
(

I

Systems Reference Library

IBM System/360 Model 44

Programming System

Concepts and Facilities

File No. S360-36
Form C28-6810-1

This publication describes the facilities provided
by the IBM System/360 Model 44 Programming System.

The Model 44 Programming system consists of a
FORTRAN compiler, an assembler, a supervisor, and
system support programs. It provides FORTRAN and
assembler languaqe processing and program execution in
a monitored environment, with automatic job-to-job
transition, interruption handling, and input/output
superv1s1on. The system has facilities for the crea­
tion and maintenance of libraries and the manipulation
of their contents. It also provides extensive job
control and program segmentation capabilities for flex­
ibility and versatility in the preparation of programs
for execution.

44PS

PREFACE

The first section of this publication is
a survey of the basic concepts of the
entire Model 44 Programming System. Subse­
quent sections discuss the operation of the
supervisor and the system support programs.
In addition, there is an appendix describ­
ing the publications that support the pro­
gramming system and a glossary of terms.

In order to understand this publication,
the reader should be familiar with basic
data processing techniques and terminology,
and with the functional characteristics of
the Model 44, as described in the following
publications

Second Edition

IBM System/360 System Summary, Form A22-
6810

IBM System/360 Principles of Operation,
Form A22-6821

IBM System/360 Model 44: Functional Char­
acteristics, Form A22-6875

Related literature on specific
input/output devices, educational material,
etc., is described in the IBM System/360
Bibliography, Form A22-6822.

This is a major reV1S10n of, and makes obsolete, Form C28-6810-0. A
Model LIL1 Programrr,ing System publications plan has been added; the
Appendix headed "Labels and La.bel Processing," which appeared in the
first edition, has been deleted and can now be found in the publication
IBM ~tem/360 Model LIL1 Programming system: Guide to system Use, Form
C28-6R12. Other changes to the text are indicated by a vertical line to
the left of the change; revised illustrations are denoted by the
symbol • to the left of the Fiqure caption.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for readers' comments appears at the back of this publication.
It may be mailed directly to IBM. Address any additional comments
concerning this publication to the IBM corporation, 1271 Avenue of the
Americas, New York, N.Y., 10020.

©1966 by International Business Machines Corporation

2

,1"- '"',

(

MACHINE CONFIGURATION. •

BASIC CONCEPTS • • •

System Components ••••••
Supervisor. • • •
System Support Programs •

5

6

Language Processors • • • • • •

6
6
6
7
7
7
8
8
8

System Construction and Editing •
Absolute Loader • • • • • • • •
Stand-alone Disk Initialization •
Save/Restore.
Print/Punch • • •

System Highlights. •
Job Processing. •
Data Management • • • • •
Libraries • • •• • • • • • •
External Storage Assignment
Summary of Data Management

8
8
9

• • 10
• 11

Relationships. • • • • • • • •• 12
Direct Access Storage Management. • • 12
Input/Output Facilities • • • • • • • 12
Dump Facilities •••••••• ••• 15
Source Language Input 15
compatibility • • • • • 15

THE SUPERVISOR • • •

Communication Region • •

Interruption Handling ••
Supervisor Call Interruption.
External Interruption • • • •
Program Check Interruption.
Machine Check Interruption. •
Input/Output Interruptions. •

• • 17

· 17

• 17
• • 18

· 18
• 18
· 18
• 19

CONTENTS

Channel Scheduler. • • • • • 19

Input/Output Functions • • ••••• 19
Resident Input/Output Functions • 20
Transient Input/Output Functions ••• 20

Input/Output Error Recovery ••

Program Fetch and Program Load

Operator-System Communication.
Messages to the Operator. •
operator Commands • • • • •

Initial Program Loading (IPL)

• • 20

21

• • • • • 21
• • 21
• • 22

Procedure • • • • • • • • • • • • • • 22

SYSTEM SUPPORT PROGRAMS.

Job Control Processor ••
Job Control Language. • •
Sample Deck Setup • • • •

• 23

23
• • •• 23

• • • 26

Linkage Editor • • • • • • • • • • • • • 26
Linkage Editor Processing • 27
Program Structures. • • • 28
Linkage Editor Control Statements •• 28

Utility Programs • • • • • • • • • • 29
Volume utilities. • • • • • • • • 29
Data Set Transmission Utilities • • • 30

APPENDIX: SUPPORTING DOCUMENTATION. • • 31

Topic Index,. 34

GLOSSARY •• 38

INDEX. • · 41

ILLUSTRATIONS

Figure 1. The Condensing Process. • . • 11
Figure 2. Data Management
Relationships • • • • • • . • • • • • • 14

Figure 3. Flow of Control Between
supervisor and Problem Program During
an Interruption •••••••••••• 17

TABLES

Table 1. Symbolic Unit Assignments ••• 13
Table 2. Job Control Summary •••••• 24

Figure 4. sample Deck Setup • • . • • • 27
Figure 5. Example of Use of Main
Storage by an Overlay Program • • • • • 29

Figure 6. Model 44 Programming System
Publications Plan • • • • • • • • • • • 32

(

The minimum machine configuration
required for use of the Model 44 Program­
ming System is as follows:

• IBM 2044 Processing Unit
sole Printer-Keyboard,
Storage Drive, and at
bytes of main storage.

with its
Single
least

Con­
Disk

65,536

• One multiplexor
#4598).

channel (#5248 or

• One IBM 2315 Disk cartridge (used for
system residence).

• One of the following input devices:

IBM 1442 Model Nl Card Read-Punch
IBM 2501 Model Bl or B2 Card Reader
IBM 2520 Model Bl Card Read-Punch
IBM 2540 Model 1 Card Read-Punch
IBM 2401 or 2402 Model 1, 2, 3, 4,

5, or 6 Magnetic Tape Unit
IBM 2403 Modell, 2, 3, 4, 5, or 6

Magnetic Tape Unit and Control
IBM 2404 Modell, 2, or 3 Magnetic

Tape Unit and Control
IBM 2311 Disk Storage Drive

• One of the following devices for list
output:

IBM 1403 Model 2, 3, 7, or Nl
Printer

IBM 1443 Model Nl Printer
Any of the magnetic tape or disk

units listed above

• One of the following devices for punch
output:

IBM 1442 Model N2 Punch
IBM 2520 Model B2 or B3 Punch
Any of the card read-punches listed

above
Any of the magnetic tape or disk

units listed above

MACHINE CONFIGURATION

Notes on configurations:

1. In addition to the foregoing require­
ments, the system supports the attach­
ment of the following units:

A second Single Disk Storage Drive
(with 2315 cartridge) which,
alternatively, may be used for
system residence.

IBM 2311 Disk Storage Drives (with
IBM 1316 Disk Pack)

Additional magnetic tape units (any
of the models listed above)

Up to two additional multiplexor
channels.

2. A system-residence 2315 Disk cartridge
can be created using the minimum
machine configuration, provided the
input device is a card reader. Assem­
bly is not required in this procedure.
However, if it is desired to assemble
the IBM-supplied components of the
system, a magnetic tape unit and a
second single disk storage drive, if
available, can be used in addition to
the basic system to minimize card
handling.

3. If more than 65,536 bytes of main
storage are available, the system will
take advantage of their availability.

4. The FORTRAN compiler requires that the
2044 be equipped with the floating­
point arithmetic feature (#4427). The
assembler also requires this feature
if it is desired to assemble floating­
point constants.

5. The user may modify the supervisor to
include input/output routines for
additional devices.

6. The Read-Backward feature of the 2400
series Magnetic Tape Units is not
supported.

Machine Configuration 5

BASIC CONCEPTS

The IBM system/360 Model 44 Programming
System, like the computing system itself,
is designed to meet the specific needs of
the scientific user. The principal object­
ives of the Model 44 system are to increase
the throughput (i.e., the rate at which
work is handled) performance of the comput­
ing system and, at the same time, to
relieve the programmer of much of the work
involved in program preparation, so that he
can concentrate on the problem-solving
aspects of programming.

SYSTEM COMPONENTS

The system resides on an IBM 2315 Disk
Cartridge mounted on the Model 44 Single
Disk Storage Drive. It includes a supervi­
sor, a set of support programs that perform
system-related and utility functions, and
two language processors: a full FORTRAN IV
compiler and an assembler. It also
includes stand-alone (i.e., not operating
under system control) programs that are not
resident on the 2315 Disk Cartridge as
follows: (1) a program for constructing a
system residence volume, (2) a loader for
loading system-produced programs that are
to be executed independently of system
control, (3) two stand-alone disk initiali­
zation programs, (4) a program for making a
back-up copy of the system residence vol­
ume, and (5) a program to print or punch
all or part of an IBM-distributed tape
containing the programming system.

SUPERVISOR

The supervisor controls the entire sys­
tem and provides a common interface to all
processing programs, including the FORTRAN
compiler, the assembler, the system support
programs, and user-written programs.
Specifically, the supervisor:

6

• Manages the use of system resources. A
resource is any facility of the system
required by a job and includes
input/output devices, data sets (the
term applied to the major unit of data
handled by the system), and processing
programs.

• Loads the appropriate execution phases
from the phase library (i.e., the
library of programs in absolute form,
ready for execution).

• Handles all standard tape label check­
ing, input/output requirements, and

input/output error recovery procedures.
The programmer requests input/output
operations without reference to a par­
ticular device type, so that he does
not have to alter his source program
when data sets are moved from one
device to another.

• Services interruptions and transfers
control to the appropriate system or
user routine for interruption process­
ing.

• Schedules channel use to effect overlap
of processing with input/output opera­
tions.

• Provides for communication with the
console operator.

The supervisor functions are described
in greater detail later in this publica­
tion.

SYSTEM SUPPORT PROGRAMS

The system support programs provide a
wide range of capabilities for use by both
the system .and the programmer.

• Job Control Processor. Job control
statements provide the parameters that
describe the program(s) to be executed
and the resources required to do so.
This program processes the job control
statements and sets up the tables and
communication areas necessary to exe­
cute a particular progro.m. The job
control processor allocates input/
output resources and provides data set
maintenance functions.

• Linkage Editor. The output produced by
the compiler or assembler, called a
module, is in relocatable form. This
program edits the modules into absolute
form, automatically combining these
modules with modules from the module
library (one of the system libraries)
where necessary. Since the formats of
the compiler-produced modules and the
assembler-produced modules are the
same, the linkage editor can combine
modules from both sources. This facil­
ity permits preparation of a program
from parts written in either language.

• Utility Programs. These programs pro­
vide data set transmission and external
storage initialization and maintenance
functions.

, /

(

(

(

The system support programs are des­
cribed in greater detail later in this
publication.

LANGUAGE PROCESSORS

The FORTRAN compiler translates programs
written in the FORTRAN lanquage to
System/360 Model 44 relocatable obiect pro­
gram modules.

The FORTRAN language parallels that of
mathematics and is a familiar tool in
mathematics, science, and engineering.
Variables and constants may be either
fixed- or floating-point values in single
or double precision. In addition to the
capabilities of the language itself, there
is a library of subroutines for performing
common mathematical procedures such as
finding square roots, trigonometric
functions, logarithmic values, etc. The
compiler recognizes the subroutine require­
ments and automatically supplies the link­
ages to the subroutine.

Detailed language specifications for the
Model 44 FORTRAN language are given in IBM
System/360 FORTRAN IV Languag~, Form
C28-6515.

The assembler translates System/360
assembler language programs to relocatable
object program modules. The assembler lan­
guage consists of all System/360 Model 44
instruction mnemonics, literals, and a set
of assembler instructions that direct the
assembly process. The assembler language
includes facilities for updating symbolic
source language data sets by inserting,
replacing, and deleting card images and
reserializing the data set. Detailed lan­
guage specifications for the assembler lan­
guage are given in IBM System/360 ~odel 44
Programming system: Assembler Language,
Form C28-6811.

The assembler language programmer may
use instructions in his program that
request functions from the supervisor. For
example, an instruction to read, included
in an assembler language program, is
actually an instruction to the input/output
procedures portion of the supervisor.

In the case of a FORTRAN proqram, the
compiler generates the instructions that
interact directly with the supervisor. For
example, a READ statement in a FORTRAN
source program causes the compiler to gen­
erate instructions for the supervisor.

SYSTEM CONSTRUCTION AND EDITING

Each system can be tailored to
specific system function requirements

the
and

input/output configuration of the installa­
tion. The installation may modify the
IBM-supplied configuration, deleting func­
tions not required by the installation and
adding installation-created functions and
programs. Depending on the nature of the
modifications desired, there are two meth­
ods of creating a system residence volume:
system construction and system editing.

system Construction

A stand-alone program is provided that
constructs a syste~ (on a 2315 Disk
Cartridge) from absolute and relocatable
decks containing the executable phases and
the relocatable modules the installation
elects to include in its system. Note that
no reassembly of system components is nec­
essary in this process.

All of the announced support will be
included in the decks as distributed by
IBM. As part of the initial program load­
ing (IPL) procedure, the operator may spec­
ify alterations in the predefined device­
channel configuration and unit functions.

System Editing

The installation can edit the system, by
an assembly process, to change or extend
the machine configuration, change the unit
functions, alter the default conditions for
system options, incorporate installation
functions" etc.

ABSOLUTE LOADER

The absolute loader is a self-loading
program that operates independently of
system control. It can be used to load and
transfer control to program card decks
produced by the system's language proc­
essors or linkage editor.

The loader performs no functions ot~er
than loading the program text at the
addresses specified in the cards containing
the text and transferring control to the
entry point specified in the input deck's
END card. Therefore, if the input is
language processor cards that have not been
linkage edited, the deck should not contain
external references or address constants
that require relocation.

Programs loaded in this way are unable
to use any of the programming system's
features, such as input/output handling.
There also is no protection against inad­
vertent destruction of the system residence
volume if it is mounted on-line.

Basic Concepts 7

STAND-ALONE DISK INITIALIZATION

Two self-loading programs, operating
independently of system control, are avail­
able for initializing 2315 Disk cartridges
and 1316 Disk Packs. Their function is to
allocate the space for the volume label and
the volume table of contents, and to write
the label information necessary for the
system to use these volumes.

The stand-alone disk initialization pro­
grams perform the additional function of
checking for defective tracks. If a track
is found to be defective, it is flagged, an
alternate track is assigned, and the system
thereafter uses the alternate track.

These same functions are also available
under system control, via the utilities
processor.

SAVE/RESTORE

The self-loading, stand-alone save/
restore program copies the contents of a
disk onto tape and, when needed, restores
the material to the disk. The save/restore
program can be used to make a tape copy of
the system residence volume. If this disk
volume is ever destroyed inadvertently, the
save/restore program can then be used to
copy the contents of the volume from the
tape back onto the disk.

Detailed information about this program
is available in the Operator's Guide, cited
in the Appendix.

PRINT/PUNCH

The print/punch program enables users to
copy the distributed version of the pro­
gramming system onto a printer or punched
cards. The output includes the absolute
text and relocatable modules from the dis­
tributed tape reel. This program applies
only to users who receive the system on
magnetic tape.

Detailed information about this program
is in the Operator's Guide, cited in the
Appendix.

SYSTEM HIGHLIGHTS

The programming system for the Model 44
is designed to give the user the combined
benefits of efficiency, flexibility" and
ease of use.

For most applications, the programmer
can state his processing requirements very
simply, since most of the processing
options have a default condition that rep-

8

resents the usual case; that is, in the
absence of an option specification, the
system performs in the manner most commonly
required. At the same time, the options do
exist that permit a wide range of flexibil­
ity.

Furthermore, the processing options are
selected in statements that are supplied
independently of the source language pro­
gram itself, so that they can be varied
from one run to the next without altering
the source program. Thus, the programmer,
within reasonable limits, can build and
test his program without regard to the
conditions under which it is finally to be
executed and can, in fact" vary these
conditions from execution to execution.

JOB PROCESSING

The system provides for sequential job
processing with automatic job-to-job and
step-to-step transition. A job, which con­
sists of one or more job steps, is defined
as a unit of processing from the standpoint
of installation accounting and operating
system control. A job step is a unit of
processing from the standpoint of the pro­
grammer. It involves a description, via
job control statements, of the resources
required by and the execution of an expli­
citly defined program.

The job steps in a job need not be
related. However" the system considers
them to be interdependent to the extent
that, if a job step fails in execution, the
entire job is terminated. Furthermore,
certain specifications may be made to
extend over all or selected sequences of
the job steps within the job.

The possible combinations of job steps
that make up a single job permit great
flexibility in the preparation of programs.
The simplest application would involve exe­
cuting a program already in the phase
library. Another Simple application, done
in three job steps, is to compile (or
assemble) a program into a relocatable
module, edit the module into absolute form,
called a program phase, and load and exe­
cute the absolute phase. The intermediate
step, editing, is done by the linkage
editor. The linkage editor can also edit
several relocatable modules together, auto­
matically adding required modules from the
module library, resolving symbolic cross­
references among them, and producing a
single absolute phase. A more complex
application might consist of several
compilation and/or assembly steps" an edit­
ing step that combines their output modules
(and perhaps library modules and modules
that were assembled or compiled in a pre­
vious job) into one or more absolute phas-

(

es, and an execution of one or more of
these phases.

The programmer may retain his program
(or parts of his program) in its relocata­
ble and/or absolute form in direct access
storage or on magnetic tape or cards. The
full range of job processing options for a
sequence of related job steps is described
below. Within one job there may be several
such sequences that are logically independ­
ent of one another.

• Compile (or assemble) Only -- This
option is useful when debugging a pro­
gram or when creating a program module
that is to be combined with other
modules in later jobs.

• Compile (one or more) and Edit, or Edit
Only -- This option is useful in debug­
ging, to ensure that all cross­
references between modules are correct
and/or to retain a program in absolute
format. Note that a job can consist of
a single editing step., editing
relocatable modules from previous jobs.

• compile (one or more)" Edit, and Exe­
cute: or Edit and Execute: or Execute
Only -- Note that a job can consist of
a single execution step, executing a
program that was edited into absolute
form in a previous job.

DATA MANAGEMENT

setting up the mechanics of data and
program storage and retrieval occupies a
large percentage of programming time and
effort. The system provides the programmer
with several aids that reduce this time and
effort both by simplifying the procedures
and by eliminating the redundant effort and
detailed record-keeping frequently asso­
ciated with repeated use of data or pro­
grams.

specifically., the system has facilities
for systematically creating, manipulating,
and keeping track of data sets. A data set
is defined as a named collection of data.
The definition of a data set is solely in
terms of its name: the definition is com­
pletely independent of its data content or
the way in which that data will be proc­
essed. Moreover" a data set is defined
independently of any processing program.

Within a processing program, the pro­
grammer expresses his input/output require­
ments symbolically. That is, just as he
manipulates symbols that represent vari.a­
bles with values to be supplied later, he
specifies input/output operations on a sym­
bolic data set. The re·lationship between a
symbolic reference and the data set whose

data content is to be processed is estab­
lished at the time the processing program
is executed. Thus, the actual data set
that is processed may be varied from execu­
tion to execution without altering the
processing program.

In order for a data set to be used by
the system it must be identified to the
system by both its name and its location.
There are two ways of identifying a data
set to the system. One is called catalog­
ing. The catalog is itself a data set that
the system uses in a special way. Each
entry in the catalog contains a data set
name and an indication of its location.
catalog entries are made at the
programmer's request.

Once a data set has been cataloged, the
programmer can refer to it by name without
regard to its location. Since the catalog
is a part of the system, a cataloged data
set can be referred to and used indefinite­
ly, by any number of jobs, until its entry
is explicitly removed from the catalog.

The physical location of a data set is
entered in the catalog in terms of a volume
identification, i. e •. , the installation '·s
designation of the volume on which it
resides.. A volume is defined as all of
that portion of a storage medium that is
accessible at one time by a unique channel
and unit address. Thus, a volume might be
a 2315 Disk Cartridge, a 1316 Disk Pack, a
reel of magnetic tape, or a card deck in a
card reader hopper.

If a data set is not cataloged, the
programmer may still refer to it by name,
but he must also supply the volume iden­
tification in a job control statement with­
in his job. The data set is then identi­
fied to the system for the duration of the
job.

The space on a volume occupied by a
particular data set is called the extent of
that data set. For a deck of cards or a
reel of magnetic tape, it is not necessary
f.or the programmer to define an extent for
his data set, since only one data set at a
time may occupy or reserve one of these
volumes. For direct access storage
volumes, however., the system must know the
extent of each data set on the volume so
that it can allocate space for new data
sets, locate data sets already on the
volume, etc.

Each direct access volume carries a
volume table of contents (VTOC)1 that iden-

1The VTOC actually contains the collected
data set labels for all data sets on that
volume.

Basic Concepts 9

tifies each data set on the volume by name
and extent. In creating a data set that is
to reside on a direct access volume, the
programmer must specify the anticipated
size of the data set. when the system
allocates space for the data set, it auto­
matically makes an entry in the VTOC.
Later references to that data set cause the
system first to locate the volume (either
from a catalog entry or from a job control
statement giving the volume identification)
and then to search the VTOC for the actual
address of the data set.

Note that the space for a data set is
allocated and named independently of any
reading or writing of the data within it.
Thus, the data set may be empty (i.e., the
space is reserved for data), partially full
(with the potential for later additions),
or completely full. In addition, a data
set may be completely rewritten, i.e., the
data content may be completely replaced.

Data Organization

The facilities for creating data sets
exist principally in the job control proc­
essor. The user may organize his data set
in one of two ways. The first of these,
called seguential, is the familiar struc­
ture in which records are placed in
sequence. Given one record, the next
record to be processed is uniquely deter­
mined. The system processes all data sets
(or members of a directoried data set~ see
below) sequentially. However, the program­
mer may alter the sequence of processing
(e. g •. , for direct access applications)
using input/output functions available in
the system.

In the second organization, called
directoried, each data set is organized in
two parts, a directory and members. The
directory contains the name of each of the
members, a pointer to the location of each
member in the data set, and an indication
of the length of each member. The members
may be program modules or any other data.
Directoried data sets must reside in direct
access storage. The system uses the direc­
tory to locate individual members when they
are required.

Note that a symbolic data set reference
can be related, via job control statements"
to a specific member of a directoried data
set, even though a member is not a data
set, but only a part of one. A member has
the characteristics of a sequential data
set and the processing program is unaware
that it is not a complete data set.

When a member is created, it may be
given more than one name and the multiple
names are also listed in the directory.
This enables the user to obtain the member

10

by using anyone of several names. For
example, consider the case of a member
consisting of one subroutine that performs
both sine and cosine evaluation. If it is
listed in the directory under both SIN and
COS, the programmer can call for the mernber
by a name that is rneaningful in the context
of his program.

The system provides facilities., via the
job control processor and utility programs"
for adding and deleting directoried data
set members. The addition of a member to a
directoried data set is always rnade start­
ing at the end of the last member added. A
deletion consists of simply removing the
member entry from the directory. Thus, it
is possible for a directoried data set to
appear to be too full for a new addition
even though sufficient space is actually
available because of previous deletions.
In these circumstances, the data set can be
condensed. The condense function shifts
the members in the data set to fill up
vacant areas~ the order of the members is
not changed. Figure 1 illustrates the
condensing process.

Whichever organization is used for a
particular data set, the following conven­
tions apply:

1. All data sets on direct access devices
must have fixed-length blocks.

2. More than one data set may occupy a
direct access volume., but each data
set must reside on contiguous tracks
and cylinders.

3. Tape reels may not contain more than
one data set.

LIBRARIES

The system incorporates two directoried
data sets -- the module library and the
phase library.

The module library contains re10catable
program modules, produced by the compiler
or assembler, and is a source of input for
the linkage editor. The FOR'IRAN
input/output conversion and mathematical
subroutines are in this library.

The phase library contains program phas­
es that have been edited into absolute forrn
by the linkage editor~ this library is the
source from which programs are loaded for
execution. The IBM-supplied processors
reside permanently in this library. User­
written programs may reside in this library
either permanently or temporarily (i.e.,
just long enough to be executed once).

Delete LOG, COTAN

Condense

Insert HTAN

SIN
COS

SIN
COS

SIN
COS

TAN LOG

TAN

TAN EXP

TAN EXP

Figure 1. The Condensing Process

The presence of the phase library is
essential to the operation of the system.
Therefore, it resides on the 2315 Disk
Cartridge designated as the system
residence volume. The presence of the
module library is optional and it need not
reside on the system residence volume.

As with any other directoried data sets,
the programmer may make additions to and
deletions from the libraries, condensing as
necessary. Note, however, that all addi­
tions to the phase library must be made via
the linkage editor.

EXTERNAL STORAGE ASSIGNMENT

All references within a
external storage are made
symbolic data sets, which
associated with symbolic unit
programmer uses job control

program to
in terms of
are in turn

names. The
statements to

End Of

EXP COTAN ARCTAN

ARCTAN

ARCTAN

ARCTAN HTAN

specify the assigning of a symbolic unit to
an actual data set or member of a director­
ied data set.

The standard input/output device assign­
ments and disk storage space allocation
required by the system components and most
problem programs are defined as data sets
and associated with symbolic unit names
during construction (or editing> of the
system. The term for the predefined data
set-symbolic unit relationships is system
units. The programmer can use these data
sets during his job simply by referring to
their symbolic unit names; he need not be
concerned with their type or whereabouts.

If the programmer requires access to
data sets whose symbolic unit assignments
are not predefined, or if he needs to
preserve data sets that normally are asso­
ciated with system units, he may request
the assignment of a symbolic unit to the

Basic concepts 11

desired data set (or member of a director­
ied data set). The volume and the location
on the volume of the data set is either
already known to the system (the data set
already exists), or the system is to allo­
cate an extent and name it (the data set is
to be created).

If the symbolic unit name is the same as
one of the predefined system unit names,
the effect is to redefine the data set
assignment temporarily. For example, the
normal source for system input might be the
card reader: the programmer can temporarily
reassign this function to a data set on a
specific reel of magnetic tape and the
system will then take his input from that
data set.

A symbolic unit can be associated with
only one data set at a time, but different
symbolic units can be assigned to the same
data set at the same time.

Requests for assignments are made in job
control statements that are part of the job
but independent of any job step within the
job. In any case, within a job step the
programmer can refer to all data sets (or
members of a directoried data set) symboli­
cally, so that he is not concerned with
device addresses and disk space allocation
when writing his program.

Table 1 consists of a
predefined symbolic units by
data set name" function,
device type.

list of the
symbolic name,
and potential

SUMMARY OF DATA MANAGEMENT RELATIONSHIPS

Figure 2, using the 2315 Disk cartridge
as an example., illustrates the relation­
ships involved in data management and the
times at which they are established.

DIRECT ACCESS STORAGE MANAGEMENT

The system controls the disposition of
all direct access storage space. In order
to keep track of the space that is in use,
the system creates a special label on each
direct access volume as part of volume
initialization. This label, called a for­
mat 5 label,1 indicates the extents of any

1This is a label designation of Operating
System/360, which supports a volume label,
five standard direct access storage data
set labels and the standard magnetic tape
data set labels. Of these labels, the
Model 44 Programming System supports the
creation and use of the volume, formats 1,
4, and 5, and the tape labels.

12

space that is not occupied by a data set.
Each time a data set is added to or deleted
from a volume, the system automatically
updates the format 5 label.

All direct access storage space is allo­
cated in units of a full track, starting at
a track boundary. If the programmer
requests an amount that results in a par­
tial track, the system automatically
extends the amount to the next track bound­
ary.

The locations occupied by one data set
must be contiguous in the volume. If there
is sufficient space on a 2315 Disk Cart­
ridge for a new data set but the space is
not properly located (i.e., it is not
contiguous), the volume may be squeezed in
a manner similar to the condensing function
available for directoried data sets. This
function shifts the data sets on the volume
to fill up lower numbered tracks that are
not in use, deleting expired data sets.
Once a disk volume has been squeezed, all
the available space starts at the end of
the last data set and continues to the end
of the volume. The system updates the
format 5 label and all affected volume
labels as part of the squeezing process.

Note that squeezing a volume is a func­
tion of the utility processor, whereas
condensing a directoried data set is a
function of the job control processor.

Since the system identifies a data set
by its extent as well as its name, any
attempt to write beyond the extent ~s
considered an error. Thus, if it is neces­
sary to enlarge a data set beyond the
boundaries initially set for it, the pro­
grammer must request allocation of an
entirely new area, big enough to contain
his entire enlarged data set.

INPUT/OUTPUT FACILITIES

The system provides two levels of
input/output facilities. At the higher
level, called read/write, the programmer
invokes read/write functions to call system
routines that will execute the input/output
operation. The lower level, called execute
channel program, uses a combination of
routines supplied by the programmer and the
system. Assembler-language programmers
invoke the input/output functions, at both
levels, via an assembler-language calling
sequence.. The FORTRAN programmer is not
concerned with either level, since his
input/output requests are handled by the
FORTRAN compiler.

(~"

(

("

.Table 1. Symbolic Unit Assignments
r------T--------T---T----------------,
I Unit IData setl I Perm~ssible I
I Name I Name1 I Function I Devices 2 I
~------+--------+---+----------------~
SYSAB1 I SDSABS3 Phase library; used by program fetch and Disk

I load routines.
I

SYSAB2 I SDSABS3 Phase library; used by linkage editor.
I

SYSREL SDSREL Module library; used by linkage editor. Disk

SYSLOG SDSLOG

SYSRDR SDSRDR

SYSIPT SDSIPT

SYSLST SDSLST

SYSOPT SDSOPT

SYSPCH SDSPCH

SYSUAS SDSUAS3

SYSPSD SDSPSD

Operator-system communication.

Job control processor input.

Processing program input; may be same as
SYSRDR.

System and diagnostic print output and all
job control statements.

Processor and user print output; may be same
as SYSLST.

Punch output.

Job control unit assignment spill.

Pseudo-directory to data set on SYSOOO:
output from FORTRAN compiler, assembler;
input to linkaqe editor.

I

Console Printer­
Keyboard

Card Reader
Magnetic Tape

Card Reader
Magnetic Tape

Printer
Magnetic Tape

I Printer
IMagnetic Tape
I
I Punch
IMagnetic Tape
I
Disk

Disk

ISYSDMY General system use.
I
I
I
I

SDSCAT3

SDSIPL3

SYSOOOISDSOOO

SYS001 SDS001

SYS002
SYS003

SYS004

Catalog data set.

Initializing routine for IPL procedure.

Output from FORTRAN compiler, assembler;
input to linkaqe editor.

General system work data sets; may be used
by any processing program.

Not used by system except that certain
assignments are necessary for the utility
processor and the assembler when
using the update feature.

Not used by system. The availability of
all or some of these units above SYS005
depends upon the installation.

Disk

Disk

Disk
Magnetic Tape

IDisk
IMagnetic Tape
I
IAny device
I
I
I
I
I
I
I
I

SYS240 I
~------~--------~---~----------------~
I 1 The names SDSABS and SDSUAS are used by the system and, therefore, cannot I
I be changed; the other system data set names are installation-assigned. The I
I names listed here are used throughout the Model 44 publications to refer I
I to these data sets. I
I 2 Except for data sets on the system residence disk, these data sets may be I
I on devices other than those listed in this column. In most cases, however, I
I some loss in efficiency results. I
I 3 Must be on system residence volume (a 2315 Disk cartridge). I L __ J

Basic Concepts 13

Device -­
Model 44 with
Single Disk
Storage Drive

Volume --
2315 Disk
Cartridge

W
I \

I \
I \

©
I \
I \

r-------r-----~-,
Extent -- C ~ I

~Timeat

which reiationship
is established.

By supervisor,
as required.

By job control
processor, when
data set is created.

PROCESSING PROGRAM

r------,
: Symbolic I
,Unit I
L _____ ...I

By programmer, in
assembler language
source program, or
by compiler, during
compi lotion. I Full track{s) .--/ I

I • I By job control
I is identified with I processor, when

access to data set
I I is requested. r-- ---,
I Data Set Any content' I _ " Symbolic I
I II~~~--------------------------~-~.

During program execution, ' Data Set I
L _____ ----_______ ...1 when input/output operations L_.'3.:~~!::_...J

are performed on a data set.

'If a data set is directoried, the symbolic unit assignment can be to a specific member rather than to the entire data set, and the member is treated
as a data set for the duration of the ass ignment.

Figure 2. Data Management Relationships

Use of the read/write level gives the
assembler language programmer device inde­
pendence. He can specify his input/output
requirements without indicating a particu­
lar device type or device address. This
enables him to concentrate on the main
elements of his program and also eliminates
the need to revise programs when data sets
are moved to different devices.

Device independence is made possible by
the system's use of control blocks for each
active symbolic unit and data set. When a
program calls for an input/output opera­
tion, the system examines the current con­
trol blocks for the unit and data set to
determine which input/output routines must
be used.

The system's
(EXCP) level is
with nonsupported
wish to replace
system"s routines

Data Format

execute channel program
for programmers working
devices and for those who
or supplement some of the
with their own.

All blocks within a direct access data
set must be of the same length, although
block lengths may vary among different data
sets. Tape data sets may contain variable
length blocks. The programmer is
responsible for all blocking and unblocking
of logical records within a block.

14

Channel Overla2

Input/output operations normally are
overlapped with the main program's process­
ing. The system makes maximum use of this
overlap capability whenever possible. A
programmer can" however, suspend processing
until an input/output operation has been
completed and he has made sure the trans­
mission was successful. In any case, the
system always examines the last operation
that used the control block before starting
another operation for that same control
block. This examination is made each time
the program calls for- an input/output
transmission. All unusual conditions are
indicated to the program.

Control Blocks

All communication between the problem
program and data sets at the read/write
level is made through a request control
block. This block is provided by the user
and maintained by the system throughout the
processing of one input/output request.
When the program calls for a read/write
operation, the system examines the request
control block provided by the user for
information about the request and data set
involved. It uses this information to
determine the status of the data set~ which
device is involved, and which device­
dependent routines are needed to satisfy
the request. (This information is

(

(

maintained by the system in control blocks
provided by the system.)

The request control block contains an
input/output block that is the basic struc­
ture for communication between the
read/write level and the channel scheduler.
The channel scheduler is a set of routines
that keep track of the requests for use of
devices on each channel and actually ini­
tiate the input/output operations.

Request control blocks are allocated by
the user in main storage and partially
filled out by the user; the system main­
tains the control information in the block
during program execution.

Detailed information on constructing and
using request control blocks is available
in the publication IBM System/360 Model 44
R~Qg~ammi~~~ystem: Guide to System Use.
Form C28-6812.

Execute Channel Program (EXCP)

The execute channel program (EXCP) level
of the system enables a programmer to work
with devices not supported by the system.
provided they transmit acceptable channel
end. device end, and control unit end
signals. The EXCP level also enables a
programmer to replace or supplement some
system routines with his own.

The EXCP level schedules input/output
requests" starts command execution. directs
interruption handling" and restarts channel
acti vi ty,. when necessary. An EXCP level
programmer must be familiar with the
system's control blocks and must provide a
channel program and an interruption analy­
sis routine for each request he issues.

Interruption analysis routines are
device-dependent routines that maintain the
status of an operation. examine the results
of an interruption for errors or unusual
conditions. and initiate any necessary
error recovery procedures.

The EXCP level programmer must construct
an input/output block for the system to use
in order to communicate with the channel
scheduler. He also must be familiar with
the unit control block for each device he
uses. This block reflects the current
status of the device.

The system's EXCP scheduler examines
input/output requests to ensure that they
are properly constructed. An invalid
request causes abnormal termination of the
operation. The scheduler also checks to
see whether there is room for the request
in the channel queue and whether the chan­
nel and device are available. If the queue
is full, the request is held until there is

room for it, and control then returns to
the calling program. The request is exe­
cuted as soon as the device and channel are
free and previous requests for the same
facilities have been satisfied.

DUMP FACILITIES

The system provides two types of dump
facilities:

L. The programmer can specify in his job
control statements that, in the event
of an abnormal termination (e. g .• " one
that results from a program check
interruption), the system is to pro­
duce a hexadecimal dump before pro­
ceeding to the next job.

The console operator can also
request this dump when he terminates a
job with a cancel command (see
"Operator-System Communication").

2. The subroutines DUMP and PDUMP, which
reside in the module library, can be
linkage-edited into the program and
called by source program statements.
These subroutines provide for dumping
programmer-specified areas of main
storage with the following format
options: hexadecimal, integer, real.
logical; complex" and literal.

The DUMP routine causes the job to
terminate after the dump is taken; the
PDUMP routine returns control to the
calling program.

SOURCE LANGUAGE INPUT

Input to the FORTRAN compiler may be in
either Extended Binary-Coded-Decimal Inter­
change Code (EBCDIC> or Binary-coded­
Decimal Interchange Code (BCDIC).

Input to the rest of the system (i. e.,
the assembler language statements. job
control statements" linkage editor control
statements, utility control statements)
must be in EBCDIC.

COMPATIBILITY

The Model 44 Programming System rep­
resents a selected subset of the features
available in the IBM System/360 programming
support systems designed for the Models 30.
40. 50. 65, and 75 specifically.
System/360 Operating System (OS/360>.
System/360 Disk Operating System (DOS/360>.
System/360 Tape Operating System (TOS/360>,
and System/360 Basic Operating system

Basic concepts 15

(BOS/360).1 Thus, there are certain areas
of compatibility and interchangeability
among these systems. as described below.

Source Languages

Source programs written in the Model 44
FORTRAN language can. without modification,
be compiled by the OS/360 FORTRAN IV com­
piler for execution under control of
OS/360. This also applies to DOS/360,
TOS/360, and BOS/360. provided that the
source program observes the language level
supported by those systems.

Source programs written in the Model 44
assembler language can be assembled. with
minor modification. by the OS/360. DOS/360"
or TOS/360 assembler. Modification
includes any source statements involving
subroutine linkages or supervisor functions
and statements using machine instructions
peculiar to the Model 44 or assembler
instructions peculiar to the Model 44
assembler. The assembler language publica­
tion cited in the Preface includes a
detailed list of the limits on the features
of the Model 44 assembler language.

Data Sets and Volumes

Removable volumes (2400 Series Magnetic
Tape Reels, 1316 Disk Packs) are inter­
changeable between the Model 44 using the
Model 44 system and other System/360 models
using OS/360, DOS/360'1 TOS/360. or BOS/360"
subject to the following conditions:

1Publications detailing these systems are
listed in the IBM System/360 BiRlioqraphy.
Form A22-6822.

16

All data sets to be read by the Model
44 system must be organized sequen­
tially, and contained in single
extents on single volumes. They may
not contain any checkpoint records.
If they are on a direct access device.
they must be of fixed block length.

Data sets produced at the read/write
level of the Model 44 system can be read
and updated at the highest level of 08/360.
008/360. TOS/360. or BOS/360 if the user
maintains their standard fixed-length (type
F) or variable-length (type V) logical
record formats within the blocks.

A volume created by OS/360 can be read;
updated. and written by the Model 44 sys­
tem.

A volume created by DOS/360. TOS/360. or
BOS/360 can be read and updated by the
Model 44 system. but no additional data
sets may be written on it except where the
format 5 label is up to date. These
systems create a format 5 label (i.e. "
reserve space for it) at the time of volume
initialization, but do not maintain it. A
Model 44 utility function. map. is avail­
able for updating the format 5 labeL

Label formats 2 and 3 do not apply to
the Model 44 system. If they are present
on a volume they will be ignored except by
the map function.

The 2315 Disk cartridge volumes produced
under the Model 44 programming system are
not compatible with those produced under
the programming systems for the IBM 1800
and 1130 systems,. and vice versa.

(

(

(

The supervisor is the portion of the
system that controls system operation; it
also performs functions required in common
by the various processing programs. includ­
ing user-written programs.

The routines that collectively make up
the supervisor fall into two categories,
resident and transient, defined by their
use of main storage. The resident routines
are always present in main storage and
represent functions that frequently are
used or that simply must be present for the
system to operate at all. The functions
provided by the resident supervisor
include:

Communication region
Interruption handling
Program fetch and program load
channel scheduler
Input/output routines
Resident input/output error recovery
Timer services

The transient routines share a prede­
fined area of main storage. They are
loaded only when their functions are needed
and overlay each other in the transient
area. The major functions of the transient
supervisor include:

Input/output error recovery
Operator communications
open, close functions

COMMUNICATION REGION

The communication region is an area
within the resident supervisor main storage
wherein the job control processor stores
parameters to direct the system in process­
ing the next job step. It provides for
communication between the supervisor, and a
processing program, and among processing
programs. Included in this area are option
parameters, parameters describing the lim­
its of main storage, the job name, etc.

The job control processor is described
in the section "System Support Proqrams."

INTERRUPTION HANDLING

An interruption is an automatic transfer
of control from any storage location to a
predetermined storage location. It can be ~
caused by either a program instruction or a
machine condition. The supervisor automat­
ically handles all interruptions so that

THE SUPERVISOR

the programmer need not be directly con­
cerned with them. In most cases., after an
interruption is handled, control is
returned to the pOint of interruption as if
no break had occurred in the instruction
sequence.

There are five kinds of interruptions,
as follows:

1. Supervisor call

2. External

3. Program check

4. Machine check

5. Input/output

Interruption

SUPERVISOR

PROGRAM

(Problem Program State) (Supervisor State)

*Return from a program check interruption is dependent on the type of
interruption and whether the problem program has requested control.

Figure 3. Flow of Control Between supervi­
sor and Problem Program During
an Interruption

Figure 3 illustrates the flow of control
between the supervisor and a problem pro­
gram during an interruption. control is in
the probl~m program initially. An inter­
ruption occurs, the status of the program
is saved in the old Program status Word

The Supervisor 17

(PSW). and control is transferred to the
supervisor. Depending on the type and
reason for the interruption, control is
given to an appropriate handling routine.
Upon completion of the routine, the program
may be restored to its original condition
(via an old PSW). Control normally is
given back to the problem program at the
point where it was interrupted. If
desired, the user may have control of
certain types of program check and external
interruptions.

SUPERVISOR CALL INTERRUPTION

The supervisor call interruption is
caused when the SVC instruction is execut­
ed. The SVC instruction provides communi­
cation between the problem program and the
supervisor. Each SVC has a certain inter­
ruption code that indicates to the supervi­
sor which interruption handling routine is
to be executed.

The interruption routine analyzes the
code and transfers control to another rou­
tine within the supervisor, such as the
program fetch routine, for the actual han­
dling of the interruption.

EXTERNAL INTERRUPTION

An external interruption can be caused
by the timer feature, or by the operator
pressing the console interrupt key, or by
an external signal. Interrupt-key and
external-signal interruptions are not sup­
ported by the Model 44 system; control
returns immediately to the point of inter­
ruption.

If a timer interruption occurs# control
is given back to the interrupted program
unless the user has provided an address of
his own handling routine. When this is the
case, control is transferred to the address
specified.

The Timer Feature

The timer feature enables the supervisor
to:

1,. Maintain the time of day, to which the
user can refer at any point within the
execution of the problem program.

2.

3.

18

Time-stamp
job. This
accounting
a job log.

the beginning and end of a
information can be used for

and can be incorporated in

Set the timer for a specified interval
of time and to transfer control to a
prespecified user's routine after the
time interval has elapsed, provided

this occurs during execution of the
job step that set the timer.

If the presence of the timer feature is
not specified when the system is edited,
all timer interruptions are ignored and
control is returned immediately to the
interrupted program.

PROGRAM CHECK INTERRUPTION

A program check interruption is caused
by unusual conditions encountered in the
program (e.g., overflow). A programmer can
select one of the following options to be
taken in the event of a program check
interruption. The third option., however,
is not available for all types of program
check interruptions.

1. Cancel: The job being executed is
terminated and a message to the opera­
tor describes the cause of the termi­
nation.

2. Dump and cancel: In addition to a
message, all registers, all program
status words, and the problem program
area are printed in the system listing
data set. The job is then terminated.

3. Transfer to user routine: If the
address of a subroutine is supplied by
the user, the program-check interrup­
tion routine will branch to that sub­
routine when an appropriate interrup­
tion occurs. The user routine can
determine the cause of the interrup­
tion and handle it accordingly.

MACHINE CHECK INTERRUPTION

A machine check interruption results
from a machine malfunction. When such an
interruption occurs, the supervisor
attempts to list, on the Console Printer­
Keyboard, information regarding the status
of the system when the interruption
occurred. This information is used as an
aid in diagnosing the source of the error.

The machine check old program status
word and the failing instruction are list­
ed. The information listed after this is
in one of five formats, depending on the
error type and condition of the system, as
follows:

1. Parity check: The contents of the
general registers, the numbers of reg­
isters that are out of parity, and the
location and contents of any storage
locations that are out of parity.
Register 15 is an exception; if it is
out of parity, the condition is indi­
cated only if the error is permanent.

2. External machine check: The channel­
unit addresses and the. Channel Command
Words of the last eight input/output
devices started.

3. Channel check on initial selection:
Same as external machine check, plus
the contents. of the general registers,
the Channel Address Word, and the
Channel Command Word of the selected
device.

4. Parity and channel check: The
combined information specified in
items 1, 2, and 3, above.

5. Control check only: The contents of
all general registers.

The system then can be restarted only
through an initial program loading proce­
dure.

INPUT/OUTPUT INTERRUPTIONS

An input/output interruption can be
caused by:

1. End of input/output data transmission
(channel end). The channel has com­
pleted sending to a device the infor­
mation 'needed to carry out an
input/output operation. The channel
is now available for another opera­
tion.

2. Input70utput attention. This results
from pressing the request key of the
Console printer-Keyboard.

3. Device available (device end). A
device that was busy or not ready is
now available for use.

4. Control unit available (control unit
end). A control unit that was busy is
now available for use.

When one of these conditions is detect­
ed, control transfers to the channel
scheduler.

CHANNEL SCHEDULER

The channel scheduler is a supervisor
routine that keeps track of channel activi­
ty and initiates the actual input/output
transmissions.

The channel scheduler examines the sta­
tus of the requested facilities and sched­
ules the request. If facilities are not
available, the request will be queued.
When they are free, the channel scheduler
examines the type of request in the queue
and the order in which the requests were

received and schedules operations to make
the most efficient use of all available
channel resources.

The channel scheduler is device indepen­
dent. It must know what device is request­
ed and must keep track of whether that
device is busy or available. It is con­
cerned with the mode of operation of the
device, whether burst, byte, or overrun­
able, but it is not concerned with the type
of device. The channel scheduler examines
the appropriate control block to determine
whetber a device-dependent initialization
routine must be entered. The initializa­
tion routine sets up the command or chains
of command needed to satisfy the request,
if it has not been constructed previously.
when its work is finished, it returns the
address of the command list to the channel
scheduler, which starts the transmission.

When there is a channel end interruption
without device end, the inte~uption han­
dler transfers control to the channel
scheduler, which examines the queue for
requests for other devices. If such a
request is pending, the operation is start­
ed. When 'the interruption handler trans­
fers control to the channel scheduler after
a device end interruption, the channel
scheduler passes control to a device­
dependent interruption analysis routine.
This routine examines data sent from the
device and the channel to determine whether
the transmission was successful. An error
recovery procedure is entered when an error
or unusual condition is detected. Then,
unless execution of additional commands is
required to satisfy the request, control
returns to the interrupted program. If
further command execution is needed,
control returns to the channel scheduler.
No other operation for the same device is
initiated until this additional sequence is
completed.

I When an error cannot be recovered, the
condition is noted for the problem program.
Further action is up to the programmer.

Note that execute channel program (EXCP)
level programmers must supply their own
interruption handling routines. The system
handles these functions for the read/write
programmer.

INPUT/OUTPUT FUNCTIONS

This section contains a list of the
input/output functions available to an
assembler-language programmer; they are
invoked by assembler-language calling
sequences. A brief description of the
function's purpose accompanies each entry.
Note that in the function descriptions the
term "data set" is used to mean both an

The Supervisor 19

entire data set and a member of a director­
ied data set.

The first group. resident input/output
functions. includes the functions most com­
monly used in a program, such as read and
write. The supervisor routines required to
execute these functions always are present
in main storage.

The second group., transient functions.,
includes the open and close operations.
The routines for these functions are less
frequently used in a program and are called
into main storage only when actually need­
ed. If a program uses more than one data
set, time can be saved by grouping open
functions together and close functions
together so that these transient routines
do not have to be recalled frequently.

RESIDENT INPUT/OUTPUT FUNCTIONS

The Read Function: The read function is
used to transmit data from a data set to an
area of main storage. Its parameters
include the name of a request control block
set up earlier by the program. Before
starting any new operation, the system
examines this block to determine whether
there was an error or unusual condition
(EOF, EOV) in the last previous operation
if any, using the same block. If there is
any unusual condition, an indication is
returned to the program and the read is not
started.

The Write Function: The write function is
used to transmit data from an area of main
storage to a data set. The system makes
the same examinations and takes the same
action in cases of error as it does for the
read function.

The Check Function: The check function is
used to determine that an input/output
operation has been completed successfully
before processing resumes. This function
resets the request control blocks and
allows issuing of a new input/output
request even if the checked operation was
abnormally terminated.

The Note Function: The note function is
used to determine the current position, in
terms of a block number., of a symbolic unit
relative to its beginning. The note func­
tion generally is used in conjunction with
the point function (see below). These two
functions enable the programmer to process
data sets in a nonsequential manner.

The Point Function: The point function is
used to reposition a symbolic unit to a
specified data block. The programmer spe­
cifies the desired block by supplying its
block number relative to the beginning of

20

the data set (or member). Thus. an argu­
ment of zero results in the symbolic unit
being positioned at the beginning of the
first data block.

The write-End-of-File (WEF) Function: The
WEF function is used to write an end-of­
file mark.

The Rewind Function: The rewind function
is used to rewind a magnetic tape volume to
its load point or, on a direct access
volume, to position a symbolic unit to the
first block of a data set.

The Unload Function: The unload function
is used to rewind and unload a magnetic
tape volume or, on a direct access volume,
to position a symbolic unit to its first
block.

The above read/write-level functions
make use of the following resident
functions, which can be called directly by
the EXCP-Ievel programmer:

The Execute Channel Program (EXCP) Func­
tion: The EXCP function is used by pro­
grammers at the execute channel program
level to initiate an input/output opera­
tion. All control blocks and interruption
analysis routin~s must be constructed
before this function is invoked.

The Wait Function: The wait function is
used to suspend all processing until an
input/output operation is completed.

TRANSIENT INPUT/OUTPUT FUNCTIONS

The Open Function: The open function caus­
es the system to validate tape labels, if
any, and to reposition symbolic units, if
necessary. All data sets should be opened,
regardless of whether the programmer is
operating at the read/write level or the
EXCP level.

The Close Function: The close function,
when applied to a data set on magnetic
tape, instructs the system to write any
necessary end-of-file marks and trailer
labels. This function also is used to
indicate the disposition of a data set or
volume (e.g., whether a magnetic tape reel
should be unloaded, rewound, or left as it
is),

INPUT/OUTPUT ERROR RECOVERY

Examinations for input/output errors and
unusual conditions are made at three points
for programs at the read/write level.

The first check is made when a program
calls for an input/output operation. The

(program's request is examined, and the
operation is cancelled if errors are found.

Another check is made immediately after
the system initiates the physical opera­
tion. The system makes certain the command
has been accepted by the channel and device
and that the operation has started proper­
ly. Action is terminated if this examina­
tion reveals program errors or a non­
operational device. In some cases. such as
when the device has not finished execution
of a previous command, control returns to
the interrupted or calling program until
the device is free and the system can
reissue the command.

The final check is made immediately
after completion of the physical operation.
At this time., the system examines data
provided by the channel and the device. If
the possibility of error or an unusual
condition is indicated, the system normally
issues another command that causes the
device to provide additional, more detailed
information.

Interruption Analysis Routines

The examinations for unusual conditions
at the completion of physical operations
are made by the system's interruption
analysis routines. When no errors are
detected, these routines mainly act as
record keepers" noting such data as the
number of blocks read or written, and
preparing the system for the next
input/output operation for the data set.

Interruption analysis and error recovery
procedures differ according to the type of
device. In some cases (e.g., a reader
check), when an error condition can be
removed by operator intervention, a message
is written on the Console Printer-Keyboard.
Normally, the system repeats the
input/output operation, a process that
eliminates the most common errors. No
other operation is initiated for the device
while the error recovery procedure is in
progress. If the error continues to appear
and is classified as permanent, the system
updates the count of permanent errors in
the unit control block for the device.
Unusual conditions are indicated to the
program.

Programmers at the EXCP level must han­
dle their own interuption analysis and
error recovery routines. The same channel
and device data that the system uses is
made available to these programmers in the
input/output control block and the unit
control block. Detailed information on
this data and the conditions to be checked
can be found in the publication IBM
System/360 principles of Operation, Form
A22-6821, and appropriate device manuals.

PROGRAM FETCH AND PROGRAM LOAD

Any program that is to be executed under
system control must reside in absolute form
in the phase library. This includes the
supervisor transient routines, the language
processors, the system support programs,
and all user-written programs. Within the
library, programs are stored as phases.
Each phase represents a segment of code
that is to be loaded into main storage at
one time. The phase may be an entire
program, or a part of a multiphase program.

The program fetch function loads a phase
into main storage from the phase library
and transfers control to the phase entry
pOint, an absolute address specified at the
time the phase was processed by the linkage
editor. A fetch operation may be invoked
automatically by the supervisor (e.g., when
it is necessary to load a transient
routine) or by the job control processor
when it processes an EXEC (execute) state­
ment, or explicitly by processing programs
that are multiphase.

The program load function also loads
phases into main storage from the phase
library, but it does not transfer control
to the entry point. Instead, it returns
control to the invoking program. The phase
load address may be one of the parameters
supplied when the load function is invoked,
thus permitting the programmer to relocate
a phase at load time. The load operation
can be invoked explicitly by processing
programs. This function allows the pro­
grammer to load phases of nonexecutable
code (e.g., tables).

The organization of programs into multi­
phase structures is discussed in "Linkage
Editor. n

OPERATOR-SYSTEM COMMUNICATION

The supervisor provides for two-way com­
munication between the operator and the
system, via the Console Printer-Keyboard.
Three types of communication are permitted:

1. Messages to the operator.

2. Operator response to requests
operator action.

for

3. Operator-initiated commands to the
system.

MESSAGES TO THE OPERATOR

Messages to the operator can be initiat­
ed by the system or by the programmer's job
(via the job control PAUSE and comments
statements).

The Supervisor 21

The messages may indicate that an opera­
tor action (e.g., mounting a volume) or
decision is required, or they may simply
contain information (e.g., for a job log).
In the first case, the system will suspend
processing until the operator responds with
an indication that the action or decision
is complete. In the second case, process­
ing continues without interruption.

OPERATOR COMMANDS

The operator may enter a command in any
of the following instances:

1. He has pressed the request key.

2. The system has requested operator
response and processing has been sus­
pended.

3. The job has requested operator
response with a PAUSE statement and
processing has been suspended.

There are three types of operator com­
mands: intervention, input/output, and
information. Except for the intervention
commands, the system will accept only com­
mands that are entered between jobs.

Intervention Commands

The intervention commands, which are
accepted at any time:

1. Immediately cancel the job currently
being executed and proceed to the next
job. The operator may request a dump
in the cancellation command and the
system will produce a hexadecimal dump
before proceeding to the next job.

2. Cause the job control processor to
pause at the end of the job currently
being executed. This allows the issu­
ing of other operator commands at a
time when they can be accepted.

Input/Output Commands

The input/output commands provide the
following functions:

1.

2.

22

Assign a symbolic unit to a physical
input/output device.

Indicate that a device is temporarily
unavailable to the system.

3. Indicate that a device has been
restored to availability status.

4. Indicate the addition of a device to
the machine configuration.

5. Indicate the deletion of a device from
the machine configuration.

The fourth and fifth input/output com­
mands permit temporary alteration of the
machine configuration (until the next IPL).
They may be issued only as part of an IPL
procedure (see below).

Information Commands

The information commands provide the
following functions:

1. List the input/output assignments cur­
rently in effect.

2. Initialize the date and time of day.

3. Indicate the end of operator commands
so that the system can proceed to the
next job step.

INITIAL PROGRAM LOADING (IPL) PROCEDURE

Operation of the Model 44 system is
initiated through an initial program load­
ing (IPL) procedure. An IPL procedure is
required whenever it is necessary to load
or reload the system. It consists of three
steps.

During the first step, the operator
mounts the system residence volume on the
appropriate disk storage drive, sets the
address of this unit on the console load
address switches, and presses the Load key.

During the second step, the operator may
issue the input/output commands to modify
the list of available input/output devices.
He then issues a command to declare the
date and time of day. This is the only
point in the IPL procedure at which these
commands may be issued. These commands are
effective only for the duration of one IPL
procedure; they must be reissued if they
are to be in effect during the next itera­
tion of the procedure.

The standard system
and the corresponding
during the third step.
begins job processing.

units are defined
volumes are mounted

The system then

There are three processors, resident in
the phase library, that are classified as
system support programs. Two of these, the
job control processor and the linkage edi­
tor, are integral to the operation of the
system. The third processor is a collec­
tion of programs that provide utility func­
tions under control of the system.

JOB CONTROL PROCESSOR

The job control processor is loaded
(originally during the initial program
loading procedure and. thereafter, by the
program fe~ch routine) between successive
job steps. It then proceeds to read and
interpret job control language statements
from the system reader unit.

The principal function of the job con­
trol language is to describe the ;ob step
to be done -- the program to be executed
and the information required to do so.
From the information in the job control
statements, the processor sets up. within
the supervisor, the input/output tables,
program parameters, communication words,
etc., that define the requirements for this
step.

When all of the job control statements
for this step have been processed, the
processor returns control to the supervi­
sor. The supervisor then fetches, from the
phase library, the processing program asso­
ciated with the step and loads it over the
job control processor. Actual control of
the step during execution is a function of
the supervisor. At the end of the job
step, the supervisor again loads the job
control processor.

The job control language is also used to
call special functions of the job control
processor that are not associated with a
particular job step (e.g., condensing a
directoried data set).

JOB CONTROL LANGUAGE

The statements in the job control lan­
guage fall into four categories_ as fol­
lows:

SYSTEM SUPPORT PROGRAMS

1. Job Definition These statements
define the program execution require­
ments (i.e., which programs and in
what sequence) for the job.

2. symbolic Unit Assignment -- These
statements describe the data set and
device resources the job will need
during execution.

3. Data Set Maintenance These state-
ments specify some action to be taken
on a data set.

4. Miscellaneous Functions These
statements specify comments, operator
action pause, or repOSitioning a vol­
ume.

The job control statements are grouped
by category and summarized briefly in Table
2. The double slash (//), the slaSh fol­
lowed by an ampersand (/&> or an asterisk
(/*>. or the asterisk alone (*> identify
these statements as job control statements.

Job Definition Statements

The JOB Statement: The JOB statement is
required for each job and must be the first
card of the job deck. It supplies account­
ing information to the installation
accounting routine and indicates the start
of the job control information for this
job. It is also used to specify that a
dump is to be taken in the event that the
job fails in execution.

The EXEC Statement: The EXEC (execute)
statement is required for each job step and
must be the last job control statement
before execution of a processing program.
It indicates the end of control card infor­
mation for a job step and that execution of
the processing program for this step is to
begin. The processing program named in an
EXEC statement must reside in absolute form
in the phase library.

If the program name field of the EXEC
statement is blank, the preceding job step
must have been an execution of the linkage
editor. The system will then execute the
first program phase produced from that
linkage editor job step.

System Support Programs 23

Table 2. Job Control SUfIlUlary

STATEMENT FUNCTION
r---,
I I
I JOB DEFINITION I
~------------T----------------------------~
1// JOB I Defines the start of a job. I
1// EXEC IDefines the start of a jobl
I I step execution and the I
I I program to be executed. I
1/& IDelimits the end of a job. I
1// STOP I Delimits the end of alII
I I jobs. I
1/* I Delimits the end of a datal
I I set in the input stream. I
~------------~----------------------------~
I I
I SYMBOLIC UNIT ASSIGNMENT I
~-----------~----------------------------~
1// ALLOC IAllocates space for a new I
I I data set. I
1// LABEL IDefines characteristics of al
I I data set. I
1// ACCESS I Permits access to an exist-I
I I ing data set. I
1// RESET IRestores unit assignments tol
1 1 status at start of job. I
1// LISTIO ILists data set and device 1
I I assignments on system log. I
~------------~----------------------------~
I I
I DATA SET MAINTENANCE I
~------------T----------------------------~
// DELETE Deletes a data set from al

volume or a member from al
directoried data set. I

// CONDENSE Condenses a directoried datal
set. I

// RENAME Renames a data set or al
member of a directoriedl
data set. I

// CATLG Enters a data set name into I
the catalog. I

// UNCATLG Removes a data set name from I
the catalog. I

~------------~----------------------------~
I I
I MISCELLANEOUS I
~------------~---------------------------~
1// PAUSE 1 Allows pause for operator I
I I action. I
1* (comments)IAllows logging of comments I
I I to system log. I
1// REWIND IRewinds a tape volume; repo-I
I 1 sitions a data set on al
I I direct access volume tol
1 I beginning. I
1// UNLOAD IRewinds and unloads a tape. 1 L ____________ ~ ____________________________ J

The EXEC statement is used to request
that the operator set the variable­
precision switch. The EXEC statement also
supplies any option parameters that are to
be passed to the processing program. These
include compiler and assembler options or
options to be used by user-written

24

programs. One of the options the user may
specify in the EXEC statement for a compi­
lation or assembly step is that the reloca­
table module produced by this step is to be
linkage-edited later in this same job. The
system will then direct the relocatable
module to a data set where it can be
immediately retrieved by the linkage edi­
tor.

The EXEC statement
accounting information
job step.

may also include
particular to this

The End-of-Job Statement: The end-of-job
(/&) statement is required for each job and
must be the last card of the job deck. It
initiates the post-job housekeeping that
restores any system variables that were
altered during the job. This includes
resetting the system units., performing any
cataloging operations that were requested
during the job, and reinitializing system
records.

The STOP Statement: The STOP (end-of-jobs)
statement is used to denote the end of a
job input stream. It closes all data sets
associated with system units.

The End-of-Data Statement: The end-of-data
(/*) statement is required immediately fol­
lowing any input data on the system input
unit when this unit is the same v.olume as
the system reader unit.

This statement is not actually read by
the job control processor; instead, it must
be recognized as an end-of-file mark by
whatever program is currently reading the
system input data set.

Symbolic Unit Assignment Statements

The ALLOC Statement: The ALLOC (allocate)
statement is used to create a data set;
that is, to allocate space for it and name
it. Within this statement the programmer
can, if he desires:

1. Give the data set a name of up to
eight characters.

2. Assign a symbolic unit name to the
data set.

3. Specify residence on a particular vol­
ume or type of volume.

4. Specify that the
i.e., no other data
resident on it.

volume be "fresh,"
set is currently

5. Indicate that the data set is to be
directoried, and the desired size of
the directory; the space will be allo­
cated accordingly. The ACCESS state­
ment (see belQw) is used to create

,/

(

individual members within the data
set.

6. Specify that the space allocated be
rounded upward to the next higher
cylinder boundary (rounding to the
next higher track boundary is
automatic).

7. Request that the data set be cata­
loged.

From the information in the ALLOC state­
ment, the system locates the desired vol­
ume, allocates the space and, if the volume
is a direct access one, updates the VTOC to
reflect the creation of this data set.

The ALLOC statement is required only
when the programmer wishes to create a new
data set. Once it has been created, subse­
quent jobs can gain access to it using the
data set name if it has been cataloged or
the data set name and the volume identifi­
cation if it has not been cataloged.

If the data set has been assiqned to a
symbolic unit name, this assignment remains
in force until occurrence of one of the
following:

1. The assignment is redefined within the
job (i.e., by an ALLOC or ACCESS
statement).

2. An applicable RESET is encountered
(i.e., the unit named was one of the
predefined system units).

3. The end of job is reached.

The ACCESS Statement: The ACCESS statement
is used to gain access to a data set that
has been created by an ALLOC statement
either previously in this job or in a prior
job. This statement is also used to add a
new member, assigning multiple names if
desired, or refer to an existing member of
a directoried data set.

If the data set named in the ACCESS
statement has been cataloged, then the name
alone is sufficient to locate it. Other­
wise, the volume identification must be
supplied in addition so that the system can
locate the data set.

Normally, when an existing data set is
requested in an ACCESS statement and subse­
quently opened, the data set is positioned
at its beginning. If, however, the pro­
grammer wishes to add to the data set, he
can indicate this in his ACCESS statement
and the data set will be positioned at the
end of the last entry made in the data set.

Another ACCESS statement
the programmer to make

option
references

allows
to a

non-existent data set so his program can
operate without actually performing
input/output operations on a data set.
When this option is used, input/output
requests for this data set are handled as
follows:

1. A read request results in an end of
file.

2. A write request is recognized but no
data is transmitted.

This option is useful not only in test­
ing and debugging, but also for bypassing
references to data sets used in regular
procedures. For example, a new job that
updates an existing master may use a dummy
master until the first detail data set is
processed and the first master is produced.

The ACCESS statement is required when­
ever a job step within the job:

1. Uses a data set that was allocated in
a previous job.

2. Uses a data set that was allocated in
this job, but the ALLOC statement did
not give a symbolic unit assignment.

3. Requires reassignment of a symbolic
unit.

4. Creates or refers to a member of a
directoried data set.

5. Requires a dummy symbolic unit assign­
ment for program testing.

The LABEL Statement: The LABEL statement
is used to further define a data set's
characteristics, such as block length,
organization, expiration date, use of con­
trol characters, etc. From the information
supplied in this statement, the system
writes labels, fills out control blocks, or
both, depending on the circumstances of its
use.

When used, the LABEL statement follows
immediately after the ALLOC or ACCESS
statement identifying the data set with IWhiCh it is associated. All data sets on
disk must be labeled.

The RESET Statement: The RESET statement
is used to restore either a selected one of
the system unit assignments or all of them
to their status at the beginning of the
job. There is an implied RESET at the end
of every job.

The LISTIO Statement: The LISTIO (list
input/output) statement causes the printing
on the system log of one or more symbolic
unit names and their current data set and
device assignments.

~ystem Support Programs 25

Data Set Maintenancp ~~atements

The DELETE Statement: The DELETE statement
can be applied to an entire data set or to
a single member of a directoried data set.
In the first case, the statement causes
deletion of the VTOC entry for the named
data set and the updating of the volume's
format 5 label. If the data set is cata­
loged, its entry is also deleted from the
catalog. In the second case, the data set
member name is simply removed from the
directory. If this member has multiple
names in the directory" it is still acces­
sible via the other name(s).

The CONDENSE
statement causes
be condensed.
described in the
tion."

statement: The CONDENSE
a directoried data set to
The condense function is
section "Data Organiza-

The CATLG Statement: The CATLG (catalog)
statement causes a data set entry to be
added to the catalog. Since a cataloging
option is also available in the ALLOC
statement, this statement is necessary only
when a data set has been created previously
and it is now desired to catalog it.

The UNCATLG Statement: The UNCATLG
(uncatalog) statement causes a data set
entry to be deleted from the catalog. The
data set itself and the volume on which it
resides are unchanged.

The RENAME Statement: The RENAME statement
can be used to rename either an entire data
set or a member of a directoried data set.
In the first case, the change is made in
the VTOC; the catalog is also checked and,
if an entry for the data set occurs in the
catalog, the name is changed there as well.
In the case of a member, the name is
changed in the directory. No change is
made to any other names for the same member
that might occur in the directory.

Miscellaneous Statements

The PAUSE Statement: The PAUSE statement
permits the programmer to specify a pause
in processing so that the console operator
can take some action. The statement, which
can include the programmer's instructions
to the operator, is printed on the Console
Printer-Keyboard and the machine then waits
for the operator's signal to proceed.

The Comments Statement: The comments (*)
statement gives the programmer a convenient
means of writing messages to the operator.
The contents of the comments statement will
be printed on the Console Printer-Keyboard.
This statement, when followed by a PAUSE
statement, can also be used to specify
operator action in the event that the

26

programmer's directions do not fit within
the limits of the PAUSE statement.

The REWIND Statement: The REWIND statement
is used either to rewind a tape volume or,
on a direct access volume, to position a
data set to its first block (block number
0) •

The UNLOAD Statement: The UNLOAD statement
is used to rewind and unload a specified
reel of magnetic tape.

SAMPLE DECK SETUP

Figure 4 illustrates a sample deck setup
using the ALLOC and ACCESS statements for
data set creation and symbolic unit assign­
ments. Note that the statements shown in
Figure 4 are not complete; only those
parameters that are meaningful to the exam­
ple have been included. The parenthetical
remarks in the comments column indicate
assumptions that have been made for the
purposes of this example.

LINKAGE EDITOR

Output from the compiler or the assem­
bler is always in the form of relocatable
object program modules. Each module con­
sists of an external symbol dictionary, the
text of the module (i.e., the instructions,
in a relocatable format), and a relocation
dictionary. The text consists of one or
more control sections, as specified in the
assembler or FORTRAN source language pro~

gram. A control section is defined as a
unit of text that can be independently
relocated.

These modules must be processed by the
linkage editor before they can be executed.
The principal function of the linkage edi­
tor is to convert the relocatable text into
absolute form, ready to be loaded and
executed. The linkage editor includes
facilities for linking together several
control sections from one or more relocata­
ble modules into one absolute executable
program. The process of "linking" involves
determining the absolute load addresses for
each of the control sections and, from
information in the external symbol dic­
tionaries associated with the several
modules, replacing symbolic cross­
references between control sections with
the absolute address of the referenced
value.

The facilities provided by the linkage
editor permit the programmer to construct
programs that are multiphase; this topic is
discussed in "Program Structures."

(r--T------------------------------------,
1 statement 1 Comments 1
.--+------------------------------------~
1//JOBl JOB 1 Beginning of job JOBl. 1
I//SYSOPT ALLOC output data set, special unit 1 Give special assignment to system 1
1 1 output unit. 1
1// EXEC assembler (link) Assemble following source deck. 1
1 assembler language source deck (SYSRDR and SYSIPT are the same.) 1
1/* End of source deck. 1
1// RESET output unit Reset SYSOPT to standard 1
1 assignment. 1
1// EXEC linkage editor Edit program just assembled. 1
1 linkage editor control statements Defines phase structure for 1
1 program. 1
1/* End of linkage editor control
1 statements.
1// ALLOC data set 1, disk volume 10 Data set 1 to be created on disk
1 volume 10.
1// LABEL label information Label information for data set 1.
1//SYSOOl ACCESS data set l(member la), new Set up to write member la of data
1 set 1: unit assigned is SYS001.
1//SYS002 ACCESS data set 2, tape volume 20 Set up to use data set 2 (allocated
1 to tape volume 20 in a previous
I job): unit assigned is SYS002.
1// CATLG data set 2 catalog data set 2.
1// EXEC Execute the edited program.
1/& End of job JOB1.
1//JOB2 JOB Beginning of job JOB2.
1//SYSOOl ACCESS data set 1 (member la),disk Set up to use member la (written in
1 volume 10 JOB1): unit assigned is SYS001.
//SYS002 ACCESS data set 2 Set up to use data set 2 (cataloged

//SYS003

//
//

//
//

//SYSOOl

//SYS003
//
//

ALLOC

LABEL
ALLOC

LABEL
EXEC

ACCESS

ACCESS
PAUSE
EXEC

data set 3,tape volume 21

label information
data set 4,disk volume 11

label information
program aa

data set 5

data set 4
SAVE TAPE VOL 21
program bb

in JOB1): unit assigned
is SYS002.

Data set 3 to be created on tape
volume 2l.

Label information for data set 3.
Data set 4 to be created on disk

volume 11 (will be written by
program bb).

Label information for data set 4.
Execute program aa from phase

library.
Reassign SYS001 and set up to use

data set 5 (cataloged in a
previous job).

Assign SYS003 to data set 4.
Operator action pause.
Execute program bb from phase

library.
// UNCATLG data set 53 Remove entry for data set 53 from

I catalog.
1/& End of job.
1// STOP End of jobs. I L __ ~ ____________________________________ J

.Figure 4. Sample Deck Setup

LINKAGE EDITOR PROCESSING

The programmer may specify at the
execution of one or more compilation or
assembly steps that the linkage editor will
be called later in the job to edit the
relocatable modules produced by the compi­
lation or assembly step(s). The modules
will then be stored in a data set from
which the linkage editor can immediately
retrieve them. In addition, the programmer

may specify, through linkage editor control
statements, that other modules are to be
included as well. Or he can set up a job
without compilation or assembly steps and
specify, again through linkage editor con­
trol statements, that certain relocatable
modules, produced in previous jobs, are to
be edited together.

Input to the linkage editor consists of
linkage editor control statements and relo-

System Support Programs 27

catable object program modules.
speaking, the primary sources
editor input are:

Generally
of linkage

1. The system unit that serves as inter­
mediate storage for the relocatable
modules as they are produced by the
compiler or assembler. That is, this
is the source of modules that were
produced in job steps within this same
job.

2. The system input unit that contains
the linkage editor control statements
and any input modules produced in
previous jobs. Module input from this
source is first written on the system
unit described in item 1 above.
Thereafter., it is treated exactly as
the other modules already on that
nnit.

3. The module library, which usually con­
tains frequently used system and
installation subroutines, such as the
FORTRAN mathematical subroutines. The
programming system incorporates module
library routines into a program auto­
matically, when required, or a pro­
grammer can specifically name routines
that are to be included.

The output from the linkage editor is
directed to the phase library. (A phase
mar be punched out as an absolute deck
uS1ng the utility processor punch
function. 1) The programmer can indicate in
his linkage editor EXEC card that residence
in the phase library is to be either
temporary (until after execution of the
next EXEC statement, i.e., until the end of
the next job step) or permanent (the pro­
gram is available for execution at any time
until explicitly deleted from the library).

PROGRAM STRUCTURES

As previously discussed, the input to
the linkage editor is in units of modules.
Output from the linkage editor is in units
of phases. A phase is that portion of an
absolute program that is to be loaded by a
single program fetch or load operation.
The phase may be an entire program or a
part of a program.

The simplest case is a sinqle-phase
program,. However, the linkage editor per­
mits the programmer to set up his program

1AII entries in the phase library must be
made by the linkage editor. Therefore, to
enter an absolute deck into the phase
library for execution under system control,
the deck must be reprocessed by the linkage
editor as if it were a relocatable module.

28

with an overlay structure wherein each
phase is a ~aLt of the program that may be
combined with or loaded over other phases
during execution of the program. That is,
after a phase is loaded and executed, the
next phase may be loaded into the same area
of main storage, overlaying the previous
phase. Each phase has a programmer­
specified origin and the phases are
executed in a programmer-specified
sequence. Thus, the programmer has control
over which parts of the program are to be
overlaid and when.

The FORTRAN programmer who wishes to set
up a multiphase structure for his program
can use the FORTRAN CALL statement to call
a special subroutine, LINK, which resides
in the module library. This subroutine,
which will then automatically be incorpo­
rated into his program by the linkage
editor, contains the instructions necessary
to invoke the fetch or load operation for
loading subsequent phases.

Figure 5 illustrates the use of main
storage by an overlay program. The loading
sequence shown in Figure 5 is ROOT PH , Al,
Bl, B2 (overlaying Bl), and A2 (overlaying
Al and B2). Although this illustration
shows a root phase (ROOTPH) as resident in
main storage throughout execution, there is
no requirement for a root phase. Programs
may be structured into phases all of which
originate at SYSORG.

LINKAGE EDITOR CONTROL STATEMENTS

Following the EXEC statement specifying
the linkage editor, the programmer uses
linkage editor control statements to speci­
fy which control sections are to be includ­
ed, the phase structure, and the origin of
each phase. The sequence of execution of
the phases is determined by the fetch or
load requests within his program. There
are four of these statements, as follows:

MODULE

PHASE

Indicates that the sequence of
cards or card images immediately
following this statement on the
system input unit constitutes a
relocatable module intended for
inclusion in the linkage editor
input.

Any use of MODULE statements and
their associated modules must
precede any other linkage editor
control statements in this job
step.

Defines a phase by
linkage editor with
(the member name to
the directory of
library) and the
phase.

providing the
a phase name
be entered in

the phase
origin of the

(

000000,---------------------,

Supervisor
Resident

Transient
SYSORG~------------------~

Phase: ROOTPH

Phase: AI

Problem Program Area

Phase: A2
Phase: 82

Phase: Bl

SYSEND ~-----

Installation Resident Routines

Time 0 ---..--,~~

Figure 5. Example of Use of Main storage by an Overlay Program

INCLUDE

ENTRY

An option in this statement can
be used to suppress, for this
phase, the automatic linking to
modules in the module library.

Identifies a particular module,
or control section(s) within a
module, for inclusion in a phase.

Defines the phase entry point and
indicates the end of linkage edi­
tor input on the system input
unit. If ENTRY is omitted, the
entry point is assumed to be the
first entry name encountered in a
module END card in the phase or,
if none exists, the first loca­
tion of the phase; also, the /*
end-of-data statement must be
used to denote the end of linkage
editor input.

UTILITY PROGRAMS

The utility programs fall into two cate­
gories: (1) volume initialization and
maintenance and (2) data set transmission.
These programs are called by an EXEC state­
ment specifying the utility processor, fol­
lowed by a statement specifying the desired
utility function.

VOLUME UTILITIES

There are three volume utility func­
tions:

Initialize: Initializes a direct access
volume or a tape volume, and creates the
standard labels.

If the volume being initialized is
direct access, this function performs an
analysis of the recording surface, checking
for defective tracks. If a defective track
is found, it is flagged, an alternate track
is assigned, and the system thereafter uses
the alternate track in place of the defec­
tive one.

If a volume should develop a defective
track after initialization, a message is
printed to the operator giving the number
of the defective track; the volume can then
be partially initialized to accomplish
assignment of an alternate track. The
contents of the defective track are lost.

Map: Examines the VTOC of a direct access
volume and, if necessary, updates the for­
mat 5 label. No data set is deleted or
moved, but a map of the volume is produced
with the expired data sets flagged. This
utility should be executed before using any

System Support Programs 29

disk volume created under another
System/360 Programming System.

Squeeze: Condenses a 2315 disk cartridge.
This condensing operation is similar to
that described for directoried data sets
(see "Data Organization"). However, the
squeeze function does not condense members
of any directoried data sets that might be
on that volume. The VTOC is updated but is
not moved: the format 5 label is also
updated. Expired data sets are eliminated.

DATA SET TRANSMISSION UTILITIES

There are five data set transmission
utility functions:

set from
into a
Either

£22Yl Reads a data
unit and writes it
another symbolic unit.

30

a symbolic
data set on
the source

or the destination may
members of a directoried
sets may be reblocked
function.

be a member or
data set. Data
by using the copy

Print: Reads a data set or one or more
members from a symbolic unit and writes it
on the system printer unit.

Punch: Reads a data set or one or more
members from a symbolic unit and writes it
on the system punch unit.

Print-punch:- Reads a data set or one
more members from a symbolic unit
writes it on both the system printer
and the system punch unit.

or
and

unit

IPunch absolute: Reads a phase from the
phase library and writes it on the system
punch unit.

./ -

/, ,
'.

, '., ./

(-

Model 411 Programming System publications
provide installation personnel with infor­
mation requisite to the construction, use,
modification, and maintenance of the sys­
tem. This appendix is intended as a guide
to the selection of the appropriate publi­
cations for each application. It contains:

1. A diagram, Figure 6, showing the
available publications grouped
according to the requirements of a
particular audience and sugqesting a
sequence of use within each group.

2. A brief description of each publica­
tion.

3. A topic index, to direct the user to
the proper publication for information
about a particular subject (e.g., con­
structing a multiphase program).

In the short descriptions and in the
diagram, abbreviated titles are used. Com­
plete titles of the System Reference
Library (SRL) publications are:

IBM system/360 Model 44 Programming Sys­
tem: Concepts and Facilities, Form
C28-6810

IBM System/360, FORTRAN IV Language,
Form C28-6515

IBM Svstem/360 Model 44 Programming Sys­
tem: Guide to System Use for FORTRAN
PrQgrammers, Form C28-6813

IBM System/360: FORTRAN IV Library Sub­
routines, Form C28-6596

IBN System/360 Model 44 Programming Sys­
tem: Assembler Language, Form C28-6811

IBM system/360 Model 44 Programming Sys­
tem: Guide to System Use, Form
C28-6812

IBM System/360 Model 44 Programming Sys­
tem: systems Programmer's Guide, Form
C28-6814

APPENDIX: SUPPORTING DOCUMENTATION

IBM System/360 Model 44 Programming Sys­
tem: Operator's Guide, Form C28-6815

IBM System/360 Model 44 Programming Sys­
tem: Formats for Machine Check Inter­
ruption Diagnostics (Reference Card),
Form X28-6812

Program Logic Manuals (PLM) describe the
internal design of programs and programming
systems and are restricted in distribution
to those responsible for program mainten­
ance and to systems programmers who are
responsible for making program modifica­
tions.

The titles of the PLMs supplied in
support of the Model 44 Programming System
are as follows:

IBM System/360 Model 44 Programminq Sys­
tem: supervisor and Job Control, Form
Y28-6812

IBM System/360 Model 44 Programming Sys­
tem: Linkage Editor, Form Y28-6813

IBM System/360 Model 44 Programming Sys­
tem: Utilities and Stand-alone Pro­
grams, Form Y28-6814

IBM System/360 Model 44 Programming Sys­
tem: Assembler, Form Y28-6811

IBM System/360 Model 44 Programming Sys­
tem: FORTRAN IV Compiler, Form
Y28-6815

Related machine manuals, which are not
described here, are:

IBM System/360: System Summary, Form
A22-6810

IBM System/360: Principles of Operation,
Form A22-6821

IBM System/360: Model 44, Functional
Characteristics, Form A22-6875

Appendix: Supporting Documentation 31

Installatian Management

I
Assembler

f'

Concepts
FORTRAN IV

Languoge
Machine

I---+- and r----Specifications
Facilities

Language

FORTRAN Usage

Guide to

FORTRAN IV I-
System Use

Language for FORTRAN
Pragrammers

!
Subrautine
Library

Non-FORTRAN Usage

Maintenance (Custamer Engineering)

I
A- ,

I
Systems P~ramming ,

Assembler Language Programming

I
A- ,

Other

I
A- ,

Machine Assembler
Concepts

Guide ta
Systems Program

f---- f--- and l- I--- Programmers I-- Lagic
Specifications Language

Facilities
System Use

Guide Manuals

+ +
Machine

Subrautine Check
Library Interruption

Diagnostics

Machine Operators

Operator's
Guide

Figure 6. Model 44 Programming System Publications Plan

32

(
concepts and Facilities describes the sys­
tem in terms of basic concepts and opera­
tion of the supervisor and system support
programs. It provides an understanding of
the system's capabilities and a basis for
planning their use. It is assumed that the
user has a familiarity with basic data
processing techniques and terminology, and
with the functional characteristics of the
Model 44.

FORTRAN IV Language is a reference manual
that provides the applications programmer
with information required for the prepara­
tion of source programs using the full
capabilities of the FORTRAN IV lanQuage. A
knowledge of the fundamentals of FORTRAN
language programming is necessary.

Guide to System Use for FORTRAN Programmers
instructs the applications programmer in
the use of the system to compile, link
edit, and execute FORTRAN programs. Dis­
cussions of program optimization and re­
strictions of the Model 44 FORTRAN IV
compiler are included. This publication is
intended to assist the new programmer in
becoming familiar with the facilities
available to him (e.g., job control, link­
age editing, linking to assembler language
subroutines, and constructing muitiphase
programs), and to serve the experienced
programmer as a reference manual. It is
restricted to FORTRAN applications; refer
to the Guide to System Use for non-FORTRAN
usage.

FORTRAN IV Library Subroutines describes
the function and use of the mathematical
and service subroutines in the module
library. The calling sequences, argument
formats, and main storage requirements are
discussed as are these additional topics
pertaining to the mathematical subroutines:
algorithms, accuracy, error propagation,
and timing. A knowledge of FORTRAN or
assembler language is prerequisite to the
use of this publication.

Assembler Language is a reference manual
that contains the specifications for using
the assembler language and its features .•
It describes the syntax of the language,
and explains the symbolic machine instruc­
tion codes and the assembler program func­
tions provided for the programmer's use. A
knowledge of IBM System/360 machine opera­
tions, primarily storage addreSSing, data
formats, and machine instruction formats
and functions, is prerequisite.

Guide to System Use contains all necessary
information about system requirements and
capabilities. It gives complete specifi-

cations for using the job control language,
the linkage editor, the utility processor,
the absolute loader, and stand-alone disk
initialization programs. It also discusses
SVC functions for input/output operations
at the read/write level, interruption han­
dling, program phase loading, and interpro­
gram and intraprogram communications. All
system diagnostics except those for FORTRAN
are found in this publication. The appli­
cations and/or systems programmer should
read Concepts and Facilities before using
this publication. Additional prerequisites
would depend upon the particular applica­
tion.

Systems programmer's Guide explains how to
construct, modify, and maintain the system.
It is intended not only for systems pro­
grammers and those responsible for the
installation's system, but also for those
who are programming input/output functions
at the EXCP level. Among the topics dis­
cussed are system construction, system
editing, incorporation of installation rou­
tines, installation accounting, IPL proce­
dures, EXCP-Ievel programming and support
of additional device types, and incorpora­
tion of IBM modifications. This publica­
tion presupposes a knowledge of Model 44
assembler language programming, and the
facilities and use of the programming sys­
tem.

Operator's Guide supplies machine operators
with detailed information about operating
the system. This publication, which pre­
sumes that the user has a knowledge of
Model 44 machine operations, covers IPL
procedures, general operations, abnormal
end procedures, operator-to-system communi­
cations, and stand-alone operations.

Formats for Machine Check Interruption
Diagnostics supplies customer engineers
with the basic formats in which the system
will list the diagnostic information when a
machine check interruption occurs.

Program Logic Manuals are reference manuals
that aid the user in analyzing the internal
functions of a system component for purpos­
es of correcting a program malfunction or
making a program modification. They de­
scribe the flow of the program with both
flowcharts and narrative, and include des­
criptions of internal tables, program
interfaces, intermediate data formats, and
other analysis aids. They are intended to
be used with a symbolic listing of the
component under discussion. Refer to the
list of PLM titles for the subject matter
of a particular Model 44 programming system
PLM.

Appendix: supporting Documentation 33

TOPIC INDEX

This index is intended to assist readers
of the Model 44 publications in locating
topic discussions relevant to their partic­
ular needs. The Program Logic Manuals are
not included: their titles are descriptive
of their content.

The key to abbreviations for titles
throughout the index is as follows:

Systems Programmers
Guide

Guide to System Use

Guide to System Use for
FORTRAN Programmers

Assembler Language

Operator's Guide

FORTRAN IV subroutines

FORTRAN IV Language

Formats for Machine
Check Interruption
Diagnostics

SPG

GSU

FORTRAN GSU

Assembler

OG

FORTRAN Library

FORTRAN

MCID

Note that some items are indicated as
being "covered in both GSU and FORTRAN
GSU." This means that, in order to reduce
cross-references between publications, full
information appears in both. The user
should select a particular publication
applicable to the needs of his installa­
tion.

Absolute loader
for general use, see GSU.

for operating procedures, see OG.

Accounting
for preparation and incorporation of
an installation accounting routine,
see SPG.

Assembler
language specifications
Assembler.

for, see

for assembling under
and using supervisor
Linkage editing, and
tion, see GSU.

system control
call functions,
program execu-

Commands, operator
see OG.

communication region

34

for format and instructions for load­
ing and writing, see GSU.

for procedures for including an
accounting area, see SPG.

Compatibility
covered in this publication.

for details of assembler language com­
patibility, see Assembler.

Condensing
for directoried data sets, covered in
both GSU and FORTRAN GSU.

for 2315 disk cartridges, see GSU.

Control blocks
for request control blocks, see GSU.

for input/output blocks, file control
blocks, and unit control blocks, see
SPG.

Control sections (including COMMON) han­
dling

for FORTRAN programs, see FORTRAN GSU.

for assembler language programs, see
GSU.

Control statement formats
for job control language
editor control statements
applications, see FORTRAN

and linkage
in FORTRAN

GSU.

for general use of job control lan­
guage and linkage editor and utilities
control statements, see GSU.

Data set creation and maintenance
covered in both GSU and FORTRAN GSU.

Data set transmission utilities
see GSU.

Device assignment
for general use, see GSU or FORTRAN
GSU.

for functions of individual system
units, see GSU.

for system unit assignment at system
construction time, see SPG.

for unit assignment between jobs and
at IPL time, see OG.

Diagnostic Messages
for all system diagnostic messages
(including assembler) with the excep­
tion of FORTRAN compiler diagnostic
messages, see GSU.

for all system diagnostic messages
directly related to FORTRAN applica­
tions, including the compiler diag­
nostic messages, see FORTRAN GSU.

(

(

(-

for the format of machine check inter­
ruption diagnostic information, see
MCID.

Directoried data sets
covered in both GSU and FORTRAN GSU.

Disk initialization

Dump

under system control, see GSU.

for stand-alone disk initialization,
see GSU.

facilities
use of DUMP and PDUMP
abnormal end dumps,
GSU and FORTRAN GSU.

subroutines and
covered in both

for console operator requested dumps,
see OG.

Error recovery
at EXCP level, see SPG.

at read/write level, see GSU.

(not applicable to FORTRAN users.)

Error messages
for all system messages to programmers
(including assembler) with the excep­
tion of FORTRAN compiler diagnostic
messages, see GSU.

for all system messages directly
related to FORTRAN applications,
including the compiler diagnostic mes­
sages, see FORTRAN GSU.

for the format of machine check inter­
ruption diagnostic information, see
MCID.

for system-to-operator messaqes, see
OG.

External-storage assignment
covered in both GSU and FORTRAN GSU.

EXCP level programming
for input/output functions and support
of additional device types, see SPG.

FORTRAN
language
FORTRAN.

specifications for, see

for compiling, linkage editing
(including multiphase programs), and
execution, see FORTRAN GSU.

for full descriptions of mathematical
and service subroutines, see FORTRAN
Library.

Initial Program Load (IPL)
for operating procedures, see OG.

for special considerations of sytem
construction, see SPG.

Input/Output
for assembler language programs at the
read/write level, see GSUi at the
execute channel program level, see
SPG.

for FORTRAN programs, see FORTRAN GSU.

Interruption handling
for problem program handling of timer
interruptions and certain types of
program check interruptions, see GSU.

(not applicable to FORTRAN users.)

Job control
for FORTRAN applications., see FORTRAN
GSU.

for all other applications, see GSU.

Labels and label processing
for FORTRAN applications, see FORTRAN
GSU.

for full formats and descriptions of
all standard labels, see GSU.

Libraries
for use of phase and module l~braries,
see both GSU and FORTRAN GSU.

for system construction allocation,
see SPG.

Linkage editor
covered in both GSU and FORTRAN GSU.

for use of LINK subroutine
struct multiphase FORTRAN
see FORTRAN GSU.

to con­
programs,

Machine Check Interruption
see MCID.

Machine configuration
covered in this publication.

Maps
see GSU and FORTRAN GSU.

Mathematical subroutines
covered in FORTRAN Library

Messages
for all system messages to programmers
(including assembler) with the excep­
tion of FORTRAN compiler diagnostic
messages, see GSU.

for all system messages directly
related to FORTRAN applications,
including the compiler diagnostic mes­
sages, see FORTRAN GSU.

Appendix: supporting Documentation 35

for the format of machine check inter­
ruption diagnostic information, see
MelD.

for system-to-operator messages., see
OG.

Module library
for mathematical and service subrou­
tines, see FORTRAN Library.

for description of use of LINK subrou­
tine, see FORTRAN GSU.

for description of DUMP, PDUMP, see
GSU and FORTRAN GSU.

for allocation of, see SPG.

Modules
for creation and use in a program,
covered in both GSU and FORTRAN GSU.

Multiphase programs
for assembler language programs, see
GSU.

for FORTRAN language programs, see
FORTRAN GSU for description of use of
the LINK subroutine.

Operator-system communication
see OG.

Qverlay programs
same as "multiphase programs."

Phase library

Phase

for allocation and construction, see
SPG.

for description of use, see both GSU
and FORTRAN GSU.

for creation and use in a program,
covered in both GSU and FORTRAN GSU.

Print/Punch program
see OG

Program fetch and program load
for FORTRAN applications using LINK
subroutine, see FORTRAN GSU.

for all other multi phasing applica­
tions, see GSU.

Read/write level input/output programming
see GSU.

Register usage conventions
see GSU.

Save/Restore program
see OG.

36

sequential data sets
covered in both GSU and FORTRAN GSU.

Stand-alone disk initialization programs
for system residence volume, see GSU.

for operating procedures, see OG.

Stand-alone print/punch program
see OG

stand-alone save/restore program
see OG

supervisor
for using supervisor call functions,
see GSU.

for editing and maintenance, see SPG.

Symbolic units
for general use, see GSU or FORTRAN
GSU.

for functions of individual system
units, see GSU.

for system unit aSSignment at system
construction time, see SPG.

for unit assignment between jobs and
at IPL time, see OG.

System construction and editing
see SPG.

System data sets
for general use, covered in both GSU
and FORTRAN GSU .•

for allocation, see SPG.

system messages to operator
see OG.

System output
for FORTRAN listings, diagnostic mes­
sages, maps, and dump formats, see
FORTRAN GSU.

for all dia.gnostics except FORTRAN.,
for assembler listing format, linkage
editor map, etc., see GSU.

System residence volume
for construction and allocation of
system data sets, see SPG.

System units
for general use, see GSU or FORTRAN
GSU.

for functions of individual system
units, see GSU.

for system unit assignment at system
construction time, see SPG.

(-

(

for unit assignment between jobs and
at IPL time, see OG.

Timer service
see GSU.

Unit assignment
for general use, covered in both GSU
and FORTRAN GSU.

for functions of individual system
units, see GSU.

for system unit assignment at system
construction time, see SPG.

for unit assignment at IPL time and
between jobs, see OG.

Update
for specifying update operations, see
Assembler.

for setting up an update job step, see
GSU.

User communciation region
for format and use of, see GSU.

Utilities
see GSU.

Volume initialization and maintenance
under system control, see GSU.

for stand-alone disk initialization,
see GSU.

Appendix: Supporting Documentation 37

GLOSSARY

absolute form: A form of program text
wherein the instructions have a predeter­
mined load address and all symbolic address
references have been replaced with machine
address values.

absolute loader: A stand-alone proqram that
loads decks in absolute form for execution
independent of system control.

allocate: To reserve external storage space
for a data set.

block (records):
1. To group records for the purpose of

conserving storage space or increasing
the efficiency of access or process­
ing.

2. A physical record so constituted.

catalog:
1. The data set containing the names and

volume identifications of selected
data sets; used by the system to
locate data sets specified by name
only.

2. To include in the catalog the name and
volume identification of a data set.

cataloged data set: A data set that is
represented in the catalog.

communication region: A control block with­
in the resident supervisor that provides
for communication between the supervisor
and a processing program, and among proc­
essing programs.

condense: For directoried data sets, to
shift the members and, separately, their
directory entries, maintaining their origi­
nal sequence, to fill space vacated through
the deletion of other members. After con­
densing, members occupy contiguous loca­
tions. Similar to the squeeze function for
direct access volumes.

control block: A storage area through which
a particular type of information required
for control of the system is communicated
among its parts .•

control section: The smallest separately
relocatable unit of a program: that portion
of text specified by the programmer to be
an entity, all elements of which are to be
loaded into contiguous main storaqe loca­
tions.

data management: A general term that col­
lectively describes those functions of the
system that provide creation of and access

38

to data sets, enforce data storage conven­
tions, and regulate the use of input/output
devices.

data organization: A term that refers to
the data management conventions for the
arrangement of a data set, i.e., sequential
and directoried.

data set: The major unit of data storage
and retrieval in the system, consisting of
a collection of data in a prescribed
arrangement and described by control infor­
mation to which the system has access.

data set label: A collection of information
that describes the attributes of a data set
and that is normally stored with the data
set.

device independence: The ability to request
input/output operations without regard to
the characteristics of the input/output
devices.

direct
so that

index

directoried data set: A data set in
access storage that is organized
the first part contains an
(directory) to the members following.

directory: The initial portion of a direc­
toried data set that indexes the subsequent
members by name: it provides the means of
gaining access to the members.

dump (main storage):
1. To copy the contents of all or part of

main storage onto an output device, so
that it can be examined.

2. The data resulting from action de-
scribed in 1.

3. A routine that will accomplish the
action described in 1.

entry pOint: Any location within a module
to which control can be passed by another
module.

extent: The physical locations on a volume
occupied by or reserved for a particular
data set.

fetch (program):
1. To obtain a requested phase, load it

into main storage at the locations
assigned by the linkage editor, and
transfer control to the phase entry
point.

2. A routine that accomplishes the action
described in 1.

(

(

initial program loading (IPL): As
applied to the system, the initialization
procedure that loads the supervisor and the
job control processor and begins normal
operations.

installation: A general term for a particu­
lar computing system, in the context of the
overall function it serves and the individ­
uals who manage it, operate it, apply it to
problems, service it, and use the results
it produces.

job: An externally specified unit of work
for the computing system from the stand­
pOint of installation accounting and system
control. A job consists of one or more job
steps.

job control processor: The processing pro­
gram that reads and interprets job control
statements and sets up the system to exe­
cute a specific program using specific
resources.

job control statement: Anyone of the
control statements in the input stream that
identifies a job or defines its require­
ments.

job step: A unit of work for the computing
system from the standpoint of the user,
presented to the system by job control
statements as a request for execution of a
specific program and a description of the
resources required by it.

library: A collection of objects associated
with a particular use and having a directo­
ry to locate individual objects. In this
context, see module library, phase library.

linkage: The means by which communication
is effected between two routines or control
sections.

linkage editor: A program that produces one
or more program phases by transforming
relocatable modules into a format that is
acceptable to the program fetch routine,
combining separately produced modules,
replacing, deleting, and adding control
sections as requested, and resolving sym­
bolic cross-references among them.

load:
~ Generally, to read a phase into main

storage.
2. Program load -- to read a phase into

main storage, and return control to
the invoking program.

3. The routine that accomplishes the
above two steps.

main storage: All addressable storage from
which instructions can be executed or from
which data can be loaded directly into
registers.

member: An entity within a directoried data
set~ indexed in the data set's directory
and having data content.

module: The unit of output from a single
execution of the assembler or compiler, in
relocatable form and consisting of one or
more control sections with control informa­
tion to permit relocation and symbolic
cross-references to other modules.

module library: A directoried data set
containing selected modules and serving as
an automatic source of input to the linkage
editor.

multiphase progr~~: A program in absolute
form that requires more than one fetch or
load operation to corrplete execution.

multiple names: In a directoried data set,
more than one name entry in the directory
referring to the same member.

name: A set of one or more characters that
identifies a statement, data set, module,
phase, etc., and that is usually associated
with the location of that which it iden­
tifies.

operator command: A statement to the super­
Vlsor~ issued via the Console Printer­
Keyboard, that causes the supervisor to
provide requested information, alter normal
operations, terminate a job, etc.

phase: The
editor, in
a single
operation;
or part of

unit of output of the linkage
absolute form, that is loaded by
program fetch or program load
may represent an entire program
a program.

phase library: The directoried data set
that contains program phases, processed and
entered by the linkage editor; the source
from which program phases are loaded for
execution.

2Eoblem proqram: Any of the class of
routines that perform processing of the
type for which a computing system is
intended, and including routines that solve
problems, perform computations, monitor and
control industrial processes, etc.

processing program: A general term for any
program other than the supervisor.

record: A general term for any unit of data
that is distinct from all others when
considered in a particular context.

relocatable form: A form of program text
wherein the instructions have variable load
addresses and symbolic cross-references,
plus control information to permit later
conversion to absolute form.

Glossary 39

relocation: The modification of
constants required to compensate
change of origin of a module or
section.

address
for a

control

resource: Any facility of the computing
system or operating system required by a
job and including input/output devices,
data sets, and processing programs.

sequential data set: A data set organized
so that, given one record, the next record
to be processed is uniquely determined.

sgueeze: To eliminate expired data sets on
a direct access volume and shift remaining
data sets to lower numbered tracks to fill
space vacated by expired and deleted data
sets. After squeezing, data sets occupy
contiguous locations. similar to the con­
dense function for members of directoried
data sets.

stand-alone program: Any program that oper­
ates independently of system control; gen­
erally it is either self-loading or loaded
by another stand-alone program.

supervisor: As applied to the Model 44
system, the routines executed in response
to a requirement for altering or interrupt­
ing the flow of operations through the
central processing unit, or for performance
of input/output operations, and, therefore,
the medium through which the use of system
resources is coordinated and the flow of
operations through the central processing
unit is maintained.

symbolic data set: In coding a proqram, the
designation used to refer to data; the
actual data set whose data content is to be
processed during a particular execution of
the program is determined later. The later
assignment may be an entire data set or a
specific member of a directoried data set.

symbolic unit: In coding a program, the
designation used to refer to external stor­
age; the actual storage to be used during a

40

particular execution
determined later.

of the program is

system data set: A data set that has a
particular system use and/or content and a
predefined relationship to a system unit.

system residence volume: The volume con­
taining the phase library, the catalog, and
the IPL routine job control work tables.

system support programs: Those processing
programs that contribute directly to the
use and control of the system and the
production of results: the job control
processor, the linkage editor, and the
utility programs.

system unit: A symbolic unit that has a
particular system use and a predefined
relationship to a system data set.

text: The instructions or data content of a
phase or of the control sections of a
module, collectively.

throughput: A measure of system efficiency;
the rate at which work can be handled by a
computing system.

user: Anyone who requires the services of a
computing system.

utility programs: A collection of programs
(together, the utility processor) that per­
form volume initialization and maintenance
and data set transmission functions.

volume: All of that portion of a single
unit of storage media that is accessible at
a unique channel and unit address.

volume identification: The installation's
designation for a particular tape or direct
access volume.

volume table of contents (VTOC): A table
associated with a direct access volume that
describes each data set on the volume.

absolute decks
loading 7
punching 28

absolute form 8
absolute loader 7
ACCESS statement 25
accounting information

job 23
job step 25
timer 18

addition of
devices 7,22
members 10,25

allocate 24,38
ALLOC statement 24
alternate tracks 8,29
assembler 7

BCDIC 15
Binary-Coded-Decimal Interchange Code 15
blocks

definition 38
format 14
length 14

cancel 22
catalog

definition 38
description 9
manipulation 26

cataloged data set
definition 38
description 9

CATLG statement 26
channel

overlap 14
queue 14,15
scheduler 14

check function 20
close function 20
commands, operator 22
comments (*> statement 26
communication, operator-system 21
communication region 17
compatibility 15
condense 10,38
CONDENSE statement 26
condensing

directoried data set 10,11,26
2315 disk cartridge 12,30

control block 14,38
control section 28,38
control statements

job 23-27
linkage editor 28
utilities 29

copy function 30

data format 14
data management 9
data management relationships 14
data organization 10

data set
access 25
creation 24
definition 38
directoried 10
maintenance statements 26
sequential 10
transmission utilities 29

defective tracks 8,29
DELETE statement 26
deleting

data sets from catalog 26
devices 7,22
members 10,26

device
addition 7,22
assignment 7,22,24,25
deletion 7,22
independence 8,14

devices, supported 5
direct access storage management 12
direct access volume

condensing of 2315 12,30
initialization of 8,29

directoried data set
access 25
creation 10,25
definition 38
format 10

directory
allocation 24
definition 38
function 10

disk storage space allocation 11,24
disk initialization 8,29
dump 15
dump and cancel 15,18,22
dump facilities 15

EBCDIC 15
end-of-data statement 24
end-of-file mark 20
end-of-job statement 24
entry point 21,29
ENTRY statement 29
error recovery procedures 15,20
EXCP

function 20
level 15
scheduler 15

EXEC statement 23
execute channel program

function 20
level 15

Extended Binary-Coded-Decimal Interchange
Code 15

extent 9
external interruption 18
external-signal interruption 18
external storage assignment 11

Index 41

fetch 21
floating-point feature 5
FORTRAN 7
FORTRAN subroutine library 7,10
fresh option 24

INCLUDE statement 29
information operator commands 22
initialization, volume. 8,29
initialize function 29
initial program loading procedure

alterations during 7
definition 39
description 22
input/output commands during 22

input/output
block 14
error recovery 15,20
facilities 14
functions 20
interruption 19
operator commands 22

input., source language 15
installation 39
interruption

analysis routines 21
external 18
flow of control during 17
handling 17
input/output 19
machine check 18
program check 18
supervisor call 18

interrupt-key interruption 18
intervention operator commands 22
IPL

definition 39
description 22
input commands during 22

job 8
job accounting information

for a job 23
for a job step 25
timer 18

job control
language 23
processor 8.,24
statements 23-27
summary table 24

job definition statements 23
job processing 8
JOB statement 23
job step 8.,23

LABEL statement 25
language processors 7
levels of input/output 12
libraries 10
linkage 28,39
linkage editor

control statements 28
definition 39
description 6,8,26

LISTIO statement 25
load 7,21,39

42

machine check interruption 18
machine configuration 5
main storage 39
main storage layout for multiphase

program 29
maintenance

data set 26
directoried data set 26
volume 29

map function 16,29
member 10,25
messages to operator 21
miscellaneous job control statements 26
module

definition 39
description 6,,26
linkage editor processing of 27

module library
definition 39
description 10
linkage editor use of 27

MODULE statement 28
multiphase program 8,29
multiple names

definition 39
manipulation of 10,25

name 39
note function 20

open function
description 20
positioning 25

operator action pause 21
operator commands 22
operator-system communication 21
option parameters 17,23
overlay 28

PAUSE statement 26
phase

definition 39
description 8,29
fetch and load 21
linkage editor processing of 26

phase entry point 21,29
phase library

definition 39
description 10
linkage editor use of 27
program fetch and program load from 21

PHASE statement 28
point function 20
print function 30
print-punch function 30
print/punch program 8
problem program 39
processing program 39
program check interruption 18
program fetch 21
program load 21
program structures 28
punch absolute 30
punch function 30

read function 20
read/write level 12
record 39

('.
\ J

(

relocatable form 7,39
relocatable object program modules 7,10,26
relocation 40
RENAME statement 26
request control block 14
RESET statement 25
resident input/output functions 19
resident supervisor 17
resource 40
rewind function 20
REWIND statement 26

save/restore program 8
sequential data set

access 25
creation 24
definition 40
format 10

source language input 15
squeeze function 30~40
stand-alone program 7,8,40
STOP statement 24
subroutine library 7,10
supervisor 6,,17,40
supervisor call interruption 18
SVC instruction 18
symbolic data set

assignment to symbolic unit 11
definition 40
description 9

symbolic unit
assignment statements 24,25
definition 40
description 11
operator assignment 22

system construction 5,7
system data set 12,40
system editing 5,7
system residence volume

construction 7
contents 13
copying 8

definition 40
phase library on 10,13

system support programs 7,23,40
system unit

assignments 13
definition 40
description 12

tape initialization 29
tape reels 12
text 26
throughput 40
timer feature 18
timer interruption 18
tracks, alternate 29
transient input/output functions 20
transient supervisor 17

UNCATLG statement 26
unit control block 14
unload function 20
UNLOAD statement 26
user 40
utility programs 6,,29

variable precision switch 24
volume

definition 40
identification 9
initialization 8~29
maintenance 29
system residence 6
utilities 29

volume table of contents
definition 40
description 9

VTOC 9

wait function 20
write end-of-file function 20
write function 20

Index 43

C28-6810-1

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N. Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

.
>

il
'" 00
I

0'\
00
I-'
o
I

I-'

(

(

f

Title: IBM System/360 Model 44
Programming System
Concepts and Facilities

READER • S COMMENTS

Form: C28-68l0-l

Your comments assist us in improving the usefulness of our publications; they are a major
part of the input used for technical newsletters and revisions.

Please do not use this form for technical questions about the system; it only delays the
response. Instead, direct your technical questions to your local IBM representative.

Corrections or clarifications needed:

Comment

If you wish a reply, please include your name and address below:

C28-6810-1

fold fold
..

Attention: PUBLICATIONS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITEQ STATES

POSTAGE WILL BE PAID BY .••

IBM CORPORATION

1271 AVENUE OF THE AMERICAS
NEW YORK, N.Y. 10020

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

... ~
fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.106ot
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

fold

()
IV
co
I

CI\
co
o
I

