary indicator.

14 Case II subscript indicator is
changed to a Case II.

15

BVA - Local Activity.

31
~---L-------------------------------------~
f The BVA table consists of a fullword for I
leach text in the block. I
L---J

If the contents of TRUSE(i) and RUSE(i)
is equal to zero, then register i is avail
able for assignment. If the value con
tained in TRUSE(i) or RUSE(i) is between 2
and 128, inclusive, then the register i is
assigned to the variable whose MCCORD value
is equal to the contents of TRUSE(i) or
RUSE(i). If the contents of TRUSE(i) or
RUSE(i) has a value between 252 and 255,
register i is unavailable for assignment
and is reserved for special use (see next
paragraph} •

Appendix A: ~ables 129

Table 26. Global Assignment Tables
r------T-------------------------T--------1
I Name I Function I Origin I
~------+-------------------------+--------~
jMCOORDl3erves as an index to Phase 151
I IMVD, EMIN, RA, RAL, WABP, I
I I WA and WJ. I
I I

I
I
I
I
I
I

MVD Gives the location of the Phase 15
dictionary entry for the
variable associated with
the given value of
MCOORD.

EMIN Indicates whether the REGAS-
variable associated with IEKRRG
a particular MCOORD value
is eligible for global
assignment.

RA Indicates the number of GLOBAS
the first register glob- IEKRGB
ally assigned to the
variable represented by

jthe MCCORD value; pro
vides continuity in glob
al assignment from inner
to outer loops.

RAL Indicates the register GLOBAS
globally assigned to the IEKRGB
variable represented by

WA

the MCCORD value.

Indicates the total
activity for the variable
represented by the MCOORD
value. Calculated by
adding 4. to the value
each time a definition of
the variable is encoun
tered and adding 3. to
the value for a use of
the variable.

FWDPAS
IEKRFP

I
IWABP Indicates the activity of

base variables. Calcu
lated in the same manner
as the WA table.

FWDPAS
IEKRFP I

I
I L ______ i _________________________ i _______ _

Register Use Considerations: Registers 15
and 14 are not available for use by
register assignment. They are reserved,
and used for branching during the execution
of the object module resulting from the
compilation.

Register 13 is not available for use by
register assignment. It is reserved, and
used during the execution of the object
module to contain the address .of the save
area set aside for the object module (refer
to Fortran System Director, "Generation of
Initialization Instructions"). Register 13
is also used to refer to:

• Branch tables for computed GO TOs.

130

• Parameter list for external references.
• Local constants, variables and arrays.
• Adcons for external references.

If the above items exceed 4096 bytes,
the adcons are referred to by register 12.

Register 12 is not available for use by
register assignment. It is set aside to
contain the starting address of the "Con
stants" portion of text information.

Registers 11, 10, and 9 may or may not
be available for use by register assign
ment. Their use depends upon the number of
required reserved registers. (Refer to
phase 20, "Branching Optimization").

NAMELIST DICTIONARIES

Namelist dictionaries are developed by
CORAL for the NAMELIST statements appearing
in the source module. These dictionaries
provide IHCNAMEL with the information
required to implement READ/WRITE statements
using NAMELISTs. The namelist dictionary
constructed by CORAL from the phase 10
namelist text representation of each NAME
LI ST statement contains an entry for the
namelist name and entries for the variables
and arrays associated with that name.

NAMELIST NAME ENTRY FORMAT: The format of
the entry constructed for the namelist name
is illustrated in Figure 40.

r---1
I Name field (2 words) I
L---J
Figure 40. Format of Namelist Name Entry

Name Field: The name field contains the
namelist name, right-justified, with lead
ing blanks.

NAMELIST VARIABLE ENTRY FORMAT: The format
of the entry constructed for a variable
appearing in a NAMELIST statement is illus
trated in Figure 41.

r---1
I Name field (2 words) I
~---~
I Address field (1 word) I
~-----------T----------T------------------~
I Item Type I Mode I Not used I
I field I field I (2 bytes} I
I (1 byte) I c1 byte} I I
L-----------i----------i------------------J
Figure 41. Format of Namelist Variable

Entry

Name Field: The name field contains the
name of the variable, right-justified, with
leading blanks.

Address Field: The address field contains
the relative address of the variable.

Item Type Field: This field is zero for a
variable.

Mode Field: The mode field contains the
mode of the variable.

NAMELIST ARRAY ENTRY FORMAT: The format of
the entry constructed for an array appear
ing in a NAMELIST statement is illustrated
in Figure 42.

r---1
I Name field (2 words) I
t---~
I Address field (1 word) I
t----------T---------T-----------T--------~
I Item Typel Mode I Number of !Element I
I field I field I dimensionsllength I
I I I field I field I
I (1 byte) I (1 byte) I (1 byte) I (1 byte) I
t----------+---------i-----------i--------~
I Indicator! First dimension I
I field I factor field I
I (1 byte) I (3 bytes) I
t----------+------------------------------1
I Not used I Second dimension I
I I factor field I
I (1 byte) I (3 bytes) I
t----------+------------------------------1
I Not used I Third dimension I
I I factor field I
I (1 byte) I (3 bytes) I
t----------i------------------------------1
I Etc. (refer to "Dimension Entry Format") I
l---J
Figure 42. Format of Namelist Array Entry

Name Field: The name field contains the
name of the array, right-justified, with
leading blanks.

Address Field: The address field contains
the relative address of the beginning of
the array.

Item Type Field: This field is nonzero for
an array.

Mode Field: This field contains the mode
of the elements of the array.

Number of Dimensions Field: This field
contains the number of dimensions (1
through 7) of the associated array.

Element Length Field: The element length
field contains the length of each element
in the associated array.

Indicator Field: This field is zero if the
associated array has variable dimensions;
otherwise, it is nonzero.

First Dimension Factor Field: If the asso
ciated array does not have variable dimen
sions, this field contains the total size
of the array. If the array has variable
dimensions, this field contains the rela-

tive address of first subscript parameter
used to dimension the array.

Second Diroension Factor Field: If the
associated array does not have variable
dimensions, this field contains the loca
tion of the second dimension factor (D1*L).
If the array has variable dimensions, this
field contains the relative address of the
second subscript parameter used to dimen
sion the array.

Third Dimension Factor Field: If the asso
ciated array does not have variable dimen
sions, this field contains the location of
the third dimension factor ~1*D2*~. If
the array has variatle dimensions, this
field contains the relative address of the
third subscript parameter used to dimension
the array.

DIAGNOSTIC MESSAGE TABLES

There are two major diagnostic tables
associated with error message processing by
phase 30: the error table and the message
pointer table.

ERROR TABLE

The error table is constructed by phases
10 and 15. As source statement errors are
encountered by these phases, corresponding
entries are made in the error table. Each
error table entry consists of 2 one-word
fields. The first field contains either an
internal statement number, if the entry is
for a statement that is in error, a dic
tionary pointer, if the entry is for a sym
bol that is in error (e.g., a variable that
is incorrectly used in an EQUIVALENCE
statement), or a statement number, if the
entry is for an undefined statement number;
the second field contains the message num
ber associated with the particular error.
The message numbers that can appear in the
error table are those associated with mes
sages of error code levels 4 and 8 (refer
to the publication IBM System/360 Operating
System: FORTRAN IV (H) Programmer's
Guide) •

MESSAGE POINTER TABLE

The message pointer table contains an
entry for each message number that may
appear in an error table entry. Each entry
in the message pointer table consists of a
single word. The high-order byte of the
word contains the length of the message
associated with the message number. The
three low-order bytes contain a pointer to
the text for the message associated with
the message number.

Appendix A: Tables 131

APPENDIX B: INTERIVlEDIATE TBXT

Intermediate text is an internal repre
sentation of the source module from which
the machine instructions of the object
module are generated. The conversion from
intermediate text to machine instructions
requires information about variables, con
stants, arrays, statement numbers, in-line
functions, and subscripts. This informa
tion, derived from the source statements,
is contained in the information table, and
is referred to by the intermediate text.
The information table supplements the
intermediate text in the generation of
machine instructions by phase 25.

PHASE 10 INTERMEDIATE TEXT

Phase 10 creates intermediate text (in
operator-operand pair format) for use as
input to subsequent phases of the compiler.
There are six types of intermediate text
produced by phase 10:

• Normal text - the operator-operand pair
representations of source statements
other than DATA, NAMELIST, DEFINE FILE,
FORMAT, and Statement Functions (SF) •

• Data text - the operator - operand pair
representations of DATA statements and
the initialization constants in expli
cit type statements.

• Namelist text - the operator-operand
pair representations of NAMELIST
statements.

• Define file text - the operator-operand
pair representation of DEFINE FILE
statements.

• Format text - the internal representa
tions of FORMAT statements.

• SF skeleton text - the operator-operand
pair representations of statement func
tions using sequence numbers as
operands of the intermediate text
entries. The sequence numbers replace
the dummy arguments of the statement
functions. This type of text is, in
effect, a "skeleton" macro.

Note: Intermediate text representations
are, for sub-block allocation, divided into
only two main types: special (DATA, NAME
LIST, DEFINE FILE, FORMAT, and SF skeleton
text) , and normal (text other than special
text) • The intermediate text representa
tions are comprised of individual text
entries. Each intermediate main text type

132

is allocated unique sub-blocks of main
storage. The sub-blocks that constitute an
intermediate text area are obtained by
phase 10, as needed, via requests to the
FSD (see FORTRAN System Director, "Storage
Distribution") •

Intermediate Text Chains

Each intermediate text area (i.e., the
sub-blocks allocated to a particular type
of text) is arranged as a chain, which
links together (1) the text entries that
are developed and placed into that area,
and (2) in some cases, the intermediate
text representation for individual
statements.

The normal text chain is a linear chain
of normal text entries; that is, each norm
al text entry is pointed to by the pre
viously developed normal text entry.

The data text chain in bi-linear. This
means that:

1. The text entries that constitute the
intermediate text representation of a
DATA statement are linked by means of
pointers. Each text entry for the
statement is pointed to by the pre
viously developed text entry for the
statement.

2. The intermediate text representations
of individual DATA statements are
linked by means of pointers, each
representation being pointed to by the
previously developed representation.
~ special chain address field within
the first text entry developed for
each DATA statement is reserved for
this purpose.)

The namelist text chain operates in the
same manner as the data text chain.

The define file text chain is a linear
chain of define file text entries, each
define file text entry is pointed to by a
previously developed define file text
entry. A zero chain signals the end of all
define file text for a program.

The format text chain consists of link
ages between the individual intermediate
text representations of FORMAT statements.
The pointer field of the second text entry
in the intermediate representation of a
FORMAT statement points to the intermediate
text representation of the next FORMAT
statement. {The individual text entries

comprising the intermediate text re.i?resen
tation of a FORMAT statement are not
chained.)

The SF skeleton text chain is linear
only in that each text entry developed for
an operator-operand pair within a particu
lar statement function is pointed to by the
previous text entry developed for that same
statement function. The intermediate text
representations for separate statement
functions are not chained together. Howev
er, a skeleton can readily be obtained by
means of the pointer contained in the dic
tionary entry for the name of the statement
function.

Format of Intermediate Text Entry

Those statements that undergo conversion
from source representation to intermediate
text representation are divided into
operator-operand pairs, or text entries.
Figure 43 illustrates the format of an
intermediate text entry constructed by
phase 10.

----------- 4 bytes----------
r----------T------------------------------1
!Adjective I I
jcode fieldjChain field I
I (operator) I I
r----------i----------T-------------------~
I Mode field I Type field I
r----------T----------i-------------------~
I 0 I Pointer field {operand) I
L----------i------------------------------J

•Figure 43. Intermediate Text Entry Format

Adjective Code Field: The adjective code
field corresponds to the operator of the
operator-operand pair. Operators are not
entered into text entries in source form;
they are converted to a numeric value as
specified in the adjective code table (see
Table 27) • It is the numeric representa
tion of the source operator that actually
is inserted into the text entry. Primary
adjective codes {operators that define the
nature of source statements) also have
numeric values.

Chain Field: The chain field is used to
maintain linkage between intermediate text
entries. It contains a pointer to the next
text entry.

Mode and Type Fields: The rnode and type
fields contain the mode and type of the
operand of the text entry. Both items
appear as numeric quantities in a text
entry and are obtained from the mode and
type table {see Tables 20 and 21).

Pointer Field: The pointer field contains
a pointer to the information table entry
for the operand of the operator-operand
pair. However, if the operand is a dummy

argument of a statement function, the
pointer field contains a sequence number,
which indicates the relative position of
the argument in the argument list.

Note: The text entries for FORMA'I state
ments are not of the above form. FORMAT
text entries consist of the characters of
the FORMAT statement in source form packed
into successive text entries.

•Table 27. Adjective Codes
r--------T-----------T--------------------1
I !Mnemonic I I
I Code {in I (where I I
I decirral) I af plicable) I Meaning I
r--------+-----------+--------------------~

1 .NOT. INOT I

4

5

6

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

25

26

71

.AND.

.OR.

+

*
/

**
(f

.LE.

.GE.

.EQ.

.LT.

• G'I'.

.NE.

(s

I I
f AND I

Right arithmetic
parenthesis

OR

Equal sign

Comma

Plus

Minus

Multiply

Divide

Exponentiation

Function parenthesis

Less than or equal

Greater than or
equal

Equal

Less than

Greater than

Not equal

Left subscript
parenthesis

Left arithmetic
parenthesis

End mark

GO TO, and implied
branches

I
I

________ i ___________ i ___________________ _

(Continued)

Appendix B: Intermediate Text 133

•Table 27. Adjective Codes (Continued)
r--------T-----------T--------------------1
I I Mnemonic I I
I Code (in I (where I I
I decimal) I applicable) I Meaning I
~--------+-----------+--------------------~

I
I

193 I I BLOCK DATA I
I I I

205 DATA I
I

208 SUBROUTINE, I
FUNCTION, or ENTRY I

I
209 FORMAT (text) I

210

2 11

212

213

214

215

216

217

218

219

220

221

222

223

LDF

GLDF

End of I/O list

CONTINUE

Relative record
number

Object time format
variable

BACKSPACE

REWIND

IEND FILE
I
!WRITE unformatted
I
!READ unformatted
I
!WRITE formatted
I
READ formatted

Beginning of I/O
list

Statement number
definition

Generated statement
number definition

I

I 225 WRITE using NAMELIST
L--------i------------'--------------------J

(Continued)

134

•Table 27. Adjective Codes (Continued)
r--------T-----------T--------------------1
I I Mnemonic I I
I Code (in I (where I I
!decimal) !applicable) I Meaning I
~--------+-----------+--------------------1

226 I !READ using NAMELIST
I I

227 I !FIND
I I

230 I II/O end-of-file
I I parameter
I I

231 II/O error parameter
I

232 I BLANK
I

233 RET I RETURN
I

234 STOP ISTOP
I

235 I PAUSE
I

238 I ASSIGN
I

240 !Beginning of DO
I

241 !Arithmetic
!assignment statement
I

242 NDOIF !End of DO 'IF'
I

243 Arithmetic IF

244

246

247 LIST

248

Relational IF

CALL

I/O or NAMELIST list
item

NAMELIST

I 249 END END
I
I 250 Computed GO TO
I I
I 251 II/O unit number
I I
I 252 !FORMAT (statement
I I numbers)
I I
I 253 I NAMELIST name I
L--------i-----------i---------~---------J

Examples of Phase 10 Intermediate Text

An example of each type of phase 10 text (normal, data, namelist, define file format,
and SF skeleton) is presented below. For each type, a source language statement is first
given. This is followed by the phase 10 text representation of that statement.

The phase 10 normal text representation of the arithmetic statement 100 A = B + C * D
/ E is illustrated in Figure 44.

r-----------------T-----------------T-----------------T-----------T----T----------------1
I Adjective I I I I I I
I Code I Chain I Mode I Type I 0 I Pointer I
t-----------------+-----------------+-----------------+-----------+----+----------------~
I statement I I I I I I
I number I I Statement I I I I
I definition I I number I 0 I I - 100 I

If-----------------+-----------------+-----------------+-----------+----+----------------~
'-i Arithmetic I I Real I Scalar' I I-A I
~t-----------------+-----------------+-----------------+-----------+----+----------------~
'-i = I I Real I Scalar1 I I-B I
~r-----------------+-----------------+-----------------+-----------+----+----------------~
1.-f + I I Real I Scalar 11 I I- C I
~t-----------------+-----------------+-----------------+-----------+----+----------------~
L-.f * I I Real I Scalar' I I - D I
~r-----------------+-----------------+-----------------+-----------+----+----------------~
~ / I I Real I Scalar' I I - E I
~t-----------------+-----------------+-----------------+-----------+----+----------------~
L.i.f I To next normal I I I I I

I End mark 2 I text entry I 0 I 0 I I ISN 3 I
t-----------------t-----------------+-----------------+-----------+----+----------------~

./ I I I I 1 I I
I 1 byte I 3 bytes I 2 bytes I 2 bytes lbytel 3 bytes I
t-----------------L-----------------L-----------------L-----------L----L----------------~
I 1Nonsubscripted variable. I
I 2 0perator of the special text entry that signals the end of the text representation I
I of a source statement. I
I 3 Compiler generated sequence number used to identify each source statement. I l ___ J

•Figure 44. Phase 10 Normal Text

Appendix B: Intermediate Text 135

The phase 10 data text representation of the DATA statement DATA A,B/2.1,3HABC/,C,D/1.
,1./ is illustrated in Figure 45.

r-----------------T-----------------T-----------------T-----------T--~T----------------1
I Adjective I I I I I I
I Code I Chain I Mode I Type I 0 I Pointer I
~-----------------+-----------------+-----------------+-----------+----+----------------~
I I I I I I To text for I
I I I I I I-next DATA I-,
I DATA I I 0 I 0 I I statement I 1

~-----------------f-----------------f-----------------f--------~-t----t------~--------~ I
I 0 I I Real I Scalar I I -A I t

~~-----------------+-----------------+-----------------+-----------+----+----------------~
L.j , I I Real I Scalar I I - B I
~~----------------=+-----------------+-----------------+-----------+----+----------------~
L.j / I I Real I Constant I 1-2.1 I
r:r-----~-----------r-----------------t------~i~~;;1----t---c~~;~;~~t----t::.::;:-3~~~c-------1
c:r / T t------;~;1-------t---5~;1~;--t----t~c-----------1
L:t , t ------t------;~;1-------t---5~;1~~--t----t::.::;:-~-----------1
If-----------------+-----------------+-----------------+-----------+----+----------------~
L--t / I I Real I constant I I - 1. I
~~-----------------+-----------------+-----------------+-----------+----+----------------~
L..j , I 0 I Real I Constant I I - 1 • I

~-----------------+-----------------+-----------------+-----------+----+----------------~
I I I I I 1 I I
I 1 byte I 3 bytes I 2 bytes I 2 bytes lbytel 3 bytes I
L-----------------i-----------------i-----------------i-----------i----i----------------J

•Figure 45. Phase 10 Data Text

136

The phase 10 namelist text representation of the NAMELIST statement NAMELIST /NAME1/A,
B,C/NAME2/D,E,F/NAME3/G where A and F are arrays is illustrated in Figure 46.

r-----------------T--------------T-----------------T-----------T----T-------------------1
I Adjective I I I I I I
I Code I Chain I Mode I Type I 0 I Pointer I
~-----------------+--------------+-----------------+-----------+----+-------------------1
I NAMELIST I I NAMELIST I 0 I l-NAME1 I

lf-----------------+--------------+-----------------+-----------+----+-------------------1
L--i / I I o I o I I To text for I

I I I I I I - next NAMELIST
I I I I I I block I

~~-----------------+--------------+-----------------+-----------+----+-------------------1
L-1 LIST I I Real I Array I I - A I
~~-----------------+--------------+-----------------+-----------+----+-------------------~
L-1 LIST I I Real I Scalar I I - B I
~~-----------------+--------------+-----------------+-----------+----+-------------------1
L-1 LIST I 0 I Real I Scalar I I - C I
~~-----------------+--------------+-----------------+-----------+----+-------------------~
'-I NAMELIST I I NAMELIST I 0 I I - NAME2 I
~~---- ------------+--------------+-----------------+-----------+----+-------------------~
'-I / I I o I o I I To text for

I I I I I I-next NAMELIST I
I I I I I I block

~~-----------------+--------------+-----------------+-----------+----+-------------------~
'-I LIST I I Real I Scalar I 1-D I
~~---- -- ---------+--------------+-----------------+-----------+----+-------------------1
'-I LIST I I Real I Scalar I 1-E I
~~ + +-----------------+-----------+----+-------------------~
L..j LIST I 0 I Real I Array I 1-F I

~ NAMELIST t t----~~~~~~;;-----t---O-------t----t==::-;~~;3----------1
~~-----------------+--------------+-----------------+-----------+----+-------------------~
1-1 / I I o I o I I To text for

I I I I I I-next NAMELIST I
I I I I I I statement h

~~-----------------f--------------t-----------------t-----------t----f-------------------1 I
1-1 LIST I 0 I Real I Scalar I 1-G I I

r-----------------t--------------t-----------------t-----------t-1--t-------------------1 +
I 1 byte I 3 bytes I 2 bytes I 2 bytes lbytel 3 bytes I
L-----------------L--------------L-----------------~-----------L----L-------------------J

•Figure 46. Phase 10 Namelist Text

Appendix B: Intermedi'ate Text 137

The phase 10 define file text representation of the DEFINE FILE statement DEFINE FILE
a, (m 1 ,r1 ,f 1 ,v 1) where a 1 is the I/O unit number, m1 is the number of records, r 1 is the
maximum record length, f 1 is the format code, and v 1 is the associated variable is illus
trated in Figure 47.

r-----------------T-----------------T-----------------T-----------T--~T----------------1

I Adjective I I I I I I
I Code I Chain I Mode I Type I 0 I Pointer I
t-----------------+-----------------+-----------------+-----------+----+----------------1
I I/O unit number! I Integer I Constant I I a 1 I

c:r----------~------t-----------------t----~~~~;~;------t--~~~~ta~~-1----t--------~~------1
c:r t 1----~~~~;~;------1--~~~~~~~~-t----t--------;~------1
c:r format code(f 1) t pointer to next t----~~~~;~;------t--~~~l~;---1----t--------~~------1

I I define file text I I I I I
I I entry I I I I I

,I F-----------------f-----------------+-----------------+-----------+----+----------------1
I I I I I 1 I I
I 1 byte I 3 bytes I 2 bytes I 2 bytes lbytej 3 bytes I l _________________ i _________________ i _________________ i ___________ i ____ i ________________ J

•Figure 47. Phase 10 Define File Text

The phase 10 format text representation of the FORMAT statement 5 FORMAT (2HOA,A6//SX,
3 (I4,E12.5,3F12.3,'ABC')) is illustrated in Figure 48.

r-----------------T-----------------T-----------------T-----------T----T----------------1
I Pointer I I I I I I
I Code I Chain I Mode I Type I 0 I Pointer I
t-----------------+-----------------+-----------------+-----------+----+----------------1
I statement I I I I I I
I number I I Statement I I I I
I definition I I number I 0 I I 5 I

~~-----------------+-----------------+-----------------+-----------+----+----------------1
41 I I I I I To text for I

I I I I I I next FORMAT h
I FORMAT I I 0 I 0 I I statement I
----------------- """'----------------+-----------------+-----------+----+----------------1 I

I I I I I 1 I I I
I 1 byte I 3 bytes I 2 bytes I 2 bytes I byte I 3 bytes I ~

L-----------------i-----------------i-----------------i-----------i----i----------------J

r-----------------T-----------------T-----------------T-----------T----T----------------1
(2HO 2 I A,A6 2 I //SX 2 I , 3 (I 2 I I 4,E1 2 I

t-----------------+-----------------+-----------------+-----------+----+----------------~
I 2.5, 2 I 3F12 2 I .3,' 2 I ABC' 2 I I ll't" I t-----------------i _________________ i _________________ i ___________ i ____ i ________________ 1
I 1 Group mark. I
I 2 0ne character per byte. I
l---J

•Figure 48. Phase 10 Format Text

138

The phase 10 SF skeleton text representation of the statement function ASF (A,B,C)
A+D*B*E/C is illustrated in Figure 49.

r-----------------T-----------------T-----------------T-----------T----T----------------1
I Adjective I I I I I I
I Code I Chain I Mode I Type I 0 I Pointer I
t-----------------+-----------------+-----------------+-----------+----+----------------~
I t I I o I o I I 1 I

Ir-- - - ---+ -------------+-----------------+-----------+----+----------------~
L.j + I I Real I Scalar I I -n I
I~ - t -------------+-----------------+-----------+----+----------------~
L.j * I I o I o I I 2 I
~ * t t------~~~i-------t---~~~i~~--t----t==:;-----------1
Ir-- t +-----------------+-----------+----+----------------~
L.j / I I o I o I I 3 I
Ir-----------------+-----------------+-----------------+-----------+----+----------------~
L.j l I I o I o I I I
Ir-----------------+-----------------+-----------------+-----------+----+----------------~
41 End mark I o I o I o I I o I
t-----------------+-----------------+-----------------+-----------+----+----------------~
I I I I I 1 I I
j 1 byte I 3 bytes I 2 bytes I 2 bytes jbytej 3 bytes I
l-----------------L-----------------L-----------------L-----------L----L----------------J

•Figure 49. Phase 10 SF Skeleton Text

Appendix B: Intermediate Text 139

PHASE 1S/PHASE 20 INTERMEDIATE TEXT
MODIFICATIONS

During phase 15 and phase 20 text pro
cessing, the intermediate text entries are
modified to a form more suitable for opti
mization and object-code generation. The
intermediate text modifications made by
each phase are discussed separately in the
following paragraphs.

PHASE 1S INTERMEDIATE TEXT MODIFICATIONS

The intermediate text input to phase 1S
is the intermediate text created by phase
10. The intermediate text output of phase
1S is an expanded version of phase 10
intermediate text. The intermediate text
output of phase 15 is divided into four
categories:

• Unchanged text
• Phase 15 data text
• Statement number text
• Standard text

Unchanged Text

The unchanged text is the phase 10
normal text that is not processed by phase
1S. Unchanged text is passed on to subse-'
quent phases in phase 10 format with but
one modification: the contents of the
operator and chain fields are switched.

Phase 1S Data Text

To facilitate the assignment of initial
data values to their associated variables,
phase 1S converts the phase 10 data text
for DATA statements to phase 1S data text,
which is in variable-constant format. The
format of the phase 1S data text entries is
illustrated in Figure SO.

--~~~~~~4 bytes~~~~~~~~~~~---

r----------T-------~---------------------1
!Indicator I Chain field I
I field I f
~----------i------------------------------~
IP1 field I
!---~
IP2 field I
~---~
!Offset field I
~------------------~--~-----------------~
!Number field I
L--------------------------~-----------~J

•Figure SO. Format of Phase 1S Data Text
Entry

Indicator Field: The indicator field indi
cates the characteristics of the initial
data value (constant) to be assigned to the
associated variable. This field is one
byte in length. The indicator field is

140

divided into eight subfields, each of which
is one bit long. The bits are numbered
~rom 0 through 7. Figure 51 indicates the
function of each subfield in the indicator
field.

r------------T----------------------------1
I Subfield I Function I
·------------+---------------------~------~
I Bit 0 I not used I
·------------+----------------------------~
I Bit 1 I not used I
·------------+----------------------------~
I Bit 2 I not used I
·------------+----------------------------~
I Bit 3 I not used I
·------------+----------------------------~
I Bit 4 'on' I initial data value is nega-1
I I ti ve constant I
·------------+----------------------------~
I Bit 5 'on' I initial data value is a I
I I Hollerith constant I
·------------+---------~--------~-------~
I Bit 6 'on' I initial data value is in I
I I hexadecimal form I
·------------+---~-----------------------~
I Bit 1 'on' I data table entry is six I
I I words long (variable is an I
I I array element) • I
L------------i----------------------------J
Figure S1. Function of Each Subfield in

Indicator Field of Phase 1S
Data Text Entry

Chain Field: The chain field is used to
maintain linkage between the various phase
1S data text entries. It contains a point
er to the next such entry.

P1 Field: The P1 field contains a pointer
to the dictionary entry for the variable to
which the initial data value is to be
assigned.

P2 Field: The P2 field contains a pointer
to the dictionary entry for the initial
data value (constant) which is to be
assigned to the associated variable.

Off set Field: The off set field contains
the displacement of the subscripted vari
able from the first element in the array
containing that variable. If the variable
to which the initial data value is to be
assigned is not subscripted, this field
does not exist.

Number Field: The number field contains an
indication of the number of successive
items to which the initial data value is to
be assigned. If the initial data value is
not to be assigned to more than one item,
this field does not exist.

Statement Number Text

The statement number text is an expanded
version of the phase 10 intermediate text
created for statement numbers. It is
expanded to provide additional fields in
which statistical information about the
text block associated with the statement
number is stored. The format of statement
number text entries is illustrated in
Figure 52.

4-~~~~~~~~4 bytes~~~~~~~~~•

r---1
f Chain field I
t-------------------T----------T----------~
I !Operator f Indicator I
I I field f field I
t-------------------i----------i----------~
IP1 field I
t---~
IBLKEND field I
t---~
f Use vector field (MVF) (4 words} I
t---~
I Definition vector field (MVS) (4 words) I
t---~
I Busy-on-exit (4 words) I
f vector field (MVX} I
L---J

•Figure 52. Format of Statement Numner Text
Entry

Chain Field: The chain field is used to
maintain the linkage between the various
intermediate text entries. It contains a
pointer to the next text entry.

Operator Field: The operator field con
tains an internal operation code (numeric)
for a statement number definition (see
Table 28} •

•Table 28. Phase 15/20 Operators
r--------T-----------T--------------------1
I I Mnemonic I I
I Code (in I (where I I
I decimal) I applicable) I Meaning I
t--------+-----------+--------------------~
I 1 .NOT. INOT

I
2 U f Unary minus

I
4 .AND. AND

5 Right parenthesis

6 .OR. OR

7 .XOR. XOR

8 ST Store

9 Argument
I

10 I + Plus
I

11 I Minus
I

12 I * Multiply
I

13 I / Divide
I

14 I LA Load address
I

15 I EXT External function or
I subroutine CALL
I

16 I BG Branch greater than
I

17 I BL Branch less than
I

18 I ENE Branch not equal
I

19 I BGE Branch greater than
I I or equal l ________ i ___________ i ___________________ _

(Continued}

Appendix B: Intermediate· Text 141

•Table 28. Phase 15/20 Operators (Cont.) •Table 28. Phase 15/20 Operators (Cont.)
r--------T-----------T--------------------1 r--------T-----------T--------------------1
I I Mnemonic I I I I Mnemonic I I
I Code (in I (where I I I Code (in I (where I I
I decimal) I applicable) I Meaning I I decimal) I applicable) I Meaning I
~--------+-----------+--------------------~ ~--------+-----------+--------------------~

20 I BLE !Branch less than or l 50 I LE !Less than or equal I
I I equal I I I I
I I I 51 I GE !Greater than or I

21 I BE !Branch equal I I I equal I
I I I I I I

22 I SUB !Subscript I 5 2 1 EQ I Equal I
I I I I

23 I LIST I/O list I 53 LT Less than I
I I

24 I BC Branch computed I 54 GT Greater than
I I

25 I Left parenthesis I 55 NE Not equal
I

26 EM End mark I 56 MAX2 MAX2 in-line routine

27 B Branch 57 MIN2 MIN2 in-line routine

28 BA Branch assigned 58 DIM DIM in-line routine
I

29 BBT Branch bit true I 59 IDIM IDIM in-line routine
I

30 BBF Branch bit false I 60 DMOD DMOD in-line routine
I

31 LBIT Logical value of bit I 61 MOD MOD in-line routine
I I

32 BGZ I Branch greater than I 62 AMCD AMOD in-line routine
jzero I I
I I 63 DSIGN DSIGN in-line I

33 BLZ I Branch less than I routine I
I zero I I
I I 64 SIGN SIGN in-line routine!

34 BNEZ !Branch not equal 1 I
!zero I 65 ISIGN ISIGN in-line I
I I routine l

35 BGEZ !Branch greater than I I
or equal zero I 66 DABS DABS in-line routine!

I I
36 BLEZ Branch less than or I 67 ABS ABS in-line routine I

equal zero I I
I 68 IABS IABS in-line routine!

37 BEZ Branch equal to zero I I I
I 69 IDINT IDINT in-line I

39 NMLS NAMELIST operands j I routine l
I I I

41 BF Branch false I I 71 INT INT in-line routine I
I I I

42 BT Branch true I I 72 HFIX HFIX in-line routine!
I 1 I

43 LDB Load byte I I 73 IFIX IFIX in-line routine!
I I I

44 LIBF !Library function I I 74 DFLOAT DFLOAT in-line I
I call I I routine I
I I I I

45 RS I Right shift I I 75 FLOAT FLOAT in-line I
I I I routine I

46 LS J Left shift I I I
I I I 76 DBLE DBLE in-line routine!

47 BXHLE !Branch on index I I I
I I I 77 BITON BITON in-line I

I 48 ASSIGN I Assign I
L--------L-----------L--------------------J

I routine I
L--------L-----------L--------------------J

(Continued) (Continued)

142

•Table 28. Phase 15/20 Operators (Cont.)
r--------T-----------T--------------------1
I I Mnemonic I I
I Code (in I (where I I
!decimal) japplicabl~ I Meaning I
t--------+---~-------+--------------------~
I 78 BITOFF IBITOFF in-line I
I !routine I
I I I
I 79 BITFLP IBITFLP in-line I
I jroutine I
I I
I 80 ANDF IANDF in-line routine
I I
I 81 ORF !ORF in-line routine
I I
I 82 COMPL ICOMPL in-line
I jroutine
I I
I 83 MOD24 I MOD24 in-line

jroutine
I

84 LCOMPL jLCOMPL in-line
I routine
I

85 SHFTR ISHFTR in-line

86 SHFTL

routine

SrlFTL in-line
routine

100 LR
I

Load register (phase!

I '

101

102

103

104

193

200

201

202

203

205

2 08

209

20 only) I
I

RC Restore main storage!
(phase 20 only) I

RR Restore register
(phase 20 only)

!Register usage
(phase 20 only)

I
I
I
I
I
I
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

STORE
only)
2

(phase 20 I
R13 as operand

BLOCK DATA

COMMON

EQUIVALENCE

EXTERNAL

I !Register usage
I I (phase 20 only)
I I
I !DATA
I I
I I FUNCTION
I I
I I FORMAT
I I

2 1 0 I I END I/O l ________ i ___________ i ___________________ _

(Continued)

•Table 28. Phase 15/20 Operator (Cont.)
r--------T-----------T--------------------1
I !Mnemonic I I
I Code (in I (where I I
I decimal) I applicable) I Meaning I
~--------+-----------+--------------------~

211 CONTINUE

212

213

214

215

216

217

218

219

220

221

222 LDF

223 GLDF

224

225

226

227

230

231

232

233 RET

234 STOP

235

249 END

251

252

253

I

Relative record
number

Object time FORMAT

BACKSPACE

REWIND

END FILE

WRITE unformatted

READ unformatted

!WRITE formatted
I
!READ formatted
I
Begin I/O

Statement number
definition

Generated statement
number definition

IMPLICIT

WRITE using NAMELIST

!READ using NAMELIST
I
jFIND
I
II/O end-of-file
jparameter
I
II/O error parameter
I
jBLANK
I
RETURN

STOP

PAUSE

END

I/O unit number

FORMAT

NAMELIST ________ i ___________ i __________________ ~_J

Appendix B: Intermediate Text 143

Indicator Field (ABFN) : The indicator
field is one byte long. This field indi
cates some of the characteristics of the
text entries in the associated block. The
indicator field contains eight subfields,
each of which is one bit long. The sub
fields are numbered 0 through 7. Figure 53
indicates the function of each subfield in
the indicator field.

r-------------T---------------------------1
I Subfield I Function I
~-------------+---------------------------~
I Bits 0-3 I not used I
~-------------+---------------------------~
I Bit 4 'on' I associated block contains I
I I an I/O operation I
~-------------+---------------------------~
I Bit 5 'on' I associated block contains I
I I a reference to a library I
I I function I
~-------------+---------------------------~
I Bit 6 I not used I
~-------------+---------------------------~
I Bit 7 'on' I associated block contains I
I I an abnormal function I
I I reference I
L-------------i---------------------------J

•Figure 53. Function of Each Subfield in
Indicator Field of Statement
Number Text Entry

P1 Field: The P1 field contains a pointer
to the statement number/array table entry
for the statement number.

BLKEND Field: The BLKEND field contains a
pointer to the last intermediate text entry
within the block.

Use Vector Field (MVF) : The use vector
field is used to indicate which variables
and constants are used in the associated
block. Variables and constants, as they
are encountered in the module by STALL
IEKGST are assigned a unique coordinate (1
bit) in this vector field. In general, if
the ith bit is on (1) , the variable or con
stant assigned to the ith coordinate is
used in the associated block.

Definition Vector Field (MVS) : The defini
tion vector field is used to indicate which
variables are defined in a block.
Variables and constants, as they are
encountered by STALL-IEKGST are assigned a
unique coordinate (1 bit) in this vector
field. In general, if the ith bit is on
(1) , the variable assigned to the ith coor
dinate is defined in the associated block.

Busy-On-Exit Vector Field (MVX) : The busy
on-exit vector field in phase 15 indicates
which variables are not first used and then
defined within the text block (not busy-on
entry) • This field is converted by phase
20 to busy-on-exit data, which indicates
which operands are busy-on-exit from the

144

block. Variables and constants, as they
are encountered by STALL-IEKGST are
assigned a unique coordinate (1 bit) in
this vector field. In general, during
phase 15, if the ith bit is on (1), the
variable assigned to the ith coordinate is
not ~usy-on-entry to the block. During
phase 20, if the ith bit is on, the vari
able or constant assigned to the ith coor
dinate is busy-on-exit from the block.

Standard Text

The standard text is an expanded and
modified form of phase 10 intermediate text
that is more suitable for optimization.
The format of standard text entries is
illustrated in Figure 54.

------------4 bytes--------•
r---1
I Chain field I
~---------------------T---------T---------~
ISet by phase 20 !Operator !Mode I
!Used by phase 25 !field !field I
~----------------T----~---------i---------~
ISet by phase 20 I I
!Used by phase 251 P1 field I
~----------------+------------------------~
ISet by phase 20 I I
!Used by phase 251 P2 field I
~----------------+------------------------~
ISet by phase 20 I I
!Used by phase 251 P3 field I
~----------------i------------------------~
I Displacement field I
L---J

•Figure 54. Format of a Standard Text Entry

Chain Field: The chain field is used to
maintain the linkage between the various
intermediate text entries. It contains a
pointer to the next text entry.

Operator Field: The operator field con
tains an internal operation code (numeric)
that indicates either the nature of the
statement or the operation to be performed
(see Table 28) •

P1 Field: The P1 field contains either a
pointer to the dictionary entry or state
ment number/array table entry for operand
of the text entry, or zero (0) if operand
does not exist.

P2 Field: The P2 field contains either a
pointer to the dictionary entry for operand
2 of the text entry or zero (0) if operand
2 does not exist.

P3 Field: The P3 field contains either a
pointer to the dictionary entry for operand
3 of the text entry, a pointer to a parame
ter list in the adcon table, an actual con
stant (for shifting operations) , or zero
(0) if operand 3 does not exist.

Mode Field: The mode field indicates the
general mode of the expression and the mode
of the operands. The bits are set by phase
15. The mode field can be referred to only
as the fourth byte of the status mode word,
which consists of a status field (2 bytes) ,
an operator f ielJ. (1 byte) , and the mode
field (1 nyte) • The status portion of the
status mode word is explained later under
"PHASE 20 INTERMEDIATE TEXT MODIFICATION."
The meanings of the bits in the mode field
are given in Table 29.

Displacement Field: The displacement field
appears only for subscript and load address
text entries; it contains a constant dis
placement (if any) computed from constants
in the subscript expression.

PHASE 20 INTERMEDIATE TEXT MODIFICATION

The intermediate text input to phase 20
is the output text from phase 15. The
intermediate text output of phase 20 is of
the same form as the standard text output
of phase 15. The format of the phase 20
output text is illustrated in Figure 55.

Rl, R2, and R3 Fields: The R1, R2, and R3
fields (each is 4 bits long) are filled in
by phase 20 during register assignment, and
are referred to by phase 25 during the code
generation process. The assigned registers
are the operational registers for operand
1, operand 2, and operand 3, respectively.

Bl, B2, and B3 Fields: The Bl, B2, and B3
fields (each is 4 bits long) are filled in
by phase 20 during register assignment, and
are referred to by phase 25 during the code
generation process. The assigned registers
are the base registers for operand 1,
operand 2, and operand 3, respectively.

Status Field: The status field, the first
two bytes of the status mode word, is set
by phase 20 to indicate the status of the
operands and the status of the base
addresses of the operands in a text entry.
The information in the status field is used
by phase 25 to determine the machine
instructions that are to be generated for
the text entry. The status field bits and
their meanings are illustrated in Table 30.

Table 29. Meanings of Bits in Mode Field of Standard Text Entry Status Mode Word
r-----------T---------T---1
I Mode I Bits I Meaning I
~-----------+---------+---~
I general I 27-28 I 00 - logical I
I I I 01 - integer I
I I I 1 o - real I

·~-----------+---------+---~
I operand 11 29 I 0 - short mode(logical*l, integer*2, real*4) I
I I I 1 - long mode (logical*4, integer, real*B) I
~-----------+---------+--~
I operand 21 30 I 0 - short mode (logical*1, integer*2, real*4) I
I I I 1 - long mode (logical*4, integer, real*B) I
~-----------+---------+---~
I operand 31 31 I 0 - short mode (logical*1, integer*2, real*4) I
I I I 1 - long mode (logical*4, integer, real*B) I
L-----------i---------i---J

--~~~~~~~~~~~~~~~~~~~~~ 4 bytes~~~~~~~~~~~~~~~~~~~~~-..
r--------------------------~--1
I Chain field 1 I
t----------------~----------------------T-----------------------T----------------------~
I Status field I Operator field 1 I Mode field t I
~----------T-----------T-----------------i-----------------------i----------------------~
I Rl I Bl I P1 field ' I
~----------+-----------+--~
I R2 I B2 I P2 field ~ I
~----------+-----------+--~
I R3 I B3 I P 3 field 1 I
~----------i ___________ i--~
I Displacement field 1 I
~---~
l'The chain field, mode field, operator field, P1 field, P2 field, P3 field, and dis- I
I placement field are as defined in a phase 15 standard text entry. (Phase 20 does not I
I alter these fields.) I
L---~-----------------------------J

•Figure 55. Format of Phase 20 Text Entry

Appendix B: Intermediate Text 145

STANDARD TEXT FORMATS RESULTING FROI"i PHASES
15 AND 20 PROCESSING

The following formats illustrate the
standard text entries developed by phase 15
and phase 20 for the various types of
operators. When the fields of the text
entries differ from the standard defini-

tions of the fields, the contents of the
fields are explained. In addition, notes
that explain the types of instructions
generated by phase 25 are also included to
the right of the text entry format, when
appropriate. For an explanation of the
individual operators see Table 28.

•Table 30. Status Field Bits and Their Meanings
r--------------------T-----------T--1
I Operand/ I I I
I Base Address I Bit I Meaning I

~--------------------+-----------+--~
I I 0-1 I not used I
I I 2 I 0 base address in storage I
I Operand 2 I I 1 - base address in register I
I base address I I I
I status I 3 I 0 - do not retain base address in register I
I I I 1 - retain base address in register I

~--------------------+-----------+--~
I I 4 I 0 - base address in storage I
I Operand 3 I I 1 - base address in register I
I base address I I I
I status I 5 I 0 do not retain base address in register I
I I I 1 - retain base address in register I

~--------------------+-----------+--~
I I 6 I 0 - operand in storage I
I Operand 2 I I 1 - operand in register I
I status I I I
I I 7 I 0 do not retain operand in register I
I I I 1 - retain operand in register I
~--------------------+-----------+--~
I I 8 I 0 - operand in storage I
I Operand 3 I I 1 - operand in register I
I status I I I
I I 9 I 0 - do not retain operand in register I
I I I 1 - retain operand in register I
~--------------------+-----------+--~
I I 10 I 0 base address in storage I
I Operand 1 I I 1 - base address in register I
I base address I I I
I status I 11 I 0 do not retain base address in register I
I I I 1 - retain base address in register I

~--------------------+-----------+--~
I I 12 I 0 - generate store into operand 1 I
I Operand 1 I I 1 - do not generate store into operand 1 I
I status I I I

~--------------------+-----------+--~
I I 13 I not used I
I I 14 I 1 - divide item actually MOD function. If FC=44 I
I I I or 15, load addresses precede. I
I I 15 I 1 - .QXX temporary created for this item I
L--------------------~-----------~--J

146

Branch Operator (B)

.-~~~~~~~-4 bytes~~~~~~~~~•

r---1
I Chain I
~--------------------T----------T---------~
I Status !Branch I Mode I
I I operator I I
~-----T-----T--------L----------L---------~
I Rl I I Pl I
~-----+-----+-----------------------------~
I I I I
~-----+-----+-----------------------------~
I I I I
~-----L-----L-----------------------------~
I I
L-----------------------------~----------J

Logical Branch Operators (BT, BF)

.-~~~~~~~-4 bytes~~~~~~~~~•

r---1
I Chain I
~--------------------T----------T---------~
I Status !Logical I Mode I
I I branch I I
I I operator I I
~-----T-----T--------i----------~---------~
I R 1 I I Pl I
~-----+-----+-----------------------------~
I R2 IB2 IP2 I
~-----+-----+-----------------------------~
I I I I
L-----L-----L-----------------------------J

Binary Operators (+, -, *• /, OR, and AND)

.-~~~~~~~-4 bytes~~~~~~~~~•

r---1
I Ch<lin I
~--------------------T----------T---------~
I Status !Binary I Mode I
I I operator I I
~-----T-----T--------L----------L---------~
I Rl IBl IPl I
~-----+-----+-----------------------------~
I R2 IB2 IP2 I
~-----+--~-+-----------------------------~
I R3 IB3 IP3 I
L-----L-----L--~------~-----------------J

Pl: The Pl field contains a pointer to the
statement number/array table entry for the
statement number branched to.

Note: Phase 25 decides if an RR or an RX
branch instruction should be generated.

Pl: The Pl field contains a pointer to the
statement number/array table entry for the
statement number being branched to.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

Note: The test of the logical variable
will be done with a BXH or BXLE for BT and
BF, respectively.

Appendix B: Intermediate Text 147

Test and Set Operators (GT, LT, GE, LE, EQ,
and NE)

--~~~~~~~-4 bytes~~~~~~~~--

r----------------------------~-----------,

I Chain I
~--------------------T----------T---------~
I Status !Test and I Mode I
I I set I I
I I operator I I
~-----T-----T--------i----------i---------~
IR1 IB1 IP1 I
~-----+-----+-----------------------------~
I R2 IB2 IP2 I
~-----+-----+-----------------------------~
I R3 IB3 IP3 I
L-----i-----i-----------------------------J
In-line Functions (MAX2, MIN2, DIM, IDIM,
DMOD, MOD, AMOD, DSIGN, SIGN, ISIGN, LAND,
LOR, LCOMPL, IDIM, BITON, BITOFF, AND, OR,
COMPL, MOD24, SHFTR, and SHFTL)

--~~~~~~~4 bytes~~~~~~~~----

r---1
I Chain I
~--------------------T----------T---------~
I Status I Function I Mode I
I I operator I I
~-----T-----T--------i----------i---------~
I R1 IB1 IP1 I
~-----+-----+-----------------------------~
I R2 IB2 IP2 I
~-----+-----+-----------------------------~
I R3 IB3 IP3 I
~-----+-----+-----------------------------i
I I I I L _____ i _____ i-----------------------------J

Testing a Byte Logical Variable (LDB)

--~~~~~~~4 bytes~~~~~~~~--

r---1
I Chain I
~--------------------T----------T---------~
I Status I LDB I Mode I
I I operator I I
~-----T-----T--------i----------i---------i
I R 1 IB1 I I
~-----+-----+-----------------------------i
I R2 IB2 I I
~-----+-----+-----------------------------i
I R3 IB3 I I
L-----i-----i-----------------------------J

148

Note: The LDB operator is used to load a
register with a byte logical variable.

Branch on Index Low or Equal, or Branch on
Index High

---~~~~~-4 bytes~~~~~~-.

r---------------------------------1
I Chain I
~----------------T--------T-------~
I Status !Add !Mode I
I I operator I I
~-----T-----T----i--------L-------~
I Rl I Bl I Pl I
~-----+-----+---------------------~
I R2 I B2 I P2 I Text
~-----+-----+---------------------~ Entry
I R3 I B3 I P3 I
L-----i-----i---------------------J

--~~~~~~4 bytes~~~~~~-.

r---------------------------------1
I Chain I
~----------------T--------T-------~
I Status !Branch !Mode I
I I operator I I
~-----T-----T----i--------i-------~
I R 1 I I Pl I
~-----+-----+---------------------~
I R2 I B2 I P2 I Text
~-----+-----+---------------------~ Entry 2
I R3 I B3 I P3 I
L-----i-----i---------------------J

Computed GO TO Operator

--~~~~~~~~4 bytes~~~~~~~~~-

r---1
I Chain I
~--------------------T----------T---------~
I Status !Computed !Mode I
I IGO TO I I
I I operator I I
~-----T-----T--------i----------i---------~
I Rl I I Pl I
~-----+-----+-----------------------------~
I I IP2 I
~-----+-----+-----------------------------~
I R3 I IP3 I
L-----i-----i-----------------------------J

Note: A BXHLE instruction will be
generated by phase 25 when an add operator
is followed by a branch operator.

Pl and P2 of text entry 1 equals P2 of
text entry 2.

E...!= The Pl field of text entry 2 contains
a pointer to the statement number/array
table entry for the statement number being
branched to.

Pl: Pl contains the number of items in the
branch table that are associated with the
computed GO TO operator.

P2: P2 contains a pointer to the informa
tion table entry for the branch table.

P3: P3 contains a pointer to the indexing
value for the computed GO TO statement.

Appendix B: Intermediate Text 149

Branch Operators (BL, BLE, BE, BNE, EGE,
BG, BLZ, BLEZ, BEZ, BNEZ, BGEZ, and BGZ)

--~~~~~~~-4 oytes~~~~~~~~~-

r---1
I Chain I
t--------------------T----------T---------~
I Status !Branch !Mode I t-----T _____ T ________ i __________ i---------~

I Rl IB1 f Pl I
t-----+-----+-----------------------------~
I R2 IB2 IP2 I
t-----+-----+-----------------------------~
I R3 IB3 IP3 I
L _____ i _____ i-----------------------------J

Binary Shift Operators (RS, LS)

--~~~~~~~~4 bytes~~~~~~~~~ ...
r---1
I Chain I
t--------------------T----------T---------~
I Status !Binary !Mode I
I I shift I I
I I operator I I
t-----T-----T--------i----------L---------~
I Rl IB1 IP1 I
t-----+-----+-----------------------------~
I R2 IB2 IP2 I
t-----+-----+-----------------------------~
I I !Shift quantity I
L _____ i _____ i-----------------------------J

Load Address Operator (LA)

--~~~~~~~-4 bytes~~~~~--~~~ ...
r---1
I Chain I
t--------------------T----------T---------~
I Status !Load !Mode I
I I address I I
I !operator I I
t-----T-----T--------i----------L---------~
I Rl IB1 IP1 I
t-----+-----+-----------------------------~
I R2 I B2 I Pl I
t-----+-----+-----------------------------~
I R3 IB3 IP3 I t-----i _____ i _____________________________ ~
I Displacement I
L---J

150

Pl: The Pl field contains a pointer to the
statement number/array table entry for the
statement number being branched to.

Note: Operands 2 and 3 must oe compared
before the branch. For the BLZ, BLEZ, BEZ,
BNEZ, BGEZ, and BGZ operators, operand 3 is
zero and a test on zero is generated.

Note: The purpose of the load address
operator is to store an address of an ele
ment of an array in a parameter list. If
bit 7 of the status field is 1, the LA
stores the last argument into the parameter
list.

The P1 field points to a dictionary entry
which points to the adcon table.

LA (14) is always followed by CALL (15) or
a library function (44) •

Subscri~t Text Entry - Case 1

--~~~~~~~~4 bytes~~~~~~~~~-+-

r---1
I Chdin I
r--------------------T----------T---------~
I Status !Subscript !Mode I
I I operator I I
r-----T _____ T ________ i __________ i---------~
I Rl IBl IPl I
r-----+-----+-----------------------------~
I R2 132 IP2 I
~-----+-----+-----------------------------~
I R3 IB3 IP3 I
r-----i-----i-----------------------------~
I Displacement I
l ___ J

Subscript Text Entry - Case 2

--~~~~~~~~4 bytes~~~~~~~~~--

r--,
I Chain I
r--------------------T----------T---------~
I Status !Subscript !Mode I
I I operator I I
~-----T-----T--------i----------i---------~
I I I Pl I
r-----+-----+-----------------------------~
I R2 IB2 IP2 I
r-----+-----+-----------------------------~
I R3 IB3 IP3 I
r-----i-----i-----------------------------~
I Displ9cement I l ___ J

In-line routines (DABS, ABS, IABS, IDINT,
INT, HFIX, DFLOAT, FLOAT, DBLE)

--~~~~~~~~·4 bytes~~~~~~~~~--

r---1
I Chain I
r--------------------T----------T---------~
I Status I Operator I Mode I
r-----T-----T--------i----------L---------~
I Rl IBl IPl I
r-----+-----+-----------------------------~
I R2 IB2 IP2 I
r-----+-----+-----------------------------~
I I !Not used I
l-----i-----i _____________________________ J

P2: The P2 field contains a pointer to the
dictionary entry for the variable being
indexed.

P3: The P3 field contains a pointer to the
dictionary entry for the indexing value
unless the indexing value is a constant;
then P3 * 0 and the displacement field con
tains a displacement.

Note: For Case 2 subscript text entries,
the subscript text entry is combined with
the next text entry to form a single RX
instruction. ~ase 2 will be formed by
phase 15 only when the second text entry
has the store operator. Phase 20 will
change Case 1 text entries to Case 2 text
entries when appropriate.)

Pl is zero and either P2 or P3 of the
next text entry will be zero.

If the operator of the next text entry
is a store, the subscript applies to Pl.
If the next operator is not a store, the
subscript applies to operand = O.

If the next operator is a 'LIST,' the
subscript applies to P1 for READ or to P2
for WRITE.

Appendix B: Intermediate Text 151

EXT and LIBF Operators

--~~~~~~~~4 bytes~~~~~~~~~--

r----------------~-----------------------,

I Chain I
~--------------------T----------T---------~
I Status !Operator !Mode I
~----T------T--------i----------i---------~
I R1 I B1 I P1 I
~----+------+-----------------------------~
I R2 I B2 IP2 I
~----+------+-----------------------------~
I R3 I B3 IP3 I L ____ i ______ i _____________________________ J

Arguments for Functions and Calls

.-~~~~~~~~4 bytes~~~~~~~~~-.

r---1
I Chain I
~--------------------T----------T---------~
I Status I Argument I Mode I
I I operator I I
~-----T-----T--------i----------i---------~
I I I P1 I
~-----+-----+-----------------------------~
I I I P2 I
~~---+-----+-----------------------------~
I · I I P3 (for complex) I
L-----i-----i-----------------------------J

Special Argument Text Entry for Complex
Statements

--~~~~~~~~4 bytes~~~~~~~~~-.

r---1
I Chain I
~--------------------T----------T---------~
I Status !Argument !Mode I
I I operator I I
~-----T _____ T ________ i __________ i---------~

I R1 I B1 I I
~-----+-----+-----------------------------~
I I I 1
~-----+-----+-----------------------------~
I I I I
L-----i-----i-----------------------------J

152

P1: P1 is zero for the EXT operator of a
subroutine c'all.

P2: The P2 field contains either a pointer
to the dictionary entry for an external
function or a subroutine name, or a pointer
to the IFUNTB entry for a library function.

P3: The P3 field contains either zero or a
symbolic register number and a displacement
that points to the object-time parameter
list of the external function, library
function, or subroutine.

Note: No registers are needed for this
type of text entry.

For calls and ABNORMAL functions, P1 =
P2. For NORMAL functions and library func
tions, P1 = O.

See the next text entry for the case of
complex statements.

Note: For complex statements, the first
text entry of the argument list contains
the register information for the imaginary
part of the complex result.

Assigned GO TO Operator (BA)

--~~~~~~~-4 bytes~~~~~~~~~•

r---1
I Chain I
t--------------------T----------T---------~
I Status !Assigned !Mode I
I IGO TO I I
I I operator I I
t-----T-----T--------i----------i---------~
I I I I
t-----+-----+-----------------------------~
I R2 IB2 IP2 I
t-----+-----+-----------------------------~
I I I I
L-----i-----i-----------------------------J

READ/WRITE Operators for I/O lists

READ

--~~~~~~~-4 bytes~~~~~~~~---;~

r---1
I Chain I
t--------------------T----------T---------~
I Status !READ !Mode I
I I operator I I
t-----T-----T--------i----------i---------~
I Rl IBl IPl I
!-----+-----+-----------------------------~
I I I I
t-----+-----+-----------------------------~
I I I P3 I
L-----i-----i-----------------------------J

WRITE

--~~~~~~~-4 bytes~~~~~~~~~•

r---1
I Chain I
t--------~----------T----------T---------~
I Status I WRITE I Mode I
I I operator I I
f-----T-----T--------i----------i---------~
I R 1 I Bl I l
t-----+-----+-----------------------------~
I I IP2 I
t-----+-----+-----------------------------~
I I I P3 I
L-----i-----i-----------------------------J

P2: The P2 field contains a pointer to the
variable being used in the assigned GO TC
statement.

Pl: The Pl field contains a pointer to the
I/O list for the READ statement. If this
is an indexed ·READ, R1 is the register to
be used.

Note: If the P3 field contains a zero, an
entire array is being read. This causes a
different instruction sequence to be
generated.

P2: The P2 field contains a pointer to the
I/O list for the WRITE statement. R1 and
B1 are the index and base registers to be
used for the WRITE.

Note: If the P3 field contains a zero, an
entire array is being written. ~his causes
a different instruction sequence to be
generated.

Appendix B: Intermediate Text 153

Logical Branch Operators (BBT, BBF)

--~~~~~~~~4 bytes~~~~~~~~~--

r---1
I Chain I
r--------------------T----------T---------~
I Status !Logical !Mode I
I !Branch I I
I I operator I I
r-----T-----T--------i----------i---------~
I R 1 I I P1 I
r-----+-----+-----------------------------~
I IB2 I P2 I
r-----+-----+-----------------------------~
I I I P3 I l _____ i _____ i _____________________________ J

LBIT Operator

--~~~~~~~~4 bytes~~~~~~~~~---

r---1
I Chain I
r--------------------T----------T---------~
I Status I LBIT I Mode I
I I operator I I
r-----T-----T--------i----------i---------~
I R1 IB1 IP1 I
r-----+-----+-----------------------------~
I IB2 I P2 I
r-----+-----+-----------------------------~
I I I P3 I l _____ i _____ i _____________________________ J

154

P1: The P1 field contains a pointer to the
statement number/array table entry for the
statement number being branched to.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
l::eing tested.

P3: The P3 field contains a pointer to the
dictionary entry for the number of the bit
being tested.

P2: The P2 field contains a pointer to the
dictionary entry for the logical variable
being tested.

P3: The P3 field contains a pointer to the
dictionary entry for the number of the bit
being tested.

The mdjor arrays of the compiler are the
bit strip and skeleton arrays, which are
used by phase 25 during code generation.
The following figures illustrate the bit
strip and skeleton arrays associated with
the operators of text entries that undergo
code generation. The skeleton array for
each operator is illustrated by a series of
assembly language instructions, consisting
of a basic operation code, which is modi
fied to suit the mode of the operands, and
operands, which are in coded form. The
operand codes and their meanings are as
follows:

Bn--base register for operand n

BD--nase· register used for loading an
operand's base address

Rn--operational register for operand n

X--index register when necessary

To the right of the skeleton array for
an operator is"the nit strip array for the
operator. Each bit strip in the bit strip
array consists of a vertical string of O's,
1's, and X's. A particular strip is
selected according to the status informa
tion, which is shown above that strip. For
example, if the combined status of operands
2 and 3 is 101 0 (reading downward) , the bit
strip below that status is to be used dur
ing code generation. (The status of
operand 2 is indicated in the first two
vertical positions, reading downward; the
status of operand 3 is indicated in the
second two vertical positions, reading
downward 1) • The meanings of the various
bit settings in each bit strip are as
follows:

0--The associated skeleton array
instruction is not to be included
as part of the machine code
sequence. If a horizontal line
containing all zeros appears after
an instruction in a skeleton, zero
may be changed to a one to perform
the desired function. This typic
ally happens for base register
loads and result stores.

1--The associated skeleton array
instruction is to be included as
part of the machine code sequence.

1 In some cases, operand 3 does not exist
and only the status of operand 2 is
indicated.

APPENDIX C: ARRAYS

X--The associated skeleton instruc
tion may or may not be included as
part cf the machine code sequence,
depending upon whether or not the
associated base address is to be
loaded, or whether or net a store
into operand 1 is to be performed.

IEKVPL: Used for All Subtract Operations
r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~
I 00000000111111111
I 00001111000011111
I 0011001100110011 I
I 01010101010101011

I
1 L B2,D(0,BD) XXXXXXXXOOOOOOOOI
2 LH R2,D(0,B2) 00001111000000001
3 LB R 1 , D (X, B 2) 1100 0 0 0 0 0 0 0 0 0 0 0 0 I
4 L B3,D(O,BD) xxooxxooxxooxxoo1
5 LCR R3,R3 00100010000000101
6 LR R1,R2 00001101000011011
7 LH R3,D(0,B3) 01000100010001001
8 ILCR R1,R3 00010000000000001
9 !SH R1,D(X,B3) 10001000100010001

10 ISR R1,R3 01000101011101011
11 IAH R3,D(X,B2) 00100000000000001
12 IAH R1,D~,B2) 00010000000000001
13 IAR R3,R2 00000010000000101
14 IL B1,D(O,Bm XXXXXXXXXXXXXXXXI
15 jSTH R1,D(O,B1) XXXXXXXXXXXXXXXXI

L-----i------------------i----------------J

IEKVTS: Used for the INT, IDINT, IFIX, and
HFIX In-Line Routines

r-----T------------------T----------------1
I I I INT, I
I I I IFIX, I
I I Skeleton I HFIX IDINTI
I Index I Instructions I Status Status I
~-----+------------------+----------------~
I I I 0011 0011
I I I 0101 0101
I I I
I 1 ISDR 0,0 I 1111 0000
1 2 IL B2,o(o,Bm 1 xxoo xxoo
I 3 ILD R2,D (0,B2) I 0100 0100
I 4 ILD 0,D (0,B2) I 1000 1000
I 5 ILDR 0,R2 I 0111 0111
I 6 I AW 0, 6 0 (0, 1 2) I 1111 1111
I 7 IS'ID 0,64(0,13) I 1111 1111
I 8 IL R1,68(0,13) I 1111 1111
I 9 IBALR 15,0 I 1111 1111
I 10 !BC 10,6(0,15) I 1111 1111
I 11 ILNR R1,R1 I 1111 1111
I 12 IL B1,D(0,BD) I xxxx xxxx
I 13 ISTH R1,D(0,B1) I xxxx xxxx
L _____ i------------------i----------~----

Appendix C: Arrays 155

IEKVAD: Used for the ABS, IABS and DABS IEKVFP: Used for the SHFTR and SHFTL In-
In-Line Routines Line Routines

r---------T--------------------T----------1 r-----T------------------T----------------1
I I Skeleton I I I I Skeleton I I
I Index I Instructions I Status I I Index I Instructions I Status I
~---------+--------------------+----------~ r-----+------------------+----------------~
I I I o o 11 I I 0000000011111111
I I I o 1o1 I I 0000111100001111
I I I I I 0011001100110011
I 1 I L B2,D (0,BD) I xxoo I I 0101010101010101
I 2 I LH R2,D(0,B2) I 1100 I I
I 3 I LPR R 1, R2 I 1111 I I 1 L B2,D (0,BD) xxxxxxxxoooooooo
I 4 I L B 1 , D (0, BD) I xxxx I I 2 L R2,D2 (X,B2) 1111111100000000
I 5 I STH R1 ,D (0,B1) I xxxx I I 3 LR R1,R2 0000111100001111 l _________ i ____________________ i __________ J

1 4 L B3,o(o,Bm xxooxxooxxooxxoo
I 5 LH R3,D3 (X,B3) 1100110011001100
I 6 SRL R1,0(0,R3) 1111111111111111

IEKVFP: Used for the MOD24 In-Line Routine 1 1 L B1,nco,Bm xxxxxxxxxxxxxxxx
r---------T--------------------T----------1 I 8 ST R 1, D (0, B 1) xxxxxxxxxxxxxxxx I
I I Skeleton I I L-----L------------------i----------------J
I Index I Instructions I Status I
~---------+--------------------+----------~ IEKVAr::: Used for the DBLE In-Line Routines
I I I oo 11 I r---------T--------------------T----------1
I I I o 1o1 I I I Skeleton I I
I I I I I Index I Instructions I Status I
I 1 I L B2,D (0,BD) I xxoo I r---------+--------------------+----------~
I 2 IL R2,D(X,B2) I 1100 I I I I oo 11 I
I 3 I LA R1,0(0,R2) I 1111 I I I I o 1o1 I
I 4 IL B1,D(0,BD) I xxxx I I I I I
I 5 I ST R1 ,D (0,B1) I xxxx I 1 1 1 L B2,o(o,Bm 1 xxoo 1 L _________ i ____________________ i __________ J

I 2 I SOR R1,R1 I 1111 I
I 3 I LER O,R2 I 0010 I
I 4 I LE R1,D(O,B2) I 1100 I

IEKVTS: Used for the MAX2 and MIN2 In-Line I 5 I LER R2,R1 I 0100 I
Routines I 6 I LDR R1,0 I 0010 I

r-----T------------------T----------------1 I 7 I LER R1,R2 I 0001 I
I I Skeleton I I I 8 I L B 1, D (0, BD) I xxxx I
I Index I Instructions I Status I I 9 I STD R1,D (0,B1) I xxxx I
~-----+------------------+----------------~

l _________ i ____________________ i __________ J

I 10000000011111111
I 10000111100001111 IEKVTS: Used for DIM and IDIM In-Line
I 10011001100110011 Routines
I 10101010101010101 r-----T------------------T----------------1
I I I I Skeleton I I

1 IL B2,D (O,BD) 1xxxxxxxxoooooooo I Index I Instructions I Status I
2 ILH R2,D(O,B2) 10000111100000000 r-----+------------------+----------------~
3 ILH R1,D(O,B2) 11100000000000000 I I 10000000011111111
4 ICR R1,R2 10000001000000010 I I 10000111100001111
5 ICH R3,D (0,B2) I 0001000000000000 I I 10011001100110011
6 ICH R1 ,D (0,B2) I 0010000000000000 I I 10101010101010101
7 IL B3,D(O,Bm 1xxooxxooxxooxxoo I I I
8 LH R3,D(O,B3) 10100010001000100 I 1 IL E2,D(0,BD) IXXXXXXXXOOOOOOOO
9 CR R2,R3 10100010101110101 I 2 ILH R2,D(O,B2) 10000111100000000

10 CH R2,D(0,B3) 10000100000001000 I 3 ILH R1,D(0,B2) 11101000000000000
11 CH R1,D(O,B3) 11000000010000000 I 4 ILCR R1,R3 10010001000000010
12 LR R1,R2 10000110100001101 I 5 IAH R1,D(O,B2) 10010000000000000
13 LR R1,R3 10001000000000000 I 6 IL B3,D(O,Bm 1xxooxxooxxooxxoo
1 4 BALR 1 5, 0 I 1111111111 111111 I 7 ILH R3,D(0,B3) 10100010001000100
1 5 BC N, 6 (0, 1 5) 1 I 1111111111 111111 I 8 [LR R1,R2 10000110100001101
16 LR R1,R2 10000001000000010 I 9 I SH R 1,D (0, B3) 11000100010001000
17 LR R1,R3 10100010101110101 I 10 IAR R1,R2 10000001000000010
18 LH R 1,D (0, B2) I 0011000000000000 I 11 ISR R1,R3 10101010101110101
19 LH R1,D (0,B3) I 1000100010001000 I 12 IBALR 15,0 11111111111111111
20 L B1,D(O,Bm 1xxxxxxxxxxxxxxxx I 13 IBC 10,6(0,15) 11111111111111111
2 1 STH R 1 , D (0, B 1) I xxxxxxxxxxxxxxxx I 14 ISR R1,R1 I 11111111111111111

~-----i------------------L----------------~ I 15 IL B1,D(O,BD) 1xxxxxxxxxxxxxxxx1
l 1 For MAX2,N=2; for MIN2,N=4. I I 16 ISTH R1,D(O,B1) 1xxxxxxxxxxxxxxxx1
L---J L-----L-------~---------L----------------J

156

IEKVTS: Used for SIGN, ISIGN, and DSIGN
In-Line Routines

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
r-----+------------------+----------------~
I 10000000011111111
I 10000111100001111
I 10011001100110011
I 10101010101010101
I I
I 1 L B2,D (0,BD) fXXXXXXXXOOOOOOOO
I 2 LH R2,D(O,B2) 0000111100000000
I 3 LTR R3,R3 0010001000100010
I 4 LH R1,D(O,B2) 1111000000000000
I 5 L B3,D(0,BD) xxooxxooxxooxxoo
I 6 LH R3,D (0,B3) 0100010001000100
I 7 LR R1,R2 0000001000000010
I 8 LPR R1,R2 0000110100001101
I 9 LPR R1,R1 1101000011010000
I 10 ILTR R3,R3 0101010101010101
I 11 I™ 128,D(0,B3) 1000100010001000
I 1 2 I BALR 1 5 , 0 1 11 11 111 1 1 1 1 11 11
I 13 IBC 14,6(0,15) 1000100010001000
I 14 I BC 1 0, 6 (0, 15) 01110 1110 1110 111
I 1 5 I LNR R 1 , R 1 1111111111 1111 11
I 16 IBC 15,12 (0,15) 0010001000100010
I 17 ILPR R1,R1 0010001000100010
I 18 IL B1,D(0,B~ xxxxxxxxxxxxxxxx
I 19 I STH R 1 , D (0, B 1) xxxxxxxxxxxxxxxx I L _____ i __________________ i ________________ J

IEKVAD: Used for DMOD and AMOD In-Line
Routines

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
r-----+------------------+----------------~

I 10000000011111111
lb 10000111100001111
I 10011001100110011
I 10101010101010101
I I

1 IL B2,D (O,BD) 1xxxxxxxxoooooooo
2 ILD R2,D(0,B2) 10000111100000000
3 ILD R1,D(O,B2) 11111000000000000

ISTD R1,Temp 1 ldone by IEKVAD
·4 IL B3,D(O,B~ 1xxooxxooxxooxxoo
5 ILD R3,D(0,B3) 0100010001000100
6 ILDR R1,R2 0000111111111111
7 IDDR R1,R3 0111011101110111
8 IDD R1,D(O,B3) 1000100010001000
9 IAD Rl,n(0,12) 11111111111111111

10 IMDR R1,R3 01110111011101111
11 IMD R1,D(O,B3) 10001000100010001
12 ILCDR Rl,Rl 11111111111111111
i3 fAD R1,D(0,B2) 1 11111111000000001
14 fADR R1,R2 00000000111111111
15 IL B1,D(0,BD) XXXXXXXXXXXXXXXXI
16 fSTD R1,D(0,B1) XXXXXXXXXXXXXXXXI

r-----+------------------+----------------~
1~when the statuses and base address sta- I
I tuses of operands 2 and 3 are zero, a I
I store of operand 2 into a temporary will!
I be done as indicated and the add will bel
I from the temporary location. I
L---J

IEKVAD: Used for COMPL and LCOMFL In-Line
Routines

r---------T--------------------T----------1
I I Skeleton I I
I Index I Instructions I Status I
~---------+--------------------+----------~

I 0011
I 0101
I 0000
I 0000
I

1 L B2,D(0,BD) I xxoo
2 L R2,D(O,B2) I 0100
3 LA R 1 , 1 (0, 0) I 1101
4 LCR R 1,R1 I 1111
5 x R1,D2 (X,B2) I 1000
6 XR R1,R2 I 0101
7 BCTR R1,0 I 0010
8 L B1,D(O,BD) I xxxx
9 ST R1,D(O,B1) I xxxx

L---------i--------------------i----------

IEKVUN: Used for NOT Operations
r---------T--------------------T----------1
I I Skeleton I I
I Index I Instructions I Status I
~---------+--------------------+----------~
I I I 0011
I I I o 1o1
I I I
I 1 I L B2,D (0,BD) I xxoo
I 2 I LA R 1, 1 (0, 0) I 1101
I 3 I BCTR R1,0 I 0010
I 4 I LCR R 1 , R 1 I 0 0 1 0
I 5 I x R 1 , D (X , B 2) I 1 0 0 0
' 6 I L R2,D2 (0,B2) I 0100
I 7 I XR R1,R2 I 0101
I 8 I L B1,D(0,BD) I xxxx
I 9 I ST R1,D(0,B1) I xxxx L _________ i ____________________ i _________ _

IEKVEL: Used for All Branch True and
Branch False Cperations

r-----T-----------------T-----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+-----------------+-----------------~
I I 10000000011111111 I
I I 10000111100001111 I
I I 10011001100110011 I
I I 10101010101010101 I
I I I I
I 1 IL B2,D (0,BD) I 0000000000000000 I
I 2 IL R2,D(O,B2) 11111111100000000 I
I 3 ISR R3,R3 11100110011001100 I
I 4 IL B 1, D (0, BD) 11111111111111111 I
I 5 IBXH R2,0 (R3,B1) i1111111111111111*1
I 6 I BXLE R2, 0 (R3, B 1) I 1111111111111111 *I
~-----+-----------------+-----------------~
l*One of these two instructions will be l
ladded to the bit strip by subroutine I
IMAINGN-IEKTA depending on the oi:;eration. I
L---J

Appendix C: Arrays 157

IEKVUN: Used for All Load Address
Operations

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+-~-------------1
I 100000000111111111
I 100001111000011111
I 100110011001100111
I 101010101010101011
I I I
I 1 L B3,D(0,BD) 100000000000000001
I 2 LH R3,D(0,B~ 111001100110011001
I 3 L B2,D(0,BD) 100000000000000001
I 4 LA R 1 , D (R3 , B2) I 1111111111 1 11111 I
I 5 L B1,D(0,BD) 100000000000000001
I 6 ST R1,D(O,B1) 111111111111111111
I 7 LA 0,128(0,0) 100000000000000001
I 8 MVI 128,D(O,Bl) 100001111000000001 l _____ i __________________ i ________________ J

IEKVUN: Used for All Load Byte Operations
r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------1
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
I I I I
I 1 IL B3,D(0,BD) 100000000000000001
I 2 ISR R3,R3 111111111000000001
I 3 I IC R3, D (X, B3) I 1111111111111111 I
I 4 IL B1,D(0,BD) 100000000000000001
I 5 IST R3,D (0,Bl) I 00000000000000001 L _____ i __________________ i ________________ J

I IEKVPL: Used for all Half-Word Integer
Division Operations and for the
MOD In-Line Routine

r-----T------------------T------------~--1

I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------1

I 00000000111111111
I 00001111000011111
I 00110011001100111
I 01010101010101011

I
1 L B2,D(0,BD) 00000000000000001
2 LH R2,D(O,B2) 00001111000000001
3 LH R1,D(0,B~ 11110000000000001
4 L B3,D(0,BD) 00000000000000001
5 LH R3,D(X,B3) 11001100110011001
6 LR R1,R2 00001111000011111
7 SRDA R 1 , 3 2 (0, 0) 11111111111111111
8 DR R1,R3 11111111111111111
9 D R1,D(X,B3) 00000000000000001

10 L B1,D(0,BD) 00000000000000001
I 11 STH R1+1,D(0,B1) 00000000000000001
I 12 STH R1,D(0,B1)* 00000000000000001
~-----+------------------+-~-------------1
I* For MOD in-line routine only. I l ___ J

158

IEKVSU: Used for Case 1 and Case 2 Sub-
script Operations

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
·-----i------------------i----------------1
I Case 1 I
~-----T------------------T----------------1
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 10101010101010101 I
~-----+----------~------+----------------1
I 1 IL B3 ,D (0,BD) I 0000000000000000 I
I 2 ILH R3,D(0,B3) 111001100000000001
I 3 IL B2,D (0,BD) I 0000000000000000 I
I 4 ILH R2,D(O,B2) 111111111000000001
I 5 IL B1 ,D (0,BD) I 0000000000000000 I
I 6 ISTH R2,D(0,B1) 100000000000000001
·-----i------------------L----------------1
I Case 2 I
~-----T------------------T----------------1
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
·-----+------------------+----------------1
I 1 IL B3,D(O,BD) 100000000000000001
I 2 ILH R3,D(0,B3) 111001100110011001
I 3 IL B2 ,D (0,BD) I 0000000000000000 I
I 4 ILH R2,D(0,B~ 100000000000000001
I 5 IL Bl,D(O,BD) 100000000000000001
I 6 ISTH R2,D (0,B1) I 0000000000000000 I
L-----i------------------i----------------J
IEKVUN: Used for All Unary Minus

Operations
r-----T----------------~T----------------1

I I Skeleton I I
I Index I Instructions I Status I
·-----+----------~----~+--------~------1
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
I I I I
I 1 IL B2,D (0,BD) I 0000000000000000 I
I 2 ILH R2,D2(X,B2) 111111111000000001
I 3 ILCR R1,R2 111111111111111111
I 4 IL B1 ,D (0,BD) I 0000000000000000 I
I 5 ISTH R1,D1 (X,B1) 100000000000000001
L-----i----------------~i----------------J

IEKVBL: Used for All Assigned GC TO
Operations

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
·-----+------------------+----------------1
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
I I I I
I 1 IL B2,D (0,BD) 1·00000000000000001
I 2 IL R2,D(0,B2) 111111111000000001
I 3 IBCR 15,R2 111111111111111111
L-----i--------~--------i----------------J

IEKVBL: Used for All Computed GO TC
Operations

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B3,D(O,BD) 0000000000000000
2 L R3,D3(0,B3) 1100110011001100
3 LR R1,R3 0101010101010101
4 LA R2, P 1 (0, 0) 1111111111111111
5 CLR R1,R2 1111111111111111
6 BALR R2 , 0 1111111111111111
7 SLL Rl,2(0,0) 1111111111111111
8 BC 2,14(0,R2) 1111111111111111
9 L R2 , D (R 1 , B) 1111111111111111

10 BCR 15,R2 1111111111111111
L-----i------------------i----------------J

IEKVSU: Used for All Store Operations
r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
I I I I
I 1 IL B2,D(0,BD) 100000000000000001
I 2 ILH R2,D(0,B2) 111111111000010001
I 3 IL B1 ,D (0,BD) I 00000000000000001
I 4 ISTH R2,D(X,B1) 100000000000000001
L-----i------------------~----------------J

IEKVTS: Used for the FLOAT and DFLOAT In-
Line Routines

r---------T--------------------T----------1
I I Skeleton I I
I Index I Instructions I Status I
~--~------+--------------------+----------~

I 0011 I
I 0101 ~

I
1 I L B2,D (0,BD) xxoo
2 I LH R2,D (O,B2) 1100
3 I LD Rl,60(0,12) 1111
4 I STD R1,72(0,13) 1111
5 I LTR R2,R2 1111
6 I BALR 15,0. 1111
7 I BC 4, 16 (0, 1 5) 1111
8 j ST R2,76(0,13) 1111
9 I AD Rl,72(0,13) 1111

10 I BC 15,26(0,15) 1111
11 I LPR 0,R2 1111
12 I ST 0 I 16 (0, 13) 1111
13 I SD Rl,72(0,13) 1111
14 I L B1 ,D (0,BD) xxxx
15 I STD R1,D (0,B1) xxxx

L-------~i------------~------i __________ J

I IEKVPL: Used for All Fixed. Point Multipli-
cation Operations

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~
I 100000000111111111
I 00001111000011111
I 00110011001100111
I 01010101010101011
I I
I 1 L B2,D (0,BD) 0000000000000000 I
I 2 LH R2,D(O,B2) 00001111000000001
I 3 LH R1,D(X,B2) 11000000000000001
I 4 L E3,D(0,BD) 00000000000000001
I 5 LH R3,D(0,B3) 01000100010001001
I 6 LR R1,R2 00001101000011011
I 7 LR R1,R3 00010000000000001
I 8 MR R1-1,R3 01000101011101011
I 9 MR R1-1,R2 00000010000000101
I 10 MH R1,D(X,B3) 10001000100010001
I 11 MH R1 ,D (X,B2) I 0011000000000000 I
I 12 L Bl,D(O,BD) 100000000000000001
I 13 STH R1 ,D (0,Bl) I 0000000000000000 I
L-----i------------------i----------------J

IEKVAD: Used for the AND and OR In-Line
Routines

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~
I I 100000000111111111
I I 100001111000011111
I I 100110011001100111
I I 101010101010101011
I I I I
I 1 IL B2,D(0,BD) 100000000000000001
I 2 I L R 1 , D (X, B 2) 11111 111111111111 I
I 3 IL B3,D (0,BD) I 00000000000000001
I 4 IN R 1, D (X, B3) 11111111111111111 I
I 5 IL B 1 ,D (0 ,BD) I 0000000000000000 I
I 6 IST R1,D(0,B1) 111111111111111111
L-----i-----------~-----i----------------J

IEKVSU: Used for All Right- and Left-Shift
Operations

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

I 0000000011~111111
I 00001111000011111
I 00110011001100111
I 01010101010101011
I I

1 IL B2,D(O,BD) 00000000000000001
2 ILH R2,D(0,B2) 11111111000000001
3 ILR R1,R2 00001111000011111
4 ISRA R1,P3(0,0) 11111111111111111
5 IHDR R1,R2 00000000000000001
6 IL B1,D(0,BD) 00000000000000001
7 I STH Rl ,D (0,B1) 0000000000000000 I

L-----i------------------i----------------J

Appendix C: Arrays 159

I IEKVPL: Used for all Full-Word Integer
Division Operations and for the
MOD In-Line Routine

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

00000000111111111
00001111000011111
00110011001100111
01010101010101011

I
1 L B2,D(0,BD) 00000000000000001
2 LH R2,D(O,B2) 00001111000000001
3 LH R1,D(0,B2) 11110000000000001
4 L B3,D(0,BD) 00000000000000001
5 LH R3,D(X,B3) 01000100010001001
6 LR R1,R2 00001111000011111
1 SRDA R 1 , 32 (0, 0) 1111111111111111 I
8 DR R1,R3 01110111011101111
9 D R1,D(X,B3) 10001000100010001

10 L B1,D(0,BD) 00000000000000001
11 STH R1+1,D(O,B1) 00000000000000001
12 STH R1,D(O,B1) * 00000000000000001

~-----i------------------i----------------~
I* For MOD in-line routine only. I
L---J

I IEKVTS: Used to Compare Operands Across a
Relational Operator and Set the
Result to True or False

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

10000000011111111
10000111100001111
10011001100110011
10101010101010101
I

1 L B2,D(0,BD) 10000000000000000
2 LH R2,D(X,B2) 11111111100000000
3 L B3,D(O,BD) 10000000000000000
4 LH R3,D(0,B~ 10100010001000100
5 CH R2,D(X,B3) 11000100010001000
6 CR R2,R3 10111011101110111
7 LA R1,1(0,0) 11111111111111111
8 BALR 15,0 11111111111111111
9 BC M,6(0,15) 11111111111111111

10 SR R1,R1 11111111111111111
11 L B1,D(0,BD) !0000000000000000
12 ST R1,D(0,B1) j0000000000000000j _____ i __________________ i ________________ J

160

I IEKVUN: Used for All Logical Operations
r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+----------~------+----------------~
I I 10000000011111111
I I 10000111100001111
I I 0011001100110011
I I 0101010101010101
I I
I 1 IL B2,D(0,BD) 0000000000000000
I 2 IL R2,D(O,B2) 0000111100000000
I 3 IL Rl ,D2 (0,B2) 1101000000000000
t 4 IL B3,D(0,BD) 0000000000000000
I 5 IL R3,D(O,B3) 0100010001000100
I 6 IL R1,D3 (X,B3) 0000100000001000
I 7 ILR R1,R2 0000010100000101
I 8 INR R1,R2 00001010000010101
I 9 INR R1,R3 01010101011101011
I 10 IN R1,D2 (0,B2) 00100000000000001
I 11 IN R1,D3(X,B3) 10000000100000001
I 12 IL Bl,D (0,BD) 00000000000000001
I 13 IST R1,D1 (0,Bl) 00000000000000001
L-----i------------------i----------------J

I IEKVPL: Used for All Addition Operations
and for Real Multiplication and
Division Operations

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

00000000111111111
00001111000011111
00110011001100111
01010101010101011

I
1 L B2,D(O,BD) 00000000000000001
2 LH R2,D(O,B2) 00001111000000001
3 LH R1,D~,B2) 11010000000000001
4 L B3,D(0,BD) 00000000000000001
5 LH R3,D(O,B3) 01000100010001001
6 LH R1,D(X,B3) 00000000000000001
7 LR R1,R2 00001101000011011
8 AR R1,R2 00000000000000001
9 AR R1,R3 01010101011101011

10 IAH R1,D(X,B2) 00100000000000001
11 IAH Rl,D~,B~ 10001000100010001
12 IL B1,D (0,BD) 00000000000000001

I 13 I STH R1 ,D (0,Bl) 0000000000000000 I ~ _____ ..._ _________________ i ________________ ~

!Note: For real multiplication and divi- I
jsion operations, the basic operation I
!codes will be replaced by the required I
!codes. I
L---J

I IEKVBL: Used for Text Entries Whose Opera- I IEKVEL:
tor is a Relational Operator

Used for Text Entries Whose Opera
tor is a Relational Cperator
Operating on One Operand and Zero Operating on Two Nonzero Operands

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~

0000000011111111
0000111100001111
0011001100110011
0101010101010101

1 L B2,D(0,BD) 0000000000000000
2 LH R2,D(O,B2) 1111111100000000
3 L B3,D(0,BD) 0000000000000000
4 LH R3,D~,B~ 0100010001000100
5 CH R2,D(X,B3) 1000100010001000
6 CR R2,R3 0111011101110111
7 LTR R2,R2 0000000000000000
8 L R1,P1 1111111111111111
9 BCR M,Rl 11111111111111111 l _____ i __________________ i ________________ J

r-----T------------------T----------------1
I I Skeleton I I
I Index I Instructions I Status I
~-----+------------------+----------------~
I 00000000111111111
I 00001111000011111
I 00110011001100111
I 01010101010101011
I I
I 1 L E2,D (0,BD) 00000000000000001
I 2 LH R2,D(O,B2) 11111111000000001
I 3 L B3,D(0,BD) 00000000000000001
I 4 LH R3,D(X,B3) 00000000000000001
I 5 CH R2,D(X,B3) 00000000000000001
I 6 CR R2,R3 00000000000000001
I 7 LTR R2,R2 11111111111111111
I 8 L R1,P1 11111111111111111
I 9 BCR M,Rl 11111111111111111 l _____ i __________________ i ________________ J

IEKVFP: Used for the LBIT, BBT, and BBF In-Line Routines
r-------T-----------------------T---------------------------TT--------------------------1
I I I BBT,BBF 11 LBIT I

I I ~---------------------------++--------------------------~
I I Skeleton I sirople sutscripted I I simple sutscripted I
I Index I Instructions I variable variable II variable variable I

~-------+-----------------------+---------------------------++--------------------------~
1 L B2,D(0,BD) x x x x I
2 LA 15,D+N/8(X,B2) 0 1 0 1 I
3 TM M,D+N/8(B2) 1 0 1 0 I
4 TM M, 0 (15) 0 1 0 1 I
5 TM M,D+N/8(R2) 0 0 0 0 I
6 L 15,Pl 1 1 0 0 I
7 BCR MM,15 1 1 0 0 I
8 BALR 15,0 0 0 1 1 I
9 LA Rl,1(0,0) 0 0 1 1 I

1 0 BC 1 , 1 0 (0, 1 5) 0 0 1 1 I
11 SR R1,R1 0 0 1 1 I
12 L Bl,D(O,BD) 0 0 x x I
13 ST R1,D(0,B1) 0 0 x x I

~-~----i _______________________ i ___________________________ ii __________________________ ~

I N = The bit to be loaded or tested. I
I I
IM MSKTBL(MOD(N,8)+1). MSKTBL is an array of masks used by IEKVFP. I
I I
I MM 1 FOR BBT. I
I I
I MM 8 FOR BBF. I
l--~------------------------------------J

Appendix C:· Arrays 161

APPENDIX D: TEXT OPTIMIZATION EXAMPiES

This appendix contains examples that illustrate the effects of text optiroization on
sample text entry sequences. An exarople is presented for each of the five sections of
text optimization.

Example 1: Common Expression Elimination

This example illustrates the concept of corr.man expression elimination. The text
entries in block A are to undergo corrrr.on expression elimination. Block B is a tack
dominator of block A. Block B contains text entries that are common to those in block A.

(1)
Block B

n=l*4
T2 = J * 12
T3 =Tl + T2
T4 = X (s T3
A = T4+ Y

...

Block A

T7 =I * 4
T8 = J • 12
T9=T7+T8
no= x (s T9
a= no+ z

Eliminate
T9=n+T2

B

A

Eliminate
T7=1 *4

(4)

Unchanged

~

TIO= X (s T3
s =no+ z

B

A

(2)

Unchanged

T8 = J • 12
T9=Tl+T8
no= x (s T9
a= no+ z

•.

Eliminate
no= x (s T3

NOTE: The items Ti are temporaries and (s represents a subscript operator

162

B

A

Eliminate
TS=J * 12

(5)

Unchanged

B = T4 + Z

(3)
B

Unchanged

-
A

T9=Tl+T2
no= x (s T9
s =no+ z

Example 2: Backward Movement

This example illustrates both methods of backward movement. The text entries in
block A are to undergo backward movement. Block E is the back target of the loop
containing block A.

(1) (2)
Block 8 8

E = W + Z E = W + Z

Tl =A+B
Move Move

I Tl=A+B I T2=Tl +C

A

B

A

X=E+U
Tl=A+B
T2=Tl+C
E=T2+D

(3)

E = W + Z

Tl=A+B
T2=Tl+C

--.. l
X = E + U

E=T2+D

Move the
expression
T2 + D

A

X=E+U

T2=Tl+C
E = T2 + D

(4)
8

..
E = W+ Z
..
Tl=A+B
T2=Tl +C
Tj=T2+D

A l
..
X=E+U

E = Tj

NOTE: The text entry X = E + U cannot be moved, because its operand 2 is
defined elsewhere in the loop. The text entry E = T2 + D cannot be
moved, because operand 1 (E) is busy-on-exit from the back target;
however, the expression T2 + D can be moved.

Appendix D: Text Optimization Examples 163

Example 3: Simple-Store Elimination

The following example illustrates the concept of simple-store elimination, an
integral part of the processing of backward movement.

r---1
I I
I I
I I
I (1J c2i I
I I
I I
I Z=X A=X+B I
I A=Z+B D=F*X I
I D = F * Z Eliminate Z = X X = 2 * M I
I X=2*M Z=Y/4 I
I Z=Y/4 I
I N=Z+G I
I N=Z+G I
I I
I I
I I
I I
~---~
I Note: Uses of operand 1 of the simple store that appear below the redefinition of I
I either operand of the simple store are not replaced. I
L---J

164

Example 4: Strength Reduction

This example illustrates both methods of strength reduction. In the example,
strength reduction is applied to a DO loop. The evolution of the text entries that
represent the DO loop, and the functions of these text entries are also shown. The
formats of the text entries in all cases are not exact. They are presented in this
manner to facilitate understanding.

Consider the DO loop:

I=3
DO 10 J=1,3
A=X (I,J)

10 CONTINUE

As a result of the processing of phases 10 and 15, and tackward movement, the DO loop
has been converted to the following text representation.

Back
rarget

r----------------T--------------------T---1
I Text Entry I Function I Evolution I
----------------+--------------------+---~

I = 3 Initializes I Stated in source module, converted to

J

T1 I * 4

Initializes J

phase 10 text and then to phase 15 text.
It resided in the tack target of the

loop because of text blocking.

Generated phase 10 text entry, converted
to phase 15 text entry. It resided in the
back target of the loop because of text
blocking.

Multiplies first Generated by phase 15 when it encounters
subscript parameter the subscript parameter I during its pro-
by its dimension cessing of phase 10 text. It resides in

!factor the back target of the loop as a result
I of the processing of backward movement.

----------------+--------------------+---~
Y T2 = J * 12 !Multiplies second Generated by phase 15 when it encounters

T3

A

J

!subscript parameter the subscript parameter J during its pro-
lby its dimension cessing of phase 10 text.
I factor.
I

T1 + T2 !Computes index value Generated by phase 15 after the last sub
script parameter in the phase 10 text
representation of the subscripted vari
able has been processed.

lfor the subscripted
!variable X.
I
I

X (s T3 !Stores X(I,J) into A The phase 10 text entry forced and con
verted to phase 15 text after the index
value for the subscripted variable has
been established.

I
I
I
I

J + 1 !Increments DC index. Generated by phase 10 and converted to
I phase 15 text representation.
I

IF(J~3)GOTO YITests DO index Generated by phase 10 and converted to
!against its maximum !phase 15 text representation.
land controls branch-I
I ing. I I

----------------i--------------------i---~
!Note: The statement number Y is generated by phase 10. Also, it is assumed I
!that the array Xis of the form X(3,3) and that its elements are real (length I
14> • I
L---J

Ap_r:;endix D: 'Iext Optimization Examples 165

The following figure illustrates the application of strength reduction to the loop.

(I)

. . . .

. . . .

. . . .

. . ..

. . ..
I= 3
J = 1
Tl=1*4

r-=l_
Y T2 = J * 12

T3=Tl+T2
A=X(sT3
J=J+l
IF (J 5. 3) GOTOY

LJ

166

Eliminate
Multiplicative
Text fram Loo p

(2)

....

. ...

....

. ...
1=3
J = 1
Tl=1*4
M = J * 12

13
YT3=Tl+M

A=X(sT3
M = M + 12
IF (Ms 36) GOTOY

L_J

Eliminate
Additive
Text from Loop

(3)

1=3
J = 1
T1=1*4
M = J * 12
N=36+M
P=Tl+M

YA=X(sP
p = p + 12
IF (P 5. N) GOTOY

This appendix describes the logic of
some of the object-time library subprograms
that may be referenced by the FORTRAN load
module. Included at the end of this appen
dix are flowcharts that descrite the logic
of the subprograms.

Each object module, compiled from a FOR
TRAN source module, must be processed ty
the linkage editor prior to execution on
the IBM System/360. The linkage editor
must combine certain FORTRAN library sub
programs with the object module to form an
executable load module. The library sub
programs exist as separate load modules on
the FORTRAN system library (SYS1.FORTLIB).
Each library subprogram that is externally
referred to by the object module is
included in the load module by the linkage
editor. Among the library subprograms that
may be so referred to are:

• IHCFCOMH (object-time I/O source state
ment processor) - entry name IBCOM#.

• IHCFIOSH (object-time sequential access
I/O data management interface) - entry
name FIOCS#.

• IHCNAMEL (object-time namelist rou
tines) - entry names FRDNL# and FWRNL#

• IHCDIOSH (object-time direct access I/O
data management interface) - entry name
DIOCS#.

• IHCIBERH (object-time source statement
error processor) - entry name IBERH#.

• IHCFCVTH (object-time conversion rou
tine) - entry name ADCCN#.

• IHCDBUG 1 ~bject-time Debug Facility
support routine) - entry name DEBUG#.

• IHCTRCH (object-time terminal error
message and diagnostic traceback rou
tine) - entry name IHCTRCH.

• IHCADST (object-time boundary adjust
ment routine) - entry name IHCADJST.

IHCFCOMH receives I/O requests from the
FORTRAN load module via compiler-generated

1 The FORTRAN IV (H) compiler does not have
the code generation facilities for DEBUG
statements. The discussion is included
because the FORTRAN G compiler (which does
include DEBUG) and the FORTRAN H compiler
share a common library.

APPENGIX E: OBJECT-TIME LIBRARY SUBPROGRAMS

calling sequences. IHCFCOMH, in turn, sub
mits these requests to the appropriate data
management interface (IHCFIOSH or
IHCDIOSH) •

IHCFIOSH receives sequential access
input/output requests from IHCFCCMH and, in
turn, submits those requests to the appro
priate BSAM (basic sequential access
method) routines for execution.

IHCDIOSH receives direct access input/
output requests from IHCFCCMH and, in turn,
submits those requests to the appropriate
BDAM (basic direct access method) routines
for execution.

If source statement errors are detected
during compilation, the compiler generates
a calling sequence to the IHCIBERH subpro
gram. IHCIEERH processes object-time
errors resulting from improperly coded
source statements. IHCFCVTH contains the
various object time conversion routines
required by IHCFCOMH and IHCNAMEL. ICHTRCH
processes terminal object-time error mes
sages and produces a diagnostic traceback
for IHCFCOMH. ICHADJST processes object
time specification exceptions if the boun
dary alignment option is specified by the
user during system generation.

IHCFCOMH

IHCFCOMH performs object-time implemen
tation of the following FORTRAN source
statements.

• READ and WRITE (for sequential I/O) •

• READ, FIND, and WRITE (for direct
access I/O) •

• BACKSPACE, REWIND, and ENDFILE (sequen
tial I/O device manipulation) •

• STOP and PAUSE (write-to-operatotj •

In addition, IHCFCOMH: (1) processes
object-time errors detected by various FOR
TRAN library subprograms, (2) processes
arithmetic-type program interruptions, and
(3) terminates load module execution.

All linkages from the load module to
IHCFCCMH are compiler generated. Each time
one of the above-mentioned source state
ments is encountered during compilation,
the appropriate calling sequence to IHCF
COMH is generated and is included as part
of the otject module. At object-time,

Appendix E: Otject-Tirne Library Subprograms 167

these calling sequences are executed, and
control is passed to IHCFCOMH to perform
the specified operation.

Note: IHCFCOMH itself does not perform the
actual reading from or writing onto data
sets. It submits requests for such opera
tions to the appropriate I/O data manage
ment interface (IHCFIOSH or IHCDIOSH) • The
I/O interface, in turn, interprets and sub
mits the requests to the appropriate access
method (BSAM or BDAM) routines for execu
tion. Figure 56 illustrates the relation
ship between IHCFCOMH and the I/O data
management interfaces.

Charts 23, 24, and 25 illustrate the
overall logic ·and the relationship among
the routines of IHCFCOMH. Table 36, the
IHCFCOMH routine directory, lists the rou
tines used in IHCFCOMH and their functions.

Submit
Sequential
Access I/O
Request to
IHCFIOSH

I/O

r---------,
I FORTRAN I
I Load I
I Module I
l ____ T ____ J

I
I
I

Request I
I

r------i------, r----------,
I IHCFCOMH I I IHCFCVTH I

I (Determine ~--~Conversion I
!Request type) I I Routines f
l-T---------r-J l----------J

I I
I I
I I
I I
I I
I I
I I
I I

Submit
Direct
Access I/O
Request to
IHCDIOSH

r-----------i-, r-i-----------,
I IHCFIOSH I I IHCDIOSH f
I (Sequential I I (Direct I

I Access I/O I I Access I/O I
I Interfac~ I I Interfac~ I
l.-------T _____ J l _____ T _______ J

I I
I I

Interpret I I Interpret
And submit I I And submit
Request to I I Request to

Appropriate
BSAM/BDAM

Appropriate I I
BSAM Routine I I

I I Routine
I I

r _____ i _____ , r-----i-----,
I BSAM I I BSAM/BDAM I

I Routines I I Routines I
l-----------J l ___________ J

Figure 56. Relationship Between IHCFCOMH
and I/O Data Management
Interfaces

168

The routines of IHCFCOMH are divided
into the following categories:

• Read/write routines.
• I/O device manipulation routines.
• Write-to-operator routines.
• Utility routines.

The read/write routines implement both
the sequential I/O statements (READ and
WRIT~ and the direct access I/C statements
~EAD, FIND, and WRITm • ~he direct

access FIND statement is treated as a READ
statement without format and list.)

The I/C device manipulation routines
implement the BACKSPACE, REWIND, and END
FILE source statements for sequential data
sets. These statements are ignored for
direct access data sets.

The write-to-operator routines implement
the STOP and PAUSE source statements.

The utility routines: (1) process
errors detected by FORTRAN library subpro
grams, (2) process arithmetic-type program
interrupts, and (~ terminate load module
execution.

READ/WRITE ROUTINES

The READ/WRITE routines of IHCFCOMH
implement the various types of READ/WRITE
statements of the FORTRAN IV language. For
simplicity, the discussion of these rou
tines is divided into two parts:

• READ/WRITE statements not using
NAMELIST.

• READ/WRITE statements using NAMELIST.

READ/WRITE Statements Not Using NAMELIST

For the implementation of both sequen
tial and direct access READ and WRITE
statements, the read/write routines of
IHCFCOMH consist of the following three
sections:

• An opening section, which initializes
data sets for reading and writing.

• An I/C list section, which transfers
data from an input buff er to the I/O
list items or from the I/O list items
to an output buffer.

• A closing section, which terminates the
I/O operation.

Within the discussion of each section, a
read/write operation is treated in one of
two ways:

• As a read/write requiring a format.
• As a read/write not requiring a format.

Note: In the following discussion, the
term "read operation" implies both the
sequential access READ statement and the
direct access READ and FIND statements.
The term "write operation" implies both the
sequential access WrtITE statement and the
direct access WRITE statement.

OPENING SECTION: The compiler generates a
calling sequence to one of four entry
points in the opening section of IHCFCOMH
each time it encounters a READ or WRITE
statement in the FORTRAN source module.
These entry points correspond to the opera
tions of read or write, requiring or not
requiring a format.

Read/Write Requiring a Format: If the
operation is a read requiring a format, the
opening section passes control to the
appropriate I/O data management interface
to initialize the unit number specified in
the READ statement for reading. (The unit
number is .passed, as an argument, to the
opening section via the calling sequence.)
The I/O interface: (1) opens the data con
trol block (via the OPEN macro instruction)
for the specified data set if it was not
previously opened, and (2) reads a record
(via the READ macro instruction) containing

data for the I/O list items into an I/O
buffer that was obtained when the data con
trol block was opened. The I/O interface
then returns control to the opening section
of IHCFCOMH. The address of the buff er and
the length of the record read are passed to
IHCFCOMH by the I/O interface. These
values are saved for the I/O list section
of IHCFCOMH. The opening section then
passes control to a portion of IHCFCOMH
that scans the FORMAT statement specified
in the READ statement. (The address of the
FORMAT statement is passed, as an argument,
to the opening section via the calling
sequence.) The first format code (either a
control or conversion type) is then
obtained.

For control type codes (e.g., an H for
mat code or a group count) , an I/O list
item is not required. Control passes to
the routine associated with the control
code under consideration to perform the
indicated operation. Control then returns
to the scan portion, and the next format
code is obtained. This process is repeated
until either the end of the FORMAT state
ment or the first conversion code is
encountered.

For conversion type codes (e.g., an I
format code), an I/O list item is required.
Upon the first encounter of a conversion
code in the scan of the FORMAT statement,
the opening section completes its proces
sing of a read requiring a format and

returns control to the next sequential
instruction within the load module.

The action taken by IHCFCOMH when the
various format codes are encountered is
illustrated in Table 31.

If the operation is a write requiring a
format, the opening section passes control
to the I/O interface to initialize the unit
number specified in the WRITE statement for
writing. (The unit number is passed, as an
argument, to the opening section via the
calling sequence.) The I/O interface opens
the data control block (via the OPEN macro
instruction) for the specified data set if
it was not previously opened. The I/O
interface then returns control to the open
ing section of IHCFCOMH. The address of an
I/C buffer that was obtained when the data
control block was opened is saved for the
I/O list section of IHCFCOMH. Subsequent
opening section processing, starting with
the scan of the FORMAT statement, is the
same as that described for a read requiring
a format.

Read/Write Not Requiring a Format: If the
operation is a read or write not requiring
a format, the opening section processing
except for the scan of the FORMAT statement
is the same as that described for a read or
write requiring a format. ~or a read or
write not requiring a format, there is no
FORMAT staterrent.)

I/C LIST SECTION: The compiler generates a
calling sequence to one of four entry
points in the I/O list section of IHCFCCMH
each time it encounters an I/C list item
associated with the READ or WRITE statement
under consideration. These entry points
correspond to a variable or an array list
item for a read and write, requiring or not
requiring a format. The I/O list section
performs the actual transfer of data from:
ill an input buffer to the list items if a

READ staterrent is being implemented, or (2)
the list items to an output buffer if a
WRITE staterrent is being implemented. In
the case of a read or write requiring a
format, the data must be converted before
it is transferred.

Read/Write Requiring a Format: In proces
sing a list item for a read requiring a
format, the I/O list section passes control
to the conversion routine associated with
the conversion code for the list item.
(The appropriate conversion routine is

determined by the portion of IHCFCOMH that
scans the FORMAT statement associated with
the READ statement. The selecticn of the
conversion routine depends on the conver
sion code of the list item being
processed.)

Appendix E: Object-Time Library Subprograms 169

Table 31. IHCFCOMH FORMAT Code Processing
r------------T--------------T----------T--1
I I I I I
!FORMAT Code !Description !Type !Corresponding Action Upon Code by IHCFCOMH I
I I I I I
~------------+--------------+----------+--~

n (

n

nP

Tn

nX

!beginning of control Save location for possible repetition of thel
!statement format codes; clear counters. I
I I
t I
group count control

field count control

scaling factor control

column reset control

skip or blank control

Save n and location
possible repetition
group.

of left parenthesis forl
of the format codes in thel

I
I
I

Save n for repetition of format code which!
follows. I

Save n for use by F, E, and D conversions.

I
I
I
I
I

Reset current position within record to nthl
column er byte. I

I
I

Skip n characters of an input record or insert nl
blanks in an output record. I

I
I

'text' or nH literal data control Move n characters from an input record to
FORMAT staterrent, or n characters from
FORMAT statement to an output record.

the
the

Fw.d
Ew.d
Dw.d
Iw
Aw

IGw.d
ILw
1zw
I
I
I
I
I
I
I>
I
I
I
I
I/
I
I
I
I
I
I
I
I

F -
E -
D -
I -
A -
G -
L -
z -

conversion conversion
conversion conversion
conversion conversion
conversion conversion
conversion conversion
conversion conversion
conversion conversion
conversion conversion

!group end control

record end control

end of control
statement

l

Exit to the load module to return control to
entries FICLF or FIOAF in IHCFCVTH. Using in
formation passed to the I/C list section, the
address and length of the current list item are
obtained and passed to the proper conversion
routine together with the current position in
the I/C buffer, the scale factor, and the values
of w and d. Upon return from the conversion
routine the current field count is tested. If
it is greater than 1, another exit is made to
the load module to obtain the address of the
next list item.

Test group count. If greater than 1, repeat
format codes in group; otherwise continue to
process FORMAT statement from current position.

Input or output one record via
and READ/WRITE macro instruction.

I/C Interface

!If no I/C list items remain to be transmitted,
!return control to the load module to link to the
!closing section; if list items remain, input or
!output one record using I/O interface and READ/
!WRITE macro instruction. Repeat forrrat codes!

I !from last parenthesis. I
L------------i--------------~----------i--------------------~-------~-----------------J

170

The selected conversion routine obtains
data from an input buff er and converts the
data to the form dictated by the conversion
code. The converted data is then moved
into the main storage address assigned to
the list item.

In general, after a conversion routine
has processed a list item, the I/O list
section determines if that routine can be
applied to the next list item or array ele
ment (if an array is being processed) • The
I/O list section examines a field count
that indicates the number of times a par
ticular conversion code is to be applied to
successive list items or successive ele
ments of an array.

If the conversion code is to be repeated
and if the previous list item was a vari
able, the I/O list section returns control
to the load module. The load module again
branches to the I/O list section and
passes, as an argument, the main storage
address assigned to the next list item.

The conversion routine that processed
the previous list item is then given con
trol. This procedure is repeated until
either the field count is exhausted or the
input data for the READ statement is
exhausted.

If the conversion code is to be repeated
and if an array is being processed, the I/O
list section computes the main storage
address of the next element in the array.
The conversion routine that processed the
previous element is then given control.
This procedure is repeated until either all
the array elements associated with a spe
cific conversion code are processed or the
input data for the READ statement is
exhausted.

If the conversion code is not to be
repeated, control is passed to the scan
portion of IHCFCOMH to continue the scan of
the FORMAT statement. If the scan portion
determines that a group of conversion codes
is to be repeated, the conversion routines
corresponding to those codes are applied to
the next portion of the input data. This
procedure is repeated until either the
group count is exhausted or the input data
for the READ statement is exhausted.

If a group of conversion codes is not to
be repeated and if the end of the FORMAT
statement is not encountered, the next for
mat code is obtained. For a control type
code, control is passed to the associated
control routine to perform the indicated
operation. For a conversion type code,
control is returned to the load module if
the previous list item was a variable. The
load module again branches to the I/O list
section and passes, as an argument, the

main storage address assigned to the next
list iterr. Control is then passed to the
conversion routine associated with the new
conversion code. The conversion routine
then processes the data for this list item.
If the data that was just converted was
placed into an element of an array and if
the entire array has not been filled, the
I/O·list section computes the main storage
address of the next element in the array
and passes control to the conversion rou
tine associated with the new conversion
code. The conversion routine then pro
cesses the data for this array element.
Subsequent I/O list processing for a READ
requiring a format proceeds at the point
where the field count is examined.

If the scan portion encounters the end
of the FORMAT statement and if all the list
items are satisfied, control returns to the
next sequential instruction within the load
module. This instruction (part of the cal
ling sequence to IHCFCOMH) branches to the
closing section. If all the list items are
not satisfied, control is passed to the I/O
interface to read (via the READ macro
instruction) the next input record. The
conversion codes starting from the last
left parenthesis are then repeated for the
remaining list items.

If the operation is a write requiring a
format, the I/O list section processing is
similar to that for a read requiring a for
mat. The main difference is that the
conversion routines obtain data from the
main storage addresses assigned to the list
items rather than from an input buffer.
The converted data is then transferred to
an output buffer. If all the list items
have not been converted and transferred
before the end-of-the FORMAT statement is
encountered, control is passed to the I/C
interface. The I/O interface writes (via
the WRITE macro instruction) the contents
of the current output buffer onto the out
put data set. The conversion codes start
ing from the last left parenthesis are then
repeated for the remaining list items.

Read/Write Not Requiring a Format: In pro
cessing a list item for a read net requir
ing a format, the I/O list section must
know the main storage address assigned to
the list iterr and the size of the list
item. Their values are passed, as argu
ments, via the calling sequence to the I/O
list section. The list item may be either
a variable or an array. In either case,
the number of bytes specified by the size
of the list item is moved from the input
buffer to the main storage address assigned
to the list item. The I/O list section
then returns control to the load module.
The load module again branches to the I/O
list section and passes, as arguments, the
main storage address assigned to the next

Appendix E: Object-Time Library Subprograms 171

list item and the size of the list item.
The I/0 list section moves the number of
bytes specified by the size of the list
item into the main storage address assigned
to this list item. This procedure is
repeated either until all the list 'items
are satisfied or until the input data is
exhausted. Control is then returned to the
load module.

If the operation is a write not requir
ing a format, the I/O list section proces
sing is similar to that described for a
read not requiring a format. The main dif
ference is that the data is obtained from
the main storage addresses assigned to the
list items and is then moved to an output
buffer. In addition, the segment length
(i.e., the number of bytes in the record

segment) and a code indicating the position
of this segment relative to other segments,
if any, of the logical record are inserted
in the segment control word.

CLOSING SECTION: The compiler generates a
calling sequence to one of two entry points
in the closing section of IHCFCCMH each
time it encounters the end of a READ or
WRITE statement in the FORTRAN source
module. The entry points correspond to the
operations of read and write, requiring or
not requiring a format.

Read/Write Requiring a Format: If the
operation is a read requiring a format, the
closing section simply returns control to
the load module to continue load module
execution. If the operation is a write
requiring a format, the closing section
branches to the I/O interface. The I/C
interface writes (via the WRITE macro
instruction) the contents of the current
I/O buffer (the final record) onto the out
put data set. The I/O interface then
returns control to the closing section.
The closing section, in turn, returns con
trol to the load module to continue load
module execution.

Read/Write Not Requiring a Format: If the
operation is a read not requiring a format,
the closing section branches to the I/O
interface. The I/O interface reads (via

172

the READ macro instruction) successive
records until the end of the logical record
being read is encountered. (A FORTRAN log
ical record consists of all the records
necessary to contain the I/C list items for
a WRITE statement not requiring a format.)
When the I/O interface recognizes the end
of-logical- record indicator, control is
returned to the closing section. The clos
ing section, in turn, returns control to
the load module to continue load module
execution.

If the operation is a write net requir
ing a format, the closing section inserts:
(1) the segment length (i.e., the number of
bytes in the record segment) and a code
indicating that this segment is either the
last or the only segment of the logical
record into the segment control word of the
I/C buffer to be written, and (2) an end
of-logical-record indicator into the last
record of the I/O buffer being written.
The closing section then branches to the
I/O interface. The I/C interface writes
(via the WRITE macro instruction) the con
tents of this I/O buff er onto the output
data set. The I/O interface then returns
control to the closing section. The clos
ing section, in turn, returns control to
the load module to continue load rrodule
execution.

Examf les of IHCFCOMH READ/WRITE Statement
Processing

The following examples illustrate the
opening section, I/O list section, and
closing section processing performed by
IHCFCOMH for sequential access READ and
WRITE statements, requiring or net requir
ing a format.

Note: IHCFCOMH processing for the direct
access READ, FIND, and WRITE staterrents is
essentially the same as that described for
the sequential access READ and WRITE state
ments. The main difference is that for
direct access statements, IHCFCCMH branches
to the direct access I/O interface (IHC
DIOSH) instead of to the sequential access
I/O interface (IHCFIOSH) •

READ REQUIRING A FORMAT:
performed by IHCFCOMH for
READ statement and FORMAT
illustrated in Table 32.

The processing
the following
statement is

READ (1,2) A,B,C
2 FORiii'JAT (3F12.6)

Table 32. IHCFCOMH Processing for a READ
Requiring a Format

r--------T--------------------------------1
!Opening 11. Receives control from load I
!Section I module and branches to IHC- I
I I FIOSH to initialize data set I
I I for reading. I
I I I
I 12. Passes control to scan por- I
I I tion of IHCFCOMH. I
I I I
I 13. Returns control to load I
I I module. I
~--------+--------------------------------~
II/O List 1. Receives control from load
!Section module, converts input data
I for A using IHCFCVTH, and
I moves converted data to A.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

I
I
I

2.

3.

4.

5.

j 6.

Returns control to load
module.

"Receives control
module, converts
for B, and moves
data to B.

from load
input data
converted

Returns control to load
module.

Receives control
module, converts
for C, and moves
data to c.

from load
input data
converted

Returns control to load
I I module.
~~------+--------------------------------~
!Closing 11. Receives control from load I
!Section I module and closes out I/C I
I I operation. I
I I I
I 12. Returns control to load I
I I module to continue load I
I I module execution. I
L~------1.--------------------------------J

WRITE REQUIRING A FORMAT: The processing
performed by IHCFCOMH for the fellowing
WRITE statement and FORMAT stateroent is
illustrated in Table 33.

WRITE (3, 2) (D (I) , I= 1, 3)
2 FORMAT (3F12.6)

Table 33. IHCFCOMH Processing for a WRITE
Requiring a Format

r--------T--------------------------------1
ICpening 11. Receives control from lead I
!Section I module and branches to IHC- I
I I FIOSH to initialize data setl
I I for writing. I
I I I
I 12. Passes control to scan por- I
I I tion of IHCFCOMH. I
I I I
I 13. Returns control to load I
I I module. I
~--------+--------------------------------~
I/C List 1. Receives control from load
Section module, converts D(1), and

moves D(1) to output buffer.

2. Returns control to load
module.

3. Receives control from load
module, converts D(2), and
moves D(2) to output buffer.

4. Returns control to load
module.

5. Receives control from load
module, converts D(3), and
moves D(3) to output buffer.

6. Returns control to load
module.

~--------+--------------------------------~
!Closing 11. Receives control from load I
!Section I module and branches to IHC- I
I I FIOSH to write contents of I
I I output buffer. I
I I I
I 12. Returns control to load I
I I module to continue load I
I I module execution. I
L--------~------------------------~------J

Appendix E: Object-Time Library Subprograms 173

READ NOT REQUIRING A FORMAT: The proces
sing performed by IHCFCOMH for the follow
ing READ statement is illustrated in Table
34.

READ (5) X,Y,Z

Table 34. IHCFCOMH Processing for a READ
Not Requiring a Format

r--------T--------------------------------1
!Opening J1. Receives control from load I
!Section I module and branches to IHC- I
I I FIOSH to initialize data setl
I I for reading. I
I I I
I 12. Returns control to load I
I I module. I
I I I
~--------+----------------------------~--~
I/O Listl1. Receives control from load
Section I module and moves input data

I to x.
I
12. Returns control to load
I module.
I
13.
I
I
I

Receives control from load
module and moves input data
to Y.

14. Returns control to load
I module.
I
I 5.
I
I
I

Receives control from load
module and moves input data
to z.

I 16. Returns control to load I
I I module. I
~--------+--------------------------------~
!Closing 11. Receives control from load I
!Section I module and branches to IHC- I
I I FIOSH to read successive I
I I records until the end-of- I
I I logical-record indicator is I
I I encountered. I
I I I
I 12. Returns control to load I
I I module to continue load I
I I module execution. I
L--------~--------------------------------J

174

WRITE NOT REQUIRING A FORMAT·: The proces
sing performed by IHCFCOMH for the follow
ing WRITE statement is illustrated in Table
35.

l'VRITE (6) (W (J) ,J=1, 10)

•Table 35. IHCFCOMH Processing for a WRITE
Not Requiring a Format

r--------T-----~-------------------------1
!Opening 11. Receives control from load I
!Section I module and branches to IHC- I
I I FIOSH to initialize data forl
I I writing. I
I I I
I 12. Returns control to load I
I I module. I
~--------+--~----------------------------~
II/O List11. Receives control from load
!Section I module and moves W(1) to
I I output buffer.
I I
I 12. Returns control to load
l I module.
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

3.

4.

5.

6.

Receives control from load
module and moves W(2) to
output buffer.

Returns control to load
module.

Receives control from load
module and moves W(10) to
output buffer.

Returns control to load
I module.
~--------+--------------------------------~
!Closing 11. Receives control from load I
!Section I module, inserts control I
I I information, and branches tol
I I IHCFIOSH to write contents I
I I of output buffer. I
I I I
I 12. Returns control to load I
I I module to continue load I
I I module execution. I
L--------~--------------------------------J

READ/WRITE Statement Using NAMELIST

Included in the calling sequence to
IHCNAMEL 1 generated by the compiler when it
detects a READ or WRITE using a NAMELIST is
a pointer to the object-time namelist dic
tionary associated with the READ or WRITE.
This dictionary contains the names and
addresses of the variables and arrays into
which data is to be read or from which data
is to be written. The dictionary also con
tains the information needed to select the
conversion routine that is to convert the
data to be placed into the variables or
arrays, or to be taken from the variables
and arrays.

READ USING NAMELIST: The data set contain
ing the data to be input to the variables
or arrays is initialized and successive
records are read until the one containing
the namelist name corresponding to that in
the namelist dictionary is encountered.
The next record is then read and processed.

The record is scanned and the first name
is obtained. The name is compared to the
variable and array names in the namelist
dictionary. If the name does not agree, an
error is signaled and load module execution
is terminated. If the name is in the dic
tionary, processing of the matched variable
or array is initiated.

Each initialization constant assigned to
the variable or an array element is
obtained from the input record. (One con
stant is required for a variable. A number
of constants equal to the number of ele
ments in the array is required for an
array. A constant may be repeated for suc
cessive array elements if appropriately
specified in the input record.) The appro
priate conversion routine is selected
according to the type of the variable or
array element. Control is then passed to
the conversion routine to convert the con
stant and to enter it into its associated
variable or array element.

The process is repeated for the second
and subsequent names in the input record.
When an entire record has been processed,
the next is read and processed.

Processing is terminated upon recogni
tion of the &END record. Control is then
returned to the calling routine within the
load module.

1 IHCNAMEL is included in the load module
only if reads and writes using NAMELISTs
appear in the compiled program. Calls are
made directly to FRDNL# (for READ) or to
FWRNL# (for WRITE} •

WRITE USING NAMELIST: The data set upon
which the variables and arrays are to be
written is initialized. The namelist name
is attained from the namelist dictionary
associated with the WRITE, moved to an I/O
buffer, and written. The processing of the
variables and arrays is then initiated.

Tpe first variable or array name in the
dictionary is moved to an I/O buffer fol
lowed by an equal sign. The appropriate
conversion routine is selected according to
the type of the variable or array elements.
Control is then passed to the conversion
routine to convert the contents of the
variable or the first array element and to
enter it into the I/C buffer. A comma is
inserted into the buff er following the ccn
verted quantity. If an array is being pro
cessed, the contents of its second and sub
sequent elements are converted, using the
same conversion routine, and placed into
the I/O buffer, separated by commas. When
all of the array elements have been pro
cessed or if the item processed was a vari
able, the next name in the dictionary is
obtained. The process is repeated for this
and subsequent variable or array names.

If, at any time, the record length is
exhausted, the current record is written
and processing resumes in the normal
fashion.

When the last variable or array has been
processed, the contents of the current
record are written, the characters &END are
moved to the buffer and written, and con
trol is returned to the calling routine
within the load module.

I/O Device Manipulation Routines

The I/O device manipulation routines of
IHCFCOMH implement the BACKSPACE, REWIND,
and END FILE source statements. These rou
tines receive control from within the load
module via calling sequences that are
generated by the compiler when these state
ments are encountered.

Note: The I/O device manipulation routines
apply only to sequential access I/O devices
(e.g., tape units). BACKSPACE, REWIND, and

ENDFILE requests for direct access data
sets are ignored.

The implerrentation of REWIND and END
FILE statements is straightforward. The
I/O device manipulation routines submit the
appropriate control request to IHCFIOSH,
the I/O interface module. After the
request is executed, control is returned to
the calling routine within the load module.

The BACKSPACE statement is processed in
a similar fashion. However, before control
is returned to the calling routine, it is

Appendix E: Object-Time Library Subprograms 175

determined whether the record backspaced
over is an element of a data set that does
not require a format. If the record is an
element of such a data set, that record is
read into an I/O buff er and the segment
control word is examined. If it indicates
that the record is the first or only seg
ment of the logical record, a backspace
control request is issued and control is
returned to the calling routine. If the
segment control word indicates that this is
the last or an intermediate segment, two
backspace control requests are issued to
backspace to the beginning of the preceding
record segment. This record is then read
in and its segment control word examined.
If it is still not the first segment, two
more backspace control requests are issued.
This process continues until the first seg
ment is read. Then a backspace control
request is issued and control is returned
to the calling routine. If the record is
not an element of such a data set, control
is returned directly to the calling
routine.

Write-to-Operator Routines

The write-to-operator routines of IHCF
COMH implement the STOP and PAUSE source
statements. These routines receive control
from within the load module via calling
sequences generated by the compiler upon
recognition of the STOP and PAUSE
statements.

STOP: A write-to-operator (WTO) macro
instruction is issued to display the mes
sage associated with the STOP statement on
the console. Load module execution is then
terminated by passing control to the pro
gram termination routine of IHCFCOMH.

PAUSE: A write-to-operator-with-reply
(WTOR) macro instruction is issued to dis
play the message associated with the PAUSE
statement on the console and to enable the
operator's reply to be transmitted. A WAIT
macro instruction is then issued to deter
mine when the operator's reply has been
transmitted. After the reply has been
received, control is returned to the cal
ling routine within the load module.

Utility Routines

The utility routines of IHCFCOMH perform
the following functions:

• Process object-time error messages.
• Process arithmetic-type program

interruptions.
• Process specification interruptions.
• Terminate load module execution.

PROCESSING OF ERROR MESSAGES: The error
message processing routine (IBFERR)
receives control from various FORTRAN

176

library subprograms when they detect ter
minal object-time errors.

Error message processing consists of
initializing the data set upon which the
message is to be written and of writing the
message and a diagnostic traceback. Con
trol is then passed to the routine for ter
minating load module execution.

PROCESSING OF INTERRUPTIONS: The interrupt
routine (IBFINT) of IHCFCOMH initially
receives control from within the load
module via a compiler-generated calling
sequence. The call is placed at the start
of the executable coding of the load module
so that the interrupt routine can set up
the program interrupt mask. Subsequent
entries into the interrupt routine are made
through specification or arithmetic-type
interruptions.

The interrupt routine sets up the pro
gram interrupt mask by means of a SPIE
macro instruction. This instruction speci
fies the type of interruptions that are to
cause control to be passed to the interrupt
routine, and the location within the rou
tine to which control is to be passed if
the specified interruptions occur. After
the mask has been set, control is returned
to the calling routine within the load
module.

In processing an interruption, the first
step taken by the interrupt routine is to
determine its type.

A. Arithmetic Interruptions: If exponen
tial overflow or underflow has occurred,
the appropriate indicators, which are
ref erred to by OVERFL (a library subpro
gram) , are set. If any type of divide
check caused the interruption, the indica
tor referred. to by DVCHK (also a library
subprogram) is set.

Regardless of the type of interruption
that caused control to be 1 given to the
interrupt routine, the old program PSW is
written out for diagnostic purposes.

After the interruption has been pro
cessed, control is returned to the inter
rupted routine at the point of
interruption.

B. Specification Interruptions: If an
interrupt is caused by a specification
exception and the boundary alignment option
was specified by the user during system
generation, the boundary adjustment routine
(IHCADJST) is loaded from the link library
(SYS 1.LINKLIB) •

This routine determines whether or not
the interruption was caused by an instruc
tion that referred to improperly aligned

data. If not, the routine causes abnormal
termination of the load module. If so, the
routine:

1. Causes message IHC210I, which contains
the main program PSW, to be generated.

2. Moves the misaligned data to a proper
ly aligned boundary.

3. Reexecutes the instruction that refers
to the data.

If no interruption occurs when the
instruction is reexecuted, the data is
moved back to its original location. If
there is a new condition code, it is placed
in the PSW of the Program Interruption Ele
ment (PIE) • The boundary adjustment rou
tine then returns control to the control
program, which loads the PSW of the PIE to
effect a return to the interrupted program.

If a d~vide check, exponential overflow
or underflow interruption occurs when the
instruction is reexecuted, the interruption
will be handled as described under "Arith
metic Interruptions."

If a data, protection, or addressing
interruption occurs when the instruction is
reexecuted, the boundary adjustment routine
generates :the message IHC210I. The PSW
information in this message gives the cause
of the interruption and the location of the
instruction in the main program that caused
the interruption. Then, since processing
cannot continue, the routine issues a SPIE
macro instruction to remove specification
interruptions from those interruptions
handled by this routine and reexecutes the
instruction. This causes abnormal termina
tion of the load module because of the ori
ginal specification error.

PROGRAM TERMINATION: The load module ter
mination routine (IBEXIT) of IHCFCO.MH
receives control from various library sub
programs (e.g., DUMP and EXIT) and from
other IHCFCOMH routines (e.g., the routine
that processes the STOP statement) •

This routine terminates execution of the
load module by the following means:

• Calling the appropriate I/O interface
(s) to check (via the CHECK macro
instruction) outstanding write
requests.

• Issuing a SPIE macro instruction with
no parameters indicating that the FOR
TRAN object module no longer desires to
give special treatment to program
interruptions and does not want mask
able interruptions to occur.

• Returning to the operating system
supervisor.

CCNVERSICN ROUTINES (IHCFCVTH)

The conversion routines (ref er to Table
37) either convert data to be placed into
I/C list items or convert data to be taken
from I/O list items.

These routines receive control either
from the I/O list section of IHCFCOMH dur
ing its processing of list items for READ/
WRITE statements requiring a format, from
the routines that process READ/WRITE state
ments using a NAMELIST, or from the DUMP
and PDUMP subprograms.

Each conversion routine is associated
with a conversion type format code and/or a
type. If an I/C list item for READ/WRITE
statement requiring a format is being pro
cessed, the conversion routine is selected
according to the conversion type f orroat
code which is to be applied to the list
item. If a list item for a READ/WRITE
using a NAMELIST is being processed, the
conversion routine is selected according to
the type of the list item.

If a READ statement is being imple
mented, the conversion routine obtains data
from the I/O buffer, converts it according
to its associated conversion type format
code or type, and enters the converted data
into the list item. The process is
reversed if a WRITE statement is being
implemented.

For the DUMP and PDUMP subprograms, the
format code parameter passed to them deter
mines the selection of the output conver
sion routine to be used to place the output
in the desired form.

IHCFICSH

IHCFIOSH, the object-time FORTRAN
sequential access input/output data manage
ment interface, receives I/C requests from
IHCFCOMH and submits them to the appropri
ate BSAM (basic sequential access method)
routines and/or open and close routines for
execution.

Chart 26 illustrates the overall logic
and the relationship among the routines of
IHCFIOSH. Table 38~ the IHCFIOSH routine
directory, lists the routines used in IHC
FIOSH and their functions.

BLOCKS AND TABLES USED

IHCFIOSH uses the following blocks and
table during its processing of sequential

Appendix E: Object-Time Library Subprograrrs 177

access input/output requests: (1) unit
blocks, and (2) unit assignment table. The
unit blocks are used to indicate I/O acti
vity for each unit number (i.e., data set
reference number) and to indicate the type
of operation requested. In addition, the
unit blocks contain skeletons of the data
event control blocks (DECB) and the data
control blocks (DCB) that are required for
I/O operations. The unit assignment table
is used as an index to the unit blocks.

Unit Blocks

The first reference to each unit number
(data set reference number) by an input/

output operation within the FORTRAN load
module causes IHCFIOSH to construct a unit
block for each unit number. The main
storage for the unit blocks is obtained by
IHCFIOSH via the GETMAIN macro instruction.
The addresses of the unit blocks are plac~
in the unit assignment table as the unit
blocks are constructed. All subsequent
references to the unit numbers are then
made through the unit assignment table.
Figure 57 illustrates the format of a unit
block for a unit that is defined as a
sequential access data set.

r-----T-----T-~--T-------1

IABYTEIBBYTEICBYTEILIVECNTI
~~---~-----~-----~-------~
!Address of Buffer 1 I
~-------------------------i Housekeeping
!Address of Buffer 2 I Section
~-------------------------~
!Current buffer pointer I
~-------------------------~
!Record offset I
~-------------------------~
IDECB skeleton section I
~-------------------------~
IDCB skeleton section I
L--------------------~---J
Figure 57. Format of a Unit Block for a

Sequential Access Data Set

Each unit block is divided into three
sections: a housekeeping section, a DECB
skeleton section, and a DCB skeleton
section.

HOUSEKEEPING SECTION: The housekeeping
section is maintained by IHCFIOSH. The
information contained in it is used to ind
icate data set type, to keep track of I/O
buffer locations, and to keep track of
addresses internal to the I/O buffers to
enable the processing of blocked records.
The fields of this section are:

• ABYTE. This field, containing the data
set type passed to IHCFIOSH by IHCF
COMH, can be set to one of the
following:

178

FO - Input data set requiring a format.
FF - Output data set requiring a

format.
00 - Input data set not requiring a

forrr:at.
OF - Output data set not requiring a

format.

• EBYTE. This field contains bits that
are set and examined by IHCFIOSH during
its processing. The bits and their
meanings are as follows:

Bit on

0 - exit to IHCFCOMH on I/O error
1 - I/O error occurred
2 - current buff er indicator
3 - not used
4 - end-of-current buffer indicator
5 - blocked data set indicator
6 - variable record format switch
1 - not used

• CBYTE. This field also contains bits
that are set and examined by IHCFIOSH.
The bits and their meanings are as
follows:

Bit on

0 - data control block opened
1 - data control block not TCLOSEd
2 - data control block not previously

opened
3 - buffer pool attached
4 - data set not previously rewound
5 - data set not previously backspaced
6 concatenation occurring -- reissue

REAI;
1 - data set is DUMMY

• LIVECNT. This field indicates whether
any I/O operation performed for this
data set is unchecked. (A value of 1
indicates that a previous read or write
has not been checked; a value of 0
indicates that all previous read and
write operations for this data set have
been checked.)

• Address of Buff er 1 and Address of
Buffer 2. These fields contain point
ers to the two I/O buffers ob~ained
during the opening of the data control
block for this data set.

• Current Buffer Pointer. This field
contains a pointer to the I/O buff er
currently being used.

• Record Offset. This field contains a
pointer to the current logical record
within the current buffer.

DECB SKELETON SECTION: The DECB (data
event control block) skeleton section is a
block of main storage within the unit

block. It is of the same form as the DECB
constructed by the control program for an L
form of an S-type READ or WRITE macro
instruction (refer to the publication IBM
System/360 Operating System: Supervisor-
and Data Management Macro Instructions) •
The various fields of the DECB skeleton are
filled in by IHCFIOSH; the completed block
is referred to when IHCFIOSH issues a read/
write request to BSAM. The read/write
field is filled in at open time. For each
I/O operation, IHCFIOSH supplies IHCFCOMH
with: (1) an indication of the type of
operation (read or write) , and (2) the
length of and a pointer to the I/O buffer
to be used for the operation.

DCB SKELETON SECTION: The DCB (data con
trol bloc~ skeleton section is a block of
main storage within the unit block. It is
of the same form as the DCB constructed by
the control program for a DCB macro
instruction under BSAM (refer to the publi
cation IBM System/360 Operating System:
Supervisor and Data Management Macro
Instructions) • The various fields of the
DCB skeleton are filled in by the control
program when the DCB for the data set is
opened (refer to the publication IBM
System/360 Operating System: Concepts and
Facilities). (Standard default values may
also be inserted in the DCB skeleton by
IHCFIOSH. Refer to "Unit Assignment Table"
for a discussion of when default values are
inserted into the DCB skeleton.)

Unit Assignment Table

The unit assignment table (IHCUATBL)
resides on the FORTRAN system library
(SYS1.FORTLIB). Its size depends on the

maximum number of units that can be
referred to during execution of any FORTRAN
load module. This number (2 99) is speci
fied by the user during the system genera
tion process via the FORTLIB macro
instruction.

The unit assignment table is designed to
be used by both IHCFIOSH and IHCDIOSH. It
is included once, by the linkage editor, in
the FORTRAN load module as a result of an
external reference to it within IHCFICSH
and/or IHCDIOSH.

The unit assignment table contains a 16
byte entry for each of the unit numbers
that can be referred to by the user. These
entries differ in format depending on
whether the unit has been defined as a
sequential access or a direct access data
set.

Figure 58 illustrates the format of the
unit assignment table.

r----------------------T----------T-------1
!Unit number (DSRm I I I
!being used for current! I I
!operation I 1 n x 16 14 bytes!
~--------T-------T-----i-T--------+-------~
I ERRMSG I READ I PRINT I PUNCH I I
I DSRN 2 I DSRN 3 I DSRN 4 I DSRN 5 14 bytes!
~--------i _______ i _______ i--------+-------~

IUBLOCK01 field 14 bytes!
~---------------------------------+-------~
IDSRN~l default values 18 bytes!
~---------------------------------+-------~
ILIST01 field 14 bytes!
~---------------------------------+-------~
I I I
I • I • I
I · I • I
I • I • I
I I I
~---------------------------------+-------~
IUBLOCKn field 6 14 bytes!
~---------------------------------+-------~
IDSRNn default values 7 18 bytes!
~---------------------------------+-------~
ILISTn field 8 14 bytes!
~---------------------------------+-------~
~n is the maximum number of units that I
can be referred to by the FORTRAN load I
module. The size of the unit table is I
egual to (8 + n x 16) bytes.

2 Unit nurrber (DSRN) of error output
device.

3 Unit number (DSRN) of input device for a
read of the form: READ E,list.

4 Unit number (DSRN) of output device for
a Frint operation of the form: PRINT
b,list.

5 Unit number (DSRN) of output device for
a Funch operation of the form: PUNCH
b,list.

6 The UBLOCKn field contains either a
pointer to the unit block constructed
for unit number n if the unit is being
used at object-time, or a value of 1 if

I the unit is not being used.
17 The default values for the various unit
I numbers are specified by the user and
I are assembled into the unit assignment
I table entries during the system genera
l ticn process. The default values are
I used only by IHCFIOSH; they are ignored
I ty IHCDIOSH.
IBif the unit is defined as a direct
I access data set, the LISTn field con-
1 tains a pointer to the parameter list
I that defines the direct access data set.
I Otherwise, this field contains a value I
I of 1. I
L---J
Figure 58. Unit Assignment Table Format

Because IHCFIOSH deals only with sequen
tial access data sets, the remainder of the
discussion on the unit assignment table is
devoted to unit assignment table entries
for sequential access data sets. If
IHCFIOSH encounters a reference to a direct
access data set, it is considered as an

Appendix E: Object-Time Library Subprograms 179

error, and control is passed to the load
module termination routine of IHCFCOMH.

The pointers to the unit blocks created
for sequential data sets are inserted into
the unit assignment table entries by IHC
FIOSH when the unit blocks are constructed.

Note: Default values are standard values
that IHCFIOSH inserts into the appropriate
fields (e.g., BUFNO) of the DCB skeleton
section of the unit blocks if the user
either:

• Causes the load module to be executed
via a cataloged procedure, or

• Fails, in stating his own procedure for
execution, to include in the DCB param
eter of his DD statements those sub
parameters (e.g., BUFNO) he is per
mitted to include (refer to the publi
cation IBM System/360 Operating System:
FORTRAN IV (H) Programmer's Guide).

Control is returned to IHCFIOSH during
data control block opening so that it can
determine if the user has included the sub
parameters in the DCB parameter of his DD
statements. IHCFIOSH examines the DCB
skeleton fields corresponding to user
permi tted subparameters, and upon encoun
tering a null field (indicating that the
user has not specified the subparameter) ,
inserts the standard value (i.e., the
default value) for the subparameter into
the DCB skeleton. (If the user has
included these subparameters in his DD
statement, the control program routine per
forming data control block opening inserts
the subparameter values, before giving con
trol to IHCFIOSH, into the DCB skeleton
fields reserved for those values.)

BUFFERING

All input/output operations are double
buffered. (The double buffering scheme can
be overridden by the user if he specifies
in a DD statement: BUFN0=1.) This implies
that during data control block opening, two
buffers will be obtained. The addresses of
these buffers are given alternately to
IHCFCOMH as pointers to:

• Buffers to be filled (in the case of
output) •

• Information that has been read in and
is to be processed (in the case of
input) •

COMMUNICATION WITH THE CONTROL PROGRAM

In requesting services of the control
program, IHCFIOSH uses L and E forms of

180

S-type macro instructions (ref er to the
publication IBM System/360 Operating Sys
tem: Supervisor and Data Management Macro
Instructions) •

OPERATION

The processing of IHCFIOSH is divided
into five sections: initialization, read,
write, device manipulation, and closing.
When called by IHCFCOMH, a section of IHC
FIOSH perforrrs its function and then
returns control to IHCFCOMH.

Initialization

The initialization action taken by IHt
FIOSH depends upon the nature of the pre
vious I/O operation requested for the data
set. The previous operation possibilities
are:

• No previous operation.
• Previous operation read or write.
• Previous operation backspace.
• Previous operation write end-of-data

set.
• Previous operation rewind.

NC PREVIOUS OPERATION: If no previous
operation has been performed on the unit
specified in the I/O request, the initiali
zation section generates a unit block for
the unit number. The data set to be
created is then opened (if the current
operation is not rewind or backspace) via
the OPEN macro instruction. The addresses
of the I/O buffers, which are obtained dur
ing the opening process and placed into the
DCB skeleton, are placed into the appropri
ate rields of the housekeeping section of
the unit block. The DECB skeleton is then
set to reflect the nature of the operation
(read or write) , the format of the records
to be read or written, and the address of
the I/O buffer to be used in the operation.

If the requested operation is a write, a
pointer to the buffer position, at which
IHCFCOMH is to place the record to be writ
ten, and the block size or logical record
length (to accommodate blocked logical
records) are placed into registers, and
control is returned to IHCFCOMH.

If the requested operation is a read, a
record is read, via a READ rracro instruc
tion, into the I/O buffer, and the opera
tion is checked for completion via the
CHECK macro instruction. A pointer to the
location of the record within the buffer,
along with the number of bytes read or the
logical record length, ~re placed into
registers, and control is returned to
IHCFCOMH.

Note: During the opening process, control
is returned to the IHCDCBXE routine in IHC
FIOSH. This routine determines if the data
set being opened is a 1403 printer. If it
is, the RECFM field in the DCB for the data
set is altered to machine carriage control
(FM). In addition, a pointer to the unit
block generated for the printer, and the
physical address of the printer are placed
into a control block area (CTLBLK) for the
printer within IHCFIOSH. CTLBLK also con
tains a third print buffer. This buffer is
used in conjunction with the two buffers
already obtained for the printer.

Figure 59 illustrates the format of
CTLBLK.

r-------------------------T---------1
CTLBLKla(BUF 3) I 4 bytes!

~-------------------------+---------~
la(unit block) I 4 bytes!
~-----------T-------------+---------~
I a (printer) I record length I 4 bytes I
~-----------~-------------+---------~
11 FTOO I 4 bytes!
~-------------------------+---------~
11 F001 I 4 bytes!
~-------------------------+---------~

BUF3 !third print buffer 1144 bytes!
~-------------------------~---------~
l 1 Used in the task input/output I
I table (TIOT) search. I
L-----------------------------------J

Figur€ 59. CTLBLK Format

PREVIOUS OPERATION READ OR WRITE: If the
previous operation performed on the unit
specified in the present I/O request was
either a read or write, the initialization
section determines the nature of the pres
ent I/O request. If it is a write, a
pointer to the buff er position, at which
IHCFCOMH is to place the record to be writ
ten, and the block size or logical record
length are placed into registers, and con
trol is returned to IHCFCOMH.

If the operation to be performed is a
read, a pointer to the buffer location of
the record to be processed, along with the
number of bytes read or logical record
length, are placed into registers, and con
trol is returned to IHCFCOMH.

PREVIOUS OPERATION BACKSPACE: If the pre
vious operation performed on the unit spe
cified in the present I/O request was a
backspace, the initialization section
determines the type of the present opera
tion (read or write) and modifies the DECB
skeleton, if necessary, to reflect the
operation type. (If the operation type is
the same as that of the operation that pre
ceded the backspace request, the DECB
skeleton need not be modified.) Subsequent
processing steps are the same as those
described for "No Previous Operation,"

starting at the point after the DECB skele
ton is set to reflect operation type.

PREVIOUS OPERATION WRITE END-CF-DATA SET:
If the previous operation performed on the
unit specified in the present I/C request
was a write end-of-data set, a new data set
using the same unit number is to be
created. In this case, the initialization
section closes the data set. Then, in
order to establish a correspondence between
the new data set and the DD statement
describing that data set, IHCFIOSH incre
ments the unit sequence number of the
ddname. (The ddname is placed into the
appropriate field of the DCB skeleton prior
to the opening of the initial data set
associated with the unit number.) During
the opening of the data set, the ddname
will be used to merge with the appropriate
DD statement. The data set is then opened.
Subsequent processing steps are the same as
those described for "No Previous Opera
tion," starting at the point after the data
set is opened.

PREVIOUS OPERATION REWIND: If the previous
operation performed on the unit specified
in the present I/O request was a rewind,
the ddname is initialized (set to FTxxF001)
in order to establish a correspondence
between the initial data set associated
with the unit number and the DD statement
describing that data set. The data set is
then opened. Subsequent processing steps
are the same as those described for "No
Previous Operation," starting at the point
after the data set is opened.

Read

The read section of IHCFIOSH performs
two functions: (1) reads physical records
into the buffers obtained during data set
opening, and (2) makes the contents of
these buffers available to IHCFCCMH for
processing.

If the records being processed are
blocked, the read section does not read a
physical record each time it is given con
trol. IHCFIOSH only reads a physical rec
ord when all of the logical records of the
blocked record under consideration have
been processed by IHCFCOMH. However, if
the records being processed are either
unblocked or of U-format, the read section
of IHCFIOSH issues a READ macro instruction
each time it receives control.

The reading of records by this section
is overlapped. That is, while the contents
of one buffer are being processed, a phys
ical record is being read into the other
buffer. When the contents of one buffer
have been processed, the read into the
other buffer is checked for completion.
Upon completion of the read operation, pro-

Appendix E: Object-Time Library Subprograms 181

cessing of that buffer's contents is
initiated. In addition, a read into the
second buffer is initiated.

Each time the read section is given con
trol it makes the next record availatle to
IHCFCOMH for processing. (In the case of
blocked records, the record presented to
IHCFCOMH is logical.) The read section of
IHCFIOSH places: (1) a pointer to the
record's location in the current I/O buff
er, and (2) the number of bytes read or
logical record length into registers, and
then returns control to IHCFCOMH.

Write

The write section of IHCFIOSH performs
two functions: (1) writes physical rec
ords, and (2) provides IHCFCOMH with buffer
space in which to place the records to te
written.

If the records being written are
blocked, the write section does not write a
physical record each time it is given con
trol. IHCFIOSH only writes a physical rec
ord when all of the logical records that
comprise the blocked record under consi
deration have been placed into the I/O
buffer by IHCFCOMH. However, if the rec
ords being written are either unblocked or
of U-format, the write section of IHCFIOSH
issues a WRITE macro instruction each time
it receives control.

The writing of records by this section
is overlapped. That is, while IHCFCOMH is
filling one buffer, the contents of the
other buff er are being written. When an
entire buffer has been filled, the write
from the other buffer is checked for com
pletion. Upon completion of the write
operation, IHCFCOMH starts placing records
into that buffer. In addition, a write
from the second buff er is initiated.

Each time the wri~e section is given
control, it provides IHCFCOMH with buffer
space in which to place the record to be
written. IHCFIOSH places: (1) a pointer
to the location within the current buffer
at which IHCFCOMH is to place the record,
and (2) the block size or logical record
length into registers, and then returns
control to IHCFCOMH.

Note: The write section checks to see if
the data set being written on is a 1403
printer. If it is, the carriage control
character is changed to machine code, and
three buffers, instead of the normal two,
are used when writing on the printer.

ERROR PROCESSING: If an end-of-data set or
an I/O error is encountered during reading
or writing, the control program returns
control to the location within IHCFICSH

182

that was specified during data set initia
lization. In the case of an I/C error,
IHCFICSH sets a switch to indicate that the
error has occurred. Control is then
returned to the control program. The con
trol program completes its processing and
returns control to IHCFIOSH, which interro
gates the switch, finds it to be set, and
passes control to the I/O error routine of
IHCFCOMH.

In the case of an end-of-data set, IHC
FICSH simply passes control to the end-of
data set routine of IHCFCOMH.

Chart 27 illustrates the execution-tirre
I/C recovery procedure for any I/O errors
detected by the I/O supervisor.

Device Manipulation

The device manipulation section of IHC
FI OSH processes backspace, rewind, and
write end-of-data set requests.

BACKSPACE: IHCFIOSH processes the back
space request ty issuing a ESP (physical
backspace) rracro instruction. It then
places the data set type, which indicates
the format requirement, into a register and
returns control to IHCFCOMH. (IHCFCOMH
needs the data set type to determine its
subsequent processing.)

REWIND: IHCFIOSH processes the rewind
request by issuing a CLCSE macro instruc
tion, using the REREAD option. This option
has the same effect as a rewind. Control
is then returned to IHCFCOMH.

WRITE END-OF-DATA SET: IHCFICSH processes
this request by issuing a CLCSE macro
instruction, type = T. It then frees the
I/O buffers by issuing a FREEFCCL roacro
instruction, and returns control to
IHCFCOMH.

Closing

The closing section of IHCFICSH examines
the entries in the unit assignment table to
determine which data control blocks are
open. In addition, this section ensures
that all write operations for a data set
are completed before the data control block
for that data set is closed. This is done
by issuing a CHECK macro instruction for
all double-buffered output data sets. Cen
tral is then returned to IHCFCCMH.

Note: If a 1403 printer is being used, a
write from the last print buffer is issued
to insure that the last line of output is
written.

IHCDIOSH

IHCDIOSH, the object-time FORTRAN direct
access input/output data management inter
face, receives I/O requests from IHCFCOMH
and submits them to the appropriate EDAM
(basic direct access method) routines and/
or open and close routines for execution.
(For the first I/O request involving a non
existent data set, the appropriate BSAM
routines must be executed prior to linking
to the EDAM routines. The BSAM routines
format and create a new data set consisting
of blank records.)

IHCDIOSH receives control from: (1) the
initialization section of the FORTRAN load
module if a DEFINE FILE statement is
included in the source module, and (2) IHC
FCOMH whenever a READ, WRITE, or FIND
direct access statement is encountered in
the load module.

Charts 28 and 29 illustrate the overall
logic and the relationship among the rou
tines of IHCDIOSH. Table 39, the IHCDIOSH
routine directory, lists the routines used
in IHCDIOSH and their functions.

BLOCKS AND TABLE USED

IHCDIOSH uses the following blocks and
table during its processing of direct
access input/output requests: (1) unit
blocks, and (2) unit assignment table. The
unit blocks are used to indicate I/O
activity for each unit number (i.e., data
set reference number) and to indicate the
type of operation requested. In addition,
each unit block contains skeletons of the
data event control blocks (DECB) and the
data control block (DCB) that are required
for I/O operations. The unit assignment
table is used as an index to the unit
blocks.

Unit Blocks

The first reference to each unit number
(i.e., data set reference number) by a
direct access input/output operation within
the FORTRAN load module causes IHCDIOSH to
construct a unit block for each of the
referenced unit numbers. The main storage
for the unit blocks is obtained by IHCDIOSH
via the GETMAIN macro instruction. The
addresses of the unit blocks are inserted
into the corresponding unit assignment
table entries as the unit blocks are con
structed. Subsequent references to the
unit numbers are then made through the unit
assignment table.

Figure 60 illustrates the format of a
unit block for a unit that has been defined
as a direct access data set.

r-------T-------T------T-------r-----------1
IICTYPE ISTATUSUI not I not I 4 bytes I
I I I used I used I I
~-------L-------L------L------+-----------~
I RECNUM I 4 bytes I
~-------T---------------------+-----------~
ISTATUSAI CURBUF I 4 bytes I
~-------L---------------------+-----------~
I BLKREFA I 4 bytes I
~-------T--------~-----------t-----------~
ISTATUSBI NXTBUF I 4 bytes I
~-------L---------------------+-----------~
I BLKREFB I 4 bytes I
~-----------------------------+-----------~
I DECBA I 28 bytes I
~-----------------------------+-----------~
I DECBB I 28 bytes I
~-----------------------------+-----------~
I DCB I 104 bytes I
L-----------------------------L-----------J
Figure 60. Format of a Unit Block for a

Direct Access Data Set

The meanings of the various unit block
fields are outlined below.

ICTYPE: This field, containing the data
set type passed to IHCDIOSH by IHCFCOMH,
can be set to one of the following:

FO - input data set requiring a format

FF - output data set requiring a forroat

00 - input data set not requiring a
forroat

OF - output data set not requiring a
format

STATUSU: This field specifies the status
~e-associated unit number. The bits
and their meanings are as follows:

Bit on

0 - not used

- error occurred

2 - two buffers are being used

3

4-5

data control block for data set
open

10 - U form specified in DEF SINE
FILE statement

01 - E form specified in DEFINE
FILE statement

11 - L form specified in DEFINE
FILE statement

6-7 not used

is

Note: IHCDICSH refers only to bits 1, 2,
and 3.

Appendix E: Object-Time Library Subprograms 183

RECNUM: This field contains the number of
records in the data set as specified in the
parameter list for the data set in a DEFINE
FILE statement. It is filled in by the
file initialization section after the data
control block for the data set is opened.

STATUSA: This field specifies the status
of the buffer currently being used. The
bits and their meanings are as follows:

Bit on

0 - READ macro instruction has been
issued

1 - WRITE macro instruction has been
issued

2 - CHECK rracro instruction has been
issued

3-7 Not used

CURBUF: This field contains the address of
the DECB skeleton currently being used. It
is initialized to contain the address of
the DECBA skeleton by the file initializa
tion section of IHCDIOSH after the data
control block for the data set is opened.

BLKREFA: This field contains an integer
that indicates either the relative position
within the data set of the record to be
read, or the relative position within the
data set at which the record is to be writ
ten. It is filled in by either the read or
write section of IHCDIOSH prior to any
reading or writing. In addition, the
address of this field is inserted into the
DECBA skeleton by the file initialization
section of IHCDIOSH after the data control
block for the data set is opened.

STATUSB: This field specifies the status
of the next buffer to be used if two buf
fers are obtained for this data set during
data control block opening. The bits and
their meanings are the same as described
for the STATUSA field. However, if only
one buff er is obtained during data control
block opening, this field is not used.

NXTBUF: This field contains the address of
the DECB skeleton to be used next if two
buffers are obtained during data control
block opening. It is initialized to con
tain the address of the DECEE skeleton by
the file initialization section of IHCDIOSH
after the data control block for the data
set is opened. However, if only one buffer
is obtained during data control block open
ing, this field is not used.

BLKREFB: The contents of this field are
the same as described for the BLKREFA
field. It is filled in either by the read
or the write section of IHCDIOSH prior to

184

any reading or writing. In addition, the
address of this field is inserted into the
DECEE skeleton by the file initialization
section of IHCDIOSH after the data control
block for the data set is opened. However,
if only one buffer is obtained during data
control block opening, this field is not
used.

DECEA SKELETCN: This field contains the
DECE (data event control block) skeleton to
be used when reading into or writing from
the current buffer. It is of the same forrr
as the DECB constructed by the control pro
gram for an L form of an S-type READ or
WRITE macro instruction under BDAM (refer
to the publication IBM System/360 Operating
System: Supervisor and Data Management
Macro Instructions) •

The various fields of the DECEA skeleton
are filled in by the file initialization
section of IHCDIOSH after the data control
block for the data set is opened. The com
pleted DECB is referred to when IHCDIOSH
issues a read or a write request to BDAM.
For each I/O operation, IHCDICSH supplies
IHCFCOMH with the address of and the size
of the buffer to be used for the operation.

DECEE SKELETCN: The DECBB skeleton is used
when reading into or writing frorr the next
buffer. Its contents are the same as
described for the DECBA skeleton. The
DECEE skeleton is completed in the same
manner as described for the DECBA skeleton.
However, if only one buffer is obtained
during data control block opening, this
field is not used.

DCB SKELETCN: This field contains the DCB
(data control block) skeleton for the asso
ciated data set. It is of the same form as
the DCB constructed by the control prograro
for a DCB macro instruction under EDAM
(refer to the publication IBM System/360

Operating System: Supervisor and Data
Management Macro Instructions) •

The various fields of the DCB skeleton
are filled in by the control program when
the DCB for the data set is opened (refer
to the publication IBM System/360 Operating
System: System Control Blocks).

Unit Assignment Table

The unit assignment table (IHCUATEL)
resides on the FORTRAN system library
(SYS1.FORTLIB). Its size depends on the

maximum number of units that can be
referred to during execution of any FORTRAN
load module. This number (~99) is speci
fied by the user during the system genera
tion process via the FORTLIB macro
instruction.

The unit assignment table is designed to
be used by both IHCFIOSH and IHCDIOSH. It
is included once, by the linkage editor, in
the FORTRAN load module as a result of an
external reference to it within IHCFIOSH
and/or IHCDIOSH.

The unit assignment table contains a
16-byte entry for each of the unit numbers
that can be referred to by either IHCDIOSH
or IHCFIOSH. These entries differ in for
mat depending on whether the unit has been
defined as a direct access or as a sequen
tial access data set. Because IHCDICSH
deals only with direct access data sets,
only the entry for a direct access unit is
shown here. (Refer to the IHCFICSH section
"Table and Blocks Used", for the format of
the unit assignment table as a whole.) If
IHCDIOSH encounters a reference to a
sequential access data set, it is consider
ed as an error, and control is passed to
the load module termination routine of
IHCFCOMH.

Figure 61 illustrates the unit assign
ment table entry format for a direct access
data set.

r---------------------------------T-------1
I Pointer to unit block xx 14 bytesl
I (UBLOCKxx) I I
~---------------------------------+-------~
I Default values for DSRNxx (only 18 bytesl
I applies to sequential access I I
I data sets -- not used by I I
I IHCDIOSH) I I
~---------------------------------+-------~
I Pointer to parameter listxx 14 bytesl
I (LISTxx) I I
~---------------------------------~-------~
I UBLOCKxx is the unit block generated I
I for unit number xx. I
I I
I DSRNxx is the unit number for the I
I direct access data set (xx~99) • I
I I
I LISTxx is the parameter list that I
I defines the direct access data set I
I associated with unit number xx. I
L---J
Figure 61. Unit Assignment Table Entry for

a Direct Access Data Set

The pointers to the unit blocks are
inserted into the unit assignment table
entries by IHCDIOSH when the unit blocks
are constructed.

The pointers to the parameter lists are
inserted into the unit assignment table
entries by IHCDIOSH when IHCDIOSH receives
control from the initialization section of
the FORTRAN load module being executed.

BUFFERING

All direct access input/output opera
tions are double-buffered. (The double
buffering scheme may be overridden by the
user if he specifies in his DD statements:
BUFN0=1.) This implies that during data
control block opening, two buffers will be
attained for each data set. The addresses
of these buffers are given alternately to
IHCFCOMH as pointers to:

• Buffers to be filled in the case of
output.

• Data that has been read in and is to be
processed in the case of input.

Each buffer has its own DECB. This
increases I/O efficiency by overlapping of
I/O operations.

COMMUNICATION WITH THE CONTRCL PROGRAM

In requesting services of the control
program BSAM and BDAM routines, IHCDIOSH
uses L and E forms of S-type macro instruc
tions (ref er to the publication IBM Systerr/
360 Operating System: Supervisor and Data
Management Macro Instructions) •

OPERATION

The processing of IHCDIOSH is divided
into five sections: file definition, file
initialization, read, write, and termina
tion. When a section receives control, it
performs its functions and then returns
control to the caller (either the FORTRAN
load module or IHCFCOMH) •

File Definition Section

The file definition section is entered
from the 'FORTRAN load module, via a
compiler-generated calling sequence, if a
DEFINE FILE statement is included in the
FORTRAN source module. The file definition
section performs the following functions:

• Checks for the redefinition of each
direct access unit number.

• Enters the address of each direct
access unit number's parameter list
into the appropriate unit assignment
table entry.

• Establishes addressability for IHCDICSH
within IHCFCOMH.

Each direct access unit number appearing
in a DEFINE FILE statement is checked to
see if it has been defined previously. If
it has been defined previously, the current
definition is ignored. If it has not been

Appendix E: Object-Time Library Subprograms 185

defined previously, the address of its
parameter list (i.e., the definition of the
unit number) is inserted into the proper
entry in the unit assignment table. The
next unit number if any is then obtained.

When the last unit number has been pro
cessed in the above manner, the file
definition section stores the address of
IHCDIOSH into the FDIOCS field within IHCF
COMH. This enables IHCFCOMH to link to
IHCDIOSH when IHCFCOMH encounters a direct
access I/O statement. Control is then
returned to the FORTRAN load module to con
tinue normal processing.

File Initialization Section

The file initialization section receives
control from IHCFCOMH whenever input or
output is requested for a direct access
data set. The processing performed by the
initialization section depends on whether
an I/O operation was previously requested
for the data set.

NO PREVIOUS OPERATION: If no operation was
previously requested for the data set spe
cified in the current I/O request, the file
initialization section first constructs a
unit block for the data set. (The GETMAIN
macro instruction is used to obtain the
main storage for the unit block.) The
address of the unit block is inserted into
the appropriate entry in the unit assign
ment table.

The file initialization section then
reads the JFCE (job file control block) via
the RDJFCB macro instruction. The value in
the BUFNO field of the JFCB is inserted
into the DCB skeleton in the unit block.
This value indicates the number of buffers
that are obtained for this data set when
its data control block is opened. If the
BUFNC field is null (i.e., if the user did
not include the BUFNO subparameter in the
DD statement for this data set) , or other
than 1 or 2, the file initialization sec
tion inserts a value of two into the DCB
skeleton.

The file initialization section next
examines the JFCBIND2 field in the JFCB to
determine if the data set specified in the
current I/O request exists. If the
JFCBIND2 field indicates that the specified
data set does not exist, and if the current
request is a write, a new data set is
created. (If the current request is a
read, an error is indicated and control is
returned to IHCFCOMH to terminate load
module execution. If the current request
is a find, the request is ignored, and con
trol is returned to IHCFCOMH.) If the
JFCBIND2 field indicates that the specified
data set already exists, a new data set is
not created. The file initialization sec-

186

tion processing for a data set to be
created, and for a data set that already
exists is discussed in the following
paragraphs.

Data Set to be Created: The data control
l::lock for the new data set is first opened
for the BSAM, load mode, WRITE macro
instruction. The BSAM WRITE macro instruc
tion is used to create a new data set
according to the format specified in the
parameter list for the data set in a DEFINE
FILE statewent. The data control block is
then closed. Subsequent file initializa
tion section processing after creating the
new data set is the same as that described
for a data set that already exists (refer
to the section "Data Set Already Exists") •

Data Set Already Exists: The data control
block for the data set is opened for direct
access processing by the BDAM routines.
After the data control block is opened, the
file initialization section fills in
various fields in the unit l::lock:

• The number of records in the data set
is inserted into the RECNUM field.

• The address of the DECB skeletons
(DECEA and DECBB) are inserted into the

CURBUF and the NXTBUF fields,
respectively.

• The addresses of the I/C buffers
obtained during data control block
opening are inserted into the appropri
ate DECE skeletons.

• The address of the BLKREFA and the
ELKREFB fields in the unit block are
inserted into the appropriate DECB
skeletons.

Note: If the user specifies BUFN0=1 in the
DD statement for this data set, only one
I/O buffer is obtained during data control
l::lock opening. In this case, the NXTBUF
field, the BLKREFB field, and the DECBB
skeleton are not used.

Subsequent file initialization section
processing for the case of no previous
operation depends upon the nature of the
I/C request (find, read, or write) • This
processing is the same as that-described
for the case of a previous operation (refer
to the section "Previous Operation") •

PREVIOUS OPERATION: If an operation was
previously requested for the data set spe
cified in the current I/O request, the file
initialization section processing depends
upon the nature of the current I/O request.

If the current request is either a find
or a read, control is passed to the read
section.

If the current request is a write, con
trol is passed to the secondary entry in
the write section.

Read Section

The read section of IHCDIOSH processes
read and find requests. The read section
may be entered either from the file ini
tialization section of IHCDIOSH, or from
IHCFCOMH. In either case, the processing
performed is the same. In processing read
and find requests, the read section per
forms the following functions:

• Reads physical records into the buff er
(s) obtained during data control block

opening.

• Makes the contents of these buffers
available to IHCFCOMH for processing.

• Updates the associated variable that is
defined in the DEFINE FILE statement
for the data set.

The read section, upon receiving con
trol, first checks to see if the record to
be found or read is already in an I/O buff
er. Subsequent read section processing
depends upon whether the record is in the
buffer.

RECORD IN BUFFER: If a record is in the
buffer, the read section determines whether
the current request is a find or a read.

If the current request is a find, the
associated variable for the data set is
updated so that it points to the relative
position within the direct access data set
of the record that is in the buffer. Con
trol is then returned to IHCFCOMH.

If the current request is a read, the
read operation that read the record into
the buffer is checked for completion. The
read section then places the address of the
buffer and the size of the buffer into
registers for use by IHCFCOMH. The asso
ciated variable for the data set is updated
so that it points to the relative position
within the direct access data set of the
record following the record just read.
Control is then returned to IHCFCOMH.

RECORD NOT IN BUFFER: If a record is not
in the buffer, the read section first
obtains the address of the buff er to be
used for the current request. The relative
record number of the record to be read is
then inserted into the appropriate BLKREF
field in the unit block (i.e., BLKREFA or
BLKREFB) • The proper record is then read
from the specified data set into the buff
er. Subsequent read section processing for
the case of a record not in the buffer is
the same as that described for a record in

the buffer (refer to the section "Record In
Buffer") •

Note 1: Record retrieval can proceed con
currently with CPU processing only if the
user alternates FIND statements with READ
statements in his program.

Note'2: If an I/O error occurs during
reading, the control prograrr returns con
trol to the synchronous exit routine
(SYNADR) within IHCDIOSH. The SYNADR rou
tine sets a switch to indicate that an I/O
error has occurred, and then returns con
trol to the control program. The control
program completes its processing and
returns control to IHCDIOSH. IHCDIOSH
interrogates the switch, finds it to be
set, and passes control to the I/O error
routine of IHCFCOMH.

Write Section

The write section of IHCDIOSH processes
write requests. The write section may be
entered either from the file initialization
section cf IHCDIOSH, or from IHCFCOMH. The
processing performed by the write section
depends upon where it is entered from.

PROCESSING IF ENTERED FROM FILE INITIALIZA
TION SECTION: If the write section is
entered from the file initialization sec
tion of IHCDIOSH, no writing is performed.
The write section only provides IHCFCOMH
with tuffer space in which to place the
record to be written. The relative record
number of the record to be written is
inserted into the appropriate BLKREF f.ield
(i.e., BLKREFA or BLKREFB) • (The record is

written the next time the write section is
entered.) For a formatted write, the buff
er is filled with blanks. For an unfor
matted write, the buffer is filled with
zeros. The write section then places the
address of the buff er and the size of the
tuffer into registers for use by IHCFCOMH.
Control is then returned to IHCFCOMH.

PROCESSING IF ENTERED FROM IHCFCCMH: Each
time the write section is entered from
IHCFCOME, it writes the contents of the
buffer onto the specified data set. Subse
quent write section processing for
entrances from IHCFCOMH is the same as that
described for entrances from the file
initialization section of IHCDIOSH (refer
to "Processing If Entered From File Initia
lization Section"). In addition, the asso
ciated variable is modified prior to
returning to IHCFCOMH. The associated
variable .for the data set is updated so
that it points to the relative position
within the direct access data set of the
record following the record just written.

Appendix E: Object-Time Library Subprograms 187

Note 1: The writing of physical records by
this section is overlapped. That is, while
IHCFCOMH is filling buffer A, buffer B is
being written onto the output data set.
When buffer A has been filled, the write
from buff er B is checked for completion.
Upon completion of the write operation,
IHCFCOMH starts placing data into buff er B.
In addition, a write from buffer A is
initiated.

Note 2: If an I/O error occurs during
writing, the control program returns con
trol to the synchronous exit routine
(SYNADR) within IHCDIOSH. The SYNADR rou
tine sets a switch to indicate that an I/O
error has occurred, and then returns con
trol to the control program. The control
program completes its processing and
returns control to IHCDIOSH. IHCDIOSH
interrogates the switch, finds it to be
set, and passes control to the I/O error
routine of IHCFCOMH.

Termination Section

The termination section of IHCDIOSH
receives control from the load module ter
mination routine of IHCFCOMH. The function
of this section is to terminate any pending
I/O operations involving direct access data
sets. The unit blocks associated with the
direct access data sets are examined by
IHCDIOSH to determine if any I/O is pend
ing. CHECK macro instructions are issued
for all pending I/O operations to insure
their completion.

The data control blocks for the direct
access data sets are closed, and the main
storage occupied by the unit blocks is
freed via the FREEMAIN macro instruction.
Control is then returned to the load module
termination routine of IHCFCOMH to complete
the termination process.

IHCIBERH

IHCIBERH, a member of the FORTRAN system
library (SYSl.FORTLIB), processes object
time source statement errors. IHCIBERH is
entered when an internal statement number
(ISN) cannot be executed because of a
source statement error.

The ISN of the invalid source statement
is obtained (from information in the cal
ling sequence) and is then converted to
decimal form. IHCIBERH then links to IHCF
COMH to implement the writing of the fol
lowing error message:

IHC230I - SOURCE ERROR AT ISN

188

XXXX - EXECUTION FAILED SUBROU
TINE (name)

After the error message is written on
the user-designated error output data set,
IHCIEERH passes control to the IEEXIT rou
tine of IHCFCOMH to terminate execution.

Chart 30 illustrates the overall logic
of IHCIBERR.

IHCDEUG ----
IHCDBUG performs the object-time opera

tions of the Debug Facility statements.
All linkages from the load module to IHCD
BUG are comi:;iler generated.

Items and Buffer

The fcllcwing items in IHCDBUG are
initialized to zero at load time:

• CSRN - the data set reference number
• TRACFLAG - trace flag
• IOFLAG - input/output in progress flag
• DATATYPE - variable type bits

Whenever information is assembled for
output, it is placed in a 70-byte area
called DEUFFER. The first character of
this area is permanently set to blank, for
single spacing.

Operation

The first portion of IHCDBUG, called by
entry name DEBUG#, is a transfer table;
this table is referred to by the code
generated for the Debug Facility state
ments, and branches to the thirteen section
of IHCDBUG. These sections are discussed
individually.

TRACE ENTRY: If TRACFLAG is off, this rou
tine exits. Otherwise, the characters
'TRACE' are rooved to DBUFFER + 1, the sub
routine OUTINT converts the statement label
to EBCDIC and places it in DBUFFER, and a
branch is made to OUTBUFFR.

SUBTRACE ENTRY: The characters 'SUBTRACE'
and the name of the program or subprograw
are moved to DBUFFER and a branch to OUT
BUFFR is made.

SUBTRACE RETURN ENTRY: The characters
'SUBTRACE *RETURN*' are moved to DBUFFER
and a branch to OUTBUFFR takes place.

UNIT ENTRY: The unit number argument is
placed in DSRN and the routine exits.

INIT SCALAR ENTRY: The data type is saved,
the location of the scalar is computed,
subroutine OUTNAME places the name of the
scalar in DBUFFER, and a branch is made to
CU'IITEM.

INIT ARRAY ELEMENT ENTRY: This routine
saves the data type, computes the location
of the array element, and (via the subrou
tine OUTNAME) i;laces the name of the array
in DBUFFER. It then computes the element
number as follows:

element number= ((element location - first
array location) / element size) + 1

and places a left parenthesis, the element
number (converted to EBCDIC by subroutine
OUTINT) , and a right parenthesis in DBUFFER
following the array name. A branch is then
made to OUTITEM.

INIT FULL ARRAY ENTRY: If IOFLAG is on,
the character X'FF' is placed in DBUFFER,
followed by the address of the argument
list, and a branch is made to OU'IBUFFR.
Otherwise, a call to the INIT ARRAY ELEMENT
entry is constructed, and the routine loops
through that call until all elements of the
array have been processed, when it exits.

SUBSCRIPT CHECK ENTRY: The location of the
array element is computed; if it is less
than or equal to the maximum array loca
tion, the routine exits. If the array ele
ment location is outside the bounds of the
array, the element number is computed and
the characters 'SUBCHK' are placed in
DBUFFER. The subroutine OUTNAME then
places the name of the array in DBUFFER,
OUTINT supplies the EBCDIC code for the
element number (which is enclosed in paren
theses) , and a branch is made to OU'l'BUFFR.

TRACE CN ENTRY: TRACFLAG is turned on (set
to nonzero) and the routine exits.

TRACE OFF ENTRY: TRACFLAG is turned off
(set to zero) and the routine exits.

DISPLAY ENTRY: If IOFLAG is on, the chara
cters 'DISPLAY DURING I/O SKIPPED' are
moved to DBUFFER and a branch is made to
OUTBUFFR. Otherwise, a calling sequence
for the NAMELIST write routine is con
structed. If DSRN is equal to zero, the
unit number for SYSOUT (in IHCUATBL + 6) is
used as the unit passed to the NAMELIS'I
write routine. On return from the NAMELIST
write, this routine exits.

START I/O ENTRY: The BYTECNT is set to 252
to indicate that the current area is full,
the IOFLAG is set to X'80' to indicate that
input/output is in progress, the CURBYTLC
is set to the address of SAVESTRT (where
the location of the first main block will
be - refer to the description of ALLOCHAR) ,
and the routine exits.

END I/O ENTRY: The IOFLAG is saved in TEM
PFLAG and IOFLAG is reset to zero so that
this section may make debug calls which
result in output to a device. If no infor-

mation was saved during the input/output,
this routine exits.

'Ihe subroutine FREECHAR is used to
extract one character at a time from the
save area. If an X'FF' is encountered
(indicating the output cf a full array) ,

the next three bytes give the address of
the call to INIT FULL ARRAY entry. A call
to the DEEUG INIT FULL ARRAY entry is then
constructed and executed. If X'FF' is net
encountered, characters are placed in
DEUFFER until an X'15' is found, indicating
the end of a line. When this cede is
found, the subroutine OUTPU'I is used to
write out the line.

If no rrain storage or insufficient main
storage was available for saving inforrra
tion during the input/output, the charac
ters 'SOME DEBUG OUTPUT MISSING' are placed
in DEUFFER after all saved information (if
any) has teen written out. The subroutine
CUTPUT is then used to write out the mes
sage, and this routine returns to the
caller.

The fellowing subroutines are used by
the routines in IHCDBUG.

CU'II'IEM: First, the characters ' = ' are
moved~o DBUFFER. The routine then loads
the data to be output into registers. A
branch on type then takes place. For fixed
point, the routine OUTINT converts the
value to EBCDIC and places it in DBUFFER.
A branch to CU'IBUFFR then takes place.

For floating values, subroutine OUTFLCAT
places the value in DBUFFER. A branch to
CU'IBUFFR then takes place.

For complex values, two calls to OUT
FLOAT are made -- first with the real part,
then with the imaginary part. A left
parenthesis is placed in DBUFFER before the
first call, a comma after the first call,
and a right parenthesis after the second
call. A branch to OUTBUFFR then takes
place.

For logical values, a T is placed in
DBUFFER if the value was nonzero; otherwise
an F is placed in DBUFFER. A branch to
OUTBUFFR then takes place.

OUTNAME: This is a closed subroutine. Up
to six characters of the name are placed in
DBUFFER. However, the first blank in the
naroe causes the routine to exit.

CUTINT: This is a closed subroutine. If
the-Value (passed in R2) is equal to zero,
the character '0' ~s placed in DEUFFER and
the routine exits. If it is less than
zero, a minus sign is placed in DBUFFER.

Appendix E: Object-Time Library Subprograrrs 189

The value is then converted to EBCDIC and
placed in DBUFFER with leading zeros sup
pressed. The routine then exits.

OUTFLOAT: This is a closed subroutine. If ----
the value is zero, the characters '0.0E+OO'
or '0.0D+OO' are placed in DBUFFER, depend
ing upon whether the value is single or
double-precision, respectively, and the
routine exits. If the values are less than
zero, a minus sign is placed in DBUFFER.
The floating number is then converted to a
string of decimal EBCDIC characters and a
power of ten by exactly the same algorithm
used in IHCFCUTH (this assures identical
results).

Let x = 8 for single-precision,

x - 17 for double-precision.

If 12lvaluel<10 , it is output to the
DBUFFER in Fx+1.x-n format where n is
the integer portion of log lvalue1.

Otherwise it is output in G x+5.x format.
The routine then exits.

OUTBUFFR: If IOFLAG is not set, the rou
tine calls the subroutine CUTPUT and then
exits. Otherwise, IOFLAG is set to indic
ate that debug output during input/output
occurred. Then, a call is made to AILOCHAR
for each character in DBUFFER, and finally,
a call to ALLOC~AR with X'15' indicating
the end of the line. The routine then
exits.

ALLOCHAR: This is a closed subroutine. If
BYTECNT is equal to 252, indicating the
current block is full, a new block of 256
bytes is obtained by a GETMAIN macro. If
no storage was available, an X'07', indi
cating end of core, is placed in the last
available byte position, IOFLAG is set to
full, and the routine exits. Otherwise,
the address of the new block is placed in
the last three bytes of the previous block,
preceded by X'37' indicating end of block
with new block to follow. CURBYTLC is then
set to the address of the new block and
BYTECNT is set to zero. The character
passed as an argument is then placed in the
byte pointed to by CURBYTLC, one is added
to both CURBYTLC and BYTECNT, and the rou
tine exits.

FREECHAR: This is a closed subroutine. If
the current character extracted is X'37',
the next three bytes are placed in CURBYTLC
and the current block is freed. If the
current character is X'07' the block is
freed and a branch to the End I/O exit is
taken. Otherwise, the current character is

190

passed to the calling routine and CURBYTLC
is incremented by 1.

OUTPUT: This is a closed subroutine. If
DSRl'lis zero, the SYSOUT unit number is
obtained from IHCUATBL + 6. A call is then
made to FIOCS# output initialize, DBUFFER
is transferred to the FIOCS# buffer, and a
call is made to FIOCS# output. The routine
then exits.

IHCTRCH ----
IHCTRCH, a member of the FORTRAN system

library (SYS1.FCRTLIB) processes terminal
errors detected by FORTRAN library subrou
tines at object time. IHCTRCH is entered
only from the IBFERR routine within IBCF
COMH. IBFERR consists only of a call to
IHCTRCH.

IHCTRCH issues the following message:

IHCxxxI
TRACEBACK FOLLOWS ROUTINE ISN REG. 14

where xxx is the error code (in decimal
form) that it obtains from the calling
sequence.

If the error occurred in IHCFCOMH,
IHCFCVTH, IHCNAMEL, IHCDIOSE, or IHCFIOSH,
IHCTRCH sets up an area which can be pro
cessed as a standard save area fer the
first traceback line.

For each traceback line, IHCTRCH gets
the name of the called routine, the inter
nal staterrent number, if any, of the call
within the calling routine, and the con
tents of register 14, in hexadecimal.

After printing each line, IHCTRCH checks
whether the called routine was the rrain
FORTRAN routine. If so, it prints the
entry point, in hexadecimal, and branches
to IBEXIT. If not, it enters a traceback
loop-check routine, which builds and checks
a table of save area addresses. If the
table is full or if a loop is detected,
IBCTRCH prints TRACEBACK TERMINATED and
then r:rints the main FORTRAN routine entry
point and branches to IEEXIT.

IHCTRCH uses IHCFCVTH to convert to
printable hexadecimal format and it uses
IHCFIOSH for printing.

Further information about traceback
including an example of output is contained
in the publication IBM System/360 Operating
~tern: FORTRAN IV (H) Programmer's Guide.

Chart 23. IHCFCOMH Overall Logic and Utility Routines

'.::EE 'Il\.IHE ::U FOR A EfilEF
tISCUSSION OF F.ACH RCUTDlE
CF 11-!CFCOMl-I~

I AC CM

****AJ********* * LO AC *
MODULE

*************** I
I

!
i

*** * *E J*** ** **** *
* * :Cf'IERMINF

RF:QURS'l
'IYPE

I
I

I
i

THE LUAC ,O:CULF E~TFHS
lHCFCOMl-1 VIA A CO:'IP!LER
GFNE:HATED CALLING SFOllENCf_

** * * * * * * *"' * *. * 0 * * * * * ** * * * ** ******** * ** * * * * * * * ** * :t•"' *** ** ****** * * ** * * **** ** * ***** ** ***** * * * * * REC!lEST TVPE *CHi'\P.T *t1nJOH PROCESSING :t Sll!'!RO!J'IJNFS CALLF.D
* * * ROIJTINES *
* * * * * ##II #.If## a 011-il # # 4tt U # tt ##'II-### It Ji:# It #'!Hf#-#:# H #'It### H ##J!: ####Utt# U 1f; 1Htit ######If### lf#JJ tt ##11=# #lj: ##it:#•

* * * ~ * * SEQIJENTIAL ACC~SS *24~2 *FRDWF,FWRWF,FICLF, * IHCFIOSH (FOR SRQIJENTIAL ACCESS), : :;~D3~:¥~~ ~~~FSS : :PIOAF,FENDF : ~g~i~~~~o~f~~u~I~~~T-~C~~~~l: AND *
*QUIRING A FCt<~A'f * * FCVIO,FCVEI,FCVEO,FCVGI,FCVGO,'!"'CVDI,* * * FCVDO,PCVll,FCVT.O,FCVZI,FCVZO,FCVFI,* * * PCVFO,FCVAl,FCVl10 *

* * * * * * SE(HJENTIAJ, ACCESS *L4F2 *FRDNF,FWRNF,FICLN, * IHCFICSH (FOR SEQUENTIAL ACCESS) * ANI: rIRECT ACCESS * *FIOAN,FENDN * IHCDIOSH {FOll DIRECT ACCESS)
* RFAC/WRI'IE NOT * *
: JUQU.IRING A FCbMAT * * *

* * * * IHCFIOSH AND CONV. RTNS - * * READ USING *L'JF1 *FRDNL * FCVEI,FCVDI,FCVAI,FCVII, * NAMELIST * * * FCVGI,.FCVCI,FCVII,FCVFI

* * * * ** ** * *** * ** * * ** * * * * * * * * ** ** * * ** * * ** * * ** * * * * * * * * ** ** * * * * ** ** * * * * * * * * * IHCFIOSH AND CONV. RTNS - *
* WR.I'IE USING *2~E~ *FWDNL * l:'CVEO,FCVCC,FCVAO,.FCVLO,. *
* NAMELIST * * * FCVGO,FCVCO,FCVIO,FCVFO *
* * * * * ***
* * * * * * DEVICE *2~EJ *PBKSP,FRWND, * IHCFIOSH * * ~ANIFULATICN * *FEOFl>'f * *
* * * * * ***
* * * * * * WRITE TO *L~GJ *FSTOP,FPAOS * NONE *
* OPERATOR * * * *
* * * * * ***
* * * * * DIRECT ACCESS *~4FL *FRDNF,FENDN * IHCDIOSH
* F INTI * * *
* * * * ***

UTILITY ROUTINES

1 E EXIT IBFERH EXCEPT I EFINT FEHROR

** **G 1 * *'******* * FROM FSTOP *
OR

IBFERF

I
I

t
*****Hl********** * IBEXTT *
·-·- ·- ·-·- ·-·- *- * :c1p~~Rg~~~T~E~s:
* r.XFCUTION) *
** * * ** * **** ******

I

l
****J1*********

* TO * tWFRATING
.ciYSTEM *

****GL******* ** * FROM *
LI BB ARY *

SUE PROGRAMS

I
t

*****~L**********
* I FF ERR * ·-*-·-·-·-·-·-·- * * PROCESS *

F.flROBS

* *****************
I

I
I
I v

****JL*********
* TO * * IEEXI'I *

****G3********* * FROM *
IHCFlOSH *

I
I
t

*

* * * * *H] * * * * * * * * * * * EXCEPT * *-•-•-•-•-*-•-·-· * DF.TERMINE IF * * END PARAMETF.R * * SFECIFIE£ *
******* ***** **** *

I

I
I

!
****J3********* * TO LOAD *

~CDUI.E IF
* SPECIFIEI:

IF FARA~ETEB NOT
SPECIFIED, EXIT IS
TO IBFERR.

****G~ *** ****** * FROM *
LOAD *

MODULR *

I

i
t

*****Hq**********
* IEFINT *
*- ·-·-·-·-·-·-·- * * PROCESS * * ARITHMETIC *
* INTERRUPTION *

I

I
I v

****,1 li*********
* 'I'O * LOAD
* MODULE *

**********""****

****G'J********* * FROM *
IHCFIOSH OR

* IHCDIOSH *

I
I

1
*****H'J******** ** * FERROR *
·- ·-·-·- ·- ·-·-·- * * DETERMINE IF *
* ERR PARAMETER * * SPECIFIED *

l
****JS********* * TO LOAD *

MODULE IF
* SPEC£rI~D *

""**********
IF PARAMETER NOT
SPECIFIED,. EXIT IS
·ro IBFERR ..

Appendix E: Object-Time Library Subprograll\S 191

Chart 24. Implementation of READ/WRITE/FIND Source Statements
IHCFCC~H

FRDWF/FWFWF
*****A2**********
PEFFOFM CPFNlNG
*OPERATIONS Fer *

FORTRAN
I.CAD MODULE

r>* READ/WRITE *
I * ~ECUIRING *
I * A FORMA'T *
i **'******~*"'******

.~4·* I
* A2* l • * * * * * L----------------------• -------------------,

FICAF /FIOlF i
*****E1********** *****84********** * FE9FOPM I/O * *GET LIST ITEM .. *
* IIST SEC'IION * . * CALL I/0 LIST * * OPP.RATIONS *<-----------.---------------* SECTION OF *<--,
: CN LIST ITEM * * IHCFCOMH * I

:................ I *****************

I 1

L---------------------:-------------------~
1
1

. •.
c 4 •• I .. * * . .. * LAST *· NO

*· •. ~~~~ •. •----'
*· .. * • * * YES

l
I

t Et"f:F J
*****D2********** *****D4**********
* * * * CLCSE CUT * .. * CALL CLOSING *

I/C *<----~----------.-------------* SECTION OF
OPERA1ION * * IHCFCUMH

• • *
***************** *****************

I
I • L----------------------.,-----------------i

IHCFCCMH

FRCNF/F\olRNF
*****F2**********
PERFCF~ CPENING
*OPERATIONS FCF *

*****E 4**********
• * * CONTINUE WITH *
* LOAD MODULE *

EXECUTION

FORTRAN
LOAD MODULE

r->:R~~~/~~6~i~i~~D:
I * A FORMAT * l *****************

• • I
*24 * I
* Fi* I ..
***** l. FI C 11\/F IC~~---------------------.---------------i

192

*****G2********** *****G4********** * PERFORM I/O * *GET LIST ITEM. * * LIST SECTICN * • * CALL I/O LIST * ; c~p~i~i 1 ~~~M :<---------------.. --------------: 5 i~~~g~M~F :<--1 • • • • I ***************** *****************
I

[_________________________ ; ___________________ v
1

l
1

1

. •.
H4 *•

... •• LAST •• ... NO I *· LIST .*---.J
· ITEM ·

*· .. * • ... • * YES

FENCN VI • *. * >llJ2 * * * **** *** *****J LJ• *********
* * * * * CLCSF OUT * . * CALI CLOSING *
* OPFRj~~CNS :<-----------.. ----------------: S~~~~g~M~F * . . .
***************** *****************

I
I •

L----------------:-----------------------,
i

*****KQ********** * • * CONTINUE '1I'J'H *
* I.OAD ~ODHLE * * EXFCfJTIO"I . .

THIS CALL IS
GENERATED BY
COMPILER WHEN
1/0 LIST ITE!'l.
IS ENCOUNTERED.

THIS CALL IS
GENERATED BY
COMPILER WHEN
ALL I/O LIST ITE~S
A.RE PROCESSED ..

THIS CALL IS
GENERATED BY
COMPILER WHEN
I/O LIST ITEM
IS ENCOUNTER.ED ...

THIS CALL IS
GENERATED BY
COMPILER WHEN
ALL I/O LIST ITEMS
ARE PROCESSED.

Chart 25. Device Manipulation, write-to-Operator, and READ/WRITE Using NAMELIST Routines

READ USING
NAl"IELIS'I

***** *25 •
* E1* . .

•
I

FBDNL !
*****E 1 ********** . .
* IMPLEMENT * * READ USING * NAMELIST
* •

!
****Fl*********

* TO * * LOAD * * MODULE *

DEVICE MANIPULATION
*L~ * * EJ* .. .
!

*****BJ********** * tETERMINE * * TYPE OP *
* DEVICE * * l'JA NIPULATICN * • •

I
,----------------------1----------------------,
I I I
I I j

EACKSPACFI RP.WIND I FND FILE)

I I I
f'BKSP t PR'iilND V FEOFM ~
*****V2********** *****OJ********** *****04********** * IMPLFMEN~ * * l~PLEMF.NT * * I~PLEMRHT * * BACKSPACE * REWIND * * END FILE * * SOURCE * SOURCE * SOURCE * * STATF.~ENT * STATEMENT * STATE~ENT * * • • • * •
***************** ••••••••••••••••• *****************

I I
I ~ I
l~-~-------~->=*····~~~:······=<----------~ * JllCDULE *

WBITE TO OPERA!OB
***** •2~ •
* Gj* ..

*

l
*****G3********** * DETERMINE * * TYPE OF r---------------: ~~~~~T6~ :-------------,/

I : ••••••••••••••• :
S!OP I PAUSE

FS!OP 1 FPAUS l
*****H 2********** *****H"'********** * IMPlfMENT * * IMPLEMENT * * STOP * PAUSE * * SCURCE * SOURCE * * STATEMENT * STATEMENT *
* * * • ***************** •••••••••••••••••

j l
****J2********* ****JQ*********

* TO * * TO * * IEE!I1 * * LOAD *
:t: * * MODULE * ••••••••• ** •••• • ••••••••••••••

WBITE USING
NAPIELIST

***** •2~ •
* H~* . .

*

PWRNL !
*****E~********** * • * H!PLEl'IENT * WRITE USING
* NAl'IELIST

j
****F~*********

* TO * * LOAD * MODULE *•..•.•.....

Appendix E: Object-Time Library Subprograrrs 193

Table 36. IHCFCOMH Subroutine Directory
r----------T--1
I Subroutine! Function I
~----------+--~

EXCEPT Checks for presence of END= paran:eter, and passes control to the load rrodule

FENDF
FENDN
FEOFM
FERR OR

FI OAF
FIOAN
FIOIF
FIOLN

if present.
Closing section for a READ or WRITE requiring a format.
Closing section for a READ or WRITE not requiring a format.
Implements the END FILE source statement.
Checks for the presence of the ERR= parameter, and passes control to the
load module if present.
I/C list section for list array of a READ or WRITE requiring a forrrat.
I/O list section for list array of a READ or WRITE not requiring a format.
I/O list section for a list variatle of a READ or WRITE requiring a format.
I/C list section for a list variable of a READ or WRITE not requiring a
format.

FPAUS Implements the PAUSE source staterrent.
FRDNF Opening section of a READ not requiring a forrrat.
FRDWF Opening section of a READ requiring a forrrat.
FRWND Implements the REWIND source statement.
FSTCP Implements the STOP source staterrent.
FWRNF Opening section for WRITE not requiring a forrrat.
FWRVIF Opening section for WRI'l'E requiring a format.
IBEXIT Closes all data sets and terminates execution.
IBFERR Calls ICHTRCH to process terminal object-tirre errors.
IBFINT Processes program interruptions.
FBKSP Implements the BACKSPACE source staterrent.

----------i--

Table 37. IHCFCVTH Subroutine Directory
r----------T--1
I Subroutine I Function I
~----------+---~-----------------------~

FCVAI Reads alphameric data. I
FCVAO Writes alphameric data. I
FCVCI Reads complex data. I
FCVCO Writes complex data. I
FCVDI Reads double precision data with an external expcnent. I
FCVDO Writes double precision data with an external exponent. I
FCVEI Reads real data with an external exponent. I
FCVEO Writes real data with an external exponent. I
FCVFI Reads real data without an external exponent. I
FCVFO Writes real data without an external exponent. I
FCVGI Reads general type data. I
FCVGO Writes general type data. I
FCVII Reads integer data. I
FCVIO !Writes integer data. I
FCVLI !Reads logical data. I
FCVLO !Writes logical data. I
FCVZI !Reads hexadecimal data. I
FCVZO !Writes hexadecimal data. I __________ i __ J

194

Chart 26. IHCFIOSH Overall Logic
FICCS

****A .j'I' "'"'"'***** . .
* FROM *

IHCFCOMH
*************** I

I
!
i

*****B3********** . .
I:ETERMINE
0 FE FAT I 0 N

'IYPE .

SFE TABLE J8 FOR A BRIEF
DFSCHIPTION OF THE FUNCTION
OF F.ACH IHCPIOSH ROOTINE.

INITIALIZATION READ WR!Tf1 MAN¥~~[~¥10N CLOSE

~-~~--~--1~---------------~------~~~~----~---~---
FINIT J FEl'AC .L YRITF .~.. FCNTt J FCl,OS i

*****C1********** CL *· CJ *· *****CQ********** *****C~**********
* * .. * ANY *- ·* *· * * * * * tECODE DSRN * ·* MG~E RCD~ *· YES ·* OUTPUT *· NO * CHECK * CHEC~ ANY •
;ANDB~g~~D(¥~IT :<--, *·;~~~ g~g~~s:~·*---1 * *· E~5ifR ·*·*--i S'I'f,~~~ OF .:--,1 O~~~a~Ng~m.; :<-1
* NECESS.ARY) * I *· SED ·* I *· .. * I OUTPUT * I

I !c1; I !K,: / !K1! *****• !c1:
********7******** .l.. *·.-~o *~** *·.·;Es *~** ********"'******** .!** ********v*I/\•••••••• ll

ti * * I * * I * * : 04 :--1 * *
t i CTLR;:·· .. ~.. .•.. I

*****D1********** *****D2********** *****D3********** D4 *· D~ * I
*OPFN DATA CON- * * BEAD * *WRITE CONTF.NTS * * *.. * * I
!f;~~k ~~~c~FF~~T: :N1~IsE~8~~F~~ 10: : 0 fE~~ 1~wi¥~H .--:~.:* M~~~Egp_ *:.!~-, ·=·· ~~~~ -•• ~~-J
* PREVIOOSLY * * SWITCH EUFFER * * BUFFER I * ... ERATION .. * I .. * * OPENF.D * * FOINTERS * * PCINTERS * I •.TYPF .. * I *· ·*
***************** ***************** ***************** 1 • • I *· .. • I

1
1 I .. ('sKsP 7 y~;**

I I I 111 I I L,: 2L ••
.. !. t V I BKSP ! !RWND :*** •

E1 *· *****E2********** *****EJ********** I *****E4********** I *****E~··········

..... • DCB * _ NO ! CHECR RFSULT ! : CHECK RESULT ! I ! RAci~i~~E.. ! I ! ISSUE !
*.. OPENED • *-----, * OF RFAD INTO *---, * OF Wl.HTE FROM * I INDICATE L--)* CLOSE *

.PROPERLY · I * CTHER PUFFER * I * OTHEE EUFFEF * I DATA SET • WITH REREAD *
·· ~··* :***************: t :***************: I :*****~i~~******: :****~~r;~~*****:

* YES Ill ***** I I I I
1 !L~2! \ •:n * 1

1
1 \ *L1 * I *LI *

II * * t.-): E2* * L-)* B2 * L-)* Bl *
I **** I * * * *

SETUBYTE t I I EOFM
!****F1*********: II .!****F2*********: I !****F4*********!
* DETERMINE * ISSUE I * ISSUE CLOSE * * RECORD FORMAT * L-->* MESSAGE *---, l-->* (TYPE=T)
* AND BLOCKING * * IHC219C * I * WITH LEAVE

: •• *************: :***************: i : .•. *z~~~z~ ••••••

l . •.
G1 *·

* IS *· • * CURRENT *· YES * .. OP. DEVICE .. *---, *· MAN IP.. • * I

OPENR W

* • * I *· .. * v * NO ****

l . •.
H1 *· • * • ..

• *
* D4 * . .

.. * READ *· WRITE
· .. W~~TE *---1

*· . * I
·-;FAD I

I I I
CR2 i I

******J 1*********** I

READ I
BL~CPi \

******;****** I
-.****• l<-------J
* K1 *->I
* * I **** I

FIORET V
*****K1********** * PASS CURRENT *
*RECORD POINTER *
! R~ggRfi 0f~~AiH :---1
* TO IHCFCOMH * I
***************** v

*27 *
* B2* . .

•**** I
*27 * I
* F2* I • • l

*****G4********** . .
FREF I/O

BUFFERS
FOR THIS

* DA.TA SET *
** ***************

Appendix E:

I

l *27 *
L->* B~ * . .

Ctject-Time Library Subprograms 195

Chart 27. Execution-Time I/O Recovery Procedure

i~~ ~~~Asgig~~i~~:Tiio~~~g~ED
WHEN IHCFIOSH OR IHCDIOSH
ISSUES A l'lACRO INSTRUCTION

***** *27 * * B2*
* * *
!

·*·
82 *• *****B3**********

·* *· * * ·* HAS AN *• YES * ISSUE *
• ••• EoiE~REN .•·*-~~~>: ~fi~~f~i :-~l

· • * * I *· ·* ••••••••••••••••• v
* NO ****

I * *

'

: F2 :

I

·*· ·*· *****C1********** C2 *· *****C3********** C4 *·
* * • * *· *DATA ftAllAGEl'lENT* • * *·
* * NO ·* I/O *· YES * RETRY * ·* I/O *· YES
* RETURN TO •<~}<~~•. EBRO~ IN .•-~--~->* APPROPRIATE •~~~-->*• ERROR BEEN ·1
* IHCFCOl'lH * *· IOS ·* * NUMBER * *.CORRECTED.*
* * *· ·* * CF Til'lES * *• ·*
***************** ••• •- ***************** *· ·* I . ** * • 110 * ***

!c1! I :c1!
* * * *
**** **** I i

V *****D3********** *****D4**********
****D1********* * IRCFCOl'lH * * *

* FORTRAN * * DETEBl'lINES * * RETURN *
* LOAD * * IF AN INVALID *<-~-~• ABORT CODE *
* l'lODULE * * BUFFER BAS * * TO IHCFCOl'lH *
*************** * BEEN 8EAD * * *

196

CONTINUES ***************** *****************
NORMAL I PROCESSING

<--
. *· *****E2********** E3 *·

* * • • *· * ISSUE * YES ·* HAS *•
* l'lESSAGE •<~~~~•. BUFFER BEEN •*
* IHC218I * •.READ YET ·* * * •• ••
***************** •. ·*

I * NO

**** I 1 *21 •
* F2 •->I • • I

*****P2*!******** p3•*·•. j
* * • * B!- *• * PASS * ·* WIND OR *· NO
* AEOBT CODE * *• BACKSPACE •*---
* TO SCHEDULER *· •.BEEN IS- •*
* * •.SUED •*
***************** •. ·* I i ,.,

' *****G3**********
****G2********* * *

* * * VOID *
* TO * * ABORT COD! *
* SCHEDULER * * IN IHCPCOl'lH *
*************** • •

ISSUES ABEND *****************
HSSAG! AND
THEN CONTINUES
NORUL PRO
CESSillG I

****H3*********
* FORTRAN *
* LOAD * * MODDLE * ••••••••••••••• COUINOES

IOlil!U.
PROC!SSillG

Chart 28. IHCDIOSH overall Logic - File Definition Section

****A3*********
* FORTRAN * * LOAD * * ~ODULE * •••••••••••••••

l
*****B3**********
* •
OETAIN INTERNAL
SEQUENCE NUftBER
* (ISN)· * • • •••••••••••••••••

j
*****C3**********
* * * CONVERT ISN * * TO DECIMAL * * FORftAT *
• * •••••••••••••••••

l
****•D3********** * ERANCH TO * * IHCFCCftH TO * * HANtLE THE * * WRITING OF * * ERROR MESSAGE * •••••••••••••••••

I
****E3*********

* IBEXIT BTN * * OF * * IHClCOMH * •••••••••••••••

IHCIBERH IS
ENTERED VIA
CALLING SE
QUENCES GEN
ERATED AT
COMPILE-THIE

Appendix E: Otject-Time Library Subprograros 197

Chart 29. IHCDIOSH Overall Logic - File Initialization, Read, Write, and Termination
Sections

I!3CENT!H DASTRA •*•
A3 *•

****AL********* • * *· * * • * DETERl'IINE *•
IHCFCCMH *-------->*. CfFFATION •*

* *• 'l'YPE • *
*************** *· . *

FILE INITIALIZATION
SECTION

FEAD
SFCT ICN *·(TEBl'II NAT ION

SECTION

DA SIN IT

---~----------------,
I I I I

. t r.ASREAC • L DASWFITE t DASTEN" • L
Bl *· F2 *.. *****EJ********** ******BQ*********** B~ *•

. * *· . * *· * * .. * • ..
YES·* PREVIOUS *.. •* IS * .. NC * CE'IAIN * WFITE ·* ANY *· NO
r--*· OPEFATION ·* r->*. RF.COED I'..11 ·*---->* AI:DRESS OF * A *• PENDING .l/O .. •--,
1 *· .. * I *· EUFFFR ·* * INPUT EUFfER * RECORD *OPERATIONS .. * J
I *· .. * I *. .. * * * *· . * I
v *· ·* l *· ·* ***************** ************* ... ·*

•****• *1 NO •* **• *1 YFS II **** lsfCCNDARY r YES J
* K4 * * 82 * * * \ENTRY I I * * * * I * C4 *-> I
"'* I ~ <------1 I * ** * I l I

•••••c1•?******** RDINEUF c2·*·.. I *****C]*!******** ~Ro~;~~•c4•!*••••••• •••••c':>•~•••••••• I
*CONS1RUCT UNIT * ·* *· I *INSFRT BELA'I!VF.* * OBTAIN NEXT * * * I
: ~fig~~o, 1 ~~f~T : ~~~.: * f 5 Fjg~s *:. I !~6nB= 0 RE~~ ~~¥a! :0 ~I~M~ g~F~~~o : : F~~Ii10 I
BlOCK INTO UNIT r *· REQUEST ·* I * BLRRFFA ON * * DEPENDING ON * * CO~PLETION * I
•ASSIGN~ENT TBL * •. .• I • e1gR~FE FI!LD • •DATA SET FORMAT* • • t ••••••••••••••••• •. .• ••••••••••••••••• ••••••••••••••••• ••••••••••••••••• I

I I ~ NO I I I I I

I I I I I I !<------' ! I i I ~ i TE RMB i
*****D1********** I *****DL********** I ••••••DJ*********** *****D4••········ *****D':>**********

: ~~:~Rgf 8EfJ~:: 11 : CHECR : I * READ =~~~E~~-R~~A~~~E: :CLOSE DCBS FOR: * (JFCB). INSERT * * FOF I/0 L--- A EECORD * TO BE WRITTEN * * DIRECT ACCESS * * BUFNO VALUE * I * CCMFLE'IION *INTO E!LKREFA OR* * DATA SETS •

: ••• ~r~z.~~~ •••. : I : : ··········*•• :.~~~~;:~.:!;;~.: : :
I I I I I

11 I I l I
II ~ DASENt .•. ~

*****El********** *****F2**•******* *****EJ********** Elf *· *****E~**********

: EXA~INE : 1 :EUFFE~ 1~~~NTEB : : PLACE EUfF!B : IHCFCOMH •• -;ETERMIN:·.. : F~~~R~a~N :
*JFCE!ND2 FIELD * I *ANt EUFFER SIZE* ,--* POINTER AND *<-----*.. ENTRANCE ·* * OCCUPIED BY * * IN JFCB * I * IN FEGISTERS * *BUFFER SIZE IN * *· .. • * UNIT BLOCKS
: ••••••••••••••• : l : •• **. **** ******: : ••• ~~~!~~~~; ••• : *· *... • * .. * : ••••••••••••••• :

'I 1 ' ' mg16~I6P~mm~ 1
v ·--------->I <---------j l >1

·*• * ·*· UPD.ASSV ~NSRETURN
·*F1 •... =~:;·i~;~~~:;:;·: ·*pj *·.. !****~~;:;:••*••: I ****F~·········

.:· ~~~ ¥~T~E *:.~~, : !~~]~~~E~~t =---->•:* ~ 5 Fi~iis ·:.~~=---->:As~gc~~!~0r~AR :__>J : IHCFCOMH :
• CREATED• I * CURRENT * *• REQUEST·* *POINTS TO RCD * * *

•· •..• ·• i :.~~~~~~.:~~2~~.: ·- ·· : ... ~~;;.~!:~ ••• : ***************
* YES **** * NC

* K2 * I l * • I

• •••• • l-----------~--1 l
CREATE * V 1

G 1• • *• *****G2********** *****G3********** *****Glf**********
·* *· * * * INSERT RECCRD * * UPDATE *

•* • .. YE'S * OPEN * * NUl"lBER INTO * *ASSOCIATED VAR *
· :~ITE' BEQUE:J·------->: ng~TIO~E~Eil : r->: REC~~PJU~~~lD : :PoigT~H~6 i~xT :---

· · * * I * ELOCK * *RCD IN DATA SET* •. r :o ••••••••• [........ ' ········!r·······
CR NOT . •.

H1 *• *****H2****•***** *****HJ**********
·* *· * CREAiE * *INSEBT ADDB OF *

FIND.• READ *· *AND FORMA~ NEW* *DECBA SKELETION*

r
---*· OR FIND .. * *DATA SET USING * * INTO CUREUF *

*• REQUEST.• * BSAM WBITF * * FIELD OF *
• · * f"!ACRC * * UNIT BLOCK *

*· •• ***************** *****************

I i .. ., l J

I *****J 1 ********** ••• **J2********** *****JJ ******** ** * * * * *INSEBT ADDR OF * * INCICATE * * ClOSE *DECEE SKELETON *
I ERROR * * tCB FOB DATA * INTG NXTEUF * I * * SE'I * FIELD OF UNIT * * * * * * ELK If 2 BFRS *

***************** ***************** *****************
I I •••• I I

'-------->1 : K, =->I !I
•••• I

NSBETURN I OPFN V

*****Hll*** *******
*INSERT ADDR OF * * ELKREFA INTO * r-->*DFCBA SKELRTION*
* IN UNIT *

I : ••••• ~;~~~ ••••• :

l •••••Jq••········
*INSEBT ADDR OF * * BLKREFB INTO *
*DECBB SKELETON * * IN U~IT BLOC~ * * IF TWO BFRS *
***************** .····. \ * KQ *->f
• * I **** v . •.

****K 1 * !******* :****K2****** •**! :~;;;~4·;~~=·~;·: ' K4 *·
·* •• ****

: IHCFCOMH : : ~i~~ ~~¥ ~g: : __ _. : i~¥oB~~~E : ____ J
* * * CIRECT ACCESS* *SK!lETCN{S) IN*

*************** * FROCF.SSING * * UNIT BLOC~ *
***************** •••••••••••••••••

198

... * WRITP. *· YES * * * REOOF.ST • *---->• Cl!. *
*· . * * *

*· .• ****
· · * NO

l
**** . .

* F2 * . .

Table 38. IHCFIOSH Routine Directory
r----------,--1
I Routine I Function I
~----------+--~
IFCLCS ICHECKs double-buffered output data sets. I
I I I
IFCNTL !Services device manipulation requests. I
I I I
IFINIT !Initializes unit and data set. I
I I I
IFREAD !Services read requests. I
I I I
IFRITE !Services write requests. I
L----------i--J

Table 39. IHCDIOSH Routine Directory
r----------T--1
I Routine I Function I
~----------+--~
DASDEF Processes DEFINE FILE statements: enters address of parameter lists into I

DASINIT

DAS READ

DAS TERM

DASTRA

IDASWRITE

unit assignment table, checks for redefinition of direct access unit num- I
hers, and establishes addressability for IHCDICSH within IHCFCOMH. I

Constructs unit blocks for nonopened direct access data sets, creates and
formats new direct access data sets, and opens data control blocks for
direct access data sets.

I
I
I
I
I

Reads physical records, passes buffer pointers and buffer size to IHCFCOMH, I
and updates the associated variable. I

Checks pending I/O operations, closes direct access data sets, and frees
main storage occupied by unit blocks.

Determines operation type and transfers control to appropriate routine.

Writes physical records, provides IHCFCOMH with buffer space, and updates

I
I
I
I
I
I
I

I the associated variable. I
L----------i--------------------~--J

Appendix E: Object-Time Library SubprograIJtS 199

Chart 30. IHCIBERH Overall Logic
NOTE--

THE FILE DEFINITION
SECTION IS ENTERED
FROl'I THE FORTRAN
LOAD MODULE VIA A
COl'IPILEB-GENEBATED
CALLING SEQUENCE.

200

DIOCS

****A3********* * FORTRAN LOAD * * !'IODULE *
* * ***************

I
*****B3********** * GET FIRST * * UNIT NUMBER * * {~SRNI FROl'I *
*PARAMETSR LIST *
* * *****************

I
1<
i

*****C3**********
* INSERT UNIT * * NUMBER'S *
*PARAMETER LIST *
ADDRESS IN UNIT
*ASSIGNMENT TBL *

l

SEE TABLE 39 FOR A
BRIEF DESCRIPTION OF THE
FUNCTION OF EACH IHCDIOSH
ROUTINE.

03·*·•. *****D4*l********
·* *• * GET NEXT *

·* LAST UNIT*• NO * UNIT NUMBER * *· NUl'IBER IN • *------'>* (,DSRN) FRO!'! *
•.PARAMETER.* *PARAl'IETER LIST *

*.lIST • * * *
· · ***************** * YES

I
DE LAST !

*****E3********** * ESTABLISH *
LINKAGE BETWEEN
* IHCDIOSH AND *
* IHCFCOMH *
* * *****************

I
!

****F3*********
* FORTRAN * * LOAD *
* MODULE *

CONTINUE NORUL
PROCESSING

APPENDIX F: ADDRESS CCMPUTATICN FOR ARRAY ELEMENTS

Data references in the form of sub
scripted variable expressions in FORTRAN
are converted into object code that
includes address arithmetic and indexed
references to main storage addresses.
Since the conversion involves all phases of
the compiler, a summary of the method is
given here.

Consider an array A of n dimensions
whose element length is L, and whose dimen
sions are D1, D2, D3, ••• ,Dn. If such an
array is assigned main storage starting at
the address P11, then the element A(J1, J2,
J3, ••• ,Jn) is located at

P = P11 + (Jl-1) *L + (J2-1) *Dl*L +
(J3-1) *Dl*D2*L + ••• + (Jn-1) *D1*D2*D3*
••• *D (n-1) *L

This may be expressed as:

P = POO + J1*L + J2*(D1*L) + J3* (D1*D2*L)
+ + Jn*(D1*D2*D3* ••• *D~-1) *~

where

POO = P11 - (L+D1*L + D1*D2*L + ••• +
D1*D2* ••• *D(n-1) *L)

For fixed dimensioned arrays, the quan
tities D1*L, D1*D2*L, D1*D2*D3*L, ••• ,
which are referred to as dimension factors,
are computed at compile time. The sum of
these quantities, which is referred to as
the span of the array, is also computed at
compile time. (Phase 15 assigns an array a
relative address equal to its actual rela
tive address minus the span of the array.)

In the object code, P is finally formed
as the sum of a base register, an index
register, and a displacement. The phase 15
segment CORAL associates an address con
stant with each fixed dimensioned array
such that Pa2P002Pa+4095, where Pa is the
address inserted into the address constant
at program fetch time. The effective
address is then formed using a base regis
ter containing the address constant, a dis
placement equal to POO - Pa, and an index
register, which contains the result of a
computation of the form:

L 2,J1
SLL 2,log 2 L
L 1,J2
M 0,L*Dl
AR 2, 1
L 1,J3
M 0,Dl*D2*L

AR

L
M
AR

2,1

1,Jn
O,D1*D2*···*D(n-1)
2, 1

Absorption of Constants in Subscript
Expressions

Subscript expressions may include con
stant parts whose contribution to the final
effective address is computed at compile
time. For example,

B (I-2,J+4, 3*5- (L+7) -6)

would usually be treated in such a way that
the effect of the 2, the 4, and the 6 would
be absorbed into the displacement at com
pile time.

Consider an example of the form

A (J1+K1 ,J2+K2, ,Jn+Kn) ,

where A is a fixed dimensioned array and
Kl, K2, ••• , Kn are integer constants.
Phase 15 will insert the quantity

Rl*L + K2*(D1*L) + K3*(Dl*D2*L) +
+ Kn(Dl*D2* *D(n-1) *L)

into the displacement (DP) field of the
corresponding subscript or load address
text entry. The constants will not other
wise be included in the subscript expres
sion. When phase 25 generates machine
code, the contents of the DP field are
added to the displacement. To ensure that
the resultant expression lies within the
range of 0 to 4095, phase 20 performs a
check. If the result is not in the range,
a dictionary entry is reserved for the
result of the addition, and a suitable add
text entry is inserted to alter the index
register immediately before the reference.

Arrays as Parameters

When an array is used as an argument,
the location of its first element, P11, is
passed in the parameter list. The prologue
cf the called subroutine contains machine
code to compute the corresponding POO loca
tion. When an array has variable dimen
sions, no constant absorption takes place
and the dirrension factors are computed for
each reference to the array.

Appendix F: Address Computation for Array Elements 201

APPENDIX G: COMPILER STRUCTURE

The FORTRAN (H) compiler is structured
in a planned overlay fashion. A planned
overlay structure is a single load module,
created by the linkage editor in response
to overlay control statements. These
statements, a description of the planned
overlay structure, and instructions in spe
cifying such a program structure are pre
sented in the publication IBM System/360
Qperating System: Linkage Editor. The
processing performed by the linkage editor
in response to overlay control statements
is described in the publication IBM System/
360 Operating System: Linkage Editor, Pro
gram Logic Manual.

The compiler's planned overlay structure
.consists of 13 ·segments, one of which is
the root. The root segment contains the
FSD and includes the processing units
(e.g., the compile-time input/output rou
tines) and data areas (e.g., communication
region) that are used by two or more
phases. The root segment remains in main

0
V> u..

I
~ (18.3)*

0

~
~

I

"<j" (8.6)

::J'
;:J;
0
~
~

3l
" ..c:
"-

I
u..

"' {16. 9) w

"" x 0
N

I

" (") {30. 1) a
..c:
"-

I

co (25.8)
0
N

~
~ ..c:
N "-
<(I

:x: "' (41.2)
e;.
~

(59.5) ill
c

..c:
"-

I ,,., (54.3)

*The number in parentheses times 1,000 equals the approximate segment length.

•Figure 62. Corepiler Overlay Structure

202

storage throughout the execution of the
compiler.

Each of the remaining 12 segreents con
stitutes a phase or a major portion of a
phase. Phase segments are overlaid as corr
piler processing requires the services of
another segment.

Figure 62 illustrates the compiler's
planned overlay structure. In the figure,
each segment is identified by a number.
Segments that originate from the same hori
zontal line overlay each other as needed.
The figure also indicates the approximate
size (in bytes) of each segment.

The longest path 1 of this structure is
formed by segments 1, 4, and 5 because,

1 A path consists of a segment, all segreents
between it and the root segment, and the
root segment.

0
N

3l
" ..c:
"-

I (6) r-...
0

~ "" 3l
3l " "

..c:
..c: "-
"- I

I
~ ::: (9.6) (16. 1)

,,.,
N

3l
c

..c:

~
"-

I

" ~ rl (56. 1)
..c:
"-

I

~ (47.6)

when they are in main storage, the compiler
requires approximately 81,000 bytes. Thus,
the minimum main storage requirement for
the compiler is approximately 82,000 bytes.

The linkage editor assigns the relocat
able origin of the root segment (the origin
of the compiler) at O. The relocatable
origin of each segment is determined by
summing the length of all segments in the
path. For example, the origin of segment
10 is equal to the length of segment 1 plus
the length of segment 4 plus the length of
segment 7.

The segments that constitute each phase
of the compiler are outlined in Table 40.
The remainder of this appendix is devoted
to a discussion of the segments of the

•Table 40. Phases and Their Segments
r--------T--------------------------------1
!Phase ISegment(s) Constituting Phase I
l--------+-------------~-----------------1
!Phase 10jSegment 2 I
jXREF !Segment 3 I
jPhase 15jSegments 4, 5, 6 I
jPhase 20jSegments 4, 1, 8, 9, 10, 11 I
!Phase 25jSegment 13 I
!Phase 30jSegment 12 I
~--------i--------------------------------1
!Note~ Segment 4 is loaded whenever I
jphases 15, 50, or 30 are loaded. It con-I
ltains data areas used by 15 and 20. I i_ __ J

Segment 1: This segment is the root seg
ment of the compiler's planned overlay
structure. Segment 1 is the FSD. It has a
relocatable origin at 0 and is not overlaid
by other compiler phases. The composition
of segment 1 is illustrated in Table 41.

•Table 41. Segment - 1 Composition
r---------------T-------------------------1
!Control Section!Entry Point(s) I
~---------------+-------------------------~
IEKATB I
IEKAA01 jPAGEHEAD
ADCON-IEKAAD
PUTOUT-IEKAPT
IEKATM

DCLIST-IEKTDC
AFIXPI-IEKAFP
SYSTAB-IEKTAB
IEKAAOO
IEKFICCS
IEKFCCMH
IEKTLOAD

ERCOM-IEKAER
IIEKAAA

PUTOUT
PHAZSS,PHASB,TST,PHASS,
TSP,TOUT
IEKTDC
FIXPI
IEKTAB
IEKAGC,ENDFILE,IEKAA9
FIOCS#,FIOCS
IBCOM#,IBCOM
IEKUSD,ESD,TXT,IEKTXT,
RLD,IEKURL,IEND,IEKUND

L---------------i-------------------------

Segment 2: This segment is phase 10. The
origin of the segment is immediately after
segment 1. At the completion of phase 10
operation, segment 2 is overlaid by segrrent
3 if the XREF option was chosen or by seg
ment 4 if the option was not chosen. The
composition of segment 2 is illustrated in
Table 42.

•Table 42. Segment - 2 Composition
r---------------T-------------------------1
!Control Section!Entry Point(s) I
~---------------+-------------------------1
STAIL-IEKGST IEKGST
XSUEPG-IEKCSR IEKCSR
LABTLU-IEKCLT IEKCLT
XARITH-IEKCAR IEKCAR
DSPTCH-IEKCDP IEKCDP,IEKCIN
XIOPST-IEKDIO IEKDIC
GETCD-IEKCGC IEKAREAD,
CSCRN-IEKCCR IEKCCR,IEKCS3,IEKCS1,

XTNDED-IEKCTN
IEKKCS
XICOP-IEKCIO
PUTX-IEKCPX
XDATA-IEKCDT
GETWC-IEKCGW
XCL~SS-IEKDCL
FORMAT-IEKT'FM
XSPECS-IEKCSP
XGO-IEKCGO
XDO-IEKCCO
PH10-IEKCAA

jIEKXRS

IEKCS2,IEKCLC
I EK CTN
IEKKOS
IEKCIO
IEKCPX
I EK CDT
IEKCGW
IEKDCL
IEKTFM
IEKCSP
IEKCGO
IEKCDO

L---------------i-------------------------

Segment 3: This segment contains subrou
tine XREF-IEKXRF. Its origin is immediate
ly after segment 1. If the XREF option is
chosen, segment 3 overlays segrrent 2. If
the XREF option is not selected, segment 3
is not used and segment 2 is overlaid by
segment 4.

Segment 4: This segment is considered a
portion of both phases 15 and 20. It con
tains data areas used by both phases.
Included in this segment are RMAJCR-IEKJA4,
CMAJCR-IEKJA2, the full register assignment
tables, and phase 15/20 work areas. The
origin of segment 4 is immediately after
segment 1. Segment 4 is overlaid by seg
ment 13 if abortive errors are not encoun
tered during the processing of phases 10
and 15. The composition of segment 4 is
illustrated in Table 43.

•Table 43. Segment - 4 Composition
r---------------T-------------------------1
!Control SectiontEntry Point(s) I
~--------~-----+-------------------------1
ICMAJCR-IEKJA2 I I
IRMAJCR-IEKJA4 I I
L---------------i-----------------~------J

Appendix G: Compiler Structure 203

Segment 5: This segment is a portion of
phase 15. It contains subroutines that
implement the PHAZ15 functions of that
phase which are arithmetic translation,
text blocking, and information gathering.
The origin of segment 5 is immediately
after segment 4. Segment 5 is overlaid by
segment 6. The composition of segment 5 is
illustrated in Table 44.

•Table 44. Segment - 5 Composition
r---------------T-------------------------1
!Control Section!Entry Point(s) I
~---------------+-------------------------~
IEKLTB I
LOOKER-IEKLOK I
GENRTN-IEKJGR IEKJGR I
FUNRDY-IEKJFU IEKJFU
CONSTV-IEKKCN IEKKCN
OP1CHK-IEKKOP IEKKOP,IEKKNG
SUBMULT-IEKKSM IEKKSM
PHAZ15-IEKJA IEKJA
BLTNFN-IEKJBF IEKJBF
STTEST-IEKKST IEKKST
RELOPS-IEKKRE IEKKRE
FINISH-IEKJFI IEKJFI
DFUNCT-IEKJDF IEKJDF,IEKKPR
MATE-IEKLMA IEKLMA
ANDOR-IEKJAN IEKJAN,IEKKNO
CPLTST-IEKJCP IEKJCP,IEKJMO
UNARY-IEKKUN IIEKKUN,IEKKSW,IEKJEX
DUMP15-IEKLER IIEKLER
PAREN-IEKKPA IIEKKPA
GENER-IEKLGN IIEKLGN
ALTRAN-IEKJAL IIEKJAL
TXTLAB-IEKLAB IIEKLAB
TXTREG-IEKLRG IIEKLRG
SUBADD-IEKKSA IIEKKSA

IPH15-IEKJA1 I
L---------------i-------------------------

Segment 6: This segment is a portion of
phase 15. It contains the subroutines that
implement the CORAL functions of the phase.
The origin of segment 6 is immediately
after segment 4. Segment 6 overlays seg
ment 5 and is overlaid by segment 7 if syn
tactical errors are not encountered by
phases 10 and 15. If errors are present,
segment 6 is overlaid by segment 12. The
composition of segment 6 is illustrated in
Table 45.

•Table 45. Segment - 6 Composition
r---------------T-------------------------1
!Control SectionlEntry Point(s) I
~---------------+------~-----------------~
IDFILE-IEKTDF IIEKTDF I
INLIST-IEKTNL IIEKTNL I
ICORAL-IEKGCR IIEKGCR I
INDATA-IEKGDA IIEKGDA I
fEQVAR-IEKGEV IIEKGEV I
f IEKGCZ IIEKGCZ I
IDATOUT-IEKTDT IIEKTDT I
f IEKGA1 I I
L---------------i-------------------------J

204.

Segment 7: This segment is a portion of
phase 20. It contains the controlling sub
routine of that phase, the loop selection
routine, and a number of frequently used
utility subroutines. The origin of segment
7 is immediately after segment 4. Segment
7 overlays segment 6 if source module
errors are not encountered by phases 10 and
15. If errors are encountered, segment 7
overlays segment 12 after its processing is
completed, only if errors encountered are
not serious enough to cause deletion of the
compilation. The composition of segment 7
is illustrated in Table 46.

•Table 46. Segment - 7 Composition
r---------------T-------------------------1
fControl SectionlEntry Point(s) f
~---------------+-------------------------~
fLPSEL-IEKPLS IIEKPLS I
I IEKARW I I
ITARGET~IEKPT IIEKPT I
IGET~IK-IEKPGK IIEKPGK,IEKPGC,IEKPIV, I
I IIEKPFT,TOFL I
IIEKFCP I I
L---------------i-------------------------J
Segment 8: This segment is a portion of
phase 20. It consists of the subroutines
that deterrrine (1) the back dominator, back
target, and loop number of each source
module block, and (2) the busy-on-exit
data. Segment 8 is executed only if the
CPT=2 path through phase 20 is followed.
The segment is executed only once and is
overlaid by segment 9. The origin of seg
ment 8 is irrmediately after segment 7. The
composition of segment 8 is illustrated in
Table 47.

•Table 47. Segment - 8 Composition
r---------------T-------------------------1
fControl SectionfEntry Point(s) f
~---------------+-------------------------f
ISRPRIZ-IEKQAA IIEKQAA,IEKQAB I
ITOPO-IEKPO IIEKPO I
f IEKPTB IIEKPTB I
IBAKT-IEKPB IIEKPB I
IBIZX-IEKPZ IIEKPZ I
f IEKPBL I I
L---------------L------~-----------------J

Segment 9: This segment is a portion of
phase 20. It contains subroutines that
perform common expression elimination and
strength reduction as well as the major
portion of the utility subroutines used
during text optimization. Segrrent 9 is
executed only if the OPT=2 path through
phase 20 is specified. The origin of seg
ment 9 is immediately after segment 7.
During the course of optimization, segment
9 overlays segment 8 and is overlaid by
segment 10 after all module loops have been
text-optimized. The composition of segment
9 is illustrated in Table 48.

•Table 48. Segment - 9 Composition
r---------~----T-------------------------1
!Control SectionjEntry Point(s) I
~---------------+---~--------------------1
jKORAN-IEKQKO IEKQLO
jWRITEX-IEKQWT IEKQWT
jCIRCLE-IEKQCL IEKQCL,IEKQF
jPERFOR-IEKQPF IEKQPF
jTYPLOC-IEKQTL IEKQTL,IEKQIT
jXSCAN-IEKQXS IEKQXS,IEKQYS,IEKQZS
jXPELIM-IEKQXM IEKQXM
IMOVTEX-IEKQMT IEKQMT,IEKQDT
jCLASIF-IEKQCF IEKQCF,IEKQPX,IEKQMF
IBACMOV-IEKQBM IEKQBM
jREDUCE-IEKQSR IEKQSR
jSUBSUM-IEKQSM IEKQSM
L---------------i-------------------------

Segment 10: This segment is a portion of
phase 20. It contains full register
assignment subroutines, the utility subrou
tines used by them, and the subroutine that
calculates the size of each text block and
determines which text blocks can be
branched to via RX-format branch instruc
tions. Segment 10 is executed in the opti
mized paths through phase 20. The origin
of segment 10 is immediately after segment
7. The composition of segment 10 is illus
trated in Table 49.

•Table 49. Segment - 10 Composition
r---------------T-------------------------1
!Control SectionjEntry Point(s) I
~---------------+----------------~-------~
IBLS-IEKSBS IEKSBS
jCXIMAG-IEKRCI IEKRCI
IBKPAS-IEKRBP IEKRBP
jGLOBAS-IEKRGB IEKRGB
jFWDPS1-IEKRF1 IEKRF1
ILOC-IEKRL1
IFCLT50-IEKRFL IEKRFL,IEKRRL,IEKRTF
ISTXTR-IEKRSX IEKRSX
jFWDPAS-IEKRFP IEKRFP
ISEARCH-IEKRS IEKRS
IREGAS-IEKRRG IEKRRG
jFREE-IEKRFR IEKRFR
jBKDMP-IEKRBK IEKRBK
L---------------i-------------------------

Segment 11: This segment is a portion of
phase 20. It consists of the subroutines
that perform basic register assignment.
Segment 11 is executed only in the OPT=O
path through phase 20. The origin of seg
ment 11 is immediately after segment 7.
Segment 11 does not overlay any other seg
ment in phase 20, nor is it overlaid by
another segment in phase 20. The composi
tion of segment 11 is illustrated in Table
so.

•Table 50. Segment - 11 Composition
r---------------T-~----------~----------1
!Control SectionjEntry Point(s) I
~---------------+-------------------------~
ISSTAT-IEKRSS IIEKRSS I
ITALL-IEKRLL IIEKRLL I
ISPLRA-IEKRSL IIEKRSL I
L-----------~--i-------------------------J

Segment 12: This segment is phase 30. 'Ihe
origin of segment 12 is immediately after
segment 4. Segment 12 overlays segment 6
if syntactical errors are encountered dur
ing the processing of phases 10 and 15. If
the errors detected by these phases are not
serious enough to cause deletion of the
compilation, segment 12, after its proces
sing is completed, is overlaid by segment
7. The composition of segment 12 is illus
trated in Table 51.

•Table 51. Segment - 12 Composition
r---------------T~-----------------------1
!Control SectionjEntry Point(s) I
~---------------t-------------------------1
IMSGWRT-IEKP31 IIEKP31 I
I IEKP30-IEKP30 I I
L---------------i-------------------------J
Segment 13: This segment is phase 25. The
origin of segment 13 is immediately after
segment 1. Segment 13 overlays segment 4.
The composition of segment 13 is illus
trated in Table 52.

•Table 52. Segment - 13 Composition
r---------------T-------------------------1
!Control SectionjEntry Point(s) I
~---------------+~-----------------------1
MANGN2-IEKVM2 IEKVM2 I
PACKER-IEKTPK IEKTPK I
LAEEL-IEKTLE IEKTLB I
RETURN-IEKTRN IEKTRN I
FNCALL-IEKVFN IEKVFN
GOTCKK-IEKWKK IEKWKK
LISTER-IEKTLS IEKTLS
STCPPR-IEKTSR IEKTSR
ENTRY-IEKTEN IEKTEN
CGNDTA-IEKWCN
BRLGL-IEKVBL
IOSUE-IEKTIS
PROLOG-IEKTPR

IMAINGN-IEKTA
ITNTXT-IEKVTN
IIOSUE2-IEKTIO
IEND-IEKUEN
IEPILOG-IEKTEP
jIEKGMP
IADMI:GN-IEKVAD
jTSTSET-IEKVTS
jPLSGEN-IEKVPL
jSUEGEN-IEKVSU
tUNRGEN-IEKVUN
jBITNFP-IEKVFP
IFAZ25-IEKP25

IEKVBL
IEKTIS
IEKTPR
IEKTA
IEKVTN
IEKTIO
IEKUEN
I EK TEP

IEKVAD
IEKVTS
IEKVPL
IEKVSU
IEKVUN
IEKVFP

L---------------i-------------------------J

Appendix G: Compiler Structure 205

APPENDIX H: DIAGNOSTIC MESSAGES

The messages produced by the compiler
are explained in the publication IBM
System/360 Operating System: FORTRAN IV
(H) Programmer's Guide. Each message is
identified by an associated number. The
following table associates a message number
with the phase and subroutine in which the
corresponding message is generated.

As part of its processing of errors,
whenever the ~ompiler encounters an error
that is serious enough to cause deletion of
a compilation, it prints out a value, ~,
for the PHASE SWITCH (refer to Appendix C

r---------T----------------T------------~1
I !Routine in whichlPhase in which!
I Message !message number !message number!
I number lis generated lis generated I
~---------+----------------+--------------~
I IEK002I IXCLASS-IEKDCL I
·---------+----------------i
I IEK003I IXARITH-IEKCAR I
·---------+----------------~
I IEK005I IXARITH-IEKCAR I
·---------+----------------i
I IEK006I IXARITH-IEKCAR, I
I ILABTLU-IEKCLT, I
I IDSPTCH-IEKCDP, I
I IXIOOP-IEKCIO, I
I IXCLASS-IEKDCL I
~---------+----------------1
I IEK007I IXARITH-IEKCAR I
·---------+----------------~
I IEKOOBI ICSORN-IEKCCR I
~---------+----------------1
I IEK009I f CSORN-IEKCCR I
·---------+----------------~
I IEK010I f CSORN-IEKCCR I
·---------+----------------~ PHASE 10
I IEK012I ICSORN-IEKCCR I
·---------+----------------i
I IEK013I IXARITH-IEKCAR, I
I IPUTX-IEKCPX, I
I ICSORN-IEKCCR, I
I IXCLASS-IEKDCL I
·---------+----------------1
I IEK014I IXDATYP-IEKCDT, I
I IXSPECS-IEKCSP I
~---------+----------------~
I IEK016I IXGO-IEKCGO I
~---------+----------------1
I IEK017I IXGO-IEKCGO I
·---------+----------------i
I IEK019I IXGO-IEKCGO I
·---------+----------------1
I IEK020I IXGO-IEKCGO I
!---------+----------------~
I IEK021I IXGO-IEKCGO I
L---------i----------------i------------~

206

of the above referenced publication) • This
value is in hexadecimal and indicates which
phase of the compiler was in control when
the error occurred. The value for m may be
any one of the following: -

m Phase
1 Phase 10
4 Phase 15 (PHAZ 15)
8 Phase 15 (CORAL)

10 Phase 20
20 Phase 25
40 Phase 30

r---------T----------------T--------------1
I IEK022I IXGO-IEKCGO I t
·---------+----------------~
I IEK023I IXTNDED-IEKCTN I
·---------+----------------i
I IEK024I IXTN~ED-IEKCTN I
·---------+----------------~
I IEK025I IXTNDED-I.EKCTN I
·---------+----------------i
I IEK026I IXTNDED-IEKCTN I
·---------+----------------i
I IEK027I IXIOPST-IEKDIO I
·---------+----------------i
I IEK028I f XIOPST-IEKDIC I
·---------+----------------i
I IEK030I IXDO-IEKCDO I
·---------+----------------i
I IEK031I f XDO-IEKCDC I
·---------+----------------4
I IEK034I f DSPTCH-IEKCDP I
·--~------+----------------~
I IEK035I f DSPTCH-IEKCDP I
·---------+----------------i
I IEK036I IDSPTCH-IEKCDP I
·---------+----------------i
I IEK039I IXTNDED-IEKCTN I
·---------+----------------i
I IEK040I f XCLASS-IEKDCL I
·---------+----------------~ PHASE 10
I IEK047I IXARITH-IEKCAR, I
I IXDATYP-IEKCDT I
~---------+----------------i
I IEK052I IDSPTCH-IEKCDP I
·---------+----------------i
I IEK053I IXARITH-IEKCAR, I
I IDSPTCH-IEKCDP I
·---------+----------------i
I IEK056I IXSUEPG-IEKCSR I
·---------+----------------i
I IEK057I IXSUBPG-IEKCSR I
·---------+----------------i
I IEK058I IXSUBPG-IEKCSR I
·---------+----------------i
I IEK059I IXSUBPG-IEKCSR I
L---------i----------------i--------------

r---------T----------------T--------------1
I IEK060I IXARITH-IEKCAR, I
I IDSPTCH-IEKCDP I
~---------+----------------t
I IEK062I IXSPECS-IEKCSP I
~---------+----------------t
I IEK064I IXTNDED-IEKCTN I
1---------+----------------t
I IEK065I IXTNDED-IEKCTN I
~---------+----------------t
I IEK066I IXTNDED-IEKCTN I
~---------+----------------t
I IEK067I IXTNDED-IEKCTN I
r---------+----------------t
I IEK069I IXSPECS-IEKCSP I
r---------+----------------t
I IEK070I IXSPECS-IEKCSP I
r---------+----------------t
I IEK072I IXSPECS-IEKCSP I
1---------t----------------t PHASE 10
I IEK073I IXSPECS-IEKCSP I
r---------+----------------t
I IEK074I IXSPECS-IEKCSP I
r---------+----------------t
I IEK077I IXTNDED-IEKCTN I
r---------+----------------t
I IEK078I IXTNDED-IEKCTN I
r---------+----------------t
I IEK079I IXTNDED-IEKCTN I
r---------+----------------t
I IEK080I IXTNDED-IEKCTN I
r--------+----------------t
I IEK081I IXTNDED-IEKCTN I
~---------+---------------t
I IEK082I IXTNDED-IEKCTN I
r--------+----------------t
I IEK083I IXTNDED-IEKCTN I
r---------+--------------t
I IEK084I IXTNDED-IEKCTN I
1---------+----------------t
I IEK093I IXDATYP-IEKCTN I
r---------+----------------t
I IEK094I IXDATYP-IEKCTN I
t---------+----------------t
I IEK095I IXDATYP-IEKCTN I
t---------+---------------t
I IEK096I IXDATYP-IEKCTN I
~---------+----------------t
I IEK097I IXTNDED-IEKCTN I
r---------+----------------t
I IEK098I IXTNDED-IEKCTN I
r---------+----------------t
I IEK099I IXTNDED-IEKCTN I
t---------+---------------t
I IEK100I IXTNDED-IEKCTN I
t---------+----------------t
I IEK101I IXDO-IEKCDO I
t---------+----------------t
I IEK102I IXIOPST-IEKDIO I
r---------+---------------t
I IEK104I IXIOPST-IEKDIO I
t---------+---------------t
I IEK109I IXIOPST-IEKDIO I
t---------+--------------t
I IEK110I IXIOPST-IEKDIO I
t---------+---------------t
I IEK111I IXIOPST-IEKDIO I
L---------.L---------------i--------------

r---------T----------------T-------------1
I IEK113I IXIOPST-IEKDIO I
t---------+----------------t
I IEK115I IXIOPST-IEKDIO I
t---------+----------------t
I IEK116I IXDO-IEKCDO I
t---------+----------------t
I IEK117I IDSPTCH-IEKCDP I
r---------+---------------t
I IEK120I IDSPTCH-IEKCDP I
r---------+----------------t
I IEK121I IXDATYP-IEKCDT I
~---------+----------------t
I IEK122I IXDATYP-IEKCDT I
r---------+----------------t
I IEK123I IXDATYP-IEKCDT I
r---------+----------------~
I IEK124I IXDATYP-IEKCDP I
r---------+---------------t
I IEK125I IXDATYP-IEKCDP I
r---------+----------------t
I IEK129I IXDATYP-IEKCDT I
t---------+----------------t
I IEK130I IXDATYP-IEKCDT I
~---------+----------------t
I IEK132I IXDATYP-IEKCDT I
~---------+---------------t
I IEK133I IXDO-IEKCDO I
t---------+-------------t
I IEK134I IXDO-IEKCDO I
~---------+----------------t
I IEK135I IXDO-IEKCDO I
~---------+----------------t
I IEK136I IXDO-IEKCDO I
t---------+----------------t
I IEK137I IXDO-IEKCDO I
t---------+----------------t
I IEK138I IXDO-IEKCDO I
t--------+----------------t
I IEK139I IDSPTCH-IEKCDP, I
I IXSPECS-IEKCSP, I
I IXDATYP-IEKCDT I
·---------+----------------t
I IEK140I IDSPTCH-IEKCDP, I
I IXIOPST-IEKDIO I
t---------+----------------t l
I IEK141I IXIOPST-IEKDIO I . I
•---------+----------------t I
I IEK143I IDSPTCH-IEKCDP I I
t---------+----------------t I
I IEK144I IDSPTCH-IEKCDP I I
•---------+----------------t I
I IEK145I IDSPTCH-IEKCDP I l
t---------+----------------t
I IEK146I IDSPTCH-IEKCDP I
·---------+---------------t
I IEK147I IDSPTCH-IEKCDP I
·---------+---------------t
I IEK148I IXSPECS-IEKCSP I
·---------+--------~-------t
I IEK149I IXSPECS-IEKCSP I
·---------+----------------t
I IEK150I IXSPECS-IEKCSP I
·---------+----------------t
I IEK151I IXSPECS-IEKCSP I
~---------t----------------t PHASE 10
I IEK152I IXSUEPG-IEKCSR I
L---------i----------------i-------------J

Appendix H: Diagnostic Messages 207

r---------T----------------T--------------1
I IEK153I IXARITH-IEKCAR I
~---------+----------------~
I IEK156I IXIOOP-IEKCIO I
~---------+----------------1
I IEK157I IXARITH-IEKCAR I
~---------+----------------~
I IEK158I IXDO-IEKCDO I
~---------+----------------1
1 IEK159I IXIOPST-IEKDIO I
~-------~+------~--------~
I IEK160I IXIOOP-IEKCIO, I
I I XDO-IEKCDO I
~-------~+----~------~--1
I IEK161I IXIOOP-IEKCIO I
~---------+----------------1
I IEK163I IXDO-IEKCDO I
~---------+----------------1
I IEK165I IXIOOP-IEKCIO I
~---------+----------------1
I IEK166I IXIOOP-IEKCIO I
~---------+------~--------1
I IEK167I IXARITH-IEKCAR, I

- I I XSPECS-IEKCSP, I
I IXIOPST-IEKDIO, I
I IDSPTCH-IEKCDP, I
I I XSUBPG-I EK CSR I
~---------+---~-----------1
I IEK168I IXSUBPG-IEKCSR I
l---------+----------------1
I IEK169I IXICOP-IEKCIO I
l---------+----------------1
I IEK170I IXICOP-IEKCIO I
~---------+--------~------~
I IEK176I IXDO-IEKCDO I
l---------+----------------1
I IEK192I IXGO-IEKCGO, I
I IXCLASS-IEKDCL I
~---------+----------------~
I IEK193I IXCLASS-IEKDCL I
~---------+----------------1
I IEK194I IXDATYP-IEKCDT I
~---------+---~-----------~
I IEK197I IXIOPST-IEKDIO I
~---------+----------------1
I IEK199I IXSUBPG-IEKCSR I
!---------+----------------~
I IEK200I IXARITH-IEKCAR I
~---------+----------------1
I IEK202I IXDATYP-IEKCDT, I
I IXSPECS-IEKCSP I
~---------+----------------~ PHASE 10
I IEK204I IXIOPST-IEKDIO I
!---------+----------------~
I IEK205I IXGO-IEKCGO I
~---------+----------------~
I IEK206I IXARITH-IEKCAR I
~---------+----------------~
I IEK207I IDSPTCH-IEKCDP I
~---------+----------------~
I IEK208I IDSPTCH-IEKCDP I
~---------+----------------~
I IEK211I ICSORN-IEKCCR I
~---------+----------------~
I IEK224I IXCLASS-IEKDCL, I
I IDSPTCH-IEKCDP I
L---------i----------------i--------------J

208

r---------T-------~-------T--------------1

I IEK225I IDSPTCH-IEKCDP I I
~---------+----------------~ I
I IEK226I ICSORN-IEKCCR I I
~---------+----------------~ I
I IEK229I IXARITH-IEKCAR I I
~---------+----------------+--------------~
I IEK302I ISTALL-IEKGST I
~---------+----------------~
I IEK304I ISTALL-IEKGST I
~---------+---~------------~
I IEK305I ISTALL-IEKGST I
~---------+--~-------------~
I IEK306I. ISTALL-IEKGST I
~---------+----------------~
I IEK307I ICORAL-IEKGCR I
~---------+----------------~
I IEK308I ISTALL-IEKGST I
~---------+------------~---~
I IEK310I ISTALL-IEKGST I
~---------+---~-----------~
I IEK312I ISTALL-IEKGST I PHASE 10
~----~---+-~--------------~ (STALL-IEKGST)
f IEK314I ISTALL-IEKGST I and
~----~---+----------------~ PHASE 15
I IEK315I ISTALL-IEKGST I
~---------+----------------~ (CORAL)
I IEK318I INDATA-IEKGDA I
~---------+----------------~
I IEK319I INDATA-IEKGDA I
~---------+----------------~
I IEK322I ISTALL-IEKGST I
~---------+-----~---------~
I IEK323I ISTALL-IEKGST I
~---------+----------------~
I IEK332I ISTALL-IEKGST I
~---------+----------------~
I IEK334I ISTALL-IEKGST I
~---------+----------------~
I IEK350I INDATA-IEKGDA I
~---------+-------~-------~
I IEK352I INDATA-IEKGDA I
~---------+----------------~
I IEK353I IIEKGCZ I
~---------+----------------~
I IEK356I ISTALL-IEKGST I
~---------+----------------~
I IEKSOOI ISTALL-IEKGST I
~---------+----------------+--------------~
I IEK501I IUNARY-IEKKUN I
I I (EXPON) I
~---------+----------------~
I IEK502I IUNARY-IEKKUN I
I I (EXPON) I
·---------+----------------~
I IEK503I IBLTNFN-IEKJBF I
·---------+----------------~
I IEK505I IPHAZ15-IEKJA I
~---------+----------------~
I IEK506I IALTRAN-IEKJAL I
·---------+----------------~
I IEK507I IBLTNFN-IEKJBF I
~---------+----------------~
I IEK508I f BLTNFN-IEKJBF I
~---------+------------~--~
I IEK509I IPHAZ15-IEKJA I
L---------i----------------i--------------

r---------T----------------T--------------1
I IEK510I IANDOR-IEKJAN I
~---------+----------------1
I IEK511I IANDOR-IEKJAN I
I I (IEKKNO) I
~---------+----------------1
I IEK512I IFINISH-IEKJFI I
~---------+----------------1
I IEK515I IRELOPS-IEKKRE I
~---------+----------------1
I IEK516I IFINISH-IEKJFI I
~---------+----------------1
I IEK520I IALTRAN-IEKJAL I
·---------+----------------1
I IEK521I IALTRAN-IEKJAL I PHASE 15
·---------t----------------1 (PHAZ 1 5)
I IEK522I IALTRAN-IEKJAL I
·---------+----------------1
I IEK523I IALTRAN-IEKJAL I
·---------+----------------1
I IEK524I IALTRAN-IEKJAL I
·---------+----------------1
I IEK525I IALTRAN-IEKJAL I
·---------+----------------1
I IEK526I IRELOPS-IEKRRE I
·---------+----------------1
I IEK527I IANDOR-IEKJAN I
·---------+----------------1
I IEK528I f BLTNFN-IEKJBF I
·---------+----------------1
I IEK529I IDFUNCT-IEKJDF I
I I (IEKKPR) I
·---------+----------------1
I IEK530I ISUBADD-IEKKSA I
·---------+----------------1
I IEK531I IALTRAN-IEKJAL I
·---------+----------------1
I IEK541I IDFUNCT-IEKJDF I
·---------+----------------1
I IEK542I IALTRAN-IEKJAL I
·---------+----------------1
I IEK550I IALTRAN-IEKJAL I
I IDFUNCT-IEKJDF I
I I (IEKKPR) I
·---------+----------------1
I IEK55I IGENER-IEKLGN I
·---------+----------------1
I IEK560I IGENER-IEKLGN I
L---------i----------------i--------------J

r---------T----------------T--------------1
I IEK573I IGENER-IEKLGN I I
I ITXTLAB-IEKLAB, I I
I ITXTREG-IEKLRG I I
•---------+----------------1 I
I IEK580I IAlTRAN-IEKJAL I PHASE 15 I
·---------t----------------1 (PHAZ 1 5) I
I IEK581I ISUBMLT-IEKKSM I I
•---------t----------------1 I
I IEK583I ITXTREG-IEKLRG I I
•---------t----------------1 I
I IEK584I IMATE-IEKLMA I I
•---------t----------------1 I
I IEK585I IFINISH-IEKJFI I I
·---------+----------------t--------------1
I IEK600I ITOPO-IEKPO I
·---------+----------------1
I IEK610I ITOPO-IEKPO I
·---------t----------------1
I IEK631I IGETDIK-IEKPGK I
·---------t----------------1 PHASE 20
I IEK650I ITOPO-IEKPO I
·---------t----------------1
I IEK660I ITGPO-IEKPO I
·---------t----------------1
I IEK670I IBAKT-IEKPB I
·---------+----------------1
I IEK671I IBIZX-IEKPZ I
·---------+----------------1
I IEK680I IRELCOR-IEKRRL I
·---------+----------------+--------------1
I IEK710I ISTALL-IEKGST I
·---------+----------------1
I IEK720I ISTALL-IEKGST I
·---------+----------------1
I IEK730I ISTALL-IEKGST I
·---------t----------------1 PHASE 10
I IEK740I I STALL-IEKGST I (STAlL-IEKGST)
·---------+----------------1
I IEK750I ISTALL-IEKGST I
·---------+----------------1
I IEK760I ISTALL-IEKGST I
·---------t----------------1
I IEK770I ISTAlL-IEKGST I
·---------+----------------+--------------1
I IEK780I IMAINGN-IEKTA I PHASE 25 I
·---------+----------------t--------------1
I IEK999I IIEKP30 I I
·---------t---~-----------1 PHASE 30 I
I IEK001I I IEKP30 I I
L---------i----------------i--------------J

Appendix H: Diagnostic Messages 209

APPENDIX I: THE TRACE AND DUMP FACILITIES

Included in the FORTRAN IV (HJ compiler
are two optional facilities which provide
output that can be used to analyze compiler
operation and to diagnose compiler malfunc
tion. These two facilities are TRACE and
DUMP.

TRACE

The TRACE facility can be used to trace
the creation of and the modifications made
to the information table and intermediate
text, and to provide various other types of
diagnostic information. This facility is
activated by the inclusion of the TRACE
keyword parameter in the PARM field of the
EXEC statement used to invoke the compiler.
The format of this parameter is

TRACE=value

where:
value may be either: (1) any one of
the basic keyword valu~s appearing in
Table 53, or (2) any value that is
formed by adding two or more of these
basic keyword values.

The type of diagnostic information to be
provided by the compiler for a given compi
lation or batch of compilations is deter
mined according to the value specified for
the TRACE keyword. Table 53 defines the
type of diagnostic information produced for
each of the basic keyword values for the
TRACE keyword. If one of these values is
specified, the corresponding information is
provided by the compiler. For example, if
the basic keyword value of 4 is specified,
the compiler generates PHAZ15 diagnostic
information.

If the value given to the TRACE keyword
is the sum of two or more basic keyword
values, then the compiler will produce the
type of information that corresponds to
each basic keyword value that was added to
form that value. For example, if the value
12 (the sum of basic keyword values 4 and
8) is specified, the compiler will generate
both PHAZ15 diagnostic information and
CORAL diagnostic information.

210

Table 53. Basic TRACE Keyword Values and
· Output Produced

r-------T---------------------------------1
!Basic I I
IKeywordlOutput Produced I
!Values I I
·-------+---------------------------------i
I 1 !Phase 10 diagnostic information I
~-------+---------------------------------i
I 2 !Printout of the information table!
I Jas it appears after the execution!
I lof STALL in Phase 10 ' I
·-------+---------------------------------i
I 4 IPHAZ15 diagnostic information I
·-------+---------------------------------i
I 8 ICORAL diagnostic information I
·-------+---------------------------------i
I 16 !Phase 20 diagnostic information I
·-------+---------------------------------i
I 32 !Phase 25 diagnostic information I
·-------+---------------------------------i

64 Printout of: I
1. Intermediate text and infor-1

mation table as they appear I
after the execution of Phase!
1 o. I

2. Information table as it I
appears after the execution
of STALL in Phase 15.

3. Intermediate text and infor
mation table as they appear
after the execution of
PHAZ15 in Phase 15.

4. Information table as it
appears after the execution
of CORAL in Phase 15.

5. Intermediate text as it
appears after the execution
of Phase 20.

·-------+---------------------------------i
I 128 !Block size information for each I
I I text block (Phase 20) I
~-------+---------------------------------i
I 256 !Diagnostic information from the I
I !register assignment routines I
I I (Phase 20) I
·-------+---------------------------------i
I 512 !Diagnostic information from the I
I !text optimization routines (Phase!
I 12~ I
·-------+---------------------------------i I 1024 !Busy-on-exit information for each!
I !text block (Phase 20) I
·-------+---------------------------------i
I 2048 !Additional diagnostic information!
I !from the register assignment rou-1
I I tines (Phase 2 0) I
~-------+---------------------------------i
I 4096 !Printout of intermediate text andl
I !information table before and I
I !after the execution of Phase 20 I t _______ i _________________________________ J

DUMP

The dump facility, if activated, will
cause abnormal termination of compiler pro
cessing if a program interrupt occurs dur
ing compilation. It will also cause the
main storage areas occupied by the compil
er, as well as any associated data and sys
tem control blocks to be recorded on an
external storage device. The dump facility
is activated by including in the compile
step of the job: (1) the word DUMP as a

parameter in the PARM field of the EXEC
statement, and (2) a SYSABEND data defini
tion (DD) statement.

Note: If the DUMP parameter is specified
tut the SYSAEEND DD statement is omitted,
abnormal terrrination, accompanied by an
indicative dump, will occur if a program
interrupt is encountered. If a program
interrupt occurs and the DUMP parameter is
not specified, the current compilation will
be deleted and the next will be attempted.

Appendix I: The Trace and Dump Facilities 211

APPENDIX J: FACILITIES USED BY THE CCMPILER

The following statements, built-in functions, and facilities are used by the coropiler
to compile itself.

r---------------------T---1
I Facility I Purpose I
~---------------------+---~
!STRUCTURE Statement Provides a means of referring to fields within data structures
I which are located arbitrarily in main storage. The data struc-
1 tures may consist of sets of fields of mixed type and length.
I
I LAND (a,b)
!built-in function ANDs a and b to obtain a 4-byte logical result.
I
I LOR (a,b)
!built-in function ORs a and b to obtain a 4-byte logical result.
I
LXOR (a,b)
built-in function Exclusive ORs a and b to obtain a 4-byte logical result.

LCOMPL (a)
built-in function

SHFTL (a,n)
built-in function

SHFTR (a,n)
built-in function

TBIT (c,k)
built-in function

MOD24 (d)
built-in function

BITCN (v, k)

Takes the compliment of a to obtain a 4-byte logical result.

Shifts a left n bit positions to obtain a 4-byte logical result.

Shifts a right n bit positions to obtain a 4-byte logical result.

Tests bit k of value c to obtain a 4-byte logical result; on=.
TRUE. , off=.FALSE.

Sets the high-order byte of d to zero to obtain a 4-byte integer
result.

bit-setting statement Sets bit k of value v on.

BIT OFF (v, k)
bit-setting statement Sets bit k of value v off.

BITFLP (v, k)
bit-setting statement Inverts bit k of value v.
~---------------------~---~
!The following error message may appear in connection with a STRUCTURE staterrent: I
I I
IIEK060I The expression has a structured variable without a subscript. I L_ ___ J

212

APPENDIX K: MICROFICHE DIRECTORY

The microfiche directory (Table 54) is designed to help you find named areas of code
in the program listing, which is contained on microfiche cards at your installation.
Microfiche cards are filed in alpharoeric order ty otject module name. If you wish to
locate a control section, entry point, or table on rricrofiche, find the name in column
one and note the associated object module narre. You can then find the iterr on micro
fiche, via the object module name; for example, object rrodule IEKOBJT1 is on card
IEKOBJT1-1.

The other columns provide a description of the item, a brief synopsis of its function
(if it is a routine), its phase, its overlay segrrent and its flowchart ID (if
applicable) •

•Table 54. Microfiche Directory
r--------------T-----------------------------T--------T-----T-------T---------T---------1
I I !Object I I IChart I I
I I I Module I I Overlay I ID I I
!Symbolic Name !Description !Name andlPhaselSegmentr---------~Synopsis I
I I I CSECT I I I* - Cnly I I
I I I Name I I I Mentioned I I
I I I I I I in Chart I I
r--------------+-----------------------------+--------+-----+-------+---------+---------~
IADMDGN-IEKVAD ICode generation routine IEKVAI# 25 13 I Table 14 I
I I I I
AFIXPI !Entry point IEKAFP FSD Table 6 I

I I
ALTRAN-IEKJAL !Arithmetic translation IEKJAL# 15 5 07 Table 9 I

I routine I
I I

ANDOR-IEKJAN !Text generation routine IEKJAN# 15 5 07* Table 9 I
I I

BACMOV-IEKQBM !Text optimization routine IEKQBM# 20 9 12 Table 12 I
I

BAKT-IEKPB !Structural determination IEKQPB# 20 8 10* Table 12
I routine

BITNFP-IEKVFP

BIZX-IEKPZ

BKDMP-IEKRBK

BKPAS-IEKRBP

BLS-IEKSBS
I
I
IBLTNFN-IEKJBF
I
IBRLGL-IEKVBL
I
ICGNDTA-IEKWCN
I
ICIRCLE-IEKQCL
I
ICLASIF-IEKQCF
I

Instruction generation
routine

MVX routine

Printing routine

Local register assignment
routine

Branching optimization
routine

In-line function routine

Code generation routine

Array initialization routine

Utility subroutine

Utility sutroutine

I
IIEKVFP#
I

IEKPZ#

IEKRBK#

IEKREP#

IEKSES#

IEKJBF#

IEKVBL#

IEKWCN

IEKQCL#

IEKQCF#

25

20
I

20

20

20

15

25

25

120
I
120
I

13

8

1 0

10

10

5

13

13

9

9

10*

16

10*

Table 14

Tat le 12

Table 12

Ta.Cle 12
I
I
!Table 12
I
I
!Table 9
I
!Table 14
I
!Table 14
I
!Table 13
I
!Table 13
I

ICNSTCV-IEKKCN Constant conversion routine IEKKCN 115 I 5 !Table 9
l ______________ i _____________________________ i ________ i _____ i _______ i _________ i ________ _

(Continued)

Appendix K: Microfiche Dictionary 213

•Table 54. Microfiche Directory (Continued)
r--------------T-----------------------------T--------T-----T-------T---------T---------1
I I IC.tject I I !Chart I I
I I I Module I I overlay I ID I I
!Symbolic Name !Description !Name andlPhaselSegment~---------~Synopsis I
I I I CSEC'I I I I * - Cnly I I
I I I Name I I I Mentioned I I
I I I I I lin Chart I I
~--------------+-----------------------------+--------+-----+-------+---------+---------~
ICORAL-IEKGCR Control routine IEKGCR# 15 I 6 09 'Iable 9
I I
ICPLTST-IEKJCP Arithmetic triplet routine IEKJCP# 15 I 5 07* Table 9
I I
ICSORN-IEKCCR Collection, conversion, and IEKCCR# 10 I 2 Table 8
I entry placement routine I
I I
ICXIMAG-IEKRCI Local register assignment IEKRCI# 20 I 10 Table 12
I routine I
I
IDATOUT-IEKTDT DATA statement processing IEKTDT# 15 6 09* Table 9
I routine
I
IDELTEX-IEKQDT Entry point IEKQMT# 20 9
I
IDFUNCT-IEKJDF In-line and library function IEKJDF# 15 5 'Iable 9
I routine
I
DSPTCH-IEKCDP Dispatcher, key word, and IEKCDP# 10 2 03 Table 8

utility routine

DUMP15-IEKLER Error recording routine

END FILE

END-IEKUEN

ENTRY-IEKTEN

Entry point

Object module processing
routine

Epilogue and prologue
generating routine

IEKLER# 15

IEKAAOO FSD

IEKUEN# 25

IEKTEN# 25

EPILOG-IEKTEP Subprogram epilogue generat- IEK'IEP# 25
ing routine

EQVAR-IEKGEV Common and equivalence
routine

IEKGEV# 15

ESD Entry point IEKTLCAD FSD
I

5 Table 9

13 21 Table 14

13 21* Table 14

13 Table 14

I
6 09* Table 9

FAZ25-IEKP25 Common data area IIEKP25 25 13 Table 14
I

FCLT50-IEKRFL Text checking routine IIEKRFL# 20 10 Table 12
I

FILTEX-IEKPFT Entry point IIEKPGK# 20 7 Table 13
I

FINISH-IEKJFI Statement processing routine IIEKJFI# 15 5 07* Table 9
I

FIOCS, FIOCS# Entry points IIEKFIOCS FSD I
I I

FIXPI, FIXPI# Entry points IIEKAFP FSD I
I I

FNCALL-IEKVFN Calling sequence generating IIEKVFN# 25 13 !Table 14
routine I I

I I
IFREE-IEKRFR Local register assignment IIEKRFR# 20 10 !Table 12
I routine I I I I
L--------------i-----------------------------i--------i-----i _______ i _________ i _________ J

(Continued)

214

•Table 54. Microfiche Directory (Continued)
r--------------T-----------------------------T--------T-----T-------T---------T---------1
I I ICtject I I !Chart I I
I I I Module I I Overlay I ID I I
!Symbolic Name !Description !Name andlPhaselSegment~---------~Synopsis I
I I I CSECT I I I* - Only I I
I I I Nawe I I I Mentioned I I
I I I I I I in Chart I I
~--------------+-----------------------------+--------+-----+-------+---------+---------~
FUNRDY-IEKJFU Implicit library function IEKJFU# 15 I 5 I Table 9

reference routine I I

FWDPAS-IEKRFP

FWDPS1-IEKRF1

GENER-IEKLGN

Table building routine

Local register assignment
routine

Text output routine

GENERTN-IEKJGR Text entry routine

GETCD-IEKCGC

GETDIC-IEKPGC

GETDIK-IEKPGK

GETWD-IEKCGW

GLOBAS-IEKRGB

GOTCKK-IEKWKK

IBCOM, IBCOM#

IEKAAA

IEKAAD

IEKAAOO

IEKAA01

IEKAA9

IEKAER

IEKAFP

IEKAGC
I
IIEKAPT
I
IIEKAREAD
I
IIEKATB
I
IIEKATM
I
IIEKCIN
I

I

Preparatory subroutine

Entry point

Utility subroutine

Utility subroutine

Global register assignment
routine

Branching routine

Entry points

Communication table

Internal adcon tatle

Compiler initialization
routine

Default options, &DDNAMES for
compiler

Compilation deletion routine

Error message table

Exponentiation routine

Entry point

Service routine

Entry point

Diagnostic dump routine

Timing routine

Entry point

IEKRFR#

IEKRFl#

IEKLGN#

IEKJGR#

IEKCGC
I
IIEKPGK#
I
I IEKPGK#
I
IIEKCGW
I
IIEKRGB#
I
I
I IEKWKK#
I
I IEK.FCOMH
I
IEKAAA

IEKAAD

I I
20 I 1 o

I
20 I 1 o

1 5

15

10

20

20

10

I
I
I
I
I
I
I
I
I
I
I
I
I
I

5

5

2

7

7

2

20 I 10
I
I

25 I 13
I

FSD I
I

FSD I
I

FSD I
I

IEKAAOO FSD I

IEKAA01 FSD

IEKAA9 FSD

IE KAER FSD

IEKAFP FSD

jIEKAAOO FSD
I
I IEKAPT
I
IIEKCGC
I

FSD

10

I IEKATB# FSD
I
IIEKA'IM
I

FSD

IIEKCDP# 10
I I

l

2

2

15

15*

08

03*

17

01*

02*

03*

Table 12

Table 12

Table 9

Table 9

!Table 8

Table 13

Table 13

Table 8

Table 12

Table 14

Table 6

Table 6

Table 6

Table 6

Table 6

I Table 6

Table 6

Table 6

Table 6

Table 8

Table 6

Table 6

f Table 8
I

I IEKCLC . Entry point I IEKCCR# I 10 I 2 I Table 8 l ______________ i _____________________________ i ________ i _____ i _______ i _________ i ________ _

(Continued)

Appendix K: Microfiche Dictionary 215

•Table 54. Microfiche Directory (Continued)
r--------------T-----------------------------T--------T-----T-------T---------T---------1
I I ICtject I I !Chart I I
I I I Module I I Overlay I ID I I
!Symbolic Name !Description !Name andlPhasejSegment~---------~Synopsis i
I I I CSECT I I I* - Cnly I I
I I I Name I I I Mentioned I I
I I I I I I in Chart I I
~--------------+-----------------------------+--------+-----+-------+---------+---------~
IIEKCS1, !Entry points IEKCCR# 110 I 2 jTable 8 I
I IEKCS2, IEKCS3 I I I I I
I I I I I
IIEKFCOMfi Formatted compile-tirre I/O IEKFCOMHIFSD I j'Iable 6 I
I routine I I I
I I I I
IIEKFIOCS Interface between compiler, IEKFIOCSIFSD j'Iable 6 I
I IEKFCOMH and QSAM I I I

I I I
IEKGCR CORAL controlling routine IEKCGR# 115 6 09 !Table 9 I

I I
IEKGCZ Base and displacement routine IEKGCZ# 115 6 09* !Table 9

IEKGMP

IEKGST

IEKIORTN

IEKJA2

IEKJA4

IIEKJEX

IEKJMO

IEKKNG

IEKKNO

IEKKOS

IEKKPR

IEKKSW

IEKPFT

IEKPGC

IEKP30

IEKP31

IEKQAB

IEKQDT

IEKQF

Storage map routine

Table entry and text genera
tion utility routine

Entry point

Backward connection tal:le

Forward connection table

Entry point

Entry point

Entry point

Entry point

IEKGMP# 25

IEKGST# 10

IEKAAOO FSD
I
I IEKJA2 15/20
I
I IEKJA4 15/20
I
I IEKKUN# 15
I
I IEKJCP# 15
I
IIEKKOP# 15
I
I IEKJAN# 15
I

Coordinate assignment routinejIEKKOS 10
I

Entry point I IEKJDF# 15
I I

Entry point I IEKKUN# 115
I I

!Entry point I IEKPGK# I 20
I I

Entry point IIEKPGK# j20
I I

Controlling routine I IEKP30 130
I I

Error message writing routinelIEKP31# 130
I

Entry point I IEKQAA# 20
I

Entry point IIEKQMT# 20
I

Entry point I IEKQCL# 20
I

IEKQMF Entry point IIEKQCF# 20
I I
IIEKQPX Entry point IIEKQCF# 20
I I

13

2

4

4

5

5

5

5

2

5

5

7

7

12

12

8

9

9

9

9

IIEKQYS Entry point IIEKQXS# 20 9 I

I
20* !Table 14

I
04 !Table 8

I
I
I
I
I
I
I
I

07* I

07*

07*

04* Table 8

22 '!able 15

22* '!able 15

L--------------i-----------------------------i--------i-----i-------i---------i---------
(Continued)

216

•Table 54. Microfiche Directory (Continued)
r--------------T-----------------------------T--------T-----T-------T---------T---------1
I I ICt:ject I I !Chart I I
I I I Module I I Overlay I ID I I
!Symbolic Name !Description !Name andlPhaselSegment~---------~Synopsis I
I I I CSECT I I I* - Cnly I I
I I I Name I I I Mentioned I I
I I I I I I in Chart I I
~--------------+-----------------------------+--------+-----+-------+---------+---------~
IIEKQZS !Entry point IIEKQXSI 20 9 I I
I I I I I
IIEKRAL !Entry point IIEKRFL# 20 10 I I
I I I I I
IIEKRTF !Entry point IIEKRFLI 20 10 I I
I I I I I
IIEKTDC !Listing routine IIEKTIC# FSD !Table 6 I
I I I I I
IIEKTDF !Define file statement routine IEKTDF# 15 6 09* !Table 9 I
I I I I
IIEKTDT !Data statement routine IEKTDT# 15 6 09* !Table 9 I
I I I
IIEKTLOAD IESD, TXT, RLD, and loader END IEKTLCAD FSD Table 6 I
I !record building routine I
I I I
IIEKTXT !Entry point IEKTLOAD FSD I
I I I
IIEKUND !Entry point IEKTLOAD FSD
I I
IEKURL !Entry point

I
IEKUSD !Entry point

I
IEKXRF IXREF routine

I
IEKXRS !Utility routine for XREF

I
IEND !Entry point

I
INVERT-IEKPIV !Entry point

I
IOSUB-IEKTIS !Calling sequence generating

I routine
I

IOSUB2-IEKTIO !Calling sequence generating
I routine
I

KORAN-IEKGKO !Utility subroutine
I

LABEL-IEKTLB IStaterrent number routine

LABTLU-IEKCLT Stateroent number utility
routine

LISTER-IEKTLS Listing routine

LOC-IEKRLl Register assignment data

LOOKER-IEKLOK Subprogram table look up
routine

LORAN-IEKQLO Entry point

LPSEL-IEKPLS Control routine

IEKTLOAD FSD

IEKTLOAD FSD

IEKXRF

IEKXRS 10

IEKTLOAD FSD

IIEKPGK# 20

IEKTIS# 25

IEKTIC# 25

IEKQKO 20

IEKTLB# 25

IEKCLT# 12

IEKTLS# 25

IEKRLl 20

IEKLCK 15

IEKQKO# 20

IEKPLS# 20

3

2

7

13

13

9

13

2

13

10

5

9

7

13*

20*

Table 8

Table 14

Table 14

Table 13

Table 14
I
!Table 8
I
1
Table 14

Table 12

07* Table 9

09* Table 13

10* Table 12
I

IMAINGN-IEKTA Control routine IEKTA# 25 13 20 Table 14 I l ______________ i _____________________________ i ________ i _____ i _______ i _________ i _________ J

(Continued)

Appendix I<: Microfiche Dictionary 217

eTable 54. Microfiche Directory (Continued)
r--------------T-----------------------------T--------T-----T-------T---------T---------1
I I ICtject I I !Chart I I
I I !Module I I Overlay I ID I I
!Symbolic Name !Description !Name and!Phase!Segment~---------~Synopsis I
I I I CSECT I I I* - Cnly I I
I I I Name I I I Mentioned I I
I I I I I lin Chart I I
~--------------+-----------------------------+--------+-----+-------+---------+---------~
IMAINGN2-IEKVM21Control routine IIEKVM2# 125 I 13 !Table 14
I I I I I I
I MATE-IEKLMA I MVS, MVF, MVX routine I IEKLMA# 115 I 5 I Table 9
I I I I I I
IMODFIX-IEKQMF !Entry point IIEKQCF# 120 I 9 I
I I I I I I
MOVTEX-IEKQMT !Utility subroutine IIEKQMT# 120 I 9 !Table 13

I I I I I
MSGWRT-IEKP31 !Error message writing routinejIEKP31# 130 I 12 22* !Table 14

I I I I I
NDATA-IEKGDA !Data text routine IIEKGrA# 115 I 6 09* !Table 9

I I I I
OP1 CHK-IEKKOP Operand one routine I IEKKCP# j 15 I 5 I Table 9

I I I I
NLIST-IEKTNL Namelist statement routine IIEKTNL# 15 I 6 09* !Table 9

I I
PACKER- IEKTPK TXT record packing routine IEKTPK # 2 5 I 13 I Table 14

I I
PAGEHEAD Entry point IEKAA01 FSD I I

I I
PAREN-IEKKPA Parenthesis routine IEKKPA# 15 I 5 07* !Table 9

I I
PARFIX-IEKQPX Entry point IEKQCF# 20 I 9 !Table 13

I I
PERFOR-IEKQPF Constant routine IEKCPF# 20 I 9 jTable 13

I I
PHASE Entry point IEKATM IFSD I I

I I I
PHASS Entry point IEKATM IFSD I I

I I
PHAZSS Entry point IEKATM IFSD I

I I
IPH10-IEKCAA Common data area IEKCAA 110 2 jTable 8

l I I
PLSGEN-IEKVPL Code generation routine IIEKVPL# 125 13 jTable 14

I I I
PROLOG-IEKTPR Prologue generating routine jIEKTPR# j25 13 21* !Table 14

I I I
PUTOUT Entry point IIEKAPT IFSD I

I I I
PUTX-IEKCPX Entry placement utility jIEKCPX# 110 2 !Table 8

routine I I I
I I

REDUCE-IEKQSR Strength reduction routine IIEKQSR# 20 9 13 !Table 12
I I

REGAS-IEKRRG Full register assignment IIEKRRG# 20 10 14 jTal::le 12
routine I I

I I
IRELCOR-IEKRRL Entry point IIEKRFL# 20 10 19* !Table 12
I I I
IRELOPS-IEKKRE Relational operator routine II~KKRE# 15 5 07* !Table 9
I I I
IRETURN-IEKTRN RETURN statement routine IIEKTRN# 25 13 22* !Table 14
I I I
IRLD Entry point IIEKTLOAD FSD I I
L--------------i-----------------------------i--------i-----i-------i---------i _________ J

(Continued)

218

•Table 54. Microfiche Directory (Continued)
r--------------T-----------------------------T--------T-----T-------T---------T---------1
I I !Object I I !Chart I I
I I !Module I IOverlaylID I I
!Symbolic Name !Description INaroe andlPhaselSegment~---------iSynopsis I
I I I CSEC'I I I I * - Only I I
I I I Name I I I Mentioned I I
I I I I I tin Chart I I
~--------------+-----------------------------+--------+-----+-------+---------+---------i
ISEARCH-IEKRS Register loading routine· IEKRS# 20 10 17* !Table 12 I
I I I
f SPLRA-IEKRSL Basic register assignment IEKRSL# 20 11 l'Iable 12 I
I routine I I
I I I
ISRPRIZ-IEKQAA Structured source program IEKQAA# 20 8 Table 12 I
I listing routine I
I I
ISSTAT-IEKRSS Status setting routine IEKRSS# 20 11 10* Table 12 I
I I
STALL-IEKGST Table entry and text genera- IEKGST# 10 2 04 Table 8 f

tion utility routine I

STOPPER-IEKTSR STOP and PAUSE statement
routine

IEKTSR# 25

STTEST-IEKKST Replacement statement routine IEKKS'I# 15
I

STXTR-IEKRSX !Control routine IEKRSX# 20
I

SUBADD-IEKKSA !Subscript computation routine IEKKSA# 15
I I

SUBGEN-IEKVSU !Code generation routine IIEKVSU# 25
I I I
f SUBMULT-IEKKSM Subscript computation routinelIEKKSM# 15
I I
ISUBSUM-IEKQSM Operand and operand value f IEKQSM# 20
I replacement routine I I
I I
TARGET-IEKPT Loop and back target routine IIEKPT# 20

I
TENTXT-IEKVTN Statement processing and f IEKVTN# 25

label map routine I
I

TIMERC Entry point IIEKATM FSD
I

TNSFM-IEKRTF Entry point IEKRFL# 20

TOPO-IEKPO Back dominator routine IEKPC# 20

TOUT Entry point IEKATM FSD

TSP Entry point IEKATM FSD

TST Entry point IEKATM FSD

TSTSET-IEKVTS Code generation routine IEKVTS# 25

ITXT Entry point IEKTLOAD FSD

13

5

10 18

5

13 20*

5 01*

9

7 10*

13 20*

10

8 10*

13

Table 14

'!able 9

'I able 12

'I able 9

Table 14

'I able 9

Table 12

Table 12

Table 14

Table 12

f 'Iable
I
I

I
I
I
I
I
I

14 I
I
I
I

9 I
I
I

9 I
I routine I I

I
ITX'I'LAB-IEKLAB
I
I
ITXTREG-IEKLRG

IEKLAB# 15 Statement number processing
routine

IEKLRG# 15 Standard text processing

I
!Table
I
I
I Table

5 08*

5 08*
L_ _____________ i _____________________________ i ________ i _____ .._ ______ i _________ i _________ J

(Continued)

Appendix K: Microfiche Dictionary 219

•Table 54. Microfiche Directory (Continued)
r--------------T----------------~-----------T--------T-----T-------T---------T---------1

I I !Object I I !Chart I I
I I !Module I IOverlayjID I I
!Symbolic Name !Description !Name andjPhasetSegment~---------~Synopsis I
I I I CSECT I I I * - Cnly I I
I I !Name I I I Mentioned I I
I I I I I lin chart I I
~--------------+------------------------~---+--------+-----+-------+---------+---------~
TYPLOC-IEKQTL !Strength reduction routine IEKQTL# 120 9 I 13* !Table 12

I I I I
UNARY-IEKKUN !Arithmetic triplet and IEKKUN# 115 5 I 07* Table 9

jexponentiation operator I
!routine I
I I

UNRGEN-IEKVUN jCode generation routine IEKVUN 25 13 Table 14
I

WIRTEX-IEKQWT !Diagnostic trace printing IEKQWT# 20 9 Table 12
!routine
I

XARITH-IEKCAR Arithmetic routine IEKCAR# 10 2 Table 8

XCLASS-IEKDCL Text generation utility
routine

IEKDCL# 10 2 03* Table 8

I
XDATYP-IEKCDT DATA and TYPE keyword routine IEKCBT# 10 2 !Table 8

I
XDO-IEKCDO DO keyword routine IEKCBC# 10 2 !Table 8

I
IXGO-IEKCGO GO TO keyword routine IEKCGO# 10 2 !Table 8
I I
IXIOOP-IEKCIO I/O statement routine IEKCIO# 10 2 !Table 8
I I
fXPELIM-IEKQXM Common expression elimination IEKQXM# 20 9 11 !Table 12
I routine I
I I I
IXSCAN-IEKQXS Local block scan routine IEKQXS# 20 9 l'I'able 12
I I
IXSPECS-IEKCSP jCOMMON, DIMENSION, and EQUI- IEKCSP# 10 2 jTable 8
I !VALENCE table entry routine I
I I I
jXSUBPG-IEKCSR !CALL, SUBROUTINE, ENTRY, and IEKCSR# 10 2 jTable 8
I f FUNCTION table entry routine I
I I I
I XTNDED-IEKCTN I DEFINE FILE, NAMELIST, and IEKCT·N# 10 2 I Table 8
I !STRUCTURE table entry routine I
I I I
I XIOPST-IEKDIO I ASSIGN, RETURN, FORMAT, IEKDIO# 10 2 jTable 8
I !PAUSE, BACKSPACE, REWIND, END f
I !FILE, STOP, and END table I
f tentry routine I I I
L--------------i-----------------------------i--------i-----i-------1.~--~----i---------

220

ABS 31
Absolute constant 59
Activity table, global register

assignment 49
Adcon table 37,67,112

space reservation 36,41
starting address of 50
in XREF processing 25

Adcon variable 40
Addition, skeleton instructions 160
Additive text, elimination of 62
ADDR 31
Address

computation for array elements 201
constant 11,13,38-39

reservation of 64-65
field of TXT record 63
relative 36

assignment of 13
Adjective codes 133-134
ADMDGN-IEKVAD 105,213
AFIXPI 74,213
AIMAG 31
ALTRAN-IEKJAL 27-29,32,86,213
Anchor point 32
AND 31, 32
ANDOR-IEKJAN 32,86,213
Argument save table 32
Arithmetic

expressions
elimination of 58-60
reordering 28-29
special processing 29-32

interruptions 176
operations, basic register assignment

44-45
statements, processing 21
subroutines 19-21
translation 26,27,36

Array 18
elements, address computation 201
relative address for 38

Arrays 155
bit strip 66
as parameters 201

ASSIGN statement 20,27
Assigned GO TO operator 153

Back dominators 51,204
determination of 52-53
in common expression elimination 59

Back targets 51,52,204
determination of 53-54
pointer to 57

BACKSPACE statement 66,167
Backward connections 27,35-36

field 35
table 35,51

Backward movement 60-61
example of 163

BACMOV-IEKQBM 60-61,100,213

EAK'I-IEKPB 51,53,54,100,213
Balanced tree notation 114
Ease value of equivalence group 39
Base variables 40
Basic register assignment 42,205
Binary

Oferators 147
shift operation 150

Eit strip arrays 66
BITFIP 212
BITNFP-IEKVFP 105,213
EITOFF 212
BI'ION 212
BIZX-IEKPZ 55,100,213
BKDMP-IEKRBK 100,213
BKPAS-IEKRBP 47,48,100,213
Blanks, in source statements 19
ELKEN8 field 27,144
Block determination for branching
optimization 50-51

BLS-IEKSBS 50,63,100,213
BLTNFN-IEKJBF 30,31,86,213
Boundary alignment option 136
Branch

candidate 68
constant 61
instruction optimization 50
Ofer a tor (B) 14 7
Oferator (other) 150
Oftimization 42

OPT=1 49-51
OPT=2 63

processing, phase 25 67-68
tatle 22,125,126

entry 65
text entry 59

INDEX

true or false skeleton instructions 157
variable 61

Branch on index high, low, or equal 149
Branching optimization 42

block determination for 50-51
OFT=1 49-51
OPT=2 63

BRLGL-IEKVBL 105,213
Buffering 180

IHCDIOSH 185
Built-in functions 212
Busy-on-entry 55

table 55-56
Busy-on-exit

criteria 56
data 204
full register assignment OPT=2 62-63
table 55-56
vector field 144

BVA table 129
Byte A usage field

for statement numbers 120
for variables 117

Byte B usage table field
for statement numbers 121
for variatles 117

Index 221

Call 20,21,27
in global register assignment 49
in local register assignment 48
phase 25 processing of 66

Call arguments 152
Call-by-name

parameters 69
variables 41

Calling sequence 66
Cataloged procedures 11
CGNDTA-IEKWCN 105,213
CIRCLE-IEKQCL 102,213
CLASIF-IEKQCF 102,213
Classification

code 19
tables 109-112

CMAJOR 35,51,53,57,203
CNSTCV-IEKKCN 86,213
Code generation, phase 25 66-68
Collection subroutines 22
Common 12,18,20,69

areas table 88
block

name 20
siz~ 24

entries 22,24
expression elimination 58,60

example of 162
table 123-125

Communication table 14,15,74
contents of 14,109-110

Commutative expressions 30
Compiler

initialization 14-15
I/O flow 11-12
generated branch 33
organization of 11
purpose of 11
structure of 13
termination 17-18

Complex
expressions 28
variables 23

Computed GO TO
operators 149
skeleton instructions 159

CONJG 31
Constant

complex 23
dictionary entry 119-120
relative addresses for 38

Constant/variable usage information 32,33
phase 15 26

Constructing text information 63-64
Control flow, phase 20 42-43
Conversion

code 171
routines 177
subroutines 22

Coordinates 23
assignment of 22,23

CORAL 15,36-41,204
CORAL-IEKGCR 36,38,39,41,86,214
CPLTST-IEKJCP 86,214
Cross reference 12
CSORN-IEKCCR 78,214

in XREF 25
CTLBLK format 181

222

Current tase address, in register
assignrrent 45

CXIMAG-IEKRCI 100,214
C1520-IEl<JA2 35

Data definition statements 11
DATA statement 13,18,132
Data text

phase 10 18
format 136

phase 15 format 140
rechaining 36,40
translation 36,37

DATOUT-IEKTDT 36,37,86,214
DCB 14
DCBDDNM field 14
DCMPLX 31
DCONJG 31
DEBUG# 188
DECB skeleton section of IHCFIOSH 178,179
DECK option 12,13,63
DEFINE FILE

staterrent 18,40,132
text 123

phase 10 18
format 138

Definition vector field 144
Deletion

of corr.pilation 17
l:::efore phase 20 13

DELTEX-IEKQDT 102,214
Depth nurrters 51,52

determination of 53-54
DFILE-IEKTDF 36,40,86
DFUNCT-IEKJDF 30,31,86,214
Diagnostic message 206-209

tal:les
error table 74,131
message pointer 131

Diagnostic traceback 176
DIMENSION statement 20
Direct-linkage calling sequence 66
Directory array 66
Dispatcher subroutine 19
Displacerrent for adcon 37
Division skeleton instruction 160
DC 22

implied 21
in strength reduction 61

Double buffering 180
DSPTCH-IEKCDP 19,20,21,78,214
Dummy argunments 21
DUMP 177
Dump 211
DUMP15-IEKLER 86,214

EDIT option 12,13,18,19,56
EMIN tal:::le 47
Eminence table 47
End mark operator 19,20
End of DO IF 32
End of file 17
END statement 11,17,19

phase 25 processing if 68
ENDFILE statement 17,167,214
END-IEKUEN 86,105,214 .

Entry block 27,33,52
Entry coding

main program 16,65
subprogram main 16-17
subprogram secondary 17

Entry placement subroutine 21
ENTRY statement 17,27
ENTRY-IEKTEN 105,214
EPILOG-IEKTEP 68-69,105,214
Epilogue 16,17,64,69
Equivalence 22

group 20
head 24

variable 20
EQUIVALENCE statement 12,18,20,24,38,69
EQVAR-IEKGEV 36,39,40,86,214
Error

code table 70
levels 1 7, 70
message processing 176
object-time 167
phase 10 response to 12
phase 15 response to 13
source statement, object-time 188
table 12,69-70,74

ESD entry point 214
ESD record 41
Execute statement 11,14
Exit block 53

as forward target 57
EXIT library subprogram 177
EXT operator 152
EXTERNAL statement 20,31
External symbol dictionary 11,13,41,63

FAZ25-IEKP25 105,214
FCLT50-IEKRFL 100,214
Field count 22,171
FILTEX-IEKPFT 102,214
FIND statement 167
FINISH-IEKJFI 86,214
FIOCS,FIOCS# 214
Fixed point skeleton instructions 159
FIXPI,FIXPI# 214
FLOAT 31
FNCALL-IEKVFN 66,105,214
FOLLOW-IEKQF 100,102
Forcing strength 28-29

definition of 28
table 29

Format
codes with READ/WRITE 16
of source statement after phase 10 19
text 132

phase 10 18
format 138
translation 22-23

FORMAT statement 16,18,22,23,132
FORMAT-IEKTFM 22,214
FORTRAN system director 11,14-18
Forward

connection 27,33-34
field 35
table 35,51

target 57
FREE-IEKRFR 100,214
FSD 203

pointer table (see NPTR)

Full register assignment 42,205
control 47
global 47,49
local 47-48
OPT=1 46-49
OPT=2 62-63
table building 47-48
text updating 47,49

Full-word integer division skeleton
instructions 160

Function arguments 152
FUNRDY-IEKJFU 30,215
FUNTB 1 127
FUNTB2 127
FUNTB3 127
FUNTB4 127
FWDPAS-IEKRFP 47,100,215
FWDPAS1-IEKRF1 100,215

GENER-IEKLGN 28,86,215
GENRTN-IEKJGR 86,215
GETC~-IEKCGC 18,78,215
GETDIC-IEKPGC 102,215
GETDIK-IEKPGK 102,215
GETWD-IEKCGW 78,215
GLCBAS-IEKRGB 47,49,62,100,215
Glo~al assignment 46-49

full register assignment CPT=2 62-63
tables 130

GC TO statement
computed 18,64,125
in gathering forward connection

information 33
GOTOKK-IEKWKK 105,215
GRAVERR 70

H format code 22
Half-word integer division skeleton
instructions 158

Head of equivalence group 39
Hollerith character strings 38
Housekeeping section of IHCFIOSH 178

IBCOM,IBCOM# 215
IBCOMRTN 17,215
IBFERR P6
IBFINT 65,68,176
ID Oftion 109
IEKAAA 14,74,215
IEKAAD 74,215
IEKAAOO 74,215
IEKAA01 74,215
IEKAA9 17,74,215
IEKAER 74,215
IEKAFP 14,215
IEKAGC 15,74,215
IEKAPT 74,215
IEKAREAD 215
IEKATB 74,215
IEKATM 74,215
IEKCAA 15
IEKCDP 19
IEKCIN 215
IEKCLC 78,215
IEKCS1, CS2, CS3 78,216
IEKFCCMH 16,74,216
IEKFIOCS 16,74,216
IEGCR 216

Index 223

IEKGCZ 36,40,41,86,216
IEKCMP 69,106,216
IEKGST 216
IEKIORTN 216
IEKJA2 216
IEKJA4 216
IEKJEX 216
IEKJMO 216
IEKKNG 216
IEKKNO 216
IEKKOS 23,24,78,216
IEKKPR 216
IEKKSW 216
IEKLFT 30,126-127
IEKPFT 216
IEKPGC 216
IEKP30 216
IEKP 3 1 1 0 8, 21 6
IEKQAB 216
IFKQDT 216
IEKQF 216
IEKQMF 216
IEKQPX 216
IEKQYS 216
IEKQZS 217
IEKRAL 217
IEKRTF 217
IEKTDC 74,217
IEKTDF 217
IEKTDT 217
IEKTLOAD 16,17,74,217

generating literal data text 22
main program entry coding 65
in relative address assignment 38
space reservation 41

IEKTXT 217
IEKUND 217
IEKURL 217
IEKUSD 217
IEKXRF 217
IEKXRS 25,78,217
IEND 68,217
INVERT-IEKPIV 100,102,217
IF statement 20,27
IHCADST 167,176
IHCDBUG 167,188-190
IHCDIOSH 167,183

buffering 185
communication with the control program

185
file definition section 185
file initialization section 186

operation 185-188
read section 187
routine directory 199
termination section 188
write section 187-188

IHCFCOMH 40,65,167
format code processing 170
subroutine directory 194

IHCFCVTH 167,170,194
IHCFIOSH 167,177

224

closing section 182
communication with the control program

180
device manipulation section 182
initialization section 180-181
read section 181-182

routine directory 199
write section 182

IHCIEERH 176,188
IHCTRCH 167,190
IHCUATBL 179,180
!LEAD 35,121-122
Implied DC 21
INCNAMEL 167
Index reqister 67
Inert text entry 59,61
Information table 12,15

chains 112-113
construction of 113
operation of

branch table 113,116
corrmon 113,115
dictionary 113,114
equivalence 116
literal constant 113,116
staterrent number 26,27,113,115

components 18
branch table 18,125-126
common table 18,24,123-125
dictionary 18,116-120
literal table 18,125

entries constructed by phase 10 20
Initial value assignment 36,41
Initialization

of compiler 14-15
of data fields 14-15
of IHCFICSH 180-181
instructions, generation of 16-17

In-line routine 30,31,151
in branching optimization 50
functions 148
skeleton instructions 155-156,159,161

Integer constants, elimination of 61
Intermediate text 12,18,132-155

chains 132-133
phase 20 modifications 145

Intermediate text entry
format of 133
modifications by phases 15 and 20

140-155
Internal statement number 12

in phase 30 70
Interruption

mask 65
processing 176

Interruptions
arithmetic 176
specification 176

IOSUB-IEKTIS 65-66,105,217
ICBSUB2-IEKTIO 105,217
I/C data list 27
I/C device manipulation routines 175-176
I/O list items 21,169

conversion routines 177
I/O recovery procedure, execution-time 196
I/O requests

processing of 16
request format 16

I/C statement 21
phase 25 processing of 65-66

ISN 12, 19

JLEAD 35,121-122
Jot statement 11

Keyword
pointer table 111
source statement 20
subroutines 19,20

table entry 20
table entry and text 20

table 111-112
KORAN-IEKQKO 102,127,217

LABEL-IELTLB
LABTLU-IEKCLT

in XREF 25
LAND 31,212
LBIT operator
LCOMPL 212

65,105,217
78,217

154

LIBF operator 152
Library function 31

subprograms 167
Linkage editor 11,13
LISTER-IEKTLS 105,217
LIST option 12,13
Listing, structured source program 56
Literal

data text 22
table 125

LMVF 57-58
LMVS 57-58
LMVX 57-58
Load address

operator 150
skeleton instructions 158

Load byte skeleton instructions 158
Load candidate 68
LOAD option 12,13,17,63
Loader END record 63,69
Local

assignment tables 129
register assignment 46-48
symbol 41

Location counter 38,63
in.relative address assignment 37

LOC-IEKRL 1 100, 217
Logical

branch operations 147,154
expressions 32
IF statements 19,32

in strength reduction 61
skeleton instructions 160

LCOKER-IEKLOK 211
Loop 204

composit matrixes 57
identification 51
number 54

field 53
parameter 56-57

selection 56-58
Loops

depth numbers of 54
identifying and reordering 54
module 51

LOR 31,121
LORAN-IEKQLO 102,217
LPSEL-IEKPLS 42,47,49,56,100,217
LXOR 31,212

Main program entry coding 65
Main storage, requests for

phase 10 15

phase 15 1 5-16
phase 20 16

MAINGN-IEKTA 64-65,68-69,105,217
MAINGN2-IEKVM2 218
MAP option 13,63
Map, storage 13,69
MATE-IEKLMA 32,33,87,218
MBM 157-128
MBR 127-128
MCCORD vector 24,40,47,129
Message

number 70,131,206-209
processing 69-70
tal::les 74-131

Messages, error
during phase 25 13
phase 30 processing of 69-10

MGM 127-128
Microfiche directory 213-220
Mid-point of dictionary chain 114
Mode 20
Mode field in status mode word 145
MODFIX-IEKQ~F 102,218
MOD24 212
MOVTEX-IEKQMT 102,218
MSGM 127-128
MSGWRT-IEKP31 70,108,218
MSM 127-128
Multiplicative text, elimination of 61
MVD table 24,40,47

in busy-on-exit 55
entry 32

MVF 24,32,33,144
field 55

MVS 24,32,33,144
MVU 127-128
MVV 127-128
MVW 127-128
MVX 24,32,33,144

field in tusy-on-exit 55
MXM 127-128

NADCCN table 37,112
use in parameter list optimization 31

Name list
dictionaries 22,130-131

entry 40
text 132
phase 10 18

forrrat 137
NAMELIST statement 18,40,132
NARGSV 32
NCARD/NCDIN 19
NDATA-IEKGDA 36,37,87,218
Negative address constants 39
NLIST-IEKTNL 36,40,87,218
Normal text 15,132

phase 10 18
format 135

NCT 32
operations, skeleton instructions 157

Not tusy on entry, definition of 32
NPTR 22,25,74,109-110
Null operand 21

Ctject module
definition of 11
elements of 63-64

Index 225

generation of entry code 22
Off set 39
Operand 18

modes 118
status for code generation 66-67
types 118

Operator-operand pair 18
Operators 18

phases 15 and 20 141-143
OPT=O 42
OPT= 1 42
OPT=2 18

structural determination 51-54
Optimization 12

first level 13
levels 41-42
none 13
second level 13,18

Options
boundary alignment 136
DECK 12, 13,63
determining 14
EDIT 12,13,18,19,56
ID 109
LIST 12,1-3
LOAD 12,13,17,63
MAP 13,63
SOURCE 19
XREF 12,25-26

OP1CHK-IEKKOP 87,218
OR 32
Overlay 202-205

supervisor 15

PACKER-IEKTPK 105,218
Packing 19
PAGEHEAD 218
Parameter list

optimization 31-32
table 31

processing of 14
PAREN-IEKKPA 87,218
PARFIX-IEKQPX 102,218
PAUSE statement 167,176
PERFOR-IEKQPF 102,218
Permanent I/O error 17
PHASB 218
Phase loading 15
Phase switch 206
Phase 10 12

constructing a cross-reference 25-26
control 19
initialization 19
intermediate text 18

Phase 15 12,13
CORAL processing 13,36-41
intermediate text 26
PHAZ15 processing 12,26-36

Phase 20 13

226

Branching optimization
OFT=1 49-51
OPT=2 63

busy-on-exit information 54-56
control flow 42-43
loop selection 56-58
register assignment

basic OPT=O 44-46
full OPT=1 46-49

full OPT=2 62-63
structural determination 51-54
structured source program listing 56
text optimization OFT=2 58-63

PhilSe 25 13
address constant reservation 64-65
main program entry coding 65
prologue and epilogue generation 69
storage map production 69
text conversion 65-68

Phase 30 13,69-70
PHASS 218
PHAZSS 218
PHAZ15 15,204
PHAZ15-IEKJA 34-35,218
PH10-IEKCAA 15,78,218
Planned overlay structure 202
PLSGEN-IEKVPL 105,218
Powers 30
Preparatory subroutine 18,19
Primary adjective code 20,27
Primary path 53,54
Problem program save area 22
Program

fetch 15
interruption mask 176
termination 177

Prologue 16,17,64,69
PROLOG-IEKPTR 68-69,105,218
Pushdown table 28
PUTOUT 218
PUTX-IEKCPX 78,218

QSAM 16

Read
not requiring format 174
requiring format 173

READ statement 167
READ/WRITE

operator for I/O lists 153
routines 168-175

examples of statement processing
173-174

statement 16,20,22,40,66
using namelist 175

REAL 31
Real multiplication skeleton instructions

160
REDUCE-IEKQSR 61-62,100,218
REGAS-IEKRRG 47,49,100,218
Register

array 66
assignment

basic OPT=O 44-46
full OPT=1 46-49
full OPT=2 62-63
phase 20 43-49,62,63

tables 129-130
usage 130

table 48,49
Registers,

reserved 16
saving at main program entry 16
saving at subprogram program entry 16

Relational operators 32
Relative address assignment 13,36,37-38

Relocation
dictionary 11,13,41,63
factor 37
of text entries for structural

determination 51
RELCOR-IEKRRL 100,218
RELOPS-IEKKRE 32,87,218
Reserved registers 50
RETURN statement 55

phase 25 processing of 68
RETURN-IEKTRN 68,105,218
REWIND statement 167
RLD

entry point 218
record 41

RMAJOR table 33,35,51,204
Root segment 13,202
RUSE table 49,129

Save areas 16-17
Scale factor 23
SEARCH-IEKRS 100,219
Secondary entry point 17
Segment control word 176
Sequence numbers 21
SF skeleton text 15,132

phase 10 18
format 139

Shift skeleton instructions 159
SHFTL 212
SHFTR 212
Simple stores

elimination of 60
example of 164

Skeleton
array 66
instructions 67

SNGL 31
SOURCE option 19
Source

module, listing of 12
program, structured listing of 56
statement errors, object-time 188
statement processing table 77

Space
in adcon table 36
allocation, phase 15 36
reservation of 41

Span 38
Special argument text 152
Special text 132
Spill register 49
SPLRA-IEKRSL 45-46,100,219
SRPRIZ-IEKQAA 56,102,219
SSTAT-IEKRSS 45,101,219
STALL-IEKGST 19,79

functions of 22-24
Standard text, phase 15 format of 144-145
Statement

functions 27,28,132
processing of 21
skeleton 32

number
chain reordering 26,34-35
as a definition 27
phase 15 format 141
phase 25 processing of 65
processing for XREF 25

Statement number/array table 64,120-123
block status field 121-122
dimension entry format 122
entry format 120

after XREF 121
after phases 15, 20, and 25 121

Status
field in status mode word 145-146
information 43
mode word 45
of operands for code generation 66-67
in register assignment 45

STOP statement 167,176
STCPPER-IEKTSR 105,219
Storage distribution

phase 10 15
phase 15 15
phase 20 16

Storage rr,ap 13
contents of 69
production of 69

Store skeleton instructions 159
Stored constant 59
Store-fetch information 118
Strength reduction 61-62

example of 165-166
STRUCTURE statement 212
Structured source listing 12,13,18-19
S'ITEST-IEKKST 87,219
STXTR-IEKRSX 47,49,100,219
SUBACD-IEKKSA 30,87,219
SUEGEN-IEKVSU 105,219
SUBMULT-IEKKSM 30,87,219
Subprograrrs 16,17,30

not supplied by IBM 55
table 30,126-127

Sul::routine directory
FSD 74
phase 10
phase 15
phase 20
phase 25
phase 30

Sul::script

78-80
86-87
100-101
105-106
108

expressions 28,30
absorption of constants in 201

operators, skeleton instructions 158
text entry 59,151

Substitute ddnames 14
SUESUM-IEKQSM 60,102,219
Subtract operations, skeleton instructions
for 155

Symbol entry for XREF 25
Symbols, processing for XREF 25
SYNACR routine 188
SYSDIR 17
SYSIN data set 11-12,17
SYSLIN data set 11-12,13
SYSPRINT data set 11-12,13,18,25,26,56
SYSPUNCH data set 11-12,13
SYSUT1 data set 11-12,19,56
SYSU'I2 data set 11-12,25-26

Table entry subroutines 20
Tables used by IHCFIOSH 178
TARGET-IEKPT 56-58,101,219
TEI'I 31,212
TENTXT-IEKVTN 69,106,219

Index 227

Temporary 28
in common expression elimination 59
storage allocation in register

assignment 49
Terminal errors, object-time 190
Termination of compiler 15,17-18
Test and set operators 148
Testing a byte logical variable 148
Text

additive text, elimination of 62
block, definition of 27
blocking 26,27
conversion, phase 25 65-69
entry

phase 20 format 145
types 59

generation subroutines 21
information, phase 25 63-64
normal, phase 10 15
optimization 42,58-63

bit tables 127-128
criteria for (table) 99

SF skeleton 15
special, phase 10 16

TIMERC 219
TNSFM-IEKRTF 101,219
TOPO-IEKTPO 51,52-53,101,219
TOUT 219
Trace 210
Traceback 190
Translation of data text 36,37
Tree notation, balanced 114
Triplet 28
TRUSE table 48,129
TSP 219
TSTSET-IEKVTS 106,219
TXT entry point 219
TXT records 16,22,63
TXTLAB-IEKLAB 87,219
TXTREG-IEKLRG 87,219
Type 20
TYPES table 58-59
TYPLOC-IEKQTL 101,220

Unary minus 28,30
skeleton instructions 158

UNARY-IEKKUN 30,87,220
Undefined statement numbers 22,23
Unit

228

assignment table 178,179-180
in IHCDIOSH 184-185

blocks 178
in IHCDIOSH 183

UNRGEN-IEKVUN 106,220
Usage count 22
Use vector field 144
Utility

routines 176-177
subroutines 19,21-22

list of 102

Variable,
adcon 40
base 40
dictionary entry 116-118

after common block processing 119
after coordinate assignment 119
after relative address assignment 119
after XREF 118

equivalence 20
Variables

rechaining 22,23
relative addresses for 38

WRITE staterrent 167
Write

net requiring format 174
requiring format 173
to operator routines 176

WRITEX-IEKQWT 102,220
WTO 176
WTOR 176

XARITH-IEKCAR 17,220
XCLASS-IEKDCL 79,220
XDATYP~IEKCDT 79,220
XDO-IEKCDO 79,220
XGO-IEKCGC 79,220
XICOP-IEKCIO 79,220
XIOPST-IEKDIO 80,220
XPELIM-IEKQXM 58-60,101,220
XREF

buffer 25
option 12,25-26
phase 10 preparation for 25
processing 25-26

XREF-IEKXRF 25-26,203,220
XSCAN-IEKQXS 102,220
XSPECS-IEKCSP 80,220
XSUBPG-IEKCSR 80,220
XTNDED-IEKCTN 80,220

YSCAN-IEKQYS 102

ZSCAN-IEKQZS 102

··•.

Y28-6642-1

International Business Machines Corporation
Data Proc:essin!J Division
112 East Post Road, White Plains, N.Y.10601
[USA Only]

IBM World Trade Corpor~tion '" .
821 United Nations Plaza, New Yorh~lew L rk 10017
[International]

