
Systems Reference Library

IBM System/360 Model 20
Tape Programming System
Input/Output Control System

File S360(Mod 20)-30
Form C24-9003-4

This publication describes the functions, principal
features, and use of the Input/Output Control System
supplied by IBM as part of the Model 20 Tape Program
ming System (TPS). This Input/Output Control System
(IOCS) facilitates the programming of input/output
operations.

The following subjects are covered: (1) the defini
tion statements that describe the files to be pro
cessed, (2) the initialization macro instruction that
makes the files available to the system for data input
or data output, (3) the processing macro instructions
that cause input/output operations, and (4) the comple
tion macro instructions that terminate processing of
data for one or more of the files used in an
application.

Also included is a section containing general pro
gramming considerations, e.g., information about block
ing and deblocking of records, combinations of input/
output and work areas, tape error routines, and regis-

,I ter usage. Programming examples are also given.

Readers of this publication should be thoroughly
familiar with the contents of the SRL publication IBM
System/360 Model 20, Functional Characteristics, Form
A26-5847.

Titles and abstracts of other related publications
are given in the publication IBM System/360 Model 20
Bibliography, Form A 26-3565.

TPS

This publication is intended for Model 20
programmers using the TPS Input/Output Con
trol System.

The reader should be familiar with basic
programming concepts and with the operating
principles of his system as described in
the following SRL pUblications:

• Functional Characteristics, Form A 26- 5"8 47;--------------

• !~E~Eroq~~~~ing_~y§!g~~_~QntrQ1_~nd~
~~£yi~~_g~Qg£g~§, Form C24-9000;

•]is~_gnd ~Ero~~~ming_~y§!§~§~
AssemJ2.ler __ Lan~~, Form C24-9002.

Depending on the equipment and programs
used, the following publications are also
required:

• Di§Und-1.a£LPr.Q.9£g.!!!mi.!!g_Sys!~ms~
In~utpY!_~Q.!!!rol~y§te~!or t~g-IBM
l~l~_gng_l~~2-~ggng!i~_Cha£acter
~gggg£§, Form C33-6001;

• JDEY~LQY!E~!_~QDtrQ.l~stem_jg~he
]ing£Y_~Yn£h£QnQY§_~Q~YDicatigns
AggE!g£, Form C33-4001;

Titles and abstracts of other related
publications are given in the publication
l~]_~y~!g.!!!Ll~Q_]Qg~1_lQ_~ibliographY, Form
A26-356S.

r ,
IFifth Editi2~ (March, 1969) I

I
This is a major revision of, and obsoletes, C24-9003-3, andl
Technical Newsletter 933-8552. The changes are associatedl
mainly with the introduction of Submodel 5 of the Eodel 20.1
Changes to the text, and small changes to illustrations,1
are indicated by a vertical line to the left of the change; I
changed or added illustrations are denoted by the symbol -I
to the left of the caption. I

I
I

This edition applies to program version 4, modification I
level 0 of lEE System/360 Eodel 20 TPS IOCS, and to alII

Isubsequent releases until otherwise indicated in new edi-I
Itions or Technical Newsletters. Changes are continually I
Imade to the specifications herein; before using thisl
Ipublication in connection with the operation of IBE Sys-I
Items, consult the latest SRL Newsletter, Form 120-0361, fori
Ithe edition that is applicable and current. I
L ~

This . publication was prepared for production using an lEE
Gomputer to update the text and to control the page and line
format. Page impressions for photo-offset printing were
obtained from an IBM 1403 printer using a special print
chain.

Requests for copies of IB~ publications should be made to
your IBE representative or to the IB~ branch office serving
your locality.

I form is provided at the back of this publication for
readers' comments. If the form has been removed, comments
may be addressed to IBE Laboratory, Publications Dept.,
P.O.Box 24, Uithoorn/Netherlands.

~) Copyright International Business Machines Corporation 1966, 1967, 1968, 1969

PREFACE

INTRODUCTION • • • • • • • •
Use and Functions of IOCS

Other Programs Used by the laCS

,. .

~achine Reguirements • • • • • • •
~inimum System Configuration •
Submodel 2 • • • • • • • • • •
Submodel 5 • • • • • • • • • • • • •

3

5
5
5
5
6
6
6
6
6
6
6
6

~aximum System Configuration •
Submodel 2 • • • • • • • • • • • • •
Submodel 5 • • • • • • • •
Notes: •••••••••

Machine Features Supported • • • • • •

DEFINITIONS • • • • •
Record • • • • • • • • • • • • •

8
8
8
8
9
9
9
9
9
9

Fixed-Length Records • •
Variable-Length Records ••••
Undefined Format ••••
Record Formats Permitted

File • • • • • • • • • •
Volume • • • • • • • • • • •
Labels • • • • • • • • • • •
Card/Printer Overlap ~ode • • • •
Read/Compute, Wri te/compute Overlap
Feature • • • • • • • • • • • •

MACRO INSTRUCTIONS • • • • • • •
Definition statements

DTFBG Statement

9

11
• 11

12
• 12

12
Header Entries • • • •
Detail Entries • • •
DTFSR Detail Entries • • • • 13

Detail Entries for Most Files
Additional Detail Entries for
Simple Files • • • . • • • • • •
Additional Detail Entries for

13

14

Combined Files. • • • • • • • • • . 15
Additional Detail Entries for Card
Printing •••••••••••••• 16
Additional Detail Entries for
Checking Functions •

DTFMT Detail Entries •
DTFEN Statement

Initialization • • • • •
Open Macro Instruction •

Opening Card Files •
Opening Tape Files •

processing Macro Instructions

16
18

• • 24
• 32
• 32
• 32
• 32

33
• 34 Common Macro Instructions

GET ~acro Instruction • .. • • • 34
PUT Macro Instruction

Unblocked Records
Blocked Records
Undefined Records
Programming Considerations

• 35
35

• • • 36
• 36

Combined Files • • • • • • 37
CNTRL Macro Instruction • • • • • . • 37

Specific Card and Printer Macro
• 41 Instructions • • • • • •

CRDPR Macro Instruction
EOM Macro Instruction
LOM Macro Instruction •

• • • • • 41

Programming Considerations - LOM
and EOM Macro Instructions •

• • 42
• 42

• 43
PRTOV Macro Instruction • • • • • 43
WAITC ~acro Instruction •••• • 44

programming with the WAITC ~acro
Instruction •••••••

Specific Tape Macro Instructions
LEEET Macro Instruction
OPERAND 1 •••••••
OPERAND 2 • • • • • • •

• • 44
• 48

48
48

• • 48
RELSE Macro Instruction
TRUNC Macro Instruction

• • • • • 48

Completion Macro Instructions
49
49

• 50
• • • • • 50

End-of-File Processing • •
End-of-Volume Processing •
CLOSE Macro Instruction
Closing Card and Printer Files
Closing Tape Files • •

• 51
• 51
• 51

51 Reopening Closed Files •
FEOV facro Instruction • • • • • 52

CONlROL STATEMENTS • • • •
Format of Volume Statement •
Format of Tape Label statement •

• 55
• • 55

55

GENERAL PROGRAM~ING CONSIDERATIONS • 56
Blocking of Records • • • • • • • 56
Deblocking of Records ••••• • 56
Input/Output-Work Area Comtinations • 57

One Input/Output Area •••••• • 57
One Input/Output Area and One Work
Area • • • • • • 57
Two Input/Output Areas ••••• 58
Two Input/Output Areas and One
Work Area • • • 59
Register Reguirements ••••••• 59

DTF Blocks • • • • • • • • • 59
Device Error Recovery • 61

Punched-Card Equipment Errors • 61
lape Error Routines • • 61

Register Usage • • • • • • • • • • 62
ICCS Assembly • • • • • • • • • • 62

Diagnostics for Source Programs
Using the ICCS • • • • • • • • • • • 62

Restrictions • • • • • • • • • • • • • 64
Use of the FETCH Macro Instruction
in Programs Using the ICCS • 64

LANGUAGE COMPATIBILITY • .

PROGRAMMING EXAMPLE

PROGRAMMING EXAMPLE 2

GLOSSARY

INDEX

· 65
66

71

• • • • • 74

• 78

contents 3

4 IBM System/360 Model 20 TPS IOCS

This publication describes the fUnctions,
principal features, and use of the Model 20
Input/Output Control system for punched
card equipment and magnetic tape.

The Model 20 TPS Input/Output Control
System (IOC~ is a set of tested routines,
in Assembler language, provided by IBM.
The laCS routines are part of the Model 20
Tape Assembler macro library. The program
mer can utilize these routines by simply
issuing appropriate macro instructions in
his program.

A major part of most programs written in
Assembler language consists of routines
required to read data into the system and
to print (punch or write on tape) the
results of the processing performed on the
input data. By utilizing the laCS rou
tin~s, the programmer can save programming
time because he can concentrate on solving
his problems and let the laCS handle data
input and output operations.

Also, the laCS routines take advantage
of the time sharing feature (this is a
means of overlapping input/output opera
tions with each other and with processing)
of the Model 20, thereby optimizing

I throughput. When a Model 20 Submodel 5 is
used, the laCS can make use of the read/
compute, write/compute overlap feature,
which allows tape-data transfer to be over
lapped with processing.

The laCS provides routines for:

• transfer of data from input/output
devices to main storage and vice versa,

• checking and writing of labels (if any) ,

• blocking and deblocking of records,

• switching between input/output areas
under certain conditions, and

• performing input/output control func
tions such as card stacking, tape re
wind, etc.

USE AND FUNCTIONS OF IOCS

When a program utilizing the laCS is
assembled, the macro instructions specify
which of the laCS routines are to be called
from the macro library. The routines are
extracted, tailored according to the
operands in the macro instructions, and
inserted into the source program. The com-

INTRODUCTION

plete program now consists of both source
program statements and tailored routines
from the macro library in Assembler lan
guage. In subsequent phases of the assem
bly, the entire object program is
assembled.

Two types of macro instructions are
required to cause the desired input/output
functions: declarative macro instructions,
which are referred to as definition state
ments, and imperative macro instructions.

The programmer uses definition state
ments to specify the input/output routines
he requires for his particular application.
Based on the information provided, these
routines are selected and developed at as
sembly time.

A linkage to the selected input/output
routines is required at each point in the
program where an input/output operation is
to occur. The user need not provide these
linkages. He only writes an imperative
macro instruction in his source program at
the point he desires the input/output
operation to occur. When an imperative
macro instruction is read during assembly
of the source program, the Assembler auto
matically inserts the required linkages to
the selected input/output routines.

When a program using the ICCS is executed,
some of the Basic Monitor routines are
used. Therefore, programs using the laCS
require the Basic Monitor program to be in
main storage when they are being Executed.
The Job Control program is required if the
user's program requires job control cards
to be read at the beginning of program
execution. The Job Control program is also
required if the laCS is to make use of the
read/compute, write/compute overlap
feature.

Fer further information regarding the
Basic Monitor and the Job Control programs,
refer to the SRL publication I~~~l§!g~Ll§Q
]£Q~1_~Q~_I2£~_IfQgf~~~i~g_~1§!~~_Co~!~1
2~g_~~fYi£g_gfQg~2~§_Form C24-9000.

MACHINE REQUIREMENTS

This section describes the minimum and
maximum configurations for assembling and
executing laCS routines of the tape
resident system.

Intro ductia n 5

• An IBM 2020 Central Processing Unit,
Model C2 (8192 bytes of main storage) ;

• an IBM 2415 Magnetic Tape Unit, Model 2,
3, 5, or 6;

• One of the following card-reading
devices:
IBM 2501 Card Reader, Model A1 or A2,
IBM 2520 Card Read Punch, Model A1,
IBM 2560 Multi-Function Card Machine,
Model A1;

• One of the following printers:
IBM 1403 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model A1.

• An IBM 2020 Central Processing Unit,
Model C5 (8192 bytes of main storage) ;

• the same input/output units as described
above for Submodel 2.

• An IEM 2020 Central Processing Unit,
Model D2 (16,384 bytes of main storage);

• an IEM 2415 Magnetic Tape Unit, ~odel
through 6;

• an IBM 1442 Card Punch, Model 5;

• an IBM 2501 Card Reader, Model A1 or A2;

• one of the following card units:
IBM 2520 Card Read Punch, Model A1,
IBM 2520 Card Punch, Model A2 or A3,
IBM 2560 Multi-Function Card Machine,
ModE!1 A 1 ;

• one of the following printers:
IEM 1403 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model A1;

• a Binary Synchronous Communications
Adapter (Feature No.2C74);

• one of the following magnetic character
readers:

6 IBM Sjstem/360 Model 20 TPS Ices

IBM 1419 Magnetic Character Beader,
!odel 1 or 31,
IBM 1259 Magnetic Character Reader,
lodel 1, 31, or 32.

• An IEM 2020 Central Frocessing Unit,
Model E5 (32,768 bytes of main storage);

• the same input/output units as described
above for Submodel 2.

Not.§§l.

1. Only three tape drives are required for
assembly if no literals are used in the
source program and no object-program
output on tape is required.

2. At least one 9-track tape drive is
required. If 7-track tapes are used,
the data conversion feature is reguired
if:
• EBCDIC characters other than those

included in the ECt character set
are to be written, or

• the tape file to be read has been
created using the data conversion
feature.

The ECt character set consists of
the digits 0 through 9, the alphabet,
and 28 special characters, all of which
can be represented by the six rightmost
bits of a byte.

The translate feature is required if
7-track tapes are used and standard
labels must be read from or written on
these tapes.

MACHINE FEATURES SUPPORTED

The following input/output devices are sup
ported by the ICCS:

1403
1442-5
2203

2501
2520
252C
2560

2Li15

1259
1419

frinter
Card Punch
Frinter, standard and dual feed
carriage
Card Beader
Card Punch
Card Bead-Punch
Multi-Function Card Machine (MFCM),
including Card Frint feature
Magnetic Tape Unit and Control,
Models 1 through 6
Magnetic Character Reader
Magnetic Character Eeader, Models 1
and 31.

The IOCS also supports:

• Binary Synchronous Communications Adapt
er (Feature No. 2074).

• Additional main storage up to 16,384
(Submodel ~, or 32,768 bytes (Submodel
5) •

IQt~_l: The Data Conversion feature is
required if 7-track tapes are to be used
and either
a. EECDIC characters other than those

included in the BCD character set are
to be written, or

b. the tape file to be read has been
created using the Data Conversion
feature.

The BCD character set consists of the
digits 0 through 9, the alphabet, and 28
special characters, all of which can bE
represented by the six rightmost bits of a
byte.

]ot.!L1 : The Translate feature is required
if 7-track tapes are used and standard
labels must be read from or written on
these tapes.

l!ot~_J: The object program can make use of
the Bead/Compute, Write/compute Cverlap
feature if a Submodel 5 is used.

Introduction 7

RECORD

A record is a unit of information comprised
of one or more alphameric and/or special
characters. For the purpose of the IOeS,
such a u~it of information is referred to
as a logical record. For transfer from the
CPU to magnetic tape and vice versa, data
is compiled in Fhysical units of informa
tion that are referred to as blocks. A
block may consist of one logical record
only or an integer multiple thereof.

The IOeS accepts three record formats.
They are: (1) fixed length, (2) variable
length, and (3) undefined. Fixed and vari
able length records may be blocked or
unblocked. The record formats and the
allowable record types are described below:

Fixed-length records are logical records
within a set of records that are all of the
same length. Th ey may be blo cked or
unblocked. If these records are unblocked,
the roes handles each logical record as a
block. If they are blocked (applies only
to records on magnetic tape), one or more
logical records of fixed length comprise
one block. Figure 1 shows an example of
fixed-length records on tape.

A

a. Unblocked Record Format

One Physical Record

Rec'::Ird

A B c o E F

b. Block Record Format

]~~l~~l~=!g~g!h_]~£Q~g§

Variable-length records are logical records
of a set of records that vary in length
(applies only to records on magnetic tape).

They may be blocked or unblocked. If these
reccrds are unblocked, the Ices handles
each logical record the same way as a
block. If they are blocked, one or more
records of variable length make up one
block.

A variable-length record must contain a
record-length indication. The first four
bytes of a variable-length record are used
for this purpose. The first two of these
fcur bytes show the number of bytes con
tained in the record in binary notation.

I lhe remaining two bytes contain binary
zeros.

The record-length indication must be
frovided by the user whenever he is creat
ing a variable-length record. The fcur
bytes required for the length indication
are included in the byte count for the
record.

A block-length indication is required
fer each block. This block-length indica
tion consists of four bytes that precede
the record-length indication for the first
(or only) logical record of the block.

Record

H

IBG = Inter - Block Gap

G H

Figure 1. Example of Fixed-Length Becords on Tape

8 IBM Systemj360 Model 20 TPS IOeS

I

The first two of these four bytes indicate,
in binary notation, the number of bytes

I
contained in the block. The remaining two
byte~ contain binary zeros. The block
length includes the four bytes for the
block-length field itself.

Although the block-length indication
does not appear in the record that is fur
nished to or made available by the problem
program, the programmer must define input/
output areas that are large enough to
accommodate the four bytes reguired for the
block-length indication.

Figure 2 is a schematic representation
of variable-length records on tape.

If the record format of a file is referred
to as undefined, the recor d characteristics
are unknown to the IOCS. Because each
block is treated as an unblocked logical
record, any blocking or deblocking must be
performed under control of the problem
program.

The formats that can be used depend on the
type of input/output file as follovs:

Card and Printer Files: Only unblocked
records-o"f-"fIied-Iength are allowed.

1~~_lil~2: Eoth blocked and unblocked
records of fixed and variable length and
records of undefined format are allowed,
except when a file is to be read backward.
When a file is to be read backward,
variable-length blocked records are not
allowed.

FILE

A file is a set of records that contains
related information, e.g. an inventory
file of part numbers, an employee file, or
a customer file. Such a set of records may
be punched into cards (card file), printed
on forms (printer file) , or written on
tape (s) (tape file). For the purpose of
the Model 20 IOCS, files can be of two
types: simple and combined.

~imE.!,g2i.!§
A set of records that are all either
read, printed, punched, card printed,
or written on tape during one fass

through the system.
Exception: A simple file that is eith
er read or punched on the 2560 MFCM may
also be card printed during the same
pass.

2. ~2~&iDg9_li!g
A set of card records, some or all of
which will be read and/or punched dur
ing one pass through the system. The
records comprising a combined file must
be fed from one hopper. A combined
file that is processed on the 2560 MFCM
may also be card printed.

VOLUME

A volume is a tape reel of data. A volume
may contain only part of a file (a multi
reel file, for example) or many files.

LABELS

A label is a tape record used to identify
either a volume or a file. A label may be
standard or non-standard. It is considered
standard if it meets the format reguire
ments for standard tape labels.

Label processing and formats of labels
are described in detail in the SRL publica
tion 1~~_~~!~mLl§Q_~Qgel_1~_lgE~_PrQg~g~=

J!) i ng_~'y.§ te.ID..£~o n!~Q.!_.,g.n.9_ S e~Yi~.!LiI.Q.9~.,gJP§,
Form C24-9000.

CARD/FBINTER OVERLAP ~CtE

This is a mode of operation that allows the
execution of card and printer l/e opera
tions and processing to be performed simul
taneously. A mode of operation that does
not permit I/O operations and processing to
be executed simultaneously is referred to
as non-overlap mode.

READ/CClHUTE, WRITE/CC~fUTE CVEBLAP FEATURE

When a Submodel 5 is used, the read/
compute, write/compute (RWC) overlap fea
ture is available. When the CPU is running

I in the RWC overlap mode (under control of
the overlap monitor), data transfer to or
from tape units is overlapped with
processing.

:Cefinitions 9

BL RL Record 1 BL RL Record 2
Data Data

xx 00 xx 00 xx 00 xx 00

0 3 ,4 7 3.4 7 103. , I ,
.. RL = 80 ~ .. RL = 100 ~

.. BL = 84 ~ .. BL = 104 ~

a. Variable length - Unblocked Record Format

BL RL Record 1 RL Record 2 RL Record 3

;lli
l

Data Data Data

i xx 00 xx 00 xx 00 xx 00

0 3 4 7 83 84 87 183,184 187 233' ,

I •
, I

.. RL = 80 II .. RL = 100 ... RL = 50 ..
III. BL = 234 ..

b. Variable length - Blocked Format

• Figure 2. Example of Variable-Length Records cn Tape

10 ISM System/360 Model 20 TPS Ioes

Macro instructions are provided to reduce
the amount of repetitive coding. A macro
instruction given by the programmer causes
the generation of a set of individual
machine instructions at the time of assem
bly. The generated instructions cause the
desired machine function to be performed
when the program is executed.

In this publication, the foll~wing con
ventions apply to the description of the
macro instructions:

1. Upper-case letters and punctuation
marks (except as described in items 3
and 4 below) represent infor~ation that
must be coded exactly as shown.

2. Lower-case letters and terms represent
information that must be supplied by
the programmer.

3. Information that is contained within
brackets [] represents an option that
can be included or omitted, depending
on the requirements of the program.

4. A series of three periods enclosed by
commas indicates that a variable number
of items may be included.

The programmer writes his macro instruc
tions on the standard coding form, X28-
6509, provided by IBM. For details regard
ing the use of this form and how these
instructions are entered on the form, refer
to the SRL publication J~~_~Y21~IDLl60_Mogel
19L_~i2~_~ng_l~£~_g~g~~!~ing_~~~!~~§L
!22jU!!121~~_L an.9!@.9~, For m C2 4- 9002 ..

Two types of macro instructions are
required for the processing of the records
in a logical file: one declarative macro
instruction (referred to as file definition
statement in this publication) and one or
more imperative macro instr~ctions.

All imperative macro instructions con
sist of a mnemonic in the operation field
and of one or more operands in the operand
field. The precise format of the impera
tive macro instructions is shown separately
for each of them later in this publication.
The format of the definition statements is
described under the heading Q~lini1iQn
~1~1~~~n1§ below.

The input/output macro instructions prc
vided by IBM are presented in this section
in the following groups:

1. Definition statements: DTFSR and DTFMT
(both including detail entries), DTFEN
and D'IFBG.

2. Initialization Macro Instruction:
Of EN.

3. processing ~acro Instructions: GET,
PUT, CNTRL, CRDPR, EOM, LaM, PRTOV,
~AITC, LERET, RELSE, and TRUNC~

4. Completion ~acro Instructions: CLOSE
and FEOV.

Figure 8 shows a summary of all the
DTFSR detail entries available to the user
of the Model 20 laCS. This summary shows
the allowable entries and for which input/
output device(s} a specific entry may be
required. Example for the use of this sum
mary: If a file is to be read and/or
punched on the IE~ 2560 ~FCE, the XiS in
the 2560 column indicate to the programmer
which entries he may have to provide.

Figure 9 shows a summary of all DTFMT
detail entries that are available to the
user of the Model 20 ICCS.

Figure 13 is a summary of all imperative
macro instructions. The chart in Figure 13
shows all allowable entries in the various
fields of the IBM System/360 Assembler Cod
ing Form.

The programmer must use definition state
ments to describe to the Ioes the charac
teristics of each file to be processed.
Definition statements are used to assign a
name to each of the user's input/output
files, to describe the input/output device
used for each file, to define the input/
output areas required, etc. The macro
phase of the Assembler selects the routines
required by the user on the basis of the
definition statements given by the
programmer.

There are two types of file definition
statements: tTFSR (~efine lhe lile in a
~e~ial type device) for card and printer
files and DTFMT (Qefine lhe lile on]agnet
ic lape) for tape files. The user must
write one DTFSR statement for each card and
printer file to be used by the program. He
must write one tTFMT statement for each
tape file.

facro Instructions 11

j I I - I I I I I

.... -- - - .- -I " -O!1lIDjE:JlI I tl) TIFi"1[T TV IP£ FIL'sl- IW 1u~I,~~~F~;~~-FIX~LK IIIL KIS IJ~ iCl=' I~t~ ~E'" 's [r1:JLt -III. lC
1 III I E~

I =(1 lUll loLa 111 I' 1-
; I ' ElvA ...: "lit; I-ll LIA ~IL I:='''/; trjTl lt~ ~ '/.. i 1Cl- -

I I I'll .. 111 11101: riA ,,16- t:R ~O ~t II Itl'i %l IIIL)(
I I !

; OJ'; n.

" 1
I I I I I 1 ~ 111 SAl YIL:A~ I

, Ii! i! ! I ! ; I
! 'I, ' I I , I I

I

Figure 3. DTFMT Statement Followed by a D!FEN statement

A DTFEN statement (]efine lhe F".le ENd)
must follow the last definition statement
of a given program. A DTFBG statement
mefine lhe Xile ~e~in) , if used, must be
written as the first definition statement.
If the Linkage Editor program is to be
used, all the DTF statements must be con
tained in 2ng and only one of the programs
to be linked.

The user must write his definition
statements ahead of his problem program.
If his program includes more than one DTFSR
statement, the user must write his DTFSR
statements contiguously, i.e., he is not
permitted to write a DTFSR statement for
one file followed by a DTFM! statement and
a DTFSR statement for another file.

Figure 3 is an example of a DTFMT state
ment followed by a DTFEN statement.

A DTFSR or a DTFMT statement consists of
(1) a header entry that assigns a name to
the file specified and (2) detail entries
as required to define such information as
the device to be used, the mode of proces
sing, etc. All DTFSR (DTFMT) statement
cards, except the last one, must have a
continuation punch in column 72. This con
tinuation punch may be any non-blank
character. Punching in continuation cards
must begin in column 16, except when the
Assembler input format has been changed by
means of an IeTL statement.

DTFBG STATEMENT

If DTFBG RWC=YES is specified, the IOCS
provides the routines that make use of the
read/compute, write/compute overlap fea
ture. All tape files will then be pro
cessed in the overlap mode. The statement
has no name in the name field and must be
written as the !!f§! definition statement.

!Q1g: This statement must not be used when
no tape files are to be processed.

12 IEM System/360 Model 20 TPS IOCS

HEADER ENTRIES

A header entry consists of a file name in
the name field (columns 1 through 8) and
D!FSR (tTFMT) in the operation field
(columns 10 through 14). For the name
entered in the name field, the same rules
as for the Assembler apply, except as fel
lows: it must not exceed seven characters
in length and the letter "I" as the first
character is not permitted.

1he file name is used in imperative
macro instructions that refer to the file.

DETAIL ENTRIES

A detail entry is composed of a keyword
immediately followed by an equal sign (~
Which, in turn, is followed by one specifi
cation. 1he length of a specification is
limited to eight characters, including
eXFressions with their operators (if any).
Expressions are permitted for all detail
entries that require a symtolic address. A
comma must immediately follow the specifi
cation of each detail entry, except the
last one (see Figure 3).

~j]ll~]: A blank within a detail entry
specification causes the Assembler to con
sider the remaining characters of the spe
cification, and all subsequent detail
entries of the DTFSR (DTFMT) statement, as
comments.

logether with the header entry, the
detail entries describe the file and speci
fy symbolic addresses of routines and areas
used when processing the file. This set of
entries is used to generate the Ices rou
tines for the file during assembly.

Detail entries may be written (and
punched) immediately after the header
entry. They may appear in any order. The
programmer must include only those entries
that apply to a particular file.

I

The following sections describe all pos
sible detail entries for the DTFSR and the
DTFMT statements.

DTFSR DETAIL ENTRIES

The DTFSR detail entries are required to
define card and printer files. They can be
divided into five categories as follows:

1. entries applicable for most files,

2. additional entries for simple files,

3. additional entries for com bined files,

4. additional entries for card printing,
and

5. additional entries for certain checking
functions.

The DTFSR detail entries applicable to most
files are:

DEVICE
TYPEFLE
WORKA
PRINTOV

OVERLAP
CONTROL
BINARY
EOFADDR

The entries DEVICE, TYPEFLE, and WORKA
must be provided for each card and printer
file to be used by the program.

The entries PRINTOV, OVERLAP, CONTROL,
BINARY, and EOFADtR must be provided only
for certain card and printer files to be
used by the program.

• The PRINTOV entry must be provided for a
printer file if a PRTOV macro instruc
tion referring to the file is used in
the program.

• The OVERLAP entry must be provided for
all files to be processed in non-overlaF
mode.

• The CONTROL entry must be provided for a
file if a CNTRL macro instruction refer
ring to that file is used in the
program.

• The BINARY entry must be provided for
input files that are to be read in the
column binary mode.

• The EOFADDR entry must be provided for
all input and combined files.

DEVICE=

This entry identifies the input/output
devic.e to be used to process the particular
file. One of the following specifications
must be entered immediately after the equal
sign (=) following the keyword:

CRP20

In'CM 1

MFCM2

PRINTER

PRINTLF

PRINTUF

PUNCH20

PUNCH42

READ01

The file is to be read and/or
punched by the IEM 2520 Card
Read-Punch.

The file is to be read and/or
punched with or without card
printing from the Primary Feed
of the IE! 2560 ~ulti-Function
Card Machine.

The file is to be read and/or
punched with or without card
printing from the Secondary
Feed of the IEM 2560 Multi
Function Card Machine.

The file is to be printed by an
IE~ 2203 frinter with a stan
dard carriage or by an IBM 1403
Printer (see Note below).

The file is to be printed on
the lower carriage of an IEM
2203 with the dual feed car
riage (see Note below).

The file is to be printed on
the upper carriage of an IBM
2203 with the dual feed car
riage (see Note below).

The file is to be punched by an
IEM 2520 Card funch.

The file is to be puncbed by an
IBM 1442 Card Punch, Model 5.

The file is to be read by an
IEM 2501 Card Eeader.

]~!~: If both feeds of an IEM 2203 printer
with dual feed carriage are used, the pro
grammer must write a ITISR statement for
the file printed by the lower carriage and
a DTFSR statement for the file printed by
the upper carriage. If the application
requires only one feed of the dual feed
carriage, the lower feed must be used. In
this case, the DEVICE=PRINTER entry and not
the DEVICE=fBINTLF entry must be provided
and only one printer file DTFSR statement
is permitted in a problem program.

TYPEFLB=

This entry defines the type of the file
(i.e., input, output, or comtined). One of
the following specifications must be used:

INPt:T for a simple input file

f.acro Instructions 13

OUTPUT for a simple output file

CMBND for a combined file.

WORKA=YES

The WORKA=YES detail entry is mandatory for
all card and printer files. The user must
enter the name of his work area as the
second operand in his GEi, PUT, and CRDPR
macro instructions for the particular file
and not in the WORKA entry for that file.

PRINTOV=YES

This entry must be included for a printer
file if a PRTOV macro instruction referring
to this file is used in the program.

OVERLlP=NO

This entry indicates that the file is to be
processed in non-overlap mode. If this
entry is omitted, the file is processed in
overlap mode. Since printer files are
always processed in the overlap mode, this
entry is not permitted for these files.

IOCS routines for overlapped processing
require more (SC-1CO bytes) main storage
space than the routines for non-overlapped
processing.

CONTBOL=YES

This detail entry is required if a CNTRl
macro instruction will be issued for the
file. A CNTRL macro instruction causes the
input/output device to perform operations
such as stacker select and form skip.

BINARY=

This entry is required if the cards are to
be read in the column binary mode. The
entry may be provided for both simple and
combined files. ihe specifications are:

YES for simple files

INPUT for combined files.

The twelve punch positions of a card
column read in column binary mode are

14 IBM System/360 Model 20 TPS IOCS

stored in the 6 low-order bits of two adja
cent bytes of the input area. Therefore,
the input and work areas must be specified
to contain a number of bytes that is equal
to twice the number of columns to be read.

ihen the EINARY entry is used for a par
ticular file, the entries SEQNCE and
RFCB~Tn are not permitted for that file.

EOFltDR=name

This entry specifies the name of the rou
tine in the source program to which the
IOCS should branch on an end-of-file condi
tion. In that routine, the user can per
form any operation required for the end of
jeb, and he generally issues a CLOSE macro
instruction.

This entry is mandatory for input and
combined files.

The IOCS detects end-of-fil~ conditions
by sensing an end-of-file card with /*
punched in columns 1 and 2.

ihe entries described in this section are
available for simple files only. One or
mere of these entries may be required for a
given file. The detail entries are:

IOAREA1
IOABEA2
BLKSIZE

ICABEA1=name

ihis entry specifies the name of the input/
output area to be used by a simple file.
ihis name must be the symbol used by the
programmer in defining the area in his
Frogram.

1he IeABEA1 entry is not permitted fer a
printer file to be printed by the standard
carriage. ihe printer uses the first 144
main storage positions as a print buffer
and they cannot be used by the programmer.

1wo files printed by the dual feed car
riage require two IOAREl1 entries, i.e.,
one for each file. The print areas for the
lower and upper feed of the dual feed car
riage must be defined as contiguous areas
in main storage with the print area for the
lewer feed preceding the area for the upper
feed (see Figure 4).

I

r--------------------T -----,
I Lower-feed I Upper-feed

Print Area I Print Area I L ____________________ ~

A

I
I
I Address of
ILower-feed Area

A

I
I
IAddress of
IUpper-feed Area
L-

Figure 4. Print Area Format for Dual Feed
Carriage

Note that for card and printer files a
work area must be specified in addition to
an input/output area. Refer to the
description of the WORKA=YES detail entry.

IOAREA2=name

I
I
I

This entry can be used to indicate the name
of a second input area when the IBM 2501
Card Reader is used in overlap mode. The
name in the specification part of this
entry must be identical with the symbol the
programmer used in defining the area in his
program. The area must be the same length
as the area referred to in the IOAREA1
entry.

The IOAREA2 entry permits a card to be
read into the area specified in the DTFSR
entry IOAREA1 while the data in the area
specified in the DTFSR entry IOAREA2 (from
the preceding card) is waiting to be moved
into the work area. This may be of signi
ficance, for example, if only a number of
selected cards of the file that is read on
the IBM 2501 require extensive processing
while all other cards require very little.
If only one input area is specified, the
data from a card that requires extensive
processing may have to be held available
for too long a period of time to permit
continuous card feeding. In the majority
of cases, specifying a second input area
permits the IOCS to maintain the maximum
card reading speed of the IBM 2501.

This entry must not be used for a file
being read or punched by any other card
input or output device or when the IBM 25C1
is used in non-overlap mode.

BLKSIZE=n

This entry specifies the length of the
input/output area(s) to be used by the
file. The specification n must be equal to
or less than the length in bytes of the
reserved area. A BLKSIZE entry must be
given for a printer file even though the
IOAREA1 entry is not provided.

If two input/output areas are used for a
file (IOAREA1 and IOAREA2), only one
BIKSIZE detail entry is required in the
DTFSB statement for the file, and this
entry applies to both areas.

Maximum block lengths acceptable to the
IOCS are as follows:

1. For card files: 80 bytes (160 bytes
'bin a r y -iiioc1'e):-

2 • !Q~_£~i.n.!!H~_!!l~§ : 120, 132, or 144
bytes, depending on the number of print
positions available. If a 2203 printer
with the dual feed carriage feature is
used, the total length of areas speci
fied for both feeds must be equal to or
less than 144 bytes.

The minimum block-length specificaticns
are:

1. I£~_~~~~1-!~lg§: Two bytes (four bytes
binary mode).

2. I,Q~_Q~..1Eut_!~l~§: One byte.

Additional retail Entries for Comtined
IJ1~~---------------------------------

The entries described in this section must
be provided for each combined file. They
are:

INAEEA
INBLKSZ

INAREA=name

aUAREA
OUBLKSZ

This entry is used to specify the name of
the input area to be used ty the combined
file. This name must be the symbol used by
the programmer in defining the area in his
program.

INBLKSZ=n

This entry specifies the length in bytes of
the input area to be used ty the combined
file. The length applies to the area
defined in the main program and referred to
in the INAREA entry.

The maximum area length permitted is 80
bytes (160 bytes binary mode). The minimum
length is two bytes (four bytes binary
mcde) •

COABEA=name

This entry specifies the name of the output
area used by the combined file. The name
must be the symbol used ty the programmer
in defining the area in his program.

~acro Instructions 15

OUBLKSZ=n

This entry is used in conjunction with the
OUAREl entry to specify the length in bytes
of the output area required by the combined
file. The maximum block length permitted
is 80 bytes. The minimum length of ~he
output area is one byte.

!ggi1iQnsl_Q~!ail_~nl~i~2 fO~~R~~Printin~

The following detail entries are only
required if the card print feature of the
IBM 2560 MFCM is to be used:

CRDPRA
CRDPRLn

The two entries apply only to simple or
combined files to be processed by the IBM
2560 MFCM.

The CRDPRA and CRDPRLn entries are
required in only one DTFSR statement of a
program as they do not refer to a particu
lar file. A CRDPR imperative macro
instruction must be issued to cause the
printing of data from the areas specified
by the CRDPRA and CRDPRLn entries. Refer
to the section ~]~.PR_Ma£~Q_ln21~!!£liQn.

CRDPBA=name

This entry is used in conjunction with
CRDPRLn entries when printing on cards is
desired.

The CRDPRA entrj specifies the name of
the area in main storage where the data to
be printed by the lowest numbered MFCM
print head is stored. The areas, from
which the remaining print heads are to
print, must be defined as contiguous 64-
byte areas (refer to F'igure 5). The print
heads to be used must be defined by CRDPRln
entries in ascending order according to the
print head numbers. One CRDPRLn entry must
be included for each print head. Figure 6
shows the detail entries reguired to allow
printing from the areas shown in Figure 5.

CPAR

64 Bytes 64 Bytes 64 Bytes

Figure 5. MFCM Card Print Areas

16 IEM System/360 Model 20 TPS IOCS

.-- Column 16

Figure 6. CRDPRA Detail Entry with CBDPRLn
Entries

CBDPRLn=m

Entries of this type are used in conjunc
tion with the CBDPBA=name entry to specify
the print heads to be used. 7he keyword is
CEDfBln, where n is the number of the print
head. The specification m indicates to the
ICCS the number of bytes to be printed by
this print head.

BefeL to the example in Figures 5 and 6.
In this example, print head 1 is to print
the fiLst 50 bytes of its 64-byte print
area (part A), print head 2 is to print the
first 40 bytes of its 64-byte print area,
and print head 5 is to print the first 20
bytes of its 64-byte print area. However,
all three print heads will print the first
50 bytes of their 64-byte print areas.
Therefore, the 64-byte print area for print
head 2 in the example must contain blanks
in bytes 41 through 50. likewise, all
bytes up to and including byte 50 of the
64-byte print area assigned to print head 5
would have to contain blanks if no printing
were desiLed from print head 5 during a
card Frint oFeration.

The programmer need not be concerned
about filling the unused byte positions of
a print area with blanks as this is an
automatic function of the ICCS. If, as in
our example, 50 bytes is the largest number
of bytes specified for one particular print
head, the laCS clears all print areas up to
and including byte 50 to blanks after every
card print operation.

Specification of the number of bytes to
be Frinted by each individual print head is
required because, when filling a print area
with data to be printed, the ICCS moves
into the print area only the number of
bytes sFecifiec for the particular print
head.

The programmer may utilize any unused
portions of the print areas. In the
example, bytes 51 through 64 of all three
64-byte print areas could be used for other
processing (shaded areas in Figure 5) •

!he detail entries described below are
available for card processing to enable the

I

user to specify certain checking functions.

SEQNCE
SEQXIT
RFORMTn

SEQNCE=xxyy

RFXIT
PFORMTn
PFXIT

This entry enables the programmer to check
whether the contents of a specified field
in successive input records are equal or in
ascending order.

If the input data is to be ~ead in
column binary mode, a SEQNCE entry must not
be made for this file.

The xx and yy are the numbers of the
first and last card columns, respectively,
of the card field to be checked. For card
columns 1 through 9, the leading zero is
required. Maximum length of the card field
to be checked is 16 columns.

Only one SEQNCE entry is permitted for
each file. Sequence checking is .accomp
lished by a logical compare operation.

If the input cards are read in overlap
mode from either an IEM 2520 or an IBM
2560, a sequence error with a subsequent
branch to the user's SEQXIT routine causes
the laCS to change the processing mode
(from overlap to non-overlaf) for the GET
that detected the error.

This change in the mode of operation
enables the user to stacker-select the
error card and/or to cause an error identi
fication to be punched into this card.

Before branching to the user's routine,
the laCS places the record containing the
field that led to the error condition into
the work area. If the error card has been
read by the IEM 2560 MFCM or the IBM 2520
Card Bead-Punch, that card is positioned at
the pre-punch station. The next GET or EOM
macro instruction will cause the next rec
ord to be read. This record will then be
compared with the record preceding the
error record.

CAUTION: Do not destroy the contents of
registers 14 and 15. Refer to the section
!~gis!g£_]~sg~·

If a SEQNCE error and an RFORMT error
are both detected in the same card, only
the action specified for the SEQNCE error
will be performed.

SEQXIT=name

This entry must be used in conjunction with
the SEQNCE entry. It indicates the name of
the entry point of the user's routine to
which control is to be transferrea when a

sequence error occurs. To return to the
main program, the programmer must provide a
branch to the address contained in register
14. After branching, the program executes
the instruction following the GET that
detected the sequence error.

RFOR~Tn=xxyyz

This entry enables the programmer to check
whether a specified input card field (or
fields) contain{s) numeric characters or
all blanks.

If ~he input data is to be read in
column binary mode, an RFCB~Tn entry must
not be made for this file.

The keyword of this entry is RFCRMTn,
where n is any number from 0 to 9. The n
position allows the programmer to write up
to ten different BFCR~Tn entries per file
and thus have a maximum of ten fields
checked.

The xx and 11 specify the first and last
card columns, respectively, of the field to
be checked. For columns 1 through 9, the
leading zero is required.

If the field is to be checked for
blanks, z must be O. If the field is to be
checked for numeric characters, z must be
1. When checking for numeric characters,
the maximum field length is 16 columns.

When a field is tested for all blanks,
the program branches to ~ user-written rou
tine (or causes a system halt) if the test
fails.

when a field is tested for numeric
characters, the program branches (or causes
a system halt) if the field contents are
not of the following format (where at least
the last character is numeric with or
without an 11 or 12 zone punch):

bbb •••••••••• n

where b blank
n = numeric character.

If the input cards are read in overlap
mode from either an IBM 2520 or an IBM
2560, an EFeEMT error with a subsequent
branch to the user's RFXIT routine causes
the laCS to change the processing mode
(from overlap to non-overlap) for the GET
that detected the error.

This change in the mode of operation
enables the user to stacker-select the
error card and/or to cause an error identi
fication to be punched into this card.

Before branching to the user's routine,
the laCS places the record containing the

Macro Instructions 17

field that led to the error condition into
the work area. If the error card has been
read by the IBM 2560 HFCM or the IBM 2520
Card Bead-Punch, that card is positioned at
the pre-punch station. The next GET or ECM
macro instruction causes the next record to
be read.

CAUTION: Do not destroy the contents of
registers 14 and 15. Refer to the section
],ggiste~_'y§,g.9~.

The programmer may use up to ten dif
ferent BFORMTn entries, but only one RFXIT
entry for each file.

If a SEQNCE error and an BFORHTn error
are both detected in the same card, only
the action specified for the SECNCE error
will be performed. Befer to the descrip
tion of the SEQNCE=xxyy detail entry.

RFXIT==name

This entry is used in conjunction with the
BFORMTn entry. It specifies the name of
the entry point of the user's routine to
which control is to be transferred if the
test on the field specified in the BFORHTn
entry is negative (i.e., the field tested
contains characters other than those speci
fied). To return to the main program, the
programmer must provide a branch to the
address contained in Register 14. After
branching, the program executes the
instruction following the GET that detected
the BFORMTn error.

If this entry is omitted and the test is
negative, a programmed halt occurs. This
enables the operator to replace the card
that led to the error condition.

PFORMTn=xxyy

This entry enables the programmer to check
those cards of a combined file that are not
read into a work area by GET macro instruc
tions to ensure that a specified card field
(or fields) to be punched contains blanks.

The keyword of this entry is PlORMTn,
where n is any number from 0 to 9. The n
position allows the programmer to write up
to ten different PFORMTn entries per file
and thus have a maximum of ten fields
checked. The xx and yy specify the numbers
of the first and last card columns, respec
tively, of the field to be checked. For
columns 1 through 9, the leading zero is
required.

If the field is found not to contain all
blanks, the PUT macro instruction is not
executed. Instead, either control is
transferred to a user-written routine (pro-

18 IBM System/360 Model 20 TPS ICCS

vided the branch address has been furnished
by a FlXIT detail entry), or a programmed
halt occurs.

CAU~ICN: Do not destroy the contents of
registers 14 and 15. Refer to the section
!,gg.!£.!;g.!_.!l£,gg,g.

The spec~fied input area must be large
enough to permit the program to read the
information in the columns specified in
this entry into main storage.

The programmer may use up to ten dif
ferent PFORMTn entries, but only one PlIIT
entry for each file.

PFXIT=name

~his entry is used in conjunction with the
PFORMTn entry. It indicates the name of
the entry point of the user's routine to
which control is to be transferred if the
test on the field specified ty the PFORMTn
entry fails. To return to the main pro
gram, the programmer must provide a branch
to the address contained in register 14.
After branching, the program executes the
instruction following the PUT that detected
the fFOBMTn error.

If a PFOBMTn check occurs, the program
branches immediately to the user's routine.
In this case, the contents of the work area
are not moved to the punch area.

If a PUT macro instruction is given that
refers to a combined file and the program
branches to the PFIIT routine, a subsequent
GET viII place the contents of the card
causing the PFORMT error into the work
area. If this GET is in non-overlap mode,
it is possible to punch this card by means
of an additional PUT macro instruction.

If the PFXIT entry is omitted and the
test shows an error condition, a halt
occurs before punching is initiated. This
enables the operator to replace the card
that led to the error condition. That card
is Fositioned at the pre-punch station.

tTFMT DETAIL ENTRIES

DTFMT detail entries apply to tape files
only. Although many of them are identical
with DTFSR detail entries, all possible

I

DTFMT detail entries are described in this
section in this order:

TYFEFLE=

TYPEFLE
DEVAtDR
RECFORM
REC~IZE

FILAEL
LABADDR
ERROPT
WLREBR
ERRIO
EOFADDR
IOAREA1

IOAREA2
IOREG
WORKA
BLKSIZE
CONTROL
VARBLD
AL~TAPE

READ
REwIND
TPMARK
CKPTREC

This entry defines the type of the file
(i.e., input or output). The allowable
specifications are:

INPUT for an input file

OUTPUT for an output file.

DEVADDR=

This entry defines the symbolic address of
a tape drive to be associated with the par
ticular file. The following symbolic
addresses are permitted:

~YSIPT

~YSOPT

SYSnnn

where nnn may be any number
from 000 to 015.

An actual tape drive address is assigned
to the symbolic address by means of an
ASSGN control statement that is processed
either (a) by the Job Control program
before the problem program is executed, or
(b) at the time of system generation.
Refer to the SRL publication l~~_~~§!§~Ld&]
~odel-1]~_l~~~-l~Qgramming_~Y§igm~_~Qni£Ql
an~~~~i£~_~~Qg~~~§, Form C24-9000.

RECFORM=

This entry defines the record format of the
file. The IOCS can handle different types
of records in the same program. However,
the records in a file must te of the same
type. The following specifications are
possible:

FIXUNB for fixed length untlocked records

FIXBLK for fixed length blocked records

VARUNB for variable length unblocked
records

VARELK for variable length blocked records

UNDIF for undefined records.

If the RECFORM entry is omitted, fixed
length unblocked records are assumed.

When variable-length records are speci
fied for a tape output file, the user's
input/output area must include four addi
tional bytes in which the tlock-length in
dication is tuilt. If these records are
unblocked, the four additional tytes are
used to develop the length indication for
each Iecord (as each record is handled the
same way as a tlock). If these recoIds are
blocked, the four additional tytes aIe used
to develop the length indication for the
entiIe block.

EECSIZE=

This entry aFplies to tape files containing
either fixed length blocked records or
undefined fOImat records.

n is specified to indicate the number of
bytes ~n an indi~idual record for a
tape file containing fixed length
Iecords.

(n) is specified to indicate a register if
the file contains record of undefined
format.

The IOC~ uses the specified register
to (1) provide the record size in case
of an input file or (2) derive from it
the record size in case of an output
file. For output files, it is the
user's Iesponsitility to place the
number of tytes contained in a record
into the specified register lefore
this record is written.

If a file containing records of unde
fined format is to te read tackward,
the contents of the specified register
must be used to determine the begin
ning of each individual record.

The specification is either the number
of the desired register (anyone of
the numters 8 through 13), or a symbol
that stands for this register, in
parentheses. (If the user's problem
fIogram contains ICCS macro instruc
tions that refer to the IBM 1259 or
1419 Magnetic Character Readers, reg
isters 11 and 12 must not be used.)

The minimum and maximum record lengths
peImitted are as shown telow. Lengths
are given in numter of bytes.

Macro Instructions 19

r---------------.- T------------,
1 1 Minimum 1 Maximum 1
I 1-----,-----t-- i -I
I Record Type IInputlOutputllnputloutputl
~ --+-----+------t-----t~----~
1 FIXUNE 1 18 I 18 I 40951 4095 1
.-----------+---+----+_ • -I
1 FIXBLK I 1 I 18 J 40951 4095 1
~ I --t---t-----+_-----t
I VARUNE* 1 14 I 14 1 40911 4091 1
~-----------_+---+----t----+-, ---I
I VARBLK* I 14 J 14 I 40911 4091 I
~ I 1 --t-----t-----~
1 UNDEF 1 18 1 18 I 40951 4095 1
~-------------~-----~----~-~----1
1 * Excluding the four bytes required fori
I record length indication. I L _______________________________ ---'

FILABL=

This entry indicates the type of label pro
cessing to be performed. The allowable
specifications are:

STD

NSTD

for a tape input file, if standard
labels are to be checked; or for a
tape output file, if IBM standard
labels are to be written.

for input files only, non-standard
labels are skipped. The labels
must be terminated by a tape mark.

NSTD may also be specified for a
tape input file with IBM standard
labels if these labels are not to
be checked.

NO is specified if no labels exist.

Note: If FILABL=NO is specified
for-an output file, any existing
volume label on the output tape
will be overwritten.

The FILAEL entry may be omitted for an
unlabeled tape.

LABADDR=name

The user may require the checking, or
building up, of one, or up to nine, file
labels in addition to the standard file
header or trailer label. If so, he must
provide a routine for this purpose. The
name of his routine is specified in this
entry. This routine is entered after the
Ioes has processed the IBM standard label
or a preceding user label. If this entry
is omitted for an input file having addi
tional labels, these additional labels are
skipljed •

For an input file, the user can deter
mine the type of label that has been read

20 IBM System/360 Model 20 TPS Ices

by the identification in the label itself.
Fcr an ontput file, register 8 contains one
of the following codes:

'bO'- for a header label (when a file is
opened) ,

'bF'- for an end-of-file label (on an end
of-file condition),

'bV'- for an end-of-volume label (on an
end-of-volume condition).

where b=blank.

Register 9 contains the address of the
Ices label area at the time the user's rou
tine is being entered.

At the end of a llEADER routine, the
programmer must issue an LBRET macro
instruction to return control to the IOCS.
Refer to bERET ~~£~Q_1D§!~~£tio].

CAUTION: Do not destroy the contents of
registers 14 and 15. Befer to the section
.!i.lli1i§!~~_.Y§~.9~.

EEBeE'I=

'Ihis entry applies to tape i~~! files; it
specifies functions that are to be per
fcrmed when an error block is detected.

when the Easic Monitor program detects
an error in a block of input records, the
tape is backspaced and reread 100 times
before the block is considered to be an
error block. Unless the EBBCFT entry is
included, which specifies procedures to
fcllow in the event of an error condition,
a halt occurs and the jot is terminated.
Either IGNORE, SKIP, or the symbolic name
of an error routine can be specified in
this entry. One of these specifications is
entered immediately after the = sign in the
keyword. The functions of the three speci
fications are:

IGNORE The error condition is completely
ignored, and the records are made
available to the user for
processing.

SFlf The block containing the error is
skipped, i.e., it is not made
available for processing. The next
block is read from tape and proces
sing continues with the first rec
ord of that block.

name The IOCS branches to a user-written
error routine which can FErform any
chosen error procedure, for
example, listing the error
condition.

I

In his routine, the programmer must
not issue any GET macro instruc
tions for records in the error
block. If he uses any other IOCS
macros in his routine, he must save
the contents of registers 14 and
15. At the end of his routine he
must return to the Ioes by branch
ing to the address in register 14.
When control is returned to the
problem program, the first record
of the next block is available for
processing in the main program.
When two input/output areas are
used, and ERRIO=name is specified,
the address of the input/output
area containing the error block is
placed in the location indicated by
the symbolic name in the ERRIO
entry. Register 14 contains the
return address.

!Q!~: If FILABL=STD is specified, the
error block is al~~§ counted in the
block count.

The entry applies to wrong-length rec
ords if the DTFMT entry WLRERR is not
included.

WLBEBR=name

This entry applies only to tape in~Y! files
that do not contain undefined records. It
specifies the symbolic name of a user's
routine to which the IOCS branches if a
wrong-length record is read. In his rou
tine the user may perform any operation he
desires for wrong-length records. However,
he must not issue any GET macro instruc
tions for this file. If he uses any other
Ioes macros in his routine, he must save
the contents of registers 14 and 15.

At the end of his routine the user must
return to the Ioes by branching to the
address in register 14. When control is
returned to the problem program, the first
record of the next block is available for
processing.

When two I/O areas are used, and ERRIO=
name is specified, the address of the I/O
area containing the wrong-length r,ecord is
placed in the location indicated by the
symbolic name in the ERRIO entry. Register
14 contains the return address.

Whenever fixed-length blocked records or
variable-length records are specified
(RECFORM=FIXBLK, =VARUNB, or =VARBLK), the
machine check for wrong-length records is
suppressed and the IOCS generates a pro
grammed check for record length. For
fixed-length blocked records, the record
length is considered incorrect if the block
that is read is not an integer multiple of

the record length (specified in the RlCSIZE
entry), uF to the maximum length of the
block (specified in the ELKS IZE entry) •
This Fermits the reading of short blocks of
records without a wrong-Iength-record
indication.

For variable-length records, record
length is considered incorrect if the
l~ngth of the physical record (block) is
not the same as the block length specified
in the first t~o bytes of the llock.

If fixed-length unllocked records are
specified (RECFORM=FIXUNB), the Ioes uti
lizes the machine check to determine wheth
er a record is of correct length. Specify
ing REeFCR~=FIXUNE causes the numler of
bytes specified in the BLKSIZE detail entry
to be inserted in the generated XIO
instructions. Any record whose length is
not equal to the specified number of lytes
causes a wrong-Iength-record indication.

Note that the IOCS does not provide to
the user the number of bytes contained in
the wrong-length record.

If the WLBERB entry is omitted from the
set of DTFMT entries, but a wrong-length
record is detected ly the ICeS, one of the
following results:

1. If the ERRCIT entry is included for
this file, the wrong-length record is
treated as an error llock and handled
according to the user's specifications
for an error (IGNCRE, SKIP, or name of
error routine).

2. If the ERROPT entry is not included,
the job will be terminated since no
error recovery procedure is available
to handle the wrong-length record.

ERRIO=name

This entry specifies the symbolic name of a
two-byte area, in which the IOCS places the
address of:

1. The input area containing the llock
that caused an irrecoverable read error
(if the name of the user's error rou
tine is specified in the ERRCPT entry) ,
or:

2. The input area containing the wrong
length record (if the name of the
user's wrong-length record routine is
s,pecified in the WLRERR entry) •

If READ=BACK is specified, the address of
the input area plus the specified ELKSIZE
minus 1 (in other words, the last byte of
input the inpnt area) is inserted in the
two-byte area.

Macro Instructions 21

This entry may only be issued if EBROPT=
name, and/or WLBEBR=name, and two I/O areas
are specified.

!Q1~: Befer to the descriptions of the
detail entries ERBOPT= and WLRERR=name.

EOFADDR=name

This entry is mandatory for all input
files. It specifies the name of the rou
tine in the user's program that the IOCS
should branch to on an end-of-file condi
tion. In that routine, the user can per
form any operation reguired for the end of
job, and he generally issues a CLOSE macro
instruction. However, the user must not
issue a GET macro instruction in his
EOFADDR routine since no further records
are available for processing.

An end-of-file condition is detected by
reading a tape mark and EOF in the trailer
label when standard labels are specified.
If standard lahels are not specified, the
Model 20 IOCS assumes an end-of-file condi
tion when it reads a tape mark.

IOABEA1=name

This entry specifies the name of the input/
output area to be used. This name must be
the symbol used by the programmer in defin
ing the area in his program.

If the record format is variable length,
four bytes of the input/output area must be
reserved for the block size field. In
addition, the input/output area must be
defined at a half-word boundary. Refer to
InEJ!!.LQ-Y.tE-Y.t=] 0 r ~_;~~.5L~Qm!2i!!,g1io n 2.

IOAREA 2=name

Two input, or output, areas can be speci
fied for a tape file, to allow data trans
fer to be overlapped with processing. In
such a case, IOAREA2=name must be included.
This operand specifies the symbolic name of
the second I/O area; this name must be
identical to the name used in the DS or DC
statement defining the area.

The length of the second I/O area must
be equal to the length of the first I/O
area. The second I/O area must be defined
by the programmer at a half-word boundary.

A warning message (MNOTE) is given on
the printer if IOAREA2 is specified without
DTFBG RWC=YES being the first definition
statement. {Befer to 1~£-Y!LQ-Y!£-Y!=]2f!
Af~~_~Q~!2in~.ti~§~L

IOREG= (n)

This entry specifies a register. The spe
cification is either the number of the reg-

22 IEM System/36C Model 20 TPS IOCS

ister (anyone of the numbers 8 through 13)
or a symbol that is eguated to the regis
ter, between parentheses.

.!i2.1~: If the user's problem program con
tains IOCS macro instructions that refer to
the IEM 1259 or 1419 Magnetic Character
Readers, registp.rs 11 and 12 must not be
used.

An ICBEG entry is reguired when:

1. blocked input or output records are
processed in the input/output area, or

2. variable-length unblocked records are
read backward and are processed in the
input area, or

3. two input, or output, areas are used
and the records (either tlocked or
unblocked) are processed in the input/
output area.

!he specified ICREG register contains:

1. for an input file, the address of a
logical record available for
processing,

2. for an output file, the address of an
area that is available to the user fcr
building the next record.

WORKA=YES

If the user desires to process the records
of a file in a work area rather than in the
input/output area for the file, he must
include the iCBKA=YES entry and establish
the work area(s) in main storage. The name
of the work area is entered as the second
operand in GET (PUT) macro instructions for
the particular file. Input/Output areas
for tape files must not be used as work
areas. For further information about the
use of a work area, refer to the section
1~E-Y!LQY!EY!=]2~!_~f~,g_~2~~1~.tl~~§·

If WCBKA=YES is specified for an output
file containing variable-length records,
the programmer must define the work area(s)
at a half-word boundary.

BLKSIZE=n

This entry specifies the length of the
input/output area. The specification D
must be egual to the number of bytes of a
block. If the record format is variable,
the specified length must be egual to the
number of bltes contained in the longest
block of records.

The maximum block length acceptable to
the ICCS is 4095 bltes which is egual to
the maximum block length for IBM 2415
tapes. The minimum block length is 18

I

bytes, except for tape input file~ contain
ing checkpoint records. For these tape
files, the minimum area length is 20 bytes.

MQ!g: A message (MNOTE) is given on the
printer if the BLKSIZE entry in the DTF
statement"specifies a blocklength of less
than 18 bytes, or if the REeSIZE entry spe
cifies a record length of less than 18
bytes for output files, and less than 1
byte for input files (See also the table at
the end of section REeSIZE=). Generation
is then terminated.

If variable-length unblocked records or
records of undefined format are to be pro
cessed in a work area, the programmer
should consider the following: A GET
causes the laCS to move the number of bytes
specified in the BLKSIZE detail entry from
the input area into the work area; a PUT
causes the laCS to move this number of
bytes from the work area into the output
area. Therefore, the programmer must, for
an output file, ensure that the address of
the work area he uses is equal to or lower
than the upper main storage limit minus the
BLKSIZE value.

CONTROL=YES

This detail entry is required if a eNTRL
macro instruction will be issued for the
file. A eNTRL macro instruction causes the
associated tape drive to perform operations
such as tape rewind, rewind and unload,
backspace, etc.

VARBLD= (n)

This entry is necessary if an output file
with variable-length blocked records is
being processed and no work area is speci
fied. This entry specifies a register that
indicates the number of bytes in the output
area available for building the next
record.

The specification is either the number
of the desired register (anyone of the
numbers 8 through 13), or a symbol that
stands for this register, in parentheses.
(If the user's problem program contains
laCS macro instructions that refer to the
IB~ 1419 Magnetic Character Reader, regis
ters 11 and 12 must not be used.)

After a PUT macro instruction is issued
for a variable length record, the space
still available is calculated and placed in
the VARELD register. The user then com
pares the length of his next record with
the available space. If the record will
not fit, the user must issue a ~RUNe macro
instruction to cause the completed block of
records to be written on the tape file.
Then the present record is placed into the
beginning of the output area and becomes

the first record in the next block. For
information regarding the EUT and the TRUBe
macro instructions, refer to the sections
PUT ~acro Instruction and TRUNC Macro
lDst~Y£11QD:--------- -----------
Al'I'IAEE=

This entry specifies the symbolic a~~ress
of a tape drive that is to be used as an
alternate drive when a tape file is con
tained in two or more reels (volumes). The
physical tape drive address can te assigned
to the specified symbolic address either at
the time of system generation or by means
of an assign (ASSGN) statement that is used
by the Job Control program. The user can
specify one of the following:

SYSIPT
SYSCET
SYSnnn

where nnn may be any number from
000 to 015.

If the physical tape-drive address is
assigned to the specified symbolic address
by means of an ASSGN statement, the second
(fourth, six th, etc.) reel of tape may be
mounted on anyone of the tape drives that
are attached to the system and available.
The selected tape drive is assigned to the
specified symbolic address. The first
(third, fifth, etc.) reel of tape would
then be mounted on the tape drive specified
in the DEVADDR entry of the rTFMT statement
for the file.

The method described above allows suffi
cient time for the operator to mount the
third reel on the tape drive specified in
the DEVArIE entry while the records on the
second reel are processed. He can mount
the fourth reel on the tape drive specified
in the AL'ITAPE entry while the records on
the third reel are processed; and so on.

1he ALTTAEE detail entry may te speci
fied for input and output files. If speci
fied for an output file, the Ices switches
the tape drives in accordance with the ALT
~APE specification on detection of an end
of-volume condition, i.e., when the reflec
tive marker at the end of the tape is
sensed.

If the entry is specified for input
files, the functions of the Ices vary
depending on the type of labels (if any)
specified for the file.

t. Standard Labels. The Ices switches the
tape-drlves-In-accordance with the ALT
TAPE specification.

2. ~£~=~!~~~~£~_~ll~_BQ_1~B~!§~ The Ices
has no means of determining the end of

lacro Instructions 23

a volume. When a tape mark is sensed,
the IOCS transfers control to the
user's EOFArrR routine, where he can
determine whether an end-of-file or an
end-of-volume condition exists. In
case of an end-of-volume condition, the
user must issue an FEOV macro instruc
tion. This causes the IOCS to switch
the tape drives in accordance with the
ALTTAPE specification, then IOCS
returns control to the instruction fol
lowing FECV.

Not~: ALTTAPE may not be specified when
READ=BACK is specified.

READ=

This entry specifies the direction in which
an input tape is to be read. If this entry
is omitted, IOCS assumes forward reading.

FORWARD is specified for a tape to be read
in the normal forward direction.

BACK is specified for a taFe to be read
backward. However, READ=BACK can
not be specified:

REWIND=

1. for tape input files contain
ing variable-length tlocked
records,

2. when ALTTAPE is specified.

This entry is used to specify the desired
rewind and unload operation when an OPEN or
a CLCSE macro instruction is given or when
an end-of-volume condition is sensed.

UNLOAD

NOBWD

is specified to rewind the taFe
when an OPEN macro instruction
is given and to rewind and
unload the tape when a CLOSE
macro instruction is given or
an end-of-volume condition
occurs.

is specified if no rewind is
desired. This entry is manda
tory if READ=BACK is specified
for the file.

If this entry is not included, an OPEN
or CLOSE macro instruction or an end-of
volume condition causes the tape file to te
rewound, tut not unloaded.

TP!'lARK=NO

This entry applies only to unlateled tape
output files (FILABL=NO). If included,
this entry will prevent the writing of a
tape mark as the first record on a tape.
If this entry is not included, a tape mark
will be written as the first record.

24 IBM System/360 Model 20 TPS IOCS

CI<FTBEC= YES

This entry is required if a tape input file
contains checkpoint records interspersed
among the data records. When this entry is
provided, the IOCS recognizes and bypasses
checkpoint records.

Tape files created ty the !'lodel 20 Ioes
programs will not contain any checkpoint
reccrds. Therefore, this entry is only
required when it is desired to read from a
magnetic tape that was written ty use of
another program and contains interspersed
checkpoint records.

If the CKPTREC detail entry is specified
fer a tape input file, the programmer must
specify a tlock size (BLKSIZE entry) of at
least 20 tytes, which is the minimum length
of a checkpoint record.

A group of checkpoint records is identi
fied by a header and a trailer identifier,
each of which contains the characters
///bCHKfTb// (where b = 11ank). The user
must ensure that ~one of his input blocks
ccntains this character com1ination in the
first twelve positions.

DTFEN STATEMENT

A DTFEN (~efine lhe file ~]d) statement
must follow the last defining (DTFSR or
CTF~T) statement. A ITEEN statement con
sists of tTFEN in the operation field, the
name field is left 11ank. The operand
field may be left blank or it may have
CVIAl (overlay) specified to reduce the
amount of main storage used for the
prog:ram.

The ove:rlay programming technique can te
used successfully to :reduce the number of
sto:rage positions reguired 1y the program
when one or more tape files are involved.
This programming technique permits the user
to have part or all of the OPEN input/
output routines for his tape filets) over
laid by his problem program and to have
part or all of his protlem program overlaid
by the CLOSE input/output routines for his
tape file (s) •

ihen CVIAl is specified, the OPEN and
CLOSE input/output routines for the use4'~
tape file (s) are not generated as ~art of
the rTF routines. Instead, they are
genera ted in-line, i. e., when the first (or
only) OPEN (or CLOSE) macro instruction for
a taFe file is encountered 1y the
Assembler.

It is not sufficient, however, to speci
fy eVIAl in the ITEEN statement in order to
have the OVLAY function performed. In

I

addition, the programmer must observe the
following (refer to Figure 7) :

1. Write all user-written label handling
routines, including those needed when
closing a file (or files), ahead of the
first OPEN macro instruction.

2. Position all literals required by these
label routines ahead of the first OPEl
macro instruction. This is accomplished
by means of an LTORG Assembler
instruction.

3. Open all tape files before the OPEN rou
tines are overlaid by the problem
program.

)2igl If (1) a program utilizing the
overlay programming technique is 19aded
from cards and (2) the loading device is
also used as input device for a card
file, the programmer must ensur.e that
the first card of the data file is in
proper position to be fed from the hop
per of the reading device at the time
the file is opened by means of an OPEN
macro instruction. (All program cards
must have been read when the OPEN macro
instruction for the card file is
executed.)

The routines used to open files (and
additional volumes of mUlti-volume
files) are not available after they have
been overlaid. Therefore, OVLAY can not
be specified in programs that process:

a. multi-volume tape files, and

b. multi-file tape reels if more than
one file on the tape is used.

4. Initiate execution of the OPEN macro
instruction by a subsequent XFR state
ment (XFR BEGIN in Figure 7) which may
or may not immediately follow the OPEN
macro instruction. A FETCH macro
instruction (FETCH ROUTIN in Figure 7)
must be given following the last OPEN
macro instruction. This FETCH causes
part or all of the user's program to be
loaded.

5. Give an ORG statement (ORG BEGIN in
Figure 7) immediately after the XFR
statement. The operand of this eRG
statement specifies the address where

the overlay is to start and may be the
same as the name of the OPEN macro
instruction.

For details concerning the FETCH, XFR,
and ORG statements, refer to the SEL
publications l£]_§~§!~~L]~Q_Mo§~l_£Q~
lE£~_g~g3~E~~in~§~§!~~~~gn!±gl_E~§
~~~i£§_!~Q3±~~2' Form C24-9000, and IE~ 
~~§!emL36Q_~Qg§1 20~-li§!_E~§_1E£&-i±£~ 
grammi~~~E!~~§~_~§§§~!1&±_1£~E~E~~' 
Form C24-9002. 

6. Use XFR and ORG-statements (XFR ROUTIN 
and ORG xxxx in Figure 7) just prior to 
the CLOSE macro instruction. The 
operand of the ORG statement specifies 
an address in the preceding problem pro
gram. As in the case of the CFEN macro 
instruction, only one CLOSE macro 
instruction for all files should te 
given. 

7. Issue a FETCH macro instruction (FETCH 
FINIS in Figure 7) for another program 
segment (i.e. another part of the pro
gram). 'Ihis segment would include the 
routines that have been generated for 
the CLCSE and ECJ macro instructions. 
The loading of this segment begins at 
the address specified as the operand of 
the ORG statement preceding the CLCSE 
macro instruction. 

steps 1 through 5, atove, cause some or 
all of the coding between the location 
indicated by the operand of the first ORG 
statement (EEGIN) and thB next XFR state
ment (XRF EEGIN) to l:e overlaid ty the rro
blem program. steps 6 and 7 cause the 
overlaying of part or all of the protlem 
program by the CLOSE and end-of-job 
routines. 

1 ]~~]~!]111~]_]~~RO_~!11]lTICN. If the pro
grammer writes his own macro definitions, 
~the following restrictions apply: 

• The global SETB symbol &BG69 must not be 
used if the program includes Ices macrc 
definitions. 

• The global SETE symbols &EG72 through 
&BG77 must not be used if the program 
includes 1259 or 1419 Ices macro 
definitions. 

• The global SETE symbols &EG1 through 
&BG19 must not be used if the overlay 
Frogramming technigu€ is used. 

lacro Instructions 25 



------, 

LABA.DR 

START 
DTF 

DTF 

DTFEN OVLAY 
Generated EOF and EOV 
routines 

User label handling 
routineE' 

BEGIN Problem program 
initialization 

OPEN tapefle,tapefle 

Generated OPEN routine 
for tape file (s) 

OPEN tapefle 
Generated linkage (to 
OPEN routine) 

FETCH ROU,]~IN 

XFR EEGIN 
l-- --I 

ROUTIN 
ORG EEGIN 

OPEN carclfle 

WAITe 

Generated linkage (to 
DTFSR routine) 

FETCH FINIS 

XFR ROUTIN 
f--·------------ ._----1 
I ORG xxxx 
IFINIS CLOSE 
I 
I 
I EOJ 
J END FINIS L _________________________ _ 

I 
I 
J 
I 
I 
I 

Figure 7. Coding for File Processing Using 
the Cverlay Programming 
Technique 

26 IBM System/360 Model 20 TPS Ices 

!2!~: At the end of generation of DTFEN, 
the global set symbols &BG1 through &BG68, 
&EG95 and &EG128 are set to zero t1 the 
Ices (&EG1 through &EG19 and &EG69 are only 
reset if overlay has not been specified). 

A~~1~j~~]1_~!_]1~!_]EG1~I!j~. Since the 
OPEN and CLOSE input/output routines are 
generated in line, the programmer must con
sider their approximate sizes when assign
ing and loading the base registers for his 
program. For information on the sizes of 
these routines, refer to the SRL publica
tion l]]_~~§!~mL~&Q_~Q~§l~~~_l~~§_Pr~~~~~ 
~in~_~y§!~!L_f~~!2£~gn£~_Esti~!~§, Form 
C24-9010. 

]AS£_]jGI~11]_~. When tFTEN OVLAY is spe
cified the routines for the processing of 
the IEM standard labels VCI1 and HtR1 are 
generated as part of the OPEN routines 
instead of as part of the tTl routin€s. At 
the end of these label processing routines, 
the Assembler instruction rEel' 9 is 
generated. If the user has given a USING 
instruction for register 9 at the teginning 
of his program, he must repeat this 
instruction immediately after the OPEN 
macro instruction. Reloading the register 
is not required because its contents is 
restored to the value that was contained in 
the register before the execution of the 
OPEN macrc instruction. 



---,.---------,.- --.-----------, 
I Operand I Applies to 1 I 

'-'--~J~- i-'---T----~---T----T----T----,.----_I I 
I 1 1 Allowable I 125201252011442 I 1 1 1 1 
JOpera-IKeywordlSpecifications J2560IRead-JPunehJ~od 512501)220311403JBemarks I 
Ition 1 I 1 IPunchl IPunchJ I 1 1 I 
r---+------+------------i I I I -+- I i----i--------"--------_I 
IDTFSR I I J:x I x I x I x I x I x I x I Always first I 
1 1 1 I 1 I I I 1 I Icard, may include I 
1 1 I I I I I I J I I detail entries I 
1 1 1 1 1 1 1 I I 1 1 from column 16 I 
I 1 I J J I I J J lito column 71. I 
I I 1 i---+-----+----+-----+----+----i----i- J 
1 IEINARY IYES I x* 1 x* 1 1 1 x I I 1* Only for I 
I I I J I I ) J J I I simple files. I 
I 1 r- i----+----+-----f----+----+--i----t 1 
1 I 1 INPUT I:x: 1 x I I 1 I 1 IOnly for com- I 
1 I I 1 I J 1 I I I I bined files. I 
I I I +----f-----+-----+-----+----+----i----i 1 
I IELKSIZEllength of sim- I I 1 I I I J IIndieates length I 
I 1 Iple file input/I x I x J x I x I x ) x I x 1of area speci- I 
1 I loutput area I I 1 I 1 I I Ified by ICAREA1 - I 
I I lin bytes J I I I I I I IICABEA2 entries. I 
I 1 I +-----+-----+----+-----+----+----+----i- t 
I 1 CONTROL I YES 1 x I x I x I I J x I x I Reguired if a I 
I I I 1 J I I J I J 1 C NT 11L m aero is I 
I 1 1 I I 1 I 1 1 I Igiven for a file. I 
L _____ ..L-____ -i _____________ ~ I I I ~ I .L --'--____________ ..1 

Figure 8. Definition statement Summary for Card and frinter Files, Eart 1 of 3 

facro Instructions 27 



r-----,---------------- I T------------, 
I 1 Operand I Applies to I I 
I I -,.--- +__-~---~---~-----T----T----T----~ I 
1 1 IAllowable I 12520 12520 11442 I 1 I I I 
10pera-IKeywordlSpecifications 1256CIRead-IPunchllod 51250112203114031Eemarks I 
Ition I I I IPunchl IPunchl I I I I 
l----+------+--------------I- I I 1 I I +----J----------------~ 
I I CRDPRA I name of user- I x I I I I I I I I 
I I Idefined card 1 1 I 1 I 1 I I I 
1 I 1 print area I I I I J 1 I J I 
~ I 1 ---I-----+-----+-----+-----+----+----+----+__ i 
I ICRDPRLnilength of card I xii I I I I In in the keyword 1 
I I Iprint area in 1 I I I I I I lis a printhead I 
I I I bytes I I I I I I I I number. I 
J-----+---+-------------f- I 1 1 I I +--+--------------~ 
I DEVICE IMFCM 1 I x I I I I I I I 
I r--- -I- I -+-----t-----+----+-----I-----~ 
JIM FCM 2 1 x I I I I I I I 
I 1-- I I I I I I ;.----... 
I I CRP 20 I I x I I I I I I 
I r--- --t I -+-----+-----t----+----t----~ 
I IPUNCH20 I 1 1 x I I I I I 
I I- I I I I 1 1 t_--... 
I IPUNCH42 I I I I x J I I I 
I r---------i----+----+----+-----+----+----t---~ 
1 IRE A DO 1 I I I I 1 x I 1 I 
1 1--------------1- I I I I I -t----... 
I I PRINTER J I I I I I x I x I 
I r--- ;.----+----+-----+-----+----+---+-----t i 
1 IPRINTLF I 1 1 1 1 I x I IFor 2203 with I 
I t-- I I I I 1 I ;.----i dual-feed- I 
I IPRINTUF I I I I 1 I x J Icarriage. I 
r---- I I +----+-----+-----+-----+----t----f-----t ~ 
I IEOFADtRlname of user's I I I I I I 1 1* Only for in- I 
I I lend-of-file I x* I x* 1 I 1 x I I I put and/or 1 
I I I routine I I I I 1 I 1 1 combined files. I 
j-----+--------t------------;.--+ I I I I -t-----+ ---i 
1 IINAREA Iname of I I I I I I I ICombined files I 
I I Icombined file I x I x I I I I I lonly. I 
I I linput area I I I I I I 1 I I 
J--- I -+---------t----f-----+----+-----+--- ·t-----+---J- i 
I IINELKSZllength of com- 1 x I x I I I I 1 ICombined files 1 
I 1 Ibined file in- I I 1 I I I I lonly. I 
I I IFut area in I 1 I I I I I I I 
I I I by 1: es I I I 1 I I 1 I I 
J--- I I -+----f-----t-----+-----+----+----t----t ~ 
1 IIOAREA11name of the 1 x I x 1 x 1 x I x I x* 1 1* Entry reguired I 
I I I user-defined I 1 I I I I I I for 2203 only 1 
I I I arE~a I I I 1 I 1 I I when dual-feed- 1 
I I I I I I I I I I I carriage used. I 
I-- 1 I f----+-----t----+---+----+----+----t_ i 
I IIOAREA21name of the I I 1 I 1 x I I ICan be used if a I 
1 1 I user-defined I I I 1 I I I 12501, Model A2, 1 
I I larea I I I I I I 1 lis used in over- 1 
I I I I I I I I I I 11 ap mode. I 
1- I --t-----------t I +-----+----+----+----+--+ i 
I 10UAREA Iname of I x I x I I 1 I I ICombined files I 
I 1 lcornbined file I I I 1 I ] I lonly. I 
I I I outpu t area I I I I I I I I I 
l------+-------t------------___t_ I I -t-----+----+-----t----f------------------i 
I IOUBLKSZllength of com- I x I x I I I I I IComtined files I 
I I Jbined file out-I J I I I I I lonly. I 
I I Jput area in I I I I I I I I I 
I I I bytes I I I I I I I I I L _____ --'-____ --'--___________ _'_ I I I _'__~ _ _'_ __ ~ _____________ ___1 

Figure 8. Iefinition statement Summary for Card and Printer Files, Part 2 of 3 

28 IEM Systemj36C Model 20 TPS Ioes 



r----...,-.-- ,.-------------------------------.-- , 
I Operand I ApFlies to I I 
r----~--------------_I iii i i T---'" I 

I I IAllowable I 12520 12520 11442 I I J I I 
IOpera-IKeywordlSpecifications 12560lRead-IPunchlMcd 5j25C1J2203j14031Remarks I 
Ition I J I IPunchl Ipunchl ) I I I 
I I I f---+-----+-----+-----+----t---t---+__ -I 
I ,OVEBLAPINO 'x 'x 'x 'x I x i I IIf omitted, file I 
I I I 1 I 1 I , I I I is processed in I 
I 'I I I , I I I I loverlap mode. I 
r------t-------+--------------; , I ,--t----~----f----f-----------------_I 
I I PFORMTn 1 xxyy J x I x I I I I I I Indicates that a , 
I I I I I I , I I I I check for blanks I 
1 I I I I I I I I I lis to te made of I 
I I' I' I I I I I I field from col xx I 
I J I I I I I I I I I to lY prior to I 
I " I I I I I I I Ipunching. I 
r------+-------+--------------f , I I I ~---+__--f-----------------_... 
I I PFXIT I name of user I x I x I I I I I I I 
I I I routine used , I I , I I J I I 
I I Iwhen PFORMTn , I I I I I J , I 
I I Itest fails , I I , I I I I I 
f-----+------+-------------+ I I I --;---f----~---f---------------_... 
I ,PRINTOVIYES I I , I I I x I x IBeguired if a I 
I I' '" I I I , I PRTev macro is I 
I I I I J I I , J I Igiven for the I 
I I I I I I I I I I I file. I 
f------+-------+------------+ , , I -f----~----f----~-----------------_... 
I IRFORMTnl xX1Yz I x I x I I I x I I I Indicates that a I 
I 'I I I , I , , I ,check for numer- I 
I I I I I j I ) I I I ics or tlanks is I 
I " I' I I I I I I desired from I 
I I J ) I , , I J I I col xx tc yy in I 
I I' "I' I I I ,input cards. I 
f------+------+------------+- I , -/---f----;---f-----+-----------------... 
I I RFXIT J name of user J x 'x I I I x I I , I 
, I ,routine used I I I I , I I I I 
I I J when RFORMn I I I I J I I I I 
I , I test fails I I I I I I J ) I 
f---+------+-------------+ , I I -+----f----f----~----------------_i 
I I SEQNCE , xX1Y 'x I x I I I x I I I Indicates sequence I 
) " I)" I I , I check of inpu t I 
I ) I I I I J I , I ,cards desired frem) 
) I I I I I I I I , Icol xx to lY· I 
1-------+------+------------+ I -/- I I ~----~--f------------------_I 
J ISEQXIT Iname of user I I I I I I I Ilust te speci- I 
I I I routine used I x I x I I I x I I I fied when I 
I I Iwhen SEQNCE I I J I I I J ISECNCE is spe- I 
I I Itest fails I , I I I 1 I Icified. I 
r---+------+------------+ I I I +----;----f----f-----------------... 
I I TYPEFLE I INPUT I x I x I I I x I 1 I I 
I I 1-- --+-----+----+-----+-----t----+----,.----... I 
J J IOUTPU'! I x I x I x I x I I x I x I I 
I I f---------------f I I --f-----~---~----~----... I 
I I I CMEND I x I, x I I I I I I I 
~ I --+---------f-----+-----+----+-----t----t----+--f -t 
I I WORK A J YES I x I x I x I x I x I J! J x I Mandatory for I 
I I I ) I I I I I ) I all card and , 
I I I I I I I I I I Iprinter files. I L ____ ..L _______ .1.--_______ --L..- I , L--_~ I -L-__ ..I.-______________ .J 

Figure 8. tefinition statement Summary fer Card and Erinter Files, Part 3 of 3 

racro Instructions 29 



I I , 

I Operand I I 
I }---~--------.. I 
10pera-IKeywordlAllowable IRemarks I 
I tion I I Specification I I 
I----+- I I ~ 
I DTFMT I I I Applies to tape files only_ I 
I I I -+----------------- -I 
I IALTTAPEISYSIPT IRequired for multi-volume files using two tape drives. I 
I I .-----------1 SYSIPT, SYSOPT, and SYSnnn are symbolic addresses to l:e I 
I I ISYSOPT lused when processing tape files. I 
I I I-- , I 
I I ISYSnnn I I 
}----+---_+_ I -------t 
I IBLKSIZEllength of file ILength of IOAREA1 as defined in main program. I 
I I I inFUlt/output I I 
I I larea in bytes I I 
I I I -f----------------------------- ... 
I ICKPTRECIYES IRequired to read tapes containing interspersed I 
I I I I checkpoint records. I 
I I J -+----.---------------------- -I 
I ICONTBOLIYES IRequired if a CNTRL macro is given for the file. I 
1---.-+------+----.---------+ ----------1 
I IDEVADDRISYSIPT ISYSIPT, SYSOPT and SYSnnn are symbolic addresses to te I 
I 1'- -t used when Frocessing tare files. I 
I II SYSOPT I I 
I I 1---------------1 I 
I liS Y S nn n I I 
I I I -+------------------------------------------1 
I IEOFADtRlname of user IFor input files only. I 
I I lend-of-file I I 
I I I routine I I 
1---_._+-----+--- I -----I 
I IERRIO Iname of a two- IMay only be specified if the EEBOFT entry specifies I 
I I Ibyte area in Ithe name of the user's routine and/or if the WLBEBR I 
I I Iwhich the IOCS lentry is included in the tTF!T definition, and I 
I I Iplaces address lif IOABEA2 is also included in this file definition. I 
I I lof wrong-length I I 
I I I record or of I I 
I I I error block I I 
I I I ---------+-----------------------------------------------1 
I IERROPT IIGNORE IIf the ER~OPT entry is omitted, a permanent read error I 
I I .---.-----------1 causes the jcb to be terminated. When EEBCPT=name I 
I I JSKIP lis specified, the user must return to the Ices via I 
I I 1-----------1 register 14. I 
I I I name of user I I 
I I I r 0 u ti n e I I 
I I I -+--------------------- -I 
I IFILAEL ISTt Istandard labels. I 
I I l-----------__+_ ----t 
I I INSTD INon-standard labels. Applies to input files only. I 
I I 1-----------+------------------------- ... 
I I INO INo labels. No labels is assumed if the FILABL entry I 
I I I lis omitted. I 
I I I -+----------------------------- I 
I IIOAREA11name of the I I 
I I I user-defined I I 
I I I area I I 
,.------+------+----------------+ ----------1 
I IIOAREA21name of the IFirst DTl statement must l:e DTFEG BWC=YES. I 
I I I user- defined I I 
I I I area I I I I I ~_____________________________ ~ 

• Figure 9. Definition statement Summary for Tape Files, Part 1 of 2 

30 IEM System/360 Model 20 TPS IOCS 



i ~-'----------------- , 

I Operand I I 
I j-------,.-------------t I 
I Opera- I Keyword I Allowable I Remarks i 
Ition I I Specification I I 
j-----+-----+ I ------t 
I IIOREG Inumber of any IRequired when either (1) blocked records are processed I 
I I Iregister from 81in the I/C area, or (2) variable length unblocked I 
I I Ito 13 in paren-Irecords are read backward and processed in the input I 
I I Itheses(n) larea, or (3) records (either blocked or unblocked) are I 
I I I Iprocessed in the I/C area and IOABl12 is specified. I 
I I I I (If the user's problem progra. contains ICCS macro I 
I I J linstructions that refer to the IE~ 1259 or 1419 ~agnet~cl 
I I I ICharacter Readers, registers 11 and 12 must not be used) I 
J-----+-----+_ I -t 
I ILABADDRlname of user lOser must return to main program by issuing a LERET I 
I I Iroutine Imacro instruction. I 
j-----+------+--------;. -i 
I IREAD IFORWARD IIf omitted, IOCS assumes forward reading. I 
I I 1 --. I 
I I I BACK I I 
j-----+----+_----------;.- --------i 
I IRECFCRMIFIXONB IEntry may be omitted if record format is fixed I 
I I 1 -tunblocked. I 
I I IFIXBLK I I 
I I .--------------1 I 
I I IVARONB I I 
I I .-- -t I 
I I IVARBLK I ) 
I I J---------------I I 
I I I UNDEF I I 
~ I J -;.-----------------------------------------~_f 
I IRECSIZElnumber of tyteslReguired if fixed-length blocked or undefined record I 
I I lin one record Iformat is specified. I 
I I lor number of I (If the user's problem program contains ICCS macro I 
I I Iregister indi- )instructicns that refer to the IE~ 1259 or 1419 ~agnetici 
I I Icating record ICharacter Readers, registers 11 and 12 must not be used) I 
I I llength in num- I I 
I I I be r of bytes, I I 
I J I in parentheses I I 
I I) ;.---------------------------------------------------i 
I IREWIND IUNLOAD IIf omitted, the tape is rewound, but not unloaded I 
I ) J----------------Ion OPEN, CLOSE and cn end-of-volume condition. I 
I I J NORWD I I 
I I J ;. _f 
I ITPMIBK INO IApplies to unlabeled tape output files. I 
J-------+------+-------------;. -----------------------1 
I ITYPEFLEIINPUT I I 
I I 1 -i I 
I I 10U'IPU'I I I 
j------+-------+--------------t--- ~ 
I IVARBLD Jnumber of re- IRequired if variable-length blocked records I 
I I Igister in lare built in the output area. (If the user's I 
I I I paren theses (n) Iproblem Frogram contains Ices macro instructions I 
I I Ifor available- Ithat refer to the IEM 1259 or 1419 Magnetic Character I 
I I Ibyte indicationlReaders, registers 11 and 12 must not be used.) I 
j------+------f------------;.---- -I 
I IWLBEBR Iname of user J'Ihe user must ieturn to the Ices via register 14. I 
I I I routine I I 
j-------+----_+_ I I 
I IWORKI IYES I 1 • I I ~ _____________________________________________________ J 

Figure 9. Definition statement Summary for 'Iape Files, Part 2 of 2 

~acro Instructions 31 



Before the first r.ecord can be read from 
any input file or transferred tc any output 
file by means of IOCS macro instructions, 
that file must be readied for use by issu
ing an OPEN macro instruction. 

OPEN MACHO INSTRUCTION 

The format of this macro instruction is: 

r-----~--------~------ , 
IName 10peration 10perand I 
I-- I I ----. 
I[name]IOPE'N Ifile1,file2, ••• filen I L ______ ~ __________ ~ I 

Each operand is the name of a file 
(assigned to it by an entry in the name 
field of a DTFSR (DTFMT) header entry) to 
be opened with this macro instruction. Any 
number of files from one to sixteen may be 
opened with one OPEN macro instruction. 
The operations performed depend on the type 
of unit involved and the labeling technique 
(if applicable). 

For card and printer files, an OPEN macro 
instruction simply makes the filets) con
cerned available for input and/cr output. 

When a tape fi~e with IBM standard labels 
is opened, the IOCS expects the first rec
ord read to be a label. An OPEN macro 
instruction causes the tape to be rewound 
prior to processing, unless the Frogrammer 
has specified no rewinding by including 
REWIND= NORWI in the DTFMT statement for 
the file. If the programmer has specified 
no rewinding and if a file teginning in the 
middle of the reel is opened, the user can 
position the tape ty means of a FILES con
trol statement for the Job Control program 
so that the first reccrd read at OPEN time 
will be a label. If the first record is 
not a label the IOCS regards it as an error 
condition. However, an unlabeled file can 
be opened in the middle without causing an 
error condition. 

When two or more files of a multifile 
tape volume are to be processed by one pro
blem program, processing of each specified 
file must be completed before the file next 
in succession is opened. 
.§'!~'!!!j~.J&l If the second, fourth, and sixth 
files of a multi-file tape volume are to be 
processed by one problem program, the pro
grammer must write the OPEN macro instruc
tions for these files in the following 
sequence: 

32 IBM System/360 Model 20 TPS Iecs 

OPEN second file 

CleSE second file 

OPEN fourth file 

CLOSE fourth file 

CIEN sixth file 

CLOSE sixth file 

The concurrent processing of two or more 
files of a multifile tape volume is not 
pcssible. 

Note that all files on a multifile 
vclume must either contain the same type of 
labels (standard or non-standard) or con
tain no labels. 

OIENING TAPE INIUT FILES: The processing 
done by the IOC~ when an OPEN macro 
instruction is executed depends on whether 
the file has IBM standard labels, non
standard labels, or no labels. If the 
input file is to be read tackwaro, the file 
must meet the requirements specified under 
Bead-Eackward Considerations below. An 
oFEN-macro-Instructlon-causes the 
following: 

1. If IE~ §!~n~~!~_l~l§l§ are sfecilied, 
the IOCS will: 

a. read and check the volume label if 
the tape is at load point; 

b. bypass any user volume latels; 

c. read and check the lEM standard 
file header latel (HDR 1) ; 

d. bypass any additional IBM standard 
header labels (HIE2-EIES); 

e. test the user latels (UHL1-UHLS), 
if a user's routine is sFecified, 
and make these labels available to 
the user's routine as they are read 
(refer to the Note below); and 

f. properly position the tape to read 
the first data record. 

Note: If a user's latel routine is not 
specified, user labels (if present) are 
skipped. 

If the file is to be read backward, 
steps e, d, and c are performed in this 
sequence; steps a and b are omitted 



because the Ices processes trailer 
labels instead of header labels. 

2. If DQD=§!~Dg~~g_lgQgl§ are specified, 
the file is spaced forward to the first 
record following the first tape mark. 
Therefore, the non-standard labels must 
be followed by a tape mark. 

3. If 1!.SL1~.!;~ls are specified, the first 
record on tape may be a data record or 
a tape mark followed by one or more 
tape marks. If the record is not a 
tape mark, it is assumed to be a data 
record, and the tape is backspaced by 
one record. If the first record is a 
tape mark, another record is read. If 
this record is a tape mark, the IOCS 
causes no further tape movement; qther
wise, the IOCS assumes a data record 
and causes the tape to be backspaced by 
one record. 

.n~.2g=~~.f!~.2£g_~.QD§.ide±g!!.Q.n.§~ 9-track tape 
files written on System/360 tape units can 
be read backward if they do not contain 
variable-length blocked records; 7-track 
tapes can be read backward if they were 
written on System/360 tape units without 
using the Data Conversion feature. Note 
that 7-track tapes containing variable
length records have always been written 
using the Data Conversion feature and, 
therefore, can not be read backward. A 
file to be read backward is limited to one 
reel. Any tape mark sensed while reading 
data records is considered to indicate an 
end-of-file condition. 

When opening a tape file that is to be 
read backward, the job is terminated if the 
first record read is not a tape mark. The 
user is required to properly position files 
that are to be read backward prior to issu
ing an OPEN macro instruction. The proper 
positions are as follows: 

J;!!1:L21gngg!:g=la~gJ:gg_!!!g§ should be posi
tioned so that the first record read will 
be the tape mark following the trailer 
label set. Since the file trailer label is 
the first label to be checked when a fire 
is to be read backward, this trailer label 
must be complete; it must ccntain both the 
trailer and the header information (except 
HDE) to properly identify the file. If the 
file labels were originally written by the 
IOCS, the trailer labels are complete. 

Non-standard label files should also be 
posltloned-so-that-t"he-tape mark following 
the trailer label set is the first record 
to be read. However, no label checking is 
performed. 

Qnlabel~g_1iles must be positioned so that 
the first record read is the tape mark fol-

lowing the last record of the file to be 
read. 

Unlabeled tape files to be read backward 
must' have a tape mark as the first record 
en the tape (preceding the first data rec
ord). If this tape mark is not present, no 
end-of-file (EOF) condition is detected and 
an attempt is made to read past the load 
point. 

~he user must specify the NCEWt (no re
wind) option in his file definition state
ment for the file to be read backward. 

OPENING TAFE CUTPUT FILES: The processing 
done by the IDeS when an OPEN macro 
instructicn is executed depends on whether 
or not the file is labeled. An CFEN macro 
instruction causes the following: 

1. If IE~ standard labels are specified, 
the Iocs-wI1T:-

a. check for a volume label if the 
file is positioned at loadpoint; 

b. read the file header label (if pre
sent) and check the expiration date 
to make sure the data on the tape 
is no longer active and may be 
destroyed; 

c. backspace the tape and write the 
new file header label with the 
information supplied by means of a 
TFlAE job control statement (refer 
to the section ~QD!±.Ql_~!g!em~n!.§l; 
and 

d. enter the user label routine, if 
this routine is specified, to allcw 
the creation and writing of user 
header label(s) (UEI1-UHl8). 

2. If .n.Q_l~~~l§ are specified, the IOCS 
w~ll perform the rewind operation and 
write a tape mark as the first reccrd 
on the tape. The volume label and the 
e~piration date are not checked, and 
any existing label set is destroyed. 

~.Q!~l The writing of a tape mark may 
be suppressed by a TP~AEK=NC entry in 
the tTFMT statement. 

3. If nQn=§!.2ngg±g_J:~£&l.§ are specified 
for a file, a diagnostic message is 
printed during assembly because the 
specification of non-standard labels 
for an output file is not permitted. 

These macro instructions cause input/output 
cperations to be performed. If an operand 
of a processing macro instruction is the 

facro Instructions 33 



symbolic address of an area or a rontine, 
relative addressing is permitted. However, 
such an operand is limited in length to 
eight characters, including expressions 
with their operators. 

The processing macro instructions common 
to all input/output devices are described 
first followed by a separate section each 
on (1) specific caI:d and prin ter macro 
instructions and (~ specific tape macro 
instructions. 

COMMON MACRO INSTRUCTIONS 

In this section, processing macro instruc
tions common to all input/output devices 
(GET, FUT, and CNTRL) are discussed. 

GET MACRO INSTRUCTION 

The format of this macro instruction is: 

r------T----------. , 
I Name I Opera tionl Operand I 
1--- I I-- -t 
l[name]IGET Ifilename[,workname] I L ______ ~ _________ L--____________________ _J 

The GET macro instruction is written in 
one of two forms: 

1. With one operand only. This format 
applies to tape files only. It is used 
if records are to be processed directly 
in the input area. The operand speci
fies the name of the file from which 
the record is to be read. !he file 
name must be the same as the one speci
fied in the D!FMT header entry for this 
file. 

2. With two operands. This format is used 
if records are to be processed in a 
work area. The first operand sFecifies 
the name of the file. The second 
operand specifies the work area to be 
used. (Refer to the descriFtion of the 
WORKA=YES detail entry in the sections 
DTFSR Detail Entries and DTFM! Detail 
~.n!ri~.§ :)----.----- ------------

g£QCE~§iDg_i]_~]_ln£Y!_]~~~: The first 
form of the GET macro instruction is used 
if records are to be processed directly in 
the input area(s). It requires only one 
operand. This operand specifies the name 
of the file from which the record is to be 
retrieved. The file name must be the same 
as that specified in the DTFMT header entry 
for the file. 

The input area must be specified in the 
DTFMT entry IOABEA1. Two input areas may 
be used to permit an overlap of data
transfer and processing operations. The 
name of the second area is specified in the 
DTFMT entry IOAREA2. Whenever two input 

34 IBM System/36C Model 20 TPS IOCS 

areas are specified, the Ices routines 
transfer records alternately to each area. 
They handle this "flip-flop" so that the 
next consecutive record is always available 
to the program for processing. 

ihen records are processed in the input 
area(s), a general purpose register must be 
specified in the tTl!T entry 10RIG, if: 

1. records are blocked, 

2. variable-Ien~th unblocked tape records 
are read backward, or 

3. two input areas are used, for either 
blocked or unblocked records. 

This register always contains the abso
lute address of the leftmost pOSition of 
the record currently available. The GET 
routine places this address in the 
register. 

g~~fg~§iDg_!D_~_~Q~~_!~~~: The second form 
of the GET macro instruction is used if 
records are to be processed in a work area. 
It causes the GET macro to move each indi
vidual record from the input area to a work 
area. In the case of variable-length rec
ords the record includes four bytes which 
hold the record length. As in the first 
ferm, the file name must be entered as the 
first operand. ~he name of the work area 
must be enteIed as the second operand, and 
YES must be specified in the WORKA entry of 
the t!FET OI DT~SR statement. The work
area name must be the same as that speci
fied in the rs or Le instruction defining 
this area .. 

All records from a file may be processed 
in the same work area, or different records 
from the same file may be processed in dif
ferent work areas. In the first case, each 
GET macro instruction for the file speci
fies the same work area. In the second 
case, different GET macro instructions spe
cify different work areas. It might be 
advantageous to plan two work areas, for 
example, and to specify each area in 
alternate GET macro instructions. This 
would permit the comparison of each record 
with the Freceding one to determine a pos
sible change of the control level. Howev
er, only one work area can be specified in 
anyone GET macro instruction. 

When variable-length unblocked records 
or records of undefined format are pro
cessed in a work area, a GET causes the 
Ices to move the entire input area to the 
work area. (Refer to the description of 
the ELKSI2E detail entry in the section 
~lI~l_~g!gil_jD!~i~§.) If the record to be 
processed contains fewer bytes than the 
input area, undesired characters may be 



moved into the work area along with the 
record. 

When a card file is processed in the 
non-overlap mode, a GET macro instruction 
for the file (1) initiates the reading of 
the next record, (2) moves the data from 
the input area to the work area when the 
read operation is complete, and t3) trans
fers control to the main program. When a 
card file is processed in the overlap mode, 
the GET macro instruction for the file (1) 
moves a record, as soon as it is available, 
from the input area into the work area, (2) 
initiates the next read operation, and (3) 
immediately transfers control to the main 
program. 

When a combined file is processed and 
data is to be punched into the input cards, 
the programmer must use one of the program
ming methods described under g~g~!gm~j~g 
with LOM and EOM Macro Instructions in the 
sectI~ii-LOM-Macrolnstructlon-foI:-combined 
lile§. Also-refer to-R£Qg~~iiIng=~Qll§!~~-
erations -- Combined Files in the section 
i~T-~~£fQ=ln§!ru£!~Qn-below. 

For a tape input file, a GET macro 
instruction may cause a read forward or a 
read backward operation. The type of read 
operation performed is determine~ by the 
READ= entry in the DTFMT statement. 

PUT MACaO INSTRUCTION 

The format of this macro instruction is: 

I I ,.-------------------, 

IName IOperation IOperand I 
r------+---~----_+----- ~ 
l[name]IPUT Ifilename[,workname] I L I ---1--__________________ J 

This macro instruction is written in one 
of two forms: 

1. With one operand only. This format 
applies to tape files only. It is used 
if records are to be processed directly 
in the input/output area. The operand 
specifies the name of the file for 
which the user wishes the PUT to be 
executed. The file name must be the 
same as the one specified in the DTFM'I 
header entry for the file. 

2. With two operands. This format is used 
if records are being processe~ in a 
work area. The first operand specifies 
the name of the file. The second 
operand specifies the work area from 
which the records are moved to the out
put area. 

]uiJgjDg_j~D-Q~!£]!_A~§E: The first form 
of the PUT macro instruction is used if 
records are to be built directly in the 
output area(s). It requires only one 
operand. This operand specifies the name 
of the file to which the record is to be 
transferred. The file name must be the 
same as that specified in the DTFMT header 
entry for the file. 

The output area must be specified in the 
D'IF~T entry IOABEA1. Two output areas may 
be used to permit an overlap of data trans
fer and processing operations. The name of 
the second area is specified in the DTFMT 
entry ICAREA2. Whenever two output areas 
are specified, the IOCS routines transfer 
records alternately from each area. They 
handle this "flip-flop" so that the proper 
output area is always available to the pro
gram for the next consecutive output 
record. 

when records are built in the output 
area (s) , a general purpose register must be 
specified in the tTFMT entry IeBEG, if: 

1. records are blocked, or 

2. two output areas are used, for either 
blocked or unblocked records. 

This register always contains the abso
lute begin address for building the next 
record in the output area. 

~yjlgj~g_i~_g_~g~~_!~~g: The second form 
of the PUT macro instruction is used if 
records are to be built in a work area. 
This form of the PUT macro instruction 
mcves a record from a specified work area 
to the proper location in the output area 
specified in the DTFMT or DTFSR statement. 
As in the first form, the file name must be 
entered as the first operand. The name of 
the work area is entered as the second 
operand. YES must be specified in the 
WORKA entry. The name of the work area 
must be the same as that specified in the 
DS or DC instruction that defines the area 
in main storage. Individual records for a 
logical file may be built in the same work 
area or in different work areas. Each PUT 
macro instruction specifies the work area 
where the completed record was tuilt. 
Howeve~, only one work area can be speci
fied in anyone PUT macro instruction. 

Records transferred to card or printer out
put files axe alwals considered to Le 
unblocked. Records transferred to magnetic 
tape output files mal be tlocked or 
unblocked. If they are to be treated as 
unblocked this must te sFecified in the 
tTFMT entry RECFORM. 

Macro Instructions 35 



Each PUT transfers a single unblocked 
(either fixed or variable-length) record 
from the output area (or input area if 
updating is specified) to the file. If a 
work area is specified in the PUT macro 
instruction, the record is first moved froa 
the work area to the output area (or input 
area) and then to the file. 

When blocked records are to be written on 
tape (as specified in the D1FM1 entry 
RECFORM), the individually built records 
must be formed into a block in the output 
area. The block of records is then trans
ferred to the output file. The blocked 
records may be either fixed or variable 
length. 

!i~ed=lg~gth ~12ck~g_~~£Q£~2 can be 
built directly in the output area or in a 
work area. Each PUT macro instruction for 
these records either adds an indexing fac
tor to the register, or moves the completed 
record from the specified work area to the 
proper location in the output area. When 
an output block of records is complete, FU1 
causes the block to be transferred to the 
output file, and initializes the register 
if one is used. 

Y..21~i..2l;1~=.!'@..9!lLbI2£~!tg_~g£2.!g.§ can also 
be built in either the output area or in a 
work area. The length of each variable
length record must be determined by the 
problem program and included in the output 
record as it is built. The record-length 
field must occupy the first four bytes of 
each record. The first two bytes specify 
the length of the record (including the 

I 
four bytes for the record-length field 
itself), and the next two bytes are binary 
zerosu The user must define an output area 
that is large enough to accommodate the 
four bytes in which the IOCS places the 
block-length indication. The block-length 
includes the four bytes for the block
length field itself. 

When variable-length blocked records are 
built in a work area, the PUT macro 
instruction performs approximately the same 
functions as it does for fixed-length 
blocked records. The PUT routines check 
the length of each output record to deter
mine if the record will fit in the remain
ing portion of the output area. If the 
record will fit, PUT immediately moves the 
record. If it will not fit, PUT causes the 
completed block to be written and then 
moves the record. Thus, this record be
comes the first record in a new block. 

If variable-length blocked records are 
to be built directly in the output area, an 
additional tTFMT entry, a TRUNC macro, and 
additional user programming are required. 

36 IBM Systemj360 Model 20 TPS IOCS 

The user's program must determine whether 
each record to be built will fit in the 
remaining portion of the output area. This 
must be known before processing of the rec
ord is started, so that, if the record will 
not fit, the completed tlock can te written 
and the record can be built at the tegin
ning of a new block. Thus, the length of 
the record must be pre-calculated and com
pared with the amount of remaining space. 

The amount of space available in the 
output area at any time can te supplied to 
the program (in a register) by the Ices 
routines. For this the user must specify a 
register in the D~FMT entry VARBID. This 
register is in addition to the register 
specified in the DTFMT entry IOREG. Each 
time a fUT macro instruction is executed, 
Ioes loads into this register the number of 
bytes remaining in the output area. The 
problem program uses this to determine 
whether the ~~~! variable-length record 
will fit. If it will not fit, a TRUNe 
macro instruction must be issued to trans
fer the block of records to the output file 
and make the entire output area available 
for building the next tlock. 

Un~~!1D~g_~~£Q~g2 

When undefined records are handled, PUT 
treats them as unblocked. The programmer 
must provide any blocking he wants. He 
must also determine the length of each rec
ord (in bytes) and load it in a register 
for Ioes use, before he issues the POT 
macro instruction for that record. The 
register that will be used for this purpose 
must be specified in the tTF~T entry 
REeSIZE. 

When a card file is processed in the 
nen-overlap mode, a FUT macro instruction 
for the file (1) moves a record from the 
work area to the output area, (2) initiates 
the punch operation (and the next read 
operation in case of a combined file), and 
(3) transfers control to the main program 
when the punch operation has been 
completed. 

When a card (or printer) file is pro
cessed in the overlap mode, a FUT macro 
instruction for the file (1) moves a record 
from the work area to the output area, (2) 
initiates the punch (print) operation, and 
(3) immedia teli' transfers control to the 
main program. 

~2~§: Printer files are always processep 
in the overlap mode. 

Neither the output area ncr the work 
area (if used) is cleared by the Ices when 
a tUl macro instruction is executed. To 
avoid his output records containing inter-



spersed characters from preceding records, 
the user must ensure the following: 

1. If the records are built in the output 
area 

a. that the record he builds uses 
every position of the output area, 
or 

b. that he clears the output area 
before he starts building his next 
record. 

2. If the records are built in a work area 

a. that the record he builds uses 
every position of the work area, or 

b. that he clears the work area before 
he starts building his next record. 

I~QE~~~i~g_~ons~§ra!iQ~§_==_£gID~in~g 
11les 

Assume that a combined file is being pro
cessed by means of the following sequence 
of instructions: 

GET F1,W1 

PUT F1,W2 

no GET, EOM, or PUT 
macro instruction 
referring to file F1 

In this case, the following rules apply: 

]on=Qve~12E.-11gde. The statement PUT F1,W2 
causes punching into the card that has been 
made available by the statement GET F1,W2. 

QI~£l~E_IQ~g. The statement PUT F1,W2 
causes punching into the card following the 
card that has been made available by the 
statement GET F1,W1. The card that has 
been made available by the statement GET 
F1,W1 has already passed the punch station 
when the statement PUT F1,W2 is encoun
tered. In other words, alternating GET and 
PUT statements for the file F1 cause the 
first (third, fifth, etc.) card to be read 
and the second (fourth, sixth, etc.,) card 
to be punched. 

CNTRL MACRO INSTRUCTION 

The format of this instruction (control) 
is: 

r-----~-----~---------------------------, 
J IOpera-J J 

I Name Ition ICperand I 
~------+------+---------------------------~ 
J [ name] I C NTRL I filename ,mnemonic[ ,[ n ][ ,m ] ] 1 
I , .J 

This macro instruction contains CNTBL in 
the operation field, and the name of the 
file for which the device operation is 
desired as the first operand in the operand 
field. As a second operand, the Frogra~.er 
must enter one of the mnemonics listed 
below to specify the desired operation. 
The third or fourth operand mayor may not 
be required depending on the type of opera
tion specified by the programmer. 

The CNTRL macro instruction can be used 
by the programmer to cause such non-data 
transfer operations as form skipping, 
stacker selection, tape rewinding, etc., to 
be performed on the device associated with 
the file. A CCNTBCI=IES entry must be 
included in the DTFSR(DTFMT) statement for 
a Farticular file if a C~TEI macro instruc
tion is given for the file. 

The following is a description of avail
able mnemonics to be used as the second 
operand, and of the contents of the third 
and fourth operands, when required. 

~lj~!j!L~!~!~11~lLj~~1_1.flLl]j_l.flL 2 5 ~.Q.L 
IQ]1&~_A1.L_A2.L_A~~_!l: Either of two 
stackers can be selected. 

r-------------------~--------------------, 
1 Cperand I I 
r . -'---T---! Function I 
I Mnemonic J n J mil 
.------------+---+---~ ~ 
1 SS I 1 1 - 1 Select stacker 1 I 
r--------t---~--~-------------___4 
1 ss I 2 1 - I Select stacker 2 I L ____________ ~ ___ ~ ___ i_ 

In the IEM 2520, cards are normally 
stacked in stacker 1. The stacker selec
tion mnemonic (SS) is used to select a card 
into the other stacker as specified by the 
third operand in this macro instruction. 

When two stacker select CNTRL macro 
instructions are given for the same file 
and before the next GET or PUT macro 
instruction for that file, the second 
stacker select CNTRL macro instruction is 
effective; i.e., the second eNTEI macrc 
instruction overrides the first. The fol
lowing must be observed by the prograrrmer 
when issuing a stacker select CNTEL to 
ensure that the instruction is in FrcFer 
relationship to the GET, PUT, or ECM macro 
instruction referring to the card to te 
selected: 

1. ~~Q~~SSi~E_i~_Qy§~lE~_~Qg§~ The stack
er select CNTEL must te the last macrc 
instruction preceding the GET or PUT 
that refers to the card to be selected. 
The example telow selects the card, the 
contents of which are transferred to or 
from the work area ty the GET (or PUT) 
macro instruction. (The second operand 

~acro Instructions 37 



required in GET (PU~ macro instruc
tions referring to card or printer 
files is not shown.) 

eNTRL 111,5S,n 
-------------- no GET or PUT 
-------------- referring to file AlA 
GET (PUT) AAA 

2. iroce§§in~=~A=non=Q!~~l~E_~gg~~ The 
stacker select CNTRL must be issued 
after the GET macro instruction or 
before the PUT macro instruction that 
moves the card to be selected. The 
example below selects the card read by 
the GET macro instruction. 

GET All 

CNTRL AAl,SS,n 

no PUT, GET or ECM 
referring to file AAA 

The examFle below selects the card 
moved by the PDT macro instruction. 

CNTRL AAl,SS,n 

PUT AAA 

no PUT, GET, or EOM 
referring to file AAA 

. S T A C.!S E R_'§]1]'!;11.Q!i_.l S SL1.Q~_1l!.Ll1HL1.2§] 
MFC~: Anyone of the five available stack
ers can be selected. 

,-----------,- --, 
I Operand I I 
j.----·------,---T·---! Function I 
I Mnemonic I n I m I I 
1------+--+--+-----------------. 
I SS I 1 I - I Select stacker 1 I 

j--·-------f-f---+_ -I 
I SS I 2 I - I Select stacker 2 I 
I--- -l---t. I --. 
I SS J 3 I - I Select stacker 3 I 
j.----.------+--+ I -------------. 
I ss I 4 I - I Select stacker 4 I 

j.--·------+_--t·--f----- -I 
I SS I 5 I - I Select stacker 5 I 
L----________ i---L __ ~ __ --------' 

The CNTRL macro instruction for the IBM 
2560 ~FCM may have one of two formats: 

1 • 
2. 

CNTRL 
CNTRL 

Filenaml:! ,SS,n 
,SS,n 

If the first format is used, the func
tions are the same as described for the 
stacker select CNTRL macro instructions for 
the IEM 2520, Models A1, A2, and A3. 

The second format, which is only possi
ble for card files to be processed by an 

38 IBM System/360 Model 20 TPS ICCS 

IEM 2560 MFCM, does not specify a file 
name. Absence of the file-name operand is 
indicated by a comma. 

When two CNTRL macro instructions 
without a file name are given before the 
stacker select operation is performed, the 
second stacker selection is effective; 
i.e., the second CNTRL macro instruction 
overrides the first. 

Execution of this type of a stacker 
select CNTRL reguires that the card to be 
selected is in the pre-print station when 
the subseguent PUT, GET, or EOM macro 
instruction is executed. 

To ensure the instruction is in Froper 
relationship to the GET, PUT, or EOM macro 
instruction referring to the card to te 
selected, the programmer must observe the 
fcllowing: 

1. ~!Q£~§§i~g_i~_Q~~~l~£_mQde. 
If the card to be selected is punched 
by a FUT macro instruction or if the 
contents of the card are moved to a 
work area by a GET macro instruction, 
then the CNTRL macro instruction must 
be given prior to any sutseguent PUT, 
GET, or EOM macro instruction addres
sing an ~FCM file. This is illustrated 
by the coding example below. (!he 
second operand required in GET (FUT) 
macro instructions referring to card or 
printer files is not shown.) 

PUT (or GET) F 1 
-------------- No FUT, GET, or 
-------------- EO~ referring to 
-------------- MFCM files 
CNTRL ,SS,n 

2. ~Ig£~~§i~g_iD_~2D=g~~~lg£_~4~ 
If the card to be selected is punched 
by a FUT macro instruction, the CNTRL 
macro instruction must be given prior 
to anj subseguent GET, tUT, or EOM 
macro instruction addressing an MFCM 
file (see the coding example below). 

FUT F1 

CNTRl ,SS,n 

No PUT, GET or 
EO! referring to 
MFCM files 

There is one exception to the above. 
Eetween the FUT for a card to be 
selected and the CNTRL for this card, a 
GEl for the same file may te inserted 
(see the coding example below). 



PUT F1 
-------------- No PUT, GET, or 
-------------- EOM referring to 
-------------- MFCM files 
GET F1 
-------------- No PUT, GET, or 
-------------- EOM referring to 
-------------- MFCM files 
eNTRL ,SS,n 

When the card to be selected is read by 
a GET macro instruction, another GET, 
EOM, or PUT to the same file must be 
given prior to the CNTRL macro instruc
tion for this card (see the coding 
example below). 

GET F1 

GET F1 (or PUT 
(or EOM F'1) 

any combination of 
macro instructions 
referring to another 
filE::. 
F1) 

-------------- No PUT, GET, or 
-------------- EOM referring to 
-------------- MFCM files 
CNTBL ,SS,n 

Ig~~_~iA~lHg_j~fl_!QR_fBIH1EB2: Line spac
ing on printers can be controlled. 

j I , 

I Operand I I 
.---------,--,---1 Function I 
I Mnemonic I n I m I I 
I----------+--+--+---------------------t 
I SP I n I ISpace n I 
I I I I (n = 0, 1,2, or 3) J 
I I I Ilines immediately ) 
1------------+--+---+----------------1 
I SP ) n I m ISpace n I 
I I I I (n = 0,1,2, or 3) I 
I I I Ilines immediately I 
I I I land m I 
I I I I (m = 0,1,2, or 3) I 
I I I Ilines after printing I 
I I I -1----------- -1 
I SP I I m I Space m I 
I I I I (m = 0, 1, 2 j , or 3) 1 
I I I Ilines after printing I 
1.- ~--L---1-__________________ J 

This mnemonic is required to control 
line spacing. The programmer may omit 
either operand n or m. If operand n is 
omitted, the omission must be indicated by 
a comma (Example: CNTRL Filename, SP,,2). 

If a delayed spacing CNTRL macro 
instruction is not given before the next 
PUT for the same file, the form is automat
ically ~paced one line after printing. 

~hen two delaYE::d spacing CNTBL macro 
instructions are given before the next PUT 
for the same file, the second CNTBL is 
effective, i.e., the second CNTRl overrides 
the first. If both delayed spacing and 
skipping are specified before a PUT for the 
file, only the last specified operation 
will be performed. 

Eoth the delayed-spacing and the 
immediate-spacing specifications of a CNTRL 
macro instruction can be given before a PUT 
fer the particular file. As a result, the 
form is spaced by a number of lines that is 
egual to the total of lines specified in 
the two CNTBL macro instructions. It is 
immaterial, which of the two CNTEL macro 
instructions is issued first. Normally, 
hcwever, the programmer would write only 
one CNTBL macro instruction, e.g., CNTRL 
filename,Sf,1,2 (spacing one line immedi
ately and two lines after printing) • 

In order to increase system throughput, 
delayed spacing should be used whenever 
possible. 

XOR~_~~lPPING CSlil_l0R_EBINTE~~: Skipping 
to a specific line on a printed form can be 
controlled. 

r--------------------, -, 
I Operand I I 
1----------.---,----1 Fun c t io n 1 
1 Mnemonic I n I m I J 
1---------1----1-----1---------------------1 
I SK 1 n I I Skip to punch in I 
I I I Ichannel n(n=1,2, ••• ,1 
I I I 112) immediately 1 
j-------------f---+---f-------------· .. 
1 SK I n I m ISkip to punch in I 
1 I I Ichannel n(n=1,2,· •• ,1 
I J 1 112} immediately and I 
I I I Ito channel I 
I J) 1m (m= 1 , 2, ••• , 12) I 
1 1 I lafter printing I 
.------------+---f---f i 
I SK I I m ISkip to punch in I 
1 ) I Ichannel m{m=1,2, ••• ,1 
I I 1 112) after printing I 
L---______ ~ __ ~~ __ ___ J 

The form-skipping mnemonic is used to 
specify the channel of the carriage control 
tape to which the form is to be skipped 
immediately and/or after the printing of a 
line. The Frogrammer may omit either 
operand n or m. If oFerand n is omitted, 
the omission must be indicated by a comma. 
Example: CNTEL filename,SK,,12. 

when two delayed skipping CNTEL macro 
instructions are given before the next PUT 
fer the printer file, the skiFping sFeci
fied in the second CNTRL macro instruction 
is effective, i.@., the second CNTBL over
rides the first. 

lacro Instructions 39 



In order to increase system throughput, 
delayed skipping should be used whenever 
possible. 

lAPE_.J!.Nll_~.Q~.IE.Q1: For a tape file, a 
CNTRL macro instruction may be issued any
where in the problem program. 

The CNTRL macro instruction is used to 
control magnetic-tape functions that are 
not concerned with reading or writing data 
on the tape. The file name and the mnemon
ic specifying the desired oFeration are the 
only operands required in CNTRL macro 
instl:uctions 'for tape files. Each mnemonic 
used is described separately below. 

The FSR (or BSR) function permits the 
user to skip over a physical record (from 
one interrecord gap to the next). The rec
ord skipped is not read into main storage. 
The FSF (or BSF) operation permits the user 
to skip to the end of the logical file, 
which is identified by a tape mark. 

r- --.--------------------------, 
I Mnemonic I Function I 
1-----------+---------------------.. 
I BSF IBackspace tape to I 
I Ipreceding tape mark. I 
1-----------+ -f 
I BSR IBackspace tape for one I 
I Iblock. I 
.. --------------+-_.- .. 
I ERG IErase tape to produce I 
I la gap. I 
1---.--------+--.----- -f 
I FSF IForward-space tape to I 
I Inext tape mark. I 
.. -----------+-_._------ .. 
I FSR IForward-space tape to I 
I Inext inter-block gap. I 
J.----.----------+--.- .. 
I REW IRewind tape. I 
I--- -+--------------------t 
I RUN IRewind and unload tape. I 
1-----------+---- -f 
I WTM IWrite a tape mark. I 
L----__________ ~ ____________ __ .J 

When a CNTRL macro instruction with BSR 
or FSR as the second operand is issued for 
a tape input file, the programmer must con
sider the relative position of the tape to 
the record being processed. 

For all I/O area combinations, with the 
exception of one I/O area and no work area, 
laCS reads the thysical tape record follow
ing the one that is being processed at the 
time. Therefore, if a CNTRL FSR function 
is performed it is the second physical tape 
record following the one being processed, 
which will be skipped over. 

1
.Q.n~_I.L.Q_A£gg_g.ng_.N5L.HQ!:k_J~~g. A C NT RL 
with BSR as the second operand causes: 

40 IBM System/360 Model 20 TPS lacs 

1. For a file that is read forward -- the 
tape to be positioned so that the rec
ord being processed is in proper posi
tion to be read on the next read
forward operation. 

2. For a file that is read backward -- the 
tape to be positioned so that the 
second record after the one being pro
cessed is in proper position to be read 
on the next read-backward operation. 

A CNTRL with FSR as the second operation 
causes: 

1. Fer a file that is read forward -- the 
tape to be positioned so that the 
second record after the one being pro
cessed is in proper position to be read 
on the next read-forward operation. 

2. Fer a file that is read backward -- the 
tape to be positioned so that the rec
ord being processed is in proper posi
tion to be read on the next read
backward operation. 

!11_lL.Q_~£~li~s!iQ.n§~~!!~_!h~_~A£gE!ig~_g! 
.Q]g_JL.Q_A!§g_gng_]2_j2£~A~~. A CNTBL 
with BSR as the second operand causes: 

1. For a file that is read forward -- the 
tape to be positioned so that the block 
after the one whose last record is 
being processed is read on the next 
read-forward operation. 

2. For a file that is read backward -- the 
tape to be positioned so that the third 
block after the one whose last record 
is being processed is read on the next 
read-backward operation. 

A CNTRI with FSR as the second operand 
causes: 

1. For a file that is read forward -- the 
tape to be positioned so that the third 
block after the one whose last record 
is being processed is read on the next 
read-forward operation. 

2. For a file that is read backward -- the 
tape to be positioned so that the block 
after the one whose last record is 
being processed is read on the next 
read-backward operation. 

Before forward or backward-spacing 
operations (FSR, FSF, ESR, or ESF), the 
magnetic tape is positioned at an inter
block gaF. 

If blocked input records are being pro
cessed, and if the user does not want to 
Frocess the remaining logical records in 
the block or one or more succeeding blocks, 
he must issue a RELSE macro instruction 



before the control macro instruction. The 
next GET will then make the first record of 
the new block available for processing. 
If, for example, the CNTBL macro instruc
tion with FSB is issued ~i!hgut a preceding 
BELSE, the tape is advanced, but the next 
GET will make the next record of the old 
block available for processing. ---

When a CNTBL macro instruction is issued 
for a tape output file, the programmer 
should issue a TBUNC macro instruction 
(TBUNC = truncate) if it is desired that a 
partially filled block of records be writ
ten on tape before the CNTBL macro instruc
tion for the file is executed. 

If an FSB function (or BSR for a file 
that is being read backward) encounters a 
tape mark, the IOCS branches to the user's 
end-of-file routine~ 

The functions of the individual mnemonic 
are described below following the section 
~!!ect 9!~]I~1_9D Blg£~_~QYn!. 

Effect of eNTRL on Block Count. ~hen a 
CNTRL-macro-rnstructlon-wlth-BSF, BSR, FSF, 
or FSR as the second operand is issued, the 
block count wri tten or checked fo.r standard 
labels may be wrong. The control routine 
does not update the block count. If a tape 
input file with standard labels is speci
fied and the block count is in error at end 
of volume or end of file, a programmed halt 
occurs. 

~~X-j~g£~2Eg£~_!Q_IgE~_~g£kl~ This mnemon
ic is used if backspace to the first record 
of a tape file is desired. When a BSF 
operation is executed, the IOCS c.auses the 
tape to be stopped with the tape mark pre
ceding the first data record of the file in 
proper position to be read on the next read 
forward operation. In case of an output 
file, the tape is positioned so that the 
next subsequent PUT for the file causes the 
tape mark to be overwritten. Refer to 
]!!~g!_Q!_~]1~1_QD_~lgg~_~9~D!· 

BS~_~g£!§Eac~_!Q_lntg£=~lQ£~_§gEl~ This 
mnemonic is used if backspacing of a tape 
file for one block is desired. The IOCS 
branches immediately to the user's end-of
file routine if (1) a BSR operation is per
formed for an input file and (2) a tape 
mark is detected as a result of this BSB 
operation. When a BSR operation is 
executed, the IOCS causes the tape to be 
stopped with the block just backspaced in 
proper position to be re-read on a read 
forward operation. Refer to ]!i§£!_Q! 
CNTR~~lg£~_~Q~n!· 

ER~(Er~§~~~~~ This mnemonic is used to 
erase all signals that may be recorded on a 
section of tape; i.e., it creates a length 
of blank tape (approximately 3 1/2 inches). 

l~l_'Fo~~rd SE~£~_!Q_~£§_~!~ This 
mnemonic is used if the remaining part or 
all of a tape input file is to be skipped. 
When an FSF operation is executed, the IOCS 
causes the tape to ~e stopped immediately 
after the tape mark following the last data 
record of the file that has been read. In 
case of a file without labels or with non
standard labels, the tape is stopped imme
diately after the tape mark following the 
last block of data has been read. Refer to 
]!!§g!_9!_~]lg1-QB_~lQg!_~Q~D!. 

X~_JIQ!~g!g_~Bg£§_!Q_ln!er=]lo£!_§A£l~ 
This mnemonic is used if one block is to be 
skipped. The ICCS branches immediately to 
the user's end-of-file routine if (1) an 
FSR operation is performed for an input 
file and (2) a tape mark is detected as a 
result of this FSR operation. When an ESR 
operation is executed, the IOCS causes the 
tape to be stopped with the block following 
the one just skipped in proper position to 
be read on the next read forward operation. 
Refer to ~!!g£!_Q!_~11jl_Qn_]12ck_~Q~D!. 

]g!~: ESE or ESE El~~~§ move the tape 
towards load point, regardless of read for
ward or read backward mode. 
FSR or FSF gl~g~§ move the tape away frcm 
load point, regardless of read forward or 
read backward mode. 

~~]_J~g~iDg_lgE~l~ This mnemonic is used 
if a tape rewind operation is desired. 
When a REW operation is executed, the IOCS 
causes the tape to be stopped with the 
first record on the tape in proper pOSition 
to be read on a read forward operation. 
The record may be (1) a volume label if 
standard labels have been specified, (2) a 
tape mark or a data record if no labels 
have been specified, or (3) a non-standard 
label if non-standard labels have been 
specified. 

j~!_J~~~iDg_~Dg_~nlQgg_IgE§l~ This mnemon
ic is used if the programmer desires a tape 
rewind operation to be followed by a tape 
unload operation. 

]ll_JJfi!g_l!E~_Jg!~l~ This mnemonic is 
used if a tape mark is to be written. 

SPECIFIC CARD AND PRINTER MACRC 
INS'IRDC'IICNS 

MacLo instructions pertaining to card and 
printer files (CRDPB, EOM, LOM, and WAITC) 
are discussed in this section. 

CRDPR MACEC INSTEUCTICN 

This macro instruction is only applicable 
if the user has an IBM 2560 MFCM equipped 

Macro Instructions 41 



with the card print feature. The format of 
this macro instruction (~a!~ R~int) is: 

r---- i i , 

IName IOperation IOperand I 
I--- I I -t 
l[name]ICBDPB I,workname,cardprintareal 
L ______ ..L ________ .l. .J 

, Because this instruction does not refer 
to a specific file, it does not have a 
file-name operand. The absence of this 
operand is indicated by a comma. The 
second operand is the name of the work 
area, and the third operand is the name of 
the card print area. 

A CBDPB macro instruction moves one line 
of information from the specified work area 
to the card print area. However, printing 
does not take place until the card is being 
moved into and through the frint station by 
the execution of a subsequent GET, PUT, or 
EOM macro instruction. It is therefore of 
particular importance that the programmer 
writes his CBtPB statement in proper rela
tionship to PUT, GET, or EOM macro instruc
tions related to the same card. The same 
rules that apply to the stacker-select 
CBTBL macro instruction for the IBM 2560 
MFCM without a file-name operand are also 
applicable to the CRDPR macro instruction. 

CAUTION: ~hen a CBDPB macro instruction is 
executed, the data that is contained in the 
specified work area is moved into the spe
cified card print area. If the programmer 
desires to have the contents of the cards 
of a file printed on the same cards and the 
file is processed in non-overlap mode, he 
must consider the following: Two GET macro 
instructions (or one GET and one PUT macro 
instruction are required to move a card to 
and through the print station. If the two 
work areas specified in the GET macro 
instructions are the same, the contents of 
the card that was read by the second GET is 
card-printed on the card that was read by 
the first GET. 

The programmer must write one CBDPR 
macro instruction for each line to be 
printed. If two CBDPR macro instructions 
are gi.ven for the same line, only the last 
of them will be executed. At the time of 
printi.ng, all print lines specified for a 
particular card are printed simultaneously. 
It is not possible to print only with print 
head 1 during one print operation and then 
with print head 2 and/or another print head 
or with all print heads during another 
print operation. If no data is to be 
printed on a line, the programmer simply 
does not enter any data into the associated 
print area or, if processing was performed 
in the area, he clears the area before 

42 IBM system/360 Model 20 TPS ICCS 

printing takes place. Befer to ~]!PB~~~~ 
in the section !ggi!i2D~1_~~!ail_~Dtri~§ 
!Q£_~gIg_R~iD!iDg· 

EC~ ~ACEO INSTBUCTION 

The format of this macro instruction (!nter 
Qverlap ~ode) is: 

.- i T------- -, 
IName IOperation ICperand I 
~---+----------+--------------------~ 
l[name]IEOM Ifilename I L ____ ~ __________ ~ ___________________ _..l 

EOM is entered in the operation field 
and the name of the file to which the 
instruction refers is specified as the 
operand. 

An EC~ macro instruction applies only to 
combined files for which a previous LCM 
macro instruction has teen given (see 
below). The EOM macro instruction causes 
(1) the next card to 1:e read into the read 
area, and (2) subsequent GET macro instruc~ 
tions referring to the same file to 1:e 
executed in overlap mode. The processing 
of the file in overlap mode legins immedi
ately after the EOM macro instruction has 
been given. For further details regarding 
the use of the EOM macro instruction, refer 
to !~]_lg£!Q_ln§!I~£!igD, below. 

LOM MACRO INSTBUCTION 

The format of this macro instruction (1eave 
Qverlap ~ode) is: 

r-- I T-~--------------------, 
IName IOperation IOperand I 
.------+----------+------------------1 
l[nameJILC~ Ifilename I L ~ _______________________ .J 

Except for the mnemonic in the operation 
field, the format of this macro instruction 
is the same as that of the ECM macro 
instruction. The LOM macro instruction 
applies to combined files for which overlap 
mode has been specified. The processing of 
the file in non-overlap mode 1:egins when 
the next GET macro instruction for the spe
cified file is executed. This permits 
reading a card and punching into the same 
card of a combined file that is teing pro
cessed in overlap mode. if an LeM macro 
instruction is given for a particular file, 
all subsequent GET instructions for that 
file are performed in non-overlaf mode 
until an lOM macro instruction is given. 



PrQg~ammi~g_£~n§iggratiQn2_ ~_~Q~_gn~EQ~ 
~ac~Q-ID§!£Y£!i~n§ 

A card of a combined file ca~ De read and 
then punched only if the ~~:d is read by a 
GET macro instruction in non-overlap mode. 
There are three possible ways to cause the 
GET to operate in non-overlap mode during 
this reading and punching of the same card: 

1. Provide an OVERLAP=NO detail entry for 
the file. In this case, the IOCS 
generates GET and PUT routines for this 
file that operate in non-overlap mode. 

2. Do not provide an OVERLAP=NC detail fer 
the file and, in the source program, 
give an LOM macro instruction between 
the OPEN and the first GET macro 
instruction for the file. In this 
case, GET and PUT routines that operate 
in the overlap mode are generated for 
the file. However, all GET macro 
instructions for the file operate in 
nQn-overlap mode. 

3. Do not provide an OVERLAP=NC detail 
entry for the file and, in the source 
program, precede each GET macro 
instruction with an LOM macro instruc
tion and follow each GET with a test to 
determine if a punching operation is to 
be performed on this card. If not, 
operation of this file can be changed 
back to the overlap mode by an EOM 
macro instruction. 

The first method keeps storage require
ments at a minimum, but results in a 
decrease of program speed. 

The second method is the most satisfac
tory solution when nearly every card of a 
file must be both read and punched. The 
program speed does not decrease as much as 
with the first method because the PUT rou
tines will operate in the overlap mode. 

The third method is usually the most 
satisfactory solution when only a few spe
cified cards in a combined file must be 
both read and punched. When this method is 
used, each card is read in the non-overlap 
mode and thus can be punched subsequently. 
However, when punching is not to be per
formed, the program immediately begins 
operation in the overlap mode. This method 
(third) requires some additional main 
storage positions for the extra LCM and ECM 
macro instructions, but it results in a 
program that runs at nearly the same speed 
as a program operating entirely in the 
overlap mode. 

The coding below is an example of using 
the LOM and EOM macro instrcutions. This 
coding example assumes that (1) a combined 
file (AAA) is to be processed and {2} data 

is to be punched into each card of the file 
that contains a 7-punch in column 1. It is 
further assumed that an area named WCRKAAA 
has been defined. 

COMPR1 
CCP-ER2 

LOM 
GET 
CLI 
BE 
EOM 

AAA 
AAA,WCRKAAA 
WORKAAA,C'7' 
FUNCHR 
AAA 

B COMPRl 
PUNCHR ------------------

PUT AAA,WORKAAA 
B COMPR2 

The macro instruction "LC! AAA" causes 
the subsequent GET for the file AAA to be 
executed in non-overlap mode. This permits 
the punching of data into the same card 
that has been read by means of the GET 
macro instruction. If punching is required 
(a 7-punch in column 1), control is trans
ferred to the punch routine (PUNCHR). The 
EDT macro instruction for the file may be 
followed immediately by a branch to the GET 
macrc instruction for the file because the 
system is still operating in non-overlap 
mcde. 

If punching is not required (no 7-punch 
in column 1), the EOM macro instruction is 
executed, which causes the operating mode 
for the file to be changed back to overlap. 

PRTOV MACEO INSTRUCTION 

This macre instruction (]]inl ~1erflow) 
applies to printer files only. Its format 
is: 

r------T----------T-----------------------, 
IName ICperation ICperand I 
r------+----------~-----------------------~ 
l[nameJIPRTOV Ifilename,n[,address] J L-_____ i __________ i ______________________ ~ 

In the operand field, the programmer 
must specify the name of the file to which 
the instruction refers and the carriage 
tape channel indicator n to be tested 
(either 9 or 12). If the programmer pro
vides his own routine to which the program 
should branch on an overflow condition, he 
must specify the name of the routine as the 
third operand. This macro instruction 
allows the programmer to check fer Frinter 
overflow conditions by testing the channel 
9 or the channel 12 indicator before: 

1. the execution of the last EUT macrc 
instruction referring to a printer with 
the standard carriage, 

lacro Instructicns 43 



2. the execution of the last PUT macro 
instruction referring to a printer with 
the dual feed carriage when only the 
lower feed is used, and 

3. the execution of the next to last PUT 
macro instruction referring to a print
er with the dual feed carriage when 
both feeds are used. 

However, if a skip has been performed 
after the last PUT macro instruction (or 
after the next-to-Iast PUT if both feeds of 
a dual feed carriage Frinter are used), a 
punch in channel 9 or 12 that may then be 
sensed is lost and cannot be determined by 
a PRTOV macro instruction. 

The program branches to the programmer's 
routine if the tested indicator is on and a 
third operand has been specified. At this 
point, any laCS macro (except PRTOV) may be 
issued, e.g., to print overflow page head
ings. At the end of the routine, return to 
laCS by branching to the address in regis
ter 14. If laCS macros are used, the con
tents of register 14 must be saved for this 
purpose. If a third operand has not been 
specified, an automatic skip to channel 1 
is performed when the tested indicator is 
on. A PRINTCV=YES entry is required when a 
PRTOV macro instruction is issued for a 
file. 

WAITe MACRO INSTRUCTION 

The format of this macro instruction (WA1! 
J;ard) is: 

r--I I -, 

IName 10peration 10perand I 
.. -------+--------+--------------1 
I[ name] I WAITe I I 
L---~ _______ ~ ____________________ ~ 

Since the WAITe macro instruction neith
er refers to a particular file nor requests 
a particular function, no operand is 
required. 

The WAITC macro instruction causes the 
problem program to wait for the completion 
of all pending card and printer input/ 
output operations before the next sequen
tial instruction is executed. 1his macro 
instruction enables the programmer to esta
blish uniform operating conditions for all 
card and printer input/output devices that 
are used in his program. 

In a program using the laCS, a WAITe 
macro instruction must be issued if one of 
the following three conditions exists: 

1. A programmed stop is required to permit 
an error card to be replaced in a file 

44 IBM System/360 Model 20 TPS laCS 

whose cards are to be read in overlap 
mode. 

2. A pIogrammed stop is required to permit 
an error card to be replaced in a file 
whose cards are to be read on the IEM 
2560 MFCM in non-overlap mode and a 
file in the other feed of the ~FCM is 
to be processed in overlap mode. 

3. In case of a multi-phase program, the 
next IIogram phase is to be loaded by 
means of a FETCH macro instruction. 

Except for the condition 2, above, a 
WAI1C macro instruction need not be issued 
for the replacement of an error card if the 
cards of the file are to be read in non
overlap mode. 

i£Q9~s~~ill9_~i!h_!h~_]AI1~_~g£~Q 
InstrY.f!i2ll 

A GE1 macro instruction that refers to a 
card file mayor may not immediately initi
ate a read operation. This deIends on the 
operating condition of the input/output 
device involved. If the initiation of the 
input/output operation is delayed, the Ices 
places the device request into a waiting 
list. The laCS handles the device requests 
in this waiting list and executes the 
appropriate input/output operation as the 
requested input/output devices become 
available. 

When a GET macro instruction is issued, 
the laCS makes the desired card record 
available to the problem program in the 
sfecified work area. If the problem pro
gram determines that this record contains 
an error, the programmer may want to pro
vide a stop (HPB instruction) to enable the 
operator to (1) remove and correct the 
error card, (2) return it to the hopper, 
and (3) resume normal system operation. 

The programmer has no means to determine 
the status of the waiting list at the time 
the error is detected. Moreover, he is not 
able to determine the exact position of the 
error card in the input/output device. 
1herefore, the standard restart procedures 
cannot be applied. 

Before he issues the HPB instruction, 
the pIogrammer must issue a WAITe macro 
instruction to (1) establish uniform 
operating conditions for all card (and 
printer) input/output devices and (2) 
determine the exact position of the error 
card. 

After the execution of the WAITe macro 
instruction, the waiting list contains no 
pending input/output device requests, 
except those for card printing. The error 
card (to be fed as the first card on 



restart) is determined by the number of 
cards that have to be returned to the input 
deck after the non-process runout. 

The number of cards to be returned to 
the input deck depends on the input/output 
device used and, in case of an ~FCM file, 
on the mode of operation. For details, 
refer to Figure 10, which is a summary of 
the stop and restart information. 

DUMMY GET MACRO INSTRUCTIONS. To ensure 
proper-program-functlons-on-restart v i.e., 
resume processing with the corrected card 
record, the programm~r must issue either 
one or two dummy GET macro instructions as 
shown in Figure 10. For the explanations 
below, processing in the overlap mode is 
assumed, unless it is stated that the 
information applies to files that are pro
cessed in the non-overlap mode. 

After the execution of a WAITe macro 
instruction, the contents of the card fol
lowing the error card is already in the 
input/output area. Therefore, the first 
GET macro instruction that is encountered 
after restart causes the record from the 
card following the error card to be moved 
into the work area. io make sure that the 
contents of the corrected error card have 
been moved into the work area before normal 
processing is resumed, the first GET macro 
instruction encountered after restart must 
be a dummy GET, i.e., no processing must be 
performed on the record moved into the work 
area by means of this GET macro instruc
tion. If an IBM 2501 is used to read a 
card file and two input/output areas have 
been defined for this file, two dummy GET 
macro instructions are required. 

If an IBM 2560 MFCM is used to process 
two input and/or combined files in one pro-

gram, an error card in one file requires 
one dummy GET macro instruction on restart 
for each of the files with one exception: 
only one dummy GET macro instruction is 
required for the file that contains the 
error card if (1) ',the other (non-error) 
file is an input file whose cards are read 
in non-overlap mode and (2) no GET has yet 
been given for the non-error file. The 
programmer must provide a switch to deter
mine whether or not a GET has already teen 
executed for the non-error file. This is 
illustrated in the coding example shown in 
Figure 11. 

A GET macro instruction for a file that 
is to be processed in overlap mode may te 
preceded by a CNTRL macro instruction ref
erring to the same file. If this GET macro 
instruction detects an error card, the pro
grammer must do either of the following in 
his restart routine: 

1. Repeat the CNTB[ macro instruction 
after the dummy GET macro instruction 
for the file in his restart routine. 

2. Eranch to the CNTB[ macro instruction 
preceding the GET macro instruction 
that detected the error card. 

Similar rules apply if two files are 
processed on the IBM 2560 MFCM in one pro
gram. Any file-dependent CNTE[ macro 
instruction that precedes the last GET 
macro instruction in either file must te 
repeated after the dummy GET macro instruc
tion for the file and before resuming nerm
al processing. A preceding file
independent CNTE[ macro instruction (no 
file name specified) need be repeated only 
cnce. 

facro Instructicns 45 



.. i ~--------~--, 

I I I I Number of Cards to be I 
I I I 1 returned I 
I Inpu t/ I I I-- I ---i 
I Output I WAI'IC I Number of I I Non-error I 
I Device IMode of Operation I required IDummy GETs I Error Feed I Feed I 
.. I -+-------+-----------f I I 
I 2501 I Non-overlap I No I 0 I 2 I I 
I J-----.--- I .f-------f--------f---------I 
I IOverla.p wi th one input/ I Yes I 1 I 3 I I 
I loutput area 1 1 I 1 I 
I J-----. I I 4----------+-----------1 
I IOverlap with two input/ I Yes I 2 I 4 1 I 
I loutput areas 1 1 I 1 I 
J----------+---.--- I f --t I ... 
I 2560 I I 1 I I I 
I Feed 1 INon-overlap 1 No* I 0 I 3 I 3 I 
I J-----. I ~ --t----------f----------t 
I IOverlap I Yes ** I 1 I 4 I 3 1 
I-- I ------------·--+--------f----------f---------f--------I 
I 2560 I I III 1 
I Feed 2 I Non-overlap I No* I 0 J 2 I 2 I 
I I -f-----------f-----------f I -I 
I I Over lap I Yes ** I 1 I 3 I 2 I 
J--------+ ----------- I f------f------------4----------I 
I 2520 I Non-overlap I No I 0 I 2 I I 
I I --------+----------f----------f--- I -I 
I IOverlap I Yes I 1 I 3 I I 
I- ~ ~---------~--------... 
I *WAITC macro instruction is required if a file in the other feed is processed in over-I 
I lap mode. I 
1**Onll required for the file containing the error card. 1 dummy GET is required I 
I for both files. I L_____________ .J 

Figure 10. Programming with the ~AITC Macro Instruction -- Halt and Restart Information 

Figure 10 is provided to facilitate pro
gramming of restart routines and to furnish 
card-handling information that is not 
covered in the Model 20 IOCS Operating Pro
cedures. The programmer must inform the 
operator about the number of cards to be 
returned to and placed in front of the 
remaining cards of the input deck. Any 
run-out cards that are not to be returned 
to the input deck must be placed into the 
proper stacker manually. 

An IOCS provided halt (due to a machine 
check) may occur during or immediately 
after the user-programmed restart routine 
and the number of cards in the input/output 
device may be less than stated in the 
appropriate standard procedure as provided 
in the SRL publication l~~_~l§!~~L]§~_~gg~l 
10 Card_Rroqra~~in~]£EQ£!L_JnE~~LQ~~E~~ 
Con!~ol SY§!~~L-g£g~ting_R~Q£~gy£~§, Form 
C26-J803. In this case, only those cards 
must be stacked manually which were in the 
card feed of the input/output device at the 
time the halt occurred and do not have to 
be returned into the respective hopper. 

The coding example in Figure 11 is pro
vided to illustrate programming with the 
WAITC macro instruction. The example 

46 IEM System/360 Model 20 TPS IOCS 

includes a simplified restart routine. For 
the purpose of this coding example, the 
fcllowing is assumed: 

1. Two files (AAA and BBB) have been 
defined to be read in the two feeds of 
the IBM 2560 MFCM. 

2. File AAA is to be processed in the 
overlap mode and the cards of this file 
are to be fed form hopper 1 of the 2560 
~FC~. This file may be an input or a 
combined file. 

3. File BEB is an input file whose cards 
are to be read in non-overlap mode. 

4. An1 card of file AAA that does not have 
a 1-punch in column 1 is an erLor card 
and must be replaced. 

Only those instructions that illustrate 
pIogramming with the WAITe macro instruc
tion are shown in Figure 11. These 
instructions are identified by seguence 
numbers in parentheses in the rightmost 
column of Figure 11. These segueDce num
bers are used as references in the explana
tions below. 



I 

IName 
I i ---,-----, 
IOperationlOperand 

I I I 
IInstrl 
ISgncel 

I I I +-----.. 

GET 
MVI 

CNTRL 

RETPT CNTRL 
GET 
CLI 
BE 
WAITC 
HPR 
GET 

SW 113 
IGET 
ICNTRL 

BYPASSIB . 
INOERR I. 
I I . 

EEB,WORK2 
SW+1,X'00' 

EBB,SS,4 

AAA,SS,2 
AAA,WORK1 

IWORK1,C'1' 
INOERR 
I 
IX'FIF' ,0 
IAAA,WORK1 
I BYPASS 
IEBB,WORK2 
IE13B,SS,4 
IRETPT 
J 
I 

I 

( 1) 
(2) 

(3) 

(4) 
(5) 
(6) 
(7) 
(8) 

I ( 9) 
I (10) 
I (11) 
I (12) 
I (13) 
I (14) 
I 
I L _______________ ~ ___________ , _ __L ____ .J 

Figure 11. Coding Example -- programming 
with the WAITC Macro 
Instruction 

If a card of file AAA does not contain a 
1-punch in column 1, the branch to NOERR 
(7) is not performed and the program 
executes the WAITC macro instrcution (~ 
that precedes an HPR instruction (9). On 
restart, the program executes either one or 
two dummy GET macro instructions. Only one 
dummy GET macro instruction for file AAA 
(10) is executed if no GET macro instruc
tion has yet been executed for the file 
131313. In this case, the branch instruction 
named SW (11) is executed and the second 
dummy GET macro instruction for file 131313 
(12) and the stacker select CNTRL macro 
instruction (13) for this file are 
bypassed. Control is returned to the pro
blem program by a branch to RETPT to repeat 
the CNTRL macro instruction preceding the 
GET macro instruction that caused the error 
card to be dete~ted. 

If a GET macro instruction has already 
been executed for the file 131313 at the time 
the error card is detected, the branch 
instruction named SW (11) is not executed. 
This instruction has been changed to a no
operation (EC ~ instruction by means of 
the MVI instruction (2) following the GET 
macro instruction (1) for the file EBB. 

The CNTRL macro instruction for file 131313 
(3) is only effective when no error card is 
detected. 

If an error card were detected, four 
cards would have to be returned for file 
AAA and two cards for file EBB. 

If the cards of the file EEE were to be 
read in overlap mode, instructions (2) and 
(11) would have to be omitted. 

If the cards of a combined file are also 
to be card-printed and this file is to be 
processed in non-overlap mode, the follow
ing must be considered by the programmer. 

Unless successive cards are to be read 
which are not to be punched, a GET macro 
instruction for a card does not initiate 
card movement. Card movement is initiated 
by the PUT macro instruction for the pre
ceding card. Therefore, the programmer 
must issue a dummy GET macro instruction 
prior to the WAITC macro instruction to 
ensure that the desired card-print opera
tion for the card preceding the error card 
is properly executed. This is further 
explained in the coding example shown in 
Figure 12. 

r------T--------T-------- , ~ 
IJame IOperationlCperand Ilnstri 
I I I I Sgnce I 
1---,------;.-----------+------1 
I I · I 
I I . I 
I I . I 
IEEIT IGET ICMEI,wRKC 
I IC[I twRKC,C'1' 
I IBE 8,NERR 
I GET C~EI,WEKC 

I WAITe 
I HIE 
I 13 
INERR 
I 
J 
I 
I 
I 
I 
I 

PUT 
CErIE 
13 

X'IFI',O 
REPT 

CMBF,WRKC 

REIT 

L ______ ~ _________ ~ 

(1 ) 
( 2) 
(3 ) 
( 4) 
(5 ) 
( 6) 
(7) 

( 8) 
(9) 

( 10) 

Figure 12. Coding Example Programming 
with the WAITe ~acro Instruc
tion Involving Card printing 

The coding example in Figure 12 is based 
on the assumption that: 

1. the first card of the file C~EF has 
already been read, 

2. data is to be punched into all input 
cards, and 

3. all cards without a 1-punch in column 1 
are error cards and must be replaced by 
the oFerator. 

~acro Instructions 47 



The sequence numbers shown in the right
most column of Figure 12 are used as 
references in the explanations below. 

If the card that is made available by 
the normal GET (1) is not an error card, 
the next PUT for the same file t8) causes 
the preceding card to be printed on. If 
the card made available by tbe normal GET 
is an error card, the dummy GET (4) causes 
the error card to be moved past the punch 
station and the card preceding the error 
card is properly card-printed. On restart, 
the corrected error card is read by means 
of the normal GET (1), punched by means of 
the subsequent PUT (~, and card-printed at 
the time this PUT macro instruction is 
executed for the following card. 

The programming considerations that 
apply to card printing are also applicable 
to stacker-select CNTEL macro instructions 
without a file name as the first operand. 

LOADIN.§.-1HE !J;11_.f~QgRA1L~!!AS~. when 
another program phase is loaded by means of 
an XFE and a FETCH statement, the program
mer must ensure that all pending card and 
printer interrupts that may have resulted 
from processing under control of the pre
ceding program phase have been handled pro
perly. This is accomplished by issuing a 
WAITC macro instruction prior to the FETCH 
statement causing the program-load opera
tion. Figure 7 shows the use of the WAITC 
macro instruction when another program 
phase is to be loaded. 

Note that a second or subsequent program 
phase cannot be loaded from a card input 
device in which data cards were read during 
any of the preceding program phases. 

SPECIFIC TAPE MACRO INSTRUCTIONS 

Macro instructions pertaining to tape files 
(LBBE'l~, RELSE, and TRUNC) are discussed, in 
this section. 

LBBET MACRO INSTRUCTION 

The format of this macro instruction (1a~el 
!!~!urn) is: 

r-----,---------~· , 
IName 10perationiOperand 
t---- I I 

I --. 
II name] I LERET 11 
J[ name] I LBBET 12 

I 
I L-----__ ~ ________ ~ __________ __ _______ J 

The LBBET (label return) macro instruc
tion applies only to tape files that con
tain additional user labels, that the user 
wants to check or build/write. It must be 
issued at the end of the user's label rou-

48 IEM System/360 Model 20 TPS IOCS 

tine (specified by the tTEtT entry 
LABAttR), to return to ICCS after header or 
trailer labels have been processed. This 
macro instruction requires one or both of 
the fcllowing operands: 

OPEBAND 1 

j~~j!iQ~El_l£!~l§~_lllE~!_!jl~: To return 
to IOCS when the user wants to eliminate 
the checking of all remaining user labels, 
operand 1 is required. IOCS then skips the 
remaining labels in the set, and processing 
continues. If all labels are to be 
checked, operand 2 is used and ICCS ter
minates label processing when the tape mark 
fcllowing the last latel is read. 

!ggi!iQngl_1E~~1§~_~]!E]!_lile: To return 
to IOCS when the user determines that the 
lE§! additional user label has been built, 
operand 1 is used. ICCS writes the last 
label (from the label output area) and pro
cessing continues. Operand 1 is always 
required to terminate the output label set. 

OPEBAND 2 

j~g.i!.iQ~El_l,§.B~l§~_l.!!E.Y!_lil~: eperand 2 
is required to return to Iecs after each 
additional user label has been checked. 
IOCS makes the next label, if any, avail
able for checking in the latel input area. 
When IOCS senses the end of the label set 
(taFe mark) , it terminates label 
processing. 

j~~lti2~1-1.§~~1§~_QutE.Y!_!il~: Operand 2 
is required to return to IOCS after each 
additional user label e~cept the last has 
been built. IOCS writes the label from the 
label output area and returns to the user's 
label routine to permit him to build his 
next label. The user must then use operand 
1 to terminate the output label set. 

The LERET routine requires the values 
that the ICCS has placed into registers 14 
and 15. Hence, if the user requires one or 
both of these registers in his routine, he 
must save the value placed into these reg
isters by the Ices before he starts using 
them. He must restore this value prior to 
issuing the LBRET macro instruction. 

BELSE MACRO INSTRUCTION 

the format of this macro instruction 
(~]~ea.§~) is: 

. -.----------,-----------------------, 
IName 10peration 10perand I 
.------+----------+ I 
l[name]IBELSE Ifilename I 
~ _____ i----______ ~ ______________________ J 



The name of the file to which this macro 
instruction refers (name field entry on the 
DTFMT header entry line) is the only 
operand required. 

This macro instruction is used in con
junction with blocked input records read 
from tape. It allows the programmer to 
skip the remaining records in a block and 
continue processing with the first record 
of the next block read when the next GET 
macro instruction is issued. 

The RELSE macro instruction can be used, 
for instance, in a job in which only the 
first three records of each block on tape 
are to be processed. In this case, three 
successive GET macro instructions followed 
by a RELSE macro instruction are required. 

Another example of using the REtSE macro 
instruction is a job in which records on 
tape are categorized~ and each category 
(perhaps a major groupin~ starts with the 
first record of a block. Categories can be 
located readily by checking only the first 
record of each block. 

The RELSE macro instruction discontinues 
deblocking of the present block of records 
which may be of either fixed or variable 
length. RELSE causes the transfer of a new 
block to the input area. The next GET 
makes the first record available for pro
cessing, either by the initialization of a 
register or by moving the record to a spe
cified work area. 

A RELSE macro instruction causes no 
operation to be performed if the preceding 
GET: 

1. causes the last record of the block to 
be made available for processing in the 
input area; or 

2. causes the last record of the block to 
be made available for processing in a 
work area. 

TRUNC MACRO INSTRUCTION 

The format of this macro instruction 
(TRU]fate) is: 

I I -,--------------.------, 

IName IOperation IOperand I 
t----+------+ -f 
l[name]ITRUNC Ifilename I 
I I I ____ J 

The name of the file to which this macro 
instruction refers ~ame field entry on the 
DTFMT header entry line) is the only 
operand required. 

This macro instruction is used in con
junction with blocked output records that 
are to be written on tape. It allows the 
Frogrammer to write a short block of rec
ords (blocks do not include padded rec
crds). ~hen a TRUNC macro instruction is 
issued, the output area being used to build 
output records is considered full. The 
block of records in the output area is then 
written on tape and the output area is made 
available to build the next block of 
reccxds·. 

lhe last record included in the short 
block is the record that was built before 
the last PUT macro instruction preceding 
TRUNC was executed. Therefore, if records 
axe built in a work area and the problem 
program determines that a record belongs in 
a new block, the TRUNC macro instruction 
should be issued first, followed by the PUT 
macro instruction for this particular rec
ord. If records are built in the output 
area, however, the programmer must deter
mine if a record belongs in the block 
~~!9~~ he builds the record. 

Whenever variable-length blocked records 
are built directly in the output area, this 
TRUNe macro instruction must be used to 
write a comFleted block of records. When 
the PUT macro instruction is issued after 
each variable-length record is built, the 
output routines supply the programmer with 
the space (number of bytes) remaining in 
the output area. From this, the programmer 
determines if his next variable-length rec
ord will fit in the block. If it will not 
fit, he issues t~e TRUNC macro instructicn 
to write out the block and make the entire 
cutput area available to build the record. 
The amount of remaining space is supplied 
in the register specified in the tTFMT 
VARELD entry (see l!g~b~=J~l in the ~11MT 
]~tail~~!ri~§ section). 

A TRUNC macro instruction causes no 
operation to be performed if the preceding 
PUT: 

1. causes the last record of a block to be 
included in the output block; or 

2. causes the last record of a block to be 
moved from a work area to the output 
area for inclusion in the block before 
it is written on the particular output 
tape. 

In either case, the en~ire block is 
written on tape. 

After all records of a file have been pro
cessed, that file must be deactivated. The 
macro instructions CLOSE and FECV (Force 

Macro Instructions 49 



End of Volume) are provided for this pur
pose. Note that the FEOV macro instruction 
actually does not deactivate the specified 
file, but merely forces an end-of-volume 
condition .. 

The need to deactivate a filE is indi
cated by an end-of-file (EOF) condition. 
The BOF condition is determined in various 
ways for different types of files and 
input/output devices as follows: 

1. ~ar.Q_i.!!.E.Y!_!.iles.. Four cards with the 
characters /* in columns 1-2 are 
required by the IOCS to properly per
form end-of-file operations. 

2 • l~.EJa.in.£.Y!_ f i l.~ w i!lL21.9.n.Q~~.Q_l,g b e 1§ • 
The r~cord following the tape mark is a 
label whose first three characters are 
lWF .. 

3. j~Ja_file§~j!B~!an.Qar.Q_lg!§l§_!hg! 
are read backwards. The record follow
lng-thetape-mark-is a label whose 
first three characters are HDR. 

4.. ~~g_in.Ey!_tilg2-~i!nQ.Yt labels or with 
D~=2!.9n.Q.9~g_lg~g12. A tapE mark indi
cates an EOF condition. (The user's 
end-of-file routine must determine 
whether and end-of-file or an end-of
volume condition exists.) 

5. !.!L.Q.Y!.EY!-1jl~§.. The user's program 
determines the end of a file. 

When EOF occurs in a card input file, the 
IOCS branches to the programmer's end-of
file routine. The address of his routine 
must be provided in the EOFADDR=name entry 
of the definition statement for the file. 

When EOF occurs in a tape input file 
with standard labels, the IOCS checks the 
EOF1 label and comfares the block count 
recorded in the label with the block count 
that has been accumulated during proces
sing. An unegual condition is indicated to 
the operator who has the option to either 
terminate or continue the job. If user 
labels (UTL1-UTL8) are to be checked, the 
laCS branches to the user's LABADDR routine 
when the checking of the EOF1 label has 
been completed.. (Refer to the description 
of the LAEAttR detail entry in the section 
DTFMT Detail Entries and to the section 
1]jj1.=~~~iQ=JD§!i&£!i£n.) After the check-
ing of trailer label(s) has been completed 
the IOCS branches to the user's EOFADDR 
routine. 

If the tape input file has been read 
backward, the functions performed by the. 
laCS are essentially the same. Cn reaching 
the tape mark preceding the first record cf 

50 IEM System/36C Model 20 TPS IOCS 

the file, the IOCS branches to the LASAttR 
routine to check the user header labels 
(UHl1-0BL8), if present, and then checks 
the HDR1 label. When these checks are com
pleted, the IOCS branches to the user's 
EOFAtDR routine. 

When EOF occurs in a tape input file 
without labels or with non-standard labels, 
the IOCS branches to the user's ECFADDR 
routine when the tape mark following the 
last data record is read. 

In his end-of-file routine, the program
mer may issue a CLOSE macro instruction to 
deactivate one or more files. The actions 
performed when a file is closed are 
described in the section ~~CSI-~~~ 
In§!!Y£!iQn· 

Some of the actions performed by the CLOSE 
macro instruction are also required when an 
end-of-volume (EOV) condition occurs while 
processing a tape file. 

The laCS detects an EOV condition for 
standard-label input files by means of the 
characters lCV in a trailer label. For 
output files, the IOCS detects an EOV con
dition by sensing the reflective marker at 
the end of the output tape. For all other 
types of files, the Ices has no means of 
detecting an EOV condition. 

During the processing of a tape file, an 
EOV conditicn can occur. 7his indicates 
that the next volume of the same file is 
required, either for reading more input 
~ecords or for writing more output records. 

If FILAEL=STD has teen specified for a 
file, the IOCS processes an EOV condition 
as follows: 

1. For input files, the Ices (1) checks 
the block count, (2) branches to the 
user's routine that processes addition
al user labels, if such processing has 
been specified, and (3) performs the 
rewind option. The Ioes then processes 
the header label(s) of the next volume 
and makes the first record of the 
volume available to the problem 
program. 

2. For output files, the ICCS causes the 
EOV trailer label (including the accu
mulated tlock count) to be written. If 
a LAfAttE routine is specified, the 
Ioes branches to this routine to write 
additional user trailer labels (UTL1-
UTL 8) and to perform the functions that 
the programmer desires. The Ioes then 
processes the header label(s) of the 
next volume as described in the section 

I 



~~~Di~g_ls£§_QY1E~!_!ll§§ under QEen 
~s£f2-1D§!fy£tiQD·

If no labels or non-standard labels have
been specified for an input file, the user
must determine an EOV condition and issue
an FEOV macro instruction to have the IOCS
perform the desired end-of-volume func
tions. To determine an EOV condition, the
user must provide a subroutine in his
EOFADDR routine, to which the IOCS branches
on detection of a tape mark. For multi- .
volume files, refer to the description of
the ALTTAPE detail entry.

The format of this macro instruction is

i ,-------,.------------ -,

IName IOperation IOperand I
~---+--------+------------- -f
)[name]ICLOSE)file1,file2, ••• filen I
I I --L-_________________ .J

The name of the file that is to be
closed (assigned to it by the entry in the
name field of a tTFSR or DTFMT header
entry) must be specified as operand. Any
number of files from one to sixteen may be
closed with one CLOSE macro instruction.

The CLOSE macro instruction is used to
deactivate any file that has previously
been made available by an OPEN macro
instruction. The CLOSE macro instruction
ensures proper handling of the file after
all records have been processed. The func
tions performed depend on (1) the type of
file and the type of input/output device
involved and (2) the labeling technique (if
applicable) •

A file may be closed at any time by
issuing a CLOSE macro instruction.

For card and printer files, the CLOSE macro
instruction makes the file unavailable for
further processing. Specifically, the
CLOSE macro instruction ensures that:

1. records remaining in the output area
upon completion of processing are
printed and/or punched,

2. all processed data cards remaining in
the card feed path (not end-of-file
cards) are selected into the appropri
ate stackers, and

3. all pending interrupts for the closed
filets) have been handled.

The functions performed when a tape file is
closed depend upon whether it is an input
or an output file.

CLOSING TAPE INPUT FILES: The CLOSE macro
instIuctlon-causes-the-Input tape to be
rewound according to the rewind option spe
cified in the tTF~T statement for the file.
The IOCS then deactivates the file; no
labels are read or checked.

CLOSING TAPE OUTPUT FILES: The CLOSE macro
InstructIon-causes-the-writing of any rec
ord or block of records that has not yet
been placed into the file. If a record
block is only partially filled, it will be
written on tape as a short block. (When a
file with short blocks is used as input,
the ICCS handles these records properly.)
No action by the programmer is required. A
tape mark is written following the last
record.

If labels have not been specified, a
second tape mark is written and the tape is
rewound as specified in the tTFMT statement
for the file.

If standard labels have been specified
for the file, the IOCS writes the trailer
label after the tape mark. The trailer
label includes the block count accumulated
by the IOCS during the run and the header
label information (except that HtE is
replaced by FOF).

When additional labels are to follow the
standard trailer latel, the IOCS branches
to the user's routine specified in the
IABAttB=name detail entry in the tTFMT
statement for the file. This occurs after
the standard label has been written. AfteL
building each label, the programmer must
retuIn 90ntrol to the Ices by use of the
LERET macro instruction. After all trailer
labels have been written, the IOCS writes
two tape marks, executes the specified re
wind function, and deactivates the file.

lwo tafe marks are written at the end of
a tape output file to indicate that no
further data follows. If NCRWD has been
specified for the file, the ICCS causes the
tape to be backspaced by one record. As a
result, the second tape mark is overwritten
if another output file is written on the
same taFe.

If a CleSE macro instruction has teen
issued for a card or printer file, this
file cannet be reopened by a sutseguent
OPEN macro instruction.

If further processing of a closed tape
file is desired, the file can be reopened.
If this is done, the user must be aware
that the frevious CLOSE for the file has
caused the taFe to be positioned in accor
dance with the REWIND detail entry in the
D!Ff! statement for the file. Therefore,

~acro Instructions 51

to resume the processing of tape records at
the point where the file was closed,
BEWIND=NOBWD should be specified in the
DTFMT statement.

The first record read from the reopened
tape file must be a file label if standard
labels are specified for that file. If the
tape file to be reopened is unlabeled or
contains non-standard labels, the user must
identify the first record read as a data
record or a file label.

When a multi-volume file is reopened and
the DTFMT entry ALTTAPE is included in the
definition statement for the file, the Ioes
continues to read from (or write in) the
same volume that was used as input ~r out
put) tape at the time the file was closed.

The format of this macro instruction (lor~e
]nd-~f-lolume) is:

iii ,

Ilame loperation IOperand I
~----+-------+ -I
Iname IFEOV Ifilename I L---- I L--____________________ -J

The name of the file to which this macro
instruction refers (assigned to it by the
entry in the name field on the DTFMT header
entrJ line) is the only operand required in
this macro instruction.

This macro instruction is used for eith
er input or output files on tape to force
an end-of-volume condition at a point other
than the normal tape mark (input) or a
reflective marker (output). 'Ihis indicates
that processing of records on one volume is
considered finished, but that more records
pertaining to the same file are to be read
from or written on the following volume.

52 IBM System/360 Model 20 TPS Ices

If this macro instruction is issued fer
an input tape, the IDes immediately causes
execution of the rewind option selected by
the user, provides for a reel change in
accordance with" the AITTAE! detail entry in
the DTPMT statement for the file, and pro
cesses the header label (or labels) of the
next volume as required.

If this macro instruction is issued fer
an output tape, the Ioes causes the last
block of records to be written, if neces
sary, followed by a tape mark. Then the
Ices

1. causes the writing of the standard
trailer label including the accumulated
block count, and branches to the
LABADDR routine, if this is specified;

2. provides for a reel change in accor
dance with the liTTAE! detail entry in
the DTFMT statement for the file; and

3. proc~sses the header latel (or labels)
as reguired.

An example for the use of the FEOV macro
instruction is given below.

If FIIABL=NSTD or FILAEL=NC has teen
specified for a multi-volume input file,
the Ioes has no means to detect an end-of
volume condition. When a tape mark is
detected, the Ioes transfers control to the
user's EOFADDB routine in which the user
must determine the end of a volume. After
the last tlock of a volume has teen read,
the user must issue an FEOV macro instruc
tion to have the Ioes perform the end-of
volume functions in accordance with his
detail entries.

I

r----------T --.-------------- ----.
IOperation IOperand I Bemarks
I I --------+--------
ICLOSE Ifile1,file2,file3, ••• ,file16 IUp to 16 files may be closed
I I Iwith one CLOSE macro instruction
I I -------- I ------- '

CNTRL Ifilename,Operation,n ICoDtrol
Ifilename,Operation,n,m I
I I
lRQ§§ibl~Q£~~s!i2n_gng_nJml=2EgIgD9§~1
BSF (backspace to tapemark), no I Applies to tape files only

n(m)-operand I
BSR(backspace to inter-block gap) I Applies to tape files only

no n(m)-operand I
ERG (erase gap) , no n (m) -operand I Applies to tape files only
F SF (forward space to tape mark), I Applies to tape files only

no n(m)-operand I
FSR (forward space to inter-block IApplies to tape files only

gap), no n(~-operand J
REW (rewind tape), no n (m) -operand I Applies to tape files only
RUN (rewind and unload) f no IApplies to tape files only

n(m)-operand I

SK (skip) n: 1,2, ,12
I
In
I
1m
I

causes immediate skip

m: 1,2, •••• 12

SP (form sp acing)
n: 0,1,2, o:c 3

m: 0 , 1 , 2. or 3

SS(stacker select) In-operand
required

to specified tape channel
causes skip to specified

tape channel after printing

n causes immediate form
spacing by specified numter
of lines

m causes form spacing ty
specified number of lines
after printing

Applies to multi-stacker card input/
output devices only. The n-oFerand
is the number of the stacker

I
I
I
I
I
I
I

into which cards are to te selected.
--l

Figure 13. Summary of Imperative Eacro Instructions, fart 1 of 2

Macro Instructions 53

.--- I ------------,. -,

IOperation IOperand IRemarks I
.. --------+------------------------+---~------------ -I
ICRDPR I,workname,cardprintarea ICard Print I
I I IAbsence of file-name operand is I
I I Ii ndica ted by a t:omma. Eegu ires I
I I ICRDPBA and CRDPRLn DTFSR I
I I Idetail entries. I
r--- I I ,
IEOM Ifilename IEnter Overlap Mode. I
I I I AFplies to combined files for I
I I Iwhich a previous LOM macro I
I I linstruction has been given. I
r--- I I ------------1
IFEOV Ifilename IForce End of Volume. I
I I IApFlies to multi-volume tape I
I I I files only. I
.. I -----+---------------------------1
IGET Ifilename,workname ISecond operand must te omitted I
I I I w hen no work area has been specifie d. I
r--- I ----------------+------------ -1
I LBRET 111 (n = 1 or 2) I Label Return. I
I I IRequired for return to Ices from I
I I I the LABADDR routine. I
1--------+--------- -+ --t
ILOM Ifilename ILeave Cverlap ~ode. I
I 1 IApplies to combined files for which 1
J I loverlap mode has teen specified. I
IOPEN Ifile1,file2, •• ~,file16 IUp to 16 files may be opened with 1
I I lone OPEN macro instruction. 1
r--- I --+ -I
IPRTOV Ifilename,n,address IPrint Overflow. I
J I I n is either 9 or 12 and denotes the I
I I Ichannel indicator to be tested. The I
I I Ithird operand specifies a lranch I I
I I laddress if a branch is desired on an 1
I I loverflow condition. A skip to channel I
I 1 11 is performed if the third operand 1
I I Ihas been omitted. I
~ I f-------- -I
IFUT Ifilename,workname ISecond operand must be omitted I
I I I when no work area has teen 1
I 1 1 specified. 1
1--------+---- -+--------------------------------1
IRELSE Ifilename IReleasb. I
1 1 IApplies to blocked record tape input 1
I 1 j files. 1
~ I +-------------------------------1
ITRUNe 1 filename ITruncate. I
I I IApplies to blocked record tape output I
I 1 Ifiles. 1
j----_._----+-- ~------------------------------I
IWAITC I IRequired if (1) card files are 1
I I IFrocessed in overlap mode and (2) a I
I I IFrogram using the Ices is executed in I
1 I 1 several phases. I L _______ ~ ~ _________ ~

Figure 13. Summary of Imperative ~acro Instructicns, Part 2 of 2

54 IBM System/360 Model 20 TPS IOCS

If labeled tape files are to be processed,
the IOC~ requires two types of control
statements which are used by the Job Con
trol program when the program is executed.
These two types of control statements are
(1) the Tape Volume statement and (2) the
Tape Label statement. The format of each
of these two statements is described below.

The volume and label state&ents provide
the IOCS with the necessary label informa
tion to check labels for an input file or
to create labels for an output file. For
each labeled tape file, one volume state
ment and one label statement are reguired.

For a given file, the volume statement
must always precede the label statement
that describes the file on the volume.

r-----~-----------T----------------,
IName 10peration 10perands 1
I- I -t-------------t
III IVOL ISYSnnn,XXXXXXX 1 L ______ ~ ___________ ~ ______________ _J

The specified symbolic address of the tape
drive used is the location of the first (cr
only) volume of the file. It is six char
acters in length. The name assigned to the
file by the tTF~T statement must be used in

the file name field of the volume
sta temen t.

,..----,.-- ~ ...
IName IOperation IOperands I
I -t-- ~---------------~
III ITPLAB 1·11X •••••• 1XX' I L ______ ~ __________ ~ J

The following information is required in
the label information field:

No.
File Identification
File Serial Number
Volume Seguence Numter
File Seguence Number
Generation Number (if used)
Version Number (if used)
Creation Date (bYYDDD)
Expiration Date (bIYLIr)

of Char's
17

6
4
4
4
2
6
6

The label information must be written as
one character string enclosed in apostro
phes, i.e., an apostrophe before the first
character and after the last character in
the label information field. The precise
format of tape labels is described in the
SRL publication IB~~st~~L1E~_~2del_~~~
Ta£~_i~g~~~ming_~12te~~_~g~trol_~~g_~§~=
~~£~i~~g~~~~, Form C24-9000.

Control Cards 55

BLOCKING OF RECORDS

Blocking of records is not possible for
card and printer files. Blocking of tape
file records offers the advantage that no
unused gaps exist between individual rec
ords written on tape. A gap is provided
between the last record of a block and the
first record of the following block. This
decreases the number of necessary tape
starts and stops and permits the user to
write more data on a tape.

Blocking of records is accomplished by
means of appropriate detail entries in the
DTFMT statement for the particular file.

If the records to be blocked are of
fixed length, the user must include the
following detail entries:

1. RECFORM=FIXBLK to indicate the record
format.

2. BLKSIZE=n to indicate the length of a
block.

3. RECSIZE=n to indicate the length of the
logical records.

Note: If the D!FMT statement for the file
does not include the liORKA=YES detail
entry, an IOREG=(n) detail entry is
required in addition to the three entries
mentioned above.

If the records to be blocked are of
variable length, the following detail
entries are required:

1. RECFORM=VARELK and
2. ELKSIZ E=n.

Note: If the D!FMT statement fer the file
does not include the liORKA=YES detail
entry, the detail entries IOREG=(n) and
VARBLD=(~ are required in addition to the
two entries mentioned above.

If the user builds his records in the
output area the value in the IOREG register
is used to address the record space avail
able in the out~ut area. A PUT macro
instruction is issued each time a record
bas been built. The IOCS then checks if
the output area is filled. If the output
area is not filled, the IOCS increases the
value in the IOREG register by the number
of bytes contained in the record. There
fore, the IOEEG register points to the
address of the next available record space
where the user can build his next record.

56 IEM System/360 Model 20 TPS IOCS

If the output area is filled, the ICCS
causes all records currently in the output
area to be written on tape as one block of
records. In addition, the value in the
IOREG reg~ster is reset to the starting
address of the output area. Note that the
OPEN routine places the starting address o£
the output area into the ICEEG register.

If the user builds his records in a work
area a PUT macro instruction causes the
reccrd in the work area to be moved into
the output area. In addition, the ICCS
checks to determine if the output area is
filled. If the output area is not filled,
the ICCS returns control to the main pro
gram and the next PUT macro instruction
causes the record now in the work area te
be moved into the next available record
space in the output area. lihen the output
area is filled, the IOCS causes all records
in the output area, including the one that
was moved into the output area by the PUT
macro instruction, to be written on tape as
one block of records.

DEBLOCKING OF RECORDS

Records are deblocked by including detail
entries in the DTFMT statement for the file
as described below.

If the records to be deblocked are of
fixed length, the detail entries required
are:

1. RECFOEM=FIXEIK to indicate the record
format.

2. ELKSIZE=n to indicate the length of a
block.

3. RECSIZE=n to indicate the length of the
logical records.

Ncte: If the DTFMT statement for the file
dces not include the WCBKA=YES detail
entry, an ICREG=(n) detail entry is
required in addition to the three entries
mentioned above.

If the records to be deblocked are of
variable length, the detail entries
required are:

1. RECFORH=VARBLK and

2. BLKSIZE=n.

I

Jote: If the DTPMT statement for the file
~~~~ not include the WORKA=YES detail 
entry, an IOREG=(n) detail entry is 
required in addition to the two entries 
mentioned above. 

After a GET has caused the entire block 
of records to be read into the input area, 
the first logical record of the block is 
immediately available for processing (eith
er in the input area or in the work area) • 
The next GET for this file will make the 
next logical record available for proces
sing. This function is repeated until the 
last logical record of the block has been 
made available for processing. 

INPUT/OUTFUT-WORK AREA COMBINATIONS 

The user must define, in his main source 
program, an area into which input data can 
be read and from which output data can be 
written by the IOCS routines. The name of 
this area must be used as the specification 
in the IOAREA detail entry ~r entries) for 
the file. When a work area is not speci
fied, all records are processed in the 
input/output area(s). 

For a particular file, the user can spe
cify one of the following input/output-work 
area combinations: 

1. One inplJl't/output area. 

2. One input/output area and one work area. 

3. Two input/output areas (for tape files 
only) • 

4. Two input/output areas and one work area 
(for files associated with the IBM 2501 
Card Reader, or for tape files). 

The size of an input/output area must be 
equal to the length of the longest block to 
be processed. The size of a work area 
should be equal to the length of an indivi
dual record. However, if variable-length 
unblocked records or records of undefined 
format are specified, the programmer must 
take into consideration the number cf bytes 
specified in the BLKSIZE detail entry when 
defining his work area(s). (Refer to the 
description of the BLKSIZE detail entry in 
the section 12.Ir!1.I_!2g!gi.!_~.n!.Iig§.) 

Specifying dn input/output area without a 
work area is permi tted for tape fil,es only. 

When a GET or a PU! macro instruction is 
given for a file while another input/output 
operation is executed, the IOCS enters a 
waiting loop to wait for the completion of 
this input/output operation, except when 

this input/output operation is a tape re
wind operation on another tape drive or a 
print operation on the 1403 printer. 

g.ng_l.n~~!L~~!Ey!_!£g~~D~_~.n~]Q~!_1~~~ 

If the processing of records is done in a 
work area rather than in the input/output 
area, the programmer must include a WORKA= 
YES entry in the DTFSR (DTFMT) statement 
for the file. (For card and printer files, 
the use of a work area is mandatory.) 
Also, he must define a work area in his 
program and assign a name to it. That name 
is then specified as the second operand 
whenever he issues a GET or a PUT macro 
instruction for the file. 

!Q!g: Input/Output areas for tape files 
must not be used as work areas. 

When a GET macro instruction is given 
fer a file that uses a work area a record 
is moved from the input area into the work 
area. When a FUT macro instruction is 
given, a record is moved from the work area 
into the output area. 

For card files, the comb~ned use of a 
work area with one I/O area permits the 
ICCS to overlap an input/output operation 
with processing and/or with another input/ 
output operation. The same applies fer 
tape files if a Submodel 5 is used and the 
RwC feature is specified. This increases 
system throughput, i.e., it increases the 
amount of records processed within a given 
time. 

For tape files, the use of a work area 
provides the advantage of increased system 
throughput only if the program utilizes 
card and print devices (excluding the IEM 
1403). If a GET is issued for a tape file 
that uses a work area specified, the IOCS 
performs as follows: 

1. The next record in the input/output area 
is made available for processing by mcv
ing it into the work area. 

2. If the record moved into the work area 
is the last one available from the 
input/output area, the GET macro 
instruction causes, at the same time, an 
actual device request to be issued that 
will be executed as soon as CPU time is 
available. Until this request can be 
executed processing is continued. If 
CFU time does not become available fer 
execution of the device request before 
the next GET macro instruction requires 
the first record of the next block, the 
progLam enters a waiting loop. 

If a work area is not used, the next 
block of records is requested by the GET 
macro instruction that requires the !1.I§! 

General programming Considerations 57 



r---- i ---.------~---- --, 

I Record / I Separate I I 
lFormat /Humber oflNork I Amount of Effective Overlap , 
I (Blocked oriI/O Ar.eas/Area I , 
,Unblocked) I I I I 
I---------+-----+-------+__ ~ 
I I 1 I no INo overlap I 
I I I +---------------.- -I 
I , , yes ,Overlap processing of each record , 
I I , I (Record move required) , 
IUnblocked • I -f------- ---I 
I I 2 I no IOverlap processing of each record I 
I I I I (No record move required) I 
I I I ... - --I 
I I / yes IOverlap processing of each record I 
I I I I (No advantage to specify a work area) I 
I--- I I -f-------------------- ~ 
I I 1 I no I No overlaF I 
I I 1------1- ------------------1 
I I I yes IOverlap processing of first or last record in each tlockl 
,Blocked, I --t------~------------------------------- -I 
I ,2, no IOverlap processing of full block / 
, , ~-----... ----------------1 
I , I yes IOverlap processing of full block I 
I I I I (No advantage tc specify a work area) I L ________ .L-_____ -.L-____ .L- ______________ ---' 

Note: Overlap given is the maximum achievable • 

• Figure 14. Summary of Achievable Overlap of processing and Input/Output when 
a Submodel 5 is used and the Bead/Compute, irite/Compute Cverlap 
Feature is employed. 

record of the new block. If the CPU is 
busy servicing another input/output device 
that does not permit concurrent tape input/ 
output, processing is not possitle because 
the record to be pr.ocessed is not yet 
available. The program then enters a wait
ing loop until the current input/output 
operation is completed. 

To summarize, the use of a work area 
causes the device request for a new record 
block to be given already at the time the 
last record of the preceding block is made 
available for processing. If nc work area 
is specified, the device request for a new 
block is not issued until the first record 
of the new block is required. 

If a PUT macro instruction is given 
while the CPU is busy servicing another 
input/output device, the record in the work 
area is moved into the output area. If 
this was the last r.ecord to be moved into 
the output area, this PUT macro instruction 
will also cause a device request to be 
issued that will be executed immediately 
after completion of the current input/ out
put operation. Until the request can be 
executed, the CPU can perform processing cn 
the first record of the next block. If a 
work area is not specified, the program 
must enter a waiting loop until the current 
input/output operation is completed. Dur
ing this time, no processing is possible 
and processing time is lost. 

58 IBM System/360 Model 20 TPS ICCS 

When a work area is used, the user can 
de all his processing in a predetermined 
area. Also, an IOREG register is not 
required. These are further advantages 
offered by the use of a work area. 

The use of two input/output areas without a 
work area is only permitted for tape files. 
The user can only take advantage of speci
fying a second 1/0 area when he ases a Sub
model 5 and the program makes use of the 
read/compute, write/compute overlap 
feature. 

a. l.nE.Y!. 
The combined use of two input/ 
output areas allows the overlap of 
the processing of one block with 
the reading of the next one. Nhen 
the last logical record of a block 
in one area has been processed, the 
reading of the next block from tape 
into the same area is overlapped 
with the processing of the block in 
the other area. 

b. .Q,Y!.E.Y!. 
The combined use of two input/ 
output areas allows the overlap of 
the writing of one block with the 
building of the next one. When one 
output area is full, the block is 
written onto tape. Meanwhile, 

I 



r--------------------~---------~I ~---------T------------_, 
I Record Format I Number of I I VABEII I EECSIZE= (n) I Work Area ICBEG 
I I Input/ I I Required? I Required? I 
I I output J I I I 

Specified Reguired? 

I I Areas I I I I 
l---------------t I I ---+------------..J 
I Fixed Blocked I 1 or 2 I I No I No I No les 
J Fixed Elocked I 1 or 2 I I No I No I Yes No 
}----------------t I I ~----------..J 
I Fixed Unblocked I I I No I No I No No 
I Fixed Unblocked I 1 or 2 I I No I No I Yes No 
I *F ixed Unblocked I 2 I I No I No I Yes No 
J Fixed Unblocked I 2 J I No I No I No Yes 
J-------------------+------- I -t-----------t-------------I 
I Variable Elocked I 1 or 2 I I Yes** I No I No les 
I Variable Blocked I 1 or 2 I I No I No I Yes No 
1---_. --------------+-------+ t---------t .. 
I Variable Unblocked I 1 I I No I No I No No+ 
I Variable Unblocked I 1 or 2 I I No I No I Yes No 
I Variable Unblocked I 2 I I No I No I No Yes 
}----------------+--------+ +--------t----------..J 
I Undefined I 1 I I No I Yes I No No+ 
I Undefined I or 2 I I No I Yes I Yes No 
I Undefined ) 2 I I No I Yes I No Yes 
J I ~-----------~-----------~---------~ -I 
I *Only for card-input files to be read by the IBM 2501 in overlap mode. I 
I **Output files only. I 
I +Required if read tackwara is specified. I L____ _ ________________________ ~ 

Figure 15. Begister Reguirements 

another block is built in the other 
area. Thus, a maximum degree of 
overlap is obtained. 

Two lnEutLQut~ut-A~~§_£~~_Qn~_]g~!_A~~g 

The use of two input/output areas together 
with a work area is permitted only for card 
input files that are to be read by the IBM 
2501 Card Reader in overlap mode, or for 
tape files. 

1. For the IEM 2501 Card Reader: This 
area combination permits the IOCS to 
maintain the maximum card reading speed 
of the IEM 2501. 

2. For tape files: 
The user can only take advantage of 
specifying a second I/O area when he 
uses a Submodel 5 and the program makes 
use of the read/compute, write/compute 
overlap feature (see also Figure 14). 
The information contained in the pre
vious section, ~~Q_lnEYiLOu1EY1_A£g£2 
(subsections a and b) , should also be 

considered when using two input/output 
areas and a work area. 

!he record format in conjunction with the 
input/output-work area combination used 
determines whether none, one, or two regis
ters (IOREG, VARBLD and/or RECSIZE) must be 
specified. Figure 15 inaicates when it is 
necessary to specify a register. 

DTF BLOCKS 

For each tape file to be processed in a 
program that uses the ICes, a tatle is 
built in main storage during the generation 
phase of the assembly. This table is 
referred to as the DTF block. It contains 
such information for the file as the speci
fiea rewind function the type of labels 
used, the accumulated block count, etc. 
Figure 16 shows the layout of and the type 
of information contained in the DTF block. 

General programming Considerations 59 



r----- i i --------------------, 
I BYTE IBITI CONTENTS I 
j-----.-+--+_ ---------1 
I 0-11 IAddress of DT! Block -- in binary notation. I 
r--- I I ---------------------------------------------1 
) 21 IOPEN Rewind Option -- command byte of CCW used when the file is opened: REW I 
J I lor NOP. I 
r--- I I ----------------------------------------~ 
I 31 I CLOSE Rewind Option -- command byte of CCW used when the file is closed: I 
I I IBEW, BUN, or NOP. I 
r--- I I -------------------------------------4 
I 4-·51 :Besidual Count -- in binary notation. I 
J---_.-+---+ -I 

6-7 Unit status Bytes -- reserved for IOCS internal use; the user is not Fer
mitted to change the bit configuration of these two bytes. 

6 0 Attention 
1 Status Modifier 
2 Control Unit End 
3 Busy 
4 Channel End 
5 Device End 
6 Unit Check 
7 Unit Exception 

J---+--------------
71 C IIncorrect Record Length 

I 1 I Wai t Bi t 
I 2 lIn Error Recovery 
I 3 IWait for CPU Availability 
I 4 IReserved 
I 5 IDevice End Significant 
I 6 IAccept Input/Output Error 
I 7 IReserved 

J----+---+--------
8-91 ILogical Unit Displacement -- the disFlacement of the logical unit tlock 

-I 
I 
I 
I 
I 
I 
I 
I 
I 

-f 

I I (symbolic device address) with reference to the begin address of the logical 
I lunit table in binary notation. ~he contents of these two tytes may te one 
I lof the following (shown in hexadecimal notation) 
I I 04 for SYSIPT 
I I 06 for SYSOPT 
J I OC through 2A for SYSCCO through 515015, resFectively. 
I I (In incremen ts 
I I of two per 
I I symbolic ad-
I I dress) 
I I 
liThe user is not permitted to change the bit configuration of these two 
I Ibytes. 

J------+---+-------
I 10-111 IAddress of CCW. 

-I 
I 

I I I ---------------------------------------------4 
I 121 0 INot used. 
I I 1 IType of File --
I I 2 IFEOV Switch --
I I 3 IEOF/EOV Indicator 
I I 4 ICPEN Indicator --
I I 5 IAlternate Drive Switch 
I I 6 INot used 
I I 7 INot used 
I ~-i-_____ ___ 

1 
1 
1 
1 
1 

InFut; 0 
Yes; 0 
EOF; a 
Open 0 
les; 0 

Cutput 
No 
Eev 
Closed 
No 

I 
I 
I 
I 
I 
I 
I 
I ____________________________________ --J 

Figure 16. Layout of and Type of Information Contained in the DTF Block, Part 1 of 2 

60 IBM System/360 Model 20 TPS IOCS 

I 



r- ,~ --, 
I BYTE IBITJ CCITBITS I 
I I I -----.----------------------------~ 
I 131 0 IStandard Labels Indicator -- , Yes; 0 No I 
J J 1 IAuxiliary Labels Indicator 1 ISiD; 0 10 tabels J 
I I 2 JRewind Unload Switch -- 1 Yes; 0 No I 
I I 3 IRewind Option Indicator -- 1 IRWD; 0 BEi I 
I I 4 IRead Option Indicator -- 1 Back; 0 Forward I 
I I 5 IUser LABADDR routine 1 Yes; 0 = No I 
I I 6 1 Tape Mark Option -- 1 No; 0 Yes I 
1 ) 7 INot used. I 
I I I --------------------------------1 
I 14-151 IEOF Address -- address of user-routine in binary notation. I 
1-------+--+----------------- .. 
I 16-171 IAlternate Unit Address Displacement -- the displacement of the logical unit 1 
1 I Iblock (symbolic device address) for the specified alternate tape drive. Thel 
I 1 Idisplacement is given with reference to the begin address of the logical 1 
I I lunit table. I 
1-----+---+-------------- -f 
J 18-231 ICCW for set Tape Mode Operation. I 
I I I -----------------------------------------------4 
I 24-291 I CCW for Tape Input/Cutput Operation. I 
1----+--+---------- --I 
1*30-331 IAccumulated Block Count -- in packed decimal format. I 
r I 1 --------------------------------------------------1 
1*34-351 1 LABADDR Address -- address of user-routine in binary notation. I 
I-----+-_+_ -f 
1*36-421 IFile Name -- the symbol specified in the name field of the ITFfT statement I 
1 I Ifor the file. I 
1-------+---+---------------- -I 
1*43-911 IStandard Label the contents of fields 3 through 10 of the standard file I 
I 1 Ilabel. I 
I------~---~---------- ------ i 
I*This type of information is incl~ded only in the tTF blocks of files for which stan- 1 
I dard labels have been specified. I L _____ ~______________________ _ _________________ -J 

• Figure 16. Layout of and Type of Information contained in the tTF Elock, Part 2 of 2 

There are two methods by which the user 
can obtain access to individual bytes of 
the DTF block for a file: 

1. The first byte (byte ~ of the DTF 
block is addressable by using the file 
name as a symbolic address. For 
example, to refer to the CCW for input/ 
output operations the user must specify 
the file name+24 in his instruction. 

2. If the instruction that is to refer to 
a location within the DTP block is not 
preceded by an laCS macro instruction 
that refers to another file, register 
15 contains the address of the first 
byte (byte 0) of the DTF block. In 
this case, the programmer may use reg
ister 15 as base register and write an 
appropriate displacement to obtain 
access to the desired byte in the DTF 
block. 

Access to the information contained in 
the DTF block for a file permits the user 
to test and/or modify the contents of the 
tTF block. He may, for example, test the 

accumulated block count on a tape read or 
write error and correct it after the error 
reccvery. 

DEVICE ERROR RECOVERY 

When errors (read checks, feed checks, 
etc.) occur on punched-card eguipment, the 
IOCS discontinues the execution of the pro
gram to allow the operator to take correc
tive action. An error indication is dis
Flayed on the CPU console to identify the 
type of error and to indicate the reguired 
restart procedure. 

The ICCS routines provide that on taFe read 
errors the tape is backspaced and re-read 
100 times before the block is considered an 
error block. The IOCS routines further 
Frovide that any error which can not be 
corrected is indicated to either the main 
Frogram or the operator. Eefer to the 

General Frogramming Considerations 61 



description QL the ERROPT detail entry. 
Indication to the operator is by means of a 
display on the CPU console. This display 
indicates the type of error and the device 
address. 

If a tape write error occurs, the Ioes 
causes the tape to be back-spaced by one 
block, the error block to be erased, and 
the output block to be written on a new 
section of tape. The Ioes makes a total of 
10 attempts to rewrite a block as described 
above. If the tenth attempt does not 
result in a correctly written output block, 
a programmed halt occurs. 

REGISTER USAGE 

The programmer may freely use any or all of 
the registers 10 through 13. 

Registers 8, 9, 14, and 15 are not 
readily available to the programmer for 
reasons explained below. 

Re..9i§!~rs JL.§.DL.2 are used by the IOCS to 
communicate with the LABADDR routine (see 
1!~!~~I=NE~~). Eefore branching to that 
routine, the Ioes saves the values that are 
contained in these registers. The two reg
isters are restored to their original 
values if the programmer uses the LBRET 
macro instruction to return to the main 
program. 

!~i§!~£§_1~-snd_12 are used by the IOCS 
imperative macro instructions (GET, PUT, 
etc). If the programmer uses one or both 
of these two registers in his pLogram, he 
must make sure their contents are no longer 
required before he issues an IOCS impera
tive macro instruction. He must save these 
registers if he requires their contents 
later in his program. 

When an IOCS-controlled branch to a 
user-routine (ERROPT, LABADDR, PFXIT, 
RFXIT, SQXIT, or WLERR) occurs, the con
tents of registers 14 and 15 must not be 
destroyed. If the user desires to issue an 
IOCS macro instruction in his routine, he 
must save the contents of the two registers 
before this macro instructicn is executed. 
He must restore the contents of the two 
registers to their original values before 
he returns control to the IOCS. 

Transition Considerations. If the user 
antIcIpates-transit ion-to a higher System/ 
360 model, he must be aware that the Basic 
Programming Support or the Easic Operating 
System Supervisor do not permit the pro
grammer to use registers 12 and 13. 

In the LABADDR user routine, the Model 
20 laCS uses registers 8 and 9 as communi
cation registers (see the description of 
the LABADDR=name detail entry). 'Ihe Easic 

62 IBM System/360 Model 20 TPS IOCS 

Programming System and the Easic Operating 
System Ioes use registers 0 and 1 for this 
purpose in the lAEAtDR and other routines 
such as ERROPT and WLREBR. 

IOCS ASSE~BLl 

Eoth the laCS portion and the user written 
program instructions are assembled in one 
and the same run. Figure 17 shows the 
arrangement of the input cards for a source 
program using the roes. 

II Job 

Ij
source {Problem} 
Program Cards, 
including IOCS 
Imperative Macro 
Instructions 

DTFEN Card 

} Job Control Cards 

Figure 17. Arrangement of Source Program 
Cards Using the roes 

During the assembly of a program using the 
IOeS, the IOCS portion of the program is 
subject to extensive checking for format 
errors. This checking is performed in two 
steps as follows: 

1. during each macro phase of the assembly 
-- i.e., during the generation of a 
routine that is to replace a macro 
instruction in the problem program and/ 
or the generation of DTF routines; and 

2. during the assembly of the problem 
program. 

The checks performed during step 2 are 
those that are normally performed by the 
Assembler. 

I 



I ------------------------------------- , 
IOBJECT CODE ADDR1 ADDR2 STMNT SOURCE STATEMENT I 
~------------ ------------1 

0362 
0363 
0364 
0365 
0366 
0367 
0368 
0369 
0370 
0371 
0372 

FILE DTFnT DEVADDR=SIS001, 
EOFADDR=NAME, 
FIIA'BL=NO, 
IOAREA1=NAME, 
IOREG= (10) , 
LABA:DDR=NO, 
EECFORn=FIXELK, 
TPMARK=NO, 
'IYEEFLE=INEUT, 
VARBLD=SYMBOL, 
WORKA=lES 

0373 I'lN0TE TAPEMARK OPTION SPEC'D FOR INPUT FILE 
ERR 

0374 I'lNOTE VARBLD SPEC'D BUT NOT REQUIRED 
ERR 

0375 I'lNOTE NO RECSIZE SPEC'D 
ERR 

0376 MNOTE IOREG SPEC'D WITH WORKA 
EBR 

0377 I'lNOTE IMPROPER BLKSIZE 
ERR 

0388 I'lNOTE INVALID DEVALLR SPEC 
EBR 

0379 I'lNOTE LABADDR SPEC' D FOR A NO LABEL FILE 
EBR 

0380 I'lNOTE GENERATION TERMINATED 
ERR 

]ot~: continuation punches (column 72) are net shown. 

Figure 18. Example of MNOTE Diagnostic Messages 

~h~£~ing_]~Ii~g_!h~_~~IQ_gh~§~. ~Ihe IBn
supplied IOCS macro definitions include 
conditional-assembly instructions that 
cause the user-specified operands and DTFMT 
(DTFS~ detail entries to be checked. When 
an error is detected, an appropriate MNOTE 
diagnostic message is printed in the pro
gram listing. Figure 18 shows an example 
of MNOTE diagnostic messages that were 
printed as a result of incorrect and/or 
inconsistent detail entries to a DTFMT 
statement. The MNOTE diagnostic messages 
describe the type of errores) detected dur
ing the macro phase of the assembly. 

When an error is detected, diagnosing 
continues until it is completed for all of 
the macro instruction operands and detail 
entries involved. However, the generation 
of source language coding for the macro 
instruction (definition statement) that 
contains the error is suppressed. 

Some errors cause the printing o£ more 
than one MNOTE diagnostic message. For 
example, assume that FILABL=STA ND h,as been 
specified for a file with standard labels. 
Further assume that a label exit routine 
has been specified for this file. As a 
result of the erroneous FILABL detail 

entry, the following two MNOTE diagnostic 
messages are printed. 

nNO'lE 

MNOTE 

I~EBOEEB FILAEt SEEC'D 

SPEC'D WITH STAND 
LAEEt FILE 

1he second of these two lNCTE diagnostic 
messages is printed because a LABADDB 
detail entrj is only permitted if 
FILABL=STD has teen specified for the file. 

~~cki~g~~~i~g_!h~_As§~ll~of_th~_~~Qbl~~ 
ilQg£~~. The source-language instructions 
generated from Ices macro instructions and 
definition statements are assembled togeth
er with the instructions in the user's pro
blem program. Both the generated instruc
tions and the user-coded instructions are 
tested by the Assembler to detect such cod
ing errors as undefined symtols, invalid 
length values, etc. 

'Ihree examples of error indications ty 
the Assembler are given below. These 
examples explain some of the error condi
tions that are detected by the Assembler 
during the assemblj of the protlem program. 

General Erogramming Considerations 63 



1. Assume that IOAREA1=OUTPUT has been 
specified in the definition statement 
for a file and that, in his program, 
the programmer has erroneously omitted 
a definition of the symbol OUTPUT. In 
this case, all references to OUTPUT in 
IOCS macro instructions and/or instruc
tions in the problem program are iden
tified as undefined-symbol errors. 

2. An undefined-symbol error occurs if the 
program calls for an IOCS function that 
is not available for the referenced 
file. For example, a RELSE macro 
instruction referring to a file named 
PAYROLL is issued in a problem program 
and this file has been defined as an 
input file that consists of unblocked 
records. Since the RELSE routine is 
only available for blocked-record 
files~ the generated rEfErEnce to the 
RELSE-routine entry point is identified 
as an undefined-symbol error. A simi
lar situation occurs if a TRUNC macro 
instruction is issued for an output 
file that is to consist of unblocked 
records. 

3. Undefined-symbol errors may occur if 
the generation of an IOCS routine has 
been terminated because of an error 
condition during the macro phase of the 
assembly. In this case, references are 
made to non-generated routine entry 
points, and all of these references are 
identified as undefined-symbol errors. 

RESTRICTIONS 

When writing his o~n routines, the program
mer has to observe the following: 

1. He must not use any names starting with 
the letter "I" because all names used 
by the ICCS start with this letter. 
This is to eliminate the possibility of 
multiple-defined names. 

2. He must not use file names that are 
longer than seven characters (refer to 
!!.ggg~±_En!fisB~1. because the eighth 
character position is required by the 
laCS. 

64 IBM System/360 Model 20 TPS laCS 

3. To avoid multi-definition of names, the 
first seven characters of names used by 
the programmer should not be identical 
with the first seven characters of 
names given'to files. The assembler 
derives the entry points to the ICCS 
routines by adding a character to the 
end of the file name. 

]~g~El~l If REAtCRt has teen assigned 
as name to an input file, the program
mer should not use names such as 
READCRDA, READCRDB, etc. in his source 
program. 

4. The name assigned to a file to be pro
cessed by the ICCS routines must not be 
used in the name field of a statement 
in his program. 

5. It is not permitted to give an XIO or 
an SPSi instruction as this would cause 
an unexpected interrupt and thus inter
fere with automatic scheduling of 
input/output ,operations by the ICCS. 

tse of the FETCH lacro Instruction in 
ii~i~Ai§:]§i~g:!!ii:l~~~------------

When a program (or a program phase) that 
includes input/output routines for new 
files is loaded, the programmer must ensure 
that all files used in the preceding pro
gram have been closed. If any of the files 
so closed are required during the newly 
loaded pIogram, such files must be rede
fined and subsequently opened in the new 
pIogram. 

Note that the operator is required to 
run-out the cards in the associated card 
input/output device if a card file is to be 
closed for the purpose of loading a new 
pIogram. Also, a second or subsequent pro
gram cannot be loaded from a card input 
device in which data cards were read during 
any of the preceding programs. 

I 



The Model 20 IOCS is closely patterned 
after the Basic Programming Suppo:rt IOCS 
and the Basic Operating System IOCS. Since 
the Model 20 IOCS is designed to support 
card and printer input/output devices that 
are unique to the Model 20 and to achieve 
optimum performance of all device;s, some 
macro instructions and DTFSR entries are 
not identical to those of the other sys
tems. Users who anticipate transition from 
Model 20 to other System/360 models should 

therefore be aware that programs using the 
Model 20 IOCS require some modification 
prior to generation by the other /360 
Systems. 

All control cards and labels used and/or 
required bI the Model 20 IOCS as well as 
c~rd and tape data sets created under con
trol of the ~odel 20 ICeS are fully upward 
comfatible. 

Language Compatibility 65 



PROG~NG EXAMPLE 1 

This example (Figure 19) illustrates the 
files and main-storage area assignments for 
two tape files and one card file. It is a 
simplified order and inventory job in which 
a master tape is updated and written onto a 
new tape and a card file of detail orders 
is processed. The folJowing assumptions 
are made: 

• The old master inventory tape contains 
quantity on hand and unit price in addi
tion to the identifying information. 

• The card file reflects quantities 
ordered. It is to be completed with 
quantity available for shipment, unit 
price, and the extensicn of quantity 
shipped times the unit price. 

• The new master inventory tape reflects 
the decrease in quantity on hand due to 
the current orders or an increase when 
items are returned. 

The paragraph numbers of the following text 
correspond to the coded numbers in Figure 
19. The illustration shows this setup: 

1. Job Control cards to indicate to the 
Basic Monitor program the type of job 
(assembly run) to be executed. 

2. Definition statements to define the 
three files. 

a. Old master tape file. This is an 
input file to be read forward. It 
contains standard volume and file 
labels and additional user 80-
character file labels. It is a card
image file with a blocking factor of 
5. Register 10 is assigned for 
locating individual records in the 
input area. 

b. New master tape file. This is an 
output file with the same character
istics as the input file. Register 
11 is assigned for locating the next 
available output-record area. 

c. Detail card file. This is a combined 
file used to update input records 
from the old master tape file. The 
cards are in the primary feed of an 
IBM 2560 MFCM and are read in the 
read station of that machine. 

d. End of the three file definition 
macro instructions. The user's 
source program follows this 
sta tement. 

66 IBM System/360 Model 20 TPS laCS 

3. Sample instructions to open files and 
locate master records that have current 
activity. This illQstrates the 
following: 

a. The registers used in the program 
are defined by means of USING 
instructions. Register 12 is used 
as base register and the address of 
the next instruction is loaded into 
this register. The use of registers 
10 and 11 is explained later in this 
section. 

h. All files to be processed by the 
laCS must be opened. 

c. A GET for an unblocked record to be 
processed in a work area causes the 
record to be transferred from the 
input/output device to main storage. 
This makes the record available to 
the problem program. 

d. The first GET for a record in a 
blocked file causes the physical 
transfer of the block of data from 
the input/output device to the 
input/output area. It also places 
the address of the first record into 
the specified ICiEG register. Each 
succeeding GET causes the address of 
the currently available record tc be 
placed in the IOREG register, and 
mayor may not cause a transfer cf 
data. 

e. The master and detail item numbers 
are compared with each other to 
determine if either (1) a master 
record is missing or a card with a 
new detail item number has been 
read, or (2) the master record is to 
be updated, or (3) the master record 
is to be written unchanged on the 
output tape. 

To address any field within the 
CMSTE input record being processed 
(AREA1), register 10 has been 
assigned by the Assembler as tase 
register because this register pro
duces the lowest displacement. 
Since register 10 has also been spe
cified in the ICBEG entry for the 
OMSTR file, the laCS automatically 
loads the register and changes its 
contents to point to the begin 
address of the record being pro
cessed. When this programming tech
nique is used, the programmer need 
not specify a base register in 

I 



instructions referring to fields of 
the OMSTB input record currently 
being processed. 

The same programming technique is 
used to address the NMSTR output 
records. However, register 11 has 
been assigned by the AssembLer as a 
base register for the addresses of 
the fields within the NMSTR record 
being processed (AREA2). 

f. The UPDATE routine is entered when
ever it is determined that a record 
from the OMSTR input file requires 
updating. 

When output files specify an IOREG 
register, the register is initial
ized by the OPEN routine. A PUT to 
an output file for which a vork area 
was not specified merely causes the 
address of the next available record 
area to be placed into the specified 
IOREG register. No data is moved 
within storage, and a transfer of 
the data to the output device mayor 
may not occur. 

g. The ERROR routine is entered when 
either a master record is missing or 

- locs EXAM PLE _. 
lOAf( 

STATlNlNl - _ ... -, . .. , . It 10 .. 10 . 
CD J I / IJIOIB AS IEMRLER 

1II1 IE )( lEe 

~A D"I ST ART 151¢1¢ 

I E DE F[ Nl 1[1. OIN SE CT IvW 

11'1 I! It IK FII LE 1(; EF IN ED AS lAN 

a new detail number has been 
detected. In this routine, the user 
may build a record for inclusion in 
the new master file. 

4. User routines for processing additional 
standard labels. 

5. All files that have been opened must be 
closed. This is normally done in an 
end-of-file routine. 

6. Assembler instructions to define the 
input and output areas for the three 
files. 

PI.O<CHINO 

a. Two input/output areas and one work 
area are reserved for detail card 
records. Eecause these are single 
unblocked records, the individual 
fields_within the records may be 
defined along with the allocation of 
the work area as shown. 

b. An input/output area is reserved for 
each of the two master fileso Note 
the use of the zero-duplicaticn fac
tor to define fields within logical 
records of the CfSTB input file. 

....... LL.L - .1 I I I 1 .. 01 1. Of 
, 

INSTIUCTIONS il I I 1--.... '--'''''-"""'" -c- -.. . os 71 n 

lIN PU T FI LIE 

/WIb J " D1 F~J Y~E IEI-t! t'~ R OR wA RO 1FT AR =~ TD .. R £r IFa Rrw ==F IX ~U< X 
I{S EI=14 1(11 

I,. =A RE Ai 1~) I' X 
= 11\ EI< KO 1t"'1 K.L P r - III. R ~1 th I- tiL ~D X 

1'1 

~ 

r II TIE K FI Ie IL It:lt' liN 1t:IL Ac AN ~u TI~ IL T IFill 

"' DII IrlMIT . YI~ ElF 'F =(] urr IPll ITle 1111 lAIE l- T" :~E )(I~ I k Fl • IK II ~ 
:E Sl I~ lAin III -:A ~E A2 KII- sf 111 I) ILA~ A~ 

, 
X I~ - IKIN 

AI 1'1 1.6 In ID IV 

Figure 19. Programming Example 1, Part 1 of 6 

Programming Example 1 67 



_ ........ 

- Ioes IiKI4HI'LE I~ ........ I I I 1 .. 01 .2. 01 , - .. 11 
IIHSlIUCTIONS NOt. I I I 1'---

IfAflMNT -
I - ... -- " .. . ~ . .. . . c- -.. 
I~ 

{~ T 

IDlE trlAr IFlr I, l.- I .. F II~ EID IAls Ico ~IR lIN FID Flu. . 
All' IDT F R ~y PiE Fit e- c~ If( DE I'J rrE t- E~F I" EO Fn lrfT IX J:) 

lIN AR E~ =11l lET If IN 8l 1<5 1j1~~ 0 UP IDiI' o IA ~Ic. ~= 18~ 

{~ lUll I,. It I'" 
I' 

. -

~ U.S ER I '::i AIN Ro iRAN 
~ 

Uo ,,4I!T t ~A "R 1~ .~ LO AD R~ til 1~ NI"I US ~ ITT .IAI~ MA IN B~ 5~ IR Ell 1:'11 II< 
~5 INII ~ . 1.2 
UC; INr:r IJR EAI1 1.41 Eri' • 1d r l I: .... E r'\ ~ 8~ E RE I TIER H N 

fji n 55 Nfi F l- S rN AR EA TH AS ~E M L I( . 
~ 1~ 5 ME 5 ER Rf AUC. R DU E T ~ 

W I~ l LIE tl I~ IL It-IN 11'-1 IFlo SIE ~ IN ~~ ~~i1 UI5 III~ 16 ~I~ EA 12 11H IF 1111 II L IE !Sf Itt . AI~ lA IA '::I . fb irIS trl!: ~ 

~ IF ElL Ie; [II . ~ IRle A • 
fit 
IfI Kf ,(ilS [T,E IRS fiJ Atol n 11 ARIE LO AID 10 NID U ATE PrY lolC IS. T II::I~ F I~E 

IN In EiA ICI~ OR LI~ IN It.: [ III I~I~ IF I~ HIE ~E If~ Ate r<E III III< 
Er IN iT If-! IE IUC, ER ' ~ P GR IA • -

Ijf 
OP E,f\I I!WI II IR liM 5T ~I& Dff rAllt 10 ... IE N IF LE ~ I~ND P Il~ RI:: LC; 
II ET IDIT lAI l IWI\ ut- RElA ~ DF- il A Il A " AM MO~ ATA R~ Av 

I NIT rrH I~ Q -Rt< A~ A IO~ !DIE rr) 

Figure 19. Programming Example 1, Part 2 of 6 

~"U.I.A. 

NO.,..,. loes, E){,AHPLE: I PUNCHING l ..... HOC I I I I TrAG< 3 00 <-
PIOGIA_' DAU; 

I INSfMJCHONS I PlNCH I '1 I I I CAaO EL!CftO NUMNI 

SJAT(IIMNT 
..... HlOIII .. -

I - . I. e,-. ... 

" " .. ~ 30 " .. .. .i. .. c- -.. 6S 71 73 .. 
IGf: TMS T 8ET OMSh" R l l""lI\""'lf A "M~ ER IRIFIr R UIC,tr~16 lR~ri 11~1) 

~L "'1 Te ~ . 1)1 if EM ~ MP ~E M~ ST R rrO llJ I~ it. t>~ lIT Frr-\ 
~ N "18 F=R. TH AS ~I£ Ie L '"-K U~ ES IRIE ~ 1 lAs 
~ 8 SE RE 15 E T~ ~~ nR ES S ~l 1E ~. 

BI~ ER ROR IN1\~ "Al 1=5 Ire, IrN 1(.; ~A r Et< f\11< ~ NI=~ 

1* ET HuM IE 
B UP lolA TE o R Oil" tINE IF IR It' ~II 11~ lfi JIlIA ~II IEII< I':;; """II< ~ 

~ IEI11A I~ 

MIV ~R EIA )1. ARE ~11 IF IL ~ lav If ~ 11~ t'U IT rr~ 
.. 

111' "IA ISIt 11:11< l-f< 
• )t UiT • I~IE A 1~ls ~ ~r( I~ U.., lEe; IRle 6 l!~ rr 11"1 

* I> t:: ~ ~R ~ltI ~H IRe b 11 rTlCl 
~ 

I::: 2~ 
P~T lUll 11K C lAb E WoIN TE Nrr S ~F K {:~ ~ 8R T~ 1* ! If'! N ~ rr 011 rrp UT R D F 

Ie IEIT 1~5T IE b'E rr w J-K M~ [srr EI< FO R ,,0 r.1P ~.~ I & 
UP nA TE · · Ro UT IHE TO IBU lD UPV ~rrE RE OR 15 I-K v 101 vfo1 sT R U5 NG 

• T~ E V L ~E S IF OM rrH t: IDE IL ell D Tr IN UD !F r.F . · OP DA D RE ~ I~ THE 5 R l AN D TO IJU N( yPI-

· lOlA ITIE NIF OIR ~A N NIT F DE III IAR . tTH F UP IAT 

· RIE claiR IS ~u L tI tJ lA It<E 
I~ ~It IIIP I~ I TU N ITO III N L P. 

r RR o~ · R" utT' II NE TIC rlF I~ ~I~ I~rl :EII< II Ie; ~I ~~ IN G 0 ~ 

• INE W IUIE!1 ~CUIL NU ER HA Ic;·-~ [EIEIN ILIE EC rr EIIJ 

· 
Figure 19. Programming Example 1, Part 3 of 6 

68 IEM System/360 Model 20 TPS Ioes 



11M 
F-~---=I:..:::O~C=-S -='=:..:..)(.:..:..;A:.:,..M:..:....P.=L=.c _____ -.. ____ ---I1 ~ 1- 1 1 1 I .. or"" ." (, 
1_. ,DA" IINSnUCTIONS 1t-:0I.NCH::::::--t--1t--1+1-+-+-+1-+---41 __ ;;..:;" ..... ~ .... ,_~~--I 

-I,. -• 10 0,...- 14 " .. .,...,. .. ,. 
LIA EL 

I 

1.1 N til • IW IIJT lilN lEIS • I 

II< [It F 

LR~IET 2 u IEID TO R TURN To 1110 IS UNTIl ~L IIA'PI~II ~AVE 

* ® CKINlAe 
I ~ 

• .. 
I BRET 2 

B WIKllll1I !~N 

IBII<ET 1 iUI5iE'D rloRE~O'QW ~Io I C~ ~~llt~ THE L~~T 11141RI~1I 

* Nu ~ t(lfRoUTIN S 
* 
EOF~ST ~IO!~E TAIL NM5TR.OM5rR 

E J I 

Figure 19. Programming Example 1, Part 4 of 6 

.u. ...... 

""'OIAM Ioc.5 EXAMPL..E I ~CHIHG lGlNttIC I . I I I I,.Glo",,, 
PIOGIA_' I""" 

1 INSTltUCrlONS I PlHCH I I I I 
ICAIIU .IICT1O ___ 

STARMlN' ---, - . ,. o,-.'M 

" " .. ~ . " .. .. 50 - -U M .. 71 ,. . 
'" DETAil FI LE IN Uri. Uf 11 AIT lIN 6 . :~ N b Ie I~ rr p urr IAIRIE~'S 

~ 
~ 

DE TC.iD DS L ~j(J CAR IN PU AR r=A 

WK [) ET DS '{) L'~ D T AI ~ r A !6E 
Dr IrEM ~s L14 rTE NU MiS R I c;T Ol~ IEs Ie ITA L"6 

Ins CL 1 a;; IrE E5 C rpi ON I- ;tlorr SE ~ IN 115 
DIS 11 Cu 5 ~ MII:I~ UMA R - INO rr IU EID liN T lie; Ff<O AM 
Inls l1i N'V iiI E N M Rr- INO T U~ D IN TH 

.•. 

~ 

inlS L2 LIN UrM rB Jl 0 l~ No IC E r- Na T us 0 IN rr c; 

!RP R M 
tc DE .05 Ll RA ~ CT I ,~ i( to - I~ !;UE RE T~R riO IJK 
~ ET 

,. , 
\,. 

niL ANT DIS L5 U~ NrJ' IT '/ 0 KID E::K ED OR rI t I 
IS l2. 5 ® 

OU DErr DS ~ 8~ PD rr "A RD I IAGE 
DIS L'i5 LA flt< Fr R ~!P OA irE PU Nt HI 6 

~ LIL DS \"'1.- c; UA Nil" 1''' 0 B E ISH IP PE " AT TH 1'S I~'E 
CA '~II I~ TE D1 

UN (" S T DS L7 UNI PR IO: tlF IIr ~M I-IR M telA ~T~ FI .. E IRIEC IOIRll 
~" ulNT 05 CL 13 I=X T IN SI "N ofF UN [T fU Sf ~'1 b/U l:\N T IT Y ~IH IllP PE IV. 

!~ orl -I ON A ~E TU R~ yHJ A ttl 1.1 11 y.. IN JH II~ 
IE D. J 

IN IPU T/ UT PJ AR A~ 1=0 R MIA ~r IER I F= Ar..r: 

Figure 19. Programming Example 1, Part 5 of 6 

Programming Example 1 69 



11M 11M.......,. ......... c.Moot ... 
........ 10&0 ,- loes EXAMPL.E I ........... I- I I I I ", ... , Of' 

1- IDATI ,INIIIUCTIOHI r 0It'CH I I I I I r=-IIIC1IO-
irA ..... "'" -

I - . "o,....t. 14 . 00::-' . . --- .. - . 
QU M sTIE Flf IN PUT ,RE~ 

~l I t: Ds J i; I EN II Ii '1 IFS ~!T ~L t; 

D~ 3 D s R IP liD K P I NT E . -
T U Sf IN TH 

I L7 IT In IT IF 1 M 

'll L ~N[' I, I Eo 
IL Nrr rr fR FIOII< ISIT IME~ 

® ~ 
rr., IU, U h" N IN EI~ 5 F I~ CU 1011" 1t:1~ ""' 

~ 
!';; L rr lIT I c, FRO ~ E~ 

l- II If II Il IR T IEll. rr It: 
~ II' ,R I~ IR Fe IRID Ie; 0 I~IL ~C~ 

In ~ -':! It: II( iFI L I,.IUII IF E~ 

IA[J rill ICJ IN I- 111 OIN ~r.i IO~ ~~ IULD IEl~ lEI'" 11 ~t:1LI IEIRrE IS IT 11= 
~ QuiL 5F ECi • 1 WH looN ~s 15 ~IB LlI 1& rrH AD 

I~ E IF H,t-S I~ A • c:; N F rr~~ Illlli If It IrT IOF Ell • 111 
lR U IN PIR 6 A~ X~ IoN fA ~IE EI-F 1:::(, iriI V AD 
S E nil IE IB A N . 

FINID lIO ArrlE 

Figure 19. Programming Example 1, Part 6 of 6 

70 IBM System/360 Model 20 TPS Ioes 



The following simple example (Figure 20) 
illustrates how the read/compute, write/com
pute overlap feature is used, in connection 
with two I/O areas and a work area. 

A maximum degree of overlap is achieved 
as follows: 

Input. The combined use of two input 
areas allows the processing of one block to 
be overlapped with the reading of the next 
one. When the last logical record of a 
block in one area has been processed, the 
reading of the next block from tape into 
the same area is overlapped with the pro
cessing of the block in the second input 
area. 

Output. The combined use of two output 
areas allows the writing of one block to be 
overlapped with the building of the next 
one. When one output area is full, the 
block is written onto tape and, at the same 

PROGRAMMING EXAMPLE 2 

time, another block is built in the second 
output area. 

The job being done is basically the same 
as in the previous example. An old master 
inventory tape contains quantities on hand 
together with identifying information. A 
card input file reflects quantities received 
or dispatched (only the first 20 columns of 
each card contain data). The new master 
output file contains the resulting new 
quantities. A list is printed of all rec
ords on tape; any changed quantities are 
marked with an asterisk in the last print 
position. 

For simplicity, no error routine is 
included. The program halts if a card is 
read for which there is no corresponding 
tape record, or if the end-of-tape has 
been reached before the last card has 
been processed. When the last tape record 
has been processe~ the job is completed. 

,IIM...-. A..-..CWIIt ... X21-6»'-J U MO.lO 
"10 .... ' us .. ..... . -- Awe E..XItMPLE ~ - I 1 1 1 1 MOO 1 Of 5" -, ..... INIftUC'lONI ...oeM 1 1 1 1 1 ...... • .. ·""'- * 

""flMlN' 
w.tmc.fl_~ 

, - . II, -- ,e , lit "7" ,. 35 . .. . II c- -.. 7 00 

,II JOj.8 A 5S £1~8 I' ! I 

lr lEX E.el I I i 
_. - '\-I 

~ I ; I , II ; I I 

BEG I iN:1J Rl S,TAR'7 2~JI~' I I I 

¥< 
! 

i, I 

')t I RiEiA'IJ I ~"'iPUT E.,~ tip. IT lEI ic ll 'Hlp UTE OV;E R.L AP :F fATI) R. E IS SP £"r IF IE';J 

*' ! 
: I IR We:= Y £os i I i ! I I' 

* 
' , I ! , , 

*' i 
, 

F I LiE, ~£ F'.1 N I 711 011'J sis elTI O~ ! : I 

* I I, ' , , I 

*' TAIPEI I~ P!UT: F:I L'£ : , I I 

* I i 1 
, I I i 

T:A :PE IN D71FiHI7 III Liles I Izj£ -14 .¢¢ ,.Il> £v ~D ]):R "'S YS /6/6¢ E.O FA DID R';' EO FT J:1.i 
, 

C , 

! 1;0 A RE ~.L=IN AR IEA.L .ro IlR Ell 2= IN AR £"2 t<E R~ =IRI X!8LII< Ie 
IPF (' S I Z.E=t9~ 171y PE IFL &- 'DI. T 110 IRIK A= IY.S -+-+.+. !(" 

* 
I I I I : I 1; I. 

'* T"'P£ oulrpUT FJ L'~ ! 1 I i Ii ! ! 

* 
I I i I ! I 

11 A iPf OUT ~TFIAT B'UeS! ZE I=:, ~!t!'l III IE v~ lJD:R =S YS fI,fll I , I I I! 
lOA 1< E Ai: ioiu ~R EAJ. 1 2.=,0 UA REIA 2 "RE CFolR 1~llI: IF.! x~ LlkJ.: 

I, IREeSl 'ZiE:= Idiot I., y 'PE I1"L E. OIJ iTi1J IJIT 14"0 A:k: lA=y EiS 1 i .-~ 
, I , i : I ' I ' r 

I i i I , , I 

• Figure 20. Programming Example 2, Part I of 5 

Programming Example 2 71 



... 
I=- Rbi' 

EX~MeL£ .....a.oo - 1 1 1 
1NIftIICf0ll 

PllCM I I I .... 
""1I .. NT 

I - .. II -- " 
.. It .- .. . . .. 11 c-

* I' i I I 

*' I ~\A :RJ>: lW PIU'Ti Filll-·E (1) ATA ~RE ".." NT Al ,NED IN !T Hi£! ItT R~1 
*' i ' ; I I I ,. cIA ~ZI r II !I, IAA AIle "ML yl)i IT 

~A!R DII:N 1JTF:S~ B L./<5:1 ZiE =2,d! =1#:1 £IA r; IJ,.L i£~ FA lZ:DI'R".'E I1IF.C Alll, .. 
I iOA:'R,I[ ~'L =C ~D IAR EA I.:, [yp EF I £1= IN 'P'uT ~loR~A ==;Y '~s 

!lIt: ' ' ' I , , 

1*: Ip~ I[N IT~ Ro :F;/IL t1 
*1 

, I I ' , 
PR lINT i'D, F5;R II L'1(:51 Z'E =811 CO fiT RIt1 ll..= IY~ S IIlE ,'0 rJE .~ tRl WiT E1R 

rIY:PEIF L£ :::'0 UT PI, , I" :1,; £~ i 
ID,-; F'£"N I , 

I II S!I'NG BEGl IN'I~ ~2 15~C2l ~ 
1,_ 

2,.3 [TH 11 ~ lis A N'rI ~- [RolE Lf' Ir!A Tl4 
l1l'E 61 HiE X it'll)) EN .TIA "PE I.lN r,A pIE 1'1/·71 cIA RlD 11 N IplR [/N1 lop ~w F/ LE 5 I 

[eN TIR L "I;Q l;NI'r S 1(,. j six [rip j" .AJ'J:: I. 

K:ii" r~ RiD IN IW !~IE ~l1J ~ r~ ~lD 
tiE TT P'4lplf" IGE,"T ! ,Ti-1PI£" N WiO lB["l 71' HA KIE RE r'" ~121 AV ,o1l! I A IU ~ i1'N 
ro ~1l It l-ic: ~dc,RlD N co ~~ l.4RE IJT ~~ N'r, liN I( ~ .Q~ 
[* i IT [ElM .401"1 1/ '-

, .. I: 

[BIE ~Ip ID~ TIE Ji![E ~biRZI I 

IBL !f[R ~bR lIN ~/'C AIT IE"s A "11 ~1s!1 INki iRE rr: 

PUT IrlA p~IQ 7 ..,0 ~J( T1J NOT YE. T F:O wiD 

1 1 
1 1 

.. .. 

'll LIE 

!W" K'II< ~J; 
JtI Till' 

~1J Q'N ITA 
Dy 

..._-3U/MO5O 
"I .... I"U S A ... 

1M ... 2. 0< ~ 
J-- ... u .... - * 

..... JflNtI .. ~ -" .. 
, 

Ie 
c 

C -r- -1-1-
C 

- -

I-

'1- _. - l-

E~ 

PE. 

• 1111 ITH LO WE R. 'WIL HB IER oW IntJ TI'P uTi T~ ~£ 
1~!lI,T ~~ lI'wr If;'": R.I< [7 " -p[tt [, N[T i ' ! i 

, I ! I 

• Figure 20. Progra~ning Example 2, Part 2 of 5 

11M "~---c.-..'" 
J __ 1- 1 1 1 1 1 1- 3 0<.5 1= ... 'RWC EXAMPLE IINIftIICfIONl 1....00 I 1 I 1 1 I 

-I . 
I 

I' 

* 
I 

* i* 

; 1 ' 

* I i I 
1* I !. 

w' 

I~ 

IfOIJ:CRD 

--II I • I .. 
~:V:I L't1ST .. 
BI GIETTA 
: , 

""'ii" 
C' 

, I I 
PEl 1 1 

I I 

. . .. 
.BLIA~~ LAsir plRlrNTlllDllllslrrlrln1\l 
.s R .1 [N clH [r 01 GlEtrI ,y &lA-IT 

THE. [rIA PE 

A,Nll 
TN E PRo iNT A[RE'./I. I~, MAR Ie,Eil: !W liT H' l~. ! 

: ! j I 

AP 'F:! E LJ) Q;UA N rc'IJ AIDID illu~ilt 1 liT"'" i(IS LN", MA Y N~" 
[UNPK IQUANTT'P F lIE"L~+21(4) , " lEX C Jr.E. D 9 

~y I L'A 5 T r' * • I 
t;iE:'T IdA 'RbI N ,WOR IdciRlD! I 
IE IclC>Mp:; j! I 

Iii I I I, I 

E.'RRO'" "AOUT.INE. F,ORJ 'M[ISSING ~E:CiO~lD.i I I 

HIE.RE IT 15. lottL.Y: AI HiAL T. . I , : I : ' ; I 
I , i i 

I I J. I 

: I I I ! L! 

I I' I 
, 11 

I I' I I , ' ' I ' 
SE.7 

• Figure 20. Programming Example 2, Part 3 of 5 

72 IBM System/360 ,Model 20 TPS Ioes 

--

) 

I 



- I I I 
1 

, • II 14 '6 20 ,B • ... .. __ -

: I' 

EO'F'rp 

I: 

, I 

:I< I' 

* 1 

I Nit RF:'-Ail 

0<. ARE1All ' 

* 
* 'NOR.KeRD 

Ir LC 
111£ 
HP~ 

I 
I 
I 

"P"RF NT.; IY EiS ' leI( ,I 1 

x' "F "F 2 ' • (j : : , I IN 0: ; 1& 1J;1~I.c: ""' A L r 
*i-LI. I i I I f I Iii 

1 I !!' 
i . ; , i 

, I, 

TlIS' 4¢0C ! I i 
I I! i 

nls, 4dx1JC i 1 ! 
1 

, 1 • 
I , 1 i , , I 

lDis 2l7J( ; I' [ i ! : i 1,1 

, I I I" 

I I 
! I 

IIV'LI20 I 
il>s Lil. I i : i i 
iDS Ll:) I 

I 

• Figure 20. Programming Example 2, Part 4 of 5 

roo""",,, Rowe E'XAMPLE _~ OUN(H"G 
I"' .... IC I 1 

If'«)GMMMIl lOAn 
INSTIUC'IONS I PlN:H I I 1 

SlAUMfN' - ep...I'OI\ "7"' " 
" (-. I • " \6 ,. ,. . .. .. .. 

...-a 111_ 
~_"U.S.A. 

1 1 1- 4 015 
I I --

i 

... 

I 1 .. 015 Of 5 
I I I * _ .... 

In - . 0$ 71 , 
iDUANTC:D nc; "'L6 I I \ \ I duiAlN1':lri~y1 ! (plos. 1"F IRIECEIIV ElD 

'* ' I I i I I i: I I! ' ! 'NE lG. I"F tDI SOP ~rr CIH EDD 
WOR.iK T p: DS ¢CL f9¢ 1 I: , I WOIRIK; A R1EIA: IF{ORT A'PE iAN In- plR 11'1 r~lR 

])5:' rLl ; : :' 

,NOTA PE 1)S ,. L6 : , 
/T,E M 'NUMBER I 

II 

])C, rL30 I 
, 

QUANTTP D.S r,L6 i 1 
1 : i QU A NiT TiTIV -J- I I 

IJ5 rL.37 ; ! ; , ! , I Iii I 
>--

,/ AsiT. DC r;" , I: i I I I 1 \ I ,LA sTi P'"R,IN'T p:olslI TIEdt( 

:Ie 
1 I' 1, . I 

*' I()TU£.R AREA S i I I i 1 : 1 I '~ 

•• 1 1 1 
I 

1: :ft 
1-1-

'FIELlJ IDLe; Ir-!L 6 iii! ! I I ! I -f- l- I-- I- ·1-I-I-

IN Ny E 
, 

DC Ir'-~-Qa baa' I I I , I T ' 

i I E.ND lRiEGl N E'X Iii I I 
, I I: ; [ I I i I 

1 I I '1 1 , 1 

~ 

i 
I Ii i I , 

1 ! 

, , 1 
1 : 

! 
I I 

I 1 ! I , II ! I I! I, T I I I I 

,1 1 I : j I I ! . ; 1 I 1 ! i I 

I i i I, ; i i i ' I . I ii, I I : I ! i'l i I : 

I I 1 I I I ' I I I I' I ! I I 

I Ii I, Ii I I iii , 
, 

+-' 
, I I , I I i . i I! i ! : I! ! I' , 

: ' I , i 
: 

• Figure 20. Programming Example 2, Part 5 of 5 

Programming Example 2 73 



Address. 
1.Anidentification, as represented by a 

name, or number, for a register, loca
tion in storage, or other data source 
or destination. 

2. Loosely, any part of an instruction 
which specifies the location of an 
operand for the instruction. 

!llQg.2~~. To assi9n storage locations or 
areas of storage for specific routines, 
portions of routines, constants, data, etc. 

!lEEgmeri£. A generic term for alphabetic 
letters, numerical digits, and special 
characters. 

!scenAi~g_Q~~er. A sequence of records 
such that the control fields of each suc
cessive record collate equal to or higher 
than those of the preceding record. 

!.§se.!!!..£le. To prepare an object-language 
program from a symbolic-language program 1:.y 
substituting machine operation codes for 
symbolic operation codes and absolute or 
relocatable addresses for symbolic 
addresses. 

].2.§i~-1l.Q~.i!.Q.f • Th,e main cont rol program. 
Available in a card, a tape, and a disk 
version. Resident in main storage when 
control required. Loads programs into main 
storage and causes their execution. 

Bi~E,f:.Y· 
1. A characteristic or property involving 

a selection, choice, or condition in 
which there are two possibilities. 

2. The number representation system with a 
1: as e 0 f two. 

Bi!. A binary digit. 

]la~~_~h.2.fac!er. Any character or charac
ters used to produce a character space on 
an output medium. 

]lock-.-Jre.£Q~~& • 
1. To group records for the purpose of 

conserving storage space or increasing 
the efficiency of access or processing. 

2. A physical record so constituted, or a 
portion of a telecommunications message 
defined to be a unit of data 
t.ransmission. 

!!,£,g!!£11· 
1. To depart from the normal sequence of 

executing instructions in a computer. 
2. A machine instruction that can cause a 

74 IBM System/360 Model 20 TPS Ioes 

departure as in (1). Synonymous with 
'transfer'. 

~uf!~];_J!];Q.9.f,g:!!'-ll!.EY!L.9Y,!'£y.ll. A portien 
of main storage into which data is read, or 
from which it is written. 

~~!~. A sequence of adjacent binary digits 
operated upon as a unit. 

Card Stacker. A mechanism which stacks 
cardS-In-a-focket after they pass through a 
machi ne. 

~~n~I,gl_g.fQ£~§§in.9_Qn.i!. A unit of a com
puter that includes circuits controlling 
the interpretation and execution of 
instructions. 

fhg£~EQil!!. A point in a program about 
which sufficient information is stored to 
permit restarting the problem from that 
point. 

~Q1ymn_~il!,gIY. Pertaining to the binary 
representation of data on punched cards in 
which adjacent positions in a column corre
spond to adjacent bits of data. 

~om~ng. An instruction in machine 
language. 

Constant. A fixed or invariable value or 
data-Ttem. 

~~nt~l_g];.Qg];E~. A set of programs which 
provide the management functions necessary 
for continuous operation of a computing 
system. 

~.Qn!.fQl_~tate~~!. Any of the statements 
in the inFut to a specific job that define 
the requirements of the job, its options, 
or centrol its actions. 

Ccunter. A device such as a register or 
storage location used to represent the 
number of occurrences of an event. 

~]]. See Central Processing Unit. 

~Y£l~· 
1. An interval of space or time in which 

one set of events is completed. 
2. Any set of operations that is repeated 

regularly in the same sequence. The 
operations may be subject to variations 
cn each repetition. 

Da.!~. Any representation, such as charac
ter quantities, to which meaning might be 
assigned. 



Rg!g_lilg. A collection of related records 
treated as a unit and consisting of data in 
one ot several prescribed arrangements and 
described by control information to which 
the system has access. 

Q~!~_E£2£g§§i~g. A systematic sequence of 
operations performed on data. 

]E!E_gQ.s:eS.2.i~.9_~.Y.2te.!!). A network of 
machine components capable of accepting 
information, processing it according to a 
plan, and producing the desired res~lts. 

Data_Re£Q~g. See Logical Record. 

Qgta_§§!. See Data File. 

Decimal. 
1~--A-characteristic or proFerty involving 

a selection, choice or condition in 
which there are ten possibilities. 

2. The number representation system with a 
base of ten. 

Q~f~. A collection of punched cards. 

Q~Iggl!_XglY~. The operand specification 
assumed by a program when the value is 
omitted. 

Descending_.Q~~er. A sequence of re'cords 
such that the control fields of each suc
cessive record collate equal to or lower 
than those of the preceding record. 

].igit. 
1. Any of the arabic numerals 1 to 9 and 

the symbol O. 
2. One of the elements that combine to 

form numbers in a system other than the 
decimal system. 

lr!!~!!lf. (Extended Binary Coded Dec.imal 
Interchange Code) A specific set of eight
bit codes standard throughout System/360. 

]rro~. A general term to indicate that a 
data value is not correct or that a machine 
component is malfunctioning. 

File. A collection of related records 
treated as a unit, e.g., in inventory con
trol, one line of an invoice forms an item, 
a complete invoice forms a record, and the 
complete set of such records forms a file. 

lil§_~gBggg~gBi. A general term that 
collectively describes those functions of 
the control program that provide access to 
files, enforce data storage conventions, 
and regulate the use of input/output 
devices. 

1!.l~g=1§lli1th !!~~2!:g. A record having the 
same length as all other records with which 
it is logically or physically associated. 

]El!~~g_]2~~g~;'y. Even-numbered byte 
position in main storage, coincident with 
the left byte of a halfword. 

Hexadecimal. A number system using the 
equIvalent-of the decimal number 16 as a 
base. The values 0-15 are represented by 
the digits 0-9 and the alphabetic charac
ters A-F. 

~2~E§I. A device that bolds cards and 
makes them available to a card feed 
mechanism. contrast with card stacker. 

lng~~ing. A technique of address modifica
tion often implemented by means of index 
registers. 

lnd~_~§.9!§!§I. A register whose contents 
is added to or subtracted from the operand 
address prior to or during the execution of 
an instruction. 

Initialize. To set certain counters, 
switches-and addresses at specified times 
in a computer routine. 

lBE.Y!· 
1. The data to be processed. 
2. The state or sequence of states occur

ring on a specified input channel. 
3. The device or collective set of devices 

used for bringing data into another 
device. 

4. A channel for impressing a state on a 
device or logic element. 

lnE'y!_j~§~. The area of internal storage 
into which data is transferred from extern
al storage. 

l1!.E.Y!L!2.Y!.E.Y!· 
1. Common abbreviation I/C. A general 

term for the equipment used to commun
icate with a computer. 

2. The data involved in such 
communication. 

3. The media carrling the data for 
input/output. 

11!§!~Y£!i2B. A statement that specifies an 
operation and the values or locations of 
all operands. In this context, the term 
instruction is preferable to the terms com
mand or order which are sometimes used as 
synonyms. Command should be reserved for 
electronic signals. Crder should be 
reserved for sequence, interpolation and 
related usage. 

Instruction Format. The allocation of bits 
or-cha~acters-of-a machine instruction to 
specific functions. 

Glossary 75 



Intef:ru12.! • 
1. A break in the normal flow of a system 

or routine such that the flow can be 
resumed from that point at a later 
time. 

2. To cause an interrupt 

ILQ_~£~~. An area (portion) of main 
storage into which data is read or from 
which data is written. I/O means 
Input/Output. 

~Q~_~QD!£Ql_E£Qg£g!. A System Control pro
gram. CaJled into main storage between 
jobs and provides :for automatic job-to-job 
transmission. Processes control statements 
in the input stream that identify a job or 
define its requirements and options. 

12~~1. A physical identification record on 
magnetic tape (or disk). 

Link2~. The inte:rconnections tetween a 
main routine and a closed routine,i.e., 
entry and exit for a closed routine from 
the main routine. 

Load. To place data into internal storage. 

!,Q,fg!iQD. A position in storage that is 
usually identified by an address. 

1Qgi£~1_~g£Q!g. A record identified from 
the standpoint of its content, function, 
and use rather than its physical attri
butes. It is meaningful with respect to 
the information it contains. (Contrast 
with Physical Record.) 

Machine Instruction. An instruction that 
i~~-~i~iI~~Ii~-ii~~ine can recognize and 
execute. 

Macro Instruction. A statement that is 
used-in-i-sQurce-program and replaced by a 
specific sequence of machine instructions 
in the associated object program. 

Macro-.1ibra!.Y-1.1~~!1. An area of the macro 
library section of the system tape. Has 
four priority sections, each of which con
tains the macro definitions required by the 
macro instructions in user programs. 

1jggng:ti.f_lg.E~. A tape with a magnetic sur
face on which data can be stored. 

~2iD_StQ£gg.§. The fastest general purpose 
storage of a computer. Also, for the Model 
20, storage within the CPU that can be 
addressed both for reading and writing 
data. 

1j.!!emo.ni~~Qgg. A mnemonic code resembles 
the original word and is usually easy to 
remember, e.g., ID for edit and MVC for 
move characters. 

76 IBM System/360 Model 20 TPS IOCS 

~~ID'§. An alphameric character string, 
normally used to identify a program. 

f~j'§£!_!fQ9!g~. A fully assemtled program 
ready to be loaded in the computer. 

Q~~!gD~. That which is operated upon. An 
operand is usually identified ty an address 
part of an instruction. 

Ope!~!iQD· 
1. The act specified ty a single computer 

instruction. 
2. A Frogram step undertaken or executed 

by a computer, e.g., addition, multip
lication, extraction, comparison, 
shift, or transfer. The operation is 
usually specified by the operation part 
of an instruction. 

Q~g~g!i9D-Co~~. The code that represents 
the specific operations of a computer. 

.Q.Y!~.Y!. 
1. Data that has been processed. 
2. The state or sequence of states occur

ring on a specified output channel. 
3. The device ~r collective set of devices 

used for taking data out of a device. 
4. A channel for expressing a state on a 

device or logic element. 

~ut£y!_!£.§~. The area of internal storage 
from which data is transferred to external 
storage. 

Ove~la.f. To do something at the same time 
that something else is being done: for 
example, to perform input/output operations 
while instructions are teing executed by 
the central processing unit. 

QY.§£Jgy. To place a phase or subphase into 
main storage locations occupied by another 
phase or subphase that has already teen 
processed. 

Pack. To comtine two or more units of 
information into a single physical unit to 
conserve storage. 

Padding. A technique used to fill a block 
of information with dummy records, words or 
characters. 

g~§i£~1-~ec~£~. A record identified from 
the standpoint of the manner or form in 
which it is stored and retrieved: that is, 
one that is meaningful with respect to 
access. (Contrast with Logical Record.) 

grobl~~_Pr~~g!. A general term for any 
Frogram that is not a control program. 

i£Q.9!g]!l· 
1. the plan for the solution of a problem 

including data gathering, processing 
and reporting. 



2. A group of related routines which solve 
a given problem. 

R~Q£~§§. A systematic sequence of opera
tions to produce a specified result. 

B~~~. To transfer information from an 
input device to internal or auxiliary 
storage. 

]ead~Q~~~!~~_Wri!gL~~~~~!~_QY~!lg~_I§~= 
!~~. A feature of the IBM System/360 
Model 20, Submodel 5 that permits data 
transfer from or to I/O units to be over
lapped with processing. 

~eager. A device which converts informa
tion in one form of storage to information 
in another form of storage. 

Reblock. To change the format of a file so 
that a different number of logical records 
comprises one physical record. See Block. 

.R~~~g. A general term for any unit of 
data that is distinct from all others when 
considered in a particular context. 

]ggi§!er. A device capable of storing a 
specified amount of data such as one 
halfword. 

]~lQ~~!§. In programming, to move a rou
tine from one portion of internal storage 
to another and to automatically adjust the 
necessary address references so that the 
routine, in its new location, can be 
executed. 

g~lQ£~!iQD. The modification of address 
constants reguired to compensate for a 
change of origin of a phase or sUbphase. 

]Q~!ing. An ordered set of instructions 
that may have some general or freguent use. 

l.Ui~_l~at~~~. See Read/Compute, wri tel 
Compute Overlap Feature. 

~Q]!£~_1~Dg]~gg. A language that is an 
input to a given translaticn process. 

~.QJ!I.f~_i~.Q.gil~. A program written in a 
source language. 

~Eg£i~1-~ng~~£te!. In a character set, a 
character that is neither a numeral nor a 
letter, e.g., -*$ = and blank. 

~!~!,g.!~.!t~'. In computer programming, a 
meaningful expression or generalized 
instruction in a source language. 

~!Q~gg~. 
1. pertaining to a device into which data 

can be entered and from which it can be 
retrieved at a later time. 

2. Loosely, any device that can s~ore 
data. 

~!~~~9~_CaFaci!1. The amount of data (in 
bytes) that can be contained in a storage 
device. 

Store. 
1:--~o enter data into a storage device. 
2. To retain data in a storage device. 

~]~;QY!iDg. A routine that can te part of 
another routine. 

Switch • 
1:--j-symbol used to indicate a branching 

point, or a set of instructions to con
dition a branch. 

2. A physical device which can alter flow. 

~.1J!!12.Qli£_.A.2.2.!~§,§. An address expressed in 
symhols convenient to the programmer. 

..§ll.lg.m • 
1. A collection of consecutive operations 

and procedures required to accomplish a 
specific objective. 

2. An assembly of objects united to form d 

functional unit. 

19~~~~.!~. A special symbol that can be 
read from, or written on, magnetic tape. 
Used to distinguish the end of a file or 
file segment, and to segregate the labels 
from data. 

l.!]~£g!g. To cut off at a specified spot 
(as contrasted with round or pad). 

]~~£~. To recover the original data from 
Facked data. 

]£1~~. That portion of a single unit of 
storage media that is accessitle to a 
single read-write mechanism. For example, 
a reel of magnetic tape for a 2415 magnetic 
tape drive, or one 1316 risk Fack for a 
2311 Disk storage Drive. 

Glossary 77 



INDEX 

Alternate Tape Drive • 
ALTTAPE. 
Assembly of IOCS • 

23 
23 
62 

BACK (READ= specification) 
Backspace to Inter-Block Gap. 
Backspace to Tape Mark • 

24 
38,41 
40.41 

26 
14 

Communications Adapter 7 

Base Registers, Assignment of. 
BINARY. 
B inar y S ynchro,nous 
BLKSIZE. 
Block. 
B loc~ Count. 
Block-Length Indication. 
BJ.ock€d Records. 
Blocking (of Records). 
Blocksize. 
BSF. 
BSR. 

Card Print Area. 
Card Printing. 
Card/Printer Overlap Mode. 
Checking 

Punch Format • 
Read Format. 
Sequence • 

Checkpoint Record. 
C KPTREC. 
Clear Card-Print Area. 
Clear output Area. 
Clear Worle Area. 
CLOSE. 
CMBND (TYPEFLE= specific~tion) 
C NTRL. 
Combined File. 
C ompa tibili ty. 
Completion Macro Instructions. 
Con tinua tion Punch '. 
CONTROL. 
C Of' 'irol (Macro Instruction) • 
Con~rcl statements 

Tape Label • 
Volume • 

C RDPR. -
C RDPRA • 
CRDPRLn. 
CRP20 (DEVICE: specification). 

Data Conversion Feature. 
Deblocking (of Records). 
Definition Statement Summary 

Card and Printer Files • 
Tape Files • 

Definition statements. 
Delayed Skipping • 
Delayed Spacing. 
Detail Entries • 

DTFMT. 

15,22 
8 

41,49,51 
• 8,9,21 

8.36 
56 

15" 22 
40,41 
40,41 

15,16 
16,42,47 

9 

18 
17 
17 
24 
24 

16,42 
36,37 
36,37 

51 
14 
31 

9,15,37 
65 

• 49 
12 

14,23 
37 

55 
55 
41 
16 
16 
13 

6,7 
56 

'27 
30 
11 
39 
39 

12,21,30 
18.30 

78 IBM System/360 ,Model 20 TPS IOeS 

DTFSR. 
for card printing. 
for checking functions • 
for combined files • 
for simple files • 
for tape files • 

DEVADDR. 
DEVICE • 
Device Error Recovery. 
DTF Block. 
DTFBG Statement. 
DTFEN Statement. 
DTFMT Detail Entries • 
DTFMT Statement. 
DTFSR Detail Entries • 
DTFS'R statement. 
Dummy GET Macro Instruction. 

End-of-File. 
End-of-Volume. 
Enter Overlap Mode • 
EOFADDR. 
EOM. 
Erase, Gap • 
ERG. 
ERRIO. 
ERllOPT • 
Error Option • 
Error Recovery 

FEOV • 
FETCH. 
FILlBL • 
File • 
File Definition Statement. 
File Name. 
FIXBLK (RECFORM= specification). 
Fixed-Length Records • 
FIIUNB (RECFORM= specification). 
Form Skipping. 
Format of 

Definition Statement. 
Macro Instruction. 
Records. 

FORWARD (READ= specification). 
Forward Space to Inter-Block Gap • 
Forward Space to Tape Mark • 
FSF. 
FSR. 
Functions of IOCS. 

13,27 
16 
16 
15 
14 
18 
19 
13 
61 
59 
12 

11,24 
18 
11 
13 
11 

• 45 

14,22,50 
24,50 

42 
1Q.,22 

31,42,43 
• 41 
• 41 
• 21 

20,21 
20 

• 61 

52 
25 

19,20 
9 

11 
35,64 

19 
8,19,36 

19 
39 

12 
11 

7 
24 
Q.O 
40 

40.41 
40,41 

5 

General programming Considerations • 
GET. 

56 
34 

GET" Dummy 

Halt and Restart Information (WAITe) 
Header Entries • 

• 45 

44 
12 



IGNORE (ERROPT= specification) 
Immediate Skipping. 
Immediate spacing. 
Imperative Macro Instructions. 
I NARE A • 
I NBLK SZ. 
Initialization Macro Instruction • 
Input Area • 
Input/Output Devices • 
INPUT 

(BINARY= specification). 
(TYPEFtE= specification) 

I OAREA 1. 
IOAREA2. 
IOCS 

Assembly of. 
Functions of • 
Other Programs used by • 
1259/1419 Macro Instructions. 

IOREG. 

Keyword. 

LABADDR. 
Label 

Definition • 
Checking Routine • 
Processing • 
Return • 

Language Compatibility • 
L BRET. 
Leave Overlap Mode. 
Literals • 
Loading Program Phases • 
Logical Record • 
LOM. 
Lower Feed Print Area. 

Machine Features Supported • 
Machine Requirements • 
Macro Definiticn~ User Written • 
Macro Instructions. 

Card and Printer File. 
Common (all Files) 
Completion • 
Declarative. 
Imperative. 
Initialization • 
Processing • 
Tape File. 

Maximum Block Length • 
Maximum Record Length. 
Maximum System Configuration • 
MFCM1 (DEVICE= specification). 
MFCM2 (DEVICE= specification). 
Minimum Block Length • 
Minimum Record Length. 
Minimum Sytem Configuration. 

Name of 
Card Print Area. 
Input/Output Areas • 
User Routines. 

Names (S ym boIs) • 

20 
39 
39 

5,1'~53 
15 
15 
32 

14,34,57 
6 

14 
13,19 
14,22 

15,19,22 

62 
5 
5 

22 
22 

12 

20 

9 
20 

32,48 
48 
65 
48 
42 

6,25 
25,44,48 

8 
42 
15 

6 
5 

25 
11 
41 
34 
49 
11 
'1 
32 
33 
48 

15,22 
20 

6 
13 
13 

15,22 
20 

6 

15 
14,22 

14,11,20 
62 

Non-overlap Mode • 
NORWD (REWIND= specification). 
NSTD (FILABL= specification) 

9,14,31 
24 
20 

OPEN • 32 
ORG. 25 
OUAREA • 15 
OUBLKSZ. 15 
OUTPUT (TYPEFLE= specification). 14,19 
Output Area. 14.22,35,51 
OVERLAP. 14 
Overlap Mode. 9,14,37,58 
Overlay. 26,24 
OVLAY. • 24 

PFORMTn. 
PFXIT. 
Print Area • 
PRINTER (DEVICE= specification). 
Printer Overflow • 
PRINTLF (DEVICE= specification). 
PRINTOV. 
PRINTUF (DEVICE= specification). 
Programming considerations 

Combined Piles • 
EOM and LOM. 
General. 

Programming Examples • 
Programming with WAITC • 
Programs, others used by IOCS. 
PRTOV. 
Punch Format Checking. 
Punched Card Equipment Errors. 
PUNCH20 (DEVICE= specification) • 
PUNCH42 (DEVICE= specification). 
PUT. 

READ .. 
Read Backward. 
Read-Format Checking • 
Read/Compute, Write/Compute 

Overla p Pea ture. 
READ01 (DEVICE= specification) 
RECFORM. 
Record Length. 
Record-Length Indication • 
Becords 

Blocking of. 
Checkpoint 
Deblocking of. 
Definition of. 
Fixed-Length • 
Format of. 
Format permitted 
Undefined Format 
Variable-Length. 

RECSIZE. 
Registers 

IOREG. 
RECSIZE. 
Reguirements of. 
Usage of • 
VARBLD • 

Release (processing of block). 
RELSE. 

18 
18 
15 
13 

• 43 
13 
14 
13 

37 
43 

• 56 
• 66 
• 44 

5 
• 43 

18 
61 
13 
13 

35,36,31 

• 24 
21,,24,33 

17 

9,12,58 
13 

19,21 
15,19 

8.,19 

56 
24 
56 

8 
8,19 
8,19 

9 
9 

8,19,34 
19 

22 
19 
59 

• 62 
23 

• 48 
41,48 

Index 79 



Reopen Files • 
Requirements fer WAITe 
REW. 
REWIND. 
Rewind and Unlcad Tape • 
R ew in d 'r a pe. 
RFORMTn. 
R FXIT. 
RUN. 

51 
44 
41 
24 
41 

24,41 
17 
18 
41 

RWC. see Read/Compute. Write/Compute 

S EQNCE • 
Sequence Cnecking. 
S EQXIT • 
Simple File. 
S K • 
SKIP (ERROPT= specificat~on) 
Skipping 
SP • 
spacing. 
SPSW 
SS (stacker select mnemonic) 
Stacker Select • 
S tandardLabels. 
STD (FILABL= sFecification). 
Summary 

17 
17 
17 

9 
39 
20 
39 
39 
39 
64 
37 
37 

23,9,32,50 
20 

D,~finition 
Definition 
Imperative 

statements, Card/Printer. 
Statements, Tape Files. 
Macro Instructions. 

27 
30 
53 
64 Symbols. 

SYSnnn 
(ALTTAPE= specification) 
(DEVADDR= specification) 

S YSIPT 
(ALTTAPE= specification) 
(DEVADDR= specification) 

S YSOPT 

Tape 

(ALTTAPE= specif~cation) 
(DEVADDR= specification) 

Error Routines • 
Input File • 
Label statements • 

23 
19 

23 
19 

23 
19 

61 
51,19,32,48 

55 

80 IBM System/360 Model 20 TPS Ioes 

Mark 
output File. 
Unit Control • 

Time Sharing Feature • 
TPMARK • 
Translate Feature. 
TRUNe. 
Truncate (block) 
TYPEFLE. 

Unblocked Records. 
UNDEF (RECFOR~= specification) 
Undefined Format Records • 
UNLOAD (REiIND= specification) 
Unloading Tape 
Upper-Feed Print Area. 
Usage of Registers • 
User Label Routine • 
User Standard Labels • 
User-Written Macro Definition. 

VARBLn • 
VlRBLK (RECFORM= specification). 
Variable-Length Records. 
VARUNB (RECFORM= specification). 
Volume • 
Volume statement • 

WAITC 

24,51 
51,48,19,33 

• 40 
5 

• 24 
6,7 

41,49 
• 49 

13,19 

8 
19 

9,19,36 
• 24 

24 
15 

59,62 
20,48,49 
20,32,48 

25 

23 
19 

8,19,34 
19 

9 
55 

Halt and Restart Information • 
Programming with • 
Requirements for • 

4ft. 
44,46 

• 44 
44 

WLRERR • 
Work Area. 
WORKA. 
Write Tape P1ark. 
~rong-Length Block (Record). 
WTP1. 

XFR. 
XIO. 

21 
14,22,34,57 

14,22 
• 41 

21,21 
• 41 

25 
64 





C24-900:3-4 

International Business Machines Corporation 
Data Processing Division 
112 East Post Road, White flains, N.Y.106ot 
[USA Only] 

IBM World Trade Corporation 
821 United Nations Plaza, :New York, New York 10017 
[International] 



READER'S COMMENT FORM 

IBM System/360 Model 20, 
Tape Programming System, 
Input/Output Control System 

• How did you use this publication? 

As a reference source .............................. D 
As a classroom text .................................. D 
As a self-study text .................................. D 

• Based on your own experience, rate this publication 

As a reference source: 

As a text: 

Very 
Good 

Very 
Good 

Good 

Good 

Fair 

Fair 

Poor 

Poor 

Very 
Poor 

Very 
Poor 

Form C24-9003 ... 4 

• What is your occupation? .................................................................................................................. . 

• We would appreciate your other comments; please give specific page and line references 
where approp:riate. If you wish a reply, be sure to include your name and address . 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



C24-9OO3-4 

YOUR COMMENTS, PL.EASE ... 

This SRL manual is part of a library that serves as a reference source for systems analysts, 
programmers and operators of IBM systems. Your answers to the questions on the back of this 
form, together with your comments, will help us produce better publications for your use. Each 
reply will be carefully reviewed by the persons responsible for writing and publishing this 
material. All comments and suggestions become the property of IBM. 

Please note: Requests for copies of publications and for assistance in utilizing your IBM sys
tem should be directed to your IBM representative or to the IBM sales office serving your 
locality. 

Fold 
Fold 

n 
c 
--i 

J> 
r 
o 
Z 
C> 
--i 
I 
(.f) 

~ 
Z 
m 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

BUSINESS REPLY MAIL 

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

POSTAGE WILL BE PAID BY ... 

IBM Corporation 

112 East Post Road 

White Plains. N. Y. 10601 

Attention: Department 813 U 

FIRST CLASS 

PERMIT NO. 1359 

WHITE PLAINS. N. Y. 

........................................................................................................................... 

Fold 

International Business Machines Corporation 
Data ProcBBsing Division 
112 East Post Road, White Plains, N.Y.I060t 
[USA Only] ~ 

IBM' World Trade Corporation 
821 United Nations Plaza, NuwYork, New York 10017 
[International] 

Fold 


	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48
	49
	50
	51
	52
	53
	54
	55
	56
	57
	58
	59
	60
	61
	62
	63
	64
	65
	66
	67
	68
	69
	70
	71
	72
	73
	74
	75
	76
	77
	78
	79
	80
	81
	82
	83
	84

