
•

t
~

(

Systems Reference Library

IBM System/360 Model 44

Programming System

Systems Programmer's Guide

File No. S360-36
Form No. C28-6814-0

This publicat~on describes how to construct an IBM
System/360 Model 44 Programming system~ and how to
modify and extend its capabilities,.

Among the subjects discussed in this publication
are:

• HOW to construct and edit a Model 44 Programming
System.

• How to write an accounting routine and incorporate
it into the system.

• How to define the input/output configuration at IPL
time.

• HOW to write routines at the Execute Channel
Program (EXCP) level of the input/output facili­
ties.

• How to expand the user communication region.

PREFACE

This publication provides information
for programmers responsible for construct­
ing an IBM System/360 Model 44 programming
system. and modifying and extending its
capabilities. It is directed to experi­
enced programmers who have a detailed
knowledge of the components, functions" and
structure of the Model 44 Programming and
computing Systems.

certain information and procedures nec­
essary for the complete understanding of
procedures explained in this publication
are given in other publications and are not
duplicated here. Therefore" the following
publications are prerequisite to this cne:

IBM system/360 Model 44 programming Sys­
tem: concepts and Facilities. Form
C28-6810. describes the functions and capa­
bilities of the prograrrming system.

IBM System/360 Model 44 Programming Sys­
tem: Assembler Language, Form C28-6811,

First Edition

contains the information necessary to pre­
pare code in the assembler language. For
system editing, it is essential for the
user to be familiar with the sections
entitled "Assembler Instruction Statements"
and "Conditional Assembly Instructions."

~_§ystem/2&Q_Model 44 Programming Sys­
~em: Guide to ~Y§teE-_Use. Form C28-6812.
contains detailed information about prepar­
ing programs to be executed under system
control.

For system editing, in addition to this
publication, the system programm~r sh~uld
obtain a symbolic listing of the var10US
system components. The text makes frequent
reference to labels. variables, etc,." that
actually appear in the listing.

Specifications contained herein are subject to change from time to time.
Any such change will be reported in subsequent revisions or Technical
Newsletters.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form is provided at the back of this publication for readers'
comments. If the form has been removed, comments concerning this
publication may be addressed to IBM Corporation, Programming
Publications, 1271 Avenue of the Americas., New York, N.Y., 10020.

©1967 by International Business Machines Corporation

•

•

. "

if •

'.

(

SYSTEM CONSTRUCTION AND EDITING. • • • 5

Form Of Distribution • • • • • • 5
Optional Tape for System Editing. 6

Preparation for System Construction.. 6
Space Allocation Considerations • 6
Space Allocation Planning • ~ • 7

SDSIPL (IPL Record). • • • • 7
SDSABS (Phase Library) • • 7
SDSUAS (Job Control Table) • • • • 9
SDSCAT (System catalog). • • 9
SDSREL (Module Library). • 10
SDSOOO (Complier Data Set) and

SDSOOl (System Work Data Set) 11
SDSPSD (Pseudo-directory) ••••• 11
Summary of Space Allocation. • • • 12

System Construction Procedure. • • • • • 12
Initializing the system Residence

Volume • • • • • • • • • • • 12
System Construction Program • • • • • 13

Initial Program Loading (IPL)
Procedure • . • • • • • • • • • • 14

Preparation for System Editing. • 15

Reassembly of the Supervisor • • • 15
Conditional Assembly
Instructions in the supervisor •• 15

Assembler Instructions in the
Supervisor. • • • • • • • • • 15

System Control Blocks and Tables ••• 17
Unit Control Block •••••••• 17
File Control Block 18
System Unit Table. • 18
Channel Queue. • • • • • • • • 18
Channel Command Word Area. • • 18
Job Control Device Table • • • 19
Channel Command Word Table • • 19
Initialization Device Table. • • • 19

Reassembly of the Assembler Program • 19
Reassembly of FORTRAN Components. • • 20

Assembler Instructions in the
FORTRAN Compiler. • • • •• • 20

Conditional Assembly
Instructions in the FORTRAN
Library • • • • • • • • • • 20

System Editing Procedure • •
COMPONENT COMMENTS MODULES.
EDITING USING TWO DISKS • • • •

Replacement of Module Library
Members. • • • • •

Example of Editing Using Two
Disks. • • • • • • • • • •

EDITING USING ONE DISK. • • • •
Example of Editing Using One

• 22
• 22
• 22

• 23

• 23
• 24

Disk • • • • • • • • • ••• 24
System Modules. • • • • • • • • • 25

CONTENTS

WRITING AN INSTALLATION ACCOUNTING
ROUTINE •

ADD AND SUB COMMAND USAGE. •

ADD and SUB commands. •••••
The ADD Command. • •
The SUB Command. •

USER COMMUNICATION REGION ••
Communication Region Supervisor
Calls. • • • • •• ••••••

INSERT - SVC 17 •••••.••
EXTRACT - SVC 18 . • • • • • •
UPSAND - SVC 19 and UPSOR - SVC

20. • • • • • • •

EXECUTE CHANNEL PROGRAM.

EXCP Level Programming • • • • •
Supervisor Call EXCP •
Supervisor Call WAIT •

Requirements. • • • • • •

• 26

• 28

28
• 28
• 28

30

• • 31
31
32

32

• 33

• • 33
• 33

33

Channel Command Words. • • • • •
• 33
· 34
• 34 Device Routine • •

Input/Output Block • •
Execution • • • • • • • •
Interruption processing •
Incorporating Device Routines into
the System • • • • • • • • •

Changes for New Devices. • •

· • 34
• 35

36

37
37

DEVICE ROUTINE - Control Block
Relationships •••••••••••• 38

Device Routine Design • • • • • 39
Information Available to Device
Routines • • • • • • • • • •

Information in the Registers
Information in the Request
Control Block •••••

• 42
42

42

APPENDIX A •. UNIT CONTROL BLOCK. •• 45
Unit Control Block Fields.. • 45

APPENDIX B. FILE CONTROL BLOCK • • 47
File Control Block Fields. •• • 48

APPENDIX C. INITIALIZATION DEVICE,
CCW, AND JOB CONTROL DEVICE TABLES. • • 50

Initialization Device Table
Fields. • • • • • • • • • • • • • 50

APPENDIX D. SYSTEM MODULES • • • • • • • 53
System Mod Level Directory • • 53

APPENDIX E: SAMPLE PROGRAM •
Description • • • • • • •
Operating Instructions. •
Output.

INDEX •••

• • 58
• 58

• • • • • 58
• • • • • 58

• 60

ILLUSTRATIONS

Figure 1. Sample Input Deck for
System Unit Definition. · . . . · · · · 14

Figure 2. Listing a Component
Comments Module · · 22

Figure 3. Editing using Two Disks · · · 24
Figure 4. Editing Using One Disk. · · · 25
Figure 5. Input/Output Block nOB)
Format. · · . . . · · · · 35

Figure 6. General Flow of a Device
Routine · . . . · 40

Figure 7. Request Control Block · · · · 44

TABLES

Table 1. Phase Library System
Component Sizes • • • • • • • • 8

Table 2. Module Library System
Component sizes • • • • • • • • • • • • 11

Table 3. Space Allocation
Recommendations • • • • • • 12

Figure 8. Unit Control Block WCB)
Format. · · · · · · · · · · · Figure 9. File control Block Format
(Disk) . . · · · · · Figure 10. File Control Block Format
(Tape and Card) · · · · · · · · · · Figure 11- Initialization Device
Table . . . · · · · · · · · · · · Figure 12. Job Control Device Table. · Figure 13. CCW Table. · · · · · · · · Figure 14. Output of Sample Program ·

.Table 5. Samples of Assembler
Instructions in the Supervisor Source

· 45

· 47

48

· 50

· 51

· 52

· 59

Deck •••••.•..•.••••••• 17
Table 6. Device Types •••.•.••• 29
Table 7. System Unit Index Values.. 35
Table 8. Conditions Causing a Device

Routine to be Entered . • • • • • . • • 36
Table 9. System Components. • • •• 53

•

•

:(

(

This chapter provides information about
how to originally construct an operative
IBM System/360 Model 44 Programming System"
and how to edit such a system to reflect
unique installation requirements. It des­
cribes space allocation and IPL procedures,
system residence volurre initialization" and
the use of the system construction program.
Input/output device assignment procedures"
and information about supervisor reassembly
are also included.

The IBM system/360 Model 44 Prograrr.ming
System is a collection of absolute phases
and relocatable modules that can be com­
bined to meet the specific programming
needs of a given installation. The process
used to produce an initial operative ~ro­
gramming system is called system construc­
tion.

IBM provides the phases and modules from
which system libraries (the phase library
and, optionally. the module library) are
constructed. Distributed with the system
are six sta,nd-alone programs, two of which
must be used to construct an operative
system.

System components to be placed into the
phase library are the supervisor~ the
FORTRAN IV compiler. the assembler. and
three system support programs: the job
control processor" the linkage editor" and
the utilities processor. (Each of these
components is distributed in absolute
form.)

System components that are placed into
the module library are service and mathema­
tical subroutines. (Each of these compo­
nents is distributed in relocatable form.)

The six stand-alone programs (programs
that do not operate under system control)
provided with the system are:

1. Two disk initialization programs

2. System construction ~rogram

3., Absolute loader

4. Print/punch program

5. Save/restore program

An installation may delete or replace
any of the system com~onents provided"
except the supervisor and the job control
processor.

§X§1~~_CONSTRUCTION AND EDITING

To obtain an initial operative program­
ming system containing all distributed sys­
tem elements, an installation must:

• Initialize an IBM 2315 Disk cartridge
as the system residence volume.

• Allocate space for all
required by the system.

data sets

• Use the systerr ccnstruction stand-alone
program to transfer the desired compo­
nents of the distributed system onto
the system residence volume.

• Perform an initial program loading
(IPL) procedure. assigning input/output
devices (system units) for use by the
system.

No reassembly of system components is
necessary in this process. However, the
system must be reassembled to make such
modifications as incorporating a new
installation function, ~ermanently changing
a machine configuration" or altering
default conditions for system options.
This process of reassembling--of creating
in effect a new system residence volume--is
called system editing.

FORM OF DISTRIBUTION

The ~rogramming system is distributed by
IBM on one reel of tape from which the card
decks required for system construction can
be punched: if the installation does not
have a tape drive" the programming system
can be obtained in card form. The tape
consists of a series of files: the first
contains a print/punch program, the second
contains a table of contents, and each
remaining file contains a card deck.

The print/punch program is used to print
or punch the contents of the tape; it is a
special stand-alone program to be used with
this tape only. The table of contents is
an alphabetical list (according to card
identification) of the card decks on the
tape together with the file numbers that
contain them.

Complete instructions for the use of the
print/punch prograrr. are given in the publi­
cation ~_§~!~~L360 Model ~~: Operator's
Guid~" Form C28-6815. The following two
examples show typical input parameters that
can be used to control the print/punch
routine:

System Construction And Editing 5

1. To print the table of contents only:

xxxx" cuu" 1.1

where:

xxxx is the device type (1403 or 1443)
cuu is the device address

2. To ~nch all of the card decks con­
tained on the tape:

xxxx.cuu,EOV,,2

where:

xxxx is the device type (2520, 2540"
or 1442)

cuu is the device address

Details regarding the use of input para­
meters. which enable the operator to select
a file or group of files to be printed or
punched, are included in the instructions
mentioned above.

Optional Tape for System Editing

If the system programmer's modifications
require that system editing be done, he
must obtain a copy of the system in symbol­
ic card form. Tapes from which these
symbolic card decks can be punched (or the
system assembled) are available through the
local IBM branch office.

The components of the system (in symbol­
ic form) occupy two reels of magnetic tape.
These. tapes contain blocked records con­
sisting of 20 card images per record. The
arrangement of the system components is
given below.

Reel 1: The 'order of the components on
this reel is:

Save/Restore Program
Print/Punch Program
Absolute Loader
system Construction Frogram
IPL Program
Supervisor
Job Control
Linkage Editor
Assembler Program
Utility Programs

Reel 2: The order of the components on
this reel is:

6

FORTRAN Compiler
FORTRAN Object Fix
FORTRAN Expander
FORTRAN Library

Before a system can be constructed, an
installation must calculate both the amount
of space to be allocated for required
system data sets" and the number of entries
to be allotted to the directories of the
phase and module libraries. After these
values are calculated" they must be speci­
fied on ALLOC control cards provided as
input" along with the IBM-distributed pro­
gramming system to the stand-alone system
construction prograrr. (Each ALLOC card
must be followed by a LAEEL control card.
The LAEEL card defines the characteristics
of the data set named on the immediately
preceding ALLOC card.)

SPACE ALLOCATION CONSIDERATIONS

Space for'the fcllowing system data sets
must be allocated on the system residence
volume .•

Note: In the text that follows, only the
data sets SDSIPL., SDSABS" and SDSUAS Il'ust
be so named by the user. All other data
set names used here, SDSCAT" SDSOOO"
SDSPSD. SDS001" and SDSREL are for conven­
ience only; an installation can choose
different names for them.

• SDSIPL (IPL record). The IPL record
functions as the initializing routine
for· the IPL procedures.

• SDSABS (Phase library). The phase
library" a directoried data set" con­
tains program phases ready for execu­
tion.

• SDSUAS (Job control table). The job
control table is used by job control to
store system-unit assignment informa­
tion.

• SDSCAT (System catalog). The catalog
data set contains the names and volume
identifications of cataloged data sets.
It is used by the system to locate data
sets specified by name alone. (Note
that space need not be allocated to
this data set unless the catalog func­
tion is to be used by the
installation.)

Space for the following system data sets
may be allocated cn the system residence
volume. If. however. these data sets are
not to be stored cn the system residence
volume, space on a different volume must be
allocated for then after an initial system
has been constructed.

•

/",0.--.,

.'

•

'.

• SOSREL (Module library). The module
library. a directoried data set. con­
tains selected modules and serves as an
automatic source of input to the link­
age editor.

• SOSOOO (Compiler data set). The com­
piler data set is used to collect
output from the assembler and the
FORTRAN compiler: it is the input to
the linkage editor.

• SOSPSO (pseudo-directory). The pseudo­
directory is used by the linkage editor
as a directory to data set SOSOOO.

• SOSOOl (system work
system work data set
general system work
used by any processing

SPACE ALLOCATION PLANNING

data set). The
is used as a

area. and may be
program.

This section provides guidelines for
allocating space to all data sets required
by the system.

Space for two data sets only. SOSIPL and
SOSABS. must be allocated before an
installation'S first initial program load­
ing (IPL) procedure is performed. Space
for the other required data sets may be
allocated during the IPL ~rocedure itself.
(See the section "Initial program Loading
(IPL) Procedure.")

SOSIPL (IPL ~!Ql

The IPL record is allocated one
2880-byte block occupying one track. The
formats of the ALLOC and LABEL control
cards required to reserve this space are:

r---,
1// ALLOC SOSIPL. devadr=" volidx'., 1 I
1// LABEL 2880 I L-__ J

devadr
This field
address of
ume.

specifies the device
the system residence vol-

The address is specified in hexadeci­
mal form as cuu" where c is the
channel address and uu is the address
of a device attached to that channel.
c = 0 for the standard multiplex

channel.
= 1 or 2 for one of the optional

high speed multiplex channels.

uu = 00 to FE (0 to 254 in
hexadecimal)

volidx = the volume identification of
the disk mounted on the
device specified by devadr.

Note: SDSIPL must be the first data set
for which space is allocated. The order in
which space is allocated for other data
sets is at the user's discretion and deter­
mines the order of data sets on the system
residence volume. To reduce access time,
space should be allocated to data sets in
frequent use before those less frequently
used.

§OSABS (Phase Libra!Yl

Before coding an ALLoe control card for
the phase library# the user must calculate
both the size of the library,. expressed as
the total number of 720-byte blocks to be
allocated for the data setw and the number
of entries the library's directory is to
contain (one per phase). For assistance in
making these calculations, refer to Table
1. This table shows the size of each of
the system components in the phase library
as initially distributed by IBM, and the
number of directory entries allocated for
them.

In making a final calculation of the
space to be allocated for the phase
library" however" the user must consider
not only system components. but also any
programs that he plans to permanently
incorporate into the library. In addition ..
space must be allocated to allow for tem­
porary entries made by the linkage editor
during job execution.

If the user is uncertain about how much
space to allocate, it should be sufficient
to allow a total of 120 directory entries
(specify 119. one entry is added by the
system) and 500 blocks" resulting in an
allocation of 101 tracks to the phase
library,. This is 75 entries and 215 blocks
more than required by the distributed com­
ponents.

The space necessary to accommodate any
given phase is calculated as follows:

• Number of blocks. Divide the size of
the phase (in bytes) by 720: if there
is a remainder. add 1.

• Numter of directory entries.
phase.

One per

system Construction And Editing 7

Table 1. Phase Library System Component Sizes
r-------------------------T---------------------T---------------------------------------, I I No. of Blocks I No. of Directory Entries I
I Systerr Component I (1 block = 720 bytes) I (1 entry = 24 bytes) I
~-------------------------+---------------------+---------------------------------------~ I supervisor (resident) I 29 I 1 I
~-------------------------+---------------------+---------------------------------------~

Transient routines 1 I

OPEN

CLOSE

CANCEL

DUMP

2311ERP (error recovery
procedure)

2400ERP (error recovery
procedure)

Card read-punch ERP
(error recovery pro­
cedure)

Printer ERP (error
recovery procedure)

4

2

2

2

2

2

1

1

I
t
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

4

2

2

2

2

2

1

1

Error message writer I 1 I 1 I
~-------------------------+---------------------+---------------------------------------~ I Job Control Processor I 51 I 6 I
~-------------------------+---------------------+---------------------------------------~
I Linkage Editor I 21 I 3 I
~-------------------------+---------------------+--------------------.-------------------~
I Utilities I 55 I 8 I
~-------------------------+---------------------+---------------------------------------~
I FORTRAN IV compiler I 70 I 6 I
~-------------------------+---------------------+---------------------------------------~
I Assembler I 40 I 2 I
~-------------------------+---------------------+---------------------------------------~
I systerr Level Directory I 2 I 1 I
~--~----------------------~---------------------~---------------------------------------~
11A transient routine is one that is brought into the supervisor transient area of main I
I storage as required. I L ___ J

The formats of the ALLOC and LABEL
control cards required to reserve space for
the phase library are:

r---,
1// ALLOC SDSABS~devadr=·volidx·~datlen, I
I dirlen ~FMT I
1// LABEL 720 I L ___ J

devadr= • volidx"
This field must be the same as the
corresponding field specified in the
ALLOC control card as described under
"SDSIPL (IPL Record)."

datlen

8

This field specifies the total number
of blocks to be allocated for the data

set~ exclusive
length.

of its directory

dirlen

FMT

This field specifies the total number
of entries tc be allotted to the data
set's directcry. Each entry is 24
bytes long; the system will automat­
ically allocate the total number of
720-tyte blocks needed to accommodate
the directory at the beginning of the
data set.

The FMT keyword causes the system to
write sequential blocks containing
zeros throughout the area reserved for
a direct access data set.

•

I
"'"

•

(

The hlocks are the size specified in
the LABEL statereent for the data set.
If the data set is airectoried., both
the directory and the data area are
formatted.

This facility enables a program to
write or read any data block within
the data set at any time" thereby
making non-sequential processing pos­
sible.

Assembler language programmers may use
the POINT supervisor call to go
directly to the proper position for
writing or reading any block.

SDSUAS (Job Control Table)

The SDSUAS data set is used by the job
control processor to record system and
symbolic unit assignments specified by the
user. SDSUAS must be allocated at least
three 720-byte blocks, but not more than
six blocks for a 64K system. (Each unit
assignment entry occupies 40 bytes.)

The first block" the fixed area, records
system unit assignments specified by the
FIX operand of the SE'I corr.mand issued at
IPL tirr.e. subsequently" at each IPL" the
information contained in this block is read
into main storage for use by the system.
This IPL-time transfer of data saves setup
time; system unit assignments need not be
redefined each time the operator performs
an IPL procedure.

The operator can" however" change system
unit assignments by issuing appropriate
ACCESS (or ALLOC) statements during IPL or
between jobs. A change tc the fixed set of
system units might be made if, for example"
the printer normally used for system messa­
ges were inoperative. "Changes made by the
operator overlay" and override" portions of
the fixed area brought into main storage.
Fixed system unit assignments modified by
the operator are called permanent assign­
ments.

When the job control processor must
relinquish its use of main storage, it uses
the second block of the SDSUAS data set.
the perrranent area" as an auxiliary storage
area in which to keep track of these
permanent assignments.

Note: Although called "permanent," perman­
ent assignments remain in effect only until
the next IPL is performed.)

The t;hird block (see note) of SDSUAS"
the temporary area. is also used bv the job
control processor as an auxiliary storage

area. The temporary area keeps track of
symbolic unit assignments made by the user,
via ACCESS or ALLOC statements, within a
job. 'Iemporary assignrrents remain in
effect only for the duration of a job.
After each job, the system assumes the use
of the permanent unit assignments.

Note: ~ore than one block can be allocated
for--the temporary area. More than one
block should be allocated if the installa­
tion plans to design a job that refers to
more than about ten sequential data sets or
more than six directoried data sets; the
actual number depends upon the types of
references within a specific job and the
amount of main storage available. The
following warning rr,essage will be printed
when the capacity of the temporary area is
exceeded:

IA861 - CAUTION JOB TBL FULL

(The message is explained in detail in the
publication IBM System/360 Model 44 Pro-
9f~ming system: Guide to Systere Use" Form
C28-6812.)

The formats of the ALLOC and LABEL
oontrol cards required to allocate space
for the SDSUAS data set are:

r---,
1// ALLOC SDSUAS,devadr='volidx',datlen' 1
1// LABEL 720 1 L ___ J

devadr='volidx'
This field rrust be the same as the
corresponding field specified in the
ALLOC control card as described under
"SDSIPL (IPL Record)."

datlen
This field specifies the total number
of blocks to be allocated for the data
set. The value specified must be
three or reore.

SDSCAT (System Catalcg)

The system catalog may be considered as
a form of directoried data set containing
no data. Because catalog entries are 24
bytes long,. .the reinimurr. block length that
can be allocated for the catalog is 24
bytes; the maximum length, as for any
directoried data set. is 720 bytes. since
all data sets are allocated no less than
one full track of space, and since the
system always adds one control entry to the
number of entries specified by the user,
maximum use of a 1-track catalog can be
achieved by allocating a block length of
720, and specifying 119 entries. The for-

System Construction And Editing 9

mats of the ALLOC and LABEL control cards
required to reserve space for the catalog
are shown below. (Note that the data
length field of the ALLOC statement is
specified as zero.)

r---,
1// ALLOC SDSCAT,devadr='volidx',O.dirlen 1
1// LABEL block-length 1 L ___ J

devadr=" volidx~
This field must be the same as the
corresponding field ~secified in the
ALLOC control card as described under
"SDSIPL (IPL Record)."

dirlen
This field specifies the total number
of catalog entries to be allotted to
the data set" s directory.

block-length
This field specifies the block length
in bytes. The value specified must be
no less than 24. no greater than 720.

SDSREL (Module Library)

Before coding an ALLOC control card for
the module library. the user must calculate
both the size of the library (expressed as
the total number of 360-byte blocks to be
allocated for the data set), and the number
of entries the library" s directory is to
contain (one per module name). For assist­
ance in making these calculations. refer to
Table 2. This table shows the size of each
of the system components in the module
library as initially distributed by IBM"
and the number of directory entries to be
allocated for them.

In making a final calculation of the
space to be allocated for the module
library" however" the user must consider

10

not only system components" but also any
programs that he plans to perroanently
incorporate into the library. If the user
is uncertain about how rouch space to allo­
cate" it should be sufficient to allow a
total of 180 directory entries (specify
179" one entry is added l:y the system) and
500 blocks" resulting in an allocation of
64 tracks to the rrodule library. This is
85 entries and 292 blocks more than
required by the distributed corrponents.

The space necessary to accorrmodate any
given module is calculated as follows:

• Numl:er of blocks. Divide the size of
the module (in bytes) by 360: if there
is a remainder" add 1. (Note that the
moduies are blocked at five records per
block.)

• Number of directory entries. One for
each module name.

The formats of the ALLoe and LABEL
control cards required to reserve space, on
the system residence volume" for the module
library are:

r---,
1// ALLOC SDSREL, devadr=" volidx' I' datlen" 1
1 dirlen 1
1// LABEL 360#RECLEN=72 1 L ___ J

devadr='volidx'
This field must be the same as the
corresponding field psecified in the
ALLOC control card as described under
"SDSIPL (IPL Record)."

datlen
This field specifies the total number
of blocks to be allocated for the data
set,.

dirlen
This field specifies the total nurober
of entries to be allotted to the data
set~s directory.

RECLEN=72
This field specifies the record length
to be used when creating the module
library. This field must be present
as shown whenever it is desired to
create a module library having a for­
mat acceptable to the linkage editor.

•

., ..

(

(

Table 2. Module Library system Component Sizes
r----------------------T----------------------T---,
1 1 No.. of Blocks 1 No. of Directory Entries I
1 system Component 1 (1 block = 360 bytes} 1 (1 entry = 24 bytes) 1
~----------------------+----------------------+---i
1 1 1 1
1 Service and IBCOM 1 89 1 22 1
1 routines 1 1 1 1
1 1 1 1
1 FORTRAN mathematical 1 119 1 73 1
1 subroutines 1 1 1
J----------------------~----------------------~---i
11 These routines are used for specialized FORTRAN input/output operations. 1 L ___ J

§Q§OOO (Complier Data §~t) a~9-§~SOQ1
i§ystem Work Data Set)

For nost efficient processing the SDSOOO
and SDSOOl data sets should be stored on
magnetic tape. If, however" these data
sets must be stored on the system residence
volume., the following considerations deter­
mine the amount of space to be allocated
for them.

• The amount of space remaining after
other system data sets and the volume
table of contents (VTOC) have been
placed on the volume.

• The amount of space to be allocated for
user data sets on the volume.

• The relative amounts of space to be
allocated for SDSOOO and SDS001. (The
contents of SDSOOO accumulate from
assembly to assembly and from compila­
tion to compilation. The assembler
uses one block of SDSOOl for approxi­
mately every three assembler language
statements" and the FORTRAN compiler
uses one block for approximately every
six FORTRAN source statements .•)

If the user is uncertain about how much
space to allocate" it should be sufficient
to allocate SDSOOO a total of 200 360-byte
blocks, resulting in an allocation of 25
tracks" and to allocate SDS001 a total of
1000 360-byte blocks, resulting in an allo­
cation of 125 tracks. These allocations
should provide enough space on SDS001 for
the assembly of a 2700-card assembler lan­
guage program or for the compilation of a
1200-statement FORTRAN program (based on a
64K system) and enough space on SDSOOO for
a link edit resulting in one or more phases
totaling approximately 52,,000 bytes. Note
that one track accommodates 40 card images.
The formats of the ALLeC and LABEL control
cards required to reserve space on the
system residence volume are:

r---,
1// ALLec SDSOOO,devadr="volidx',datlen 1
1// LAEEL 360 1 L ___ J

devadr='volidx'
This field must be the sane as the
corresponding field specified in the
ALLOC control card as described under
"SDSIPL (IPL Record)."

datlen
This field specifies the total number
of blocks to be allocated for the data
set.

r---,
1// ALLOC SDS001"devadr='volidx',datlen 1
1// LABEL 360 1 L ___ J

devadr=" volidx'
This field rrust be the same
corresponding field specified
ALLOC control card as described
"SDSIPL (IPL Record)."

datlen

as the
in the

under

'I'his field specifies the total number
of blocks to be allocated for the data
set.

SDSPSD (pseudo-directory)

SDSPSD, which serves as the directory of
SDSOOO, is allocated one track of space.
(119 directory entries, each 24 bytes long"
plus one systerr-generated 24-byte control
entry" occupy one track.) The ALLOC and
LABEL control cards required to reserve
this space, on the system residence volume"
are shown below. Note that the data length
field of the ALLOC card is specified as
zero.

system Construction And Editing 11

r---,
1// ALLOC SDSPSD#devadr='volidx',,0.119 I
1// LABEL 360 I L ___ J

devadr='volidx"
This field must be the same as the
corresponding field specified in the
ALLoe control card as described under
"SDSIPL (IPL Record)."

In the preceding discussions of the
allocation of space for the various data
sets, recommendations were made to assist
system programmers in determing a reasona­
ble starting pOint for space allocation.
The recommendations, which are summarized
in Table 3 w will be suitable for a wide
variety of installations. Once an instal­
lation determines its own requirements from
experience" space can be reallocated to
suit those requirements.

Note that in addition to spac~ required
for data sets" Table 3 includes space
(described later under "Initializing the
System Residence Volume") required for the
VToe and space used for the IPL nootstrap
routine on track o.

Table 3. Space Allocation Recommendations
r-------------T---------T---------T-------,
I I Directory I J I
I I Entries I Blocks! I
IData set Name I Allocated I AllocatedJTracks I
~-------------+---------+---------+-------i
SDSIPL I 0 11 ! 1 I

SDSABS

SDSUAS

SDseAT

SDSREL

SDSOOO

SDS001

SDSPSD

ITrack 0
I

I I ! I
1119 1500 ,126 I

I J I
o 14 11 I

I J I
119 10 Jl I

I 1 I
179 1500 164 I

1 I I
o 1200 125 I

I I I
o 11000 1125 I

I I I
119 10 11 I

I I I
1- 11 I
I I I

IVTOe 36 10 12 I
~-------------~---------~---------+-------i
ITracks remaining for the user 153 I
L ____ ~----------------------------~-______ J

12

This section describes the procedures to
be followed to obtain an initial operative
programming system. It explains the proce­
dure for initializing the system residence
volume and the use of the system construc­
tion program.

INITIALIZING THE SYSTEM RESIDENCE VOLUME

After the amount of space to be allocat­
ed for system data sets has been calculat­
ed, the user must initialize an IBM 2315
Disk cartridge as the installation's system
residence volume. Initialization is the
process of writing sector identification, a
volume label" and a volume table of con­
tents (VTOC) on a direct-access volume.
These functions are performed by the 2315
stand-alone disk initialization program
provided with the distributed system. To
use this programw the user must prepare an
INITIAL control card. This card is placed
behind the disk initialization program, as
the last card in the deck. The format of
the INITIAL control card required for sys­
tem residence volume initialization is:

r---,
I INITIAL TYPE;xxxx,DVADR=CUU, I
I VCLID='volidx'"VTOc=e,EDATE=yyddd, I
I SYSLOG=cuu I L ___ J

TYPE=xxxx
This field identifies the type of
device on which the volume is mounted.
The value of this field must be SDSD.

DVADR=cuu
This field specifies the device
address (physical location) of the
volume to be initialized. The DVADR
value" cuu. denotes its channel and
unit address.
c = 0 for the standard multiplex

channel.
one of the optional
multiplex channels.

the unit address in

= 1 or 2 for
high speed

uu = 00 to FE
hexadecimal.

VOLID=" volidx'
This field
tification
the volume
characters
enclosed in

VTOC=e

specifies the 6-byte iden­
number to be assigned to

to be initialized. The six
of this field must be

single quotation marks.

This field specifies the number of
entries" e" that will be in the
volume's VTOC. (Entries are placed 20

to a track .•) The system uses this
information to determine how much
space must be reserved for the table
of contents. The count includes for­
mat 4 and format 5 latels, as well as
all format 1 labels. The minimum
possible value for the system resi­
dence volume is 5. Note that the
system reserves entire tracks for the
volume table of contents. The system
adds 4 (for entries created by the
system) to the value of e specified by
the system programmer and then res­
erves enough tracks to contain that
nurrber of entries. For example, if e
is 50, the system adds 4 giving 54;
therefore~ three tracks (space for 60
entries) is reserved. The space for
six additional VTOC entries that is
added to form a complete track is
available for the volume table of
contents.

EDATE=yyddd
This field specifies the date on which
the volume is initialized.. The date
is in the form yyddd~ where yy is the
year, and ddd is the day of the year
(001-366).

SYSLOG=cuu
This field specifies the device
address of the console printer key­
board. The meaning of cuu is the same
as described above for DVADR=cuu.

The following is an exarr:ple of an INI­
TIAL control card that might be prepared to
govern initialization of a system residence
volume:

r---,
I INITIAL TYPE=SDSD,DVADR=OCO. I
I VCLID=' SYSRES·., VTOC=20, I
I EDATE=67033.SYSLOG=009 I l ___ J

SYSTEM CONSTRUCTION PROGRAM

The system construction program provided
with each distributed Model 44 programming
System is a stand-alone program executed
without system control. The program con­
structs an operative system from absolute
and relocatable decks containing the
executable phases and relocatable modules
the installation chooses to include in its
system. The following procedure must be
followed to execute the system construction
program:

1. Initialize the system residence vol­
ume. (See the preceding section,
nInitializing the System Residence
Volume.")

2. Place the system ccnstruction program
deck into the card reader.

3. Place the ALLOC control card shown
below into the card reader. This card
defines the system unit that the
installation will use for the printing
of messages,.

r------------------------------------,
I//SYSLOG ALLOC SDSLOG,devadr= I l ____________________________________ J

devadr
This field specifies the address
of the device to be used for the
printing of system messages. The
address, in the hexadecimal form
cuu, must be irrmediately followed
by an equal sign and a blank.
Note that cuu is described under
"SDSIPL (IPL Record)."

4. Place the following SET card into the
card reader:

5.

r------------------------------------, I SET date I L ____________________________________ J

date
This operand is in the form
yyddd" where yy consists of the
last two digits of the current
year, and ddd represents the day
of the year (001-366).

Place the ALLOC and LABEL
cards prepared for SDSIPL
record) into the card reader.

control
(the IPL

6. Place the SDS1PL deck (provided as
part of the distributed programrring
system) into the card reader, followed
by a /* end-of-data control card.
This deck is the first module
(BDAOOOOO) of the input/output sUFer­
visor deck (360-10-613).

7,. Place the ALLOC and LAEEL control
cards prepared for SDSABS (the Fhase
litrary) into the card reader.

8. Place the SDSAES deck (provided as
part of the di,stributed programroing
system) into the card reader, followed
by a /* end-of-data control card.
This deck, which begins with module
BEAOOOOO" consists of the remainder of
the input/output supervisor deck
(360-10-613); see step 6 above.

System Construction And Editing 13

9.

10.

11.

Place any additional decks to be
stored on the system residence volume
into the card reader, as described
above l each preceded by a set of
related ALLOC and LABEL control cards;
each should be followed by a /* end­
of~data control card. (The order in
which these decks are placed into the
card reader determines the order in
which the data sets appear on the
volume.)

Place a /& end-of-job .control card
into the card reader.

Dial the console load-unit switches to
the address of the card reader.

12. Press the console Load button.

In summary, the deck sequence for system
construction is as follows:

. 1. 2315 disk initialization prograrr.

2. INITIAL control statement.

3.. Stand-alone
program.

systerr construction

4. ALLOC control card defining SYSLOG.

5. SET control card.

6. SDSIPL deck, preceded by related ALLOC
and LABEL cards.

7. SDSABS deck, preceded by related ALLOC
and LABEL cards.

8. Additional decks to be stored on the
system residence volume, each preceded
by ALLOC and LABEL cards.

9. /& control card.

Operation of the constructed system is
initiated by the initial program loading
(IPL) procedure. The IPL procedure con­
cl udes with a SET corrmand" which results in
the job control processor being fetched to
begin processing.

The first IPL performed on the program­
ming system differs somewhat from subse­
quent IPLs in that the user !!!l!2~ specify
the FIX option of the SET command. This
option signals the system that the user is
about to define the data set-symbolic unit
relationships known as system units. Sys­
tem unit definitions are made via ALLOe"
ACCESS" and LABEL control cards that
immediately follow the SET command. Note

14

that all control cards used during the IPL
procedure are operator commands; i.e., they
do not begin with the // identifiers and
column 1 is blank when no system unit is
specified.

A maximum of 14 system units may be
defined. 1 Figure 1 is an exarrple of an
input deck that might be prepared to define
these units. For this exarrple, it is
assumed that all system disk data set
allocation was done during system construc­
tion. Note that space for SYSABl must
always be allocated before the IPL proce­
dure is performed. In this example, ALLOC
statements are used to ·define the printer,
punch, card reader, and console typewriter;
ACCESS statements are used for the other
units.

The distributed system supports a maxi­
mum of 17 symbolic units: SYSABl through
SYS005. During an IPL procedure, only 14
of the units can be allocated or accessed •
(Note that "SYSCA'l" is a naming convention
and is not counted as a system unit.) An
attempt to define SYSOO~, SYS005. or the
fifteenth unit will result in an error
message from the job control processor.

r---,
I SET 67090,FIX
ISYSAB1 ACCESS SDSAES,OCO='SYSRES'
I SYSREL ACCESS SDSREL" SAME=SDSABS
ISYSLOG ALLOC SDSLOG,1052='LOGOUT
I SYSRDR ACCESS SDSRDR, 2540=' I NPU'l' ,
ISYSIPT ACCESS SDSIPT,SAME=SDSRDR
I SYSLS'I ALLOC SDSLS'l, 1403= 'OUTPUT'
\ LABEL ,CTLASA
ISYSOPT ALLOC SDSOPT.SAME=SDSLST
I LABEL ,CTLASA
ISYSPCH ALLOC SDSPCH.2540P='PUNCH'
ISYSPSD ACCESS SDSPSD,SAME=SDSABS
I SYSUAS ACCESS SDSUAS"SAME=SDSABS
I SYSOOO ACCESS SDSOOO" SAME=SDSABS
ISYSOOl ACCESS SDS001,SAME=SDSABS
\SYSCAT1 ACCESS SDSCAT,SAME=SDSABS
\ LISTIO I
1/& I
~---~
\1The system unit SYSCAT may be used only I
I during the IPL procedure. The unit dces\
I not actually exist in the system; \
\ "SYSCAT" is a name Which allows the user \
I to identify the catalog to the system. I L ___ J

Figure 1. Sample Input Deck for System
Unit Definition

There is no need to define all of the
system units. If SYSAE2 is not defined at

1The job control processor requires that
five system units be defined: SYSAB1,
SYSRDR. SYSLOG, SYSLST, and SYSUAS. Four­
teen sY!:'ltem units are required if full use
is to be made of the system.

(\

~)

(

(

IPL time, the job control processor will
automatically create an entry for it using
the same definition as for SYSAB1. If
SYSAB2 is defined at IPL time, the job
control pr9cessor will use the definition
given.

After the user has defined all required
system units" "normal" use can be made of
the system, but the first step the user may
want to take is to assemble or linkage edit
any programs to be added to the phase
library. The publication 1~~--2Ystem/360
Model 44 Pro9rammin~Syst~~~~ide~Sys=
tem Use, Form C28-6812, explains these
prbcedures.

PREPARATION,FOR SYSTEM EDITING

System editing is the process of reas­
sembling components of a current program­
ming system to make such modifications as
incorporating a new installation function"
or altering a default condition for a
system option. (Note" however" that reas­
sembly is not always necessary for modi­
fication. Some minor changes can be made
by means of REPLACE (REP) statements by
producing a new system using the system
construction program. The"REP statement is
explained in the publication IBM system/360
Model 44 Programming System: Guide to Sys=
tem Use" Form C28-6812.)

system editing is most easily performed
using two IBM 2315 Disk Cartridges (one of
which is the current system residence
volume) and a symbolic deck of the system.
changes can be made 'by means of the job
control processor" the assembler language
compiler, and the linkage editor. The
changes that can be made by means of the
job control processor are performed as
described under "System Construction"
(i.e., the size of new data sets" and the
number of directory entries for the phase
and module libraries must be specified in
ALLOC and LABEL statements).

REASSEMBLY OF THE SUPERVISOR

The update facilities of the assembler
are used to specify changes to be made
during reassembly of the supervisor. How­
ever" before any modifications are made.,
the system programmer should ontain an
assembly listing of the system. The list­
ing can be obtained by assembling the
system as provided on the optional tape
(see "optional Tape for system Editing");
the assembler's update feature should be

used to produce the listing by specifying
the UPDASME3 option. The assembly listing
will provide the user with the locations of
control blocks and tables that can be
altered to meet installation requirements.

The following sections describe the
changes that should be made to tailor a
system to an installation's particular
machine configuration and supervisor fea­
ture options. To summarize most of the
information presented in these sections" a
description of the changes necessary to add
a new device to the system is also provid­
ed.

Conditional Assem~1Y-Ins!ructions in the
§!!E~rviso~

The symbolic source deck of the supervi­
sor contains conditional assembly instruc­
tions that have operand values which can be
changed to specify conditions that apply at
a particular installation. Samples of SETA
instructions in the supervisor are listed
in Table 4. Many of the operands of these
instructions specify default conditicns.
Default conditions are the conditions that
are assumed if the corresponding values are
omitted from a control statement. The
operand values shown are the settings in
the distributed version of the system. It
is usually to the user's advantage to
indicate deletion of features that are not
to be used at his installaticn. By delet­
ing unneeded features" storage space is
saved.

A complete list of conditional asse~bly
instructions that may be changed is con­
tained in the corrponent corrments module,
which can be obtained as explained under
"Component Comments Modules."

Assembler Instructions in the Supervisor

The symbolic source deck of the supervi­
sor contains EQU assembler instructions
that have operand values which can be
changed to specify conditions that apply at
a particular installation. Sarrples of EQU
instructions in the supervisor are listed
in Table 5; the operand values shown are
the settings in the distributed system.

A complete list of assembler instruc­
tions that may be changed is contained in
the component comrrents module, which can be
obtained as explained under "Component Com­
ments Modules."

System Construction And Editing 15

Table 4. Samples of Conditional Assembly Instructions in the Supervisor
r-------T---------T-------T----------------------T--------------------------------------,
I Name I Operation I operandi Default Condition I Description of the Operand Value I
~-------+---------+-------+----------------------+--------------------------------------~

&ACCNT ISETA I 0 I IIf 0, the installation will not pro-I
I I I I vide an accounting routine; if 1, it I
I I I Iwill provide an accounting routine. I
I I I I I
I I I I I

&DUMP I SETA I 0 IDUMP/NODUMP field of 10 specifies that NCDUMP is assumed; I
I lithe JOB statement. 11 specifies that DUMP is assumed. I
I I I I I

&FLPT I SETA I 0 I I If. 0, floating-point registers willi
I I I not be used. If 1, floating-point I
I I I registers will be used. I
I I I I

&HGHCT SETA I 2 I Specifies the highest channel number I
I I in the installation. I
I I I

&LABEL SETA 0 I If O~ the system treats all magnetic I
I tapes as unlabeled. If 1, the system I

will handle the standard tape labels. I
I

&STAPE~ SETA 1 If 1, the system assembles routines I
for support of rragnetic tape. If 0,1
the routines are not assembled.

&TCON SETA

&TDEN SETA

&TIMER SETA

&TPAR SETA

&TTRN SETA

&T9ND SETA

&WCHK SETA

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

1

2

1

1

o

o

o

Convert feature in the 1 specifies that ON is assumed for
volume field of ACCESS 7-track 2400-series tape drives; 0
and ALLOC statements. I specifies that OFF is assurred.

Density for 7-track
2400-series tape
drives. This option
appears in the volume
field of ACCESS and
ALLOC statements.

I
12 specifies that a density of 800
I b.p .• i. is assumed. 1 specifies that
1556 b.p.i. is assumed. 0 specifies
I that 200 b.p. i .• is assumed.
I
I
I
IIf
lif
I

1., the timer feature is to be used;
0, it will not be used.

Parity speCification 11 specifies that odd parity is assumed
in the volume field of for 7-track 2400-series tape drives;
ACCESS and ALLOC 0 specifies that even parity is
statements. assumed.

ITranslate feature in
Ithe volume field of
IACCESS and ALLOC

o specifies that OFF is assumed
7-track 2400-series tape drives;
specifies that ON is assumed.

for
1

I statements.
I
IDensity for 9-track 0 specifies that a density of 1600
Idual density IBM 2400 b.p.i. is assumed; 1 specifies that
IModel 4. 5., and 6 Tape 800 b.p. i. is assurr,ed.
IDrives. This option I
lappears in the volume I
I field of ACCESS and I
IALLOC statements. I
I I
IWRCHK/NORCHK specifi- 10
Ication of LABEL~ACCESSll

specifies that NOWRCHK is assumed;
specifies that WRCHK is assumed.

I I and ALLOC staterrents. I • _______ i _________ i _______ i ______________________ i ______________________________________ ~

I~changing the instruction's' operand value to 0 does not result in the deletion ofl
I associated transient error recovery routines. They must be explicitly deleted from the I
I library if they are not wanted. I L ___ J

16

Table 5. samples of Assemtler Instructions in the supervisor Source Deck
,4' -
~ r------T----------T-------T---,
" I Name IOperation I Operand I Description of the Operand Value I

(

~------+----------+-------+---~
I I I

NCCW I EQU I 60 specifies the maximum numter of double words available fori
I I channel command words (CCWs). I
I I I

NCHQ I EQU I 20 Specifies the maximum number of channel requests that can be
I I placed into the channel queue.
I I

NDEV I EQU I 5 Specifies the number of device routines available for use by
I I the system.
I I

NFCB I EQU I 18 Specifies the maximum number of file control blocks (FCEs)
I I that can be incorporated into the system.

NSUT EQU 21 Specifies the maximum number of system units that can be
defined for the system.

INUCB
I

EQU 13 specifies the maximum number of unit ccntrel
that can be incorporated into the system.

blocks (UCBs)

I
I NXCA
I
I
I

EQU 4

,
Specifies the length (in words) of the extended save area ofl
the user communication region. ~he extended save area isl
usually used to store accounting routine output. Itsl
maximum length is dependent only upon 'installation require-I

I ments. I L _____ ~ __________ ~ _______ ~ ___ J

SYSTEM CONTROL BLOCKS AND TABLES

The sections that follow describe the
content and formats of system control
blocks and tables which can be modified
during system editing.

Unit Control Block

The Unit Control Block (UCB) provides
information about the characteristics of a
specific input/output device. There must
be one UCB for each uniquely addressable
input/output device in the installation's
machine configuration. The format of the
UCB is shown in Figure 8 in Appendix A,.

VCB Table: Uni t control blocks are stored"
contiguously" in the UCB ~able" an area of
the resident supervisor. The size of the
table can be extended, without defining any
UCB fields l by increasing the operand value
of the supervisor EQU instruction labeled
NUCB. (This instruction is described in
the section "Assembler Instructions in the
Supervisor.") Extending the table in this
way provides an installation with greater
flexibility in its use of ADD and SUB
commands. Additional information related
to this subject can be found in the chapter
entitled "ADD and SUB Command usage."

To add a UCB to the table, which may be
necessary when" for example, a new
input/output device is permanently attached
to the system, the user must insert the
following statements.

r-------------------------~-------------~-'
,1. UCBnnn EQU * 'I
12. DC X'Ocuu' ,
13. DC X'mm"
14. DC X'tt' I
I 5. DC n.UCB- 4) X ' 00 ' I L ___ J

UCBnnn

cuu

mm

tt

LUCB

is a symbolic label; nnn represents
the relative location of the UCB with­
in the table. For example, 018 would
be the eighteenth UCB in the table.

is the uni t address" in hexadecimal
form, of the device described by the
UCE.

is device mode (see Fig,ure 11 in
Appendix C).

is the device type (see Figure 11 in
Appendix C).

is a symbol representing the length in
bytes of the UCB.

System Construction And Editing 17

To replace a UCB in the table, which may
be necessary when, for examole, an
input/output device is permanently substi­
tuted for another device in the system, the
user must replace three DC statements"
statements 2 through 4 above.

To delete a UCB, which may be necessary
when. for example, an input/output device
is permanently removed from the machine
configuration. the user must delete all
five statements.

File Control Block

The File Control Block (FCB) provides
information about the characteristics of a
specific data set and the volume on which
it resides. There must be one FCB for each
symbolic unit defined for the system. The
format of the FCB differs by device type;
the FCBs for each type are shown in Figures
9 and 10 in Appendix B.

FCB Table: File control blocks are stored .•
contiguously, in the FCB table, an area of
the resident supervisor .•

To provide space for a new FCB in the
table. which may be necessary when, for
example, the installation designs a program
containing a job step referring concurrent­
ly to more symbolic units than there are
FCBs provided for in the table1 , the user
must insert the following DS statement.

r----~------------------------------------,
IFCBnnn DS (LFCB/4)F I L ___ J

FCBnnn

LFCB

is a symbolic label; nnn represents
the relative location of the FCB with­
in the ~able. For example, 022 would
be the twenty-second FCB in the table.

is a symbol representing the length in
bytes of the FCB.

System Unit Table

The system unit table is a aroup of
contiguous 2-byte blocks in the system
communication region. Each block contains
information relating a symbolic unit to its
associated UCB and FCB. For each entry in

1See Table 5 for the number of FCBs provid­
ed for in the distributed version of the
system.

18

the table, there are two address pointers:
a i-byte UCBpointer pointing to a UCB in
the UCB table" and a i-byte FCE pointer"
pointing to an FCB in the FCB table.

In the distributed version of the sys­
tem, 21 symbolic units are provided for in
the system unit table. The symbols of
these units can be determined from the
first 21 entries in Table 7. If additional
units are required the user nust enter an
appropriate FCB pointer into the system
unit table for each additional unit. (~he
UCB pointer is placed into the system unit
table ty the system.) The following DC
statements can be used to enter an FCB
pointer:

r---,
ISYSnnn DC X'OO' I
I DC X'pp' I L ___ J

SYSnnn

pp

is a symbolic label; nnn represents a
number which when added to 16 speci­
fies the relative location of the
entry within the table. For example,
006 specifies the twenty-second
(006+16) entry in the table" i.e., the
entry for the first additional unit.

is the relative
hexadecimal).

FCB number (in

The channel queue is used, during proc­
eSSing" to keep track of all input/output
requests not yet executed by the system.
Each entry in the queue occupies four
bytes. The distributed version of the
system provides for 20 channel queue
entries. If the user wants to change this
number" he must reassemble the supervisor
and change the operand value of the EQU
instruction labeled NCHQ. (See the section
"Assembler Instructions in the
Supervisor.") Changing the operand value
effectively chang,es the size of the queue.
The maximum size of the queue is dependent
only upon installation requirements and
storage availability; the mininum size is
one entry (four bytes).

Channel Command word Area

The channel command word (Ccw) area is
used for the storage of channel command
words during IPL processing. Each channel
command word occupies eight bytes. In the

(

distributed version of the system" 60
entries are provided for the area. If the
user wants to change this number. he must
change the operand value of the EQU
instruction labeled NCCW. (See the section
"Assembler Instructions in the
supervisor .• ") Changing the operand value
effectively changes the size of the storage
area.

As a general rule, the area should be
large enough only to accommodate the CCWs
for all devices specified in unit control
blocks either at asselt'bly or IPL time. The
maximum size of the area, however" is
dependent upon installation requirements
and storage availability.

Job Control Device Table

The job control device table" shown in
Figure 12 in Appendix c., is used bv the job
control processor to ccnvert to an internal
code a device type (e.g.~ 1052) specified
by the user in a control statement. The
code is used to find the UCB for the device
type specified.

Channel Command WQ!Q-1able

The channel command word (CCW) tal:le"
shown in Figure 13 in Appendix C, contains
the channel command words included in the
distributed version of the system. The
number of channel comlt'and words required
for an input/output operation varies
according to the device; the number and
contents of these words are given in the
publication that describe each device.

Initialization Device Tal:le

The initialization device table is used
by the system to obtain device-related
information during the initial program
loading (IPL) procedure. The format of
this tal:le as it appears in the distributed
version of the system is shown in Figure 11
in Appendix C.

Adding a New IQ2~~/OutF~~_ Devic~l The
following text indicates the changes that
would be made during system editinq to add
a new input/output device to the system.
Additional information related to this
subject can be found in the chapter
"Execute Channel Program."

To add a new device to the system, the
user must either provide new entries or
make changes to existing entries in the
initialization device table~ the job con­
trol device table, and the CCW table. If
an entry is added to the job control table,
the user must also change the count of the
number of bytes alloted to the table. The
count field is rraintained in the convert
type routine, which is lal:eled CTYP.

Depending upon installation require­
ments, it may also be necessary when adding
a new device" to modify the supervisor
assembler instructions labeled NCCW, NFCB.,
NSUT, and NUCB. A description of these
instructions can be found in the section
"Assembler Instructions in the supervisor."

REASSEMBLY OF THE ASSEMBLER PROGRAM

The symbolic source deck of the assem­
bler program contains assembler and condi­
tional assembly instructions that have
operand values which can be changed to
specify conditions that apply at a particu­
lar installation. The DC instruction that
specifies the default conditions for the
EXEC statement will l:e used to illustrate
an assembler instruction in the assembler
program.

To change the default conditions for the
EXEC statement" the system pr,ogrammer Jllust
change the operand of the CC instruction
labeled SWSPH1, part of the assembler com­
munication region. The operand of the DC
instruction, which defines the contents of
two bytes, is specified as X'8070' in the
distrituted system and, therefore, bits 0"
9# 10, and 11 are set to 1. The default
condition associated with each bit defined
by SWSPHl is as follows:

Bit
Number
-0---

1
2
3
4
5
6
7
8
9
10
11
12-16

Default
Condition Assembler
UPDASMBl
UPDASMB2
UPDASMB3
UPDATEl
UPDATE2
not used
SYMBMAX
LINK
DECK
LIST
XREF
not used

Setting in
Distributed System 1-------
o
o
o
o
o
o
o (see note)
o
1
1
1·
o

Note: When this
equivalent to
option. If the
option, this bit

bit contains a O~ it is
speoifying the SYMEMIN
user specifies the SYMBnnn
is ignored.

System Construction And Editing 19

A conditional assembly instruction is
included in the assembler program to pro­
vide a n.eans of eliminating large blocks of
comments from the listing of the assembler
program, thereby reducing the time required
to print the listing. The conditional
assembly instruction in the distributed
version is:

& REMARK SETA 1

The 1 in the operand indicates that all
comments are to be listed. By using a SETA
instruction with a 0 in the operand, the
large blocks of corrments can be omitted
from the listing.

A con.plete list of assembler and condi­
tional assembly instructions that may be
changed is contained in the component com­
ments module" which can be obtained as
explained under "component comments
Modules."

REASSEMBLY OF FORTRAN COMPONENTS

The symbolic source deck of FOR~RAN
contains assembler and conditional assembly
instructions that have operand values which
can be changed to specify conditions that
apply at a particular installation. Exam­
ples of assembler and conditional assembly
instructions that can be changed are given
below.

Assembler Instructions in the FORT~AN
COmpiler

To change the default conditions for the
EXEC statement" the system programmer must
change the operand of the DC instruction
labeled FORTOPT. The operand of the DC
instruction" which defines the contents of
one byte" is specified as X~48' in the
distributed system and, therefore, bits 1
and 4 are set to 1. The default condition
associated with each bit defined bv FORTOPT
is as follows:

Bit Default Setting in
Number Condition Distributed syst~
0 MAP 0
1 LINK 1
2 DECK 0
3 not used 0
4 SOURCE 1
5 BCD 0
6-7 not used 0

A complete list of assembler instruc­
tions that may be changed is contained in
the component comments module, which can be

20

obtained as explained under "component Com­
ments Modules."

Conditional Asse~E1~tructions in the
FORTRAN Library

The following conditional asserrbly
instruction" which is incl uded in the
BOAUOPT routine in the distributed system"
specifies that the boundary adjustment rou­
tine (ENAADJST) is to be used by the
system:

r---,
I&FIX SETA 1 I L ___ J

If the BNAADJST routine is not to be
used w the system programmer must change the
operand of this instruction to a O.

The following conditional assembly
instruction" which is included in the
BOAUOPT routine in the distributed system"
specifies that error rressages indicating
that the boundary adjustment routine has
corrected an error are not to be printed:

r---,
I&PRNTMES SETA 0 I L ___ J

If error messages are desired" the sys­
tem programmer must change the operand to a
number from 1 through 254~ the number
indicates the maxirrum number of times the
error message is to be printed. Note that"
although the printing of the message stops
when the specified number is reached, the
boundary adjustment routine continues to
operate normally.

The number of units available to the
FORTRAN compiler is specified by the fol­
lowing conditional asserrbly instruction"
which is included in the UNITAB routine in
the distributed system:

r---,
I&UNITS SETA 8 I L ___ J

The system programmer can increase (8 is
the minimum) the number in the operand to
15 without additional changes to the sys-
tem. However" if more than 15 units are to
be used" the system prograrrrrer must expand
the system unit table (see "System Unit
Table") to include the additional units and
must associate the new data set reference
numbers with the new entries in the system
unit table. This asscciation is done by
inserting a group of five DC instructions rf.·~.'",
for each new unit into the UNITAB routine ~/
ahead of the EQU statement labeled

f

(

ENDTABLE. The groups of DC instructions
that must be inserted for each data set
reference number over 15 is as follows:

Instructions
DC X' aa'
DC X'bb'
DC ALl (NULL)
DC X'cc'
DC AU)

Notes
see-"Status 1"
See "Status 2"

See "Index Number"

status 1: The value of aa is determined by
the settings of the following bits:

Bit
Number
o

1

2

3

4

5

6

7

Bit
setting
o
1

o
1

o

1

o

1

o

1

o

1

o

1

o

1

Meaning
Data set closed
Data set open

Null cendition
Sequential input/output

oferation performed

Last oferation was READ
or WRITE

Last operation was a
contrcl operation

Last input/output opera­
tion did not refer to
a FORMAT statement

Last input/output opera­
tion referred to a
FORMAT statement

Last input/output
tion was an
eperation

Last input/output
tion was an
oferation

opera­
input

of era­
output

Last control operation
was not a BSR of era­
tion

Last control operation
was a BSR operation

Last control operation
was not an REW of era­
tion

Last centrol operation
was an REW operation

Last control operation
was net a WEF of era­
tion

Last control operation
was a WEF operation

Status 2: The value of tb is determined by
the settIngs of the following bits:

Bit
Number
o

1

2

3

4-7

Bit
Setting
o

1

o

1

o

2

o

1

o

Meaning
The unit is not a

SYSname type unit
The unit is a SYSname

type unit

Input operations are
allowed on this unit

No input operations are
allowed on this unit

outfut operations are
allowed on this unit

No output operations are
allowed on this unit

Centrcl eferations are
allowed on this unit

Ne control operations
are allowed on this
unit

Not used

Index Number: The value of cc specifies
the position of a unit in the system unit
table to be associated the data set ref­
erence number represented by this group of
DC instructions. The data set reference
number is determined by the position of a
group of DC instructions in the sequence of
groups that define all of the units.

seassigning_UnitSl 11 data set reference
number can be associated with a different
unit in the systerr unit table by changing
the DC instruction that specifies the index
number.' However" the systerr prograrrmer
must make sure that the DC instructions
defining status 1 and status 2 allow the
operaticns that he wants and/or provide the
protection that he wants. .

A corr,plete list ef condi ticnal assembly
instructions that rray be changed is con­
tained in the component. comments module.,
which can be obtained as explained under
"Component Comments Module."

System Construction And Editing 21

SYSTEM EDITING PROCEDURE

This section describes the procedures to
be followed when modification of a system
component becomes necessary.

COMPONENT COMMENTS MODULES

After the system programmer has deter­
mined that modifications to a system compo­
nent are necessary for his purposes# he
should obtain the component comments module
for that component. A component comments
module contains all pertinent facts regard­
ing all assembly parameters or default
settings for a component~ it also contains
the linkage editing procedures for using
the relocatable modules produced by the
assembler program.

A corrponent comments module is the first
assembly module of each corr,ponent. A list­
ing is obtained by using the assembler
update feature to print the contents of the
desired module (see Figure 2). The follow­
ing lists show the identifications of the
component comments modules for each compo­
nent:

Components
on Reel 1
Save/Restore

Print/Punch

Absolute Loader

System Construction

IPL Program

supervisor

Module
Identification
EACAOOOO----

EADAOOOO

BEAAOOOO

BCAAOOOO

BDAAOOOO

BFAAOOOO

Components Module
on Reel 1 Identification
JobCOntrol EIAAOOOO

Linkage Editor EKAAOOOO

Assembler ELAAOOOO

Utility Programs EMAAOOOO

Components Module
on Reel 2 Identification
FORTRAN-Compiler ENAAOOOO

FORTRAN Object Fix ENXAOOOO

FORTRAN Expander ENZAOOOO

FORTRAN Library BOAAOOOO

The job shown in Figure 2 illustrates
the method of obtaining a listing of the
component comments module. In this job.
the contents of the rrodule for the linkage
editor are obtained.

EDITING USING TWO DISKS

After the appropriate symbolic modifica­
tions have been prepared using the informa­
tion given in the component comments module
(see also "Preparation for System
Editing"), the system programmer must reas­
semble and link edit the modified component
to replace the existing one. ~he reassem­
bling and link editing is most safely done
using two single disk storage drives, one
magnetic tape unit and, for system data set
SDS001, either an additional rragnetic tape
unit or the equivalent storage space on an
IBM 1316 Disk Pack. However~ another addi­
tional magnetic tape unit is required for
system data set SDS003 whenever the system
programmer desires to modify theFOR~RAN
compiler or to retain the updated symbolic
component.

Ir---,
I//LIST .JOB
I
//SYS002 ACCESS SYSSYM,2400=~REEL1'

//

//ASM

/&

LABEL

EXEC

SKPTO

1600

ASSEMELE(UPDASMB3.NOLINK,NODECK)

BKAAOOOO

1.BKAA9990

~---i

(~}
\.. ;/

I1.This symbol must begin in column 73. I L ___ J ~

Figure 2. Listing a ComponentCorrments Module

22

'.

(

The procedure for editing using two
disks is as follows:

1. Initialize the second disk using the
utility programs of the existing sys­
teIl'.

2. Allocate space for the various system
data sets as explained under
"preparation for System Construction."

3. Copy the IPL data set from the origi­
nal system (i.e .• " the system being
modified) to the new system using the
COPY function of the utility programs.

If members of the roodule library are
being replaced, the remaining steps are
replaced by the procedure given under
"Replacement of Module Library Members,."
Note that if the supervisor is the member
being replaced, the system progranlmer must
know the ending location (SVAREA+80) of the
new supervisor~ if the ending location is
greater than that of the original supervi­
sor, all components must be reassembled and
replaced. In the distributed version of
the system, the ending location (SVAREA+80)
of the supervisor is 4200 (hexadecimal).

4. Copy the phase library, excluding
those members that are to be replaced,
from the original system to the new
system using the CPYMEM function of
the utility programs.

5. Reassemble and link edit the replace­
ment members for the phase library
using the phase library data set of
the new system as SYSAB2.

6. Copy the module library from the orig­
inal system to the new system using
the CPYMEM function of the utility
programs.

7. Execute the IPL procedure and define
the system units~ specify the FIX
option in the SET card (see "Initial
Program Loading nPL) Procedure").

Replacement of Module Librar~~mb~E§

The following procedure. which replaces
steps 4 through 7 above,. is used when a

member of the module library is to be
replaced:

4. Copy the phase library from the origi­
nal system to a new system using the
CPYMEM function of the utility pro­
grams.

5. Copy the module library, excluding
those members that are to be replaced.
from the original system to the new
system using the CPYMEM function of
the utility programs.

6. Reassemble and place the new members
into the module library using the
CPYMEM* function of the utility pro­
grams.

7. Execute the IPL procedure and define
the system units; specify the FIX
option in the SET card (see "Initia~
Program Loading (IPL) Procedure").

Example-2! Editing Using Two Disks

To illustrate system editing, an example
showing the replacerrent of the linkage
editor is shown in Figure 3. For this
example, it is assurred that system data set
808000 is large enough to contain the
relocatable output and that system data set
808001 is on magnetic tape.

For modificaticns to some sections of
the FORTRAN compiler. it is necessary to
make one pass using the UPOA~E1 option to
insert changes into the original FORTRAN
symbolic language program. ~he output of
that pass is then read frorr SYS003 as
input 1. to the FORTRAN expander program;,
which creates input that is acceptable to
the assembler program and writes the creat­
ed input1. on SY8002. Finally" the output
from the expander program is used as input
to an assembly pass using the UPOA8MB3
option to obtain the modified module in
relocatable forI!'. When a section of the
FORTRAN compiler is rrodified in this way,
two magnetic tape units are used as SYS002
and 8YS003 until the final pass.

1.Blocked 20 cards to a record.

System Construction And Editing 23

r---,
//INIT JOB 1
/ / EXEC UTILS 1

INITIAL TYPE=SDSD.DVADR=OC1" VOLID=' SYSRES' , VTOC=50 1
/*' 1
/ / ALLOC SDSIPL. OC1=' SYSRES' ,,1 1
// LABEL 2880,RECLEN=2880 1
// ALLOC SDSABS.SAME=SDSIPL,500,119,FMT 1
// LABEL 720"RECLEN=720 1
// ALLOC SDSREL"SAME=SDSIPL,500,179 1
// LABEL 360,RECLEN=72 1
// ALLOC SDSPSD, SAME=SDSIPL, 0,119 1
// LABEL 360~RECLEN=360 1
/ / ALLOC SDSUAS, SAME=SDSIPL, 4 I
// LABEL 720,RECLEN=720 I

V/ ALLOC SDSOOO, SAME=SDSIPL, 1000 1
1// LABEL 360"RECLEN=360 1
1/* I
1/& 1
I//REPLAC JOB 1
//SYS003 ACCESS SDSIPL,SAME=SDSIPL I
//SYS002 ACCESS SDSIPL.SAME=SYSAB1 1
~ U~ mILS 1

COPY SIZIN=2880,SIZOUT=2880 1
1 /*

//SYS002
//SYS003
//

ACCESS SDSABS,SAME=SYSAB1 1
ACCESS SDSABS,SAME=SDSIPL 1
EXEC UTILS 1
CPYMEM EXCL= (EKLNKEDT, BKLNKED1, BKLNKED2), SIZIN=(720,,720) 1

/* I
//SYS002 ACCESS SYSSYM,,080="REEL1' 1
// LABEL 1600,RECLEN=80 I
//SYS001 ACCESS SDS001,081=FREStl 1
// LABEL 360 I
//A EXEC ASSEMBLE (LINK,UPDASMB3) I

1 SKPTO BKAOOOOO I
1 * CHANGE CARDS 1
1* I
1 * 1
1/* 1BKA99990 I
1//SYSAB2 ACCESS SDSABS,SAME=SDSIPL 1
1/ /MODULE ,EXEC LNKEDT (KEEP" NOAUTO) 1
1* LINKEDIT DECK FROM COMM.c.:NTS MODULE OTHER THAN MODULE CARDS 1
1/* 1
1//SYS002 ACCESS SDSREL,SAME=SYSAB1 1
1//SYS003 ACCESS SDSREL,SAME=SDSIPL 1
1// EXEC SIZIN=(360,360) UTILS 1
1 CPYMEM 1
1/* 1
1/& 1
\// STOP IPL & FIX OC1 1
.---------:--:...---------~
11This symbol must begin in column 73. 1 L ___ J

Figure 3. Editing Using ~wo D1Sks

EDITING USING ONE DISK

If two single disk storage drives are
not available., system editing can be done,
using only one drive. ~he procedure is
illustrated by the example that follows.

24

An example of a method for system edit­
ing that can be used if only one disk is
available is shown in Figure 4. For this
example, it is assurred that system data

/ '\

sets SDSOOO" SDS001" and SDS002 are on
magnetic tape. If system data set SDS003
is needed, it is assumed that it also is on
magnetic tape,.

Note that when using this alternate
method" if an input/output error occurs
between the DELETE and RENAME statements
(second and third statements from end of
Figure 4) " the process will not be complet­
ed.

The above method can also be used if
there is enough space on the system resi­
dence volume to contain coth SDSOOO and
SDS001. If such space is available, only
SDS002 need be on magnetic tape. To
increase the amount of available space on
the system residence volume" the system
programmer can delete all data sets (e. g. "
the module library) that are not required
for system editing; later, after system
editing has been completed, the deleted
data sets can be added to the new system
residence volume.

If only one rr.agnetic tape drive is
available and it is impossible to allocate
space in disk storage for either SDSOOO or
SDS001~ the optional symbolics may be
punched by assigning SDS003 to the punch
unit and using the UPDASMEl option of the
assembler program. The magnetic tape drive
is then available to contain SDSOOO or
SDSOOl (whiohever cannot be allocated to
disk storage). The procedure is then the
same as shown in Figure 4, except that the
ASSEMBLE option of the assembler program is
used instead of the UPDASMB3 OPTION.

SYSTEM MODULES

Table 9 of Appendix D lists all modules
of the distributed version of the system,
including FORTRAN IV library subprograms.
It is intended as reference material, to
assist the user during system editing in
identifying the various segrrents of the
system.

r---,
//INIT JOB I
// ALLOC SDSAB2,SAME=SYSAB1.,500,119"FMT I
// LABEL 720,RECLEN=720 I
/*
/&
//REPLAC
//SYS002
//SYS003
//CPY

/*
//SYS002
//
//SYSOOO
//SYS001
//MODULE

*
*
*
/*
//SYSAB2
//LNK

*
/*

JOB
ACCESS
ACCESS
EXEC
CPYMEM

ACCESS
LABEL
ALLOC
ALLOC
EXEC
SKPTO
CHANGE

SDSABS,SAME=SYSABl
SDSAB2" SAME=SYBABl
UTILS
EXCL= (BKLNKEDT.BKLNKED1"BKLNKED2),SIZIN= <720,720)

SYSSYM,OBO='REEL1'
1600"RECLEN=BO
SDSOOO"OB1=FRESH
SDS001,OB2=FRESH
ASSEMELE(LINK,UPDASMB3)
BKAOOOOO

CARDS

ACCESS SD SAB2 " SAME=SYSABl
EXEC LNKEDT(KEEP,NOAUTO)
LINKEDIT DECK FROM COMMENTS MODULE OTHER THAN MODULE CARDS

// ACCESS SDSABS~SAME=SYSABl
// DELETE SDSABS
/ / RENAME SDSAB2" SDSABS
// PAUSE RE-IPL RESIDENCE VOLUME

1BKA99990

I
I
I
I
I
I
I
I
I

.---~
11This symbol must begin in column 73. I L ______________________________________ ~--~-----------__________________________________ J

Figure 4. Editing Using Cne Disk

System Construction And Editing 25

WRITING AN 'INSTALLATIO~ AC~~1!NGROUTINE

'This chapter provides the information
required to write an installation account­
ing routine and add the routine to the
Model 44 Programming System. The routine
resides in the phase library and will be
loaded automatically by the job control
processor at those points when accounting
statistics (L e. " the data supplied by JOB
and EXEC statements) are available.

specification of ~b~ __ ~QQQ~ntin~~utine:
To specify tHe use of an installation
accounting routine. the user must change
the operand value of the supervisor SETA
instruction labeled &ACCNT from 0 to 1.
(see the section "Conditional Assembler
Instructions in the supervisorn in the
chapter entitled "Systerr' Construction and
Editing.n)

~ry to the AC£Q~~g_ RoutiE~~ The
accounting routine receives control when
the job control processor completes the
reading of a STOP statement or of a JOB or
EXEC statement that specifies the optional
"accounting information" field. The state­
ment that has caused the entry is identifi­
ed by a hexadecimal code the system places
in register o. These codes are listed
below:

Code
00

Meaning
Identifies a JOB statement.

Identifies an EXEC statement.

08 Identifies a STOP statement.

Size of the Routine:
accounting routine must
bytes.

The
not

size
exceed

of an
4096

Addres§ing __ ~!ih!~_~b~_Ac£2~n~i~_Rou~in~~
Because the actual main storage address in
which the accounting routine will ne loaded
is not known to the user, the routine must
be "address-free." This means that the
routine may not use address constants that
refer to addresses within the routine.
Such addresses must be dynamically generat­
ed" e.g." by the Load Address (LA) instruc­
tion.

Register Usage: Registers O. 1, and 15 can
be used in an accounting routine without
saving their contents. However" if reg­
isters 2 through 12 are to be used" their
contents must first be saved; register 13
contains the address of an ii-word
register-save area. Register 14 contains
the address of the location in the job
control processor to which control can be

26

returned after execution of the routine.
Register 1 contains the address of the
entry point of the accounting routine and w
therefore, may be used for initial l::ase
addressing.

Input to the Accounting Routine: The sys­
tem provides accounting information in the
user oommunication region, an area within
the system supervisor. SVC 18(EXTRACT) is
used to obtain the location of the communi­
cation region.

EXTRACT causes the system to place the
address of byte 0 of the user communication
region into register 1 and to return con­
trol to the oalling program. The address
of any particular word or byte within the
region is obtained by adding the byte count
to this value.

The communication region contains the
accounting information listed below. A
complete description of the contents of the
communication region can be found in the
chapter nUser Comrrunication Region".

8,,9 32-39

Description
Job name, in EBCDIC form"

specified by the user in a
JOE statement.

Job step name" in EBCDIC
form w specified by the user
in an EXEC statement.

32-35 128-143 Accounting information. ''Ihis
information" in EBCDIC
form, is a copy of the
accounting information
field specified by the user
in either a JOB or EXEC
statement.

Additional data for the accounting rou­
tine" such as timing information" can be
obtained through the use of an SVC. A full
description of all applicable SVCS is con­
tained in the pul::lication IBM system/360
Model 44 pr£9~~~~ing_Sys~~~ Guide to Sys~
~~m Us~, Form C28-6812.

Ou!put_frQm_~he __ ~££2~nting __ gQutine: Data
generated by installation accounting rou­
tines can be stored" for later analysis, in
the extended save area of the user communi­
cation region, bytes 144 and up. The size
of this area is determined by the installa­
tion during system editing. Data stored in
this area is never altered by the system.
Additicnal information about the save area

t#""
~J

'.

(

can be found in the chapter "User Communi­
cation Region."

Exit from the Accounting Routine: The
accounting routine can return control to
the system in either of two ways: normally
or abnormally. The normal return is to
restore the contents of registers 2 through
12 and issue a BCR 15,14 instruction. The
abnormal return" which might be resorted to
if an unacceptable account number were
read, is to issue an SVC 15 to cancel the
job. CANCEL causes the system to terroinate
the current job immediately. A message for
the operator is written. and a dum~ is
taken if a dump was requested in the job's
control statements. The system then loads
the job control processor~ which reads the
system input unit_ ignoring all statements
until a JOB statement is detected.

~dding_th~~££2~n~ing-B2E~in~_to the Sys=
tern: The accounting routine must be added
to~he system as a perrranent rrerrber of the
phase library. To add the routine, provide
an EXEC statement to execute the linkage
editor, and specify KEEP in the parameter
list' field: follow the EXEC statement with
a PHASE statement specifying BACCOUNT as
the phase name. The value specified for
the origin parameter of the PHASE state­
ment; must be either * or S. The PHASE
statement must be followed by an INCLUDE
statement and" if execution of the account­
ing routine is to begin with other than its
first instruction or one indicated by an
END card (assembly end), an ENTRY state­
ment. (These staterrents are described in
the publication lBM __ Systeg/360 Model 44
Program~ing_§yst~~~_§~i9~ to System u~~_
Form C28-6812.)

Writing An Installation Accounting Routine 27

ADD AND SUB COMMAND USAGE

This chapter provides information
directed specifically to the system pro­
grammer about the use of the ADD and SUB
commands. Both of these commands provide
the user with a means of changing an
installation's input/output device configu­
ration during the initial program loading
(IPL) procedure.

ADD AND SUB COMMANDS

During the IPL procedure the operator.
by issuing ADD and SUB comn-iands" can speci­
fy changes that have been made to the
installation's input/output device configu­
ration. The ADD command informs the system
of the availability of a new device1 ; the
SUB command removes a previously available
device from the system. There is a direct
relationship between the use of ADD and SUB
and several system control blocks and
tables~ The system programmer should
understand this relationship to avoid the
misuse of these commands at his installa­
tion.

ADD causes the system t.o enter an addi­
tional unit control block (UCB). for the
specified device, into the UCB table. SUB
causes the system to delete the UCB pre­
viously associated with the device.

Consequently" the maximum number of
valid ADD commands that can be issued is
dependent upon two variables: the number
of SUB commands previously issued~ and the
size of the UCB table. As a precautionary
measure, then, the operator should issue
any required SUB corrmands before issuing
ADD comn-,ands. It is the installation's
responsibility, however~ to increase the
size of the UCB table, when necessary.

~ The use of SUB com~ands may make it
necessary for the operator to redefine
units that follow the one that was deleted.

The size
increased by

of the UCB
reassembling

table can be
the supervisor

1Additional information relating to the
addition of a new device can be found in
the chapter entitled "Execute Channel
Program"" under the heading "Modifying the
Device Table."

28

and changing the operand value of the
supervisor EQU instruction labeled NUCB.
For a description of supervisor EQU
instructions. see the section "Conditional
Assembler Instructions in the Supervisor"
in the chapter "System Construction and
Editing." .

The formats of the ADD and SUB commands
are shown below. Additional information
about these. commands can be found in the
publication IB~_§y~!~m/360 __ Model 44 Pro­
g~min9-_§yst~~ __ 9E~~~!Or'~ __ ~idew Form
C28-6815.

The ADD command indicates to the system
the availability of an additional
input/output device.

r---,
I ADD type,devadr I l ___________________ -------------_________ J

type
specifies the
added. Valid
Tatle 6.

type of device to be
entries are shown in

devadr
Specifies the address of the device to
be added, expressed in hexadecimal
form as cuu. where cuu is as described
under "SDSIPL (IPL Record)."

The SUB command informs the system that
a specified device is no longer availatle"
and should, therefore" be subtracted from
the list of available devices.

r---,
I SUB devadr I l ___ J

devadr
Specifies the address of the device to
be subtracted~ expressed in hexadeci­
mal form as cuu, where cuu is as
described under "SDSIPL (IPL Record)."

..

Table 6. Device Types
I r-----------------T---,
, IType Field Entry I Explanation I

r-----------------+---~

SDSD

1316

2400

2400II

2400D

2400T7

2400T7C

1052

1442

1442P

2520

2520P

2501

2540

2540P

Single Disk Storage Drive

IBM 2311 Disk Storage Drive

IBM 2400 Magnetic Tape Unit with a 9-track read/write head--800
bytes/inch only

IBM 2400 Magnetic Tape Unit with a 9-track read/write head--1600
bytes/inch only

IBM 2400 Magnetic Tape Unit with a 9-track read/write head--dual
density

IBM 2400 Magnetic Tape Unit with a 7-track read/write head I

IBM 2400 Magnetic Tape Unit with a 7-track read/write head and the
convert feature

IBM 1052 Console Printer Keyboard

IBM 1442-N1 Card Read-Punch

IBM 1442-N2 Card Punch

IBM 2520 Card Read Punch

IBM 2520-B2, B1 Card Punch

IBM 2501 Card Reader

IBM 2540 Card Read-Punch (reader side)

IBM 2540 Card Read-Punch (punch side)

I

I
1403 IBM 1403 Printer-Model 2, 3 or N1 (132 characters) I

I
1403M7 IBM 1403 Print-Medel.7 (120 characters) I

I
1443 IBM 1443 Printer-Model N1 (120 characters) I

I
14438 IBM 1443 Printers-Model N1 (144 characters) special feature I ~ _________________ ~ ___ ~_J

ADD and SUE Corrrrand Usage 29

USER yOMMUNICATI~~GIO~

This chapter contains information about
the user communication region, its format
and use. It is included in this publica­
tion to reduce the user's need to refer to
other publications. The chapter should be
especially helpful to readers who are
designing an installation accounting rOu­
tine.

The user communication region is an area
within the system supervisor that may be
used by both system programs, such as the
assembler, and problem programs. Programs
may read information from this area but" to
avoid accidental destruction of system
data" should uSe supervisor calls to insert
or alter information.

Its contents are as follows:

Word Byte
0,,1- 0-4

2 8-11

3 12-15

16-19

5 20-23

6,,7 24-31

30

Q~ti.Ej:io!!
Date, set by the operator.

in the form yyddd, where
yy is the year and ddd is
the day of the year
(001-366).

Address of the first byte
of the problem program
area.

Address of the last byte
available for use by the
problem program.

Address of the highest byte
in the problem program
area filled by a phase
loaded by means of any
FETCH or LOAD supervisor
call.

Address of the last byte in
the problem program area
filled by the most recent
FETCH or LOAD supervisor
calL.

Job name in EECDIC charac­
ters.

Word Eyte
8,"9 32-39

10 40

10 41

10 42,43

11 44-47

12,,13 48-55

DescriEtion
Job step name in EBCDIC

characters.

User program switch byte.
This byte is set to zeros
whenever the system reads
a JOB control statement.

Highest asserrbly error sev­
erity. Reset to zero by
JOB statement.
00 - Normal.
04 - Warning

listed.

No errors.
messages

Execution
should be success­
ful.

08 - Error messages list­
ed. Execution may
fail.

OC - Severe errors. Exe­
cution impossible.

10 - Terminal errors.
Job has been can­
celled.

Not used.

User interprogram communi­
cations area. This area
may be used by one job
step to preserve informa­
tion for use by a later
job step. This area is
set to zeros whenever the
system reads a JOB con­
trol statement.

User intraprogram communi­
caticns area. This area
may be used by one job
step phase to preserve
information for use by
another phase within the
sarre job step. This area
is set to zeros whenever
the systerr reads an EXEC
control statement 1n1-
tiating a new job step.

..

'f"-\
(~'

•

(

Worg Byte
14-31 56-127

32-35 128-143

36- 144-

Description
Up to six a-byte EBCDIC

opticn ~arameters from
the jot step EXEC state­
ment are stored here by
the jot control proc­
essor. If less than six
parameters are stored,
the area is padded on the
right with blanks. The
area is reset to blanks
before the beginning of
the next job step. The
full 72 bytes of this
area and the a-byte
intraprcgram communica­
tion area also are used
by the system and proc­
essor programs between
job steps for temporary
storage of certain con­
trol statements.

Up to 16 bytes of account­
ing information are
stored here for use by
installation routines.
This information, in
EBCDIC form, is obtained
from JOB and/or EXEC
statements.

Data generated by installa­
tion accounting routines
may be stored here. This
field is not included in
the distributed version
of the system. The field
can be included, however"
by reassembling the
supervisor and changing
the operand value of· the
supervisor EQU instruc­
tion labeled NXCA. The
operand value of this
instruction specifies the
size of the field. For
additional information
about this instruction,
refer to the section
"Assembler Instructions
in the Supervisor" in the
chapter "system Construc­
tion and Editing."

COMMUNICATION REGION SUPERVISOR CALLS

The communication region supervisor
calls are INSERT. EXTRACT., UPSAND, and
UPSOR. They are used for communication
between a problem program and the "system's
user corrmunication region.

The a~plicable codes are:

INSERT - SVC 17

EXTRACT - SVC18

UP SAND - SVC 19

UPSOR - SVC 20

The INSERT su~ervisor call is used to
store information in the user corrmunication
region.

The system does not require a problem
program to provide any information in this
area other than that contained in control
statements. If a program does use the
area" however, it should use the INSERT
superv~sor call to reduce the chances of
accidental destruction of data needed by
the system.

It is not necessary to know the location
of the region to use INSERT. To refer to
information already stored, the location
can be determined by use of the EXTRACT
supervisor call.

INSERT
contents
through
region.

cannot be
of words 0
43 of the

used to alter the
through 10. bytes 0
user corrmunication

INSERT cannot be used to modify the user
communication region permanently. The
region is reinitialized when the initial
program load procedure is executed.

When the INSERT supervisor call is exe­
cuted, register 1 rrust contain the address
of a parameter list. This list consists of
two words aligned on full-word boundaries.
The first word contains the address in the
problem program area of the information to
be stored in the user communication region.
The second word contains the address of a
4-byte area containing control information.

The first byte of control information
must be hexadecimal 00. T'he second byte
gives the nurober cf 4-byte words to be
stored in the region. The last two bytes
indioate where in the region the data is to
be stored. This last location is expressed
in terms of the word where the system is to
start storing the information. the first
word in the region being word O.

For example, to store eight bytes of
data in the intra~rogram communications

User Communication Region 31

area~ words 12 and 13, bytes 48 through 55,
the following coding could be used:

INSERT

PARAM

LOC

CONTRL

EQU 17

LA 1.PARAM
SVC INSERT

DC
DC

A(LOC)
A (CONTRL)

(data to be stored)
DS OF
DC X" 00'
DC ALl (2)
DC AL2(12)

The system stores the eight bytes of
information at LOC in the intraprogram
communications area and returns control to
the instruction following the SVC. The low
order byte of register 15 contains the
hexadecimal code 00, indicating no errors.

If an attempt is roade to use INSERT to
store information outside the corerouni­
cations region or in words 0 through 10"
nothing is stored. Register 15, on return"
contains the hexadecirral code 04.

Other registers are unchanged.

EXTRACT,- SVC 18

The EXTRACT supervisor call is used to
obtain the location of the communication
region.

EXTRACT causes the system to put the
address of byte 0 of the communication
region in register 1 and return control to
the calling program. The address of any
particular word or byte within the region
is obtained by adding the byte count to
this value.

The UPSAND and UPSOR supervisor calls
are used to set or alter the contents of
the user program switch byte in the user

32

communications region •. 'Ihis byte is used
for communication between job steps as well
as within a job step.

When UPSAND is used, the logical product
(AND) of the user program switch byte and
the low-order byte of register 1 is stored
in the· user program switch byte.

when UPSOR is used, the logical sum (OR)
of the user program switch byte and the
low-order byte of register 1 is stored in
the user program switch byte.

When the two bytes
either UPSAND or UPSOR,
bit for bit.

are
they

combined by
are matched

With UPSAND" if each of the correspond­
ing bits is a 11 the result is a 1. if
either is 0" the result is O.

With UPSOR" if either of the correspond­
ing bits is a 1" the result is a 1. If
both are 0, the result is o.

These combinations are listed below:

A B UPSAND UPSOR -I- i- ---1-- --1--

1 0 0 1

0 1 0 1

0 0 0 0

When an UPSAND or UPSOR supervisor call
is executed. register 1 must contain a
comparison byte in its low-order positicns"
bits 24 through 31. The system alters the
user program switch byte accordingly and
returns control to the instruction follow­
ing the SVC. Error codes do not apply.

For example, to
switch byte to all
coding could be used:

UPSOR

MASK

EQU
IC
SVC

DC

20
1"MASK
UPSCR

X'FF'

set the user program
l's, the following

As a result of this UPSOR supervisor
call, byte 40 of the cOn'Il'unications region
is set to 11111111. This byte is reset to
all O's when the system reads a JOB control
statement initiating another job.

i"
.\.. ... /

•

(

This chapter explains the use of the
execute channel program (EXCP) superviser
call. SVC O. and is accempanied by descrip­
tiens ,Of specific centrel tlocks used with
SVC o. Facters that affect the eperatien
,Of EXCP, such as device variations. program
medifications, and the use ,Of the WAIT
supervisor callw SVC 1~ are alse discussed.
It is recemmended that the user obtain a
symbelic listing ,Of the superviser and the
channel scheduler before reading this chap­
ter. The text makes frequent reference to
labels. variables, etc.~ that actually
appear in the listing.

EXCP LEVEL PROGRAMMING

At the EXCP level of programming the
user can work with devices that are not
supported by the system and can manipulate
devices in ways not provided by the
read/write supervisor call reutines. For a
list ,Of supported devices, see IEM
System/360 Me~ 44 pr9g~mIgg
System: cencepts and Facilitie§, Ferm
C28-6810. Reutines written and tested at
the EXCP level may subsequently be incerpo­
rated inte the system's read/write level
threugh reassembly ,Of the superviser.

EXCP level eperatiens make use of beth
system and user reutines. System reutines
schedule the requested eperatien and exe­
cute the privileged instructiens required
fer input/eutput. They alse handle seme ,Of
the input/eutput interru~tien cenditions
that d.o net require special attentien for a
particular device.

The EXCP supervisor call initiates the
execution ,Of routines written at the EXCP
level. Befere an EXCP su~erviser call is
issued, the address ,Of an input/eutput
bleck must be placed inte register 1.

After the EXCP supervisor call has been
precessed" centrel is returned to the
instructien fellewing the EXCP statement.
At that time~ register 15 centains a cede
that indicates the conditiens enceuntered
by the statement; the fellewinq return
cedes may appear in register 15:

Hexadecimal
Cede
00

04

08

EXECUTE CHANNEL PROGRAM

Mean!!!9
The EXCP superviser call was

acce~ted by the system.

Ne unit centre I bleck exists
fer the requested system
unit.

The device requested is net
available far use .•

The WAIT supervisar call causes the
executian ,Of a prablem pregram te be sus­
pended until the o~eration initiated by a
previeus EXCP statement has been cempleted.
Befere a WAIT supervisor call is issued,
the address ,Of an input/eutput bleck must
be placed inte register 1.

After the WAIT su~erviser call has teen
precessed" centro I is returned te the
instructien fellowing the WAIT statement,
and the cempletien ,Of the eperatien is
indicated by a 00 hexadecimal cade in byte
o ,Of werd 1 ,Of the input/eutput bleck.

The WAIT supervisar call can be used
either immediately following an EXCP super­
viser caller at a l,ater peint in the
preblem pregram. Fer mest efficient pre­
gram executien, the WAIT statement should
be placed immediately preceding the pertien
,Of the ~regram that uses the results ,Of the
EXCP eperatien associated with the speci­
fied input/eutput block. This placement ,Of
the WAIT statement allews precessing, net
dependent upen that EXCP eperatien" to be
dene while the EXCP eperatien is in pre­
gress.

REQUIREMEN'rs

Te execute an e~eratien at the EXCP
level, the user shauld previde:

• Channel
dependent
words.

cemmand werds ,Or device­
reutines to initialize these

• Device-dependent interruption and error
recovery routines.

• One ,Or more input/output blocks (IOEs).

Execute Channel Pregram 33

Channel Command Words

A channel command word (CCW) specifies a
command to be executed and" for commands
initiating data transfer. the area to or
from which data is to be transferred.

Channel command words executed by means
of EXCP must be on double-word boundaries.
ccws may be constructed before the EXCP
supervisor call is issued and a pointer to
the word list must be present in the
input/output block (ICB). or the words may
be constructed or updated by including an
initialization section in the device
routine.

Descriptions of the CCws required for
the various input/output devices can be
found in publications that describe device
functions. These publications are listed
in the IBM_§y:§~em/]60: -IDliogr.eEBY, Form
A22-6822 (subject codes 03 through 09).
Additional information regarding the format
of CCWs is contained in the publication IB~
System/360: Principles cf Operatism" Form
A22-6821.

Q§.Yice Routine

A device routine provides control over
input/output operations during channel pro­
gram execution. Device routines canbe
used to examine the status of input/output
operations and determine the actions to be
taken for various conditions.

If bytes 5 through 7 of the input/output
block" the CCW list pointer, contain zero,
the system will first enter the device
routine to set up the CCW list. The
routine is entered again for interru.ption
analysis and error recovery, after execu­
tion of the channel corrmands.

Device routines are executed in the
supervisor state, but Il'ust not contain any
superv1sor calls or privileged instruc­
tions. Furthermore, a device routine can­
not be interrupted except for machine check
and certain types of program check. Device
routines also must not alter the contents
of registers 1 and 14. These registers are
used for communication between the device
routine and the system. Detailed informa­
tion about device routines is contained in
the section nDevice Routine Requirements. n

34

Input/Output~loc~

The input/output block (lOB). which con­
sists of the first six words of a request
control block (RCB), is used for communi­
cation between the user's program and the
system. At the EXCP level, the IOE is
usually used in place of an RCB. However"
although the systerr requires only the
information contained in the lOB" the user
can write a program that uses all of the
fields contained ·in an RCB.

When an lOB or RCE is created. it must
be aligned on a full word boundary_ All
fields not supplied with inforrration by the
user's program ~~ be defined as hexadeci­
mal zeros.

The format of the lOB is shown in Figure
5. Its fields are explained below. The
format of the RCB is shown later in the
chapter.

Word ~.Y!:~
"0- 0

Description
systerr unit index, supplied by

prograrr,mer. (See the system
unit index table, Table 7.)

o 1-3 Device routine address l sup­
plied by prograrr.mer.

1 4 Postrequest flag indicating in
hexadecimal code whether the
block currently is active,
supplied by the system.
00 - no operation pending
01 - operation in progress

1 5-7 Address of channel
list, supplied by
grammer.

command
the pro-

2 8 Reserved for system use.

2,3

4

5

9~15 Last seven bytes of channel
status word, supplied by the
systerr at interruption time.

16-19 Sense inforrration, supplied by
the system when a unit check
condition occurs.

20-23 Four EBCDIC characters to be
used by the systerr to locate
an error recovery program in
the phase library. This is
an optional field supplied
by the prograrrrrer.

(.

Table 7. System unit Index Values
r--------T--------------T-----------------,
ISystem I Hexadecimal I Decimal I
I unit I Code I Code I
~--------+--------------+-----------------~
SYSlIB1 01 1
SYSlIB2 02 2
SYSREL 03 3
SYSLOG 04 4
SYSRDR 05 5
SYSIPT 06 6
SYSLST 07 7
SYSOPT 08 8
SYSPCH 09 9
SYSPSD 011 10
SYSDMY OB 11
SYSUlIS OC 12

reserved

ISYSOOO
SYS001
SYS002

SYS009
SYS010

SYS015
SYS016
SYS017

OD 13
OE 14
OF 15
10 16
11 17 .
12 18

19
111

1F
20
21

25
26

31
32
33

I
I
I
I
I
I

ISYS200 08 216 I l ________ i ______________ i _________________ J

Word

EXECUTION

When the EXCP supervisor call is issued.
register 1 must contain the address of an
input/output block. 'Ihe systen: examines
the blcck to determine whether it contains
a valid system unit index value and the
addresses of a device routine and channel
program.

If the index value s~ecifies a system
unit for which no unit control block (UCS)
exists, control returns with a 04 hexadeci­
mal code in register 15. If the index
refers to a device that is not operaticnal.
control returns with a 08 hexadecimal code
in register 15. In either case, the system
treats the requested operaticn as complet­
ed.

If the index value is valid but the
requested channel facilities are busy, the
system queues the request and returns con­
trol to the user. If the EXCP is followed
by a WAI~ supervisor call, SVC 1, the
system delays further execution until the
EXCP operation is completed.

When the required channel facilities are
availatle, the system examines the IOE for
a channel prograrr address.

If an address is present, the system
starts execution of the channel program.

r--------------------T--,
10 I 1-3 I

o I System Unit Index I Device Routine AdQress I
~--------------------+--~
14 I 5-7 1

1 1 Postrequest I Channel Prcgram Address I
I Flag I I
~--------------------+--~
18 1 9-15 I

2 I reserved I Last seven bytes of Channel status Word 1
~--------------------J I

3 I I
~---~--~----------------------~
116-19 ·1

4 I Sense Data I
~--~-~~
120-23 I

5 I Name of interrupticn analysis ~rogram to be leaded . I L __ . ___________ .,..~J.

Figure 5. Input/Output Block (lOS) Format

Execute Channel Program 35

If there is no channel program address,
the system places the address of the UCB
associated with system unit in reqister 1,
the system return address in register 14,
and enters the device routine. When the
device routine is ready to return control
to the system" it branches to the address
in register 14. The addresses in registers
1 and 14 must be unchanged when the system
regains cOfitrol. The device routine can
determine cause of entry ty examining byte
O~ word 3 of the UCB. When the routine is
entered to pr~pare a channel program" the
byte contains 00.

The device routine prepares the channel
program and places its address into the
IOE. It also must identify'the type of
operation being requested by putting a
return code in register 15.
operation/return codes are explained below.

04

08

OC

Meaning
The operation is cOlT,pleted and

no input/output operation is
required. For example, a
repositioning request may
have been given' which the
device routine has analyzed
and determined to be unneces­
sary" i.e., the device was
already in the requested
position.

An event type request (non-data
transmitting which does not
make the subchannel busy).

An a'cti vi ty type request (makes
the subchannel busy).

A transient routine is request­
ed.

After the device routine enters the
operation/return code, it returns control
to the system by branching to the address
in register 14.

Execution now proceeds as it would if
the channel progralT had been prepared in
advance. The system commences execution.

If a channel status word is stored as a
result of the system's execution of the
Start Input/cutput (SIO> con:mand" the
device routine is entered exactly as on an
input/output interruption indicating an
error condition or a device end (result of
an immediate instruction). Refer toTable
8 for the condition that will cause this.

If no CSW was stcred as a ~esult of the
SIO, control returns" if WAIT is not in
effect, to the user~s main program (not to
the device routine) until there is an
input/output interrupticn.

INTERRUPTION PROCESSING

Execution of an EXCP request may gener­
ate one or more input/output interrupticns.
When an interruption occurs" the system
scans the channel status word to determine
the cause. Some conditions, such as chan­
nel end not acconpanied by device end, are
handled entirely by the system.

The system reenters the device routine
if the'interruption is one of the following
types:

!~
Device End

Program Controlled

Attention

08

OC

As tefore, on entry to the routirie~
register 1 contains the address of the UCB"
and register 14 contains the system return
address. The device rcutine examines the
UCB request flag .. J::yte 0" word 3, of the

Table 8. Conditions Causing a Device Routine to be Entered

r-------------------------T---------------------------T---------------------------------, ,condition I ~hen CSW is stored at SIC , At Input/Output Interruptlon1 I
~-------------------------+------------------~--------+---------------------------------~ 'Device End , Yes I Yes ,
,Unit Check , Yes2 ,Yes, I
I Unit Exception , No ,Yes I
,Incorrect Length I No I Yes I
IChannel Data Check I Nc I Yes I
I Chaining 'Check , No I Yes I
,Busy and Status Modifier , No ,Yes3 ,

~--------------~----------~---------------------------~---------------------------------~
'~AII conditions at input/output interruption are accompanied by device end. ,
,2When the command address is nonzero (broken chain). I
,3When the sense data contains '40' in byte 0 (intervention required), the device I
L:~~:~~:_~~_~~:_:~::::~.: ___ J C
36

t ..

(

DCB to determine cause of entry. Bytes 1
through 3 of word 3 contain the address of
the lOB associated with the operation that
caused the interruption. ~he system stores
the channel status word in words 2 and 3 of
the lOB.

If the UCB request flag contains 04~
then byte 0, word 2" of the lOB will
contain one of the following codes:

Code
00

Meaning
Device end and no error

04 Unit exception

08 Condition other than unit exception

If a unit check condition is present in
the CSW" the system stores sense data from
the channel and unit into word 4 of the
lOB.

A device routine initiates error recov­
ery operations, when necessaryw in the same
manner as an initial request. It places a
04 or 08 return code into register 15 and
branches to the address in register 14. As
before, a 00 return code tells the system
the operation is finished. The system does
not permit other requests to disturb a
volume while error recovery procedures are
in progress.

The device routine may keep a special­
ized interruption analysis and error recov­
ery program in the phase library for use
when needed. The device routine instructs
the system to load and enter such a program
by putting a oc return code into register
15 and branching to the address in register
14. Word 5 of the IOE must contain the
name of the desired program.

The program name is specified in the lOB
as four EBCDIC characters. The name must
be entered in the directory of the phase
library in the form xxxx , representing
four EECDIC characters followed by four
blanks.

The program is loaded into the transient
area of main storage. The system treats it
as a logical extension of the device rou­
tine. The program operates in the supervi­
sor state, but can issue neither supervisor
calls ncr privileged instructions. It uses
the same return codes as a device routine
and returns to the system through the
address in register 14. This address and
the unit control block address in register
1 must be unchanged.

A program-controlled interruption dif­
fers from a device-end interruption in its
use of return codes,. If, after a program
controlled interruption, the device routine
returns to the system with a nonzero return

code in register 15, the system assumes
that the operation is still in progress.
If the register contains a 00 code, the
system treats the operation as completed.
Because the operation rray be ccrrpleted only
through use of a Halt I/O instruction~ and
because a PCI interruption is not flagged
if PCI occurs with unit check or device
end, it is essential that a 00 return code
be used only when the oferation is aotually
completed. When the system finds a 00
return code it resets the postrequest flag
in the lOB to 00, returns ccntrol to the
user's main program (not the device
routine), and treats the channel and device
as free.

An attention interruption is handled in
the same manner as a device-end interrup­
tion.

INCORPORATING DEVICE ROUTINES INTO THE
SYSTEM

To incorporate a device routine for a
new input/output device the user must
change several iterrs in the system as
initially distributed. In addition" the
system requires that each new device rou­
tine provide control information that will
allow the system to operate as it does when
it uses the device routines included as
part of the system. ~hese requirements are
described separately in the following text.

The text also describes, in general
terms, the device routines provided as part
of the system. ~'his description illus­
trates which type of processing can or
should be done by a device routine. Device
routines use inforrr.ation provided by the
system in various control blocks and reg­
isters; this inforrration is also explained
in the text.

To allow for input/output devices not
provided for in the system" the user must
make changes to various parts of the system
and may be required to add a unit control
block for each new device to be used.

~odifY1Q9_!he_§Y§!~TIL£2~~~ni£ation R~l2£l
To accommodate the routines, control
blocks, and various other entries required
for a new input/output device, several
entries in the system communication region
(SCOMRG) must be changed to indicate the
additions to the system.

Execute Channel Program 37

Modifying the Initialization Device Table:
To indicate that a new input/output device
has been made available to the system" the
system programmer must change the initiali­
zation device table to include the device
specitication of the new device and some
additional control information. The format
of this table" as it appears in the dis­
tributed version of the system" is shown in
Figure 11 (Appendix C).

Number of Device Routines: The total num­
ber of device routines in the system must
be increased to include the device
routine(s} added to handle the new
input/output device. To indicate this
increase" the user must change the value of
the supervisor EQU instruction labeled
NDEV. Supervisor EQU instructions are des­
cribed in the chapter entitled "System
Construction and Editing"~ under the head­
ing "Assembler Instructions in the supervi­
sor ...

Chanqes to As§embl~f-Inst~~ftion~ Depend­
ing upon installation requirements" the
supervisor assembler instructions labeled
NCCW, NFCB, NSUT and NUCB may require
modification when a new device type is
added to the system. A description of
these instructions can be found in the
chapter entitled "system Construction and
Editing" under the heading "Assembler
Instructions in the Supervisor."

DEVICE ROUTINE - CONTRCL ELOCK
RELATIONSHIPS

To permit device routines written by the
user to operate under system controL, the
device routines must place certain informa­
tion into control blocks so that it is
available for use by the system. Some of
the information is always required, while
other information is required only when the
user plans to design problem programs that
will request input/output operations on
these devices at the read/write level. For
example" the current block count field of
the file control block (FCE) must be main­
tained if a NOTE supervisor call (SVC 7) is
to be used in the user's problem program.

Unit Control Block: Depending upon the
type of device and the process ina to be
done by the device routine, it may be
necessary to place the current position
(UCPPT) of the device into the UCB. The
current position of a device is defined for
disk storage devices as the cylinder and
head numbers; for card and tape devices as
the block count. The following statement"
which is used in a device routine included
in the systemw illustrates how to place the
current position of the device into the
UCB:

38

ST RGO,UCPPT(RUCE}

Before this instruction is issued, the
current position (e.g., block count) is
placed into register RGO, and an indexing
value to specify which unit control block
is to receive the code is placed into
register RUCB~

If the user wants to maintain error
counts, as is dcne by device routines
provided by the system, he must place the
error counts into the UCB. The following
list shows the syrrbolic references used for
the error counts that have been provided
for in the UCB.

Symbolic
Reference
UCPND

UCPRE

UCPWE

UCRND

UCRRE

UCRWE

!YE~_of Error Count
Permanent no-data-transmitted

errors

Permanent read errors

Permanent write errors

Recovered no-data-transmitted
errors

Read errcrs that have been cor­
rected by recovery procedures

Write errors that have been
corrected by recovery proce­
dures

File Cont~Ql_~lQcks: Depending upon wheth­
er the NOTE staterrent is to be used, the
device routine may have to place the cur­
rent block count (FCECT) into the file
control block. The current block count
must be in the file contrcl block if the
NOTE statement is to be used. The follow­
ing statement, which is used in a device
routine included in the system, illustrates
the placement of the block count into the
file control block:

ST RG6.FCBCT(RFCE)

Before this instruction is issued, the
count is placed into register RG6 and an
indexing value" to specify which file con­
trol block is to receive the value, is
placed into register RFCB.

Input/QutE~!_~lQf~§l If the device routine
requires that a channel corrmand word list
be executed by the system, the routine must
place the address of that list (IOCCW) into
the input/output block. The list address
can be placed into the input/output block
as described below for the current block
count in the request control block (RCB).

Request Control Blocks: If the user elects rf, '"
to provide an entire request control block, ~
rather than an input/output block, the

"

device routine he writes must handle all
fields that follow the input/output block.
The descriptions of fields given below
refer only to the fields that are used by
the device routines provided as part of the
system. The manner in which those fields
are used by device routines is given to
illustrate which extra fields might be
desirable for use with a new type of
input/output device.

The device routine places the return
code (IORCD) into the request control
block. The hexadecimal codes that the
device routine places into the request
control block are:

Hexadecimal
Code

00

04

08

OC

10

14

t!~~!!.!!!g
The operation was completed

successfully.

An end-of-file or end-of-
volume condition has
occurred.

A permanent read
been detected,
manent write
been detected.

error has
or a per­

error has

A permanent no-data-
transmitted error has reen
detected .•

An illegal request has been
made.

An incorrect-length
has occurred.

error

The following statement is used to place
the decimal code into the request control
block:

STC RG6"IORCD (RIOB)

Before this instruction is issued, the
code is placed into register RG6, and an
indexing value to specify which request
control block is to receive the return code
is placed into register RICB.

After a read or write operation has been
completed" the device routine places the
current block count (IOECT) into the
request control block. The £ollowing
statement is used to place the current
block count into the request control block:

ST RGO.IOBCT(RIOB}

Before this instruction is issued. the
count is placed into RGO,and an indexing
value to specify which request control
block is to receive the value is placed
into register RIOB.

If the device routine controls certain
multiple-step operations" the routine main­
tains the operation counter (IOOPC) in the
request control block. To place a value
into the operation counter, the following
statement is used:

STC RG7 wICOPC(RIOE)

Before this instruction is issued, the
number to be placed into the operation
counter is placed into register RG7, and an
indexing value to specify which request
control block is to receive the number is
placed into register RIOE.

Two counters (ICCNT1 and IOCNT2) are
used to maintain counts of the number of
retries that are made during recovery oper­
ations. If the user wishes w he may use
these counters for similar purposes or for
some other purpose required by his device
routine.

The device routines included in the
system use another byte (IOECD) in the
request control block to contain an error
recovery code. This code is used only by
the device routine as a rreans of identify­
ing the action required when the device
routine is entered again. The system pro­
grammer may use this byte for any codes
that he requires in his device routine.

DEVICE ROUTINE DESIGN

The design of a device routine for an
input/output device not provided for in the
system is deterrrined by the user. When
designing a device routine" the user need
only be sure that it satisfies the require­
ments stated earlier.

Although the user is free to write his
device routine as he wishes, a general
diagram of the actions norrrally done in a
device routine is shown in Figure 6. ~his
diagram is not intended for any specific
device" but it shows the general approach
used in the device routines provided as
part of the programming system. In the
description of Figure 6 that follows, the
methods used in device routines provided in
the system are mentioned to suggest a
possible method to the systerr programrer.
(Numbered blocks in the figure are
explained in the list following the chart.)
The information used by the device routines
is described under "Information Available
to Device Routines."

Execute Channel Program 39

***** *zz * * A2"
I ENTERED FROM
~CHANNEL SCHEDULER

,*.
A2 ... 1

.* *(0
YES.* ENTERED". NO

I
iNiTiALiZATiON---*iNITIAi~~ATION'''-----------------lINTERRUPTION
ENTRY *..* ENTRY

* .. * ..

. *. . *.
B1 *. 2 B3 ... 8

.*IS DATA*. .* WAS ...
• * TO BE *. NO .* OPERATION *. NO

... TRANSMITTED ·*-----------------1 ... SUCCESSFUL ·*-----------------1 *. . * *. . *
*. . * *. .* * .. * * .. *

!'" , ,.r ,
*****Cl********** *****C2********** C3 *. 10 *****C4**********
* * * * .* *. * * * SET UP * * OTHER TESTS .. .* IS ERROR *. YES *SET CODE OC TO ..
CHANNEL COMMAND *FOR PARTICULAR * "'RECOVERY BEING.*-------->*FETCH TRANSIENT'"
* WORD LIST * * DEVICE * *.ATTEMPTED." .. ROUTINE ..
* • * * *..* * *
.. **** .. **1········· ········1········ :0 •••••••••••••••••

.. ... 1 "
*****D1********** D2 *. 6 *****D3**********
* .. ." AN *. * *
* SET CODE 08 * .INPUT/OUTPUT*. NO * OTHER ACTIONS *
* TO REQUEST AN * *.OPERATION IS .*--- *FOR PARTICULAR *
* ACTIVITY * *.REQUIRED .* * DEVICE ..
* * *..* * * ;., ········1········

1 ...
*****E2********** E3 *.
* * .* *. * SET CODE 04 * NO.* MORE *.

---* TO REQUEST * <----*INPUT/OUTPUT IS*
* AN EVENT * *.REQUIRED .*
* * *..*
***************** * .. *

7
*****F2**********
* SET CODE 00 *
* INDICATING *

r
*****F3**********
* SET CODE 04 *
* OR 08 TO *

.. OPERATION IS *<-­
* COMPLETED *

* REQUEST AN *---------------->
* EVENT OR AN *

* * *****************

---------->1

* ACTIVITY *

-->

****G4**"******
* * * RETURN *
* * ***************

Figure 6. General Flow of a Device Routine

40

c

(,

1. cause-of-entry can be determined by
checking the code in byte 12 of the
UCB.

2. If the device is being addressed at
the read/write level, the device rou­
tine can determine which operation has
been requested by checking the code in
byte 32 of the RCB.

3. If data is to be transmitted., the
device routine must set up a channel
conmand word list. Depending upon the
device~ the channel command word list
may consist of one or more CCws.

The number of channel command word
lists for any device depends upon the
operations that the device routine
must initiate. Descriptions of the
CCws required for the various opera­
tions of input/output devices are
given in publications that describe
device functions. These publications
are listed in the IEM_§ystem/360 Bib­
liographY. Form A22-6822 (subject
codes 03-09). Additional information
regarding the format of channel com­
mand words is contained in the publi­
cation IBM System/360 principles of
Operation., Form A22-6821.

4. The device routine places a code into
register 15 if the chain of commands
contains either a data transrrission
request or an event request requiring
the positioning of a device oefore a
read or write operation~ e.g., a seek
request on a disk. (The actual
read/write CCW will be issued through
an activity exit upon successful com­
pletion of the event.)

5. Byte 32 of the RCB is tested.

6. If the check of byte 32 indicates that
no data is to be transmitted but an
input/output operation is required
(e.g.~ a rewind operation), the device
routine must set up a channel command
word list. After preparation of the
list, the routine places an event code
into register 15 and returns control
to the system.

7. If the check of byte 32 indicates that
no input/output operation is required,
the device routine places a completion
code into register 15. If the origi­
nal request was invalid, the device
routine must" additionally" set up an
error code in the RCB.

8. When byte 12 of the UCB indicates that
the device routine was entered for
interruption proceSSing, the device

routine must examine byte 8 of the lOB
to determine whether a previously ini­
tiated operation was perforrred without
error.

9. Entered via block (8):
If an error has occurred and if the
error recovery routine is transient,
the device routine places a code into
register 15 requesting the loading of
the error reccvery routine. If the
recovery routine gets control when
loaded" it attempts to recover from
the error by retrying the operation.

Entered via block (10):
If the-device-routine-detects that the
interruption resulted from a previous­
ly initiated attempt to recover from
an error., the recovery routine is
entered to analyze whether the error
has been corrected. ~he device rou­
tine must again place a code into
register 15 requesting the loading of
the error recovery routine.

As implied above, the device routine
must provide an error recovery proce­
dure. The error recovery procedure
must deterrr,ine Ylhich type of error has
occurred and then attempt to correct
it" if possible. A procedure for
handling errors that cannot be cor­
rected, or that recur when an attempt
to correct them is made, must also be
provided. The action taken for the
various types of errors is determined
by the user. For example, he may
decide that a job should be canceled
if a channel data check has been
detected" or he may Ylri te the proce­
dure so that a return code is issued
providing the option of canceling or
continuing -- the action taken depend­
ing upon other variables. If an error
can be corrected by the computer oper­
ator" the user may elect to send a
message to the operator and specify
what is required to correot the error.
To issue such a message, the facility
of the error message system routine
called by a FETCH exit fron the device
routine should be used.

The operations required to retry an
operation are dictated by the type of
error and the type of device. In
general, the procedure is to re­
establish the conditions Ylhich existed
before the action was taken that
resulted in an error. For example, a
tape must be repositioned to the
beginning of a record that could n9t
be read correctly; to do this, a
backspace operation is required. HoYl­
ever, an error occurring Ylhile trans­
mitting the read command to the device
does not require any repositioning.

Execute Channel Program 41

10.

The error recovery procedure must also
place an appropriate return code in
register 15.

Test to determine whether the inter­
ruption resulted from a previously
initiated error recovery attempt.

11. If no error was detected and if no
recovery procedure was in progress"
the device routine checks for other
conditions that may exist for the
particular device. Based on these
checks., the device routine may have to
set up a channel command word list to
complete an input/out~ut request.

Other actions that the device routine
would perform at this point would
include updating pointers# updating
block counts, and setting program
flags. After all actions have been
completed. the device routine places a
code into register 15 indicating that
the operation is completed.

INFORMATION AVAILABLE TO DEVICE ROUTINES

Before the channel scheduler gives con­
trol to a device routine# the system pro­
vides information for use by the device
routine. Such information is placed into
registers or the various control blocks.

The contents and format of the unit
control block are shown in Appendix A;
those for the file control block are shown
in Appendix B.

In the descriptions of information avai­
lable to device routines, all fields are
described" including those which the device
routine must handle as described previously
under "Device Routine Requirements."

Information in th~B~giste!§

The system places the following informa­
tion into the indicated registers before
control is given to the device routine:

42

Register
Number

1

2

10

Contents
The addresS-of-the unit con­

trol block.

The address of
input/output block
the request control
if cne is used).

the
(or of
block

The address of the first
byte in the constant pool.

Information in the Reguest Control Block

In the description of the information
that the system places into the request
control block, those entries marked with
one asterisk must be provided by the device
routine, except for words 6 through 9. The
contents of these words must be provided
only if read/write level operations are to
be performed. These words are used primar­
ily for communication between device rou­
tines and read/write routines.

Those entries marked with two asterisks
are not available until the routine has
been entered for interruption processing.
Entries not marked are available when the
device routine is entered for initializa­
tion ~rocessing. They remain available
when the device routine is entered later
for interruption processing. The informa­
tion in the request centrel block (see
Figure 7) is as follows:

Word !lyte
0- 0

o 1-3

1 4

*1 5-7

2 8

**2.3 9-15

!2~§f!iE!ig!!
System unit index number of

the system unit to be used
in the input/output opera­
tion. This value can be
determined from Table 7.

Address of the device de~en­
dent routine to be used to
set up the channel commands
and analyze interruptions.

Postrequest flag indicating
whether the block currently
is active:
00 = No operation pending
01 = Operation in progress

Address of the first channel
command required to execute
the operation.

Reserved for system use.

Last seven bytes of channel
status word" stored when an
operation is started and
when an interruption
occurs.

..

(

(

Word]yte
"**4 16-19

*5 20-23

*6 24

*6 25-27

*7 28

29-31

f1~.2.£!:iE.!:io!!
Sense information, stored

when unit check condition
occurs.

Name of program
from the phase
necessary for
analysis.

to be loaded
library when
interruption

Error recovery code identify­
ing a type of error.

counters used to keep track
of nUKber of attempts made
to recover an error.

Return code
00 = Operation completed
04 = End of file or end of

volume
08 = Permanent transmission

error
OC = No data transmitted
10 = Invalid request
14 = Incorrect length

Address of file control block
being used for this opera­
tion.

33-35

36

*9 37

*9 38-39

Description
Request code identifying the

type of operation to be set
up by a device routine.
01 = Write
02 Read
07 Rewind
OF Rewind and Unload
1F = Write End of File
3F = Peint

Address of buffer to be used
for transmission.

Incorrect length control byte
20 = Suppress incorrect

length indication
00 Check for incorrect

length

Reserved

Nurrber of bytes to be trans­
mitted (see note).

~ote: Following ccmpletion of an
input/output operation, the contents of
word 9 are replaced, by the device routine,
with the updated data set position block
count.

Execute Channel Program 43

Word
r------------------T---, o 10 11-3 1
I System Unit 1 Address of Device Dependent Routine 1
1 Index Number 1 1
1 1 1
~------------------+---i

1 14 15-7* 1
I Postrequest I Address of First Channel Command 1
I Flag 1 1
1 1 I
~-----------------+---i

2 18 19-15** I
1 Reserved I Last Seven Eytes of Channel status Word I
I 1 I
I 1 1
~------------------J 1

3 1 1
1 1
1 I
~--~

4 116-19** I
1 Sense Information 1
1 1
1 1
~--~

5 120-23* I
I Name of Program to be Loaded from Phase Library 1
1 1
1 1
~------------------T---i

6 124* 125-27 I
I Error 1 Counters I
I Recovery Code I I
1 1 1
~------------------+---~

7 128* 129-31* I
1 Return Code 1 Address of File Control Block I
1 1 1
~------------------+---~

8 132* 133-35* 1
I Request Code I Address of Buffer for Transmission I
I I 1
I I I
~------------------+-------------------T---~

9 136* 137* 138- 39 I
1 Incorrect 1 Reserved 1 Number of Bytes to be ~rans~itted I
I Length 1 I 1
I Control Byte I I I
I 1 1 I
~------------------~-------------------~---i
1 *Must be provided by device routine. 1
1**Not available until after entry for interruption processing. I L __ J

Figure 7. Request Control Block

44

(

•

C

APPENDIX A. UNIT CONTROL BLOCK

Word
r--------------------------------------T-------------------y---------------------,
10-1* 12* 13* , I
I I I I

o I Physical Device Address I Device Mode I Type of Unit I
J------------------r-------------------t-------------------t---------------------~
14 15 16 17 I
I I I I I

1 I Relative Chain I Channel I Job Control I Read/Write Flags I
I Pointer I Scheduler I Flags I I
I I Flags I I I
~------------------~-------------------~-------------------~---------------------~
18-11 I
I I

2 1 lOB address for attention interruptions 1
~------------------T---~
112 113-15 1
I I I

3 I Request flag IIOB address for current input/output operation 1
I for device 1 1
I routine 1 1
~------------------~---~
116-19* 1
1 1

4 I Device position 1
~--~
120-23* 1
1 1

5 1 Address of CCW area 1
~--~
124-31* 1
I 1

6-7 I Device Routine Counters 1
~--~
I I
I *Must be provided by device routine or user 1 L __ J

Figure 8. Unit Control Block (UCB> Format

Unit Control Block Fields]S.Qrd ~Y1§ Description

Fields in the unit control block are
defined below. Entries marked with an
asterisk must be provided by a device
routine or the user.

De2£!.!E!.!.2.!!
Physical device address

*0 2 Device mode
01 ::: Burst mode
02 ::: Overrunable byte ITode
03 ::: Non-overrunable oyte mode

*0 3 Type of unit
10 1052 Console Printer-

Keyboard
20 2501 Card Reader
21 2540 Card Reader
22 ::: 2520 Read-Punch
23 ::: 1442 Read-Punch
28 ::: 2520P Card Punch

1 4

29 2540P Card Punch
2A 1442P Card Punch
30 ::: 1403 Printer
31 1403M7 Printer
32 = 1443 Printer
33 14438 Printer
40 2400 Magnetic Tape Unit
41 2400H Magnetic Tape Unit
42 ::: 2400D Magnetic Tape Unit
48 2400T7 Magnetic Tape

Unit
49 = 2400T7C Magnetic Tape

Unit
50 = Single Disk Storage Drive
51 2311 Disk Stcrage Drive

Relative chain pointer" point­
ing to the next UCB in either
an acitvity, event, or
transient routine chain.

Appendix A. Unit Contrcl Block 45

1

1

46

~y~g Description
5 Channel scheduler flags

80 = Intervention request
processed by device
routine

40 = Channel end expected
20 = Device end received
10 Retry operation
08 = Device not ready
04 Attention waiting
02 = Event in progress
01 - Device busy

6 Job control flags
80 Device down
40 System standard assign-

ment
20 Job control assigned
10 Programmer assigned
08 = Assigned this step
04 The volume cannot be

dismounted

7 Read/Write flags
80 = System multiple operation
40 Error message to be

requested
20 = End of volume (EOV)
10 = System request
08 = Multiple operation
02 = Volume label present
01 = Volume has been mounted

Word
-2-

3

~g Description
8-11 Address of input/output block

used when an attention
interruption occurs.
(Applicable only to those
devices that can signal
attention.)

12 Request flag for device routine
00 = Setup
04 = Device-end interruption
08 = Attention interruption
OC Program controlled

interruption

3 13-15 Input/output block address
associated with this opera­
tion

*4 16-19 Current physical position of
the device in terms of the
cylinder and head positions
for direct access devices and
block count for sequential
devices.

*5 20-23 Address of channel command
word area associated with
the device.

*6,7 24-31 Permanent and temporary error
counters set and used by the
system's device routines.

"' \

•

Word
r------------------r-------------------T-------------------T---------------------,
10 11 12 13 I
I I I I 1

o I Flag Byte 1 Flag Byte I Reserved I Number of blocks per 1
I I 1 1 track 1
.--------------~---~-------------------~-------------------~---------------------~
14-7* I
1 1

1 I Block count 1

.--------------------------------------T---~
18-9 110-11 1
1 I 1

2 1 Logical Record Length 1 Reserved 1
~--------------------------------------~---~
112-15 I
I 1

3 1 Seek and search address 1
~------------------T-------------------T---~
116 117 118-19 1
1 1 1 1

4 I Block 1 Length of 1 Maximum number of bytes per block 1
1 Number 1 key area 1 1
1 1 (2311 only) 1 1
~------------------~-------------------~---~
120-23 1
1 I

5 1 Displacement of first 1
1 block of a directoried I
1 data set member I
~--~
124- 27 1
1 1

6 1 Device address of first block of the data set 1
.--~
128-31 1
1 1

7 1 Number of last block written 1
~---~------~
132-35 1
1 1

8 1 Number of blocks reserved for the data set 1
~--~
1 *Must be provided by device routine 1 L __ J

Figure 9. File Control Block Format (Disk)

"

(

Appendix B. File Control Block 47

Word
r------------------~------------------T-------------------T---------------------,
10 11 12 13 I
I I I I I

o I Flag Byte IFlag Byte I Reserved I set Mode Bits I
~------------------~------------------~-------------------~---------------------~
14-7 I
I ,

1 I Block Count ,
~--------------------------------------T---~
18-9 110-15 I
, I ,

2 I Logical Record Length, I
~--------------------------------------J I I ,

3 , Data Set Expiration Date I
~------------------T-------------------T---i
116 117 118-19 ,
I I I I
1 Block I 1 I

4 I N~~ber , Reserved ,Maximum number of bytes per block I
~------------------~-------------------+---~
120-21 122-27* I
I I ,

5 I File Count I I
~--------------------------------------J I
I I

6 I Volume Identification I
~--~
128-35 I
I ,

7-8 I Data Set Name I
~--~
I I
I *Must be provided by device routine I
I ,
I , L ___ ~-----___________________________ J

Figure 10. File control Block Format (Tape and Card)

Fields in the file control block for
disk volumes are defined below. The entry
marked with an asterisk must be provided by
a device routine.

Word ~yte DescriptiQ!,!
-0-- 0 Flag Byte

80 = Standard unit
40 Fresh data set
20 Update VTOC
10 Labeled
08 = Header checked
04 Modification
02 = Disconnected
01 = Open

0 1 Flag Byte
80 = Control character
40 ASA control characters
20 = Write check
10 = Ignore (dummy data set)

48

0 2

0 3

*1 4-7

2 8,9

2 10,11

3 12-15

4 16

4 17

Description
08 - Deleted
04 = Output data set
02 = Data set formatted

Reserved

Number of blocks per track

Current block count

Logical record length

Reserved

Seek and search address for
the current operation

Number of block being proc­
essed

Number of bytes in key area
(2311 only)

,<

•

•

Q~e£!:iptiQ!!
Maximum number of bytes per

block

5 20-23 Displacement (number of blocks)
of first block of member in
a directoried data set. If
the data set associated

6

with the RCB is not
directoried, these bytes
contain zeros.

24-27 Address of the first block
in the data set

7 28-31 Number of the last block

8

written

32-35 Number of blocks reserved for
this data set

Fields in a file control block for tape
and card units are the same as for direct
access devices, except as follows:

Word Byte
-0- 1

o 3

Q~~iptio!!
Flag byte

80 = Control character
40 ABA control characters
10 = Ignore (dummy data set)
08 Deleted
04 Output data set

Mode of tape operation (not
used for card data sets).

2,3 10-15 Expiration date of data set

4

5

17 Reserved

20,21 Current file count, including
trailer label file marks

*5,6 22-27 Volume identification in EBCDIC

7,8 28-35 Data set name in EBCDIC (not
used for card data sets).

Appendix B. File Control Block 49

r--------------------T----------------T-----------T-----------T----------T--------------,
I I I I ICCW IPointer to I
IDevice SpecificationlDevice Type codelNo. of cCWslDevice ModelRelocationlCCW List I
~---~----------------+----------------+-----------+-----------+----------+--------------~
110521 110 106 1'33 101 I CONCCW I
~--------------------+----------------+-----------+-----------+----------+--------------~
12501 120 102 102 100 I RD1CCW 1
.--------------------+----------------+-----------+----------~+--~-------+--------------~
12540 121 102 103 100 1 RC1CCW 1
~--------------------+----------------+-----------+-----------+----------+--------------~
I 2520 122 102 102 100 1 RP1CCW 1
.--------------------+----------------+-----------+-----------+----------+--------------~
11442 123 102 102 100 I RP2CCW I
~--------------------+----------------+-----------+-----------+----------+--------------~
1 2520P I 28 I 02 102 100 I RD2CCW I
~--------------------+----------------+-----------+-----------+----------+--------------~
12540P 129 113 103 100 IPC2CCW I
.--------------------+----------------+-----------+-----------+----------+--------------~
11442P 12A 102 102 100 I RP3CCW I
~--------------------+----------------+-----------+-----------+----------+--------------~
11403 130 102 103 100 IPT1CCW I
~--------------------+------~---------+-----------+-----------+----------+--------------~
11403M7 131 102 103 100 1PT2CCW I
r--------------------+----------------+-----------+-----------+----------+--------------~
11443 132 102 103 100 IPT3CCW I
~--------------------+----------------+-----------+-----------+----------+--------------~
11443S 133 102 103 100 IPT4CCW I
r--------------------+----------------+-----------+-----------+----------+--------------~
12400 140 102 101 100 I TP1CCW I
~--------------------+----------------+-----------+-----------+----------+--------------~
12400H 141 102 101 100 I TP2CCW I/'''
~--------------------+----------------+-----------+-----------+----------+--------------~
124000 142 102 101 100 I TP3CCW I
.--------------------+----------------+-----------+-----------+----------+--------------~
I 2400T7 148 102 101 100 I TP4CCW I
~--------------------+----------------+-----------+-----------+----------+--------------~
I 2400T7c 149 102 101 100 I TP5CCW I
.--------------------+----------------+-----------+-----------+----------+--------------~
ISOSO 150 105 101 101 IDK1CCW I
.--------------------+----------------+-----------+-----------+----------+--------------~
11316 2 I 51 I 06 I 01 101 I DK2CCW I
~--------------------~----------------~-----------~-----------~----------~--------------~
11Location TBLORG I
12 Location TBLEND I L ________________________________ ---------------------__________________________________ J

Figure 11. Initialization Device Table

Initialization Device Table Fields

Device Specification
Contains an abbreviated device name.
The name can consist of a maximum of
eight characters.

Device Type code

50

A 2-byte code designating a device
type. In selecting a code, the user
must be sure that the first digit of
the code is different from the first
digit of existing device type codes.
The system uses the first digit of the

code as a pointer to the device rou­
tine to be used for a particular type
of device.

Number of Channel Command Words
The number of CCWs required varies
according to device.

Device Mode
Specifies the mode of the device as
either burst mode (01), overrunnable
byte mode (02), or nonoverrunable byte
mode (03). A nonzero in the four
high-order bits (e.g., 33 for the
1052) indicates an attention type
device.

"

(

CCW Relocation
a 01 indicates relocatability. The
entry for this field, either 00 or 01,
varies according to the channel com­
mand list required for the specific
device.

Pointer to the CCW List
Symbolic pOinter to the device's CCW
list.

r---,
I DEVICE TYPE DEVICE TYPE CODE
I CTYPTB DC C'1052 1052 CONSOLE 10
I
I
I
I

DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC
DC

X'10'
C'2501
X'20'
C'2540
X' 21'
C'2520
X'22'
C'1442
X" 23'
C'2523P
X'28'
C'2540P
X'29'
C'1442P
X'2A'
C'1403
X'30'
C'1403M7
X'31'
C'1443
X'32'
C'1443S
X'33'
C'2400
X, 40'
C'2400H
X' 41'
C'2400D

,

X' 42'
C'2400T7 '
X'4S'
C'SDSD
X' 50'
C'1316

2501 READER 20

2540 READER 21

2520 READ-PUNCH 22

1442 READ-PUNCH 23

2520 PUNCH 28

2540 PUNCH 29

1442 PUNCH 2A

1403 PRINTER 30

1403 PRINTER 31

1443 PRINTER 32

1443 PRINTER 33

2400 TAPE 40

2400 TAPE 40

2400 TAPE 42

2400 TAPE 48

SINGLE DISK STORAGE DRIVE 50

1316 DISK PACK 51

I
I
I
I
I
I
I
I
I
I
I
I
I
I

DC X'51' I
.---~
INote: In this table, all character c.onstants consist of 7 characters; blank characters
lare used following the device type to fill out the constant. I L ___ J

Figure 12. Job Control Device Table

Appendix C. Initialization Device, CCW, and Job Control Device Table 51

r---,
CONCCW CCW O.,O,X'OO',O 1052 CONSOLE PRINTER I ("\

DC X'OAOOOOOS' ATTENTION CCWS I\..j
DC X'2000000S' I
CCW 0 , 0 , X ' 00 ' , 0 I
DC X'04000000' ATTENTION lOB I
DC X'OOFFFFEC' COMPLEMENT FOR CCW I
DC 4C'0' I

RD1CCW CCW 0,0,X'60'1 2501 CARD READER
CCW O,O,X'OO',O

PC1CCW CCW 0,0,X'60',1 2540 CARD READER
CCW O,O~X'OO',O

PC2CCW CCW 0,0,X'60',1 2540 CARD PUNCH
DC 24F'0'

RD2CCW CCW 0,0,X'60',1 2520 CARD PUNCH
CCW O,O,X'OO',O

RP1CCW CCW 0,0,X'60',1 2520 CARD READ PUNCH
CCW O,O,X'OO',O

RP2CCW CCW 0,0,X'60',1 1442-N1 CARD READ PUNCH
CCW O,O,X'OO',O

RP3CCW CCW 0,0,X'60',1 1442-N2 CARD PUNCH
CCW O,O,X'OO',O

PT1CCW CCW 0,0,X'60',1 1403 PRINTER
CCW 3,0,X'OO~,1

PT2CCW CCW 0,0,X'60',1 1407 PRINTER
CCW 3,0,X'00',1

PT3CCW CCW 0,0,X'60',1 1443 PRINTER 120 POSITIONS
CCW 3,0,X'00',1

PT4CCW CCW 0,0,X'60',1 1443 PRINTER 144 POSITIONS
CCW 3,O,X'00',1

TP1CCW CCW 0,0,X'60',1 2400 TAPE SOO BPI
CCW O,O,X'OO',O

'TP2CCW CCW 0,0,X ' 60',1 2400 TAPE 1600 BPI
CCW O,O,X'OO',O

TP3CCW CCW 0,0,X'60',1 2400 TAPE 9 TRK AND DUAL DENSITY
CCW O,O,X'OO',O

TP4CCW CCW 0,0,X'60',1 2400 TAPE 7 TRACK
CCW O,O,X'OO',O

TP5CCW CCW 0,0,X'60',1 2400 TAPE 7 TRACK AND CONVERT
I CCW O,O,X'OO',O
I DK1CCW CCW 0,0,X'20',1 SINGLE DISK STORAGE DRIVE
I DC F'24' RELOCATION FOR *+24
I DC F'S'
I CCW 0,0,X'20',0
I CCW O,O,X'OO',O
I CCW O,O,X'OO',O
I DK2CCW CCW O,O,X'20',6 2311 DISK STORAGE DRIVE
I CCW O,O,X'60',S
I DC X'OSFFFFFS' RELOCATION FOR *-8
I DC F'O'
I CCW O,O,X'OO',O
I CCW O,O,X'OO',O
I CCW O,O,X'OO',O L __ _

Figure 13. CCW Table

52

(

(

Table 9 is a listing. of all modules of
the IBM System/360 Model 44 Programming
system as initially distributed. The list
also provides symbolic identifications and
phase names for each component, where
applicable.

Symbolic identifications allow the user
to associate any card image with the module
to which it belongs. The 3-character iden­
tification code -- four characters for
FORTRAN modules -- is found at the begin­
ning of the serialization field, columns 73
through 80 of each card image.

Phase names are applicable to all
modules that are members of the phase
library. Phase names do not apply to
FORTRAN programs that are members of the
module library.

Table 9. System Components

System Mod Level Directory

The system mod level directory is a
non-executable phase (BESYSLEV) that con­
tains the version and modification level.of
each component in the user's system. The
following statements can be used to obtain
a listing of the contents of the system mod
level directory:

IIMODLEV
IISYS002
II EXEC

PRTMEM
1*

JOB
ACCESS SDSABS,SAME=SYSABl
UTILS
INCL=BESYSLEV,SIZIN=(720,60)

r--------------------------------------T------------------------T-----------------------, I Module I Symbolic Card ID1 I Phase Name I
~--------------------------------------+------------------------+-----------------------~

2315 Disk Initialization I BMG (BAA) IN15
I

2311 Disk Initialization I BMF (BAB) IN11

Save/Restore BAC BACDPRS

Save/Restore BIB (BAC) BACDPRS

Print/Punch BAD BADPRPU

Absolute Loader BBA BBLDR1

Absolute Loader BBA BBLDR2

System Construction BCA BCASC15

IPL Phase I BDA BDAIP15

System Mod Level Directory BEA BESYSLEV

System Communication Region BFA BFSUPVSR

SVC Handler BFB BFSUPVSR I
I

Channel Scheduler BFC BFSUPVSR I
I

Device Routine Utilities BFD BFSURVSR I
I

Disk Initiator BFE BFSUPVSR I
I

SDSD ERP BFF BFSUPVSR I ______________________________________ ~ ________________________ ~ _______________________ J

Appendix D. system Modules 53

Table 9. system Components (continued)
r--------------------------------------T------------------------T-----------------------,
I Module I symbolic Card ID1 I Phase Name I
~--------------------------------------+------------------------+-----------------------~

Tape Initiator BFG I BFSUPVSR I
I I

Card Initiator BFH BFSUPVSR I
I

Printer Initiator BFI BFSUPVSR I

Console Typewriter BFJ BFSUPVSR

1/0 Routines BFK BFSUPVSR

IPL Phase II Add/Subtract BFL BFSUPVSR

Disk ERP Phase 1 BGA BGDl

Disk ERP Phase 2 BGB BGD2

Tape ERP Phase 1 BGC BGTl

Tape ERP Phase 2 BGD BGT2

Card ERP BGE BGCD

Printer ERP BGF BPR

Error Message Writer BGG BGMG

OPEN Phase 1 BHA BHOPENl

OPEN Phase 2 BHB BHOPEN2

OPEN Phase 3 BHC BHOPEN3
/", ,

,
~/

OPEN Phase 4 BHD BHOPEN4

CLOSE Phase 1 BHE BHCLOSEl

CLOSE Phase 2 BHF BHCLOSE2

Cancel Phase 1 BHH BHCNCELl

Cancel Phase 2 BHI BHCNCEL2

Dump Phase 1 BHJ BHDUMPl

Dump Phase 2 BHK BHDUMP2

Job Control Basic Phase BIA BIAJBBAS

Job Control Phase 1 BIB BIBJBPHl

Job Control Phase 2 BIC BICJBPH2

Job Control Phase 3 BID I BIDJBPH3
I

Job Control Phase 4 BIE I BIEJBPH4
I

Job Control Phase 5 BIF I BIFJBPH5 ______________________________________ ~ ________________________ L ______________________ _

54

:t ,.

,.

(

Table 9. System Components <continued>
r--------------------------------------T------------------------T-----------------------,
I Module I Symbolic Card ID1 I Phase Name I
~--------------------------------------+------------------------+-----------------------~

Linkage Editor BKA I BKLNKEDT I
I I

Linkage Editor BKA I BKLNKED1 I
I I

Linkage Editor BKA I BKLNKED2 I
I I

Assembler Phase 1 BLA I BLAST I
I I

Assembler Phase 2 BLB I BLAZE I
I I
I I

Utilities Root Phase BMA I BMUTILS
I

Utilities Data Set Copy BMB BMUTCOPY

Utilities Data Set Copy BMB BMUTPCHA

Utilities squeeze/Map BMC BMUTSQMP

Utilities Initialization Basic BMD BMUTINIT

Utilities Tape Initialization BME BMUTINTP

Utilities 2311 Initialization EMF BMUTIN11

Utilities 2315 Initialization BMG BMUTIN15

FORTRAN Compiler

FORTRAN Phase 1 BNA BNAFORT

FORTRAN Phase 1 BNB BNAFORT

FORTRAN Phase 1 BNC BNAFORT

FORTRAN Phase 1 BND BNAFORT

FORTRAN Phase 2 BNE BNAALL

FORTRAN Phase 2 BNF BNAALL

FORTRAN Phase 3 BNG BNAGEN

FORTRAN Phase 4 BNH BNAEXT

FORTRAN Phase 4 BNI BNAEXT

FORTRAN Object Fix Up BNX BNAADJST

FORTRAN Expander BNZ BNAXPND I
I
I

FORTRAN Library Not Applicable I
I

Unit Table BOA I
I

I BCOM BOB I
I

FIOCS BOC I
I

DIOCS BOD I ______________________________________ i ________________________ ~ _______________________ J

Appendix D. System Niodules 55

Table 9. System Components (continued)

r--------------------------------------T------------------------T-----------------------, I Module , Symbolic Card ID1. , Phase Name I
~--------------------------------------+------------------------+------------------ ----~ Namelist BOE

object Fix option BOF

LINK/OVERLAY BOH

Square Root BOMA

Single Real Exponentiation BOMB

single Real Log BOMC

single Real SIN/COS BOMD

Single Real Arctan BOME

Single Real Hyperbalic Tangent BOMF

Double Square Root BOMG

Double Exponentiation BOMH

Double Log BOMI

Double SIN/COS BOMJ

Double Arctan BOMI<

Double Hyperbalic Tangent BOML

Complex Mult'/Div. BOMM
,~"\

\,J

Complex Absolute Value BOMN

Complex Square Root BOMP

Complex Exp. BOMQ

Complex Log BOMR

Complex SIN/COS BOMS

complex Double Mult./Div. BOMT

Complex Double Absolute Value BOMU

Complex Double Square Root BOMV

Complex Double Exponentiation BOMW

Complex Double Log BOMX

Complex Double SIN/COS BOMY

Single Real Hyperbolic SIN/COS BOMZ

Single Real Arc SIN/COS BONA ,
Single Real TAN/COT BONB,

I
Double Hyperbolic SIN/COS BONC I

I
I Double Arc SIN/COS BOND I l ______________________________________ i ________________________ i ______________________ _

56

..

4

(

Table 9. system Components (continued)
r--------------------------------------T------------------------T-----------------------,
I Module I Symbolic Card ID1 I Phase Name I
~--------------------------------------+------------------------+-----------------------~

Double TAN/COT BONE

single Error Function BONF

Single GAMMA/LOG-GAMMA BONG

Double Error Function BONH

Double GAMMA/LOG-GAMMA BONI

Exp. Integer to Integer BONJ

Exp. Real to Integer BONK

Exp. Double to Integer BONL

Exp. Real to Real BONM

Exp. Double to Double BONN

Exp. complex to Integer BONP

Exp. Double Complex to Integer BONQ

Integer MAX Function BONR

Real MAX Function BONS

Double MAX Function BONT

EXIT BONU

Sense Light Simulation BONV

Overf low I BONW
I

Divide Check I BONX
I

DUMP/PDUMP I BONY
~---------------------------~----------~------------------------~-----------------------
110bject decks are identified using the same symbols as for the corresponding symbolic I
I decks, except where noted otherwise in parentheses. I L ___ J

Appendix D. System Modules 57

APPENDIX E: SAMPLE PROGRM-l

This appendix contains a description of
the sample program provided by IBM to test
the functioning of the various components
of the programming system after system
construction. Included are a description
of the sample program, operating instruc­
tions, and a description of the program
execution results. More detailed operating
procedures can be found in IBM_~~~tem/360
~el ~~~_-Rrogra~~i~9 __ 2~st~_QQ~rator'~
Guide, Form C28-6815.

DESCRIPTION

The sample program, which computes the
coefficients of Chebyshev polynomials, con­
sists of a FORTRAN main program and two
subprograms (one SUBROUTINE subprogram and
one FUNCTION subprogram). The sample pro­
gram is designed to operate with SYSRDR
assigned to a card reader and SYSLST
assigned to a printer. Statements within
the sample program card deck (BAZSAMPL)
enBure that SYSIPT is assigned to the same
device as SYSRDR and that SYSOPT is
assigned to the same device as SYSLST.

The BAZSAMPL card deck consists of:

1. Job control statements that assign
SYSIPT and SYSOPT to the same devices
as SYSRDR and SYSLST, respectively.

2. Job control statements for three
FORTRAN compilations.

3. Three sets of FORTRAN source state­
ments (one for the main program and
one for each subprogram).

4. Job control statements for a
edit and for the execution
sample program.

linkage
of the

5. Data deck for sample program execu­
tion.

The program processes two data cards as
its input. Figure 14 shows a complete list
of the expected output from the execution

58

of the program. This list may be used for
checking output.

OPERATING INSTRUCTIONS

1. Mount the system residence disk.

2. Perform the initial programming load­
ing procedure for the system.

3. Place the BAZSAMPL card deck in the
card reader, ready the reader, and
press the End of File key.

4. Respond to messages written
system on SYSLOG (the
printer-keyboard) as required.

by the
console

OUTPUT

1. The job control processor will read,
process, and print all job control
statements.

2. For each set of source statements, the
FORTRAN IV compiler will list the
following:

3.

a. Heading including date and level.

b. The set of source statements.

c. Storage map including size of each
COMMON block and size of program.

The linkage editor will prepare and
list a storage map including the rela­
tive address of each external ref­
erence.

4. The executed sample program will list
the results of execution, which should
correspond to the list shown in Figure
14.

•

**SAMPLE PROGRAM EXECUTION HAS BEGUN.

COEFFICIENTS OF CHEBYSHEV POL YNOMlALS C N,I,A,B

N
T N,PHI,A,B SUMMATION C N,I,A,B .. COS I"PHI

I 0

C 4, 0, 1.2700, 0.2700 4.63396

C 4, 1, 1.2700, 0.2700 8.58701

,.
C 4, 2, 1.2700, 0.2700 6.77608

C 4, 3, 1.2700, 0.2700 4.42450

C 4, 4, 1.2700, 0.2700 2.60144

THE RESULTS AS SHOWN ABOVE ARE CORRECT FOR THE PURPOSE OF THIS DEMONSTRATION.

COEFFICIENTS OF CHEBYSHEV POLYNOMIALS C N,I,A,B

N
T N,PHI,A,B SUMMATION C N,I,A,B "COS I"PHI

I 0

C 6, 0, 1.2700, 0.2700 28.97987

(C 6, 1, 1.2700, 0.2700 54.65051

C 6, 2, 1.2700, 0.2700 45.65968

C 6, 3, 1.2700, 0.2700 33.42590

C 6, 4, 1.2700, 0.2700 20.94514

C 6, 5, 1.2700, 0.2700 10.70439

C 6, 6, 1.2700, 0.2700 4.19585

THE RESULTS AS SHOWN ABOVE ARE CORRECT FOR THE PURPOSE OF THIS DEMONSTRATION.

*SAMPLE PROGRAM EXECUTION HAS COMPLETED.

Figure 14. Output of sample Program

Appendix E: Sample Program 59

&ACCNT 16,26
&OUMP 16
&FIX 20
&FLPT 16
&HGHCT 16
&LABEL 16
&PRNTMES 20
&REMARK 20
&STAPE 16
&TCON 16
&TOEN 16
&TIMER 16
&TPAR 16
&TTRN 16
&T9NO 16
&UNITS 20
&WCHK 16

absolute form 5
absolute loader 5
accounting routine 26

accounting information 31
adding it to system 27
addressing within 26
data generated by 31
entry point 26
exit from 27
input to 26
output from 26
phase library 26
register usage 26
size of 26

ADO command 28
adding

accounting routine 27
new I/O device 19
unit control block 17,37

additional
decks 14
unit control block 28

address of
channel command list 34
device dependent routine 42
device routine 34
entry point (accounting routine) 26
first channel command 42

addressing with accounting routine 26
adjustment routine, boundary 20
ALLOC card

SOSABS 8
SOSCAT 10
SOSIPL 7
SOSPSD 12
SOSREL, 10
SOSUAS 9
SOSOOO 11
SOSOOl 11

allocation, space
before first IPL 7
considerations 6
first data set 7
planning 7

60

SOSABS 7
So SCAT 9
SOSIPL 7
SOSPSO 11
SOSREL 10
SOSUAS 9
SOSOOO 11
SOSOOl 11
summary 12

area
channel command word 19
extended save 26
fixed 9
permanent 9
register save 26
temporary 9

assembler instructions
changes 38
FORTRAN compiler 20
supervisor 15

assembler program
reassembly of 19
SETA instructions 20

assembly instructions, conditional
FORTRAN library 20
supervisor 15

assignment
change system unit 9
permanent 9
symbolic unit 9
temporary 9

BACCOUNT 27
BOAOOOOO 13
BEAOOOOO 13
block count, current 38
block-length (SDSCAT) 10
blocks, calculating number of

SOSABS 7
SOSREL 10

BNAAOJST 20
BOAUDPT 20
boundary adjustment routine 20

calculating number of blocks
SOSABS 7
SOSREL 10

card file control block 48
catalog, system 6
CCW

area 19
list pointer 34
table 52,19

changes
assembler instructions 38
new devices 34
system unit assignment 9

channel command
address of first 42
address of list 34
word area 19
words (EXCP) 33

..

(

{
/

channel program., execute 33
channel queue 18
code

error recovery 39
return (EXCP) 36
return (RCB) 39

comments in listing 20
comments modules, component 22
communication region, user 26
communications area

interprogram 30
intraprogram 30

comparison byte 32
compiler data set 7
compiler, FORTRAN 20
component comments modules 22
component, modified 22
components, system 53,5

size of 11
conditional assembly instructions

FORTRAN library 20
supervisor 15

conditions, default
FORTRAN 20
supervisor 15

construction procedure, system 12
construction program, system 13
control block

device routine 38
file 47,18
request 34,42
system 17
unit 45,17

counters 39
CTYP 19

data generated by accounting routine 31
data set reference number 21
date 13
datlen

SOSABS 8
SDSREL 10
SOSUAL 9
SOSOOO 11
S08001 11

DECK 19
decks, additional 14
default conditions

assembler program 19
FORTRAN library 20
supervisor 15

deleting
unit control block 18
unneeded features 15

devadr
ADD command 28
IPL record 7
SUB command 28
system construction program 13

device address 7
device-dependent routines 33

address of 42
interruption 33
error recovery 33

device end 36
device, new input/output 19
device routine 34

address 34

control block relationships 38
design 39
incorporating into system 37
information available to 42
number of 38

device table
initialization 50,19
job control 51,19

device types 29
directory entries, calculating number of

SDSABS 7
SDSREL 10

directory, system mod level 53
dirlen

SDSABS 8
SOSCAT 10
SOSREL 10

disk file control block 47
disk initialization program 12
distribution tape 5
DVADR 12

EOATE 13
editing, system

see: system editing
ending location of supervisor 23
ENOTABLE 21
entry point of accounting routine 26
EQU instructions

NCCW 17
NCHQ 17
NDEV 17
NFCB 17
NSUT 17
NUCB 17
NXCA 17

error condition 36
error counts 38
error messages (FORTRAN) 20
error recovery

code 39
operations 37
program 1n phase library 37
routines (EXCP) 33

example of
editing 23
print/punch program 6

EXCP level programming 33
execute channel program SVC 33
exit from accounting routine 27
expander program (FORTRAN) 23
extended save area 26
EXTRACT supervisor call 32,26

FCB 18
pointer 18
table 18

FCBCT 38
fifteenth unit 14
file control block 18

card 48
disk 47
fields 48
pOinter 18
relationship to device routine 38
table 18

first channel command, address of 42
first data set (space allocation) 7

Index 61

first IPL 14
space allocation before 7

FIX operand 9
FIX option 14
fixed area 9
flag, postrequest 42,37
FMT 8
form of distribution 5
FORTOPT 20
FORTRAN

assembler instructions 20
conditional assembly instructions 20
default conditions 20
error messages 20
expander program 23
number of units 20
reassembly of components 20
SETA instructions 20
symbolic language program 23
units 20

frequently used data sets 7

halt I/O instruction 37

INCLUDE statement 27
incorporating device routine into
system 37

increasing number of units 20
index number 21

system unit 42
index, system unit 34
information

available to device routine 42
timing 26

INITIAL control card 12
initial operative programming system 5
initial program loading procedure 14

ADD command usage 28
fifteenth unit 14
first 14
FIX, option 14
maximum number of units 14
operator commands 14
record 6
sample input deck 14
SET command 14
space allocation 7
SUB command usage 28
SYS004 & SYS005 14

initialization device table 19
fields 50
modifying 38

initialization program, disk 12
initializing system residence volume 12
input deck, sample 14
input to accounting routine 26
input/output block 35,33

device routine 38
input/output interruptions 36
INSERT supervisor call 31
instructions, assembler 38

FORTRAN 20
supervisor 15

instructions, conditional assembly
FORTRAN library 20
supervisor 15

instructions, privileged 34
interprogram communications area 30

62

interruption
analysis and. error recovery 37.·
device-dependent . 33
input/output 36
processing 36
program-controlled 37

intraprogram communications area 30
IOBCT 39
IOCCW 38
IOCNTl and IOCNT2 39
IOECD 39
IOOPC 39
IORCD 39
IPL procedure 14

job control
device table 51,19
processor 26,5
table 6

KEEP parameter 27

LABEL card
SDSABS 8
SDSCAT 10
SDSIPL 7
SDSPSD 12
SDSREL 10
SDSUAS 9
SDSOOO 11
SDS001 11

library
FORTRAN 20
module 7
phase 6

LINK 19
linkage editor 5
LIST 19
listing

comments in assembler program 20
component comments modules 23

logical product (AND) 32
logical sum (OR) 32

maximum number of ADD commands 28
members, replacing module library 23
message, error (FORTRAN) 20
message, warning 9
modified component 22
modifying

initialization device table 38
system communication region 37

mod level directory, system 53
module library 7,5

ALLOC card 10
LABEL card 10
number of blocks 10
number of directory entries 10
replacement of members 23
size of system components 11
user programs 10

modules
component comments 22
system 53,25

multiple-step operations

NCCW
NCHQ

17,38
17,18

39

..

,

•

(

{

NDEV 17,38
new devices, changes for 34
NFCB 17,38
NOTE statement 38
NSUT 17,38
NUCB 17,38
number, data set reference 21
number, index 21
NXCA 17

one disk, editing using 24
optional tape 6
order of data sets (SDSIPL) 7
output from accounting routine 26

permanent area 9
permanent aSSignment 9
phase library 6,5

accounting routine 26
ALLOC card 8
error recovery program 37
interruption analysis 37
LABEL card 8
number of blocks 7
number of directory entries 7
size of system components 8,7

PHASE statement 27
POINT supervisor call 9
pointer

CCW list 34
FCB 18
UCB 18

postrequest flag
EXCP 37
request control block 42

preparation. for
system construction 6
system editing 15

print/punch program 5
privileged instructions 34
procedure

initial program loading 14
summary 14
system construction 13
system editing 22

processing, interruption 36
processor, job control 26,5
product, logical 32
program

expander (FORTRAN) 23
sample 58
stand-alone 5
system support 5

program-controlled interruption 37
pseudo-directory 11,7

ALLOC card 12
LABEL card 12

queue, channel 18

reassembly
assembler program 19
FORTRAN components 20
supervisor 15

reassigning units 21
record, IPL 6
recovery, error

code 39

operations 37
routines 33

reference number, data set 21
register

information for device routines 42
save area 26
usage 26

relocatable form 5
replace a UCB 18
REPLACE statement 15
replacement of module library members 23
request control block 34

device routine relationships 38
information available in 42

requirements, EXCP 33
residence volume, system 6,12
return code

EXCP 36
request control block 39

sample input deck 14
sample program 58
save area

extended 26
register 26

save/restore program 5
SDSABS 7,13
SDSAB2 15
SDSCAT 9
SDSIPL 7,13
SDSPSD 11,7
SDSREL 10,7
SDSUAS 9,6
SDSOOO 11,7
SOSOOl 11,7
SDS003 22,24
SET card 13
SETA instructions

assembler program 20
FORTRAN library 20
supervisor 16,15

SIO command 36
size of accounting routine 26
size of system components

SDSABS 8,7
SDSREL 11

space allocation 6
before first IPL 7
first data set 7
SDSABS 7
summary 12

specification of accounting routine 26
stand-alone disk initialization program 12
stand-alGne programs 5
start input/output command 36
status 1 and status 2 21
SUB command 28
sum, logical 32
supervisor

ending location 23
reassembly 15
SETA instructions 16,15

supervisor calls
device routine 34
EXCP 33
EXTRACT 32
INSERT 31
POINT 9

Index 63

UPSAND 32
UPSOR 32
user communication region 31
WAIT 33

SVC 17 31
SVC 18 32,26
SVC 19 32
SVC 20 32
SWSPH1 19
SYMBMAX 19
SYMBMIN 20
symbolic unit assignment 9

in distributed system 14
SYMBnnn 20
SYSLOG 13
system catalog 9,6

ALLOC card 10
LABEL card 10

system components 53,5
SDSABS 8,7
SOSREL 11

system construction procedure 12
initializing system residence volume 12
preparation for 6

system construction program 13
additional decks 14
procedure 13
summary of procedure 14

system control blocks
file control block 17
request control block 34,43
unit control block 17

system control tables
channel command word 19
file control block 18
job control device 19
system unit 18
unit control block 17

system editing 5
optional tape 6
preparation 15
procedure 22

system mod level directory 53
system modules 53,25
system residence volume 6

additional decks 14
order of data sets 7
SOSOOO 11
SOSOOl 11

system support programs 5
system unit

assignment 9
index 34
index number 42
table 20

system work data set 11,7
ALLOC card 11
LABEL card 11

SYS002 & SYS003 23
SYS004 & SYS005 14

table
channel command word 52,19
file control block 18
initialization device 50
job control 9
job control device 51,19

system control 17
system unit 18,20
unit control block 17

tape
distribution 5
optional 6

tape file control block 48
temporary area 9
temporary assignment 9
timing information 26
tracks for user 12
tracks for VTOC 13
track 0 12
two disks, editing using 22
TYPE 12
types, device 29

UCPND 38
UCPP'l' 38
UCPRE 38
UCPWE 38
UCRND 38
UCRRE 38
UCRWE 38
unit assignment

change system 9
permanent 9
symbolic unit 9
temporary 9

unit control block 45,17
ADD command 28
add for device routine 37
adding 17
delete 18
device routine relationship 38
fields 45

unit control block table 17
unit index number, system 42
unit index, system 34
unit table, system 18
units

fifteenth 14
increasing number of 20
reassigning 21
symbolic 14

UNITAB routine 21
UPDASMB1 19
UPOASMB2 19
UPOASMB3 19
UPOATE1 19
UPDATE2 19
user communication region 30,26

accounting information 31
data generated 31
extended save area 26
interprogram area 30
intraprogram area 30
supervisor call 31
switch byte 32,30

user program switch byte 32,30
user programs 10
user, tracks for 12
utilities processor 5

VOLID 12 WAIT supervisor call 33

:t volidx 7 warning message 9

"
VTOC 12 writing an accounting routine 26

space 12
tracks for 13

XREF 19

..

(

Index 65

C28-6814-0

International Business Mechines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.IoSo1
(USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
(International]

..

'U
11
1-'.
::l
rt ro
p.

1-'.
::l

c::
en v

".

() " N
00
I

'" 00
0I>-
I

0

.,

(

Title: IBM System/360 Model 44
Programming System
Systems Programmer's Guide

READER'S COMMENTS

Form: C28-68l4-0

Your comments assist us in improving the usefulness of our publications; they are a major
part of the input used for technical newsletters and revisions.

Please do not use this form for technical questions about the system; it only delays the
response. Instead, direct your technical questions to your local IBM representative.

Corrections or clarifications needed:

~- If you wish a reply, please include your name and address below:

C28-6814-0

fold fold
...

Attention: PUBLICATIONS

BUSINESS REPLY MAIL
NO POSTAGE NECESSARY IF MAILED IN THE UNITEQ STATES

POSTAGE WILL BE PAID BY •••

IBM CORPORATION

1271 AVENUE OF THE AMERICAS
NEW YORK, N.Y. 10020

FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.

••• !' ••• :

fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.IoBoI
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, NewYork,NewYork 10017
[International J

fold

'-:

'tI
11
::s
rt m
P-
....
::s
c::: · .,
en · > ·
n l
N
co
I

'" co
I-' ...
I

0

