File No. S$360 (Mod.20)}-30 —
Order No. GC26-3603-4- CPS

IBM Systems Reference Library

IBM System/360 Maodel 20
Card Programming Support
Inpui/Output Control System

This publication describes the functions, principal
features, and use of the Model 20 Card Programming
| Support, Input/Output Control System (CPS IOCS).
The Model 20 IOCS provides tested input/output
routines that programmers, by means of macro
instructions, can use to control the input and
output of data by programs written in the Model 20
Basic Assembler Languagde.

Included in the publication are sections
describing the generation of the IOCS routines,
the definition statements that a programmer uses
to describe his application to the IOCS, and the
macro instructions that the programmer uses in his
main source program when he desires an
input/output operation to be performed. Also
included are sections containing program
performance data and a sample program.

The programmer should be familiar with the SRL
publication IBM System/360 Model 20 Card
Programming Support, Basic Assembler Language,
Order No. GC26-3602,)

Fifth Edition (April, 1970)

This is a major revision of, and obsoletes, GC26-3603-2, -3,
and Technical Newsletters GN33-8502 and GN33-8524. Minimum
and maximum machine requirements, as well as Submodel 5
information, have. been added. Further changes and additions
have been made throughout this publication. Changes to the
text, and small changes to illustrations, are indicated by

a vertical line to the left of the change; changed or added
illustrations are denoted by the symbol e to the left of the
caption.

This edition applies to version 2, modification 1, of IBM
System/360 Model 20, Card Programming Support, Input/Output
Control System. The program to which this publication
applies falls under Programming Service Classification C.
Therefore, no further centralized maintenance of the program
or the publication should be expected.

Requests for copies of IBM publications should be made to
your IBM representative or to the IBM branch office serving
your locality.

Comments concerning the contents of this publication may be
addresses to IBM Laboratory, Publications Dept., P.0O.Box 24,
Uithoorn, Netherlands.

© Copyright International Business Machines Corporation, 1966, 1970

.

CARD PROGRAMMING SUPPORT, INPUT/OUTPUT

CONTROL SYSTEM
Use of the IOCS
IOCS Assembly . . +« « « .+ .+

Machine Requirements .
Minimum System Conflguratlon
Maximum System Configuration

. .

Definitions « « « ¢« o« ¢ + o+ &
Record . . « « o« o« o « &+
File « . v « v o0 o o o
Overlap Mode . . . « . . .

Definition Statements
DTFSR Definition Statement .
Header Entry . . . « « .« . .
Detail Entries
Detail Entries for Most Files

The DEVICE Entry
The TYPEFLE Entry
The WORKA Entry
The PRINTOV Entry
The OVERLAP Entry
The CONTROL Entry
The BINARY Entry
The EOFADDR Entry
Additional Detail Entries for
Simple Files . . + « + + +
The IOAREAl Entry
Printer Files
The IOAREA2 Entry
The BLKSIZE Entry . . .
Additional Detail Entrles for
Combined Files « .« « « « . .
The INAREA Entry
The INBLKSZ Entry
The OUAREA Entry
The OUBLKSZ Entry . [
Additional Detail Entrles for
Card Printing
The CRDPRA Entry
Card Print Areas
The CRDPRLn Entry
Additional Detail Entries for
Checking Functions
The SEQNCE Entry
The SEQXIT Entry
The RFORMTn Entry
The RFXIT Entry
The PFORMTn Entry
The PFXIT Entry . . .
DTFEN Terminating Statement .
Definition Statement Summary
The IOCS Macro Instructions .

.

LOWWWowmwowwwoLwJuLutu

APPENDIX A.

Contents

The GET Macro Instruction . . .
The PUT Macro Instruction . . .
The OPEN Macro Instruction . . .
The CLOSE Macro Instruction . .
The PRTOV Macro Instruction . .
The CNTRL Macro Instruction . .
CNTRL Macro Instruction for
Printer Spacing
CNTRL Macro Instruction for
Printer Skipping . . . o o
CNTRL Macro Instruction for
Stacking o 0 ...
Format II e o o o s o e 4 e e =
The LOM Macro Instruction . . .
The EOM Macro Instruction . . .
Programming Considerations LOM
and EOM Macro Instructions . .
The CRDPR Macro Instruction . .
WAITC Macro Instruction
Programming with the WAITC Macro
Instruction . .« « « « + o« + .

APPROXIMATE MAIN STORAGE

REQUIREMENTS OF THE IOCS ROUTINES . .

APPENDIX B.

APPROXIMATE AVERAGE TIMES

REQUIRED FOR GENERATION AND EXECUTION
OF THE IOCS ROUTINES . .« « « « o« +

APPENDIX C. PROGRAMMING OF USER
ROUTINES . & +v ¢ v o v o« o o o o o &
Use of Base Registers
Language Compatibility
Programming Errors

Relative Addressing . .« « « + « « .

APPENDIX D. SAMPLE PROGRAM
Input Cards . . « « &+ o« &+ & « &
Invoice Format . « « o o o« o o o

Diagnostic Messages
Messages Produced During Phase 1
Messages Produced During Phase 3

Invoice Summary Card
New Invoice Number and Date Card
Program Data Flow
Definition Statements
Program Flow Chart and Coding .

APPENDIX E. SUMMARY OF DIAGNOSTIC
MESSAGES '« « &« ¢ ¢ o o« o o o o o« o &
INDEX & & v ¢ v v v o 4 o o o o e e .

Card Programming Support, Input/Output Control System

This publication describes the functions,
principal features, and use of the Model 20
Card Programming Support Input/Output
Control System (CPS IOCS). This ICCS is a
set of tested routines and macro
instructions which are used to control the
input and output of data written in the CPS
Basic Assembler language. The CPS IOCS
must be used in conjunction with the CPS
Basic Assembler language. Therefore, the
user should be familiar with the ccntents
of the Systems Reference Library (SRL)
publication IBM System/360 Model 20 card
Programming Support, Basic Assembler
Language, Order No. GC26-3602.

A major part of most programs written in
the Basic Assembler language consists of
routines required to read data into the
system and to output the results of the
processing per formed on the input data. A
programmer can use the Model 20 IOCS
routines in his Basic Assembler source
program by means of macro instructions.
Programming time is saved because the user
does not have to code, to test, or to
provide linkages to his own input/output
routines. He can concentrate on sclving
his problem and let IOCS handle the
input/output. In addition, the IOCS
routines take advantage of the time-sharing
capability of the Model 20, thereby
optimizing throughput.

USE OF THE IOCS

~ The user is provided with a complete set of
input/output routines to perform all
possible Model 20 input/output operations.
Not all of these routines need be included
in every source program because only
certain types of input/output operations
may pe required for a given application.
Therefore, IBM provides, as part of the
I0CS, a generator program whose function is
to select the routines reguired by the user
and develop them for his application. This
procedure minimizes main storage
requirements because routines and parts of
routines not reguired are not generated.

The generator program first reads
definition statements made by the user
descriking the input/output operations
required by the application. Based on
these statements the generator selects the
required input/output routines from the
I0CS routine library, develops them for the
specific application, and punches them into
cards in the Basic Assembler source
language format. These routines can be

assembled in conjunction with a Basic
Assembler sdource program Or can b2
asserbled separately.

In the case of separate assemkly, the
routines are punched into cards in the
Basic Assembler relocatakle format. They
are then lcaded together with the Basic
Assembler object program by means of the
Relocatable Program Loader. One advantage
of this procedure is that the Basic
Assenbler source program can contain a
larger number of symbols.

The IOCS routines are inserted into the
object program as subroutines. Therefore,
there must be a linkage to the correct IOCS
routine from each point in the program
where an input/output operation is to
occur. The user need not provide these
linkages. He only writes one instruction
(macro instruction) in his source projyram
at the point he desires the input/output
operation to occur. When a macro
instruction is read during assembly of the
source program, the Basic Assembler projram
autonatically inserts the required linkages
to and from the IOCS routines.

IOCS ASSEMBLY

The deck of cards containing the IOCS
routines in Basic Assembler symbolic
language can be assembled either separately
or in conjunction (jointly) with the Basic
Assembler source program (Figures 1 and 2).

Separate IOCS assemply has two
significant advantages:

1. The user needs to assemble the reguired
I0CS portion of his program only once
for any given application. This
results in significant savings in
mrachine time that would ctherwise be
required for reassemblies necessitated
by changes toc the source program.

2. Separate assembly permits the
programmner to use nearly the maximum
number of symbols in his Basic
Assembler source program.

If both the IOCS routines and the main
program are assembled separately, they must
be assembled in relocatable form. Both
must be loaded by the relocatable loader,
but the main program need not be relocated.
The main program must ke loaded first and
must not contain the name I001.

Card Programming Support Input/Output Control System 5

If the IOCS routines are assembled additional linkage symbol if the IOCS is

separately, these routines use three used in conjunction with the CIOCS .
linkage symbols. Therefore, the programmer (Communication Input/Output Control

can use only eleven linkage symbols (EXTRN System). : Q:jf
and ENTRY statements) in his main program.

The IOCS routines reguire three additional - If the IOCS routines and the main

linkage symbols if the IOCS is used in program are assembled jointly, the main
conjunction with the 1419 IOCS and one source program must not contain any

1OCS Routine Library

1OCS Generator
Sections 2-4

1OCS Definition Cords

10CS Control Card

10CS Generator
Section 1

I

GENERATION
M»~ .
END Card of L.
Main Progrom
Selected
1OCS Routines

DC and EQU Cards
of Linkage Deck

10OCS Header Deck

Main Program
Except END Card

Selected 10CS Linkage Deck
10CS Routines

ENTRY cards of
Linkage Deck

START Card of
Main Program

1OCS Header Deck

:

ASSEMBLY ASSEMBLY

10Cs *
Object Program

Main *x
Object Program

* Contains provisions for linkage to the main object program.
** Contains provisions for linkage to the 1OCS object program.

rigure 1. Separate Assembliy of IOCS (.»vf

symbolic names that consist of a letter I
followed by three numeric characters (0-9).
These symbols may not be used because the
IOCS uses them.

The symbolic name assigned to the file
to be processed by the IOCS routines must
not be used in the name field of any
statement in the main program.

To ensure that the base registers used
in th2 main program do not interfere sith
the base register assignments for the
generated IOCS routines, the programmer
should write DROP instructions for these

Set of 10CS
Definition Statements
10CS
CTL Card
10CS
Generation Run
Model 20

base registers at the end of the main
program.

The first 156 bytes of main storags
(addresses 0-9B) are reserved. They are
not available to the user.

Machine Requirements

This section describes the minimum and
maximun system configurations for .
assembling and executing CPS IOCS routines.

10Cs

Routines in
Basic Assembler
Language

o Figure 2.

ST
/ yau
— s/
/ a4
f—— S
I/
Vv

Main Source
Program in

Basic Assembler
Language Without
an END Card

Object program

ready for loading.

Includes 10CS

routines and all

required linkages. s

Main_Pr

START o

CTL Card

Assembly of Main
Source Program And
10CS Routines
Model 20

Joint Assembly of IOCS and Main Progran

Card Programming Support Input/Output Control

Systen

MINIMUM SYSTEM CONFIGURATION
Submodel 2

¢ an IBM 2020 Central Processing Unit,
Model B2 (4096 bytes of main storage);

¢ ona of the following card units:
IBM 2560 iulti~Function Card machine,
Model A1,
IBM 2520 Card Read-Punch, Vodel Al,
IBM 2501 Card Reader, Model Al or AZ,
with either an IBM 2520 Card Punch,
Model A2 or A3, or an IBM 1442 Card
panch, Model 5;

¢« one of the following printers:
IBM 1403 Printer, Model a1, 2, or 7,
IBM 2203 Printer, Model Al.

submodel 3

¢« an IBM 2020 Central Processing Unit,
Model B3 (4096 bytes of main storage);

e an IBM 2560 Multi-Function Card Machine,
Model A2;

 an IBM 2203 Printer, vodel A2.

Submodel 4
e an IBM 2020 Central Processing unit, _
Model B4 (4096 bytes of main storage).

Same card unit and printer as for che
Submodel 3.

Submodel >
» an IBM 2020 Central Processing unit,
vwodel CT5 (8192 bytes of main storaje).

Same card units and printers as for the
Submodel 2.

MAXIMUOM SYSTEM CONFIGURATIION

Submodel 2
e an IBM 2020 Central Processing Unit,
Model D2 (16,384 bytes of main storage);

e an IBM 1442 Card Punch, Model 5;
e an IBM 2501 Card Reader, Model Al or A2;

+ ona of the following card units:
IBYM 2520 Card Read-Punch, Model Al,
IBM 2520 Card Punch, Model A2 or A3,
IBM 2560 Multi-Function Card tachine,
Modiel Al;

» one of the following printers:
IbM 1403 Printer, Model N1, 2, or 7,
IBM 2203 Printer, Model Al;

Subnodel 3

» an IBM 2020 Central Processing Unit,
Model D3 (16,384 bytes of main storaje);

C

e an IBM 2560 Multi-Function Card Machine,
Model AZ2;

e an IBM 2203 Printer, Model A2.

e an IBM 2020 Central Processing Unit,
Model D4 (16,384 bytes of main storaje).

Same card unit and printer as for tae
Submodel 3.

Submodel 5

e an IBM 2020 Central Processing Unit,
Model D5 (16,384 bytes of main storaje).

Same card units and printers as for the
Subunodel 2.

DEFINITIONS

This section contains definitions of terms
used in this ouplication.

Record

A record is one unit of information read or
punched or orinted by one input/output

operation. (Model 20 IOCS can process only
fixed-length unblocked records.)

s

Mf“\
\

For purposes of Model 20 IDCs, a file is
the total collection of information
contained in:

1. Bll records passed through a yiven card
feed of a panched-card device.

or

2. All records printed as one list during
the execution of a given progranm.

Files can be of two types:
combined.

simple or

Siunple File. A simple file is a file wnose
records are all either (1) real, or (2)
punched, or (3) printed on an output
printer during one pass through the system.

Combined File. A combined file is a file
consisting of records, some or all of waich
will be read and/or punched during one pass
through the system. (see the section liae
TYPEFLE Entry.)

Overlap Mode is a mode of operation during
which execution of inputr/output operations
and processing are performed simulta-
neously.

Definition Statements

The programmer must use definition
statements to describe to the IOCS
generator the characteristics of each file
to be processed. Definition statements are
used to assign a name to each of the user's
input/output files, to describe the
input/output unit used for each file, to
defins the input/output areas required,
etc.

The definition statements are written in
symbolic form on the IBM System/360
Assembler Short Coding Form (Form xX28-6506)
shown in Figure 3. The statements are
punched into cards and become the input to
the I0CS jenerator. The generator reads
the statements and, based on the
information in them, selects the routines
required for the user's particular
application.

I'ne user must write one D1FSR definition
statement for each file to be used by the
program. The group of DIFSR statements for
the files to be processed by a program must
be followed by a DI'FEN terminating
statement (see DTFEN Terminating
Statement) .

DITFSR DEFINITION STATEMENY

A DTFSR statement consists of one healer
entry and a number of detail entries. The

number of detail entries depenis on tae
application. The detail entries may be
written in any order within a DTFSR
statement.

With the exception of the last detail
entry card in each DTF3R statament, eaca
header entry card and each detail entry
card must have a continuation character
(other than blank) punched in zolumn 72.
The terminating statement card must notc
have a continuation character in column 72.

HEADER ENTRY

The header entry consists of an entry in
the nane field and an entry (DTFSR) in the
operation field (columns 32-36). Both of
these entries must be provided. Thz aeader
entry must be the first entry of each
definition statement. The nam2 entsresd in
the name field of the header entry must not
be assigned to any statement in the main
program. This applies to both joint and
separate assembly.

The name of the file is specified in the
name field beginning in column 25. It may
consist of up to four characters. The
first character must be alphabstic, tae
remaining three characters may be
alphabetic or numeric. Special characters
or embedded blanks must not ke used. TIhis
nawe is used in macro instructions to refer
to this file.

Card Programming Support Inout/Output Control System 9

IBM System/360 Assembler _ X28-6506
IBM Short Coding Porm Princed in U.S.A.
PROGRAM PUNCHING INSTRUCTIONS PAGE OF
'
GRAPHIC CARD FORM
PROGRAMMER DATE PUNCH
STATEMENT
. Identification-
Name Operation Operand Comments Sequence
25 30 |32 36] 138 45 50 55 &5 71

Figure 3. Basic Assembler Short Coding Form

The entry in the operation field must be
DTFSR for all files. Figure 4 shows the
header entry for a file named INPT.

| it e 1
| Name |Operation |Operand |
R
$ R :
| INPT |DTFSR | |
I | S O, 1

Figure 4. DTFSR Header Entry

DETAIL ENIRIES

<he destail entries are used to define such
information as the device to be used, the
mode of processing, etc. Each detail entry
is composed of a keyword immediately
followed by an equal (=) sign which, in

10

turn, is followed by one specification. A
comma must immediately follow the
specification of each detail entry except
the last entry written for each DI'FSR
statement.

All detail entries must be written
beginning in column 38 on the Short Coding
form. <Coluunns 25 through 37 on this form
remain blank. A given detail entry may be

~used only once in each DTFSR statament.

Entries that do not apply to a given
application nust be omitted.

The detail entries can be divided into
five categories:

1. Entries applicable to most files.

2. Additional entries for simple filszs.

O

3. Additional entries for combined files.
4. Additional entries for card printing.

5. Additional entries that can be used to
specify certain checking functions.

DETAIL ENI'RIES FOR MOST FILES

The detail entries applicable to most files
are:

DEVICE
TYPEFLE
WORKA
PRINIOV
OVERLAP
CONT'ROL
BINARY
EOFADDR

The DEVICE, TYPEFLE, and WORKA entries
must be provided for each file to be used
by the program.

The PRINTOV, OVERLAP, CONTROL, BIWNARY,
and EOFADDR entries must be provided only
for certain files to be used by the
program.

The PRINTOV entry must be provided for a
printer file if a PRTOV macro instruction
referringy to the file is used in the main
source program.

The OVERLAP entry must be provided for
all files to be processed in the
non-overlap anode.

"The CONTROL entry must pe provided for a
file only if a CNTRL macro instruction
referriny to that file is used in the main

- source program.

The BINARY entry must be provided for
input files that are to be read in the
column binary mode.

The EOFADDR entry must be provided for
all simple input and combined files.

The DEVICE Entry

This entry identifies the device (or device
part) by means of which the file is to be
read and/or punched, or printed.

The entry consists of the keysord DEVICE
and a specification that identifies tne
device used by the file. The following
specifications are provided:

file is read by an IBM 2501

READOL
Card Reader
PUNCH20 file is punched by an IBM 2520

Card Punch

PUNCH42 file is punched by an IBM 1442

Card Punch, Model 5
PRINTER file is printed by an IBM 2203
Printer, with the standaril
carriage, or by an IBM 1403
Printer. (Refer to Notes
below.)
PRINTLF file is printed on the lower
carriage of an IBM 2203 witn
the dual feed carriage. (Refer
to Note below.)
PRINTUF file is printed on the upper
carriage of an IEM 2203 with
the dual feed carriag=z. (Refer
to Note below.)
MFCM1 file is read anid/or punchad
fron the primary feed of the
IBM 2560 Multi-Function Card
Machine.

file is read and/or punchad
from the secondary feed of the
IBM 2560 Multi-Function Card
Machine.

MFCM2

CRP20 file is read and/or punched by

the IBM 2520 Card Real Punch.

Note: If both feeds of a 2203 Printer 3Jual
feed carriage are used, the programmer nust
write a DTFSR statement for the file
printed by the lower carriage and a DTESR
statement for the file printed by the upper
carriage. If the application requires only
one feed of the dual feed carriagz, tne
lower feed must be used. In this case, the
DEVICE=PRINTER entry and not the
DEVICE=PRINTLF entry must be provided in
the print file DTFSR statement.

Figure 5 shows an example of the DEVICE
detail entry identifying a file read by the
2501 Card Reader.

= T D et 1
| Name |Operation |Operand |

p——— e - 1
| | | DEVICE=READO1, |
| I S N, e 4
Figure 5. DEVICE Detail Entry

The TYPEFLE Entry

~This entry indicates whether the file is an

input, an output, or a combined fil=.

The keyword of this entry is TYPEFLE.
The allowable specifications are:

INPUT for a simple input file
OUTPUT for a simple output file
CMBND for a combined fils=.

Card Programming Support Input/Output Control Systsm 11

Figure 6 shows an example of the I'YPEFLE

detail entry.

The keyword of this entry is PRINTOV.
The specification is YES (Figure 8).

Fo———-= T T et == 1 r T i - --= -
|Name |Operation |Operand | |Name |Operation |Operand]
pommmm pommmmm e pom = m e 1k e e LSRR i
| | | TYPEFLE=INPUT, [| | | PRINTOV=YES,

[S N 3 IR I U

® Figure 6. TIYPEFLE Detail Entry

The WORKA Entry

This entry indicates that a work area is
specified as the second operand of each
PUT, 3ET, or CRDPR macro instruction
referring to the file which is always the
case in Model 20 IOCS.

The keyword of this entry is wORKA. Trhe
specification is YES (Figure 7).
r—= T . TS TSI 1
|Name |Operation |Operand |
—— e ety - 1
| | | fJORKA=YES, |
I ——— § 5 1

Figurs 7. WORKA Detail Entry

Inhe name of the work area used py any
macro instruction is specified in that
particular instruction and not in the WORKA
entry for the file.

Work Area Considerations

The following considerations apply to the
use of input/output areas as work areas for
files being processed in the overlap and
the nonoverlap modes.

OVERLAP MODE. Input and/or output arsas of
files being processed in the overlap mode
may not be used as work areas. During
processing, a given record is processad in
the work area while other records are
simultaneously being read into an input
area or being punched or printed from an
output area.

NONOVERLAP MODE. For combined files, only
the punch areas may-also be used as work
areas.

For simple files, either the input or
the output area may be used as a work area.

Card print areas may never be used as
work areas.

The PRINILOV Entry

Ihis entry must pe provided if a PRTOV
macro instruction referring to tnis printer
file is used in the main source programn.

12

Figure 8. PRINIOV Detail Entry

The OVERLAP Entry

This entry specifies that the fils is to be
processed in the nonoverlap mode. If this
entry is omitted, the file is process2d in
the overlap mode.

The keyword of this entry is CVERLAP.
The specification is NO.

Printer files are always prdcessad in
the overlap mode. Therefore, an OVERLAP=NO
entry is not permitted for these files.

Figure 9 shows an OVERLAP =ntry.

AR ket skt st bttt B
|Name |Operation |[Operand |

R e et LR

| | | OVERLAP=NO, |

O O TR |

Figure 9. OVERLAP Detail Entry

The CONTROL Entty

This entry nmust be provided if a CNIRL
macro instruction referring to this file is
used in the main source program.

The keyword of this entry is CONI'ROL.
The specification is YES (Figure 10).

o e it 1
| Nane |Operation |Operand |
e oo i
| i | CONTROL=YES, |
R N O SR 1.

Figare 10. CONIROL Detail Entry

The BINARY Entry

This entry indicates that the cards of an
input file are to pe read in thes column
binary mode by a Model 20 equipped with the
Read Column Binary Special Featurs. The
entry may be provided for both simple and
combined input files.

The keyword of this entry is BINARY.
The specifications are:
YES
INPUT

for simple files
for combined files.

C

¥

C

O

Figure 11 shows an example of a BINARY
detail entry.

r T D E i 1
| Name |Operation |Operand |

+ fom oo 1
| | | BINARY=INPUT, [
b) R —— Loo - —d

Figurs 11. BINARY Detail Entry

The twelve punch positions of a card
column read in column binary mode are
stored in the 6 low-order bits of two
adjacent bytes of the input area.
Therefore, the input and work areas for
this file must be specified to contain a
number of bytes that is equal to twice the
number of card columns to be read.

When the entry BINARY is used, the
following detail entries must not pbe used:
SEQNCE
PFORMInN
REFORMTn

The EOFADDR_Entry

This entry is used to specify the names of
the user's end-of-file routine in the main
program. The entry is mandatory for input
and combined files.

The keyword of this entry is EOFADDR.
I'he specification is the name of the user's
end-of-file routine. An example of this
type of entry is shown in Figure 12.

S G 1
| Name |Operation |Operand |
b t o e e :
| | | EOFADDR=END, |
L L S —————— 4
Figure 12. EOFADDR Detail Entry

All card files, on which simple input or
combined input/output operations will be
performed, must be terminated by four
end-of~-file cards containing the entry /%
in the first two columns. A pranch occurs
to the user's end-of-file routine after the
first end-of-file card of the corresponding
file has been read.

ADDITIONAL DEIAIL ENIRIES FOR SIMPLE FILES

The entries described in this section are
available for simple files only. One or
more of these entries may be required for a
given file.

The detail entries are:
IOAREA1L

IVAREA2
BLKSIZE

The IOAREAl Entry

This entry defines the name of the
input/output area to be used by a simple
file.

The keyword of this entry is IOAREALl.
The specification is the name of the input
or output area used by the file. This name
must be the symbol used Ly the programnmer
in defining the area in his main progranm.

Figure 13 shows an example of an IDAREAL
encry.

T T St S -
|Name |Operation |Operand |
k e oS EEEER :
| i | ITCAREA1=INP1, |
b b]
Figure 13. IOAREAl Detail Entry

Printer Files

The IOAREA1l entry must not be provided for
a file printed by the standard carriage
because IOCS uses the print buf fer in main
storage (first 144 positions). This area
cannot be used by the programmer.

T'wo files printed by the dual fe=d
carriage require two IUAREAl entries, i.e.,
one for each file. The print areas for the
lower and upper feed of the dual feed
carriage must be defined as contijuous
areas in main storage with the print area
for the lower-feed carriage preceding the
area for the upper-feed carriage (Figure
14).

| Lover-feed
|Print Area

[——
t

| |

|Address of |Address of

| Lower-feed Area | Upper-fesd Arza

S, _ —_— ——

| Upper-feed |
| Print Ar=a |
L

PSS |

-

Print-Area Format for Dual Feed
Carriage

Figure 14.

The IOAREA2 Entry

This entry can be used to define ths name
of a second input area when the IBNK 2501
Card Reader is used in the overlap moie.
This permits a card to be read into tae
area specified in the DTFSR entry IOAREA1
while the data in the area specified in the
DTFSR entry IOAREA2 (from the preceding
card) is waiting to be moved into tne work
area. This may be of significance if, for
example, only a number of selected cards of
the file that is read on the IBM 2501

Card Programming Support Input/Output Control System 13

require extensive processing while all
other cards require very little. If only
one input area is specified, the data from
a card that requires extensive processing
may have to be held available for too long
a period of time to permit continuous card
feeding. 1In the majority of cases,
specifyiny a seconl input area permits the
I0CS to maintain the maximum card reading
speed of the IBM 2501.

This entry must not be used for a file
being read or punched by any other input or
output device or when the 2501, rodel AZ,
is used in nonoverlap mode.

The keyword of this entry is IOAREA2.
The specification is the name of the second
read area as defined in the main program.
This area must be the same length as the
first read area whose name is defined in
the IJAREA1l entry.

Figyure 15 shows an example of an IOAREA2
entry in conjunction with an IOAREAl entry.

r———-—-- } ittt Sy - 1
| Name [Operation |Operand |
1 oo 1
| i | IOAREA1=ARA1, |
| | | IOAREA2=ARA2,]
L I S, 1
Figure 15. IOAREA1-IOCAREA2 Detail Entry

Combination

The BLKSIZE cntry

lhis entry specifies the length of the
input or output aresa(s) required by the
simple file. The length specified in tais
entry applies to the area(s) reserved in
the main program and referred to in the
corresponding IOAREAl entry or IOAREAl-
IDAREA2 combination. In the case of a

printer file -- even if an IOAREAl entry is
not provided -- the BLKSIZ: entry must be
given.

The keyword of this entry is BLKSIZE.
The specification is the length of the
input/output area in bytes. In the case of
an IOAREA1-IVAREA2 combination, the
specified length is the length of the
individual fields.

Figure 16 shows a set of area definition
entriss and a BLKSIZE entry for a cari file
raguiriny two read areas of 65 characters
each.

maximum record lengths acceptable to the
IOCs are as follows:

For cards: 80 bytes (160 bytes for
column binary mode).
122, 132, or 144
characters, depending on

For printers:

14

the numker cf print
positions available. If a
2203 printer with a dual
carriage feature is used,
the total length of areas
specified for both f=2eils
must pe equal to or less
than 144 bytes.

C

T'he mininum record lengths accaptable to
the IOCS is two bytes (four bytes for
column binary mode).

r T - i bbb 1
| Name |Operation |Operand |
e T -
| [| IOAREA1=INP1, |
| | | LOAREA2=INP2, i
| | | BLKSIZE=65, |
[. USROG |
Figure 16. IOAREA1-IOAREA2 Detail Entries

‘with BLKSIZE Entry

ADDITIONAL DETAIL ENTRIZS FOR COMBINED
FILES

The entries described in this section must

be provided for each comkined file. They
- are:
INAREA
INBLKSZ
OUAREA Arxf
OUBLKSZ L

The INAREA Entry

This entry specifies the name of thes input
area to be used by the combined file.

The keyword of this entry is INAREA.
The specification is the name of thes input
area used by the file. This name must be
the symbol used by the programmer in
defining the area in his main program
(Figure 17).

—— -
Operation {Operand |

i

pom e fommmmmmemm |
| | INAREA=INPC, |
L —td

Figure 17. INAREA Detail Entry

The INELKSZ Entry

This entry specifies the length of the
input area rejuired by the combin=d file.
The length specified in this entry is that
of the area reserved in the main progran
and referred to in the INAREA entry.

Ihe keyword of this entry is INRLKSZ.
The specification is the length of th2
input area in bytes.

O

O

0 ® Figure 20.

Figure 18 shows an INAREA entry ani its
associated INBLKSZ entry specifying an
input area named INPC that is 65 characters
in length.

B 2y M 1
| Name |Operation |Operand |
p------ e i
| | | INAREA=INPC, [
| | |INBLKSZ =65, |
Lo Y PP, 4
Figure 18. INAREA Detail intry with

INBLKSZ Entry

The maximum record length permitted is
80 bytes (160 bytes for column binary
mode). The minimum record length permitted
is two bytes (four bytes for column binary
mode) .

The OUAREA Entry

This entry specifies the name of the output
area to be used by the combined file.

Tha keyword of the entry is OUAREA. Trhe
specification is the name of the output
area used by the file. This name must be
the symbol used by the programmer in
defining the area in his main program
(Figure 19).

e figure 19. OUAREA Detail Entry

The OUBLKSZ f&ntry

This entry specifies the length of the
output area reguired by the combined file.
The length specified in this entry is that
of the area reserved in the main progran
and referred to in the OUAREA entry.

The keyword of this entry is OUBLKSZ.
The specification is the length of the
output area in bytes.

Figure 20 shows an OUAREA entry and its
associated OUBLKSZ entry specifying an
output area named OUPC that is 65
characters in length.

|OUAREA =QUPC,
IOUBLKSZ =65,

OUAREA Detail Entry with
OUBLKSZ Entry

The maximum record length permitted is
80 bytes. The minimum record lenyth
permitted is one byte.

ADDITIONAL DETAIL ENTRIES FOR CARD PRINIING

The following detail entries are required
only if the card print feature of the MFCM
is to be used:

CRDPRA
CRDPRLN

The entries described in this section
can apply only to a simple or combined file
of the 2560 MFCM.

The programmer must make the card print
detail entries only in one DTFSR statzment
of any one program. Thus, even if he
intends to overform card printing on cards
fed by both the primary and the secondary
feed of the MFCM, he must make th2 reguired
detail entries in only one of his DIFSK
statements.

It is immaterial in which DIF3R
statement the entries appear, since card
printing is a function of the CRDPR macro
instruction (which does not refer to a
file). For details, see the section
describing that macro instruction.

The CRDPRA Entry

This entry specifies the name of thz2 area
in main storage where the data to b2
printed by the lowest-numbered MFCM print
head is stored.

The keyword of this entry is CRDPRA.
The specification is the name of thes aresa.

Figure 21 shows 2 CRDPRA detail 2ntry.

e
Operation |Operand

e Figure 21. CRDPRA Detail Entry

Card Print Areas

The areas containing the data to be printed
by the MFCM print heads must bz defina=d as
a contiguous area in main storage. Tae
whole card print area may be located
anywvhere in main storage, but the areas for
the individual print heads used must be
defined within the whole area in ascending
order of the print head numbers (Fijure
18).

As shown in Figure 22, the beginning of
successive individual print arzas must be

Card Programming Support Input/Output Control Systszm 15

separated by exactly 64 bytes of main
storajye. The length of each print area is
- defined by the corresponding CRDPRLn entry
(see description of that entry below).

Duriny each card print operation, each
print head prints the number of positions
specified for the longest print area.
Therefore, if CRDPRLn entries specify card
print areas of 20, 40, and 50 bytes, 50
bytes ‘of information will be printed from
each area.

The programmer may use any unused
portion of the individual print areas.
Thus, if the maximum specified card print-
area length is 50 bytes, the last 14 bytes
in each area may be used for processing.

In each of the three defined print areas
shown in Figure 22, an area corresponding
.to the maximum CRDPRLn entry (length A)
will be printed. Only the shaded areas may
be usad by the programmer for purposes
other than printing.

Lengths A, B, and C are defined by
their respective CRDPRLn entries.

— CPAR
\
ST
A B C
NN i
\ v A ~ A ~ —
64 bytes 64 bytes 64 bytes

Figure 22. MFCM Card Print Areas

The CRDPRLn Entry

This entry defines a print head number and
the length of the area in main storage
where the data to be printed by this head
is stored. A CRDPRLn entry must be
included for each print head to be used.

The keyword of this entry is CRDPRLn,
where n is the number of the print head
used. The specification is the length (in
bytes) of the print area containing the
Jata to be printed by this print head.

Figure 23 shows the CRDPRA and CRDPRLn
entries referring to the print areas shown
in Figure 22. The entries in Figure 23
assume that area A is 50 bytes, area B is
40 bytes, and area C is 20 bytes in length.

16

Figure 23.

T B |
Operation |Operand |
S R
| CRDPRA=CPAR, |

| CRDPRL1=50, |
CRDPRL2=40, [

| CRDPRL5=20, |
L

———— e e e e e

Name

o e e —

CRDPRA Detail Entry with
CRDPRLn Entries

Refer to the example .in Figures 22 and
23. In this example, print head 1 is to
print the first 50 bytes of its 6lU-~byte
print area (part A), print head 2 is to

print the first 40 bytes of its 6lU-byte

print area, and print head 5 is to print
the first 20 bytes of its 64-byte print
area. However, all three print heads will
print the first 50 bytes of tha2ir 64-byte
print areas. Therefore, the 64-byte print
area for print head 2 in the sxampls nust
contain blanks in bytes 41 through 50.
Likewise, all bytes up to and including
byte 50 of the 6u4-byte print area assigned
to print head 5 must contain blanks if no
printing is desired from print head 5
during a card print operation.

The programmer need not be concerned
about filling the unused byte positions of
a print area with blanks as this is an
automatic function of the IOCS. If, as in
our example, 50 bytes is the largest number
of bytes specified for one particular print
head, the IOCS clears all print areas up to
and including byte 50 to blanks af tar every
card print operation.

Specification of the number of bytas to
be printed by each individual print head is
required because, when fillingy a print area
with data to be printed, the IOCS moves
into the print area only the numbsr of
bytes specified for the particular print
heail.

ADDITIONAL DETAIL ENTRIES FOR CTHECKING
FUNCTIONS

The following additional detail entries are
available for card processing to z2nable the
user to specify certain checking functions:

SEQWCE
SEQXIT
RFORMIn
RFXIT
PFORMTn
PFXIT

The SEQNCE Entry

This entry enables the programmer to check
whether the contents of a specifi=d field
in successive input records are equal or in

ascending order. If a seguence error is
found, the program branches to a
user-written routine. (The branch address
is specified by the SEQXIT detail entry.)
Only one SEQNCE entry is permitted for each
file.

The sequence check is made by means of a
logical compare operation. If the input
data is to be read in the column binary
mode, a SEQNCE entry may not be made for
this file.

The keyword of this entry is SEQNCE.
The specification is:

XXYyy

where xx and yy are the numbers of the
first and last card columns,
respectively, containing the card
field to be checkex. For card
columns 1-9, the leading zero nust
be punched. The card field to be
checked must not be longer than 16

columns.

Before branching to the user's routine,
the IOCS places the record containing the
field that led to the error condition into
the work area. If the error card was read
by the 2560 MFCM or the 2520 Card Read
Punch, it is positioned at the pre-punch
station. The next record will be read by
the next 3ET or EOM (Enter Qverlap Mode)
macro instruction. (Refer to the appro-
priate sections under The IOCS Macro

This record will be compared with
the record that preceded the card that led
to the error condition.

If the input cards are read in overlap
mode from either an IBM 2520 or an IBM
2560, a sequence error with a subseguent
branch to the user-specified SEQXIT routine
causes the I0OCS to change the processing
mode (from overlap to nonoverlap) for the
GET macro instruction that detected the
error.

This change of the mode of operation
enables the user to stacker-select tha
error card and/or to cause an error
identification to be punched into this
card.

Figure 24 shows an example of a SEQNCE
entry. This entry specifigs that the
contents of card columns 9-15 are to be
used for sequence checking.

S Sttt d 1
|Name |[Operation |Operand]
i L e — - —————
r T + - 1
| | | SEQNCE=0915, |
R I — L - ——
Figure 24. SEQNCE Detail Entry

The SEQXIT Entry

This entry nust be used in conjunction with
the SEQNCE detail entry to furnish the IOCS
with the nane of the user's routine to
which control is to be transferred if a
seguence errdr DJCcurs.

The keyword of this entry is SEQXIT.
The specification is the name of the user's
routine. Figure 25 shows an examplz of a
SEQXIT entry.

T
| Name |Operation |Operand |

e T |

| | | SEQXIT=NAME, |
L L

——1

Figure 25. SEQXIT Detail Entry

The RFORMTn Entry

This entry enables the programmer to check
that a specified input card field or Eields
contain{s) numeric characters or all
blanks. If the field is found not to
contain numeric characters or blanks, the
program branches to a user-written routine
(if the branch address is specified by the
RFXIT detaill entry) or halts. If the input
data is to be read in the column binary
mode, an RFORMTIn entry may not be made for
this file.

The keyword of this entry is RFORMIn
where n is any number from 0 to 9. The n
position provides the programmer with the
possibility of writing a maximum of ten
different RFORMTn entries and thus having a
maximum of ten fields checked. The
specification for this entry is:

XXYYZ
where xx and yy are the numbers of tae
first and last card columns,
respectively, containing tne field
to be checked (for column 1-9, the
leading zero must be punch2d), and

z is 0 (check for blanks) or
1 (check for numeric charactars).

Card fields that are. to be checked for
numeric contents must not be longer than 16
columns.

Nhen a field is tested for all blanks,
control is transferred to a user-written

Card Programming Support Input/Output Control System 17

routine when the test fails (i.e., thes
field is not blank).

wWhen a field is tested for numeric
characters, the test fails if the field
contents are not of the following format
(whers at least the last character is
numeric with 2xr without sign):

bbb...nnnnn

blank
numeric character.

where b
n

Wou

Before branching to the user's routine,
IOCS places the record containing the field
that led to the error condition into the
work area. If the error card was read by
the 2560 MFCM or the 2520 card Read Punch,
it is positioned at the pre-punch station.
The next record will be read by the next
GEI or EOM macro instruction.

If the input cards are read in overlap
mode from either an-IBM 2520, or an IBM
2560, an RFORMT error with a subsequent
branch to the user-specified RFXIT routine
causes the IOCTS t> change the processing
mode (from overlap to nonoverlap) for the
GET macro instruction that detected the
error.

This change of the mode of operation
enables tne user to stacker-select the
error card and/or to cause an error
identification to be punched into this
card.

Figure 26 shows an example of an RFORMIn
entry specifying that columns 73-80 of
eachcard in the file are to be checked for
the presence of blanks.

r— T - T =1
| Name |Operation |Operand |
p——-- e —ommm oo e
| | | RFORM10=73800, |
[N N -1
Figure 26. RFORNMIn Detall Entry

If a SEQNCE error and an RFORNTn error
are poth detected in the same card, only
the action specified for the SEQWCE errxor
will be performed.

The programmer may use a maximam of ten
RFORMINn entries to perform checks on
different card fields. Jowever, he may use
only one RFXIT entry for each file.

The rFXIiP Entry

This sntry is used in conjunction with the
RFORMIN detail entry to specify the name of
the user's routine to which control is to
be transferred if the test made on the
field specified by means of an RyORMIn

18

“instruction is not executed.

entry is negative (i.e., if a field is
found to contain characters othexr than
those specified).

If this entry is omitted and the tast is
negative, the machine halts. This enables
the operator to replace the card that led
to the error condition.

Figure 27 shows an example of an RFALIT
entry.

— —_— ——— ———3

Operation |Operand |
4 __._,__.____,-___.._.f
+

| RFEXIT=FERR, |

RS |

Figure 27. RFXIT Detail Entry

The PFORMTn Entry

The PFORMTn entry enables the programaer to

check cards 2f a combined file that are not’

read into the work area by GEI macro
instructions to ensure that a specifizd
card field (or fields) to be punched
contains blanks. If the field is found not
to contain all blanks, the PUT macro
Instead,
either control is transferred to a
user-written routine (if the branch address
is furnished by the PFXIT detail entry) or
a system halt occurs.

If a PUT macro instruction is yiven that
refers to a combined file and the program
proceeds to the PFORMTn error routine
(user's exit), a subsequent GEI macro
instruction will place the contents of the
card that caused the PfFORMI error into the
work area. If this GET macro instruction
is in nonoverlap mode, it is possible %o
punch this card by means of an additional
PUT macro instruction.

rhe keyword of this entry is PFORMIn,
where n is any number from 0 to 9. The n
pocsition provides the programmer with the
possibility of writing a maximum of ten
different PFORMINn entries and thus having a
maximum of ten fields checked. The
specification for this entry is:

XXyy

where =xx and yy are the numbers of tae
first and last card columns,
respectively, containing the field
to be checked (for columns 1-9, the
leading zero must be punchzd). The
input area must be large enough to
permit IOCS to read the information

in these columns into storags.

Figure 28 shows an example of a PFDRMTn
entry specifying that a card field

comprising the columns 1-12 is to be
checked for blanks prior to punching.

r T - T 1
| Name |Operation |Operand |
b } ¢ 4 R
| | | PFORMT1=0112, |
L L Lo — 1
Figure 28. PFORMTn Detail Entry

The programmer may use a maximum of ten
PFORMI'n entries to perform checks on
different card fields. But he may use only
one PFXIT entry for each file.

The PFXIT Entry

This entry is used in conjunction witn the
PFORMIn entry to specify the name of the
user's routine to which control is to be
transferred if the test made on the field
specified by means of the PFORMTn detail
entry indicates an error condition.

Figure 29 shows an example of a PFXIT
entry.

If a PFORMTn check occurs, the IOCS
branches immediately to the user's routine.
In this case, the contents of the work area
are not moved to the punch area.

If this entry is omitted and the 'test
shows an error condition, the machine halts
before punching is initiated. This enables
the operator to replace the card that led
to the error condition. This card is
positioned at the pre-punch station.

DITFEN TERMINATING STATEMENT

This terminating statement is usel to

‘indicate the end of the entire set of

definition statements for a given
application. Only one terminating
statement must be provided. It must
immediately follow the last DTFSR
statement.

The terminating statement consists of
the characters DTFEN in the opsration
field. Figure 30 shows an example of a
DTFEN statement.

r—-- -

T = T
| Name |Operation |Operand]

r T . T ===
| Name |Operation |Operand |
b S S -
| | | PFXIT=NAME, |
L L PR J
Figure 29. PFXIT Detail Entry

Figure 30. DrFEN Terminating Statement

Card Programming Support Input/Output Control System 19

r= T T T 1
] | Operand | Applies to { |
l- l’ ——————— B "J[T LB T T-=="7 % —————————— {
	I ‘		j1uu2		I I				
Opex-		allowable		2520	2520	Model}		i	
ation	Keyword	Specifications	2560{Read	Punch	5	2501	2203	1403	~Remarks
	I	[Punch		Punch		I	I		
b e B e S T e B 1									
DTFSR			x	x	x	x	x	x	x
I I I									
t + R e R S e e e '									
[DEVICE	MFCM1 [x		[[[
	T e S S L S i A {								
		MFCM2 x						I	
e e B B e B B S et !									
		CRP2D	[[A				
I e R e e e e									
I	PUNCHZ20	I x			I				
! I e e e S e B :									
I I	PUNCHY2	I I I x		i I I					
	—iommm e e e e -]								
I	READOL				I x	I !			
I e Mt S e B B :									
.	PRINTER			I	I x	x			
I v s it e e —-- -—-									
		PRINTLF						x	
e -——4-——4-——4-————4-———f-———}-———}-———Jfeed-carriaye									
I		PRINTUF					I x	[I	
R vt e S S T S S									
	TYPEFLE	INPUT	x	x]	x			
	e B A e S								
[jouTPUT I x	=	x	=		x	x			
I | poomm oo e O At S s e S |
I I | CMBND x| x | | | I | | l
[Lo b 4 St i L R R 4
Figure 31. Definition Statement Summary, Part 1 of 3

DEFINITION STATEMENT SUMMARY coding form. In addition, it shows for

which ingut/output unit(s) a specific entry
may be reguired. ~rfor example, if a file is

Figure 31 is a summary of the various being read and/or punched by the 2560 MFCM,
entries available for the Model 20 IOCS the X's in the 2560 column indicate t5 the
definition statements. TIhe chart shows the programmer which entries he may have to
allowable entries that can be made in the provide.

various fields of the Basic Assembler

20

O

O

r Atk eb it T - B S it bttt |
| | Operand | Applies to | |
| = B s g T T T T -t - -———-
I | | I] | 1442 | | | | I
Oper-		{Allowable	12520	2520	Modell		i			
ation	Keyword	Specifications	2560	Read	Punch	5 250112203	1403] Remarks			
				Punchj		Punch				
pom—m- T I s o $m-m S T S R										
	PRINTOV	YES		i			x	x	required if PRIOV	
										is macro given Eor
				I	I			the file		
’ f S B e B e e et										
	AJORKA	YES	=] ®	x	x	x	x	X	mandatory for all	
I									files	

e et e S B B TR et
| | OVERLAP | NO | = { x | x | x | x| | |if omitt=d, fils |
| | | I | ! | | | |pracessed in |
| | | L | | | | | Joverlap mode I
i D ---- i e S S e |
| | CONTROL | YES | x| x | =x | | | x| x |required if CNTRL

I | I ! N | | ! | | fmacro given for |
| | | | | | | L | |file |
! b R T S oo - i A T T :
| | EOFADDR |name of user | x*| «x* | | | x| | | *mandatory for |
| | |end-of-file | | | | | | | |input and/or

| | | routine | | | | | | | |combined files |
b + — e T B s SR R II e
| | IOAREAl | name of the | x| x | x | x | x| x*] | *entry required forj
| | |user-defined | | | | | | | 12203 only when |
| | |area | | | | i | | | dual-feed-carriage |
I | I I I | | | | I |is used |
e P B (i B 1
| | IOAREAZ|name of the | | | | | x| | |can be used if

| | |user-defined | | | |] | i 12501, Model A2, is |
| | |area | | | | | | | |used in overlap

| I | I I | L | mode |
e P R S T T |
| | BLKSIZE|length of sim-| x| x | x | x | x| x| x |specifies length of]|
| | |ple file in- | | | | | | { |area specifield by

I | | put/output | | | | | | | | IOREA1 - ICAREA2 |
| | |]area in bytes | | | | | | | |entries |
e e T et S St -— !
| | BINARY |YES | x¥| x* |] | = | | | *mandatory for |
| | [| | I | | | | |simple files |
| | e ——— S S S e e
| | | INPUT | x| =z | | | | | |only for combined

| I | l | | | | | | |files |
R S o mm e e i S T P e :
| | INAREA |name of I x| x | | | | | | combined files only]|
| | [combined file | I I | [! I | |
| I | input area | I | I I | I | I
R et gt T e S T e :
| { INBLKSZ | length- of | x| x | | | | | |combined files only|
| | |combined file | I I | | | | |

| | |input area in | I | I I I ! I |
I I | bytes I I | | I I | | |
R S e P
	OUAREA	name of	x	&						combined files only
		combined file								
		output area				I				
R St e e B S S e —-										
	OUBLKSZ	length of	x	x						combined files only
I	combined file				! I					
I	output area			I	[[
	lin bytes		[I		[
L- L i L o —do L —l 3

® Figure 31. Definition Statement Summary, Part 2 of 3

Card Programming Support Input/Output Control System

21

[
|
I
i
I

I

r T - et e i
| { Operand | Applies to |

| —— gm—mmm—mmmmm e s o S e
{ I | I ! I 1442 | | | |

| Oper-| |Allowable i 12520 2520 |Model| | | |
Jation|Keyword|Specifications|2560|Read |Punch| 5 {2501|2203|1403] Remarks

| | | | Punch| | Punch| | | |

R B B IS S S e S S
| | CRDPRA |name of user- | x | | | | | | |

| | |defined card | | | | | | | |

! | |print area ! I I I I I | I

e e N — e $-—--1 e B S
| | CRDPRLn|length of card| x | | | | | | In in the keyword is
| | |print area in | | | | | | | |a print head nunber
| | |bytes | | I I I | | |

b + 4 I At ST e T -
| | SEQNCE | xxyy I x 1 =x | | | x| | |indicates sequence
I | | i I I I I | | |check of input

| | | | | | | | | | |cards desired fron
I I |] | | | I | ! |cols xx to yy
S ey T I S e S S e
| | SEQXIT |name of user- | x | x | | | x| | |must be specified

| | | routine o | | | | | i |when SEDQNCE is

| i |used when | | | | | | - | |specified

I | |SEQNCE test | I I I | ! I

| ! | fails I ! | | I I I |

e pommmm oo e M B e B o
| | RFORMIn | xxyyz I = | x | | | x| | |indicates that a

| | |] | | | | | | |check for namerics
| |] | | | | | | | |or blanks is 3desir-
| | | | i | l | | | |ed from cols xx to
I I | I ! | | | ! | lyy in input cards
e oo me e N G e T A e
| {RFXIT |name of user- | x | x | | | x| | -

| | |routine used | | | | | | | |

| I |when RFORMTn | | | I | | | |

| | |test fails | I | | I | | |

S e T I i S e e e -—-
| | PFORMTn | XXyY | x| x| | | | | |indicates that a

| | | | | | | | | | |check for blanks is
| | | | | | | | | | |to be made of field|
| | | | | | | | | | [from cols xx to yy
| | I [| | | I | | |prior to punching**
b b T S A e S A Mt S
| | PFXIT |name of user- | x | & | | | | | |

| | {routine used | | |] | | | |

| I |when PFORMIn | | | | I I [[

| I [test fails | ! | I [| | o

[I e I SR — i B S TN S

** Applies to combined files only.

Figure 31. Definition Statement Summary, Part 3 of 3

THE IOCS MACRO INSTRUCTIONS

This section describes the format,
function, and use of the IOCS macro
instructions that are used by the
programmer to control input/output
operations. These symkolic instructions
are used in the main program to cause the
Basic Assembler to insert the
object-program linkages to the IOCS3
routines previously defined by means of the
I0CS Jefinition statement.

ihe macro instructions enable the user
to design his program free from most

22

detailed considerations concerning input

and

output.

The filling (i.e., reading into) and
emptying (i.e., punching out and printing

out) of the input and output areas will be

handled automatically by the IJCS. All
files will be handled in accordance with
the information given the IOCS in tae
definition statements. Source programs
using the IOCS must not contain any Basic

Assembler inputs/output instructions (i.e.,

XI0,

TIOB,

CIO and SPSW).

[Sy

C

O

©

Relative addressing of a work area is
the only relative addressing permitted in
the operand of a macro instruction.

Like the I0CS 3definition statements, the
macro instructions are written on the
3ystem/360 Assembler Short Coding Form.
IOCS macro instructions must be written
according to the rules specified for the
Basic Assembler language with the exception
that they may have up to four operands.

The mnemonic of the macro instruction is
written in the operation field and up to
four operands are written in the operand
field. Each macro instruction may have a
name, which is written in the name field
and may consist of up to four characters.

The IOCS macro instructions are:

GET

PUT

OPEN

CLOSE

PRTOV {Check Printer Overflow)
CNTRL (Control)

LGM (Leave Qverlap Mode)

ECM (Enter Qverlap Mode)

CRDPR {Card Print)

Note: Tne Basic Assembler program does not
perform a specific test of IOCS macro
instructions. Therefore, a number of
errors in macro instructions are not
detected.

_The GET Macro Instruction

The GEI macro instruction makes the next
record of the specified file available in
the user-3efined work area and, if
necessary, transfers control to the
appropriate user's routine specified by the
SEQXIT, RFXIr, or EOFADDR detail entries.

Each GET macro instruction may have a
name in the name field and must contain:

1. GET in the operation field.

2. A first operand, followed by a comma,
specifying the file from which the
record is to be read.

3. A second operand specifying the work
area by a name or a relocatable
expression. ’

Note: A work area need not be
associated with any particular file.
Each macro instruction specifies the
work area to be used. Each work area
used by a file must be at least as long
as the input/output area for that file.

For simple files working in .the
non-overlap mode, the programmer may use

the read or punch area as a work area. For
combined files working in the nonoverlap
mode, the programmer may use only the punch

area as a work area.

Figure 32 shows a 3ET macro instruction

‘that moves the next record from a file

called FILE into a work area 3defined by the
user's DS statement called WORK.

T - -
|Name |Operation |Operand |

- -T

————— e e)
| NAME {GET | FILE, WORK [
I § I L 4
Figure 32. GET Macro Instruction

PROCESSING IN NONOVERLAP MODE. When a file
is processed in the nonoverlap mode, a SET
that refers to this file:

1. Initiates a read operation for the next
(or first) card of the file. (The data
contained in the card is read into the
input area).

2. Moves the data read from the input area
into the work area after the read
operation is complete.

3. 1ransfers control immediately to either
a user's routine (SEQXIT, RFXIT, or
EOFADDR) or to the main program.

The read operation for the following
card of this file is not initiated until
another GET for the same file is sxecuted.

PROCESSING IN OVERLAP LODE. When a file is
processed in overlap mode, the OPEN macro
instruction for this file initiates a read
operation. This causes the contents of the
first card 5f the file to be read into the
input area. Therefore, the first and any
subseguent GET that refers to this file
causes:

1. The record that is contained in tae
input area to be moved into the work
area.

2. A read operation to be initiated for
the card following the card whose
contents have just been moved into the
work area.

3. Immediate transfer of control to =zither
a user's routine (SEQXIT, RFXIT, or
EOFADDR) or to the main program.

An overlapping effect is achieved
because a read operation for. the following
card is initiated immediately after the
desired record has been moved from thz
input area into the work area. Processing
is performed while the followingy card is
moved through the read station and the
contents of this card are read into tae
input area.

Card Programming Support Input/Output Control System 23

r=- T -ITT - - 1
| | Card-Input Device 11 Main Storage |
f——-—m - oo s —— T H-—— — e m e e
] » | Hopper/ | Read | Pre-Punch/ || Contents of Input | Contents of Work |
| Execution of| Pre-Read | station | Stacker || Area | Area |
o L Lo 1 —— I e e i
| NOwWOVERLAP MODE |
| | Card 3 | | I | I
| | ——mmemme | I ¢ - q | pmmm oo 1l
I | card 2| | [l F I
| | =mmmmmee | | e - JL -1
| OPEN | Card 1 | | Il i |
| | - | | ¥ | |
e promommmee- e frmmmmsm oo t -- t i
| | card 3 | | [| |
I | === I | [unt b SRt 1l
| First GET | Card 2 | | caxrd 1 || {Data from Card 1 || |Data from Card 1}|
| e — | —mmome- > mmmmmmemeee [t e [l |
| i 1. The contents of card 'l are read into the input area while

| | this card is moved through the read station. |
| | 2. The contents of the input area (data from card 1) are moved

| | into the work area after the read operation has been completel. i
pomm e prmmmm pommmm B tH ———————ee - J
| | Card 3 | | Card 2 i1 | |
| | —~=mmmme | —mmmmeee> - Il -- e ———— 1l
| Second GEI | | | Card 1 || {Data from Zard 2 |||Data from Card 2} |
| | T b L |
| | 1. The contents of card 2 are read into the input area while

| | this card is moved through the read station.

|] 2. The contents of the input area (data from card 2) are moved

| | into the work area after the read operation has been completed. |
pom e - e 1
| I OVERLAP MODE |
| | card & | I i ! |
, — | | Il l I
| | card 3 | I i v | |
| L] mm— | t [l e=—- - N D et ¥
| OPEJ | Card 2 | | Card 1 || |Data from Card 1 ||| It
l . | I - =] b e bty
| | 1. The contents of card 1 are read int> the input area while

| | this card is moved through the read station. |
pommmmmmmo oo pommmmmomn +- - i e 1
| | card & | I t I |
I | | | I L e 1l
| First GET | Card 3 | | Card 2 |1 |bata from Card 2 |||Data from Card 1{|
1 | n > —- - el 1
I | | | card 1 i I i
| | | | —mmmemmeeee | | |
| | 1. The contents of the input area (data from card 1) are movad |
| | into the work area. i
| | 2. The contents of card 2 are read int> the input area while }
| | this card is moved through the read station. i
pommme e e e - B o e :
| | | | Il] 1
| | Card 4 | | Card 3 {|1Dbata from Zard 3 || |Data from Card 2}|
| | ——mme- | —mmm- G el e
| Second GET | | | card 2 1 | |
a | | S I l l
| [| | Card 1 I | I
| | - | —mmmmmeme— || | |
| | 1. The contents of the input area (data from card 2) are moved i
| | into the work area. |
| | 2. The contents of card 3 are read into the input area while

] | this card is moved through the read station.

L - —t - e e e e e e e e e e ———

Figure 33. Ca

24

rd Movement and Data Flow when a GiI Macro Instruction is Executed

o

figure 33 illustrates card movement and
data flow from the card input device to
main storage for the processing of a file
in kotn the nonoverlap and the overlap
modes. It also illustrates the position of
a card in the card input device at the time
the GET macro instruction for this card is
executed.

For an explanation of the relationship
between the GET macro instruction and the
CRDPR macro instruction, refer to the
description of the CRDPR macro instruction.

The PUT Macro Instruction

The PUT macro instruction makes a record
from the work area available for punching
or printing and, if necessary, transfers
control to the user's routine specified by
the PFXIi detail entry.

Each PUT macrd instruction may have a name
in the name field and must contain:

1. PUT in the operation field.

2. A first operand, followed by a comma,
specifying the file to which the record
is to be made available.

3. A second operand specifying the work
area by a name or a relocatable
expression (when a simple file is-
processed in the nonoverlap mode, this
can be the name of the punch area).

Note : A work area need not be
associated with any particular file.
Each macro specifies the work area.
Each work area used by a file must be
at least as long as the input/output
area for that file.

When processing is being performed in the
nonoverlap mode (card punching only), the
PUT macro instruction:

1. Moves a record from the work area to
the output area.

2. Initiates the punch operation (and the
next read operation in the case of a
combined file),

3. Transfers control to the main program
when the punch operation is complete.

When processing is being performed in the
overlap mode, the PUT macro instruction:

1. NMoves a record from the work area to
the output area.

2. Initiates the punch or print operation
(and the next read operation in the
case of a combined file).

3. Imnediately transfers control to the
rain program.

Whenever an output data record is
transferred to an output device Ly a PUT
macro instruction, the data remains in the
work area until it is either cleared or
replaced by other data. The IOCS does not
clear the work area. Therefore, if the
user plans to build another record having
data that does not use every position of
the work area, he must clear this area
before he builds the record. If this is
not done, the new record and all of tae
following records may contain interspersed
characters from the preceding record.

Figure 34 shows a PUT macro instruction
that makes a record available to a file
called DETL from a work area whose
beginning address is MsSTR+150.

T
jOperation |Operand
N

|DETL, MSTR+150
— L

i

r T
|[NAME | PUT
L L

Figure 34. PUT Macro Instruction

For an explanation of the relationship
between the PUT macro instruction and the
CRDPR macro instruction, refer to the
description of the CRDPR macro instruction.

PROGRAMMING CONSIDERATIONS —-- COMBINED
FILES. If a combined file is being
processed by the following sequence of
instructions:

GET F1,W1

_— no GET, EOM, or
——————————————————— PUT macro

—_— instruction referring
------------------- to file F1
PUT F1,W2 .

the following rules apply:

Nonoverlap. The PUT F1 macro instruction
causes punching into the card made
available by the GET F1 macro instruction.

The PUT F1 Macro instruction

causes punching into the card that follows

the one made available by the GET F1 macro
instruction, because the card made
available by the GET F1 macro instruction
is already past the punch station when the
PUT F1 macro instruction is given.

card Programming Support Inpat/Output Control System 25

Ihe OPEN Macro Instruction

This macro instruction ensures that all the
information required to handle a file has
been provided.

For an input file to be processed in
overlap mode, the OPEN macro instruction
causes the first card to be read. Its
contents is then available to be moved from
the input area into the work area when the
first GET for the file is encounctered. For
an input file to be processed in
non-overlap mode, the function of cthe OPLEN
macro instruction depends on the type of
the file:

1. Jor a simple file, the OPEN macro
instruction makes the file available
for processing.

2. for a combined file, the OPEN macro
instruction causes the first card to be
read while this card is moved to the
pre-punch station.

- The OPEN macro instruction must be
issued before any other macro instruction
regarding the same file is given. Th2
programmer must write a separate OPEN macro
instruction for each file.

Each OPEN macro instruction may have a
name in the name field and must contain:

1. OPEN in the operation field, and

2. one and only one operand indicating the
file to which this OPEW macro
instruction applies.

Figyure 35 shows an OPEN macro
instruction labeled NAME for a file called
PAY.

s e e e e e [———

| NAME |OPEN
| . F S J . 4

Figure 35. OPEN Macro Instruction

The CLOSE Macro Instruction

This macro instruction ensures proper
handling of the file after all records have
been processed.

Specifically, the CLOSE macro
instruction ensures:

1. <hat records remaining in the output
area upon completion of processing are
printed ands/or punched out.

2. That all processed data cards remaining
in the card feed path (not end-of-file

26

cards) are selected into the
appropriate stackers.

A CLOSE macro instruction must be given
for each file after the processiny of all
recoxrds of the file has keen completed.

For input files, the CLOSE macro
instruction is normally given in the user's
end-of-file routine. A file may not be
reopened by an OPEN macro instruction after
it has been closed. '

Each CLOSE macro instruction may have a
name in the name field and must contain:

1. CLOSE in the operation field.
2. One and only one operand indicating the
file to which this CLOSE macro

instruction applies.

Figure 36 shows a CLOSE macro
instruction for a file called DETL.

r -7 DA S |
|Name |Operation |[Operand |
b e e 1
| NAME | CLOSE |DETL |
b ¥ Lo _— ——
Figare 36. CLOSE Macro Instruction

The PRTOV Macro Instruction

The PRTOV macro instruction can be us2d by
the programmer to check for
printer-overflow conditions.

The PRTOV macro instruction consists of
PRIOV in the operation field, followed by
two or three operands of the form

SYMB, m
or
SYMB, m,ROUT
where SYMB is the symkolic name of the
printer file,
n is 9 or 12 to specify waich
carriage-tape channel
-indicator is to be checked,
and
ROUT is the symkolic name of the

user routine to be 2x=cuted
when an overflcw occurs.

The PRTOV macro instruction allows the
programner td check for printer-overflow
conditions by testing whether a channel 9
or channel 12 indicator has beasn set on:

1. Before execution of the last (preced-
ing) PUT macro instruction referring to
a printer with the standard carriage.

C

O

2. Before the execution of the last PUT
macro instruction referring to a
printer with the dual feed carriage
when only the lower feed is used.

3. Before the execution of the
next-to-last PUT macro instruction
referring to a printer with the dual
feed carriage when both feeds are used.

However, if a skip has been performed or
more than one line has been spaced after
the last PUT macro instruction (or after
the next-to-last PUT macro instruction if
the associated DIFSR statements contain
PRINTUF and PRINILF) any punch that may . be
sensed in channel 9 or channel 12 is lost
and cannot be determined by a PRTOV macro
instruction.

The program branches to the end-of-page
routine if the tested indicator is on and
the name of the routine has been specified
as the third operand. In the end-of-page
routine, any IOCS macro instruction (except
PRTOV) may be issued, e.g. to print page
totals and, upon a skip to channel 1,
heading lines on the new page. At the end
of the routine, control must be returned to
the IOCS by branching to the address
contained in register 14.

If IOCS macro instructions are used in
the end-of-page routine, the contents of
register 14 must be saved before theses
instructions are executed.

If a third operand has not been
specified in the PRTOV macro instruction,
an automatic skip to channel 1 is performed
when the tested indicator is on.

The DTFSR file definition statement must -

have a PRINTOV=YES entry when a PRTOV macro
instruction is issued for the file.

Figure 37 shows a PRTOV macro
instruction referring to a file named PRNT
and specifying tnat the program branches to
the user routine named OVFL when a
channel-9 punch is sensed in the carriage
tape. .

| St bbb - T - 1
| Name |Operation |Operand |
1L IR g
— — Rl |
| NAME | PRTOV | PRNT, 9,OVFL |
L L) § ISR 1

Figure 37. PRTOV Macro Instruction

The CNTRL Macro Instruction

The CNTRL macro instruction can be usad by
the programmer to cause printer spacing,
printer skipping, and card stacking to be
performed in other than the normal manner.
There are four different formats available

for the CNTRL macro instruction: one for
printer spacing, one for printer skipping,
and two for card stacking. Each of the
four types is described separately in the
following sections.

CN1iRL Macro Instruction for Printer Spacing

This macro instruction can be used to
specify immediate spacing and/or delayed
spacing (space after print) of th= printer
carriage.

The CNTRL macro instruction for spacing
consists of CNTRL in the operation field
followed by an operand of the form:

SYMB,SP,m, n

where SYMB is the name of the printer

file

SP soecifies spacing

n is the number of lines the
form is to be spaced
inmediately (m = 0, 1, 2, or
3), and

n is the number of lines the

form is to be spaced after
printing (n = 0, 1, 2, o2r 3).

The programmer may omit either m or n.
A name nay be assigned to each CNI'RL macro
instruction.

If a CNTRL macro instruction specifying
delayed spacing is not given before tae
next PUT for the printer file, the printer
carriage advances one space after the print
operation is completed. When two CNIRL
macro instructions specifying delay=d
spacing are given before the next PUT for
the printer file, the spacing specified in
the second CNTRL macro instruction is
effective (i.e., the second CNTRL macro
instruction overrides the first). If
delayed spacing and skipping are both
specified before a PUT for the printer
file, only the last specified operation
will be performed.

Because of timing considerations,
delayed spacing should be used whenever
possible in order to increase system
throughput. .

Figure 38 shows a CNTRL macro
instruction referring to a printer file
named LIST and specifying that the form is
to be spaced three lines immediat21ly and
one line after printing.

Card Programming Support Input/Output Control System 27

r —om s smT o
| Name]Operatlon |Operand |
ey L —— $- |
|NAME |CNTRL {LIST, SP 3,1 |
L Y I ——d - J
Figure 38. CNIRL Macro Instruction for

Printer Spacing (Immediats ani
Delayed)

Figure 39 shows a CNTRL macro
instruction referring to a printer file
named LIST and specifying that the form is
to be spaced one line immediately.

== B e it m———————- 1
|Name |Operation |Operand |
f=——=-- rmmmmmmome g - 1
| NAME |CNTRL |LIST,SP,1 |
Lo - ———
Figure 39. CNIRL Macro Instruction for.

Printer Spacing (Immediat2)

Similarly, Figure 40 shows a CNIRL macro
instruction specifying that 2 lines are to
be spaced after printing only. wdote that
the omission of the operand m is indicated
by a comma.

r - - 1

|vame |Operation |Operand |
_______________________________________ {
| NAME {CNTRL |LIsT,SP,,2]
| - L L 3
Figure 40. CNIRL Macro Instruction for

Printer Spacing (Delayed)

"CNTRL Macro Instruction for Printer
Skipping

This macro instruction can be used to
specify the channel of the carriage control
tape to which the carriage tape is to ke
skipped immediately and/or after the
printingy of a line.

The CNTRL macro instruction for printer
skipping consists of CNIRL in the operation
field followed by an operand of the form:

SYMB, SK,m,n

where SYMB is the name of the printer
file,

SK specifies skipping,

m is the number of the tape
channel to which the carriage
is to be skipped immediately
(m=1, 2,...,12), and

n is the number of the tape

channel to which the carriage
is to be skipped after
printing (n =1, 2,...,12).

28

The programmer may omit either m or n.
A name may be assigned to each CNI'RL macro
instruction.

Ahen two CNTRL macro instructions
specifying delayed skipping are given
before the next PUT for the printsr file,
the skipping specified in the second CNIRL
macro instruction is effective (i.e., the
second CNTRL macro instruction overrides
the first).

Because >f timing considerations,
delayed skipping should ke used whenever
possible in order to increase throujyhput.

Figure 41 shows a CNTRL macro
instruction referring 'to a printer file
called REPT and specifying that control is
to be transferred immediately to channel 11
of the printer tape-and to channel 12 after
printing.

T Dbt 1
| Name |Operatlon { Operand |
_______________________________________ '
|NAME | CNTRL |REPT, SK, 11,12 |
Y R SO
Figure #41. CNTRL Macro Instruction for

Printer Skipping (Immediate and
Delayed)

Figure 42 shows an example of a CNIRL
macro instruction referring to a file named
UPDr and specifying that carriage control
is to be transferred to channel 4
immediately.

r——- —_——

13
| Nane |Operation |Operand |

CNIRL Macro Instruction for
Printer sSkipping (Immediate)

Figare 2.

Figure 43 shows a CNTRL macro
instruction referring to a file called NEW
and specifying that carriage control is t>
be transferred to channel 7 after printing.
Note that the omission of the operand m is
indicated by a comma.

e it Rttt it b 1
| Name |Operat13n |Operand |
b=~ --- —
| NAME |CNTRL |NEw SK,,7 |
LI [P H PPN 1
Figure 43. CNIRL Macro Instruction for

Printer skipping (Delaysd)

CNIRL_Macro Instruction for Stacking

This macro instruction applies only to
multistacker devices. It specifies the

@

stacker into which cards of the file are to
be selected.

of this macro instruction
one specifies the name of
the file whose cards are to be stacked; the
other does not specify a file name. These
two formats are described as Format I and
Format II, respectively.

ITwo formats
are available:

FORMAT I. This format of the CNIRL macro
instruction specifies the file whose cards

are to be stacked.

This macro instruction consists of CNTRL
in the operation field followed by an
operand of the form:

SYMB, SS,n
where SYMB is the name of the file whose
cards are to be stacked
SS identifies this as a stack
macro instruction, and
n is the number of the stacker

into which the cards are to
be selected.

| When two Format-I CNTRL macro
instructions for stacking pertaining to the
same file are given before a GET or PUT
macro instruction for that file, the
stacker selection specified in the second
CNTRL macro instruction is effective (i.e.,
the second CNTRL macro instruction
overrides the first).

Figure 44 shows a CNTRL macro
instruction specifying that a card of a
file named DAY is to be stacked in stacker
2 of the device handling this file.

r T -

contents are transferred to or from the
work area by the GET (or PUT) macro
instruction.

CNiRL AAAA,SS,n

no GET or PUT macro
instruction referring
to file ARAAA

GET (or PUT)AAAA, XXXX

NONOVERLAP MODE. The CNTRL macro
instruction nmust be issued after ths GET
macro instruction or before the PUT macro
instruction that moves the card to be
selected.

In the coding seguence below, the CNTRL
macro instruction shown selects the card
read by the GET macro instruction.

GET AARA,XXXX

no PUT, GET, or EOM
macro instruction re-
ferring to £ile AAAA

CNTRL AAAA,SS,n

In the coding sequence below, the CNIRL
macro instruction shown selects the card
moved by the PUT macro instruction.

no PUT, GET, or EOM
macro instruction re-
ferring to file AAAA

PUT ABRAA, XXXX

i e e o e . e i S S e e i

T 1
| Name |Operation |Operand |
__________________ - .'
|NAME |CNIRL {DAY,SS, 2 |
L I R, L J
Figure W4. CNTRL Macro Instruction for

Stacking

The following explains the relationship
| between a given Format-I CNTRL macro
instruction and the GET, PUT, or ECM macro
instruction referring to the card to be
selected.

OVERLAP MODE. If the file is being
processed in the overlap mode, the Format-I
lCNTRL macro instruction must be the last
macro instruction preceding the GET or PUT
that refers to the card to be selected.

In the example below, the CNTRL macro
instruction shown selects the card whose

Format II

This format >f the CNTRL macro instruction
can be used only for the stacking of cards
from files read and/or punched by the 2560
| MFCM. Format II of the CNTRL macro
instruction specifies the desired stacker
but not the file whose cards are to be
selected. ' ’

This format of the CNTRL macro
instruction consists of CNTRL in the
operation field followed by an opsrand of
the form:

,85,n
indicates that the CNPRL macro

instruction is to be used for
stacking, and

where SS

Card Programming Support Input/Output Control System 29

n is the number of the stacker
into which the cards are to be
selected.

A name may be assigned to each CNTRL
macro instruction of this format.

| When two Format-II CNTRL macro
instructions for stacking are given before
the stacker selection is performed, the
stacker selection specified in the second
CNTRL macro instruction is effective (i.e.,
the second CNTRL macro instruction
overrides the first).

Figure 45 shows a CNIRL macro
instruction specifying that cards are to be
stacked into stacker 3 of the 2560 MFCM.

r~ T . T 1

| Name |Operation |Operand |
4 —— e _____{

b }

| NAME |CNTRL |.Ss,3 |

[S) SO J

CNTRL Macro Instruction for
Stacking (2560 MFCM)

Figure 45,

| The relationship between the Format-II
CNTRL macro instruction and the GET, PUT,
or ECOM macro instruction referring to the
card to be stacked is the same as that

described for the CRDPR macro instruction.

The LOM Macro Instruction

The LOM (Leave QOverlap Mode) macro
instruction applies to combined files
specified to be processed in the overlap
mode. The processing of the file begins in
nonoverlap mode after the next GET macro
instruction for the specified file is
executed.

This makes it possible to read and punch
into the same card of a combined file that
is beiny processed in the overlap mode.

Eacn LOM macro instruction may have a
name and must contain:

1. LOM in the operation field.
2. An operand specifying the name of the
file to which the macro instruction

applies.

Figure 46 shows an example of an LOM
macre instruction.

r T - T =1
| Name |Operation |Operand |
i RPN p IO -

k : fommmmm :
| NAME | LOM
I . s -1

Figure 46. LOM Macro Instruction

30

If an LOM macro instruction is given for
a particular file, all subsequent GET macro
instructions for that file are performed in
nonoverlap mode until an EOM (Enter-
Qverlap-Mode) macro instruction is given.
(Refer to the section The EJOM Macro
Instruction for further information

concerning the use of the LOM with EOM.)

The EOM Macro Instruction

The EOM (Enter-QOverlap-Mode) macro
instruction applies only to combined files
for which a previous LOM macro instruction
has been given. This macro. instruction (1)
causes the next card to ke read into the
read area, and (2) causes subsa2gquent GET
macro instructions addressing the sam2 file
to be performed in the overlap mode. The
processing of the file in overlap mode
begins immediately after the EOM is given.

Each EOM macro instruction may have a
name and must contain:

1. EOM in the operation field, and
2. an operand specifying the name of the
file to which the macro instruction

applies.

Figure 47 shows an -example of an EOM
macro instruction.

r T - T
|Name |Operation 1operand |
L 1

r T
| NAME | EOM
L L

Figure 47. EOM Macro Imnstruction

Programming Considerations - LOM and EQOM
Macro Instructions

A card that belongs to a combined file can
be read and then punched only if ths card
is read by a GET macro instruction in
non-overlap mode. There are thres possible
ways to cause the GET to operate in
non-overlap mode during this operation
(reading and punching of the same card):

1. Provide an OVERLAP=NO detail entry for
the file. 1In this case, the IOCS
generates GET and PUY routines for this
file that operate in nonovarlap mode.

2. Do not provide an OVERLAP=NO Jetail
entry for the file. Then in the source
program give an LOM macro instruction
between the OPEN and the first GET
macro instruction for the file. 1In
this case, 3ET and PUT routinss taat
operate in the overlap mode are
generated for the file. However, all
GET macro instructions for the file
operate in nonoverlap mode.

T
| UPDT |
L

3. Do not provide an OVERLAP=NO detail
entry for the file. 1Ihen, in the
source program, precede each G..T macro
instruction with an LOM macro
instruction and follow each GET with a
test to determine if a punching
operation is to be performed on this
card. If not, operation of this file
can be changed back to the overlap mode
by an EOxm macro instruction.

The first method results in a decrease
of program speed.

The second method is the most
satisfactory solution when nearly every
card of a file must be both read and
punched. The program speed does not
decrease as much as with the first method
because the PUT routines will operate in
the overlap mode.

The third method is usually the most
satisfactory solution when only a few
specified cards in a combined file must be
poth read and punched. When this method is
used, each card is read in the nonoverlap
mode and thus can be subsequently punched.
However, when punching is not to be
performed, the program immediately begins
operation in the overlap node. ihis third
method requires some additional main
storage positions for the extra LOM and EOM
macro instructions, but it results in a
program that runs at nearly the same speed
as a program Ooperating entirely in the
overlap mode. This programming method is
illustrated in the sample program coding
shown in Figure 63 (Appendix D).

The CRDPR Macro Instruction

This macro instruction can be used only if
the user has a 2560 Multi-Function Card
Machine eguipped with the Card Print
Feature.

The CRDPR macro instruction moves
information to be printed on a card from
the work area to the card print area
specified as the third operand of this
macro instruction. For each line to be
printed, the programmer must write one2
CRDPR macro instruction. If two CRDPR
macro instructions are given for the same
line, only the last one will be executed.

Because the CRDPR macro instruction does
not refer to a specific file, it does not
have a file-name operand. The absence of
this operand is indicated by a comma
(Figure 48). The second operand is the
name of the work area, and the third.
operand is the name of the card print area.
A name may be assigned to a CRDPR macro
instruction.

Execution 2f a CRDPrR macro instruction
does not immediately result in printing on
the card. Printing occurs whan the card on
which printing will take place is moved
into and through the print station by the
execution of a fcllowing GET, PUT, or LOM
macro instruction. At that time, all
specified print lines for a particular card
are printed simultaneously.

All lines are printed each tims 2 card
print operation is performed. It is not
possible to print only with print head 1
during one print operation and thsn print
with print heads 1 and 2 during another
print operation. Therefore it is possible
not to print any data with one of the print
heads oy simply not entering any data into
its respective print area or, if processing
was performed in the area, by clearinjy the
area before printing takes place.

Figure 48 shows an example of a CRDPR
macro instructiosn. This macro instruction
moves a line of information from the work
area naned WORK into the print ar2a named
TOIL.

o ikt s - 1
|Name |Operation |Operand |
TS s foom oo e i
| NAME | CRDPR | , WORK, TOTL 1
(R SOy S
Figure 48. CRDPR Macro Instruction

As stated previously, the CRDPR macro
instruction does not address a particular
file. Therefore the card on which printing
will take place must be moved into and
through the print station by a GET, PUY, or
EOM macro instruction. The programmer can
deternine, from the following thrse
explanations, the sequence of GET, PUT, or
EOM instructions required for his
application.

1. Processing in the Overlap Mods

If the card on which printing will take
place is punched by a PUT macro
instruction, the CRDPR macro instruction
must be given before any subsesguent PUT,
GET, or EOM macro instructions addressing
an MFCM file. See the following coding
sequence.

PUT (or GET) F1,xxxx

no PUIs, GETIs or
EOMs referrinjy to
MFCM files.

Card Programming Support Input/Output Control Systam 31

2. Processingy in the Nonoverlap Mode -

If the card on which printing will take
place is punched by a PUT macro
instruction, then the CRDPR macro
instruction must be given prior to any
other GET, PUr', or EOM macro instruction
that addresses an MFCM file. See the
following coding seguence.

- no PUTs, GETs, or
EOMs referring to
MFCM files.

CRDPR ,xxxx,cardprint

There is one exception to the above
case.

A GET F1 macro instruction may be
inserted between the PUT F1 and the CRDPR
macro instructions. See the following
codiny seguence.

no PUTs, G&Ts, orx
EOMs referring to
MFCM files.

no PUTs, GETs, or
EOMs referring to
MFCM files.

3. Processing in the nonoverlap Mode -
Format B.

If the card on which printing will take
place is read by a GET macro instruction
referring to a file named F1, then another
GEI Fl1, EOM F1, or PUT F1 macro instruction
must be given before the CRDPR macro
instruction., see the following coding
sequence.

32

O

any combination of
macro instructions
referriny to File 2.

Fl, xxxx
no PUTs, GETs, ani
EOMs referring to
‘MFCM files.

CRDPR ,xxxx,cardprint

CAUT'ION: When a CRDPR macro instruction is
executed, the data that is contained in the
specified work area is moved into the
specified card orint area. If ths contents
of the card that is made available by the
first GET (refer to the above example) is
to be printed on the same cari, the work
area specified in the second GET macrd
instruction must not be the same as tae one
specified in the first GET macro
instruction. 3pecifying the same work area
in both GET macro instructions causes the
contents of the card that is resad by the
second GET to be card-printed on the card
that is read by the first GET.

WAITC Macro Instruction

The WAITC macro instruction causes th2
problem program to wait for the completion
of all pending input/output opsrations
before the next sequential instruction is
executed. This macro instruction enables
the programmer to establish uniform
operating conditions for all card and
printer input/output devices that are used
in the progranm.

Figure 49 shows an example of a WAIIC
macro instruction. WAITC macro
instructions may or may not have a: name.
Since this macro instruction neither refers
to a particular file nor reguests a
particular control function, an operand is
not required.

r T - T meesssssssesssT
|Name |Operation |Operand |
b ¥ oo {
| (NAME] | WAITS | |
| i TR L o e e o e e o o o
Figure 49. Example of a WAITC Macro

Instruction

In a program using the IDCS, a WAITC
macro instruction must be issued if one of
the following conditions exist:

G

1. A progyrammed stop is required to permit
an error card to be replaced in a file
whose cards are to be read in overlap
mode.

2. A programmed stop is required to permit
an erroxr card to be replaced in a file
whose cards are to be read on the IB.
2560 in nonoverlap mode and a file in
the other feed of the IBM 2560 is to be
processed in overlap mode.

Except for the condition 2, above, a
WAITC macro instruction need not be issued
to permit the replacement of an error card
if th2 cards of the file are to be read in
nonoverlap mode.

Programming with the WAITC Macro
Instruction

A GEI macro instruction that refers to a
card file may or may not immediately
initiate a read operation. ihis depends on
the operating condition of the input/output
device involved. If the initiation of the
input/ocutput operation is delayed, tha2 I0CS
places the device request into a waiting
list. The IJdCS handles the device reguests
in this waiting list and executes the
appropriate input/output operations as the
reguested input/output devices become
available.

Whan a GET macro instruction is issued,
the IOCS makes the desired card record
available to the problem program in the
specified work area. If the problem
program determines that this record
contains an error, the programmer may want
to provide a stop (HPR instruction) to
enable the operator to (1) remove and
correct the error card, (2) return it to
the hopper, and (3) resume normal system
operation.

The programmer has no means to determine
the status of the waiting list at the time
the error is detected. Moreover, he is not
able to determine the exact position of the
error card in the input/output device.
Therefore, the standard restart procedures
cannot be applied.

Before he issues the HPR instruction,
the programmer must issue a WAITC macro
instruction to (1) establish uniform
operating conditions for all card (and
printer) input/output devices and (2)
‘determine the exact position of the error
card.

After the execution of the WAITC macro
instruction, the waiting list contains no
pending input/output device requests,
except those for card printing. The =rror
card (to be fed as the first card on
restart) is determined by the number of

‘referring to the same file.

cards that have to be returned to the input
deck after the nonprocess runout. The
number of cards to be returned to the input
deck depends on the input/output device
used and, in case of an MFCM file, on the
mode of operation. For details, refer to
Figure 50, which is a summary of the aalt
and restart information.

DUMMY GET MACRO_INSTRUCTIONS: To ensure
proper program functions on restart, i.e.,
resume processing with the record from the
corrected card, the programmer must issue
either one or two dummy GET macro
instructions as shown in Figures 50.

For the explanation below, processing in
the overlap mnode is assumed, unless it is
stated that the information appliss to
files that are processed in nonovarlap
mode .

After the exscution of a WAITC macro
instruction, the contents of the card
following the error card is already in the
input/output area. Therefore, the first
GEI macro instruction that is encountsred
after restart moves the record from the
card following the error card into ths work
area. To make sure that the contents of
the corrected error card has been movad
into the work area before normal processing
is resumed, the first GET macro instruction
encountered after restart must be a dumny
GET, i.e., nd processing must be performed
on the record moved into the work area by
means of this GET macro instruction. If an
IBM 2501 is used to read the cards of a
file and twd input/output areas have been
defined for this file, two dummy GET macro
instructions are reguired.

If an IBM 2560 MFCM is used to process
two input and/or combined files in one
program, an error card in one files reguires
one dummy GET macro instruction on restart
for each of the files with one exception:
Only one dummy SET macro instruction is

required for the file that contains tae

error caxrd if (1) the cards of the other
(nonerror) file are read in nonovzrlap mnode
and (2) no GET has yet been given for the
file. The programmer must provide a switch
to determine whether or not a GET has
already been executed for the non-error
file. This is illustrated in the codingy
example shown in Figure 51.

A GET macro instruction for a file that
is to be processed in overlap mods may be
preceded by a CNTRL macro instruction
If this GET
macro instruction detects an error card,
the programmer nust do either of the
following in his restart routine:

Card Programming Support Input/Output Control System 33

1. Repeat the CNIRL macro instruction
after the dummy GET macro instruction
for the file in his restart routine.

CNTRL macro instruction
GEI' macro instruction
the error card.

2. Branch to the
preceding the
that detected

Similar rules apply if two files are
processed on the IBM 2560 MFCM in one
program. Any file-dependent CNTRL macro
instruction that precedes the last GET
macro instruction in either file must be
repeated after the dummy GET macro
instruction for the file and before
resuminy normal processing. A preceding

file-independent CNTRL macro instruction
(no file name specified) need be repeated
only once.

Figure 50 is provided to facilitats the
programming of restart routines and to
furnish card-handling information that is
not convered in the Model 20 IDCS Operating
Procedures. The programmer must inform the
operator of the number of cards to be
returned to and placed in front of ths
remaining cards of the input deck. Any
runout cards that are not to bes rsturneld to
the input deck must be placed into the '
proper stacker manually.

r T T T T i

| | | | |Number of Cards to be|
| | | | |returned |
| | | | ! S e :
|I/70 i | WAITC | Number of | | Non-error |
| Device | Mode of Operation |required |Dummy GETs |Error Feed|Feed |
b ¢ o + R B e B 1
12501 | Nonoverlap ldo | 0 | 2 | |
e T e S S A
| |]overlap with one I/O area |Yes | 1 | 3 | |
| T -+- e e pommmmmmmon {
| |Overlap with two I/0 areas | Yes | 2 | 4 |

k- ¥ —mmm oo +- —t e S
12560 | Nonoverlap | No* | 0 | 3 | 3 |
e T e fommmmm e fommmmmmm 1
| |Ooverlap | Yes** | 1 | 4 | 3 |
k t ———m—m—— t———- - + - 1
| 2560 | Nonoverlap | No* | 0 | 2 | 2

|Feed 2 pm—=———mommmomee R A } -t s e 1
| |Overlap | Yes*x* | 1 | 3 | 2 |
N Sttty ——— -+ -—t -—-———t —t 1
| 2520 | Nonoverlap | vio | 0] 2 | |
a = - —4-—- oo o fmmo oo 1
| |overlap | Yes | 1] 3 |

b s = pemmmmm ey
| *WAIIC macro instruction is required if a file in the other feed is processed in |
| overlap mode. I
| ¥¥Only required for the file containing the error card. A dummy GET is required for |
| both files. I
L e —— ——— e J
Figure 50. Programming with the WAITC Macro Instruction -- Halt and Restart Information

An IOCS provided halt (due to a machine
check) may occur during or immediately
after the user-programmed restart routine
and the number of cards in the input/output
device may be less than stated in the
appropriate standard procedure as described
in the SRL publication IBM System/360 Model
20, Card Programming Support Input/Output
Control System Operating Procedures, Order
No. GC26-3803. In this case, only those
cards must be stacked manually which w~ere
in the card feed of the input/output device
at the time the halt occurred and which do
not have to be returned into the respective
hopper.

34

The coding example in Figure 51
illustrates programming with the WAITC
macro instruction. The example includes a
simplified restart routine. For thes
purpose of this coding example, the
following is assumed:

1. Two files (AAA and BEB) have been
defined to be read in the two fzeds of
the IBM 2560 MFCM,

2. File AAA is to be processed in the
overlap mode and the cards of this file
are to be fed from hopper 1 of 2560
MFCM. This file may be an input or a
combined file.

3. File BEB is an input file whose cards

O

O

are to be read in nonoverlap mode.

4. Any card of file AAA that does not have
a l-punch in column 1 is an error card
and must be replaced.

Only those instructions that illustrate
programming with the WAITC macro
instruction are shown in Figure 51. These
instructions are identified py sequence
numbers in parentheses in the rightmost
column of Figure 51. 7The sequence numcers
are used as a reference in the explanations
below.

If a card of file AAA does not contain a
l-punch in column 1, the branch to NERR (7)
is not performed and the program executes
the WAITC macro instruction (8) that
precedes an HPR instruction (9). On
restart, the program executes either one or
two dummy GEI macro instructions. OJnly one
dummy GET macro instruction for file AAA
(10) is executed if no GET macro
instruction has yet been executed for file
BBB. 1In this case, the branch instruction
named SW (11) is executed and the second
dummy GET macro instruction (12) is
bypassed. Control is returned to the
problem program by a branch to REPT to
repeat the CNTRL macro instruction
oreceding the GEi macro instruction that
caused the error card to be detected.

If a GET macro instruction has already
been executed for the file BBB at the time
the error card is Jdetected, the branch
instruction named SW (11) is not executed
because it has been changed to a
no-operation (BC 0) instruction by means of
the VI instruction (2) following the GET
macro instruction (1) for the file BBBE.

The CNIRL macro instruction for file BBB
(3) is only effective when no error card is
detected. If an error card was detected,
four cards would have to be returned for
file AAA and two cards for file BBB

If the cards of the file BBB were to be
read in overlap mode, instructions (2) and
(11) ‘would have to be omitted.

== T—~——== i T 1
| |Opera- | | Instr|
| Nane |tion |Operand | Sgnce|
e e rmmmm oo -
	-		
	-		
	-		
[GET	BBB, WRK2	(W
	MVI	SW+1,X*' 00"	(2)
	.		
	-	l	
	-		
	CNTRL	BBB,SS,4	(3)
[
	-		
	.		
REPT	CNTRL	AAA,SS, 2)y
[GET	ARA, WRK1	(5)
l jCLI	WRK1,C"1"	(6)	
	BC	8, NERR AN	
	WAITC		(8)
	HPR	X'FFF',0	(9
	GET	AAA,WRK1 {€10)	
SW	BC	15, BPSS 1)	
	GET	BBB, WRK1	(12)
I	CNTRL	BBB,SS3, 4 [(13)	
BPSS	BC	15, REPT [Ciy)	
INERR	.		
	-	[
	-	[[
b ¥ S SN Lo J
Figure 51. Coding Example -- Programmning

with the WAITC Macro
Instruction

If the cards of a comkined file are also.
to be card-orinted and this file is to be
processed in nonoverlap mode, the following
must be considered by the programmer.

Unless successive cards are to be read
which are not to be punched, a GET macro
instruction for a card does not initiate
card movement. Card movement is initiated
by the PUT macxo instruction for the)
preceding card. Therefore, th2 projrammer
must issue a dummy GET macro instruction
prior to the WAITC macro instruction to
ensure that the desired card-print
operation for the card preceding the =2rror
card is properly executed. This is further
explained in the coding example shown in
Figure 52.

The coding example in Figure 52 is based
on the assumption thatys

1. The first card of the file CMBF has
already been read.

2. Data is to be punched into all input
cards.

3. All cards without a 1-punch in column 1
are error cards and must be replaced by
the operator.

Card Programming Support Input/Output Control Systam 35

T-———-- T T-——""1
|) | Opera-| |Instr]|
| Name | tion |Operand | Sgnce’|
pmmmm e m e prmmm o pommem 1
[|- | | |
I I | | |
| | - | I I
REPT	GET	CMBF, WRKC	@
{CcLI	WRKC,C'1"*	(2)	
	BC { 8, NERR	3	
]	GET	CMBF , WRKC)
	WAITC	N GO I	
	HPR	X'FFF',0	(6)
1	BC	15, REPT	(D
INERR	.		I
I	I		
	-	l	
i	PUL -	CMBF,WRKC	(8)
	CRDPR	I 9	
	BC	15,REPT	(10)
[I	
L.			
b oo R Lo o 1
Figure 52, Coding Example -- Programming

with the WAITC Macro
Instruction Involving Card
Printing

36

The seguence numbers shown in the
rightunost cdolumn of Figure 52 are used as
references in the explanations below.

If the card that is made available by
the normal 3ET.(1) is not an error card,
the next PUT for the same file (8) causes
the preceding card to be printed on. If
the card made available Ly the normal GET
is an error card, the dummy GET (4) causes
the error card toc be moved past the punch
station and the card precediny the error
card is properly cardrprinted. On restart,
the corrected error card is read by means
of the normal 3ET (1), punched by means of
the subsequent PUT (8), and card-printed at
the time this PUT macro instruction is
executed for the following card.

The programming considerations that
apply to card-printing, apply also to
stacker-select CNTRL macro instructions
without having a file name as the first
operand.

C

Appendix A. Approximate Main Storage
Requirements of the IOCS Routines

The basic main storage requirement for all r et et ettt 1
programs using the IOCS is 270 bytes. | | Main Storage Requirements |
Additional main storage requirements 3depend | e T r————— 1
on the IOCS features chosen and the |Programj| | For Each File |
input/output devices used. These | Feature|Basicf~—=—mq=—=——m————we——--JFor |
requirements are listed in Figures 53 | | |Exit |No |Each |
througyh 55. The values shown in thess | | |Entry |Exit Entry |Field|
charts can be used to calculate the -4t}]
approximate main storage requirements of | | | |MFCM, 2520:] |
the IOCS object program routines. | | |
| RFORMTn | | | 36 | i
|detail | 140%*| 14 Je—mmmmm e 1 4 |
pmmmmmm e == - 1 lentry | I 12501 | |
| | [Main ! L | I I | |
I I | Storage | I | | I 24 [
|Device |Model of Operation|Requirement | 3 + +- f—————————— -4 |
r + + ! | | | |MFCM, 2520: I I
| | | I | PEFORMIin | | I [I
| Basic Rou-| | 270 | |detail | 90%| 18 | 40 | |
| tines | [| fentry | I | | |
! R S 1 S - . g - ! |
| |Standard Carriage | 320 | | | | | |
| Printer F— —_— -y | SEQNCE | |24 bytes plus length | |
| 12203 with | 680 | |detail | - |of sequence field I -
| |Dual-Feed Carriage]| | |entry | | | |
t - ——— + ———— O Y [SO R
| |Models Al and A2 | 110 | *140 bytes are required for the joint use
| |nonoverlap | | of RFORMIn and PFORMIn detail entriss.
| F-= + 1
| 2501 card |[Model Al or A3 | 160 | Figure 54. Approximate Main Storage
| Reader |overlap | | Rejuirements (in bytes) of
| —_—— + ———- Additional IOCS Features
| |Model A2 | 220 |
| |overlap | T e T
5 -t —t————————- { | |Main storaje |
12520 card |nonoverlap | 100 | | macro Instruction | Requirament |
| Punch +-—- 4 ———————1 -
| |overlap | 150 | | GET | 6
poommmeooe- frm oo ommmmme o i k- e 1
12520 card |overlap | 750 | | PUT | 6 |
| Read Punch{combined | | F ———
T 1 1 OPEN" | 6 |
| |If only one file | 950 | f——————— B et 4
] |is used (combined | | | CLOSE | 4 |
| |without card | | o e Frmm 1
| |print) | | | CRDPR | 8
[2560 MFCM }—-— 4 1 - - U {
| |If two files are | 1470 |- | CNTRL | 6 |
| |used (combined | | e +- ——q
| jwith.card print) | | | LOM | 4
¢ - ———meet ik frmm oo oo 1
1442, |nonoverlap | 100 | | EOM | 4 |
| Model 5, }-- $-- - b]
|or 8 |overlap | 150] | PRIOV | 8
|Card Punch| | | 5 - - —————— - 9
L -4 1 —— | WAITC I 4 I
S S, O 1
Figure 53. Approximate IOCS Main Storage .
Requirements (in bytes) of the Figure 55. Main Storage Requirements (in
Routines for the Different bytes) of Each Macro
Input/Output Devices Instruction

Appendix A 37

Appendix B. Approximate Average Times Required

Figures 56 and 57 show the approximate

average times (in mil
for the execution of

features and macro instructions.

shows the approximate

for Generation and Execution of the IOCS Routines

generation of the IJCS symbolic programs.
The generation time depends on (1) th2
device used to punch the IOCS5 symbolic
deck, and (2) the machine configuration
defined by the definition statements.

liseconds) required
the various IOCS3
rigure 54
times required for

e B Badatnieitetbeiets T L S g et 1
| { | | GE1 | PUI |
| | | Mode of k- - ——f— e 4
| Device |File Type |Operation | 1ime Required | Time Required |
O T S frmmm oo 1
1403 Printer | simple | standard | --= | 12 |
|] |carriage | | |
pommmmmmmmm e e oo fom e e i
| | | standard | - | 16 |
|2203 Printer | Jcarriage | i |
I [simple f=—m=m—— oo e e L E et i
| Model Al | |dual-feed | - | 15%*+* |
| | |carriage | | |
prmmmmm oo o e B oo o e — 1
| | | standard | - | 24
}2203 Printer | |carriage | |
| [simple fo——mm———-m pommmm s i e i
| Model A2 | |dual-feed | - | 22.5 |
| | |carriage | | |
pommmm oo e fommmmm s b + G
| 2501 Card Reader, | simple |nonoverlap | 9 plus read time | --- |
|Models Al and A2 | | | [|
———————————————————— o
| 2501 card Reader, | simple joverlap i 12 | —-—--
| Model Al | | | | |
- T I pomm e mmm oo i
| 2501 card Reader, | simple |overlap i 10 | -—-
| Model A2 | | | | |
e — T T B
| 2526 card Punch / |nonoveriap | -—= |10 plus punch time
| |simple f- S e SR e R
| | |overlap | : --- | 11 |
pommmmmm oo pommmomm oo oo fomm e 1
|1442 card Punch, | |nonoverlap | -—- |8 plus punch time |
| Model 5 |simple pmm—————— +-—— e B e 1
| l joverlap | --- l 9 |
pommmmm oo pommmmmm s T P
| 2520 Ccard Read | [nonoverlap | 12 plus read time |14 plus punch feed time|
| |simple fo-——---mm—m Fomm oo o Fommm oo 1
| Punch | |overlap | 13 | 15
I pommmme O oo o oo e e i
| | |nonoverlap | 15 plus read time |20 plus punch time*}
i | combined |jp--——--—am—- Rt ittt e ettt 4
| | Joverlap | 18 | 24 %
pommmm oo pommmmm o oo fommmm e +- —mm e
| | | | |18 plus punch feed i
|2560 multi-runction | |{nonoverliap | 18 plus read timne |time.
| |simple po=——=——mmm- oo e Fom e e 1
|Card Macnine | loverlap | 20 | 20 |
I e prmm oo oo oo 1
| Moael Al | | | |28 plus punch time
] | |nonoverlap | 19 plus read time |[plus read time*{
| | combined |f—--—-- + D e S ettt R 4
| | |overlap | 20 | 28+ |
L e L Lo S R b
Figurs 56. Approximate Average iimes Required by the GEI and PUT Macro Instructions,
part 1 of 2

38

C

o 0 e e s iy et o o -

r T T T e Ui 1
| | | | GET | PUT |
| | | Mode of t- — -————t —_—————————— ey
| Device |File Type |Operation | Time Required | Time Required |
t B Bttt + B ettt bt 1
12560 Multi-rfunction | |ncnoverlap | 27 plus read time |27 plus punch time |
| | simple e e - e i
| | |overlap | 30 | 30 |
|Card Machine b s + ———— e -]
| | |nonoverlap | 28.5 plus read |42 plus punch time |
I | . | time | I
| Model A2 | combined |- et e e e 4
| | |overlap | 30 | 42 |
e - L i e UG [U U S |

*PUT macros for combined files contain a punch and a read command.

**Value assuming alternate lower and upper carriage print operations.

$4If a GET follows a PUT for a combined file in nonoverlap mode, the GET and the

PUT instructions require 28 msec plus punch time for 2520 and 35 msec plus punch

and read time for 2560.
Figure 56. Approximate Average I'imes Required by the GET and PUT Macro Instructions,

Part 2 of 2

r T =7 r - LI === 1
| |msec per l0-Character | | Unit(s) | |
| |Field to be Checked | | Used for | Time Required |
] b -7 T ———-q | Generation | for Generation

Program	Subm.	Subm.	Subm.		e + -		
Feature	2	3 o0oxr	5			2501 Card Reader	4 to 6 minutes
		4				model A1, and	
b t-—— = f-—— -]	2520 Card Punch						
SEQNCE						Model A2	

|detail | 1.50] 2.20| 1.35] | k TS W]
|entry | | (. | | | 2560 MFCM Model a1 | 6 to 12 minutes |
k- T e e ot mpret T —omm i -
| | | 5.00f 7.50| 4.50|minimum| | 2560 MFCM Model A2 | 9 to 18 minutes |
| RFORMTn|numeric{13.00]19.50|11.70 | maximum| L ————— e
|detail p---—-—-t Tt e —

lentry |blank | 4.00} 6.00| 3.60| | Figure 58. Approximate Time Required for
—————— b e + { Seneration of Symbolic IOCTs

" | PFORMTn | | | Rout ines
|detail | 4.00f 6.00| 3.60} |
|entry | | | | |
L L i 4 L 3

Approximate Average Times
Required by the IOCS Features

e Figure 57.

Appendix B 39

Appendix C. Programming of User Routines

A user routine may be required in the main
source program if certain checking
functions (SEQNCE, RFORMT, or PFORNT) are
desired. When the branch to a user routine
occurs, the IOCS will automatically store
the main program reentry address in general
register 14. The routine must provide the
linkage back to the main program.

If the user routine contains any macro
instruction (all macro instructions are
permitted) , the contents of register 14
should be saved before this macro
instruction is executed. If this is not
done, during execution of the macro
instruction in the user routine the reentry
address is lost.

If a PUT macro instruction is given that
refers to a combined file and the projram
proceeds to the PFORMTn error routine
(user's exit), a subsegquent GET macro
instruction will place the contents of the
card containing the PFORMT error into the
work area. If this GET macro instruction
is in nonoverlap mode, it is possiple to
punch this card by means of an additional
PUT macro instruction.

USE OF BASE REGISTERS

Base register 15 is reserved for IOCS
interrupt and macro routines. It must not
be usad by the programmer, not even if he
saves its contents between two macro
instructions.

Base register 14 is also used by the
IOCs Eor all macro instructions. rhe
programmer may use register 14 but does not
have to save and restore its contents.
nowever, the contents of the register will
be changed during the execution of each
macro instruction. :

Wwnan an IO0CS-controlled branch to a
user-written routine (PFXI1I, RFXIT, or
SQXIM occurs and the user desires to issue
an IOCS macro instruction in his routine,
he must save the contents of reagister 14
befors the IUCS macro instruction is
executed. He must restore the contents of
register 14 to their original value before
he returns control to the I0CS.

LANGUAGE COMPATIBILITY

Model 20 IOCs is closely patterned after
the basic Programming Support and Basic

40

C

Operating System 8K Input/Output Control
Systens. Since the Model 20 IOCS is
designed to support input/output devices
that are unijue to the Model 20 and achieve
optimum performance of all devices, some
macro instructions and DTFSR 2ntries are
not identical to those of the other
systens. Users who anticipate transition
from Model 20 to other models of System/360
should therefore be aware that programs
using the Model 20 IOCS require
modification prior to generation by tae
other systems.

PROGRAMMING ERRORS

Programming errors can only ke detected
during phases 1 and 2 of a gensration, that
is, when the contents of the CI'L card and
the definition cards are read, loaded into
main storage, and checked.

A programming error prevents the IOJCS to
generate the specified routines and to

punch or print a diagnostic message. If a

printer is not used during the generation -
run, the diagnostic messages =-- if any =-- ,@Z)
are punched into columns 1 through 10 of vy

the incorrect definition cards, or into
blank cards if the message refers to more
than one definition card.

Programming errors always cause a
machine halt at the end of phase 3 of a
generation, that is, when the checkiny of
the definition statements has been
completed. NO programming-error halts can
occur during the execution of phases 1 and
2 of a generation run.

CAUTION: If the programmer uses a macrd
instruction for which no IOCS routine has
been generated due to a missing DIFSR
detail entry, no diagnostic message is
produced during the generation run.
Example: The programmer has not included a
CONT'ROL=YES detail entry in thes DTFSR
statement for a file and the program
contains . a CNTRL macro instruction
referring to this file.

Diagnostic Messages

The diagnostic messages that the IOCS
produces upon detection of programminjy
errors provide the programmer with an aid
in identifying the errors.

C

Five types of programming errors are
ijentified during phase 1 of a generation.
Another seven types are detected in phase 2
and identified during phase 3 of a
generation. Each o9f these errors causes a
diagnostic message to be printed or
punched. The occurrence of one or more of
these errors causes a machine halt upon
completion of phase 3.

Appendix. & contains a summary of the
diagnostic messages produced during the
generation of IOCS routines. The
subsequent text is a more detailed
description of these diagnostic messages
and their meaning.

Messages Produced During Phase 1

The following is a detailed description of
the diagnostic messages produced during
phase 1 and refers to errors detected
during phase 1 of a generation.

Message Meaning

A detail card either has a
continuation punch in column 72
and no comma following the
specification, or no
continuation punch in column 72
and a comma following the
specification.

COMMA

KEYWORD The keyword in a detail card is
not aligned in column 38, or is
not followed by an equal sign
(=), or is not one of the
permitted keywords.

NUMBER A numeric specification contains
nonnumeric character(s), or
exceeds the permissible limit.
PARAMEI'ER A keyword that requires a
certain specification, or one of
a number of prescribed
specifications, is followed by
an invalid specification.

S YMBOL A name {(or symbol) does not
conform to the appropriate
rules. o

Messages Produced During Phase 3

During phase 3 of a generation run, IOCS
may produce the following diagnostic
messages that refer to errors detected
during phase 2.

Message Meaning

CARDBLKSZ The block-size specification of
a card file exceeds 80, or is
greater than 160 in case of read

or punch binary.

CRDPRREPTD Card printing is spscified for
both feeds of the 2560 MFCM.

INCNSISTNT Two or more detail entries of a
file contradict each othzr, or
at least one entry of a file is
defined more than once.

INCOMPLETE A mandatory detail entry is
missing.

PRINTBLKSZ The sum of the block-size
specifications of two print
files for a printer with a
dual-feed carriage =2xc2eds il4;
or the block-size specification
of a file for a printer with a
single-feed carriage exceeds
144,
PRINTFILE One of the feeds of a printer
with a dual-feed carriage aas
been specified in the
device-type entry of a file,
while the other feed has not
been assigned a file.
REPEATED The Jdevice-type specification of
a file contradicts the
device-type specification of
another file.

RELATIVE ADDRESSING

The programmer may desire to use relative
addressing in routines of his projgram that
include IOCS macro instructions. 1In this
case, he must take into consideration the
number of bytes required by the
I0CS-generated instructions. Figure 55
(Appendix A) shows the number of bytes that
the generated instructions reguirs for each
of the macro instructions available to
users of the IOCs.

Appendix C 41

Appendix D. Sample Program

This section contains a sample program that
illustrates the use of the IOCS definition
statements and macro instructions.

The sample program is designed to
perform an invoice billing application.
The input to the program consists of:

1. An invoice number and dace card
containing the starting invoice number
and today's date.

2. Custoner address cards.

3. Order cards containing tne order
number, date of order, and customer
number. :

4. Detail item cards specifying tne
individual items ordered and customer
number. -

From these input cards the program
produces:

1. 2n invoice for each customer.

2. An invoice summary card for each
customer.

3. After all input cards have been
processed, a new invoice-number and
date card. :

In addition, the gross and net amounts
for a particular item ordered are punched
into that item's detail item card.

I'he sanple program is written for the
following machine configuration:

4,096 positions of main storage

IRM 2560 Multi-Function Card Machine
I3M 2501 Card Reader

One Printer.

The input card formats are shown in Figures

59 tnrough 62. &ach type of input card nas

an identification code punched in column 1

for card-type identification purposes. The

card types and their respective codes are:
Code card rypes

0 invoice number and date card

1 customer address card

2 order card

3 detail item card

42

C

Invoice Format

The format 2f the invoices that will be
printed by the program is shown in Figure
63. Only the first invoice page for each
customer will contain the customer name and
address, customer number, invoice number,
and today's date. Each successive paje,
except the last, will contain only order
number, order date, and item entries. The
invoice gross amount, the percent of
discount, the net amount, and the mods of
payment will be printed on the last invoice
page for each customer.

Invoice Sumnary Card

&n invoice summary card is punched and
interpreted for each invoice printed. The
formnat of this card type is shown in Figure
64. A U4 will be punched in column 1 of
each invoice summary card for card type
identification purposes.

New Invoice Number and Date Card

After the last invoice has been prepared,
the program punches a new invoice number TN
and date card containing a 0 in column 1 WL

and the beginning invoice number for tne -
next program run in columns 2-8. Columns

11-16 (date field) are blank.

Program Data Flow

Figure 65 shows the flow of data for the
sample program.

The sample program was written with the
foilowing assumptions:

1. The invoice number and dats card will
be the first card read from hopper 1 of
the MFCM.

2. The customer address file contains an
address card for each customer. The
file is assumed to be in ascendinjy
sequence according to customer number.
A sequence check will be performed on
this file,

3. Each order card contains an order
number and date and is fcllowed by at
least one detail item card. The
customer number in each detail card is
assumed to egual the numper in thes
preceding order card. This files is
assumed to be in sequence according to
customer numnber and will not be
sequence checked.

x5 w ~0

Today's
Date

Blank

0000000000 00C000J000
R I Y I s e e e R N D RN R R T
IERRERE K IRREEE EEERREREREREEEERE R R R R R R R R R R R R R E R R AR RERR R RRARERRRR!
dr222222f2422 202

313333393033]333333133333333333333333339333)

000

R R A A I R R R N
5f5555555)55/555555)5555555555555555555555555555555555555655555555555555555555555555
6lec66666{celes6666j66
L IARARRE A AR AR AR R R R R R R R R R R R R R R R AR RN AR R RRRERARRE)
slsss6088joejecnsaslo88888008600880688866880088888800808068880688680888888060868806888606888888

rrascrafiornun e s s eI B AN NN U BRIV RNBAQGUBHVAONIRD AL RN UNENQBUBEOAON AR
99999999/99[999999/99

Figurs 509.

Inv

oice Summary and Date Card Format

Street Address

"

City and State Mode of [Blank
]
t

/}’ sk Customer Name
3
[

ooomononoooooooeoooooooooﬂi@noonoooouoqooooooooaooonuoonooooaooooooaoooo oeoooo

s eserfes e n g wnannnuss
L IRRRRE R R R RREE R EER N
2

2222220222222222222222222)
313333333333333333333333333)
BUad b it dabeddicdiidatbess
555555155556555555555555555
6l666666/666666666666666666F6 6]
mrrrIprrITININIIIIIIITIIINY

RS S PP Y T T PR R TR T T T T
IRRRRE R AR R R R R IR R R R RERERRRRRER|

2222222222222222222222222222222222222212)]
33333333333333333333133333333333333333333
Al‘l4L‘L“l‘t“tt“ll‘;lt“‘tL&A“‘l‘t“
56555555555555555555/5555555555555555555 9
66666666666656666666{6666666666666666666¢6
IRRRARERARRRRERRSRNE (RRRRRRERREERRRERRRE

CEREER: 00 TENET
ARRRRRIIAIEBERRE]

22222222222
3333333333333
LR RN (Y] RS
555555[55055555
666666/66[66666
IRRRRR IR IREEN]

ojpesebejs86008808808888886888/308863086808880086880688/688800860888009586888a886682828{88[88886 48
pyasiifrenanus kU an AT AN LR U N NI UNECR O UGl RN s waR e s s nor ol

'
91999999199999999999999999999[99999999999999999999[9999999999999999999999999999199999

Figure 60.

Cus

tomer Address Card Format

Order
date

Blank

3333333133333
RN (YRR
S[555555[55559%5
6l666666/666666
wrrrinrrrieg,
8jss8885/686888

[ER NN (K NI

9399999999999

350000000 000000/00000000000000000000000000000000000.00000000000000000000000000
v e 6 e s s s 6 v a7 200023 2627 7099 30 50 32 93 0435 0630 5430 64 002 4300 65 66 47 00 08 50 51 5251 5435 56 51 38 S GO 61 62 83 MU W 61 G 89 10 1 RIS IATS IO 0T 18 13
UIRRRRR IRRE R R R R IR AR R R RRRERERE]

222227
333333
;4‘641
55555 5|
6 666 6 6
717117
88688

CELER]

99999

221222222
33)
N N N N NNy
555555555555555}5935555535555555555555555;5555555555555555595
66666666666666‘6666666656666666666666666666666666666666666666
1777007700770 2070 0000007200007 0007107107000 107 7
8000088!033!800000!00808385088!0!00!800080!8OBIUBBUOUOG!!I;BO

JEEEREF RN N N R TS T T R R RN R T

99999999999999999999998999999999999999999999999999999999999999

Figure 61.

ord

er Card Format

Appendix D

43

Tousiomer] Net Gross |Item |Blank | Ttem Name aty. [Btank | unit |$
YiNumber| Amount | Amount Number Price g
K

000000/000000000[00000000010000000/00000000/00000000000000000000j0000/0000j000800{00000100
B ER I L R R R R R R R R R N T N R R R R I bl (LI L LR Ny &)

|11111|11111111111'|1|11|¥|L1111111111q|111111111‘11111"11111111111111111‘1117
2122221277722222212)27172?2T???H722722227?720722?122272122 2222221022220 2222 022

333333(333333333133333333313333333(33333333(3333333333333333333313333(3333(33333(3333333 N

tllll‘6&4L£4‘46(;‘6"4‘£4466644(4“‘4‘4‘444&4‘46‘4“"l446“44&4‘4‘&444‘4‘4ll‘ll
555 655555555555 5[55555555505555555[55555555155555555555555555555[5555[5555{55555[555955{%5
6666666]666666666{666666666]6666666J66666666(66666666666666666666{6666{6666166666/66°666]66]
LUIRRRRE AR R R RN IR (AR RRE IR R R RRRRRE INRN INRN IRERE INBEE IR

8jss8so0ls68880088[8a88b888s/s686888j80083068/60680608368886868888]6586/8886/a8088/38860|8¢
IR (RN R R R TR R R R R A I TR E R R PR (L LLLE CLELE X RE [
91999999{999999999199999999919999999(999999659/99999999999999999993[9999/9999/99399939993]%9

|

Figure 62. Detail Item Card Format

4y

. oi12|:| 4 [5 [6 W 7
:::r‘i;_uwv e . 12@45678901234567890123456789|0P2‘“““78}9012345678901234&378901234567890123456789
-] B} !
: ' : e ’
. | | (IN[WDIC!
“ 1 3 v ATE
o - 5 : A NUMBER € *
: 17 (8 XD
z 7 {GITY [AND I 1]
: :
e 1
° 1
= 2" 1
s 13
« = 14
= L] 0 VIOUR|_ORDER| [NOL- ; A%%o Ni NN
@ 16 NPY | M NAME | NTITY d [GROSS|AMDUNIT)
= 17 XD
S 3 [1e
s L1 19
= 20 L]
s 2 YIOUR /ORDER N .| DATED
- 2 1]
8 2
et 4" |u
- 2%
3 7
; 2
madoewlounswna 29
:” %
° 31
2 % 3
o 33
2 3]
e 3%
¢ 6" (%
- El
; 38
b 39
N 40
f I
- 7-’ T
& i
r 0]
. [
- 4
- [
s 8" %
s [
50
) B
ol 52
E 53
9" |54
r
" i % INVOICE RO%3)
x::"“ owlonnarna 56 ||
“ 57 i
2 5]
b 5 UNT) |
2 10" |60 NINEND
- 6
3 62 MODE, [OF| PAYMENT| DAY|S (AT 1|SICOUNT| OR| DAY|S NET
B
P 64 MR T H
& TR z: ‘These entries are ?
: & pre-printed on the form
2 68 11
o 69
; 0
3 1
127 [» i
N || ol
12345678901234567891012345618901"243478901%45675{%12345678901]73456789011_23456789
o | v | 2 [3 4 [5 | 6 T 7 1

Figure 63. Invoice Format

O

Appendix D HSE

4. Hopper 1 of the MFCM contains an
invoice number and date card, order
cards, and detail item cards only.

5. Hopper 2 of the MFCM contains only
blank cards.

Definition Statements

Figure 66 shows the definition statements
required to generate the IOCS routines for
this program. All input/output devices
will operate in the overlap mode.

The file named ORDR is a combined file
because the detail item cards must be read
and punched. Note the RFORMT0, and RFXIIL
entries. The RFORMI'O entry specifies a
check of columns 8-25 of each card to ke
punched to ensure that they are blank. The
RFXIT specifies that the user routine named
PCHF is to be executed when columns 8-25 of
a card to be punched are not blank. The
PCHF routine selects the detail item card
with punching in columns 8-25 and all
‘following cards for the current customer
into Stacker 3.

ihe file named ISUM is composed of the
blank cards that will become the invoice_

sumnary cards. Note the use of the CRDPRLn
entries to specify the print heads.

The file named ADDR contains the
customer address cards.

The invoice file which will be printed
on the printer is named PRIN.

Program Flow Chart and Coding

Figure 67 shows a flow chart for the main
program and Figure 68 shows the main
program coding in Model 20 Basic Assemnbler
language.

The program was written assuming joint
assembly. Each of the macro instructions
shown in the program coding specifies the
name of the work area to be used during the
input/output operation. Some of the work
areas are used for more than one file. Tor
exauple, at one point in the program, a
portion of the area named AR4 is used to
contain data to be punched in 2 ‘detail-item
card and at a later point the same portion
of ARU4 is used to contain the data to pe
printed on the invoice.

Invoice ?hvoiee Net
Number |a |date Amount Blank

n

k
0000000/00J000000J00000000000/000000000000000000000060000000000000000000000
wn-lnuunuul!unnntnunuuumnnnuuunuuuuuuuununnsmussuslunuunuuulnrununuunnllnnllu
IR R R R R RR R RE (R R RN R R R ERRRRRREREREEREREE!
222222222022222222222222222j22022
3333333331333333{333)
Ghehehfidliahdttfdaataaaiabiletabatbasiededbdbbabibbibbhatocsdbdtbastissts
5555555055/555555/55555555555]5555555555555555555555555555555555556555555655
6666666/66[665666/66666666666/666
TTTII I I IR N I I I TN I T IINNIINNIINNTINNNNNNITINNNNITTIIT
6888088l68/8868808/6888086086881808836668880630888880886608886056668866086886
W!‘x)v!ul’ﬂllu!llll‘"ﬂnl?l”"ﬁu!i))l!uﬁliﬂ“]!ull"llullltt’lll!!lﬂ"”“)ﬁil)i!M“ni?()lll&li&’ﬂi!?OIIVI!!.‘IHIGIIIIHH
99999999999999999999999999199999990999999999999999999999999999999999999u

Figure 64,

46

Invoice Summary Card Format

O

qDetoil Card
Detail Card
Order Card

Invoice Number
and Date Card

Address
Cards

2501
Card Reader

2560
MFCM > Model 20
Invoice Invoice Number Détail ltem Order
Summary Cards and Date Cards Cards Cards
S i
- r - —
}
s el adl 3 | 2¢ | 5] v
Stackers
Printer

Figure 65.

Program Data Flow

Appendix D

47

IBM System/360 Asssmbler X28-6506
IBM :n’:n Coding Porm Primed 0 U.S.A.

PRCSRAM TA/ YOLCING PUNCHING INSTRUCTIONS PAGEZ OF 2
DE FINITION STATEMENTS |oramic CARD FORIM ¢
PROGRAMMER
B.F. Loyaso Imu PUNCH
L STATEMENT
Nowme' . O tion o
Iz_ -a_r_)l_:n Y moww 45 Commern 7y {73 Sequaneo
0110/~ ST 1 T I ¢
. svzﬂg-nﬁc 1, [4
rylpiglAcl &l ={ciMaimip], 2]
Z|MALA] =|A| R &)
ZIIMBLIKS) 8] =|718], 0|
0, If Ld X &
oggkkse-gg, ¢
&A= 1Y|E}S], ¢l
RFoleIMTid=|d8121510],]
eI (Tt (P 1AE],)
oW OiL|= 2 “
q:DF |=|&l0IF|L
7 SIUM D[7|F|SIR . O
ZiClE|=A\MFlclM 2] C
sl&=loluirlelur], ¢l
L7100 AL =UIR~7], 14
BIL | T2 & =) 315], £
o|R|k1A) =] 151, 4
Pledl=lclALlZ], ¢
clelolAlelc]1]=|7], 4
C ARl 26|, la
cldo]plel4]=]314, d
oOMIT 1RO L] @s

Figure 66. Sample Program Definition Statements, Part 1 of 2

IB IBM System. 360 Assembler prieneg 508
b Shert Coding Form cted in U.S.A.

PROGRAM TN VOICING PUNCHING INSTRUCTIONS paGE 2 OF L

DEFINETION SYATEMENTT | cramic CARD FORM ¢

PROGRAMMER DATE
B. 7. Zurd ‘ PUNCH
[STATEMENT
Neome ration rand ‘omments Soquence
25 30| 320” 36} 30”' 45 < 7 73
anne T1Asle) I 11 I g'
£l Ticlel = %A DIgl1],
7Y L |El=| V| PlUIT], C
Zoldrleal 1 =lAlel8], 4
8¢ |Mdslriz2|g=7]5], ¢
o|elxlAl =]y . |
clel gl2lw(7|, i4
slel@lx| = {stE QR iC
Al =lelo|Fle
Aez Eiall 0y
blelvircle|=|Aeriviriele , [
 ZiMriolv] =l Yiels], I
Y £IE|=loluriAdr], [4
En E|=l714], A
clom] 7lelole [=]YlelsT, c
oleleid|=| Yiels
1071

Figure 66. Sample Program Definition 3Statements, Part 2 of 2

48

START

STRT
OPEN FILES

AND INITIATE
PROGRAM

1 18I

END OF FILE
STORE <——<Z|
ORDER CARD
LB3 |‘ A <' I

- GET ADDR | SEQUENCE
VOICE DATE. | ERROR
CARD A I'
| SE@R
PRINT

ERROR TEXT

STOP

Figure 67. Sample Program Flow Chart, Part 1 of 2

Appendix D 49

LB7 |

PRINT ORDER
NUMBER AND
DATE

OVFL"

SET OVFL
SWITCH

| OVERFLOW
| ROUTINE
|

PRTOV PRIN
CHAN 12

[—————————

READ FORMAT
ERROR

h

DETAIL
ITEM CARD,

FROM
GET ORDR |

PCHF

\ PUT ORDR

e
YES RESET
SWITCH
NO -
LB4
LB6
ves | ~PRINT iTEM
INFORMATION
Lo ™ |-
EOM ORDR
LB 2
STORE
ORDER CARD

NEW

Figur

50

=

CUSTOMER

PRINT INVOICE
SUMMARY

INFORMATION

PRTOV PRIN
CHAN 12

PUNCH AND
PRINT INVOICE
SUMMARY CARD

UPDATE
INVOICE NUMBER

\

PRINT ERROR

INFORMATION

—
1
| END OF FILE

67. Sample Program Flow Chart, Part 2 of 2

IEM M oot Coting Formn o S
PROGRAM TN VOICING PUNCHING INSTRUCTIONS PAGEZ OF £
GRAPHIC CARD FORM f
PROGRAMMER DATE
B. T LuND | PUNCH
{ STATEMENT
Nome O i nd ;omments
25 0] |32 e M36 380’."' 45 ¢ o 173 Sequence
GERE
e
% GERARDE AlBElAls| [o]7|T|2]Ta]E] [Z]ojaloE]R|] A
PILE rNg c|£]7]8] z[olalelelalz] lolelolel |2
A g clz]2 0|4 1| |o] A
2, DS <|3]5] | 7]o[4 1 | riely]
4] £l2] g Cle|7]5] aARE|ALL 4
* FITIALI A|7|ZIoln| 1R|oju|T]/INE
s 71Rlr A 0|R~0] 4] o|Plev! |TIMel |Ar 4l&]
2|AEIN| Su]M
olAEw] | ulolole
olelev] | |7lelz]w]
L Rriv,|sld, |1
lciM7R|2] |olelol &, |s|s
6le]7] ELEGALE ZIv| v|olr]el & /|oal 7 & |o|#io)
v Al 2], Ix] V|4
Plualclx ol£]2],|no]2 L
&7 AERGARGE zls[7] |o|elo| El] [cl4lR|o]
7] CIAR s[rio|el& 2 [clAlR|D)
11
* z[olelal7 |E] |cluls|Tlo|ME D S lelaj o)
4|83 Gla| 7] 410D1R), |A| £]2) Dolelels|s| |clalelo
citle vlol1], 4Ll 2]+t 0| PlA clvls|7] (Mo
r Y711,]Z]813 vlo|r] |£alv|alz
[%0A wiolglri8l/], 4|e|2]+]6]7]
Figure 68. Sample Program Coding, Part 1 of 8
IBM 1M Sy 350 Kol e 2
PROGRAM ~ IMVOTCING .PUNCHING INSTRUCTIONS PAGE 2 OF #
GRAPHIC CARD FORM f
PROGRAMMER DATE
B.7. LuND T PUNCH
[E STATEMENT
Nome Operation Operand P — Identification-
l;] lx | 3 45 50 ; kel Seqvence
X ! %Mﬂo:c EAD aﬁ Al rr]o T
lvie 4|4 H1|2|712]e])], [al@2] +17] M7l |MalME
-[eMTielz] |Pleldinm ., |sA L, |3]] |
PUT PlRriv, . |
Mv]e #212|c|2le])] , Ald2]+217] |ARzIMT] |si7]R|ElET]
mnaE 4+47|r12|3[0], Moz
cimriele] [ARMM,IS12],1,12
lallitd PlRrM, AR 4
vie R4l +471012131)1, [AIR14] + 46] [Mlolv|E] A¥]
MvIC 1|2 712]a])] | Ale2] +] RIrIM™ le|7] J|7AlT
M 7Rl 1k, 12]
Aulr PRIZIV, |A 4
c|M rie|e Fﬂﬂ ,Jrlrz
% A i lo lelalrlol |clomriEMT]S]
£218]7| v A +2(2]71316 1], Mol ré'l
ita ZIM, A R4
* ngn A |clale FﬂoM o|ede |FZZ[E
1] Z]ol] 0 | |
21218 fa loleole], [ales AGE ol ZIrielm |
8] X'l '], [218]2]7] olvie|/FLldw] |slmriric]4]
74 Cle R3, 1X]* '
| vigl 1,218 |¥5ial3 4|21 2]
415 ol 10 clAl [|
4 s rinn Ls[rio BEELEED

Figure 68. Sample Program Coding, Part 2 of 8

Appendix D 51

X28-6506

I
BM System/380 A':::lﬂlf Printed in U.S.A,

IBM

oy
&
)
g
F
Q
)
b
2
o
5
2
z
(Y]
z
5
:
rIuH
£|¢
3|2
® Z
R
3]
3
N q
N uM
3 mz
8| |[2%
2 g

identificotion-
Sequence

STATEMENT

Nome

Operand

Operation

~N
ol
Q)
If.ﬂ N [
1" LY
83 1) K D IN
% O) £
<[W 3 Y |
[Ol9] o 1% S =
) N | S LYY
%) LN Q ~]
[Q
W I 19 [K
ﬁ@d S [§] | Q Q[o)
CAIED S L) D) T
LY
EY Y
N N IO A7)
N = H s Uf M“)ZJ M_e.
L) S 3
& am ﬂ‘ MII SIS 3
x| 9] X R IRID MRS
N E3 ,Ml Y 3 +,M(,AM
LY] X INSNN T SIS SN SWS NN
w] W My 4 N ~ N[Ql ZEU
uk&Ul? S NN NN TS R WSS TN
Q™ (e [Y NN ™ NN NN NN
H_ﬂlnol W[9| N 3&30 N N <o) I N~ o) H.
ICEEERENE N Y9 R DEE o[\ ~|
=] - 18- N[YA+ 4 + NEYEY LIEES
QNN [O[NHIN| 0N
NS =T[5 QAN
HMWW M ELSESARY { LN ALY
K
Q| N| N N | N ~
| 3 N M N ¥ 9
LY [y KGR RS0 O NN LSRN
WINTQIR[O] [W][Ql N[N NQ[IY Y A R
S0 Ml&c RS TR S|
8
Q% &m

Figure 68. Sample Program Coding, pPart 3 of 8

X28-8508

Printed in U.S.A.

. IBM System/360° Asssmbler
Short Coding Porm

LY
<]
Y
H
z
o
° ﬁ S
2 Q] X
S XN)
S [3]
XN -
> Y[
2 : TN X
5 PN
9] X NN [SW [
g AESCEBLY LN
2 NEEERERS QS[Q[I N
o MOECEES LIBVIDRLY
z LY N Iy Aﬂoﬁ
] W A3
b4 L) -
2 [|~ | T
. CIEY N Y M ™
| X EIMAY 3 3l 3
2 L3 € I &]
< 90 Ry §) W
I == 11 N| <
R ~N o NN ~ W N 3
o ~ ﬁIIMFLL) [SN+ =~
|3 2NN LN e 3[o T M q
2|3 N N DNV S MREEE
8|2 Ww 5 IS % mm N M mﬁr79
~ w ol AN <] 1] ~ 3
2 |4 NEE ~[™ E WZM..IF 49 =
;i ¥ 3 ﬁuzk ~ zzﬂzF LSRR q
- & [N o (WO S| [SI&[-] {3 =
% 8[X ~| NI YA | l X
©® ° | y S S
by A Q) |
N k] 9 3 LY W W
Q < K[rpw._k_.m_c ¥ BRTEER
N Q m NENDEENERNORENEESLY INESREEER
N W X3 QISR EIAS N ¥
§] |¥ - =
gn
| |3
2 EL] ~
o O
gl B5
= & R ¢ N

Sample Program Coding, Part 4 of 8

Figqgure 68.

52

£
m.m w]
i [2
P mw
Q £
= kS
&
X S
3 3| 9|
[| M
a X
w [N [Y) Q
Y L3 [N X VY
S Wy R W NS
x [) N KIS
F4 X WIS N =
2 X N
o) N [
2 Qly 3 [o
z) N K] Y Y[R
& o ¥ Y [N
s |z & R 8 LY
E I]
sEl S a
£ 3 X q
ol * ™ W
g5 . DK DET 1
£S Z N \NEY 8
St 2 = S BIIEY %
a8 H N3 , IR NS
¥ = NI\ B BNEEN I 3=
a <[N SN W NN A =~/ Q
v INEY LY ASEINY Q| AN
£z EImEY NS = TFNIN[N] N NS [R[= [+ <&~
13 %4 ((H:7xe ¥ N MXJ \[\]
[[¥ 3 <[9] O[W[la\Ix[[®[w[y] S N[[»
¥ ©%] ALDDESNRNEE. [3
2 (S]] N REREEDNEIM WY EERNDE p
i LB NS N QR NS I Qo (oS T
w o[S| LAILDNN K| = Q) T =
2 8 ~SNURRRRY DNEKAIES 3 N 3
[} — S ()
2 5] ~[) N)| 9 3
a 2 |9 Y Q [y m_
g L REEN WNSN T NG
Q [\ oI AlQl) SIS RO WERN
by b 8|9 LTILYAN X (Y] CHEER ©
b 3 3 Y Y
N Y E1LN
s MJ H
I 5
m e Q Y
=1 & & % ~

O

Sample Program Coding, Part 5 of 8

Figure 68.

NS
8: 16
IS
L £
< i §
Rl
~ B S G2]
3 O] LT =
] X) 3] iy
a [ol W [
< 2 Ny Tad & |
s ~ o] »[O] Wl 3
o ¥ ([
S RECE R SRCR <
| | IZMSEE
g S| | = 7 | 1
<] [y MW ol
S d w =< J N LS|
2 []
Z N NN &_ R_
5 ° @ | W[[Wo[w| 9|
= z) q Ov [X[*fag k3
€e| & A
as| z 2| >3
ey N 3| -
cH AR o 1+ m &
g3 z S = s 3 NM+
£z HEER o [~ ~
.m,.n 3 5 k3 ~ 13 (23
MS & CS - D) ﬂ-
@ Y| - ~ WA [O -}
= o) C Y 3 SR G
H T 2 - &mz ~ oy +[ON NNEKES
|z & S~ | [4 ¢« L™ (W £
ol & W G~ YS! <~ %..*LL S|
[X G 4 40| [4 9+] 4 4 FN L
® [o +N|_N+R aod o~ [>T | .TH/ DGRBS
§ | HI[F[W[N Qoo LW [win] [OF[F[r] QW
w W | flad| ¥ &l V| X Q> |Of> ~~ |~ ¥ XXX~
% 8[| A< <A =IO +1O) W[X| H Q<ae]
(U] 12 | (5)
> lu_F J S J k3|
N $ 1 of | [« C3 [
Q 2 I[N NNU[OIRN O[ERRO] I~ W SO RRE]
Il Q & [RIS[OR[SSS[SS[o[= OOl [l EEGEN
N 2 [l O[Q[O[F[FE[EQAE[WO[S V[0 F[0 w00 [WEFI&
3 Y | o v
N o ®
£, .
w3 4| | . u
Q Q 1
m| e 9. < O :
- = & g ~ pe [w 2

O

Sample Program Coding, Part 6 of 8

Figure 68.

©

Appendix D 53

X28-6506

Printed in U.S, A,

1BM System 360 Assembler
Short Coding Form

PAGE 7 OF P

PUNCHING INSTRUCTIONS

CARD FORM #

GRAPHIC

PUNCH

INVOZLCING

PROGRAM

I DATE

B. T LuND

PROGRAMMER

i
5
&)
~ 0
= 9 <] [
E” M = Y ()
oIk N S|
N W [N
E= G 3 23 S
=[N (7] [X BN
2 X (3 SRR XX
b3 LY KWW Q) (W]
N S LAEDR a&ﬂ
P Yy S O[S N NS
RO 9 RINIKL INGS[T A Y[y
BT Q) W K| SIQ[9 WS TRV
K3 | | IARD O3 XIS
Q) S NS SN NSRRI
o 1S)
L] S
2 S
N N
z [N
21 2 L3
m OWI Q N
,MT | Q
Al~- N &
CIRRELS I8~
W Y i <
¥ IERES L Soy
RES LTSRS SN
FRE N EMANEES - ¥ N LR*
§ NSRS AN TN TR ST NNB NSH
LI Y T 2 TR A e) Y N S R SV R N B N R A3k
8 AR DANIAY ~N NGO R ol &
)| ~ N
) S CIAIANEN W >
N N EEECTEC w*
Y RN NN N S N P B 0
By NININN he
O SIS Wﬁ.w_ﬁa ISR RRR A
< [)
8
m Y = ™
[y w ~ [N hal
Q > Mﬁ eﬂlM@z W
I I *[0 XXX XX NN

Sample Program Coding, Part 7 of §

Figure 68.

N .
£ |6 8§,
i 3¢
‘8 E
= 3
o
- " ™
z N N s
S ~N ~ YR N[1] |
s S X
% A x| [nlNN X
L W ' N]
N &y 0|
AY SO O] [=
X NSO S
b4 LY R TSNS RSN X
] T i SN u
g . iy :nr..rerL ﬂ X MRE
&)
2 £) QN[[N S X o[
s | o Y UER N3 S
z z S - ORE-T0) DYEIML) L}
£E| 8 & =
2 S =
mw ~ = N NS N
; z (1 ha] :
5 : % e
-9} - -
wia = S $ Q] [< N[y
E) YN
L} o 5[Q & AT N
I3 2 W oY |w
3|z WS X = X
|2) W = OI¥N <]
)][T Ly = S -&
3 [+ Q[- IS [SN[=
Mﬂ NN ™9[S % ooy i N NI
G = =T RN N = NN = [N]= §= [= 1N [N N~ [N -
© 2 8 LU NRERNR NN RN R RS R
o
R | S|
N k1
o E DS
3 9 PN R LIS e O RO L SIGOGG
S 2 8 DNENRERREY L)
R 3
N N
3 MJ N[™[N N ™ ¥ SRS G W N N[t
M 3 % m W (N[[ON QNN N N v NSNS WY
& 2% LA EDEYENOEELCENENS ma NER Gl
mie| & NN TRl IR 3 X SSRE

Sample Program Coding, Part 8 of 8

Figure 68.

54

Appendix E. Summary of Diagnostic Messages

r et 1
| | , |
| Message | Meaning |
I | I
- R S TP —— 3 TR e *
| CARDBLKSZ | BLKSIZE specification of card file exceeds 80 (or 160 if r=ad or |
| | punch binary). |
e e e — Smmmmmsomooe {
| COMMA |comma after detail entry but no continuation punch in col. 72, or |
] |no comma but punch in col. 72.

k- N —emmem e
| CRDPRREPTD |card printing specified for both feeds of 2560 MFCM. |

- —— + - - _ —_——— SO |

T
| INCNSISTNT | two or more detail entries of a file contradict each other, or at |
| |least one entry of a file is defined more than once. |
t --- - o —
| INCOMPLETE | mandatory detail entry missing.
b - e e 1
| KEYWORD | keyword not aligned in column 38, or not followed by egual sign, or|
| | invalid. I
e — e +
| NUMBER | numeric specification invalid.
i

————————————— + e — i
| PARAMETER | specification invalid. |

——————————————————— - — -- —mmmeme oo
| PRINIBLKSZ |dual-feed carriage -- sum of BLKSIZE specifications exceeds 144%; |
| | single-feed carriage -- BLKSIZE specification exceeds 144.
pmmmmmmmm e e v T T T I T
| PRINTFILE |one feed of printer with dual-feed carriage has not besn assigned a|
| | file. |
oo P e T TS
| REPEATED Jdevice-type specifications of two files contradict each other. i

———- -- - !
| SYMBOL | symbolic name invalid.
b B . e J

Appendix E 55

Index

Additional Detail Entries
for Card Printinge.ceeceeeeeeeeeenesess 15
for Checking Functions......ceeeeeees. 16
for Combined FileS.ceeeeeceeeanene eees 14
for Simple FileSee.ieeeerececeacnasaas 13
Assembly Of IOCS.eeeeieeaseessecscannnsase D
JO1INt eee eeeoscsoanseascosssssosssonsnsocas 1

SEPALAtCe ce s sesecascsscscccacsnanscsssaas b

Base Registers

Use Ofceeeiennnne ceeeeccceccacansscsas U0
BINARY (Detail Entry)eeeceescccecscecsee 12
BLKSIZE (Detail ENtry).e-ceeeeececesssess 14

Card-Print Areas...eceeeecees N
Card Printing.... ceesseecses 15,31
CLOSE (Macro Instruction).....ceeeeeecee.. 26
CMBND (TYPEFLE=Specification)...ee.e.... 11
CNIRL (Macro Instruction)..... eessees 27,30
for Printer SKippiNg.seeisceceescaasss 28
for Printer Spacing...... ceseceasesens 27
for Stackingee.deseeeesserssansnaceoans 28
Combined FilE.eeveaosesoesacssscsans ceeees 8
Programming ConsiderationS.....eceeee.. 25
CONTROL (Detail ENtry)eseececeanasaanna. 12
CRDPR (Macro Instruction)...............; 31
CRDPRA (Detail ENELY) e eeveeeeeeacnneees ¢ 15

ce e e e e e

CRDPRLn (Detail Entry).ece.ieeeeea.. P

CRP20 (DEVICE= Specification)........... 11

Definitions....... R <
Definition StatementS....cciececeescsaaces 9
Definition Statement SUMMALY. .o eoseeoee- 20
Detail Entries (DITFSR) ececececsnacasssas 10
SumMmMAary Of.c.eeieeneeeeiiiennnnansas 20-22
Additional for Card Printing.....c.... 15
Additional for Checking Functions..... 16
Additional for Combined FileS....ce... 14
Additional for Simple Files....ceec... 13
FOr MOSt Fil€S.seeeecevccncence B i §
DEVICE (Detail ENntry).ececiececoscacaneas 11
Diagnostic MeSSageS.ceseecssaccaessss. 40,55
DIFEN Statement..ceeeceereeececacanevaes 19

DTFSReeececescocscnncanse csesea cescseaaress 9
Header ENtryeeeeeeeesesasccsascacasansnas 9
Detail EntrieS.ieceececeesececsaccannas 10

Dummy GEI Macro InstructionNe.s..s.o.ee.... 33
ENnd-0f-File.iieeeeeareeseerecsancsnasaass 13
Enter Overlap MOAC.e..secececcecsscscacess 30
EOFADDR (Detaill Entry)..c.ieeece.. ceeee. 13
EOM (Macro Instruction)....eceeeeceeecass 30

Progyramming ConsiderationsS............ 30

File
Definition o0f..ieeeerseeecececnnnceanaes 8

GET (Macro Instruction)eeeiceeseacceeess 23

Header Entry (DIFSR).iceeeeeacens ceseaaas 10

56

INAREA (Detail Entry)eceeeeassaccecaasas 14
INBLKSZ (Detail ENtry) .cceeececocassacssass 14
INPOT

(BINARY= Specification)............ ee. 12

(TYPEFLE= Specification)....ceeeeeesa. 11
INPUt AYCOeesoce coae 13,14

Lengths Ofeeee cececeeeecrecaacanass 11,15
IOCAREAL1l (Detail ENtry).e.eeececeeeass eeees 13
IOAREA2 (detail Entry)..c.eessesesasass-s 13
JOCS AsSSemblyeceecececscecsccceccsnsensosa D
IOCS Macro INStrUCtionS.iiceeneccecacnses 22

e s de v e s e cevoe o s

JOint ASSEMDly.eeetevevesscscsacsncassass 7

Language Compatibility..ceeceeeceeeaseaas U0
Leave Overlap MOd€.isieesesscsasssesneess 30
Length of IOCS generated Instructions... 41
IOM (Macro Instruction)............ ceees 30

Programming Consideration......cec.e.. 30

Machine ReguirementS....ceeeeeese cenan . 7,8
Macro INStrUCLioNS. . eecceacscacncacnsaas 22
Main Storage Rejuirements (Appsndix

L ceeeeeas 317
Maximum Record Lengths........... .ee. 14,15
MFCM1 (DEVICE= Specification)........... 11

MFCM2 (DEVICE= Specification)......c.o.. 11
Minimum Recoxrd LengthS..eeeeeeeeenceanan 15

Nonoverlap Mode
Processing iNeeecececessse... 23,25,29,32
Wwork Area Considerations..... ceeaceeas 12

OPEN (Macro Instruction)....... cec et 26
OUTPUT (I'YPEFLE= Specificaticn)......... 11
OUAREA (Detail Entry)e..ece.
OUBLKSZ (Detail ENtry) ..eeeceescecesesess 15
Output Ared.ccecececcecceceas ceesoesvae 13,15
for Printer FileS..eeceeecccecaasaanaes 13
Length 0feeeieieieeeeeieeeeaananass 14,15
OVERLAP (Detail ENtry) eeeeeeceeacscocaaees 12
Cverlap MOQCe.eeeseeeeccocasoasascacas eees 9
Processing ine.e.eeesvaassase. 23,25,29,31
WOork Area ConsideratioOnNSec.ecseesessess 12

P)

PFORMIN (Detail ENtry) ceeeceieeecessaaeas 18
PFXIT (Detail Entry)ececececescccecansoass 19
PRINTER (DEVICE= Specification)...... P I
Printer File Output Area.....ceceeeesees 13
Printer OVerflowWw...ceeceeeeneeceeesss 12,26
Printer Skipping Controle.eeiceecesecass 28
Printer Spacing Control.c.eieeceeeeeaceas 27
PRINTLF (DEVICE= Specification)......... 11
PRINTOV (Detail ENtry) eeeeeecacecscsnees 12
PRINTUF (DEVICE= Specification)......... 11
Programming Considerations

for Combined FileS.iiieeerariesasceeaas 25

Read and Punch Same Card.......c... «e. 30
Programming ErrOrS...eceescccescesssscss HO
Programming USer-ROUtINES...c.eeececsssss U0
PRIOV (Macro Instruction)........ eeeeee. 26
Punch Format Checking...eceececeeaeasss 18,40

O

)
u'ﬁ"'y

C

PUNCH20 (DEVICE= Specification)......... 11
PUNCH42 (DEVICE= Specification)....es... 11
PUT (Macro INStruCtiON.ccceccccceccasess 25

Read-Format Checking.ceeeeeeeececasoseass 17
READO1 (DEVICE= Specification)..... esee. 11
Record

Definition 0f..ieiecieceeecacecacncaneaonas 9

Maximum Length of......ceccevacaaa. 14,15

Minimum Length of....cccceveencaae. 14,15
Relative AdJdresSSinNgeessecscscsascacaeses U1
Restart after a User Programmed Halt.... 33
RFORMTn (Detail Entry)eecececcecsceaasees 17
RFXIT (Detail Entry)..eeee... cecesenacae 18

Sample Program (Appendix D)e.ceececeaes. U2
Definition Statements......... ceeanan . 48
Program COAiNng..eeeeeseceacssesesas 51,54
Projram Data FlOWe.eeeceeeceeesceceaseseass U7
Program Flow Chart...cccececee ce.e. 48-49

Separate AsSsSemMbly..c.cececcacesrscasaacceas D

SEQNCE (Detail ENntry).eeeeececenaceceaaeas 16
Sequence Checking (input records)....... 17
SequenCe ErYOr..eceececececacacsecnsnns «. 16,17
SEQXIT (Detail Entry)eeececeoacososansass 17
Simple Fil€eeueeeeeseeecacancscancececnnss 8
Skipping of Printer FOXrmS....ceceaceses.. 28
Spacing of Printer FOrMSe.ceeeescassasss 27

. Stacking COnNtrol seeeacecccasacncncasass 28

Summary of Detail Entries........... . 20-22
T'ime Reguirements (Appendix B)e.v.ieoeess.. 38
TYPEFLE (Detail Entry).ceceeeececesescess 11

Use of Base RegisterS...ccecececaceccaceass U0
Use Of the TOCS. teeeeerececeancsascssncas D
User-Routines (Appendix C)

Programming of....... ... U0
WAIrC (Macro Instruction)....c.cceeese.. 32
WORKA (Cetail ENtYY) cavceeerecanceoanseas 12
Work Area ConsijerationS.eeceeceesesses. 12

Index 57

GC26-3603-4

TSI

International Business Machines Corporation
Data Processing Division

112 East Pest Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International] :

Q v-€09€-920D V'S’ Ul PaIULid “0E-(0Z "PO)OIES ‘SOOI SdO OZ i9POIN Gy :lms

