File No. S360(Mod,20)-21 DPS

TPS

Form GC24-9002-5

Systems Reference Library

IBM System/360 Model 20
Disk and Tape Programming Systems
Assembler Language

This publication provides the information =2nabling the
programmer to write programs in the IBM System/360
Model 20 DPS/rPS Assembler language and the macro
language.

The Mo3=21 20 Assembler language allows the use of
mnemonic operation codes and symbolic representations
of storage addresses and other values. A program is
written in symbolic language. This program is pro-
cessed by the DPS/I'PS Assembler program, which r=sais
the symbolic statements and produces a program in
machine language.

By means of the macro language, the programmer can
reduce considerably the amount of rep=stitive coding
reguired for routines used frequently within a given
program or in many different programs. The programmer
must code the routine only once and includs it in the
macro library. He writes a macro instruction at the
point in the source program where the routines is
rejuired. During assembly, the Assembler reads the
macro instruction, extracts the routine from the
library, and inserts it in the object program. The
programmer can cause the Assembler to tailor the rou-
tine to fit the particular problem program by specify-
ing the appropriate symbolic operands in the macro
instruction.

The reader of this publication should be familiar
with basic programming concepts and with the operating
principles of his system as described in the appropri-
ate SRL publications. For a list of pertinent publica-
tions see IBM System/360 Model 20, Bibliography, Fora
GA26-3565.

sixth Edition (April, 1970

This is a maisrvrevision of, and obsoletes, GC24-9002-4 and Technical
Newsletters GN33-9059 and 3¥33-9076.

Minor changes have been made throughout the text. Many sections have
béen rearranged to improve readability. Therefore, the table of
contents should be studied carefully. A section on Planneld Jverlay
Structure has beern 3dded. Thanges to the text and small changes to the
illustrations are indicated by a vertical 1line to the left of the
change; changed ox added illustrations are denoted by the symbol e to
the left of the caption.

This edition applies to release 9 of IBM System/360 Mod=1 20 DPS, to
release 13 of IBM System/360 Model 20 TPS, and to all subsejuent
releases until otherwise indicated in new editions or Technical
Newsletters.

Changes are continually maie to the specifications herein; before using
this ppblication in connection with the operation of IBY systems,
consult' the latest IBM System/360 Model 20 SRL Newsletter, Form
GN20-0361, for the editions that are applicable and current.

This publication w~as prepared for pr>duction using an IBM computer td
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special priat chain.

Reguests for copies of IBM publications should be made to your IBM
representative or to the IBM branch >ffice serving your locality.

a form for reader's coamments is provided at the back of this
publication. If the form has been removed, comments may be addressed to
IBM Laboratories, - Programming Publications, 703 Boeblingen/Germany,
P.0. Box 210.

© conyriaght IBM Germany 1966. 1967
© copyright International Business Machines Cdrporation 1967, 196%, 1970

Assembler Language ——

Introduction
Types of Assembler~Language
Statements .« ¢+ ¢ . ¢ o e o o o
Character Set . &« « « « o ¢ & =
Major Assembler Language
FeatUres . o« o« « o o « o o« « »
Operating Environment

Assembler Language Coding
Conventions
Description of Conventions . .
Summary of Coding Conventions .

Terms and Expressions . . .

Terms . o « e o % o s o o o
Self-Definlng Terms o s e o o @
Assembler Program Defined Terms

EXpressions « =« « ¢« « o o o o o
Evaluation of Expressions . . .
Absolute and Relocatable
EXpressions o« o« o« « « o o o » =

Machine Instructions
Object Format of Machine
InsStructions . « « o « o« o « o
Machine-Instruction Alignment .

Machine-Instruction Mnemonic Codes

Extended Mnemonic Codes
Machine Instruction Operanids . .
Operand Fields and Subfields .
Explicit and Implicit addressing
Explicit Addressing . . « . « .
Implicit Addressing « « « « « .
Explicit and Implicit Lenjths .
EXamples .« « o ¢ o o o o a » « =
Types and Functions of Machlne
OperationsS « « o o o o o o o s @
Binary Arithmetic Operations .
Machine Formats of Instructions
for Binary Operations
Binary Arithmetic Error
Conditions . ¢ o ¢« @ o « o o o
Instructions for Blnary
Arithmetic . & ¢« ¢ o « &
AR -- Add Register . . .
SR -~ Subtract Register
STH -- Store Halfword .
LH -- Load Halfword . .
CH -- Compare Halfword
AH -- Add Halfword . .
SH -- Subtract Halfword . .
Decimal Arithmetic Operations
Condition Code after Decimal
Operations .« « « ¢ o « o & o @
Decimal Arithmetic Error
Conditions .« 4 « 4w s e e o
Instructions for Decimal
Arithmetic . . .
MVO -- Move with Offset
PACK -~ Pack . « « + &
UNPK ==~ Unpack o « « o w
ZAP -- Zero and Add Packed

. . . L .
L . . . L[] L] [
e & o % o o ¢ o
e a & a2 o 5 4 v

o o i
¢ o o @&

CP -- Compare Decimal Packed
AP -- Add Decimal Packed . .
SP ~-- Subtract Decimal Packed
MP -- Multiply Decimal Packed
DP -- Divide Decimal Packed .

Logical Operations

4

@ 0 3 ¢ 3 o s

s 8 o 8 * & o & g

s & o & & o & & 3 e o

~ 2 ~N G, (%2}

12
12
12
13

15

16

Contents

Machine Formats of Instructions
for Logical Operations
Condition Code After Logical
Operations « e e e e e e 4 oe s
Instructions for Logical
Operations« . .

MVI -- Move Immediate
MVC -- Move Characters . . « .
MVZ -- MOVE ZONSS 4 o « o « o «
MVN -- Move Numerics <« . & o
CLI -~ Compare Logical Immediat

CLC -- Compare Logical
Characters . «. « . .
ED -- Edit
NI -- And Immediate .

4 & o 4 o

OI -- Or Immediate . .« .

T™™ -- Test Under Mask « .
HPR -- Halt and Proceed . . .
TR -- Translate . « « « « . .

Branch Operations . . « . .
Machine Formats of Instructi
for Branch Operations . . .
Error Conditions
Instructions for Branch
Operations &+ ¢« ¢ ¢« o .

c.o..tno..o

iou)c

BCR -- Branch on Condition
Register .« <« ¢ ¢ o ¢« o o o o &
BC -- Branch on Condition . . .
BASR -- Branch and
Store/Register . . s e s s
BAS -- Branch and Store e e e e

SPSW == Set PSW « & « w « & o .
Input/Jutput Operations

Literals

Literal Pool

Assembler Instructions

Symbol-Definition Instruction . .
EQU -- Equate Symbol
Data-Definition Instructions . .
DC -~ Define Constant
DS -- Define Storage .« « « . .
DCCW ~- Define Channel Command
WOrd o v 4 4 ¢« o o o o o o o @

Program Sectioning and Linking
Instructions . « ¢ &« ¢ o ¢ « o .
Control Sections .« . & « . +
START -~ Start Assembly
CSECT -~- Identify Control
Section « ¢« « 4 i 4 4 e 4 4. .
Dummy Control Ssctions . . .
DSECT -- Identify Dummy Sectlon
Symbolic Linkages
ENTRY -~ Identify Entry~P01nt
Symbol ¢ ¢ 4 4 e e
EXTRN =-- Identify Extsrnal
SymbOl & & 4 4 4 4 e . e o o o
Addressing an External Control
Section ¢« ¢ ¢ ¢ @ 4 4 % o o o
Base Register Instruction
Statements e o e
USING -- Use Base Address
Register . . . & v & « &« + + .
DROP -- Drop Base Register . .
Programning Example .« « o « « -«
Listing-Control Instruction
Statements . & ¢ & 4 4 4 e 0 . .

e

¢ o o o o 4 4 o

59
59
60
60
62

63

TITLE -- Identify Assembly

Output =« < « < = = -
EJECT -- Start New Page . . .
SPACE -- Space Listing . . .

PRINT -- Print Optional Data
Program-Structure Control
Instructions . . - . .

REPRO -- Reproduce Follow1ng

Statement . « ¢ ¢ ¢ ¢ e o o

XFR -- GSenerate a Iransfer Card

ORG -- Set Location Counter .
LTORSG -- Begin Literal Pool .
END -- End Assembly « « « « .

Planned Overlay Structure

Overlay Using the FETCH Macro .
coding of Phases Without
Subphases« .

Coding of a Phase w1th Subphases

Overlay Using the LOAD Macro .

Macro Instructions
Macro-Instruction Format <

Positional Macro Instructions
Keyword Macro Instructions .

Assemnbly of Macro Instructions

Macro Language

Positional Macro Definitions .
MACRO -- Header Statement . .
Prototype Statement
Model Statements
Conditional-Assembly

Instructions . . « o e v
SET Variable Symbols « e e e
SETA -- SET Arithmetic . . .
SETC -- SET Character . « «
SETB -- SET Binary . . « . .
Sequence Symbols . «
AIF -- Conditional Branch . .
AIFB -- Conditional Branch

Backward . « « o« « s o o +
AGO -- Unconditional Branch .

AGOB -~ Unconditional Branch
Backward .« « « o o ¢ o o o =

ANOF -- No Operation
MEXIT -- Macro Definition Exit
MNOTE -- Reguest for a Message
MEND -- Trailer Statement . .

Keyword Macro Definitions . . .

System Variable Symbols
§SYSNDX -- Macro Instruction
INdeX o « o o o o o o o o o
§SYSECT -- Current Control
SECLIiON o o o o @ o o o o =
§SYSLIST(n) -- Macro
Instruction Jperand Field . .

Sample Macro Definition . . .
In-Line Use of the GMOVE Macra
Instruction « e . .
Reserving Space in the
Destination Field . . « . « &
Use of the Subroutine Facility
of the GMOVE Macro Defimnition

-

Main-Storage Considerations for

GMOVE Subroutines
Exrror Checkiny . « . « « . &
Use of Global SET Symbols
Within the GMOVE Macro
Definition « « o « s o« o « «

-

Ageembly of

N}
[N}

a Program

(DPS/TPS) . .104

Job Control Statements . « « « « 105

Program Control Statements105
AWORK -- Assembler Workfile
Statement « « « « 105
AOPTN (Assembler Optlon)

Statements106
ICTL -=- Input Format Control . .107
ISEQ -- Input Sequence Checking .107

Cataloging a Macro Detinition 10s
Job Control Statements (DPS) . . .108

Job Control Statements (TDPS) . 108

U LUnLiPa Statliliciits * wiVl

Program Control Statements108
Output Listings.109
Language Compatibility110
Glossary.11

APPENDIX A. MACHINE-INSTRJICTION
MNEMONIC CODES & « o o o « « o o o122

APPENDIX B. MACHINE-INSTRUCTION
FORMAT « o o ¢ « « o o o o « « o o124

APPENDIX C. ASSEMBLER INSTRUCTIONS 126
APPENDIX D. SUMMARY OF CZONSTANTS .127

APPENDIX E. SUMMARY OF MACZRO

LANGUAGE « ¢ ¢ ¢« « « ¢ « « o+ « « o128
Expressions in Macro Language . . .128
Name and Operand Fi=1l3 of

Instructions e e+ . . 129
Symbolic Parameters ani Variable
Symbols in Expressions130
IBM-Supplied Macro Definitions . .131

APPENDIX F. ASSEMBLER LANGJAGE
FEATURES . . « . « « « o » « « » 2132

APPENDIX G. OUTPUT LISTINGS

(ASSEMBLER AND MMAINT) e <« « « o «135
Assembler Projram . « « « + « « . 2135
Macro Maintenance Program138

APPENDIX H. ASSEMBLER DIAGNOSTIC
MESSAGES . ¢« + &« ¢ ¢ o« « o « « « <139

APPENDIX I. DIAGNOSTIC MESSAGES
OF THE MACRO MAINTENANCE PROGRAM .145

APPENDIX J. CHARACTER CODES147

APPENDIX K. MINIMUM AND MAXIMOM

SYSTEM CONFIGURATION . . . « « « 153
Minimum System Configuration . . .153
Maximum System Configuration . . .153

APPENDIX L. HEXADECIMAL-DECIMAL
NUMBER CONVERSION TABLE155

APPENDIX M. SAMPLE PROGRAMS161
DPS Assembler Language Program . .161
TPS Assembler Language Progran . .188
Index.,189

Assembler Language —— Introduction

Computer programs may be expressed either
in machine language, i.e., language direct-
ly interpreted by the computer, or in a
symbolic language which is more meaningful
to you, the programmer. The symbolic lan-
guage, however, must be translated into
machine language before the computer can
execute the program. This is the function
of translator programs such as the
Assembler.

Of the various symbolic programming lan-
guages, Assembler languages are closest to
machine language in form and content.

The Assembler language discussed in this
manual is a symbolic programming language
for the IBM System/360 Model 20. It
enables you to use all IBM System/360 Model
20 machine functions as if you were coding
in System/360 Model 20 machine language.

cesses (assembles) Assembler-language pro-
grams into machine language for execution
by the computer. A program written in the
Assembler language and used as input to the
gram; the machine-language program produced
as output from the Assembler program is
called the object program. The translation
or processing procedure performed by the
Assembler program to produce the object
program is called assembling or assembly.

The entire process is illustrated in
Figurée 1. The Assembler program is supp-
lied by IBM.

Programmer) Assembl
Statements: : mble Listing Y
rogram
1
Source Object
Program Model 20 Proglram
Figure 1. Schematic Representation of the

Assembly Process

There are two outputs from the assembler
run. Th= first is an object program con-
sisting of actual machine instructions
corresponding to ths source program state-
ments written by you. The object program
is punched either into cards or it is writ-
ten on magnetic tape or on disk.

The second output is a program listing
or assembly listing. This Jdocument shows
the original source program statements side
by side with the object program instruc-
tions created from them. Many progranmers
work from the assembly program listing as
soon as it is available, hardly ever refer-
ring to their coding sheets again. A&an
example is shown in Figure 2. This figure
is explained below.

(Proceeding from right to left):

a. The items listed under A should be
exactly the same as the handwritten
entries on the coding sheet. This pro-
vides a good check on the accuracy of
the keypunching.

b. The items under B are a representation,
in hexadecimal notation, of the corres-
ponding instructions and constants.

c. C shows the addresses (in haxadzcimal
notation) of the instructions, con-
stants, and areas of storage specified
by you. For more details s=e Appendix

T e

TYPES OF ASSEMBLER-LANGJAGE STATEMENTS

An assembler-language program nay consist
of up to four types of statements:

¢ machine instruction statements (hereaft-
er called machine instructions)

s Assembler-instruction statemants
(hereafter called Assembler
instructions)

e macro-instruction statements (hereafter

called macro instructions)

e comments statements {(hereaftar called
comments) .

Assembler Language -- Introduction 5

LOCATN OBJECT CODE ADD1 ADD2 STMT SOURZE STATEMENT
c B A
—N—— 7 N
0100 0001 START 256
0100 ODBO 0002 BEGIN BASR 11,0
0102 0003 USING *,11
0102 4880 BO1lE 0120 0004 La 8,DATA LOAD RESISTER 8
0106 u4A80 B022 0124 0005 aH 8,TEN ADD 10
0006 * THE FOLLOWING OPERATION WILL MOULTIPLY BY 2.
010A 1A88 0007 AR 8,8
6i0C 4B80 B0O20 0122 0008 SH 8,DATA+2 NOTE RELATIVE ADDRESSING
0110 40380 BO24 0126 0009 STH 8,RESULT
0114 4890 BO26 0128 0010 LH 9,BIN1
0118 4A90 B028 012a 0011 AH 9,BIN2
0012 * THE NEXT MACRO INSTRUCTION
0013 * WILL CALL THE END OF JOB MACRO.
0014y EQOJ
011C 47F0 00C2 00C2 0015+ BC 15,1941(0,0)
0016 *
0120 0019 0017 DATaA DC H'25°'
0122 Q0QF 0018 DZ H'15°
0124 000A 0019 TEN DC H'10"
0126 0020 RESULT DS H
0128 000C 0021 BIN1 DC H'12"
0122 OOLE 0022 BIN2 DC H'78"
0100 0023 END BEGIN
Figure 2. Assembly Listing Produced by the Assembly of the Program

Predefined mnemonic codes are provided
in the Assembler language for all machine
instructions, Assembler instructions, and
IBM-supplied macro instructions. addition-
al extended mnemonics are provided for the
various forms of the Branch-on-Condition
machine instruction.

The Assembler language provides for the
symbolic representation of any addresses,
machine components (such as registers), and
actual values needed in source statements.
Also provided is a variety of forms of data
representations: decimal, binary, hexade-
cimal, or character representation. You
can select the representation best suited
to express a given data item.

Machine_instructions: Machine instructions
are one-td-one representations of System/
360 Model 20 machine instructions. The
Assembler produces an equivalent machine
instruction in the object program for each
machine instruction in the source program.

Assembler instructions: Assembler instruc-
tions specify auxiliary functions to be
performed by the Assembler program in addi-
tion to its function of translating. These
auxiliary functions assist you in

e checking and documenting programs,

ge-address assignment,

s program sectioning and linking,
o data storage field definition, and

¢ controlling thes Assembler progran
itself.

With a few excepiions, Assembler
instructions 3o not result in the genera-
tion of any machine-language code by the
Assembler program.
Macro_instructions: Macro instructions
cause the Assembler to retrieve a coded
symbolic routine, called macro definition,
from the macro library, modify the roatine
according to the information in the macro
instruction, and insert the modified rou-
tine into the source program for trans-
lation into machine language. IBM supplies
macro definitions (mainly for input/output
operations) as part of the macr> library.

You may also define your own macrd
definitions and refer to them through macro
instructions which you define yourself.
These definitions and statements are
defined according to the macro language and
are processed by the Assembler in the same
manner as the IBM supplied macro defini-
tions. The macro language is described
also in this publication.

Comments: Comments allow
your own reference or for
of your program, what you

you to state, for
any other reader
intended to be

v 02

done in the particular instruction. Your
comments should be as precise as possible.

CHARACTER SET

Assembler-language statements may be writ-
ten using the following alphabetic, numer-
ic, and special characters:

Alphabetic characters: 29 characters are
classified as alphabetic characters. These
include the characters a, #, and $§ as well
as the characters A through Z. The three
additional characters are included so that
the category can accommodate certain non-
English languages. (The printer graphic
may vary according to the national charact-
er set.)

Numeric characters: digits 0 through 9

Special characters: + - , = . % () '/ &
blank

These letters, digits, and special
characters are only 51 of the 256 EBCDIC
(Extended Binary-Coded Decimal Interchange
Code) characters. Each of the 256 charac-
ters (including the 51 characters above)
has a unigue card punch code.

Most of the terms used in Assembler-
language statements are expressed by the
letters, digits, and special characters
shown above. However, such Assembler-
language features as character self-
defining terms and character constants per-
mit the use of any of the 256 card codes.
Appendix J shows the 256 EBCDIC character
codes.

MAJOR ASSEMBLER LANGUAGE FEATURES

Program Listings: A listing of the source-
program statements and the resulting
object-program statements is produced by
the Assembler for each source program it
assembles. You can partly control the form
and contents of the listing (see Figure 2).

Error Indications: As a source program is
assembled, it is analyzed for actual or
potential errors in the use of the aAssembl-
er language. Detected errors are indicated
in the program listing.

Relocatability: The object programs pro-
duced by the Assembler may be in a format
enabling relocation from the originally
assigned storage arsa tO any Oother suitable
area through the Linkage Editor Program.

Sectioning and Linking: The Assembler lan-
guage and program provide facilities for
partitioning an Assembler-language program
into one or more parts called control sec-
tions. Because control sections do not
have to be loaded contiguously in main
storage, a sectioned program may be loaded
and executed even though a continuous block
of storage large esnough to accommodate the
entire program is not available.

The linking facilities of the Assembler
language and program allow symbols to be
defined in one assembly and referred to in
another, thus effecting a link between
separately assembled programs. This per-
mits you to reference 3data and/or transfer
control betwesn programs.

OPERATING ENVIRONMENT

The Assembler program is either tape- or
disk-resident. The TPS Assembler program
operates under control of the I'PS Basic
Monitor program and the DPS Assembler pro-
gram under the control of the DPS Monitor
program. Appendix K contains the minimum
and maximum system configuration.

For the TPS Assembler program, the
Assembler control card and the associated
source-program input must be r=ad on a card
reading device. The object program may be
punched into cards or written onto tape.

For the DPS Assembler programn, the
Assembler control card and the associated
source-program input may be read on a card
reading 3Jevice or, in card-image format,
from a magnetic tape. The object program
is placed in the Relocatable Area on the
system disk pack and, in addition, may be
punched into cards or written onto tape.

The absolute or relocatable object pro-
gram will then be processed as described in
the Model 20 SRL publications describing
the DPS and TPS Control and Service Pro-
grams (Form numbers GC24-9006 and
GC24-9000, respectively).

Assembler Language -- Introduction 7

Assembler Language Coding C

This section discusses the general coding
conventions associated with use of the
Assembler language.

DESCRIPTION OF CONVENTIONS
Coding Form

A source program is a sequence of source
statements punched into cards. The state-
ments may be written on the standard IBM
coding form, X28-6509 (Figure 3). One line
of coding on the form is panched into one
A M~ £ omomnn

=1
Al Uue J.IIC ver LJ-\;Q-L \aU.L umub Ol Ll.\c LOuL

correspond to card columns.

Space is provided at the top of the form
for program identification. You can also
give instructions to the keypunch operator;
any character code that does not have a
corresponding printer graphic can be
assigned any special graphic to identify
the code to the keypunch operator, who can
then punch the corresponding card punch
code wherever he encounters the special
graphic. (See under Character Set for the
representation of the valid character codes
that can be used in a source program.)
Neither the program information (Program,
Programmer, Date etc.) nor the instruc-
tions to the keypunch operator are punched
into a card; they are for your own use.

The body of the form is composed of two
fields: the statement field, columns 1-71,
and the identification~sequence fi=ld,
columns 73-80. The identification-sequence
field is not part of a statement.

Statement Boundaries

Source statements are normally contained in
columns 1 - 71 (statement field) of the
statement lines. However, macro instruc-
tions (and only those) may be continued in
columns 16 - 71 of as many continuation
lines as required. Therefore, columns 1,
71, and 16 are referred to as the "begin",
"end", and "continue"™ column, respectively.

If a macro instruction line extends
beyond column 71 it is to be continued on
the next line. This is indicated by a con-
tinuation character in column 72. The con-
tinuation character may be any non-blank
character and is not considered part of the
statement coding. The columns of the con-
tinuation line precedlng the continue

column, columns 1-15, must be blank.

The above statement boundaries may be
altered by means of the ICTL (Input Format
Control) statement discussed later in this
publication.

Statement Format

Statements may consist of one to four
entries in the statement field. These
entries are, from left to right: name,
operation, operands, and comments. The
entries must be written in the order stated
and separated from each other by one or
more blanks.

The coding form is ruled to provide an
eight-character name field, a five-
character operation field, and a 56-
character operand and/or comments field.

If you wish, you may disregard boun-
daries and write the name, operation,
operand, and comment entries in other posi-
tions, subject to the following rules:

1. The entries must not extend beyond sta-
tement boundaries (eithexr the conven-
tional boundaries, or the ones you have
designated by means of the ICTL
statement).

2. The entries must be in proper seguence,
as stated above.

3. The entries must be separatsd from each
other by one or more blanks.

4, If used, a name entry must be written
starting in the begin colunn.

A description of the name, operation,
operands, and comments entries follows:

Name: The name (also called label) is a
symbol you create yourself to identify a
statement or to represent an address or an
arbitrary value. Whether a name entry is
required, optional, or not permitted
depends on the particular statement.

The symbol must consist of eight charac-
ters or less; it must be entered with the
first character appearing in the begin
column. If the begin column is blank, the
Assembler program assumes no namne has been
entered. No blanks must appear within the
symbol.

Operation: The operation is a mnenonic
code specifying the machine operation or
Assembler function desired. An operation
entry is mandatory and must start at least
one position to the right of the begin
column. Valid mnemonic operation codes for
machine and Assembler operations are con-
tained in Appendixes A and C of this
publication.

valid operation codes of your self-
defined macro instructions must be alpham-
eric and must not be longer than five
characters. The leftmost character must be
alphabetic. Special characters and/or
embedded blanks are not permitted.

Operands: Operands identify and describe
data to be acted upon by the instruction;
they indicate such things as registers,
storage locations, masks, storage-area
lengths, or types of data.

Depending on the needs of the instruc-
tion, one or more operands may be written.
Operands are required for all machine
instructions.

Operands must be separated from each
other by commas. No blanks are permitted
between operands and the separating commas.

Symbols appearing in the operand field
of a statement must be defined. A symbol
is considered to be defined when it appears
either in the name field of a statement or
in the operand field of an EXTRN statement.

The operands must not contain embedded
blanks. However, if character representa-
tion is used to specify a constant, a lit-
eral, or immediate data in an operand, the
character string may contain blanks.

Comments: Comments are descriptive items
of information about the program that are
to be inserted in the program listing. All
valid characters including blanks (see
Character_ Set) may be used in writing a
comment. The entry must not extend beyond
the end column {(column 71), and at least
one blank must separate it from the
operand.

An entire line may be used for a comment
by placing an asterisk in the begin column.
Extensive comments entries may be written
by using a series of lines with an asterisk
in the begin column of each line,

In statements where either an optional
operand is omitted or an operand is not
permitted but a comments entry is Jesired,
the absence of the operand must be indi-
cated by a comma preceded and followed by
one or more blanks, as follows:

Statement Example: The following example
illustrates the use of name, operation,
operand, and comments entries. An 2Ad4d
instruction has been named by the symbol
ADD; the operation entry (AR) is the mne-
monic for a register-to-rsgister 233 opera-
tion, the two operands, eight and nine,
designate the two general registers. The
comments entry will remind you that you are
adding "new sum" to "o0ld" with this
instruction.

Figure 3 shows an example entered on the
standard coding form. Since, in this
example, the keyboard is assumed not to
have a graphic for the character code >,
the character code & has been chosen as a
substitute. This is indicated to the key-
punch operator on the coding sheet.

Identification-Sequence Field

The identification-seguence field of the
coding form (columns 73 -- 80) is used to
enter program identification and/or
statement-sequence characters. The entry
is optional. If the field, or a portion of
it, is used for program identification, the
identification is punched by the user in
the statement cards, and reproduced by the
Assembler in the printed listing of the
source program.

To aid in keeping source statements in
order, you may code an ascending sejuence
of characters in this field or a portion of
it. These characters are punched into
their respective cards. During assembly,
you may reguest the Assembler to verify
this seqguence by the use of the ISED (Input
Segquence Checking) statement. This
instruction is discussed later in this
publication.

SUMMARY OF CODING CONVENTIONS

The "begin®, "end", and "continue" columns
are 1, 71, and 16 respectively unless the
statement boundaries are altered by means
of an ICTL instruction.

Assembler-Language Coding Conventions 9

All entries must be contained within the
designated begin and end column boundaries.
The entries in a statement must always be
separated by at least one blank and must be
in the following order: name, operation,
operand(s), comment.

Depending on the particular statement, a
name entry is either required, or optional,
or not permitted. Every statement, with
the exception of comments statement,
requires an operation entry. Operand
entries are required for all machine

instructions and most Assembler instruc-
tions. Comment entries are optional.

10

The name and operation entries must not
contain blanks. Operand entries must not
have a blank preceding or following the

commas that separate them.

A name entry must always start in the
begin column.

Column 72 must be blank, except for
macro instructions, for which a continua-

+3An T~ R I |

ticn punch may be placed in colamn 72.

IBM System/380 Asssmbler Coding Pormn e tn S
mocum MYFIRST PUNCHING GRAPHIC > AGH o

FrOGRAMMER NAME Iom TODAY INSTRUCTIONS ronch £ [T o ——
’ STATEMENT -

1 - [10 Opestion 14 7y 2 o;:;u 2 as o 4 % 53 Commarns] 3 pul k) Sowee
HOVF lvlc Tlulelele], WElkle cloln[rlel]r]s ER lelrle! [rlo] [t
% TIH 118! A IC0 E
* E | |AND! T 1peLiric A_Qgﬁ gﬂg_@msA IN H“F ISIT,

* A stondord cord form, 1BM electro 6509, u-niﬁhhwimmm ho-rlm!-—

Instructions for using this form ore in any IBM

Address comments concerning this form 1o 1BM Corporation, ho——-lrchblm ‘Doporiment 232, Son Joss, California 95114,

Figure 3.

Coding Form

Assembler-Language Coding Conventions

11

Terms and Expressions

an operand is composed of one or more
expressions, which, in turn, are composed
of & term or an arithmetic combination of

terms.

Terms and expressions are used in
operands to define storage locations, gen-
eral registers, immediate data, or constant
values.

Terms

All terms represent a value. This value
may be assigned by the Assembler program
(symbols, symbol length attribute, Location
Counter reference) or may be inherent in
the term itself (self-defining teras).

Terms are classed as absolute or relo-
catable. They are absolute or relocatable
according to the effect of program reloca-
tion upon them.

Program relocation is defined as:

e either reassembling the program with a
different starting address

e or relocating the program - by means of
the Linkage Editor Program - to storage
locations other than those originally
assigned by the Assembler program.

A term is absolute if its value does not
change upon relocation. A term is relocat-
able if its value changes by n when the
program is relocated n bytes away from the
location where it is first assembled.

The section below discusses each type of
term and che rules for its use.

SELF-DEFINING TERMS

A self-defining term is one whose value is
inherent in the term. It is not assigned a
value by the Assembler program. For
example, the decimal self-defining term 15
represents a value of fifteen.

There are four types of self-defining
terms: decimal, hexadecimal, binary, and
character. Accordingly, we speak of decim-

al, hexadecimal, binary, or character
representation of the machine-language

a term
represents.

12

Self-defining terms are classed as abso-
lute terms since the value they represent
does not change upon program relocation.

Using Self-pDefining Terms: Self-defining
terms are the means of specifying machine-
language binary values or bit configura-
tions without eguating the valu= to a

symbol.

Self-defining terms may be used to spe-
cify such program elements as immediate
data, masks, registers, and addresses. The
type of term selected (decimal, hexadecim-
al, binary, or character) depenis on what
is being specified.

Self-defining terms are not to be con-
fused with data constants or literals.
When a self-3J=fininy term is usz2d in a
machine instruction, its value is assembled
into the instruction. When a data constant
or literal is specified in the operand of
an instruction, its address is assemnbled

into the instruction.

Limitations on the value of the term
depend on its use. For example, a decimal
term that designates a general register
should have a value between 8 and 15 inclu-
sively; one that represents a displacement
should not exceed 4095.

Decimal Self-Defining Term: A Jecinmal
self-defining term is an unsigned decimal
number written as a sejuence of decimal
digits. High-order zeros may be used.

+ A

& decimal term must not consist of more
than five digits, or exceed 32,767 (215-1),.
A decimal term is assembled as its binary
equivalent.

Some examples of decimal self-defining
terms are: 8, 147, 4092, 00021.

Hexadecimal Self-defining Term: A hexade-
cimal self-defining term is an ansigned
hexadecimal number written as a segaence of
hexadecimal digits. The digits must be
enclosed in apostrophes and preceded by the
letter X; for example, X'C49°'.

Each hexadecimal digit is assembled as
its four-bit binary eguivalent. Thus, a
hexadecimal term used to repressnt an
eight-bit mask would consist of two hexade-
cimal digits. The maximum value of a hexa-
decimal term is X'7FFF'.

The hexadecimal digits and their bit
patterns are as follows:

r~——--- L i T | S 1
| Hex | | Hex | |
| Dig. | Pattern | Dig. | Pattern |
f------ ommmmmmee omooee P q
] O | 0000] 8 | 1000 |
1 1 | 0001 1 9 | 1001 |
2	0010	a	1010
3	0011 { B	1011	
&	0100	cC	1100
5	o101	D	1101
6	o110	E	1110
7	o011	F	1111
. § I Lo § I 3			

A table for converting hexadecimal to
decimal representations is provided in
Appendix L.

A hexadecimal self-defining term that is
not specified as a complete byte is
assembled as one byte. The specified bits
are assembled right-justified, and the por-
tion of the byte not specified is padded
with binary zeros. For example, X'F' would
be assembled as 00001111.

Binary Self-Defining Term: A binary self-
defining term is written as an unsigned
sequence of ones and zeros enclosed in apo-
strophes and preceded by the letter B. For
example, B'10001101*'. This term would
appear in storage as shown within the apos-
trophes and occupy one byte. A binary term
may have up to eight bits represented.

Binary representation is used primarily
in designating bit patterns of masks or in
logical operations.

The following example illustrates a
binary term used as a mask in a TM (Test-
Under-Mask instruction. The contents of
GAMMA are to be tested, bit by bit, against
the pattern of bits represented by the
binary term.

r——————- | i S bt 1
| Name | Operation iOperand |
e S vt i
|ALPHA |TM | GAMMA, B'10101101" |
| — L e 1

A binary self-defining term that is not
specified as a complete byte is assembled
as one byte. The specified bits are
assembled right-justified, and the portion
of the byte not specified is padded with
binary zeros. For example, B'101011*' would
be assembled as 00101011.

Character Self-Defining Term: A character
self-defining term consists of one charact-
er enclosed by apostrophes and preceded by
the letter C. All letters, decimal digits,
and special characters may be used in a

character term. 1In addition, any of the
256 punch combinations (shown in Appendix
J) may be used in a character self-defining
term. Examples of character s2lf-defining
terms are as follows:

:l/l :' 1

:IAI clll

(blank)

Because of the use of apostrophes in the
Assembler language and ampersands in the
macro language as syntactic characters, the
following rule must be observed when using
these characters in a character tern:

For each apostrophe or ampersand desired
in a character term, two apostrophes or
ampersands must be written. For example,
the character value ' would be w~written as
C'*''* and the value § as C'§§°'.

The character is assembled as its eight-
bit code equivalent (see Appendix J). The
two apostrophes or ampesrsands that must be
used to represent an apostrophe or an
ampersand are assembled as one apostrophe
or ampersand.

ASSEMBLER PROGRAM DEFINED TERMS

Terms whose value depends on the Assembler
program are classified as Assembler progran
defined terms although you actually create
them yourself. The classification is made
to distinguish these terms from the self-
defining terms.

A symbol is a character or combination of
characters used to identify a statement or
to represent addresses or arbitrary values.

Symbols are used as names and in
operands to provide you with an efficient
way to name and to refer to a program sta-
tement. A symbol, which you create for use
as a name entry or in an operand, must con-

1. The symbol must not consist of more
than esight characters, the first of
which must be alphabetic. The other
characters may be letters, digits, or a
combination of the two. Since symnbols
used by IOCS begin with I, symbols in
the letter I. Alsd, the synbol or the
first portion of a symbol (up t> seven
not be the same as ths file name in a
DTF header entry. (For further
details, refer to the SRL publications
describing the pertinent Input/Dutpuat
Control System.)

2. No special characters are parmitted in
a symbol.

Terms and Exoressions 13

3. No blanks are permitted in a symbol.

The following are examples of valid
symbols:

READER LOOP2 313
A23456 N aPRIC
X4F2 st #LB1

The following symbols are invalid, for
the reasons noted:

2568 first character is not
alphabetic

RECORDAREA2 more than eight characters

BCD*34 contains a special character,
namely *

IN AREA contains a blank

Defining Symbols: A symbol is defined when
it appears as the name of a source state-
ment or as the operand of an EXTRN state-
ment. The Assembler program assigns a
value to each symbol appearing as a name
entry in a source statement. The value
assigned to symbols naming storage areas,
machine instructions, constants, and con-
trol sections represents the address of the
leftmost byte of the storage field contain-
ing the named item. Since the addresses of
these items change upon program relocation,
the symbols naming them are relocatable
terms.

A symbol used as a name entry in the EQU
(Equate Symbol) Assembler instruction is
assigned the value stated as the operand of
the instruction. Since the operand may
represent either a relocatable or an abso-
lute value, the symbel is considered a
relocatable or absolute term depending upon
the value to which it is equated.

The value of a relocatable symbol may
vary between 0 and 215-1 (=32767). The
value of absolute symbols may vary between
~-215 (=-32768}) and 2t5-1 {=32767).

Symbol definition also involves the
assignment of a length attribute to the
symbol. (The Assembler program maintains
an internal table, the symbol table, in
which the values and attributes of symbols
are kept. When the Assembler program
encounters a symbol in an operand, it
refers to the table for the values asso-
ciated with the symbol.) The length attri-
bute of a symbol is the size, in bytes, of
the storage field whose address is repre-
sented by the symbol. For example, a sym-
bol naming an instruction that occupies
four bytes of storage has a length attri-
bute of four.

Normally, symbols are defined in the
same program in which they are used as
operands. However, you can define a symbol
in one program and use it in another pro-

1u

gram that was assembled separataly from the
first (see under Symbolic Linkages).

Previously Defined_Symbols: A symbol is
called "previously defined" if it has
appeared as a name in an instruction or as
the operand in an EXTRN statement prior to
being used as an operand in a different
instruction. Symbols used in the operands
of the Assembler instructions ORG and EDU
must have been previously defined.

General Restrictions Jn Symbols A symbol
may be defined only once in an assembly.
That is, each symbol used as the name of a
statement or as the operand of an EXTRN
instruction must be unigue to that
assembly.

Symbol Length Attribute Reference

The length attribute may be used as a tern.
Reference to the attribute is made by cod-
ing L' followed by the symbol, e.g., L'BE-
TA. The L'.... term allows coding where
lengths are unknown.

The following example illustrates the
use of L'symbol in moving a character con-
stant into either the high-order or low-
order end of a storage field.

r i S Rttt Sttt 1
| Name |Operation |[Operand |
e— fommeomm e oo 1
131 {5s iCL i
|B2 jDC |CL2" AB' i
|HIORD |MVC {Al(L'B2),B2 |
|LOORD |mMve |AL+L'A1-L"B2(L"'B2), B2|
_______ St R |

Al names a storage field eight bytes in
length and is assigned a length attribute
of eight. B2 names a character constant
two bytes in length and is assigned a
length attribute of two. The statement
named HIORD moves the contents >f B2 into
the leftmost two bytes of Al. The term
L*'B2 in parentheses provides the length
specification required by the instruction.
When the instruction is assembled, the
length is placed into the proper field of
the machine instruction.

LOORD moves the contents of B2 into the
right-most two bytes of Al. Al+L'Al-L'B2
results in the addition of the length of a1
to the beginning address of Al, and the
subtraction of the length of B2 fromn this
value. The result is the address of the
seventh byte in field Al. The constant
represented by B2 is moved into Al starting
at this address. L'B2 in parentheses pro-
vides length specification as in HIDJRD,

Location Counter Reference

You may refer to the current value of the
location counter at any place

in a program, by using an asterisk in an
operand. The asterisk represents the cur-
rent value of the location counter.

Using an asterisk in a machine instruc-
tion or DC<instruction is the same as plac-
ing a symbol in the name field of the par-
ticular instruction. and then using that
symbol rather than the asterisk in the
operand.

A reference to the location counter must
not be made in an address constant speci-
fied in literal form.

The Location Counter: In each control sec-
tion a location counter is used to assign
storage addresses to program instructions
occupying storage. As each machine or DC-
instyuction or data area is assembled, the
location counter is first adjusted to the
proper boundary for the item, if adjustment
is necessary. After the instruction is
assembled the location counter is incre-
mented by the length of the assembled item.
Thus, it always points to the next avail-
able location. If an instruction is named
by a symbol, the value attribute of the
symbol is the value of the location counter
after boundary adjustment, but before addi-
tion of the length.

The location counter setting can be con-
trolled by using the START and ORG Assembl-
er instructions, which are described under
Program Sectioning and Linking. The count-
er affected by either of these Assembler
instructions is the counter for the control
section in which they appear. The maximum
value for the location counter is 215-1
(=32767).

Expressions

Expressions are operand entries consisting
of either a single term or an arithmetic
combination of terms.

Up to three terms can be combined with
the following arithmetic operators:

+ addition, e.g., ALPHA+2
- subtraction, e.g., ALPHA-BETA
* multiplication, e.g., 5*L'DATA

Note: The character * (asterisk) has two
meanings when used in an operand:

1. Reference to the location counter (in
this case it is not an operator).

2. Arithmetic operator (multiplication).

Two of the terms within a 3-term expres-
sion can be grouped within parentheses to
indicate the order in which they are to be
evaluated. When terms in parentheses are
encountered in combination with another
term, the combination of terms inside the
parentheses is first reduced to a single
value. This value then is used in reducing
the rest of the expression to another
single wvalue.

The rules for combining terms are dis-
cussed under Absolute and Relocatable
Expressions. In addition to these, the
following rules apply to the coding of
expressions:

1. An expression must not start with an
arithmetic operator (+,-,%).

2. An expression must not contain two
terms or two operators in succession.

3. An expression must not consist 2f more
than 3 terms.

4, An expression must not have more than
one pair of parentheses.

5. A multi-term expression must not con-
tain a literal.

The following are examples of valid
expressions:

AREA1+X'2D' (EXIT-ENTRY)*8 29

*+32 =H"'1234" L' FIELD

N-25 L'BETA*10 crat

FIELD B*101’ LAMBDA+3AMMA
FIELD+332

In the example *+32, the asterisk is not
used as an op=arator.

EVALUATION OF EXPRESSIONS

A single term expression, e.g., 29, BETA,
¥, or L'SYMBOL, takes on the wvalue 2f the
term involved. A multi-term expression
(e.g., BETA+10, ENTRY-EXIT, 10+A*B) is
reduced to a single value, as follows:

1. Each term is given its value.

2. Expressions within parentheses are eva-
luated first.

3. Arithmetic operations are performed
left to right. Multiplication is done
before addition and subtraction, e.3.,
A+B*C is evaluated as A+ (B*Z), ndot
(A+B)*C. The computed result is the
value of the expression.

Final values of expressions representing

storage addresses may vary between 0 and
215-1. However, intermediate results may

Terms and Expressions 15

vary between -215 (=-32768) and 215-1
(=32767).

An expression is called absolute if its
value is not affected by program reloca-
tion. An exprebblon is called relocatabile
if its value changes upon program reloca-
tion. The two types of expressions, abso-
lute and relocatable, take on these charac-
teristics from the term or terms they

contain.

Two terms of an expression are said to
be paired if both are relocatable, defined
in the same control section, and have oppo-
site signs. Any other term of an expres-
sion is called unpaired.

Absolute Expressions

An absolute expression may be an absolute
term or any arithmetic combination of abso-
lute terms. An absolute term may be an
absolute symbol, any of the self-defining
terms, or the length attribute reference.
Addition, subtraction, and multiplication
are permitted between absolute terms.

An absolute expression may contain two
relocatable terms (RT) -- alone or in com-
bination with an absolute term .(AT) =--
under the following conditions:

1. The relocatable terms must be paired.
The paired terms do not have to be con-
tiguous, e.g., RT+AT-RT.

2. No relocatable term must enter into a
multiply operation. Thus, RT-RT*10 is
invalid. However, (RT-RT)*10 is valid.

The pairing of relocatable terms cancels
the effect of relocation. Theretfore, the
value represented by the paired terms
remains constant, regardless of program
relocation. For example, in the absolute
expression A-R,;+R,, A is an absolute term,
and R, and R; are relocatable terms from
the same control section. If A = 50, Ry =
25, and R, = 10, the value of the expres-
sion would be 35. If R; and R;y are relo-
cated by a factor of 100 their values would
then be 125 and 110. However, the expres-
sion would still be evaluated as 35
(50-125+110=35).

Absolute expressions are reduced to a
single absolute value. Absolute expre-
ssions may only be negative in address con-

stants (see DC instruction).

The following examples illustrate abso-
lute expressions. A is an absolute term;
Rz and R; are relocatable terms from the
same control section.

ie

A-R4+R>

A

A*A

Rz-R1+A

*-R; {a reference tc the locatio

is paired with another reslocatable
term from the same control section).

cer

n counter

D et

Relocatable Expressions

A relocatable expression is one whose value
would change by n if the program in which
it appears is relocated n bytes away from
its originally assigned area of storage.
All relocatable expressions have a positive

value.

A relocatable expression may be a relo-
catable term. A relocatable expression may
also contain several relocatable terms --
alone or in combination with absolute terms
-- under the following conditions:

1. There must be an odd number, 1 or 3, of

relocatable teras.

2. If a relocatable expression contains
three relocatable terms, two of then
must be paired.

3. The unpaired term must be positive.

4., Relocatable terms must not enter into
multiply operations.

A relocatable expression is reduced to 2
single relocatable value. This value is
the value of the unpaired relocatabhle tern,
adjusted by the values represented by the
absolute terms and/or paired relocatable
terms associated with it.

For example, in the expression R3-Ry+Rj,
Ra and R, are relocatable terms trom the
same control section. If, initially, R5
equals 10 and R, equals 5, the value of the
expression is 15. However, upon relocation
this value will change. If a relocation
factor of 100 is applied, the value of the
expression is 115. Note that the value of
the paired terms R3-Rp remains constant at
S regardless of relocation. Thus, the new
value of the expression, 115, is the result
of the value of the unpaired term (Rj)
adjusted by the values of Ri-R,.

The following examples illustrate relo-
catable expressions. A is an absolute
term, R; and R, are relocatable terms from

the same control ScartA i 3z rolasabo
Tl Same ConTrsi SeCTIiChe “1 iS5 & £e.L0Catc

able term from a different control section.

Ry =32#%A R3-Rp+* =H'1234"' (literal)
R3-Rz*Ry A*A+R,
* (reference to Ry-R5+R3

location counter) R,

This section deals with the coding of the
machine instructions featured in the
Assembler language. Machine instruction
statements are used to tell the aAssembler
to generate the object (machine language)
coding for Model 20 instructions. Format
and function of each machine instruction
are described and the use of each instruc-
tion is illustrated by an example.

Object Format of Machine
Instructions

The instruction format indicates the length
of the instruction and the type of opera-
tion to be performed. The length of the
instruction can be one, two, or three half-
words. The types of instruction formats
are shown in Figure 4.

' F'!"":"'"‘“"!. 5 | Second Halfword | Third Halfwerd
| 1
1 l !
1 1 J
I wab Register
rond 2
Ope! ﬂJ‘med
RR Format - Op Code | R
s 1 5 |
. [} 78 111215
.
ddﬂﬂ : Address
Operand 1 | Operond 2
A A
RX Format Op Code| R, xf{szL o,
0 7s|nu$awm an
Inmediote] Address :
Operond | Operand 1 '
S1 Format OpCode| 1, |8 I D,
o 78 lﬁu|9m 3
1
! | Length | Address Address
| Operand 1 Operand 2 Operond 1 QET“Z
55 Decimal Fomat| Op Code[L |1, |8, | D, ‘2' D,
0 78 111215161920 31p2 35 3% 47
1 I
] = Address Address
'mehl Operond 1 Operand 2
SS Logicol Format | Op Code| L Is] o, 5, l D,
()} 78 1516 1920 3132353 47
Figure 4. Object Format of Machine

Instructions

Machine Instructions

RR_Format:
operation.

Denotes a register-to-register

RX_Format: Denotes a register-to-storage
or a storage-to-register operation. 1In
this format, bits 12 through 15 must be

Zero.

SI_Format: Denotes a storage-immediate
operation. In this format the I2 field of
the instruction is the second operand.

8S_Format: Denotes a storage-to-storage
operation.

In each format, the first byte of the
first halfword contains the operation code,
commonly referred to as the op-code.

The second byte of the first halfword
may be used to contain data, specify
operand lengths, or specify registers to be
used by the operation. Each instruction
consists of an op-code and two operands.

Machine—Instruction Alignment

All machine instructions are automatically

aligned by the Assembler on halfword bound-
ary. If any instruction that causes infor-
mation to be assembled reqguires alignment,

the byte skipped is filled with hexadecimal
zeros.

Machine-Instruction Mnemonic Codes

The mnemonic operation codes (shown in
Appendix A) are designed to be easily-
remembered codes that indicate the func-
tions of the instructions. The normal for-
mat of the code is shown below; the items
in brackets are not necessarily present in
all codes:

Verb [Modifier] [Data Typel [Machine
Format]

The verb, which is usually one or two
characters, specifies the function. For
example, A represents Add and MV represents
Move. The function may be further defined
by a modifier. For example, the modifier L
indicates a logical function and the C a
character as data type, as in CLC for Com-
pare Logical Character.

The letters R and I are added to the
codes to indicate, respectively, RR and SI
machine instruction formats. Thus, AR
indicates Add in the RR format. Functions

Machine Instructions 17

involving character and decimal data types
imply the SS format.

For your convenience, the Assembler pro-
vides extended mnemonic codes, which allow
conditional branches to be specified mne-
monically as well as through the use of the
BC machine-instruction. These extended
mnemonic codes specify both the machine
branch instruction and the condition on
which the branch is to occur. The codes
are not part of the machine instruction,
but are translated by the Assembler into
the corresponding operation and condition
combinations.

The extended mnemonic codes and their
operand formats are shown in Appendix A
together with their machine instruction
equivalents. Unless otherwise noted, all
extended mnemonics shown are for instruc-
tions in the RX format. The only dif-
ference between the operand fields of the
extended mnemonics and those of their
machine-instruction equivalents is the
absence of the R1 field and the comma that
separates it from the rest of the operand
field.

The extended mnemonic list, like the
machine-instruction 1list, shows explicit
address formats only. Each address can
.also be specified as an implied address.
Examples illustrating instructions using
extended mnemonic codes are given below.

- L Aattninbebehebuiedbel Sadotubdetebebiieieda ettty 1
| Name | Operation | Operand |
b $- R :
| | B | 40¢0,8) I
| | BNL | GO]
| | BO 8 |
| i BR | REGY |
L 1_ T R ————id

The first instruction specifies an
unconditional branch to an explicit
address. The address is the sum of the
contents of base register 8 and the displa-
cement 4#0. The second instruction speci-
fies a branch on not low to the address
implied by GO. The next to last instruc-
tion is a branch on one to the address con-
tained in register 8. The last instruction
is an unconditional branch to the address
contained in the register eguated to REG9
elsewhere in the program.

Machine— Instruction Operands

The operands of a machine instruction are
referred to as first and second operands.
They have, in the following examples, a

subscript (1 or 2) to the code letter for

18

the field to indicate a particular operand
(e.g., Rys Rz, L1, D2 etc.).

There are three types of operands:

1. Operands that are main-storage

addresses.
o] Termeadt ad an Do bd o e o= A Lleal aamm v
Le LT UL QLT Udid uUpTLdiiud Liidt dil T viic
byte constants.

3. Operands that are the general
registers.

The address specified in an instruction
always refers to the leftmost byte of the
field addressed. There is no relation
between the address specified in the
operand and that of the instruction.

The length of an addressed data field
may be fixed or variable. In the latter
case, the length is indicated in the length
field (L) of the operand. The L-field
indicates the number of bytes used. The
maximum length of a field is 256 bytes.

Immediate data is used only as the
second operand in logical operations in the
SI-Format. The length is one byte and,
being part of an instruction, imnmediate
data has no address.

Data in registers have a fixed length of
one halfword.

OPERAND FIELDS AND SUBFIELDS

Some symbolic operands are written as a
single field. Other operands are written
as a field followed by one or two sub-
fields. For example, addresses consist of
the contents of a base register and a dis-
placement. An operand that specifies a
base register and displacement is written
as a displacement field followed by a base
register subfield, as follows: 40(8).
Since the Model 20 does not have index
registers, the base register subfield must
be preceded by a zero and a comma in the RX
format, e.g., 40(0,8). In the SS format, a
length subfield and a base register sub-
field are written as follows: 40(21,8).

A comma must be written to separate
operands. Parentheses must be written to
enclose a subfield or subfields, and a
comma must be written to separate twd sub-
fields within parentheses. When paren-

theseg are used t0o enn'lr\cc Aang cnhfial’
L T A =4 QAL AN WD O wiito CuUuL ALy

and the subfield is omitted, the paren-
theses must bz omitted.

wuola ©

In the case of two subfields separated
by a comma and enclosed by parentheses, the
following rules apply:

1. 1If both subfields are omitted, the
separating comma and the parentheses
must also be omitted. For example:

LH 12,48(0,15)

LH 12,FIELD (implicit address)

2. If the first subfield in the sequence
is omitted, the comma that separates it
from the second subfield is written.
The parentheses must also be written.
For example:

MVC 32(16,15),FIELD2
MVC BETA(,15),FIELD2 (implicit
length)

3. If in the RX format a base register is
specified, the first subfield (index
register) must be specified as a zero
because this subfield is not used.
This zero must not be omitted. For
example: LH 12,48(0,15)

4., If the second subfield in the segjuence
is omitted, the comma that separates it
from the first subfield must be
omitted. The parentheses must be writ-
ten. For example:

MVC 32(16,15),FIELD2
MVC FIELDi(16),FIELD2 (implicit

address)

Fields and subfields in a symbolic
operand may be represented by absolute or
relocatable expressions, depending on what
the field requires. Refer to Appendix B
for a detailed description of field
reguirenents.

Blanks must not appear in an operand
unless provided by a character self-
defining term or a character literal.
Thus, blanks are not permitted between
fields and the comma separators, between
parentheses and fields, etc.

In the following, when we speak of a
data field or storage field, we mean the
field in main storage defined by the fields
and subfields of the first or second
operand of a machine instruction.

Explicit and Implicit Adressing

Byte locations in storage are expressed in
binary form and are numbered consecutively
from hexadecimal 0000 to the upper limit of
the available storage. The first 144 bytes
(bytes 0000-0143) are reserved for internal
CPU control and thus not available to the
program. The location of any fiel3d or
group of bytes is specified by the address
of the leftmost byte.

Appendix B shows two types 5f addressing
formats for RX, SI, and S35 instructions.
In each case, the first type shows the
method of specifying an address explicitly
as a base register and a displacement. The
second type indicates how to specify an
implied address as a relocatable
expression.

EXPLICIT ADDRESSING

If you use explicit addressing in an
operand you must specify a bases register
and a displacement. For example, explicit
addressing is used in the first operand of
the following Move-Immediate instruction:

MVI D4 (B,),X'FO°

where D; is the displacement and B, is the
base register. B; may be an absolute
expression with a value between 0 and 15
inclusiva., D; may be an absolute expres-
sion with a value between 0 and 4095 inclu-
sive. The address specified in an operand
occupies one halfword of the object code.

At object time, the Model 20 differen-

tiates between a base register specifica-
tion of 0<B;4<7 and 8<B,<15.

Case 0<B;<7 (Direct Addressing)

The content of the halfword containing the
address is taken as the effective address
by the CPU. For example, the source
statement

MVI 4095(3),X'Fo"
will be assembled as follows

92F03FFF (object code).

The CPU takes the second halfword (3FFF)
of the object code directly as the effec-
tive address (16383) of the field addressed
by the first opsrand. Therefors, one
speaks of direct addressing.

Here, thz first four bits of tns halfwsord
containing the address specify one >f the
general registers 8 through 15. The other
12 bits contain the displacement. The CPU
adds the content of the general register to
the displacement to form the effective
address. For example, the source statement

MVI 1095(9),X'FO"
will be ass=2mbled as follows

92F09u47 (object code).

Machin2 Instractions 19

<

The CPU adds the content of register 9
{assumed to have been loaded previously
with a value of 14288 or 37D0 hexadecimal)
and 1095 (hexadecimal 447) to get the effe-
ctive address 16383 (hexadescimal 3FFF).
This is referred to as effective or
indirect addressing.

IMPLICIT ADDRESSING

If you use implicit addressing you must
specify an expression to represent an
address. The expression may either be
absolute or relocatable.

Absolute Expression

The value of the expression must not exceed
4095 (hexadecimal FFF). The Assembler
regards this absolute expression as displa-
cement and automatically assumes base
register 0. For example, the source
statement

BC 15,E07

where the absolute expression EOJ has the
value 194 (hexadecimal 0C2), will be
assembied as follows

47F00Q0C2 (object code).
\.—v./
B D
Again, at object time, we have direct

addressing as Jdescribed above.

Relocatable Expression

the value
calculate
To this
which

by issuing

In this case, the Assembler uses
of the relocatable expression to
base register and displacement.
end, you must tell the Assembler
register to use as base register
USING and DROP instructions.

You can find an explanation on how to.
use the USING and DROP instructions in the
section Base Register Instruction State-
_____ You will find that the implicit
addressing feature of the Assembler lan-
guage is a great help to you. It relieves
you of the necessity to separate each
storage address into a displacement value
and a base address value, thus eliminating
a likely source of error and reducing the
time reguired to check out your progranm.

For example, assume that FIELD is a
relocatable symbol, which has been assigned
a value of 7400. Assume also that the
Assembler has been notified (by a USING
instruction) that general register 8 cur-
rently contains a relocatable value of 4096
and is available as a base register. The
following example shows a machine instruc-
tion as it would be written in Assemnbler

[\
<

language and as it would be assembled.

Note that the value of D, is the difference
between 7400 and 4096 and that X, is
assembled as zero, since double indexing is
not possible on Model 20. The agsenbled
instruction is presaesnted in hexadecimal
notation:

Here
sing is
specify
through
through

again, direct and indirect addres-
possible depending on whether you
one of the pseudo registers 0

7 or one of the general registers 8
15. Direct and indirect addressing

A special application of implicit
addressing is relative addressing:

Relative addressing is the technijue of
addressing instructions and data ar=as by
designating their location in relation to
the location counter or to some symnbdlic
location. This type of addressing is
always in bytes, never in bits, halfworis,
or instructions. Taus, the expression #*+4
specifies an address that is four bytes
greater than the current value 2f the loca-
tion counter.

In the semquence of instructions shown in
the following example, ths location 2f the
SR machine instruction can be expressed in
two ways, ALPHA+2 or BETA-4, because all of
the mnewonics in the example are for
instructions with a length of two bytes.

e itk Tt |
| Name | Operation i Operand |
—— fommmm oo e {
| ALPHA | AR | 13,14 |
[| SR | 14,15 |
| | BCR | 1,14 |
| BETA | AR | 12,13 |
| | B | ALPHA+2]
L S 1

EXPLICIT AND IMPLICIT LENGTHS

The length in SS instructions can bes expli-
ci? or imﬂlied.. Tc imply a length, simply
omit a length field from the operand. The
omission indicates that the length field is

either of the following:

Aimnly

f the expression
ement, if an

explicit base and displacement have
been written (explicit addressing).

2. The length attribute of the expression
specifying the effective address, if
the base and dispilacement have been
implied (implicit addressing).

In either case, the length attribute for
an expression is the length attribute of
the leftmost term in the expression.

A self-defining term has the length
attribute 1. Both a symbol referring to a
machine instruction and a Location Counter
reference have the length of the instruc-
tion in which they appear. The length
attribute of a literal is determined the
same way as that of a constant in a DC
instruction.

An explicit length is written in the
operand as an absolute expression. The
explicit length overrides any implied
length.

Whether the length is explicit or
implied, it is always an effective length.
The value inserted into the length field of
the assembled instruction (object code) is
one less than the effective length. If the
specified length is a zero value, a zero is
inserted into the length fi=sld.

In the following example:

e i it hab sk 1
| Name]Operatlon |Operand |
pommmmm s b frmmmmm oo .
| | MVC | SYMBOL,A |
| |- I |
I I - I |
| SYMBOL |DS |cL3 |
RO Ty L i

three bytes are moved since the operand
SYMBOL has an implicit length of 3 as
defined by the DS instruction. As shown
below, the value inserted into the length
field of the object code is two.

[-=T=—T=—T--T--T-—1
[D2]02|Bs|D1{B2|D2]|
I W Sy Sy S S

Note the length specification of two.

Using an explicit length, e.g:
MVC SYMBOL(5),A

would have the following effect:

r~=T==y--1--T--7--3
{D2]04|B1|Ds|B2|D2]|
(I S S O S S

Note the length specification of four.

You may combine explicit and implicit
addressing with explicit and implicit
lengths. Examples are given below.

Examples

The following examples ares grouped accori-
ing to machine-instruction format. They
illustrate the various symbolic operand
formats. All symbols used in the examples
are assumed to be defined either within the
same assembly or by means of an EXTRY sta-
tement within another assembly. All syu-
bols specifying registasr numbers, wmasks,
and lengths are assumed to be ejuated, by
an EQU instruction, elsawhere to absolute
values.

Implicit addressing, control section
addressing, and the function of tha USING
Assembler instruction are not considered
here. For discussion of thes= considera-
tions and for exanples of coding sejuences

itk sttt sttt e 1
INamelOperatlonloperand |
e e T :
[a1 |AR j11,12 |
a2 |sr |REG11,REG12 |
{B1 |BASR |REGLO,D |
|B2 | BASR | LINKREG, LINKREG |
jc1 |BCR |12, LINKREG I
|c2 | BCR |HIGH, LINKREG |
S N, A e e J
RX Format

The first operand must be an absolute
expression. Explicit or implicit addres-
sing or a literal may be used in the second

operand. A length cannot be sp=zcifiesd.

| S Eteibaty Sttt bl 1
lNamelopﬁratlonleerand |
e B e y
jal |LH | CALZREG, 38(0,10) |
a2 |ad | CALCREG, DISPL1(),RE310) |
|BL |CH | CALCRES, MAXIMUM |
|B2 |BC | LOW, *+8 i
B3 |sH | CALCRES, BIN100D |
|B4 |sTd | CALCREG, RESULT |
|B5 |BAS | REGS, 52N I
1 |AH |REa14 =H'1000"' |
b]

Instructions Al and A2 use =2xplicit
addressing; the first subfield within the
parentheses must not bz omnitted and must be
zero because double indexing is not poss-
ible in the Model 20. 1Instructions Bl, B2,

Machine Instructions 21

B3, B4, and B5 use implicit addressing.
Cl contains a literal.

SI_Format
Explicit and implicit addressing may be
used in the first operand. The second

Armsmwmam A o 4F meer — must hee on ahanineos
UpTL Qi <L rily US L T Gl QuouvLa LT

expression with a value between 0 and 255
(hexadecimal 00 and FF) inclusively. A
length cannot be specified.

[m===7-—=-———-- e 1
iName|OperationjOperand i
R Sttt frmo e oo {
A1 JCLI	40(9),X"40"	
a2 [MVI	DISPL(REGY) , BLANK	
A3	HPR	STOPO1DO, 0
B1	NI	SWHBYTE, X'FF'-BIT0-BIT7
B2	joI	SWBYTE,BIT0+BIT7 I
IB3	IM	BYTE, MASK [
B4	SPSA	NENPSW
[t NI N RS 4

Instructions Al, A2, and A3 use explicit
addressing, instructions B1, B2, B3, and B#4
use implicit addressing.

SS Decimal Format

A combination of explicit and implicit
addressing with explicit and implicit
length is possible in both operands. Thus,
for both operands you have the following
four possibilities:

» explicit addressing with explicit length
e explicit addressing with implicit lpnth
¢ implicit addressing with explicit length
¢ implicit addressing with implicit length

Literals may be used in the second
operani only.

|B3 |PACK {PFIELD,ZFIELD(L'PFIELD+1)

|B4 |UNPK |ZFIELD,PFIELD

{Cl |YAP |RESFIELD,=P'0'

| AN S g

S it Kt ittt 1
| | Oper-| |
|Name|ation|Operand |
e B T 1
a1 |MP |20(10,8),10(6,13) |
1a2 |DP |10 (LEN10,R8) ,DISPLO(SIX,12) |
a3 |AP |DL4(9,REG11),0(,10) |
|A% |SP |FIVE(LFOUR,RBASE),ZERO(,R311) |
{B1 |C |RESULT(2) , PFOUR(1) [
|B2 |MVO |FIELD2(LEN3),FIELD1 I

I

|

|

1

All a-instructions use explicit addres-
sing and all B-instructions use implicit
addressing. Explicit length is shown in
the second operand of instructions a1, 22,
Bl, and B3; implicit length is shown in the

28]
(%]

second operand of instructions A3, Ab4, B2,
and B4. Instruction C1 contains a literal.

S5 _Logical Format

Explicit and implicit addressinjy may be
combined with explicit and implicit length
in the first op°rani just as in the SS

uct,.x..ua.i. .Lu...mal_- .Lni Llc DCL\)A‘L«. Jt;\.,...A‘uu,
explicit or implicit addressing or a liter-
al may be used.

7T T P ——— - ——— 1
|Name|Op=rat10n|Operani |
St Bttt ettt ettt i
|Al |MVN |2(20 9),22(9) |
a2 |Mvz |DISPL+19(R9),DISPL+18(RY) |
|B1 |TR IFIELD(lol,TRAPABLE

|B2 |CLC | FIELD+1(L'FIELD-1) ,FIELD) |
|B3 |ED | PATTFLD, RESFLD |
|c1 |MvC | PRINTAR, =C*RESULT" [
S SRS L e e i

Instructions Al and A2 show explicit
addressing, instructions B1, B2, and B3
show implicit addressing. Explicit length
is shown in instructions Al, Bl, and B2 and
implicit length in instructions A2, B3, and
C1. Instruction C1 uses a litesral.

Types and Functions of Machine
Operations
There are five types of operations:

1. Binary arithmetic operations.

2. Decimal arithmetic opesrations.

4. Branch operations.
5. I/0 operations.

These operations differ not only in
their internal logic but also in thz format
of data, use of registers, and format of
instructions. The first four operations
are discussed in the subsequent sections.

Some operations set a condition code in
bits two and three of the Program Status
Word (PSW). This condition code indicates
the relationship (less than/greater than,
zero, negative, positive etc.) between the
two operands as a result of the last opera-
tion effecting the condition code setting.
For details about the PSW see the SRL pub-
lication IBM_System/360 Model 2) Functional
Characteristics, Form GA26-5847.

BINARY ARITHMETIC DPERATIODNS

Binary arithmetic is used for operanis like

addresses, indexes, counters, and binary

data. The length of each operand is one

halfword including the sign. Negative num-
bers are given in the two's-complement
form. The first operand must be in one of
the general registers. The other operand
may be either in a register or in main
storage. For detailed information refer to
the SRL publication IBM System/360 Model 20
Functional Characteristics, Form GA26-5847.

Data Format

Binary numbers have a fixed length of one
halfword (16 bits). The first (leftmost)
bit contains the sign, the other 15 bits
the binary value. Binary numbers may be
stored in one of the general registers or
in main storage. In main storage, the
address of the left byte must be even.

Binary halfword

Representation of Binary Numbers

Binary numbers are represented as signed
integers. Positive numbers are represented
in true form with a 0-bit as sign. Nega-
tive numbers are in the twos-complement
form with a 1-bit as sign. The twos-
complement form is found by reversing each
bit (0 to 1 and 1 to 0) and adding a 1 to
the rightmost bit.

A zero is always positive by definition.
The absolute value of the lowest possible
negative number is higher by 1 than the
highest possible positive number.

Highest possible positive number:

|01111111|11111111|

=215-1=+32767

Lowest possible negative number:

|10000000‘00000000|=—(215)——32768

MACHINE FORMATS OF INSTRUCTIONS FOR BINARY
OPERATIONS

Instructions for binary operations use the
RR- or RX-Format.

RR-Format

R; indicates a general register contain-
ing the first binary number and R, a gener-
al register containing the second binary
number. R; and R, may refer to the same
register. The result of an instruction in
the RR-Format replaces the first opzsrand.

RX-Format

------------- S B e bttt
|OP'COde [R1 [|X2=01B> | D2 |
________________ I N |
0 8 12 16 20 31

Ry indicates a general register contain-
ing the first binary number. The address
of the s=cond binary numbsr is form=d by
adding the contents of the register named
in the B,-field to the 3displaczment given
in the Dy-field.

Condition Code_After Binary Operations

t

AR-Add Register	zero	[<zero	>zero	-
SR-Subtract Reg.	zero	<zero	>zero	-
CH-Comp.Halfword*	equal	low	high	-
AH-Add Halfword	zero	<zero	>zeroj-	
SH-Subtract Halfw.	zero	[<zero	>zero	-
b e Lo Lo Lo Lo}

*first operand compared to second.

A1l other binary operations leave the con-
dition code unchanged.

BINARY ARITHMETIC ERROR CONDITIOJNS

Error conditions that may occur during the
execution of binary operations are:

1. Operation code invalid
2. Addressing error

a. An instruction address 2r an
operand address refers to the pro-
tected first 144 bytes of main
storage (addresses 0 to 143).

b. An instruction address or an
operand address is outside avail-
able main storage.

c. The last (highest) main-storage
position contains any part of an
instruction that is to be executed.

d. The R; or R, fields of 2 binary
instruction contain binary values 0
through 7.

Machine Instructions 23

)
»
]
o}
D
»]
{nd @
-
de
2}
)
t
jbe
Q
=
D
2l
2]
o]
N

of an instruction

e., no halfword
boundary.

b. The half-word second operand is not
located on a halfword boundary.

c. Bits 12 through 15 of an RX format
instruction are not all zero.

4. Binary overflow check

5. CPU parity error

[mm——m—smos————mese——— b Suteteiedutaied Setebebtet 1

| Name |Op~code|Fornat|
e S !

! nda Dnrn:i-p'r (AR) ! 1A I: RR !

|s ubtract Register (SR)| 1B] RR |
|Store Halfword (STH) | 40 | RX |
{Load Halfword (LH) | us8 | RX |
Compare Halfword (CH)	49	RX
add Halfword (AH)	ua	RX
Subtract Halfword (SH)	4B	RX
______________________ Lol

AR -- ADD REGISTER

[Sinuieebeieied okttt Bt i 1
| Name |Operat10n|Operand |
pooome S oo i
|blank OrlAR IR]_' R2 I
|symbol | i |
........ Y Y |
Function: The content of the first operand

field is added to the content of the second
operand field. The result is stored in the
register specified by the first operand.
The second operand remains unchanged.

The sign is Jetermined by the rules of
algebra. A zero result is always positive.
If the result is higher than 215-1 (=32767)
or lower than -225 (=-32768), a binary
overflow check occurs.

Condition Code:

00 Result = zerxo
01 Result < zero
10 Result > zero

Example: Assume .register 8 contains hexa-
decimal 0123 and register 9 contains hexa-
decimal 0532.

Source statement:

AR 8,9

From this source statement the Assembler
creates the following object code:

24

.F
|
]
i
!
]
|
]
|
i
|
|
]
|
I
— - —y

After execution, register 8 contains
hexadecimal 0655. The condition code is

i0.

SR -- SUBTRACI REGISTER
et e i 1
|Name |Operat10n|Operand |
———————— I e
|blank or|SR |R1,R2 |
|symbol | | |
________ Y
Function: The content of the second

operand field is subtracted from the con-
tent of the first operand field. The
result will be in the register specified by
Ry. Both operands and the result consist
of 15 numeric bits plus the sign. The
second operand remains unchanged.

The subtraction is performed by adding
the twos-complement of the second operand
to the first operand. Aall 16 bits of both
operands are added. If the result is high-
er than 215-1 (=32767) or lower than -21S
(=-32768), a binary overflow chack occurs.

A register may be cleared to zero by
subtraction from itself.

There is no two's-complement for the
highest negative number. This number
remains unchanged when a complementation is
performed. Nonetheless, the subtraction is
still executed correctly.

Condition Code:

00 Result = zero
01 Result < zero
10 Result > zero

______ Assume register 8 contains hexa-
de01ma1 047F and register 13 coatains hexa-
decimal 00D7.

Source statement:

SR 8,13

From this source statement the Assemnbler
generates the following object code:

------- T--T7=1
|DP'C°59|R1!R2|
f—————- +--4+--4
| 1B 8 |D |
| S, R S P |

After execution register 8 contains
hexadecimal 03A8. The condition code is
10‘

STH -- STORE HALFWORD

ioperat10n|Operand |

b ¢ e e 1
| blank or|STH |Ry¢D2(0,B3) |
lsymbol | | |
_____ e e
Function: The content of the register spe-

cified by Ry is stored in the halfword at
the main-storage location addressed by By
and D,. The first operand remains
unchanged.

. Condition _Code: No change.

Example: Assume register 9 contains hexa-
decimal 68AF, register 11 contains hexade-
cimal 001E, and the displacement in the
second operand is hexadecimal 29E (decimal
670).

Source statement:
STH 9,670(0,11)

From this source statement the Assembler
generates the following object code:

ettt St ettt Sl St |
|Op-code|Ry [X2=0|B2|Ds |
p-—me-- t--4-—--t--4---
|50 {910 |B |29E|

Lk L__d___1

After execution the field starting at
storage location hexadecimal 2BC (decimal
700) contains 68AF.

LH -- LOAD HALFWORD

| Aottt Shabataia b Sastababah b eiabebb th -]
| Name loperatlonlOperand |
b e e 5
8

|blank or|LH |R1,Dz(0 By) |
|symbol | | |
L L A e e e e e o e 4

Function: The halfword at the main storage
location addressed by B, and D, is placed
into the register specified by Rj;. The
second operand remains unchanged.

Condition Code: No change.

Example: Assuame register 9 contains hexa-
decimal AAAA, register 12 contains hexade-
cimal 0032, the displacement in the second

operand is 1F4 (decimal 500), and the field
starting at storage location hexadecimal
226 (decimal 550) contains BOAF.

Source statement:

Le 9,500(0,12)

From this source statemsnt the Ass=2mbler
generates the following object code:

After execution register 9 contains
hexadecimal 80AF.

CH -- COMPARE HALFWORD

r - T S S 1

| Name |Operat10n|0perand |
+ - e e e e e 2 o e o q
T

|blank or|CH |R1,)2(0 83) |

|symbol | | [

L - L - L - i

Function: The content of the register spe-

cified by R; is compared with the halfword
at the main storage location addressed by
B, and D,. The comparison is algebraic,
i.e. the signs must be taken into consi-
deration. Both operands remain unchanged.
A condition code is set.

Condition Codes:

00 First operand = second operand
01 First operand < second operand
10 First operand > second operand

Example: Assume register 9 contains hexa-
decimal 0001, the displacement in the
second operand is hexadecimal 690 (decinal
1680), register 13 contains hexadecimal
0025, and the halfword at storage location
hexadecimal 6B5 is AF99.

Source statement:
CH 9,1680(0,13)

From this source statement the Assembler
generates the following object code:

PR RN R Qe——

After comparison the resulting condition
code setting will be: 10.

Machine Instructions 25

AH -- ADD HALFWORD

[====== i Shrinddadetit teiesderie it ke |
| Name |Operat10n|Operand |
----------------- e e L L LRt |
|blank orlAH |R1+D2(0,B2) |
|symbol | | |
...... JE S PP
Function: The halfword in main storage,

addressed by B, and D, is added to the

- £ b £
content of the register specified by R,.

The sign is determined by the rules of
algebra« A zero result is 9051t1ve by
definition.

If the result is higher than 215-1
(=32767) or lower than -215 (=-32768), a
binary overflow check will occur.

00 Result = zero
01 Result < zero
10 Result > zero
Example: Assume register 9 contains hexa-
decimal O47F, register 11 contains hexade-
cimal 0028, the displacement in the second
operand is 1EA (decimal 490), and the field
at storage location hexadecimal 212 (530)
contains hexadecimal 1F29.

Source statement:
AH 9,490(0,11)

From this source statement the Assembler
generates the following object code:

et LAY DL P L DLty

|Op-code Ry |X2=0[B2 |Da |

After execution register 9 contains
hexadecimal 23A8 and the condition code is
10.

SH -- SUBTRACT HALFWORD

t 1

}|blank or|SsH
|symbol |
i ;

i

Function: This instruction is identical to
the Add Halfword instruction with the fol-

lowing exception: The two's complemrent of

the second operand, addressed by B, and Da,
is added in place of the true value.

26

Condition Code:

00 Result = zero
01 Result < zero
10 Result > z=ro
Example: Assume register 9 contains hexa-

decimal O47F, register 11 contains hexade-
cimal 0050, the displacement in the second
operand is hexadecimal 320 (deciual 800),
and the field starting at storage location
hexadecimal 370 (3ecimal 880) contains

hovadernimal 0ON0OND7T
nexagecimasr Vvl .

Source statement:
SH 9,800(0,11)

From this source statement the Asseunbler
generates the following object code:

(o]
o]
{
Q
9}
Q
o
o
P
P4
N
Il
o
w
Y
=
Y
—

After execution register 9 contains hexade-
cimal 03A8 and the condition code is 10.

DECIMAL ARITHMETIC OPERATIONS

Decimal arithmetic can be performed only
with data in packed format. Packed format
means that thsre ars two 1igits in one byte
except for the low order byte. It contains
one Jdigit and the sign.

Data is transferred to and from the
external I/J devices in zoned format.
Thus, the data has to be packed and
unpacked before and after processing respe-
ctively. 1In zoned format, each byte con-
tains a zone in the left halfbyte and a
digit in the right halfbyte except the last
one which contains the sign and a 3igit.

The address in an instruction always
specifies the left-most byte of the 3Jata
field. The 1l2ngth field in an assembled
instruction indicates how many bytes are
part of the Jata field in addition to the
addressed (left) byte.

Data_Format

Decimal operations are performed in main
storage. The data fields may have a length
from 1-16 bytes. A field may start at any
address inciluding an odd oSne. In zdned
format there may be a maximum >f 16 3Jigits,
in packed format a maximum of 31 digits
plus the sign in a field. The two d2pesrands
may be of different length. Multiplicani
and divisor are restricted to a maximam of
15 digits plus the sign.

The values in the operand fields are
assumed to be right aligned, with leading
zeros where rsguired. The Operands are
processed as integers from right to left.
If a result extends beyond the field indi-
cated by the address and the length field,
the extending (high order) part is ignored
and the condition code is set to 11.

Represantation_of Numbars

Decimal numbers consist of binary cd3ded
digits and a sign. The decimal digits 0-9
are represented in the four bit code by the
bit combinations 0000-1001.

The combinations 1010-1111 are reserved
for representations of a sign (+,-). 1011
and 1101 represent a minus, the other four
combinations a plus. The representations
1100, 1101, 1010, and 1011 are created dur-
ing calculations in main storage.

Negative nuambers are represented in true
form.

The two Jdecimal formats are:

Packed decimal number (e.g. five digits)

Zoned decimal number (e.g. three digits)

|Zone |Digit|Zone |Dlglt|51gn |Dlglt|
| S, § R ¥ S SRR

Machine Formats of Instructions for Decimal
Arithmetic

Decimal op=2rations havs th2 35 formnat:

OP-code (L} | Ly | By D, B D,

The fields B, and D, give the main-
storage ad3ress of the left byte of the
first data field; L, gives the numnber of
bytes in addition to the leftmost byte. Lj
may vary between zero and 25 inclusively.

In the source instruction statement you
specify the =2ffactive langyth of the Jata
field. The Ass2mblar ins2rts a valae one
less than the effective length into the
length field of the assembled instruction.

The instruction fi2l3ds B;, J,, and L,
give the respective informatiosn for the
second Jdata field.

Th= ra2sult of a Jecimal opsration
replaces the content of the first 3ata
field. It cannot occupy more storage area
than indicated in the L, fi=1l3. Thz seconi
data field remains unchanged. Exceotion:
overlapping fields.

The general registers are not affected
by decimal operations.

CONDITION CODE AFTER DECIMAL OPERATIONS

The decimal operations listed in the table
bzlow s2t a condition cods.

r-—--- T T T-—-—=-- L Stiiedabsiistte 1
| | 0o | 01 | 10 | 11 |
p-amm- fmmmman o oo R {
|ZAP | zero | < zero| > zero] - |
CP* equal low high -
)

|AP | zero | < z2ro| > zero| overflow |
|Sp | zero | < zero| > zerol overflow |
b Lo ¥ R S Sy R, 1

*First operand compared to aecond.

A1l other 3=cimal operations leave the
condition code unchanged.

DECIMAL ARITHMETIC ERROR ZONDITIONS

The following error conditions nay occur
during the execution of decimal arithmnetic
dparations:

1. Opsration co3e invalii.
2. Addressing error

a. An instruction address or an
operand address refers t> thes oro-
tactel first 144 bytes of main
storage.

p. An instruction adirsss >r aa
operand address is outside avail-
able storage.

c. An instruction occupies thes last
two (highest) main-storage
oositions.

3. Specification error
a. The low-ordsr bit of an instruction

address is one, i.e., n> halfword
oouniary.

Macainz Instructions 27

b. For Zero and Add, Compare DJecimal,
333 D=cimal, and Subtract Decimal
instructions the length code L, is

vvvvvvvvvvvvv Lengtn Ccoldc 1

jreataer than the length code Ll.

c. For Multiply Decimal and Divide
Decimal instructions, the length
code L, is greater than 7 or great-
er than or egual to the length code

I-‘l'

Aixitr ~cndn nf 2an Aancoranid
2331% CoZe CI an cperana

ign or

in th2 Zero and Add, Compars Deci
al, Add Decimal, Subtract)ec1mal,
Maltiply Decimal, or Divide Decimal
instruction is incorrect.

b. The operand fields in these
instructions overlap incorrectly.

c. The first operand in a Multiply
Decimal instruction has insuffi-

cient high-order zeros.
5. Decimal divide check
The resultant guotient in a Divide
Decimal instruction exceeds the speci-
fied Jata field instruction (including
division by zero) or the dividend has
no leading zero.

6. CPU parity error.

INSTRUCTIONS FOR DECIMAL ARITHMETIC

e ikt beie bt L it St 1
| {op= |

| Name |codelFormat}
b oo L S 1
[Move with Jffset (MVD) i FL | ss |
| Pack (PACZK) | F2 | 33

| Unpack (UNPK) | F3 | ss
|Zero and Add Packed (ZAP) | F8 | 33 |
Compare Decimal Packed (CP) | F9 | SS
|Add Decinal Packed (AP) | FA | ss |
{Subtract Decimal Packed (3P} FB | 335 |
|Multiply Decimal Packed (MP)| FC | 55 |
|Divide Decimal Packed (DP) | FD | SS
SIS Lemecdoo o 1

MVO -- MOVE WITH OFFSET

|Name |Operat10n|0perani |
 ——— oo Fommmmm oo 1
| blank or|MvO |D1 (L4 (B1) D2 (Ly,By) |
|symbol |

L

Function: The contents of the second data
field are moved to the location specified
by the first operand. The mnove is executed
with an offset of half a byte (one 3igit)
to the left. The right halfbyte of the
first data field remains unchanged. Ther
is no check for wvalidity. The fields nee

28

not have egual lengths. Leading zeros are

inserted if tne first field is longer than
the sesconi. If the s2cond £i=213 i3 lonjer

than the fl the high-order digits of

a -~ ~ RN ~
2 3Ar2 13jnoraa.

The move procesds from right to left one
byte at a time. The second field nay ovesr-
iap the first =zxcluiing ths rightmost byte
of the first field.

Example: Assume rajister 12 contains hexa-
Jecimal 0250, r=2gister 15 contains aesxaie-
cimal OU4O0F, the displaczmant given in both
operands is zero, storage location hexade-
cimal O40F-0412 contains hexadecimal
123456, and storage location hexadecinal
0250-0253 contains hexadecimal 77889902.

Source statement:
MVO 0(u,12),0(3,15)

From this sourcz statem2nt th2 Ass=mbler
produces the following object code:

e e o e It il Sttt
|9p-code|L; [La|By|Dy 321Dz |
------ +--+--4--4--—4--4---
| F1 13 12 |c [000|F [200]
e e Lo_l__Ll__l___l__i___I

After execution the field at locatioa
hexadecimal 0250-0253 contains hexadecinal

0123456C.

PACK =-- PACK

[-——----- b Snfutinhabedaits St 1
|Nama |Opcrat10n|0p°rand |

lblank orlPA” |D1(L1,Bl) Dy (L,,B5) |
|symool | | |
________ Y PR |

Function: The unpacked content of the
second data field is packed and placed into
the first data fi=l1d. Th=2 second data
field must contain an unpacked 3decimal
number. It may have a maximum 3ize of 16
bytes. There is no check for validity of
digits and sign.

The lengths of the fields need ndt be
equal. Leading zeros are inserted if the
first fie=ld is too lony for tnes resuit.

The high-order digits of the second fiel3
are ignored if tns first field is t20 short
for the result. Thes fields ars processsl
from right to left one byte at a time.

No change.

______ Assume register 11 contains hexa-
dec1mal ouun, register 9 contains hexade-
cimal 02C0, the displacement in the first
operand is hexadecimal 244, in the second
operand it is hexadecimal 180, and that
storage location hexadecimal 0440-0444 con-
tains hexadscimal F1F2F3Fu4C5.

Source statesmant:
PACK 580(4,11),384(5,9)

From this sourczs statemant the Assambler
produces the following object code:

[===~ T--T~"T-"-T-"71~ -1
[Op-code|L, |L2|BsDy |B2|D2 |
e e s S
| F2 13 |4 |B {244}9 |180]
bbb 1Lt _L__L__.)

After execution the field at storage loca-
tion hexadecimal 068E contains 0012345C.

UNPK -- OUNPACK

1Name lOperatlonlaperand |

p-mmmmm- e Frmmmmmmmmmmm oo i
|blank or|UNPK IDy {(Ly,B3),D5(L,,By) |

Function: The packed contents of the
second data field are changed to zoned for-
mat and stored in the first data field.

The second data field must contain a packed
decimal number. Sign and digits are not

checked for wvalidity.

After procsssing, the zoned decimal
number in the first data contains the sign
thigh-order four bits) and one digit in the
rightmost byte. Each of the other bytes
contains a zone and a digit.

The fields are processed from right to
left. If the first operand field is too
long it is filled with 1l2ading z2rd>s. If
the first operand field is too short to
contain all th= digits of the sescond
operand, the leading digits are ignored.
The operands may overlap but you must exer-
cise caution.

Condition Code: No change.

______ Assume register 10 contains hexa-
de01mal 0FA0, the displacement in the first
operand is hexadecimal FB4, that in the
second operand is hexadecimal 65, and loca-
tion h=xadecimal 1004-1007 contains hexade-
cimal 0123456D.

Source statement:

UNPK 4020(5,10),100(4,10)
From this sourcs statemsnt ths Ass=ubler
produces the following object code:

TTTTTTrITTrTITTrYTTTIrITITTrTTrT/
[op-codejL, |La|By|{Dy |Ba|Da|
p—t-—t-—f--t-—1--4--1
[F3 |4 |3 |A |FB4{A |55]
| AR WY WY Y RN R N

After exscution location hexadsacimal 1F54-
1758 contains F2F3FUF5D6.

ZAP -- ZERD AND ADD PACKE)

| blank or|ZAP
|:ymbol |
________ U PSR |

|D1(Ly,By),02(La,Bs) |
[

Function: Th2 first data field is z=ro=3
out and the contents of the second data
field are placed into the first data field.
This operation is eguivalant t5 an addition
into a zesro-field. The second field must

be in packed format.

A zerdo result is positive by 3definition.
The second field may be shorter than the
first fi=ld. If the second fi=ld is long-
er, then a machins stop occurs and ths
instruction is not executed.

Processing proce=ds from right to leoft.
All digits and the sign of the second field
ara checkad for validity. Higa ordsr z2ros
are supplied if needed. The fields nay
overlap if thz rightmost byte of th2 first
operand is coincident with, or to th= right
of, the rightmost byte of the second
operand.

condition Code:
00 Ra2sult = z2r>

01 Result < zero
10 Result > zero

______ Assume register 10 contains hexa-
dec 1nal 01F4, ta= displacemant in taz first
operand is hexadecimnal 294, that in the
sacond opsrand is hexadecimal 3734, and
storage location hexgadecimal 056E-0570 con-
tains 01234D.

Source statement:
ZAP 660(4,10),890(3,10)
From this source statenent the Asseubler

produces the following object coie:

Machinz Instructions 29

 attl Tt Tl Dbt Dbt A Sl DS
|Op-code|L; [La|Ba|Ds [Bz2|Da |
beecem e SR L e e DL Lt |
| F8 I3 2 |a [294]A [37a]
b iAo _A___ Lo _A___1

After executiosn location 0487-048A contains
0001234D.

——— o - = e - —— - " —————— - ———————

|blank or|CP
|symbol |
L

________ The contents of the first data
field are compared to the contents >f the
second data field and the result is indi-
cated by a new condition coie.

The comparison proceeds from right to
left and is algebraic, i.e. the sign and
all digits are compared one byte at a time.
{(Negative values are smaller than positive
values).

A negative zero is egual to a pdsitive
zero. The sign and all digits are checked
for validity. A halt occurs if the second
field is longer than the first field and
the instruction is not executed. If the
second field is shorter it is extended with
leading zeros.

The contents of both fields do not
change. An overflow cannot occur. The two
fields may overlap if the rightmost bytes
coincide. Therefore, it is possible to
compare a number to itself.

Note the difference betwszen "Compare
Decimal Packed" and "Compare Logical Chara-
cters"™ (CLCZ).

Condition Code:

00 First operand = second operand
01 First operand < second operand
10 First operand > second operani

Example: Assume register 12 contains hexa-
decimal 0040, register 11 contains hexade-
cimal 02F0, the displacement in the first
operand is hexadecimal 640, that in the
second operand is hexadecimal 3E8, location
hexadecimal 0680-0682 contains 01000C, and
location 06D8-06D9 contains 999C.

Source statement:

cp 1600(3,12),1000(2,11)

30

From this source statement the Assenbler
produces the following object code:

[Frr === T~ =T~ 7T~ " 7T~ ~"7~"7v~—7
10p-code|Ls | Ly |By|Ds |B2|D2 |
S R et Ml S N
| F9 12 |1 |C |640|B |3ES8|
| ISP I KN Uty EpUy Ry S |

After comparison the condition code is 10.

AP -- AD) DECIMAL PACKED

_______________________________________]
|Vame |Jperat10n|39erand |
pommmm o pommmmmm- fomom oo 1
| blank or|AP DL (Ly,B1),05 (La,3y) |
IoY“bDl | | |
________ Y S |
Fanction: The contents of the secd>ad Jata

field are added to the contents >f the
first data field. The result replaces the
content of thz first fi=l3.

The sign is Jzterminz2d by th2 rules of
algebra. A zero result is positive by
definition. Exception: It is possible
that a remaining zero result after an over-
fiow has a negative sign. A condition code
is set.

If thes second fi=21ld is long=r than the
first a program error halt occurs and the
instruction is not executed. If the second
field is shorter than the first it is
expanded with leading zeros and addition
will taks place normally. Signs and digits
are checked for validity. Addition pro-
ceeds from right to left. The result is in
packed format.

The two fields may overlap if the right-
most bytes coincide. Thus, it is odssible
to doubls a number.

condition Code:

00 Result = zero
01 Result < z=2ro
10 Result > zero
i1 Overflow

______ Assume rejistar 8 contains hexa-
de01ma1 0014, storage location 3323 (hexa-
decimal) contains 00222D, storage location
500 (hexadecimal) contains C1003C, the 3is-
placement in the first operand is 315
(hexadecimal), and that in the second
operand is WEC (hexadecimal).

Source statement:
Ap 789(3,8),1260(3,8)

From this source statems
produces the following obj

iuinhaintatel Suink Suiu ein Siuhud Subat Sabaiad |

|Op-code|Ly [L2|Bs|Ds |B2|D2 |

'....-.._._--- .._+__ S (R RO -

| FA 12 12 |8 |315|8 |4EC|

L 1 L L L L L 3

After execution storage location 0329-032B
(hexadecimal) contains 00778C.

SP -- SUBTRACT DECIMAL PACKED

=== ——mpe———==—- - —_———

|blank or}SP
|symbol | | |
L

~-L 4 -

Function: The contents of the s=cond field
are subtracted from the contents of the
first Jdata field. The result is placed
into the first field. The sign is deter-
mined by the rules of algebra. A zero
result is positive by definition. Excep-
tion: A zero result remaining in case of

an overflow may have a minus sign.

If the second field is longer than the
first a program error halt occurs and the
instruction is not executed. If the second
field is shorter, it is expanded with leai-
ing zeros and subtraction will take place
normally.

All digits and the signs are checked for
validity. The operation proceeds from
right to left by reversing the sign of the
second number and then adding the second
number to the first. The result is in
packed format.

The fi=1l3ds may overlap if the rightmost
bytes coincide. Thus it is possible to
clear a field to zero.

Condition Code:

00 Result = zero
01 Rzsult < z=2ro
10 Rasult > zero
11 Overflow
Example: Assume register 9 contains (hexa-
decimal) 00C8, register 8 contains {(hexade-
cimal) 012C, storage location 898 (hexade-
cimal) contains 012C, storage location OCEH
(hexadecinal) contains 008C, the displace-
ment in the first field is 7D0 (hexadecim-
al), and that in the second field is BBS
(hexadecinal).

Source statement:

Sp 2000(2,9),3000(2,8)

From this source statement the Assembler
produces the following object code:

YT YTT YT T T
|Op-code|Ls|L2|Bs|Da |B2|D2 |
t-————t-—-t-—-t-—t-——=f--f-—4
| FB |1 [1 |9 |7D0|8 |BBS|
b AL M __L___1

After exacution storage location 0838
(hexadecimal) contains 00a0. The condition
code is 10.

MP -- MULTIPLY DECIMAL PACKED

|Op°rat10n|Op=rand |
', L - -
|blank OrIMP |D’_(L1,Bl),)2(L2'Bz) l
|symbol | [|

L

L- - -

Function: The multiplicand in the first
data field is multiplied by the multiplier
in the second data field. The product is
placed into the first f£ield. The saconi
field may have a maximum of 15 digits
(L>=7) plus the sign and must bz shorter
than the first operand. If L, > 7 or Ly 2
I; a program error halt occurs and the
instruction is not executed.

The length of the product is sgual to
the sum of the lengths of multiplier and
multiplicand (L of product = L,+L,).
Therefore, the multiplicand must be
expanded with leading zeros by the number
of bytes of the multiplier. Otherwise a
halt occurs. An ovarflow is not possible.
The product may have a maximum length of 30
digits plus the sign. It contains at least
one l2aiing z=ro.

The factors and the result are consi-
dered to be signed integers. The sign is
determinad by the rules of algzbra. The
fields may overlap if their rightmndost bytes

coincide. Thus, it is possibla to sguare 3
number.
Note: You can save computing time by using

the largsr of thz two factors as thes seconl
operand.

Condition Cods: No changs.

1. Multiplicand x multiplier = product
MAND X MOR = PROD

2. Length MAND + length MOR = length PROD

Machine Instructions 31

3. The MAND must be right-aligned and have
leading zeros before the multiplication
is ex=scuted.

=== L Settuteiatuietiit Sttt ittt 1
| Name | Operation | Operand |
e i !
| i . i i
| [| |
| | s | |
1 I Zap i PROD, MAND i
2 1 I MP | PROD,MOR |
! b l l
	.	
I .		
MOR	DS	CL3
MAND	DS	CL2
PROD	DS	CLS
I I - | |
! L. | I
! . I |
. T O R U J

Assume the Assembler has allocated
storage location (hexadecimal) 1C92 to sta-
tement MOR. . Then, MAND has location 1C95
and PROD has location 1C97. Further assume
that the storage locations implicitly
addressed by MOR and MAND contain 37219D
and 425C respectively and register 12 con-
tains (hexadecimal) 1194. (The Assemblex
automatically calculates the displacement
shown in the object coding by subtracting
the contents of register 12 from the loca-
tion counter value of the symbolic
address).

Source statemant:

ZAP PROD,MAND

Assembler produced cbiect code:

[————=——T=—=F7~—T--T-—-T--v———1
|Op-code|Ls|Lz2|Bs{Ds [Bz2|Dz |
| atadaialait TXE EL EES Tl R e

| F8 |4 J1 |C |BO3|C |BO1]
e e e bewleobooboo b L __}
and

MP PROD,MOR
Attt Stet Sated Subet dttubud Safed bl

iOp-code|Ly {L2{BsiD1 [B2{D2 |

e e B oo
| FC |4 |2 |2 |BO3|C |AFE|

| N L 1 1 1 1 dood

The results of ths two instructions is
shown in Figure 5.

32

MOR 37219 00— 2
o (77

‘ H
PROC {000000425C}— 2

Note: Maximum length of product is 16 bytes.
Maximum iength of MOR is 8 byies.

r*m [o158180750

Figure 5. Decimal Multiplication

DP -- DIVIDE DECIMAL PACKED

T
|Operation|Operand |

.l.
|blank OrlDP |D1(L1'Bl),D2(L2,B3) |
|symbol | |]
| § U, 1

Function: The dividend in the first data
field is divided by the divisor in the
second data field. The guotient and the
remainder are placed into the first 3Jata
field.

The juotient occupiss the left part of
the first field, i.e. the address >f the
quotiant is the same as the address of the
dividend. Th2 remainder occupiess the right
part of the first field and has a length
egual to that of the divisor,

The guotient and the remainder together
occupy thz entirs dividend field (first
operand). This means the dividend fieid
must be large enough to accomodate a divi-
sor of maximum length and a quotient of
maximum length. In the extremes case the
dividend field has to be expanded w#with
zeros to the left by the number of bytes of
the divisor.

The length of the juotient field (in
bytes) is Ly-La. The divisor field nay
have a maximam of 15 digits plus the sign
and must be smaller than the dividend
fiels.

If L, > 7 or L, 2 L, a halt cccars aad
the operation is not exescuted. The divi-

Dividend, 3ivisor, guotient, and
remainder are signed integers. The sign is
determnined according to the rules of aljge-
bra from the signs of dividend and divisor.
The sign of the remainder is always ident-

ical to the sign of the dividend. This
also holds true if the quotient or the
remainder are zero.

If the quotient contains more than 29
digits plus the sign, or if the dividend
has no leading zero, then a halt occurs and
the operation is not executed. The divisor
and the dividend remain unchanged and there
is no overflow. The two operands may over-
lap if their rightmost bytes coincide.

Condition code: No change.

Example:
1. Dividend : Divisor = Quotient
DEND H DOR = QUOT

2. Length of processing field = length
QUOT + length DOR

maximum length of processing field
(PROFE) = length DEND + length DOR
(packed bytes).

3. The dividend must be right-aligned with
at least one leading zero before the
division is performed.

r T T 1
| Name |Operation|Opexrand |
p-—--- +--- B i
-		
	.	
[
	ZAP	PROFE, DEND
	DP	PROFE, DOR
[
I .		
[
DEND	DS	CL4]
DCR	DS	CL2
PROFE	DS	CL5
	.	
I -		
.		
L 1 i ———

Assume the Assembler has allocated
storage locations as follows: DEND hexade-
cimal A09, PROFE hexadecimal Fu40, and DOR
hexadecimal CAC. Register 9 contains hexa-
decimal 0400. The Assembler automatically
calculates the displacements for the two
operands by subtracting the contents of
register 9 from the respective storage
address values.

The source and object codings for the
ZAP and DP are shown below.

Source statement:
ZAP PROFE,DEND

Assembler produced okject code:

[~o=== === =TTCTTOCToCoCTOCTTTT1
|Op-code|Ly |La|Bs|Dsy [B2{Dz |
| et St St Sl Stk St Sty
| F8 4 3 |9 [758]9 [609]
R Lot 8 4 __1__1___3
and

Source statement:
DP PROFE,DOR

Assembler produced object code:

e B B et e e Rttt |
[Op-code|Ls |L2|Ba|Ds |B2|Dz |
p—————t——4-—t--t-—t-—4-—
| FD |4 |1 |9 |758]9 |8AC|
L P I R L N 1 1ol

The results of the two instructions are
shown in Figure 6.

peND [2,7]9,5]3,4[3,C]
PROFE [0,0]2,7]9,5[3,4]3,C] PrOFE [1,3]1,2[3,d1,4]4.C
porR [2,1]3,C]

Figure 6. Decimal Division

LOGICAL OPERATIONS

There are special instructions for the non-
arithmetic processing of data. The data
fields are processed oné byte at a time.

In some cases the left four kits and the
right four bits of a byte are treated
separately.

Processing of data fields in main
storage proceeds from left to right. A
field may start at any address excluding
the reserved areas.

In lcgical operations the data fields
are considered to contain alphameric data.
An exception is the Edit-instruction which
requires packed decimal numbers in the
second data field.

Data Format

The data are either in main storage or in
the instruction itself. They may be a
single character or an entire field. If
two fields are used, they must be of equal
length. Exception: the Edit-instruction.
The two formats for logical data are:

Machine Instructions 33

Fixed Length (one byte; storage-immediate
operations)

frosmTmm 1
|single |
Icharacter]|
I J
0 7

Variable Length (1 tc 256 bytes; storage to
storage operations)

- o

T L LR
jcharacter|character|
L i J-

v R
|character|
L 1

-
| =

0 8 15

In storage-to-storage (SS) operations,
the fields may start at any address with
reserved. The maximum length of a field is
256 bytes. Immediate data is limited to a
length of one byte.

Only the EDIT operation handles data of
packed format. The other instructions
handle all bit combinations.

Storage-to-storage instructions may
address overlapping fields. The result of
overlapping depends on the particular
operation. Overlarping does not influence
the operation if the contents of the field
remain unchanged {(e.g. in a comparison).
If one or both change, however, execution
of the operation may be influenced by the
overlapping and by the manner in which the
data are rounded off and stored.

MACHINE FORMATS OF INSTRUCTIONS FOR LOGICAL
CPERATIONS

Loyical instructions are either in the
SI-or the SS-format.

SI-Format

OP—code I 8, D

The first data field has a fixed length
of one byte. The second operand also has a
length of one byte but it is contained
directly in the instruction.

The general registers are not affected
by an SI-instruction.

The address of the each data field is
the sum of the contents the respective B-
and D-fieids. The first and second operand
fields must have the same length.

CONDITION CODE AFTER LOGICAL OPERATIONS

The results of the logical operations
determine the condition code. Move-
operations do not set a code. In case of
the Edit-instruction the condition code
indicates the status of the field to be

transferred into the mask.

In the case of the Compare Logical Imme-
diate the first data field is compared to
the immediate data. In case of the Compare
Logical Character the first data field is
compared to the second data field.

Table of condition codes:

r T L) T T 1
| | 06 | O1 | 10 111 |
--------------- e e S
|Test under Mask|zero |mixed |-- |one
|And |zero |not zero|-- |--
j{Compare Logicaljequaljlow fhigh |--

|Edit |zero |< zero |> zero|--
L L L L 1

I
|
i
|oxr |zero |not zero|-- 1-- 1
I
J

211 other logical operations leave the con-
dition code unchanged.

Erxror Conditions

Error conditions which may occur during the
execution of non-arithmetic operations are:

1. Operation code invalid

2. Addressing error

a. An instruction address or an
operand address refers to the pro-
tected first 144 bytes of main
storage (addresses 0 to 143),

b. An instruction address or an
operand address is outside avail-
able storage.

c. The last (highest) main-storage
position contains any part of an
instruction that is to be executed.

3. Specification error
The low-order bit of an instruction
address is one, i.e., no halfword
boundary.

4, Data error
An invalid digit code is contained
within the second operand field of an
Edit operaticn.

5. CEU parity error.

INSTRUCTIONS FOR LOGICAL OPERATIONS

I T T

| 10p- |

|Name |Code | Format
} |

|Move Immediate (MVI) | 92 | sI
|Move Characters (MVC) | D2 | ss
|Move Numerics. (MVN) | D1 | ss
|Move Zones (MVZ) §} D3 | ss
|Compare Logical Immediate | 95 | sI

| (cTI) | |
|Compare Logical Character | D5 | ss

| (C1LCO) | |

|Edit (ED) | DE | ss
|And Immediate (NI) 1 98 | sI
|0r Immediate (OI) | 96 | sSI
|Test under Mask (TM)] 91 | sI
fHalt & Proceed (HPR) } 929 | sI

| Translate (TR) | DC | sSS

L L 1 -_—d
MYI -- MOVE .IMMELDIATE

r T T 1
| Name |Operation|Operand |
b + + 1
|Elank or|MVI |D1 (By) I |
Isymbol | i |
1. L L 3
Function: The byte from I, is placed

directly into the storage location
addressed by B; and D;.

Condition Code: No change.

Example: Assume register 10 contains
(hexadecimal) 082E, storage location A22
(hexadecimal) contains A, the displacement
in the first operand is 1F4, and the imme-
diate data is the 5.

Source statement:
MVI 500(10),C*'S$"

From this source statement the Assembler
produces the following object code:

————— — e, S e, S st ettt ettt s, %ttt e)

T

T T T
|Op-code|I>|By Dy |

+-—4-—+-—-—
I5Bla [1F4]
L 1 L J

After execution storage location A22 con-
tains hexadecimal 5B, a $ sign.

MVC -- MOVE CHARACTERS

r T T
|Name |Operation]Operand
L 4 4+

r T T
|blank or l MVC ID1 (L, Bl) ,Dz (Bz)

|symbol | |
L 1 L

R S p——

Function: The contents of the second data
field are placed into. the first data field.
Processing is performed from left to right
one byte at a time.

The two fields may overlap. If the
first field is to the left of the second
field, then transfer will proceed correct-
ly. If the first field is exactly one byte
to the right of the second field, then this
byte will be propagated throughout the
first field.

Conditicon Code: No change.

Example: Assume register 11 contains
(hexadecimal) 0258, register 15 contains
(hexadecimal) O4B0, storage location 3E8
(hexadecimal) contains optional data,
storage location 07D0 (hexadecimal) con-
tains C9C2D4, the displacement in the first
field is 190 (hexadecimal), and that in the
second field is 320 (hexadecimal).

Source statement:
MvC 400(3,11),800(15)

From this source statement the Assembler
produces the following object code:

r T T T 1 T A

|Op-code|L |Bs|Dy |Bz2|D2 |

bttt

| D2 {2 |B [190|F |320]
L L L

L L L J

After execution storage location 03E8 con-
tains C9C2D4.

MVZ -- MOVE ZONES

T T
|Operation|Operand
4

r
| Name
+

T T - -
{blagklor}MVZ ‘Dl(L,Bl),Dz(Bz)

symbo
L

1 —L —

S S

Machine Instructions 35

- men £ + 1

Function: The high-order four bits (the
zones) of each byte in the second data
field are placed into the high-order four
kits of the first data field. The low
......... (the numerics) cf each byte
remain unchanged. Movement is from left to
right one byte at a time. The digits are
not checked for validity. The fields may
overlap.

Condition Code: No change.

Example: Assume register 10 contains
(hexadecimal) 0890, storage location 08Fu4-
08F7 (hexadecimal) contains F4F3F2C1, the
displacement in the first operand is 67
(hexadecimal), and that in the second
operand is 66 (hexadecimal).

MVZ 103(1,103,102(10)

From this source statement the Assembler
produces the following object code:

T T T T 1
|Op—code|L |B1|Ds [B2|D2 |
R S e IPUTI S B
| D3 {0 |5 |0o64|n |066]
U U WU SR S SR

After execution storage location 08Fu4-08F7
contains FUF3F2F1.

MUN ~-- MOVE NUMERICS
_____________________ - 1
lName |Operat10nlOperand |
pommmmmom oo e -4
|blank or|MVN |D1(L_B1),D2(B2) |
lSymbO‘ | | |
________ L~ L _——— -a
Function: The low order four L “s (the
numerics) of each byte in the sec ~d data
field are placed, from left to rig.. ', into

the corresponding low order four bits of
the first field. The high order four bits
(the zones) cf each byte in the second
field remain unchanged. The digits are not
checked for validity. The fields may
overlap.

Condition Code: No change.

Example: Assume register 15 contains
(hexadecimal} 7DA, storage location 08a4-
0827 (hexadecimal) ccntains F4F3F2C1,
storage location 096A (hexadecimal) con-
tains F9F8F7D6, the disrlacement in the
first field is C8 (hexadecimal), and that
in the second field is 190 (hexadecimal).

[¥]
[o)}

Source statement:
MVN 200(4,15),400(15)

. . aamhl as-
From this source statement the Assembler

produces the following object code:

jOp-code|L |[Bs|Ds [Bz2{Da2 |
T, Tt e e e St
| D1 13 |F |0C8iF [190]
[R IO ISP UNSIPIS SN R |
Aft xecution storage location 08A4-08A7

CLI -- COMPARE LOGICAL IMMEDIATE

ro=———=-== ToTmo oo T-- - 1
j Name |operat10n|0perand |
e — -
|blank or{CLI IDi(Bl) I, |
| symbol | | I
L 4 ———— e e 1

Function: The eight-bit symbol of the
immediate-data (the second operand) is com-
pared to the eight bits of the first data
field. The result sets the condition code.
The two bytes are treated as eight-bit
unsigned binary values. This results in
the following order of comparison:

lower case letters,
(System/360

Special characters,
upper case letters, digits.
collating sequence).

L1l 256 bit combinations are valid.

Condition Code:

00: first operand = second cperand
01: first operand < second operand
10: first operand > second operand

Example: Assume register 15 contains
(hexadecimal) 01F4, storage location 05DC
(hexadecimal) contains E9, the displacement
in the first operand is 03E8 (hexadecimal),
and the imrediate data is the letter A.

Source statement:
CLI 1000(15),C'A"

From this source statement the Assembler
produces the following object code:

r======= To=TrTTTT T
|Op-code|I5[Bs|{Ds |
T S e
| 95 |C1|F |3E8|
| RN NI [R— |

After execution the condition code setting
is 10.

CLC -- COMPARE LOGICAL CHARACTERS

- -/

r—— T T
| Name | Operation|Operand
L 1

L T

|blank OrlCLC IDl (L,Bl)'Dz(Bz)
|symbol | |
L

1 1

[S p—

Function: The contents of the first data
field are compared with those of the second
data field. The fields may have a maximum
length of 256 bytes. Comparison proceeds
from left to right. The comparison is ter-
minated as soon as inequality is
encountered.

All bytes are treated alike as eight kit
unsigned binary values. The order of com-
parison is the System/360 collating
sequence: Special characters, lower case
letters, upper case letters, digits. All
256 kit combinations are valid.

Condition Code:

00: first operand = second operand
01: first operand < second operand
10: first operand > second operand

Example: Assume register 11 contains
{hexadecimal) 0320 storage location AF0-AF3
(hexadecimal) contains D1D6C8D5, storage
location 0708-070B (hexadecimal) contains
D1D6C5E8, the displacement in the first
operand is 7D0 (hexadecimal), and that in
the second operand is 3E8 (hexadecimal).

Source statement:
CI1C 2000(4,11),1000(1)

From this source statement the Assembler
produces the following object code:

| - T T T T T 1
|Op-code|L [B1|Dy |B2|Dz2 |
e

| D5 |3 |B |7DO|B |3E8]|
L 1._31__1 1__1 1

After having compared the third character
the condition code setting will be 10.

ED -- EDIT

T T
[Operation|Operand
4

|tlank or|ED

+ -
|D4 (L,B41) D2 (By)
symbol | |

I
Lo 1 _—

L

Function: The fcrmat of the source field
(the second data field) is changed from
packed to zoned and is edited under control

of the pattern (the first data field). The
edited result replaces the pattern. The
two fields must not overlap.

Editing irncludes sign and punctuation
control and the suppressing and protecting
of leading zeros. It also facilitates pro-
grammed blanking of all-zero fields. Sev-
eral numbers may be edited in one opera-
tion, and numeric information may be combi-
ned with alphabetic information.

The length field applies to the pattern.
It may have a maximum of 256 bytes. The
pattern has unpacked format and may contain
any character. The source field has packed
format and must contain valid decimal
digit-and sign-codes. 1Its left half-byte
must always contain one of the digits 0-9.
The right half-byte may be a digit or a
sign.

Both fields are processed left to right
one character at a time. Overlapping
pattern-and source-fields give unpredict-
able results. '

A so-called S-trigger controls the Edit-
operation. Depending on various conditions
during the operation the trigger is set
either to ON or OFF. This setting deter-
mines whether a source digit or a fill
character is inserted into the result
field.

As mentioned before, the pattern may
contain any unpacked character. However,
three bit-combinations have special
significance:

0010 0000 (hexadecimal 20) = digit-select
character -

0010 0010 (hexadecimal 22) = field-
separator character

0010 0001 (hexadecimal 21) = significance-
start character.

The digit-select character indicates a
position in the result field into which the
corresponding digit of the socurce field or
a fill character is to be inserted.

The field-separator character is used if
several source fields are to be inserted
intc one pattern. By setting the S-trigger
to OFF it causes every source field to be
treated separately. The field-separator
character is always replaced by the fill
character.

The significance-start character sets
the S-trigger to ON. Now every character
in the pattern is replaced by the respec-
tive digit of the source field or the fill
character.

Machine Instructions 37

The S-trigger is set to OFF (0):

1. At the beginning of an Edit-operation.

2. By the field-separator character in the
pattern.

3. By a positive sign (1010, 1100, 1110,
1111).

The S-trigger is set to ON (1):

1. By a valid digit (1-9) of the source
field.

2. By the significance-start character in
the pattern.

3. By a negative sign (1011, 1101).

During the processing of the left half-
kyte the sign of the right half-byte is
checked and set accordingly. If a sign
coincides with a valid digit or with a
significance-start character in one posi-
tion of the result field, the sign takes
precedence and the S-trigger is set to OFF
(0).

The new S-trigger setting always takes
effect with the subsequent position.

The f£ill character, which under certain
conditions, is placed into the result
field, is always the first (left) character
of a pattern; it is retained in the pattern
{exception: the digit-select character and
the significance-start character).

The S-trigger in OFF position causes:

1. The digit-select character (hexadecimal
20) and/cr the significance-start
character (hexadecimal 21) to be
replaced by a valid digit (1-9) from
the source field.

2. The fill character to be stored in
place of a zero in the source field.

3. The fill character to be stored in
place of any character in the pattern
(exception: the digit select and the
significance start characters).

The S-trigger in ON position causes:

1. The digit-select and/or the
significance~start character to ke
replaced by any digit (0-9) from the
source field.

2. A character in the pattern to remain
unchanged (exception: the digit-
select, field-separator, and
significance-start characters),

38

All digits in the result field receive
the zone 1111 in the binary-coded-decimal
mode and the zone 0101 in the USASCII mode.
The type of zone used depends on bit six,
the mode bit, in the PSW.

iti
nditi

n C
by n_ o

[s) (o)
he condition code is set to:

de-
ce:

1. 00 if the source field contains only
zeros. The setting of the S-trigger
has no effect.

2. 01 if the source field is not zero and
the S-trigger is set to CN (1). (Nega-
tive result).

3. 10 if the source field is not zero and
the S-trigger is set to CFF (0).
(Positive result).

If several fields are edited with one
pattern, then the condition code refers to
the field being processed. If the pattern
has a field-separator in the last place,
then the condition code is set to zero.

The follcowing symkols are used in the
example below:
Symbol Meaning

b (hexadecimal u40)
((hexadecimal 21)

klank character
significance~start
character
field-separator
character

digit-select character

) (hexadecimal 22)
d (hexadecimal 20)

If the number to be edited is a negative
number, then the CR (hexadecimal C3D9) is
commonly used in the last two bytes of the
pattern. Since the minus sign does not
reset the S-trigger, the CR will be left
unchanged in the pattern. (CR stands for
credit and indicates payments due).

Example: (The numbers are given in decimal
notation with the hexadecimal eguivalent in
parentheses.)

Assume that register 12 contains 1000
(03E8),

D, is 0 (00),

D, is 200 (C8),

storage location 1000-1012 (3E8-3F4) con-
tains bdd,dd(.ddbCR (unpacked),

storage loccation 1200-1203 (4B0-4B3) con-
tained 0257426C (packed).

Source statement:
ED 0(13,12),200(12)

From this source statement the Assembler
produces the following okject code:

r b T T 1
|Op-code|L |[By|Dy {Bz2|D2 |
e S Dt Do S e
| DE lc |c {ocojc jocs|

| S I 1 1 i J

Processing proceeds left to right one
character at a time as shown in Figure 7.

Pattern | Digit | S-trigger | Rule Location 1000-1012
0 | teave™| bad, dd(.ddbCR
0 0 fill bbd, dd(.ddbCR
d 2 1 |aigit | bb2,dd(.dbcR®
, 1 leave same
d 5 1 digit bb2, 5d(.ddbCR
d 1 digit bb2, 57(.ddbCR
(1 digit bb2,574.ddbCR
1 leave same
d 2 1 digit bb2, 574.2dbCR
d 6C 0 |digit | bb2, 574.266cR®
b 0 fill same
c o |fn bb2, 574.26bbR
R 0 fill bb2, 574.26bbb
Notes:
1. This character is saved as the fill
character.
2. First non-zero digit sets S-trigger to
one.

3. The plus sign in this byte sets the
S-trigger to zero.

Figure 7. Processing of an

Edit-Instruction

After execution location 1000-1012 (3E8-
3F4) contains bb2,574.26bbb, the condition
code is set to 10.

If the contents of location 1200-1203
are 00 00 02 6D, the following results are
obtained:

(before) Loc 1000-1012 (3E8-3Fu)
bdd,dd (.ddbCR
(after) Loc 1000-1012 (3E8=-3FH4)
bbbbkb. 26bCR

condition code is set to 01 (result less
than zero).

In this case the significance-start
character in the pattern causes the deciral
point to be left “unchanged. The minus sign
does not reset the S-trigger so that the CR
symkol is also preserved.

NI -- AND IMMEDIATE

r T T
|Nare |Operation|Operand
L 4 4

r T
|blank or|NI
{symbol |
L L

+
|Ds(Bg),I2

Function: The immediate data in the I,
field and the contents of the storage loca-
tion addressed in the first field are con-
nected by the logical AND. The result
(logical product) is placed into the first
field.

The connective AND is applied bit by
bit. If there is a 1-bit in both fields,
then the 1-bit in the first operand remains
unchanged. Otherwise the 1-bit in the
first field will be changed to a 0-bit.

Condition Code: If all eight bits in the
result field are zero, the condition code
is set to 00. Otherwise it is set to 01.

Example: (The numbers are given in decimal
notation with the hexadecimal equivalent in
parentheses).

Assume that

register 8 contains 4096(1000),

D, is 1000(3E8),

I, is 2720(aR), in binary notation:

1010 1010,

location 5096(1060) contains 2u40(F0), in

binary notation: 1111 0000.
Source statement:
NI 1000(8),X*AA"

From this source statement the Assembler
produces the following okject code:

r T T T 1
|0p-code|I2|By Dy |

e
|AA[8 |3ES|
L L XL J

After execution storage location 5096 (1060)
contains 160(A0) or in binary notation 1010
0000.

Condition code setting is 01.

OI -- OR IMMEDIATE

[-=———~—- § St - 1
| Name | Operation|Operand |
t $ + -
|blank or|OI |Ds (By) I |
|symbol | | |
b 4 N S i

Machine Instructions 39

Function: he imrmediate data in the I,

T
field and the contents of the storage loca-
tion addressed in the first field are con-
nected by the incliusive OR. The result
(logical sum) is placed into the first

£ield.

The inclusive OR is applied bit by kit.
A O0-bit in both fields will set the bit in
the result field (first operand) to zero.
Otherwise the resulting bit will always ke
one.

Condition Code: If all bits are zero, then
+he condition code is 00. Otherwise the

condition code is set to 01.

Examrle: (The numbers are given in decipal
notation with the hexadecimal equlvalent in
parentheses).

Assume that

Ieglbter 8 contains 40%6{1000),
D, is 1000(3ES8),
I, is 2720(an),
1010 1010,
storage location 5096(1060) contains
240(F0), in kinary nctation: 1111 1010.

in binary notation:

Scurce statement:
[o% 1000(8),X'AA"

From this source statement the Assembler
produces the following object code:

T---1
|OP'C05€|12|31|D1]
S — fmmfmnfmme
| 96 |AA|8 |3ES8]
L bAoA __3

After execution storage location 5096 (1060)
contains 250 (FA) or in binary notation:
1111 1010.

Condition code is 01.

TM -- TEST UNDER MASK

F 1
|klank or|TM |Da(By), I
| symkol | |

| IS SR L1o_

Function: The bit combination of the mask
in the I, field is compared with the con-
tents of the storage location addressed in
the first data field. The result of the
comparison sets the condition code.

The eight bits of the mask correspond
kit ky bit to the eight bits defined by the
first data field. A comparison with a kit
in the first data field is performwed only

[}

4

if the corresponding bit in the mask con~
tains a "1i". if the bit in the mask is
"0", the corresponding bit in the first

data field field will not ke tested.

Condition Code:

00: all kits tested were zero (also, if
all bits in the mask were zero, i.e.,;
no test).

01: some (not all) of the bits tested were
one.

11: all bits tested were one.

Example: (The numbers are given in decimal
notation with the hexadecimal equivalent in
parentheses).

Assume that

register 8 contains 2000(07D0),

D, is 650(28Aa),

I, is 2i7{(DS) or in binary notation:

1101 1001,

storage lccation 2650(A5A) contains 204(CC)
or in binary notation: 1100 1100.

Source statement:
™ 650(8),X'D9"

From this source statement the Assembler
produces the following object code:

——————— TTTTTTT1
IOP COde|I |Bs|Ds |-
e e
P91 {D9|8 |28A]
| IR RS IS Ip—— |

Condition code is 01i.

HPR -- HALT AND PROCEED

-------- - T et
|Nane |Operat10n|0perand |
e e pom oo :
|blank or|HPR |D4 (B4),0 i
|symbol | [1
________ N U
Function: This instruction is used to halt

the CPU. All input/output operations are
continued tc completion.

Execution of the program may be resumed
with the next sequential instruction by
pressing the Start key on the CPU.

This instruction uses the SI-Format in
which the I, field is ignored. The effec-
tive address derived from the B;-D, fields
may be used to identify the Halt and Pro-
ceed instruction.

Condition Code: No change.

Example: (The numbers are given in decimal
notation with the hexadecimal equivalent in
parentheses).

Assume that

register 10 contains 450(01cC2),

D, is 1u0(08po.

The halt number 590(24E) is shown on the
E-S~T-R registers on the console as 024E.

Source statement:
HPR 140(10),0

From this source statement the Assembler
produces the following object code:

r : L R T 1
[Op-code|I>|Bs[Dy |

1 99

{o0]a josc]|
L 1 1 L

J

TR -- TRANSLATE

T T -/
| Operation|Operand |
b o } - -~
lblank OrlTR |D1(L,B1)'D2(E2) |
| symbol 1 |]

1 J

-
| Name
L

Function: This operation allows you to
replace the values of one operand field Ly
the corresponding values of a table.

Every byte in the first data field is
used to look up a value in a table. The
binary value of a byte is added to the
starting address (given by the B,/D, field)
of the table. The sum is the address of
the table-value wanted. This table-value
rerlaces the byte in the first field used
to locate the table-value.

Processing proceeds from left to right
until the end of the first operand is
reached. The maximum length may ke 256
bytes. The table must contain as many
bytes as indicated by the highest binary
value used for searching.

condition Code: No change.

Example: (The numbers are given in decimal
notation with the hexadecimal equivalent in
parentheses).

Assume that

register 10 contains 0(0000),

register 12 contains 0(0000),

D, is 1000 (3E8),

D, is 2000(7D0),

storage location 1000-1012(3E8-3F4) con-
tains the EBCDIC characters 542156037835
and location 2000-2009(7D0-7D9) contains

the EBCDIC characters 6MB0Ib3-2 (where
b=blank).

Source statement:
TR 1000€(12,10),2000(12)

Fror this source statement the Assembler
produces the following object code:

- T--T——T———T——7——1
jop-code|L |B1|Ds |B2|Dz |
o4
| bc |0B|A |3ES|C |7DO]
[Y S SO SRS S N

After execution storage location 1000-1012
(3E8-3FU4) contains the EBCDIC characters
bIBMb360-20b (where k=blank).

BRANCH OPERATIONS

Normally the CPU processes instructions in
the order of their location in main
storage. Branch operations allow a depar-
ture from this sequence. They enable the
machine to make logical decisions on the
basis of certain conditions. For example:

¢ The program continues in its normal
sequence.

e The program branches to a subroutine.
e Part of the program is repeated (loop).

The branch address may be obtained from
one of the general registers or it may be
specified in an instruction. The branch
address is independent of the updated
instruction address.

Branching is determined either by the
condition code in the Program Status Word
(PSW) or Ly the contents of the general
registers used in the operations.

During a kranch operation the rightmost
half of the PSW, the updated instruction
address, may be stored before it is
replaced by the branch address. The stored
information may be used to link the new
instruction sequence with the preceding
sequence.

The condition code and the branch
instruction are used to make logical deci-
sicns within a program. The kranch opera-
tion itself does not change the condition
code.

For your convenience, the Assembler pro-
gramr provides the facility of extended mne-
monics for branch operations. Appendix A
contains a list of all extended mnemonics.

Machine Instructions 41

MACHINE FORMATS CF INSTRUCTIONS FOR BRANCH
OPERATIONS

Branching instructions can be in the RR cr
the RX format.

RR_Format

| TTTYT 1
jcp-code |Ry [|R2 |
| SRR S, 5 S
0 8 12

The Ry field may specify a general register
into which the address of the next sequen-
tial instruction is to be stored as link
information, or may contain a mask which is
employed to identify the bit values of the
condition code. In the latter case it is
referred to as the M, field.

The R, rield specifies the general
register that contains the branch address.

RX Format

r- T T T 1
|Op-code | Ry [X2=0]| Bz | D2 |
i L L i L 3

0 8 12 16 20 31

The R; field may specify a general register
into which the updated instruction address
is to be stored as link information, or mway
contain a mask (then called M; field) that
is ewployed to identify the bit wvalues of
the condition code.

The effective address derived from the
B,-D, fields is the kranch address.

SI_Format
““““““““““““ B e
|Op-code | | By | Dy |
- L 1 Jd
0 8 16 20 31

The SI format is used by only one branching
instruction, Set PSW. The effective
address derived from the D;-B;, fields spe-
cifies the location of a word in main
storage which is to replace the PSW (pro-
gram status word). Bits 8-15 of the Set
PSW instruction are ignored.

ERROR CONDITIONS

Error conditions which may cccur during =2
branch operation are:

42

1. Operation code invalid.

N
N

Addressina

.......... g error:

2. An instruction address or a branch
address refers to the protected
first 144 bytes of main storage.

b. An instruction address or a branch
address is outside availabie
storage.

c. The R; field of a Branch and Store
instruction contains binary values
zero through seven, or the R, field
of an RR format branch instruction
centains binary values one through
seven.

d. An instruction part is located in
the last (highest) two main storage
positions.

3. Specification error:

a. The low-order bit of an instruction
address is one, i.e., no halfword
boundary.

b. Bits 12 through 15 of an RX format
instruction are not all zero.

4. CPU parity error.

INSTRUCTIONS FOR BRANCH OPERATIONS
The branch instructions, their operation

codes, formats, and mnemonics are shown in
the following table:

r - T B I 1
| | Oop- |

| Name | Coda | Format |
et L e i
] |] |
Branch on Condition (BCR)	07	RR
Branch on Condition (BC)	47	RX
Branch & Store (BASR)	0D	RR
Branch & Store (BAS)	4p	RX
Set PSW(SPSW)	81	SI i
b e e i L J

BCR -- BRANCH ON CONDITION REGISTER

r-

T T
| Name | Operation|Operand |
1 —_—— e {
12 T T
|blank or|RBCR |M4,R2 |
| symbol |]
. F U i
Function: The condition code is tested

against the four bits in the mask My;. If
the condition is met, a branch occurs to
the address in main storage specified by
R;. Otherwise, the next seguential
instruction is executed.

There is a corresponding bit in the mask
for each of the four possible condition
code settings as shown below:

|Blt in My 1112 |3 {4 |
e B
|Condltlon Code|00]01}10]11]

L 4 L 1 J

The condition for a branch is met if the
mask bit corresponding to the current con-
dition code setting is a 1-bit.

It is possible to connect several condi-
tions by specifying a 1-bit in the corres-
ponding mask-bit positions. An:uncondi-
tional branch occurs if all four bits in
the mask are 1-bits. The branch instruc-
tion is ignored if all four bits in the
mask are 0-bits or if R, is zero.

Condition code: No change.

Exanple: Assume register 9 contains decim-
al 555 (hexadecimal 22B), the condition
code in the PSW is 01, and the mask is
given as hexadecimal 6.

Source statement:

BCR X'6".9

Assembler produced object code:

| g T
| Op- COdel M1 |Ra]|
[0110]9 |
L L__3

A branch to the main storage location 022B
will take place.

BC -- BRANCH ON CONDITION

| Name |Operatlon|Operand |
poommmmm pommm e oo e 1
'blank OrIBC IMl‘,Dz(O,Bz) |
| symbol | | |
[| I e e e J
Function: The conjition code is tested

——— e

against the mask M; (four bits). If the
condition is met, a branch occurs to the
storage address specified by B,/D,. Other-
wise the next sequential instruction is
executed.

For each of the four condition code set-
tings there is a corresponliing bit of the
mask as shown below:

[m——=——— e ——p——T =7~

The condition for a branch is met if the
mask bit corrssponding to the current con-
dition code s=2tting is a 1-bit.

It is possible to connect several condi-
tions by defining several bits in the mask
accordingly. An unconditional branch
occurs if all four bits in the nask are
one. The branch instruction is ignored if
all four bits in the mask are zeros.

Condition Code: No change

______ Assume that

Dy is 875 decimal (36B hexadecimal),
Register 11 contains 0000,

Condition cods in the PSW: 00.
Source statement:

BC X'8',875(0,11)

Assembler produced object code:

gy ———
|Op-code|M1 |0 {Bz2|Da |
t-——————f——t——t-—t--—
| 47 |8 |0 |B |36B
| N NG S S S

A branch to main storage location 036B
(hexadecimal) takes place (branch on
equal)l.

BASR -~ BRANCH AND STORE/REGISTER

| Name |Operat10n|0p°rand]
_________________________]
l blank Orl BASR | Rl (Ro I
|aymbol | | |
________ S N |
Function: A branch is taken to the address

specified by the contents of the register
in the R, field. Next, the rightmost 16
bits of the P3W, thz address of the next
sequential instruction, are stored as link
information in the general register speci-
fied in the R; field. If R, contains all
zeros, then only the address 5f the next
sejuential instruction is loaded into the
register specified by the R; field and no
branching takes places,

Condition Code: No changa.

Machines Instructions 43

Assume that reglbLUL 12 contains
al 0361 (decimal 865),
PSW 16-31 contains hexadecinal 026D (decimn-

al 621).
Source statement:
BASR 10,12

Assembler produced object code

T T 3

|op-code|Ry |Ra |

ter execution register 10 contains 026P
d a branch is taken to storage location
& oY]
v

[()]
Q
’..l
g
'._I
~

BAS -- BRANCH AND STORE

________ P e ——————— e e g
!Name |0perat10n|0perand |

b e S 1
| blank orlBAS |R14D5(0,B2) |
|symbol | | |
________ I RS |

Function: The rightmost 16 bits of the
PSW, the address of the next seguential
instruction, are stored as link information
in the general register specified by R,.
Next, the address specified by By/Ds is
stored as an instruction address in the
PSW. This amounts to a branch to the
address specified by B,/Ds.

Condition Code: No change.

The contents of register 10 are arbitrary.
Assume Lhat register 11 contains hexadecim-
al 0u4uB,

PSW bits 16-31 represent hexadecimal 036B,
D, is hexadecimal 12C (decimal 300).

Source statement:
BAS 10,300(0,11)

Assembler produced object code:

After execution registar 10 contains
hexadecimal 036B and a branch to storage

| - IR NETT 3 a5 b oleae
location hexadecimzal 0577 is takesn.

oLn

SPSW -- SET PSW

onmbol H

Function: The only operand D, (B,) 3peci-
fies the address of a word in main storage

wnich is to rasplace thes PSW.

PSW Format
T]
10 C | .
CC: MA M DA ! FS Instruction Address
01 2345678 12 14 k|
0-1 Not Used
2-3 Condition Code
u Not OUs=24
5 Overlap Mode (Submodel 5 only)
6 USASCII Mode Bit
7 Channel Mask
8-11 Device Aiddress
12-15 Function Specification
16-31 Instruction Address

Prozramming Notes

1. The instruction address portion of the
word w~hich is transferred from main
storage to the PSW by the Set PSW
instruction should:

a. Yot refer to the protected first
144 bytes of main storage,

b. Have the least significant bit
zero, and

c. Be within the limits of available
storage.

If these conditions are not satisfied,
an addressing or specification error
halt will occur.

2. The condition code is set by the Set
PSW instruction to the value contained
in the word transferred from main
storage to the P3W.

3. Main-storage boundaries are not
reguired of the first operand address
in the Set PSW instruction.

4., The condition code, USASCII mode bit,
channel mask, and overlap mode bit in
the PSW are zsro when the CPU is in the
reset state. The instruction adiress
portion of the PSK is not changed when
the CPU is res=at,

Example: Assume D, is 875 (hexadecimal
036B), and register 11 contains 555 (hexa-
decimal 022B). Bits 16 through 31 of the
PSW contain 0444 (hexadecimal).

Source statement:
SPSW 875(11)
The address of the next saguential instruc-

tion as given by bits 16 through 31 of the
PSH will now be 1430 (hexadecimal 0596).

INPUT/0OUTPUT OPERATIONS

The Assembler program supports the follow-
ing Input/Output operations:

e Control I/0 (CIO)

e Test I/0 and Branch (TIOB)

e Transfer I/0 (XIO)

You can find a detailed description of
these instructions in the SRL publication
IBM System/360 Model 20 Functional Charac-
teristics, Form GA26-5847,

It is recommended, howsver, that you use
the IBM-supplied IOCS macro definitions for
your input/output operations.

Machine Instructions 45

Literals

A literal is one way to introduce data into
a program. It represents data itself rath-
er than a reference to data.

Literals provide a means of entering
constants {such as numbers for calculation,
addresses, messages, etc.), into a program
by specifying the constant in the operand
of the machine instruction in which it is
used. The Assembler program assembles the
value specified by the literal, stores this
value in a "literal pool", and places the
address of the storage field containing the
value in the operand field of the assembled

statemen

saurce st ent |

A literal is an alternative to using the
DC Assembler instruction as a means to
enter data into the program, and then using
the name of the DC instruction in the
operand. Literals can be used in machine
instructions only. There, you may use a
literal wherever a storage address is per-
mitted as an operand.

Oonly one literal is allowed in a machine
instruction. A literal must not be speci-
fied in the first operand of a machine
instruction. It cannot be changed in
storage, i.e., it must not be used as the
receiving field of a machine instruction
that modifies storage, e.g., STH.

A literal cannot be combined with other
terms.

Literal Format: The method of describing
and specifying a constant as a literal is
nearly identical to the method of specify-
ing it in the operand of a DC Assembler
instruction. The major difference is that
the literal must begin with an equal sign
(=), which indicates to the Assembler that
a literal follows. Refer to the discussion
of the DC Assembler instruction operand
format under Assembler Instructions for the
means of specifying a literal. An address
constant can be expressed as a literal.
Some examples of literals are:

=Y (BETA) -- address constant.

=H"1234" -- a fixed-point number with
a length of two bytes.

=C'ABC"' -- a character constant.

be

=CL7'PAGE' -- a character constant with
explicit length.

=X*1aBC* -- a hexadecimal constant.

=B*10011110"-- a binary constant.

=pP'+324" -- 2 Jecimal constant (packed).

=z'-541" -- a decimal coanstant (zoned).

The instruction codsd below shows one
use of a literal.

r- ——— -

The statement GAMMA is a 12ad ianstruc-
tion that uses a literal as the second
operand. When assembled, the second
operand of the instruction will be the
address at which the binary value repre-
sented by H'274' is stored.

A literal is not to be confused with the
immediate data in an SI instruction. Imme-
diate data is assembled into the
instruction.

LITERAL POOL

The literals processed by the Assembler are
collected and placed in a special area
called the literal pool, and the location
of the literal, rather than the literal
itself, is assembled in the statement emp-
loying a literal.

You may control the position of the 1lit-
eral pool by using a LTORG instruction.
Unless otherwise specified (through a LTORS
instruction), the literal pool is placed at
the end of the first .or only control sec-
tion. If this control section ends with an
XFR card, the literal pool is inserted
before the XFR card.

You may also specify that multiple lit-
eral pools be created by using several
LTORG instructions. However, the sequence
in which literals are ordered within the
pool is controlled by the Assembler.
Further information on positioning the 1lit-
eral pool(s) is given under LTORG =-- .Begin
Literal Pool.

Assembler instructions are requests to the
Assembler to perform certain operations
during the assembly. Assembler instruc-
tions, in contrast to machine instructions,
do not cause machine instructions to be
included in the assembled program. Some,
such as DS, generate no instructions but do
cause storage areas to be set aside for
data. Others, such as SPACE, are effective
only at assembly time; they generate noth-
ing in the assembled program and have no
effect on the location counter.

Some of the uses of assembler instruc-
tions are:

s To generate data constants for the
object program.

e To reserve storage locations within the
object program for use as input/output
areas or as work areas.

* To control the assembly process; such as
setting the location counter to some
value.

e To control the listing by e.g., telling
the assembler to eject to a new page.

e To tell the assembler when you intend to
use a label that is defined in another
program.

The following is a list of all the

Assembler instructions.

Symbol-Definition Instruction

EQU - Ejuate Symbol

Data-Definition Instructions

DC - Define Constant
DS -~ Define Storage
DCCW- Define Channel Command Word

Program Sectioning and Linking Instructions

START - Start Assembly

CSECT - Identify Control Section
DSECT - Identify Dummy Section
ENTRY - Identify Entry-Point Symbol
EXTRN - Identify External Symbol

Base-Register Instructions

USING - Use Base Address Register
DROP - Drop Base Address Register

Assembler Instructions

Listing-Control Instructions

TITLE - Identify Assembly Output
EJECT - Start New Page

SPACE -~ Space Listing

PRINT - Print Optional Data

Program-Control Instructions

ORG - Set Location Counter
LTORG - Begin Literal Pool

END - End Assembly

REPRO - Reproduce Following Card
XFR - Generate a Transfer Card

Symbol Definition Instruction
EQU -- EQUATE SYMBOL

The EQU instruction is used to define a
symbol by assigning to it the attributes of
an expression in the operand field. The
format of the EQU instruction is as
follows:

r T To——T T
| Name |Operation |Operand |
b + - --1

|An expression |
....... b)

}
|A symbol |EDU
L L

The expression in the operand field may
be absolute or relocatable. Any symbols
appearing in the expression must have been
previously defined.

The symbol in the name field is given
the same attributes as the expression in
the operand field. The length attribute of
the symbol is that of the leftmost (or
only) term of the expression. The value
attribute of the symbol is the value of the
expression.

The EQU instruction is the means of
equating symbols to register numnbers, imme-
diate data, and other arbitrary values.

The following examples illustrate how this
might be done:

=== A B)|
Name	Operation	Operand
REG2	EQU	12 GENERAL REZISTER
TEST	EQU	X'3F' IMMEDIATE DATA
L ——b o § I |

Assembler Instructions 47

To reduce programming time, you may egu-
ate symbols to freguently used expression
and then use the symbols as operands in
place of the expressions. Thus, in the

statement:

Fm————- To—mooos T i 1
| Name |Operation |Operand |
e frmmmmmmme R 1
|FIELD |EQU | ALPHA- BETA +GAMMA |
[j L e i

FIELD is defined as ALPHA-BETA+GAMMA and
may be used in place of the expression.
ALPHA, BETA and GAMMA must all have been

previously defined.

Data Definition Instructions

There are four data on in

Aofinits 3 -
tions: Literals, Define Constant (DC),
Define Storage (DS), and Define Channel
Command Word (DCCW).

"

on "
i1 - i

£
T
n

These instructions are used to enter
data constants into storage, to define and
reserve areas of storage, and to specify
the contents of channel command words. The
instructions may be named so that other
instructions can refer to the fields
generated from them. The discussion of the
DC instruction is far more extensive than
that of the DS instruction, because the DS
instruction is written nearly in the same
format as the DC instruction. For this
reason, the DC instruction is presented
first and discussed in more detail than the
DS instruction.

Boundary alignment varies according to
the type of constant being specified. Only
H- and Y-type constants are aligned to a
half-word boundary unless a length modifier
is specified.

Bytes that must be skipped to align the
field at the proper boundary are not consi-
dered to be part of the constant.

A byte skipped in aligning statements
that do not cause information to be
assembled is not zeroced. Thus, a byte
skipped to align a statement such as DC
H'123' is zeroed, whereas a byte skipped to
align a statement such as DS 2H is not
zeroed.

All operand specifications are applic-
able to writing literals, the only dif-
ferences being that
(1) the literal is preceded by an = sign
(2) a location-counter reference is not

permitted in an address-constant
literal.

48

The DC instruction is used to define con-
stant data in storage. A variety of con-
binary, figed-
point, decimal, hexadecimal, character, and
storage addresses. Appendix D summarizes,
in chart form, the information concerning
constants that is presented in this sec-
tion. Data constants are generally called
constants unless they represent storage
addresses, in which case they are called
address constants.

The format of the DC instruction is as
follows:

[rossseme T - T 1
| Name | Operation | Operand |
e frm—mmmm e oo oo {
{A symbol | DC | One operand in }
{or blank j { the Iormat i
| | | described below |
e e J
Format (s) of operand:

dtm'c' or dtm(c)

duplication factor {optional)
type (regquired)

length modifier (optional)
constant (required)

a8 oo

W H N

The symbol in the name field of the DC
instruction statement is the naune 2of the
constant.

The value attribute of the symbol naming
the DC instruction is the address of the
leftmost kyte (after alignment) of the con-
stant. The length attribute depends on (1)
the type of constant being defined and (2)
the presence of a length specification.
Implied lengths are assumed for the various
constant types in the absence of a length
modifier. The implied length is assigned
before application of the duplication
factor.

Examples of literals appear throughout
the discussion of the DC instruction.

Duplication Factor: The duplication factor
may ke omitted. If specified, the constant
is generated the number of times indicated
by the factor. The duplication factor must
be an unsigned decimal value. It is app-
lied after the constant is fully assembled,
i.e., after it has been developed into its
proper format.

A duplication factor of zero is not
permitted.

Type: The type defines the type of con-
stant being specified. From the type spe-
cification, the Assembler determines how it

is to interpret the constant and translate
it into the appropriate machine format.
The type is specified by a letter code as
shown in Appendix D. Further information
about these constants is provided under
Constant.

Length Modifier: A length modifier expli-
citly describes the length of a constant in
bytes (in contrast to an implied length)
and becomes the length attribute of the
symbol in the name field.

The length modifier is written as In,
where n is an unsigned decimal value. The
value of n represents the number of bytes
of storage that are assembled for the con-
stant. The maximum value permitted for
length modifier supplied for the. various
types of constants is summarized in Appen-
dix D. This table also indicates the
implied length for each type of constant;
the implied length is used unless a length
modifier is present.

A length modiftier may be specified for
any type of constant. You would use a
length modifier when you want the assembler
to pad the constant (extend ‘it with either
blanks or zeros).

For example, the instruction DC CL3'A°
defines a constant having a length of three
bytes, the leftmost byte containing the
character and the other two bytes contain-
ing blanks.

Note: No boundary alignment will be per-
formed when a length modifier is specified.

Constant: A data constant (all types
except Y) is enclosed in apostrophes. An
address constant (type Y) is enclosed in
parentheses. Thus, the format for specify-
ing the constant is one of the following:

» ‘constant'
» (constant)

The total storage requirsment for a data
definition is the product of the length
times the duplication factor (if present)
plus any byte skipped for boundary align-
ment of the first constant.

The subsequent text describes each of
the constant types and provides examples.

C_-- Character Constant: Any of the valid
256 punch combinations may be de81gnated in
a character constant.

Special consideration must be given to
representing apostrophes and ampersands as
characters. Each apostrophe or ampersand
desired as a character in the constant must
be represented by two apostrophes or amper-
sands. Only one apostrophe or ampersand
appears in storage.

The maximum length of a character con-
stant is 32 bytes. No boundary alignment
is performed. Each character is translated
into one byte. Two apostrophes or two
ampersands count as one character.

If no length modifier is given, the size
in bytes of the character constant is egual
to the number of characters in the con-
stant. If a length modifier is provided,
the result varies as follows:

1. If the number of characters in the con-
stant exceeds the specified length, as
many of the rightmost bytes as neces-
sary are dropped.

2. If the number of characters is less
than the specified length, the excess
rightmost bytes are filled with blanks.

In the following example, the implied
length attribute of FIELD is 12:

T
| Operation

T
| Name

t
|FIELD |DC
t —_—d

{.. —
|C*TOTAL IS 110"

However, in this next example, the
explicit length attribute is 15, and three
blanks appear in storage to the right of
the zero:

_____________________ 5
| Name |Operation |Operand i
_____________________ 3
IFIELD {nc |CL15 TOTAL IS 110' |
S NS [1

In" the next example, the implied length
attribute of FIELD is 12, although 13

characters appear in the operand. The two

ampersands count as only one byte.

it S -
| Name |Operat10n |Operand |
|FIELD |DC ;c TOTAL IS §610°' |
L RN S, J

Note that in the next example, a length
of four has been specified, but there are
five characters in the constant.

r =T - T R 1
| Name |Operation |Operand |
------- S PO T
IFIELD |pC | 3CLU4"ABCDE" |
....... S AU

The generated constant would be:
ABCDABCDABCD
The same constant could be specified as

a literal as follows:

Assembler Instructions 49

== i - 1
| Name |Operation |Operand |
prmmmmm oo T — :
| | MvC |AREA(12), —3CLQ'ABCDE'|
| S i - —————————————

On the other hand, if the length had

A £ £ A A
been specified ag six instead of four, ths

generated constant would have been:

ABCDE ABCDE ABCDE

X =- Hexadecimal Comstant: A hexadecimal
constant consists of one or more of the
hexadecimal digits 0-9 and A-F. The maxi-
mum length of a hexadecimal constant is 32
bytes (64 hexadecimal digits). No half-
word boundary alignment is performed.

Constants that contain an even number of
hexadecimal digits are translated as one
byte per pair of digits. If an odd number
of digits is specified, the leftmost byte
has the leftmost four bits filled with a
hexadecimal zero, while the rightmost four
bits contain the odd (first) digit.

If no length modifier is specified, the
implied length of the constant is half the
number of hexadecimal digits in the con-
stant (a hexadecimal zero is added to the
high-order byte if there is an odd number
of digits). 1If a length modifier is speci-
fied, the constant is handled as follows:

1. If the number of bytes the constant
could occupy exceeds the specified
length, the extending leftmost bytes
are dropped.

2. If the number of bytes the constant
could occupy is less than the specified
length, the necessary bytes are added
to the ieft and filied with hexadecimal
Zeros.

A four-digit hexadecimal constant pro-
vides a convenient way to set the bit pat-
tern of a binary halfword. The constant in
the following example would set the bits of
the first byte of a halfword to cnes:

- - -

|Name |Operation |Operand |
R T PO i

| DS | 0H |
|TEST |DC |X*FFOO" |
[G—— L S i

The DS instruction sets
counter to a halfword bound

W ot
o
()
o]
Q
Q
o]
o+
b
Q
]

In the following example, the digit A
would be dropped, because five hexadecimal
digits are specified for a length of two
bytes:

10peratlon IOperand |
fomm—————— - ——————- frmmm e {
|ALPHACON |pC | 3XL2 'A6FLE" |
__________ b]

The resulting constant would be 6FUE,
which would oc cupy the Spec1f1ed two bytes.
It would then be uup;....cu\.eu three l..l.ueb, as
requested by the duplication factor. If it
had merely been specified as X'A6FUE', the
resulting constant would have had a hexa-
decimal zero in the leftmost position:

OAGFLUE

B_-- Binary Constant: A binary constant is
written using ones and zeros enclosed in
apostrophes. Duplication and length may be
specified. The maximum length of a binary
constant is eight bytes,

The implied length of a binary constant
is the number of bytes occupied by the con-
stant, which includes any necessary pad-
ding. Padding or truncation takes place on
the left. The padding bit used is a zero.

The following example shows the coding
used to designate a binary constant. BCON
would have an implied length attribute of
one.

1

| Name | Operation |Operand |
- - 4= - 1
| BCON | pC |B'11011101" [
|BTRUNC |DC |BL1'100100011" |
IBPAD IDC |BL1 101° |
1

BTRUNC would be assembled with the left-
most bit dropped as follows:

00100011

BPAD would be assembled with five pad-
ding zeros, as follows:

00000101

H -- Fixed-Point Constant: A fixed-point
constant is defined as an integer and writ-
ten as a signed or unsigned decimal value.
A positive sign is assumed if an unsigned
namber is specified.

The decimal value is .converted to its
binary equivalent and assembled as a half-
word. It is aligned on halfword boundary
if a length is not specified. An implied
length of two bytes is assumed. A length
of one or two bytes may be specified by a
length modifier, in which case no boundary

alignment occurs.

Highest positive and negative values for
a fixed-point constant are:

Length Max _ Mir
2 215-1(=32767) =-215(=-32768)

1 27-1(=127 -27(=-128)

The binary numbér occupies the rightmost
portion of the field in which it is placed.
The unoccupied portion. (i.e., the leftmost
bits) is filled with the sign. A 1-bit for
positive and a 0-bit for negative numbers.

1f the value of the number exceeds the
length, the necessary leftmost bits are
dropped after conversion. A negative numb-
er is carried in twos complement form.

A halfword is generated from the state-
ment shown below, The value attribute of
CONWRD is the address of the left byte of
the halfword, and the length attribute is
two, which is the implied length for a
halfword fixed-point constant.

- 7

T T
|Operation |Operand |
L {

r T T
|CONWRD |DC |H'658" |
t L L .

The next example uses a halfword con-
stant as a literal and loads ones into bits
8 through 15 of register 15.

r - T ' - 1
|Name |Operation |Operand |
L 1 d. _ {
T T T

| |LH |15,=H"'255" |
- L 5 J
P and Z -- Decimal Constants: A decimal

constant is written as a signed or unsigned
decimal value. If the sign is omitted, a
plus sign is assumed. The maximum length
of a decimal constant is 16 bytes. No
halfword boundary alignment is performed.

If zoned decimal format (Z) is specified,
each decimal digit is translated into one
byte. Except for the rightmost byte, the
translation is done according to the
character set shown in Appendix J. The
rightmost byte contains the sign in its
left half-byte and the rightmost digit of
the decimal constant in its right
half-byte.

In packed decimal format (P), the right-~
most byte contains the rightmost decimal
digit in its left half-byte and the sign in
its right half-byte. The other
decimal digits are "packed" two at a time
into one byte.

If you specify an evan number of decimal
digits, one digit will be left unpaired,
because the rightmost digit is paired with
the sign. Therefore, in the leftmost byte,
the leftmost four bits will be set to zeros
and the rightmost four bits will contain
the first digit. The bit configuration for

the digits is identical to the configura-
tions for the hexadecimal digits 0-9 as
stated under Hexadecimal Self-Defining
Term.

For both packed and zoned decimal num-
bers, a plus sign is translated into the
hexadecimal digit C, and a minus sign into
the digit D.

If no length modifier is given, the
implied length for either constant is the
number of bytes the constant occupies (tak-
ing into account the format, sign, and
possible addition of zero bits for packed
decimals). If a length modifier is given,
the constant is handled as follows:

1. If the constant requires fewer bytes
than the length specifies, the neces-
sary number of bytes is added to the
left. For zoned decimal format, the
character zero is placed in each added
byte. For packed decimals, all eight
bits of each added byte are set to
Zero.

2. If the constant requires more bytes
than the length specifies, the neces-
sary number of leftmost digits or pairs
of digits is dropped, depending on the
specified format (zoned or packed).

For example, the instruction DT P'12' is
translated into hexadecimal 012C, and the
instruction DC Z'-543' into hexadecimal
FS5F4D3.

The following example illustrates the
use of a packed decimal literal.

r T O 1
|Name |Operation |Operand |
+]

s t —mmmemmmed
i | ap | OUTAREA, =PL2'+25" i
L S L e e 3
Y -- Address Constant: Address constants

are normally used for initializing base
registers to facilitate the addressing of
storage. Furthermore, they provide the
means of communicating between control sec-
tions of a multi-section progran. The
latter is explained in the section Base
Register Instructions.

An address constant, unlike other types
of constants, is enclosed in parentheses
and specified as an absolute, relocatable,
or complex relocatable expression. (Com-
plex relocatable expressions are discussed
below.)

The value of the expression may range
between -215(=-32768) and 2215-1(=32767).
The implied length of an address constant
is two bytes, and the value is placed in
the rightmost portion. Alignment is to a

Assembler Instructions 51

halfword boundary, unless a length is spe-
cified. A length modifier may be used, in
which case no alignment will occur. The
length that may be specified depends on the
type of expression used for the constant; a
length of 1-2 bytes may be used for an
absolute expression, while a length of two
kytes must be used for a relocatable or
complex relocatable expression.

If an address constant contains a
location-counter reference, the location
counter value used is the storage address
of the first byte the constant will occupy.

If you specify a duplication for an
address constant containing a location-
counter reference, the value of the loca-
tion counter used in each duplication is
incremented by the length of the constant..

In the following example, the field
generated from the statement named ACONST
contains a constant that occupies two
bytes. Note that there is a location-
counter reference. The value of the loca-
tion counter will be the address of the
first byte allocated to the constant. The
second statemeént below shows an address
constant used as a literal. Since a
location-counter reference is not permitted
within a literal, the instruction must be
named and the name used in the literal if a
location-counter reference is desired. The
instruction ADCON will generate the address
of the constant named FIELDA.

pm—————= | Sttt E i - 8]
| Name | Operation | Operand |
fomm—e- bomm oo oo :
jACONST | DC | Y(*+4096) |
|a | LH | 14,=Y(A) |
{FIELDA | DC | H*101" |
|ADCON | DC | Y(FIELDA) |
|, F S, . 1

Complex Relocatable Expressions: These
expressions contain two or three unpaired
relocatable terms or a negative relocatable
term in addition to any absolute or paired
relocatable terms that may be present. A
complex relocatable expression may only be
used to specify an address constant.
Unlike relocatable expressions, complex
relocatable expressions may represent a
negative value. A complex relocatable
expression may consist of external symbols
and designate an address in an independent
assembly that is to be linked and loaded
with the assembly containing the address
constant.

For example, if SECTION1 and SECTION2
name two consecutive sections, the
instruction

DC Y (SECTION2-SECTION1)

Lin
N

is a complex relocatable expression con-
stant describing the length of SECTIONI.

Relocation Dictionary (RLD): If an address
constant is specified by a relocatable or a
complex relocatable expression, the
Assembler automatically places certain
information into the relocation dictionary.
This information tells the Linkage Editor
that this address constant must be updated
when the program is relocated and how this
updating is to be performed.

DS -- DEFINE STORAGE

The DS instruction is used to reserve areas
of storage and to assign names to those
areas. The use of this instruction is the
preferred way of symbolically defining
storage for work areas, input/output areas,

etc.
| Sttt Sttty ettt 1
iName lOperatlon iOperand 1
iuhnt I Hi 1
1A symbol |DS |One operand |
|or blank | |written in the |
| | | format described |
|] lbelow |
Y S i

The format of the DS operand is similar
to that of the DC operand. It consists of
a duplication factor, a type code, and a
length modifier., The rules for DC instruc-
tions are also applicable for DS instruc-
tions with the following exceptions:

1. A duplication factor of zero is per-
mitted. (It does not advance the loca-
tion counter).

2. Only constants of types C and H are
permitted in the DS instruction. A
duplication factor is permitted for
both types.

2. The length modifier may only be speci-
fied for the C-type constant. (Range
0-256).

4 The specification of data
is not permitted in a DS operand.

If you have a symbol in the name field
of a DS instructicn, its value attribute is
the location of the leftmost byte of the
reserved area. The length attribute of the
symbol is the length (implicit or explicit)
of the type of data specified. Any posi-
tioning required for aligning the storage
area to the proper type of boundary is done
before the address value is determined.
Skipped bytes are not zeroed.

A fixed-point field (H) has an implied
length of two bytes. The leftmost byte is
aligned to a halfword boundary. Use this
code if 'you desire to reserve two bytes of
storage aligned to a halfword boundary. A

duplication factor would have to be used to
reserve a larger area, because the maximua
length specification for this type is two
bytes.

Character (C) fields have an implied
length of one byte. If you use this code,
you would have to specify a length modifi-
er, unless you want to reserve just one
byte. Although no alignment occurs, the
use of a C-type field permits greater lati-
tude in length specifications, the maximum
for this type being 256 bytes.

The size of a storage area that can be
reserved by using the DS instruction is
limited only by the maximum value of the
location counter. Since the maximum length
specification is 256, an area larger than
256 must be specified with a duplication
factor. For example, the statement

DS 2CL200

can be used to reserve 400 positions of
main storage.

To define four 10-byte fields and one
100-byte field, the respective DS instruc-
tions might be as follows:

r T . T === - 1
lﬂame lOperatlon iOperand 4
_— U R
|FIELD |DS | 4CL10 |
| AREA |DS |CL100 |
| R—_— L ———— - J

Although FIELD might have been specified
as one 40-byte field, the preceding defini-
tion has the advantage of providing FIELD
with a length attribute of 10. This would
be important when using FIELD as a machine-
instruction operand governed by a length
consideration.

Additional examples of DS statements are
shown below:

r - T s==== - q
|Name |Operation|Operand |
1 I}

—

T N B ===

{ONE |DS |CL80 (one 80-byte field, |

| length attribute of 80) |
|TWO |DS |80C (80 one-byte fields, |

| length attribute of one)|
| THREE| DS |48 (four halfwords, |
] | | length attribute of |
| | | two) |
[e A]
Note: A DS instruction causes the storage

area to be reserved, but not to be set to
zeros. You cannot assume that the area
contains zeros or data saved from a pre-
vious program or program phase.

Special Uses of the Duplication Factor

Forcing Alignment: The location counter
can be forced to a halfword boundary by
using the H-type field with a duplication
factor of zero. This method may be used to
obtain boundary alignment that otherwise
would not be provided. For example, the
following statements would set the location
counter to the next half-word boundary and
then reserve storage for a 128-byte field
(whose leftmost byte would be on a half-
word boundary).

r- T T

| Name |Operation |Operand |
k- frmmm e 1
{ {DS | OH |
AREA DS

Defining Fields of an Area: A DS instruc-

tion with a duplication factor of zero may

be used to assign a name and a length to an
area of storage without actually reserving

the area.

A DS statement for C-type fields with a
duplication factor of zero does not advance
the location counter. Additional DS and/or
DC instructions may then be used to reserve
the area and assign names to fields and
constants within this area.

For example, assume that 80-character
records are to be read into an area for
processing and that each record has the
following format:

Positions 5-10
Positions 11-30
Positions 31-36
Positions 47-54
Positions 55-62

Payroll number
Employee name
Date

Gross wages
Withholding tax

The following example illustrates how
you might use DS instructions to assign a
name to the record area, then define the
fields of the area and allocate storage for
them.

| ottt Tommm— e B ittt 1
| Name |Operation |Operand |
pommmm o e b !
| RDAREA |DS |0CL80 |
| | DS |cLy i
| PAYNO | DS |CL6 I
| NAME | DS | CL20 i
| DATE | DS | 0cL6 |
|DAY |DS |CcL2 I
| MONTH | DS |cL2 |
| YEAR | DS jcL2 |
[|DS |CL10 I
GROSS	DS	cLs
FEDTAX	DS	CcL8
	DS	cL18
b L P 3

Assembler Instructions 53

The first instruction names the entire
area by defining the symbol RDAREA; the
instruction gives RDAREA a length attribute
of 80 bytes, but does not reserve any
storage. Similarly, the fifth statement
names a 6-byte area by defining the symbol
DATE; the three subsequent statements actu-
ally define the fields of DATE and allocate
storage for them. The second, ninth, and
last statements are used for spacing pur-
poses and, therefore, are not named.

DCCW -~ DEFINE CHANNEL COMMAND WORD

The DCCW instruction provides a convenient
way to define and generate a 6é-byte channel
command word aligned at a half-word bound-
ary. The format of the DCCW instruction
is:

——— e = = e o o ———

r—== T . e 1
| Name |Operation|Operand |
T o ¥ -- - 1
{A symbol|DCCW | Four operands, |
|or blank]| | separated by commas, |
I
I
i
J

| | specifying the con-
| | tents of the channel
| | command word

| SR J I

po e ————

The internal machine format of a channel
command word is described in the SRL publi-
cation IBM System/360 Model 20, Functional
Characteristics, Form GA26-5847.

All four operands must appear. They are
written, from left to right, as follows:

First operand: An absolute expression
specifying the command code. The value of
this expression is right-aligned in byte
one.

Second operand: An absolute expression.
The value of this expression is right-
aligned in byte two.

Third operand: An absolute or relocat-
able expression specifying a storage
address. The value of this expression is
right-aligned in bytes 3-4.

Fourth operand: An absolute expression.
The value of this expression is right-
aligned in bytes 5 and 6.

For further details see the pertinent
hardware SRL publication.

The following is’ an example of a DCCW
instruction for a magnetic tape read:

If READAREA represents, for e
value 1204, the assembled CCW is
028012040080,

xample, the

If there is a symbol in the name field
of the DCCW instruction, it is assigned the
address value of the leftmost byte of the
channel command word. The length attribute
of the symkol is six.

Program Sectioning and Linking
Instructions

It is often convenient, or necessary, to
write a large program in sections. The
sections may be assembled separately and
then combined into one object program. The
Assemkler provides facilities for creating
multi-section programs and symbolically
linking separately assembled progran
sections.

Program sectioning and linking is close-
ly related to the specification of base
registers for each control section. Sec-
tioning and linking examples are given
under CSECT -- Identify Control Section and
Addressing An External Control Section.

CONTROL SECTIONS

A control section is the smallest logical
unit of a program. BAll elements of a con-
trol section are in a constant relationship
to each other. Therefore, the control sec-
tion is the smallest separately relocatable
unit of a program. If a program is sec-
tioned, it must be written so that control
passes properly from one control section o
another, regardless of the position of the
control section in main storage.

A program is divided into control sec-
tions if it is to be assembled in several
parts. (Program parts assembled at one
time are often called an assembly.) In a
multi-section program, each control section
must be complete. An unsectioned program
is considered a single control section.

Since you have described storage symbol-
ically you know what eventually will be
entered into storage, regardless of whether
you write an unsectioned program, a multi-
section program, or part of a multi-section
program but you will, most likely, not know
where in storage a section appears. There
is no constant relatioship between indivi-
dual control sections. Thus, knowing the
location of one control section does not
make another control section addressable by
relative addressing.

The output of ths Assembler consists of
the assembled control sections, an External
Symbol Dictionary and a Relocation
Dictionary.

The External Symbol Dictionary contains
information the Linkage Editor program
needs to complete cross-referencing between
control sections as it combines them into
one object program. The Linkage Editor
program can take control sections from
various assemblies and combine them proper-
ly with the help of the corresponding
External Symbol Dictionaries. Successful
combination of separately assembled control
sections depends on the techniques used to
provide symbolic linkages between the con-
trol sections. This is described in the
sections below describing the CSECT, ENTRY,
and EXTRN instructiomns.

The Relocation Dictionary contains
information about certain address constants
(see DC-instruction) which must be updated
by the Linkage Editor Program when a con-
trol section is relocated.

The External Symbol Dictionary is con-
tained in the ESD-cards in front of the
object deck. The Relocation Dictionary is
contained in the RLD-cards mingled with the
TXT-cards.

The Linkage Editor program assigns loca-
tions to control sections in such a way
that the sections are placed in storage
consecutively, in the same order as they
occur in the program. Each control section
suksequent to the first begins at the next
available half-word boundary.

A control section is normally identified
by the CSECT instruction. However, if it
is desired to specify a tentative starting
address, the START instruction may be used
to identify the first control section of an
assembly.

The first control section of an assembly
has the following special properties.

1. TIts tentative starting location may be
specified as an absolute value.

2. It normally contains the literals
requested in the program, although
their positioning can be altered.. For
further explanation on positioning of
literals see the discussion of the
LTORG instruction.

Limitations

The combined number of control sections and
dummy sections (see Dummy Control Sections)
for an assembly must not exceed eight. The
combined number of control sections and
dummy sections plus the number of unique
symbols in EXTRN statements for an assembly
must not exceed 31. A maximum number of 20
ENTRY instructions can be processed in a
single assembly.

START -- START ASSEMBLY

The START instruction may be used to give a
name and starting address to the first (or
only) control section of an assembly. The
START instruction may be preceded only by
AWORK, AOPTN (in this order), ICTL, ISEQ,
REPRO, EJECT, SPACE, PRINT, TITLE instruc-
tions, and comments statements. There must
be only one START instruction in an
assembly.

The format of the START instruction is
as follows:

}

|A self-defining

| term or blank
_______ R,

k +

|A symbol |START
|or blank |
L L

If a symbol names the START instruction,
the symbol is established as the name of
the control section. If not, the control
section is considered to be unnamed. All
subsequent statements are assembled as part
of that control section. This continues

until a CSECT instruction identifying the

beginning of the next control section or a
DSECT instruction is encountered,

A CSECT instruction namred by the same
symbol that names a START instruction is
invalid. An unnamed CSECT. instruction that
occurs in a program initiated by an unnamed
START instruction is also invalid.

The symbol in the name field is a valid
relocatable symbol whose value represents
the address of the first byte of the con-
trol section. It has a length attribute of
one.

The Assembler uses the self-defining
value specified by the operand as the
starting location of the first control sec-
tion. This value must be divisible by two.
For example, either of the following state-
ments could be used to assign the name
PROG2 to the first control section and to
indicate an initial assembly locatioiu of
2040:

[———=—== f Skt o - -
{Name lOperatlon iOperand }
- } .
|PROG2 | START {2040 |
|PROG2 | START |X*7F8" |
L lo____ ——1 _ _——l

If the operand in a START instruction is
blank, the Assembler checks if NORLD is
specified as the operand of an AOPTN
instruction, provided such an iastruction
is given. If NORLD is not specified, the

Assembler Instructions 55

Assembler assumes that the program shall be
relocatable and sets the starting address
to zero. If it is specified, the Assembler
regards the program as not relocatable and
sets the starting address to the address of
the first available halfword behind the
Monitor.

If you omit the START instruction, the
Assembler assumes one with blank name and
operand fields.

CSECT =~- IDENTIFY CONTROL SECTION

The CSECT instruction identifies the begin-
ning of a control section. The format of
the CSECT instruction is as fcllows:

[T - T 1
| Name lOperatlon lOperand 4
_____ b ——— -

|A symbol |CSECT |Blank; or a com- |
jor blank | |ment preceded by |
| | |a comma. |
L —————L e e o e e e e o e o 4

The symbol that names the CSECT instruc-
tion is the name of the control section; a
blank indicates an unnamed section. All
statements following the CSECT instruction
are assembled as part of that control sec-
tion until a statement identifying the
beginning of the next control section
(i.e., another CSECT or a DSECT instruc-
tion) is encountered.

The symbol in the name field is a valid
reloccatable symbol whose value represents
the address of the first byte of the con-
trol section. It has a length attribute of
one. Only one CSECT statement with the
same name is permitted within a program.

If you wish to use a symbol defined in
one control section as an operand in anoth-
er of the same assembly, you must write a
USING instruction telling the Assembler
which register to use as the base register
for that control section. The unpaired
term in the operand v in the USING instruc-
tion (see USING -- Use Base Address Regist-
er) must be defined in that same control
section.

An additional USING instruction is
needed because a CSECT instruction causes
the Assembler to disregard all previous
USING instructions of the same assembly.
Figure 8 illustrates these rules.

L
b

IS Sttt Sttt ettt 1
{ Name |Operat10n|0perand |
_______________________________________ t]
| #*kkkkkkkk k¥ ¥ BEGIN OF PROGRAM*kkdkkkkkk sk |
| SECT1 |S7ART 10 |
iBEGL |BASR ji0,0 i
| | USING |*,10 |
| |- | |
1 ! 1 1
i [i i
i jUSING |SECT2,11 i
1AL |LH | 11,=Y(SECT2) |
| {Mve {FIELD1,FIELD2 |
| l- I I
| o | |
] { USING | SECT3, 12 i
|B1 | LH |12,=Y(SEcr3) |
| jcLe | FIELD1,FIELD3 |
! [| I
| I !
FIELDl	DS , ;!	
¥*¥**¥*** %% *SECOND	CONTROL SECTION*#** ¥k ¥k	
SECT2	CSECT	
BEG2	BASR {11,0	
	USING	*,11
! [
!	-	
	USING	FIELD1,10
a2	LH	10,=Y(FIELD1)
	MvcC	FIELD2,FIELD1]
i f i I		
[-		
	USING	FIELD3,12
B2	LH	12,=Y(FIELD3)
	CLC	FIELD2, FIELD3
I I I		
FIELD2	DS	H
[**kkkdk ¥ ¥ *¥THIRD CONTROL SECTION**¥*k+kk**¥		
SECT3	CSECT	
IBEG3	BASR 112,0	
]	USING	*,12
B		
I f -		
	USING	BEG1+B1-a1,10 i
A3	LH	10,=Y(BEGL+B1-Al)
i { MVC	FIELD3,FIELDL i	
e ! !		
I .		
	USING	BEG2+B2-A2,11
B3	LH	111,=Y (BEG2+B2-A2)
	cLc	FIELD3, FIELD2
l-		
.		
FIELD3	DS	H I
-		
I [| ‘ |
] | END |, END OF PROGRAM I
L -1 - L ——————— e J
Figure 8. Example of a Multi-Section

Program

The MVC instruction in the control sec-
tion named SECT1 uses FIELD2 as an operand
and the CLC instruction uses FIELD3 as an
operand. Both FIELD2 and FIELD3 are not
defined in control section SECT1. There-~
fore a USING statement must be issued prior

to using each symbol as an operand. USING
SECT2,11 tells the Assembler that a symbcl
defined in SECT2 will be used and that its
base register is 11. Likewise, USING
SECT3,12 tells that & symbol d2fined in
SECT3 will be used and that its base
register is register 12.

In the control section named SECT2 the
instruction USING FIELD1,10 tells the
Assembler to use register 10 as base
register to address control section SECT1
since FIELD1 is defined in that control
section. The assumed base address is the
address of the instruction named FIELD1.

In the control section named SECT3, to
use a different method, the instruction
USING BEG2+B2-A2,11 tells the Assembler to
use register 11 as base register to address
control section SECT2 because the unpaired
term BEG2 is defined in that control sec-
tion. The assumed base address is the
value of the expression BEG2+B2-A2.

The statements named Al1,B1,A2,B2, and
A3,B3 load the base register specified in
the respective USING statements immediately
preceding each statement with the address
of the first operand in each USING
statement.

Unnamed Control Section

If neither a named CSECT instruction nor a
named START instruction appears at the
beginning of the program, the Assembler
determines that it is to assemble an
unnamed control section as the first (or
only) control sectiomn. Only one unnamed
control section is permitted in a program.
If you write a small program that is unsec-
tioned, you need not use a CSECT
instruction.

DUMMY CONTROL SECTIONS

A dummy control section is not part of the
object program; it only serves to describe
the layout of an area of ‘storage without
actually reserving storage. (It is assumed
that the storage is reserved by another
assembly).

DSECT -~ IDENTIFY DUMMY SECTION

The DSECT instruction identifies the begin-
ning of a dummy section. More than one
dummy section may be defined per assembly,
but each must be named. The format of the
DSECT instruction is as follows:

r T T-""7 D
|Name |Operation |Operand :
b e e T }
|2 symbol |DSECT |Blank; or a comr- |
| | |ment preceded by |
| | |a comma. i
Lo ——t] '

The symbol in the name field must be a
valid relocatable symbol whose value repre-
sents the first byte of the Aummy section.
It has a length attribute of one.

Symbols that appear in the name field of
a DSECT instruction or in the name field of
an instruction in a dummy section may be
used in USING instructions. Therefore,
they may be used in program elements (e.g.,
machine instructions and data definitions)
that specify storage addresses. BAn exampic<
illustrating the use of a dummy section
appears under Addressing Dummy Sections.

A symbol that names a statement in a
dummy section may be used in an address
constant (see DC instruction) only if it is
paired with another symbol (with the oppo-~
site sign) from the same dumry section.

Dummy-Section Location Assignment

A location counter is used to determine the
relative locations of named program ele-
ments in a dummy section. The location
counter is always set to zero at the begin-
ning of the dummy section, and the locatior
values assigned to symbols that name state-
ments in the dummy section are relative to
the initial statement in the section.

Addressing Dummy Sections

Suppose you wish to describe the format of
an area whose storage location will not be
determined until the program is executed.
You describe the format of the area in a
dummy control section and use symbols
defined in the dummy section as the
operands of machine instructions. To
reference the storage area, you must:

1. Provide a USING instruction specifying
both a general register that the
Assembler can assign to the machine
instructions as a base register and an
address value from the dummy section
that the Assembler may assume the
register contains.

2. Ensure that the same register is loade:
with the actual address of the storage
area.

Because the location counter is set to
zero at the beginning of the dummy control
section, the values assigned to symbols
defined in a dummy control section are
relative to the initial statement of that
section. Thus, all machine instructions

Assembler Instructions 5%

referring to names defined in the dummy
section will, at execution time, refer to
storage locations relative to the address
loaded into the register.

An example is shown in the following
coding. Assume that two independent assem-
blies (assembly 1 and assembly 2) have been
loaded and are to be executed as a single
overall program. Assembly 1 is an input
routine that places a record into a speci-
fied area of storage, places the address of
the input area containing the record into
general register 13, and branches to
assembly 2. 4 y;vvcoocs the
record. The coding shown in the example is
from assembly 2.

Bceathu 27 mryaoacsa

r——— I e ettt 1
| Name |Operation |Operand]
F $ fommm oo !
jASMBLYZ |START |10 [
{ BEGIN | BASR 112, 0 [
	USING	*,12
IUSING	AREA, 13	
	cLI	CODE,C'A"
	BE	ATYPE]
i i I		
.	!	
ATY PE jMvC	WORKA, PUTA	
imMve	WORKB, PUTB i	
b		
-	I	
WORKA	Ds	cL20
WORKB	Ds jcris I	
I I I		
	- I]	
AREA	DSECT	I
j CODE iDS jcul]		
PUTA	Ds {CL20	
PUTB	DS jcLis]	
	- !	
	END	I
S J S — . 4

The input area is described in assembly
2 by the dummy control section named AREA.
Fields of the input area that are to be
procegssed are named in the Jummy control
section as shown. The Assembler instruc-
tion USING AREA,13 designates general
register 13 as the base register to be used
in addressing the DSECT control section and
indicates that general register 13 is
assumed to contain the address of AREA.

Assembly 1, during execution, loads the
actual beginning address of the input area
into general register 13. Because the sym-
bols used in the DSECT section are defined
relative to the initial statement in the
section, the address values they represent
will, at the time of program execution, be
the actual storage locations of the input
area.

wn
<o

SYMBOLIC LINKAGES

Symbols may be defined in one assembly and
referred to in another, thus allowing sym-
bolic linkages between independently
assembled sections. Linkages are only
possible if the Assembler is able to pro-
vide information about the externally
defined symbols to the Linkage Editor,
which resolves these symbols into
addresses. The Assembler places the neces-
sary information into the External Symbol
Dictionary if the particular symbols are
specified in the ENTRY and EXTRN instruc-
tions. Symbolic linkages are deScribed as
linkages between independent assemblies;
more specifically, they are linkages
between independently assembled control
sections.

In the program where the linkage symbol
is defined (i.e., used as a name), it must
also be identified to the Assembler by
means of the ENTRY Assembler instruction,
except when the symbol appears in the name
field of a START or CSECT instruction. It
is identified as a symbol that names an
entry point, which means that another pro-
gram will use that symbol in order to
effect a branch operation or a data
reference. The Assembler places this
information in the External Symbol
Dictionary.

similarly, the program that uses a sym-
bol defined in some other program must
identify it by the EXTRN Assembler instruc-
tion. It is identified as an externally
defined symbol (i.e., defined in another
program) that is used to effect linkage tc
the point of definition. The Assembler
places this information into the External
Symbol Dictionary.

ENTRY -- IDENTIFY ENTRY-POINT SYMBOL

The ENTRY instruction identifies a linkage
symbol that is defined in one assembly but
may be used in another assembly. An ENTRY
instruction must not appear in an unnamed
control section or in a dummy section. The
format of the ENTRY instruction is as
follows:

EERAn ittt 8 e 1
|Name | Operation | Operand |
e e T j
Blank	ENTRY	A relocatable
		symbol that also
		appears as a state-
		ment name
{) IR - _ —_—

The symbol in the ENTRY operand field
may be used in the operand field of
instructions in other assemblies. The sym-
bol in the operand field must not be
defined in an unnamed control section or in
a dummy control section. The following
example identifies the statements named
SINE and COSINE as entry points to the
assembly.

T L] : -= - 1
|Name | Operation | Operand |
|..___ 1 + 1

T 1
| | ENTRY | SINE |
| | ENTRY | COSINE |
L 1 L |
Note: The name of a control section need

not be identified by an ENTRY instruction
when another assembly uses it as an entry
point. The Assembler automatically places
information on control section names in the
External Symbol Dictionary.

Limitation: A maximum of 20 ENTRY state-
ments can be processed in a single
assembly.

EXTRN == IDENTIFY EXTERNAL SYMBOL

The EXTRN instruction identifies a linkage
symbol that is used in this assembly but
defined in some other assembly. Each lin-
kage symbol must be identified, even sym-
bols that name external control sections.
The format of the EXTRN instruction is as
follows:

r-———-- T - T 1
|Name | Operation | Operand |
p-—--—+ fommmmm oo 1
|Blank | EXTRN | A relocatable |
| | | symbol |
| S L 4

The symbol in the operand field must not
appear as the name of a statement in this
assembly.

Limitation: The combined number of control
sections, dummy sections, and symbols spe-
cified in EXTRN instructions must not

exceed 31 for one assembly.

The following example identifies three
external symbols that have been used as
operands in this assembly but are defined
in some other assembly.

=== T T-=-= 1
|Name | Operation | Operand]
I fommmmmmmmee fommmmm e]
(| EXTRN | RATETBL |
| | EXTRN | PAYCALC I
| | EXTRN | WITHCALC |
L L L ——]

External symbols should be used only in
address constants. But if you do wish to
use an external symbol in a machine
instruction, you must write an USING state-
ment before using the symbol as an operand
as illustrated in the following example:

r - B B kit 1
|Name |Operation|Operand |
| Sttt to———————- o i
| | EXTRN | FIELD i
		-
	B	
	LH	8,YFIELD
	USING	FIELD, 8
	cH	9, FIELD
		«
		«
1		«
YFIELD	DC	Y(FIELD)
i	- i	
I		
I P, e e]		

An example that employs the EXTRN
instruction appears under Addressing An
External control Section.

ADDRESSING AN EXTERNAL CONTRQOL SECTION

To link a program to a control section in a
different assembly, proceed as follows:

1. Identify the external symbol with the
EXTRN instruction, and create an
address constant from the symbol.

2. Load the constant into a general
register, and use the register for base
addressing or kranch to the section via
the register.

Figure 9 shows the coding that might be
used to incorporate a subroutine named SUB-
ROUT (which is an external control sec-
tion), to branch to this subroutine, anid to
branch back to the main progran.

[$3]
el

Assembler Instructiong

1

| NAME | OPERATION | OPERAND AND COMMENTS i
== -+ R e e e e 1
|MAINPROG | START | 0 MAIN PROGRAM i
| BEGIN | BASR | 12,0 STORE INSTRUCTION COUNTER INTO R12 |
i i USING | *,12 USE R12 FOR ADDRESSING THE MAIN PROGRAM !
| | - | I
o |
i | EXTRN | SUBROUT DEFINE SUBROUT AS NAME OF EXTERNAL SECT ION !
| |- | |
| P | |
i { LA { 10, SUBADDR LOAD ADDRESS OF EXTERNAL SECTION INTO R10 [
|CALLSUBR | BASR | 11,10 BRANCH TO SUBROUT I
B		
	.	
SUBADDR	DC	Y(SUBROUT) ADDRESS OF EXTERNAL SECTION
I	END	BEGIN BRANCH TO BEGIN 1
L1 N P - —— —— — J		
————————— T - —=== - === =T s T TETTT T		
NAME	OPERATION	OPERAND AND COMMENTS
+ - - -4
| SUBROUT | CSECT | CONTROL SECTION EXTERNAL T'O MAIN PROGRAM |
I | USING | *,10 I
I Y. ! |
| P | |
- |

i | BR | 11 RETURN TO INSTRUCTION FOLLOWING CALLSUBR I
I | END |]
| S, 1 g gy L SO S, - . |

Figure 9. Addressing an External Control Section

Base Register Instruction Statements

USING -- USE BASE ADDRESS REGISTER
By means of the USING instruction you tell
the assembler

* which pseudo registers (0 through 7) or
which general registers (8 through 15)
are available as base registers for
implicit addressing;

s for which control section such a base
register is available;

¢ what value the register(s) will contain
at object time.

A USING instruction does not load the
registers specified. It is your responsi-
bility to ensure that the specified base
address values are placed into the regis-
ters (see the BASR instruction). An
example follows the description of the DROP
instruction.

A USING instruction has effect only

within the control section where it is con-
tained and, withir that control section, it

60

applies only to instructions following it
in the program. With the beginning of a
new control section (see CSECT and DSECT
instructions) all previously available base
registers are dropped automatically. You
must use at least one USING instruction for
each control section you want to address.

The format of the USING instruction is:

S -
|Name |Operation]|Operand |

- —— T

VeXawlaeXla, Iy]

— 1

k +
|Blank | USING
| R § S

Operands v and r, are mandatory.
Operands r,, ra, and r, are optional.

Operand v must be a relocatable expres-
sion. It specifies a value that the
Assembler can use as a base address. The
unpaired relccatable term of this expres-
sion refers to that control section for
which base register{s) are to be made
available by this instruction. No literals
are permitted.

The operands rs, Y2y Yas, X« must be
absolute expressions, whose value must be
between 0 and 15. Operand r, specifies the
register that can be assumed to contain the
base address represented by the operand v.
Operands ry, ra, and r specify registers
that can be assumed to contain v+4096, v+
8192, v+12288, respectively. For example,
the statement:

r - T . T - Ibm i |
| Name |Operation |Operand |
i 1 e
| |USING |*.8,9 |
L 3 ; 1 e ————————— J

tells the Assembler to assume that at
object time the current value of the loca-
tion counter (indicated by the *) will be
in general register 8, and that the current
value of the Location Counter, incremented
by 4096, will be in general register 9.

The registers r,, r, .rs, r, address
that control section where the unpaired
term of the expression v is defined. For
an example see the section Program Secticn-
ing and Linking Instructions. Thus, if you
want to address two different control sec-
tions you must use two USING instructions.

If you change the value in a base
register currently used and wish the
Assembler to compute displacements from
this value, you must tell the Assembler the
new value by means of another USING state-
ment. In the following sequence the:
Assembler first assumes that the value of
ALPHA is in register 9. The second state-
ment then causes the Assembler to assume
that ALPHA+1000 is the value in register 9.

r——— T - T == -
{Name |[Operation |Operand |
— ¥ ¥ - 1
| |usinNg {ALPHA,9 i
o |
| |USING | ALPHA+1000,9 |
. 1 b ———— J

If you wish to use more than four regis-
ters as base registers to address one con-
trol section you must use two or more USING
instructions.

Whenever a storage location is specified
by a relocatable expression in an operand
of a machine instruction, the Assembler
checks for an available base register to
separate the storage address into a base
address value and a displacement value. To
this end the assembler determines:

s which control section the relocatable
expression refers to (i.e. in which con-
trol section the unpaired relocatable
term of the expression is defined);

e if a base register is available for that
control section (i.e. if you issued a
USING instruction).

If a base register is available, the
assembler determines, in order to get a
positive displacement, whether or not the
ktase address value to be assumed for this
register (see USING instruction) is lower
than or equal to the storage address to be
separated. The difference between the base
address and the storage address must not
exceed 4095 (hexadecimal FFF), because
exactly three halfbytes are reserved in an
instruction to bold the displacement
specification.

If more than one base register satisfies
the above condition, the assembler will
always choose the one giving the smallest
displacement. If more than one register
gives the same displacement, the numerical-
1y highest register will be chosen.

USING instructions may specify the pseu-
do registers 0 through 7 as base registers.

This is referred to as direct addressing.

In this case, the object program cannot be
relocated by the Linkage Editor Program
because the Linkage Editor Program Joes not
update a direct address in the operand of a
machine instruction.

The Assembler assumes fixed contents for
pseudo base registers as shown in the fol-
lowing list:

Register Contents

0

1 4,096
2 8,192
3 12,288
4 16,384
5 20, 480
6 24,576
7 28,672

The Assembler always uses these values.
However, a check is performed to> determine
whether the expression v matches the con-
tents of the pseudo base register referred
to, and a warning is issued if they do not
match. Unlike the general registers 8
through 15, the pseudo registers need not
be loaded in a program.

You may make the object program relocat-
able (referred to as indirect addressing)
at some future time by making the following
changes in the source program and reas-
sembling it:

1. Replacing pseudo registers in the
USING statement by general registers.

2. Loading the new specified base regis-
ters with a relocatable value.

Assembler Instructions 61

The piseudo registers must not be used as
registers for working with data.

DROP -~ DROP BASE REGISTER

The OROP instruction specifies a previously
availsble register that wust no longer be
vsed as & base eglster. The format of the
DROP instruction is as follows:

S e FommT e m—— hnb tankatteshade b 1
{Mame ioperation |[Operand |
| ettty $o—- tre——- ——
iBlank |DROP |Up to four absolute |
i i |expressions of the |
{ L |form Y1+Y2¢X3,Tn J
bmmimm e — g

Operand r, is mandatory, operands x5,
ta, and ¥ are optional. ri, Y2, ra, and
r. are absolute expressions indicating
regicters previously named in a USING sta-
tement and are now unavailable for implicit
addressing. The following statement, for
axample, prevents the Assembler from using
registers 92 and 11:

e than four registers are to be
2ilable for base addressing, two
ROP instructions must be issued.

It is not necessary to use a DROP state-
ment before the tagse address in a register
is changed by & USING statement; nor are
DRCP statements needed at the end of a
S0UrCe prograt.

A regis*“er made unavailable by a DROP
instruvction can be made available again by
a subseguent USING instruction.

PROGRAMMING EXAMFLE

In the following sequence, the BASR
instruction loads register 12 with the
address of the first storage location imme-
diately follcwing. In this case, it is the
instruction named FIRST. The USING
instruction indicates to the Assembler that
register 12 contains the address of this
instruction. When you employ this method,
the USING instruction must immediately fcl-
low the BASR instruction. No other USING
or ioad instructions are required if the
location named LAST is within 4095 bytes of
FIR3T.

(333
[39]

 Sutniatntebaint Setetetetattatitad Seteteisieieteeiebaleiett et 1
| Name IOperatlon]Operand i
o e 4
|BEGIN |BASR (12,0 }
| | USING [*,12 [
{FIRST | . i i
| [I |
I I I I
ILAST P, ! !
i io=] :
i {END {BEGIN |
(. b e B . 1

In the following example, the BASR and
LH instructions load registers 12-15. The
USING instruction indicates to5 the Assembl-
er that these registers are available as
base registers for addressing a maximum of
16,384 consecutive bytes of storage, begin-
ning with the location namned HERE. The
number of addressable bytes may be
increased or decreased by altering the
nurnker of registers designated by the USING
and LH instructions and the number of
address constants specified in the DC
instructions.

| it TooTToe e T - 1
| Name | Operation | Operand |
e foommm oo frmmmmm oo]
BEGIN	BASR	12,0
	USING	HERE,12,13,14,15
HERE	LH	13,BASEADDR
	LH	14, BASEADDR+2
	LH	15, BASEADDR+4
	B	FIRST
BASEADDR	DC	Y(HERE+4096)
	DC	Y(HERE+8192)
] { DC	Y(HERE+12288)	
FIRST	.	
[. [
! b ! !		
LAST	-	i
	END	BEGIN
. . . 1

Restrictions on Register Usage

Registers 8, 9, 10, 14, and 15 have special
uses and are available to you only under
certain conditions. Register 9 is used by
the DPS IOCS. Registers 8, 14, and 15 are
used by the FETCH routine. Register 10 is
used by the LCAD routine. Neither the
FETCH routine nor the IOCS nor the LOAD
routine save the contents of these regis-
ters prior to using them. If you use these
registers you must save their contents (and
restore them later) or be finished with
them before the FETCH routine or IOZS make
use of the registers.

If you use IOCS-routines and specify a
DTFEN overlay you must issue a new USING 10
after each OPEN and CLOSE instruction,
because a DROP 10 instruction is given
within the OPEN/CLOSE routine. For further
details see the SRL publications

IBM System/360 Model 20, Tape Programming
System, Input/Qutput Control System, Form
GC24-9003,

IBM System/360 Model 20, Disk Programming
System, Input/Qutput Control System, Form
GC24-9007.

Registers 11-13 are available to you
without any restriction. You will, as a
matter of fact, decrease the possibility of
errors if you try to use only these three
registers. However, if there is a shortage
of registers all general registers 8
through 15 are available to you under the
restrictions stated above.

Listing—Control Instruction Statements

The listing-control instructions are used
to identify an assembly listing and assenb-
ly output cards, to provide blank lines or
skip pages in an assembly listing, and to.
designate how much detail is to be included
in an assembly listing. In no case are
instructions or constants generated in the
object program.

TITLE =-- IDENTIFY ASSEMBLY OUTPUT

The TITLE instruction enablss you to iden-
tify the assembly listing and assembly out-
put cards. The format of the TITLE
instruction is as follows:

r-) S K 1
|Name |Operation IOperand |
e e 1
|Name |TITLE |A sequence of char- i
| or | |acters, enclosed in |
|blank | | apostrophes |
L. L | —— e e e e d

If the first TITLE statement in a pro-
gram appears before the START statement,
may contain an entry in the name field.
This entry may contain one to four alpha-
betic or numeric characters in any combina-
tion. Any additional characters are
ignored. The contents of the name field
are punched into columns 73-76 of all the
output cards for the program, except in
cards produced by means of a REPRO Assemkl-
er instruction. Subsequent TITLE state-
ments must not contain a name entry.

it

The operand field of a TITLE statement
may contain up to 62 characters enclosed in
apostrophes. The contents of the operand
field are printed at the top of each page
of the assembly listing that follows it,
until another TITLE statement is encoun-
tered. The TITLE statement itself does not
appear in the source listing unless it is
found to be incorrect. Each TITLE state-

ment causes the listing to be advanced to a
new page (before the heading is printed).

For example, if the following statement
is the first TITLE statement t0 appear in a
program, and it appears before the START
statement:

then PGM1 is punched into all of the output
cards (columns 73-76), except those pro-
duced by a REPRO statement, and the -heading
FIRST HEADING appears at the top of each
page that follows it.

J{.
| TITLE | *FIRST HEADING' |
Ll

occurs later in the program, PGM1 is still
punched into the output cards, but each
following page begins with the heading: A
NEW HEADING.

EJECT -- START NEW PAGE

The EJECT instruction affects only the
assembly listing and provides a convenient
way to separate program routines in the
listing., This instruction causes the
remainder of the present page tdo be skipped
and the listing to continue at the top of
the next page, below the heading line. If
the line preceding the EJECT statement
appears at the bottom of a page, the EJECT
has no effect.

If two or more EJECT instructions are
issued in succession, a complete page is
skipped for each EJECT instruction after
the first and the listing continues on the
page that is in printing position after the
last EJECT instruction is executed. Each
page that is skipped is printed with a
heading line, however. The format of the
EJECT instruction is:

| Name }Dperatlon |Operand |
S S T 1
Blank	EJECT	Blank; or a com-
		ment preceded by
		a comma.
b b L e 1

The EJECT statement itself does not
appear in the source listing.

Assembler Instructions 63

SPACE -- SPACE LISTING
The SPACE instructio s e
or more blank lines in the 1
format of the SPACE inst t

follows:

3
=

| S T Tt L 1
jName joperation jOperand i

|A decimal value urg to|
|56 or blank i

A decimal value is used to specify the
number of blank lines to be inserted in the
assembly listing. A blank operand causes
one blank line to be inserted. If the spe-
cified value exceeds the number of lines
remaining on the listing page; the state-
ment will have the same effect as an EJECT
statement. The SPACE statement itself does
not appear in the source listing, unless it
is found to be incorrect.

The SPACE instruction in the following
example would cause three blank lines to
appear in your source listing between the
add instruction and the move instruction.

r- £ e Ut 1
| Name |Operation |Operand |
e e frmmm oo i
| Mve | HALF, OLD i
| | SPACE] |
| {aH {15,HALF |
| A R, L __ —— J
PRINT -- PRINT OPTIONAL DATA

The PRINT instruction is used to control
printing of the assembly listing. The for-
mat of the PRINT instruction is:

| Butminbetiah it T -
| Name IOperatlon | Operand |
pmmmmmmm fommmmmmme e oo - !
|Blank |PRINT |One to three operands|
__________________ 2

Up to three operands may be used, that
is, one out of each of the following groups:

OFF or ON, GEN or NOGEN, DATA or NODATA.

OFF - No 1listing is printed. No
execution of listing-control
statements.

CON - A listing is printed.

GEN - All statements generated by

macro instructions are printed.

64

Statements generated by macro

instructions are not printed.
However, the macro iastruction
itself and messages resulting
from the MNOTE instruction, if
used, will appear in the list-
ing. (The MNOTE instruction is
described under MNOTE -- Reguest
for Error Message.) BAny
instruction that contains one or
more Assemkl er-detected errors
is also printed along with the
appropriate diagnostic
message(s).

DATA - Constants are fully printed out

in the listing.

t by (16

wr+

eid
3
i

S 3

e
h
0

e

Saigit
ssembled data ar
the listing.

g b
s) of
e i

pri

T et T
20w

n in

A program may contain any number of
PRINT statements. The condition set by a
print statement remains in effect until
another PRINT statement is encountered.

If an operand is omitted, its specifica-
tion is assumed to remain in effect. If
OFF is specified, GEN and DATA have no
effect. If NOGEN is specified, DATA has no
effect for generated DC instructions.

Until the first PRINT statement (if any)
is encountered, the Assembler assumes that
a PRINT instruction with the operands ON,
NODATA, and GEN was given.

For example, if the statement DC
XL32'00' appears in a program, 32 bytes of
zeros are assembled. If the statement:

=———== e B it 1
| Name |Operation |Operand |
b= L ettt 1
| | PRINT | DATA |
b o Lo e 1

is the last PRINT statement to appear
before the DC statement, all 32 bytes of
zeros are printed in the assembly listing.
However, if:

|Operat10n |Operand |

pmmm- fommmmmmeen fommm e i
i |PRINT iNODAlK |
| I A e J

is the last PRINT statement to appear
before the DC statement, only eight bytes
of zeros are printed in the assembly
listing.

Program—Structure Control
Instructions

The program-structure control instructions
are used to influence the structure of the
program to be assembled.

REPRO -- REPRODUCE FOLLOWING STATEMENT

The output of the Assembler program may be
processed by the Linkage Editor program or
the CMAINT program. Both programs require
a socalled PHASE statement for operation.
This statement must be included in the
assembler output (the object deck). (See
the SRL publication, Control and Service
Programs, Form GC24-9006). Instead of wait-
ing until you have the object deck, and
then manually inserting the PHASE card, you
may include it in your source deck if you
use a REPRO statement immediately preceding
the PHASE card.

The REPRO Assembler instruction causes
the Assembler to punch a duplicate of any
card immediately following the REPRO
instruction. The punched cards resulting
from REPRO instructions appear at the same
point in the assembled text as they
appeared in the source program. They are
not, however, processed by the Assembler
program.

If any REPRO instructions precede ‘the
START instruction or the implied start
position (if no START instruction is used),
the cards punched will precede the ESD
cards for the assembly.

The format of the REPRO Assembler
instruction is as follows:

r T T 1
|Name | Operation | Operand |
poom-- fomm- —4-- 4
|Blank | REPRO | Blank; or a com- i
| | | ment preceded by |
| | | a comma.]
L L A e —————————————— 4
The following example illustrates the

use of the REPRO instruction statement:

e e it 1
|Name | Operation | Operand |
e K $omm oo :
i | REPRO |]
| | PHASE | PROGA,A,X'1200" |
| | START | 0 |
| [. I [
I . I I
| [e | I
L ———L e J

XFR == GENFRATE A TRANSFER CARD

The XFR instruction is provided to cause
the generation of a transfer card at the
same location the XFR instruction appears
in the source program.

A transfer card is used by the loader of
the TPS Basic Monitor and the TIPS or DPS
CMAINT and Linkage Editor program to define
the transfer point or entry point of a
phase, or subphase.

The format of the XFR instruction is as
follows:

Operation

.
|
t o
XFR I
4

F—t—

The symbol in the operand field must
appear within the assembly, or be previous-
ly defined as either an entry point or an
external symbol.

ORG -- SET LOCATION COUNTER

The ORG instruction is used to alter the
setting of the location counter for the

current control section. Each ORG state-
ment causes a new output text card to be

started. The format of the ORG instruction
is:

r =T SRR B 1
| Name |Operation |Operand |
e m—— oo oo]
|Blank. |ORG |A relocatable ex- |
|] |pression or blank |
[F R 1

Any symbols in the expression must have
been previously defined. The unpaired
relocatable symbol must be defined in the
same control section in which the ORG sta-
tement appears.

The location counter is set to the value
of the expression in the operand. If the
operand is omitted, the location counter is
set to a location that is one byte higher
than the highest location assigned for the
control section up to this point.

An ORG instruction must not be used to
specify a location below the beginning of
the control section in which it appears.
For example, the instruction:

Assembler Instructions 65

is invalid if it appears less than 500
bytes from the beginning of the current
control section

If you need to reset the location count-
er to a value that is one byte beyond the
highest location yet assigned (in the con-
trol section), the following instruction
wouid be used:

|Operat¢on |Operand
L

If previous ORG statements have reduced
the location counter for the purpose of
redefining a portion of the current control
section, a new ORG instruction without an
operand can then be used to terminate the
effects of such statements and restore the

Location Counter to its highest setting in
the control section.

LTORG =- BEGIN LITERAL POOL

The Assembler program places all literals
encountered in a literal pool. This liter-
al pool is automatically placed at the end
of the first control section by the
assembler. If you wish the literal pool to
be placed at a different location (for
example, when you use subphases within one
control section), use an LTORG instructicn.

The LTORG instruction causes all
literals thus far encountered in the source
program up to the LTORG statement (either
from the beginning of the program or from a
previous LTORG statement) to be assembled
at appropriate boundaries starting at the
first halfword boundary following the LTORG
statement.

The format of the LTORG instruction is:

r T X T 1
LName lOperatlon lOperand 4
T T eI IS
| Symbol |LTORG |Blank; or a com-]
|ox | |ment preceded by i
| blank | |a comma. l
| S i i 1

The symbol represents the address of the
first byte of the literal pool. It has a
length attribute of one.

An LTORG instruction must not be used
within a dummy section.

Special Addressing Consideraticns: Any
literals used after the last LTORG state-
ment in a program are placed at the end of

66

the first contrcl section. If there are no
LTORG statements in a program, all literals
used in the program are placed at the end
of the first control section. Under these
circumstances, you must ensure that the
first control sectlon is always address-
able. This means that the base address
register for the first control section
should not be changed through usage in sub-
sequent control sections. If you do not
wish to reserve a register for this pur-
pose. you may place an LTORG instruction at
the end of each contrdol section, thereby
ensuring that all literals appearing in
that section are addressable.

END -- END ASSEMBLY
The END instructi It ends
the assembly of a program. It may also
designate a point in the program or in a
separately assembled program to which con-
trol may be transferred after the program
is loaded. The END instruction must always
be the last statement of any source
program.

The format of the END instruction state-
ment is:

 Sptmiaiibehak ettty Bttt 1
| Name |Operat10n |Operand |
e fommmmmemm oo {
|Blank |END |a relocatable ex- |
| | |pression or blank |
| R) I U, J

The operand specifies the point to which
control is to be transferred when loading
is completed. This point is usually the
first machine instruction in the program,
as shown in the following sequence.

it Sttt B ettt 1
| Name lOperatlon |Operand |
------------------- e L P |
|NAME |CSECT | |
|AREA |DS 1500 |
|BEGIN |BASR [12,0 I
| | USING {*,12 I
{ I I I
I .		
	.	
	END	BEGIN
[A 1 ———————————— e 3

If the END statement contains a symbolic
address in the operand field, the Assembler
automatically punches the transfer address
into the END card.

Note: If the operand contains an externail
symbol, only a single-term relocatable
expression is permitted.

Often it is desirable to divide a large
program into several parts for execution.
These parts are called phases. A phase may
consist of one "head" phase and of up to
nine subphases.

Phases of one program may either be
assembled together or seperately.

A phase without subphases may consist of
one or more control sections. If the
object program created by the Assembler is
to be processed by the Linkage Editor pro-
gram, the beginning of a phase must coin-
cide with the beginning of a control sec-
tion. Two parts of a phase assembled
separately may be combined to one phase by
the Linkage Editor Program.

If you use the phasing technique you
must use the FETCH or LOAD macro instruc-
tion. 1Its functions (and special consi-
derations if you use IOCS in your program)
are described in the SRL publication IBM
Systen/360 Model 20, Disk Programming Sys-
tem, Input/Output Control System, Form
GC24-90C07. For information on the Tape

360 Model 20, Tape Programming System,
Input/Qutput Control System, Form
GC24-9003.

You must catalog a program phase in the
core-image library under a unique name. A
subphase can be cataloged only as part of
its head phase.

The CMAINT (Core-Image Maintenance) pro-
gram is available for cataloging program
phases in the core-image library. You can
load the cataloged phases into main storage
for execution, one at a time, either conse-
cutively or seperately. If a phase con-
sists of a head phase and one or more sub-
phases, the first subphase can be initiated
only by the headphase and each subsequent
subphase by its preceding subphase.

Overlay Using the FETCH Macro
CODING OF PHASES WITHOUT SUBPHASES

To code phases without subphases you must
apply the following rules:

* Each phase must begin with a REPRO
instruction followed by a PHASE state-
ment., (For the first phase in an
assembly these two statements must pre-
cede the START instruction).

Planned Overlay Stracture

¢ Issue a FETCH macro instiuction with
operand at the point in one phase where
you want another phase to be loaded.
The operand of the FETCH instruction
specifies the name of the phase tu be
loaded.

e Each phase, except the last one in an
assembly, must end with an ZFR instruc-
tion. The last phase must end with an
END instruction.

e If you use literals in your program you
should issue a LTORG instruction in =2acn
phase to ensure that the literals are
defined in the same phase in which they
are used.

The following example demonstrates how
to use the phasing technigue. It is3
assumed that a Linkage EAditor run iz not
reguired.

r T P A 1
| Name |Operation|Operand |
S K !
] | REPRO | [
| | PHASE | FIRST,A, 4096 i
| | START |4096 !
| | USING | *,1,2 i
|PHASEL | . | i
| | . I {
JEXIT1 |FETCH | SECOND i
| |- | i
| I | i
| | LTORG | |
| | XFR | PHASEL !
I* | I j
| | REPRO | |
| | PHASE | SECOND, A, 4386 i
| | ORG | PHASEL+290 |
| PHASE2 | . | i
| |- I i
|EXIT2 |FETCH | THIRD !
! [| |
I oo I |
| | LTORG I i
I |END | PHASE?2 |
§ L e !
| Second Assambly

l. _______ ro——————— T = ———————— m e d
|]|REPRO | |
[| PHASE | THIRD, A, 4336 {
| | START |4386 ‘
| | USING | *¥~290,1,2 i
|PHASE3 | . | !
| | . I ;
| | END | PHASE3 i
S L D)

When phase SECOND is loaded it ovexr-
writes phase FIRST except for the first 2%0

Planned Overlay Structure ${°

byt
are
Phas
in

ica
pro
pro

es. These 290 bytes may be used as data
as or to contain subroutines or both.
se THIRD is fetched by phase SECOND and

Celiicea

turn overwrites it.

The next example shows an almost ident-
1 program. Only this time the object
cram generated by the Assembler must be
cessed by the Linkage Editor program

before it can be cataloged.

[m———=-= k S T - 1
|Name {Operation|Operand i
e +- e 3
	REPRO	
.	PHASE	FIRST, S, 0
CSECT1	START	0
PHASE1l	BASR 112,0	
	USING {*¥,12,13	
	LH 113, =Y(PHASE1+4098)	
! - ! i		
! - !		
EXIT1	FETCH	SECOND
i -		
1	.	
	LTORG]
	XFR	PHASE1
*	I I	
i	ORG jCSECT1+290	
CSECT2	CSECT	I
i	REPRO i	
	PHASE	SECOND, L, 290, CSECT1
PHASE2	BASR 112,0 I	
	USING	*,12
b I		
	. I	
EXIT2	FETCH	THIRD i
I -	I	
.		
[LTORG	I	
i	END	PHASE2
per————- e A 4		
Second Assembly		
t r g m oo .		
{ REPRO]	
1	PHASE	THIRD, L, 0, CSECT2
CSECT3 {START io i		
PHASE3	BASR 12,0	
J USING 1*,12		
- I		
[.		
	END	PHASE3]
A I I, J
CODING OF A PHASE WITH SUBPHASES

To code a phase with subphases apply the
following rules:

968

If your program must be processed by the
Linkage Editor program before it can be
cataloged, the head phase and the sub-
phases must be contained in one control
section.

A REPRO instruction followed by a
statement is reguired only h

n

= =X QL

a

phase with subphases.

phase. If the beginning of the head
phase coincides with the beginning of
the assembly, these two statements must
precede the START instruction.

The load address for a subphase is

derived from the load address contained
in the first TXT-card of this subphase.

The head phase and the subphases must
end with a XFR instruction. If the end
of the last subphase coincides with the
end of the assembly, this subphase must
end with an END instruction.

If a Linkage Editor run is regjuired
before cataloging, issue a REPRO
instruction followed by the Linkage Edi-

dmam mmmdbemn? b s ACTITON THT

oL
to the XFR instruction of the head
phase. This ensures that the Linkage
Editor does not ignore all subsejuent
XFR and END instructions.

Issue a FETCH macro instruction without
an operand at the point in the head and
subphases where you want the subsjuent

subphase to be loaded into main storage.

The following example shows how to code
It is assumed that

a Linkage Editor run is not required.

Name IOperatlonI:)peranA |
R e {

| REPRD |]

| PHASE j PROGR1, A, 4090 i

| START | 4096 |

|USING 1*.1,2,2 |

BEGIN | . | |
- I I

P I z

EXITH |FETCH | |
[- I I

| | I

|LTORG | |

| XFR | BEGIN |

I I I

|ORG |BEGIN+4098 |

SUBPH1 | . | |
I I I

EXIT1 |FETCH | |
I - | I

I | !

|LTORG |]

| XFR | SUBPH1 |

f | I

| ORG | BEGIN+4098 |

SUBPHZ | . | |
- | i

EXIT2 |FETCH | |
|- I I

I - I I

| END | SUBPH2 |
—————le S i

In the following example a Linkage Edi-
tor run is required before the phase can be
cataloged.

| S T——7 1 1 1
| Name |Ooperation {Operand |
e P - i
l |REPRO | |
	PHASE {PROGR1, S, 0
	START [0
BEGIN	BASR 111,0
	USING [*,11,12
	LH 112,=Y (BEGIN+X'1002')
	- I I
	- I
EXITH	FETCH i I
	-
	- [
	LTORG I [
	REPRO
]	ACTION
	XFR
I *	
]	ORG
suBPH1	. }
	-
{ FETCH	
	- 1
	-
	LTORG i
	XFR
	REPRO
i jacTioN	NODUP
*	! I
	ORG
SUBPH2	.]
	-
	LTORG
i | END | SUBPH2 I
Lem e S K R —— -

Overlay Using the LOAD Macro

You can use the same technique with the
LOAD macro as with the FETCH macro. The
LOAD macro is used to load selfrelocatable
phases or subphases; it differs from the
FETCH macro in the following two points:

¢ the load address of the phase or sub-
phase is specified in the operand of the
LOAD instruction,

s after loading the phase or subphase,
control is given to the next sejuential
instruction.

An example illustrating the use of the
LOAD macro to load a phase (without sub-
phases) is given below. It is assumed that
no Linkage Editor run is required.

First assembly:

S ToTTTITeOT
|Operation|Operand

|
|ROOT, A, 4096
| 1096

| USING 1%,1,2
ROOTPH

LOAD MODULE, YMOD

< 0
=2 O
@] =
o =

I
I
I
|
|
. |
I
I
L

Ll [I S |

o e e e e e ik

Second Assembly:

r—————-- St Attt bbbt
|Operation|Operand

o R
o
o
Q
e
=
B
(o]
—— e

When the program comes to the instruc-
tion LOAD, it loads the phase named MODULE
(see second assembly) to the address of
YMOD. After the phase MODULE has been
loaded, the program continues with the
instruction named CONT.

Planned Overlay Structure @69

Macro Instructions

The Assembler includes a macro. feature that
can be used to reduce the amount of repeti-
tive coding required for general, freguent-
ly used routines. For example, the rou-
tines for transferring records from magnet-
ic tape to main storage, checking for
accuracy, and ueblOCklng to obtain a single
record for processing are used for any log-
ical input file on tape. Such routines
involve many instructions that can be writ-
ten once and, with modification, may be
used repeatedly in any number of programs.

1. source-program macro_instructions

2. a macro library of pre-written flexible
routines calied macro definitions.

A direct relationship exists between
these two parts, i.e., a single macro
instruction written in the source program
is replaced, in the object program, by a
routine taken from the macro library. The
macro definition contained in the macro
library consists of a series of instruc-
tions. Thus, many instructions are
assembled for one macro instruction.

The same operation code is used in the
macro instruction as in the macro defini-
tion. Therefore, the proper routine to be
included in the object program is found by
matching of operation codes.

As the instructions of a macro defini-
tion are assembled, they can be tailored to
fit the particular problem program by a
substitution process. The first statement
of a macro definition (following the macro
header) is the prototype statement. It
defines the format of the macro instruction
and contains various symbolic operands
(called symbolic parameters) for which
values may be substituted when the macro
definition is used by a specific program.

The macro instruction in the source pro-
gram specifies the values of the symbolic
that are to be substltuted in EHE-EEEEO

definition when it is assembled. 2An
evamn'ln of this is:

QUL

70

1
| | Prototype state-
] . lment in macro

| . : |library

| I

|a ADD RAT1,RAT2,TRAT |Example of a

i jcorresponding

| |macro instruction
L

- J

The example illustrates the prototype
statement of an addition routine that could
be used by any program to add any two terms

nd store the sum in a specified location.
Program A might use the macrc instruction
to add RAT1 to RAT2 and store the result in

a field named TRAT.

The parameters applicable to the specif-
ic job are specified in the macro instruc-
tion. The parameters are substituted for
the symbolic parameters in the prototype
statement when the macro routine is
assembled. The parameters are also substi-
tuted in all the statements that follow the
prototype statement to actually perform the
addition. The statements following the

For the above addition example, the com-
plete macro definition routine might be:
itk 1
i MACRO | Header statement
| ENAM ADD £§51,652,650M] Prototype statem.
| 6NAM LH 13,681 | Model statement
i AH 13,852 | Model statement
| STH 13,65UM | Model statement
| MEND | Trailer statement
Lo —_— — -

The & character preceding the symbolic
name is part of the macro-language syntax
as explained in the following sections.

IBM provides a number of pre-written
macro definitions and specifies the macro
instructions you can use to call these rou-
tines from the library. You can write your
own macro definitions and store them in the
macro library.

macro definitions:
¢ IOCS macro definitions

= Monitor macro definitions

MACRO-INSTRUCTION FORMAT

The format of a macro instruction in a
source-language statement must correspond
to the format of the prototype statement in
the macro definition. Therefore, the for-
mat of the prototype statement determines
the form in which the macro instruction
must be written in the source program.

The name field in the macro instruction
may contain a name if the name field of the
prototype statement contains a symbolic
parameter.

The operation field in the macro
instruction must contain exactly the same
mnemonic operation code as the prototype
statement, e.g., ADD. This may be any
alphameric code with a maximum of £five
characters, the first of which must be
alphabetic.

The operands in the operand field of a
macro instruction must be written in the
same format as the symbolic parameters in
the operand field of the prototype state-
ment. Either the positional format or the
keyword format may be used.

POSITIONAL MACRO INSTRUCTIONS

The format of a positional macro instruc-
tion is as follows:

L St Sty
|Operation | Operand
1

!
———— J
1
!
|

-l

+

t 1

{ A sym- |Mnemonic | Up to 49 operands,

| bol or |operation | separated by commas,
| blank |code | in the form

i | | described below |
L 1 =1 - :

-———d

If the name field of a positional proto-
type statement contains a symbolic paramet-
er, the name field of a positional macro
instruction may either contain a symbol or
be blank. If the name field is blank, the
symbolic parameter in the macro definition
is considered to be a null parameter.

(Null parameters are described below.)

If the name field of a positional macro
definition is blank, the name field of the
positional macro instruction should be
blank. If an entry is present it will be
ignored.

If an entry is made in the name field of
a macro instruction, the entry must conform
to the format for a symbol, regardless of
whether or not it will be used as a symbol
by the macro definition.

The operation field of a macro instruc-
tion contains the same operation code that
appears in the operation field of the
corresponding prototype statement.

The placement and order of the operands
in a positional macro instruction is deter-
mined by the placement and order of the
symbolic parameters in the operand field of
the prototype statement.

Any combination of up to eight charac-
ters may be used as a macro instruction
operand if the following rules are
observed:

1. Apostrophes must always occur in pairs.

2. Two apostrophes must be used to repre-
sent one apostrophe enclosed in paired
apostrophes.

3. If an apostrophe is immediately pre-
ceded by the letter L, and immediately
followed by a letter, the apostrophe is
not considered in determining paired
apostrophes.

4. Parentheses must always occur in. pairs,
left parenthesis then right
parenthesis.

5. Nesting of parentheses-is not
permitted.

6. A parenthesis that occurs between
paired apostrophes is not considered in
determining paired parentheses.

7. An egual sign may occur only as the
first character in an operand or within
paired apostrophes.

8. A comma indicates the end of an operand
unless placed between paired paren-
theses or paired apostrophes.

9. A blank indicates the end of the
operand field unless placed between
paired apostrophes.

10. Each group of consecutive ampersands

must be of an even number.

The following are examples of valid
macro instruction operands:

SYMBOL A+2
123 L*WORKAR
* =H'4096"
X'189A" 0(2,3)
Note: All characters are generated.

Macro Instructions 71

The following are invalid macro instruc-
tion operands, for the reasons stated:

T' NAME Apostrophe not preceded by L
5A3B Single parenthesis not enc-
losed in apostrophes
5.(0,3) First comma not enclosed in
parentheses or apostrophes
(15 B) BRlank does not occur between
paired apostrophes
(T0,FROM) More than eight characters

If no operand is specified for a symbol-
ic parameter in the prototype statement,
the comma that would have separated it from
the next operand must not be omitted. 1If
the last operand (or operands) are omitted
from a macro instruction, the trailing

comma is not required.

Any symbolic parameter for which a name
or operand is not specified in the macro
instruction becomes a null parameter.

The following example shows a macro
instruction preceded by its corresponding
prototype statement. The third and sixth
operands of the macro instruction in this
example are gmitted and are therefore con-
sidered to be null parameters.

oo | Sinteteiatabint fa - -1
| Name |Operation| Operand |
s oo 1 1
i | EXMPL | &A,8B,6C,6D,6E,&F |
R pommmmomt e -1
] | EXMPL | 17,*+14,,AREA,FIELD6 |
leemeen A S —

If the symbolic parameter that corres-
ponds to a null parameter is used in a
wodel statement, a null character value
replaces the symbolic parameter in the
senerated statement. The result will be
the same as though the symbolic parameter
did not appear in the statement.

For example, the first statement below
is a model statement containing the symbol-
ic parameter &C. If the operand that
corresponds to &C is omitted from the macro
instruction, the second statement is
generated from the model statement.

r-—=-== L Bletdedatebbubtni L S 1
{Name | Operation | Operand |
p----—- ommmmmmmme frmmmmm e e i
| | Mvc | THEC,THIS |
pommmm pommmmmemeee frmmmmmm oo !
I | mvc | TH, THIS |
(S, S, . 1

The positional prototype statement can
be written in a format simiiar to the for-
mat used for other Assembler-language sta-
tements. To allow for the inclusion of up
to U9 parameters in the prototype statement
~{ a2 macro definition, use as many con-

~3

Ny

tinuation cards as are required. The name
field, if used, must begin in the begin
column. The operation field followed by at
least one blank must appear on the first
card of the statement. The other rules

are:

1. If the parameters in the operand field
extend up to the end column and column
72 contains a nonblank character, the
parameters may be continued in the con-
tinue column of the next card. A
single parameter may be split between
two cards.

2. A klank following a parameter signifies
the end of all symbolic parameters.

3. Comments may appear after the blank
that indicates the end of all parame-
ters, up to and including column 71.

As many continuation cards as are
required may be used in a positional macro
instruction.

Unless changed by an ICTL instruction
during assembly, the begin column for a
macro instruction is assumed to be column
1, the end column is assumed to be column
71, and the continue column is assumed to
be column 16.

This format may be changed by an ICTL
instruction, the operand of which may be 25
or 25,71,38, If 25 is specified, column 25
is the begin column, and column 71 is the
end column. No continuation cards will be
recognized. If 25,71,38 is specified, the
begin column is column 25, the end column
is column 71, and the continue column {(for
macro instructions only) is column 38.

KEYWORD MACRO INSTRUCTIONS

The format of a keyword macro instruction
is as follows:

T
Operation| Operand |

A sym-
bol or

| Mnemonic | Up to 49 operands,
|

| blank

|

L

I
operation| separated by commas, |
code | in the form |

described below. |
i]

This format provides a direct associa-
tion between the operands of the macro
instruction and those of the corresponding
prototype statement.

The very same parameters used in the
prototype statement are specified (without
the &) in the macro instruction, where they
are equated to the value desired for the
specific job. The parameters of a proto-

type statement are called keywords when
they appear without the & in a macro
instruction followed by an equality sign.

In the following example, the first line
shows a prototype statement, the second
line the corresponding macro instruction.

r T T 1
| Name | Operation | Operand {
b $-- ¢ i
| | CHECK | &§suUM=,&DIFF= I
-4 + 1
| | CHECK | DIFF=25,SUM=PAY |
L 1 1 —_—-d

Since the association of parameters is
performed through the use of keywords, the
operands in the macro instruction may
appear in any order, and any parameters
that are not needed may be omitted. If an
operand is omitted, the comma that would
have separated it from the next operand
must not be written.

The rules for writing names and opera-
tion codes in keyword macro instructions
are the same as_those for positional macro
instructions.

The begin, end, and continue columns for
keyword macro instructions are the same as
those for positional macro instructions.

Each macro instruction operand must con-
sist of a keyword immediately followed by
an equal sign and a value. Anything that
can be used as an operand in a positional
macro instruction may be used as a value in
keyword a macro instruction.

The keyword part of each macro-
instruction operand must correspond to one
of the symbolic parameters that appears in
the operand field of the prototype state-
ment. A keyword corresponds to a symbolic
parameter if the characters of the keyword
are identical to the characters of the sym-
bolic parameter that follow the ampersand.

Operands of a keyword macro instruction
may appear on separate cards. A comma must
follow every operand except the last, and
the continuation column must contain a non-
blank character. Comments may be contained
on the separate cards that contain indivi-
dual operands.

A symbolic parameter becomes a null
parameter if:

1. A symbolic parameter appears in the
name field of a prototype statement and
the name field of the corresponding
macro instruction is blank.

2. A keyword is specified in the operand
field of a macro instruction and no
value is associated with the keyword.

3. No value is associated with a keyword
in the operand field of a prototype
statement, and the keyword and its
associated value are omitted from the
operand field of a macro instruction.

The following rules are used to replace
the symbolic parameters in the model state-
ments of a keyword macro definition:

1. If a symbolic parameter appears in the
name field of a prototype statement and
the macro instruction is named, the
symbolic parameter in the name field is
replaced by the name.

2. The value associated with each paramet-
exr in the operand field of the proto-
type statement becomes the value of the
symbolic parameter.

3. The value associated with each keyword
specified in an operand of the macro
instruction replaces the value obtained
from the prototype statement for the
symbolic parameter.

The following keyword macro definition
(first box), keyword macro instruction
(second box), and generated statements
(third box) illustrate these rules:

r T T 1
| | Oper-| I
|Name| at ion|Operand \
l,_ 4 4 o o e . . o 2 T 2 o o ,‘
T T
{ | MACRO| I
| ENAM|MOVE |®=12, §AREA=SAVE, §TO=, §FROM=|
| ENAM|STH | 6REG, §AREA |
| |LH | ®, & FROM i
| |STH | §REG, §TO |
| |[LH | §REG, éAREA [
| | MEND | |
———tee e S
|HERE | MOVE |TO=FLDA, FROM=FLDE,AREA=THERE |
e e L e 1
|HERE|STH |12, THERE |
| |LE |12,FLDB |
| {sTH |{12,FLDA I
| |LH |12, THERE |
| IS N e ———————— 3

Note that the keyword REG was omitted in
the macro instruction and the standard
value 12 obtained from the prototype state-
ment was used in the generation wherever
§REG appeared in the model statements.

1f the entry FROM=FLDB is onitted from
the macro instruction, the second model
statement is generated as 1IH 12, which is
an invalid statement to the Assembler.

Macro Instructions 73

ASSEMBLY OF MACRO INSTRUCTIONS

At program assembly time, the macro
instruction specifies which definition is
tc be called from the macro library.
definition is extracted, tailored by the
operands in the macro instruction, and
inserted in the program. The complete pro-
gram now consists of both source program
statements and tailored wmodel statements

mh ~
11iT

from the macro library in Assembler
language.

In subsequent phases of the assembly,
the entire program is processed to produce
the machine-language object program.

Figure 10 illustrates the processing of
a macro definition.

SOURCE PROGRAM ASSEMBLER SOURCE PROGRAM
(Before) OPERATIONS (After)
(1 (1
2 2 —
) . Source)
: Locate Macro Progam ¢
. Library Routine Statements
Source i5 15

Program < 16 Macro Instruction ——a ¢
Statements | 17 —————

Merge with

Figure 10. Schematic of Macro Processing

T4

Perform indicated Selec=
tion and Substitution

Source Program

16 Macro Instruction
/

e | ——

Routine
(17
Source .
Program

.
Statemants ﬁ .

The macro language is an extension of the
System/360 Model 20 Assembler language and
is an aid in writing an Assembler-language
program.

Before you can code a macro instruction,
the series of statements that the macro
instruction represents must be defined in a
macro definition.

A macro definition is composed 2f a
header statement, a prototype statement,
one or more model statements, and a trailer
statement, in this sequence. You may
further include conditional-assembly
instructions.

This section contains a description of
the components of a positional macro defi-
nition and of the differences between it
and a keyword macro definition. Further-
more, this section also contains an
explanation of the model statements, the
conditional assembly instructions, and the
system variable symbols. Inner macro
instructions as special model statements
are also described. A sample macro defini-
tion and a step by step procedure for cod-
ing a macro definition is included.

Before you can use one of your own macro
definitions you must include it in the
macro library of your system. To this end,
use the MMAINT (Macro Maintenance) program
provided by IBM.

Positional Macro Definitions

To make a macro definition available to
many programs place the macro definition in
the macro library by means of a Macro Main-
tenance program (MMAINT). The MMAINT pro-
gram enables you to delete or replace macro
definitions in the macro library according
to your needs.

Wwhen writing a macro definition, you
cannot use the ICTL instruction to alter
the normal format of the macro component
statements. In a macro definition, the
begin column is column 1, the end column is
column 71, and the continue column for the
prototype statement or an inner macro
instruction is column 16.

Each macro definition includes (in the
sequence indicated):

1. A header statement. This statement
indicates the beginning of a macro
definition.

Macro Language

2. A prototype statement. This statement
indicates the various symbolic parame-
ters of a macro definition and the for-
mat and the mnemonic operation code to
be used in the macro instruction.

3. Model statements and conditional-
assembly instructions and comments sta-
tements. Model statements define
representations of ths statements that
will replace the macro instruction in
the source program. CZonditional-
assembly instructions vary the
sequence, number, and type of the sta-
tements gznerated, based on presence,
absence or values of the operands given
in a particular macro instruction (see
Conditional-Assembly Instructions).

4. A trailer statement. It indicates the
end of a macro definition.

MACRO -- HEADER STATEMENT

The head=sr statement indicates to the
MMAINT (Macro Maintenance program) that a
macro definition follows. It nust be the
first statement in every macro definition.
The format of this statement is:

r——————-= | St i 1
| | Oper- | I
| Name | ation | Operand |
———————— O R
| Blank | MACRO | Blank or vvmm¥ |
R N I S, J

*yvmm applies to DPS only. vv is the numb-
er of the program version; mm is the modi-
fication level. The operand, if present,
is transferred into the macro directory
(last two kytes of the corresponding
entry).

PROTOTYPE STATEMENT

The prototype statement indicates the for-
mat and the mnemonic oparation code of the
positional macro instruction the Assembler
is to interpr=t. It must be thz second
statement of every macro Jefinition. The
format of this statement is:

Macro Language 75

F-—————- To—mmme———— L Sainintebebeintebebetnbubsbebabbubt 1
I joper- | s
|Name lation ! Operand]
S S oo oo
|A sym- |A symbol | Up to 49 symbolic |
jbolic | i parameters, sep- |
|para- | | arated by comnas |
|meter | | |
lor ! ! 1
1 1) i i
{blank | i i
| S, Lo A 3

A symbolic parameter is an ampersand (§)
followed by one to seven alphabetic and/cr

+ha Fivar af whi

niIImMAvi~ charasskAro crbhd o~ fa]
Tnc L1rYst CI wWalln [us

NDuiCI 1T Cihiarlalolloy

be alphabetic.

You must not use any symbolic parameters
that have §SYS as the first four
characters.

Furthermore, symbolic parameters in the
torm &ALn, &AGn, &BLn, &BGn, &CLn, and
£&CGn, where n is one to five numeric chara-
cters, are not permitted. These symbols
are reserved for internal use.,

The following are valid symbolic
parameters:

EREADER &£1.00P2 EAGH
§A23U56 &N &§BLC
EXUH#F2 §S4 §CG6A

The following are invalid symbolic para-
meters for the reasons indicated:

JIOAREA First character is not an
ampersand

§256B First character after ampersand
is not a letter

EAREA2U456 More than seven characters
after the amparsand

EBCDE3L Contains a special character
other than initial &

§IN AREA Contains an embedded blank

§SYSTEM Contains &SYS as the first four
characters

§AG1S Is in the form §AGn, where n is
numeric

§BG28 Is in the form &BGn, where n is
numeric

§CG215 Is in the form &CGn, where n is
numeric

Name: The symbolic parameter in the name

field is normally used to name the
generated statements. It can also be used
in model statements in the same way as sym-
bolic parameters defined in the operand
field.

_______ The symbol in the operation
field is the mnemonic operation code of the
macro definition containing the prototype
statement. The operation code consists of
one to five alphabetic and/or numeric
characters, the first of which must be

~J
o

alphabetic. The operation code in the
operation field must be unique. It must
differ from the operation code of any IBM-
supplied macro definition, any machine and
Assembler instruction, and the operation
code of any other macro definition you
defined yours=1f. 24 list of ths IBM-
supplied macro definitions is included in

Apopendiy E.
Appendix E.

Operand Field: The operand fi=1ld may con-
tain up to 49 symbolic paramneters separated
by commas. These symbolic parameters are
used in model statements and reolaced dur-

Anea onnAaratian hor Fha AaveranAn S oy
wi€ COorresponaing

10y glhlrdviln OY

operands of the macro instruction.

The following sample prototyoe statement
contains three symbolic paramet=rs: one in
the name field and two in the operand

field. The mnemonic operation code is
MOVE.

r—————---= To———————= et 1
| |Oper- ! |
| Name |ation | Oparand |
————————————————— fommmm ooy
| &NAME |MOVE [§TO, §FROM I
R, Lo A e J

Prototype Statement Format

T'o allow for the inclusion of up to 49 sym-
bolic parameters in the prototyoe statement
of a macro definition, us2 as many con-
tinuation cards as needed. The names field,
if used, must begin in column 1. The
operation field, preceded and followed by
at least one blank, must appear on the
first card of the statement. The other
rules are:

¢ If the sympbolic parameters in the
operand field extend up to the end
column, and if column 72 contains a non-
blank character, the symbolic parameters
may be continued in column 16 of the
next card. A single symbolic parameter
may be split between two cards.

*» A blank following a symnbolic parameter
signifies the end of all symbolic
parameters.

e Comments may appear after the blank that
indicates the 2nd of all symbolic para-
meters, up to and including column 71.

MODEL STATEMENTS

Model statements are representations of the
statements that will replace the particular
macro instruction in the sources projram.

A model statement that contains no sym-
bolic parameters or variable symbols will
appear in the source program in the same

format as it appears in the macro defini-
tion. If a model statement contains sym-
bolic parameters or variable symbols, the
Assembler replaces the symbolic parameters
and variable symbols by the value specified
in the macro instruction before the model
statement is included in the source
program.

A model statement consists of one to
four fields (from left to right): name
field, operation field, operand field, and
comments field.

The operation field may contain the
operation code of any machine or Assembler
instruction except:

END, ICTL, ISEQ, LTORG, PRINT, and START.

It may also contain another inner macro
instruction. The operation field must not
contain a symbolic parameter. If REPRO is
used as a model statement, the following
card is not considered a model statement
and therefore ignored by the Macro main-
tenance program.

The operand may consist of variable or
non-variable symbols. For model statement
fields, the rules for paired apostrophes,
ampersands, or blanks in macro instruction
operands must be followed.

Symbolic parameters used in a model sta-
tement must be defined in the prototype
statement. Symbols used in a model state-
ment must be defined within the macro defi-
nition or within the source program that
calls the macro definition from the macro
library.

In the following exampls, the symbol
SAVEAREA is defined outside the macro
definition.

The function of this macro definition is
to move the contents of one storage area to
another area in main storage.

r~———--- o= L ittt isbai 1
| | Oper-| I
| Name | ation]Operand |
e O B .
Header | | MACRO|]
Prototype| éNAME | MOVE |&TO,&FROM |
Model | NAME | STH |12,SAVEAREA |
Model | | LH |12,&FROM |
Model | | STH (12,810 |
Model | | LH |12, SAVEAREA |
Trailer | | MEND | |
S, Lo L 3

Note that each of the symbolic parame-
ters used in the model statements of the
preceding example appears in the prototype
statement.

A model statement of a machine or
Assembler instruction must not be continued
on an additional card. If the nodel state-
ment is 2 macro instruction (see Inner

Macro Instructions), it may be continued on
as many cards as neaded.

During generation, each symbolic para-
meter in the name or op=rand fi=1ld of a
model statement is replaced by the charac-
ters of the macro instruction that corres-
pond to the symbolic parameter in the pro-
totype statemant. The operand field of a
generated model statement of a mnachine or
Assembler instruction can contain 56
characters.

If a symbolic parameter or a system
variable symbol appears in the commnent
field of a model statement, it is not
replaced by the corresponding characters of
the macro instruction.

In the following example, the characters
HERE, FIELDA, and FIELDB of the macro
instruction MOVE correspond to the symboslic
parameters &NAME, §&TO, and &§FROM, respec-
tively, of the prototyps statement.

r — S B 1
| Name |Operation | Operand]
e e |
| HERE |MOVE | FIELDA,FIELDB I
I Lo R 1

If the symbolic parameter &NAME appears
in the name or operand field of a model
statement, it will be replaced by the
characters HERE. Similarly, the symbolic
parameters &TO and &FROM will be replaced
by the characters FIELDA and FIELDB, respe-
ctively. If the preceding macro instrac-
tion were used in a source program, the
following Assembler-language statements
would be generated.

f-—————-- T ToTTTTT oo oT oo s 1
| | Oper- | [
| Name lation | Operand |
—— oo oo 1
| HERE | STH | 12, SAVEAREA |
| | LH] 12,FIELDB [
1 | STH | 12, FIELDA |
| |LH i 12, SAVEAREA |
|, Lo L e 3

You may use the same macro instruction
more than once in the sams program. The
Assembler uses the same macro definition to
interpret several occurrences of a macro
instruction. The following exauple illus-
trates this.

Macro Language 77

r———-- T) Stk 1
i |Oper- | [
|Name }ation |Operand |
e A e :

Macro Instr.|HERE |MOVE |FIELDA,FIELDB |
i pommmm oo ee i

Generated |HERE |STH |12,SAVEAREA |

Generated | |LH |12, FIELDB |

Generated ! lsTH {12, FIELDA !

Generated i jLH i12,SAVEAREA i
————— T s

Macro Instr.|LABEL|MOVE |INTO,OUTOF |
------------ pommmmmmm ooy

Generated |LABEL|STH |12,SAVEAREA |

Generated | |LHE {12,00rT0r i

Generated | | STH |12,INTO |

Generated | | LH | 12, SAVEAREA]
| —— ¥ S N J

In addition to denoting symbolic parame-
ters, ampersands may appear in a character
value or a self-defining value. TwO amper-
sands must be used to represent a single
ampersand in a character value or self-
defining value. The first statement in the
following example is a model statement; the
second statement is the source statement
generated from the model statement.

fo==—y----- L Bt L S 1
[Name |Oper-|Operand |Comments |
] jation] | |
Y, D DT e E— :
j&sYm|bDC JC'66SYM IS §SYM' |&SYM IS NAME|
_________ Y W
|NAME|DC |C'é&SYM IS NAME' |&SYM IS NAME|
| I R, R L 1

Characters {Concatenation)

The characters represented by a symbolic
parameter, SET symbols, system variable
symbols, symbols, self-defining values, or
character values may be concatenated as
desired to produce symbols, self-defining
values, and character values. (For a dis-
cussion of SET symbols and system variable
Assembly Instructions and System Variable
Symbols.) A symbolic parameter, a SET sym-
bol, or a system variable symbol conca-
tenated with a second symbolic parameter
cannot produce a third symbolic parameter.

Concatenation can be performed in the
name field and in the operand field, but is
not permitted in the operation field. The
following two points must be considered.

i. When a symbolic parameter, a SET sym-
bol, or a system variable symbol is
foillowed by an open parenthesis, a
period, an alphabetic character, or a
numeric character, a period must separ-
ate it from the character that follows.

~1

(03]

2. When a symbolic parameter, a SET syn-
bol, or a system variable symbol is
followed by a single period, the period
does not appear in the generated

output.
The fcollowing examples illustrate these
two points. In the examples, assume that

§PARAM has the value A.

Macro Definition: Generated Statement:

&§PARAM. (BC) A(BC)
§PARAM. .BC A.BC
6§ PARAM. BC ABC

§PARAM. 2BC A2BC
EPARAM..2B A.2B
BC&PARAM BCA
BC. &§PARAM BZ.A
B2&§ PARAM B2A
EPARAM. EPARAM an

E§PARAME PARAM AR

EPARAM. . §PARAM A.A

The following macro definition is a
practical example of the preceding discus-
sicn. The function of the macr> definition
is to move the contents of one area in main
storage to another area in main storage.

Trailer | MEND

r——=--- L L b 1
| | Oper-| |
|Name Jation|Operand |
Header r | MACRO| ?
Prototype| §NAME |MOVE | §PRE, §SAV, §REG, §NDX|
Model | ENAME |STH | §REG, §SAV. §NIX |
Model i |LH | ®, 6PRE+8 |
Model | |STH |®, EPRE.A |
Model | |LH | EREG, §SAVENDX |
| |
S + } 1
Macro | HERE |MOVE |FIELD,AREA,12, 4 |
------ T
Generate3d|HERE |STH |12,AREAH4 |
Generated| | LH |12,FIELD+8 |
Generated] |sTH |12,FIELDA |
Generated| | LH |12, AREAL |
|, Lo S S 4

Note that the first and fourth model
statements have identical operands, except
for the period between thes two symbolic
parameters in the operand field of the
first model statement. The period is
necessary in the third model statement to
distinguish between the symbolic parameter
&PRE and the symbol A. The period is unne-
cessary (but may be used) in the second

model statement to distinguish between the
symbolic parameter §PRE and +8.

First Macro
Definition

Header

Prototype statement

Macro instruction

Trailer

Second Macro Third Macro
Definition Definition
Header Header

Prototyp statement

Macro instruction

Trailer

Prototype statement

\-— Trailer

Figure 11. Schematic Representation of Nested Macro Instructions

Inner Macro Instructions

A macro definition may contain another
macro instruction as a model statement.
The containing macro instruction is called
an outer macro instruction. The contained
macro instruction is called an inner macro
instruction.

The outer and inner macro instructions
may be of the same or of different types.
That is, both the inner and the outer macro
instructions may be positional, they may
both be keyword, or one may be positional
and the other keyword.

Wwhen a macro definition contains a macro
instruction, the macro instruction is said
to be nested. The maximum depth of nesting
is three. A macro definition (first level)
may contain an inner macro instruction
(second level). The definition of this
inner macro instruction (second level) may
again contain a macro instruction (third
level).

Figure 11 shows a schematic representa-
tion of nested macro instructions.

The first-level macro definition can
contain as many second-level macro instruc-
tions as are reguired. A second-level
level macro definition can contain as many
third-level macro instructions as are

required. A third-level macro definition
cannot contain a macro instruction.

Symbolic parameters that are part of the
prototype statement, SET symbols, and sys-
tem variable symbols may be used in an
inner macro instruction. Each symbolic
parameter, SET symbol, or system variable
symbol is replaced by its value before the
inner macro instruction is generated.

For example, the following macro defini-
tion is contained in the macro library.

r————-- T B Attt 1
| | Oper- | I
|Name | ation | Operand |
poomme $ommmmmmeee fomm oo 1
| | MACRO |

[| abp | 6N1, N2, 6N3, 6RE3, SAREA|
] | LH | SREG,é&N1 |
| | BH | ®, §N2 [
[| aH | ®, &N3 i
| | sTH | ®,&AREA |
I | MEND I I
[Lo S J

The preceding ADD macro definition is
used as an inner macro instruction in the
COMP macro definition shown below. The
macro instruction causing the generation of
the model statements is given in the middle
box. The generated statements are in the
third box.

Macro Language 79

r~———y-————— R e ittt 1
I | Oper-| |
|Name| ation|Operand |
s v e 1
|] MACROI]
l | COMP |€AREA,&R1,6R2,6V1 ,6V2,6V3,6NA|
| | SR | 6R1, §R2 |
| | ¢ | €R1,EAREA I
i i BNE j&NA i
i | ADD }|&V1,8V2,6V3,12,8AREA i
|6NA | AH | 6R1, §AREA |
i | MEND | |
bommmdommmee oo 1
] | COMP |CHECK,10,11,X,Y,%,CHNG [
e T !
| | SR |10,11 |
i | CH]10,CHECK |
| | BNE |CHNG |
l | ADD |X,Y,%,12,CHECK i
| | L |12,X |
| | AH 112,Y |
| | AH 112,2]
] | STH |12,CHECK |
|CHNG| AH |10, CHECK I
[U S U 3

CONDITIONAL-ASSEMBLY INSTRUCTIONS

The information given in the preceding sec-
tions of this publication is sufficient to
write a relatively simple macro definition.
For each macro definition, the same
sequence of statements is generated each
time the macro definition is called by a
macro instruction, except that the specific
values and symbols in each statement may be
different.

Frequently, it is desirable to vary the
seguence, number, and type of instructions
generated, based on the presence, absence,
or values of the operands given in a parti-
cular macro instruction. Thus, the state-
ments generated for two macro instructions
calling the same macro definition might
differ, while the functions performed by
the statements are basically the same. To
permit the writing of a more complex macro
definition capable of producing a tailored
set of generated statements based on the
content of the macro instruction operands,
two categories of special instructions are
provided, the SET instructions and the con-
ditional instructions.

The conditional-assembly instructions
are: SETA, SETB, SETC, AGO, AGOB, AIF,
AIFB, ANOP, MEXIT, and MNOTE.

The Set instructions SETA, SETC, and
SETB perform arithmetic calculation,

character manipulation, and set binary
switches on the basis of logical and rela-
tional expressions.

The use of SET variable symbols in the
operand field of model statements 5f macro

80

definitions give you a high degree of fle-
xibility in the application of macro
definitions. For, by using the same symbol
in the name field of a SET instruction, you
may assign it a na2w value and thus alter
the value of the operand in the model
statement.

The results of the operations performed
by the SET instructions are contained, dur-
ing the generation of macro definitions, in
a series of specially provided areas in
main storage referred to by SET variable
symbols. SET variable symbols can be used
in model statements, SET instructions, and
conditional instructions.

The AGO (Assembler GO) and AGOB
(Assembler GO Back) instructions are simi-
lar to an unconditional branch instruction.
They are used to indicate, by means of a
seguence symbol, the next statement to be
processed by the Assembler. (Seguence sym-

Symbols).

The AIF (Assemble IF) and AIFB (Assemble
IF Back) instructions are similar to a con-
ditional branch instruction. They are used
to indicate, by means of the logical wvalue
obtained from the operand and a seguence
symbol, the next statement to be processed
by the Assembler if the condition is TRUE.

The ANOP (Assemble NO Operation)
instruction is used with the AGD, AGOB,
AIF, and AIFB instructions if a sejuence
symbol cannot be used as the name of the
next statement to ke branched to.

The MEXIT (Macro EXIT) instruction is
used to indicate to thes macro generator
that it is to terminate processing of a
macro definition.

The MNOTE (Macro NOTE) instruction is
used to generate messages in the output
listing.

The functions of the SET instructions
and the AGO, AGOB, AIF, and AIFB instruc-
tions are interrelated because the
generated output is generally tailored by
the use of AGO, AGOB, AIF, and AIFB
instructions based on the results obtained
from the values of SET instructions. While
numerous examples of SET instructions are
given in the section that explain the SETA,
SETB, and SETC instructions, their use is
shown in the sections describing the
remaining conditional-assembly
instructions.

SET VARIABILE SYMBOLS

The labels or symbols used in the name
field of SET instructions are referred to
as SET variable symbols or SET symbols.

The three types and formats of SET vari-
able symbols are:

Symbol Format
e SETA §AGn or &ALn
. SETB &§BGn or &BLn
s SETC §CGn

The n stands for an arithmetic value as

described in the subsequent sections.

Three SET instructions are used to
assign arithmetic, character, and logical
values to SET symbols. The SETA instruc-
tion assigns an arithmetic value to a SETA
symbol. The SETC instruction assigns a
character value to a SETC symbol. A SETB
instruction assigns a binary (or logical)
value, TRUE (1) or FALSE (0), to a SETB
symbol,

You should assign each SET symbol a spe-
cific value before the variable symbol is
used in the operand field of a macro com-
ponent. If you do not assign a value, the
following assumed values are used.

s SETA symbols (arithmetic values) have an
initial value of zero.

* SETC symbols (character values) have a
null character value, zero bytes in
length.

e SETB symbols (binary values) have an
initial value of FALSE (0).

All SET symbols can be defined t> be
_____ This means that once a value has
been defined for a particular SET symbol,
the value remains in effect for all
references to it within the assembly. For
example, if a source program contains three
macro instructions, and a SETA symbol is
given the value six in the macro definition
called by the first macro instruction, the
value six will be used when the particular
SETA symbol appears within the macro
definitions called by the other two macro
instructions. You may, however, redefine
the SETA symbol to a new value.

SETA and SETB symbols can be defined to
be local, i.e., once a value has been
defined for a particular SETA or SETB sym-
bol, the value remains in effect for_all
references to it only within its macro
definition. Once the macro instruction is
assembled, the value of the SETA or SETB
symbol is reset to zero. For example, if a
source program contains two macrdo instruc-
tions, and a SETB symbol is assigned a
value of one in the macro definition called
by tre first macro instruction, the SETB
symbol is reset to zero after the macro

instruction has been assembled.

When macro instructions are nested,
local SETA and SETB symbols defined in the
outer macro instruction are reset to zero
immediately before the inner macro instruc-
tion is processed. After the inner macro
instruction has been procsssed, the local
variable symbols are reset to the values
that were defined in the outer macro
instruction.

SET symbols may be used with the follow-
ing restrictions:

e They can only be used in the name or
operand fi=ld of model statements or
conditional-assembly instructions.

¢ They must not be used to generate a new
Sequence symbol, a SET symbol, a symbol-
ic paramet=r, or a system variable
symbol.

¢ The SETC symbol may be used in the
operand fi=213 of a SETA statement only
if the character stringy is composed of
from one to five decimal digits.

For restrictions on SEIB symbols, refer
to Appendix E: Summary of Macro Language.

SETA -- SET ARITHMETIC

The SETA instruction may be used to assign
an arithmetic value to a SETA symbol. Each
arithmetic value is 5 digits in size, and
each value is initially zero. You may
change the value assigned to a SETA symbol
by using another SETA instructisn with the
same variable symbol in the name field.

The format of this instruction is:

fo———== oo b Bt 1
| | Oper- | I
|Name | ation | Operand |
—————— I S|
|A SETA| SETA | An arithmetic |
| symbol] | expression |
{ I U, 1

You may use SETA symnbols in the operand
field or name field of model statements.

The SETA symbol in the name field may be
either local or global. There are 16 dif-
ferent global and 16 different local SETA
symbols.

A global SETA symbol has the form &A3n,
where n = 0-15.

A local SETA symbol has the form &ALn,
where n = 0-15.

The expression in the operand field may

consist of one term, or as many as three
terms connected by arithmetic soerators.

Macro Languaage 81

The terms may be positive decimal self-
defining values, symbolic parameters, SET
symbols, or system variable symbols that
represent positive decimal self-defining
values. The arithmetic operators that can
be used to combine terms are + (addition),
- (subtraction), *(multiplication), and

/7 (division).

The range of values that can be assigned
to a SETA variable symbol is from 0 to
Qaaacaa

storage using decimal arithmetic, which
means that interim values can be in the
range from 99999 to -99999.

3 A A Avyms Taaadl A3 5
Expressions are evaluated in

For example, the expression 16215 +
16215 - 16215 is valid because neither the
interim nor the final value exceeds 99999.
The expression 65536#65536/65536 is invalid
because even though the final value is

equal to 65536, the interim value
{(#294967296) exceeds 99999.

The expression 65536*16384 is invalid,
because the final value exceeds 99999.

The expression 3 + 4 - 9 is invalid
because the final value is negative. The
expression 3 - 5 + 6 is valid because, even
if the interim value is negative, the final
value is positive.

Division by zero results in a value of
zero. In division, only the integer por-
tion of the quotient is retained. For
example, 97 divided by 25 gives the result
of 3. The fractional portion of the juo-
tient is Jropped.

An expression must not contain two suc-
cessive terms or two operators. ~An expres-
sion must not begin with an operator.

The following are examples of expre-
ssions that may be used in the operand
field of a SETA instruction:

27 5%§AL12
EAG3+4 EAG6-EAL10+5

The following is not permitted in the
operand field of a SETA instruction for the
reasons stated:

§AG11+-12 Two successive operators
+14 Begins with an operator
§AG5-§AL8+8+5AG6 Expression consists of
more than three terms
€AG18 is not a valid SETA
symbol since 18 > 15
Grouping by use of paren-
theses is not peraitted

§AG18

EAG3* (EAL2+£AL1)

The following procedure is used to eva-
ivate the arithmetic expression in the
cperand field of a SETA instruction.

82

3 3 M o~ - am e 3 o~
Each term is given its decimal numerical

value.

e The arithmetic operations are performed
from left to right. However, multipli-
cation and division are performed before
addition and subtraction.

h

est n
(=3
e

¢ The computed ult is the value
SET symbol in the name

r
assigned to th
field.

102
L%

If the operand of a SETA instruction is
found to be invalid, a value of zero is
assigned to the SETA symbol in the name
field.

The arithmetic value defined by a SETA
instruction is represented in a model sta-
tement by the SETA symbol assigned. When a
SETA symbol is detected during nacro
generation, it is replaced by the value of
the symkol converted to a decinal self-
defining value with any leading zeros

dropped.

The example below illustrates this rule.
The function of this macro definition is to
move the contents of one storage area to
another area in main storage. The symnbol
SAVEAREA is defined outside the macro
definition.

- B itk ToTToTTT T T oo T 1
| Name | Operation | Operand |
frmem o + e !
| | MACRO [| |
|ENAME | MOVE | &TO,&FROM |
| 6AL1 | SETA | 10 |
| 6AL2 | SETA | 8 |
| 5AL | SETaA | 6AL1-§ALZ i
| ¢ALY | SETA | &AL1+&AL3 |
|§NAME | STH | 12, SAVEAREA |
| | LH] 12,8FROMEAL3 |
| | sTd | 12,&TO&ALY |
| | LH | 12,SAVEARER }
| | MEND | |
fmmmme- rmmmmmmm s e R !
| HERE | MOVE | FIELDA,FIELDB |
pmmmmmom poommmmmmoee oo mmoe oo i
|HERE | STH | 12,SAVEAREA |
| | LH | 12,FIELDB2 |
| | STH | 12,FIELDAL12 |
I | LH | 12,SAVEAREA |
[—— § T R J

If you have assigned an arithmetic value
to a SETA symbol, you may change the
assigned value by using the SETA syabol in
the name field of another SETA instruction.
If a SETA symbol has been used in the name
field of more than one SETA statement, and
the SETA symbol is used in the name or
cperand field of another model statement,
the value substituted for the SETA symbol
is the last value assigned to it.

The example below illustrates this rule.
The function of this macro definition is

the same as that of the above example. The
boxes contain again, respectively, the
macro definition, macro instruction, and
generated statements.

r————-== T————————- L S ittt 1
I | oper- | I
| Name | ation | Operand |
e fomemmmm oo !
	MACRO	
ENAME	MOVE	£T0, §FROM
6AL8	SETA	5
6NAME	STH	12 ,SAVEAREA
1	LH	12, §FROMEALS
{&ALS	SETA i §ALB+3	
]	STH	12, §TO8ALS
H	LH	12, SAVEAREA
	MEND	
t + e 1		
HERE	MOVE	FIELDA, FIELDB]
— o oo s :		
HERE	STH] 12,SAVEAREA	
	LHE	12, FIELDB5
	STH	12, FIELDAS
	LH	12,SAVEAREA
L L U TR 1

SETC -- SET CHARACTER

The SETC instruction may be used to assign
a character value to a SETC symbol. Each
global character value can vary from 0 to 8
bytes in size. Each character value is
initially a null character value of zero
bytes in length. You may change the
character value assigned to a SETC symbol
by using another SETC instruction with the
same variable symbol in the name field.

The format of this instruction is:

r———=---- T i e 1
| | Oper- | |
| Name { ation | Operand |
———————————————— frmmm oo me oo
A SETC	SETC	Up to 8 characters
symbol		enclosed by a pair
1	of apostrophes	
I b S SRS 4		

SETC symbols in the name field are
always global. They have the form &CGn,
where n = 0-15.

You may use SETC symbols in the operand
field or name field of model statements.

The value of the characters in the
operand field is assigned to the SETC sym-
bol in the name field. The characters in
the operand field may consist of a string
of characters, a SET symbol, symbolic para-
meters, system variable symbols, or any
concatenation of the preceding values, enc-
losed within a pair of apostrophes. Length
attributes cannot be substituted by the
implicit length of the symbol.

The following statement assigns the
character value AB%4 to the SET symbol
§CG5:

r——————- T—- L ettt 1
| | oper- | |
| Name | ation | Operand |
o e oo !
16CG5 | SETC | *ABBY " I
| I § I, SR 1

More than one character valu2 may be
concatenated into a single character value
by placing a period between the terminating
apostrophe of one character value and the
opening apostrophe of the next character
value.

Either of the following statements may
be used to assign the character value 2 AND
3 to the SETC symbol §CGlu:

r-———=—---= Toomo-moe B Sttt 1
I | oper- | |
| Name | ation | Operand |
——————— S et |
l6CGly | SETC | '2 BAND 3°' |
{ec31y | SETC | '2'.' AND 3¢ |
- B . s

Two apostrophes must be used to repre-
sent one apostrophe that is part of a
character value enclosed in apostrophes.

The following statement assigns the
character value L'SYMBOL to- the SETC symbol
§CG11 if &PARAM is substituted by SYMBOL:

r -T—= I Bttt 1
| | Oper- | |
|Name | ation | Operand |
————————————— |
]6CG11 | SETC | ‘*L'*E&EPARAM® |
bmmee— Lo A 1

Two ampersands must be used to represent
one ampersand that is not part of a vari-
able symbol. Both ampersands become part
of the character value assigned to the SETC
symbol. They are not replaced by a single
ampersand.

The following statement assigns the
character value HALF&E to the SEIC symbol
§CGh:

r- T T T T T T T T T T T T 1
| | Oper- | |
|Name | ation | Operand |
pomom-- e S |
16C34 | SETC | 'HALF&&" |
L -1 S]

SET symbols, symbolic parameters, and
system variable symbols may be concatenated
with other characters in the opsrand field
of a SETC instruction according to the gen-
eral rules for concatenation.

Macro Language 83

If §CGl2 is assigned the character value
AB%4, the following statement may be used
to assign the character value AB%URST to
the SETC symbol 6CG13:

r—————-- To——om-oo— | ittt iintte 1
| | Oper- | |
| Name ljation | Operand |
b mmmmm G O R
|6CG13 | SETC | ' §CG12.RST" |
[S L e e j]

If &CGiZ2 has been assigned the character
value AB%4, the following statement may be
used to assign the character value RSTAB%H
to the SEIC symbol &§CG10:

| yToTeT e ettt 1
| | Oper- | |
| Name |ation | Operand |
Tt S fommmommm oo i
|§CG10 |SETC ! 'RSTECG1Z" i
R L L 4

The character wvalue that has been
assigned to a SETC symbol is substituted
for the SETC symbol when it is used in the
name field or operand field of model state-
ments. For example, consider the macro
definition, macro instruction, and
generated statements (shown in the boxes in
this order) below.

The function of this macro definition is
to move the contents of one storage area to
another area in main storage. The symbol
SAVEAREA is defined outside the macro
definition.

e ittt L 1
| | Oper- | |
| Name jation] Operand |
e L {
	MACRO	
ENAME	MOVE	£TO, §FROM
sCGU	SETC	'FIELD'
jENAME	STH I 12,SAVEAREA	
	LH	12, §CGUEFROM
	STH	12, 6CGU4ETO
	LH I 12,SAVEAREA	
	MEND	
e oo m oo :		
HERE { MOVE	A,B	
----------------- Frmmmmm oo		
HERE	STH	12, SAVEARER
	LH	12,FIELDB
	sTH	12, FIELDA
	LH	12, SAVEAREA]
Lo L S 1

If you have assigned a character value
to a SETC symbol, you may change the value
assigned by using the SETC symbol in the
name field of another SETC instruction. If
a SETC symbol has been used in the name
field of more than one SETC instruction and
the SETC symbol is used in the name or

8L

operand field of another model statement,
the value substituted for the SETC symbol
is the last value assigned to it.

The followingy example illustrates this
rule:

| T T == B A
I | Oper- I |
| Name |ation] Jperand |
T pmm e !
| | MACRD | |
|ENAME | MOVE | &TO,&FROY i
&CG8	SETC	'FIELD'
ENAME	STH	12,SAVEAREA
	LH	12,&CGBEFROM
jeccs	SETC	'AREA"]
I	sTH	12,8CG8&TO I
]	LH	12, SAVEAREA
I	MEND I	
----------------- fomm e oo		
HERE	MOVE	a,B
----------------- e EE S		
HERE	STH	12, SAVEAREA I
I	LH	12, FIELDB I
	sTH] 12,AREAA	
	LH	12, SAVEAREA
lmmmm o A VI i

If a SETA symbol is used in the operand
field of a SETC instruction, it is replaced
by the value of the SETA symbol converted
to a decimal self-defining value with any
leading zeros dropped.

A SETC symbol may be used in the operand
field of SETA, SEIB, SErC, AIF, and AIFB
instructions.

Defining Substrings with SETC Instructions.
A substring consists of a character value
enclosed in apostrophes, immediately fol-
lowed by two arithmetic terms separated by
a comma and enclosed in parenthesses.

The character value assigned to a SET
symbol in a SETC instruction can be a sub-
string. Substrings permit you to assign,
to a SETC symbol, part of the value
assigned to another SET symbol, a symbolic
parameter, a self-defining character
string, or any valii combination of the
preceding values.

The arithmetic terms may consist of SETA
symbols and self-defining decimal values
with any leading zeros dropped. The first
term indicates the first character in the
substring, the second term the number of
characters in the substring.

A character string from which a sub-
string is extracted may contain up to 16
characters. The resulting substring that
can be assigned to a SETC symbol may con-
tain up to eight characters,

The following are examples of valid sub-
string definitions in operand fields of
SETC instructions:

'£CG6° (2,3)
*§CG10.XYZ" (4, §6AGS)
*XYZECGLO" (6ALY,6)
'ECG1.XYZEAG2' (4,7)
*£PARAM' (3,2)

The following is not permitted in the
operand field of a SETC instruction:

Blank between character
value and arithmetic
terms.

Only one arithmetic term.

Arithmetic terms not
separated by a comma.

Arithmetic terms not enc-
losed in parentheses.

*§CG5' (6C35H,2) First term not arithmetic.

r6CcG2 (4,6)

'&§CG15" (8)
'6CGLT (5 6)

‘CG5'3,4

The following example illustrates the
use of substrings. The macro instruction
(HERE MOVE FIELDA,B) assigns the
character value FIELDA to the symbol &TO.
The SETC instruction assigns the value
FIELD to the symbol §CG6. The §&CG6 symbol
is used in the LH model statement and is
replaced in the generated statement by the
value assigned to it.

r- T - I 1
| Name |Operation | Operand |
b-—- -—- e st e e .

|MACRO | |
| ENAME | MOVE | §TO, §FROM |
{6CG6 | SETC | '§T0' (1,5) [
¢§NAME	STH	12,SAVEAREA
	LH	12, 8CG6 §FROM
	sTH	12,&T0
	LH	12, SAVEAREA
	MEND [
----------------- Fommmomm o]		
HERE	MOVE	FIELDA,B
----------------- oo		
HERE	sTd	12 ,SAVEAREA
	LH	12,FIELDB
	STH	12, FIELDA]
[:	12,SAVEAREA	
L L - S J

Substrings may be concatenated with
other character values in the operand field
of a SETC statement. If a substring fol-
lows a character value that is not a sub-
string, the two may be concatenated by
placing a period between thz first charact-
er value and the substring.

For example, if &CG6 is assigned the
character value AB%4, and &CG8 is assigned
the character value ABCDEF, the following
statement assigns &CGO the character value
AB%UBCD.

-T—=

r
|Name |Operation | Operand |
pommme- D fommm oo {
|€CG0 |SETC | '&CG6'.'6CGB'(2,3) |
L L L —_— ——————— e]

If a substring precedes another charact-
er value, the two may be concatenated by
placing the terminating parentheses of the
substring and the opening apostrophe of the
next character value adjacent to one
another.

If §C52 is assigned the character value
AB%U4, and &CG3 is assigned the character
value 5RS, any one of the following state-
ments may be used to assign &CGL the
character value AB%ULS5RS.

r————-- 8 e i 1
| | Oper- | I
|Name | ation | Operand |

t B e !
|6CG4 | SETC | '6CG26C33" I
|§cG4 | SETC | '6CG2'.'&CG3' I
jecGt | SETC | "&CG2.8&CG3" |
|6CGL | SETC | '6CG2'(1,u4)'6233" |
|&CG4 | SETC | '6CG2' (1,4)'6C0G3'(1,3) |
R S T N]

If &C32 contained AB%4XY and &CG3 con-
tained 5RSTU, only the last instruction of
the preceding example would produce the
desired result of AB%U5RS. The first four
instructions would be in error because the
result exceeds eight characters.

Assume &6CG1l is assigned the character
value ABCDE, §&CG2 has been assigned the
character value FGHIJKPQ, and &CG3 is
assigned the character value LMNO. The
following SETC instruction can be used to
assign &§CGL4 the character value DEXYZFGM.

e I i 1
| |oper-| |
|Name| ation|Operand]

| ECG4 | SETC | "&CGL.XYZECG2' (4,7)'6233%(2,1) |
| IR I e 1

The preceding example also illustrates
how a character string from which a sub-
string is extracted can contain up to 16
characters: *&CG1l.XYZ&CG2® becomes *ABCDE-
XYZFGHIJKPQ' before the substring DEXYZFG
is extracted.

SETB -- SET BINARY

The SETB instruction assigns the value one
(TRUE) or zero (FALSE) to a SEI3 symbol.
The initial value is zero. You may change
the value assigned to a SETB symbol by
using another SETB instruction. The format
of this instruction is:

Macro Language 85

r~=——————-- T A Ittt 1
| | Oper- | |
jName | ation |Operand |
---------- e
|A SETRE | SETB |A logical expression|
| symbol | |or a relational

| | | expression enclosed |
| | lin parentheses |
LSk Y A |

You may use SETB symbols in the operand
field or name field of model statements.

The SETB symbol can be either local or

For DPS there are 256 different global
and 256 different local SETB symbols.

For TPS there are 256 different global
and 128 different local SETB symbols.

A global SETB symbol has the form &BGn,
where n = 0-255.

A local SETB symbol has the form &BLn,
where n = 0-255 for DPS and n = 0-127 for
IPS.

The logical or relational expression in
the operand field is evaluated to deteraine
whether it is true or false, and the value
one or zero, respectively, is assigned to
the SETB symbol in the name field.

A logical expression may consist of a
single term, or of two terms separated by a
logical operator. If a logical expression
consists of a single term, the term may ke
zerxo, one, Oor a SETB symbol. If a logical
expression consists of two terms, each term
must be a SETB symbol.

The logical operators are aAND, OR, and
NOT. The logical operator NOT may only be
used to negate a SETB symbol.

A two-term logical expression is eva-
luated according to the following rules of
Boolean 1logic:

. X AND Y is equivalent to X * ¥, i.e.,
0*%0 = 0, 0%1 = 0, 1*0 = 0, and 1#*1 = 1.

. X OR Y is eguivalent to X + Y, i.e.,
0+0 = 0, 0+41 = 1, 1+0 =1, and 1+41 = 1.

U NOT X is equivalent to 1 - X, i.e.,
1-0 = 1 and 1-1 = 0.

The following rules must be observed:

¢ A logical expression must not coantain
two terms in succession.

* A logical expression may contain two
operators in succession but only in the
combination AND NOI and OR NOT.

[oe]
[}

® A logical expression may begin with the
operator NOT. It must not b2gin with
the operators AND or OR.

* The logical operators nust be seoarated
by one blank from the terms they relate.

* The entire logical expression must be
enclosed within parentheses.

The followiny ars examples of logical
expressions that may be used as the operanid
of a SETB instruction:

(NOT &BG9)

(£BG8)

()

{6BG8 AND NOT &BL®)

(NOT &BL22 AND §&§BG22)
(NOT &BL24 AND NOT &BL25)

(6B312 OR §&BL10)
(6BG25 OR NOT &BL25)
(NOT &BG10 OR &BG16)
(NOT &BGO OR NOT §&B31)

The following is not permitted as the
operand field of a SETB instruction, for
the reasons stated:
&EBG8 Not enclosed in
parentheses.

Two terms in
succession.

Two operators in
succession; s=acond
one is OR.

Two operators in
succession; first one
is NOT.

Negated term is ndot a
SETB symbol.
Expression begins
with an operator
other than NOT.

Not SETB variable
symbols.

(§BG6 &BLS)

{&BG10 AND JOR &BG1Z)

(§BL10 NOT NOT' &BL18)

(NOT 1)

(AND &BG2 OR §&BG3)

(6AG1 AND &AG3)

A relational expression is either an
arithmetic relation or a character
relation.

An arithmetic_relation consists of two
arithmetic expressions connected by a rela-
tional operator. An arithmetic expression
can be a SETA symbol, a SETIC symbol, or any
valid operand of a SETA instruction. If a
SETC symbol is used in an arithmetic rela-
tion, the SETC symbol must represent an
arithmetic value. The arithmetic relation
is enclosed within parentheses.

A character relation consists of two
character values connected by a relational
operator. In a character relation, each
character value must be enclosed by apos-
trophes. A character value can be a SETA
syrbel, a SETC symbol, or any valid operand
of a SETC instruction, except substrings.
If a SETA symbol is used in a character
relation, the SETA symbol is treated as a
character value. The maximum length of any
character value used in a character rela-
tion is eight. If two character values in
a character relation are of unequal length,
the longer value is always considered
greater, regardless of the content of the
two values. The character relation is en-
closed within parentheses.

The relatjonal operators are:

EQ (equal),

NE {(not equal),

LT (less than),

GT (greater than),

LE (less than or equal to),

GE (greater than or equal to).

A relational expression must not contain
two values in succession. A relational
expression must not contain two operators
in succession. The relational operators
must be separated from the values they rel-
ate by one blank.

Relational operators and logical opera-
tors must not appear in the same SETIB
instruction.

The following are examples of valid
operand fields of SETB instructions with a
relational operator:

(*FIELD' NE '&CG4")

(12 EQ &ALW)

(§AL10 GT 6&AGS6)

("6CG8" LT '&§CG4")
(*&CG5.X9" EQ '&CG2')
(6AL9+EALU*T LT 16*EAG1+4)
{6BG4 EQ 1)

The following is not permitted in the
operand field of a SETB instruction, for
the reasons stated:

§BGS8 Not enclosed in
parentheses.

(§BG6 &BLS) Two terms in
succession.

(EBG10 GT EQ &B3G16) Two operatdrs in
succeassion.

(LE &BL20 EQ §&BL21) Expression begins
with an operator.
Arithmetic value
equated to character

value.

(6AG3 EQ "&AGH")

The logical value that has been assigned
to a SETB symbol is substituted for the
SETB symbol when it is used in the operand
field of a SETB, AIF, or AIFRB instruction.
(A detailed description of the AIF and AIFB
instructions is given in the sections AIF
-- Conditional Branch and AIFB -- Condi-
tional Branch Backward.) If the SETB sym-
bol is used in any other Assembler-language
statement, the logical value is converted
to an integer. The logical value TRUE is
converted to the integer one, and the log-
ical value FALSE is converted to the integ-
er zero.

If you have assigned a logical value to
a SETB symbol, you may change the value
assigned by using the SETB symnbdl in the
name field of another SETB statément. If a
SETB symbol has been used in the name field
of more than one SETB statement, and the
SETB symbol is use2d in the name or operand
field of another model statement, the valuae
substituted for the SETB symbol is the last
value assigned to it.

The following sxampls illustrates this
rule. *&TO' ST '"AAAAAA' has the logical
value TRUE because FIELDA has a greater
binary value than AAAAAA.

The function of this macro definition is
to move the contents of one storage area to
another area in main storage. The boxes
contain respectively, the macro> definition,
macro instruction, and generated
statements.

r- T T == -
| Name | Operation | Operand |
p-———tm e ettty 1
I | MACRD | |
§NAME	MCVE	&TO,&FROM
§BG8	SETB	(*&TO* 5T "AAAAAA')
eNAME	STH	12,SAVEAREA
	LH	12, EFROMEBSS
€B38	SETB	(NOT £BGS) I
	STH	12,6T0OEBS8
	LH	12,SAVEAREA
	MEND	
————————————————— e		
HERE	MOVE	FIELDA,FIELDB [
----------------- fom oo ooy		
HERE	STH	12,SAVEAREA
	LH I 12,FIELDB1	
	sTH { 12,FIELDAO	
	LH	12, SAVEAREA
L B 1		

Testing for Null Parameters. A null para-
meter is a symbolic parameter defined in a
rositional prototype statement, but unde-
fined in the macro instruction calling the
macro definition.

Macro Language 87

The SETB instruction can be used to test
for the presence of a null parameter. This
is accomplished by placing the symbolic
parameter to be tested in the operand field
of a SETB instruction and equating it to a
null character string. A null character
string is represented by two apostrophes.
If the parameter is present in the calling
macro instruction, the resulit is FALSE or
zero. If the parameter is not present in
the calling macro instruction, the result
is TRUE or one.

For example,
is:

if the prototype statement

ENAME ADD &FROM1,&FROM2, §SUM
and the macro instruction is:
FIRST ADD FIELD1,,FIELD3
the result of the SETB instruction
EB310 SETB (*&FROM1' EQ '*)

is FALSE (0), while the result of the SETB
instruction

&§B58 SETB ('&FROM2' EQ '*')

is TRUE (1).

When the same prototype statement and
the same macro instruction are used, the
result of the SETB instruction

§BG10 SETB ('&FROM1' NE '')

is TRUOE (1), while the result of the SETB
instruction

§BG8 SETB ('&FROM2' NE '*')

is FALSE (0).

SEQUENCE SYMBOLS

Sequence symbols are used in the operand
fields of AGO, AGOB, AIF, AIFB instructions
and in the name field of model statements
and conditional assembly instructions.

They indicate to the Assembler the sequence
of source statements to be generated.

A sejuence symbol consists of a period
(.) followed by one to seven alphabetic
and/or numeric characters. The first
character must always be alphabetic.

The following example illustrates the
use of sejuence symbols as a "branching
address".

88

Fo————— L ettt etttk |
|Name |Operation|Operand |

| U R S | i

T =7 a |

! | MACRO | [

i P e i L

| | o | |1

| | AGO | .DOWN | v

| | e | |

i [e ! ! !
|.0P | ANOP | | |
| LOOP |AH |7,FOUR | |4
! | e i ! |
! i i i i
{ | AGO | .oUT | v
I | o | |

| | I [

| .DOWN | e] | |2

| | AGD | AGAIN | Vv

I [e | l

| | i I

| .AGATNILH |9,DATA i !

! e ! b3

! | o | I

| | AGOB |.JP | v

| | * | |

| | e | |

|.0UT |MEND | |
L L Lo 1

TO ensure proper generation, all
sequence symkols used in a macro definition
must be uniques.

The following are valid sejuence
symbols:

. READER .AZ23456 JAGH
. LOOP2 .XUF2 .SYSTEM
o .54 .8Llé

The following are invalid seguence sym-

bols, for the reasons stated:

IOAREA First character is not a
period.

.246B First character after period
is not a alphabetic.

.AREA2456 Mores than seven characters
after period.

«IN AREA Contains an embedded blank.

.TWO.AS5 Contains a special character

other than initial period.

A sequence symbol may be used in the
name field of any statement within a macro
definition that does not rejuire a symbol
or SET symbol, except a header or a proto-
type statement.

If a sequence symbol appears in the name
field of an inner macro instruction in a
macro definition and the corresponding pro-
totype statemsnt contains a symbolic para-
meter in the name field, the sejuence sym-
bol does not replace the symbolic parameter
in the model statement,

A sequence symbol appearing in the name
field of a model statement does not appear
in the generated statement.

AIF -- CONDITIONAL BRANCH

The AIF instruction may be used to skip one
or more statements in your macro defini-
tion. The format of this instruction is:

T T
| |oper-| |
|Name - |ation]|Operand |
S semt
JA se- |AIF |A logical or relational ex-|
|quence | |pression enclosed in paren-|
| symbol | | theses, followed by a se- |
quence symbol defined in a

y

(@)
[a]

Any logical or relational expression
that may be used in the operand field of a
SETB instruction may also be used in the
operand field of an AIF instruction. As in
the SETB instruction, the logical or rela-
tional expression must be enclosed in
parentheses. The sequence symbol in the
operand field must immediately follow the
closing parenthesis of the logical or rela-
tional expression. It must also appear in

AIF instruction.

The following are examples of valid con-
tents of the operand fields of AIF
instructions:

(§BG12 AND &BL10) .LOOP
(6AL10 EQ &AG6).LAST

The following examples are invalid as
the operand field of an AIF instruction,
for the reasons stated:
(§BG8 AND NOT &BGY) No seguence
symbol.

No logical or
relational ex-
pression.

Blank between
logical expres-
sion and se-
jJuence symbol.

< XU4F2

(§BG8 AND NOT &BG9) .XF2

The logical or relational expression in
the operand field is evaluated to determine
whether it is TRUE or FALSE. If the expre-
ssion is TRUE, the statement named by the
sequence symbol in the operand field is the
next statement processed by the Assembler.
If the expression is FALSE, the next

sequential statement is processed by the
Assembler.

The following example illustrates the
use of the AIF conditional-assenbly
instruction, It also illustrates the use
of global SET symbols to carry values
between macro instructions in the same
assembly.

The function of this macro definition is
to move the contents of one storage area to
another area in main storage.

The first time the macro instruction
appears in an assembly, a save area is
defined. The generated instructions of all
additional appearances of this nacro
instruction in an assembly use the save
area and the register specified in the
first appearance of the macro instruction.

The boxes in the example below contain
respectively: the macro definition, the
first macro instruction, the statements
generated as a result of the first macro
instruction, the second macro instruction,
and the statements generated because of it.

~————-- T TTTT T T o o Too oo oe e 1
| | Oper- | (
| Name | ation | Operand |
p-mmmme- pomomoee pommm oo |
I | MACRO | |
| | MOVE | &TO,EFROM, §REG,ESAVE |
| | AIF | (&BG1).A |
| €BG | SeTB | (1)]
| 6CGL | SETC | '&SAVE" i
€C3	SETC	'®'
	B	&CG1+2
6C31	DC	50"
2	STH	82G2,8C31
	LH	€§CG2,&FROM
i	STH	€2G2,&TD
	LHE	&CG2,68C51
	MEND	
pmmm - oo T 1		
	MOVE	TAX,DEDUCT,9,WORK1
pommm - pommooem T !		
1	B	WORK1+2 I
WORK1	DC	H'O*
	STH	9,WORK1
] S	9,DEDUCT	
	sTH	9,TAX
]	LH	9,WORK1
e Tt smmmmmmmm oo		
	MOVE	FICA,DEDUCT,7, WORK6
pommmmmm fommmmee oo i		
	STH	9,4ORK1l
	LH	9,DEDUCT
	STH	9,FIC
	LH	9,WORK1l
lmoo Lo __ A 1

Macro Langaage 89

The B and DC statements are not
generated for the second macro instruction,
for when the first macro instruction was
assembled, &BG1 was set to one. The third
and fourth parameters in the second MOVE
macro instruction are ignored. §&CGl is
used to assign a name to the DC model
statement.

AIFB -- CONDITIONAL BRANCH BACKWARD

The AIFB instruction may be used to condi-
tionally alter the sequence in which source
statements are processed by the macro
generator. The format of this instruction

is:

r—————-- T e 1
| |Oper-| |
| Name |ation|Operand |
T e ST L i
A se- |AIFB |& logical or relational ex-j
| Fuence | |pression enclosed in paren-|
|symbol | |theses, followed by a se- |
Jor i]quence symbol defined in a |
}|blank | |preceding statement |
(R Lo ___ e i

The AIFB statement is identical to the
AIF statement, except that the sequence
symbol in the operand field must be in the
name field of a statement preceding the
AIFB statement.

The following example illustrates the
use of the AIFER instruction. The function
of the macro definition is to move a speci-
fied number of bytes of information from
one location in main storage to another.
The first operand represents the number of
bytes to be moved. The second operand
specifies the first position of the field
to be filled. The third operand specifies
the location of the first byte to be moved.

The boxes in the example below contain
respectively: the macro definition, the
first macro instruction, the statements
generated as a result of the first macro
instruction, the second macro instruction,
and the statements generated because of it.

The value of the local variable symbol
§AL1 is initially zero.

90

e e e 1
| |oper- | I
| Name lation |Operand i
et oo oo i
i i MACRO | ;
| |MOVE | §NOCHAR, §T0, §FROM |
|6AL2 |SETA | €NOTHAR |
I |AIF | (§AL2 LE 256).LSTMOV {
|.LOOP |MVC |&§TO+§AL1. (256),FROM+EALL |
[€AL1 [SETA | &AL1+256 |
| 6AL2 |SETA | §NOCHAR-EALL {
| jAIFB | (&AL2 GI 256).LOOP [
| . LSTMOV | MVC {6TO+EALL. {§AL2) , §FROM+* 6ALL]
| |MEND | I
e e St i
| |MOVE |540,00T,INPUT |
I T B L L {
I fMVC | OUT+0(256), INPUT+0 |
| |MVC | OUT+256 (256) , INPUT+256 |
| [MVC |0OUT+512(28), INPUT+512 [
e S bommmmmmmmmmm oo i
| {MOVE |97,00T+540,RESULT i
e o b oo oo {
| |MvC | OUT+540+40(97),RESULT+0 |
[Lo Ao]

ASO =-- UNCONDITIONAL BRANCH

The A30 instruction may bes used to alter
the sequence in which source statements are
processed by the Assembler. The format of
this instruction is:

fm—=—--- T B I it 1
! | Oper- | |
| Name | ation | Operand |
pmmmm - oo frmmmmmm oo i
ia se- | AGD i sejuence symnbdi i
|quence | | defined in a following]
|symbol | | statement |
|or I I |
|blank | | |
[K A e !

The sequence symbol in the operand field
may be in the name field of a statement
________ T'he statement
named by the sequence symbol in the operand
field is the next statement processed by
the Assembler.

The following example illustrates the
use of the AGO instruction. The function
of this macro instruction is to move a spe-
cified number of bytes from one location in
main storage to another. The MOVE mnacro
definition shown in the section AIFB_--
Conditional Branch Backward is used as an
inner macro instruction in this example.

The boxes in the example below contain
respectively: the macro 3definition, the
first macro instruction, the statements
generated as a result of the first macro
instruction, the second macro instruction,
and the statements gensrated because of it.

rm=——--) Sl L it 1
| | Oper- | |
|Name | ation | Operand |
b $ommmmmmmn pommm oo :
| | MACRO | [
| | MOVEN | &NOCHAR, §TO, §FROM I
] | AIF | ("&NOCHAR' EQ "").A |
| | AIF | (ENOCHAR NE 2).B i
1.2 | sTH | 12, SAVEAREA [
| | LH | 12,&FROM |
1 | STH | 12,8TO |
] | LE | 12,SAVEAREA [
| | AGO | .C |
{.B | MOVE | &NOCHAR, §TO, §FROM |
|.C | MEND] |
i pommmmm e e :
| | MOVEN | ,FIELDA,WORK |
e — poommmmm e G 1
| | sta | 12,SAVEAREA 1
1 | LE | 12,WORK]
| | sTH | 12,FIELDA |
1 | LH | 12,SAVEAREA |
e fommmmmmee oo 1
| | MOVEN | 97,0UT+540,RESULT |
e T e —— !
| | Mve | OUT+540+0(97) ,RESULT+0 |
| L___ R J

AGOB -~ UNCONDITIONAL BRANCH BACKWARD

The AGOB instruction may be used to alter
the seguence in which source statements are
processed by the Assembler. The format of
this instruction is:

T i o e 1
! |oper- | |
| Name |ation | Operand |
O e 1
A se-	aGOB	A sequence symbol
quence		defined in a
symbol		preceding statement
Jor blank]		
F . B IO i I, - J		

The AGOB instruction is identical to the
AGO statement except that the sequence sym-
bol in the operand field must be in the

AGOB instruction.

The following illustrates the use of the
AGOB instruction. The macro definition in
this example is functionally the same as
the macro definition in the section AIFB--
conditional Branch Backward.

The boxes in the example below contain
respectively: the macro definition, the
macro instruction, and the statements
generated as a result of the macro
instruction.

| |oper- | |
| Name |ation |OJperand |
 — $mmmmem - -- —
	MACRO	
MOVE	&NOCHAR, §TO, §FROM	
6AL2	SETA	§NOCHAR
1.LOOP	AIF	(§AL2 LE 256).LSTMOV]
	MvC	§TO+&AL1. (256) , EFROM+ §AL1
{eaLl	SETA	§AL1+256
6aL2	SETA	§NOCHAR-EALL i

AGOB	.LOOP	
- LSTMOV	MVC	§TO+ &AL, (§AL2) , EFROM+EALL
	MEND	
R e B i		
]	MOVE	540,00T, INPUT
-t tom oo e i		
1 jmMve	0UT+0(256) , INPUT+0	
	MVC	OUT+256(256) ,INPUT+256
	MvVC	OUT+512(28) , INPUT+512
b F I S, B
ANOP -- NO OPERATION

The ANOP instruction may be used to faci-
litate conditional and unconditional
branching to statements named by symbols or
SET symbols. The format of this instruc-

tion is:

r- T T It 1
| |Ooper- | |
{ Name lation | Op=rand |
O S pomm oo oo {
A se-	ANOP	Blank
quence	I	
symbol		
I Lo SO, 3

If you want to use an AGO, A30B, AIF, or
AIFB instruction to branch to a instruction
that has a symbol or SET symbol in the name
field, place an ANOP statement before the
instruction you want to branch to, and
branch to the ANOP instruction.

The following example illustrates the
use of the ANOP statement. This example
allows a field of any length to be moved.
The source and destination fields need not
be on a halfword boundary. The name field
contains the symbolic name of the first
instruction of the macro routine.

The boxes in the example below contain
respectively: the macro definition, the
macro instruction, and the statements
generated as a result 2f the macro
instruction.

Macro Language 91

Fm—————= T e 1
! |oper- | |
j Name jation jOperand |
R S oo oo 1
| IMACRO | i
| SNAME |MOVE | §NOCHAR,§FROM,&ETO |
18aL2 | SETA | §NOCHAR |
lecG1 |[SETC | '¢NAME' I
1.LOOP IAIF | (8§AL2 LE 256).LSTMOV]
jecG1 {Mvc |€TO+6AL1. (256) ,EFROM# §AL1 |
|€AL1 |SETA | &AL1+256]
|6aL2 |SETA | §NOCHAR-&ALL |
jecGi |[SETC |*'° |

IAGOR | .LOOP |
.LSTMOV	ANOP	
6CG1 jMve	6TO+EALL. (§AL2) , §FROM+ &AL	
[MEND		
— — oo oo .		
FIRST	MOVE	540,INPUT,O0T
e == oo oo i
{FIRST |[MVC jouUT+0(256), INPUT+0 |
i fMvce joUT+256(256) , INPUT+256 i
] | MVC |OUT+512(28) ,INPUT+512 |
b y S 1

Note that the value of the local vari-
able symbol &ALl is initially zero.

MEXIT -- MACRO DEFINITION EXIT

The MEXIT instruction can be used to indic-
ate to the Assembler to terminate proces-
sing of a macro definition. The format of
this instruction is:

r [It i i 1
| | Oper- I !
| Name jation i operand]
e S Fommmm oo 1
A se-	MEXIT	Blank
quence		
symbol		
or ! I !		
blank		i
[o~ R 3

The MEXIT instruction may be used in a
macro definition when you wish that only a
certain portion of the definition be
generated. For example, a definition con-
tains two sequences of operations. The
first sequence is to be generated if a sge-
cified condition is met and the second
sequence 1s to be generated if another spe-
cified condition is met. The use of the
MEXIT instruction after the first sequence
will terminate generation, just the same as
the MEND instruction will do when placed
after the second seguence.

The MEXIT instruction should not be con-
fused with the MEND instruction. The MEND
instruction indicates the end of a macro
definition to the macro generating phase of
the Assembler, as well as signifying the
end of generation. Every macrc definition

92

must contain a MEND instruction even if the
definition contains one or mnore MEXIT
instructions.

The folliowing example illustrates the
use of the MEXIT instruction. The function
of the macro Jefinition is to move a speci-
fied number of bytes of information from
one location in main storage to another.
The definition is essentially the same as
the macro definition shown in the section
AGO_--_Unconditional Branch. Hdwever, the
use of the MEXITI instruction reduces the
time reguired for assembling the macro
instruction if the first routine is used.

The boxes in the example below contain
respectively: the macro definition, the
first macro instruction, the statements
generated as a result of the first macro
instruction, thes second macro instruction,
and the statements generated because of it.

Fm———--- T L ittt bttt helda bt 1
| |Oper- | I
| Name |ation |Operand |
S Sttt t-me e e 4
| |MACRO | |
] |MOVE | §NOCHAR, §TO, §FROM |
1 |AIF | (*&§NOCHAR' EQ '').A |
| |AIF | (ENOCHAR NE 2).B |
|.a ISTH |12,SAVEAREA [
| | LH |12, 6FROM I
| |STH |12,&TO |
| | LH |12, SAVEAREA |
| [MEXTIT | !
|.B |aNOP | |
{§AL2 |SETA | ENOTHAR !
{.LOOP |AIF | (6AL2 LE 256).LSTMOV i
[|MVC | §TO+6AL1.(256), 8 FROM+6ALL |
|6ALL |SETA | &AL1+256 [
€AL2	SETA	§NOCHAR-EALL
	AGOB	.LOOP
« LSTMOV	MVC j §TO+&ALL. (8AL2), §FROM+EALL	
!	MEND	
i T e {		
{MOVE	2,00T,INPUT	
R B A		
]	STH	12 ,SAVEAREA
I	LH {12, INPUT	
I	STH	12,0UT
	LH {12,SAVEAREA	
fmmmm T T i		
! {MOVE	540,007, INPUT i	
pommmms RN Do {		
	MVC	CUT+0(256) , INPUT+0
	Mve	0UT+256(256) ,INPUT+256]
! |MVC | OUT+512(28), INPUT+512 |
[Lo _ L e]

MNOTE -- REQUEST FCR A MESSAGE

The MNOTE instruction may be used to requ-
est the Assembler to generate a message.
The format of this instructicn is:

~ =T [SREIR0 541

r
|

r T T

|A se- |MNOTE { Any combination of

|quence | | characters enclosed

|symbol | | in apostrophes. A
[
{
|
|
L

languages for higher

|

|

|

|or severity code, as |
|

|

models, |

|

|blank | used in Assembler
|
{

is ignored.

When an MNOTE statement is processed by
the Assembler, the characters in the
operand field are printed in the program
listing in the same way error messages are
printed in the program listing. The out-
side apostrophes are not printed.

If variable symbols are used in the
operand field, they are replaced by the
values they represent.

The following example illustrates the
use of the MNOTE statement. This macro
definition tests for the presence of the
three parameters in the macro instruction.
If any parameter is missing, an appropriate
message is printed and assembly of the
macro instruction is terminated.

rm——-—- To—mo—- ittt B
| |Oper- | I
| Name |ation |Operand]
R e fommm e - !
| |MACRO | |
| | MOVE | 6NOCHAR, §TO, §FROM |
] |aIF | (" ENOCHAR' NE "').NO |
	MNOTE	'FIRST PARAMETER OMITTED'
6BL1	SETB	(1)
.NO	AIF	("€TO' NE *').NL
	MNOTE	*SECOND PARAMETER OMITTED'
§BL1	SETB	(1)
.N1	AIF	(* €FROM' NE '').N2
	MNOTE	*'THIRD PARAMETER OMITTED'
N3	MNOTE	*GENERATION TERMINATED'
[MEXIT		
1.N2	AIFB] (&BL1) .N3	
8AL2	SETA	§NOCHAR
.LOOP	AIF	(§AL2 LE 256) .LSTMO
	MVC	§TO+EAL1. (256) , §FROM+ §ALL
§AL1	SETA	&AL1+256 I
§AL2	SETA	§NOCHAR-§AL1L
	AGOB	.LOOP
- LSTMO	MVC	6TO+&AL1. (§AL2) ,§FROM+ EALL
I [MEND]

(. Lo~ R B

Comments Statements

Comments statements may be interspersed in
the model statements of a macro definition.
Two types of comments statements are
permitted.

The first type of comments statement has
an asterisk (%) in column 1, followed by

the comment. This type is included in 2
macro Jdefinition. The Assembler generates
this type of comments statement intd any
source program that uses the particular
macro definition.

The second type 5f comments statement
has a period (.) in column 1, immediately
followed by an asterisk (%), followed by
the comment. This type of comments state-
ment documents the macro definition and is
not included in the macro definition.

MEND -- TRAILER STATEMENT

The trailer statement indicates to the
Assembler that a macro definition is conm-
plete. It must be the last statement in
every macro definition. The format of this
statement is:

I — T B b 1
[|oper- | |
| Name |ation | Operand |
SIS s e b oo |
A se-	MEND	Blank
gquence		
symbol		
or		
biank	i i	
R = L e i

A sequence symbol consists of a operiod
followed Ly one to seven alphabetic and/or
numeric characters, the first of which must
be alphabetic. Seguence symbols are dis-
cussed in detail under Sejuence Symnbols.

Keyword Macro Definitions

This section describes the differences
between a keyword macro definition and a
positional macro definition.

A keyword macro definition is ased in
cases where the number or type of ovperands
is such that a positional macro instruction
becomes confusing or cumbersome. It allows
the values spzcified by each parameter to
be used with a predefined keyword. A kay-
word macro definition allows th= operands
to be specified in any desired order.

The keyword format has two additional
advantages: (1) it is possible to limit
the number of operands in a given card anid
(2) it allows the specification of a stan-
dard value in the prototype statement. If
an operand is missing in the macro instruc-
tion, the standard value from the prototype
statement replaces any occurrences 2f that
symbolic parameter in the model statements.

Macro Language 93

Each keyword macro definition must
include: a header statement, a prototype
statement, model statements, and a trailer
statement.

Like a positional macro definition, a

keyword macro definition may contain com-
ment and conditional -assembly statements R

all of which are described in preceding
sections. Keyword macro dafinitions may
include the &SYSNDX and &SYSECT system
variable symbols, but no §SYSLIST system
variable symbols. (See System Variable

The general format of a keyword proto-
type statement is:

r== T S !
| i Oper- i |
| Name jation iOperand i
pommm - frmmmmoooem ==mo-- ---- 1
A syr-	A symbel	Up to 49 operands,
bolic		separated by commas,
param-		of the form described
eter or		below
blank		
. L e e - e o]		

A keyword prototype statement differs
from a positional prototype statement only
in the operand field.

Each operand must consist of a symbolic
parameter followed by an egual sign. Sym-

tional Prototype Statement.

The egual sign may be followed by a
standard value to be substituted for the
symbolic parameter in case the paramneter is
not contained as a keyword in the operand
field of a macro instruction.

If a standard value is either not
desired or unnecessary, the egqual sign is
followed by the comma that separates the
parameter from the next parameter. In the
case of the last parameter, the equal sign
may be followed by a blank.

Anything that can be used as an operand
in a macro instruction may be used as a
standard value in a keyword prototype sta-
tement, including null values.

The following are valid keyword proto-
type statement operands:

§TO=234
§LOOP2=SYMBOL
ESU=H"UQ96"
§FROM=

The following are invalid keyword proto-
type statement operands, for the reasons

PRy I
stated:

9y

=CARDAREA No symbolic parameter.

ETYPE No equal sign.

E§IN 256B Standard value used, but
no squal sign.

§TWO =123 Equal sign does ast
immadiately follow symbolic
parameter.

System Variable Symbols

System variable sympols are local variable
symbols that are assigned values by the
Assembler. They may be used in the name or
operand field of macro definition state-
ments. They are not permitted in the name
field of conditional-assembly instructions.

If a system variable symbol is used in
the name or operand field of a statement
that is part of a macro definition, the
value substituted for the variable symbol
is the value the Assembler has assigned to
the variable symbol.

§SYSNDX -~- MACRO INSTRUCTION INDEX

The system variable symbol §SYSNDX may be
concatenated to other characters to create
unique symbols for generated statements.
ESYSNDX is assigned the decimal value 0001
for the first macro instructiosn that is
assembled., The wvalue assigned to &SYSNDX
for any other macro instruction is one plus
the value assigned to &§SYSNDX for the pre-
vious macro instruction. High-order zeros
are not suppressei.

Throughout ons use 2f a macr> Jdefini-
tion, the value of §SYSNDX may be con-
sidered a constant, independent 5f any
inner macro instruction in that definition.
If &SYSNDX is used in the name or operand
field of a statement that is part of a
macro definition, the value substituted for
ESYSNDX is the value assigned to it for the
macro instruction keing interpreted.

One use of the &§SYSNDX system variable
symbol is shown in the followingy macro
definition. The function of this macro
definition is to move the contents of one
storage area to another area in main
storage.

In the example, A§SYSNDX provides a
unique symbol in the name field for branch-
ing to a particular instruction within the
macro definition. The content of a field
is not moved if the first byte of the field
is a binary zero.

The function of this macro definition is
to move the contents of one storage area to
another area in main storage.

---------- T DU et ISttt |
{Name | Operation | Operand |
pommmm e mee P S :
| | MACRO | |
| | MOVE | &TO, §FROM |
I | cLT | &FROM,X'00" [
| | BE | AESYSNDX I
| | sTH | 12, SAVEAREA]
| | LH | 12,8FROM |
| | sTH | 12,&TO |
] | LH | 12,SAVEAREA |
|AESYSNDX | EQU | * I
| | MEND | |
S — S L 1

If the following macro instructions were
the 106th and the 107th macro instructions
interpreted by the macro generator, the
following statements would be generated.

[m—————== L it B it 1
| Name {Operation | Operand |
______________ $- - -

r | MOVE | FIELDA,FIELDB I
pommoom- po-mmmmme- b m oo
| |CLI | FIELDB,X'00' |
| | BE | A0106 |
| | sTH | 12,SAVEAREA I
| |LH | 12,FIELDB |
| | STH | 12,FIELDA |
| LH | 12, SAVEAREA i
| a0106 |EQU | = |
bommmmmmmpom oo eeee oo |
| | MOVE | FIELDC,FIELDD i
e oo
| |CLI | FIELDD,X'00" |
| | BE | a0107 |
| | sTH | 12,SAVEAREA [
| |LH | 12,FIELDD I
| | STH | 12,FIELDC i
l LH | 12, SAVEAREA [
| A0107 |EQU |+ |
Lo 1 - e e 1
5015ECT -- CURRENT CONTROL SECTION

The system variable symbol &§SYSECT may be
used to represent the name of the control
section in which a macro instruction
appears. For each macro instruction pro-
cessed by the Assembler, &SYSECT is
assigned a value that is the name of the
control section in which the macro instruc-
tion appears.

WAhen &§SYSECT is used in a macro defini-
tion, the value substituted for §SYSECT is
the name of the last CSECT, DSECT, or START
statement that occurs before the macro
instruction. If no named CSECT, DSECT, or
START statement occurs before a macro
instruction, §SYSECT is assigned a null-
character value for that macro instruction.

CSECT or DSECT statements processed in a
macro definition affect the value for §&SY-
SECT for any subsequent. inner macro
instructions in that definition, and for
any other following macro instructions.

Throughout the use 5f a macro defini-
tion, the value of &SYSECT may be consi-
dered a constant, independent of any CSECT
or DSECT statements or inner macro instruc-
tions in that definition.

The example below illustrates these
rules. (In the example, model statements
not reguired for explanation have been
omitted.)

[T o—————- B B it 1
| Name | Operation |Operand |
bt t - -
| | MACRO | |
| INNER | EINCSECT |
1 | &INCSECT |CSECT | |
2 | |DC | Y(ESYSECT) |
| | MEND | |
R - i
| | MACRO | |
| | OUTR1 | |
3 |CsoUT1 | CSECT | |
i ibS {100cC]
4 | | INNER | INA |
5 | | INNER | INB |
6 | | DC | Y(6SYSECT) |
| | MEND | |
b Rttt el e ittty i
| | MACRO | |
| | OUTR2 | |
7 1 |DC |Y(€SYSECT) |
| | MEND | |
o — fo--mmmm - fommmmmmm oo !
8 |MAINPROG |CSECT I |
| | DS | 200C [
9 | | OUTRL | [
10 | | OUTR2 I I
———————————————————— pommmmmm oo
|MAINPROG |CSECT | |
I |DS |200cC |
|CSOUT1 |CSECT | |
I | DS |1002 |
|INA | CSECT | |
[| bC | Y(CSOUTL) |
| INB | CSECT [|
| | bC | Y (INA) |
| |pC | Y (MAINPRO3) 1
| | DC | Y (INB) |
b e L e L 3

Statement 8 is the last CSECT, DSECT, or
START instruction processed before state-
ment 9 is processed. Therefore, &SYSECT is
assigned the value MAINPROG for macrd
instruction JUTR1 in statement 3. MAINPROG
is substituted for &§SYSECT when it appears
in statement 6.

Macro Language 95

Statement 3 is the last CSECT, DSECT, or
START instruction processed before state-
ment 4 is processed. Therefore &SYSECT is
assigned the value CSOUT1 for macro
instruction INNER in statement 4. CSO0O0OT1
is substituted for §SYSECT when it appears
in statement 2.

Statement 1 is used to generate a CSECT
instruction for statement 4. This is the
last CSECT, DSECT, or START statement that
appears before statement 5. Thereiosre,
ESYSECT is assigned the value INA for macro
instruction INNER in statement 5. 1INA is
substituted for &SYSECT when it appears in

statement 2.

Statement 1 is used to
statement for statement 5.
1=z DSECT, or START

Savsyg N2 ¥ed

Jenerate a CSECT
h

n
This is the
statemen

appears before statement 10. Therefore,
ECSECT 1is assigned the value INB for macro
instruction OUTR2 in statement 10. INB is
substituted for &SYSECT when it appears in

statement 7.

2ast Lol r

the
t that
o

§SYSLIST(n) -- MACRO INSTRUCTION OPERAND
FIELD

The system variable symbol &SYSLIST(n) pro-
vides you with an alternate way to refer to
the nth operand of a positional macro
instruction. n may be a decimal self-
defining value or a SETA symbci. The
§SYSLIST(n) system variable symbol is not
permitted in a keyword macro definition.

ESYSLIST(n) and symbolic parameters may
be used in the same macro definition.

The self-defining valiue following
§SYSLIST(n) may be any value between 1 and
49, regardless of the number of symbolic
parameters in the prototype statement. If
the corresponding symbolic parameter is not
contained in the prototype statement, it is
treated as a null parameter.

The following example illustrates the
use of the &SYSLIST(n) system variable
symbol.

The function of this macro definition is
to add the contents of the fields specified
in the operand field of the macro instruc-
tion and store the sum in the field speci-
fied by the last operand of the macro
instruction. Depending on the number of
operands included in the macro instruction,
2, 3, or 4 fields are added together. The
result is stored in the last field speci-
fied in the macrc instruction operand.

Fr————-- To——== e ittt 1
| | oper-| |
iName jationjOperand |
e ommes oo e 1
] | MACRD] !
| ENAME |ADD | &F1,&F2,&F3,&FU, &F5 |
|§NAME |STH |12,5AVEAREA |
] |LH 112, §F1 |
|EAT1 |SETA |2 |
|.ADD |AH |12, 6SYSLIST(&AL1) |
|6AL1 |SETA |&ALl+1 I
JEAL2 |SETA |&AL1+1 |
i {AIFB | (F&SYSLIST(&AL2)T NE *7).ADD|
| ISTH [12,&SYSLIST(&ALI) |
| | LH |12, SAVEAREA |
| | MEND | |
fmmmm booee e —— i
| |ADD |FTAX,FICA,STAX,BONDS,DEDUCT |
p-mes fommme e i — 1
| |STH |12,SAVEAREA |
i | LH {12, FTax i
! | AH {12,Fica i
| | aH |12,5TaX |
] |aH |12,BONDS |
| |STH |12,DEDUCT ,
| | LH] 12, SAVEAREA |
— b T 1
|DEUTOT|ADD |REGHRS,OIHRS,TOTHRS !
------ D |
|DEUTOT|STH |12, SAVEAREA i
| |LH {12, REGHRS |

jaH |12, 0THRS 1
| |STH |12,TOTHRS |
| | LH |12, SAVEAREA |
| I, R . M 3
=== T it b 1
| |oper-| I
jName jationj{Operand i
b=——-- - t——— i
] | MACRO| |
| S LABEL|MOVE | éA, §T1,&F1,6T2,6F2,6T3,6F3 |
| 6LABEL|STH 12,84 |
{§AL3 |SETA |2 !
|éALY4 |SETA |3 i
|-LO | LH |12, ESYSLIST(EALY) |
| [STH |12,&SYSLIST(&AL3) |
|6AL3 |SETA | 6AL3+2 I
| 6AL4 |SETA | 6ALU+2 I
[AIFB	("&SYSLIST(§AL3)' NE '').LO	
	LH 12,87	
	MEND	
------ e S -]		
MULMOV	MOVE	AREA,R,B,X,Y
v e		
MULMOV	STH {12,AREA }	
{	LH	12,B
	sSTH	12,A [
lve j12,Y		
	sTH	12,X I
I	LH	12,AREA [
S, S e — e J		

The preceding example further illus-
trates the uss of the &SYSLIST(n) systenm
variable symkol. In this macro definition,
a multiple move is accouplished. The numb-

er of fields to be moved depends upon the
number of symbolic parameters included in
the prototype statement and the number of
entries in the operand field of the macro
instruction.

Sample Macro Definition

This section contains a sample macro defi-
nition hamed GMOVE. Figure 12 is a flow-
chart that describes the logic of the macro
definition. The flowchart is an example of
one which you might draw in preparing to
code a macro Jdefinition. Figure 13 is the
actual coding of the macro definition.

The section further contains a set of
instructions for using the macro definition
in a source program. The set of instruc-
tions illustrates the rules for writing
macro instructions in a source program.

The GMOVE macro instruction causes the
Assembler to generate instructions to move
a source field to a destination field
regardless of the length of the field. It
can also move up to ten source fields of
any length to consecutive locations in a
destination field. A typical use of this
multi-source or gather-move function is to
build an output record.

If the same move is to be used in sever-
al places within the same control section,
a facility is provided to generate the move
instructions as a closed subroutine and
link to the subroutine rather then generate
them repeatedly in-line. Use of the sub-
routine facility saves main storage.

IN-LINE USE OF THE GMOVE MACRO INSTRUCTION

To generate the appropriate move instruc-
tions without establishing a subroutine:

1. Leave the name field blank.
2. Punch the operation field as GMOVE.
3. State in the operand field:

a. The first operand as the name of
the destination field.

b. The second operand as the name of
the first source field.

c. The third operand as the length of
the first source field.

d. If only one source field is used,
enter no more operands.

e. If several source fields are used,
punch two additional operands for
each additional source field up to
a maximum of ten source fields.
Each pair of operands consists of
the symbol of the source field fol-
lowed by the length of the source
field.

Code Generated for the GMOVE Macro
Instruction used In-line

The GMOVE macro instruction generates one
or more MVC instructions each time it
appears, as illustrated by the three
examples below.

r————--- it 1
|oper- | I
lation |Operand |
¢ t —- - i
|GMOVE |FIELDA,FIELDB,17 i
------ o m o e e
jMve [FIELDA+0 (17) ,FIELDB+0

______ + - —_— ————

j
|GMOVE | FIELDY,FIELDX, 540 |
e e 1

|
|
|

|MVC |FIELDY+0(256) , FIELDX +0
{MVC | FIELDY+256(256), FIELDX+256
|[MVC |FIELDY+512(28) ,FIELDX+512

[MVC | QUTPUT+0 (20) , NAME+0 |
[MVC | OUTPUT+20(75), ADDRESS+0 |
[MVC | OUTPUT+95(5) , MANNUM+0 I
| S, —_— ~=1

An operand within the macro instruction
containing the symbolic name of a source or
destination field may be address-adjusted
provided that the total length of the
operand does not exceed eight characters.
For example:

r————-= e 1
[Oper- | I
|ation | Operand |

B S —— e
|GMOVE | OUT+100,CITY, 35,STATE,20,J0B+12,4]
e oo 3
MVC	OUT+100+0(35),CITY+0
Mvce	OUT+100+35(20), STATE+0
MVC	OUT+100+455(4) ,JOB+12+D
Lo L e]

The address of the destination field in
the second MVC instruction is higher than
that of the first destination field by the
length of the first source field. Like-
wise, the address of the Jdestination field
of the third MVC instruction statement is
higher than that of th2 s=2cond MVC instruc-
tion by the length of the second souarce
field.

Macro Language 97

RESERVING SPACE IN THE DESTINATION FIELD

Occasionally it is impossible to enter one
or more fields in an output record at the
time the rest of the record is being buil
With the GMOVE macro instruction,

a facility is provided to leave a space
between the fields being moved. This is
accomplished by entering a zero as the sym-
bol for a source field with the length
given as the number of bytes to be skipped
before the next source field to be moved.
For example:

[-—-—s I ittt Rt 1
| 1 jcol. |
|Operat10n|0perand 172 |
e f----]
| GMOVE |our NAME,20,ADDRESS,30,0, |- |
| |54 SERNO, 5, JOB,16 | |
b e P et $ommnd
| MveC IOUT+0(20) NAME+0 | |
|MvC |OUI+20(30) ADDRESS+0 |]
jMvC JOUT+1 04 {5) , SERNO+0 | |
|MvC |OUT+109(16) JOB+0 | I
R O L____4

In the example above, the operand field
of the GMOVE macro instruction contains the
addresses of five source fields: NAME,
ADDRESS,0,SERNO and JOB. The symbol 0 for
the source field together with the length
specification of 54 cause the bytes to be
skipped from address OUT+50 to address OUT+
103 inclusively.

USE OF THE SUBROUTINE FACILITY OF THE GMOVE

MACRO DEFINITION

To obtain a generated subroutine with the
GMOVE macro instruction, write the macro
instruction in the same manner as if a sub-
routine were not desired and write a unique
name in the name field of the macro
instruction. The length c¢f the name must
not exceed seven characters. The symbolic
name preceded by an E must also be unique.

An entry in the name field will cause
the generation of the subroutine. The sub-
routine, once established, can be used by:

e Coding the unigue symbolic name in the
name field.

¢ Coding GMOVE in the operation field.

Up to five closed subroutines can be
generated within each control section.

A subroutine thus generated can only be
used in the control section in which it is
generated. Generation of a subroutine in
one control section will cause the macro
generator to "forget" all subroutines
generated in previous control sections.

98

The entry in the name field of a GMOV
macro instruction which gesneratzss a subr
tine is used as the name of the entry point
of the routine. The nane preceded by an E
is eguated to the next seguential instruc
tion following the macro instruction.
Register 9 is used to link a generated sub-
routine. The previous contents of register
9 are lost. If you wish to save the con-
tents of register 9, it is your resoonsibi-
lity to save and restores it.

The operands of a GMOVE macro instruac-
tion that 1link to an established subroutine
are ignored and may be omitted. It mnay be
desirable to include all operands in each
usage to ensure that the operands are pre-
sent in the first occurrence during an
assembly.

The following example shows the subrou-
tine facility of the GMOVE macro.

The first and the third box show macro
instructions as they might be coded in a
source program. The second and fourth box
show the source statements generated on
account of the macro instructions.

s B bt bbbttt M 1
| |Oper | jCol. |
|Name| ation|Operand 172 |
Nt Dveetet et p----1
|COL |GMOVE|JOUTREC,SERNO, 4,NAME, 20,30 - |
i i i DRESS,30,CITY,25,STATE,15]- i
| { 10,25, INPUT1,540,INPUT2,2]|~]
| i 160 i i
it o o e Lomeey
| | LH |9, ECOL |
| *] | START OF GMOVE SUBROUTINE |
]COL |MVC |OUTREC+0(4),SERNO+0 |
] |MVC |OUTREC+U4 (20) , NAME+0 |
| |MVC | QUTREC+24(30) ,ADCRESS+0 |
i {MVC |GUTREC+54(25),CITY+0 i
i |MVC | OUTREC+79(15),STATE+0 |
] |MVC |[QUTREC+119(256), INPJT1+0 |
| |MVC |OUTREC+375(256), INPUT1+256 |
| |MVC | OUTREC+631(28), INPUT1+512]
| |MVC |OUTREC+659 (256) , INPUT2+0 I
| | MVC | OUTREC+915(4), INPUT2+256 |
| [BR 19 |
| * | | END OF GMOVE SUBROUTINE |
|ECOL|DC | Y(*+2) |
SRS vt b i
COL [GMOVE] [
i T o e !
| |BAS }9,COL |
Y R S U j]

Note that subroutines can be establisheid
without using the subroutine facility as
shown in the example. This can be zcconp-
lished by using the macro instruction to
generate in-line coding within 2 closed
subroutine,

MAIN-STORAGE CONSIDERATIONS FOR GMOVE
SUBROUTINES

In the preceding example, 72 bytes 5f main
storage were used for the two macro
instructions. If the subroutine had not
been used, 120 bytes of main storage would
have been required. Eight additional bytes
of main storage are used when a subroutine
is established and each request for the
subroutine requires four bytes.

The amount of main storage that is saved
is a function of how many MVC instructions
are generated in the subroutine. The use
of a GMOVE subroutine containing only one
MVC instruction does not save main storage
unless it is used six times (including the
initial time). It would actually take
extra main storage if used less than five
times, even if no additional instructions
were required to save the contents of
register 9.

ERROR CHECKING

Error checking is performed on the operands
in a GMOVE macro instruction.

Generation is always terminated if eith-
er the destination field or the first
source field and its length are not speci-
fied. An appropriate error message is
generated.

If an invalid source field length (zero
or non-numeric) is specified or if the
length of any other source field is
omitted, generation is terminated. Aan
appropriate error message is generated.

If an attempt is made to generate the
sixth subroutine in the same control sec-
tion, the GMOVE routine is generated in-
line. An appropriate error message is
generated.

Note that subroutines can be established
without using the subroutine facility of

the GMOVE macro. This can be accomplished
by using the GMOVE macro instruction to
generate in-line coding within a closed
subroutine.

USE OF GLOBAL SET SYMBOLS WITHIN THE GMOVE
MACRO DEFINITION

To ensure a correct assembly of a macro
instruction, you must avoid any conflict in
the use of SET symbols. The GMOVE macro
instruction makes use of global SET symbols
as described below.

1. The SETC symbol &CGl is used in the
GMOVE macro definition, and must not be
used to communicate a value past the
occurrence of the GMOVE macro instruc-
tion. In addition, if one or mdore sub-
routines are generated, the SETC sym-
bols &CG10 to &CG1l5 are used.

2. 1If no subroutines are generated, the
GMOVE macro instruction is properly
generated regardless of the setting of
any global SET symbols, either before
or between occurrences of the GMOVE
macro instruction.

3. If one or more subroutines are
generated in one control section, the
SETC symbols &CG1ll to &CGL5 are used by
the Assembler to store subroutine
names. They must not be used between
the generation of the GMOVE subroutine
routine and the last use of the 3MOVE
macro definition to link to a subrou-
tine routine. The SETC symnbol &CGl0 is
used to store the name of the control
section, and therefore:

a. §&CG10 must not contain the name of
the control section before the
first subroutine is created.

b. &CG10 must not be changed until all
subroutines and linkages to subrou-
tines in a control section have
been generated.

Macro Language 99

'
(mexir)

Desti- Put Out
ation +Firs|

MVC 254
S 1
02??55/ \ Message / Bytes

Store &NAME MNOTE Set Up
in SETC Error . e for Nexi

Variable Message ’ Source

.SETCG1
Put &NAME
&8CG1 and
Put Out
LH 9, *+8

Instructions

NEXT

Set &ALl to

Zero fora
New Source/—

Figure 12. Flowchart of the GMOVE Macro Instruction

[N
D
<

.LSTMOVE

Put Out MVC
for Remaining
Bytes

.SETNEXT

Another No
Source
Give

No

Put Out
BR 9 and
&NAME DC Y{*42

MEND

IBM IBM System/360 Assemblar Coding Form ety
PROGRAM PUNCHING GRAPHIC PAGE 1 OF 5
OCRAMEE] oate INSTRUCTIONS PUNCH CARD ELECTRO NUMBER "
' Nome 0 P 0 e x ‘s 0 s P s 0 s % 65 nl s i »
i IialcRlo] | B |] 1T
sNAME wolvie| [siTlo],is|el1], lslLIFl1] le Fl2], le/tlrle], lslF[al, sLIFlal, [s/Flul, l6lcIFlu], ls|Fls], le|L|Fls], ls|ele! lelLIF|-
FI7|,1ElLIF7],16/F8 , |8|LIFI8], |8|FIO| SLFQ:GFtﬁ,SLF!F
‘ AlLlF (" sNAME'| [Ela ").NouAﬂg
1 F (' 6ICIGI110"| (El@l ['|6/SIVISIECT'|)|. TIEIS|T :
Jel L B 17 [Elilrlsiy! lulslel lole GHOV% wirltlu_sulslriolu'r|r v RIElglulels|r/ED
AN il LI Tihitls| coNTROL |slElcTizloN)
§/CG10 sETc| | |'85)yISElCT]’ I
CiG 1 SETC | |'! 1 |
§CG112. sEeTc | | L] ; i]
81613 SETICI | I'! L
8/CG 1 SgTC ||’ * Ll
§icG15 sETC || j _ Ll |
B AGO -NONIAME L ‘ | B
. CHECK |FloRrl swsRoulTINE laL RE] IENER AT|ED RN EERNN
. TEST, ATF (' 6NAME" Elal '6CIGIL 1"). ILITINIK ; .
ATF, ('6NAME" [ElQl |'8CI614;2]"). ILITINIK i ‘ ; ;
AlLF (' IENAIME'| ElQ '6ICI6113:"). ILIINKL | | | - , ‘ i LLLs
! 1 ((ENAME'| E@ |"6CIGLL")| LINK | L g f NS Ny
EENEEY i {i'|6NAME'| Ela| |'6/C|615'). NOINAME i ; S B
Lk EIE LTk Tlo| |PIREWV IO USILY| IGENERATIED SulBROUT|INE |
ik || 18Als +PNArﬂg ; ‘ , L ! i
’ lg XIT 1 ! 5 Lo ||
e [[leuelck. |Fok] plresken|c be EERRRRERENEEEY
-WIOINAME| | ATF| | | |{i*6Tlo" NE [")'[).A] L L1
* A standord cord form, 1BM electro 6509, is available for punching source stotements from this Form.
e o o B et oo begcimant 232, Son o, Califoia 35114,
IBM TBM Systam/360 Assemmbler Coding Form PRy
frocum PUNCHING GRapHK mat 2 o §
ROGAMNER lom INSTRUCTIONS PUNCH CARD ELECTRO NUMBER -
STATEMENT ” .
| e W T 2 Orse 3 3 © o 30 5 " al in Sraee %
[Mivlolre] ' Dlels/Tlrinalr]zloln] [Rhgkzb oz [7]¥[elD]”
L1 skemgl | (1))
A el 1] l6lelsl] wiel [.]e
NoTE |'FIRS[T lsiol PlARAME[TER| |olMi1|T TED]’ ‘
GEAN sEris | (1)
18 | | ATE || BLIF" NEL Y| IC
‘ o TE| ' LENGITH OF| FliiR IM§P CEL PaRAMETIER oM T TED"
D | unoTe| | GENERATIION rtﬁnan%En'
, MEXTT| | L] , | |
Jde AL } Kl
e P ARAMETIERS| |PIRlESiEINT! |FlolR] l6ENERAT]IION AN
Slc6it| SETC I e
T Tlare .IGEN | | L
e i THER| |siuglR urrug CIAN Fg_g@uta TED ‘ i
! I e P! ¢
— A‘\I F S | ; ! i
6lCG 1 SEITIC ol L ;
| AlGlo] | [|
sl T IF T . } AR
6C612 ° SETIC ‘ i HIEEE i
SOERERREN ‘ T B
ST ArlE e g . i i I
cots | [lsexc T ES EEREAENN
AEERERE YY) 1 el T B ;
LU AT N | I NRRENNNE i
§CG14 . | |sETC ; iR l NN IR Nl | !
* A stondord cord form, 1BM electro 6509, is availoble for punching source sratements from this form.
m.f."%fﬁlﬁ':ﬁf l::“r: :mmm::m:m‘ ‘Deportment 232, San Jose, California 95114.
Figure 13. Coding of the GMOVE Macro Instruction, Part 1 of 3
Macro Language 101

rrocHM PUNCHING Grarmic mee 3 o 5
POGRAMMER I oaTE INSTPUCTIONS uNCH D ELECTRO NOMBER -
STATEMENT
i el [T Orominr n 0’7:;‘4) » s 0 4 0 55 Comem @ &5 7 ey e %]
INREE] QP sefriclela | [T [1] B
v alrle [l lTelgleielsisl] Inel 0 3l Ialhisluel {111
CG1S5 SETC, | | 6NAME
AMEEN : EieRlalTlEl Ll nkialGlE] FloR] [ejriris|r] lolciclulrirEc
<SETICG/1) | |LIH 9, ELINIAME |]
1 SETIC] | I'IEINAME! ;
BIL|2 SETH | |{1])
W [| | | ls|rialRiT] lolF] &nge swislRlolulTriNE
A - |
ALLISUB _gFmr *No| FuRTHER IslujiRou'T IINE!S X|n THIls! CoNTIRIOL| ISiElcTiTlON"
1NN inoTE! ' GENERMTIl IPlRolcEDE S| Wz TiiolulT, ROLTINE'
.ii : ; INIERIAITITIONI |O0F]| |AlC|TIUAL in‘EHINiST L”'__CTIONS]
EN_ ANIOP | ; l 5 ‘
L3 aﬁTi LE[e
EALy | |IsETal |2 |
- NEXT Aﬁg ;
6lalLig) | A
LT L] |] lrlelaiia IRERREREN
BERERIVIG ‘|6|sly TINE X/T RN EERN
S A kspgg LN DEISTINATION. | | |
3RS i B As| ZERO] | i
<LOQOP ANIQIP: Bl i T
liala | | [skevial | lsalial- ! T : ”Tj
; | H i
SENEEnENANN N ENERRRRNRRRRRNARNE NENRNNE T
* A srandord cord form, IBM electro 8309, is availoble for punching source starements from this form,
m":mﬁ"&'::ﬂ.:f &"L'.'.Tfrwa-w e avepneivg Pootom, 232, San Jose, Cotiformia 95114.
mu IBM Systesn' 360 Assembler Coding Form XZ.'-::O::” \b/kﬁi
ocum PUNCHING cRarHIC mot 4 o §
PROGRAMMER]T)n: THSTRUSTIONS e RS T CTRG Tt ”
o
g : o s 0 s » Q""s" 1 3 © 3 2 3% Comern P I nl_ln e »
EALG | | | SETA | [6ALS+6ALL [L1 RN BEERREN] i
ENRNRREN AR RN RGN TG - ES N N AN NES RN RRR RS RNN RSN RY !
E&CiG1d | | HMVC | 6TIOI+ISAILS . [{2i5i61) |, (BISIYISILITISITI(BIALL) +EMILHE | | |1 NEREREE i |
P@@& ? SE?AQPEALH¢256 f L] BEEIENE '
é—ll;(él‘ g |E Tic! B0 T Tt ’ = : T
L. lAcos | l.iLoop j |
LLSTMOVEl ANOP - ’ b |
F;@£ ; MVC ET0+SALG.i(BAL2) 65 ' Ll SEREE |
gicet! | llskere || | j P RN TT R !
S SN AlLL Molviels GEENER EREREENE |
Ll [LT BERER , l: !
el DLl | CiHEICK. FloR P
LISETNEXT| ANOP! RN
IGlALL, | _ﬁE}M Liui+2; |
i A1E | | |('l6slylsi 1s'T/f/sAlLlL 1l
EALT | SET PpLu+£ | i
L AlL F, 6:slylsiuiTis\T]{i6lALIT])
- [ERRLGTM ”WiIF ‘MrislslrnG] lolel lrNy
_ L.l MNOTEL'ND. FURTHER SOURCES L
_ Go | |l.LasT AN i
e Lo I sle] uiel FoR! e \ G
.SeTue | | ianiop ;5F il * | !
gaLs . |lseTa |learsslsials L f EERERE
bALs | IsETA; Fsperﬁrl%ALﬂL i REERNREE
L. |ncoBl | [|-NEXT BERER ‘ T

* A standard cord form, 1BM elacrro 6509, is available for punching source statements from this form.
instructions for using thix form are in any 184 System/360 Assembler Reference Maauoi .
Address comments concerning this farm 1o 1M Corporation, Programming Publications, Deportment 232, San Jose, Califormia 95114,

Figure 13. Coding of the GMOVE Macro-Instruction, Part 2 of 3

102

i
i
I
|
i

_Mhll.!.‘.
NOG omarmc |"\- X] |
Inm NG [
STATEMENT
' - 'R Bl TN = i » 5 - » » » -
Llal |] il AlLu] Islolu -]
o HL}E olr| lelgiL]al)].
HEH
_ﬁh#ﬂx;Js b
ME| i yi (il 121)
'l‘amwdlwn,llmalnm.sﬂ»,hmilﬂl-ﬁrpmd-iqm-mmhmd\im.
mx:x:::ﬁm:: :1:?0 Im;wmmwm:m: 'D-.-m-n 232, Son Jose, Glibv»h 95114,
Figure 13. Coding of the GMOVE Macro-Instruction, Part 3 of 3
Macro Language 103

o
[

Assembler source programs can be either
assembled and executed in one job
({assemble~and-execute function) or
assembled and executed in separate jobs.
In an assemble-and-execute Job, the object
program (in addition to being executed
immediately) may be punched into cards or
written onto magnetic tape.

When the assemble-and-execute function
is to be used, the following conditions
must be fulfilled:

e The program must not reguire linking
and/or relocation.

s The Core-Image Maintenance program must
be contained in the core-image library
of the disk-resident system.

® A relocatable area must be available in
the disk-resident systenm.

Object programs that require linking
and/or relocation must be processed by the
Linkage Editor program before they can be
executed and/or included in the core-image
library.

Job Control Statements System Tape Work Tape
SYSRDR * SYSRES
Assersbler Control %
Statements and
Source Progrom Work Tape
(SYSIPT * CPU SYS001
Object Program
SYSOPT
Logging
Listing ¥ *
Literals

Crossreference Listing

* The some unit may be used for both reading control cards and the
source program,

** The same tape drive may be used for both object-program output,
literals, and Crossreference Listing.

Figure 14. Input/Output Devices Used for a
Program Assembly with the TPS
Assembler

«©
4=

DPS/TPS:
Assembler objzact programs that do not
require linking and/or relocation can be

» 1 £ +hn
executed directly under contrel of

disk-resident (tape-resident) systen.
the execute-loader function for this pur-
pose. They can also be included in the
core-image library of the disk-resident
(tape-resident) system, from where they can
then be loaded and executed.

i

Use

The files and corresponding input/ouatput
devices used for a program assembly are as
shown in Figures 14 and 15.

Note that for TPS the literal Workfile
and Text Output file may be assigned to the
same tape unit.

Job Control Stat t
System Disk
SYSRDR * SYSRES** {Object Progrom in
Relocatable Area)
Assembier Control Second
Statements ond . Work
Source Progrom SYS001
(opflonol)
SYSIPT * crU $Ys000** Fmr
Dlsk
SYSOPT
Listing Object Program
Logging I

* The some unit may be used for reading control cards and the source program.

** The same disk drive may be used for SYSRES and SYS000 or SYSRES ond
SYS001 but not for SYS00 and SYSO0I .

Fiqure 15. Input/Output Devices Used for a
Program Assembly with the DPS

Assembler

Job Control Statements

Device assignments are normally given at
system generation time. If, however, these
assignments were not given at that time or
if you wish to alter any of the assign-
ments, ASSGN job-control statements as
shown below may be used to make the desired
assignments.

Required if the
source program is to
be assembled only.
Required if the
assemble-and-execute
function is to be
used. (DPS only).

JOB ASSEMB

NO N
NHR N

JOB ASSEMB,p.~
name

Reguired if the
assembly is the first
job in the system
run.

/7 BSSGN SYSLOG,ex- Optional.
Refers to the
printer, which lists
job control state-
ments if you include
a LOG control
statement.

e et s e . s i e s S e st S

// ASSGN SYSLST,... Required.

) Refers to the
printer, which prints
the program listing
and other
information.

// BASSGN SYSIPT,... Required.
Refers to the
card reading device
(or magnetic tape
drive) (DPS only)
on which the program
control statements
(if any), the
Assembler source
program, and (if card
input) an end-of-file
card are read.

Y o e, . s - it . S T it S O ot e S, WL . i T, S, S st Wl Gt . s SO e e, A it ™ e, e St

1
[}
|
]
t
]
|
]
e e e e e e e e e e e e i e o e s e e el e ot ot s o s ot e s e . s e e o e s 2

// BASSGN SYSOPT,... Required if an object
program is to be
produced in cards or
on magnetic tape.
Refers to the card
punching device or
magnetic tape drive
on which the object
program is to be
produced.

—— e, . o e — . S e St

|7/ ASSGN SYS000,... Required. Refers to |
| the disk (tape) drive]
| containing workfilel.|

| etk 1
|77/ ASSGN SYs001,... Reguired. |
| TPS: Required. |
| DPS: Required if twd |
| workfiles are used |
| see (AWORK). Refers |
| to the disk (tape) |
| drive containing |
i workfile2. |
T !
| TIPS [
|7/ ASSGN SYS002,... Optional. For |
| literals. Maybe same |
| as for SYSOPT. |
e 1
oo |
| DPS I
|// VOL SYS000,WORK1 Rejguired for |
|7/ DLAB ... workfile 1. |
|7/ XTENT ...]
I |
|77 VOL SYS001,WORK2 Required if two]
|7/ DLAB ... workfiles are used. |
|7/ XTENT ... (See AWORK). |
¢ - -~ 1
¢ -- , {
|7/ EXEC Reguired. |
O U S i

Program Control Statements

Program control statements are supplied for
use by the Assembler program. These state-
ments indicate which of the Assembler pro-
cessing options the Assembler program is to
perform or provide. The Assembler control
statements are:

e AWORK - Assembler Work File statement,

e AOPTN - Assembler Option statement,

e ICTL - Input Format Control statement,

e ISEQ - Input Sequence Checking statement.

The AWORK statement is used for the disk-
resident Assembler only. All four control
statements have the same format as Assembler
language instructions. AOPTN, AWORK, ICTL,
&nd ISEQ appear in the operation field,
while the various options are specified as
operands.

AWORK =-- ASSEMBLER WORKFILE STATEMENT

An AWORK statement indicates the number of
work areas the DPS Assesmbler is to use in
processing source-program statements. The
Assembler can use either one or two work
areas. Two work areas are provided only if
two disk drives are available. 1In this
case, one work area can be assigned to each
disk drive. Using two work areas on separ-
ate disk drives shortens the processing
time required by the Assembler.

Assembly of a Program (DPS/TPS) @105

The format of the AWORK statement is:

- —— e - —————

The AWORK statement requires one
n?nrandln\ which must ha either the digit 1

I SRRV SRRV SRS 2] -

or the digit 2. If the digit 1 appears as
the operand, the Assembler assumes one work
area. If the digit 2 is used, the Assembl-
er assumes two work areas. If no AWORK
statement is provided. the Assembler
assumes one work areaa

A work area must always be assigned to a
disk area consisting of contiguous storage
positions. This is accomplished by using
the proper job—control (XTENT) statements.
For details concerning XTENT statements,
refer to the SRL publication IBM_System/360
Model 20, Disk Programming System, Control
and Service Programs, Form GC24-9006.

The AWORK statement must precede any
AOPTN statements used and the source
statements.

AOPTN (ASSEMBLER OPTION) STATEMENTS

AOPTN statement(s) may be used if the norm-
al Assembler output is to be altered.

AOPTN statement(s), must be written preced-
ing any other source-program statements,
even an ICTL statement. Figure 16 shows
the option indicators that can be used.

The normal Assembler output consists of
two major files: the object program and
program listing. The object programn con-
sists of three types of information: the
External Symbol Dictionary {(ESD), Text
(TXT), and the Relocation Dictionary (RLD).
The program listing consists of five lists
of information: ESD listing, source and
object program listing, RLD listing, error
listing, and symbol table.

The format of the AJDPTN statement is:

The option(s) that may be supplied in
the ROPTN statement are shown in Figure 16;
each option is identified by a symbol which
is used in the AOPTN statement. Each
cption of the ADPTN statement may be speci-
fied in a different AOPTN statement, or
they may appear as multiple operands
(separated by commas) in a single
statement.

(Y
O
(52

ogram (ESD, TXT, and
~a

o
[V e
~ R

not oroduced 4
ncT proa

. (Their appearance i
he program listing is not
laffected.)

n
uevclh an

— e e e e o
40 WO

|

1

1

|

I

|

b !
	No ESD data will appear in the
	object program or the program
	listing.
8 L	

r

!

|

|

|

NORLD ? No RLD data will appear in the |
|object program or the program |
{1listing. Thus, the object pro-|
|gram will be absolute. |

| NOLIST |The program listing will not |

| |appear. (A statement indicat- I

i |1ng the number of errors in thej

i iprogram wili, however, be i

| |printed.) |

|+ t -1

|

1

|

|

NOERR |The error listing will not |
|appear in the program listing. |
| (A statement indicating the |
|number of errors will, however, |
|be printed.)

1..
|
|
[}
|
|
|
|
:
1
1
[
|
|
]
t
|
1
[}
|
|
|
|
1
|
|
|
t
t
]
|
|
|
[}
t
]
!
t
|
|

ol —

| NOSYM |Neither a Table of Defined Sym-|
| bols nor a Crossreference List |
|will appear in the program |
llisting. |

NOVERIFY*|Intermedlate write operations |
|on disk are not verified. |

CROSSREF*IA cross-reference listing will |
jappear instead of the symbol |
|table listing. The cross-
|referencs listing contains all |
|the symbols used in the program]
land the number of the statement|

in which they were used (see

|Appendix G). Note: The total

|
|number of symbol definitions |
|
|

|and references must not exceed
112,288,

B T s e]

LITERAL##* |Literals will be processed. If]
| LITERAL is omitted, literals |
|will not be processed. |
|Note: The user must be sure he|
|has enough tape units for 1it- |
|eral processing. |

|An ENTRY card will be produced |

| |at the end of the output text. |

e ekt it s e

* For the disk-resident Assembler only.

#%# For the tape-resident Assemwmbler only.
(Not required for DPS.)

Figure 16. AOPTN Card Option Indicators

Note: No object deck will be produced in
case of the LIMIT EXCEEDED error regardless
of the option specified.
Assembler Diagnostic__Messages).
a listing will appear.

However,

The AOPTN statements must precede the
source statements and follow the AWORK sta-
tement, if any.

ICTL -- INPUT FORMAT CONIROL

The ICTL instruction allows you to alter
the normal format of your program state-
ments. An ICTL instruction statement, if
any, must precede all other statements in
the source program except the AWORK and
AOPTN statements, if any, and must not be
used more than once. Only the following
two formats of the ICTL instruction are
allowed:

either:

(————- L Sttt tat ey 1
|Name | Operation]| Operand |
p-—--—4- fom oo .
|Blank| ICTL | 25 |
{——— L b e 1
or:

r————-- L D S i 1
|Name | Operation | Operand |
poom—- S By Lttt 1
!|Blank | ICTL | 25,71,38]
| S B R — § S—— S — J

In the first case, the operand specifies
that the begin column of the coding format
is 25. Since the end column is not speci-
fied, it is assurmed to be column 71. No
continuation lines are permitted.

In the second case, the begin column is
column 25, the end column is column 71, and
the continue column for macro instructions
is column 38.

Non-standard operand specifications
other than the two above are not allowed.

ISEQ -- INPUT SEQUENCE CHECKING

The ISEQ instruction is used to check the
sequence of input cards. The format of the
ISEQ instruction statement is as follows:

r———-- S St Bt 1
| Name |Operation |Operand |

Tt !
{Blank]| ISED | Two decimal values of |
| | |the form 1,r; or blank |
Lo L e e e e e e —— e ———]

The operands 1 and r, respectively, spe-
cify the leftmost and rightmost columns of
the field in the input cards to be checked.
Operand r must be ejual to, or greater
than, operand 1. Operand 1 must be greater
than 72. The field specified by operanis 1
and r must not be greater than seven bytes.

Sequence checking begins with the first
card followiny thz ISED statement. Com-
parison of adjacent cards makes use of the
eight-bit internal collating sejuence (see
Appendix J). The input cards are said to
be in sequence if the value in the columns
checked in thz second card is greater than
or equal to that of the first card. If a
statement is found to be out 5f sejuence a
warning is given but no error message
appears in the diagnostics- listing.

An ISEDQ statement with a blank operand
terminates the checking operation. The
next ISEQ statement initiates a new check.

Sequence checking is only performed on
statements contained in the source orogranm.
Statements generated by a macro instruction
are not checked for sejuence (see Appeniix
.

Assembly of a Progranm (DPS/TPS) 107

Cataloging a Macro Definition

The macro library is maintained by the
Macro Maintenance Program (MMAINT).. Use

this program to add or delete any number of

macro definitions to or from the macro
library.

Job Control Statements (DPS)

The job control
MMAINT run are:

statements required for a

ittt 1
|77/ JOB MMAINT Required. |
| I o e e e e e e — - —————— i
__________________ 4
i// DATE ... Regquired if first |
| job after IPL. |
___ 4
|// BSSGN SYSLOG,... Optional. |
e e o e e !
| 7/ ASSGN SYSLST,... Optional. |
b= o e :
/7 ASSGN SYSIPT,... Required. |
bomoo o= A 1
|77/ VOL SYSIPT,SYSIF Required only if |
] SYSIPT |
|// DLAB ... Required refers |
| to a |
|7/ XTENT ... Reguired disk drive.}|
bmm e e e i
{// EXEC Required. |
b e i

Job Contirol Statements (TPS)

The job control statements regquired for an
MMAINT run are:

[T T oo ——ce——— e 1
i// JOB MMAINT Required. |
pommmmmm o m o mmmmmeee == 1
|7/ DATE ... Required if first |
| job after IPL. |
o o i
|7/ ASSGN SYSLOG,... Optional. |
b oo oo 1
i// ASSGN SYSLST,... Optional. |

___ {
|// BASSGN SYSIPT,... Required. I

... |
| // BSSGN SYSO000 Work tape. |
oo !
|77/ EXEC Required. |
L e e e e e e e e e e 1

@108

Tue program control statenents reguired to
catalog a macro definition in source format
are:
it 1
| /7 CATAL i
| 7/ END |
b |
You may use any number of macro defini-
tions in a MMAINT run, but each macro defi-
nition must ke preceded by a // CATAL sta-

tement and the last definition must be fol-
lowed by the // END statement.

For other (optional) program control
statements see the SRL publications IBM

If listing is specified, a list is printed
during the assembly run. The form of the
lists and the type of information contained
therein are shown in Appendix G.

Source Program _and Data Checking
{Assembler)

Diagnostic messages are printed if inco-
rrectly coded instructions are detected by
the Assembler program during an assembly
run. Both the number of the related
source-program statement and the action
taken by the Assembler program are printed
together with each message. If more than
one error is detected within a source-
program statement, the diagnostic messages
for all errors detected are listed. The
Assembler program then takes the action for
the severest error detected, and the appro-
priate action is printed with the diagnost-
ic messages.

Notification of the types of Assembler
actions that may occur during an assembly
run are listed below in the order of their
severity with the severest type first:

ASSEMBLY IN ERROR (AIE)
The user®s program cannot be executed. The
assembly run is completed, but only diag-

nostic messages preceding the AIE message
may be considered valid.

STATEMENT TREATED AS COMMENT (STC)

Output Listings

STATEMENT INCOMPLETELY ASSEMEBLED (SIA)

If the statement is a machine instruction,
the storage area required for the instruc-
tion is reserved and filled with zeros.

STATEMENT ASSEMBLED (SA)

The individual diagnostic messages are
listed in Appesndix H.

Source Program and Data Checking (MMAINT)

A diagnostic message is added t> an inco-
rrect statement. Only one error can be
detected within a statement.

If an error has been detected within a
macro definition, sequence symnbols are not
processed and the macro dafinition is not
catalogued. If an error has been detected
within a prototype statement, the macro
definition is not checked for further
errors.

The TPS macro maintenance program performs
a check to determinz whetner the contents
of columns 73 through 80 of a statement are
out of sequence. In case of a sejuence
error, the statement is flagged with the
letter S. If no other errors are contained
in the macro definition, it is catalogued.

The individual 3diagnostic messages are
listed in Appendix I.

Output Listings 109

Language Compatibility

The IBM System/360 Model 20 DPS/TPS
Assembler and macro Languagjes are Closely
patterned after the Basic Programming Sup-
port (BPS) and Disk and Tape Operating Sys-
tems (DOS/TOS) Assembler and macro lan-
guages except where dlfferences 1n machlne
Model 20.
follows:

These dlfferences are as

e There are seven Model 20 machine
instructions that are not contained in
the instructions sets of higher System/
360 models:

CI0, XIO, TIOB, SPSW, BAS, BASR, HPR.

If programs that were written for the
Model 20 are to be executed on higher
System/360 models, the use of these
instructions can be avoided as follows:

a. CIO, XIOo, TIioB, ani SPSW instruc-
tions may be avoided by using IOCS
macrc instructions for input/output
operations.

b. BAS and BASR instructions must be
replaced by BAL and BALR, respec-
tively, with consideration given to
the functional differences between
Model 20 and higher System/360
models.

c. HPR ins ructions must be replaced
nch instructions.

e The Model 20 Program Status Word (PSW)
has a length of only four bytes.

¢ The Model 20 Channel Command Word has a
length of only 6 bytes and must be
aligned at a half-word boundary. The
Model 20 Assembler instruction is DCCW
instead of CCW. The use of the DCCW

110

instruction may be avoided by using
IoCs.

¢ The number and l=ngth of Modesl 20 regis-
ters differ from higher System/ 360
models.

a. Model 20 has only eight registers
(8-15). 1In addition, it has eight
pseudo base ragisters (3-7) with
fixed contents. The pseudo base
registers contain 0, 4096, 8192,
12288, 16384, 20480, 24576, and
207D

e - . e L
ey TES _Lv-:J__y, thus permic
o Ao
1§ GLired

©
-
i

rfb

3
<

b. Model 20 registers have a length of
only 2 bytes.

Note: Y-type address constants twd bytes
in length must not be specified for System/
360 models having a storage capacity of
more than 65535 bytes. No Y-type constants
must be used in projgrams to be executed
under control of the Operating System/360.

Programs written in the Model 20 Basic
Assemkler language can be assembled by the
Model 20 DPS/TPS Assembler program unless
blank opesrands ars used in Assembler or
machine instructions.

The instructions LCLA, LZLB, 3BLA, 3BLB,
and GBLC which ares discussed in the Disk
and Tape Operating Systems, Assembler Spe-
cifications are ignored. The use of LCLC
is illegal becaus2 local SETC symbols are
not allowed.

The relationships between the individual
Assembler languages are as shown in Appen-
dix F.

Absolute Address:

1. An address that is permanently assigned
by the machine designer to a storage
location.

2. A pattern of characters that identifies
a unigue storage location without
further modification.

Access Method: Any of the data management
techniques available to the user for
transferring data between main storage and
an input/output device.

Access Time:

1. The time interval between the instant
at which data is called for from a
storage device and the instant delivery
is completed, i.e., the read time.

2. The time interval between the instant
at which data is requested to be stored
and the instant at which storage is

completed, i.e., the write time.

e —

1. An identification (name, label, or
number) for a register, location in
main storage, or any other data source.

2. Any part of an instruction that speci-
fies the location of an operand for the
instruction.)

3. (v.t.) 1In BSCA IOCS a technique by
which the CPU prepares a remote station
to receive a message.

Address Constant: A valué,‘or an expres-
sion representing a- value, interpreted as a
main storage address.

Allocate: To assign storage locations or
areas of storage for a specific job.

Allocated Variable: A variable with which
storage has been associated.

Alphabetic Character: Any of the charac-
ters #, §, 8, and the characters of the
alphabet (A through Z).

Alcernate Drive: When two drives are given
for one multi-volume file, the first drive
is the primary drive and the second drive
is the alternate drive. Tape reels or disk
packs are mounted such that the first is on
the primary drive, the second on the
alternate drive, the third on the primary
drive, etc.

Arithmetic Data: Numeric values used in
arithmetic operations (add, subtract, mul-
tiply, and divide).

Glossary

Arithmetic Operators: Any of the prefix
operators (+ and -) or the infix operators
(+, -, *, /, and *%),

+ = plus s/ = divide
- = minus *¥* = raise to a power
* = multiply

Ascending Order: A seguence of records
such that the control fields of each suc-
cessive recorl collate equal to or higher
than those of the preceding record.

Ascending Sequence: See Ascending Order.

ASCII: See USASCII.

Assemble: To prepare a machine-language
program from a symbolic-language program by
substituting absolute operation codes fdr
symbolic operation codes and absolute or
relocatable addresses for symbolic
addresses.

Assemble-and-Execute: A job setup which
provides for an assembly of a source pro-
gram followed immediately by the execution
of the assembled program.

Assemble-and-Go: See Assemble-and-Execute.

Assembler: A program that assembles.
Assembler Language: A& symbolic language
(used to write source programs) which
enables the programmer to use.all machine
functions as if he were coding in machine
language.

Attribute: A characteristic; fbr example,
attributes of data include record length,
record format, data file name, associated
device type and volume identification, uase,
creation date, etc.

Backup and Restore Program (BACKUP): A DPS
service program that can be used to

1. create a backup tape from dne or more

disk files and ona or more card files,

2. create a backup disk from one or more
disk files, and

3. restore each backup file to its origin-
al medium.

4. Cchange th2 volume and file serial
numbers.

Base:

1. A reference. value.

2. A number that is multiplied by itself
as many times as indicated by an
exponent.

Glossary 111

3. the number system in terms of which a
value is represented. Examples: the
decimal base (ten), the binary base
{(two), the hexajecimal base (sixteen).

Rage Address:

Bage Address A glven address from wh
an effective address is derived by co
tion with a relative address. (See

Displacement).

1ich
mbina-

Binary:

1. A characteristic or property 1nvolv1ng
a selection, choice, or condition in
which there are two possibilities.

2. The numeration system with a radix of
two.

Binary Coded Decimal: A decimal notation
in which the individual decimal digits are
each represented by a group of binary
digits, e.g., in the 8-4-2-1 binary coded
decimal notation, the number twenty-three
is represented as 0010 0011l whereas, in
binary notation, twenty-three is repre-
sented as 10111.

Binary Digit: The smallest unit of infor-
mation., It can have either of the two
binary values zero or one.

Binary Search: A search in which a set of
jtems is divided into two parts, where one
part is rejected, and the process is
repeated on the accepted part until the
item with the desired property is found.

Bit: See Binary Digit.

Buffer: An area in main storage used as
intermediate storage in I/0 operations.
During input, data is read into a buffer;
during output, data is written from a
buffer.

Byte: The smallest addressable unit of
informatidn in System/360. Every byte con-
sists of eight bits, each having a value of
zZerd> Or one.

Card-Resident System: Consists of the card
control programs: Initial Program Loader,
(Basic) Monitor, and Job Control. Used for
the execution of object programs contained
in punched cards.

Catalog: (v.t.) The action of including
an object program or program phase in the
core-image library as a temporary or a per-
manent entry.

Chaining File: See Chaining.

_______ A record retrieval technigue.
The control information contained in
records of one (the chaining) file is used
to access a record in another (the chained)
file. The chained file must be organized
indexed-sequentially.

[

Character:

1. One of a set of elementary signals
which may include decimal digits 0
through 9, the letters A through Z,
punctuation marks and any other symbols
acceptables to a computer for reading,
writing, or storing.

2. An 8-bit (1-byte) code that can be

man1nn1:+aa in main ctorages

Character Set: An ordered set o>f unijue
representation called characters.

CMAINT: See Core-Imag2 Maintenance
Program.

Code:

1. (v.t.) To represent data >r machine

instructions in a symbolic form that
can be accepted by an approaoriate pro-
cessor program.

2. Machine instruc¢tions produced on the
bases of coded instructions (see Object
program) .

Collating Sequence: The relative order of
characters on which a sort or merge is
based.

Comment: A string of characters used for

documentation.

Communication Region: An area of the
{Basic) Monitor. Contains date, storage-
capacity specification, UPSI byte, user
areas 1 and 2, program-name area, and
various control bits used by the system.
Provides for intra-program and inter-
program communication.

Compile-and-Execute: A job setup which
provides for a compilation of a source pro-
gram followed immediately by the execution
of the compiled program.

Compile-and-Go: See Compile and Execute.

Compiler: A program which translates a
program written in a problem-oriented (RP3,
PL/I, etc.) language into object code.

Compiler Control Statement: Any one of the
control statements in the input stream that
defines the reguirements and optioans of a
job to the compiler.

Concatenation: The operation that connects
two character strings in the order indi-
cated to form one string whose length is
egual to the sum of the lengths of the two
strings.

Control Programs: A set of programs which
provide the management functions necessary
for continuous operation of a computing
system.

Control Section: The smallest unit of a
program that can be separately assembled or
compiled. All elements of a control sec-
tion are in constant relationship to each
other.

Control Statement: Any of the statements
in the input to a specific job that define
the rejuirements of the job or its options.

Conversion: The process of changing from
one form of representation to another.

Copy System Disk Program (COPSYS): A DPS
service program used to copy the system
file stored on the system disk pack onto
another disk pack.

Copy System Tape Program: A TPS service
program contained in punched cards. Copies
user's tape-resident system from one tape
onto another.

Core-Image Directory: _A table on the sys-
tem disk pack used as directory to the pro-
gram (core-image) library. Each directory
entry contains information about a program
phase and its location in the library.

Core-Image Format: A data format identical
to that used in main storage. Programs or
program phases stored in the core-image
library constitute data in core-image for-
mat. Such programs or program phases are
ready for direct loading from the core-
image library into main storage.

Core-Image Library: An external-storage
area containing the Job Control program,
other IBM-supplied programs (except the
[Basic] Monitor and the IPL), and user's
problem programs. Permits retrieval of
programs oOr program phase by the Monitor.

Cure-Image Maintenance Program: A system
service program. Updates the core-image
library and directory. Is used to add and/
or replace and/or delete phases and the
(Basic) Monitor.

Core-Image Program: A system service pro-
gram that permits the printing, writing
and/or punching of one or more entries of
the core-image library.

CPSYS: See Copy System Tape Program.
CSERV: See Core-Image Service Program.
Data:

1. A representation of facts, concepts, or
instructions in a formalized manner
suitable for communication, interpreta-
tion, or processing by humans or by
automatic means.

2. Any representations such as characters
to which meaning is, or might be,
assigned.

Data File: A collection of related records
treated as a unit consisting of data in one
of several prescribed arrangemeants and de-
scribed by control information to which the
system has access.

Data Format Item: Specifications in the
program that Jdescribe data items in the
stream. Such data items may be characters
or arithmetic values in character fora.

Data Item:

A single unit of data.

Data_Set: ©See data file.
Data Transmission: The sending of Jata
from an external storage device to nain
storage and vicerversa.

Decimal:

value 10.

The number system based on the

Decimal Digit: One of thzs characters 0
through 9 in a decimal number. For
example, in the number 567, each of the
numeric characters 5, 6, and 7 is a decimal
digit.

Decimal Point:
representation.

The radix point in decimal

Delimiter: Any valid special character or
combination of special characters used to
separate items of data, such as identi-

fiers, constants, and statements.

Descending Order: A sequence of records
such that the control fields of each suc-
cessive record collate egual to or lower
than those of the preceding record.

Descending Seguence: See Descending Order.

Device Address: See Physical Device
Address and Symbolic Device Address.

Device Independence: The ability to
regquest input/output operations without
regard to the characteristics of the input/
output devices.

Direct Access: Retrieval or storage of
data by a reference to its location on a
volume rather than relative to the pre-
viously retrieved or stored data.

Direct Address: An address that specifies
the location of an operand without need of
modification such as adding a base address
value.

Director See Core-Image Directory or
Macro Directory

A unit of information in
(Phase

Directory Entry:
the core-image or macro directory.
header or macro identifier.)

Glossary 113

Directory Service Program: A system ser-
vice program. Causes printing of the core-
image and/or macro directory and/or system
directory.

Disk-Resident System: Contains the Mon-
itor, the disk-resident portion of the IPL,
and the Job Control program. May contain
any one or a combination of the fcllowing:
IBM-supplied or user-written programs,
macro definitions, and a relocatable area.

Displiacement: A value, or an expression
representing a value, which is added to a
base address to obtain the effective
address.

DPS Control Programs: A collective term
used to refer to the Initial Program Load-
er, the Monitor, and the Job Control
program.

DSERV: See Directory Service Program.
Dump :
i. (v.t.) To copy the contents of all or

part of main storage or an external
storage onto an output device, so that
it can be examined.

2. (n.) The data resulting from 1.
3. (n.) A routine that will accomplish 1.
EBCDIC: (Extended Binary Coded Decimal

Interchange Code) A specific set of eight-
bit codes standard throughout System/360.

Edit: To modify the form or format of
data, e.g., to insert characters such as
page numbers or decimal points or to delete
characters such as leading zeros.

Edit Pattern: A field composed of charac-
ters of a special significance. These
characters control such editing functions
as zero suppression, insertion of a float-
ing dollar sign, etc.

Effective Address: The absolute address
that is derived by applying any specified
indexing (base address value) or indirect
addressing rules to the specified address.
The derived effective address is actually
used to identify the current operand.

The symbolic address of an

__________ In a routine,
which control can be passed.

any place to

EOF Card: End-of-file card which signals
the end of a logical set of input cards
{/*b in columns 1-3, where b = blankj.
EOF_Record: End-of-file record which sig-
nals the end of a logical set of input
records (/*b in columns 1-3, where b =
blank).

114

ESD: See External Symbol Dictiosnary.

ESID: See External Symbol Identification.

Exceptional Condition: An occurrence which
can cause a program interrupt >r an unex-
pected situation such as an overflow error,
or an occurrence of an expected situation
such as an end-of-file condition that
occurs at an unpredictable time.

EXEC statement: Sez Execute statement.

Executable Object Program: The set of
machine instructions produced by a language
translater and prepared for loading into
main storage either by link-editing or by a
a CMAINT run if an installation uses a
disk-resident system; the set of machine
instructions produced by a language trans-
lator without further preparation if an

‘installation uses a card-resident systen.

Execute: (v.t.) To carry out an instruc-
tion or perform a routine.

Execute-Loader Function: The function of
executing an object program that is not
cataloged in the core-image library. The
object program may be read from either a
card-reading device or a tape drive or from
the relocatable area.

Execute Statement: A Job Contr>l statement
that designates a job by identifving the
load module to be fetched and executed.

Explicit addressing: An addressing techni-
que which requires the specification of all
elements of on address (base and displace-

ment) by means of absolute values.

Exponent: In a floating-point constant a
decimal integer that specifies the power to
which the base of the floating-point con-
stant is to be raised.

Expression: An operand entry that consists
of a single t=2rm or an arithmetic combina-
tion of terms, normally representing an
address value.

External Storage: A storage device cutside
the computer capable of storing information
in a form acceptable to the comnputer; for
example, cards or magnetic tapes.

External Symbol: A control section name,
entry point name, or external reference; 2
symbol contained in the external symbol
dictionary.

External Symbol Dictionary (ESD): Control
information associated with an object or
load module which identifies the external
symbnls in ths moinle,

External Symbol Identification_ (ESID):
ESID numbers are assembler-assigned poin-
ters that are used by the Linkage Editor
program to correctly recompute the address
constants referred to in RLD entries.

‘Feature: A function of a program, Or a

that can be used to perform spec1f1c
operations.

Fetch:
1. (v.t.) To read into main storage and
pass control to phases or subphases.

2. (n.) The name of a control routine of
the (Basic) Monitor that accomplishes
1.

Field: 1In a record or in a data stream, a

specified area used for a particular cate-
gory of data, for example, a number of
character positions used to represent a
wage rate or a number of bytes in main
storage used to express the address of data
in main storage.

File: See Data File.

F&zgg_ggigg- Pertaining to a number system
in which the location of the (decimal)
point is fixed with respect to one end of
the numerals according to some convention.

Flag: Any of various types of indicators
used for identification, normally a bit.

Floating Point: Pertaining to a numeration
system in which the position of the point
does not remain fixed with respect to one
end of the numerals.

Format: The general makeup of data, a ccn-

trol statement, or a record.

Graphic: The visual representation of a
character or symbol.

_______ The leftmost or rightmost four
bits of an eight-bit byte. Can contain
representation of a digit or the sign of a
number.

Halfword: Two adjacent bytes where the
left byte is on a halfword boundary.

Halfword Boundary: Any even-numbered
addressable byte position in main storage.

Hexadecimal: A number system using the
equlvalent “of the decimal number 16 as a
base. The values 0-15 are represented by
the digits 0-9 and the aphabetic characters
A-F.

High-Order Digit:
decimal number.

Leftmost digit of a

Identifier: A symbol whose purodse is to
identify, indicata, or name a body of data.

Implicit Addr=ssing: An addressing techni-
que that allows the specification of symbol
addresses.

Index Register: A register whose content
is added to the operand address prior to or
during the execution of an instruction.

Indirect Addresss: An address that speci-
fies a storage location which contains
either a direct address or another indirect
address.

Infix_Operator: An operator that defines
an operation between two operands.

Initialize: To sa2t counters, switches, and
addresses to zero, blank, or other starting
values at the beginning of, or at pre-

scribed points in, a computer routine.

Initial Program Loader: A system control
program. Loads (Basic) Monitor into main
storage. Is us2d to assign physical I/0
device addresses to symbolic addresses SYS-
RDR and/or SYSRES. Places name of Job Con-
trol program into communicatisn region of
(Basic) Monitor. The program must be
executed at the beginning of a system run.

Initial Value: A value placed into a
register or a storaje area at the beginning
of an operation and used during the opera-
tion for count purposes or control purposes
or both.

Inner Macro Instruction: A macro instrac-
tion contained in a macro definition.

Input: The transfer of data from an
external storage device to main storage.

Input Job Strzam: A sequence of Job-
Control statements entering the system,
which may also include input dJata.

Input/Qutput _Control System: 1A group of
macro definitions which are contained in
the macro library of the programming sys-
tem. These macro J=finitions can bz re-
trieved from the library and tailored to
the input/output reguirements of the user.

Inguiry Program: A projgram whose execution
is initiated by an inquiry reguasst on the
printer-keyboard attachsd to the Model 20
system. When such a request is made, rou-
tines of the Monitor cause the current con-
tents of main storage to be rolled out, the
inquiry program to ke loaded and executed
and, on execution of that program, the ori-
ginal contents to b2 roll=d in again.

Slossary 115

Installation: A particular computing sys-
tem in the context of the overall functicn
it serves and the individuals who manage
it, operate it, apply it to problems, ser-
vice it, and use the results it produces.

Integer Digit:
decimal point.

A digit to the left of the

Inter-Program Communication: The exchange
of data between two or more programs.

_______ (v.t.) To stop a process in

such a way that it can be resumed.

Intra-Program Communication: The exchange
of data between two or more phases of a
multi-phase program. Facilitated by the
comununication region.

I/0: Input or output or both.

I/0 Area: An area (portion) of main
storage into which data is read or from
which data is written.

__________ A system feature that permits
an input/output operation to be performed
simultaneously with other I/0 operations or
with processing or both.

I/0 Time: the time interval between the
instant at which data is called for from an
external storage device and the instant
delivery is completed (read time); the time
interval between the instant at which data
is requested to be stored in an external
storage device and the instant at which
storage is completed (write time).

I0SC: See Input/Output Control System.
IPL: See Initial Program Loader.
Job: An externally specified unit of work

for the computing system from the stand-
point of installation accounting and
operating system control.

Job Control Program: A system control pro-
gram. Resides in main storage between jobs
and provides for automatic job-to-job tran-
sition., Processes Joh Control statements
in the input streamn.

Job_Control Statement: Any one of the con-
trol statements (in the input stream) that
identify a job or define its reguirements
and options.

Job Stream: See Input Job Stream.

K Bytes:

1024 bytes.
bytes.

For example: nK = n x 1024

[

Key: One or more characters within an item
of data used to identify that data or to
control its use.

Reyword: A mnemonic in a kesyword macro
instruction.
word Macro Instructiocn: A nacro

vword Macro Ins

Ke
instruction whosz operands must each con-
sist of a mnemonic (keyword), an ejual
sign, and a specification. The operands
need not be in a predetermined order.
Language Translator: A program Or a rou-
tine that accepts statements in one lan-
guage and produces equivalent statements in
another language such as an assembler or a
compiler.

LDSYS:

See Load System Progran.

_____ A collection of objects (e.g.,
files, volumes, card decks) associated with
a particular use, and the location of which
is identified in a directory of some type.

Library Allocation Organization Program: A
system service program. Used t> redefine
the limits of one or a combination of the
following: core-image library, core-image
directory, macro library, macro> directory,
and relocatable area.

______ System service
programs such as Core-Image Maintenance,
Macro Maintenance, Directory Service, and
Library Allocation Organization programs.

Library Work Ar2a: An ar=a on the system
disk pack used by the CMAINT program for
updating the Monitor or the IPL. 1In
assemble-and-go or compile-and-go runs, the
CMAINT program uses this area for the stor-
ing of tape label information.

Linkage: Machine instructions that connect
separately assembled control sections.

Linkage Editor: A system service progran.
Relocates programs or phases and links
separately assembled programs or phases.

___________ The function of combiningy a
program control section with one or mnors
other, separately assembled program control
sections into one executable object
program.

Load:

1. To read a program Or a prograu ohase
into main storaje.

2. To initially write a data file onto
disk.

Load_System Disk Program: A system service
program that creates a tape- or disk-
resident system from card input.

Logical Unit Block: An entry in the Logic-

al Unit Table.

Logical Unit Table: Part of the (Basic)
Monitor. It has logical unit blocks, each
of which refers to one specific symbolic
I/0 address and contains the address of a
physical unit block. These symbolic
addresses are related to physical I/0
device addresses by means of ASSGN control
statements.

Loop: A sequence of instructions that is
executed repeatedly a specified number of
times ‘or until a condition is brought abcut
that ends this repeated execution.
Low-Order Digit: The rightmost digit of a
decimal number.

LUB Table: See Logical Unit Table.

Machine Instruction: An Assembler-language
statement, or its functional equivalent in
machine language, that instructs the com-
puting system to perform one specific
operation, such as add, subtract, comrare,
etc.

Macro Definition: A set of statements in
the macro library used by the .DPS/TPS
Assembler program to expand a macro
instruction specified in the source program
into a series of machine instructions.

Macro Directory: An area of the macro
likrary section of a tape-resident syster,
a takle on the system disk pack of a disk-
resident system. Is used with programs
written in the Assembler language.

The TPS version has four priority sections,
each of which contains the identifiers for
the macro definitions contained in the
corresponding section of the macro library.
The DPS version lists the names, begin
addresses, and lengths of macro definitions
contained in the macro library. Is used
with programs written in ths Assembier
language.

The Macro directory can be listed on a
printer by means of the Directory Service
program.

Macro Instruction: A statement used in a
source program and replaced by a specific
sequence of machine instructions in the
associated object program.

Macro Library (DPS): A disk area contain-
ing the macro definitions for the mnacro
instructions issued in user-written pro-
grams. Contains source statements needed
to generate freguently us23 routines.

Macro Library (TPS): An area of the macro
library section of the system tape. Has
four priority sections, each of which con-

tains the macro d=finitions for the macro
instructions in user programs. Contains
source statements needed to generate fre-
guently used routines.

Macro Maintenance Program: A system ser-
vice program. Updates th= macro library
and directory. 1Is used to add and/or
delete macro Jefinitions.

Macro Name: An entry in the macro direc-
tory that identifies and points to the
corresponding macro definition in the macro

library.

Macro_Service Projram: A system service
program that permits the printing, puanch-
ing, and/or writing of one or wmdre nacro
definitions from thes macro library.

__________ All addressable internal
storage of the CPU (central processing
unit). It holds the program(s) under whose
control internal mamipulation >f data is
performed.

MMAINT:

See Macro Maintenance Program.
Mnemonic: A contraction or abbreviation
whose characters are suggestive of the full
expression.

Model Statement: Any one of the statements
in a macro definition that may be selected
and/or altered (usually according t> the
operands specified in the macro instruc-
tion) and become part of the code generated
into the source program.

Monitor: The main cvontrol program in DPS.
Resident in main storage throughout a sys-
tem run. Loads programs into main storage

and causes their exscution.

Monitor I/0O Area: An area of nain storage
within the Monitor used as a buffer by
various Monitor routines when they read
data into main storage or transfer Jata to
an output device.

MSERV:

See Macro Service Program.

Name: A set of one or more characters that
jdentifies a statement, file, nddule, etc.,
and that is usually associated with the
location of that which it identifies.

______ The occurrence 2f a macro
instruction in a macro definition.

Object Program: Tha2 output of a single
execution of an assembler or comnoiler.

0dd-Even Check: Se=2 Parity Check.

Glossary 117

i. A value or a unit of data that is
operated on.
2. The information needed to define and/or

locate 1.

Operation:

1. A program step undertakan by a computer
in execution of a machine instrnction
such as add, wmultiply, compare, etc.

2. The execution of a series of instruc-
tions for the purpose of having one
specific function performed, e.g., the
transter of data betwsesn main storage

Operation Code:
an operation.

A mnemonic that represents

Operational Expression:
taining operators.

An expression con-

1. A person who operates a machine.

2. A symbol specifying an operation to be
performed (see Arithmetic Operator and
Comparison Operator).

Option: A specification in a program or a
control statement that may be used by the
programmer to influence the execution of
the program or any of its statements,

Output: The transfer of data from main
storage to an external storage device.

1. That portion of the result which
exceeds the capacity of the particular
unit of storage

2. Page end on a printer.

erla (v.t.) To do something at the
same time something else is being done; for
example, to perform an I/0 operation while
instructions of a program are being
executed by the CPU.

______ To place a phase or subphase into
main storage locations occupied by another
phase or subphase that has already been
processed.

Pack: (v.t.) A storage technique where by
two digits or one digit and sign are stored
per bvte.

Packed Decimal: A data format in which two
digits or one digit and sign are stored per
byte.

Parameter: A variable that is given a con-
stant value for a specific purpose or

process,

_________ A binary digit appended to an
array of bits to make the sum of all the
bits always o0dd or always even.

[
(<]

___________ A check that tests whether
the number of ones (or zeros) in an array
of binary digits is o33 or even.

_____ A program or a portion 2f 2 program
executed as one main-storage load if it is
not devided up into subphases. Loading a
rhase, which is stored in the cosre-image
library, is initiated by a set of Job Con-
trol statements, a FETCH or a LOAD in a
preceding phase. May be output of Assembl-
er, RPG, PL/I, or Linkage Editor program.

Physical Device Address: A coie used by
the CPU to select an I/0 3Jevice.

Physical and Logical Unit Tables Service
______ A system service program. This
program (PSERV) is usel to display and/or
change the permanent device assignmesats
and/or to change the configuration byte of
the (Basic) Monitor on the system disk
pack.

Physical IOCS: A set of routines contained
in the Monitor program. These routines
control the transfer of data from the CPU
to attached tape and/or disk drives and teo
the printer-keyboard, if present. The rou-
tines also control all data traasfer from
the aforementioned I/0 devices to the CPU.

Physical Unit Block:
ical Unit Table.

An 2ntry in the Phys-

Physical Unit Table: A table contained in
the (Basic) Monitor. It has a aumber of
physical unit blocks, each of which con-
tains an actual device address. Pointers
to these blocks are inserted into the log-
ical unit table by means of ASS3N control
statements.

Point Alignment: Alignment of arithmetic
data in a variable depending 2n the loca-
tion of the assumed or actuwal 3=2cimal
point.

Position Macro Instruction: A nacr>
instruction whose operands consist of only
the values specified by the programner.
They must be specified in a predetermined
order.

Prefix Operator: An operator that pre-
cedes, and is associated with, a single
operand. The prefix operators are + ani -.

Priority Level: Classifies macro defini-
tions by frequency usage in TPS. Four
levels are us2d in the macro library sec-
tion of the tape residzant systesm.

Priority Section: An area of the TPS macro
directory or library. Each priority sec-
tion is assigned to a specific oriority
level.

Problem Data: Arithmetic or legical
(character) data that is processed under
control of the problem program in main
storage.

Problem Program: Any program that is not
part of the programming system or of the
card programming support.

Processing Program: Any program that is
not a control program.

Program: A series of machine instructions
that, when executed, cause the necessary
processing to achieve the desired
result(s).

Program Library: A collective term used to
refer to core-image directory and library.

Program Library Section: The section of
the system tape that contains the