
"

\

IBM System/360 Operating System

MVT Control Program Logic Summary

Program Numbers 360S-CI-535

360S-DM-50B

File No. S360-36
Form Y28-6658-0

Program Logic

This publication introduces the internal logic of
the MVT control program of System/360 Operating System.
It contains general descriptions of the operating
environment of the control program, the initial program
loading procedure, and the job management, task manage­
ment, and data management functions. Detailed descrip­
tions of the implementation of these functions are in
the program logic manuals listed in Appendix B.

The MVT configuration of the control program is
designed for use with System/360 Models 40, 50, 65, and
75 having 262,144 (256K) bytes or more main storage.

Program Logic Manuals are intended for use by IBM
customer engineers involved in program maintenance, and
by system programmers involved in altering the program
design. Program logic information is not necessary for
program operation and use; therefore, distribution of
this manual is limited to persons with program mainten­
ance or modification responsibilities.

Restricted Distribution

PREFACE

This publication contains a general de­
scription of the internal logic of
System/360 Operating System control program
(MVT configuration). It is an introduction
to the more detailed program logic manuals
of the control program.

Since the control program is dependent
on the hardware characteristics of
System/360, the first section of this pub­
lication discusses the operating environ­
ment of the control program. The second
section describes how the control program
is brought into storage and initializea.
The last three sections describe the three
functional areas of the control program:
job management, task management, and data
management. A glossary provides defini-

First Edition (July 1967)

This publication corresponds to Release 12.

tions of many of the terms used in discuss­
ing the control program.

Before using this publication, the read­
er should be familiar with the contents of:

IBM System/360: Principles of Operation,
Form A22-6821

laM System/360 Operating System: Con­
cepts and Facilities, Form C28-6536

IBM System/360 Operating System: Super­
visor and Data Management Services, Form
C28-6646

Specifications contained herein are subject to change from time to time.
Any such change will be reported in sUbsequent revisions or Technical
Newsletters.

This publication was prepared for production using an IBM computer to
update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Copies of this and other IBM publications can be obtained through IBM
Branch Offices.

A form for reader's comments appears at the back of this publication.
It may be mailed directly to IBM. Address any additional comments
concerning this publication to the IBM corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y. 12602

"-_.- -----~ ._-,-- ----- "-------~------~--~-- --

c

c

INTRODUCTION • • • • • •

Operating Environment. • • • •
Routine Characteristics
Organization of Main Storage. •

5

5
5
5

Loading and Initializing the Nucleus 5

Functions of the Control
Job Management.

Program • 5
5
5
6

Task Management • •
Data Management • • •

OPERATING ENVIRONMENT.

Routines in Supervisor State •
Resident Routines •
Nonresident Routines ••••

Routines in the Problem State.

Organization of Main Storage •
Fixed Area. • • • • • • • •

SVC Transient Areas •••

7

7
7
7

8

I/O supervisor Transient Area.

8
8
9
9
9
9
9

System Queue Area •
Link Pack Area.
Dynamic Area. • • • • • • •

LOADING AND INITIALIZING THE CONTROL
PROGRAM • • • • • • • • • • • • • • 11

Loading the Nucleus •• · • 11

Initializing the Nucleus • • • • • • 11

System Restart • • • • • 11

JOB MANAGEMENT • • • 12

Command Processing • • • • 12
Reading the Command • • • • • 13

Console Communications Task. • • • 13
Reading Tasks. • • • • • • • 13

Scheduling the Command. • • • 13
Executing the Command • • • • • • • • 14

Job Processing • • • • • •
Reading Tasks • • • • •

Commands and Data Sets •
Termination of a Reading

Initiating Tasks. • • • ••
Preparing of Job Step for
Execution • • • • • • •

Terminating a Job Step •
Writing Tasks •

TASK MANAGEMENT. •

• • • 14
• • 15

• • • 16
Task. • • 16

• • • 16

• • • 16
• • • • • 18

• • • 18

• • 19

CONTENTS

Interruption Supervision • • • • • • • • 19
Analyzing the Interruption. • • • • • 19
Passing Control to a Program cif a

Task • • • • • • •• • • • • 20

Task Supervision • • • • 20
Task Control Block Queue. • • • • 20
Request Block Queue • • • • • • 20

• • • • 21 Main Storage Supervision
Storage Allocation in the Dynamic
Area • • • • • • • • • • • • • • 22

Storage Allocation
subpools • • • • •

Storage Allocation in
Queue Area • • • •

in a Region • • 22
• • • • • • 22

the System

Contents Supervision •
Contents Directory. • •
Load List • • • •

Timer supervision.
Pseudo-Clocks
Timer Queue • • •

System Environment Recording •

• • 24

• • • • 24
• • • 26
• • • 26

• • 26
• • 28
• • 28

SERO Routine. • • • • • •
• • 28

• 28
SER1 Routine. • • 28

DATA MANAGEMENT. 29

Assigning Space on Volumes • • • 29

Maintaining the Catalog ••• • • 29

Support Processing for I/O Operations •• 30
Open Processing • • • • • • • • • • • 30

Insuring Proper Volume Mounting •• 30
Constructing Control Blocks. • • • 30
Loading Access Method Routines • • 32

Close Processing. • • •• • ••• 32
End-of-Volume processing. • • • • • • 32

processing I/O Operations. • • • • • • • 32
Starting an I/O Operation • • • • 32

Access Methods • • • • • 33
EXCP Routine • • • • • • • • • • • 33

Terminating an I/O Operation. • • • • 34

GLOSSARY • • • • 35

APPENDIX A: LIST OF ACRONYMS. • • • 37

APPENDIX B: MVT CONTROL PROGRAM LOGIC
MANUALS • • • • 38

INDEX •• 41

ILLUSTRATIONS

FIGURES

Figure 1.
Storage •

Figure 2.
IPL •.•

Figure 3.
and Phases

Figure 4.
Command is

Areas and Contents of Main

Upper Main storage After

Relationship Between Tasks
of Command Processing.
Flow of Control When a
Issued via a Console

8

9

• 12

Device. • • • . • • • • • • • • • • • • 13
Figure 5. Information Flow Between
Control Statements and Blocks of a
Reading Task. • • • • . • • • • . • . • 15

Figure 6. Relationship of Blocks of
Initiating Task to Blocks of Reading
Task. • • • • • • 17

Figure 7. Concept of the TCB Queue •• 21

Figure 8. Example of the
Modification of the RB Queue During a
Task. • • • • • • • • • • • • • • • 22

Figure 9. Initial Format of a Region. 23
Figure 10. Example of Main Storage
Allocation. • • • • • • • • • •• • 25

Figure 11. Example of the
Modification of Content Directory
During a Task • • • • • • • • •• • 27

Figure 12. Flow of Information During
the Merges of the Open Routine. • • • • 31

Figure 13. Relationship Between a
Processing Program, an Access Method
and the I/O Supervisor. • •.• • • • 32

Figure 14. Flow of Control for an I/O
Operation • • • • • • • • • • •• • 33

[·'1 '\..J

("'1
\..."

\

c

c

The multiprogramming with a variable
number of tasks (MVT) configuration of
System/360 Operating System allows the mul­
tiprogramming of system functions and up to
15 jobs. The control program in the oper­
ating system performs supervisory and ser­
vice functions that increase the efficiency
of job step execution.

OPERATING ENVIRONMENT

At any given time in a multiprogramming
environment, main storage can contain pro­
grams and data from several independent
sources. These programs and data relate to
both the tasks currently in the system, and
the control program that supervises the
whole operation. The characteristics of
the control program routines and the stor­
age that they occupy are such that programs
of one job step cannot affect the control
program, its data, or the programs and data
of other job steps.

ROUTINE CHARACTERISTICS

To maintain exclusive control over, and
to ensure the integrity of all programs,
the control program takes advantage of
hardware characteristics of the system/360.
One such characteristic -- the two operat­
ing states of the CPU permits the
control program to restrict the use of
certain control and I/O instructions (i.e.,
the privileged instructions). In the oper­
ating system, only certain control program
routines operate in supervisor state.

ORGANIZATION OF MAIN STORAGE

The organization of main storage for the
operating system is based on another hard­
ware characteristic - the protection fea­
ture. The 16 protection keys in System/360
allow the control program to protect its
own main storage, and the main storage
assigned to up to 15 job steps. Main
storage in the MVT configuration of the
operating system is divided into four
areas:

• Fixed area, which contains the supervi­
sory portion of the control program
(the nucleus).

• system queue area, which contains data
(queues and control blocks) required by
the control program.

INTRODUCTION

• Link pack area, which contains programs
whose usage can be shared during
concurrently-executing job steps.

• Dynamic area, which contains programs
and data used during the job steps.

These areas are establiShed when the
control program is loaded and initialized.

LOADING AND INITIALIZING THE NUCLEUS

Before the operating system can be used,
the nucleus must be loaded and initialized.
The Initial Program Loading (IPL) program
reads the nucleus into main storage from
the system residence volume. The Nucleus
Initialization Program (NIP) initializes
the nucleus by setting up tables and
calculating the address of various routines
and the areas of main storage. After IPL
and NIP are complete, the control program
is ready to supervise processing of user
specified jobs.

FUNCTIONS OF THE CONTROL PROGRAM

The control program has three functions:
job management, task management, and data
management.

JOB MANAGEMENT

Job management is the processing of
communications from the programmer and
operator to the control program. There are
two types of communications: operator com­
mands, which start, modify, and stop the
processing of jobs in the system, and job
control statements, which define the work
being entered into the system. Processing
of these commands and statements is
referred to as command processing and job
processing respectively.

Most of the job management routines
operate in the problem state.

TASK MANAGEMENT

Task management is primarily a supervi­
sory function. The routines that perform

Introduction 5

task management operate in supervisor
state, and are often collectively referred
to as the supervisor. The supervisor con­
trols all the tasks in the system. This
control includes allocating some system
resources to tasks, passing CPU control to
the proper routine when a control program
service is requested for a task, determin­
ing the priority of performance among the
tasks, and passing control to routines of
the tasks.

6

DATA MANAGEMENT

Data management routines perform opera­
tions associated with input/output devices.
This includes allocating of space on
direct-access volumes, storing, naming, and
cataloging of data sets, and scheduling of
I/O operations. The data management rou­
tines are primarily service routines. All,
except the access method routines, run in
supervisor state.

()

("
"', '

c

c

The control program has characteristics
independent of the functions (i.e., job
management, task management, and data
management) that it performs. These char­
acteristics affect both the control program
routines, and the way these routines use
main storage.

The control program has routines that
operate in each of the two operating
states, supervisor state and problem state.
Therefore the use of certain control and
I/O instructions is restricted to certain
routines.

Organization and assignment of main
storage in the operating system is based on
the protection feature of System/360. The
protection feature allows sections of main
storage to be reserved for use only, by
certain routines. The operating states and
the protection feature are described in the
publication IBM System/360 Principles of
Operation.

ROUTINES IN SUPERVISOR STATE

Only certain routines of the control
program operate in supervisor state. These
routines can execute a special group of
instructions called privileged instruc­
tions, which perform functions such as
starting I/O operations, enabling and disa­
bling interruptions, and changing storage
protection keys. Thus since the control
program has exclusive control over the
privileged functions, it can insure the
integrity of all the programs and data in a
multiprogramming environment.

control program routines in the supervi­
sor state perform both supervisory and
service functions. Some are resident, some
are nonresident.

RESIDENT ROUTINES

The resident routines of the control
program (the nucleus) are loaded into main
storage during the initial program loading
(IPL) procedure, and are never overlaid by
another part of the operating system. The
nucleus contains all the task management
routines (except for some nonresident SVC
routines), one job management routine, and
the I/O supervisor and BLDL routine of data
management. The routines in the nucleus
operate under program status words (PSWs)
with protection keys set to zero. The
nucleus is one load module that is a member

OPERATING ENVIRONMENT

of the NUCLEUS
(SYSl. NUCLEUS) •

partitioned data set

The routines in
primarily supervisory
vice routines of the
dent SVC routines.

the nucleus perform
functions. The ser­
nucleus are the resi-

SVC routines are entered as a result of
SVC interruptions, and perform control pro­
gram services. There are four types of SVC
routines:

• Type 1 SVC routines, which are part of
the nucleus and are disabled (masked)
for all interruptions except machine­
check interruptions.

• Type 2 SVC routines which are
the nucleus but may be
(interruptable) for part of
operation.

part of
enabled

their

• Type 3 SVC routines, which are nonresi­
dent, may be enabled, and are not
larger than 1024 bytes.

• Type 4 SVC routines, which are nonresi­
dent, may be enabled, and are larger
than 1024 bytes. They are brought into
main storage in segments of 1024 bytes
or less.

NONRESIDENT ROUTINES

The nonresident control program routines
that operate in supervisor state are types
3 and 4 SVC routines, I/O error-handling
routines, and part of a system environment
recording (SER) routine.

The nonresident SVC routines reside in
the SVCLIB partitioned data set
(SYS1.SVCLIB), and they operate either from
areas defined in the nucleus called SVC
transient areas or from the link pack area.
Like the resident routines, nonresident SVC
routines operate under PSWs with protection
keys of zero.

As long as an SVC routine (or a module
of an SVC routine> is in a transient area,
that copy is used as many times as it is
requested.

The I/O error-handling routines reside
on SYS1.SVCLIB and operate from the I/O
supervisor transient area. They are called

Operating Environment 7

by the I/O supervisor, and either correct
an error that occurred during an I/O opera­
tion, or post a code for an access method
routine.

The nonresident portion of the SER rou­
tine resides in the LINKLIB partitioned
data set (SYS1.LINKLIB). The SER routine
saves critical information about the system
when a machine-check interruption occurs.

ROUTINES IN THE PROBLEM STATE

The control program routines that oper­
ate in the problem state are job management
routines and the access method routines.
These routines operate from the dynamic and
link pack areas. Job management routines
operate under PSWs having protection keys
of zero because these routines store data
in the nucleus and system queue area.
Access method routines operate under the
same PSWs as their callers. The job man­
agement routines reside on SYS1.LINKLIB,
the access method routines on SYS1.SVCLIB.

Main Storage

LINK PACK AREA
(Loaded During I PL)

DYNAMIC AREA

REGION
(Loaded During Processing)

SYSTEM QUEUE AREA
(Used During Processing)

FIXED AREA
(Loaded Duri n9 I PL)

SVC
Transient
Areas

I/O Supervisor
Transient Area

ORGANIZATION OF MAIN STORAGE

The relative positions of the four areas
of main storage, and the program or data
that occupies these areas is shown in
Figure 1.

FIXED AREA

The fixed area is that part of main
storage into which the nucleus is loaded at
IPL time. The storage protection keys of
the fixed area are zero so that its con­
tents can be modified by the control pro­
gram only. The fixed area also contains
small areas called transient areas into
which certain nonresident routines are
loaded when needed.

Transient areas are defined in the
nucleus, and embedded in the fixed area.
There are two types of transient areas: SVC
transient areas and the I/O supervisor
transient area; these areas are used by
nonresident SVC routines and nonresident
I/O error-handling routines, respectively.
Like the rest of the routines in the fixed

Reenterable
Routines

SYSI.
LI NKLIB
(Not necessari Iy
on SYSRES)

SYSI.
SYCLIB

SYSI.
NUCLEUS

Figure 1. Areas and Contents of Main storage

8

o

C:
i

C:

area, the transient area routines operate
with protection keys of zero. All routines
that operate from transient areas reside on
SYS1.SVCLIB.

SVC Transient Areas

An SVC transient area is 1024 bytes in
length and is reserved for nonresident SVC
routines. In the MVT configuration, the
number of SVC transient areas is specified
at system generation. The minimum number
is two. When a nonresident SVC routine (or
a module of nonresident SVC routine) is
required and is not already in the link
pack area or one of the SVC transient
areas, the routine or module is read into
an available transient area. If no SVC
transient area is available, and if none
can be made available, the task for which
the SVC routine was called is put in the
wait state until an area becomes available.
A transient area is available when it is
empty or when the SVC routine that occupies
it has completed its operation.

If no SVC transient area is available
for an SVC routine, a transient area cur­
rently being used can be appropriated. An
area is appropriated when the task requir­
ing the area has a higher priority than all
the tasks that are currently using the
area. When several transient areas fall
into this category, the area appropriated
is the one having the lowest highest­
priority user. The appropriated transient
area is loaded with the SVC routine for the
higher priority task. The SVC routine that
is overlaid because of this higher-priority
requirement is later reloaded so that it
can complete its operation.

I/O supervisor Transient Area

There is one I/O supervisor transient
area. It is approximately 400 bytes in
length and is reserved for nonresident I/O
error-handling routines that are brought
into main storage for the I/O supervisor.

SYSTEM QUEUE AREA

The system queue area is adjacent to the
fixed· area and provides the main storage
space required for tables and queues built
by the control program. The Nucleus
Initialization Program (NIP) sets up the
system queue area. Its storage-protection
key is zero so that it can be modified by
control program routines only. The data in
the system queue area indicates the status
of all the tasks and many of the resources
in the system.

LINK PACK AREA

The link pack area contains reenterable
routines that reside on SYS1.LINKLIB and
SYS1.SVCLIB, aQd track addresses of other
routines on SYS1.LINKLIB. The routines in
the link pack area are used for all the
tasks that require them, and need not be
loaded into the various regions of main
storage. The list of track addresses (the
BLDL list) reduces the time required to
find the listed routines on SYS1.LINKLIB.
These routines are loaded into the region
of the task that requires them. Types 3
and 4 SVC routines in the link pack area
operate in supervisor state. The others
generally operate in the same state as the
routines that called them. The organiza­
tion of the list and routines in the link
pack area is shown in Figure 2.

BLDL list

Reenterable routines from
SYS I. SVCLI Band SYS I. LI N KLI B
(Except for SVC modu les)

Modules of Types 3 and 4
SVC routines

Master Scheduler Region

Dynamic Area

Link
Pack
Area

Figure 2. Upper Main Storage After IPL

The user selects the routines that he
wants in the link pack area by creating
lists of the desired routine names. At IPL
time, the NIP program loads the indicated
routines starting at the highest part of
main storage and working downward. After
nucleus initialization, the contents of the
link pack area cannot be modified unless
the IPL procedure is repeated.

In addition to user-specified routines,
several system-specified job management and
access method routines also reside in this
area.

DYNAMIC AREA

The dynamic area fills the main storage
requirements of job steps and system tasks.
This area is all the main storage between
the link pack area and the system queue
area. As jobs steps and system tasks are
initiated, storage from the dynamic area is
allocated to them in blocks called regions.
All storage requested by programs of a

Operating Environment 9

given step or task is assigned from its
region.

Regions are assigned from the highest
available block of dynamic area storage
that is large enough to fill the request.
A region is assigned when the step or
system task is initiated, and, remains
assigned for the life span of the step or
task. Any released region becomes part of
the free storage in the dynamic area and is
again available for allocation to a job
step or system task.

The region for the master scheduler task
is assigned at IPL time by the Nucleus
Initialization Program. This region is
adjacent to the link pack area (see Figure

10

2), and remains assigned for as long as the
control program is in storage.

A region assigned to a job step has a
protection key value from 1 to 15 associat­
ed with it. As 2K blocks of storage within
this region are assigned during the step,
the protection key of each block is set to
the associated value. (Storage assigned to
subpool 252 is an exception~ its key
remains set to zero.) Unassigned blocks of
storage within a job step region have their
protection keys set to zero.

Regions assigned to system tasks have
protection keys of O. Protection keys of
dynamic area storage that is not part of
any region are also set to O.

(~

c

c

Before the operating system can be used,
the nucleus must be loaded from the system
residence volume into main storage, and
initialized. These functions are performed
by the Initial Program Loading (IPL) pro­
gram, and the Nucleus Initialization Pro­
gram (NIP) respectively. These programs
are described in the publication IBM
System/360 Operating System: Initial Pro­
gram Loader and Nucleus Initialization Pro­
gram, Program Logic Manual, Form Y28-6661.

LOADING THE NUCLEUS

Part of the initialization procedure for
the system residence volume was the placing
of two IPL records at track 0, cylinder 0
preceding the standard volume labels.

To load the nucleus, the user specifies
the system residence volume and presses the
LOAD button on the console. This action
causes the first of the two IPL records to
be read intq location 0 of main storage and
to be given CPU control. This record reads
the second IPL record which, in turn, reads
the IPL program into main storage.

The IPL program clears and determines
the size of main storage, and sets all the
storage protection keys to zero. The IPL
program then re.locates itself into the
upper portion of main storage, clears its

.old location, and loads the nucleus into
the lower portion of main storage. After
completing the operation, the IPL program
passes control to the Nucleus Initializa­
tion Program.

INITIALIZING THE NUCLEUS

The Nucleus Initialization Program (NIP)
is a control section assembled into the
nucleus when the system is generated. NIP
initializes tables in the nucleus, deter­
mines addresses and storage boundaries of
routines and tables in the nucleus, checks
and sets the interval timer, defines the
boundaries of the system queue area, loads
the link pack area, and assigns the region
of the master scheduler task. NIP then

LOADING AND INITIALIZING THE CONTROL PROGRAM

passes control to a routine of the master
scheduler task.

The initializing routines of the master
scheduler task initialize the input and
output work queues, open the SYS1.LOGREC
data set, and execute any automatic com­
mands specified during IPL. After the
master scheduler has completed its initial­
izing functions, it is placed in the wait
state. If the automatic commands did not
result in any tasks that can now be per­
formed, the system is placed in the wait
state.

SYSTEM RESTART

If during later processing, a system
failure requires that the IPL procedure be
repeated, the operator can preserve, at
least, part of the contents of the input
and output work queues. This preservation
of queues allows the system to restart
after the IPL procedure is complete without
rereading all the jobs that were in the
system when the failure occurred. The
system restart routines purge the queues of
unprocessable entries so that the remaining
entries can be properly processed. The
queue entries that are preserved are:

• Those representing jobs read into the
system but not yet started.

• Those representing system messages and
SYSOUT data sets.

The queue entries for jobs being proc­
essed when the failure occurred are purged
from the queues, and a message is issued to
the operator indicating that these jobs
must be resubmitted. Any temporary data
sets of these jobs are purged, but system
messages and SYSOUT data sets that are
complete are written.

The system restart routines that modify
these queues during IPL are described in
the publication IBM System/360 Operating
System: MVT Job Management, Program Logic
Manual, Form Y28-6660.

Loading and Initializing the Control Program 11

JOB MANAGEMENT

Job management routines ~~ocess communi­
cations from the programmer and the opera­
tor to the control program. This process­
ing falls into two categories: command
processing and job processing.

Command processing is the reading, sche­
duling, and executing of operator commands
issued via either a console device or an
input job stream. Job processing is the
reading and interpreting of control state­
ments, the initiating of job steps defined
in these statements, and the writing of
system messages and system output (SYSOU~)
data sets from the intermediate volumes on
which they were originally placed.

Job management routines perform several
tasks to accomplish command processing and
job processing. The job management tasks
are referred to as system tasks to dis­
tinguish them from the user tasks that are
performed by processing programs. The job
management tasks and the routines that
perform them are described in IBM
System/360 operating system: MVT Job Man=
agement, Program Logic Manual,.

Commands issued via an

Input Job uam

When a system task is created, it is
assigned a region of ma'in storage. The
routines for this task that are not in the
link pack area are loaded into and operate
from the region. Regions of system tasks
have storage protection keys of zero. Rou­
tines that perform system tasks (unlike
those that perform user tasks> operate
under a PSW with a protection key of zero
so that they can write not only in their
regions but also in the system queue area.

COMMAND PROCESSING

Processing of commands has three phases:

• Reading the command
• Scheduling the command
• Executing the command

These three phases are performed under
various system tasks. Some commands have
all three phases performed as part of one
task. However, processing of most commands
requires several system tasks. Figure 3
shows the relationship between the system
tasks and phases of command processing.

Commands Issued
via a Console

Read and
Analyze
Command

Reading Task Console Communications Task

Read

-~-

1
Schedule

--1- -
Does Command
Require a Task

be Attached ~

No ~
Post Post

Read and
Analyze

C~[

Does Command
Require a Task

Yes be Attached

No

__ L ____ ~ __ _
Master Scheduler Task

r Complete
Process i n9 of
Command

Execute

-------1--
Continue Reading
the Input Job
Stream

Attach Task to
Complete Processing
of Command

Attach

Command Execution Task

Execute
Command

Complete
Processing of
Command

Wait

Figure 3. Relationship Between Tasks and Phases of Command ProceSSing

12

c'

c)

READING THE COMMAND

Operator commands are entered into the
system through either a console device or
an input job stream. Reading of commands
entered via a console device is performed
by routines operating under the console
communications task; reading of commands
entered via an input job stream is per­
formed by routines operating under the
reading task associated with that input job
stream.

Console Communications Task

The console communications task is
created at system generation (SYSGEN) time
when its task control block (TCB) is assem­
bled. The console communications task does
not have a region of its own, its storage
requirements are filled from the region of
another command processing task the
master scheduler task.

Figure 4 shows the flow of control when
a command is issued via a console device.
The operator pushes the "Attention" button
or readies that device, causing an I/O
interruption to occur; CPU control is
passed first to the supervisor and then to
the I/O supervisor. After the I/O supervi­
sor determines the cause of this interrup­
tion, it passes control to an attention
routine which issues a POST macro instruc­
tion for an event control block (ECB) being
awaited by the console communications task.
The supervisor's processing of this
"posting" includes readying the console
communications task, and passing CPU con­
trol to a routine of this task.

The reading of commands for the console
communications task is performed by the
Console Wait routine and the Console I/O
routine.

The Console Wait routine resides in the
nucleus, and is the controlling routine in
the console communications task. It is the
first routine that receives control for
this task, and is the routine that issues
the WAIT macro instruction to return the
task to the wait state when it is complete.
The Console Wait routine receives CPU con­
trol from the supervisor, and issues an SVC
72 instruction causing control to be passed
to the Console I/O routine.

The Console I/O routine is a type 4 SVC
routine that reads a command from a console
device into main storage. This routine
requests main storage to receive the com­
mand and issues an EXCP macro instruction
that enables the operator to transmit the
command. When the command has been trans­
mitted, the Command Scheduling routine
schedules the command by determining wheth-

er or not execution of the command requires
another system task.

Operator Readie:t
theDevice~

I/O Interruption

Fixed Area

SUPERVISOR

Analyze
Interruption

I/O Supervisor

NOTE: While Command is being transmitted, other processing is performed.
Control returns to the Console I/O routine after the command is transmitted.

Figure 4. Flow of Control When a Command
is Issued via a Console Device

Reading Tasks

When a command is issued via an input
job stream, the initial processing and an
analysis of this command is part of the
reading task associated with that input job
stream (see Figure 3). The Interpreter
Control routine of the reading task detects
the command and invokes the Command Sche­
duling routine. This routine analyses and
schedules the command for the reading task
in the same way as it does for the console
communications task. After completing its
operation for a reading task, the Command
Scheduling routine returns CPU control to
the Interpreter control routine which con­
tinues reading the input job stream.

SCHEDULING THE COMMAND

Scheduling a command is the storing of
the command, and the readying of another
system task to continue the command's proc­
essing. The Command Scheduling routine (a

Job Management 13

type 4 SVC routine) operates under either
the console communications task (when the
command was issued via a console device),
or a reading task (when the command was
issued via an input job stream).

If execution of the command does not
require additional tasks, the Command Sche­
duling routine completely processes the
command, and returns control to the routine
that called it. In the console communi­
cations task, the Console I/O routine
receives control and passes it to the
Console Wait routine; the Console Wait
routine places the task in the wait state.
In the reading task, control is returned to
the Interpreter Control routine which con­
tinues reading the input job stream.

However, processing of a command usually
requires additional system tasks for execu­
tion. If the task for executing the com­
mand does not yet exist, the Command Sche­
duling routine schedules execution of a
command by creating a command scheduling
control block (CSCB), placing the CSCB in
the CSCB queue, and posting an ECB being
awaited by the master scheduler task. The
routines of the master scheduler task
attach the task needed for executing the
command.

If the system task for executing the
command is already in the system, an ECB in
the CSCB for that task is posted.

The CSCB queue contains a CSCB for each
command that has a task created for its
execution. Command processing routines use
this queue to associate commands with the
tasks or functions that the commands
affect. When creation of a new task is
required, a CSCB is created, and an indica­
tor is set in it (i.e., the CSCB is made
pending.)

The routines of the master scheduler
task check the CSCB queue and attach a task
for each CSCB that is pending. The Attach
routine of this task scans the CSCB queue
until it finds a pending CSCB. When one ~s
found, the Attach routine removes it from
the pending status, and attaches the
appropriate task. The Attach routine then
continues scanning the CSCB queue, attach­
ing a task for each pending CSCB. When no
more pending CSCBs are found, the wait
routine of the master scheduler task causes
the task to be placed in the wait state.

EXECUTING THE COMMAND

A given command is executed during a
system task that is in one of three cate­
gories:

14

• The task is the same task during which
the command was read (i.e., the console
communications task or a reading task).

• The task is already in the system and
has functions other than execution of
the command.

• The task is created especially for
execution of this command.

A discussion of which commands are in
each of the three categories, and the tasks
required for processing of these commands
is given in IBM System/360 Operating Sys­
tem: MVT Job Management, Program Logic
Manual. Relatively few commands are exe­
cuted under the task that read them. When
the Command scheduling routine detects such
a command, it performs all the required
processing and returns control to the rou­
tine that called it.

Some tasks can include the processing of
more than one type of command. For exam­
ple, the routines that process a MODIFY
command can operate under control of a
writing task created in response to an
earlier START WTR command.

The job processing tasks (Le., reading,
writing and initiating tasks) are created
especially for execution of a given com­
mand. Each time a START command is issued,
a new job processing task is created for
the requested function.

JOB PROCESSING

Job processing is made up of three types
of tasks:

• Reading tasks, which control the read­
ing of input job stream and the inter­
preting of the control statements in
these input streams.

• Initiating tasks, which control the
initiating of job steps whose control
statements have been read and inter­
preted. Termination procedures are
also part of initiating tasks.

• writing tasks, which control the trans­
ferring of system messages and user
data sets from direct-access volumes on
which they were initially' written to
some other external storage medium
(usually a tape, printer, or punch).

These tasks are created in response to
START RDR, START INIT, and START WTR com­
mands respectively. Whenever such a com­
mand is issued, the resulting command proc­
essing includes the attaching of a reading,
initiating, or writing task by a routine of
the master scheduler task.

o

c

C:

There may be more than one of each of
the job processing tasks. The user may
have input job streams read from several
input devices by issuing a START RDR com­
mand for each input stream. Each command
results in a reading task being attached
for the associated device. The user may
have system messages or data sets being
written on several output devices by issu­
ing a START WTR command for each device: a
writing task results from each command. Up
to 15 initiating tasks can exist concur­
rently. Each such task is created in
response to a START INIT command.

The command processing routine that
attaches any job processing task does not
test to see whether a reader, writer, or
initiator is to be started. The first
routine to receive control in any job­
processing task is in the link pack area.
This routine requests a region of main
storage for the task, and invokes the
System Task Control routine. The System
Task Control routine is loaded into the
region, identifies which type of job
processing task it is currently performing,
and then invokes the appropriate reading,
writing, or initiating routine. The rou­
tines that perform the three job processing
functions are sometimes called the job
scheduler.

READING TASKS

When the current task is a reading task,
the System Task Control routine passes
control to the Interpreter Control routine.
This routine reads the input job stream
from the device associated with the task.,
and builds control blocks and tables from
the control statements in the input job
stream. The Interpreter Control routine
resides on SYS1.LINKLIB: it operates from
the region assigned to the particular read­
ing task unless it is already in the link
pack area.

The primary purpose of reading tasks is
to place entries into the input work queue
for use during initiating tasks. The input
work queue is made up of control blocks and
tables built during all the reading tasks
in the system. When construction of the
control blocks and tables for a given job
are complete, the Interpreter Control rou­
tine inVOkes a queue manager routine which
enqueues these blocks and tables in the
input work queue. The blocks and tables of
a given job are referred to as a work queue
entry.

Work queue entries are enqueued accord­
ing to the priorities of the jobs that they
represent, and remain in the queue until

their respective jobs are terminated. The
major control blocks and tables in a work
queue entry are:

• Job control table (JCT), which is built
for each job from information in the
JOB statement. This table contains job
and job step attributes.

• Step control table (SCT), which is
built for each job step from informa­
tion in the EXEC statement. This table
contains job step attributes.

• Step input/output table (SlOT), which
is built for each DD statement and
contains information needed to assign
devices to the data set defined in the
statement.

• Job file control block (JFCB), which is
built for each DD statement and con­
tains data set attributes. Construc­
tion of a JFCB is completed when its
associated data control block is
opened.

Figure 5 shows the
between the control
blocks and tables.

flow of information
statements and these

JCT

I ~~:tement ~l:::=======:::::~V1
Job
Control
Table L--__ ~

SCT

I EXEC \1-::::::::==========:::~V1 Step
Statement r v Contral

Table

SlOT
Step
Input!
Output
Tabl

Job File
Control
Block

Figure 5. Information Flow Between Con­
trol Statements and Blocks of a
Reading Task

Job Management 15

Commands and Data Sets

When the Interpreter Control routine
encounters a command in an input job
stream, it invokes the Command Scheduling
routine, and processing of this command
becomes part of the reading task associated
with the input device (see Figure 3). When
a data set is encountered in an input job
stream, it is written on a direct-access
volume.

Termination of a Reading Task

A reading task is terminated either by a
STOP RDR command, or when an end-of-data
condition is detected on the associated
reader device.

INITIATING TASKS

An initiating task has two parts, the
preparing of job steps for execution, and
the performing of termination processing
when job steps are complete.

Preparing of Job Step for Execution

Preparing a job step for execution con­
sists of:

• Acquiring a region of main storage.

• Locating data sets that are input to
the job step.

• Assigning 1/0 devices required for the
job step.

• Reserving auxiliary storage for data
sets created during the job step.

• Attaching a task for the job step.

When the System Task Control routine
determines that it is performing an ~n~­
tiating task, the Initiator routine is
given CPU control. The Initiator routine
invokes a queue manager routine to dequeue
the first entry on the input work queue.
(This is the entry of the highest priority
job that is not already being initiated
under some other initiating task.)

Once a work queue entry (i.e., a job)
has been assigned to an initiating task,
initiation, execution, and termination of
the steps of that job are performed sequen­
tially under control of that initiating
task. Multijobbing is obtained when sever­
al initiating tasks are concurrently con­
trolling the initiation, execution, and
termination of the steps of different jobs.

In a multijobbing environment, one data
set can be required for two or more jobs
that are operating concurrently. Before

16

starting to initiate the first step of the
job, the Initiator routine invokes the
ENQ/DEQ routine of the supervisor to deter­
mine if any of the data sets required
during this job are currently being used in
another job, and cannot be shared. If a
data set required by any step in the job is
not currently available, initiation of the
first job step is suspended until the data
set becomes available. Multiple use of a
data set is allowed only when all users
have specified that the data set can be
shared.

~cquiring a Region: When the System Task
Control routine determined that it was
performing an initiating task, this routine
requested a region large enough to meet its
initial requirements. Later, after the
Initiator routine reads the SCT, control is
given to a routine in the link pack area.
This routine determines the main storage
requirements of the step, releases the
region currently assigned to the initiating
task, and requests a new region. This new
region meets the storage requirement of
either the job step or the initiating task
- whichever is larger. The Device Alloca­
tion routine is then brought into the
region to continue initiating the step. If
there is not enough contiguous storage in
the dynamic area to fill the request for
the region, the initiating task is put in
the wait state until enough storage is
available.

Locating Input Data Sets: The Device Allo­
cation routine determines which volumes
contain input data sets from either the DD
statement, or a search of the catalog. (A
catalog management SVC routine is invoked
to perform this search.> Once the volumes
that contain the data sets are determined,
the Device Allocation routine determines if
any 1/0 devices are available for these
volumes.

Assigning InputlOutput Devices: A job step
cannot be initiated unless there are enough
1/0 devices to fill its needs. The Device
Allocation routine determines whether the
required devices are available. If there
are sufficient devices available, they are
assigned to the step; if there are not, a
message is issued to the operator. If the
operator cannot make the required number of
devices available, he may have the initiat­
ing task put in the wait state until
SUfficient devices are available, or he may
cancel the job.

After devices are allocated, the Device
Allocation routine builds a task
inputloutput table (TIOT) from information
in the JCT, SCT, and SlOTs, of the job
step. The TIOT has one entry for each data
set used during the job step; this entry
contains pointers to other control blocks

;(~
\~

c

C:

needed in the processing of the data set.
The TIOT is in the system queue area, and
exists for the life of the job step.
Figure 6 shows the relationship of the TIOT
to other job processing control blocks.
The shaded portion of the figure shows the
major blocks and tables built during a
reading task (see Figure 5). The nonshaded
portion of Figure 6 shows the major blocks
and tables created during initiating tasks.

Reserving Auxiliary Storage Space: Any
direct-access volume space required by the
output data sets of a job step is acquired
at the request of the Device Allocation
routine by a direct-access device space
management (DADSM) routine of data manage­
ment. If the volumes specified by the
Device Allocation routine do not have the
required space, the DADSM routine returns
control to the Device Allocation routine

which issues an operator message. The
operator must then either make a new volume
available, cancel the job, or indicate that
the initiating task be put into the wait
state until space becomes available.

When direct-access volume space is being
assigned, a DADSM routine partially builds
a data set control block (DSCB) for the
output data set that will occupy the space.
The DSCB is the label for that data set and
contains data set characteristics obtained
from the JFCB, and the track addresses
assigned to the data set. Construction of
DSCBs for output data sets is completed
when the associated data control block
(DCB) is opened.

Attaching a Task for the Job Step: The
final operation in the initiation of a job
step is the creating (attaching) of a task

Task
Input/
Output
Table

Cantrol
Block

Direct-Access
Vol ume Assigned
to the Data Set

Figure 6. Relationship of Blocks of Initiating Task to Blocks of Reading Task

Job Management 17

for .that job step. The Step Attach routine
issues an ATTACH macro instruction causing
CPU control to be given to the Attach SVC
routine. This routine builds a task con­
trol block (TCB) which the control program
uses to control the job step processing;
this TCB is the job step TCB. It is placed
in the TCB queue according to the priority
of the related job.

Since initiation of the step is com­
plete, the initiating task is placed in the
wait state until the step is to be termi­
nated.

Terminating a Job Step

A job step is terminated either when it
is complete, when a specified time interval
expires, when an error prevents any more
processing, or when the job is canceled by
the operator. Any of these conditions
cause the supervisor to make ready the
initiating task that controlled initiation
of that step. Termination processing for
the step is performed under control of this
initiating task.

The Terminator routine of job management
is brought into the region assigned to the
step. This routine disposes of data sets
created or used during the job step, and
releases the I/O devices assigned to the
job step. The Initiator routine issues a
DETACH macro instruction to remove the job
step TCB from the system.

After terminating the last step of a
job, the Initiator routine performs some
additional processing. It deletes the work
queue entry for the job from the input work
queue, and makes entries in output work
queues for system messages and SYSOUT data
sets.

output work queues are used during writ­
ing tasks to indicate the SYSOUT data sets
and system messages that are to be written.
There are 36 output work queues, one for
each SYSOUT class. A SYSOUT class is an
alphabetic or numeric designation by which
the user can group his messages and SYSOUT
data sets.

An output work queue
entries containing data set
and system message blocks
sets and system messages in

18

is made up of
blocks (DSBs)

(SMEs) for data
a given class.

During step termination, the Initiator rou­
tine builds a DSB for each SYSOUT data set
created during that step. 5MBs are created
for system messages as they are generated.
Messages are blocked so one 5MB can relate
to several messages.

All the DSBs and 5MBs in a given class
for a given job are referred to as an
output work queue entry for that class.
After the last step of a job is terminated,
the Initiator routine invokes a queue man­
ager routine to enqueue the output work
queue entries the DSBs and 5MBs from that
job into the appropriate output work
queues.

WRITING TASKS

A writing task controls the writing of
all system messages and SYSOUT data sets in
a specified class (or classes) from the
direct-access volume on which they were
initially placed to a specified SYSOUT
device. A writing task is created as a
result of a START WTR command that speci­
fies a class or classes of messages and
data sets to be processed. When all out­
standing SYSOUT data sets and messages in
that class are written, the writing task is
placed in the wait state, until more data
of that class becomes available or until a
STOP WTR command is issued.

When a writing task is started, the
System Task Control routine identifies it
as such, and passes CPU control to the
first writer routine. The writer routines
indicate to the queue manager routines
which message class is to be written. The
queue manager routine passes the first
output work queue entry from the appropri­
ate output work queue to the writer rou­
tines which write the associated messages
and data sets. After all messages and data
sets from this queue entry are written, the
writer routine requests the next entry from
the queue, and upon receiving it, writes
the messages and data sets. When all the
messages and data sets in all the classes
associated with this writing task are writ­
ten; the writing task is placed in the wait
state. A writing task is again made ready
when an output work queue entry is placed
in one of the queues associated with this
task.

c

c

("'\
,,/

Task management routines control the
allocation and use of CPU, main storage,
and programming resources. The task man­
agement functions are:

• Interruption supervision. The analysis
of interruptions to determine what
supervisor processing is required, and
the determination of which task is to
be performed after the supervisor proc­
essing is complete.

• Task supervision. The recording of
what tasks are currently in the system,
their statuses, priorities, and the
programs they require.

• Main storage supervision. The allocat­
ing and freeing of main storage, and
recording of what use is being made of
any portion of main storage.

• contents supervision. The loading of
programs into storage, the recording of
what programs are currently in main
storage, and what characteristics these
programs possess.

• Timer supervision. The setting and
maintaining of the interval timer from
information provided in timer macro
instructions.

• System environment recording. The col­
lecting and recording both hardware and
software data when a machine-check
interruption occurs.

Except for some nonresident SVc routines
and part of the SERO routine the task
management routines are part of the
nucleus. All task management routines
operate in the supervisor state under a PSW
with a protection key of zero.

The task management routines are des­
cribed in the publication IBM System/360
Operating System: MVT Supervisor, Program
Logic Manual, Form Y28-6659.

INTERRUPTION SUPERVISION

CPU control is passed to the supervisor
via an interruption. An interruption can
occur either because the interrupted pro­
gram has requested some control program
service, or because some event requires
supervisory processing. There are five
types of interruptions:

TASK MANAGEMENT

• SVC interruption, which occurs when an
SVC instruction is executed.

• Input/output interruption, which occurs
when an I/O operation terminates, or an
I/O device is readied.

• Timer/external interruption, which
occurs when an event (e.g., a timer or
external Signal) indicates the need for
control program processing.

• Program Interruption, which occurs when
either a program attempts an invalid
operation (e.g., execution of a privi­
leged instruction by a program in the
problem state>, or a data error (e.g.,
overflow) is detected.

• Machine-check interruption,
occurs when a recognizable
error has occurred.

which
machine

Interruption supervision has two parts, the
analyzing of the interruption to determine
what control program routine is to process
the interruption, and the passing of CPU
control to a program of a task after the
interruption processing is complete.

ANALYZING THE INTERRUPTION

Any interruption except a machine-check
interruption causes CPU control to be taken
from the interrupted program and given to
an interruption handling routine of the
supervisor. There are four interruption
handling routines, one for each type of
interruption except machine-check. A
machine-check interruption causes control
to be passed directly to a system environ­
ment recording (SER) routine, if SER rou­
tines are in the operating system. The SER
routine attempts to diagnose the error. If
no SER routines are provided, the system is
placed in the wait state.

The interruption handler does not proc­
ess the interruption, but analyzes it and
passes control to the proper interruption
processing routine. The SVC Interruption
Handler loads (if necessary) the SVC rou­
tine indicated in the SVC instruction and
passes control to it. The I/O Interruption
Handler passes control to the I/O supervi­
sor. The Timer/external Interruption Hand­
ler determines what caused the particular

Task Management 19

interruption and passes control to the
appropriate routine. The Program Interrup­
tion Handler determines whether the user
has provided a routine to process this
particular type of program interruption.
If such a routine is provided, it is given
control; if not, the task being performed
by the interrupted program is terminated.
If the interrupted program is in supervisor
state (e.g., an SVC routine), the associat­
ed task is always terminated.

The interruption handlers are disabled
for all interruptions except machine-check
so that they are not interrupted before
they can save critical information about
the interrupted program. This critical
information comprises the registers' con­
tents and PSW information necessary to
return control to the interrupted program
after the interruption is processed.

PASSING CONTROL TO A PROGRAM OF A TASK

Once the supervisor has completed its
interruption processing it passes CPU con­
trol to a program operating under control
of a TCB. If the program to receive
control is the program last interrupted,
CPU control is passed directly to it.
(This occurs when certain type 1 SVC rou­
tines processed the interruption.) If,
however, it is possible that another pro­
gram (other than the one last interrupted)
is to receive control, control is passed to
the Dispatcher routine.

The Dispatcher routine checks the TCB
queue for the highest priority, ready task,
and passes CPU control to the program
currently indicated to perform that task.
This passing of control is referred to as
dispatching a task.

The task that is dispatched, therefore
is not necessarily the same task that was
last interrupted. The interruption proc­
essing could have created or made ready
several tasks of higher priority. Any such
tasks are dispatched before the task that
was last interrupted.

TASK SUPERVISION

Task supervision routines enter tasks
into the system, supervise their perfor­
mance and perform task termination process­
ing. Tasks are represented to the control
program, by task control blocks (TCBs);
task supervision consists primarily of
modifying the TCB queue.

When the initiation of a job step is
complete, an initiating routine issues an
ATTACH macro instruction causing the super­
visor to create a task for the step. The

20

supervisor uses this job step task, its
TCB, and other associated control blocks
and tables to control the processing origi­
nally specified as the job step.

Expansion of an ATTACH macro instruction
includes an SVC instruction which causes an
SVC interruption. CPU control is passed
through the SVC Interruption Handler to the
Attach SVC routine. This routine builds a
TCB for the task, and a request block (RB)
for the first program of that task. These
blocks are placed in the TCB and RB queues
resJilectively.

TASK CONTROL BLOCK QUEUE

Whenever the control program needs any
information about tasks, its starting point
is the TCB queue. There is oneTCB for
each task currently scheduled is the sys­
tem. A TCB indicates the status and char­
acteristics of the task it represents. A
major part of this status information is
pointers to other control blocks and
queues, and control information about
resources needed during the task. Figure 7
shows the concept of the TCB queue and
queues that originate from a TCB.

A TCB is placed in the queue according
to the priority of its task, and is pointed
to by the next higher TCB in the queue.
The first TCB is pointed to by the communi­
cations vector table (CVT), which is part
of the nucleus.

REQUEST BLOCK QUEUE

The supervisor builds a request block
(RB) for each program of a task that is
entered via a supervisor-assisted linkage
(LINK, XCTL, or ATTACH), and for types 2,
3, and 4 SVC routines invoked by programs
of a task. The RB is placed in the RB
queue which originates at the associated
TCB. The RB queue indicates, to the super­
visor, the programs that perform a given
task.

During a task, the addition of RBs to
the queue as new programs are invoked, and
the deletion of RBs as these programs are
completed, allow the supervisor to deter­
mine which program (for a particular task)
is to receive control at any given time.
When a program terminates, the RB queue
indicates whether the associated task has
been completed, or whether execution of
another program is required. If the RB for
the terminated program is the only one on
the RB queue, the task is complete. If
other RBs are on the queue, the programs
represented by these RBs must be performed
before the task is complete.

o

;~~ VI

o

C' , .. '

C':
"

TeB for
Task A

TeB for
Task B

SPQE - Element of a queue used in main storage supervision
RB Element of a queue used in task supervision
CDE - Element of a queue used in contents supervision
DEB - Element of a queue used in data management
TQE Element of a queue used in timer supervision

Figure 7. Concept of the TCB Queue

Figure 8 shows how the RB queue is
modified during a task that is performed by
three programs. The first (program A) was
specified in the ATTACH macro instruction.
The second (program B) was invoked by
program A via a LINK macro instruction.
The third (program C) was given control by
program B via an XCTL macro instruction.
When program A is executing, the RB queue
for the associated task i& shown in Figure
8.1. After program B is invoked, the RB
queue is shown in Figure 8.2. After pro­
gram C has received control via the XCTL
macro instruction, the RB queue is as shown
in Figure 8.3. When program C completes
and issues a RETURN macro instruction, its
RB is deleted, and the RB queue is again as
shown in Figure 8.1.

When the last program of a task has
completed, the task superv~s~on routines
usually delete the TCB from the TCB queue.
If., however, the completed task had an ECB
or ETXR parameter specified when it was
attached, the TCB is not deleted from the

TCB queue. The ECB parameter indicates
that the attaching task needs information
in the TCB of the completed task. The ETXR
parameter indicates that an End-of-task
Exit routine (ETXR) is to be executed. The
ETXR routine has an RB enqueued to the TCB
of the completed task.

If the completed task is a job step
task, its associated initiating task is
made ready. When this initiating task is
dispatched, its routines complete termina­
tion processing for the job step.

MAIN STORAGE SUPERVISION

Main storage supervision routines con­
trol and allocate main storage in the
dynamic and system queue areas. Storage in
the dynamic area is assigned to job steps
and system tasks. Storage in the system
queue area is assigned to contain control
blocks that must have a supervisor storage
protection key.

Task Management 21

®
Figure 8. Example of the Modification of

the RB Queue During a Task

STORAGE ALLOCATION IN THE DYNAMIC AREA

Initially, the dynamic area is a large
number of unassigned, contiguous blocks of
main storage, each 2048 (2K) bytes in
length. As a system task or job step is
initiated, an initiating routine requests
the main storage required for the task or
step. A main storage supervision routine
(the GETMAIN routine) assigns enough con­
tiguous 2K blocks to this step or task from
the higher end of the dynamic area. This
group of 2K blocks is a region. If there
is insufficient free, contiguous storage
for the step or task, the initiating task
is put in the wait state until sufficient
storage becomes available.

Storage Allocation in a Region

Storage within a region is assigned in
response to requests from programs perform­
ing the step or system task associated with
that region. Storage from a region is

22

required not only for work areas, but also
for programs not already in the link pack
area.

Main storage supervision routines deter­
mine what storage in a region is available
via coptrol blocks called the partition
queue element (PQE) and free block queue
elements (FBQES). The PQE of a given
region is created when the region is
assigned, resides in the system queue area,
and is pointed to by the T~Bs of all the
tasks associated with that region. The PQE
is, in turn, the origin of a queue made up
of FBQEs. Each FBQE points to a group of
contiguous, available 2K blocks of storage
within the region, and resides in the lower
end of the lowest 2K block of the group.

When all the storage in a region is
available, or when all the available stor­
age is contiguous, only one FBQE exists.
As storage is assigned, used, and subse­
quently released, unassigned sections of
the region become interspersed with the
assigned sections. As this fragmentation
occurs, an FBQE is created and enqueued for
each unassigned section. When the releas­
ing of storage in a region causes a larger
available section to be formed from several
smaller sections, FBQEs are deleted from
the queue so that this new section has only
one FBQE.

When storage is requested, the FBQEs are
scanned for an available section large
enough to fill the request. If none is
available, the task is terminated. If the
request can be filled, a sufficient number
of 2K blocks from the unassigned storage is
made a part of a subpool. The subpool to
which this storage is assigned depends on
how the storage is to be used.

Subpools

A subpool is, generally, all the 2K
blocks of main storage allocated for a
particular task under one label called the
subpool number. (The exceptions to this
definition are shared subpools and subpools
in the system queue area.) Initially all
storage in a region is unassigned, is not
part of any subpool, and has a storage
protection key of zero (see Figure 9).
When storage within a region is required,
unassigned storage .in that region is made
part of a subpool. The request for this
storage specifies (either explicitly or by
default) the subpool number of the subpool
to which the storage is to be assigned.

When storage is requested in a subpool
that doesn't exist (i.e." this is the first
request specifying that subp~ol for a par­
ticular task), the subpool is created by
allocating a sufficient number of contigu­
ous 2K blocks from the unassigned storage

,. C.··"\···

c in the region. When the specified subpool
already exists (i.e., there were previous
requests). the storage currently part of
that subpool is checked to determine if a
contiguous area. large enough to fill the
request, is available. If such an area is
available, it is used to fill the request;
if not. a sufficient number of contiguous
2K blocks are assigned to the subpool from
the remaining free storage in the region.
Insufficient free storage in the region
results in termination of the task.

Storoge }
Protection
Keys

2K BlOCk}
of Main
Storage

t
Low
Starage

Figure

o o o o
- - - t- - - -+0- - - -to - -
- - -to - - -10 - - -to --

0--- +0--- +0- --'0-­
----+o---t---'o --

0----+0-- - -10--- to--
--- -10--- -10 - --10--
-- - -+0--- -to - - -to --

0----+0----10 - --io --
0--- -+o---+cr---to--

Region

9. Initial Format of a Region

Storage made part of a subpool for any
one request must be contiguous. The stor­
age that makes up a complete subpool (i.e ••
for all requests specifying that subpool)
can be noncontiguous.

Requests for storage in subpools of a
region are made either by programs perform­
ing the task (for working storage), or by
the control program (for storage to load a
program or for working storage). The sub­
pools specified in a given request depends
on what the storage is to be used for, and
on what type of routine made the request.

Assigning Storage to Subpools: Working
storage for programs in the problem state
is requested in any subpool between 0 and
127. Storage is assigned to these subpools
from the highest available storage in the
region.

Storage requested from a region by con­
trol program routines in supervisor state
is assigned in subpool 251 or 252. subpool
252 is specified either for storage needed
to contain reenterable routines from
SYS1.SVCLIB or SYS1.LINKLIB, or for storage
to contain control program data that must
be protected. storage assigned to subpool
252 is given a storage protection key of
zero to prevent programs of the job step
from writing in the subpool. Storage is
assigned to subpool 252 from the highest
available storage in the region.

subpool 251 is specified for storage
needed to contain all serially reusable and
nonreusable programs, and reenterable pro­
grams from private libraries. Storage in
subpool 251 is assigned from the lowest
available storage in the region. It has
the same storage protection key as the
programs using the region. and therefore
its contents can be modified by thesp.
programs.

subpools are usually assigned to a
specific task. When one region is being
used for several tasks (i.e., a job step
task has one or more subtasks), each task
can have separate subpools between 1 and
127, or the tasks can share subpools
between 1-127. In anyone region, subpool
o is always shared, and there is only one
subpool 251 and one subpool 252.

subpool Queue: Each time a new subpool is
created for a task, a subpool queue element
(SPQE) for that subpool is placed in the
subpool queue of that task. The subpool
queue originates at the TCB of the task,
and is made up of a series of SPQEs one
for each subpool of the task. The main
storage supervision routines use the sub­
pool queue to determine what subpools are
being used in the task, and what storage is
assigned to each of the subpools.

Each ~PQE has, in turn, a queue of
elements that indicates what storage ~n the
region is assigned to that subpool. These
queues are called descriptor queues. Each
element in a descriptor queue represents
one group of contiguous 2K blocks assigned
to the subpool.

Figure 10 is an example showing how the
main storage supervision routines modify
the region, the subpool queue. and the
descriptor queues of a task to obtain
storage for the three programs previously
discussed in the "Task Supervision" section
and illustrated in Figure 8. The shaded
portions on the left side of Figure 10 show
the request block queue as the three pro­
grams are used (see Figure 8). The unshad­
ed portions show how the region. and the
subpool queue is modified as storage is
assigned for the programs. This example
assumes that the programs are not initially
in storage; programs A and Bare reentera­
ble and reside on SYS1.LINKLIB. and program
C is not reusable.

Figure 10.1 shows how the region and the
subpool queue are set up for program A.
When the task was first dispatched. the
Link routine of the supervisor. not program
A (which is not yet is storage). receives
control. The Link routine requests storage
for program A from subpool 252. If we
assume that program A requires 3.5K bytes
of storage. the main storage supervision

Task Management 23

routines assign three 2K blocks of storage
from the highest available part of the
region to subpool 252, builds an SPQE, and
enqueues it to the TCB. The first 2K block
is a work area for Program Fetch (only one
per region is required). The other two 2K
blocks are for program A. A descriptor
queue element (DQE) is built and enqueued
to the SPQE. The single DQE indicates
that, at the moment, subpool 252 is made up
of only one contiguous area of storage.

If program A issues a GETMAIN macro
instruction for 2K bytes of working storage
in subpool 3, the region and subpool queue
are modified as shown in Figure 10.2.
Since there is no subpool 3, the highest
available 2K block of storage in the region
is assigned to subpool 3, and the SPQE and
DQE are placed in the subpool queue (assume
that the storage protection key for this
job step is 5).

After the LINK macro instruction for
program B is issued, the Link routine
requests storage from subpool 252 for pro­
gram B. If subpool 252 currently has a
free section large enough for program B,
this program is brought into that area and
the subpool queue remains as shown in
Figure 10.2. If however, subpool 252 must
be enlarged for program B (assume that
program B is 4000 bytes long), the main
storage supervision routines assign two 2K
blocks from the highest available part of
the region. Since this addition to subpool
252 is not contiguous to the already­
existing part of subpool 252, a new DQE is
added to the queue. After program B
receives control, the queues are as shown
in Figure 10.3.

Figure 10.4 shows the region, and the
subpool and RB queues after program C
receives control. When the XCTL macro
instruction for program C is issued, the
XCTL routine requests storage (assume 6000
bytes) for program C from subpool 251.
Since there is no subpool 251, three 2K
blocks of storage from the lowest available
part of the region is assigned to subpool
251 and the SPQE and DQE are placed in the
subpool queue.

STORAGE ALLOCATION IN THE SYSTEM QUEUE AREA

Storage in the system queue area is used
to build control blocks that can be modi­
fied by only the control program. The
system queue area has storage protection
keys of zero, and only programs that oper­
ate under a protection key of zero can
write into it. Space in the system queue
area is allocated to three subpools, sub­
pools 253, 254, and 255.

Unlike the subpools in the regions,
subpools 253, 254, and 255 can share a 2K
block of storage. A request for storage
for any of these three subpools will be
filled from the highest available area of
sufficient size even if this area is in a
2K block that is partially assigned to
another subpool.

If the request for system queue space
cannot be filled, the system queue area can
be expanded by assigning to it 2K blocks of
adjacent free dynamic area storage. Before
such an expansion is attempted however,
subpools 251 and 252 of all regions are
purged. This purge results in the deletion
of contents supervision queues from the
system queue area. If this deletion of
queues releases enough system queue space
to fill the pending request, the system
queue area is not expanded.

Once expanded, the system queue a~ea
will not be reduced to its original S1ze
until the IPL procedure is repeated. If
the portion of the dynamic area, adjacent
to the system queue area, is already
assigned as a region, any attempt to expand
the system queue area results in the
system's being placed in the wait state.

CONTENTS SUPERVISION

Contents supervision routines bring non­
resident routines into main storage, and
record what routines are in the dynamic and
link pack areas. Routines are brought in
as a result of a LINK, ATTACH, XCTL, or
LOAD macro instruction, if a usable copy of
the desired routine is not already in main
storage.

The characteristics of a called routine,
and its location in main storage determine
whether that routine is usable to the
calling routine. Routines in the link pack
area (all of which are reenterable) can be
used by any routine that calls them, and,
in fact, the one copy in that area can be
used concurrently by several calling rou­
tines. Reenterable and serially-reusable
routines in subpools 252 and 251 of a given
region can be used only by other routines
performing the task or tasks associated
with that region.

Contents supervision routines determine
whether a routine is in main storage by
checking the contents directory. Each time
a routine is brought into main storage, an
entry for it is made into the contents
directory. If the routine is brought in
via a LOAD macro instruction, an entry is
also made to a load list.

c

Control
BlocK

SPQE
225

SPQE
3

Figure 10. Example of Main Storage Allocation

Region

Region

CD

Task Management 25

CONTENTS DIRECTORY

The contents directory is a group of
queues indicating the routines in the link
pack and dynamic areas.

There are two contents directory queues
for the link pack area, and one for sub­
pools 251 and 252 of each region. The
contents directory resides in the system
queue area. The pointer to the contents
directory queues for the link pack area is
in the communications vector table. The
pointer to the contents directory queue for
a region is in the first TCB created for
that region (system task TCB or job step
TCB).

A contents directory queue contains a
contents directory entry (CDE) for each
program in the region to which it applies
(or to the link pack area). When a reen­
terable or serially reusable program has
completed its operation, the copy of that
routine remains in the region, and its CDE
remains on the queue. When a nonreusable
program has completed its operation, its
CDE is deleted from the queue. (The stor­
age in subpool 251 occupied by the program
is made available: sometimes this storage
remains as part of subpool 251, sometimes
it is released from subpool 251 for assign­
ment to any subpool of the region.)

Figure 11 shows how a contents directory
queue is affected for the programs dis­
cussed in the sections "Task Supervision"
and "Main storage Supervision" and shown in
Figures 8 and 10. We assumed that none of
the programs were already in main storage.
During the processing of the ATTACH macro
instruction that specified program A (which
was previously defined as reenterable), the
contents supervision routines determine
that a copy is neither in the associated
region, nor (since it is reenterable) in
the link pack area. After main storage is
assigned, program A is brought into subpool
252 and the contents directory queue for
that region is as shown in Figure 11.1. If
program A was already in the region a new
copy is not brought in.

During the processing of the LINK macro
instruction that invokes program B, the
contents superv~s~on routine determines
that this program is neither in the region,
nor in the link pack area. Main storage is
requested and assigned in subpool 252, and
program B is brought in. A contents direc­
tory entry is constructed and enqueued as
shown in Figure 11.2.

The XCTL macro instruction involving
program C results in a copy of that program
being brought into subpool 251 of the
region, and a contents directory entry is
added as shown in Figure 11.3. When pro-

26

gram C terminates and passes control to the
supervisor, the contents directory entry
for program C is deleted, and th.e contents
directory is again as shown in Figure 11.2.

. (This deletion occurs because program C is
not reusable.)

LOAD LIST

A load list is a queue of elements for
routines in either the link pack area or a
given region, that were invoked via a ·LOAD
macro instruction. Each load list element
corresponds to a loaded routine, and points
to the contents directory entry for that
routine. Each load list element contains a
count of the number of times a LOAD macro
instruction is issued for the associated
routine during a given task. This count is
decremented each time a DELETE macro
instruction is issued for the routine to
reflect the number of current users of the
routine.

TIMER SUPERVISION

Timer supervision routines process both
timer interruptions and requests for timing
services. For a System/360 that has the
interval timer feature, the operating sys­
tem provides the capability of obtaining
the date and time of day., measuring periods
of time, and scheduling certain processing
for a specific time.

The programmer specifies these functions
by the timer macro instructions, TIME,
TTIMER, and STIMER. The expansion of each
of these macro instructions includes an SVC
instruction which causes CPU control to be
passed through the SVC Interruption Handler
to the appropriate timer supervision SVC
routine.

When the value in the interval timer
goes from positive to negative (indicating
the expiration of some interval), a
timer/external interruption occurs. After
determining that this interruption is a
timer interruption, the Timer/external
Interruption Handler passes control to a
timer supervision routine (the timer
second-level interruption handler). This
routine performs any processing specified
for the completion of this particular
interval, and places a new interval in the
timer.

Even if the programmer does not specify
any timer intervals of his own, the timer
supervision routines set the internal timer
so that a timer/external interruption
occurs every 6 hours; the first such inter­
ruption occurs 6 hours after initial pro­
gram loading (IPL). The timer supervision
routines also cause a timer interruption to

Figure 11. Example of the Modification of Content Directory During a Task

Task Management 27

occur every midnight. The midnight inter­
ruption allows timer supervision routines
to increment the date in the CVT. The
6-hour interruptions allow timer supervi­
sion routines to update two of three main
storage locations called pseudo-clocks.

PSEUDO-CLOCKS

There are three pseudo-clocks, the local
time pseudo-clock (LTPC), the 24-hour
pseudo-clock (T4PC), and the 6-hour pseudo­
clock (SHPC). The LTPC contains the time
of day specified in the SET command when
IPL was performed. The T4PC is incremented
by 6 each time a 6-hour timer interruption
occurs, unless its value is already 18.
The 6-hour interruption that occurs when
the T4PC contains 18 causes the T4PC to be
set to zero. The 6-hour pseudo-clock
(SHPC) contains the value of the next
interval that will expire; this value is
never greater than 6 hours.

In addition to the periodic timer
interruption, other timer interruptions are
required for program-requested timing of
intervals. The timer supervision routines
use the timer queue to record the lengths
of intervals and the order in which these
intervals expire.

TIMER QUEUE

The timer queue is a series of elements
in the system queue area. Each timer queue
element refers to a particular timer inter­
val, and indicates both the length of the
interval and the processing to be performed
when the interval ends. Whenever a request
to set the timer is issued, a timer queue
element is placed in the queue. The ele­
ments are queued in the order in which the
intervals expire. Thus when a timer inter­
ruption occurs, the first element in the
timer queue is the one associated with the
expired interval. After the interruption
is processed, this element is removed from
the queue, and the next interval to be
timed is obtained from the element that is
now first in the queue. Timer queue ele­
ments of intervals associated with particu­
lar tasks (as opposed to intervals being
timed regardless of what task is being
performed) have pointers to and from their
respective TCBs. A task can have only one
interval being timed at any given time.

When a timed interval is associated with
a task, the timer queue element of this
interval is removed from the timer queue
every time this task loses CPU·~control.
The element is returned to the queue before
the task is again dispatched so that the
timing can continue.

28

SYSTEM ENVIRONMENT RECORDING

The system environment recording. (SER)
routines collect and record hardware and
software data whenever a hardware error is
detected in the CPU, channels, control
units, or I/O devices. SER is an optional
'feature in the operating system. If the
$ER function is not included, a machine­
d~eck interruption causes the system to be
p~aced in the wait state.

\
\
\ There are two mutually exclusive SER

rdptines, SERO and SER1, both of which
pr~vide data about the error. SERO always
pl~ces the system in the wait state. SER1
e~ther abnormally terminates the job step
(~f the error's effects are isolated within
W job step), or places the system in the
wait state (if the error affects the
control program or a channel).

Both SERO and SER1 are designed for a
particular model of System/360. There are
SER routines for the models 40, 50, 65, and
75. A SER routine that is run on a model
for which it was not designed will either
generate erroneous data, or (because the
'diagnose' instruction is model-dependent)
cause all CPU and I/O operations to stop.

The SER routines are entered via the
machine-check new PSW which, for a CPU
error, is loaded by the hardware via a
machine-check interruption, and for an I/O
error, is loaded by the I/O supervisor.

SERO ROUTINE

The SERO routine has two parts, a resi­
dent portion in the nucleus and a nonresi­
dent portion that resides on SYS1.LINKLIB.
Control is first given to the resident
portion which saves some data, halts all
I/O operations, and loads the nonresident
portion.

The nonresident portion of SERO saves
the rest of the hardware and software data,
places all the data into a record, writes
this record in the SYS1.LOGREC data set,
and issues a message to the operator. SERO
then loads the PSW that places the system
in the wait state.

SER1 ROUTINE

The SER1 routine is entirely resident.
Like the SERO routine, SER1 collects and
writes error data on the SYS1.LOGREC data
set. However, SER1 analyzes the error to
determine if the operating system can ~on­
tinue operation. If the error affects only
one job step, that step is abnormally
terminated, but processing o~ other job
steps continues. If the error is a channel
failure or affects the control program,
SER1 loads the wait state PSW.

o

c

o

c

Data management routines perform the
control program's services of:

1. Assigning and releasing space on
direct-access volumes.

2. Maintaining the catalog.

3. Performing the I/O support (open,
close, end-of-volume) processing.

4. processing I/O operations.

The first three of these functions are
performed by type 3 and 4 data management
SVC routines; they reside on SYS1.SVCLIB
and operate from either the link pack area
or the SVC transient areas. These routines
are invoked via SVC instructions that are
either coded directly or generated as part
of macro instruction expansions in the
calling program. When the SVC instruction
is executed, the resulting SVC interruption
causes control to pass to the SVC interrup­
tion handler. The desired SVC routine is
brought into an SVC transient area (unless
a copy is already in one of the areas or
the link pack area), a request block for
the SVC routine is built and enqueued to
the appropriate TCB, and the SVC routine is
given control. Upon completion, the SVC
routine returns control to the supervisor.

The fourth function, processing of I/O
operations, is performed by access method
routines and the I/O supervisor. The
access method routines reside on
SYS1.SVCLIB and operate from the link pack
area, or the region of their associated
task. These routines are loaded by the
open SVC routine, and are entered via a
branch instruction that is part of the
expansion of the macro instruction for that
access method.

The I/O supervisor is part of the
nucleus. The portion of the I/O supervisor
that processes I/O operations is a type 1
SVC routine invoked by an EXCP macro
instruction normally issued by an access
method routine.

ASSIGNING SPACE ON VOLUMES

Assigning of tracks and cylinders on
direct-access volumes is performed by the
direct-access device space management
(DADSM) SVC routines of data management.
These routines are used primarily by job
management routines during the initiating
of a job step to get space for output data

DATA MANAGEMENT

sets. The DADSM routines are also used by
other data management routines to increase
the space already assigned to a data set,
and to release space no longer needed. The
DADSM routines are described in the publi­
cation IBM System/360 operating System:
Direct-Access Device Space Management, Pro­
gram Logic Manual.

The DADSM routine controls allocation of
space on direct-access volumes through the
volume table of contents (VTOC) of that
volume. The VTOC is built when the volume
is initialized by the direct-access storage
device initialization (DASDI) utility pro­
gram. The VTOC indicates the current usage
of the space on the volume.

The VTOC is a collection of data set
control blocks (DSCBs). Each DSCB corres­
ponds either to a data set currently resid­
ing on the volume, or to contiguous, unas­
signed tracks on the volume. DSCBs. for
data sets are the data set labels, which
contain characteristics of the data set and
the tracks on which it resides. DSCBs for
unassigned tracks indicate the locations of
unassigned, contiguous tracks.

When space is needed on a volume, the
DADSM routines check the VTOC for enough
contiguous, available tracks to satisfy the
request. If there are not enough contigu­
ous tracks, the request is filled using up
to five noncontiguous groups of free
tracks. The appropriate DSCBs are modified
to reflect the assignment of the tracks.

When space is released, the DADSM rou­
tines delete the DSCB of the deleted data
set from the VTOC. A DseB is built or
modified to indicate that the tracks con­
taining the deleted data set can be reallo­
cated.

MAINTAINING THE CATALOG

The catalog is a collection of data sets
that indicates the volumes on which cata­
loged data sets reside. The catalog man­
agement routines of data management main­
tain the catalog, and locate cataloged data
sets.

To maintain the catalog, catalog manage­
ment routines create and delete indexes,
and catalog and uncatalog data sets. To
locate a data set, catalog management rou­
tines search through the indexes, specified
in the qualified name of the data set, for
the index entry containing the last part of

Data Management 29

the qualified name. This index entry con­
tains the serial number (or numbers) and
device type of the volume (or volumes) on
which the data set resides. The catalog
management routines are described in the
publication. IBM System/360 Operating Sys­
tem: catalog Management. Program LOgic
Manual.

The catalog management routines are used
primarily by job management routines and
IEHPROGM utility program. Job management
routines may invoke the catalog management
routines during the initiation and termina­
tion of a job step. During initiation. a
catalog management routine locates catalog­
ed data sets. During termination. a cata­
log management routine may catalog or unca­
talog data sets referred to during the job
step and specified for the catalog. The
IEHPROGM utility program invokes catalog
management routines to perform any of their
functions except locating a data set.
Processing programs can also invoke the
catalog management routines via the CATA­
LOG. INDEX, and LOCATE macro instructions.

SUPPORT PROCESSING FOR I/O OPERATIONS

Support processing for I/O operations
has three subdivisions:

• Open processing which is required
before I/O operations can be performed.

• Close processing which is required
after I/O operations have been complet­
ed.

• End of volume (EOV) processing which is
required when space for a sequential
data set on either a direct or sequen­
tial access volume is exhausted during
an I/O operation.

The routines that perform these func­
tions are the I/O support routines., (open,
close, and EOV). Their operation is dis­
cussed in the publication IBM System/360
Operating system: Input/Output Support
(OPEN/CLOSE/EOV). Program Logic Manual.

OPEN PROCESSING

Before any information can be read from
or written into a data set, initialization
must be performed. This initialization is
referred to as "opening" the data control
block of the data set, and basically con­
sists of:

30

• Ensuring that the volumes required for
reading or writing the data set are
mounted.

• constructing control blocks required by
the I/O supervisor to initiate the I/O
operations.

• Loading the access method routines that
are to process the I/O operations on
the data set.

InSuring Proper Volume Mounting

The Open routine determines whether the
volumes required for the data set are
mounted on devices assigned to the job
step. If the volumes are not mounted, the
Open routine issues a mounting message to
the operator and, after mounting has been
performed, checks the volume labels to
verify that the proper volumes have been
mounted.

The Open routine then locates the data
set (or the space to receive the data set)
on the volume. For tape, the volume is
positioned; for direct-access volumes, the
DSCB is read into main storage.

constructing Control Blocks

The Open routine constructs (or com­
pletes construction of) control blocks that
are used when the data set is to be read or
written. These are the data control block
(DCB), job file control block (JFCB), head­
er labels or data set control block (DSCB),
and the data extent block (DEB).

Completing the BCB, JFCB. and DSCB: The
DCB, JFCB, and DSCB are in various stages
of completion before the DCB is opened.
The Open routine completes them by merging
information from one block to another.
There are two distinct merge operations,
the forward merge and the reverse merge.

The forward merge is the passing infor­
mation first from the DSCB (or standard
tape label) to the JFCB, and then from the
JFCB to the DCB. Information is passed
only when the field of the block receiving
the information is empty. The forward
merge does not change any fields that
already contain information.

The reverse merge is the passing of
information from the DCB back to the JFCB,
and then to the DSCB (or header label).
This merge occurs after the forward merge,
and after the Open routine has given con­
trol to any user-written DCB-exit routines.
When the associated data set is for output,
the reverse merge not only fills empty
fields in the JFCB and DSCB, but also
overrides existing fields except the DSORG
field. When the data set is for input, the
DCB to JFCB merge fills only empty fields;
no JFCB to DSCB merge is performed. Figure
12, which is an expansion of Figures 5 and
6, shows the flow of information in the

,f'\,

,j

·0.
\."""

o

(~

c

forward and reverse merges.
indicate the sequence in
occurs.

The numbers
which the flow

constructing the DEB: A data extent block
(DEB) is built for each DCB being opened.
The DEB contains the volume location (or
locations) of its associated data set, and
the names of the access method routines
that are to be used on this data set. The
DEB is used by the I/O supervisor in
starting an I/O operation. The relation­
ship of the DEB to other control blocks is
shown in F~gure 12.

The DEB is built from information in the
DCB, JFCB, DSCB, and UCBs (unit control
block) of the devices associated with the

data set. A UCB exists for each device in
the system. UCBs are built when the system
is generated, and contain characteristics
of the devices that they represent.

DEBs are built in the system queue area
so that their contents cannot be changed by
processing programs. All DEBs for a given
task are placed in a queue originating at
the TCB of that task.

The DEB is built by an access method
executor module. These modules operate as
part of the Open routine but perform proc­
essing unique to the access method to which
they apply. The operation of the access
method executors is described in the var­
ious access method program logic manuals.

Control
Block

UCB

Unit Control
Block (One
per Device)

Figure 12. Flow of Information During the Merges of the Open Routine

Data Management 31

Loading Access Method Routines

The Open routine uses the DCB to deter­
mine which access method is to be used on
the associated data set. The executor of
that access method then determines which
routines of the access method are required
to operate on the data set. These routines
are then loaded into the appropriate region
unless they are already in the link pack
area.

CLOSE PROCESSING

After I/O operations on a data set are
complete, the DCB of that data set should
be closed. The Close routine restores the
DCB fields that were filled by the forward
merge during open, processes labels, deter­
mines volume disposition, and deletes the
unneeded access method routines.

Label processing includes the building
of trailer labels for output data sets on
tape, and the updating of DSCBs of data
sets with OUTPUT, OUTIN, or INOUT disposi­
tion.

Volume disposition includes not only
dismounting instructions to the operator,
but also the writing of tape marks and the
positioning of tape reels.

If the access method routines associated
with this close operation are not in the
link pack area and are not required for any
more I/O operations in the region, the
storage that these routines occupy is
released.

END-OF-VOLUME PROCESSING

End-of-volume (EOV) processing is per­
formed when end-of-data set or end-of­
volume conditions occur during an I/O
operation on a sequentially organized data
set. When a routine of a sequential access
method encounters a tape or file mark or an
end-of-volume condition, the routine issues
an SVC instruction to pass control to the
EOV routine.

EOV processing consists primarily of
verifying and constructing labels. If the
data set for which the condition occurred
is continued on another volume, the EOV
routine issues mounting instructions for
the next volume and checks the mounting.

If the EOV condition occurred because
direct-access volume space assigned to an
output data set is used, the EOV routine
invokes a DADSM routine to obtain more
space for the data set.

32

PROCESSING I/O OPERATIONS

The processing of I/O operations is
performed in two distinct parts: processing
required to start the operation, and proc­
essing required when the operation is ter­
minated.

STARTING AN I/O OPERATION

In the operating system, two portions of
the control program are normally involved
in starting an I/O operation requested by a
processing program. These are:

• Access method routines, which organize
the information required to initiate
the I/O operation.

• The EXCP routine of the I/O supervisor,
which initiates and supervises the I/O
operation.

Figure 13 shows the relationship that
exists between a processing program, an
access method, and the I/O supervisor.

Processing
P rogram

Specify
an I/O
Operation

GET
PUT
READ
WRITE

Access
h Met od

Organize
Infonnation
for the I/O
Supervisor

I/O
Supervisor

Start

EXCP the I/O
Operatian

Figure 13. Relationship Between a Process­
ing Program, an Access Method
and the I/O supervisor

The expansion of an I/O macro instruc­
tion specified in the processing program
results in a branch to the access method
routine. This routine gathers information
used to initiate the I/O operation and
places this information in control blocks.
The routine then issues an EXCP macro
instruction causing an SVC interruption.
The SVC Interruption Handler gives CPU
control to the I/O supervisor, which either
starts or queues the I/O operation.

After the EXCP routine has completed its
operation, it passes control to the Type 1
SVC Exit routine which returns control to
the access method routine. This routine
finishes its processing before passing con­
trol to the processing program that issued
the I/O macro instruction. Figure 14 shows
the flow of control for an I/O operation.

r:
,",/

o

c

Processing
Progr<;!!,

READ DCB

Region in Main Storage

Access
Method
Routine

---------~
EXCP

SVC Interruption

Fixed Area in Main Storage

SVC
Interruption
Handler

EXCP SVC Routine
of I/O Supervisor_

510

=--------~~----~
Type I
SVC Exit
Routine

]-4-----

=
=

Figure 14. Flow of Control for an I/O Operation

Access Methods

Access method routines prepare informa­
tion required by the I/O supervisor to
start an I/O operation. Routines of cer­
tain access methods also perform services
that are not directly associated with the
actual I/O operation.. These services
include allocating and controlling buffer
areas, moving data to and from the buffer
areas, and blocking and deblocking records.
When the user assembles his program, he
indicates an access method in the DCB of
the data set. When the DCB is opened, the
access method routines to be used on the
data set are brought into the appropriate
region, unless these routines are already
there or in the link pack area.

Routines of every access method con­
struct a number of input/output blocks
(lOBs) and channel programs for the I/O
supervisor. The number of lOBs and channel
programs built for a given data set depends
on the number of main storage areas used by
the data set" and the number of I/O opera­
tions to be performed on the data set.

An lOB contains information required by
the I/O supervisor to start an I/O opera­
tion. Each lOB points to a channel program
that is to be executed. When the opera­
tions for that channel program terminate,
the channel status word (CSW) is stored in
the lOB associated with the channel pro­
gram.

A channel program is a group of one or
more channel command words (CCWs) that
specify I/O operations, and indicate the
main storage areas for the data involved in
these operations. The CCW and CSW formats
are described in the publication IBM
System/360 principles of Operation.

For some access methods, the lOBs and
CCWs are partially built by the Open Execu­
tor routine of that access method when the
DCB is opened; these lOBs and CCWs are
completed by the access method routine,
when the I/O operation is being processed.
For other access methods, the lOBs and CCWs
are completely built during the processing
of the I/O operation.

EXCP Routine

The EXCP SVC routine is the portion of
the I/O supervisor that initiates I/O oper­
ations. This routine receives control from
the SVC Interruption Handler and builds a
request element for the requested I/O oper­
ation.

Whenever an I/O operation is in process,
the UCB for the device pOints to the
request element for that operation. When
an operation cannot be started, the request
element for that operation is placed in a
queue for the device. This queue is the
request element table.

The EXCP routine determines whether the
I/O device associated with the operation is
free, and if so, whether any channel asso­
ciated with the device is free.

When both the device and an associated
channel are free, the EXCP routine issues a
START I/O (SIO) instruction to initiate the
operation. If the device or all associated
channels are busy., the request element is
placed in the queue for that device. The
elements that make up this queue are con­
tained in the request element table.

The EXCP routine is described in the
publication IBM System/360 Operating Sys­
tem: Input/Output Supervisor, PEoqram Logic
Manual.

Data Management 33

After the I/O operation is started, an
indicator is set in the UCB to show that
the device is now busy, and a pointer to
the request element is placed in the UCB.
When an I/O interruption occurs, the I/O
supervisor uses the request element in the
UCB to determine the request that has been
executed.

TERMINATING AN I/O OPERATION

I/O operations terminate either normally
because the operation is completed" or
abnormally because an error is detected.
When an I/O operation terminates, an I/O
interruption occurs, causing CPU control to
be passed first to the I/O Interruption

34

Handler and then to the I/O interruption
supervisor portion of the I/O supervisor to
process the interruption.

The I/O interruption supervisor posts
the completion of the I/O operation, sched­
ules error routines <i.e., places a request
block for the routine in the request block
queue) when the operation terminated abnor­
mally, and, if possible, starts another I/O
operation on the channel. The I/O inter­
ruption supervisor returns CPU control to
the interruption handler. The I/O inter­
ruption supervisor is described in the
publication IBM System/360 Operating Sys­
tem: Input/Output Supervisor, Program Logic
Manual.

c

o
access method executor: A routine that is
entered during the performance of the open,
close, or end-of-volume fUnction, and per­
forms processing unique to the access meth­
od to which it applies. These routines
operate in supervisor state from SVC tran­
sient areas, or the link pack area.

automatic command: A command specified
during system generation, and executed
after NIP in response to the AUTO parameter
of the SET command.

catalog: One or more data sets that speci­
fy the volume or volumes upon which cata­
loged data sets reside.

command processing: The reading, analyzing
and performing of commands issued via a
console device or an input job stream.

console-communications task: The reading
and analyzing of operator commands issued
via a console device. Some commands are
completely performed during this task; oth­
ers require additional tasks.

contents directory: A series of queues
that indicate the routines in the regions
of the dynamic area and in the link pack
area.

control volume: A
that contains one
make up the catalog.

direct-access volume
of the data sets that

disabled: (masked) A state of the CPU that
prevents the occurrence of certain types of
interruptions.

dynamic area: That portion of main storage
that is subdivided into regions for use by
the programs performing job steps and sys­
tem tasks. The dynamic area is all the
storage between the system queue area and
the link pack area.

enabled: (interruptable) A state of the
CPU that allows the occurrence of certain
types of interruptions.

executor: See access method executor.

fixed area: That portion of
occupied by the resident
control program (nucleus).

main storage
portion of the

index: A record
catalog structure.
locate data sets.

that is part
Indexes are

of the
used to

GLOSSARY

initiating task: The job management task
that controls the selecting of a job and
preparing of the steps of that job for
execution.

input work gueue: The tables and control
blocks built during reading tasks from the
data in the JOB, EXEC, and DD statements.
This queue provides input to initiating
tasks.

interruptable: See enabled.

job processing: The reading of control
statements from an input job stream, the
initiating of job steps defined in these
statements, and the writing of system mes­
sages and SYSOUT data sets.

job scheduler: The routines that perform
the job processing functions (i.e., read­
ing, initiating, and writing tasks) of job
management.

job step task: The first task created for
a job step. That task created in response
to an ATTACH macro instruction issued by an
initiator routine.

link pack area: The area of main storage
that contains selected reenterable routines
from SYSl. SVCLIB and SYSl. LINKLIB, and a
list of track addresses of routines on
SYS1.LINKLIB. The routines are loaded at
IPL time, and can be used concurrently
during all tasks in the system.

masked: See disabled.

~m~a~s~t~e~r~~s~c~h~e~d~u~l~e~r~~t~a~s~k~: The command­
processing task of searching a queue of
pending commands., and of attaching a task
for executing each of these commands.

multiprogramming: Using a computing system
to fulfill two or more separate programming
requirements concurrently. This is
normally achieved via a supervisory program
that makes decisions based on various con­
ditions in the system, and then gives
control to one of several separate pro­
grams.

nucleus: That portion of the control pro-
gram that is loaded into the fixed
main storage from SYS1.NUCLEUS at
and is never overlaid by another
the operating system.

area of
IPL time
part of

pseudo-clock: A main storage location used
by timer supervision routines to calculate
timer intervals and time-of-day.

Glossary 35

reading task: The job management task that
controls the reading and interpreting of
control statements, and the reading and
analyzing of operator commands in an input
stream.

region: A subdivision of the dynamic area
that is allocated to a job step or a system
task.

reenterable: The attribute
that allows a single copy of
be used concurrently in the
two or more tasks.

of a program
the program to
performance of

subpool: All the 2048 (2K) blocks of main
storage allocated under one subpool number
for a particular task.

subtask: Any task that is attached by a
routine of some other task. Although the
definition applies to almost every task
(both system and user) in the system, the
term subtask is most commonly used to refer
to a task attached by a routine of a job
step.

system gueue area: The main storage area,
adjacent to the fixed area, which is re­
served for control blocks and tables built
by the control program.

SVC routine: A control program routine
that performs or initiates a control pro­
gram service specified by a supervisor call
(SVC).

system task: A control program function
that is performed under control of a task
control block.

SYS1.LINKLIB: The partitioned data set
that contains the IBM-supplied processing
programs and part of the nonresident por-

36

tion of the control program. It may also
contain user-written programs.

SYS1.LOGREC: The partitioned data set re­
served for data gathered by the SERO or
SERl routines. This data is hardware and
software information required to diagnose
machine-check interruptions and channel and
I/O errors.

SYS1.NUCLEUS: The partitioned data set
that contains the resident portion of the
control program (i.e., the nucleus).

SYS1.SVCLIB: The partitioned data set that
contains the nonresident SVC routines, non­
resident error-handling routines, and the
access-method routines.

transient areas: Main storage areas
defined in the nucleus and reserved for
either nonresident SVC routines or nonresi­
dent error-handling routines.

wait state (task): The condition
when it is unperformable because
such as the completion of an I/O
has not occurred.

of a task
some event
operation

wait
CPU
This
ting

state (system): The condition of the
when all operations are suspended.

condition is indicated by a bit set­
in the current program status word.

work queue entry: The control blocks and
tables created from one job in an input job
stream and placed in the input work queue
or one of the output work queues.

writing task: The job management task that
controls the transferring of system messa­
ges and SYSOUT data sets from the direct­
access volume on which they were initially
written to a specified SYSOUT volume.

ie·', J

Ci
APPENDIX A: LIST OF ACRONYMS

The following list contains the full name associated with the acronyms used in this
publication:

Acronym

CCW

CDE

CPU

CSCB

CSW

CVT

DADSM

DASDI

DCB

DD

DEB

DQE

DSB

DSCB

ECB

EOV

EXCP

EXTR

EXEC

FBQE

INIT

lOB

IPL

JCT

Name

channel command word

contents directory entry

central processing unit

command scheduling control
block

channel status word

communications vector table

direct-access device space
management

direct-access storage device
initialization

data control block

data definition

data extent block

descriptor queue element

data set block

data set control block

event control block

end-of-volume

execute channel program

end-of-task exit routine

execute

free block queue element

initiator

input/output block

initial program loading

job control table

Acronym

JFCB

LTPC

MVT

NIP

PQE

PSW

RB

RDR

SCT

SER

SHPC

SlOT

5MB

SPQE

SVC

SYSOUT

SYSRES

TCB

TIOT

TQE

T4PC

UCB

VTOC

WTR

XCTL

Name

job file control block

local time pseudo-clock

multiprogramming with a
variable number of tasks

nucleus initialization program

partition queue element

program status word

request block

reader

step control table

system environment recording

six hour pseudo-clock

step input/output table

system message block

subpool queue element

supervisor call

system output

system residence volume

task control block

task input/output block

timer queue element

twenty-four hour pseudo-clock

unit control block

volume table of contents

writer

transfer control

Appendix A: List of Acronyms 37

APPENDIX B: MVT CONTROL PROGRAM LOGIC MANUALS

The following list contains the names, form numbers, and abstracts of
all the control program logic manuals that discuss the MVT configu­
ration.

MVT Supervisor Form Y28-6659

This publication describes the internal logic of
the MVT supervisor. The MVT supervisor is one part
of the control program of the IBM System/360
Operating System. The supervisor controls the
basic computing system and programming resources
needed to perform several data processing tasks
concurrently. specifically, it was designed to:

• Handle interruptions
• supervise tasks
• Control programs in main storage
• Control main storage itself
• supervise the timer
• supervise console communications and the system

log
• Supervise exiting procedures
• Supervise termination procedures

MVT Job Management Form Y28-6660

This publication describes the internal logic of
the job management routines for the MVT control
program of the IBM system/360 Operating System.
Included are discussions of input stream process­
ing, work queue management, job initiation and
termination, I/O device allocation, system output
processing, and the scheduling and execution of
operator commands.

Initial Program Loading/Nucleus Initialization Program Form Y28-6661

38

This publication describes the internal logic of
the Initial Program Loader (IPL) program and the
Nucleus Initialization Program (NIP). The Initial
Program Loader prepares main storage to receive the
nucleus and then loads the nucleus. The Nucleus
Initialization Program initializes the resident
part of the control program and prepares main
storage for control program operation.

("","
/

"~

c

Input/Output Supervisor Form Y28-6616

This publication describes the operation of the
I/O supervisor within the IBM System/360 Operating
System control program. The I/O supervisor's com­
ponents, the EXCP supervisor and the I/O interrup­
tion supervisor, are discussed in detail to show
the internal structure and logic involved in the
control of I/O devices and channels.

Catalog Management Form Y28-6606

This manual provides detailed information on
catalog management routines. These routines record
identification of volumes used by data sets by
maintaining information in logical records called
indexes. The functions and structures of the
routines are described, as are their relationships
to other portions of IBM System/360 Operating
System. This manual also describes the structure
of catalog data sets that contain the indexes
processed by catalog management routines.

Direct-Access Device Space Management Form Y28-6607

This manual provides detailed information on
direct-access device space management (DADSM) rou­
tines. These routines control the use of external
direct-access storage by maintaining the informa­
tion in data set control blocks. The functions and
structures of the routines are described, as are
their relationships to other portions of IBM
System/360 operating System. This manual also
describes the structure of volume tables of con­
tents which are processed by DADSM routines.

Input/Output support (OPEN/CLOSE/EOV) Form Y28-6609

This publication describes the internal logic of
IBM System/360 Operating System input/output sup­
port. The discussion includes the relation of I/O
program. Detailed descriptions of the open, close,
and EOV routines provide the basis for the discus­
sions of the other I/O support routines openJ,
RDJFCB, Tclose, and FEOV.

Sequential Access Methods Form Y28-6604

This publication describes the internal logic of
the routines of the queued sequential access meth­
od" the basic sequential access method, and the
basic partitioned access method of IBM System/360
Operating System.

Appendix B: MVT Control Program Logic Manuals 39

Indexed Sequential Access Methods Form Y28-6618

This publication describes the program logic of
the two indexed sequential access methods: the
queued indexed sequential access method (QISAM) and
the basic indexed sequential access method (BISAM).
It also discusses the relationship of indexed
sequential access method routines to other parts of
the control program.

Basic Direct-Access Method Form Y28-6617

40

This publication describes the internal logic of
the IBM System/360 Operating System basic direct­
access method.

c

c'

c

Access method executor 31-33,35
Allocation

Device 16,17
storage 10,19,22-25

Automatic commands 11,35

BLDL list 9

catalog 16,29,30,35
Channel command word (CCW) 33
Channel failure 28,36
Channel program 33

block (CSCB) 14
13,14,16

Command scheduling control
Command scheduling routine
Communications vector table
Console I/O routine 13,14
Console wait routine 13,14
Contents directory 24,26,27
Contents directory entry (CDE)

(CVT) 20,26,28

21,26

Data control block (DCB) 15,17,33
construction of 30
use of 30-32

Data extent block (DEB) 21,30
construction of 31
use of 31

Data set block (DSB) 18
Data set control block (DSCB)

construction of 17,29,30,32
use of 17,29-31

Data set disposition 18~32
DD statements 15,16,35
Descriptor queue element (DQE) 23,24
Device allocation 15,16
Direct access device space management

(DASDM) 17,29,32
Direct access storage device initialization

(DASDI) program 29
Dispatching 20,23
Dynamic area 5,8,9,21,22,24,35,36

End-of-task exit routine (ETXR) 21
Event control block (ECB) 13,14,21
EXEC statement 15,35

Fixed area 8,9
definition of 5,8,35
loading of 5,7,11

Forward merge 30,32
Free block queue element (FBQE) 22

Hardware failure 28,36

IEHPROGM utility program 30
Index 29,30,35
Initial program loading (IPL) 5,7-11
Input work queue 11,15,16,18,35,36
Input/output block (lOB) 33
Interpreter control routine 13,15,,16
Interruption handling routines
19,20,26,29,32-34

Interval timer 11,19,26,,28

I/O error-handling routines 7,34
I/O supervisor transient area 8,9
I/O support 29,30

Job control table (JCT)
construction of 15
use of 16

Job file control block (JFCB)
construction of 15,31
use of 17,31,32

Job scheduler 15,35
Job statement 15
Job step task 20,21,23,35
Job step TCB 18,20,26

Label processing 17,29,30,32
Link pack area
5,7-12,15,16,22,24,26,29,32,33,3 5

loading of 9
Load list 24,26

Master scheduler region 10,11
Merge 32

forward 30,32
reverse 30,31

Message class 18
Multi jobbing 16

Nucleus 7,8,35,36
contents of 7~11,13,19,20,28,29

loading of 5,11
Nucleus initialization program (NIP)

5,9-11,35

Output work queue 11,18,,36

Partition queue element (PQE) 22
Privileged instructions 5,7
Problem state 5,7,8,19
Protection key 5,7-12,19,21-24
Pseudo-clock 28,35

Qualified name 29,30

Region 10-13,15,18,22-24,26,29,32,33,35
assigning of 9,12,16
definition of 22

Request block (RB) 20,21,34
Request block queue 20-24,34
Request element table 33
Reverse rrerge 30,31

Shared data sets 16
Step attach routine 18
Step control table (SCT) 15,16
Step input/output table (SlOT) 15,16
Storage allocation 10,16,21-24,26,35
Storage protection keys 5,7-12,19,21-24
Subpool 22-26,36
Subpool queue element (SPQE) 21,23-24
Subtask 23,36
Supervisor state 5-7,9,19,20,23,35

Index 41

Y28-6658-0

SVC routines 9,13,14,16,18-20,26,33
definition of 7,36
resident types 3 and 4 7,29

SVC transient area 8,9,29,36
SYSOUT class 18
SYSOUT data sets 11,12,18,35
System environment recording (SER) 7,8,19

SERO 19,28,36
SERl 28,36

System messages 11,12,14,15,18,35
System message block (SMB) 18
System queue area
5,8,9,11,12,17,22,28,35,36

expansion of 24
storage allocation in 21,24

System residence volume 5,11
System restart 11
System task 9,12-14,26

assignment of storage 10,21,22,36
creation of 14

System task control routine 15,16,18
SYS1.LINKLIB 8,9,15,23,28,35,36
SYS1.LOGREC 11,28,36
SYS1.NUCLEUS 7,35,36
SYS1.SVCLIB 7-9,23,29,35(36

Task
attaching of 17,20,35

International Buainaaa Machinea Corporation
Data Procaaaing Diviaion
112 Eaat Poat Road, White Plaina, N.Y.tDBDl
[USA Only)

IBM World Trada Corporation
821 United NaHona Plaza, New York, New York 10017
[Intarnatlonal)

control of 6,19,20,22
dispatching of 20,23
job management 12
status of 9
storage allocation to 22~23
termination of 20-23

Task control block (TCB) 13,20,21,28
construction of 18,20
job step 18,20,26,35
use of 20,22,23,28,31

Task control block queue 20,21
Task input/output table (TIOT) 16,17
Timer 11,19,26,28
Timer queue 28
Timer queue element (TQE) 28
Transient areas 7-9,36

Unit control block WCB) 31,33,34

Volume disposition 32
Volume table of contents (VTOC) 29

Work queue 15
input 11,15,16,18,35
output 11,18

Work queue entry 15,16,18,36

,""'~',
"'''-0,''';

-<
!iii

~
I
o

(:

.

'.

READER'S COMMENT FORM

IBM System/360 Operating System
MVT Control Program Logic Summary

• Is the material:

Form Y28-6658-0

Yes No
Easy to read? o 0
Well organized? o 0
Complete? .. . o 0
Well illustrated? o 0
Accurate? o 0
Suitable for its intended audience? . o 0

• How did you use this publication?
o As an introduction to the subject Other
o For additional knowledge

• Please check the items that describe your position:
o Gustomer personnel 0 Operator
o IBM personnel 0 Programmer
o Manager 0 Customer Engineer
o Systems Analyst 0 Instructor

o Sales Representative
o Systems Engineer
o Trainee
Other.

• Please check specific criticism (s), give page number (s), and explain below:
o Clarification on page (s) 0 Deletion on page (s)
o Addition on page (s) 0 Error on page (s)

Explanation:

• Thank your for your cooperation. No postage necessary if mailed in the U.S.A.

Y28-6658-0

YOUR COMMENTS PLEASE . . .

This publication is one of a series which serves as reference for systems analysts, program­
mers and operators of IBM systems. Your answers to the questions on the back of this
form, together with your comments, will help us produce better publications for your use.
Each reply will be carefully reviewed by the persons responsible for writing and publish­
ing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving
your locality.

Fold Fold
... :

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U. S. A.

Attention: Progromming Systems Publications
Department 058

POSTAGE WILL BE PAID BY

IBM Corporation

P.O. Box 390

Poughkeepsie, N.Y. 12602

FIRST CLASS
PERMIT NO. 81

POUGHKEEPSIE, N.Y.

..
Fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10SOl
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
[International]

Fold

-<
!Xl'
cl-"'. 0.'
00
I
o

