LN

P =L

TS

i T SR ety

File No. S360-36
Form No.

Systems Reference Library

IBM System/360 Model 44
Programming System

Systems Programmer’'s Guide

This publication describes how to construct an IEM
System/360 Model 44 Programming System, and how to
modify and extend its capabilities.

Among the subjects discussed in this publication
are:

¢ How to construct and edit a Model U4 Programming
System.

e How to write an accounting routine and incorporate
it into the system.

e How to define the input/output configuration at IPL
time.

e How tO write routines at the Execute Channel
Program (EXCP) 1level of the input/output facili-
ties.

e How to expand the user communication region.

Cc28-6814-0

PREFACE

This publication rprovides informaticn
for programmers respcnsible for construct-
ing an IBM System/360 Model 44 Programming
system, and modifying and extending its
capabilities. It is directed to experi-
enced programmers who have a detailed
knowledge of the components, functions, and
structure of the Model 44 Programming and
Computing Systems.

Certain information and procedures nec-
essary for the complete understanding of
procedures explained in this publication
are given in other publications and are not
duplicated here. Therefore, the following
publications are prerequisite to this cne:

IBM System/360 Model 44 Programming Sys-
tem: concepts and Facilities, Form
C28-6810, describes the functions and capa-
bilities of the programming system.

IBM System/360 Model 44 Programming Sys-
tem: Assembler Langquage, Form C28-6811,

First Edition

contains the information necessary to
pare code 1in the assembler language. For
system editing, it is essential for the
user to be familiar with the sections
entitled "Assembler Instruction Statements"™
and "Conditional Assembly Instructions."

pre-

IBM System/360 Model 44 Programming Sys-
tem: Guide to -System Use, Form C28-6812,

contains detailed information about prerar-
ing programs to be executed under system
control.

For system editing, in addition to this
publication, the system programmer should
obtain a symbolic listing of +the various
system components. The text makes frequent
reference to labels, variables, etc., that
actually appear in the listing.

Specifications contained herein are subject to change from time to time.

Any such change will be reported in subsequent
Newsletters,

revisions

Copies of this
Branch Offices.

A form is provided at the back of this
comments. If the form has been removed,
publication may be addressed to IBM

publication

Technical

and other IBM publications can be obtained through IBM

for readers'
comments concerning this
Corporation,

Programming

Publications, 1271 Avenue of the Americas., New York, N.Y., 10020,

©1967 by International Business Machines Corporation

FERN
A%

€

Pre|

=

SYSTEM CONSTRUCTION AND EDITING. . .

Form Of Distribution e .

Optional Tape for System Edltlng

Preparation for System Construction.
Space Allocation Considerations .
Space Allocation Planning

SDSIPL (IPL Record).
SDSABS (Phase Library)
SDSUAS (Job Control Table) . .
SDSCAT (System Catalog). . . .
SDSREL (Module Library). . . .
SDS000 (Complier Data Set) and

SDS001 (system Work Data Set)
SDSPSD (Pseudo-directory). . .
Summary of Space Allocation. .

System Construction Procedure. . . .
Initializing the System Residence
Volume o o ¢ v v o ¢ o o o o o @
System Construction Program . . .

Initial Program Loading (IPL)
Procedure ¢ « & 4 4 o . .

Preparation for System Editing . . .

Reassembly of the Supervisor
Conditional Assembly

Instructions in the Supervisor.

Assembler Instructions in the
SUpervisor. .« . .« . .« ¢ .o . .
System Control Blocks and Tables.
Unit Control Block
File Control Block
System Unit Table.
Channel Queue. . « « « <« « « .
Channel Command Word Area. . .
Job Control Device Table . . .
Channel Command Word Table . .
Initialization Device Table.

Reassembly of the Assembler Program

Reassembly of FORTRAN Components.
Assembler Instructions in the
FORTRAN Compiler.
Conditional Assembly
Instructions in the FORTRAN
Library « « « ¢ « ¢ ¢ ¢« ¢ .« .

System Editing Procedure
COMPONENT COMMENTS MODULES. . . .
EDITING USING TWO DISKS

Replacement of Module
Members. . . « o o e

-

Library

Example of Edltlng U51ng TwO

Disks. e o e o
EDITING USING ONE DISK. « e e
Example
DiSK ¢ o @ ¢ ¢ ¢« o o o & o &
System Modules. «

of Editing Using One

[W3]

CVWUOUNJIJdOO

12

12

13

14

15

15

23

23
24

24
25

CONTENTS

WRITING AN INSTALLATION ACCOUNTING
ROUTINE . . . ¢ & ¢ o o o o « « o« =

ADD AND SUB COMMAND USAGE.

ADD and SUB Commands . . « « « o« o« =«
The ADD Command. « . « « « « .
The SUB Command. « « « « « « «

USER COMMUNICATION REGION.
Communication Region Supervisor
Calls. e e e e e e e .
INSERT - SVC 17. e e e e s e e
EXTRACT - SVC 18

UPSAND - SVC 19 and UPSOR - SVC

200 . 0 0 e e e e e e e e e

EXECUTE CHANNEL PROGRAM.

EXCP Level Programming . . « . « .« .
Supervisor Call EXCP
Supervisor Call WAIT

Requirements. e e e o o
Channel Command WOrds. « o o e
Device Routine
Input/Output Block

Execution ¢ o . . .

Interruption Processing

Incorporating Device Routines into

the System « . . .
Changes for New Devices. . . .
DEVICE ROUTINE - Control Block
Relationships. «
Device Routine Design
Information Available to Device
Routines « ¢« ¢« <« « . .
Information in the Registers .
Information in the Request
Control Block

APPENDIX A. :+ UNIT CONTROL BLOCK. . .
Unit Control Block Fields. . .

APPENDIX B. FILE CONTROL BLOCK . . .
File Control Block Fields. . .

APPENDIX C. INITIALIZATION DEVICE,

CCW, AND JOB CONTROL DEVICE TABLES.
Initialization Device Table

FieldsS. ¢« ¢« & ¢« o o o o o o =

APPENDIX D. SYSTEM MODULES
System Mod Level Directory . .

APPENDIX E: SAMPLE PROGRAM
Description
Operating Instructions.
Output. .« « < « ¢« ¢« ¢« ¢« « ¢« « .+ .

INDEX. « v o o o o o o o o o o o o «

38
39

42
42

42

45
45

47
48
50

50

ILLUSTRATIONS

Figure 1.

Sample Input Deck for

System Unit Definition.

Figure 2.
Comments
Figure 3.
Figure 4.
Figure 5.
Format.
Figure 6.
Routine
Figure 7.

TABLES

Table 1.

Listing a Component
Module « . .
Editing Using Two Disks .
Editing Using One Disk. .
Input/Output Block (IOB)
General Flow of a Device

e o a e e e e e e a e

Request Control Block . .

Phase Library System

Component Sizes« . . < . .

Table 2.

Module Library System

Component Sizes « . ¢« ¢ + ¢ « « o .

Table 3.

Space Allocation

Recommendations . .« « o « o « o o

14
22
214
25
35

40
by

11

12

Figure 8. Unit Control Block (UCB)

Format. . .

o o - - -

File Control Block Format

Figure 9.

(Disk) e v v @ v v v v o v @ e e 0
Figure 10. File Control Block Format
(Tape and Card) . . « « « o « « o« =

Figure 11. Initialization Device

Table . . ¢« ¢ ¢ ¢« ¢ ¢ ¢ ¢ o o o o @
Figure 12. Job Control Device Table.
Figure 13. CCW Table.
Figure 14. Output of Sample Program

Table 5. Samples
Instructions in

Deck. . . .
Table 6.
Table 7.

Device
System

of Assembler

TYpPeS « « « o « « &
Unit Index Values .

Table 8. Conditions Causing a Device

Routine to
Table 9.

be Entered

System Components

-

the Supervisor Source

.

17
35

36
53

~
L

8 Ui,

(

This chapter provides information akout
how to originally construct an operative
IBM System/360 Model 44 Programming System,
and how to edit such a system to reflect
unigue installation requirements. It des-
cribes space allocation and IPL procedures,
system residence volumre initialization, and
the use of the system construction program.
Input/output device assignment procedures,
and information about supervisor reassembly
are also included.

The IBM System/360 Model 44 Programming

System is a collection of aksolute phases
and relocatable modules that can be com-
bined to meet the specific programming

needs of a given installation. The process
used to produce an initial operative rro-
gramming system is called system construc-
tion.

IBM provides the phases and modules from

which system 1libraries (the phase library
and, optionally, the wmodule 1library) are
constructed. Distrikuted with the system

are six stand-alone programs, two of which
must be wused to construct an operative
system.

System components to be placed into the
phase 1library are the supervisor, the
FORTRAN IV compiler, the assembler, and
three system support programs: the job
control processor, the linkage editor, and
the utilities processor. (Each of these

components 1is distrikuted in absolute
form.)
System components that are placed into

the module library are service and mathema-
tical subroutines. (Each of these compo-
nents is distributed in relocatable form.)
The six stand-alone programs (programs

that do not operate under system control)
provided with the system are:

1. Two disk initialization programs

2. System construction program

3. Absolute loader

4. Print/punch program

5. Save/restore program

- An installation may delete or replace
any of the system components provided,
except the supervisor and the job control

processor.

SYSTEM _CONSTRUCTION AND EDITING

To oktain an initial operative program-
ming system containing all distributed sys-
tem elements, an installation must:

e Initialize an IBM 2315 Disk Cartridge
as the system residence volume.
data

e Allccate space for all sets

required by the system.

e Use the systen ccnstruction stand-alone
program to transfer the desired compo-
nents of the distributed system c¢nto
the system residence volume.

¢ Perform an initial program loading
(IPL) procedure, assigning input/output

devices (system wunits) for use by the

system.

No reassembly of system components is
necessary in this process. However, the

system must be reassembled to make such
modifications as incorporating a new
installation function, permanently changing

a machine configuration, or altering
default conditions for systen opticns.
This process of reassembling--of creating

in effect a new system residence volume--is
called system editing.

FORM OF DISTRIBUTION

The programming system is distributed by
IBM on one reel of tape from which the card
decks required for system construction can
be punched; if the installation does not

have a tape drive, the programming system
can be obtained in card form. The tape
consists of a series of files: the first

contains a print/punch program, the second
contains a table of contents, and each
remaining file contains a card deck.

The print/punch program is used to print
or punch the contents of the tape; it is a
special stand-alone program to be used with
this tare only. The table of contents is
an alphaketical 1list (according to card
identification) of the card decks on the
tape together with the file numbers that
contain them.

Complete instructions for the use of the
print/punch program are given in the pukli-
cation IBM_System/360 Model u44: Operator's
Guide, Form C28-6815. The following two
examples show typical input parameters that
can be used to control the print/punch
routine:

System Construction And Editing 5

1. To print the table of contents only:
XXXX,Cuu,1,1
where:

xxxx 1s the device type (1403 or 1443)
cuu is the device address

2. To punch all of the card decks con-
tained on the tape:

XXXX,Cuu,E0V, 2
where:

xxxX is the device type (2520,

or 1442)
cuu is the device address

2540,

Details regarding the use of input para-
meters, which enable the cperator to select
a file or group of files to be printed or
punched, are included in the instructions
mentioned akove.

Optional Tape for System Editing

If the system programmer's modifications
require that system editing be done, he
must obtain a copy of the system in symbol-
ic card form. Tapes from which these
symbolic card decks can be punched (or the
system assembled) are available through the
local IBM branch office.

The components of the system (in symbol-
ic form) occupy two reels of magnetic tape.
These tapes contain blocked records con-
sisting of 20 card images per record. The
arrangerent of the system components is
given below.

Reel 1: The -order
this reel is:

of the components on

Save/Restore Program
Print/Punch Program
Absolute Loader
System Construction Program
IPL Program
Supervisor
Jok Control
Linkage Editor
Assembler Program
Utility Programs
Reel 2: The order of the
this reel is:

components on

FORTRAN Compiler
FORTRAN Object Fix
FORTRAN Expander
FORTRAN Library

PREPARATION_ FOR _SYSTEM CCNSTRUCTION

Before a system can be constructed, an
installation must calculate both the amount
of space to be allocated for required
system data sets, and the number of entries
to be allotted to the directories of the
phase and module libraries. After these

values are calculated, they must be speci-
fied on ALLOC control cards provided as
input, along with the IBM-distributed pro-
gramming system tc the stand-alone system
construction progran. (Each ALLOC card
must be followed by a LABEL control card.

The LABEL card defines the characteristics
of the data set named on the immediately
preceding ALLOC card.)

SPACE ALLOCATION CONSIDERATICNS

Space for ‘the fcllowing system data sets

must Lke allocated on the system residence
volume.

Note: 1In the text that follows, only the
data sets SDSIPL, SDSABS, and SDSUAS rrust
be so named by the user. All other data
set names used here, SDSCAT, sDs000,

SDSPSD, SDS001, and SDSREL are for conven-
ience only; an installation can choose
different names for them.

e SDSIPL (IPL record). The IPL record
functions as the initializing routine
for the IPL procedures.

e SDSABS (Phase 1library). The phase
library, a directoried data set, con-
tains program phases ready for execu-
tion.

e SDSUAS (Job control table). The jok

control table is used by job control to

store system-unit assignment informa-
tion.
e SDSCAT (System catalog). The catalog

data set contains the names and volume
identifications of cataloged data sets.
It is used by the system to locate data
sets specified by name alone. (Note
that space need nct be allocated to
this data set unless the catalog func-
tion is to be used by the
installation.)

Space for the focllowing system data sets
may be allocated on the system residence
volume. If, however, these data sets are
not to be stored cn the system residence
volume, space on a different volume must be
allocated for them after an initial system
has been constructed.

¢ SDSREL (Module 1library). The module
library, a directoried data set, con-
tains selected modules and serves as an
automatic source of input to the link-
age editor.

e SDS000 (Compiler data set). The com-
piler data set 1is wused to collect
output from the assembler and the
FORTRAN compiler; it is the input to
the linkage editor.

¢ SDSPSD (Pseudo-directory). The pseudo-
directory is used by the linkage editor
as a directory to data set SDS000.

e SDS001 (System work data set). The
system work data set is wused as a
general system work area, and may be
used by any processing program.

SPACE ALLOCATION PLANNING

This section provides guidelines for
allocating space to all data sets required
by the system.

Space for two data sets only, SDSIPL and
SDSABS, must be allocated before an
installation's first initial program 1load-
ing (IPL) procedure is performed. Space
for the other required data sets may be
allocated during the IPL procedure itself.
(See the section "Initial Program Loading
(IPL) Procedure.")

SDSIPL_ (IPL Record)

record is allocated one
2880-byte block occupying one track. The
formats of the ALLOC and LABEL control
cards required to reserve this space are:

The IPL

r -
|7/ ALLCC SDSIPL,devadr="volidx',1 |

|7/ LABEL 2880 |
L J

devadr
This field specifies the device
address of the system residence vol-
ume.

The address is specified in hexadeci-
mal form as cuu, where c¢ 1is the
channel address and uu is the address
of a device attached to that channel.

c =0 for the standard multiplex
channel.
=1 or 2 for one of the opticnal

high speed multirlex channels.

uu = 00 to FE (0 to 254 in
hexadecimal)
volidx = the vclume identification of
the disk mounted on the
device specified by devadr.

Note: SDSIPL must be the first data set
for which space is allocated. The order in
which space is allccated for other data
sets is at the user's discretion and deter-
mines the order of data sets on the system
residence volume. To reduce access time,
space should be allocated to data sets in
frequent use before those less frequently
used.

SDSABS (Phase Library)

Before coding an ALLOC control card for
the phase library, the user must calculate
both the size of the likrary, expressed as
the total number of 720-byte blocks to be
allocated for the data set, and the nurber
of entries the 1likrary's directory is to
contain (one per phase). For assistance in
wmaking these calculations, refer to Table
1. This table shows the size of each of
the system components in the phase 1likrary
as initially distributed by IBM, and the
nunber of directory entries allocated for
them.

In making a final calculation of the
space to be allocated for the phase
library, however, the wuser rmust consider
not only system components, but also any
programs that he plans tc permanently
incorporate into the library. In addition,
space must be allocated to allow for tem-
porary entries made by the linkage editor
during jok executicn.

If the user is uncertain abcut how much
space to allocate, it should be sufficient
to allow a total of 120 directory entries
(specify 119, one entry is added by the
system) and 500 blocks, resulting in an
allocation of 101 tracks to the rphase
library. This is 75 entries and 215 blocks
more than required by the distributed com-
ponents.

The space necessary to accommodate any
given phase is calculated as fcllows:

e Number of blocks. Divide the size of
the phase (in kytes) by 720; if there
is a remainder, add 1.

e Numker of directory entries. One per
phase.

System Construction And Editing 7

Table 1. Phase Library System Component Sizes

T T T -1
| | No. of Blocks | No. of Directory Entries |
| Systemr Component | (1 block = 720 bytes)| (1 entry = 24 bytes)

L -4 e ————— - 4
r 1 T 1
| Supervisor (resident) | 29 | 1 |
L 4 4

r T 5 "
| Transient routines? | |]
| | | I
| OPEN | 4] 4]
| | | I
| CLOSE | 2 | 2 |
I | | |
| CANCEL | 2 | 2 |
[| | I
| DUMP | 2 | 2 |
| | | I
| 2311ERP (error recovery| 2 | 2 |
| procedure) |] |
| I I |
240OERP (error recocvery	2	2
procedure)		
I		
Card read-punch ERP	1	1
(error recovery pro-		
cedure)		
Printer ERP (error	1	1
reccvery procedure)]		
I		
Error message writer	1	1
t - ¥ o :		
Job Control Processor	51	6
b 1 1 —_— ._.._.l
r . 1) T

| Linkage Editor | 21 | 3 |
L 4 4 1
r . q T a1
| Utilities | 55] 8 |
L - +__ - A e ——— 4
r - T k
| FORTRAN IV Compiler | 70 | 6 |
I - - J A —_—
t + + {
| Assemkler | 40 | 2 |
¢ 1 fomm e - -
| Systern Level Directcry | 2 | 1 |
% 1 4L —_— A‘
|1A transient routine is cne that is brocught into the supervisor transient area of main |
| storage as required. |
PR - _—

The formats of the ALLOC and LABEL
control cards required to reserve space for
the phase library are:

| dirlen ,FMT

r b}
| 7/ ALLOC SDSABS,devadr='vclidx',datlen, |

, |
| /7 LABEL 720 |
L

devadr="volidx"
This field must ke the same as the
corresponding field specified in the
BLLOC control card as described under
"SDSIPL (IPL Record)."

datlen
This field specifies the total number
of blocks to be allocated for the data

set, exclusive ct its

length.

directory

dirlen

This field specifies the total number
of entries tc be allotted to the data
set's directcry. Each entry is 24
bytes 1long; the system will automat-
ically allocate the total number of
720-kyte blocks needed to accommodate
the directory at the beginning of the
data set.

FMT
The FMT keyword causes the system to
write sequential tlocks containing
zeros throughout the area reserved for
a direct access data set.

AN
N

TS

The blocks are the size specified in
the LABEL staterent for the data set.
If the data set is directoried, Lkoth
the directory and the data area are
formatted.
This facility enakles a program to
write or read any data block within
the data set at any time, thereby
making non-sequential processing pos-
sitle.

Assembler language programmers may use
the POINT supervisor call tc go
directly to the proper position for
writing or reading any bklock.

SDSUAS {Job control Table)

The SDSUAS data set is used by the job
control processor tc record system and
symbolic unit assignments specified by the
user. SDSUAS must be allocated at 1least
three 720-byte blocks, but not more than
six blocks for a 64K system. (Each wunit
assignment entry occupies 40 bytes.)

The first block, the fixed area, records
system wunit assignments specified by the
FIX operand of the SET ccrmand issued at
IPL tirme. Subsequently, at each IPL, the
information contained in this block is read
into main storage for use by the system.
This IPL-time transfer of data saves setup
time; system unit assignments need not be
redefined each time the operator performs
an IPL procedure.

The operator can, however, change system
unit assignments by issuing appropriate
ACCESS (or ALLOC) statements during IPL or
between jobs. A change tc the fixed set of
system units might be wmade if, for example,
the printer normally used for system messa-
ges were inoperative. “Changes made by the
operator overlay, and cverride, portions of
the fixed area brought into main storage.
Fixed system unit assignments modified by
the operator are called permanent assign-
ments.

When the job control processor must
relinquish its use of main storage, it uses
the second block of the SDSUAS data set,
the perranent area, as an auxiliarv storage
area in which to keep track of these
permanent assignments.

Note: Although called "permanent," perman-
ent assignments remain in effect only until
the next IPL is performed.)

The +third block (see note) of SDSUAS,
the temporary area, is alsc used by the job
control processor as an auxiliary storage

area. The terwpcrary area keeps track of
symbolic unit assignments made by the user,

via ACCESS or ALLOC statements, within a
job. Temporary assignments remain in
effect only for the duration of a job.

After each job, the system assumes the use
of the permanent unit assignments.

Note: More than one block can be allocated
for the temporary area. More than one
block should be allocated if the installa-
tion rlans to design a job that refers to
more than about ten sequential data sets or

more than six directoried data sets; the
actual number depends upon the types of
references within a specific Jjcb and the
amount of main storage available. The

following warning message will be printed
when the capacity of the temporary area is
exceeded:

IA86I - CAUTION JCB TBL FULL

(The message is explained in detail in the
publication IBM _Systen/360 Mcdel 44 Pro-
grarming System: Guide tc System Use, Form
C28-6812.)

ALLOC and LARBEL
allocate srace

The formats of the
control cards required to
for the SDSUAS data set are:

r
|77/ BLLOC SDSUAS,devadr='volidx',datlen -
|7/ LABEL 720

L

o ——

devadr="'volidx"
This field nust ke the same as the
corresponding field specified in the
ALLOC control card as described under
"SDSIPL (IPL Record)."™

datlen
This field specifies the total number
of blocks to be allccated for the data
set. The value specified must be
three or nore.

SDSCAT (System Catalcq)

The system catalog may be considered as
a form of directoried data set containing
no data. Because catalog entries are 24
bytes 1long, .the minimur block length that
can be allocated for the catalog is 24
bytes; the maximum length, as for any
directoried data set, is 720 bytes. Since
all data sets are allocated no less than
one full track of space, and since the
system always adds one control entry to the
number of entries specified by the user,
maximum use of a 1-track catalcg can be
achieved by allocating a block length of
720, and specifying 119 entries. The for-

System Construction And Editing 9

mats of the ALLOC and LABEL control cards
required to reserve space for the catalog
are shown Dbelow. (Note that the data
length field of the ALLOC statement is
specified as zero.)

r
|7/ ALLOC SDSCAT,devadr='volidx',0.,dirlen
|77 LABEL block-length

L

e e e o

devadr="volidx*
This field must be the same as the
corresponding field psecified in the
ALLOC control card as described under
"SDSIPL (IPL Record)."

dirlen
This field specifies the total numker
of catalog entries to be allotted to
the data set"s directcry.

block-length
This field specifies the block 1length
in bytes. The value specified must be
no 1less than 24, no greater than 720.

SDSREL (Module Library)

Before coding an ALLOC control card for
the module library, the user must calculate
both the size of the library (expressed as
the total number of 360-byte blocks to be
allocated for the data set), and the number
of entries the 1library's directory is to
contain (one per module name). For assist-
ance in making these calculations, refer to
Table 2. This table shows the size of each
of the system components in the module
library as initially distributed by IBM,
and the number of directory entries to be
allocated for them.

In making a final calculation of the

space to be allocated for the module
library, however, the user must consider

10

not only system components, but also any
programs that he pplans tc rpermanently
incorporate into the library. If the user

is uncertain about hcow much space to allo-
cate, it should ke sufficient to allow a
total of 180 directcry entries (specify
179, one entry is added Ly the system) and
500 blocks, resulting in an allocation of
64 tracks to the rmodule library. This is
85 entries and 292 blocks more than
required ky the distributed ccrponents.

The space necessary to accommodate any
given module is calculated as follows:

e Numker of klocks. Divide the size of
the module (in kytes) by 360; if there
is a remainder, add 1. (Note that the
modules are blocked at five records per

block.)

e Numker of directory entries. One for
each module name.

The formats of the ALLOC and LAREL

control cards required to reserve space, on
the system residence volume, fcr the module
library are:

|
dirlen |

// LABEL 360,RECLEN=72 |
4

devadr="'volidx"
This field must ke the same as the
corresponding field psecified in the
ALLOC control card as described under
"SDSIPL (IPL Record)."

datlen
This field specifies the total numker
of klocks to be allocated for the data
set.

dirlen
This field specifies the total nunker
of entries to be allotted to the data
set's directory.

RECLEN=72
This field specifies the record length
to be used when creating the module
likrary. This field must be present
as shown whenever it is desired to
create a module library having a for-
mat acceptakble to the linkage editor.

i,

Table 2. Module Library System Component Sizes

T T T - - 1
| | No. of Blocks |No. of Directory Entries |
| System Component | (1 klock = 360 bytes)| (1 entry = 24 bytes) |
t ———t-- o 1
I | | I
| Service and IBCOM l 89 | 22
| routines?]] |
I I ! |
| FORTRAN mathematical | 119 | 73 |
| subroutines | | |
+— L i 4
|*These routines are used for specialized FORTRAN input/output operations. |
L 4

SDS000 (Complier Data Set) and SDS001
(System Work Data Set)

For most efficient processing the SDS000
and SDS001 data sets should be stored on
magnetic tape. If, however, these data
sets must be stored on the system residence
volume, the following considerations deter-

mine the amount of space to be allocated
for them.
¢ The amount of space remaining after

other system data sets and the volume
table of contents (VTOC) have been
placed cn the volume.

¢ The amount of space to be allocated for
usexr data sets on the volume.

e The relative amounts of space to be
allocated for SDS000 and SDS001. (The
contents of SDS000 accumulate from
assembly to assembly and from compila-

tion to compilation. The assembler
uses one block of sSDS001 for approxi-
mately every three assembler language
statements, and the FORTRAN compiler

uses one block for approximately every
six FORTRAN source statements.)

If the user is uncertain about how much
space to allocate, it should ke sufficient
to allocate SDS000 a total of 200 360-byte
blocks, resulting in an allocation of 25
tracks, and to allocate SCS001 a total of
1000 360-byte blocks, resulting in an allo-
cation of 125 +tracks. These allocations
should provide enough space on SDS001 for
the assembly of a 2700-card assembler lan-
guage program or for the compilation of a
1200-statement FORTRAN program (based on a
64K system) and enough space on SDS000 for
a 1link edit resulting in one or more phases
totaling approximately 52,000 bytes. Note
that one track accommodates 40 card images.
The formats of the ALLCC and LABEL control
cards required to reserve space on the
system residence volume are:

1
|// AILCC SDS000,devadr="volidx"',datlen |
|// LABEL 360 |

____________ ——d

devadr="'volidx"
This field must be the same as the
corresponding field specified in the
ALLOC control card as described under
"SDSIPL (IPL Record)."

datlen
This field specifies the total number
of blocks to be allocated for the data
set.

|// ALLOC sDS001,devadr='volidx',datlen |
|7/ LABEL 360 |
L J

devadr="volidx"
This field wrust be the same as the
corresponding field specified in the
ALLOC control card as described under
"SDSIPL (IPL Record)."

datlen
This field specifies the total number
of blocks to be allccated for the data
set.

SDSPSD _(Pseudo-directory)

SDSPSD, which serves as the directory of
SDS000, is allocated one track of space.
(119 directory entries, each 24 bytes long,
plus one syster—-generated 24-byte control
entry, occupy one track.) The ALLOC and
LABEL control cards required +to reserve
this space, on the system residence volune,
are shown below. Note that the data length
field of the ALLOC card is specified as
zero.

System Construction And Editing 11

r
|77 ALLOC SDSPSD,devadr=‘'vclidx',0,119
|// LABEL 360

L

L

devadr='volidx"
This field must bLe the same as the
corresponding field specified in the
ALLOC control card as described undex
"SDSIPL (IPL Record)."

Summary of Space Allocaticn

In +the preceding discussions of the
allocation of space for the various data
sets, recommendations were made to assist
system programmers in determing a reasona-
ble starting point for space allocation.
The recommendations, which are summarized
in Table 3, will be suitakle for a wide
variety of installations. Once an instal-
lation determines its own requirements from
experience, space can be reallocated to
suit those requirements.

Note +that in addition to space required
for data sets, Table 3 includes sgace
(described later under "Initializing the
System Residence Volume") required for the
VvToC and space used for the IPL bootstrap
routine on track 0.

Table 3. Space Allocation Recommendaticns
r T T - h)
I |Directory | | |
| |Entries |Elocks { |
|Data Set Name|Allocated|Allocated|Tracks |
t ¥ 4 + 1
| SDSIPL |0 |1 11

| | | |
| SDSABS 1119 1500 1126 |
| | | | |
| SDSUAS |0 |4 |1 |
I | | | |
| SDSCAT 1119 10 i1 |
SDSREL 1179	500 j6u		
SDS000	0 1200 125]		
sSDS001	0 11000 1125		

I | | |
| SDSPSD 1119 |0 11 |
| | | | |
|Track 0O |- |- |11
| | | | |
|vToC |36 10 12 |
b L L + 4
|Tracks remaining for the user 153 |
| 1 1

12

SYSTEM CONSTRUCTION PROCEDURE

This section descrikes the procedures to
be follcwed to obtain an initial operative
programming system. It explains the proce-
dure for initializing the system residence
volume and the use of the system construc-
tion program.

INITIALIZING THE SYSTEM RESIDENCE VOLUME

After the amount of space to be allocat-
ed for system data sets has been calculat-
ed, the user must initialize an 1IBM 2315
Disk Cartridge as the installation's system
residence volume. Initialization 1is the
process of writing sector identification, a
volume label, and a volure takle of con-
tents (VIOC) on a direct-access volume.
These functions are performed by the 2315
stand-alone disk initialization program
provided with the distributed system. To
use this program, the user must prepare an
INITIAL control card. This card is placed
behind the disk initializaticn program, as
the 1last card in the deck. The format of
the INITIAL contrcl card required for sys-
tem residence volume initialization is:

r 1
| INITIAL TYPE=xxxXx,DVADR=cuu, |
| VCLID="'volidx',VTOC=e,EDATE=yyddd, |
| SYSLOG=cuu |
L J
TYPE=XXXX

This field identifies the type of

device on which the volumre is mounted.

The value of this. field must be SDSD.
DVADR=cuu

This field specifies the device

address (physical location) of the

volume to be initialized. The DVADR

value, cuu, denotes its channel and

unit address.

c =0 for the standard multiplex
channel.

= 1 or 2 for one of the optional

high speed multiplex channels.

uu = 00 to FE -- the unit address in
hexadeciral.

VOLID="volidx"

This field specifies the 6-byte iden-

tification numker +to be assigned to
the volume tc be initialized. The six
characters of this field must be

enclosed in single quotation marks.

VTOC=e
This field specifies the number of
entries, e, that will be in the

volume's VITOC. (Entries are placed 20

£
K

AN

S

1N

to a track.) The system uses this
information to determine how much
space must be reserved for the table
of contents. The ccunt includes for-
mat 4 and format 5 lakels, as well as
all format 1 1labels. The minimum
possible value for the system resi-
dence volume is 5. Note that the
system reserves entire tracks for the
volume table of contents. The system
adds 4 (for entries created by the
system) to the value of e specified by
the system programmer and then res-

erves enough tracks to contain that
nurber of entries. For example, if e
is 50, the system adds 4 giving 54;

therefore, three tracks (space for 60
entries) is reserved. The space for
six additional VTOC entries that is

added to form a complete track is
available for the volume table of
contents.

EDATE=yyddd
This field specifies the date on which
the volume is initialized. The date
is in the form yyddd, where yy is the

year, and ddd is the day of the year
(001-366).

SYSLOG=cuu
This field specifies the device
address of the console printer key-
board. The meaning of cuu is the same

as described above for DVADR=cuu.

The following is an example of an INI-
TIAL control card that might be prepared to
govern initialization of a system residence
volume:

INITIAL TYPE=SDSD,DVADR=0CO,
VCLID='SYSRES',VTOC=20,
EDATE=67033, SYSLOG=009

o e e ey
b e e e

SYSTEM CONSTRUCTION PROGRAM

The system construction program provided
with each distributed Model 44 Programming
System is a stand-alone program executed
without system control. The program con-
structs an operative system from absoclute
and relocatable decks containing the
executable phases and relocatable modules
the installation chooses to include in its
system. The following grocedure must be
followed to execute the system construction
program:

1. Initialize the system residence vol-
ume. (See the preceding section,
"Initializing the System Residence

Volume. ")

4.

Place the system ccnstruction program
deck into the card reader.

.

Place the ALLOC ccntrol card shown
below into the card reader. This card
defines the system wunit that the
installation will use for the printing
of messages.

|

r
| //SY¥YSLOG ALLOC SDSLOG,devadr= |

devadr

This field specifies the address
of the device to be used for the
printing of system messages. The
address, in the hexadecimal form
cuu, must be immediately followed
by an equal sign and a blank.
Note that cuu is described under
"SDSIPL (IFL Record)."

Place the following SET card into the
card reader:

This operand is in the form
yyddd, where yy consists of the
last twc digits of the current
year, and ddd represents the day

of the year (001-366).

control
(the IPL

Place the BALLCC and LAREL
cards prepared for SDSIPL
record) into the card reader.

Place the SDSIPL deck (provided as
part of the distributed programmring
system) into the card reader, followed
by a /* end-cf-data control card.
This deck is the first module
(BDA00000) of the input/output suger-
visor deck (360-I0-613).

Place the ALLCC and LAREL control
cards prepared for SDSABS (the rhase
likrary) into the card reader.

Place the SDSAEBS deck (provided as
part of +the distributed programming
system) into the card reader, followed
by a /* end-of-data control card.
This deck, which begins with module
BEA00000, consists of the remainder of
the input/ocutput supervisor deck
(360-I0-613); see step 6 above.

System Construction And Editing 13

. 9. Place any additional decks to be
stored on the system residence volume
into the card reader, as described
above, each preceded by a set of
related ALLOC and LABEL control cards;
each should be follcwed by a /* end-
of-data control card. (The order in
which these decks are rlaced into the

card reader determines the order in
which the data sets appear on the
volume.)

10. Place a /& end-of-jcb control card
into the card reader.

11. Dial the console load-unit switches to
the address of the card reader.

12.

Press the console Load button.

In summary, the deck sequence for system
construction is as follows:

1. 2315 disk initialization prograr.
2. INITI2ZL control statement.

3. Stand-alone construction

program.

system

4. ALLOC control card defining SYSLOG.
5. SET control card.

6. SDSIPL deck, preceded by related ALLOC
and LABEL cards.

7. SDSABS deck, preceded by related ALLOC

and LABEL cards.

stored on the
each preceded

8. Additional decks tc ke
system residence volume,
by ALLOC and LABEL cards.

9. /& control card.

INITIAL PROGRAM LOADING_ (IPL) PROCEDURE

Operation of the constructed
initiated by the initial program loading
(IPL) procedure. The IPL procedure con-
cludes with a SET comrmand, which results in
the Jjob control processor keing fetched to
begin processing.

system is

The first IPL performed on the program-
ming system differs somewhat from subse-
quent IPLs in that the ‘user must specify

the FIX option of the SET command. This
option signals the system that the user is
about to define the data set-symbolic unit

relationships known as system units. Sys-
tem wunit definitions are made via ALLOC,
ACCESS, and. LABEL control cards that
immediately follow the SET cormand. Note

14

that all control cards used during the IPL
procedure are operator commands; i.e., they
do not begin with the // identifiers and
column 1 is Llank when no system unit is
specified. :

A maximum of 14 systewr wunits may be
defined.* Figure 1 is an examrple of an
input deck that might ke prepared to define
these wunits. Fcr this exarple, it is
assumed that all system disk data set
allocation was done during system construc-
tion. Note that space for
always ke allocated kefore the IPL prcce-
dure is performed. In this example, ALLOC
statements are used to define the printer,

punch, card reader, and console typewriter;
ACCESS statements are used for the other
units.

The distributed system suprports a maxi-
mum of 17 symkolic units: SYSAB1 through
SYS005. During an IPL prccedure, only 14

of the units can be allocated or accessed.
(Note that "SYSCAT" is a naming convention

and 1is not counted as a syster unit.) An
attempt to define S¥YS004, S¥S005, or the
fifteenth wunit will result in an error
message from the job control processor.

] TS T T T T T T T T T T T - h)
| SET 67090 ,FIX |
|SYSAB1 ACCESS SDSARBRS,0C0='SYSRES' |
| SYSREL ACCESS SDSREL, SAME=SDSABS |
| S¥YSLOG ALLOC SDSI10G,1052="LOGOUT |
| SYSRDR ACCESS SDSRDR, 2540="INPUT' |
| SYSIPT ACCESS SDSIPT,SAME=SDSRDR]
| SYSLST ALLOC SDSLST,1403='0OUTPUT' |
| LABEL ,CTLASA]
| SYSOPT ALLOC SDSCPT, SAME=SDSLST |
| LABEL ,CTLASA |
| SYSPCH ALLOC SDSPCH, 2540P="PUNCH" |
| SYSPSD ACCESS SDSPSD,SAME=SDSABS |
| SYSUAS ACCESS SDSUAS,SAME=SDSABS |
| SYS000 ACCESS SDS000,SAME=SDSABS |
| S¥YS001 ACCESS SDS001,SAME=SDSABS |
| SYSCAT* ACCESS SDSCAT,SAME=SDSABS |
| LISTIO |
|78 |
b -~

|*The system unit SYSCAT may be used only|
| during the IPL procedure. The unit dces|
| not actually exist in the system; |
| "SYSCAT" is a name which allows the user|
| to identify the catalecg to the system. |
L ——

Figure 1.

Sample Input Deck for System
Unit Definition

There is no need to define all of the
system wunits. If SYSAR2 is not defined at

iThe Jjob control processor requires that

five system units be defined: SYSARI,
SYSRDR, SYSLOG, SYSLST, and SYSUAS. Four-
teen system units are required if full use
is to ke made of the system.

SYSAB1l must

TN
/ \

\ //‘

«

i,

IPL time, the job control processor will
automatically create an entry for it using
the same definition as for SYSABI. If
SYSAB2 is defined at IFL time, the job
control processor will use the definition
given.

After the user has defined all required
system units, "normal" use can be made of
the system, but the first step the user may
want to take is to assemble or linkage edit
any programs to be added to the phase
library. The publication IBM__System/360
Model 44 Programming System: Guide to Sys-
tem_ Use, Form C28-6812, explains these
prgcedures.

PREPARATION FOR SYSTEM EDITING

System editing is the process of reas-
sembling components of a current program-
ming system to make such modifications as
incorporating a new installation function,
or altering a default condition for a
system option. (Note, however, that reas-
sembly is not always necessary for modi-
fication. Some minor changes can be made
by means of REPLACE (REP) statements by
producing a new system using the system
construction program. The REP statement is
explained in the publication IBM System/360
Model 44 Programming System: Guide to Sys-
tem Use, Form C28-6812.)

System editing is most easily performed
using two IBM 2315 Disk Cartridges (one of
which is the current system residence
volume) and a symbolic deck of the system.
Changes can be made 'by means of the job
control processor, the assembler language
compiler, and the 1linkage editor. The
changes that can be made ky means of the
job control processor are performed as
described under "System Construction"
(i.e., the size of new data sets, and the
number of directory entries for the phase
and module libraries must ke specified in
ALLOC and LABEL statements).

REASSEMBLY OF THE SUPERVISOR

The wupdate facilities of the assemkler
are used to specify changes to be made
during reassembly of the supervisor. How-
ever, before any modifications are made,
the system programmer should obtain an
assembly listing of the system. The 1list-
ing can be obtained by assembling the
system as provided on the optional tape
(see "Optional Tape for System Editing");
the assembler's update feature should ke

used to produce the listing by specifying
the UPLCASMRBR3 option. The assembly 1listing
will provide the user with the locations of
contrcl Fklocks and takles that can be
altered to meet installation requirements.

The following secticns describe the
changes that should be made to tailor a
system to an installation's particular
machine configuration and supervisor fea-
ture options. Tc summarize most of the
information presented in these sections, a
description of the changes necessary to add
a new device to the system is also provid-
ed.

Conditional Assembly Instructions in the
Supervisor

The symbolic source deck of the supervi-
sor contains conditional assembly instruc-
tions that have operand values which can be
changed to specify conditions that apply at
a particular installation. Samples of SETA
instructions in the surervisor are listed
in Table 4. Many of the operands of these
instructions specify default conditicns.
Default conditions are the conditions that
are assumed if the ccrresponding values are
omitted from a control statement. The
operand values shown are the settings in
the distributed version of the system. It
is wusually to the wuser's advantage to
indicate deletion of features that are not
to be used at his installaticn. By delet-
ing unneeded features, storage space is
saved.

A complete list of conditional asserrbly

instructions that wmay be changed is con-
tained in the conponent corments mwodule,
which can be oktained as explained under

"Component Comments Modules."

Assembler Instructions in the Supervisor

The symbolic scurce deck of the supervi-
sor contains EQU assembler instructions
that have operand values which can be
changed to specify conditions that apply at
a particular installation. Sarples of EQU
instructions in the supervisor are listed
in Table 5; the operand values shown are
the settings in the distributed system.

A complete 1list of assembler instruc-
tions that may be changed is contained in
the component corrments module, which can be
oktained as explained under "Component Com-
ments Modules."

System Construction And Editing 15

jcation of LABEL,ACCESS|1 spe01f1es that WRCHK is assumed.

J]and ALLOC statemrents. |
L

Table 4. Samples of Conditional Assembly Instructions in the Supervisor
r B2
| Name |Operat10n|Operand[Default Condition | Description of the Operand Value]
o e e —_—terrrre e ——— - ——— 4
1
| EACCNT ISETA] 0 | |If 0, the installation will not pro—|
I | | | |vide an accounting routine; if 1, t)
| | |] |will provide an accounting routine. |
| | | | | |
| | | | | o _ l
EDUMP	SETA	0	DUMP/NODUMP field of	0 specifies that NCDUMP is assumed;
]		the JOB statement.	1 specifies that DUMP 1is assumed.	
EFLPT	SETA	0	}I1f 0, floating-point registers will	
				not be used. If 1, floating-roint]
				registers will be used.
			I	
8HGHCT	SETA	2		Specifies the highest channel number
				in the installation.
				,
ELABEL	SETA	0] jIf 0, the syster treats all magnetic]		
]			tares as unlakeled. If 1, the system	
				will handle the standard tape 1labels.
ESTAPEY	SETA	1		If 1, the system assembles routines
				for support of rwagnetic tare. if el
]]			the routines are not assembled.	
TCON	SETA	1	Convert feature in the	l specifies that ON is assumed for
			volume field of ACCESS	7-track 2400-series tare drives; 0]
		Jand ALLOC statements.	specifies that OFF is assumed.	
STDEN	SETA] 2	Density for 7-track	2 specifies that a density of 800	
			2400-series tape	b.p.i. is assumed. 1 specifies that
			drives. This option 556 b.p.i. 1is assumed. O specifies]	
			appears in the volume	that 200 b.p.i. is assumed.
			field of ACCESS and	
			ALLOC statements.	
				§
STIMER	SETA	1		If 1, the timer feature is to be used;
]if 0, it will not ke used.	
STPAR	SETA	1	Parity specification	1 specifies that odd parity is assumed
			in the volume field of	for 7-track 2400-series tape drives;
			ACCESS and ALLOC	0 specifies that even parity is
			statements.	assumed.
STTRN	SETA] 0	Translate feature in	0 specifies that OFF is assumed for	
			the volume field of	7-track 2400-series tape drives; 1
			ACCESS and ALLOC	specifies that ON is assumed.
			statements.	
			[
€TOND	SETA	0	Density for 9-track	10 spe01f1es that a density of 1600]
			dual density IBM 2400	b.p.i. is assumed; 1 specifies that
			Mcdel 4, 5, and 6 Tape	800 b.p.i. is assumed.
			Drives. This option	
			agpears in the volume	
			field of ACCESS and	
]			ALLOC statements.	
EWCHK	SETA	0	WRCHK/NORCHK specifi-	0 specifies that NOWRCHK is assumed;
]		
L i 4
r 1

|*Changing the instruction's

operand value to 0 dces not result in the deletion of}

| associated transient errcr recovery routines. They must be explicitly deleted from the|

| library if they are not wanted.

L

16

ric N

Samples of Assemkler Instructions in the Supervisor Source Deck

Table 5.

r T - L S T T

jName |[Cperation |Operand| LCescription of the Operand Value
t } 1 1

| | | | o

|NCCW | EQU | 60 | Specifies the

| | | | channel command words (CCWs).
| | | |

|NCHQ | EQU | 20 |

] | | | placed into the channel qgueue.
| | | |

|[NDEV | EQU | 5 |

| | | | the system.

I I | |

INFCB | EQU | 18]

| | ! I

| | | | o .
|NSUT | EQU | 21 | Specifies the maximum

| | | | defined for the system.

| | | |

|NUCB | EQU | 13 |

I | | I

| | | |

|NXCA | EQU | 4 |

| | | | the wuser

| { | | usually wused to

I | | |

| | | | ments.

L i L 1

maximum numker of double words available for
Specifies the maximum numker of channel requests that can be
Specifies the number of device routines available for use by
Specifies the maximum numker of file control blocks
that can be incorporated intc the system.

Specifies the maximum number of unit ccntrcl blocks

that can be incorporated into the system.

communication region.

(FCRs)

number of system units that can be

(UCBs)

— e S— — — —— — —— — —— ———— ——— —— . 2]

Specifies the length (in words) of the extended save area of |

The extended save area is|

store accounting routine output. Its|

maximum length is dependent only upon installation require- |

SYSTEM CONTROL BLOCKS AND TABLES

The sections that follow describe the
content and formats of system control
blocks and tables which can be mcdified
during system editing.

Unit Control Block

The Unit Control Block (UCB) provides
information about the characteristics of a
specific input/output device. There must
be one UCB for each uniquely addressable
input/output device in the installation's
machine configuration. The format of the
UCB is shown in Figure 8 in Appendix A.

UCB Table: Unit contrcl klocks are stored,

contiguously, in the UCB Table, an area of
the resident supervisor. The size of the
table can be extended, without defining any
UCB fields, by increasing the operand value
of the supervisor EQU instruction 1lakeled
NUCB. (This instruction is described in
the section "Assembler Instructions in the
Supervisor.") Extending the table in this

way provides an installation with greater
flexibility in its wuse of ADD and SUB
commands. Additional information related

to this subject can be found in the chapter
entitled "ADD and SUB Command Usage."

To add a UCB to the table, which may be
necessary when, for example, a new
input/output device is permanently attached
to the system, the user must insert the
following statements.

1
{1. UCBnnn EQU * :
|2- DC X'Ocuu'
[3. DC X'mm" |
| 4. DC X'tt' |
|5. DC (LUCB-4)X'00" |
L . —_— J
UCBnnn
is a symbolic 1lakel; nnn represents

the relative location of the UCB with-
in the table. For examrle, 018 would
ke the eighteenth UCEB in the table.

cuu
is the wunit address, in hexadecimal
form, of the device described by the

UCRB.

mmo
is device mode (see Figure 11 in
Appendix C).

tt
is the device type (see Figure 11 in
Aprendix C).

LUCB

is a symbol representing the length in
bytes of the UCB.

System Constructicn And Editing 17

To replace a UCB in the table, which may
be necessary when, for example, an
input/output device is permanently substi-
tuted for another device in the system, the
user must replace three DC statements,
statements 2 through 4 above.

To delete a UCB, which may be necessary
when, for example, an input/output device
is permanently removed from the machine
configuration, the user must delete all
five statements.

File Control Block

The File Control Block (FCB) provides
information about the characteristics cf a
specific data set and the volume on which
it resides. There must be one FCB for each
symbolic unit defined for the system. The
format of the FCB differs by device type;
the FCBs for each type are shown in Figures
9 and 10 in Appendix B.

FCB Table: File contrcl blocks are stored,
contiguously, in the FCB takle, an area of
the resident supervisor.

To provide space for a new FCB in the
table, which may be necessary when, for
example, the installation designs a program
containing a job step referring concurrent-
ly to more symbolic units than there are
FCBs provided for in the tablel, the user
must insert the following DS statement.

T
|FCBnnn DS (LFCB/W)F
L

e e

FCBnnn
is a symbolic 1label; nnn represents
the relative location of the FCB with-
in the table. For example, 022 would
be the twenty-seccnd FCB in the takle.

LFCB

is a symbol representing the length in
bytes of the FCB.

System Unit Table

The system unit table is a aroup of
contiguous 2-byte Lklocks in the system
communication region. Each klock contains
information relating a symkolic unit to its
associated UCB and FCB. For each entry in

isee Table 5 for the number of FCBs provid-
ed for in the distributed version of the
system.

18

the takle, there are two address pointers:
a 1-byte UCB pointer pointing to a UCB in
the UCB takle, and a 1-kyte FCB pointer,
pointing to an FCB in the FCB table.

In the distrikuted version of the sys-
tem, 21 symbolic units are provided for in
the system unit table. The symbols of
these units can be determined from the
first 21 entries in Takle 7. If additional
units are required the user must enter an
appropriate FCB pointer into the system
unit table for each additional unit. (The
UCB pointer is placed into the system wunit

table Lky the system.) The following DC
statements can be used to enter an FCB
pointer:

r - |
|S¥Snnn DC X'00' |
| DC X'pp' |
L _— _— J
S¥Snnn

is a symbolic lakel; nnn represents a
number which when added to 16 sreci-
fies the relative location of the
entry within the tabkle. For exanple,
006 specifies the twenty-second
(006+16) entry in the table, i.e., the
entry for the first additional unit.

193

is . the relative FCB number (in

hexadecimal).

Channel Queue

The channel queue is used, during rroc-
essing, to keep track of all input/output
requests not yet executed by the system.
Each entry in the queue occupies four
bytes. The distributed version of the
system rprovides for 20 channel queue
entries. If the user wants to change this
number, he must reassemktle the supervisor
and change the operand value of the EQU
instruction labeled NCHC. (See the section
"Assemkler Instructions in the
Supervisor.") Changing the ocperand value
effectively changes the size of the queue.
The maximum size cf the queue is dependent
only upon installation requirements and
storage availakility; the minirum size is
one entry (four bytes).

Channel Command Word Area

The channel command word (CCW) area is
used for the storage of channel commrand
words during IPL processing. Each channel

command word occupies eight bytes. 1In the

i,

distributed version of the system, 60
entries are provided for the area. If the
user wants to change this number, he must
change the operand value of +the EQU
instruction labeled NCCW. (See the section
"Assembler Instructions in the
Supervisor.") Changing the operand value
effectively changes the size of the storage
area.

As a general rule, the area should be
large enough only to accommodate the CCWs
for all devices specified in wunit control
blocks either at assembly or IPL time. The
maximum size of the area, however, is
dependent upon installation requirements
and storage availability.

Job Control Device Table

The Jjob control device table, shown in
Figure 12 in Appendix C, is used bv the job
control processor to ccnvert to an internal
code a device type (e.g., 1052) specified
by the user in a control statement. The
code is used to find the UCB for the device
type specified.

Channel Command Word Table

The channel command word (CCW) takle,
shown in Figure 13 in Appendix C, contains
the channel command words included in the
distributed version o¢f the system. The
number of channel command words required
for an input/output creration varies
according to the device; the number and
contents of these words are given in the
publication that descrike each device.

Initialization Device Takle

The initialization device table is used

by the system to ocbtain device-related
information during the initial program
loading (IPL) procedure. The format of

this takle as it appears in the distributed
version of the system is shown in Figure 11
in Appendix C.

Adding a New Input/Outrut Device: The
following text indicates the changes that
would be made during system editinag to add
a new input/output device to the system.
Additional informaticn related to this
subject can be found in the chapter
"Execute Channel Program."

To add a new device to the
user must either r¢rovide new entries or
make changes to existing entries in the
initialization device table, the jok con-
trol device takle, and the CCW table. If
an entry is added to the job control table,
the user must also change the count of the
number of bytes alloted to the table. The
count field is rmaintained in the convert
type routine, which is lakeled CTYP.

system, the

Depending upon installation require-
ments, it may alsc be necessary when adding
a new device, to modify the supervisor
assembler instructions labeled NCCW, NFCB,
NSUT, and NUCE. A description of these
instructions can be found in the section
"Assembler Instructicns in the Supervisor."

REASSEMELY OF THE ASSEMBLER PROGRAM

The symbolic source deck of the assem-
bler program contains assembler and condi-
tional assembly instructicns that have
operand values which can ke changed to
specify conditions that arply at a particu-
lar installation. The DC instruction that
specifies the default conditicns for the
EXEC statement will ke used to illustrate
an assembler instruction in the assembler
program.

To change the default conditions for the
EXEC statement, the system programmer mwust
change the operand of +the TLC instruction
labeled SWSPH1, part cf the assembler com-
munication region. The operand of the DC
instruction, which defines the contents of
two bytes, is specified as X'8070' in the
distrikuted system and, therefore, bits 0,
9, 10, and 11 are set to 1. The default
condition associated with each bit defined
by SWSPH1 is as fcllcws:

Bit Default Setting in

Number Condition Distributed System

0 Assembler 1

1 UPDASMB1 0

2 UPDASMB2 0

3 UPDASMB3 0

) UPDATE1 0

5 UPDATEZ2 0

6 not used 0

7 SYMBMAX 0 (see note)

8 LINK 0

9 DECK 1

10 LIST 1

11 XREF 1

12-16 not used 0

Note: When this bit contains a 0, it is
equivalent to specifying the SYMEMIN
option. If the user srecifies the SYMBnnn

option, this bit is ignored.

System Construction And Editing 19

A conditional assembly instruction is
included in the assembler program to pro-
vide a means of eliminating large blocks of
comments from the listing of the assembler
program, thereby reducing the time required
to print the 1listing. The conditional
assembly instruction in the distrikuted
version is:

EREMARK SETA 1
The 1 in the operand indicates that all
comments are to be listed. By using a SETA
instruction with a 0 in the operand, the
large bklocks of corments can be omitted
from the listing.

A conplete list of assembler and condi-
tional assembly instructions that may be
changed is contained in the component com-

ments module, which can be obtained as
explained under "Component Comments
Modules."

REASSEMBLY OF FORTRAN CCMPONENTS

The symbolic source deck of FORTRAN
contains assembler and conditional assembly
instructions that have operand values which
can be changed to specify conditions that
apply at a particular installation. Exam-
ples of assembler and conditional assenkly
instructions that can ke changed are given
below.

Assembler Instructions in the FORTRAN
Compiler

To change the default conditions for the
EXEC statement, the system programmer must
change the operand of the DC instruction
labeled FORTCOPT. The operand of the DC
instruction, which defines the contents of
one byte, is specified as X*48' in the
distributed system and, therefore, bits 1
and 4 are set to 1. The default condition
associated with each bit defined bv FORTOPT
is as follows:

Bit Default Setting in

Number Condition Distributed Svstem
0 MAP 0

1 LINK 1

2 DECK 0

3 not used 0

u SOURCE 1

5 BCD 0

6-7 not used 0

A complete 1list of assembler instruc-
tions that may be changed is contained in
the component comments module, which can be

20

obtained as explained under "Component Com-
ments Mcdules."

Conditional Assembly Instructions in the
FORTRAN Library

The following ccnditional asserbly
instruction, which is included in the
BCAUCPT routine in the distributed system,

specifies that the boundary adjustment rou-

tine (BENAADJST) is to be wused by the
system:

- 1
|§FIX SETA 1 |
| - J

If the BNAADJST routine is not to be

used, the system programmer must change the
operand of this instruction to a 0.

The following cenditicnal assemrbly
instruction, which is included in the
BOAUOPT routine in the distributed system,
specifies that errcr messages indicating
that the koundary adjustment routine has
corrected an error are nct tc ke printed:

r 1
| S PRNTMES SETA O |
L 4

If error messages are desired, the sys-
tem programmer must change the cperand to a
number from 1 +through 254; the number
indicates the maximum number of times the
error message is to ke printed. Note that,
although the printing of the message stops
when the specified numker is reached, the
boundary adjustment routine ccntinues to
operate normally.

The number of wunits available to the
FORTRAN compiler is specified by the fol-
lowing conditional asserbly. instruction,
which is included in the UNITAB routine in
the distributed system:

r
| SUNITS SETA 8
L

b e

The system programmer can increase (8 is
the minimum) the number in the operand to
15 without additional changes tc the sys-
tem. However, if more than 15 units are to
be wused, the syster prograrrer nrust exrand
the system unit table (see "System Unit
Table") to include the additional units and
must associate the new data set reference
numbers with the new entries in the system
unit table. This asscciation is done by
inserting a group of five DC instructions
for each new unit into the UNITAR routine
ahead of the ECU statement labeled

A,

ENDTABLE.

The groups
inserted for each data set

that must be
reference number over 15 is as follows:

of DC instructions

See "sStatus 1"
See "Status 2"

See "Index Number"

Instructions Notes
DC X'aa'

DC X'bb'

DC AL1(NULL)

DC X'cc'

DC A(1)

Status 1:

The value of aa is determined by
the settings of the following bits:

Bit Bit
Number Setting Meaning
0 0 Data set closed
1 Data set open
1 0 Null ccndition
1 Sequential input/output
creration performed
2 0 Last operation was READ
or WRITE
1 Last operation was a
contrcl operation
3 0 Last input/output ogera-
tion did not refer to
a FORMAT statement
1 Last input/output orera-
tion referred to a
FCRMAT statement
4 0 Last input/output opera-
tion was an input
cperation
1 Last input/output ogera-
tion was an output
oreration
5 0 Last control operation
was nct a BSR orera-
, tion
1 Last control operation
was a BSR operaticn
6 0 Last control operation
was not an RkW orera-
tion
1 Last ccntrol operation
was an REW operation
7 0 Last control -operation
was nct a WEF orera-
tion
1 Last control operation

was a WEF operaticn

Status 2: The value of kb is determined by

the settings of the fcllowing bits:

Bit Bit
Number Setting Meaning
0 0 The unit is not a
S¥Sname type unit
1 The unit is a SYSname
type unit
1 0 Input operations are
allowed on this unit
1 No input operations are
allowed on this unit
2 0 Outrut operations are
allowed on this unit
2 No output operations are
allowed on this unit
3 0 Ccntrcl cperations are
allowed on this unit
1 Nc contrcl operations
are allowed on this
unit
u4-7 0 Not used
Index Numker: The value of cc specifies

the position of a unit in the system unit
table to ke associated the data set ref-
erence number represented by this group of
DC instructions. The data set reference
number is determined by the position of a
group of DC instructions in the sequence of
groups that define all of the units.

Reassigning Units: A data set reference
number can be associated with a different
unit in the systen unit table by changing
the DC instruction that specifies the index

number. However, the systenm programmer
must make sure that the DC instructions
defining status 1 and status 2 allow the

operaticns that he wants and/or provide the
protection that he wants.

A corplete list cf conditicnal assembly

instructions that wmway bLe changed is con-
tained in the component comments module,
which can be obtained as explained under

"Component Comments Module."

System Construction And Editing 21

SYSTEM EDITING_PROCEDURE

This section descrikes the procedures to
be followed when modification of a system
component becomes necessary.

COMPONENT COMMENTS MODULES

After the syster programmer has deter-
mined that modifications tc a system compo-
nent are necessary for his purposes, he
should cbtain the compcnent comments module
for that component. A component comments
module contains all pertinent facts regard-
ing all assembly parameters or default
settings for a component; it also contains
the linkage editing procedures for wusing
the relocatable modules produced by the
assembler program.

A corrponent comments module is the first
assembly module of each component. A list-
ing is obtained by wusing the assemkler
update feature to print the contents of the
desired module (see Figure 2). The follow-
ing 1lists show the identifications of the

Components Mcdule
on_Reel 1 Identification
Job Control BIAA0000
Linkage Editor BKAA0000
Assembler BLAAOOOO
Utility Programs EMAA0000
Components Module
on_Reel 2 Identification
FORTRAN Compiler ENAA00OO
FORTRAN Object Fix BENXA0000
FORTRAN Expander BENZA0000
FORTRAN Library BOAA0QO0O

The Jjob shown in Figure 2 illustrates
the method of obtaining a 1listing of the
component comments module. In this job,
the contents of the nmodule for the linkage

editor are obtained.

EDITING USING TWO DISKS

After the appropriate symbolic modifica-
tions have been prepared using the informa-

component comments modules for each compo- tion given in the component comments module
nent: (see also "Preparation for System
Editing"), the system programmer must reas-
Components Module semble and link edit the modified component
on Reel 1 Identification to replace the existing one. The reassem-
Save/Restore BACA0000 bkling and link editing is most safely done
using two single disk stcrage drives, one
Print/Punch BACA0000 magnetic tape unit and, for system data set
SDS001, either an additional magnetic tape
Absolute Loader BRAACO0O0O unit or the equivalent storage space on an
IBM 1316 Disk Pack. However, another addi-
System Construction BCAAQ000 tional magnetic tape unit is required for
system data set SDS003 whenever the system
IPL Program BCAAQ000 programmer desires to modify the FCRIRAN
compiler or to retain the updated symbolic
Supervisor BFAAQ000 component.
L S - 1
|//LIST JOB |
| !
|7/5¥S002 ACCESS SYSSYM,2400="REEL1' |
I |
77 LABEL 1600 |
| I
| 7/7ASM EXEC ASSEMBLE (UPDASMB3,NCLINK, NODECK) |
| |
| SKPTO BKAA0000 |
| |
| 7% 1BKAR9990 |
I |
|7¢& |
F ety -—= --= i
|*This symbol must begin in column 73. |
U, _ i

Figure 2.
22

Listing a Component Corments Module

TN
A

LS

£

(

The procedure for
disks is as follows:

editing using two

1. 1Initialize the second disk wusing the
utility programs of the existing sys-
term.

2. Allocate space for the various system
data sets as exrlained under
"Preparation for System Construction."

3. Copy the IPL data set from the origi-
nal system (i.e., the system being
modified) to the new system using the
COoPY function of the utility programs.

If members of the wodule library are
being replaced, the remaining steps are
replaced by the procedure given under
"Replacement of Module Likrary Members."
Note that if the supervisor is the member
being replaced, the system programmer must
know the ending locaticn (SVAREA+80) of the
new supervisor; if the ending 1location is
greater than that of the original supervi-
sor, all components must be reassembled and
replaced. 1In the distrikuted version of
the system, the ending location (SVAREA+80)
of the supervisor is 4200 (hexadecimal).

4. Ccopy the phase 1library, excluding
those members that are to be rerlaced,
from the original system to the new
system using the CPYMEM function of
the utility programs.

5. Reassemble and link edit the replace-
ment members for the phase 1likrary
using the phase 1likrary data set of
the new system as SYSAB2.

6. Copy the module library from the orig-
inal system to the mnew system using
the CPYMEM function of the utility
programs.

7. Execute the IPL procedure and define
the system wunits; specify the FIX
option in the SET card (see "Initial
Program Loading (IPL) Procedure").

Replacement of Module Library Members

The
steps 4 through 7 above, is

following procedure, which replaces
used when a

member of the mcdule to be

replaced:

library is

4. Copy the phase library from the origi-
nal system to a new system using the
CPYMEM function of the utility pro-
grams.

5. Corpy the module 1library, excluding
those members that are to be replaced,
from the original system to the new
system using the CPYMEM function of
the utility programs.

6. Reassemble and place the new members
into the wmocdule 1library wusing the
CPYMEM* function of the wutility pro-
granms.

7. Execute the IFL procedure and define
the system units; specify the FIX
option in the SET card (see "Initial

Program Loading (IPL) Procedure").

Example of Editing Using Two Disks

To illustrate system editing, an example
showing the rerlacement of the 1linkage
editor is shown in Figure 3. For this
example, it is assumred that system data set
SDS000 1is large enough to contain the
relocatable output and that system data set
SDS001 is on magnetic tare.

For modificaticns tc sorme sections of
the FORTRAN compiler, it is necessary to
make cne pass using the UPDATE1l option to
insert changes into the original FORTRAN
symbolic language fprogram. The output of
that pass is then read from SYS003 as
input* to the FORTRAN expander program,
which creates input that is acceptable to
the assemkler program and writes the creat-
ed input! on SYS002. Finally, the output
from the expander program is used as input
to an assembly ' pass using the UPDASMB3
option tc obtain the modified module in
relocatable forr. When a section of the
FORTRAN compiler is rodified in this way,
two magnetic tape units are used as SYS002
and SYS003 until the final pass.

iBlocked 20 cards to a record.

System Construction And Editing 23

r 1
|//INIT JOB |
\77 EXEC UTILS |
| INITIAL TYPE=SDSD,DVADR=0C1”VOLID='SYSRES',VTOC=50 |
|/* |
|77 ALLOC SDSIPL,0C1='SYSRES',1 |
|77 LABEL 2880,RECLEN=2880 |
|77 ALLOC SDSABS, SAME=SDSIPL,500,119,FMT |
|77 LABEL 720,RECLEN=720 |
|77 ALLOC SDSREL, SAME=SDS1PL, 500,179 |
|77 LABEL 360,RECLEN=72 |
|77 ALLOC SDSPSD, SAME=SDSIPL, 0,119 |
|77 LABEL 360,RECLEN=360 |
|77 ALLOC SDSUAS, SAME=SDSIPL, 4 |
|77 LABEL 720 ,RECLEN=720 |
{77 ALLOC sSDS000, SAME=SDS1PL,1000 |
|77/ LABEL 360,RECLEN=360 |
|/* |
|78 |
|//REPLAC JOB |
|7/75¥S003° ACCESS SDSIPL,SAME=SDSIPL |
| //S¥S002 . ACCESS SDSIPL,SAME=SYSAB1 |
|77 EXEC UTILS |
| COPY SIZIN=2880,SIZ0UT=2880 |
|/*

| 7/5¥S002 ACCESS SDSABS,SAME=SYSAB1 =
|7/5¥S003 ACCESS SDSABS,SAME=SDSIPL |
\77/ EXEC - UTILS |
| CPYMEM EXCL= (RKLNKEDT, BKLNKED1, BKLNKED2) ,SIZIN=(720,720)

7%

|//S¥YS002 ACCESS SYSSYM,080="REEL1' }
|77/ LABEL 1600,RECLEN=80 |
|7/S8¥S001 ACCESS SDS001,081=FRESHd]
177 LABEL 360 |
|77A EXEC ASSEMELE (LINK,UPDASMBE3) |
| SKPTO BKAQOOQ0O0O |
| * CHANGE CARLS |
| * I
| * |
| /* 1BKA99990 |
|//SYSAB2 - ACCESS SDSABS, SAME=SDSIPL |
| //7MODULE EXEC LNKEDT (REEP, NOAUTO) |
| * LINKEDIT DECK FROM COMMyNTS MODULE CTHER THAN MODULE CARDS |
| 7* |
|7/75¥S002 ACCESS SDSREL,SAME=SYSAB1 |
|7//7SYS003 ACCESS SDSREL,SAME=SDSIPL |
|77 EXEC SIZIN=(360,360) UTILS

| CPYMEM |
|/* |
|78 |
|77/ STOP IPL & FIX 0C1 |
s ———— e e e e e e e e e e e e e e e o e e e e 2 e e e et e e e e e e e e e e

e

r
|*This symbol must begin in column 73.
L

Figure 3. Editing Using Two Disks

EDITING USING ONE DISK

If two single disk drives are
not availatle,
using only one drive. The procedure is

illustrated by the example that follows.

storage

24

—

Example of Editing Using One Lisk

system editing can be Jdone .

An example of a method for system edit-
ing that can be used if only one disk is
availakle 1is shown in Figure 4. For this
example, it is assurmed that system data

A

N

A i,

sets SDS000, SDS001, and SDS002 are on
magnetic tape. If system data set SDS003
is needed, it is assumed that it also is on
magnetic tape.

Note that when wusing this alternate
method, if an input/outrut error occurs
between the DELETE and RENAME statements

(second and third statements from end of
Figure 4), the process will not be complet-
ed.

The akove method can also be used if
there 1is enough space on the system resi-
dence vclume to contain koth SDS000 and
SDS001. If such space is available, only
SDS002 need be on magnetic tape. To
increase the amount of available space on
the system residence volume, the system
programmer can delete all data sets (e.g.,
the module 1library) that are not required

If only one nmagnetic tape drive is
availakle and it is impossible to allocate
space 1in disk stcrage for either SDS000 or
SDS001, the optional symbolics may be
punched by assigning SDS003 to the punch
unit and using the UPDASMBE1 ortion of the
assembler program. The magnetic tape drive
is then available to ccntain SDS000 or
SDS001 (whichever cannot bLke allocated to
disk storage). The procedure is then the
same as shown in Figure 4, except that the
ASSEMBLE option of the asserkler program is
used instead of the UPDASMB3 OPTION.

SYSTEM MODULES

Table 9 of Appendix D lists all modules
of the distributed version of the system,
including FORTRAN IV likrary subprograms.

for system editing; later, after system It is intended as reference raterial, to
editing has been completed, the deleted assist the user during system editing in
data sets can be added to the new system identifying the various segments of the
residence volume. system.

1
| //INIT JOB [
|7/ ALLOC SDSAB2,SAME=SYSAB1,500,119, FMT |
|77 LABEL 720,RECLEN=720 |
| /* |
|78 |
| //REPLAC JOB |
|7/5¥S002 ACCESS SDSABS,SAME=SYSAB1 |
| 775¥5003 ACCESS SDSAR2, SAME=SYSAR1 |
|7/CPY EXEC UTILS |
| CPYMEM EXCL=(BKLNKEDT, BKLNKED1, BKLNKED2) ,SIZIN=(720,720)

|/*

|7/5¥S002 ACCESS SYSSYM, 080="REEL1" }
|77 LABEL 1600,RECLEN=80 |
|7/5¥S000 ALLOC SDS000, 081=FRESH |
| //5¥s001 ALLOC SDS001,082=FRESH |
|//7MODULE EXEC ASSEMELE (LINK,UPDASMB3) |
| SKPTO BKAQOOOOO ' |
| * CHANGE CARDS |
| * |
| * |
|/ * 1BKA99990 |
| //SYSAB2 ACCESS SDSAB2,SAME=SYSAE1 |
| //LNK EXEC LNKEDT (KEEP, NOAUTO) |
| * LINKEDIT DECK FROM COMMENTS MODULE OTHER THAN MODULE CARDS |
|/+ |
|77 ACCESS SDSAES, SAME=SYSAB1 |
V4 DELETE SDSABS |
|77 RENAME SDSAB2, SCSABS |
|77 PAUSE RE-IPL RESIDENCE VCLUME |
T T 1
|*This symbol must begin in column 73. |
L e o e e e e e e e e o 2 e o o o 4

Figure 4. Editing Using Cne Disk

System Constructicn And Editing 25

WRITING AN _INSTALLATION ACCOUNTING ROUTINE

‘This chapter provides the information
required to write an installation account-
ing routine and add the routine to the
Model 44 Programming System. The routine
resides in the phase library and will be
loaded automatically by the job control
processor at those points when accounting
statistics (i.e., the data supplied by JOB
and EXEC statements) are available.

Specification of the Accounting Rcutine:
To specify the use of an installation
accounting routine, the user must change
the operand value of the supervisor SETA
instruction labeled &§ACCNT from 0 to 1.

(See the section "Conditional Assembler
Instructions in the Supervisor" in the
chapter entitled "Systern Construction and
Editing.")

Entry to the Accounting Routine: The
accounting routine receives control when
the Jjot control processor completes the
reading of a STOP statement or of a JOB or
EXEC statement that specifies the optional
"accounting information" field. The state-
ment that has caused the entry is identifi-
ed by a hexadecimal code the system places

in register O. These codes are listed
below:
Code Meaning

00 Identifies a JCB statement.

o4 Identifies an EXEC statement.

08 Identifies a STOP statement.
Size cf the Routine: The size of an
accounting routine must not exceed 4096
bytes.

Addressing within the Accounting Routine:
Because the actual main storage address in
which the accounting routine will pe loaded
is not known to the user, the routine must
be "address-free." This means that the
routine may not use address constants that
refer +to addresses within the routine.
Such addresses must ke dynamically generat-
ed, e.g., by the Load Address (LA) instruc-
tion.

Register Usage: Registers 0, 1, and 15 can
be wused in an accounting routine without
saving their contents. However, if reg-
isters 2 through 12 are to be used, their
contents must first be saved; register 13
contains the address of an 11-word
register—-save area. Register 14 contains
the address of the 1location in the Jjob
control processor to which control can be

26

routine.
of the

and,
used for initial kase

returned after executicn of the
Register 1 contains the address
entry point of the accounting routine
therefore, may be
addressing.

Input to the Accounting Routine: The sys-
tem provides accounting inforration in the
user communication region, an area within
the system supervisor. SVC 18 (EXTRACT) is
used to obtain the location of the communi-
cation region.

EXTRACT causes the system to place the
address of byte 0 of the user communication
region into register 1 and tc return con-
trol to the calling program. The address
of any particular word or byte within the
region is obtained by adding the byte ccunt
to this value.

The communicaticn region ccntains the
accounting information 1listed below. A
complete descripticn of the contents of the
communication region can be found in the

chapter "User Communication Region".

Word Byte
6,7 24-31

Description

Job name, in EBCDIC form,
sgecified by the user in a
JCE statement.

8,9 32-39 Job step name, in EBCDIC
form, specified by the user
in an EXEC statement.

32-35 128-143 Accounting information. 'This
information, in EBCDIC
form, is a ccpy of the
accounting information

field specified by the user
in either a JOB or EXEC
statement.

Additional data for the accounting rou-
tine, such as timing information, can be
obtained through the use of an SVC. A full
description of all applicable SVCs is con-
tained in the puklication IBM__System/360
Model 44 Programming System: Guide to Sys=
tem Use, Form C28-6812.

Output from the Accounting Routine: Data
generated by installation accounting rou-
tines can be stored, for later analysis, in
the extended save area of the user communi-
cation region, bytes 144 and up. The size
of this area is determined by the installa-
tion during system editing. Data stored in
this area is never altered by the systemn.
Additicnal information akout the save area

N

Sl

A
&

e

.

can be found in the chapter "User Communi-
cation Regicn."

Exit from the Accounting Routine: The

accounting routine can return control to
the system in either of two ways: normally
or abnormally. The normal return is to
restore the contents of registers 2 through
12 and issue a BCR 15,14 instruction. The
abnormal return, which might be resorted to
if an unacceptable acccunt number were
read, is to issue an SVC 15 to cancel the
job. CANCEL causes the system to terminate
the current job immediately. A message for
the operator is written, and a dumgp is
taken if a dump was requested in the job's
control statements. The system then loads
the job control processor, which reads the
system input unit, ignoring all statements
until a JOB statement is detected.

Adding the Accounting Routine to the Sys-
tem: The accounting routine must be added
to the system as a permanent rember cf the
phase library. To add the routine, provide
an EXEC statement to execute the linkage
editor, and specify KEEP in the parameter
list field; follow the EXEC statement with
a PHASE statement specifying BACCOUNT as
the phase name. The value specified for
the origin parameter of the PHASE state-
ment; must be either * or S. The PHASE
statement must ke followed by an INCLUDE
statement and, if execution of the account-
ing routine is to kegin with other than its
first instruction cr one indicated Ly an
END card (assemkly end), an ENTRY state-
ment. (These statemrents are described in
the puklication IBM Systern/360 Model u4u
Programming System: Guide to System Use,
Form C28-6812.)

Writing An Installaticn Accounting Routine 27

ADD AND SUB_COMMAND_ USAGE

This chapter provides information
directed specifically to the systemr pro-
grammer about the wuse of the ADD and SUB
commands. Both of these commands provide
the user with a means of changing an
installation's input/cutput device configu-
ration during the initial program 1loading
(IPL) procedure.

ADD_AND SUB COMMANDS

During the IPL prccedure the operator,
by issuing ADD and SUB commands, can speci-
fy changes that have been made to the
installation's input/output device ccnfigu-
ration. The ADD command informs the system
of the availabkility of a new devicel; the
SUB command removes a previously available
device from the system. There is a direct
relationship between the use of ADD and SUB
and several system control blocks and
tabless The system programmer should
understand this relationship to avoid the
misuse of these commands at his installa-
tion.

ADD causes the system to enter an addi-
tional wunit control block (UCB), for the
specified device, into the UCB table. SUB
causes the system +to delete the UCB pre-
viously associated with the device.

Consequently, the mwaximum number of
valid ACD commands that can be issued is
dependent upon two variables: the number
of SUB commands previously issued, and the
size of the UCB table. As a precautionary
measure, then, the operator should issue
any required SUB cormands before issuing
ADD comrands. It is the installation's
responsibility, however, to increase the
size of the UCB table, when necessary.

Note: The use of SUB commands may make it
necessary for the operator to redefine
units that follow the one that was deleted.

of the UCB table can be
reasserxbling the supervisor

The size
increased by

1pdditional informaticn relating to the

addition of a new device can be found in
the chapter entitled "Execute Channel
Program", under the heading "Modifying the
Device Table."

28

and . changing the c¢perand value of the
supervisor EQU instruction 1labeled NUCB.
For a description of supervisor EQU
instructions, see the section "Conditicnal
Assembler Instructions in the Supervisor"
in the chapter "Syster Ccnstruction and
Editing."

The formats of the ADD and SUB conrands
are shown bLelow. Additional information
about these commands can be found in the

publication IBM System/360 Model U4 Pro-
gramrming System: Orerator's Guide, Form
C28-6815.

The ADD Command

The ADD command indicates to the system

the availability of an additicnal
input/cutput device.
r - 1
| ADD type,devadr |
b e e e e e e e e e e e o e e e e o e e J
type
specifies the type of device to be
added. Valid entries are shown in
Takle 6.
devadr

Specifies the address of the device to
be added, expressed in hexadecimal
form as cuu, where cuu is as described
undexr "SDSIPL (IPL Recoxd)."

The SUB Command

The SUB comrand informs the system that
a specified device is no longer availatle,
and should, therefore, be subtracted from
the list of available devices.

{ -1
| SUB devadr |

L ———— ——d

devadr
Specifies the address of the device to
be subtracted, expressed in hexadeci-
mal form as cuu, where cuu is as
described under "SDSIPL (IPL Record)."

LN

Table 6.

Device Types

IType Field Entry T Explanaticn o T o i
b $-- - 4
{ SDSD I Single Disk Storage Drive t
: 1316 l IBM 2311 Disk Storage Drive {
: 2400 { IBM 2400 Magnetic Tape Unit with a 9-track read/write head--800=
I | bytes/inch only |
= 240011 : IBM 2400 Magnetic Tape Unit with a 9-track read/write head--1600=
| | bytes/inch onlv |
I 2400D : IBM 2400 Magnetic Tape Unit with a 9-track read/write head--dual}
| | density |
} 2400T7 ; IBM 2400 Magnetic Tape Unit with a 7-track read/write head :
} 2400T7C ‘ IBM 2400 Magnetic Tape Unit with a 7-track read/write head and the’
| | convert feature |
: 1052 ‘ IEM 1052 Console Printer Keyboard :
: 1442 } IBM 1442-N1 Card Read-Punch }
: 1442p : IBM 1442-N2 Card Punch {
= 2520 % IBM 2520 Card Read Punch }
} 2520P { IBM 2520-B2, B1l Card Punch :
: 2501 : IBM 2501 card Reader {
I 2540 = IBM 2540 card Read-Punch (reader side)

! 2540P : IBM 2540 Card Read-Punch (punch side) :
l 1403 } IBM 1403 Printer-Mcdel 2, 3 or N1 (132 characters) I
: 1403M7 : IBM 1403 Print-Mcdel .7 (120 characters) }
: 1443 1 IBM 1443 Printer-Model N1 (120 characters) {
i 14438 i IBM 1443 Printers-Mcdel N1 (144 characters) special feature J

ADD and SUR Corrand Usage 29

USER_COMMUNICATION REGION

This chapter contains information akout
the user communication region, its format
and wuse. It is included in this publica-
tion to reduce the user's need to refer to

other rublications. The chapter should be
especially helpful to readers who are
designing an installation accounting rou- -
tine.

The user communication region is an area
within the system supervisor that may be
used by both system programs, such as the
assembler, and problem programs. Programs
may read information from this area but, to
avoid accidental destruction of system
data, should use superviscr calls to insert
or alter information.

Its contents are as follows:

Word Byte
0,1 0-4

Description

Date, set by the operator,
in the form yyddd, where
yy is the year and 4dd4 is
the day of the year
(001-366).

Address of the
of the
area.

first Lkyte
problem program

3 12-15 Address of the 1last bLyte
available for use by the
proklem program.

4 16-19 Address of the highest byte
in the gproblem prcgram
area filled by a rhase
loaded ky means of any
FETCH or LOAD supervisor
call.

5 20-23 Address of the last byte in
the proklem program area
filled ky the most recent
FETCH or LOAD supervisor
call.

Job name in EBCDIC charac-

ters.

6,7 24-31

30

Descrigpticn
Job step name
characters.

in EBCDIC

10 40 User program switch byte.
This byte is set to zeros
whenever the system reads

a JCB control statement.

10 41 Highest asserbly error sev-
erity. Reset to zero by
JOB statement.
00 - Normal.

04 - Warning
listed.
should be
ful.

08 - Error messages list-
ed. Execution may
fail.

0C - Severe errors. Exe-

cution impossible.

Terminal errors.

Jcb has been can-

celled.

No errors.
messages
Execution
success-

10

[}

10 42,43 Not used.

11 Ly-u7 User interprogram communi-
caticns area. This area
may ke used by one job
ster to preserve informa-
tion for wuse by a later
jok step. This area is
set to zeros whenever the
system reads. a JCB con-
trcl statement.

12,13 48-55 User intraprogram communi-
caticns area. This area
may ke used by one job
ster rhase to preserve
information for wuse by
ancther phase within the
sare job step. This area
is set to zeros whenever
the syster reads an EXEC
control statement ini-
tiating a new job sterg.

"/,?‘(\\\:
k%

L.

Word Byte
14-31 56-127

Description

Up to six 8-byte ERBCDIC
opticn rarameters from
the jok step EXEC state-
ment are stored here by
the jok control proc-
essor. If less than six
parameters are stored,
the area is padded on the
right with blanks. The
area is reset to blanks
before the beginning of
the next Jjob step. The

full 72 bytes of this
area and the 8-byte
intraprcgram communica-

tion area also are used
by the system and proc-
essor rrograms between
job steps for temporary
storage of certain con-
trol statements.

32-35 128-1u43 Up to 16 bytes of account-
ing information are
stored here for use by
installation routines.
This information, in
EBCDIC form, is obtained
from JOB and/or EXEC
statements.

36— 144- Data generated by installa-
tion accounting routines
may be stored here. This
field is not included in
the distributed version
of the system. The field
can be included, however,
by reassenbling the
supervisor and changing
the operand value of the
supervisor EQU instruc-
tion labeled NXCA. The
operand value of this
instruction specifies the
size of the field. For

additional information
about this dinstruction,
refer to the section
"Assembler Instructions

in the Supervisor" in the
chapter "System Construc-
tion and Editing."

COMMUNICATION REGION SUPERVISOR CALLS

The communication region supervisor
calls are INSERT, EXTRACT, UPSAND, and
UPSOR. They are used for communication
between a problem program and the 'system's
user cormunication region.

The applicable codes are:

INSERT - SvC 17
EXTRACT - SVC18
UPSAND - SVC 19
UPSOR - SsvVC 20
INSERT - SvVC 17
The INSERT superviscr call is used to

store information in the user comrmunication
region.

The system does not require a problem
program to provide any information in this

area other than that contained in control
statements. If a program dces use the
area, however, it should wuse the INSERT

supervisor call to reduce the chances of
accidental destructicn of data needed by
the system.

It is not necessary to know the location
of the region to use INSERT. To refer to
information already stored, the location
can be determined Ly use of the EXTRACT
supervisor call.

INSERT cannot be wused to alter the
contents of words 0 through 10, bytes 0
through u3 of the wuser cormunication

region.

INSERT cannot be used to modify the user
communication regicn permanently. The
region is reinitialized when the initial
program load procedure is executed.

When the INSERT supervisor call is exe-
cuted, register 1 must contain the address
of a parameter list. This list consists of
two words aligned cn full-word boundaries.
The first word contains the address in the
problem program area of the informaticn to
be stored in the user communication region.
The second word contains the address of a
U-byte area containing control informaticn.

The first byte of contrcl information
must be hexadecimal 00. The second byte
gives the nurber cf U-byte words tc be
stored in the region. The last two bytes
indicate where in the region the data is to
be stored. This last location is expressed
in terms of the word where the system is to
start storing the information, the first
word in the region keing word O.

eight bytes of
communications

For example, toc store
data in the intrarrcgram

User Communication Region 31

area, words 12 and 13, bytes 48 through 55,
the following coding could be used:

INSERT EQU 17

LA 1,PARAM
SVC INSERT

PARAM DC A(LOC)
DC A(CONTRL)

LOC (data to be stored)
DS OF

CONTRL DC X"00°"
DC AL1(2)
DC AL2(12)

The system stores the eight bytes of
information at LOC in the intragrogram
communications area and returns control to

the instruction following the SVC. The low
order bLyte of register 15 contains the
hexadecimal code 00, indicating no errors.

If an attempt is made tc use INSERT to
store information outside the cormuni-
cations region or in words O +through 10,
nothing is stored. Register 15, on return,

contains the hexadecimal code 04.

Other registers are unchanged.

EXTRACT - SVC 18

The EXTRACT supervisor call is used to

obtain the location of the communication
region.
EXTRACT causes the system to put the

address of byte 0 of the communication
region in register 1 and return contrcl to
the calling program. The address of any
particular word or byte within the region
is obtained by adding the Lyte <count to
this value. : :

UPSAND - SVC 19 and UPSOR -_SVC 20

The UPSAND and UPSOR supervisor calls
are used to set or alter the contents of
the user program switch byte in the user

32

communications region. This byte is used
for communication ketween jok steps as well
as within a job step.

When UPSAND is used, the logical product
(AND) of the user program switch byte and
the low-order byte of register 1 is stcred
in the user program switch byte.

When UPSOR is used, the logical sum (OR)
of the wuser prcgram switch byte and the
low-order byte of register 1 is stored in
the user program switch byte.

When the two bytes are
either UPSAND or UPSOR, they are
kit for bit.

combined by
matched

With UPSAND, if each of the correspond-
ing bits is a 1, the result is a 1. If
either is 0, the result is 0.

With UPSOR, if either of the corresgond-
ing bits is a 1, the result is a 1. If
both are 0, the result is 0.

These combinaticns are listed below:

A _B_ UPSAND UPSOR
1 1 1 1
1 -0 0 1
0 1 0 1
0 0 0 0

When an UPSAND or UPSOR supervisor call
is executed, register 1 must contain a
comparison byte in its lcw-order positicns,
kits 24 through 31. The system alters the
user program switch byte accordingly and
returns control to the instruction follow-
ing the sSvC. Error codes do not apply.

For example, to set the user program
switch byte to all . 1's, the following
coding could be used:

UPSOR EQCU 20
Ic 1,MASK

SVC UPSCR
MASK DcC X'FF'
As a result of this UPSOR supervisor

call, byte 40 of the cormunications region
is set to 11111111. This byte is reset to
all 0's when the system reads a JOB control
statemént initiating another job.

®

N

This chapter explains the use of the
execute channel program (EXCP) supervisor
call, svC 0, and is accomganied by descrip-
tions of specific control klocks used with
svc 0. Factors that affect the operation
of EXCP, such as device variations, program
modifications, and the use of the WAIT
supervisor call, SvC 1, are also discussed.
It is recommended that the user obtain a
symbolic listing of the supervisor and the
channel scheduler before reading this chap-
ter. The text makes frequent reference to
labels, variables, etc., that actually
appear in the listing.

EXCP LEVEL PROGRAMMING

At the EXCP 1level of programming the
user can work with devices that are not
supported by the system and can manipulate

devices in ways not provided by the
read/write supervisor call routines. For a
list of supported devices, see IBM
System/360 Model q4 Prograrming
System: Concepts and Facilities, Form
C28-6810. Routines written and tested at

the EXCP level may subsequently be incorpo-
rated into the system's read/write 1level
through reassembly of the sugervisor.

EXCP level operations make use of koth
system and user routines. System routines
schedule the requested oreration and exe-
cute the privileged instructions required
for input/output. They also handle some of
the input/output. interrurtion conditions
that do not require special attention for a
particular device.

Supervisor Call EXCP

The EXCP supervisor call initiates the
executicn of routines written at the EXCP
level. Before an EXCP supervisor call is
issued, the address of an input/output
block must be placed into register 1.

After the EXCP superviscr call has Leen
processed, control 1is returned to the
instruction following the EXCP statement.
At that time, register 15 contains a code
that indicates the conditions encountered
by the statement; the followina retuzrn
codes may appear in register 15:

EXECUTE CHANNEL PROGRAM

Hexadecimal
Code__ Meaning
00 The EXCP supervisor call was
accerted by the system.
ou No unit control block exists
for the requested system
unit.
08 The device requested is not
available fcr use.
Supervisor Call WAIT
The WAIT supervisor call causes the
execution of a problem program to be sus-

pended until the operation initiated Ly a
rrevious EXCP statement has been completed.
Before a WAIT superviscr call is issued,
the address of an input/output block must
be placed into register 1.

After the WAIT supervisor call has keen
processed, control 1is returned to the
instruction following the WAIT statement,
and the completion of the operation is
indicated by a 00 hexadecimal ccde in Lkyte
0 of word 1 of the input/output block.

The WAIT supervisor call can be wused
either immediately fcllowing an EXCP suger-

visor «call or at a later point in the
problem program. For most efficient pro-
gram execution, the WAIT statement should

be placed immediately preceding the portion
of the program that uses the results cf the
EXCP operation associated with the speci-
fied input/output block. This placement of
the WAIT statement allows processing, not
dependent upon that EXCP operation, to be

done while the EXCP operation is in pro-
gress.
REQUIREMENTS
To execute an oreration at +the EXCP
level, the user shculd provide:
¢ Channel command words or - device-
dependent routines to initialize these
words.

» Device-dependent interruption and error
reccvery routines.

e One or more input/output klocks (IORs).

Execute Channel Program 33

Channel Command Words

A channel command wcrd (CCW) specifies a
command to be executed and, for commands
initiating data transfer, the area to or
from which data is to be transferred.

Channel command words executed by means
of EXCP must be on double-word boundaries.
CCWs may be constructed Lkefore the EXCP
supervisor call is issued and a pointer to
the word 1list must ke present in the
input/output block (ICB), or the words may
be constructed or updated ky including an

initialization section in the device
routine.

Descriptions of the CCWs required for
the various input/output devices can be
found in publications that describe device
functions. These publications are 1listed

in the IBM System/360: Eibliography, Form
A22-6822 (subject codes 03 through 09).
Additional informaticn regarding the format
of CCWs is contained in the publication IBM

System/360: Principles cf Operation, Form
A22-6821.
Device Routine

A device routine provides control over

input/output operations during channel pro-
gram execution. Device routines can be
used to examine the status of dinput/output
operations and determine the actions tc ke
taken for various conditions.

If bytes 5 through 7 of the input/output
block, the CCW list pointer, contain zerxo,
the system will first enter the device
routine to set up the CCW 1list. The
routine 1is entered again for interruption
analysis and error recovery, after execu-
tion of the channel comrmands.

Device routines are executed in the
supervisor state, but must nct contain any
supervisor calls or privileged instruc-
tions. Furthermore, a device routine can-
not be interrupted except for machine check
and certain types of rrogram check. Device
routines also must nct alter the contents
of registers 1 and 14. These registers are
used for communication between the device
routine and the system. Detailed informa-
tion about device routines is contained in
the section "Device Routine Requirements."

34

Input/Output Block

The input/output klock (IOB), which con-
sists of the first six words of a request
control Lklock (RCB), is used for communi-
cation ketween the user's prcgram and the
system. At the EXCP 1level, the IOR is
usually used in place of an RCB. However,
although the system requires only the
information contained in the IOB, the user
can write a program that uses all of the
fields contained 'in an RCB.

When an IOB cr RCE is created, it must
be aligned on a full word koundary. All
fields not supplied with infcrmration by the
user's program must be defined as hexadeci-
mal zercs.

The format of the IOB is shown in Figure

5. Its fields are explained below. The
format of the RCB is shown later in the
chapter.

word Byte Description

0 0 Systenr unit index, supplied by
progranrer. (See the system
unit index takle, Table 7.)

0 1-3 Device routine address, sup-
plied by programmer.

1 4 Postrequest flag indicating in
hexadecimal code whether the
klock currently is active,
supplied by the system.

00 - no oreraticn pending
01 - operation in progress

1 5-7 Address of channel command
list, supplied by the fgro-
grammer.

2 8 Reserved for system use.

2,3 9-15 Last seven bytes of channel
status word, supplied by the
systenr at interruption time.

4 16-19 sSense informaticn, supplied by
the system when a unit check
conditicn occurs.

5 20-23 Four EBCDIC characters to be

used by the systemr to locate
an error recovery program in
the rhase likrary. This is
an optional field supplied
by the rrcgrarmer.

TN

o

IS

Table 7. System Unit Index Values EXECUTION

r T =TT -== 1

|System | Hexadecimal | Cecimal |

| Unit | Code | Code | When the EXCP supervisor call is issued,

- + + 4 register 1 must contain the address of an

|SYSAB1L | 01 | 1 | input/output block. The system examines

| SYSAB2 | 02 | 2 | the blcck to determine whether it contains

| SYSREL | 03 | 3 | a valid system unit index value and - the

| SYSLOG | ou | 4 | addresses of a device routine and channel

| SYSRDR | 05 | 5] program. '

|SYSIPT | 06 | 6 |

| SYSLST | 07 | 7 |

| SYSOPT | 08 | 8 | If the index value sgecifies a system

| SYSPCH | 09 | 9] unit for which no unit control block (UCB)

|SYSPSD | oA | 10 | exists, control returns with a 04 hexadeci-

| SYSDMY | 0B | 11] mal code in register 15. If the index

|SYSUAS | oc | 12 | refers to a device that is nct operatic¢nal,

| | 0D | 13 | control returns with a 08 hexadecimal code

|reserved) 0E] 14 | in register 15. 1In either case, the system

| | OF] 15 | treats the requested operaticn as complet-

|8¥S000 | 10 | 16 | ed.

|SYs001 | 11 | 17 |

|s¥s002 | - 12 | 18 | ‘

| . | | | If the index wvalue is wvalid but the

| . | | | requested channel facilities are busy, the

| .] | | system queues the request and returns con-

|S5¥YS009 | 19 | 25 | trol to the user. If. the EXCP is followed

|s¥s010 | 1A | 26 | by a WAIT supervisor call, sSvCc 1, the

| . | | | system delays further execution until the

1 . | | | EXCP operation is completed.

. | | |

|SYs015 | 1F | 31]

|S¥YS016 | 20 | 32 | When the required channel facilities are

|SYS017 | 21 | 33 | availakle, the system examines the IOR for

| . | | | a channel programr address.

. | | |

I | | I

|S¥s200 | D8 | 216 | If an address is present, the system

L L 1 4 starts execution of the channel program.

Word
r T e 1
|10 | 1-3 ,

0 | System Unit Index . | Device Routine Address |
b t - o 1
|4 : | 5-7 : N

1 | Postrequest | Channel Prcgram Address
| Flag | : |
¢ + S :
|8 | 9-15 |

2 | reserved | Last seven bytes of Channel Status Word |
3 4 . |

3 | |
} --- — -4
j]16-19 1

y I Sense Data .
b e e e e e e i .
120-23 . , |

5 | Name of interrupticn analysis program to be lcaded S |
e e e e e e e e e o e e o e e e e p— N

Figure 5. Input/Output Block (IOB) Format

Execute Channel Program 35

If there is no channel program address,
the system places the address of the UCE
associated with system unit in reqgister 1,
the system return address in register 14,
and enters the device routine. When the
device routine is ready to return control
to the system, it branches to the address
in register 14. The addresses in registers
1 and 14 must be unchanged when the system
regains control. The device routine can

" determine cause of entry ky examining byte
0, word 3 of the UCB. When the routine is
entered to prepare a channel program, the
byte contains 00.

The device routine prepares the channel
program and places its address into the
10B. It also must identify the type of
operation being requested by putting a
return code in register 15.
Operation/return codes are exrlained below.

Code Meanin

00 The operation is completed and
no input/outrut operation is
required. For example, a
repositicning request may
have been given which the
device routine has analyzed
and determined to be unneces-
sary, i.e., the device was
already in the requested
position.

o4 An event type request (non-data
transmitting which does not
make the sukchannel busy).

08 An activity tyre request (makes
the subchannel busy).

oc A transient rcocutine is request-
ed.

After the device routine enters the
operation/return code, it returns control
to the system by branching to the address
in register 14.

Execution now proceeds as it would if
the channel prograr had been prepared in
advance. The system commences execution.

If a channel status word is stored as a
result of the system's execution of the
Start Input/Cutput (SI0) command, the
device routine is entered exactly as on an
input/output interruption indicating an
error condition or a device end (result of
an immediate instruction). Refer to Table
8 for the condition that will cause this.

If no CSW was stcred as a result of the
510, control returns, if WAIT is not in
effect, to the user's main program (not to
the device routine) until there 1is an
input/output interrugtiocn.

INTERRUPTION PROCESSING

Execution of an EXCP request may gener-
ate one or more input/cutput interrupticns.
When an interruption occurs, the system
scans the channel status word to determine
the cause. Some conditions, such as chan-
nel end not accorpanied by device end, are
handled entirely ky the system.

The system reenters the device routine
if the'interruption is one of the following
types:

Type UCB_Reguest Flag
Device End o4
Program Controlled 08
Attenticn oc

As kefore, on entry to the routine,
register 1 contains the address of the UCB,
and register 14 contains the system return
address. The device rcutine examines the
UCB request flag, kyte 0, word 3, of the

Table 8. Conditions Causing a Device Rcutine to be Entered

e e - ——— e e
|Condition T When CSW is stored at SIC T At Input/Cutput Interruption? |
F 1 e i —

- |Device End | Yes | Yes]
|Unit Check | Yes2 | Yes. |
|Unit Exception | Ne | Yes |
|Incorrect Length] No | Yes
|Channel Data Check | Ne¢ | Yes]
|Chaining ‘Check | Ne | Yes |
|Busy and Status Modifier | No] Yes3 |

_____ N i ———— ——4 %
]2Al1ll conditions at input/output interruption are acccmpanied ky device end. |
|2When the Command address is nonzero (kroken chain). |
| 3When the sense data contains '40' in byte 0 (intervention required), the device |
| routine is not entered. |
L e e e e e e e e e e e et e m o e e o 2k 2 e e o . o e e e e o S 7 o . . i 2 o St . i o o . 2o o o . o S o e e oo o o e 2 2 o o S e e e e o J

36

N

~

LN

UCB to determine cause of entry. Bytes 1
through 3 of word 3 contain the address of
the IOR associated with the operaticon that
caused the interruption. The system stores
the channel status word in words 2 and 3 of
the IOB.

If the UCB request flag contains 04,
then byte 0, word 2, of +the ICB will
contain one of the following codes:

Code Meaning

00 Device end and no error

ou Unit exception

08 Condition other than unit exception

If a unit check conditicn is present in
the CSW, the system stores sense data from
the channel and unit into word 4 of the
IOB.

A device routine initiates error recov-
ery operations, when necessary, in the same
manner as an initial request. It places a
04 or 08 return code intc register 15 and
branches to the address in register 14. As
before, a 00 return code tells the system
the operation is finished. The system does
not permit other requests to disturb a
volume while error recovery procedures are
in progress.

The device routine may keep a special-
ized interruption analysis and error recov-
ery program in the phase 1library for use
when needed. The device routine instructs
the system to load and enter such a program
by putting a 0C return cocde into register
15 and branching to the address in register
14, Word 5 of the IOR must contain the
name of the desired program.

The program name is specified in the IOB
as four EBCDIC characters. The name must
be entered 1in the directory of the phase
library in the form xxxx « representing
four EBCDIC characters followed &Ly four
blanks.

The program is loaded into the transient
area of main storage. The system treats it
as a logical extension of the device rou-
tine. The program operates in the supervi-
sor state, but can issue neither supervisor
calls ncr privileged instructions. It uses
the same return codes as a device routine
and returns to the system through the
address in register 14. This address and
the unit control klock address in register
1 must ke unchanged.

A program-controlled interruption dif-
fers from a device-end interruption in its
use of return codes. If, after a program
controlled interrupticn, the device routine
returns to the system with a nonzero return

code in register 15, the system assumes
that the operation is still in progress.
If the register contains a 00 code, the
system treats the operation as completed.
Because the operation may be ccrpleted cnly
through use of a Halt I/O instruction, and
because a PCI interruption is not flagged
if PCI occurs with wunit check or device
end, it is essential that a 00 return code
be used only when the oreration is actually
completed. When the system finds a 00
return code it resets the postrequest flag
in the IOB to 00, returns ccntrcl to the
user's main program (not the device
routine), and treats the channel and device
as free.

An attention interrurtion is handled in
the same manner as a device-end interrup-
tion.

INCORPCRATING DEVICE RCUTINES INTO THE
SYSTEM

To incorporate a device rcutine for a
new input/output device the wuser must
change several items in the system as
initially distrikuted. In addition, the
system requires that each new device rou-
tine crrovide control information that will
allow the system to operate as it does when
it uses the device routines included as
part of the system. These requirements are
described separately in the following text.

The text alsoc describes, in general
terms, the device routines provided as rart
of the system. This description illus-
trates which type of processing can or
should ke done by a device routine. Device
routines use information provided by the
system in various control blocks and reg-
isters; this information is alsc exrlained
in the text.

Changes for New Devices

To allow for input/output devices not
provided for in the system, the wuser nmnust
make changes to various parts of the system
and mway be required tc add a unit control
block for each new device to be used.

Modifying the System Ccmmunication Region:
To accommodate the routines, ccentrol

blocks, and various other entries required
for a new input/output device, several
entries in the system communication region

(SCOMRG) must be changed to indicate the

additions to the system.

Execute Channel Program 37

Modifying the Initialization Device Takle:
To indicate that a new input/output device
has been made availakle to the system, the
system programmer must change the initiali-
zation device table to include the device
specification of the new device and some
additional control information. The format
of this table, as it appears in the dis-
tributed version of the system, is shown in
Figure 11 (Appendix C).

The total num-
system must

Number of Device Routines:
ber of device routines in the
be increased to include the device
routine(s) added to handle the new
input/output device. To indicate this
increase, the user must change the value of
the supervisor EQU instruction lakeled
NDEV. Supervisor EQU instructions are des-
cribed in the chapter entitled "System
Construction and Editing", under the head-
ing "Assembler Instructions in the Supervi-
sor."

Changes to_Assembler Instructions: Depend-
ing wupon installaticn requirements, the
supervisor assembler instructions lakeled
NCCW, NFCB, NSUT and NUCB may require
modification when a new device type is
added to the system. A description of

these instructions can ke found in the
chapter entitled "System Construction and
Editing" wunder the heading "Assembler

Instructions in the Supervisor."

DEVICE ROUTINE - CONTRCL BLOCK
RELATIONSHIPS

To permit device routines written by the
user to operate under system control, the
device routines must place certain informa-
tion into control blocks so that it is
available for wuse by the system. Some of
the information is always required, while
other information is required only when the
user plans to design problem programs that
will request input/output operations on
these devices at the read/write level. For
example, the current block count field of
the file control block (FCB) must be main-
tained if a NOTE supervisor call (svc 7) is
to be used in the user's problem program.

Unit Control Block:
type of device and the

Depending wupon the
processina to be

done by the device routine, it may be
necessary to place the current position
(ucppPT) of the device into the UCB. The

current position of a device is defined for
disk storage devices as the cylinder and
head numbers; for card and tape devices as
the block count. The following statement,
which is used in a device routine included
in the system, illustrates how toc place the
current position of +the device into the
UCB:

38

ST RGO, UCPPT(RUCB)

Before this
current position
rlaced into
value to specify which unit
is to receive the
register RUCB.

instruction is issued, the

(e.g., block count) is
register RGO, and an indexing
centrol klock
code 1is placed into

If the user wants to maintain error
counts, as is dcne Ly device routines
provided by the system, he must place the
error counts into the UCB. The following
list shows the synbolic references used for
the error counts that have been provided
for in the UCB.

Symbolic

Reference Type cf Exrror Count

UCPND Permranent no-data-transmitted
errors

UCPRE Permanent read errors

UCPWE Perranent write errors

UCRND Recovered no-data-transmitted
errors

UCRRE Read errxcrs that have been cor-
rected by recovery procedures

UCRWE Write errors that have been
corrected by recovery prcce-
dures

File Cocntrol Blocks: Derending upon wheth-
er the NOTE staterment is to be used, the
device routine may have to place the cur-
rent block count (FCRBCT) into the file
control klock. The current block count
must be in the file contrcl block if the
NOTE statement is to be used. The follow-
ing statement, which is used in a device
routine included in the system, illustrates
the placement of the blcck count into the
file control block:

ST RG6,FCBCT (RFCRE)

Before this instruction is issued, the
count is placed into register RG6 and an
indexing value, to specify which file con-
trol block is to receive the value, is
placed into register RFCB.

Input/Output Blocks: If the device routine
requires that a channel corrand word list
ke executed by the system, the routine must
place the address cf that list (IOCCW) into
the inrut/output block. The 1list address
can be placed into the input/ocutput block
as descriked below for the current block
count in the request control block (RCB).

Request Control Blocks: If the user elects
to provide an entire request control block,
rather than an input/cutput block, the

N
e

device routine he writes must handle all
fields that follow the input/output block.
The descriptions of fields given Lelow
refer only to the fields that are used by
the device routines provided as part of the
system. The manner in which those fields
are used by device routines is given to
illustrate which extra fields might bke
desirable for wuse with a new type of
input/output device.

return
control
that the
request

routine
into the

The device
code (ICRCD)
block. The hexadecimal
device routine places
control block are:

rlaces the
request
codes

into the

Hexadecimal
Code Meaning

00 The oreration was completed
successfully.

(0 An end-of-file or end-of-
volure condition has
occurred.

08 A permanent read error has
been detected, or a per-
manent write error has
been detected.

0c A permanent no-data-
transmitted error has keen
detected.

10 An illegal request has Lkeen
made.

14 An incorreét—length error

has occurred.

The following statement is used tc rlace
the decimal code into the request control
block:

STC RG6,IORCD (RIOB)

Before this instruction is
code is placed 1into register RG6, and an
indexing value to specify which request
control block is to receive the return code
is placed into register RICB.

issued, the

After a read or write operation has been
completed, the device rcutine places the
current block count (ICBCT) into the
request control block. The follcwing
statement is wused to place the current
block count into the request control block:

ST RGO, IOBCT(RIOR)

Before this instruction is issued, the
count is placed into RGO,and an indexing
value to specify which request control

block is to receive the value is

into register RIOB.

placed

If the device rcutine ccntrols certain
multiple-step operations, the routine main-
tains the operaticn counter (IOOPC) in the
request control Llock. Tc place a value
into the operation counter, the following
statement is used:

STC RG7, ICOPC (RIOR)

Before +this instruction is issued, the
number to Le placed into the operation
counter is placed into register RG7, and an
indexing value to specify which request
control klock is to receive the number is
placed into register RIOE.

Two counters (ICCNT1 and IOCNT2) are
used to maintain counts of the nuwmber of
retries that are made during recovery orer-
ations. If the user wishes, he may use
these counters for similar purposes or for

some other purpcse required by his device
routine,

The device routines included in the
system use another byte (IOECD) in the

request control klock to contain an error
recovery code. This code is used only by
the device routine as a means of identify-
ing the action required when the device
routine is entered again. The system fro-
grammer may use this byte for any codes
that he requires in his device routine.

DEVICE ROUTINE DESIGN

The design of a device routine for an
input/output device not provided for in the
system 1is determined Ly the user. When
designing a device routine, the user need
only be sure that it satisfies the require-
ments stated earlier.

Rlthough the wuser is free to write his
device routine as he wishes, a general
diagram of the actions norrally done in a
device routine is shown in Figure 6. This
diagram is not intended for any specific
device, but it shows the general approach
used in the device routines provided as
part of the programming system. In the
description of Fiqure 6 that follows, the
methods used in device rcutines provided in
the system are mentioned to suggest a
possible method to the system programrer.
(Numbered klocks in the figure are
explained in the 1list following the chart.)
The infcrmation used by the device routines
is described under “Information Availatle
to Device Routines."

Execute Channel Program 39

Figure 6.

4o

*

CHANNEL SCHEDULER

lENTERED FROM

.*.

A2t e 1
YES .+ ENTERED "*. NO

INITIALIZATION
ENTRY

<*,
Bl ¥, 2
-*IS DATA*.
* TO BE *,

NO

. FOR .
INIEIALIZATEON

* *

*:*TRANSMITTED*.*

* *

£, ¥
* YES

*****Cl********i*
* *
* SET UP *
CHANNEL COMMAND#
: WORD LIST :
dokokokk ok dok ok Kok ok kK kK

n
HokokE kD * Kok ko k Kk
* *
* SET CODE 08 *
* TO REQUEST AN *
* ACTIVITY *

* *
3 %k ok ok %k ok ok k ok sk k ok k ok ok

5
Fok ok ok kD kok ok ok okok Rk
* *

* OTHER TESTS *
:FOR PARTICULAR *

DEVICE *
%k o ok ok ook ok ok sk ok ko okok kK
p2° ‘x. 6

- ¥ AN *,
< INPUT/OUTPUT*. NO
* _OPERATION IS . *———
.gEQUIRED.*

*, %
* YES

ARk kKRR ko kk ok k ok k
* *
*¥ SET CODE 04
r——* TO RESUEST
: AN ENT

ook ok ok ok ok ok ok k ok ok ok ok kok

LR R X

*****Fz**t*****Z*
* SET CODE 00 *

* INDICATING *
* OPERATION IS *<--
* COMPLETED *

* *
kkkkkokkkkkkkkkkkk

INTERRUPTION
ENTRY

B3 "%, 8
¥ WAS *,
.* OPERATION *. NO

. SUCCESSFUL .
. L

*

. et
I YES
¥,

*

*
Cc3 - 10
* *

.* IS ERROR *. YES
*RECOVERY BEING . *=m—mn

* . ATTEMPTED. *
* ¥

*, %
* NO

11
ok kk kD3 k ok ok kdokkkdk
* *

* OTHER _ACTIONS *
*FOR PARTICULAR *
* DEVICE *

* *
% kK kK ok ok k ok kok kok ok k

. *,
NO .* MORE *,
<-———*INPUT/OQUTPUT IS*
* .REQUIRED .*

"+ YES

*Ak KA PRk kR kK
SET CODE 04 *
OR 08 TO *

REQUEST AN e

*
*
*
* EVENT OR AN *
* ACTIVITY *
Fok ok ok dok ok ok Kk ok ok

9
Fkk kK C Lk kok Kk k ok koK ok
* *

SET CODE 0C_TO #
>*FETCH TRANSIENT*
* ROUTINE I

3 3 ok ok ok ok ok ok ok ok ok sk sk ok ok ok

General Flow of a Device Routine

*okkAGU Rk Rk Rk ok
* *

* RETURN *
* *
ook ok ok ok ok ok ko ok ok

FET N

Explanations of Logic Blocks:

1.

5.

6.

Cause-of-entry can be determined by
checking the code in kyte 12 of the
UCE.

If the device 1is being addressed at
the read/write level, the device rou-
tine can determine which operation has
been requested by checking the code in
byte 32 of the RCB.

If data is to be transmitted, the
device routine must set up a channel
cormand word list. Depending upon the
device, the channel command word list
may consist of one or more CCWs.

The number of channel command word
lists for any device depends upon the
operations that the device routine
must initiate. Descriptions of the
CCWs required for the various opera-
tions of input/cutrut devices are
given in publications that describe
device functions. These publications
are listed in the IBM System/360 Bib-
liography, Form A22-6822 (subject
codes 03-09). Additional information
regarding the format of channel com-
mand words is contained in the pukli-
cation IBM System/360 Principles of
Operation, Form A22-6821.

The device routine places a code into
register 15 1if the chain of commands
contains either a data transrission
request oOr an event request requiring
the positioning of a device pefore a
read or write operation, e.g., a seek
request on a disk. (The actual
read/write CCW will ke issued through
an activity exit upon successful com-
pletion of the event.)

Byte 32 of the RCB is tested.

If the check of byte 32 indicates that
no data is to be transmitted but an
input/output operation is required
(e.g., a rewind operation), the device
routine must set up a channel command
word list. After preraration of the
list, the routine places an event code
into register 15 and returns control
to the system.

If the check of kyte 32 indicates that
no input/output operation is required,
the device routine places a completion
code into register 15. If the origi-
nal request was invalid, the device
routine must, additionally, set up an
error code in the RCE.

When byte 12 of the UCB indicates that
the device routine was entered for
interruption processing, the device

routine must examine byte 8 of the IOB
to determine whether a previously ini-
tiated operaticn was performed without
error.

Entered via block (8):

If an error has occurred and if the
error recovery routine 1is transient,
the device routine places a code into
register 15 requesting the loading of
the error reccvery routine. If the
recovery routine gets control when
locaded, it attempts toc recover from
the error by retrying the operation.

Entered via block (10):

If the device routine detects that the
interruption resulted from a previcus-
ly initiated attempt to recover from
an error, the recovery routine is
entered to analyze whether the error
has Lkeen corrected. The device rou-
tine must again prlace a «code into
register 15 requesting the loading of
the error recovery routine.

As implied akove, the device routine
must provide an error recovery proce-
dure. The error recovery procedure
must determine which type of error has
occurred and then attempt to correct
it, if ©possible. A procedure for
handling errors that cannot be cor-
rected, or that recur when an attempt
to correct them is made, must also be
provided. The action taken for the
various types of errors is determined
by the user. For example, he may
decide that a jcob should be canceled
if a channel data check has been
detected, or he may write the prcce-
dure so that a return code 1is issued
providing the ortiocn cf canceling or
ccentinuing -- the action taken depend-
ing upon other variables. If an error
can ke corrected ky the computer orer-
ator, the user may elect to send a
message to the ogperator and specify
what is required to correct the error.
To issue such a message, the facility
of the error message system routine
called by a FETCH exit frorm the device
routine should ke used.

The operations required to retry an
operation are dictated ky the type of
error and the type of device. In
general, the procedure is to re-
establish the ccnditions which existed
kefore +the action was taken that
resulted in an error. For example, a
tage must Lke repositioned to the
beginning of a record that could not
ke read correctly; to do this, a
backspace operation is required. How-
ever, an error cccurring while trans-
mitting the read command to the device
does not require any rerositioning.

Execute Channel Program 41

The error recovery procedure must also
place an appropriate return code in
register 15.

10. Test +to determine whether the inter-
ruption resulted from a previously
initiated error recovery attempt.

11. If no error was detected and if no
recovery procedure was in progress,
the device «routine checks for other
conditions that may exist for the
particular device. Based on these
checks, the device rcutine mav have to
set up a channel command word list to
complete an input/cutrut request.

Other actions that the device routine
would perform at this point would
include wupdating pcinters, updating
block counts, and setting program
flags. After all actions have Leen
completed, the device routine places a
code into register 15 indicating that
the operation is completed.

INFORMATION AVAILABLE TO DEVICE ROUTINES

Before the channel scheduler gives con-

trol to a device routine, the system pro-
vides information for use by the device
routine. Such informaticn is placed into

registers or the variocus ccntrol blocks.

The contents and format of the unit
control block are shown in Appendix A;
those for the file control block are shown
in Appendix B.

In the descriptions of information avai-
lable to device routines, all fields are
described, including those which the device
routine must handle as descriked previously
under "Device Routine Requirements."

Information in the Registers

The system places the following informa-
tion into the indicated registers before
control is given to the device routine:

42

Register
_Number Contents

1 The address of the unit con-
trol Lklock.

2 The address of the
input/ocutput block (or of
the request control block
if cne is used).

10 The address of the first

kyte in the constant pool.

Information in the Request Contrcl Block

In the description of the information
that the system places 1intc the request
control klock, those entries marked with
one asterisk must be provided by the device
routine, except for words 6 thrcugh 9. The
contents of these words must be provided
only if reads/write level operations are to
be performed. These words are used primar-
ily for communication between device rou-
tines and read/write routines.

Those entries marked with two asterisks
are not available wuntil the routine has
keen entered for interruption processing.
Entries not marked are available when the
device routine is entered for initializa-
tion processing. They remain available
when the device routine is entered later
for interruption processing. The informa-
tion in the request ccntrcl block (see
Figure 7) is as follows:

Word Byte
0 0

Descrigpticn

System unit index number of
the system unit to be wused
in the input/output opera-
ticn. This wvalue can be
determined from Table 7.

Address of the device deren-
dent routine to be used to
set up the channel commands
and analyze interruptions.

Postrequest flag indicating
whether the klock currently
is active:

00 = No operation pending
01 = Operation in progress
*1 5-7 Address of the first channel
command required to execute

the operation.

Reserved for system use.
**2,3 9-15 Last seven bytes of channel
status word, stored when an
oreration is started and

when an interruption
cccurs.

o

Word

*%0

*5

*6

*6

*7

*7

20-23

24

25-27

28

29-31

Description

Sense information,
when unit check
occurs.

stcored
condition

Name of procgram to be loaded
from the phase library when
necessary for interruption
analysis.

Error recovery code identify-
ing a type of error.

Counters used to keep track
of nurber of attempts made
to recover an error.

Return code

00 = Ogeration completed

04 = End cof file or end of
volume

08 = Permanent transmission
error

0C = No data transmitted

10 = Invalid request

14 = Incorrect length

Address of file control block
being used for this opera-
tion.

Wword Byte
*8 32

Descripticn
Request code identifying the
type of cperation to ke set
up by a device routine.
= Write
Read
Rewind
Rewind and Unload
Write End of File
Pcint

o
L]
U T VT

*8 33-35 Address of buffer to be used

for transmission.
*9 36 Incorrect length control byte
20 = Suppress incorrect
length indication
00 = Check for incorrect
length

*9 37 Reserved

*9 38-39 Nurber of bytes to be trans-
mitted (see note).

Note: Following ccmpletion of an
input/cutput operation, the contents of
word 9 are replaced, by the device routine,
with the updated data set position block
count.

Execute Channel Program 43

Word

r T)
0 |0 |1-3 |
| System Unit | Address cf Device Dependent Routine
| Index Number | |
| | |
t - -+ - -1
1 | & 15-7%* |
| Postrequest | Address of First Channel Command
| Flag | |
| | |
2 fB B T9 15%* B T 1
| Reserved | Last Seven Bytes of Channel Status Wword |
| | |
| | I
t - d |
3 | |
| |
| |
t --—1
4 |16-19%%* |
| Sense Information |
| |
| |
t e - - 1
5 |20-23% |
{ Name of Program tc be Loaded from Phase Likrary |
| |
| |
t T - - 1
6 |20 | 25-27 |
Error	Counters
Recovery Code	
t - t-———- -—- -—- i	
7	28% 129-31%* :
Return Code	Address of File Control Block
t t - - - 9	
8 132%	33-35%*
Request Code	Address of Buffer for Transmission
} }	
t + T 1	
9	36%
Incorrect	Reserved
Length	
Control Byte	
t L 1 - 1	
*Must be provided by device rcutine.	
**Not available until after entry for interruption processing.	
e e ———————— e = J
Figure 7. Regquest Contrcl Block

L4y

J

.

/
L

A i,

APPENDIX A. UNIT CONTROL BLOCK

Word
r T - T T Tt T T T T T T a
[0-1* | 2% | 3* |
|) | | . |
0 | Physical Device Address | Device Mode | Type of Unit |
b r Fommm oo o m e 4
| 4 IS |6 |7 I
| ‘ _ | | | _ |
1 | Relative Chain |Channel | Job Control | Read/Write Flags |
| Pointer | Scheduler | Flags | |
I | Flags | | |
: -- : -- b s 4
|8-11 |
' o : l
2 | I0B address for attention interrupticns
b -y -- —
112 |113-15 |
| | |
3 | Request flag |I0B address for current input/output operation |
| for device] |
| routine | I
L e — .'
)
|16-19%* |
| |
4 | Device Position |
¢ - e .
120-23%* |
| |
5 | Address of CCW area |
pomm oo oo -- e :
| 24-31% |
| |
6-7 | Device Routine Counters |
f - - 4
| : : . l
| *Must be provided Ly device routine or user |
b e e e e e e e e e e e e e e e e e e 1
Figure 8. Unit Control Block (UCB) Format

Unit Control Block Fields

Fields in the unit control block are
defined below. Entries marked with an
asterisk must be provided by a device
routine or the user.

Word Byte Description
*0 0,1 Physical device address
*0 2 Device mode
01 = Burst mode
02 = Overrunable byte mwcde
03 = Non-overrunable byte mode
*0 3 Type of unit
10 = 1052 Console Printer-
Keyboard
20 = 2501 Card Reader
21 = 2540 Card Reader
22 = 2520 Read-Punch
23 = 1442 Read-Punch
28 = 2520P Card Punch

Word RByte Description
29 = 2540P Card Punch
2A = 1442P Card Punch
30 = 1403 Printer
31 = 1403M7 Printer
32 = 1443 Printerx
33 = 1443S Printer
40 = 2400 Magnetic Tape Unit
41 = 2400H Magnetic Tape Unit
42 = 2400D Magnetic Tape Unit
48 = 2400T7 Magnetic Tape
Unit
49 = 2400T7C Magnetic Tape
Unit
50 = Single Disk Storage Drive
51 = 2311 Disk Stcrage Drive
1 4 Relative chain pointer, point-

ing to the next UCB in either
an acitvity, event, or
transient routine chain.

Aprendix A. Unit Contrcl Block 45

Word Byte Description
1 5 Channel scheduler flags
80 = Intervention request
processed by device
routine '
40 = Channel end expected
20 = Device end received
10 = Retry operation
08 = Device not ready
04 = Attention waiting
02 = Event in progress
01 = Device busy
1 6 Job control flags
80 = Device down
40 = System standard assign-
ment
20 = Job control assigned
10 = Programmer assigned
08 = Assigned this step
04 = The volume cannot be
dismounted
1 7 Read/Write flags
80 = System multiple operation
40 = Error message to be
requested
20 = End of volume (EOV)
10 = System request
08 = Multiple operation
02 = Volume label present
01 = Volume has been mounted

b6

Word

Byte

Description

x4

*5

*6,7

8-11

12

13-15

16-19

20-23

24-31

Address of input/output block
used when an attention
interruption occurs.
(Applicable only to those
devices that can signal
attention.)

Request flag for device routine
00 Setup
04 = Device-end interruption
08 Attention interruption
0c Program controlled
interruption

"

Input/output block address
associated with this opera-
tion

Current physical position of
the device in terms of the
cylinder and head positions
for direct access devices and
block count for sequential
devices.

Address of channel command
word area associated with
the device.

Permanent and temporary error
counters set and used by the
system's device routines.

N
e

AN

APPENDIX B. FILE CONTROL_BLOCK

Word
r T - T =TT - 1
X 5 k X |
0 | Flag Byte | Flag Byte | Reserved | Number of blocks per |
[| | | track |
¢ -- oo e - 1
| 4=7+ |
| I
1 | Block Count |
fmm e T -
18-9 |10-11 |
| | I
2 { Logical Record Length | Reserved
t L 4
r B
{12-15 |
| |
3 | Seek and search address |
p——-- T T Jl
|16 117 118-19 |
| | | |
4 | Block | Length of | Maximum number of bytes per block
| Number | key area | |
| | (2311 only) | |
¢ L L -~ 1
120-23 |
| |
5 | Displacement of first |
| block of a directoried |
| data set member |
t - 1
[264-27 |
| |
6 | Device address of first block of the data set
b .
|128-31 |
| |
7 | Number of last block written |
b 1
[32-35 |
| |
8 | Number of blocks reserved for the data set]
t -~ 1
13
| *Must be provided by device routine |
L —_— —

Figure 9. File Control Block Format (Disk)

Appendix B. File Control Block 47

Word

‘,,/ ™~
r T T T -—=1 o
1o 11 |2 |3 |
| I | | |
0 | Flag Byte |Flag Byte | Reserved | set Mode Bits
‘____ L 4 L J|
| 4=7 |
o I
1 | Block Count |
— T 1
18-9 |10-15 |
I | |
2 | Logical Record Length | |
t -~ 3 |
| ‘ I
3 | Data Set Expiration Date |
¢ T T 1
16	17	18-19
Block		
4	Number	Reserved
[1 J		
b . —		
20-21 122-27%		
5	File Count	
b -~ l		
_		
6	Volume Identification	
o - .		
128-35		
[I		
7-8	Data Set Name	
*Must be provided by device routine	~	
L R 4

Figure 10. File Control Block Format (Tape and Card)

File Control Block Fields Word Byte

Description

Fields in the file control block for
disk volumes are defined below. The entry
marked with an asterisk must be provided by 0 2
a device routine.

0 3
Word Byte Description *1 4-7
0 0 Flag Byte
80 = Standard unit
40 = Fresh data set 2 8,9
20 = Update VTOC
10 = Labeled 2 10,11
08 = Header checked
04 = Modification 3 12-15
02 = Disconnected
01 = Open
4 16
0 1 Flag Byte

= ASA control characters
20 = Write check 4 17
= Ignore (dummy data set)

48

08 Deleted
ou Output data set
02 Data set formatted

Reserved
Number of blocks per track

Current block count

Logical record length
Reserved

Seek and search address for
the current operation

Number of block being proc-
essed

Number of bytes in key area

(2311 only) A

W

i,

Word Byte Description Word Byte Description
4 18-19 Maximum number of bytes per 0 1 Flag byte
block 80 Control character

40 = ASA control characters
5 20-23 Displacement (number of blocks) 10 = Ignore (dummy data set)
of first block of member in 08 = Deleted
a directoried data set. If 04 = oOutput data set
the data set associated
with the RCB is not
directoried, these bytes 0 3 Mode of tape operation (not
contain zeros. used for card data sets).
6 24-27 Address of the first block 2,3 10-15 Expiration date of data set
in the data set
4 17 Reserved
7 28-31 Number of the last block
written
. 5 20,21 Current file count, including
8 32-35 Number of blocks reserved for trailer label file marks

this data set
*¥5,6 22-27 Volume identification in EBCDIC

Fields in a file control block for tape

and card units are the same as for direct 7,8 28-35 Data set name in EECDIC (not
access devices, except as follows: used for card data sets).

Appendix B. File Control Block 49

APPENDIX C. INITIALIZATION DEVICE, CCW, AND JOB C

ONTROL DEVICE TABLES

e — g — . S e s

T T T T T 1
| |ccw |Pointer to |
Device Specification|Device Type Code|No. of CCWs|Device Mode|Relocation|CCW List |
, + } 3 4 + :
10522 |10 |06 |33 101 | CONCCW |
$ + 1 $ $ {
2501 |20 |02 {02 | 00 | RD1CCW |
1 __+ ______ 4 + 4 4
T T T s 1
2540 |21 102 |03 |00 |RCI1CCW |
+ t $ t ¢ -4
] 2520 122 |02 |02 100 | RP1CCW |
== - 1 3 t { 1
j1u42 123 |02 |02 |00 | RP2CCW |
F ¥ - + 1 t 1 '
| 2520P |28 o2 |02 |00 | RD2CCW |
F 1 3 B 1= - 4
|2540P 129 113 103 |00 | PC2CCW
¢ } —4 t } ¥ 1
|1442p |2A 102 |02 |00 | RP3CCW |
P 3 } 1 + $ 4
|1403 | 30 |02 jo3 |00 | PT1CCW |
—=== 4 1 + + 1 !
[1403M7 131 |02 |03 |00 | PT2CCW |
b= 1 = t ¥ + 1
{1443 |32 102 103 |00 |PT3CCW |
- + 1 1 $— i -]
j1443s 133 |02 |03 100 | PT4CCW
¢ fommmmmmmm e } - 1
| 2400 |40 102 |01 |00 | TP1CCW |
b 1 } 1 } -4 -]
| 2400H | a1 |02 |01 joo | TP2CCW |
————— - + ¥ ¥ 1 4= :
| 2400D |42 |02 |01 100 | TP3CCW |
————— 1 1 $ $ $-- .
|2400T7 ju8]02 |01 |00 | TP4CCW |
————— } } ¥ ¥ 1 1
| 2400T7C |49 |02 |01 |00 | TP5CCW |
¢ ¥ e P 1 1 t 1
| sDSD |50 105 |01 jo1 | DK1CCW |
- == — oo 4= + ¥ -]
|13162 |51 |06 jo1 |01 | DK2CCW |
—— L L L L ~-4 {
| *Location TBLORG |
|2Location TBLEND |
L S

Figure 11. 1Initialization Device Table

Initialization Device Table Fields

Device Specification

code as a pointer to the device rou-
tine to be used for a particular type
of device.

Contains an abbreviated device name. Number of Channel Command Words

The name can consist of a maximum of
eight characters.

The number of CCWs required varies
according to device.

Device Mode

Device Type Code
A 2-byte code designating a device
tyve. In selecting a code, the user
must be sure that the first digit of
the code is different from the first
digit of existing device type codes.
The system uses the first digit of the

50

Specifies the mode of the device as
either burst mode (01), overrunnable
byte mode (02), or nonoverrunable byte
mode (03). A nonzero in the four
high-order bits (e.g., 33 for the
1052) indicates an attention type
device.

PN

CCW Relocation
a 01 indicates reloca

tability. The
entry for this field, either 00 or 01,

Pointer to the CCW List

varies according to the channel com-
the specific

mand list required for

Symbolic pointer to the device's CCW
list.

device.

r 1
| DEVICE TYPE DEVICE TYPE CODE |
| CTYPTB DC Cc'1052 ' 1052 CONSOLE 10 |
| DC X'10°* |
| DC C'2501 ' 2501 READER 20 |
| DC X'20" |
| DC C'2540 ' 2540 READER 21 |
| DC X'21' |
| DC C'2520 ' 2520 READ-PUNCH 22 |
] DC X'22°' |
| DC c'1442 ' 1442 READ-PUNCH 23 |
| DC X" 23" |
| DC c'2523p ' 2520 PUNCH 28 |
| DC X'28" |
| DC c'as540p ' 2540 PUNCH 29 |
{ DC X'29° |
| DC c'iau2p 1442 PUNCH 2A

| DC X'2ar |
| DC c'1403 ' 1403 PRINTER 30

| DC X'30" |
| DC c'1403M7 * 1403 PRINTER 31

| DC X'31° |
| DC criuy3 ' 1443 PRINTER 32

| DC X*'32" |
| DC Cc'1443s ' 1443 PRINTER 33 |
| DC X'33° |
| DC c'2400 ' 2400 TAPE 40 |
{ DC X'40°" |
| DC C'2400H ' 2400 TAPE 40]
| DC Xxru1’ |
| DC c'2400D 2400. TAPE 42]
| DC X'42° |
| DC C'2400T7 * 2400 TAPE 48 |
| DC X'48’ |
| DC C'SDSD ' SINGLE DISK STORAGE DRIVE 50 |
| DC X'50" |
| DC Cc'1316 ! 1316 DISK PACK 51 |
| DC X'51" |
T — — {
|Note: In this table, all character constants consist of 7 characters; blank characters
are used following the device type to fill out the constant.

Yy
[- — _— -]

Figure 12. Job Control Devi

Appendix C.

ce Table

Initialization Device, CCW, and Job Control Device Table 51

r

| CONCCW CCW 0,0,X'00%,0 1052 CONSOLE PRINTER

] DC X'0A000008" ATTENTION CCWS

| DC X'20000008"

| CcCcwW 0,0,X'00*,0

| DC X'04000000" ATTENTION IOB

] pC X' 00FFFFEC" COMPLEMENT FOR CCW
| DC 4c'o"

| RD1CCW CCW 0,0,X'60'1 2501 CARD READER

| cCcw 0,0,X'00%,0

I PC1CCW CCW 0,0,X'60",1 2540 CARD READER

| CCW 0,0,X'00%,0

| PC2CCW CCW 0,0,X'60",1 2540 CARD PUNCH

| pC 24F'0"

| RD2CCW CCW 0,0,X'60",1 2520 CARD PUNCH

| CCW 0,0,X'00',0

| RP1CCW CCW 0,0,X'60",1 2520 CARD READ PUNCH

| CCW 0,0,X'00',0

| RP2CCW CCW 0,0,X'60",1 1442-N1 CARD READ PUNCH
| CCW 0,0,X'00%,0

I RP3CCWH CCW 0,0,X'60",1 1442-N2 CARD PUNCH

| cCcwW 0,0,X'00",0

I PT1CCW CCW 0,0,X'60",1 1403 PRINTER

| CCW 3,0,X'00',1

| PT2CCW CCW 0,0,X'60",1 1407 PRINTER

| CCW 3,0,X'00%,1

| PT3CCW CCW 0,0,X'60",1 1443 PRINTER 120 POSITIONS
| CCW 3,0,X'00,1

i PTU4CCW CCW 0,0,X'60",1 1443 PRINTER 144 POSITIONS
| CcCwW 3,0,X'00",1

I TPI1CCW CCW 0,0,X'60",1 2400 TAPE 800 BPI

| CCW 0,0,X'00',0

| “TP2CCW CCW 0,0,X'60",1 2400 TAPE 1600 BPI

| ccw 0,0,X'00%,0

| TP3CCW CCW 0,0,X'60",1 2400 TAPE 9 TRK AND DUAL DENSITY
| CCW 0,0,X'00%,0

| TP4CCW CCW 0,0,X'60",1 2400 TAPE 7 TRACK

| CCwW 0,0,X'00%,0

] TP5CCW CCW 0,0,X'60",1 2400 TAPE 7 TRACK AND CONVERT
| cCwW 0,0,X'00',0

| DK1CCW CCW 0,0,X"'20',1 SINGLE DISK STORAGE DRIVE
| DC F'24°" RELOCATION FOR *+24

| DC F'5'

| CCW 0,0,X'20',0

| CcCcwW 0,0,X'00",0

| CcCwW 0,0,X'00%,0

| DK2CCW CCW 0,0,X'20',6 2311 DISK STORAGE DRIVE
| CCwW 0,0,X'60",5

] DC X'08FFFFF8" RELOCATION FOR *-8

| DC F'O"

| ccwW 0,0,X'00',0

| CcCcwW 0,0,X'00%,0

| CCW 0,0,X'00",0

| I —_ —_

Figure 13. CCW Table

52

Lo e s e e s s S —— — — — — — ——— —— ——— —— ——— —— ———— — — {— — ——— — ot— fo— t— —— — — —— — — — —— — o—]

N

N/

A,

Table 9 is a listing of all modules of
the IBM System/360 Model 44 Programming
System as initially distributed. The list
also provides symbolic identifications and

phase names for each component, where
applicable.
Symbolic identifications allow the user

to associate any card image with the module
to which it belongs. The 3-character iden-
tification code -- four characters for
FORTRAN modules -- is found at the begin-
ning of the serialization field, columns 73
through 80 of each card image.

Phase names are applicable to all
modules that are members of the phase
library. Phase names do not apply to

FORTRAN programs that are members of the
module library.

APPENDIX D. SYSTEM MODULES

System Mod Level Directory

The system mod 1level directory is a
non-executable phase (BESYSLEV) that con-
tains the version and modification level.of
each component in the user's system. The
following statements can be used to obtain
a listing of the contents of the system mod
level directory:

//MODLEV JOB

//8YS002 ACCESS SDSABS,SAME=SYSABIL
// EXEC UTILS

PRTMEM INCL=BESYSLEV,SIZIN=(720,60)
/*

Table 9. System Components

i Module I Symbolic C;rd ip* T Pg;se Name }
| 2315 pisk Initialization . I BMG (BAA) “J|r ----- IN15 k
: 2311 Disk Initialization : BMF (BAB) = IN11 :
‘ Save/Restore : BAC '| BACDPRS :
} Save/Restore { BIB (BAC) % BACDPRS {
I| Print/Punch } BAD : BADPRPU {
‘ Absolute Loader : BBA : BBLDR1 :
{ Absolute Loader : BBA : BBLDR2 :
; System Construction : BCA : BCASC15

: IPL Phase I : BDA |l BDAIP15 {
: System Mod Level Directory : BEA 1, BESYSLEV

= System Communication Region ! BFA ‘ BFSUPVSR |
l SVC Handler } BFB I| BFSUPVSR }
{ Channel Scheduler : BFC = BFSUPVSR :
{ Device Routine Utilities : BFD : BFSURVSR {
I| Disk Initiator = BFE |I BFSUPVSR {
! SDSD ERP l BFF |l BFSUPVSR l
L L L J

Appendix D. System Modules 53

Table 9.

System Components (continued)

[Module I Symbolic Card ID2? I Phase Name
{ Tape Initiator o i BFG { -BFSUPVSR
= Card Initiator 1 BFH : BFSUPVSR
: Printer Initiator = BFI 1 BFSUPVSR
‘ Console Typewriter : BFJ ‘ BFSUPVSR
} I/0 Routines l BFK ‘ BFSUPVSR
= IPL Phase II Add/Subtract : BFL = BFSUPVSR
= Disk ERP Phase 1 } BGA } BGD1

1 Disk ERP Phase 2 { BGB ; BGD2

: Tape ERP Phase 1 : BGC : BGT1

} Tape ERP Phase 2 : BGD : BGT2

: Card ERP = BGE : BGCD

: Printer ERP : BGF 1 BPR

: Error Message Writer : BGG ‘ BGMG

= OPEN Phase 1 { BHA = BHOPEN1
= OPEN Phase 2 : BHB ‘ BHOPEN2
I OPEN Phase 3 } BHC % BHOPEN3
= OPEN Phase U : BHD : BHOPENUY
} CLOSE Phase 1 : BHE : BHCLOSE1
{ CLOSE Phase 2 % BHF : BHCLOSE2
{ Cancel Phase 1 { BHH : BHCNCEL1
: Cancel Phase 2 : BHI : BHCNCEL2
{ Dump Phase 1 } BHJ || BHDUMP1
} Dump Phase 2 } BHK ‘ A BHDUMP2
| | |

| | |

| Job Control Basic Phase | BIA | BIAJBBAS
= Job Control Phase 1 { BIB i BIBJBPH1
} Job Control Phase 2 = BIC ‘ BICJBPH2
% Job Control Phase 3 : BID = BIDJBPH3
% Job Control Phase 4 I BIE 1 BIEJBPHY4
i Job Control Phase 5 i BIF 1 BIFJBPHS

54

e e e e e e e e e e e e s e - S— — —— . —— —— —— e S— e S A st —— . —— — —— . o, o S o S—— —— —— — —— ——p— o s S s, e, s wnotnts s avre

iR,

Table 9. System Components (continued)

T T 1

| Module | Symbolic Card ID?% | Phase Name

_____ ———— 4 ——— 4+ _'

T T

| Linkage Editor | BKA I BKLNKEDT i
I		
Linkage Editor	BKA	BKLNKED1
I		
Linkage Editor] BKA	BKLNKED2	
Assembler Phase 1	BLA	BLAST
Assembler Phase 2	BLB	BLAZE
I I I		
[
Utilities Root Phase] BMA] BMUTILS		
[
Utilities Data Set Copy	BMB] BMUTCOPY	
Utilities Data Set Copy	BMB	BMUTPCHA
[I '		
Utilities Squeeze/Map	BMC	BMUTSQMP
Utilities Initialization Basic	BMD	BMUTINIT
[
Utilities Tape Initialization	BME	BMUTINTP
]		
Utilities 2311 Initialization	EMF] BMUTIN11	
Otilities 2315 Initialization	BMG] EMUTIN1S	
FORTRAN Compiler]	
FORTRAN Phase 1	BNA	BNAFORT
	!	
FORTRAN Phase 1	BNB	BNAFORT
FORTRAN Phase 1	BNC	BNAFORT
FORTRAN Phase 1	BND I BNAFORT	
I		
FORTRAN Phase 2	BNE	BNAALL
I		
FORTRAN Phase 2	BNF] BNAALL	
I		
FORTRAN Phase 3	BNG	BNAGEN
[
FORTRAN Phase 4	BNH	BNAEXT
I	I	
FORTRAN Phase 4 I BNI	BNAEXT	
FORTRAN Object Fix Up	BNX	BNAADJST
	I	
FORTRAN Expander	BNZ	BNAXPND
		I
		.
FORTRAN Library		Not Applicable
'		
Unit Table	BOA	
		I
IBCOM	BOB	i
FIOCS	BOC	
DIOCS I BOD		
1 L 4		

Appendix D. System Modules 55

Table 9. System Components (continued)

{ Module | 1 Symbolic Card ID* I ?hase Name]
{ Namelist] | BOE i }
= Object Fix Option { BOF : ;
= LINK/OVERLAY : BOH I| {
l Square Root } BOMA : =
: Single Real Exponentiation { BOMB { =
{ Single Real Log = BOMC % {
} Single Real SIN/COS : BOMD } }
} Single Real Arctan : BOME = }
= Ssingle Real Hyperbalic Tangent : BOMF = :
‘ Double Square Root } BOMG ‘ =
} Double Exponentiation : BOMH : }
= Double Log : BOMI : :
} Double SIN/COS = BOMJ |I =
{ Double Arctan l BOMK : :
: Double Hyperbalic Tangent : BOML ! =
: Complex Mult./Div. : BOMM % {
{ Complex Absolute Value { BOMN % !
} Complex Square Root : BOMP 1 {
= Complex Exp. } BOMQ 1 }
{ Complex Log : BOMR : :
{ Complex SIN/COS I| BOMS : :
} Complex Double Mult./Div. : BOMT : ,
: Complex Double Absolute Value = BOMU : :
: Complex Double Square Root = BOMV = {
} Complex Double Exponentiation = BOMW = }
{ Complex Double Log } BOMX = }
‘ Complex Double SIN/COS } BOMY 1 }
} Single Real Hyperbolic SIN/COS } BOMZ ‘ :
‘ Single Real Arc SIN/COS I BONA } :
1 Single Real TAN/COT = BONB Il {
: Double Hyperbolic SIN/COS I BONC : :
} Double Arc SIN/COS i BOND i J

56

/6 i,

Table 9. System Components (continued)

[Module E Symbolic Card ID?% T Phase Name]
{ Double TAN/COT o -_-} BONE —T_]
% Single Error Function { BONF 1 }
I Single GAMMA/LOG-GAMMA } BONG : :
% Double Error Function : BONH } }
} Double GAMMA/LOG-GAMMA = BONI |I :
; Exp. Integer to Integer = BONJ : }
: Exp. Real to Integer } BONK : }
{ Exp. Double to Integer I BONL 1 =
: Exp. Real to Real = BONM 1 {
{ Exp. Double to Double : BONN %

= Exp. Complex to Integer : BONP = {
l Exp. Double Complex to Integer : BONQ } :
‘ Integer MAX Function { BONR : =
: Real MAX Function { BONS : =
, Double MAX Function } BONT : :
: EXIT : BONU : }
: Sense Light Simulation { BONV % }
: Overflow } BONW 1 :
= Divide Check = BONX ‘ ;
: DUMP/PDUMP } BONY ‘I }
p==mmm 1 L 1
|*Object decks are identified using the same symbols as for the corresponding symbolic]|
1 decks, except where noted otherwise in piffntheses. . J

Appendix D.

System Modules

57

APPENDIX E: SAMPLE PROGRAM

This appendix contains a description of
the sample program provided by IBM to test
the functioning of the various components
of the programming system after system
construction. Included are a description
of the sample program, operating instruc-
tions, and a description of the program
execution results. More detailed operating
procedures can be found in IBM_ _System/360
Model 44 Programming System: Operator's
Guide, Form C28-6815.

DESCRIPTION

The sample program, which computes the
coefficients of Chebyshev polynomials, con-
sists of a FORTRAN main program and two
subprograms (one SUBROUTINE subprogram and
one FUNCTION subprogram). The sample pro-
gram is designed to operate with SYSRDR
assigned to a card reader and SYSLST
assigned to a printer. Statements within
the sample program card deck (BAZSAMPL)
ensure that SYSIPT is assigned to the same
device as SYSRDR and that SYSOPT is
assigned to the same device as SYSLST.

The BAZSAMPL card deck consists of:

1. Job control statements that assign

SYSIPT and SYSOPT to the same devices
as SYSRDR and SYSLST, respectively.

2. Job control statements for three
FORTRAN compilations.

3. Three sets of FORTRAN source state-

ments (one for the main program and
one for each subprogram).

4. Job control statements for a linkage

edit and for the execution of the
sample program.
5. Data deck for sample program execu-
tion.
The program processes two data cards as

its input.
of the expected output from the

Figure 14 shows a complete list
execution

58

of the program.

This list may be used for

checking output.

OPERATING INSTRUCTIONS

1. Mount the system residence disk.

2. Perform the initial programming load-
ing procedure for the system.

3. Place the BAZSAMPL card deck in the
card reader, ready the reader, and
press the End of File key.

4. Respond to messages written by the
system on SYSLOG (the console
printer-keyboard) as required.

OUTPUT

1. The Jjob control processor will read,
process, and print all job control
statements.

2. For each set of source statements, the
FORTRAN IV compiler will 1list the
following:

a. Heading including date and level.

b. The set of source statements.

c. Storage map including size of each
COMMON block and size of program.

3. The linkage editor will prepare and
list a storage map including the rela-
tive address of each external ref-
erence.

4. The executed sample program will 1list

the results of execution, which should
correspond to the list shown in Figure
4.

A

##SAMPLE PROGRAM EXECUTION HAS BEGUN.

COEFFICIENTS

T NyPHI,A,B

c b4y
C 4y
[by
[4y
C by

OF

o1}

1,

24

3,

by

CHEBYSHEV

N
SUMMATION
10

1.2700,

1.2700,

1.2700,

1.2700,

1.2700,

THE RESULTS AS SHOWN ABOVE ARE

COEFFICIENTS

T NyPHI,A,B

C 6y
[64
c -2}
c 6,
C 6y
C 6y
Cc 64

OF

0,

1,

2,

3,

by

5y

6,

CHEBYSHEV

N
SUMMATION
10

1.2700,

1.2700,

1.2700,

1.2700,

1.2700,

1.2700,

1.2700,

THE RESULTS AS SHOWN ABOVE ARE

#SAMPLE PROGRAM EXECUTION HAS COMPLETED.

Figure 14. Output of Sample Program

POLYNOMIALS

C NyI,4A,B

C NyI,AyB *COS IxPHI

0.2700

0.2700

0.2700

0.2700

0.2700

4.63396

8.58701

6.77608

4.42450

2.60144

CORRECT FOR THE PURPOSE OF THIS DEMONSTRATION.

POLYNOMIALS

C N’I'A'B

C NyI,AyB #COS I#PHI

0.2700

0.2700

0.2700

0.2700

0.2700

0.2700

0.2700

28.97987

54.65051

45.65968

33.42590

20.94514

10.70439

4.19585

CORRECT FOR THE PURPOSE OF THIS DEMONSTRATION.

Appendix E:

Sample Program

59

§ACCNT 16,26 SDSABS 7
§DUMP 16 SDSCAT 9
§FIX 20 SDSIPL 7
§FLPT 16 SDSPSD 11
§HGHCT 16 SDSREL 10
SLABEL 16 : SDSUAS 9
§PRNTMES 20 SDS000 11
E§REMARK 20 SDS001 11
§STAPE 16 summary 12
§TCON 16 area
E§TDEN 16 channel command word 19
E§TIMER 16 extended save 26
§TPAR 16 fixed 9
§TTRN 16 permanent 9
§TOND 16 register save 26
§UNITS 20 temporary 9
EWCHK 16 assembler instructions
changes 38
absolute form 5 FORTRAN compiler 20
absolute loader 5 supervisor 15
accounting routine 26 - assembler program
accounting information 31 reassembly of 19
adding it to system 27 SETA instructions 20
addressing within 26 assembly instructions, conditional
data generated by 31 FORTRAN library 20
entry point 26 supervisor 15
exit from 27 assignment
input to 26 change system unit 9
output from 26 permanent 9
phase library 26 symbolic unit 9
register usage 26 temporary 9
size of 26
ADD command 28 BACCOUNT 27
adding BDA0O000OO 13
accounting routine 27 BEA0OQOOO 13
new I/0 device 19 block count, current 38
unit control block 17,37 block-length (SDSCAT) 10
additional blocks, calculating number of
decks 14 SDSABS 7
unit control block 28 SDSREL 10
address of BNAADJST 20
channel command list 34 BOAUDPT 20
device dependent routine 42 boundary adjustment routine 20
device routine 34
entry point (accounting routine) 26 calculating number of blocks
first channel command 42 SDSABS 7
addressing with accounting routine 26 SDSREL 10
adjustment routine, boundary 20 card file control block 48
ALLOC card catalog, system 6
- SDSABS 8 CCW
SDSCAT 10 area 19
SDSIPL 7 list pointer 34
SDSPSD 12 table 52,19
SDSREL, 10 changes
sSDSUAS 9 assembler instructions 38
SDs000 11 new devices 34
sDs001 11 system unit assignment 9
allocation, space channel command
before first IPL 7 address of first 42
considerations 6 address of list 34
first data set 7 word area 19
planning 7 words (EXCP) 33

60

PN

channel program, execute 33
channel queue 18
code
error recovery 39
return (EXCP) 36
return (RCB) 39
comments in listing 20
comments modules, component 22
communication region, user 26
communications area
interprogram 30
intraprogram 30
comparison byte 32
compiler data set 7
compiler, FORTRAN 20
component comments modules 22
component, modified 22
components, system 53,5
size of 11
conditional assembly instructions
FORTRAN library 20
supervisor 15
conditions, default
FORTRAN 20
supervisor 15
construction procedure, system 12
construction program, system 13
control block
device routine 38
file 47,18
request 34,42
system 17
unit 45,17
counters 39
CTYP 19

data generated by accounting routine 31
data set reference number 21

date 13
datlen
SDSABS 8
SDSREL 10
sDsuUAL 9
sSDS000 11
sSDS001 11
DECK 19

decks, additional 14
default conditions
assembler program 19
FORTRAN library 20
supervisor 15
deleting
unit control block 18
unneeded features 15
devadr
ADD command 28
IPL record 7
SUB command 28
system construction program 13
device address 7
device-dependent routines 33
address of 42
interruption 33
error recovery 33
device end 36
device, new input/output 19
device routine 34
address 34

control block relationships 38
design 39
incorporating into system 37
information available to 42
number of 38
device table
initialization 50,19
job control 51,19
device types 29
directory entries, calculating number
SDSABS 7
SDSREL 10
directory, system mod level 53
dirlen

SDSABS 8
SDSCAT 10
SDSREL 10

disk file control block 47
disk initialization program 12
distribution tape 5

DVADR 12

EDATE 13
editing, system

see: system editing
ending location of supervisor 23
ENDTABLE 21
entry point of accounting routine 26
EQU instructions

NCCW 17
NCHQ 17
NDEV 17
NFCB 17
NSUT 17
NUCB 17
NXCA 17

error condition 36
error counts 38
error messages (FORTRAN) 20
error recovery

code 39

operations 37

program in phase library 37

routines (EXCP) 33
example of

editing 23

print/punch program 6
EXCP level programming 33
execute channel program SVC 33
exit from accounting routine 27
expander program (FORTRAN) 23
extended save area 26
EXTRACT supervisor call 32,26
FCB 18 }

pointer 18

table 18
FCBCT 38
fifteenth unit 14
file control block 18

card 48
disk 47
fields 48

pointer 18
relationship to device routine 38
table 18
first channel command, address of 42
first data set (space allocation) 7

Index

61

first IPL 14
space allocation before 7

FIX operand 9

FIX option 14

fixed area 9

flag, postrequest 42,37

FMT 8

form of distribution 5

FORTOPT 20

FORTRAN
assembler instructions 20
conditional assembly instructions
default conditions 20
error messages 20
expander program 23
number of units 20
reassembly of components 20
SETA instructions 20
symbolic language program 23
units 20

frequently used data sets 7

halt I/0 instruction 37

INCLUDE statement 27
incorporating device routine into
system 37
increasing number of units 20
index number 21
system unit 42
index, system unit 34
information
available to device routine 42
timing 26
INITIAL control card 12
initial operative programming system

initial program loading procedure 14

ADD command usage 28

fifteenth unit 14

first 14

FIX, option 14

maximum number of units 14

operator commands 14

record 6

sample input deck 14

SET command 14

space allocation 7

SUB command usage 28

SYS004 & SYs005 14
initialization device table 19

fields 50

modifying 38
initialization program, disk 12
initializing system residence volume
input deck, sample 14
input to accounting routine 26
input/output block 35,33

device routine 38
input/output interruptions 36
INSERT supervisor call 31
instructions, assembler 38

FORTRAN 20

supervisor 15
instructions, conditional assembly

FORTRAN library 20

supervisor 15
instructions, privileged 34 ‘
interprogram communications area 30

62

20

5

12

interruption

analysis and error recovery 37 -

device-dependent 33

input/output 36

processing 36

program-controlled 37
intraprogram communications area 30
IOBCT 39

IOoCCwW 38
IOCNT1 and IOCNT2 39
IOECD 39
IOOPC 39
IORCD 39

IPL procedure 14

job control
device table 51,19
processor 26,5
table 6

KEEP parameter 27

LABEL card
SDSABS 8
SDSCAT 10
SDSIPL 7
SDSPSD 12
SDSREL 10
SDSUAS 9
SDS000 11
SDS001 11

library
FORTRAN 20
module 7
phase 6

LINK 19

linkage editor 5

LIST 19

listing

comments in assembler program 20
component comments modules 23
logical product (AND) 32
logical sum (OR) 32

maximum number of ADD commands 28

members, replacing module library 23

message, error (FORTRAN) 20
message, warning 9
modified component 22
modifying
initialization device table 38
system communication region 37
mod level directory, system 53
module library 7,5
ALLOC card 10
LABEL card 10
number of blocks 10
number of directory entries 10
replacement of members 23
size of system components 11
user programs 10
modules
component comments 22
system 53,25
multiple-step operations 39

NCCw 17,38
NCHQ 17,18

¢

L

NDEV 17,38

new devices, changes for 34
NFCB 17,38

NOTE statement 38

NSsuT 17,38

NUCB 17,38

number, data set reference 21
number, index 21

NXCA 17

one disk, editing using 24
optional tape 6

order of data sets (SDSIPL) 7
output from accounting routine 26

permanent area 9
permanent assignment 9
phase library 6,5
accounting routine 26
ALLOC card 8
error recovery program 37
interruption analysis 37
LABEL card 8
number of blocks 7
number of directory entries 7
size of system components 8,7
PHASE statement 27
POINT supervisor call 9
pointer
CCW list 34
FCB 18
ucB 18
postrequest flag
EXCpP 37
request control block 42
preparation. for
system construction 6
system editing 15
print/punch program 5
privileged instructions 34
procedure
initial program loading 14
summary 14
system construction 13
system editing 22
processing, interruption 36
processor, job control 26,5
product, logical 32

program
expander (FORTRAN) 23
sample 58

stand-alone 5

system support 5
program-controlled interruption 37
pseudo~-directory 11,7

ALLOC card 12

LABEL card 12

queue, channel 18

reassembly
assembler program 19
FORTRAN components 20
supervisor 15
reassigning units 21
record, IPL 6
recovery, error
code 39

operations 37
routines 33
reference number, data set 21
register
information for device routines 42
save area 26
usage 26
relocatable form 5
replace a UCB 18
REPLACE statement 15
replacement of module library members
request control block 34
device routine relationships 38
information available in 42
requirements, EXCP 33
residence volume, system 6,12
return code
EXCP 36
request control block 39

sample input deck 14
sample program 58
save area
extended 26
register 26
save/restore program 5
SDSABS 7,13
SDSAB2 15
SDSCAT 9
SDSIPL 7,13
SpspsD 11,7
SDSREL 10,7
SDSUAS 9,6
sSDsS000 11,7
sps001 11,7
SDS003 22,24
SET card 13
SETA instructions
assembler program 20
FORTRAN library 20
supervisor 16,15
SIO command 36
size of accounting routine 26
size of system components
SDSABS 8,7
SDSREL 11
space allocation 6
before first IPL 7
first data set 7
SDSABS 7
summary 12
specification of accounting routine 26
stand-alone disk initialization program
stand-alone programs 5
start input/output command 36
status 1 and status 2 21
SUB command 28
sum, logical 32
supervisor
ending location 23
reassembly 15
SETA instructions 16,15
supervisor calls
device routine 34
EXCP 33
EXTRACT 32
INSERT 31
POINT 9

Index

23

12

63

UPSAND 32
UPSOR 32
user communication region 31
WAIT 33
sVC 17 31
svc 18 32,26
svc 19 32
svc 20 32
SWSPH1 19
SYMBMAX 19
SYMBMIN 20
symbolic unit assignment 9
in distributed system 14
SYMBnnn 20
SYSLOG 13
system catalog 9,6
ALLOC card 10
LABEL card 10
system components
SDSABS 8,7
SDSREL 11
system construction procedure 12
initializing system residence Volume 12
preparation for 6
system construction program 13
additional decks 14
procedure 13
summary of procedure 14
system control blocks
file control block 17
request control block
unit control block 17
system control tables
channel command word 19
file control block 18
job control device 19
system unit 18
unit control block 17
system editing 5
optional tape 6
preparation 15
procedure 22
system mod level directory 53
system modules 53,25
system residence volume 6
additional decks 14
order of data sets 7
sbs000 11
SDs001 11
system support programs S
system unit
assignment 9
index 34
index number 42
table 20
system work data set
ALLOC card 11
LABEL card 11
SYS002 & SYS003 23
SYS004 & SYsS005 14

53,5

34,43

11,7

table
channel command word 52,19
file control block 18
initialization device 50
job control 9

job control device 51,19

64

system control 17
system unit 18,20
unit control block 17
tape
distribution 5
optional 6
tape file control block 48
temporary area 9
temporary assignment 9
timing information 26
tracks for user 12
tracks for VvIOC 13
track 0 12
two disks, editing using 22
TYPE 12
types, device 29

UCPND 38
UCPPT 38
UCPRE 38
UCPWE 38
UCRND 38
UCRRE 38
UCRWE 38

unit assignment
change system 9
permanent 9
symbolic unit 9
temporary 9

unit control block
ADD command 28
add for device routine 37
adding 17
delete 18

45,17

device routine relationship 38

fields 45
unit control block table 17
unit index number, system 42
unit index, system 34
unit table, system 18
units
fifteenth 14
increasing number of 20
reassigning 21
symbolic 14
UNITAB routine 21
UPDASMB1 19
UPDASMB2 19
UPDASMB3 19
UPDATE1 19
UPDATE2 19

user communication region 30,26

accounting information 31
data generated 31
extended save area 26
interprogram area 30
intraprogram area 30
supervisor call 31
switch byte 32,30
user program switch byte
user programs 10
user, tracks for 12
utilities processor 5

32,30

VOLID 12

volidx 7

vToc 12
space 12
tracks for

13

WAIT supervisor call 33
warning message 9
writing an accounting routine

XREF 19

26

Index

65

C28-6814-0

TSI

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
{International)

‘Y'$'n uT pajutad

0-%¥T89-820

P

./

LN

READER'S COMMENTS

Title: IBM System/360 Model 44 Form: C28-6814-0
Programming System
Systems Programmer's Guide

Your comments assist us in improving the usefulness of our publications; they are a major
part of the input used for technical newsletters and revisions.

Please do not use this form for technical questions about the system; it only delays the
response. Instead, direct your technical questions to your local IBM representative.

Corrections or clarifications needed:

Page Comment

If you wish a reply, please include your name and address below:

C28-6814-0

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES

Attention: PUBLICATIONS

B

®

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

POSTAGE WILL BE PAID BY . ..

IBM CORPORATION

1271 AVENUE OF THE AMERICAS
NEW YORK, N.Y. 10020

fold
FIRST CLASS
PERMIT NO. 33504
NEW YORK, N.Y.
I
]
|
]
|
]
|
I
I
L]
L]
L]
L]
]
]
L]
fold

‘¥°S°nN Ut pajutad

0-¥189-8¢0

Dot

