
Systems Reference Library

IBM System/360 Operating System:

Utilities

This publication discusses the capabilities
of the IBM System/360 Operating System utility
programs and the control statements used with
each program. These programs are used by
programmers responsible for organizing and
maintaining operating system data.

Three types of utility programs are
discussed: system utilities and data set
utilities, which are used directly with the
System/360 Operating System; and independent
utilities, which operate outside the operating
system. System utilities deal with operating
system control data. Data set utilities
manipulate data sets at the record level and
above. Independent utilities initialize, dump,
and restore direct access volumes.

Information concerning Model 195 support is
for planning purposes only.

File No. S360-32 OS
GC28-6586-11

Preface

system/360 Operating system Utility
programs provide functions to assist
programmers responsible for creating and
maintaining operating system data. These
functions are requested through control
statements, which can be used individually
or in combination, to perform a variety of
housekeeping and support operations.

This publication discusses the functions
provided by each utility program and the
control statements used to request these
functions. Examples illustrating possible
uses of the utilities follow the
description of each utility program.
Appendixes A and B contain information .for
linking to exit routines and invoking
utility programs. Appendix C contains
information explaining the control
statement notation used throughout this
publication. Appendix D contains
information on defining mountable devices
and maintaining volume integrity. Appendix
E describes how to build a generation data
group index and catalog a generation.

TWelfth Edition (June, 1970>

Appendix F discusses utility program
handling of user labels. Appendix G
contains the messages and return codes
issued by the utility programs.

The reader should be familiar with the
concepts and terminology introduced in the
prerequisite publications.

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System:

Job Control Language Reference,
GC28-6704

Job Control User's Guide, GC28-6703

supervisor and Data Management Services.
GC28-6646

Supervisor and Data Management Macro
Instructions, GC28-6647

This is a major revision of, and obsoletes, C28-6586-10. 'The
additions and changes to this revision include:

• A new utility to assign alternate tracks when defective
areas are indicated (IEHATLAS).

• An improved IEBCOPY utility program.
• A new edited format for the LISTPDS function of IEHLIST.
• A new utility supporting the 2495 Tape Cartridge Reader

(IEBTCRIN).
• Deletion of the IEHUCSLD program.
• IEHMOVE Support of BDAM Variable Spanned Records (VRE).
• A new utility to list error information from the SYS1.MAN

data set (IFHSTATR).

Changes to the text are indicated by vertical lines to the
left of the change and by bullets to the left of illustration
captions.

This edition applies to release 19 of the IBM System/360
Operating System, and to all subsequent releases until
otherwise indicated in new editions or Technical Newsletters.
Changes are continually made to the information herein;
before using this publication in connection with the
operation of IBM systems, consult the latest IBM System/360
SRL Newsletter, Order No. GN20-0360 for the editions that are
applicable and current.

Requests for copies of IBM publications should be made to
your IBM representative or to the branch office serving your
locality.

A form for readers· corrrdents is provided at the back of
this publication. If the form has been removed, comments may
be addressed to IBM Corporation, Programming Systems
Publications, Department D58, PO Box 390, Poughkeepsie, N. Y.
12602

©Copyright International Business Machines Corporation 1965,1966,1967,1968,1969,1970

System Utilities

(Front)

IEHPROGM

IEHMOVE

IEHLIST

IEHINITT

IEHIOSUP

IFCEREPO

IFCDIPOO

IEHDASDR

IEHATLAS

IFHSTATR

~

~

~

....

~

I

~

~

..
~

~

Data Set Utilities

(Middle)

IEBCOPY

IEBGENER

IEBCOMPR

IEBPTPCH

IEBTCRIN

IEBUPDTE ~

IEBISAM

IEBEDIT

IEBUPDAT

IEBDG ~

lIo..
~

Independent Utilities

(Rear)

IBCDASDI

IBCDMPRS

IBCRCVRP

Follow Tabs

~

..

..
..... ,

..
~

..... ,

..... ,

.....
~

.....
~

"" ,

..

'. • • • • • • • • • • •

JMMARY OF MAJOR CHANGES - RELEASE 19 •

NTRODUCTION
~e Program Classes • • • • •
The System Utility Programs •
The Data Set Utility Programs
The Ipdependent Utility Programs

electing a Program • • • • •
Control Language Notation • • • •

ECTION 1: SYSTEM UTILITIES
~b Control Statement Requirements • • • •
Methods of Execution

Including the Job Control Statements in
the Input Stream • • • • • • • • •
Entering a Set of Job Control
Statements Into a Procedure Library • •
Invoking a Utility Program • • • •

Multiprogramming Considerations • • •
tility Control Statement Specifications

Identification Parameters •

• 13

• 15
• 15
• 15
• 15
• 16
• 16
• 22

• 23
• 23
• 24

• 24

• 24
• 25
• 25

26
• 26

HE IEHPROGM PROGRAM • • • • • • 29
rogram Applications • 29

Scratching a Data Set or Member • • 29
Renaming a Data Set or Member • • • 30
Cataloging or Uncataloging a Data Set • • 30
Building or Deleting an Index • • • 32
Building or Deleting an Index Alias • • • 34
Connecting or Releasing Two Volumes • . • 35
Building an Index for a Generation Data
Group • • • • • • • • 36

nputs and Outputs . • 38
Additional Outputs • • • • • • • • • 38

ontrol • • • • • • • • • • • • • 38
Job Control Statements • 38
Utility Control Statements • 40

The SCRATCH Statement • • • • • • 40
The RENAME Statement • • • • • 42
The CATLG statement • • • • • • . • 42
The UNCATLG Statement • • • 43
The BLDX (Build Index) Statement • 44
The DLTX (Delete Index) Statement • • 44
The BLDA (Build Index Alias) Statement • 45
The DLTA (Delete Index Alias) Statement • 45
The CONNECT Statement • • • • • • • • • • 45
The RELEASE (Disconnect) Statement • 46
The BLDG (Build Generation Data Group
Index) Statement • 47

EHPROGM Examples • • • • 48

HE IEHMOVE PROGRAM • • • • • • • • 57
rogram Applications • • • • • • • • • 57

Moving or Copying User Labels • • • • • • 60
Moving or copying BDAM Data Sets • 60
Reblocking • • • • . • • • • • • • 60
Moving or Copying a Data Set • 61
Moving or Copying a Group of Cataloged
Data Sets • • • • • • • • • • • • • • • • 68
Moving or Copying a Catalog • • • • • • • 71
Moving or Copying a Volume of Data Sets • 72

Contents

Moving or Copying Direct Data Sets With
Variable Spanned Records • 75

76 Inputs and Outputs
Additional Outputs • • • •

Control . • • • • • •
Job Control Statements

Job Control Language for the Track
Overflow Feature • • • • • • • • • •
PAill~ Information in the EXEC Statement

Utility Control statements
The MOVE DSNAME Statement • •
The COPY DSNAME Statement • •
The MOVE DSGROUP Statement • • • •
The COpy DSGROUP Statement • • • • •
The MOVE PDS Statement

• • 76
76
77

79
• 80

80
81

• 82
• 83

84
85

The COpy PDS Statement • • • • • • • 87
The MOVE CATALOG Statement
The COpy CATALOG Statement
The MOVE VOLUMB statement
The COPY VOLUME Statement •
The INCLUDE Statement • •
The EXCLUDE Statement • •
The SELE:CT statement
The REPLACE statement •

IEHMOVE Examples

• • • • • • • 89
• 90

91
• 91

• • • • • • 92
93
93

• 94
• • • • • • 95

THE IEHLIST PROGRA~ •••••• 111
Program Applications •• 111

Listing Catalog Entries. .111
Listing a Partitioned Data Set Directory 111
Listing a Volume Table of Contents ••• 113

Inputs and Outputs ••• 116
Additional Outputs • • • • • ••••• 116

Control. • • • • • • .116
Job Control statements •••••• 117
Utility Control statements •••• 118

The LISTCTLG Statement •• 118
'lhe LISTPDS statement • • •• • • • .119
The LIS'I'VTOC Statement .120

IEHLIST Examples ••• 121

THE IEHINITT PROGRAM
Program Application • •

Placing a Standard Label Set on

••• 125
••• 125

Magnetic Tape. • • . ••••• 126
Inputs and Outputs .126

Additional Outputs . • • • • •• 127
Control. • • • • • • • • • • • • • .127

Job Control statements .127
Utility Control Statements • • • • • .129

The INITT Statement. • ••••••• 129
IEHINI'I'T Examples • • • • • • . • • • • . 131

THE IEHIOSUP PROGRAM •••• 135
Program Applications ••••••• 135

Updating TTR Entries in the SVC Library .135
Inputs and Outputs • • • . • .135

Additional Outputs ••• 135
Control. • • • • • • • • • • • .136

Job Control statements •••• • .136
IEHIOSUP Examples. • • • .137

Contents 5

THE IFCEREPO PROGR&~ • • • • • • • • • • • .139
Program Applications •••••••••••• 139

Editing and Writing Selected Records • .139
Accumulating selected Records • • .143
summarizing Selected Records .143
Processing Records Produced on a
Different Machine Nodel • • • • • • • •• 146

Inputs and Outputs
Control • • • • • • • • • • • • • •

Job Control statements
PARM Parameter Control Information

IFCEREPO Examples • • • • • • •

THE IFCDIPOO PROGRAM • • • • •
Program Application • • • • • •
Program Output
Program Control • • •

Job Control statements •••••
IFCDIPOO Example

THE IEHDASDR PROGRAM
Program Applications

Analyzing the Recording Surface of a
Direct Access Volume (ANALYZE)
Preparing a Direct Access Volume for
System Use (FORMAT) • • • • • • •

.146

.147
• •• 147
• •• 148

.151

• • .159
• .159

.159
• •• 159

• .159
• •• 160

.161

.161

• .161

.163
Changing the Volume Serial Number of a
Direct Access Volume (LABEL) ••••.• 163

• •• 163
Assigning Alternate Tracks for
specified Tracks (GETALT) • • •
Creating a Backup, Transportable, or
Printed Copy (DUMP) • • • • • • •
Copying Dumped Data From a Magnetic
Tape Volume to a Direct Access Volume

· .164

(RESTORE) • • • • • • • • • • • • .165
.165

• •• 165
Inputs and Outputs • • • •

Additional Outputs • • • • • • •
Control • • • • • • •

Job Control Statements
.166
.166

PAfu~ Parameter Information in the EXEC
Statement • • • • • • • • •

Utility Control Statements ••• •
The ANALYZE Statement •
The FOR~ffiT statement
The LABEL statement •
The GETALT Statement
The DUMP Statement • • • • • •
The RESTORE Statement •

IEHDASDR Examples • •

THE IEHATLAS PROGRAM • • • • • • •
Program Applications •••••
Inputs and Outputs • • • •
Control • • • • • • • • • • •

Job Control Statements
Utility Control

IEHATLAS Examples • • • • • • • • • •

THE IFHSTATR PROGRAM
Program Applications
Inputs and Outputs
Control • • • • •
IFHSTATR Example

SECTION 2: DATA SET UTILITIES
Job Control Statement Requirements

Methods of Execution • • • • • • • •

6

.169

.170

.170
• •• 172

.174

.175

.175
• .178

• •• 180

• •• 189
.189

• •• 191
.191

• .192
.192

• .194

.197
• •• 197

• 197
.198
.199

.201 ..

.201

.202

MVT Considerations (Multiprogramming with
a Variable Number of Tasks) •••••••• 20;

Utility Control Statement specifications ..20:

THE IEBCOPY PROGRAM
Program Description
Inputs and Outputs •••••

Acceptable Devices •••••
Additional Outputs

Control • • • • • • • • •
Job Control Statements

Space Allocation

• • 20~
.20!
.20!
.20!

• .20j
• • .201

.20j
• • .201

Alias processing •• 20!
Utility control Statement3 •• 20!

The COPY Statement ••••••••••• 21(
The SELEC~ Statement ••• 21:
~he EXCLUDE statement ••• 21:
Control Statement Sequence ••••••• 21:
Using the Utility Control statements •• 21:

Copy Operation/copy Step concept ••• 21:
Program Applications • • • • • • • • • .21.

Creating a Back-Up Copy ••••••••• 21/
Copying From More Than One Input
Partitioned Data Set • • • • • • .21«
Replacing Identically Named Data Set
Members. • • • • • • • • • • • • •• 21.
Selecting Members to be copied •. • .2r
Replacing Only selected Members ••••• 21f
Renaming Selected Members • • • •• 21f
Excluding Members From A Copy Operation .21f
Compressing A Data Set •••••• 21~
Merging Data Sets .21~
Recreating A Data Set. • • •• 21~

IEBCOPY Examples ••• 22(

THE IEBGENER PROGRAM •• 25~
Program Applications • • • • • 25~

Creating a Back-Up Copy. • •• 25~
Producing a Partitioned Data Set From
Sequential Input ••••••••• 25f
Expanding a Partitioned Data Set •• 25~
Producing an Edited Data Set •• 25~
Reblocking and/or Changing the Logical
Record Length of a Data Set • • •• 26(

Inputs and Outputs • • .26:
Additional Outputs .26J

Control • • • • • •• • • • • • •• 26j
Job Control Statements •••• • • .26:
Utility Control Statements •• • 26t

The GENERATE Statement .26t
The EXITS Statement • • • ••••• 26~
The LABELS Statement •••••••••• 261
The MEMBER Statement • • .26E
The RECORD Statement ••• 26~
Using the Utility Control Statements •• 26~
Coding Utility Control Statements • .26~

IEBGENER Examples • • • • • .27:

THE IEBCOMPR PROGRAM • • • •
Program Applications

Verifying Back-Up copies
Verifying Portions of Records •

Inputs and Outputs
Additional Outputs

Control • • • • • • • • • • •
JOb Control Statements
Utility Control Statements

The COMPARE Statement • • • •

• 28~
• • 28~

• • .28E
.281

• • • 28~
• • • 28~

• • 28~
• .28f

• • • 28~
• • • 28~

The EXITS Statement ••••••••••• 289
The LABELS statement •••••••• 290
Using the Utility Control Statements •• 291
Coding Utility Control Statements. .291

EBCOMPR Examples • • • .293

HE IEBPTPCH PROGRAM • • • • • •• 301
rogram Applications • • • • .301

Printing or Punching a Data Set in its
Entirety • • • • • • • • • • •••• 301
Printing or Punching Selected Members •• 302
Printing or Punching Selected Records •• 302
Printing or Punching a Partitioned
Directory • • • • • • • • • • • • •
Printing or Punching an Edited Data Set

.302

.302

.303 nputs and Outputs • • • •
Additional Outputs

ontrol • • • • • • •
Job Control Statements
Utility Control Statements

Coding Utility Control Statements •
The Print or Punch Statement
The TITLE statement •
The EXITS Statement • •
The ~~MBER statement
The RECORD statement
The LABELS statement

.EBPTPCH Examples • • •

'HE IEBTCRIN PROGRAM
·rogram Applications
:nputs and Outputs
:ontrol • • • • • • • •

Job Control Statements
Utility Control Statements

The TCRGEN Statement
The EXITS statement • • •

~rror Records • • • • • • • •

.303

.303
• 303
.305
.306
.307
.310
• 310
.311
.311
.312

• •• 313

.323
• •• 323
• • .323
• • .323

.324

.327

.327

.335

MTST Input or MTDI Input with No Editing
MTDI Input with Editing • • • • • • •

.337

.337

.337
The Error Description Word (EDW)

iTDI Editing Criteria • • • • • • •
Start-of-Record and End-of-Record
Locations • . • • • • •
special Considerations

~nd of Cartridge
iample Error Records • • • • • • •
CEBTCRIN Examples • • •

.337
• •• 340

.340

.340

.341
• •• 342

.345

mE IEBUPDTE PROGRAM .349
)rogram Applications .349

Creating and Updating Symbolic Libraries 349
Incorporating Changes to Partitioned
Members or sequential Data Sets • •
Changing the Organization of a Data

[nputs and Outputs
Additional Outputs

:ontrol • • • • • • •
Job Control statements
Utility Control Statements

Function statements
Detail Statements •
Data Statements • • • • • •
LABEL statements • • • •
User Label Processing With
UPDATE=INPLACE
ALIAS Statement • •
ENDUP Statement • •

.349
Set .350
• •• 350

.350

.351

.351
• • .353
• •• 354
• •• 359

.361

.362

• .363
• •• 364

.364

IEBUPDTE Examples • • • • •• 365

THE IEBISAM PROGRAM • • • .381
Program Applications • • • • • • • •• 381

Copying an Indexed Sequential Data Set
(COpy Operation) • • • • • • .381
Creating a sequential Back-Up Copy
(UNLOAD Operation) ••••. .381
Creating an Indexed Sequential Data Set
From an Unloaded Data Set (LOAD
Operation) ••••••••••••
Printing the Logical Records of an
Indexed Sequential Data Set (PRINTL
Operation) •••••••••

Inputs and Outputs
Additional Outputs

Control • • • • • • • • • • • • •
Job Control Statements

IEBIS~l Examples • • • • •

THE IEBEDIT PROGRAM • •
Program Applications

Selectively Copying a Job Stream

.383

• •• 383
• •• 384

.385

.386

.386

.388

• .393
.393
.393

Inputs and Outputs ••••• • • • • • .394
.394
.394

Additional Outputs • • • • • •
Control • • • • • • • •

Job Control Statements ••••
Utility Control statements • • • •

The EDIT statement
IEBEDIT Examples

THE IEBUPDAT PROGRAM • • • • • •
EXEC Statement Control Information
Header Statement • • • • • •
Detail Statements • • • • • •
ALIAS Statements • • • • • •
ENDUP Statement (Optional)

IEBUPDAT Examples • • •

THE IEBDG PROGRAM • • • • • •
Program Application • • • • •

Generating Test Data ••••
Field Selection

Inputs and Outputs
Additional Outputs

Control • • • • • • • •

• .395
• .396

• ••• 396
.398

• .403
• •• 403

• .404
• .405
• .406

.407
• .408

• .411
• .411
• .411

.412
• .419

.419

.419
Job Control Statement Invoking the IEBDG
Program • • • • . • •
Utility Control statements

The DSD Statement • • • •
The FD (Field Definition)
The CREATE Statement
The REPEAT statement

.420
• • • • • • • .422
• • • •• .422
Statement ••• 422

•••• 426

The END Statement • • • • • •
IEBDG Examples • • • • • • • • •

.428

.429
• .430

SECTION 3: INDEPENDENT UTILITIES. • .443
Utility Control Statement Requirements .443
Methods of Operation • • • • • • • •• .444

IBCDASDI -- INITIALIZING AND ASSIGNING
ALTERNATE TRACKS ON DIRECT ACCESS VOLUMES •• 447
Initializing a Direct Access Volume ••••• 447'

DADEF Statement ••••• • .448
VLD Statement • • • .449
VTOCD Statement. • • .450
IPLTXT statement • • • • • .450
LAST CARD statement •• 450

Contents 7

Assigning an Alternate Track
GETALT statement

IBCDASDI Examples •

.451
• 451
.453

IBCDMPRS -- DUMPING AND RESTORING A DIRECT
ACC~SS VOLUME • • • •• • • • • •

DUl"'.IP Statement
VDRL Statement
RESTORE Statement •

IBCDMPRS Examples • • •

IBCRCVRP -- RECOVERING DATA FROM A
DEFECTIVE TRACK • • • •

• 455
.455
.456

• • .457
.459

• •• 461.
Recovering Usable Data • • • • .461.

RECOVBR Statement •
LIST Statement

Replacing Bad Data
REPLACE Statement •
LIST Statement
INSERT Statement • • • • •
Replacement Data Records

IBCRCVRP Examples • • • •

.461.
• 462
.463
.463
.464
.465

•• 466
.467

APPENDIX A: EXIT ROUTINE LINKAGE •
Linking to an Exit Routine
Returning From an Exit Routine
Return Codes from IEBTCRIN

.469
• •• 469

.471
• •• 473

APPENDIX B: INVOKING UTILITY PROGRAMS ••• 475

APP~NDIX C: CONTROL STATEMENT FO~~T AND
NO'I'ATION • • • • • • • • • • • • • • • • • .481.

Notation for Defining Control Statements 482

APPENDIX D: DEFINING MOUNTABLE DEVICES TO
BE USED BY SYST~l UTILITY PROGRAMS ••••• 485

APPENDIX E: GENERATION DATA GROUPS • •
Preparing to Catalog a Generation Data

.489

Group • • • • • • • • • • • • • • • • • • .489
.489
.496
.497

8

Building a Generation Data Group Index
Providing DCB Attributes

Cataloging a Generation • • • • • •
Using JCL Procedures to Catalog a
Generation • • • • • • • • • • • .497

Using the IErlPROGM Program to Catalog a
Generation • • • •• ••• • .491
Creating an ISAM Data Set as Part of a
Generation Data Group • • • •

Retrieving a Generation • • • •
Multiprogramming Considerations •

Generation Data Groups Examples • • •

APPENDIX F: UTILITY PROGRAM HANDLING OF
USER LABELS • • • • • • • • • • • • • •

Processing User Labels as Data Set
Descriptors • • • • • • • • • • • •
Processing User Labels as Data
Exiting To a User's Totaling Routine
IEBUPDTE and IEHMOVE • • • • •
Volume Switch Labels •• • • • • •

.49f:
• •• 49::

.49E

.49S

• • • 50~

.505

.50E
•• 509

.509

.51C

APPENDIX G: UTILITY PROGRAM MESSAGES •••• 511
Independent Utility Messages •• 511

Error Messages for DASDI and
DUMP/RESTORE ••• 511
Diagnostic Messages for Independent
Utilities •••••••••••••••• 514
Error Messages for RECOVER/REPLACE .516

Data Set Utility Messages. .519
The IEBEDI'I Program. • .519
The IEBCOPY Program. • • •• 520
The IEBCOMPR Program • • • • .532
The IEBGENER Program ••• 537
The IEBP'l'PCH PrograJIl • • • • • • .542
The IEBUPDAT Program •••••• 545
The IEBISAM Program ••••• '. • .547
The IEBDG program • • • .548
The IEBUPDTB Program .553
The IEB'I'CRIN Program • • .558

System Utility Messages. • • • • • • •• 562
The IEHLIST Program. • • • •• 562
The IEHPROGM Program .563
The IEHMOVE Program. • • •• 564
The IEHINITT Program • • • • .571
The IEHIOSUP Program • • • • • • .572
The IEHDASDR Program •••••••• 572
IEHATLAS Program •••• 580
IFCDIPOO Program • • • • .584
The IFCEREPO Program •• 585

INDEX • • •• 587

::Wigures

• 24
System Utility Figure 1. Executing a
System Utility Program • • • • • • • •
System Utility Figure 2. Executing a
:ataloged Utility Procedure • 25
IEHPROGM Figure 1. Cataloging- a Data Set • 31
IEHPROGM Figure 2. Uncataloging a Data
Set • ~ • •• • • • • • • • • • • • • • 32
IEHPROGN. Figure 3A. Index Structure Prior
to Build Operation • • • • • • • • • • • • • 33
IEHPROGM Figure 3B. Index Structure After
Build Operation •••••••••••••• 33
IEHPROGM Figure 4. Building an Index
~lias •••• • • • • • • • • • • • 34
IEHPROGM Figure 5. Connecting a Volume to
a Second Volume •••••••••••••• 35
IEHPROGM Figure 6. Connecting Two Volumes 36
IEHPROGM Figure 7. Building a Generation
Data Group Index • • • • • • • • • • •
IEHMOVE Figure 1. Moving a sequential
Data Set • • • • • • • • • •
IEHMOVE Figure 2. Moving a Partitioned

• 37

62

Data Set • • • • • • • • • • • • • 63
IEHMOVE Figure 3. Copying a sequential
Data Set • • • • • • • • • • • • • 64
IEHMOVE Figure '4. Copying a Partitioned
Data Set • • • • • • • • • • • • • 65
IEHMOVE F'igure 5. A Copied Partitioned
Data Set • • • • • • • • • • • • • 66
IEHMOVE Figure 6. Merging Two Data Sets • 67
IEHMOVE Figure 7. Merging Three Data Sets 68
IEH~OVE Figure 8. Moving a Group of
Cataloged Data Sets • • • • • • • • • 69
IEHMOVE Figure 9. Copying a Group of
Cataloged Data Sets •••••••••
IEHMOVE Figure 10. Moving the Catalog
IEHMOVE Figure 11. Copying the Catalog
IEHMOVE Figure 12. Moving a Volume of Data

• 70
• 71

72

Sets • • • • • • • • • • • • • • • •• • 73
IEHMOVE Figure 13. Copying a Volume of
Data Sets . • • • • • • • • • • • • 74
IEHLIST Figure 1. A Sample Directory
Block •••• • • • • • • • • •• .112
IEHLIST Figure 2. Edited Partitioned
Directory Entry •••••••••••••• 113
IEHLIST Figure 3. A Sample Partitioned
Directory Listing ••••••••••••• 113
IEHLIST Figure 4. Sample Printout of a
Volume Table of Contents •• 115
IEHINITT Figure 1. standard Label After
Volume First Receives Data • • • • • .125
IEHINITT Figure 2. A Printout of INITT
Statement Specifications and Initial Volume
Label Information ••••••••••••• 130
IFCEREPO Figure 1. Output Record Printout
structure ••••••••••••••••• 140
IFCEREPO Figure 2. Sample Printout --
Outboard Data Editing and Printing Section .142
IFCEREPO Figure 3. Sample Printout -
Statistical Data Editing and Printing
section • • • • • • • • • • .142
IFCEREPO Figure 4. Machine-Check Summary .144

Illustrations

IFCEREPO Figure 5. Channel Inboard
Summary • • • • • • • • •
IFCEREPO Figure 6. I/O Outboard Summary
IEBDASDR Figure 1. An Initialized Direct
Access Volume • • • • • • • • • •
IEHDASDR Figure 2. Forrrat of Printed
Output When Dumping the Contents of a
Direct Access Volume Onto a Printer

.145

.145

.162

.164
IEHATLAS Figure 1. Example of a Simple
Application for IEHATLAS •.••••••.• 190
IFHSTATR Figure 1. Type 21 (ESV) Record
Format • • •• • • • • • • • • • •
IFHSTATR Figure 2. Sample Output from the
IFHS'I'ATR Program • • • • • • • • • • •
IEBCOPY Figure 1. Copy Operation/Copy
step Concept • • • • • • • • • •
IEBGENER Figure 1. Creating a Partitioned
Data Set from Sequential Input • • • •
IEBGENER Figure 2. Expanding a

.197

.198

.215

.258

Partitioned Data Set • • • . • • .259
IEBGENER Figure 3. Editing a Record Group 260
IEBCOMPR Figure 1. Partitioned
Directories ~- Data sets Can be Compared •• 286
IEBCCMPR Figure 2. Partitioned
Directories -- Data Sets Cannot be Compared 286
IEBTCRIN Figure 1. MTDI Codes From TCR •• 332
IEBTCRIN Figure 2. MTST Codes From TCR .. 333
IEBTCRIN Figure 3. MTST Codes After
Translation-by IEBTCRIN With TRANS=STDLC •• 334
IEBTCRIN Figure 4. Byte Values of the
Error Description Word •••••••••.• 338
IEBTCRIN Figure 5. Tape Cartridge Reader
Data Stream •.•••••••• 343
IEBTCRIN Figure 6. Record Construction •• 344
IEBISA~ Figure 1. An Unloaded Data set •• 383
IEBEDIT Figure 1. selectively Copying a
Job Stream • • • • • • • • .393
IEBUPDAT Figure 1. SYSIN Control
statements • • • • • • • • • • .404
IEBDG Figure 1. Defining and Selecting
Fields for Output Records ••••.•••• 412
IEBDG Figure 2. Field Selection Operation 413
IEBDG Figure 3. Default Placement of
Fields Within an output Record .••••.• 413
IEBDG Figure 4. IEBDG Actions •••••• 416
IEBDG Figure 5. Creating output Records
With Utility Control Statements
IEBDG Figure 6. Order of Repetition Due

.417

to the REPEAT Statement •••••.•••• 418
IEBDG Figure 7. Compatible Operations •• 425
LINK/ATTACH Figure 1. Invoking a Utility
Program477
LINK/ATTACH Figure 2. Typical Parameter
Lists .478
Generation Data Groups Figure 1. A
Generation Data Group Index .490
Generation Data Groups Figure 2. A
Generation Data Group Index -- One Entry 492
Generation Data Groups Figure 3. A
Generation Data Group Index
Two Entries493

Illustrations 9

Generation
Generation
Entries
Generation
Positioning

Charts

Chart 1.
Chart 2.
Chart 3.

10

Data Groups Figure 4. A
Data Group Index -- Three494
Data Groups Figure 5. Relative
-- Three Entries in the Catalog 496

SYSTEM UTILITIES (Part 1 of 2) •• 17
DA'I'A SET UTILITIES (Part 1 of 3) • 19
INDEPENDENT UTILITIES • • • • • • 22

User Labels
OPEN, EOV,
User Labels
List Passed
Routine .

Figure 1. System Action at
or CLOSE 'Time50t
Figure 2. Format of Parameter
to User's Label Processing50t

~ables

EHPROGM Table 1. Job Control Statements
or the IEHPROGl'l Program • • • • • • . • 39
EHMOVE Table 1. Results of Move and Copy
Iperations ••••••••••••••••• 59
,EHMOVE Table 2. Data Sets Used (Input)
,nd Produced (Output) by the IEHMOVE Program 76
:hHMOVE Table 3. Job Control Statements
:or the IEHMOVB Program • • • • • • • • • • . 77
:EHMOVB Table 4. Valid Combinations of
:ontrol statements •• • • • • • • • • • • • 81
:EHLIST Table 1. Data Sets Used (Input)
lnd Produced (Output) by the IEHLIST Program 116
:EHLIST Table 2. Job Control Statements
:or the IEHLIST Program ••••••••••• 117
:EHINITT T;lble 1. Data Sets Used (Input)
lnd Produced (Output) by the IEHINITT
)rogram • • • • • • • • • • • • .126
:EHINITT Table 2. Job Control Statements
:or the IEHINITT Program • • • • • •• .128
~EHIOSUP Table 1. Data Sets Used and
?roduced by the IEHIOSUP Program • • .135
CErlIOSUP Table 2. Job Control Statements
:or the IEHIOSUP Program •••••••••• 136
CFCEREPO Table 1. Data Sets Used (Input)
md Produced (Output) by the IF'CEREPO
)rogram ••••••••••••••••••• 146
CFCEREPO Table 2. Job Control Statements
Eor the IFCEREPO Program ••••••• 147
[FCDIPOO Table 1. Job Control Statements
Eor the IFCDIPOO Program ••••••• 159
[ErlDASDR Table 1. Job Control Statements
Eor the IEHDASDR Program ••••• 166
[EHDASDR Table 2. Effect of the N Keyword
)ver Concurrent Operations ••••.•. 169
IEHATLAS Table 1. Job Control Statements
for the IEHATLAS Program •••..•• 192
IFHSTATR Table 1. Job Control statements
for the IFHSTA'l'R Program. • • • • • • • • • .198
IEBCOPY Table 1. Data Sets Used (Input)
~nd Produced (Output) by the IEBCOPY Program 206
IEBCOPY Table 2. Job Control Statements
for the IEBCOPY Program ••••••••••• 207
IEBCOPY Table 3. Use of the COPY, SELECT,
~nd EXCLUDE Statements in the IEBCOPY
Program (Note: Cards are read from bottom
to top within each sample.) ••••••••• 214
IEBGENER Table 1. Data Sets Used (Input)
and Produced (Output) by the IEBGENER
Program • • • • • • • • • • • • • • • • • • .261
IEBGENER Table 2. Job Control Statements
for the IEBGENER Program (Part 1 of 2) .262

IEBGENE~ Tanle 3. Utility Control
Statements for the IEBGENErt Prograrr •• 264
IEBGENhR Table 4. Use of the GENERATE,
EXITS, ME~BER, and RECORD Statements .269
IEBCOMPR Table 1. Data Sets Used (Input)
and Produce6 (Output) by the IEBCO~PR
Program ••••••••••••••••••• 287
IEBCOMPR Table 2. Job Control Statements
for the IE3COMPR Program •••••••••• 288
IEBCOMPR Table 3. Use of the COMPARE,
EXITS, and LABELS Statements •••••••• 291
IEBPTPCh Table 1. Data Sets Used (Input)
and Producea (Output) by the IEBPTPCH
Program ••••••••••••••••••• 303
IEBPTPCrl Table 2. Job Control Statements
for the IEBPTPCH Program • • • •• • •• 304
IEBPTPCH Table 3. Utility Control
Statements for the IEBPTPCH Prograrr .305
IEBTCRIN Table 1. Data Sets Used (Input)
and Produced (Output) by the IEBTCRIN
Program ••••••••••••••••••• 323
IEBTCRIN Table 2. Job Control Statements
for the IEBTCRIN Program •••.•••••• 3~4
IEBTCRIN Table 3. Values for MINLN and
MAXLN • • • • • • • • • • • • • • • • • • . .330
IEBUPDTE 'l'able 1. Data Sets Used (Input)
and Produced (Output) by the IEBUPDTE
Program •.•.••••••••.•••••. 350
IEBUPDTE Table 2. Job Control statements
for the IE3UPDTE Program •••••••••• 351
IEEUPDTE Table 3. NEW, MBMBE~, and NA~E
Keywords .•••••••••••.••••. 358
IEBISAM Table 1. Data Sets Used (Input)
and Produced (Output) by the IEBISA~ Program 385
IEPISAM Table 2. Job Control Statements
for the IEBISA~ Program ••••..••.•• 386
IEBEDIT Table 1. Data sets Used (Input)
and Produced (Output) by the IEBEDIT Prograrr 394
IEEEDIT Table 2. Job Control Statements
for the IEBEDIT Program ••••••••••• 395
IEBDG Table 1. Utility Control Statements .411
IEBDG Table 2. ID~-Supplied Formats. .414
IEBDG Table 3. Data sets Used (Input) dnd
Produced (Output) by the IEBDG Prograrr .419
IEBDG Table 4. Job Control Statements for
the IEBDG Prograru • • • • • •.•• .4~O

Independent Utilities Table 1. Valid
7-Track Tape Unit r..odes •.444
Linkage Table 1. Parameter lists for bxit
Routines (Part 1 of~) •..••••.••• 470
LinKaqe Table ~ Action on Return COdes •• 472
Linkage Table 3. Return Codes froIT JOD
Termination. • •••.•••••.••• 473

Illustrations 11

Summary of Major Changes--Release 19

r--------T---,
IUtility I Description I
~--------+---~

IEHMOVE IThis utility program now supports direct data sets with
Ivariable spanned (BDAM VRE) records.
I
I

IEHLIST IThis utility program can now, optionally, format directory
Ilistings of partitioned data sets.
I

IEHUCSLDIThis utility program has been deleted from the utility
I package.
I

IFCEREPOIThis utility program now provides T-type (bulk data>
lenvironment records. It also supports Models 95 and i95;
I however, information concerning Model 195 support is for
Iplanning purposes only.
I

IEHDASDRIThis utility program now has a "QUICK DASDI" feature
I applicable to all direct access volumes supported by the
IIEHDASDR utility program. There is also additional
I information concerning the RESTORE statement dealing with the
I restoration of tapes created by the IBCDMPRS utility program.
I

IEHATLASIThis is a new utility program designed to assign an alternate
Itrack when a defective one is indicated by a data check or
Imissing address marker.
I

IFHSTATRIThis is a new utility program designed to select, format, and
Iwrite information from error statistics by volume (ESV)
Irecords found on the IFASMFDP tape or the SYS1.MAN data set.
I

IEBCOPY IThis utility program has bee~ completely rewritten. It now
lincludes many new features, including replacing and/or
Irenaming members on a partitioned data set.
I

IEBTCRINIThis is a new utility program designed to read, edit, and
Iwrite input from the IBM 2495 Tape Cartridge Reader.
I Exit routine linkage for the IEBTCRIN utility program is
Idiscussed in Appendix A.
I Invoking the IEBTCRIN utility program is discussed in
IAppendix B.
I

Appendix I In Appendix G, the description of most messages includes a
lG Iprogrammer response. A more detailed response is included in
I Ithe publication IBM System/360 Operating system: Messages
I land Codes, GC28-6631. Refer to this publication before
I Iresponding to any message or calling IBM. L ________ ~ ___ J

summary of Major Changes - Release 19 13

I

Introduction

The IBM System/360 Operating system provides utility programs to assist
in organizing and maintaining data. Each utility program described in
this publication falls into one of three general classes of programs:

• System utility programs.
• Data set utility programs.
• Independent utility programs.

The Program Classes
The program class into which a specific utility program falls is
determined by the function that the utility program performs and the
manner in which the program is controiled.

THE SYSTEM UTILITY PROGRAMS

The system utility programs described in this publication are:

IEHPROGM
IEHMOVE
IEHLIST
IEHINITT

IEHIOSUP
IFCEREPO
IFCDIPOO
IEHDASDR

IEHATLAS
IFHSTATR

These programs are used to maintain system control data at an
organizational or system level. The following general functions are
performed by the system utility programs:

• IEHPROGM
• IEHMOVE
• IEHLIST
• IEHINITT
• IEHIOSUP
• IFCEREPO
• IFCDIPOO
• IEHDASDR

• IEHATLAS

• IFHSTATR

builds and maintains system control data.
moves or copies collections of data.
lists system control data.
writes standard labels onto magnetic tape volumes.
updates entries in the supervisor call library.
edits and lists error environment records.
reinitializes the system data set SYS1.LOGREC.
initializes direct access volumes; dumps or restores
data.
assigns alternate track when defective tracks are
indicated.
selects, formats, and writes information about tape
errors from the IFASMFDP tape or the SYS1.MAN data set.

The user controls the operation of a system utility program through
use -of job control statements and utility control statements. Refer to
Appendix C for the format and notation of control statements.

THE DATA SET UTILITY PROGRAMS

The data set utility programs described in this publication are:

IEBCOPY
IEBGENER
IEBCOMPR
IEBPTPCH

IEBTCRIN
IEBUPDTE
IEBISAM
IEBEDIT

IEBUPDAT
IEBDG

Introduction 15

These programs are used to reorganize, change, or compare data at the
data set level and/or at the record level. The following general
functions are performed by the data set utility programs:

• IEBCOPY

• IEBGENER

• IEBCOMPR
• IEBPTPCH

• IEBCTRIN

• IEBUPDTE
• IEBISAM

• IEBEDIT
• IEBUPDAT
• IEBDG

copies, compresses or merges partitioned data sets;
selects or excludes specified members in a copy
step/operation; renames and/or replaces members of a
partitioned data set.
copies records from a sequential data set or converts a
data set from sequential to partitioned organization.
compares records in sequential or partitioned data sets.
prints or punches records residing in a sequential or
partitioned data set.
constructs records from input read from the 2495 tape
cartridge reader.
updates a symbolic library.
places source data from an indexed sequential data set
into a sequential data set suitable for subsequent
reconstruction.
creates an input stream.
updates a symbolic library.
creates a patterned data set to be used as a debugging
aid.

The user controls the operation of a data set utility program through
use of job control statements and utility control statements. Refer to
Appendix C for the format and notation of control statements.

THE INDEPENDENT UTILITY ~ROGRAMS

The independent utility programs operate outside, and in support of, the
IBM System/360 Operating System. The independent utility programs
described in this publication are:

IBCDASDI (DASDI)
IBCDMPRS (DUMP/RESTORE)
IBCRCVRP (RECOVER/REPLACE)

These programs are used to prepare direct access devices for system use
and to ensure that any permanent hardware errors incurred on a direct
access device (i.e., defective tracks) do not seriously degrade the
performance of that device. The following general functions are
performed by the independent utility programs:

• IBCDASDI

• IBCDMPRS

• IBCRCVRP

initializes and assigns alternate tracks to a direct
access volume.
dumps and restores the data contents of a direct access
volume.
recovers usable data from a defective track, assigns an
alternate track, and merges replacement data with the
recovered data onto the alternate track.

The user controls the operation of an independent utility program
through use of utility control statements. since the programs are
independent of the operating system, job control statements are not
required. Refer to Appendix C for the format and notation of control
statements.

Selecting a Program
The selection of a specific program is dependent on the nature of the
job to be performed. For example, renaming a data set involves
modifying system control data. Therefore, a system utility program
(specifically the IEHPROGM program) can be used to rename the data set.

16

In some cases, a specific function can be performed by more than one
program. The following utility program charts are provided to lead the
user to examples of operations similar to those he wishes to perform.

The system utilities chart (Chart 1) is organized by function.

The data set utility chart (Chart 2) is organized first by the
organization of the data set or sets to be processed, and second, by the
function to be performed.

The independent utilities chart (Chart 3) is organize~ by function.

Chart 1. SYSTEM UTILITIES (Part 1 of 2)
r--T-----------------------------,
IFor This Operation IGo to This Example I
~-------------T----------------~---------+-----------------------------~
I Build la generation IIEHPROGM 6 I
I Idata group index IIEHPROGM 7 I
~-------------+--------------------------+-----------------------------~
I Catalog I a data set I IEHPROGM 3 I
I I IIEHPROGM 5 I
I ~--------------------------+-----------------------------~
I la generation data set IIEHPROGM 7 I
~-------------+--------------------------+-----------------------------~
I Connect I volumes I IEHPROGM 5 I
~-------------+--------------------------+-----------------------------~
I Copy Icataloged sequential IIEHMOVE 2 I
I Idata sets I I
I ~--------------------------+-----------------------------~
I I sequential data set IIEHMOVE 12 I
I I I (see also-data set utilities) I
~-------------+--------------------------+-----------------------------~
I Delete Ian index structure IIEHPROGM 2 I
I I IIEHPROGM 3 I
I I IIEHPROGM 4 I
~-------------+--------------------------+-----------------------------~ I Dump Ian entire direct IIEHDASDR 4 I
I laccess volume IIEHDASDR 6 I
I I I IEHDASDR 8 I
I ~--------------------------+-----------------------------~
I la group of tracks IIEHDASDR 5 I
~-------------+--------------------------+-----------------------------~
IEdit and terror environment records IIFCEREPO 1-7 I
Ilist ~--------------------------+-----------------------------~
I lerror statistics by volumelIFHSTATR I
I I (ESV) records I I

~-------------+--------------------------+-----------------------------~
I I Get Alternatelon a direct access IIEHDASDR 3 I

I Tracks I volume IIEHATLAS 1-3 I
~-------------+--------------~-----------+-----------------------------~
I Initialize la direct access volume IIEHDASDR 1 I
I I IIEHDASDR 2 I
I ~------~-------------------+-----------------------------~ I Ithe SYS1.LOGREC data set IIFCDIPOO 1 I
~-------------+--------------------------+-----------------------------~ I Label I magnetic tape volumes I IEHINITT 1-4 I
t-------------t----~--------------~--~-~-+-----------------------------~
I Load Ian unloaded data set IIEHMOVE 11 I L _____________ ~ __________________________ ~ ______ - ______________________ J

(Part 1 of 2)

Introduction 17

Chart 1. SYSTEM UTILITIES (Part 2 of 2)
r--T-----------------------------,
lFor This Operation IGo to This Example I
~-------------T--------------------------t-----------------------------~
I List la volume table I I
I lof contents IIEHLIST 4 I
I r--------------------------+----------------------------~~
I I partitioned directories IIEHLIST 3 I
I I I (see also-IEBPTPCH 7) I
I r--------------------------t-----------------------------~
I Ithe contents of the cat- IIEHLIST 1 I
I lalog (SYSCTLG data set) IIEBLIST 2 I
r-------------+--------------------------t--------~----------------~---~
I Merge Ipartitioned data set~ IIEHMOVE 4 (see also-IEBCOPY 21
I I I IEBCOPY 3) I
r-------------t--------------------------+-----------------------------~
I Move I a catalog I IEHMOVE 5 I
I I IIEHMOVE 6 I
I r--------------------------t-----------------------------~
I la group or cataloged IIEHMOVE 3 I
I I data sets I I
I r--------~-----------------t----------~------------------~
I I a volume of data sets I IEHMOVE 7 I
I r--------------------------t-----------------------------~
I I Partitioned data sets I IEHMOVE 4 I
I I I IEHMOVE 8 I
I I IIEHMOVE 9 I
I r--------------------------t-----------------------------~
I Isequential data sets IIEHMOVE 1 I
t-------------+--------------------------t-----------------------------~
I Rename I a data set I IEHPROGM 3 I
r-------------t--------------------------+-----------------------------~
iRestore Idata on direct IIEHDASDR 7 I
I laccess volumes I I
r-------------t--------------------------t---~-------------------------~
I Scratch la volume table IIEHPROGM 1 I
I lof contents I I
I r--------------------------t-----------------------------~
i I data sets I IEHPROGM 1 I
I I IIEHPROGM 2 I
r-------------t--------------------------+-----------------------------~
IUncatalog Idata sets IIEHPROGM 2 I
I I IIEHPROGM 3 I
I I IIEHPROGM 4 I
t--------~----t--------------------------+-----------------------------~
I Unload la partitioned data set IIEHMOVE 9 I
I r--------------------------+-----------------------------~
I la sequential data set IIEHMOVE 10 I
t-------------t--------------------------+--------~--------------------~
I Update ITTR entries in the IIEHIOSUP 1 I
I Isupervisor call library IIEHIOSUP 2 I L _____________ ~ __________________________ ~ _______________ ~-------------J

18

Chart 2. DATA SET UTILITIES (Part 1 of 3)
r------------T-------------------------------.--------------T-----------,
IFor this land this Operation IGo to this I
I organization I I Example I
~------------+---------------T-----------------------------+-----------~

I
I
I
I
I
I
I
I
I
I sequential
I
I
I

{Compare 19-track tape & 9-track tape IIEBCOMPR 1 I
I I IIEBCOMPR 6 I
I t-----------------------------+-----------~
I 19-track tape & 7-track tape IIEBCOMPR 3 I
I t-----------------------------+-----------~
I 19-track tape & card IIEBCOMPR 4 I
I ~------------------~----------+-----------~
I 17-track tape & 7-track tape IIEBCOMPR 2 I
~---------------+-----------------------------+-----------~
I Convert to I card to disk I IEBUPDTE 2 I
I Partitioned I I I
~---------------+----.-------------------------+-----------~
I Copy Icard to 9-track tape IIEBGENER 1 I
I I IIEBGENER 3 I
I t-----------------------------+-----------~
I (see also I card to 7-track tape IIEBGENER 2 I
I system ~-----------------------------+-----------~
I utilities) Icard to punch IIEBPTPCH 8 I
I t-----------------------------+-----------~
I I card to disk IIEBGENER 4 I
I t--------------~--------------+-----------~
I Icard to printer IIEBGENER 5 I
~---------------+-----------------------------+-----------~
I Create an I card to disk IIEBDG 6 I
loutput data t-----------------------------+-----------~
I set ltape to disk IIEBDG 2 I
I t-----------------------------+-----------~
I ltape to tape IIEBDG 1 I
I ~-----------------------------+-----------~
I Ito tape from utility control JIEBDG 3 I
I I statements only I I
I ~-----------------------------+-----------~
I ltape cartridge to direct IIEBCTRIN I
I laccess storage facility I I
~---------------+-----------------------------+-----------~
ICreate an 19-track tape to 9-track tape IIEBEDIT 1 I
I output t-----------------------------+-----------~
I job stream 17-track tape to 7-track tape IIEBEDIT 2 I
I ~-----~-----------------------+-----------~
I IDisk to 9-track tape IIEBEDIT 3 I
I t-----------------------------+-----------~
I I Disk to Disk I IEBEDIT 4 I
I ~-----------------------------+-----------~
I IInput stream to 9-track tape IIEBEDIT 5 I
~---------------+-----------------------------+-----------~
IEdit & Idrum to drum IIEBGENER 7 I
I convert t-----------------------------+-----------~
Ito partitioned 17-track tape to disk IIEBUPDTE 6 I
~---------------+-----------------------------+-----------~
IEdit & 17-track tape to 7-track tape IIEBGENER 8 I
I copy t-----------------------------+-----------~
I Idisk to disk IIEBGENER 9 I
~--------------+-~---------------------------+-.----------~
IEdit & 19-track tape to system outputlIEBPTPCH 5 I
I print t-----------------------------+-----------~
I ldisk to system output IIEBPTPCH 9 I
~---------------+-----------------------------+-----------~
IEdit & punch ldisk to punch IIEBPTPCH 6 I L ____________ ~ ______________ ~ _____________________________ ~ ___________ J

(Part 1 of 3)

Introduction 19

Chart 2. DATA SET UTILITIES (Part 2 of 3)
r------------T---T-----------,
IFor this land this Operation IGO to this I
I Organization I I Example I
t------------t---------------T-----------------------------+-----------~
I IExpand or Idrum to drum (expand) IIEBGENER 7 I
I I compress t-----------------------------+-----------~
I I (see also Idisk to disk (compress) IIEBGENER 9 I
I I system I I I
I lutilities) I I I
I sequential t---------------+-----------------------------+-----------~
i I Print I card to system output IIEBGENER 5 I
I I t-----------------------------+-----------~
I I 19-track tape to system outputlIEBPTPCH 1 I
I I t---------------------------+-----------~
I I Idisk to system output IIEBPTPCH 7 I
I ~---------~-----+-----------------------------+-----------~
I I Punch 17-track tape to punch IIEBPTPCH 2 I
I I t-----------------------------+-----------~
I I Icard to punch IIEBPTPCH 8 I
~------------+---------------+-----------------------------+-----------~

I Compare I disk & disk I IEBCOMPR 5 I
I I IIEBCOMPR 7 I
~-------------+-----------------------------+-----------~
I Compress I disk I IEBCOPY 9 I
lin place I IIEBCOPY 10 I
~---------------+-----------------------------+----~------~
I Convert to I drum to 9-track tape I IEBUPDTE 5 I
I sequential I I I
~---------------+-----------------------------+-----------~
ICopy (see also Idisk to disk IIEBCOPY 1 I
I system I IIEBCOPY 4 I
I utilities) I IIEBCOPY 5 I
I I IIEBUPDTE 3 I
~---------------+-----------------------------+-----------~
ICreate a memberldisk IIEBDG 5 I
t---------------+-----------------------------+-----------~
IDelete records Idrum to 9-track tape IIEBUPDTE 5 I

Partitioned ~------------.---+-----------------------------+-----------~
IEnter a pro- linput stream to disk IIEBUPDTE 1 I
Icedure into a I I I
I procedure I I I
I library I I I
~---------------+-----------------------------+-----------~
I Expand I drum to disk I IEBCOPY 2 I
I (see also sys- ~-----------------------------+-----------~
Item utilities I disk to disk IIEBCOPY 2 I
~---------------+-----------------------------+-----------~
I Insert I disk I IEBUPDTE 2 I
I records t-----------------------------+-----------~
I Idisk to disk IIEBUPDTE 3 I
I I I IEBUPDTE 7 I
i I IIEBUPDTE 8 I
I ~-----------------------------+-----------~
I I drum to 9-track tape IIEBUPDTE 5 I
t---------------+-----------------------------+-----------~
I Number I disk to disk IIEBUPTDE 1 I
I records I IIEBUPDTE 3 I
I I IIEBUPDTE 4 I
I I I IEBUPDTE 7 I
I I IIEBUPDTE 8 I ____________ ~ _______________ ~ _____________________________ ~ __________ _J

(Part 2 of 3)

20

Chart 2. DATA SET UTILITIES (Part 3 of 3)
r------------T---T-----------,
IFor this land this Operation IGo to this I
I Organization I I Example I
r------------t---------------T-----------------------------+-----------~

I Print I drum to system output IIEBPTPCH 3 I
I ~-----------------------------t-----------~
I Idisk to system output IIEBPTPCH 4 I
r---------------t-----------------------------t-----------~
IReblock a I disk IIEBDG 4 I
Idata set I I I

Partitioned r---------------+-----------------------------+-----------~
I Replace Idisk to disk IIEBUPDTE 3 I
I records I IIEBUPDTE 4 I
I I I IEBCOPY 3 I
I ~-----------------------------t-----------~
I ldrum to 9-track tape IIEBUPDTE 5 I
I r-----------------------------t-----------~
I ldisk to disk IIEBCOPY 3 I
I I I IEBCOPY 6 I
I I IIEBCOPY 7 I
~---------------t-----------------------------t-----------~
I Rename ldisk to disk IIEBCOPY 7 I
t---------------+-----------------------------t-----------~
I Exclude ldisk to disk IIEBCOPY 8 I
~---------------+-----------------------------t-----------~
I Update in I disk I IEBUPDTE 4 I
I place I I I

~-----------+---------------+-----------------------------+-----------~
I I Unload ldisk to 9-track tape IIEBISAM 1 I
I Indexed I ldisk to 7-track tape IIEBISAM 2 I
I Sequential ~---------------t-----------------------------+-----------~
I I Load 19-track tape to disk IIEBISAM 3 I L ____________ ~ _______________ ~ _____________________________ ~~ __________ J

Introduction 21

Chart 3. INDEPENDENT UTILITIES
r-------------------------------------T--------------------------------,
IFor this Operation IGO to this Example I
~---------~--------------------------+--------------------------------~
I Assign Idirect access volume IIBCDASDI 4 I
lalternate I I I
I tracks I I I
~----------+--------------------------+-----------~--------------------~
I Dump I direct access volume I IBCDMPRS 1 I
I lonto 9-track tape I I
~----------+--------------------------+--------------------------------~
IInitializeldirect access volume IIBCDASDI 1 I
I I IIBCDASDI 2 I
I I I IBCDASDI 3 I
~----------+--------------------------+--------------------------------~
I Recover Idirect access volumes I I BCRCVRP 1 I
Idata from I I I
Idefective I I I
I tracks I I I
t----------+--------------------------+--------------------------------~
I Replace Idirect access volume I I BCRCVRP 2 I
Idata on ani I I
lalternate I I I
I track I I I
~---------+--------------------------+-------~------------------------~
IRestore a Ifrom 9-tracktape IIBCDMPRS 2 I
I dumped I I I
I direct I J I
I access I I I
I volume I I I L __________ ~ __________________________ ~ ________________________________ J

CONTROL LANGUAGE NOTATION

The format for control statements is ·explained in Appendix C. The
explanation clarifies the manner in which selective (optional)
operations, operands, keywords, and parameters are indicated within this
publication.

22

Section 1: System Utilities

system utility programs manipulate collections of data and system
control information. This section describes the capabilities,
requirements for execution, and examples of the use of each system
utility program:

• IEHPROGM -- a program that builds and maintains system control data.

• IEHMOVE a program that moves or copies collections of data.

• IEHLIST a program that lists system control data.

• IEHINITT -- a program that writes standard labels onto magnetic tape
volumes.

• IEHIOSUP -- a program that updates entries in the supervisor call
library.

• IFCEREPO -- a program that edits and lists error environment
records.

• IFCOIPOO -- a program that reinitializes the system data set
sysl. LOGREC.

• IEHOASDR -- a program that initializes direct access volumes or
dumps or restores data.

• IEHATLAS -- a program that assigns alternate tracks when defective
tracks are indicated.

• IFHSTATR -- a program that selects, formats, and writes information
about tape errors from the IFASMFOP tape or the SYS1.MAN
data set.

A system utility program is executed or invoked through the use of
job control statements and utility control statements.

Job Control Statement Requirements
system utility programs are introduced as jobs or job steps, and are
executed in response to job control statements and utility control
statements. Each program to be executed requires:

• A JOB statement.

• An EXEC statement that identifies the program to be executed.

• DO statements that define the data sources and destinations" work
data sets, and for programs IEHPROGM, IEHMOVE, IEHLIST, IEHDASOr.,
and IFHSTATR, mountable devices.

System Utility Figure 1 illustrates the general format of a set of
job control statements used to execute a system utility program.

section 1: System Utilities 23

r--------------------------------.
I /* I
I .dSYSIN (DD statement for the data sefcontaining utility statements) I
I I I DD statements f,or device allocation I
I // SYSPRI NT (DD statement for the message output data set) :

I //stepnQme EXEC PGM= progname I

I //iobname (JOB statement) I L __________________________________ ..J

system Utility Figure 1. Executing a system Utility Program

METHODS OF EXECUTION

A set of job control statements for a utility program can be introduced
to the operating system in different ways. The statements can be
included in the input stream, or they can be placed in a procedure
library, or the job can be invoked by a calling program.

Including the Job Control statements in the Input stream

A set of job control statements can be included directly in the input
stream. In general, the examples throughout this publication reflect
this application. In this case, the EXEC statement for the job step
specifies the name of the utility program to be executed.

Entering a Set of Job Control 'Statements Into a Procedure Library

The execution of a program can be simplified by entering a set of job
control statements for a utility program into a procedure library. The
job control statements can then be referred to for subsequent
applications of the program.

The statements in a procedure should satisfy the job control language
requirements for most applications of the program; however, a procedure
can be modified or supplemented for applications that require additional
parameters, data sets, or devices.

Executing the Procedure: A procedure cannot contain a JOB control
statement; that is, the execution of a procedure is initiated from the
input stream. Within the input stream, an EXEC statement follows the
JOB control statement and refers to the named, procedure.

The first job statement in a procedure is an EXEC statement
specifying the name of the utility program to be executed.

system Utility Figure 2 illustrates the general format of job control
statements referring to a procedure. DD statements, defining additional
device requirements and/or modifying DD statements in the procedure, are
included.

Note: The data set utility program IEBUPDTE can be used to enter a
procedure into a procedure library.

24

r--------------------------------~
I I
I (* ; I /?,SYSIN (DD statement for the data set containing utility statements) I
I I
: Additional and modifying DO statements for device allocation :
I /'/ stepname EXEC PROC = procname I
I '// jobname (JOB statement) I
I I L _____________________________________ J

system Utility Figure 2. Executing a Cataloged Utility Procedure

Invoking a Utility Program

Except for programs IFCEREPO and IFCDIPOO, system utility programs can
be employed as subroutines by use of standard operating system linkage
conventions. At the completion or termination of the utility program,
the highest return code encountered within the program is passed to the
calling program. Invocation of utility programs and linkage conventions
are discussed in Appendix B .•

Note: When the IEHMOVE, IEHPROGM, or IEHLIST program is dynamically
invoked in a job step containing a program other than one of these
three, the DD statements defining mountable devices for the IEHMOVE,
IEHPROGM, or IEHLIST program must be included in the job stream prior to
DD statements defining data sets required by the other program.

MULTIPROGRAMMING CONSIDERATIONS

" In an MVT environment, a region size should be specified for each
application of a utility program. The region size is determined by the
number of bytes in the utility program and, in the case of the IEHMOVE
program, by the block size of an object data set <i.e., the largest
block size in the job step). A region size can be specified as a
parameter in the EXEC statement specifying the utility program name.
The minimum region sizes are:

• IEHPROGM
• IEHMOVE

• IEHLIST
• IEHINITT
• IEHIOSUP
• IFCEREPO
• IFCDIPOO
• IEHDASDR

• IEHATLAS --

• IFHSTATR --

REGION=44K
REGION=16K + the largest block size in the job step
rounded to the next highest multiple of 2K.
REGION=44K
REGION=14K
REGION=10K
REGION=20K
REGION=10K
Refer to the publication IBM System/360 Operating
System: Storage Estimates, GC28-6551 for detailed
information on estimating REGION size.
Refer to the publication IBM System/360 Operating
System: Storage Estimates, GC28-6551 for detailed
information on estimating REGION size.
REGION=4K

Section 1: System Utilities 25

NOTE: System utility programs should not be run in an MVT or MFT
environment unless:

• Each data set to be used by the program is defined on a DD statement
specifying the data set name and DISP=OLD (not applicable to
programs IEHPROGM, IEHMOVE, and IEHLIST). This specification
prevents other jobs from gaining access to a data set until the data
set is no longer being used; that is, until the job has completed.

• DD statements defining mountable devices ensure that volumes mounted
on those devices are nonsharable.

• Mountable volumes should not be made available to the system
(premounted) until the user is requested by the system to mount the
specified volumes.

• A reader procedure should be used which will direct input and output
data sets to volumes other than those which are to be modified by a
system utility program.

• When executing a SCRATCH operation in a multiprogramming
environment, care should be taken to insure that the data set or
volume being scratched is not being used by a program executing
concurrently.

Utility Control Statement Specifications
A system utility program uses utility control statements to identify a
particular £unction to be performed and, when required, to identify
specific volumes or data sets to be processed.

Specifications of functions differ from program to program; these
specifications are discussed within each of the programs.

This discussion deals specifically with device, volume, and data set
specifications in utility control statements.

Identification Parameters

Utility control statements use keyword parameters to identify volumes by
device types and volume serial numbers. Keyword parameters are also
used to identify data sets. A data set residing on a direct access
volume is identified by volume serial number and data set name; a data
set residing on a magnetic tape volume must be further identified by its
data set sequence number.

Applicable keyword parameters include VOL, CVOL, FROM, and TO. In
general, a keyword parameter is coded as follows:

r--,
I KEYWORD=device=({serial,seqno}, •••) I L __ J

The term "device" is replaced by any of a group of device names that
the installation defines when the operating system is generated. Each
device name can represent:

• A single device.
• All devices of a specific type.

A device name can be a generic name, a substitute for a generic name,
or a channel and unit address.

26

Generic name: (e.g., 2311, 2314, 2301, etc.) A generic name
indicates that all devices of the specified type are represented. The
generic name of a device does not differ from installation to
installation or from generation to generation within an installation.

substitute for a generic name (e.g., TAPE?, TAPE9, DRUM, DISK, or
other installation designated names.) A substitute for a generic name
is the equivalent of a generic name; for example, DISK might be used
instead of 2311, or DRUM instead of 2301. However, unlike a generic
name, which is applicable to each installation having that device type,
a substitute is applicable only to the generated system in which that
name is assigned.

A substitute that represents two or more different device types
(e.g., DISK -- meaning 2311 and 2314) cannot be processed by a utility
program.

Channel and unit address: (e.g., 190, 280, etc.) A channel and unit
address represents one particular device.

The term ·serial· is replaced by a 1- to 6-character volume serial
number.

The term ·seqno· is replaced by a data set sequence number. When a
device other than tape is specified, the sequence number is omitted, as
follows:

r--,
I KEYWORD=device=(serial,serial, •••) I L __ J

If only a single direct access device is required, the parentheses
can be deleted, as follows:

r--,
I KEYWORD=device=serial I L __ J

Hereafter, a volume parameter that may require more than one volume
will be referred to as:

r--,
I KEYWORD=device=list I L __ J

A data set name must be specified as a fully qualified name.

Unless otherwise indicated in the description of a specific utility
program, a temporary data set can be processed by a utility program only
if the user specifies the complete name generated for the data set by
the system (for example, DSNAME=SYS68296.T000051.RP001.JOBTEMP.TEMPMOD).

Section 1: System utilities 27

The IEHPROGM Program

Program Applications
The IEHPROGM system utility program provides efficient facilities for
modifying system control data and for maintaining data sets at an
organizational level.

The program can be used to:

• Scratch a data set or a member.
• Rename a data set or a member.
• Catalog or uncatalog a data set.
• Build or delete an index or an index alias.
• Connect or release two volumes.
• Build and maintain a generation data group index.

At the completion or termination of the program, the highest return code
encountered within the program is passed to the calling program.

Scratching a Data Set or Member

The program can scratch the fo1lowing items from a direct access volume:

• A sequential data set or sets.
• An indexed sequential data set or sets.
• A partitioned data set or sets.
• A member or members ofa partitioned data set.
• A password-protected data set or sets.
• A data set or sets named by the operating system.
• A direct access data set.

In addition, multiple volumes can be specified for a scratch operation.

The Scratched Data Set: A data set is considered scratched when its
data set control block is removed from the volume table of contents
(VTOC> of the volume on which it resides, and its space is made
available for reallocation.

The space occupied by a data set residing on a device that operates
in split-cylinder mode is not available for reallocation until all data
sets sharing the cylinder have been scratched.

The Scratched Member: A member is considered scratched when its name is
removed from the directory· of the partitioned data set that contains it.
The space occupied by a scratched member is not available for
reallocation until the partitioned data set, itself, is scratched.
(When scratching a member of a partitioned data set, all alias names of
that member should also be removed from the directory.)

The IEHPROGM Program 29

•

Renaming a Data Set or Member

The program can rename a data set or member that resides on a direct
access volume. In addition, the program can be used to change the alias
name or names, if any, of a member.

Cataloging or Uncataloging a Data Set

The program can catalog or uncataloga sequential data set, an indexed
sequential data set, a partitioned data set, or a direct access (BDAM)
data set.

The Cataloged Data Set: A data set is cataloged when its fully
qualified name and volume identification are entered in one or more
index levels of the catalog (SYSCTLG data set). The program catalogs a
data set by generating an entry, containing the data set name and
associated volume information, in the index of the catalog. If
higher-level indexes are necessary to catalog the data set, they are
automatically created. The catalog function is used to:

• Catalog a data set that was not cataloged when it was created •

• Satisfy, if necessary, the requirement that a higher level index or
indexes be created. For example, IEHPROGM Figure 1 shows how data
set A.F.G is cataloged on the system residence volume. Note that
the level F index does not exist in the SYSCTLG data set prior to
the catalog operation.

Note: The catalog function of the IEHPROGM program differs from a
DISP=(,CATLG) specification in a DD statement in that:

1. The DISP=(,CATLG) specification cannot create higher-level indexes.

2. The DISP=(,CATLG) specification cannot catalog a data set on a
volume other than the system residence volume unless the system
residence volume is properly "connected" to the other volume.
(Refer to "Connecting or Releasing Two Volumes" for a discussion of
connected volumes.)

30

System Residence - System Residence
Prior to Cataloging A. F. G. After Cataloging A. F. G.

Volume Volume Volume Volume Volume
Containing Containing Containing Containing Containing

Data set Data set Data set Data set Data set
A.B.D A.C.E A.B.D A.C.E A.F.G

IEHPROGM Figure 1. Cataloging a Data Set

The Uncataloged Data Set: The program uncatalogs a data set by removing
the data set name and associated volume information from the
lowest-level index of the catalog. The uncatalog function of the
program differs from a DISP=(••• ,UNCATLG) specification in a DD
statement in that:

• The DISP=(•••• UNCATLG) specification cannot remove an entry from the
SYSCTLG data set on a volume other than the system residence volume
unless the two volumes are properly connected.

IEHPROGM Figure 2 shows how a typical data set (A.F.G) is uncataloged
by the program. Prior to the operation, the fully qualified name and
as~ociated volume information are represented in the catalog. The
uncatalog operation removes the lowest-level entry from the index
structure. Note that the structure A.F remains in the catalog.

The IEHPROGM Program 31

•

Prior to Uncataloging
A.F.G

Volume
Containing

Data set
A.B.D

Volume
Containing

Data set
A.C.E

Volume
Containing

Data set
A.F.G

After Uncataloging
A.F.G

Volume
Containing

Data set
A.B.D

IEHPROGM Figure 2. Uncataloging a Data Set

Building or Deletinq an Index

Volume
Containing

Data set
A.C.E

The program can build a new index in the catalog, or it can delete an
existing index. In building an index, the program automatically creates
as many higher-level indexes as are necessary to complete the specified
structure.

The program can delete one or more (as specified) indexes from an
index structure; however, an index cannot be deleted if it contains any
entries. That is, it cannot be deleted if it refers to a lower-level
index or if it is part of a structure indicating the fully qualified
name of a cataloged data set.

32

IEHPROGM Figure 3A shows an index structure representing two
cataloged data sets: A.Y.YY and A.B.X.XX. Figure 3B shows how the
index structure can be altered by building index A.B.C.D.E. Note in
Figure 3A that index levels C and D do not exist prior to the build
operation. These levels are automatically created when the level E
index is built.

EJ

i
Y
I

yy

t i
B

I
X

t,,, Xu ~

IEHPROGM Figure 3A. Index structure Prior to Build Operation

I
1 i

Y B

I I yy

I I
X c

I I
0

EJ D:2X I
E

B
IEHPROGM Figure 3B. Index Structure After Build Operation

The IEHPROGM Program 33

•

Note: When the level E index is subsequently deleted, the level C and D
indexes are not automatically deleted by the program. To delete these
index levels, delete:

A.B.C.D.E
A.B.C.D
A.B.C

in that order. The B level index cannot be deleted because data set
A.B.X.XX and the X level index are dependent upon the B level index.

Building or Deleting an Index Alias

The program can assign an alternative (alias) name to the highest-level
index of a catalog, or it can delete an alias name previously assigned.

In IEHPROGM Figure 4, alias name XX has been assigned to index A (a
high-level index). The cataloged data set A.B.C can now be referred to
as A.B.C or XX.B.C

IEHPROGM Figure 4. Building an Index Alias

34

Connecting or Releasing Two Volumes

The program can ·connect- a volume to a second volume by placing an
entry (containing an index name and the volume serial number and device
type of the second volume) into a high-level index on the first volume.
The program can subsequently -release· the volumes by removing the entry
from the high-level index. The main reasons for connecting two volumes
are to permit:

• The catalog (SYSCTLG data set) to be extended to a second volume, if
necessary •

• The use of normal JCL to process (retrieve, uncatalog, etc.) data
sets cataloged on the second volume (assuming that the first volume
is the system residence volume).

If the SYSCTLG data set is extended to a second volume, it must be
identified on that volume.

IEHPROGM Figure 5 shows how the system residence volume can be
connected to a second volume. Any subsequent index search for index X
on the system residence volume is carried to the second volume.

System Residence Vol. Connected Volume

IEHPROGM Figure 5. Connecting a Volume to a Second Volume

The IEHPROGM Program 35

Note: The index name of each high-level index existing on the second
volume must be present in the first volume~ i.e., a connect operation
should be performed whenever a new high-level index is placed on the
second volume.

Volumes can be connected as shown in IEHPROGM Figure 6. All volumes
are accessible (through high-level indexes x, Y, and Z> to the operating
system.

System
Residence

Volume 2

_:J

•

Volume 4

OR

IEHP~OGM Figure 6. Connecting Two Volumes

System
Residence

Building an Index for a Generation Data Group

_:J

•
Volume 2

The program can build an index structure for a generation data group,
and can control the action to be taken should the index overflow.

The lowest-level index in the structure can contain up to 255 entries
for successive generations of a data set. If the index overflows, the
oldest entry is removed from the index, unless otherwise specified (in

36

which case all entries are removed). If desired, the program can be
used to scratch all generation data sets whose entries are removed from
the index.

IEHPROGM Figure 7 shows the index structure created for a typical
generation data group (A.B.C). In this example, provision is made for
up to 5 subsequent entries in the lowest-level index.

Note: Before a generation data group can be cataloged as such, a
generation data group index must exist. Otherwise, a generation data
set is cataloged as an individual data set, rather than as a generation.

IEHPROGM Figure 7. Building a Generation Data Group Index

When creating and cataloging a generation data set, the user can provide
necessary DCB information in one of two ways: (1) by creating a model
data set control block (DSCB) on the volume on which the catalog resides
(prior to creating the generation data set) or (2) by specifying
DCB=(dsname) in the DD statment that creates and catalogs the generation
data set.

• A model DSCB is created with a DO statement that requests a space
allocation of zero tracks and includes applicable DCB information •

• A DCB=(dsname) parameter refers to a cataloged data set that has DCB
specifications identical to those desired for the generation data
set.

The IEHPROGM Prograro 37

I

Inputs and Outputs

The input to the IEHPROGM program is a control data set (containing
utility control statements) used to control the functions of the program
and to indicate those data sets or volumes, that are to be modified.

The primary output or result of executing the IEHPROGM program is a
modified object data set or volume(s).

A message data set is created to list error messages" if any.

ADDITIONAL OUTPUTS

The program provides a return code to indicate the results of program
execution. The return codes and their interpretations are as follows:

00 successful completion.
04 a syntax error has been found in the name field of the control

card. Processing is continued.
08 a request for a specific operation has been ignored because of

an invalid control statement or an otherwise invalid request.
The operation is not performed.

12 an I/O error has been detected when trying to read or write
from or onto SYSPRINT, SYSIN or the VTOC.

16 an unrecoverable error has occurred. The job step is
terminated.

Control
The IEHPROGM utility program is controlled by job control statements and
utility control statements.

Job control statements are used to:

• Execute or invoke the program.

• Define the control data set.

• Define volumes and/or devices to be used during the course of
program execution.

• Prevent data sets from being deleted inadvertently.

• Prevent volumes from being demounted before they have been
completely processed by the program .•

Utility control statements are used to:

• Control the functions of the program.

• Define those data sets or volumes that are to be modified.

JOB CONTROL STATEMENTS

IEHPROGM Table 1 shows the job control statements necessary to execute
or invoke the IEHPROGM program.

38

IEHPROGMTable 1. Job Control statements for the IEHPROGM Program
r------------T---,
I Statement I Usage I
~------------+---~
I JOB IThis statement initiates the job. I
I Statement I I
~------------+---~
I EXEC IThis statement specifies the program name (PGM=IEHPROGM) I
I Statement lor, if the job control statements for the IEHPROGM residel
I lin a procedure library, the procedure name. I
~------------+---~
ISYSPRINT IThis statement defines a sequential message data set. I
IDD IThe data set can be written onto a system output device, I
I Statement la magnetic tape volume, or a direct access volume. I
~------------~---~
//anynamel* DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

This DD statement defines a permanently mounted volume. One
statement must be included for each permanently mounted volume
referred to in the job step. (The system residence volume is
considered to be a permanently mounted volume.)

~n this statement, the UNIT and VOLUME parameters define the device
type and volume serial number. The DISP=OLD specification prevents
the inadvertent deletion of a data set.

~: This statement is required only if a permanently mounted

residence volume, this statement is required.
CATLG statement specifies that an index search begin on the system

~--~
//anynarne2** DO VOLUME=SER=xxxxxx,UNIT=xxxx,DISP=OLD

//anyname2** DO VOLUME=(PRIVATE, •••),UNIT={xxxx"DEFER),DISP=OLD

This statement defines a mountable device type. One statement must
be included for each mountable device to be used in the job step.

Note:' The second example can be used to specify deferred mounting
when a large number of magnetic tapes and direct access volumes are
to be processed in one application of the program.

~------------T---~
ISYSIN IThis statement defines the control data set. The data I
IDD Iset, which contains utility control statements, normally I
I Statement Ifollows the job control statements in the input stream; I
I I however, it can alternatively be defined as a member of al
I Iprocedure library. I
~------------~---~
I *This DD statement is arbitrarily assigned the ddname DDl in the
I IEHPROGM examples (see the IEHPROGM examples).
I
1**This DO statement is arbitrarily assigned the ddname DD2 in the
I IEHPROGM examples (see the IEHPROGM examples). DD statements
I defining additional mountable devices are assigned names DD3, DD4,
I etc.
I
I The blocksize for the SYSPRINT (message) data set must be a multiple
I of 121. The blocksize for the SYSIN (control) data set must be a
I multiple of 80. Any blocking factor can be specified for these
I blocksizes. L __ J

(Part 1 of 2)

The IEHPROGM Program 39

·1

IEHPROGM Table 1. Job Control statements for the IEHPROGM Program
(Part 2 of 2)

r--,
I wi th the exception of the SYSIN and SYSPRINT DD statements,. all DD I
Istatements in this table are used as device allocation statements, I
Irather than as true data definition statements. Since the IEHPROGM I
Iprogram modifies the internal control blocks created by device I
jallocation DD statements, these statements must not include the DSNAMEI
I parameter. (All data sets are defined explicitly or implicitly by 1
I utility control statements,.) I
I I
IWhen the IEHPROGM program is dynamically invoked in a job step I
Icontaining a program other than IEHPROGM, the DD statements defining I
Imountable devices for the IEHPROGM program must be included in the jobl
Istream prior to DD statements defining data sets required by the other I
I program. I
I , I
IFor MVT applications, DD statements defining mountable devices must I
lappear in the same order in the input stream as the utility control I
Istatements that refer to volumes mounted on those devices. I
I 1
IRefer to Appendix D for instructions on defining mountable devices. I L __ ~ _______________________ J

UTILITY CONTROL STATEMENTS

combinations of the following utility control statements are used to
control the functions of the program.

• The SCRATCH statement.
• The RENAME statement.
• The CATLG (catalog) statement.
• The UNCATLG (uncatalog) statement.
• The BLDX (build index> statement.
• The DLTX (delete index) statement.
• The BLDA (build index alias) statement.
• The DLTA (delete index alias> statement.
• The CONNECT statement.
• The RELEASE (disconnect) statement.
• The BLDG (build generation data group index) statement.

The SCRATCH Statement

The SCRATCH statement is used to scratch a data set or member from a
direct access volume. A data set or member is scratched only from the
volumes designated in the SCRATCH statement. This function does not
uncatalog scratched data sets.

r-~----T---------T---,
I Name I Operation 1 Operand I
t------+---------+---~---~
l[nameJISCRATCH ,{DSNAME=name} I
',I 1 VTOC 1
1 1 I VOL=device=list I
I I I [PURGE] I
I I I [MEMBER=namel I
I I I [SYS] I L ______ ~ _________ ~ ___ J

DSNAME=name

40

specifies the fully qualified name of either the data set to be
scratched, or the partitioned data set that contains the member to
be scratched.

VTOC
specifies that all data sets on the specified volume, except those
protected by a password or those whose expiration dates have not
expired, are to be scratched. Password protected data sets are
scratched if the correct password is provided.

The effect of a VTOC specification is modified if the VTOC keyword
is used with the PURGE keyword and/or the SYS keyword.

VOL=device=list
specifies the volume or volumes that contain the data set or sets
to be scratched. If VTOC is specified, VOL cannot specify more
than one volume.

Caution should be used when specifying SCRATCH VTOC if VOL
specifies the system residence volume.

PURGE
requests that each data set specified by DSNAME or VTOC be
scratched, even if its expiration date has not elapsed.

If PURGE is omitted, the specified data sets are scratched only if
their expiration dates have elapsed.

MEMBER=name

SYS

specifies a member name or alias name (of a member) to be removed
from the directory of a partitioned data set.

If MEMBER=name is omitted, the entire data set or volume of data
sets is scratched.

(used only with SCRATCH VTOC or SCRATCH VTOC,PURGE operations)
requests that only those data sets whose names begin with
AAAAAAAA. AAAAAAAA. AAAAAAAA. AAAAAAAA. and/or
SYSnnnnn.Txxxxxx.RPxxx.jobname.ddname be scratched. These are
names assigned to data sets by the operating system.

If the data set name begins with SYS:

• nnnnn is the date

• Txxxxxx is the time of day

.{~ is 'reader'}<in position 18)
is 'system'

·l~
is PCP!
is MFT (in position 19)
is MVT

• xxx is' the data set number

Data sets whose expiration dates have not elapsed are not scratched
unless the PURGE keyword is specified.

Caution: The action of the SYS keyword is applied to all data sets
whose data set names begin with the characters SYSnnnnn.T and contain
the character P, F, or V in the nineteenth position. When executing a
SCRATCH operation in a multiprogramming environment, care should be
taken to insure that the data set or volume is not being used by a
program executing concurrently.

The IEHPROGM Program 41

••

The RENAME statement

The RENAME statement is used to change the true name or alias name of a
data set or member residing on a direct access volume. The name is
changed only on the designated volume(s). The rename operation does not
update the catalog.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [namellRENAME I DSNAME=name I
I I IVOL=device=list I
I I INEWNAME=name I
I I I [MEMBER=namel I L ______ ~ _________ ~ ___ J

DSNAME=name
specifies the fully qualified name of the data set to be renamed,
or the data set that contains the member to be renamed.

VOL=device=list
specifies the volume or volumes that contain the data set or member
whose name is to be changed. If MEMBER=name is specified, VOL
cannot specify more than one volume.

NEWNAME=name
specifies the new fully qualified name for the data set, or the new
member or alias name.

MEMBER=name
specifies the member name or alias name for a member (in the named
data set) that is to be renamed.

If MEMBER=name is omitted, the specified data set name is changed.

The CATLG statement

The CATLG statement is used to generate an entry in the index of a
catalog. If additional levels of indexes are required in the catalog,
this function automatically creates them.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [namellCATLG I DSNAME=name I
I I IVOL=device=list I
I I I [CVOL=device=seriall I L ______ ~ _________ ~ _______________________ -------------_________________ J

DSNAME=name
specifies the fully qualified name of the data set to be cataloged.
The qualified name must not exceed 44 characters including
delimiters (periods).

VOL=device=list

42

specifies the volume or volumes that contain'the data set to be
cataloged. For either a sequential data set or an indexed
sequential data set, the volume serial numbers must appear in the
same order in whicn they were originally encountered (in DD
statements within the input stream) when the data set was created.

For an indexed sequential data set, all serial numbers specified in
VOL=device=list must represent the same device type.

!

Note: When "device" is represented by a group name (e.g., SYSDA),
instead of a generic name (e.g., 2311 or 2400), the catalog
operation does not enter the device type code in the system
catalog. Instead, it places a unique entry in the device type
field of the catalog. The allocation of the device for this entry
may not be satisfactory to the user. If the group name is
generated for one device type it may be used as a substitute for a
generic name. The generic name should be use,d if the group name
was generated for multi device types. When the system is
subsequently generated, this entry may no longer be valid; that is,
all such group name entries should be uncataloged and then
recataloged after a subsequent generation of the system.

CVOL=device=serial
specifies the device type and volume serial number of the control
volume on which the catalog search for the index is to begin.

If CVOL is omitted, the system residence volume is assumed.

Notes: If the data set to be cataloged is an indexed sequential data
set, all volume serial numbers specified in VOL=device=list must
represent the same device type.

When cataloging data sets residing on tape, the programmer must specify
the data set sequence number and the volume serial number, as follows:

VOL=device=({serial,seqno}, •••)

If a data set is created on a 9-track dual-density tape drive (2400-4),
the data set can be cataloged with a device specification of 2400 for an
800 bpi tape or 2400..;3 for a 1600 bpi tape. If a device specification
of 2400-4 is made when the data set is cataloged, any subsequent
retrieval of that data set is made on a dual-density drive.

The UNCATLG statement

The UNCATLG statement is used to remove an entry from the lowest level
index of the catalog. This function does not delete higher level
indexes from the index structure.

r------T---------y---,
I Name I Operation I Operand I
~------+---------+----------------------~------------------------------~
l[name11UNCATLG I DSNAME=name I
I I I [CVOL=device=seriaI1 I L ______ ~ _________ ~ ___ J

DSNAME=name
specifies the fully qualified name of the data set to be
uncataloged.

CVOL=device=serial
specifies the device type and volume serial number of the control
volume at which the search for the catalog entry is to begin.

If CVOL is omitted, the system residence volume is assumed.

The IEHPROGM Program 43

I

The BLDX (Build Index) statement

The BLDX statement is used to create a new index in the catalog. If the
creation of an index requires that higher level indexes be created, this
function automatically creates them.

r------T-----~---T---,
I Name I Operation I Operand I
~------+---------+---~
I [name] I BLDX I INDEX=name I
I I I [CVOL=device=serial] I L ______ ~ _________ ~ ____________________________________ - ________________ J

INDEX=name
specifies the qualified name of the index to be created. The
qualified name must not exceed 44 characters, including periods.

CVOL=device=serial
specifies the device type and volume serial number of the control
volume on which the search for the index is to begin.

If CVOL is omitted, the system residence volume is assumed.

The DLTX (Delete Index) Statement

The DLTX statement is used to remove an index from the catalog. Only an
index that has no entries can be removed.

r------T---------T---,
I Name I Operation I Operand I
~------+---~-----+---~ I [name] I DLTX I INDEX=name I
I I I [CVOL=device=seriall I L ______ ~ _________ ~ ___ J

INDEX=name
specifies the qualified name of the index to be deleted.

CVOL=device=serial
specifies the device type and volume serial number of the control
volume on which the search for the index is to begin.

If CVOL is omitted, the system residence volume is assumed.

Note: Since this function does not delete higher level indexes , it
must be used repetitively to delete an entire structure. For example,
to delete index structure A.B.C , use:

DLTX
DLTX
DLTX

in that order.

44

INDEX=A.B.C
INDEX=A.B
INDEX=A

The BLDA (Build Index Alias) Statement

The BLDA statement is used to assign an alias name to an index at the
highest level of the catalog.

r------y---------T---, I Name I Operation I Operand I
~------+---------+---~ I [name] I BLDA I I NDEX= name I
I I I ALIAS=name I
I I I [CVOL=device=serial] I L ______ ~ _________ ~ ___ J

INDEX=name
specifies the unqualified index name to which an alias name is to
be assigned.

ALIAS=name
specifies an unqualified name to be assigned as the alias name.

CVOL=device=serial
specifies the device type and volume serial number of the control
volume on which the catalog entry is to be made.

If CVOL is omitted, the system residence volume is assumed.

The DLTA (Delete Index Alias) Statement

The DLTA statement is used to delete an alias name previously assigned
to an index at the highest level of the catalog.

r------T---------T---, I Name I Operation I Operand I
~------+---------+---~ I [name] IDLTA IALIAS=name I
I I I [CVOL=device=seriall I L ______ ~ ________ ~ ___ J

ALIAS=name
specifies the unqualified index alias to be deleted.

CVOL=device=serial
specifies the device type and volume serial number of the control
volume containing the catalog entry to be deleted.

If CVOL is omitted, the system residence volume is assumed.

The.CONNECT Statement

The CONNECT statement is used to place an entry into an index at the
highest level of the catalog. The entry identifies a second volume by
its device type and volume- serial number. In addition, it contains an
index name identifying the index to be searched for (during subsequent
index searches) on the second volume. .

Note: This function does ~ create an index on the second volume.

r------T---------T---,
I Name I Operation I Operand I

~------+---------+~--~
I [name] I CONNECT I I NDEX= name I
I I IVOL=device=serial I
I I I [CVOL=device=seriall I L ______ ~ _________ ~ ___ J

The IEHPROGM Program 45

•

INDEX=name
specifies the index name to be entered in the high-level index on
the first volume.

VOL=device=serial
specifies the device type and volume serial number of the second
volume. This information is placed in the high-level index on the
first volume.

CVOL=device=serial
specifies the device type and serial number of the first volume.

If CVOL is omitted, the system residence volume is assumed to be
the first volume.

Note: The CONNECT statement does not create a SYSCTLG data set on the
connected volume. Prior to cataloging the first data set on a connected
volume, the user must define a SYSCTLG data set on that volume. This
can be done with the following DD statement:

//ddname
//

DD DSNAME=SYSCTLG,UNIT=xxxx,DISP=(,KEEP),
SPACE=(TRK,xx),VOLUME=SER=xxxxxx

Note: If a job may require an auxiliary control volume to complete a
catalog search, the user need not have the auxiliary control volume
mounted before the job is begun. (The user does not have to remember
the volume on which a particular data set is cataloged.) The system
will direct the operator to mount an auxiliary control volume if it is
needed. However, the user must ensure that the auxiliary control volume
is connected to the system residence volume by means of the CONNECT
verb, as modified for Release 17. If an auxiliary control volume was
connected before Release 17, the user must first release the auxiliary
control volume for all high-level indexes on the system residence volume
which point to that volume, and then use the current CONNECT verb to
reconnect the auxiliary control volume with the system residence volume.
(See IEHPROGM Example 8 for a sample program which performs this
releasing and reconnecting of an auxiliary control volume.)

The RELEASE (Disconnect) Statement

The RELEASE statement is used to remove an entry from the high-level
index of a volume. This effectively disconnects a second volume from
the first volume.

Note: This function does not delete an index from the second volume.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---i
l[namellRELEASE IINDEX=name I
I I I [CVOL=device=seriall I L ______ ~ _________ i ___ J

INDEX=name
specifies the index name to be removed from the high-level index of
the first volume.

CVOL=device=serial

46

specifies the device type and volume serial number of the first
volume.

If CVOL is omitted, the system residence volume is assumed to be
first volume.

The BLDG (Build Generation Data Group Index) Statement

The BLDG statement is used to build an index for a generation data
group, and to establish the action to be taken should the index
overflow.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [name 1 I BLDG IINDEX=name I
I I I ENTRIES=n I
I I I [CVOL=device=seriall I
I I I [EMPTY] I
I I I [DELETE] I L ______ ~ _________ i ___ J

INDEX=name
specifies the name of the generation data group index.

ENTRIES=n
specifies the number of entries to be contained in the generation
data group index; n must not exceed 255.

CVOL=device=serial

EMPTY

specifies the device type and volume serial number of the volume on
which the catalog search for the index is to begin.

If CVOL is omitted, the system residence volume is assumed.

specifies that all entries be removed from the generation data
group index when it overflows. This effectively uncatalogs all of
the generation data sets.

If EMPTY is omitted, the oldest entry is removed when the
generation data. group index overflows.

DELETE
specifies that generation data sets are to be scratched after their
entries are removed from the index.

If DELETE is omitted, the data sets are not scratched.

The IEHPROGM Program 47

••

IEHPROGM Examples

The following examples illustrate some of the applications for the IEHPROGM system
utility program.

Note: In each of the following IEHPROGM examples, the EXEC statement and the
SYSPRINT DD statement can be replaced with the following job control statement:

// EXEC PROC=MOD

The EXEC statement invokes the following cataloged procedure, which is supplied
by IBM.

//MOD EXEC PGM=IEHPROGM,REGION=44K
//DDSRV DD VOLUME=REF=SYS1.SVCLIB,DISP=OLD
//SYSPRINT DD SYSOUT=A

IEHPROGM Example 1

00000000
00000010
00000020

r----------------------T-----------------------T--,
I I Number of Mountable I I
1 Operation IVolumes to be ProcessedlComments 1
~----------------------+-----------------------+--~
ISCRATCH VTOC 11 VOLUME -- 2311 DISK 11. The system residence volume is not I
I I I referred 'to in this job step. 1 L ______________________ ~ _______________________ ~ __ J

In this example, data sets are to be scratched from a volume table of contents
of a mountable volume. since the system residence volume is not referred to, no
DDl DD statement is necessary in the job stream •

• The SCRATCH Statement: indicates that all data sets (including those
beginning with AAAAAAAA.AAAAAAAA.AAAAAAAA.AAAAAAAA) whose expiration dates
have expired are to be scratched from the specified volume.

r---,
I//SCRVTOC JOB 09#550,BROWN I
1// EXEC PGM=IEHPROGM 1
I//SYSPRINT DD SYSOUT=A 1
1//DD2 DD UNIT=2311,VOLUME=SER=231100,DISP=OLD 1
I//SYSIN DD * 1
I SCRATCH VTOC,VOL=2311=231100 I
1/* I L ___ J

IEHPROGM Example 1. Scratching Data Sets From a Volume

48

IEHPROGM Example 2

r----------------------T-----------------------T--,
I I Number of Mountable 1 I
I Operation IVolumes to be ProcessedlComments I
t----------------------+-----------------------+--~
I SCRATCH 12 VOLUMES -- 2311 DISK 11. The system residence volume is on I
I two data sets I I a 2301 Drum device. I
IUNCATLG I I I
I ~o~~s~s I I I
IDLTX I I I L ______________________ ~ _______________________ ~ __ J

In this example two data sets are to be scratched: SETl on volume 231100 and
A.B.C.D.E on volume 231101. Both data sets are to be uncataloged. In addition,
index structure A.B.C.D is to be deleted from the SYSCTLG data set.

Since the system residence volume is referred to (through use of the UNCATLG
and DLTX statements), a DDl statement is included in the input stream.

r---,
I//SCRDSETS JOB 09#550,BROWN I
1// EXEC PGM=IEHPROGM I

//SYSPRINT DD SYSOUT=A I
//DDl DD UNIT=2301,VOLUME=SER=111111,DISP=OLD I
//DD2 DD UNIT=(2311"DEFER),DISP=OLD, I
// VOLUME=(PRIVATE,~SER=(231100» I
//SYSIN DD * I

SCRATCH DSNAME=SET1,VOL=2311=231100 I
UNCATLG DSNAME=SETl I
SCRATCH DSNAME=A.B.C.D.E,VOL=2311=231101 I
UNCATLG DSNAME=A.B.C.D.E I

DLTX INDEX=A.B.C.D l~ I
DLTX INDEX=A.B.C I
DLTX INDEX=A.B I
DLTX INDEX=A I

1/* I L ___ J

IEHPROGM Example 2. Scratching and Uncataloginq Data Sets -- Deleting an Index
From the Catalog

The IEHPROGM Program 49

•

IEHPROGM Example 3

r----------------------T-----------------------T--,
I 1 Number of Mountable 1 1
1 Operation IVolumes to be Processedlcomments 1
~----------------------+-----------------------+--~
1 RENAME 12 VOLUMES -- 2311 DISK 11. The system residence volume is on a 1
I data set 1 I 2301 Drum device. 1
IUNCATLG 1 12. The object data set exists on two 1
1 old dsname. I I mountable volumes. I
IDLTX 1 I I
I old index I 1 1
1 structure ,~- I I
ICATLG 1 1 I
1 new dsname 1 1 I L ______________________ i-______________________ ~ __ J

In this example, the name of a data set is to be changed on two mountable
volumes. The old data set name and index structure are to be removed from the
catalog (UNCATLG and DLTX statements). The data set is then to be cataloged under
its new data set name.

Since the system residence volume is referred to (through use of the UNCATLG,
DLTX, and CATLG statements), a DDl statement is included in the input stream.

r---,
I//RENAMEDS JOB 09#550,BROWN
1// EXEC PGM=IEHPROGM
I//SYSPRINT DD SYSOUT=A
1//DDl DD VOLUME=SER=111111,UNIT=2301,DISP=CLD
1//DD2 DD UNIT=(2311"DEFER),DISP=OLD,
1// VOLUME=(PRIVATE"SER=(231100,231101»
I//SYSIN DD *
1 RENAME DSNAME=A.B.C,VOL=2311=(231100,231101),NEWNAME=NEWSET
I UNCATLG DSNAME=A.B.C
1 DLTX INDEX=A.B
I DLTX INDEX=A
I CATLG DSNAME=NEWSET" VOL=2311= (231100,231101)
1/* L ______________________________ ~ __ J

IEHPROGM Example 3. Renaming a Data Set on Multiple Volumes -- Cataloging Data
Set Under New Data set Name

50

IEHPROGM Example 4

r----------------------T--,
I Operation I Comments I
~----------------------+--~
IUNCATLG 11. No mountable volumes are to be processed. I
I data sets 12. The system residence volume is on a 2311 device. I
IDLTX I I
I index structures 1 I
I from catalog I I L ______________________ ~ __ J

In this example three data sets are to be uncataloged and their supporting
index structures deleted from the catalog.

Given the cataloged data sets:

A.B.C.D.E.F.SETl
A.B.C.G.H.SET2
A.B.I.J.K.SET3

t
B

I
C

I I
G
I
H

I
Set2

i
0
I
E
I
F

I
Set 1

i
I
I
J
I
K

I
Set3

The data sets can be uncataloged and their structures deleted in the order
shown in the example.

r---,
IIDLTSTRUC JOB 09#550,BROWN
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IIDD1 DD UNIT=2311,VOLUME=SER=111111,DISP=OLD
IISYSIN DD *

UNCATLG DSNAME=A.B.C.D.E.F.SETl
UNCATLG DSNAME=A.B.C.G.H.SET2
UNCATLG DSNAME=A.B.I.J.K.SET3

DLTX INDEX=A.B.I.J.K
DLTX INDEX=A.B.I.J
DLTX INDEX=A.B.I
DLTX INDEX=A.B.C.G.H
DLTX INDEX=A.B.C.G
DLTX INDEX=A.B.C.D.E.F
DLTX INDEX=A.B.C.D.E I
DLTX INDEX=A.B.C.D I
DLTX INDEX=A.B.C I
DLTX INDEX=A.B I
DLTX INDEX=A I

1/* I L ___ J

IEHPROGM Example 4. Deleting an Index Structure

The IEHPROGM Program 51

•

IEHPROGM Example 5

r----------------------T-----------------------T--,
I I Number of Mountable I I
I Operation IVolumes to be ProcessedlComments I
~----------------------+-----------------------+--~
I CONNECT 11 VOLUME -- 2311 DISK 11. The SYSCTLG data set has been I
I the system residence I I previously defined on the I
I volume to a second .1 I second volume. I
I volume I I I
ICATLG I 12. The system residence volume I
1 data sets on the I I is on a 2301 Drum device. 1
I second volume I I 1 L ______________________ ~ _______________________ ~ __ J

In this example, the system residence volume is to be connected to a second
volume. After the connect operation has been performed, any subsequent index
search for index level X, Y, or Z will be carried to the second volume.

The CONNECT Statements: identify the second volume. The specified index names,
along with the volume identification, are placed on the system residence volume.

The CATLG Statements: catalog three data sets (X.EE.CCC, Y.BB.CC, and Z.BB.XT) on
the second volume. Since the volumes are connected prior to the catalog
operations, the CVOL keywords are not required in the CATLG statements; they are
included merely to bypass the index search on the system residence volume.

r---,
I//CONNECT JOB 09#550,BROWN
1// EXEC PGM=IEHPROGM
I//SYSPRINT DD SYSOUT=A
1//DDl DD UNIT=2301,VOLUME=SER=111111,DISP=OLD
1//DD2 DD UNIT=2311,VOLUME=SER=231100,DISP=OLD
I//SYSIN DD *
I CONNECT INDEX=X,VOL=2311=231100
I CONNECT INDEX=Y,VOL=2311=231100
I CONNECT INDEX=Z,VOL=2311=231100
I CATLG DSNAME=X.BB.CCC,VOL=2311=231101,CVOL=2311=231100
I CATLG DSNAME=Y.BB.CC,VOL=2311=231101,CVOL=2311=231100
I CATLG DSNAME=Z.BB.XT,VOL=2311=231101,CVOL=2311=231100
1/* L __ _

IEHPROGM Example 5. Extending the Catalog to a Second Volume (CONNECT) and
Cataloging Data Sets on That Volume

52

IEHPROGM Example 6

r----------------------T--,
iOperation 1 Comments I
~----------------------+--~
I BLDG 11. The system residence volume is on a 2301 Drum device. I L ______________________ ~ __ J

In this example, a generation data group index is to be built in the catalog.

The BLDG Statement: specifies the generation data group name A.B.e and makes
provision for 10 entries in the index. All entries are to be removed from the
index when it overflows.

r---,
I//BLDGDGIX JOB 09#550,BROWN I
1// EXEC PGM=IEHPROGM I
I//SYSPRINT DD SYSOUT=A I
1//DDl DD UNIT=2301,VOLUME=SER=111111,DISP=OLD I
I//SYSIN DD * I
I BLDG INDEX=A.B.C,ENTRIES=10,EMPTY I
1/* 1 L ___ J

IEHPROGM Example 6. Building a Generation Data Group Index

The IEHPROGM Program 53

••

IEHPROGM Example 7

r----------------------T--,
I Operation 1 Comments 1
r----------------------+----------------------------------~-----------------------------~
1 BLDG 11. The system residence volume is on a 2301 Drum device. I
ICATLG I I
I generation data group 1 I
I index 1 I L ______________________ ~ __ J

In this example, a generation data group index is to be built and three data
sets are to be cataloged in the index. After the three generation data sets are
cataloged, the index structure appears as

A

+
B
+
C G0003VOO

• latest
generation

G0002VOO
~
latest
-1

G0001VOO ,
latest
-2

r---,
I//CTLGDG JOB 09#550,BROWN I
1// EXEC PGM=IEHPROGM I
I//SYSPRINT DD SYSOUT=A I
1//DDl DD UNIT=2301,VOLUME=SER=111111,DISP=CLD I
I//SYSIN DD * 1
1 BLDG INDEX=A.B.C,ENTRIES=20,EMPTY I
1 CATLG DSNAME=A.B.C.G0001VOO,VOL=2311=231100 I
I CATLG DSNAME=A.B.C.G0002VOO,VOL=2311=231100 I
1 CATLG DSNAME=A.B.C.G0003VOO,VOL=2311=231100 I
1/* I L ___ J

IEHPROGM Example 7. Cataloging Three Generation Data sets

54

IEHPROGM Example 8

r----------------------T--,
I Operation I Comments I
~----------------------+--~
I RELEASE 11. The system residence voL .e is on a 2311 Disk device. I
~----------------------~ I
I CONNECT I I L ______________________ ~ ___ J

This example illustrates the use of the RELEASE and CONNECT verbs to disconnect
the control volume, 231100, from the system residence catalog for the high-level
index A, and reconnect that same control volume for that index. This technique is
necessary only if the auxiliary control volume was connected before Release 17.

r---,
I//RECONCT JOB 09#550"BROWN 1
1// EXEC PGM=IEHPROGM 1
I//SYSPRINT DD SYSOUT=A 1
1//ODl DD UNIT=2311,VOLUME=SER=111111,OISP=OLD 1
I//SYSIN DO * 1
I RELEASE INOEX=A 1
I CONNECT INOEX=A,VOL=2311=231100 I
1/* 1 L ___ J

IEHPROGM Example 8. Releasing and Reconnecting an Auxiliary Control Volume

The IEHPROGM Program 55

•

The IEHMOVE Program

Program Applications
The IEHMOVE system utility program moves or copies logical collections
of IBM System/360 Operating System data.

The program can be used to move or copy:

• A data set residing on one or more volumes (up to 5).
• A group of cataloged data sets.
• A catalog, or portions of a catalog.
• A volume of data sets.

The scope of a basic move or copy operation can be enlarged by:

• Merging members from two or more partitioned data sets.
• Including or excluding selected members.
• Renaming moved or copied members.
• Replacing selected members.

If, for some reason, the program is unable to successfully move or
copy specified data" the program attempts to reorganize the data and
place it on the specified output device. The reorganized data is called
an "unloaded data set." It is a sequential data set consisting of
80-byte blocked records that contain the source data and control
information for subsequently reconstructing the source data as it
originally existed.

When an unloaded data set is moved or copied onto a device that will
support the data in its true form, the data is automatically
reconstructed. For example, if the user attempts to move a partitioned
data set onto a magnetic tape volume, the data is unloaded onto that
volume. The user can re-create the data set simply by moving the
unloaded data set onto a direct access volume.

Move Versus Copy: A move operation differs basically from a copy
operation in that a move operation scratches source data (from direct
access source volumes only>, while a copy operation leaves source data
intact. In addition, for cataloged data sets, a move operation updates
the catalog to refer to the moved version (unless otherwise specified),
while a copy operation leaves the catalog unchanged.

Allocating Space: Space can be allocated for a data set on a receiving
volume either by the user (through the use of DD statements in a prior
job step> or by the IEHMOVE program, itself, in the IEHMOVE job step.
If the source data is unmoveable (i.e., if it contains location
dependent code), the user should allocate space on the receiving volume
using absolute track allocation to insure that the data set is placed in
the same location on the receiving volume as it was· on the source
volume. Unmoveable data will be moved if space is allocated by the
IEHMOVE program, but the data will 'not be in the same location on the
receiving volume as it was on the source volume. When data sets are to
be moved between unlike devices, the programmer should provide secondary
allocation to ensure that ample space will be available on the receiving
volume.

The IEHMOVE Program 57

•

Results of Moving and Copying operations: A move or copy operation has
one of three results.

1. A moved or copied data set.

2. No action.

3. An unloaded version of the source data set.

These results depend upon the compatibility of the source and
receiving volumes with respect to:

• The size of the volumes.

• The data set organization (sequential, partitioned, or direct
access).

• The movability of the source data set.

• The allocation of space on the receiving volume.

Note: Two volumes are compatible with respect to size if the source
record size does not exceed the receiving track size or, if the output
is to be written with track overflow, the receiving volume supports the
track overflow feature. (Refer to "Job Control Statements" for notes on
the track overflow feature.) When using direct access data set
organization, two volumes are compatible with respect to size if the
source track capacity does not exceed the receiving track capacity.
Direct data sets moved or copied to a smaller device type or tape are
unloaded. If the user wishes to load an unloaded direct data set, it
must be loaded to the same device type from which it originally was
unloaded.

IEHMOVE Table 1 shows the results of move and copy operations. The
organization of the source data set set is shown along with the
characteristics of the receiving device.

58

IEHMOVE Table 1. Results of Move and Copy Operations
r--------------------T---,
I Receiving I Source Data Set Organization I
I Volume ~----------------T---------------T----------------i
I I Sequential I Partitioned I Direct Access I
~--------------------+----------------+---------------+----------------~
IDIRECT ACCESS I 1 I
l(size compatible 1 I I
Iwith source volume) I I I
I • Space allocated I 1 I
I by IEHMOVE lmoved or copied lmoved or copiedlmoved or copied
I (movable data) 1 I I
I • Space allocated I I I
I by IEHMOVE Imoved or copied Imoved or copiedlno action
I (unmovable data) 1 I I
I • Space previously I I I
I allocated, as yet I moved or copied Imoved or copiedlno action
I unused I I I
I • Space previously I I I
I allocated, I no action I moved or copied I no action
I partially used I l(merged) I
~-------------------_+----------------+----~----------+----------------i
I DIRECT ACCESS I I I I
l(size incompatible I I I I
Iwith source volume) I 1 I I
1 • Space allocated I unloaded lunloaded I unloaded I
I by IEHMOVE 1 1 I I
I • Space previously 1 I I I
I allocated, as yetlunloaded lunloaded lno action 1
1 unused 1 1 1 1
I • Space previously 1 1 1 1
I allocated, I no action I no action I no action I
I partially used I I I 1
~-------------------+----------------+---------------+----------------~
I NON-DIRECT ACCESS I 1 I I
I • Movable data I moved or copied I unloaded I unloaded I
I • Unmovable data lunloaded I unloaded Ino action I L ____________________ ~ ________________ ~ _______________ ~ ________________ J

Notes: Space cannot be previously allocated for a partitioneu data set
that is to be unloaded unless the space parameter in the DD statement
making the allocation implies sequential organization; i.e., no .

I provision is made for directory space. Direct data sets cannot be
previously allocated because they cannot be differentiated from
partially used existing direct data sets.

If a move or copy operation is unsuccessful (no action), the source
data remains intact.

If a move or copy operation is unsuccessful and space w~s allocated
by the IEHMOVE program, all data associated with that operation is
scratched from the receiving direct access volume. If the receiving
volume was tape, it will contain a partial data set.

If a move or copy operation is unsuccessful and space was previously
allocated, no data is scratched from the receiving volume.

For example, the IEHMOVE program has moved 104 members of a 105
member partitioned data set. On moving the 105th member an I/O error is
encountered.

• If space was allocated by the IEHMOVE program, the entire
partitioned data set is scratched from the receiving volume.

The IEHMOVE Program 59

•

• If space was previously allocateq, no data is scratched from the
receiving volume. In this case" after determining the nature of the
error, the user need move only the 105th member into the receiving
partitioned data set.

Default Allocation: If a sequential data set is to be moved or copied
and space attributes are not available either through preallocation or
from the data set control block belonging to the source data set, the
IEHMOVE program makes a default space allocation. The default
allocation consists of a primary allocation of 72,500 bytes of storage
and up to 14 secondary allocations of 36,250 bytes each.

Password Protection: When moving or copying a data set group (DSGROUP)
- or a volume - containing password protected data sets, the user must
provide the password each time a data set is opened or scratched. For
each COPY operation, the password must be provided twice. For each MOVE
operation, the password must be provided three times.

Moving or Copying User Labels

The IEHMOVE program will always move or copy any user ~abels associated
with an input data set. This is not an optional feature of the IEHMOVE
program.

The IEHMOVE program will not take exits to a user's label processing
routines. The EXITS and LABELS statements discussed in "Appendix F:
Utility Program Handling of User Labels," are not valid for the IEHMOVE
program.

Warning: Under the unusual condition in which a data set which has only
user trailer labels is to be moved from a tape volume to a direct access
volume, the user must preallocate space on the direct access volume to
insure that a track will be reserved to receive the user labels.

Moving or Copying BDAM Data Sets

When moving or copying a EDAM data set(s) to like devices, both relative
track and relative block integrity are maintained.

When moving or copying a BDAM data setCs) to a larger device,
relative track integrity is maintained for data sets with variable or
undefined record formats; and relative block integrity are maintained
for data sets with fixed length record formats.

When moving or copying a EDAM data set(s) to a smaller device or a
tape, the data set is unloaded. An unloaded data set is loaded only
when it is moved or copied to the same device type from which it was
unloaded.

Reblocking

Reblockinq Data Sets with Fixed or Variable Record Format: Data sets
with fixed or variable length records can be reblocked to a different
blocksize by preallocating the desired block size on the receiving
volume. No reblocking can be performed when loading or unloading.

Reblocking Data Sets with Undefined Record Format: When moving or
copying data sets with undefined record format and reblocking to a
smaller blocksize (i.e., transferring records to a device with a track
capacity smaller than the track capacity of the original device) the
user must make the blocksize for the receiving volume' equal to or larger
than the size of the largest record in the data set being moved or
copied.

60

Moving or Copying a Data set

The IEHMOVE program can move or copy a data set as follows:

Sequential data set move from one direct access or non-direct
access volume to another (or onto the same
volume provided that it is a direct access
volume) •
£2J2.Y from one direct access or non-direct
access volume to another (or onto the same
volume provided that the data set name is
changed and the receiving volume is a direct
access volume).

Partitioned data set -- move from one direct access volume to another
(or onto the same volume).

Direct data set

£2EY from one direct access volume to another
(or onto the same volume provided the data set
name is changed).

move or ~ from one direct access volume to
another provided that the receiving device is
the same device type or a larger device type,
and the records do not exceed 32K.

In addition, the program can move or copy multivolume data sets. To
move or copy a data set that resides on more than one tape volume, you
must specify, in the list field of the FROM=device=list parameter on the
utility control statement, the volume serial numbers of all the tape
volumes and the sequence numbers of the data set on the tape volumes.
(You must specify the sequence number even if the data set to be moved
or copied is the only data set on a volume. For example, if a
multivolume data set on 2400 tapes resides on the 2nd file of tape
001234 and on the 1st file of tape 001235, you must specify
FROM=2400=(001234,2,001235,1).) To move or copy a data set onto more
than one tape volume, you must specify the volume serial numbers of all
the receiving tape volumes in the list field of the TO=device=list
parameter on the utility control statement.

Note: A data set with the unmovable attribute can be moved or copied
from one direct access volume to another or onto the same volume
provided that space has been preallocated on the receiving volume. You
must change the name of a data set to move or copy it onto the same
volume. SVCLIB can be moved or copied to another location on the system
residence volume, provided that space is available and that space has
been preallocated on that volume. The IEHPROGM utility must be employed
immediately after such a move operation to rename the moved version
SYSl.SVCLIB. After such a copy operation, the IEHPROGM program must be
used to scratch the old version and then to rename the copied version.
In either case, the IEHIOSUP program must be used immediately after the
IEHPROGM step to update the new version of SVCLIB.

IEHMOVE Figures 1 and 2 show basic move operations for sequential and
partitioned data sets, respectively. Options and alternative operations
that can be specified by the user are also shown.

The IEHMOVE Program 61

•

Sou rce Data Set
Organ ization

.
Basic MOVE
Operations

I

/

1. Move the data set.

2. Scratch the source data (direct
access on Iy).

3. For cataloged data sets, update
the catalog to refer to the moved
data set.

IEHMOVE Program

I

Options and
Alternative
Operations

\

. Prevent the automatic
cataloging of the moved
data set

• Rename the moved data set

IEHMOVE Figure 1. Moving a Sequential Data Set

62

Sou rce Data Set
Organization

IEHMOVE Program

Partitioned

1. Move the data set.

2. Scratch the source data (direct
access only).

Basic MOVE
Operations

3. For cataloged data sets, update the catalog
to refer to the moved data set.

Options and
Alternatives
Operations

· Prevent the automatic
cataloging of the moved data
set.

• Rename the moved data set.

• Re-allocate directory space.
(Th is is not possible if the
space previously allocated
to the data set is partially used.)

· Perform a merge operation
using members from two or
more data sets.

• Move on Iy selected members.

• Replace members

· Unload the data set.

IEHMOVE Figure 2. Moving a Partitioned Data Set

The IEHMOVE Program 63

•

IEHMOVE Figures 3 and 4 show basic copy operations for sequential and
partitioned data sets, respectively. Options and alternative operations
that can be specified by the user are also shown.

Sou rce Data Set
Organization

I EHMOVE Program

Basic COpy
Operation s

/

Options and
Alternative
Operations

/

1. Copy the data set.

Note: The source data is not
scratched. The catalog
is not updated to rete r
to a copied data set.

• Uncatalog the source data set.

· Catalog the copied data set on
the receiving volume.

• Rename the copied data set.

IEHMOVE Figure 3. Copying a Sequential Data Set

64

Sou rce Data Set
Organ ization

IEHMOVE Program

Partitioned

Basic COpy
Operations

/

/

1. Copy th e data set.

Note: The source data is not
scratched. The catalog is
not updated to refer to a
copied data set.

1

Options and
Alternative
Operations

• Uncatalog the source data set.

• Catalog the copied data set on
the receiving volume.

· Rename the copied data set.

• Re-allocate directory space.
(Th is is not possible if the
space previously allocated to
the data set is partially used.)

• Perform a merge operation
usi ng members from two or
more data sets.

• Copy on Iy selected members.

• Replace members.

• Un load the data set.

IEHMOVE Figure 4. Copying a Partitioned Data Set

The IEHMOVE Program 65

•

Order of Moved or Copied Members: The IEHMOVE program moves or copies
partitioned members in the order in which they appear in the partitioned
directory. That is, moved or copied members are placed in collating
sequence on the receiving volume.

IEHMOVE Figure 5 shows a copied partitioned data set. Note that the
members are reordered. The IEBCOPY data set utility program (see) can
be used to copy those data sets whose members are not to be collated.

Source Data Set Copied Data Set

Directory

IEBMOVE Figure 5. A Copied Partitioned Data Set

Order of Merged Members: Members that are merged into an existing data
set are placed, in collating sequence, after the last member in the
existing data set.

IEHMOVE Figure 6 shows how members from one data set are merged into
an existing data set.

IEHMOVE Figure 7 shows how members from two data sets are merged into
an existing data set. Members from additional data sets can be merged
in like manner.

66

Existing Data Set
Prior to Merge

Sou rce Data Set

':::.
,.':'

MemberG

IEHMOVE Figure 6. Merging Two Data Sets

The IEHMOVE Program 67

•

Sou rce Data Set

Existing Data Set
Prior to Merge

Second Data Set

Exi sting Data Set
After Merge

IEHMOVE Figure 7. Merging Three Data Sets

Moving or Copying a Group of Cataloged Data Sets

The IEHMOVE program can move or copy a group of data sets that are
cataloged on the same volume and whose names are qualified by one or
more identical names. For example, a group of data sets qualified by
the name A.B could include data sets named A.B.D and A.B.E, but could
not include data sets named A.C.D. or A.D.F.

68

Additional data sets not belonging to the specified data set group
can be included in the move or copy operation; data sets belonging to
the group can be excluded.

Notes: If a group of data sets is moved or copied onto magnetic tape,
the data sets must be retrieved one by one by data set name and file
sequence number, or (for unlabeled or non-standard labeled tapes) by
file sequence number.

The IEHLIST system utility program can be used to determine the
structure of the catalog.

IEHMOVE Figures 8 and 9 show basic move and copy (respectively)
operations for a group of cataloged data sets. Options and alternative
operations that can be specified by the user are also shown.

Sou rce Data Sets
I ndicated in
Catalog Structure

SYSCTLG

..

1. Move the data set group (not
including password protected
data sets) to the specified
volume(s).

2. Scratch the source data sets
(direct-access only).

3. Update the catalog to refer to
the moved data sets.

IEHMOVE Program

Basic MOVE
Operations

I

/

Options and
Alternative
Operations

• Prevent the updating of the
catalog.

• I nclude password protected
data sets in the operation.

· I nclude an additional data set
or sets in the operation.

• Exclude a data set or sets from
the operation.

• Unload a data set or sets.

Note: Merging is not
accomplished with this function.

IEHMOVE Figure 8. Moving a Group of Cataloged Data Sets

The IEHMOVE Program 69

I

Sou rce Data Sets
I ndicated in
Catalog Structure

SYSCTLG Basic COpy
Operations

-

~ I

/

1. Copy the data set group lnot
including password protected
data sets).

Note: The source data sets are
not scratched. The catalog
lSnot updated to refer to
the copied data sets.

Options and
Alternative
Operations

~
• I nclude password protected

data sets inthe operation.

• Uncatalog the sou rce data sets.

· Catalog the copied data sets on
the receiving volu mel s).

· I nclude an additional data set
or sets in the operation.

· Exclude a data set or sets from
the operation.

· Un load a data set or sets.

Note: Merging is not
accomplished with th is function.

IEHMOVE Figure 9. Copying a Group of Cataloged Data sets

70

Moving or Copying a Catalog

The IEHMOVE program can move or copy a catalog or portions of a catalog
without copying the data sets represented by the cataloged entries. The
SYSCTLG (catalog) data set need not be defined on the receiving volume
prior to the operation. Moved or copied entries are merged with
existing entries, if any, on the receiving volume.

Note: The receiving volume must be a direct access volume unless the
catalog is to be unloaded.

IEHMOVE Figures 10 and 11 show basic move and copy (respectively)
operations for catalog entries. Options and alternative operations that
can be specified by the user are shown also.

Volume Containing
Cataloged Entries
to be Moved

IEHMOVE Program

1. Move entries from the catalog
to the specified direct-access
volume.

2. ScratCh the source catalog.

Basic MOVE
Operations

IEHMOVE Figure 10. Moving the Catalog

Options and
Alternative
Operations

• Exclude selected entries from
the operation.

• Move an un loaded version of
the catalog.

• Un load the catalog onto a
magnetic tape volume.

The IEHMOVE Program 71

Volume Containing
Cataloged Entries
to be Copied

1. Copy entries from the catalog
to the specified direct-access
volume.

Note: The source catalog is
not scratched.

Basic COpy
Operations

IEHMOVE Figure 11. Copying the Catalog

Moving or Copying a Volume of Data sets

IEHMOVE Program

Options and
Alternative
Operations

• Exclude selected entries from
the operation.

• Copy an un loaded version of
the catalog.

• Unload the catalog onto a
magnetic tape volu me.

The IEHMOVE program can move or copy the data sets of an entire direct
access volume onto another volume or volumes. A move operation differs
from a copy operation in that the move operation scratches source data
sets, while the copy operation does not. For both operations, cataloged
entries (if any) associated with the source data sets remain unchanged.
The IEHPROGM system utility prOgram can be used to uncatalo9 all of the
cataloged data sets and recatalog them according to their new location.

Notes: If the source volume contains a catalog (SYSCTLG) data set, that
data set is the last to be moved or copied onto the receiving volume.

If a volume of data sets is moved or copied onto magnetic tape, the
data sets must be retrieved one by one by data set name and file
sequence number, or (for unlabeled or nonstandard labeled tapes) by file
sequence number.

When copying a volume of data sets, the user has the option of
cataloging all source data sets in a SYSCTLG data set on a receiving
volume. However, if a SYSCTLG data set exists on the source volume,
error messages indicating that an inconsistent index structure exists
will be generated when the source SYSCTLG entries are merged into the
SYSCTLG data set on the receiving volume.

72

The MOVE VOLUME feature does not merge partitioned data sets. If a
data set on the volume to be moved or copied has a name identical to a
data set name on the receiving volume, the data set is not moved,
copied, or merged onto the receiving volume.

IEHMOVE Figures 12 and 13 show basic move and copy (respectively)
operations for a volume of data sets. Options and alternative
operations that can be specified by the user are shown also.

Volu me of Data Sets

..

1. Move all data sets not protected
by a password onto the specified
direct-access volume(s).

2. Scratch the source data sets
(direct-access only).

Note: The catalog is not
updated.

Basic MOVE
Operations

IEHMOVE Program

Options and
Alternative
Operation s

I

\

I nclude password protected
data sets in the operation.

Move to a magnetic tape
volume or volumes.

IEHMOVE Figure 12 •. Moving a Volume of Data sets

The IEHMOVE Program 73

-t

Volume of Data Sets

IEHMOVE Program

-
Basic COpy
Operations

/

1. Copy all data sets not protected
by a password onto the specified
direct-access volume.

Note: The source data sets are
not scratched. The catalog
is not updated.

r

Options and
Alternative
Operations

• I nclude password protected data
sets in the operation.

• Catalog all copied data sets on
the receiving volume (direct
access on Iy).

• Move to a magnetic tape
volume or volumes.

IEHMOVE Figure 13. Copying a Volume of Data sets

74

Moving or Copying Direct Data sets With Variable spanned Records

The IEHMOVE program can move or copy direct data sets with variable
spanned records (VRE) from one direct access volume to a compatible
direct access volume, provided that the records do not exceed 32K.

since a direct data set can reside on 1-5 volumes (all of which must
be mounted during any move or copy operation), it is possible for the
data set to span volumes. However, single variable spanned records are
contained on one volume.

Relative track integrity is preserved in a move or copy operation for
spanned records. Moved or copied direct data sets occupy the same
relative number of tracks that they occupied on the source device.

If a direct data set is unloaded (moved or copied to a smaller device
or tape) it must be loaded back to the same device type from which it
was originally unloaded.

When moving or copying variable spanned records to a larger device,
record segments are combined and respanned if necessary. since the
remaining track space is available for new records, variable spanned
records are unloaded before being moved or copied back to a smaller
device.

Notes: If a user wishes to create a direct data set without using data
management BDAM macros, all data management specifications must be
followed. special attention must be given to data management
specifications for RO track capacity record content, segment descriptor
words, and the BFTEK=R parameter.

When moving or copying a multi-volume data set, it is recommended
that the secondary allocation for direct data sets be at least two
tracks. (See the "WRITE SZ" macro in IBM supervisor and Data Management
Macro services, GC28-6647).

The IEHMOVE Program 75

·t

Inputs and Outputs

IEHMOVE Table 2 lists the major inputs to and outputs from the IEHMOVE
program.

IEHMOVE Table 2. Data Sets Used (Input) and Produced (output) by the
IEHMOVE Program-

r-----------T---~----,
I I Source Data Set(s): This data set(s) contains the data I
I I to be moved, copied, or merged into an output data set. I
I I I
I Inputs I Control Data set: This data set contains utility control I
I I statements. which are used to control the functions of I
j I the program. I
j I I
I I Work Data set: This data set is a work area used by the I
I I IEHMOVE program. I
~-----------+--~
I I Output Data Set: This data set is the result of the I
I I move. copy. or merge operation. I
I I I
I Outputs I Message Data Set: This data set contains informational I
I I messages (e.g •• the names of moved or copied data sets; I
I I the contents of applicable utility control statements) I
I I and error messages, if applicable. I L ___________ ~ ___ - ________________ J

ADDITIONAL OUTPUTS

The IEHMOVE program produces a return code to indicate the results of
program execution. The return codes 'and their interpretations are as
follows:

00 successful completion.
04 a specified function was not completely successful. Processing

continues.
08 a condition has occurred from which recovery is possible.

Processing continues.
12 an unrecoverable error has occurred. The job step is

terminated.

Control
The IEHMOVE program is controlled by job control statements and utility
control statements. The job control statements are used to:

• Execute or invoke the program.
• Define the work and control data sets.
• Define volumes and/or devices to be used during the course of

program execution.
• Prevent data sets from being deleted inadvertently.
• Provide label, density. and conversion information for magnetic

tapes.

Utility control statements are used to control the functions of the
program and to define those data sets or volumes that are to be
modified.

76

JOB CONTROL STATEMENTS

IEHMOVE Table 3 shows the job control statements necessary for executing
or invoking the IEHMOVE program.

IEHMOVE Table 3. Job Control Statements for the IEHMOVE Program
(Part 1 of 3)

r------------T---,
I Statement I Usage I
~-----------+---~
I JOB I This statement initiates the job. I
I statement I I
~------------+---~
I EXEC IThis statement specifies the program name(PGM=IEHMOVE) I
I statement lor, if the job control statements reside in a procedure I
I IlibrarYI the procedure name. This statement can include I
I loptional PARM information. (See the following section.) I
~------------+---~
ISYSPRINT IThis statement defines a sequential message data set. I
100 IThe data set can be written onto a system output device, I
I statement la magnetic tape volume. or a direct access volume. I
~------------+---~
lSYSUTl IThis statement defines a volume on which a work data set I
IDO Irequired by the IEHMOVE program is placed. The statement I
I statement lis coded as follows: I
I I I
1//SYSUTl IOD UNIT=xxxx,VOLUME=SER=xxxxxx,OISP=OLD I
~------------..L-----------------------------.----------_________________ ~
/ /anynamel* DD UNIT=xxxx,. VOLUME=SER=xxxxxx. DISP=OLD

This statement defines a permanently mounted volume. One statement
must be included for each permanently mounted volume referred to in
the job step. (The system residence volume is considered to be a
permanently mounted volume.)

In this statement. the UNIT and VOLUME parameters define the device
type and volume serial number. The OISP=OLD specification prevents
the inadvertent deletion of a data set.

Note: This statement is required only if a permanently mounted
volume is referred to in the job step. For example, if a subsequent
UNCATLG parameter specifies that an index search begin on the system
residence volume, this statement is required.

~---~
//anyname2** OD UNIT=xxxx.VOLUME=SER=xxxxxx.DISP=OLD I

I
This statement defines a mountable device type. One statement must I
be included for each mountable device to be used in the job step. I

Note: When the number of volumes to be processed is greater than
the number of devices defined by 00 statements. there must be an

I
I
I

indication (in the applicable DD statments) that multiple volumes I
are to be processed. This indication can be in the form of deferred I
mounting. I

Deferred mounting can be used by specifying:

DISP=(••• ,KEEP).VOLUME=(PRIVATE ••••).UNIT=(xxxx •• DEFER)

I
I
I
I
I

In a DD statement defining a mountable device. Refer to Appendix D I
for information on defining mountable devices. I ___ J

(Part 1 of 3)

The IEHMOVE Program 77

IEHMOVE Table 3. Job Control statements for the IEHMOVE Program
(Part 2 of 3)

r------------T---,
I Statement I Usage I
~------------~---~-----------~
I//tape DD DSNAME=xxxxxxxx,UNIT=xxxx,VOLUME=SER=xxxxxx, I
1// DISP=(••• ,KEEP),LABEL=(••• , •••),DCB=(TRTCH=C,DEN=x) I

I 7-track tape only. t :
I I
I A FROMDD or a TODD keyword in a utility control statement refers to I
I this statement for label and mode information. A version of this I
I statement is necessary when moving or copying from or to a 7-track I
I magnetic tape volume, a 9-track magnetic tape volume not having I
, standard labels, or a 1600 bpi 9-track magnetic tape volume on a I
I single-density drive, or when copying to an 800 bpi magnetic tape onl
I a dual-density drive. I
I I
I Note: The date on which a data set is moved or copied onto a I
I magnetic tape volume is automatically recorded in the HDR 1 record I
I of a standard tape label, provided that a TODD keyword is specified I
I in a utility control statement. I
I I
I An expiration date can be specified by including the EXPDT or RETPD I
I subparameters (of the LABEL keyword) in the DD statement referred tol
J by the TODD keyword. I
.------------T---~
ISYSIN IThis statement defines the control data set. The data I
IDD Iset, which contains utility control statements, usually I
I statement Ifollows the job control statements in the input stream; I
I I however, it can alternatively be defined as being an I
I lunblocked sequential data set, or a member of a procedure I
I I library. I
.------------~---~
I *This DD statement is arbitrarily assigned the ddname DOl in the
I IEHMOVE examples.
1**This DD statement is arbitrarily assigned the ddname OD2 in the
I IEHMOVE examples. DD statements defining additional mountable
1 device types are assigned names OD3, DD4, etc.
I
I Notes: At least 80 contiguous tracks must be available for work space
Ion the volume defined by the SYSUTl DD statement. (This figure is
Ibased on a 2311 being the work volume. If a direct access device
lother than a 2311 is used, an equivalent amount of space must be
I available.)
I
ITO define a sequence number for a data set on a tape volume, or to
lspecify a specific device (for example, unit address 190, rather than
la group name such as SYSDA or a device type such as 2400 or 2314), you I
Imust use a utility control statement instead of a DD statement. To I
Imove or copy a data set from or to a tape volume containing more than I
lone data set, you must specify the sequence number of the data set in I
Ithe list field of the FROM/TO=device=list parameter on the utility I
Icontrol statement. To move or copy a data set from or to a specific I
Idevice you must specify the unit address (rather than a group name or I
Idevice type), in the device field of the FROM/TO=device=list parameter I
Ion the utility control statement (see IEHMOVE Example 13 for an I
lexample of this function). When you want to copy onto a unit record I
lor nonlabeled tape volume, you must fill the list field of the I
IFROM/TO=device=list parameter with any standard name or number (see I
IIEHMOVE Example 13). 1 L __ J

(Part 2 of 3)

78

IEHMOVE Table 3. Job Control statements for the IEHMOVE Program
(Part 3 of 3)

with the exception of the SYSIN and SYSPRINT DD statements, all DD
statements in this table are used as device allocation statements,
rather than as true data definition statements. Since the IEHMOVE
program modifies the internal control blocks created by device
allocation DD statements, these statements must not include the
parameter. (All data sets are defined explicitly or implicitly
utility control statements.)

A merge operation requires that one DD statement defining a mountable
device be present for each source volume containing data to be
included in the merge operation.

Prior space allocations can be made by specifying a dummy execution of
the IEHPROGM system utility program prior to the execution of the

lIEHMOVE program. Examples of this are included in the IEHMOVE
examples.

Blocked-format data sets that do not contain user data TTRNs or keys
can be reblocked or unblocked by including the proper keyword
subparamters in the DCB operand of the DD statement used to
preallocate space for the data set. The new blocking factor must be a
multiple of the logical record length originally assigned to the data
set. (For a discussion of user data TTRNs, refer to the publication
IBM System/360 Operating System: Supervisor and Data Management
Services, GC28-6646.)

When the IEHMOVE program is dynamically invoked in a job step contain
ing another program" the DD statements defining mountable devices for
the IEHMOVE program must be included in the job stream prior to DD
statements defining data sets required by the other program. L ___ -1

Job Control Language for the Track Overflow Feature

A data set containing track overflow records can be reoved or copied if
the source volume and the receiving volume are mounted on direct access
devices that support the track overflow feature. (For BDAM data sets,
the source and receiving devices must be the same device type.) A data
set that was written without track overflow can be moved or copied with
track overflow or vice versa, provided that:

• Space was allocated for the data set prior to the request for a move
or copy operation.

• The DD statement used for that allocation included the RECFM
subparameter to specify the changed track overflow value and all
other desired values. . (The RECFM specifications assigned when the
data set was originally created are overridden by the RECFM
subparameter in this DD statement.)

If space has not been allocated, or if RECFM was not specified when
space was allocated, the data set is moved or copied in accordance with
RECFM specifications that were made when the data set was originally
created.

The track overflow attribute is not retained for a sequential data set
that is moved or copied onto a device other than a direct access device.

The IEHMOVE Program 79

PARM Information in the EXEC Statement

The EXEC statement for the IEHMOVE program can contain PARM information
that is used by the program to allocate additional work space and/or
control line density on output listings. The EXEC statement can be
coded as follows:

// EXEC PGM=IEHMOVE,PARM='POWER=n'
or

// EXEC PGM=IEHMOVE, PARM= , POWER=n, LINECNT=xx ,
or

// EXEC PGM=IEHMOVE,PARM='LINECNT=xx'
or

// EXEC PGM=IEHMOVE

where

POWER=n
requests that the normal amount of space allocated for work areas
be increased n times. This parameter is used when 750 or more
members are being moved or copied. The progression for the value
of n is:

from 750 to 1500 members -- POWER=2.
from 1501 to 2250 members POWER=3.
from 2251 to 3000 members -- POWER=4.
etc.

Notes:

1. If POWER=2, the work space requirement on the SYSUT1 volume is
doubled; if POWER=3, work space requirement is three times the
basic requirement, etc. For example, if POWER=2, 160 tracks
on a 2311 (or equivalent space on a device other than a 2311>
must be available.

2. When moving or copying a catalog, you should count each level
of index as a member in order to calculate the space required
for a work area. For example, if a catalog has 200 entries
and each entry has four levels of indexes, you must specify
POWER=2 in order to provide a sufficient work area for the
utility.

LINECNT=xx
specifies the number of lines per page in the listing of the
SYSPRINT data set, where xx is a 2-digit number.

UTILITY CONTROL STATEMENTS

combinations of the following utility control statements are used to
control the functions of the program.

• The MOVE DSNAME (move a data set) statement.
• The COpy DSNAME (copy a data set) statement.
• The MOVE DSGROUP (move a group of cataloged data sets) statement.
• The COpy OSGROUP (copy a group of cataloged data sets) statement.
• The MOVE POS (move a partitioned data set) statement.
• The COpy POS (copy a partitioned data set) statement.
• The MOVE CATALOG (move cataloged entries> statement.
• The COpy CATALOG (copy cataloged entries) statement.
• The MOVE VOLUME (move a volume of data sets) statement.
• The COpy VOLUME (copy a volume of data sets) statement.

80

In addition, there are four "subordinate" control statements that can
be used to modify the effect of a MOVE or COpy DSGROUP, MOVE or COpy
PDS, or MOVE or COPY CATALOG operation. The subordinate statements and
the control statements with which they can be combined are shown in
IEHMOVE Table 4.

IEHMOVE Table 4. Valid Combinations of Control statements
r----------------------------T---,
I Utility statements I Subordinate statements I
~--.--------------------------+---~
I MOVE DSGROUP I INCLUDE I
t or I EXCLUDE I
I COpy DSGROUP I I
~----------------------------+---~
I MOVE PDS I INCLUDE I
I or I EXCLUDE I
I COPY PDS I REPLACE I
I I SELECT I
~----------------------------+---~
I MOVE CATALOG I EXCLUDE I
I or' ,
I COPY CATALOG I I L ____________________________ ~ ___ J

The MOVE DSNAME statement

The MOVE DSNAME statement is used to move a data set. If the data set
is cataloged, the catalog is automatically updated unless UNCATLG is
specified. The source data set is scratched.

r------T---------T---,
'Name I Operation I Operand I
~------+---------+---~
I [namellMOVE I DSNAME=name I
I , I TO=device=list I
I I I [FROM=device=list] '
I I I CVOL=device=serial ,
, I I [UNCATLG] ,
I I I [RENAME=name 1 ,
I I I [FROMDD=ddname 1 I
I I I [TODD=ddname] , L ______ ~ _________ ~ _____________________________________ -----------_____ J

DSNAME=name
specifies the fully qualified name of the data set to be moved.

TO=device=list
specifies the volume or volumes to which the data set is to be
moved.

FROM=device=list
specifies the volume or volumes on which the data set currently
resides, if it is not cataloged.

If the data set is cataloged, FROM should not be written.

CVOL=device=serial
specifies the device type and volume serial number of the volume on
which the catalog search for the data set is to begin.

If neither CVOL nor FROM is written. the data set is assumed to be
cataloged on the system residence volume.

The IEHMOVE Program 81

·t

UNCATLG
specifies that the catalog entry pertaining to the data set is to
be removed. This parameter should be used only if the source data
set is cataloged.

UNCATLG is ignored if the volume is identified by FROM.

RENAME=name
specifies that the data set is to be renamed, and indicates the new
name.

FROMDD=ddname (for data sets residing on magnetic tape volumes)

I specifies the name of a DD statement from which DCB and LABEL
information are obtained. DCB attributes for unloaded data sets
are always (RECFM=FB,LRECL=80,BLKSIZE=800).

FROMDD can be omitted for 800 bpi 9-track tape with standard labels
on single-density drives or for 800 or 1600 bpi 9-track tapes with
standard labels on dual-density drives.

TODD=ddname (for data sets to be moved onto magnetic tape volumes)
specifies the name of a DD statement from which DeB and LABEL
information are obtained. This information describes the mode and
label of the magnetic tape where the moved data set is to reside.
RECFM, LRECL, and BLKSIZE information is ignored.

TODD can be omitted for 800 bpi 9-track tape with standard labels
on single-density drives or for 1600 bpi 9-track tape with standard
labels on dual-density drives.

The COpy DSNAME statement

The COpy DSNAME statement is used to copy a data set. The source data
set, if cataloged, remains cataloged unless UNCATLG is specified.

r------T---------T---,
I Name I Operation I Operand I
t------+---------+---~
I {namellCOPY I DSNAME=name I
I I I TO=device=list I
I I I [FROM=device=list] I
I I I CVOL=device=serial I
I I I [UNCATLGl I
J I I [CATLG] I
I I I [RENAME=name] I
I I I [FROMDD=ddnamel I
I I I [TODD=ddname 1 I L ______ i _________ ~ ___ J

DSNAME=name
specifies the fully qualified name of the data set to be copied.

TO=device=list
specifies the volume or volumes on which the data set is to be
copied.

FROM=device=list

82

specifies the volume or volumes on which the data set currently
resides, if it is not cataloged.

If the data set is cataloged, FROM should not be written.

CVOL=device=serial
specifies the device type and volume serial number of the volume on
which the catalog search for the data set is to begin.

If neither CVOL nor FROM is written, the data set is assumed to be
cataloged on the system residence volume.

UNCATLG

CATLG

specifies that the catalog entry pertaining to the source data set
is to be removed. This parameter should be used only if the source
data set is cataloged.

UNCATLG is ignored if the volume is identified by FROM.

specifies that the copied data set is to be catalog~d on its
receiving volume, if it is a direct access volume. If a catalog
does not exist on the receiving volume, a new catalog is created.

RENAME=name
specifies that the data set is to be renamed, and indicates the new
name.

FROMDD=ddname (For data sets residing on magnetic tape volumes)

I specifies the name of the DD statement from which DCB and LABEL
information are obtained. DCB attributes for unloaded data sets
are always (RECFM=FB,LRECL=80,BLKSIZE=800).

FROMDD can be omitted for 800 bpi 9-track tape with standard labels
o~ single-density drives or for 800 or 1600 bpi 9-track tapes with
standard labels on dual-density drives.

TODD=ddname (For data sets to be copied onto magnetic tape volumes)
specifies the name of a DD statement from which DCB and LABEL
information are obtained. This information describes the mode and
label of the magnetic tape where the copied data set is to reside.
RECFM, LRECL, and BLKSIZE information is ignored.

TODD can be omitted for 800 bpi 9-track magnetic tape with standard
labels on single-density drives or for 1600 bpi 9-track tape with
standard labels on dual-density drives.

The MOVE DSGROUP Statement

The MOVE DSGROUP statement is used to move groups of data sets that are
cataloged on the same volume and whose names are partially qualified by
one or more identical names. Source data sets are scratched.

Note: Data sets to be moved can reside on direct access volumes only.

MOVE DSGROUP operations cause the specified catalog to be updated
automatically unless UNCATLG is specified.

INCLUDE and EXCLUDE statements, discussed later in this section, can
be used to add to or delete data sets from the group.

The IEHMOVE Program 83

r------T---------T---, I Name I Operation I Operand I
~------+---------+---~ I [name] I MOVE I DSGROUP[=name] I
I I I TO=device=list I
I I I [CVOL=device=serial] I
I I I [PASSWORD] I
I I I [UNCATLG] I
I I I [TODD=ddnamel I L ______ ~ __ ~ ______ ~ ___________________________________ ~ _________________ J

DSGROUP=name
specifies a qualified name (an index structure). All cataloged
data sets whose names·are qualified by this name are moved. If the
name is a fully qualified data set name, only that data set 'is
moved.

DSGROUP
specifies that all data sets cataloged on the spec~fied volume are
to be moved.

TO=device=list
specifies the volume or volumes to which the specified group of
data sets is to be moved.

CVOL=device=serial
speciifies the device type and volume serial number of the volume
on which the catalog search for the data sets is to begin.

If CVOL is omitted~ the specified group of data sets is assumed to
be cataloged on the system residence volume.

PASSWORD
specifies that password protected data sets contained in the group
are to be moved.

If PASSWORD is omitted, only data sets that are not protected are
moved.

UNCATLG
specifies ~hat the catalog entries pertaining to the specified
group of data sets are to be removed.

TODD=ddname (For groups to be moved onto magnetic tape volumes)
specifies the name of a DD statement from which DCB and LABEL
information are 9btained. This information describes the mode and
label of the magnetic tape where the moved data sets are to reside.
RECFM, LRECL, and BLKSIZE information is ignored.

TODD can be omitted for 800 bpi 9-track tape with standard labels
on single-density drives or for 1600 bpi 9-track tape with standard
labels on dual-density drives.

The COpy DSGROUP Statement

The COpy DSGROU~ statement is used to copy groups of data sets that are
cataloged on the same control volume and whose names are partially
qualified by one or more identical names. The source data sets remain
cataloged unless UNCATLG is specified.

~: Data sets to be copied can reside on direct access volumes only.

INCLUDE anq EXCLUDE statements, discussed later in this section, can
be used to add data sets to or delete data sets from the group.

84

r------T---------T---,
I Name I Operation I Operand I
r------+---------+---~
I [namellCOPY I DSGROUP[=name] I
I I I TO=device=list I
I I I [CVOL=device=seriall I
I I I [PASSWORD] I
I I I [UNCATLG] I
I I I [CATLG] I
I I I [TODD=ddnamel I L ______ ~ _________ ~ ___ J

DSGROUP=name
specifies a qualified name (an index structure). All cataloged
data sets whose names are qualified by this name are copied. If
the name is a fully qualified data set name, only that data set is
copied.

DSGROUP
specifies that all data sets cataloged on the specified volume are
to be copied.

To=device=list
specifies the volume or volumes on which the specified group of
data sets is to be copied.

CVOL=device=serial
specifies the device type and volume serial number of the volume on
which the search for the catalog is to begin.

If CVOL is omitted" the specified group of data sets is assumed to
be cataloged on the system residence volume.

PASSWORD
specifies that password protected data sets contained in the group
are to be copied.

If PASSWORD is omitted, only data sets that are not protected are
copied.

UNCATLG

CATLG

specifies that the catalog entries pertaining to the source group
of data sets are to be removed.

specifies that the copied data sets are to be cataloged on their
receiving volumes, if they are direct access volumes. If catalogs
do not exist on the receiving volumes, they are created.

TODD=ddname (For groups to be copied onto magnetic tape volumes)
specifies the name of a DD statement from which DCB and LABEL
information are obtained. This information describes the mode and
label of the magnetic tape on which the copied data sets are to
reside. RECFM, LRECL, and BLKSIZE ,information is ignored.

TODD can be omitted for 800 bpi 9-track tapes with standard labels
on single-density drivesror for 1600 bpi 9-track tape with standard
labels on dual-density drives.

The MOVE PDS statement

The MOVE PDS statement is used to move partitioned data sets. When used
in conjunction with INCLUDE·, EXCLUDE, REPLACE, or SELECT statements, the

The IEHMOVE Program 85

•

MOVE PDS statement can be used to merge selected members of several
partitioned data sets or delete members.

If the IEHMOVE program is used to allocate space for an output
partitioned data set, the MOVE PDS statement can be used to expand a
partitioned directory.

MOVE PDS causes the specified catalog to be updated automatically
unless UNCATLG is specified.

If the receiving volume contains a partitioned data set with the same
name, the two data sets are merged.

The source data set is scratched.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I name I MOVE IPDS=name I
I I I TO=device=serial I
I I I [FROM=device=serial] I
I I I CVOL=device=serial I
I I I [EXPAND=nnl I
I I I [UNCATLGl I
I I I [RENAME=namel I
I I I [FROMDD=ddname 1 I
I I I [TODD=ddnamel I L ______ ~ _________ ~ ___ J

PDS=name
specifies the fully qualified name of the partitioned data set to
be moved.

T0=device=serial
specifies the device type and volume serial number of the volume to
which the partitioned data set is to be moved. The -list
subparameter (TO=device=list) may be used when unloading a
partitioned data set that must span tape volumes.

FROM=device=serial
specifies the device type and volume serial number of the volume on
which the partitioned data set currently resides, if it is not
cataloged.

If the data set is cataloged, FROM should not be written.
FROM=device=list may be used when loading a PDS.

CVOL=device=serial
specifies the device type and volume serial number of the volu~e on
which the catalog search for the partitioned data set is to begin.

If neither FROM nor CVOL is written, the partitioned data set is
assumed to be cataloged on the system residence volume.

EXPAND=nn
specifies the number Of 256-byte records (up to 99 decimal) to be
added to the directory of the specified partitioned data set.

EXPAND cannot be specified if space is previously allocated.

UNCATLG

86

specifies that the catalog entry pertaining to the source
partitioned data set is to be removed. This parameter should be
used only if the source data set is cataloged.

If the volume is identified by FROM, UNCATLG is ignored.

RENAME=name
specifies that the data set is to be renamed, and indicates the new
name.

FROMDD=ddname (For unloaded partitioned data sets on magnetic tape
volumes)

specifies the name of a DD
information are obtained.
label of the magnetic tape
attributes of the unloaded
BLKSIZE=800).

statement from which DCB and LABEL
This information describes the mode and
and. in addition. must include the DCB
data set (RECFM=FB.LRECL=80.

FROMDD can be omitted for 800 bpi 9-track tapes with standard
labels on single-density drives or for 800 or 1600 bpi 9-track
tapes with standard labels on dual-density drives.

TODD=ddname (For partitioned data sets to be unloaded onto magnetic tape
volumes)

specifies the name of a DD statement from which DCB and LABEL
information are obtained. This information describes the mode and
label of the magnetic tape on which the unloaded data set is to
reside and, in addition. must include the DCB attributes of the
unloaded data set (RECFM=FB,LRECL=80,BLKSIZE=800).

TODD can be omitted for 800 bpi 9-track magnetic tapes with
standard labels on single-density drives or for 1600 bpi 9-track
tape with standard labels on dual-density drives.

The COpy PDS statement

The COpy PDS statement is used to copy partitioned data sets. When used
in conjunction with INCLUDE. EXCLUDE, REPLACE, or SELECT statements, The
COPY PDS statement can be used to merge selected members of several
partitioned data sets or delete members.

If the IEHMOVE program is used to allocate space for an output
partitioned data set. the COpy PDS statement can be used to expand a
partitioned directory.

The source partitioned data set remains cataloged unless UNCATLG is
specified.

If the receiving volume already contains a partitioned data set with
the same name, the two are merged.

r------T---------T------------------------~----------------------------,
I Name I Operation I Operand I
~------+---------+---~
I [name 1 I COpy IPDS=name I
I J JTO=device=serial I
I I I [FROM=device=serial] I
I I I CVOL=device=serial I
I I I [EXPAND=nn] I
I I I [UNCATLGl I
I I I [CATLGl I
I I I [RENAME=nameJ I
I I I [FROMDD=ddname] I
I I I [TODD=ddnameJ I L ______ ~ _________ ~ ___ J

PDS=name
specifies the fully qualified name of the partitioned data set to
be copied.

The IEHMOVE Program 87

•

TO=device=serial
specifies the device type and volume serial number of the volume to
which the partitioned data set is to be moved. The "list"
subparameter (TO=device=list) may be used when unloading a
partitioned data set that must span tape volumes.

FROM=device=serial
specifies the device type and volume serial number of the volume on
which the partitioned data set currently resides, if it is not
cataloged.
If the data set is cataloged, FROM should not be written.
FROM=device=list may be used when loading a PDS.

CVOL=device=serial
specifies the device type and volume serial number of the volume on
which the catalog search for the partitioned data set is to begin.
If neither FROM nor CVOL is written, the partitioned data set is
assumed to be cataloged on the system residence volume.

EXPAND=nn
specifies the number of 256-byte records (up to 99 decimal) to be
added to the directory of the specified partitioned data set.

EXPAND cannot be specified if space is- previously allocated.

UNCATLG

CATLG

specifies that the catalog entry pertaining to the source
partitioned data set is to be removed. This parameter should be
used only if the source partitioned data set is cataloged.

UNCATLG is ignored if the volume is identified by FROM.

specifies that the copied partitioned data set is to be cataloged
on the receiving volume, if it is a direct access volume. If a
catalog does not exist on the receiving volume~ a new catalog is
created.

RENAME=name
specifies that the data set is to be renamed, and indicates the new
name.

FROMDD=ddname (For unloaded partitioned data sets residing on magnetic
tape volumes)

specifies the name of a DD
information are obtained.
label of the magnetic tape
attributes of the unloaded
BLKSIZE=800).

statement from which DCB and LABEL
This information describes the mode and
and, in addition, must include the DCB
data set (RECFM=FB,LRECL=80,

FROMDD can be omitted for 800 bpi 9-track tapes with standard
labels on single-density drives or for 800 or 1600 bpi 9-track
tapes with standard labels on dual-density drives.

TODD=ddname (For partitioned data sets to be unloaded onto magnetic tape

88

volumes)
specifies the name of a DD statement from which DCB and LABEL
information are obtained. This information describes the mode and
label of the magnetic tape on which the unloaded data set is to
reside and, in addtion" must include the DCB attributes of the
unloaded data set CRECFM=FB,LRECL=80,BLKSIZE=800).

TODD can be omitted for 800.bpi 9-track tapes with standard labels
on single-density drives or for 1600 bpi 9-track tape with standard
labels on dual-density drives.

The MOVE CATALOG statement

The MOVE CATALOG statement is used to move the entries of a catalog
without moving the data sets associated with those entries. Certain
entries can be excluded from the operation by means of the EXCLUDE
statement. If the receiving volume contains a catalog, the source
catalog entries are merged with it.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [nameJIMOVE I CATALOG [=name] I
I I I TO=device=serial I
I I I [CVOL=deVice=serial] I
I I I FROM=device=serial I
I I I [FROMDD=ddnamel I
I I I [TODD=ddnameJ I
L ______ ~ ____ -----~------~-----------------------------_________________ J

CATALOG=name
specifies a qualified name. All catalog entries whose names are
qualified by this name are moved. If the name is a fully qualified
data set name, only the catalog entry that corresponds to that data
set is moved.

CATALOG
specifies that all entries in the catalog are to be moved.

TO=device=serial
specifies the device type and volume serial number of the volume to
which the specified catalog entries are to be moved.

CVOL=device=serial
specifies the device type and volume serial number of the volume on
which the search for the catalog is to begin.

FROM=device=serial
specifies the device type and volume serial number of the volume on
which an unloaded version of the catalog resides.

If neither FROM nor CVOL is written, the catalog is assumed to
reside on the system residence volume.

FROMDD=ddname (for unloaded catalogs residing on magnetic tape volumes)
specifies the name of a DD statement from which DCB and LABEL
information are obtained. This information describes the mode the
label of the magnetic tape and, in addition, must include the DCB
attributes of the unloaded catalog (RECFM=FB.LRECL=80,
BLKSIZE=800).

FROMDD can be omitted for 800 bpi 9-track magnetic tapes with
standard labels on single-density drives or for 800 or 1600 bpi
9-track tapes with standard labels on dual-density drives.

TODD=ddname (For catalogs to be unloaded onto magnetic tape volumes)
specifies the name of a DD statement from which DCB and LABEL
information are obtained. This information describes the mode and
label of the magnetic tape on which the unloaded catalog is to
reside and, in addition. must include the DCB attributes of the
unloaded catalog (RECFM=FB,LRECL=80,BLKSIZE=800).

TODD can be omitted for 800 bpi 9-track tapes with standard labels
on single-density drives or for 1600 bpi 9-track tape with standard
labels on dual-density· drives.

The IEHMOVE Program 89

The COPY CATALOG Statement

The COPY CATALOG statement is used to copy the entries in a catalog
without copying the data sets associated with these entries. Certain
entries can be excludeq from a copy operation with the EXCLUDE
statement. If the receiving volume contai.ns a catalog, the source
catalog is merged with it.

r------T---------T---,
I Name IOperationloperand I
~------+---------+---~
I [namellCOPY I CATALOG [=namel I
I I I TO=device=seial I
I I I [CVOL=device=serial] I
I I I FROM=device=serial I
I I I [FROMDD=ddnamel I
I I I [TODD=ddnamel I L ______ ~ _________ ~ ___ J

CATALOG=name
specifies a qualified name. All catalog entries whose names are
qualified by this name are copied.. If the name is a fully
qualified data set name, only the catalog entry that corresponds to
that data set is copied.

CATALOG
specifies that all entries in the catalog are to be copied.

TO=device=serial
specifies the device type and volume serial number of the volume
onto which the specified catalog entries are to be copied.

CVOL=device=serial
specifies the device type and volume serial number of the volume on
which the search for the catalog is to begin.

FROM=device=serial
specifies the device type and volume serial number of the volume on
which an unloaded version of the catalog resides.

If neither FROM nor CVOL is written, the catalog is assumed to
reside on the system residence volume.

FROMDD=ddname (For unloaded catalogs residing on magnetic tape volumes)
specifies the name of a DD statement from which DCB and LABEL
information is obtained. This information describes the mode and
label of the magnetic tape and, in addition, must include the DCB
attributes of the unloaded catalog (RECFM=FB,LRECL=80,BLKSIZE=800).

FROMDD can be omitted for 800 bpi 9-track magnetic tapes with
standard labels. on single-density drives or for 800 or 1600 bpi
9-track tapes with standard labels on dual-density drives.

TODD=ddname (For catalogs to be unloaded onto magnetic tape volumes)
specifies the name of a DD statement from which DCB and LABEL
information are obtained. This information describes the mode and
label of the magnetic tape on which the unloaded catalog is to
reside and, in addition, must include the DCB attributes of the
unloaded catalog (RECFM=FB,LRECL=80,BLKSIZE=800).

90

TODD can be omitted for 800 bpi 9-track magnetic tapes with
standard labels on single-density drives or for 1600 bpi 9-track
tape with standard labels on dual-density drives.

The MOVE VOLUME Statement

The MOVE VOLUME statement is used to move all the data sets residing on
a specified volume. Catalog entries associated with the data sets
remain unchanged.

Note: Data sets to be moved can reside on direct access volumes only.

r------T---------T---,
I Name I Operation I Operand I
r------+---------+---~
I (namellMOVE IVOLUME=device=serial I
I I I TO=device=list I
I I I (PASSWORD] I
I I I [TODD=ddname 1 I L ______ ~ _________ ~ ___ J

VOLUME=device=serial
specifies the device type and volume serial number of the source
volume.

TO=device=list
specifies the volume or volumes to which the data sets are to be
moved.

PASSWORD
specifies that password protected data sets are to be included in
the operation.
If PASSWORD is omitted, only data sets that are not protected are
moved.

TODD=ddname (For magnetic tape volumes)
specifies the name of a DD statement from which DCB and LABEL
information are obtained. This information describes the mode and
label of the receiying tape volume.

TODD can be omitted for 800 bpi 9-track magnetic tapes with
standard labels on single-density drives or for 1600 bpi 9-track
tape with standard labels on dual-density drives.

The COPY VOLUME Statement

The COPY VOLUME statement is used to copy all the data sets residing on
a specified volume. Catalog entries associated with the data sets
remain unchanged.

Note: Data sets to be copied can reside on direct access volumes only.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [namellCOPY IVOLUME=device=serial I
I I I TO=device=list I
I I I [PASSWORD] I
I I I [CATLGl I
I I I [TODD=ddname 1 I L ______ ~ _________ ~ ___ J

VOLUME=device=serial
specifies the device type and volume serial number of the source
volume.

TO=device=list
specifies the volume or volumes onto which the data sets are to be
copied.

The IEHMOVE Program 91

•

PASSWORD

CATLG

specifies that password protectea data sets are to be included in
the operation.

If PASSWORD is omitted, only data sets that are not protected are
copied-.

specifies that all copied data sets are to be cataloged in a
SYSCTLG (catalog) data set on the receiving volume (direct access
only). If a catalog does not exist on the receiving volume, it is
created.

Note: If CATLG is specified and the source volume contains a
SYSCTLG data set" error messages indicating that an inconsistent
index structure exists will be issued when the source SYSCTLG data
set entries are merged into the catalog on the receiving volume.
(since the SYSCTLG data set is the last to be copied, only those
entries representing cataloged data sets not residing on the source
volume are copied into a receiving volume's SYSCTLG data set;
entries representing all data sets residing on the source volume
have already been made in the receiving SYSCTLG data set.)

TODD=ddname (For magnetic tape volumes)
specifies the name of a DD statement from which DCB and LABEL
information are obtained. This information describes the mode and
label of the receiving magnetic tape volume.

TODD can. be omitted for 800 bpi 9-track tapes with standard labels
on single-density drives or for 1600 bpi 9-track tape with standard
labels on dual-density drives.

The INCLUDE statement

The INCLUDE statement is used to enlarge the scope of MOVE or COpy
DSGROUP or MOVE or COPY PDS statements by including a member or a data
set not explicitly defined in those statements. The INCLUDE statement
follows the MOVE or COPY statement whose function it modifies. Any
number of INCLUDE statements can modify a MOVE or COPY statement. The
INCLUDE statement is invalid when data is unloaded or when unloaded data
is moved or copied.

r------T---------T---,
I Name I operation I Operand I
~------+---------+---~
I [name 1 I INCLUDE I DSNAME=name I
I I I [MEMBER=membernamel I
I I I rFROM=device=list] I
I I I LCVOL=device=serial I L ______ ~ ________ ~ ___ J

DSNAME=name
specifies the fully qualified name of a data set.

With MOVE or COpy DSGROUP: the named data set is included in the
group.

With MOVE or COPY PDS: either the entire named partitioned data
set or a member of the data set is included in the operation.

MEMBER=membername (with MOVE or COpy PDS only)

92

specifies the name of a member of the partitioned data set named in
the DSNAME parameter. This member is merged with the partitioned
data set that is moved or copied. Its record characteristics must

be the same as those of the data set with which it it being merged.
The data set containing this member is not scratched, regardless of
the operation (MOVE or COpy).

This parameter must be included when modifying a MOVE or COpy PDS
statement.

FROM=device=list
specifies the volume or volumes on which the data set resides, if
the data set is not cataloged.

If the data set is cataloged, FROM should not be specified.

CVOL=device=serial
specifies the device type and volume serial number of the volume on
which the catalog search for the data set is to begin.

If both FROM and CVOL are omitted, the specified data set is
assumed to be cataloged on the system residence volume.

The EXCLUDE Statement

The exclude statement is used to restrict the scope of MOVE or COpy
DSGROUP, MOVE or COPY PDS, OR MOVE or COPY CATALOG statements by
excluding a specific portion of data defined in those statements.

Partitioned data set members excluded from a MOVE PDS operation
cannot be recovered (the source data set is scratched). Any number of
EXCLUDE statements can modify a move or COpy PDS statement.

Source data sets or catalog entries excluded from a MOVE DSGROUP or
MOVE CATALOG operation remain available. Only one EXCLUDE statement can
modify a MOVE or COpy DSGROUP or MOVE or COPY CATALOG statement. The
EXCLUDE statement is invalid when data is unloaded or when unloaded data
is moved or copied.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
IlnamellEXCLUDE I {DSGROUP=name } I
I I I MEMBER=membername I L ______ ~ _________ ~ __ -----------J

DS GROUP =name
specifies a qualified name.

with MOVE or COpy DSGROUP: all data sets whose names are qualified
by this name are excluded from the operation.

With MOVE or COpy CATALOG: all catalog entries whose names are
qualified by this name are excluded from the operation.

MEMBER=membername

with MOVE or COpy PDS: identifies a member to be excluded from the
partitioned data set being moved or copied.

The SELECT Statement

The SELECT statement is used with the MOVE or COPY PDS statement to
select members to be moved or copied, and to optionally rename these
members. The SELECT and EXCLUDE statements and the SELECT and REPLACE
statements are mutually exclusive; i.e., they cannot both be used with
the same MOVE or COpy PDS statement. The SELECT statement is invalid
when data is unloaded or when unloaded data is moved or copied.

The IEHMOVE Program 93

I

r------T-~-------T---,
I Name I Operation I Operand I
~------+---------+---~
I [name11SELECT IMEMBER=(namelist) I L ______ ~ _________ ~ ___ J

MEMBER=(name[,name] •••)
identifies the members to be moved or copied. These members belong
to the partitioned data set identified in the preceding MOVE or
COPY PDS statement.

MEMBER=«name,newname)[,(name,newname)1 •••)
identifies the members to be moved or copied and gives the new name
for each member.

The REPLACE Statement

The REPLACE statement is used with a MOVE or COpy PDS statement to
combine the exclude and include functions for a specified member of a
partitioned data set. The replace function excludes a member from the
operation and replaces it with a member from another partitioned data
set. The "new" member must have the same name as the "old" member and
must 'possess identical record characteristics. Any number of REPLACE
statements can modify a MOVE or COpy PDS statement. The REPLACE
statement is invalid when data is unloaded or when unloaded data is
moved or copied.

r------T---------T---,
I Name I Operation I Operand I

~------+~--------+---~
I [name 1 I REPLACE I DSNAME=name I
, I I MEMBER=membername I
I I I [FROM=device=serial] I
I I I CVOL=device=ser ial I L ______ ~ _________ ~ __ -J

DSNAME=name
specifies the fully qualified name of the partitioned data set that
contains the new member.

MEMBER=membername
specifies the name of the member.

FROM=device=serial
specifies the device type and volume serial number of the volume
that contains the partitioned data set named in the DSNAME
parameter.

If the partitioned data set is cataloged, FROM should not be
specified.

CVOL=device=serial

94

specifies the device type and volume serial number of the control
volume on which the catalog search for the partitioned data set
containing the new member is to begin.

If neither FROM nor CVOL are specified, the partitioned data set is
assumed to be cataloged on the system residence volume.

IEHMOVE Examples
The following examples illustrate some of the uses of the IEHMOVE program.

IEHMOVE Example 1

r---------T-------------T------------------------T--------------------------------------,
I operation I Source Data IDevices Required I Comments I
~---------+-------------+------------------------+--------------------------------------i
I MOVE I sequential 11 2301 DRUM 11. The source volume is demounted only I
I Idata sets 12 2311 DISKS (mountable) I after the job has completed. I
I I 11 2311 DISK (system I I
I I I residence) 12. Space is allocated by the IEHMOVE I
I I I I program. I L _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

In this example, three data sets (SEQSET1, SEQSET2, and SEQSE'I'3) are to be
moved from a disk volume (volume serial=231111) to three separate disk volumes
(serials 231100, 231112, and 231113). Each of the three receiving volumes is
mounted when it is required by the IEHMOVE program. The source data sets are not
cataloged.

• The SYSUT1 DD Statement: defines the device that is to contain the work data
set.

• The DD1 DD statement: defines the system residence device.

• The DD2 DD Statement: defines the mountable device on which the receiving
volumes will be mounted as they are required.

• The DD3 DD Statement: defines a mountable device on which the source volume
is to be mounted. Since the RETAIN subparameter is included, the volume
remains mounted until the job has completed.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The MOVE Utility Control Statements: move the source data sets to volumes
231100, 231112, and 231113, respectively. The source data sets are scratched.

r---,
//MOVEDS JOB 09#550,GREEN
// EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD UNIT=2301,VOLUME=SER=230100,DISP=OLD
//DD1 DD UNIT=2311,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=(2311,.DEFER),DISP=OLD,
// VOLUME=(PRIVATE"SER=(231100»
//DD3 DD UNIT=2311,VOLUME=(PRIVATE,RETAIN,SER=(231111»,DISP=OLD
//SYSIN DD *

/*

MOVE DSNAME=SEQSET1,TO=2311=231100,FROM=2311=231111
MOVE DSNAME=SEQSET2,TG=2311=231112,FROM=2311=231111
MOVE DSNAME=SEQSET3, TO=2311=231113" FROM=2311=231111

L ___ J

IEHMOVE Example 1. Moving Three Sequential Data Sets Onto Three separate Volumes

The IEHMOVE Program 95

IEHMOVE Example 2

r---------T-------------T------------------------T-------------------------~------------,
I Operation 1 Source Data IDevices Required I Comments I
t---------+~------------t------------------------+--------------------------------------~
I COpy I Cataloged 11 2311 DISK 11. Space is allocated by the IEHMOVE I
1 1 sequential 11 2301 DRUM (system 1 program. I
1 1 data sets I residence) I I
I I 12 2314 DISKS (mountable) 1 I L _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

In this example, three cataloged data sets are to be copied onto a 2314 disk
volume (volume serial=231401). The catalog is not updated. The source data sets
are not scratched.

• The SYSUTl DD Statement: defines the device that is to contain the work data
set.

• The DDl DD Statement: defines the system residence device.

• The DD2 DO Statement: defines a mountable device on which the source volume
is mounted.

• The DD3 DD Statement: defines a mountable device on which the receiving
volume is mounted.

• TheSYSIN DD statement: defines the control data set which follows in the
input stream.

• The COpy Statements: copy the source data sets onto volume 231401.

Note: This example implies that the cataloged source data sets all exist on a
2314 volume: that is, when the catalog is searched, these data sets are found to
exist on a 2314 volume. If the catalog search had found that the data sets
existed on a volume or volumes other that a 2314, the necessary DD statements
would have had to be included in this example to define the applicable mountable
device(s).

r--~,
//COPYPDS JOB 09#550,GREEN I
// EXEC PGM=IEHMOVE I
//SYSPRINT DD SYSOUT=A I
//SYSUTl DD UNIT=2311,VOLUME=SER=231100,DISP=OLD I
//DOl DD UNIT=2301,VOLUME=SER=111111,DISP=OLD I
//D02 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD I
//D03 DD UNIT=2314,VOLUME=SER=231401,DISP=OLD I
//SYSIN DD * I

COpy DSNAlI1E=SEQSET1,TO=2314=231401 I
COpy DSNAME=SEQSET3,TO=2314=231401 I
COpy DSNAME=SEQSET4,TO=2314=231401 I

/* I L ___ J

IEHMOVE Example 2. Copying Three Cataloged Sequential Data Sets Onto a Volume

96

IEHMOVE Example 3

r---------T-------------T------------------------T--------------------------------------,
I Operation I Source Data IDevices Required I Comments I
~---------+-------------+------------------------+--------------------------------------~
IMOVE a IData set 11 2311 DISK 11. Space is allocated by the IEHMOVE I
Igroup of Igroup 11 2301 DRUM (system I program. I
I cataloged I I residence) I I
Idata setsl 13 2314 DISKS (mountable) I I L _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

Given: the catalog structure

A

B----~I----D-------E
I i I I i

C

ril
F G H

II
X Y Z J K L M

In this example, the data set group A.B.C (data sets A.B.C.X, A.B.C.Y, and
A.B.C.Z) is moved from two 2314 volumes (231410 and 231411) onto a third volume
(231401). The catalog is updated to refer to the receiving volume. The source
data sets are scratched.

• The SYSUT1 DD Statement: defines the device that is to contain the work data
set.

• The DD1 DD Statement: defines the system residence device.

• The DD2 DD Statement: defines the mountable device on which the receiving
volume is to be mounted.

• The DD3 DD Statement: defines a mountable device on which one of the source
volumes is to be mounted.

• The DD4 DD Statement: defines a mountable device on which one of the source
volumes is to be mounted.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The MOVE Utility Control Statement: moves the specified data sets to volume
231401.

The IEHMOVE Program 97

•••

Note: This example can be used to produce the same result without the use of the
DD4 DD statement; i.e., using one less mountable Q314 device •

• With D03 and OD4: both of the source volumes are mounted at the start of the
job •

• With DD3 only: The 231410 volume is mounted at the start of the job. After
the 231410 volume is processed, the utility requests that the operator mount
the 231411 volume. (In this case the DD3 statement would be coded:

//OD3
//

DD UNIT= (2314", DEFER), DISP=OLO,
VOLU¥ili=(PRIVATE"SER=(231410»

r---,
I//MOVEDSG JOB 09#550,GREEN I
1// EXEC PGM=IEHMOVE I
I//SYSPRINT DO SYSOUT=A I
1//SYSUT1 DO UNIT=2311,VOLUME=SER=231101,DISP=OLD I
1//001 00 UNIT=2301,VOLUME=SER=111111,DISP=OLD I
1//D02 OD UNIT=2314,VOLUME=SER=231401,DISP=OLD I
1//OD3 DO UNIT=2314,VOLUME=SER=231410,DISP=OLD 1
1//DD4 DD UNIT=2314,VOLUME=SER=231411,DISP=OLD I
I//SYSIN DO * I
I MOVE OSGROUP=A.B.C,T0=2314=231401 I
1/* I L ___ J

IEHMOVE Example 3. Moving a Data Set Group

98

IEHMOVE Example 4

r---------T~------------T------------------------T--------------------------------------,
IOperationlSource Data IDevices Required I Comments I
~---------+-------------+------------------------+--------------------------------------~
I MOVE 12 partitionedl1 2301 DRUM 11. Space is allocated by the IEHMOVE I
IPDS Idata sets 11 2311 OISK (system I program. I
I (merge) 1 1 residence) I I
1 I 13 2314 DISKS (mountable) I I L _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

In this example, a partitioned data set (PARTSET1) is to be moved to a disk
volume (231420). In addition, a member (PARMEM3) from another partitioned data
set (PARTSET2) is to be merged with the source members on the receiving volume.
The source partitioned data set (PARTSET1) is scratched.

• The SYSUTl DD Statement: defines the device that is to contain the work data
set.

• The DDl DD Statement: defines the system residence device.

• ~he DD2, DD3, and DD4 DD Statements: define mountable devices that are to
contain the two source volumes and the receiving volume.

• The SYSIN DO Statement: defines the control data set which follows in the
input stream.

• The MOVE statement: defines the source partitioned data set, the volume that
contains it, and its receiving volume.

• The INCLUDE Statement: Includes a member from a second partitioned ,data set
in the operation.

r---,
I//MOVEPDS JOB 09#550,GREEN
1// EXEC PGM=IEHMOVE
I//SYSPRINT DD SYSOUT=A
1//SYSUTl DD UNIT=2301,VOLUME=SER=230100,DISP=OLD
1//001 00 UNIT=2311,VOLUME=SER=111111,DISP=OLD
1//D02 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD
1//DD3 DD UNIT=2314,VOLUME=SER=231410,DISP=OLD
1//DD4 OD UNIT=2314,VOLUME=SER=231420,DISP=OLO
I//SYSIN DD *
I MOVE PDS=PARTSET1,TO=2314=231420,FROM=2314=231400
I INCLUDE DSNAME=PARTSET2,MEMBER=PARMEM3,FROM=2314=231410
1/* L __ _

IEHMOVE Example 4. Moving a Partitioned Data Set and Including an Additional
Member

The IEHMOVE Program 99

•

IEHMOVE Example 5

r---------T-------------T------------------------T--------------------------------------,
I Operation I Source Data IDevices Required I Comments I
~---------+---------~---+------------------------+--------------------------------------~
I MOVE ICatalog on 11 2314 11. Space is allocated by the IEHMOVE 1
1 CATALOG Isystem 11 2301 (system 1 program. I
I I residence I residence) 12. The source catalog is scratched 1
I I volume 11 2311 (mountable) I from the system residence volume. 1 L _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

In this example, the catalog (SYSCTLG data set) is to be moved from the system
residence volume to a mountable 2311 disk volume (222222). The source catalog is
scratched from the system residence volume.

• The SYSUTl DD Statement: defines the device that is to contain the work data
set.

• The DD1 DD Statement: defines the system residence device. The system
residence volume contains the catalog to be moved.

• The DD2 DD Statement: defines the mountable device on which the receiving
volume is to be mounted.

• The SYSIN DD statement: defines the control data set which follows in the
input stream.

• The MOVE Statement: specifies the move operation and defines the receiving
volume.

r---,
1//MOVECATl JOB 09#550,GREEN 1
1// EXEC PGM=IEHMOVE 1
I//SYSPRINT DD SYSOUT=A 1
1//SYSUT1 DD UNIT=2314,VOLUME=SER=231400,DISP=CLD I
1//DDl DD UNIT=2301,VOLUME=SER=111111,DISP=OLD 1
1//DD2 DD UNIT=2311,VOLUME=SER=222222,DISP=OLD 1
I//SYSIN DD * 1
I MOVE CATALOG, TO=2311=222222 1
1/* 1 L ___ J

IEHMOVE Example 5. Moving the Catalog From the System Residence Volume to a
Second Volume

100

IEHMOVE Example 6

r---------T-------------T------------------------T--------------------------------------,
I Operation I Source Data IDevices Required I Comments I
~---------+-------------+------------------------+--------------------------------------~
IMOVE a ICatalog on 11 2301 (system 11. Space is allocated by the IEHMOVE I
Iportion Isystem I residence) I program. I
lof the I residence 11 2314 (mountable/work) 12. The work data set is deleted from 1
1 catalog I volume 1 I the receiving volume at the I
I I 1 I completion of the program. 1
I I I 13. The entire SYSCTLG data set is 1
1 I 1 I scratched. 1 L _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

Given: the catalog structure

A

B I 0 E

i I I I I
c F G H

m II
X Y Z J K L M

In this example, the entries A.B.C.X, A.B.C.Y, and A.B.C.Z are to be moved from
the catalog (SYSCTLG data set) to a mountable 2314 volume (231402). If no catalog
exists on the 2314 volume, one is created; if a catalog does exist, the specified
entries are merged into it. The source SYSCTLG data set is scratched.

• The SYSUT1 DD Statement: defines the device that is to contain the work data
set. (Since the IEHMOVE program deletes the work data set at the completion
of the program, it can be contained on the receiving volume, provided there is
room for it.)

• The DD1 DD Statement: defines the system residence device. The system
residence volume contains the entries to be moved.

• The DD2 DD Statement: defines the mountable device on which the receiving
volume is to be mounted.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The MOVE Statement: specifies a move operation for a selected entries, and
defines the receiving volume.

r---,
1//MOVECAT2 JOB 09#550,GREEN 1
1// EXEC PGM=IEHMOVE I
I//SYSPRINT DD SYSOUT=A I
1//SYSUT1 DD UNIT=2314,VOLUME=SER=231402,DISP=OLD 1
1//DD1 DD UNIT=2301,VOLUME=SER=111111,DISP=OLD 1
1//DD2 DD UNIT=2314,VOLUME=SER=231402,DISP=OLD 1
I//SYSIN DD * I
I MOVE CATALOG=A.B.C,T0=2314=231402 I
1/* I L ___ J

IEHMOVE Example 6. Moving Selected Catalog Entries From the System Residence
Volume to a Second Volume

The IEHMOVE Program 101

•

IEHMOVE Example 7

r---------T-------------T------------------------T--------------------------------------,
IOperationlSource Data IDevices Required 1 Comments 1
r---------+------------~+------------------------+--------------------------------------~
1 MOVE IVolume of 11 2301 DRUM (system 11. Space is allocated by the IEHMOVE 1
IVOLUME Idata sets I residence) I program. I
I 1 12 2314 DISKS (mountable/12. The work data set is deleted from I
I I I work) I the receiving volume at the I
1 I 1 1 completion of the program. I L _________ ~ _____________ ~ _______________________ ~ _______________________ ~ ______________ J

In this example, a volume of data sets is to be moved to a 2314 volume
(231400). All data sets that are successfully moved are scratched from the source
volume; however, catalog entries (if any) pertaining to those data sets are not
changed.

• The SYSUTl DD Statement: defines the device that is to contain the work data
set. The work data set is removed from the receiving volume at the completion
of the job step.

• The DDl DD Statement: defines the system residence device.

• The DD2 DD Statement: defines the mountable device on which the receiving
volume is to be mounted.

• The DD3 DD Statement: defines a mountable device on which the source volume
is to be mounted.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The MOVE Statement: specifies a move operation for a volume of data sets and
defines the source and receiving volumes. This statement also indicates that
password protected data sets are to be included in the operation.

Note: The IEHPROGM system utility program can be used to uncatalog those cataloq
entries pertaining to source data sets, and to catalog the moved versions of those
data sets, if desired.

r---,
I//MOVEVOL JOB 09#550,GREEN I
1// EXEC PGM=IEHMOVE I
I//SYSPRINT DD SYSOUT=A 1
1//SYSUT1 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD 1
1//DDl DD UNIT=2301,VOLUME=SER=111111,DISP=OLD I
1//DD2 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD I
1//DD3 DD UNIT=2314,VOLUME=SER=231401,DISP=OLD I
I//SYSIN DD * I
I MOVE VOLUME=2314=231401,TO=2314=231400,PASSWORD I
1/* I L __ ~ ________________________ J

IEHMOVE Example 7. Moving a Volume of Data Sets

102

IEHMOVE Example 8

r---------T-------------T------------------------T--------------------------------------,
IOperationlSource Data IDevices Required I Comments I
t---------+-------------+------------------------+--------------------------------------~
I MOVE la partitionedll 2301 DRUM (system 11. Space is allocated on the receiving I
la data Idata set I residence) I volume through the use of a dummy I
Iset I 12 2314 DISKS (mountable/l execution of the IEHPROGM program. I
I I I work) I I
I I I 12. The work data set is deleted from 1
I 1 I I the receiving volume at the I
I I I I completion of the program. I L _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

In this example, a partitioned data set is to be moved onto a 2314 disk volume
on which space has been previously allocated for the data set. The source data
set is scratched.

• The First 8 Job Control Statements: are used to allocate space for data set
PDSSET1 on a 2314 disk volume.

• The SYSUT1 DD Statement: defines the device that is to contain the work data
set. The data set is removed from the receiving volume at the completion of
the program.

• The DDl DD statement: defines the system residence device.

• The DD2 DD statement: defines the device on which the receiving volume is to
be mounted.

• The DD3 DD Statement: defines a mountable device on which the source volume
is to be mounted.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The MOVE Statement: specifies a move operation for the partitioned data set
PDSSETl and defines the source and receiving volumes.

r---,
IIALLOCATE JOB 09#550"GREEN
II EXEC PGM=IEHPROGM
IISYSPRINT DD SYSOUT=A
IISETl DD DSNAME=PDSSET1,UNIT=2314,DISP=(NEW,KEEP),
II VOLUME=SER=231401,SPACE=(TRK,(100,10,10»,
II DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
IISYSIN DD *
1*
II
IISYSPRINT
IISYSUT1
IIDDl
IIDD2
IIDD3
IISYSIN

EXEC
DD
DD
DD
DD
DD
DD

MOVE
1/*

PGM=IEHMOVE
SYSOUT=A
UNIT=2314,VOLUME=SER=231401,DISP=OLD
UNIT=2301,VOLUME=SER=111111,DISP=OLD
UNIT=2314,VOLUME=SER=231401,DISP=OLD
UNIT=2314,VOLUME=SER=231402,DISP=OLD

* PDS=PDSSET1,TO=2314=231401,FROM=2314=231402
L __ _

IEHMOVE Example 8. Moving a Data Set Onto a Volume on Which Space Has Been
Previously Allocated

The IEHMOVE Program 103

•

IEHMOVE Example 9

r---------T-------------T------------------------T--------------------------------------,
loperationlSource Data IDevices Required I Comments I
t---------+-------------+------------------------+--------------------------------------i
I MOVE 13 partitionedll 2301 DRUM (system 11. Space is allocated on the receiving I
13 data Idata sets I residence) I volume through use of a dummy I
I sets I 11 2311 DISK (mountable/ I execution of the IEHPROGM program a I
I I I work) 12. The source data set PDSSET3 is I
I I 11 2314 DISK (mountable) I unloaded. (The record size exceeds I
I I I I the track capacity of the receiving I
I I I I volume.) I
I I I 13 • 'The work data set is deleted from I
I I I I the receiving volume at the I
I 1 I I completion of the program. I L _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

In this example three partitioned data sets are to be moved from three separate
source volumes onto a 2311 disk volume (231101). The source data sets are
scratched.

• The Job Control Statements Prior to the EXEC PGM=IEHMOVE statement: are used
to allocate space for the partitioned data sets PDSSET1, PDSSET2, and PDSSET3
on the receiving volume.

Note: The SPACE parameter in the SET3 DD statement allocates space for a
sequential data set. This is necessary to successfully unload the partitioned
data set PDSSET3.

The DCB attributes of PDSSET3 are DCB=(RECFM=U,BLKSIZE=5000).
The unloaded attributes are DCB=(RECFM=FB,LRECL=80,BLKSIZE=800).

• The SYSUT1 DD Statement: defines the device that is to contain the work data
set.

• The DDl DO Statement: defines the system residence device.

• The D02 OD Statement: defines a mountable device on which the source volumes
are mounted as they are required.

• The DD3 DD Statement: defines a mountable device on which the receiving
volume is mounted.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The MOVE Statements: specify move operations for the partitioned data sets
and define the source and receiving volumes.

Note: For a discussion on estimating space allocations, refer to the publication
~system/360 Operating System: supervisor and Data Management services, Form
C28-6646.

104

r---,
1/ /ALLOCATE JOB 09#550" GREEN
1// EXEC PGM=IEHPROGM
l//SYSPRINT DD SYSOUT=A
//SETl DD DSNAME=PDSSET1,UNIT=2311,DISP=(NEW,KEEP),
// VOLUME=SER=231101,SPACE=(TRK,(100,10,5»,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=1600)
//SET2 DD DSNAME=PDSSET2,UNIT=2311,DISP=(NEW,KEEP).
// VOLUME=SER=231101,SPACE=(TRK,(50,5,5»,
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SET3 DD DSNAME=PDSSET3,UNIT=2311,DISP=(NEW,KEEP),
// VOLUME=SER=231101,SPACE=(TRK,(50,S».
// DCB=(RECFM=U,BLKSIZE=5000)
//SYSIN DD *
/*
// EXEC PGM=IEHMOVE
//SYSPRINT DD SYSOUT=A •
//SYSUTl DD UNIT=2311,VOLUME=SER=231101,DISP=CLD
//DDl DD UNIT=2301,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=(2314"DEFER).DISP=OLD,
// VOLUME=(PRIVATE"SER=(231400»
//DD3 DD UNIT=2311,VOLUME=SER=231101,DISP=OLD
//SYSIN DD *

MOVE PDS=PDSSET1,TO=2311=231101~FROM=2314=231400
MOVE PDS=PDSSET2,TO=2311=231101,FROM=2314=231401

I MOVE PDS=PDSSET3,TO=2311=231101,FROM=2314=231402
1/* L ___ J

IEHMOVE Example 9. Moving and Unloading Data Sets Onto a Volume on Which Space
Has Been Previously Allocated

The IEHMOVE Program 105

IEHMOVE Example 10

r---------T-------------T------------------------T--------------------------------------,
I operation I Source Data iDevices Required I Comments I
~---------+-------------+------------------------+--------------------------------------1
I MOVE la sequential 11 2311 DISK (system 11. The source data set is unloaded I
I (unload) Idata set I residence) I onto a 9-track, unlabeled magnetic I
la data I 11 2314 DISK (mountable/ I tape volume (800 bpi). I
Iset I I work) 12. The work data set is placed on the I
I I 11 2400 TAPE (mountable) I source volume and deleted at the I
I I I I completion of the program. I L _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

In this example, a sequential data set is to unloaded onto a 9-track, unlabeled
magnetic tape volume (800 bpi). The source data set is scratched.

• The SYSUTl DD Statement: defines the device that is to contain the work data
set.

• The DDl DD Statement: defines the system residence device.

• The DD2 DD Statement: defines a mountable device on which the source volume
is mounted.

• The TAPEOUT DD Statement: defines a mountable device on which the receiving
tape volume is mounted. This statement also provides label and mode
information.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The MOVE Statement: moves the sequential data set SEQSETl from a 2314 volume
to the receiving tape volume. The data set is unloaded.

The TODD parameter in this statement refers to the TAPEOUT DD statement for
label and mode information.

r---,
I//UNLOAD JOB 09#550,GREEN I
// EXEC PGM=IEHMOVE I
//SYSPRINT DD SYSOUT=A I
//SYSUTl DD UNIT=2314,VOLUME=SER=231400,DISP=OLD I
//DDl DO UNIT=2311,VOLUME=SER=111111,DISP=OLO I
//002 DO UNIT=2314,VOLUME=SER=231400,DISP=OLO I
//TAPEOUT DD UNIT=2400,VOLUME=SER=SCRTCH,DISP=OLD, I
// LABEL=(,NL),DCB=(DEN=2,RECFM=FB,LRECL=80,BLKSIZE=800) I
//SYSIN DD * I

MOVE DSNAME=SEQSET1,TO=2400=SCRTCH,FROM=2314=231400, C I
TODD=TAPEOUT I

/* I L ___ J

IEHMOVE Example 10. Unloading a sequential Data set Onto an Unlabeled, 9-Track
Magnetic Tape Volume

106

IEHMOVE Example 11

r---------T-------------T------------------------T--------------------------------------,
IOperationlSource Data IDevices Required I Comments 1
t---------+-------------+------------------------+--------------------------------------~
I MOVE 13 sequential 11 2301 DRUM (system 11. Space is allocated by the IEHMOVE I
I (load) Idata sets in I residence) I program. Default space allocations 1
lunloaded lunloaded formll 2314 DISK (mountable/ I are made if no space attributes arel
Idata setsl I work) I available. I
I I 11 2400-2 TAPE 12. The original organization of the 1
I 1 I (mountable> 1 unloaded data sets is sequential. 1
1 1 1 13 • The data sets are processed in the I
I I I 1 order in which they exist on the 1
I I I 1 source volume. I l _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

In this example, three unloaded sequential data sets are to be loaded from a
labeled, 7-track magnetic tape volume (556 bpi) onto a 2314 disk volume. The
example assumes that the 2314 volume is capable of supporting the data sets in
their original forms.

• The SYSUTl DD Statement: defines the device that is to contain the work data
set.

• The DDl OD Statement: defines the system residence device.

• The DD2 DD Statement: defines a mountable device on which the receiving
volume is mounted.

• The TAPESETS DD Statement: defines a mountable device on which the source
volume is mounted. DCB information is provided in this statement.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The MOVE Statements: move the unloaded data sets to the receiving volume.

Note: To move a data set from a tape volume that contains more than one data set, ,
you must specify the sequence number of the data set in the list field of the
FROM/TO=device=list parameter on the utility control statement.

r---,
//LOAD JOB 09#550,GREEN I
// EXEC PGM=IEHMOVE I
//SYSPRINT DO SYSOUT=A
//SYSUTl DD UNIT=2314,VOLUME=SER=231400,DISP=OLD
//DDl DD UNIT=2301,VOLUME=SER=111111,DISP=OLD
//DD2 DO UNIT=2314,VOLUME=SER=231400,DISP=OLD
//TAPESETS DD DSNAME=UNLDSET1,UNIT=2400-2,VOLUME=SER=001234,
// DISP=OLD,LABEL=(l,SL),DCB=(DEN=l,TRTCd=C)
//SYSIN DD *

MOVE DSNAME=UNLDSET1,TO=2314=231400,FROM=2400-2=(001234,1), C
FROMDD=TAPESETS

/*

MOVE DSNAME=UNLDSET2,TO=2314=231400,FROM=2400-2=(001234,2), C
FROMDD=TAPESETS

MOVE DSNAME=UNLDSET3 ,TO=2314=231400, FROM=24 00-2= (001234,,3), C
FROMDD=TAPESETS

L ___ J

IEHMOVE Example 11. Loading Unloaded Data Sets From a Single Source Volume

The IEHMOVE Program 107

•

IEHMOVE Example 12

r---------T-------------T------------------------T--------------------------------------,
IOperationlSource Data IDevices Required I Comments I
~---------+-------------+------------------------+--------------------------------------~
I COpy 12 sequential 11 2314 DISK (mountable/ 11. Space is allocated by the IEHMOVE I
I Idata sets I work) I program. Default space allocations I
I I 11 2311 DISK (system I are made if no space attributes arel
I I I residence) I available. I
I I 11 2400 TAPE (mountable) 12. This example assumes that only 1 I
I I I I 2400 Magnetic Tape Drive is I
I I I I available for use (deferred I
I I I I mounting is implied). 1 L _________ ~ _____________ ~ ________________________ ~ ______________________________________ J

In this example, two sequential data sets are to be copied from separate source
volumes onto a 2314 disk volume. Only one 9-track magnetic tape drive is
available for the operation. .

• The SYSUTl DD Statement: defines the volume that is to contain the work data
set.

• The DDl DD Statement: defines the system residence device.

• The DD2 DD statement: defines a mountable device on which the receiving
volume is mounted.

• The TAPEl DD Statement: defines a mountable device (9-track tape volume) on
which the first volume to be processed is mounted. The source data set is the
second data set on the volume.

• The TAPE2 DD Statement: defines a mountable device on which the second volume
to be processed is mounted when it is required. The source data set is the
fourth data set on the volume.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The COpy Statements: copy the data sets onto the receiving volume.

Note: To copy a data set from a tape volume that contains more than one data set,
you must specify the sequence number of the data set in the list field of the
FROM/TO=device=list parameter on the utility control statement.

r---,
//DEFER JOB 09#550,GREEN I
// EXEC PGM=IEHMOVE I
//SYSPRINT DD SYSOUT=A
//SYSUTl DD UNIT=2314,VOLUME=SER=231400,DISP=OLD
//DDl DD UNIT=2311,VOLUME=SER=111111,DISP=OLD
//DD2 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD
//TAPEl DO DSNAME=SEQSET1,UNIT=2400,DISP=OLD,LABEL=(2,SL),
// VOLUME=SER=001234,DCB=(DEN=2,RECFM=U,BLKSIZE=2000)
//TAPE2 DD DSNAME=SEQSET9,UNIT=AFF=TAPE1,DISP=OLD,LABEL=(4,SL),
// VOLUME=SER=001235,DCB=(DEN=2,RECFM=FB,LRECL=80,
// BLKSIZE=400)
//SYSIN DD *

COpy DSNA~£=SEQSET1,TO=2314=231400,FROM=2400=(001234,2), C
FROMDD=TAPEl

COpy DSNAME=SEQSET9,TO=2314=231400,FROM=2400=(001235,4), C
FROMDD=TAPE2

/* L ___ J

IEHMOVE Example 12. Copying Data Sets From Separate Source Volumes

108

IEHMOVE Example 13

r---------T-------------T------------------------T--------------------------------------,
IOperationlSource Data IDevice Required I Comments I
~---------+-------------+------------------------+--------------------------------------~
I Copy I Unloaded 11 2400 (mountable) 11. The tape volume contains three I
I I Partitioned 11 2311 (mountable) I unloaded partitioned data sets. I
1 Idata sets 11 2311 (mountable/work) 12. The units are allocated I
I I I I specifically, not generically. I L _________ ~ _____________ ~ ________________________ ~ _____ ---______________________________ J

In this example, three unloaded partitioned data sets residing on a nonlabeled
tape volume mounted on device 282 are copied to a 2311 disk volume mounted on
device 191.

• The SYSUT1 DD statement: defines the work data set.

• The TAPEl DD statement: defines the source data sets. They are, in the order
in which they reside on the volume, DSET1,DSET2, and DSET3.

• The DDl DD statement: defines the receiving volume.

• The SYSIN DD statement: defines the control data set, which follows in the
input stream.

• The COpy statements: Copy the unloaded partitioned data sets from the
nonlabeled tape to the receiving volume.

Note: To copy data sets from a nonlabeled tape, you must place a label in the
list field of the FROM=device=list parameter of the utility control statement.
Following this label, the sequence numbers of the data sets must also be included
in this field. The unit address must appear in the device field of the
FROM/TO=device=list parameter whenever you want to move or copy from or to a
specific device.

r---,
I//LOAD JOB MEDDAUGH,PS40300439,MSGLEVEL=1 1
1// EXEC PGM=IEHMOVE I
I//SYSPRINT DD SYSOUT=A 1
I//SYSABEND DD SYSOUT=A I
1//SYSUTl DD UNIT=191,VOLUME=231100,DISP=OLD 1
1//DDl DD UNIT=191,VOLUME=231100,DISP=OLD 1
1//TAPEl DD UNIT=282,VOLUME=SER=NLTAPE,DISP=OLD,LABEL=(,NL) 1
I//SYSIN DD * I
I COpy PDS=DSET1,FROM=282=(NLTAPE,l),TO=191=231100,FROMDD=TAPE1 I
I COPY PDS=DSET2,FROM=282=(NLTAPE,2),TO=191=231100,FROMDD=TAPE1 1
I COpy PDS=DSET3,FROM=282=(NLTAPE,3),TO=191=231100,FROMDD=TAPE1 1
1/* I L ___ J

IEHMOVE Example 13. Loading Unloaded Data Sets FrOm Nonlabeled Tape to a specific
Device

The IEHMOVE Program 109

•

The IEHLIST Program

Program Applications
The IEHLIST program can be used to list:

• Entries in a catalog.
• Entries in the directory of one or more partitioned data sets.
• Entries in a volume table of contents.

Any number of listings can be requested in a single job.

Listing Catalog Entries

The IEHLIST program lists all catalog entries that are part of the
structure of a fully qualified data set name. For example, given the
index structure:

I
B
I

i

A

I

~~
w X y Z

I c
I
F

I
The program lists fully qualified names A.B.D.W, A.B.D.X, A.B.E.Y,

and A.B.E.Z. Since A.C.F does not represent a cataloged data set (i.e.,
the lowest level of qualification has been deleted), it is not a fully
qualified name, and it is not listed.

Listing a Partitioned Data Set Directory

The IEHLIST program can list up to 10 partitioned data set directories
in a single application of the program. A partitioned directory is
composed of variable length records blocked into 2S6-byte blocks. Each
directory block can contain one or more entries which reflect member

I (and/or alias) names and other attributes of the partitioned members in
edited and unedited format.

The IEHLIST Program 111

•

A directory block as it exists in storage (see IEHLIST Figure 1)
might contain:

" " " \

MEMB AI TTR I
/

IMEMB. B I TTR I USER \ ,- ,,"USER DATA

DATA
~/ I MEMB.C/ TTR / USER DATA I MEMB n

~- I - - / - - ./ - -- ,/ , ---- -- ------

IEHLIST Figure 1. A Sample Directory Block

Edited Format: The IEHLIST program optionally provides the following
information which is obtained from the applicable partitioned data set
directory.

• Member name.
• Entry point.
• Attributes.
• Relative Address of start of member.
• Relative address of start of text.
• Contiguous main storage requirements.
• Length of first block of text.
• Origin of first block of text.
• System status indicators.
• Other information.

In addition, prior to printing the directory entries on the first page,
an index is printed explaining the asterisk (*) following a member name,
the "attributes" (field 3) and nother information" (field 9). Under the
ATTRIBUTE INDEX" the meaning of each attribute bit is explained: under
the OTHER INFORMATION INDEX, scatter and overlay format data is
described, positionally, as they appear in the listing.

Each directory entry occupies one printed line, except when the
member name is an alias and the main member name and associated entry
point is available. When this occurs, two lines are used, and every
alias name is followed by an asterisk (*).

Note: The FORMAT option applies only to a partitioned data set whose
members have been created by the Linkage Editor (i.e., the directory
entries are at least 34 bytes long). If a directory entry is less than
34 bytes, a message is issued, and the entry is printed in unedited
format: if the entry is longer than 34 bytes, it is assumed that it is
created by the Linkage Editor •

. IEHLIST 2 shows an edited entry for a partitioned member (IEANUC01).
The entry is shown as it is listed by the IEHLIST program.

112

MEMBER
NAME

ENTRY ATTR REL ADDR-HEX CONTIG LEN 1st ORG 1st SSI
PT-HEX HEX BEGIN 1stTXT STOR-DEC TXT-DEC TXT-HEX INFO

OTHER
INFORMATION

[EANUC01 000000 0662 000003 000104 00035643 01024 000000 ABSENT SCTR=OOOl02,00168,O.0316,04,04

IEHLIST Figure 2. Edited Partitioned Directory Entry

Unedited (Dump) Format: The user may choose the unedited format. If
this is the case, the IEHLIST program lists each member separately.
IEHLIST Figure 3 shows how the information in Figure 1 is listed.

r-------------------~------------T------------------------------------,
I MEMB A I TTR I USER DATA I
~--------------------+------------+------------------------------------~
I MEMB B I TTR I USER DATA I
~--------------------+------------+------------------------------------~
I MEMB C I TTR I USER DATA I
~--------------------+------------+------------------------------------~
I MEMB n I TTR I USER DATA I L ____________________ ~ ____________ ~ ____________________________________ J

IEHLIST Figure 3. A Sample Partitioned Directory Listing

Note: A listing such as that shown in Figure 1 can be obtained by using
the IEBPTPCH data set utility program.

To correctly interpret user data information, the user must know the
format of the partitioned entry. The formats of directory entries are
discussed in the publication IBM System/360 Operating system: System
Control Blocks, GC28-6628.

Listing a Volume Table of Contents

The IEHLIST program can list, partially or completely, entries in a
specified volume table of contents (VTOC). The program lists the
contents of selected data set control blocks (DSCBs) in edited or
unedited form.

Edited Format: Two edited formats are available. One is a
comprehensive listing of the DSCBs in the VTOC. It provides the status
and attributes of the volume, and describes in depth the data sets
residing on the volume. This listing includes:

• Logical record length and block size.
• Initial and secondary allocations.
• Upper and lower limits of extents.
• Alternate track information.
• Available space information, in detail.
• Option codes.
• Record formats.

A VTOC consists of various DSCBs containing the information about the
data sets residing on the volume. There are six types of DSCBs which
may be contained in a VTOC. They are the FORMAT 1 DSCB 1 FORMAT 2 DSCB,
FORMAT 3 DSCB, FORMAT 4 DSCB, FORMAT 5 DSCB, and FORMAT 6 DSCB. Each
type of DSCB serves a particular purpose for the VTOC.

The first DSCB in a VTOC is always a FORMAT 4 DSCB. It defines the
scope of the VTOCitselfi that is, it contains information about the
VTOC and the volume rather than the data sets referenced by the VTOC.

The IEHLIST Program 113

•

The FORMAT 4 DSCB is augmented, when necessary. by the FORMAT 5 DSCB
which contains additional information describing the space available for
allocation to other data sets.

Following the FORMAT 4 (and FORMAT 5) DSCBs are the FORMAT 1 DSCBs.
Each FORMAT 1 DSCB contains information about a particular data set
residing on the volume. This type of DSCB describes the characteristics
and up to three extents of the data set.

For data sets having indexed sequential (IS) organization, additional
characteristics are specified in a FORMAT 2 DSCB pointed to by the
FORMAT 1 DSCB.

Additional extents are described in a FORMAT 3 DSCB pointed to by the
FORMAT 1 DSCB (or the FORMAT 2 DSCB when the data set is IS
organization).

A FORMAT 6 DSCB is used for shared cylinder allocation. It describes
the extent of space (one or more contiguous cylinders) that are being
shared by two or more data sets. The FORMAT 6 DSCB is pointed to by the
FORMAT 4 DSCB.

A sample listing of the edited format is presented in IEHLIST Figure
4. This sample illustrates how each DSCB will appear on a listing,
although in many cases the VTOC may not contain all possible types. The '
information is in columns, with the values or numbers appearing
underneath each item's heading.

The other edited format is an abbreviated description of the data
sets. It is provided by default whenever no other format is requested
specifically. It provides the following information:

• Data set name.
• Creation date.
• Expiration date.
• Password indication.
• Organization of the data set.
• Extent(s).
• Volume serial number.

The last line in the listing indicates how much space remains in the
VTOC.

Unedited (DUMP) Format: This option produces a complete hexadecimal
listing or the DSCBs in the VTOC. The listing is in an unedited "dump"
form, requiring the user to know the various formats of applicable
DSCBs.

Refer to the publication IBM System/360 Operating System: System
Control Blocks GC28-6628 for a discussion of the various formats that
data set control blocks can assume.

Note: For easier reading of unedited VTOC listings. refer to the
transparent VTOC Overlay, order number MO 80033.

114

.-3 ::r
(I)

H
tzj
t:C
t"'I
H

~
ttl
t;

~
t;

~
....
....
U"I

SYSTE~S SUPPO~T UTILITIES---IEHLIST

CONTENTS OF VTOC ON VOL EXAMPL

FOPMAT 4 OSCB NO AVAIL/MAX OSCB /M~X DIRECT
OSCBS PER TRK BLK PER T~K

NO AVAIL NEXT ALT
ALT TRK TRK(C-H)

FORMAT 6
(C-H-~)

FORMAT 5 OSC8
T~K FUll

ADOR CYlS
17 3

154 16 10 30 200 0

A = NUMBE~ OF TRKS IN ADDITION TO FUll CYLS IN THE EXTENT
T RK FUll T~KFUll TRK FUll

A AOOR CYlS A AOO~ CYlS A AOOR CYlS A
3 110 189 0

OSCB(C-H-R) 5 0 2

PAGE 1

LAST FMT 1 VTOC EXTENT
OSCB(C-H-R) /lOW(C-H) HIGH(C-H)
5055059

TRK FUll
AOOR CYLS A

TRK FULL
_ODR CYlS

THIS OSCB
(C-H-R)
501

A

---------------DATA SET NAME--------------- 10 SER NO SEQ NO CREOT EXPOT NO EXT OSORG RECFM OPTCD BlKSIlE
EXAMPLE.OF.CO~BINEO.FORMATS.ONE.AND.TWO 1 EXAMPl 1 36699 21469 1 IS F 100

lRECl KEYlEN INITI _l _llOC 2NO ALLOC/lAST BLK PHHT-R-U USED POS BYTES FMT 2 OR 3(C-H-P)/OSCB(C-H-R)
100 4 ABSTR 0 503 504

EXTENTS NO LOW(C-H) HIGH(C-H)
o 6 0 10 9

2MI NO (M-B-C-H)/3MINO(M-B-C-H lIL 2MFM(C-H-P) fL3MI N(C-H-~) fCYL~O(M-B-C-~) /ADlIN(M-B-C-H) f ADHIN("'-B-C-~) /NOBYT / NOTRK
o 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 10 9 0 0 0 0 1 0 10 9 10 0

LTRAO(C-H-R)/LCYAD(C-H-R)/LMSAO(C~-R)/LPRAO("-B-C-H-R) /NOlEV /CYlOV/ TAGO'/ PRCTR / OVRCT/ RORGI/PTROS(C-H-R)
6 0 3 10 9 1 0 0 0 1 0 6 1 12 1 0 20 0 0

----UNABLE TO CALCULATE E~PTY SP~CE.

---------------OAT~ SET NAME--------------- 10 SER NO SEQ NO CREDT EXPDT NO EXT OSORG RECFM OPTCO BlKSIZE
EXAMPLE.OF.COMBINEO.FORMATS.ONE.AND.THREE 1 EXAMPL 1 36699 27069 16 PS V 3504

L~ECL KEYLEN tNtTIAL AlLOC 2NO ALLOC/LAST BLK PTRCT-R-L) USED POS BYTES FMT 2 O~ 3(C-H-R)/OSCBCC-H-R)
3500 TRKS 1 15 1 1723 506 505

EXTENTS NO lOW(C-H) HIGH(C-H) NO lOW(C-H) t-IIGH(C-Hl NO LOW(C-H) HI GHC C-H)
0 0 1 0 1 1 0 2 0 2 2 0 3 0 3)
3 0 4 0 4 4 0 5 0 5 5 0 6 0 6
t: 0 7 0 7 7 0 8 0 R 8 0 q 0 9
9 1 C' 1 0 10 1 1 1 1 11 1 2 1 2

12 1 3 1 3 13 1 4 1 4 14 1 5 1 5
15 1 [) 1 6

----ON THE ARnv~ DATA SET,THERE ARE o EMPTY TRACK(S).

THERE ARE 192 E~PTY CYLINDERS PLUS 3 EMPTY TRACKS ON THIS VOLUME
THERE ~RE 1~4 BLANK osr~s IN THE VTOC ON THI~ VOLUME

IEHLIST Figure 4. Sample Printout of a Volume Table of Contents

•

Inputs and Outputs
IEHLIST Table 1 shows the major inputs to and outputs from the IEHLIST
program.

IEHLIST Table 1. Data sets Used (Input) and Produced (Output) by the
IEHLIST Program

r-------T--,
IInputs ISource Data set(s): This data set (or sets) contains the I
I linformation to be listed. Source data can be found in three I
I I places: I
I I I
I I· A VTOC data set. I
I I· A partitioned data set or sets. I
I I· A catalog (SYSCTLG) data set. I
I I I
I IControl Data Set: This data set contains utility control I
I Istatements that are used to control the functions of the I
I I program. I
~-------+--~---~
IOutput IOutput/Message Data Set: This data set is the result of the I
I IIEHLIST operations. It includes the listed data and error I
t Imessages, if applicable. I L _______ ~ __ J

ADDITIONAL OUTPUTS

The IEHLIST program produces a return code to indicate the results of
program execution. The return codes and their interpretations are as
follows:

00 successful completion.

08 due to an error condition, a specified request was ignored.
Processing continues.

16 -- an unrecoverable error occurred while reading the data set. The
request is terminated.

Control
The IEHLIST program is controlled by job control statements and utility
control statements. The job control statements are used to:

• Execute or invoke the program.

• Define the output/message data set and the control data set.

• Define a device or devices to be used during the course of program
execution.

• Prevent data sets from being deleted inadvertently.

Utility control statements are used to control the functions of the
program and to define those data sets or volumes to be modified.

116

JOB CONTROL STATEMENTS

IEHLIST Table 2 shows the job control statements necessary for executing
or invoking the IEHLIST program.

IEHLIST Table 2. Job Control Statements for the IEHLIST Program
(Part 1 of 2)

r------------T---,
I Statement I Usage I
~------------+---~
I JOB IThis statement initiates the job. I
I statement I I
~------------+---~
I EXEC IThis statement specifies the program name (PGM=IEHLIST) I
I statement lor, if the job control statements reside in a procedure I
I Ilibrary, the procedure name. I
r------------+---~
ISYSPRINT IThis statement defines a sequential output/message data I
IDD Iset. The data set can be written onto a system output I
I statement Idevice, a magnetic tape volume, or a qirect access I
I I volume. I
f------------~---~
I//anyname* DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD I
I I
I This statement defines a permanently mounted volume. One statement I
I must be included for each permanently mounted volume referred to in I
I the job step. (The system residence volume is considered to be I
I permanently resident.) I
I I
I In this statement the UNIT and VOLUME parameters define the device I
I type and volume serial number. The DISP=OLD specification prevents I
I the inadvertent deletion of a data set. I
~--~
//anyname** DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD

This statement defines a mountable device type. One statement must
be included for each mountable device to be used in the job step.

For those. applications in which deferred mounting is necessary, it
can be specified by including:

VOLUME=(PRIVATE, •••) and UNIT=(xxxx"DEFER)

in the DD statement defining the mountable device. Refer to
Appendix D for information on defining mountable devices.

~-----------T---~
ISYSIN IThis statement defines the control data set. The data I
100 Iwhich contains utility control statements, usually I
I statement Ifollows the job control language in the input stream; I
I I however, it can alternatively be defined as being an I
I lunblocked sequential data set or member of a procedure I
I I library. I
~------------i---______________ ~
I *This statement is arbitrarily assigned the ddname DD1 in the IEHLISTI
I examples. I
I I
1**This statement is arbitrarily assigned the ddname DD2 in the IEHLISTI
I examples. DD statements defining additional mountable devices are I
I assigned ddnames 003, DD4, ••• etc. I L __ J

(Part 1 of 2)

The IEHLIST Program 111

IEHLIST Table 2. Job Control statements for the IEHLIST Program
(Part 2 of 2)

r--,
IThe blocksize for the SYSPRINT (message) data set must be a multiple
lof 121. The blocksize for the SYSIN (control) data set must be a
Imultiple of 80. Any blocking factor can be specified for these
Iblocksizes.
I
IWith the exception of the SYSIN and SYSPRINT DD statements, all DD
I statements in this table are used as device allocation statements"
Irather than as true data definition statements. since the IEHLIST
Iprogram modifies the internal control blocks created by device
lallocation DD statements, these statements must not include the DSNAME
I parameter. (All data sets are defined explicitly or implicitly by
lutility control statements.)
I
IWhen the IEHLIST program is dynamically invoked in a job step
Icontaining another program, the DD statements defining mountable
Idevices for the IEHLIST program must be included in the job stream
Iprior to DD statements defining data sets required by the other
I program. L __ J

UTILITY CONTROL STATEMENTS

combinations of the following utility control statements are used to
control the functions of the program.

• The LISTCTLG (list the catalog) statement.
• The LISTPDS (list a partitioned directory) statement.
• The LISTVTOC (list a volume table of contents) statement.

The LISTCTLG statement

The LISTCTLG statement is used to request a listing of either the. entire
catalog or a specified portion of the catalog (SYSCTLG data set). The
listing includes the fully qualified name of each applicable cataloged
data set and the serial number of the volume on which it resides.

r------T---------T---~---,
I Name I Operation I Operand I
~------+---....;-----+---------------------...;-------------------------------~
I [name] I LISTCT.LG I [VOL=device=serial] I
I I . I [NODE=name] I L ______ ~ _________ ~ ___ J

VOL=device=serial
specifies the device type and volume serial number of the ·control
volume on which the specified portion of the catalog resides.

If VOL is omitted. the catalog is assumed to reside on the system
residence volume.

NODE=name

118

specifies a qualified name. All data set entries whose names are
qualified by this name are listed.

If NODE is omitted, all data set entries are listed.

The LISTPDS statement

The LISTPDS statement is used to request a directory listing of one or
more partitioned data sets that reside on the same volume.

r------T---------T---,
I Name IOperationioperand I
~------+---------+---~
I [namelILISTPDS I DSNAME=(narnelist) I

I

I I I [VOL=device=seriall I
I I I {DUMP } I
I I I FORMAT I L ______ ~ _________ ~ ___ J

DSNAME=(name [,namel •••)
specifies the fully qualified names
whose directories are to be listed.
allowed. If the list consists of a
can be deleted.

of the partitioned data sets
A maximum,of 10 names is

single name, the parentheses

VOL=device=serial

DUMP

specifies the device type and volume serial number of the volume on
which the partitioned data sets reside.

If VOL is omitted, the data sets are assumed to reside on the
system residence volume.

specifies that the listing is to be in unedited, hexadecimal form.

FORMAT
specifies that the listing is to be edited for each directory entry
into the following fields:

• Member name.
• Entry point.
• Attributes.
• Relative address of start of member.
• Relative address of start of text.
• Contiguous main storage requirements.
• Length of first block of text.
• Origin of first' block of text.
• system status indicators.
• Other information.

In addition, prior to printing the directory entries on the first page,
an index is printed explaining the "attributes" (field 3) and "other
information" (field 9). ATTRIBUTE INDEX explains each attribute bit;
OTHER INFORMATION INDEX explains scatter and overlay format data as it
appears in the listing.

Note: This option may be used only on a partitioned data set whose
members have been created by the Linkage Editor. Members that have not
been created by the Linkage Editor cause their directory entries to be
listed in unedited (DUMP) format.

The IEHLIST Program 119

The LISTVTOC Statement

The LISTVTOC statement is used to request a partial or complete listing
of the entries in a specified volume table of contents.

r------T---------T--~,
I Name I Operation I Operand I
~---~--+---------+---~
I [name] I LISTVTOC I { DUMP } I
I I I ro~ I
I I I [DATE=dddyy] I
I I I [VOL=device=serial] I
I I I [DSNAME=(namelist)] I L ______ ~ _________ ~ _____________________________________ ~ _______________ J

DUMP
specifies that the listing is to be in unedited, hexadecimal form.

FORMAT
specifies that a comprehensive edited listing is to be generated.

Note: If FORMAT and DUMP are omitted, an abbreviated edited format
will be generated by default.

DATE=dddyy (applicable only to the abbreviated edited format)
specifies that each entry that expires before this date is to be
flagged with an asterisk (*) in the listing. The date is
represented by:

ddd day of the year.
yy last two digits of the year.

If DATE is omitted, no asterisks appear in the listing.

VOL=device=serial
specifies the device type and volume serial number of the volume
whose table of contents is to be listed.

If VOL is omitted, the system residence volume is assumed.

DSNAME=(name[,name] •••)

120

specifies the fully qualified names of the data sets whose entries
are to be listed. A maximum of 10 names is allowed.

If DSNAME is omitted, the entire volume table of contents is
listed.

IEHLIST Examples

The following examples show some of the uses of the IEHLIST program.

Note: In each of the following IEHLIST examples, the EXEC statement and the
SYSPRINT DD statement can be replaced with the following job control statement:

// EXEC PROC=LIST

The EXEC statement invokes the following cataloged procedure, which is supplied
by IBM.

//LIST EXEC PGM=IEHLIST,REGION=44K
//DDSRV DD VOLUME=REF=SYS1.SVCLIB,DISP=OLD
//SYSPRINT DO SYSOUT=A

IEHLIST Example 1

00000000
00000010
00000020

r-------------T---------------------------T---,
I Operation I Number of Devices Reqired I Comments I
r-------------+---------------------------+---~
,List a 11 2311 DISK (mountable> 11. The entire source catalog is listed on thel
I catalog 11 system output device I system output device. I L _____________ i ___________________________ i ___ J

In this example a catalog residing on a 2311 disk volume (231100> is to be
listed.

• The DD2 DO statement: defines a mountable device on which the volume
containing the source catalog is mounted.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream.

• The LISTCTLG Utility Control statement: defines the source volume and
specifies the list operation.

Note: The data set name of the catalog data set is SYSCTLG.

r---,
I//LISTCAT JOB 09#550,BLUE I
1// EXEC PGM=IEHLIST I
I//SYSPRINT OD SYSOUT=A I
1//002 DO UNIT=2311,VOLUME=SER=231100,DISP=OLD I
I//SYSIN DD * I
I LISTCTLG VOL=2311=231100 I
1/* I L ___ J

IEHLIST Example 1. Listing a Catalog

The IEHLIST Program 121

•

IEHLIST Example 2

r-------------T---------------------------T---,
I Operation INumber of Devices Required IComments I
t-------------+---------------------------+---~
IList 3 11 2314 DISK (mountable) 11. All applicable data is listed on the I
I catalogs 11 system residence device I system output device I
land a portionl1 system output device I I
lof a fourth. I I I L _____________ ~ ___________________________ ~ ___ J

In this example a catalog residing on the system residence volume, two catalogs
residing on 2314 disk volumes, and a portion of a catalog residing on a 2314
volume, are to be listed.

• The DDl Statement: defines a system residence device. (The first catalog to
be listed resides on the system residence volume.)

• The DD2 Statement: defines a mountable device' on which each 2314 volume is
mounted as it is required by the program.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream.

• The First LISTCTLG Utility Control Statement: indicates that the catalog
residing on the system control volume is to be listed.

• The Second and Third LISTCTLG Statements: identify two 2314 disk volumes
containing catalogs to be listed.

• The Fourth LISTCTLG statement: identifies a 2314 disk volume containing a
catalog that is to be partially copied. All data set entries whose beginning
qualifiers are A.B.C are copied.

r---,
I//LISTCATS JOB 09#550,.BLUE
1// EXEC PGM=IEHLIST
I//SYSPRINT DD SYSOUT=A
1//DD1 DD UNIT=2301,VOLUME=SER=111111,DISP=OLD
1//DD2 DD UNIT=(2314"DEFER),DISP=OLD,
1// VOLUME=(PRIVATE"SER=(231400»
I//SYSIN DD *
I LISTCTLG
1 LISTCTLG
J LISTCTLG
I LISTCTLG
1/*

VOL=2314=231400
VOL=2314=231401
VOL=2314=231402,NODE=A.B.C

L ___ - _______________________________________ ~ ___ _

IEHLIST Example 2. Listing a Number of Catalogs

122

IEHLIST Example 3

r-------------T---------------------------T---,
I Operation INumber of Devices Required IComments I
~-------------+---------------------------+---~
IList three 11 2314 DISK (mountable) 11. The directories are listed on a system I
I partitioned 11 system residence device I output device. I
I directories I (2301 DRUM) I I
I 11 system output device I I L _____________ ~ ___________________________ ~ ___ J

In this example, a partitioned directory existing on the system residence
volume is to be listed. In addition, two partitioned directories existing on a
2314 volume are to be listed.

• The DDl DD Statement: defines the system residence device.

• The DD2 DD Statement: defines a mountable device on which a 2314 source
volume (231400> is to be mounted.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream.

• The First LISTPDS Statement: indicates that the partitioned data set
directory belonging to data set PARSETl is to be listed. This data set exists
on the system residence volume.

• The Second LISTPDS Statement: indicates that partitioned directories
belonging to data sets PARTl and PART2 are to be listed. These data sets
exist on a 2314 disk volume (231400).

r---,
I/ILISTPDIR JOB 09#550,BLUE I
III EXEC PGM=IEHLIST I
I/ISYSPRINT DD SYSOUT=A I
II/DDl DD UNIT=2301,VOLUME=SER=111111,DISP=OLD I
IIIDD2 DD UNIT=2314,VOLUME=SER=231400,DISP=OLD I
I/ISYSIN DD * I
I LISTPDS DSNAME=PARSET1 I
I LISTPDS DSNAME=(PART1,PART1),VOL=2314=231400 I
1/* I L ___ J

IEHLIST Example 3. Listing Partitioned Directories

The IEHLIST Program 123

I

IEHLIST Example 4

r-------------T---------------------------T---,
I Operation I Number of Devices Required I comments I
~-------------+---------------------------+---~
IList a 11 2311 DISK (mountable) 11. The specified volume table of contents is I
Ivolume table 11 system output device I listed in edited form, and then, selected I
lof contents I I data set control blocks are listed in 1
1 1 I unedited form. I L _____________ ~ ___________________________ ~ ____________ -------__________________________ J

In this example, a volume table of contents in edited form, is to be listed.
The edited listing is SUpplemented by an unedited listing of selected data set
control blocks.

• The DD2 DD Statement: defines a mountable device on which the volume
containing the specified volume table of contents is to be mounted.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The First LISTVTOC Utility Control Statement: indicates that the volume table
of contents on the specified 2311 disk volume is to be listed in edited form.

• The Second LISTVTOC Utility Control Statement: indicates that the data set
control blocks representing data sets SET1, SET2, and SET3 are to be listed in
unedited form.

r---,
I//LISTVTOC JOB 09#550,BLUE 1
1// EXEC PGM=IEHLIST I
I//SYSPRINT DD SYSOUT=A I
1//DD2 DD UNIT=2311,VOLUME=SER=231100,DISP=OLD I
I//SYSIN DD * I
I LISTVTOC FORMAT,VOL=2311=231100 1
I LISTVTOC DUMP,VOL=2311=231100,DSNAME=(SET1,SET2,SET3) 1
1/* I L ___ J

IEHLIST Example 4. Listing a Volume Table of Conte~ts

124

The IEHINITT Program

Program Application
The IEHINITT utility program places IBM System/360 Operating System
volume label sets onto any number of magnetic tapes mounted on one or
more tape drives. Each volume label set created by the program
contains:

• A standard volume label with
user specified serial number
and owner identification.

• A dummy header label (an
80-byte record containing
HDR1 and 76 EBCDIC zeros).

• A tapemark.

INITIAL VOLUME LABEL
HDR 1 I 76 EBCDIC ZEROS

TAPE MARK

Note: When a labeled tape is subsequently used as a receiving voluroe:

1. The tapemark created by the IEHINITT program is overwritten.
2. The dummy HDRl record created by the IEHINITT program is filled in

with operating system data and device-dependent information.
3. A HDR2 record, containing data set characteristics, is created.
4. User header labels are written (if exits to user label routines are

provided by the processing program).
5. A tapemark is written.
6. Data is placed on the receiving volume.

IEHINITT Figure 1 shows a standard label after a volume is first used
to receive data. Refer to the publication IBM System/360 Operating
System: supervisor and Data Management Services, GC28-6646, for a
discussion on volume labels.

INITIAL VOLUME LABEL
HDRl
HDR2

USER HEADER
LABELS(OPTIONAL
UP T08)

TAPE MARK

DATA

•
IEHINITT Figure 1. Standard Label After Volume First Receives Data

The IEHINITT Program 125

•

Placing a Standard Label Set on Magnetic Tape

The IEHINITT program can place labels on 7-track or 9-track magnetic
tape volumes. Any number of 7-track and/or 9-track tape volumes can be
labeled in a single execution of the program.

Tape volumes are labeled in sequential order by specifying a serial
number to be written onto the first tape volume. The serial number is
incremented by 1 for each successive tape volume. (If only one tape
volume is to be labeled, the specified serial number can be either
numeric or alphameric. If more than one volume is to be labeled, the
serial numbers must be specified as six numeric characters.)

The user can provide additional. information, such as name and rewind
or unload specifications.

The user must supply all tapes to be labeled. Explicit instructions
to the operator should be provided with each job request. Otherwise,
the operator will not mount the tapes.

If any errors are encountered while attempting to label a tape, the
tape is left unlabeled. The program attempts to label any tapes
remaining to be processed.

For information on creating routines to write standard or nonstandard
labels, refer to the publication IBM system/360 Operating System:
System Programmer's Guide, GC28-6550.

Notes: The program writes 7-track magnetic tape labels in even parity.
Previously labeled tapes can be overwritten with new labels.

Inputs and Outputs
IEHINITT Table 1 lists the major inputs to and outputs from the IEHINITT
program.

IEHINITT Table .1. Data Sets Used (Input) and Produced (Output) by the
IEHINITT Program

r-------T------------~---,
IInput IControl Data Set: This data set contains a utility control I
I Istatement or statements used to provide control information I
I Ifor the IEHINITT program. I

.-------+--~
Joutput IMessage Data Set: This data set contains: I
I J I
I J. Utility program identification. I
I I· Initial volume label information for each successfully I
I I labeled tape volume. I
I I· Contents of the utility control statement or statements I
I I that were used. I
I I· Error messages, if applicable. I L _______ ..1. ___ ;..--1

126

ADDITIONAL OUTPUTS

The IEHINITT program produces a return code to indicate the results of
program execution. The return codes and their interpretations are as
follows:

00 successful completion. A message data set was created.

04 successful completion. No message data set was defined by the
user.

08 -- the program completed its operation but error conditions were
encountered during processing. A message data set was created.

12 -- the program completed its operation but error conditions were
encountered during processing. No message data set was defined by
the user.

16 -- the program terminated operation because of error conditions
encountered while attempting to read the control data set. A
message data set was created if defined by the user.

Control
The IEHINITT program is controlled by job control statements and utility
control statements. The job control statements are used to:

• Execute or invoke the program.
• Define the control and message data sets.
• Provide density information for magnetic tapes.

Utility control statements are used to specify applicable label
information.

JOB CONTROL STATEMENTS

IEHINITT Table 2 shows the job control statements necessary for
executing or invoking the IEHINITT program.

The IEHINITT Program 127

•

IEHINITT Table 2. Job Control statements for the IEHINITT Program
r------------T---,
I Statement I Usage I
~------------+---~
I JOB IThis statement initiates the job. I
I statement I I
~------------+---~
I EXEC This statement specifies the program name (PGM=IEHINITT) I
I statement or, if the job contro1 statements reside in a procedure I
I library, the procedure name. I
I I
I The EXEC statement can include an optional PARM parameter I
I to specify the number of lines to be printed between I
I headings in the message data set. I
I I
I PARM=LINECNT=nn I
I I
j specifies that nn number of lines (00 to 99) are to be I
I printed between headings. 1 I
I I
I If PARM is omitted, 60 lines are printed between I
I headings. I
~-----------+--------~--~
ISYSPRINT IThis statement defines a sequential message data set. I
Inn IThe data set can be written onto a system output device, I
I statement la magnetic tape volume, or a direct access volume. I
~------------~---~---~
I//name Ino DCB=(OEN=x),UNIT=(xxxx,n,DEFER) I

I I
IThis statement defines a magnetic tape drive or drives tol
be used in a labeling operation. I
Where: I

DEN=x
specifies the density at which the labels are
written.

UNIT=(xxxx,n,DEFER}
specifies device type, number of drives to be used
for the labeling operation, and deferred mounting.

I
I
I
I
I
I
I
I
I

"name" must be identical to a name specified in a utility I
control statement,. This relates the specified drive(s} I
to the appropriate utility control statement. I

~------------+---~
ISYSIN IThis statement defines the control data set. The control I
iDD ldata set normally resides in the input stream; however, I
I statement lit can alternatively be defined as a member of a I
I Iprocedure library or as a sequential data set existing I
I Isomewhere other than the input stream. I
t------------~--~i
IThe SYSPRINT (message) data set must have a logical record length of
1121 bytes. It must consist of fixed length records with an ASA
Icontrol character in the first byte of each record. The SYSIN
I (control) data set must have a blocksize which is a multiple of 80.
IAny blocking factor can be specified for these blocksizes.
I
11If the IEHINITT program is invoked, the line count option can be
I passed in a parameter list that is referred to by the optionaddr
I subparameter of the LINK or ATTACH macro instruction. In addition, a
I page count can be passed in a 6-byte parameter list that is referred
I to by the hdingaddr subparameter of the LINK or ATTACH macro
I instruction. For a discussion of linkage conventions, refer to the
I section "Invoking Utility Programs." L __ J

128

UTILITY CONTROL STATEMENTS

The IEHINITTprogram uses an INITT utility control statement to provide
control information for a labeling operation. Any number of INITT
utility control statements can be included for a given execution of the
program. An identically named DD statement must exist for a utility
control statement in the job step.

The INITT statement

The INITT statement provides control information for the IEHINITT
program.

r------T---------T---------------------------------~-------------------,
I Name I Operation I Operand I
~-----+---------+---~
I name I INITT I SER=xxxxxx I
I I I [OWNER='cccccccccc'] I
I I I [NUMBTAPE=n] I
I I I [DISP=REWINDJ I
I I I DISP=UNLOAD I L ______ ~ _________ ~ __ -J

name
specifies a name that is identical to a ddname in the name field of
a DD statemen~ defining a tape drive or drives. This name must
begin in column 1 of the utility control statement.

SER=xxxxxx
specifies the volume serial number of the first or only tape to be
labeled. The serial number cannot contain blanks, commas,
apostrophes, equal signs, or special characters. A specified
serial number is incremented by one for each additional tape to be
labeled. (Serial number 999999 is incremented to 000000.) When
processing multiple tapes, the volume serial number must be all
numeric.

OWNER='cccccccccc'
specifies the owner's name or similar identification. The
information is specified as character constants, and can be up to
10 bytes in length. The delimiting apostrophes can be omitted if
no blanks, commas, apostrophes, equal signs, or other special
characters (except periods or'hyphens) are included. If an
apostrophe is included, it must be written as two consecutive
apostrophes.

NUMBTAPE=n
specifies the number of tapes to be labeled according to the
specifications made in this control statement. The value n
represents a number from 1 to 255.

If NUMBTAPE is omitted, one tape volume is labeled.

DISP=REWIND
specifies that a tape is to be rewound (but not unloaded) after the
label has been written.

If DISP=REWIND is not specified, the tape volume is rewound and
unloaded.

DISP=UNLOAD
specifies that a tape is to be unloaded after the label has been
written.

The IEHINITT Program 129

•

IEHINITT Figure 2 shows a printout of a message data set including
the INITT control statement and initial volume label information. In
this example, one IN ITT statement was used to place serial numbers of
001122 and 001123 onto two magnetic tape volumes. VOL100112200 and
VOL10011230 are interpreted as follows:

• VOLl indicates that an initial volume label was successfully written
onto a tape volume.

• 001122 and 001123 are the serial numbers that were written onto the
volumes.

• 0 is unused.

No errors occurred during processing,.

r--,
ISYSTEM SUPPORT UTILITIES IEHINITT I
I I
I ALL INITT SER=001122,NUMBTAPE=2,OWNER='P.T.BROWN', C I
I DISP=REWIND I
I I
IVOL10011220 P.T.BROWN I
IVOL10011230 P.T.BROWN I L __ J

IEHINITT Figure 2. A Printout of INITT Statement specifications and
Initial Volume Label Information

130

IEHINITT Examples
The following examples illustrate some of the applications of the IEHINITT
program.

IEHINITT Example 1

r-------------T---------------------------~--,
I Operator INumber of Tape Devices UsedlComments I
~-------------+---------------------------+---~
I Label 11 9-track (2400) tape drivell. Labels are written at a density of 800 1
13 tape I I bits per inch. 1
I volumes 1 I I L _____________ ~ ___________________________ ~ ___ J

In this example, serial numbers 001234, 001235, and 001236, are to be placed
onto three tape volumes. Each volume to be labeled is mounted, when it is
required, on a single 9-track magnetic tape volume.

r---,
1//LABEL1 JOB 09#990,BROWN 1
1// EXEC PGM=IEHINITT I
1/ /SYSPRINT DD SYSOUT=A 1 •
I//LABEL DD DCB=(DEN=2),UNIT=(2400,l,DEFER) I ..
I//SYSIN DD * I
1 LABEL INITT SER=001234,NUMBTAPE=3 1
1/* 1 L ___ J

IEHINITT Example 1. Labeling Three 9-Track Magnetic Tape Volumes

The IEHINITT Program 131

IEHINITT Example 2

r-------------T---------------------------T---,
j operation I Number of Tape Devices Used I comments I
~-------------+---------------------------+---~
ILabel 2 11 9-track (2400) tape drivel1. Both groups of labels are written at a I
Igroups of I I density of 800 bits per inch. I
I tape volumes I I I L _____________ ~ ___________________________ ~ ___ J

In this example, two groups of serial numbers (001234, 001235, 001236, and
001334, 001335, 001336) are placed onto six tape volumes. Each volume to be
labeled is mounted, when it is required, on a single 9-track magnetic tape volume.

r---,
1//LABEL2 JOB 09#990,BROWN I
1// EXEC PGM=IEHINITT I
I//SYSPRINT DD SYSOUT=A I
I//LABEL DD DCB=(DEN=2),UNIT=(2400~1,DEFER) I
I//SYSIN DD * I
I LABEL INITT SER=001234,NUMBTAPE=3 I
I LABEL INITT SER=001334,NUMBTAPE=3 I
1/* . I
L _________ --__________________________________ J

IEHINITT Example 2. Labeling Two Groups of 9-Track Magnetic Tape Volumes

132

IEHINITT Example 3

r-------------T----------------------------T--------------------------------------~-----,
I Operation INumber of Tape Drives Used I Comments I
~-------------+----------------------------+--i
ILabel -- 14 9-track (2400) tape drivesll. Labels are written at a density of 800 I
1 increment I I bits per inch. I
Isequence num-I I I
Ibers by 10 1 I I L _____________ ~ ____________________________ ~ __ J

In this example, serial numbers 001234, 001244, 001254, 001264, 001274, etc.,
are to placed onto 8 magnetic tape volumes. Each volume to be labeled is roounted,
when it is required, on one of four 9-track magnetic tape volumes.

r---,
//LABEL3 JOB 09#990,BROWN
// EXEC PGM=IEHINITT
//SYSPRINT DD SYSOUT=A
//LABEL DD DCB=(DEN=2),UNIT=(2400,4,DEFER)
//SYSIN DO *
LABEL INITT SER=001234
LABEL INITT SER=001244 •
LABEL INITT SER=001254
LABEL INITT SER=001264
LABEL INITT SER=001274
LABEL INITT SER=001284
LABEL INITT SER=001294
LABEL INITT SER=001304
/*

L ___ ----------------------------------

IEHINITT Example 3. Labeling 9-Track Volumes -- Serial Numbers Incremented by 10

The IEHINITT Program 133

· ··-·····IEHINITT Example 4

r-------------T---------------------------T---,
I Operation INumber of Tape Drives Used IComments I
~-------------+---------------------------+---~ I Label 11 9-track (2400) tape drivell. An alphameric label is placed on the 2400 I
13 tape 11 9-track (2400-4) tape I volume. The label is written at a density I
I volumes I drive I of 800 bits per inch. I
I I 12. Numeric labels are placed on two 2400-4 I
I I I tape volumes. The labels are written at al
I I I density of 1600 bits per inch. I L _____________ ~ ___________________________ ~ ___ J

In this example, serial number TAPE1" is to be placed on a 2400 tape volume and
serial numbers 001234 and 001235 are to be placed on two 2400-4 tape volumes.

r-----------------------------------~---,
1//LABEL4 JOB 0.#990,BROWN I
1// EXEC PGM=IEHINITT I
I//SYSPRINT DO SYSOUT=A I
1//LABELl DO DCB=(OEN~),UNIT=(2400~1,OEFER) I
1//LABEL2 OD OCB=(DEN=3),UNIT=(2400-4,1,DEFER) I
I//SYSIN DO * I
lLABELl INITT SER=TAPEl 1
lLABEL2 INITT SER=001234,NUMBTAPE=2 I
1/* I L ____ ~ ___ ~ ______________________________________ J

IEHINITT Example 4. Alphameric and Numeric Labeling

134

The IEHIOSUP Program

Program Applications

The IEHIOSUP program is used to update TTR entries in the transfer
control tables of the supervisor call library (SVC library). This
program must be used after:

• The SVC library is moved.

• The OPEN, CLOSE, TCLOSE,. EOV, FEOV, SCRATCH. ALLOCATE, IEHATLAS,
SETPRT, or STOW or any Machine-Check Handler (MCH) recovery
management module is changed or replaced in the svc library.

Updating TTR Entries in the SVc Library

Due to the manner in which the SVC routines are loaded, it is necessary
to update TTR entries after changing or replacing a module. This
program automatically updates the TTR entries.

Inputs and Outputs
IEHIOSUP Table 1 lists the major input to and output from the IEHIOSUP
program.

IEHIOSUP Table 1. Data Sets Used and Produced by the IEHIOSUP Program
r--,
IObject Data Set: This data set (the SYS1.SVCLIB data set) contains I
Ithe transfer control tables that are to be updated. I
I I
IMessage Data Set: This data set contains error messages (if any) I
Igenerated during the execution of the program. I L __ J

ADDITIONAL OUTPUTS

The IEHIOSUP program produces a return code to indicate the results of
program execution. The return codes and their interpretations are as
follows:

00 successful completion.

12 an unrecoverable error has occurred. The job step is terminated.

The IEHIOSUP Program 135

•

Control
The IEHIOSUP program is executed or invoked with job control statements.
The program function (i.e., the updating of the TTR entries) is
performed automatically. (No utility control statements are required.)

JOB CONTROL STATEMENTS

IEHIOSUP Table 2 shows the job control statements necessary for
executing or invoking the IEHIOSUP utility program.

IEHIOSUP Table 2. Job Control Statements for the IEHIOSUP Program
r------------T---,
I Statement I Usage I
.------------+---i
I JOB IThis statement initiates the job. I
I statement I I
.------------+---------------~---i
I EXEC IThis statement specifies the program name (PGM=IEHIOSUP) I
I statement lor, if the job control statements for the IEHIOSUP I
I Iprogram reside in a procedure library, the procedure I
I I name. I
.------------+----------------~--~
ISYSPRINT IThis statement defines a sequential message data set. I
IDD IThe data set can be written onto a system output device, I
I statement la magnetic tape volume, or a direct access volume. I
r------------+----------------------~-----------------~----------------~
ISYSUT1 IThis statement defines the object (SYS1.SVCLIB) data set.1
IDD IThe DSNAME, DISP, UNIT, and VOLUME parameters should be I
I statement I included. I
.------------~-~---i
I~: If the SYS1.SVCLIB data set is cataloged, the UNIT and VOLUME 1
Iparameters are not required in the SYSUTl DD statement. I
I I
IThe blocksize for the SYSPRINT (message) data set must be a multiple I
lof 121. Any blocking factor can be specified. I L __ J

136

IEHIOSUP Examples
The following examples illustrate some of the uses of the IEHIOSUP program.

IEHIOSUP Example 1

r---------T---------------------T----------------------T--------------------------------,
I Operation I Data Set OrganizationlI/O Device I Comments I
r---------+---------------------+----------------------+--------------------------------~
I UPDATE I Object-PARTITIONED IDISK--2311 and System 11. The SYS1.SVCLIB data set is I
Ithe SVC IMessage-SEQUENTIAL IOutput Device (Printer I not cataloged. I
ILIBRARY I I Assumed) 1 I
I (TTRs) 1 1 1 I L _________ ~ _____________________ ~ _____________________ -~ ________________________________ J

In this example, the TTR entries in the SVC library are to be updated •

• The SYSUTl DD statement: defines the object data set (the SYS1.SVCLIB data
set) •

• The SYSPRINT DD statement: defines the message data set.

r--------------------~--,
I//TTRUPDTE JOB I
1// EXEC PGM=IEHIOSUP I
1//SYSUTl DD DSNAME=SYS1.SVCLIB~DISP=OLD,UNIT=2311, 1 •
1// VOLUME=SER=111111 1 ~
I//SYSPRINT DD SYSOUT=A I
1// 1 L ___ J

IEHIOSUP Example 1. Updating TTR Entries -- SVC Library is Not Cataloged

The IEHIOSUP Program 137

IEHIOSUP Example 2

r---------T------------------~--T----------------------T--------------------------------,
IOperationlData Set OrganizationlI/O Device I Comments I
~---------+---------------------+----------------------+--------------------------------~
I UPDATE I Object-PARTITIONED IDRUM--2301 and System 11. The SYS1.SVCLIB data set is I
Ithe SVC IMessage-SEQUENTIAL IOutput Device (Printer I cataloged. I
I LIBRARY I I Assumed) I I
I (TTRs) I I I I L _________ ~ _____________________ ~ ______________________ ~ ________________________________ J

In this example, the TTR entries in the SVC library are to be updated •

• The SYSUTl DO Statement: defines the object data set (the SYS1.SVCLIB data
set). The data set is cataloged; therefore~ no UNIT or VOLUME parameter is
required •

• The SYSPRINT DD Statement: defines the message data set.

r---,
I//SVCUPDTE JOB I
1// EXEC PGM=IEHIOSUP I
1//SYSUTl DD DSNAME=SYS1.SVCLIB,DISP=OLD I
I//SYSPRINT DD SYSOUT=A I
1// I L ___ J

IEHIOSUP Example 2. Updating TTR Entries -- SVC Library is Cataloged

138

The IFCEREPO Program

Program Applications
The IFCEREPO program edits and writes records contained in the
SYS1.LOGREC data set. The records were generated by error environment
recording programs OBR and SDR, and by recovery management programs

I SERO, SER1, MCH, TPER, and CCH. The records contain environmental data
(machine indicator contents, register contents, etc.)' that was stored
when an error occurred.

The program can accumulate a history of malfunctions by selecting
records from the SYS1.LOGREC dataset and placing them in an output
(history) data set, or by selecting records from an existing history
data set and placing them in a second history data set. In addition,
the program can summarize certain types of environmental records; that
is, pertinent information can be extracted from selected records and
written on an output device (usually the printer).

The program can process £ive types of environment records:

• Machine-check (CPU) records; produced and stored as a result of
machine-check interruptions caused by malfunctions in the central
processing unit.

• Channel-check (inboard) records, produced and stored as a result of
input/output interruptions caused by specific channel failures.

• I/O device (outboard) records, produced and stored as a result of
permanent device errors.

• Statistical data records, produced and stored to maintain a count of
input/output device errors.

• T-type records (bulk data records)., produced and stored as a result
of error data not reflected in any of the other type records.

The program is used to:

• Edit and write selected records.

• Accumulate machine-check, channel inboard, or I/O outboard records
and place them in a new or updated history data set.

• Summarize machine-check, channel inboard, or I/O outboard records
contained in the SYS1.LOGREC data set or in a history data set.

• Process (edit and write. accumulate, and/or summarize) records
produced on a different machine model.

Editing and Writing Selected Records

The IFCEREPO program retrieves selected environment records contained in
the SYS1.LOGREC data set or in a history data set and writes an edited
version of the selected records. Editing can be specified as follows:

• Machine-check, channel inboard, I/O outboard, or statistical data
records (or combinations of these records) can be selected.

The IFCEREPO Program 139

•

• Records can be selected by the model number of the system which
created them.

• Records that were written within a specific period of calendar time
can be selected.

• I/O outboard or statistical data records related to a specific unit
address or device type can be selected.

• Input records can remain uncleared after processing. (The program
normally clears each selected record to hexadecimal zeros in the
SYS1.LOGREC data set when processing of that record is complete.
However, an option can be speci£ied to prevent the clearing of
selected records.)

Notes: Those records that are cleared in the SYS1.LOGREC data set
cannot be reused by the recording programs until the entire SYS1.LOGREC
data set is cleared.

The IFCEREPO program can write its output on any IBM output device
supported by the BSAM access method. The output is written as 121-byte
unblocked records with an ASA control character as the first character
in each record.

The program can produce CPU (machine-check), channel inboard, I/O
outboard, and statistical data printouts on all supported models. A
printout for an edited record has the format shown in IFCEREPO Figure 1.

r--,
Program heading

Program section

Model

Source Record type

Record data

Additional data
L __ J

IFCEREPO Figure 1. Output Record Printout structure

Program heading
identifies the IFCEREPO program on the first page of the listing:

• ENVIRONMENT RECORD EDITING AND PRINTING PROGRAM

Program section

Model

140

identifies the program section that is generating the printout.
Valid program sections are:

• CPU (MC) DATA EDITING AND PRINTING SECTION
• INBOARD DATA EDITING AND PRINTING SECTION
• OUTBOARD DATA EDITING AND PRINTING SECTION
• STATISTICAL DATA EDITING AND PRINTING SECTION
• T-TYPE DATA EDITING AND PRINTING SECTION

identifies the IBM System/360 Model for which the printout is
applicable. Valid ent·ries are:

Source

• Model 40, 50, 65, 67, 75, 85, 91, 95, or 195 for machine-check
records.

• Model 40, 50, 65, 75, 85, 91, 95, or 195 for channel inboard
records. (Model 67 and 95 channel inboard records appear as
Model 65 and 91 records, respectively.)

• UNIVERSAL for statistical data or I/O outboard printouts
produced by Model 30, 40, 50, 65, 67, 75, 85, 91, 95, or 195.

identifies the error environment or recovery management program
that generated the record placed in the SYS1.LOGREC data set.
Valid sources are:

• RECORD ENTRY SOURCE - OBR
• RECORD ENTRY SOURCE - SDR
• RECORD ENTRY SOURCE - SERO
• RECORD ENTRY SOURCE - SER1
• RECORD ENTRY SOURCE - MCH
• RECORD ENTRY SOURCE - CCH
• RECORD ENTRY SOURCE - TPER

Record type
indicates the type of printout. Valid types are:

• TYPE -
• TYPE -
• TYPE -
• TYPE -
• TYPE

Record data

CPU
INBOARD
OUTBOARD
STATISTICAL DATA
T-TYPE

is a listing of the edited record from the input data set. This
data, which constitutes the bulk of the printout, is the
programming data and machine data collected at the time of the
error.

Additional data
is a listing of records that were recorded in the SYS1.LOGREC data
set while the program was being executed.

The heading:

• THE FOLLOWING RE'S WERE GENERATED WHILE EXECUTING EREP

is followed by a printout of the records.

IFCEREPO Figure 2 shows a sample outboard printout of an environment
record that was processed by the outboard data editing and printing
section of the utility program. The record was generated by the OBR

I program on an IBM Systero/360 Model 30, 40, 50, 65, 67, 75, 85, 91, 95,
or 195 (indicated by UNIVERSAL in the printout). The device failure
occurred on a 2311 disk with a channel and unit address of 190.

IFCEREPO Figure 3 shows a sample statistical data printout of an
environment record that was processed by the stati'stical data editing
and printing section of the utility program. The record was generated
by the SDR recording program on an IBM System/360 Model 30, 40, 50, 65,
67, 75, 85, 91, 95, or 195 (indicated by UNIVERSAL in the printout).

Note: The format for the T-type record is variable and requires special
editing modules from the specific sub-types. Because of this variation,
no sample printouts are shown for T-type record editing.

The IFCEREPO Program 141

•

r---,
IENVIRONMENT RECORD EDITING AND PRINTING PROGRAM
IOUTBOARD DATA EDITING AND PRINTING SECTION
1
lMODEL-UNIVERSAL
1--- RECORD ENTRY SOURCE - OBR
ICHANNEL/UNIT ADDRESS 0190
IPROGRAM IDENTITY IFCEPOOO

TYPE - OUTBOARD
DEVICE TYPE 2311
VOLUME LABEL 111111

I DAY YEAR
IDATE -024 66
I CC
IFIRST CCW 31
lFAILING CCW 31
I K
lCSW 00
I UNIT STATUS
I ATTENTION

DA FL
0061DB 40 00
0061DB 40 00

CA US CS
0061ES OE 40

I STATUS MODIFIER
I CONTROL UNIT END
1 BUSY

o
o
o
o
1
1
1
o

I CHANNEL END
1 DEVICE END
1 UNIT CHECK
1 UNIT EXCEPTION
ILAST SEEK ADDRESS

HH MM SS TH
TIME

CT
00 00 3S.70

0005
0005

CT
0005

CHANNEL STATUS
PRGM-CTLD IRPT
INCORRECT LENGTH
PROGRAM CHECK
PROTECTION CHECK
CHAN DATA CHECK
CHAN CTL CHECK
I/F CTL CHECK
CHAINING CHECK

o
1
o
o
o
o
o
o

1 M B B C C H H R
100000000 00000000 00000000 00000000 11100010 00000000 00000100 00000001
ISENSE BYTE DATA
1 B~~E 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5
I 00000001 00110111 11110000 00010011 01111111 00000001
I
lBYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4 BYTE 5
I
ICOMND REJ 0 DATA CHK 0 UNSAFE 1 READY 0 BIT 0 0 COMMAND 0
lINTV REQ 0 TRK OVERF 0 BIT 1 1 ON LINE O,BIT 1 1 IN 0
IBUS OUT 0 CYL END 1 SERIAL CH 1 UNSAFE 0 BIT 2 1 PROGRESS 0
lEQUIP CHK 0 INV SEQ 1 TAG LINE 1 BIT 3 1 BIT 3 1 WHEN 0
lDATA CHK 0 REC UNFND 0 ALU CHK 0 ON LINE 0 BIT 4 1 OVERFLOW 0
lOVERRUN 0 FILE PROT 1 UNSEL STA 0 CYL END 0 BIT 5 1 INCMPLETE 0
ITRK COND 0 MISG A MK 1 BIT 6 0 BIT 6 1 BIT 6 1 OCCURS 0
lSEEK CHK 1 OVFL INC 1 BIT 7 0 SEEK INCR 1 BIT 7 1 1 L ___ J

IFCEREPO Figure 2. Sample Printout -- Outboard Data Editing and
Printing Section

r---,
IENVIRONMENT RECORD EDITING AND PRINTING PROGRAM
ISTATISTICAL DATA EDITING AND PRINTING SECTION
I
lMODEL-UNIVERSAL
l--- RECORD ENTRY SOURCE - SDR
lCHANNEL/UNIT ADDRESS 0190
ITEMPY RDS 00003
IINTRVN REQD 00000
lEQUIP CHK 00000
lTRK CND 00000
I UNSAFE 00000
ISER/DESER 00000
lALU 00000
IMISG ADR MKR 00000

TYPE - STATISTICAL
DEVICE TYPE 2311
TEMPY WRT
BUS OUT CHK
OVERRUN
SEEK CHK

CHAN TAG LINE

DATA

00000
00000
00000
00000

00000

L __ _

IFCEREPO Figure 3. Sample Printout -- statistical Data Editing and
Printing Section

142

Accumulating Selected Records

Selected machine-check, channel inboard, or I/O outboard records can be
moved from the SYS1.LOGREC data set to a history data set or from a
history data set to a second history data set. In this manner, an
accumulation of specific error conditions can be retained on a selected
volume.

Notes: The format of a record in a history data set is identical to the
format of a record in the SYS1.LOGREC data set; that is, a record is not
altered when it is moved from the SYS1.LOGREC data set to a history data
set.

Selected records from an input dat.a set can be wri·cten and
accumulated in one execution of the program. If the SYS1.LOGREC data
set is used as the input data set, those input records that are
accumulated in the output are cleared to hexadecimal zeros in the
SYS1.LOGREC data set.

§~mmarizinq selected Records

Selected machine-check, channel inboard, or I/O outboard records from
the SYS1.LOGREC data set or from a history data set can be summarized.
A summary printout consists of a list of pertinent items extracted from
selected records. The frequency of occurrence of each item is included
in the summary printout.

Machine-check and channel inboard summaries differ frore model to
model, due to different hardware configurations; I/O outboard summaries
do not differ from model to model.

The program summarizes items that provide, in themselves, clues as to
the type of machine malfunction. In general, registers are not
summarized; however, if, in themselves, they provide clues as to the
type of machine malfunction, they are summarized. The format of a
summary depends upon the type of summary.

Machine-Check Summary: A machine-check summary can be generated on IBM

Isystem/360 Models 40, 50, 65, 67, 75, 85, 91, 95, and 195. A summary
consists of:

• Items that provide clues as to the type of machine malfunction.

• Parity information for (1) registers in the diagnostic scan-out area
(logout area), (2) general purpose registers, and (3) floating point
registers.

• The status of binary triggers recorded in the logout area.

Note: Model 85 summarizes the error triggers only.

IFCEREPO Figure 4 shows the format of a machine-check summary. Each
summarized item is listed with its frequency of occurrence.

The IFCEREPO Program 143

•

r--,
j *** MOD xx MACHINE-CHECK SUMMARY *** I

NUMBER OF RECORDS EXAMINED = 10 I

TITLE
ROBAR SUMMARY

OAAAA
lBBBB
lCCCC

(UP
TOTAL

TO FIRST
3
4
3

10)

LOGOUT REG PARITY CHECK SUMMARY
REG A 5
REG B . 2
REG C 3

CHECKS AND INDICATORS SUMMARY
ROAR CHECK 1
LSAR PTY CHECK 3
H DECODE CHECK 4
D/Y8 CHECK 2

I
I
I
I
I

L __ J

IFCEREPO Figure 4. Machine-Check Summary

Channel Inboard Summary: A channel inboard summary can be generated on I IBM System/360 Models 40, 50, 65, 75 85, 91, and 195. (Model 67 and
Model 95 channel inboard summaries are identified as Model 65 and 91
summaries., respectively.) Channel inboard records are summarized
according to channel address. Each channel summary contains:

• The addresses of devices connected to the channel (a maximum of 10
devices).

• The status of hardware elements (pertaining to the channel) in the
logout area.

• A summary of failing CCW command codes (a maximum of 24 entries).
(The 24th CCW command code entry is a logical OR of the remainder of
the failing command codes, if any.)

IFCEREPO Figure 5 shows the format of a channel inboard summary_
Each summarized item is listed with its frequency of occurrence.

I/O Outboard Summary: An I/O outboard summary can be generated on IBM

ISystem/360 Models 30,40, 50, 65, 67,75, 85, 91, 95, and 195. I/O
outboard summaries are organized according to deyice address; however,
the order of appearance of the summaries is determined by the order in
which device addresses are encountered in the OBR records selected for
summarization. Each I/O outboard summary contains:

• Volume labels (a maximum of 10 entries).

• A summary of failing CCW command codes (a maximum of 24 entries).
(The 24th CCW command code entry is a logical OR of the remainder of
the failing command codes, if any.)

• The sense bits (a maximum of 6 bytes).

Note: Selected records can be edited and written, accumulated, and/or
summarized in one execution of the program.

IFCEREPO Figure 6 shows the format of an I/O outboard summary. Each
summarized item is listed with its frequency of occurrence.

144

r---,
1 *** MOD xx CHANNEL 1 SUMMARY ***
I TOTAL NO. OF RECORDS FOR THE CHANNEL = 20
I
I
I
I
I
I
I

TITLE
SUMMARY OF

(MAX 10
180
190
1FO
UNDET.

TOTAL
DEVICE ADDRESSES
ENTRIES)

5
6
5
4

SUMMARY OF CMND CODES
(MAX 24 ENTRIES)
CMND CODES TOTAL
'01' 7
'02' 6
'12' 3
'14' 4

SUMMARY OF HARDWARE LOGOUT
IF PARITY 8
WLR WR 6
IF TAG CHK 2
WO PARITY CHK 4

IFCEREPO Figure 5. Channel Inboard Summary

r---,
I SUMMARY OF I/O OUTBOARD ENVIRONMENT RECORDS FOR DEVICE 031 1
1 TOTAL NUMBER OF RECORDS 005 DEVICE TYPE 2311 I
I I
I VOLUME LABELS ENCOUNTERED (MAXIMUM OF 10 ENTRIES) I
I VOL. LABEL 22222 001
, VOL. LABEL 22223 002
I VOL. LABEL 22224 002 ,
I
I
I
I

CCW COMMAND CODES ENCOUNTERED (MAXIMUM OF 24 ENTRIES)
CMND TOTAL
02 005

I SENSE BYTE SU~ffiRY
I
IBYTE 0 BYTE 1 BYTE 2 BYTE 3 BYTE 4
I

BYTE 5

ICMND REJ 0 DATA CriK 0 UNSAFE 1 READY 0 BIT 0 0 CO~~ND OJ
IINTV REQ 0 TRK OVERF 0 BIT 1 2 ON LINE 0 BIT 1 1 IN 01
IBUS OUT 0 CYL END 1 SERIAL CH 3 UNSAFE 0 BIT 2 2 PROGRESS 01
IEQUIP CHK 0 INV SEQ 2 TAG LINE 4 BIT 3 1 BIT 3 3 WHEN 01
IDATA CHK 0 REC UNFND 0 ALU CHK 0 ON LINE 0 BIT 4 4 OVERFLOW 01
I OVERRUN 0 FILE 'PROT 3 UNSEL STA 0 CYL END 0 BIT 5 5 INCMPLETE 01
ITRK COND 0 MISG A MK 4 BIT 6 0 BIT 6 1 BIT 6 1 OCCURS 01
ISEEK CHK 1 OVFL INC 5 BIT 7 0 SEEK INCP 1 BIT 7 1 11 l ___ J

IFCEREPO Figure 6. I/O Outboard Summary

The IFCEREPO Program 145

•

Processing Records Produced on a Different Machine Model

Records from the SYS1.LOGREC data set or from a history data set can be

I

edited and written, accumulated, or summarized by IBM System/360 Models
30, 40, 50, 65, 67, 75, 85, 91, 95, and 195. In addition, a data set
recorded on one system can be written by a second system of the same or
different model number, provided the system residence volumes of both
systems are mounted on the second system, and the serial numbers of the
volumes differ.

The job control language requirements are similar to those discussed
in the section "Job Control Statements;" however, since the applicable
IFCEREPO program resides on the original system residence volume, the
input stream must include:

• A ~OBLIB DD statement preceding the EXEC statement to make the
original system's link library available to the second system.
Within the DD statement, the UNIT parameter specifies the unit on
the second system that contains the original system residence
volume, and the VOLUME parameter specifies the volume serial number
of the original system residence volume.

Note: If the original system's link library resides on a volume other
than the system residence volume, that volume must also be mounted on
the second system.

Inputs and Outputs
IFCEREPO Table 1 shows the input to and outputs from the IFCEREPO
program.

IFCEREPO Table 1. Data sets Used (Input) and Produced (Output) by the
IFCEREPO Program

r-------T---------------------------------~----------------------------,
IInput IInput Data set: This data set contains the error environment I
I Irecords that are to be edited and written, accumUlated, and/or I
I I summarized. The data set is organized sequentially. It can I
I Ibe either the SYS1.LOGREC data set or an accumulated (history) I
I Idata set. I
~-------+--~
OutputslEdited Output Data Set: This data set contains:

I
I • Edited and written records.
I • Summarized records.
I • Informational messages.
I
IThe sample printouts shown in the section "Editing and Writing
ISelected Records" are examples of edited data sets that have
Ibeen written onto a printer.
I
I Note: Error'messages, if applicable, appear on the console
I typewriter.
I
IAccumulated Output Data Set: This data set contains a history I
lof selected error environment records. It is produced or I
lupdated when the accumulation function of the program is I

I I specified. The data set is organized sequentially. I L _______ ~ __ J

146

Control

The IFCEREPO program is controlled by job control statements. No
utility control statements are required.

JOB CONTROL STATEMENTS

IFCEREPO Table 2 shows the job control statements necessary for
executing the IFCEREPO program.

IFCEREPO Table 2. Job Control Statements for the IFCEREPO Program
r------------T---,
I Statement I Usage I
~------------+---~
I JOB IThis statement initiates the job. I
I statement I I
~------------+---~
I EXEC IThis statement specifies the program name (PGM=IFCEREPO) I
I statement land PARM parameter information used to control the I
I Ifunctions of the program. Refer to -PARM Parameter I
I IControl Information- for a discussion of program control. I
~-----------+---~,
ISERLOG IThis statement defines the input data set as being the I
jDn ISYS1.LOGREC data set. Either this DD statement or the I
I statement IACCIN DD statement is present for each application of thel
I IIFCEREPO program. I
~------------+---~
I ACCIN IThis statement defines the input data set as being a I
IDn Ihistory (previously accumulated) data set. Either this I
I statement Inn statement or the SERLOG DD statement is present for I
I leach application of the program. I
~-----------+---~
IEREPPT IThis statement defines the edited output data set. It I
IDD Ishould be included with each application of the program. I
I statement I I
~------------+---~
I ACCDEV IThis DO statement (optional) defines an accumulated I
IDO loutput data set. The accumulated data set can reside on I
I statement Imagnetic tape or a direct access volume. Space must be I
I lallocated for a new output data set that is to reside on I
I la direct access volume. Space cannot be allocated for ani
I lexisting output data set. I
~------------+---~
I Notes: The SERLOG, ACCIN, EREPPT, and ACCDEV DD statements define I
Isequential data sets. I
I I
IIf records produced on a different machine model are to be processed, I
la JOBLIB on statement is required to define the original system's link I
I library. I
I I
IRefer to -IFCEREPO Examples- for typical uses of the job control I
I statements. I L __ J

The IFCEREPO Program 147

I

PARM Parameter Control Information

The PARM parameter within the EXEC statement is used to control the
functions of the IFCEREPO program.

r--[~J-----------------1

I PARM=(rectype,model,date,cuu,devtype,N,print,A,R, T) I L __ J

rectype
specifies the type of records to be processed.

r------T---,
I Code I Meaning I
~------+---~
I M I Machine-check records I
~------+---~
I C I Channel inboard records I
~----+--~
I 0 I I/O outboard records I
~------+---~
I s I statistical data records I
~------+---~ I I TP I T-type records I L ______ ~ __ J

A combination of record types can be specified. For example,
PARM=(MC, •••). If no record type is specified, all record types are
processed.

model

date

cuu

148

indicates that all specified records created on the model or models
specified are to be processed. Any combination of model numbers
40, 50, 65, 67, 75, 85, 91, 95, and 195 is valid.

Note: If 67 is specified as a model number, either D or T must
also be included in the PARM field.

indicates that all of the selected record types generated within a
specific period of calendar time are to be processed. The date is
written y~ddd~Y2ddd2' where y~ and ddd~ are the year (of the
decade) and day (of the year) when the time period begins, and
Y2ddd2 are the year and day when the period ends. For example,
PARM=(M,10011007, •••) specifi~s that machine-check records
produced in week 1 of the first year of the decade are to be
written.

If no date is specified, all selected records are processed,
regardless of when they were generated.

indicates that I/O outboard or statistical data records, or both
(as specified in the rectype subparameter)~ that are related to a
specific channel(s) and unit(s) are to be processed. This
subparameter is specified as cuu (one ch~nnel and unit address> or
cuucuu (two channel and unit addresses).

If cuu is not specified, selected I/O outboard or statistical data
records are processed,- regardless of device address.

devtype

N

print

indicates that I/O outboard or statistical data records, or both
(as specified in the rectype subparameter), that are related to a
specific device type are to be processed. This subparameter
specifies a valid device type; for example, 2311 (disk), 2400
(9-track magnetic tape).

If devtype is not specified, selected I/O outboard or statistical
data records are processed, regardless of device type.

indicates that input records in the SYS1.LOGREC data set are not to
be cleared to hexadecimal zeros after they are processed. If this
subparameter is omitted, the selected records are cleared after
they are processed. N must not be coded if the accumulate function
is specified. N is not applicable if the input is a history data
set; i.e., records are not cleared to zeros in the history data
set.

Note: It is possible that the user use an operating system on
several machines (portability). In this portability environment,
the operator must copy SYS1.LOGREC (by running EREP program) onto
tape before the system packs are moved to another machine so that
the environmental data can later be related to the system that
generated it. N should not be coded in this portability
environment.

indicates how the records are to be processed and written.

r------T---,
I Code I Meaning I
~------+---~
I SU I Suppress full printing <print summary only). I
~------+---~
I PT I Suppress summary printing (print full record only). I
~------+---~
I Z I Suppress full record printing and summary printing. I
~------+---~
I PS I Print full record and summary. I L ______ ~ ___ J

A

R

If print is not coded, PS is assumed.

indicates that all selected records (except statistical data
records) are to be accumulated. If A is coded:

• The N subparameter must not be coded.

• statistical data records are not accumulated.

• A value of S in the rectype subparameter is invalid unless at
least one additional value is included (e.g., M, C, or 0), "in
which case the S is valid, but ignored for accumulation.

indicates that the input data set is a history data set, rather
than the SYS1.LOGREC data set.

If R is coded, the input data set must be defined with an ACCIN DD
statement.

D or T
D specifies that mod 1 Model 67 records are to be processed.

The IFCERBPO Program 149

•

T specifies that mod 2 Model 67 records are to be processed.

Note: In order for the program to recognize Model 67 records
existing in the SYS1.LOGREC data set, either D or T must be
specified. However, when D or T is specified, any Model 65 machine
check (CPU) records are handled as though they are Model 67
records. Furthermore, if accumulation is specified, any Model 65
machine check records encountered are accumulated as Model 67
records.

Neither D nor T is specified when the input is a, history data set.

If a value is omitted from the PARM parameter, its absence need not
be indicated by a comma; e.g., PARM=(M"""A,R) can be coded as
PARM=(M,A,R). Commas following the last value need not be coded; e.g.,
PARM= CM, PT) •

If the PARM parameter is omitted from the EXEC statement:

• The full contents of all the record types are edited and printed.

• Machine-check, channel inboard, and I/O outboard records are
summarized and printed.

• No accumulation is performed.

• The input data set must be the SYS1.LOGREC data set.

• Each input record from the SYS1.LOGREC data set is cleared to zeros
when the program is executed.

Note: The header record is initialized in only those executions of the
program in which all records existing in the SYS1.LOGREC data set are
processed.

If any of the selective retrieval options are selected in the PARM
field the selected records are cleared to zero (O); however, the header
record is not initialized and the space on SYS1.LOGREC is not
relinquished for new records.

The selective retrieval options are:

• Rectype
• Model
• Date
• CUU
• Devtype

150

. IFCEREPO Examples

The following examples show some of the typical uses of the IFCEREPO program.

~9!Q: The SYS1.LOGREC data set mayor may not be cataloged at an installation.

!ECEREPO Example 1

r--·---------T------------------T---------------T---------------T------------------------,
I I Data Set I I I I
IOperation lorganization IInput Device IOutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
IEDIT & IInput-SEQUENTIAL IN/A ISystem output 11. All machine-check I
I WRITE IOutput-SEQUENTIAL I Idevice (printer I records are cleared I
I I I lassuwed). I to zeros in the I
I I I I I SYS1.LOGREC data set. I L .. ___________ .L __________________ .L ______________ .L _______________ .L _________________________ J

In this example machine-check records are to be written on the system output
device (printer assumed).

• The EXEC Statement: specifies the record type (machine-check) to be processed
and indicates that a full record printout is desired. Summary printing is
suppressed.

• The SERLOG DD statement: defines the input (SYS1.LOGREC) data set. The data
set is cataloged.

• The EREPPT DD Statement: defines the system output device (printer assumed).

r---,
I//JOBA JOB I
1// EXEC PGM=IFCEREPO,PARM=(M,PT) I
I//SERLOG DD DSNAME=SYS1. LOGREC, DISP= (OLD, KEEP) I
I//EREPPT DD SYSOUT=A I
[/* I L ___ J

IFCEREPO Example 1. Writing Machine-Check Records on the Printer (Full Record
Printout)

The IFCEREPO Program 151

•

IFCEREPO Example 2

r-----------T------------------T---------------T---------------T----------------------~'·-·l

1 1 Data Set 1 1 1 I
IOperation 1 Organization IInput Device loutput Device I comments I
~-----------+------------------+---------------+---------------+----------------------~ .. -~
IEDIT & IInput-SEQUENTIAL IN/A ITAPE- 7-track. 11. Machine-check recordEI
I WRITE. IOutput-SEQUENTIAL I 1 unlabeled. 200 I are cleared to zero I
1 SUMMARIZE I I Ibits-per-inch I in the SYS1.LOGREC 1
I I I Idensity. data I data set. 1
I I 1 I converter on I 1 L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ______________________ ~_J

In this example. date-dependent. machine-check records are to be written onto a
7-track magnetic tape volume at a density of 200 bits per inch.

• The EXEC Statement: specifies (1) the record type (machine-check) to be
processed. (2) the applicable time period. and (3) the type of printout (full
record and summary print).

• The SERLOG DD statement: defines the input (SYS1.LOGREC) data set. The data
set is cataloged.

• The EREPPT DD statement: defines the edited output data set. The output
records are written on a 7-track, unlabeled. magnetic tape volume at a density
of 200 bits per inch (with data converter on). The data set is cataloged for
ease of retrieval.

r--=,
l//JOBA JOB 1
1// EXEC PGM=IFCEREPO.PARM=(M,21102117.PS) I
I//SERLOG DD DSNAME=SYS1.LOGREC,DISP=(OLD,KEEP) I
1/ /EREPPT DD DSNAME=ERRDATA" UNIT=2400- 2. LABEL= (. NL) " I
1// DCB=(DEN=O,TRTCH=C>.DISP=(NEW.CATLG) I
1/* I L ___ - ___________________________________ J

IFCEREPO Example 2. Writing Date-Dependent Machine-Check Records on 7-Track Tape

152

IFCEREPO Example 3

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I I I 1
IOperation IOrganization IInput Device loutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
IEDIT & IInput-SEQUENTIAL IN/A ITAPE- 9-track, 11. Statistical data 1
I WRITE loutput-SEQUENTIAL I I unlabeled, 800 I records are cleared I
I I I Ibits-per-inch I to zeros in the I
I I I I density I SYS1.LOGREC data set. I L ___________ ~ __________________ 4 _______________ 4 _______________ 4 ________________________ J

In this example, statistical data records generated by a specific channel and
unit are to be written onto 9-track magnetic tape.

• The EXEC Statement: specifies (1) the record type (statistical data) to be
processed, (2) the applicable channel and unit address, and (3) the type of
printout (full record print).

• The SERLOG DD statement: defines the input (SYS1.LOGREC> data set. The data
set is cataloged.

• The EREPPT DO Statement: defines the edited output data set. The output
records are written on a 9-track magnetic tape volume at a density of 800 bits
per inch.- The data set is cataloqed for ease of retrieval.

r---,
II/JOBA JOB I
11/ EXEC PGM=IFCEREPO,PARM=(S,280,PT) I
IIISERLOG DD DSNAME=SYS1.LOGREC , DISP= (OLD, KEEP) I
IIIEREPPT DO DSNAME=ERRDATA,UNIT=2400,LABEL=(,NL),DISP=(NEw,CATLG) I •
1/* I L ___ J

IFCEREPO Example 3. Writing statistical Data Records Generated by a specific
Channel and Unit Onto 9-Track Tape

The IFCEREPO Program 153

IFCEREPO Example 4

r-----------T------------------T---------------T---------------T------------------------,
1 1 Data set 1 1 1 I
I Operation 1 Organization IInput Device IOutput Device I Comments I
~-----------+---~--------------+---------------+---------------+------------------------~
IEDIT & IInput-SEQUENTIAL IN/A IDISK - 2311 11. The selected records 1
I WRITE, I outputs-SEQUENTIAL 1 1 1 are cleared to zero I
1 SUMMARIZE, I I 1 1 in the SYS1.LOGREC I
IACCUMULATE I 1 I 1 data set. I L ___________ ~ __________________ ~ _______________ ~ ______ ---------~ ________________________ J

In this example, machine-check and channel inboard records are to be moved to
an accumulated output data set. In addition the records are summarized and
printed in a full record format.

• The EXEC Statement: specifies (1) the record types (machine-check and channel
inboard) to be processed, (2) the type of printout (full record and summary),
and (3) accumulation.

• The SERLOG DO Statement: defines the input (SYS1.LOGREC) data set. The data
set is cataloged.

• The EREPPT DO Statement: defines the edited output data set. The output
records are written on the system output device (printer assumed).

• The ACCDEV DO statement: defines the accumulated output data set. The data
set is cataloged for ease of retrieval.

r---,
I//JOBA JOB I
1// EXEC PGM=IFCEREPO,PARM=(MC,PS,A) 1
I//SERLOG DD DSNAME=SYS1.LOGREC,DISP=(OLD,KEEP) I
I//EREPPT DD SYSOUT=A I
I//ACCDEV DO DSNAME=ACCUMSET,UNIT=2311,DISP=(NEW,CATLG), 1
1// VOLUME=SER=111112,SPACE=(TRK,(40,10» I
1/* I L __ ---______________________________ J

IFCEREPO Example 4. Writing, Summarizing, and Accumulating Machine-Check and
Channel Inboard Records

154

IFCEREPO Example 5

r-----------T------------------T---------------T---------------T------------------------,
1 I Data Set I I 1 1
10peration 1 Organization IInput Device 10utput Device 1 Comments I
~-----------+------------------+---------------+---------------+------------------------~
IEDIT & IInput-SEQUENTIAL IN/A 11. PRINTER - 11. The input and output I
I WRITE, I Outputs-SEQUENTIAL I I (for the 1 history data sets arel
IACCUMULATE I I I edited I cataloged. I
1 I I I data set) 1 1
1 I I 12. N/A 12. The accumulated out- 1
1 1 I I (accumulated I put data set was I
1 I I 1 data set) 1 created prior to thisl
1 I I 1 I job step. I l ___________ ..L __________________ ..L _______________ ..L _______________ ..L ________________________ J

In this example, machine-check and I/O outboard records contained in a history
oata set are to be written onto a system output device (printer assumed). In
a.ddition, the records are to be moved from the history data set to a second
b.istory data set.

• The EXEC Statement: specifies (1) the record types (machine-check and I/O
outboard) to be processed, (2) the type of printout (full record), and (3)
accumulation. In addition, this statement identifies the input data set as
being a history data set.

• The ACCIN DD Statement: defines the input history data set. The data set is
cataloged.

• The EREPPT DD Statement: defines the edited output data set. 'l'he output
records are written on the system output device <printer assumed).

• The ACCDEV DD Statement: defines the accumulated output data set. The data
set was cataloged when it was created.

r---,
I//JOBA JOB I
1// EXEC PGM=IFCEREPO,PARM=(MO,PT,A,R) I
I//ACCIN DD DSNA¥£=HISTRYIN,DISP=(OLD,CATLG) I
I//EREPPT DD SYSOUT=A 1
I//ACCDEV DD DSNAME=EXISTACC,DISP=(MOD,CATLG) 1
1/* 1 L ___ J

IFCEREPO Example 5. Accumulating and Writing Machine-Check and I/O Outboard
Records Contained in a History Data Set

The IFCEREPO Program 155

•

IFCEREPO Example 6

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I I I ,
IOperation IOrganization IInput Device IOutput Device ,Comments 1
~-----------+------------------+---------------+---------------+------------------------~
IEDIT & IInput-SEQUENTIAL IN/A 11. PRINTER 11. The accumulated data I
I WRITE, I Outputs-SEQUENTIAL I I <edited I set is used as input I
IACCUMULATE I I I data set). I in the second job 1
I I I 12. N/A 1 step. ,
I I 1 I (accumulated I 1
I I I I data set). I I
~-----------+------------------+---------------+---------------+------------------------~
IEDIT & IInput-SEQUENTIAL IN/A I PRINTER I I
I WRITE IOutput-SEQUENTIAL I I I I L ___________ ~ __________________ ~ _______________ ~ _______________ ~-_______________________ J

This example is a two-step job. Together the job steps are to produce a
printout of machine-check records from the SYS1.LOGREC data set and machine-check
records from a history data set.

The first job step (STEPA):

• Edits and writes machine-check records contained in the SYS1.LOGREC data set.

• Accumulates machine-check records in an existing accumulated data set. (This
data set is used as input in the second job step.)

The second job step (STEPB):

• Uses the accumulated data set from step 1 as input.

• Edits and writes the machine-check records contained in the input data set.

STEPA:

• The EXEC Statement: specifies (1) the record type (machine-check) to be
processed, (2) the type of printout (full record), and (3) accumulation.

• The SERLOG DD Statement: defines the input (SYS1.LOGREC) data set. The data
set is cataloged.

• The EREPPT DD statement: defines the edited output data set. The output
records are written on the system output device (printer assumed).

• The ACCDEV OD Statement: defines the accumulated output data set. The data
set was cataloged when it was created.

STEPB:

• The EXEC Statement: specifies the record type (machine-check) to be
processed, and the type of printout desired. In addition, it identifies the
input data set as being a history data set.

• The ACCIN DO Statement: defines the history (input) data set. The data set
is cataloged.

• The EREPP'!' OD Statement: defines the edited output data set. The output
records are written on the system output device (printer assurred).

156

r---,
I//JOBA JOB 1
1/ /STEPA EXEC PGM=IFCEREPO" PARM= (M, PT ,A) I
I//SERLOG DD DSNAME=SYS1.LOGREC,DISP=(OLD,CATLG} I
I//EREPPT DD SYSOUT=A I
I//ACCDEV DD DSNAME=HISTORY~DISP=(MOD,CATLG} I
1/* I
l//STEPB EXEC PGM=IFCEREPO,PARM=(M,PT,R} I
I//ACCIN DD DSNAME=HISTORY,DISP=(OLD,CATLG) I
l//EREPPT DD SYSOUT=A I
1/* I L ___ J

IFCEREPO Example 6. Writing Recently Generated Machine-Check Records and
Accumulated Machine-Check Records (for Comparison)

The IFCEREPO Program 157

•

IFCEREPO Example 7

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I I I I
IOperation I Organization I.Input Device loutput Device I Comments I
~-----------t------------------t---------------t---------------t------------------------i
IEDIT & IInput-SEQUENTIAL IN/A I PRINTER 11. statistical data rec-I
I WRITE, IOutput-SEQUENTIAL I I lords are not cleared I
ISUMMARIZE I I 1 I to zeros in the I
I 1 I 1 I SYS1.LOGREC data set. I L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, statistical data records generated by another IBM System/360
Computing System are to be written onto the printer.

• The JOBLIB. DD Statement: defines the original system's link library. This
statement ensures that the IFECREPO program that belongs to the original
system is executed.

• The EXEC Statement: specifies the record type (statistical data) to be
processed, and the type of printout (full record) desired. In addition, it
specifies that statistical data records are not to be cleared to zeros after
they are processed.

• The SERLOG DD statement: defines the input (SYS1.LOGREC) data set.

• The EREPPT DD Statement: defines the edited output data set. The output
records are written on the system output device (printer assumed).

r---,
I//JOBLIB DD DSNAME=SYS1.LINKLIB,UNIT=191,DISP=<OLD,KEEP), I
1// VOLUME=SER=222222 I
1// EXEC PGM=IFCEREPO,PARM=(S,N,PT) I
I//SERLOG DD DSNAME=SYS1.LOGREC,UNIT=191,DISP=(OLD,KEEP), I
1// VOLUME=SER=222222 I
I//EREPPT DD SYSOUT=A I
1/* I L __ .,J

IFCEREPO Example 7. Writing Machine-Check Records Generated by Another IBM
system/360 Computing System Onto the Printer

158

The IFCDIPOO Program

Program Application
The SYS1.LOGREC data set is automatically initialized when the system is
generated. The IFCDIPOO system utility program is used to reinitialize
the SYS1.LOGREC data set in the event it is destroyed (indicated by an
IFB004I or IFB001I message to the operator).

Program Output
The program produces a reinitialized SYS1.LOGREC data set as output.

Program Control
The program is executed and controlled by job control statements. (No
utility control statements are required.)

JOB CONTROL STATEMENTS

IFCDIPOO Table 1 shows the job control statements necessary for
executing the IFCDIPOO sytem utility proqram.

IFCDIPOO Table 1. Job Control Statements for the IFCDIPOO Program
r------------T---,
I Statement I Usage I
~------------+---~
I JOB IThis statement initiates the job. I
I statement I I
~------------+---~
I EXEC This statement specifies the program name (PGM=IFCDIPOO)
I statement and PARM=nnnxx
I where
I
I
I
I
I
I
I
I
I
I
I

nnn

xx

is the number of uniquely addressable devices plus
an additional count for each 2314 in the system, and

is a hexadecimal code number for the system
residence device type.

Code en-
02
03

Device Type
IBM 2311 Disk Storage Drive
IBM 2301 Drum Storage Drive
IBM 2303 Drum Storage Drive

1 08 IBM 2314 Direct Access storage Facility
~------------+---~
ISERERDS IThis statement defines the output (SYS1.LOGREC) data set.1
IDD IThe statement should include the DSNAME, DISP, UNIT, and I
I statement IVOLUME parameters. I
~------------~--~
lNote: The hexadecimal code (xx) included in the PARM parameter of the I
IEXEC statement must indicate the type of device originally chosen as I
Ithe system residence device type. I L __ J

The IFCDIPOO Program 159

•

IFCDIPOO Example
IFCDIPOO Example 1 shows how the SYS1.LOGREC data set is reinitialized in a system
containing 21 uniquely addressable devices. An IBM 2311 Disk storage Drive was
originally chosen as the system residence device.

IFCDIPOO.Example 1

r------~---------T-----------------------T--,
1 Operation IData Set Organization ISystem Residence Device I
~----------------+-----------------------+--~
IINITIALIZE the ISEQUENTIAL IDISK - 2311 I
ISYS1.LOGREC 1 1 I
Idata set 1 1 I L ________________ ~ _______________________ ~ __ J

• The. EXEC .. Statement: specifies the program name, :the number of uniquely
addressable devices, and the system residence device type •

• The SERERDS DD Statement: defines the output (SYS1.LOGREC> data set.

r---,
I//INSERLOG JOB I
1// EXEC PGM=IFCDIPOO,PARM=02101 I
I//SERERDS DD DSNAME=SYS1.LOGREC,UNIT=2311,DISP=(OLD,KEEP), 1
1// VOLUME=SER=llllll 1
1/* I L ___ J

IFCDIPOO Example 1. Reinitializing the SYS1.LOGREC Data Set

160

The IEHDASDR Program

Program Applications

The IEHDASDR program prepares direct access volumes for IBM System/360
Operating System use and ensures that any permanent hardware errors
(i.e., defective tracks) incurred on direct access volumes do not
seriously degrade the performance of those volumes. In addition, the
IEHDASDR program can dump the entire contents or portions of a direct
access volume onto a volume or volumes of the same direct access device
type, onto a magnetic tape volume or volumes, or onto a system output
device. Data that is dumped onto a magnetic tape volume is arranged so
that it can subsequently be "restored" to its original organization by
the IEHDASDR program. The direct access device types supported by the
IBHDASDR program are: 2301. 2302, 2303, 2311, 2314, and 2321.

The program can be used to:

• ANALYZE -- analyze tracks, assign alternate tracks for defective
tracks, and perform housekeeping and formatting functions to make a
direct access volume suitable for IBM System/360 Operating System
use.

• FORMAT perform housekeeping and formatting functions without
analyzing tracks.

• LABEL -- change the volume serial number of a formatted direct
access volume.

• GETALT -- assign alternate tracks for specified defective or
questionable tracks on disk or data cell volumes.

• DUMP -- create a backup or transportable copy of a direct access
VOlume, or list the contents on a system output device.

• RESTORE copy "dumped" data from a magnetic tape volume onto a
direct access volume.

If during an ANALYZE, FORMAT, DUMP, or RESTORE operation, a password
protected data set is encountered, a message will be issued to the
operator, requesting him to reply with the proper password.

For most operations, multiple copies of a source volume can be made.
The program can also perform from two to six ANALYZE, FORMAT, DUMP, or
RESTORE operations concurrently; that is, up to six direct access
volumes can be analyzed or formatted or dumped simultaneously, or up to
six magnetic tape (restore) volumes can be processed simultaneously.

Analyzing the Recording Surface of a Direct Access Volume (ANALYZE)

The ANALYZE function:

• Assigns alternate tracks for any disk or data cell tracks found
defective during an analysis, or for any track previously flagged
defective. Each track can be analyzed from 1 to 255 times, at the
discretion of the user~ The test of looking for previously flagged
tracks must be suppressed when the ANALYZE function is specified for
a new or nonforrnatted direct access volume.

The IEHDASDR Program 161

•

• "standardizes" each track by placing a standard home address and a
record zero (RO) field on it. The remainder of the track is erased.

• constructs IPL bootstrap records (records 1 and 2 of track 0), a
volume label record (record 3 of track 0), and a volume table of
contents (VTOC>, whose size and placement are determined by the
user •

• Optionally writes an IPL program record (2301, 2303, 2311, and 2314
volumes only> and provides "owner" information in the volume label
record.

IEHDASDR Figure 1 shows a direct access volume after it has been
prepared for IBM System/360 Operating system use. A direct access
volume can be "initialized" in this manner by either the ANALYZE
function or the FORMAT function.

STANDARD HOME
ADDRESS

1

IEHDASDR Figure 1. An Initialized Direct Access Volume

162

Preparing a Direct Access Volume for System Use (FORMAT)

The FORMAT function prepares a direct access volume for use by the
system. This function differs from the ANALYZE function in that it does
not perform an analysis or assign alternate tracks. For this reason,
the FORMAT function should not be used for the first initialization of a
volume.

The FORMAT function:

• Checks a direct access volume for previously flagged tracks (except
for drum volumes>. No formatting is performed on known defective
tracks.

• Standardizes each track by placing a standard home address and a
record zero (RO) field on it. The remainder of the track is erased.

• Constructs IPL bootstrap records (records 1 and 2 of track 0), a
volume label record (record 3 of track 0), and a volume table of
contents (VTOC), whose size and placement are determined by the
user.

• Optionally writes an IPL program record (2301, 2303, 2311, and 2314
devices only) and provides owner information in the volume label
record.

Changing the Volume serial Number of a Direct Access Volume (LABEL)

The LABEL function changes the volume serial number of a direct access
volume. Optionally, this function places a 1- to 10-character owner
name in the volume label record (record 3 of track 0). If an owner name
already exists, it is overwritten with the new name.

Note: The LABEL function can only be used on an initialized volume.

All cataloged data sets residing on a volume whose label is changed
must be recataloged, if the catalog reflects the old serial number.

Assigning Alternate Tracks for Specified Tracks (GETALT)

The GETALT function assigns an alternate track for a specified track on
a data cell or disk volume. An alternate track can be assigned for any
track, whether it is defective or not. If the specified track is an
alternate, a new alternate is assigned; if the specified track is an
unassigned alternate, it is flagged to prevent its future use. The
GETAL~ function can be performed only if the data cell or disk volume
has been previously initialized.

Notes: If it becomes necessary to assign an alternate track on a drum
volume, an IBM customer engineer should be notified.

A list of, defective tracks is provided with new IBM Disk Storage
Devices. The GETALT function can be used to assign alternate tracks for
those tracks mentioned on the list.

The IEHDASDR Program 163

Creating a Backup. Transportable. or Printed Copy (DUMP)

The IEHDASDR program can dump a direct access volume or a portion of a
volume onto any number of magnetic tape volumes or volumes of the same
direct access device type, or onto a system output device. The program
can dump a single track, a group of tracks, or an entire volume.

When an entire volume is dumped:

• All primary tracks (for which no alternate tracks are assigned) are
dumped •

• When a primary track is found to have an alternate track assigned,
the alternate is dumped in place of the primary.

Each track to be dumped will have all of its data except the home
address and the count field of record zero (RO) copied from it onto the
receiving volume.

A receiving direct access volume retains its own serial number unless
the user specifies that it is to be assigned the serial number of the
direct access volume being dumped.

Note: Except for a printing operation, only data that is ·owned" is
dumped; that is, the IEHDASDR program checks the first or only Format 5
data set· control block (DSCB) in the volume table of contents. The
Format 5 DSCB identifies unowned (unused) space on the direct access
volume. Whenever an unowned track is encountered, a dummy record,
containing a home address and record zero, is written on the receiving
volume. When data is dumped onto a system output device, the entire
range of specified tracks is dumped.

A printing operation prints each record in hexadecimal.
all printable characters are also represented in EBCDIC.

In addition,

IEHDASDR Figure 2 shows the format of printed output. Each track is
identified by its absolute track address (cccchhhh). The RO data field
is printed on the same line as the track address. Each printed record
is preceded by a count field that identifies the applicable track
address (cccchhhh), the record number of the record being printed (rr),
and the key and data length (kk and dddd) of the record.

Note: If an alternate track is printed in place of a primary track, it
is identified in the printout by the primary track address.

••• TRACK cccchhhh RO DATA xxxxxxxxxxxxxxxx

COUNT cccchhhhrrkkdddd
key and data fields (hexadecimal) key and data fields (EBCDIC)

000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx ••••••••••••••••••••••••••••••••••
000032 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx ••••••••••••••••••••••••••••••••••

etc.

COUNT cccchhhhrrkkdddd

000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx ••••••••••••••••••••••••••••••••••
000032 xxxxxxxx xxxxxxxx xxxxxxxx etc.

• •• TRACK cccchhhh RO D~TA xxxxxxxxxxxxxxxx

COUNT cccchhhhrrkkdddd

000000 xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx ••••••••••••••••••••••••••••••••••
000032 xxxxxxxx xxxxxxxx etc.

IEHDASDR Figure 2. Format of Printed Output When Dumping the Contents
of a Direct Access Volume Onto a Printer

164

Copying Dumped Data From a Magnetic Tape Volume to a Direct Access
Volume (RESTORE)

When a direct access volume is dumped onto a magnetic tape volume, the
data is placed in a format that is specially suited for the magnetic
tape volume. The IEHDASDR program can be used to restore the format of
the dumped data and place the data on the same type of direct access
volume as the original volume; that is, data originally dumped from a
2311 volume can be "restored" to a 2311 volume; data dumped from a 2314
volume can be restored to a 2314 volume, etc.

Identical copies of dumped data can be restored to any number of
volumes of the same direct access device type as the original volume
during the execution of a single restore operation. In addition, data
that was dumped by the IBCDMPRS (DUMP/RESTORE) independent utility
program can be restored.

A receiving direct access volume retains its own serial number unl-ess
the user specifies that it is to be assigned the serial number of the
direct access volume originally dumped. If multiple direct access
volumes are to be dumped to, and the user specifies that the serial
number of the dumped volume is to be propagated, all receiving volumes
are assigned that serial number.

Inputs and Outputs
The input to the IEHDASDR program is a control data set containing
utility control statements and optionally, IPL text. The utility
control statements are used to control the functions of the program and
to refer to DD statements defining volumes to be processed by the
program.

The primary output or result of executing the program is determined
by the function(s) that the user specifies.

A sequential message data set is created to list informational
messages (e.g., control statements used), dumped data (for a print
operation), and error messages, if any.

ADDITIONAL OUTPUTS

The IEHDASDR program provides a return code to indicate the results of
program execution. The return codes and their interpretations are:

00 successful completion.

04 an unusual condition was encountered; however, the overall
result is successful. A warning message is issued.

08 -- a specified operation did not complete successfully. An attempt
is made to perform additional specified operations, if any.

16 -- either an error occurred upon invoki~g the IEHDASDR program or
the program was unable to open the input or message data set.
The job step is terminated.

The IEHDASDR Program 165

Control
The IEHDASDR program is controlled by job control statements and utility
control statements. The job control statements are used to:

• Execute or invoke the program.
• Define the control and message data sets.
• Define volumes and/or devices to be used during the course of

program execution.

The utility control statements are used to control the functions of
the program.

JOB CONTROL STATEMENTS

IEHDASDR Table 1 shows the job control statements necessary for
executing or invoking the IEHDASDR program.

IEHDASDR Table 1. Job Control Statements for the IEHDASDR Program
(Part 1 of 3)

r------------T---,
I statement I Usage I
~-----------+---~
I JOB IThis statement initiates the job. I
I statement I I
~-----------+---~-----------~
I EXEC lThis statement specifies the program name (PGM=IEHDASDR) I
istatement lor, if the job control statements reside in a procedure I
I Ilibrary, the procedure name. This statement can include I
I loptional PARM information. For a discussion of the PARM I
I Iparameter, refer to "PARM information in the EXEC I
I 1 statement. " I
~------------+---~
ISYSPRINT IThis statement defines a sequential message data set. I
IDD IThe data set can be written onto a system output device, I
I statement la magnetic tape volume, or a direct access device. I
~------------~---~
I//anyname* DD UNIT=xxxx,VOLUME=SER=xxxxxx,DISP=OLD
I
IThis statement defines a direct access device type. One statement
I must be included for each device to be used in the job step.
I
IIf more than one volume is to be processed on a single mountable
ldevice, deferred mounting can be specified by including:
I
I UNIT=(xxxx"DEFER),VOLUME=(PRIVATE, •••),DISP=(NEW,KEEP)
I
lin a DD statement defining a mountable device.
I
I Notes: This DD statement is not used for an operation that analyzes
Ian offline direct access volume.
I
IIf an IEHDASDR operation changes a volume serial number and a
Isubsequent operation is performed on the newly labeled volume (in the
Isame job step), two of these DD statements are required. The VOLUME
Iparameter in the first DD statement includes the old volume serial
I number; the VOLUME parameter in the second statement specifies the new I
Ivolume serial number. In addition, the second DD statement specifies I
lunit affinity with the first. I L __ J

(Part 1 of 3)

166

IEHDASDR Table 1. Job Control statements for the IEHDASDR Program
(Part 2 of 3)

r------------T---,
I Statement I Usage I
t------------~---~
IIf the volume serial number of a volume to be processed online is not I
I known, it may be possible to make a nonspecific, PRIVATE volume I
Irequest on a specific unit; for example: I
I I
lUNIT=(191"DEFER),VOLUME=PRIVATE,DISP=(NEW,KEEP) I
I 1
lIn this case, the operator will be asked to mount a scratch (SCRTCH) 1
Ivolume on that unit. 1
I 1
lIt may also be possible to make a nonspecific unit request as shown inl
IAppendix D. The system will inform the operator on which unit to I
Imount the scratch volume. 1
I 1
IIf an IEHDASDR operation produces a serial number(s) that is a 1
Iduplicate of a serial number already allocated within the system, the I
IIEHDASDR program makes unavailable to the system the volume(s) to 1
,which it has assigned the serial number. The operator is asked to 1
'remove the applicable volume(s) at the completion of the function. ,
~-----------------------------~--~
I//tapename* DD UNIT=xxxx,VOLUME=SER=xxxxxx,LABEL=(••• , •••), C
1// DISP=(••• ,KEEP),DCB=(TRTCH=C,DEN=x)

: t 7-track only
IThis statement defines a magnetic tape drive. A version of this
Istatement must be included for a DUMP operation onto magnetic tape or
Ifor a RESTORE operation from magnetic tape.
I
IIf more than one magnetic tape volume is to be processed on the same
Itape drive, deferred mounting can be specified by including:
I
I UNIT=(xxxx"DEFER),VOLUME=(PRIVATE, •••)
I
lin the DD statement defining the magnetic tape drive.
~------------T---~
ISYSIN IThis statement defines the control data set. The data I
IDD Iset, which contains utility control statements, usually ,
I statement lfollows the job control statements in the input stream; I
1 I however. it can be defined alternatively as a blocked or ,
, lunblocked sequential data set or as a member of a 1
I Iprocedure library. ,
~------------~---~
I*The "anyname" and "tapename" DO statements are referred to by utilityl
I control statements for program operation. 1
1 1
IBoth the SYSIN and the SYSPRINT data set can have a blocking factor 1
lother than 1. If BLKSIZE is specified on the SYSIN DD statement, it I
lmust be a multiple of 80. If BLKSIZE is omitted from the statement, al
Iblock size of 80 bytes is assumed. If BLKSIZE is specified on the ,
lSYSPRINT DD statement, it must be a multiple of 121. If BLKSlZE is I
lomitted or if a block size other than ~ multiple of 121 is included. in,
lthe statement, a block size of 121 bytes is assumed. 1
, 1
ISYSIN data sets can be concatenated, provided that SYSIN attributes 1
tare identical. I
I ,
IData can be dumped from the system residence volume (the IPL volume); ,
lhowever, this is the only IEHOASDR operation that can be performed on I
Ithat volume. I L _____ ~ __ J

(Part 2 of 3)

The IEHOASDR Program 161

IEHDASDR Table 1. Job Control statements for the IEHDASDR Program
(Part 3 of 3)

r--,
Because the IEHDASDR program can change serial numbers and existing I
data on a direct access volume, operating precautions must be followed
by users who have two or more central processing units sharing the
same direct access volume.

If the IEHDASDR program is run in a multiprogramming environment, the
user must choose a combination of DD statements (defining mountable
devices) that will ensure that volume integrity is maintained. ReIer
to Appendix D Ior information on defining mountable volumes.

The IEHDASDR program always checks the volume table of contents of
each volume to be processed for the presence of password protected
data sets.

If password protected data sets reside on volumes which are used by
the IEHDASDR program. the following considerations must be made:

• When dumping from a volume containing password protected data
sets, each data set must be described in a separate DD statement
having a unique ddname. When the program is executed, the
operator must supply the correct password (in answer to a console
message) for each password protected data set.

• When dumping to a tape volume from a direct access volume
containing password protected data sets, the DD statement defining
the tape volume must include a DSNAME parameter. In addition, the
LABEL parameter must define a standard labeled tape, include a
PASSWORD subparameter, and specify or imply a file number of 1.

• When restoring from a tape volume, a DSNAME parameter must be
included in the DD statement defining the tape voluwe.

• During the DUMP, RESTORE, ANALYZE, and FORMAT functions, the
direct access "TO· volume is checked for password protected data
sets. At this time the operator must supply the correct password
(in answer to a console message) for each password protected data
set encountered.

Refer to the publication IBM system/360 Operating system: System
Programmer's Guide, GC28-6550, for additional information on password
protection facilities. I L __ J

Concurrent Operations: The IEHDASDR program can perform up to six
concurrent operations of the same type (ANALYZE, FORMAT, DUMP, or
RESTORE operations only). This feature, which can shorten the amount of
time required to execute the program, is controlled by (1) the number of
devices defined for use and (2) the physical arrangement of utility
control statements in the input stream. For example, assuming that the
required devices are defined and available, a combination of six
successive DUMP statements permits six concurrent dump operations to
take place; a combination of four successive RESTORE statements permits
four concurrent restore operations to take place, etc. However, if the
utility control statements are arranged so that no operations of the
same type appear in succession, e.g.,

DUMP
RESTORE
DUMP
RESTORE

no operations are performed concurrently, even though many devices might
be defined for use.

168

Note: The concurrent operation feature can be overridden by an EXEC
statement PARM value that permits explicit definition of the number of
successive like commands to be executed concurrently.

PARM Parameter Information in the EXEC statement

The EXEC statement for the IEHDASDR program can contain PARM information
that is used by the program to control line density on output listings
and to indicate the maximum number of operations of the same type that
can be performed concurrently in the job step.

//

The EXEC statement can be coded:

[

, PARM= , LINECNT=xx' J
EXEC PGM=IEHDASDR ,PARM='N=n'

,PARM='LINECNT=xx,N=n'

Where:

LINECNT=xx
specifies the number of lines per page in the listing of the
SYSPRINT data set. The number xx is a 2-digit decimal number
ranging from 01 to 99.

If LINECNT is omitted, the number of lines per page is 58.

N=n (applicable to the ANALYZE, FORMAT, DUMP, and RESTORE functions)
specifies a decimal number from one to six. The number represents
the maximum number of like functions that can be performed
concurrently by the IEHDASDR program.

If N is omitted, up to six like functions can be performed
concurrently.

IEHDASDR Table 2 shows the effect of the N keyword over concurrent
operations. This table assumes that adequate system resources are
available for each case.

IEHDASDR Table 2. Effect of the N Keyword Over Concurrent Operations
r---------T--,
IN not IUp to six operations are performed concurrently -- according I
Ispecifiedlto the number of successive like commands in the input I
I I stream. I
~--------+--~
IN=l IThe specified number of operations (N=n) is performed I
IN=2 Iconcurrently, provided that n number of successive like I
I N=3 I commands are included in the input stream. No more than n I
IN=4 Iconcurrent operations can be performed at anyone time in I
IN=5 Ithe job step; for example, if N=2 and four DUMP statements I
IN=6 lappear in succession, the first two dump operations are I
I Iperformed concurrently. As each dump operation is completed I
I land system resources become available, a new dump operation I
I I begins. I L _________ ~ __ J

Note: System resources permitting, multiple output copies can be
specified in anyone or all of the commands to be executed concurrently.

The IEHDASDR Program 169

UTILITY CONTROL STATEMENTS

Combinations of ANALYZE. FORMAT, LABEL. GETALT. DUMP. and RESTORE
utility control statements are used to control the functions of the
program. In addition, an IPLTXT utility control statement is used with
the ANALYZE or FORMAT control statement when IPL text is included in the
input stream.

The ANALYZE Statement

The ANALYZE statement causes bit patterns to be written on a track.
They are then read and tested for defects. If no defects are found. the
track is formatted to make it ready for system use.

r------T---------T-------------------------------------.----------------,
I Name IOper~tionlOperand I
~------+---------+---~
I [name 1 I ANALYZE I{TODD=(CUU ••••) }
I I I TODD=(ddname ••••)
I I I VTOC=xxxxx
I I I EXTENT=xxxxx
I I I [NEWVOLID=seria11
I I I [IPLDD=ddname1
I I I [FLAGTEST={ YES }.J
I I I NO
I I I [PASSES=n1
I I I [OWNERID=name1
I I I [PURGE={YES}]
I I I NO L ______ ~ _________ ~ ___ J

TODD=(cuu, •••) (used only for the analysis of a volume offline, which
includes the first analysis of a volume)

specifies the channel and unit address of a direct access device
containing a volume to be initialized. If the volume to be
processed is a 2321 volume. TODD=cuu/b is specified, where CUll is
the channel and unit address of the device. and b is the bin number
of the volume. No DD statement defining a mountable device is
required if TODD=(cuu ••••) or TODD=cuu/b is specified.

When TODD=(cuu ••••) or TODD=cuu/b, is coded. the specified devices
must be varied offline (by use of the VARY OFFLINE command) prior
to the execution of the job step.

TODD=(ddname ••••)
specifies the ddname of a job control statement defining a direct
.access device containing a volume to be analyzed. formatted, and
labeled. Multiple ddnames specifying additional jon control
statements can be included unless the TODD device is a 2321, in
which case only one DD statement can be referred to.

Note: If multiple volumes are specified in an ANALYZE statement and an
abnormal completion of the ANALYZE operation occurs, the operation is
terminated on all volumes.

VTOC=xxxxx

170

specifies a 1- to 5-byte decimal relative track address
representing a primary track on which the volume table of contents
is to begin. The VTOC cannot occupy:

• track O •
• track 1 if IPL text is written (2303 and 2311 volumes only).

EXTENT=xxxxx
specifies the decimal length of the VTOC in tracks. The VTOC
cannot extend into the alternate track area or onto a second

~~, volume.

NEWVOLID=serial (mandatory for the analysis of a volume offline)
specifies a 1- to 6-character serial number. The serial number is
assigned to all direct access volumes processed through the use of
this control statement.

If NEWVOLID is omitted, all direct access volumes retain their own
serial numbers.

IPLDD=ddname (applicable to 2301, 2303, 2311, and 2314 volumes)
specifies the ddname of a DD statement defining the data set
conta'ining the IPL program. The IPL program can be included in the
SYSIN (input stream) data set, or it can be defined as a sequential
data set or a member of a partitioned data set.

If IPL text is included in the input stream, an IPLTXT utility
control statement is used to separate the ANALYZE statement from
the IPL program text statements. The format of the IPLTXT utiltiy
control statement is:

r------T--,
I Name I Operation I
~------+--~
I [name] I IPLTXT I L ______ ~ __ J

IPL text need be included only once in the input stream; that is,
the IEHDASDR program refers to the first copy of IPL text
encountered when performing multiple functions in a single job
step. The IPL text must follow the first statement referring to
it.

FLAGTEST=NO (applicable to disk and data cell volumes; not applicable to
drum volumes)

specifies that the program is not to check for previously flagged
track on the volume. When FLAGTEST=YES is specified (or when the
FLAGTEST keyword is omitted) the program checks each data cell or
disk track prior to writing a bit pattern to see if the track was
flagged "defective" previously. (However, when a volume is
initialized offline, the program ignores any FLAGTEST keyword which
may have been specified. Offline operation of the program does not
check for flags.)

PASSES=n(applic~ble to disk and drum volumes)
specifies that the bit pattern test is to be performed n times,
where n is a decimal number from 1 to 255. I~ PASSES=n is omitted,
the bit pattern test will be performed once on each track.

PASSES=O(applicable to all direct access volumes supported by IEHDASDR)
specifies that the "QUICK DASDI" feature of the ANALYZE function is
to be performed. The "QUICK DASDI" feature bypasses all surface
analysis and track formatting, writing only a VTOC, track zero
records (IPL bootstrap and volume label records), and IPL text if
requested.

All previously initialized direct access devices supported by
IEHDASDR may be "QUICK DASDI' ed" while online. 'I'he offline "QUICK
DASDI" feature is only supported for factory initialized 2314
volumes. An offline "QUICK DASDI" request will always check for a
volume label, and if one is found, the function will be. terminated.

The IEHDASDR Program 171

•

The nQUICK DASDI" feature of the ANALYZE function should not be
used for initialization of new volumes other than the factory
initialized 2314 volumes.

OWNERID=name
specifies a 1- to 10-character name or other identifying
information to be placed in the volume label record. The field
should be specified as an EBCDIC character string with the
exclusion of the blank and the comma characters (these terminate
the control card scan of a field or an entire card).

PURGE=YES
indicates that all unexpired data sets on the volume can be
overwritten provided that the operator signals his concurrence when
the first unexpired data set is encountered. The operator replies
are:

r-----T---,
I Reply I Meaning I
~-----+---~
I U IAII unexpired data sets on this volume can be overwritten. I
I I (The ANALYZE operation continues.> I
~-----+---~
I ,T I This volume contains unexpired data sets that must not be I
I I overwritten. (The ANALYZE operation is terminated.) I L _____ ~ ___ J

If PURGE=NO is coded (or the PURGE keyword is omitted) and an
unexpired data set is encountered, the ANALYZE operation is
terminated.

Note: The PURGE keyword has no control over password protected
data sets; that is, the operator must always respond with the
proper password for each password protected data set encountered.
If he is unable to do so, the ANALYZE operation is terminated.

The FORMAT Statement

The FORMAT statement prepares a volume for IBM System/360 Operating
System use. Except for flag testing, no analysis is made prior to
formatting a track. Previously flagged disk tracks remain flagged and
will have alternate tracks assigned, where applicable.

Note: The FORMAT function is not applicable to the 2321 data cell. The
ANALYZE function should be used when initializing a 2321 volume. (If
FORMAT is specifi'ed for a 2321 volume, the ANALYZE function is
automatically performed.)

r------T--------~---,
I Name I Operation I Operand I
~------+---------+---~
I [name 1 I FORMAT ITODD=(ddname, •••) I
I I I VTOC=xxxxx I
I I I EXTENT=xxxxx I
I I I [NEWVOLID=seria11 I
I I I [IPLDD=ddname1 I
I I I [OWNERID=name 1 I
I I I .[PURGE={ YES}]' I
I I I NO I L ______ i _________ ~ ___ J

112

TODD=(ddname, •••)
specifies the ddname of a job control statement defining a direct
access device containing a volume to be formatted. Multiple
ddnames specifying additional job control statements can be
included.

Note: If multiple volumes are specified in a FORMAT statement and an
abnormal completion of the FORMAT operation occurs, the operation is
terminated on all volumes.

VTOC=xxxxx
specifies a 1- to 5-byte decimal relative track address
representing a primary track on which the volume table of contents
is to begin. The VTOC cannot occupy:

• track O •
• track 1 if IPL text is written (2303 and 2311 volumes only).

EXTENT=xxxxx
specifies the decimal length of the VTOC in tracks. The VTOC
cannot extend into the alternate track area or onto a second
volume.

NEWVOLID=serial
specifies a 1- to 6-character serial number. The serial number is
assigned to all direct access volumes processed through the use of
this control statement.

If NEWVOLID is omitted, the direct access volumes retain their own
serial numbers.

IPLDD=ddname (Applicable to 2301, 2303, 2311, or 2314 volumes)
specifies the ddname of a DD statement defining the data set
containing the IPL·program. The IPL program can be included in the
SYSIN (input stream) data set, or it can be defined as a sequential
data set or a member of a partitioned data set.

If IPL text is included in the input stream, an IPLTXT utility
control statement is used to separate the FORMAT statement from the
program text statements. The format of the IPLTXT control
statement is:

r------T--,
I Name I Operation I
~------+--~
I [name1IIPLTXT I L ______ ~ __ J

Note: IPL text need be included only once in the input stream;
that is, the IEHDASDR program refers to the first copy of .IPL text
encountered when performing multiple functions in a single job
step. The IPL text must follow the first statement referring to
it.

OWNERID=name
specifies a 1- to 10-character name or other identifying
information to be placed in the volume label record. The field
should be specified as an EBCDIC character string with the
exclusion of the blank and the comma characters (these terminate
the control card scan of a field or an entire card).

PURGE=YES
indicates that all unexpired data sets on the volume can be over
written provided that the operator signals his concurrence when the
first unexpired data s'et is encountered. The operator replies are:

The IEHDASDR Program 173

•

r-----T---,
I Replyl Meaning I
~-----+---i
I U IAII unexpired data sets on this volume can be overwritten. I
I I (The FORMAT operation continues.) I
~-----+--~--------i
I T IThis volume contains unexpired data sets that must not be I
I I overwritten. (The FORMAT operation is terminated.) I L _____ ~ ___ J

If PURGE=NO is coded (or the PURGE keyword is omitted) and an
unexpired data set is encountered, the FORMAT operation is
terminated.

Note: The PURGE keyword has no control over password protected
data sets; that is, the operator must always respond with the
proper password for each password protected data set encountered.
If he is unable to do so, the FORMAT operation is terminated.

The LABEL Statement

The LABEL statement changes the serial number of a direct access volume
and optionally updates the owner field in record 3 of track o.

r------T---------T---,
I Name I Operation I Operand I
~-----+---------+-~---~
I [name 1 I LABEL I TODD={CUU } I
I I I ddname I
I I I NEWVOLID=serial I
I I I [OWNERID=namel I L ______ ~ _________ ~ ___ J

TODD=cuu (used only for labeling an offline volume)
specifies the channel and unit address of a direct access device
containing a volume whose serial number is to be changed. If the
volume to be processed is a 2321 volume, TODD=cuu/b is specified,
where cuu is the channel and unit address of the device and b is
the bin number of the volume. No DD statement defining a mountable
device is required if TODD=cuu or TODD=cuu/b is specified.

One LABEL statement must be included for each volume that is to
have its serial number changed.

When TODD=cuu or TODD=cuu/b is coded, the specified device must be
varied offline (by use of the VARY OFFLINE command) prior to the
execution of the job step.

TODD=ddname
specifies the ddname of a job control statement defining a direct
access device containing a volume whose serial number is to be
changed. One LABEL s·tatement must be included for each voluroe that
is to have its serial number changed.

NEWVOLID=serial

174

specifies a 1- to 6-character serial number. The serial number is
assigned to the direct access volume processed through the use of
this control statement.

OWNERID=name
specifies a 1- to 10-character name or other identifying
information.

If OWNERID is omitted, the old owner information, if any, is
retained. The field should be specified as an EBCDIC character
string with the exclusion of the blank and the comma characters
(these terminate the control card scan of a field or an entire
card).

The GETALT Statement

The GETALT statement assigns an alternate track for a specified data
cell or disk track.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [name]IGETALT I TODD=ddname I
I I I TRACK=cccchhhh I L ______ ~ _________ ~ ___ J

TODD=ddname
specifies the ddname of a job control statement defining a data
cell or disk device containing a volume on which an alternate track
is to be assigned.

TRACK=cccchhhh
specifies in hexadecimal the cylinder number (cccc) and head number
(hhhh) of a track· for which an alternate track is requested. (When
referring to a 2321 volume, cccc is the subcell and strip address,
and hhhh is the cylinder and head address.

TRACK=cccchhhh cannot specify track 0 or the first track occupied
by the VTOC.

The DUMP Statement

The DU~~ statement dumps a single track, a group of tracks, or an entire
direct access volume onto one or more direct access volumes of the same
device type, onto one or more magnetic tape volumes, or onto a system
output device (printer assumed) •

.------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I £ name 1 I DUMP IFROMDD=ddname I
l I ITODD=(ddname, •••) I
I I I [CPYVOLID={YES}] I
I I I NO I
I I I [BEGIN=cccchhhh1 I
I I I [END=cccchhhh] I
I I I [PURGE={ YES}] I
I I I NO I L ______ ~ _________ ~ ___ J

FROMDD=ddname
specifies the ddname of the DD statement defining the device
containing the direct access volume from which a copy or copies are
to be made.

The IEHDASDR Program 175

TODD=(ddname, •••)
specifies the ddname of the system output device (SYSPRINT) or
specifies the ddnames of the DD statements defining the devices
containing the direct access or magnetic tape volumes on which
copies are to be made.

If TODD=SYSPRINT is coded~ the direct access volume described by
FROMDD is dumped to the system output device. If a permanent data
check or missing address marker is encountered while reading the
direct access volume, the defective records will be identified and
printed.

An extra I/O error (data check) message is generated at the console
when the dump to SYSPRINT function encounters one of the following
conditions:
• Missing address marker.
• Data check in count and key fields and/or data field.
• I/O error on a search command.
• Missing address marker and no address found.

The additional data check message printed at the console is
generated by the dump function's error recovery procedure. However
the additional message is not reflected by a SYNADAF message in the
SYSPRINT data set.

If a missing address marker is encountered during a space count
command, the function terminates with a return code of 8.

Note: If multiple output volumes are specified in a DUMP statement and
an abnormal completion of the DUMP operation occurs, the operation is
terminated on all output volumes.

CPYVOLID=YES
specifies that all rece~v~ng direct access volumes are to be
assigned the serial number of the dumped volume.

If CPYVOLID=NO is coded or the CPYVOLID keyword is omitted, all
receiving volumes retain their own serial numbers.

BEGIN=cccchhhh
specifies in hexadecimal a cylinder number (cccc) and head number
(hhhh) that identify the first track to be dumped. (When referring
to a 2321 volume, cccc is the subcell and strip address, and hhhh
is the cylinder and head address.)

If BEGIN is omitted, the DUMP operation begins with track O.

END=cccchhhh
specifies in hexadecimal a cylinder number (cccc> and head number
(hhhh) that identify the last track to be dumped. If only one
track is to be dumped, both the BEGIN and the END keywords specify
that track address. (When referring to a 2321 volume, cccc is the
subcell and strip address, and hhhh is the cylinder and head
address.)

If END is omitted, the last primary track of the volume is the last
track to be copied. (Alternate tracks are not dumped unless they
are assigned as alternates.)

PURGE=YES

176

indicates that all unexpired data sets on a receiving direct access
volume can be overwitten, provided that the operator signals his
concurrence when the first unexpired data set is encountered. The
operator replies are:

r-----T---,
I Reply I Meaning I
~-----+---~
I U IAII unexpired data sets on the receiving direct access I
I lvolume can be overwritten. (The DUMP operation continues.) I
~----~+---~
I TIThe receiving direct access volume contains unexpired data I
I Isets that must not be overwitten. (The DUMP operation is I
I lterminated.) I L _____ ~ ___ J

If PURGE=NO is coded (or the PURGE keyword is omitted) and an
unexpired data set is encountered on a receiving direct access
volume, the DUMP operation is terminated. The PURGE keyword is not
applicable when dumping onto a restore tape.

The PURGE keyword has no control over password protected data sets;
that is, the operator must always respond with the proper password
for each password protected data set encountered. If· he is unable
to do so, the DUMP operation is terminated.

CAUTIONS: The user is cautioned against performing such operations as
dumping a volume and restoring new data to that volume in the same job
step. The IEHDASDR program does not "flush" the input stream if an
operation is unsuccessful; that is, the program attempts to perform any
remaining functions after encountering an error. Thus, if a DUMP
operation is unsuccessful, data is lost if a subsequent RESTORE
operation places new data on the dumped volume.

"Partial dumps" of direct access volumes should be used with extreme
caution. Since only those tracks that are dumped are placed on the
receiving volume, the partially dumped data may not be usable under the
operating system. When partially dumped data is subsequently restored,
it is placed on the same tracks as it originally occupied.

When space permits, more than one direct access volume can be dumped
onto a restore tape. However, the IEHDASDR program creates two files
for each volume of data that is dumped. Therefore, the LABEL keyword
sequence number in the DD statement defining the restore volume must be
coded as follows:

LABEL=(3, •••)
LABEL=(S, •••)
LABEL=(7, •••)
etc.

for the second volume dumped onto the restore tape.
for the third volume dumped onto the restore tape.
for the fourth volume dumped onto the restore tape.

or, in the case of an IPL restore tape, as follows:

LABEL=(2, •••)
LABEL=(4, •••)
LABEL=(6, •••)
etc.

for the first volume dumped onto the restore tape.
for the second volume dumped onto the restore tape.
for the third volume dumped onto the restore tape.

The files are referred to in the same manner when restoring data onto a
direct access device.

When processing an unlabeled tape prior to a DUMP operation, the
IEHDASDR program will first write an end-of-file record (tapemark) then
continue processing.

I When dumping to or restoring from a tape, specified as standard label
or 'BLP', a disposition of KEEP should be specified in the DD statement
for the tape. Nonlabeled tapes may have other disposition parameters.

The IEHDASDR Program 177

I When restoring from a restore file on a tape, the same file sequence
number and tape label format used in the dump operation must be used.

Intermixing of restore files with system data sets is not recommended
because of the unique format of the restore file.

The RESTORE statement

The RESTORE statement restores a direct access volume or volumes from a
magnetic tape volume on which a dumped copy was previously placed.

Note: When a standard label restore tape created by IBCDMPRS is
restored by IEHDASDR, the DD card describing the tape for IEHDASDR can
specify LABEL=(,BLP). Bypass-Iabel-processing must have been sysgened
by specifying OPTIONS=BYLABEL on the SCHEDULR control card. "If
bypass-Iabel-processing is not available, any standard label tape
created by IBCDMPRS cannot be restored by IEHDASDR, by providing
appropriate DCB parameters on the DD statement for the tape
(RECFM=U,BLKSIZE=track length).

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [namelIRESTORE ITODD=(ddname, •••) I
I I I FROMDD=ddname I
I I I-[CPYVOLID={ YES}] I
I I I NO I
I I I [PURGE={YES}] I
I I I NO I L ______ ~ _________ ~ ____________________________________ - ________________ J

TODD=(ddname, •••)
specifies the ddnames of the DD statements defining the devices
containing the direct access volumes to be restored.

Note: If multiple output volumes are specified in a RESTORE statement
and an abnormal completion of the RESTORE operation occurs, the
operation is terminated on all output volumes.

FROMDD=ddname
specifies the ddname of the DD statement defining the magnetic tape
volume containing the data to be restored. If more than one tape
volume is to be used as input, the DD statement for the tape must
indicate multivolumes.

CPYVOLID=YES
specifies that all restored direct access volumes are to be
assigned the serial number of the dumped direct access volume.

If CPYVOLID=NO is coded or the CPYVOLID keyword is omitted, all
receiving volumes retain their own serial numbers.

PURGE=YES

118

indicates that all unexpired data sets on the rece~v~ng direct
access volume can be overwritten provided that the operator signals
his concurrence when the first unexpired data set is encountered.
The operator replies are:

r-----T---,
I Reply I Meaning I
~-----+---~
I U IAII unexpired data sets on this volume can be overwritten. I
I I (The RESTORE operation continues.> I
~-----+---~
I T IThis volume contains unexpired data sets that must not be I
I I overwritten. (The RESTORE operation is terminated.> I L _____ ~ ___ J

If PURGE=NO is coded (or the PURGE keyword is omitted) and an
unexpired data set is encountered on the receiving direct access
volume, the RESTORE operation is terminated.

Note: The PURGE keyword has no control over password protected
data sets; that is~ the operator must always respond with the
proper password for each password protected data set encountered.
If he is unable to do so, the RESTORE operation is terminated.

The IEHDASDR Program 179

•

IEHDASDR Examples

The following examples show some of the uses of the IEHDASDR program.

IEHDASDRExample 1

r-------------------------T---1
1 Operation 1 Comments 1
~-------------------------+-------------------------------~-----------------------------~
IANALYZE (Initialize) 11. The volume is to be initialized for the first time. 1
la 2311 disk volume 12. IPL text is included in the input stream. I L _________________________ ~ ___ J

In this example, a blank 2311 disk volume is to be analyzed and formatted for
the first time. Since this example deals with a blank volume, two considerations
must be made:

1. The TODD keyword in the ANALYZE statement must specify a channel and unit
address, rather than a ddname.

2. The selected device (in this example, unit 190) must be varied offline by the
operator; that is, before the job is executed, the operator must use the VARY
OFFLINE command to place unit 190 offline.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream.

• The ANALYZE Utility Control Statement: defines a mountable device on which a
blank 2311 volume is to be mounted. This st~tement defines the starting
location and extent of a volume table of contents, specifies a serial number
and owner identification, indicates that no flag testing is to be performed,
and indicates that IPL text is included in the input stream.

• The IPLTXT Utility Control Statement: signals the start of IPL text.

r---,
1//DASDR1 JOB 1
1// EXEC PGM=IEHDASDR 1
I//SYSPRINT DD SYSOUT=A 1
I//SYSIN DD * I
1 ANALYZE TODD=190,VTOC=00004,EXTENT=00010,FLAGTEST=NO, C 1
I NEWVOLID=231100,OWNERID=SMITH,IPLDD=SYSIN I
I IPLTXT 1
1 TXT I
I • 1
I • (IPL text) 1
I . I
1 TXT 1
1 END (IPL text END statement) 1
1/* 1 L ___ J

IEHDASDR Example 1. Initializing a New Direct Access Volume

180

IEHDASDR Example 2

r---------------------------T---,
I Operation I Comments I
~---------------------------+---~
IANALYZE (Initialize) 11. All of the volumes have been previously initialized. I
Ithree volumes and I I
Ichange their serial numbersl2. The ANALYZE functions are performed concurrently. I L ___________________________ ~ ___ J

In this example, three previously initialized 2311 volumes are to be
initialized and assigned new serial numbers.

• The VOL1, VOL2, and VOL3 DD statements: define three 2311 devices on which
the volumes to be initialized are mounted.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream.

• The ANALYZE Utility Control Statements: indicate the ddnames ofDD statements
defining devices on which the three 2311 volumes (231100, 231101, and 231102)
are to be mounted. The ANALYZE statements also define starting locations ana
extents of the three volume tables of contents, specify new owner names and
serial numbers (DISK01, DISK02, and DISK03), and indicate that no flag testing
is to be performed on these volumes.

r---,
//DASDR2 JOB
// EXEC
//SYSPRINT DD
//VOLl DD
//
//VOL2
//
//VOL3
//

DD

DD

//SYSIN DD
ANALYZE

ANALYZE

ANALYZE

/*

PGM=IEHDASDR
SYSOUT=A
UNIT=(2311"DEFER),DISP=OLD,

VOLUME=(PRIVATE"SER=(231100»
UNIT= (2311" ,DEFER) ,DISP=OLD,

VOLUME=(PRIVATE"SER=(231101»
UNIT=(2311"DEFER),DISP=OLD,

VOLUME=(PRIVATE"SER=(231102»

* TODD=VOL1,VTOc=00003,EXTENT=00010,FLAGTEST=NO,
OWNERID=SMITH,NEWVOLID=DISKOl

TODD=VOL2,VTOc=00006,EXTENT=00010,FLAGTEST=NO,
OWNERID=SMITH,NEWVOLID=DISK02

TODD=VOL3,VTOC=00004,EXTENT=00010,FLAGTEST=NO,
OWNERID=SMITH,NEWVOLID=DISK03

C

C

C

L ___ J

IEHDASDR Example 2. Initializing and Assigning New Serial Numbers to Previously
Initialized Volumes

The IEHDASDR Program 181

•

IEHDASDR Example 3

r----------------------------T--,
I Operation I Comments I
~--------.-----------~--------+--i
I GETALT (get alternate tracks 11. This example assumes that the 2321 volume has beer:, 1
Ion a 2321 volume) I previously initialized. I
land I I
ILABEL (change the serial I I
Inumber of the 2321 volume) I I L ____________________________ .l.__ "."~'''_".J

In this example, alternate tracks are to be assigned for three suspected
defective tracks on a 2321 volume.

• The VOLUME1 DD Statement: defines a device that is to contain the 2321 volume
(232100).

• The SYSIN DD statement: defines the control data set, which follows in the
input stream.

• The GETALT Utility Control Statements: specify the ddname of the DD statement
defining the device on which the 2321 volume is mounted. The GETALT
st~tements specify the relative track addresses of the tracks for which
alternates are to be assigned.

• The LABEL Utility Control Statement: specifies the ddname of the DD statement
defining the device on which the 2321 volume is mounted. The LABEL statement
changes the serial number of the 2321 volume from 232100 to DISKOO.

r---,
1//DASDR3 JOB I
1// EXEC PGM=IEHDASDR I
I//SYSPRINT DD SYSOUT=A I
1/ /VOLUME1 DD UNIT= (2321" , DEFER) , DISP=OLD, I
1// VOLUME=(PRIVATE"SER=(232100» I
I//SYSIN DD * I
I GETALT TODD=VOLUME1,TRACK=05070310 I
I GETALT TODD=VOLUME1,TRACK=OA06020F I
I GETALT TODD=VOLUME1,TRACK=OA070311 l
I LABEL TODD=VOLUME1,NEWVOLID=DISKOO,OWNERID=SMITH I
1/* I L __ . ___ J

IEHDASDR Example 3. Getting Alternate Tracks and Assigning a New Serial Nurober
on a 2321 Volume

182

IEHDASDR Example 4

r----------------------T--,
I Operation INumber of Devices Required I
~----------------------+--~
I DUMP 14 2311 DISK STORAGE DEVICES I
lonto three volumes I I L ______________________ ~ __ J

In this example, a copy of an entire volume (231100) is to be dumped onto three
volumes (231101, 231102, and 231103).

• The DUMPFROM DD Statement: defines a mountable device that is to contain a
source volume.

• The DUMPT01 w DUMPT02, and DUMPT03 DD Statements: each defines one of three
mountable devices that is to contain one of the three receiving volumes.

• The DUMP Utility Control statement: specifies the dump operation and
identifies the DD statements defining the applicable devices. All receiving
volumes are to retain their own serial numbers.

r---,
//DASDR4 JOB
// EXEC
//SYSPRINT DD
//DUMPFROM DD
//
//DUMPT01 DD
//
//DUMPT02 DD
//
//DUMPT03 DD
//
//SYSIN

/*

DD
DUMP

PGM=IEHDASDR
SYSOUT=A
UNIT=(2311"DEFER),DISP=OLD,

VOLUME=(PRIVATE"SER=(231100»
UNIT=(2311"DEFER),DISP=OLD,

VOLUME=(PRIVATE"SER=(231101»
UNIT=(2311"DEFER),DISP=OLD,

VOLUME=(PRIVATE"SER=(231102»
UNIT=(2311"DEFER),DISP=OLD,

VOLUME=(PRIVATE"SER=(231103»

* FROMDD=DUMPFROM,TODD=(DUMPT01,DUMPT02,DUMPT03)
L ___ •

IEHDASDR Example 4. Dumping a Copy of an Entire Volume Onto Three Volumes 411

The IEHDASDR Program 183

IEHDASDR Example 5

r----------------------T--,
I Operation INumber of Devices Required I
~----------------------+--------------~---i
I DUMP 11 2311 DISK STORAGE DEVICE I
la group of tracks ontoll system output device (printer assumed) I
la receiving volume I I L ______________________ ~ __ J

In this example, a copy of tracks 0 through 60 is to be dumped from a disk
volume (231100) onto a system output device.

• The DUMP FROM DD Statement: defines a mountable device that is to contain the
source volume •

• The DUMP Utility Control Statement: specifies the DUMP operation, identifies
the DD statements defining the source ahd receiving devices, and identifies
the tracks (0 through 60) that are to printed.

r---,
1//DASDR5 JOB I
1// EXEC PGM=IEHDASDR I
l//SYSPRINT DD SYSOUT=A I
I//DUMPFROM DD UNIT=(2311"DEFER),DISP=OLD, I
I / / VOLUME= (PRIVATE" • SER= (231100)) I
I//SYSIN DD * I
I DUMP FROMDD=DUMPFROM,TODD=SYSPRINT,BEGIN=OOOOOOOO,END=00050009 I
1/* I L ______ ~ __ J

IEHDASDR Example 5. Dumping a Group of Tracks Onto a System Output Device

184

.!EHDASDR Example 6

r-----------------------T--------------------------T------------------------------------,
I Operation INumber of Devices RequiredlComments I
~-----------------------+--------------------------+------------------------------------~

DUMP 11 2311 DISK STORAGE DEVICEI1. This example, coded as shown, I
a 2311 disk volume onto 1 2400 MAGNETIC TAPE DRIVE assumes that only one magnetic I
a magnetic tape volume tape volume is required. For I

those applications in which I
additional magnetic tape volumes I
are required (e.g., when dumping I
a 2321 volume), code the serial 1
numbers of the additional volumes I
in the VOLUME parameter of the DDI
statement defining the magnetic I
tape device. (For unlabeled "I
tapes, include a volume count in I
the OD statement.) 1 L _______________________ ~ __________________________ ~ ____________________________________ J

In this example, a 2311 disk storage volume (231100) is -to be dumped onto a
9-track, 800 bpi, magnetic tape volume (240000).

• The SOURCE DO Statement: defines a mountable device that is to contain the
source volume.

• The RECEIVE DD statement: defines a 9-track magnetic tape drive that is to
contain the receiving tape volume.

• The DUMP "Utility Control Statement: specifies the dump operation and
identifies the DD statements defining the source and receiving devices.

r---,
1//OASDR6 JOB I
1// EXEC PGM=IEHDASDR 1
I//SYSPRINT"DD SYSOUT=A 1
I//SOURCE DD UNIT=(2311"DEFER),DISP=OLD, 1
1// VOLUME=(PRIVATE"SER=(231100» I
I//RECEIVE DO UNIT=(2400"DEFER),DISP=NEW,DSNAME=TAPE1, I •
1// VOLUME=(PRIVATE"SER=(240000» I
I//SYSIN DD * I
1 DUMP FROMDD=SOURCE~TODD=RECEIVE I
1/* I l ___ ---------_________________________________ J

IEHDASDR Example 6. Dumping Onto a 9-Track Magnetic Tape Volume

The IEHDASDR Program 185

IEHDASDR Example 7

r----------------------T---------------------------T------------------------------~-'~'·"'<~>1

I Operation INumber of Devices Required I Comments I
l-----------------------+---------------------------+-------------------------------~ ,,·1
I RESTORE 11 2400-2 MAGNETIC TAPE DRIVEI1. A 2311 disk volume was pre- I
I three direct access 13 2311 DISK DEVICES I viously dumped onto the 7-tF:{'.c!: I
Ivolumes from a 7-trackl I magnetic tape volume. I
Itape volume I I I L ______________________ ..1.-_________________________ .L _____________________________ ~."' .. "-.~" ,." ••

In this example, three disk volumes (231100, 231101, and 231102) are to be
restored from a 7-track, 556 bpi, standard labeled, magnetic tape volume.

• The TAPE DD Statement: defines a 7-track magnetic tape drive that is to
contain the source tape volume.

• The.DlRACC1, DIRACC2, and DIRACC3 DD Statements: each defines one of three
mountable devices that is to contain one of the three receiving volumes.

• The RESTORE Utility Control Statement: specifies the restore operation and
identifies the DD statements defining the source and receiving devices. The
receiving volumes retain their own serial numbers.

r---~---------------------------~~~~,
//DASDR7 JOB I
// EXEC PGM=IEHDASDR I
//SYSPRINT DD SYSOUT=A I
//TAPE DD UNIT=(2400-2"DEFER),DISP=OLD,DCB=(TRTCH=C,DEN=1),
// VOLUME=(PRIVATE"SER=(240000»,DSNAME=TAPE1
//DIRACCl DD UNIT=(2311"DEFER),DISP=OLD,
// VOLUME=(PRIVATE"SER=(231100»
//DIRACC2 DD UNIT=(2311"DEFER),DISP=OLD,
// VOLUME=(PRIVATE"SER=(231101»
//DIRACC3 DD UNIT=(2311"DEFER),DISP=OLD,
// VOLUME=(PRIVATE"SER=(231102»
//SYSIN DD *

RESTORE TODD=(DIRACC1,DIRACC2,DIRACC3>.FROMDD=TAPE
/* L __ ,, __ ~".J

IEHDASDR Example 7. Restoring Three Direct Access Volumes From 7-Track Magnetic
Tape

186

IEHDASDR Example 8

r-----------------------------T---------------------------T-----------------------------,
I Operation INumber of Devices Required IComments I
~-----------------------------+---------------------------+-----------------------------~
11. DUMP two direct access 12 2400 MAGNETIC TAPE DRIVESI1. The DUMP operations are I
I volumes onto two receivingl4 2311 DISK STORAGE DEVICES I performed concurrently to I
I direct access volumes. I I minimize I/O time. I
12. RESTORE two direct I 12. The RESTORE operations arel
I access volumes from two I I performed concurrently to I
I magnetic tape volumes I I minimize I/O time. I L _____________________________ ~ ___________________________ ~ _____________________________ J

In the first operation performed by this example, two direct access volumes are
to be dumped concurrently onto two receiving volumes. In the second operation,
two direct access volumes are to be restored concurrently from two 9-track, 80p
bpi, standard labeled, magnetic tape volumes.

• The.SOURCE1 and SOURCE2 DD Statements: define devices on which the source
volumes for the dump operation are to be mounted.

• The·T01 and T02 DD Statements: define devices on which the receiving volumes
for the dump operation are to be mounted.

• The SOURCE3 and SOURCE4 DD Statements: define devices on which the source
tape volumes for the restore operation are to be mounted.

• The T03 and T04 DD Statements: define devices on which the receiving direct
access volumes for the restore operation are to be mounted. The receiving
volumes for the restore operation are to be mounted on the same devices as the
receiving volumes for the dump operation were mounted.

r---,
//DASDR8 JOB
// EXEC PGM=IEHDASDR
//SYSPRINT DD SYSOUT=A
//SOURCE1 DD UNIT=(2311"DEFER),DISP=OLD,
// VOLUME=(PRIVATE"SER=(231100»
//SOURCE2 DD UNIT=(2311"DEFER),DISP=OLD, •
// VOLUME=(PRIVATE"SER=(231101»
//TOl DD UNIT=2311,VOLUME=SER=231102,DISP=OLD
//T02 DD UNIT=2311,VOLUME=SER=231103,DISP=OLD
//SOURCE3 DD UNIT=(2400"DEFER),DISP=OLD,LABEL=(,NL),
// VOLUME=(PRIVATE"SER=(240000»
//SOURCE4 DD UNIT=(2400"DEFER),DISP=OLD,LABEL=(,NL),
// VOLUME=(PRIVATE"SER=(240001»
//T03 DD UNIT=AFF=T01,VOLUME=SER=231104,DISP=OLD
//T04 DD UNIT=AFF=T02,VOLUME=SER=231105,DISP=OLD
//SYSIN DD *

DUMP FROMDD=SOURCE1,TODD=TOl
DUMP FROMDD=SOURCE2iTODD=T02

RESTORE TODD=T03,FROMDD=SOURCE3
RESTORE TODD=T04,FROMDD=SOURCE4

L ___ J

IEHDASDR Example 8. Performing Concurrent Operations -- Minimizing I/O Time and
Minimizing the Number of Required Devices

The IEHDASDR Program 187

The IEHATLAS Program

Program Applications
The IEHATLAS utility program is used when a defective track is indicated
by a data check or missing address marker condition. It locates and
assigns an alternate track to replace the defective track. Usable data
records on the defective track are retrieved and transferred to the.
alternate track. The bad record from the defective track is then
replaced on the alternate by a correct copy. (The correct copy must be
provided by the user.)

The IEHATLAS utility operates under the control of the System/360
Operating System. It can be executed as a separate job, as a job step,
or as a part of a user's error recovery routine. Its simplest usage
will be as a separate job after an abnormal termination of a problem
program (see Figure 1). Input data necessary for execution of IEHATLAS
may be obtained· from the dump and from backup data. A more complex
usage may involve the preparation of a user's SYNAD routine which will
reconstruct the necessary input data and invoke the IEHATLAS utility
dynamically.

When the program is invoked, it attempts to write on the defective
track. If the subsequent readback check indicates that the attempt was
successful, an appropriate message is issued on the SYSOUT device. If
not, a supervisor call routine (SVC 86) is entered automatically.

The SVC routine then locates and assigns an alternate track. (If a
defective track already has an alternate and an error occurs on that
alternate, the SVC routine assigns the next available alternate. All of
the valid data records on the defective track are retrieved and
transferred to the alternate track. The input record is written on the
alternate track in the correct position to recover from the previous
error.

When a READ error occurs and a complete recovery is desired, the
IEHDASDR DUMP function may be used to produce a listing of error data on
a track (refer to IEHDASDR for a description of the DUMP function).
Using this data, the input data record for IEHATLAS can be created. The
'replace' function can then be performed under the control of the
operating system by executing the IEHATLAS utility program.

The IEHATLAS Program 189

•

PROBLEM PROGRAM

Problem
Program

• Execution

• 0 • • • • •
• READ

L.r-- ___ ~ -
Interrupted by data check
or missing address marker

IEHATLAS

• Assigns an
a I ternate track.

• Transfers usable
data from defective
track to a I tern ate

• replaces bad record
with replacement
record (on alternate)

PROBLEM PROGRAM

Re-execute the
problem program

ABEND

Dump may be used to
obtain address of
defective track
(lEHDASDR may be used
to dump defective track)

.- "---

IIATLAS JOB Accoun tin g , M S G.L

IISTEP EXEC PGM= I E HAT L.A S

IISYSABEND D D SYSOU T = A

IISYSPRINT D D SYSOU T = A

IISYSUTl DD DSNAM E=DATASET,

I I VOL U M E=SER=2222

I/SYSI N D D *
TRACK=BBC CHHRKDDS

i

I N PUT (rep I acemen t r e cor d)
:

1*

--------- --

EVEL=l

UNIT=2311

22, DI SP=OLD

* Backup copy may be a listing, punched cards, tape, etc. containing records in reserve

]EHATLAS Figure 1. Example of a S'imple Application for IEHATLAS

190

Inputs and Outputs
Input to the IEHATLAS program consists of:

1. A description of the defective track, specifying the bin (or cell),
cylinder, track, record, key, and data length (in hexadecimal
notation).

2. An indication if WRITE special is needed.

3. A valid copy (in hexadecimal notation) of the bad record.

Output consists of:

1. A message, issued on the SYSOUT device, containing the user's
control information, the input record, and diagnostics.

2. The input record, written onto either the original (defective)
track or onto an alternate track containing the usable data taken
from the defective track.

3. The return parameter list (specifying a maximum of three error
record numbers in hex when an unrecoverable error occurs).

Control

The IEHATLAS program is controlled by job control statements and two
utility control statements. The job control statements are used to:

• Execute or invoke the program.

• Define the work and control data set.

• Define the volumes and/or devices to be used during the course of
program execution.

The utility control statement specifies whether the bad record is a
member of the Volume Table of Contents or a member of some other data
set. It also indicates whether or not the WRITE special command is to
be used.

The IEHATLAS Program 191

'.

JOB CONTROL STATEMENTS

IEHATLAS Table 1 shows the job control statements necessary for
executing or invoking the IEHATLAS program.

IEHATLAS Table 1. Job Control Statements for the IEHATLAS Program
r------------T---,
I Statement I Usage I
t------------+---~
I JOB IThis statement initiates the job. I
I statement I I
t------------+---~
I EXEC IThis specifies the program name (PGM=IEHATLAS) or, if thel
I statement Ijob control statements reside in a procedure library, the I
I I procedure name. . I
~------------+---------------------------------------~-----------------i
ISYSABENO IThis statement defines a dump data set. It must include I
IDD lappropriate parameters for a basic sequential (BSAM) datal
I statement ,set. The data set can be written onto a' sys~em output I
I Idevice, a magnetic tape volume, or a direct access I
I I volume. I
t------------+---~
ISYSPRINT IThis statement defines a sequential data set which I
IOD Icontains the output messages issued by the utility. The I
I statement Idata set can be written onto a system output device, a I
I Imagnetic tape volume, or a direct access volume. I
t------------+---~
ISYSUTl IThis statement defines the data set which contains the I
IDO lbad record. (RESTRICTION: DISP=SHR must not be used fori
I statement Ithe SYSUT1 OD statement I
t------------t---i
ISYSIN IThis statement defines the control data set. It contains I
Inn Ithe utility control statement and a copy. of the bad I
I statement I record. Any input device supported by the system may be I
I I specified. I
t------------~---i
I Note: The blocksize for the SYSPRINT (message) data set must be a I
Imultiple of 121. The blocksize for the SYSIN (control) data set must I
Ibea multiple of 80. Any blocking factor can be specified for these I
Iblocksizes. I L __ J

Utility Control

The utility control statement consists of either:

r--,
I TRACK=bbbbcccchhhhrrkkdddd[S] I L __ J

or
r--,
I VTOC=bbbbcccchhhhrrkkdddd I L __ J

The parameter bbbbcccchhhhrrkkdddd represents ten bytes of
hexadecimal information.

bbbb

192

is the bin (or cell) number when the device specified in the SYSUT1
DO Statement is s 2321 data cell; if the device is other than a
2321 data cell, the number must be padded with zeros.

cccc

hhhh

rrkk

dddd

S

is the number of the cylinder in which the defective track was
found.

is the defective track number.

is the record number and key length for the bad record.

is the data length of the bad record. (When a WRITE special
command is used, dddd is the length of the record segment.

is an optional byte of EBCDIC information which specifies that the
WRITE Special command is to be used (when the last record on the
track overflows and must be completed elsewhere).

Note 1: Care should always be taken to insure that the input record
data length does not exceed· track size. This is especially important
when the WRITE Special command is specified because the error may not be
recognized immediately by the system.

Note 2: The utility control statement must not begin in column 1.
Input data (consisting of the hexadecimal replacement record) begins in
column 1 immediately following the utility control data. Input data may
continue through column 80. As many cards as necessary may be used to
contain the replacement record. All columns (1-80> are used on the
additional cards.

The IEHATLAS Program 193

•

IEHATLAS Examples

The following examples illustrate some of the uses of the IEHATLAS program.

r---,
I//JOBATLAS JOB 06#990,SMITH,MSGLEVEL=1 I
I//STEP EXEC PGM=IEHATLAS I
I//SYSPRINT DD SYSOUT=A I
1//SYSUT1 DD DSNAME=NEWSET,UNIT=2311,VOLUME=SER=231111,DISP=OLD I
I//SYSIN DD * I
1 TRACK=00000002000422020006S I
IF3F1C2C2FOFOOOOO I
1/* I L ___ J

IEHATLAS Example 1. Assigning an Alternate Track on a Direct Access Device-Write
Special Included Because of a Track Overflow Condition

In this example, the data set defined by SYSUT1 contains the bad record. An
alternate track on the specified unit and volume will be assigned to replace the
defective track.

• The SYSPRINT DD statement: defines the device onto which the output messages
can be written.

• The SYSUT1 DD Statement: defines the data set which contains the bad record.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• The TRACK Utility Control Statement: represents the bin, cylinder, and track
number for the defective track as well as the record number, key length and
data length of the bad record. In this example, the input record has a bin
number of zero (since the device is a 2311); it is to be placed on cylinder
two, track four, record 22; and it has a key length of two with a logical
record length of six. The ~~ITE special (Si character is used because there
is a track overflow condition.

• the Input Record: in this example is a typical hexadecimal record as defined
by the TRACK utility control statement. The input record contains eight bytes
(data length = 6, key length = 2).

194

r---,
II/JOBATLAS JOB 06#990. SMITH, MSGLEVEL=l I
IIISTEP EXEC PGM=IEHATLAS I
II/SYSPRINT DD SYSOUT=A I
IllSYSUTl DD DSNAME=EOFSET,UNIT=2311,VOLUME=SER=33333,DISP=OLD I
IIISYSIN DD I
I TRACK=00000001000003000000 I
1/* I L ___ J

IEHATLAS Example 2. Assigning as Alternate Track for a Bad End-of-File Record

• The SYSPRINT DD statement: defines the device onto which the output messages
can be written.

• The.SYSUTl DD statement: defines the data set which contains the bad record.

• The SYSIN DD Statement: d'efines the control data set which follows in the
input stream.

• The TRACK Utility Control statement: defines an End-of-file record on
cylinder one, track zero, record three, Input data -- other than the utility
control statement -- is not required.

The IEHATLAS Program 195

•

r---,
I//JOBTALAS JOB 06#990, SMITH, MSGLEVEL=l I
I//STEP EXEC PGM=IEHATLAS I
I//SYSPRINT DD SYSOUT=A 1
1//SYSUT1 DD UNIT=2311,VOLUME=SER=22222,DISP=OLD 1
I//SYSIN DD * I
1 VTOC=000000000005022C0060 I
ID6C2D1C5C3E340 I
140404040F1F2F3F1F1FOF000014401360000000100 I
1000040008000000FOOOF00033333333333333333310DDD0000010OOOOAOOOOOOOAOOOOOOOOOOOOOO I
100 1
1/* 1 L ___ J

IEHATLAS Example 3. Assigning an Alternate Track for a Bad VTOC Record

• The SYSPRINT DD statement: defines the device onto which the output messages
can be written.

• The SYSUT1 DD statement: defines the data set which contains the bad record.

• The SYSIN DD Statement: defines the control data set which follows in the
input stream.

• TheVTOCUtility Control Statement: defines the location of the bad VTOC
record as being on track five of cylinder zero. The record number is two with
a key length of 44. Record length of the bad record is 96.

• The Input Record: in this example is a typical hexadecimal record as defined
by the VTOC utility control statement. The input record contains 140 bytes
(data length = 96, key length = 44).

196

The IFHST ATR Program

Program Applications

The IFHSTATR program selects, formats, and writes information from type
21 (error statistics by volume) records. Error statistic by volume
(ESV) records should be retrieved from the IFASMFDP tape or from
SYS1.MAN (on tape). ESV can also be retrieved directly from SYS1.MANX
or SYS1.MANY (on a direct access storage device); however, the IFHSTATR
program does not clear the SYS1.MANX (or SYS1.MANY) data set and make it
available for additional records.

Inputs and Outputs

IFHSTATR Figure 1 shows the structure of the type 21 (ESV) record, which
contains information about errors on magnetic tape. Only ESV records
are processed by the IFHSTATR program; if none are found, an appropriate
message is written to SYSUT2.

r---------------------------------~---------------------------------,
01 TOTAL RECORD LENGTH 1 '00' 1
~----------------T-----------------+------------------~--------------~

41 RESERVED I RECORD TYPE I TIME OF DAY I
I 1 X'15' 1 I
~----------------~-----------------+---------------------------------~

81 TIME OF DAY (continued) 1 CURRENT DATE I
~----------------------------------+---------------------------------~

121 CURRENT DATE (continued) 1 CPU ID I
~----------------------------------+---------------------------------~

161 MODEL NO. I DATA LENGTH I
~----------------------------------~---------------------------------~

201 VOLUME SERIAL NO. 1
1 r---------------------------------~
I 1 CHANNEL/UNIT ADDRESS I
~----------------------------------~-----~---------------------------~

281 UCB TYPE 1
~----------------T-----------------T---------------------------------~

321 TEMPORARY READ I TEMPORARY WRITE 1 START I/O'S 1
I ERRORS 1 ERRORS 1 I
~---------------+---------~-------+----------------T----------------~

361 PERMANENT READ I PERMANENT WRITE 1 NOISE BLOCKS I ERASE GAPS I
1 ERRORS I ERRORS I I I
~----------------+-----------------~----------------+----------------~

401 ERASE GAPS 1 CLEANER ACTIONS I TAPE DENSITY I
1 (continued) I I I
~----------------~-----------------T----------------~--------~-------~

441 BLOCK SIZE I RESERVED I L _________________________________ ~ _________________________________ J

IFHSTATR Figure 1. Type 21 (ESV) Record Format

The IFHSTATR program can write on any output device supported by
BSAM. The output takes the form of i2l-byte unblocked records, with an
ASA control character is in the first byte of each record. IFHSTATR
Figure 2 shows a sample of printed output from the IFHSTATR program.

The IFHSTATR Program 197

•

VOLUME CPU MOD TIME CHANNEL TEMP TEMP PERM PERM NOISE ERASE CLEANER USAGE TAPE BLOCK
SERIAL DATE ID NO OF DAY / UNIT READ WRITE READ WRITE BLOCKS GAPS ACTIONS (SIO'S) DENSITY LENGTH

001021 69/309 BB 40 15:55:07 181 1 0 0 0 10 0800 80
001022 69/309 AA 40 15:56:02 184 10 0 0 0 28 1600 121
000595 69/309 CC 50 15:56:20 283 0 10 10 0 28 0800 50

IFHSTATR Figure 2. Sample Output from the IFHSTATR Program

Control
The IFHSTATR program is controlled by the job control statements shown
in IFHSTATR Table 1.

IFHSTATR Table 1. Job Control statements for the IFHSTATR Program.
r------------T---,
I Statement I Usage I
~------------+--~
I JOB IThis statement initiates the job. I
~------------+---~
I EXEC IThis statement specifies the program name (PGM=IFHSTATR).I
~------------+---~
ISYSUTl IThis statement defines the input data set and the I
IDD Idevice on which it resides. The DSNAME, UNIT, VOLUME, I
I ILABEL and DISP parameters should be included. I
~-----------+--~
ISYSUT2 IThis statement defines the sequential data set I
IDD Ion which the output is to be written. The blocksize for I
I ISYSUT2 must be a multiple of 121. Any blocking factor I
I Ican be specified. I L ____________ ~ ___ J

198

IFHSTATR Example
The following is an example of the JCL needed to produce a report such as that
shown in IFHSTATR Figure 2.

r---,
1// JOB I
1// EXEC PGM=IFHSTATR I
1//SYSUT1 DD UNIT=2400,DSNAME=SYS1.MAN,LABEL=(,SL), XI
1// VOLUME=SER=VOLID,DISP=OLD I
1//SYSUT2 DD SYSOUT=A I
1/* I L ___ J

The IFHSTATR Program 199

•

Section 2: Data Set Utilities

Data set utility programs manipulate partitioned, sequential, or indexed
sequential data sets provided as input to the programs. Data ranging
from fields within a logical record to entire data sets can be
manipulated. This section describes the capabilities, requirements for
execution, and examples of the use of each data set utility program.

• IEBCOPY a program that copies or merges partitioned data sets,
selects or excludes specified members in a copy.operation/step,
renames and/or replaces selected members of a partitioned data
set(s).

• IEBGENER a program that copies records from a sequential data set
or converts a data set from sequential to partitioned organization.

• IEBCOMPR -- a program that compares records in sequential or
partitioned data sets.

• IEBPTPCH -- a program that prints or punches records that reside in
a sequential or partitioned data set.

• IEBTCRIN -- a program that constructs records from the input data
stream read from the 2495 Tape Cartridge Reader.

• IEBUPDTE -- a program that incorporates changes to sequential or
partitioned data sets.

• IEBISAM -- a program that places source data from an indexed
sequential data set into a sequential data set in a format suitable
for subsequent reconstruction.

• IEBEDIT -- a program that creates an input stream.

• IEBUPDAT -- a program that incorporates changes to symbolic
libraries.

• IEBDG -- a program that creates a test data set consisting of
patterned data.

A data set utility program is executed or invoked through the use of
job control statements and utility control statements.

Job Control Statement Requirements
Data set utility programs are introduced as jobs or job steps, and are
executed in response to job control statements and utility control
statements. In general, a program to be executed requires:

• A JOB statement.
• An EXEC statement that identifies the program to be executed.
• DD statements that define data sources and destinations.

Section 2: Data Set Utilities 201

METHODS OF EXECUTION

A set of job control statements for a utility program can be introduced
to the operating system in different ways. The statements can be
included in the input stream, or they can be placed in a procedure
library, or the job can be invoked by a calling program. Refer to
Methods of Execution in "Section 1: System Utilities" for a complete
discussion of these methods.

MVT CONSIDERATIONS (MULTIPROGRAMMING WITH A VARIABLE NUMBER OF TASKS>

In an MVT environment, a region size should be specified for each
application of the program. The region size is determined by the number
of bytes in the utility program and by the block size of an object data
set <i.e., the largest bloGk size in the job step). A region size can
be specified as a parameter in the EXEC statement specifying the utility
program name. The minimum region sizes are:

• IEBCOPY -- REGION=28K + 2(largest blocksize in the job step) rounded
to the next highest 2K. Also see IBM System/360 Operating System:
storage Estimates, GC28-6551.

• IEBGENER REGION=14K + b

• IEBCOMPR REGION=14K + 2b

• IEBPTPCH REGION=16K + b

• IEBTCRIN REGION=12K + 2(BUFL on SYSUT1) + maximum logical record
length (rounded to next highest 2K) + sum of all user exit routines
(each rounded to next highest 2K).

• IEBUPDTE -- REGION=14K + 2b

• IEBISAM REGION=8K

• IEBEDIT REGION=10K

• IEBUPDAT -- REGION=10K + 2b

where b is the largest block size in the job step rounded to the
next highest 2K.

• IEBDG -- varies, see IBM System/360 Operating System: Storage
Estimates, GC28-6551, for information on calculating REGION size
required for a particular application.

NOTE: A job that modifies a system data set (i.e., a SYS1. data set)
must be run in a single job environment; however, a job that uses a
system data set, but does not modify it, can be run in an MVT
environment. The operator should be informed of all jobs that modify
system data sets.

DD statements defining object data sets should ensure that the
volumes on which the data sets reside are nonsharable.

202

Utility Control Statement Specifications
All of the data set utility programs except IEBISAM use utility control
statements to control the functions of the programs. (The IEBISAM
program is controlled solely by job control statements.)

Within a job step, the utility control statements normally follow the
job control statements in the input stream; however, the utility control
statements can alternatively be placed in a sequential data set or in a
partitioned data set, as a member of that data set.

Refer to each utility program for a discussion of the functions
performed by the utility control statements.

Section 2: Data Set Utilities 203

The IEBCOPY Program

Program Description
(Note: This is a description of the new version of the IEBCOPY program.
The program is designed to accept the job and control statements written
for the earlier version. However, it is recommended that any future
user applications be written to the specifications discussed in this
section.)

The IEBCOPY program can copy one or more partitioned data sets or
merge partitioned data sets. specified members of a partitioned data
set(s) can be selected for, or excluded from a copy operation.

The program can be used to:

• create a back-up copy.
• Copy one or more data sets per copy operation.
• Select members, from one or more data sets, to be copied.
• Exclude members, from one or more data sets, from being copied.
• Compress a data set in place.
• Merge data sets.
• Optionally replace identically named members on data setCs).
• Optionally rename selected members.
• Recreate a data set that has exhausted its primary, secondary, or

directory space allocation.

In addition, the IEBCOPY program automatically lists the number of
unused directory blocks and the number of unused tracks available for
member records in the output partitioned data set. By using the LIST=NO
operand the program also suppresses the names of copied members listed
by input partitioned data set.

At the completion or termination of the program, the highest return
code encountered within the program is passed to the calling program.

Inputs and Outputs
IEBCOPY Table 1 lists the major inputs to and outputs from the IEBCOPY
program.

Acceptable Devices

All input, output, and utility data sets must be on direct access
devices. The following devices may be used:

• 2311 Disk Storage Drive.
• 2314 Direct Access Storage Facility.
• 2302 Disk Storage.
• 2303 Drum Storage.

"" 2301 Drum Storage.
• 2321 Data Cell Drive.

Any combination of these devices is acceptable to the IEBCOPY-prograro.

The IEBCOPY Prograre 205

•

IEBCOPY Table 1. DatqSets Used (Input) and Produced (Output) by the
IEBCOPY Program

r-------T--,
I Inputs Input Data set: This data set contains the members to be
I copied or merged into a partitioned data set.
I
I
I
I ,
I
I
I
I

Control Data Set: This data set contains utility control
statements. The data set is required if selected members are
to be copied, merged into a partitioned data set, or omitted
from the copy or merge operation.

If the data set is null, a full copy from SYSUTl to SYSUT2 is
attempted. (Note: In this case, SYSUTl and SYSUT2 are
required ddnqrnes for the input partitioned data· set and output

I partitioned data set, respectively.)
~-------+-------------------------------....;--------------------,----------~
I Outputs I Output Data Set: This data set contains the copied or merged I
I I data. It is either a new data set (copy operation) or an old I
I Idata set (merge or compress in place operation). I
I I I
I IMessage Data Set This data set contains informational messages I
I I (e.g., the names of copied members; the contents of applicable I
I lutility control statements) and error messages, if applicable. I
~------+--~
ITempor-lspill Data set: These data sets are temporary utility data
lary Isets used to provide space when there is not enough core
IUtilitylavailable for the input and/or output partitioned data set
I outputs I directories. These data sets are opened only when needed.
I I .
I I (Note: Refer to IBM System/360 operating System: Storage
I IEstimates, GC28-6551, to determine when spill data sets are
I Irequired; see wSpace Allocationw in this section for a
I Idescription of how to determine the amount of space to
I I allocate.) L _______ i ___ _

Additional Outputs

The IEBCOPY program produces a return code to indicate the results of
program execution. The return codes and their interpretations are as
follows:

00 successful completion.
04 a condition has occurred from which recovery may be possible.
08 an unrecoverable error has occurred. The job step is terminated.

Control
The IEBCOPY utility program is controlled by job control statements and
utility control statements.

JOB CONTROL STATEMENTS

(Note: This is a description of the new version of the IEBCOPY program.
'l'he program is designed to accept the job control statements written for
the earlier version. However, it is recommended that all future user
applications be written with the new job control statements.) IEBCOPY
Table 2 shows the job control statements necessary for executing or
invoking the IEBCOPY program.

206

IEBCOPY Table 2. Job Control statements for the IEBCOPY Program
(Part' 1 of 2)

r------------T--,
I statement I Usage I
~------------+---~
IJOB IThis statement initiates the job. I
I Statement I I
~------------+--~
I EXEC IThis statement specifies the program name (PGM=IEBCOPY), I
I Statement lor if the job control statements for the IEBCOPY program I
I Ireside in the procedure library, the procedure name. I
~------------+-----------------------------~---------------------------~
ISYSPRINT IThis statement defines the sequential message data set I
IDD lused for listing statements and/or messages. This data I
I Statement Iset can be written onto a system output device, a I
I Imagnetic tape volume, or a direct access volume, and must I
I Ibe in fixed blocked or fixed format. I
~------------+---~
IInput/OutputlEach statement defines input/output partitioned data I
IDO I sets. The statements must describe partitioned data setsl
I Statement Ion direct access devices. Each data set can bede£ined I
I Iby a data set name, or as being a cataloged data set, or I
I las a data set passed from a previous job step. I
I ~---~
I IUser Option: These statements define either input or I
I loutput data sets. A minimum of two statements is I
I lrequired (except for a compress in place): one I
I Idescribing the input partitioned data set, and one I
I Idescribing the output partitioned data set. In addition, I
I Ithere must be a DO statement for each unique partitioned I
I Idata set used in the job step. Input partitioned data I
I I sets cannot be concatenated. I
~------------+---~
SYSUT3 IThis statement defines a spill utility data set. It must I
OD Idefine a data set on a direct access device. SYSUT3 is I
statement lusedwhen there is no space in core £or some or all of I

Ithe 'current' input partitioned data set's directory I
I entries. I
~---~
I Note: Refer to IBM System/360 Operating System: Storage I
IEstimates, GC28-6551, to determine when spill data sets I
lare required; see "Space Allocation° in this section for I
la description of how to determine the amount of space to I
I allocate. I

~------------+---~
ISYSUT4 IThis statement defines a spill utility data set. It I
IDD Imust define a data set on a direct access device. SYSUT4 I
I Statement lis used when there is no space in core for the current I
r loutput partitioned data set's merged directory and the I
I loutput partitioned data set is not 'new'. I
I ~---~
I I Note: Refer to IBM System/360 Operating System: storage I
I IEstimates, GC28-6551, to determine when spill data sets I
I lare required; see "Space Allocation" in this section for I
I la description of how to determine the amount of space to I
I I allocate. I
~------------+---~
ISYSIN IThis statement defines the control data set. The control I
IDO Idata set normally resides in the input stream; however, I
I Statement lit can reside on a system input device, a magnetic tape I
I I volume, or a direct access volume, and must be in fixed I
I Iblocked or fixed format. I L ____________ ~ ___ J

The IEBCOPY Program 207

•

IEBCOPY Table 2. Job Control Statements for the IEBCOPY Program
(Part 2 of 2)

r--,
Notes: SYSPRINT and SYSIN are mandatory DD statements. The blocksize
for the SYSPRINT (message) data set must be a multiple of 121. The
blocksize for the SYSIN (control) data set must be a multiple of 80.
Any blocking factor may be specified for these data sets, with a
maximum allowable blocksize of 32,767 bytes.

Ii·ixed length or variable length records can be reblocked. Reblocking
or deblocking is done if the blocksize of the input partitioned data
set is not equal to the blocksize of the output partitioned data set.
Reblocking or deblocking cannot be done if either the input or the
output data set has undefined format (U-format) records, keyed
records, track overflow records, note lists and/or user TTRN's, or if
compress in place is specified. (Earlier versions allowed rebloc~ing
or deblocking with track overflow output records.) The following
chart shows the only allowable ways to change input record formats:

INPUT OUTPUT

Fixed--------------------t~Fixed Blocked
Fixed Blocked -Fixed
Variable tVariable Blocked
Vari~ble Blocked -Variable

In addition, any record format can be changed to the Undefined format
(in terms of its description in the DSCB).

System data sets should not be compressed in place in a
lmultiprogramming environment unless the subject partitioned data set
lis made nnonsharable. n

I
IRefer to the publication IBM system/360 Operating System: Supervisor
land Data Management Services, GC28-6646 for information on estimating
Ispace allocations.
I
IRefer to nIEBCOPY Examples n in this secticn for typical uses of the
I job control statements. L __ J

Space Allocation

sometimes it is necessary to allocate space on the spill utility data
sets (SYSUT3 and SYSUT4).

To conserve space on the direct access volume, an initial quantity
and a secondary quantity for space allocation may be used as follows:

• c

• x

• y

SPACE=(c,(x,y»,where

= { 80 for SYSUT3}
256 for SYSUT4

= primary allocation

= secondary allocation

• (x + 15y) ~ {e fo.r SYSUT3} ,where
b for SYSUT4

• e = the number of entries in the largest input partitioned da~a set in
the copy operation.

• b = the number of blocks allocated to the largest output partitioned
data set directory in the· IEBCOPY job step~

208

In the worst possible case, SYSUT3 requires a space allocation of
SPACE=(80,e).

SYSUT4, in the worst possible case, requires a space allocation of
SPACE=(256,b).

For example. if there are 700 members on the largest input
partitioned data set, space could be allocated as follows for SYSUT3:

SPACE=(80,(25,45»

However, the total amount of space required for SYSUT3 in the worst case
situations would be used only if needed. If space is allocated in this
manner for SYSUT4, the user must specify in his SYSUT4 DD statement:
" ••• DCB=(KEYLEN=8) ••• ". for use in allocation of space by the" operating
system. Note that the IEBCOPY utility program ignores all other DCB
information specified for SYSUT3 and/or SYSUT4. Multi-volume SYSUT3 and
SYSUT4 data sets are not supported.

Alias Processing

When copying members that have aliases the following should be noted:

• When the main member and its alias(es) are copied, they exist on the
output partitioned data set in the same relationship which they had
on the input partitioned data set.

• When one alias is copied without its main member it becomes a main
member.

• When two or more aliases are copied without the main member, the
lowest alias name (in alphameric collating sequence) becomes the
main member; the remaining alias(es) becomes an alias(es) of the
'new' main member. However, it must be noted that if the 'old' main
member name is present in the alias entry(s), it remains there.

The rules for replacing or renaming members apply to both aliases and
members without making a distinction between them.

UTILITY CONTROL STATEMENTS

(Note: This is a description of the new version of the IEBCOPY program.
The program is designed to accept the control statements written for the
earlier version. Although the earlier version are acceptable, the
control statements used in different versions must not be mixed. It is
recommended that all future user applications be written with the new
control statements.)

The IEBCOPY program uses three control statements:

• The COPY statement.
• The SELECT statement.
• The EXCLUDE statement.

In addition, when the INDD parameter appears on a card other than the
COpy statement, it is referred to as an IN CD statement; it can function
as a control statement in this context.

Utility control statements may be continued on subsequent cards
provided that all the data is placed in columns 2-71; i.e., no data may
be placed in column 1, or in columns 72-80. All other rules discussed
in Appendix C apply.

The IEBCOPY Program 209

•

The COpy Statement

The COpy statement is required for all copy operations in the IEBCOPY program.
The following list of abbreviations are acceptable to the IEBCOPY program on the
COpy statement:

WORD
COpy
INDD
OUTDD
LIST

ABBREVIATION
,C
I
o
L

The statement contains:

r------T-----T--,
I lOper-I I
I Name lationIOperand(s) I
~------+-----+--~
I I I lddnamel[,ddname2J... 11 I
I [nameJICOPY IOUTDO=ddname,INDD= ddnamel[,ddname2J[,(ddname3,R)J ••• [,LIST=NOJ I
I I I «ddname1,R) [,ddname21 •••) I
I I ~--~
I I 11 The INDD parameter may appear on a separate card; if this option is I
I I I selected, the INDO parameter is not preceded by a comma (,). I L ______ ~ _____ ~ __ J

OUTDD=ddname (one ddname per copy operation; the ddname used must be specified on
a DO statement)

specifies the name of the output partitioned data set.

LIST=NO
specifies that names of members copied are not to be listed on SYSPRINT at
the end of each input data set. 'NO' is the only valid parameter with this
optional keyword.

INOD=ddname1 [,ddname2J... (each ddname referenced must be specified on a DD
statement)

specifies the name(s) of the input partitioned data set(s). Any number of
ddnames maybe specified, but only one INDD keyword may be specified per
card. If more than one ddname is specified, the input data sets are
processed in the same sequence as the ddname$. The INDD operand may,
optionally, be placed on a separate card following:

• A COPY statement containing the OUTDD keyword.
• Another INDD statement.
• A SELECT statement.
• An EXCLUDE statement.

{
ddnarnel[,(ddname2,R»)... }

INDD= CCddname1,R),(ddname2l,RJ»... (each ddname must be specified on a DD
statement)

210

the 'R' parameter specifies replace. It is an optional feature that
specifies that all members to be copied from this input partitioned data set
are to replace any identically named members on the output partitioned data
set. (In addition, members whose names are not on the output partitioned
data set are copied as usual.) When this option is specified with the INDD
operand it does not have to appear with the MEMBER parameter (discussed in
"The SELECT Statement" in this section) in a selective copy operation. When
this option is specified, the ddname and the 'R' parameter must be enclosed
in a set of parentheses; if it is specified with the first ddname in the INDD
field the entire field, exclusive of the INDD keyword, must be enclosed in a
second set of parenthseses.

Notes: Only one INDD and one OUTDD keyword may be placed on a single card. The
OUTDD operand must appear on the COPY statement. These two keywords may appear in
any order on the statement. When the INDD operand appears on a separate card no
other operands may be specified on that card.

If there are no keywords on the COpy card, compatibility with the previous
version is implied. In this case, comments may not be placed on this card.

If more than one ddname is specified, the input partitioned data sets are
processed in the same sequence in which .the ddnames are specified.

A full copy is invoked only by specifying different input and output ddnames;
i.e., by omitting the SELECT or EXCLUDE statement from the copy step.

The compress in place function is normally invoked by specifying the same
ddname (with the same dsname and volume serial specified on the DO statement) for
both the OUTDD and INDD parameters of a COpy statement. If multiple entries are
made on the INDD statement, a compress in place will occur if any of the input
ddnames is the same as the ddname specified by the OUTDO parameter of the COpy
statement, provided that SELECT or EXCLUDE is not specified. The compress in
place operation cannot be performed for the following:

• A data set with track overflow records.
• A data set with keyed records.
• A data set for which reblocking is specified in the DCB parameter.
• An 'unmovable' data set.

The SELECT Statemen~

The SELECT statement specifies which members are to be selected from the input
partitioned data set(s) to be copied onto an output partitioned data set. This
statement is also used to rename and/or replace selected members on the output
partitioned data set. More than one SELECT statement m~y be used in succession,
in which case the second and subsequent statements are treated as a continuation
of the first. One or more INDO statements must precede the SELECT statement. A
SELECT statement cannot appear with an EXCLUDE statement in the same copy step;
however, both may be used in a single copy operation.

It must be remembered that when a selected member is found on an input
partitioned data set it is not searched for again, regardless of whether or not it
is copied. A selected member will not replace an identically named member cn the
output partitioned data set unless the replace option is specified on either the
INDD level or the MEMBER level. (For a description of replacing identically named
members see "Replacing Identically Named Data Set Members," and" Replacing
Selected Members" in the "Program Applications" portion of this section.) In
addition, a renamed member will not replace a member on the output partitioned
data set that has the same new name as the renamed member, unless the replace
option is specified.

To rename a member, the old member name is specified in the SELECT statement,
followed by the new name and, optionally, the 'R' parameter. When this option is
specified, the 'old'membername and 'new' membername must be enclosed in a set of
parentheses; if it is specified for the first membername in the MEMBER field, the
entire field, exclusive of the MEMBER keyword, must be enclosed in a second set of
parentheses.

The IEBCOPY Program 211

I

The following list of abbreviations are acceptable to the IEBCOPY program on
the SELECT statement:

WORD
SELECT
MEMBER

ABBREVIATION
S
M

The statement contains:

r------T-------T--,
I Name IOperandIOperand(s) I
~------+-------+--~
I I I [, membername2 J I
I I I l[(]membernamel ,(membername2"R) ···[)]I I
I I I , (membername2,newname[,R]) I
I [name] I SELECT I MEMBER= l' newname [, R]) l . I
I I I «membernamel ~[membername2] •••) I
I I I , ,R) I L ______ L _______ ~ __ J

MEMBER=(list of member names and/or aliases)
specifies which members are to be selected from the input partitioned data
set. Each member name specified within one copy step must be unique; i.e.,
duplicate names cannot be specified as either old names, or new names, or
both, under any circumstances.

It also allows the user to rename selected members. The member is copied
onto the output partitioned data set using its new name. If the name already
appears on the output partitioned data set, the member is not copied unless
replace is also specified.

In addition, it allows the user to replace an identically named member(s)
that exist on the output partitioned data set.

The EXCLuuE statement

The EXCLUDE statement specifies members which are to be excluded from the copy
step. Unlike the selective copy, the exclusive copy causes all specified members
on each input partitioned data set to be excluded from the copy. More than one
EXCLUDE statement may be used in succession, in which case the second and
subsequent statements are treated as a continuation of the first. An INDD
statement must precede the first EXCLUDE statement. An EXCLUDE statement cannot
appear with a SELECT statement in the same copy step; however, both may be used in
a single copy operation.

The following list of abbreviations are acceptable to the IEBCOPY program on
the EXCLUDE statement:

212

WORD
EXCLUDE
MEMBER

ABBREVIATION
E
M

The statement contains:

r------T---------T--,
I Name IOperationlOperand(s) I
~------+---------+--~
I [name 1 I EXCLUDE IMEMBER=[(]membername1 [,membername2] ••• [)] I L ______ ~ _________ ~ __ J

MEMBER=(list of member names and/or aliases)
specifies member(s) on the input partitioned data set(s) that are not to be
copied onto the output partitioned data set. The members are not deleted
from the input partitioned data set unless the entire data set is deleted.
(This can be done by specifying DISP=DELETE in the operand field of the input
DD job control statement.) Each member name specified within one copy step
must be unique.

Control·Statement Sequence

A COpy statement must precede a SELECT and/or EXCLUDE statement when members are
selected for or excluded from the copy operation/step. In addition, if the input
ddname(s) is specified on a separate INDD statement(s), it must follow the COpy
statement and precede the SELECT or EXCLUDE statement to which it applies. If one
or more INDD statements are immediately followed by a /* card or another COPY
statement, a full copy is invoked onto the most recent output partitioned data set
previously specified.

Using the Utility Control Statements

IEBCOPY Table 3 shows some sample uses of the utility control statements. The
samples show the minimum required statement(s) for each application.

COpy OPERATION/COPY STEP CONCEPT

The IEBCOPY program introduces a concept that is similar to the job step concept
in job control: the copy operation/copy step concept. The unit of work that
begins with a COpy utility control statement and continues until a delimiter
statement (/*) or another COpy utility control statement is found is called a ~
operation. Thus, the COPY utility control statement is the first control
statement in every copy operation.

Within a copy operation are one or more copy steps. The unites) of work that
is delimited by a COpy utility control statement, or an INDD statement following a
SELECT or EXCLUDE statement, or a delimiter statement (/*) is a copy step.

The IEBCOPY Program 213

IEBCOPY Table 3. Use of the COPY, SELECT, and EXCLUDE Statements in the IEBCOPY Program
(Note: Cards are read from bottom to top within each sample.)

r------------T------------~---,
ITO perform al The SYSIN Data Set Contains I
~------------+--~
I I· I
I Full Copy I ([name] COpy INDD=ddname,OUTDD=ddname2 I
I ~--~
I I ,
I I I NDD=ddname 1 !The INDD operand may be ,
I I placed on a separate card, I
I I [name] COpy OUTDD=ddname2 as shown here, in any I
I I application. I
~------------+--~
I Replace I I
I (iNDD level) I [name] COpy OUTDD=ddnamel,INDD=ddname2,(ddname3,R) I
I ~---~~
I I ,
I I [name] COpy OUTDD=ddname2,INDD=(Cddnamel,R» I
~------------+--~
I I I
I Selective , [name] SELECT MEMBER=namel I
I Copy I I
I I [name] COpy OUTDD=ddnamel,INDD=ddname2 ,
~------------+--~
I I I
I selective I [hame] SELECT MEMBER=CCnamel"R» I
I Replace I I
, CMEMBER I [name] COpy OUTDD=ddnamel,INDD=ddname2 I
,level) ~--~
I I I
I I [name] SELECT MEMBER=name1,(name2"R) I
I I I
I I [name] COpy OUTDD=ddnamel,INDD=ddname2 I
~------------+--~
! I I
I Selective I [name] SELECT MEMBER=name1,(01dname,newname) I
I Rename I I
I I ([name] COpy INDD=ddname1,OUTDD=ddname2 I
I ~--------------------------------------~-----------------------------------~
I I I
I I [name] SELECT MEMBER=(Coldname,newname» I
I I I
I I [name] COPY INDD=ddnamel,OUTDD=ddname2 I
~------------+--~
I I I
I Selective I [name] SELECT MEMBER=narne1,Coldname,newname,R) I
IRename and I I
IReplace and I [name] COpy OUTDD=ddname1,INDD=ddname2 I
I ~--~
I I I
I I [name] SELECT MEMBER=C(oldname,newname,R» I
I I I
I I [name] COPY INDD=ddnamel,OUTDD=ddname2 I
~------------+--~
I I I
I Exclusive I [name] EXCLUDE MEMBER=name1 I
I Copy I I
I I [name] copy OUTDD=ddname1,INDD=ddname2 I
~------------+--------------------------------~---~
I I I
I Compress I [name] COPY OUTDD=sameddnm,INDD=sameddnm I
lIn Place I I L ____________ ~ __ J

214

IEBCOPY Figure 1 shows the copy operation/copy step concept. In the figure are
two copy operations: the first begins with the statement containing the name
COPOPER1 and ends with the EXCLUDE statement preceding the statement containing
the name COPOPER2; the second operation begins with the statement containing the
name COPOPER2 and ends with the /* (delimiter) statement.

Within the first copy operation are two copy steps: the first begins with the
COpy statement and continues through the two SELECT statements; the second begins
with the first INDD statement following the two SELECT statements and continues
through the EXCLUDE statement preceding the second COpy statement.

Within the second copy operation there are also two copy steps: the first
begins with the COpy statement and continues through the SELECT statement; the
second copy step begins with the INDD statement immediately following the SELECT
statement and ends with the same /* (delimiter) statement that ended the copy
operation.

Note: There is no limit to the number of steps allowed within a single copy
operation; nor is there a limit to the number of copy operations allowed within a
single job step.

~ ~
JOB CONTROL STATEMENTS

~ ~
COPOPERl

1st Copy Operation

2nd Copy Operation

(Note: Refer to IEBCOPY Examples 11 and 12 for more examples
of the Copy Operation/CoPY Step Concept.)

IEBCOPY Figure 1. copy Operation/Copy step Concept

1st Copy
Step

2nd Copy
Step

1st Copy
Step

2nd Copy
Step

The IEBCOPY Program 215

•

Program Applications

Creating a Back-Up COPy

A partitioned data set can be copied, totally, or in part, from one
direct access volume to another. In addition, a data set can be copied
onto its own volume, provided its data set name is changed. (If the
data set name is not changed, it is compressed in place.) IEBCOPY
Example 1, in the back of this section, shows a copy operation in which
a back-up copy is made. Note that the copied members are not reordered;
i.e., they are copied in the order in which they exist on the original
data set. If the members, themselves, are to be collated, the IEHMOVE
system utility program can be used for the copy operation. Refer to
"Section 1: System Utility Program" for a discussion of the IEHMOVE
program.

Copying From More Than One Input Partitioned Data Set

More than one input partitioned data set can be copied, totally or in
part, from one or more direct access volumes to a single direct access
volume. This can be done by specifying more than one parameter for the
INDD operand. See "The COpy Statement" in this section for a discussion
on specifying more than one input partitioned data set. The input
partitioned data sets are copied in the order in which they are
specified on the INDD statement.

IEBCOPY Example 2, in the back of this section, shows a copy
operation in which members are copied from three input partitioned data
sets onto an existing output partitioned data set. The sequence in
which the control statements occur is important; this controls the
manner and sequence in which partitioned data sets are processed.

Replacing Identically Named Data Set Members

In many copy operations, the output partitioned data set may contain
some members that have names identical to the names of the input
partitioned data set members to be copied. When this occurs, the user
may specify the replace option. This causes the identically named
members to be copied from the input partitioned data set, and the
pointer in the output partitioned data set directory to be changed to
point to the member; i.e., the replace option allows the user to cause
an input member to override an existing member on the output partitioned
data set with the same name. If the replace option is not specified,
input members are not copied when they have the same name as a member on
the output partitioned data set.

The replace option can be specified on two levels:

• The INDD (data set) level; or
• The MEMBER level.

The level is determined by using the OR" parameter on an INDD
statement (for the INDD level), or with a MEMBER parameter on a SELECT
statement (for the MEMBER level).

When replace is specified on the INDD level, the input data is copied
as follows:

1. In a full copy operation, all members on an input partitioned data
set(s) are copied onto an output partitioned data set; members
whose names already exist on the output partitioned data set are
replaced by the members copied from the input partitioned data
set(s).

216

2. In a selective copy operation, all selected members on an input
partitioned data set(s) are copied onto an output partitioned data
set; all selected members "found" are copied and members whose
names already exist on the output partitioned data set are replaced
by the "found" members copied from the input partitioned data
set(s).

3. In an exclusive copy operation, all non-excluded members on an
input partitioned data set(s) are copied onto an output partitioned
data set; non-excluded input members whose names already exist on
the output partitioned data set replace those duplicate named
members on the output partitioned data set.

When replace is specified on the MEMBER level, only selected members
on the input partitioned data set(s) are copied, and identically named
members on the output partitioned data set are replaced.

There are differences between full, selective, and exclusive copy
operations that should be remembered when specifying the replace option
with all of the multiple data sets containing member names common to
some/all of the input partitioned data sets being copied:

1. When a full copy is performed, the output partitioned data set will
contain the replacing members which were on the last input
partitioned data set copied.

2. When a selective copy is performed, the output partitioned data set
will contain the selected replacing members which were "found" on
the earliest input partitioned data set searched., Once a selected
member is found, it is not searched for again; therefore, once
found, a selected member is copied, and if the same member exists
on another input partitioned data set it is not searched for, and
hence, not copied.

3. When an exclusive copy is performed, the output partitioned data
set will contain the non-excluded replacing members which were on
the last input partitioned data set copied.

IEBCOPY Examples 3 and 6, in the back of this section, show copy
operations in which replace is specified on the INDD level.

selecting Members to be Copied

Members can be selected from one or more input partitioned data sets.
The SELECT option allows the user to copy only selected members from the
input partitioned data set(s) specified on the INDD statement(s)
preceding the SELECT utility control statement(s). Consecutive SELECT
statements can be used in a copy step; when this occurs the second and
subsequent statements are treated as,a continuation of the first.

Selected members are searched for in a low-to-high (a-z) collating
sequence, regardless of the order in which they are specified on the
SELECT statement; however, they are copied in the same physical sequence
in which they appear on the input partitioned data set.

When selecting members from an input partitioned data set(s), it is
important to remember that once a member is found it is not searched for
on any subsequent input partitioned data set(s}. Similarly, when all of
the selected members are found, the copy step is terminated although all
of the input partitioned data sets may not have been searched. For
example, if merobers A and B are specified on the SELECT statement and A
is found on the first of three input partitioned data sets, it is not
searched for again; if B is found on the second input partitioned data
set, the copy step is successfully terminated after the second input

The IEBCOPY Program 217

•

partitioned data set has been processed, although both me~bers may also
exist on the third input partitioned data set.

However, if the first member name is not found on the first input
partitioned data set, the second selected member is searched for; if it
is not found, 'the third is searched for, and so on. This process
continues until there are no more members to be searched for in this
input partitioned data set. All the members that were found on the
input partitioned data set are then processed for copying onto the
output partitioned data set. This process is repeated for the second
input partitioned data set (except that the members that were found' on
the first input partitioned data set are not searched for again).
IEBCOPY Example 4, in the back of this section, shows a copy operation
in which selected members are copied.

Replacing Only Selected Members

The user may specify the replace option on either the INDD level or the
MEMBER level when members are being selected for copying. If the option
is specified on the INDD level, all selected members found on the
designated input partitioned data set(s) replace identically named
members on the output partitioned data set. This is limited by the fact
that once a selected member is found it is not searched for again.

If the option is specified on the MEMBER level, only the specified
members on the input partitioned data set(s) replace identically named
members on the output partitioned data set. Once a member is found it
is not searched for again. IEBCOPY Example 5, in the back of this
section, shows a copy operation in which a selective replace is
specified on the MEMBER level. (Also refer to "Replacing Identically
Named Data Set Members n in this section.)

Renaming selected Members

selected members on input partitioned data set(s) can be copied and
renamed on the output partitioned data set. However, if the new name is
identical to a member name on the output partitioned data set, the input
member is not copied unless the replace option is also specified. See
"The SELECT statement" in this section for information on renaming
selected members. IEBCOPY Example 7, in the back of this section, shows
a copy operation in which a member is renamed and replaces an
identically named memb~r on the output partitioned data set.

(Note: Renaming is not physically done to the input partitioned data
set directory entry. However, after the member is copied onto the
output partitioned data set, the new name is entered into the output
partitioned data set directory.)

Excluding Members From A Copy Operation

Members from one or more input partitioned data sets can be excluded
from being copied. Unlike the SELECT option, when a member is specified
on the EXCLUDE statement it is not copied from any of the input
partitioned data sets; ice., the excluded member is searched for on
every input partitioned data set in the copy step, and always omitted
from the copy. Like the select option, it excludes members only from
the input partitioned data set(s) referenced by the INDD statement(s)
that precede it in the copy step.

The replace option can be specified on the INDD level in an exclusive
copy, in which case, non-excluded members on the input partitioned data
set replace identically named members on the output partitioned data
set. See "Replacing Identically Named Data Set Members" in this section
for more information on the· replace option.

218

Consecutive EXCLUDE statements can be used in a copy step; when this
occurs the second and subsequent statements are treated as a
continuation of the first. IEBCOPY Example 8, in the back of this
section, shows a copy operation in which members are excluded from a
copy; in addition, replace is specified for one input partitioned data
set.

Compressing A Data Set

A compressed data set is one that does not contain embedded unused
space. After copying one or more input partitioned data sets to a "new"
output partitioned data set (by means of a selective, exclusive~ or full
copy which does not involve replacing members), the output partitioned
data set will contain no embedded unused space.

In order to make unused space available, either the entire data set
must be scratched or it must be compressed in place. A compressed
version can be created simply by specifying the same data set for both
the input (INDD) and the output (OUTDD) parameters in a copy
operation/step. It is recommended that a back-up copy of the
partitioned data set to be compressed in place be retained until
successful completion of an in-place compr~ssion is indicated (by an
End-of-Job message and a return code of 00). An in-place compression
does not release extents assigned to the data set.

When a compression is invoked by specifying the same ddname for the
INDD and OUTDD keywords, and the DD statement specifies a blocksize that
differs from the blocksize specified in the DSCB, the DSCB blocksize is
overridden; however, no physical re/de-blocking is done by the IEBCOPY
program.

IEBCOPY Examples 9 and 10, in the back of this section, show data
sets being compressed in place.

Merging Data Sets

A merged data set is one onto which an additional member(s) is copied.
It is created by copying the additional member(s) onto an existing
output partitioned data set; the merge operation -- i.e., the ordering
of the output partitioned data set's directory -- is automatically
performed by the IEBCOPY program.

Note: If there is a question about whether or not enough directory
blocks are allocated to the output partitioned data set onto which an
input partitioned data set is being merged, the output partitioned data
set should be 'recreated' prior to the merge operation. (See
"Recreating A Data Set" in this section.) .

IEBCOPY Examples 2, 3, 4, 5, 6, 7, 8, 10, 11, and 12, in the back of
this section, show copy operations in which members are merged onto
existing output partitioned data sets.

Recreating A Data Set

A data set can be recreated by copying it and allocating a larger amount
of space than was allocated for the original data set. This application
of the program is especially useful if insufficient directory space was
allocated to a data set. Space cannot be allocated in this manner for
an existing data set into which members are being merged.

The IEBCOPY Program 219

IEBCOPY Examples
The following examples illustrate some typical uses of the IEBCOPY
program. Examples 1-10 use the partitioned data sets pictured below;
Examples 11 and 12 use partitioned data sets suitable to the particular
situation described in each.

DATASETl
(defined by
INOUTl)

DATASET4
(defined by
I NOUT4)

220

PARTITIONED DATA SETS
DEFINED BY

THE JOB CONTROL STATEMENTS

DATASET2
(defined by
INOUT2)

DATASET5
(defined by
INOUT5)

DATASET3
(defined by
INOUT3)

DATASET6
(defined by
INOUT6)

IEBCOPY Example 1

r-----------T------------------T---------------T---------------T------------------------,
I IData Set I I I I
IOperation IOrganization IInput Device IOutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
I COpy IInput-PARTITIONED IDISK - 2311 IDISK - 2311 11. Full copy I
I I Output-PARTITIONED I I I I L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, a partitioned data set (DATASETS) is to be copied from one
disk storage volume to another.

• The INOUT4 DD Statement: defines a partitioned data set (DATASET4). This
data set is new and is to be kept after the copy operation. Five tracks are
allocated for the data set on a 2311 Disk Storage Volume. Two blocks are
allocated for directory entries.

• TheINOUTS DD Statement: defines a partitioned data set (DATASETS). It
resides on a 2311 Disk Storage Volume and contains two members (A and C).

• TheSYSUT3 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSUT4 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSIN DD statement: derines the control data set, which follows in the
input stream. The data set contains a COPY utility control statement.

• The COpy Statement: indicates the start or the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full copy. The OUTDD
operand speciries INOUT4 as the DD statement for the output data set
(DATASET4); the INDD operand specifies INOUTS as the DD statement for the
input data set. Arter the copy operation is rinished, the output data set
(DATASET4) will contain the same members that are on the input data set
(DATASETS); however, there will be no embedded unused space on DATASET4.

r---,
I//COPY JOB 06#990,MCEWAN I
I//JOBSTEP EXEC PGM=IEBCOPY I
//SYSPRINT DD SYSOUT=A I
//INOUT4 DD DSNAME=DATASET4,UNIT=2311,VOL=SER=111112, XI
// DISP=(NEW,KEEP),SPACE=(TRK.(S,l,2» I
//INOUTS DD DSNAME=DATASETS,UNIT=2311,VOL=SER=111113, XI
// DISP=OLD I
//SYSUT3 DD DSNAME=TEMP1,UNIT=2311,VOL=SER=111118, XI
// DISP=(NEW,DELETE),SPACE=(TRK,(l» I
//SYSUT4 DD DSNAME=TEMP2,UNIT=2311,VOL=SER=111119, XI
// DISP=(NEW,DELETE),SPACE=(TRK,(l» I
//SYSIN DD * I
COPYOPER COpy OUTDD=INOUT4,INDD=INOUTS I
/* I L ___ J

The IEBCOPY Program 221

·1

DATASET5
(input)

IIEBCOPY Example 1. Copying A Partitioned Data Set -- Full copy

222

IEBCOPY Example 2
r---------T------------------T------------T-------------T-------------------------------,
I I Data Set I I I I
I Operation I Organization IInput DevicelOutput DevicelComments I
~---------+------------------+------------+-------------+-------------------------------~
I COpy IInput-PARTITIONED IDISK - 2311 IDISK - 2302 11. Multiple input partitioned I
I IOutput-PARTITIONEDIDRUM - 2301 I I data sets. I
I I IDRUM - 2301 I 12. Record formats: fixed 1
I I 1 1 1 blocked .and fixed. I L _________ ~ __________________ ~ ____________ ~ ___ ~---------~ _______________________________ J

In this example, members are to be copied from three input partitioned data
sets (DATASET1, DATASETS, and DATASET6) onto an existing output partitioned data
set (DATASET2).

• The INOUT1 DD statement: defines a partitioned data set (DATASET1). This
data set contains three members (A, B, and F) in fixed format with a logical
record length of 80 byte9 and a blocksize of 80 bytes. This data set resides
on a 2311 Disk Storage Volume.

• The INOUT5 DO Statement: defines a partitioned data set (DATASETS) which
resides on a 2301 Drum Storage Unit. This data set contains two members (A
and c) in fixed blocked format with a logical record length of 80 bytes and a
blocksize of 160 bytes.

• The INOUT2 DD Statement: defines a partitioned data set (DATASET2) which
resides on a 2302 Disk Storage Unit. This data set contains two members (C
and E) in fixed blocked format. The members have a logical record length of
80 bytes and a blocksize of 240 bytes.

• The INOUT6 DD Statement: defines a partitioned data set (DATASET6) which
resides on a 2301 Drum Storage Unit. This data set contains three merobers eB,
C, and D) in fixed blocked format with a logical record length of 80 bytes and
a blocksize of 400 bytes. This data set is to be deleted when processing is
completed.

• The SYSUT3 OD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSUT4 OD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSIN DO Statement: defines the control data set, which follows in the
input stream. The data set contains a COPY utility control statement and
three INDO statements.

• The COPY Statement: indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full copy. The OUTDD
operand specifies INOUT2 as the DO statement for the output data set
(DATASET2) •

• The first INDD Statement: specifies INOUT1 as the DO statement for the first
input data set (DATASET1) to be processed. Processing occurs as follows:
1. All members (A, B, and F) are copied onto the output data set (DATASET2).

The IEBCOPY Program 223

• The second INDD Statement: specifies INOUT6 as the DD statement for the
second input data set (DATASET 6) to be processed. Processing occurs as
follows:

1. Member B is not copied onto the output data set (DATASET2). It already
exists on DATASET2.

2. Member C is not copied onto the output data set (DATASET2). It already
exists on DATASET2.

3. Member D is copied onto the output data set (DATASET2).
4. All members on DATASET6 are lost when the data set is deleted.

• The third INDD Statement: specifies INOUT5 as the DD statement for the third
input data set (DATASET5) to be processed. Processing occurs as follows:

1. No members are copied onto the output data set (DATASET2). All of them
exist on DATASET2.

r---,
//COPY JOB 06#990,MCEWAN
//JOBSTEP EXEC PGM=IEBCOPY
//SYSPRINT DD
//INOUT1 DD
//
//INOUT5 DD
//
//INOUT2 DD
//
//INOUT6 DD
//
//SYSUT3 DD
//
//SYSUT4
//
//SYSIN
COPYOPER

/*

DD

DD
COpy

SYSOUT=A
DSNAME=DATASET1,UNIT=2311,VOL=SER=111112,

DISP=<OLD,KEEP)
DSNAME=DATASET5,UNIT=2301,VOL=SER=111114,

DISP=OLD
DSNAME=DATASET2,UNIT=2302,VOL=SER=111115,

DISP=(OLD,KEEP)
DSNAME=DATASET6,UNIT=2301,VOL=SER=111117,

DISP=(OLD,DELETE)
DSNAME=TEMP1,UNIT=2311,VOL=SER=111118,

DISP=(NEW,DELETE),SPACE=(TRK,(l»
DSNAME=TEMP2,UNIT=2311,VOL=SER=111119,

DISP=(NEW,DELETE),SPACE=(TRK,(l»

* OUTDD=INOUT2
INDD=INOUTl
INDD=INOUT6
I NDD= I NOUT5

x

x

x

x

x

x

L-__ J

224

DATASETl
(input)

DATASET6
(input)

DATASET5
(input)

IIEBCOPY Example 2. Copying From Three Input Partitioned Data Sets

The IEBCOPY Program 225

IEBCOPY.Example 3

r---------T------------------·r------------T-------------T-------------------------------,
I IData Set I I I I
I Operation I Organization IInput Deviceloutput DevlcelComments I
~---------+------------------+------------+-------------+-------------------------------~
I COpy IInput-PARTITIONED IDISK - 2302 IDISK - 2314 11. All members on the input I
I I Output-PARTITIONED I I I partitioned data set are I
I I I I I copied. Identically named I
I I I I I members on the output I
I I I I I partitioned data set are I
I I I I I replaced. I L-________ ~ __________________ ~ ____________ ~ _____________ ~ _______________________________ J

In this example, members are to be copied from an input parti~ioned data set
(DATASET6) onto an existing output partitioned data set (DATASET2). In addition,
all copied members replace identically named members on the output partitioned
data set.

• The INOUT2 DD Statement: defines a partitioned data set (DATASET2) which
resides on a 2314 Direct Access Storage Volume. This data set contains two
members (C and E).

• The INOUT6 DD Statement: defines a partitioned data set (DATASET6). This
data set resides on a 2302 Disk Storage Unit and contains three members (B, C,
and D).

• The SYSUT3 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSUT4 DD Statement: defines the temporary spill data set to be used if
there is. not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The data set contains a COPY utility control statement and an
INDD statement.

• The COpy Statement: indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full copy. The OUTDD
operand specifies INOUT2 as the DD statement for the output data set
(DATASET2).

• The INDD Statement: specifies INOUT6 as the DD statement for the input data
set (DATASET6). Processing occurs as follows:

226

1. Member B is copied onto the output data set (DATASET2).
2. Member C is copied onto the output data set (DATASET2). This roember is

copied despite the fact that the output data set already contains a wember
named 'C' because the replace option is specified for all identically
named members on the input data set; i.e., the replace option is specified
on the INDD level.

3. Member D is copied onto the output data set (DATASET2).

(Note: The pointer in the output data set directory is changed to point to
the new (copied) member C; thus, the space occupied by the old member C is
embedded unused space.)

r---,
IICOPY JOB 06#990,MCEWAN
IIJOBSTEP EXEC PGM=IEBCOPY
IISYSPRINT DO SYSOUT=A
IIINOUT2 DO DSNAME=DATASET2,UNIT=2314,VOL=SER=111113, X
II DISP=OLD
IIINOUT6 DD DSNAME=DATASET6,UNIT=2302,VOL=SER=111117, X
II DISP=(OLD,KEEP)
IISYSUT3 DD DSNAME=TEMP1,UNIT=2311,VOL=SER=111118, X
II DISP= (NEW, DELETE) ,SPACE=(TRK,.(l»
IISYSUT4 DO DSNAME=TEMP2,UNIT=2311,VOL=SER=111119, X
II DISP=(NEW,DELETE),SPACE=(TRK,(l»
IISYSIN DD * •
COPYOPER COpy OUTDD=INOUT2

INDD=«INOUT6,R»
1/* L ___ J

DATASET6
(input)

IIEBCOPY Example 3. Copy Operation With 'Replace' Specified on INDD Level

The IEBCOPY Program 227

IEBCOPY Example 4

r---------T------------------T------------T-------------T-------------------------------,
I I Data Set III 1
I Operation I Organization IInput Deviceloutput DevicelComments 1
~---------+------------------+------------+-------------+-------------------------------~
I COpy IInput-PARTITIONED lDISK - 2302 IDISK - 2311 11. Only selected members are I
I loutput-PARTITIONEDlDISK - 2314 1 I copied. I
I I I I 12. Creating a variable blocked I
I I I I I data set. I
I 1 I I 13. Record formats: variable 1
1 1 1 I I blocked and variable. 1 L _________ ~ __________________ ~ ____________ ~ ___________ -_~ ______________ ~ ________________ J

In this example, five members (A, C, D, E, and G) are to be selected from two
input partitioned data sets (DATASET6 and DATASET3) to be copied onto a new output
partitioned data set (DATASET4).

• The INOUT2 DD Statement: defines a partitioned data set (DATASET2) which
resides on a 2314 Direct Access Storage Volume. This data set contains two
members (C and E) in variable blocked format with a logical record length of
96 bytes and a blocksize ofSOO bytes. This data set is to be deleted when
processing is completed.

• The INOUT6 DD Statement: defines a partitioned data set (DATASET6) which
resides on a 2302 Disk Storage Unit. This data set contains three members- (B,
C, and D) in variable format with a logical record length of 96 bytes and a
blocksize of 100 bytes.

• The INOUT4 DD Statement: defines a partitioned data set (DATASET4). This
data set is new and is to be kept after the copy operation. Five tracks are
allocated for the data set on a 2311 Disk Storage Volume. Two blocks are
allocated for directory entries. In addition, records are to be copied onto
this data set in variable blocked format with a logical record length of 96
bytes and a blocksize of 300 bytes.

• TheSYSUT3 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSUT4 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The data set contains a COpy utility control statement, two
INDD statements, and a SELECT utility control statement.

• The COpy Statement: indicates the start of the copy operation. The presence
of a SELECT statement causes a selective copy. The OUTDD operand specifies
INOUT4 as the DD statement for the output data set (DATASET4).

• The first INDD Statement: specifies INOUT6 as the DD statement for the first
input data set (DATASET6) to be processed. Processing occurs as follows:
1. Member A is searched for and not found.
2. Member C is searched for and found. It is not searched for again.
3. Member D is searched for and found. It is not searched for again.
4. Member E is searched for and not found.
S. Member G is searched for and not found.

228

6. Found members (C and D) are copied onto the output data set (DATASET4) in
TTR order; i.e., member 'D' is copied first, then member 'C'

• The second INDD statement: specifies INOUT2 as the DD statement for the
second input data set (DATASET2) to be processed. Processing occurs as
follows:
1. Member A is searched for and not found.
2. Member E is searched for and found. It is not searched for again.
3. Member G is searched for and not found.
4. Found members (E) are copied onto the output data set (DATASET4) in TTR

order.
S. All members on DATASET2 are lost when the data set is deleted.

• The SELECT statement: specifies the members to be selected from the input
data sets (DATASET6 and DATASET2) to be copied onto the output data set
(DATASET4). Selected members not found on any of the input data sets are not
copied in this copy operation.

r---,
I//COPY JOB
I//JOBSTEP EXEC
I//SYSPRINT DD
1//INOUT2 DD
1//
j/INOUT6
//
//INOUT4
//
//
//SYSUT3
//
//SYSUT4
//
//SYSIN
COPYOPER

DD

DD

DD

DD

DD
COpy

SELECT

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET2,UNIT=2314,VOL=SER=111114,

DISP=(OLD,DELETE)
DSNAME=DATASET6,UNIT=2302,VOL=SER=111117,

DISP=(OLD,KEEP)
DSNAME=DATASET4,UNIT=2311,VOL=SER=111116,

DISP=(NEW,KEEP),SPACE=(TRK,(S,,2»,
DCB=(RECFM=VB,LRECL=96,BLKSIZE=300)

DSNAME=TEMP1,UNIT=2311,VOL=SER=111118,
DISP=(NEW,DELETE),SPACE=(TRK,(l»

DSNAME=TEMP2,UNIT=2311,VOL=SER=111119,
DISP=(NEW,DELETE),SPACE=(TRK,(l»

* OUTDD=INOUT4
INDD=INOUT6
INDD=INOUT2
MEMBER=C,D,E,A,G

x

X

x
X

X

X

I
I
I
1
I
1

1/* I
~---__________________________________ J

The IEBCOPY Program 229

•

DATASET6
(input)

DATASET2
(input)

IIEBCOPY Example 4. Copying selected Members (With Reblocking and Deblocking)

230

IEBCOPY Example S
r---------T------------------T------------T-------------T-------------------------------,
I I DataSet I I I I
I Operation 1 Organization IInput DevicelOutput DevicelComments I
~---------+------------------+------------+-------------+-------------------------------~
I COpy IInput-PARTITIONED IDISK - 2302 IDISK - 2311 11. Selective copy. I
I IOutput-PARTITIONEDIDISK - 2311 I 12. One member is to replace I
1 1 I I I an identically named member I
I I I 1 I on the output data set. I L _________ ~ __________________ ~ ____________ ~ ___ ~-------__ ~ _______________________________ J

In this example, two members (A and B) are to be selected from two input
partitioned data sets (DATASETS and DATASET6) to be copied onto an existing output
partitioned data set (DATASET1). One member (Member B) is to replace an
identically named member that already exists on the output data set.

• The INOUT1 DD Statement: defines a partitioned data set (DATASET1). This
data set resides on a 2311 Disk Storage Volume and contains three members (A,
B, and F).

• The INOUT6 DD Statement: defines a partitioned data set (DA'l'ASET6) which
resides on a 2302 Disk Storage Unit. This data set contains three members (B,
C, and D).

• The INOUTS DD Statement: defines a partitione~ data set (DATASETS). This
data set resides on a 2311 Disk Storage Volume and contains two members (A and
C).

• The SYSUT3 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSUT4 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The data set contains a COpy utility control statement, an INDD
statement, and a SELECT utility control statement.

• The COpy Statement: indicates the start of the copy operation. The presence
of a SELECT statement causes a selective copy. The bUTDD operand specifies
INOUT1 as the 00 statement for the output data set (DATASET1).

• The INDO statement: specifies INOUTS as the DD statement for the first input
data set (DATASETS) to be processed and INOUT6 as the DD statement for the
second input data set (DATASET6) to be processed. Processing occurs as
follows:
1. Member A is searched for on DATASETS and found. It is not searched for

again.
2. Member B is searched for on DATASETS and not found.
3. Member A is not copied onto the output data set (DATASET1). It already

exists on DATASET2 and the replace option is not specified on either the
INDO level or on the ME~£ER level.

4. Member B is searched for on DA'I'ASET6 and found. It is not searched for
again.

S. Member B is copied onto the output data set (DATASET1), even though a
member named IB' already exists on the output data set, because the
replace option is specified for member 'B' on the MEMBER level.

The IEBCOPY Program 231

•

(Note: The pointer in the output data set directory is changed to point to
the new (copied) member B; thus, the space occupied by the old member B is
unused.)

• The SELECT Statement: specifies the members to be selected from the input
data sets (DATASET5 and DATASET6) to be copied onto the output data set
(DATASET1). Both of the selected members are found, but only one is copied.

r---,
//COpy JOB 06#990,MCEWAN I
//JOBSTEP EXEC PGM=I EBCOPY I
//SYSPRINT DD SYSOUT=A I
//INOUTl DD DSNAME=DATASET1,UNIT=2311,VOL=SER=111112, XI
// DISP=(OLD,KEEP) I
//INOUT6 DD DSNAME=DATASET6~UNIT=2302,VOL=SER=111115, XI
/ / DISP=OLD . I
//INOUT5 DD DSNAME=DATASET5,UNIT=2311,VOL=SER=111116, XI
// DISP=(OLD,KEEP) I
//SYSUT3 DD DSNAME=TEMP1,UNIT=2311,VOL=SER=111118, XI
// DISP=(NEW,DELETE) ,SPACE=(TRK, (1» I
//SYSUT4 DD DSNAME=TEMP2,UNIT=2311,VOL=SER=111119, XI
// DISP=(NEW,DELETE),SPACE=(TRK, (1» I
//SYSIN DD * I
COPYOPER COpy OUTDD=INOUTl I

INDD=INOUT5,INOUT6 I
SELECT MEMBER=«B"R),A) I

/* I L ___ J

232

DATASET5
(input)

DATASET6
(input)

IIEBCOPY Example 5. Selective Copy With 'Replace' Specified On MEMBER Level

The IEBCOPY Program 233

•

IEBCOPY Example 6
r---------T------------------T------------T-------------T-------------------------------,
I I Data Set I I I I
I Operation I Organization IInput DevicelOutput DevicelComments I
~---------+------------------+------------+-------------+-------------------------------~
I COpy IInput-PARTITIONED IDRUM - 2301 IDISK - 2311 11. Selective copy. I
I I Output-PARTITIONED I DISK - 2314 I 12. All members found on first I
I I I I I input data set replace I
I I I I I identically named members on I
I I I I 1 output data set. I L _________ ~ __________________ ~ ____________ ~ _____________ ~ ______________________________ J

In this example, two members (A and B) are to be selected from two input
partitioned data sets (DATASET5 and DATASET6) to be copied onto an existing output
partitioned data set (DATASET1). All members found on DATASET5 a~e to replace
identically named members on DATASET1.

• The INOUT1 DD Statement: defines a partitioned data set (DATASET1). This
data set resides on a 2311 Disk Storage Volume and contains three members (A,
B, and F).

• The INPUT5 DD Statement: defines a partitioned data set (DATASET5). This
data set contains two members (A and C) and resides on a 2314 Direct Access
Storage Volume. This data set is to be deleted when processing is completed.

• The INOUT6 DD Statement: defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on a 2301 DrUfil

storage Unit.

• The SYSUT3 DO Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSUT4 DO Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The data set contains a COpy utility control statement, an INDD
statement, and a SELECT utility control statement.

• The COpy Statement: indicates the start of the copy operation. The presence
of a SELECT statement causes a selective copy_ The OUTDD operand specifies
INOUT1 as the DD statement for the output data set (DATASET1).

• The INDD Statement: specifies INOUT5 as the DD statement for the first input
data set (DATASET5) to be processed and INOUT6 as the statement for the second
input data set (DATASET6) to be processed. Processing occurs as follows:

234

1. Member A is searched for on DATASET5 and found. It is not searched for
again.

2. Member B is searched for on DATASET5 and not found.
3. Member A is copied onto the output data set (DATASET1) because the replace

option is specified on the INDD level for all members found on DATASET5.
(Note: The pointer in the output data set directory is changed to foint
to the new (copied) member A; thus, the space occupied by the old merrber A
is unused.)

4. Member B is searched for on DATASET6 and found. It is not copied because
DATASETl already contains a member called member IB' and the replace
option is not specified on either the INDD level or on the MEMBER level
for this member •

• The SELECT Statement: specifies the members to be selected from the input
data sets (DATASET5 and DATASET6) to be copied onto the output data set
(DATASET1). Both selected members are found, but only one is copied.

r---,
IICOPY JOB 06#990,MCEWAN I •
IIJOBSTEP EXEC PGM=IEBCOPY I
IISYSPRINT DD SYSOUT=A I
IIINOUTl DD DSNAME=DATASET1,UNIT=2311,VOL=SER=111112, XI
II DISP=(OLD,KEEP) I
IIINOUT5 DO OSNAME=OATASET5,UNIT=2314,VOL=SER=111114, XI
II DISP=(OLD,OELETE) I
IIINOUT6 DO DSNAME=DATASET6,UNIT=2301,VOL=SER=111115, XI
II DISP=(OLO,~EEP) I
IISYSUT3 DO DSNAME=TEMP1,UNIT=2311,VOL=SER=111118, XI
II DISP=(NEW,DELETE),SPACE=(TRK,(l» I
IISYSUT4 DO DSNAME=TEMP2,UNIT=2311,VOL=SER=111119, XI

III DISP=(NEW,DELETE),SPACE=(TRK,(l» I
IIISYSIN DO * I
ICOPYOPER COpy OUTDD=I NOUT1 I
I INDD=«INOUT5,R),INOUT6) I
I SELECT MEMBER=(A,B) I
1/* I L ___ J

The IEBCOPY Program 235

IIEBCOPY Example 6.

236

DATASET5
(input)

DATASET6
(input)

Selective Copy With 'Replace' Specified OnlNDD Level -
Multiple Inputs

IEBCOPY Example 7

r---------T------------------T------------T-------------T-------------------------------,
I I Data Set I I I I
1 Operation I Organization IInput DevicelOutput DevicelComments I
~---------+------------------+------------+-------------+-------------------------------~
I COpy IInput-PARTITIONED IDISK - 2311 IDISK - 2311 11. Selective copy. I
I I Output-PARTITIONED I I 12. Two members renamed. I
I I I I 13. One renamed member replaces I
I I I I I identically named member I
I I I lion output data set. I L _________ ~ __________________ ~ ____________ ~ _____________ 4 _______________________________ J

In this example, four members (A, B, C, and D) are to be selected from an input
partitioned data set (DATASET6) to be copied onto an existing output partitioned
data set (DATASET3). Member B is to be renamed Hi member C is to be renamed Ji
and member D is to be renamed K. In addition, member C (renamed J) is to replace
the identically named member (J) on the output partitioned data set.

• The INOUT3 DO Statement: defines a partitioned data set (DATASET3). This
data set contain four members (0, G, H, and J) and resides on a 2311 Disk
Storage Volume.

• The INOUT6 DD Statement: defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on a 2311 Disk
Storage Volume. DATASET6 is to be deleted when processing is completed; thus,
all members on this data set are lost.

• The SYSUT3 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSUT4 DD statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• TheSYSIN DD Statement: defines the control data set, which follows in the
input stream. The data set contains COpy utility control statement, an INDD
statement, and a SELECT utility control statement.

• The COpy Statement: indicates the start of the copy operation. The presence
of a SELECT statement causes a selective copy. The OUTDD operand specifies
INOUT3 as the DD statement for the output data set (DATASET3).

• The INDO Statement: specifies INOUT6 as the DD statement for the input data
set (DATASET6). Processing occurs as follows:
1. Member A is searched for and not found.
2. Member B is searched for and found. It is not searched for again.
3. Member C is searched for and found. It is not searched for again.
4. Member D is searched for and found. It is not searched for aga1n.
5. Member B is not copied onto the output data set (DATASET3) because its

intended new name (H) is identical to the name of a member (H) which
already exists on the output data set and replace is not specified on
either the INDD or the MEMBER level.

6. Member C is copied onto the output data set (DATASET3), although its new
name (J) is identical to the name of a member (J) which already exists on
the output data set because the replace option is specified for the
renamed member.

The IEBCOPY Program 237

•

7. Member D is copied onto the output data set (DATASET3) because its new
name (K) does not already exist there •

• The SELECT Statement: specifies the members to be selected from the input
data set (DATASET6) to be copied onto the output data set (DATASET3). Member
A is not found on the input data set; it is not copied or searched for again,
in this copy operation.

r---,
//COPY JOB
//JOBSTEP EXEC
//SYSPRINT DD
//INOUT3 DD
//
//INOUT6 DD
//
//SYSUT3 DD
//
//SYSUT4 DD
//
//SYSIN DD
COPYOPER COpy

SELECT
/*

#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET3,UNIT=2311,VOL=SER==111114,

DISP=(OLD,KEEP)
DSNAME=DATASET6,UNIT=2311,VOL=SER=111117,

DISP=(OLD,DELETE)
DSNAME=TEMP1,UNIT=2311,VOL=SER=111118,

DISP=(NEW,DELETE),SPACE=(TRK,(l»
DSNAME=TEMP2,UNIT=2311,VOL=SER=111119,

DISP=(NEW,DELETE),SPACE=(TRK,(l»

* OUTDD=INOUT3
INDD=INOUT6

MEMBER=«B,H),(C,J,R),A,(D,K»

X

x

x

x

L ___ J

238

DATASET3
(output)

IIEBCOPY Example 7.

DATASET6
(input)

-0
Q)

E
o

Z
2:-
o
.~
c:
Q)

::2

Renaming selected Members; One Renamed Member Replaces
Identically Named Member

The IEBCOPY Program 239

i.

IEBCOPY Example 8

r---------T------------------T------------T------~------T-------------------------------,
I I Data Set I I I I
I Operation I Organization IInput DevicelOutput DevicelComments I
~---------+------------------+------------+-------------+-------------------------------~
I COpy IInput-PARTITIONED IDISK - 2311 IDISK - 2311 11. Exclusive copy. I
I I Output-PARTITIONED I DISK - 2311 I 12. Record formats: fixed I
I I IDISK - 2311 I 1 blocked and fixed. I L _________ ~ __________________ ~ ___________ ~ _____________ ~ _______________________________ J

In this example, five members (A, B, C, J, and L) are to be excluded from the
copy operation when each of the input partitioned data sets (DATASET1, DATASET3,
and DATASET6) is processed. In addition, replace is specified for the last input
partitioned data set (DATASET6) to be processed; thus, with the exception of the
members specified on the EXCLUDE statement, all members on DATASET6 will replace
any identically named members on the output partitioned data set (DATASET4).

• The INOUTl DD statement: defines a partitioned data set (DATASET1). This
data set contains three members (A, B, and F) and resides on a 2311 Disk
Storage Volume. The record format is fixed blocked with a logical record
length of 100 bytes and a blocksize of 400 bytes.

• The INOUT3 DO Statement: defines a partitioned data set (DATASET3) which
resides on a 2311 Disk storage Volume. This data set contains four members
(0, G, H, and J) in fixed blocked format with a logical record length 100
bytes and a blocksize of 600 bytes.

• The INOUT4 DO Statement: defines a new partitioned data set (DATASET4). Five
tracks are allocated for the copied members on a 2311 Disk Storage Volume.
Two blocks are allocated for directory entries. In addition records are to be
copied onto this data set in fixed blocked format with a logical record length
of 100 bytes and a blocksize of 400 bytes.

• The INOUT6 DD Statement: defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) in fixed format. The records
have a logical record length of 100 bytes and a blocksize of 100 bytes. This
data set resides on a 2311 Disk Storage Volume.

• The SYSUT3 DD statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSUT4 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSIN DD statement: defines the control data set, which follows in the
input stream. The data set contains a COpy utility control statement and an
EXCLUDE utility control statement.

• The COpy statement: indicates the start of the copy operation. The presence
of an EXCLUDE statement causes an exclusive copy. The OUTDD operand specifies
INOUT4 as the DD statement for the output data set (DATASET4). The INDD
operand specifies INOUT1 as the DD statement for the first input data set
(DATASET1) to be processed, INOUT3 as the DD statement for the second input
data set (DATASET3) to be processed, and INOUT6 as the DD statement for the
last input data set (DATASET6) to be processed. Processing occurs as follows:

240

1. Only Member F is copied from DATASET1; all other member are specified on
the EXCLUDE statement.

2. Members D, G, and H are copied from DATASET3; Member J is not copied
because 'J 1 is one of the members named on the EXCLUDE statement.

3. Member D is copied from DATASET6 because the replace option is specified
for all members found on this data set that are not specified on the
EXCLUDE statement.
(Note: The pointer in the output data set directory is changed to point
at the new (copied) member D; thus, the space occupied by the 'old' member
D (copied from DATASET3) is unused.)

• The EXCLUDE statement: specifies the members to be excluded from the copy
operation. The named members are excluded from all of the input
partitioned data sets specified in the copy operation.

r---,
I//COPY JOB
I//JOBSTEP EXEC
I//SYSPRINT DD
1//INOUT1 00
1//
//INOUT3
//
//INOUT4
//
//
//INOUT6
//
//SYSUT3
//
//SYSUT4
//
//SYSIN
COPYOPER

/*

DD

OD

DO

DD

DO

OD
COpy
EXCLUDE

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASET1,UNIT=2311,VOL=SER=111112,

DISP=(OLD,KEEP)
DSNAME=DATASET3, UNIT=2311, VOL=SER=·111114,

DISP=OLD .
DS~ili=DATASET4,UNIT=2311,VOL=SER=111115,

DISP= (NEW, KEEP) , SPACE=(TRK, (5,1,,2» ,
DCB=(LRECL=100,RECFM=FB,BLKSIZE=400)

DSNAME=DATASET6,UNIT=2311,VOL=SER=111116,
DISP=OLD

DSNAME=TEMP1,UNIT=2311,VOL=SER=111118,
DISP=(NEW,DELETE),SPACE=(TRK,(l»

DSNAME=TEMP2,UNIT=2311,VOL=SER=111119,
DISP=(NEW,OELETE),SPACE=(TRK,(l»

* OUTDD=INOUT4,INDD=INOUT1,INOUT3,(INOUT6,R)
MEMBER=A,J,B,L,C

x

x

x
X

X

X

X

L ______________________________ ~ __ ~ _____________ J

The IEBCOPY Program 241

•

IIEBCOPY Example 8.

242

DATASET]
(input)

DATASET3
(input)

DATASET6
(input)

Exclusive Copy With Replace specified For One Input
Partitioned Data set

IEBCOPY Example 9

r---------T------------------T------------T-------------T-------------------------------,
1 1 Da ta Set 1 1 1 1
I Operation I Organization IInput DevicelOutput DevicelComments 1
~---------+------------------+------------+-------------+-------------------------------~
I COpy IInput-PARTITIONED IDISK - 2314 IDISK - 2314 11. Compress in place. I
1 1 Output-PARTITIONED I I I I L ________ ~~ __________________ ~ ____________ ~ _____________ ~ _______________________________ J

In this example, a partitioned data set (DATSETS) is to be compressed in place.

• The INOUTS DD Statement: defines a partitioned data set (DATASETS). This
data set contains two members (A and C) and resides on a 2314 Direct Access
Storage Volume.

• The SYSUT3 DD Statement: defines the temporary spill data set to be used if
there is not enough spac~ in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYS~'4 DO S~atement: defines the temporary spill data set to be used if
there is not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore" it is suggested that the statement always appear
in the job stream.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The data set contains a COpy' utility control statement.

• The COpy Statement: indicates the start of the copy operation. The absence
of a SELECT or EXCLUDE statement causes a default to a full copy; however, the
same DD statement is specified for both the INDO and OUTDD operands, thus
causing a compress in place of the specified data set. The OUTDO operand
specifies INOUTS as the DD statement for the output data set (OATASETS). The
INDD operand also specifies INOUTS as the DD statement for the input data set
(DATASETS) •

r---~-------------------------,
I//COPY JOB 06#990,MCEWAN I
I//JOBSTEP EXEC PGM=IEBCOPY I
r//SYSPRINT DD SYSOUT=A 1
I//INOUTS DD DSNAME=DATASETS,UNIT=2314,VOL:=SER=111113, Xl
1// DISP=(OLD,KEEP) I
1//SYSUT3 DD DSNAME=TEMP1, UNIT=2311, VOL=SER=111118" XI

'1// DISP=(NEW,DELETE) ,SPACE=(TRK, (1» j
1//SYSUT4 DD DSNAME=TEMP2,UNIT=2311,VOL=SER=111119, XI
1// DISP=(NEW,DELETE),SPACE=(TRK,(l» I
1/ /SYSIN DD * I
I COPYOPER COPY OUTDD=INOUT5, INDD=IN.oUT5 I'

: 1/* I L ___ ___ ________ · _____________________________ ______ , ____________________________________ J'

The IEBCOPY Program 243

•

IIEBCOPY Example 9. Compressing a Data Set in Place

244

DATASET5
(input)

IEBCOPY Example 10

r---------~-----------------T------------T-------------T-------------------------------,
I I Da ta Set I 1 I I
I Operation I Organization IInput DevicelOutput DevicelComments I
t---------+------------------t------------t-------------+-------------------------------~
I COpy IInput-PARTITIONED IDISK - 2311 IDISK - 2314 11. Full copy followed by a I
I loutput-PARTITIONEDIDISK - 2311 I I compress ,in place of the I
I I I I I output data set. I
I 1 I 1 12. Replace option specified I
I 1 1 1 I for one input data set. I L _________ ~ __________________ ~ ____________ ~ _____________ ~ _______________________________ J

In this example, two input partitioned data sets (DATASET5 and DATASET6) are to
be copied onto an existing output partitioned data set (DATASET1). In addition,
all members on DATASET6 are to be copied, with members on the output data set
which have the same names as the copied members being replaced. After DATASET6 is
processed, the output data set (DATASET1) is to be compressed in place.

• The INOUT1 DD Statement: defines a partitioned data set (DATASET1). This
data set contains three members (A, B, and F) and resides on a 2314 Direct
Access Storage Volume.

• The INOUT5 DD Statement: defines a partitioned data set (DA'I'ASET5). This
data set contains two members (A and C) and resides on a 2311 Disk Storage
Volume.

• The INOUT6 DD statement: defines a partitioned data set (DATASET6). This
data set contains three members (B, C, and D) and resides on a 2311 Disk
Storage Volume.

• The SYSUT3 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSUT4 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSIN DD statement: defines the control data set, which follows in the
input stream. The data set contains a COpy utility control statement and an
INDD statement.

• The COPY statement: indicates the start of the copy operation. The OUTDD
operand specifies INOUT1 as the DD statement for the output data set
(DATASET1). The absence of a SELECT or EXCLUDE statement causes a default to
a full copy.

• The INDD Statement: specifies INOUT5 as the DD statement for the first input
data set (DATASET5) to be processed. It then specifies INOUT6 as the DD
statement for the second input data set (DATASET6) to be processed; in
addition, the replace option is specified for all members copied from
DATASET6. Finally, it specifies INOUT1 as'the DD statement for the last input
data set (DATASET1) to be processed; this causes a compress in place of
DATASET1 because it is also specified as the output data set.
1. Member A is not copied from DATASET5 onto the output data set (DAT~ET1)

because it already exists on DATASET1 and the replace option was not
specified for DATASET5.

The IEBCOPY Program 245

.. ,.

2. Member C is copied from DATASET5 onto the output data set (DATASET1),
occupying the first available space.

3. All members are copied from DATASET6 onto the output data set (DATASE.T1),
immediately following the last member. Members Band C are copied despite
the fact that the output data set already contains members with the same
names because the replace option is.specified on the INDD level.
(Note: The pointers in the .output data set directory are changed to point
to the new members Band C; thus, the space occupied by the old members B
and C is unused.)

4. The members currently on DATASET1 are compressed in place, thereby
eliminating embedded unused space.

r---,
I//COPY JOB 06#990,MCEWAN I
I//JOBSTEP EXEC PGM=IEBCOPY I
I//SYSPRINT DD SYSOUT=A I
1//INOUTl DD DSNAME=DATASET1,UNIT=2314,VOL=SER=111112, XI
1// DISP= (OLD, KEEP) I
1/ /INOUT5 DD DSNAIV'lE=DATASET5, UNIT=2311, VOL=SE.R=111114, X I
1// DISP=OLD I
1/ /INOUT6 DD DSNAME=DATASl!.'T6 4 UNIT=2311 ,VOL=SER=111115, Xl
1// DISP=(OLD,KEEP) l
1//SYSUT3 DD DSNAME=TEMP1,UNIT=2311,VOL=SER=111118, XI
1// DISP= (NEW,DELETEl , SPACE=(TRK, (1» I
1/ /SYSUT4 DD DSNAME=TEMP2, UNIT=2311,,vOL=SER=1.11119, X I
1// D·ISP=(NEW,DELETE) ,SPACE=(TRK, (1» I
I//SYSIN DD * I
ICOPYOPER COpy OUTDD=INOUTI I
I INDD=INOUT5,(INOUT6,R),INOUTl l L ___ J

246

DATASET5
(input)

DATASET6
(input)

Q)
u
o

a..
Q)

c:c:

U
-g
o

DATASETl
(input)

IIEBCOPY Example 10. Compress In Place Following Full Copy With Replace

The IEBCOPY Program 247

IEBCOPY Example 11

r---------T~-----------------T------------T-------------T-------------------------------,
, 'Data Set I 'I I
I Operationl Organization I Input Device lOutput Device I comments I
~---------+------------------+------------+-------------+-------~-----------------------~
I COpy IInput-PARTITIONED IDISK - 2311 IDISK - 2311 11. Three copy operations; one I
1 IOutput-PARTITIONEDIDISK - 2311 lDISK - 2311 I with multiple steps. I
I I IDISK - 2311 IDISK - 2311 , I
I 1 lDISK - 2311 1 I I
1 I IDISK - 2311 1 I I L _________ ~ __________________ ~ ____________ ~ _____________ ~ _______________________________ J

In this example, members are to be selected, excluded, and copied from input.
partitioned data sets onto an output partitioned data set. This example is
'designed to illustrate three copy operations that are made up of one or three copy
steps. It uses most of the applications illustrated in IEBCOPY Examples 1 - 10.

• TheINOUTA DD Statement: defines a partitioned data (DATASETA). This data
set contains eight members (MA, MB, MC, MD, ME, MF, MG, and ME) and resides on
a 2311 Disk storage Volume.

• The INOUTB DD Statement: defines a partitioned data set (DATASETB). This
data set resides on a 2311 Disk Storage Volume and contains two members (MA
and MJ).

• The.INOUTC DD Statement: defines a partitioned data set (DATASETC) which
resides on a 2311 Disk Storage Volume. The data set contains four members
(MF~ ML, MM, and MN).

• The INOUTD DD Statement: defines a partitioned·data set (DATASETD). This
data set resides on a 2311 Disk storage Volume and contains two member (MM and
l"1P) •

• The INOUTEI DD Statement: defines a partitioned data set (DATASETE). This
data set contains four members (MD, ME, MF\, and MT) and resides on a 2311 Disk
Storage Volume.

• The INOUTX DD Statement: defines a partitioned data set (DATASETX). This
data set is new and is to be kept after the copy operation. Five tracks are
allocated for the data set on a 2311 Disk Storage Volume. Two blocks are
allocated for directory entries.

• The SYSUT3 DO Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated -. on a' 2311 Disk storage Volume.
This data set' mayor may not be opened, depending on the amount of main
st'orage available; therefore, it is suggested that the statement always appear
in the job stream.

• TheSYSUT4 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for'the output partitioned data
set's directory blocks. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore it is suggested that the statement always appear
in the job stream.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The data set contains two COpy utility control statements,
several INDD statements, SELECT and EXCLUDE utility control statements.

• The first COpy statement: indicates the start of the first copy operation.

248

This copy operation is done to create a backup copy of DATASETA, which will
subsequently be compressed in place.

• The second COpy statement: indicates the start of the second copy operation.
The absence of a SELECT or EXCLUDE statement causes a default to a full copy;
however, the same DD statement is specified for both the INDD and OUTDD
operands, thus causing a compress in place of the specified data set. The
OUTDD operand specifies INOUTA as the DD statement for the output data set
(DATASETA). The INDD operand also specifies INOUTA as the DD statement for
the input data set (DATASETA).

• The INDD statement: specifies INOUTB as the DD statement for the input data
set (DATASETB) to be copied. Only member 'MJ' is copied because member 'MA'
already exists on the output data set.

• The third COPY statement: indicates the start of the third copy operation.
The presence of both an EXCLUDE statement and a SELECT statement in this copy
operation causes an exclusive copy (first copy step) followed by a selective
copy (second copy step). In addition there is another INDD statement
following the SELECT statement that causes a default to a full copy (third
copy step). The OUTDD operand specifes INOUTA as the DD statement for the
output data set (DATASETA).

• The first INDD Statement: specifies INOUTD as the DD statement for the first
input data set (DATASETD) to be processed. Only member 'MP' is copied onto
the output data set (DATASETA) because member 'MM' is specified on the EXCLUDE
statement.

• The EXCLUDE Statement: specifies the member(s) to be excluded from this copy
step.

• The second INDD Statement: specifies INOUTC as the DD statement for the
second input data set (DATASETC) to be processed. Processing occurs as
follows:

1. Member ML is searched for and found.
2. Member ML is copied onto the output data set (DATASETA), although its new

name (MO) is identical to the name of a member (MD) that already exists
on the output data set, because the replace option is specified for the
renamed member.

• The SELECT Statement: specifies the member to be selected from the input data
set (DATASETC) to be copied onto the output partitioned data set.

• The third INDD Statement: specifies INOUTE as the DD statement for the last
data set (DATASETE) to be copied. Only member MT is copied because the other
members already exist on the output data set.

Note: This example is designed to show the user that a copy operation can
contain any number of copy steps. (The shaded areas show the separate COPY
steps; the copy statements mark the start of each copy operation.) IEBCOPY
Example 11 utilizes many of the applications explained in IEBCOPY Examples
1-10. Of special interest in this example is the fact that the output data
set is compressed in place first to save space since it is known that it
contains embedded unused space.

The IEBCOPY Program 249

r---,
I//COPY JOB
I//JOBSTEP EXEC
I//SYSPRINT DD
I//INOUTA DD
1//
I//INOUTB DD
1//
I//INOUTC DD
1//
I//INOUTD DD
1//
I//INOUTE DD
1//
I//INOUTX DD
I
1//SYSUT3 DD
1//
1//SYSUT4 DD
1//
I//SYSIN DD
ICOPERSTl
1
I

06#990,MCEWAN
PGM=IEBCOPY
SYSOUT=A
DSNAME=DATASETA,UNIT=2311,VOL=SER=111113,

DISP=OLD
DSNAME=DATASETB,UNIT=2311,VOL=SER=111115,

DISP=COLD,KEEP)
DSNAME=DATASETC,UNIT=2311,VOL=SER=111114,

DISP=COLD,KEEP)
DSNAME=DATASETD,UNIT=2311,VOL=SER=111116,

DISP=OLD
DSNAME=DATASETE,UNIT=2311,VOL=SER=111117,

DISP=OLD
DSN~lE=DATASETX,UNIT=2311,VOL=SER=111112,

DISP=(NEW,KEEP),SPACE=(TRK,(5,1,2»
DSNAME=TEMP1,UNIT=2311,VOL=SER=111118,

DISP=CNEW,DELETE),SPACE=(TRK,(l»
DSNAME=TEMP2,UNIT=2311,VOL=SER=111119,

DISP=(NEW,DELETE),SPACE=(TRK,(l»

*

I
I
I

XI
I

XI
I

xI
I

xI
I

xI
I

xI
I

xI
I

xI
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I ___ J

250

First Copy Operation

DATASETA
(input)

Second Copy Operation

DATASETA
(input)

DATASETB
(input)

Third Copy Operation

DATASETD
(input)

DATASETC
(i nput)

DATASETE
(input)

'IEBCOPY Example 11. Multiple Copy Steps Within a Copy Operation

The IEBCOPY Erogram 251

IEBCOPY Example 12

r---------T-----------------~------------T-------------T-------------------------------,
I IData Set I I I I
I Operation I Organization IInput Device I Output DevicelComments I
~---------+------------------+------------+-------------+-------------------------------~
I COpy . IInput-PARTITIONED IDISK - 2311 IDISK - 2311 11. Multiple copy operations I
I IOutput-PARTITIONEDIDISK - 2311 I I with multiple steps. I
I I I DISK - 2311 I I I
I I IDISK - 2311 I I I L _________ i __________________ i ____________ i ____________ ~i _______________________________ J

In this example, members are to be selected, excluded, and copied from input
partitioned data sets onto an output partitioned data set. This example is
designed to illustrate multiple copy operations with nlultiple copy steps. It uses
many of the applications illustrated in IEBCOPY Examples 1-10.

• The INOUTA DD Statement: defines a partitioned data set (DATASETA). This
data set contains three members (MA, MB, and MD) and resides on a 2311 Disk
storage Volume.

• The INOUTB DD Statement: defines a partitioned data set (DA'I'ASETB). This
data set resides on a 2311 Disk storage Volume and contains two merobers (MA
and MJ).

• The INOUTC DD Statement: defines a partitioned data set (DATASETC) which
resides on a 2311 Disk Storage Volume. This data set contains four members
(MF, ML, ~~, and MN).

• The INOUTD DD Statement: defines a partitioned data set (DATASETD). This
data set resides on a 2311 Disk storage Volume and contains two members (MM
and tvlP).

• The INOUTE DD Statement: defines a partitioned data set (DATASETE) which
resides on a 2311 Disk Storage Volume. This data set contains three members
(MA, MJ and MIO.

• The SYSUT3 DD Statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the input partitioned data set's
directory entries. One track is allocated on a 2311 Disk Storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore, it is suggested that the statement always appear
in the job stream.

• The SYSUT4 DD statement: defines the temporary spill data set to be used if
there is not enough space in main storage for the output partitioned data
set's directory blocks. One track is allocated on a'2311 Disk storage Volume.
This data set mayor may not be opened, depending on the amount of main
storage available; therefore it is suggested that the statement always appear
in the job stream.

• The SYSIN DD Statement~ defines the control data set, which follows in the
input stream. The data set contains three COpy utility control statements,
several INDD statements, SELECT and EXCLUDE statements.

• The first COPY statement: indicates the start of the first copy operation.
The presence of a SELECT statement and an EXCLUDE statement in this copy
operation causes a selective copy (first copy step) followed by an exclusive
copy (second copy step). The OUTDD operand specifies INOUTA as the DD
statement for the output data set (DATASE'l'A).

• The first INDD Statenlent: specifies INOUTE as the DD statement for the first
input data set (DATASETE) to be processed. Processing occurs as follows:

The IEBCOPY Program 253

•

1. Member MA is searched for and found. It is not searched for again.
2. Member MJ is searched for and found. It is not searched for aqain.
3. Member MA is not copied onto the output data set because the replace

option is not specified on either the INDD or MEMBER level.
4. Member MJ is copied onto the output data set.

• The SELECT statement: specifies the members (MA and MJ) to be selected from
the input data set (DATASETE) to be copied onto the output data set.

• The second INDD Statement: specifies INOUTC as the DD statement for the
second input data set (DATASE~C) to be processed. Only members MF and ML may
be copied because members MM and MN are specified on the EXCLUDE statement.
BothMF and ML are copied because neither exists on the output data set.

• The EXCLUDE statement: specifies the members (MM and MN) to be excluded from
the copy step.

• The second COpy statement: indicates the start of the second copy operation.
The absence of a SELECT or EXCLUDE statement caus~s a default to a full copy.
The OUTDO (0) operand specifies INOUTB as the output data set (DATASETB). The
INDD operand specifies INOUTD as the first input data set (DATASETD) to be
processed. Both members (MP and MM) are copied onto the output data set.

• The INDD(I) Statement: specifies INOUTC as the DD statement for the second
input data set (DATASETC) and INOUTB as the DO statement for the third input
data set (DATASETB) to be processed.

Processing occurs as follows:

1. Member MF is copied from DATASETC.
2. Member ML is copied from DATASETC.
3. Member MM is copied from DATASETC, although it already exists on the

output partitioned data sets, because the replace option is specified.
(Note: The pointer in the output set directory is changed to point to the
new (copied) member MMi thus the space occupied by the replaced member MM
is embedded unused space.)

4. Member MN is copied from OATASETC.

since OATASETB is also the data set specified in the OUTDD operand, a compress
in place takes place.

• The tl~ird COPY statement: indicates the start of the third copy operation.
The presence of a SELECT statement causes a selective copy. The OUTDD (0)
operand specifies INOUTD .as the DD statement for the output data set
(DATASETD). The INDD (I) operand specifies INOUTB as the DD statement for the
input data set (DATASETB).

The selected member (MM) is found on the input data set (OATASETB) and copied
onto the output data set (DATASETD) because the replace option is specified on
the INDD level.

(Note: The ~ointer in the data set directory is changed to pOint at the new
(copied) member MM; thus the space occupied by the old member MM is embedded
unused space.)

• The SELECT Statement: specifies the member (MM) to be selected from the input
partitioned data set (DATASETB) to be copied onto the output partitioned data
set.

254

Note: This example is designed to show the user that there can be more than
one copy operation in a job step, as well as multiple copy steps within a copy
operation. (The shaded areas show the separate copy steps; the COpy
statements mark the start of each copy operation.) IEBCOPY Example 12 uses
many of the applications expained in IEBCOPY Examples 1-10. Of special
interest in this example are the following:

• Not all of the data sets defined by the DD statements are used in every
copy operation.

• Data sets used as input data sets in one copy operation can be used as
output data sets in another copy operation, and vice versa.

The IEBCOPY Program 255

I'V
U1
0'\

H

&i n o
"t1
to<

t:r::l
><
~

~
!-oJ
CD

~
I'V

~
I-'
rt
I'd
!-oJ
CD

n
o
I'd
'<
o
I'd
CD
1"1
~
rt
o
ffi
~
rt
::t
t::1

:J:I

Col o
b'

~
S

First Copy Operation

DATASETE
(input)

DATASETC
(input)

Second Copy Operation

DATASETD
(input)

DATASETC
(input)

DATASETB
(input)

Third Copy Operation

DATASETB
(input)

The IEBGENER Program

Program Applications
The IEBGENER program can copy a sequential data set or a partitioned
member, or it can create a partitioned data set from a sequential data
set or from a partitioned member used as input. The program can expand
an existing partitioned data set by creating partitioned members and
merging them into the data set that is to be expanded.

The IEBGENER program provides optional editing facilities with all
applications of the program. In addition, user exits are provided at
appropriate places for user routines that process labels, manipulate
input data, create keys, and handle uncorrectable input/output errors.
Refer to the section "Exit Routine Linkaqe" for a discussion of linkage
conventions that are applicable when user routines are provided.

The program can be used to:

• Create a back-up copy of a sequential data set or a partitioned
member.

• Produce a partitioned data set from sequential input.

• Expand an existing partitioned data set.

• Produce an edited sequential or partitioned data set.

• Reblock or change the logical record length of a data set.

• Create user labels on sequential output data sets.

At the completion or termination of the program, the highest return code
encountered within the program is passed to the calling program.

Creating a Back-Up Copy

A back-up copy of a sequential data set (or partitioned member) can be
produced by copying the data set (or member) onto any IBM supported
output device. For example:

• Card to tape (7 or 9-track).
• Card to direct access.
• Card to printer or punch.
• Tape (7 or 9-track) to tape (7 or 9-track).
• Tape (7 or 9-track) to direct access.
• Tape (7 or 9-Track) to printer or punch.
• Direct-access to direct access.
• Direct-access to tape (7 or 9-track, sequential data sets only).
• Direct-access to printer or punch (sequential data sets).

A data set that resides on a direct access volume can be copied onto its
own volume, provided that its data set name is changed. A partitioned
data set cannot reside on a magnetic tape volume. Names

The IEBGENER Program 257

•

Producing a Partitioned Data Set From Sequential Input

The IEBGENER program can produce a partitioned data set from sequential
input. Through the use of utility control statements, the user can
logically divide the sequential data set into ftrecord groupsft and assign
member names to the appropriate record groups. The IEBGENER program
places the newly created members into a partitioned (output) data set.

IEBGENER Figure 1 shows how a partitioned data set is produced from a
sequential data set used as input. In this figure, each record group
within the sequential data set becomes a member of the resulting
partitioned data set.

Record
Group
1

Record
Group
2

Record
Group
n

+ LASTREC n

Sequential
Input

UTILITY CONTROL
STATEMENT NAMESFI RST
MEMBER

UTILITY CONTROL
STATEMENT IDENTIFIES

UTILITY CONTROL
STATEMENT NAMES NEW
MEMBER

UTILITY CONTROL
STATEMENT IDENTIFIES

UTILITY CONTROL
STATEMENT NAMES
NEW MEMBER

To

~
IEBGENER Figure 1. Creating a Partitioned Data Set from Sequential

Input

258

Expanding a Partitioned Data Set

An expanded data set is a data set into which an additional member or
members have been merged. The IEBGENER program creates the members from
sequential input and places tham in the data set being expanded. 'Ihe
merge operation -- that is, the ordering of the partitioned directory -
is automatically performed by the program.

IEBGENER Figure 2 shows how sequential input to the program is
converted into members that are merged into the existing partitioned
data set.

Sequential Input

UTI LJ TV CONTROL
STATEMENTS.
DEFINE RECORD
GROUPS. NAME
MEMBERS.

Available Space

Existing Data Set

IEBGENER Figure 2. Expanding a Partitioned Data set

Producing an Edited Data Set

Expanded Data Set

The IEBGENER program can produce an edited sequential or partitioned
data set. Through the use of utility control statements, the user can
specify editing information that applies to:

• A record.
• A group of records.
• Selected groups of records.
• An entire data set.

An edited data set can be produced by:

• Rearranging or omitting defined data fields within a record.
• Supplying literal information as replacement data.
• Converting data from packed to unpacked decimal mode, unpacked to

packed decimal mode, or H-set BCD to EBCDIC mode.

The IEBGENER Program 259

•

IEBGENER Figure 3 shows an edited sequential data set. In this
figure, literal replacement information is supplied for information
within a defined field. (Data is rearranged, omitted, or converted in
the same manner.)

RECORD
1

RECORD
2

Record
Group

RECORD
n

Sequential

Input

Utility
Control
Statement

Defines record group,
Contains literal
replacement data (C C C C).
A pplies to all records
within the group.

IEBGENER Figure 3. Editing a Record Group

»
»
»
»
n
n
n
n
»
»
»
»
n
n
n
n

n
n
n
»
»
»
»
n
n
n
n

Sequential

Output

Note: The IEBGENER program will perform no editing if the input and
output data sets consist of VS or VBS type records and have equal
blocksizes and logical record lengths. In this case the utility ignores
any utility control statements that specify editing. The utility
performs a "straight copy"; that is, for each physical record read from
the input data set the utility writes an unedited physical record on the
output data set.

Reblocking and/or Changing the Logical Record Length of a Data set

The IEBGENER program can produce a reblocked output data set containing
either fixed-length or variable-length records. In addition, the
program can produce an output data set having a logical record length
that differs from the input logical record length.

260

RECO!lUJ
n

Inputs and Outputs

IEBGENER Table 1 lists the major inputs to and outputs from the IEBGENER
program.

IEBGENER Table 1. Data Sets Used (Input) and Produced (Output) by the
IEBGENER Program

r-------T--,
IInput IInput Data Set: This data set contains the data that is to bel
I I copied, edited, converted into a partitioned data set, or I
I Iconverted into members to be merged into an existing data set.1
I IThe input is either a sequential data set or a member of a ,
I Ipartitioned data set. ,
I ,Control Data Set: This data set contains utility control ,
, I statements. The data set is required if editing is to be ,
I Iperformed or if the output data set is to be a partitioned ,
I I data set. I
~-------+--~
IOutput IOutput Data Set: This data set is the result of the IEBGENER I
I I operation. The data set can be either sequential or I
I I partitioned. It can be either a new data set (i.e., created I
I Iduring the present job step) or an existing partitioned data I
I Iset that is to be expanded. I
I IMessage Data Set: This data set contains informational I
I Imessages (e.g., the contents of applicable utility control ,
I ,statements) and error messages, if applicable. I L _______ ~ __ J

ADDITIONAL OUTPUTS

The IEBGENER program provides a return code to indicate the results of
program execution. The return codes and their interpretations are as
follows:

00 successful completion.
04 probable successful completion. A warning message to the user

is written.
08 processing was terminated after the user requested processing

of user header labels only.
12 an unrecoverable error has occurred. The job step is

terminated.
16 a user routine has passed a return code of 16 to the IEBGENER

program. The job step is terminated.

Control
The IEBGENER program is controlled by job control statements and utility
control statements. The job control statements are required to execute
or invoke the IEBGENER program and to define the data sets that are used
and produced by the program. The utility control statements are used to
control the functions of the IEBGENER program.

JOB CONTROL STATEMENTS

IEBGENER Table 2 shows the job control statements necessary for
executing or invoking the IEBGENER program.

The IEBGENER Program 261

IEBGENER Table 2. Job Control Statements for the IEBGENER Program
(Part 1 of 2)

r------------T---,
I statement I Usage I
~------------+---~
I JOB IThis statement initiates the job. I
I statement I I
~-----------+---~
I EXEC IThis statement specifies the program name (PGM=IEBGENER) I
I statement lor, if the job control statements for the IEBGENER pro- I
I I gram reside in a procedure library, the procedure name. I
t------------+---~
ISYSPRINT IThis statement defines a sequential message data set. I
IDD IThe data set can be written onto a system output device, I
I statement la magnetic tape volume, or a direct access volume. (This I
I IDD statement must be present for each execution or I
I linvocation of the IEBGENER program.) I
~------------+---------------------------------------~-----------------~
ISYSUTl IThis statement defines the input data set. It can definet
IDD la sequential data set on a card reader, a magnetic tape I
lstatement Ivolume, or a direct access device, or, it can define a I
I lpartitioned member on a direct access device. I
~-----------+---~-----~
I SYSU'I2 I This statement defines the output data set. It can
I DD I define a sequential data set on a card punch', a printer,
I statement la magnetic tape volume, or a direct access device, or, it
I lcan define a partitioned data set on a direct access
I I device. Space must be allocated for an output data set
I Ithat is to reside on a direct access device unless the
I Idata set is an expanded data set, in which case space
I I must not be allocated.
I I
I IIf the output data set is on a card punch or a printer,
I lthe user must specify DCB information on the SYSUT2 DD
I I statement.
I I
I I Note: If both the SYSUTl and the SYSUT2 DD statements
I lspecify standard user labels (SUL), the IEBGENER program
I Iwill copy user labels from SYSUTl to SYSUT2. See
I I "Appendix F: Utility Program Handling of User Labels"
I lfor a discussion of the available options for user label
I I processing.
r------------+---~
ISYSIN lThis statement defines the control data set or specifies 1
IDD IDUMMY (when the output is sequential and no editing is I
I statement Ispecified)~ The control data set normally resides in the I
I I input stream; however, it can also be defined as being a I
I Imerr~er within a library of partitioned members. The I
I ISYSIN DD statement is required, regardless of the I
I I operation. I
~------------~---~
INotes: DCB parameters in a SYSUT2 DD statement defining an expanded I
Ipartitioned data set must be compatible with the specifications made I
Iwhen the data set was originally created. I
I I
IThe blocksize for the SYSPRINT (message) data set must be a multiple I
lof 121. The blocksize for the SYSIN (control) data set must be a I
Imultiple of 80. Any blocking factor can be specified for these I
Iblocksizes. I L __ J

(Part 1 of 2)

, 262

IEBGENER Table 2. Job Control statements for the IEBGENER Program
(Part 2 of 2)

r--,
Both the input data set and the output data set can contain I
fixed-length, variable-length, undefined-length, or variable spanned I
records. Fixed~length, variable-length, and variable spanned records I
can be reblocked by the specification of a new maximum block length on
the SYSUT2 DD statement. During reblocking, if the output data set
resides on a direct access volume:

• For fixed-length or variable-length records, keys can be retained
only by using the appropriate user exit •

• For variable spanned records, keys can never be retained.

Refer to the publication IBM system/360 Operating System: supervisor
and Data Management Services, GC28-6646, for information on estimating
space allocations.

Refer to the IEBGENER examples for typical uses of the job control
I statements. L __ J

The IEBGENER Program 263

•

UTILITY CONTROL STATEMENTS

The IEBGENER program is controlled by five utility control statements:

• The GENERATE statement.
• The EXITS statement.
• The LABELS statement
• The MEMBER statement.
• The RECORD statement.

The control statements are included in the control data set as required.
IEBGENER Table 3 shows the order of inclusion and the uses of the
control statements.

IEBGENER Table 3. Utility Control statements for the IEBGENER Program
r---------------T--,
IThis Statement I I
lis Included IIf I
~--------------+--~
I GENERATE I (1) The output is partitioned, or (2) editing is to bel
I I performed, or (3) user routines are provided and/or I
I Ilabel processing is specified. This statement appears I
I Ifirst in the control data set. I
~---------------+---------------------------------~--------------------~
I EXITS IUser routines are provided. This statement, if I
I lincluded, should appeariromediately after the GENERATE I
I I statement. I
~---------------+--~
I LABELS lThe user wants either (1) no user labels to be copied I
I lonto the output data set, (2) user labels to be copiedl
I lonto the output data set from records in the data I
I Iportion of the SYSIN data set, or (3) user labels to I
I Ibe copied onto the output data set after they are I
I Imodified by the user's label processing routines. seel
I I "Appendix F: Utility Program Handling of User Labels" I
I Ifor a more detailed discussion of this statement. I
~---------------+--~
I MEMBER IThe output is partitioned. One MEMBER statement must I
I Ibe included for each member created by the IEBGENER I
1 lprogram. 1
~---------------+--~
I RECORD I (1) The output consists of partitioned members, or (2)1
I lediting is to be performed, or (3) user labels for the I
I loutput data set are to be created from records in the I
I ldata portion of the SYSIN data set. (In all of these I
I Icases, this statement defines a record group.) I
r---------------~--~
IIf no utility control statements are included in the control data set, I
Ithe entire input data set is copied sequentially. I L __ J

The GENERATE Statement

The GENERATE statement must appear before other statements. If it
contains errors, or is inconsistent with other statements, the program
is terminated.

r------T---------T---,
I Name I Operation I Operand I
t------t---------+---~
I [namelIGENERATE I [¥AXNAME=nl I
I I I [~~XFLDS=nl I
I I I [MAXGPS=nl I
I I I [MAXLITS=nl I L ______ ~ _________ i ___ J

264

MAXNAME=n
specifies a number that is no less than the total number of members
names and aliases appearing in subsequent MEMBER statements.
MAXNAME is required if there are one or more MEMBER statements.

MAXFLDS=n
specifies a number that is no less than the total number of FIELD
parameters appearing in subsequent RECORD statements. MAXFLDS is
required if there are any FIELD parameters in subsequent RECORD
statements.

lVlAXGPS=n
specifies a number that is no less than the total number of IDENT
parameters appearing in subsequent RECORD statements. MAXGPS is
required if there are any IDENT parameters in subsequent RECORD
statements.

lV'lAXLITS=n
specifies a number that is no less than the total nurober of
characters contained in the FIELD literals of subsequent RECORD
statements. MAXLITS is required if the FIELD parameters of
subsequent RECORD statements contain literals. (MAXLITS does not
pertain to literals used in IDENT parameters.)

The EXITS Statement

The EXITS statement is used to identify exit routines supplied by the
user. The exits OUTHDR and OUTTLR are ignored if the output data set is
partitioned. Linkages to and from exit routines are discussed in
Appendix A.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [name] I EXITS I [INHDR=routinenamel I
I I I [OUTHDR=routinenamel I
I I I [INTLR=routinename] I
I I I [OUTTLR=routinename] I
I I I [KEY=routinename] I
I I I [DATA=routinename] I
I I I [IOERROR=routinename] I
I I I [TOTAL=(routinename,size)] I L ______ ~ _________ ~ ___ J

INHDR=routinename
specifies the symbolic name of a routine that processes user input
header labels.

OUTHDR=routinename
specifies the symbolic name of a routine that creates user output
header labels.

INTLR=routinename
specifies the symbolic name of a routine that processes user input
trailer labels.

OUTTLR=routinename
specifies the symbolic name of a routine that processes user output
trailer labels.

For a detailed discussion of the processing of user labels as data
set descriptors, refer to "Appendix F: Utility Program Handling of
User Labels."

The IEBGENER Program 265

KEY=routinename
specifies the symbolic name of a routine that creates the output
record key. (This routine can never receive control when the
utility is processing a data set consisting of VS or VBS type
records, since no processing of keys is permitted for this type of
data.)

DATA=routinename
specifies the symbolic name of a routine that modifies the physical
record (logical record for VS or VBS type records) before it is
processed by the IEBGENER program.

IOERROR=routinename
specifies the symbolic name of a routine that handles permanent
input/output error conditions.

TOTAL=(routinename,size)
specifies that exits to a user's routine are to be provided prior
to writing each record. When the option is specified, the user
must supply two parameters. The first is the name of the user's
totaling routine. The other is the size (number of bytes) needed
to contain his desired totals, counters, pointers, etc. In
addition, the keyword OPTCD=T must be specified for the SYSUT2
(output) DD statement.

Refer to the section "Exit Routine Linkage" for a discussion of
linkage conventions for user routines.

The above line parameters are valid only when the utility is
processing sequential data sets. For a detailed discussion of the
processing of user labels as data set descriptors, and for
discussion of user label totaling), refer to "Appendix F: Utility
Program Handling of User Labels."

The LABELS statement

The LABELS statement specifies whether or not user labels are to be
treated by the IEBGENER program as data. For a detailed discussion of
this option, refer to the section entitled "Processing User Labels as
Data," in "Appendix F: Utility Program Handling of User Labels."

r------T---------T-----------------------------~-----------------------,
I Name I Operation I Operand I
~------+---------+---~
I [nameJILABELS IDATA= YES I
I I I NO I
I I I ALL I
I I I ONLY I
I I I INPUT I L ______ ~~ ________ ~ ___ J

The MEMBER statement

The MEMBER' statement provides the name and alias names of a member that
is to be created. All record statements following a MEMBER statement
pertain to the member named in that MEMBER statement. If no MEMBER
statements are included, the output data set. is organized sequentially.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [nameJIMEMBER 1NA¥~=(name[,alias] •••) I L ______ ~ _________ ~ ___ J

266

NAME=(name[,alias] •••)
specifies a member name followed by a list of its aliases. If only
one name appears in the statement, it need not be enclosed in
parentheses.

The RECORD Statement

The RECORD statement is used to define a record group and to supply
editing information. A record group consists of one or more records
that are to be processed identically. The RECORD statement defines a
record group by identifying the last record of the group with a literal
name.

Within a RECORD statement, an IDE}~ parameter can be used to define
the record group; a FIELD parameter (or parameters) can be used to
supply the editing information applicable to the record group; and a
LABELS parameter can be used to indicate that this statement" is followed
immediately by output label records. If no RECORD statement is used,
the entire input data set or member is processed without editing. More
than one RECORD statement may appear in the control statement stream for
IEBGENER.

r------T---------T---,
'Name I Operation I Operand I
~------+---------+---~
I [name 1 I RECORD 1[[IDENT=(ident parameters)] [FIELD =] I
I I I (field parameters)] I
I I I LABELS=n I L ______ ~ _________ ~ ___ J

IDENT=(length,'name',input-location)
identifies the last record of the input group to which the FIELD
parameters or MEMBER statement applies. If the IDENT statement is
not followed by additional RECORD or MEMBER statements, it also
defines the last record to be processed.

length: specifies the length (in bytes) of the identifying naroe.
The length cannot exceed 8 characters.

'name': specifies the exact literal that identifies the last input
record of a record group.

input-location: specifies the starting location of the field that
contains the identifying name in the input records.

If IDENT is omitted, or if no match for 'name' is found, the
remainder of the input data is considered to be in one record
group; i.e., subsequent RECORD and MEMBER statements are ignored.

LABELS=n
where n=1 to 8, indicates that the following n records in the SYSIN
data set will be treated as user labels. The number n must specify
the exact number of label records that follow the RECORD statement.

If a RECORD LABELS=n statement is used, a LABELS DATA=INPUT
statement must appear before it in the input stream.

If both output header labels and output trailer labels are to be
contained in the SYSIN data set, the user must include one RECORD
LABELS=n statement for each label group. (If the user wants to
include only output trailer labels in the SYSIN data set, he roust
include a RECORD LABELS=O statement to indicate that there are no
output header labels in the SYSIN data set. This statement rr,ust
precede the RECORD LABELS=n statement which signals the start of
label input records.)

The IEBGENER Program 267

•

For a detailed discussion of' this option, refer to the section
entitled "Processing User Labels As Data", in "Appendix F: Utility
Program Handling of User Labels."

FIELD=([length],[input-location-or-'literal'],[conversion],
[output-location]) •••

268

specifies the field processing and editing information,. FIELD
parameters can determine the logical record length of output
records.

length: specifies the length (in bytes) of the input field or
literal to be processed. If no length is specified, a length of 80
bytes is assumed by the IEBGENER program. (A length of 40 or less
must be specified if a literal is to be processed.)

input-location-or-'literal': specifies the starting byte of the
field to be processed or, if enclosed in apostrophes, the literal
(maximum length of 40 bytes) to be placed in the specified output
location. If no input location is specified, the starting byte is
assumed to be byte 1. If a literal contains apostrophes, each
apostrophe must be written as two consecutive apostrophes.

conversion: specifies a 2-byte code that indicates the type of
conversion to be performed on this field, as follows:

r-------T------------------------------------T--------------------,
I Code I Conversion IOutput length I
I I I (input length=L) I
t-------+------------------------------------+--------------------~
IPZ IPacked to unpacked decimal mode 12L-1 I
~-------+------------------------------------+--------------------~
IZP IUnpacked to packed decimal mode I (L/2)+C * I
t-------+------------------------------------+--------------------~
IHE IH-set BCD to EBCDIC mode IL I
~------~------------------------------------~--------------------~
1* If L is odd, C is 1/2; if L is even, C is 1. I L ___ J

Note: PZ type (packed to unpacked) conversion is impossible for
packed decimal records longer than 16K bytes. For ZP type
(unpacked to packed) conversion, the normal 32K byte maximum
applies.

If no conversion is specified, the field is moved to the output
area without change.

When the ZP parameter is specified, the conversion is performed
in-place. The original unpacked field is replaced by the new
packed field. Therefore, the ZP parameter must be omitted from
subsequent references to that field. If the field is needed in its
original unpacked form, it must be referenced prior to the use of
the ZP parameter.

output-location: specifies the starting location of this field in
the output records. If no output location is specified, byte 1 is
assumed.

Contents of unspecified fields in the output records are not erased
or modified by the IEBGENER program. These contents remain the
same as they were before the progr~m was executed.

Note: IDENT and FIELD parameters are ignored in "straight copy"
processing of data sets that contain vs or VBS type records.

Using the Utility Control statements

IEBGENER Table 4 shows the use of the utility control statements.

IEBGENER Table 4. Use of the GENERATE, EXITS, MEMBER, and RECORD
Statements

r--------------------T-------------T-----------------------------------,
~:~:=J---------------~--~=:~=t-----+---------~:~:Jl---------___________ ~
IProduce sequential INo editing, INo control statements I
loutput from a I no user exi ts I I
isequential data set ~-------------+-----------------------------------~
lor a partitioned I Editing i GENERATE --1 per job step. I
Imember used as input I I RECORD as many per job step I
I I I as required. I
I ~--------~---+---------~-------------------------~
I I Editing, IGENERATE --1 per job step. I
I luser exits I EXITS --1 per job step. I
I I I RECORD as many per job step I
I I I as required. I
~--------------------+--~----------+--------------------------~--------~
IProduce partitioned INO editing, IGENERATE --1 per "job step. I
loutput from Ino user exitslMEMBER --1 per output member. I
Isequential input or I I RECORD --1 after each MEMBER I
lfrom a partitioned I I statement (none I
Imember used as input I I required after last I
I I I MEMBER statement). I
I t-------------+-----------------------------------~
I I Editing IGENERATE --1 per job step. I
I I I MEMBER --1 per output member. I
I I I RECORD --lor more (as required) I
t I I after each MEMBER I
I I I statement. I
I ~------------+-----------------------------------i
I I Editing, I· GENERATE --1 per job step. I
I luser exits I EXITS --1 per job step I
I I lMEMBER --1 per output member. I
I I I RECORD --~ or more (as required) I
I I I after each MEMBER I
I I I statement. I L ____________________ ~ _____________ ~ ___________________________________ J

Coding Utility Control Statements

Utility control statements are coded in columns 1 through 71. A
statement that exceeds 71 characters may be continued on one or more
additional cards.

Names: Names are not required for utility control statements. If they
are used, they must begin in column 1. Names cannot be over eight
characters long and must be followed by one or more blanks.

Operation: The operation field can begin in any column from 2 through
71. An operation field may be interrupted at column 71 and continued on
the next card. When an operation field is interrupted, a nonblank
character must be placed in column 72. The continued portion must start
in any column from 4 through 16 of the next card. (Restriction: When
an operation field ends in column 70 or 71, it cannot be followed by an
operand or comment.)

Operands (Keywords and Parameters): Operands must be preceded by an
operation field. They must begin on the same card that the operation
field ends on. One or more blanks must separate the operand from the

The IEBGENER Program 269

•

operation field. When an operand ends in column 71, then column 72 must
be left blank. If an operand is interrupted at column 71 and is to be
continued on the next card, a nonblank character must be placed in
column 72. An operand can also be interrupted at a comma (unless the
comma is part of a literal). Whenever an operand is interrupted at a
comma, column 72 may be either blank or nonblank. In all cases, the
continuation must start in any column from 4 through 16 of the next
card.

comments: comments must be preceded by an operand or operation field.
They must begin on the same card that the last operand or the operation
field ends on. (Exception: When an operand is interrupted at a cOF~a,
the remaining columns through 71 may contain a comment. A blank must
separate the comma from the con~ent, however.) A comment cannot
separate an operation field from an operand.

Comments may be interrupted and continued on the next card by placing
a nonblank character in column 72. Comments do not have to be
interrupted at column 71; blanks are acceptable in column 71 as part of
the comment. The continued portion must start in any column from 4
through 16 of the next card.

270

IEBGENER Examples

The following examples illustrate some of the uses of the IEBGENER program.

IEBGENER Example 1

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I I I I
IOperation ,Organization IInput Device loutput Device ICoroments I
~-----------+------------------+---------------+---------------+------------------------~
I COpy I Input-SEQUENTIAL ICARD ITAPE - 9-track,ll. Blocked output. I
I lOutput-SEQUENTIAL IREADER I standard label, I I
I I I 1800 bits-per- I I
I I I linch I I L ___________ ~ __________________ ~ _______________ ~ _______________ ~~ _______________________ J

In this example, a sequential data set (card input) is to be copied onto
9-track magnetic tape.

• The SYSIN DD statement: defines a dummy data set. (No editing is to be
performed: therefore, no utility control statements are needed.)

• The SYSUT2 DD statement: defines the copied sequential data set (output).
The data set is written onto a 9-track magnetic tape drive at a density of 800
bits-per-inch. The data set is to reside as the first (or only) data set on
the magnetic tape volume.

• The SYSUT1 DD statement: defines the input card data set. The data set can
contain no // cards.

r------------~--,
//CDTOTAPE JOB 09#660,SMITH I
// EXEC PGM=IEBGENER I
//SYSPRINT DD SYSOUT=A 1
//SYSIN DD DUMMY I
//SYSUT2 DD DSNAME=OUTSET,UNIT=2400,LABEL=(.SL).DISP=(.KEEP), I
// VOLUME=SER=001234,DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000) I
//SYSUT1 DD * I

I
I

input card data set I
I
I

/* I L ___ J

IEBGENER Example 1. Copying a Card Data Set onto 9-Track Magnetic Tape

'The IEBGENER Program 271

•

IEBGENER Example 2

r-----------T------------------T---------------T---------------T------------------------,
1 1 Data Set I I I I
IOperation IOrganization IInput Device IOutput Device 1 Comments I
t,-----------t------------------t---------------t---------------t------------------------~
1 COPY- IInput-SEQUENTIAL ICARD ITAPE- 7-track, 11. Blocked output. I
I with IOutput-SEQUENTIAL IREADER Istandard label 12. Utility control I
I editing I I 1556 bits-per- I statements exist as al
I I 1 linch density, I member of a parti- I
1 i I Idata conversion I tioned data set. 1 L ___________ i __________________ i _______________ i _______________ i ________________________ J

In this example, a sequential data set (card input) is to be copied onto a
7-track magnetic tape volume.

• The SYSIN DD Statement: defines the data set containing the utility control
statements. The statements have been previously placed into a partitioned
data set. The set of control statements was assigned the member name STMNTS
when it was placed in the partitioned data set.

• The SYSUT2 DD Statement: defines the copied sequential data set (output).
The data set is written as the first or only data set on the volume. It is
written at 556 bits-per-inch density on a 7-track magnetic tape volume.

• The SYSUTl DD Statement: defines the input card data set. The data set can
contain no // cards.

r---,
I//CDTOTAPE JOB 09#660,SMITH
1// EXEC PGM=IEBGENER
I//SYSPRINT DD SYSOUT=A
I//SYSIN DD DSNAME=CNTRLIBY(STMNTS),UNIT=2311,DISP=(OLD,KEEP),
1// VOLUME=SER=111112,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
l//SYSUT2 DD DSNAME=OUTSET,UNIT=2400-2,LABEL=(,SL),
1// DCB=(DEN=l,RECFM=FB,LRECL=80,BLKSIZE=2000,TRTCH=C>,
1// DISP=<,KEEP),VOLUME=SER=001234
1//SYSUTl DD *
I
I
I input card data set
I
1
1/* L ___ J

IEBGENER Example 2. Copying a Card Data Set Onto 7-Track Magnetic Tape

272

IEBGENER Example 3

r-----------T------------------T------------~---------------T--------------------------,
I IData Set I I I I
IOperation I organization IInput Device IOutput Device I Comments I
~-----------+------------------+-------------+---------------+--------------------------~
I COPY- IInput-SEQUENTIAL ICARD READER ITAPE- 9-track, 11. Blocked output. I
I with loutput-SEQUENTIAL 1 Istandard label, 12. Utility control 1
I editing 1 I 1800 bits-per- I statements (not shown) I
I I I linch density I exist as a member of a I
I I I I I partitioned data set. I
I I 1 I 13 • Input data includes I
1 I I 1 I // cards. I L ___________ ~ __________________ ~ _____________ ~ _______________ ~ __________________________ J

In this example a card input sequential data set is to be copied onto a 9-track
magnetic tape volume. The input contains cards that have slashes (//) in columns
1 and 2.

• The SYSIN DD Statement: defines the data set containing the utility control
statements. The statements have been previously placed into a partitioned
data set. The set of control statements was assigned the meIDner name STMNTS
when it was placed in the partitioned data set.

• The SYSUT2 DD Statement: defines the copied sequential data set (output).
The data set is written as the second data set on the specified magnetic tape
volume.

• The SYSUTl DD Statement: defines the input card data set. 1he data set is to
be edited as specified in the utility control statements (not shown). The
input card data set contains // cards.

r---,
l//CDTOTAPE JOB 09#660,SMITH I
// EXEC PGM=IEBGENER I
//SYSPRINT DD SYSOUT=A I
//SYSIN DD DSNAME=CNTRLIBY(STMNTS),UNIT=2311,DISP=(OLD,KEEP), I
// VOLUME=SER=111112,DCB=(RECFM=F,LRECL=80,BLKSIZE=80) I
//SYSUT2 DD DSNAME=OUTSET,UNIT=2400,LABEL=(2,SL),VOLUME=SER=001234, I
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000),DISP=(,KEEP) 1
//SYSUTl DD DATA I

I
I

input card data set (including // cards) I
I
I

/* I L ___ J

IEBGENER Example 3. Copying a Card Data Set Onto 9-Track Tape -- Input Includes
// Cards

The IEBGENER Program 273

IEBGENER Example 4

r-----------T------------------T---------------T---------------T------------------------,
I IData set I I 1 1
IOperation lorganization IInput Device IOutput Device 1 Comments 1
t-----------+------------------+---------------+----~----------+------------------------~
I COPY- I Input-SEQUENTIAL 1 CARD READER 1 DISK - 231:1 1:1. Blocked output. I
Jwith IOutput-SEQUENTIAL 1 1 12. Utility control 1
I editing 1 I I 1 statements (not I
I 1 I 1 1 shown) exist as a 1
1 1 1 I 1 member of a parti- I
I J I I 1 tioned data set. I
1 I 1 I 13. Input data includes I
1 1 I I 1 // cards. 1 L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, a card input sequential data set is to be copied onto an IBM
2311 Disk Storage Drive. The input contains cards that have slashes (//) in
columns 1 and 2.

• The SYSIN DD Statement: defines the data set containing the utility control
statements. The control statements have been previously placed into a
partitioned data set. The set of control statements was assigned the member
name STMNTS when it was placed in the partitioned data set.

• TheSYSUT2 DD Statement: defines the output sequential data set. Twenty
tracks of primary storage space and ten tracks of secondary space are
allocated for the data set on the 2311 Disk Storage Drive.

• The SYSUT1 DD Statement: defines the input card data set. The data set is to
be edited as specified in the utility control statements (not shown). The
input card data set contains // cards.

r---,
I//CDTOTAPE JOB 09#660,SMITH I
1// EXEC PGM=IEBGENER I
I//SYSPRINT DD SYSOUT=A 1
l//SYSIN DD DSNAME=CNTRLIBY(STMNTS},UNIT=2311,DISP=(OLD,KEEP}, I
1// VOLUME=SER=1111:12, DCB= (RECFM=F, LRECL=80,BLKSIZE=80) 1
1//SYSUT2 DD DSNAME=OUTSET,UNIT=2311,VOLUME=SER=111113,DISP=(,KEEP}, I
1// SPACE=(TRK,(20,10}},DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000) I
1//SYSUTl DD DATA I
I I
I I
1 input card data set (including // cards) 1
1 1
1 I
1/* 1 L ___ J

IEBGENER Example 4. Copying a Card Data Set Onto a 2311 Disk Storage Volume -
Input Includes // Cards

274

IEBGENER Example 5

r-----------T------------------T---------------T---------------T------------------------,
I I Da ta Set I I I I
IOperation IOrganization IInput Device loutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
I PRINT IInput-SEQUENTIAL ICARD READER I PRINTER 11. Input data includes I
I I I I 1 // cards. 1
I 1 I I 12. This example assumes 1
I 1 I I I that the system I
I 1 I I I output device is a I
I I I I I printer. 1 L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, the contents of a card data set is to be printed. The printed
output is left-justified, with one 80-byte record appearing on each line of
printed output.

• TheSYSIN DD Statement: defines a dummy data set. (No editing is to be
performed; therefore, no utility control statements are required.)

• The SYSUT2 DD Statement: indicates that the output is to be written on the
system output device (printer). Carriage control can be specified by changing
the RECFM=F subparameter (below) to RECFM=FA.

• The SYSUTl DD Statement: defines the input card data set. The input data
contains // cards.

r---,
I//CDTOPTR JOB 09#660,SMITH 1
1// EXEC PGM=IEBGENER 1
I//SYSPRINT DD SYSOUT=A 1
I//SYSIN DD DUMMY 1
1//SYSUT2 DD SYSOUT=A,DCB= (RECFM=F,LRECL=80, BLKSIZE=80) I
1//SYSUTl DD DATA 1
1 1
1 1
I input card data set (including // cards) I
I I
I I
1/* I L ___ ------__________________________________ J

IEBGENER Example 5. Copying a Card Data Set Onto a Printer (Input Includes //
Cards)

The IEBGENER Program 275

IEBGENER Example 6

r------------T------------------T--~------------T--------------T------------------------,
I IData Set I I I 1
I Operation I Organization IInput Device IOutput Device IComments I
~------------+------------------+---------------t--------------t------------------------i
ICONVERT to IInput-SEQUENTIAL ITAPE- 9-track, IDISK - 2311 11. Blocked output. I
Ipartitioned loutput-PARTITIONEDlstandard label,! 12. Three members. I
I organization I 1800 bits-per- I 13. Utility control I
I I 1 inch I 1 sta tements in input I
I I I I I stream. I L ____________ ~ __________________ ~ _______________ ~ _____ ---______ ~ ________________________ J

In this example, a partitioned data set (consisting of three n;embers) is to be
created from sequential input.

• The SYSUTl DD Statement: defines the input sequential data set (INSET). The
data set was originally written on a 9-track magnetic tape drive at 800
bits-per-inch density.

• The SYSUT2 DD Statement: defines the output partitioned data set (NEWSET).
The data set is to be placed on an IBM 2311 Disk Storage Drive. Twenty tracks
of primary space, ten tracks of secondary space, and five blocks (256 bytes
each) of directory space are allocated to allow for future expansion of the
data set. The output records are blocked to reduce the amount of disk storage
space required by the data set.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The utility control statements are used to create members froIn
sequential input data; the statements do not perform any editing functions.

• The GENERATE statement: (1) indicates that three member names are included in
subsequent MEMBER statements. (2) Indicates that the IDENT parameter appears
twice in subsequent RECORD statements.

• The First MEMBER Statement: assigns a member name (MEMBER1) to the first
member.

• The First RECORD Statement (GROUP1): identifies the last record to be placed
in the first member. The name of this record (FIRSTMEM) appears in bytes 1
through 8 of the input record.

• The Remaining MEMBER and RECORD Statements: define the second and third
members.

r---,
I//TAPEDISK JOB 09#660,SMITH
1// EXEC PGM=IEBGENER
I//SYSPRINT DD
1//SYSUTl DD
//
//SYSUT2 DD
//
//
//SYSIN DD

GENERATE
MEMBER

GROUPl RECORD
MEMBER

GROUP2 RECORD
MEMBER

/*

SYSOUT=A
DSNAME=INSET, UNIT=2400.,LABEL=(, SL) ,DISP= (OLD,KEEP) ,

VOLUME=SER=001234,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
DSNAME=NEWSET,UNIT=2311,DISP=(,KEEP),

VOLUME=SER=111112,SPACE=(TRK,(20,10,S»,
DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)

* MAXNAME=3,MAXGPS=2
NAME=MEMBERl
IDENT=(8,'FIRST~lliM',1)
NAME=MEMBER2
IDENT=(8,'SECNDMEM',1)
NAME=MEMBER3

L ___ J

IEBGENER Example 6. Creating a Partitioned Data Set From Sequential Input (No
Editing)

276

IEBGENER Example 7

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I I I I
I operation I Organization IInput Device IOutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
ICONVERT to IInput-SEQUENTIAL IDRUM - 2301 IDRUM - 2301 11. Blocked output. I
I partitioned I Output-PARTITIONED I I 12. Two members are I
lorganiza- 1 I 1 I merged into existing I
Ition and I I I I data set. I
IEXPAND an I I I 13. Utility control I
I existing 1 1 I I statements in input I
I partitioned I I I I stream. I
I da ta set I I I I I L ___________ ~ __________________ ~ _______________ ~ _______________ i ________________________ J

In this example, sequential input is to be converted into two partitioned
members. The newly created members are to be merged into an existing partitioned
aata set. User labels on the input data set will be passed to the user label Exit
routines.

• The SYSUTl DD Statement: defines the input sequential data set (INSET). The
input data set resides on an IBM 2301 Drum storage Device, and is specified to
have standard and user labels.

• The SYSUT2 DD Statement: defines the output partitioned data set (EXISTSET).
The members created during this job step are merged into the partitioned data
set. The output records are blocked to reduce the amount of drum storage
space required by the new members.

• The SYSIN DD statement: defines the control data set, which follows in the
input stream. The utility control statements are used to create members from
sequential input data; the statements do not perform any editing functions.

• The GENERATE statement: (1) indicates that two member names and one alias
name are included in subsequent MEMBER statements. (2) indicates that an
IDENTparameter appears in a subsequent RECORD statement.

• the EXITS Statement: defines the user routines that will get control to
process user labels.

• The First MEMBER Statement: assigns a member name (MEMX) and an alias name
(ALIASX) to the first member.

• The First RECORD Statement: identifies the last record to be placed in the
first member. The name of this. record (FIRSTMEM) appears in bytes 1 through 8
of the input record.

• The Second MEMBER Statement: assigns a member name (MEMY) to the second
member. The remainder of the input sequential data set is included in this
member.

'The IEBGENER Program 277

r---,
//DRUMDRUM JOB 09#660,SMITB
// EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=A
//SYSUTl DD DSNAME=INSET,UNIT=2301,DISP=COLD,KEEP),LABEL=(,SUL)
// VOLUME=SER=111112,DCB=CRECFM=FB,LRECL=SO,BLKSIZE=2000)
//SYSUT2 DD DSNAME=EXISTSET,UNIT=2301,DISP=(MOD,KEEP),
// VOLUME=SER=111113,DCB=(RECFM=FB,LRECL=SO,BLKSIZE=2000)
//SYSIN DD *

GENERATE MAXNA~£=3,MAXGPS=1

EXITS INHDR=ROUT1,INTLR=ROUT2
ME~illER NAME=(MEMX,ALIASX)

GROUP1 RECORD IDENT=(S,'FIRSTMEM',l)
MEMBER NAME=MEMY

1/* L ___ - _________________________________ J

IEBGENER Bxample 7. Expanding a Partitioned Data set With Members Created From
Sequential Input

278

IEBGENER Example 8

r-----------T------------------T---------------T---------------T------------------------,
I IData Set I I I I
I Operation IOrganization IInput Device IOutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
ICOPY - IInput-SEQUENTIAL ITAPE- 7-track, ITAPE- 7-track, 11. Blocked output I
I with IOutput-SEQUENTIAL 1800 bits-per- 1800 bits-per- 12. Utility control I
I editing I linch, linch, I statements in I
I I Istandard label, I standard label, I input stream. I
I I Idata conversionldata conversionl3. Entire data set I
I I I I I edited as one I
I I I I I record group. I L ___________ ~ __________________ ~ _______________ ~~ ______________ ~ ________________________ J

In this example, an input sequential data set is to be edited and copied.

• The SYSUTl DD Statement: defines the input sequential data set (OLDSET). The
data set was originally written as the third data set (800 bits-per-inch) on a
7-track magnetic tape volume.

• The SYSUT2 DD Statement: defines the output sequential data set (NEWSET).
The data set is written as the first or only data set on a 7-track magnetic
tape volume. A density of 800 bits-per-inch and data conversion are specified
for the write operation. The output records are blocked to reduce the amount
of space required by the data set and to reduce the access time required when
the data set is subsequently referred to. The data set is passed to a
subsequent job step.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream.

• The GENERATE Statement: (1) indicates that a maximum of three FIELD
parameters is included in subsequent RECORD statements. (2) indicates that a
maximum of 11 literal characters is included in subsequent FIELD parameters.

• The EXITS Statement: indicates that the specified user routines require
control when SYSUTl .is opened and when SYSUT2 is closed.

• The LABELS Statement: indicates that labels will be included in the input
stream.

• The RECORD Statement: controls the editing, as follows:

1. Asterisks are placed in positions 1 to 10.
2. Bytes 1 to 5 of the input record are converted from H-set BCD to

EBCDIC mode and moved to positions 11 to 15.
3. An equal sign is placed in byte 16.

• The second RECORD statement: indicates that the next two records from SYSIN
should be written out as user header labels on SYSUT2.

• The third RECORD statement: indicates that the next two records frow SYSIN
should be written out as user trailer labels on SYSUT2.

Note: This example shows the relationship between the RECORD LABELS statement and
the EXITS statement. The IEBGENER program will attempt to write out two records:

first label trailer
second label trailer

These will be written as user labels at close time of SYSUT2, but, before
returning control to the system, the user routine ROUT2 can review these records
and change them, if necessary.

The IEBGENER Program 279

r-------------------~---,
//TAPETAPE JOB 09#660,SMITH I
// EXEC PGM=IEBGENER I
//SYSPRINT DD SYSOUT=A I
//SYSUTl DD DSNAME=OLDSh~,UNIT=2400-2,DISP=(OLD,KEEP), I
// VOLUME=SER=001234,LABEL=(3,SL), I
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80,TRTCH=C) I
//SYSUT2 DD DSNAME=NEWSET, UNIT=2400-2.,DISP=(NEW,PASS), I
// VOLUME=SER=00123S,LABEL=(,SL), I
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000,TR'ICH=C) I
//SYSIN DD * I

GEN~RATE MAXFLDS=3,MAXLITS=11 I
RECORD FIELD=(lO,'**********'"l),FIELD=(S,l,HE,ll), C I

EXITS
LABELS
RECORD

RECORD

FIELD=(1,'=',,16) I
INHDR=ROUT1,OUTTLR=ROUT2 I
DATA=INPUT I
LABELS=2 I

first header label record I
second header label record I

LABELS=2 I
first trailer label record I
second. trailer label record I

/* I L ___ J

IEBGENER Example 8. Copying and Editing an Input sequential Data Set

280

IEBGENER Example 9

r-----------T------------------T---------------T---------------T------------------------,
I iData set I I 1 I
I Operation I Organization IInput Device IOutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
ICOPY - IInput-SEQUENTIAL IDISK - 2311 IDISK - 2311 11. Blocked output. I
I with IOutput-SEQUENTIAL I I 12. New record length I
I editing I I I I specified for output I
I I I I I data set. I
I I I I 13. Utility control I
I I I I I statements in input I
1 1 I I 1 stream. 1
I 1 I I 14. Two record groups I
1 I I 1 I defined for editing. I L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, an input sequential data set is to be edited and copied.

• The SYSUTl DD statement: defines the input sequential data set (OLDSET).
logical record length of the input records is 100 bytes.

• The SYSUT2 DD statement: defines the output sequential data set (OUTSET).

The

Twenty tracks of primary storage space and ten tracks of secondary storage
space are allocated for the data set on an IBM 2311 Disk Storage Drive. The
logical record length of the output records is 80 bytes, and the output is
blocked.

• The SYSIN DD statement: defines the control data set, which follows in the
input stream.

• The GENERATE Statement: (1) indicates that a maximum of 4 FIELD parameters is
included in subsequent RECORD statements. (2) indicates that a maximum of 1
IDENT parameter appears in a subsequent RECORD statement.

• The EXITS Statement: identifies the user routine that handles input/output
errors.

• The First RECORD Statement: controls the editing of the first record group,
as follows:

1. FIRSTGRP is defined as being the last record in the first group of
records. The name FIRSTGRP appears in bytes 1 through 8 of the input
record.

2. Bytes 80 through 100 of each input record are moved into positions 60
through 80 of each corresponding output record. (This example implies
that bytes 60 through 79 of the input records in the first record
group are no longer required; thus, the logical record length is
shortened by 20 bytes.) The remaining bytes within each input record
are transferred directly to the output records (2nd FIELD parameter).

• The Second RECORD statement: indicates that the remainder of the input
records are to be processed as the second record group. Bytes 90 through 100
of each input record are moved into positions 70 through 80 of the output
records. (This example implies that bytes 10 through 89 of the input records
from group 2 are no longer required; thus, the logical record length is
shortened by 20 bytes.) The remaining bytes within each input record are
transferred directly to the output records (2nd FIELD parameter).

Note: If the logical record length of the output data set differs from that of
the input data set (as in this example) " all positions in the output records must
undergo editing to justify the new logical record length.

The IEBGENER Program 281

•

r---,
//DISKDISK JOB 09#660,SMITH I
// EXEC PGM=IEBGENER I
//SYSPRINT DD SYSOUT=A I
//SYSUTl DD DSNAME=OLDSET,UNIT=2311,DISP=(OLD,KEEP), I
// VOLUME=SER=111112,DCB=(RECFM=F,LRECL=100,BLKSIZE=100) I
//SYSUT2 DD DSNAME=NEWSET,UNIT=2311,DISP=(NEW,KEEP), I
// VOLUME=SER=111113,DCB=(RECFM=FB,LRECL=80,BLKSIZE=640), I
// SPACE=(TRK,(20,10» I
//SYSIN DD * I

GENERATE ~mxFLDs=4,MAXGPS=1 1
EXITS I OERROR=ERRORRT I

GROUPl RECORD IDENT=(8,'FIRSTGRP',1),FIELD=(21,80,,60), C I
FIELD=(S9,1,,1) I

GROUP2 RECORD FIELD=Cl1,90,,70),FIELD=(69,1,,1) I
/* I L ___ ---_______________________________ J

IEBGENER hxample 9. Changing the Logical Record Length of a Data Set

282

IEBGENER Example 10

r-----------T------------------T----------------T----------------T----------------------,
I IData Set I I I 1
IOperation I Organization I Input Device IOutput Device I Comments I
~-----------+------------------+----------------+----------------+----------------------~
ICopy - IInput-SEQUENTIAL ITAPE-9-track, ITAPE-9-track, 11. Blocked output I
I with IOutput-SEQUENTIAL 1800 bits-per- 1800 bits-per- 12. Utility control 1
I editing I linch, standard linch, standard I statements in I
I I land user labels land user labels I input stream. I
I I I I 13. Entire data set I
I I I I I edited as one I
I I I I I record group. I L ___________ ~ __________________ ~ ________________ i ________________ ~ ______________________ J

In this example, an input sequential data set is to be edited and copied.

• The SYSUTl DD Statement: defines the input sequential data set <OLDSET). The
data set was originally written as the third data set (SOO bits-per-inch) on a
9-track magnetic tape volume.

• The SYSUT2 DD Statement: defines the output sequential data set (NEWSET).
The data set is written as the first or only data set on a 9-track wagnetic
tape volume. A density of SOO bits-per-inch is specified for the write
operation. The output records are blocked to reduce the amount of space
required by the data set and to reduce the access time required when the data
set is subsequently referred to. The data set is passed to a subsequent job
step.

• TheSYSIN DD statement: defines the control data set, which follows in the
input stream.

• The GENERATE statement: (1) indicates that a maximum of three FIELD
parameters is included in subsequent RECORD statements. (2) indicates that a
maximum of 11 literal characters is included in subsequent FIELD parameters.

• The' LABELS Statements: indicates that label records are included in the input
stream.

• The RECORD Statement: controls the editing, as follows:

1. Asterisks are placed in positions 1 to 10.

2. Bytes 1 to 5 of the input record are converted from H-set BCD to EBCDIC
mode and moved to positions 11 to 15.

3. An equal sign is placed in byte 16.

4. Unrelated (meaningless) data.

The second and third RECORD statements indicate that immediately following these
statements there are three SO-bytes records <cards> that have to be written as
user labels on the output data set. The first RECORD LABELS statement indicates
that the following cards are to be treated as header labels. The second RECORD
LABELS statement indicates that the following cards are to be treated as trailer
labels.

'The IEBGENER Program 2S3

r---,
I//TAPETAPE JOB 09#660,SMITB
1// EXEC PGM=IEBGENER
I//SYSPRINT DD SYSOUT=A
1//SYSUTl DD DSNAME=OLDSET,UNIT=2400,DISP=(OLD,KEEP),
1// VOLUME=SER=001234,LABEL=C3,SUL),
1// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
1//SYSUT2 DD DSNAME=NEWSET,UNIT=2400,DISP=(NEW,PASS),
1// VOLUME=SER=001235,LABEL=(,SUL).
1// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
l//SYSIN DD *
1 GENERATE MAXFLDS=3,MAXLITS=11
I RECORD FIELD=(10,'**********',,1),FIELD=(5,1,BE,11), C
I FIELD=(1,'=',,16)
I LABELS DATA=INPUT
I RECORD LABELS=3
I first header label record
I second header label record
1 third header label record
, RECORD LABELS=2
I first trailer label record
, second trailer label record
1/* L ___ J

IEBGENER Example 10. Copying and Editing an Input Sequential Data Set and
Generating Labels From the Input Stream

284

The IEBCOMPR Program

Program Applications
The IEBCOMPR utility program compares two identically organized data
sets at the logical record level. Data sets to be compared can be
either sequential or partitioned.

The program can be used to:

• Verify a back-up copy of a sequential or partitioned data set.

• Verify portions of records within a sequential or partitioned data
set.

User exits are provided at appropriate places for optional user routines
that process user labels, handle error conditions, and modify source
records. (Refer to the section "Exit Routine Linkage" for a discussion
of linkage conventions applicable when user routines are provided.)

At the completion or termination of the IEBCOMPR program, the highest
return code encountered within the program is passed to the calling
program.

Comparing Sequential Data sets: Two sequential data sets are considered
"equal" if:

• The data sets contain the same number of records.

• Corresponding records and keys are identical.

If these conditions are not met, an unequal comparison will result. If
two corresponding records are unequal, the record and block numbers, the
names of theDD statements that define the data sets, and the unequal
records are listed in a message data set. Ten successive unequal
comparisons will terminate the job step unless a user routine is
provided to handle error conditions.

comparing Partitioned Data Sets: Two partitioned data sets are
considered equal if:

• Corresponding members contain the same number of records.

• Note lists are in the same position within corresponding members.

• Corresponding records and keys are identical.

If these conditions are not met, an unequal comparison will result. If
two corresponding records are unequal, the record and block nurobers, the
names of the DD statements that define the data sets, and the unequal
records are listed in a message data set. Ten successive unequal
comparisons will cause processing to continue with the next member
unless a user routine is provided to handle error conditions.

~ote: Two partitioned data sets can be compared only if all the names
1n one or both of the directories have counterpart entries in the other
directory. The comparison is made on members identified by these
entries, and corresponding user data.

The IEBCOMPR Program 285

IEBCOMPR Figure 1 shows the directories of two partitioned data sets.
The directory of partitioned data set 2 contains corresponding entries
for all of the names in the directory of partitioned data set 1;
therefore, the data sets can be compared.

Directory 1 -+- A B C D G L ...
Di rectory 2 ----.- ® ® ©. @ E F @ I H I I 1 J 1 K I®]···

IEBCOMPR Figure 1. Partitioned Directories -- Data Sets Can be
Compared

IEBCOMPR Figure 2 shows the directories of two partitioned data sets.
Each directory contains a name that has no corresponding entry in the
other directory; therefore, the data sets cannot be compared, and the
job step is terminated.

Directory 1 -----+- A B © F H I J ...
Directory 2 ~ A B F @ H I J ...

IEBCOMPR Figure 2. Partitioned Directories -- Data Sets Cannot be
Compared

Verifying Back-Up Copies

The IEBCOMPR program can be used to check the results of a job step that
has created a back-up copy of a sequential or partitioned data set. The
IEBCOMPR program can compare fixed-length, variable-length, or
undefined-length records from blocked or unblocked data sets or members.

Verifying Portions of Records

The IEBCOMPR program can be used to verify portions of records from two
sequential or partitioned data sets. Since the program compares entire
records, the user must provide routines to make equal those portions
that he does not wish to verify; i.e., the undesired portions of two
corresponding records must be made identical, or an unequal comparison
will result.

286

Inputs and Outputs

IEBCOMPR Table 1 lists the major inputs to and outputs from the IEBCOMPR
program.

IEBCO~WR Table 1. Data sets Used (Input) and Produced (Output) by the
IEBCOMPR Program

r-------T--,
IInputs IInput Data sets: Two input data sets are required by the I
I IIEBCOMPR program. The data sets, which contain the I
I linformation to be compared, can be both sequential or both I
I I partitioned. I
I I I
I IControl Data Set: This data set contains utility control I
I I statements. The data set is required if the input data sets I
I lare partitioned, or if user routines are provided. I
~-------+--~
loutput IMessage Data set: This data set contains informational I
I Imessages (e.g., the contents of applicable utility control I
I lstatements), the results of comparisons, and error messages, I
I lif applicable. I L _______ ~ __ J

ADDITIONAL OUTPUTS

The IEBCOMPR program provides a return code to indicate the results of
program execution. The return codes and their interpretations are as
follows:

00 successful completion.

08 an "unequal" condition exists. Processing continues.

12 an unrecoverable error has occurred. The job step is terminated.

16 a user routine has passed a return code of 16 to the IEBCOMPR
program. The job step is terminated.

Control
The IEBCOMPR program is controlled by job control statements and utility
control statements. The job control statements are required to execute
or invoke the IEBCOMPR program and to define the data sets that are used
and produced by the program. The utility control statements are used to
indicate the input data set organization (i.e., sequential or
partitioned) and to identify any user routines that may be provided.

The IEBCOMPR Program 287

JOB CONTROL STATEMENTS

IEBCOMPR Table 2 shows the job control statements necessary for
executing or invoking the IEBCOMPR program.

IEBCOMPR Tabie 2. Job Control Statements for the IEBCOMPR Program
r------------T---,
I Statement I Usage I
~------------+---~
I JOB IThis statement initiates the job. I
I statement I I
~------------+---~
I EXEC IThis statement specifies the program name (PGM=IEBCOMPR) I
I statement lor, if the job control statements for the IEBCOMPR I
I I program reside in a procedure library, the procedure I
I I name. I
~------------+---~
ISYSPRINT IThis statement defines a sequential message data set. I
IDD IThe data set can be written onto a system output device I
I statement I (e.g., a printer), a magnetic tape volume, or a direct I
I laccess volume. (This DD statement must be present for I
I leach execution or invocation of the IEBCOMPR program.) I
t------------+---~
ISYSUTl IThis DD statement defines one of the input data sets to I
IDD Ibe compared. It can define a sequential data set on a I
I statement Icard reader, a magnetic tape volume, or a direct access I
I I device. Or, it can define a partitioned data set on a I
I Idirect access device. I
~------------+---~
ISYSUT2 IThis DD statement defines one of the input data sets to I
IDD Ibe compared. It can define a sequential data set on a I
I statement Icard reader, a magnetic tape volume, or a direct access I
I I device. Or, it can define a partitioned data set on a I
I Idirect access device. I
t------------+---~
ISYSIN IThis statement defines the control data set or specifies I
IDD IDUMMY (if the input data sets are sequential and no user l
lstatement lroutines are provided). The control data set normally I
I Iresides in the input stream; however, it can also be I
I Idefined as being a member within a library of partitioned I
I I members. The SYSIN DD statement is required, regardless I
I lof the operation. I
~------------~-------------------------------~------------------------~
INotes: The logical record lengths of the input data sets must be I
lidentical; otherwise unequal comparisons will result. The block sizesl
lof the input data sets can differ; however, both of the block sizes I
Imust be multiples of the logical record length. I
I I
IThe blocksize for the SYSPRINT (message) data set must be a multiple I
lof 121. The blocksize for the SYSIN (control) data set must be a I
Imultiple of 80. Any blocking factor can be specified for these I
Iblocksizes. I
I I
lOne or both of the input data sets can be passed from a preceding job I
I step. I
I I
lInput data sets residing on different device types can be compared. I
I I
IInput sequential data sets written at different densities can be 1
I compared. I L __ J

288

UTILI'!'Y CONTROL STATEMENTS

The IEBCOMPR program is controlled by three utility control statements:

• The COMPARE statement.
• The EXITS statement.
• The LABELS statement.

The COMPARE statement is required if the EXITS or LABELS statement is
used or if the input data sets are partitioned. The COMPARE statement,
if present, must be the first utility statement. The EXITS statement is
used if user routines are provided. The LABELS statement indicates the
treatment of user labels by the IEBCOMPR program.

The COMPARE Statement

The COMPARE statement is used to indicate the type of data set
organization.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [namelICOMPARE I {TYPORG=PS} I
I I I TYPORG=PO I L ______ ~ _________ i ___ J

TYPORG=PS
indicates that the input data sets are organized sequentially.

TYPORG=PO
indicates that the input data sets are partitioned.

If TYPORG is omitted, the input data sets are assumed to be
sequential.

The EXITS statement

The EXITS statement is used to identify exit routines supplied by the
user. Exits to label processing routines will result in termination of
the utility if partitioned data sets are being compared. Linkages to
and from exit routines are discussed in Appendix A.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
j [namellEXITS I [INHDR=routinenamel I
I I I [INTLR=routinename] I
I I I [ERROR=routinenameJ I
I I I [PRECOMP=routinenameJ I L ______ i _________ i ___ J

INHDR=routinename
specifies the symbolic name of a routine that processes user input
header labels.

INTLR=routinename
specifies the symbolic name of a routine that processes user input
trailer labels.

For a more detailed discussion of the processing of user labels as
data set descriptors, refer to "Appendix F: Utility Prograrr.
Handling of User Labels."

The IEBCOMPR Program 289

•

ERROR=routinename
specifies the symbolic name of an error routine to be given control
after each unequal comparison.

If the ERROR parameter is omitted and ten consecutive unequal
comparisons occur while the IEBCOMPR program is comparing
sequential data sets, processing is terminated. If the input data
sets are partitioned, processing continues with the next member.

PRECOMP=routinename
specifies the symbolic name of a user routine that processes
logical records (physical blocks in the case of VS or VBS type
rec.ords longer than 32K bytes) i:rom either or both of the input
data sets before they are compared.

Note: If you code more than one valid EXITS statement (that is, free
from syntax errors), the IEBCOMPR program will not issue a message but
will simply treat the last EXITS statement as though it were the .only
EXITS statement in the SYSIN data set.

The LABELS Statement

The LABELS statement specifies whether .or not user labels are to be
treated by the IEBCOMPR pregram as data. For a detailed discussion .of
this option, refer to the section entitled "Precessing User Labels as
Data," in "Appendix F: Utility Program Handling of User Labels."

r------T---------T---,
I Name I Operation I Operand I
r------+---------+---~
I [name] I LABELS I DATA=~ YES .} I
I I I NO I
I I I 'ALL I
I I I ,ONLY I L ______ ~ _________ ~ __ ~ ____ J

Note: If you code more than one valid LABELS statement (that is, free
from syntax errors), the IEBCOMPR program will not issue a message but
will simply treat the last LABELS statement as though it were the only
LABELS statement in the SYSIN data set.

290

Using the Utility Control Statements

IEBCOMPR Table 3 shows the use of the utility control statements.

IEBCOMPR Table 3. Use of the COMPARE, EXITS, and LABELS statements
r--------------T-----~-------------------T-----------------------------,

I TO, I WITH t I USE., I
~---I----------+-------------------------+------------_________________ ~
I Compare two I No user routines and I COMPARE TYPORG=PS I
I sequential I process ing of user I LABELS DATA= YES I
data sets Ilabels as data I ALL I

I lor: no control statements I
~-------------------------+-----------------------------~
I No user routines and I COMPARE TYPORG=PS I
Ino processing of user I LABELS DATA=NO I
Ilabels as data I I
~-------------------------+-----------------------------~
IUser routines and I COMPARE TYPORG=PS I
Iprocessing of user I EXITS applicable routine I
Ilabels as data I name(s) and type(s)~1
I I LABELS DATA= YES I
I I All I
~-------~-----------------+-----------------------------~
I User routines and no I COMPARE TYPORG=PS I
Iprocessing of user I EXITS applicable routine I
Ilabels as data I name(s) and type(s)~1
I I LABELS DATA=NO I

r--------------+-------------------------+-----------------------------~
ICompare two INo user routines I CO~PARE TYPORG=PO I
I partitioned ~-------------------------+~----------------------------~
Idata sets IUser routines I COMPARE TYPORG=PO I
I (User labels I I EXITS [PRECOMP=routinenarnel I
lare invalid I I [ERROR=routinenamel I
Ifor I I I
I partitioned I I I
Idata sets) I I I
~--------------~-------------------------~-----------------------------~
I~One or more of the four EXITS statement operands can be coded. I
I For example: I
I I
I EXITS ERROR=routinename, INHDR=routinename I L __ J

Coding Utility Control Statements

Utility control statements are coded in columns 1 through 71. A
statement that exceeds 71 characters may be continued on one or more
additional cards.

Names: Names are not required for utility control statements. If they
are used, they must begin in column 1. Names cannot be over eight
characters long and must be followed by one or more blanks.

Operation: The operation field can begin in any column from 2 through
71. An operation field may be interrupted at column 71 and continued on
the next card. When an operation field is interrupted, a nonblank
character must be placed in column 72. The continued portion must start
in any column from 4 through 16 of the next card. (Restriction: When
an operation field ends in column 70 or 71, it cannot be followed by an
operand or comment.)

Operands (Keywords and Parameters): Operands must be preceded by an
operation field. They must begin on the same card that the operation
field ends on. One or more blanks must separate the operand from the

The IEBCOMPR Program 291

•

operation field. When an operand ends in column 71, then column 72 must
be left blank. If an operand is interrupted at column 71 and'is to be
continued on the next card, a nonblank character must be placed in
column 72. An operand can also be interrupted at a comma (unless the
comma is part of a literal). Whenever an operand is interrupted at a
comma, column 72 may be either blank or nonblank. In all cases, the
continuation must start in any column from 4 through 16 of the next
card.

comments: Comments must be preceded by an operand or an operation
field. They must begin on the same card that the last operand or the
operation field ends on. (Exception: When an operand is interrupted at
a comrra, the remaining columns through 71 may contain a comment. A
blank must separate the comma from the comment, however.) A comment
cannot separate an operation field from an operand.

Comments may be interrupted and continued on the next card by placing
a nonblank character in column 72. comments do not have to be
interrupted at column 71; blanks are acceptable in column 71 as part of
the comment. The continued portion must start in any column from 4
through 16 of the next card.

292

IEBCOMPR Examples

The following examples illustrate some of the uses of the IEBCOMPR program.

IEBCOMPR Example 1

r-----------T------------------T---------------T---------------T------------------------,
I 1 Data set 1 1 1 1
IOperation IOrganization IInput Device 1 I Input Device 2 Icomments I
~-----------+------------------+---------------+-----~---------+------------------------~
1 COMPARE IInputs-SEQUENTIAL ITAPE - 9-track,ITAPE - 9-track,ll. No user routines. I
I I I unlabeled, 800 I unlabeled, .800 12. Blocked inputs. I
1 1 Ibits-per-inch Ibits-per-inch 1 I
1 1 1 density I density 1 I L ___________ i-_________________ ~ _______________ ~ _______________ ~ ________________________ ~

In this example, two sequential data sets are to be compared.

• The SYSUT1 DO statement: defines an input data set. The data set resides on
an unlabeled, 9-track magnetic tape volume. The blocked data set was
originally written at 800 bits-per-inch density.

• The SYSUT2 DO Statement: defines an input data set. The data set resides on
an unlabeled, 9-track magnetic tape volume. The blocked data set was
originally written at 800 bits-per-inch density •

• The SYSIN DO Statement: defines a dummy data set. (Since no user routines
are provided and the input is sequential, no utility control statements are
required.)

r---,
I//TAPETAPE JOB 09#660,SMITH I
1// EXEC PGM=IEBCOMPR 1
I//SYSPRINT DO SYSOUT=A 1
1//SYSUTl DD UNIT=2400,LABEL=(,NL),DISP=(OLD,KEEP), 1
1// VOLUME=SER=001234,DCB= (RECFM=FB, LRECL=80,BLKSIZE=2000) 1
1//SYSUT2 DD UNIT=2400,LABEL=(,NL),DISP=(OLD,KEEP), I
1// VOLUME=SER=001235,DCB= (RECFM=FB, LRECL=80,BLKSIZE=1040) I
I//SYSIN DO DUMMY 1
1/* 1 L __________________________________ --------------------_________________________________ ~

IEBCOMPR Example 1. Comparing sequential Data Sets -- Inputs on 9-Track Tape

The IEBCOMPR Program 293

•

IEBCOMPR Example 2

r-----------T------------------T----------------T---------------T-----------------------,
I I Data set I I I I
IOperation jOrganization IInput Device 1 I Input Device 2 IComments I
~-----------+------------------+----------------+---------------+-----------------------~
I COMPARE IInputs-SEQUENTIAL ITAPE - 7-track, ITAPE - 7-track,ll. No user routines. I
I I Istandard and Istandard and 12. Blocked inputs. I
I I luser labels, luser labels, I I
1 I 1800 bits-per- 1800 bits-per- I I
I I linch density, linch density, I I
I 1 I data conversion I data conversion I I l ___________ ~ __________________ ~ ________________ ~ _______________ ~ _______________________ J

In this example two sequential data sets are to be compared.

the second data set on a labeled, 7-track magnetic tape volume. The blocked

data set was originally written at 800 bits-per-inch density with the data
converter on.

• The SYSUT2 DD Statement: defines an input data set. The data set resides as
the first or only data set on a labeled, 7-track magnetic tape volume. The
blocked data set was originally written at 800 bits-per-inch density with the
data converter on.

• The SYSIN DD statement: defines the control data set, which follows in the
input stream.

• The CO~&ARE statement: specifies that the input data sets are sequentially
organized.

• The LABELS statement: specifies that only user header labels are to be
compared.

r---,
I//TAPETAPE JOB 09#660,SMITB 1
1// EXEC PGM=IEBCOMPR I
I//SYSPRINT DD SYSOUT=A 1
1//SYSUTl DD DSNAME=SET1,UNIT=2400-2,LABEL=(2,SUL),DISP=(OLD,KEEP), 1
1// VOLUME=SER=001234,DCB=(DEN=2,RECFM=FB,LRECL=80, I
1// BLKSIZE=2000,TRTCH=C) 1
1//SYSUT2 DD DSNA~£=SET1,UNIT=2400-2,LABEL=(,SUL),DISP=(OLD,KEEP), I
1// VOLUME=SER=001235, DCB= (DEN=2,RECFM=FB,LRECL=80, I
1// BLKSIZE=2000,TRTCH=C) 1
I//SYSIN DD * I
I COMPARE TYPORG=PS I
I LABELS DATA=ONLY I
1/* 1 l ___ J

IEBCOMPR Example 2. Comparing User Header Labels on Sequential Data Sets -
Inputs on 7-Track Tape

294

IEBCOMPR ~xample 3

r-----------T------------------T---------------T---------------T------------------------,
I I Data set I I I 1
1 Operation 1 Organization lInput Device 1 1 Input Device 2 IComments 1
~-----------+------------------+---------------+---------------+------------------------~
1 COMPARE IInputs-SEQUENTIAL ITAPE - 7-track,ITAPE - 9-track,ll. User routines. 1
1 1 Istandard and 1 standard and 12. Blocked inputs. I
I 1 luser labels, luser labels, 13. Different density I
I I 1556 bits-per- 1800 bits-per- 1 tapes. 1
1 I linch density, linch density I 1
1 1 Idata conversion 1 1 I L ___________ i __________________ i _______________ i _______________ i _____________ . ___________ J

In this example, two sequential data sets written at different densities on
different device types are to be compared.

• The SYSUTl DD statement: defines an input data set. The data set resides as
the first or only data set on a labeled, 7-track magnetic tape volume. The
blocked data set was originally written at 556 bits-per-inch density with the
data converter on.

• The SYSUT2 DD Statement: defines an input data set. The data set resides as
the first or only data set on a labeled, 9-track magnetic tape volume. The
blocked data set was originally written at 800 bits-per-inch density.

• The SYSIN DD statement: defines the control data set, which follows in the
input stream.

• The COMPARE statement: specifies that the input data sets are sequentially
organized.

• The EXITS statement: identifies the names of user input header label and user
input trailer label processing routines.

• The LABELS Statement: specifies that the comparing of user input head or
trailer labels as data is not required.

r---,
I//TAPETAPE JOB 09#660,SMITH I
1// EXEC PGM=IEBCOMPR 1
I//SYSPRINT DD SYSOUT=A I
1//SYSUTl DD DSNAME=SET1,UNIT=2400-2,LABEL=(,SUL),DISP=(OLD,KEEP), I
1// VOLUME=SER=001234,DCB=(DEN=1,RECFM=FB,LRECL=80, 1
1// BLKSIZE=320,TRTCH=C) I
1//SYSUT2 DD DSNAME=SET2,UNIT=2400,LABEL=(,SUL),DISP=(OLD,KEEP), 1
1// VOLUME=SER=001235,DCB=(RECFM=FB,LRECL=80,BLKSIZE=640) I
I//SYSIN DD * I
I COMPARE TYPORG=PS 1
1 EXITS INHDR=HDRS,INTLR=TLRS 1
I LABELS DATA=NO 1
1/* I L ___ J

IEBCOMPR Example 3. Comparing Sequential Data sets -- Inputs on 7- and 9-Track
Tapes

The IEBCOMPR Program 295

•

IEBCOMPR Example 4

r-----------T------------------T---------------T---------------T------------------------,
I IData set I I I I
IOperation I Organization IInput Device 1 I Input Device 2 Icomments I
~-----------+------------------+---------------+---------------+------------------------~
I COMPARE IInputs-SEQUENTIAL ICARD READER ITAPE- 9-track, Ii. No user routines. I
I I I I unlabeled, 800 12. Blocked (tape) input. 1
I 1 I Ibits-per-inch 1 1
1 1 I 1 density I 1 L ___________ ~ __________________ ~ _______________ ~ _______________ ~ _____________________ ~ __ J

In this example, two sequential data sets (card input and tape input) are to be
compared.

• The SYSIN DO statement: defines a dummy control data set. (Since no user
routines are provided and the input data sets are sequential, no utility
control statements are required.)

• The SYSUT2 00 statement: defines an input data set. The data set resides on
an unlabeled, 9-track magnetic tape volume. The blocked data set was
originally written at 800 bits-per-inch density.

• The SYSUTl DD Statement: defines an input data set (card input).

r---,
//CARDTAPE JOB 09#660,SMITH
// EXEC PGM=IEBCOMPR
//SYSPRINT DO SYSOUT=A
//SYSIN DO DUMMY
//SYSUT2 DD UNIT=2400,VOLUME=SER=001234,LABEL=(,NL),
// DISP={OLD,KEEP),DCB={RECFM=FB,LRECL=80,BLKSIZE=2000)
//SYSUTl DD DATA

input card data set

/* L ___ J

IEBCOMPR Example 4. Comparing sequential Data Sets -- Inputs on Tape and Card
Reader

296

IEBCOMPR Example 5

r-----------T------------------T---------------T---------------T------------------------,
I I Data set I I I I
IOperation IOrganization IInput Device 1 I Input Device 2 IComments I
~-----------t------------------+---------------+---------------t------------------------i
I COMPARE lInputs-PARTITIONEDIDISK - 2311 IDISK - 2311 11. No user routines. I
1 1 I I 12. Blocked inputs. I L ___________ ~ __ ~ _______________ ~ ______________ ~ ________ --_____ ~ ________________________ J

In this example, two partitioned data sets are to be compared.

• The SYSUT1 DD Statement: defines an input partitioned data set. The blocked
data set resides on an IBM 2311 Disk storage Drive.

• The SYSUT2 DD Statement: defines an input partitioned data set. The blocked
data set resides on an IBM 2311 Disk Storage Drive •

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The data set consists of one utility control statement.

r---,
IIIDISKDISK JOB 09#660,SMITH I
III EXEC PGM=IEBCOMPR I
IIISYSPRINT DD SYSOUT=A I
IIISYSUT1 DD DSNAME=PDSSET,UNIT=2311,DISP=(OLD,KEEP), 1
III VOLUME=SER=111112,DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000) I
IIISYSUT2 DD DSNAME=PDSSET,UNIT=2311,DISP=(OLD,KEEP) , I
III VOLUME=SER=111113,DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000) I
IIISYSIN DD * I
1 COMPARE T,YPORG=PO I
1/* I L __________________ ~ __ J

IEBCOMPR Example 5. Comparing Partitioned Data Sets -- Inputs on Disk

The IEBCOMPR Program 297

•

IEBCOMPR Example 6

r-----------T------------------T---------------T---------------T------------------------,
1 IData set I I I I
IOperation lorganization IInput Device 1 I Input Device 2 IComments I
~-----------+------------------+---------------+---------------+------------------------~
ICOPY - IInputs-SEQUENTIAL ITAPE - 9-track, I TAPE - 9-TRACK,ll. No user routines. 1
I (Program I Istandard label,lstandard label, 12. Blocked input. I
IIEBGENER) I 1800 bits-per- 1800 bits-per- 13. 2 job steps -- data I
1& COMPARE I linch density linch density I sets passed to 2nd I
I I I I I job step. I L ___________ ~ __________________ i _______________ ~ _______________ ~ ________________________ J

This example is a 2-step example in which a sequential data set is to be copied
and compared; the first step is to pass the original and the copied data sets to
the second job step. The second job step compares the two data sets. The second
job step (i.e., the IEBCOMPR job step) is explained below:

• The SYSUTl DD statement: defines an input data set passed from the preceding
job step. The data set resides on a labeled, 9-track magnetic tape volume.
The blocked data set was originally written at 800 bits-per-inchdensity.

• The SYSUT2 DD statement: defines an input data set passed from the preseding
job step. The data set, which was created in the preceding job step, resides
on a labeled, 9-track magnetic tape volume. The blocked data set was
originally written at 800 bits-per-inch density.

• The SYSIN DD Statement: defines a dummy control data set. (Since the input
is sequential and no user exits are provided, no utility control statements
are required.)

r---,
I//TAPETAPE JOB 09#660,SMITH
l//STEPA EXEC PGM=IEBGENER
I//SYSPRINT DD SYSOUT=A
1//SYSUTl DD DSNAME=COPYSET,UNIT=2400,DISP=(OLD,PASS),LABEL=(,SL),
1// VOLUME=SER=001234,DCB= (RECFM=FB, LRECL=80,BLKSIZE=640)
1//SYSUT2 DD DSNAME=COPYSET,UNIT=2400,DISP=(,PASS),LABEL=(,SL),
1// VO LUME= SER= 0 01235, DCB= (RECFM=FB,LRECL=80,BLKSIZE=640)
I//SYSIN nn DU~MY

1/*
I//STEPB EXEC PGM=IEBCOMPR
I//SYSPRINT DD SYSOUT=A
1//SYSUTl DD DSNAME=*.STEPA.SYSUT1,DISP=(OLD,KEEP)
1//SYSUT2 DD DSNAME=*.STEPA.SYSUT2,DISP=(OLD,KEEP)
I//SYSIN DD DUMMY
1/* I L ___ J

IEBCOMPR Example 6. Comparing Passed (Sequential) Data Sets -- Identical Input
Data Set Names

298

IEBCOMPRExample 7

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I I I I
I Operation 1 Organization IInput Device 1 1 Input Device 2 I comments I
t-----------t------------------t---------------+---------------+------------------------~
I COPY- IInputs-PARTITIONEDIDISK - 2311 IDISK - 2311 11. User routine I
I (Program I 1 I I provided. I
IIEBCOPY) 1 I 1 12. Blocked input. I
1& COMPARE 1 1 I 13. 2-step job. -- Data I
I I I 1 I sets passed to I
I I 1 1 I 2nd job step. 1 L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

This example is a 2-step example. The first job step (IEBCOPY) is to copy a
partitioned data set and pass the original and copied data sets to the second job
step. The second job step (IEBCOMPR) compares the two data sets. The IEBCOMPR
job step is explained below.

• The SYSUTl DD Statement: defines a blocked, input data set that is passed
from the preceding job step. The data set resides on an IBM 2311 Disk Storage
Drive.

• The SYSUT2 DD Statement: defines a blocked, input data set that is passed
from the preceding job step. The data set resides on an IBM 2311 Disk Storage
Drive.

• The SYSIN DD statement: defines the control data set, which contains a
COMPARE statement and an EXITS statement. (The COMPARE statement specifies
partitioned organization and the EXITS statement identifies the user routine.)

Note: Since the input data set names are not identical, the data sets can be
retrieved by their data set names (see the SYSUT1 and SYSUT2 DD statements).

r---,
//DISKDISK JOB 09#660,SMITH
//STEPA EXEC PGM=IEBCOPY
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=OLDSET#UNIT=2311,DISP=(OLD,PASS),
// VOLUME=SER=111112, DCB= (RECFM=FB,LRECL=80,
// BLKSIZE=640)
//SYSUT2 DD DSNAME=NEWMEMS,UNIT=2311,DISP=(,PASS),
// VOLUME=SER=111113,SPACE=(TRK,(lO,S,S»,
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=640)
//SYSIN DD *

COpy TYPCOPY=I.,MAXNAME=S
MEMBER NAME=(A,B,D,E,F)

/*
//STEPB
//SYSPRINT
//SYSUT1
//SYSUT2
//SYSIN

EXEC
DD
DD
DD
DD

CO{\tlPARE
EXITS

/*

PGM=IEBCOMPR
SYSOUT=A
DSNAME=OLDSET,DISP=(OLD,KEEP)
DSNAME=NEWMEMS,DISP=(OLD,KEEP)

* TYPORG=PO
ERROR=SEEERROR

L __ _

IEBCOMPR Example 7. Comparing Passed (Partitioned) Data Sets -- User Routine
Provided

The IEBCOMPR Program 299

•

The IEBPTPCH Program

Program Applications

The IEBPTPCH program prints or punches all, or selected portions, of a
sequential or partitioned data set. Records can be printed or puncbed
to meet either standard specifications or user specifications. The
standard specifications are as follows:

• Each logical record begins on a new printed line or punched card.

• Each printed line consists of 12 groups of 8 characters separated by
2 blanks. Each punched card contains up to 80 contiguous bytes of
information.

• Characters that cannot be printed appear as blanks.

Other formats (i.e. 1 user formats) can be specified, provided that no
output record exceeds the output device capacity.

The IEBPTPCH program provides optional editing facilities with each
application of the program. In addition, user exits are provided at
appropriate places for user routines that process labels and/or
manipulate input or output records.

The program can be used to:

• Print or punch a sequential or partitioned data set in its entirety.
• Print or punch selected members from a partitioned data set.
• Print or punch selected records from a sequential or partitioned

data set.
• Print or punch the directory of a partitioned data set.
• Print or punch an edited version of a sequential or partitioned data

set.

At the completion or termination of the program l the highest return
code encountered within the program is passed to the calling program.

Printing or Punching a Data Set in its Entirety

'Jlhe IEBPTPCH program can print or punch a sequential data set or a
partitioned data set in its entirety. Data to be printed or punched can
be either hexadecimal or a character representation of valid bit
configurations (alphameric). For a print operation, packed decimal data
should be converted to unpacked decimal or hexadecimal mode to ensure
that all characters are printable.

standard Print operation: For a standard print operation, each logical
record is printed in groups of 8 characters, as shown below:

r----------------------------------T-----------------------------------,
I Sequential or Partitioned Input I Printed Output I
~----------------------------------+-----------------------------------~
: ABCDEFGHIJKLMNOPQRSTUVWX... 1 ABCDEFGH ,IJKLMNOP t QRSTUVWX t ... :
I I 2 blanks between each group of I
I I characters I L __________________________________ ~ ___________________________________ J

The IEBPTPCh Program 301

I

In this manner, up to 96 characters can be included on a printed line.
(An edited output can be produced to omit the blank delimiters and print
up to 120 characters per line. Refer to the IEBPTPCH examples for
details.)

Standard Punch Operation: Data from an input logical record is punched
in contiguous columns in the punched card(s} representing that record.
Sequence numbers can be created and placed in columns 73-80 of the
punched cards.

Printing or Punching Selected Members

The IEBPTPCH program can be used to print or punch selected members of a
partitioned data set. utility control statements are used to specify
those members that are to be printed or punched.

Printing or Punching Selected Records

The IEBPTPCH program can be used to print selected records from a
sequential or partitioned data set. Utility control statements can be
used to specify:

• The termination of a print or punch operation after a specified
number of records has been printed or punched.

• The printing or punching of every "nth" record.

Printing or Punching a Partitioned Directory

The IEBPTPCH program can be used to print or punch the contents of a
partitioned directory.

standard Print Operation: Each directory block is printed in groups of
8 characters. If the directory is printed in hexadecimal
representation, the first four printed characters (two bytes) of each
directory block indicate the total number of used bytes in that block.
For details of the format of the directory, refer to the publication IBM
System/360 Operating System: system Control Blocks, GC28-6628. ---

standard Punch Operation: Data from a directory block is punched in
contiguous columns in the punched cards representing that block.

Printing or Punching an Edited Data Set

The IEBPTPCH program can print or punch an edited version of a
sequential or a partitioned data set. Utility control statements can be
used to specify editing information that applies to:

• A record.
• A group of records.
• Selected groups of records.
• An entire member or data set.

An edited data set is produced by:

• Rearranging or omitting defined data fields within a record.
• Converting data from packed to unpacked decimal or from alphameric

to hexadecimal representation.

302

Inputs and Outputs
IEBPTPCH Table 1· lists the major inputs to and outputs from the IEBPTPCH
program.

IEBPTPCH Table 1. Data Sets Used (Input) and Produced <Output) by the
IEBPTPCH Program

r-------T--,
IInputs IInput Data Set: This data set contains the data that is to bel
I Iprinted or punched. The input data set can be either I
I Isequential or partitioned. I
I IControl Data Set: This data set contains utility control I
I I statements. The data set is required for each application of I
I Ithe program. I
~-------+---------------------------~---------------------------------~
IOutputsloutput Data Set: This data set is the printed or punched datal
I Iset. I
I IMessage Data Set: This data set contains informational I
I Imessages (e.g., the contents of control statements) and error I
I I messages, if applicable. I L _______ ..l. ___ " _______ J

ADDITIONAL OUTPUTS

The IEBPTPCH program provides a return code to indicate the results of
program execution. The return codes and their interpretations are as
follows:

00 successful completion
08 a member specified for printing does not exist in the input data

set. Processing continues with the next member.
12 an unrecoverable error has occurred or a user routine has passed a

return code of 12 to the IEBPTPCH program. The Job step is
terminated.

16 -- a user routine has passed a return code of 16 to the IEBPTPCH
program. The job step is terminated.

Control
The IEBPTPCH program is controlled by job control statements and utility
control statements. The job control statements are required to execute
or invoke the IEBPTPCH program and to define the data sets that are used
and produced by the program. The utility control statements are used to
control the functions of the IEBPTPCH program.

JOB CONTROL STATEMENTS

IEBPTPCH Table 2 shows the job control statements necessary for
executing or invoking the IEBPTPCH program.

The IEBPTPCH Program 303

I

IEBPTPCH Table 2. Job Control statements for the IEBPTPCH Program
r------------T---------------------~-----------------------------------,
I Statement I Usage I
~------------+---~
I JOB IThis statement initiates the job step. I
I statement I I
~-----------+---------~---~
I EXEC IThis statement specifies the program name (PGM=IEBPTPCH) I
I statement lor, if the job control statements for the IEBPTPCH I
I Iprogram reside in a procedure library, the procedure I
I I name. I
~------------+---~
ISYSPRINT IThis statement defines a sequential message data set. I
IDD IThe data set can be written onto a system output device, I
I statement la magnetic tape volume, or a direct access volume. This I
I IDD statement must be present for each application of the I
I IIEBPTPCH program. I
r--~---------+---~
ISYSUT1 IThis statement defines the input data set. It can define I
IDD la sequential data set on a card reader, a magnetic tape I
I statement I volume, or a direct access device; or it can define a I
I Ipartitioned data set on a direct access device. I
r------------+---~-----~
ISYSUT2 IThis statement defines the output (printed or punched) I
IDD Idata set. The SYSUT2 data set cannot be blocked. I
I statement IThe BLKSIZE parameter in the DCB information specifies I
I Ithe number of characters to be written per printed line I
I lor per punched card (this count includes a control I
I lcharacter). The default values for this parameter are I
I 1120 characters per printed line and 80 characters per I
I I punched card. I
t------------+----------------------------------.-----------------------~
ISYSIN IThis statement defines the control data set. The control I
Inn Idata set normally resides in the input stream; however, I
I statement lit can also be defined as being a member of a library of I
I Ipartitioned members. The SYSIN DD statement is required I
I Ifor each application of the program. I
r------------~---~
INotes: The input data set can contain fixed-length, variable-length,
lundefined-Iength, or variable spanned records.
I
IThe blocksize for the SYSPRINT (message) data set must be a mUltiple
lof 121. The blocksize for the SYSIN (control) data set must be a
Imultiple of 80. Any blocking factor can be specified for these
Iblocksizes.
I
IA partitioned directory to be printed must be defined as a sequential
Idata set. Refer to the discussion of the PRINT utility control
Istatement for details.
I
IBoth the output data set and the message data set can reside on the
Isystem output device (this assumes that the system output device is a
Iprinter).
I
IIf the logical record length of the input records is such that the
loutput would exceed the output record length, the utility will break
Ithe record up into multiple lines or cards.
I
IRefer to the IEBPTPCH examples for typical uses of the job control
I statements. L ___ _

304

UTILITY CONTROL STATEMENTS

The IEBPTPCH program is controlled by combinations of the following
utility control statements:

• The PRINT or PUNCH statement.

• The TITLE statement.

• The EXITS statement.

• The MEMBER statement.

• The RECORD statement.

• The LABELS statement.

The control statements are included in the control data set as required.
IEBPTPCH Table 3 shows the order of inclusion and the uses of the
control statements.

IEBPTPCH Table 3. Utility Control Statements for the IEBPTPCH Program
r--------------T---,
(This Statement I I
lis included IIf I
r--------------+---i
I PRINT IData is to be printed. The PRINT statement or the I
I IPUNCH statement (for a punch operation) appears first I
I lin the control data set. I
I I I
I PUNCH (Data is to be punched. The PUNCH statement or the I
I IPRINT statement (for a print operation) appears first I
I lin the control data set. (
r--------------+---i
JTITLE IA title is to precede the printed or punched data. Two I
I (optional) ITITLE statements can be included per execution of the (
I I program. The TITLE statements(s) must follow I
I limmediately the PRINT or PUNCH statement in the control I
I Idata set. I
~-------------+---~
(EXITS IUser routines are provided. This statement must I
I (optional) lappear immediately after the TITLE statement(s) or I
(lafter the PRINT or PUNCH statement. I
t--------------+---i
I MEMBER IThe input is partitioned and a selected member (identi-I
(optional) Ified by the MEMBER statement) is to be printed or I
I . I punched. I
~--------------+---~
I RECORD IEditing is to be performed; i.e., records are to be I
I (optional) Iprinted or punched to non-standard specifications. I
~--------------+---~
I LABELS I Specifies· whether or not user labels are to be I
) (optional) Itreated as data. I
~---~--------~~---~
I Note: Any number of MEMBER and/or RECORD statements can be included I
lin a job step. I l __ J

-The IEBPTPCH Program 305

Coding Utility Control statements

utility control statements are coded in columns 1 through 71. A
statement that exceeds 71 characters may be continued on one or more
additional cards.

Names: Names are not required for utility control statements. If they
are used, they must begin in column 1. Names cannot be over eight
characters long and must be followed by one or more blanks.

Operation: The operation field can begin in any column from 2 through
71. An operation field may be interrupted at column 7+ and continued on
the next card. When an operation field is interrupted, a nonblank
character must be placed in column 72. The continued portion must start
in any column from 4 through 16 of the next card. (Restriction: When
an operation field ends in column 70 or 71, it cannot be followed by an
operand or comment.)

Operands (Keywords and Parameters): Operands must be preceded by an
operation field. They must begin on the same card that the operation
field ends on. One or more blanks must separate the operand from the
operation field. When an operand ends in column 71, then column 72 must
be left blank. If an operand is interrupted at column 71 and is to be
continued on the next card, a nonblank character must be placed in
column 72. An operand can also be interrupted at a comma (unless the
comma is part of a literal). w~enever an operand is interrupted at a
comma, column 72 may be either blank or nonblank. In all cases, the
continuation must start in any column from 4 through 16 of the next
card.

Comments: Comments must be preceded by an operand or operation field.
They must begin on the same card that the last operand or the operation
field ends on. (Exception: When an operand is interrupted at a comma,
the remaining columns through 71 may contain a comment. A blank must
separate the comma from the comment, however.) A comment cannot
separate an operation field from an operand.

Comments may be interrupted and continued on the next card by placing
a nonblank character in column 72. Comments do not have to be
interrupted at column 71; blanks are acceptable in column 71 as part of
the comment. The continued portion must start in any column from 4
through 16 of the next card.

306

The Print or Punch Statement

The PRINT or PUNCH statement is used to initiate the utility operation.

r------T---------T---, I Name I Operation I Operand I
~------+---------+---~

[name] PRINT [PREFORM=A]
PUNCH PREFO~l=M

{
TYPORG=PS}
TYFORG=PO

rTOTcoNV=xEl
LTOTCONV=P ZJ
[CNTRL=nJ
[STOPAFT=nJ
[SKIP=nl
[MAXNAME=nJ
[MAXFLDS=nl
[MAXGPS=nl
[MAXLITS=nl

Applicable to a PRINT or
PUNCH operation.

~---~
I [INITPG=nl Applicable only to a PRINT I
I [MAXLINE=nl operation. I
~---~
I [CDSEQ=nJ Applicable only to a PUNCH I
I [CDINCR=nl operation. I ______ ~ _________ ~ ___ J

PREFORM=A
specifies that an ASA control character is provided as the first
character of each record to be printed or punched. If the input
record length exceeds the output record length, the utility will
(1) for punched output, duplicate the ASA character on each output
card of the record, or (2) for printed output, use the ASA
character for printing the first line, with a single space
character on all subsequent lines of the record.

During a printing operation, the control characters are used to
control the printer carriage; i.e., to control spacing, number of
lines per page, and page ejection. During a punching operation,
the control characters are used to select a stacker. If an error
is discovered, the printing or punching operatibn is terminated.

PREFORM=M
specifies that a machine-code control character is provided as the
first character of each record to be printed or punched. If the
input record length exceeds the output record length, the utility
will (1) for punched output, duplicate the machine control
character on each output card of the record, or (2) for printed
output, print all lines of the record with a "print skip one line"
character, until the last line of the record, which will contain
the actual character provided as input.

During a printing operation, the control characters are used to
control the printer carriage; i.e., to control spacing, number of
lines per page, and page ejection. During a punching operation,
the control characters are used to select a stacker. If an error
is uncovered, the operation is terminated.

The IEBPTPCH Program 307

Notes: The PREFORM parameter must not be used for printing or
punching data sets with VS or VBS type records longer than 32K
bytes.

If the PREFORM operand is used, then, except for syntax-checking
purposes, any additional PRINT or PUNCH operands and all other
control statements except LABELS statements are ignored.

TYPORG=PS
specifies that the input data set is organized sequentially.

TYPORG=PO
specifies that the input data set is partitioned.

If TYPORG is omitted, PS is assumed.

TOTCONV=XE
specifies that data is to be printed or punched in
2-character-per-byte hexadecimal representation, e.g., C3 40 F4 F6.

If TOTCONV=XE is not specified, data will be printed or punched in
l-character-per-byte alphameric representation. The above example
would appear as C 46. The TOTCONV operand is overridden by any
user specifications (RECORD statements) that pertain to the same
data.

TOTCONV=PZ
specifies that data in packed decimal mode is to be converted to
unpacked decimal mode.

If TOTCONV is omitted, data is not converted. The TOTCONV operand
is overridden by any user specifications (RECORD statements) that
pertain to the same data.

CNTRL=n
specifies a control character for the output device. For a printer
the number indicates line spacing, as follows:

1 single spacing
2 double spacing
3 triple spacing

For a card punch the number selects the stacker:

1 first stacker
2 second stacker

If CNTRL is omitted, 1 is assumed.

STOPAFT=n

308

sequential data sets: specifies the number of logical records
(physical blocks in the case of VS or VBS type records longer than
32K bytes) to be printed or punched (n must not exceed 32,767).

Partitioned data sets: specifies the number of logical records
(physical blocks in the case of VS or VBS type records longer than
32K bytes) to be printed or punched in each member to be processed
(n must not exceed ~2,767).

If STOPAFT is specified and RECORD statements are present, the
operation is terminated when the STOPAFT count is satisfied or at
the end of the first record group, whichever occurs first.

SKIP=n
specifies that every "nth" record (physical block in the case of VS
or VBS type records longer than 32K bytes) is to be printed or
punched.

If SKIP is omitted, successive logical records are printed or
punched.

MAXNAME=n
specifies a number no less than the total number of subsequent
MEMBER statements.

If MAXNAME is omitted and there are one or more MEMBER statements,
the PRINT or PUNCH request is terminated.

~~FLDS=n

specifies a number no less than the total number of FIELD
parameters app~aring in subsequent RECORD statements.

\
If MAXFLDS is omitted and there are one or more FIELD parameters,
the PRINT or PUNCH request is terminated.

MAXGPS=n
specifies a number no less than the total number of IDENT
parameters appearing in subsequent RECORD statements.

If MAXGPS is omitted and there are one or more IDENT parameters,
the PRINT or PUNCH request is terminated.

MAXLITS=n
specifies a number no less than the total number of characters
contained in the IDENT literals of subsequent RECORD statements.

If MAXLITS is omitted and there are one or more literals, the PRINT
or PUNCH request is terminated.

INITPG=n (PRINT operation only)
specifies the initial page number. Printed pages are numbered
sequentially thereafter.

If INITPG is omitted, 1 is assumed.

MAXLINE=n (PRINT operation only>
specifies the maximum number of lines to a printed page. Spaces,
titles, and subtitles are included in this number.

If MAXLINE is omitted, 60 is assumed.

CDSEQ=n (PUNCH operation only)
specifies the initial sequence number of a deck of punched cards.
This value can be up to 8 digits and occupies columns 73 to 80.
Sequence numbering is initialized for each member of a partitioned
data set.

If CDSEQ is omitted, the cards are not numbered. If n is omitted,
00000000 is assumed as a starting sequence number.

CDINCR=n (PUNCH operation only)
specifies the increment to be used in generating sequence numbers.

If CDINCR is omitted and CDSEQ is coded, 10 is assumed as an
increment value for sequence numbering.

The IEBPTPCh Program 309

•

The TITLE statement

The TITLE statement is used to request title and subtitle records. A
first TITLE statement defines the title and a second defines the
subtitle.

r------T---------T---,
I Name IOperationlOperand I
r------+---------+---~
I [nameliTITLE IITEM=('title'[,output-locationl) I L ______ ~ _________ ~ ___ J

ITEM=('title' [,output-locationl)
specifies title or subtitle information.

'title': specifies the title (or subtitle) literal <maximum length
of 40 bytes), enclosed in apostrophes. If the literal contains
apostrophes, each apostrophe must be written as two consecutive
apostrophes.

output-location: specifies the starting position at which the
literal is to be placed in the output record. If no output
location is specified, 1 is assumed.

The EXITS Statement

The EXITS statement is used to identify exit routines supplied by the
user. Exits to label processing routines are ignored if the input data
set is partitioned. Linkage to and from user routines are discussed in
Appendix A.

r------T---------T---,
I Name I Operation I Operand I
r------+---------+---~
I [namellEXITs I [INHDR=routinename] 1
I I I [INTLR=routinenamel I
I I l[INREC=routinename] I
1 I IlOUTREC=routinename] I L ______ ~ _________ ~ ___ J

INHDR=routinename
specifies the symbolic name of a routine that processes user input
header labels.

INTLR=routinename
specifies the symbolic name of a routine that processes user input
trailer labels.

INREC=routinename
specifies the symbolic name of a routine that manipulates each
logical record (physical block in the case of VS or VBS type
records longer than 32K bytes) before it is processed.

OUTREC=routinename

310

specifies the symbolic name of a routine that manipulates each
logical record (physical block in the case of VS or VBS type
records longer than 32K bytes) before it is printed or punched.
When standard specifications are used, this exit is not available.

The MEMBER Statement

The MEMBER statement is used to identify members to be printed or
punched. All RECORD statements that follow a MEMBER statement pertain
to the member indicated in that MEMBER statement.

If no MEMBER statement appears, and a partitioned data set is being
processed, all members of the data set are printed or punched.

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
j (nameliMEMBER I {NAME=membername} I
I I I NAME=aliasname I l ______ ~ _________ ~ ___ J

NAME=membername or NAME=aliasname
identifies a member by its member name or its alias name.

The RECORD Statement

The RECORD statement is used to define a group of records (record group)
that is to be printed or punched to the user's specifications. A record
group consists of any number of records to be edited identically. A
RECORD statement can contain one IDENT parameter and any number of FIELD
parameters.

A RECORD statement referring to a partitioned data set for which no
members have been named need contain only FIELD parameters. These are
applied to the records in all members of the data set.

If no RECORD statements appear, the entire data set, or named member,
is printed or punched to standard specifications. If a RECORD statement
is used, all data following the record group it defines (within a
partitioned member or within an entire sequential data set) must be
defined with other RECORD statements.

r------T---------T--~,
I Name I Operation I Operand I
t------+---------+~--~
I [namellRECORD I [IDENT=(length,'name',input-location)l I
I I I [FIELD=(length, [input-Iocationl, [conversionlJ I
I I I [output-location])... J I l ______ ~ _________ ~ ___ J

IDENT=(length,'name',input-location)
identifies the last record of the record group to which the FIELD
parameters apply.

If IDENT is omitted and STOPAFT is not included with the PRINT or
PUNCH statement, record processing halts after the last record in
the data set. If IDENT is omitted and STOPAFT is included with the
PRINT or PUNCH statement, record processing halts when the STOPAFT
count is satisfied or after the last record of the data set is
processed, whichever occurs first.

length: specifies the length (in bytes) of the field that contains
the identifying name in the input records. 'I'he length cannot
exceed 8 bytes.

The IEBPTPCH Program 311

'name': specifies the exact literal that identifies the last
record of a record group. If the literal contains apostrophes,
each must be written as two consecutive apostrophes.

input-location: specifies the starting location of the field that
contains the identifying name in the input records.

FIELD=(length,[input-Iocationl, [conversion], [output-location]) •••
specifies the field processing and editing information.

length: specifies the length (in bytes) of the input field to be
processed. This length cannot exceed 120 bytes.

input-location: specifies the starting byte of the input field to
be processed. If no starting byte is specified, 1 is assumed.

Conversion: specifies a 2-byte code that indicates the type of
conversion to be performed on this field before it is printed or
punched, as follows:

r----T------------------------------T-----------------~-----------,
, I I Output Length I
I Code I Conversion I (Where L is the Input Length) I
~----+------------------------------+-----------------------------~
I PZ IPacked to unpacked decimal I 2L-l I
I I mode I I
I I I I
I XE IAlphameric to hexadecimal I 2L I
I I representation I I L ____ ~ ______________________________ ~ _____________________________ J

If no conversion is specified, the field is moved to the output
area without change.

output-location: specifies the starting location of this field in
the output records. If no starting location is specified, 1 is
assumed. Unspecified fields in the output records appear as blanks
in the printed or punched output.

The LABELS Statement

The LABELS statement specifies whether or not the IEBPTPCH program
should treat user labels as data. For a detailed discussion of this
option, refer to the section entitled "Processing User Labels as Data,"
in "Appendix F: Utility Program Handlinq of User Labels."

r------T---------T---,
I Name I Operation I Operand I
~------+---------+---~
I [name] I LABELS I DATA={YES \ I
I I I .NO I
I I I ALL I
I I I ONLY I L ______ ~ _________ ~ ___ J

312

IEBPTPCH Examples

The following examples illustrate some of the uses of the IEBPTPCH program.

IEBPTPCH Example 1

r-----------T------------------T---------------T---------------T------------------------,
I I Da ta Set I I I I
I Operation I Organization IInput Device IOutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
I PRINT IInput-SEQUENTIAL ITAPE - 9-track,ISystem Output 11. Standard specifica- I
I I I unlabeled, 800 Idevice (PRINTER I tions. I
I 1 Ibits-per-inch I assumed) 12. Conversion to hex- 1
I 1 I density 1 I adecimal represen- 1
1 I I I 1 tation. I L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, a sequential data set is to be printed according to standard
specifications. The inpu~ dqta set resides on a 9-track magnetic tape volume,
originally written at a density of 800 bits per inch. The printed output is to be
converted to hexadecimal. \

• The SYSUTl DD Statement: defines the input data set. The data set contains
U-type records, no record being larger than 2000 bytes.

• The SYSUT2 DD Statement: defines the output (printed) data set. The data set
resides on the system output device (printer assumed). Each printed line
contains up to 12 groups (8 characters each) of hexadecimal information. Each
record begins a new line of printed output; i.e., no two records appear on the
same line of printed output.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The control data set contains the PRINT and TITLE utility
control statements.

• The PRINT Statement: initiates the print operation and specifies conversion
from alphameric to hexadecimal representation.

• The TITLE Statement:
the printed output.

specifies a title to be placed beginning in column 10 of
The title is not converted to hexadecimal.

r---,
I//PRINT JOB 09#660,SMITH I
1// EXEC PGM=IEBPTPCH I
I//SYSPRINT DD SYSOUT=A I
1//SYSUTl DD UNIT=2400,LABEL=(,NL),VOLUME=SER=001234, I
1// DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=2000) 1
1//SYSUT2 DD SYSOUT=A I
I//SYSIN DD * I
I PRINT TOTCONV=XE I
I TITLE ITEM=('PRINT SEQ DATA SET WITH CONV TO HEX',10) 1
1/* I L ___ J

IEBPTPCH Example 1. Printing a Sequential Data Set With Standard specifications

The IEBPTPCH Program 313

IEBPTPCH Example 2

r-----------T------------------T---------------T---------------T------------------------,
I I Da ta Set I I I I
IOperation IOrganization IInput Device loutput Device ICorrments I
~-----------+------------------+----------~----+---------------+---------------------~--~
1 PUNCH I Input-SEQUENTIAL ITAPE - 7-track,ICARD PUNCH - 11. Standard specifica- I
I I I unlabeled, 556 12540-2 I tions. I
I I Ibits-per-inch I 12. Conversion to hexa- I
1 I I density, data I I decimal representa- I
I I I converter on I I tion. I L ___________ ~ __ ~ _______________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, a sequential data set is to be pun~hed accora1ng to standard
specifications. The input data set resides on a 7-track magnetic tape volume,
originally written at a density of 556 bits-per-inch. The punched output is
converted to hexadecimal.

• The SYSUTl DDStatement: defines the input data set. The data set contains
80-byte fixed-length, blocked records.

• The SYSUT2 DD Statement: defines the output (punched) data set. The data set
is to be punched by an IBM 2540-2 Card Read Punch (punch feed). Each record
from the input data set is represented by two punched cards.

• The SYSIN DD statement: defines the control data set, which follows in the
input stream. The control data set contains the PUNCH and TITLE utility
control statements.

• The PUNCH Statement: initiates the punch operation and specifies conversion
from alphameric to hexadecimal represent'ation.

• The TITLE statement: specifies a title to be placed beginning in column 10.
The title is not converted to hexadecimal.

r---,
I//PUNCHSET JOB 09#660,SMITH
1// EXEC PGM=IEBPTPCH
I//SYSPRINT DD SYSOUT=A
1//SYSUTl DD DSNAME=INSET,UNIT=2400-2,LABEL=(,NL),
1// VOLUME=SER=001234,DISP=(OLD,KEEP),
1// DCB=(DEN=1,RECFM=FB,LRECL=80,BLKSIZE=2000,TRTCH=C)
1//SYSUT2 DD UNIT=2540-2
I//SYSIN DD *
1 PUNCH TOTCONV=XE
I TITLE ITEM= ('PUNCH SEQ DATA SET WITH CONV TO HEX', 10)
1/* L _________________________________ ~ ___ =_

IEBPTPCH Example 2. Punching a sequential Data Set With Standard Specifications

314

IEBPTPCH Example 3

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I I I I
I Operation I organization IInput Device loutput Device 1 Comments 1
~-----------+------------------+---------------+---------------+------------------------~
I PRINT IInput-PARTI'I'IONED I DRUM - 2301 I System Output 11. Standard specifica- I
1 I I IDevice (PRINTER I tions. I
1 1 1 ,assumed) 12. Conversion to hexa- 1
" I I , decimal representa- ,
'I I 1 I tion. I
I 1 1 I 13. 10 records from each I
I I , I I member are printed. I L ___________ ~ __________________ ~ _______________ ~ ______ ------___ ~ ________________________ J

In this example, a partitioned data set (10 records from each member) is to be
printed according to standard specifications. The input data set resides on an
IBM 2301 Drum Storage Device. The printed output is converted to hexadecimal.

• The SYSUTl DD Statement: defines the input data set. 'Ihe data set contains
U-type records, no record being larger than 3625 bytes.

• The SYSUT2 DD Statement: defines the output data set on the system output
device (printer assumed). Each printed line contains up to 12 groups (8
characters each) of hexadecimal information. Each record begins a new line of
printed output; i.e., no two records appear on the same line of printed
output. The size of the record determines how many lines of printed output
are required per record.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The control data set contains the PRINT and TITLE utility
control statements.

• The PRINT statement: initiates the print operation, specifies conversion from
alphameric to hexadecimal representation, indicates that the input data set is
partitioned, and specifies that 10 records from each member be printed.

• The TITLE statement:
the printed output.

specifies a title to be placed beginning in column 20 of
The title is not converted to hexadecimal.

r---,
I//PRINTPDS JOB 09#660,SMITH I
1// EXEC PGM=IEBPTPCH 1
I//SYSPRINT DD SYSOUT=A 1
1//SYSUTl DD DSNAME=PDS,UNIT=2301,DISP=(OLD,KEEP), I
1// VOLUME=SER=111112,DCB=(RECFM=U,BLKSIZE=3625) 1
1//SYSUT2 DD SYSOUT=A I
I//SYSIN DD * I
I PRINT TOTCONV=XE,TYPORG=PO,STOPAFT=10 I
1 TITLE ITEM=('PRINT PDS - 10 RECS EACH MEM',20) I
1/* I L ___ J

IEBPTPCH Example 3. Printing a Partitioned Data Set With Standard Specifications

The IEBPTPCH Program 315

I

IEBPTPCH Example 4

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I Input I Output I I
iOperation IOrganization I Device I Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
I PRINT IInput-PARTITIONED IDISK - 2311 I System Output 11. Standard specifica- I
I I I IDevice (PRINTER I tions. I
I I I I assumed) 12 • Conversion to hexa- I
I I I I I decimal representa- I
I I I I 1 tion. I
I I I I 13. Two members are I
I I I I I printed. I L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, two partitioned members are to be printed according to
standard specifications. The input data set resides on an IBM 2311 Disk Storage
Drive. The printed output is to be converted to hexadecimal.

• The SYSUTl DD Statement: defines the input data set. The data set contains
SO-byte, fixed-length records.

• The SYSUT2 DD Statement: defines the output data set on the system output
device (printer assumed). Each printed line contains up to 12 groups (S
characters each) of hexadecimal information. Each record begins a new line of
printed output; i.e., no two records appear on the same line of printed
output.

• TheSYSIN DD Statement: defines the control data set, which follows in the
input stream. The control data set contains PRINT, TITLE, and MEMBER utility
control statements.

• The PRINT Statement: initiates the print operation, indicates that the input
data set is partitioned, specifies converS1on from alphameric to hexadecimal
representation, and indicates that two MEMBER statements appear in the control
data set.

• The TITLE Statement:
the printed output.

specifies a title to be placed beginning in column 10 of
The title is not converted to hexadecimal.

• The MEMBER statements: specify the member names of the members to be printed.

r---,
//PRNTMEMS JOB 09#660,SMITH I
// EXEC PGM=IEBPTPCH I
//SYSPRINT DD SYSOUT=A I
//SYSUT1 DD DSNAME=PDS,UNIT=2311,DISP=(OLD,KEEP), I
// VOLUME=SER=111112,DCB=(RECFM=F,LRECL=SO,BLKSIZE=SO) I
//SYSUT2 DD SYSOUT=A I
//SYSIN DD * I

PRINT TYPORG=PO, TOTCONV=XE, MAXNAME=2 I
TITLE ITEM=('PRINT TWO MEMBS WITH CONV TO HEX',lO) I

MEMBER NAME=MEMBERi I
MEMBER NAME=MEMBER2 I

/* I L ___ J

IEBPTPCH Example 4. Printing Two Partitioned Members With Standard specifications

316

IEBPTPCH Example 5

r-----------T------------------T----------------T---------------T------------------------,
I lData set I Input I Output 1 I
IOperation IOrganization I Device 1 Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
1 PRINT IInput-SEQUENTIAL ITAPE 9-track, ISystem Output 11. User (nonstandard 1
1 1 Istandard label, I Device (PRINTER I specifications. 1
I I ISOO bits-per- 1 assumed) 12. Input data set is 1
1 1 I inch density I I 2nd data set on 1
1 I 1 I I tape volume. 1 L ___________ ~ __________________ ~ _______________ ~ _______ ~ _______ ~ ________________________ J

In this example, a sequential data set is to be printed according to user
specifications. The input data set is the second data set on a 9-track magnetic
tape volume. The data set was originally written at a density of BOO
bits-per-inch.

• .The SYSUTl DD statement: defines the input data s~t. The data set contains
SO-byte, fixed-length blocked records.

• The SYSUT2 DO statement:
device (printer assumed).
(1 record) of information.

defines the output data set on the system output
Each printed line contains SO contiguous characters

• The SYSIN DD statement: defines the control data set, which follows in the
input stream. The control data set contains the PRINT, RECORD, EXITS and
LABELS utility control statements.

• The PRINT statement: initiates the print operation and indicates that one
FIELD parameter is included in a subsequent RECORD statement.

• The RECORD Statement: indicates that each input record is to be processed in
its entirety (SO bytes). Each input record is printed in columns 1-S0 on the
printer. I

• The LABELS Statement: specifies that user header an'd trailer labels are to be
printed according to the return code issued by the user exits.

• The EXITS Statement: indicates that exits will be taken to user header and
trailer label processing routines when these labels are encountered on the
SYSUT1 data set.

r---,
//PTNONSTD JOB 09#660,SMITH
// EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUTl DD DSNAME=SEQSET,UNIT=2400,LABEL=(2,SUL),
// DISP=(OLD,KEEP).VOLUME=SER=001234.
// DCB=(RECFM=FB.LRECL=SO.BLKSIZE=2000)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT MAXFLDS=l
RECORD FIELD=(SO)
LABELS DATA=YES

EXITS INHDR=HDRIN.INTLR=TRLIN
L __ ----_________________________________ J

IEBPTPCH ~xample 5. Printing a sequential Data Set With User specifications

'I'he IEBPTPCH Program 317

IEBPTPCH Example 6

r-----------T------------------T---------------T---------------T------------------------,
I IData set I Input I Output I I
1 Operation I Organization 1 Device I Device 1 Comments 1
~-----------+------------------+---------------+---------------+------------------------~
I PUNCH IInput-SEQUENTIAL IDISK - 2311 ICARD READ PUNCH I 1. User (nonstandard> 1
I 1 I 12540-2 1 specifications. I
I 1 I 1 12. Sequence numbers I
1 I 1 I 1 assigned and punched. 1 L ___________ L ___________ ~ ______ ~ _______________ ~ _______________ ~ ________________________ J

In this example, a sequential data set is to be punched according to user
specifications. The input data set resides on an IBM 2311 Disk Storage Drive.

• The SYSUT1 DD Statement: defines the input data set. The data set contains
80-byte, fixed-length blocked records.

• The SYSUT2 DD Statement: defines the output (punched) data set. The data set
is to be punched by an IBM 2540-2 Card Read Punch (Punch feed). Each record
from the input data set is represented by one punched card.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The control data set contains the PUNCH, RECORD, and LABELS
utility control statements.

• The PUNCH Statements: initiates the punch operation, indicates that one FIELD
parameter is included in a subsequent RECORD statement, and assigns a sequence
number for the first punched card (00000000) and an increment value for
successive sequence numbers (20). Sequence numbers are placed in columns
73-80 of the output records.

• The RECORD Statement: indicates that bytes 1-72 of the input records are to
be punched. Bytes 73-80 of the input records are replaced by the new sequence
numbers in the output card deck.

• The LABELS Statement: specifies that only user header labels are to be
punched.

r--~----------,
I//PHSEQNO JOB 09#660,SMITH 1
1// EXEC PGM=IEBPTPCH I
I//SYSPRINT DD SYSOUT=A I
1//SYSUT1 DD DSNAME=SEQSET,UNIT=2311, 1
1// VOLUME=SER=111112,DISP=(OLD,KEEP), I
1// DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000} I
1//SYSUT2 DD DSNAME=PUNCHSET,UNIT=2540-2 I
I//SYSIN DD * I
I PUNCH MAXFLDS=1,CDSEQ=00000000,CDINCR=20 I
I RECORD FIELD=(72} I
1 LABELS DATA=ONLY 1
1/* I L ______________________ ~ __ J

IEBPTPCH Example 6. Punching a sequential Data Set -- Assigning Sequence Numbers

318

IEBPTPCH Example 7

r-----------T------------------T---------------T---------------T------------------------,
I IData Set I Input I Output I I
IOperation I Organization I Device I Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
IPRINT a IInput-SEQUENTIAL IDISK - 2311 Isystem output 11. Standard specifica- I
I partitioned I I IDevice (PRINTER I tions. I
Idirectory I I I assumed) 12. Conversion to hexa- I
1 I I I I decimal representa- I
I I I I I tion. I L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, the directory of a partitioned data set is to be printed. The
input data set resides on an IBM 2311 Disk Storage Drive. The printed output is
to be converted to hexadecimal.

• The SYSUTl DD statement: defines the input data set (the partitioned
directory).

• The SYSUT2 DD Statement: defines the output data set on the system output
device (printer assumed). Each printed line contains up to 12 groups (8
characters each) of hexadecimal information. Six lines of print are required
for each record; i.e., for each block of 256 bytes. Each record begins a new
line of printed output; i.e., portions of two records cannot appear on the
same line of print.

• The SYSIN DD Statement: defines the control data set, which follows in the
input stream. The control data set contains the PRINT, TITLE, and LABELS
utility control statements.

• The PRINT Statement: initiates the print operation, indicates that the
partitioned directory is organized sequentially, and specifies conversion from
alphameric to hexadecimal representation.

• The TITLE Statements: specify a title and a subtitle. Neither the title nor
the subtitle is converted to hexadecimal.

• The LABELS Statement: specifies that no user labels are to be printed.

Note: Not all of the bytes in a directory block need contain data pertaining to
the partitioned data set; i.e., the unused bytes are sometimes used by the
operating system/360 Control Program as temporary work areas. The first 4
characters of printed output indicate how many bytes of the 256-byte block pertain
to the partitioned data set. Unused bytes, if any, occur in the latter portion of
the directory block: i.e., they are not interspersed with the used bytes.

r---,
IIIPRINTDIR JOB 09#660,SMITH
III EXEC PGM=IEBPTPCH
IIISYSPRINT DD SYSOUT=A
IllSYSUTl DD DSNAME=PDS,UNIT=2311,VOLUME=SER=111112,LABEL=(,SUL),
III DISP=(OLD,KEEP),DCB=(RECFM=U,BLKSIZE=3625)
IIISYSUT2 DD SYSOUT=A
IIISYSIN DD *
I PRINT TYPORG=PS,TOTCONV=XE
I TITLE ITEM=('PRINT PARTITIONED DIRECTORY OF PDS',10)
I TITLE ITEM=('FIRST TWO BYTES SHOW NUM OF USED BYTES',10)
I LABELS DATA=NO
1/* L __ _

IEBPTPCH Example 7. Printing a Partitioned Directory

The IEBPTPCH Program 319

IEBPTPCH Example 8

r-----------T------------------T---------------T---------------T------------------------,
I IData Set I 1 I I
I Operation I Organization IInput Device IOutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
I PUNCH IInput-SEQUENTIAL ICARD READER ICARD READ PUNCH I 1. Standard specifica- 1
I I (card deck) I 12540-2 I tions. 1
I I I I 12. The PUNCH utility I
I I I I I control staterrent hasl
I I I I I been previously 1
I I I I I placed (as a member) I
I I I I I in a partitioned datal
I I I I I set. I
I I 1 1 13. The control data set I
I I I I 1 is cataloged. I L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, a card deck containing valid punch card code or BCD is to be
duplicated. The input card deck resides in the input stream.

• The SYSIN DD Statement: defines the control data set. The control data set
contains a PUNCH statement and is defined as a member of the partitioned data
set POSLIB. (The data set is cataloged.)

• The SYSUT2 DO Statement: defines the output (punched) data set. The data set
is to be punched on an IBM 2540-2 Card Read Punch (punch feed).

• The SYSUT1 DD Statement: defines the input card data set, which follows in
the input stream.

r---,
//PUNCH
//
//SYSPRINT
//SYSIN
//SYSUT2
//SYSUT1

/*

JOB
EXEC
DO
DD
DD
DO

09#660,SMITH
PGM=IEBPTPCH
SYSOUT=A
QSNAME=POSLIB(PNCHSTMT),DISP={OLD,KEEP)
UNIT=2540-2 .
DATA

input card data set

L ___ J

IEBPTPCH Example 8. Duplicating a Card Deck

320

IEBPTPCH Example 9

r-----------T------------------T---------------T---------------T------------------------,
I \Data Set I I I I
I Operation IOrganization IInput Device IOutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
I PRINT IInput-SEQUENTIAL IDISK - 2311 ISystem Output 11. User (nonstandard) I
I I I IDevice (PRINTERI specifications. I
I 1 I I assumed) 12. User routines are I
I I I I I provided. I
I I I I 13. Processing ends after I
I I I I I first record group isl
I I I I I printed. I L ___________ ~ __________________ ~ _______________ ~ ______ - ________ ~ ________________________ J

In this example a record group is to be printed. A user routine is provided to
manipulate output records before they are printed.

• The SYSUTl DD statement: defines the input sequential data set. The data set
resides on an IBM 2311 Disk storage Drive.

• The SYSUT2 DO statement: defines the output data set on the system output
device (printer assumed).

• The SYSIN DD statement: defines the control data set, which follows in the
input stream. The control data set contains a PRINT, TITLE, EXITS, and two
RECORD utility control statements.

• The PRINT statement:

initializes the print operation.

indicates that two FIELD parameters are included in subsequent RECORD
statements.

indicates that one IDENT parameter is included in a subsequent RECORD
statement.

indicates that six literal characters are included in the subsequent ident
parameter.

indicates that 40 lines are printed on each printed page.

indicates that processing is terminated after 32767 records are processed or
after the first record group is processed, whichever comes first.

• The TITLE statement: specifies a title.

• The EXITS statement: specifies the name of a user routine (NEWTIME) that
manipulates output records before they are printed.

• The RECORD Statement: defines the record group to be processed and indicates
where information from the input records is placed in the output records.
(Bytes 1-8 of the input records appear in columns 10-17 of the punched output,
and bytes 9-38 are printed in hexadecimal representation and placed in columns
20-79.)

• The LABELS Statement: specifies that all user header or trailer labels are to
be printed regardless of any return code issued by the user's exit routine
(except 16). It also indicates that the labels are to be converted from
alphameric to hexadecimal representation.

The IEBPTPCH Program 321

r---,
//PRINT JOB 09#660,SMITH
// EXEC PGM=IEBPTPCH
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=SEQDS,UNIT=2311,DISP=(OLD,KEEP),LABEL=(,SUL),
// VOLUME=SER=111112,DCB=(RECFM=FB,LRECL=80,BLKSIZE=2000)
//SYSUT2 DD SYSOUT=A
//SYSIN DD *

PRINT ~~XFLDS=2,MAXGPS=1,MAXLITS=6,MAXLINE=40,STOPAFT=32767
TITLE ITEM=('TIMECONV-DEPT D06 JAN 10-17')
EXITS OUTREC=NEWTIME,INHDR=HDRS,INTLR=TLRS

RECORD IDENT=(6,'498414',1),FIELD=(8,1,,10), C
FIELD=(30,9,XE,20)

LABELS DATA=ALL,CONV=XE
L __ - ________________________________ J

IEBPTPCH Example 9. printing an Edited Version of a sequential Data set

322

The IEBTCRIN Program

Program Applications
The IEBTCRIN utility program reads input from the IBM 2495 Tape
Cartridge Reader (TCR), edits the data as specified by the user, and
produces a sequentially organized output data set. The input is in the
form of cartridges written by either the IBM Magnetic Tape SELECTRIC
Typewriter (MTST) o~ the IBM 50 Magnetic Data Inscriber (hereafter
referred to as MTDI). An input data set (one or more cartridges) must
consist of either all MTST cartridges or all MTDI cartridges.

The program can be used to construct records from the stream of data
bytes read sequentially from the Tape Cartridge Reader. The user has
the option of gaining temporary control (via a user-supplied exit
routine) to process each logical record.

The output produced by the program is a sequential data set (a second
sequential data set may be produced for error records> which can be
written on any QSAM-supported output device (e.g., a system output
device, a magentic tape volume or a direct access volume).

Inputs and Outputs
IEBTCRIN Table 1 lists the major inputs to and outputs from the IEB'!'CRIN
program ..

IEBTCRIN Table 1. Data Sets Used (Input) and Produced (Output) by the
IEBTCRIN Program

r-------T--,
IInputs IInput Data set: contains the data on tape cartridges to be I
I Iread from the Tape Cartridge Reader. The input data was I
I lcreated on either an MTST or an MTDI. I
I I . I
I IControl Data set: contains utility control statements that I
I lare used to control the functions of the utility. Utility I
I Icontrol statements are required if the user wishes to specify I
I loptions other than the default. I
t-------t--~
IOutputs Normal Output Data Set: is the sequential output produced by
I the utility as a result of processing the cartridge input
I according to the utility control statements.
I
I
I
I ,
I
I
I

Error Output Data Set: contains those error records that do
not conform to the specifications (utility and/or user) for a
valid record.

Message Data Set: contains any utility messages, diagnostic
messages pertaining to the interpretation of the utility
control statements and/or DD statement, and messages

I pertaining to the abnormal termination of the utility. L _______ i __ J

Control
The IEBTCRIN ·program is controlled by job control statements and utility
control statements. The job control statements are required to execute
or invoke the IEBTCRIN program and to define the data sets that are used
and produced by the program. The utility control statements are used to

The IEBTCRIN Program 323

indicate the source of the input data cartridges (MTST or MTDI) and to
specify the type of processing to be done.

JOB CONTROL STATEMENTS

IEBTCRIN Table 2 shows the job control statements necessary for
executingor invoking the IEBTCRIN program.

IEBTCRIN Table 2. Job Control Statements for the IEBTCRIN Program
(Part 1 of 2)

r---------T--,
I Statement I Usage I
~---------+--~
I JOB IThis statement initiates the job. I
I statement I I
~---------+--~
I EXEC IThis statement specifies the program name (PGM=IEBTCRIN) I
I statement I or, if the job control statements for the IEBTCRIN program I
I Ireside in a procedure library, the procedure name. I
~----~----+--~
ISYSPRINT This statement defines a sequential message data set. The
IDD data set can be written on any QSAM supported output device.
jstatement
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

If the SYSPRINT DD statement is missing. a message is
written on the operator console and the program continues
processing.

The user can supply DCB parameters or accept default values.
If the user includes some parameters (e.g., RECFM) but omits
others, the program attempts to set defaults for the missing
parameters that are consistent with those that have been
supplied. For example, if the user supplied RECFM=VBA, the
program sets the BLKSIZE default to 129 and the LRECL
default to 125. If LRECL,BLKSIZE, and RECFM are not
specified the defaults will be LRECL=121, BLKSIZE=121, and
RECFM=FBA. Since the program will always construct the
SYSPRINT records with USASI (type A) control characters,
type A control characters should always be indicated when
RECFM is specified.

I
I
I

If the user provides a parameter that
lother parameters, a message is issued

is not consistent withl
and the program is I

I I terminated. I
~---------+--~
SYSUT1 IThis statement defines the input data set. Only the UNIT
DD Ikeyword is required. The value placed in the UNIT=xxxx
statementlkeyword can be '2495', the device address, or any other name

Ithat has been generated in the system as the unit device
I name. The VOLUME=SER=keyword may be specified to identify
Ithe tape cartridges to be mounted. The volume serial number
Ispecified must be an externally recognizable name associated
Iwith the cartridges to be processed. A message is issued to
Ithe operator instructing that the cartridges identified by
Ithat name be mounted. If the VOLUME keyword is not
Ispecified, the name TCRINP is assumed and used in the mount
I message. The BUFL DCB parameter can be specified to
lindicate the size of the two input buffers to be used. If
IBUFL is not specified, a value of 2000 is assumed. No other
Ikeywords/parameters are necessary.
I
IIf the SYSUTl DD statement is missing, a message is issued

I Ion SYSPRINT and the program is terminated. L _________ ~ __ J

(Part 1 of 2)

324

IBBTCRIN Table 2. Job Control statements for the IEBTCRIN Program
(Part 2 of 2)

r---------T--,
I Statement I Usage I
l---------+--~

I
1
I
I
I
1
I
I
I
I
I

SYSUT2 IThese statements define the output data set for valid
DD I records (SYSUT2) and the output data set for error records
statementl (SYSUT3). They must be sequential data sets and can have
and I fixed-length, variable-length, variable-length spanned, or
SYSUT3 undefined records. These data sets can be written on any
DD QSAM supported output device. Fi~ed-length and
statement variable-length records can be blocked through

thespecification of the BLKSIZE and RECFM DCB parameters.
The user can supply DCB parameters or accept default values.
If editing of MTDI input is specified on the utility control
statements, the SYSUT3 LRECL parameter should be four bytes
greater than theSYSUT2 LRECL parameter to include a 4-byte
error description word (see "Error Records" in this section)
appended to the front of the record by this program. E'or
variable-length records on either SYSUT2 or SYSUT3, the
LRECL and BLKSIZE DCB parameters must be large enough to
include the 4-byte record descriptor word.

If the user includes some parameters but omits others, the
Iprogram attempts to set defaults for the missing parameters
that are consistent with those that have been supplied. For
example, if the user specifies only the SYSUT2 parameter
RECFM=FB, the program defaults BLKSIZE to I"iAXLN (see "The
TCRGEN statement" in this section). If LRECL, BLKSIZE, and
RECFM are not specified, the defaults for SYSUT2 and SYSUT3
are LRECL=MAXLN+4, BLKSIZE=MAXLN+8, and RECFM=VB. (If
editing of MTDI input is specified, the defaults for SYSUT3
are LRECL=MAXLN+8, BLKSIZE=¥illXLN+12, and RECFM=VB to include
the EDW).

If the user provides a parameter that is not consistent with
other parameters, a message is issued and the program is
terminated.

SYSUT2 and/or SYSUT3 DD statements may be omitted or
specified as DUMMY. A message is issued on SYSPRINT

I indicating this situation, and processing continues.
~---------+--~
ISYSIN IThis statement defines the control data set I
IDD I (TCRGEN and EXITS statements). The control data set I
I statement I normally resides in the input stream; however, it can also I
I Ibe defined as being a sequential data set or a member within I
I la library (partitioned data set). If this statement is 1
I lmissing, all utility control statement defaults are assumed I
I land a message is issued on SYSPRINT. If DU¥~lY is specified, I
I lall utility control statement defaults are assumed. I L _________ ~ ____________________ ~-----------------------________________ J

The DCB parameters defining the SYSIN, SYSPRINT, SYSUT2, and SYSUT3
data sets can be supplied from any valid source (e.g., DD statements or
a data set label). Since the output (SYSUT2 and/or SYSUT3) data sets
are not opened until the first record is ready for output (after any
OUTREC and/or ERROR exits), DCB parameters to be supplied from an
existing data set label are not available for records constructed before
the data set is opened. Therefore, the DCB parameters should always be
provided in the DD statement even though they may already exist in the
label. Otherwise, utility defaults will be used to construct records
until the data set is opened.

The IEBTCRIN Program 325

If a permanent error occurs on SYSIN, SYSUTl (not including a data
check), SYSUT2, or SYSUT3, a message is issued on SYSPRINT and the
program is terminated $ If a permanent I/O error occurs on SYSPRINT,
both the failing message and a SYNADAF message indicating the error,
will be written on the programmer's console and the utility will be
terminated.

326

UTILITY CONTROL STATEMENTS

The IEBTCRIN program is controlled by two utility control statements:

• The TCRGEN statement •
• The EXITS statement.

If these statements contain errors or inconsistencies, the program is
terminated and the appropriate diagnostics are sent to the message data
set. If TCRGEN is not specified, standard defaults are used. If EXITS
is not specified, no exits are taken.

The TCRGEN Statement

This statement is used to indicate the device (MTDI or MTST) on which
the input data was created and the type of processing to be performed on
the input data (SYSUT1).

r------T---------T----------------T------------------------------------,
I Name I Operation I Operand I Comments I
~------+---------+----------------+------------------------------------~
I [name] I TCRGEN I r {MTDI}] I I
I I I LTYPE= MTST I I

I I 1]1 I
I I I [tSTDUC l' I , I TRANS= STDLC IValid only with TYPE=MTST I
I I name I specification. I
I I NOTRAN I I
I i I I

1 : [EDIT= ~~i~~]: Valid only with TYPE=l'"JTDI I
1 I NOEDIT 1 specification. I
I I I ,

I I rVERCHK={~~~~KPlvalid only with TYPE=MTDI and either
1 , r ~Ian EDIT=EDITD or EDIT=EDITR
I I I specification.
I I
I [MINLN=m] IValid only with TYPE=MTDI and either
I Ian EDIT=EDITD or EDIT=EDITR

,specification.
I

[MAXLN=n] I Default=120
I

[{
X'19 I}~I

REPLACE= Xlxxl~1 ,
[ERROP'I'= {~g~~BI This operand is ignored if a user

Iroutine is specified for the ERROR
loperand in the EXITS utility centrol

I I statement. L ______ ~ _________ ~ ________________ ~ ____________________________________ J

MTDI
TYPE= MTST

specifies the device on which the magnetic tape cartridge(s) was
written. MTDI specifies the input was creat€d on a Magnetic Data
Inscriber. MTST specifies the input was created on an IBM Magnetic
Tape SELECTRIC Typewriter. MTST and MTDI cartridges must not be
contained in the same input data set.

The IEBTCRIN Program 327

TRANS={~'~~~~ 1
name
NOT RAN

is valid only when TYPE=MTST is specified, and is sued to specify
the type of processing to be performed on MTST input by the
program.

• TRbNS=STDUC -- A translation from the MTST code to standard
EBCDIC (see Figures 2 and 3), is performed by the program, with
the exception that all alphabetic 'characters are translated to
uppercase.

• TRANS=STDLC -- A translation from the MTST code to standard
EBCDIC (see Figures 2 and 3) is performed by the program.

• TRANS=name -- This operand allows the user to specify his own
translate table. The translate table must exist as a load
module (with member name=name) in a user job library or the
link library. This load module must consist of a translate
table which begins at the entry point and conforms to the
specifications for the translate instruction (TR) found in IBM
systern/360 Principles of Operation, GA22-6821. This table is
used by the program to perform the translation.

• TRANS=NOTRAN -- No translation and no special processing is to
be performed by the utility. (Data is passed exactly as read
from the cartridge.)

If STDUC, STDLC, or name is specified, certain of the MTST codes
are processed in a special way before translation. That is, feed
codes (FD), switch codes (Sw), and autosearch codes (AS), both
upper case and lowercase, are deleted from the data. Each
61-character reference code is reduced to a single search code
(SRC).

A Stop Code, whether uppercase (ST) or lowercase (st), signals the
program that all data on a cartridge has been read. Therefore,
when a MTST cartridge to be processed by this program is created,
the user must not use Stop Code for any purpose other than
signaling the end of data on the cartridge. Stop Codes within
meaningful data will cause any subsequent data on the cartridge to
be lost since the cartridge will be rewound and unloaded upon
encountering the stop Code.

EDIT={~~i~~ }
NOEDIT

328

is valid only when TYPE=MTDI is specified, and is used to specify
the type of processing to be performed on MTDI input by the
program.

• EDIT=EDITD -- The input is edited and the start-of-record (SOR)
and end-of-record (EOR) codes are deleted and not included as
part of the output record.

• EDIT=EDITR The input is edited and SOR and EOR codes are
restrained as part of the output record.

• EDIT=NOEDIT -- No editing is to be performed by the utility.
(Data, including any group separator codes. (GS), is passed
exactly as read from the cartridge.)

If EDITD or EDITR is specified, the edit consists of the following
functions. Records are extracted one at a time from the input

buffers by scanning for the record delimiting codes (SOR and EOR).
DUP codes are replaced with the character from the corresponding
location in the preceding record. Left-zero fields are
right-justified and leading zeros are inserted where necessary.
Left-zero start codes are deleted from the records. Group
separa~or codes and records which start with cancel record codes
are bypassed.

{
NOCHK }

VERCHK= VOKCHK '. "
is valid only when TYPE=MTDI and either EDIT=EDITD or EDIT=EDITR
are specified. This parameter can be used when the program is to
check for record verification on the MTDI input.

MINLN=m

• VERCHK=NOCHK -- The program is not to check for record
verification. Either a record mark (RM) or a verify OK (VOK)
code is considered a valid end-of-record code.

• VERCHK=VOKCHK -- The program is to check for record
verification. A record that does not contain a verify OK code
is to be considered an error record.

is valid only when TYPE=MTDI and either EDIT=EDITD or EDIT=EDITR
~re specified. This parameter can be used to specify in bytes the
length of the shortest valid edited record. If the program
encounters a record shorter than this specified length, the record
is considered an error record. Refer to Table 3 for the values
that can be specified for MINLN. If MINLN is omitted, ,no minimum
length checking is performed.

MAXLN=n
is valid when eit~er TYPE=MTDI or TYPE=MTST is specified.

When TYPE=MTST or TYPE=MTDI without e~iting is specified, all
records but the last record passed to the program's output routine
will contain the number of bytes specified by MAXLN, plus four for
the record descriptor word when variable length records are
specified (RECFM=V). The,program will not indicte the end of data
from one cartridge and ~he beginning of data from the next.
Usually this transitiol)of the data from one cartridge to another
will occur within an output record. The last record passed to the
output routine (the record containing the last data from the final
cartridge of the input data set) will contain only the nuwber of
bytes remaining (plus four if the record format is variable> and is
the only record that can be shorter than the length specified by
MAXLN. The size of the records actually written will depend on the
record length (LRECL) 'specified for the output data set.

For MTDI input with editing specified, ~AXLN is used to specify in
bytes the length of the longest valid record after editing. If the
program encounters a record in which a valid end-of-record can not
be determined within this length, an end of record condition is
forced and the record is considered an error record. Table 3 lists
the values that can be specified for MAXLN. If MAXLN is omitted, a
value of 120 is assumed.

The IEBTCRIN Program 329

IEBTCRIN Table 3. Values for MINLN and MAXLN
r-----------T----------------------------T-----------------------------,
I TCRGEN I MINLN I MAXLN I
t-----------+----------------------------f-----------------------------~
I TYPE=MTST INot Applicable IUser specifies the number of I
~-----------~ Ibytes to be passed as a I
I TYPE=MTDI r I record. I
IEDIT=NOEDITI I I
~-----------+----------------------------f-----------------------------~
I TYPE=MTDI IShould equal the number of IShould equal the number of I
IEDIT=EDITD tbytes in the shortest valid Ibytes in the longest valid I
I Irecord after editing Irecord after editing I
I I (excluding SOR and EOR I (excluding SOR and EOR I
I I codes). Icodes). I
t-----------+----------------------------+-----------------------------~
I TYPE=MTDI IShould equal the number of IShould equal the number of I
IEDIT=EDITR Ibytes in the shortest valid Ibytes in the longest valid I
I Irecord after editing Irecord after editing I
I I (including SOR and EOR I (including SOR and ERO I
I Icodes). Icodes). I
~----------~----------------------------~-----------------------------~
I Note: The values for MINLN and MAXLN should not include the 4-byte I
Irecord descriptor word added to a variable length record. I L __ J

{
X'19'}

REPLACE= X'xx'

330

valid when either TYPE=MTDI or TYPE=MTST is specified, can be used
to specify the hexadecimal representation of the character used by
the program to replace error bytes. This gives the user the
capability of identifying and possibly correcting error bytes in
the user error exit routine (if specified) or in subsequent
processing. To facilitate discovery of the error byte, the
specified REPLACE character should be one that does not normally
appear in the data.

X'19' is chosen as the default value because it is an end-of-data
signal for either an MTST or MTDI cartridge. Therefore, it can
never appear as a valid data byte.

For REPLACE=X'xx' the user can replace xx with hexadecimal
characters of his own choosing. These choices can be made from
Figure 1 if the ihput was created on an MTDI, or from Figure 2 if
the input was created on an MTST. The replacement of error bytes
is accomplished prior to any specified MTST translation.

Hexadecimal characters representing special purpose codes that must
not be used as replacement bytes when MTDI with editing is
specified are:

X'OO'
X'll'
X'12'
X'lS'
X'lD'

(LZ)
(DUP)
(LZS)
(CAN)
(GS)

X'lE'
X' 3C'
X'71'
X'72'
x'73'

(VOR)
(RM)
(PI)
(P2)
(P3)

x'74'
X'7S'
X'76'
x'77'
X'7S'

(P4)
(PS)
(P6)
(P7)
(PS)

Hexadecimal characters representing special purpose codes that must
not be used as replacement bytes when MTST with translation is
specified are:

X'lO'
X'll'
X'13'

(cr)
(sw)
(fd)

X'14'
x'lS'
X'17'

(CR)
(SW)'
(FD)

X'Sl' (as)
X' 55' (AS)
X'SO' (src)
X'Sl' thru X'FF'

The special purpose codes listed above are used by the program when
constructing records. Use of these codes causes a message to be
issued and the utility to be terminated.

{
NORMAL}

ERROPT= NOERR
is valid when either TYPE=MTDI or TYPE=MTST is specified. This
parameter can be used to specify the disposition of all error
records. This operand is ignored if a user routine is specified
for the ERROR operand in the EXITS utility control statement. (The
ERROR operand allows the user to specify the disposition of each
error record via a return code.) A definition of an error record
is contained in "Error Records" in this section •

• ERROPT=NORMAL -- All error records, as determined by the
program, are placed in the error data set (SYSUT3) •

• ERROPT=NOERR -- All records (including error records) are
placed in the normal output data set (SYSUT2). No records are
placed in the error data set (SYSUT3).

The IEB'ICRIN Program 331

...
• 0,

" 0
00" "0
iii' .!ii

u
..; Q) 00 01

~
~ x

Q)

~ :c 00 01 10 11 00 01 10 11

:e ~
8 ... Q) 0 1 2 3 4 5 6 7

Cii 11'1

0000 0 LZ SP & -
0001 1 DUP / Pl

0010 2 LZS P2

0011 3 P3

0100 4 P4

0101 5 P5

0110 6 P6

0111 7 P7

1000 8 CAN P8

1001 9 ED

1010 A ¢ ! :

1011 B $, H

1100 C RM < * % @

1101 0 GS () - /

1110 E VOK + i > =

1111 F I -., ? "

This figure represents the character set and control
codes as read from and MTDI created cartridge.

Special Control:

LZ = Left zero fi"
PUP ::;: Duplicate
LZS = Left zero start
ED ::;: End data
GS ::;: Group Separator

Start of Record (SOR) :

Pl = Program level 1
P2 = Program level 2
P3 = Program level 3
P4 = Program level 4
P5 = Program level 5
P6 = Program level 6
P7 = Program level 7
P8 ::;: Program level 8
CAN = Cancel

End of Record (EOR) :

RM = Record mark
VOK ::;: Verify OK

10

00 01

8 9

IIEBTCRIN Fi9ure 1. MTDI Codes From TCR

332

11 Bit Positions 0, 1

10 11 00 01 10 11 Bit Positions 2, 3

A B C 0 E F First Hexadecimal Digit

0 082 0

A J 1

B K S 2

C L T 3

0 M U 4

E N V 5

F 0 W 6

G P X 7

H Q y 8

I R Z 9

.0,

'" i5
-0" -0
10" E

·u
.q-" Q) 00 01

""0

~
0 x

~
Q)

:c 00 01 10 11 00 01
""0

~ c:
0 u

3 4 a:i
Q) a 1 2 5 VI

0000 a z cr 5 a I tab

0001 1 2 sw 6 9 as

0010 2 t e h j sp

0011 3 n fd k b =

0100 4 Z CR %)
0

TAB

0101 5 @ SW ¢ (. AS

0110 6 T E H J SP

0111 7 N FD K B +

1000 8 1 7 4 m bsp

1001 9 3 $t 8 v

1010 A x d I g

1011 B u c f stx

1100 C ± & $ M BSP

1101 D # ST * V

1110 E X D L G

1111 F U C F STX

This figure represents the character set and contro I
codes as read from an MTST created cartridge.

cr and CR
sw and SW
fd and FD
st and ST
tab and TAB
as and AS
sp and SP
bsp and BSP
stx and STX
src and SRC

= Carrier return code
= Switch code
= Feed code
= Stop code
= Tab code
= Automati c search
= Space
= Backspace
= Stop transfer
= Search

10 11 00 01

6 7 8 9

I s src

i w

p y

q -

" S SRC

I W

P Y

Q -

r 0

a

: /

,

R 0

A

: ?

,

IIEBTCRIN Figure 2. MTST Codes From TCR

10 11 Bit Positions 0, 1

10 11 00 01 10 11 Bit Positions 2, 3

A B C D E F First Hexadecimal Digit

•

The IEBTCRIN Program 333

'0,
r-.... 15
-0" "0
Lt)" E

'0
"<t"

Q) 00
-0

~
0 x

:~
Q)

J: 00 01 10 11 00 01
0 -0 s::

a.. 0
u

2 3 4 <0
Q) 0 1 5 VI

0000 0 SP &

0001 1

0010 2 STX

0011 3

0100 4

0101 5 TAB

0110 6 BSP

0111 7

1000 8

1001 9

1010 A ¢ !

1011 B $

1100 C *

1101 D CR ()

1110 E SRC + ;

1111 F

Note: The STDUC option permits translating
both lowercase and uppercase alphabetic
characters to uppercase.

TAB = Tab code
CR = Carri er return
BSP = Backspace
SRC = Search
STX = Stop transfer
SP = Space

01

10

6

-

/

,

%

-

?

10 11 Bit Positions 0, 1

11 00 01 10 11 00 01 10 11 Bit Positions 2, 3

7 8 9 A B C D E F First Hexadecimal Digit

0

a j 0 A J 1

b k s B K S 2

c I t C L T 3

d m u ·D M U 4

e n v E N V 5

f 0 w F 0 W 6

g P x G P X 7

h q y H Q y 8

i r z I R Z 9

:

@

/

= ±

"

IIEBTCRIN Figure 3. MTST Codes After Translation by IEBTCRIN With
TRANS=STDLC

334

The EXITS Statement

The EXITS statement is used to identify exit routines supplied by the
user. All specified exit routines must exist in either the user job
library or the link library.

r------T------T-----------------------T--------------------------------,
I I opera-I I I
I Name Ition I Operand I Comments I
~------+------+-----------------------+--------------------------------~

[namellEXITS I [ERROR=routine name] IThis exit is taken just prior tol
I I Ipassing an error record to the I
I I lerror output data set (SYSUT3) I
I ~-----------------------+--------------------------------~
I I [OUTREC=routine name] IThis exit is taken just prior tol
I I Ipassing a record to the normal I
I I loutput data set (SYSUT2). I
I ~-----------------------+--------------------------------~
I I [OUTHDR2=routine name] IThis exit is taken during the I
I I lopening of the SYSUT2 data set. I
I ~-----------------------+--------------------------------~
I I [OUTHDR3=routine name] IThis exit is taken during the I
I I lopening of the SYSUT3 data set. I
I ~-----------------------+--------------------------------~
I I [OUTTLR2=routine name] IThis exit is taken during the I
I I Iclosing of the SYSUT2 data set. I
I ~-----------------------+--------------------------------~
I I [OUTTLR3=routine name) IThis exit is taken during the I

I I I Iclosing of the SYSUT3 data set. I L ______ ~ ______ ~ _______________________ ~ ________________________________ J

Upon entry, a parameter list is supplied to the exit routine
containing information as shown in Table 1 Appendix A.

Upon returning from the exit routine, the user must provide an
acceptable return code according to the entries shown in Table 2
Appendix A.

ERROR=routine name
specifies the symbolic name of a routine that handles error records
identified by the IEBTCRIN utility program. This operand nullifies
any BRROPT operand present. This routine can be used to analyze
and, if possible, correct the error record.

If MTDI is specified with either EDITD or EDITR, a 4-byte Error
Description Word (EDW) is appended to the front of each error
record describing the error condition. For further definition of
the EDW, see "Error Records" in this section. If the SYSUT3 data
set has specified variable length records, a 4-byte Record
Descriptor Word (ROW) is also appended to the front of the record.
For further description of the RDW, see IBM Systero/360 Supervisor
and Data Management Services, GC28-6646.

The user can examine and modify any byte in the record or EDW. He
can also change the record length, subject to the following
restrictions:

• A work area used to construct the records is allocated by the
program equal in size to the largest of (1) ~AXLN, (2) LRECL on
SYSUT2, or (3) LRECL on SYSUT3 •

• The record length must not be increased beyond this size.
Overlaying of other workareas may then occur causing
unpredictable results.

The IEB'I'CRIN Program 335

•

The new record length must be placed in the location pointed to by
the second parameter word as received at entry to the routine.
This length must include the EOW and ROW (if applicable). It is
not necessary to modify the ROW, since it will be re-created if the
record is to be output by the utility. However, if the user does
his own output from this routine, he must ensure that the ROW is
correct for the record.

If the utility program is to output the record, the length of the
output record will depend on the RECFM specification:

(1) Fixed length records - may have a maximum length equal to
LRECL. Records larger than this will be truncated.

(2) Variable length records - may have a maximum length equal to
LRECL. Records larger than this will be truncated.

(3) Undefined length records - may have a maximum length equal to
BLKSIZE. Records larger than this will be truncated.

These record lengths include the Enw and RDw where applicable.

The record length returned from the error exit is used to establish
the location of the last data byte in the record. The location is
used to control data duplication into the following record.
However, it is not used for record length checking of subsequent
records.

The user is cautioned that any modifications to the EOW, record, or
record length may affect the editing of subsequent records. This
is because the EOW, record, and record length returned from this
exit are used during the editing of the following records.

If MTST or MTOI with NOEDIT is specified, the user can examine and
modify any byte in the record. The record length can also be
changed, subject to the same restrictions as for MTDI with EDITD or
EDI'l'R.

OUTREC=routine name
specifies the symbolic name of a routine that receives access to a
record just before the record is passed to the normal output data
set (SYSUT2). In this exit routine, the user can process the
record and/or perform his own output if output other than the
SYSUT2 data set is desired.

Any modification of an edited MTOI record may affect the editing of
following records since the record returned from this exit will be
used to accomplish data duplication in the following record.

If the SYSUT2 data set has specified variable length records, a 4
byte RDW will be appended to the front of the record. The same
restrictions apply to record modifications as for the ERROR exit
described above.

OUTHDR2=routine name
specifies the symbolic name of a routine that creates user output
header labels for the normal output data set (SYSUT2).

OUTHDR3=routine name
specifies the symbolic name,of a routine that creates user output
header labels for the error data set (SYSUT3).

OUTTLR2=routine name

336

specifies the symbolic name of a routine that creates user output
trailer labels for the normal output data set (SYSUT2).

OUTlLR3=routine name
specifies the symbolic name of a routine that creates user output
trailer labels for the error data set (SYSUT3).

Error Records
Once the program has determined a record to be in error, the record is
passed to the user error exit routine (if the ERROR operand is specified
in the EXITS utility control statement). If this ERROR exit is not
specified, the action to be taken will be determined by the ERROPT
option of the TCRGENutility control statement.

MTST INPUT OR MTDI INPUT WITH NO EDITING

When either MTST input or MTDI input with no editing has been specified,
the only error that can be recognized is a record containing one or more
permanent data checks. The data check bytes are replaced as described
in the REPLACE operand of the TCRGEN statement. The record is
considered an error record, but since a data check is the only error
that can occur, no error description word is appended to the error
record.

MTDI INPUT WITH EDITING

When TYPE=MTDI and either EDIT=EDITD or EDIT=EDITR have been specified,
the program maintains information about each record as it is being
edited. This information is summarized in the Error Description Word
(EDW) described in Figure 4. When the EDW contains a nonzero value in
either the Level Status (Byte 0) or the Type Status (Byte 1), the record
is considered an error record by the proqram and the EDW is appended to
the start of the record to aid the user in analyzing the error.

The Error Description Word (EDW)

The Error Description Word consists of four bytes which are appended to
the start of an error record.

The IEBTCRIN Program 337

•

r--,
I . ERROR DESCRIPTION WORD1 I
~-----------------T-----------------T-----------------T----------------~
I Byte 0 I Byte 1 I Byte 2 I Byte 3 I
~-----------------+-----------------+----------------~+----------------~
I Level status I Type status I SOR I ECR I
t-----------------+-----------------+-----------------+----------------~
I {O)=for any error I (O)=No identifi- l(l)=Pl I (U)=Unverified
Irecord which wililable error. I I Record.
Inot cause I I (2)=P2 I
Iquestionable datal (l)=Start-of-rec-1 I (V)=Verified
Ito be in the fol-Iord (SOR) or End-I (3)=P3 I Record.
Ilowing record{s).lof-record (EOR) I I
I lin error. I (4)=P4 I (E)=Neither of
I (l)=for any error I I Ithe above.
Iwhich may cause I (2)=Length error. I (S)=PS I End-of-record
Iquestionable datal I I (EOR) in error.
lin the following I (4)=Field error. 1(6)=P6 I
Irecord(s). I I I
I I (S)=Data Check I (7)=P7 I
I (2)=for any errorlerror. I I
Irecord which has I I (S)=PS I
lquestionable datal Note: Error rec- I I
Idue to a nonzero lords may have hex I (E)=None of the I
lerror level of Icombinations of I above. Start-of-l
Ithe preceding Ithe above error Irecord (SOR) in I
Irecord(s) and mayltypes e.g., a (C)lerror. I
Icause question- Iwould indicate a I I
lable data to be IData Check and a I I
lin the following IField error. I I
Irecord(s). I I I
~--------------~--~-----------------~----------------~----------------~
11The error description word is in EBCDIC format, e.g., a (2) is I
I represented as X'F2'; a (C) is represented as X'C3'. I L __ J

IEBTCRIN Figure 4. Byte Values of the Error Description Word

Level status (Byte 0): The level status indicator identifies error
records that result from interrecord dependency and that cannot be
identified in the type status byte.

The level status is presented with each error record and has a value
of:

o For any error record that will not cause questionable data in
following record(s). A nonzero Type Status will accompany this byte.

1 For any error record that may cause questionable data in following
record(s), and for which the level status of the previous record was
o.

2 For any error record that has questionable data within its content
because the error level of the preceding record was 1 or 2; or for
any error record that may cause questionable data in the following
record(s), and for which the level status of the previous record was
1 or 2.

A level status of other than 0 is presented with error records
resulting from the following:

• The start-of-record (SOR) location has a character defined as an
error.

• The record contains two or more data check bytes side by side.
These may have been an SOR and EOR.

33S

• The record is longer than the user-specified maximum lenqth record
(MAXLN).

• The 'length of the record is not equal to the length of the first
valid record of the same program level encountered on this
cartridge. For this purpose, a valid record is one which contains
no errors as identified in the type status, with the possible
exception of being shorter than the specified minimum length
(MINLN).

• The record has a data duplication dependency on a previous record
with one of the above errors.

The level status is set to 0 whenever the IEBTCRIN utility
encounters: a record without one of the previous errors, a canceled
record, or the first record of a cartridqe.

Type status (Byte 1): The type status indicator identifies records in
error because of SOR, EOR, length, field, and/or data check error
conditions.

The type status is presented with each error record and has a value
o£:

o For any record that contains none of the following identifiable
error(s), but contains questionable data due to a level status of
other than zero (0) (see "Level Status" in this section).

1 For any record that has:
• A SOR character of other than Pi through P8 or a GS code.
• An EOR character of other than a VOK code for records when the

user has specified VERCHK=VOKCHK.
• An EOR character of other than a VOK or RM code for records when

the user has specified VERCHK=NOCHK.

2 For any record that has an incorrect length because it is:
• Longer than the specified maximum (MAXLN), or
• Shorter than the specified minimum (MINLN), or
• Not equal to the length of the first valid record of the same

program level encountered on this cartridge.

4 For cl~y record that has a field error(s). A field error occurs when
duplication and/or left zero justification functions did not occur in
a field due to an error condition. See "MTDI Editing Criteria" in
this section.

8 For any record that has a permanent data check error.

The type status indicator can also have values of 3, 5, 6, 7, 9, A,
B, C, D, E, and F. These values indicate a combination of SOR, EOR,
length, field, and/or data check errors. For example, a value of (A)
indicates a record with a data check error (8) as well as an incorrect
length (2).

start-of-Record (Byte 2): This byte contains an indication of the
start-of-record (SOR) character associated with this record.

End-of-Record (Byte 3): This byte contains an indication of the
end-of-record (EOR) character associated with this record.

The IEBTCRIN Program 339

•

MTDI Editing Criteria
The cartridges created on the IBM-50 Magnetic Data Inscriber contain a
continuous stream of data bytes (i.e., there are no interblock gaps).
Therefore when editing has been specified, it is the responsibility of
the program to extract records one at a time from this data stream. To
accomplish this, the program scans for control codes written by the
MTDI. The following criteria are used by this program to accomplish
editing.

START-OF-RECORD AND END-OF-RECORD LOCATIONS

The start-of-record (SOR) location is defined as:

• The location of the first character on a cartridge.

• The location of the first character after the previous record's
end-of-record (EOR) location.

• The location of an SOR code.

• The location of a GS code.

The character in the SOR location is checked to determine if it is a
valid start-of-record character. A P1 through PS, a CANCEL code, or a
GS code are valid start-of-record characters; all others are invalid.

The EOR location by priority sequence is:

1. The same location as the SOR location, if the start-of-record
character was a valid GS code.

2. The location of the first encountered RM or VOK code, if that
location is within the length of the maximum user specified record
size (MAXLN).

3. The location of any code preceding either a valid SOR code, or the
end of media code, if that location is within the length of the
maximum user specified record size (l~XLN).

4. The location determined in 2 or 3, regardless of the maximum
user-specified record size (MAXLN), if the SOR location contains a
CANCEL code.

5. If one of the previous EOR locations cannot be defined, an EOR
condition will be forced at the location where the record length
equals .tIAXLN.

The character in the EOR location is checked to determine if it is a
valid end-of-record character. Valid EOR characters are the GS
character (if the SOR character was a GS code) and VOK or RM codes; all
others are invalid. Each GS code is considered a valid SOR code and EOR
code and will be bypassed.

SPECIAL CONSIDERATIONS

• All canceled records are bypassed; they are not passed to any exit
routines or written on any data sets. The level status is set to
zero.

• All input records less than three bytes in length (SOR location, one
data byte and EOR location) are treated as canceled records. The
remaining portion of a record that was longer than the

340

user-specified maximum record size (MAXLN) can result in an input
record of this size.

• Data duplication is accomplished by replacing the DUP code with the
character from the corresponding location of the previous record.

• The record used for data duplication is the record returned from any
user exits.

• GS codes will not affect the level status or duplication of
following records.

• Data duplication does not occur for any of the following conditions:

1. The DUP code is encountered in the first record of a cartridge.
2. The DUP code is encountered in a record immediately following a

canceled record. A canceled record is one which contains a
Cancel Code in the SOR location or an input record of less than
three bytes as described above.

3. The DUP code is encountered 1n a position that would cause
duplication of a position beyond the last data byte of the
previous record.

4. The DUP code is encountered in a position that would cause
duplication of an error replace character.

In each case, the DUP code is replaced with bhe user specified error
replace character, and a field error will be indicated.

• Left-zero justification does not occur, the left-zero fill code (LZ)
is replaced with the user-specified error replace character, and a
field error is indicated, for either of the following conditions:

1. The left-zero fill code (LZ) is encountered without first
having encountered its corresponding left-zero start code
(LZS).

2. The user-specified maximum record size (MAXLN) is exceeded
before encountering the valid end of a left-zero field.

End of Cartridge
Unique codes, written by the MTST or the MTDIdevice, signal to the
program when all data on a cartridge has been read. For MTST
cartridges, this end of cartridge code is a lowercase stop code (st) or
an uppercase stop code (ST). For MTDI cartridges, this end of cartri~ge
code is the End Data code (ED).

The program terminates input from a cartridge upon encountering the
end of cartridge code and then rewinds the cartridge. The program
continues to proc.ess cartridges untilend-of-file is encountered.

End-of-file is signaled following a rewind operation when there are
no more cartridges in the feed hopper, the END OF FILE button has been
pressed, and the end of cartridge for the last cartridge has been
recognized. An end-of-file indication will be passed to the OUTREe
and/or ERROR exits if specified by setting register 1 equal to zero.

The IEBTCRIN Program 341

•

•

Sample Error Records

Figure 5 illustrates a stream of data bytes read sequentially from the
tape cartridge reader. The program will construct records from the
stream as shown in Figure 6.

These records show some of the errors that can occur during
processing and their effect on the error description word. The
following coding shows the parameters specified for these records:

r--,
I TCRGEN TYPE=MTDI,EDIT=~DITR,VERCHK=VOKCHK, XI
1 MAXLN= 50, REPLACE=X • 5B' .1 L ___ -J

Record 1 is a valid record. It contains a program level 1 code, and
thus establishes the valid length for all program level 1 records in
this cartridge to be 25 bytes.

Records 2 through 9 are classified as error records by the program.

Record 2 has a data check in the SOR location. Level status is set
to 1 because the SOR location might have contained a cancel code that
would cause any data duplicated onto the following record to be
questionable. The type status (9) indicates the record has an incorrect
SOR/EOR character (1) and a data check error (8).

Record 3 contains no identifiable error but contains questionable
data since it requires duplication from the previous record that had a
level status of 1.

Record 4 has a data check. Since it contained no DUP codes, the
level status is set to o.

Record 5 is shorter than the first program level 1 record on this
cartridge (length error). This record also contains an RM code rather
than a VOK code in the EOR location (VOKCHK was specified). Because the
program cannot determine why the record is short, all data duplicated
from this record is questionable, the level status is set to (1). The
type status is set to (3) indicating an SOR/EOR error (1) and length
error (2).

Record 6 contains a DUP code that is beyond the last position of the
preceding record.

The seventh input record is longer than the maximum specified record
length (MAXLN). Note that it is passed as two records. The first
record (Record 7) indicates an EOR error and a length error; the second
(Record 8) indicates an SOR error. Because Record 7 is an error record,
its length (50 bytes) is not established as the valid length for all
program level 3 records on this cartridge.

Record 9 has a data check. Since it contained no DUP codes, the
level status is set to o.

342

*

P
111372 RECORD NUMBER

1

* V
REC*RD NUMBER 4AO

* K

RECORD NUMBER 5

RECORD NUMBER 7A MAXIMUM 00001430

RECORD NUMBER 8A~E
KD

* Indicates a data check
*

I IEBTCRIN Figure 5. Tape Cartridge Reader Data stream

The IEBTCRIN Proqra~ 343

•

(Record 1)

v
P 0
1111372 RECORD NUMBER 1AK

(Record 2)

v
o

19EV $111378 RECORD NUMBER 2AK

(Record 3)

v
P 0

201V 1357987 RECORD NUMBER 3AK

(Record 4)

v
P 0

081V 1358977 REC$RD NUMBER 4AK

(Record 5)

P R
131U 1358436 RECORD NUMBER 5M

(Record 6)

v
P 0

241V 1358436 RECORD NUMBER 6$K

(Record 7)

P

(Record 8)

233E 3998865 RECORD NUMBER 7A MAXIMUM 00001430 IN WAREH
21EV

v
o

OUSEK

(Record 9)

v
P 0

081V 1367$82 RECORD NUMBER 8AK

~ \

Resulting Error
Description Word

I IEBTCRIN Figure 6. Record Construction

344

, A

MAX+..N ends here
(EOR Forced)

IEBTCRIN Examples

The following examples illustrate some of the uses of the IEBTCRIN
program.

IEBTCRIN Example 1

r------------T------------T------------T-------------T-----------------,
I I Data set I I I I
,Operation I Organization 1 Input DevicelOutput DevicelComments I
~------------+------------+------------+-------------+-----------------~
I Produce ,INPUT - N/A 12495 I normal: IFixed Blocked I
I sequential , I tape IDISK-2314 I Output I
loutput with IOUTPUT - SEQlcartridge I I I
I editing from I 1 reader I- I I
la tape 1 I ~-------------+-----------------~
I cartridge I 1 I error: TAPE 11. undefined I
I reader I I 19-TRACK I output. 1
I I , 1 12. ERROR exit 1
J I I 1 I routine I
I I I I I specified. I L ____________ i ____________ i ____________ i _____________ i _________________ J

In this example, input from a tape cartridge is to be edited with
normal records written to a 2314, and error records written to a 9-Track
tape.

• The SYSUTl DD statement: defines the input tape cartridge data set.
A console message will instruct the operator to mount a set of
cartridges named MYTAPE. The two input buffers will each be 3000
bytes long (BUFL). The UNIT parameter assumes that TCR has been
SYSGENed as a UNITNAME for the Tape Cartridge Reader.

• The SYSUT2 DD statement: defines a sequential data set for the
normal records. The logical record length=100 bytes and the
blocksize=1000 bytes. The data will be written on a 2314 direct
access storage facility.

• The SYSUT3 DD statement: defines a sequential data set for the
error records. The records will be undefined with maximum
blocksize=104 bytes including a 4 byte error description word
appended by the program.

• The SYSIN DD statement: defines the control data set, which follows
in the input stream.

• The TCRGEN statement: indicates the input was written by an IBM 50
Magnetic Data Inscriber. The input is to be edited with SOR and EOR
codes deleted, the maximum valid record length is to be 100 bytes,
and the replace character is a hex 'sB' ($). The VERCEK operand is
defaulted to NOCHK. Minimum record length checking is not requested
(no MINLN).

• The EXITS statement: indicates that a user has provided an exit
routine to handle error records. Since no job library has been
specified, the exit routine (MYERR) must be contained in the link
library.

The IEBTCRIN Program 345

•

r--,
l//JOBNAME JOB O,SMITH,MSGLEVEL=l I
I / /S'l'PNAME EXEC PGM= IEBTCRIN I
I//SYSPRINT DD SYSOUT=A I
1//SYSUTl DD UNIT=TCR,VOLUME=SER=MYTAPE,DCB=(BUFL=3000) I
1//SYSUT2 DD DSNAME=GOODSET,DISP=(NEW,CATLG),UNIT=2314, XI
1// VOLUME=SER=111222,SPACE=(TRK,(lO,lO», XI
1// DCB=(LRECL=100,BLKSIZE=1000,RECFM=FB) I
1//SYSUT3 DD DSN~=ERRSET,UNIT=2400, XI
1// VOLUME=SER=OOOOOl,DISP=(NEW,KEEP), XI
1// DCB=(BLKSIZE=104,RECFM=U) I
I//SYSIN DD * I
I TCRGEN TYPE=MTDI,EDIT=EDITD,MAXLN=100,REPLACE=X'SB' I
I EXITS ERROR=MYERR I
1/* I L ___ ----_____________ J

IEBTCRIN Example 1. Producing sequential Output With Editing

346

IEBTCRIN Example 2

Example 2 shows the coding required to invoke the IEBTCRIN utility
program via the LINK macro instruction in an Assembler Language program.
An alternate name has been assigned to each of the DD statements used by
IEBTCRIN. The job control for this step must include DD statements with
the alternate DO names.

r--,
I LINK EP=IEBTCRIN,PARAM=(OPTLIST,DDNAME),VL=l
I
I CNOP 2,4
lOPTLIST DC H'O'
I
I CNOP 2,4
IDDNAME DC H'82'
I DC 8F'O'

(OPTLIST must be on a halfword boundary)
(Length must be zero for IEBTCRIN)

(DDNAME list must be on a halfword boundary)
(Length of DDNAME list)

t DC C'NEWIN (Alternate DDNAME for SYSIN)
I DC C' NEWPRINT' (Alternate DDNAME for SYSPRIN'!')
I DC 2F'O'
I DC C'NEWUTl (Alternate DDNAME for SYSUT1)
I DC C'NEWUT2 (Alternate DDNAME for SYSUT2)
J DC C'NEWUT3 (Alternate DDNAME for SYSUT3) l __ J

IEBTCRIN Example 2. Invoking IEBTCRIN from a Problem Program Via the
LINK Macro

The IEB'I'CRIN Program 347

•

The IEBUPDTE Program

Program Applications

The IEBUPDTE utility program incorporates both IBM and user-generated
source language modifications into sequential data sets or into
partitioned data sets. The input and output data sets contain blocked
or unblocked logical records with record lengths of up to 80 bytes.
Exits are provided at appropriate places for user routines that process
user header and trailer labels.

The program can:

• Add, copy, and replace members or data sets.

• Add, delete, replace, and renumber the records within an existing
member or data set.

• Assign sequence numbers to the records of a member or data set.

• convert sequential input into partitioned output or vice versa.

The IEBUPDTE program is used to:

• Create and update symbolic libraries.

• Incorporate changes to partitioned members or sequential data sets.

• Change the organization of a data set from sequential to partitioned
or vice versa.

At the completion or termination of the prograro, the highest return
code encountered within the program is passed to the calling program.

Creating and Updating Symbolic Libraries

The IEBUPDTE program can create a library of partitioned rrembers
consisting of SO-byte logical records. In addition, members can be
added directly to an existing library, provided that the original space
allocations are sufficient to incorporate the new members. In this
manner, a cataloged procedure can be placed in a procedure library, or a
set of job or utility control statements can be placed as a member in a
partitioned library of members.

Incorporating Changes to Partitioned Members or sequential Data sets

The IEBUPDTE program can modify an existing partitioned data set or
sequential data set used as input to the program. Logical records can
be replaced, deleted, renumbered, or added to the member or data set.

A sequential data set residing on a magnetic tape volume can be used
to create a new master (i.e., a modified copy) of the data set. A
sequential data set residing on a direct access device can be modified
either by creating a new master or, according to the program
application, by modifying the data set directly on the volume on which
it resides.

The IEBOPDTE Proqram 349

•

A partitioned data set can be modified either by creating a new
master or, according to the program application, by modifying the data
set directly on the volume on which it resides.

Changing the organization of a Data Set

The IEBUPDTE program can be used to change the organization of a data
set from sequential to partitioned, or to change a member of a
partitioned data set to a sequential data set (the original data set,
however, remains unchanged). In addition, logical records can be
replaced, deleted, renumbe.red, or added to the member or data set.

Inputs and Outputs
IEBUPDTE Table 1 lists the major inputs to and outputs from the IEBUPDTE
program.

IEBUPDTE Table 1. Data Sets Used (Input) and Produced (Output) by the
IEBUPDTE Program

r-------T-------·--------------------------------------~----------------,

IInputs IInput Data Set: This data set (also called the old master I
I ' Idata set) is to be modified or used as source data for a new I
I I master. The input is either sequential or a member of a I
I Ipartitioned data set. I
I I I
I IControl Data Set: This data set contains utility control I
I Istatements and, if applicable, input data. The data set is I
I Irequired for each application of the IEBUPDTE program. I
t-------+----~---~
Outputs output Data Set: This data set is the result of the IEBUPDTE I

operation. The data set can be either sequential or
partitioned. It can be either a new data set (i.e., created
during the present job step) or an existing data set, modified
during the present job step.

Message Data set: This data set is sequential. It contains a
listing of:

• Utility program ~dentification.
• Control statements used in the job step.
• Error or warning messages, if applicable.
• Modifications made to the input data set. L _______ ~ __ J

ADDITIONAL OUTPUTS

The IEBUPDTE program provides a return code to indicate the results of
program execution. The return codes and their interpretations are as
follows:

00 successful completion.
04 a control statement is coded incorrec~ly or used erroneously. If

either the input or output is sequential, the job step is
terminated. If both are partitioned, the program continues
processing with the next function to be performed (as indicated by
a utility -function- statement).

12 an unrecoverable error occurred. The job step is terminated.
16 a label processing code of 16 was received from a user label

processing routine. The job step is terminated.

350

Control

The IEBUPDTE program is controlled by job control statements and utility
control statements. The job control statemepts are required to execute
or invoke the IEBUPDTE program and to define the data sets that are used
and produced "by the program. The utility control statements are used to
control the functions of the IEBUPDTE program and, in certain cases, to
supply new or replacement data.

JOB CON'I'ROL STATEMENTS

IEBUPDTE Table 2 shows the job control. statements necessary for
executing or invoking the IEBUPDTE program.

IEBUPDTE Table 2. Job Control statements for the IEBUPDTE Program
(Part 1 of 2)

r------------T---,
I statement I Usage I
~------------+---~
I JOB IThis statement initiates the job. ,
I statement I I
~-----------+---~
I EXEC IThis statement specifies the program name (PGM=IEBUPDTE),I
I statement lor, if ·the job control statements for the IEBUPDTE ,
, Iprogram reside in a procedure library, the procedure I

I
I ,
I
I ,
I
I
I
I
I
l
I
l
I

I name. The statement specifying PGM=IEBUPDTE also I
,specifies I
I I
I PARM=(rNEW] [,inhdrl [,intl~] > I
I ~OD I
I where I , ,
I NEW I

indicates that the input consists solely of the I
control data set. The input data set is not defined I
if NEW is specified. I

MOD I
indicates that the input consists of both
control data set and the input data set.
NEW nor MOD is coded, MOD is assumed.

the I
If neither

inhdr
specifies the symbolic name of a routine that
processes the user header label on the volume
containing the control. data set.

intlr
I specifies the symbolic name of a routine that
I processes the user trailer label on the volume
I containing the control data set.
I
IFor a detailed discussion of ~he processing of user
llabels as data set descriptors, re·fer to "Appendix F:
IUtility Program Handling of User Labels."
I
IIf a parameter is omitted from the PARM field, its
labsence must be indicated by a comma; e.g.,
I PARM= (NEW." intlr>. If all three parameters are omitted,

I lPARM need not be coded. L ____________ ~ ______________________________ ------------_______________ J

(Part 1 of 2)

The IEBUPDTE Program 351

IEBUPDTE Table 2. Job Control statements for the IEBUPDTE Program
(Part 2 of 2)

r------------T---,
I Statement I Usage I
~-------7----+---------------------~-----------------------------------~
ISYSPRINT IThis statement defines a sequential message data set. I
IDD IThe data set can be written onto a system output device, I
I la magnetic tape volume, or a direct access volume. (Thisl
I IDD statement must be present for each execution or I
I linvocation of the IEBUPDTE program.) I
t------------+------------------~--------------------------------------~
JSYSUTl JThis statement defines the input (old master) data set. I

DD lIt can define a sequential data set on a'card reader, a I
statement Imagnetic tape volume# or a direct access volume. Or, it I

Ican define a partitioned data set on a direct access I
I volume. This DD statement is not required if the input I
Iconsists solely of the control data set. I
I I
I Note: If an UPDATE=INPLACE1 operation is specified, the I
Idata set defined by the SYSUTl DD statement is considered I
Ito be both the input data set and the output data set; I
li.e., the SYSUT2 DD statement need not be coded. If the I
IADD1 function is specified, and the input data resides inl
Ithe input stream, the SYSUTl DD statement need not be I
Icoded. 2 In all other cases both SYSUTl and SYSUT2 must bel
I included. I

t------------+---~
ISYSUT2 IThis statement defines the output data set. It can I
IDD Idefine a sequential data set on a card punch, a printer, I
I la magnetic tape VOlume, or a direct access device. Or, I
I lit can define a partitioned data set on a direct access I
I I device. Space must be allocated for an output data set I
I Ithat is to reside on a direct access device, unless the I
I ldata set is an existing data set, in which case space I
I I should not be allocated. It must not be a DUMMY data I
I Iset. I
~------------+---~
ISYSIN IThis statement defines the control data set. The control I
IDD ldata set normally resides in the input streanl ; however, I
I lit can also be defined as being a member within a library I
I lof partitioned members. The SYSIN DD statewent must be I
I lincluded for each execution or invocation of theIEBUPDTEI
I I program. I
~~-----------~---~
11Refer to "Function statements" for a discussion of the UPDATE=INPLACEI
I operation. I
12Refer to "Function statements" for a discussion of the ADD operation. I L __ J

Notes: If the SYSUTl DD statement defines a sequential data set, the
file sequence number of that data set must be included in the LABEL
keyword (unless the data set is the first or only data set on the
volume).

If both the SYSUTl and SYSUT2 DD statements specify standard user labels
(SUL), the IEBUPDTE program will copy user labels from SYSUTl to SYSUT2.
See "Appendix F: Utility Program Handling of User Labels" for a
discussion of the available options for user label processing.

The output data set can have a blocking factor that is different from
the input data set; however, if insufficient space is allocated for
reblocked records, the update request is terminated.

J
When adding a member to an existing partitioned data set using the

ADD function, the DCB parameters specified, if any, on the SYSUTl and

352

I SYSUT2 DD statements (or the SYSUT2 DO statement if that is the only one
specified), must be the same as the DCB parameters already existing for
the data set.

If the SYSUTl and SYSUT2 DD statements define the same partitioned
data set, the old master data set can be updated without creating a new
master data set; in this case, a copy of the updated member or members
is written within the extent of the space originally allocated to the
old master data set. Subsequent referrals to the "updated member(s)n

I

will point to the newly written member(s). The member name(s)
themselves should not appear on the DD statements; they should be
referenced only through the IEBUPDTE control statements.

If the SYSUT1 and SYSUT2 DD statements define the same sequential
data set (direct access only), only those operations that add data to
the end of the existing data set can be made. In these cases:

• The PARM parameter of the EXEC statement must imply or specify MOD.

• The DISP parameter of the SYSUTl DO statement must specify OLD.

• The DISP parameter of the SYSUT2 DO statement must include the MOD
subparameter.

The message data set has a logical record length of 121 bytes, and
consists of fixed-length, blocked or unblocked records with an ASA
control character in the first byte of each record. The input and
output data sets have a logical record length of 80 bytes or less, and
consist of standard fixed-length blocked (RECFM=FBS) or unblocked
records. The control data set contains 80-byte, blocked or unblocked
records.

UTILITY CONTROL STATEMENTS

The IEBUPDTE program is controlled by five types of utility control
statements:

• Function statements.
• Detail statements.
• Data statements.
• LABEL statements.
• ALIAS and ENDUP statements.

The function statements are used to initiate the utility operation. The
detail statements are used with the function statements for specific
applications. The data statements are logical records of data used as
new or replacement records in the output data set. The LABEL statements
are used to indicate that the following data statements should be
treated by the IEBUPDTE program as user labels. The ALIAS and ENDUP
statements are used to assign alias names and to terminate the utility
program.

The IEBUPDTE Program 353

Function Statements

A function statement is used to initiate the utility operation. At
least one function statement must be provided for each member or data
set to be processed. A statement contains:

r---T------T---------T---,
11-21Name IOperationlOperand I
~---+------+---------+---~
1·/ [name] IlADD \1 [LIST=ALLl I
I I REPL I [SEQFLD=ddl] I
I I CHANGE I [NEW=pol Applicable to partitioned I
I I REPRO I [NEW=PS] or sequential organization. I

I [MEMBER=cccccccc] I
I [IGNORE=EOF] I
I [COLUMN=dd] I
I [UPDATE=INPLACE] I
~---~
I [INHDR=ccccccccl I
I [INTLR=ccccccc] Applicable to sequential I
I [OUTHDR=cccccccc] organization only. I
I [OUTLR=cccccccc] I
I [TOTAL=(routinename,size)] I
~----------~--------------------------------------~
I [NAME=cccccccc] I
I [LEVEL=hh] Applicable to partitioned I
I [SOURCE=x] organization only. I
I [SSI=cccccccc] I ___ L ______ ~ _________ L ___ J

./ (columns 1 and 2)

name
identifies the control statement.

specifies an optional name which, if coded, begins in column 3 and
extends no further than column 10.

ADD, REPL, CHANGE, or REPRO

354

is included in the operation field, according to the function to be
performed:

ADD: The ADD statement indicates that a member or a data set is to
be added in its entirety onto an output master data set. The
member name specified in the ADD statement must not already exist
in the old master data set.

Note: If SYSUT1 is omitted, PARM=NEW must be coded in the EXEC job
control statement.

REPL: The REPL statement indicates that a member or a data set is
being entered in its entirety as a replacement for a sequential
data set or for a member of the old master data set. The member
name specified in the REPL statement must already exist in the old
master data set.

CHANGE: The CHANGE statement indicates that modifications are to
be made to an existing member or data set. Use of the CHANGE
statement without a NUMBER and/or DELETE and/or data statement
causes an error condition.

REPRO: The REPRO statement indicates that a member or a data set
is to be copied in its entirety onto a new master data set.

Notes: At least one blank must precede and follow the operation
field.

A member or a data set can be added directly to an old master data
set if the amount of space originally allocated to the old master
is sufficient to incorporate that new member or data set.

When (1) a member replaces (REPL) an identically named merober on
the the old master data set, or (2) a member is changed (CHANGE)
and rewritten on the old master, the alias name (if any) of the
original member-still refers to the original member. However, if
an identical alias name is specified for the newly written member,
the original alias name entry in the directory is changed to refer
to the newly written member.

Members can be deleted from a copy of a library by being omitted
from a series of REPRO statements within the same job step.

One sequential data set can be copied in a given job step. A
sequential data set is deleted by being omitted from a series of
job steps which copy (REPRO) only the desired data sets onto a new
volume. If the NEW subparameter is coded in the EXEC statement,
the ADD function is the only function permitted.

keywords
are included in the operand field according to the function to be
performed. The keywords are separated by commas.

LIST=ALL
specifies that the SYSPRINT data set is to contain the entire
updated member or data set and the control statements used in its
creation.
If LIST is omitted, the SYSPRINT data set contains modifications
and control statements only.

SEQFLD=ddl
specifies, in decimal, the starting column (column 80 or below) and
length (8 or less) of sequence numbers within existing logical
records and subsequent data statements. (dd +1 cannot exceed LRECL
+ 1.)

The default for this parameter is SEQFLD=738i i.e.~ an eight byte
sequence number beginning in column 73. Therefore, if existing
logical records and subsequent data statements have sequence
numbers in columns 73-80, this keyword need not be coded. In any
case, sequence numbers on incoming data statements and existing
logical records must be padded to the left with enough zeroes to
fill the length of the sequence field.

N~W=PO

indicates that the old master data set is a sequential data set,
and that the updated output is to become a member of a partitioned
data set.

NEW=PS
indicates that the old master data set is a partitioned data set,
and that a member of that data set is to be converted into a
sequential data set.

The NEW keyword should not be specified unless the organization of
the new master data set is different from the organization of the
old master. Refer to IEBUPDTE Table 3 for the use of the NEW
keyword with the NAME and MEMBER keywords.

MEMBER=cccccccc
assigns a member name to the member placed into the partitioned
data set defined by the SYSUT2 DD statement. This keyword is used
only when SYSUTl defines a sequential data set, SYSUT2 defines a

The IEBUPDTE Program 355

I

partitioned data set, and NEW=PO is specified. (Refer to IEBUPDTE
Table 3 for the use of the MEMBER keyword with the NEW keyword.)

IGNORE=EOF (valid only for card reader input in PCP system)
indicates that a delimiter statement (/*) is being included as
input data. The IEBUPDTE program is terminated when two
consecutive delimiter statements are encountered, or when an ENDUP
statement is encountered. The IGNORE keyword is not applicable to
the entire job step; therefore, it must be included with each
function statement preceding a delimiter statement that is to be
used as input data.

COLUMN=dd (used only with the CHANGE statement)
specifies, in decimal, the starting column of a data field within a
logical record image. The field extends to the end of t.he image.
Within an existing logical record, the data in the defined field is
replaced by data from a subsequent data statement, as follows:

1. The utility program matches a sequence number of a data
statement with a sequence number of an existing logICal
record. In this manner, the COLUMN specification is applied
to a specific logical record.

2. The information in the field within the data statement
replaces the information in the field within the existing
logical record. For example, COLUMN=40 indicates that columns
40-80 (assuming 80-byte logical records) of a subsequent data
statement are to be used as replacement data for columns 40-80
of a logical record identified by a matching sequence number.
(A sequence number in an existing logical record or data
statement need not be within the defined field.)

The COLUMN specification applies to the entire function, with the
exception of:

• logical records deleted by a subsequent detail (DELETE)
statement.

• subsequent data statements not having a matching sequence
number for an existing logical record.

• data statements containing information to be inserted in the
place of a deleted logical record or records.

UPDATE=INPLACE (used only with the CHANGE statement)

356

indicates that the old master data set is to be updated within the
space it actually occupies. The old master data set must reside on
a direct access device.

When UPDATE=INPLACE is specified:

• The SYSUT2 DO statement is not coded.
• The PARM parameter of the EXEC statement must iRply or specify

MOD.
• The NUMBER statement can be used to specify a renumbering

operation.
• Data statements can be used to specify replacement information

only.
• One CHANGE statement and one UPDATE=INPLACE keyword is

permitted per job step.
• no functions other than replacement, renumbering, and header

label modification (via the LABEL statement) can be specified.
• only replaced records are listed unless the entire data set is

renumbered.
• SSI information cannot be changed.

INHDR=cccccccC
specifies the symbolic name of the user routine that handles user
input (SYSUT1) header labels, if any. When used with
UPDATE=INPLACE, this routine assumes a special function. See "User
Label Processing with UPDATE=INPLACE" for a discussion of this
function.

INTLR=cccccccc
specifies the symbolic name of the user routine that handles user
input (SYSUT1) trailer labels, if any.

OUTHDR=cccccccc
specifies the symbolic name of the user routine that handles user
output (SYSUT2) header labels, if any.

OUTTLR=cccccccc
specifies the symbolic name of the user routine that handles user
output (SYSUT2) trailer labels, if any.

TOTAL= (routinename, size)
specifies that exits to a user's routine are to be provided prior
to writing each record. When the option is specified, the user
must supply two parameters. The first is the name of the user's
totaling routine. The other is the size (number of bytes) needed
to contain the user's data. The size should not exceed 32K, nor be
less than 2 bytes. In addition, the keyword OPTCD=T must be
specified for the SYSUT2 (output) DD statement.

Refer to the section "Exit Routine Linkage" for a discussion of
linkage conventions for user routines.

The above five parameters are valid only when the utility is
processing sequential data sets, but not with UPDATE=INPLACE. For
a detailed discussion of the processing of user labels as data set
descriptors, and for a discussion of user label totaling, refer to
"Appendix F: Utility Program Handling of User Labels."

NAME=cccccccc
indicates the name of the member placed into the partitioned data
set. The member name need not be specified in the DD statement
itself.

A NAME keyword must be provided to identify each input member.
Refer to IEBUPDTE Table 3 for the use of the NAME keyword with the
NEW keyword.

LEVEL=hh
specifies the change (update) level in hexadecimal (OO-FF). The
level number is recorded in the directory entry of the output
member.

SOURCE=x
specifies either user modifications (SOURCE=O) or IBM modifications
(SOURCE=l). The source is recorded in the directory entry of the
output member.

SSI=hhhhhhhh
specifies eight hexadecimal characters of system-status information
(8SI) that is to be placed in the directory of the new master data
set as four packed hexadecimal bytes of user data. The SSI
information overrides any LEVEL or SOURCE keyword data given on the
same function statement. The S8I information is packed as follows:
(example) SSI=OA3C123B is stored as:

The IEBUPDTE Program 357

I

o A 3 C 1 2 3 B

r----------------T----------------T-------------------------------,
I Change level I Flag byte I Serial number I L ________________ ~ ________________ ~ _______________________________ J

byte 1 byte 2 byte 3 byte 4

Refer to the publication IBM System/360 Operating System:
Maintenance, Form C27-6918, for a detailed discussion of the format
of the SSI information.

IEBUPDTE Table 3. NEW, MEMBER, and NAME Keywords
r-------------T-------------T--,
IIf SYSUTl land SYSUT2 IUse the combinations of keywords shown I

~~==~~=::Jl---+~==~~=::l----+~=~~~::l---------------------_____________ ~
a partitionedla partitionedlIf the operation is an ADD operation, use
data set Idata set INAME=cccccccc to specify the name of the

I lmember to be placed in the partitioned
I data set defined by the SYSUT2 DD
I statement. If an additional name is
I desired, an ALIAS statement can also be
I used.
I
I If the operation is a CHANGE, REPL, or
I REPRO operation, use NAME=cccccccc to
I specify the name of the member within the
I partitioned data set defined by the SYSUTl
I DD statement. If a different (or
I additional) name is desired for the member
I in the partitioned data set defined by the

I I SYSUT2 DD statement, use an ALIAS
I I statement also.
~-------------+-------------+--~
I la new librarylNAME=cccccccc with each ADD statement to I
I ----------- I (partitioned lassign a name for each member placed into I
I Idata set) Ithe partitioned data set. I
~-------------+-------------+--~
la partitionedla sequential NAME=cccccccc with the appropriate
Idata set Idata set function statement to specify the name of
I I the member in the partitioned data set
I I defined by the SYSUTl DD statement.
I 1
I I also use
I I NEW=PS to specify the change in
I I organization from partitioned to
I I sequential. (The name and file sequence
I I number assigned to the output master data
I I set are specified in the SYSUT2 DD
I I statement.)
~-------------+-------------+--~
la sequential la partitionedlMEMBER=cccccccc with the appropriate I
Idata set Idata set Ifunction statement to assign a name to the I
I I Imember to be placed into the partitioned I
I I Idata set defined by the SYSUT2 DD I
I I I statement. I
I I I I
I I lalso use I
I I INEW=PO to specify the change in I
I I lorganization from sequential to I
I I I partitioned. I L _____________ ~ _____________ ~ __ J

358

Detail statements

A detail statement is used with a function statement for certain
applications, such as deleting or renumbering selected logical records.
A detail statement contains:

r---T------T---------T---,
11-21Name I I Operand I
~---+------+---------+---~
1./ I [namell{NUMBER} IlSEQ1=cccccccc] Used with the NUMBER or I
I I I DELETE I [SEQ2=ccccccccl DELETE statement. I
I I I t---~
I I I I [SEQ1=ALLl I
I I I I [NEW1=ccccccccl Used only with the NUMBER I
I I I I [INCR=cccccccc] statement. I
I I I I [INSERT=YESl I (___ ~ ______ ~ _________ ~ ___ J

./ (columns 1 and 2)

name

identifies the control statement.

specifies an optional name which, if coded, begins in columns 3 and
extends no further than column 10.

NUMBER or DELETE
is included in the operation field, according to the operation:

NUMBER: The NUMBER statement is used with the CHANGE statement to
change the sequence number of one or more logical records within a
member or data set, and with ADD and REPL statements to assign
sequence numbers to the records within new or replacement members
or data sets. When used with the ADD or REPL statements, no more
than one number statement is permitted for each ADD or REPL.

DELETE: The DELETE statement is used with a CHANGE statement to
delete one or more logical records from a member or data set.

Notes: At least one blank must precede and follow the operation
field.

Logical records cannot be deleted in part; i.e., a COLUMN=dd
specification is not applicable to records that are to be deleted.
Each specific sequence number is handled only once in any single
operation.

keywords
are included in the operand field, according to the operation to be
performed. The keywords are separated by commas.

SEQ1=cccccccc
specifies the sequence number of the first logical record to be
renumbered or deleted. The SEQl keyword is not coded in a NUMBER
statement that is used with an ADD or REPL function statement.

Note: When SEQ1 is used in an INSERT=YES operation, the SEQl value
specifies the existing logical record after which an insert is to
be made. It must not equal the number of a statement just replaced
or added. Refer to the INSERT=YES keyword for a complete
discussion.

SEQ2=cccccccc
specifies the sequence number of the -last logical record to be
renumbered or deleted. If only one record is to be deleted, the
SEQl and SEQ2 specifications must be identical. The SEQ2 keyword

The IEBUPDTE Program 359

•

is not coded in a NUMBER statement that is used with an ADD or REPL
function statement.

SEQ1=ALL (used only with a CHANGE statement/NUMBER statement
combination)

specifies a renumbering operation for the entire input member or
data set. This keyword must be coded if sequence numbers are to be
assigned to existing logical records having blank sequence numbers.
If this keyword is not coded, all existing logical records having
blank sequence numbers are copied directly onto the output master
data set.

When SEQ1=ALL is coded:

• The SEQ2 keyword need not be coded.
• One NUMBER statement is permitted per function statement.

Refer to the INSERT=YES keyword for additional SEQl qualifications
with that keyword.

NEW1=cccccccc
specifies the first sequence number assigned to new or replacement
data, or specifies the first sequence number assigned in a
renumbering operation. A value specified in the NEwl keyword must
be equal to or greater than a value specified in the SEQl keyword
(unless SEQ1=ALL is specified, in which case this rule does does
not apply).

INCR=cccccccc
specifies an increment value used for assigning successive sequence
numbers to new or replacement logical records, or specifies an
increment value used for renumbering existing logical records.

Note: The SEQ1, SEQ2, NEW1, and INCR keywords (excluding SEQ1=ALL)
specify 8-character (maximum) decimal numbers. Only the
significant numbers of a value need be coded; e.g., SEQ1=00000010
can be shortened to SEQ1=10.

INSERT=YES

360

(used only with a CHANGE statement/NUMBER statement combination>
specifies the insertion of a block of logical records. The
records, which are data statements containing blank sequence
numbers, are numbered and inserted in the output master data set.

When INSERT=YES is coded:

• The SEQl keyword specifies the existing logical record after
which the insertion is to be made. (The SEQ2 keyword need not
be coded.> SEQ1=ALL cannot be specified.

• The NEW1 keyword' assigns a sequence number to the first logical
record to be inserted.

• The INCR keyword is used to renumber as much as is necessary of
the member or data set from the point of the first insertion;
i.e., the member or data set is renumbered until an existing
logical record is found whose sequence number is equal to or
greater than the next sequence number to be assigned. If no
such logical record is found, the entire member or data set is
renumbered.

• Additional NUMBER statements, if any, must specify INSERT=YES.
If a prior numbering operation renumbers the logical record
specified in the SEQ1 keyword of a subseguent NUMBER statement,
the NEW1 and INCR keyword specifications (if any) in the latter
NUMBER statement are overridden. The prior increment value is
used to assign the next successive sequence numbers. If a
prior numbering operation does not renumber the logical record
specified in the SEQ1 keyword of a subseguent NUMBER statement,
the latter statement must contain NEWl and INCR keyword
specifications.

• The block of data statements to be inserted must contain blank
sequence numbers.

• The insert operation is terminated when a function statement, a
detail statement, an end of file indication, or a data
statement containing a sequence number is encountered.

Data statements

A data statement is used with a function statement, or with a function
statement and a detail statement. It contains a logical record used as
replacement data for an existing logical record, or new data to be
incorporated in the output master data set.

Each data statement contains one logical record which begins in the
first column of the data statement. The length of the logical record is
equal to the logical record length (LRECL) specified for the output
master data set. Each logical record contains a sequence number to
determine where the data is to be placed in the output master data set.

~~en used with a CHANGE operation, a data statement contains new or
replacement data, as follows:

• If the sequence number in the data statement is identical to a
sequence number in an existing logical record, the data statement
replaces the existing logical record in the output master data set.

• If no corresponding sequence number is found within the existing
records, the data statement is inserted in the proper collating
sequence within the output master data set. (For proper execution
of this function, all records in the old master data set must have a
sequence number.) ---

When used with an ADD or REPL operation, a data statement contains
new data to be placed in the output master data set.

Notes: Sequence numbers within the old master data set are assumed to
be in ascending order.

sequence numbers in data statements must be in the same relative
position as sequence numbers in existing logical records. (Sequence
numbers are assumed to be in columns 73-$0; if the numbers are in
columns other than these, the length and relative position must be
specified in a SEQFLD keyword within a preceding function statement.)

The IEBUPDTE Program 361

LABEL Statements

The LABEL statement indicates that the following data statements are to
be treated as user labels. These new user labels are placed on the
output data set. The next function statement indicates to the utility
that the last label data statement of the group has been read. There
can be no more than two LABEL statements per execution of the utility.
There can be no more than eight label data statements following any
LABEL statement. The first four bytes of each 80 byte label data
statement must contain "UHLn" or "UTLn", where n=l to 8, for input
header or input trailer labels respectively, to conform to IBM standards
for user labels; otherwise data management will overlay the data with
the proper four characters.

When the IEBbpDTE program encounters a LABEL statement, it reads up
to eight data statements and saves them for processing by user output
label routines. If there are no such routines, the saved records are
written by OPEN or CLOSE as user labels on the output data set. If
there are user output label processing routines, the IEBUPDTE program
passes a parameter list to the output label routines. This parameter
list is described fully in "Appendix F: Utility Program Handling of
User Labels." The label buffer contains a label data record which the
user routine can process before the record is written as a label. If
the user routine, via return codes to the utility, specifies more
entries than there are label data records, the label buffer will contain
meaningless information for the remaining entries to the user routine.

The position of the LABEL statement, relative to other function
statements, in the SYSIN data set indicates to the IEBUPDTE program
which type of user label follows the LABEL statement:

• To create output header labels, place the LABEL statement and its
associated label data statements before all other function
statements in the input stream. A function statement other than
LABEL must follow the last label data statement of the group •

• To create output trailer labels, place the LABEL statement and its
associated label data statements after all other function statements
in the input stream but before the ENDUP statement. The ENDUP
statement is not optional in this case. It must follow the last
label data statement of the group if the IEBUPDTE program is to
create output trailer labels.

362

User Label Processing With UPDATE=INPLACE

When UPDATE=INPLACE is specified, user input header labels can be
updated by user routines, but input trailer and output labels cannot be
updated by user routines. User labels cannot be added or deleted. User
input header labels are made available to user routines by the label
buffer address in the parameter list. See "Appendix F: Utility Program
Handling of User Labels," for a complete discussion of the linkage
between utility programs and user label processing routines. The return
codes when the UPDATE=INPLACE function is used differ slightly from the
standard codes discussed in Appendix F, as follows:

r-----------------T-------------T--------------------------------------,
I Routine Type I Return Code I System Response I
~-----------------+-------------+--------------------------------------~

Input header I 0 I The system resumes normal I
label I I processing; any additional user I

I I labels are ignored. I
I I I
I 4 I The system does not write the label. I
I I The next user label is read into the I
I I label buffer area and control is I
I I returned to the user's routine. If I
1 I there are no more user labels, the I

system resumes normal processing. I
I

8 The 'system writes the user label from I
the label buffer area and resumes 1
normal processing. I

I
12 The system writes the user label from I

the label buffer area, then reads the I
next input label into the label I
buffer area and returns control to I
the label processing routine. If I
there are no more user labels, the I

I system resumes normal processing. I L _________________ ~ _____________ ~ __________________________ ~ ___________ J

If the user wants to examine the replaced labels from the old master
data set, he must:

1. Specify an update of the old master via the Keyword UPDATE=INPLACE.

2. Include a LABEL statement in the input data set for either header
or trailer labels~

3. Specify a corresponding user label routine.

If the above conditions are met, fourth, and fifth parameter words will
be added to the standard parameter list discussed in Appendix F. The
fourth parameter word is not now used; the fifth contains a pointer to
the replaced label from the old master. In this case the number of
labels supplied in the SYSIN data set must not exceed the number of
labels on the old master data set. If, via return codes, the user
specifies more entries to the user's header label routine than there are
labels in the input stream, the first parameter will point to the
current header label on the old master data set for the remaining
entries. In this case the fifth parameter becomes meaningless.

The IEBUPDTE Program 363

'.

ALIAS statement

An ALIAS statement creates or retains an alias in an output
(partitioned) master directory. The ALIAS statement can be used with
any of the function statements. Multiple alias names can be assigned to
each member. The statement contains:

r---T------T---------T---,
11-21Name I Operation I Operand I
~---+------+---------+---~
1./ I [nameliALIAS INAME=cccccccc I L ___ ~ ______ ~ _________ ~ ___ J

./ (columns 1 and 2)

name

identifies the control statement.

specifies an optional name which, if coded, begins in column 3 and
extends no further than column 10.

NAME=cccccccc
specifies an 8-character (maximum) alias name.

Note: At least one blank must precede and follow the operation field.

ENDUP Statement

An ENDUP statement can be used to indicate the end of SYSIN input to
this job step. It serves as an end-of-data indication if there is no
other indication. The ENDUP statement follows the last group of SYSIN
control statements and contains:

r---T------T---,
11-2 I Name I Operation I
~---+------+--~--~
1./ I [namellENDUP I L ___ ~ ______ ~ ___ J

./ (columns 1 and 2)

name

identifies the control statement

specifies an optional name which, if coded, begins in column 3 and
extends no further than column 10.

Note: At least one blank must precede the operation field.

364

IEBUPDTE Examples

The following examples illustrate some of the uses of the IEBUPDTE program.

IEBUPDTE Example 1

r-----------T------------------T---------------T---------------T------------------------,
I IData Set I I I I
IOperation JOrganization IInput Device loutput Device I Comments I
t-----------+------------------+---------------+---------------+------------------------~
IENTER a IInput-PARTITIONED IDISK - 2311 IDISK - 2311 11. The SYSUTl and SYSUT21
I procedure I Output-PARTITIONED I I I DD statements define I
linto a I I I I the same data set. I
I cataloged I I I 12. The new procedure is I
I procedure I I I I contained in the I
1 library I I I I control data set. I l ___________ L __________________ i _______________ i _______________ i ________________________ J

In this example, a procedure is to be placed into the cataloged procedure
library SYS1.PROCLIB. The example assumes that the new procedure (ERASE) can be
accommodated within the space originally allocated to the procedure library;
therefore, the update operation is performed directly to the old master.

• The SYSUT1 and SYSUT2 DD Statements: define the SYS1.PROCLIB data set.

• The SYSIN DD Statement: defines the control data set. The data set contains
the utility control statements and the data to be placed in the procedure
library.

• The ADD Statement: indicates that records (data statements) in the control
data set are to be placed in the output. The newly created procedure is to be
listed in the message data set.

• The NUMBER Statement: indicates that the new procedure is assigned sequence
numbers. The first record of the procedure is assigned sequence number 10;
the remaining two records are assigned sequence numbers 20 and 30,
respectively.

• The IIERASE EXEC Statement, and the 001 and SYSPRINT DD Statements: are
placed in the cataloged procedure library SYS1.PROCLIB.

Note: The resulting procedure can be executed with an EXEC statement specifying
PROC=ERASE. The publication IBM System/360 Operating system: Job Control
Language Reference, GC28-6704, contains additional information on cataloged
procedures.

r---,
I//UPDATE JOB 09#660,SMITH I
1// EXEC PGM=IEBUPDTE,PARM=MOD I
I//SYSPRINT DD SYSOUT=A
1//SYSUT1 DD DSNAME=SYS1.PROCLIB,UNIT=2311,DISP=(OLD,KEEP),
1// VOLUME=SER=111111,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
1//SYSUT2 DD DSNAME=SYS1.PROCLIB,UNIT=2311,DISP=(OLD,KEEP),
1// VOLUME=SER=111111,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
I//SYSIN DD DATA
1./ ADD LIST=ALL,NAME=ERASE,LEVEL=Ol,SOURCE=O
1./ NUMBER NEW1=10,INCR=10
I//ERASE EXEC PGM=IEHPROGM
1//DD1 DD UNIT=190,DISP=(OLD,KEEP),VOLUME=SER=111111
I//SYSPRINT DD SYSOUT=A
1/* L __ _

IEBUPDTE Example 1. Entering Job Control statements Into a Cataloged Procedure
Library

The IEBUPDTE Program 365

I

IEBUPDTE Example 2

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I I I I
IOperation I Organization IInput Device IOutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
ICREATE a I Input-N/A 1------ IDISK - 2311 11. Input data in control I
I partitioned I Output-PARTITIONEO I I I data set. I
I library I I I 12. Output partitioned I
I I I I I data set contains I
I I I I I three rr.ernbers. I L ___________ i __________________ i _______________ ~ _______________ ~ ________________________ J

In this example, a three-member, partitioned library is to be created. 'I'he
input data is contained solely in the control data set.

• The SYSUT2 DO Statement: defines the new partitioned master OUTLIB. Enough
space is allocated to allow for subsequent modifications without creating a
new master data set.

• The SYSIN DO statement: defines the control data set. 'The data set contains
the utility control statements and the data to be placed as three ~embers in
the output partitioned data set.

• The ADD Statements: indicate that subsequent records <data statements) are to
be placed as members in the output partitioned data set. Each ADD statement
specifies a member name for subsequent data and indicates that the member is
to be listed in the message data set.

• The Data statements: Contain the data to be placed in the output partitioned
data set.

• The ENDUP statement: signals the end of control data set input.

Note: Sequence numbers <other than blank numbers) are included within the data
statements; therefore, no NUMBER statements are included in the example.

366

r---~-----------------------------,
//UPDATE JOB 09#710,SMITH
// EXEC PGM=IEBUPDTE,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD DSNAME=OUTLIB,UNIT=2311,DISP=(NEW,KEEP),
// VOLUME=SER=111112,SPACE=(TRK,(100,,10»,
// DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
//SYSIN DD DATA
./ ADD NAME=MEMB1,LEVEL=00,SOURCE=0,LIST=ALL

MEMBl data statements, sequence numbers in columns 13-80

./ ADD NAME=MEMB2,LEVEL=00,SOURCE=0,LIST=ALL

MENB2 data statements, sequence numbers in columns 13-80

./ ADD NAME=ME~ffi3,LEVEL=00,SOURCE=0,LIST=ALL

M~lB3 data statements, sequence numbers in columns 73-80 I
I
I

./ ENDUP I
/* I L ___ J

IEBUPDTE Example 2. creating a Three-Member, Partitioned Library Using SYSIN
Data as Input

The IEBUPDTE Program 367

IEBUPDTE Example 3

r-----------T------------------T---------------T---------------T------------------------,
1 lData set I I I I
I operation lOrganization IInput Device IOutput Device I comments I
t-----------+------------------+---------------+---------------+------------------------~
I CREA'I'E a I Input-PARTITIONED I DISK - 2311 I DISK - 2311 11. Input from control I
I partitioned I output-PARTITIONED I I I data set and from I
Idata set I I I I existing partitioned I
I I I I I da ta set. I
I 1 I I 12. Output partitioned I
I I I I I data set contains I
I I I I I four members. I L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this ex . .lmplc, a fouY-JTlernber, partitioned data set (NEWMCLIB) is to be
created. 'The data set is to contain:

• Two members (ATTACH and DETACH) copied from an existing partitioned data set
(SYS1.MACLIB).

• One replacement member (BLDL) for an existinq member of the input partitioned
data set.

• A nevI rrer:::her (EXIT).

The new member (EXIT) is contained in the control data set.

• The SYSUTl DO Statement: defines the input partitioned data set SYS1.tllACLIB.

• The SYSUT2 DD statement: defines the outp~t partitioned data set OUTLIB.
Enough space is allocated to allow for subsequent modifications without
creating a new master data set.

• The SYSIN DO statement: defines the control data set.

• The REPRO Statements:
the output data set.

identify the existing input members to be copied onto
These members are also listed in the message data set.

• The ADD Statement: indicates that records (subsequent data statements) are to
be placed as a member in the output partitioned data set. The data statements
are to be listed in the message data set.

• The NUMBER Statement: assigns sequence numbers to the data stateroents.(The
data statements contain blank sequence numbers in columns 73-80.) The first
record of the output member is assigned sequence number 10; subsequent records
are incremented by 100.

• The REPL statement: identifies a new member used as a replacement for an
existing member. The subsequent NUMBER statement assigns sequence numbers to
the records in the new member.

• The ENDUP Statement: signals the end of SYSIN data.

Note: The 'three named input members (ATTACH, DE'I'ACH, and BLDL) do not have to be
specified in order of their collating sequence in the old master.

368

r---,
I//UPDATE JOB 09,770,SMITH
1// EXEC PGM=IEBUPDTE,PARM=MOD
I//SYSPRINT DD SYSOUT=A .
1//SYSUTl DD DSNAME=SYS1.MACLIB,DISP=(OLD,KEEP),VOLUME=SER=111111,
1// UNIT=2311,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
1//SYSUT2 DD DSNAME=NEWMCLIB,DISP=(,KEEP),VOLUME=SER=111112,
1// SPACE=(TRK,(100,,10»,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
I//SYSIN DD DATA
1./ REPRO NAME=ATTACH,LEVEL=OO,SOURCE=l,LIST=ALL
1./ REPRO NAME=DETACH,LEVEL=OO,SOURCE=l,LIST=ALL
1./ ADD NAME=EXIT,LEVEL=OO,SOURCE=l,LIST=ALL
./ NU~ffiER NEW1=10,INCR=100

./

./

data cards for the EXIT member

REPL
NUMBER

NAME=BLDL,LEVEL=Ol,SOURCE=l,LIST=ALL
NEW1=10,INCR=100

data cards (replacement for existing BLDL member) 1
I
1

./ ENDUP I
/* I ' L ___ J

IEBUPDTE Example 3. Creating a Partitioned Data Set Using SYSIN Data and
Existing Data as Input

The IEBUPDTE Program 369

IEBUPDTE Example 4

r-----------T------------------T-------------------------------T------------------------,
I IData set I I I
IOperation I Organization IInput Device Output Device I comments I
~-----------+------------------+-------------------------------+------------------------~
I UPDATE IInput-PARTITIONED 1 DISK - 2311 11. The input data set isl
I INPLACE- 1 Output-PARTITIONED I I cons idered to be the I
1 renumber 1 I 1 output data set, as I
1 1 I 1 well. (No SYSUT2 DD I
I 1 I 1 statement is I
I I I I required.) I L _____ ~ _____ ~ __________________ ~ _______________________________ ~ __________ ~ _____________ J

In this example, a member (MODMEMB) is to be updated within the space it
actually occupies. Two existing logical records are to be replaced, and the
entire member is to be renumbered.

• The SYSUTl DD statement: defines the data set that is to be updated in place.
(Note that the member name need not be specified in the DD statement.)

• The SYSIN DD Statement: defines the control data set.

• The CHANGE Statement: indicates the name of the member to be updated and
specifies the UPDATE=INPLACE operation. The entire member is to be listed in
the message data set.

• The NUMBER Statement: indicates that the entire member is to be renumbered,
and specifies the first sequence number to be assigned and the increment value
for successive sequence numbers.

• The Data Statements: replace existing logical records having sequence nuniliers
of 20 and 35.

r---,
I//UPDATE JOB 09#770,SMITH I
1// EXEC PGM=IEBUPDTE,PARM=MOD 1
I//SYSPRINT DD SYSOUT=A 1
1//SYSUTl DD DSNAME=PDS,UNIT=2311,DISP=(OLD,KEEP),VOLUME=SER=111112, I
1// DCB=(RECFM=F,LRECL=80,BLKSIZE=80) 1
I//SYSIN DD * I
1./ CHANGE NAME=MODMEMB,LIST=ALL,UPDATE=INPLACE I
1./ NUMBER SEQ1=ALL,NEW1=10,INCR=5 I
I data statement 1 00000020 I
1 data statement 2 00000035 I
1/* I L ___ J

IEBUPDTE Example 4. Updating a Member in Place

370

IEBUPDTE Example 5

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I I I I
I Operation lorganization IInput Device IOutput Device I Comments I
~-----------+------------------+---------------+---------------+------------------------~
I CREATE IInput-PARTITIONED IDRUM - 2301 ITAPE -9-track, 11. Blocked output. I
Isequential loutput-SEQUENTIAL I Istandard label, I I
lmaster froml I 1800 bits-per- I I
I partitioned I I 1 inch density I I
I input & I I I I I
I DELETE I I I I I
I selected I I I I I
I records I I I I I L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, a sequential master data set is to be created from partitioned
input, and selected logical records are to be deleted.

• The SYSUTl DD Statement: defines the input partitioned data set PARTDS.
Since no DCB parameters are specified in the SYSUTl DD statement, the program
assumes that the input data set consists of 80-byte, uriblocked records. A
warning message is issued to inform the user that this assumption has been
made.

• The SYSUT2 DD Statement: defines the output sequential data set. The data
set is to be written as the second data set on a 9-track magnetic tape volume.
The data set is written at a density of 800 bits-per-inch.

• The SYSIN DO Statement: defines the control data set.

• The CHANGE statement: identifies the input member (OLDMEMB1) and indicates
that the output is to be a sequential data set (NEW=PS).

• The First Data statement: replaces the logical record whose sequence number
is identical to the sequence number in the data statement (00000123). If no
such logical record exists, the data statement is incorporated in the proper
sequence within the output data set.

• The DELETE Statement: deletes logical records having sequence numbers equal
to or between 223 and 246.

• The Second Data statement: is inserted in the proper sequence in the output
data set.

Note: Only one member can be used as input when converting to sequential
organization.

r---,
//UPDATE JOB 09#770,SMITH .
// EXEC PGM=IEBUPDTE,PARM=MOD
//SYSPRINT DD SYSOUT=A
//SYSUTl DD DSNAME=PARTDS,UNIT=2301,DISP=(OLD,KEEP),
// VOLUME=SER=111112
//SYSUT2 DD DSNAME=SEQDS,UNIT=2400,LABEL=(2,SL),DISP=(,KEEP),
// VOLUME=SER=001234, DCB= (RECFM=FB, LRECL=80,BLKSIZE=2000)
//SYSIN DD *
./ CHANGE NEW=PS,NAME=OLD~£MBl

data statement 1 00000123
./ DELETE SEQ1=223,SEQ2=246

data statement 2 00000224
/* L ___ J

IEBUPDTE Example 5. Creating a Sequential Data Set From Partitioned Input -
Deleting Selected Records

The IEBUPDTE Program 371

IEBUPDTE Example 6

r-------------T------------------T---------------T-------------T------------------------,
I IData Set I Input I Output I I
I operation I Organization I Device I Device 1 Comments I
~-------------+------------------+---------------+-------------+------------------------~
ICREATE a par-IInput-SEQUENTIAL ITAPE 9-track, . IDISK - 2311 11. Sequence numbers in 1
Ititioned datalOutput-PARTITIONEDlstandard label, 1 I columns other than 1
Iset from 1 1800 bits-per- I 1 73-80. 1
I sequential I linch density 1 12. One member placed in 1
I input. DELETE 1 1 I I the output parti- 1
I records. 1 1 1 1 tioned data set. 1
1 UPDATE 1 I 1 1 1
I portions of 1 1 I I I
I records. I I I I I L _____________ .L __________________ .1. _______________ .1. _____________ .1. _______________ -".~ _______ J

In this example, a member of a partitioned data set is to be created from
sequential input and existing logical records are to be updated.

• The SYSUT1 DD statement: defines the input sequential data set (OLDSEQDS).
The data set was originally written at a density of 800 bits-per-inch on a
9-track magnetic tape volume.

• The SYSUT2 DD Statement: defines the output partitioned data set. Enough
space is allocated to provide for members that might be added in subsequent
job steps.

• The SYSIN DD Statement: defines the control data set.

• The CHANGE Statement: identifies the output member and indicates that a
conversion from sequential input to partitioned output is to be made. The
SEQFLD keyword indicates that as-byte sequence number is located in columns
60-64 of each data statement. The COLUMN keyword specifies the starting
column of a field (within subsequent data statements) from which replacement
information is obtained.

• The First Data Statement: Columns 40-80 of the first data statement replace
columns 40-80 of the corresponding logical record. If no such logical record
exists, the entire card image is inserted in the output member.

• The DELETE Statement: deletes all of the logical records having sequence
numbers equal to or between 220 and 250.

• The second Data statement: the second data statement, whose sequence number
falls within the range specified in the DELETE statement, is incorporated in
its entirety in the output member.

• The Third.DataStatement: the third data statement, which is beyond the range
of the DELETE statement, is treated in the same manner as the first data
statement.

• The ALIAS Statement: assigns the alias name MEMBl to the output member
PARMEM1.

372

r---, IIUPDATE JOB 09#770,SMITH
II EXEC PGM=IEBUPDTE,PARM=MOD
IISYSPRINT DD SYSOUT=A
IISYSUTl DD DSNAME=OLDSEQDS,UNIT=2400,LABEL=(,SL),
II DISP=(OLD,KEEP),VOLUME=SER=001234,
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
IISYSUT2 DD DSNAME=NEWPART,UNIT=2311,DISP=(,KEEP),
II VOLUME=SER=111112,SPACE=(TRK,(20,S,S»,
II DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
IISYSIN DD *
.1 CHANGE NEW=PO,MEMBER=PARMEM1,LEVEL=01,SOURCE=O,SEQFLD=60S, c
.1 COLUMN=40

.1

.1
1/*

data statement 1
DELETE SEQ1=220,SEQ2=2S0

data statement 2
data statement 3

ALIAS NAME=MEMBl

00020

00230
00260

L __ _

IEBUPDTE Example 6. creating a Partitioned Data Set From Sequential Input
Deleting Records -- Updating Portions of Records

The IEBUPDTE Program 373

•

IEBUPDTE Example 7

r-----------T------------------T---------------T---------------T------------------------,
I I Data Set I Input I Output I I
IOperation lorganization I Device I Device I Comments I
t-----------t------------------+---------------t---------------t------------------------i
IINSERT a IInput-PARTITIONED IDISK - 2311 IDISK - 2311 11. The SYSUTl and SYSUT21
Iblock of I output-PARTITIONED I I I DO statements define I
I logical I I I I the same data seto I
I records I I I I I
I into I I I I I
I existing I I I I I
I member I I I I I L ________ ~ __ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, a block of three logical records is to be inserted into an
existing member and the updated member is to be placed in the existing partitioned
data set.

• The SYSUTl and SYSUT2 DO statements: define the partitioned data set PDS.

• The-SYSIN DO Statement: defines the control data set.

• The CHANGE statement: identifies the input member RENUM. The entire member
is to be listed in the message data set.

• The NUMBER Statement: specifies the insert operation (INSERT=YES) and
controls the renumbering operation .•

• The Data Statements: are the logical records to be inserted. they contain
blank sequence numbers. (Sequence numbers are assigned when the data
statements are inserted.>

In this example, the existing logical records have sequence nurobers 10, 15, 20,
25, 30, etc. Sequence numbers are assigned by the NUMBER statement, as follows:

1. Data statement 1 is assigned sequence number 20 (NEW1=20) and inserted after
existing logical record 15 (SEQ1=15).

2. Data statements 2 and 3 are assigned sequence numbers 25 and 30 (INCR=5) and
are inserted after data statement 1.

3. Existing logical records 20, 25, and 30 are assigned sequence numbers 35, 40,
and 45, respectively.

4. The remaining logical records in the member are renumbered.

Existing Sequence New Sequence
Numbers Numbers
10----------------------~.,~10
15 • 15

Data Statements
to be Inserted

20 I-------------data statement 1
25 • data statement 2
30 • data statement 3

20----------------------~.,~35
25 ., 40
30 ., 45

374

r---,
I//UPDATE JOB 09#770,SMITH
1// EXEC PGM=IEBUPDTE,PARM=MOD
I//SYSPRINT DD SYSOUT=A
1//SYSUTl DO DSNAME=PDS,UNIT=2311,DISP=<OLD,KEEP),
1// VOLUME=SER=111112, DCB= (RECFM=F, LRECL=80,BLKSIZE=80)
1//SYSUT2 DO OSNAME=PDS,UNIT=2311,DISP=(OLD,KEEP),
1// VOLUME=SER=111112,DCB=(RECFM=F,LRECL=80,BLKSIZE=80)
I//SYSIN DO *
1./ CHANGE NAME=RENUM,LIST=ALL,LEVEL=Ol,SOURCE=O
1./ NUMBER SEQ1=15,NEW1=20,INCR=5,INSERT=YES
I data statement 1
1 data statement 2
I data statement 3
1/* l. __ _

IEBUPDTE Example 7. Inserting a Block of Logical Records Into an Existing Member

I

The IEBUPDTE Program 375

IEBUPDTE Example 8

r-----------T------------------T---------------T----~----------T------------------------,
I I Data Set I Input I Output I I
loperation IOrganization I Device I Device I Comments I
~-----------+------------------+---------------+---------------t------------------------i
IINSERT two IInput-PARTITIONED IDISK - 2311 IDISK - 2311 11. The SYSUTl and SYSUT21
Iblocks of I output-PARTITiONED I I I DD statements define I
I logical I I I I the same data set. I
I records in- I I I I I
Ito existing I I I I I
I member I I I I I L ___________ ~ __________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, two blocks (three logical records per block) are to be
inserted into an existing member and the member is to be placed in the existing
partitioned data set. A portion of the output member is to be renumbered.

• The SYSUTl and·SYSUT2 DD statements: define the partitioned data set PDS.

• The·SYSIN DO statement: defines the control data set.

• The CHANGE Statement: identifies the input member RENUM. The entire member
is to be listed in the message data set.

• The NUMBER Statements: specify the insert operations (INSER'I'=YES) and cQntrol
the renumbering operation.

• Data Statements 1, 2, 3, and 4, 5, 6: are the blocks of logical records to be
inserted. They contain blank sequence numbers. (Sequence numbers are
assigned when the data statements are inserted.)

• Data Statement 7: is a logical record to be inserted in the output member.

The existing logical records in this example have sequence numbers 10, 15, 20,
25, 30, 35, 40, 45, 50, ,150~ 155, 160, 165, etc. The insert and renumbering
operations are performed as follows:

1. Data statement 1 is assigned sequence number 20 (NEW1=20) and inserted after
existing logical record 15 (SEQ1=15).

2. Data statements 2 and 3 are assigned sequence numbers 25 and 30 (INCR=5) and
are inserted after data statement 1.

3. Existing logical records 20, 25, and 30 are assigned sequence numbers 35, 40,
and 45, respectively.

4. Data statement 4 is assigned sequence number 50 and inserted. (The SEQ1=30
specification in the second NUMBER statement places this data statement after
existing logical record 30., which has become logical record 45.)

5. Data statements 5 and 6 are assigned sequence numbers 55 and 60 and are
inserted after data statement 4.

6. Existing logical record 35 is assigned sequence number 65.

7. Data statement 7 is assigned sequence number 70 and is inserted.

8. The remaining logical records in the member are renumbered until logical
record 150 is encountered. since this record has a sequence number higher
than the next number to be assigned, the renumbering operation is terminated.

376

Existing Sequence New Sequence Data Statements
Numbers Numbers to be Inserted
10 ~ 10
15 ~ 15

20 04 data statement 1
25 04 data statement 2
30 04 data statement 3

20 ~35
25 ~ 40
30 ~ 45

50 04 data statement 4
55~ data statement 5
60 ~ data statement 6

35 ~ 65
70 • data statement 7

40 ~ 75
50 ~85

150 .. 150
155 ... 155

r---,
//UPDATE JOB 09#770,SMITH I
// EXEC PGM=IEBUPDTE,PARM=MOD I
//SYSPRINT DD SYSOUT=A I
//SYSUTl DD DSNAME=PDS,UNIT=2311,DISP=(OLD,KEEP), I
// VOLUME=SER=111112,DCB=(RECFM=F,BLKSIZE=80,LRECL=80) I
//SYSUT2 DD DSNAME=PDS,UNIT=2311,DISP=(OLD,KEEP), I
/ / VOLUME=SER=111112, DCB= (RECFM=F" LRECL=80, BLKSIZE=80) 1
//SYSIN DD * I ,
./ CHANGE NAME=RENUM,LIST=ALL,LEVEL=Ol,SOURCE=O I
./ NUMBER SEQ1=15,NEW1=20,INCR=5,INSERT=YES I

data statement 1 I
data statement 2 I
data statement 3 I

./ NUMBER SEQ1=30,INSERT=YES 1
data statement 4 1
data statement 5 I
data statement 6 1
data statement 7 00000038 I

1/* I L __ ~----------_________________________________ -J

IEBUPDTE Example 8. Inserting Blocks of Logical Records Into an Existing Member

The IEBUPDTE Program 377

IEBUPDTE Example 9

r------------~----------------T------------T-------------T-----------------------------,
I IData Set I I I I
I Operation I Organization IInput DevicelOutput DevicelCo~ments I
~------------+-----------------+------------+-------------+-----------------------------~
ICreate a IInput-SEQUENTIAL ICard reader IDISK - 2311 11. Both user labels and data I
I Sequential I output-SEQUENTIAL I I I are in card form in input I
ldata set, I I I I stream. I
I with user I I I I I
Ilabels, from I I I I I
Icard input. I I I I I L ____________ ~ _________________ ~ ____________ ~ ____________ ~ _____________________________ J

In this example, the IEBUPDTE program creates a sequential data set from card
input. User header and trailer labels, also from the input stream, are placed on
this sequential data set.

• The SYSUT2 DD Statement: defines and allocates space for the output
sequential data set, which resides on a 2311 disk.

• The SYSIN DD statement: defines the control data set. (This control data set
includes the sequential input data set and the user labels, which are on
cards.)

• The First LABEL statement: identifies the 80-byte card images in the input
stream which will become user header labels. (They can be modified by the
user header label processing routine specified on the ADD statement.)

• The ADD statement: indicates that the records (data statements) that follow
are to be placed in the output data set. The newly created data set is to be
listed in the message data set. User output header and output trailer
routines are to be given control prior to the writing of header and trailer
labels.

• The Second LABEL statement: identifies the 80-byte card images in the input
stream which will become user trailer labels. (They can be modified by the
user trailer label processing routine specified on the ADD statement.)

• TheENDUP statement: signals the end of the control data set.

378

r---,
/ /LABEL JOB, MSGLEVEL=l I
//CREATION EXEC PGM=IEBUPDTE,PARM=NEW I
//SYSPRINT DO SYSOUT=A I
//SYSUT2 DD DSNAME=LABEL,VOLUME=SER=123456, I
// OISP=(NEW.KEEP).LABEL=(,SUL). I
// SPACE=(TRK.(15.3»,UNIT=2311
//SYSIN DD '*
./ LABEL

./ ADO

.. / LABEL

./ ENOUP
/*

first header label

last header label
LIST=ALL.OUTHDR=ROUTINE1,OUTTLR=ROUTINE2

first input data record

last input data record

first trpiler label

last trailer label

L ___ J

IEBUPDTE Example 9. Creating a Sequential Data Set From Card Input

The IEBUPDTE Program 379

IEBUPDTE Example 10

r--------------T-----------------T------------T-------------T--------------------~------l
I I Data Set I I I I
I Operation I Organization. IInput DevicelOutput DevicelComments I
~--------------+-----------------+------------+-------------+-------------------~-------~
ICopy a sequen-IInput-SEQUENTIAL IDISK - 2311 DISK - 2311 11. The input data set is I
Itial data set I Output-SEQUENTIAL I I simply copied onto the I
I from one I I I output data set, but I
Idirect access I 1 I user label exit routines I
Ivolume to I I I are permitted to inspect I
lanother, per- I I I and, if desired, change I
lmitting the I I I labels on both the input I
luser to pro- I I I and output data sets. I
Icess user la- I I I I
I bels with exit I I I I
I routines I I I I L ______________ ~ _________________ ~ ____________ ~ _____ ~ _______ ~ ___________________________ J

In this example, the IEBUPOTE program copies a sequential data set from one
direct access volume to another. User labels are processed by u~er exit routines.

• The SYSUT1 DO Statement: defines the input sequential data set, which resides
on a 2311 disk.

• The SYSUT2 DO Statement: defines the output sequential data set, which will
reside ·on a 2311 disk.

• The SYSIN DD Statement: defines the control data set.

• The REPRO Statement: indicates that the existing input sequential data set is
to be copied onto the output data set. This output data set is to be listed
on the message data set,. The user label processing routines are to be given
control when header or trailer labels are encountered on either the input or
the output data set.

• The.ENDUP Statement: indicates the end of the control data set.

r---,
1/ /LABELS JOB , MSGLEVEL=l
// EXEC PGM=IEBUPDTE,PARM=(MOD"MMMMMM)
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSNAME=OLDMAST,DISP=OLD,LABEL=(,SUL),
// VOLUME=SER=111111,UNIT=2311
//SYSUT2 DD DSNAME=NEWMAST,DISP=(NEW,KEEP),LABEL=(,SUL),
// UNIT=2311,VOLUME=SER=XB182,SPACE=(TRK,(10,10»
//SYSIN DD DSNAME=INPUT,DISP=OLD,LABEL=(,SUL),
// VOLUME=SER=222222,UNIT=2311
/*

./ REPRO

./
1./ ENDUP'

INPUT DATA SET
LIST=ALL,INHDR=SSSSSS,INTLR=TTTTTT,OUTHDR=XXXXXX,

OUTTLR=YYYYYY
C

L __ _

IEBUPDTE Example 10. Copying a Sequential Data set With User Labels

380

The IEBISAM Program

Program Applications
The IEBISAM program can copy an indexed sequential data set directly
from one direct access volume to another. Alternatively, the IEBISAM
program can reorganize an indexed sequential data set into a sequential
(unloaded) data set and place that data set on a direct access volume or
on a magnetic tape volume. The unloaded data set is in a form that can
be subsequently loaded; that is, it can be converted back into an
indexed sequential data set.

Optionally, the IEBISAM program can be used to print the records of
an indexed sequential data set.

The program is used to:

• Copy an indexed sequential data set (COpy operation).

• Create a sequential back-up (transportable) copy of source data from
an indexed sequential data set (UNLOAD operation).

• Create an indexed sequential data set from an unloaded data set
(LOAD operation).

• Print an indexed sequential data set (PRINTL operation).

At the completion or termination of the program, the highest return
code encountered within the program is passed to the calling program •

•

Copying an Indexed Sequential Data Set (COPY Operation)

The IEBISAM program can copy an indexed sequential data set directly
from one direct access volume to another.. Records marked for deletion
are automatically deleted when the data set is copied. Those records
that are contained in the overflow area of the original data set are
moved into the primary area of the copied data set.

Creating a Sequential Back-Up Copy (UNLOAD Operation)

An "unloaded" sequential data set can be created to serve as a back-up
or transportable copy of source data from an indexed sequential data
set. Records marked for deletion within the indexed sequential data set
are automatically deleted when. the unloaded data set is created. When
the data set is subsequently "loaded" (reconstructed into an indexed
sequential data set), those .records that were contained in the overflow
area assigned to the original data set are moved sequentially into the
primary area.

The IEBISAM Program 381

'.

Unloaded Data Sets: An unloaded data set consists of 80-byte logical
records. The data set contains:

• Fixed-length records from an indexed sequential data set.
• Control information used in the subsequent loading of the data set.

Control information consists of characteristics that were assigned to
the indexed sequential data set. These characteristics are:

• Optional control program service (OPTCD).
• Record format (RECFM)
• Logical record length (LRECL).
• 'Block size (BLKSIZE).
• Relative key position (RKP).
• Number of tracks in cylinder index (NTM).
• Key length (KEYLEN).
• Number of overflow tracks on each cylinder (CYLOFL).

When the LOAD operation is specified, these characteristics can be
overridden by new specifications in the DCB parameter of the SYSUT2 DD
statement (refer to "Job Control Statements" for a discussion of the
SYSUT2 DD statement). Caution should be used however, since checks are
made to ensure that:

I. The record format is the same as that of the original indexed
sequential data set (either fixed or variable length).

2. The logical record length is less than or equal to that of the
original indexed sequential data set.

3. For fixed length records, the block size is equal to or a multiple
of the logical record length of the records in the original indexed
sequential data set. For variable length records, the blocksize is
equal to or greater than the logical record length plus four.

4. The relative key position is equal to or less than the logical
record length minus the key length.

5. The key length is less than or equal to 255 bytes.

Caution: If either RKP or KEYLEN is overridden, it may not be possible
to reconstruct the data set.

The number of 80-byte logical records in an unloaded data set can be
determined by the formula:

x = n(1+2) + 158
78

Where:

n = the number of records in the indexed sequential data set.
1 = the length of a fixed-length record or the average length of

the variable length records.
x = the number of 80-byte logical records created by the utility

program.

IEBISAM Figure 1 shows the format of an unloaded data set for the
first three fixed-length records (each 100 bytes long) of an indexed
sequential data set. Each fixed-length record is preceded by two bytes
(bb) that indicate the number of bytes in that record. (The last
fixed-length record is followed by two bytes containing binary zeros to
identify the last logical record in the unloaded data set.) The
characteristics of the indexed sequential data set are contained in the
first two logical records of the unloaded data set. Data from the

382

indexed sequential data set begins in the third logical record. Each
logical record in the unloaded data set contains a binary sequence
number (aa) in the first two bytes of the record.

I~ 80 bytes -I
r~-T-T-T--,
lalalblbl characteristics I
t-t-t-i-i--~
lalal characteristics I
~-t-t-T-T--~
jalalblbl 76 bytes of data I
~-t-t-i-i-------------------T-T-~-------------------------------------~
lalal 24 bytes of data Iblbl 52 bytes of data I
r-t-t-----------------------i-i-i-----------T-T-T----------------------~
lalal 48 bytes of data Iblbl 28 bytes of data I
~-+-t---------------------------------------i-i-i----------------T-T-T-~
I al al 72 bytes of data Iblbl 1 L_i_i __ i_i_i_J
IEBISAM Figure 1. An Unloaded Data set

Creating an Indexed sequential Data Set From an Unloaded Data Set (LOAD
Operation)

An indexed sequential data set can be created from an unloaded version
of an indexed sequential data set. When the unloaded data set is
loaded, those records that were contained in the overflow area assigned
to the original indexed sequential data set are moved sequentially into
the primary area of the loaded indexed sequential data set.

Printing the Logical Records of an Indexed 'sequential Data Set (PRINTL
Operation)

The records of an indexed sequential data set can be printed or stored
as a sequential data set for subsequent printing.

Each input record not marked for deletion is placed in a buffer from
which it is printed or placed in a sequential data set. Each printed
record is converted to hexadecimal unless specified otherwise by the
user.

The IEBISAM program provides user exits so that the user can
optionally include his own routines to:

• Modify records prior to printing.

• Select records for printing or terminate the printing operation
after a certain number of records have been printed.

• Convert the format of a record to be printed.

• Provide a record heading for each record. (If no user routines are
provided, each record is identified in sequential order on the
printout.

User Routines: Upon determining that a user routine is supplied for a
PRINTL operation, the IEBISAM program issues a LOAD macro instruction to
make the user routine available. A BALR 14,15 instruction is
subsequently used to give control to the routine. When the user routine
receives control, Register 0 contains a pointer to a "record heading
buffer"; Register 1 contains a pointer to an "input record buffer."

The IEBISAM Program 383

•

These buffers contain:

Reg 0

+
record number
(decimal)
~

ASA J' J' J' J'J' R E C 0 R D J'x x x x avai lable to the user--'

~ Total length = line length of applicable printer .., -

Reg 1

~
input record

Total length = input logical record length (LRECL)

The user returns control to the IEBISAM program by issuing a RETURN
macro instruction (via Register 14) or by using a BR 14 instruction
after restoring Registers 2 through 14. (Note: The user must save
Registers 2 through 14 when control is given to the user routine.)

A user routine must place a return code in Register 15 prior to
returning control to the IEBISAM program. The return code instructs the
IEBISAM program how to handle records to be printed. The possible
return codes and their meanings to the IEBISAM program are:

00 print the buffers.

04 print the buffers and terminate the operation.

08 conti"nue processing; do not print this input record.

12 terminate the operation; do not print this input record.

Inputs and Outputs
The input to and output from the IEBISAM program is dependent upon the
operation to be performed. IEBISAM Table 1 lists the major inputs to
and outputs from the IEBISAM program for the COPY, UNLOAD, LOAD, ana
PRINTL operations.

384

IEBISAM Table 1. Data sets Used (Input) and. Produced (Output) by the
IEBISAM Program

r---------T--------r---,
1 COpy I Input I Input Data set: This data set is the indexed I
loperationl sequential data set that is to be copied. I

I t~~~~~~1r~~~~~-~~~-~~~--;hi~-d~~~-~~~-i~~h~-~~~~l~-~f---1
I I I the copy operation. The data set is a reorganized, I
I I I indexed sequential copy of the original data set. I
I I I Message Data Set: This data set is a sequential I
j I I data set containing informational messages and I
I I I error messages" if applicable. I
r---------+--------~----------~-----------------~----------------------~
I UNLOAD I Input I Input Data Set: This data set is the indexed I
I operation I I sequential data set that is to be unloaded. I

I ~-------~---~
I IOutputs I Output Data Set: This data set is the result of I
I I I the UNLOAD operation. The data set is sequential, I
I I I and it can be placed on a magnetic tape volume or al
I I I direct access volume. I
I I I Messaqe Data Set: This data set is a sequential I
I I I data set containing informational messages and I
I I I error messages, if applicable. I
~---------+-------~---~
I LOAD I Input I Input Data set: This data set is an unloaded I
I operation I I sequential version of an indexed sequential data I
I I I set. I
I t-------4--~
I I Outputs I Output Data Set: This data set is the result of I
I I I the LOAD oper~tion. The data set is an indexed I
I I I sequential data set residing on a direct access I
I I I volume. I
I I I Message Data Set: This data set is a sequential I
I I I data set containing informational messages and I
I I I error mes$ages, if applicable. I
~---------+-------4--~
IPRINTL I Input I Input Data set: This data set is an indexed I
I operation I I sequential data set that is to be printed in I
I I I logical sequence. I
I ~-------4-~--~
I I Outputs I Output Data Set: This isa sequential data set I
I I I that contains the logical records of an indexed I
I I I sequential data set. I
I I I Message Data Set: This data set is a sequential I
I I I data set containing informational messages and I
I I I error.messages, if applicable. I L _________ ~ _______ ~ __ J

ADDITIONAL OUTPUTS

The IEBISAM program provides a return code to indicate the results of
program execution. The return codes and their interpretations are as
follows:

00 successful completion.
04 a return code of 04 or 12 was passed to the IEBISAM program by a

user routine.
08 the program terminated operation because an error condition was

encountered during processing.
12 a return code other than 00, 04, 08, or 12 was passed from a user

routine to the IEBISAM program. The job step is terminated.
16 the program terminated operation because an error condition was

encountered during processing.

The IEBISAM Program 385

•

Control

The IEBISAM program is controlled by job control statements. No utility
control statements are required.

JOB CONTROL STATEMENTS

IEBISAM Table 2 shows the job control statements necessary for executing
or invoking the IEBISAM program.

IEBISAM Table 2. Job Control Statements for the IEBISAlvl Program
r------------T---,
I Statement I Usage I
~-----------+---~
lJOB IThis statement initiates the job. I
I statement I I
t------------+---~
EXEC IThis statement specifies the program name (PGM=IEBISAM).
Statement lIn addition, this statement specifies

! 1~~~~AD I IPARM= LOAO
I PRINTL or 'PRINTL,[N,l [EXIT=routinename),
I
lwhere
I
lCOPY
I specifies the copy operation.
I
I UNLOAD
I specifies the unload operation.
I
I LOAD
I specifies 'the load operation.
I
IPRINTL
I specifies a print operation in which each record is
, converted to hexadecimal prior to printing. No user
I routines are provided. ,
,'PRINTL,[N,l [EXIT=routinename),
I specifies a print operation. If N is included, no
, conversion to hexadecimal is performed by the
I IEBISAM program. EXIT=routinename, if included,
I indicates that a user routine is to be given control
I prior to printing each record. (Exit routines must

, I be included in either the job library or the link
I I library.)
~------------+---~
ISYSUTl OD ,This statement defines the input data set. I
,statement , ,
~------------+---~----~--------------------------------~--------------~~
ISYSUT2 DO IThis statement defines the output data set. I
I statement I I
~------------+---~
ISYSPRINT IThis statement defines a sequential message data set. ,
IDO IThe data set can be written onto a system output device I
I statement I (e. g ., a printer), a magnetic tape volume, or a direct I
I laccess device. I
L ____________ ~ ____________ -----------------------------________________ J

386

Note (COpy oper~tion): The SYSUT2 DD statement must include a primary
space allocation that is sufficient to accomodate records that were
contained in overflow areas in the original indexed sequential data set.
New overflow areas can be specified when the data set is copied.

Notes (UNLOAD operation): Specifications that are implied by default or
included in the DCB parameter of the SYSUT2 DD statement (e.g., tape
density) must be considered when the data set is subsequently loaded.

If a block size is specified in the DCB parameter of the SYSUT2 DD
statement, it must be a multiple of 80 bytes.

Notes (LOAD operation): If the input data set resides on an unlabeled
tape, the SYSUT1 DD statement must specify a BLKSIZE of a multiple of 80
bytes.

Specifications that 'are implied by default or included in the DCB
parameter of the SYSUT1 DD statement must be consistent with
specifications that were implied or included in the DCB parameter of the
SYSUT2 DD statement used 'for the UNLOAD operation.

The SYSUT2 DD statement must include a primary space allocation that is
sufficient to accomodate records that were contained in overflow areas
in the original indexed sequential data set. If new overflow areas are
desired, they must be specified when the data set is loaded.

Note (PRINTL operation): If the device defined by the SYSUT2 DD
statement is a printer, the specified BLKSIZE must be equal to or less
than the physical printer size; that is 121, 133, or 145 bytes. If
BLKSIZE is not specified, ~21 bytes is assumed.

The IEBISAM Program 387

•

IEBISAM Examples

The following examples illustrate some of the uses of the IEBISAM program.

IEBISAM Example 1

r---------T--------------------T---------------T---------------T--------------------·
I IData Set I I I
I Operation I Organization IInput Device IOutput Device I Comments
~---------+--------------------+---------------+---------------+-------------------_.
I COpy IInput--IX SEQUENTIALI2 DISK - 2311 12 DISK - 2311 11. Unblocked input -
I IOutput--SEQUENTIAL I 1 I blocked output.
I I 1 1 12. Prime and index
I I 1 1 1 separation. L _________ ~ ____________________ ~ _______________ ~ _______________ ~ ___________________ _

In this example, an indexed sequential data set is to be copied from two 2311
disk volumes to two other 2311 disk volumes. The output data is blocked.

• The EXEC Statement: specifies the program name and the COpy operation.

• The SYSUTl DD Statement: defines the input (indexed sequential) data set.
The data set resides on two 2311 disk volumes.

• The SYSUT2 DD Statement: defines the output data set index area. (The index
and prime areas are separated.)

• The // DD Statement: defines the output data set prime area. Ten cylinders
are allocated for the prime area on each of the two 2311 disk volumes.

r---
I//CPY JOB 09#770,SMITH
1// EXEC PGM=IEBISAM,PARM=COPY
I//SYSPRINT DD SYSOUT=A
1//SYSUTl DD DSNAME=ISAM01,VOLUME=SER=(222222,333333),
1// DISP={OLD,DELETE),UNIT=(2311,2),
1// DCB= {DSORG=IS,LRECL=500, BLKSIZE=500)
1//SYSUT2 DD DSNAME=ISAM02(INDEX),UNIT=2311,DISP={NEW,KEEP),
1// DCB={DSORG=IS,BLKSIZE=1000),VOLUME=SER=444444,
1// SPACE=(CYL,(2»
1// DD DSNAME=ISAM02{PRIME),UNIT=(2311,2),DISP={NEW,KEEP),
1// DCB=(DSORG=IS,BLKSIZE=1000),SPACE=(CYL,(10»,
1// VOLUME=SER=(444444,555555)
1/* L __ _

IEBISAM Example 1. Copying an Indexed Sequential Data Set

388

IEBISAM Example 2

r---------T--------------------T---------------T---------------T------------------------,
1 I Da ta set I 'I I
I Operation I Organization IInput Device 'Output Device 1 Comments 1
~---------+--------------------+---------------+---------------+------------------------~
,UNLOAD 'Input-lX-SEQUENTIAL IDISK - 2311 ITAPE - 9-track,ll. Blocked output. I
I I Output-SEQUENTIAL 1 1 standard label, I I
1 1 , 1800 bits-per- I 1
'I 1 1 inch density I 1 L _________ ~ ____________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, indexed sequential input is to be converted into a sequential
data set and the output is to be placed on a 9-track magnetic tape volume.

• The EXEC statement: specifies the program name (IEBISAM) and the UNLOAD
operation.

• The SYSUTl DD Statement: defines the input (indexed sequential) data set.
The data set resides on a 2311 Di.sk storage Drive.

• The SYSUT2 DD Statement: defines the output (unloaded) data set. The data
set consists of fixed-length, blocked records, and is to reside as the first
or only data set on a 9-track, magnetic tape volume. The data set is to be
written at a density of 800 bits-per-inch.

r---,
1//STEP1 JOB 09#770,SMITH 1
1// EXEC PGM=IEBISAM,PARM=UNLOAD 1
I//SYSPRINT DD SYSOUT=A I
1//SYSUT1 DD DSNAME=INDSEQ,UNIT=2311,DISP=(OLD,KEEP), 1
1// VOLUME=SER=111112 1
1//SYSUT2 DD DSNAME=UNLDSET,UNIT=2400,LABEL=C,SL),DISP=C,KEEP), I
1// VOLUME=SER=001234,DCB=(RECFM=FB,LRECL=80,BLKSIZE=640) I
1/* I I L __________________________ ----------------------------_________________________________ J

IEBISAM Example 2. Unloading an Indexed Sequential Data Set Onto 9-Track
Magnetic Tape

The IEBISAM Program 389

IEBISAM Example 3

r---------~-------------------T---------------T---------------T--------~---------------,
, 1 Da ta Set , " I
lOperationlOrganization lInput Device 'Output Device ,comments ,
~---------+--------------------+---------------+---------------+------------------------~
lUNLOAD IInput-IX-SEQUENTIAL IDISK - 2311 ITAPE 7-track, 11. Blocked output. I
1 loutput-SEQUENTIAL I lstandard label, 12. Data set written as I
I 1 , 1800 bits-per- I second data set on I
1 I 1 1 in~h density, I output volume. 1
I I I I data conversion' I L _________ ~ ____________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, indexed sequential input is to be converted into a sequential
data set and the output is to be placed on a 7-track, magnetic tape volume.

• The EXEC statement: specifies the program name (IEBISAM) and the UNLOAD
operation.

• The SYSUTl DD Statement: defines the input (indexed sequential) data set.
The data set resides on a 2311 Disk storage Drive.

• The SYSUT2 DD statement: defines the output (unloaded) data set. The data
set consists of fixed-length, blocked records, and is to reside as the second
data set on a 7-track magnetic tape volume. The data set is to be written at
a density of 800 bits-per-inch.

r---,
I//STEPA JOB 09#770,SMITH I
1// EXEC PGM=IEBISAM,PARM=UNLOAD I
I//SYSPRINT DD SYSOUT=A 1
1//SYSUT1 DD DSNAME=INDSEQ,UNIT=2311,DISP=(OLD,KEEP), I
1// VOLUME=SER=111112 I
1//SYSUT2 DD DSNAME=UNLDSET,UNIT=2400-2,LABEL=(2,SL),DISP=(,KEEP), I
1// VOLUME=SER=001234,DCB=(DEN=2,RECFM=FB,LRECL=80, 1
1// BLKSIZE=1040,TRTCH=C) 1
1/* 1 L __ ~J

IEBISAM Example 3. Unloading an Indexed Sequential Data Set Onto 7-Track
Magnetic Tape

390

IEBISAM Example 4

r--------~--------------------T---------------T---------------T------------------------,
I 1 Data Set I I I I
I operation I Organization IInput Device IOutput Device I comments I
~---------+--------------------+---------------+---------------+------------------------~
I LOAD ,Input-SEQUENTIAL ITAPE 9-track, IDISK - 2311 11. Input data set is 1
I I Output-lX-SEQUENTIAL I standard label, I \ second data set on \
1 I 1800 bits-per- 1 I magnetic tape volume. \
I I I inch density 1 I I L __ ------~--------------------~ _______________ ~ _______________ ~ ________________________ J

In this example, an unloaded data set is to be converted into the form of the
original indexed sequential data set •

• The EXEC Statement: specifies the program name (IEBISAM) and the LOAD
operation.

• The SYSUTl DD Statement: defines the input sequential (unloaded) data set.
The data set is the second data set on a 9-track magnetic tape volume •

• The SYSUT2 DD Statement: defines the output (indexed sequential) data set.
One cylinder of space is allocated for the ,data set on a 2311 Disk Storage
Drive.

r--~------------,
I//STEPA JOB 09#770,SMITH 1
1// EXEC PGM=IEBISAM,PARM=LOAD 1
I//SYSPRINT DD SYSOUT=A I
1//SYSUT1 DD DSNAME=UNLDSET,UNIT=2400,LABEL=(2,SL), I
1// DISP=(OLD,KEEP),VOLUME=SER=001234 1
1//SYSUT2 DD DSNAME=INDSEQ,UNIT=2311,'DISP=(,KEEP) ,SPACE=(CYL, (1», I
1// VOLUME=SER=111112,DCB=(DSORG=IS) I
1/* 1 L ___ ~ ___ - _________________________________ J

IEBISAM Example 4. Reconstructing an Indexed Sequential Data Set

The IEBISAM Program 391

•

IEBISAMExample 5

r---------T--------------------T---------------T---------------T------------------------,
I IData Set I I I I
I Operation I Organization lInput Device IOutput Device I Comments I
~---------+--------------------+---------------+---------------+------------------------~
IPRINTL IInput--IX SEQUENTIALIDISK - 2311 ISystem Output 11. Blocked input. I
I loutput--SEQUENTIAL I IDevice (PrinterI2. Output not converted. I
I I I I Assumed) I 1 L _________ ~ ____________________ ~ _______________ ~ _______________ ~ ________________________ J

In this example, the logical records of an indexed sequential data set are to
be printed on a system output device.

• The EXEC statement: specifies the program name and the PRINTL operation. The
output records are not converted to hexadecimal prior to printing.

• The SYSUTl DD Statement: defines the input indexed sequential data set. The
data set resides on a 2311 disk volume.

• TheSYSUT2 DD statement: defines the output (printed) sequential data set. A
logical record length (LRECL) of 121 bytes is assumed.

r---,
I//PRINT JOB 09#770,SMITH I
1// EXEC PGM=IEBISAM, PARM=' PRINTL, N' 1
I//SYSPRINT DD SYSOUT=A I
1//SYSUTl DD DSNAME=ISAM03,UNIT=2311,DISP=OLD, 1
1// VOLUME=SER=222222 1
1//SYSUT2 DD SYSOUT=A 1
1/* I L ___ J

IEBISAM Example 5. printing Logical Records From an Indexed sequential Data Set

392

The IEBEDIT Program

Program Applications

The IEBEDIT data set utility program can create an output data set
containing a selection of jobs or job steps~ At a later time, the data
set can be used as an input stream for job processing.

Input to the IEBEDIT program is obtained from a sequential data set.
The input data set can reside on any IBM supported input device (e.g.,
magnetic tape, direct access, or card reader). The program can select
JOB statements, JOBLIB statements, and job steps from the input data set
and can include them in the output data set. .

selectively Copying a Job stream

'I'he IEBEDIT program creates an output job stream by editing and
selectively copying a job stream provided as input. The program can
copy:

• An entire job or jobs, including JOB statements and associated
JOBLIB statements, if any •

• Portions of a job (i.e., selected job steps), including the JOB
statement and its associated JOBLIB statement, if any.

All selected JOB statements, JOBLIB statements, jobs, or job steps
are placed in the output data set in the same order as they exist in the
input data set.

When the IEBEDIT program encounters a selected job step containing an
input record having the characters •• * in columns 1 through 3, the
program automatically converts that record into a termination statement
(/* statement) and places it in the output data set.

Note: A JOBLIB statement is copied only if it follows a selected JOB
statement.

IEBEDIT Figure 1 shows a few examples of how the program can
selectively copy a job stream provided as input to the IEBEDIT program.

r--------------T---,
I INPUT I SOME OF THE POSSIBLE OUTPUTS I
~-------------+-------------T-------------T-------------T-------------~
I JOBA JOBA I JOBA I JOBB JOBC
I STEPA STEPA I STEPC I STEPG JOBLIB
I STEPB STEPB I JOBB I JOBC STEPJ
I STEPC STEPC I STEPE I JOBLIB
I STEPD I JOBC I STEPH
I JOBB I JOBLIB I STEPJ
I STEPE I STEPJ I
I STEPF I I
I STEPG I I
I JOBC I I
I JOBLIB I I
I STEPH I I
I STEPJ I I L ______________ ~ _____________ i _____________ i _____________ i _____________ J

IEBEDIT Figure 1. selectively Copying a Job Stream

The IEBEDIT Program 393

•

Inputs and Outputs

IEBEDIT Table 1 shows the major inputs to and outputs from the IEBEDIT
program.

IEBEDIT Table 1. Data sets Used (Input) and Produced (Output) by the
IEBEDIT Program

r-------T--,
IInputs IInput Data Set: This data set is a sequential data set I
I lconsisting of a job stream. The data set is used as source I
I Idata in creating an output sequential data set. I
I I I
I IControl Data Set: This data set contains utility control I
I I statements used to specify the organization of jobs and job I
J lsteps in the output data set. I
~-------+--~
IOutputslOutput Data set: This data set is a sequential data set I
I Iconsisting of a resultant job stream. I
I I I
I IMessage Data Set: This data set is a sequential data set I
I Iconsisting of: I
I I I
I I· A listing of applicable control statements. I
I l· A listing of the output data set (optional). I
I I· Error messages, if applicable. I L _______ ~ ___ J

ADDITIONAL OUTPUTS

The IEBEDIT program provides a return code to indicate the results of
program execution. The return codes and their interpretations are as
follows:

00 successful completion.

04 an error occurred. The output data set mayor may not be usable
as a job stream. Processing continues.

08 -- an unrecoverable error occurred while attempting to process the
input, output, or control data set. The job step is terminated.

Control
The IEBEDIT program is controlled by job control statements and utility
control statements. The job control statements are required to execute
or invoke the program and to define the data sets used and produced by
the program. The utility control statements are used to control the
functions of the program.

394

JOB CONTROL STATEMENTS

IEBEDIT Table 2 shows the job control statements necessary for the
execution or invocation of the IEBEDIT program.

IEBEDIT Table 2. Job Control Statements for the IEBEDIT Program
r---------T--,
I Statement I Usage I
t---------t-----------------------------------·-----------------------~
I JOB IThis statement initiates the job. I
I statement I I
I----------t--~
I EXEC IThis statement specifies the program name (PGM=IEBEDIT) or, I
Istatementlif the job control statements for the IEBEDIT program reside I
I lin a procedure library, the procedure name. I
~---------t--~
ISYSPRINT IThis statement defines a sequential message data set. The I
IDD Idata set can be written onto a system output device, a I
Istatementlmagnetic tape volume, or a direct access volume. I
t---------t--~
ISYSUT1 IThis statement defines the input data set. It can define a I
IDD Isequential data set on a card reader, a magnetic tape I
Istatementlvolume, or a direct acce~s device. I
~---------t---------------------~--------------------------------------~
ISYSUT2 IThis statement defines the output aata set. It can define a I
IDD Isequential data set on a card punch, a printer, a magnetic I
lstatementltape volume, or a direct access device. Space must be I
I lallocated for an output data set that is to reside on a I
I I direct access volume. I
t---------t--------~---~
ISYSIN IThis statement defines the control data set. The data set I
IDD Inormally is included in the input stream; however, it can I
I statement I alternatively be defined as being a member of a procedure I
I Ilibrary or as being a sequential data set existing somewhere I
I I other than in the input stream. I
~---------~--~
IThe blocksize for the SYSPRINT (message) data set must be a multiple I
lof 121. The blocksize for the SYSIN (control) data set must be a I
Imultiple of 80. Any blocking factor can be specified for these I
Iblocksizes. The SYSUT1 (input) and SYSUT2 (output) data sets can alsol
Ihave any blocking factor. I L ___ J

. The IEBEDIT Program 395

•

UTILITY CONTROL STATEMENTS

The IEBEDIT program is controlled through the use of an EDIT utility
control statement.

The EDIT Statement

The EDIT statement indicates which step or steps of a specified job in
the input data set are to be included in the output data set. Any
number of EDIT statements can be included in an operation, thus
includi'ng selected jobs in the output data set.

EDIT statements must be included in the same order as the input jobs
that they represent. If no EDIT statement is present in the control
data set, the entire input data set is copied.

r------'T---------T---,
I Name I Operation I Operand I
r------+---------+---~
I [name] I EDIT I [START=jobname] I
I I I I
I I I [lPOSITION!] I I I I TYPE= INCLUDE I
I I I EXCLUDE 'I
I I I r ({name} [{name }])] I I I I LSTEPNAME= name-name , name-name ,... I
I I I ' I
I I I [NOPRINT] I L ______ ~ _________ ~ ___ J

START=jobname
specifies the name of the input job to which the EDIT statement
applies.

If START is omitted and only one EDIT statement is provided, the
first job encountered in the input data set is processed.

If START is omitted from an EDIT statement other than the first
statement, processing continues with the next JOB statement found
in the input data set.

TYPE=POSITION
specifies that the output is to consist of a JOB statement, the job
step specified in the STEPNAME keyword, and all steps that follow
it. All job steps preceding the specified step are omitted from
the operation.

TYPE=INCLUDE
specifies that the output data set is to contain a JOB statement
and all job steps specified in the STEPNAME keyword.

TYPE=EXCLUDE
specifies that the output data set is to contain a JOB statement
and all jobs steps belonging to job except those steps specified in
the STEPNAME keyword.

If the TYPE keyword is omitted, TYPE=POSITION is assumed.

STEP NAME

396

With TYPE=POSITION: STEPNAME=name
specifies the first job step to be placed in the output data set.
Job steps preceding this step are not copied into the output data
set.

with TYPE=INCLUDE or TYPE=EXCLUDE:

STEPNAME=({~:::-name}[.{~:::-name}J)
specifies the names of job steps that are to be included in or
excluded from the operation. For example,
STEPNAME=<STEPA,STEPF-STEPL,STEPZ) indicates that job steps STEPA,
STEPF through and including STEPL, and STEPZ are to be included in
or excluded from the operation.

If STEPNAME is omitted, the entire input job whose name is
specified on the EDIT statement is copied. If no job name is
specified, the first job encountered is processed.

NOPRINT
specifies that the message data set is not to include a listing of
the output data set.

If NOPRINT is omitted, the resultant output is listed in the
message data set.

Note: Any JOBLIB DD statement that follows a selected JOB
statement is automatically copied into the output data set.

The IEBEDIT Program 397

•

IEBEDIT Examples

The following examples show some of the ways in which data sets to be used as job
streams can be constructed.

IEBEDIT Example 1

r-----------T-----------------------T---,
IOperation IInput Data Set contains I Comments I
~-----------+-----------------------+--~~
ICopy JOBA 1 JOBA 1. The input data set resides on a labeled 9-track I
linto the I STEPA (SOO bpi> magnetic tape volume. I
loutput datal STEPB 2. The output data set resides on a labeled 9-trackl
Iset. I STEPC (SOO bpi> magnetic tape volume. I
1 I STEPD I
1 I JOBB I
I I STEPE I
I I STEPF I
1 1 STEPG I
1 I JOBC I
I I STEPH I
I I STEPJ I L ___________ ~ _______________________ ~ ___ J

This example copies JOBA, including all of its job steps (A, B, C, and D), into
the output data set.

• The-SYSUT1 DD statement: defines the input data set. The data set resides on
a 9-track magnetic tape volume (001234) having standard labels.

• The SYSUT2 DD Statement: defines the output data set. The data set is to
reside as the first data set on a 9-track magnetic tape volume (001235) having
standard labels.

• The-SYSIN DD statement: defines the control data set, which follows in the
input stream.

• The EDIT Utility Control statement: indicates that JOBA is to be copied in
its entirety.

r---,
1//EDIT1 JOB 09#440,SMITH I
1// EXEC PGM=IEBEDIT I
I//SYSPRINT DD SYSOUT=A I
1//SYSUT1 DD UNIT=2400,DISP=(OLD,KEEP),VOLUME=SER=001234, I
1// DCB=(RECFM=F.LRECL=SO,BLKSIZE=80) I
1//SYSUT2 DD UNIT=2400,DISP=(NEW,KEEP),VOLUME=SER=001235, I
1// DCB={RECFMxF.LRECL=SO,BLKSIZE=80),DSNAME=OUTTAPE I
I//SYSIN DD * I
1 EDIT START=JOBA I
1/* I L ___ J

IEBEDIT Example 1. Placing a Job in an Output Data Set

39S

IEBEDIT Example 2

r-----------T-----------------------~--/

IOperation IInput Data set Contains I Comments I
~-----------+-----------------------+---~
Copy one JOBA 1. The input data set resides as the first or only I
job step STEPA data set on a labeled, 7-track (556 bpi) I
from each STEPB magnetic tape volume. I
of three STEPC 2. The output data set is to reside as the second I
jobs STEPD data set on a labeled, 7-track (556 bpi) I

JOBB magnetic tape volume. I
STEPE I
STEPF I
STEPG I

JOBC' I
STEPH I
STEPJ I L ___________ ~ _______________________ ~ ___ J

This example copies:

• The JOBA JOB statement and STEPC from that job.
• The JOBB JOB statement and STEPE from that job.
• The JOBC JOB statement and STEPJ from that job.

• The SYSU~'l DD statement: defines the input data set. The data set resides on
a 7-track magnetic tape volume (001234) having standard labels.

• The SYSUT2 DO Statement: defines the output data set. The data set is to
reside as the second data set on a 7-track magnetic tape volume (001235)
having standard labels.

• TheSYSIN DD statement: defines the control data set, which follows in the
input stream.

• The EDIT Utility Control Statements: copy the indicated JOB statements and
job steps.

r---·-------------------------------------,
I/IEDIT2 JOB 09#440,SMITH I
III EXEC PGM=IEBEDIT I
IIISYSPRINT DD SYSOUT=A I
IllSYSUTl DD UNIT=2400-2,DISP=(OLD,KEEP),VOLUME=SER=001234, I
III DCB=(DEN=1,RECFM=F,LRECL=80,BLKSIZE=80,TRTCH=C) I
IIISYSUT2 DD DSNAME=OUTSTRM,UNIT=2400-2,DISP=(~EW,KEEP),LABEL=(2,SL), I
III DCB=(DEN=1,RECFM=F,LRECL=80,BLKSIZE=80,TR~CH=C) I
IIISYSIN DD * I
I EDIT START=JOBA,TYPE=INCLUDE,STEPNAME=STEPC I
I EDIT START=JOBB,TYPE=INCLUDE,STEPNAME:STEPE I
, EDIT START=JOBC,TYPE=INCLUDE,STEPNAME:STEPJ I
1/* I L __ J

IEBEDIT Example 2. Placing Selected JOB Statements and Job Steps in an Output
Data Set

The IEBEDIT Program 399

•

IEBEDIT Example 3

r-----------T-----------------------T---,
IOperation IInput Data Set Contains 1 Comments I
~-----------+-----------------------+---~
Include and I JOBA 11. The input data set resides on a 2311 disk I
exclude jobl STEPA I volume. I
steps I STEPB ,12. The output data set is to reside as the first or I

I STEPC I only data set on an unlabeled, 9-track (SOO bpi) I
I STEPD I magnetic tape volume. I
I JOBB I I
I STEPE I I
1 STEPF I I
I STEPG I I
I JOBC 1 I
I STEPH 1 I
I STEPJ I I L ___________ ~ _______________________ ~ __ J

This example copies:

• The JOBB JOB statement and STEPG from that job.
• The JOBCJOB statement and STEPH from that job (STEPJ is excluded).

• The SYSUT1 DD statement: defines the input data set. The data set resides on
a 2311 disk volume (231100).

• The SYSUT2 DD statement: defines the output data set. The data set is to
reside as the first or only data set on an unlabeled 9-track (SOO bpi)
magnetic tape volume.

• The·SYSIN DD Statement: defines the control data set, which follows in the
input stream.

• The EDIT Statements: copy selected JOB statements and job steps.

r-----------------~---,
1//EDIT3 JOB 09#440,SMITH I
1// EXEC PGM=IEBEDIT I
I//SYSPRINT DD SYSOUT=A I
1//SYSUT1 DD DSNAME=INSET,UNIT=2311"DISP=(OLD,KEEP), I
1// VOLUME=SER=231100 I
1//SYSUT2 DD DSNAME=OUTTAPE,UNIT=2400,LABEL(N,NL), 1
1// DISP=(,KEEP),DCB=(DEN=2,RECFM=F,LRECL=SO,BLKSIZE=SO) I
I//SYSIN DD * I
1 EDIT START=JOBB,TYPE=INCLUDE,STEPNAME=STEPG I
1 EDIT START=JOBC,TYPE=EXCLUDE,STEPNAME=STEPJ I
1/* I L ___ J

IEBEDIT Example 3. Including and Excluding Job Steps

400

IEBEDIT Example 4

r-----------T-----------------------T---,
IOperation IInput Data Set Contains I Comments I
~-----------+-----------------------+---~---~
ICopy the JOBA 1. The input data set resides on a 2314 disk
Ilatter por- STEPA volume.
Ition of a STEPB 2. The output data set is to reside on a 2314 disk
Ijob stream. STEPC volume.
I STEPD
I STEPE
I STEPF
I STEPG
I STEPH
I STEPJ
I STEPK
I STEPL L ___________ ~ _______________________ ~ ___ _

This example copies the JOBA JOB statement, the job step STEPF, and all the
steps that follow it. Job steps STEPA through STEPE are not included in the
output data set.

• TheSYSUT1 DO Statement: defines the input data set. The data set resides on
a 2314 disk vqlume (231400).

• The SYSUT2 DD Statement: defines the output data set. The data set is to
reside on a 2314 disk volume (231401). Two tracks are allocated for the
output data set.

• TheSYSIN DO Statement: defines the control data set, which follows in the
input stream.

• The EDIT Statement: copies the JOB statement and job steps STEPF through
STEPL~

r---~-------------,
1//EDIT4 JOB 09#440,SMITH I
1// EXEC PGM=IEBEDIT 1 •
I//SYSPRINT DD SYSOUT=A 1 '
1//SYSUTl DD DSNAME=INSTREAM,UNIT=2314,DISP=(OLD,KEEP). I
1// VOLUME=SER=231400 1
1//SYSUT2 DO DSNAME=OUTSTREM,UNIT=2314.DISP=(.KEEP),SPACE=(TRK.2) I
1// VOLUME=SER=231401,DCB=(RECFM=F.LRECL=80,BLKSIZE=80) I
I//SYSIN DO * I
1 EDIT START=JOBA,TYPE=POSITION,STEPNAME=STEPF I
1/* I L ___ J

IEBEDIT Example 4. Placing the Latter Portion of a Job stream in the Output Data
Set

The IEBEDIT Program 401

IEBEDITExample 5

r-----------T-----------------------T---,
IOperation IInput Data Set ContainslComments I
~-----------+-----------------------+---~
ICoPY job, Job stream 11. All records in the defined input data set are ,
I control I I copied into the output data set; however, the I
Istatements I I record containing •• * in column 1-3 is converted I
Ifrom the I I to a termination (/*) statement in the output 1
,input , I stream. 1
1 stream. 1 12. The output data set resides on a labeled I
I' , 9-track magnetic tape volume. 1 L ___________ ~ _______________________ ~ ___ J

This example copies the entire input (SYSUT1) data set. The record containing
the characters •• * in columns 1-3 is converted to a /* statement in the output
data set.

• The SYSUT2 DD Statement: defines the output data set. The data set is to
reside as the first data set on a 9-track magnetic tape volume (001234).

• The SYSIN DD Statement: defines a dummy control data set. This statement
must precede the SYSUTl DD statement.

• The SYSUTl DD statement: defines the input data set, which follows in the
input stream. The job. is terminated when the termination statement (/*> is
encountered.

r---,
1//EDIT5 JOB I
1// EXEC PGM=IEBEDIT 1
I//SYSPRINT DD SYSOUT=A I
1//SYSUT2 DD DSNAME=OUTTAPE,UNIT=2400,DISP=(NEW,KEEP), I
1// VOLUME=SER=001234,DCB=(RECFM=F,LRECL=80,BLKSIZE=80) I
I//SYSIN DD DUMMY I
1//SYSUTl DD DATA 1
I//BLDGDGIX JOB I
1// EXEC PGM=IEHPROGM I
I//SYSPRINT DD SYSOUT=A I
1//DD1 DD UNIT=2311,VOLUME=SER=111111,DISP=OLD 1
I//SYSIN DD * I
I BLDG INDEX=A.B.C,ENTRIES=10,EMPTY I
1 •• * 1
1/* I L ___ J

IEBEDIT Example 5. Copying a Job From the Input Stream

402

The IEBUPDAT Program

The IEBUPDAT utility program incorporates both IBM- and user-generated
source language modifications into symbolic libraries. (A symbolic
library is a partitioned data set containing 80-byte records, such as
SYS1.PROCLIB, and SYS1.MACLIB.) It is executed or invoked with the
symbolic name IEBUPDAT. The program can:

• Add, copy, and replace members.
• Add, delete, replace, and renumber the records within an existing

membr.
• Assign sequence numbers to the records of a new member.

The IEBUPDAT program uses two input data sets. A DD statement named
SYSUT1 defines an old-master partitioned data set. The DD statement
named SYSIN defines a sequential data set containing all of the
transactions that are to be applied to the old master.

IEBUPDAT also uses two output data sets. A DD statement named SYSUT2
defines a new-master partitioned data set. The DD statement named
SYSPRINT defines a sequential data set that reflects either the latest
changes applied to the old master or the entire new master.

The input data set defined by SYSUT1 and the output data set defined
by SYSUT2 can contain either blocked or unblocked records with a logical
record length of 80 bytes. The output data set can have a blocking
factor different from the input data set.

Notes: If the DD statements SYSUT1 and SYSUT2 define the same data set,
the user can make modifications to the old master without creating a new
master.

If enough space cannot be allocated for reblocked output records, the
update request will be terminated.

EXEC statement Control Information

The IEBUPDAT program obtains control information through the EXEC
statement and the SYSIN data set. The EXEC statement for this program
should contain the parameter:

r--,
I PARM= (input, inhdr,intlr) I L ___ -J

input
specifies either NEW or MOD, as follows:

r-------T---,
IInput I Meaning I
~-------+---~
I NEW I The input consists of the SYSIN data set.* I
I MOD I The input consists of both the SYSIN and SYSUT1 data I
I I sets. I
~-------~---~
I*Note: The SYSUT1 data set need not be defined if NEW is I
I specified. I L ___ J

The IEBUPDAT Program 403

•

inhdr

intlr

If the input is any other value, 'an error is indicated and the
operation terminated. If an input is not specified, MOD is
assumed.

specifies the symbolic name of a routine that processes the user
header label on the SYSIN data set.

specifies the symbolic name of a routine that processes the user
trailer label ,on the SYSIN data set.

If a value is omitted from the PARM field, its absence must be
indicated by a comma (e.g., PARM=(input"intlr).

All other control information needed to execute the IEBUPDAT program
is entered through the SYSIN data set. This information is supplied on
a header statement and one more detail statements and ALIAS statements.
An ENDUP statement can be used to indicate the end of the SYSIN input to
this program. IEBUPDAT Figure 1 illustrates the order of the SYSIN
control statements. '

r--,
I
I
I ENDUP statement (optional)
I
I
I
I
I
I Detail statements
I
I
I Header statement L ___ _

IEBUPDAT Figure 1. SYSIN Control statements

The SYSIN data set can contain any number of header statements and ALIAS
statements, each followed by a group of detail statements and ALIAS
statements.

Header Statement

A header statement must be provided for each member to be processed.
The statements must be in binary collating sequence by member name. The
header statement contains:

r---------T--, I Columns I Contents I
~--------+----~-~----------------------~----------------------~-------~ I 1-2 I Period-slash (./) I
I 10 I IADD I I I REPL I
I I ~~ I
I I REPRO I
I 16 'I membername,level, I
I I source,list,ssi I L _________ ~ __ J

ADD

404

indicates that the named member is to be added in its entirety to
the new master.

REPL

CHNGE

RBPRO

indicates that the named member is being entered in its entirety as
a replacement for a member in the old master.

indicates that modifications are to be made within the named
member.

indicates that the entire named member is to be copied onto the new
master. Members are deleted from a library by being omitted from a
series of REPRO operations.

The following parameters, separated by commas, are written beginning
in column 16.

membername

level

specifies the name of the member to which the update transactions
are to be applied.

specifies the current run number, a 2-digit number from 00 to 99.

source

list

ssi

specifies either 0 or 1, as follows:
o - indicates user modifications.
1 - indicates IBM modifications.

specifies either 0 or 1, as follows:
o - indicates that the SYSPRINT data set is to contain 'only

modifications and control statements.
1 - indicates ~hat the SYSPRINT data set is to contain the entire

updated member and control statements.

specifies eight hexadecimal characters of new system status index
information that is to be placed in the directory of the new master
as the first four hexadecimal bytes of user data. If ssi
information is not specified, the user data is copied as it exists
in the directory of the old master. System status index
information is discussed in detail in the publication IBM
system/360 Operating System: Maintenance, GC27-6918.

Detail statements

The detail statements contain information to be applied to the member
that is named in the header statement. These statements and their
formats are discussed in the following paragraphs.

The NUMBR statement is used with CHNGE operations to change the
sequence n~er of one or more logical records within a member, and with
ADD and REPL operations to assign sequence numbers to the records within
new and replacing members. This statement affects only those sequence
numbers that fall in the specified range. A NUMBR statement contains:

The IEBUPDAT Program 405

•

r---------T--,
I Columns I Contents I
t---------+--~
I 1-2 I A period-slash (./). I
I 10-14 I NUMBR I
I 16-23 I The sequence number of the first record to be renumbered in
I ! CHNGE operations. This field is ignored in ADD and REPL
I I operations.
I 24 I A comma C,).
I 25-32 I The sequence number of the last record to be renumbered in
I I CHNGE operations. This field is ignored in ADD and REPL
I I operations.
I 33 I A coroma (,).
I 34-41 I The first new sequence number.
I 42 I A comma (,).
I 43-50 I The increment value of successive new sequence n~mbers.
~---------~---~--------------~
INote: All of the sequence numbers must be 8-digit, alphameric fields. I L __ J

The DELET statement is used to delete one or more logical records
within a member. It i-s used only in conjunction with' a CHNGE header
statement. A DELET statement contains:

r---------T--,
I Columns I Contents I
t---------+------~---~
I 1-2 I A period-slash (./). I
I 10-14 I DELET I
I 16-23 I The sequence number of the first logical record to be I
I I deleted. I
I 24 I A comma (,). I
I 25-32 I The sequence number of the last logical record to be I
I I deleted. I L _________ ~ __ J

The logical record statements contain the data to be added to, or
used to replace, existing logical records. They are used in conjunction
with ADD, REPL, or CHNGE header statements. The logical record
statements contain:

r---------T--,
I Columns -1 Contents I
t---------+--~
I 1-72 I The data to be added or used as a replacement. I
I 73-80 I The sequence number of the record. I L _________ ~ __ J

ALIAS Statements

The ALIAS statements create or retain aliases in the new master
directory. They can be used in conjunction with any of the header
statements. One ALIAS statement must be supplied for each alias. It
contains:

r---------T--,
I Columns I Contents I
t---------t--~
I 1-2 I A period-slash (./). I
I 10-14 I ALIAS I
I 16 I An alias name. I L _________ ~ __ J

406

Note: If provided, system status index information for the member name
is also inserted into the alias entry in the directory of the new
master.

£NDUP statement (Optional)

~'he ENDUP statement can be used to indicate the end of the SYSIN input
to this program; it serves as an end-of-data indication if there is no
other indication. The ENDUP statement follows the last group of SYSIN
control statements and contains:

r---------T--,
I Columns I Contents I
~---------+--i
I 1-2 I A period-slash (./). I
I 10-14 I ENDUP I L _________ i __ J

The IEBUPDAT Program 407

•

·IEBUPDAT Examples

IEBUPDAT Example 1 illustrates the cataloging of a set of job control statements
in the cataloged procedure library. PROC6 WILL BE ADDED TO THE CATALOGED
PROCEDURE LIBRARY DEFINED IN SYSUT2. The first record of this procedure will
contain the sequence number 00000010 with successive records numbered 00000020,
00000030, •••• The resulting cataloged procedure can be executed with an EXEC
statement specifying PROC=PROC6. The publication IBM system/360 Operating System:
Job Control Language Reference, GC28-6704, contains additional information on
cataloged procedures.

IEBUPDAT Example 2 illustrates the replacement of a member in the old master by
a new member. In this example, MBR7 (alias ALS7) will replace MBR7 of the library
named in SYSUT1. Successive records in the new member will contain the sequence
numbers 00000010, 00000020, ••••

r---, I Sample Coding Form I
~---------------------------~---------------~---~
//UPD1 JOB 09#170,D.P.BROWN
// EXEC PGM=IEBUPDAT,PARM=NEW
//SYSPRINT DD SYSOUT=A
//SYSUT2 DD (Parameters defining the cataloged procedure library.)
//SYSIN DD DATA
./ ADD PROC6,05,0,1
./ NUMBR 00000000,00000000,00000010,00000010
//STEP1 EXEC
//D01 DD

//STEP EXEC

1
/* I L ___ J

IEBUPDAT Example 1. Cataloging Job Control statements in the Cataloged Procedure
Library

r---,
I Sample Coding Form I
~--~--------~
1//UPD2 JOB 09#710,D.P.BROWN I
1// EXEC PGM=IEBUPOAT,PARM=MOD I
I//SYSPRINT DO SYSOUT=A I
1//SYSUT1 OD (Parameters defining the old master data set.) I
1/ /SYSUT2 DD (Parameters defini·ng the new master data set.) I
I//SYSIN DD * I
1./ REPL MBR7,06,0,1 1
1./ NUMBR 00000000,00000000,00000010,00000010 1
1 Logical Record Statements 1
1 I
I I
1./ ALIAS ALS7 I
1/* I L ___ J

IEBUPOAT Example 2. Replacing a Member of a symbolic Library

408

IEBUPDAT Example 3 illustrates the deletion of logical records 00000050 through
00000090 from a member of a symbolic library.

IEBUPDAT Example 4 illustrates the copying of a member from the old master onto
the new master.

IEBUPDAT Example 5 illustrates the creation of a three-member library. 'rhe
members are named LIBMEMB1, LIBMEMB2, and LIBMEMB3.

r---,
1 Sample Coding Form 1
~---~
1//UPD3 JOB 09#110.D.P.BROWN I
1// EXEC PGM=IEBUPDAT I
I//SYSPRINT DD SYSOUT=A 1
1//SYSUTl DD (Par~eters defining the old master data set.) I
1//SYSUT2 DD (Parameters defining the new master data set.) I
I//SYSIN DD * I
1./ CHNGE MBRS,13,0,1 I
1./ DELET 00000050,00000090 I
1./ ALIAS ALS5 I
1/* I L __ ~ ________________________________ J

IEBUPDAT Example 3. Deleting a Record From a Symbolic Library

r---,
1 Sample Coding Form 1
~----------~--~
1//UPD4 JOB 09#110,D.P.BROWN I
1// EXEC PGM=IEBUPDAT,PARM=MOD I
I//SYSPRINT DD SYSOUT=A I
1//SYSUTl DD (Parameters defining the old master data set.) I
1//SYSUT2 DD (Parameters defining the new master data set.) I
I//SYSIN DD * I
1./ REPRO MBRZ,12,0,1 I
1/* I L ________________________ ~ __ J

IEBUPDAT Example 4. Copying a Member of a Symbolic Library

r---,
1 Sample Coding Form 1
~---~
1//UPD5 JOB 09#110,D.P.BROWN ~
1// EXEC PGM=IEBUPDAT.PARM=NEW ~
I//SYSPRINT DD SYSOUT=A
1//SYSUT2 DD (Parameters for creating a master data set)
I//SYSIN DD *
./ ADD LIBMEMB1,01.0.1,1234ABCD

./

./

I
1/*

Logical Record statements

ADD LIBMEMB2,01,0,1,1234EFAB
Logical Record Statements

ADD LIBMEMB3,01.0,l,1234ABAB
Logical Record Statements

L __ ~

IEBUPDAT Example 5. creating a Three Member Library

The IEBUPDAT Program 409

IEBDG Examples

Program Applications
'I'he IEBDG (data generator) program provides a "pattern" of test data to
be used as a programming debugging aid. An output (test) data set,
containing records of any format, can be created through the use of
utility control statements, with or without input data. An optional
user exit is provided to pass control to a user routine to monitor each
output record before it is written. Sequential, indexed sequential, and
partitioned data sets can be used for input or output.

Generating Test Data

To generate test data, the user constructs a pattern of data that he can
analyze quickly for predictable results. Test data is generated through
the use of five utility control statements. (see IEBDG Table 1.)

IEBOG Table 1. Utility Control Statements
r---------------~--------T---,
I Statement I Use I
~------------------------+---~
I The DSO statement IRefers to DO statements defining input to and I
I loutput from the IEBDG program. One OSD I
I lstatement is included per "set" of utility I
I Icontrol statements. I
~------------------------+---~
I The FD statement I I
I I I
I The CREATE statement IWork together to define the content and I
I Inumber of records in a data set. I
I I I
I The REPEAT statement I I
~------------------------+---~
I The END statement I Signals the end of a set of utility control I
I I statements. Any number of sets can be I
I lincluded in a single Job step; each set I
I Idefines one data set. I L ________________________ ~ ___ J

USING THE DSD STATEMENT: The DSD statement marks the beginning of a set
of utility control statements. This statement indicates to the IEBDG
program the data sets that it will use for input and output. The DSD
statement must indicate one and only one output data set for each
application of the IEBOG program; any number of input data sets can be
indicated on the same statement if they are needed.

USING THE FD STATEMENT: The FD statement defines the contents of a
field. A defined field is used only if it is referred to, by name, by a
subsequent CREATE statement. IEBDG Figure 1 shows how the contents of
five fields are placed in buffer areas so that subsequent CREATE
statements can assign selected fields to specific output records.

The IEBDG Program 411

FD STATEMENTS
DEFINE FIELDS

defines field 1

Contents are placed in buffers so that subsequent
CREATE statements can selectively create output
records.

CREATE STATEMENT
CREATES OUTPUT RECORD
FROM SELECTED FIELDS

field 1 field 2 field 3 field 4

OUTPUT RECORD

field 1 field 4

IEBDG Figure 1. Defining and Selecting Fields for Output Records

Field Selection

field 5

A specific field within the input logicalrecord(s) may be selected for
use in the output record(s). This field is defined by the NAME, LENGTH,
STARTLOC, INPUT, and FROMLOC keywords of the FD statement.

INPUT
identifies the input data set containing the input records.

FROMLOC
specifies the field's offset (in bytes) from the beginning of the
input record.

LENGTH
specifies the length (in bytes) of the selected field (applicable
to both input and output).

STARTLOC

412

specifies where the field will be moved (offset in bytes from the
beginning of the output record).

NAME
allows the selected field to be given a symbolic name.

The field select operation is shown in IEBDG Figure 2 •

input record
....... ----------------...

/"_- output record
50 / 70 80 20 ',<40 80

~~~~~/~~~~ ~--~~----~ 

/ LENGTH (same os input fiele;!) 

FROMLOC STARTlOC 

IEBDG Figure 2. Field Selection Operation 

If the user does not specify a starting location in an FD statement, 
the starting location is the first available byte 6f an output record. 

IEBDG Figure 3 shows the addition of -field X to two different 
records. In record 1, field X is the first field referred to by the 
CREATE statement; therefore, field X begins in the first byte of the 
output record. In record 2, two fields, field A and field B, have 
already been referred to by a CREATE statement; field X, the next field 
referred to, begins immediately after field B. 

1 21 80 

Record 1 I
~ ~ -------------------------------, 

I .
. I: field X 

'--------~ - -- _ - - __________________________ J 

1 41 61 80 

Record 2 
If"" ---fi-e-'d-A---,----f-ie-Id-B ----r-----fi-e-'d-x--~ ~ ~ ~ ~ ~ ~ ~ ~ J 

IEBDG Figure 3. Default Placement of Fields Within an Output Record 

When the user defines the contents of a field, he decides: 

• What type of pattern -- IBM-supplied format or user-supplied picture 
-- he wishes to place initially in the defined field. 

• What action (modification), if any, is to be performed to alter the 
contents of the field after it is selected for each output record. 

IBM-Supplied Format: IBM supplies seven patterns. The user may choose 
one of them when he defines the contents of a field. These patterns 
are: 

• Alphameric 
• Alphabetic 
• Zoned decimal 
• Packed decimal 
• Binary number 
• Collating sequence 
• Random number 

IEBDG Table 2 shows the seven IBM-supplied formats. In this table, 
logical continuations within a pattern are shown by dotted lines (---). 
Repetition of a pattern is shown by a vertical bar (I). 

The IEBDG Program 413 

• 



All patterns except the binary and random number patterns will repeat 
themselves in a given field" provided that the defined field length is 
sufficient to permit repetition. For example, the alphabetic pattern 
is: 

ABCOEFGHIJKLMNOPQRSTUVWXYZ ABCDEFG---

The user can specify a starting character when defining an alphameric, 
alphabetic, or collating sequence field. For example, a 10-byte 
alphabetic field for which "H" is specified as the starting character 
would appear as: 

HIJKLMNOPQ. 

The same 10-byte alphabetic field with no specified starting character 
would appear as: 

ABCDEFGHIJ. 

The user can specify a mathematical sign when defining a packed decimal 
or binary number field. If no sign is specified, the field is assumed 
to be positive. 

IEBDG Table 2. IBM-supplied Formats 
r------------T----------------------------T----------------------------, 
I Type IExpressed in Hexadecimal IExpressed in Printable I 
I 1 I Characters I 
t------------+----------------------------+----------------------------~ 
I Alphameric ICl C2 C3---E9 FO---F9ICl--- IABC---ZO---9IABC--- I 
t------------+----------------------------+----------------------------~ 
lAlphabetic ICl C2 C3---E9ICl C2--- IABC---ZIABC--- I 
t------------+----------------------------+----~-----------------------~ 
I Zoned I FOFO---FOFl 100---01 1 
I decimal 1 I I 
t------------+----------------------------+----------------------------~ 
I Packed 10000---001C IN/A I 
I Decimal I (positive pattern requested) 1 I 
I 10000---0010 I I 
I I (negative pattern requested) I I 
t------------+----------------------------+----------------------------~ 
I Binary 100---01 IN/A I 
I number I (positive pattern requested) I I 
I I FF---FF I I 
1 I (negative pattern requested) I I 
t------------+----------------------------+-----~----------------------~ 
I Collating 140---F9 Ibc·«+I&!$*);,-/,%_>?:#@'=" I 
I Sequence I IA through I 
I I IZ 0 through 9 I 
t------------+--------------------------~-+----------------------------~ 
jRandom Irandom hexadecimal digits IN/A I 
I Number I I I 
t------------~----------------------------~----------------------------~ 
INote: A packed decimal or binary number is right justified in the. I 
Idefined field. I L _______________________________________________________________ ~ ______ J 

user-Supplied Picture: Instead of selecting an IBM-supplied format, the 
user can supply the IEBDG program with the picture he wishes to place in 
the defined field. The user can provide: 

414 



• An EBCDIC character string. 

• A decimal number to be converted to packed decimal by the IEBDG 
program. 

• A decimal number to be converted to a binary equivalent by the IEBDG 
program. 

When the user supplies an FD picture he must specify a picture length 
that is equal to or less than the specified field length. An EBCDIC 
picture is left-justified in a defined field; a decimal number that is 
converted to packed decimal or to binary is right-justified in a defined 
field. 

The user can initially load (fill) a defined field with either an EBCDIC 
character or a hexadecimal digit. For example, the 10-byte picture 
BADCFEHGJI is to be placed in a is-byte field. An EBCDIC "2" is to be 
used to pad the field. The result is BADCFEHGJI22222. (If no fill 
character is provided in the FD statement, the remaining bytes contain 
binary zeros.) Remember that the fill character, if specified, is 
written in each byte of the defined field prior to the inclusion of an 
FD picture or an FD format. 

Action: The IEBDG program can change the contents of a field in a 
specified manner. One of eight actions can be selected to change a 
field after its inclusion in each applicable output record. These 
actions are: 

• Ripple 
• shift left 
• Shift right 
• Truncate left 
• Truncate right 
• Fixed 
• Roll 
• Wave 

If no action is selected, or if the specified action is not compatible 
with the format, the "fixed" action is assumed by the IEBDG program. 

IEBDG Figure 4 shows the effects of each of the actions on a 6-byte 
alphabetic field. Note that the roll and wave actions are applicable 
only when a user pattern is supplied. In addition, the result of a 
ripple action depends on which type of pattern -- IBM or user supplied 
-- is present. 

The user can also indicate that a numerical field is to be modified 
after it has been referred to n times by a CREATE statement or 
statements; that is, after n cycles, a modification is to be made. A 
modification will add a user-specified number to a field. 

USING THE CREATE STATEMENT: The CREATE statement constructs an output 
record by referring, by name, to previously defined fields and/or by 
providing a picture to be placed in the record. The user can generate 
multiple records with a single CREATE statement. 

When defining a picture in a CREATE statement, the user must specify its 
length and starting location in the output record. The specified length 
must be equal to the number of specified EBCDIC or numeric characters. 
(When a specified decimal number is converted to packed decimal or 
binary, it is automatically right-justified.) 

The IEBDG Program 415 

• 



Ripple -- user -
supplied picture 

A B C D E F 

B C D E F A 

C D E F A B 

D E F A B C 

E F A B C D 

F A B C D E 

A B C D E F 

B C D E F A 

Truncate left 

A B C D E F 

B C D E F 

C D E F 

D E F 

E F 

F 

A B C D E F 

B C D E F 

Ripple -- IBM
supp Ii ed format 

A B C D E 

B C D E F 

C D E F G 

F 

G 

H 

D E F G H I 

E F G H I J 

F G H I J K 

G H I J K L 

H I J K L M 

Truncate right 

A B C D E F 

A B C D E 

A B C D 

A B C 

A B 

A 

A B C D E F 

A B C D E 

Wave -- user -
supplied picture 

A A A 

A A A 

A A A 

A A A 

A A A 

A A A 

A A A 

A A A 

I~BDG Figure 4. IEBDG Actions 

416 

Shift left 

A B C D E F 

B C D E F 

C D E F 

D E F 

E F 

F 

A B C D E F 

B C D E F 

Fixed 

A B C D E F 

A B C D E F 

A B C D E F 

A B C D E F 

A B C D E F 

A B C D E F 

A B C D E F 

A B C D E F 

Shift right 

A B C D E 

A B C D 

A B C 

A B 

A 

A B C D E 

A B C D 

Roll -- user - . 
supplied picture 

A A 

A A A 

A A A 

A A A 

A A A 

A A A 

F 

E 

D 

C 

B 

A 

F 

E 

A 

A A A 

A A A 



IEBDG Figure 5 shows three ways in which output records can be created 
from utility control statements. 

Previously d~fjned fields 

2 3 4 5 

1. Fields only 

Output records 
CREATE 

3 5 

2. Fields & picture 

CREATE 

2 3 pic 

3. Picture only 

CREATE 
picture 

IEBDG Figure 5. Creating Output Records W"ith Utility Control 
statements 

As an alternative to creating output records from utility control 
statements alone, the user can provide input records which can be 
modified and written as output records. Input records can be provided 
directly in the input stream, or in a data set. 

As previously mentioned, the CREATE statement is responsible for the 
construction of an output record. An output record is constructed in 
the following order: 

1. A fill character, specified or default (binary zero), is initially 
loaded into each byte of the output record. 

2. An input record, if any is provided, is placed left-justified in 
the output record. 

The IEBDG Program 417 



3. FD fields, if any, are placed in the output record in the order of 
the appearance of their names in the CREATE statement. 

4. A CREATE statement picture, if any, is placed in the output record. 

The IEBDG program provides a user exit so that the user can provide his 
own routine to analyze or further modify a newly constructed record 
before it is placed in the output data set. 

USING THE REPEAT STATEMENT: The REPEAT statement indicates how many 
times a CREATE statement or a group of CREATE statements is to be used 
repetitively by the IEBDG program. The REPEAT statement precedes the 
CREATE statement(s) to which it applies. 

IEBDG Figure 6 shows a group of five CREATE statements repeated n times. 

USING THE END STATEMENT: The END statement must be used to signal the 
end of a set of utility control statements. Each set of control 
statements can pertain to: 

• Any number of input data sets • 

• A single output data set. 

A set of utility control statements contains one DSD statement, any 
number of FD, CREATE, and REPEAT statements, and one END statement when 
the INPUT keyword is omitted from the FD card. 

When selecting fields from an input record (FD INPUT=ddname), the 
field must be defined by an FD statement within each set of utility 
control statements. In this case, defined fields for field selection 
are not usable across sets of utility control statements. The FD card 
may be duplicated and used in more than one set of utility control 
statements within the job step. 

CREATE (4) 

CREATE (3) 

CREATE (2) 
CREATE (1) 

REPEAT 

IEBDG Figure 6. Order of Repetition Due to the REPEAT statement 

418 

I 
CREATE (1) 
CREATE (2) 
CREATE (3) 
CREATE (4) 
CREATE (5) 

• • • 
CREATE (1) 
CREATE (2) 
CREATE. (3) 
CREATE (4) 
CREATE (5) 



Inputs and Outputs 

IEBDG Table 3 lists the major inputs to and outputs from the IEBDG 
program. 

IEBDG Table 3. Data sets Used (Input) and Produced (Output) by the 
IEBDG Program 

r---------T-----------~------------------------------------------------, 
I I Input Data set·(s): The input data set (or sets) contain I 
I Irecords that are to be used in the construction of an output 1 
I I data set or partitioned data set member. The input data I 
I Iset(s) are optional; that is, output records can be created I 
I Inputs lentirely from utility control statements. 1 
I IControl Data Set: This data set contains utility control I 
I I statements, which are used to determine the contents of the I 
I loutput records. The control data set can contain any number I 
I lof sets of utility. control statements. I 
~---------+------------------------------------------------------------~ 
I IMessage Data Set: This data set contains informational I 
I I messages, the contents of applicable utility control I 
I I statements, and error messages, if any. I 
I outputs loutput (Test) Data Set: An output data set is created as ·1 
I Ithe result of an IEBDG operation. One output data set is I 
I I'created by each set of utility control statements included I 
I lin the job step. 1 
r---------.L--------------------------·----------------------------------~ 
I Note: Input and Output data sets may be sequential, indexed I 
Isequential, or par:titioned data set members. (BDAM is not supported.) I L ______________________________________________________________________ J 

ADDITIONAL OUTPUTS 

The IEBDG program produces a return code to indicate the results of 
program execution. The return codes and their' interpretations are as 
follows: 

00 successful completion. 
04 a user routine returned a code of 16 to the IEBDG program. 

(The job step is terminated at the user's request.> 
08 an error occurred while processing a set of utility control 

statements. No data is generated from the point of the error. 
Processing continues normally with the next set of utility 
control statements, if any. 

12 an error occurred while processing an input or output data 
set. The job step is terminated. 

16 an error condition occurred from which no recovery was 
possible. The job step is terminated. 

Control 
The IEBDG program is controlled by job control statements and utility 
control statements. The job control statements are used to: 

• Execute or invoke the program. 
• Define the input data sets or partitioned data set members. 
• Define the message data set. 
• Define the output data sets or partitioned data set members. 

Utility control statements are used to control the functions of the 
program and to define the contents of the output records. 

The IEBDG Program 419 



JOB CONTROL STATEMENT INVOKING THE IEBDG PROGRAM 

IEBDG Table 4. Job Control Statements for the IEBDG Program 
(Part 1 of 2) 

r----------T-----------------------------------------------------------, 
IStatement r Usage I 
t----------+-----------------------------------------------------------i 
IJOB I This statement initiates the job. I 
Istatement I I 
~----------+-----------------------------------------------~-----------i 
I EXEC I This statement specifies the program name (PGM=IEBDG) or, 
Istatement I if the job control statements for the program reside in a 
I I procedure library, the procedure name. The EXEC statement 
I I can include an optional PARM parameter to specify the 
I I number of lines to be printed between headings in the 
t I message data set. 
I I 
I I 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1 I 

PARM='LINECNT=nnnn' (where nnnn is a 4-digit 
decimal number) 

specifies that nnnn number of lines (0000 to 9999) are to 
be pr1nted per page of output listing. If PARM is 
omitted, 58 lines are printed between headings (unless a 
channel 12 punch is encountered in the carriage control 
tape, in which case a skip to channel 1 is performed and a 
heading is printed). 

Note: If the IEBDG program is invoked, the line count 
option can be passed in a parameter list that is referred 
to by the option addr subparameter of the LINK or ATTACH 
macro instruction. In addition, a page count can be 
passed in a 6-byte parameter list that is referred to by 
the bdingaddr subparameter of the LINK or ATTACH macro 
instruction~ For a discussion of linkage conventions, 

I I refer to "Appendix B: Invoking Utility Programs." 
~----------+-----------------------------------------------------------i 
ISYSPRINT I This statement defines a sequential message data set. The I 
IDD I data set can be written on a system output device, a I 
Istatement I magnetic tape volume, or a direct access volume. (This DDI 
I I statement should be present for each execution or I 
I I invocation of the IEBDG program.) If it is omitted, no I 
I I messages will be written. I 
t----------+-----------------------------------------------------------~ 
ISYSIN I This statement defines the control data set, which con- I 
I DD I tains the utility control statements and, optionally, I 
Istatement I input records. The data set normally resides in the input I 
I I stream; however, it can alternatively be defined as being I 
I I a sequential data set or a member of a library of I 
I I partitioned members. I 
t----------~----------------------------------------~-------------~----~ 
//seqinset DD DSNAME=setname,UNIT=xxxx,DISP=(OLD,KEEP), CI 

VOLUME=SER=xxxxxx,DCB(applicable subparameters, CI 
including DSORG),LA~EL=( ••• , ••• ) . I 

+~ _____ ~r-for magnetic tape only I 
I 

'I'his DD statement defines an optional sequential or indexed sequential I 
data set used as input to the IEBDG program. The data set can reside I 
on a magnetic tape volume or on ~ direct access volume. Any number ofl 
these statements (each having a ddname different from all other I 
ddnames in the job step) can be included in job step. Each DD I 
statement is subsequently referred to by a DSD utility control I 
statement. I L _____________________________________________________________________ -J 

(Part 1 of 2) 

420 



IEBDG Table 4. Job Control Statements for the IEBDG Program 
(Part 2 of 2) 

r----------------------------------------------------------------------, 
I Statement Usage I 
~----------------------------------------------------------------------~ 
I//parinset DD DSNAME=setname(membername),UNIT=xxxx,DISP=(OLD, CI 
1// KEEP),VOLUME=SER=xxxxxx,DCB=(applicable I 
I subparameters) I 
i I 
'This DD statement defines an 'optional input partitioned data set I 
Imember residing on a direct access volume. Any number of these I 
Istatements (each having a ddname different from all other ddnames in I 
lthe job step) can be included in the job step. I 
I , 
IThe DD statement is referred to by a DSD utility control statement. I 
~----------------~-.----------------------------------------------------~ 
I//seqout DD DSNAME=setname, UNIT=x.xxx, VOLUME=S1!;R=xxxxxx, C 

1
1// DISP=(,KEEP),DCB=(applicable subparameters, 
I including DSORG) 
1// LABEL=( ••• , ••• ),SPACE=(applicable subparameters) 

t l magnetic tape on~ direct access only 
I 
IThis statement defines an output (test) sequential or indexed 
Isequential data set. It can define a data set on magnetic tape 
,volume, a card punch, a printer, or a direct access volume. Any 
Inumber of "seqout" DD statements can be included per job step; 
I however, only one seqout (or parout) statement is applicable per set 
lof utility control statements. . 
I 
lNote: On an MVT system, the ddname of this statement should not be I 
ISYSPRINT. I 
~----------------------------------------------------------------------~ 
I//parout DD DSNAME=setname (membername), UNIT=xxxx, CI 
i / / DISP= (.,KEEP), VOLUME=SER=xxxxxx,DCB= (applicable C i 
1// subparameters, including DSORG), SPACE=(applicable 
: subparameters} t 
I Lused only when creating the first member to be 
I placed in a partitioned data set. 
1 
IThis statement defines an optional output partitioned data set member 
Ito be created and placed on a direct access volume. Any nurober of 
l"parout" DD statements -- each DD statement referring to the same or 
Jto a different data set -- can be included per job step; however, only 
lone parout(or seqout) statement is applicable per set of utility 
lcontrol statements. 
~----------------------------------------------------------------------~ 
1 Notes: The SYSPRINT (message) data set and the SYSIN (control) data I 
lset can have any blocking factor. I 
I I 
IBoth input and output data sets can contain fixed-length, I 
I variable-length, or undefined-length records. Input data set record I 
Itype must agree with the 'output data set record type. I 
I I 

I I IMPORTANT: The DSORG subparameter must be included in the DCB I 
Isubparameters of the output DD cards. I 
I I 
lRefer to the publication IBM System/360 Operating System: Supervisor I 
land Data Management Services, GC28-6646, for information on estiroatinql 
lspace allocations. I 
1 I 
IRefer to the IEBDG examples for typical uses of the job control I 
I statements. I L-_____________________________________________________________________ J 

The IEBDG Proqram 421 

• 



UTILITY CONTROL STATEMENTS 

The IEBDG program is controlled by five utility control statements: 

• The DSD statement. 
• The FD statement. 
• 'Jlhe CREATE statement. 
• The REPEAT statement. 
• The END statement. 

The DSD statement 

The DSD statement marks the beginning of a set utility control 
statements. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------t-----------------------------------------------------~ 
I [namellDSD IOUTPUT=(ddname) I 
I I J [INPUT=(ddname, ••• )] I L ______ i _________ i _____________________________________________________ J 

OUTPUT=(ddname) 
specifies the ddname of the DD statement defining the output data 
set. The ddname must be enclosed in parentheses. 

INPUT=(ddname, •• ~} 
specifies the ddname of a DD statement defining a data set used as 
input to the program. Any number of data sets can be included as 
input -- that is, any number of ddnames referring to corresponding 
DD statements can be coded. Whenever ddnames are included on a 
continuation card, they must begin in column four. 

Note: The ddname SYSIN must not be coded in the INPUT keyword. 

The FD (Field Definition) Statement 

The FD statement defines the contents and length of a field that will 
subsequently be used by a CREATE statement (or statements) in the 
formation of output record (or records). 

r------T---------T-----------------------------------------------------, 
I Name I operation I Operand I 
~------+---------+-----------------------------------------------------~ 
I name IFD 
I I 
j I 
I I 
I I 
I I 
I I 
I I 
I I 
I 1 
I I 
I I 
I I 

NAME=name 
LE~GTH=length-in-bytes 
[STARTLoC=starting-byte-locationl 

[
FILL={ , character' }] 

X'2-hexadecimal-digits' 
[FORMAT=pattern[,CHARACTER=characterl] 

[ l
' character-string' IJ 

PICTURE=length, P 'decimal-number , 
B'decimal-number' 

[SIGN=signl 
[ACTION=actionl 
[INDEX~number[,CYCLE=numberl [,RANGE=nuwberJJ 
[INPUT=ddnamel 

I I [FROMLOC=numberl L ______ i _________ i _____________________________________________________ J 

NAME=name 
specifies the name of the field defined by this FD statement. 

422 



LENGTH=length-in-bytes 
specifies the length (in bytes) of the defined field. 

STARTLOC=starting-byte-location 
specifies a starting location<within all output records using this 
field) in which a field is to begin. For example, if the first 
byte of an output record is chosen as the starting location, the 
keyword is coded STARTLCC=li if the tenth byte is chosen, 
STARTLOC=10 is coded, etc. 
If the STARTLOC keyword is omitted, the field will begin in the 
first available byte of the output record (determined by the order 
of specified field names in the applicable CREATE statement). 

Note: For V-type records the starting location is the first byte 
after the length descriptor. 

FILL='character' 
specifies an EBCDIC character which is to be placed in each byte of 
the defined field prior to any other operation in the construction 
of a field. 

FILL=X'2-hexadecimal-digits' 
specifies two hexadecimal digits (for example FILL=X'40', or 
FILL=X'F}") to be placed in each byte of the defined field prior to 
any other operation in the construction of a field. 

If neither FILL='character' nor FILL=X'2-hexadecimal-digits' is 
coded binary zeros are placed initially ill the field. 

FORMAT=pattern 
specifies an IBM supplied pattern that is to be placed in the 
defined field. The patterns are: 

FORMAT=AN 
FORMAT=ZD 
FORMAT=PD 
FORMAT=CO 
FORMAT=BI 
FORIv"JAT=AL 
FORMA'l'=RA 

alphameric. 
zoned decimal. 
packed decimal. 
collating sequence. 
binary. 
alphabetic. 
random binary nuwber. 

If both the FORMAT and the PICTURE keywords are omitted, the 
specified FILL character appears in each byte of the defined field. 

CHARACTER=character (used only with the FORMAT keyword) 
specifies the starting character of a field. For example, if 
FORMAT=AL and CHARACTER=F are specified for a lO-byte field, the 
result is: 

FGHIJKLMNO 

If CHARACTER=character is omitted, the starting character is as 
shown in IEBDG Table 2. 

{

'Character-string,} 
PICTURE=length, P'decimal-number' 

B'decimal-number' 
specifies the length and contents of a user-supplied field (FD) 
picture. 

length: specifies the number of characters in the FD picture. 

The IEBDG Program 423 

• 



'character-string': specifies an EBCDIC character string that is 
to be placed in the defined field. The character string is 
left-justified in the field. A character string may be broken in 
column 71 and must be continued in column 4. (Note that double 
quotation marks must not be coded to represent a single quotation 
mark within a character string.) 

P'decimal-number': specifies a decimal number that is to be 
converted to a packed decimal equivalent and placed right-justified 
in the defined field. 

B'decimal-number': specifies a decimal number that is to be 
converted to a binary equivalent and placed right-justified in the 
defined field. In all cases the nurober of characters within the 
quotation marks must equal the number specified in the length 
subparameter. 

If both the PICTURE and the FORMAT keywords are omitted, the FILL 
character appears in each byte of the defined field. 

SIGN=sign 
specifies a mathematical sign (SIGN=+ or SIGN=-). This keyword is 
used when defining a packed decimal or binary number field. 

If the SIGN keyword is omitted, the sign is assumed to be positive. 

ACTION=action 
specifies that the contents of a defined field be altered after the 
field's inclusion in an output record. The actions are: 

ACTION=SL 
ACT ION=SR 
ACTION=TL 
ACTION=TR 
ACTION=RO 
ACTION=WV 
ACTION=FX 
ACT ION=RP 

shift left. 
shift right. 
truncate left. 
truncate right. 
roll. 
wave. 
fixed. 
ripple. 

If the ACTION keyword is omitted, the fixed (FX) action is assumed. 

INDEX=number 
specifies a number to· be added to this field whenever a specified 
number of records have been written. (The number of records is 
specified in the CYCLE keyword.) 

If the INDEX keyword is omitted, no indexing is performed. 

CYCLE=number (Used only with the INDEX keyword) 
specifies a number of output records (to be written as output or 
made available to an exit routine) that are treated as a group by 
the INDEX keyword. Whenever this field has been used in the 
construction of the specified number of records, it is modified as 
specified in the INDEX keyword. For example, if CYCLE=3, output 
records might appear as 111 222 333 444 etc. 

If the CYCLE keyword is omitted and the INDEX keyword is coded, a 
CYCLE value of 1 is assumed; that is, the field is indexed after 
each inclusion in a potential' output record. 

RANGE=number (Used with the INDEX keyword) 

424 

specifies an absolute value which the contents of this field can 
never exceed. 



If an INDEX operation attempts to exceed the specified absolute 
value, the contents of the field as of the previous INDEX operation 
are used. 

INPUT=ddname 
specifies the ddname for the input data set. 

FROMLOC=number 
specifies the location of the selected field within the input 
logical record. The number represents the offset (in bytes) from 
the beginning of the input record. (For V-type records, the 
significant data begins on the first byte after the four-byte 
length descriptor.) 

Note: Some of the FD keywords do not apply .when certain formats or 
pictures are selected by the user; for example, the INDEX, CYCLE, RANGE, 
and SIGN keywords are used only with numeric fields. IEBDG Figure 7 
shows which IEBDG keywords can be used with the applicable format or 
picture chosen by the user. 

FORMAT 

* Zoned decimal numbers (ZD) do not include a sign. 

I 
I 
I 
I 
I 
I 
I 
I 
I 

-.l 
KEYWORDS 

INDEX 
CYCLE 
RANGE 
SIGN* 

ACTION 

SL 
SR 
TL 
TR 
FX 
RP 
WV 
RO 

IEBDG Figure 7. Compatible Operations 

PICTURE 

EBCDIC 

The IE.ciDG Program 425 



The CREATE statement 

The CRBATE statement defines the contents of a record (or records) to be 
made available to a user routine or to be written directly as an output 
record (or records). 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+-----------------------------------------------------~ 
1 [name] CREATE I [QUANTITY=number] 
I I 
I [FILL={'character' }] 
I X'2-hexadecimal-digits' 

[
INPUT={ddname }] 

. SYSIN[(cccc)] 

[ {

"Character-string,}] 
PICTURE=length,startloc, P'decimal-number' 

B'decimal-number' 

[ {
name }] NAME= (narne~, ••• ,namen) 
(name1, (COPY=number,name2,name3'···) 

[EXIT=routinename] L ______ ~ _________ ~ _____________________________________________________ J 

QUANTITY=number 
specifies the number of records that this CREATE statement is to 
generate. 

If the QUANTITY keyword is omitted, one record is created unless 
the INPUT keyword is also coded, in which case the number of 
records created is equal to the number of remaining input records 
to be processed plus the generated data up to the specified number. 

FILL='character' 
specifies an EBCDIC character which is to be placed in each byte of 
the output record prior to any other operation in the construction 
of record. 

FILL=X'2-hexadecimal-digits' 
specifies two dexadecimal digits (for example, FILL=X'40', or 
FILL=X'FF')to be placed in each byte of the output record prior to 
any other operation in the constructicn of the record. 

If neither FILL='character' nor FILL=X'2-hexadecirnal-digits' is 
coded, binary zeros are placed initially in the output record. 

INPUT={ddname } 
SYSIN [(cccc)] 

426 

defines an input data set whose records are to be used in the 
construction of output records. 

INPUT=ddname: specifies the ddname of a DD statement defining an 
input data set. 

INPUT=SYSIN[(cccc)]: indicates that the SYSIN data set (input 
stream) contains records (other than utility control statements) to 
be used in the construction of output records. If INPUT=SYSIN or 
INPUT=SYSIN[(cccc)] is coded, the input records follow this CREATE 
statement (unless the CREATE statement is in a REPEAT group, in 
which case the input records follow the last CREATE statement of 
the group). When INPUT=SYSIN is coded, the input records are 



delimited from any additional utility control statements by a 
record containing $$$E in columns 1 through 4. 

If INPUT=SYSIN[(cccc)] is coded, the input records are delimited by 
a record containing "from one to four EBCDIC characters beginning in 
column 1 (cccc represents any combination of from one to four 
EBCDIC characters). 

If neither INPUT=ddname nor INPUT=SYSIN[(cccc)] is coded, the 
output record(s) is created entirely from utility control 
statements. 

CAUTION: If the INPUT keyword is coded, the QUANTITY keyword 
should also be coded, unless the remainder of the input records are 
all to be process"ed by this CREATE statement. 

PICTURE=length,startloC'{'Chara.cter~string,} 
P'decimal-number' 
B'decimal-number' 

specifies the length, starting byte, and contents of a 
user-supplied picture (CREATE statement picture). 

length: specifies the number of bytes that the picture will 
occupy. 

startloc: specifies a starting byte (within any applicable output 
record) in which the picture is to begin. 

'character-string': specifies an EBCDIC character string that is 
to be placed in the applicable record(s). The character string is 
left-justified; that is, it begins in the defined starting byte. A 
character string may be broken in column 71 and must be continued 
in column 4. 

P'decimal-number': specifies a decimal number that is to be 
converted to a packed decimal equivalent and placed right-justified 
(within the boundaries of the defined length and starting byte) in 
the output record(s). 

B'decimal-number': specifies a decimal number that is to be 
converted to a binary equivalent and placed right-justified (within 
the boundaries of the defined length and starting byte in the 
output record (s) ." 

If both the PICTURE and the NAME keywords are omitted, the FILL 
character specified in the CREATE statement appears in each byte of 
the applicable output record(s). 

(name1,··.,namen> 
(name1,(COPY=number,name2,name3,··.) 

NAME= {name } 

specifies the name or names of previously defined fields to be 
included in the applicable output record(s). 

(names, ••• ): specifies the name or names of a field or fields to 
be included in the applicable output record(s). Each field is 
included in an output record in the order in which its name is 
encountered in the CREATE statement. 

COPY=nurnber: indicates that all fields named in the inner 
parentheses (maximum of twenty> are to be treated as a group and 
included the specified number of times in each output record 
produced by this CREATE statement. Any number of sets of inner 
parentheses can be included with the NAME keyword; however, sets of 

The IEBDG Program 427 



parentheses cannot be imbedded. WithineaGh set of inner 
parentheses, COPY=number must appear before the name of any field. 

If both the NAME keyword and the PICTURE keyword are omitted, the 
FILL character specified in the CREATE statement appears in each 
byte of the applicable output record(s). 

EXIT=routinename 
specifies the name of a user routine that is to receive control 
from the IEBDG program prior to the writing of each output record. 
After processing each potential output record, the user routine 
provides a return code to instruct the IEBDG program how to handle 
the output record. The user codes are: 

00 write the record. 

04 do not write this record. DO not count the skipped record 
as a generated output record; however, continue the 
program action as though a record was written. 

Note: If skips are requested through user exits and input 
records are supplied, each skip will cause an additional 
input record to be processed in the generation of output 
records; for example, if a CREATE statement specifies that 
ten output records are to be generated and a user exit 
indicates that two records are to be skipped, 12 input 
records will be processed. 

12 -- bypass the processing of the remainder of this set of 
utility control statements. Continue processing with the 
next DSD statement. 

16 halt all processing. 

Note: Standard conventions are used when an exit routine is loaded 
and when the user returns control to the IEBDG program. Refer to 
Appendix A for details of register contents at these times. 

The REPEAT statement 

The REPEAT statement specifies the number of times that a following 
CREATE statement or group of CREATE statements is to be used 
repetitively in the generation of output records. 

r------T---------T-------------------,----------------------------------, 
I Name I Operation I Operand I 
~------+---------+-----------------------------------------------------~ 
I [name 1 I REPEAT I QUANTITY=number(,CREATE=number] I L ______ ~ _________ ~ _____________________________________________________ J 

QUANTITY=number 
specifies the number of times the defined group of CREATE 
statements is to be used repetitively. This number cannot exceed 
65535. 

CREATE=number 

428 

specifies the number of following CREATE statements to be included 
in the group. 

If the CREATE keyword is omitted, only one CREATE statement is 
repeated. 



The END statement 

The END statement signals the end of a set of utility control 
statements. 

r------T---------------------------------------------------------------, 
I Name I Operation I 
~------+---------------------------------------------------------------~ 
I [namellEND I L ______ ~ _______________________________________________________________ J 

The lEBDG Program 429 

• 



IEBDG Examples 

The following examples illustrate some of the uses of the IEBDG program. 

IEBDG Example 1 

r-----------T------------------T---------------T---------------T------------------------, 
I I Data Set I Input I Output I I 
IOperation I Organization I Device I Device I Comments I 
~-----------+~-----------------+---------------+--~------------+------------------------~ 
IP]ace IInput-SEQUENTIAL ITAPE- 9-track ITAPE- 9-track, 11. Blocked input I 
I binary IOutput-SEQUENTIAL I unlabeled I unlabeled I and output. I 
Izeros in 1 I I I I 
iselected I I I I I 
I fields 1 I I I I L ___________ ~ ________ ~ _________ ~ _______________ ~ _______________ ~ ________________________ J 

In this example, binary zeros are to be placed in two fields of records copied 
from a sequential data set. After the operation, each record in the copied data 
set (OUTSET) contains binary zeros in locations 20-29 and 50-59. 

• The SEQIN DD statement: defines an input sequential data set (INSET). The 
data set was originally written on a 9-track, unlabeled magnetic tape volume. 

• The SEQOUT DD Statement: defines the test data set (OUTSET). The output 
records are identical to the input records, except for locations 20-29 and 
50-59, which contain binary zeros at the completion of the operation. 

• The SYSIN DD Statement: defines the cont~ol data set, which follows in the 
input stream. 

• TheDSD Utility Control Statement: marks the beginning of a set of utility 
control statements and refers to the DD statements defining the input and 
output data sets. 

• The FD Utility Control Statements: 
FIELD2) that contain binary zeros. 
50th bytes of each output record. 

create two 10-byte fields (FIELD1 and 
The fields are to begin in the 20th and 

• The CREATE Utility Control Statement: constructs 100 output rcords in which 
the contents of previously defined fields (FIELDl and FIELD2) are placed in 
their respective starting locations in each of the output records. Input 
records from data set ~NSET are used as the basis of the output records. 

• The END Utility Control Statement: signals the end of a set of utility 
control statements. 

r--------------------~------------------------------------------------------------------, 
I//CLEAROUT JOB "MSGLEVEL=l 
1// EXEC PGM=IEBDG 
I//SYSPRINT DD SYSOUT=A 
I//SEQIN DD DSNAME=INSET,UNIT=2400,DISP=(OLD,KEEP),LABEL=(,NL), 
1// VOLUME=SER=240000,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) 
J//SEQOUT DD DSNAME=OUTSET,UNIT=2400,VOLUME=SER=240001,LABEL=(,NL), 
1// DISP=(,KEEP),DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) 
I//SYSIN DD * 
1 DSD OUTPUT=(SEQOUT),INPUT=(SEQIN) 
I FD NAME=FIELD1,LENGTH=lO,STARTLOC=20 
I FD NAME=FIELD2,LENGTH=10,STARTLOC=50 
I CREATE QUANTITY=100, I NPUT=SEQIN, NAME= (FIELD1,FIELD2) 
I END 
1/* L __ -----__ ---------------________ - __ ~ __ ----__ -_-_-___ ---______________ . _________________ J 

IEBDG Example 1. Placing Binary Zeros in Selected Fields of Copied Records 

430 



IEBDG Example 2 

r-----------T-----------------T----------------T---------------T------------------------, 
I I Data Set I Input I Output I I 
IOperation IOrganization I Device I Device I Comments I 
~-----------+-----------------+----------------+---------------t------------------------~ 
IRipple on lInput-SEQUENTIAL ITAPE- 9-track, IDISK - 2311 11. Blocked input and I 
IAlphabetic I Output-SEQUENTIAL I standard labeled I I output. I 
I Pattern I 1 I I I L ___________ ~ _________________ ~ ________________ ~ _______________ ~ ________________________ J 

In this example, a 10-oyte alphabetic pattern is to be rippled. At the end of 
the job step the output records contain 

first byte 11th byte 80th byte 
r----------T---------------------------------------------------------, 

Record 1 IABCDEFGHIJI data in locations 11-80 from input record 1 
~----------+-~-------------------------------------------------------~ 

Record 2 I BCDEFGHIJKI data in locations 11-80 from input record I 
~----------+---------------------------------------------------------~ 

Record 3 ICDEFGHIJKLl data in locations 11-80 from input record I 
~----------+---------------------------------------------------------~ 

Record 4 IDEFGHIJKLMl data in locations 11-80 from input record I L __________ ~ _________________________________________________________ J 

etc. 

• The SEQIN DD Statement: defines an input sequential data set (INSET). The 
data set was originally written on a 9-track, standard labeled magnetic tape 
volume. 

• The SEQOUT DD Statement: defines the test output data set (OUTSET). Twenty 
tracks of primary space and ten tracks of secondary space are allocated for 
the sequential data set on a 2311 disk storaqe volume. 

• The SYSIN DD statement: defines the control data set, which follows in the 
input stream. 

• The DSD Utility Control Statement: marks the beginning of a set of utility 
control statements and refers to the DD statements defining the input and 
output data sets. 

• The FD Utility Control statement: Creates a 10-byte field in which the 
pattern ABCDEFGHIJ is placed. The data is rippled after each output record is 
written. 

• The CREATE Utility Control statement: constructs 100 output records in which 
the contents of a previously defined field (FIELD1) are included. The CREATE 
statement uses input records from data set INSET as the basis of the output 
records • 

• The END Utility Control Statement: signals the end of a set of utility 
control statements. 

The IEBDG Program 431 

• 



r-------------------------------------~-------------------------------------------------, 
I//RIPPLE JOB "MSGLEVEL=l I 
1// EXEC PGM=IEBDG I 
I//SYSPRINT DD SYSOUT=A I 
I//SEQIN DD DSNAME=INSET,UNIT=2400,DISP=(OLD,KEEP) , I 
1// VOLUME=SER=240000,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) I 
I//SEQOUT DD DSNAME=OUTSET,UNIT=2311,VOLUME~SER=231100,DISP=(,KEEP), I 
1// SPACE=(TRK,(20,10»,DCB=(RECFM=FB,LREC~80,BLKSIZE=800) 1 
I//SYSIN DD * I 
I DSD OUTPUT=(SEQOUT),INPUT=(SEQIN) I 
I FD NAME=FIELD1,LENGTH=10,FORMAT=AL,ACTION=RP I 

CREATE QUANTITy=lOO,INPUT=SEQIN,NAME=FIELDl I 
END I 

1/* I L ______________________________________________________________________________________ ~J 

IEBDG Example 2. Rippling an Alphabetic Pattern 

432 



IEBDG Example 3 

r------------------------T------------------T---------T---------------------------------, 
I IData set I Output I I 
I Operation I Organization I Device I Comments I 
~------------------------t------------------+_--------+---------------------------------~ 
ICreate output IInput -- N/A IDISK-231111. Blocked output. I 
Jrecords from IOutput -- I I I 
lutility control I SEQUENTIAL I I I 
Istatements only. I I I I L ________________________ ~ __________________ ~ _________ i _________________________________ J 

In this example, output records are to be created entirely from utility control 
statements. Three fields are to be created and used in the construction of the 
output records. In two ~f the fields, alphabetic data is to be truncated; the 
other field is a numeric field that is to be indexed by one after each output 
record is written. At the end of the job step, the output records contain: 

first byte 31st byte 61st byte 71 80 

ABCDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZABCD FF ... FF 123 ••• 90 

BCDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZABC FF ... FF 123 ••• 91 
CDEFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZAB FF ... FF 123 ••• 92 

DEFGHIJKLMNOPQRSTUVWXYZABCO ABCDEFGHIJKLMNOPQRSTUVWXYZA FF ... FF 123 ••• 93 
EFGHIJKLMNOPQRSTUVWXYZABCD ABCDEFGHIJKLMNOPQRSTUVWXYZ FF ... FF 123 .•• 94 

etc. packed dec. 

• The SEQOUT PD Statement: defines the test output data set. Twenty tracks of 
primary space and ten tracks of secondary space are allocated for the 
sequential data set on a 2311 disk storage volume. 

• The SYSIN DO Statement: defines the control data set, which follows in the 
input stream. 

• The DSD Utility Control statement: marks the beginning of a set of utility 
control statements and refers to the DO statement defining the output data 
set. 

• The FD Utility Control Statements: defines the contents of three fields to be 
used in the construction of output records. The first field contains 30 bytes 
of alphabetic data to be truncated (left) after each output record is written. 
The second field contains 30 bytes of alphabetic data to be truncated (right) 
after each output record is written. The third field is a 10-byte field 
containing a packed decimal number (1234567890) to be indexed by one after 
each record is written. 

• The CREATE Utility Control Statement: constructs 100 output records in which 
the contents of previously defined fields (FIELD1, FIELD2, and FIELD3) are 
included. 

• The END' Utility Control Statement: signals the end of a set of utility 
control statements. 

The IEBDG Program 433 

• 



r---------------------------------------------------------------------------------------, 
//UTLYONLY JOB "MSGLEVEL=l I 
// EXEC PGM=IEBDG I 
//SYSPRINT DD SYSOUT=A I 
//SEQOUT DD DSNAME=OUTSET,UNIT=2311,DISP=(,KEEP), I 
// VOLUME=SER=240000,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800), 
// SPACE=(TRK,C20,10» 
//SYSIN DD DATA 

1/* 

DSD OUTPUT=(SEQOUT) 
ED NAME=FIELD1,LENGTH=30, STARTLOC=l, FORMAT=AL,ACTION=TL 
FD NAME=FIELD2,LENGTH=30,STARTLOC=31,FORMAT=AL,ACTION=TR 
FD NAME=FIELD3,LENGTH=20,STARTLOC=61, C 

PICTURE=10,P'1234567890',INDEX=1 
CREATE QUANTITY=100,NAME=(FIELD1,FIELD2,FIELD3),FILL=X'FF' 
END 

l ______________________________________________________________________________________ _ 

IEBDG Example 3. Creating a Test sequential Data Set From Utility Control 
statements Only 

434 



IEBDG Example 4 

r------------------T------------------T-----------T-----------T-------------------------, 
I IData set 1 Input I Output I I 
I Operation 1 Organization 1 Device I Device 1 comments I 
~------------------+------------------+-----------+-----------t-----------------------·-~ 
IModifying input IInput-PARTITIONED 12311 - DISKI2311 - DISKI~. Reblocking I 
Irecords from two I and I 1 I (from BLKSIZE=800 1 
Ipartitioned mem- 1 SEQUENTIAL I I I to BLKSIZE=960) I 
Ibers and supplying I Output-PARTITIONED I I 1 is performed. 1 
1 from the input I I I 12. Each block of output I 
I stream I I I I records contain 10 1 
I I I I I modified partitioned I 
I 1 I 1 I input records and two I 
I 1 I I I input stream records I L __________________ ~ ___ ~ ______________ ~ ___________ ~ ___________ ~ _________________________ J 

In this example, two partitioned members and input records from the input 
stream are to be used as the basis of a partitioned output member. Each block of 
12 output records is to contain ten modified records from an input partitioned 
member and two records from the input stream. At the end of the job step, the 
output partitioned member contains: 

DEPARTMEN'I' 21 
DEPARTMENT 21 

DEPARTMENT 21 
input record 1 
input record 2 

DEPARTMENT 21 

DEPARTMENT 21 
input record 3 
input record 4 

(Rightmost 67 bytes of INSET1(MEMBA) 
(Rightmost 67 bytes of INSET1(MEMBA) 

(Rightmost 67 bytes of INSET1(MEMBA) 
from input stream 
from input stream 

(Rightmost 67 bytes of INSET1(MEMBA) 

(Rightmost 67 bytes of INSET1(MEMBA) 
from input stream 
from input stream 

DEPARTMENT 21 (Rightmost 67 bytes of INSE'I;l (MEMBA) 
input record 19 from input stream 
input record 20 from input stream 

DEPARTMENT 21 (Rightmost 67 bytes of INSET2(MEMBA) 

etc. 

record 1) 
record 2) 

record 10) 

record 11) 

record 20) 

record 100) 

record 1) 

1st block of 
12 output 
records. 

2nd block of 
12 output 
records. 

• The PARINl DD statement: defines one of the input partitioned members. 

• The PARIN2 DD statement: defines the second of the input partitioned members. 
(Note that the members are from different partitioned data sets.) 

• The PAROUT DD statement: defines the output partitioned member. This example 
assumes that the partitioned data set does not exist prior to the job step; 
that is, this DD statement allocates space for the partitioned data set. 

• The SYSIN DD Statement: defines the control data set, which follows in the 
input stream. 

The IEBDG Program 435 

• 



• The DSD Utility Control statement: marks the beginning of a set of utility 
control statements and refers to the DD statements defining the input and 
output data sets. 

• The FD Utility Control Statement: creates a 13-byte field in which the 
picture DEPARTMENT 21 is placed. 

• The First REPEAT Utility Control statement: indicates that the foilowing 
group of two CREATE statements is to be repeated 10 times. 

• The First CREATE Utility Control Statement: creates 10 output records. Each 
output record is constructed from an input record (from partitioned data set 
INSET1) and previously defined FIELD1. 

• The Second CREATE Utility Control Statement: indicates that two records are 
to be constructed from input records included next in the input stream. 

• The $$$E Record: separates the input records from the REPEA'I' utility control 
statement. 

The next REPEAT statement group is identical to the preceding group, except 
that records from a different partitioned member are used as input. 

• The END Utility Control Statement: signals the end of a set of utility 
control statement. 

r-------------------------------------------------------------------------------------~-, 
//MIX JOB "MSGLEVEL=l 
// EXEC PGM=IEBDG 
//SYSPRINT DD SYSOUT=A 
//PARINl DD DSNAME=INSET1(MEMBA),UNIT=2311,DISP=OLD, 
// VOLUME=SER=231100,DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) 
//PARIN2 DD DSNAME=INSET2(MEMBA),UNIT=2311,DISP=OLD, 
// VOLUME=SER=231101,DCB(RECFM=FB,LRECL=80,BLKSIZE=960) 
//PAROUT DD DSNAME=PARSET(MEMBA),UNIT=2311,DISP=(,KEEP), 
// VOLUME=SER=231102, SPACE= (TRK, (20,10,5», 
// DCB(RECFM=FB,LRECL=80,BLKSIZE=960) 
//SYSIN DD DATA 

DSD OUTPUT=(PAROUT),INPUT=(PARIN1,PARIN2) 
FD NAME=FIELD1,LENGTH=13,PICTURE=13,'DEPARTMENT 21' 
REPEAT QUANTITY=10,CREATE=2 
CREATE; QUANTITY=10,INPUT=PARIN1,NAME=FIELD1 
CREATE QUANTITY=2,INPUT=SYSIN 

input record 1 . 

input record 20 
1$$$E 
I 

(delimiter) 
REPEAT QUANTITY=10,CREATE=2 

1 
I 
1 
1 
I 
I 
I$$$E 
I 

CREATE QUANTITY=10,INPUT=PARIN2,NAME=F.IELD1 
CREATE QUANTITY=2,INPUT=SYSIN 

END 

input record 21 

input record 40 
(delimiter) 

1/* I L ___________________________________________________________ ~---------------------------J 

IEBDG Example 4. Reblocking/Modifying Records From Two Partitioned Data Set 
Members and Supplying Additional Records From the Input Stream 

436 



IEBDG Example 5 

r------------------------T------------------T---------T---------------------------------, 
I I Data Set I Output I I 
I Operation I Organization 1 Device I Comments I 
~------------------------+------------------+---------+---------------------------------~ 
ICreate three partitionedlInput - N/A 12311-DISKI1. Block output. I 
Idata set members I Output-PARTITIONED I 12. Three sets of utility control I 
lentirely from utility I I 1 statements (one set for each I 
I control statements I I I member) are used. I L ________________________ ~ __________________ L_ ________ ~ _________________________________ J 

In this example, output records are to be created entirely from three sets of 
utility control statements and written in three partitioned data set members. 
Four fi~lds are to be created and used in the construction of the output records. 
In two of the fields (FIELDl and FIELD3) alphabetic data is to be shifted. The 
other two fields are to be fixed alphameric and zoned decimal fields. At the end 
of the job step, the partitioned data set members contain: 

MEMBA 
FIElD1 FIELD3 FIELD2 

1st byte 31st byte 51st byte 71st byte 

ABCDEFGHIJKLMNOPQRSTUVWXYZABCD 
BCDEFGHIJKLMNOPQRSTUVWXYZABCD 
CDEFGHIJKLMNOPQRSTUVWXYZABCD 
DEFGHIJKLMNOPQRSTUVWXYZABCD 

etc. 

MEMBB 
3 3 

1st byte 21st byte 

ABCDEFGHIJKLMNOPQRST 
ABCDEFGHIJKLMNOPQRS 

ABCDEFGHIJKLMNOPQR 
ABCDEFGHIJKLMNOPQ 

3 
41st byte 

00000000010000000001 
00000000010000000001 
000000000JOOOOOOOO01 
00000000010000000001 

2 
61st byte 

fill 

fill 

fill 

fill 

BINARY 
ZEROS 

ABCDEFGHIJKLMNOPQRST ABCDEFGHIJKLMNOPQRST ABCDEFGHIJKLMNOPQRST 00000000010000000001 
ABCDEFGHIJKLMNOPQRS ABCDEFGHIJKLMNOPQRS ABCDEFGHIJKLMNOPQRS 00000000010000000001 

ABCDEFGHIJKLMNOPQR ABCDEFGHIJKLMNOPQR A~~DEFGHIJKLMNOPQR 00000000010000000001 
ABCDEFGHIJKLMNOPQ ABCDEFGHIJKLMNOPQ ABCDEFGHIJKLMNOPQ 00000000010000000001 

etc. 

MEMBC 
4 

1st byte 31st byte 61st ~yte 

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 ABCDEFGHIJKLMNOPQRSTUVWXYZABCD fill 

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 BCDEFGHIJKLMNOPQRSTUVWXYZABCD fill 

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 CDEFGHIJKLMNOPQRSTUVWXYZABCD fill 

ABCDEFGHIJKLMNOPQRSTUVWXYZ0123 DEFGHIJKLMNOPQRSTUVWXYZABCD fill 

etc • BINARY ZEROS 

• The PAROUTl DD Statement: defines the first member (MEMBA) of the partitioned 
output data set. This examp1e assumes that the partitioned data set does not 
exist prior to this job step; that is, this DD statement allocates space for 
the data set. 

The IEBDG Program 437 



• The PAROUT2 and PAROUT3 DD Statements: defines the second and third members, 
respectively, of the output partitioned data set. Note that each DD statement 
specifies DISP=OLD and UNIT=AFF=PAROUT1. 

• The.SYSIN DO statement: defines the control data set, which follows in the 
input stream. 

• Each DSD Utility Control statement: marks the beginning of a set of utility 
control statements and refers to the DO statement defining the member 
applicable to that set of utility control statements. 

• Each FD Utility Control Statement: defines the contents of a field that is 
used in the subsequent construction of output records. 

• Each CREATE Utility Control Statement: constructs 4 records from combinations 
of previously defined fields. 

• Each END Utility Control Statement: signals the end of a set of utility 
control statements. 

r---------------------------------------------------------------------------------------, 
//UTSTS JOB, ,MSGLEVEL=l 
// EXEC PGM=IEBDG 
//SYSPRINT DD SYSOUT=A 
//PAROUTl DD DSNAME=PARSETCMEMBA),UNIT=2311,DISP=C,KEEP), 
// VOLUME=SER=231100,SPACE=CTRK,C20,10,5», 
// DCB=CRECFM=FB,LRECL=80,BLKSIZE=800) 
//PAROUT2 DO OSNAME=PARSETCMEMBB),UNIT=AFF=PAROUT1,DISP=OLD, 
// VOLUME=SER=231100,DCB=CRECFM=FB,LRECL=80,BLKSIZE=800) 
//PAROUT3 DO OSNAME=PARSETCMEMBC),UNIT=AFF=PAROUT1,DISP=OLD, 
// VOLUME=SER=231100,DCB=CRECFM=FB,LRECL=80,BLKSIZE=800) 
//SYSIN DO DATA 

/* 

DSD OUTPUT=CPAROUT1) 
FD NAME=FIELD1,LENGTH=30,FORMAT=AL,ACTION=SL 
FD NAME=FIELD2,LENGTH=20,FORMAT=ZD 
FD NAME=FIELD3,LENGTH=20,FORMAT=AL,ACTION=SR 
FD NAME=FIELD4,LENGTH=30,FORMAT=AN 
CREATE QUANTITY=4,NAME=CFIELD1,FIELD3,FIELD2) 
END 
DSD 
CREATE 
END 
DSD 
CREATE 
END 

OUTPUT=CPAROUT2) 
QUANTITY=4,NAME=CCCOPY=3,FIELD3),FIELD2) 

OUTPUT= C PAROUT3) 
QUANTIFY=4,NAME=CFIELD4,FIELD1) 

L ______________________________________________________________________________________ _ 

IEBDG Example 5. Creating Three Partitioned Data Set Members Entirely From 
Utility Control statements 

438 



IEBDG Example 6 

r------------------------T------------------~--------T---------------------------------, 
I IData Set I Output I I 
I Operation I Organization I Device I Comments I 
~------------------------+------------------+---------+---------------------------------~ 
IRolling and waving IInput - N/A 12311-DISKI1. Output records are created I 
luser supplied patterns IOutput- SEQUENTIAL I I entirely from utility I 
I I I I Control statements. I L ________________________ ~ __________________ ~ _________ ~ _________________________________ J 

In this example, ten fields containing user-supplied EBCDIC pictures are to be 
used in the construction of output records. After a record is written, each field 
is rolled or waved, as specified in the applicable FD statement. At the end of 
the job step, the output records contain: 

FIELDl FIELD2 FIElD3 FIELD4 FIELD5 FIElD6 FIELD7 FIELD8 FfELD9 FfElD10 

AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee DD D eee 
AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee DD D eee 

AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee D D eee 
AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee DD D eee 

AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee DD D eee 
AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee D D eee 

AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee 'DD D eee 
AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee DD D eee 

AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee D D eee 
AAAAA BBBBB A AA BB B AAA eeeee DDDD e ee DD D eee 

• The OUTSET DD Statement: defines the output sequential data set on a 2311 
disk volume. Twenty tracks of primary space and ten tracks of secondary space 
are allocated to the data set. 

• The SYSIN DD Statement: defines the control data set, which follows in the 
input stream. 

• The DSD Utility Control Statement: marks the beginning of a set of utility 
control statements and refers to the DD statement defining the output data 
set. 

• Each FD Utility Control Statement: defines a field that will be used in the 
subsequent construction of output records. Note that the direction and 
frequency of the initial roll or wave depends on the location of data in the 
field. 

• The CREATE Utility Control Statement: constructs 300 records from the 
contents of the previously defined fields. 

• The END Utility Control statement: signals the end of a set of utility 
control statements. 

The IEBDG Prog~am 439 

I 



r---------------------------------------------------------------------------------------, 
I//ROLLWAVE JOB "MSGLEVEL=l 
1// EXEC PGM=IEBDG 
I//SYSPRINT DD SYSOUT=A 
IIIOUTSET DD DSNAME=SEQSET,UNIT=2311,DISP=(,KEEP), 
III VOLUME=SER=2311,SPACE=(TRK,(20,10», 
1// DCB= (RECFM=FB,LRECL=80, BLKSIZE=800) 
I//SYSIN DD * 
I DSD OUTPUT=(OUTSET) 

FD NAME=FIELD1,LENGTH=8,PICTURE=8,' AAAAA',ACTION=RO 
FD NAME=FIELD2,LENGTH=8,PICTURE=8,'BBBBB ',ACTION=RO 
FD NAME=FIELD3,LENGTH=8,PICTURE=8,'A AA ',ACTION=RO 
FD NAME=FIELD4,LENGTH=8,PICTURE=8,' BB B',ACTION=RO 
FD NAME=FIELDS,LENGTH=8,PICTURE=8,' AAA ',ACTION=RO 
FD NAME=FIELD6,LENGTH=8,PICTURE=8,' CCCCC',ACTION=WV 
FD NAME=FIELD7,LENGTH=8,PICTURE=8,' DDDD ',ACTION=WV 
FD NAME=FIELD8,LENGTH=8,PICTURE=8,' C CC ',ACTION=WV 
FD NAME=FIELD9,LENGTH=8,PICTURE=8,' DD D',ACTION=WV 
FD NAME=FIELD10,LENGTH=8,PICTURE=8,' CCC ',ACTION=WV 
CREATE QUANTITY=300,NAME=(FIELD1,FIELD2,FIELD3,FIELD4,FIELD5, C 

FIELD6,FIELD7,FIELD8,FIELD9,FIELD10) 
END 

/* L _______________________________________________________________________________________ J 

IEBDG Example 6. Rolling and Waving user-Supplied Pictures 

440 



IEBDG Example 7 

r---------------------T-------------------T-----------T---------------------------------, 
I I Data Set I Output I I 
I Operation I Organization I Device I Comments I 
~---------------------+-------------------+-----------+---------------------------------~ 
ICreate an indexed IInput - SEQUENTIAL 12311 - DISKI1. Indexed output records are I 
Isequential data set IOutput - INDEXED I I created by augmenting select- I 
lusing field selection 1 SEQUENTIAL I I ed input fields with generated 1 
Ifor input and output I I I data. I 
I records, plus data I 1 I I 
I generation I 1 I 1 L _____________________ ~ ___________________ ~ ___________ ~ _________________________________ J 

In this example, the first 10 bytes of the output record contains zoned decimal 
format generated data. This field serves as the key field for the output record 
in the output indexed sequential data set. The key field is incremented (indexed) 
by one for each record. The input sequential data set provides an additional 
80-byte field to complete the output record. 

• The TAPEIN DD Statement: defines the input sequential data set. 

• The DISKOUT DD Statement: defines the output indexed- sequential data set. 

• The SYSIN DD statement: defines the control data set, which follows in the 
input stream. 

• The DSD Utility Control Statement: marks the beginning of a set of utility 
control statements and refers to the DD statement defining the output data 
set. 

• Each FD Utility Control Statement: defines a field that will be used in the 
subsequent construction of output records. The first FD statement in this 
example defines and locates an 80-byte field of input data. The data is field 
selected from one of the input logical records and placed at start location 
eleven of the output logical record. The second FD statement defines and 
locates the 10-byte key field. 

• The CREATE Utility Control Statement: constructs a 90-byte output record by 
referring to the previously defined fields. 

• The END Utility Control Statement: signals the end of a set of utility 
control statements. 

r---------------------------------------------------------------------------------------, 
//CREATEIS JOB MSGLEVEL=l 
//BEGIN EXEC PGM=IEBDG • 
//TAPEIN DD DSNAME=TAPEIT,DCB=(BLKSIZE=80,LRECL=80,RECFM=F), 
// DISP=(OLD,KEEP),UNIT=2400,LABEL=(,SL),VOL=SER=MASTER 
//DISKOUT DD DSNAME=CREATIS,DCB=(BLKSIZE=270,LRECL=90,RECFM=FB, 
// DSORG=IS,NTM=2,OPTCD=MY,RKP=0,KEYLEN=10,CYLOFL=1), 
// DISP=(NEW,KEEP),UNIT=2311,SPACE=(TRK,2"CONTIG), 
// VOL=SER=231100 
//SYSPRINT DD SYSOUT=A 
//SYSIN DD * 

DSD OUTPUT=(DISKOUT),INPUT=(TAPEIN) 
FD NAME=DATAFD,LENGTH=80,FROMLOC=1,STARTLOC=11,INPUT=TAPEIN 
FD NAME=KEYFD,LENGTH=10,STARTLOC=1,FORMAT=ZD,INDEX=1 
CREATE INPUT=TAPEIN,NAME=(KEYFD,DATAFD) 
END 

/* L ______________________________________________________________________________________ _ 

IEBDG Example 7. Creating an Indexed sequential 

The IEBDG Program 441 





Section 3: Independent Utilities 

Independent utility programs operate outside, and in support, of the IBM 
Systern/360 Operating system. They include: 

• IBCDASDI (DASDI) -- a program that initializes and assigns alternate 
tracks to a direct access volume. 

• IBCDMPRS (DUMP/RESTORE) -- a program that dumps and restores the 
data contents of a direct access volume. 

• IBCRCVRP (RECOVER/REPLACE) -- a program that recovers usable data 
from a defective track, assigns "an alternate track, and merges 
replacement data with the recovered data onto the alternate track. 

Utility Control Statement Requirements 
Independent utility programs require a JOB statement, a MSG statement, a 
group of statements that describe the function to be performed, and an 
END statement. 

The JOB statement indicates the beginning of a job. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+-----------------------------------------------------~ 
I £ name 1 I JOB I [user information] I L ______ ~ _________ ~ _____________________________________________________ J 

The MSG statement defines an output device for operator messages. It 
follows the JOB statement and precedes a group of function-defining 
statements that are associated with one of the independent utility 
programs. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+-----------------------------------------------------~ 
I [namellMSG I TODEV=xxxx I 
I I I TOADDR=cuu I 
I I I [MODE=mml I L ______ ~ _________ ~ _____________________________________________________ J 

TODEV=xxxx 
specifies the device type of the message output device. 

TOADDR=cuu 
specifies the channel number (c) and unit number (uu) of the 
message output device. 

MODE=mm (used only with RECOVER/REPLACE and when the message output 
device is a 7-track tape) 

specifies the mode in which the message output tape is to be 
written. Valid modes are shown in Independent Utilities Table 1. 

If MODE is omitted, 6B is assumed. 

section 3: Independent Utilities 443 



Independent Utilities Table 1. Valid 7-Track Tape Unit Modes 
r----------T-------------------T--------------T-------------T----------, 
1 Mode I Density I I Data I I 
I (rom) I (bits per inch) I Translator I converter I Parity I 
r----------+-------------------+--------------+-------------+----------~ 
I 13 200 Off I On Odd I 
I 23 200 Off I Off Even 
I 33 200 Off I Off Odd 
I 2B 200 On I Off Even 
I 3B 200 On I Off Odd 
I t 
I 53 556 Off I 
I 63 556 Off I 
j 73 556 Off, 
I 6B 556 On I 
I 7B 556 On I 
I I 

On 
Off 
Off 
Off 
Off 

Odd 
Even 
Odd 
Even 
Odd 

I 93 800 Off, On Odd 
I A3 800 Off I Off Even 
I B3 800 Off I Off Odd 
I AB 800 On I Off Even 
I BB 800 On I Off Odd L __________ ~ __________________ L ______________ L ______ ~ ______ ~ __________ J 

The END statement denotes the end of job. It appears after the last 
function-defining statement. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand , 
~------+---------+-----------------------------------------------------~ 
I [namellEND I [user information] I L ______ ~ _________ ~ _____________________________________________________ J 

Methods of Operation 
Independent utility programs are loaded as card decks or as card images 
on tape. Control statements for the requested program can follow the 
last card or card image of the program, or can be entered on a separate 
input device. To execute DASDI, DUMP/RESTORE, and RECOVhR/REPLACE: 

1. Place the object program deck in the reader or mount the tape reel 
that contains the object program. 

2. Load the object program from the reader or tape drive by setting 
the load selector switches and depressing the console LOAD key. 
When the program is loaded., the wait state is entered and the 
console lights display the hexadecimal value FFFF. 

3. Define the control statement input device in one of the following 
two manners: 

444 

a. Depress the REQUEST key of the console typewriter. The message 
DEFINE INPUT DEVICE is printed. 

Enter the following message from the console typewriter: 

INPUT=xxxx cuu 

where xxxx is the device type, c is the. channel address, and uu is 
the unit address. The device type can be 1402, 1442, 2400 or 
2540.In addition, the RECOVER/REPLACE program can use the 1052 as a 
device type. 



b. (Use only if the console typewriter is not available.) Enter 
one of the following numbers at storage location 0110 
(hexadecimal): 

lcuu for a 1442 Card Read Punch. 
2cuu for a 2400 Nine-Track Magnetic Tape Drive. 
Ocuu for a 2540 Card Read Punch. 

Depress the console INTERRUPT key. 

4. Control statements are printed on the message output device. At 
the end of the job, END OF JOB is printed on the message output 
device and the program enters the wait state. 

If the job executes the RECOVER/REPLACE program and the message 
output device is a tape, the console lights display the hexadecimal 
value DDDD at a normal end of the job, and EEEE at an abnormal end 
of job. If a machine check occurs, OOE2 is displayed. 

section 3: Independent Utilities 445 





IBCDASDI-Initializing and Assigning Alternate 
Tracks on Direct Access Volumes 

The IBCDASDI (DASDI) independent utility program performs two separate 
functions: it initializes direct access volumes for use with the 
operating system, and assigns alternate tracks on nondrum, direct access 
storage volumes. A single job can initialize one volume or assign 
alternates for specified tracks on one volume. DASDI JODS can be 
performed continuously by stacking complete sets of control statements. 

IDASDI is not supported on MP65 with the mode switch set to MS; the mode 
switch must be set to 65. 

Initializing a Direct Access Volume 
The first function of the DASDI program is to initialize a direct access 
volume. A volume can be initialized with or without a surface analysis 
(i.e., a test for defective tracks); however, a surface analysis should 
be included when a volume is initialized for the first time. 

Note: A 2321 volume is automatically initialized with a surface 
analysis. 

Initialization With Surface Analysis: The DASDI program: 

• Checks for tracks that have been previously designated as defective 
(flagged) and have had alternates assigned. The program 
automatically assigns alternates (disk devices only). This test 
must be suppressed when a disk recording surface is being 
initialized for the first time. 

• Performs a surface analysis of each track and automatically assigns 
alternates, if necessary (non-drum storage volumes only). Tracks 
that are available for disposition as alternates are checked first. 

• Writes a standard home address, a track descriptor record <record 
O}, and erases the remainder of each track. 

• Writes IPL records on track 0 (records 1 and 2). 

• Writes volume label on track 0 (record 3) and provides space for 
additional records, if requested. 

• constructs and writes a volume table of contents (VTCC). 

• Writes IPL program, if requested, on track 0 (2301 or 2314) or track 
1 (2303 or 2311). 

Initialization Without Surface Analysis: The DASDI program: 

• Checks for tracks that have been previously designated as defective 
(flagged) and have had alternates assigned. The program 
automatically assigns alternates (disk devices only). This test 
must not be suppressed. 

• Writes a standard home address, a track descriptor record (record 
0), and erases the remainder of each track. 

• Writes IPL records on track 0 (records 1 and 2). 

IBCDASDI -- Initializing and Assigning Alternate Track~ 447 

• 



• Writes volume label on track 0 (record 3) and provides space for 
additional records, if requested. 

• constructs and writes a volume table of contents (VTOC). 

• Writes IPL program, if requested, on track 0 (2301 or 2314) or track 
1 (2303 or 2311). 

The DASDI program requires the followinq function-defining statements 
to initialize direct access volumes: 

1. DADEF Statement 
2. VLD Statement 
3. VTOCD Statement 
4. IPL'l'XT Statement (optional) 
5. IASTCARD statement (optional) 

These statements must appear in this sequence. 

Note: A DASDI job that initializes a 2321 data cell cannot fOllow a 
DASDI job that initializes a different device type unless the DASDI 
program is reloaded. 

DADE1!"'\ Statement 

The DADEF statement defines the direct access volume to be initialized. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+------------------------------------------------~----~ 
I [nameliDADEF 1 TODEV=xxxx 1 I 
I I I TOADDR=cuu I 
1 1 I [IPL=YESl I 
I I I {VOLID=Serial } I 
I I I VOLID=SCRATCH I 
I I I [BIN=dl I 
I I ~-----------------------------------------------------~ 
I I I [FLAGTEST=NO] 2 I 
I I I [PASSES=nl I 
I I ~-----------------------------------------------------~ 
I I I [BYPASS=YESl 3 I 
~------~---------~----~------------------------------------------------~ 
I Notes: I 
11 Applicaole to initialization with or without surface analysis. I 
12Applicable to initialization with surface analysis. I 
13 Applicable to initialization without surface analysis. I 
L _______ ~----------------------------------------------__ ~-------------J 

TODEV=xxxx 
specifies the device type of the direct access devic.e. 

'I'OADDR=cuu 
specifies channel number (c) and unit number (uu) of the device. 

IPL=YES 

448 

specifies that an IPL program is to be written on the volume. An 
IPL initialization program must be written on a device to be used 
for system residence. 

If IPL is omitted, no IPL program is written. 



VOLID=serial 
specifies the volume serial number of the volume to be initialized. 

If "serial" matches the volume serial number found on the volume to 
be initialized" the operation proceeds. If it does not match, the 
operator is notified. 

VOLID=SCRATCH 
specifies that no volume serial number check is to be made. 

FLAGTEST=NO (applicable with surface analysis) 
specifies that the program is not to check for previously flagged 
tracks before surface analysis is attempted on this device. 
(FLAGTEST=NO applies only to disk storage devices, and should be 
specified when the disk recording surface is initialized for the 
first time.) 

Note: Since no check is ever made for previously flagged tracks on 
drum volumes or on 2321 volumes, FLAGTEST=NO is not coded when 
these devi~es are initialized. 

PASSES=n (applicable with surface analysis) 
specifies that the program's defective-track checking feature is to 
make n number of passes (from 1 to 255) per track. 

If· PASSES is omitted, one pass is made per track. The PASSES 
option is not applicable to 2321 volumes. 

BYPASS=YES 

BIN=d 

specifies that the program's defective-track checking feature is to 
be bypassed. 

If BYPASS is omitted, tracks will be checked and those found 
defective will automatically be assigned alternates. The BYPASS 
option is not applicable to the 2321 Data Cell Drive. 

specifies a decimal bin number <0-9). This parameter is applicable 
only to the 2321 Data Cell Drive. 

VLD Statement 

The VLD statement contains information for constructing an initial 
volume label and allocating space for additional labels. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+---------~-------------------------------------------~ 
I [namellvLD tNEWVOLID=serial I 
I I I {VOLPASS=l} I 
I I I VOLPASS=O I 
I I I [OWNERID=xxxxxxxxxx] I 
I I I [ADDLABEL=nl I L ______ ~ _________ ~ _____________________________________________________ J 

NEWVOLID=serial 
specifies a 1- to 6-character volume serial number. 

VOLPASS=l 
specifies that the volume security bit is to be set to 1. 

VOLPASS=O 
specifies that the volume security bit is to be set to o. 

IBCDASDI -- Initializing and Assigning Alternate Tracks 449 

I 



If VOLPASS is omitted, the volume security bit will be set to o. 

OWNERID=xxxxxxxxxx 
specifies a 1- to 10-character field that identifies the owner of 
the volume. 

If OWNERID is omitted, no identification is given. 

ADDLABEL=n 
specifies a number between one and seven that indicates the total 
number of additional labels for which space is to be allocated. 

If ADDLABEL is omitted, 0 is assumed. 

VTOCD Statement 

The VTOCD statement contains information for controlling the location of 
the volume table of contents. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+---------~-------------------------------------~-----~ 
I (nameJIVTOCD ISTRTADR=nnnnn I 
J I I EXTENT=nnnn I L ______ ~ _________ ~ _____________________________________________________ J 

STRTADR=nnnnn 
specifies the 1- to 5-byte track address, relative to the beginning 
of the volume, at which the volume table of contents is to begin. 
The VTOC cannot occupy track 00 or any alternate track. 

EXTENT=nnnn 
specifies the length of the volume table of contents in tracks. 
The number of entries per track for each type of device is given 
below. 

Device 
2301 
2314 
2302 
2303 
2311 
2321 

VTOC Entries/Track 
63 
25 
22 
17 
16 

8 

IPLTXT statement 

The IPLTXT statement separates utility control statements from IPL 
program text statements. It is required only when IPL text is included. 
The statement consists of the operation IPLTXT, followed with blanks. 

When IPL text is included, END must start in column 2. 

LASTCARD statement 

The LASTCARD statement is required only when a DASDI job or a series of 
stacked DASDI jobs is followed by other statements on the control 
statement input device. It must follow the last END statement applying 
to a DASDI job. It consists of the operation LASTCARD, followed with 
blanks. 

450 



Assigning an Alternate Track 
The second function of the DASDI program is used to (1) test a track 
and, if necessary, to assign an alternate, or (2) to. bypass testing, and 
automatically assign an alternate. 

Assigning an Alternate (With Testing): An alternate track will bE 
assigned for a track specified for testing and found defective. If the 
defective track has had an alternate previously assigned, a new 
alternate is assigned. If the defective track is an unassigned 
alternate, it is flagged to prevent its future use. The alternate track 
address is made known to the operator. 

If a track is tested and found to be ".not defective," no alternate is 
assigned. The operator is notified by a message. 

Assigning an Alternate (Without Testing): The program's defective track 
checking feature can be bypassed, and an alternate track can be assigned 
for any track, whether it is defective or not. If the specified track 
is an alternate, a new alternate is assigned. If the specified track is 
an unassigned alternate, it is flagged to prevent its future use. 

GETALT Statement 

Any number of alternate tracks on a volume can be assigned in a single 
job by including one GETALT statement for each track. 

r------T---------T-----------------------------------------------------, 
'Name I Operation I Operand I 
~------+---------+-----------------------------------------------------~ 
I [namelIGETALT I TODEV=xxxx I 
, I I TOADDR=cuu I 
J I I TRACK=cccchhhh I 
I I IVOLID=serial I 
I I I [FLAGTEST=NOl I 
I I I [PASSES=n] I 
I I I [BYPASS=YESl I 
I I I [BIN=dl I L ______ ~ _________ ~ _____________________________________________________ J 

TODEV=xxxx 
specifies the device type of the direct access device. 

TOADDR=cuu 
specifies the channel number (c) and unit number (uu) of the direct 
access device. 

TRACK=cccchhhh 
specifies the address of the track for which an alternate is 
requested, where cccc is the cylinder number and hhhh is the head 
number. 

VOLID=serial 
specifies the volume serial number of the volume to which an 
alternate track is to be assigned. 
If "serial" matches the volume serial number found on this volume, 
the alternate track assignment proceeds. If it does not match, the 
operator is notified. 

FLAGTEST=NO (used when testing prior to assigning an alternate) 
specifies that the program will not check for a previously flagged 
track before a surface analysis is attempted on this track (disk 
storage devices only). 

IBCDASDI -- Initializing and Assigning Alternate 'I'racks 451 

• 



PASSES=n (used when testing prior to assigning an alternate) 
specifies that the program's defective track checking feature is to 
make n number of passes (from 1 to 255) when performing a surface 
analysis on this track. 
If PASSES is omitted, one pass will be made on this track. 

BYPASS=YES 

BIN=d 

specifies that the program's defective track checking feature is to 
be bypassed. 

If BYPASS is omitted, the program assigns an alternate only if it 
finds that the specified track is defective. 

specifies a decimal bin number (0-9). This parameter is applicable 
only to the 2321 Data Cell Drive. 

Notes: A list of defective tracks is provided with new IBM Disk storage 
volumes. This list should be referred to the first time the DASDI 
program is to be used. After initialization, the GETALT function can 
then be included in a DASDI job to assign an alternate track for each 
track on the list. Subsequent DASDI jobs will "remember" those 
defective tracks, unless the FLAGTEST=NO option is specified for those 
jobs. 

The GETALT function should not be used immediately after a RESTORE 
operation that did not complete successfully. Before using GETALT in 
such a case, reinitialize the volume, if possible. 

452 



IBCDASDI Examples 

IBCDASDI Example 1 illustrates the first initialization of a disk storage volume. 
A surface analysis is performed with the initialization. 

r---------------------------------------------------------------------------------------, 
I sample Coding Form I 
~---------------------------------------------------------------------------------------i 
IINIT JOB 'INITIALIZE 2311' I 
I MSG TODEV=1403,TOADDR=OOE I 
I DADEF TODEV=2311,TOADDR=190,VOLID=SCRATCH,FLAGTEST=NO I • 
I VLD NEWVOLID=111111 I 
I VTOCD STRTADR=50,EXTENT=10 I 
I END I L ______________________________________________________________________ ~ ________________ J 

IBCDASDI Example 1. Initializing a Disk Storage Volume With surface Analysis 

IBCDASDI Example 2 illustrates an initialization (other than the first) of a 
drum storage volume. No surface analysis is performed with the initialization. 

r---------------------------------------------------------------------------------------, 
I Sample Coding Form I 
t---------------------------------------------------------------------------------------~ 
IINIT JOB 'INITIALIZE 2301' I 
I MSG TODEV=1403,TOADDR=OOE I 
I DADEF TODEV=2301,TOADDR=lCO,VOLID=SCRATCH,BYPASS=YES I 
I VLD NEWVOLID=230100 I 
I VTOCD STRTADR=1,EXTENT=3 I 
I END I L _______________________________________________________________________________________ J 

IBCDASDI Example 2. Initializing a Drum Storage Volume Without Surface Analysis 

IBCDASDI Example 3 illustrates the initialization of" an IBM 2311 disk storage 
volume for later use as a system residence volume. An IPL program is included as 
a load module in standard TXT format. 

r---------------------------------------------------------------------------------------, 
I Sample Coding Form I 
~---------------------------------------------------------------------------------------~ 
I IN IT JOB 'INITIALIZE 2311' COMMENTS 
I MSG TODEV=1403,TOADDR=OOE MESSAGE" OUTPUT 
I DADEF TODEV=2"311,TOADDR=108,IPL=YES VOLUME DEFINITION 
I VLD NEWVOLID=P1,OWNERID=BROWN, VOLUME LABEL C 
I ADDLABEL=2 DEFINITION 
I VTOCD STRTADR=2,EXTENT=9 VTOC DEFINITION 
I IPLTXT DELIMITER 
I TXT IPL PROGRAM 
I . 
I • IPL Text 
I . 
I TXT 
I END (IPL Text END card) L ______________________________________________________________________________________ -J 

IBCDASDI Example 3. Initializing a Direct Access Volume 

IBCDASDI -- InitialIzing and Assigning Alternate Tracks 453 



\ IBCDASDI Example 4 illustrates the assignment of three alternate tracks to a 
disk storage volume, without re-initialization of the volume. The program's 
defective-track checking feature is bypassed when the first two of the three 
tracks are assigned. 

r---------------------------------------------------------------------------------------, 
I Sample Coding Form I 
~---------------------------------------------------------------------------------------~ 
IALTRK JOB 'ASSIGN ALTERNATE TRACKS ON 2311' COMMENTS I 
I MSG TODEV=2400,TOADDR=180 MESSAGE OUTPUT I 
ISTMT1 GETALT TODEV=2311,TOADDR=190,TRACK=006F0001, C I 
I BYPASS=YES,VOLID=P2 I 
ISTMT2 GETALT TODEV=2311,TOADDR=190,TRACK=00910004, C I 
I BYPASS=YES,VOLID=P2 I 

_ ISTMT3 GETALT TODEV=2311,TOADDR=190,TRACK=004B0007, C I 
I VOLID=P2 I 
I END I L _______________________________________________________________________________________ J 

IBCDASDI Example 4. Assigning Alternate Tracks on a Disk Storage Volume 

454 



IBCDMPRS-Dumping and Restoring a 
Direct Access Volume 

The IBCDMPRS (DUMP/RESTORE) program dumps and restores the data on 
direct access volumes. The data contents of a direct access volume (all 
data except the home address) can be "dumped" onto IBM 2311 or 2314 disk 
storage volumes or onto magnetic tapes, and restored onto a direct 
access volume that resides on the same type of device as the source 
volume. Both the source volume and the volume onto which data is to be 
restored must have been initialized to laM System/360 Operating System 
specifications. This utility is useful for preparing transportable 

I 
copies and backup copies of direct access volume contents. DUMP/RESTORE 
is not supported on MP65 with the mode switch set to MSi the mode switch 
must be set to 65. 

DUMP Statement 

The DUMP statement is used to identify both the source volume whose 
contents are to be dumped and the receiving volume. The data contents 
of the entire source volume is dumped, including any data on alternate 
tracks. If both the source and receiving volumes reside on 2311 Disk 
storage Drives or. on 2314 Disk Storage Drives, the data on the receiving 
volume is an exact replica of the source data and need not be restored. 

Note: When a standard label restore tape created by IBCDMPRS is 
restored by IEHDASDR, the DD card describing the tape for IEHDASDR must 
specify LABEL=(,BLP). Bypass-label-processing must have been sysgened 
by specifying OPTlONS=BYLABEL on the SCHEDULR control card. If 
bypass-label-processing is not available, any standard label tape 
created by IBCDMPRS cannot be restored by IEHDASDR, but .. IBCDMPRS. 

r------T--------~--------~----------------~---------------------------, 
I Name I Operation I Operand I 
~------+~-~------+-----------------------------------------------------~ 
I [name] I DUMP I FROMDEV=xxxx I 
I I I FROMADDR=cuu I 
I I I TODEV=xxxx I 
I I I TOADDR=cuu I 
I I I (VOLID=serial=list] I 
I I I [MODE=mml I 
I I I [BIN=dl I L ______ ~ _________ ~ _____________________________________________________ J 

FROMDEV=xxxx 
specifies the device type of the source device. 

FROMADDR=cuu 
specifies channel number (c) and unit number (uu) of the source 
device. 

TODEV=xxxx 
specifies the device type of the rece1v1ng device. 
If the receiving device is a magnetic tape drive and no MODE 
parameter is specified, the data is written at· the highest density 
supported by the device. (For 7-track tape, the default mode is 
93. ) 

TOADDR=cuu 
specifies the channel number (c) and unit number (uu) of the 
receiving device. 

IBCDMPRS -- Dumping and Restoring a Direct Access Volume 455 

I 



VOLID=serial[,seriall ••• 
specifies the volume serials of the receiving volumes onto which 
data is to be dumped. (VOLID is required when the receiving volume 
has been initialized to operating system specifications.) 

If "serial" matches the volume serial number found on the receiving 
volume, the dump operation proceeds. If it does not match, the 
operator is notified. 

If VOLID is not specified and the receiving volume contains a 
volume serial number, the operator is notified. 

MODE=mm 

BIN=d 

specifies the bit density for data written onto the receiving 
magnetic tape volume. This parameter is applicable to 7-trac~ tape 
drives and to 9-track tape drives with density selections of 800 
and 1600 bits-per-inch. Valid 7-track modes are shown in 
Independent Utilities Table 1. <Only those modes which set 
converter on are accepted.) 

For 9-track tape drives with density selections of 800 and 1600 
bits-per-inch, the mode settings are: 

MODE=CB 
MODE=C3 

for 800 bpi. 
for 1600 bpi. 

If the receiving device is not a magnetic tape drive, the MODE 
parameter is ignored. If the receiving device is a tape drive but 
no mode is specified, the data is written at the highest density 
supported by the device. 

specifies a decimal bin number (0-9). This parameter is applicable 
only to the 2321 Data Cell Drive. 

Note: When dumping from direct access to magnetic tape, "dump time" can 
be minimized by specifying different channel selections in the 
TOADDR=cuu and FROMADDR=cuu keywords. For example, 

DUMP FROMDEV=2311,FROMADDR=190,TODEV=2400,TOADDR=282 

VORL statement 

The VDRL (volume dump/restore limits) statement is used to specify the 
upper and lower limits of a partial dump. If a track within these 
limits has had an alternate assigned to it, the data on the alternate. 
track is included in the dump. When the VDRL statement is used, it must 
be preceded by a DUMP statement and must be followed by an END 
statement. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+-----------------------------------------------------~ 
I [namellVDRL IBEGIN=nnnnn I 
I I I [END=nnnnnl I L ______ ~ _________ ~ _____________________________________________________ J 

BEGIN=nnnnn 

456 

specifies a 1- to 5-byte relative track address that identifies the 
first track to be dumped. 



END=nnnnn 
specifies the relative track address of the last track to be 
dumped. If only one track is to be dumped, this address is the 
same as the beginning address. 

If END is omitted, the last track of the volume, excluding those 
tracks reserved as alternates, is assumed to be the upper limit. 

RESTORE statement 

The RESTORE statement is used to identify both the s"Ource volume whose 
data contents are to be restored and the receiving volume. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+---------------------------------------------------~-~ 
l[namellRESTORE IFROMDEV=xxxx I 
I I I FROMADDR=cuu I 
I I I TODEV=xxxx I 
I I I TOADDR=cuu I 
I I I VOLID=serial I 
I I I [MODE=mm] I 
I I I [BIN=dl I L ______ i _________ i _____________________________________________________ J 

FROMDEV=xxxx 
specifies the device type of the source device. 

FROMADDR=cuu 
specifies the channel number (c) and unit number (uu) of the source 
device. 

TODEV=xxxx 
specifies the device type of the receiving device. This device 
type must be the same as the device containing the volume 
originally dumped. 

TOADDR=cuu 
specifies the channel number (c) and unit number (uu) of the 
receiving device. 

VOLID=serial 
specifies the volume serial number of the receiving volume. 

If "serial" matches the volume serial number found on the receiving 
volume, the restore operation proceeds. If it does not match, the 
operator is notified. 

MODE=mm 
specifies the bit density for data written onto the receiving 
magnetic tape volume. 'I'his parameter must match the mode specified 
when data was written· onto the source volume. MODE should not be 
specified if the source or receivinq volume is not a magnetic tape, 
or if MODE was not specified when data was written onto the source 
volume. 

Valid 7-track modes are shown in Independent Utilities Table 1. 
<Only those modes which set converter on are accepted.) For 
9-track tape drives with density selections of 800 and 1600 
bits-per-inch, the mode settings are: 

MODE=CB 
MODE=C3 

for 800 bpi. 
for 1600 bpi. 

IBCDMPRS -- Dumping and Restoring a Direct Access Volume 457 



BIN=d 
specifies a decimal bin number (0-9). This parameter is applicable 
only to the 2321 Data Cell Drive. 

Note: When restoring from magnetic tape, "restore time" can be 
minimized by specifying different channel selections in the TOADDR=cuu 
and FROMADDR=cuu keywords. For example: 

RESTORE FROMDEV=2400,FROMADDR=282,TODEV=cuu,TOADDR190 

458 



IBQDMPRS Examples 

IBCDMPRS Example 1 illustrates the dumping of a direct access volume onto a tape 
volume. 

IBCDMPRS Example 2 illustrates the restoring of dumped data onto a direct 
access volume. 

r---------------------------------------------------------------------------------------, 
I Sample Coding Form I 
~---------------------------------------------------------------------------------------~ 
I DUMP JOB DUMP 2311 ONTO TAPE COMMENTS I 
I MSG TODEV=1052,TOADDR=103 MESSAGE OUTPUT I 
I DUMP FROMDEV=2311,FROMADDR=203, C I 
I TODEV=2400 , TOADDR=12 0 I • 
I DD I ~ L _______________________________________________________________________________________ J 

IBCDMPRS Example 1. Dumping a Direct Access Volume 

r---------------------------------------------------------------------------------------, 
I sample Coding Form I 
~------------------------------------------------~--------------------------------------~ 
I RESTORE JOB RESTORE 2311 FROM TAPE I 
I MSG TODEV=1052,TOADDR=10B I 
I RESTORE FROMDEV=2400,FRO~mDDR=120,TODEV=2311, C I 
I TOADDR=202,VOLID=PZ I 
I gD . I L _________________________________________________ ----___________________________ ~------J 

IBCDMPRS Example 2. Restoring a Direct Access Volume 

IBCDMPRS -- Dumping and Restoring a Direct Access Volume 459 





IBCRCVRP-Recovering Data From a 
Defective Track 

The IBCRCVRP (RECOVER/REPLACE) independent utility program retrieves 
usable data from a defective track, assigns an alternate track, and 
merges the usable data with replacement data onto the alternate track. 
(Alternate tracks must be assigned manually on drum devices.) A single 
job can retrieve or replace data on one or more volumes that contain 
defective tracks. RECOVERY/REPLACE is not supported on MP65 with the 
mode switch set to MS; the mode switch must be set to 65. 

Note: The IEHATLAS ut·ility program will perform these operations under 
control of the Operating System. 

Recovering Usable Data 
The RECOVER routine retrieves data from a defective track, writes this 
data on a receiving tape, and lists the bad records on the message 
output device. Each defective track requires a RECOVER statement; an 
optional LIST statement requests that both usable records and bad 
records be listed. The statements must appear in the sequence: 

RECOVER 
[LIST] 
RECOVER 
[LIST] 

RECOVER Statement 

Each RECOVER statement in a job identifies (1) the direct access volume 
that contains the defective track, (2) the defective track, and (3) a 
unique receiving tape. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+-----------------------------------------------------~ 
l[namellRECOVER iFROMDEV=xxxx I 
I I I FROMADDR=cuu I 
I I I TODEV=xxxx I 
I I I TOADDR=cuu I 
I J I VOLID=serial I 
I I lTRACK=bbbbcccchhhh I 
I I I [MODE=mm] I L ______ i _________ i _____________________________________________________ J 

FROMDEV=xxxx 
specifies the device type of the direct access device that contains 
the defective track, for example, 2311. 

FROMADDR=cuu 
specifies the channel number (c) and unit number (uu) of the direct 
access device that contains the defective track. 

TODEV=xxxx 
specifies the device type of the receiving tape volume. 

IBCRCVRP -- Recovering Data From a Defective Track 461 

• 



If the rece1v1ng device is a magnetic tape drive and no MODE 
parameter is specified, the data is written at the highest density 
supported by the device. (For 1-track tape, the default mode is 
93.> 

TOADDR=cuu 
specifies the channel number (c) and unit number (uu) of the 
receiving tape volume. This unit must be different from other 
receiving tapes in the same job. If this volume has no label or a 
nonstandard label, the RECOVER routine writes a tape mark preceding 
the data. 

VOLID=serial 
specifies the volume serial number of the direct access volume that 
contains the defective track. 

If ·serial" matches the volume serial number found on the specified 
volume, the program proceeds. If it does not match, the operator 
is notified and the job is terminated. 

TRACK=bbbbcccchhhh 
specifies the hexadecimal bin-cylinder-head address of the 
defective track. If the specified track is one for which an 
alternate has been assigned, data is recovered from the alternate, 
and a message identifying both tracks is issued. 

MODE=mm 
specifies the bit density for data written onto the receiving 
magnetic tape volume. This parameter is applicable to 1-track tape 
drives and to 9-track tape drives with density selections of 800 
and 1600 bits-per-inch. Valid 7-track modes are shown in 
Independent Utilities Table 1. (Only those modes which set 
converter on are accepted.) 

For 9-track tape drives with density selections of 800 and 1600 
bits-per-inch, the mode settings are: 

MODE=CB for 800 bpi. 
MODE=C3 for 1600 bpi. 

If no mode is specified, the data is written at the highest density 
supported by the device. 

LIST statement 

The LIST statement requests that the entire contents (both usable 
records and bad records) of the defective track be listed, and 
identifies the output device on which records are listed (list device). 
If it is omitted, only bad records are listed on the message output 
device. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+-----------------------------------------------------~ 
I [namellLIsT I TODEV=xxxx I 
I I I TOADDR=cuu I 
I I I [MODE=mm] I L ______ ~ _________ i _____________________________________________________ J 

TODEV=xxxx 
specifies the device type of the list device. 

462 



TOADDR=cuu 
specifies the channel number (c) and unit nwnber (uu) of the list 
device. 

MODE=nun (used only when the list device is a 7-track magnetic tape) 
specifies the mode in which the list tape is to be written. Valid 
modes are shown in Independent Utilities Table 1. 

If MODE is not specified, and the list device is different from the 
message output device, MODE=93 is assumed. 

Notes: If the list device and the message output device are the same, 
the list mode will be the same as that of the message output device. 

Neither the list device nor the message output device can be the same 
as the receiving tape identified in the RECOVER statement. 

Tape volumes must have either a standard label or a tape mark in 
place of a label. 'I'he label or tape mark must be written in the same 
mode as the data. 

Replacing Bad Data 
The REPLACE routine merges data recovered from a defective track with 
replacement data, and writes the result on an assigned alternate track. 
(Alternate tracks must be assigned manually on direct access devices 
that are not disks.) 

The REPLACE routine uses: 

1. REPLACE statement 
2. LIST statement (optional) 
3. INSERT statement (one or more) 

These statements must appear in the sequence sho·wn above. When the saIre 
device is used to read both control statements and replacement records, 
a replacement record must follow the INSERT statement that describes it. 

REPLACE Statement 

The REPLACE statement identifies both the tape device containing 
recovered data (recover tape), and the direct access volume on which 
recovered data is merged with new replacement data. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+-----------------------------------------------------~ 
j[namellREPLACE IFROMDEV=xxxx I 
I I I FROMADDR=cuu I 
I I j TODEV=xxxx I 
I I I TOADDR=cuu I 
I I I VOLID=s er ial I 
I I ITRACK=bbbbcccchhhh I 
I I I [MODE=mml I L ______ ~ _________ ~ _____________________________________________________ J 

FROMDEV= xx xx 
specifies the device type on which the recover tape is mounted. 

If MODE is not specified in this statement, the REPLACE routine 
assumes that the recover tape was written in maximum density 
(default mode). 

IBCRCVRP -- Recovering Data From a Defective Track 463 

• 



FROMADDR=cuu 
specifies the channel number (c) and the unit number (uu) of the 
tape device on which the recover tape is mounted. 

TODEV=xxxx 
specifies the device type of the direct access device on which 
recovered data is to be merged with replacement data. 

TOADDR=cuu 
specifies the channel number (c) and unit number (uu) of the direct 
access device on which recovered data is to be merged with 
replacement data. 

VOLID=serial 
specifies the volume serial number of the direct access volume that 
contains the defective track. 

TRACK=bbbbcccchhhh 
specifies the hexadecimal bin-cylinder-head address of the 
defective track from which data was recovered. 

MODE=mm 
specifies the bit density at which data was written onto the source 
magnetic tape volume. MODE should not be specified if it was not 
specified when data was written onto the source volume. 

Valid 7-track modes are shown in Independent Utilities Table 1. 
(Only those modes which set converter on are accepted.) For 
9-track tape drives with density selections of 800 and 1600 
bits-per-inch, the mode settings are: 

MODE=CB for 800 bpi. 
MODE=C3 for 1600 bpi. 

LIST statement 

The LIST statement requests that both recovered data and replacement 
records be listed after they are merged. If it is omitted, only 
replacement records are listed on the message output device. 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
r------f---------f-----------------------------------------------------~ 
I [name] I LIST I TODEV=xxxx I 
I I I TOADDR=cuu I 
I I I [MODE=mml I L ______ ~ _________ ~ ____________________________________________________ -J 

TODEV=xxxx 
specifies the device type of the list device. 

TOADDR=cuu 
specifies the channel number (c) and unit number (uu) of the list 
device. 

MODE=mrn (used only when the list device is 7-track tape) 

464 

specifies the mode in which the list tape is to be written. Valid 
modes are shown in Independent Utilities Table 1. 

If MODE is not specified, and the list device is differp.nt from the 
message output device,· MODE=93 is assumed. 



Notes: If the list device and the messaqe output device are the sawe, 
the list mode will be the same as the message mode. 

Neither the list device nor the messaqe output device can be the same 
as the tape device containing recovered data. 

Tape volumes must have either a standard label or a tape mark in 
place of a label. The label or tape mark must be written in the same 
mode as the data. 

INSERT Statement 

The INSERT statement identifies the device that contains each 
replacement record and describes the count field of that record. INSERT 
statements and corresponding data must be in sequence by record number 
(e.g., if records 3 and 5 are bad, the INSERT statement and replacement 
data for record 3 must precede the INSERT statement and data for record 
5). 

r------T---------T-----------------------------------------------------, 
lName I Operation I Operand . I 
~------+---------+-----------------------------------------------------~ 
I [namellINsERT I [FROMDEV=xxxxl I 
I I I [FROMADDR=cuul I 
I I ,{RECORD=YYY } I 
I I I RECORD=LAST I 
II ICOUNT=cccchhhhrrkkdddd I 
I I I [MODE=xx] I 
I I I [OVERFLOW=yes 1 I L ______ .L __________ .L ________________________________ ~ __ _:.. _________________ J 

FROMDEV=xxxx 
specifies the device type of the device that contains replacement 
data. 

FROMDEV need not be written if the bad record did not contain key 
or data fields. 

FROMADDR=cuu 
specifies the channel number (c) and unit number (uu) of the device 
that contains replacement' data. 

FROMADDR need not be written if the bad record did not contain key 
or data fields. 

RE.CORD=yyy 
indicates the decimal record number of the original bad record. 
(This number is obtained from messaqe IBC305I issued by the RECOVER 
routine. ) 

RECORD=LAST 
indicates that this replacement record i~ to be the last physical 
record written on the alternate track. Records can be added after 
this record if the track capacity is not exceeded. With this 
feature, records near the end of a defective track that has missing 
address markers (and, thus, could not be recovered) can still be 
replaced. 

COUNT=cccchhhhrrkkdddd 
describes (in hexadecimal) the count field for the replacement 

. record, .where cccc is the cylinder number, hhhh is the head number, 
rr is the physical record number, kk is the key length (in bytes), 
and dddd is the data length (in bytes). 

IBCRCVRP -- Recovering Data From a Defective Track 465 



MODE=xx (used only when the replacement data is on a 7-track tape) 
specifies the mode in which the input tape was written. Valid 
modes are shown in Independent Utilities Table 1. This tape volume 
must have either a standard label or a tape mark in place of a 
label. The label or tape mark must be written in the same mode as 
the data. 

If MODE is omitted, 93 is assumed. 

OVERFLOW=YES 
indicates that the bad record, which is being replaced was a 
segment (other than the last segment) of an overflow record. The 
replacement record will be either the last record or the only 
record on the assigned alternate track. 

Replacement Data Records 

A replacement record is an 80-byte card image; it must be supplied if 
the key or data fields were found by the RECOVER routine to be bad. It 
contains replacement data for only the bad fields. 

r---------T------------------------------------------------------~-----, 
I Columns I Contents I 
r---------+------------------------------------------------------------~ 
I 1-8 I I/D=xxx (column 8 ignored) I 
I I or I 
, I I/D=LAST I 
I I The value of I/O must be the same as that of the RECORD I 
I I parameter of the associated INSERT statement. I 
I 9-10 I blank . I 
I 11-80 I Replacement data in hexadecimal. I 
I I Extends for as many bytes as specified in the COUNT I 
I I parameter of the INSERT statement. Each card image can I 
I I replace 35 bytes (columns 11-80) of data. I L _________ ~ ____________________________________________________________ J 

Additional replacement records are processed in sequential order. 
They must have the same format as the first record, except that columns 
1-8 are ignored. 

466 



IBCRCVRP Examples 

IBCRCVRP Example 1, illustrates a sequence that recovers data from defective 
tracks on IBM 2311 disk storage volumes 123456 and 222222. 'I'he entire contents of 
these tracks are listed on an IBM 1403 printer -- channel 0, unit OE. 

r---------------------------------------------------------------------------------------, I Sample Coding Form I 
~---------------------------------------------------------------------------------------~ 
I JOB 'RECOVER 2311 TRACKS' I 
I MSG TOD~V=1403,TOADDR=OOE I 
I RECOVER FROMDEV=2311,FROMADDR=190,TODEV=2400,TOADDR=280, C I 
I VOLID=123456,TRACK=0000005E0008 I 
I LIST TODEV=1403,TOADDR=OOE I 
I RECOVER FROMDEV=2311,FROMADDR=191,TODEV=2400,TOADDR=281, C I 
I VOLID=222222,TRACK=OOOOOOl10005 I 
I LIST TODEV=1403,TOADDR=OOE I 
I END I L _______________________________________________________________________________________ 1 

IBCRCVRP Example 1. Recovering Data From Defective Tracks 

IBCRCVRP Example 2 illustrates a sequence that replaces bad data on IBM 2311 
disk storage volume 123456. Replacement records 001 and 003 contain 32 (20 in 
hexadecimal) bytes and 40 bytes (including an 8-byte key) of replacement data·, 
respectively. Record 003 must be continued onto an additional card image since 
the replacement data exceeds 35 bytes. 

r---------------------------------------------------------------------------------------, 
I Sample Coding Form I 
t---------------------------------------------------------------------------------------~ 
I JOB 'REPLACE 2311 TRACK' 
I MSG TODEV=1403,TOADDR=00E 
I REPLACE FROMDEV=2400,FROMADDR=280,TODEV=2311,TOADDR=190, C 
I VOLID=123456,TRACK=0000005E0008 
I LIST TODEV=1403,TOADDR=00E 
I INSERT FROMDEV=1402,FROMADDR=00C,RECORD=OOl, C 
I COUNT=005EOOQ801000020 
11/0=001 ABCDEF0123456789ABCDEF0123456789ABCDEF0123456789ABCDEFO123456789 
I INSERT FROMDEV=1402,FROMADDR=00C,R~CORD=003, C 
I COUNT=005E000803080020 
11/D=003 FFFFFFFFFFFFFFFFDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD 
I DDDDDDDDDD 
I END L ______________________________________________________________________________________ _ 

IBCRCVRP Example 2. Replacing Data on an Alternate Track 

IBCRCVRP -- Recovering Data From a Defective Track 467 

• 





Appendix A: Exit Routine Linkage 

Linking to an Exit Routine 

Data set utility programs perform linkage operations by using the LINK 
macro instruction (except linkage to user label processing and/or 

I totaling routines, and IEBCTRIN exits named OUTREC and ERROR, which is 
performed by the BALR instruction). This macro instruction contains the 
symbolic name of the entry point to an exit routine and, if required, a 
list of parameters. Linkage Table 1 shows the ordered parameter list 
for each available exit. (Format and contents of the DC.8 are presented 
in the publication IBM System/360 Operating system: Supervisor and Data 
Management Macro Instructions, GC28-6647.) 

At the time of the linkage operation: 

• General register 1 contains the starting address of the parameter 
list. 

• For the OUTREC and ERROR exits, register 1 contains a zero to 
indicate end-af-file on the input data set (SYSUT1). No return code 
is necessary. 

• General register 13 contains the address of the register save area .. 
This save area must not be used by user label processing routines. 
See "Appendix F: Utility Program Handling of User Labels." 

• General register 14 contains the address of the return point in the 
utility program .. 

• General register 15 contains the address of the entry point to the 
exit routine .. 

Registers 1 through 14 must be restored to these values before control 
is returned to the utility program .. 

The exit routine must be contained in either the job library or the 
link library .. 

Appendix A: Exit Routine Linkage 469 



Linkage Table 1. Parameter Lists for Exit Routines (Part 1 of 2) 
r-----------T-------T--------------------------------------------------, 
I I I Parameters I 
I Program I Exit I (In Order of Appearance in Parameter List) I 
~-----------+-------+--------------------------------------------------~ 
ICOPYPDS I None I I 
~-----------+-------+------------------------~------------~------------~ 
GENERATE INHDR Address of input header label; address of DCB; I 

address of status information; address of totaling I 
~~. I 

OUTHDR Address at which user output label is to be I 
created; address of DCB; address of status I 
information; address of totaling area. I 

INTLR Address of input trailer label; address of DCB; I 
address of status information; address of totaling 
area. 

OUTLR Address at which user output trailer label is to 
be created; address of DCB; address of status 
information; address of totaling area. 

KEY Address at which key is to be placed (record 
follows key); address of DCB. 

DATA Address of SYSUTI record; address of DCB. 
IOERRORIAddress of DECBi cause of the error and address of 

1 IDCB (packed word).1 
I ITOTAL IAddress of output buffer; address of DCB; address 
1 I lof status information; address of totaling area. 
r-----------+-------+------------------------------------------------~-~ 
I COMPARE IINHDR IAddress of input header label; address of DCB; I 
I I laddress of status information. I 
I IINTLR IAddress of input trailer label; address of DCB; I 
I I laddress of status information. I 
I IERROR IAddress of DCB for SYSUT1; address of DCB for I 
I I ISYSUT2. 2 I 
I IPRECOMPIAddress of SYSUT1 record; length of SYSUTl record, I 
I I laddress of SYSUT2 record; length of SYSUT2 record.! 
r-----------+-------+--------------------------------------------------~ 
IPRINT/PUNCHIINRDR IAddress of input header label; address of DCB; 1 
I I laddress of status information. I 
I lINTLR IAddress of input trailer label; address of DCB; I 
! I laddress of status information. 1 
t IINREC IAddress of input record; length of input record. ! 
I IOUTREC IAddress of output record; length of output record. I 
~-----------+-------+--------------------------------------------------~ 
iUPDATE IINHDR IAddress of input header label for Sf SIN data set; I 
I I laddress of DCB; address of status information. I 
I lINTLR lAddress of input trailer label for SYSIN data set;1 
I I laddress of DCB; address of status information. I 
I IOUTHDR IAddress at which user output label is to be I 
I I I created; address of DCB; address of status I 
I I linformation; address of totaling area. I 
j IOUTLR IAddress at which user output trailer label is to I 
I I tbe created; address of DCB; address of status I 
I I jinformation; address of totaling area. I 
L ___________ ~-------~---------------------------------_________________ J 

(Part 1 of 2) 

470 



Linkage Table 1. Parameter Lists for Exit Routines (Part 2 of 2) 
r-----------T-------T--------------------------------------------------, 
I I I Parameters I 
I Program I Exit I (In Order of Appearance in Parameter List) I 
~-----~-----+-------+--------------------------------------------------~ 
IIEBTCRIN ERROR IAddress of the record; address of a full 
I OUTREC Iword which contains the. record length. 
I I 
I OUTHDR21Address of 80-byte buffer area in which 
j OUTHDR3loutput header label is to be created by the user; 
I 'address of DCB; address of status information; 
I Ireserved word. 
I I 
I OUTTLR21Address of SO-byte buffer area in which 
I OUTTLR31output header label is to be created by the user; 
I laddress of DCB; address of status information; 
I lreserved word. 
~-----------~-------~--------------------~----------------------------~ 
J1For the packed-word format of this parameter, refer to the CHECK I 
I macro instruction, discussed in the publication IBM System/360 I 
I Operating System: supervisor and Data Management Macro Instructions. I 
I I 
12The IOBAD pointer in the DCB points to a location that contains the I 
I address 6fthe corresponding data event control block (DECB) for I 
I these records. The format of the DECB is illustrated as part of the I 
I BSAM READ macro instruction in the publication IBM System/360 I 
J Operating system: supervisor and Data Management Macro Instructions. I L ______________________________________________________________________ J 

Returning From an Exit Routine 

An exit routine returns control to the utility program by means of the 
RETURN macro instruction in the exit routine. 

r------T---------T-----------------------------------------------------, 
I Name lOperationloperand I 
~------+---------+-----------------------------------------------------~ 
I [nameJIRETURN I [(r1,r2)] I 
I I I {Rc=n } I 
I I I RC=(15) I L~ _____ ~ _________ ~ _____________________________________________________ J 

(r1,r2) 

RC=n 

specifies the range of registers to be reloaded by the utility 
program from the register save area. 

If this parameter is omitted, the registers are considered properly 
restored by the exit routine. 

specifies a return code to be placed in the 12 low-order bits of 
general register 15. 

RC=(15) 
specifies that general register 15 already contains a valid return 
code. 

If RC is omitted, register 15 is loaded as specified by (r1,r2). 

The utility programs examine the return code and respond as described 
in Linkage Table 2. Further information on the use of the LINK and 
RETURN macro instructions is contained in the publication IBM system/360 
~rating System: Supervisor and Data Management services, GC28-6646, 
and IBM system/360 Operating System: supervisor and Data Management 
Macro Instructions, GC28-6647. 

Appendix A: Exit Routine Linkage 471 



Linkage Table 2. Action on Return Codes 
r------------~---------T----------------T------------------------------, 
I Type of Exit I Return Code I Action I 
~----~-----------------+----------------+------------------------------~ I ILabel processing exits I 0,4,8 (Return code is passed to the I 
I I I OPEN routine. I 
I ~----------------+------------------------------~ 
I I 16 IUtility program is terminated. I 
I ~---~------------+---------------~--------------~ 
I IAny other number I Return code is passed to the I 
I I I OPEN routine. I 
~-~------------~-------+----------------+--------------~---------------~ 
ITotaling Exits I 0 IProcessing continues, but no I 
I I Ifurther exits are taken. I 
I ~----------------+--~-----------------~---------~ 
I I 4 I Normal operation continues. I 
I ~----------------+------------------------------~ 
I I 8 ,Processing ceases, except for I 
I I IEOD processing on output data I 
I I Iset (user label processing). I 
I t----------------+------------------------------~ 
I I 16 I Terminate. I 
~----------------------+---------------~+---------------------------.---~ 
'All other exits· I 0-11 IReturn code is compared to I 

II-(except IEBTCRIN I (Set to next I highest previous return code-; I 
I exits ERROR and Ilowest mUltiple Ithe higher is saved and the I 

- I OUTREC) I of four; i.e., lother discarded. At the I 
I I 0, 4, 8) Inormal end of job, the highest I 
I I I return code is passed to the I 
I I I calling processor. I 
I ~----------------+---------~--------------------~ 
I I _ 12-16 tUtility program is terminated I 
I I (Set to either land this return code is passedl 
I I 12 or 16) Ito the calling processor. I 
~----------------------+----------------+------------------------------~ 
I ERROR I 0 I Record is not placed in the I 
I I lerror data set. Processing I 
I I I continues with the-next I 
I I I record. I 
J t----------------+------------------------------~ 
I I 4 I Record is placed in the error I 
I I Idata set (SYSUT3). I 
I ~----------------+------------------------------~ 
I I 8 IRecord is not placed in error j 
I I Idata set but is processed as al 
I I Ivalid record (sent to OUTREC I 
I I land SYSUT2 if specified). I 
I I I IEBTCRIN removes the EDW from I 
I I Ian edited MTDI record before I 
I I Iprocessing continues. I 
I ~----------------+------------------------------~ 
I I 16 I Utility program is terminated. I 
~----------------------+----------------+-----------------~------------~ 
IOUTREC I 0 IRecord is not placed in normal I 
I I loutput data set. I 
I t----------------+------------------------------~ 
I I 4 I Record is placed in normal I 
I I loutput data set (SYSUT2). I 
I t----------------+------------------------------~ 
I I 16 I Utili ty program is terminated. I l ______________________ ~ ________________ ~ ______________________________ J 

472 



Return Codes from IEBTCRIN 

At job termination, the IEBTCRIN program produces a return code to 
indicate the results of program execution. The return codes and their 
interpretations are shown in Table 3. 

Linkage Table 3. Return Codes from Job Termination 

r---------T------------------------------------------------------------, 
1 Code 1 I 
I (decimal) 1 Interpretation I 
~---------+------------------------------------------------------------~ 
100 INormal termination. I 

~---------+------------------------------------------------------------~ 
104 IWarning message issued; execution per.mitted. Conditions I 
I Ileading to issuance' of- this code are: . I 
I I 1. SYSPRINT, SYSIN, SYSUT2, or SYSUT3 DD statements I 
1 I missing. - I 
I I 2. DCB parameters missing in SYSUT2 or SYSUT3 DD I 
I I statements. I 
~---------+------------------------------------------------------~-----~ 
112 IDiagnostic error message issued; execution terminated. I 
I IConditions leading to issuance of this code are: I 
I I 1. SYSUT1 DD statement missing. I 
I I 2. Conflicting DCB parameters in DD statements. I 
j I 3. Invalid or conflicting utiltiy control statements. I 
~---------+-------------------------~----------------------------------~ 
116 ITerminal error message issued; execution terminated. I 
I IConditions leading to issu~nce of this code a~e: I 
I I 1. Permanent I/O errors (not including data checks on the I 
I I TCR). . I 
I I 2. Unsuccessful opening of data sets. I 
I I 3. Requests for termination by user exit routine. I 
I I 4. Insufficient storage available for execution. I 
I I 5. User exit routine not found. I L _________ ~ _______________________________________________________ ~----J 

Appendix A: Exit Routine Linkage 473 





Appendix B: Invoking Utility Programs 

Utility programs can be invoked by a problem program through the use of 

I the ATTACH or LINK macro instructions. In addition, IEBTCRIN can be 
invoked through the use of LOAD or CALL. 

The problem program must supply to the utility program: 

• The information usually specified in the PARM parameter of the EXEC 
statement. 

• The ddnarnes of the data sets to be used during processing by the 
utility program. 

r------T---------T·-----------------------------------------------------, 
I Name I Operation I Operand I 
t------+---------+-----------------------------------------------------~ 
I [name] I LINK I EP=progname I 
I I ATTACH I PARAM= (optionaddr, I 
I I I [ddnarneaddrl, I 
I I I [hdingaddrJ) I 
I I I,VL=l I L ______ ~ _________ ~ _____________________________________________________ J 

EP=prognarne 

PARAM 

specifies the symbolic name of the utility program. 

specifies, as a. sublist, address parameterst'o be passed from the 
problem program to the utility program. The first fullword in the 
address parameter list contains the address of information that is 
usually specified in the PARM parameter of the EXEC statement. The 
second fullword contains the address of the ddname list. The third 
fullword contains the address of the page count list. -

If standard ddnames are to be used and this is not the last 
parameter in the list it should poin~ to a halfword of zeroes. If 
it is the last parameter it may be omitted. 

optionaddr 
specifies the address of a variable length list containing EBCDIC 
information usually specified in the PARM parameter of the EXEC 
statement. This address must 'be written for all utility programs. 

The option list must begin on a halfword b9undary (one that is not 
also a fullword boundary). The two high-order bytes contain a 
count of the number of bytes i.n the remainder of the list. (For 
all programs except IEHMOVE, IEHINITT, and IEBISAM, the count must 
be zero.) The ,option list is free form with fields separated by 
commas. No blanks or zeros should appear in the list. 

ddnameaddr 
specifies the address of a variable length EBCDIC list containing 
alternate ddnames for the data sets used during utility program 
processing. If standard ddnames are used and this is not the last 
parameter in the list it should point to a halfword of zeroes. If 
it is the last parameter it may be omitted. 

Appendix B: Invoking Utility Programs 475 



The ddname list must begin on a halfword boundary (one that is not 
also a fullword boundary). The two high-order bytes contain a 
count of the number of bytes in the remainder of the list. Each 
name of less than eight bytes must be left justified and padded 
with blanks. If an alternate ddname is omitted from the list, the 
standard name is assumed. If the name is omitted within the list, 
the 8-byte entry must contain binary zeros. Names can be omitted 
from the end by merely shortening the list. 

The sequence of the 8-byte entries in the ddname list is as 
follows: 

Entry 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

Standard Name 
00000000 
00000000 
00000000 
00000000 
SYSIN 
SYSPRINT 
00000000 
SYSUTl 
SYSUT2 
SYSUT3 
SYSUT4 

hdingaddr 

VL=l 

specifies the address of a 6-byte list containing an EBCDIC page 
count for the output device. The first two bytes of this list 
contain the length in bytes of the hding list. The remaining four 
bytes contain a page number that the utility program is to place on 
the first page of printed output. 

specifies that the sign bit of the last fullword of the address 
parameter list is to be set to 1. 

LINK/ATTACH Figure 1 shows how a utility program can be invoked by a 

I calling program. In this figure, the IEHINITT system utility program is 
used to place volume label sets onto a magnetic tape. 

The PARAM parameter of the LINK macro instruction in the calling 
program provides the utility program with the symbolic addresses of 
three parameter lists: OPTLIST (the optionaddr list), DDNMELST (the 
ddnameaddr list), and HDNGLIST (the hdinqaddr list). These lists, as 
they exist in the user DC area, are shown in LINK/ATTACH Figure 2. 

• The optionaddr list: includes the number of bytes in the list (08 
hexadecimal) and the NOVERIFY option. 

• The ddnameaddr list: includes the number of bytes in the list (48 
hexadecimal) and alternative names for the SYSIN, SYSUT1, and SYSUT2 
data sets (INSTREAM, INPUTSET, and WHICHP'l'R). 

• The hdingaddr list: includes the number of bytes in the list (04 
hexadecimal) and indicates the starting page number for printing 
operations controlled through the SYSPRINT data set. 

Note that.the symbolic starting addresses for the optionaddr and 
ddnameaddt parameter lists fallon halfword boundaries. 

476 



User (Calling) Program 

LINK EP= IEHINITT, PARAM=(OPT LlST,DDNMELST, HDNGLlST)VL=l 

I '.) 

Location OPLIST~~~/-~h 

End Of Program 

Program 
IEH:INITT 

LINK/ATTACH F'igure 1. Invoking a Utility Program 

Appendix B: Invoking Utility Programs 477 



Starting address of Starting address of 
the optionaddr parameter the ddnameaddr parameter 
list (OPTLI ST). list (DONMELST)' \ 

/ 
I 

I 
I 
\ 
\ 
\ 

\ 

, 

\ 
"-

\ 
I 
I 

half word full word half word full word / 
boundary boundary boundary boundar¥' 

" + + +// / , 
100.108 

," 
N 0 V ..... E R I £,'" 

- - 00 48 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 I N 

R E A M 0 0 

0 0 0 0 0 0 

0 0 0 0 I N 

T 5 E T W H 
y- ---

H P T R 00 04 

I 0 - - - -

F Y 

0 0 

0 0 

0 0 

0 0 

5 T 

0 0 

0 0 

P U 

I C -
0 

--r-
0 

- -
LINK/ATTACH Figure 2. Typical Parameter Lists 

Starting address 
of the hdingaddr 
parameter list 
(HDNGLlST)' 

----- ./ 

/ 
/ 

I 

The IEB'I'CRIN utility can be invoked through use of the LOAD and CALL 
macro instructions as follows; 

r--------T---------T---------------------------------------------------, 
I Name I Operation I Operand I 
~--------+---------+---------------------------------------------------~ 
I [syrnbolJILOAD I {EP=IEBTCRIN } I 
I I I EPLOC=address of name I l ________ ~ _________ ~ ___________________________________________________ J 

EP=IEBTCRIN 
is the entry point name of the program to be brought into main 
storage. 

EPLOC=address of name 
is the main storage address of the entry point name described 
above. 

The LOAD macro instruction causes the control proqram to bring the 
load module containing the specified entry point into main storage 
unless a copy is already there. Control is not passed to the load 
module. 

478 



Control can be passed to the load module via a CALL macro or via a 
branch and link instruction. If the branch and link instruction is 
used, register 1 must be loaded with the address of a parameter list of 
full words as described under ATTACH and LINE. The last parameter list 
address must contain an X'SO' in byte 1 to indicate the last parameter 
in the list. 

r--------T---------T---------------------------------------------------, 
I Name I Operation I Operand I 
~--------+---------+---------------------------------------------------~ 
I [symbolllCALL IIEBTCRIN(,optionaddr[,ddnameaddrl[,haingaddrl),VL I L ________ ~ _________ ~ __________________________________________________ J 

I~BTCRIN 

is the name of the entry point to be given control; the name is 
used in the macro instruction as the operand of a V-type address 
constant. 

optionaddr, ddnameaddr, hdingaddr 

VL 

are the same as for ATTACH and LINK. 

is written as shown. It causes the high order bit of the last 
address parameter in the macro expansion to be set to 1. 

Appendix B: Invoking Utility Programs 479 





Appendix C: Control Statement Format and 
Notation 

The control statements for the IBM System/360 Operating System utility 
programs have the following standard format: 

r--------T---------T---------------------------------------------------, 
I Name I Operation I Operand I 
t--------+---------+---------------------------------------------------~ 
I Optional I Control IOptional and required parameters I 
I symbolic I statement I I 
I name I type I I L ________ ~ _________ ~ ___________________________________________________ J 

The name symbolically identifies the control statement and, with the 
exception of system utility program IEHINITT, can be omitted at the 
discretion of the utility user. When included, a name must begin in the 
first position of'the statement and must be followed by one or more 
blanks. It can contain from one to eight alphameric characters, the 
first of which must be alphabetic. 

The operation identifies the ty~e of control statement. It must be 
preceded and followed by one or more blanks. 

The operand is made up of one or more keyword parameters separated by 
commas. The operand field must be preceded and followed by one or more 
blanks. Commas, parentheses, and blanks can only be used as delimiting 
characters. 

Comments can be written in a utility statement, but they must be 
separated from the last parameter of the operand field by one or more 
blanks. 

A typical utility statement might appear as: 

r----------------------------------------------------------------------, 
I NAME OPERATION KEYWORD=information,... I L ______________________________________________________________________ J 

Utility control statements are coded on cards or as card images and 
are contained in columns 1 through 71. A statement that exceeds 71 
characters can be continued on one or more additional cards. A nonblank 
character must be placed in column 72 to indicate continuation. A 
utility statement can be interrupted either in column 71 or after any 
comma. An operand field with a nonblank character in column 71 will be 
treated as an interruption of a statement that exceeds 71 characters. 
The continued portion of the utility control statement must begin in 
column 16 of the following statement. (Job control language 
continuations can begin in any column from 4 through 16, and do not 
require a nonblank character in column 72 for continued operand fields.) 
comments can be placed on any card containing a complete or partial 
statement. However, when a card is included for the sole purpose of 
c'ontinuing a comment, the continuation must begin in column 16. 

Note: The IEBCOPY, IEBPTPCH, IEBGENER, IEBCOMPR, and IEBDG utility 
programs permit certain exceptions to these requirements (see the 
applicable program writeup). 

Appendix C: Control statement Format and Notation 481 



Notation for Defining Control Statements 

The notation used to define control statements in this publication is 
described in the following paragraphs. 

1. The set of symbols listed below are used to define control 
statements, but are never written in the actual statement. 

hyphen 
underscore 
braces 1 } 
brackets [] 
ellipsis 

The special uses of these symbols are explained in paragraphs 5-98 

2. Upper-case letters and words, numbers, and the set of symbols 
listed below are written in an actual control statement exactly as 
shown in the statement definition. 

apostrophe 
asterisk * 
comma 
equal sign = 
parentheses () 
period 

3. Lower-case letters, words, and symbols appearing in a control 
statement definition represent variables for which specific 
information is substituted in the actual statement. 

Example: If ~ appears in a statement definition, a specific 
value (for example, ALPHA) is substituted for the variable in the 
actual statement. 

4. Stacked items represent alternatives. Only one such alternative 
should be selected. 

Example: The representation 

A 
B 
C 

indicates that either A or B or C should be selected. 

5. Hyphens join lower-case letters, words, and symbols to form a 
single variable. 

482 

Example: If member-name appears in a statement definition, a 
specific value (for example, BETA) is substituted for the variable 
in the actual statement. 



6. An underscore indicates a default option. If an underscored 
alternative is selected, it need not be written in the actual 
statement. 

Example: The representation 

A 
B 
C 

indicates that either A or B or C should be selected; however, if B 
is selecte,d, it need not be written, because it is the default 
option. 

7. Braces group related items, such as alternatives. 

Example: The representation 

indicates that a choice should be made among the items enclosed 
within the braces. If A is selected, the result is ALPHA=(A,D). 
If B is selected, the result can be either ALPHA=(,D) or 
ALPHA=(B,D). 

8. Brackets also group related items; however, everything within the 
brackets is optional and may be omitted. 

Example: The representation 

ALPHA= c[~]. D) 

indicates that a choice can be made among the items enclosed within 
the brackets or that the items within the brackets can be omitted. 
If B is selected, the result is: ALPHA=(B,D). If no choice is 
made, the result is: ALP.8.A=(,D). 

9. An ellipsis indicates that the preceding item or group of items can 
be repeated more than once in succession. 

Example: 

ALPHA [ , BETA1 ••• 

indicates that ALPHA can appear alone or can be followed by ,BETA 
any number of times in succession. 

Appendix C: Control statement Format and Notation 483 





Appendix D: Defining Mountable Devices to be 
Used by System Utility Programs 

When defining mountable devices to be used by system utility programs 
IEHPROGM, IEHMOVE, IEHLIST, or IEHDASDR the user must consider the 
implications of the DD statements he uses to define those devices. 

If the user is operating in a PCP environment, these considerations 
may not be critical. If however, the user is operating in an MFT or MVT 
environment, he must choose a combination of DD statement parameters 
that will ensure that volume integrity, as well as data set integrity, 
is maintained. In any case, extreme caution should be exercised when 
altering volumes which are permanently resident or reserved (e.g. 
volumes containing system data sets, non-dismountable devices, and 
volumes reserved through the PRESRES option). 

sharing Devices: Under normal conditions, the user will not want to 
"share" a mountable device with another job step; that is, if he is 
using a utility program to update a volume on a mountable device, he 
will want to ensure that the volume remain mounted until he is finished 
with it. 

There are a number of ways in which the user can ensure that his 
mountable devices cannot be shared. One of these ways is by specifying 
DEFER in a DD statement defining a mountable device. Another is by 
specifying unit affinity on a second DD statement defining a mountable 
device. Additional methods are available, such as specifying a volume 
count (in the VOLUME parameter of a DD statement) that is greater than 
the number of mountable devices to be allocated. The following exanlples 
of DD statements use the DEFER parameter to ensure that a device is 
nonsharable. (The DEFER parameter is also used to support the deferred 
mounting of additional volumes on a single device.> 

If the user is processing a single volume he can have the volume 
demounted and "signed out" to him by specifying PRIVATE in the DD 
statement defining the mountable device on which that volume is mounted. 
(The PRIVATE subparameter permits the demounting of a single volume at 
the end of a job step.) 

If the user is processing multiple volumes through the use of a 
single DD statement, he must specify PRIVATE in the DD statement 
defining the mountable device on which the volumes are to be mounted, 
otherwise, the first volume that is mounted is processed correctly, but 
it cannot be demounted (i.e., the remaining volUmes cannot be mounted). 

If the public attribute is assigned to a volume (PRIVATE is not 
specified), that volume cannot be demounted until another job step 
requests the device on which it is mounted. 

In the following examples of DD statements, an IBM 2311 Disk Storage 
Drive is indicated as the mountable device. Alternative parameters are 
stacked. 

mdix D: Defining Mountable Devices to be Used by System Utility Programs 485 



Statement 1: 

lDISP=OLD ! 
//DDn DO UNIT=(2311"OEFERl, DISP=(,KEEP) , 

DISP=(NEW,KEEP) 

// VOLUME=(PRIVATE"SER=(XXXxXX» 

Attributes of the DD Statement: Specific, private, nonsharable. 

This DD statement makes a specific request for a private, nonsharable 
volume or volumes to be mounted on a single 2311 device. 

A utility program causes a mount message to be issued for a specific 
volume when the volume is required for processing by the program. 
Multiple volumes can be processed, one at a time. 

The user should supply the operator with the volume or volumes that 
he wishes to have him mount during the course ot the utility job step. 
These volumes should be clearly marked so that the operator knows which 
volume to mount when the utility program causes a mount message to be 
issued for a specific volume. 

This DD statement ensures that the volume integrity of a mountable 
volume" is maintained; that is, the specified volume or volumes can be 
mounted or demounted through the execution of the utility program only. 

Notes: If only one volume is to be processed, it is mounted at the 
start of the job step and demounted at the end of the step. If 
additional volumes are processed, they are mounted and demounted when 
needed by the utility program. The last volume to be processed is 
demounted at the end of the job step. 

This DO statement is valid at all PCP, MFT, and MVT installations. 

Statement 2: 

//ODn DD {
DISP=(,KEEP) } 

UNIT=(2311"DEFER),VOLUME=PRIVATE, OISP=(NEW,KEEP) 

Attributes of the DD Statement: Nonspecific, private, nonsharable. 

The operational results of this statement are identical to those of 
statement 1. 

Caution: This statement can be used only if the user is certain that a 
removable VOlume, rather than a fixed volume, will be allocated by the 
scheduler. If there is any chance that a fixed volume will be 
allocated, this statement must not be used. When uncertain, the user 
should make a specific request, as in statement 1. 

486 



statement 3: 

//DDn DD UNIT=2311,VOLUME=(PRIVATE"SER=(xxxxxx)},DISP=OLD 

Attributes of the DD Statement: Specific, private, sharable. 

This DD statement makes a specific request for one private, sharable 
volume to be mounted on a 2311 device. The DD statement does not ensure 
that V9lume integrity is maintained; that is, it should be used with 
extreme caution in an ~~T or MVT environment. (If the statement is used 
in an MFT or MVT environment, there is the possibility that a 
concurrently running job step might make a specific request for the 
volume, use the volume, and demount it.) 

statement 4: 

//DOn DD j
DISP=OLD ! 

UNIT=(2311"DEFER),VOLUME=SER=xxxxxx, .DISP=(,KEEP) . 
DISP=(NEW,KEEP) 

Attributes of the DD Statement: Specific, public, nonsharable. 

This DD statement makes a specific request for one public, 
nonsharable volume to be mounted on a 2311 device. If the volume is 
already mounted, it is used. The volume remains mounted at the end of 
the job step, and is not demounted until some other job step requires 
the device on which the volume is mounted. 

This DD statement ensures that volume integrity is maintained between 
jobs; two or more such statements in a single job can allocate the same 
device. 

This DD statement is valid at all PCP, MFT, and MVT installations. 

Statement 5: 

//DDn DD UNIT=2311,VOLUME=SER=xxxxxx,DISP=OLD 

Attributes of the DD Statement: Specific, public, sharable. 

This DO statement makes a specific request for one public, sharable 
volume to be mounted on a 2311 device. If the volume is already mounted 
it is usede The volume remains mounted at the end of the job step, and 
is not demounted until some other job step requires the device on which 
the volume is mounted. (This DD statement is also used to define 
permanently resident devices.) 

This DD statement does not ensure that the volume integrity of a 
mountable volume is maintained; that is, it should be used with extreme 
caution in an MFT or MVT environment. (If the DD statement is used to 
define a mountable device in an MFT or MVT environment, there is the 
possibility that a concurrently running job step might use the device.) 

:dix D: Defining Mountable Devices to be Used by System Utility Programs 487 





Appendix E: Generation Data Groups 

A generation data group is a group of cataloged data sets that are 
chronologically or functionally related. Each data set within a 
generation data group is called a generation data set or, more simply, a 
generation. 

The advantages of grouping related data sets are: 

• All of the data sets in the group are referred to by a common name. 

• The operating system keeps track of the relationship of each data 
set to the other data sets in the group. 

• Outdated or obsolete generations can be automatically deleted by the 
operating system, if desired. 

Data sets are grouped by cataloging them in a generation data group 
index. This index differs from a standard catalog index in that it is 
constructed so that the operating system can maintain a set of 
lower-level entries in the index. In this manner, the operating system 
can always have a record of the relative age of the generations that are 
represented in the lower-level index entries. 

A generation data group can contain sequential, indexed sequential, 
partitioned, and direct data sets. A generation can reside on any 
volume that is compatible with its organization. For example, a 
partitioned generation can reside on any direct access volume but cannot 
reside on a sequential volume, such as magnetic tape. 

Within a generation data group, the generations can have like or 
unlike DCB attributes and data set organizations. If the attributes and 
organizations of all generations in a group are identical, the 
generations can be retrieved together as a single data set. 

PREPARING TO CATALOG A GENERATION DATA GROUP 

Before you can catalog a generation or a group of generations, you must 
build a generation data group index in the SYSCTLG (catalog) data set. 
In addition, you should decide, at this time, how you are going to 
supply DCB attributes for the first generation that you create and 
catalog. 

Building a Generation Data Group Index 

Use the BLDG function of the IEHPROGM system utility program to build 
your generation data group index. The BLDG function builds the index, 
providing lower-level entries for as many generations (up to 255) as you 
would like to have in your generation data group. The BLDG function 
also serves the purpose of telling the operating system how to handle 
older or obsolete generations when the index is full. For example, when 
the index is full you may wish to empty it, scratch all of the existing 
generat~ons, and begin the cataloging of a new series of generations. 
As an alternative, you may wish to scratch only the oldest generation, 
thus making room for a new generation. 

Examples showing how to build a generation data group index are 
included in "Cataloging a Generation." 

Appendix E: Generation Data Groups 489 



Generation Data Groups Figure 1 shows a generation data group index. 
When the index was built, provision was made for the subsequent 
cataloging of ten generations. 

Note: You cannot build a generation data group index using index 
qualifiers identical to those in an existing, nongeneration index 
structure. For example, if the following index structure exists in the 
catalog: 

A 

you cannot build a generation data group index whose first three 
qualifiers are either A.B.D or A.G.H. You must either use a different 
name for your generation data group index, or delete the existing index 
structure. 

System Residence Volume 

Generation Data Groups Figure 1. A Generation Data Group Index 

After the index is built, you can catalog a generation by its 
generation group name and either an absolute generation and version 
number or a relative generation number. 

490 



Absolute Generation and Version Numbers: An absolute generation and 
version number is used to identify a specific generation of a generation 
data group. The generation and version numbers are in the form 
GxxxxVyy. where xxxx is an unsigned 4-diqit decimal generation number 
and yy is an unsigned 2-digit decimal version nUmber. For example, 

A.B.C.GOOOOVOO is generation zero, version zero of the generation 
data group A.B.C • 

A.B.C.G0001VOO is generation one, version zero of generation data 
group A.B.C • 

A.B.C.G0009V01 is generation nine, version one of generation data 
group A.B.C • 

When you catalog a generation, using relative or absolute numbers, a 
generation and version number is placed as a low-level entry in the 
generation data group index. (The volume serial number of the volume 
containing the generation is also included.) In order to catalog a 
version number other than VOO, you must use an absolute generation and 
version number when you catalog the generation. 

Generation Data Groups Figure 2 shows a generation data group index 
after generation A.B.C.GOOOOVOO is cataloged. 

Generation Data Groups Figures 3 and 4 show how the index looks after 
additional generations are cataloged. Note that the low-level index 
entries are shifted. The operating system shifts them to allow you to 
use relative gen~ration numbers when cataloging or retrieving a 
generation. 

Note: A new version of a specific_generation can be cataloged 
automatically by specifying the old generation number along with a new 
version number. For example, if generation A.B.C.GOOOSVOOis cataloged 
in the index and you now create and catalog A.B.C.GOOOSV01, the new 
entry is cataloged in the index location previously occupied by 
A.B.C.GOOOSVOO. (This process removes the old entry from the catalog.) 

Relative Generation Numbers: As an' alternative to using absolute 
generation and version numbers when cataloging or referring to a 
generation, you can use a relative generation number. To specify a 
relative number. use the generation data group name followed by a 
negative integer, a positive integer, or a zero, enclosed in 
parentheses. For example: 

A.B.C(-l) 
A.B.C(+l) 
A.B.C(O) 

Appendix E: Generation Data Groups 491 



System Residence Volume 

Volume 
Containing 

A.B.C 
GOOOOVOO 

Generation Data Groups Figure 2. A Generation Data Group Index -
One Entry 

492 



System Residence Volume 

Volume 
Containing 
G0001VOO 
of Data Set 
GroupA.B.C. 

Volume 
Containing 
GOOOOVOO 
of Data Set 
Group A. B. C. 

Generation Data Groups Figure 3. A Generation Data Group Index -
Two Entries 

Appendix E: Generation Data Groups 493 



System Residence Volume 

Volume 
Containing 

G0002VOO 
of Data Set 
Group A.B.C 

Volume 
Containing 
G0001VOO 
of Data Set 
Group A.B.C 

Volume 
Containing 
GOOOOVOO 
of Data Set 
GrouD A.B. C 

Genera.tion Data Groups Figure 4. A Generation Data Group Index -
Three Entries 

The value of the specified integer tells the operating system what 
generation nuwber to assign to a new generation, or it tells the system 
the location (in the generation data group index) of an entry 
representing a previously cataloged generation. 

When you use a relative generation number to catalog a generation, 
the operating system assigns an absolute generation nurrber and a version 
number of VOO to represent that generation. The assigned generation 
number depends on the number last assigned and the value of the relative 
generation number that you are now specifying. For example, if in a 
previous job, generation A.B.C.G0005VOO was the last generation 
cataloged, and you now specify 

494 



A.B.C(+l), 

The generation now cataloged is assigned the number G0006VOO. 

When you use a relative generation number to refer to a generation 
that was cataloged in a previous job, the relative number has the 
following meaning: 

A.B.C.(O) refers to the latest existing cataloged entry. 
A.B.C(-l) refers to the next-to-the-Iatest entry. 
etc. 

When you use a relative generation number to refer to a generation 
that was cataloged in a previous job step of your job, the relative 
number has the following meaning: 

A.B.C(+l) refers to the latest existing catalog entry. 
A.B.C(O) refers to the next-to-the-Iatest entry. 
A. B. C(-l) .refers to the third latest entry. 
etc. 

Note: A job step that terminates abnormally may be deferred for a later 
step restart. If the step cataloged a generation data set, you must 
change all relative generation numbers in the succeeding steps before 
resubmitting the job. For example, if the succeeding steps contained 
the relative generation numbers: 

A.B.C(+l), referring to the entry cataloged in the terminated step, 
A.B.C(O>, referring to the next-to-Iatest entry, 
A.B.C(-l>, referring to the third latest entry, 
etc. 

You must change them as follows before the step can be restarted: 

A.B.C(O> 
A.B.C(-l) 
A.B.C(-2) 
etc. 

For further information on deferred step restarts and checkpoint 
restarts, refer to the publication IBM System/360 Operating System: 
Concepts and Facilities, GC28-6535. 

Generation Data Groups Figure 5 shows how an index looks after three 
generations -- A.B.C(+l).A.B.C(+l>.and A.B.C(+2) -- have been cataloged. 
The first generation is assigned the generation number GOOOIVOO; the 
second, G0002VOO; the third, G0003VOO. 

Appendix E: Generation Data Groups 495 



B 

Volume Volume Volume 
Containing Containing Containing 
A.B.C (O) A.B.C{-l) A.B.C (-2) 

(A. B.C. G0003VOO) (A.B.C.G0002VOO) (A.B.C. G0001VOO) 

Last Cataloged -- Second Cataloged --
Newest Generation Next - to - Latest 

Generation 

First Cataloged-
Oldest Generation 

Generation Data Groups Figure 5. Relative Positioning -- Three Entries 
in the Catalog 

Providing DCB Attributes 

If you are using absolute generation and version numbers, DCB attributes 
for the generation can be supplied directly in the DCB parameter of the 
DD statement defining the generation to be created and cataloged. 

However, if you are planning to use relative generation numbers when 
you catalog your generations, you must plan to specify DCB attributes in 
an alternative manner. DCB attributes can be supplied either (1) by 
creating a model DSCB on the volume on which the index resides (the 
volume containing the SYSCTLG data set), or (2) by referring to a 
cataloged data set for the use of its attributes. Attributes can be 
supplied before you catalog your generation, when you catalog it, or at 
both times, as follows: 

1. Create a model DSCB on the volume on which your index resides. You 
can provide initial DCB attributes when you create your model; 
however, you need not provide any attributes at this time. Initial 
or overridding attributes can be supplied when you create and 
catalog your generation. 1 

10nly one model DSCB is necessary for any number of generations. If you 
plan to use only one model, do not supply any DCB attributes when you 
create the model. When you subsequently create and catalog a 
generation, include necessary DCB attributes in the DD statement 
referring to the generation. Note that in this manner, any number of 
generation data groups can refer to the same model. 

496 



To create a model OSCE, include the following DD statement in the 
job step that builds the index or in any other job step that 
precedes the step in which you create and catalog your generation: 

//name 00 DSNAME=datagrpname,DISP=(,KEEP),SPACE=(TRK,(O», 
// UNIT=xxxx,VOLUME=SER=xxxxxx, 
// DCB=(applicable subparameters) 

where 
datagrpname is the common name by which each generation is 
identified, and xxxxxx is the serial number of the volume 
containing the catalog. 

Note: If no DCB subparameters are desired initially, you need 
not code the DCB parameter. 

2. You d9 not need to create a model DSCB if you can refer to a 
cataloged data set whose attributes are identical to those you 
desire or to an existing model DSCB for which you can supply 
overriding attributes*. A cataloged data set referred to in this 
manner must reside on the same volume as your index. 

To refer to a cataloged data set for the use of its attributes, 
specify DCB=(dsname) on the DD statement that creates and catalogs 
your generation. To refer to an existing model, specify 
DCB=(modeldscbname, your attribute) on the DD statement that 
creates and catalogs your generation. 

CATALOGING A GENERATION 

You can catalog a generation through the use of normal job control 
language procedures or through the use of the IEHPROGM system utility 
program. 

Using JCL Procedures to Catalog a Generation 

Assuming that a generation data group index has been built and that 
provisions have been made for supplying DCB attributes, a generation is 
created and cataloged in the same manner as any other type of data set; 
that is, all of the normal data set manipulations apply to a generation. 

When you use relative numbers in your job control language 
procedures, you must include the CATLG subparameter in the DD statement 
defining the new generation. When you use absolute generation and 
version numbers, you need not catalog the new generation immediately. 

Using the IEHPROGM Program to Catalog a Generation 

You can use the CATLG function of the IEHPROGM system utility program to 
catalog a generation. Again, the prerequisite for cataloging a 
generation is the existence of a generation data group index in the 
SYSCTLG (catalog) data set. 

l 

Note: you must always use an absolute generation and version number if 
you catalog or uncatalog a generation with the IEHPROGM program. (The 
IEHMOVE and IEHLIST system utility programs also require that absolute 
generation and version numbers be used.) 

Appendix E: Generation Data Groups 497 



Creating an ISAM Data Set as Part of a Generation Data Group 

To create an ISAM data set as part of a generation data group, you must: 

1. Create the ISAM data set separately from the generation data group. 

2. Use the IEHPROGM utility to put the ISAM data set into the 
generation group. 

Use the RENAME function to rename the data set. Then use the CATLG 
function to catalog the data set. For instance. if MASTER is the name 
of the generation data group, and GggggVvv is the absolute generation 
name. you would code the following: 

RENAME DSNAME=ISAM,VOL=2314=SCRTCH,NEWNAME=MASTER.GggggVvv 

CATLG DSNAME=MASTER.GggggVvv,VOL=2314=SCRTCH 

RETRIEVING A GENE~TION 

A generation is retrieved through the use of job control language 
procedures. Any operation that can be applied to a nongeneration data 
set can be applied to a generation. For example, a generation can be 
updated and then reentered in the catalog, or it can be copied, printed, 
punched,. or used in the creation of new generation or nongeneration data 
sets. 

You can retrieve a generation by using either relative generation 
numbers or absolute generation and version numbers. 

MULTIPROGRAMMING CONSIDERATIONS 

Since in a multiprogramming environment, two or more jobs can compete 
for the same resource (which includes a generation), generation data 
groups should be updated with caution. 

1. No two jobs running concurrently should refer to the same 
generation data group. As a partial safeguard against this 
situation, you should use absolute generation and version numbers 
when cataloging or retrieving a generation in a multiprogramming 
environment. otherwise, if you use relative numbers, a 
concurrently running job may update the generation data group index 

perhaps cataloging a new generation which you will then retrieve 
in place of the one you wanted. 

2. Even when using absolute generation and version numbers, a 
concurrently running job might catalog a new version of a 
generation or perhaps delete the generation you wished to retrieve. 
For this reason, some degree of control should be maintained over 
the execution of job steps referring to generation data groups. 

498 



Generation Data Groups Examples 

The following examples show some of the ways in which generations can be created 
and cataloged or retrieved and used as source data in the creation of new 
generation or nongeneration data sets. 

Generation Example 1 

In this example, STEPA, an IEHPROGM job step, creates a model OSCB and builds a 
generation data group index. STEPB, an IEBGENER job step, creates and catalogs a 
sequential generation from card input. 

STEPA 

• The BLOOSCB DO statement: creates a model DSCB on the system residence 
volume. 

• The SYSIN DO statement: indicates that a utility control statement (BLDG) is 
included next in the input stream. 

• The BLDG Utility Control Statement: specifies the generation group name A.B.C 
and makes provision for ten lower-Ieve~ entries in the index. When the index 
subsequently becomes full, it is to be emptied, and all of the generations are 
to be deleted. 

Note: The subsequent job that causes the deletion of the generations should 
include OD statements defining the devices on which the volumes containing those 
generations are to be mounted. Each generation for which no 00 statement is 
included is uncataloged at that time, but not deleted. 

After the generation data group is emptied, new generations will continue. to be 
assigned generation numbers according to the last generation number assigned prior 
to the empty operation. To restart the numberinq operation (i.e., to reset to 
GOOOOVOO or G0001VOO), delete the generation data group index and build a new one. 

STEPB 

• TheSYSUT2 DD statement: defines an output sequential generation. The 
generation is assigned the absolute generation and version number G0001VOO in 
the index. 

• The SYSUTl DD Statement: defines the input card data set. 

Appendix E: Generation Data Groups 499 



r---------------------------------------------------------------------------------------, 
//BLDINDX JOB I 
//STEPA EXEC PGM=IEHPROGM I 
//SYSPRINT DD SYSOUT=A I 
//BLDDSCB DD DSNAME=A.B.C,DISP=(,KEEP),SPACE=(TRK,(0»,UNIT=2311, I 
// VOLUME=SER=111111,DCB= (LRECL=80, RECFM=FB,BLKSIZE=800) I 
//SYSIN DD * I 

BLDG INDEX=A.B.C,ENTRIES=lO,~lPTY,DELETE I 
/* 
//STEPB 
//SYSPRINT 
//SYSIN 
//SYSUT2 
// 
//SYSUT1 

EXEC 
DD 
DO 
DO 

DD 

PGM=IEBGENER 
SYSOUT=A 
DUMMY 
DSNAME=A.B.C(+1),UNIT=2311,DISP=(,CATLG),SPACE=(TRK,20), 

VOLUME=SER=231100 
DATA 

input card data 

I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

1/* I L _______________________________________________________________________________________ J 

Generation Example 1. Building a Generation Data Group Index and Creating the 
First Generation From Card Data 

500 



Generation Example 2 

In this example, a second generation is created and cataloged in the index 
built in Example 1. DCB attributes are included to override those attributes that 
were specified when the model OSCB was created. 

• The SYSUT2 DD statement: defines an output sequential generation. The 
generation is assigned the absolute generation and version number G0002VOO in 
the index. The specified DCB attributes override those initially specified in 
the model DSCB. 

Note: The DCB attributes sp~cified when the model DSCB was created remain 
unchanged; that is, those attributes are applicable when you catalog a 
succeeding generation unless you specify overriding attributes at that time • 

• The SYSUTl DD Statement: defines the input card data set. 

r---------------------------------------------------------------------------------------, 
// JOB I 
// EXEC PGM=IEBGENER I 
//SYSPRINT DD SYSOUT=A I 
//SYSIN DD DUMMY I 
//SYSUT2 DD DSNAME=A.B.C(+1},UNIT=2311,DISP=(,CATLG},SPACB=(TRK,20}, I 
// VOLUME=SER=231101,DCB=(LRECL=80,RECFM=FB,BLKSIZE=1600} I 
//SYSUTl DD DATA I 

I 
I 

input card data I 
I 
I 

1/* I L _______________________________________________________________________________________ J 

Generation Example 2. Creating a Second Generation From Card Data -- Providing 
Overriding Attributes 

Appendix E: Generation Data Groups 501 



Generation Example 3 

In this example: 

1. A generation data group index for generation data group A.B.C is built. 

2. Three existing noncataloged, nongeneration data sets are renamed. 

3. The renamed data sets are cataloged as generations in the generation data 
group index. 

• The.DD1 DD statement: defines the system residence volume, on which the 
SYSCTLG (catalog) data set resides. 

• The BLDG Utility Control Statement: specifies the generation group name A.B.C 
and makes provision for ten entries in the index. The oldest generation is to 
be uncataloged when the index becomes full. No generations are to be 
scratched. 

• The RENAME Utility Control statements: rename three nongeneration data sets 
residing on a 2311 disk volume. 

• The CATLGUtility Control Statement: catalog the renamed data sets in the 
generation data group index. 

Note: Because the DCB parameters were supplied when the nongeneration data sets 
were created, no DCB parameters are now specified; hence, no model DSCB is 
required. 

r---------------------------------------------------------------------------------------, 
//BLDINDEX JOB 
// EXEC PGM=IEHPROGM 
//SYSPRINT DD 
//DD1 DD 
//DD2 DD 
// 
//SYSIN DD 

1/* 

BLDG 
RENAME 
RENAME 
RENAME 
CATLG 
CATLG 
CATLG 

SYSOUT=A 
UNIT=2311,VOLUME=SER=111111,DISP=OLD 
UNIT=(2311"DEFER),DISP=OLD, 

VOLUME=(PRIVATE"SER=(231100» 

* INDEX=A.B.C,ENTRIES=10 
DSNAME=DATASET1,VOL=2311=231100,NEWNAME=A.B.C.G0001VOO 
DSNAME=DATASET2,VOL=2311=231100,NEWNAME=A.B.C.G0002VOO 
DSNAME=DATASET3,VOL=2311=231100,NEWNAME=A.B.C.G0003VOO 
DSNAME=A.B.C.G0001VOO,VOL=2311=231100 
DSNAME=A.B.C.G0002VOO,VOL=2311=231100 
DSNAME=A.B.C.G0003VOO,VOL=2311=231100 

L ________ - ______________________________________________________________________________ J 

Generation Example 3. Renaming Nongeneration Data sets and Cataloging Them as 
Generations 

502 



Generation Example 4 

In this example, a nongeneration version of a generation data set is to be 
made. The generation is represented as the next-to-the-latest entry in the 
generation data group index. 

The name of the resultant data set is changed from A.B.C.GxxxxVxx to TESTSET. 
This example assumes that the generation to be copied is partitioned • 

• The SYSUT1 DD Statement: defines the generation from which a copy is to be 
made • 

• TheSYSUT2 DD Statement: defines a resultant partitioned data set (TESTSET) 
on a 2311 output volume. The DCB attributes in this statement are identical 
to those assigned to the generation. (Reblocking is permissable; however, the 
SYSUT2 block size specification must be a multiple of the original block 
size.) 

r--------------------------------~------------------------------------------------------, 
I//COPY JOB I 
1// EXEC PGM=IEBCOPY 1 
l//SYSPRINT DD SYSOUT=A 1 
1//SYSUT1 DD DSNAME=A.B.C(-l),DISP=(OLD,CATLG) I 
1//SYSUT2 DD DSNAME=TESTSET,UNIT=2311,DISP=(,KEEP), 1 
1// VOLUME=SER=231100,SPACE=(TRK,(20,10,5», 1 
1// DCB=(RECFM=FB,LRECL=80,BLKSIZE=80) I 
I//SYSIN DD DUMMY 1 
1/* I L _______________________________________________________________________________________ J 

Generation Example 4. Creating a Nongeneration Copy of a Partitioned Generation 

Appendix E: Generation Data Groups 503 



Generation Example 5 

In this example, a partitioned generation, consisting of 
be used as source data in the creation of a new generation. 
utility program is to be used to add a fourth member to the 
and to number the new member. The resultant data set is to 
generation. 

three members, is to 
The IEBUPDTE data set 

three source members 
be cataloged as a new 

• The SYSUT1 DD statement: defines the latest generation, which is used as 
source data. 

• The.SYSUT2 DD statement: defines the new generation, which is created from 
the source generation and from an additional member included as input card 
data. 

• The REPRO Utility Control Statements: reproduce the named source members in 
the output generation. 

• The ADD Utility Control statement: specifies that the data cards following 
the input stream be included as MEM4. 

• The NUMBER Utility Control Statement: indicat·es that the new member is to 
have sequence numbers assigned in columns 73-80. The first record is assigned 
sequence number 10. The sequence number of each successive record is 
incremented by 5. 

• The ENDUP Utility Control statement: signals the end of input card data. 

Note: This example assumes that a model DSCB exists on the catalog volume on 
which the index was built. 

r---------------------------------------------------------------------------------------, 
// JOB I 
// EXEC PGM=IEBUPDTE,PARM=MOD I 
//SYSPRINT DD SYSOUT=A I 
//SYSUT1 DD DSNAME=A.B.C(O),DISP=(OLD,CATLG) I 
//SYSUT2 DD DSNAME=A.B.C(+1)DISP=(,CATLG),UNIT=2311, I 
// VOLUME=SER=231100, SPACE= (TRK, (100,10,10», I 
// DCB=(RECFM=FB,LRECL=80,BLKSIZE=800) I 
//SYSIN DD DATA 
./ REPRO NAME=MEM1,LEVEL=00,SOURCE=0,LIST=ALL 
./ REPRO NAME=MEM2,LEVEL=00,SOURCE=0,LIST=ALL 
./ REPRO NAME=MEM3,LEVEL=00,SOURCE=0,LIST=ALL 
./ ADD NAME=MEM4,LEVEL=00,SOURCE=0,LIST=ALL,IGNORE=EOF 
./ NUMBER NEW1=10,INCR=5 

I data cards comprising MEM4 
I 
1 
1./ ENDUP 
1/* L _______________________________________________________________________________________ J 

Generation Example 5. Modifying the Latest Generation and Cataloging it as a New 
Generation 

504 



Appendix F: Utility Program Handling of 
User Labels 

I six utility programs can process user labels. They are IEBGENER, 
IEBCOMPR, IEBPTPCH, IEHMOVE, IEBCTRIN, and IEBUPDTE. Following is a 
general discussion of the manner in which these programs process user 
labels. Exceptions are noted both here and in the discussions of the 
IEHMOVE, IEBGENER and IEBUPDTE programs. In general, user label support 
allows the utility program user to: 

• Process user labels as data set descriptors. 
• Process user labels as data. 
• Exit to a user's routine for totaling the processed records prior to 

each WRITE command (IEBGENER and IEBUPDTE only). 

For either of the first two options, the user must specify standard 
user labels (SUL) on the DD statement that defines each data set for 
which user label processing is desired. For totaling routines, OPTCD=T 
must be specified on the DD statement-

Processing User Labels as Data Set Descriptors 

Under this option one of the user's label processing routines receives 
control for each user label of the specified type. The user's routine 
can then include, exclude, or modify the user label. The user specifies 
this option by providing an EXITS statement with one or more of the 
following keyword parameters: 

INHDR=routinename 
(name of user routine to process input header labels) 

INTLR=routinename 
(name of user routine to process input trailer labels) 

OUTHDR=routinename 
OUTHDR2=routinename 
OUTHDR3=routinename 

(name of user routine to process output header labels) 

OUTTLR=routinename 
OUTTLR2=routinename 
OUTTLR3=routinename 

(name of user routine to process output trailer labels) 

These keyword parameters indicate that a user routine should receive 
control each time the OPEN, EOV, or CLOSE routine encounters a user 
label of the type specified. 

User Labels Figure 1 illustrates the action of the system at OPEN, 
EOV, or CLOSE time. When OPEN, EOV, or CLOSE recognizes a user label 
(and when SUL has been specified on the DD statement for the data set), 
it passes control to the utility program, which then, if an exit has 
been specified for this type of label, passes control to the user 
routine. The user routine processes the label as desired and returns 
control, along with a return code, to the utility program. The utility 
program then returns control to OPEN, EOV, or CLOSE. 

Appendix F: Utility Program Handling of User Labels 505 



OPEN/EOV /ClOSE 

" 
1 4 

(Return code) 

3 

, 
" 

Uti lity Program 
~er"$ Lobel 
Processing Routine .. 

2 

User Labels Figure 1. System Action at OPEN, EOV, or CLOSE Time 

This cycle is repeated up to 8 times, depending upon the number of 
user labels in the group and the return codes supplied by the user's 
routine. 

The user's label processing routine receives control with the 
following information in the general registers: 

Register 
o 
1 
2-13 
14 
15 

Contents 
no meaningful information 
address of parameter list described below 
utility registers 
return address in utility program 
entry point address in user routine 

The user's label processing routine must save all registers and 
restore them before returning control to the utility program. The 
user's routine must not use the save area to which register 13 points. 

User Labels Figure 2 shows the format of the parameter list which the 
user routine receives from the utility program. 

Flag Byte Address Constant (3 bytes) 
r----~----T--------------------------------------~---------------------, 
I I Address of the label buffer I 
t---------+------------------------------------------------------------~ 
jFlag 1 IAddress of the DCB being processed I 
~---------+------------------------------------------------------------~ 
IFlag 2 IAddress of the status information (if an uncorrectable I 
I 11/0 error occurs) I 
~--------+------------------------------------------------------------~ 
I IAddress of totaling area I L _________ ~ ____________________________________________________________ J 

User Labels Figure 2. Format of Parameter List Passed to User's Label 
Processing Routine 

The 80-byte label buffer contains an image of the user label when an 
input label is being processed. When an output label is being processed 
the buffer contains no significant information at entry to the user's 
label processing routine. (Except when the utility program has been 
requested to generate labels. In that case, the buffer contains the 
newly generated label.) The label processing routine constructs a label 
in the label buffer. 

506 



If standard user labels (SUL) have been specified on the DD statement 
for a data set, but the data set has no user labels, the system will 
still take exits to the appropriate user's routine. In such a case, the 
user's input label processing routine is entered with the buffer address 
parameter set to zero. 

Bit 0 of Flag 1 will be set to its normal value of 0 except when: 

• Volume trailer or header labels are being processed at volume switch 
time. 

• The trailer labels of a MOD data set are being processed (when the 
data set is opened). 

If an uncorrectable I/O error occurs while reading or writing a user 
label, the appropriate label processing routine is entered with bit 0 of 
flag 2 set on. The low order three bytes of this parameter contain the 
address of the standard status information as supplied for SYNAD 
routines. (The SYNAD routine is not entered.) 

The code returned by the user's label processing routine determines 
system response as follows: 

r-------------T-------------T------------------------------------------, 
IRoutine Type I Return Code I System Response I 
t-------------+-------------+------------------------------------------~ 
Input header 0 I The system resumes normal processing. 

or I If there are more labels in the label 
trailer label I group, they are ignored. 

I 
4 I The next user label is read into the 

I label buffer area and control is returned 
I to the user's routine. If there are no 
I more labels, normal processing is 
I resumed. 
I 

16 I The utility program is terminated on 
I request of the user routine. 

t-------------+-------------+----~-------------------------------------~ 
10utput header 0 I The system resumes normal processing. 
I or I No label is written from the label 
Itrailer label I buffer area. 
I I 
I 4 I The user label is written from the label 
I I buffer area. The system then resumes 
I I normal processing. 
I I 
I 8 I The user label is written from the label 
I I buffer area. If less than eight labels 
I I have been created, the user's routine 
I I again receives control so that it can 
I I create another user label. If eight 
I I labels have been created, the system 
I I resumes normal processing. 
I I 
I 16 I The utility program is terminated on 
I I request of the user routine. L _____________ ~ _____________ ~ _________________________________________ J 

Appendix F: Utility Program Handling of User Labels 507 



The user's routine must return one of these codes in register 15 
unless: 

1. The buffer address was set to zero before entry to the label 
processing routine. In this case, the system will resume normal 
processing regardless of return code. 

2. The user's label processing routine was entered after an 
uncorrectable output error occurred. In this case the system will 
always attempt to resume normal processing. 

Note: Slightly different return codes are used for the UPDATE=INPLACE 
option of the IEBUPDTE program. See the discussion of the IEBUPDTE 
program. 

Processing User Labels as Data 

Under this option the group of user labels, as well as the data set, is 
subject to the normal processing done by the utility program. The user 
can have his labels printed or punched by IEBPTPCH, compared by 
IEBCOMPR, or copied by IEBGENER. 

To specify this option the user should include a utility control 
statement with the following format: 

r------T---------T-----------------------------------------------------, 
I Name I Operation I Operand I 
~------+---------+-----------------------------------------------------~ 
I [name 1 I LABELS IDATA= YES I 
I I I NO I 
I I I ALL I 
I I I ONLY I 
I I I INPUT I L ______ ~ _________ ~ _____________________________________________________ J 

YES 

NO 

ALL 

ONLY 

508 

The utility program will process as data any user labels that are 
not rejected by a user's label processing routine. The utility 
program will stop processing labels as data in compliance with 
standard return codes. This is the default option. Even in the 
absence of user label processing routines or a LABELS card, user 
labels will be printed, punched, compared or copied (provided, of 
course, that standard user labels (SUL) were specified on the DD 
statement). 

The utility program will not process user labels as data. 

The utility program will process all user labels as data regardless 
of any return code. A return code of 16 requires utility 
termination after all labels in the current group have been 
processed. For example, if a user routine returns a code of 16 
while the utility is processing a group of user header labels, the 
utility will process the remainder of the group and then terminate 
the job step. 

The utility program will process as data only user header labels. 
All user header labels will be processed as data regardless of any 
return code. The job will terminate upon return from the OPEN 
routine. 



INPUT 
This option is valid only for IEBGENER. The user must supply the 
user labels for the output data set as 80-byte input records in the 
data portion of SYSIN. These user labels must be identified by 
RECORD LABELS=n statements, where n indicates the number of input 
records following this statement that should be treated as user 
labels. 

There is no direct relationship between the LABELS statement and the 
EXITS statement. Either or both can appear in the control statement 
stream for an execution of a utility program. If there are user label 
processing routines, however, their return codes may influence the 
processing of the labels as data, as indicated above. In addition, a 
user's output label processing routine has the opportunity to overrule 
the action of a LABELS statement since it receives control before each 
output label is written. At this time the label created by the utility 
as a result of the LABEL statement is in the label buffer, and the 
user's routine can modify it in any desired manner. 

Exiting To a User's Totaling Routine 

This option passes an output record (see following note) to the user's 
routine just prior to writing the record on the data set. The first 
halfword of the totaling area pointed to by the, parameter contains the 
length of the totaling area, and should not be used by the user's 
routine. If the user has specified user label exits, this totaling area 
(or an image of this area) will be pointed to by the parameter list 
passed to the appropriate user label routine. If, during the processing 
of the utility, an incorrectable I/O error occurs, the user totaling 
routine is entered with bit zero of flag two set ON. The low order 
three bytes contain the address of the standard status information as 
supplied for SYNAD routines. 

The code returned by the user's totaling routine determines system 
response as follows: 

r-----------T----------------------------------------------------------, 
IReturn CodelSystem Response I 
~-----------+----------------------~-----------------------------------~ 
I 0 IProcessing continues, but no further exits are taken. I 
~-----------+----------------------------------------------------------~ 
I 4 INormal operation continues. I 
~-----------+----------------------------------------------------------~ 
I 8 I Processing ceases, except for EOD processing on output I 
I Idata set (user label processing). I 
~-----------+-------~--------------------------------------------------~ 
I 16 I Terminate. I L ___________ ~ __________________________________________________________ J 

Note: An output record is defined as a physical record (block), except 
when IEBGENER is used to process and reformat a data set containing 
spanned records. 

IEBUPDTE and IEHMOVE 

The user cannot update labels by means of the IEBUPDTE program. This 
function must be performed by user label processing routines. IEBUPDTE 
will, however, allow the user to create labels on the output data set 
from data supplied in the input stream. See the discussion of the LABEL 
statement in IEBUPDTE. 

IEHMOVE does not allow exits to user routines and will not recognize 
options concerning the processing of user labels as data. IEHMOVE will 
always move or copy user labels directly onto a new data set. See the 
discussion of the IEHMOVE program in this book. 

Appendix F: Utility Program Handling of User Labels 509 



Volume Switch Labels 

Volume switch labels of a multivolume data set cannot be processed by 
the IEHMOVE, IEBGENER, or IEBUPDTE program. volume switch labels are 
therefore lost when these utilities create output data sets. If you 
want to ensure that volume switch labels will be retained, process your 
multivolume data sets one volume at a time. 

510 



Appendix G: Utility Program Messages 

The description of most messages includes a 
programmer response. A more detailed 
response is included in the publication IBM 
System/360 Operating system: Messages and 
Codes, GC28-6631. Refer to this 
publication before responding to any 
message or calling IBM. 

This appendix contains messages that are 
issued by the system, data set, and 
independent utility programs. special 
considerations are to be noted for data set 
utility and independent utility messages: 

• Data set utility messages indicating 
job termination can be interpreted 
several ways: 

1. If the utility program was 
invoked, a return code is passed 
to the calling program with the 
option to terminate. 

2. If the utility program represents 
one step of a multistep job, the 
step is terminated. 

3. In all other cases, the job is 
terminated. 

• Independent utility messages are of two 
types: error and diagnostic. Error 
messages describe error conditions 
associated with the utility programs, 
while diagnostic messages describe and 
locate faulty conditions associated 
with the hardware. 

Independent Utility Messages 

Error Messages for DASDI and DUMP/RESTORE 

Error messages are listed in alphameric 
order with explanations and, when 
applicable, a recommended response. 

IBC101W INVALID CARD CODE. CORRECT ERROR. 
DEPRESS INTERRUPT KEY. 

Explanation: An invalid card code 
appears in the above,card. 

IBC102A CONTROL STATEMENT ERROR. JOB 
TERMINATED. 

Explanation: A utility control 
statement contains an incorrect 
keyword, parameter, or name field. 

IBC103A STATEMENT SEQUENCE ERROR. JOB 
TERMINATED. 

Explanation: The utility 
statements are not in the proper 
sequence, or unnecessary utility 
statements are present. 

IBCI04W SVC INTERRUPT. JOB TERMINATED. 

Explanation: An SVC was initiated 
without a response having been 
defined. 

IBC105A DEFINE INPUT DEVICE. 

Response: Enter the following 
message from the console 
typewriter: INPUT=dddd cuu, where 
dddd is the device type and cuu is 
the· channel and unit address of 
the input device. 

IBC106A THE VOLID IN CONTROL STATEMENT 
DOES NOT AGREE WITH ID IN VOL 
LABEL WHICH FOLLOWS. VOLID=xxx. 

Explanation: The VOLID parameter 
in the utility control statement 
did not match the volume serial 
number found on the receiving 
volume (xxx). 

Response: Correct statement or 
mount correct volume and restart 
program. 

IBC107W TRACK ZERO BAD. JOB TERMINATED. 

Explanation: The device cannot be 
initialized as a systems residence 
volume due to a defective surface 
on cylinder 00, track 00. 

IBC108A HA OR RO FIELD BAD. JOB 
TERMINATED. 

Explanation: The device cannot be 
initialized due to a bad surface 
area in the home address or track 
descriptor record areas. 

~ppendix G: Utility Program Messages 511 



IBC1081 HA OR RO FIELD BAD 

Explanation: The home address or 
record zero was defective arid has 
been moved down the. track (on 2314 
Disk and 2321 Data Cell only). 
The defective track and the 
alternate track assigned are 
listed. 

IBC1091 TRACK CHK INDICATES TRACK IS GOOD. 

Explanation: The track in 
question is good and no alternate 
was assigned. 

IBC1101 BAD TRACK cccchhhh. 

IBC1111 

Explanation: A defective track 
was found at the specified 
location (cccc is the cylinder 
number, hhhh is the head number). 

ALTERNATE{CCCChhhh} 
NONE 

Explanation: An alternate track 
at the specified location 
(cccchhhh) is assigned to replace 
the defective track (cccc is the 
cylinder number and hhhh is the 
head number of the alternate 
track). If no location is 
s·pecified with this message, 
either the defective track is in 
the alternate track area or the 
applicable device is a drum 
device. 

IBCl12W ALT TRACKS DEPLETED. JOB 
TERMINATED. 

Explanation: The number of 
alternate tracks assigned has 
exceeded the maximum number for 
this device. 

IBC113W. IMPROPER VTOC BEGIN ADDRESS. JOB 
TERMINATED. 

512 

Explanation: The starting address 
for the VTOC can not be track 0 
for any direct access device or 
track 1 for the 2302 or 2311 
devices if IPL text is written by 
the program. 

User Response: Change the STRTADR 
parameter on the VTOCD statement 
to use another track. 

IBC151W MACHINE CHECK. JOB TERMINATED. 

Explanation: A machine 
malfunction has caused a machine 
interrupt resulting in termination 
of the job. 

IBC152W PROGRAM INTERRUPT. JOB 
TERMINATED. 

Explanation: A program interrupt 
has occurred resulting in 
termination of the job. 

IBC153A TYPEWRITER FAILED TO READ LAST 
MESSAGE. DEPRESS INTERRUPT KEY. 

Explanation: The console 
typewriter failed to read the 
input message. 

Response: Depress the console 
interrupt key and attempt to enter 
the input message aqain. 

IBC154A READY READER cuu. DEPRESS 
INTERRUPT KEY. 

Explanation: The reader has a 
card jam, a transport jam, or is 
out of cards. 

Response: Correct the faulty 
condition and depress the console 
interrupt key to continue the 
program. 

IBC155A READY PRINTER cuu. DEPRESS 
INTERRUPT KEY. 

Explanation: The printer is not 
ready due to a forms check, an 
open interlock, or a depressed 
stop key. 

Response: Correct the faulty 
condition and depress the console 
interrupt key to continue the 
program. 

IBC156A READY TAPE cuu. DEPRESS INTERRUPT 
KEY. 

Explanation: The tape drive on 
channel c, unit uu is not ready. 

Response: Correct the faulty 
condition and depress the console 
interrupt key. 



IBC157A READY DASD cuu. DEPRESS INTERRUPT 
KEY. 

Explanation: The direct access 
device on channel c, unit uu is 
not ready. 

Response: Correct the faulty 
condition and depress the console 
interrupt key. 

IBC158A WRONG TAPE ON cuu. MOUNT PROPER 
TAPE. INTERRUPT. 

Explanation: The tape on the 
specified device does not pertain 
to this job. 

Response: Mount the correct tape 
and depress the interrupt key. 

IBC159A READER CHECK. CORRECT ERROR. 
DEPRESS INTERRUPT KEY. 

Explanation: A reader check has 
occurred. 

Response: Correct the faulty 
condition and clear the reader 
check. Continue the program by 
depre'ssing the console interrupt 
key. 

IBC160A PRINT CHECK. CORRECT ERROR. 
DEPRESS INTERRUPT KEY. 

Explanation: A print check has 
occurred. 

Response: Correct the faulty 
condition and clear the print 
check. Depress the console 
interrupt key to continue the 
program. 

IBC161A END OF TAPE. MOUNT TAPE ON cuu. 
DEPRESS INTERRUPT KEY. 

Explanation: End of present tape 
reel. 

Response: Mount another tape 
volume on the active tape device, 
i.e., the TODEV device for DUMP 
operations or the FROMDEV device 
for RESTORE. operations. 

IBC162A MOUNT ANOTHER PACK ON UNIT cuu. 

IBC163A 

IBC164A 

IBC165A 

DEPRESS INTERRUPT KEY. 

Explanation: End of the present 
disk pack. 

Response: Mount another disk pack 
on the active disk drive, i.e., 
the TODEV device for DUMP 
operations or the FROMDEV device 
for RESTORE operations. 

END OF JOB. 

Explanation: A normal end-of-job 
condition has occurred. 

VOLUME LABEL COULD NOT BE READ. 

Explanation: An error was 
encountered while reading the 
standard volume label. 

system Action: Volume cannot be 
identified; job terminates. 

ATTEMPT TO RESTORE TO WRONG DEVICE 

Explanation: The DUMP/RESTORE 
program attempted to restore data 
to a device type other than the 
type from which it was dumped. 

System Action: Job terminates. 

IBC166A NOT A RESTORE VOL. ON cuu. MOUNT 
PROPER VOLUME. DEPRESS INTERRUPT 
KEY. 

Explanation: A volume other than 
a restore volume is mounted on the 
named device. 

Response: Mount the correct 
volume and depress the interrupt 
key. 

IBC167A SEEKED BALLAST CELL. MOUNT PROPER 
CELL. DEPRESS INTERUPT KEY. 

Explanation: A ballast cell is 
mounted in the bin requested in a 
utility control statement. 

Response: Mount the proper cell 
and continue the program by 
depressing the interrupt key. 

Appendix G: Utility Program Messages 513 



IBC168I TRACK 0 HAS AN ALTERNATE ASSIGNED. 
VOLUME HAS BECOME NON-IPL-ABLE 

Explanation: Track 0 has been 
flagged as a defective track. 
(This volume is usable as a work 
volume, but not as a system 
residence volume.) 

Diagnostic Messages for Independent 
Utilities 

Diagnostic messages appear in the following 
format: 

number (16-byte text) cuu xx ssss 
yyyyyyyyyyyy cccchhhh 

where c is the channel of the device in 
error', uu is the unit, xx is the command 
code, ssss are the status bytes from the 
channel status word, yyyyyyyyyyyy are the 
sense bytes, and cccchhhh is the track 
address of the direct access device being 
used when the failure occurred. 

The following message texts are listed 
in alphameric order. All of the" messages 
except IBC202A describe conditions that 
cause termination of the job. 

IBC201W COMMAND REJECT. 

Explanation: The specified 
channel has rejected an incorrect 
channel command word (CCW) list. 

IBC202A INTERV. REQUIRED. 

Explanation: The specified device 
is not ready. 

Response: The specified device 
requires operator intervention to 
make it ready. 

IBC203W BUS. OUT CHECK. 

Explanation: A bus out check has 
occurred on the specified channel. 

IBC204W EQUIPMENT CHECK. 

514 

Explanation: An equipment failure 
has occurred. 

IBC205W DATA CHECK. 

Explanation: A solid data check 
has occurred on the specified 
device. 

IBC206W OVERRUN. 

Explanation: An overrun check has 
occurred on the specified channel. 

IBC207W FLAGGED TRACK. 

Explanation: A track condition 
check has occurred on the 
specified device. 

IBC208W DATA CONV. CHECK. 

Explanation: A data converter 
check has occurred on the 
specified device. 

IBC209W END OF CYLINDER. 

IBC210W 

Explanation: An unusual end of 
cylinder condition has occurred on 
the specified device. 

INVALID ADDRESS. 

Explanation: An invalid address 
has been issued to the specified 
device. 

IBC211W NOT AVAILABLE. 

IBC212W 

Explanation: The specified device 
is not attached to the system. 

READ DATA CHECK. 

Explanation: A permanent read 
data check has been detected on 
the specified tape unit. 

IBC213W COUNT FIELD CHECK. 

Explanation: A data check has 
occurred in the count field of the 
specified direct access device. 

IBC214W TRACK OVERRUN. 

Explanation: A track overrun 
condition has occurred. 



IBC215W FILE PROTECTED. 

Explanation: The specified device 
is file protected. 

IBC216W DASD-END OF FILE. 

Explanation: An unusual end of 
file has occurred on the specified 
direct access storage device. 

IBC2i7W NO RECORD FOUND. 

Explanation: A no record found 
condition has occurred on the 
specified direct access device. 

IBC218W INVALID ERROR. 

Explanation: An invalid error 
return has occurred. 

IBC219W WRONG ERROR. 

Explanation: The error return is 
valid but is not associated with 
the specified device. 

IBC220W CHAN. CTRL ERROR. 

Explanation: A channel control 
check has occurred on the 
specified channel. 

IBC221W INTERFACE ERROR. 

Explanation: An interface control 
check has occurred on the 
specified channel. 

IBC222W CHAN. DATA CHECK. 

Explanation: A channel data check 
has occurred on the specified 
channel. 

IBC223W DASD OVERFLOW. 

Explanation: An overflow 
incomplete condition has occurred 
on the specified direct access 
device. 

IBC224W PROGRAM CHECK. 

Explanation: A program check has 
occurred due to an incorrect 
channel command word (CCW). 

IBC225W PROTECTION CHECK. 

Explanation: A protection check 
has occurred on the specified 
device. 

IBC226W UNIT EXCEPTION. 

IBC227W 

Explanation: A unit exception has 
occurred on the specified unit. 

INCORRECT LENGTH. 

Explanation: A wrong length 
record condition has occurred on 
the specified unit. 

IBC22.8W CHAINING CHECK. 

Explanation: A chaining check has 
occurred on the specified channel. 

IBC229W COMMAND SEQ. ERR. 

IBC230W 

IBC231W 

IBC232W 

Explanation: An invalid sequence 
of channel command words (CCWs) 
was issued. 

SEEK CHECK ERROR. 

Explanation: An invalid SEEK 
address was issued, or a unit 
malfunction caused a SEEK check. 

WRITE DATA CHECK. 

Explanation: A permanent write 
data check has occurred on the 
specified tape unit. 

TAPE -- LOAD POINT. 

Explanation: A tape at load point 
condition has occurred on the 
specified tape unit. 

Appendix G: Utility Program Messages 515 



IBC233W NOISE RECORD. 

Explanation: A noise record was 
found on the specified tape unit. 

IBC234W MISSING ADR-MARK. 

Explanation: A missing address 
marker has occurred on the 
specified device. 

IBC235W BLANK TRACK. 

Explanation: A blank track has 
been encountered on the specified 
data cell. 

IBC236W 3 BLANK CYLINDERS. 

Explanation: Three blank 
cylinders have been encountered 
during the analysis of a strip. 

IBC231W 3 BLANK STRIPS. 

Explanation: Three blank strips 
have been encountered within one 
subcell. 

IBC238W 3 BLANK SUBCELLS. 

Explanation: Three blank subcells 
have been encountered within a 
cell. 

IBC239W 3 BLANK TRACKS. 

Explanation: Three blank tracks 
have been encountered within one 
cylinder. 

IBC249W I/O ERROR, JOB TERMINATED. 

Explanation: This message follows 
all messages that describe 
input/output error conditions. 

Error Messages for RECOVER/REPLACE 

IBC300I TRACK HAD BAD {ROIHA} 

516 

Explanation: An error was 
encountered while reading either 
the home address (HA) or the track 
descriptor record (RO). 

IBC301I ADDRESS MARKER MISSING AFTER xxx 

Explanation: The RECOVER routine 
found that an address marker was 
missing after the specified 
record. 

IBC302I UNEXPECTED EOF INTERRUPT. EOP 

Explanation: An unexpected end of 
file was generated. 

System Action: End-of-pass (EOP). 
The RECOVER program continues to 
the next statement. 

IBC303I TRACK HAS HA AND RO ONLY. EOP 

Explanation: Track has only home 
address and track descriptor 
record, and was not flagged as a 
bad track. 

system Action: The RECOVER 
routine continues to the next 
control card. There is no need to 
replace data on this track. 

IBC304I DATA TRACK bbbbcccchhhh ON ALT. 
bbbbcccchhhh 

Explanation: The specified data 
track has been assigned this 
alternate. 

IBC305I HA IS BAD or xxx HAS BAD 
{KEYlDATAlKEY AND DATA} or 

xxx HAS BAD {COUNTIADDRESS MARK} 
LIST OF BAD RECORD FOLLOWS. 
ASSUME RECORD SIZE REST OF TRACK 

Explanation: An error was 
encountered while reading the home 
address or the key and/or data 
fields of the specified record 
(xxx): or the specified record has 
a bad count or a missing address 
mark. 

system Action: In the last case, 
the remaining portion of track is 
listed (in hexadecimal) on the 
message output device. 



IBC306I ALT. TRACK bbbbcccchhhh ORIGINAL 
bbbbcccchhhh 

Explanation: The REPLACE routine 
has assigned the specified 
alternate track to receive the 
data from the original defective 
track. 

system Action: The data recovered 
from the bad track is merged with 
the replacement data and written 
on the alternate. The original 
track is flagged as defective. 

IBC307I VTOC ON BAD TRACK, POSSIBLY CANNOT 
ASSIGN ALTERNATE 

Explanation: The bad track 
contains the VTOC DSCB which has 
the alternate track information. 

system Action: The REPLACE 
program assigns an alternate track 
if the VTOC DSCB record containing 
the alternate track information is 
not defective. If the record is 
defective, the alternate track 
cannot be assigned. 

IBC400A JOB TERMINATED 

Explanation: Appends REPLACE 
routine error messages that are 
accompanied by termination of the 
job. 

IBC401A DOES NOT MEET DATA CARD ID OR 
FORMAT REQUIREMENTS 

Explanation: Data card is not in 
correct format. 

System Action: Job terminates. 

IBC402A I/D PARAMETER ON DATA CARD DOES 
NOT MATCH INSERT RECORD PARAMETER 

system Action: Job terminates. 

User Response: Either (1) supply 
the correct record number or {2) 
put the data records in the pr.oper 
order, reload the program, and 
execute the REPLACE routine. 

IBC403A KEY AND/OR DATA FIELD LENGTH DOES 
NOT EQUAL COUNT FIELD REQUIREMENTS 

Explanation: Either too much or 
not enough data was supplied in 
the data record. 

System Action: Job terminates. 

User Response: Supply the correct 
number of replacement data bytes 
(including key), reload the 
program, and execute the REPLACE 
routine. 

IBC404A DATA CARD HAS INVALID CHARACTER 

Explanation: An invalid 
hexadecimal character was found in 
the data record. 

System Action: Job terminates. 

IBC407A PREVIOUS RECOVER PROGRAM WAS 
ABORTED. RERUN RECOVER 

Explanation: The RECOVER routine 
did not go to completion. 

System Action: Job terminates. 

IBC408A RECORD NUMBER SUPPLIED DOES NOT 
EQUAL CORRESPONDING BAD RECORD 
NUMBER 

Explanation: Replacement records 
are not in proper order. 

system Action: Job terminates. 

User Response: Reorder 
replacement records, reload the 
program, and execute the REPLACE 
routine. 

IBC409A N~W COUNT DOES NOT EQUAL GOOD 
ORIGINAL COUNT 

Explanation: The count field for 
this record does not match the 
count field supplied on the INSERT 
statement. 

system Action: Job terminates. 

Appendix G: Utility Program Messages 517 



IBC411A {TRACKIVOLID} NUMBER SUPPLIED DOES 
NOT MATCH NUMBER ON TAPE 

Explanation: The track number or 
volume serial number on the 
REPLACE statement does not match 
the corresponding number on the 
recover tape. 

System Action: Job terminates. 

IBC412A RECOVER TAPE WAS NOT MADE BY.THIS 
LEVEL OF RECOVER/REPLACE. RERUN 
RECOVER 

518 

Explanation: The REPLACE routine 
attempted to use output of an 
earlier version of the RECOVER 
routine. 

IBC413A 

system Action: Job terminates. 

User Response: Use an up-to-date 
version of the RECOVER routine to 
produce a correct recover tape. 

TAPE ON cuu NOT A RECOVER TAPE 

Explanation: A recover tape is 
not mounted on the specified 
channel and unit, as stated in the 
REPLACE statement. 

system Action: Job terrr:inates. 



Data Set Utility Messages 

The IEBEDIT Program 

IEB001I xxxxxxxx NOT OPENED 

Explanation: The named data 
set(s) (SYSUT1, SYSUrr'2, and/or 
SYSIN) could not be opened. 
Either the DD statement(s) 
defining the data set(s) was not 
included in the input stream or a 
DCB parameter was found invalid. 

System Action: The job step is 
terminated. (The return code is 
8.) 

IEBOOSI INVALID NAME FIELD 

Explanation: An incorrectly coded 
name (for example, a 9-character 
name) was found in an EDIT 
statement. 

System Action: processing 
continues with the next EDIT 
statement, if any. (The return 
code is 4.) 

IEB009I INVALID STATEMENT SYNTAX 

Explanation: An EDIT statement is 
coded incorrectly. 

system Action: Processing 
continues with the next EDIT 
state~ent, if any. (The return 
code is 4.) 

IEB010I INVALID OPERATION CODE 

Explanation: An operator other 
than the four-character operator 
EDIT is specified in a utility 
control statement. 

System Action: Processing 
continues with the next EDIT 
statement, if any. (The return 
code is 4.) 

IEB0111 INVALID OPERAND 

Explanation: An operand other 
than a valid operand is included 
in an EDIT statement. The 
following operands are examples of 
invalid operands: 

TYPE=POSTION -- wrong spelling. 
TYPE=(POSITION,INCLUDE) -
incompatible subparameters. 

IEB014I 

IEB019I 

IEB020I 

IEB021I 

system Action: Processing 
continues with the next EDIT 
statement, if any. (The return 
code is 4.> 

INVALID DELIMITER 

Explanation: An invalid delimiter 
is included in an EDIT statement. 
The following EDIT statement 
contains an·invalid delimiter: 

EDIT START=JOBB.TYPE=INCLUDE, C 
STEPNAME=STEPC 

--There should be a 
comma, rather than a 
period, between JOBB 
and Type. 

system Action: Processing 
continues with the next EDIT 
statement, if any. (The return 
code is 4.) 

REQUIRED OPERAND OMITTED 

Explanation: This message is 
reserved for future use. 

INVALID CONTINUATION CARD 

Explanation: A continuation card 
begins in a column other than 
column 16. 

system Action: Processing 
continues with the next EDIT 
statement, if any. (The return 
code is 4.> 

INVALID CHARACTER 

Explanation: An EDIT statement 
contains an invalid character. 

System Action: Processing 
continues with the next EDIT 
statement, if any. (The return 
code is 4.> 

IEB0221 JOB NAM~ NOT FOUND BEFORE END OF 
FILE 

Explanation: Either no JOB 
statement was found in the input 
da.ta set or the specified job 
could not be found. 

System Action: The job step is 
terminated. (The return code is 
4.) 

Appendix G: Utility Program Messages 519 



IEB0231 stepname STEP COULD NOT BE FOUND 

Explanation: The indicated 
stepname could not be found in the 
input data set. 

System Action: Processing 
continues with the next EDIT 
statement, if any. (The return 
code is 4.> 

IEB024I l:!WAS HIGHEST SEVERITY CODE 

Explanation: This message, which 
is issued at the completion of the 
IEBEDIT job step, indicates the 
highest return code generated' 
during the execution of the 
program. 

IEB0271 I/O ERRORxxxxx, jobname, stepname, 
unit address, device type, ddname, 
operation attempted, error 
description, last seek address or 
block count, access method. 

Explanation: An input-output 
error occurred while processing 
the named dataset (SYSUT1, 
SYSUT2, or SYSIN) •. Error analysis 
information such as jobname, 
stepname, unit address, device 
type, etc., is included. 

System Action: The job step is 
terminated. (The return code is 
8.> 

IEB0301 xxxxxxxx BLKSIZE INVALID 

Explanation: The block size of 
the named data set (SYSUTl or 
SYSIN) is other than a multiple of 
80 bytes. 

System Action: The job step is 
terminated. (The return code is 
8.> 

IEB032I SYSUT2 BLKSIZE INVALID - SYSUTl 
ASSUMED 

520 

Explanation: A block size other 
than a mUltiple of 80 bytes is 
specified for the output (SYSUT2) 
data set. The SYSUTl block size 
attributes are assigned to the 
SYSUT2 data set. 

System Action: Processing 
continues. (The return code is 
4.> 

IEB0331 STATEMENT NOT PROCESSED EOF ON 
SYSUTl 

Explanation: A specified EDIT 
statement was not processed. An 
end of file was encountered on the 
input volume. 

System Action: The job step is 
terminated. (The return code is 
4. ) 

IEB0341 STEPN~lE 

REQUIRED WITH TYPE={INCLUDE} 
EXCLUDE 

Explanation: No stepname was 
specified with a TYPE=INCLUDE or 
TYPE=EXCLUDE operation. 

system Action: Process.ing 
continues with the next EDIT 
statement, if any. (The return 
code is 4.) 

TheIEBCOPY Program 

IEB100I I/O ERROR READING MEMBER 
member name 

Explanation: An I/O error was 
encountered reading the specified 
member. Message IEB1391 gives 
detailed information regarding the 
location of the error record 
(always issued previous to this 
message.) 

System Action: The next COpy 
control statement is sought, 
unless a data check in the key or 
data portion only occurred. In 
this case the error is ignored and 
data is copied as it came into 
main storage. (The return code is 
4. ) 

User Response: Depending on the 
type of error, re-run the COpy 
operation with the data set in 
error allocated (1) at a different 
physical locat~on on the volume, 
(2) on a different device, (3) on 
a different channel. If the error 
is on an input data set, it may be 
necessary to re-create the data 
set. 



IEB101I I/O ERROR WRITING MEMBER DATA AT 
TTR=ttr 
[-DURING READ BACK CHECK] 

Explanation: An I/O error 
occurred while copying member data 
to the output data set. The TTR 
of the record in error relative to 
the beginning of the data set is 
given. [] part of message is 
only given if the error occurred 
during read back check. 

System Action: If the error 
encountered during read back 
and involved a data check in 
or data only, the error is 
ignored. Otherwise the next 
control statement is sought. 
return code is 4.) 

was 
check 
key 

COpy 
(The 

User Response: Depending on the 
type of error, re-run the COPY 
operation with the data set in 
error allocated (1) at a different 
physical location on the volume, 
(2) on a different device, (3) on 
a different channel. 

IEB102I ~mMBER membername NOT COPIED DUE 
TO I/O ERROR 

Explanation: An I/O error on the 
SYSUT3 work file has made 
processing of the specified member 
impossible. If ******** replaces 
the membername in the above 
message, the error was found 
reading from SYSUT3 and the output 
directory will have to be 
investigated to determine which 
member was not copied (possibly 
via use of IEHLIST.) 

system Action: Processing 
continues with the next member to 
be copied. (The return code is 
4. ) 

User Response: Depending on the 
type of error, re-run the copy 
operation with the data set in . 
error allpcated (1) at a different 
physical location on the volume, 
(2) on a different device, (3) on 
a different channel. 

IEB103I MEMBERS member name THROUGH END OF 
DATA SET ARE NOT ACCESSIBLE DUE TO 
I/O ·ERROR 

Explanation: Due to an I/O error 
while updating the output data 
set's directory, members starting 
from the named member through the 

end of the data set (in 
alphanumeric order) have become 
inaccessible. If ******** 
replaces the membername in the 
above message, the error occured 
during a readback check and the 
output directory will have to be 
investigated to determine which 
directory entries are invalid. 

System Action: The next COpy 
operation is sought. (The return 
code is 4.) 

User Response: Depending on the 
type of error, re-run the copy 
operation with the data set in 
error allocated (1) at a different 
physical location on the volume, 
(2) on a different device, (3)· on 
a different channel. 

IEB104I INVALID COMMAND OR KEYWORD 

Explanation: A command or keyword 
on the control statement just 
listed is misspelled or invalid 
for the IEBCOPY program. 

System Action: The COPY operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

IEB105I PARAMETER INVALID 

Explanation: A parameter on the 
control statement just listed is 
too long or contains an invalid 
character. 

system Action: The COpy operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

IEB106I UNEQUAL PARENTHESES 

Explanation: The statement just 
printed has an unbalanced number 
of parentheses. 

system Action: The COPY operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

Appendix G: utility Program Messages 521 



IEB107I INVALID CONTINUATION 

Explanation: The control 
statement just listed is invalid. 
Parameters may have ended with a 
comma (which infers continuation> 
but the continuation column (72) 
was blank. An attempt may have 
been made to continue a statement 
from within a RENAME/REPLACE 
specification within nested 
parentheses and this is invalid. 

System Action: The COpy operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

IEB10S1 MEMBER WITHOUT SELECT OR EXCLUDE 

Explanation: A statement 
contained MEMBER= but was not 
associated with a SELECT or 
EXCLUDE command. 

System Action: The COpy operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response,: COJ;:'rect the error 
and re-submit the job. 

,IEB109I NO MIXING OF SELECT AND EXCLUDE 
MODES IN SAME COpy STEP 

Explanation: A SELECT statement 
immediately follows an EXCLUDE 
statement without an INDD= 
statement between, or the converse 
- an EXCLUDE statement immediately 
follows a SELECT statement. 

System Action: The COpy operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

IEB1101 INVALID REPLACE SPECIFIED 

522 

Explanation: Parameters were not 
embedded within parentheses 
correctly or parentheses were 
missing from valid RENAME/REPLACE 
specifications. 

system Action: The COpy operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

IEB1111 NULL PARAMETERS 

Explanation: A control statement 
was completely blank or blanks 
followed the equal sign 
immediately after a keyword. 

system Action: The COPY operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

IEBl121 CANNOT RENAME/REPLACE ON EXCLUDE 

Explanation: The control 
statement just listed has a 
parameter embedded within 
parentheses to show RENAME/REPLACE 
of this member. This is invalid 
with an exclusive copy. 

System Action: The COPY operation 
is terminated. The next COPY 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

IEB113I OUTDO OR INDD NOT SPECIFIED 

Explanation: The commands are 
incomplete. An INDD=keyword must 
be associated with a COpy 
statement that has defined the 
output data set (OUTDD=). A 
SELECT or EXCLUDE statement may 
have been read without an INDD= 
preceding it. 

System Action: The COPY operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

IEB114I OUTDO/LIST NOT ON COpy CARD 

Explanation: The OU'IDD= or LIST= 
keywords were scanned but were not 
physically or logically associated 
with the COPY statement. 

system Action: The COPY operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 



IEBl15I END OF FILE ON SYSIN 

Explanation: On the first read or 
during a "flush" end of file was 
given by the SYSIN device. 

System Action: Control is 
returned to the caller; this is 
the end of the last COpy 
operation. 

User Response: None. 

IEBl16I MIXING CONTROL STATEMENTS FROM OLD 
AND NEW VERSION OF IEBCOPY 

Explanation: Both types of 
statements were contained within 
the same copy step or multiple 
COpy. operations are attempted 
using old version IEBCOPY control 
statements. 

system Action: If a complete set 
of valid statements occurred 
together. one COPY operation will 
have been done. If the statements 
are intermixed. no COpy will be 
done. The job will be terminated. 
(The return code is 4.> 

User Response: Correct the error 
and re-submit the job. 

IEBll?I TABLES EXCEED ALLOCATED CORE 

Explanation: The amount of main 
storage available for creation of 
the INDD table and SELECT/EXCLUDE 
Table has been exceeded. 

System Action: The COpy operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.> 

User Response: Multiple COpy. 
OUTDD= and INDD= statements can be 
used so the INDD table which is 
built for each copy step will not 
be so large. The number of member 
names in SELECT/EXCLUDE statements 
per copy step can also be 
decreased, and the number of copy 
steps increased. 

IESl18I CONTROL STATEMENT ERROR 

Explanation: The statement just 
listed has an invalid command. 
keyword or parameter. There may 
be multiple INDD= keywords on the 
same statement or old and new 
versions of IEBCOPY keywords are 
mixed. 

System Action: The job step is 
terminated if using old IEBCOPY 
type of statements. Otherwise. 
the copy operation is terminated 
and the next COPY control 
statement is sought. (The return 
code is 4.> 

User Response: Correct the error 
and re-submit the job. 

IEBl19I STATEMENT SEQUENCE ERROR 

Explanation: There is an error in 
the old version IEBCOPY control 
statement sequence or multiple 
COpy statements immediately 
following each other where the 
first COPY statement was 
incomplete or out of place. 

system Action: ,If using old 
version IEBCOPY mode, the job step 
is terminated; otherwise. the next 
COPY control statement is sought. 
(The return code is 4.> 

User Response: Correct the error 
and re-submit the job. 

IEB120I ddname YALIDATION ERROR 

Explanation: The name of the DD 
statement on which the error 
occured is identified in the area 
designated by ddname. This 
message is always given by the 
validation routine when there is 
an error during validation or 
opening of any data set. The 
message immediately following this 
message will explain the nature of 
the error. 

system Action: None. 

User Response: None. 

IEB121I OPEN ERROR 

Explanation: The data set defined 
in the preceding message could not 
be opened. 

system Action: The next COPY 
control statement is sought. (The 
return code is 4.> 

User Response: Check for invalid 
DD statement parameters. 

Appendix G: Utility Program Messages 523 



IEB122I DSCB COULD NOT BE OBTAINED 

Explanation: There was an error 
return given from the OBTAIN macro 
used to read the DSCB for the data 
set defined in the preceding 
message. 

system Action: The next copy 
control statement is sought. (The 
return code is 4.) 

User Response: Check to see that 
a DSCB for the data set in 
question is available. 

IEB123I DATA SET NOT PARTITIONED 

Explanation: The data set 
identified in the preceding 
message does not have partitioned 
organization. If the data set 
that is not partitioned is an 
input or an output data set, it 
cannot be processed by the IEBCOPY 
program. 

system Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Make sure that 
input and output data sets are 
partitioned data sets. 

IEB124I INVALID LRECL 

Explanation: The logical record 
length of the data set defined is 
not valid. It may be zero or the 
input data set LRECL may not be 
equal to the output data set 
LRECL. 

system Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Check for unequal 
LRECL parameters for the input or 
output data sets. 

IEB125I INVALID BLOCKSIZE 

524 

Explanation: The blocksize of the 
data set defined is not valid. 
The blocksize may be zero or 
larger than track size going to a 
non-track overflow data set. 

System Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Check for an 
invalid blocking factor (i.e., for 
FB RECFM, blocksize might not be 
an integer multiple of LRECL). 

IEB126I ddname REFERENCES AN UNMOVABLE 
DATA SET 

Explanation: The input data set 
(ddname) is flagged as unmovable 
so it will not be compressed in 
place because it may contain 
location dependent data. 

system Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: None. 

IEB127I RECFM INCOMPATIBLE 

Explanation: 'Ihe record format of 
the input data set defined is 
incompatible with that of the 
output data set (i.e., 'cannot copy 
from fixed record format to 
variable record format or vice 
versa). 

system Action: The next COpy 
control statement is sought (The 
return code is 4.) 

User Response: None. 

IEB128I CANNOT REBLOCK TRACK OVERFLOW DATA 
SETS 

Explanation: The input· and/or the 
output data set have track 
overflow specification so 
reblock/deblock will not be done. 

system Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: None. 

IEB129I CANNOT REBLOCK KEYED DATA SETS 

Explanation: The input and/or the 
output data set has keyed records 
so reblock/deblock will not be 
done. 

system Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: None. 

IEB130I KEY LENGTHS UNEQUAL 

Explanation: The key length of 
the input and output data sets are 
not equal. 



System Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: None. 

IEB131I CANNOT COMPRESS KEYED DATA SET 

Explanation: A compress in place 
COPY operation was requested but 
the data set contains keyed 
records. IEBCOPY will not 
compress keyed data sets. 

System Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: None. 

IEB132I INVALID RE/DE-BLOCKING 

Explanation: The data set 
previously defined is incompatible 
with the output data set. For 
example, a variable format record 
may contain an LRECL that is 
greater than the output blocksize. 

System Action: The COpy operation 
is terminated. The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Re-specify the 
output blocksize to allow this 
member to be properly copied, and 
re-submit the job. 

IEB133I MINIMUM REQUESTED CORE NOT 
AVAILABLE 

Explanation: A variable 
conditional GETMAIN was issued, 
and the return code indicates that 
the minimum amount of core 
requested was not obtainable. 

System Action: The job is 
terminated. (The return code is 
8. ) 

User Respopse: If on a PCP 
system, it may be necessary to 
deblock the blocked SYSIN/SYSPRINT 
data set(s). If on an MFT or MVT 
system~ allocate a larger 
partition or region to the IEBCOPY 
program. This error may also 
occur if blocked SYSIN/SYSPRINT is 
specified and the required access 
method modules use core such that 
the minimum requested by GETMAIN 
cannot be made available. In this 
case, de-block the blocked 
SYSIN/SYSPRINT data set(s). 

IEB134I CANNOT COMPRESS WITH SELECT OR 
EXCLUDE 

Explanation: An input data set's 
DDNAME was specified which was 
identical to the current output 
data set's DDNAME, but a SELECT or 
EXCLUDE control statement was also 
specified. This is an "implied" 
COMPRESS, and a mixed-mode copy 
step is not allowed. 

system Action: The next COPY 
control statement is sought. ('Ihe 
return code is 4.) 

User Response: If the COMPRESS is 
desired, do not follow the INDD 
statement or group which contains 
the duplicate DDNAME with a SELECT 
or EXCLUDE control statement. If 
the COMPRESS is not desired, 
remove the duplicate DDNAME from 
the appropriate INDD statement. 

IEB135I MINIMUM I/O BUFFER NOT ALLOCATABLE 

Explanation: There is not 
available enough unallocated core 
to contain two minimum size I/O 
buffers without overlaying 
required tables. 

System Action: The next COpy 
control statement is sought. (The 
return code is 4.l 

User Response: Make more core 
available to the Utility Program. 
If a relatively large number of 
membernames are specified on the 
current- SELECT or EXCLUDE control 
statement(s), it may be necessary 
to fragment this into smaller 
groups of membernames and more 
copy steps. If using an MFT or 
MVT system, allocate a larger 
partition or region to -the IEBCCPY 
program. 

IEB136I CANNOT ALLOCATE TWO TRACKS OF I/O 
BUFFERS FCR COMPRESS 

Explanation: There is not 
available enough unallocated core 
to contain two times the 
device-dependent track-blocksize 
as specified by the results of a 
DEVTYPE macro. COMPRESS 
operations must have this much I/O 
buffer space for full track I/O 
and synchronization. 

System Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

Appendix G: Utility Program Messages 525 



User Response: Make more core 
available to the Utility Program. 
If several input data set DDNAME's 
are specified on the current INDD 
control statement or group, remove 
the DDNAME causing the COMPRESS 
and put it into a separate copy 
operation. Also it may be 
necessary to take actions similar 
to those described in message 
IEB133I. 

IEB1371 CANNOT SPECIFY DUPLICATE 
MEMBERNAMES FOR 
SELECT/EXCLUDE/RENAME - NAME 
member name 

Explanation: The user has 
specified duplicate membernames in 
either his EXCLUDE statement(s) or 
his SELECT statement(s). If in 
the latter, the user may have 
specified duplicate renamed or 
un-renamed "oldnames", duplicate 
"newnames", or a combination of 
these. The membername specified 
is the one which was duplicated. 

System Action: The next COPY 
control statement is sought. (The 
return code is 4.) 

User Response: If duplicate names 
must be specified, put each 
duplicate in a separate copy step. 
It is advisable not to specify 
duplicate membernames at all. 

IEB1381 CANNOT PROCESS ALL OLD/NEW-NAMES 
SPECIFIED 

Explanation: The core required 
for processing the number of 
oldnames/newname pairs specified 
is not available. 

system Action: The next COPY 
control statement is sought. (The 
return code is 4.) 

User Response: Decrease the 
number of renamed members 
specified within anyone SELECT 
control statement, and spread the 
SELECT control statements over 
more copy steps. 

IEB1391 SYNADAF message text -
DURING READ 

526 

DURING WRITE 
DURING READBACK CHECK 
READING FROM SYSIN 
WRITING TO SYSPRINT 

Explanation: An I/O error has 
occurred, the SYNADAF macro 
issued, and this message text is 
generated by the SYNADAF macro. 

System Action: The next COPY 
control statement is sought. (The 
return code is 4.) 

User Response: Depending on the 
type of error, re-run the copy 
operation with the data se't in 
error allocated (1) at a different 
physical location on the volume, 
(2) on a different device, (3) on 
a different channel. If the error 
is on an input data set, it may be 
necessary to re-create the data 
set. 

IEB1401 ddname REFERENCES A NULL INPUT 
DATA SET 

Explanation: The ddname printed 
is used to reference an "empty" 
input data set; there are no 
membernames contained in the 
directory of this data set. 

system Action: The next input 
data set or control staterrent is 
sought. 

User Response: None. 

IEB1411 CANNOT RE/DE-BLOCK WITH 
NOTE-LIST/USER TTRN IN MEMBER 
membername 

Explanation: The directory entry 
for the named member indicates the 
presence of a Note List and/or 
User T'l'RN' s • However, the user's 
data set specifications indicate 
the requirement to re/de-block 
members as they are copied. These 
two facts are incompatible in this 
Utility. 

system Action: The next COPY 
control statement is sought. (The 
return code is 4.) 

User Response: If this member is 
to be copied, it cannot be 
re/de-blocked. Either re-specify 
those factors which cause 
re/de-blocking (i.e., BLKSIZE 
RECFM, LRECL parameters of the 
appropriate DCB's referenced in 
JCL), or re-build the directory 
entry and alter the member data as 
needed to eliminate the 
Note-List/User TTRN indicators. 

IEB1421 CANNOT CONTINUE TO BUILD CTLTAB 

Explanation: The Utility program 
requires more core to build 
required control table to process 
the current input data set. 



System Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: More core is 
required to contain the control 
table; if using MFT or MVT, 
allocate a larger partition to the 
Utility program. If using PCP, or 
if a larger partition is not 
available, it will be necessary to 
use SELECT control statements for 
the members to be copied, and to 
assure that there are at least two 
of these control statements, each 
having approximately the same 
number of membernames specified, 
and each in a separate copy step. 

IEB1431 ALL SELECTED MEMBERS COPIED - DID 
NOT USE ALL SPECIFIED INDD'S 

Explanation: All specified 
(selected) members have been 
successfully copied, and the 
directory entries referencing 
these members are properly set up. 
It was not necessary to use all 
specified input data sets in order 
to "find" and process all selected 
members. 

system Action: The ne~t control 
statement is sought. 

User Response: None. 

IEB144I THERE ARE xxx UNUSED TRACKS IN 
OUTPUT DATA SET REFERENCED BY 
ddname 

Explanation: This message is 
issued upon completion of copying 
all required members to the output 
data set whose ddname is printed. 
The message is given following the 
completion of the COpy operation. 
If an error has occurred, the 
number of tracks given in this 
message may be incorrect. 

System Action: The next control 
statement is sought. 

User Response: None. 

IEB145I CANNOT COMPRESS TRACK OVERFLOW 
DATA SET 

Explanation: The Utility program 
will not allow a compress-in-place 
operation to be done if the Track 
Overflow bit has been set in the 
DeB which references the "output" 
data set. 

System Action: The next COPY 
control statement is sought. (The 
return code is 4.) 

User Response: None. 

IEB1461 CANNOT COMPRESS WITH 
RE/DE-BLOCKING 

Explanation: The Utility program 
will not allow a compress-in-place 
operation to be done if the user 
has not specified the same data 
set characteristics in both the 
input and output DD statements 
which reference the data set to be 
compressed. 

system Action: The next COPY 
control statement is sought. (The 
return code is 4.) 

User Response: Specify the same 
data set characteristics (i.e., 
BLKSIZE, RECFM LRECL) for both the 
input and output DD statements to 
be used while compressing. This 
is best done by referencing the 
same ddname in the relevant INDD 
and OU'l'DD control statements. 

IEB1471 END OF JOB - {~8}WAS HIGHEST SEVER
ITY CODE 

Explanation: This message, which 
is issued at the completion of the 
IEBCOPY job step~ indicates the 
highest return code generated 
during the execution of the 
program. 

system Action: None. 

User Response: None. 

IEB1481 NO SPACE IN OUTPUT DIRECTORY FOR 
DtRECTORY ENTRIES FROM INPUT DATA 
SET ddname 

Explanation: While building an 
updated output directory (to 
reflect members copied from the 
input data set referenced by 
"ddname" in the above message), 
the utility program has determined 
that the amount of directory space 
allocated to the output data set 
is insufficient. 

System Action: If message number 
IEB168I does not immediately 
follow this message, the output 
data set directory (a) reflects 
those members copied as of the 
immediately preceding input data 
set, if any, or (b) is left as it 
originally was ·if this input data 

~ppendix G: Utility Program Messages 527 



IEB149I 

set is the first one from which 
members were to have been copied. 
If the message IEB168I does 
follow, the output directory is 
truncated. 

User Response: Execute the 
IEHLIST program to determine just 
which members are usable and 
referenced by the truncated output 
directory. 

THERE ARE xxx UNUSED DIRECTORY 
BLOCKS IN OUTPUT DIRECTORY 

Explanation: This message is 
issued upon completion of copying 
all required members to the output 
data set, at the end of the 
current COpy operation. If an 
error has occurred, the number of 
blocks given in this message may 
be incorrect. 

system Action: The next control 
statement is sought. 

User Response: None. 

IEB1501 CANNOT SORT CTLTAB BY INPUT TTR 

528 

Explanation: There was not enough 
main storage available to sort the 
input TTRs. 

system Action: The next COPY 
control statement is sought. (The 
return code is 4.) 

User Response: Decrease the 
number of members being copied in 
the copy step that failed. PCP: 
in the case of a selective copy, 
the members specified as selected 
will have to be distributed over a 
greater number of Select control 
statements and COpy steps. In the 
case of an exclusive copy, the 
Exclude can be expressed as a 
Select, and the members selected 
should once again be distributed 
as described above. In the case 
of a full copy. all the members 
should be specified using Select 
control statements. Once again 
the selected members should be 
distributed as described above. 
MVT/MFT: Assign the utility 
program to a larger partition. If 
this cannot be done, follow the 
suggestions made above for PCP 
system users. 

IEB1511 ERROR FORCES JOB TO TERMINATE 

IEB152I 

Explanation: This message is 
issued as the result of a previous 
error (as indicated by one or more 
preceeding error messages) which 
has caused further processing to 
be terminated. 

system Action: The job is 
terminated. 

User Response: Correct the 
error(s) indicated by preceeding 
error message(s) and re-submit 
that portion of the job which is 
not successfully completed. 

\ 
membername COMPRESSED-WAS ALREADY 
IN PLACE AND NOT MOVED 

Explanation: The member named in 
this message did not need to be 
physically moved during the 
compress-in-place operation. 

System Action: None. 

User Response: None. 

IEB1531 ALL MEMBERS COMPRESSED-ALL WERE 
ORIGINALLY COMPRESSED 

Explanation: The data set which 
was to have been compressed in 
place was not in need of being 
compressed, since there were no 
embedded "gaps" between any of the 
members of the data set. No 
members from this data set were 
physically moved. 

System Action: None. 

User Response: None. 

IEB1541 membername HAS BEEN SUCCESSFULLY 
COPIED 

Explanation: The member named in 
this message has been successfully 
copied from the input data set to 
the output data set. If the job 
step completes successfully, this 
copied member can be accessed and 
used. 

System Action: None. 

User Response: None. 



IEB1551 member name HAS BEEN SUCCESSFULLY 
COPIED AND IS A 'NEWNAME' 

Explanation: The member named in 
this message is a renamed member 
which has been successfully copied 
from the input data set to the 
output data set. The ftoldname ft of 
this member can be determined by 
checking the Utility control 
statement(s) printed at the 
beginning of the copy step in 
which this message occurred. If 
the job step completes 
successfully, this copied member 
can be accessed (using the new 
membername specified), and used. 

System Action: None. 

User Response: None. 

IEB1561 NOT A DIRECT ACCESS DATA SET 

Explanation: The data set defined 
in the previous message is not on 
a direct access device. IEBCOPY 
will not copy non-direct access 
data sets. 

System Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

IEB1571 DD STATEMENT NOT FOUND 

Explanation: The DO statement for 
the data set defined in the 
previous message could not be 
found. 

system Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Insert a DD 
statement for the data set and 
re-run. 

IEB1581 PARM EQUAL COMPRESS NOT VALID 

Explanation: PARM=COMPRESS was 
specified on the EXEC statement 
but the user has specified new 
version IEBCOPY statements which 
do not use PARM=COMPRESS to 
designate compress mode. 

System Action: Processing 
continues, but the compress in 
place will not be done unless 
ddnames referenced in subsequent 
COPY operations cause it. 

User Re.sponse: None. 

IEB1591 NO MEMBERS COPIED FROM INPUT DATA 
SET REFERENCED BY ddname 

Explanation: The input data set 
whose ddname appears in this 
message was not used for one of 
the following reasons: 

1. A selective copy was 
specified but none of the 
members to be copied were on 
this data set. 

2. All of the members which were 
to have been copied from this 
input data set had names 
which were duplicates of 
membernames on the output 
data set, and the Replace 
option was not specifed. 

3. An I/O error (the message for 
which would have been printed 
prior to this time) has 
precluded use of members from 
this input data set. 

system Action: Normally, the next 
input data set will be processed. 
If an I/O error has occurred, the 
action indicated by the previous 
I/O error message(s) will be 
taken. 

User Response: None if this 
condition was desired; otherwise, 
take appropriate action, depending 
upon the condition indicated in 
the above explanation. 

IEB1601 CONCATENATED DATA SETS 

Explanation: The DD name given in 
the previous message is the first 
in a group of concatenated data 
sets. IEBCOPY will not process 
concatenated data sets. 

system Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: If more than one 
input data set is to be used in 
the copy step, a separate DD card 
is required for each. The ddnames 
must then also be specified within 
the INDD= keyword on a COpy or 
INDD utility control card. 

IEB1611 COMPRESS '1'0 BE DONE USING INDD 
NAMED ddname 

Explanation: A request for a 
compress in place operation has 
been detected. The input and 
output data sets are the same data 
set. 

Appendix G: Utility Program Messages 529 



System Action: A compress in 
place operation is attempted. 

User Response: None. 

IEB162I INPUT DATA SET FROM INDD NAMED 
ddname NOT SAME AS OUTDD-CANNOT 
COMPRESS 

Explanation: PARM=COMPRESS is 
specified but the input and output 
data sets are not the same data 
set. 

system Action: PARM=COMPRESS is 
ignored. 

User Response: If a COMPRESS is 
wanted, correct DD cards or 
IEBCOPY control cards and re-run. 

IEB163I NO MEMBER NAMES FOR PARTIAL COPY, 
WILL NOT COpy 

Explanation: The old version of 
IEBCOPY statement specified 
TYPCOPY=I but was not followed by 
any MEMBER=statements. 

System Action: The job step is 
terminated. (The return code is 
4.> 

User Response: Correct the error 
and re-submit the job. 

IEB164I TOTAL COpy ASSUMED 

Explanation: The old version of 
IEBCOPY statement specified 
TYPCOPY=E but was not followed by 
any MEMBER=statements. 

system Action: A full cOpy is 
done. (The return code is 4.) 

User Response: Correct the error 
and re-submit the job. 

·IEB165I membername 'FOUND' BUT NOT COPIED, 
DUE TO I/O ERROR READING INPUT 
DIRECTORY 

IIEB166I 

530 

Explanation: A Selective copy 
operation was being attempted, and 
the member named in this message 
had been encountered on the 
current input data set prior to 
the occurrence of the described 
I/O error. 

System Action: None. 

User Response: None. 

NO MEMBERS COPIED TO DATA SET 
REFERENCED BY ddname 

Explanation: Due to a validation 
error described in a previous 
message, no copying was done to 
the output data set referenced by 
the specified ddname. 

System Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: None. 

IEB1671 FOLLOWING MEMBER(S) COPIED FROM 
INPUT DATA SET REFERENCED BY 
ddname -

Explanation: The ddname given in 
this message references the input 
data set from which member(s) 
whose names will be listed were 
copied. This message is to assist 
the user in tracing which data 
sets were used and how they were 
used. 

System Action: None. 

User Response: None. 

IEB168I **WARNING** DUE TO ERROR, POSSIBLE 
LOSS OF ACCESS TO MEMBER DATA 
AND/OR INCOMPLETE DIRECTORY 

Explanation: If preceded by 
message IEB148I, the output 
directory has been truncated. 
Otherwise the output directory may 
be incomplete. 

System Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Depending on the 
type of error, re-run the COpy 
operation with the data set in 
error allocated (1) at a different 
physical location on the volume, 
(2) on a different device, (3) on 
a different channel. If the error 
is on an input data set, it may be 
necessary to re-create the data 
set. Another utility (such as 
IEHLIST) should be used to 
determine the final status of the 
output directory. 

IEB1691 **WARNING** DUE TO I/O ERROR ON 
SYSUT4, OUTPUT DIRECTORY MAY BE 
INCOMPLETl£ 

Explanation: Due to an I/O error 
on SYSUT4, the output directory 
may not be complete. 

system Action: The next COpy 
control statement is sought. (The 
return code is 4.) 



User Response: Depending on the 
type of error, re-run the COpy 
operation with the data-set in 
error allocated (1) at a different 
physical location on the volume, 
(2) on a different device, (3) on 
a different channel. The output 
data set's directory should be 
investigated to see if all 
information is valid (possibly via 
use of IEHLIST.) 

IEB1701 **WARNING** DUE TO SYSUT3 I/O 
ERROR, COMPRESS-IN-PLACE NOT DONE 
AND COpy OPERATION TERMINATED 

Explanation: An I/O error has 
occurred while using the "spill" 
data set. None of the members 
will have been physically moved, 
so the data set remains as it was 
prior to processing. 

system Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: Depending on the 
type of error, re-run the COpy 
operation with the data set in 
error allocated (1) at a different 
physical location on the volume, 
(2) on a different device, (3) on 
a different channel. 

IEB1711 ** WARNING ** DIRECTORY MAY NOT 
REFLECT VALID LOCATION OF MEMBER 
DATA 

Explanation: An I/O error during 
a compress-in-place operation may 
have affected the validity of the 
data sets directory. 

System Action: The next COpy 
control statement is sought. (The 
return code is 4.) 

User Response: The data set in 
question should be re-created or 
dumped and checked for valid 
inforrration. (Possibly via 
IEHLIST and/or IEHDASDR.) 

IEB1721 ddname COULD NOT BE OPENED 

Explanation: The specified data 
set could not be opened. This is 
normally the SYSPRINT data set. 

system Action: This data set will 
not be used. I/O error messages 
and an enq-of-job message will be 
issued to the console typewriter 
via alternate methods. The error 
is ignored. (The return code is 
4.) 

User Response: It will be 
necessary to use another utility 
(such as IEHLIST) to verify the 
ending status of all COPY 
operations performed. 

IEB1731 ddname - INVALID BLOCKSIZE 

Explanation: An invalid blocksize 
associated with the specified data 
set was detected. This is 
normally the SYSPRINT data set. 

System Action: This data set will 
not be used. I/O error messages 
and an end-of-job message will be 
issued to the console typewriter 
via alternate methods. The error 
is ignored. (The return code is 
4. ) 

User Response: It will be 
necessary to use another utility 
(such as IEHLIST) to verify the 
ending status of all COpy 
operations performed. 

IEB1741 ** WARNING ** INPUT RECORD IS A 
SHORT LENGTH RECORD - DDNAME = 
inddname - OUTPUT TTRN = tt tt rr 
nn 

Explanation: An upexpected short 
length record (shorter than 
BLKSIZE) has been found on the 
input data set described by 
inddname. It was copied to the 
output data set (at tt tt rr nn) 
exactly as it was read from the 
input data set. 

System Action: The error is 
ignored. 

User Response: If the error 
cannot be ignored by the user, the 
input data set will have to be 
re-created. 

IEB1751 ** WARNING ** INPUT R~CORD IS 
GREATER THAN OUTPUT BLKSIZE
DDNAME = inddname OUTPUT TTRN = 
tt tt rr nn 

Explanation: An input record 
whose length is greater than the 
output block size has been 
processed. The record was copied 
to the output data set (at tt tt 
rr nn) exactly as it was on input 
(no truncation). 

System Action: The error is 
ignored. 

Appendix G: Utility Program Messages 531 



User Response: If necessary, 
re-execute the COpy operation 
again, specifying a larger block
size on the output data set via 
JCL. 

IEB176I MEMBER membername IN DATASET 
REFERENCED BY ddname HAS MORE THAN 
ONE NOTELIST POINTER 

Explanation: The directory entry 
for the referenced member has more 
than one note list (user TTRN with 
N having a value greater than 
zero). This is an invalid 
directory entry and the member 
cannot be correctly processed. 

System Action: The next COpy 
operation is sought. (The return 
code is 4.) 

User Response: Re-create the 
member in error. 

IEB177I merober,name WAS SELECTED BUT l;'lOT 
FOUND IN ANY INPUT DATA SET 

Explanation: The member named in 
this message was specified on a 
SELECT statement for the previous 
copy step/operation but did not 
exist on any of the specified 
input data sets. 

system Action: None 

User Response: None 

IEB210I 

Explanation: The user data fields 
of the SYSUT1 and SYSUT2 data sets 
are unequal. 

System Action: The fields are 
listed and the comparison 
continues. (The return code is 
8.) 

TRUE NAMES MISSING FROM BOTH SETS. 

Explanation: All the names in one 
directory must have counterpart 
entries in the other. This 
condition was not met. 

system Action: The job is 
terminated. (The return code is 
12. ) 

IEB211I KEY LENGTHS ARE NOT EQUAL. 

Explanation: The SYSUT1 and 
SYSUT2 keys are of different 
lengths. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB212I INVALID RECORD FORMAT. 

Explanation: The record formats 
are not standard. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB213I REPETITIOUS CARD INVALID 

The IEBCOMPR Program Explanation: Either a COMPARE or 
LABEL command has appeared twice. 

IEB201I INVALID CONTROL STATEMENT. 

Explanation: The construction of 
the above control statement is 
invalid. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB202I INVALID DIRECTORY BLOCKSIZE 

Explanation: The length of the 
partitioned data set directory 
entry is less than 14 or greater 
than 256 bytes. 

System Action: The job step is 
terminated. (The return code is 
12. ) 

IEB205I USER DATA FIELDS UNEQUAL. 

532 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB214I FIXED RECORD LENGTHS UNEQUAL. 

Explanation: SYSUT1 contains 
records of a different length than 
those in SYSUT2. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB215I RECORD FOR~ATS DIFFERENT. 

Explanation: The record 
characteristics of the SYSUT1 and 
SYSUT2 data sets differ. 



System Action: The job is 
terminated. (The return code is 
12.) 

IEB216I ILLEGAL CONTROL. CARD SEQUENCE 

Explanation: The COMPARE command 
did not precede all other utility 
statements, or two COMPARE cards 
appeared in the input stream. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB217I INVALID LRECL FOR V/VS RECORD 

Explanation: The field of The 11 
V/VS record is less than 5 or 
greater than 32,756. 

System Action: The job step is 
terminated. (The return code is 
12.) 

IEB218I PERMANENT INPUT ERROR - FIND MACRO 

Explanation: A permanent input 
error was found by the FIND macro 
during a partitioned data set 
directory search. 

system Action: The job step is 
terminated. (The return code is 
12.) 

IEB219I INVALID BLKSIZE FOR V/VS RECORD 

Explanation: the LL field of the 
V/vS record is less than 9 or 
greater than 32,760. 

System Action: The job step is 
terminated. (The return code is 
12.) 

IEB221I RECORDS ARE NOT EQUAL. 

Explanation: Two corresponding 
records do not contain the same 
data. 

system Action: The records are 
listed and the comparison 
continues. (The return code is 
8.) 

IEB222I KEYS ARE NOT EQUAL. 

Explanation: Two corresponding 
keys do not contain the same data. 

System Action: The records are 
listed and the comparison 
continues. (The return code is 
8.) 

IEB223I EXTRA RECORD ON SYSUT2. 

Explanation: The SYSUT2 data set 
contains more records than the 
SYSUT1 data set. 

System Action: The records are 
printed. (The return code is 8.) 

IEB224I EXTRA RECORD ON SYSUT1. 

Explanation: The SYSUT1 data set 
contains more records than the 
SYSUT2 data set. 

System Action: The extra records 
are printed. (The return code is 
8.) 

IEB225I JOB TERMINATED AFTER EXIT. 

Explanation: The return code from 
an exit routine indicates 
termination. 

System Action: The job is 
terminated. (The return code is 
12 or 16. It is determined by 
exit routine.) 

IEB226I WARNING - INVALID NAME 

IEB227I 

Explanation: The statement label 
either contains an invalid 
character or is longer than eight 
characters. 

system Action: Processing will 
continue normally. 

TEN CONSECUTIVE ERRORS. 

Explanation: An error routine is 
not specified and ten successive 
unequal comparisons have occurred. 

System Action: If the input data· 
sets are sequential, the job is 
terminated. If the input data 
sets are partitioned, processing 
will continue with the next 
member. If the current member is 
the last, the job is terminated. 
(The return code is 12 for 
sequential data sets and 8 for 
partitioned data sets.) 

Appendix G: Utility Program Messages 533 



IEB2291 DDNAME xxx CANNOT BE OPENED 

Explanation: The named DD 
statement does not exist. 

System Action: The job is 
terminated. (The return code is 
12.) 

User Response: Either correct the 
ddname if it is misspelled in the 
DD statement or the ddlist, or 
insert a new DD statement with 
this name. 

IEB2301 SYSIN BLOCKSIZE ERROR 

Explanation: The SYSIN DD 
statement specifies a block size 
that is not a multiple of the 
specified logical record length. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB2311 EXTRA USER INPUT HEADER LABELS ON 
SYSUT1 

Explanation: The SYSUT1 data set 
contains more user input header 
labels than the SYSUT2 data set. 

System Action: The extra labels 
are printed. (The return code is 
8.) 

IEB2321 EXTRA USER INPUT HEADER LABELS ON 
SYSUT2 

Explanation: The SYSUT2 data set 
contains more user input header 
labels than the SYSUT1 data set. 

System Action: The extra labels 
are printed. (The return code is 
8.) 

IEB2331 EXTRA USER INPUT TRAILER LABELS ON 
SYSUT1 

Explanation: The SYSUT1 data set 
contains more user input trailer 
labels than the SYSUT2 data set. 

System Action: The extra labels 
are printed. (The return code is 
8.> 

IEB234I EXTRA USER INPUT TRAILER LABELS ON 
SYSUT2 

534 

Explanation: The SYSUT2 data set 
contains more user input trailer 
labels than the SYSUT1 data set. 

System Action: The extra labels 
are printed. (The return code is 
8.> 

IEB235I SYSUT1 CONTAINS NO USER INPUT 
HEADER LABELS 

Explanation: User requested INHDR 
exit and/or label comparison, yet 
there is no input header label cn 
SYSUT1. 

system Action: Consequently, 
message IEB232I will be issued and 
the system action pertaining to 
the message will be taken. 

IEB2361 SYSUT2 CONTAINS NO USER INPUT 
HEADER LABELS 

Explanation: User requested INHDR 
exit and/or label comparison, yet 
there is no input header label on 
SYSUT2. 

System Action: Consequently 
message IEB2311 will be issued and 
the system action pertaining to 
the message will be taken. 

IEB2371 BOTH INPUT DATA SETS CONTAIN NO 
USER HEADER LABELS 

Explanation: User requested INHDR 
exit ~~r label corr-parison, yet 
there are no input header labels 
on SYSUTl and SYSUT2. 

System Action: The processing 
continues. (The return code is 
8.) 

IEB2381 SYSUTl CONTAINS NO USER INPUT 
TRAILER LABELS 

Explanation: User requested INTLR 
exit and/or label comparison, yet 
there are no input trailer labels 
on SYSUT1. 

system Action: Consequently 
messag~ IEB234I will be issued and 
the system action pertaining to 
the message will be taken. 

IEB2391 SYSUT2 CONTAINS NO USER INPUT 
TRAILER LABELS 



Explanation: User requested INTLR 
exi t and/or label comparison, yet 
there are no input trailer labels 
on SYSUT2. 

system Action: Consequently 
message IEB233I wil1 be issued and 
the system action pertaining to 
the message wi1l be taken. 

IEB2401 BOTH INPUT DATA SETS CONTAIN NO 
USER TRAILER LABELS 

Explanation: User requested INTLR 
exit and/or label comparison, yet 
there are no input trailer labels 
on SYSUT1 and SYSUT2. 

System Action: Processing 
continues. (The return code is 
8.) 

lEB2411 INPUT HEADER LABELS ARE NOT EQUAL 

Explanation: Corresponding input 
header labels are not equal. 

system Action: Print unequal 
label from SYSUT1 then SYSUT2. 
(The return code is 8.> 

IEB2421 INPUT TRAILER LABELS ARE NOT EQUAL 

Explanation: Corresponding input 
trailer labels are not equal. 

system Action: Print unequal 
label from SYSUT1 then SYSUT2. 
(The r"eturn code is 8.) 

IEB2431 I/O ERROR WHILE READING USER 
INPUT HEADER LABEL ON SYSUT1 

Explanation: Uncorrectab1e I/O 
error occurred while reading user 
input header labels on SYSUT1. 

System Action: Job is terminated. 
(The return code is 12.> 

IEB2441 I/O ERROR WHILE READING USER 
INPUT HEADER LABEL ON SYSUT2 

Explanation: Uncorrectab1e I/O 
error occurred while reading user 
input header label on SYSUT2. 

system Action: Job is terminated. 
(The return code is 12.) 

IEB2451 I/O ERROR WHILE READING USER INPUT 
TRAILER LABEL ON SYSUT1 

IEB2461 

Explanation: Uncorrectable I/O 
error occurred while reading user 
input trailer label on SYSUT1. 

System Action: Job is terminated. 
(The return code is 12.) 

I/O ERROR WHILE READING USER INPUT 
TRAILER LABEL ON SYSUT2 

Explanation: Uncorrectable I/O 
error occurred while reading user 
input trailer label on SYSUT2. 

system Action: Job is terminated. 
(The return code is 12.> 

IEB2471 (no.) INPUT (header/trailer> 
LABELS FROM BOTH DATA SETS ARE 
COMPARED 

Explanation: Inform the user how 
many user input header trailer 
labels are compared due to his 
request. 

system Action: Proceed normally 
if return code from user exit 
routine is not 16. Otherwise, 
message IEB2251 will be issued and 
its system action will be taken. 

IEB2481 (no.) EXITS TO (user label 
processing routine name) IS MADE 
FOR (SYSUT1/SYSUT2) RETURN CODE 
FROM USER ROUTINE IS (no.) 

Explanation: User returned a 
return code other than 4 to 
indicate no more labels will be 
processed. 

S?stem Action: Proceed normally 
if return code from user exit 
routine is not 16. Otherwise 
message IEB2251 will be issued and 
its system action will be taken. 

IEB2491 NO RECORDS ARE COMPARED, DATA=ONLY 

Explanation: User specified 
DATA=ONLY, hence only user header 
labels are processed. 

System Action: Job is terminated. 
(The return code is 0.> 

IEB2501 USER LABEL IS NOT SUPPORTED BY 
PARTITIONED DATA SET 

Appendix G: Utility Program Messages 535 



Explanation: User specify 
INHDR/INTLR exit while comparing 
PO data sets. 

System Action: Job is terminated. 
(The return code is 12.) 

IEB2S1I INCOMPATIBLE MAXIMUM LOGICAL 
RECORD LENGTH 

Explanation: One input data set 
contains logical record greater 
than 32K, yet the other one does 
not. 

system Action: Job is terminated. 
(The return code is 12.) 

IEB2S2I KEYED DATA SETS. ONE CONTAINS 
SPANNED RECORD, THE OTHER ONE DOES 
NOT 

Explanation: Both input data sets 
contain keyed record. But one 
data set has variable spanned 
record, the other one does not. 

System Action: Job is terminated. 
(The return code is 12.) 

IEB2S3I RECORDS ARE COMPARED AT PHYSICAL 
BLOCK LEVEL 

Explanation: When both data sets 
contain keyed spanned records or 
logical record greater than 32K, 
comparison is made at block level. 

System Action: Proceed normally. 

IEB2S4I CORRESPONDING BLOCK LENGTHS ARE 
NOT EQUAL 

Explanation: Corresponding big LL 
are not equal when comparison is 
made at block level. 

System Action: The unequal blocks 
are printed. (The return 'code is 
8. ) 

IEB2S5I CORRESPONDING BLOCK LENGTHS ARE 
NOT EQUAL 

Explanation: Variable/variable 
spanned records are of different 
length. 

System Action: The unequal 
records are printed. (The return 
code is 8.) 

IEB256I IEBCOMPR DOES NOT COMPARE 
PARTITIONED DATA SETS WITH VS 
RECFM 

536 

Explanation: User wishes to 
compare partitioned data sets 
containing variable spanned 
records, but the IEBCOMPR program 
will not support this function. 

System Action: Job terminated. 
(Return code is 12.) 

IEB2S?I JOB TERMINATED AFTER EXIT FOR USER 
VOLUME SWITCH LABEL PROCESS 

Explanation: User wishes to 
terminate processing after 
examining his volume switch input 
header/trailer labels in his 
labels exit routine. 

System Action: Job is terminated 
(return code is 16). 

IEB2S8I USER LABELS NOT COMPARED, UNABLE 
TO TAKE EXIT FOR ONE DATA SET 

Explanation: User wishes to 
process his input header/trailer 
labels as data, but utiiity is 
unable to take user input 
header/trailer label exit for one 
of the input data sets; probably 
SUL has been omitted ~rom the 
SYSUT10r SYSUT2 DD.statement. 

System Action: The job is 
terminated. (The return code is 
12. ) 

User Response: Ensure that both 
SYSUT1 and SYSUT2 Db statements 
specify SUL in LABEL pararoeter. 

IEB259I INVALID KEYWORD IN OR BEFORE 
COLUMN xx 

Explanation: A keyword has been 
misspelled or is invalid for a 
specific command. 

System Action: Job is terminated 
after the control card scan. (The 
return code is 12.) 

IEB260I MISSING COMMAND IN OR BEFORE 
COLUMN xx 

Explanation: A command is absent 
from a card; or a card which has a 
continuation indicator contains an 
error. The continuation indicator 
is not recognized and the scan 
routine looks for a command on the 
following card. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 



code is 12.) 

IEB261I INVALID PARAMETER IN OR BEFORE 
COLUMN xx 

Explanation: The error is due to 
one or more of the following 
conditions: 

a. A parameter is longer than 
eight characters. 

b. A parameter is not valid for a 
preceding keyword. 

c. A parameter is not directly 
preceded by an equal sign. 

d. A parameter is misspelled. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB262I MISSING KEYWORD IN OR BEFORE 
COLUMN xx 

Explanation: A blank character 
directly preceded the equal sign; 
or the command requires a keyword 
and none was found. 

system Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB263I MISSING PARAMETER IN OR BEFORE 
COLUMN xx 

Explanation: An expected 
parameter was not found. 

system Action: The job is 
terminated after the control card 
scan. (The return code is 12.) 

IEB264I FIRST CONTROL CARD IS NOT COMPARE 

Explanation: The command on the 
first control card was not 
COMPARE. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB265I INVALID COMMAND IN OR BEFORE 
COLUMN xx 

Explanaiton: A command was 
misspelled, or there was no blank 
delimiter immediately before or 
after it. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB266I CONTINUATION CARD BEGINS IN WRONG 
COLUMN 

Explanation: The continuation 
card does not begin in columns 
4-16. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB267I I/O ERROR, jobname, stepname, unit 
address, type, ddname, operation 
attempted, error description, last 
seek address or block count, 
access method. 

Explanation: An I/O error 
occurred while processing a data 
set. The generated message 
includes error analysis 
information provided by the 
SYNADAF data management macro 
issued in the SYNAD routine. 

System Action: The job step is 
terminated. (The return code is 
12.) 

The IEBGENER Program 

IEB302I INVALID PARAMETER LIST 

IEB303I 

Explanation: The parameter list 
supplied by the user is invalid. 

System Action: The job step is 
terminated. (The return code is 
12.) 

INVALID CONTROL STATEMENT. 

Explanation: The construction of 
the above control statement is 
invalid. 

Appendix G: Utility Program Messages 537 



System Action: The job is 
terminated. (The return code is 
12.) 

IEB304I CONTROL STATEMENT INPUT ERROR. 

Explanation: A permanent error 
was detected while reading the 
SYSIN'data set. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB305I JOB TERMINATED AFTER LABEL EXIT. 

Explanation: The return code from 
a label exit routine indicates 
termination. 

System Action: The job is 
terminated. (The return code is 
16. > 

IEB306I JOB TERMINATED AFTER KEY EXIT. 

Explanation: The return code from 
a KEY exit routine indicates 
termination. 

System Action: The job is 
terminated. (The return code is 
12 or 16, determined by the exit 
routine.) 

IEB301I JOB TERMINATED AFTER DATA EXIT. 

Explanation: The return code from 
a DATA exit routine indicates 
termination. 

system Action: The job is 
terminated. (The return code is 
12 or 16, determined by the exit 
routine.) 

IEB308I PERMANENT INPUT ERROR. 

Explanation: A permanent error 
was detected while reading the 
SYSUT1 data set. 

System Action: The job is 
terminated. (The return code is 
12. > 

IEB309I PERMANENT OUTPUT ERROR. 

538 

Explanation: A permanent error 
was detected while writing the 
SYSUT2 data set. 

,IEB310I 

system Action: The job is 
terminated. (The return code is 
12. ) 

STOW ERROR IN OUTPUT DATA SET 

Explanation: A permanent error 
was detected while writing the 
directory of the SYSUT2 data set. 
This error could result if the 
SYSUT2 data set is not 
partitioned. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEB311I CONFLICTING DCB PARAMETERS 

Explanation: The DCB parameters 
in the SYSUT2 DD statement are not 
compatible with those specified in 
the SYSUT1 DD statement (e.g., the 
block size specified in the SYSUT2 
DD statement is not a multiple of 
the block size specified in the 
SYSUT1 DD statement, and no 
editing is specified). 

System Action: The job step is 
terminated. (The return code is 
12. ) 

IEB312I JOB TERMINATED AFTER ERROR EXIT. 

Explanation: The return code from 
an ERROR exit routine indicated 
termination. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB315I SPACE NOT AVAILABLE. 

Explanation: The required main 
storage space is not available. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB316I DDNAME xxx CANNOT BE OPENED 

Explanation: The named DD 
statement does not exist. 

System Action: The job is 
terminated. (The return code is 
;1.2.) 



User Response: Either correct the 
ddname if it is misspelled in the 
DD statement or the ddlist, or 
insert a new DD statement with 
this name. 

lEB311I JOB TERMINATED, NO INPUT BLKSIZE. 

Explanation: The BLKSIZE 
parameter is omitted from the 
SYSUT1 DD statement. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB318I JOB TERMINATED, NO OUTPUT BLKSIZE 

Explanation: The BLKSIZE 
parameter is omitted from the 
SYSUT2 DD statement. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB319I INVALID SYSIN BLOCKSIZE 

Explanation: The SYSIN DD 
statement specifies a block size 
that is not a multiple of the 
specified logical record length. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB320I OUTPUT DATA SET WITH KEYS IN 
VS/VBS PROCESSING 

Explanation: The user specified 
keys for a VS/VBS output data set 
while in a 'non-straight copy' 
process. 

System Action: Job terminated 
(the return code is 12). 

User Response: Specify control 
statement in accordance with data 
set characteristics. 

IEB321I INPUT DATA SET WITH KEYS IN VS/VBS 
PROCESSING 

Explanation: There were keys in 
the input data set in one of the 
following situations: 

• The input data set is VS or 
VBS, and the output data set 

has different attributes from 
the input data set. 

• The input data set is not VS 
or VBS, but the output data 
set is VS or VBS. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB322I JOB TERMINATED AFTER OPENING 
OUTPUT DATA SET UPON USER REQUEST 

Explanation: The input header 
user label routine requires 
termination of the job after the 
output data set is opened. 

System Action: Job terminated 
(return code is 16). 

IEB323I JOB TERMINATED AFTER HEADER LABEL 
PROCESSING 

IEB324I 

Explanation: The user had 
specified the control statement: 
LABELS DATA=ONLY. 

System Action: Only user header 
labels are processed. Job 
terminated (return code is 8). 

n TIMES TO routinename EXITROUTINE 

Explanation: This message gives 
the number of times that a certain 
user label exit routine had gotten 
control. 

system action: processing 
continued (return code is 0). 

IEB325I LAST RETURN CODE WAS nn 

Explanation: This message usually 
follows IEB324I and gives the last 
return code that was returned by 
the routine mentioned in the 
preceding IEB324I message. 

System Action: Processing 
continued (return code is 0). 

IEB326I name LABEL GAVE I/O ERROR 

Explanation: This message is 
given when the system indicates 
that there was an I/O ERROR while 
reading or writing a label. The 

Appendix G: Utility Program Messages 539 



data set is not opened if the 
error occurs on a header label. 

System Action: Job terminated 
(return code is 12). 

IEB3271 SPECIFIED KEY EXITS ARE NOT TAKEN 

Explanation: The user specified 
key exits on a job requiring 
processing of a VS/VBS data set 
with reformatting. 

system Action: Processing 
continued (return code 4). 

IEB328I LRECL EXCEEDS 32K; STRAIGHT COPY 
NOT SPECIFIED 

Explanation: In the utility 
control statement, a process 
different from 'straight copy' was 
specified, while the RECFM in 
either inputDCB or output DCB was 
VS/VBS and LRECL in either DCB or 
both was specified as > 32756. 

System Action: Job terminated 
(the return code is 12). 

User Response: Make utility 
control statements and DCB 
information for input and output 
compatible. 

IEB3291 RECFM=VS/VBS IS NOT ALLOWED FOR 
PDS 

Explanation: The user specified 
that the output data set of 
IEBGENER should be partitioned and 
should contain VS records. 

system Action: Job terminated 
(return code is 12). 

User Response: Make control 
statements compatible. 

IEB3301 TOTALING EXIT REQUESTS TERMINATION 

Explanation: The user's totaling 
routine returned a return code of 
16 to the utility. 

system Action: Processing is 
terminated. 

IEB3311 PROCESSING ENDS UPON REQUEST OF 
TOTALING EXIT 

540 

Explanation: The user's totaling 
routine returned a return code of 
eight to the utility. 

system Action: Proce~sing is 
terminated, but normal "end of 
data" processing will be done as 
far as the output data set is 
concerned (user label processing). 

IEB332I TOTALING EXIT DEACTIVATED UPON ITS 
OWN REQUEST 

Explanation: The user's totaling 
routine returned a return code of 
zero to the utility. 

System Action: Processing 
continues, but no further totaling 
exit(s) will be taken. 

IEB3331 RECORD LABELS=n STATEMENTS ARE 
REQUIRED 

Explanation: The user included 
the statement LABELS DATA=INPUT 
but did not include the required 
statement RECORD LABELS=n. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB3341 NO EDITING OR CONVERSION WILL BE 
DONE 

Explanation: This message will be 
given if both data sets are VS or 
VBS, have the same blocksize, and 
have the same logical record 
length, to remind the user that 
any specified editing requirements 
will be ignored. 

System Action: Processing 
continues. (The return code is 
0.) 

IEB3361 INVALID COMMAND IN COLUMN xx 

Explanation: The error is due to 
one or more of the following 
conditions: 

a. GENERATE is not the first 
control card. 

b. GENERATE appears twice. 
c. Any command is misspelled or 

has too many letters. 
d. A command is not GENERATE, 

EXITS, MEMBER, RECORD, or 
LABELS. 

e. LABELS appears twice. 



f. There are more input LABELS 
than specified by RECORD 
LABELS=n. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB33?I INVALID KEYWORD IN COLUMN xx 

Explanation: A keyword is either 
ndsspelled, has too many letters, 
or is not valid for a specific 
command. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB338I INVALID PARAMETER IN COLUMN xx 

Explanation: The error is due to 
one or more of the following 
conditions,: 

a. A member name contains more 
than eight characters. 

b. The IDENT keyword for the 
RECORD statement is followed 
by more than three parameters. 

c. The FIELD keyword for the 
RECORD statement is followed 
by more than four parameters. 

d. Conversion parameters in the 
FIELD keyword for the RECORD 
statement are not HE, PZ or 
ZD. 

e. Parameters for the DATA 
keyword on the LABELS 
statement are not ALL, ONLY, 
YES, NO, or INPUT. 

f. The LABELS keyword for the 
RECORD statement is not 
followed by a number from one 
to eight. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB339I COMMAND MISSING PRECEDING COLUMN 
xx 

Explanation: A command is absent 
from a card; or a card which has a 
continuation indicator contains an 
error. The continuation inidc~tor 
is not recognized, and the scan 
routine looks for a command on the 
following ca~d. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB340I KEYWORD MISSING PRECEDING COLUMN 
xx 

Explanation: MEMBER is not 
followed by NAME; or LABELS is not 
followed by DATA. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB341I PARAMETER MISSING PRECEDING COLUMN 
xx 

Explanation: A keyword is not 
followed by a parameter; or the 
IDENT keyword of the RECORD 
statement is not followed by all 
three parameters. 

System Action: The job is 
terminated. (the return code is 
12.) 

IEB342I INVALID SPACE ALLOCATION 

IEB343I 

Explanation: Keywords for the 
GENERATE statement (i.e., 
MAXNAME=n,MAXGPS=n, MAXFLDS=n, 
MAXLITS=n) have been omitted or 
their parameters are too small. 
LABELS DATA=INPUT was not 
specified before RECORD LABELS=n. 

System Action: The job is 
terminated. (The return code is 
12.) 

ALLOWED NO. OF CARDS EXCEEDED 

Explanation: Three or more LABELS 
cards are encountered. 

System Action: The job is. 
terminated. (The return code is 
12.) 

IEB344I WARNING: INVALID STATEMENT LABEL 

Explanation: The statement label 
is greater than eight characters 
or contains invalid characters. 

system Action: Control card 
analysis will continue normally. 

Appendix G: Utility Program Messages 541 



IEB3451 CONTINUATION NOT BEFORE COLUMN 17 

Explanation: The expected 
continuation was not found before 
column 17. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB346I MISSING PARENTHESES 

Explanation: Parentheses are not 
closed, or an error was 
encountered in a parameter list 
before the closing parentheses. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB347I DUPLICATE KEYWORD 

Explanation: An EXITS keyword is 
given twice. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB348I PRECEDING MEMBER REQUIRES 'IDENT' 

Explanation: Two MEMBER 
NAME=(name ,alias ••• ) cards are 
encountered without a RECORD 
IDENT=ident parameters being 
associated with the first one. 

system Action: The job is 
terminated. (The return code is 
12.) 

IEB349I INCONSISTENT PARAMETERS IN FIELD 
OR IDENT 

Explanation: The first and second 
parameters on an IDENT or FIELD 
keyword are not consistent. 

System Action: The job is 
terminated. (The return code is 
12.) 

IEB350I LITERAL LENGTH EXCEEDS 40 

542 

Explanation: The literal in a 
Field A keyword for a RECORD 
statement exceeds 40 characters. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEB351I I/O ERROR jobname, stepname, unit 
address, device type, ddname, 
operation attempted, error 
description, last seek address or 
block count, access method. 

Explanation: An I/O error 
occurred while processing a data 
set. The.generated message 
includes error analysis 
information provided by the 
SYNADAF data management macro 
issued in the SYNADroutine. 

System Action: The job step is 
terminated. (The return code is 
12.> 

The IEBPTPCH Program 

IEB401I PRINT/PUNCH STATEMEN'!' NOT FIRST. 

Explanation: A PRINT or PUNCH 
statement is not the first utility 
control statement. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEB402I INVALID OPERATION 

Explanation: The operation in the 
above utility statement is 
invalid. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEB403I MORE THAN TWO TITLE STATEMENTS. 

Explanation: More than two TITLE 
statements are included. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEB404I KEYWORD INVALID OR OMITTED. 

Explanation: A required keyword 
is either incorrectly written or 
not included in the above 
statement. 



System Action: The job is 
terminated. (The return code is 
12.> 

IEB405I PARAMETER INVALID'OR OMITTED. 

Explanation: A required parameter 
is either incorrect, inconsistent, 
or not included in the above 
statement. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEB406I JOB TERMINATED AFTER USER EXIT. 

Explanation: The job was 
terminated after control was 
returned from an exit routine. 

System Action: The job is 
terminated. (The return code is 
12 or 16, determined by exit 
routine.> 

IEB407I JOB TERMINATED DUE TO I/O ERROR. 

Explanation: A permanent error 
was encountered. 

System Action: The job is 
terminated. (The return code is 
12.> 

User Response: Check for an 
incorrect BLKSIZE specification in 
the DCB parameter of the SYSIN DD 
statement. 

IEB408I MEMBER xxx CANNOT BE FOUND 

Explanation: The specified member 
is not contained in the SYSUT1 
data set. 

system Action: The member was not 
printed/punched. (The return code 
is 8.> 

IEB409I INVALID CONTROL STATEMENT 

Explanation: The construction of 
the above control statement is 
invalid. 

System Action: The job is 
terminated. (The return code is 
12. ) 

IEB410I INCORRECT RECORD STATEMENT 

Explanation: The above RECORD 
statement is written incorrectly. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEB411I DDNAME xxx CANNOT BE OPENED 

Explanation: The named DD 
statement does not exist. 

System Action: The job is 
terminated. (The return code is 
12.> 

User Response: Either correct the 
ddname if it is misspelled in the 
DD statement or the ddlist, or 
insert a new DO statement with 
this name. 

IEB412I DCB BLOCKSIZE NOT AVAILABLE 

IEB414I 

Explanation: No block size is 
specified for the data set. 

System Action: The job is 
terminated. (The return code is 
12.> 

User Response: Ensure that all 
necessary parameters are included 
in the data control block. 

MAXFLDS 
MAXGPS PARAMETER IS TOO SMALL 
MAXLITS 
MAXNAME 

Explanation: The number of FIELD 
keywords, IDENT keywords, 
literals, or name keywords in 
MEMBER or RECORD statements is 
greater than the number specified 
in the Y~XFLDS, MAXGPS, MAXLITS, 
or MAXNAME parameter, 
respectively. 

System Action: The job is 
terminated. (The return code is 
12.> 

User Response: Specify a greater 
value for the named parameter. 

Appendix G: Utility Program Messages 543 



IEB415I VS/vBS DATA PROCESSED IN BLOCKS 

Explanation: The specified LRECL 
for the VS/vBS input data area 
exceeds 32756 bytes. 

system action: Processing is 
continued on physical basis, 
(blocks rather than logical 
records are printed or punched). 

IEB4161 PREFORM, VS LRECL LARGER THAN 32K 

Explanation: The specified LRECL 
for the VS/VBS input data set 
exceeds 32756 bytes and in the 
utility control statement 
PRINT/PUNCH, PREFORM was 
specified. 

system Action: The job is 
te,rminated (the return code is 
12). 

User Response: Delete PREFORM 
parameter from the PRINT/PUNCH 
control statement, Or reformat the 
data set. 

IEB4171 DATA SET EMPTY 

Explanation: The data set to be 
printed or punched contains no 
data. 

System Action: The print or punch 
operation is terminated. (The 
return code is 12.) 

IEB418I VS/VBS NOT ALLOWED IN PDS 

Explanation: Data set 
organization conflicts with record 
format. If RECFM=VS/VBS, then 
TYPORG must be PS. 

System Action: The job is 
terminated (the return code is 
12). 

User Response: Ensure that DCB 
information and the TYPORG 
parameter in the utility statement 
match. 

IEB419I USER RETURN CODE xx INVALID 

544 

Explanation: A required return 
code other than 0, 4 or 16 was 
returned by user. 

IEB420I 

System Action: The return code is 
ignored. Processing continues 
according to prior conditions. 

User Response: None. 

SYSIN IS EMPTY 

Explanation: The SYSIN data set 
does not cQntain any IEBPTPCH 
control statements. 

System Action: The job step is 
terminated. (The return code is 
12. > 

User Response: Include either a 
PRINT or PUNCH statement and rerun 
the operation. 

IEB421I I/O ERROR jobname, stepname, unit 
address, device type, ddname, 
operation attempted, er~or 
description, last seek address or 
block count, access method 

Explanation: A permanent 
input/output error has occurred 
while processing on the named 
device. The generated message 
includes error analysis 
information provided by the 
SYNADAF data management macro 
issued in the SYNAD routine. 

system Action: The return code is 
12. Normal processing is 
terminated. 

User Response: Correct the error 
condition described in the 
message. 

IEB431I INVALID KEYWORD IN COLUMN xx 

Explanation: A keyword is either 
written incorrectly or is not 
applicable to the comnand for 
which it is specified. 

system Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.> 

IEB432I INVALID PARAMETER IN COLUMN xx 

Explanation: A parameter is 
either written incorrectly or is 
not applicable to the keyword for 
which it is specified. 



system Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB433I MISSING KEYWORD BEFORE COLUMN xx 

Explanation: A required keyword 
has been omitted, or is preceded 
or followed by an invalid 
delimiter. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB434I MISSING PARAMETER BEFORE COLUMN xx 

Explanation: A required parameter 
was omitted or it was preceded or 
followed by an invalid delimiter. 

system Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB435I MISSING COMMAND PRECEDING COLUMN 
xx 

Explanation: A required command 
was omitted, or there was an error 
on the preceding card if the card 
in error is a continuation. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB436I INVALID COMMAND 

Explanation: A command is written 
incorrectly or is invalid because 
of condit~ons set upon that 
command by keywords or parameters 
on previous statements. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB437I INVALID LITERAL 

Explanation: There is an error in 
the literal field of the control 
card. 

IEB438I 

system Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

INVALID NAME 

Explanation: The statement name 
is either too long or has an 
invalid character. 

system Action: Processing 
continues normally. 

IEB439I CONTINUATION NOT STARTED IN 4-16 

Explanation: Data on a 
continuation card does not begin 
in columns 4-16. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

IEB440I MISSING PARENTHESIS 

Explanation: A parenthesis was 
omitted or there was an error 
within the parentheses. 

system Action: The job is 
terminated at the end of the 
control card scan. ,(The return 
code is 12.) 

IEB441I MEMBER INVALID: TYPORG NOT PO 

Explanation: A MEMBER statement 
is invalid if the organization is 
physical sequential (PS). 
TYPORG=PO must be specified on the 
PRINT or PUNCH utility control 
card. 

System Action: The job is 
terminated at the end of the 
control card scan. (The return 
code is 12.) 

The IEBUPDAT Program 

IEB501I INVALID EXIT NAME. JOB 
TERMINATED. 

Explanation: An exit routine name 
in the EXEC statement is invalid. 

SYstem Action: The job is 
terminated. (The return code is 
12. ) 

Appendix G: Utility Program Messages "545 



IEB502I EXIT RETURN CODE INDICATES 
TERMINATION. 

Explanation: The return code from 
an exit routine is 16. 

System Action: The job is 
terminated. 

IEB503I I/O ERROR ON SYSUT1. JOB 
TERMINATED. 

Explanation: A permanent error 
was encountered while the SYSUT1 
data set was being read. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEB504I I/O ERROR ON SYSI~. JOB 
TERMINATED. 

Explanation: A permanent error 
was encountered while the SYSIN 
data set was being read. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEB50SI I/O ERROR ON SYSUT2. JOB 
TERMINATED. 

Explanation: A permanent error 
was encountered while the SYSUT2 
data set was being written. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEBS06I NM BLOCKSIZE IS ASSUMED 80 

Explanation: No block size, or a 
blocksize which is· not a multiple 
of 80, is specified in the SYSUT2 
DD statement. No blocksize is 
available in an existing data set 
control block. 

System Action: Processing 
continues. A block size of 80 
bytes is assumed. (The return 
code is 8.> 

IEB509I CURRENT TRANSACTION REJECTED. 

546 

Explanation: The transaction 
represented by the printed control 
statement and logical record 
statements is rejected because the 
control statement is written 

incorrectly or appears in the 
wrong position with respect to 
other control statements. 

system Action: Processing 
continues with the next member of 
the library. (The return code is 
4.) 

IEB510I NO RECORDS WITHIN DELETE RANGE. 

IEB511I 

Explanation: No records were 
found within the range specified 
in the DE LET statement. 

system Action: Processing 
continues with the next member of 
the library. (The return code is 
4. > 

NO RECORDS WITHIN NUMBER RANGE. 

Explanation: No records were 
found within the range specified 
in the NUMBR statement. 

system Action: Processing 
continues with the next member of 
the library. (The return code is 
4. ) 

IEB512I DIRECTORY WRITE ERROR. 

Explanation: A permanent error 
was detected while writing the 
directory of the SYSUT2 data set. 
This error could result if the 
SYSUT2 data set is not 
partitioned. 

System Action: The job is 
terminated. (The return code is 
16.) 

IEBS13I OUTPUT DIRECTORY FILLED. 

Explanation: The directory of the 
SYSUT2 data set does not contain 
sufficient space for all the 
member entries. 

System Action: The job is 
terminated. (The return code is 
12.> 

IEB514I MEMBER HAS NO RECORDS. 

Explanation: The member 
identified in the printed header 
statement contains no records. 

System Action: Processing 
continues with the next member of 
the library. (The return code is 
4. ) 



IEB515I IMPROPER INVOCATION PARAMETER. 

Explanation: Either the program 
or the EXEC statement calling 
IEBUPDAT has incorrectly passed 
parameters. 

System Action: The request is 
terminated. (The return code is 
12.) 

IEB516I MEMBER NAME SEQUENCE ERROR. 

Explanation: Member names, 
specified on header statements, 
are not in binary collating 
sequence. 

system Action: Processing 
continues with the ne~t member of 
the library. (The return code is 
4.) 

IEB517I DDNAME xxx CANNOT BE OPENED 

Explanation: The named DD 
statement does not exist. 

system Action: The job is 
terminated. (The return code is 
12. ) 

User Response: Either correct the 
ddname if it is misspelled in the 
DD statement or the ddlist, or 
insert a new DD statement with 
this name. 

The IEBISAM Program 

IEB600I UTILITY PROGRAM IEBISAM HAS 
SUCCESSFULLY COMPLETED THE 
REQUESTED OPERATION 
COMPLETION CODE=OO 

IEB601I 

Explanation: This is an 
informational message indicating 
that the program has successfully 
completed an operation. 

system Action: 
has completed. 
is 0.) 

Program operation 
(The return code 

DCB FIELD VALUES INCONSISTENT 
COMPLETION CODE=08 

Explanation: One or more of the 
following DeB subparameters 
contain erroneous values: RECFM, 
LRECL, BLKSIZE, RKP, and KEYLEN. 

system Action: The requested 
operation is not performed~ the 
program is terminated. (The 
return code is 08.) 

User Response: Correct the value 
or values in error and rerun the 
job step. 

IEB602I jobname, stepname, unit address, 
device type, ddname, operation 
attempted, error description, last 
seek address or block count, 
access method. 
COMPLETION CODE=08 

Explanation: An input/output 
error occurred while processing 
the named data set. Error 
analysis information such as job 
name, stepname, unit address, 
device type, etc., is included. 

system Action: The job step is 
terminated. (The return code is 
08.) 

IEB603I DUPLICATE RECORD (LOAD operation 
only) COMPLETION CODE=08 

IEB6041 

Explanation: A record key is 
identical to a record key 
previously placed in the indexed 
sequential data set. 

system Action: The program is 
terminated. Reconstruction of the 
indexed sequential data set is 
incomplete. (The return code is 
08.) 

User Response: Determine the 
cause of the error, UNLOAD the 
original indexed sequential data 
set, and respecify the LOAD 
operation. 

NUMBER OF CHARACTERS TO BE 
TRANSMITTED EXCEEDS LIMIT (LOAD 
operation only) COMPLETION CODE=08 

Explanation: The number of 
characters in a fixed-length 
record exceeds the value specified 
in LRECL or in LRECL + KEYLEN (for 
fixed-length, unblocked records 
with a relative key position of 
0) • 

System Action: The program is 
terminated. The requested 
operation is not performed. (The 
return code is 08.) 

User Response: Determine the 
cause of the error, UNLOAD the 
original indexed sequential data 
set, and respecify the LOAD 
operation. 

Appendix G: Utility Program Messages 547 



IEB605I CLOSE REQUESTED BY USER AFTER A 
USER EXIT 
COMPLETION CODE=04 

Explanation: A user routine 
passed a return code of either 04 
or 12 to the IEBISAM utility 
program. 

System Action: The job step is 
terminated. (The return code is 
04. ) 

IEB606I ILLEGAL RETURN CODE RECEIVED FROM 
A USER EXIT 
COMPLETION CODE=12 

Explanation: A user routine 
passed a return code other than 
00, 04. 08, or 12 to the IEBISAM 
utility program. 

System Action: The job step is 
terminated. (The return code is 
12. ) 

IEB607I SYSUT2 or SYSUT1 DD CARD MISSING 
COMPLETION CODE=16 

Exp~anation: No SYSUT1 statement 
or SYSUT2 statement was included 
in the job step. 

System Action: The job step is 
terminated. (The return code is 
16.) 

User Response: Include the 
missing SYSUT1 or SYSUT2 DD 
statement and rerun the job step. 

IEB608I INVALID OPTION IN THE PARMFIELD 
OF THE EXECUTE CARD 
COMPLETION CODE=16 

Explanation: The PARM parameter 
of the EXEC statement is coded 
incorrectly. 

System Action: The progran is 
terminated. (The return code is 
16.) 

IEB609I INPUT SEQUENCE ERROR 

548 

Exp~anation: Either a record has 
been lost or a noise record was 
encountered when loading an 
unloaded indexed sequential data 
set. 

System Action: The job step is 
terminated. (The return code is 
8.) 

TheIEBDG Program 

IEB700I 

IEB702I 

IEB703I 

DATA GENERATION HAS BEEN 
[SUCCESSFULLY] COMPLETED. 
COMPLETION CODE IS ZERO 

FOUR 
EIGHT 
TWELVE 
SIXTEEN 

Explanation: When the completion 
code is zero, data generation has 
completed successfully. When the 
completion code is other than 
zero, the word 'successfully' 
will be omitted from the message. 
A return code of four indicates 
that the job step was terminated 
at the user's request •. A return 
code of eight indicates. that an 
error occurred while processing a 
utility control statement. A 
return code of twelve indicates 
that an error occurred while 
processing an input or output 
data set. A return code of 
sixteen indicates that incorrect 
parameters were 'found in a DCB 
during OPEN. 

System Action: The program is 
ended. 

OPERATION WAS NOT 
DSD,FD,CREATE,REPEAT,OR END. 
CORRECT AND RERUN. 

Explanation: A utility control 
statement specifying an invalid 
operation was encountered. 

System Action: Syntax checking 
of the remainder of the control 
statements in the set continues, 
but no additional data is 
generated. Processing continues 
with the next DSD statement 
encountered, if any. (The return 
code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

INVALID KEYWORD VALUE. 
DELIMITER, DESCRIPTOR OR TYPE IS 
IMPROPER OR DUPLICATED. AN FD 
NAME HAS OCCURRED PREVIOUSLY. 



IEB7041 

Explanation: A utility control 
statement keyword value was found 
to be invalid or missing. For 
example: 

• A double quote coded within a 
picture caused an invalid 
length. 

• A starting character of * 
when AL or AN format is 
specified. 

• A character other than 0-9 or 
A-F when a hexadecimal digit 
is specified. 

• Any non-numeric number when a 
decimal number is specified; 
for example, 123A56. 

• A Keyword was misspelled. 

• An FD card contains a 
previously used name. 

Message IEB7271 shows the point 
at which the invalidity was 
uncovered. 

system Action: Syntax checking 
lof the remainder of the control 
statements in the set continues, 
but no additional data is 
generated,. Processinq continues 
with 'the next,DSD statement 
encountered, if any. (The return 
code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

INPUT DDNAME ON CREATE OR FD CARD 
IS NOT SPECIFIED ON DSD CARD. 

Explanation: The ddname 
specified on an FD card was not 
referred to on the DSD statement 
beginning this set of utility 
control statements. The IEBDG 
program was unable to OPEN the 
data set. 

system Action: syntax checking 
of the remainder of the control 
statements in the set continues, 
but no additional data is 
generated. Processing continues 
with the next DSD statement 
encountered, if any. (The return 
code is 8.), 

IEB705I 

IEB706I 

IEB707I 

User Response: The output data 
\., set may have been only partially 

completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 
Include the missing ddname 
(indicated by message IEB727I) in 
the DSD statement and resubmit 
the job. 

INVALID KEYWORD, POSSIBLE 
IMBEDDED COMMA. 

Explanation: A utility control 
statement keyword was found 
invalid. Message IEB7271 shows 
the point at which the invalidity 
was uncovered. 

system Action: Syntax checking 
of the remainder of the control 
statements in the set continues, 
but no additional data is 
generated. processing continues 
with the next DSD statement 
encountered, if any. (The return 
code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

NUMBER SPECIFIED IS LARGER THAN 
32,,767 OR EXCEEDS MACHINE 
CAPACITY (2,147,483,647). 

Explanation: An FD length 
parameter may have been specified 
incorrectly. 

system Action: No conversion is 
performed. Syntax checking of 
the remainder of the control 
statements in this set continues, 
but no additional data is 
generated. Processing continues 
with the next DSD statement 
encountered, if any. (The return 
code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

FD NAME ON CREATE CARD IS NOT 
PREVIOUSLY DEFINED BY AN FD CARD 

Appendix G: Utility Program Messages 549 



IEB708I 

IEB709I 

550 

OR IS NOT ASSOCIATED WITH CORRECT 
DCB 

Explanation: I NPUT=ddname 
parameters on the CREATE and FD 
cards are not the same. 

System Action: Syntax·checking 
of the remainder of the control 
statements in this set continues, 
but no additional data is 
generated. Processing continues 
with the next DSD statement 
encountered, if any. (The return 
code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 
Ensure that the FD statement 
precedes the CREATE statement 
referring to it and resubmit the 
job. 

PICTURE LENGTH TOO LARGE FOR 
CONVERSION 

Explanation: A decimal picture 
was to be converted to packed 
decimal or to a binary 
equivalent; however, the number 
of specified digits in the 
picture exceeds 16. 

System Action: No conversion is 
performed. Syntax checking of 
the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User response: The·output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

USER EXIT ROUTINE RETURNED AN 
INVALID RETURN CODE 

Explanation: A return code other 
than 0, 4, 12, or 16 was found by 
the IEBDG program after control 
was passed from an exit routine 
to the IEBDG program. 

IEB710I 

IEB711I 

System Action: Syntax checking 
of the reEainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

UNABLE TO GET ENOUGH SPACE TO 
PROCESS REMAINING CONTROL CARDS 

Explanation: A GETMAIN operation 
was unable to get additional 
required space. 

system Action: Syntax checking 
of the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. In 
those applications in which a 
REGION parameter is specified, 
check to ensure that the 
specified value is sufficient and 
resubmit the job. 

KEYWORD VALUE NOT FOLLOWED BY A 
BLANK OR COMMA 

Explanation: A keyword value 
(indicated by message IEB727I) is 
not followed by a valid 
delimiter. 

System Action: Syntax checking 
of the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 



IEB7121 

IEB7131 

IEB7141 

CONTROL CARD NAME OR KEYWORD 
VALUE EXCEEDS 8 CHARACTERS 

Explanation: The length of a 
keyword value or control card 
name exceeds 8 characters. 

System Action: Syntax checking 
of the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

FLAGGED KEYWORD IS NOT COMPATIBLE 
WITH A PRECEDING KEYWORD 

Explanation: A keyword 
(indicated by message IEB727I) is 
not compatible with a keyword 
preceding it in the control 
statement; for example, PICTURE 
and FORMAT are mutually 
exclusive. 

System Action: Syntax checking 
of the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

REPEAT CARD ERROR OR REQUIRED 
NUMBER OF CREATE CARDS NOT 
PRESENT 

Explanation: Either (1) two or 
more REPEAT statements refer to 
the same CREATE statement or to 
the same group of CREATE 
statements, or (2) a CREATE 
keyword in a REPEAT statement 
specifies a number greater than 
the number of following CREATE 
statements. 

System Action: Syntax checking 
of the remainder of the utility 
control statements in this set 

IEB715I 

IEB716I 

continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

NAME AND/OR LENGTH OR QUANTITY 
SPECIFICATION(S) OMITTED FROM FD 
AND/OR REPEAT CARD 

Explanation: Either the FD field 
name, length specification, or 
quantity is missing from an FD 
and/or REPEAT statement. 

system Action: Syntax checking 
of the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

PICTURE STRING OR FD FIELD 
OVERFLOWS OUTPUT RECORD OR INPUT 
FIELD SELECTED OVERRUNS INPUT 
WORKAREA 

Explanation: At some time in the 
construction of an output record 
by a CREATE statement, a 
specified picture string or FD 
field extends past the end of the 
defined record. 

system Action: Syntax checking 
of the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
~ystem utility program to scratch 
the data set, if necessary. 
Check DCB Parameters. Compare 
LRECL against length of defined 
record. 

Appendix G: Utility Program Messages 551 



IEB7171 

IEB7181 

IEB7201 

IEB7211 

552 

INPUT RECORD SIZE EXCEEDS 
SPECIFIED OUTPUT RECORD SIZE 

Explanation: The record length 
specified in a DD statement 
defining an output data set is 
not sufficient to contain 
corresponding input records. 

System Action: syntax checking 
of the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

DSD CONTROL CARD MUST BE FIRST 
CARD OF SET 

Explanation: Control card is out 
of order or missing. 

System Action: Further syntax 
checking is performed, but no 
additional data is generated. 

User Response: Place DSD card in 
correct order in input stream. 

BLANK DOES NOT FOLLOW OPERATION 
OR CONTROL CARD NAME 

Explanation: A control card name 
or operation is not delimited by 
a blank. 

system Action: Syntax checking 
of the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

KEYWORD, KEYWORD VALUE OR 
DELIMITER IS MISSING OR EXTENDS 
INTO COLUMN 72 

Explanation: A keyword, keyword 
value or delimiter is missing or 
extends into column 72. 

IEB7231 

IEB7241 

IEB7251 

System Action: Syntax checking 
of the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set, if necessary. 

PICTURE PARAMETER IS NOT FOLLOWED 
BY A BLANK OR COMMA 

Explanation: The picture length 
subparameter is not followed by a 
blank or comma, or picture value 
field is not followed by a blank 
or comma. 

system Action: Syntax checking 
of the remainder of the utility 
control statements in this set 
continues, but no additional data 
is generated. 

User response: The output data 
set may have been only partially 
completed. Use the IEHPROGM 
system utility program to scratch 
the data set if necessary. 

UNABLE TO OPEN DATA SET. LOOK 
FOR CONFLICTING VALUES, OR MISSING 
DD CARD 

Explanation: An input or output 
data set referred to by a DSD 
statement could not be opened. 

system Action: No syntax 
checking or data generation is 
performed for this set of utility 
control statement. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is 8.) 

User Response: Check for a 
missing DD statement. If the 
applicable DD statement is 
included, check for missing or 
invalid BLKSIZE, LRECL, or RECFM 
subparameters on that statement. 

A DUPLICATE DSD CARD HAS BEEN 
FOUND. CHECK FOR MISSING END 
CARD 

Explanation: An END card is 
missing or out of order. 



IEB726I 

IEB727I 

IEB72SI 

System Action: Syntax checking 
of utility control statements 
continues, but no additional data 
is generated. Normal processing 
resumes with the next DSD 
statement encountered, if any. 

User Response: Put END card in 
correct order. 

EXEC STATEMENT PARM PARAMETER IS 
CODED INCORRECTLY 

Explanation: The EXEC statement 
PARM parameter contains an 
invalid character or characters 
or is otherwise coded 
incorrectly. 

System Action: The line count 
for the message data set is set 
to a default value of 58. (The 
return code is 0.) 

User Response: Check to ensure 
that the specified LINECNT value 
is a 4-digit decimal number. 

ERROR 

Explanation: This message is 
printed to pinpoint the location 
of syntax errors, incompatible 
keywords, and other control 
statement coding errors. In most 
cases the "E" of ERROR falls 
directly below the point at which 
the error was detected in the 
applicable control statement. 

system Action: None; that is, 
the system action and return code 
is generated with the 
accompanying error message, 
indicating the type of error. 

INPUT STREAM FLUSHED FROM THIS 
POINT. 
LRECL, BLKSIZE, OR RECFM 
INCORRECT IN INPUT OR OUTPUT DCB 

Explanation: An input or output 
data set could not be opened. 

System Action: No syntax 
checking or data generation is 
performed for this set of utility 
control statements. Processing 
continues normally with the next 
DSD statement encountered, if 
any. (The return code is S.) 

User Response: Check for missing 
or invalid BLKSIZE, LRECL, or 
RECFM specifications on 
applicable DO statements. 

IEB729I PERMANENT I/O ERROR, jobname, 
stepname, unit address, device 
type, ddname, operation 
attempted, error description, 
last seek address or blockcount, 
access method 

Explanation: An input/output 
error occurred while processing a 
data set. Error analysis 
information, such as ddname, is 
included in the message. 

System Action: The job step is 
terminated. (The return code is 
12.) 

User Response: Analyze the 
displayed error information and 
correct the data set, DD card, or 
DCB parameters if necessary. If 
the error persists, call a field 
engineer. 

The IEBUPDTE Program 

IEBS01I 

IEBS02I 

{~:}BLOCKSIZE ASSUMED SO. 

Explanation: Necessary DCB 
parameters were omitted from the 
indicated DD Statement; OM (old 
master) indicates the SYSUTl DD 
statement and NM (new master) 
indicates the SYSUT2 DO statement. 
The program assumes that the 
applicable data set contains 
SO-byte (fixed-length) unblocked 
records. 

System Action: No immediate 
action is taken. However, if the 
data set contains records other 
than as indicated in the 
explanation, additional messages 
will be generated during execution 
and the job step terminated. 

User Response: If the record 
format specifications are 
compatible with the above 
assumptions, ignore the message. 
Otherwise, specify the applicable 
parameters and rerun the job step. 

I/O ERROR jobname, stepname, unit 
address, device type, ddname, 
operation attemped, error 
description, track address or 
relative block number, access 
method. 

Explanation: A permanent I/O 
error occurred while processing on 
the named device. If possible, 

Appendix G: Utility Program Messages 553 



the generate message includes 
error analysis information such as 
jobname, stepname, unit address, 
device type, etc., provided by the 
SYNADAF data management macro 
issued in the SYNAD routine. 

System Action: The jobstep is 
terminated. (The return code is 
12.) 

User Response: Check for missing 
or incorrect DCB parameters on the 
appropriate dd statement. 

IEB8031 PERMANENT INPUT ERROR - FIND MACRO 

Explanation: A permanent input 
error was found by the FIND macro 
during a partitioned directory 
search. 

System Action: The job step is 
terminated. (The re~urn code is 
12.) 

IEB8041 PERMANENT INPUT ERROR - BLDL MACRO 

Explanation: A permanent 
input/output error was detected by 
the BLDL macro when attempting to 
search a partitioned data set 
directory. 

System Action: The job step is 
terminated. (The return code is 
12.) 

IEB8051 CONTROL STATEMENT ERROR 

Explanation: The last utility 
control statement listed in the 
printout contains an incorrect 
name or keyword. 

System Action: If both the old 
master data set and the updated 
master data set are partitioned, 
the program continues processing 
with the next function statement, 
if any. Otherwise, the job step 
is terminated. (The return code 
is 4.) 

IEB8061 STATEMENT SEQUENCE ERROR 

554 

Explanation: Either the utility 
control statements are out of 
sequence, or an unnecessary 
statement has been encountered. 

system Action: If both the old 
master data set and the updated 
master data set are partitioned, 
the program continues processing 
with the next function statement, 
if any. Otherwise, the job step 

IEB8071 

is terminated. 
is 4.) 

(The return code 

INVALID OPERATION 

Explanation: A conflict between 
specifications has been uncovered. 
(For example, a DELETE statement 
is encountered during an 
UPDATE=INPLACE operation, or a 
CHANGE statement is encountered 
but PARM=NEW is specified on the 
EXEC statement, or data statements 
are out of sequence.) 

system Action: If both the old 
master data set and the updated 
master data set are partitioned, 
the program continues processing 
with the next function statement 
if any. otherwise, the job step 
is terminated. (The return code 
is 4.> 

IEB8081 TERMINATED 'IHIS MEMBER. IEBUPDTE 
WILL TRY NEXT MEMBER. 

IEB8101 

Explanation: A control statement 
error, a statement sequence error, 
or an invalid operation has 
terminated an update operation. 

System Action: Processing 
continues with the next function 
statement, if any. 

DELETE RANGE INVALID. 

Explanation: A DELETE statement 
specifies a SEQl or SEQ2 value 
that does not match a sequence 
number in an existing logical 
record. 

System Action: Processing 
continues with the next function 
statement, if any. (The return 
code is 4.) 

IEBSll1 NUMBER RANGE INVALID. 

Explanation: A NUMBER statement 
specifies a SEQl value that does 
not match a sequence number in an 
existing logical record. 

system Action: Processing 
continues with the next function 
statement, if any. (The return 
code is 4.) 

IEB812I DIRECTORY WRITE ERROR. 

Explanation: A permanent 
input/output error was uncovered 
while writing the directory of the 
SYSUT2 data set •. 



System Action: The job step is 
terminated. (The return code is 
12.) 

IEB8131 OUTPUT DIRECTORY FULL. 

Explanation: Insufficient space 
was allocated for directory 
entries in the SYSUT2 data set. 
The member was not placed in the 
data set. 

System Action: The job step is 
terminated. (The return code is 
12.) 

User Response: Re-create the 
SYSUT2 data set, allocating 
sufficient space for ~he 
additional directory entries. 
Then rerun the IEBUPDTE program to 
include the member or members that 
were omitted. 

IEB8141 DDN~ili xxx CANNOT BE OPENED. 

Explanation: The named data set 
cannot be opened. 

System Action: The job step is 
terminated. (The return code is 
12.) 

User Response: Check the DD 
statements for proper data set 
definition. 

IEB8151 CANNOT PROCESS MORE THAN ONE PS 
DATA SET PER PASS. 

Explanation: A control statement 
has specified the processing of a 
second input sequential data set 
in the same job step. 

System Action: The first data set 
is processed and the program is 
terminated. (The return code is 
12.) 

User Response: Update the 
additional sequential data set in 
a separate job step. 

IEB8161 MEMBER NAME (xxx) FOUND 
or alternately 

1EB816I MEMBER NAME (xxx) FOUND IN NM 
DIRECTORY. TTR IS NOW ALTERED. 

Explanation: The member name xxx 
already exists. 

System Action: If the member is 
found to exist in the new master 
directory, the optional message is 
issued. If the member is found to 
exist, but in some other 
directory, the basic message is 
issued. 

IEB8171 MEMBER NAME (xxx) NOT FOUND IN NM 
DIRECTORY. STOWED WITH TTR. 

Explanation: The member name xxx 
does not exist in the directory of 
the new master (NM) data set. 

system Action: An entry (TTR) is 
made for the member in the 
directory. Processing continues. 

IEB8181 HIGHEST CONDITION CODE WAS xxx. 

Explanation: The listed code is 
the highest generated in the job 
step. 

IEB8191 END OF JOB IEBUPDTE. 

Explanation: The IEBUPDTE program 
has completed processing. 

IEB8201 CANNOT PROCESS MORE THAN ONE 
UPDATE INPLACE PER PASS. 

Explanation: Two or more 
UPDATE=INPLACE operations were 
specified in the same job step. 

System Action: The job step is 
terminated. (The return code is 
12.) 

IEB821I INVALID EXIT NAME. JOB ENDED. 

IEB822I 

Explanation: The name of a user 
exit routine is invalid. 

System Action: The job step is 
terminated. (The return code is 
12.) 

User Response: Check the 
applicable function statement for 
an incorrect specification. 

EXIT RETURN CODE ENDED JOB. 

Explanation: A user routine 
passed a return code of 16 to the 
IEBUPDTE program. 

System Action: The job step is 
terminated. (The return code is 
16.) 

Appendix G: Utility Program Messages 555 



IEB823I xxx HAS NO RECORDS. 

Explanation: The indicated SYSUTl 
or SYSIN data set contains no 
records. 

System Action: If the data set is 
the old master data set (SYSUT1), 
the program continues processing 
with the next member, if any. 
(The return code is 4.) If the 
data set is the control data set 
(SYSIN), the job step is 
terminated. (The return code is 
12.) 

IEB82SI ALIAS IGNORED - SEQUENTIAL DATA 
SET. 

Explanation: An ALIAS statement 
specified an alias name for an 
output sequential data set. 

System Action: The statement is 
ignored. 

IEB8261 MEMBER NAME FOUND IN OM DIRECTORY 
AS AN ALIAS - CHANGED TO TRUE NAME 
IN NM DIRECTORY. 

Explanation: The specified member 
name is an alias name in the old 
master (OM) directory. It is 
entered as a member name in the 
new master (NM) directory. 

IEB82?I INVALID INPUT PARAMETER. 

Explanation: Either (1) the EXEC 
statement contains an incorrect 
parameter, or (2) an incorrect 
parameter was passed to the 
IEBUPDTE program. 

System Action: The job step is 
terminated. (The return code is 
12.) 

IEB828I PAGE NUMBER PARAMETER INVALID. 

Explanation: An invalid starting 
page number (for the message data 
set) was passed to the IEBUPDTE 
program. 

System Action: A page number of 1 
is assigned to the first page of 
the printout. (The return code is 
4. ) 

IEB829I DDNAME PARAMETER IS INVALID. 

556 

Explanation: An incorrect DDNAME 
parameter was passed to the 
IEBUPDTE program. 

IEB830I 

System Action: The job step is 
terminated. (The return code is 
12. ) 

OLD AND NEW MASTER LRECL UNEQUAL. 

Explanation: The logical record 
lengths of the old and new master 
data sets are unequal. 

System Action: The job step is 
terminated. (The return code is 
12.) 

User Response: Rerun the job 
step. Specify the correct logical 
record length (LRECL) in the DCB 
parameter of the SYSUT2 DD 
statement. 

IEB831! OLD AND NEW MASTER DSORGS 
INCOMPATIBLE 

Explanation: (1) The data set 
organizations as implied or 
specified on the SYSUTl and SYSUT2 
DD statements are inconsistent 
with one another, or (2) the data 
set organization as implied or 
specified on the utility control 
statements is inconsistent with 
the organization implied or 
specified on the SYSUTl and/or 
SYSUT2 DD statements. 

System Action: The job step is 
terminated. (The return code is 
12. ) 

User Response: In case #1, check 
the SYSUTl and SYSUT2 DD 
statements to ensure that the 
space allocation is consistent 
with the data set organization. 
Ensure that the DSORG 
subparameter, if included, is 
coded correctly. In case #2, 
check the utility control 
statements to ensure that the 
specified keywords are consistent 
with the data set organization(s) 
specified or implied on the SYSUTl 
and SYSUT2 DD stateroents. 

IEB832I (Routine Name) IS PROCESSING USER 

{INPUT }{HEADER } 
OUTPUT TRAILER LABELS 

Explanation: Will be printed 
immediately preceding each entry 
to OPEN, CLOSE or EOV. The user's 
routine name will be inserted in 
the message. A maximum of six 
similar messages can be printed. 



This message will act as a header 
message for all subsequent user 
label messages pertaining to that 
data set, both normal and error, 
since it will always be the first 
message and will have the routine 
name in common with subsequent 
user label messages: 

System Action: Processing 
continues. (The return code is 
0.) 

IEB8331 (No.) ENTRANCES TO (routine name) 

Explanation: Will be printed 
after user label processing is 
complete. The number of entrances 
to the user's routine and the 
routine name will be inserted into 
the message. This message in 
conjunction with the return code 
message (IEB834I) or the I/O Error 
message (IEB837I) will allow the 
user to determine the status of 
his labels. 

System Action: Processing 
continues. (The return code is 
0.) 

IEB8341 LAST RETURN CODE FROM (Routine 
Name) WAS (xxx) 

Will be printed after the 
preceding message (IEB833I) and 
will contain the name of the 
user's routine and the last return 
code issued by that routine. 
However, if an error occurred 
during user label processing this 
message may be replaced by the I/O 
error message IEB802I. 

System Action: Processing 
continues. (The return code is 
0.) 

IEB8351 {TOTALING }SUPPORTED ONLY ON PS 
USER LABELS 
DATA SETS 

Explanation: This message is 
printed prior to OPEN or CLOSE 
when the user has requested either 
user label processing or totaling 
exits for a data set whose 
organization is not physical 
sequential. 

System Action: The job is 
terminated. (The return code is 
4.) 

IEB8361 TRAILER LABEL PROCESSING NOT 
SUPPORTED FOR UPDATE=INPLACE 

Explanation: The, user specified 
user trailer label exits with 
UPDATE=INPLACE. 

System Action: The job is 
terminated. (The return code is 
4.) 

IEB8371 I/O ERROR WHILE PROCESSING USER 
LABEL 

Explanation: An I/O error 
occurred during user label 
processing. The results of the 
label processing are 
unpredictable. 

System Action: The job is 
terminated. (The return code is 
12.) 

User Response: Check for missing 
or incorrect DCB parameters for 
the data set. 

IEB8391 (Routine Name) IS TAKING TOTALING 
EXITS 

Explanation: The user has 
requested totaling exits to be 
taken prior to writing every 
record. 

System Action: Processing 
continues. The return, code is 
zero. 

IEB8401 (Routine Name) REQUESTED 
TERMINATION OF TOTALING EXITS 

Explanation: A return code other 
than four was passed to IEBUPDTE 
by a user totaling routine. 

System Action: If the return code 
is four, totaling exits are 
discontinued, but processing 
continues. If the return code is 
eight or 16, processing is 
discontinued immediately. 

IEB8411 INVALID RETURN CODE FROM (Routine 
Name), TOTALING EXITS DISCONTINUED 

Explanation: The return code 
passed to IEBUPDTE from the user 
totaling routine during a totaling 
exit was not valid (0, 4, 8, 16). 
Totaling exits are discontinued 
and processing continues normally. 

Appendix G: Utility Program Messages 557 



system Action: Processing 
continues. (The return code is 
O. ) 

IEB842I TOTALING EXITS NOT SUPPORTED FOR 
UPDATE=INPLACE. 

Explanation: The user specified 
totaling with UPDATE=INPLACE. 

System Action: The job is 
terminated. The return code is 4. 

IEB843I INVALID CORE SIZE 

IEB844I 

IEB845I 

Explanation: The core requested 
in the TOTAL keyword contains 
either a non-numeric character or 
is numerically less than 2 bytes 
or greater than 32K bytes. 

System Action: Processing is 
terminated. The return code is 4. 

NO USER{HEADER }LABELS 
TRAILER 

EXIST ON INPUT DATA SET 

Explanation: The user specified 
SUL on the DD statement for the 
input data set, but there are no 
labels on this data set. 

System Action: Processing 
continues. (The return code is 
O. ) 

NO USER{HEADER }LABELS 
TRAILER 

CREATED ON OUTPUT DATA SET 

Explanation: The user specified 
SUL on the DD statement for SYSUT2 
but no labels were copied from the 
SYSUTl data set and no labels were 
generated via a LABEL statement. 

System Action: Processing 
continues. (The return code is 
0.) 

IEB846I ALIAS IGNORED FOR UPDATE=INPLACE 

558 

Explanation: Alias statements for 
partitioned data set members 
cannot be processed using the 
UPDATE=INPLACE function. All 
alias statements are ignored. 

System Action: Processing 
continues. (The return code is 
12. ) 

The IEBTCRIN Program 

IEB901A M ddd,xxxxxx,jjj,sss 

IEB902I 

IEB903I 

Explanation: M indicates that an 
MTDI or MTS'I' cartridge file is to 
be mounted on device ddd. The 
volume was required by job jjj, 
or, if applicable, step sss of job 
jjj. If a volume serial number 
was provided in the SYSUT1 DD 
card, this serial number will 
replace xxxxxx. If a volume 
serial is not provided TCRINP will 
be used. 

User Response: Mount the 
requested cartridges on the 
specified device and press the 
START button to ready the device. 
If the volume cannot be mounted, 
issue a CANCEL command to 
terminate the job named jjj. 

INVALID NAME FIELD 

Explanation: The name field of 
the above statement contains 
either: 

1) a non-alphabetic character in 
column 1, or 

2) more than eight characters. 

system Action: Diagnosis of this 
control statement is terminated. 
Any additional control statements 
are scanned for syntax errors 
after which the job step is 
terminated. (The return code is 
12.) 

User Response: Correct the name 
field and resubmit the job. 

INVALID OPERATION 

Explanation: An operator other 
than the operators TCRGEN and 
EXITS was specified. 

System Action: Diagnosis of this 
control statement is terminated. 
Any additional control statements 
are scanned for syntax Errors 
after which the job step is 
terminated. (The return code is 
12. ) 

User Response: Correct the 
operation field and resubmit the 
job. 



IEB904I INVALID KEYWORD 

Explanation: An invalid keyword 
appears in the operand of the 
above statement. For example, the 
TYPE keyword was misspelled as 
TAPE. 

System Action: Processing 
continues with the next keyword, 
if any. Any additional control 
statements are scanned for syntax 
errors after which the job step is 
terminated. (The return code is 
12.) 

User Response: Correct the 
control statement and resubmit the 
job. 

IEB905I INVALlD PARAMETER VALUE 

Explanation: An invalid parameter 
value appears in the operand of 
the above statement. For example: 

1) The MAXLN parameter value 
contains more than 5 digits. 

2) The REPLACE parameter is not 
of the form X'xx' where x is 
either A-F or 0-9. 

3) The OUTHDR2 user routine name 
is more than eight characters. 

4) The VOKCHK parameter was 
misspelled as VOKCHECK. 

System Action: Processing 
continues with the next keyword, 
if any. Any additional control 
statements are scanned for syntax 
errors after which the job step is 
terminated. (The return code is 
12.) 

User Response: Correct the 
control statement and resubmit the 
job. 

IEB906I DUPLICATE OPERATION FIELD 

Explanation: A control statement 
with the same operation field as 
the control statement listed above 
has been processed previously. 

System Action: Diagnosis of this 
control statement is terminated. 
Any additional control statements 
are scanned for syntax errors 
after which the job step is 
terminated. (The return code is 
12.) 

User Response: Resubmit the job 
using only the correct control 
statements. 

IEE907I INCONSISTENT REPLACE PARAMETER 

IEB908I 

IEE909I 

Explanation: The TCRGEN statement 
contains a REPLACE parameter which 
is inconsistent with specified or 
implied TYPE, TRANS, and/or EDIT 
options. 

System Action: The job step is 
terminated (The return code is 
12.) 

User Response: Correct the 
control statement and resubmit the 
job. 

CONFLICTING OPTIONS SPECIFIED 

Explanation: Either 1) the 
control statement contains ,two or 
more keyword parameters which 
cannot appear together, or 2) the 
control statement contains two or 
more appearances of the same 
keyword. 

System Action: The ,job step is 
terminated. (The return code is 
12.) 

User Response: Correct the 
control statement(s) and resubmit 
the job. 

EXPECTED CONTINUATION NOT RECEIVED 

Explanation: In a control 
statement, continuation of the 
operand was specified by a comma 
at the end of the operand and the 
following card image was not a 
continuation; that is, columns 1-3 
were not blank or columns 4-16 
were blank. 

or 

In a control statement, 
continuation of a comment was 
specified by a nonblank character 
in column 72 and the following 
card image was not a continuation; 
that is, columns 1-3 were not 
blank. 

System Action: Diagnosis of this 
control statement is terminated. 
Any additional control statements 
are scanned for syntax errors 
after which the job step is 
terminated. (The return code is 
12.) 

Ap;pendix G: Utility Program Messages 559 



User Response: Correct the 
control statement and resubmit the 
job. 

IEB910I NO SYSUT1 DD CARD - JOB TERMINATED 

Explanation: A job control 
statement was not supplied for the 
SYSUT1 data set. Execution is 
impossible. 

System Action: The job step is 
terminated. (The return code is 
12.) 

User Response: Add the SYSUT1 DD 
card and resubmit the job. 

IEB911I NO SYSIN DD CARD - ALL DEFAULT 
OPTIONS ASSUMED, 

Explanation: A job control 
statement was not provided for 
SYSIN. 

system Action: The utility is 
executed using all default 
options. (The return code is 4.) 

User Response: None - if the use 
of default options was desired. 
If default options were not 
expected, add the SYSIN DD card 
,and one or more control statements 
and resubmit the job. 

IEB912I NO SYSPRINT DD CARD - DU~~Y 
ASSUMED 

Explanation: A job control 
statement was not supplied for the 
SYSPRINT data set. 

System Aciton: The data set will 
be handled as if DUMMY had been 
specified: that is, no messages 
will be output to SYSPRINT. (The 
return code is 4.> 

User Response: None - if no 
SYSPRINT output is desired. If 
output was desired, add the 
SYSPRINT DD card and resubmit the 
job. 

IEB913I NO xxxxxxxx DD CARD - DUMMY 
ASSUMED 

560 

Explanation: A job control 
statement was not supplied for the 
xxxxxxxx data set. (xxxxxxxx may 
be either SYSUT2 or SYSUT3.) 

System Aciton: The data set will 
be handled as if DUMMY had been 
specified: that is, no data will 
be output. The records that are 
passed to the user exit will be 
constructed using the default 
value (VB) of the RECFM DCB 
parameter. In some cases this may 
produce undesirable results. (The 
return code is 4.) 

User Response: None - if no 
output was desired. If output was 
desired, add the xxxxxxxx DD card 
and resubmit the job. 

IEB914I DCB SUBPARAMETER(S) MISSING IN 
xxxxxxxx DD CARD - DEFAULTS 
ASSUMED 

IEB915I 

Explanation: The LRECL, BLKSIZE 
and/or RECFM subparameters were 
not specified. 

System Action: Default,S are 
assigned, and processing 
continues. (The returri code is 
4.) 

User Response: None - if default 
parameters were expected. If 
default parameters were not 
expected, add the DCB 
subparameters to the xxxxxxxx DD 
card and resubmit the job. 

DDNAME xxxxxxxx CANNOT BE OPENEC 

Explanation: The data set 
specified cannot be opened due to 
an undeterroinederror. 

System Action: The job step is 
terminated. (The return code is 
16. > 

User Response: None. 

IEB916I INCONSISTENT xxxxxxxx DCB 
PARAMETERS 

Explanation: Two or more DCB 
parameters for the indicated data 
set are inconsistent. 

System Action: The job step is 
terminated. (The return code is 
16.) 

User Response:' Correct the 
control statement and resubmit the 
job. 



IEB917I LOAD MODULE SPECIFIED FOR xxxxxxxx 
NOT FOUND 

Explanation: Either a user exit 
routine specified in the EXITS 
statement or a user translate 
table specified in the TCRGEN 
statement could not be located in 
the job library or link library. 

System Action: The job step is 
terminated. (The return code is 
16.) 

User Response: Check the control 
statements for keypunch errors. 
If none are present, verify that 
the module is present in the link 
library or job library. If the 
module is present in the job 
library, check that the JOBLIB 
card is present. 

IEB918I JOB TERMINATED AFTER xxxxxxxx EXIT 

Explanation: A user-supplied exit 
routine requested termination upon 
return to the utility. 

System Action: The job step is 
terminated. (The return code is 
16.) 

User Response: None. 

IEB919I INSUFFICIENT STORAGE AVAILABLE 

Explanation: Storage requested by 
a utility GETMAIN macro 
instruction could not be 
allocated. More main storage was 
requested than was available. 

System Action: The job step is 
terminated. (The return code is 
16.) 

User Response: If additional 
storage is available, increase the 
value specified in the REGION 
parameter of the JOB statement or 
the EXEC statement. If additional 
storage is not available, reduce 
the value specified for BUFL in 
the SYSUT1 DD statement. 

IEB920I ddd,device type,ddname,operation 
attempted,error description, 
asterisks,access method 

Explanation: A permanent I/O 
error occurred on the ddname data 
set mounted on unit record device 
ddd. 

System Action: The job step is 
terminated. (The return code is 
16.) 

User Response: If the error 
persists, have the computing 
system checked. 

IEB921I ddd,device type,ddname,operation 
attempted,error description, 
relative block number,access 
method 

Explanation: A permanent I/O 
error occurred on the ddname data 
set mounted on tape device ddd. 

System Action: The job step is 
terminated. (The return code is 
16.) 

User Response: If the error 
persists, have the computing 
system checked. 

IEB922I ddd,device type,ddname,operation 
attempted, error description, actual 
track address and block 
number,access method 

Explanation: A permanent I/O 
error occurred on the ddname data 
set mounted on direct access 
device ddd. 

System Action: The job step is 
terminated. (The return code is 
16.) 

User Response: If the error 
persists, have the computing 
system checked. 

Appendix G: Utility Program Messages 561 



System Utility Messages 
The IEHLIST Program 

IEH10l1 NO CATALOG ON SPECIFIED VOLUME. 

Explanation: No catalog exists on 
the volume identified in the 
LISTCTLG statement. 

system Action: The request is 
ignored. (The return code is 8.) 

IEH1021 THIS VOLUME DOES NOT CONTAIN DATA 
SET xxx. 

Explanation: The data set 
identified in the LISTVTOC or 
LISTPDS statement is not contained 
in the specified volume's table of 
contents. 

System Action: The request is 
ignored. '(The return code is 8.) 

IEHI031 INVALID CONTROL STATEMENT -- xxx. 

Explanation: 
is invalid. 
is written.) 

A utility statement 
(The entire statement 

System Action: The request is 
ignored. (The return code is 8.) 

IEH1041 THE PDS ORGANIZATION DOES NOT 
APPLY FOR DATA SET xxx. 

Explanation: The data set 
identified in the LISTPDS 
statement is not partitioned. 

System Action: The request is 
ignored. (The return code is 8.) 

IEH1051 ILLEGAL NODE POINT SPECIFIED, OR 
INCONSISTENT CATALOG STRUCTURE 
FOUND -- REQUEST TERMINATED. 

Explanation: The·node point 
identified in the LISTCTLG 
statement is invalid, or an 
incorrect catalog structure 
exists. 

system Action: The request is 
ignored. (The return code is 8.) 

IEH1061 UNAVAILABLE DEVICE TYPE OR VOLUME 
I.D. SPECIFIED. 

562 

Explanation: The VOL parameter of 
the utility statement is invalid, 
or the volume cannot be mounted. 

system Action: The request is 
ignored. (The return code is 8.) 

IEH1071 JOB TERMINATED -- I/O ERROR ON 
SYSIN. 

Explanation: Additional input 
control statements cannot be read. 

System Action: The job is 
terminated. (The return code is 
16. ) 

IEH1081 REQUEST TE~lINATED -- PERMANENT 
I/O ERROR WHILE READING DATA SET. 

IEH1091 

Explanation: IEHLIST's error exit 
was taken while a volume table of 
contents, a catalog, or a 
partitioned data set was being 
read. 

system Action: The job is 
terminated. (The return code is 
12.) 

SYSIN CANNOT BE OPENED -- CHECK 
SYSIN DD CARD 

Explanation: Either the SYSIN DD 
statement was inadvertently 
omitted form the job $tep or it 
was included but the SYSIN ddname 
was coded incorrectly. 

System Action: The job is 
terminated. (The return code is 
16.) 

IEHll01 JOB TERMINATED -- INVALID DCB 
PARAMETER 

Explanation: The SYSIN DD 
statement specifies a block size 
that is not a multipl~ OT the 
specified logical record length. 

System Action: The job is 
terminated. (The return code is 
16.) 

IEHlllI LL FIELD OF TTRLL IS NEGATIVE 
VALUE -- BY'l'ES PRINTED ARE 
INCORRECT. 

~xplanation: A negative value is 
given for the nun~er of bytes 
remaining on the track following 
the block. 

system Action: Processing 
continues. 



IEHl121 MEMBERS OF SPECIFIED PDS NOT 
CREATED BY LINKAGE EDITOR - DUMP 
OPTION OUTPUT GENERATED. 

Explanation: The directory entry 
is less than 34 bytes, indicating 
that the members were not created 
by the Linkage Editor. 

System Action: No immediate 
action is taken. Processing 
continues as if the DUMP option 
were specified. 

User Response: None. 

The IEHPROGM Program 

IEH2011 INVALID REQUEST 
IGNORED. 

STATEMENT 

Explanation: The utility 
statement contains an invalid 
operation. 

system Action: The request is 
ignored. (The return code is 8.) 

IEH202I INVALID KEYWORD OR CONTROL 
STATEMENT SYNTAX 

Explanation: The utility control 
statement contains an invalid or 
incorrectly coded keyword in the 
operand field. 

system Action: The request is 
ignored. (The return code is 8.) 

IEH2031 THE SYSCTLG DATA SET IS NOT 
AVAILABLE OR FORMS A LOOP 

Explanation: No catalog exists on 
the specified control volume, or 
control volumes are connected 
incorrectly to each other. 

system Action: The request is 
ignored. (The return code is 8.) 

IEH204I STATUS OF THE REQUESTED TASK 
CANNOT BE DETERMINED. AN 
UNDEFINED ERROR CODE HAS BEEN 
ENCOUNTERED. 

Explanation: The return code from 
a system macro instruction is 
invalid. 

system Action: The request is 
ignored. (The return code is 8.) 

IEH2051 INFORMATION IN CONTROL STATEMENT 
IS (REDUNDANT/NOT SUFFICIENT). 

Explanation: Information on the 
utility statement is either 
redundant or inadequate. 

System Action: The request is 
ignored. (The return code is 8.) 

IEH2061 CVOL IS NOT DIRECT-ACCESS. 

Explanation: The volume 
identified by CVOL is not cn a 
direct access device. 

system Action: The request is 
ignored. (The return code is 8.) 

IEH2071 STATUS OF USERS REQUEST TO 
(SCRATCH/RENAME) DATA SET xxx ••• 

VOLUME ID 
xxx 

ACTION TAKEN 
xxx 

REASCN 
xxx 

END OF LISTING OF DATA SETS TO BE 
SCRATCHED OR RENAMED. 

Explanation: An unusual condition 
occurred during a SCRATCH or 
RENAME operation. The message 
names the data set, identifies the 
volumes on which the data set 
resides, states the action taken 
on each volume, and describes the 
condition. 

System Action: The request is 
ignored. (The return code is 8.) 

or 

IEH207I STATUS OF USERS REQUEST TO SCRATCH 
THE VOLUME TABLE OF CONTENTS ••• 

DATA SET NAME ACTION TAKEN REASON 
xxx xxx xxx 

END OF SCRATCH VTOC. 

Explanation: Either (1) an 
unusual condition occurred during 
a SCRATCH VTOC operation or (2) a 
data set has been successfully 
scratched. The message names each 
data set, states the action taken, 
and describes the condition. 

IEH208I LIST TRUNCATED TO 1 VOLUME FOR 
SCRATCH VTOC. 

Explanation: More than 1 volume 
is identified in a SCRATCH VTOC 
statement. 

Appendix G: Utility Program Messages 563 



System Action: Only the first 
volume in the list is considered. 
(The return code is 8.> 

IEH2091 THE MODEL DATA SET CONTROL BLOCK 
IS NOT AVAILABLE. 

Explanation: The required DSCB 
for a BLDG operation cannot be 
located on the specified volume. 

system Action: The request is 
ignored. (The return code is 8.> 

IEH2101 REQUEST CANNOT BE SERVICED 
reason. 

Explanation: An unusual condition 
occurred during a catalog or index 
operation. The condition is 
described in detail. 

System Action: The request is 
ignored. (The return code is 8.> 

IEH2111 REQUIRED VOLUME COULD NOT BE 
MOUNTED. 

Explanation: A device was not 
allocated for the required volume. 

system Action: The request is 
ignored. (The return code is 8.> 

IEH2121 I/O ERROR ON SYSIN DATA SET -- JOB 
TERMINATED 

Explanation: An input/output 
error occurred while the SYSIN 
data set was being read. 

System Action: The program is 
terminated. (The return code is 
8.> 

IEH2131 JOB TERMINATED -- INVALID 
BLOCKSIZE SPECIFIED IN SYSIN DCB 

Explanation: The SYSIN DD 
statement specifies a block size 
that is not a multiple of the 
specified logical record length. 

System Action: The job is 
terminated. (The return code is 
16.> 

IEH2141 CONTINUATION CARD EXPECTED -
REQUESTS CANNOT BE SERVICED 

564 

Explanation: A nonblank was found 
in column 72 of a control card 
with an invalid continuation card 
following. 

System Action: The request is not 
processed. (The return code is 
8.> 

IEH215I SYNTAX ERROR ENCOUNTERED IN NAME 
FIELD OF CONTROL STATEMENT 
PROCESSING IS CONTINUED 

Explanation: The name field 
contained 'one of the following 
errors: 

1. The first character was not 
alphabetic. 

2. A character was encountered 
tha't was not an alphaIr:eric or 
national. 

3. The name field is longer than 
8 characters. 

System Action: Processing 
continues. (The return code is 
4. ) 

User Response: To eliminate the 
message, correct the control 
statement to comply with utility 
rules governing the name field. 

The IEHMOVE Program 

IEH301I INCLUDE OP NOT VALID 

Explanation: The INCLUDE 
statement is not valid with the 
specified operation. 

System Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.> 

IEH302I EXCLUDE OP NOT VALID 

Explanation: The EXCLUDE 
statement is not valid with the 
specified operation. 

System Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.> 

IEH3031 REPLACE OP NOT VALID 

Explanation: The REPLACE 
statement is not valid with the 
specified operation. 

System Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.> 



IEH3041 SUBORDINATE REQ-SKIPPED 

Explanation: No MOVE or COpy 
statement precedes the specified 
INCLUDE, EXCLUDE, REPLACE, or 
SELECT statement. 

System Action: The request is 
ignored. (The return code is 8.) 

IEH30S1 MULTIPLE KEYWORD ERROR 

Explanation: A control statement 
contains duplicate or conflicting 
keywords. 

System Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.) 

IEH3071 KEYWORD NOT PERMITTED 

Explanation: A control statement 
contains an invalid keyword. 

System Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.) 

IEH3081 INVALID PARAMETER ERROR 

Explanation: an invalid parameter 
(such as spelling, device type or 
serial number error, etc.) is 
specified on the listed control 
statement. 

system Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.) 

IEH3091 SYNTAX ERROR 

Explanation: The syntax of the 
listed control statement is in 
error. 

System Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.) 

IEH3101 LENGTH ERROR 

Explanation: Either the physical 
length of a keyword value is 
incorrect (for example, 
DSNAME=NINECHARS), or the EXPAND 
keyword specifies a number not 
falling between 1 and 99 decimal 
(for example, EXPAND=OO or 
EXPAND=100). 

System Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.) 

IEB3111 INCOMPLETE REQUEST. 

Explanation: The control 
statement does not contain 
adequate information to perform 
the MOVE/COPY operation. 

System Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.) 

IEH3131 DATA SET xxx HAS INCORRECT FORMAT 
FOR UNLOADED DATA SET 

Explanation: The request to move 
or copy an unloaded data set is 
ignored because its format is 
incorrect. The records are 
apparently out of sequence. 

System Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.) 

IEH31S1 UNABLE TO FIND FROM VOLUME 

Explanation: The program was 
unable to locate the "FROM" 
volume. The FROM keyword was 
probably omitted from the MOVE or 
COPY utility control statement. 

system Action: The MOVE/COPY 
request is ignored. (The return 
code is 4.) 

IEH3161 MODEL DSCB FOR GENERATION DATA 
GROUP CANNOT BE WRITTEN 

Explanation: An error (e.g., a 
permanent I/O error) occurred when 
an attempt was made to create the 
model DSCB. 

System Action: The MOVE/COPY 
request is terminated. (The 
return code is 8.) 

IEH3191 MEMBER xxx NOT MOVED/COPIED. 
DUPLICATE NAME IN OUTPUT DATA SET. 

Explanation: A member with the 
same name is contairied in the 
output partitioned data set. 

System Action: The request is 
ignored. (The return code is 4.> 

IEH3201 MEMBER xxx NOT FOUND IN DATA SET 
xxx. 

Explanation: The named member 
cannot be located in the 
partitioned data set. 

System Action: The request is 
ignored. (The return code is 8.> 

Appendix G: Utility Program Messages 565 



IEH3211 MEMBER xxx NOT MOVED/COPIED. 
OUTPUT DIRECTORY IS FULL. 

Explanation: The directory of the 
output partitioned data set is 
full. 

System Action: The named member 
was not moved or copied. (The 
return code is 8.) 

IEB3221 I/O ERROR ENCOUNTERED IN MEMBER 
xxx OF INPUT DATA SET xxx. 

Explanation: A permanent error 
was detected while the named 
member was being read. 

system Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.) 

IEH3231 I/O ERROR ENCOUNTERED IN MEMBER 
xxx OF OUTPUT DATA SET xxx. 

Explanation: A permanent error 
was detected while the named 
member was being written. 

System Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.) 

IEH3251 INVALID CATLG REQUEST IGNORED. 

Explanation: The specified 
receiving volume is not direct 
access. 

system Action: The moved or 
copied data set was not cataloged 
on this volume as requested. (The 
return code is 8.) 

IEB3261 I/O ERROR ENCOUNTERED IN OUTPUT 
DATA SET xxx. 

Explanation: A permanent error 
was detected while the named data 
set was being written. 

System Action: The request is 
terminated. (The return code is 
8.) 

IEB3311 USER LABELS ARE NOT MOVED/COPIED. 

566 

NO USER LABEL TRACK ALLOCATED FOR 
INPUT. 

Explanation: A preallocated data 
set did not provide a user label 
track. 

System Action: User labels are 
ignored. Normal Move/Copy 
operations continue. 

IEH3321 PERMANENT I/O ERROR wHILE READING 
USER INPUT HEADER LABELS. NO MORE 
LABELS WILL BE PROCESS~D. 

Explanation: OPEN encountered a 
permanent I/O error while 
attempting to read user input 
header labels. 

System Action: The utility 
returns to the user pointing him 
to the label in error, ignores his 
return code and terminates 
operation. 

IEB333I PERMANENT I/O ERROR wHILE READING 
USER INPUT TRAILER LABELS. NO 
MORE LABELS WILL BE PROCESSED. 

Explanation: EOV encountered a 
permanent I/O error while 
attempting to read user input 
trailer labels. 

System Action: The utility 
returns to the user pointing him 
to the lanel in error, ignores his 
return code and terminates 
operation •. 

IEH334I PERMANENT I/O ERROR WHILE WRITING 
USER OUTPUT HEADER LABELS. NO 
MORE LABELS WILL BE PROCESSED. 

Explanation: OPEN encountered a 
permanent I/O error while 
attempting to write user output 
header labels. 

system Action: The utility 
returns to the user pointing him 
to the label in error, iqnores his 
return code and terminates 
operation. 

IEH335I PERMAN~NT I/O ERROR WHILE WRITING 
USER OUTPUT TRAILER LABELS. NO 
MORE LABELS WILL BE PROCESSED. 

Explanation: OPEN encountered a 
permanent I/O error while 
attempting to write user output 
trailer labels. 

System Action: The utility 
returns a pointer to the user 
referring to the label in error, 
ignores his return cede and 
terminates operation. 



IEH336I AN UNCORRECTABLE ERROR OCCURED 
WHILE READING DATA SET xxxx 

Explanation: The DECB for input 
data set indicated that an error 
occurred for the record just read 
that was something other than an 
I/O error or a record length 
check. This applicable to direct 
data sets only. 

System Action: The utility 
terminates any further processing 
of that function. 

IEH3461 CATALOG CANNOT BE LOCATED, OR 
CONTROL VOLU~~S ARE CONNECTED TO 
EACH OTHER. 

Explanation: No catalog exists on 
the specified control volume, or 
control volumes are connected 
incorrectly to each other. 

System Action: The request is 
ignored. (The return code is 8.) 

IEH3481 I/O ERROR ENCOUNTERED IN CATALOG. 

Explanation: A permanent error 
was encountered while reading or 
writing the catalog. 

System Action: The request is 
terminated. (The return code is 
8.) 

IEH349I UNABLE TO MOUNT VOLUME xxx ••• 
action. 

Explanation: No device was 
allocated for the specified 
volume. 

system Action: The request is 
ignored. (The return code is 8.> 

IEH351I DATA SET xxx NOT CATALOGED. SPACE 
NOT AVAILABLE IN THE CATALOG. 

Explanation: The catalog is full. 

System Action: The named data set 
was not cataloged. (The return 
code is 8.) 

IEH354I DATA SET xxx NOT CATALOGED. INDEX 
STRUCTURE INCONSISTENT. 

Explanation: Either an invalid 
index structure exists or the 
catalog already has an entry for 
the named data set. 

system Action: The named data set 
was not cataloged. (The return 
code is 8.) 

IEH3561 DATA SET xxx NOT CATALOGED. 
INVALID DATA SET NAME. 

Explanation: The specified data 
set name is inappropriate for 
cataloging. 

system Action: 
not cataloged. 
is 8.) 

The data set was 
(The return code 

IEH3611 DATA SET xxxxxx NOT MOVED/COPIED 
TO VOLUME(S) 

Explanation: Due to an abnormal 
condition (such as an I/O error), 
the named data set was not moved 
(or copied). 

System Action: The MOVE/COPY 
request is terminated. (The 
return code is 8.) 

IEH362I DATA SET xxxxxx MAY NOT BE 
SCRATCHED ON VOLUME(S) 

Explanation: Due to an abnormal 
condition (such an an I/O error), 
the named data set was not 
scratched. 

system Action: Processing 
continues with the next function 
to be performed, if any. (The 
return code is 4.) 

IEH3631 DATA SET JUST COPIED WAS NOT 
SUCCESSFULLY UNCATALOGED 

Explanation: The data set was 
copied but not uncataloged. A 
permanent I/O error occurred 
~uring the uncatalog operation. 

System Action: Processing 
continues with the next function 
to be performed, if any. (The 
return code is 4.) 

IEH3641 THE. DATA SET JUST COPIED WAS NOT 
SUCCESSFULLY CATALOGED 

Explanation: The data set was 
copied but not cataloged on the 
"TO" volume because of one of the 
following conditions: . 

• TheSYSCTLG data set does not 
exist on the specified volume. 

• The existing index structure 
does not permit the cataloging 
of the data set. 

APpendix G: Utility Program Messages 567 



• No space is available in the 
catalog. 

• A permanent I/O error occurred 
during the catalog operation. 

• The data set may already be 
catalogued on the receiving 
volume. 

System Action: Processing 
continues with the next function 
to be performed, if any. (The 
return code is 4.) 

IEH365I DATA SET xxxxxx MAY STILL EXIST ON 
VOLUME(S) 

Explanation: The named data set 
was moved but not scratched from 
the source volume(s). An unusual 
condition, such as a permanent I/O 
error occurred during the scratch 
operation. 

System Action: Processing 
continues with the next function 
to be performed, if any. (The 
return code is 4.) 

IEH366I THE DATA SET JUST MOVED MAY EXIST 
WITH AN INTERNALLY GENERATED NAME 
ON VOLUME(S) 

Explanation: Due to an unusual 
condition, such as a permanent I/O 
error, a specified rename 
operation was not successful. An 
internally generated name may have 
been assigned to the moved data 
set. 

system Action: Processing 
continues with the next function 
to be performed, if any. (The 
return code is 8.) 

IEH367I THE DATA SET JUST MOVED WAS NOT 
SUCCESSFULLY UNCATALOGED 

568 

Explanation: The data set was 
moved but not uncataloged. A 
permanent I/O error occurred 
during the uncatalog operation. 

system Action: Processing 
continues with the next function 
to be performed, if any. (The 
return code is 4.) 

IEH368I THE DATA SET JUST MOVED WAS NOT 
SUCCESSFULLY RECATALOGED 

Explanation: The data set was 
moved, but the catalog was not 
updated. Either an I/O error 
occurred during the catalog 
operation, or the existing index 
structure in the catalog does not 
permit the cataloging of the data 
set. 

System Action: Processing 
continues with the next function 
to be perfomred, if any. (The 
return code is 4.) 

IEH372I I/O ERROR ENCOUNTERED IN wORK DATA 
SET. 

Explanation: .A permanent 
input/output erro~ was detected 
while reading or writing the work 
data set. 

System Action: The request is 
terminated. (The return code is 
12.) 

IEH373I UNABLB TO MOUNT VOLUME xxx. SOME 
INCLUDE OR REPLACE REQUESTS 
IGNORED. 

Explanation: The program cannot 
mount the named volume. 

System Action: The INCLUDE or 
REPLACE requests that refer to the 
specified volume were ignored. 
(The return code is 8.) 

IEH374I DATA SET xxx NOT FOUND ON VOLUME 
xxx. INCLUDE OR REPLACE REQUEST 
IGNORED. 

Explanation: The named data set 
does not reside on the specified 
volume. 

system Action: The INCLUDE or 
REPLACE statements that refer to 
the specified data set were 
ignored. (The return code is 8.) 

IEH375I DATA SET xxx IS NOT PARTITIONED. 
INCLUDE OR REPLACE REQUEST 
IGNORED. 

Explanation: The named data set 
is not partitioned. 

System Action: The INCLUDE 
request or the including part of 
the REPLACE request was ignored. 
(The return code is 8.) 



IEH3761 RECORD CHARACTERISTICS NOT 
COMPATIBLE (xxx). INCLUDE OR 
REPLACE REQUEST IGNORED. 

Explanation: An attribute (xxx) 
of the output data set is not 
compatible with that of the input 
data set. 

System Action: The INCLUDE 
request or the including part of 
the REPLACE request was ignored. 
(The return code is 8.) 

IEH3801 ~ffiMBER xxx NOT FOUND IN DATA SET 
xxx. INCLUDE OR REPLACE REQUESTS 
IGNORED. 

Explanation: The named member is 
not contained in the named 
partitioned data set. 

System Action: The INCLUDE 
request or the including part of 
the REPLACE request is ignored. 
(The return code is 8.) 

I~H3811 ERROR ENCOUNTERED IN SCRATCHING 
WORK FILES 

Explanation: A work file or files 
could not be scratched. Either a 
work file could not be located, or 
an I/O error occurred during the 
scratch operation. 

System Action: The MOVE/COPY 
program is terminated. (The 
return code is 12.) 

IEH3831 INVALID DEVICE NAME 

Explanation: A device name on the" 
utility statement is invalid. 

system Action: The request is 
ignored. (The return code is 8.) 

IEH3841 GENERIC DEVICE NAME ERR 

Explanation: A device name on the 
utiltiy control statement is 
invalid. 

system Action: The request is 
ignored. (The return code is 8.) 

IEH3851 SELECT OP NOT VALID 

Explanation: The SELECT statement 
is not compatible with the 
specified utility control 
statement. 

system Action: The MOVE/COPY 
request is ignored. (The return 
code is 8.) 

IEH388I UNABLE TO ALLOCATE IEHMOVE WORK 
FILES 

Explanation: The IEHMOVE program 
was unable to allocate space for 
the work files. Either no SYSUT1 
DD statement was included with the 
job step or there was insufficient 
space on the direct access volume 
assigned to the SYSUTl DD 
statement. 

system Action: The IEHMOVE 
program is terminated. (The 
return code is 12.) 

IEH389I I/O ERROR ENCOUNTERED IN INPUT 
DATA SET 

Explanation: A permanent error 
was detected while the input data 
set was being read. 

System Action: The request is 
terminated. (The return code is 
8.) 

IEH3901 NON-ALPHABETIC FIRST CHAR IN 
RENAME 

IEH4011 
through 
IEH4291 

Explanation: In a job control 
statement, the first character in 
a level of a rename is not 
alphabetic. 

system Action: Processing 
continues with the next function 
to be performed, if any. (The 
return code is 8.) 

DATA SET xxx {UNLOADEDINOT 
MOVED/COPIED}--reason 

Explanation: The named data set 
was unloaded or it was not moved 
or copied, for the reason given. 

system Action: A request to move 
or copy is ignored or the data set 
is unloaded, whichever the case 
may be. (The return code is 4.) 

IEH4331 DATA SET NOT MOVED/COPIED BECAUSE 
INCLUDE, EXCLUDE, SELECT OR 
REPLACE REQUEST WHILE 
LOADING/UNLOADING 

Explanation: Subordinate requests 
cannot be processed during a load 
or unload of a data set. 

Appendix G: Utility Program Messages 
569 . ~ 



System Action: The MOVE/COPY 
request is ignored. (The return 
code is 4.) 

IEH4351 ERROR ENCOUNTERED WHILE ANALYZING 
THE SYSCTLG DATA SET 

Explanation: The catalog to be 
moved is in error. 

System Action: The request is 
terminated. (The return code is 
8.) 

IEH4361 DATA SET xxx, VOLUME xxx, NOT 
SCRATCHED DUE TO I/O ERROR. 

system Action: The named data set 
was not scratched after the MOVE 
operation. (The return code is 
8.) 

IEH4501 REQUEST TERMINA'l'ED BECAUSE DATA 
SET SPANS MORE THAN 5 VOLUMES 

Explanation: A data set extends 
over the maximum of five volumes. 

System Action: A request to move 
or copy is ignored. (The return 
code is 8.) 

IEH4511 TRACK OVERFLOW FEATURE REQUIRED ON 
DEVICE THAT DOES NOT HAVE TRACK 
OVERFLOW FEATURE 

Explanation: A data set to be 
moved or copied was originally 
written with track overflow, but 
the source device does not support 
the track overflow feature. 

system Action: A request to move 
or copy is ignored. (The return 
code is 8.) 

IEH4521 THE DATA SET BEING MOVED/COPIED IS 
MARKED UNMOVABLE. UNMOVABLE DATA 
~UST BE UPDATED BEFORE ITS NLXT 
USE 

570 

Explantion: A data set being 
moved/copied from one direct 
access volume to another contains 
location dependent information 
(i.e., the unmovable bit in the 
DSORG field of the DSCB is on). 

System Action: The data set is 
moved and processing continues 
normally. 

User Response: Update location 
dependent information in the 
moved/copied version of the data 
set, e.g., the IEHIOSUP program is 
used to update TTR entries in the 
transfer control tables of the 
supervisor call library (SVC 
library) after this library has 
been moved. 

IEH4601 INVALID DATA SE'l ORGANIZA'IION 

IEH4611 

Explanation: The source data set 
is not a partitioned, physical 
sequential, or direct access 
(BDAM) data set; therefore, it 
cannot be processed by the utility 
program. 

System Action: The request is 
terminated. (The return code is 
12.) 

UNABLE '1'0 OPEN{INPUT}DA'IA SET 
SYSIN 

Explanation: Either no DD 
statement was provided to define 
the input data set or the 
specified block size is not a 
multiple of the logical record 
length. 

System Action: The request is 
terminated. (The return code is 
12.) 

IEH462I NO RECORD FOUND OCCURRED READING 
DA'l'A SET xxxxxxxx. 

Explanation: One of the following 
situations was encountered while 
reading a direct organization data 
set: 

• The record format of the data 
set is fixed (F) and a track 
within the data set is not 
completely filled with 
records. 

• The record format is variable 
(V) or undefined (U) and not 
all tracks were initialized 
when the data set was credted. 

• An uncorrectanle error 
occurred. 



System Action: The system 
produces an additional message 
(IEH361I) and issues a return code 
of 8. 

User Response: Check the data set 
to ensure that it conforms to the 
standards for a direct 
organization data set and rerun 
the program. 

The IEHINITT Program 

IEH601I INVALID CONTROL STATEMENT 

Explanation: An INITT utility 
control statement is coded 
incorrectly. 

System Action: Processing 
continues with the next INITT 
utility control statement. (The 
return code is 8.) 

User Response: Correct the 
control statement and rerun the 
job to label those tapes that were 
bypassed. 

IEH602I INVALID KEYWORD 

Explanation: An IN ITT utility 
control statement contains an 
invalid keyword in the operand 
field. 

System Action: Processing 
continues with the next INITT 
control statement. (The return 
code is 8.) 

User Response: Correct the 
control statement and rerun the 
job to label those tapes that were 
bypassed. 

IEH603I INVALID PARAMETBR VALUE 

Explanation: An INITT utility 
control statement contains an 
invalid parameter in the operand 
field. 

system Action: Processing 
continues with the next INITT 
control statement. (The return 
code is 8.) 

User Hesponse: Correct the 
control statement and rerun the 
job to label those tapes that were 
bypassed. 

IEH604I OPERATOR SUPPRESSED VOLUME LABEL 
xxxxxx 

Explanation: The tape that was to 
be labeled with serial number 
xxxxxx was not mounted by the 
operator. (The operator should 
indicate why the tape was not 
mounted. ) 

System Action: The current serial 
number is reserved for the 
unmounted tape and the next number 
is used for the next tape to be 
labeled. 

IEH605I INVALID DEVICE ALLOCA'I'ED ON xxx 

IEH606I 

Explanation: Either an allocated 
device is unacceptable or it is 
not on line; that is, it was 

. removed from operation. 

System Action: The device· is 
removed from the list of devices 
allocated to this job step by the 
associated DD statement. (The 
return code is 8.) 

User Response: Check the 
applicable DD statement for 
correct parameters. If the DD 
statement is correct, have the 
computing system checked. 

PERMANENT I/O ERROR ON xxx 

Explanation: An input/output 
error was detected on the 
indicated device (xxx). 

system Action: The device is 
removed from the list of devices 
allocated to this job step by the 
associated DD statement. (The 
return code is 8.) 

User Response: Have the computing 
system checked. 

IEH607I ALLOCATED DEVICES EXHAUSTED 

Explanation: All devices 
allocated to this job step (by the 
DD statement associated with the 
control card being processed) have 
been eliminated as mountable 
devices. 

System Action: Processing 
continues with the next INITT 
control statement. (The return 
code is 8.) 

Appendix G: Utility Program Messages 571 



User Response: Check the 
applicable DD statement for 
correct parameters. If the DD 
statement is correct, have the 
computing system checked. 

IEH608I I/O ERROR ON SYSIN. JOB 
TERMINATED. 

Explanation: A permanent error 
was encountered when the SYSIN 
data set was being opened, or when 
it was being read. 

System Action: The job is 
terminated. (The return code is 
16.) 

User Response: Check the SYSIN DD 
statement for correct parameters. 
If the DD statement is correct~ 
the error probably occurred when 
the data set was being read. Have 
the job step rerun. 

The IEHIOSUP Program 

IEH700I THE LOAD MODULES OF xxxxxxxx HAVE 
NOT BEEN UPDATED 

Explanation: Due to an 
unrecoverable error condition, the 
named modules (up to seven) have 
not been updated. 

IEH701I A PERMANENT I/O ERROR DETECTED ON 
A COMMAND .CHAIN OF SEARCH 
ID=,TIC,READ DATA. 
MBBCCHHR=xxxxxxxx 

Explanation: A permanent I/O 
error occurred while the program 
was searching for a module. 
xxxxxxxx is the absolute address 
of the module for which the search 
was being made. 

System Action: The job step is 
terminated. (The return code is 
12.) 

IEH702I NO FOUND CONDITION SEARCHING FOR 
xxxxxxxx 

572 

Explanation: The named member 
(xxxxxxxx) was not found in the 
directory of the SYS1.SVCLIB data 
set. 

System Action: The job step is 
terminated. (The return code is 
12. ) 

IEH703I A PERMANENT I/O ERROR DETECTED eN 
A COM~AND CHAIN OF SEARCH 

IEH704I 

ID=, TIC, WRI'l'E DATA. 
MBBCCHHR=xxxxxxxx 

Explanation: A permanent write 
error occurred while updating the 
named member (xxxxxxxx). 

System Action: The job step is 
terminated. (The return code is 
12. ) 

BLDL HAS DE'IECTED A PERMANENT I/O 
ERROR 

Explanation: A permanent I/O 
error occurred during the 
execution of the BLDL 
macro-instruction. 

System Action: The job step is 
terminated. (The return code is 
12.) 

IEH70SI ZERO LENG~rH RECORD READ AT ADDRESS 
MBBCCHR xxxxxxxx 

Explanation: An unexpected zero 
length record was found by 
IEHIOSUP during an update. 

System Action: The job step is 
termi~ated. The return code is 
12. 

The IEHDASDR Proqraw 

IEH800I INVALID CONTROL STATEMENT, LAST 
COLUMN SCANNED= (decimal number 
from 1 to 71) 

Explanation: An IEHDASDR utility 
control statement is coded 
incorrectly (e.g., a syntax error 
was encountered). The column 
number of the last column scanned 
is included in the message. 

System Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Correct the control 
statement and rerun the o:peration. 



IEh801I INVALID COMMAND= (command) 

IEH802I 

Explanation: An IEHDASDR utility 
control statement contains an 
operation that is not valid; for 
example, RESTERE, rather than 
RESTORE. 

System Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Correct the command and 
rerun the operation. 

INVALID KEYWORD= (keyword) 

Explanation: An IEHDASDR utility 
control statement contains an 
invalid keyword in the operand 
field; for example, CPYVULID=YES, 
rather than CPYVOLID=YES. 

System Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Correct the keyword and 
rerun the operation. Rep 

IEH803I INVALID PARAMETER= (parameter) 

Explanation: An IEHDASDR utility 
control statement contains an 
invalid parameter value in the 
operand field; for example, 
CPYVOLID=YSE, rather than 
CPYVOLID=YES. 

System Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Correct the parameter 
and rerun the operation. 

IEH804I REQUIRED KEYWORD(S) MISSING 

Explanation: A necessary keyword 
or keywords are omitted from an 
IEHDASDR utility control 
statement. 

System Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is B.> 

Response: Correct the control 
statement and rerun the operation. 

IEH805I DDNAME= ddname CANNOT BE OPENED 

IEHB06I 

Explanation: The named DD 
statement does not exist or is 
coded incorrectly. 

System Action: Processing 
continues with the next IEHDASDR 
u.tility control statement. (The 
return code is B.) 

Response: Correct the DD 
statement and rerun the operation. 

RESTORE TO 
DUMP TO 
LABEL OF 
GETALT ON 
FORMAT OF 
ANALYSIS OF 

DDNAME=ddname 
IS COMPLETE. 
[VOLUlojE SERIAL 
NO.=xxxxxx] 

Explanation: The indicated 
function has completed 
successfully on the device 
specified on the indicated DD 
statement. If the "to" volume is 
a direct access volume, the volume 
serial number is indicated in the 
message. 

System Action: Processing 
continues with the next IEHDASDR 
utility control statement. 

Response: None. 

IEHB07D cuu (or cuu/b) HAS UNEXPIRED DATA 
SETS, serial, jobname, stepname. 

Explanation: The user specified 
the PURGE keyword and the IEHDASDR 
program encountered one or more 
unexpired data sets on the 
indicated volume while attempting 
to perform an ANALYZE, FOR~lliT, 
DUMP, or RESTORE operation. 

system Action: Processing 
continues according to the 
operator's response. 

Response: To continue processing, 
response REPLY xx,'U ' • To 
terminate the operation and 
continue processing with the next 
function, REPLY xx,'T ' • 

IEHB08I REPLY IN ERROR. REPLY WITH 'u' OR 
'T', jobname, stepname. 

Explanation: The operator issued 
an invalid reply to message 
IEHB07A or IEHB41A. 

Response: Enter the correct reply 
when message IEH807A or IEHB41A is 
again issued. 

Appendix G: Utility Program Messages 573 



IEH8091 {R}CUU (or cuU/b), serial, 
N jobname, stepname {,NOW OFFLINE} 

Explanation: R indicates that the 
specified volume, cuu (or cuu/b 
for a 2321 volume), is to be 
demounted. The previous IEHDASDR 
operation resulted in identical 
serial numbers being placed on two 
or more direct access volumes. If 
the duplicate serial number was 
placed on a 2321 or a 
nondemountable volume, that volume 
is also placed offline. N 
indicates that the specified 
volume, cuu (or cull/b), was 
assigned the indicated serial 
number. 

Response: R -- demount the 
specified volume. N no 
response necessary. 

IEH8101 TODD DDNAME=ddname IS NOT DIRECT 
ACCESS 

Explanation: The device defined 
by the indicated DD statement is 
not a direct access device. 

system Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Correct the DD 
statement so that it describes a 
direct access device. 

IEH8111 FROM DD DDNAOOE=ddname IS NOT A 
'I'APE 

Explanation: The device defined 
by the indicated DD statement is 
not a magnetic tape drive. 

system Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Correct the DD 
statement so that it describes a 
magnetic tape drive. 

IEH8121 UNABLE TO MATCH DDNAME=ddname 

574 

Explanation: A ddname specified 
in an IEHDASDR utility control 
statement has no corresponding 
ddname in a DD statement. hither 
a necessary DD statement is 
missing or a ddname is misspelled 
in an existing DD statement. 

System Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Correct the mispelling 
or supply the required DD card. 

IEB8131 I/O ERROR ENCOUNTERED DURING 
SVC{~;}, ddname 

or 

I/O ERROR jobname, stepnaroe, unit 
address, device type, ddname, 
operation attempted, error 
description, last seek address or 
block count, access method. 

Explanation: Either an I/O error 
occurred during an SVC 29 or 82 
(as indicated in the message) or 
an I/O error occurred while 
processing otherwise on the named 
device. If possible, error 
analysis information such as 
jobname, stepname, unit address, 
device type, etc., is included in 
the message. 

System Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: For I/O errors on a 
direct access TODD volume, the 
volume should be varied offlin€, 
and the full surface analysis 
performed using the ANALYZE 
function of IEHDASDR. If the 
direct access voluroe can't be 
analyzed successfully, call a 
Field Engineer. For an 1/0 error 
on a TODD tape volume, rrount 
another tape or move the tape to 
another drive and/or clean the 
read/write heads. 

For an I/O error on a direct 
access FROMDD volume, move it to 
another drive (if pos~ible) and 
rerun the operation. If the I/C 
error is due to a data check or a 
missing address marker, run the 
IEHATLAS utility proqram or the 
Independent utility proqraIT> 
Recover/Replace. For an 1/0 error 
on a FROMDD tape volume, rrove it 
to another drive, andlor clean the 
read/write heads. 



IEH814I GETALT ON 
,RESTORE TO 
,DUMP TO 
ANALYSIS OF 
FORMAT OF 
LABEL OF 

SYSTEM RESIDENCE 
IS NOT ALLOWED. 
DDNAME=ddname 

Explanation: One of the named 
functions is specified for the 
system residence volume. The 
ddname identifies the DD statement 
defining the system residence 
volume. 

System Action: Processing 
continues with the next IEHDASDR' 
utility control statement. (The 
return code is 8.> 

Response: Correct the DD 
statement so it does not describe 
the system resident volume. 

IEH815I INCORRECT DEVICE TYPE ON RESTORE. 
DDNMilE=ddname 

Explanation: The device type of 
the direct access device being 
restored (ddname) does not match 
the device type from which the 
restore tape was created. 

system Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.> 

Response: Correct the DD 
statement or mount the proper tape 
or direct access volume. 

IEH816I NOT A RESTORE TAPE ON 
DDNAME=ddname 

Explanation: The magnetic tape 
volume mounted on the device 
defined by the indicated DD 
statement is not a ftrestore ft tape 
volume; that is, it does not 
contain dumped direct access data. 

System Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.> 

Response: Correct the DD 
statement or mount the proper 
tape. 

IEH817I E'ORMAT 5 DSCB IN VTOC FOUND TO BE 
INCORRECT FOR FROMDD=ddname 

Explanation: Prior to a DUMP 
operation, the entries in the 
Format 5 DSCB were found to be 
invalid on the source volume. 

system Action: All tracks within 
the specified range of tracks are 
dumped, whether they are ftowned ft 
or not. Processing continues. 
(The return code is 4.> 

Response: List the VTOC of the 
volume using IEHLIST, DUMP format, 
and contact a customer engineer. 

IEH818I MAIN STORAGE REQUIREMBNTS NOT 
AVAILABLE FOR THIS FUNCTION 

Explanation: Insufficient main 
storage space was available for 
this function. The function was 
terminated. 

System Action: Processing 
continues with the next IEHDASDR 
control st~tement. (The return 
code is 8.) 

ResBonse: Enlarge the partition, 
reg10n or priority and rerun the 
operation. 

IEH819I FROMDD=ddname IS NOT DIRECT ACCESS 

Explanation: An attempt was made 
to dump a volume other than a 
direct access volume. The named 
DD statement defines the device 
containing the volume that was to 
be dumped. 

system Action: Processing 
continues with the next IEHDASDR 
control statement. (The return 
code is 8.> 

Response: Correct the DD 
statement to describe a direct 
access volume. 

IEH820I INVALID DUMP DEVICE SPECIFIED. 
DDNAME=ddname 

Explanation: A device other than 
an identical type direct access 
device, a magnetic tape drive, or 
a system output device was defined 
as the receiving device for a DUMP 
operation. The named DD statement 
defines the device that was to be 
the receiving device. 

System Action: Processing 
continues with the next IEHDASDR 
control statement. (The return 
code is 8.> 

Response: Correct the FROMDD 
statement or the TODD statement 
referenced. 

Appendix G: Utility Program Messages 575 



IEH821I INVALID COpy REQUEST. 
DDNAME=ddname 

Explanation: (1) An ANALYZE, 
E'ORMAT, DUMP or RESTORE utility 
control statement defines devices 
representing two or more device 
types or (2) multiple copies were 
requested where not permitted. 
The named DD statement defines the 
invalid device. 

system Action: Processing 
continues. (The return code is 
8.) 

Response: Correct the TODD 
statement to reflect like devic~ 
types, and then rerun the 
operation. 

IEH822I INVALID TRACK ADDRESS SPECIFIED. 
DDNAME=ddname 

Explanation: An invalid track 
address has been specified on 
either a DUMP statement (BEGIN or 
END address) or a GETALT statement 
(TRACK address). The named DD 
statement defines the device 
containing the volume to which the 
invalid track pertains. 

system Action: processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Correct the track 
address on the control statement 
and rerun the operation. 

IEH823I THE DEVICE SPECIFIED BY 
TODD=ddname IS A DRUM DEVICE. AN 
ALTERNATE TRACK MUST BE ASSIGNED 
MANUALLY. 

576 

Explanation: Either a defective 
track has been encountered on a 
drum device during processing of 
an ANALYZE statement, or the user 
has defined a drum device through 
the use of a GETALT statement. 
The ddname is that of the DD 
statement defining the drum 
device. 

system Action: Processing 
continues with the next IEHDASDR 
utility control statement, unless 
the operation is an ANALYZE 
operation, in which case 
processing continues with the same 
statement. 
8.) 

(The return code is 

Response: Have a customer 
engineer manually assign an 
alternate track. 

LABEL 
IEH824I ANALYZE TER.fJ1INATED. DEVICE NOT 

OFF-LINE AND CONFIRMED. TODD=cuu 
(or cuu/b for a 2321 volume). 

Explanation: The function is not 
performed because the specified 
device was not placed offline 
prior to the execution of the job 
step and confirmed by the operator 
during the job step or the 
referenced UCB is not in the 
system. 'lODD specifies the 
channel and unit address of the 
device containing the volume to be 
analyzed or labeled. 

System Action: Processing 
continues with the next IEHDASDR 
control statement. (The return 
code is 8.) 

Response: Vary the device offline 
and rerun the operation, 
confirming the request by 
responding 'REPLY' xx,'U' to 
message IEH841D. 

IEH825I INVALID VTOC LIMITS SPECIFIED :r'OR 
TODD=ddname 

Explanation: The VTOC=xxxxx 
keyword or EXTENT=xxxxx keyword in 
an ANALYZE or FORMAT control 
statement specifies an invalid 
starting address or extent. The 
indicated ddname is that of the DD 
statement defining the device 
containing the volume to be 
analyzed or formatted~ 

system Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Correct the VTOC or 
EXTENT parameter. The VTOC cannot 
begin on track 0 (or on track 1 
for 2302 or 2311 with IPL text.) 

IEH826I IPL TEXT NOT FOUND OR APPLICABLE 
FOR TODD=ddname 

Explanation: Either an attempt 
was made to supply IPL text for a 
volume other than a 2301, 2303, 
2311, or 2314 volume, or IPL text 
is to be written on a valid volume 
but the IEHDASDR program cannot 
locate the source copy of the IPL 
text. Also, the END card for IPL 
text may be missing or incorrect 
(not in columns 2-4). 



system Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Correct the direct 
access DD statement referenced by 
the IPLDD keyword to point to the 
cortOect data set, or remove the 
IPLDD Keyword and follow the first 
control statement with the IPLTX'I' 
statement and the IPL text, or 
remove all references to IPL text. 

IEH827I NO ~ORE ALTERNATE TRACKS AVAILABLE 
FOR TODD=ddname 

Explanation: An attempt was made 
to assign an alternate track; 
however, there are no unassigned 
alternates available. The named 
DD statement defines the device 
containing the volume on which an 
alternate track was to be 
assigned. 

System Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: ANALYZE the direct 
access device with FLAGTEST=NO. 

IEH828I TRACK ZERO IS DEFECTIVE ON 
TODD=ddname. THIS VOLUME IS 
NON-IPLABLE. 

Explanation: Track 0 on a volume 
that is to be analyzed, dumped to, 
or restored to is defective. The 
volume cannot be RIPLed." The 
named DD statement defines the 
device containing the volume that 
has the defective track. 

system Action: For the 
ANALYZE/FORMA'I' operations, if IPL 
text was not requested, processing 
continues with this control 
statement. If it was requested, 
processing continues with the next 
IEHDASDR utility control statement 
and the return code is 8. This 
message is also issued as a 
warning by the DUMP and RESTORE 
functions. 

Response: If doing an ANALYZE or 
FORMAT operation and IPLTXT is 
required, mount another volume and 
rerun the operation. 

IEH829I HA-RO AREA WAS DEFECTIVE. 
TODD=ddname 

Explanation: During an ANALYZE or 
FORMAT operation, the home 
address/record zero area of a 
track was found defective. The 
named DD statement defines the 
device containing the volume that 
has the defective BA-RO area on 
one of its tracks. 

system Action: The action taken 
depends on the device type of the 
volume having the defective HA-RO 
area: 

2311 
or 

2302 

2314 
or 

2321 

The function is 
terminated. (The return 
code is 8.) 

An attempt is made to move 
the HA-RO area to another 
spot on the track. If the 
attempt is unsuccessful, a 
return code of 8 is 

Response: For a mountable volume, 
move it to another drive. If the 
error persists, call a customer 
engineer. 

Notes: Message IEH831I is issued 
to identify the defective track. 

Message IEH8291 is not issued if 
the volume having the defective 
HA-RO area is either a 2301 or a 
2303 volume. (Instead, message 
IEB823I is issued.) 

IEB830I THE VOLUME SPECIFIED BY 
TODD=ddname HAS BECOME UNUSABLE 

Explanation: GETALT has been 
specified for the VTOC area (all 
data on the specified track is 
lost), or an ANALYZE, FORMAT, 
RESTORE, or DUMP operation has not 
completed successfully, thus 
leaving the volume in an unusable 
condition. For a direct access 
VOlume, the named DD statement 
defines the device containing the 
volume that has become unusable. 
For a tape volume, the named DD 
statement defines the device 
containing the volume that has 
become unusable as a restore tape. 

system Action: Processing 
continues with the next IEHDASDR 
control statement. (The return 
code is 8.) 

Appendix G: Utility Program Messages 577 



User Response: In the case where 
the TODD volume is a direct access 
volume, the volume should be 
analyzed offline. 

IEH8311 DEFECTIVE TRACK ON TODD=ddname WAS 
cccchhhh 

Explanation: This message lists 
the track address (cccchhhh) of a 
track found defective during an 
ANALYZE or FORMAT operation or a 
track specified on a GETALT 
statement. The named DD statement 
defines the device containing the 
volume that has the defective 
track. 

system Action: Processing 
continues. 

Response: None. 

IEH8321 ALTERNATE TRACK ASSIGNED ON 
TODD=ddname is {CCCChhhh} 

N/A 

IEH8331 

578 

Explanation: This message lists 
the alternate track address of a 
track assigned for a track found 
defective during an ANALYZE or 
FORMAT operation or for a track 
specified in a GETALT statement. 
The named DD statement defines the 
device containing the volume on 
which the alternate is assigned. 
If N/A appears in the message, no 
alternate track was assigned 
because the defective track is in 
the alternate area. 

System Action: Processing 
continues. 

Response: None. 

3 BLANK TRACKS ON HEAD CHECK. ! 
ON CYLINDER CHECK. 
ON STRIP CHECK. 
ON SUBCELL CHECK. 

TRK=cccchhhh,ddname 

Explanation: This message is 
issued during an ANALYZE operation 
on a 2321 volume for one of the 
following reasons: 

a) 3 BLANK TRACKS ON HEAD CHECK 
-- Three blank tracks were 
encountered during an analysis 
or address compare test on 
each track of a cylinder. 

b) 3 BLANK TRACKS ON CYLINDER 
CHECK -- Three blank tracks 
were encountered during an 
address compare test of the 
first track of each cylinder 
on a strip. 

c) 3 BLANK TRACKS ON STRIP CrlECK 
-- Three blank tracks were 
encountered during an address 
compare test of the first 
track on each strip 6f a 
subcell. 

d) 3 BLANK TRACKS ON SUBCELL 
CHECK -- Three blank tracks 
were encountered durinq an 
address compare test of the 
first track of each subcell of 
a cell. 

Note: This message usually 
indicates that a 2321 has failed 
to "pick" a strip. 

system Action: Processing 
continues with the next IEhDASDR 
control statement. (The return 
code is 8.) 

Response: If the error persists, 
call a customer engineer. 

IEH834I DIRECT ACCESS DEVICE NO'I 
SUPPORTED. DDNAME=ddname 

Explanation: A direct access 
device type other than ;;, c:nrported 
device type has been ~tJcci:tied. 
The named DD statement defines the 
invalid device. 

system Action: Processing 
continues with the next IEHDASDR 
control statement. ('Ihe return 
code is 8.) 

Response: Correct the DD 
statement referenced to reflect a 
supported device type. 

IEH8351 TAFt. DD STA'l..E.MEN'l.' DOES NOT SPECIFY 
CORRECT LABEL INFORMATION FOR 
SECURITY PROTECTION 

Explanation: A DUt-'iP operation 
from direct access to tape 
involved password protected data 
sets; however, one or more of the 
following error conditions exists 
in the DD statement aefining the 
magnetic tape voluIDe: 

• The LABEL paraffieter s~ecifies 
a label other than a standard 
label. 



• The PASSWORD subparameter is 
omitted from the LABEL 
parameter. 

• The LABEL parameter specifies 
a file number other than 1. 

System Action: The DUMP operation 
is terminated. Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.> 

Response: Correct the DD 
statement, the LABEL parameter or 
the PASSWORD suoparameter, and 
rerun the operation. 

IEH8361 INCORRECT PASSWORD WAS GIVEN FOR A 
DATA SET ON DDNAME=ddname 

Explanation: The operator did not 
provide the correct password for a 
password protected data set on the 
specified volume. 

system Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.> 

Response: Provide the operator 
with a list of data set names and 
corresponding passwords, and reun 
the operation. 

IEH831I UNEXPIRED DATA SET(S> NOT 
CONFIRMED ON TODD DDNAME=ddname 

~xplanation: The IEHDASDR program 
encountered one or more unexpired 
data sets on a direct access 
volume. Either the user did not 
code the PURGE keyword or the 
operator did not respond with 
kEPLY xx,'U' after message IEH801A 
was issued. 

System Action: The operation -is 
terminated. processing continues 
with the next IEHDASDR utility 
control statement. (The return 
code is 8.> 

Response: Mount the proper direct 
access volume or code PURGE=YES on 
the utility control statement and 
respond REPLY xx,'U' after message 
IEH801D. 

IEH838I INVALID BLOCK SIZE SPECIFIED. 
DDNAME={SYSIN } 

SYSPRINT 

Explanation: The block si·ze 
specified on the indicated DD 
statement is not a multiple of the 
logical record length (LRECL). 

SYSIN block size must be a 
multiple of 80; SYSPRINT block 
size should be a multiple of 121. 

System Action: If an invalid 
block size is specified for the 
SYSIN data set, the IEHDASDR 
program is terminated. (The 
return code is 16.) 

If an invalid block size is 
specified for the SYSPRINT data 
set, a default block size of 121 
is assigned. (The return code is 
4.) 

Response: Correct the blccksize 
on the DD statement. 

IEH839I HIGHEST RETURN CODE ENCOUNTERED 
WAS xx 

Explanation: The IEHDASDR program 
has completed operation. The 
highest return code encountered 
was xx. 

Response: None. 

IEH840I NO DD CARD PROVIDED FOR SECURITY 
DATA SET ON FROMDD=ddname 

Explanation: The user has failed 
to provide a DD statement defining 
a security protected data set on 
the named device. 

system Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 8.) 

Response: Provide a DD statement 
for each security protected data 
set on the volume, and rerun the 
operation. 

IEH841D cuu (or cuu/b for a 2321 volume) 
CONFIRM REQUEST TO{INITIALIZE} 

LABEL 

Explanation: A volume is to be 
initialized or labeled offline and 
the operator is requested to 
verify that the desired volume is 
mounted on the specified offline 
device (cuu or cuu/b). 

System Action: Processing 
continues according to the 
operator's response. 

Response: To continue processing, 
respond REPLY xx,'U'. TO 
terminate the operation and 
continue with the next function, 
respond REPLY xx,'T'. 

Appendix G: Utility Program Messages 579 



IEH842I DATA CHECK IN KEY FIELD ON 
TRK=cccchhhh,ddname (Followed by 
defective record.> 

Explanation: When dumping to 
SYSOUT, the DUMP function was 
unable to read the specified field 
without a data check. If there is 
a data check in both the key and 
data fields, this message appears 
twice before it is followed by the 
defective record. 

System Action: The system output 
device contains the record as 
read. Processing continues. If 
data check is in count field on a 
2301, the operator terminates. 

Response: Use the IEHATLAS 
utility to assign an alternate to 
the defective track, copy and 
correct the defective data. 

IEH843I DATA CHECK IN COUNT FIELD AND 
POSSIBLY IN KEY AND DATA FIELDS ON 
TRK~cccchhhh,ddname (Followed by 
the defective record and the 
remainder of the track.> 

Explanation: When dumping to 
SYSOUT, the DUMP function was 
unable to read the count field 
without a data check. Using the 
key and data lengths from this 
count, DUMP was unable to read the 
key and/or data fields without a 
data check. The original data 
check may have been in the length 
fields of the count, or there may 
actually be a data check in the 
key and/or data fields. 

System Action: The system output 
device contains the record as read 
and the remainder of the track (as 
if one record>. Processing 
continues. 

Response: Use the IEHATLAS 
utility to assign an alternate for 
the defective track, copy and 
correct the defective data. 

IEH844I MISSING ADDRESS MARKER ON 
TRK=cccchhhh,ddname (Followed, if 
possible, by the defective record 
and the remainder of the track.> 

580 

Explanation: When dumping to 
SYSOUT, the DUMP function was 
unable to read the specified track 
without an address marker. 

IEH845I 

System Action: The system output 
device contains the last record as 
read and the remainder of the 
track (as if one record). 
Processing continues. 

Response: Use the IEHATLAS 
utility to assign an alternate for 
the defective track, copy and 
correct the defective data. 

DEVICE NOT SUPPORTED FOR OFFLINE 
QUICK DASDI FEATURE. TODD=cuu. 

Explanation: The function is not 
performed because the specified 
offline device was other than a 
2314 volume. 

system Action: Processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 08.) 

R~sponse: Vary the device online, 
changing the TODD keyword to 
indicate a ddna~e, and rerun the 
operation; or, remove the PASSES=O 
keyword from the control card, and 
rerun the operation requesting 
full surface analysis by the 
ANALYZE function. 

IEB846I INVALID REQUEST FOR OFFLINE QUICK 
DASDI FUNCTION. TODD=cuu. 

Explanation: The "QUICK DASDI" 
feature of the IEHDASDR ANALYZE 
function could successfully read 
the volume label of the specified 
offline 2314 volume. 

System Action: processing 
continues with the next IEHDASDR 
utility control statement. (The 
return code is 08.) 

Response: Vary the 2314 volume 
online, changing the TODD keyword 
to indicate a ddname, and rerun 
the operation. You may also wish 
to add the PURGE=YES keyword for 
the online operation. 

IEHATLAS Program 

IEH900I SUCCESSFUL COMPLETION. AN 
ALTERNATE TRACK HAS BEEN ASSIGNED. 
COMPLETION CODE=OO 

Explanation: An alternate track 
has been assigned and data has 
been transferred from the bad 
track to the alternate. 



System Action: The job step is 
terminated. 

User Response: None 

IEH901I SUCCESSFUL COMPLETION. NO 
ALTERNATE TRACK ASSIGNED. 
COMPLETION CODE=OO 

Explanation: The utility 
successfully rewrote the record in 
error. 

System Action: The job step is 
terminated. 

User Response: None 

IEH902I I/O ERROR IN ALTERNATE TRACK 
ASSIGNMENT. COMPLETION CODE=16 

Explanation: An alternate track 
was not assigned due to I/O errors 
after n attempts at assigning an 
alternate. N is equal to the 
lesser of 10% of the assigned 
alternates or the nun~er of 
alternates available at the time 
IEHATLAS is called. 

System Action: The job step is 
terminated. 

User Response: ANALYZE the pack 
and rerun job. 

IEH903I REQUIRED DD CARD MISSION. 
COMPLETION CODE=16 

Explanation: Either the SYSUT1 or 
SYSIN data set could not be 
opened. The DD statement defining 
the data set was not included in 
the input stream. 

system Action: The job step is 
terminated. 

User Response: Add the required 
DD card and rerun the jobstep. 

IEH904I INVALID DCB PARAMETERS FOR SYSIN. 
COMPLETION CODE=16 

hxplanation: SYSIN DCB blocksize 
was not a multiple of LRECL (80 
bytes). 

system Action: The job step is 
terminated. 

User Response: Correct the 
nlocksize for the SYSIN DD card 
and rerun the job step. 

IEH9051 INVALID OR MISSION CONTROL CARD 
KEYWORD. COMPLETION CODE=16 

Explanation: The control card 
keyword is missing or is invalid 
as it appears. The entire control 
card may be missing. Check for a 
misspelled keyword or a character 
in column 1. 

System Action: The job step is 
terminated. 

User Response: Correct the 
control card and rerun the job 
step. 

IEH906I INVALID CHARACTER IN USER-INPUT 
RECORD. COMPLETION CODE=16 

Explanation: A character in the 
user input record cannot be 
translated into valid internal 
code (i.e., the character is other 
tban 0-9 or A-F). 

System Action: The job step is 
terminated. 

User Response: Examine track of 
VTOC utility control card for 10 
bytes of hexadecimal information 
or check the input record for an 
invalid character and rerun the 
job step. 

IEH907I DEVICE DOES NOT HAVE SOFTWARE 
ASSIGNABLE ALTERNATES. COMPLETION 
CODE=16 

Explanation: The unit type 
specified in the UCB is other 
a 2311, 2302, 2321, or 2314. 
has no software assignable 
alternates. 

than 
It 

System Action: The job step is 
terminated. 

User Response: None 

IEH908I ALL ALTERNATE TRACKS FOR THIS 
DEVICE HAVE BEEN ASSIGNED. 
COMPLETION CODE=16 

Explanation: The format 4 DSCB 
shows that this device has no 
alternate tracks available for 
assignment. 

System Action: The job step is 
terminated. 

User Response: ANALYZE the pack 
and return job. 

Appendix G: Utility Program Messages 581 



IEH909I REQUESTED STORAGE IS NOT 
AVAILABLE. COMPLETION CODE=16 

Explanation: Necessary core for a 
work area was not available at the 
time the GETMAIN was issued. 

system Action: The job step is 
terminated. 

User Response: Enlarge the 
partition or region size and 
return job. 

IEH910I MESSAGE TEXT PROVIDED BY SYNADAF 
MACRO - I/O ERROR. COMPLETION 
CODE=16 

Explanation: A permanent error 
was detected while reading the 
SYSIN data set. 

system Action: The job step is 
terminated. 

User Response: Check the DCB 
parameters on the SYSIN DD card. 

IEH911I TRACK ADDRESS PROVIDED DOES NOT 
BELONG TO DATA SET. COMPLETION 
CODE=16 

Explanation: The address of the 
record provided on the control 
card does not belong to the 
specified data set. 

system Action: The job step is 
terminated. 

User Response: Examine the 
utility control statement to 
ensure that the cylinder and track 
address is within the extents of 
the SYSUTl data set. 

IEH912I INCORRECT NUMBER OF CHARACTERS IN 
USER-INPUT RECORD. COMPLETION 
CODE=16 

582 

Explanation: Too few or too many 
data cards are in the input 
stream. Check for incorrect 
record length. 

system Action: The job step is 
terminated. 

User Response: Check data cards 
for the accurate number of 
characters. 

IEB913I CONDITION OTHER THAN DATA CHECK OR 
MISSING ADDRESS ~~RKER. 
COMPLETION CODE=16 

Explanation: An invalid sense 
byte indication has been detected 
for the user's channel program or 
for another channel program to 
process data on the bad track. 
IEHATLAS cannot handle the error 
condition. 

system Action: The job step is 
terminated. 

User Response: Error condition is 
unrecoverable with IEHATLAS. 

IEH914I FOR~~T 4 DSCB CANNOT BE READ. 

IEH915I 

CONPLETION CODE=16 

Explanation: A permanent I/O 
error was detected when reading 
the format 4 DSCB. lnforrration 
concering the number of alternates 
available or the address of the 
next available alternate cannot be 
retrieved. 

system Action: The job step is 
terminated. 

User Response: Re-initialize the 
volume using either IEHDASDR or 
IBCDASDI. 

RECORD IN ERROR IS FORMAT 4 DSCE. 
COMPLETION CODE=16 

Explanation: 
successfully 
record which 
No alternate 
available. 

The utility did not 
rewrite the user's 
is the forrr·at 4 DSCB. 
track information is 

System Action: The job step is 
terminated. 

User Response: Re-initialize the 
volume using either Il!.HDASDR or 
IBCDASDI. 

IEH916I ERROR FOUND IN COUNT FIELD OF LAST 
RECORD ON TRACK. COMPLETION 
CODE=16 

Explanation: Count field 
information cannot be recovered 
for the last record en atrac.K 
unless that record is the error 
record input to the utility or the 
CCHHRKDD has been passed to the 
ATLAS SVC (86). Il!.HATLAS also 
requires information reqarding 
track overflow records. 



System Action: The job step is 
terminated. 

User Response: Either IEHATLAS or 
the ATLAS SVC (86) should be given 
as input to the CCHHRKDD of the 
last record. Track overflow 
information is also required if 
the last record is part of a track 
overflow data set. 

IEH917I riA OR RO ERRORS. COMPLETION 
CODE=16 

Explanation: The ATLAS SVC (86) 
will not accept an RO error record 
unless the SVC has been entered 
via the utility. An ~/O error in 
HA or RO prevents further use of 
the track on which the error 
exists. 

system Action: The job step is 
terminated. 

User Response: Re-initialize the 
volume using either IEHDASDR or 
IBCDASDI. 

IEH918I ERROR/ERRORS ENCOUNTERED ALTERNATE 
ASSIGNED. COMPLETION CODE=16 

Explanation: An error or errors 
was/were encountered while 
transfering the data from the bad 
track to the alternate. Such a 
condition will not prevent 
assignment of an alternate. 

System Action: The job step is 
terminated. 

User Response: A DA dump should 
be taken to check data validity on 
the alternate. 

IEH919I ALTERNATE TRACK ASSIGNED. I/O 
ERROR IN RE-EXECUTING USER CHANNEL 
PROGRAM COMPLETION CODE=16 

Explanation: An alternate track 
has been assigned but because the 
user's channel program could not 
be re-executed, the error 
condition still exists for the 
original record in error. 

System Action: The job step is 
terminated. 

User Response: A DA dump should 
be taken to check data validity on 
the alternate and IEHATLAS used, 
if necessary, to update in place 
the defective record, if the 
user's channel program cannot be 
successfully re-executed. 

IEH920I THE SYSTEM DOES NOT SUPPORT TRACK 
OVERFLOW. COMPLETION CODE=16 

Explanation: Track overflow 
support was not included in the 
system at system generation time. 

System Action: The job step is 
terminated. 

User Response: The user has a 
track overflow indication in the 
DCB but the UCB indicates that the 
device does not support track 
overflow. 

IEH921I NO ERROR IN SPECIFIED VTOC RECORD. 
COMPLETION CODE=OO 

Explanation: User's VTOC record 
has been read without error. No 
alternate track has been assigned. 

system Action: The job step is 
terminated. 

User Response: None 

IEH922I ERROR/ERRORS ENCOUNTERED CANNOT BE 
HANDLED. NO ALTERNATE ASSIGNED. 
COMPLETION CODE=16 

Explanation: The conditions which 
produce this message are: (1) 
count field errors on more than 
three records. (2) Error on an 
EOF record when it is not the 
record specified by the utility. 
(3) An error in the KDD of the 
count field of a record other than 
the specified error record. 

system Action: The job step is 
terminated. 

User Response: Check the return 
parameter list to determine the 
record numbers of error records. 
The last record indicated in the 
list is the record which caused 
the unrecoverable condition. If 
three error records have been 
listed, then the possiblity exists 
that a fourth read count error was 
also encountered. 

Appendix G: Utility Program Messages 583 



IEH923I NO ERRORS FOUND ON TRACK. NO 
ALTERANTE ASSIGNED. COMPLETION 
CODE=16 

Explanation: The ATLAS SVC 
successfully read the indicated 
error track and therefore did not 
assign an alternate. 

System Action: The job step is 
terminated. 

User Response: The cylinder and 
track address passed to the ATLAS 
SVC must specify a track 
containing an error record. 

IFCDIPOO Program 

IFC001I D=ddd N=x F=trck* L=trck* S=recd** 

Explanation: Produced by the 
IFCDIPOO system utility program 
during initialization of the 
SYS1.LOGREC data set, this message 
describes the limits of the data 
set. 

In the message text, ddd is the 
type of device containing the 
SYS1.LOGREC data set; x is the 
number, in decimal, of uniquely 
addressable input/output devices 
in the system; trck in F=trck is 
the address of the first track of 
the extent; trck in L=trck is the 
address of the last track of the 
extent; and recd is the starting 
address of the record entry area 
within the data set. One asterisk 
indicates that hexadecimal 
representation causes 8-character 
printout. Two asterisks indicate 
that hexadecimal representation 
causes 10-character printout. 

Operator Response: Retain this 
message; the information given in 
this message should be used as 
input parameters to a later 
execution of IFCEREPO system 
utility program or to a 
re-exectuion of the IFCDIPOO 
program. 

IFC002I INVALID INPUT 

584 

Explanation: The EXEC statement 
requesting execution of the 
IFCDIPOO system utility program or 
the following DD statement 
contains an error: 

• In the EXEC statement, the 
number of uniquely addressable 
input/output devices was 
specified as zero. 

• In the EXEC statement, the 
device type for the system 
residence volume is wrong. 

• In the EXEC statement, the 
PARM parameter did not contain 
five characters. 

• In the DD statement, the data 
definition name in the name 
field was misspelled. 

Operator Response: Correct the 
EXEC or DD statement. (The 
formats of the statements are 
given in the publication IBM 
System/360 Operating System: 
System Generation, GC28-6554, 
in the discussion on 
reinitialization of the 
SYS1.LOGREC data set. The correct 
values for the parameters of the 
EXEC statement were given in 
message IFC001I.) Then execute 
the IFCDIPOO program again. 

IFC003I I/O ERRORS IN FORIvlA'ITING DISK 

Explanation: While the IFCDIPOO 
system utility program was 
formatting the SYS1.LOGREC data 
set, an uncorrectable input/output 
error occurred. 

system Action: Execution of the 
IFCDIPOO program is terminated. 

Operator Response: Execute the 
IFCDIPOO program again. If the 
error persists, call a customer 
engineer. 

IFC004I END OF DATA SE'I' BEFORE PROGRALVJ 
COMPLETE 

Explanation: During formatting of 
the SYS1.LOGREC data set, the 
IFCDIPOO system utility program 
found that the data set is not 
large enough for the parameters 
specified in the EXEC statement. 

Probably, the number of tracks 
previously allocated to the 
SYS1.LOGREC data set is too small 
for the number of uniquely 
addressable input/output devices 
specified in the EXEC statement. 



Operator Response: Correct the 
EXEC statement. (The format of 
the EXEC statement is given in the 
publication IBM System/360 
Operating system: system 
Generation, GC28-6554, in the 
discussion on reinitialization of 
the SYS1.LOGREC data set. The 
correct values for the parameters 
of the EXEC statement were given 
in message IFC001I.) Then execute 
the IFCDIPOO program again. 

The IFCEREPO Program 

IFC005I I/O ERROR ON OUTPUT DEVICE 

Explanation: A permanent error 
has occurred on the output device. 

System Action: The program is 
terminated. (No return code is 
provided.) 

IFC006I HEADER RECORD INCORRECT 

Explanation: A validity check of 
the SYS1.LOGREC data set has 
uncovered an error in the header 
record. 

system Action: If possible, the 
IFCEREPO program resumes 
processing. The program does not 
clear selected records to zeros in 
the SYS1.LOGREC data set. If the 
program is unable to resume 
processing, it is terminated. (No 
return code is provided.) 

User Response: Execute the 
IFCDIPOO program to initialize the 
SYS1.LOGREC data set. 

IFC007I END OF DATA SET BEFORE PROGRAM 
COMPLETE 

Explanation: The IFCEREPO program 
referred to a disk address that 
was not within the SYS1.LOGREC 
data set. 

System Action: The program is 
terminated. (No return code is 
provided.) 

User Response: Execute the 
IFCDIPOO program to initialize the 
SYS1.LOGREC data set. 

IFC0081 READ DISK FAILURE 

Explanation: An uncorrectable 
input/output failure has occurred 
while reading a record from the 
SYS1.LOGR~C data set. If the 
record is the header record~ 
message IFC006I is also printed. 

system Action: The record that 
was being read when the failure 
occurred is skipped. The program 
attempts to resume processing with 
the next record. 

IFC009I WRITE DISK FAILURE 

IFCOOAI 

Explanation: An uncorrectable 
input/output failure has occurred 
while the program was attempting 
to clear a record to zeros. 

system Action: Records are no 
longer cleared to zeros in the 
SYS1.LOGREC data set. However, 
the remaining records are 
processed. 

PARAMETER FIELD ERROR 

Explanation: The PARM parameter 
in the EXEC statement was written 
incorrectly. 

System Action: The program is 
terminated. (No return code is 
provided.) 

User Response: Correct the PARM 
parameter and rerun the job. 

IFCOOB2 STAT RECORD KEY DIFFERS FROM THE 
EXPECTED -- EXPCD xxx REC xxx 

Explanation: A statistical count 
record is out of sequence. The 
message identifies the expected 
record (EXPCD xxx) and the 
received record (REC xxx). 

System Action: Processing 
continues. 

IFCOOCI INPUT NOT ACCUMLATIVE DATA SET 

Explanation: The input data set 
is specified as being a history 
data set; however, it is not a 
history data set. ---

System Action: The job step is 
terminated. 

User Response: Mount the correct 
volume and rerun the job step. 

Appendix G: Utility Program Messages 585 



IFCOODI ACCUMULATION OUTPUT TERMINATED -
ERROR 

Explanation: An unrecoverable 
write error occurred while writing 
into an accumulated data set. 

System Action: No additional 
accumulation is performed. The 
job step is terminated unless an 
additional function or functions 
(e.g., summarization or full 
record printing) are specified. 

IFCOOEI JOB TERMINATED DUE TO INPUT ERRORS 

586 

Explanation: Unrecoverable I/O 
errors occurred while reading an 
input history data set. This 
message is generated when at least 

40 records have been read and the 
number of input errors exceeds 
12.510 of the total number of 
records read. 

system Action: The job step is 
terminated. 

IFCOOFI ddname DD STATEMENT INCORRECT STEP 
'I'ERM 

Explanation: The named DD 
statement is coded incorrectly or 
is missing from the input stream. 

system Action: The job step is 
terminated. 



Indexes to systems reference library 
manuals are consolidated in the publication 
IBM system/360 Operating System: Systems 
Reference Library Master Index, GC28-6644. 
For additional information about any 
subject listed below, refer to other 
publications listed for the same subject in 
the Master Index. 

Absolute generation and version 
number 490,491 

Accumulated data set 143,144,147 
Action on return codes 472 
Action (IEBDG) 413,415,416 
ADD 354 
Adding new merr~er to a symbolic library 

354 
ALIAS 364 
Alias names 

listed by IEHLIST 112 
processed by IEBCOPY 209 

ALLOCATE module, changing or replacing 135 
Allocating space 

with the IEBCOPY program 208 
with the IBHMOVE program 57-59 

Allocation, default 60 
Alphameric tape labeling 134 
Alternate DD names, specifying 476 
Alternate tracks, assigning 

175,189-196,451 
Alternatives to basic move and copy 

operations 61-74 
Alternatives, notation for showing 482 
Analysis offline 170,180 
ANALYZE 161,170 
Assigning alternate tracks 189 
Assigning sequence numbers 359,361 
Assigning serial numbers (IEHDASDR) 

171,173,175,177 
Asterisk (*> in PDS Directory Entry 112 
ATTACH macro instruction 475 
Attributes of DD statements defining 

mountable devices 485-487 
Auxiliary control volume, deferred 

mounting 46,55 

Bad VTOC, assigning alternate track 196 
Basic move and copy operations 61-74 
BDAM data set, moving or copying 60 
BLDA 45 
BLDG 47 
BLDX 44 
Bootstrap records, construction of 162 
Braces {I, use of 483 
Brackets [1, use of 483 
Building a generation data group 
index 36,489,499 

Building an index 32-33 
Building an index alias 34 

Index 

Bypassing the defective track checking 
feature 449,452 

Carriage control, specifying 275,307 
Catalog 

copying 71-73 
building index in 32-33,37 
listing 111 
moving 71 
placing entries in 30-31 
updating 57 

Catalog entry, unique 42 
CatalO<Jing 

a data set 30 
~ generation data set 36,497,502 
a procedure 365 
with JCL 30 
with the IEHMOVE program 57 
with the IEHPROGM program 30 

Cataloging moved or copied data, 
automatically 57 

CATLG 42-43 
CHANGE 353,354 
Change level 357 
Changing a volume serial number 163 
Changing the logical record length of a 
data set 260 

Changing the organization of a 
data set 257,258,350 

Channel and unit address, specifying 27,42 
Channel-check records, processing 139 
Channel inboard summary 143,144 
Charts 

for data set utility programs 19-20 
for independent utility programs 22 
for system utility programs 17-18 

Checking for flagged defective tracks 
with program IBCDASDI 447 
with program IEHDASDR 171 

CLOSE module, changing or replacing 135 
COLUMN specification 355 
C~mbinations of NEw, MEMBER, and NAME 
~eywords' 358 

COMPARE 289 
Comparing partitioned directories 285,286 
Comparing records 285 
Compatible volumes 58 
Compatibility with respect to size, 

volume 57-58 
Compress in place 219 
Compressing a data set 219 
Concatenating SYSIN data sets 167 
Concurrent operations, specifying 168-169 
CONNECT 45-46 
Connecting two control volumes 35 
Considerations 

for the MVT user 25-26,202,485 
for defining DD statements 485-487 

Continuation on utility statements 481 
Control statement 

notation 481-483 
sequence in IEBCOPY 213 

Index 587 



Control statements, subordinate 81 
Control volumes 

connecting 35 
copying 72-74 
disconnecting 35 
moving 72-73 

Controlling 
the IEBCOMPR program 287 
the IEBCOPY program 207 
the IBBDG program 419-422 
the IEBEDIT program 394 
the IEBGENER program 261 
the IEBISA~ program 386 
the IEBPTPCH program 303 
the IEBTCRIN program 323 
the IEBUPDTE program 351 
the IEHATLAS progr~m 191 
the IEHDASDR program 166 
the IEHINITT program 127 
the IEHIOSUP program 136 
the IEHLIST program 116 
the IBRMOVE program 76 
the IEHPROGM program 38 
the IE'CDIPOO program 159 
the IFCEREPO program 147 
the IFHSTATR program 198 

Converting.a data set 
from partitioned to sequential 
organization 258 

from sequential to partitioned 
organization 258,349,350 

Converting data 
from alphameric to hexadecimal 312 
from H-set BCD to EBCDIC 268 
from packed to unpacked decimal 268,312 
from unpacked to packed decimal 268 

COpy 210 
COpy CATALOG 90 
COpy DSGROUP 84 
COpy DSNAME 82 
COpy PDS 87 
COPY VOLUJ.Y1E 91 
Copying 

a BDAM data set 60 
a catalog 71 
a data set 61 
a direct data set with variable spanned 
records 75 

a group of data sets 68-72 
a partitioned data set 65,210 
a volume of data 72 
an indexed sequential data set 381 
from more then one input partitioned 
data set 216 

members of a partitioned 
data set 65,210,217 

records of a sequential data set 259 
Copy operation 215 
Copy operation/copy step concept 215 
Copy step 215 
Copy vs. move 57 
Count field 464,475 
CPU records, processing (see machine-check 
records) 

CREATE 426 
Creating 

a back-up copy 216 
a generation data group index 36-37 

588 

Creating (continued) 
a library 367 
a model DSCB 37 

DADEF 448 
DASD~ program 447-454 
Data 

dumped 164 
duplication 329 
movable 58 
reconstructed 57,382,383 
unloaded 57,381-382 
unmovable 57,58 

Data set utility programs 
functions of 201 

Data sets 
cataloging 30-31 
c ornpressing 219 
copying 210 
merging 219 
moving 57-61 
reconstructing 57,383 
recreating 219 
renaming 30 
scratching 29 
uncataloging 31-32 
unloadinq 57,381-383 

Data sets, group of 
copying 68,72 
moving 68;72 

Da~a sets~ partitioned (see partitioned 
data sets) 

Data sets named by the 
operating system 29,41 

Data statements 367 
Date of moving or copying a data set 78 
DD names, alternate 475 
DD statement attributes 485 
DD statement requirements 

for data set utilities 201 
for system utilities 23 

DD statement, validity of 485-487 
DD statements, operational 
results of 485-487 

ddnameaddr 475 
deblocking with IE3COPY 208 
Default allocation 60 
Defective track 

indicated by data check 189 
indicated by missing address marker 189 
recovering data from 189,459 
testing for 170,447 

DEFER parameter, use of 39,77,117,485 
Deferred mounting, 
specifying 46,55,485-487 

Deferred step restart with relative 
generation numbers 495 

Defining data S€ts 
with the IEBCOMPR program 288 
with the IEBCOPY program 207 
with the IEBDG program 421 
with the IEBEDIT program 395 
with the IEBGENER program 262 
with the IEBISA.lvJ program 385 
with the IEBPTPCh program 303 
with the IEBTCRIN program 323 
with the IBBUPDTE program 357 



Defining data sets (continued) 
\'iith the IEHDASDR program 166 
with the IEHINITT program 127 
with the IEHIOSUP program 136 
with the IEHLIST program 117 
with the IEHMOVE prog~arn 74 
with the IEHPROGM program 38,39 
with the IFCDIPOO program 159 
with the IFCEREPO program 147 

Defining mountable devices 485 
Defining the SYSCTLG data set 45 
DELETE 359 
Deleting 

a record 359 
an index 32-33 
an index alias 34 

Demounting mountable volumes 485 
Detail statements 354,359-367 
Device name 

channel and unit address 27 
generic 26 
substitute 26-27 

Direct access volumes 
assigning alternate tracks to 175,451 
dumping 175,455 

1 initializing 161,447 
restoring 177,457 

I Direct data. set, moving or copying 60 
with Variable Spanned Records 75 

Directory entry, format of 113 
Disconnecting volumes 46-47 
DLTA 45 
DLTX 45 
DSD 422 
Dummy execution of the IEHPROGM program 78 
Dummy header label 125 
DUMP 

under the IBCDMPRS program 
under the IEHDASDR program 
under the IEHLIST program 

DUMP/RESTORE program 455-458 
Dump time, minimizing 187,456 
Dumping and restoring a direct 

volume 175-177,455 
Dumping multiple volumes onto 
restore tape 176 

DUP (see EDITD and EDITR) 

EDIT 396 
EDITD 328 
Edited format 

of a VTOC 115 

455 
161,164,175 

119 

access 

a single 

of a PDS directory entry 113 
Editing and listing records from the 

SYS1.LOGREC data set 139 
Editing error environment records 139 
Editing facilities 

with the IEBGENER program 259 
with the IEBPTPCH program 302 
with the IEBTCRIN program 329 

EDITR 328 
Ellipsis, use of 483 
END 418,428,432 
End of cartridge 341 
End of file (EOF) record, assigning 
alternate track 195 

ENDUP 364 
Ensuring volume integrity 485-487 

Entering job control statements into a 
procedure library 365 

Environmental data, editing and listing 
139 

I EOR 339,340 
EOV module, changing or replacing 135 
Equal comparison 385 

I ERROPT 331 
ERROR 335 
Error environment 

record types 139 
recording programs 139 

Error environment records 
accumulating 139,149 
editing and writing selected 139 
summarizing 139,142 

Error messages (see messages) 
ESV Record 

format 197 
processing 197 

Examples 
DASDI 453 
DUMP/RESTORE 458 
IEBCOMPR 293-300 
IEBCOPY 220-256 
IEBDG 430-440 
IEBEDIT 398-402 
IEBGENER 271-283 
IEBISAM 387-391 
IEBPTPCH 313-342 
IEBTCRIN 345-347 
IEBUPDTE 365-380 
IEHATLAS 194-196 
IEHDASDR 180-187 
IEHINITT 131-134 
IEBIOSUP 137-138 
IEHLIST 121-124 
IEHMOVE 95-109 
IEHPROGM 48-55 
IFCDIPOO 160 
IFCEREPO 151-158 
I:r"'BSTA'I'R 199 
I BCRCVRP 465 

EXCLUDE 80,93,212 
Excluding data from move and copy 
operations 93,212 

Exclusive copy operation 212 
EXEC statement in procedure library 24 
Executing 

a cataloged utility procedure 24 
a data set utility program 24,202 
a system utility program 24 

Exit routine linkage 469,509 
Exit routines 

location of 469 
parameter lists for 469,509 
returning from 471,510 

I EXITS 335 
'Exits 263-265,307,310,505 
Expanding partitioned data sets (see 
merging partitioned data sets) 

EXPDT sub parameter 78 
Expiration date, specifying 78 

FD 422 
FEOV module, changing or replacing 135 
Field in a logical record 355 
FIELD parameter 268,311 

Index 589 



Field processing and editing information, 
specifying 268,311 

File sequence numbers, formulas for 177 
Fixed volumes, restrictions when 
allocating 486 

Flag byte 357 
Flagged defective tracks, checking 

for 171.,448 
FORMAT 161,163,172 
Format of utility control statements 481 
Format 5 OSCB 164 
Function statements 354 

General uses 
for data set utility programs 16,201 
for independent utility programs 16,443 
for system utility programs 15,23 

GENERATE 264 
Generating test data 411 
Generation 

cataloging a 497 
DCB attributes for 489,496 
definition of 489 
retrieving a 498 
supplying DCB attributes for 489,496 
using IEHPROGM to catalog 497 

Generation data group index 489,497,499 
Generation data group index, building 

36-37,489,499 
Generation data groups 

deferred step r~start with 495 
general discussion of 489 
mUltiprogramming considerations 
with 498 

Generation numbers 
absolute generation and version 

number 490,491 
deferred step restart with 495 
relative 490,493 

Generic name 26 
Generic name, substitute for 26-27,42 
GETALT 

under the IBCDASDI program 
under the IEHDASOR program 

451 
161,163,175 

Header record, initializing 125 
History data set (see accumulated data set) 
H-set BCD to EBCDIC conversion 260,268 
Hyphens, use of 482 

IBCOASDI (DASDI) program 447-454 
IBCDMPRS (DUMP/RESTORE) program 455-458 
IBCRCVRP (RECOVER/REPLACE) program 459-467 
Identifying volumes and data sets 26-27 
IEBCOMPR program 285-300 
IEBCOPY program 205-256 
IEBDG program 411-442 
IEBEDIT program 393-402 
IEBGENER program 257-284 
IEBISAM program· 381-392 
IEBPTPCH program 301-322 
IEBTCRIN program 323-347 
IEBUPDAT program 403-410 
IEBUPDTE program 349-376 
IEHATLAS program 189-196 
IEHDASDR program 161-186 
IEHINITT program 125-134 

590 

IEHIOSUP program 135-138 
IEHLIST program 111-124 
IEHMOVE program 57-110 
IEHPROGM program 29-55 
IFCDIPOO program 159-160 
IFCEREPO program 139-158 
IFHSTATR program 197-199 
Inboard records, processing (see channel 
inboard records) 

Initial volume label information 125 
I/O device records, processing 129 
I/O outboard records, processing 139 
I/O outboard smmnary 143 
INCLUDE 80,92 
Including data in move and copy 
operations 57,90 

Independent utility programs, 
functions of 16,443 

Index 
building 32-33,43 
deleting 32-34,43-44 

Index alias 
building 34,44 
deleting 34,44-45 

Index structure 32-34 
Indexed sequential data sets 

copying 381 
loading 381,383 
printing 381,383 
unloading 381 

Initialization 
with surface analysis 170,449 
without surface analysis 172,449 

Initializing a direct access volume 
162,449 

INITT 129 
Input stream, organizing 393 
Inputs to and outputs from 

the IEBCOMPR program 287 
the IEBCOPY program 205 
the IEBDG program 419 
the IEBEDIT program 399 
the IEBGENER program 261 
the IEBISAM program 384 
the IEBPTPCH program 303 
the IEBTCRIN program 323 
the IEBUPDTE program 350 
the IEHATLAS program 191 
the IEHDASDR program 165 
t.he IEHINITT program 126 
the IEHIOSUP program 135 
the IEHLIST program 116 
the IEHMOVE program 76 
the IEHPROGM program 38 
the IFCDIPOO program 159 
the IFCEREPO program 146 
the IFHSTATR program 197 

INSERT 463 
Inserting blocks of records 360 
Introduction 

to data set utilities 201-203 
to independent utilities 443-445 
to system utilities 23-27 

Invoking utility proqrams 475 
IPLTXT 171,173,450 
IPL program 171,173,449 
IPL records, writing 171,173,449 
IPL volume, dumping data from 168,177 



Job control statement requirements 
for data set utilities 201 
for system utilities 23 

Job control statements for 
the IEBCOMPR program 288 
the IEBCOPY program 201 
the IEBDG program 420 
the IEBEDIT program 395 
the IEBGENER program 261 
the IEBISAM program 386 
the IEBPTPCH program 303 
the IEBTCRIN program 324 
the IEBUPDTE program 351 
the IEHATLAS program 192 
the IEHDASDR program 166 
the IEBINITT program 121 
the IEHIOSUP program 136 
the 1EHL1ST program 111 
the 1EHMOVE program 11 
the 1EHPROGM program 38 
the IFCDIPOO program 159 
the IFCEREPO program 141 
the IFB.STATR program 198' 

Job statements in an output data set 393 
Job stream, organizing 393 
JOBLIB DD statement 146,141 

Keys 208 
Keywords, combinations of NEW, MEMBER, and 

NAfilE 358 
Keywords, special considerations for 

using 26-21 
Keywords (by program) 

IEBCO~&R 289-291 
IEBCOPY 210-214 
IEBDG 422-423 
1EBGENER 263-268 
IEBPTPCH 305-312 
IEBTCRIN 321-336 
IEBUPDTE 253-264 
I E HAT LAS 192 
IEHDASDR 110-111 
IEH1N1TT 129-130 
IEHLIST 118-120 
IEHMOVE 80-94 
IEHPROGM 40-41 

LABEL 161,163,175,353,361 
LABELS 263-265,290,312,505 
Labeling a magnetic tape 125,131 
Levels of index 

creating 30,32-33 
deleting 31,32-34 

Libraries, updating symbolic 349 
LINK macro instruction 475 
Linking to an exit routine 469-410,509 
LIST 355,460,462 
Listing 

a catalog 111 
a partitioned data set 301 
a partitioned directory 111 
an updated member 350-354 
a volume table of contents 113 
contents of a defective track 452 
error environment records 139-148 
replacement data 350 
system control data 111-123 

LISTCTLG 118 
LISTPDS 119 
LISTVTOC 120 
Literal information, supplying 269,311 
LOAD 383 
Loading an unloaded data set 383 
Loqical record statements 361 

Machine-check records, processinq 139 
Machine-check summary 144 
Maqnetic tape 

labeling 125-134 
moving or copying a group of data sets 

onto 69 
moving or copying a volume of data 

onto 12 
Master data set 

new 349-350 
old 350 

I MAXLN 329 
MEMBER 263,266,301,311 
Members, partitioned, data set, 

ccmparing 285-286 
copying and merging 57,62,219 
printing and punching 302 
renaming 30,51 
replacing 57 
scratching 29 

Members of a symbolic library 
adding 349,353 
assigning names to 357 
changing 349,350 
replacing 349,350 
reproducing 349,350 

Merging partitioned data sets 51,61,219 
Merging replacement data with usable data 

461 
Messages 

data set utilities 519-561 
1EB001-1EB034 519-520 
lEB101-IEB176 520-532 
IEB201-IEB267 532-537 
IEB302-1EB351 531-542 
IEB401-IEB441 542-545 
lEB501-IEB517 545-547 
lEB600-IEB609 547-548 
IEB100-IEB129 548-553 
IEB'801-Il!;E846 553-558 
IEB901-IEB922 558-561 

independent utilities 511-518 
IBC101-IBC168 511-514 
IBC201-IBC249 514-516 
IBC300-IBC413 516-518 

system utilities 562-586 
IEH101-IEH112 562-563 
IEH201-IEH215 563-564 
lEH301-IEH462 564-510 
lEH601-IEH608 511-512 
IBH100-IEH705 512 
IEH800-IEH846 512-580 
IEH900-1EH923 580-584 
IFC001-IFC004 584-585 
IFC005-IFCOOF 585-586 

Methods of executing 
data set utility programs 24,202 
independent utility programs 443 
system utility programs 24 

Index 591 



Minimizing dump time 187,456 
Minimizing restore time 187,457 
Minimum REGION sizes 25,202 

I MINLN 329 
MOD 351,356 
Model DSCB, creating 37 
Mountable devices, defining 485-487 
Movability of a data set 58 
MOVE CATALOG 80,90 
MOVE DSGROUP 80,83 
MOVE DSNAME 80,81 
MOVE PDS 80,86 
MOVE VOLUME 80,91 
Moving 

I a BDAM data set 60 
a catalog 71 
a data set 57-64 
a direct data set with variable spanned 
records 75 

a group of data sets 68-73 
a volume of data 57 
the SYSCTLG data set 72 

Moving and copying data 57-110 
Moving and copying user labels 60 
Moving and copying operations 

excluding data 'from 93-94 
including data in 57,92 
results of 58-59 
selecting members for 93 

I Moving or copying password protected 
volume 60 

Moving the SVC library 135 
I Move vs. Copy 57 

MSG 443 

I MTDI input 327 
MTST input 327 
Multiple volumes, processing 39,77,117,485 
Multivolume data sets, moving or copying 

59 
Multiprogramming consideration 

with generation data groups 498 
for Mi'T system 485-487 
for MVl' system 25-26,202,487 

Name field 481 
New master data set 349,350 
NEW, MEMBER, and NAME keywords, 

combinations of 354 -

I 
NOCHK 329 
NOEDIT 328 
NOERR 331 
Nonsharable attribute, assigning 485 
Nonsharable devices 485-487 
NORMAL 331 
Notation for defining control 
statements 481-483' 

I NOTRAN 328 
NUMBER 361 
Numeric tape labeling 126 

Offline analysis 170,180 
Old master data set 350 
OPEN module, changing or replacing 135 
Operand field 481 ' 
Operating procedures for independent 
utilities 443 

592 

Operation field 481 
Operational results of DD statements 

485-487 
optionaddr 475 
Order of moved or copied members 

with the IE~10VE program 66 
Organizing an input stream 393 
Outboard records, processing (see I/O 
device records) 

OUTHDR2 336 
OUTHDR3 336 
OUTREC 336 
OUTTLR2 336 
OUTTLR3 337 
Overriding cataloged procedures 24 

Packed to unpacked decimal 
conversion 260,269,305,312 

PARAM subparameter 475 
Parameters passed to exit routine 469,506 
PARM information 

with the IEBISA&l program 
with the IEBUPDTE program 
with the IEHINI~T program 
with the IEHDASDR program 
with the IEHMOVE program 
with the IFCDIPOO program 
with the IFC~REPO program 

386 
351 
127 
169 

80 
159 
148' 

Partial dumps of direct access volumes 176 
Partitioned data sets 

copying 61,205 
copying selected members of 61,211 
listing 301 
merging members of 57,68,219 
moving 59-62 

Partitioned data set directory entry, 
edited format 113 

Password protected data sets, 
IEHDASDR 161,172 
moving or copying 60 

Password protected volumes, moving or 
copying 60 

Patterns of test data 414 
Permanently resident device, 
defining 39,78,117,487 

Picture, user-supplied 415 
Preface 2 
Prerequisite publications 2 
PRINT 307 ' 
Print specifications 

standard 302 
user 301 

Printing an ISAM data set 383,386 
Punch specifications 

standard 302 
user 301 

Printing records 301 
Printout 

channel inboard 145 
I/O outboard 145 
machine-check 144 
statistical data 143 

Private attribute, assigning 485 
Procedures 

'cataloging 24 
executing 24 

Program classes 15 



Program selection 
(see selecting a program) 

Public attribute, specifying 485 
PUNCH 307-310 
Punching records 301 
Purging unexpired data sets 

ANALYZE operation 170 
DUMP operation 175 
FORMAT operation 172 
RESTORE operation 178 

Quick DASDI 171 

Reader procedure, selecting 26 
Rearranging data fields within a record 

259 
Reblocking 

with IEBCOPY 208 
with IEHMOVE 60 

RECORD 263,267.307,311 
Record groups, assigning 258 
Recording programs 139 
Records 

adding 361 
assigning sequence numbers 
to 323,349,359 

cancelling 341 
comparing 285 
copying 258 
deleting 359 
error 337 
error statistic by volume 197 
ESV 197 
printing and punching 301 
renumbering 349 
replacing 354,361 
type 21 197 

RECOVER 459 
RECOVER/REPLACE program 459,467 
Recovering data from defective tracks 459 
Recovering usable data, requirements for 

459 
Recreating a data set 219-220 
REGION specifications 

for data set utilities 202 
for system utilities 25 

Registers, contents of when linking 469 
Relative generation numbers 491,493-494 
RELEASE 46-47 
Releasing two volumes 35 
Removable volumes, allocating 485,487 
Removing 

entries from an index structure 31 
member and alias names from a 
partitioned directory 29 

RENAME 42 
Renaming a data set 30 
Renaming a multivolume data set 50 
Renaming selected numbers 218 
Renum.bering 350 
REPEAT 428 
REPL 354 
REPLACE 330,461 
Replacement data records 361 
Replacing a member with an identically 

named member 354 

Replacing bad data 461 
Replacing data, requirements for 461 
Replacing identically named members 216 
Replacing members of a symbolic library 

354 
I Replacing selected members only 218 

Replacing partitioned data set members in 
move and copy operations 94 

REPRO 354 
Reproducing members of a symbolic 
library 354 

Requesting 
private volumes 485-487 
public volumes 485-487 

Requirements, job control statement 
(see job control statement requirements) 

Requirements, utility control statement for 
independent utilities 443 

RESTORE 
under the IBCDMPRS program 457 
under the IEHDASDR program 161,165,178 

Restore tape, organization of 177 
Restore time, minimizing 187,457 
Restoring data onto a direct access 

volume 457 
Results of moving and copying 
operations 58-59 

RETPD subparameter 78 
RETURN macro instruction 471 
Return codes 

for the IEBCOMPR program 287 
for the IEBCOPY program 206 
for the IEBDG program 419 
for the IEBEDIT program 394 
for the IEBGENER program 261 
for the IEBISAM program 384 
for the IEBPTPCri program 303 
for the IEBTCRIN program 473 
for the IEBUPDTE program 350 
for the IEHDASDR program 165 
for the IEHINITT program 127 
for the rEHLIST program 116 
for the IEHMOVE program 76 
for the IEHPROGM program 38 
for the IEHIOSUP program 135 

Return codes, action on 472 
Returning from an exit routine 471 

SCRATCH 40-41 
SCRATCH module, changing or replacing 135 
Scratching 

a data set 29 
a member 29 
a volume table of contents 40-41 
temporary data sets 41 

SELECT 80,93-94 
Selecting a program 16-17 
selecting partitioned data set members to 

be moved or copied 94 
Selective copy 211 
Selective rename 211 
Selective Replace 211 
Selective Retrieval with IFCEREPO 150 
separating utility control statements from 

IPL program text statements 171,173,450 
Seqno 26,27 

Index 593 



sequence numbers, assigning 349,359 
Serial 26,27 
Serial numbers, assigning with the IEHDASDR 

program 171,173,175,177 
Sharing mountable devices 26,485-487 
Simultaneous IEHDASDR operations 161 

I SOR 340 
Source data, maintaining the integrity of 

59 
I Space allocation with IEBCOPY 208 

Special uses of symbols 482 
Specific requests for mountable 

volumes 485-487 
specific volumes, making requests 
for 485-487 

specifying an expiration date 78 
Standard horne address 162,447 
Standard print operation 302 
Standard punch operation 302 
Statistical data records, processing 139 

I STDLC 328 
STDUC 328 
Straight copy 210 
Subordinate control statements 80 
Subroutines 

data set utility programs employed as 
201 

system utility programs employed as 25 
Summarizing error environment records 

139,143 
Summary, format of 143 I Summary of major changes 14 
Supplying literal information 267,311 
Surface analysis of direct access 

volumes 161,170,447 
SVC library, moving 135 
Symbolic libraries, updating 349 
symbols, uses of 481 
SYSCTLG data set 

creating 45 
moving or copying 72,91 

SYSIN data sets, concatenating 168 
System control data, listing 111 
System status index information 358 
System utility programs, functions of 23 
SYS1.LOGREC data set, processing 139-148 

Tapemark in a volume label set 125 
TCLOSE module, changing .or replacing 135 

I TCRGEN 327 
Temporary data sets, scratching 41 
Test data 

generating 411 
patterns of 413 

TITLE 307,310 
TRA.CK 192 

I Track overflow feature 
with the IEHATLAS program 194 
with the IEHMOVE program 79 

Transfer control tables, updating 135 
Transportable copies, creating 161 
TTR entries, updating 135 
TTRNs, user data 78 
T-Type records, processing 139 
TYPE 327 
Type 21 record processing 197 

594 

Uncataloging a data set 30,31,32,4~ 
UNCATLG 42 
Underscore, use of 483 
Unedited format of a VTOC (see DUMP format 
of a VTOC) 

Unequal comparison, causes of 285 
Unexpired data sets encountered 

during ANALYZE operation 172 
during DUMP operation 177 
during FORMAT operation 173 
during RESTORE operation 178 

UNLOAD 381 
Unloaded data 381 
Unloaded data sets 

creating 381 
reconstructing 383 
format of (IEEISAM) 382 

Unloading and loading an indexed sequential 
data set 375,377 

Unwovable data sets, moving or copying 
57,58 

Unowned direct access space, checking for 
164 

Unpacked to packed decimal conversion 
260,268 

Updating 
symbolic libraries 349 
system data sets 202 
transfer control tables 135 
TTR entries in the SVC library 135 

Updating in place 356,361 
User data in a partitioned directory 3~0 
User data T~RNs 78 
User exits (see Exits) 
User labels 

as data 508 
as data set descriptors 423 
EXITS statement, the 335,505 
LABEL statements 353,361 
LABELS parameter, the 267 
LABELS statements, the 

263,266,289,312,505 
linkage with lanel processing exit 
routines 506 

moving or copying 60 
parameter lists to exit routines 506 
RECORD statement, the 266 
relationship between EXITS and 

LABELS 509 
return codes from exit routines 507 
utility program handlinq of 505 
volume switch labels 50~ 
with the IEtiCOMPR prograrr 289-~94 

with the IhBG~N~R program ~62,266,410 
with the IEBPTPCrl proqram 

312,317-319,321 
with the IEBUPDTE program 

351,357,361,378,509 
with the IEHNOVE program 60,509 

User print specifications 301 
User punch specifications 301 
User-supplied picture 415 
Usinq a labeled tape as a receiving 

volume 125 
Using NBW, MhMBh~, and NAMb keywords 358 
Usinq or updatinq a sY.:item ddta set 20.:: 
Using IBBCOPY utility control stat~reent 

213,214 



Utility control statement requirements for 
independent utilities 443 

Utility control statements, format 
of 481-483 

Utility control statements (IBCDASDI) 
END 444 
DADEF 448 
GETALT 451 
IPLTXT 450 
JOB 443 
LASTCARD 451 
MSG 443 
VLD 449 
VTOCD 450 

Utility control statements (IBCDMPRS) 
END 444 
DUMP 455 
JOB 443 
MSG 443 
RESTORE 457 
VDRL 456 

Utility control statements (IBCRCVRP) 
END 444 
INSERT 463 
JOB 443 
LIST 460,462 
MSG 443 
RECOVER 459,461 
REPLACE 461 

Utility control statements (IEBCOMPR) 
COMPARE 289 
EXITS 289 
LABELS 290 

Utility control statements (IEBCOPY) 
COpy 210 
EXCLUDE 212 
SELECT 211 

Utility control statements (IEBDG) 
CREATE 426 
DSD 422 
END 429 
FD 422 
REPEAT 428 

Utility control statements (IEBEDIT) 
EDIT 396 

Utility control statements (IEBGENER) 
EXITS 263,265 
GENERATE 263,264 
LABELS 263,266 
tlJEMBER 263,266 
RECORD 263,267 

Utility control statements (IEBPTPCH) 
EXITS 307,310 
LABELS 307,312 
tilEMBER 307, 311 
PRINT 307 
PUNCH 307 
RECORD 307,311 
TITLE 307,310 

I
·· Utility control statements (IEB'I'CRIN) 

EXITS 335 
'I'CRGEN 327 

Utility control statements (IEBUPDTE) 
ADD 354 
ALIAS 364 
CHANGE 354 
DELETE. 359 
data 361 

Utility control statements (IEBUPDTE) 
(continued) 
END UP 364 
LABEL 353,361 
NUMBER 359 
REPL 354 
REPRO 354 

I 
Utility control statement (IEHATLAS) 

TRACK 192 
VTOC 192 

Utility control statements (IEBDASDR) 
ANALYZE 170 
DUMP 175 
FORMAT 172 
GETALT 175 
IPLTXT 171,173 
LAEEL 175 
RES'IORE 178 

Utility control statements (IEHINITT) 
INI'IT 129 

Utility control statements (IEHLIST) 
LISTCLTG 118 
LISTPDS 119 
LISTVTCC 120 

Utility control statements (IEHMOVE) 
COpy CATALOG 80,90 
COPY DSGROUP 80,84 
COPY DSNAtvJE 80,82 
COPY PDS 80,87 
COpy VOLUME 80,89 
EXCLUDE 80,93 
INCLUDE 80, 9·2 
MOVE CATALOG '~O,89 
MOVE DSGROUP 80,83 
MOVE DSNAME 80,81 
MOVE PDS 80,86 
MOVE VOLUME 80,91 
REPLACE 80,94 
SELEC'l' 80,93 

Utility control statements (IEHPROGM) 
BLDA 40,45 
BLDG 40,46 
BLDX 40,44 
CATLG 40,42-43 
CCNNECT 40,45-46 
DLTA 40,45 
DLTX 40,45 
RELEASE 40,46-47 
RENA~1E 40,42 
SCRATCH 40-41 
UNCATLG 40,43 

Utility programs 
functions of 15-16 
invocation of 475 

VERCHK 329 
VORCHK 329 
Volume compatibility with respect to size 

57-58 
Volume integrity, ensuring 485-487 
Volume label set, contents of 125 
Volume serial number, changing 163 
Volume switch labels, processing 51.0 
Volume table of contents 

listing 113,120 
overlay 113 
position of 453 
scratching 41 

Index 595 



Volumes 

596 

copying 72-74 
identifying 26-27 
mounting and demounting 485-487 
moving 72 

VTOC 192 
VTOC entries/track, by device type 45 
VTOCD 451,453 

Work data set 76,78-79 





GC28-6586-11 

Interttational Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N,Y.10SOl 
IUSAOnly] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, NawYork 10017 
{International I 

.... 
~' 

~ 
:;' 
it 
Co 

:;' 
c 
v, 



READER'S COMMENT FORM 

IBM System/360 Operating System: Order No. GC28-6586-11 
Utilities 

• Is the material: Yes No 
Easy to read? ............... ........................................................................ 0 0 
Well organized? ................ ...... .. .... .............................. .. . 0 0 
Complete? ............................................................................................ 0 0 
Well illustrated? ....... ............. .......................... ................................. 0 0 
Accurate? .................. ............................ ....................... 0 0 
Suitable for its intended audience? . . ........................... 0 0 

• How did you use this publication? 
o As an introduction to the subject Other 
o For additional knowledge 

• Please check the items that describe your position: 
o Customer personnel 0 Operator 
o IBM personnel 0 Programmer 
o Manager 0 Customer Engineer 
o Systems Analyst 0 Instructor 

o Sales Representative 
o Systems Engineer 
o Trainee 
Other. 

• Please check specific criticism ( s ), give page number ( s ), and explain below: 
o Clarification on page( s) 0 Deletion on page ( s) ... 
o Addition on page ( s ) 0 Error on page ( s ) 

Explanation: 

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A. 



\ 

GC28-6586-11 

YOUR COMMENTS, PLEASE ... 

This manual is part of a library that serves as a ref~\rence source for systems analysts, 
programmers and operators of mM systems. Your·:tnswers to the questions on the back 
of this form, together with your comments, will hel~c us produce better publications for 
your use. Each reply will be carefully reviewed by the persons responsible for writing 
and publishing this material. All comments and suggestions become the property of mM. 

Note: Please direct any requests for copies of publications, or for assistance in using your 
IBM system, to your mM representative or to the mM branch office serving your locality. 

Fold 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Attention: Progromming Systems Publications 
Department 058 

Fold 

POSTAGE WILL BE PAID BY ••• 

IBM Corporation 

P.O. Box 390 

Poughkeepsie, N.Y. 12602 

Interttati1lnal Business Machines Corporation 
Data Processing Division 
112 East Post Road, White Plains, N.Y.lOBOl 
IU5AOnly] 

IBM World Trade Corporation 
821 United Nations Plaza, New York, New York 10017 
IInternational] 

Fold 

FIRST CLASS 
PERMIT NO. 81 
POUGHKEEPSIE, N.Y. 

Fold 

I 
I 
I 
I 
I 
I 
I 

() 

S. 
» 
0' ::s 
co 
c: 
::s 
CD 

I 
I 
I 
-I 
I 
I 
I 
I 
I 
I , 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

V'l 

~ 
it 
~ 
W 
0-
0 

0 
V'l 

§ 
.... 
~. 

-Vl 
W 
0-
0 
I 

W 
.t:: 

~ 
5' 
it 
0.. 

5' 
c 
v, 
):. 

Gl n 
N 
ex: 
6-
(J; 

g: 
!. 
~ 


