File No. $360-36 0s
| order Number GC28-6646-3

Systems Reference Library

IBM System/360 Operating System
Supervisor and Data Management Services

Written for the assembler programmer, this
publication describes the services and facilities
available in the IBM System/360 Operating System to
the user of the supervisor and the data management
macro instructions. It also describes the linkage
conventions that the user should use with the
operating system. Macro instructions used for
graphics, teleprocessing, optical readers, optical
reader-sorters, or magnetic character readers are
included in separate publications. These publications
are listed in IBM System/360 Blbllography,

Form A22-6822.

ot
2

This publication covers. the three main
conflguratlons of the operating system: systems with
the primary control program CPCP),,systems that provide
multiprogramming with a fixed number of tasks (MFT);
and systems that provide multiprogramming with a
variable number of tasks (MVT).

Fourth Edition (June, 1970)

This publication corresponds to Release 19. It is a major revision of
Form C28-6646-2, which is now obsolete. Most of the changes to the text
and some of the changes to the illustrations are indicated by a vertical
line in the margin to the left of the change. However, a new or
extensively changed illustration is indicated by the symool e to the
left of the illustration's caption. Similarly, extensive changes to the
text are indicated by the symbol e beside the page number.

Many changes to the book are listed in the section "Summary of
Changes." However, this summary does not inciude all changes; there are
technical changes throughout the book.

Specifications contained herein are subject to change from time to
time. Before using this.manual with IBM systems, consult the latest 1BM
360 SRL Newsletter, Form N20-0360, for the editions that are current and
applicable.

This publication was prepared for production using an IBM computer
to update the text and to control the page and line format. Page
impressions for photo-offset printing were obtained from an IBM 1403
Printer using a special print chain.

Reguests for copies of IBM publications snould be made to your IBM
representative or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. I1f the form has been removed, comments may be addressed to
IBM Corporation, Programming Publications, Department D78, San Jose,
California, 95114. All comments become the property of IBM.

©) Copyright International Business Machines Corporation 1967, 1968, 1970

This publication describes the
superviscr services and data management
facilities of the 13M System/360 Operatina
System. it is written for the assembler
programmer who is designing a program using
these services and facilities. Waen coding
an assembler program, however, the
programmer needs the specific information
in the publication IBM System/360 Operating
System: Supervisor and Data Management
Macro Instructions.

The publication is divided into three
principal parts. ©Each section has a format
designed to fit the illustrations and
examples required to explain the subject.

e Supervisor Services -- This section
covers the supervisor services
available tnrough the use of assembler
language macro instructions, and
describes linkage conventions,
recuirements for program and main
storace manacement, tne procram
management services available, ana task
creation and management.

* Data Manacement Services -- Thais
section covers the data management
services available through the use of
assembler language macro instructions,
ana describes the data organization and
access features of the operating
system, along with cataloging and space
allocation facilities.

e Appendixes -- Information is presented
on the format and use of direct data
set labels and on control characters.

iii

Preface

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System:

Assempler Language, Form C28-6514

Concepts and Facilities, Form C28-6535

PUBLICATIONS TO WHICH TJE TEXT REFERS

IBM System/360 Operating sSystem:

Job Control Language Reference, Form
C28-6704

Job Control Langquage User's Guide, Form
C28-6703

Linkage Editor and Loader, Form C28-6538

Model 91 Functional Characteristics,
Form A22-6907

Model 195 Functional Characteristics,
Form A22-6943

Programmer's Guide to Debugging,
C28-6670

Form

Storage Estimates, Form C28-6551

Supervisor and Data Management Macro
Instructions, Form Cz8-66u47

System Control Biocks, Form C28-6628

system Programmer's Guide, Form C28-6550

System Generation, Form C28-6554

Tape Labels, Form C28-6680

Summary of Changes

Following is a list of the programming changes that affect the
elease 19 version of the manual 1IBM System/360 Operatina System:
upervisor and Data Management Services.

Reasons for Changes: Items Changed or Added:

American National Standard
COBOL

"Spanned Variable-Length Records (Sequen-
tial Access Methods)"

"Spanned Variable-Length Records (Basic
Direct Access Method)"

"Block Size (BLKSIZE)"
Table 9
"Standard User Label Exit"

"Defer Nonstandard Input Trailer Label
Exit"

"PUTX -- Write an Updated Record"
"READ -- Read a Block"
"Data Event Control Block (DECB)"

"CLOSE -- Terminate Processing of a Data
Set"

"FEOV -- Force End of Volume"

"BUILDRCD -- Build a Buffer Pool and a
Record Area"

"Buffer Control"™

Table 13

e et e e e e s e B s W o S e . i e e G . . i . . S . . e P s S s e e e e e]

The IBM System/360 Model 195|"Precise and Imprecise Interruptions"

|
|Table 6

b e e e e e e i e T s S —— —————— —— —— — — . — — — — — — —— (o —— —— — — ——— — o— i, oo s}

|
| Table 7
4

(Continued)

h)
|
Reasons for Changes: |
|
]l

items Changed or Added:

T

The IBM 1285, 1287, and 1288|
Optical Character Readers, |
the IBM 1275 Optical Reader|
Sorter, and the IBM 1419
Magnetic Character Reader

Abstract (on front cover)

The ATLAS macro instruction

"ATLAS ~- Perform Alternate Track
Location Assignment

The ability to reuse
previously allocated space
and the full track index
write option, both in ISAM

"Creating an Indexed Sequential Data Set

Different density defaults
for magnetic tape

"Magnetic Tape (TA)"

Table 14

Writing data sets directly

under MFT and MVT

"SYSIN Data Sets"

"Routino Data Sets Through the Output
Stream"

The ATTACH macro instruc-
tion under MFT without
subtasking

"Section I: Supervisor Services"

Using the WTO and the WTOR
macro instructions to
write messages to the
programmer

"Writing to the Programmer"

[S e s et S bt o = s Rt (e e, i . ot St MUY, i et . s i e B . S . e, . e B0 .t i . M. e, . "o . EPY® et S e . . St . . . S e

Time slicing in MVT with
the IBM System/360 Model

|
|
I
1
$
|
|
|
|
1
+
|
[
|
|
i
¥
|
I
|
|
|
|
4
I
!
onto the SYSOUT device |
|
|
|
1
+
I
|
|
|
|
d
+
[
|
|
|
|
|
L
+
|
|
|
65 Multiprocessing System |
1

"Time Slicing"

vi

Following are some other changed topics:

"Main Storage Control"

"Data Sets on Direct Access Devices"
"Dummy Data Sets"

"Indexed Sequential Data Set Organization"

"Writing a SYSOUT Data Set"™

vii

Contents

Preface - -« « «+ « ¢ ¢« 0 0 v o 0 s e e e e e e e e e e e e e e e Wil

SummaryofChanges 00000000 e e .y

Section I Supervisor Services ¢ . v v 4 e e e w1
Introduction e e e e 4 s s s s e 4 e e e e e e e e eeee e e 1
Program Management » =« « + ¢ s+ ¢+ ¢ e+ s 4 e e w0 oa o+ os e o« 1
Initial Requirements e« s s e e s e s 2 4 e+ s e e e e e e e e o o 2
Providing an Initial Base Register . . . « « « « & « « « « « o 2
Saving RegisSters =+ + + ¢ o o o o+ ¢ 4 e 4 e e e e e e e e e . 2
Establishing a Permanent Base Register 4
Linkage Registers « « « « « ¢ ¢« ¢ ¢ ¢ ¢ o o« o v v e s e v e . . 4
Acquiring the Information in the PARM Field of the EXEC
Statement « « « « ¢ 4t 4 e 4 4 e 4 s 4 4 4 e 4 4 e e e« e« « e+ . 5
Load Module Structure TYPES + « + « o o o « + o o o « o+ o o o 5
Simple Structure « « « + o ¢ ¢t e e e 4 e e e e e e e e e 6
Planned Overlay Structure . « « « « « « ¢« ¢« ¢ ¢ + ¢« ¢« « ¢« « « . 6
Dynamic Structure L <)
Load Module Execution « « =« o « o o o o o o s o o« o o o o o o 6
Passing Control in a Simple Structure + « « 6
Passing Control Without Return . . « « « « ¢« ¢« & ¢« « o « o« . 6
Passing Control With Return « « « « « « « « o o o o o o o o & 8
How Control Is Returned .« « « « « o o o o o o o o o o « « « « 10
Return to the Control Program T]
Passing Control in a Planned Overlay Structure D 4

Passing Control in a Dynamic Structure 12
Bringing the Load Module Into Main Storage . . . « « . . « . . 12
Passing Control With Return . « « « « « « « + « « + « o o « . . 17
How Control Is Returned - « « « « o « & 4 « v o« v o« o o « o o« « 21
Passing Control Without Return « . . . 21

Task Creation + + « o o o o o o o 4 o o o o o o o o o« o o o o o o o+ 23
Creating the Task . . .« + ¢« ¢ ¢« v « & v « 4 v o« o v o o o + « « o 23
Task Priority e e s e e e e 4 4 s e e e e e o« . 23

Priority of the Job Step Task e e e s e e e e e e e e e e e . . 23
Priority of Subtasks . . ¢ ¢ ¢« ¢ ¢« ¢ o ¢« o« ¢ 4 v 4 e e o « « . 24
Time S1licing . ¢ « ¢ ¢ v v ¢ ¢ 4 & 4« o o e e« 4 4 s e e« & e« « . 25
Task Management . . . A
Task and Subtask Communlcatlons e e e e e e e e e e e e e e e .. 26
Task Synchronization ¢« ¢ v ¢ ¢ ¢ ¢ ¢ ¢ ¢ 4 4 e e e e o« . 27
Program Management Services« + 4« +« ¢ ¢ ¢ ¢ 4 e s e e 28
Additional Entry Points e e e 4 e & e s = . . 28
Entry Point and Calling Sequence Identlflers e e e e e e e e . . 28
Using a Serially Reusable Resource « & « « « « « . 29
Naming the Resource . . . ¢ o ¢ ¢ ¢ ¢ ¢ o & & o« o o o o o + « « 29
Exclusive and Shared RequestsS . . ¢ + + & o &« « &« « « o« « « « + 30
Processing the Request <« . .« .« .« . 30
Proper Use of ENQ and DEQ e e e e e e e e .. 31
Obtaining Information From the Task Control Block W e e + 4 « « o 33
TimMing SErviCeSs « « « « v ¢ o ¢ ¢ o o o + 4 4 v 4 4 e e e e o s . 34

Date and Time Of DAy « « « & « o o o o o o o & & o o« o o« « « . 34
Interval Timing - 1
Writing to One or More Operator Consoles e 1

Writing to the Programmer « ¢ & o « o o o« « o o o« o o« « o 37
Writing to the Hard Copy LOg . . « ¢ v ¢ v & « +« + « o« o« « o« « . 38
Writing to the System LOg . . +« « « v + « & « & & & & o « « « +» . 38
Message Deletion . . .« ¢« « ¢ v « ¢ v ¢ 4 e e v v e 4 e e e e oso. 39

ix

Program Interruption Processing
Abnormal Condition Handling . .

e e e e & & e e e & o e .

e s e ¢« e ¢ e e e o e o

Interception of Abnormal Termination . . « . . « « . « . .

The Dump e e e e e e e e e e

Requirements « +« « + ¢« « o .+ .
Indicative Dump =« - - « « « =«
Main Storage Management =« « -« . -

Explicit Requests =« -« « « « .« =«
Specifying Lengths . - . .
Types of Explicit Requests . .

Subpool Handling (in PCP Systems

Subtasking) - - + - + + .« . .

Subpool Handling (in MFT Systems

Subpool Handling (in MVT Systems)

Implicit Request - « « « « « . .
Load Module Management . - « .
Releasing Main Storage : -+ . -
Storage Hierarchies - -

Checkpoint and Restart « + - - - -

Establishing Checkpoints - - - -

e . e e o e ® s s e e e e

and in MFT Systems Without

With Subtasklng) L

. . . e & s+ e s e . . . - .

« s . e e e e . . . e o e e

Checkpoints and Serially Reusable Resources =« « =« « =« + =« =

Checkpoints and Data Management
Checkpoint Data Sets - . - =« - .

Defining a Checkpoint Data Set

Using a Checkpoint Data Set .
Restarting a Job Step =« -« - « .

Section II: Data Management Services

Part 1: Introduction to Data Management

Data Set Characteristics . . .
Data Set Identification =+ -« . -
Data Set Storage =+« =« =« « « + o =«

Direct Access Volumes -
Magnetic Tape Volumes
Data Set Record Formats . . . -
Fixed-Length Records
Variable-Length Records . . .
Undefined-Length Records
Control Character

Direct Access Device Characteristics

Track Format « « « « o o o o o &«

Track Addressing e e e e e e .
Track Overflow « + + « « « « + =«
Write Validity Check « « « - . .
Interface With the Operating System
Data Set Description . . - « .« .

Processing Program Description -
Modifying the Data Control Block
Sharing a Data Set - - «

. . e e s e e e e e - .

Part 2: Data Management Processing Procedures - - -

Data Processing Techniques -+ +« . .
Queued Access Technique - - -
GET -- Retrieve a Record - - -
PUT -- Write a Record - - .« .
PUTX -- Write an Updated Record

105
105
105
105
105
106

Basic Access Technique e e e e e
READ ~-- Read a Block e e e e e

WRITE -- Write a Block . . .
CHECK -~ Test Completion of Read/erte Operatlon

WAIT -- Wait for Completion of a Read/erte Operatlon

Data Event Control Block (DECB)
Error Handling e s e e s e e .

SYNADAF -- Perform SYNAD Analy51s Function . .
SYNADRLS -- Release SYNADAF Message and Save Areas
ATLAS -- Perform Alternate Track Location Assignment

Selecting an Access Method
Opening and Closing a Data Set . . .

OPEN -- Initiate Processing of a Data Set

.

o o e

CLOSE —-- Terminate Processing of a Data Set
End-of-Volume Processing+ . .
FEOV -- Force End of Volume

uffer Acquisition and Control . . .
Buffer Pool Construction . e . .
BUILD -- Construct a Buffer Pool .

.

. e .

BUILDRCD -- Build a Buffer Pool and a Record

GETPOOL -- Get a Buffer Pool . . .
Automatic Buffer Pool Construction
FREEPOOL -- Free a Buffer Pool . .
Buffer Control e e e e e e e e e
Simple Buffering
Exchange Buffering . . .
RELSE -- Release an Input Buffer .
TRUNC -- Truncate an Output Buffer
GETBUF -- Get a Buffer From a Pool

FREEBUF -- Return a Buffer to a Pool
FREEDBUF -- Return a Dynamic Buffer to

'rocessing a Sequentlal Data Set . . .

Data Format -- Device Type Con31deratlons

Magnetic Tape (TA)
Paper Tape Reader (PT)
Card Reader and Punch (RD/PC) . .
Printer (PR) . . « ¢« ¢« « « &« « « .
Direct Access (DA)
Sequential Data Sets =-- Device Contro
CNTRL -- Control an I/0 Device .
PRTOV -- Test for Printer Overflow

.

l

.

.

SETPRT -- Load Character Set for UCS Prlnter

BSP -- Backspace a Magnetic Tape or Direct Access Volume

NOTE -- Return the Relative Address of a Block . .

POINT -~ Position to a Block . .

Sequential Data Sets -- Device Independence

System Generation Considerations .
Programming Considerations . .
Chained Scheduling for I/O Operatlons
Creating a Sequential Data Set . . .
‘rocessing a Partitioned Data Set . .
Partitioned Data Set Directory . . .

.

e e e

.

Processing a Member of a Partitioned Data Set

BLDL -- Construct a Directory Entry List .
FIND -- Position to a Member
STOW -- Alter a Directory Entry

Creating a Partitioned Data Set . .
Retrieving a Member
Updating a Member
Updating in Place
Rewriting a Member

.

.

Xi

.

106
106
107
108
108
108
108
109
109
109
110
110
111
112
113
114
114
115
115
115
116
116
116
117
118
121
124
125
125
125
125
125
126
126
127
128
128
128
129
129
129
129
130
130
130
130
131
131
132
133
135
136
138
139
139
140
140
141
143
143
144

Processing an Indexed Sequential Data Set =« « - « « « « . . .

Indexed Sequential Data Set Organization. . «

Prime AYea * * * =+ e+ o o o s o s e s o o s o e & o e o o
Index AYeasS =+ * e« o ¢ o o o o o o o o o o s o o o o o o
Overflow Areas * =« + =« = + + s &+ ¢ ¢ + & + o o o o o .

Adding Records to an Indexed Sequential Data Set.
Inserting New Records Into an Existing Indexed Sequential
DataSet...............-......l...

Adding New Records to the End of an Indexed Sequential Data

Set - - - -
Maintaining an Indexed Sequential Data Set. « . . .
Indexed Sequential Buffer and Work Area Requirements
Controlling an Indexed Sequential Data Set Device

SETL -- Specify Start of Sequential Retrieval

ESETL -- End Sequential Retrieval .« . . « ¢ . « . o .« . .
Creating an Indexed Sequential Data Set

Updating an Indexed Sequential Data Set . . - . « . + . . .

Direct Retrieval and Update of an Indexed Sequential Data Set

Processing a Direct Data Set s * =+ = = =+ =« =« =« < ¢« ¢ ¢ + o o
Organizing a Direct Data Set « e e e e e o e
Referring to a Record in a Direct Data Set e s e e e e e e
Creating a Direct Data Set e e e e e e e .
Adding/Updating Records on a Direct Data Set e e o e e o .

Part 3: Data Set Disposition and Space Allocation
Allocating Space on Direct Access Volumes
Specifying Space Requirements ¢ . .
Estimating Space Requirements « e e e e e .
Allocating Space for a Partitioned Data Set e e e e e e e

Allocating Space for an Indexed Sequential Data Set
Specifying a Prime Data Area . . « « « o o o o o o o « .

Specifying a Separate Index Area . . « s e e e v e &
Specifying an Independent Overflow Area « o
Calculating Space Requirements for an Indexed Sequentlal
Data Set . o ¢« ¢ ¢ ¢ 4 e i e et i e e v e e e e e e e e
Control and Disposition of Data Sets
Routing Data Sets Through the Output Stream
Opening a SYSOUT Data Set . . + v « & & v o o o o o o o« =
Writing a SYSOUT Data Set e e e e e e e
Concatenating Sequential and Partltloned Data Sets ., . . .
Cataloging Data Sets . . . « o . e e e e e e e e

Entering a Data Set Name in the Catalog . e . e e e s .
Entering a Generation Data Group in the Catalog e e e e

Control of Confidential Data -- Password Protection . ., . .
Appendix A: Direct AccessLabels
Volume Label Group . . e e e e e e 4 e e e e
Direct Access Volume Label Format e e e e e e e e e e e
Data Set Control Block (DSCB) Group v o o o .
User Label Groups o e e e e e e e e e
User Header and Trailer Label Format e e e e e e e e e
Appendix B: Control Characters .,
Machine Code e e e e e e e
Extended American National Standard Code for Information
Interchange . . . ¢ . ¢ ¢ v ¢ ¢ i i it e e e e e e e e e e
Y £ <

xii

145
145
146
146
148
148

148

149
150
151
156
156
156
156
159
160
164
165
165
166
167

189
189
190
191
191
192

193
193
193

195

Illustrations

Figures

Figure 1. Save Area FOYMAL .« « o « o « o o o« « o s« s s o s o« o » « 3
Figure 2. Acquiring PARM Field Information ¢« ¢« ¢« ¢« ¢« « « « 5
Figure 3. Misusing Control Program Facilities . . « . « <« ¢« & &« o o 22
Figure 4. Task HierarChy =« « « ¢« ¢ o ¢ o o o 2 o o o o o o o o o« « 26
Figure 5. £Event Control Block e e e e e e o e e s a e e o o o o & 27

Figure 6. EN¢ Macro Instruction Processing . « . « « ¢ 2 » « o o« « 31

Figure 7. Interlock Condition e e e e e s e a s s e e a e o o & o 32
Figure 8. Program Interruption Control Area « e o e s a = s o o » U0
Figure 9. Program Interruption Element . . . ¢« ¢« ¢« ¢ ¢ ¢ « « « o « 40
Figure 10. Abnormal Condition Detection . . ¢ « ¢ ¢ ¢ ¢ o o o « « o 44

Figure 11. Work Area for STAE Exit Routine . . « ¢« « ¢ ¢ ¢ ¢« « « . . U8
Figure 12. Main Storage Control . . . ¢ ¢ o ¢ o o « o o « o o « « « 53
Figure 13. Fixed-Length ReCOrds . . . ¢ v o ¢ o ¢ ¢ o o o =« « =« o « 19
Figure 14, Variable-Length ReCOrds . . ¢ ¢« ¢« 4 « o « o « o « o « « « 81
Figure 15. Spanned Variable-Length Records . . « <« « <« ¢ « « « +. . . 82
Figure 16. Segment Control COGES « « « « o « o « =« e e e
Figure 17. Spanned Variable-Length Records for BDAM Data Sets . . . 84
Figure 18. Undefined-Length Records . . . ¢« ¢ &« ¢ ¢« o o« « o« « « « « 85
Figure 19. 2311 Disk Drive e e s s 4 o s a s a s s s s s s = o s « 86
Figure 20. Direct Access Volume Track Formats . .« . « « « « « . . . 86
Figure 21. Completing the Data Control Block . « « + « ¢« « ¢« « « . « 89
Figure 22. Source and 3equence for Completing the Data Control

BlOCK « ¢ ¢ o o ¢ o « o o o o o o« o o s o o s o« s o« o « « 89
Figure 23. Simple Bufferinu (GL,PM)
Figure 24. Simple Buffering (GM, PM) e s e o e a s o o o o o o « $120
Figure 25. Simple Buffering (GL, PL) e e o e
Figure 26. Exchange Buffering (GT, PT) « e e e e s e e e o o o o <122
Figure 27. Exchange Buffering (GL, PM) e e o o e o o s e o o o & 2123
Figure 28. Excihange Buffering (GL, PT) @ e e = e o e e o o o o - 4123
Figure 29. A Partitioned Data Set . . ¢ o &« o ¢ o ¢ o o« o « o « « 136
Figure 30. A Partitioned Data Set Directory Block . . .« . . .+ . . 136
Figure 31. A Partitioned Data Set Directory Entry137
Figure 32, Builld List FOrmat . ¢ . « o « o« o o o« o o « =« o « o« « « =139
Figure 33. Indexed Sequential Data Set Organization146
Figure 34. Format of Track Index Entries e e e e o e o e o e o o <147
Figure 35. Adding Records to an Indexed Sequential Data Se e « o <189
Figure 36. Deleting Records From ar Indexed sequential Data Set . .151
Figure 37. Reissuing a READ for "Unlike" Concatenated Data Sets . .185
Figure 38. Catalog Structure on Two Volumes . « « « « « « « « « « 2187
Figure 39. Direct Access Labeling . . .« « « ¢ ¢ ¢ o o o« o « » « « 2189
Figure 40. Initial Volume Label . . . ¢ ¢ ¢ ¢ o o o o o o « o« « « 2190
Figure 41. User Header and Trailer Labels ¢« « ¢« « « . o 192

xiii

Tables

Table
Table
Table

Tabkle

Table
Table
Table
Table

Table
Table
Table
Table
Table
Table
Table
Table
Table
Table

5.
6.
7.
8.

9.
10.
11.
12.
13.
14.
15.
16.
17.
18.

Summary of Characteristics and Available Options
Load Module Characteristics .« o« « o o o ¢ o o o « - .
Search for Module, =P or EPLOC Operands With DCB=0 or

DCB Operand Omitted =« « o« « o o o . e o o s e @

Search for Module, EP or EPLOC Operandb dltn DCE Operand
Specifying Private Library « « « « o« ¢« ¢« ¢ ¢ o o o o o
Search for Module Using DE Operand « « o« « o « « o o o &
Using WTO and WTOR to Write Messages to the Programmer .
Interruption Code in the 0ld Program Status word
Precise Interruptions in IBM System/360 Models 65, 67,

75, 85, 91, and 195 . . ¢ ¢ i ¢ 4 e e 4 e e e e e s e
Data Management Exit Routines ¢ ¢ &« &+ o o« « « &
Format and Contents of an Exit List .+ ¢« ¢ « ¢« ¢ ¢ « o @
System Response to a User Label Exit Routine Return Code
System Response to Elock Count Exit Return Code
Data Access Methods e o o o o o e o o o & o
Buffering Technique and GET/PUT Processing iwodes
Tape Density (DEN) Values . . .« ¢ ¢ ¢ & 4 ¢ &« o o o & &
Direct Access Storage Device Capacities
Direct Access Device Overhead Formulas . . . « « « « « .
Requests for Indexed Sequential Data Sets

xiv

Examples

Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

Example

Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example
Example

Example
Example
Example
Example
Example
Example
Example
Example

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.

17.

i8.
19.
20.
21.
22.
23.
24,
25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.
36.
37.

Control Section Addressability « .
Internal Entry Point Addressability .
Saving A Range of Registers . . o e
Saving Registers 5-10, 14, and 15 .« .
Nonreenterable Save Area Chaining . .
Reenterable Save Area Chaining
Passing Control in a Simple Structure
Passing Control With a Parameter List
Passing Control With Return
Passing Control With CALL

Test for Normal Return .
Return Code Test Using Branching Table
Establishing a Return Code .

Use of the RETURN Macro Instruction .
RETURN Macro Instruction With Flag .
Use of the LINK Macro Instruction With
Library . . e e e s s e e e e e
Use of the LINK Macro Instruction With
Library S T
Use of the BLDL Macro Inatructlon - .
The LINK Macro Instruction With a DE Op
Two Requests for Two Resources « o .
One Request for Two Resources

Day of Year Processing e e s e s e .
Interval Timing & o ¢ o« o « .
Writing to the Operator . . . « . . .

Writing to the Operator With a Reply .
Use of the SPIE Macro Instruction . .
Use of the STAE Macro Instruction . .
Use of the GETMAIN Macro Instruction

the Job

or Link

a Private

erand

Using the List and the Execute Forms of the DE(¢ Macro

instruction e 2 e e o @
Establishing a Checkp01nt « e e e e e
Canceling a Request for Automatic Resta

Obtaining Updated TCE Information After Restart

Requesting a Resource After Restart .

e e o o

rt . .

Checkpoints for Processing Work Data Sets . .

Alternating Use of Checkpoint Data Sets
Assigning a Checkpoint Identification

Recording a Checkpoint Identification Assigned

Control Program =« « « o o o o o o o o

Xv

.
* s s a
.

WCWOWONEEWWNDND

Introduction

The supervisor services section of this
publication describes the supervisor
services available from the IBM System/360
Operating System through the use of the
supervisor macro instructions supplied by
IBM. The information in this section
includes a discussion of the standard
linkage conventions to be used with the
operating system, as well as a discussion
of the requirements for using the macro
instructions. This publication is to be
used when designing a program; the
information required to code the macro
instructions is presented in the companion
publication IBM System/360 Operating
System: Supervisor and Data Management
Macro Instructions.

This section covers the three major
configurations of the operating system:
the operating system with the primary

Section I: Supervisor Services

A brief description of the three
configurations of the operating system is
given in Table 1. This table does not
attempt to cover all of the options
available in the operating system; it only
summarizes the options that affect the
material covered in this manual.

Program Management

The following discussion provides the
requirements for the design of programs to
be processed using the IPM System/3€0
Operating System. Included here are the
procedures required when receiving control
from the control program, the program
design facilities available, and the
conventions established for use in program
management.

This discussion presents the conventions

and procedures in terms of called and
calling programs. Each program given
control during the job step is initially a
called program. During the execution of
that program, the services of another
program may be required, at which time the
first program becomes a calling program.
for example, the control program passes
control to program A which is, at that
point, a called program. During the

control program (PCP); the operating system
that provides multiprogramming with a fixed
number of tasks (MFT); and the operating
system that provides multiprogramming with
a variable number of tasks (MVT). Unless
otherwise indicated in the text, the
descriptions in this section apply to all
configqurations of the operating system;
when differences arise because of operating
system options, these differences are

explained. execution of program A, control is passed
Table 1. Summary of Characteristics and Available Options
r T -TTTT - T X 1
| | pCP | MFT | MVT 1
F——- - + t t . 1
| Brief Descriptiocn |Sequential Scheduler, |Priority Scheduler, |Priority Scheduler, |
| jone task per job |one (or, optionally, |one or more tasks per|
| |step, one job |more than one) task |job step, 1 to 15 [
| |processed at a time |per job step, 1 to | jobs processed
i | |15 jobs processed jconcurrently |
| | | concurrently | |
k - + +] i
|Multiple Wait Option |Optional | Standard | standard |
b . 1 . t -
| Identify Option |Optional | Optional | Standard |
F { { ¢ {
|Time Option |Optional | Optional | Standard |
b 1 } } {
| Interval Timing |Optional | Optional | Standard |
|Option | |] |
b 4 - e S $--- !
l | System Log Option |Not available | Optional {Optional |
L L. L 1 J

Section I: Supervisor Services 1

to program E. Program A is now a calling
program, program B a called program.
Program B eventually returns control to
program A, which eventually returns control
to the control program. This is one of the
simpler cases, of course. Proaram B could
pass control to program C, which passes
control to procram D, which returns control
to program C, etc. Each of these programs
has the characteristics of eicher a called
or calling program, regardless of whether
it is the first, fifth or twentieth program
given control during a job step.

The conventions and requirements that
follow are presented in terms of one called
and one callino program; these conventions
and requirements apply to all called and
calling programs in the system.

INITIAL REQUIREMENTS

The following paragraphs discuss the
procedures and conventions to be used when
a program receives control from another
program. Although the discussion is
presented in terms of receiving control
from the control program, the procedures
and conventions apply as well when control
is passed directly from another processing
program. If the requirements presented
here are followed in each of the programs
used in a job step, the called program is
not affected by the method used to pass
control or by the identity of the program
passing control.

PROVIDING AN INITIAL BASE REGISTER

When control is passed to your program
from the control program, the address of
the entry point in your program is
‘contained in register 15. This address can
be used to establish an initial base
register, as shown in Example 1 and Example
2. 1In Example 1, the entry point address
is assumed to be the address of the first
byte of the control section; an internal
entry point is assumed in Example 2. Since
register 15 already contains the entry

point address in opotn examples, no register
loading is required.

PROGNAME CSECT
USING *,15

Example 1. Control Section Addressability

PROGNAME DS OH
USING *,15

Example 2. Internal Entry Point

Addressapility

SAVING REGISTERS

The first action your program should
take is to save the contents of the general
registers. The contents of any register
your program will modify must be saveq,
along with the conteants of registers 0, 1,
14, and 15. The latter registers mray be
modified, along with the condition code,
when system macro instructions are used to
request data management or supervisor
services.

The general registers are saved in an
18-word area provided by the control
program; the format of this area is shown
in Figure 1. When control is passed to
your program from the control program, the
address of the save area is contained in
register 13. As indicated in Figure 1, the
contents of each of the registers must be
saved at a predetermined location within
the save area; for example, register 0 is
always stored at word 6 of the save area,
register 9 at word 15. The safest
procedure is to save all of the registers;
this insures that later changes to your
program will not result in the modification
of the contents of a register which has not
been saved.

WOrdI Contents
1 lUsed by PL/1 language program
2 iAddress of previous save area
l(stored by calling program)
3 ?Address of next save area (stored by

|current program)
4

)
| Register 14 (Return address)

4
5 |Register 15 (Entry Point address)
6
7

1
L)

|Registexr 0
4

+
|Register 1
4
T

8 |Register 2
4

$
9 |Register 3
41
1
10 |Register
4
R

11 jRegister
4

+
12 |Register

1
13 |Register
4

1
14 |Register
1

Ol Nl wnl &

$
15 |Register
4
1]

16 |[Register 10
1

4
17 |Register 11

4
T

18 |Register 12
4

D e e e e S e g T e e, e o B R e e s Ll e

(oo e OO S o S Y e e S s e S] e e = = ey S e s oy S Y s e . Y e S o e e o e By e o

Figure 1. Save Area Format

To save the contents of the general
registers, a store-multiple instruction,
such as STM 14,12,12(13), can be written.
This instruction places the contents of all
the registers except register 13 in the
proper words of the save area. (Saving the
contents of register 13 is covered later.)
If the contents of only registers 14, 15,
and 0-6 are to be saved, the instruction
would be STM 14,6,12(13). ‘

THE SAVE MACRO INSTRUCTION: The SAVE macro
instruction, provided to save you coding
time, results in the instructions necessary
to store a designated range of registers.
An example of the use of the SAVE macro
instruction is shown in Example 3. The
registers to be saved are coded in the same

order as they would have been desicnated
had an STM instruction been coded. A
further use of the SAVE macro instruction
is shown in Example 4. The operand T
specifies that the contents of registers 14
and 15 are to be saved in words 4 and 5 of
the save area. The expansion of this SAVE
macro instruction results in the
instructions necessary to store registers
5-10, 14, and 15.

PROGNAME SAVE (14,12)

USING PROGNAME,15

Example 3. Saving A Range of Registers

SAVE (5,10),T
USING PROGNAME,15

LTI

PROGNAME

Example 4. Saving Registers 5-10, 14, and

15

When you use the optional identifier-
name operand, you can code the SAVE macro
instruction only at the entry point of a
program. This is because the code
resulting from the macro instruction with
this operand requires that register 15
contain the address of the SAVE macro
instruction.

PROVIDING A SAVE AREA: If your program is

going to use any system macro instructions
(other than SAVE, RETURN, or the register
forms of GETMAIN and FREEMAIN), or if any
control section in your program is going to
pass control to another control section and
receive control back, your program is going
to be a calling program and must provide
another save area. Providing a save area
allows the program you call to save
registers without regard to whether it was
called by your program, another processing
procgram, or by the control program. If
your program does not use system macro
instructions and if you establish '
beforehand what registers are available to
the called program or control section, a
save area is not necessary, but this is
poor practice unless you are writing very
simple routines.

Whether or not your program is going to
provide a save area, the address of the
save area you used must be saved. You will
need this address to restore the registers
before you return to the program that
called your program., If you are not

Section I: Supervisor Services 3

providing a save area, you can keep the
save area address in register 13, or save
it in a fullword in your program. If you
are providing another save area, the
following procedure should be followed:

¢ Store the address of the save area you
used (that is, the address passed to
you in register 13) in the second word
of the new save area.

¢ Store the address of the new save area
(that is, the address you will pass in
register 13) in the third word of the
save area you used.

The reason for saving both addresses is
discussed more fully under the heading "The
Dump." Briefly, save the address of the
save area you used so you can find the save
area when you need it to restore the
registers; save the address of the new save
area so a trace from save area to save area
is possible.

Example 5 and Example 6 show two metnods
of obtaining a new save area and of saving
the save area addresses. In Example 5, the
registers are stored in the save area
provided by the calling program (the
control program). The address of this save
area is then saved at the second word of
the new save area, an 18 fullword area
establisned through a DC instruction.
Register 12 (any register could have been
used) is loaded with the address of the
previous save area. The address of the new
save area is loaded into register 13, then
stored at the third word of tne old save
area.

PROGNAME STM 14,12,12(13)
USING PROGNAME,15
ST 13,SAVEAREA+4
LR 12,13
LA 13, SAVEAREA
ST 13,8(12)
SAVEAREA DC 18A(0)

Nonreenterable Save Area
Chaining

Example 5.

In Example 6, the registers are again
stored in the save area provided py the
calling program. The entry point address
in register 15 is loaded into recister 2,
which is declared as a base register. The
contents of register 1 are saved in another
register, and a GETMAIN macro instruction
is issued. The GETMAIN macrc instruction
(discussed in greater detail under the
heading "Main Storage Management") regquests

the control program to allocate 72 bytes of
main storage from an area outside your
program, and to return the address of tae
area in register 1. The addresses of the
new and old save areas are saved in the
established locations, and the address of
the new save area is loaded into register
13.

SAVE

PROGNAME (14,12)
LR 2,15
USING PROGNAME, 2
LR 3,1
GETMAIN R,LV=72
ST 13,4(1)
ST 1,8(13)
LR 13,1

Example 6. Reenterable sSave Area Chaining

ESTABLISHING A PERMANENT BASE REGISTER

Lf your program does not use syster
macro instructions and does not pass
control to another program, the base
recister establisned using the entry point
address in register 15 is adequate.
Otherwise, after yoa have saved your
registers, establish base registers using
one or more of registers 2-12. Register 15
is used by both the concrol program and
your program for other purvoses.

LINKAGE REGISTERS

Registers 0, 1, 13, 14, and 15 are known
as the linkage redgisters, and are used in
an established manner by the control
proaram. It is good practice to use these
registers in the same way in your program.
As noted earlier, registers 0, 1, 14, and
15 may be modified when system macro
instructions are used; reagisters 2-13
remain unchanced.

REGISTERS O AND 1: Registers 0 and 1 are
used to pass parameters to the control
prcgram or to a called program. The
expansion of a system macro instructicn
results in instructions required to load a
value into register 0 or 1 or poth, or tc
load tne address of a parameter list into
register 1. The control program also uses
revister 1 to pass parameters to your
program or tc the program you call. this
is why the contents of register 1 were
loaded into register 3 in Example 6.

REGISTER 13: Register 13 contains the
address of the save area you nave provided.
The control program may use this save area
when processing requests you have made
using system macro instructions. A program
you call can also use this save area when
it issues a SAVE macro instruction.

REGISTER 14: Register 14 contains the
return acdress of the program that called
you, or an address within the control
program to which you are to return when you
have completed processing. The expansion
of most system macro instructions results
in an instruction to load register 14 with
the address of your next sequential
instruction. A BR 14 instruction at the
end of any program will return control to
the calling program as long as the contents
of register 14 have not been altered.

REGISTER 15: Register 15, as you have
seen, contains an entry point address when
control is passed to a program from the
control program. The entry voint address
should also be contained in register 15
when you pass control to another program.
In addition, the expansions of some system
macro instructions result in the
instructions to load into register 15 the
address of a parameter list to be passed to
the control program. Register 15 is also
used to pass a return code to a calling
program.

ACQUIRING THE INFORMATION IN THE PARM FIELD
OF THE EXEC STATEMENT

The manner in which the control program
passes the information in the PARM field of
your EXEC statement is a good example of
how the control program uses a parameter
register to pass information. When control
is passed to your program from the control
program, register 1 contains the address of
a fullword on a fullword boundary in yoaur
area of main storage (refer to Figure 2).
The high order bit (bit 0) of this word is
set to 1. This is a convention used by the
control program to indicate the last word
in a variable-length parameter list; you
must use the same convention when making
requests to the control program. The
low-order three bytes of the fullword
contain the address of a two-byte length
field on a halfword boundary. The length
field contains a binary count of the number
of bytes in the PARM field, which
immediately follows the length field. 1If

the PARM field was omitted in the EXEC
statement, the ccunt is set to zero. To
prevent possible errors, the count should
always be used as a length attribute in
acquiring the information in the PARM
fieid. If your program is not going to use
this information immediately, you should
load the address from register 1 into one
of registers 2-12 or store the address in a
fuliword in your prograiu.

Register

1 \

\ 4 E):res

T
I
]
|

1

4

Full-Word
Boundary
Length Field PARM Field Sg
- g N y)
2 Bytes 0 to 100 Bytes
Half-Word
Boundary

Figure 2. Acquiring PARM Field

Information

LOAD MODULE STRUCTURE TYPES

Each load module used during a job step
can be designed in one of three load module
structures: simple, planned overlay, or
dynamic. A simple structure does not pass
control to any other load modules during
its execution, and is brought into main
storage all at one time. A planned overlay
structure does not pass control to any
other load modules during its execution,
and it is not brought into main storagce all
at one time. Instead, segments of the load
module reuse the same area of main storage.
A dynamic structure is brought into main
storage all at one time, and passes control
to other load modules during its execution.
tach of the load modules to which control
is passed can be one of the three structure
types.

Table 2 summarizes the characteristics
of these load module structures.

Section I: Supervisor Services 5

Table 2. Load Module Characteristics

r T L)) 1
		Passes
		control to
Structure	Loaded All at	Other Load
Type	One Time	Modules
— t + {		
Simple	Yes	No

b : + + .|
| Planned | |]
| Overlay] No | No |
b O ¥ :
| Dynamic | Yes | Yes i
L . L 4 4

The following paragraphs cover the
advantages and disadvantages of each type
of structure, and discuss the use of each.

SIMPLE STRUCTURE

A simple structure consists of a single
load module produced by the linkage editor.
The single load module contains all of the
instructions required, and is brougint into
the main storage all at one time by the
control program. The simple structure can
be the most efficient of the three
structure types because the instructions it
uses to pass control do not require control
program intervention. However, when a v
program is very large or complex, the main
storage area required for the load module
may exceed that which can be reasonably
regquested. (Main storage considerations
are discussed under the heading "Main
Storage Management.")

PLANNED OVERLAY STRUCTURE

"A planned overlay structure consists of
a single load module produced by the
linkage editor. The entire load module is
not broyghnt into main storage at once;
different segments of the load module use
the same area of main storage. The planned
overlay structure, while not as efficient
as a simple structure in terms of execution
speed, is more efficient than a dynamic
structure. When using a planned overlay
structure, control program assistance is
required to locate and load portions of a
single load module in a library; in a.
dynamic structure, many load modules in
different libraries may need to be located
and loaded in order to execute an
equivalent program.

DYNAMIC STRUCTURE

A dynamic structure requires more than
one lcoad module during execution. Each

load module required can operate as either
a simple structure, a planned overlay
structure, or another dynamic structure.
The advantages of a dynamic structure over
a planned overlay structure increase as the
program becomes more complex, particularly
when the logical path of the program
depends on the data being processed. The
load modules required in a dynamic

.structure are brought into main storage

when required, and can be deleted from main
storage when their use is completed.

LOAD MODULE EXECUTION

Depending on the configquration of the
operating system and the macro instructions
used to pass control, execution of the load
modules is serial or in parallel.

#xecution of the load modules is always
serial in an operating system with PCP;
there is only one task in the job step.
Execution is also serial in an operating
system with MFT and MVT unless an ATTACH
macro instruction is used to create a new
task. The new task competes for control
independently with all other tasks in the
system. The load module named in the
ATTACH macro instruction is executed in
parallel with the load module containing
the ATTACH macro instruction. The
execution of the load modules is serial
within each task.

The following paragraphs discuss passing
control for serial execution of a load
module. Creation and management of new
tasks is discussed under the headings "Task
Creation® and "Task Management."”

PASSING CONTROL IN A SIMPLE STRUCTURE

There are certain procedures to follow
when passing control to an entry point in
the same load module. The established
conventions to use when passing control are
also discussed. These procedures and
conventions provide the framework around

" which all program interface is built.

Knowledge of the information contained in
the section "Addressing -- Program
Sectioning and Linking" in the publication
IBM System/360 Operating System: Assembler
Language is required.

PASSING CONTROL WITHOUT RETURN

A control section is usually written to
perform a specific logical function within
the load module. Therefore, there will be
occasions when control is to be passed to
another control section in the same load

module, and no return of control is
required. An example of this type of
control section is a "housekeeping" routine
at the beginning of a program which
establishes values, initializes switches,
and acquires buffers for the other control
sections in the program. The following
procedures should be used when passing
control without return.

INITIAL REQUIREMENTS: Because control will
not be returned to this control section,
you must restore the contents of register
14. Register 14 originally contained the
address of the location in the calling
program (for example, the control program)
to which control is to be passed when your
program is finished. Since the current
control section will not make the return to
the calling program, the return address
must be passed to the control section that
will make the return. In addition, the
contents of registers 2-12 must be
unchanged when your program eventually
returns control, so these registers must
also be restored.

1f control were being passed to the next
entry point from the control program,
register 15 would contain the entry point
address. You should use register 15 in the
same way, sO0 that the called routine
remains independent of which program passed
control to it. ,

Register 1 should be used to pass
parameters. A parameter list should be
established, and the address of the list
placed in register 1. The parameter list
should consist of consecutive full words
starting on a fullword boundary, each
fullword containing an address to be passed
to the called control section in the thre
low oraer bytes of the word. The i
high-order bit of the last word should be
set to 1 to indicate the last word of the
list. The system convention is that the
list contain addresses only. You may, of
course, deviate from this convention;
however, when you deviate from any system
convention, you restrict the use of your
programs to those programmers who are aware
of your special conventions.

Since you have reloaded all the
necessary registers, the save area that you
used is now available, and can be reused by
the called control section. You pass the
address of the save area in register 13
just as it was passed to you. By passing
the address of the old save area, you save
the 72 bytes of main storage area required
for a second, and unnecessary, save area.

PASSING CONTROL: The common way to pass
control between one control section and an
entry point in the same load module is to
load register 15 with a V-type address
constant for the name of the external entry
point, and then to branch to the address in
register 15. The external entry point must
have been identified using an ENTRY
instruction in the called control section
if the entry point is not the same as the
control section name.

An example of proper register loading
and control transfer is shown in Example 7.
In this example, no new save area is useg,
so register 13 still contains the address
of the o0ld save area. 1t is also assumed
for this example that the control section
will pass the same parameters it received
to the next entry point. First, register
14 is reloaded with the return address.
Next, register 15 is loaded with the
address of the external entry point NEXT,
using the V-type address constant at the
location NEXTADDR. Registers 0-12 are
reloaded, and control is passed by a branch
instruction using register 15. The control
section to which control is passed contains
an ENTRY instruction identifying the entry
point NEXT.

L 14,12(13) CSECT

L 15,NEXTADDR ENTRY NEXT
LM 0,12,20(13) e

BR 15----——-- >NEXT SAVE (14,12)

NEXTADDR DC V (NEXT)

Passing Control in a Simple
Structure

Example 7.

An example of the use of a parameter
list is shown in Example 8. Early in the
routine the contents of register 1 (that
is, the address of the fullword containing
the PARM field address) were stored at the
fullword PARMADDR. Reaister 13 is loaded
with the address of the old save area,
which had been saved in word 2 of the new
save area. The contents of register 14 are
restored, and register 15 is loaded with
the entry point address.

The address of the list of parameters is
loaded into register 1. These parameters
include the addresses of two data control
blocks (DCBs) and tie original recister 1
contents. The high-order bit in the last
address parameter (PARMADDR) is set to 1
using an OR-immediate instruction. The
contents of registers 2-12 are restored.
(Since one of these registers was the base

Section I: Supervisor Services 7

Establish addressability
Save parameter address

Reload address of o0ld save area

Load address of next entry point
Load address of parameter list
Turn on last parameter indicator
Reload remaining registers

USING *,12
EARLY ST 1, PARMADDR
L 13,48(13)
L 14,12(13) Load return address
L 15, NEXTADDR
LA 1,PARMLIST
o1 PARMADDR, X'80"
LM 2,12,28(13)
ER 15 Pass control
PARMLIST DS 0A
DCBADDRS DC A (INDCB)
DC A (OUTDCB)
PARMADDR DC aA(0)
NEXTADDR DC V(NEXT)

Example 8.

register, restoring the registers earlier
would have made the parameter list
unaddressable.) A branch instruction using
register 15 passes control to entry point
NEXT.

PASSING CONTROL WITH RETURN

The control program passed control to
your program, and your program will return
control when it is through processing.
Similarly, control sections within your
program will pass contrcl to other control
sections, and expect to receive control
back. An example of this type of control
section is a "monitor" portion of a
proaram; the monitor determines the order
of execution of other control sections
based on the type of input data. The
following procedures should be used when
passing control with return.

INITIAL REQUIREMENTS: Registers 15 and 1
are used in exactly the same manner as they
were used when control was passed without
return. Register 15 contains tne entry
point address in the new control section
and register 1 is used to pass a parameter
list.

Using the standard convention, register
14 must contain the address of the location
to which control is to be passed when the
called control section completes
processing. This time, of course, it is a
location in the current control section.
The address can be the instruction
following the instruction which causes
control to pass, or it can be another
location within the current control section
designed to handle all returns. Registers
2-12 are not involved in the passing of

Passing Control With a Parameter List

control; the called control section should
not depend on the contents of these
registers in any way.

You should provide a new save area for
use by the called control section as
previously described, and the address of
that save area should be passed in register
13. Note that the same save area can be
reused after control is returned by the
called control section. One new save area
is ordinarily all you will require
regardless of the number of control
sections called.

PASSING CONTROL: Two standard methods are
available for passing control to another
control section and providing for return of
control. One is merely an extension of the
method used to pass control without a
return, and requires a V-type address
constant and a branch or a branch and link
instruction. The other method uses the
CALL macro instruction to provide a
parameter list and establish the entry
point and return point addresses. Using
either method, the entry point must be
identified by an ENTRY instruction in the
called control section if the entry name is
not the same as the control section name.
Example 9 and Example 10 illustrate the two
methods of passing control; in each
example, it is assumed that register 13
already contains the address of a new save
area.

Use of an inline parameter list and an
answer area is also illustrated in Example
9. The address of the external entry point
is loaded into register 15 in the usual
manner. A branch and link instruction is
then used to branch around the parameter

L 15,NEXTADDR

CNOP 0,4

BAL 1,GOOUT
PARMLIST DS 0A

Entry point address in register 15

Parameter list address in register 1
Start of parameter list

register 14 contains return address

DCBADDRS DC A (INDCB) Input dcb address
DC A (OUTDCB) Output dcb address
ANSWERAD DC B'10000000" Last parameter bit on
DC AL3 (AREA) Answer area address
NEXTADDR DC V(NEXT) Address of entry point
GOOUT BALR 14,15 Pass control;
RETURNPT ... eee
AREA DC 12F'0’ Answer area from NEXT

Example 9. Passing Control With Return

list and to load register 1 with the
address of the parameter list. An inline
parameter list such as the one shown in
Example 9 is convenient when you are
debugging because the parameters involved
are located in the listing (or the dump) at
the point they are used, instead of at the
end of the listing or dump. Note that the
first byte of the last address parameter
(ANSWERAD) is coded with the high-order bit
set to 1 to indicate the end of the list.
The area pointed to by the address in the
ANSWERAD parameter is an area to be used by
the called control section to pass
parameters back to the calling control
section. This is a possible method to use
when a called contrcol section must pass
parameters back to the calling control
section. Parameters are passed back in
this manner so that no additional registers
are involved. The area used in tnis
example is twelve full words; the size of
the area for any specific application
depends on the requirements of the two
control sections involved.

CALL NEXT, (INDCE,OUTDCB,AREA),VL
RETURNPT ... ces
AREA DC 12r'0°

Example 10. Passing Control With CALL

The CALL macro instruction in Example 10
provides the same functions as the
instructions in Example 9. When the CALL
macro instruction is expanded, the operands
cause the following results:

NEXT
A V-type address constant is created
for NEXT, and the address is loaded
into register 15.

(INDCB, OUTDCB,AREA)
A-type address constants are created

for the three parameters coded within
parentheses, and the address of the
first A-type address constant is
placed in register 1.

VL
The high order bit of the last A-type
address constant is set to 1.

Control is passed to NEXT using a branch
and link instruction. The address of the
instruction following the CALL macro
instruction is loaded into recister 14
before control is passed.

In addition to the results described
above, the V-type address constant
generated by the CALL macro instruction
causes the load module with the entry point
NEXT to be automatically edited into the
same load module as the control section
containing the CALL macro instruction.
Refer to the publication IBM System/360
Operating System: Linkaoe Editor and
Loader, if you are interested in finding
out more about this service.

The parameter list constructed from the
CALL macro instruction in Example 10
contains only A-type address constants. A
variation on this type of parameter list
results from the following coding:

CALL = NEXT, (INDCB, (6, (7)), VL

in the above CALL macro instruction, two of
the parameters to be passed are coded as
registers rather than symbolic addresses.
The expansion of this macro instruction
again results in a three-word parameter
list; in this example, however, the
expansion also contains the instructions
necessary to store the contents of
registers 6 and 7 in the second and third
words, respectively, of the parameter 1list.
The high-order bit in the third word is set
to 1 after register 7 is stored. You can

Section I: Supervisor Services 9

specify as many parameters as you need as
address parameters to be passed, and you
can use symbolic addresses or register
contents as you see fit.

ANALYZING THE. RETURN: When control is
returned from the control program after
processing a system macro instruction, the
contents of registers 2-13 are unchanged.
When control is returned to your control
section from the called control section,
registers 2-14 contain the same information
they contained when control was passed, as
long as system conventions are followed.
The called control section has no
obligation to restore registers 0 and 1; so
the contents of these registers may or may
not have been chanced.

When control is returned, register 15
can contain a return code indicating tne
results of the processing done by the
calied control section. If used, the
return code should be a multiple of 4, so a
branching table can be used easily, and a
return code of 0 should be used to indicate
a normal return. The control program
frequently uses this method to indicate the
results of the requests you make using
system macro instructions; an example of
the type of return codes the control
program provides is shown in the
description of the IDENTIFY and STOW macro
instructions in the publication IBM
System/360 Operating System: Supervisor
and Data Management Macro Instructions.

The meaning of each of the codes to be
returned must be agreed upon in advance.
In some cases, either a "good" or "bad"
indication (zero or nonzero) will be
sufficient for you to decide your next
action. If this is true, the code shown in
Example 11 could be used to analyze the
results. Many times, however, the results
and the alternatives are more complicated,

and a branching table, such as shown in
Example 12, could be used to pass control
to the proper routine.

HOW CONTROL IS RETURNED

In the discussion of the return under
the heading "Analyzing the Return"™ it was
indicated that the control section
returning control must restore the contents
of registers 2-14. Because these are the
same registers reloaded when control is
passed without a return, refer to the
discussion under "Passing Control Without
Return®" for detailed information ana
examples. The contents of registers 0 and
1 do not nave to be restored.

Register 15 can contain a return code
when control is returned. As indicated
previously, a return code should be a
multiple of four with a return code of zero
indicating a normal return. The return
codes other than zero that you use can have
any meaning, as long as the control section
receiving the return codes is aware of that
meaning.

The return address is the address
originally passed in register 14; return of
control should always be passed to that
address. You can either use a branch
instruction such as BR 14, or you can use
the RETURN macro instruction. An example
of each method of returning control is
discussed in the following paragraphs.

txample 13 is a portion of a control
section used to analyze input data cards
and to check for an out-of-tolerance
condition. Each time an out-of-tolerance
condition is found, in addition to some
corrective action, one is added to the
value at the address STATUSBY. After the
last data card is analyzed, this control

RETURNPT LTR 15,15
BNZ ERRORTN

e e

Example 11. Test for Normal Return

Test return code for zero
Branch if not zero to error routine

RETURNPT B RETTAB(15)
RETTAB B NORMAL

B COND1

B COND2

B GIVEUP

Example 1z.

10

Branch to table using return code

Branch to normal routine

Branch to routine for condition 1

Branch to routine for condition 2

Branch to routine to handle impossible situations

Return Code Test Using Branching Table

L 13,4(13)
L 14,12(13)

Load address of previous save area
Load return address

SR 15,15 Set register 15 to zero

Ic 15,STATUSBY Load number of errors

s1A 15,2 Set return code to multiple of 4
LM 2,12,28(13) Relocad registers 2-12

BR 14 Return

STATUSBY DC X'o00*

Example 13.

a

Establishing a Return Code

section returns to the calling control
section, which proceeds based on the number
of out-of-tolerance conditions encountered.
The coding shown in Example 13 causes
register 13 to be loaded with the address
of the save area this control section used,
then reloads register 14 with the proper
return address. The contents of register
15 are set to zero, and the value at the
address STATUSBY (the number of errors) is
‘placed in the low-order eight bits of the
register. The contents of register 15 are
shifted to the left two places to make the
value a multiple of four. Registers 2-12
are reloaded, and control is returned to
the address in register 1.

The RETURN macro instruction is provided
to save coding time. The expansion of the
RETURN macro instruction provides the
instructions necessary to restore a
designated range of registers, provide the
proper return code value in register 15,
and branch to the address in register 14.
In addition, the RETURN macro instruction
can be used to flag the save area used by
the returning control section; this flag, a
byte containing all ones, is placed in the
high-order byte of word four of the save
area after the registers have been
restored. The flag indicates that the
control section that used the save area has
returned to the calling control section.
You will find that the flag is useful when
tracing the flow of your program in a dump.
For a complete record of program flow, a
separate save area must be provided by each
control section each time control is
passed. This is usually not done because
it requires too much main storage.

The contents of register 13 must be
restored before the RETURN macro
instruction is issued. The registers to be
reloaded should be coded in the same order
as they would have peen designated had a
load-nmultiple (LM) instruction been coded.
You can load register 15 with the return
code value before you code the RETURN macro
instruction, you can specify the return
code value in the RETURN macro instruction,
or you can reload register 15 from thé save
area.

The code shown in Example 14 provides
the same result as the code shown in
Example 13. Registers 13 and 14 are
reloaded, and the proper value is
established in register 15. The RETURN
macro instruction causes registers 2«12 to
be reloaded, and control to be passed to
the address in register 14. The save area
used is not flagged. The RC=(15) operand
indicates that register 15 already contains
the return code value, and the contents of
register 15 are not to pe altered.

Example 15 illustrates another use of
the RETURN macro instruction. The correct
save area address is again established,
then the RETURN macro instruction ‘is
issued. In this example, registers 14 and
0-12 are reloaded, a return code of 8 is
placed in register 15, the save area is
flagged, and control is returned.
Specifying a return code overrides the
request to restore register 15 even though
register 15 is within the designated range
of registers.

Section I: Supervisor Services 11

e s e

L 13,4(13)

L 14,12(13)

SR 15,15

ic 15,STATUSBY
SLA 15,2

RETURN (2,12),RC=(15)

STATUSBY DC X'o00*

Example 14.

* e e

L 13,4(13)
RETURN (14,12),T,RC=8

RETURN Macro Instruction With
Flag

Example 15.

RETURN TO THE CONTROL PROGRAM

The discussion in the preceding
paragraphs has covered passing control
within one load module, and has been based
on the assumption that the load module was
"brought into main storage because of the
program name specified in the EXEC
statement. Whether you were using an
operating system with PCP, MFT, or MVT has
not affected the previous discussion. The
control program established only one task
to be performed for the job step. When the
logical end of the program is reached,
control is returned to the address passed
in register 14 to the first control section
in the program. When the control program
receives control at this point, it
terminates the task it created for the job
step, compares the return code in register
15 with any COND values specified on the
JOB and EXEC statements, and determines
whether or not the following job steps, if
any, should be executed.

PASSING CONTROL IN A PLANNED OVERLAY
STRUCTURE

A complete discussion of the
reguirements for passing control in an
overlay environment is provided in the
publication 1IEM System/360 Operating
System: Linkage Editor and Loader.

PASSING CONTROL IN A DYNAMIC STRUCTURE

The discussion of passing control in a
simple structure has provided the necessary
background for the discussion of passing
control in a dynamic structure. Within

12

Restore save area address
Return address in register 14
zero register 15

Load number of errors

Set return code to multiple of &4
Reload registers and return

Use of the RETURN Macro Instruction

each load module, control should be passed
as in a simple structure or planned overlay
structure. If you can determine which
control sections will make up a load module
before you code the control sections and if
they will fit in the main storace
available, you should pass control within
the load module without involving the
control program. The macro instructions
discussed in this section provide increased
linkage capability, oput they require
control program intervention and possibly
increased execution time.

BRINGING THE LOAD MCDULE INTO MAIN STCRAGE

The load module containing the entry
point name you specified on the EXEC
statement is automatically brought into
main storage by the control program. Any
other load modules you require during your
job step are brought into main storace by
the control program as a result of specific
requests for dynamic acquisition; taese
requests are made through the use of the
LOAD, LINK, ATTACH, or XCTL macro
instructions. The following paragraphs
discuss the proper use of these macro
instructions.

LOAD MODULE LOCATION: Initially, each load
module that you can obtain dynamically is

located in a library (partitioned data

set). This library is the link library,
the jop or step library, or a private
library. .

e The link library is always present and
is available to all job steps of all
jobs. The control program provides the
necessary data control block for tae
library, and logically connects the
library to your program, making the
members of the library available to
your program.

¢ The job and step libraries are
established by including //JOBLIB and
//STEPLIB DD statements in the input
stream. The //JOBLlB DD statement is

placed immediately after the JOB
statement, while the //STEPLIB DD
statement is placed among the DD
statements for a particular job step.
The job library is availaple to all
steps of your job, except those that
have step libraries. A step library is
available to a single job step; if
there is a job library, tne step
library replaces the job library Zfor
the step. For either the job library
or the step library, the control
program provides the necessary data
control block and issues the OPEN macro
instruction to logically connect the
library to your program.

e A private library is established by
including a DD statement in the input
stream, and is available only to the
job step in which it is defined. You
must provide the necessary data control
block and issue the OPEN macro
instruction for each data set. You may
use more than one private library by
including more than one DD statement
and associated data control block.

A library can be a single partitioned
data set, or a collection of such data
sets. When it is a collection, you define
each data set py a separate DD statement,
but you assign a name only to the statement
that defines the first data set. Thus, a
job library consisting of three partitioned
data sets would be defined as follows:

//J0BLI1IB DD DSNAME=PDS1,---
/7 DD DSNAME=PDS2,---
// DD DSNAME=PDS3,---

The three data sets (PDS1, PDS2, PDS3) are
processed as one, and are said to be
concatenated. Concatenation and the use of
partitioned data sets is discussed in more
detail in Section II: Data Management
Services.

If you are using an operating system
with MFT or MVT, some of the load modules
from the link library may already be in
main storage in an area called the resident
reenterable module area (MFT) or the link
pack area (MVT). However, the resident
reenterable module area is optional in an
operating system with MFT. The contents of
this area are determined at Initial Program
Loading time, and will vary depending on
the requirements of your installation. 1In
an operating system with MVT, the iink pack
area contains frequently used, reenterable
load modules from the link library along
with data management load modules; these
load modules can be used by any job step in
| any job. In an operating system with MFT,

the resident reenterable module area can
contain user-written modules and the
loader, discussed in the publication IBM
System/360 Operating System: Linkage
Editor and Loader.

With the exception of those load modules
contained in this area, copies of all of
the load modules you request are brought
into your area of main storage, and are
available to any task in your job step.

The portion of your area containing the
copies of load modules is called the joo
pack area.

THE SEARCH FOR THE LOAD MODULE: In
response to your request for a copy of a
load module, the control program searches
the libraries, the job pack area, and, when
one exists, the link pack area. 1f a copy
of the load module is found in one of the
pack areas, the control program determines
whether or not that copy can be used, based
on criteria discussed under the heading
"Using an Existing Copy." If an existina
copy can be used, the search stops. If it
can not be used, the search continues until
the module is located in a library. The
load module is then brought into the job
pack area.

The order in which the libraries and
pack areas are searched depends on whether
the system is MVT or MFT, and upon the
operands used in the macro instruction
requesting the load module. The operands
that define the order of the search are the
EP, EPLOC, DE, and DCB operands. The EP,
EPLOC, and DE operands are used to specify
the name of the entry point in the load
module; you code one of the three every
time you use a LINK, LOAD, XCTL, or ATTACH
macro instruction. The DC3 operand is used

to indicate the address of the data control

block for the library containing the load
module, and is optional. Omitting the DCB
operand or using the DCB operand with an
address of zero specifies the data control
blocks for the 1ink library and the job or
step library.

The following paragraphs discuss the
order of the search when the entry point
name used is a member name.

The EP and EPLOC operands require the
least effort on your part; you provide only
the entry point name, and the control
program searches for a load module having
that entry point name. Table 3 shows the
order of the search when EP or EPLOC is
coded, and the DCB operand is omitted or
DCB=0 is coded.

Section I: Supervisor Services 13

Table 3.

Search for Module, EP or EPLOC Operands With DCB=0 or DCB Operand Omitted

r T
| PCP | MFT
L

T
| MVT
4

4
| 3 T
| The job pack area is
| searched for an available

| copy
IR

|The partition is searched

+ :
|The job pack area of the
|region is searched for an
|available copy

1 N

g —

IS :
|The step library is

| searched; if there is no
| step library, the job | (optional)

|library (if any) is searched|
i

+
|The resident reenterable load|The step library is
|module area is searched

| searched; if there is no
|step library, the job
|library (if any) is searched
)

| searched
[l

T T
The link library is searched|The job library (if any) is |[The link pack area is

| searched
i

o ——— et sty

o e oy

i
The link library is searched |The link library is searched|
4

B e i

|

If you know that the load module you are
requesting is a member of one of the ‘
private libraries, you can still use the EP
or EPLOC operands, this time in conjunction
with the DCB operand. You would specify
the address of the data control block for
the private library in the DCB operand.

The order of the search for EP or EPLOC
with the DCB operand is shown in Table 4.

When used without the DCE operand, the
EP and RPLOC operands provide the easiest
method of requesting a load module from the
link, job, or step library. The job or
step lipbrary is searched before the link
library, and the data sets that make up
this library are searched in the order of
their DD statements. Thus, one library or
data set within a library can be used to
hold one version of a load module, while
another can be used to hold anotner version

Table 4.
Library

[—

with the same entry point name. If one
version is in the link library, you can
ensure that the other will be found first
by including it in the job or step library.
However, if both versions are in the job or
step library, you must define the data set
that contains the version you want to use
before that which contains the other
version. For example, if the wanted
version is in PDS1 and the unwanted version
is in PDS2, a step library consisting of
these data sets should be defined as
follows:

//STEPLIB DD DSNAME=PDS1,---
// DD DSNAME=PDS2,---

Searching a job or step library slows
the retrieval of load modules from the link
library; to speed this retrieval, you
should limit the size of the job and step

Search for Module, EF or EPLOC Operands With DCB Operand Specifying Private

r
| pCP MFT

T
| MVT
1

e o s]

| The job pack area is
| searched for an available
1copy

The partition is searched

+
|The job pack area of the
|region is searched for an

lavailable copy
H

r
| The specified library is
| searched

The resident reenterable
load module area is
searched (optional)

1 -
|The specified library is
| searched

e e e e e . s e e

|
I
|
|
|
|
L

| searched
L

| The specified library is

|

t

iThe link pack area is
| searched

L

]
|
P SOV B Sy— |

i
|The 1ink library is searched|
1 -3

14

libraries. You can best do this by
eliminating the job library altogether, and
providing step libraries where required.
You can limit each step library to the data
sets required by a single step; some steps
(such as assembly) will not require a step
library, and therefore will not require any
unnecessary search in retrieving modules
from the link library. For maximum
efficiency, you should define a job library
only when a step library would be required
for every step, and every step library
would be the same.

The D& operand requires more work than
the EP and EPLOC operands, but it can
reduce the amount of time spent searching
for a load module. Before you can use this
operand, you must use the BLDL macro
instruction to obtain the directory entry
for the module. The directory entry is
part of the library that contains the
module.

To save time, the BLDL macro instruction
used must obtain directory entries for more
than one entry point name. You specify the
names of the load modules and the address
of the data control block for the library
when using the BLDL macro instruction; the
control program places a copy of the
directory entry for each entry point name
requested in a designated location in main
storage. 1f you specify the link library
and the job or step library, the directory
information indicates from which library
the directory entry was taken. The
directory entry always indicates the exact
relative track and block location of the
load module in the library. If the load
module is not located on the library you
indicate, a return code is given. You can
then issue another BLDL macro instruction
specifying a different library.

To use the DE operand, you provide the
address of the directory entry, and code or
omit the LCB operand to indicate the same
library specified in the BLDL macro
instruction. The order of the search when
the DE operand is used is shown in Table 5
for the 1link, job, step, and private
libraries.

The preceding discussion of the search
is based on the premise that the entry
point name you specified is the member
name. When you are using an operatinc
system with the primary control program or
MFT, the same search results from

specifying an alias rather than a member
name. When you are using an operating
system that includes MVT, the control
program checks if the entry point name is
an alias when the load module is found in a
library. If the name is an alias, the
control program obtains the corresponding
member name from the library directory,
then searches the link pack and job pack .
areas using the member name to determine if
a usable copy of the load module exists in
main storage. 1f a usable copy does not
exist in a pack area, a new copy is brought
into the job pack area. Otherwise, the
existing copy is used, conserving main
storage and eliminating the loading time.

As the discussion of the search
indicates, you should choose the operands
for the macro instruction that provide the
shortest search time. The search of a
library actually involves a search of the
directory, followed by copying the
directory entry into main storage, followed
by loading the load module into main
storage. If you know the location of the
load module, you should use the operands in
your macro instruction that eliminate as
many of these unnecessary searches as
possible, as indicated in Table 3, Table 4,
and Table 5. Examples of the use of these
tables are shown in the discussion of
passing control.

USING AN EXISTING COPY: The control
prooram will use a copy of the load module
already in the link pack area or job pack.
area if the copy can be used. Whether the
copy can be used or not depends on the
reusability and current status of the load
module; that is, the load module
attributes, as designated using linkage
editor control statements, and whether or
not the load module has already been used
or is in use. The status information is
available to the control program only when
you specify the load module entry point
name on an EXEC statement, or when you use
ATTACH, LINK, or XCTi macro instructions to
transfer control to the load module. The
control program will protect you from
obtaining an unusable copy of a load module
as long as you always "formally" request a
copy using these macro instructions (or the
EXEC statement); if you ever pass control
in any other manner (for instance, a branch
or a CALL macro instruction), the control
program, because it is not informed, cannot
protect you.

Section I: Supervisor Services 15

Table 5. Search for Module Using DE Operand
r T - - I - -3
| | ! I
| PCP | MFT |MVT |
I | | |
t L 1 - -1
| Directory Entry Indicates Link Library and DCB=0 or DCB Operand Omitted |
t - v . T -1
The job pack area is	The partition is searched	The job pack area for the
searched for an available		region is searched for an
copy	lavailable copy	
L - L ——d e ___"		
L T		
The module is obtained from	The resident reenterable	The link pack area is
the link library	load module area is searched	searched
	(optional)	
! e		
	The module is obtained from	The module is obtained from
	the 1link library	the link library
	I	
P ! -t 1		
Directory Entry Indicates Job Library and DCB=0 or DCB Operand Omitted		
L		
F T S P 1		
The job pack area is iThe job pack area for tne	The job pack area for the]	
searched for an available	partition is seaxrched for an	region is searched for an
copy lavailable copy	available copy	
—— e e e e e e e e e e e o rem e i s e e S e i s o e +)		
T T 1		
The module is obtained from	The module is obtained from	[The module is obtained from
the step library; if there	[the step library; if there is	the step library; if there
is no step library, the	no step library, the module	is no step library, the]
module is obtained from the	is obtained from the job	module is obtained from the
Job library	library	job library
— e d —--i e 1		
DCB Operand Indicates Private Library		
—- T ' T - -		
The job pack area is	The job pack area for the	The job pack area for the
searched for an available	partition is searched for an	region is searched for an
copy	available copy {available copy	
I8 1. 4		
[] T T —_"		
The module is obtained from	The module is obtained from	[The module is obtained from
{the specified private	the specified private library	the specified private
library		library
L - 4 41 —— J

Operating System With MVT: If you are
using an operating system with MVT, all
reenterable modules (modules designated as
reenterable using the linkage editor) from
any library are completely reusable; only
one copy is ever placed in the 1link pack
area or brougnt into your job pack area,
and you get immediate control of the load
module. 1f the module is serially
reusable, only one copy is ever placed in
the job pack area; this copy will always be
used for a LOAD macro instruction. If the
copy is in use, however, and the request is
made using a LINK, ATTACH, or XCTL macro
instruction, the task requiring the load
module is placed in a wait condition until
the copy is available. A LINK macro
instruction should not be issued for a
serially reusable load module currently in
use for the same task; the task will be
abnormally terminated. (This could occur

16

if an exit routine issued a LINK macro
instruction for a load module in use by the
main program.)

I1f the load module is nonreusable, a
LOAD macro instruction will always bring in
a new copy of the load module; an existing
copy is used only if a LINK, . ATTACH, or
XCTL macro instruction is issued and the
copy has not been used previously.
Remember, the control program can determine
if a load module has been used or is in use
only if all of your requests are made using
LINK, ATTACH, or XCTL macro instructions.

MFT System With Subtasking: If you are
using an MFT system with subtasking, the
LOAD macro instruction enables all tasks in
a partition to share the same copy of a
reenterable module invoked by a previous
LOAD macro instruction. 1if the reenterable

module is again invoked by a LINK, XCTL, or
ATTACH macro instruction and a previous
request is still active, a new copy of the
module will be brought into main storage.

PCP _and MFT Systems Without Subtasking: If
you are using an operating system with PCP
or MFT, the macro instruction used to
request the load module also determines if
an existing copy can be used. If a LOAD
macro instruction is issued, an existing
copy is always used to satisfy the request,
without regard to the reusability
designation or the current status of the
copy. iHowever, if an ATTAChH, LINK, or XCTL
macro instruction is issued, an existing
copy is used only if that copy was brought
into main storage as a result of a request
using a LOAD macro instruction and the copy
is not in use; otherwise, a new copy is
brought into the job pack area.

MFT Systems with the Resident Reenterable
Module Area Option: If you are using an
operating system with the MFT resident
reenterable module area option, and you
request use of a module by issuing an
ATTACE, LINK, LOAD, or XCTL macro -
instruction, the supervisor will search the
resident reenterable module area for a copy
of the module before fetching a new copy
into main storage.

USE OF THE LOAD MACRO INSTRUCYIICN: The
LOAD macro instruction is used to ensure
that a copy of the specified ioad module is
in main storage in your job pack area if it
is not preloaded into the link pack area.
Wwhen a LOAD macro instruction is issued,
the control program searches for the load
mocdule as -discussed previously, and brings
a copy of the load module into the joo pack
area if required. When the control program
returns control, register 0 contains the
main storage address of the eatry point
specified for the requested load module.
Normally, the LOAD macro instruction is
used only for a reenterable or serially
reusable load module, since the load module
is retained even though it is not in use.

The control program also establishes a
"responsibility" count for the copy, and
adds one to the count each time the
requirements of a LOAD macro instruction
are satisfied by the same copy. As long as
the responsibility count is not zexro, the
copy is retained in main storage.

The responsibility count for the copy is
lowered oy one when a DELETE macro
instruction is issued during the task which
was active when the LOAD macro instruction
was issued. When a task is terminated, the
count is lowered by the number of LOAD

macro instructions issued for the copy when
the task was active minus the number of
deletions.

When the responsibility count for a copy
in a job pack area reaches zero, the main
storage area containing the copy is made
available; the copy is never reused after
the responsibility count established by
LOAD macro instructions reaches zero.

Copies of load modules are not added to
or deleted from the link pack area; LOAD
and DELETE macro instructions issued for
load modules already in the link pack area
result in returns indicating successful
completion, however.

PASSING CONTROL WITH RETURN

The LINK macro instruction is used to
pass control between load modules and to
provide for return of control. 1n an
operating system without subtasking {(that
is, PCP or MFT without suotasking), the
ATTACH macro instruction is executed in a
similar manner to the LINK macro
instruction. You can also pass control
using branch or branch and link
instructions or the CALL macro instruction;
however, when you pass control in this
manner you must protect against multiple
uses of nonreusable or serially reusable
modules. The following paragraphs discuss
the requirements for passina control with
return in each case.

THE LINK MACRO INSTRUCTION: When you use
the LINK macro instruction, as far as the
logic of your program is concerned, you are
passing contrel to another load wodule.
Remember, however, that you are requesting
the control program to assist you in
passing control. You are actually passing
control to the control program, using an
3VC instruction, and requesting the control
program to find a copy of the load module
and pass control to the entry point you
designate. There is some similarity
between passing control using a LINK macro
instruction and passing control using a
CALL macro instruction in a simple
structure. These similarities are
discussed first.

The convention regarding registers 2-12
still applies; the control program does not
change the contents of these registers, and
the calied load module should restore them
before control is returned. You must
provide the address in register 13 of a
save area for use by the called load
module; the control program does not use
this save area. You can pass address

Section 1I: Supervisor Services 17

parameters in a parameter list to the load
module using register 1; the LINK macro
instruction provides the same facility for
constructing this list as the CALL macro
instruction. Register 0 is used by the
control program and the contents will be
modified.

There is also some difference between
passing control using a LINK macro
instruction and passing control using a
CALL macro instruction. When you pass
control in a simple structure, register 15
contains the entry point address and
register 14 contdins the return point
address. When the called load module gets
control, that is still what recisters il
and 15 contain, but when you use the LINK
macro instruction, it is the control
program that establishes these addresses.
When you code the LINK macro instruction,
you provide the entry point name and
possibly some library information using the
EP, EPLOC, or DE, and DCB operands. But
you have to get this entry point and
library information to the control program.
The expansion of the LINK macro instruction
does this, by creating a control program
parameter list (the information required by
the control program) and placing the
address of this parameter list in register
15. After the control program finds the
entry point, it places the address in
recister 15.

The return address in your control
section is always the instruction following
the LINK; that is not, however, the address
that the called load module receives in
register 14. The control program saves the
address of the location in your program in

its own save area, and places in reoister
14 the address of a routine within the
control program that will receive control.
Because control was passed using the
control program, return must also be made
using the control program.

The control program establishes a
responsibility count for a load module when
control 1is passed using the LINK macro
instruction. This is a separate
responsibility count from the count
established for LOAD macro instructions,
but it is used in the same manner. The
count is increased by one when a LINK macro
instruction is issued, and decreased by one
when return is made to the control program
or when the called load module issues an
XCTL macro instruction.

Examples 16 and 17 show the coding of a
LINK macro instruction used to pass control
to an entry point in a load module. 1In
Example 16, the load module is from the
link, job, or step library; in Example 17,
the module is from a private library.
Except for the method used to pass control,
this example is similar to Examples 9 and
10. A problem program parameter list
containing the addresses INDCB, OUTDCE, and
AREA is passed to the called load module;
the return point is the instruction
following the LINK macro instruction. A
V-type address constant is not generated,
because the load module containing the
entry point NEXT is not to be edited into
the calling load module. Note that the EP
operand is chosen, since the search begins
with the job pack area and the appropriate
library as shown in Table 3.

———

LINK EP=NEXT,PARAM=(INDCB,OUTDCB,AREA),VL=1

RETURNPT ...

AREA DC 12r'0"

Example 16.

Use of the LINK Macro Instruction With the Job or Link Library

OPEN (PVTLIB)

LINK EP=NEXT,DCB=PVTLIB,PARAM=(INDCB,OUTDCB,AREA),VL=1

PVTLIB DCB

Example 17.

18

DDNAME=PVTLIBDD,DSORG=PO, MACRF= (R)

Use of the LINK Macro Instruction With a Private Library

BLDL O0,LISTADDR

DS OH List description field:
LISTADDR DC X'0001" Number of list entries

DC X'003Aa’ Length of each entry
NAMEADDR DC CL8'NEXT" Member name

DS 25H

Example 18.

Use of the BLDL Macro Instruction

Area required for directory information

LINK DE=NAMEADDR,DCB=0,PARAM=(INDCB,OUTDCB,AREA) ,VL=1

Example 19.

Examples 18 and 19 show the use of the
BLDL and LINK macro instructions to pass
control. Assuming control is to be passed
to an entry point in a load module from the
link library, a BLDL macro instruction is
issued to oring the directory entry for the
member into main storage. (Rémember,
however, that time is saved only if more
than one directory entry is requested in a
BLDL macro instruction. Only cne is
requested here for simplicity.)

The first operand of the BLDL macro
instruction is a zero, which indicates that
the directory entry is on the link or job
library. The second operand is the address
in main storage of the list description
field for the directory entry. The first
two bytes at LISTADDR indicate the number
of directory entries in the list; the
second two bytes indicate the length of
each entry. If the entry is to be used in
a LINK, LOAD, AT1ACd, or XCTL macro
instruction, the entry must be 58 bytes in
length (hexadecimal 3A). A character
constant is established to contain the
directory information to be placed there by
the control program as a result of the BLDL
macro instruction. The LINK macro
instruction in kxample 19 can now be
written. Note that the DE operand refers
to the name field, not the list description
field, of the directory entry.

USE OF THE ATTACH MACRO INSTRUCTION (PCP
AND MFT WITHOUT SUBTASKING): This
discussion applies only if you are using an
operating system with the primary control
program or with MFT without subtasking.
an operating system with MVT or with MFT
with subtasking, you use the ATTACH macro
instruction to cause parallel execution, as
discussed under the heading "Task Creation."

In

The LINK Macro Instruction With

a DE Operand

The ATTACH macro instruction performs
exactly the same functions as the LINK
macro instruction, and should be used in
exactly the same way. You should use the
ATTACH macro instruction only when coding
for upward compatibility with an operating
system that includes MVT. There are two
additional optional operands provided with
the ATTACH macro instruction: the ECE and
ETXR operands. They provide a means of
communicating between tasks from the same
job step when they are used in an operating
system with MVT. They do not provide this
service in the other configurations of the
operating system because there is only one
task for each job step. 1If your program is
ever to be run in a system with MVT, the
use of these operands in the other
configurations provides an opportunity to
check the routines associated with these
operands. Refer to "Task Management" for a
discussion of the ECB and ETXR operands if
this is the case. You may find other uses
for these operands in your current system.

The ECB operand allows you to specify
the address of an event control block, a
fullword which will be used by the contrcl
program to inform you of the completion of
the called load module. The return code
from the called load module will also be
placed in the fullword. For a complete
discussion of the event control block and
its purpose, see "Task Management."

The ETXR operand provides the means of
specifying an end-of-task exit routine to
be given control followino the completion
of the called load module. This exit
routine must be in main storage when it is
required. The routine is given control by
the control program and must return control
to the control program using the address in
register 1l4. The control program then
returns control to the instruction
following the ATTACh macro instruction.

Section I: Supervisor Services 19

USING_CALL OR BRANCH AND LINK: You can
save time by passing control to a load
module without using the control program.
Passing control without using the control
program is performed as follows: issue a
LOAD macro instruction to obtain a copy of
the load module, preceded by a BLDL macro
instruction if you can shorten the search
time by using it. The control program
returns the address of the entry point in
register 0. Load this address into
register 15. The linkage requirements are
the same when passing control between load
modules as when passing control between
control sections in the same load module:
register 13 must contain a save area
address, register 14 must contain the
return point address, and register 1 is
used to pass parameters in a parameter
list. A branch instruction, a branch and
link instruction, or a CALL macro
instruction can be used to pass control,
using register 15. The return will be made
directly to you.

Note: When control is passed to a load
module without using the control program,
you must check the load module attributes
and current status of the copy yourself,
and you must check the current status in
all succeeding uses of that load module
during the job step, even when the control
program is used to pass control.

The reason you have to keep track of the
usability of the load module has been
discussed previously: you are not allowing
the control program to determine whether
you can use a particular copy of the locad
module. The following paragraphs discuss
your responsibilities when using load
modules with various attributes. You must
always know what the reusability attribute
of the load module is. If you do not know,
you should not attempt to pass control
yourself.

If the load module is reenterable, one
copy of the load module is all that is ever
required for a job step. You do not have
to determine the current status of the
copy; it can always be used. The best way
to pass control is to use a CALL macro
instruction or a branch or branch and link
instruction.

If the load module is serially reusable,
one use of the copy must be completed

20

before the next use begins. If your job
step consists of only one task, preventing
simultaneous use of the same copy involves
making sure that the logic of your program
does not require a second use of tne same
load module before completion of the first
use. An exit routine must not reguire the
use of a serially reusable load module also
required in the main program.

Preventing simultaneous use of the same
copy when you have more than one task in
the job step requires more effort on your
part. You must still be sure that the
logic of the program for each task does not
require a second use of the same load
module before completion of the first use.
You must also be sure that no more than one
task requires the use of the same copy of
the load module at one time; the ENy macro
instruction can be used for this purpose.
Properly used, the ENQ macro instruction
prevents the use of a serially reusable
resource, in this case a load module, by
more than one task at a time. Kefer to
"Program Management Services" for a
complete discussion of the ENQ macro
instruction. - A conditional ENyU macro
instruction can also be used to check for
simultaneous use of a serially reusable
resource within one task when using an
operating system with MFT or MVT.

If the load module is nonreusable, each
copy can only be used once; ycu must be
sure that you use a new copy each time you
require the load module. If you are using
an operating system with MVT or with MFT
with subtasking, you can ensure that you
always get a new copy by using a LINK macro
instruction or by doing as follows:

» Issue a LOAD macro instruction before
you pass controi.

® Pass control using a branch or a branch
and link instruction or a CALL macro
instruction only.

e issue a DELETE macro instruction as
soon as you are through with the copy.

1f you are using an operating system
with PCP or with MFT without subtaskinag,

you should perform the same three steps

indicated above, and also make sure that
you do not require a second use of the load
module before completion of the first use.

HOW CONTROL IS RETURNED

The return of control between load
modules is exactly the same as return of
control between two control sections in the
same load module. ' The program in the load
module returning control is responsible for
restoring registers 2-14, possibly
establishing a return code in recister 15,
and passing control using the address in
register 1i#. The program in the load
module to which control is returned can
expect the contents of registers 2-13 to be
unchanged, the contents of register 14 to
be the return point address, and
optionally, the contents of register 15 to
be a return code. The return of control
can be made using a branch instruction or
the RETURN macro instruction. If control
was passed without using the control
program, that is all there is to it.
However, if control was originally passed
using the control program, the return of
control is to the control program, then to
the calling program. The action taken by
the control program is discussed in the
following paragraphs.

When control was passed using a LINK or
ATTACH macro instruction, the
responsibility count was increased by one
for the copy of the load mcdule to which
control was passed to ensure that the copy
would be in main storage as long as it was
required. The return of control indicates
to the control program that this use of the
copy is completed, so the responsibility
count is decremented by one. If you are
using an operating system with the primary
control program or MFT, the main storage
area containing the copy is made available
when the responsibility count reaches zero.
If you are using an operating system with
MVT, the copy is retained when the
responsibility count reaches zero if all
three of the following requirements are
met:

e The load module attributes are serially
reusable or reenterable.

» The count was not reduced to zero
because of a DELETE macro instruction.

¢ The main storage area is not required
for other purposes.

If control was originally passed using
an ATTACH macro instruction (PCP or MFT
without subtasking), the control program
takes the following action:

e If the ECB operand was specified, the
control program posts the return code
in the indicated fullwoxd.

e If the ETXR operand was specified, the
control program passes control to the
designated address, using register 15
to contain the entry point address, and
register 14 to contain the return point
address (to the control program). When
the exit routine returns control, the
control program passes control to the
instruction following the ATTACH macro
instruction without modifying the
contents of any register except
register 14. Register 15 does not, in
this case, contain the return code.

If the ETXR operand was not specified,
or if the LINK macro instruction was used
to pass control, the control program only
places the return point address into
recister 14, and passes control to that
address. No other register contents are
modified.

PASSING CONTROL WITHOUT RETURN

The XCTL macro instruction is used to
pass control between load modules when no
return of control is required. You can
also pass control using a branch
instruction; however, when you pass control
in this manner, you must protect against
multiple uses of non-reusable or serially
reusable modules. The following paraoraphs
discuss the requirements for passing
control without return in each case.

PASSING CONTROL USING A BRANCH INSTRUCTION:
The same requirements and procedures for
protecting against reuse of a nonreusable
copy of a load module apply when passing
control without return as were stated under
"Passing Control With Return." The
procedures for passing control are as
follows.

A LOAD macro instruction should be
issued to obtain a copy of the load module.
The entry point address returned in
register 0 is loaded into register 15.
linkage requirements are the same when
passing control between load modules as
when passing control between control
sections in the same load module; register
13 must be reloaded with the old save area
address, then registers 14 and 2-12
restored from that old save area.

Registers 1 is used to pass parameters in a
parameter list. A branch instruction is
issued to pass control to the address in
register 15.

The

Section i: Supervisor Services 21

Mixing branch instructions anG XCTL

macro instructions is hazardous. The next
topic explains why.
USE OF THE XCTL MACRO INSTRUCTION: The

XCTL macro instruction, in addition to
being used to pass control, is also used to
indicate to the control program that this
use of the load module containing the XCTL
macro instruction is completed. Because
control is not to be returned, the address
of the old save area must be reloaded into
register 13. The return point address must
be loaded into register 14 from the old
save area, as must the contents of
registers 2-12. The XCTL macro instruction
can be written to request the loading of
registers 2-12, or you can do it yourself.
Wwhen using the XCTL macro instruction, you
pass parameters in a parameter list, with
the address of the list contained in
register 1. In this case, however, the
parameter list must be established in a
portion of main storage outside the current
load module containing the XCTL macro
instruction. This is because the copy of
‘the current load module may be deleted
before the called load module can use the
parameters, as explained in more detail
below.

The XCTL macro instruction is similar to
the LINK macro instruction in the method
used to pass control: control is passed by
way of the control program using a control
program parameter list. The control
program loads a copy of the load module, if
necessary, establishes the entry point
address in register 15, saves the address
passed in register 14 and replaces it with
a new return point address within the
control program, and passes control to the
address in register 15. The control
program adds one to the responsibility
count for the copy of the load module to
which control is to be passed, and
subtracts one from the responsibility count
for the current load module. The current
load module in this case is the load module
last given control using the control
program in the performance of the active
task. If you have been passing control
between load modules without using the
control program, chances are the
responsibility count will be lowered for
the wrong load module copy. And remember,
when the responsibility count of a copy
reaches zero, that copy may be deleted,
causing unpredicatable results if you try
to return control to it.

Figure 3 shows in detail how this could

happen. Control is given to load module A,
which passes control to load module B (step

22

1) using a LOAD macro instruction and a
branch and link instruction. Register 14
at this time contains the address of the
instruction following the branch and 1link.
Load module B then is executed, independent
of how control was passed, and issues an
XCTL macro instruction when it is finished
(step 2) to pass control to load module C.
The control program, knowing only of load
nmodule A, lowers the responsipility count
of A by one, resulting in its deletion.
Load module C is executed and returns to
the address which used to follow the branch
and link instruction. Step 3 of Figure 3
indicates the result.

Control Program

T

\

Step 1
LOAD B P
BALR B
Control
Program . Control
=—+A { Program
|
A4
BALR [~—>B C
Step 2
XCTLC
— Control Program
=7
[
P B | :
|

| | Step 3

I |

vl

XCTLC [— RETURN

Figure 3. Misusing Control Program

Facilities

Two methods are available for ensuring
that the proper responsibility count is
lowered. One way is to always use the
control program to pass control with or
without return. The other method is to use
only LOAD and DELETE macro instructions to
determine whether or not a copy of a load
module should remain in main storage.

Task Creation

In any conficuration of the operating
system, one task is created by the control
program as a result of initiating execution
of the job step. 1In an operating system
with FCP or with MFT without subtasking,
~only the control program can create tasks;
your program cannot create tasks.

In an operating system with MVT or with
MFT with subtasking, you can create
additional tasks in your program. If you
do not, however, the job step task is the
only task in a job being executed under MVT
or under MFI with subtasking. The benefits
of a multiprocramming environment are still
available even with only one task in the
job step; work is still being performed
when your task is unable to use the system
while waiting for an event, such as an
input operation, to occur.

The advantage in creating additional
tasks within the job step is that more
tasks are competing for control than the
task in the job you are concerned with.
Wnen a wait condition occurs in one of your
tasks, it is not necessarily a task from
some other job that gets control. It may
be one of your tasks, a portion of your
job.

The general rule is
execution of a job step
one task in a job step) should be chosen
only when a significant amount of overlap
between two or more tasks can be achieved.
The amount of time taken by the control
program in establishing and controlling
additional tasks, and your increased effort
to coordinate the tasks and provide for
communications between them must be taken
into account.

that parallel
(that is, more than

CREATING TdE TASK

A new task is created by issuing an
ATTACH macro instruction. The task which
is active when the ATTACH macro instruction
is issued is the originating task, the
newly created task is the subtask of the
originating task. The subtask competes for
control in the same manner as any otner
task in the system, on the basis of
priority and the current ability to use the
central processing unit. The address of
the task control block for the subtask is
returned in register 1.

The entry point in the load module to be
given control when the subtask becomes
active is specified in the same way as in a
LINK macrc instruction, that is, through

the use of the EP, EPLOC, DE, and DCB
operands. The use of these operands is
discussed in the section titled "Program
Management." Parameters can be passed to
the subtask using the PARAM and VL
operands, also described in "Program
Management." Ownership of subpools is
transferred or shared using the GSPV, GSPL,
SHSPV, and SHSPL operands discussed in
"Main Storage Management." The only
additional operands are those dealing with
the priority of the subtask, and the’
operands that provide for communication
between tasks.

Note: Although you are using an MFT
system, you can include the subpool and
rollout/rollin parameters for compatibility
with an MVT system. If you code these
parameters correctly, a system with MFT
ignores them.

TASK PRIORITY

In a system with MVT or MFT with
subtasking, tasks compete for control on
the basis of priority. When a task is
created, it is assigned a priority that can
later be revised upward or downward. It is
also assigned a limit to its priority, a
value equal to the highest priority the
task can be assigned; this value is called
the task's limit priority. The task's
actual priority, the basis on which it
competes for control, is called the task's
dispatching priority.

A task can change its own dispatching
priority but not its own 1limit priority.
It can change both the dispatching and
limit priorities of its subtasks, but
cannot set the limit priority of a subtask
higher than its own limit priority.

PRIORITY OF THE JOB STEP TASK

The limit priority of the job step task
cannot be changed; it is always equal to
the task's initial dispatching priority.
You can specify initial dispatching
priority through the DERTY parameter of the
EXEC statement:

DPRTY=(value, ,valuey)

where value, and value, are both intecers
from 0 to 15. Dispatching priority is then
computed as follows:

Dispatching Priority =
(valuey; x 16) + value,

Section I: Supervisor Services 23

For example, if value; is 6 and value, is
4:

Dispatching Priority =
(6 x 16) + 4 = 100

Note that you can specify any dispatching
priority from 0 (DPRTY=(0,0)) to 255
(DPRTY=(15,15)).

If you omit the DPRTY parameter for a
job step, the initial dispatching priority
of the job step task is determined by the
job priority. You specify job priority
through the PRTY parameter of the JOB
statement, or omit this parameter and allow
the job priority to be determined by
default. Job priority is used in selecting
jobs for execution and in assigning
input/output devices.

When you specify job priority, you code
the parameter:

PRTY=value

where value is the job priority, an integer
from 0 to 13. 1If you do not specify
dispatching priority for a job step, it is
computed from the job priority as follows:

Dispatching Priority =
(value x 16) + 11

This is the same priority that would result
from coding the parameter DPRTY={(value,b11).

To specify a dispatching priority equal
to that which would be computed from a
given job priority, you can specify:

DPRTY=value,

where value, is the job priority. The
omitted value, has an assumed value of 11.

Whether you specify dispatching priority
or not, you cannot be absolutely certain of
what a job step's initial dispatching
priority will be. To achieve best results
from the operating system, the operations
staff may override specified job and
dispatching priorities. Your program,
therefore, cannot simply assume that the
job step task will have a particuiar
initial dispatching priority. To determine
this priority, your program must issue the
EXTRACT macro instruction, as described
later in "Obtaining Information from the
Task Control Elock."

To summarize, the initial dispatching

priority of the job step task can be
determined four ways:

24

1. It can be specified directly throuch
the DPRTY parameter of the EXEC
statement.

2. It can be specified indirectly through
the PRTY parameter of the JOB
statement.

3. It can be determined by default when
the PRTY and DPRTY parameters are both
omitted.

4, It can be determined by the operations
staff, overriding your own
specifications.

Whichever way it is determined, the initial
dispatching priority is always the limit
priority for the job step task.

The job step task can lower its initial
dispatching priority by use of the CHAP
macro instruction. It can later use this
macro instruction to revise its dispatching
priority either upward or downward. Of
course, it can never raise its dispatching
priority above its initial dispatching
(limit) priority.

PRIORITY OF SUBTASKS

When a subtask is created, the limit angd
dispatching priorities of the subtask are
the same as the current limit and
dispatching priorities of the oricinating
task except when the subtask priorities are
modified by using the LPMCD and DPMOD
operands of the ATTACH macro instruction.
The LPMOD operand specifies the number to
be subtracted from the current limit
priority of the originating task. The
result of the subtraction is assigned as
the limit priority of the new task. The
DPMOD operand specifies the number to be
added to the current dispatching priority
of the originating task. The result of tne
addition is assigned as the dispatching
priority of the new task, unless the number
is greater than the limit priority. In
that case, the limit priority value is used
as the dispatching priority.

There are no absolute rules for
assigning priorities to tasks and subtasks.
Priorities should be assigned on the basis
that tasks of higher priority will be given
control when competing with tasks of lower
priority. Tasks with a larage numcer of
input/output operations should be assigned
a higher priority than tasks with little
input/output because the tasks with much
input/output will be in a wait condition
for a greater amount of time. The lower
priority tasks will be executed when the

higher priority tasks are in a wait
condition. When the input/output operation
has completed, the higher priority tasks
will get control so that the next operation
can be started. 1In addition, if one or
more subtasks must be completed before the
originating task can proceed beyond a
certain point, the subtasks that must be
completed should be assigned a priority
which will eliminate as much as possible a
long wait time in the originating task.

since tasks from other job steps are
competing for control, the priority
initially established for the subtasks may
be too hiah or too low to properly process
the job step. To correct this, the
priorities of thesé tasks can be chanced
after the tasks have been created by using
the CHAP macro instruction. Tne EXTRACT
macro instruction, discussed later, can be
used to determine the current dispatching
and limit priorities of the current task
and its subtasks. Note that each change of
16 in limit or dispatching priority is
equivalent to a change of one in job
priority.

The CHAP macro instruction changes the
dispatching priority of the active task or
one of its subtasks. By adding a positive
or negative value, the dispatching priority
of the active task or a subtask is changed.
The dispatching priority of the active task
can be made less than the dispatching
priority of another task waiting for
control. If this occurs, the waiting task
would be given control after execution of
the CHAP macro instruction.

The CuAP macro instruction can also be
used to increase the limit priority of any
of the active task's subtasks. The active
task cannot change its own limit priority.
The dispatching priority of a subtask can
be raised above its own limit priority, but
not above the limit of the originating
task. When the dispatchino priority of a
subtask is raised above its own limit
priority, the subtask's limit priority is
automatically raised to equal its new
dispatching priority.

TIME SLICING

Time slicing is an optional feature of
the operating system with MFT or MVT. It
erables tasks that are members of the
"time-slice group" to share control of the
CPU. wWhen a member of the time-slice group
has been active for a certain length of
time, it is interrupted, and control is
given to another member of the croup. In
this way, all nember tasks are given equal

slices of CPU time; no task can use the CPU
to the exclusion of all others.

MFT Systems Without Subtasking: At system
generation, your installation designates
certain contiguous main storage partitions
for time slicing. Your tasks (job steps)
are menmbers of the time-slice group if your
job is assigned to one of these partitions.
Yyou control partition assignment throuagh
the CLASS parameter of your JOB statement.

MFT Systems With Subtasking: Any task or
subtask is considered a member of a
time-slicing group if its dispatching
priority is within the range of the
dispatching priorities assigned to
partitions designated for time slicing.
The use of the ATTACH and the CHAP macro
instructions can affect dispatching
priorities, as in MVT systems.

MVT Systems: At system generation, your
installation designates certain job
priorities for time slicing. Your tasks
are members of the time-slicing group if
their dispatching priorities correspond to
these job priorities. For example, if job
priorities 8 and 9 are designated, tasks
are members of the time-slice group when
their dispatching priorities can be
computed as follows:

For job priority 8,
Dispatching Priority =
139

1

(8 x 16) + 11

For job priority 9,
Dispatching Priority
155

I

(9 x 16) + 11

In this example, tasks with priorities 139
and 155 are members of the time slice
group. Note that time slicing applies only
to ready tasks with the highest priority; a
task with priority 155 would not be
interrupted to give control to a task with
priority 139.

Time slicing is important chiefly in
real-time applications, but it affects the
use of the ATTACH and CHAP macro
instructions by all tasks in the system.
These macro instructions determine task
priorities, and tnerefore determine
membership in the time slice group. In
using these macro instructions, you must
consider carefully the priorities for which
time slicing is performed at your
installation. Using the ATTACd and the
CHAP macro instructions can affect
dispatching priorities.

Consider again the example in which time

slicing is performed for job priorities 8

Section 1: Supervisor Services 25

and 9. If a job step task has an initial
dispatching priority of 139, it is
initially a member of the time-slice group.
If it lowers its priority, it is no longer
a member of the group; if it attaches a
subtask, the subtask is a member only if it
is assigned a dispatching priority of 139
(the limit priority of the job step task).

If another job step task is assigned an
initial dispatching priority greater than
155, it is not initially a member of the
time-slice group. However, it can create
lower priority subtasks that are members of
the time-slice group, and can itself become
a member by lowering its own dispatching
priority to 155 or 139. Note that careless
use of the ATTACH and CHAP macro
instructions could result in a task's
becoming a member of the time-slice group
when time slicing is not actually intended.

Task Management

The task management information in this
section is required only for establishing
communications among tasks in the same job
step, and therefore applies only to
operating systems with MVT or with MFT with
subtasking. The relationship of tasks in a
job step is shown in Figure 4.

The horizontal lines in Figure 4 divide
the tasks into various levels. These
levels have no relation to task priorities;
they serve only to separate originating
tasks and subtasks. Tasks A, B, Al, A2,
A2a, El, and Bla are all subtasks of the
job step task; tasks Al, A2, and A2a are
subtasks of task A. Tasks A2a, and Bla are
the lowest level tasks in the job step.
Although task Bl is at the same level as
tasks Al and AZ, it is not considered a
subtask of task A.

Task A is the originating task for both
tasks Al and A2, and task A2 is the
originating task for task A2a. A hierarchy
of tasks exists within the job step.
Therefore the job step task, task A, and
task A2 are predecessors of task A2a, while
task B has no direct relationship to task
A2a.

All of the tasks in the job step compete
independently for control; if no
constraints are provided, the tasks are
performed and are terminated
asynchronously. However, since each task
is performing a portion of the same job
step, you will usually require some
communication and constraints between
tasks, such as notification of the

26

Job

Step

Task

~

RN

s \

4 \
7 N\
/ \
AN
Task Task
A B
7~ }
/ \ |
Lo a
/7
// \\ i
|
yd AN]
Task Task Task
Al A2 B1
T
| 5
]

' I
] 1
| |
| [
| 1
Task Task
A2a Bla

Figure 4. Task Hierarchy

completion of subtasks. 1f termination of
a predecessor task is attempted before all
of the subtasks are complete, those
subtasks and the predecessor task are
abnormally terminated.

TASK AND SUBTASK COMMUNICATIONS

Two operands, the ECB and ETXR operands,
are provided in the ATTACH macro
instruction to assist in communication
between a subtask and the originating task.
These operands are used to indicate the
normal or abnormal termination of a subtask
to the originating task. If either the ECB
or ETXR operands, or both, are coded in the
ATTACH macro instruction, the task control
block of the subtask is not removed from
the system when the subtask is terminated.
The originating task must remove the task
control block from the system after
termination of the subtask. = This is
accomplished by issuing a DETACH macro
instruction. The task control blocks for
all subtasks must be removed before the
originating task can terminate normally.

The ETXR operand specifies the address
of an end-of-task exit routine in the
originating task to be given control when

subtask being created is terminated. The
end-of-task routine is given control
asynchronously after the subtask has
terminated, and must be in main storage
when it is required. After the control
program terminates the subtask, the
end-of-task routine specified when the
subtask was created is scheduled to be
executed. The routine competes for control
on the basis of the priority of the
originating task, and can be given control
even though the originating task is in the
wait condition. When the end-of-task ‘
routine returns control to the control
program, the originating task remains in
the wait condition if the event control
block has not been posted.

The end-of-task routine can issue an
EXTKACT macro instruction specifying the
task control block of the terminated
subtask. The address of that task control
block is contained in register 1 when the
routine is given control. The EXTRACT
macro instruction, discussed unrder the
heading "Obtaining Information From the
Task Control Block," can be used to obtain
such information as floating-point register
contents and completion code. Although the
DEYACH macro instruction does not have to
be issued in the end-of-task routine, this
is a good place for it.

The ECB operand specifies the address of
an event control block (discussed under
"Task Synchronization") which is posted by
the control program when the subtask is
terminated. After posting, the event
control block contains the completion code
specified for the subtask.

If neither the ECB nor ETXR operands are
specified in the ATTACH macro instruction,
the task control block for the subtask is
removed from the system when the subtask is
terminated. No DETACH macro instruction is
required. Use of the task control block in
a CHAP, EXTRACT, or DETACH macro
instruction in this case is risky as is
task termination; since the originating
task is not notified of subtask
termination, you may refer to a task
control block which has been removed from
the system, which would cause the active
task to be abnormally terminated.

TASK SYNCHRONIZATION

Task synchronization requires some
planning on your part to determine what
portions of one task are dependent on the
completions of portions of all other tasks.
The POST macro instruction is used to
signal comipletion of an event; the WAIT

macro instruction is used to indicate that
a task cannot proceed until one or more
events that have occurred.

The control block used with both the
WAIT and POST macro instructions is the
event control block. An event control
block is a fuliword on a fullword boundary
and is shown in Figure 5.

0 1 2 31

©

w

completion code

Figure 5. Event Control Block

An event control block is used when the
ECB operand is coded in an ATTACH macro
instruction. In this case the control
program issues the POST macro instruction
for the event (subtask termination).
Either the return code in register 15 (if
the task completed normally) or the
completion code specified in the ABEND
macro instruction (if the task was
abnormally terminated) is placed in the
event control block as shown in Ficure 5.
The originating task can issue a WALT macro
instruction specifying the event control
block; the task will not regain control
until after the event has taken place and
the event control block is posted.

When an event control block is
originally created, bits 0 and 1 must be
set to zero. An event control block can be
reused; if it is reused, bits 0 and 1 must
be set to zero before either the POST or
WAIT macro instruction can be issued. When
a WAIT macro instruction is issued, bit ©
of the associated event control block is
set to 1. When a POST macro instruction is
issued, bit 1 of the associated event
control block is set to 1, and bit 0 is set
to 0.

A WAIT macro instruction can specify
more than one event by specifying more than
one event control block. Only one WAIT
macro instruction can refer to an event
control block at one time, however. If
more than one event control block is
specified in a WAIT macro instruction, the
WAIT macro instruction can also specify
that all or only some of the events must
occur before the task is taken out of the
wait condition. When a sufficient number
of events have taken place (event control
blocks have been posted) to satisfy the
number of events indicated in the WAIT
macro instruction, the task is taken out of
the wait condition.

Section I: Supervisor Services 27

Program Management Services

The control program provides a set of
optional services which are available to
your program through the use of macro
instructions. The following paragraphs
discuss each of these services and the way
to obtain them. The proper use of any of
these services results in an improved and
more efficient program; the misuse or
overuse of the services wastes main storage
and execution time.

ADDITIONAL ENTRY POINTS

Through the use of linkage editor
facilities you can specify as many as 17
different names (a member name and 16
aliases) and associated entry points within
a load module. It is only through the use
of the member name or the aliases that a
copy of the load module can be brought into
main storage. Once a copy has been brought
into main storage, however, additional
entry points can be provided for the load
module, subject to the following
restrictions:

e The "identify" option must have been
included in the operating system during
system generation (standard in an
operating system with MVT, optional
with the other configurations of the
operating system).

e The load module copy to which the entry
point is to be added must be one of the
following:

- a copy which satisfied the
‘requirements of a LOAD macro
instruction issued during the same
task, or

- the copy of the load module most
recently given control through the
control program in performance of the
same task.

The entry point is added through the use
of the IDENTIFY macro instruction. An
IDENTIFY macro instruction can be issued by
any program in the job step, except by
asynchronous exit routines established
using other supervisor macro instructions.
A further restriction exists for an
operating system with either MFT or the
primary control program: an IDENTIFY macro
instruction cannot be issued when the load
module is given control at an entry point
that was added by an IDENTIFY macro
instruction.

28

When you use the IDENTIFY macro
instruction, you specify the name to be
used to identify the entry point, and the
main storage address of the entry point in
the copy of the load module. The address
must be within a copy of a load module that
meets the requirements listed above; if it
is not, the entry point will not be added,
and you will be given a return code of 0C
(hexadecimal). The name can be any valid
symbol of up to eight characters, and does
not have to correspond to a name or symbol
within the load module. The name must not
be the same as any other name used to
identify any load module available to the
control program; duplicate names would
cause errors. The control program checks
the names of all load modules currently in
the link pack area and the job pack area of
the job step when you issue an IDENTIFY
macro instruction, and provides a return
code of 08 if a duplicate is found. You
are responsible for not duplicating a
member name or an alias in any of the
libraries unintentionally.

The added entry point can be used only
in an ATTACH macro instruction when you are
using an operating system with the primary
control program or MFT, and can be used in
an ATTACH, LINK, LOAD, DELETE, or XCTL
macro instruction in an operating system
with MVT. The added entry point can be
used in the performance of any task in the
job step; if the copy is in the link pack
area, the entry point can be used in the
performance of any task in the system.

The added entry point is available for
as long as the copy is retained in main
storage. Proper task synchronization is
required when using an adcded entry point in
the performance of a task which has not
directly requested the associated copy of
the load module; the load module may
otherwise be deleted before the use is
complete. The added entry point is treated
as an entry point to a reenterable load
module by the control program, regardless
of the actual module attributes of the load
module. You must guard against reuse of
nonreusable code.

ENTRY POINT AND CALLING SEUUENCE
IDENTIFIERS

An entry point identifier is a character
string of up to 70 characters which can be
specified in a SAVE macro instruction. The
character string is created as part of the
SAVE macro instruction expansion. The dump
program uses the calling sequence
identifier and the entry point identifier
as shown in the publication IBM System/360

Operating System: Programmer's Guide to

Debugging.

A calling sequence identifier is a
16-bit binary number which can be specified
in a CALL or a LINK macro instruction.

When coded in a CALL or a LINK macro
instruction, the calling sequence
identifier is located in the two low-order
bytes of the fullword at the return point
address. The high-order two bytes of the
fullword form a NOP instruction.

USING A SERIALLY REUSABLE RESOURCE

The example of a serially reusable
resource already encountered was a load
module that was designated serially
reusable. In the discussion of the
serially reusable load module it was
emphasized that simultaneous uses of the
load module must be prevented. This is
true for any serially reusable resource
when one or more of the users will modify
the resource.

Consider a data area in main storage
that is being used by programs associated
with several tasks of a job step. Some of
the users are only reading records in the
data area; since they are not changing the
records, their use of the data area can be
simultaneous. Other users of the data
area, however, are reading, updating, and
replacing records in the data area. Each
of these users must acquire, update, and
replace records one at a time, not
simultaneously. In addition, none of the
users that are only reading the records
wish to use a record that another user is
updating, until after the record has been
replaced. This illustrates the manner in
which all serially reusable resources must
be used.

For all of the uses of the serially
reusable resource made during the
performance of a single task, you must
prevent incorrect use of the resource
yourself. You must make sure that the
logic of your program does not require the
second use of the resource before
completion of the first use. Be especially
careful when using a serially reusable
resource in an exit routine; since exit
routines are given control asynchronously
from the standpoint of your program logic,
the exit routine could obtain a resource
already in use by the main program. For
the uses of the serially reusable resource
required by more than one task, the ENC
macro instruction is provided to ensure use
of the resource in a serial manner. The
ENQ macro instruction cannot be used to

prevent simultaneous use of the resource
within a single task. It can be used to
test for simultaneous use within one task
in an operating system with MFT or MVT
only. The ENQ and DEQ macro instructions
are not available in an operating system
with the primary control program.

The ENQ macro instruction requests the
control program to assign control of a
resource to the active task. The control
program determines the current status of
the resource, and either grants the request
by returning control to the active task or
delays assignment of control by placing the
active task in the wait condition. wWhen
the status of the resource changes so that
control can be given to a waiting task, the
task is taken out of the wait condition and
placed in the ready condition. The use of
the ENQ macro instruction is discussed in
the following paragraphs.

NAMING THE RESOURCE

You represent the resource in the ENQ
macro instruction by two names, known as
the gname and the rname. These names may
or may not have any relation to the actual
name of the resource. The control program
does not associate the name with the actual
resource; it merely processes requests
having the same gname and rname on a
first-in, first-out basis. It is up to you
to associate the names with the actual
resource. It is up to all users -of the
resource to use gname and rname to
represent the same resource. The control
program treats requests having different
gname and rname compinations as regquests
for different resources. Because the
actual resource is not identified by the
control program, it is possible to use the
resource without issuing an ENQ macro
instruction requesting it. If this
happens, the control program cannot provide
any protection.

If the resource is used only in the
performance of tasks in your job step, you
can assign the gname and rname combination.
You should, in this case, code the STEP
operand in the ENQ macro instructions that
request the resource, indicating that the
resource is used only in that job step.

The control program will add the job step
identifier to the rname so that no
duplicate gname and rname combination will
be used unintentionally in different job
steps. If the resource is available to any
job step in the system, the gname and rname
combination must be agreed upon by all
users and perhaps published. The SYSTENM
operand should be coded in each ENQ macro

Section I: Supervisor Services 29

instruction requesting one of these
resources.

When selecting a gname for the resource,
do not use SYS as the first three
characters; gnames used by the control
program start with SYS and you might
accidentally duplicate one of these.

EXCLUSIVE AND SHARED REQUESTS

You can request exclusive or shared
control of the resource for a task by
coding either "ER" or "S", respectively, in
the ENQ macro instruction. If this use of
the resource will result in modification of
the resource, you must request exclusive
control. If you are requesting use of a
serially reusable load module and passing
control yourself, as discussed previously,
you must request exclusive control, since
that program modifies itself during
execution. If you are updating a record in
a data area, you must request exclusive
control. If you are only reading a record,
and you will not change the record, you can
request shared control. 1In order to
protect any user of a serially reusable
resource, all users must request exclusive
or shared control on this basis. When a
task is given control of a resource in
response to an exclusive request, no other
task will be given simultaneous control of
the resource. When a task is given control
of a resource in response to a shared
request, control will be given to other
tasks simultaneously only in response to
other requests for shared control, never in
response to requests for exclusive control.
A request for shared control will protect
against modification of the resource by
another task only if the above rules are
followed.

PROCESSING THE REQUEST

The control proogram essentially
constructs a list for each gname and rname
combination it receives in an ENQ macro
instruction, and makes an entry in the list
representing the task which is active when
the ENQ macro instruction is issued. The
entry is made in an existing list when the
control program receives a request
specifying a gname and rname combination
for which a list exists; if no list exists
for that gname and rname combination, a new
list is built. The entry representing the
task is placed on the list in the order the
request is received by the control program;
the priority of the task has no effect in
this case. Control of the resource is
allocated to a task based on two factors:

30

¢ The position on the list of the entry
representing the task.

* The exclusive control or shared control
requirements of the request which
caused the entry to be added to the
list.

The control program uses these two
factors in determining whether control of a
resource can be allocated to a task, as
indicated below. Figure 6 shows the
current status of a 1list built for a very
popular gname and rname combination. The S
or E next to the entry indicates that the
request was for shared or exclusive
control, respectively. The task
represented by the first entry on the list
is always given control of the resource, so
the task represented by ENTRY 1 (Figure 6,
Step 1) is assigned the resource. The
request which established LNTRY 2 was for
exclusive control, so the corresponding
task is placed in the wait condition, along
with the tasks represented by all the other
entries in the list.

Eventually control of the resource is
released for the task represented by ENTRY
1 and the entry is removed from the list.
As shown in Figure 6, Step 2, ENTRY 2 is
now first on the list, and the
corresponding task is assigned control of
the resource. Because the request which
established ENTRY 2 was for exclusive
control, the tasks represented by all the
other entries in the list are kept in the
wait condition.

Figure 6, Step 3 shows the status of the
list after control of the resource is
released for the task represented by ENTRY
2. Because ENTRY 3 is now at the top of
the list, the task represented by ENTRY 3
is given control of the resource. ENTRY 3
indicated the resource could be shared,
and, because ENTRY 4 also indicated the
resource could be shared, ENTRY 4 is also
given control of the resource. In this
case, the task represented by ENTRY 5 will
not be given control of the resource until
control has been released for both the
tasks represented by ENTRY 3 and ENTRY 4.
The remainder of the list is processed in
the same manner.

ENTRY1 (S)

ENTRY2 (E) ENTRY2 (E)

ENTRY3 (S) ENTRY3 (5) ENTRY3 (5)

ENTRY4 (5) ENTRY4 (S) ENTRY4 (5)

ENTRYS (E) ENTRYS5 (E) ENTRYS5 (E)

ENTRYS (S) ENTRY6 (S) ENTRYS (S)
Step 1 Step 2 Step 3

ENQ Macro Instruction
Processing

Figure 6.

The following general rules are used by
the control program:

® A task represented by the first entry
in the list is always given control of
the resource.

e If the request is for exclusive
control, the task is not given control
of the resource until the corresponding
entry is the first entry in the list.

e If the request is for shared control,
the task is given control either when
the corresponding entry is first in the
list or when all the entries before it
in the list also indicate a shared
request.

PROPER USE OF ENQ AND DEQ

Proper use of the ENQ and DEQ macro
instructions is required to avoid duplicate
requests, to avoid tying up the resource,
and to avoid interlocking the system.
Guides to proper use are given in the
following paragraphs.

DUPLICATE REQUESTS: A duplicate request
occurs when an ENQ macro instruction is
issued to request a resource if a task has
already been assigned control of that
resource or if a task is already waiting
for that resource. 1If the second request
results in a second entry on the list, the
control program recognizes the
contradiction and refuses to place the task
in the ready condition (for the first
request) and in the wait condition (for the
second request) simultaneously. The second
request results in abnormal termination of
the task. You must plan the logic of your
program to ensure that a second request for
a resource is never issued until control of
the resource is released for the first use.
Again, be especially careful when using an
ENQ macro instruction in an exit routine.

RELEASING CONTROL OF THE RESOURCE: The DEQ

macro instruction is used to release
control of a serially reusable resource
assigned to a task through the use of an
ENQ macxro instruction. The task must be in
control of the resource. Control of a
resource cannot be released if the task
does not have control. As you have seen,
it is possible for many tasks to be placed
in the wait condition while one task is
assigned control of the resource. This may
reduce the amount of work being done by the
system. Issue a DEQ macro instruction as
soon as possible to release control of the
resource, so that other tasks can be
performed. If you return to the control
program at the end of processing for any
task which is still assigned control of a
resource, the resource is released
automatically; however, in a system with
MVT, the task is abnormally terminated.

CONDITIONAL AND UNCONDITIONAL RECQUESTS:

The normal use of the ENQ and DEQ macro
instruction is to make unconditional
requests. These are the only requests we
have considered to this point. As you have
seen, abnormal termination of the task
occurs when two ENQ macro instructions are
issued for the same resource in performance
of the same task, withcut an intervening
DEQ macro instruction. Abknormal
termination also occurs if a DEy macro
instruction is issued in the performance of
a task which has not been assigned control
of the resource. Both of these abnormal
termination conditions can be avoided by
either more careful program design or
through the use of the RET operand in the
ENQ or DEQ macro instructions. The RET
operand (RET=TEST, RET=USE, and RET=HAVE
for ENQ, RET=HAVE for DEQ) indicates a
conditional request for control or release
of control.

RET=TEST is used to test the status of
the list for the corresponding gname and
rname combination. An entry is never made
in the list when RET=TEST is coded.

Instead a return code is provided
indicating the status of the list at the
time the request was made. A return code
of 8 indicates an entry for the same task
already exists in the list. A return code
of 4 indicates the task would nhave been
placed in the wait condition if the request
had been unconditional. A return code of 0
indicates the task would have been given
immediate control of the resource if the
request had been unconditional. RET=TEST
is most useful when used to determine if
the task has already been assigned control
of the resource. It is less useful when
used to determine the current status of the

Section I: Supervisor Services 31

list and to take action based on that
status. In the interval between the time
the control program checks the status and
the time the return codes are checked by
your procram and another ENQ macro
instruction issued, another task could have
been made active and the status of the list
could have been changed.

RET=USE indicates to the control program
that the active task is to be assigned
control of the resource only if the
resource is immediately available. A
return code of 0 indicates that an entry
has been made on the list and the task has
been assigned control of the resource. A
return code of 4 indicates that the task
would have been placed in the wait
condition if the request had been
unconditional; no entry is made in the
list. A return code of 8 indicates an
entry for the same task already exists in
the list. KRET=USE can be best used when
there is other processing that could be
performed without using the resource. You
would not want to wait for the resource as
long as there was other work that you could
do.

RET=HAVE is used in both the ENg and
DEQ macro instructions. An ENQ macro
instruction is processed as a normal
request for control unless an entry for the
same task already exists. A return code of
8 indicates an entry for the same task
already exists in the list. A return code
of 0 indicates that the task has been
assigned control of the resource. A DEQ
macro instruction is processed as a normal
request to return control unless the task
does not have control of the resource. A
return code of 0 indicates that control of
the resource has been released. A return
code of 8 indicates that the task does not
have control of the resource (although the
task may be in the wait condition because
of a request for the resource). RET=HAVE
can be used to good advantage in an exit
routine to avoid abnormal termination.

AVOIDING INTERLOCK: An "interlock"
situation occurs when two or more tasks are
dependent on each other in such a way that
none of the tasks can. be taken out of the
wait condition until one of the same tasks
has been performed. An example of a fully
developed interlock situation is shown in
Figure 7. The task represented by ENTRY 1
in wList 1 is the same task represented by
ENTRY 2 in List 2. The task represented by
ENTRY 2 in List 1 is the same task
represented by ENTRY 1 in List 2. Control
of the resource represented by List 1 is
assigned to the task which is waiting for

32

the resource represented by List 2.

control of the resource represented by List
2 is assigned to the task which is waiting
for the resource represented by List 1.
Other tasks requiring either of the
resources are also in a wait condition
because of the interlock, although in this
case they have not contributed to the
conditions which caused the interlock.

ENTRY 1 (E) ENTRY 1 (E)

™ Task 1 Task 27

ENTRY 2 (E) ENTRY 2 (E)

rﬂﬂ«*”“’fﬁ_—

List 1 List 2

Figure 7. Interlock Condition

The above example involving two tasks
and two resources is a simple example of an
interlock situation. The example could be
expanded to cover many tasks and many
resources. It is imperative that interlock
situations be avoided. The following
procedures indicate some ways of preventing
interlock situations:

¢ Do not request resources that are not
immediately required. If you can use
the serially reusable resources one at
a time, you should regquest them one at
a time, and release control for one
before requesting control for the next.

* Request shared control as much as
possible. If the entries in the lists
shown in Figure 7 had indicated shared
requests, there would have been no
interlock. This does not mean you
should indicate a request for shared
control when you will modify the
resource. It does mean that you should
analyze your requirements for the
resources carefully, and not make
requests for exclusive control when
requests for shared control would
suffice.

e The ENQ macro instruction can be
written to request control of more than
one resource at a time; control of any
of the resources will not be given
until control of all resources
requested in the macro instruction can
be given. For example, instead of
coding the two ENQ macro instructions
shown in Example 20, the one ENQ macro
instruction shown in ¥xample 21 could
be coded. If all requests were made in
this manner, it would avoid the
interlock shown in Figure 7. All of
the requests for one task would be

processed before any of thne requests
for the second task. The DEQ macro
instruction should be written in the
same manner to release the entire "set"
of resources at once.

ENQ (NAME1ADD,NAME2ADD,E, 8,SYSTEM)
ENQ (NAME3ADD,NAME4ADD,E,10,SYSTEM)
Example 20. ‘Two Requests for Two Resources
ENg (NAME1ADD,NAME2ADD,E, 8,SYSTEM, C
NAME3ADD, NAME4ADD, E,10,SYSTEM)
Example 21. One Request for Two Resources

e If the use of one resource always
depends on the use of a second
resource, then the pair of resources
can be defined as one resource in the
ENQ and DEQ macro instructions. This
procedure can be used for any number of
resources that are always used in
conjunction. There would be no
protection of the resources if they are
also requested independently, however.
The request would always have to be for
the set of resources.

e If there are many users of a group of
resources and some of the users require
control of a second resource while
retaining control of the first
resource, it is still possible to avoid
interlocks. In this case the order in
which control of the resources is
requested should be the same for each
user. For instance, if resources A, B
and C are required in the performance
of many tasks, the requests for control
should always be made in the order of
A, B and €. 1In this manner an
interlock situation will not develop,
since requests for resource A will
always precede requests for resource B.

The above is not an exhaustive list of
the procedures to be used to avoid an
interlock condition. You could also make
repeated requests for control specifying
the RET=USE operand, which would prevent
the task from being placed in the wait
condition; if no interlock situation was
developing, of course, this would be an
unnecessary waste of execution time. The
solution to the interlock problem in all
cases requires the cooperation of all the
users of the resources.

OBTAINING INFORMATION FROM THE TASK CONTROL
BLOCK

Most of the information available from
the task control block is useful primarily
in task management. The following
paragraphs discuss the information
available and how to obtain it. How you
use the information provided depends ca the
application of your program.

The EXTKACT macro instruction is used to
obtain the information from the task
control block. The full power of the
EXTRACT macro instruction is available (and
needed) only in an operating system with
MVT or with MFT with subtasking. However,
a limited amount of information can be
obtained through the use of the EXTRACT
macro instruction with the other
configurations of the operating system.

Information can be obtained from the
task control block for the active task or
any of its subtasks. The following
information can be requested:

e The address of the general and floating
point register save areas. These are
the save areas used by the control
program when the task is not active.

s The address of the end-of-task exit
routine to be given control after the
specified task is terminated.

e The limit and dispatching priorities of
the specified task.

s The completion code if the task has
been terminated. If the specified task
has not been terminated, the completion
code value is set to zero.

» The address of the task input/output
table. This is the only information
provided in response to an EXTRACT
macro instruction when using an
operating system with the primary
control program or MFT.

You must provide an area into which the
control program places the information you
request. If you request all of the fields
(by coding FIELDS=ALL), the area must be
seven full words long. If you reguest only
a portion of the information, the area must
be one fullword in length for each item of
information you request. If you request
information other than the address of the
task input/output table when you are using
an operating system with PCP or with MFT
without subtasking, each additional item of
information requested will result in the

Section I: Supervisor Services 33

corresponding fullword in the answer area
being set to zero.

TIMING SERVICES

The timing services available depend on
options selected when the operating system
was aenerated. These options are the time
option, which provides the ability to
request the date and time of day, and the
interval option, which includes the time
option functions and also provides the
ability to set, test, and cancel intervals
of time. The interval option is standard
in an operating system with MVT; either
option can be selected with the other
configurations of the operating system. If
neither of these options was selected, the
date is the only timing service provided.
In the Model 65 Multiprocessing system,
timing services must only be obtained
through the use of the supervisor macro
instructions: STIMER, TIME, TTIMER.
Direct reference to the interval timer
location in a multiprocessing system may
produce unpredictable results.

DATE AND TIME OF DAY

The operator is responsible for
initially supplying the correct date and
time of day information, based on a 24-hour
clock, for control program use. The
control program updates the time of day
information every 16.7 milliseconds for 60
cycle-per-second line frequency, or every
20 milliseconds for 50 cycle-per-second
line frequency. You request the date and
time of day information using the TIME
macro instruction. The control program
returns the date in register 1 and the time
of day in register 0.

The date is returned in register 1 as
packed decimal digits of the form 00YYDDDC,
where YY are the last two digits of the
year and DDD is the day of the year. C is
a sign character which allows the year and
day information to be unpacked directly for
printing. One procedure used to request
the day of the year is shown in Example 22.

The time of day is returned in register
0 in the form specified in the TIME macro
instruction. The time of day is returned
as an unsigned 32-bit binary number that
specifies the elapsed number of either
hundredths of a second, if BIN is coded, or
timer units, if TU is coded. (A timer unit

34

|26.0u166 micro-seconds.

| is equal to 26.04166 micro-seconds.) If

DEC is coded or the operand is omitted, the
time of day is returned as packed decimal
digits of the form HHMMSSth (hours,
minutes, seconds, tenths of a second, and
hundredths of a second). The packed
decimal digits can be unpacked by changing
the "h" value to a zone sign and using an
UNPK instruction or by inserting zones
between each decimal digit. If both the
time and interval options have not been
selected, the operand is ignored and the
content of reoister 0 is set to zero.

INTERVAL TIMING

A time interval can be established for
any task in the job step through the use of
the STIMER macro instruction, and the time
remaining in the interval can be tested and
canceled through the use of the TTIMER
macro instruction. 'When you are using an
operating system with the primary control
program or MFT, only one time interval can
be in effect at any one time during the job
step. With an operating system with MVT,
each task in the job step can have an
active time interval.

The time interval can be established by
any one of the following four methods.

¢ BINTVL - requires an unsigned 32-bit
binary nunber, the low order bit having
a value of 0.01i second.

® TUINTVL - requires an unsigned 32-bit
binary number, the low order bit having
a value of 26.04166 micro-seconds (1
timer unit).

» DINTVL - requires an 8-byte field
containing unpacked decimal digits of
the form HHAMMSSth (hours, minutes,
seconds, tenths and hundredths of a
second, based on a 24-hour clock).

e TOD - requires an 8-byte field similar
to the field required for DINTVL. The
control program interprets the time
specified as the time of day at which
the interval is to expire.

When you test the time remaining in the
interval, the time remaining is returned as
a 32-bit unsigned binary number in register
0, the low order bit having a value of
If the interval
has already expired, the content of
register 0 is set to zero.

TIME Request date

ST 1,ANS Store packed date

UNPK DOUBLE,ANS Unpack date for printing
ANS DS F Fullword for packed date

DOUBLE Ds D

kxample 22. Day of Year Processing

When you request a time interval, you
also specify the manner in which the
interval is to be decremented, through the
use of the TASK, REAL, or WAIT parameter
of the ST1IMER macro instruction. REAL and
WAIT both indicate that the interval is to
be decremented continuously whether the
associated task is active or not. TASK
indicates that the interval is to be
decremented only when the associated task
is active. If REAL or TASK is coded, the
task continues to compete with the other
ready tasks for control; if WAIT is coded,
the task is placed in the wait condition
until the interval expires, at which time
the task is placed in the ready condition.
WAIT should not be coded in an operatinag
system with the primary control progran,
because no productive work can be performed
when the only task is in a wait condition.

When TASK or REAL is designated, the
address of a timer completion exit routine
can be specified. This is the first
routine to be given control when the
associated task is made active after the
completion of the time interval. (If the
address of the exit routine is not
specified, there is no notification of the
completion of the time interval.) The exit
routine must be in main storage when
required, and must save and restore
registers and return control to the address
in register 14. After control is returned
to the control program, control is passed
to the next instruction in the main
prograrnm.

Example 23 shows the use of a time
interval when testing a new loop in a
program. The STIMER macro instruction sets
a time interval of 5.12 seconds, to be
decremented only when the task is active,
and provides the address of a routine
called FIXUP to be given control when the
time interval expires. The loop is
controlled by a BXLE instruction.

Double word for unpacked date

The loop continues as long as the value
in register 12 is less than or equal to the
value in register 7. If the loop
completes, the TTIMER macro instruction
causes any time remaining in the interval
to be canceled; the exit routine is not
given control. If, however, the loop is
still in effect when the time interval
expires, control is given to the exit
routine FIXUP. The exit routine saves
registers and turns on the switch tested in
the loop. The FIXUP routine could also
print out a message indicating that the
loop did not complete successfully.
Registers are restored and control is
returned to the control program. The
control program returns control to the main
program and processing continues. When the
switch is tested this time, the branch is
taken out of the loop.

1f issued by a timer completion exit
routine, a STIMER macro instruction acts as
a NOP instruction only for MFT. An exit
routine therefore cannot be used to set a
new time interval for MFT.

1f issued by a timer completion exit
routine, a STIMER macro instruction is
honored for MVT. However, the STIMER
issued from the exit routine should not
specify that same exit routine. If it does
specify the same exit routine, an infinite
loop will occur.

The accuracy of a time interval is
affected by two factors: the resolution of
the timer and the "competition" of other
tasks for control. The resolution of the
timer (the time between successive updating
of the timer) is 16.7 milliseconds for 60
cycle per second line frequency. An
attempt to measure an interval of less than
16.7 milliseconds or an attempt to time to
an accuracy of greater than 16.7
milliseconds can lead to erroneous results.

Section I: Supervisor Services 35

® Example 23.

Set time interval

Test if fixup routine entered

Go out of loop if time interval expired

If processing not complete, go through loop again
If loop completes, cancel remaining time

Time interval expired, set switch in loop

STIMER TASK,FIXUP,BINTVL=TIME
LoopP aee

™ TIMEXP,X'01"

BC 1,NG

BXLE 12,6,LOOP

TTIMER CANCEL
NG cas

USING FIXUP,15 Provide addressability
FIXUP SAVE (14,12) Save registers

o1 TIMEXP,X'01°*

RETURN (14,12) Restore registers
TIME DC X'00000200" Time is 5.12 seconds
TIMEXP DC X'00" Timer switch

Interval Timing

When you are using an operating system
with MFT or MVT, the priorities of other
tasks in the system may also affect the
accuracy of the time interval measurement.
If you code REAL or WAIT, the interval is
decremented continuously and may expire
when the task is not active. (This is
certain to happen when WAIT is coded.)
After the time interval expires, assuming
the task is not in the wait condition for
any other reason, the task is placed in the
ready condition and then competes for
control with the other tasks in the system
that are also in the ready condition. The
additional time required before the task
becomes active will then depend on the
relative dispatching priority of the task.

WRITING TO ONE OR MORE OPERATOR CONSOLES

The WTO and the WTOR macro instructions
allow you to write messages to the
operator. The WIOR macro instruction also
allows you to request a reply from the
operator. When an MFT, MVT, or Model 65
Multiprocessing operating system has the
Multiple Console Support (MCS) option,
messages can be sent to (and replies can be
received from) as many as 32 operator
consoles. ‘

To use the WIO macro instruction, you
code your message within apostrophes. The
message that the operator receives does not
contain these apostrophes. The message can
include any character that is valid in a
character (C-type) DC instruction, except
the new line control character (hexadecimal
value 15). It is assembled as a
variable-length record, which is written

36

automatically; you do not have to provide a
data control block.

Routing of the message (in a system with
the MCS option) is performed using the
routing codes specified in the WTO macro
instruction. At system generation, each
operator's console in the system is
assigned routing codes which correspond to
the functions that the installation wants
that console to perform. When any of the
routing codes assigned to a messacge match
any of the routing codes assigned to a
console, the message is sent to that
console. For more information about
routing codes, refer to the appendix of the
publication IBM System/360 Operating
System: Supervisor and Data Management
Macro Instructions. ’

Disposition of the message (in a system
with the MCS option) is indicated through
the descriptor codes specified in the WTO
macro instruction. Descriptor codes
functionally classify WTO messages so that
they may be properly presented on, and
deleted from, display type devices. Each
WTO macro instruction should contain one
descriptor code. The descriptor code is
not printed or displayed as part of the
message text. If a descriptor code of one
or two is coded into the WIO macro
instruction, an asterisk (%) is inserted as
the first character of the message. The
asterisk informs the operator that he is
required to take some immediate action. If
a descriptor code other than one or two is
coded, a blank is inserted as the first
character, indicating that no immediate
action is needed. For more information
about descriptor codes, refer to the
appendix of the publication IBM System/360

Operating System: Supervisor and Data
Management Macro Instructions.

A sample WTO macro instruction is shown
in Example 24. The routing code (ROUTCDE)
and descriptor code (DESC) keyword
parameters are ignored if the operating
system does not have the MCS option.

WTO 'BREAKOFF POINT REACHED. C
TRACKING COMPLETED.', C
ROUTCDE=14,DESC=7

Example 24. Writing to the Operator

To use the WTOR macro instruction, you
code the message exactly as designated in
the WTO macro instruction. When the
message is written, the control program
adds a two-character messace identifier
before the message to associate the reply
with the message. The control program also
inserts an asterisk as the first character
of all WTOR messages, thereby informing the
operator that immediate action is regquired.
You must, however, indicate the operator
response desired. In addition, you must
supply the address of the area in which the
control program is to place the reply, and
you must indicate the length of the reply.
You also supply the address of an event
control block which the control program
will post after the reply has been placed,
left-adjusted, in your designated area.
(The use of the event control block is
discussed under the headinc "Task
Management.")

A sample WTOR macro instruction is shown
in Example 25. The routing code and
descriptor code values are ignored if the
operating system does not have the MCS
option. In an operating system with PCP,
the reply is available when, following
execution of the WTOR macro instruction,
‘your program regains control. But in a
system with MFT or MVT, the reply is rot
necessarily available at the address you
specified until a WAIT macro instruction
has been issued.

When a WTOR macro instruction is issued
to more than one functional area (where the
WTOR has more than one routing code), any
console within those areas has the
authority to reply. The first reply
received by the operating system is
returned to the issuer of the WTOR,
providing the syntax of the reply is
correct. .If the syntax of the reply is not
correct, anotner reply is accepted. The
WTOR is satisfied when the operating system
moves the reply into the issuer's reply
area and posts the event control block as
completed. Each console that received the
original WTOR will also receive the
accepted reply. The master console
operator may answer any WTOR, even if he
did not receive the original message.

WRITING TO THE PROGRAMMER

The WTO and the WTOR macro instructions
allow you to write messages to the
programmer, as well as to the operator.

At system generation (SYSGEN) time, your
installation determines how many 176-byte
system message blocks (SMBs) to allow. You
can override this number at initial program
load (IPL) time; however, the number of
SMBs allowed must range from 1 to 20.

When you submit your job, you can
specify the message output class for your
messages by using the MSGCLASS parameter of
the JOB statement. (For a description of
the MSGCLASS parameter, refer to the
publication IBM System/360 Operating
System: Job Control Languade Reference.)
All Wro and WTOR messages within the number
of SMBs allowed per job will appear in the
designated message output class. When you
exceed the number of allowable SMBs, no
subsequent messages will appear in the
message output class.

To write a message to the programmer,
you must specify ROUTCDE=11 in the WTO or
the WIOR macro instruction. If you use
routing code 11 alone or toagether with
othexr routing codes, the message goes to

REPLY YES OR NO', C

WTOR 'STANDARD OPERATING CONDITIONS?
REPLY, 3, ECBAD,ROUTCDE=(1,15) ,DESC=7
WAIT ECB=ECBAD
ECBAD DC Event control block
REPLY DC Answer area' '

Example 25.

Writing to the Operator With a Reply

Section I: Supervisor Services 37

the message output class, as described
above. The message can also go to the
console(s) in the situations described by
Table 6.

e Table 6. Using WTIO and WTOR to Write
Messages to the Programmer
r - i 1
| |
| 1f you specify a routinc code of 11 |
| (ROUTCDE=11) |
| I
b-——- -7 T 1
In this lin a	Your message	
macro	system:	goes to the:
instruction:		
		I
fmmmmm et fommme 1		
WTO	With	Message output
	MCS	class
i	Consoles designated	
		to receive messages
]	with ROUTCDE=11l i	
t + == 1		
wWro	Without	[Message output
	MCS jclass	
b-—— + + i		
WTOR	With	Message output
jMCs jclass		
i		Master console
F———- + + i		
WTOR	Without	Message output
	MCS	class
		Master console
t - L -		
b=———-- - -1		
If, in addition to routing code 11, you		
specify the appropriate routing code(s)		
in either a WTO or a WTOR macro		
instruction with or without MCS, the		
message appears on the console(s)		
designated to receive the routing		
code(s). 1In addition, the message		
appears in the same places as it does		
when you specify only routing code 11		
(as shown above), with one exception.		
For WIOR with MCS, the message goes to		
the master console only if you specify		
that console's routing code.		
R ———— J		

WRITING _TO THE HARD COPY LOG

When using an operating system that has
the liultiple Console Support (MCS) option,
you can record information on the hard copy
log. sSince the INCS option allows more than
one console in a system, an installation
might find it helpful to be able to record
all the messages issued by and to a system.
The hard copy log provides a place to

38

collect these messages, and therefore
allows an installation to review system
activity by reviewing message activity.

Since the hard copy log is optional, you
should know whether your system was
generated with it. The hard copy log is
either an operator's console with output
capability or the system log.

7o record information on the hard copy
log, you use the WTO or WTOR macro
instruction. Your installation must have
decided which system functions are to bpe
logged and assigned appropriate routing
codes to the hard copy log. The routing
codes that you assign to your WTO or WIOR
macro instruction are compared to the
routing codes assigned to the log. If ore
or more codes match, the message is entered
in the log. This means you do not have to
issue a WTIL macro instruction to record
system and problem program information when
the same information is going to the
operator. You must, however, know which
system functions the log is recording and
assign an appropriate routing code to your
WTO or WTOR macro instruction.

For each entry in the hard copy 1log,
both the time when the message is received
by the system and the routing codes for the
message are appended to the beginning of
the message text. Recording the time that
the message was received, a procedure
called time stamping, allows you to obtain
a chronological record of system activity.
For a system that does not have the timer
option, the space for time stamping is
filled with zeros.

Whether the hard copy log is the
operator's console or the system log, the
hard copy log information cannot be
confused with other information. This is
because the hard copy log entries are
prefixed with the time stamp and the
routing codes.

WRITING TO THE SYSTEM LOG

Operating systems with MFT, MVT, or
Model 65 multiprocessing provide a system
log as an optional feature. The system log
consists of two SYSOUT data sets on which
the communication between the operator and
the system is recorded. You can use the
system log by coding the information that
you wish to log in the "text" operand of
the WTL macro instruction.

The data set receiving data from the
system, user programs, and/or operators is
the primary data set. The Jdata set being

written, or waiting to be written, to a
system output device is the alternate data
set. The primary data set, the one that is
currently open and receiving input, is
logically connected to two buffers. The
operating system fills one buffer and
writes it to the primary data set while
filling the other buffer. The alternate
data set has been logically disconnected
from the buffers because it has been filled
and must wait to be written to a system
output device. After being written to a
system output device, the alternate data
set can be used again to receive input.
When receiving input, the alternate data
set becomes the primary data set.

When the WTL macro instruction is
executed, the system places your text in
one of the buffers and, when the buffer is
full, writes the buffer onto the system log
primary data set. The system writes the
text of your WTL macro instruction on the
master console instead of on the system log
if one of the following two conditions
exists:

» The system log is not supported.

¢ The system log is supported, but the
system log data sets are temporarily
inactive because both are full and
waiting to be written.

Your installation probably has an operator
procedure to follow for both of the above
conditions.

Although when using the WTL macro
instruction you code the message within
apostrophes, the written message does not
contain the apostrophes. The message can
include any character that is valid for the
WTL macro instruction and is assembled and
written the same way as the WTO macro
instruction. MCS routing codes and
descriptor codes are not assigned since
they are not needed by the WTL macro
instruction.

MESSAGE DELETION

If your system is using the Model 85
Operator Console with cathode ray tube
(CRT) display as a console, unnecessary
nessages can be deleted from the operator's
screen by the programmer.

The operating system assigns a message
identification number to each WTO and WTOR
message, and returns the message to the
program in register 1. The DOM macro
instruction uses the identification number
to indicate which message is to be deleted.

The message identification number must not
be confused with the reply identification
number that is assigned to WTOR replies.’

PROGRAM INTERRUPTION PROCESSING

Unusual conditions encountered in a
program cause a program interruption.
These conditions include incorrect operands
and operand specifications, as well as
exceptional results, and are know generally
as program exceptions. For certain
exceptions (fixed-point and decimal
overflow, exponent underflow and
significance), interruptions can be
disabled by setting the corresponding bits
in the program status word to zero.

When a task becomes active for the first
time, all program interruptions that can be
disabled are disabled, and a standard
control program exit routine, included when
the system was generated, is provided.

This control program exit routine is given
control when any program interruptions
occur, and issues an ABEND macro
instruction specifying task abnormal
termination and requesting a dump. By
issuing the SPIE macro instruction, you can
specify your own exit routine to be given
control for one or more types of program
exception. The macro instruction specifies
the address of the exit routine to be given
control when specified program exceptions
occur. 1f the SPIE macro instruction
specifies an exception for which the
interruption has been disabled, the control
program enables the interruption when the
macro instruction is issued.

The SP1E macro instruction can be issued
by any program being executed in
performance of the task. When the task is
active, your exit routine receives control
for all interruptions resulting from
exceptions specified in the SPIE macro
instruction. For other program
interruptions, control is given to the
control program exit routine. Each
succeeding SP1E macro instruction
completely overrides specifications in the
previous macro instruction.

PROGRAM INTERRUPTION CONTRCI, AREA: The
expansion of the SPIE macro instruction
results in a control program parameter
list, called a program interruption control
area (PICA). The PICA, shown in Figure 8,
contains the new program mask for the
interruption types that can be disabled,
the address of the exit routine to be given
control, and a code for interruption types
(exceptions) specified in the SPIE macro
instruction.

Section I: Supervisor Services 39

Provide exit routine for fixed-point overflow

SPIE FIXUP,(S)

ST 1,HOLD Save address returned in register 1

L 5,HOLD Reload returned address

SP1E MF=(E, (5)) Use execute form and old PICA address
HOLD DC F'0"'

Example 26.

DISPLACEMENT

(Bytes) 0 1 2 3 4 5
I
I Pro- .
0000 | gram Exit Routine Address |nfe1truphon
! Mask ype
 Mas

Figure 8. Program Interruption Control

Area

A program that issues a SPIE macro
instruction must restore the PICA that was
in effect when control was received. It
must do so before it returns control to the
calling program, or transfers control to
another program by issuing an XCTL macro
instruction. When the SPIE macro
instruction is issued, the control program
returns the address of the previous PICA in
register 1. The control program returns
zero in register 1 when there is no
previous PICA, that is, when no SPIE macro
instruction has been issued earlier in
performance of the task.

Example 26 shows how to restore a
previous PICA. The first SPIE macro
instruction designates an exit routine
called FIXUP that is to be given control if
fixed-point overflow occurs. The address
returned in register 1 is stored in the
fullword called HOLD. At the end of the
proaram, the execute form of the SPIE macro
instruction is used to restore the previous
PICA.

PROGRAM INTERRUPTION ELEMENT: At the first
execution of a SPIE macro instruction
during the performance of a task, the
control program creates a 32-byte program
interruption element (PI£) in the main
storage area assigned to the job step
(subpool 0 in an operating system with
MVT). This program interruption element is
used each time a SPIE macro instruction is
issued during the performance of the task,
and contains the information shown in
Figure 9.

The PICA address in the program
interruption element is the address of the
program interruption control area used in

40

Use of the SPIE Macro Instruction

DISPLACEMENT

(Bytes) 0 1 2 3
4 Reserved Pica Address
T
Old Program L_ (Interruption Codes)
Status Word T T T T T T T T T
12
16 Register 14
20 Register 15
24 Register 0
28 Register 1
32 Register 2

Figure 9. Program Interruption Llement

the last execution of a SFIE macro
instruction for the task. When control is
passed to the routine indicated in the
PICA, the old program status word contains
the interruption code in bits 16-31; these
bits can be tested to determine tune cause
of the program interruption. The contents
of registers 14, 15, 0, 1, and 2 at the
time of the interruption are stored by the
control program as indicated.

REGISTER CONTENTS: When control is passed
to the designated exit routine the recgister
contents are as follows:

» Register O0:
information.

internal control program

e Register 1: address of the program
interruption element for the task that
caused the interruption.

e Registers 2-12: same as when the
program interruption occurred.

e Register 13: address of the save area
for the main program. The exit routine
must not use this save area.

* Register 14: return address (to the
control program).

e Register 15: address of the exit

routine.

The exit routine must be in main storace
when it is reguired, and must return
control to the control program using the
address passed in register 14. The control
program restores registers 14, 15, 0, 1,
and 2 from the program interruption element
after control is returned, but does not
restore the contents of registers 3-13. If
a program interruption occurs when the
program interruption exit routine is in
control, the control program exit routine
is given control.

To determine which type of interruption
occurred, the exit routine can interrogate
bits Z8 through 31 of the old program
status word (OPSW) in the program
interruption element. The routine can then
take corrective action or can simply icnore
the exceptional condition.

The exit routine can alter the contents
of the registers when control is returned
to the interrupted procram. For registers
3 through 13, the routine alters the
contents of the actual registers. For
registers 14 through 2, the routine alters
the contents of the register save area in
the prooram interruption element. This is
because the control program reloads these
recisters from this area when it returns
control to the interrupted program.

The exit routine can also alter the last
four bytes of the OPSW in the program
interruption element. By changing the
OPSW, the routine can select any return
point in the interrupted program.

The control program returns control to
the interrupted program by lcading a PSW
constructed from the possibly modified OPSW
saved in the program interruption element.

PRECISE AND IMPRECISE INTERRUPTIONS: After
an interruption, the old program status
word contains the address of the next
instruction to be executed in bits 40-63,
and the length of the previous instruction
in bits 32 and 33. In System/360 Models
65, 67, 75, 85, 91, and 195, however, the
address of the next instruction may not pe
precise; if the address is not precise, the
instruction length code (iwnC) in bits 32-33
is set to zero. You should therefore test
the instruction length code for zero before
using the next instruction address.

In Models 65-85, imprecise interruptions
can result only from protection and
addressing exceptions. In the Model 9i,
imprecise interruptions result from these
and eight other types of exceptions. In
the Model 195, imprecise interruptions
result from nine other types of exceptions.
Table 7 summarizes the types of program
exceptions that can result in an imprecise
interruption.

Except for the protection exception in
the Model 91, any exception that can result
in an imprecise interruption can also
result in a precise interruption. You
therefore should not assume that a specific
type of exception will always produce an
imprecise interruption. Table 8 defines
the conditions under which interruptions
are precise in Models 65-195. Note that
interruptions are always precise in systems
with lower model numbers.

Section i: Supervisor 3ervice.: 41

eTable 7. Interruption Code in the 0ld Program Status Word

Type of Interruption
Type of Exception Precise (IL.C % 0) Imprecise (ILC = 0)
All Models Models 65—85 Model 91 Model 195
Bits 16—27 28-31 Bits 16—27 28-31 Bits 16—27 28-31 Bits 16—27 2831

Operation (zero) 0001

Privileged Operation (zero) 0010

Execute (zero) 0011

Protection (zero) 0100 (zero) 0100 100000000000 (zero) 100000000000 {zero)
Addressing (zero) 0101 (zero) 0101 010000000000 (zero) 010000000000 (zero)
Specification (zero) 0110 001000000000 (zero)

Data (zero) 011 000100000000 (zero) 000100000000 (zero)
Fixed-point Overflow (zero) 1000 000010000000 (zero) 000010000000 (zero)
Fixed-point Divide (zero) 1001 000001000000 (zero) 000001000000 (zero)
Decimal Overflow (zero) 1010 000000000010 (zero)
Decimal Divide (zero) 1011 000000000001 (zero)
Exponent Overflow (zero) 1100 000000100000 (zero) 000000100000 (zero)
Exponent Underflow (zero) 1101 000000010000 (zero) 000000010000 (zero)
Significance (zero) 1110 000000001000 (zero) 000000001000 (zero)
Floating-point Divide {zero) 1111 000000000100 (zero) 000000000100 (zero)

Interruptions in _the Models 91 and 195:
shown in Table 7, the interruption code in
the Models 91 and 195 differs for precise
and imprecise interruptions. For precise
interruptions (as for all interruptions in
other modeis), exceptions are indicated in
bits 28-31 of the 0ld program status word.
For imprecise interruptions, bits 28-31 are

| zero, and exceptions are indicated in bits
16-27.

Before testing the interruption code to
determine the cause of an interruption, you
should test the instruction length code to
determine whether the interruption is
precise or imprecise. If the instruction
length code is zero, indicating an
imprecise interruption, you should test
bits 28-31 of the 0ld program status word
to determine whether the interruption has
occurred on a Model 91 or 195. If bits
28-31 are zero, the interruption has
occurred on a Model 91 or 195 and the cause
of the interruption is indicated in bits

42

As | 16-27.

- 16-27).

If bits 28-31 are not zero, the
interruption has not occurred on a Model 91

|or 195, and these bits themselves indicate

the cause of the interruption.

In the Model 91, there are ten types of
program exceptions that can cause an
imprecise interruption. 1In the Model 195,
there are eleven types of program
exceptions that can cause an imprecise
interruption. Each is represented by a
separate bit in the interruption code (bits
After an imprecise interruption,
the interruption code may indicate more
than one type of exception. When it does,
the indicated exceptions may be due to a
single instruction, or to several
instructions whose execution was
overlapped. Note that each of the
indicated exceptions may have occurred more
than once, and there is no indication as to
which occurred first.

e Table 8. Precise Interruptions in IBM System/360 Models 65, 67, 75, 85, 91, and 195
Models 65—85 Model 91 Model 195
Precise in Precise Precise in
Type of Exception INHIBIT for INHIBIT
Always Sometimes Always Sometimes OVERLAP | Decimal Always Sometimes OVERLAP
Precise Precise! Precise Precise? Mode3 Simulation? Precise Precised Mode3
Operation X X X
Privileged Operation X X X
Execute X X X
Protection X X
Addressing X X X X
Specification X X X X
Data X X X X
Fixed-point Overflow X X X
Fixed-point Divide X X X
Decimal Overflow X X X
Decimal Divide X X X
Exponent Overflow X X X
Exponent Underflow X X X
Significance X X X
Floating-point Divide X X X
Ta protection or addressing exception results in a precise or imprecise interruption, depending on the cause of the exception.
2An.addressing or specification exception results in a precise or imprecise interruption, depending on the cause of the exception. For details, refer to the
publication 1BM System/360 Model 91 Functional Characteristics.
3The indicated interruptions are precise if the INHIBIT OVERLAP switch is set on the system control panel.
4The interruption for a protection exception is precise only when simulated by the control program decimal simulator routine. Interruptions for decimal
overflow and decimal divide exceptions occur only as simulated interruptions; they do not occur if the control program does not include the decimal
simulator routine.
5An addressing exception results in a precise or imprecise interruption, depending on the cause of the exception. For details, refer to the publication
IBM System/360 Model 195 Functional Characteristics.

If you provide an exit routine to handle
any of the exceptions that may result in an
imprecise interruption, you should specify
all ten such exceptions in the SPIE macro
instruction. When an imprecise
interruption occurs, your exit routine will
be entered only if the PICA indicates all
of the exceptions that are indicated in the
old program status word. For example, if
you provide a routine to handle fixed-point
overflow, and if you specify only
fixed-point overflow in the SPIE macro
instruction, the routine will not be
entered if both fixed-point overflow and
specification exceptions are indicated for
the same interruption.

Decimal Simulation in the Model 91: The
instruction set for the Model 91 does not
include the decimal instructions AP, CP,
bP, MP, SP, and ZAP; each of these
instructions causes an operation exception,
which results in a precise interruption.

If the decimal simulator routine was

specified at system generation, the control
program simulates the decimal operation.
Otherwise, control is passed to your
program interruption exit routine, or to
the control program exit routine.

Decimal simulation may result in an
exceptional condition. When it does, the
control program simulates a precise
interruption as indicated in Table 8. Ffor
decimal overflow, execution is completed
and the condition code is set. For other
exceptions, execution is suppressed; the
condition code and the contents of main
storage remain unchanged. Note that the
control program does not simulate an
interruption for decimal overflow if the
interruption is disabled.

ABNORMAL CONDITION HANDLING

It is not possible to provide procedures
for all possible conditions which can occur

Section I: Supervisor Services 43

during the execution of a program. You
should, of course, be sure that you can
process all valid data, and that your
program satisfies all the requirements of
the problem. The more general you make the
program, the greater the number of
additional routines you will require to
handle special cases. But you will not be
able to provide routines to detect and
correct all of the special or abnormal
conditions that can occur.

The control program does a great deal of
checking for abnormal conditions. A
standard program interruption routine is
provided to detect and process errors such
as protection violations or addressing
errors. The data management and supervisor
routines provide some error checking
facilities to ensure that, based on the
information you have provided, only valid
data is being processed, and that no
requests with conflicting requirements have
been made. For the abnormal conditions
that can possibly be corrected, control is
returned to your program with a return code
indicating the probable source of the
error. For conditions that indicate that
further processing would result in
degradation of the system or destruction of
existing data, the control program abnormal
termination routine is given control.

There will be abnormal conditions unique
to your program, of course, that the
control program cannot detect. Figure 10
is an example of one of these. The routine
shown in Figure 10 checks a control field
in an input parameter list to determine
which function the program is to perform.
Only characters between 1 and 4 are valid
in the control field. The presence of any
other character is invalid, but the routine
must be prepared to detect and handle these
characters. The routine should indicate
its inability to continue processing by
returning control to the calling program
with an error return code. The calling
program should then try to interpret the
return code and to recover from the error.
If it cannot do so, the calling program
should detach its incomplete subtasks,
execute its usual termination procedures,
and return control to its calling program,
again with an error return code. This
procedure may result in termination of all
the tasks of a job step; if it does, the
COND parameters of the JOB and EXEC
statements may be used to determine whether
or not subsequent job steps should be
executed.

{

An alternative to this procedure is to
pass control to the control program
abnormal termination routine by issuing an

4y

RTN2
Delete Yes

Abnormal Condition Detection

Figure 10.

ABEND macro instruction. This alternative
is simpler, but it offers less opportunity
for error recovery and continued processing
unless a STAE macro instruction, specifying
a STAE exit routine address, is issued to
override the ABEND. The abnormal
termination facilities available through
the use of the ABEND macro instruction are
discussed below; an explanation of the
facility to intercept abnormal termination
through the STAE macro instruction is
presented following the ABEND discussion.

The position within the job step
hierarchy of the task for which the ABEND
macro instruction is issued determines the
exact function of the abnormal termination
routine.

If an ABEND macro instruction is issued
when the job step task (the highest level
or only task) is active, or if the STEP
operand is coded in an ABEND macro
instruction issued during the performance
of any task in the job step, all the tasks
in the job step are terminated. An ABEND
macro instruction (without a STEP operand)
that is issued in performance of any task
other than the job step task causes only
that task and the subtasks of that task to

be abnormally terminated. The abnormal
termination routine works in the same
manner whether it is given control from the
control program or a problem program.

When a task is abnormally terminated,
the control program performs the following
functions:

* Lowers the responsibility counts for
the load modules brought into main
storage during the performance of the
task.

¢ Releases the main storage subpools
owned by the tasks.

e Cancels the time interval if one had
been established for the task.

e Issues a CLOSE macro instruction for
any data control blocks which were
opened during the performance of the
task.

¢ Purges any outstanding input or output
requests.

¢ Cancels any requests for operator
replies made using a WTOR macro
instruction.

¢ Cancels any requests for resources made
using an ENQ macro instruction.

If the job step is not to be terminated,
the following action is taken:

* The abnormal termination functions
listed above are performed, starting
with the lowest level task, for each of
the subtasks of the task which was
active when the ABEND macro instruction
was issued. A DETACH macro instruction
is issued by the control program for
each of the subtasks.

¢ The completion code specified in the
ABEND macro instruction is placed in
the task control block of the active
task (the task for which the ABEND
macro instruction was issued).

» If the ECB operand was designated in
the ATTACH macro instruction issued to
create the active task, the completion
code specified in the ABEND macro
instruction is placed in the designated
event control block, and the completion
bit is turned on.

e If the ETXR operand was designated in
the ATTACH macro instruction issued to
create the active task, the end-of-task
exit routine is scheduled to be given

" Systems

control when the originating task
becomes active.

e If neither the ECB nor ETXR operands
were designated when the ATTACH macro
instruction was issued, a DETACH macro
instruction is issued by the control
program for the active task.

If the job step is to be terminated, the
following action is taken:

e The abnormal termination functions
listed above are performed, starting
with the lowest level task, for all
tasks in the job step. All main
storage belonging to the job step is
released. None of the end-of-task exit
routines are given control.

* The completion code specified in the
ABEND macro instruction is written on
the system output device.

* Unless you specify otherwise in your
job control statements, the remaining
job steps in the job are skipped.
However, the statements defining these
steps are checked for proper syntax.

In a system with PCP, MFT, or MVT, it is
possible to restart a job step that has
been abnormally terminated. Restart can
occur either at the beginning of the job
step or at an internal checkpoint. A
detailed discussion of checkpoint and
restart appears later in this section.

INTERCEPTION OF ABNORMAL TERMINATION

Abnormal termination of a task can be
intercepted through the use of the STAE
macro instruction. When an ABEND macro
instruction is scheduled for a task that
has previously issued a STAE macro
instruction, the ABEND macro instruction is
intercepted and control is returned to the
user at his STAE exit routine address, as
specified in the STAE macro instruction.
Within the STAE exit routine, the user can
perform pre-termination functions or
diagnose the error. He can also determine
whether abnormal termination should
continue for the task, or whether a STAE
retry routine, which would circumvent
abnormal termination, should be scheduled.
For further information on the facility of
scheduling a STAE retry routine, see the
publication IBM System/360 Operating
System Programmer's Guide.

The STAE exit routine can contain an
ABEND macro instruction, but it must not
contain a STAE or an ATTACH macro

Section I: Supervisor Services 45

instruction. At the time the ABEND macro
instruction is scheduled, the STAE exit
routine must be resident; it either must be
part of the program issuing STAE, or
brought into storage via the LOAD macro
instruction.

The user can also issue a STAE macro
instruction to cancel (make the previous
STAE request active) or to overlay the
current STAE request. The STAE request
that is canceled or overlaid is the one
most recently made. If no STAE requests
are active for the task at the time a
cancel or overlay is issued, or if the user
attempts to cancel or overlay a STAE
request not associated with his Request
Block level of control, he will be informed
that his request is invalid by a return
code. A STAE request can be canceled by
issuing the STAE macro instruction with the
STAE exit routine address specified as
zero.

When a program using STAE returns
control to a previous level via an SVC 3,

all STAE requests are canceled. 1f a STAE
request specifies the "XCTL=YES" option,
that STAE request is not canceled when the
STAE user issues an XCTL macro instruction.
If a program terminates by any means other
than an SVC 3, all STAE requests must be
canceled by the terminating program before
returning control to another program.

Example 27 shows the use of the STAE
macro instruction. The STAE request is
initially made specifying a STAE exit
routine address ("EXIT1") and parameter
list address ("LIST1"). The "XCTL=YES"
parameter indicates that this STAE request
will not be canceled if the program
terminates via the XCTL macro instruction.
In the second issuance of STAE, the
previous STAE request is modified throuch
the overlay ("OV") option. The STAE exit
routine address is now "EXIT2", but the
parameter list address and the "XCTL=YES"
request remain the same.

STAE EXIT1,CT,PARAM=LIST1,XCTL=YES

e e e

1A 5,EXIT2

STAE (5),0V
LIST1 DC F'0'

DC X'A0"
EXIT1 EQU #
EXIT2 EQU #

Initial STAE request.

Put new exit routine address in register 5.
STAE request to overlay exit routine address.
Parameter list for exit routines.

Entry point of first exit routine.
Entry point of second exit routine.

Example 27. Use of the STAE Macro Instruction

46

After a STAE macro instruction has been
issued, the register contents upon return
to the user are as follows:

¢ Registers 0, 1: Unpredictable.

* Registers 2-13: Same as when STAE was

issued.
e Register 14: Unpredictable.
* Register 15: Error/completion
code.
Decimal Code Indication
0 Successful completion

of creating,
overlaying, or
canceling a STAE
request.

4 No storage obtainable
for a STAE request.

8 A STAE request to be
canceled or overlaid
did not exist, or a
STAE was issued in
the user's exit

routine.

12 Invalid exit routine
or parameter 1list
address.

16 Attempt to cancel or

overlay another
user's STAE request.

When a program with an active STAE
environment encounters an ABEND situation,
control will be returned to the user at the
STAE exit routine address. However, if the
abnormal termination is caused by either an
operator's CANCEL, job step timer
expiration, or the detaching of an
incomplete task, ABEND processing
continues, and the STAE exit routine is not
executed. At this time, active I/0 for the
failing task either has been quiesced and
is restorable at a later time, or has been
halted and is not restorable. The register
contents upon entry to the STAE exit
routine are as follows:

¢ Register O0:

Decimal Code Indication

0 Active 1/0 at the
time of the ABEND was
quiesced and is
restorable.

4 Active I/0 at the
time of the ABEND was
halted and is not
restorable.

8 No I/0 was active at
the time of the
ABEND.

Section I: Supervisor Services 47

Address of STAE exit routfine
parameter list or 0

ABEND completion code

8 | PSW at time of ABEND
16 Last problem program PSW before ABEND
24

Contents of registers 0-15 at
time of ABEND (64 bytes)

If a problem program issued STAE:

88 Name of abnormally terminated program or 0

% Address of entry point to

abnormally terminated program 0
If supervisor program issued STAE:
88 Address of request block of

cbnormally terminated program 0

Figure 11. Work Area for STAE Exit Routine

¢ Register 1: Address of a 104-byte
work area, as shown

in Pigure 11.

¢ Registers 2-12: Unpredictable.

aAddress of a
supervisor-provided
register save area.

¢ Register 13:

¢ Register 1u4: keturn address.

Address of the STAE
exit routine.

¢ Register 15:

Note: Registers 13 and 14, if used by the
STAE exit routine, must be saved and
restored prior to recturning to the calling
prodrarm. Standard suproutine linkage
conventions apply.

If main storage was not available for
the work area, the recister contents upon
entry to the STAE exit routine are as
folliows:

48

¢ Register O:

* Register 1:

12

ABEND completion code
as follows:

Indication

Bit Content
0 1 3
0 0
1 1
1 0

2-7 -

8-19 -

20-31 -

* Register 2:

Dump to be given.
Dump not to be given.

Job step to be
terminated.

Only failing task to
be terminated.

Not used.

System completion code
(packed, unsigned,
decimal) .

User completion code
(hexadecimal).

Address of STALE exit
parameter list.

¢ Register 3-13: Unpredictable.

® Register 14: Return address.

¢ Register 15: Exit routine address.

Upon completion of the STAL exit
routine, the user must indicate whether
ABEND processing is to be continued for the
task or whether a STAE retry routine should
be scheduled. The return codes to be
placed in register 15 are defined as
follows:

Code Indication

0 ABEND processing -is to continue.

4 A retry routine has been provided
and the Regquest Block chain should
be purged.

8 A retry routine has been provided

and the Request Block chain should
not be purged.

For further information on the option of
STAE retry, see the publication IBM
System/360 Operating System: System
Programmer's Guide.

THE_DUMP

There are two ways in which dumps of
main storage can be obtained: through the
use of the DUMP operand in the ABEND macro
instruction and through the use of the SNAP
macro instruction. When the dump is
requested using an ABEND macro instruction,
no further processing is performed for the
active task; use of the SNAP macro
instruction allows the task to continue
after the completion of the dump. The
control program generally requests a dump
for you when it issues an ABEND macro
instruction.

The data set containing the dump can
reside on any device which is supported by
the basic access technique using segquential
organization (BSAM). The dump is placed in
the data set described by the DD statement
you provide. If a printer is selected the
" dump is 'printed immediately. However, if a
direct access or tape device is designated,
a separate job is scheduled to obtain a
listing of the dump, and to release the
space on the device.

The format of the Qump is shown in the
publication IBM System/360 Operating
System: Programmer's Guide to Debugging.
The entire dump shown in that publication
is provided in an abnormal termination dump

if a DD statement with a ddname of SYSABEND
is provided; only the problem program areas
are dumped if a DD statement with a ddname
of SYSUDUMP is provided. Use of the SNAP
macro instruction allows you to request
only selected portions of the entire dump
for any task in the job step; the format of
the portions selected is the same as the
format of the same portions of an abnormal
termination dump.

When an abnormal termination dump is
requested, the entire dump is provided for
the active task, along with a dump of the
control blocks and save area for each of
the higher level tasks which are
predecessors of the active task being
terminated and for each of the subtasks of
the active task. The control program dump
routine uses the addresses you stored in
words 2 and 3 of each save area to follow
the "chain" of save areas provided by each
calling program in each task. If an ABEND
macro instruction was issued when task Bl
(Figure 4) was active, for example, a
complete dump would be provided for task
Bl. The control blocks and save areas for
task B, task Bla, and the job step task
would also be provided in separate dumps.

REQUIREMENTS
To get a dump:

s You must provide a DD statement for
each job step in which a dump is
requested. For an abnormal termination
dump, the ddname must be SYSABEND or
SYSUDUMP; for a SNAP macro instruction
dump, the ddname must be any name
except SYSABEND or SYSUDUMP. The
requirements for writing the DD
statement are described in the
publication IBM System/360 Operating
System: Programmer's Guide to

Debugging.

s To obtain a dump using the SNAP macro
instruction, you must provide a data
control block, and issue an OPEN macro
instruction for the data set before any
SNAP macro instructions are issued.

The data control block must contain

the following parameters: DSORG=PS,
RECFM=VBA, MACRF=W, BLKSIZE=nnn, and
LRECL=125, where nnn is 882 for MFT and
either 882 or 1632 for PCP and MVT.
(The data control block is discussed in
Section II of this manual.)

e Sufficient unused main storage must be
available in the area assigned to the
job step to hold the control program
dump routine and, if not already in

Section 1I: Supervisor Services 49

main storage, the BSAM data management
routines. For an abnormal termination
dump, additional main storage is
required for the routines to process
the OPEN macro instruction issued by
the control program, and for the trace
table. Refer to the publication IBM
System/360 Operating System: Storage
Estimates for storage requirements.

INDICATIVE DUMP

In an operating system with the primary
control program or MFT, you can obtain an
indicative dump, as shown in the
publication IBM System/360 Operating
System: Programmer's Guide to Debugging.
This dump is provided in response to a
request for an abnormal termination dump
when either you did not provide a DD
statement with the ddname SYSABEND or
SYSUDUMP, or the control program entry for
that DD statement was destroyed. The
indicative dump is printed on the system
output device. The indicative dump is not
provided in an operating system with MVT.

Main Storage Management

No matter which configuration of the
operating system you are using, there is a
finite amount of main storage available to
your job step. If you are using the
primary control program, you have available
all main storage not used by the control
program; if you are using an operating
system with MPFT or MVT, you have a
partition or region of fixed size available
to your job step. You should remember the
following requirements when using the
primary control program if your job is ever
going to be run in an operating system with
MFT or MVT.

In an operating system witin MFT, the
main storage available to problem programs
is divided into 1 to 15 fixed partitions.
The division is made during system
generation, but the operator can enlarge a
partition by combining it with others.
Each partition is associated with one or
more "job classes," which can be varied by
the operator. On the basis of job class
and priority specified in a JOB statement,
a job is assigned to a partition and
scheduled for execution. 2B job step will
be abnormally terminated if it requires
more main storage than is available in the
partition.

In a system with MVT, available main
storage is divided into regions, which vary

50

in size and number according to the
requirements of the job steps being
performed. Job steps are selected for
execution according to jok class and
priority, and each is assigned a region of
the size specified in a JOB or EXEC
statement. If the highest priority job
step requires a larger region than can be
made available, its execution is delayed,
and a lower priority job step (one with
sufficiently lower storage requirements) is
initiated. After a job step has been
initiated, its region can be extended only
if the rollout/rollin option has been
included in the system. (For a description
of rollout/rollin, refer to the publication
IBM System/360 Operating System: System
Programmer's Guide.)

You obtain the use of the main storage
area assigned to your job step through
implicit and explicit requests for main
storage. The use of a LINK macro
instruction is an implicit request for main
storage; the control program allocates
space before bringing the load wodule into
your job pack area. The use of the GETMAIN
macro instruction is an explicit request
for a certain number of bytes of main
storage to be allocated to the active task.
In addition to your reguests for main
storage, requests are made by the control
program and data management routines for
areas to contain some of the control blocks
required to manage your tasks.

The following paragraphs discuss some of
the techniques that can be applied for
efficient use of the main storage area
reserved for your job step. These
techniques apply as well to the data
management portions of your programs. The
specific data management main storage
allocation facilities are discussed in
Section II of this publication; the
principles discussed here provide the
background you will need to use these
facilities.

EXPLICIT REQUESTS

Main storage can be explicitly requested
for the use of the active task by issuing a
GETMAIN macro instruction. The main
storage request is satisfied by allocating
a portion cf the main storace area reserved
for the job step to the active task. You
cannot use the main storage area reserved
for the job step without first requesting
it; if you attempt to use it without
requesting it, the task is abnormally
terminated. The main storace area is not
set to zero when allocated.

You return control of main storage by
issuing a FREEMAIN macro instruction. This
does not release the area from control of
the job step; it only makes the area
available to satisfy the requirements of
additional requests for any task in the job
step. The main storage assigned to a task
is also released for otner uses when the
task terminates, except as indicated under
"Subpool Handling."

SPECIFYING LENGTHS

Main storage areas are always allocated
to the task in multiples of eight bytes and
begin on a double word boundary. The
request for main storage is given in terms
of bytes; if the number specified is not a
multiple of eight, it is rounded to the
next higher multiple of eight. You can
make repeated requests for a small number
of bytes as you need the area or you can
make one large request to completely
satisfy the requirements of the task.

There are two reasons for making one larce
request: it is the only way you can pe
sure of getting contiguous storage area
and, because you only make one request, the
amount of control program overhead is less.

TYPES OF EXPLICIT REQUESTS

There are four methods of explicitly
requesting main storage using a GETMAIN
macro instruction. Each of the methods,
which are designated by coding an
associated character in the operand field
of the GETMAIN macro instruction, has
certain advantages, depending on the
requirements of your program. The last
three methods do not produce reenterable
code unless coded in the list and execute
forms as indicated in the paragraph
"Implicit Requests." Tne methods are as
follows:

REGISTER TYPE (R): Specifies a request for
a single area of main storage of a
specified length. The address of the area
is returned in register 1. This type of
request produces reenterable code, because
parameters are passed to the control
program in registers, not in a parameter
list.

ELEMENT TYPE (E): Specifies a request for
a single area of main storace of a
specified length. The control program
places the address of the allocated area in
a fullword you supply.

LIST TYPE (L): Specifies a request for one

or more areas of main storage. You place
the length of each area in a list; each
list entry represents a request for one
area of main storace. The control program
places the addresses of the allocated areas
in consecutive full words in another list
you supply. The addresses are placed in
the list in the same order they were
requested. This type of request can be
made only in an operating system with MVT.

VARIABLE TYPE (V): Specifies a request for
a single area of main storage with a length
between two values you specify. The
control program will attempt to allocate
the maximum length you specify; if not
enough storage is available to allocate the
maximum length, the largest area witn a
length between the two values is allocated.
The control program places the address of
the area and the length allocated in two
consecutive fullwords you supply.

In addition to the above methods of
requesting main storage, you can designate
the request as conditional ox
unconditional. (A register type request is
always unconditional.) If the request is
unconditional and sufficient main storage
is not available to fill the request, the
active task is abnormally terminated. If
the request is conditional, however, and
insufficient main storage is available, a
return code of four is provided in register
15; a return code of zero is provided if
the request was satisfied. When a
conditional list-type request is made, no
main storage is allocated unless all of the
requested areas can be allocated.

An example of the use of the GETMAIN
macro instruction is shown in Example 28.
The example assumes a program which
operates most efficiently with a work area
of 16,000 bytes, with a fair degree of
efficiency with 8000 bytes or more,
inefficiently with 4000 to 8000 bytes, and
not at all with less than 4000 bytes. The
procram uses a reenterable load module with
an entry point name of REENTMOD, and will
use it again later in the program; to save
time, the load module was brought into the
job pack area using a LOAD macro
instruction so that it would be available
when it was required.

A conditional request for a single
element of main storage with a length of
16000 bytes is requested in Example 28.

The return code in register 15 is tested to
determine if the area was available; if the
return code was zero (the 16,000 bytes were
allocated), control is passed to the

processing routine. If sufficient area was

Section I: Supervisor Services 51

GETMAIN EC,LV=16000,A=ANSWADD,
HIARCHY=0
LTR 15,15
BZ PROCEED1
DELETE EP=REENTMOD
GETMAIN VU,LA=SIZES,A=ANSWADD,
HIARCHY=0
L 4 , ANSWADD+4
CH 4, MIN
BNL PROCEED1
PROCEED2 ...
PROCEEDL ...
MIN DC H'8000"
SIZES DC F'4000"
DC F'16000"
ANSWADD De F'o"
e F'0"

Example 28.

not available, an attempt to obtain more
main storage area is made by issuing a
DELETE macro instruction to free the area
occupied by the load module REENTMOD. A
second GETMAIN macro instruction is issued,
this time an unconditional request for an
area between 4000 and 16000 bytes in
length. If the minimum size is not
available, the task is abnormally
terminated. If at least 4000 bytes was
available, however, the task can continue.
The size of the area actually allocated is
determined and one of the two procedures
(efficient or inefficient) is given
control.

SUBPOOCL HANDLING (IN PCP SYSTEMS AND IN MFT
SYSTEMS WITHOUT SUBTASKING)

There is only one unnumbered subpool in
an operating system with the primary
control program or MFT. In these
configurations of the operating system all
main storage requests are satisfied by
allocating storage from this unnumbered
subpool. If subpool numbers are specified,
the numbers are ignored if they are not
greater than 127 (the greatest number that
is valid in a system with MVT). If suppool
numbers greater than 127 are specified, the
job step is abnormally terminated.

52

Conditional regquest for 16000 bytes
In processor storage

Test recurn code

If 16000 pytes allocated, proceed
If not, free main storage

Attempt to get smaller amount

In processor storage

Load and test allocated length

If 8000 or more, use procedure 1

If less than 8000, use procedure 2

Minimum size for procedure 1
Minimum size to proceed at all

Size of area for maximum efficiency
Address of allocated area

Size of allocated area

Use of the GETMAIN Macro Instruction

SUBPOOL HANDLING (IN MFT SYSTEMS WITH
SUBTASKING)

Althouch subpools are not created in
MPFT systems, it is convenient to call the
partition itself "subpool 0." That is, all
main storage in a partition is shared by
all tasks active in that partition. Main
storage not allocated to any task is called
"free storage." "Subpool 240" is used by
the supervisor to enable the sharing of a
reenterable program invoked by a LOAD macro
instruction. "Subpool 255" is used by the
supervisor to request storage from the
system gueue area. User programs may
request main storage from the partition by
specifying any subpool number from 0 to 127
or by specifying no number at all (this
provides compatibility with MVT). User-
program implied requests for storage,
initiated when the user executes an ATTACH,
LINK, LOAD, or XCTL macro instruction, are
recorded by the supervisor in order for the
storage to be freed during termination.

SUBPOOL HANDLING (IN MVT SYSTEMS)

In an operating system with MVT,
subpools of main storage are provided to
assist in main-storage management and for
communications between tasks in the same
job step. Because the use of subpools
requires some knowledge of how the control
program manages main storage, a discussion
of main storage control is presented here.

MAIN STORAGE CONTROL: When the job step is
given a region of main storage, all of the
storage area available for your use within
that region is unassigned. Subpools are
created only when a GETMAIN macro
instruction is issued designating a subpool
number. If no subpool number is
designated, the main storage is allocated
from subpool 0, which is created for the
job step by the control program when the
job step task is initiated.

Note: 1If main storage is allocated to a
subtask by the user program while the
system is executing in the supervisor state
or with a protection key of 0, no other
task should free that main storage. If
some other task does free that main
storage, you get unpredictable results.

For purposes of control and main storage
protection, the control program considers
all main storage within the region in terms
of 2048-byte blocks. These blocks are
assigned to a subpool, and space within the
blocks is allocated to a task, by the
control program when requests for main
storage are made. When there is sufficient
unallocated main storage within any block
assigned to the designated subpool to fill
a request, the main storage is allocated to
the active task from that block. If there
is insufficient unallocated main storage
within any block assigned to the subpool, a
new block (or blocks, depending on the size
of the request) is assigned to the subpoocl,
and the storage is allocated to the active
task. The blocks assigned to a subpool are
not necessarily contiguous unless they are
assigned as a result of one request. Only
blocks within the region reserved for the
associated job step can be assigned to a
subpool.

Figure 12 is a simplified view of a main
storage region containing four 2048-byte
blocks of storage. All the requests are
for main storage from subpool 0. The first
request from some task in the job step is
for 504 bytes; the request is satisfied
from the block shown as BLOCK A in the
figure. The second request, for 2000
bytes, is too large to be satisfied from
the unused portion of BLOCK A, so the
control program assigns the next available
block, BLOCK B, to subpool 0, and allocates
2000 bytes from BLOCK B to the active task.
A third request is then received, this time
for 1000 bytes. There is not sufficient
unallocated area remaining in BLOCK B
(blocks are checked in the order last in,
first out), but there is enough space in
BLOCK A, so an additional 1000 bytes are
allocated to the task from BLOCK A.

l Because all tasks can share subpool 0,

|Request 1 and Request 2 do not have to be
made from the same task, even though the
areas are contiguous and from the same
2048-byte block. Request 4, for 3000
bytes, requires that the control program
allocate the area from 2 contiguous blocks
which were previously unassigned, BLOCK D
and BLOCK C. These blocks are assigned to

subpool 0.
Request 1 - 504 bytes
Request 2 - 2000 bytes
Request 3 - 1000 bytes.
Request 4 - 3000 bytes

T A
Block D Block C Block B Block A
/,\//\\
2048 Bytes
Figure 12. Main Storage Control

As indicated in the preceding example,
it is possible for one 2048-byte block in
subpool 0 to contain many small areas
allocated to many different tasks in the
job step, and it is possible that numerous
blocks could be split up in this manner.
Areas acquired by a task other than the job
step task are not released automatically on
task termination. Even if FREEMAIN macro
instructions were issued for each of the
small areas before a task terminated, the
probable result would be that many small
unused areas would exist witnin each biock,
while the control program would be
continually assigning new blocks to satisfy
new requests. To avoid this situation, you
can define subpools for exclusive use by
individual tasks.

Any subpool can be used exclusively by a
single task or shared by several tasks.
Each time that you create a task, you can
specify which subpools are to be shared.
Unlike other subpools, subpool 0 is shared
by a task and its subtask, unless you
specify otherwise. When subpool 0 is not
shared, the control program creates a new
subpool 0 for use by the subtask. As a
result, both the task and its subtask can
request storage from subpool 0, but both
will not receive storage from the same
2048-byte block. When the subtask
terminates, its main storage areas in
subpool 0 are released; since no other

Section I: Supervisor Services 53

tasks share this subpool, complete
2048-byte blocks are made available for
reallocation.

When there is a need to share subpool 0,
you can define other subpools for exclusive
use by individual tasks. When you first
- request storage from a subpool other than
subpool 0, the control program assigns a
new 2048-byte block to that subpool, and
allocates storage from that block. The
task that is then active is assigned ,
ownership of the subpool and, therefore, of
the block. When additional requests are
made by the same task for the same subpool,
the requests are satisfied by allocating
areas from that block and as many
additional blocks as are required. If
another task is active when a request is
made with the same subpool number, the
control program assigns a new block to a
new subpool, allocates storage from the new
block, and assigns ownership of the new
subpool to the second task.

A task can specify subpools numbered
from 0 to 127. FREEMAIN macro instructions
can be issued to release any subpool except
subpool 0, thus releasing compilete
2048-byte blocks. When a task terminates,
its unshared subpools are released
automatically.

Owning and Sharing: A subpool is initially
owned by the task that was active when the
subpool was created. The subpool can be
shared with other tasks, and ownership of
the subpool can be assigned to other tasks.
Two macro instructions are used in the
handling of subpools: the GETMAIN macro
instruction and the ATTACH macro
instruction. 1In the GETMAIN macro
instruction, the SP operand can be written
to request storage from subpools 0 to 127;
if this operand is omitted, subpool 0 is
assumed. The operands that deal with
subpools in the ATTACH macro instruction
are:

e GSPV and GSPL, which give ownership of
one or more supbpools (other than
subpool 0) to the task being created.

e SHSPV and SHSPL, which share ownership
of one or more subpools (other than
subpool 0) with the new subtask.

¢ SZERO, which determines whether subpool
0 is shared with the subtask.

All of these operands are optional. If

they are omitted, no subpools are given to
the subtask, and only subpool 0 is shared.

54

Creating a Subpool: A new subpool is
created whenever any of the operands
described above is written in an ATTACH or
a GETMAIN macro instruction, and that
operand specifies a subpool which is not
currently owned by or shared with the
active task. If one of the ATTACH macro
instruction operands causes the subpool to
be created, the subpool number is entered
in the list of subpools owned by the task,
but no blocks are assigned and no storage
is actually allocated. If a GETMAIN macro
instruction results in the creation of a
subpool, the subpool number is assigned to
one or more 2048-byte blocks, and the
requested storage is allocated to the
active task. In either case, ownership of
the subpool belongs to the active task; if
the subpool is created because of an ATTACH
macro instruction, ownership is transferred
or retained depending on the operand used.

Transferring Ownership: An owning task
gives ownership of a subpool to a direct
subtask by using the GSPV or GSPL operands
in the ATTACH macro instruction issued when
that subtask is created. Ownership of a
subpool can be given to any subtask of any
task, regardless of the control level of
the two tasks involved and regardless of
how ownership was obtained. A subpool
cannot be shared with one or more subtasks
and then transferred to another subtask,
however; an attempt to do this results in
abnormal termination of the active task.
Ownership of a subpool can only be
transferred if the active task has
ownership; if the active task is sharing
the subpool and an attempt is made to pass
ownership to a subtask, the subtask
receives shared control and the originating
task relinquishes the subpool. Once
ownership is transferred to a subtask or
relinquished, any subsequent use of that
subpool number by the originating task
results in the creation of a new subpool.
When a task that has ownership of one or
more subpools terminates, all of the main
storage areas in those subpools are
released. Therefore, the task with
ownership of a subpool should not terminate
until all tasks or subtasks sharing the
subpool have completed their use of the
subpool.

Sharing a Subpool: Shared use of a subpool
can be given to a direct subtask of any
task with ownership or shared control of
the subpool. Shared use is given by.
specifying the SHSPV and SHSPL operands in
the ATTACH macro instruction issued when
the subtask is created. Any task with
ownership or shared control of the subpool
can add to or reduce the size of the

subpool through the use of GETMAIN and
FREEMAIN macro instructions. When a task
that has shared control of the subpool
terminates, the subpool is not affected.

SUBPOOLS IN TASK COMMUNICATION: The
advantage of subpools in main storage
management is that, by assigning separate
subpools to separate subtasks, the
breakdown of main storage into small
fragments is reduced. An additional
benefit from the use of subpools can be
realized in task communication. A subpool
can be created for an originating task and
all parameters to be passed to the subtask
placed in the subpool. When the subtask is
created, the ownership of the subpool can
be passed to the subtask. After all
parameters have been acquired by the
subtask, a FREEMAIN macro instruction can
be issued, under control of the subtask, to
release the subpool main storage areas. In
a similar manner, a second subpool can be
created for the originating task, to be
used as an answer area in the performance
of the subtask. When the subtask is
created, the subpool ownership would be
shared with the subtask. Before the
subtask is terminated, all parameters to be
passed to the originating task are placed
in the subpool area; when the subtask is
terminated, the subpool is not released,
and the originating task can acquire the
parameters. After all parameters have been
acquired for the originating task, a
FREEMAIN macro instruction again makes the
area available for reuse.

IMPLICIT REQUEST

You make an implicit request for main
storage every time you issue a LINK, LOAD,
ATTACH, or XCTL macro instruction. 1In
addition, you make an implicit request for
main storage when you issue an OPEN macro
instruction for a data set. The data
management routines required to process the
data set must be in main storage; the main
storage areas used as buffers may also be
allocated. When you make an implicit
request for more main storage than is
available, the active task is abnormally
terminated.

This section discusses some of the
techniques you can use to cut down on the
amount of main storage required by a job
step, and the assistance given you by the
control programn.

LOAD MODULE MANAGEMENT

The discussion of program structures
indicates the advantages and disadvantages
of each of the three types of program
designs; simple, planned overlay, and
dynamic. The program structure you
selected was based on the complexity of the
program and the execution time
considerations. Once you have selected the
program structure, you should plan
efficient use of the main storage area that
will be assigned to your job step. Note
that main storage is assigned in 2048-byte
blocks for implicit requests made in an
operating system with MVT. The size of
your load modules should be planned to take
advantage of this method of allocation.

The maximum size load module that can be
brought into main storage is 524,248 bytes
in an operating system with the primary
control program or MFT.

REENTERABLE LOAD MODULES: A reenterable
load module is designed so that it does not
in any way modify itself during execution.
It is "read-only". The advantage of a
reenterable load module is most apparent in
an operating system with MVT; only one copy
of the load module is brought into main
storage to satisfy the reguirements of any
number of tasks in a job step. This means
that even though there are six tasks in the
job step and each task concurrently
requires the load module, the only main
storage area regquirement is for an area
large enough to hold one copy of the load
module (plus a few bytes for control
blocks). The same main storage requirement
would apply if the load module were
serially reusable; however, the load module
could not be used by more than one task at
a time.

An additional benefit of a reenterable
load module occurs when the module is
placed in the link pack area. In this case
not only is time saved because no loading
must be performed, but in addition no main
storage area assigned to the job step is
required to hold the load module. A link
pack area exists only in an operating
system with MVT. The contents are
established when the operating system is
generated and when the operator performs
the initial program loading procedure.
reenterable load module from the link
library may be placed in the link pack
area. Many of the frequently used data
management routines are also placed in the
link pack area. If any of your reenterable
load modules are used frequently or are
used by many jobs, it may save considerable

Any

Section I: Supervisor Services 55

time and space to have those load modules
placed in the link pack area.

Because a reenterable module does not
modify itself, it offers greater
reliability than a nonreenterable module.
When there is a machine check due to a
parity error, a fresh copy can be loaded to
overlay the copy in main storage, and
execution can be resumed. If the module is
- designated as "refreshable"” when processed
by the linkage editor, a fresh copy is
loaded automatically by the machine check
handler. The machine check handler,
available with MFT or MVT, is optional
programming support with Model 65, and
standard programming support with Model 65
Multiprocessor and Model 85; it is not
available with the primary control program.

You can designate a module as
refreshable without also designating it as
reenterable. However, the module must
actually be reenterable in its design,
because it must not modify itself during
execution.

REENTERABLE MACRO INSTRUCTIONS: All of the
macro instructions described in the
publication IBM System/360 Operating
System: Supervisor and Data Manacement
Macro_Instructions can be written in
reenterable form. From the standpoint of
reenterability, these macro instructions
are classified as one of two types: macro
instructions which pass parameters in
registers 1 and 0, and macro instructions
which pass parameters in a list. The use
of the macro instructions which pass
parameters in registers presents little
problem in a reenterable program; when the
macro instruction is coded, the required
operand values should be contained in
registers. For example, the POINT macro
instruction requires that the dcb address
and block address be coded as follows:

T T]
| [symboll | POINT|dcb address,block address |
L- 4 i 3

One method of coding a reenterable program
would be to require that both of these
addresses refer to a portion of main
storage allocated to the active task
through the use of a GETMAIN macro
instruction. The addresses would change
for each use of the load module.
Therefore, you would load one of general
registers 2-12 with the address, and
designate the appropriate registers when
you code the macro instruction. If
register 4 contained the dcb address and
register 6 contained the block address, the

56

POINT macro instruction would be written as
follows: POINT (4),(6).

The macro instructions which pass
parameters in a list require the use of
special forms of the macro instruction when
used in a reenterable program. The macro
instructions that pass parameters in a list
are identified in "Section III: List and
Execute Forms" of the publication IBM
System/360 Operating System: Supervisor

and Data Management Macro Instructions.

The expansion of the standard form of these
macro instructions (that is, the form
described in Section II of that
publication) results in an inline
parameter list and executable instructions
required to branch around the list, to load
the address of the list, and to pass
control to the required control program
routine. The expansions of the list and
execute forms of the macro instruction
simply divide the functions provided in the
standard form expansion: the list form
provides only the parameter 1list, and the
execute form provides executable
instructions to modify the list and pass
control. You provide the instructions to
load the address of the list into a
register.

The list and execute forms of a macro
instruction are used in conjunction to

© provide the same services available from

the standard form of the macro instruction.
The advantages of using list and execute
forms are as follows:

e Any operands which remain constant in
every use of the macro instruction can
be coded in the list form. These
operands can then be omitted in each of
the execute forms of the macro
instruction which use the list. This
can save appreciable coding time and
main storage area when you use a macro
instruction many times. (Any
exceptions to this rule are listed in
the description of the execute form of
the applicable macro instruction.)

e The execute form of the macro
instruction can modify any of the
operands previously designated.
(Again, there are exceptions to this
rule.)

e The list used by the execute form of
the macro instruction can be located in
a portion of main storage assigned to
the task through the use of the GETMAIN
macro instruction. This ensures that
the program remains reenterable.

LA 3,MACNAME
1A 5,NSIADDR
SR 5,3

BAL 14 ,MOVERTN
DEQ ,MF=(E, (4))

Load address of list form

Load address of end of list
Length to be moved in register 5
Go to routine to move list
Release allocated resource

* The MOVERTN allocates storage from subpool 0 and moves up to 255 bytes into the

* allocated area.
* returned in register 4.

MOVERTN GETMAIN R,LV=(5),
HIARCHY=1
LR 4,1
BCTR 5,0
EX 5,MOVEINST
BR 14

MOVEINST MVC

MACNAME DEQ

0(1,4),0(3)

NSIADDR e e
NAME1 DC CL8'MAJOR'
NAME2 DC CL8'MINOR'

Example 29.

Example 29 shows the use of the list and
execute forms of a DEQ macro instruction in
a reenterable program. The length of the
list constructed by the list form of the
macro instruction is obtained by
subtracting two symbolic addresses; main
storage is allocated and the list is moved
into the allocated area. The execute form
of the DEQ macro instruction does not
modify any of the operands in the list
form. The list had to be moved to
allocated storage because the control
program can store a return code in the list
when RET=HAVE is coded. Note that the code
in the routine labeled MOVERTN is valid for
lengths up to 255 bytes only. Some macro
instructions do produce lists greater than
255 bytes when many operands are coded (for
example, OPEN and CLOSE with many data
control blocks, or ENQ and DEQ with many
resources), so in actual practice a length
check should be made.

NONREENTERABLE LOAD MODULES: The use of
reenterable load modules does not
automatically conserve main storage; in
many applications it will actually prove
wasteful. If a load module is not used in
many jobs and if it is not employed by more
than one task in a job step, there is no
reason to make the load module reenterable.
The allocation of main storage for the
purpose of moving code from the load module
to the allocated area is a waste of both
time and main storage when only one task
requires the use of the load module.

Register 3 is from address, register 5 is length.

Area address

Allocate main storage for list
In IBM 2361 Core Storage
Address of area in register 4
Subtract 1 from area length
Move list to allocated area
Return

(NAME1, NAME2, 8, SYSTEM) , RET=HAVE, MF=L

Using the List and the Execute Forms of the DEQ Macro Instruction

You may remember that, in an operating
system with MVT, the area occupied by a
reenterable or serially reusable load
module is not released automatically when
the module returns control to the control
program. (Refer to "How Control is
Returned" in the discussion of "Passing
Control in a Dynamic Structure.") In
anticipation of future use, the used copy
of the module is retained intact for as
long as possible; its area is available to
£ill both implicit and explicit requests
for storage, but only after all other
available storage has been allocated. If
copies of several modules are retained when
they are not needed, available storage may
be fragmented as first the areas between
the modules are allocated, and then the
module areas themselves.

To prevent this fragmentation, you
should not make a load module reenterable
or serially reusable if reusability is not
really important to the logic of your
program. Of course, if reusability is
important, you can issue a LOAD macro
instruction to load a reusable module, and
later issue a DELETE macro instruction to
release its area. If reusability is not
important, but you need to execute a module
that has been made reusable, you can make
the module temporarily nonreusable by
bringing its directory entry into storage,
modifying the contents of the entry, and
using the entry to refer to the module.
After issuing a BLDL macro instruction to
build a list containing the directory

Section I: Supervisor Services 57

entry, you need only set the first two bits
of the twenty-third byte in the entry to
zero; the module will then be treated as
nonreusable when given control by a LINK,
ATTACH, or XCTL macro instruction with a DE
operand that points to the entry. To set
the appropriate bits to zero, you can use
an AND-immediate instruction like the
following, which could be placed after the
BLDL macro instruction in Example 18:

NI NAMEADDR+22,B'00111111°

This instruction ensures the nonreusability
of the module to which NAMEADDR refers.

One method of conserving main storage
when reusability is not a consideration is
to use a planned overlay structure. A
complete description of the planned overlay
structure is contained in the publication
IBM System/360 Operating System: Linkage
£ditor and Loader. Briefly, in a planned
overlay structure only portions of the load
modules are brought into main storage at a
time; when a portion of the load module not
in main storage is required, it is loaded
in the area occupied by existing portions
of the load module. While the use of an
overlay structure requires more planning on
your part to determine all the portions of
a load module required at any one time, it
can result in a considerable saving of
storage. A well-planned overlay structure
can result in a savings of 50 percent or
more over bringing the entire load module
into main storage at once. This does
increase the amount of time spent in
bringing in portions of the load module,
however.

It is also possible for you to use an
overlay type of approach in the design of
your load module without using the linkace
editor by reusing the areas containing
completed routines within a load module.
For example, if your load module consists
of three control sections of 2000 bytes
each which are always executed
sequentially, as soon as control is passed
to the second control section you have 2000
bytes (the size of the first control
section) available to use as a data area.
If you reuse this area, you can save up to
2000 bytes of additional main storage which
would otherwise be allocated using DS
instructions or GETMAIN macro instructions.

RELEASING MAIN STORAGE
As indicated in Program Management, the
control program establishes two

responsibility counts for every load module
brought into main storage in response to

58

your requests for that load module. The
respon51b111ty counts are lowered as
follows:

¢ If the load module was requested in
.a LOAD macro instruction, that
responsibility count is lowered using a
DELETE macro instruction.

e If the load module was requested in a
LINK, ATTACH, or XCTL macro)
instruction, that responsibility count
is lowered using an XCTL macro
instruction or by returning control to
the control program.

¢ When a task is terminated, the
responsibility counts are lowered by
the number of requests for the load
module made in LINK, LOAD, ATTACH, and
XCTL macro instructions during the
performance of that task, minus the
number of deletions indicated above.

Except for those modules contained in
the link pack area, the main storage area
occupied by a load module is available for
reuse when the responsibility counts reach
zero. When you plan your program, you can
design the load modules to give you the
best trade-off between execution time and
efficient main storage use. Naturally, if
you will use a load module many times in
the course of a job step, you will issue a
LOAD macro instruction to bring it into
main storage, and you will not issue a
DELETE macro instruction until all uses of
the load module have completed. In this
case it is better to have the load module
in main storage all the time than to bring
it in every time you require it.
Conversely, if a load module is used only
once during the job step, or if its uses
are widely separated, it will conserve main
storage if you issue a LINK macro
instruction to load the module and issue an
XCTL from the module (or return control to
the control program) when it has completed.

There is a minor problem involved in the
deletion of load modules containing data
control blocks. An OPEN macro instruction
must be issued before the data control
block is used, and a CLOSE macro
instruction issued after the use is
finished. If you do not issue a CLOSE
macro instruction for the data control
block, the control program will issue one
for you when the task is terminated.
However, if the load module containing the
data control block has been removed from
main storage, the attempt to issue the
CLOSE macro instruction will cause abnormal
termination of the task. You must either
issue the CLOSE macro instruction yourself

before deleting the load module, or ensure
that the data control block is still in
main storage when the task is terminated.

STORAGE HIERARCHIES

Main storage may be expanded by
including IBM 2361 Core Storage in the
system (excluding the Model 65
Multiprocessing System). 'Main Storage
Hierarchy Support for IBM 2361 Models 1 and
2 permits selective access to either
processor storage (storage associated with
the Central Processing Unit) or IBM 2361
Core Storage. Processor Storage is
referenced as hierarchy 0; iBM 2361 Core
Storage is referenced as hierarchy 1. The
first address in IBM 2361 Core Storage is
one higher than the last address in
processor storage.

Since IBM 2361 Core Storage is an
extension of main storage, no special
instructions are required for its use.
Hierarchies 0 and 1 may be specified by
using the hierarchy parameter (HIARCHY=) in
the ATTACH, DCB, GETMAIN, GETPOOL, LIiINK,
LOAD, and XCTL macro instructions. If the
hierarchy parameter is omitted, requested
storage, if available, is obtained from
processor storage.

In using Main Storage Hierarchy support
on a Model 50 under the primary control
program, MFT, or MVT, use caution in
directing programs containing CCWs for
direct access devices to be loaded into
hierarchy i. (Under MFT, this includes
readers and writers.) If this is
disregarded, overrun will occur waich will
degrade the performance or result in an
unrecoverable I/0 error.

If IBM 2361 Core Storage is not included
in a PCP or MFT system generated with
storage hierarchies, requests for storage
within hierarchy 1 are obtained from
hierarchy 0. If IBM 2361 Core Storage is
not included in an MVT system generated
Wwith storage hierarchies, the hierarchy
structure is contained wholly within
processor storage. Example 28 shows two
GETMAIN requests for hierarchy 0. Example
29 shows a request for hierarchy 1.
Requirements for writing macro instructions
with the hierarchy parametex are described
in the publication IBM_ Systen/360 Operating
System: Supervisor and Date Management
Macro Instructions.

Checkpoint and Restart

When you submit a job for execution, you
expect it to be executed quickly and
efficiently. But if a job step terminates
abnormally, you may have to submit the job
again. You then lose valuable computer
time and must wait longer for your results.

With the primary control program, MFT,
or MVT, the operating system provides
special facilities to reduce the effects of
abnormal termination. When a job step
terminates abnormally, you can restart it,
either from the beginning or from a
checkpoint within the job step itself. You
can request that the restart automatically
follow abnormal termination, or you can
request restart later by submitting a new
job.

When you submit a new job, you actually
resuomit the original job with certain
changes indicating where restart is to
occur. If necessary, you can make more
extensive changes, such as corrections to
data that will be processed after restart.
At times, you may wish to make such changes
and then restart a job step that has
terminated normally but has produced
incorrect results.

When you restart a job step, the step
may or may not be completed successfully.
You can expect successful completion if
abnormal termination was the result of a
chance error, such as a parity error,
because such an error snould not recur
after restart. 1If abnormal termination
resulted from an error in data or job
control statements, you can expect
successful completion if you correct the
error and request restart by submitting a
new joo. Opviously, you cannot expect
successful completion if the cause of
abnormal termination was an error in the
logic of your program.

TYPES OF RESTART: You can request two

basic types of restart:

s Step restart, which is a restart from
tne beginning of a job step.

e Checkpoint restart, which is a restart
from a checkpoint within a job step. A
job step can include any number of
cneckpoints. Each checkpoint is
established by a CHKPT macro
instruction.

You can request that either type of
restart automatically follow abnormal
termination. You can also request either
type by submitting a new job.

Section I: Supervisor Services 59

AUTOMATIC RESTART: You request automatic
step restart through job control
statements; you request automatic
checkpoint restart through the CHKPT macro
instruction.

If you request automatic step restart,
the job step will be restarted from the
beginning if it terminates abnormally
without issuing a CHRPT macro instruction.
1f the step terminates after issuing a
CHKPT macro instruction, it will be
restarted from the most recent checkpoint,
unless automatic checkpoint restart is
suppressed.

You can suppress automatic checkpoint
restart through either a job control
statement or the CHKPT macro instruction.
If you do so, and you request automatic
step restart, the job step will be
restarted from the beginning in the event
of abnormal termination. However,
automatic step restart is also suppressed
if abnormal termination occurs after
restart from a checkpoint within the same
step.

Automatic step or checkpoint restart is
possible only when the abnormal completion
code is one of a set of codes specified at
system generation. (In a system with MFT
or MVY, this set may include the code that
represents a system failure requiring a
system restart.) All auvtomatic restarts
must be authorized by the operator.

DEFERRED RESTART: Restart is deferred when
you do not request automatic restart or
when automatic restart is not allowed or is
not successful. You request deferred
restart by submitting a new job.

Witn deferred restart, you can consider
the cause of abnormal termination, decide
whether restart is likely to be successful,
and make any necessary changes in data and
job control statements. You can also
decide whether to restart the job step from
the beginning or from a checkpoint, and can
choose a checkpoint other than the most
recent one. In some cases, you may have

the option of restarting the job step on an-

alternate computing system.

ESTABLISHING CHECKPOINTS

To establish a checkpoint, you use the
CHAKPT macro instruction. This macro
instruction records the information

60

necessary to restart the job step; it
records this information in a checkpoint
data set.

Checkpoint data sets are a special topic
discussed later. The following discussion
concerns the use of the CHKPT macro
instruction, and the selection of
checkpoints. You must be careful in
selecting checkpoints, because their
placement is important to successful
restart.

In selecting a checkpoint, consider the
following restrictions:

e When the checkpoint is established, the
job step must comprise a single task.
The job step task must be your only
task when the job step is restarted.

s A checkpoint cannot be established by
an exit routine that returans control to
the control program. This type of
routine is specified by the ATTACH,
SPIE, and STIMER macro instructions,
and by the EXLST and SYNAD operands of
the DCB macro instruction. (There is
one exception, a special EXLST routine
that is discussed later.)

e If a STIMER or WTOR macro instruction
has peen issued, a checkpoint cannot be
established before the time interval is
completed or the operator's reply is
received. After a restart, no timer
interruption or operator reply could be
expected.

¢ In a system with MVT and the
rollout/rollin option, a checkpoint
cannot be established when the job step
has been allocated storage from outside
its region.

In selecting a checkpoint, you must also
consider the handling of data sets and
serially reusable resources. First,
however, it may help to consider how the
CHKPT macro instruction is used to
establish checkpoints.

Example 30 shows a CHKPT macro
instruction and a DCB macro instruction for
the checkpoint data set. The CHKPT macro
instruction records information in the
checkpoint data set and requests automatic
restart if the job step later terminates
abnormally. When the step is restarted,
execution resumes with the instruction that
follows the CHKPT macro instruction.

CHKPT CHKPTDCB
CHKPTDCB DCB
DDNAME=CHKPTDD

Example 30. Establishing a Checkpoint

DSORG=PS ,MACRF=(W) ,RECFM=U,BLKSIZE=32760, C

CHKPT CHKPTDCB

CH 15,=H'4"

BNE

CHKPT CANCEL
NRESTART e

Example 31.

Wnen automatic restart is not possible,
you can request a deferred restart by
submitting a new job. The JOB statement
for the new job refers to the checkpoint by
an identification that (in Example 30) is
generated by the control program and
printed in a message to the operator.

After being restarted, the job step may
again terminate abnormally. If it does, it
may be automatically restarted from the
same checkpoint, subject to operator
authorization.
is not restarted twice from the same
checkpoint, you can code the sequence shown
in Example 31.

The instruction that follows the
checkpoint tests the return code register
to determine whether control has been
returned as the result of a restart. If
the return code is four, a restart has just
occurred, and a second CHKPT macro
instruction is executed. This macro
instruction has a CANCEL operand, which
cancels the request of the previous macro
instruction for an automatic restart. If
the job step terminates abnormally after
" issuing CHKPT CANCEL, automatic restart can

To ensure that the job step’

Establish checkpoint
Restart in progress?
NRESTART No, branch to NRESTART

Yes, cancel restart request

Canceling a Request for Automatic Restart

occur only at a later checkpoint. Because
the step was restarted from a checkpoint,
automatic restart cannot occur.

Restart from a checkpoint invalidates
the results of certain macro instructions.
One of these is the EXTRACT macro
instructien which is used to obtain
information from the task control block.
This information is subject to change when
the task is terminated and the job step is
restarted. If the information is needed
after restart, it should be updated by
reissuing the EXTRACT macro instruction as
shown in Example 32.

Restart also invalidates the results of
the ENQ and SETPRT macro instructions. The
ENQ macro instruction, to be discussed in
the next topic, is used to request control
of serially reusable resources. The SiTPRT
macro instruction is used in data
management to load the UCS buffer for a
1403 printer with the Universal Character
Set feature. The buffer contents are not
saved when a checkpoint is taken. To
reload the buffer upon restart, you must
reissue the SETPRT macro instruction in the

e

ANSADDR, FIELDS=(ALL)

EXTRACT

CHKPT CHKPTDCB

CH 15,=H"4"

BNE NRESTART

EXTRACT ANSADDR, FIELDS= (ALL)

NRESTART eee

Example 32.

Obtain TCB information

Establish checkpoint
Restart in progress?

No, branch to NRESTART

Yes, obtain new information

Obtaining Updated TCB Information After Restart

Section I: Supervisor Services 61

éNQ (QADDR, RADDR)

CHKPT CHKPTDCB
ENQ (QADDR, RADDR) ,RET=HAVE
DEQ (QADDR, RADDR)

Example 33.

same manner as the EXTRACT macro
instruction.

CHECKPOINTS AND SERIALLY REUSABLE RESOURCES

When a job step terminates, it loses
control of serially reusable resources. If
the step is restarted, it must request all
of the resources that it requires to
continue processing.

Example 33 shows a program that requests
a serially reusable resource before
establishing a checkpoint. After the
checkpoint, it conditionally requests the
same resource. If the job step still has
control of the resource, the control
program ignores the request. It fills the
request if the job step has terminated
abnormally, has lost control of the
resource, and has been restarted from the
checkpoint.

SHARED DIRECT ACCESS STORAGE DEVICE: At
some installations, a direct access storage
device is shared by two or more independent
computing systems. This device is a
serially reusable resource; if it is being
used when a checkpoint is taken, it must be
requested after a restart from the
checkpoint. This resource is requested not
by the ENQ macro instruction, but by a
special macro instruction (RESERVE)
described in the publication, IBM
System/360 Operating System: System
Programmer's Guide.

Other Serially Reusable Resources: There
are some resources that you request
implicitly by issuing data management macro
instructions. These resources may be
records that you are processing, or tracks
on a direct access device. Since you
cannot conditionally request control of
these resources after a restart, you should
not establish checkpoints while you have
control of these resources.

e If you use the basic direct access
metnod (BDAM), do not take a checkpoint

62

Requesting a Resource After Restart

before releasing a record that has been
read with exclusive control. When you
add a record to a data set, do not take
a checkpoint before checking for
completion of the write operation if
the record format is variable-length or
undefined.

e If you use the basic indexed sequential
access method (BiISAM), do not take a
checkpoint before waiting for
completion of a write operation. If
you read a record for update, do not
take a checkpoint before writing the
updated record and waiting for
completion of the write operation.

e If you use the queued indexed
sequential access method (QISAM), issue
an ESETL macro instruction before
taking a checkpoint if you have
previously issued a SETL macro
instruction. You can issue another
SETL macro instruction after the
checkpoint.

CHECKPOINTS AND DATA MANAGEMENT

Data management is not discussed in
detail until Section II of this
publication, but it is one of the most
important considerations in selecting
checkpoints. The following discussion
should be understandable if you have a
basic knowledge of data management concepts
and facilities.

DISPOSITION OF DATA SETS: At the end of a
job step, data sets are disposed of
according to your specifications in DD
control statements. If a job step
terminates abnormally, you should keep or
catalog data sets that you may need for a
deferred restart.

When you catalog a data set, you enable
the operating system to retrieve the data
set by name alone. You therefore do not
have to provide wvolume and device-type
information when you request deferred

restart. Providing such information could
require you to write new DD statements.

If you request automatic restart, the
system keeps data sets for you, except when
the restart is not actually performed. The
kept data sets include "temporary" data
sets and others that normally would be
deleted. Data sets are deleted only if
created by a job step that is to be
restarted from the beginning.

Guidelines for specifying data set
disposition appear in the topic "Using the
Restart Facilities" in the publication, IBM
System/360 Operating System: Job Control
Lanquage Reference.

POSITIONING OF DATA SETS: If you take a
checkpoint while processing a data set, you
may continue processing for some time
before abnormal termination. On restart,
you must be able to resume processing at
the correct location in the data set.

When the control program restarts a job
step, it automatically repositions data
sets on magnetic tape and direct access
devices. It does not reposition data sets
on unit record equipment; such data sets
must be repositioned manually or by your
program.

Unit Record Data Sets: Unit record output
can be either punched cards or printed
pages. Input can only be punched cards.

To reposition an output data set, you
simply discard data punched or printed
after a checkpoint. This data is recreated
when the job step is restarted. Note that
when pagination is important, you should
take a checkpoint only after printing the
last line on a page.

To reposition an input data set, you
include a repositioning routine as part of
your program. Such a routine should first
determine whether repositioning is
necessary, since the data set may have been
transcribed onto a magnetic tape or direct
access volume. If the data set has been
transcribed, it is repositioned
automatically by the control program;
otherwise, it must be repositioned by your
routine.

If you provide a repositioning routine,
your program might operate as follows:

e The program saves the first record read
from the data set and keeps a count of
the total number of records read before
each checkpoint.

e After a restart, the repositioning
routine reads a record from the data
set and compares it with the first
record read before abnormal
termination.

e If the records are identical, the data
set has been positioned to the
beginning. The routine repositions it
by reading (without otherwise
processing) the number of records read
before the checkpoint.

e If the records differ, no repositioning
is necessary. The data set presumably
has been transcribed onto a magnetic
tape or direct access volume, and has
been repositioned by the control
program.

Tape and Direct Access Data Sets: When the

control program repositions a tape or
direct access data set, it ensures that the
correct volume is mounted. During an
automatic restart, it may ask the operator
to demount the current volume of a
multivolume data set, and to replace it
with an earlier volume. However, if the
data set is physically sequential, you can
ensure that it can be repositioned without
changing volumes simply by taking a
checkpoint each time a new volume is
mounted. To do so, you provide a routine
for taking a checkpoint, and specify its
address in the data control block exit
list. The control program gives control to
this routine at the appropriate time. The
requirements for writing an end-of-volume
routine are described in "Processing
Program Description," Section II, Part 1.

Positioning becomes especially important
when you modify a physically sequential or

partitioned data set (and specify DISP=MOD

in the DD statement). In each case, you
must take a checkpoint immediately after
opening the data set, before writing any
records. If you do not, errors will occur
if:
e You take a checkpoint before opening
the data set.

e You open the data set and begin writing
records.

e The job step terminates and is
restarted from the checkpoint.

e You reopen the data set after restart.

1f you are using BISAM to add records to
an ISAM data set, you must anticipate
duplicate record indications following a
restart. These duplicate record

Section I: Supervisor Services 63

indications can occur when you attempt to
add records that were already added before
the restart. On the other hand, if you are
using QISAM to add records to an 1I3AM data
set, or if you are creating the data set,
all records added after the checkpoint will
be lost after the restart.

If you are modifying a sequential or
partitioned data set, the data set will be
positioned incorrectly when you reopen it
after restart. Because of the parameter
DISP=MOD, the data set is positioned to the
end; that is, the data set is positioned
after records that were added prior to
abnormal termination. Thus, records added
after restart will duplicate those added
before restart.

When you open a data set before taking a
checkpoint, the data set is repositioned
during a checkpoint restart. Also, when
you specify DISP=MOD for a data set on a
direct access device, the data set is
repositioned (when opened) after an
automatic step restart.

SYSIN and SYSOUT Data Sets: System input
(SYSIN) data sets are data sets that you
include with your job control statements in
the system input stream. System output
(SYSOUT) data sets are data sets that you
route to a printer or card punch through
the system output stream. By routing data
sets through the input and output streams,
you avoid having to request unit record
devices for exclusive use by your job step.

A SYSIN or SYSOUT data set may or may
not be on a unit record device at the time
it is processed by your program. In a
system with PCP, the data set may be on a
unit record device or on magnetic tape. In
a system with MFT or MVT, a SYSIN data set
is always on a direct access device, while
a SYSOUT data set may be on a unit record
device, macnetic tape unit, or direct
access device. Transcription from one type
of device to another (such as card-to-tape
transcription for SYSIN data sets) is
handled by the operator or the operating
system.

When a job step is restarted, the
repositioning of a SYSIN or SYSOUT data set
depends on the type of device that is
actually used by your program. If the
device is a unit record device, you must
reposition the data set yourself just as
you do any other unit record data set. If
the device is a magnetic tape unit or
direct access device, the data set is
repositioned automatically.

64

A SYSOUT data set has the implied status
DISP=MOD. Therefore, a checkpoint should
be taken immediately after a SYSOUT data
set is opened. For automatic step restart,
the implied status DISP=MOD means that
SYSOUT data sets on magnetic tape are not
repositioned in the same way as SYSOUT data
sets on direct access devices. SYSOUT data
sets on tape are positioned to the end;
SYSOUT data sets on direct access devices
are positioned to the beginning.

For deferred checkpoint restart, note
that:

e If a SYSIN data set was read completely
before the checkpoint, you need not
include the data set when you request
restart from the checkpoint. If only
part of the data set was read, you must
include the complete data set so that
it can be properly repositioned.

e If the checkpoint was taken while a
SYSIN or SYSOUT data set was being
processed, the type of device used
directly by your program must be the
same for restart as for original
execution. The blocking factor (number
of records per block) must also be the
same.

PRESERVATION OF DATA SETS: The control

program repositions data sets but does not
preserve their contents. After taking a
checkpoint, you must ensure that the data
set contents are not changed in a manner
that would make successful restart
impossible.

If you read records from a data set,
update them, and write them back to their
original locations, it may be useless to
take a checkpoint before completing this
processing. If you take a checkpoint
earlier, restart will produce invalid
results if you update a record before
abnormal termination, update it again after
restart, and actually change the record in
both cases. For example, suppose the
purpose of the update is to switch the
positions of two fields in each record. If
you update a record twice, you return the
fields to their original positions, and the
results are invalid. 1In a different
application, an update might simply place a
value in a record field, regardless of the
field's original contents. In this case,
you could restart the step at a checkpoint
taken before or during the update
procedure, because an updated record would
not be changed if updated again after
restart.

Partitioned Data Sets: When you process a
partitioned data set, you must be careful
to preserve the contents of the directory.
The directory consists of entries that
point to each member of the data set.

When you add a member to a partitioned
set, you also add an entry to the
directory. If you add only one member, you
can use the STOW macro instruction to
create the entry, or you can specify the
member name in the DD statement; in the
latter case, the control program creates
the directory entry when you close the data
set or when the job step terminates. 1If
you add more than one member, you must use
the STOW macro instruction to create an
entry for each member.

When you add one or more members to a
partitioned data set, you must take a
checkpoint immediately after opening the
data set. After taking the checkpoint, you
can write the new member and add its entry
to the directory. Then, if the step is
restarted from the checkpoint, the data set
is repositioned; the new member and its
directory entry are deleted, and are
recreated after restart.

If you do not take a checkpoint after
opening the data set, various errors may
occur. As an example, assume that:

e You take a checkpoint before opening a
partitioned data set.

e You open the data set and begin writing
a new member.

e The step terminates abnormally; the
control program creates a directory
entry for the new member, using the
member name specified in the DD
statement.

e The step is automatically restarted
from the checkpoint; the data set is
not open, and therefore it is not
repositioned.

* You reopen the data set after restart;
the control program positions the data
set after the member that was just
created.

® You write the member again and close
the data set; the control program tries
to create a directory entry, again :
using the member name specified in the
DD statement.)

The attempt to create a directory entry
after restart is unsuccessful, because the
member name already appears in the entry

that was created before abnormal
termination. The step again terminates
abnormally, and the member created after
restart is deleted.

Note that when a partitioned data set is
repositioned after restart from a
checkpoint, the control program deletes all
members that have been added to the data
set since the checkpoint was taken. You
therefore should not request a deferred
checkpoint restart if it would delete
members that have been added by other jobs.

To update a member of a partitioned data
set, you can either write updated records
back to their original locations, or

‘rewrite the entire member (in updated form)

as a new memper of the data set. In the
latter case, you update the directory entry
to point to the rewritten member.

If you take a checkpoint before
rewriting a member, you must also take one
immediately after updating the directory.
You must do so because the control program
will delete the updated directory entry if
it repositions the data set for restart
from the earlier checkpoint. Since no
entry then points to the original member,
execution after restart will be
unsuccessful.

Data Sets on Direct Access Devices: For
every data set on a direct access device,
there is a standard data set label called a
data set control block (DSCB). The DSCB is
part of the volume table of contents
(VTOC); it defines the location -and extent
of the data set on a particular volume.

If you take a checkpoint while
processing a data set on a direct access
device, the job step can be restarted from
the checkpoint only if the DSCB has not
been changed since the checkpoint was
taken, or if the only changes result from:

¢ Secondary allocation. 1In the DD
statement, you can request that
additional space be allocated to the
data set when the space currently
available is exhausted. If space is
allocated after a checkpoint is taken,
this space is indicated in the DSCB; on
restart from the checkpoint, the space
is released and the DSCB is changed
accordingly.

e Release of unused space. In the DD
statement, you can request that unused
space be released at the end of the job
step. 1If space is released, the DSCB
may indicate a reduced extent for the
data set when checkpoint restart is

Section 1I: Supervisor Services 65

deferred; no space is allocated to
replace that which was released. Note
that space is not released when step
termination is followed by automatic
restart.

If the DSCB is changed by moving the data
set to a new location on the same volume,
or by moving the data set to a new volume,
the job step cannot be restarted from the
checkpoint unless:

e Restart is deferred.

¢ The data set is replaced by a dummy
data set. (Refer to the discussion of
"Dummy Data Sets" below.)

If a data set occupies more than one
volume, there is a DSCB for the data set on
each volume. If the data set is processed
sequentially, only one volume is being
processed when the checkpoint is taken; if
the DSCB for this volume has not been
changed, the job step can be restarted from
the checkpoint even though there may be
changes in the DSCBs for the data set on
other volumes.

When end-of-volume is reached in writing
a data set, secondary allocation may cause
the data set to be continued on another
volume. If the allocation occurs after a
checkpoint, the volume used for
continuation will not be mounted on restart
from the checkpoint. The control program
therefore cannot release the allocated
space,; even though it no longer recognizes
this space as a part of the data set.

To release space on a volume that is not
mounted on restart, you should use a
utility program to delete the extension of
the data set on the volume. If you do not
release the space before the job step is
restarted, the step will be abnormally
terminated if the data set is again
extended to the same volume. Note that if
the data set organization is physically
sequential, you can provide an
end-of-vclume exit routine to ensure that a
checkpoint is taken each time the data set
is extended to a new volume.

Work Data Sets: Many programs use "work"
data sets, which are alternately written
and read, rewritten and reread. If you use
a work data set, you should take a
checkpoint each time you have finished
reading the data set, before rewriting it.
Then, if the job step is restarted, you
will not need to read records that you have

66

deleted.

destroyed by rewriting the data set. If
you use the data set many times, you can
reduce the frequency of checkpoints by
using two data sets, as shown in Example
34. If you use two data sets on separate
volumes, you can assign both to one device
through the UNIT parameter in the
associated DD control statements.

Dummy Data Sets: When you request deferred
checkpoint restart, you can sometimes use
dummy data sets to replace data sets that
were used during the original execution of
your program. For example, your program
may have taken a checkpoint while
processing a data set; it may have finished
processing the data set prior to abnormal
termination, or the data set may have been
If there is no need to process
the data set after restart, you can replace

it with a dummy data set, provided that:

s The data set is sequentially organized
and is processed by the basic or the
queued sequential access method (BSAM
or QSAM).

* The job step is not restarted from a
checkpoint that is within the data
set's end-of-volume exit routine.

Of course, the data set must not be the
checkpoint data set that is beino used to
restart the job step.

After restart, an input request for a
dummy data set results in an immediate
end-of-data-set condition. An output
request is processed normally, except that
no data is actually written.

You define a dummy data set by means of
a DD statement containing the parameter
DUMMY or DSNAME=NULLFILE. The name of the
DD statement must be the same as that of
the DD statement for the data set being
replaced.

PRE-ALLOCATED DATA SETS: In systems with

MVT, direct access space for temporary data

sets can be pre-allocated to save time.

However, you cannot use this facility with
checkpoint/restart. Checkpoints and
automatic restarts are suppressed for any
job step that uses a pre-allocated
temporary data set,

Pre-allocated data sets are discussed in
detail in the chapter "System Reader,
Initiator and Writer Cataloged Procedures"
in the publication IBM System/360 Operating
System: System Programmer's Guide.

Using One Data Set (A)

Using Two Data Sets (Al and A2)

Open A
Write and read back A

Checkpoint
Rewrite and read back A

Open Al
Write and read back Al
Close Al and open A2
Write and read back A2

Rewrite and read back A2

Rewrite and read back Al

Checkpoint Checkpoint
Rewrite and read back A
Checkpoint Close A2 and open Al
Rewrite and read back A
Close A Close Al
Example 34. Checkpoints for Processing Work Data Sets

CHECKPOINT DATA SETS

When you establish a checkpoint, the
control program creates an entry in a
checkpoint data set. The entry contains
the information necessary to restart the
job step from the checkpoint.

DEFINING A CHECKPOINT DATA SET

To define a checkpoint data set, you use
the DCB macro instruction. This macro
instruction creates a data control block,
which describes the data set to the control
program. The data control block contains
information that you specify in the DCB
macro instruction or in a DD job control
statement.

The DCB macro instruction must specify
the data set organization and the type of
instruction that the control program will
use to write entries in the data set.
Other information, such as block size and
record format, can be specified either in
the DCB macro instruction or in the DD
statement. Some information is optional
and some required; the following examples
provide all of the required information
that can be coded in the macro instruction:

D1 DCB DSORG=PS,MACRF= (W) ,RECFM=U,
: BLKSIZE=32760,DDNAME=CHECKDD1

D2 DCB DSORG=PO,MACRF= (W) ,RECFM=U,
BLKSIZE=600, DDNAME=CHECKDD2

A checKpoint data set must be physically
sequential (DSORG=PS) or partitioned
(DSORG=P0O), and must be processed using the
WRITE macro instruction (MACRF=(W)). The
record format must be undefined (RECFM=U).
The block size must be at least 600 bytes
(BLKSIZE=600), but not greater than 32,760
bytes for magnetic tape, and not greater
than the track length for direct access.
You can omit block sigze information if you

magnetic tape.

allow the control program to open the data
set (as discussed in the next topic); in
this case, the control program Getermines
the maximum block size for the device peing
used, and places it in the data control
block.

The data control block must refer to a
DD statement (DDNAME=CHECKDD1l, for example)
for such additional information as the data .
set name and the type of labels used for
(A tape can have standard
labels, nonstandard labels, or no labels.)

For seven-track tape, you must specify
the tape recording technique (TRTCH=C, data
conversion witn odd parity). If you
specify it in the DCB macro instruction,
you must also specify device dependency
(DEVD=TA). For direct access, you must not
specify key lengtn unless you specify a
length of zero (KLYLEN=0).

As an optional service, you can request
chained scheduling of input/output
operations (OPTCD=C and NCP=2 channel
programs). With direct access, you can
request validity checking for write
operations, with or without chained
scheduling (OPTCD=WC or OPTCD=W). With
direct access and normal scheduling, you
can request use of track overflow
(RECFM=UT) .

USING A CHECKPOINT DATA SET

Before any data set can be used, it must
be opened by issuing the OPEN macro
instruction. When you use a checkpoint
data set, you can open it yourself or allow
the control program to open it for you. If
the data set is not open when you issue the
CHKPT macro instruction, the control
program opens it, writes a checkpoint
entry, and then closes the data set before
returning control to your program.

Section I: Supervisor Services 67

If you open the checkpoint data set
yourself, you need not close it until after
taking the last checkpoint for the job
step. If you take many checkpoints, you
will save a considerable amount of time if
you allow the data set to remain open. You
will also save all of the checkpoint
entries and thus be able to request a
deferred restart from any of the
checkpoints.

If the control program opens the data
set, the data set is positioned for each
checkpoint according to your specifications
in the DD statement. If you specify
DISP=MOD, the data set is positioned to the
end and each entry is written after that
for the previous checkpoint. If you
specify anything else, the data set is
positioned to the beginning and each entry
is written over the previous entry.

By allowing the control program to write
over a previous entry, you can save space
in external storage. You should not allow
it to write over the most recent entry,
however, because the job step might be
terminated while the new entry was being
written. To save the most recent entry,
you can use two checkpoint data sets in
alternation; the new entry is then written
in one data set while the previous entry is
saved in the other.

Example 35 shows a way of alternating
data sets when all checkpoints are taken by
one CHKPT macro instruction. The data sets
are opened by the control program, and are
identified by two DD statements, CHECKDD1l
and CHECKDDZ2. The data control block
initially refers to CHECKDD2, but is
changed before the first checkpoint to
refer to CAECKDDl. Before the second
checkpoint, it is changed to refer to
CHECKDD2; before the third checkpoint, it
is again changed to refer to CHECKDDl1l, and

so forth. In this way, one data control
block can be used for two data sets that
are not open at the same time. (The DCBD
macro instruction, used in Example 35, is
described in "Modifying the Data Control
Block," Section II, Part 1.)

With direct access, a checkpoint data
set must be written entirely on one volume.
Also, it must be written entirely in the
space originally allocated to the data set.
When the available space cannot contain a
complete checkpoint entry, an attempt to
take a checkpoint results in abnormal
termination, unless you have requested
secondary space allocation in the DD
statement. If you have requested secondary
allocation, abnormal termination does not
occur, even though the space cannot be
used. Control is returned to your program
with an error indication in register 15.

With magnetic tape, a checkpoint data
set can be written on more than one volume.
If end-of-volume is reached in writing an
entry, the entire entry is written on the
next volume. The volume that contains the
complete entry is indicated in the message
that identifies the checkpoint.

Note that you must use a checkpoint data
set only for taking checkpoints. If you
use a data set for any other purpose, you
cannot use it as a checkpoint data set.

RESTARTING A JOB_STEP

If you request an automatic restart, the
control program uses the most recent entry
in the checkpoint data set (or the most
recent valid entry if an uncorrectable
error occurred in writing the most recent
entry). If you request a deferred restart,
you must specify the appropriate checkpoint
entry when you submit the job for restart.

DCBD DSORG=PS

CSECT

LA 2,CHECKDCB

USING IHADCB,2

XC DCBDDNAM(8) ,DDHOLD
XC DDHOLD (8) , DCBDDNAM
XC DCBDDNAM{(8) , DDHOLD
CHKPT CHECKDCB

DDHOLD DC
CHECKDCB DCB

C*'CHECKDD1'

Example 35.

/

68

Define IHADCB (dummy section that defines
DCBDDNAM)

Establish CHECKDCB as base address
for IHADCB

Exchange ddname in CHECKDCB
for ddname in DDHOLD

Open, checkpoint, close

DSORG=PS, MACRF= (W) , DDNAME=CHECKDD 2

Alternating Use of Checkpoint Data Sets

CHKPT CHECKDCB,CHECKID3,16
CHECKID3 DC
CHECKDCB DCB

C*ENDOFDATAONINPUT'

Example 36.

DEFERRED RESTART: To identify the
checkpoint data set, you include an
appropriate DD statement after the JOB
statement, or after the //JOBLIB DD
statement if you define a job library. The
name of the statement must be SYSCHK.

In the JOB statement, you specify the
name of the job step to be restarted and
the checkpoint at which restart is to
occur. You specify the checkpoint by an
identification that was printed on the
operator's console when the checkpoint was
taken.

CHECKPOINT IDENTIFICATION: The control
program assigns the identification for each
checkpoint, unless you assign it yourself
when you issue the CHKPT macro instruction.
Example 36 shows a macro instruction that
assigns the identification
"ENDOFDATAONINPUT". The identification is
16 characters in length -- the maximum
length allowed for a physically sequential
data set. For a partitioned data set, the
identification is used as a member name
and, therefore, cannot exceed eight
characters.

1f you assign checkpoint
identifications, you should not assign the
same identification to two or more
checkpoints. If you do, you will be able
to restart the jop step. from only one of
the checkpoints if you save the entries in

DSORG=PS, MACRF=(W) , DDNAME=CHKDD

Assigning a Checkpoint Identification

the same checkpoint data set. In the case
of a physically sequential data set, you
can restart the step only from the earliest
checkpoint, because the control program
will find its entry first when it searches
the data set. In the case of a partitioned
data set, you can restart the step only
from the latest checkpoint, because its
entry is a member of the data set and
replaces any previous entry with the same
identification (member name).

When the control program assians
identifications, the identification for

-each checkpoint is unique. The

identification is eight bytes in length,
and consists of the letter C followed by a
seven-digit decimal number. The number is
the total number of checkpoints taken by
the job, including the current checkpoint,
checkpoints taken earlier in the job step,
and checkpoints taken by any previous job
steps.

The control program identifies each
checkpoint in a message to the operator; on
request, it also makes the identification
available to your program. In Example 37,
the CHKPT macro instruction requests the
control program to supply an identification
and place it in the eight-byte field named
ID. When the checkpoint is successfully
taken, the program prints the
identification as part of a message to the
programmer.

‘Section I: Supervisor Services 69

CHKPT CHKDCB,ID,'S’ Take checkpoint
LTR 15,15 Checkpoint taken?
BNZ PHASE2 No, branch to PHASE2
PUT STEPLOG,MESSAGE Yes, print checkpoint ID
PHASE2 ...
MESSAGE DC H'45,0" Record length, etc.
DC C'SUCCESSFUL CHKPT AT PHASE2. 1ID='
iD DS CL8
STEPLOG DCB DSORG=PS,MACRF=(PM) , RECFM=V,BLKSIZE=128, (o4
LRECL=124, DDNAME=LOGDD
CHKDCB DCB DSORG=PS,MACRF= (W) , RECFM=U, BLKSIZE=32760, C
DDNAME=CHKDD
Example 37. Recording a Checkpoint Identification Assigned by the Control Program

RESTART ON AN ALTERNATE SYSTEM: You can
request deferred restart on a system other
than the one on which your job was
originally executed. Of course, the
alternate system must have facilities
adequate to process your job, and, in the
case of checkpoint restart, it must be
identical in certain respects to the
original system.

e The type of operating system (primary
control program, MFT, or MVT) must be
the same for both systems. Also, the
release level must be the same.

» The nucleus of the alternate system
must be identical to that of the
original system.

e The main storage area available to your
job step must be the same in both
systems. Therefore, with the primary
control program, the main storage size
for the alternate system must be at
least as large as that for the original
system.

70

e If your job step uses data management
access methods, the resident routines
for these access methods must have the
same main storage locations in both
systems., In systems with MVT, these
routines are located in the link pack
area. If your job step uses other
modules in the link pack area, these
modules must also have the same
locations in both systems.

s If your job step uses main storage
hierarchy 1, the boundary between
hierarchies 0 and 1 must be the same in
both systems.

FURTHER INFORMATION ON RESTART: For

further information on restart, refer to

the topic "Using the Restart Facilities"

in the publication IBM System/360

Operating System: Job Control Language
| Reference.

Section II: Data Management Services

Section II describes the data management features and facilities of
the operating system. The reader should be familiar with the theory and
philosophy of System/360 Operating System data management and with the
various general terms and concepts necessary to begin preparation for
actual coding. Each macro instruction is discussed in sufficient detail
so that the reader can turn directly to the macro instruction format
description to determine the operand requirements. Format descriptions
are in the publication IBM System/360 Operating System: Supervisor and
Data Management Macro Instructions. '

Part 1, Introduction to Data Management, is concerned with the
characteristics of data sets and direct access devices. it also
describes the means and methods used to communicate with the operating
system during program assembly and execution. It contains a general
description of the various control blocks, their contents, and their
functions.

Part 2, Data Management Processing Procedures, describes data access
and processing techniques in terms of data set organization, buffer
acquisition and control, and jobs to be done. The major emphasis is on
work requirements rather than access methods.

Part 3, Data Set Disposition and Space Allocation, describes the
techniques required for efficient and effective data set disposition and
space allocation. A sufficiently detailed description of the data
definition (DD) statement is included to get the reader "on-the-air."

Section II: Data Management Services 71

Part 1: Introduction to Data Management

Data Set Characteristics

The manner in which data is transferred between main storage and
external devices is of paramount importance in most data processing
applications. The data management function of the System/360 Operating
System assists you in achieving maximum efficiency in managing the mass
of data associated with the many programs that are processed at an
installation. To attain this objective, data management facilities have
been designed to provide systematic and effective means of organizing,
identifying, storing, cataloging, and retrieving all data, including
loadable programs, processed by the operating system.

Data set storage control, supported by an extensive catalog systen,
makes it possible for you to retrieve data by symbolic name alone,
without specifying device types and volume serial numbers. In freeing
computer personnel from the necessity of maintaining involved volume
serial number inventory lists of data and programs stored within the
system, the catalog reduces manual intervention and the possibility of
human error.

Data sets stored within the cataloging system can be classified
according to installation needs. For example, a sales department could
classify the data it uses by geographic area, by individual salesman, or
by any other logical plan.

Tne cataloging system also makes it possible for you to classify
successive generations or updates of related data. These generations
can be given an identical name and subsequently be referred to relative
to the current generation. The system automatically maintains a list of
the most recent generations.

Data from a direct access volume, a remote terminal, or a tape, and
data organized sequentially or as in a library, may be requested by
you in essentially the same way. In addition, data management provides:

e Allocation of space on direct access volumes. Flexibility and
efficiency of direct access devices is improved through greater use
of available space.

e Automatic retrieval of data sets by name alone.

o Freedom to defer specifications such as buffer length, block size,
and device type until tne job is submitted for processing. This
permits the creation of programs that are in many ways independent
of their operating environment.

Control of confidential data is provided by the data set security
facility of the System/360 Operating System. Using this facility, you
can prevent unauthorized access to payroll data, sales forecast data,
and all other data sets requiring special security attention. The
security-protected data set is available for processing only when a
correct password is furnished.

The data access facilities provided by the operating system are a
major extension of previous input/output control systems. Input/output
routines are provided to efficiently schedule and control the transfer
of data between main storage and input/output devices. Routines are
available to:

Section II: Data Management Services (Part 1) 73

Read data.

Write data.

Block and deblock records.

Overlap reading, writing, and processing operations.
Read and verify volume and data set labels.

Write data set labels.

Automatically position and reposition volumes.

Detect error conditions and correct when possible.
Provide exits to user-written error and label routines.

Corresponding to the range of system facilities available for control
of data is an equal range of facilities for access to the data. The
variety of techniques for gaining access to a data set is derived from
two variables: data set organization and data access technique.

Operating Systemn/360 data sets can be organized in four ways:

® Sequential: This is the familiar tape-like structure, in which
records are placed in physical rather than logical sequence. Thus,
given one record, the location of the next record is determined by
its physical position in the data set. The sequential organization
is used for all magnetic tapes, and may be selected for direct
access devices. Punched tape, punched cards, and printed output are
considered to be sequentially organized.

¢ Indexed Sequential: Records are arranged in collating sequence,
according to a key that is a part of every record, on the tracks of
a direct access volume. 1In addition, a separate index or set of
indexes maintained by the system gives the location of certain
principal records. This permits direct as well as sequential access
to any record.

e Direct: This organization is available for data sets on direct
access volumes. The records within the data set may be organized in
any manner you choose. All space allocated to the data set is
available for data records. No space is required for indexes.
Records are stored and retrieved directly with addressing specified
by you.

» Partitioned: This structure has characteristics of both the
sequential and the indexed sequential organizations. Independent
groups of sequentially organized data, called members, are in direct
access storage. Each member has a simple name stored in a directory
that is part of the data set and contains the location of the
member's starting point. Partitioned data sets are generally used
to store programs. As a result, they are often referred to as
libraries.

Requests for input/ocutput operations on data sets through macro
instructions are divided into two categories or techniques: the
technique for queued access and the technique for basic access. Each
technique is identified according to its treatment of buffering and
input/ocutput synchronization with processing. The combination of an
access technigue and a given data set organization is called an access
method. 1In choosing an access method for a data set, therefore, you
must consider not only its organization, but also the macro instruction
capabilities. Also, you may choose a data organization according to the
access techniques and processing capabilities available. The code
generated by the macro instructions for both techniques is optionally
reenterable depending on the form in which parameters are expressed.

In addition to the access methods provided by the operating system,
an elementary access technique called execute channel program is also
provided. To use this technique, you must establish your own system for

T4

organizing, storing, and retrieving data. Its primary advantage is the
complete flexibility it allows you in using the computing facilities
directly. :

An important feature of data management is that much of the detailed
information needed to store and retrieve data, such as device type,
buffer processing technique, and format of output records need not be
supplied until the job is ready to be executed. This device
independence permits changes to be made in those details without
requiring changes in the program. Therefore, you may design and test a
program without knowing the exact input/output devices that will be used
when it is executed.

Device independence is a feature of both access techniques when you
are processing a sequential data set. The degree of device independence
achieved is to some extent determined by you. Many useful
device-dependent features are available as part of special macro
instructions, and achieving device independence requires some
selectivity in their use.

DATA SET IDENTIFICATION

Any information that is a named, organized collection of logically
related records can be classified as a data set. The information is not
restricted to a specific type, purpose, or storage medium. A data set
may be, for example, a source program, a library of macro instructions,
or a file of data records used by a processing program.

Whenever you indicate that a new data set is to be created and placed
on auxiliary storage, you (or the operating system) must give the data
set a name. The data set name identifies a group of records as a data
set. All data sets recognized by name (i.e., referred to without volume
identification) and all data sets residing on a given volume must be
distinguished from one another by unique names. To assist in this, the
system provides a means of qualifying data set names.

A data set name is one simple name or a series of simple names joined
together so that each represents a level of qualification. For example,
the data set name DEPTS58.SMITH.DATA3 is composed of three simple names
that are delimited to indicate a hierarchy of categories. Proceeding
from the left, each simple name is a category within which the next
simple name is a subcategory.

Each simple name consists of one to eight alphameric characters, the
first of which must be alphabetic. The special character period (.)
separates simple names from each other. Including all simple names and
periods, the length of the data set name must not exceed 44 characters.
Thus, a maximum of 22 qualification levels is possible for a data set
name.

To permit different data sets to be processed without program
reassemply, the data set is not referred to by name in the processing
program. When the program is executed, the data set name and other
pertinent information (e.g., unit type and volume serial number) is
specified in a job control statement called the data definition (DD)
statement. To gain access to the data set during processing, a
reference is made to a data control block associated with the name of
the DD statement. Space for a data control block is reserved by a DCB
macro instruction when your program is assembled.

Section 1I: Data Management Services (Parxrt 1) 75

DATA SET STORAGE

System/360 provides a variety of devices for collecting, storing, and
distriputing data. Despite the variety, the devices have many common
characteristics. For convenience, therefore, the generic term volume is
used to refer to a standard unit of auxiliary storage. A volume may be
any one of the following:

A reel of magnetic tape.

A disk pack.

A bin in a data cell.

A drum.

That part of an IBM 2302 disk storage device served by one access
mechanism (the device would have either two or four volumes in all).

fach data set stored on a volume has its name, location,
organization, and other control information stored in the data set label
or volume table of contents (direct access volumes only). Thus, when
the name of the data set and the volume on which it is stored are made
known to the operating system, a complete description of the data set,
including its location on the volume, can be retrieved. Following this,
the data itself can be retrieved, or new data added to the data set.

Various groups of labels are used in secondary storage of the
System/360 Operating System to identify magnetic tape and direct access
volumes, as well as the data sets they contain. Magnetic tape volumes
can have standard or nonstandard labels, or they can be unlabeled.
Direct access volumes must use standard labels. Standard label support
includes a volume label, a data set label for each data set, and
optional user labels.

Keeping track of the volume on which a particular data set resides
can be a burden and often a source of error. To alleviate this problem,
the system provides for automatic catalocing of data sets. A cataloged
data set can be retrieved by the system if given only the name of the
data set. If the name is qualified, each qualifier corresponds to one
of the indexes in the catalog. For example, the data set
DEPT56.SMITH.DATA3 is found by searching a master index to determine the
location of the index name DEPT58. That index is then searched to find
the location of the index SMITid. Finally, that index is searched for
DATA3 to find the identification of the volume containing the required
data set.

By use of the catalog, collections of data sets related by a common
external name and the time sequence in which they were cataloged (i.e.,
their generation) can be identified, and are called generation data
groups. For example, a data set name LAB.PAYROLL(0) refers to the most
recent data set of the group; LAB.PRYROLL(-1) refers to the second most
recent data set, etc. The same collection of data set names can be used
repeatedly -- with no requirement to keep track of the volume serial
numbers used.

DIRECT ACCESS VOLUMES

Direct ‘access volumes play a major role in the System/360 Operating
System. They are used to store executable programs, including the
operating system itself. Direct access storage is also used for data
and for temporary workina storage. One direct access storage volume may
pe used for many different data sets, and space on it may be reallocated
and reused. A volume table of contents (VTOC) is used to account for
each data set and available space on the volume.

Each direct access volume is identified by a volume label, which is
usually stored in track 0 of cylinder 0. You may specify up to seven

76

additional labels for further identification. These are located after
the standard volume label.

The volume table of contents describes the contents of the direct
access volume. It is a data set that is composed of a series of data
set control blocks (DSCB), each of which is composed of one or more
control blocks. The VTOC can contain the following data set control
blocks:

e A DSCB for each data set on the volume.

* A DSCB that indicates the space allocated to the VTOC itself.

e A DSCB for all tracks on the volume that are available for
allocation.

The DSCB for each data set contains the name, description, and
location of the data set on the volume. 1Its size depends on the
organization and the number of noncontiguous areas of the data set.

Each direct access volume is initialized by a utility program before
being used on the system. The initialization program generates the
proper volume label and constructs the table of contents. For
additional information on direct access labels, see Appendix A.

When a data set is to be stored on a direct access volume, you must
supply the operating system with control information designatinc the
amount of space to be allocated to the data set. The amount of space
can be expressed in terms of blocks, tracks, or cylinders. Space can be
allocated in a device-independent manner if the request is expressed in
terms of blocks. If the request is made in terms of tracks or
cylinders, you must be aware of such device considerations as cylinder
capacity and track size.

MAGNETIC TAPE VOLUMES

Because of the sequential organization of magnetic tape devices, the
operating system does not require space allocation facilities comparable
to those for direct access devices. When a new data set is to be placed
on a magnetic tape volume, you must specify the data set sequence number
if it is not the first data set on the reel. A volume with standard
labels or no labels will be positioned by the operating system so that
the data set can be read or written. If the data set has nonstandard
labels, the installation must provide volume-positioning in its
nonstandard label processing routines. All data sets stored on a given
magnetic tape volume must be recorded in the same density.

When a data set is to be stored on an unlabeled tape volume and you
have not specified a volume serial number, the system assigns a serial
number to that volume and to any additional volumes required for the
data set. Each such volume is assigned a serial number of the form
Lxxxyy where xxx will indicate the data set sequence number from IPL to
IPL and yy will indicate the volume sequence number for the data set.
If you specify volume serial numbers for unlabeled volumes on which a
data set is to be stored, the system assigns volume serial numbers to
any additional volumes reguired. If data sets residing on unlabeled
volumes are to be cataloged or passed, you should specify the volume
serial numbers for the volumes required. This will prevent data sets
residing on different volumes from being cataloged or passed under
identical volume serial numbers. Retrieval of such data sets could
result in unpredictable errors.

Each data set and each data set label group on magnetic tape that is
to be processed by the operating system must be followed by a tapemark.
Tapemarks cannot exist within a data set. When the operating system is
used to create a tape with standard labels or no labels, all tapemarks

Section II: Data Management Services (Part 1) 77

are automatically written. Two tapemarks are written following the last
trailer label group on a volume to indicate the last data set on the
volume. On an unlabeled volume, the two tapemarks are written following
the last data set.

When the operating system is used to create a tape data set with
nonstandard labels, the delimiting tapemarks are not written. If the
data set is to be retrieved by the operating system, those tapemarks
must be written by an appropriate installation nonstandard label
processing routine. Otherwise, tapemarks are not required following
nonstandard labels since positionina of the tape volumes must be handled
by the installation routines. ’

For more information on labels for magnetic tape volumes, refer to
the publication IBM System/360 Operating System: Tape Labels.

DATA SET RECORD FORMATS

A data set is composed of a collection of records that usually have
some logical relation to one another. The record is the basic unit of
information used by a processing program. It might be a single
character, all information resulting from a given business transaction,
or parameters recorded at a given point in an experiment. Much data
processing consists of reading, processing, and writing individual
records.

The process of grouping a number of records before writing them on a
volume is referred to as blocking. A block is considered to be made up
of the data between interrecord gaps (IRG). Each block can consist of
one or more records. Blocking conserves storage space on the volume
because it reduces the number of interrecord gaps in the data set. 1In
many cases, blocking also increases processing efficiency by reducing
the number of input/output operations required to process a data set.

Records may be in one of three formats: fixed-length (format F),
variable-length (format V), or undefined-length (format U). The prime
consideration in the selection of a record format is the nature of the
data set itself. You must know the type of input your program will
receive and the type of output it will produce. Selection of a record
format is based on this knowledge, as well as on an understanding of the
type of input/output devices that are used to contain the data set and
the access method used to read and write the data records. The record
format of a data set is indicated in the data control block according to
specifications in the DCB macro instruction, the DD statement, or the
data set label.

Note: There is no minimum requirement for block size; however, if a data
check occurs on a magnetic tape device, any records shorter than 12

bytes in a read operation or 18 bytes in a write operation will be
treated as a noise record and lost. No check for noise will be made
unless a data check occurs.

FIXED-LENGTH RECORDS

The size of fixed-length (format F) records, shown in Figure 13, is
constant for all records in the data set. The number of records within
a block is usually constant for every block in the data set, unless the
data set contains truncated (short) blocks. If the data set contains
unblocked format F records, one record constitutes one block.

78

Block Block

Blocked Records Record A Record B Record C Record D Record E Record F
~
\\ ~o -
AN ~
\ S
\ ~
\ ~
N Record ™
ecor
A ~ >~
~
c Data
\
\ I— Optional Control //
\ Character - 1 byte /
\\ /
Block Block \\ / Block
Unblocked Records Record A Record B Record C Record D

Figure 13. Fixed-Length Records

The system automatically performs physical length checking on blocked
format F records, making allowance for truncated blocks. Because the
channel and interrupt system can be used to accommodate length checking,
and the blocking/deblocking is based on a constant record length, format
F records can be processed faster than format V.

A sequential data set is said to contain records in standard format F
if:

e All records in the data set are format F.

* Every track except the last is filled to capacity (no room for
another record).

s No blocks except the last are truncated.

Standard format F data sets can be read from direct access storage more
efficiently than data sets with truncated blocks because the system can
determine the location of each block to be read. If you use standard
format F records tc create a sequential data set in direct access
storage, the system puts the same number of blocks on each track.

Format F records are shown in Figure 13. The optional control
character (C), used for stacker selection or carriage control, may be
included in each record to be printed or punched.

VARIABLE-LENGTH RECORDS

Format V provides for (1) variable-length records, (2)
variable-lenath record segments, each of which describes its own
characteristics, and (3) variable-length blocks of such records or
record segments. The control program performs length checking of the
block and uses the record or segment length information in blockinc and

Section I1: Data Management Services (Part 1) 79

deblocking. The first four bytes of each record, record segment, or
block are a descriptor word containing control information. You must
allow for these additional four bytes in both your input and output
buffers.

Block Descriptor Word: A variable-length block consists of a block
descriptor word (BDW) followed by one or more logical records or record
segments. The block descriptor word is a four-pyte field which
describes the block. The first two bytes specify the block length
(*LL*) -~ four bytes for the BDW plus the total length of all records or
segments within the block. This length must be in the range 8<LL<32,76C
or, when using WRITE with tape, 18<LL<32,760. The third and fourth
bytes are reserved for future system use and must be zero. If the

system does your blocking -- that is, when you use the queued access
technique =-- the operating system automatically provides the BDW when
it writes the data set. If you do your own blocking -- that is, when

you use the basic access technique -- you must supply the BDW.

Record Descriptor Word: A variable-length logical record consists of a
record descriptor word (RDW) followed by the data. The record
descriptor word is a four-byte field describing the record. The first
two bytes contain the length (‘¢’) of the logical record (including the
four-byte RDW). The length must be in the range 4<00<32,756. All bits
of the third and fourth bytes must be zero as other values are used for
spanned records. For output, you must provide the RDW. For input, the
operatinc system provides the RDW except in data mode (spanned recoxds).
in data mode, the system passes the record length to the user in the
logical record length field (DCBLRECL) of the data control block. The
optional control character (C) may be specified as the fifth byte of
each record and must be followed by at least one byte of data. The RDW
and the control character, if specified, are not punched or printed.

80

Figure 14 shows blocked and unblocked variable-length records without
the spanning feature.

Block
BDW ~ A \
LL
, A
Blocked Records L 00 Record A Record B Record C LL 00 Record D. Record E Record F
f— ~
Reserved - 2 Bytes i S
Block Length - // SN
2 Bytes 7 >N~
7/ Y] \\\
e 7 _ ~
" row Data A
- —
Record 1 | oo |c
—
// L—Opﬁonul Control Character ,// -
/ | Reserved - 2 Bytes -
/ Record Length- .~
/ 2Bytes .~
/ Pt
/ /// Block Block
BDW / - A A
/ - / LL N 7 BDW Record
f \ -~ ;

Unblocked Records Lt 00 Record C Lt | 00 Record D L 00 Record E

| Reserved - 2 Bytes

Block Length - 2 Bytes

Figure 14. Variable-Length Records

SPANNED VAKIABLE-LENGTH KECORDS (SEQUENTIAL ACCESS MATHODS): Thae
spanning feature of the queued and basic sequential access methods
enables the user tc create and process variable-length logical records
wnich are larger than one pnysical block and/or to pack blocks with
variable-length records. This is done by splitting the records into
segments so that they can be written into more than one block, as shown
in Figure 15.

Section II: Data Management Services (Part 1) 81

BDW 4 LL N
L L:fs"z;ig;ﬁm First Segment LL Interme.diate Segment of L L:fsligeigg:elnt FirsrLizgircn;n’ of
Record A Logical Record 8 Logical Record B Record B Record C
[
\ \
L Reserved - \\ \ \ \\
2 Bytes \ \ \ \\
b——— Block Length - N\ \ \ \
2 Bytes \ \ \ \\
\ \ \ \
\ ‘\ \ N
)/, \ \ 7 k 73 \
\ v A \ A _\\
7 sow Data 7 sow Data 7 sow Data
First Intermediate s Last
Segment Segment egment
of Logical & ¢ ‘of Logical 1) of Logical i
Record Record Record
4
LOptioncl Control t——Segmeni' Control L Segment Control
Character Code Code
Reserved - 1 Byte
I Segment Control Code =
1 Byte (See Figure 16)
Segment Length - 2 Bytes
£
4 N
RDW Data Portion of Logical Record B
(__N_\ A
Logical Record Data Portion Data Portion Data Portion

(In User's Work Area)| ££ c of of of
First Segment Intermediate Segment Last Segment

L Optional Control Character
Reserved - 2 Bytes
Record Length - 2 Bytes

Note: Not Ail Seg and Block Combinations are R d

P

Figure 15. Spanned Variable-Length Records

When spanning is specified for blocked records, the system tries to
£ill all blocks. For unblocked records, a record which is larger than
block size is split and written in two or more blocks -- each block
containing only one record or record segment. Thus the block size may be
set to the one which is best for a given device or processing situation.
it is not restricted by the maximum record length of a data set. A
record may, therefore, span several blocks, and may even span volumes.
(Note that a logical record spanning three or more volumes cannot be
processed in update mode usina QSAM.) A block can contain a combination
of records and record secments but not multiple segments of the same
record. When records are added to or deleted from a data set, or when
the data set is processed again with different block- or record-size
parameters, the record segmenting will change.

Seqgment Descriptor Word: Eacih record segment consists of a segment
descriptor word (SDW) followed by the data. The segment descriptor
word, similar to the record descriptor word, is a four-byte field which
describes the segment. The first two bytes contain the length ('#') of
the segment including the four-byte SDW. The length must be in the
range 4<00<32,756 or, when using WRITE with tape, 18<{0<32,756. The
third byte of the SDW contains the segment control code, which specifies
the relative position of the segment in the logical record. The segment
control code is in the rightmost two bits of the byte. The segment
control codes are shown in Figure 16. The remaining bits of the third

byte and all of the fourth byte are reserved for future system use and
must be zero.

r a) 1
| Binary Code | Relative Position of Segment]
t t {
] 00 | Complete logical record. i
i 4. 4
) T .= 1
01 First segment of a multi-segment record.
L 4 g 4
r T - 1
| 10 | Last segment of a multi-segment recorxd.]
b + ——
| 11 | Neither first nor last segment of a i
| | multi-segment record. |
L L J

Figure 16. Segment Control Codes

The SDW for the first segment replaces the RDW for the record after
the record has been segmented. The SDW may be built by the user or the
system depending on which mode of processing is used. In the basic
seguential access method, the user must create and interpret the spanned
records himself. In the gueued sequential access method move mode,
complete logical records, includina the RDW, are processed in the user's
work area. GET consolidates segments into logical records and creates
the RDW. PUT forms segments as required and creates the SDW for each
segment. Data mode is similar to move mode but allows reference only to
the data portion of the logical record in the user's work area. The
logical record length is passed to the user through the DCBLRECL field
of the data control block. 1In the locate mode, both GET and PUT process
one secment at a time. However, in the locate mode, if the user
provides his own record area using the BUILDRCD macro instruction or if
he asks the system to provide his record area by specifying BFTEK=A,
GET, PUT, and PUTX process one logical record at a time. A logical
record spanning three or more volumes cannot be processed when the data
set is opened for update.

When unit record devices are used with spanned records, the system
assumes unblocked records and the block size must be eqguivalent to one
print line or one card. Rrecords which span blocks are written one
segment at a time.

SPANNED VARIABLE-LENGTH RECORDS (BASIC DIRECT ACCESS METHOD): The
spanning feature of the basic direct access method enables the user to
create and process variable-length unblocked logical records that are
longer than one track. The feature also enables the user to pack tracks
with variable-length records by splitting the records into segments.
Tnese segments can then be written onto more than one track, as shown in
Figure 17.

Section II: Data Management Services (Parc 1) 83

Track 1 Track 2
AL I

Track 3
A N\
~ M r Block AR
A
BOW 4 LL N\
A
—
. Last Segment
First Segment Intermediate Segment of ¥
L Logical Record A L Logical Record A u «;fel‘;:?éc:l
\ N LL = track size \
f N N N \\ \ N
Reserved ~ \ N \ \\
2 Bytes N \ \
\ N \ \ \
Block Length - \ N \ \ \
2 Bytes \ AN \ \
\ AN \ \
\ N v \ \
N TR \ u ‘ u
\ e AN \ A \ A
7 sow Dota " sow Data Y 7 sow Data
First Intermediate seLosf
Segment Segment gment
of l?ogical u € of Logical 1 of Logical u :
Record i Record Record
t—Opﬁoml Control LSegment Control L— Segment Control
Character Code Code
Reserved = 1 Byte
l————— Segment Control Code =~
1 Byte (See Figure 16)
Segment Length ~ 2 Bytes
LL
[173 N
e
4 N
BDW RDW Data Portion of Logical Record A
A\
-
. Data Portion Data Portion Data Portion ~
Logical Record |
LL Y73 c o of o
(in User's Work Area) First Segment \ diate Segment Last Segment
A Y 4
Cearved -

L Optional Control Character
2 Bytes Reserved ~ 2 Bytes
L ——
lzilg;l:“ ength Record Length - 2 Bytes

Note: Not All Segment and Block Combi

ions are Rep d

e Figure 17. Spanned Variable-Length Records for BDAM Data Sets

When you specify spanned, unblocked record format for the basic
direct access method and when a complete logical record cannot fit on
the track, the system tries to fill the track with a record segment.
This aspect of spanning means that the maximum record length of a data
set is not restricted by block size. Furthermore, it allows a record to
Span several tracks, with each segment of the record on a different
track. However, since the system does not allow a record to span

volumes, all segments of a logical record in a direct data set are on
the same volume.

UNDEFINED-LENGTH RECORDS

Format U is provided to permit processing of any records that do not
conform to the F or V formats. As shown in Figure 18, each block is

treated as a record; therefore, deblocking must be performed by your
program.

The optional control character may be used in the first byte
of each record.

Because the system does not perform length checking on
format U records, your program may be des

igned to read less tnan a
complete block into main storage. ~

84

Record
.

c Data

/
\L—
\ Optional Control Choro/ctgr
\

\\ /
Block \ Block // Block

/

Record A Record B Record C

Figure 18. Undefined-Length Records

CONTROL CHARACTER

You may specify in the DD statement, the DCB macro instruction, or
the data set label that an optional control character is part of each
record in the data set. The one-byte character is used to indicate a
carriage control channel when the data set is printed or a stacker bin
when the data set is punched. Although the character is a part of the
record in storage, it is never printed or punched. For that reason,
buffer areas must be large enough to accommodate the character. If the
immediate destination of the record is a device that does not recognize
the control character, e.g., disk, the system assumes that the control
character is the first byte of the data portion of the record. If the
destination of the record is a printer or punch and you have not
indicated the presence of a control character, the system regards it as
the first byte of data. A list of the control characters is in Appendix

D e

Direct Access Device Characteristics

Regardless of organization, data sets created using the operating
system can be stored on a direct access volume. Each block has a
distinct location and a unique address making it possible to locate any
record without extensive searching. Thus, records can be stored and
retrieved either directly or sequentially.

Although direct access devices differ in physical appearance,
capacity, and speed, they are functionally and logically similar in
terms of data recording, checkinc, format, and programming. The
recording surface of each volume is divided into many tracks, each
defined as the circumference of the recording surface. The tracks are
arranged concentrically; their number and capacity varies with the
device. Each device has some type of access mechanism, containing a
number of read/write heads that transfer data as the recording surface
rotates past.

The logical arrangement of related tracks is vertical rather than
horizontal. As shown in Figure 19, a 2311 cylinder is comprised of ten
tracks, which is equal to the number of recording surfaces. Because
there are 203 tracks per disk, there are 203 vertical cylinders of ten
tracks each.

Section II: Data Management Services (Part 1) 85

00 Tracks 202

Comb-Type
Access Assombly

Five Access Arms

10 Read-Write Heads
. Cylinder

Figure 19. 2311 Disk Drive

TRACK FORMAT

Information is recorded on all direct access volumes in a standard
format. 1In addition to device data, each track contains a track
descriptor record ("capacity record" or RO), and data records. As shown
in Figure 20, there are two possible data record formats -- Count-Data
and Count-Key-Data -- only one of which can be used for a particular
data set.

Count-Data Format

r— 1 - r'"—-- r ~=—==71 r~———— 1
|Count| |Data |]Count| |Data |4§$: | |Count| |Data |
______________________________ J
Track Descrlptor Data Record Data Record
Record (RO) (R1) (Rn)

Count-Key-Data Format

————————— 1 Tty Tty Tt oo s I fecntet Y i I ottt |
|Count|]Data | |Countl |RKey | |Data | |:§€:| |Count| |Key | |Data |
__________ J b L) le—e— 4 L= S R VRN [Y [(S
Track Descrlptor Data Record (R1) Data Record (Rn)

Record (RO)

Figure 20. Direct Access Volume Track Formats

In addition to device data, the count area contains eight bytes that
identify the location of the record in terms of the cylinder, head, and
record numbers; its key length (0 if no keys are used); and its data
length.

If the records are written with keys, the key area (1 to 255 bytes)
contains a record key that identifies the following data area in terms
of a part number, account number, sequence number, etc. In some cases,
records are written with keys so that they can be located quickly.

86

TRACK ADDRESSING

There are two types of addresses that can be used to store and
retrieve data on a direct access volume: actual and relative. The only
real advantage of using actual addresses is the reduction in time
required to convert from relative to actual address and vice versa.

When sequentially processing a multiple volume data set, you can refer
only to records cof the current volume.

Actual Addresses: When tine system returns the actual address of a
record on a direct access volume to your program, it is in the form
MBBCCHHR, where:

M
is a one-byte binary number specifying the relative location of an
entry in a data extent block (DEB). The data extent block is
created by the system when the data set is opened. Each extent
entry describes a set of contiguous tracks allocated for the data
set.

BBCCHH '
is three two-byte binary numbers specifying the cell (bin),
cylinder, and head number for the record, i.e., its track address.
The cylinder and nead numbers are recorded in the count area for
each record.

R

is a one-byte binary number specifying the relative block number on
the track. The block number is also recorded in the count area.

If you use actual addresses in your program, the data set must be
treated as "unmovable."

Relative Addresses: There are two kinds of relative addresses that can
be used to refer to records in a direct access data set: relative block
address or relative track address.

The relative block address is provided as a three-byte binary number
that indicates the position of the block in relation to the first block
of the data set. Allocation of noncontiguous tracks does not affect the
number. Therefore, the first block of a data set always has a relative
block address of zero.

The relative track address is provided in the form TTR, where:

TT
is a two-byte binary number specifying the position of the track in
relation to the first track allocated for the data set. The TT for
the first track is zero. Allocation of noncontiguous tracks does
not affect the number.

R

is a one-byte binary number specifying the number of the block in
relation to the first block on the track T1. The first block cf
data on a track has a record value of one.

TRACK OVERFLOW

If the record overflow feature is available for the direct access
device being used, you can reduce the amount of unused space on the
volume by specifying the track overflow option in the DD statement or
the DCB macro instruction associated with the data set. 1f the option
is used, a block that does not fit on the track is partially written on
that track and continued on the next available track. Each secnent of

Section II: Data Management Services (Part 1) 87

an overflow block (the portion written on one track) has a count area.
The data length field in the count area specifies the length of that
segment only. If the block is written with a key, there is only one key
area for the block. 1t is written with the first segment. If the
option is not used, blocks are not split between tracks.

Although a block can begin on one track and continue on the next, it

cannot be continued on a noncontiguous track or from one separately
allocated area to another.

WRITE VALIDITY CHECK

You can specify the write validity option in either the DD statement
or the DCB macro instruction. The system will read each record back
(without data transfer) and, by testing for a data check from the I1I/0
device, verify that the record transferred from main to secondary
storage was written correctly. This verification requires an additional
revolution of the device for each record tnat was written. Standard
error recovery procedures are initiated if an error condition is
detected.

Interface with the Operating System

You must describe the characteristics of a data set, the volume on
which it resides, and its processing requirements before processing can
begin. During execution, the descriptive information is made available
to the operating system in the data control block. A data control block
is required for each data set, and is created in a processing program by
a DCB macro instruction. ‘

Primary sources of information to be placed in the data control block
are a DCB macro instruction, a data definition (DD) statement, or a data
set label. 1In addition, you can provide or modify some of the
information during execution by storing the pertinent data in the
appropriate field of the data control block. The specifications needed
for input/output operations are supplied during the initialization
procedures of the OPEN macro instruction. Therefore, the pertinent data
can be provided when your job is to be executed rather than when you
write your program {(see Figure 21).

When the OPEN macro instruction is executed, the open routine
performs four primary functions:

e Completes the data control block.

» Loads all necessary data access routines not already in main
storage.

¢ Injtializes data sets by reading or writing labels and control
information.

s Constructs the necessary system control blocks.

Information from a DD statement is stored in the job file control
block (JFCB) by the operating system. When the job is to be executed,
the JFCB is made available to the open routine. The data control block
is filled by using information from the DCE macro instruction, the JFCB,
or an existing data set label. If more than one source specifies a
particular field, only one source is used. A DD statement takes
precedence over a data set label; a DCB macro instruction over both.
However, you can modify any data control block field either before the
data set is opened, or when contrxol is returned to your program by the
operating system (during the data control plock exit). Some fields can
be modified during processing.

88

DCB Macro DD Statement Data Set Label

B F G H J c D 1 A E

Data Conrrol Block

ABCDEFGHIJ

Figure 21. Completing the Data Control Block

Figure 22 illustrates the process and the sequence of filling in the
data control block from various sources. The primary source is your
program, i.e., the DCB macro instruction. In general, you should use
only those DCB parameters that are needed to ensure correct processing.
The other parameters can be filled in when your program is to be
executed. When a data set is opened, any field in the JFCB not
completed by a DD statement is filled in from the data set label (if omne
exists). Any field not completed in the data control block is filled in
from the JFCB. Any field in the data control block then can be
completed or modified by your own DCB exit routine.

DCB
Exit
Routine

Data
DCB
Macro @-—> Control
Block

©

New
Data Set
Label

Job Fil

DD ob File

Statement *@“’J Control ——@—
Block

Old
Data Set
Label

Figure 22. Source and Sequence for Completing the Data Control Block

When the data set is closed, the data control block is returned to
its condition prior to opening; it is then available for reuse with
another data set. The open and close routines also use the updated JFCB
to write the data set labels for output data sets. If the data set is
not closed when your job terminates, the operating system will perform
the close functions automatically.

There is usually; one data control block for each data set. It is
possiple to concurrently open more than one data control block for
processing the same data set on a direct access volume. However, you
must exercise caution with respect to volume positioning, switching,
space allocation, label processing, and device control.

Section I1: Data Management Services (Part 1) 89

DATA SET DESCRIPTION

For each data set you are going to process there must be a
corresponding data control block and data definition statement. The
characteristics of the data set and device-dependent information can be
supplied by either source. In addition, the DD statement must supply
data set identification, device characteristics, space allocation
requests, and related information. The logical connection between a
data control block and a DD statement is made by specifying the name of
the DD statement in the DCB macro instruction (DDNAME), or by completing
the field yourself before opening the data set.

Once the data set characteristics have been specified in the DCB
m&acro instruction, they can only be changed by modifying the data
control block during execution. The fields of the data control block
discussed below are common to most data organizations and access
techniques.

Data_ Set Organization (DSORG): specifies the organization of the data
set as physical sequential (P3), indexed sequential (IS), partitioned
(PO), or direct (DA). If the data set contains location-dependent
information (i.e., absolute rather than relative addresses), it must be
marked as unmovable, e.g., PSU. You must specify the data set
organization in the DCB macro instruction. When creating an indexed
sequential or direct organization data set, this information must also
be supplied in the DD statement.

Record Format (RECFM): specifies the characteristics of the records in
the data set as fixed-length (F), variable-length (V), or
undefined-lengtn (U). Blocked records are specified as heing FB or VB.
Track overflow can be requested, e.g., ©¥BT.

Record Length (LRECL): specifies the length, in bytes, of each record
in the data set. If the records are variable-length, the maximum record
length must be specified. For input, the field should pe omitted for
format U records.

Block size (BLKSIZE): specifies the maximum length, in bytes, of a
block. If the records are format F, the block size must be an integral
multiple of the record leagth, incliuding the key length, except for
SYSOUT data sets. (See "Writing a SYSOUT Data Set" in Section Ii, Part
3, of this book.) If the records are format V, the plock size must be
the maximum block size. If records are unblocked, the block size must
be four bytes greater than the record length (LRECL). When spanned
variapble-length records are specified, the block size is independent of
tne record length (LRECL).

Each of the data set description fields of the data control block,
except as noted for data set organization, can be specified when your
job is to be executed. In addition, data set identification and
disposition, as well as device characteristics, can be specified at that
time. The parameters of the DD statement discussed below are common to
most data set organizations and devices.

Data Definition Name (DDNAME): is the name of the DD statement and
provides a logical relationship to the data control block that specifies
the same ddname.

Data Set Name (DSNAME): specifies the name of a newly defined data set,
or refers to a previously defined data set.

Data Control Block (DCB): provides, by means of subparameters,
information to be used to complete those fields of the data control
block that were not specified in the DCB macro instruction. This
parameter cannot be used to modify a data control block.

90

Channel Separation and Affinity (SEP/AFF): requests that specified data
sets use different channels during input/output operations.

Input/Output Device (UNIT): specifies the quantity and type of i/0
devices to be allocated for use by the data set.

Space Allocation (SPACE): designates the amount of space on a direct
access volume that should be allocated for the data set. Unused space
can be released when your job is finished.

Volume Identification (VOLUME): identifies the particular volume or
volumes, or the number of volumes to be assigned to the data set or the
volumes on which existing data sets reside.

Data Set Label (LABEL): indicates the type and contents of the label or
labels associated with the data set. The operating system verifies
standard labels (SL) or standard user labels (SUL). Nonstandard labels
(NSL) can be specified only if your installation has incorporated into
the operating system routines to write and process nonstandard labels.

Data Set Disposition (DISP): describes the status of a data set and
indicates what is to be done with it at the end of the job step.

PROCESSING PROGRAM DESCRIPTION

There are several types of processing information required by the
operating system to ensure proper control of your input/output
operations. The forms of macro instructions in the program, buffering
requirements, and the addresses of your special processing routines must
be specified during either the assemoly or the execution of your
program. The DCB parameters specifying buffer requirements are
discussed in the section "Buffer Acquisition and Control."

Because macro instructions are expanded during the assembly of your
program, you must supply the macro instruction forms that are to be used
in processing each data set in the associated DCB macro instruction.
Buffering requirements and related information can be supplied in the
DCB macro instruction, the DD statement, or by storing the pertinent
data in the appropriate field of the data control block before the end
of your DCB exit routine. If the addresses of special processing
routines are omitted from the DCE macro instruction, you must complete
them in the data control block before opening the data set.

Macro Instruction Form (MACRF): specifies not only the macro
instructions used in your program, but also the processing mode as
discussed in the section "Buffer Control.™ The organization of your
data set, the macro instruction form, and the processing mode determine
which of the data access routines will be used during execution.

Exits to Special Processing Routines: The DCB macro instruction can be
used to identify the location of:

*» A routine that performs end-of-data procedures.

e A routine that supplements the operating system's error recovery
routine.

e A list that contains addresses of special exit routines.

The exit addresses can be specified in the DCB macro instruction or
you can complete the data control block fields before opening the data
set. Table 9 summarizes the exits that you can specify eitner
explicitly in the data control olock, or implicitly by specifying the
address of an exit list in the data control block.

Section II: Data Management Services (Part 1) 91

Table 9. Data Management Exit Routines

r k]

|Exit Routine jWhen Available Where Specified
L]

T T

| End-of-Data-Set [No more sequential EODAD operand
| |records or blocks are

| |available

i ¥l —

L} 1

| Error Analysis |After an uncorrectable SYNAD operand
|

s

| input/output error
1.

L)
| Standard User Label |Opening and closing EXLST operand and

e e e e st e s e S i e S s s i]

b e s ot e e i e e i S s S . s S s me e e et e et e d

| (physically sequen- }or reaching the end exit list

|tial or direct jof a data set, and

|organization.) |when changing

| jvolumes.

b + v

|Data Control Block |[Opening a data set | EXLST operand and
| | |exit list

t + +

| End-of-Volume | Wwhen changing volumes |EXLST operand and
] | jexit list

t } +

|Block Count jAfter unequal plock | EXLST operand and
| Jcount compare by EOV jexit list

L 1 L

End-of-Data-Set Exit Routine (EODAD): specifies the address of your
end-of-data routine that performs any final processing on an input data
set. This routine is entered when a READ or GET request is made and
there are no more records or blocks to be retrieved. (On a READ
request, your routine is entered when you issue a CHECK macro
instruction to check for completion of the read operation.) Your
routine can reposition the volume for continued processing (BPAM only),
close the data set, or process the next sequential data set. Under no
condition should you issue another GET request after the aata set has
encountered the end-of-data condition (QSAM only). If no routine is
provided, the task will be abnormally terminated.

Synchronous Errxor Routine Exit (SYNAD): specifies the address of an
error routine that is to be given control when an input/output error
occurs. This routine can be used to analyze exceptional conditions or
uncorrectable errors. The error can be skipped, accepted, or processing
can be terminated.

If an input/output error occurs during data transmission, standard
error recovery procedures, provided by the operating system, attempt to
correct the error before returning control to your program. An
uncorrectable error usually causes an abnormal termination of the task.
However, if you specify in the DCB macro instruction the address of an
error analysis routine, the routine is given control in the event of an
uncorrectable error.

You can write a SYNAD routine to determine the cause and type of
error that occurred by examining:

The contents of the general registers.

The data event control block (discussed in Part 2).
The exceptional condition code.

The standard status and sense indicators.

There is a special macro instruction, SYNADAF, that you can use to
perform this function automatically. This macro instruction produces a

92

descriptive error messace that can be printed by a subsequent PUT or
WRITE macro instruction.

Havine completed the analysis, you can return control to the
operating system or close the erroneous data set and terminate
processing. In no case can you attempt to reread or rewrite the record
since the system has already attempted to recover from the error.

When using GET/PUT macro instructions to process a sequential data
set, the operating system provides three automatic error options (EROPT)
to be used if there is no SYNAD routine or if you want to return control
to your program from the SYNAD routine:

e ACC -- accept the erroneous block.
¢ SKP -- skip the erroneous block.
s ABE -- abnormally terminate the task.

These options are applicable only to data errors, as control errors will
result in abnormal termination of the task. Data errors affect only the
validity of a block of data. Control errors affect information or
operations necessary for continued processing of the data set. These
options are not applicable to output errors, with the exception of
output errors on the printer. When chained scheduling is used, the SKP
option is not available, and defaults to the ACC option if coded. 1If
the EROPT and SYNAD fields are not completed, ABE is assumed.

Upon entry to your SYNAD routine register 0 will contain either the
address of standard status indicators and a displacement value to reach
the channel command word (GET/PUT), or the address of the data event
control block (READ/WRITE). Register 1 indicates which macro
instruction caused the error and the address of the data control block.
kegisters 2 through 13 remain as they were. Register 14 contains a
return address and 15 the address of your SYNAD routine.

Your SYNAD routine can end by branching to another routine in your
program, such as a routine that closes the data set. It can also end by
returning control to the control program, which then returns control to
the next sequential instruction (after GET, PUT, etc.) in your program.
If your routine returns control, the conventions for saving ana
restoring registers are as follows:

e The SYNAD routine must preserve the contents of registers 13 and 14.
If required by the logic of your program, the routine must also
preserve the contents of registers 2 through 12. Upon return to
your program, the contents of registers 2 through 12 will be the
same as upon return to the control program from the SYNAD routine.

e The SYNAD routine must not use the save area whose address is in
reaister 13, because this area is used by the control program. If
the routine saves and restores registers, it must provide its own
save area.

e If the SYNAD routine calls another routine or issues supervisor or
data management macro instructions, it must provide a save area in
the usual way or by means of a SYNADAF macro instruction. The
SYNADAF macro instruction provides a save area for its own use, and
then makes this area available to the SYNAD routine. Such a save
area must be removed from the save area chain by issuing a SYNADRLS
macro instruction before returning control to the control program.

When you use READ/WRITE macro instructions, errors are detected when
you issue a CHECK macro instruction. If you are processing a direct or
seguential data set and you return directly to the CHECK routine from
your SYNAD routine, the operating system regards that as an acceptance
of the bad record. If you are creating a direct data set and you return

Section I1: Data Management Services (Part 1) 93

to the CHECK routine from your SYNAD routine, your task will be
abnormally terminated. v

When you use QSAM to read and translate paper tape characters, your
SYNAD routine receives control when you request the record preceding the
record in error. However, before giving control to your SYNAD routine,
tne system translates the requested record into your buffer.

More specifically, suppose that you are using QSAM to read and
translate a paper tape data set and that you have specified in your DCE
SYNAD=(address) and EROPT=ACC. Suppose also that the third record of
the data set has a parity error. When you issue a GET request for the
second record, the system translates that record into your buffer and,
as a result of the error in the third record, passes control to your
SYNAD routine. Because you specified the accept option, the system
returns control to your program after your SYNAD error analysis routine
completes its processing. When you issue a GET request for the third
record, that record is translated into your buffer as follows:

* The system translates the characters, up to the character in error,
into your buffer.

e The system moves the character in error into your buffer without
translating it.

s The system translates the remaining characters of the record into
your buffer.

Exit List (EXLST): specifies the address of special processing
routines. An exit list must be created if user lapbel, data control
block, -end-of-volume, or block count exits are used.

The exit 1list is constructed of four-byte entries that must be
aligned on fullword boundaries. The exit routine type is specified by a
code in the high-order byte, and the address of the routine is specified
in the three low-order bytes. Codes and addresses for the exit routines
are shown in Table 10.

You can activate or deactivate any entry in the list by placing the
required code in the high-order byte. Care must be taken, nowever, 30
as not to destroy the last entry indication. The list will be scanned
from top to bottom by the operating system. The first active entry
found with the proper code will be selected.

94

® Table 10. Format and Contents of an Exit List

I T N T 1
| | Hexadecimal| i
{Routine Type i Code lB-Byte Routine Address - Purpose |
4
r T v 1
| Inactive entry | 0o | Ignored; the entry is not active |
t ¢ + 4
| Input header label | o1 | Process a user input header label |
s 4+ __+ J
L 3] |
|Ooutput header label | 02 |Create a user output header label |
E + e
| Input trailer label | 03 | Process a user input trailer label|
F t + - 1
|Cutput trailer label | ou |Create a user output trailer label]
L L L 4
! T T 4
|Data control block exit| 05 |Data control block exit routine |
L 4. 4 —— J
[] L) 1
| End-of-volume | 06 | End-of-volume exit routine |
I 1 1 3
T { L] 1
|User totaling | 0A | Pointer to user's totaling area |
’ ¢ t i
| Block count exit | 0B | Block count unequal exit routine |
I . 1]
§ 1 R 1
| Defer input trailer | ocC {Defer processing of a user input |
| label] Jtrailer label from EOD until |
CLOSE
L ; ; 4
| Defer nonstandard | 0D | Defer processing a nonstandard |
jinput trailer label | | input trailer label on magnetic |
| | |tape unit from EOD until CLOSE |
| | | (no exit routine address) |
i L 4 4
! T T 1
| Last entry] 80 | Last entry in list. This code canj
| l |be specified with any of the above|
] l | but must always be specified with |
| | |the last entry. |
L L L]

The list can be shortened during execution by setting the high-order
four bits to the hexadecimal value 8. The list can be extended by
setting the high-order four bits to zero.

When control is passed to an exit routine, the general registers
contain the following information:

Register Contents
0 Variable; see exit routine description.
1 Address of data control block currently being processed.
2-13 Contents prior to execution of the macro instruction.
i4 Return address (must not be altered by the exit routine).
15 Address of exit routine entry point.

The conventions for saving and restoring registers are as follows:

e The exit routine must preserve the contents of register 14. It need
not preserve the contents of other registers. The control program
restores registers 2-13 before returning control to your program.

* The exit routine must not use the save area whose address is in
register 13, because this area is used by the cocntrol program. If
the exit routine calls another routine or issues supervisor or data
management macro instructions, it must provide the address of a new
save area in register 13.

Section II: Data Management Services (Part 1) 95

Standard Usexr Label Exit: When you create a data set with physically
sequential or direct organization, you can provide routines to create
your own data set labels. You can also provide routines to verify thnese
labels when you use the data set as input. The labels are 80 characters
long with the first four characters UHL1,UHL2,..., UdL8 for header
labels or UTL1,UTL2,..., UTL8 for trailer labels.

The physical location of the labels on the data set depends on the
data set organization. For direct data sets (using BDAK), user labels
are placed on a separate user label track in the first volume. User
label exits are taken only during OPEN and CLOSE. Thus you may create
or examine up to eight user header labels only during OPEN and up to
eight trailer labels only during CLOSE. Since the trailer labels are on
the same track as the header labels, the first volume of the data set
must be mounted when the data set is closed. For physically sequential
data sets (using BSAM or (SAM), you may create or examine up to eight
header labels and eight trailer labels on each volume of the data set.
The user label exits are taken during OPEN, CLOSE, and EOV processing.

To create or verify labels, you must specify the addresses of your
label exit routines in an exit list for use during standard label
processing. Thus you may have separate routines for creating or
verifying header and trailer label groups. Care must be taken if a
magnetic tape is read backwards since the trailer label group is
processed as header labels and the header label group is processed as
trailer labels.

When your routine receives control, the contents of general register
0 are unpredictable. Register 1 contains the address of a parameter
list. The contents of registers 2-13 are the same as wnen the macro
instruction was issued. However, if your program does not issue the
CLOSE macro instruction, or abnormally terminates before issuing CLOSE,
the CLOSE macro instruction will be issued by the control program, with
control program information in these registers.

The parameter 1list pointed to by register 1 is a 1l6-byte area aligned
on a fullword boundary and contains the following:

7000000
EOF flag 2 Address of DCB being processed
00777
8
%ror flcgs/ Address of status information
77777777777 A)

The first address in tne parameter list points to an 80-byte label
buffer area. For input, the control program reads a user label into
this area before passing control to the label routine. For output, the
user label routine constructs labels in this area and returns to the
control program, which writes the label. When an input trailer label
routine receives control, the EOF flag (high-order byte of the second
entry in the parameter list) will be as follows:

bit 0 = 0: Entered at end-of-volume.
bit 0 = 1: Entered at end-of-file.
bits 1-7 : Reserved.

When a user label exit routine receives control after an
uncorrectable 1/0 error has occurred, the third entry of the parameter

926

list contains the address of the standard status information. The error
flag (high-order byte of the third entry in the parameter list) will be
as follows:

bit 0 = 1 : Uncorrectable 1I/0 error.
bit 1 = 1 : Error occurred when writing updated label.
bits 2-7 : Reserved.

The fourth entry in the parameter list is the address of the user
totaling image area. This image area is the entry in the user totaling
save area which corresponds to the last record physically written on the
volume. The image area is discussed further under "User Totaling."

Each routine must create or verify one label of a header or trailer
label group, place a return code in register 15, and return control to
tne operating system. The operating system responds to the decimal
return code as shown in Table 11.

Table 11. System Response to a User Label Exit Routine Return Code

System Response
Normal processing is resumed. if tnere
are any remaining labels in the label
group, they are igynored.

== T
| Routine Type |Return Code

| Input header
| or
| trailer label

The next user label is read into the
label buffer area and control is returned
to the exit routine. If there are no
more labels in the label group, normal
processing is resumed.

The label is written from the label
buffer area and normal processing is
resumed. ¥

[
S}

The label is written from the label area,
then the next label is read into the
label buffer area and control is returne
to the label processing routine. 1If
there are no more labels, processing is
resumed. *

Normal processing is resumed; no label
is written from the label buffer area.

[e]]

o o e e s e i e et e e e . i . . e . et e e 4]
e e o e e e e e e e e e e e et e et e S e e e e s e e . e, S . e . et s e e s)

| Output header
|oxr trailer
| Label

e — s c— ——— —— —— — T———— T— {— {— —

User label is written from the label
buffer area. Normal processing is
resumed.

User label is written from the label
buffer area. If less than eight labels
have been created, control is returned to
the exit routine, which then creates the
next label. If eight labels have been
created, normal processing is resuned.

o o e i i . s e e . i . . it e e T i i P e . G e S e . . S . e e S s . e oo

- + - -
#¥Only for a physically sequential data set opened for UPDATE or a |
direct data set opened for UPDATE or OUTPUT. |
- 3

[S S e G e, — - — — —— —— a—

You can create user labels only for data sets on direct access or
magnetic tape volumes with standard labels. When you specify standard

Section 1II: Data Management Services (Part 1) 97

and user labels in a DD statement (ILABEL=SUL) and there is an active
entry in the exit list, a label exit is always taken. A label exit
may be taken when an input data set does not contain user labels, or
when no user label track has been allocated for writing labels on a
direct access volume. In either case, the appropriate exit routine is
entered with the buffer area address parameter set to zero. On return
from the exit routine, normal processing is resumed; no return code is
necessary.

Label exits -are not taken for system output (SYSOUT) data sets, or
for data sets on volumes that do not have standard labels. For other
data sets, exits are taken as follows:

» When the data set is opened, header label exits are taken, except
when the data set already exists and DISP=MOD is coded in the DD
statement. In the latter case, the volume is positioned to the
end of the data set, and input trailer label exits are taken.

¢ When end-of-volume is reached, trailer label exits are taken;
header label exits are taken after volume switching. Input
trailer label exits are not taken, however, if you force
end-of-volume by issuing an FEOV macro instruction.

® When end-of-data is reached, input trailer label exits are taken
before the EODAD exit, unless the data control block (DCB) exit
list indicates defer input trailer label processing. When an
output data set is closed, output trailer label exits are taken.

¢ When end-of-data is reached for a direct &access data set and the
data control block (DCB) exit 1list indicates defer input trailer
label processing, the system changes the 0C to 0D. When the Close
routine has finished processing, the system changes the code back
to OcC.

To process records in reverse order, a data set on macgnetic tape
can be read backwards. When you read backwards, header label exits
are taken to process trailer labels, and trailer label exits are taken
to process header labels. The system presents labels from a label
group in ascending order by label number, which is the order in which
the labels were created. If necessary, an exit routine can determine
label type (UHL or UTL) and number (1 to 8) by examining the first
four characters of each label.

If an uncorrectable error occurs while reading or writing a user
label, the system passes control to the appropriate exit routine with
the third word of the parameter list flagged and pointing to status
information.

After an input error, the exit routine must return control with an
appropriate return code (0 or 4). No return code is required after an
output error. If an output error occurs while the system is opening a
data set, the data set is not opened (DCB is flagged) and control is
returned to your program. If an output error occurs at any other
time, the system attempts to resume normal processing.

A sample program illustrating user label processing is included in
SYS1.SAMPLIB. This program, named USERLABL, is discussed in the
publication, IBM System/360 Operating System: System Generation.

User Totaling: (BSAM, QSAM only) When creating or processing a data
set with user labels, you may develop control totals for each volume
of the data set and store this information in your user labels. For
example, a control total that was accumulated as the data set was
created can be stored in your user label and later compared with a
total accumulated while processing the volume. The user totalino

98

facility assists you by synchronizing the control data which you
create with records physically written on a volume. For an output
data set without user labels, you can also develop a control total
which will be available to your end-of-volume routine.

To request this facility, you must specify OPTCD=T in the DCB macro
instruction or in the DCB parameter of the DD statement. The area in
which you accumulate the control data, the user's totaling area, must
be identified to the control program by an X'0A' entry in the data
control block (DCB) exit list.

The user's totaling area, an area in storage that you provide, must
begin on a halfword boundary and be large enough to contain your
accunulated data plus a two-byte length field. The length field must
be the first two bytes of the area and specify the length of the
entire area. A data set for which you have specified user totaling
(OPTCD=T) will not be opened if either the totaling area length or the
address in the exit list is zero, or if there is no X'0A' entry in the
exit list.

The control program establishes a user totaling save area, in which
the control program preserves an image of your totaling area, when an
I/0 operation is scheduled. When the output user label exits are
taken, the address of the save area entry (user totaling image area)
corresponding to the last record physically written on a volume is
passed to you in the fourth entry in the User Label parameter list.
This parameter list is described in the section "Standard User Label
Exit." When an end-of-volume exit is taken for an cutput data set and
user totaling has been specified, the address of the user totalina
image area is in register O.

When using this facility for an output data set, i.e., when
creating the data set, you must update your control data in your
totaling area prior to issuing a PUT or a WRITE macro instruction.

The control program places an image of your totaling area in the user
totaling save area when an I/O operation is scheduled. A pointer to
the save area entry (user totaling image area) corresponding to the
last record physically written on the volume, is presented to you in
your label processing routine. Thus, you can include the control
total in your user labels. Wwhen subsequently using this data set for
input, you can accumulate the same information as you read each record
and compare this total with the one previcusly stored in the user
trailer label., If you have stored the total from the preceding volume
in the user header label of the current volume, you can process each
volume of a multi-volume data set independently and still maintain
this sytem of control.

When variable-length records are specified with the totaling
facility for user labels, special considerations are necessary. Since
the control progran determines whether a variable-length record will
fit in a buffer after a PUT or a WRITE has been issued, the total you
have accumulated may include one more record than is actually written
on the volume. 1In the case of variable-length spanned records, the
accumulated total will include the control data from the
volume-spanning record although only a segment of the record is on
that volume. However, when processing such a data set, the
volume-spannina record or the first record on the next volume will not
be available to you until after the volume switch and user label
processing is completed. Thus the totaling information in the user
label may not agree with that developed while processing tne volume.
One way you can resolve this situation is to maintain, when you are
creating a data set, control data pertaining to each of the last two
records and include both totals in your user labels. Then the total
related to the last complete record on the volume and the
volume-spanning record or the first record on the next volume would be

Section II: Data Management Services (Part 1)

available to your user label routines. During subsequent processing
of the data set, your user label routines can determine if there is
agreement between the generated information and one of the two totals
previously saved.

Data Control Block Exit: You can specify in an exit list the address
of a routine that completes or modifies a data control block ana does
any additional processing required before the data set is completely
open. The routine is entered during the opening process after the job
file control block has been used to supply information for the data
control block. The routine can be used to determine data set
characteristics by examining fields completed by the data set labels.

As with label processing routines, register 1l must be preserved
and restored if any macro instructions are used in the routine.
Control is returned to the operating system by a RETURN macro
instruction; no return code is required.

End-of-Volume Exit: You can specify in an exit list the address of a
routine that is entered when end-of-volume is reached in processing a
physically sequential data set.

wWhen the end-of-volume routine is entered, register 0 contains zero
unless user totaling was specified. If you specified user totaling in
the DCB macro instruction (OPTCD=T) or in the DD statement for an
output data set, register 0 will contain the address of the user
totaling image area. The routine is entered after a new volume has
been mounted and all necessary label processing has been completed.
If the volume is a reel of magnetic tape, the tape is positioned after
the tapemark that precedes the beginning of the data.

The end-of-volume exit routine can be used to take a checkpoint by
issuing the CHKPT macro instruction, which is discussed in "Section 1:
Supervisor Services". If the job step terminates abnormally, it can
be restarted from this checkpoint. When the job step is restarted,
the volume is mounted and positioned as upon entry to the routine.
Note that restart becomes impossible if changes are subsequently made
to the system SVC library (SYS1i.SVCLIB). When the step is restarted,
pointers to end-of-volume modules must be the same as when the
cneckpoint was taken.

The end-of-volume exit routine returns control in the same manner
as the data control block exit routine. Register 14 must pe preserved
and restored if any macro instructions are used in the routine.
Control is returned to the operating system by a RETURN macro
instruction; no return code is required.

Block Count Exit: You can specify in an exit list the address of a
routine that will allow you to abnormally terminate the task or
continue processing when the end-of-volume routine finds an unequal
block count condition. When using standard label input tapes, tae
block count in the trailer lapel is compared by end-of-volume with the
block count in the data control block. The count in the trailer label
reflects the number of blocks written when the data set was created.
The number of blocks read when the tape is used as input is contained
in the DCBBLKCT field of the data control block.

The routine is entered during end-of-volume processing. The
trailer label block count will be passed in register 0. The user may
access the count field in the data control block by addressing the
address passed in register 1 plus the proper displacement as given in
IBM System/360 Operating System: System Control Blocks. If the block
count in the data control block differs from that in the trailer label
when no exit routine is provided, the task is abnormally terminated.

100

The routine must terminate with a RETURN macro instruction and a
return code that indicates what action is to be taken by the operating
system as shown in Table 12. As with other exit routines, register 14
must be saved and restored if any macro instructions are used.

Table 12. System Response to Block Count Exit KReturn Code

r T H
Return Code System Action
Y
t + 1
| 0 | The task is abnormally terminated. |
| | |
| | o 4
i 4 | Normal processing is resumed. |
L 4L]

Defer Nonstandard Input Trailer Label Exit: In an exit list, you can

specify a code that indicates that you want to defer nonstandard input
trailer label processing from end-of-data time until close time. The

address portion of the entry is not used by the operating system.

An end-of-volume condition exists in several situations. Two are
when the system reads a filemark or tapemark at the end of a volume of
a multivolume data set but that volume is not tne last, and when the
system reads a filemark or tapemark at the end of a data set. 4The
first situation is referred to here as an end-of-volume condition, the
second, as an end-of-data condition, although it, too, can occur at
thne end of a volume.

For an end-of-volume condition, the EOV routine will pass control
to the user's nonstandard input trailer label routine, whether or not
this exit code is specified. For an end-of-data condition when this
exit code is specified, the EOV routine does not pass control to the
user's nonstandard input trailer label routine. Instead, the Close
routine passes control to the user's routine.

MODIFYING THE DATA CONTROL BLOCK

You can complete or modify the data control block during execution
of your program. You can also determine data set characteristics from
information supplied by the data set labels. Changes or additions can
pe made prior to opening the data set, after closing it, during the
DCB exit routine, or while the data set is open. Naturally, any
information must be supplied before it is needed.

Because each data control block does not have a symbolic name for
eacn field, a DCBD macro instruction must be used to supply the
symbolic names. By loading a base register witn the address of the
data control block to be processed, any field can be referred to
symbolically.

The DCBD macro instruction generates a dummy control section
{DSECT) named IHADCB. The name of each field begins with DCE followed
by the first five letters of the keyword operand that represents tae
field in the DCE macro instruction. For example, the field reserved
for block size would pe referred to as DCBBLKSI.

The attributes of each data control block field are defined in the
dummy control section. Because each field in tne data control plock
is not necessarily aligned on a fullword boundary, care must be taken
wnen storing or moving data into the field. The length attripute and
the alignment of each field can be determined from an assembly listing
of the DCBD macro instruction.

Section Ii: Data Management Services (Part 1) 101

The DCBD macro instruction can be coded once to describe all data
control blocks, even thouyn their fields differ due to differences in
data set organization and access technique. It must not be coded more
than once for a single assembly. If it is coded before the end of a
control section, it must be followed by a CSECT or DSECT statement to
resume the original contrcl section.

Changing an Address in the Data Control Elock: The following example
illustrates now you can modify a field in the data control pblock. The
DCBD macro instruction defines the symbolic name of each field.

The data set defined by the data control plock TEXTDCB is opened
for use as boti an input and an outpat data set. When its use as an
irput data set is completed, the EODAD routine closes the data set
temporarily in order to reposition the volume for output. The =ODAD
routine then uses the dummy control section IHADCB to change the error
exit address (SYNAD) from INERROR to OUTERRCR.

The EODAD routine loads the address TEXTDCB into register 106, winich
it uses as a pvase register for Id4ADC2. It then moves the address
OQUTERKOR into tne DLCESYNAD field of tae data control block. This
field is a fullword, but ccntains information in the higdh order pyte
wiaich must not be disturbed. For this reason, care is taken to change
only the three low order bytes of the field.

OPEN (TEXTDCB, INOUT)

EOFEXIT CLOSE (TEXTDCB, REREAD) , TYPE=T
LA 10, TEXTDCB
USING IHADCB, 10 ’
MvC DCBSYNAD+1(3) ,=AL3 (OUTERRCR)
B OUTPUT

INERROR STM 14,12,SYNADSA+12

OUTERROR STM 14,12,SYNADSA+12

TEXTDCB DCB DSORG=PS,MACRF=(R,W) , DDNAME=TEXTTAPE,

EODAD=EOFEXIT, SYNAD=INERROR

DCBD DSORG=PS

SHARING A DATA SET

A data set can be shared by all the tasks of a joo step. if
requested in the DD statement, a data set can be shared by all the
tasks in the system. (Remember that there is only one task in a
system with PCP.)

When a cata set is snared by several tasks, you must treat it as a
serially reusable resource. You must have exclusive control of a daca
set in order to add or update records, and you must have shared
control in order to read records.

In performing a task, you gain exclusive or shared control of a
data set by issuing the &N¢Q and DEC macro instructions, wnica are
described in "Section I: Supervisor Services."™ Note that tnese macro
instructions must be used by ail of the tasks that process a shared
data set.

Ahen you process a direct organization data set, vou need to use
the ENC and DE¢ macro instructions only when tasks that snare a data
set do not refer to the same data control block. When all tasks do
refer to tne same data control block, you must have exclusive control
of a block of records tnat you are updating, but you do not need
either shared or exclusive control of the entire data set. You can

102

request exclusive control of a block of records through the DCB, READ,
WRITE, and RELEX macro instructions.

Shared Direct Access Storage Devices: At some installations, a
direct access storage device is shared by two or more independent
computing systems. Tasks executed on these systems can share data
sets stored on the device. For details, refer to the publication IBM
Systenv/360 Operating System: System Programmer's Guide.

Section II: Data Management Services (Part 1) 103

Part 2: Data Management Processing Procedures

Data Processing Techniques

The operating system allows you to concentrate your efforts on
processing the records read or written by the data management
routines. Your main resoonsibility is to describe the data set to be
processed, the buffering techniques to be used, and the access method.
An access method can be defined as the combination of data set
organization and the technique used to prccess the data. Data access
techniques can be divided into two categories -- gqueued and basic.

QUEUED ACCESS TECHNIQUE

The queued access technique provides GET and PUT macro instructions
for transmitting data between main and secondary storage. These macro
instructions cause automatic blocking and deblocking of the records
stored and retrieved. Anticipatory (look-ahead) buffering and
synchronization (overlap) of input and output operations with CFU
processing are automatic features of the queued access technigue.

Because the operatino system controls buffer processing, you can
use as many I/0 buffers as needed without reissuing GET/PUT macro
instructions to f£ill or empty buffers. Usually, mcre than one input
block is in main storage at any given time to prevent 1I/0 operations
from delaying record processing.

Because the operating system synchronizes input/output with
processing, you need not test for completion, errors, or exceptional
conditions. After a GET or PUT macro instruction is issued, control
is not returned to your program until an input area is filled or an
output area is available. Exits to error analysis (SYNAD) and
end-of-volume or end-of-data (EODAD) routines are automatically taken
when necessary.

GET -- Retrieve a Record

The GLET macro instruction obtains a record from an input data set.
1t operates in a locically sequential and device-independent manner.
As required, the GET macro instruction schedules the filling of input
buffers, deblocks records, and directs input error recovery
procedures. For sequential data sets, it will also merge record
segments into logical records. After all records have been processed
and the GET macro instruction detects an end-of-cdata indication, the
system auttomatically checks labels on sequential data sets and passes
control to your end-of-data (LODAD) routine. 1if an end-of-volume
condition is detected for a seqguential data set, the system provides
automatic volume switchiny if the data set extends across several
volumes or if concatenated data sets are being processed.

PUT -- Write a Record

The PUT macro instruction places a record into an output data set.
Like the G:T macro instruction, it operates in a logically sequential
and device-independent manner. As required, the PUT macro instruction
schedules the emptying of output buffers, blocks records, and handles
output error correction procedures. For sequential data sets, it also
initiates automatic volume switching and label creation, and also
seugments records for spanning.

Section Ii: Data Management Services (Part 2) 105

1f the PUT macro instruction is directed to a card punch or
printer, the system automatically adjusts the number of records or
record segments per block of format F or V blocks to 1. “Thus, you can
specify a record length (LRECL) and block size (BLKSIZE) to provide an
optimum block size if the records are temporarily placed on magnetic
tape or a direct access volume.

For spanned variable-length records, the block size must be
equivalent to one card or one print line. Record size may be greater
than block size in this case.

PUTX -- Write an Updated Record

The PUTX macro ianstruction is used to update a data set or to
create an output data set using records from an input data set as a
base. PUTX updates, replaces, or inserts records from existing data
sets but does not create records or add records from other data sets.

When you use the PUTX macro instruction to update, each record is
returned to the data set referred to by a previous GET macro
instruction. The buffer containing the updated record is flagged and
written back to the same location on the direct access storage device
from which it was read. The block is not written out until a G&T
macro instruction is used for the next buffer, except when a spanned
record is to be updated. In that case, the block is written out with
tne next GET macro instruction.

When the PUTX macro instruction is used to create an output data
set, you can add new records by using the PUT macro instruction. As
required, the PUTX macro instruction blocks records, schedules the
writing of output buffers, and handles output error correction
procedures.

BASIC ACCESS TECHNIQUE

The basic access technique provides the READ and WRITE macro
instructions for transmitting data between main and secondary storage.
This technique is used when the operating system cannot predict the
sequence in which the records are to be processed or when you do not
want some or all of the automatic functions performed by the queued
access technique. Althouoh the system does not provide anticipatory
buffering or synchronized scheduling, macro instructions are provided
to help you programr these functions.

The READ and WRITE macro instructions process blocks, not records.
Thus, blocking and deblocking of records is your responsibility.
Buffers, allocated either by you or the operating system, are filled
or emptied individually each time a READ or WRITE macro instruction is
issued. Moreover, the READ and WRITE macro instructions only initiate
input/output operations. To ensure that the operation is completed
successfully, you must issue a CHECK macro instruction to test the
DECB or a WAIT macro instruction and then check the DECB yourself.

The numoer of READ or WRITE macro instructions issued before a CHECK
macro instruction is used should not exceed the specified number of
channel programs (NCP).

READ -- Read a Rlock

The READ macro instruction retrieves a data block from an input
data set and places it in a designated area of main storage. To allow
overlap of the input operation with processing, the system returns
coantrol to your program before the read operation is completed. The
DECB created for the read operation must be tested for successful
completion before processing the record or reusing the DEC3.

106

1If an indexed sequential data set is being read, the block is
brought into main storage and the address of the desired record is
returned to you in the DECH.

When you use the RMAD macro instruction for BSAM to read a direct
data set with spanned records and keys and you specify BFTEK=R in your
DCB, the data management routines offset record segments by key length
after the first seogment of a record. Thus, you can expect the block
descriptor word and the segment descriptor word at the same locations
in your buffer, or buffers, regardless of whether you read the first
segment of a record, which is preceded in tne buffer by its key, or
you read a subsequent secment, which does not have a key. This
facility is called offset reading because the data management routines
offset the location of subsegquent segments in the buffer by the value
of KEYLEN.

You can specify variations of the READ macro instruction according
to the organization of the data set being processed and the type of
processing to be done by the system as follows:

Seguential
SF - Read the data set sequentially.
SB - Reading the data set backward (magnetic tape, format F and U
only). When RECFM=FBS, data sets containing a last truncated
block cannot pe read backwards.

Indexed Seguential
K - Read tne data set.
KU - read for update. The system maintains the device address of
the record; tnus, when a WRITE macro instruction returns the
record, no index search is required.

Direct
D - use the direct access method.
I - locate the block using a block identification.
K - locate the block using a key.
F - provide device position feedpack.
X - maintain exclusive control of the block.
R - provide next-address feedback.
U - next address can be a capacity record or logical record,
whichever occurred first.
WRITE -- Write a Block

The WRITE macro instruction places a data block in an output data
set from a designated area of main storage. The WRITE macro
instruction can alsc pe used to return an updated record to a data
set. 1Yo allow overlap of output operations with processing, the
system returns control to your program before the write operation is
conpleted. The DECB created for the write operation must be tested
for successful completion before the DECE can e reused.

As with the READ macro instruction, you can specify variations of
tne WRITE macro instruction accordino to the organization of the data
set and the type of processing to be done by the system as follows:

Sequential
SF - Write the data set sequentially.

SFR - Write the data set seguentially with next-address feedpack.

Indexed Seguential
K - write a block containing an updated record, or replace a
record with an unblocked record having the same key. The
record to be replaced need not have peen read into main
storage.
KN - write a new record or chance the length of a variable-length
record.

Section I1: Data Management Services (rart 2) 107

SD - write a dummy fixed-length record.

SZ - write a capacity record (R0). The system supplies the data,
writes the capacity record, and advances to the next track.

D - use the direct access method.

I - search argument identifies a block.

K - search argqument is a key.

A - add a new block.

F - provide record location data (feedback).

X - release exclusive control.

CHECK -- Test Completion of Read/Write Operation

When processing a data set, you can wait and test for completion of
a read or write request by issuing a CHECK macro instruction. %The
system tests for errors and exceptional conditions in the data event
control block. Successive CJdECK macro instructions issued for the
same data set should be issued in the same order as the associated
READ/WRITE macro instructions.

The check routine will pass control to the appropriate exit
routines specified in the data control block for error analysis
(SYNAD) or, for secuential data sets, end-of-data (EODAD). It will
also automatically initiate end-of-volume procedures, i.e., volume
switching or extending output data sets.

WAIT -- Wait for Completion of a Read/Arite Operation

Ahen processing a data set, you can test for completion of any read
or write operation by issuing a WAIT macro instruction. The
input/output operation will be synchronized with processing, but the
DECB will not be checked for errors or exceptional conditions, nor
will end-of-volume procedures be initiated. These functions must be
tested’ for and performedé by your procram.

The WAIT macro instruction can be used to await completion of

multiple read/write operations. Each operation must then be checked
or tested separately.

Data Event Control Block (DECB)

A data event control block is a 16- to 32-byte area reserved by
each READ/WRITE macro instruction. It contains control information
and pointers to standard status indicators. It is described in detail
in the publication IBM System/360 Opberating System: Supervisor and
Data Management Macro Instructions.

The DECB is examined by the check routine when the I/0 operation is
completed to determine if an uncorrectable error or exceptional
condition exists. 1If it does, control is passed to your SYNAD
routine. If you have no SYNAD routine, the task is abnormally
terminated.

ERROR _HANDLING

The basic and queued access techniques both provide special macro
instructions for analyzing input/output errors. These macro
instructions can be used in SYNAD routines and in error analysis
routines that are entered directly when using the basic access
technique with indexed sequential data sets.

io08

SYNADAF -- Perform SYNAD Analysis Function

The SYNADAF macro instruction analyzes the status, sense, and
exceptional condition code data that is available to your error
analysis routine. It produces a descriptive error message that your
routine can write into any appropriate data set. The message is in
tne form of an unblocked variable-length record, but it can be written
as a fixed-length record by omitting the block and record length
fields that precede the message text.

The text of the message is 120 characters in length, and pegins
with a field of 36 or 42 planks; you can use the blank field to add
your own remarks to the message. Following is a typical message with
the blank field omitted:

, TESTJOB ,STEP2 +283,TA,MASTER ,READ ,DATA CHECK 0000015, BSAM

This message indicates that a data check occurred while reading the
fifteenth block of a data set. The data set was identified by a DD
statement named MASTER, and was on a magnetic tape volume on unit 283.
The name of the job was TESTJOB; the name of the job step was STEP2.

If the error analysis routine is entered because of an input error,
the first six bytes of the message (bytes 8-13) contain binary
information. If no data was transmitted or if the access metnod is
Q1saM, the first six pytes are blank. If the error did not prevent
data transmission, the first six bytes contain the address of the
input puffer and the number of bytes read. ¥You can use this
information to process records from the block; for example, you might
print each record after printing the error message. Before printing
the message, however, you sanould replace this binary information with
EBCDIC characters.

The SYNADAF macro instruction provides its own save area and makes
this area available to your error analysis routine. When used at the
entry point of a SYNAD routine, it fulfills the routine's
responsibility for providing a save area,

SYNADRLS —-- Release SYNADAF Message and Save Areas

The SYNADRLS macro instruction releases the message and save areas
provided by the SYNADAF macro instruction. You must issue this macro
instruction before returning from the error analysis routine.

ATLAS —-- Perform Alternate Track Location Assignment

The ATLAS macro instruction enables your program to recover from
permanent input/output errors when processing a data set in direct
access storage. After a data check, or in certain missing address
marker conditions, you can issue ATIAS to:

® Assicn an alternate track to replace the error track.

e Transfer data from the error track to the alternate track.

Use of the ATLAS macro instruction requires a knowledge of channel
programming. For this reason, a detailed description of the macro

instruction and its use is included in the publication IBM System/360
Operating System: System Programmer's Guide.

If you do not use the ATLAS macro instruction, you can use the
IEHATLAS utility program to perform the same function. The principal
difference between the macro instruction and the utility program is
that the latter provides error recovery only after your own program

Section II: Data Management Services (Part 2) 109

has peen completed. For a detailed description of IEHATLAS, refer to
the publication IBM System/360 Operating System: Utilities.

SELECTING AN ACCESS METHOD

Access methods are identified primarily by the data set
organization to which they apply. For instance, we speak of a pasic
access method for direct organization (BDAM). Nevertheless, there are
times when an access method identified with one organization can be
used to process a data set usually thoucht of as organized in a)
different manner. Thus, a data set is created using the nasic access
method for sequential organization (BSAM). It is processed using the
basic direct access method (BDAM). If the queued access technique is
used to process a sequential data set, the access method is referred
to as QSAM.

The basic access methods are used for all data organizations, while

the gqueued access methods apply only to sequential and indexed
sequential data sets as shown in Table 13.

Table 13. Data Access Methods

r T 1
i Data Set | Access Technique |
| F T — 1
] Organization | Basic | Queued |
¢ t - -]
] Sequential] BSAM | QSAM |
| Partitioned i BPAM | |
] Indexed Sequential] BISAM | QISAM i
| Direct i BDAM | |
L L] 4

it is possible to directly control an I/0 device while processing
any data organization without using a specific access method. The
execute channel prcgram (£XCP) macro instruction uses the system
functions that provide for scheduling and queuing 1I/0 requests,
efficient use of channels and devices, data protection, interruption
procedures, error recognition and retry. Complete details about the
EXCP macro instruction are in the publication IBM System/360 Operating
System: System Programmer's CGuide.

OPENING AND CLOSING A DATA SET

Although your program has been assembled, the various data
management routines required for I/0 operations are not a part of the
opject code. 1In other words, your program is not completely assemoled
until it is initiated for execution. Initiation is accomplished by
issuing the OPEN macro instruction. After all data control blocks
have been completed, the system ensures that all required access
method routines are loaded and ready for use and that all channel
command word lists and buffer areas are ready.

Access method routines are selected and loaded according to data
control fields that indicate:

Data organization.
Buffering technique.
Access technigue.

170 unit characteristics.

e & ¢ 0

110

Tnis information is used by tne system to allocate main storage space
and load tne appropriate routines. These routines, tne CCW lists, and
buffer areas created automatically by the system remain in main
storage until the close routine signals that they are no longer needed
by that data control block.

When I/0 operations are completed for a data set, a CLOSE macro
instruction should be issued to return the data control block to its
original status, handle volume disposition, create data set labels,
complete writing of gueued output buffers, and free main and secondary
storage. After the data set has been closed, the data control block
cain be used for another data set. If you 4o not close the data set
pefore a task terminates, the operating system closes it
automatically. If the data control block is not available to tne
system at that time, the opverating system apnormally terminates the

| task, and data results can be unpredictable.

An OPEN or CLOSE macro instruction can be used to initiate or
terminate processing of more than one data set. Simultaneous opening
or closing is faster than issuing separate macro instructions;
nowever, additional storage space is required for each data set
specified.

Notes:

i. Two or more data control plocks should never be opened
concurrently for ocutput to the same data set on a direct access
device. 17his may result in the end-of-file record written by the
CLOSE for one data control block overlaying data associated with
another data control block.

2. Two or more data control nlocks should never be opened
concurrently usin¢ the same DDNAKE. Tnhis is true for poth input
and output and especially important when using more than one
access method. Any action on one DCB that alters the TIOT or
JFCE affects the other DCB(s) and thus can cause unpredictable
resuits.

Volume disposition specified in the OPEN or CLCSE macro instruction
can pe overridden by the system if necessary. dowever, you need not
oe concerned; the system automatically requests the mounting and
demounting of volumes, depending upon the availability of devices at a
particular time.

OPEN -- Initiate Processing of a Data Set

1the OFEN macro instruction is used to complete a data control block
for an associated data set. The method of processing and the volume
positioning instruction in the event of an end-of-volume condition can
be specified.

Processing Method: A data set can be processed as either input or
outout (INPUT, OUTPUT) or a combination of the two (INOUT, OUTIN --
ESAm only). 1If the data set resides on a direct access volume,
records can be updated (UPDAT). DMagnetic tape volumes can also be
read backwards (RDBACK -- BSAM and QSAM only). If the processing
method operand is omitted from the OPEN macro instruction, INPUT is
assumed. The operand is ignored by BISAM; it must be specified as
CUTPUT when using CiSAM to create an indexed sequential data set. You
can override the OPEN options INOUT and OUTIN at execution time by
usino the LABEL parameter of the DD card. Use of this facility is
discussed in the publication IBM System/360 Operating System: Job
| control lLanguage Reference. '

Section Ii: Data Management Services (Part 2) 111

Simultaneous Opening of Data Sets: 1In this example of the OPEN macro
instruction, the data sets associated with three data control blocks
are to be opened simultaneously with the indicated options.

OPEN (TEXTDCB, ,CONVDCB, (OUTPUT) ,PRINTDCB, (OUTPUT))
CNOP 0,4

BAL 1,*+16 LOAD REG1 W/LIST ADDR.

DC AL1(0) OPTION BYTE

DC AL3(TEXTDCB) DCB ADDRESS

DC AL1(15) OPTION BYTE

DC AL3(CONVDCB) DCB ADDRESS

DC AL1(143) OPTION BYTE

DC AL3(PRINTDCB) DCB ADDRESS

SVC 19 ISSUE OPEN SVC

T Y i SR,

Since no processing method operand is specified for TEXTDCB, the
system assumes INPUT. Both CONVDCB and PRINTDCB are opened for
output. No volume positioning options are specified; tnus, the
position indicated by the DD statement DISP parameter is used.

At execution time, the SVC 19 instruction passes control to tne
open routine, which then initiates the three data control blocks and
loads the appropriate access method routines.

CLOSE -- Terminate Processing of a Data Set

The CLOSE macro instruction is used to terminate processing of a
data set and release it from a data control block. The volume
positioning that is to result from closing the data set can also be
specified. Volume positioning options are the same as those that can
be specified for end~of-volume conditions, as specified in the OPEN
macro instruction or the DD statemenc. An additional volume
positioning option, REWIND, is available and can be specified by the
CLOSE macro instruction for magnetic tape volumes. REWIND positions
the tape at the load point regardless of the direction of processing.

The operating system provides a temporary closing option, CLOSE
(1YPE=T), for data sets being processed by BSAM. CLOSE (TYPE = T)
causes the RLSE parameter on the DD card to pe ignored. Wwhen the
macro instruction is executed for data sets on magnetic tape or direct
access volumes, the system processes labels and repositions the volume
as required. However, the data control block maintains its open
status. Processing of the data set can be continued at a later stage
in your program without reissuing the OPEN macro instruction.
pPerformance is thus improved significantly. Magnetic tape volumes
will be repositioned either preceding the first data block or
followina the last data biock of the data set. The presence of tape
labels has no effect on repositioning.

Simultaneous Closing of Data Sets: In this example of the CLOSE macro
instruction, the data sets associated witnh three data control blocks
are to be closed simultaneousily.

CLOSE (TEXTDCB,,CONVDCB, , PRINTDCB)
CNOP 0,

BAL 1,*+16 BRANCH AROUND LIST
DC AL1(0) OPTION BYTE

DC AL3(TEXTDCB) DCB ADDRESS

DC AL1(0) OPTION BYTE

DC AL3 (CONVDCB) DCB ADDRESS

DC AL1(128)OPTION BYTE

DC AL3(PRINTDCB) DCB ADDRESS
SVC 20 ISSUE CLOSE SVC

B A s

11z

Because no volume positioninc operands are specified, the position
indicated by the DD statement DISP parameter is used.

At execution time, the SVC 20 instruction passes control to the

close routine which terminates processing of the three data sets and
returns the three data control blocks to their original status.

End-of-Volume Processing

Control is passed automatically to the data management
end-of-volume routine when any of the following conditions is
detected:

End-of-data indicator (input volume).
Tapemark (input tape volume).

Filemark (input direct access volume).

End of reel (output tape volume).

End of extent (output direct access volume).

e 6 ¢ 0 @

You may issue a force end-of-volume (FEOV) macro instruction before
the end-of-volume condition is detected.

The end-of-volume routine checks or creates standard trailer
labels, if the LABEL parameter of the associated DD statement
indicates standard labels. Control is then passed to the appropriate
user label routine if it is specified in your exit list.

Multiple volume data sets can be specified in your DD statement
wnereby automatic volume switching is accomplished by the
end-of-volume routine. When an end-of-volume condition exists on an
output data set, additiomal space is allocated as indicated in your DD
statement. 1f no more volumes are specified or if more are required
than specified, the storage is obtained from any available volume of
tne same device type. 1If no device is available, your job is
terminated.

Volume Positioning: When an end-of-volume condition is detected, the
system positions the volume according to the disposition specified in
the DD statement unless the volume disposition is specified in the
OPEN macro instruction. Volume positioning instructions for a
sequential data set on tape or direct access can be specified as LEAVE
or REREAD.

LEAVE
positions the volume at the logical end of the data set just read
or written. If the data set has been read backwards, the logical
end is the physical beginning of the data set.

REREAD
positions the volume at the locical beginning of the data set
just read or written.

A volume positioning instruction can be specified only if the
processing method operand has been specified. It will be ignored if
devices other than magnetic tape or direct access are used. It will
also be ignored if the number of volumes exceeds the number of
available units.

For magnetic tape volumes, positioning varies according to tne
direction of the last input operation and the existence of tape
labels. If the tape was last read forward:

LEAVE
will position a labeled tape following the tapemark that follows

Section I1: Data Management Services (Part 2) 113

the data set trailer label group; an unlabeled volume following
the tapemark that follows the last block of the data set.

REREAD
will position a labeled tape preceding the data set header label
group; an unlabeled tape preceding the first block of the data
set.

If the tape was last read backwards:

LEAVE
will position a labeled tape preceding the data set header label
group; an unlabeled tape preceding the first block of the data
set.

REREAD
will position a labeled tape following the tape mark that follows
the data set trailer label group; an unlabeled tape following the
tape mark that follows the last block of the data set.

FEOV -- Force End of Volume

The FEOV macro instruction directs the operating system to initiate
end-of-volume processing pefore the physical end of the current volume
is reached. If another volume has been specified for the data set,
volume switching takes place automatically. The volume positioning
options REWIND and LEAVE are available.

The FEOV macro instruction can only be used when processing data
sequentially, i.e., BSAM and QSAlM.

Buffer Acquisition and Control

The buffering facilities of the operating system provide several
methods of acquisition and control. Each buffer, i.e., main storage
area used for intermediate storage of input/output data, usually
corresponds in length to the size of a block in the data set being
processed. When using the queued access technique, any reference to a
buffer actually refers to the next record, i.e., buffer segment.

You can assign more than one buffer to a data set by associating
the buffer with a buffer pool. A buffer pool must be constructed in a
main storage area allocated for a given number of buffers of a given
length.

Buffer segments and buffers within the buffer pool are controlled
automatically by the system when the queued access technique is used.
However, you can terminate processing of a buffer by issuing a release
(RELSE) macro instruction for input or a truncate (TRUNC) macro
instruction for output. Two buffering techniques, simple and
exchange, can be used to process a sequential data set. Only simple
buffering can be used to process an indexed sequential data set.

If you use the basic access technique, you can use buffers as work
areas rather than as intermediate storage areas. They can be
controlled either directly by using the GETBUF/FREEBUF macro
instruction, or dynamically by requesting dynamic buffering in your
DCB macro instruction and your READ/WRITE macro instruction. If you
request dynamic buffering, the system will automatically provide a
buffer each time a READ macro instruction is issued. That buffer will
be freed when you issue a WRITE or FREEDBUF macro instruction.

114

BUFFER POOL CONSTRUCTION
Buffer pool construction can be accomplished in any of three ways:
¢ Statically using the BUILD macro instruction.

e Explicitly using the GETPOOL macro instruction.
¢ Automatically by the syster when the data set is opened.

1f ysAM simple buffering is used, the buffers are automatically
returned to the pool when the data set is closed. 1If the buffer pool
is constructed explicitly or automatically, the main storage area must
ve returned to the system by using the FREEPOOL macro instructiomn.

In many applications, singleword or doubleword alignment of a block
within a buffer is important. You can specify in the data control
block tnat buffers are to start on either a doubleword or a fullword
boundary that is not also a doubleword boundary (BFALN=D or F). If
doupleword alignment is specified for format V records, the fifth byte
of the first record in the block is so aligned. For that reason,
fullword alignment must be requested to align the first byte of the
variable-length record on a doubleword boundary. The alignment of the
records following the first in the block depends on the length of the
previous record.

If the BUILD macro instruction is used to construct the butfer
pool, alignment depends on the alignmuent of the first byte of the
reserved storage area.

When you process multiple QISAM data sets, you can use a common
puffer pool. To do this, however, you must use the BUILD macro
instruction to reformat the buffer pool before opening each data set.

BUILD -- Construct a Buffer Pool

When you know, prior to program assembly, both the number and size
of the buffers required for a given data set, you can reserve an area
of appropriate size to be used as a buffer pool. Any type of area can
be used -- a predefined storage area, or an area of coding no longer
needed, for example.

A BUILD macro instruction, issued during execution of your proaram,
structures the reserved storage area into a buffer pool. The address
of the buffer pool must be the same as that specified for the buf fer
pool control block (BUFCB) in your data control block. The buffer
pool control block is an 8-byte field preceding the buffers in the
buffer pool. The number (BUFNO) and length (BUFfL) of the buffers must
also be specified.

When the data set using the buffer pool is closed, you can reuse
the area as required. You can also reissue the BUILD macro
instruction to reconstruct the area into a new buffer pool to be used
by another data set.

You can assign the buffer pool to two or more data sets that
require buffers of the same length. To do this, you must construct an
area large enoush to accommodate the total number of buffers required
at any one time during execution. That is, if each of two data sets
requires five buffers (BUFNO=5), the BUILD macro instruction should
specify ten buffers. Tne area must also be large enough to contain
the 8-byte buffer pool control block.

BUILDRCD -- Build a Buffer Pool and a Record Area

The BUILDRCD macro instruction performs the same functions as the
BUILD macro instruction and the following functions, as well:

Section Il: Data Management Services (Part 2) 115

¢ It provides the logical record interface necessary for a
sequential data set accessed by QSAM in the locate mode and naving
a record format of VS or VBS. ILogical record interface, unlike
segment interface, enables the user to access an entire logical
record, not just a segment.

¢ It links a record area to the buffer control block by extending
the buffer control block to twelve bytes. Thus, a spanned record
can be assembled or segmented in the record area.

GETPOOL -- Get a Buffer Pool

I1f a specified area is not reserved for use as a buffer pool, or
you want to defer specifying the number and length of the buffers
until execution of your program, you should use the GETPOOL macro
instruction. This facility enables you to vary the size and number of
buffers according to the needs of the data set being processed.

The GETPOOL macro instruction structures a main storage area
allocated by tne system into a buffer pool, assigns a buffer pool
control block, and associates the pool with a_specific data set. The
GETPOOL macro instruction should be issued either bpefore opening the
data set or during your DCB exit routine.

Automatic Buffer Pool Construction

if you have requested a buffer pool and have not used an
appropriate macro instruction by the end of your DCB exit routine, the
system automatically allocates main storace space for a buffer pool.
The buffer pool control block is also assigned and the pool is
associated with a specific data set. 1If you are using the basic
access technique to process an indexed sequential or direct data set,
you must indicate dynamic buffer control. Otherwise, the system does
not construct the buffer pool automatically.

FREEPOOL_~-- Free a Buffer Pool

Any buffer pool assigned to a cdata set either automatically by the
OPEN macro instruction (except when dynamic buffer control is used) or
explicitly by the GETPOOL macro instruction must be released pefore
your program is terminated. The FREEPOOL macro instruction should be
issued to release the main storage area as soon as the buffers are no
longer needed. As a general rule, when you are using the queued
access technique, an output data set should be closed first to ensure
that all the records have been written out. However, when usinug
exchance buffering or when processing an indexed sequential data set
using the queued access technique, the buffer pool must not be
released until all the data sets have been closed.

Constructing a Buffer Pool: Tne following examples illustrate several
possible methods of constructing a buffer pool. The examples do not
consider the method of processing or controliing the buffers in the
pool.

11e

.eo Processing

BUILD INPOOL,10,52 Structure a buffer pool

OPEN (INDCB, ,0UTDCB, (OUTPUT))

cee Processing
ENDJOB CLOSE (INDCB, ,0OUTDCB)

e Processing

RETURN Return to System Control
INDCB DCB BUFNO=5, BUFCB=INPOOL, EODAD=ENDJOB, - -~
OUTDCB DCB BUFNO=5, BUFCB=INPOOL,---

CNOP 0,8 Force poundary alignment
INPOOL Ds CL564 Buffer pool

In the first example, a static storage area named INPOCL is
allocated during program assembly. The BUILD macro instruction,
issued during execution, arranges the buffer pool into ten buffers,
each 52 bytes long. Five buffers are assigned to INDCB and five to
OUTDCB, as specified in the DCBE macro instruction for each. The two
data sets share the buffer pool because both specify INPOOL as the
buffer pool control block. Notice that an additional eignt bytes have
been allocated for the buffer pool to contain the buffer pool control
block.

GETPOOL INDCB,10,52 Construct a 10-buffer pool
GETPOOL oUTDCB, 5,112 Construct a 5-buffer pool
OPEN (INDCB, ,0OUTDCB, (OUTPUT))
ENDJOB CLOSE (INDCB, ,OUTDCB)
FREEPOCL INDCB Release buffer pools after all
FREEPOOL OUTDCB I/0 is complete
RETURN Return to System Control
INDCB DCB DSORG=PS,BFALN=F,LRECL=52, RECFM=F, EODAD=ENDJOB, - --
OUTDCB DCB DSORG=1S,BFALN=D,LRECL=52,KEYLEN=10,BLKSIZE=104, C

RKP=0,RECFM=FB, ~--

In the second example, two buffer pools are constructed explicitly
by the GETPOOL macro instructions. Ten input buffers are provided,
eacin 5Z bytes long, to contain one fixed-lengtn record; five output
ouffers are provided, each 112 bytes long, to contain two blocked
records plus an 8-byte count field (required by the Indexed Sequential
Access Method). Notice that both data sets are closed pefore the
buffer pools are released by the FREEPOOL macro instructions. The
same procedure should be used if the buffer pools were constructed
automatically by the OPEN macro instruction.

BUFFER _CCONTROL

There are four techniques that can be used to control the buffers
used by your program. The advantages of eacn depend to a great extent
upon the type of job you are doing. Both simple and exchange
puffering are provided for the queued access technique. The basic
access technique provides for either direct or dynamic buffer control.

Although only simple buffering can be used to process an indexed
sequential data set, buffer segments and buffers within a buffer pool
are controlled automatically by the operating system.

In addition, the gqueued access technique provides four processing
modes that determine the extent of data movement in main storage.
Move, data, locate, or substitute mode processing can be specified for
either the GET or PUT macro instructions. The buffer processing mode

Section II: Data Management Services (Fart 2) 117

is specified in the MACRF field of the DCB macro instruction. The
movement of a record is determined as follows:

» Move mode: The record is moved from an input buffer to your work
area, or from your work area to an output buffer.

o Data mode (QSAM V format spanned records only): The same as the
move mode except only the data portion of the record is moved.

s Locate mode: The record is not moved. instead, the address of
the next input or output buffer is placed in register 1.

For QSAM format V spanned records, the record is not moved.
Instead, if logical record interface has been requested by
specifying EFTEK=A or by issuing the BUILDRCD macro instruction,
the address returned in register 1 points to a record area wihere
the spanned record is assembled or segmented.

¢ Substitute mode: The record is not moved. Instead, the address
of the next input or output buffer is interchanged with the
address of your work area.

Two processing modes of the PUTX macro instruction can be used in
conjunction with a GET-locate macro instruction. The update mode
returns an updated record to the data set from which it was read; the
output mode transfers an updated record to an output data set. There
is no actual movement of data in main storage. The processing node
must be specified in the MACRF parameter of the DCB macro instruction.

If you use the basic access technigque, you can control buffers in
one of two ways:

e Directly using the GETBUF macro instruction to retrieve a buffer
constructed as descrived anove. A buffer can then be returned to
the pool using the FREEBUF macro instruction.

e Dynamically by requesting a dynamic buffer in your READ/WRITE
macro instruction. This technique can be used when processing an
indexed sequential or direct organization data set. If you
request dynamic buffering, the system will automatically provide a
buffer each time a READ macro instruction is issued. <The buffer
is supplied from a buffer pool which is created by the system when
the data control block of the data set is opened. The puffer will
be released (returned to the pool) upon completion of a WRITEH
macro instruction when you are updating. If you do not update the
record in the buffer and thus release the buffer when the record
is written, the FREEDBUF macrc instruction may oe used. If you
are processing an indexed sequential data set, the buffer is
automatically released upon the next issuance of the READ macro
instruction if there has been no intervening WRITE or FREEDBUF
macro instruction issued.

Simple Buffering

The term "simple" buffering refers to the relationship of segments
within the buffer. All segments in a simple buffer are contiguous in
main storage and are always associated with the same data set. When
the buffer pool is constructed, the system creates a channel command
word (CCW) for each buffer in the buffer pool. For this reason, eacn
record must be pnysically moved from an input ouffer segment to an
output buffer segment. It can be processed within either segment or
in a work area.

118

If you use simple oufferinc, records of any format can be
processed. New records can be inserted and old records deleted as
required to create a new data set. Records can be moved and processed
as foilows:

e Processed in an input buffer and then moved to an output bufier
(GET-1locate, PUT-nicve/PUTX-output).

¢ Moved from an input puffer to an output buffer where it can be
processed (GET-move, PUT-locate).

s Moved from an input buffer to a work area where it can be
processed and tnen moved to an output buffer (GkT-move, PUT-move).

s Processed in an input buffer and returned to tine data set
(GET-locate, PUTX-update).

The followinu examples illustrate the control of simple puffers and
the processing mcdes that can be used. The buffer pools may have been
constructed in any way previously described.

Simple Buffering -- GnT-locate, PUT-move/PUTX-output: The GET macro
instruction (step A, Ficure 23) locates the next input record to oe
processed. Its address is returned in register 1 by the system. The
alddaress is passed to the FUT macro instruction in register 0.

The PUT macro instruction (step B, Figure 23) specifies the address
of the record in register (. The system then moves the record to the
next output buffer.

Note: The PUTX-output macro instruction can be used in place cof tne
PUT-move macro instruction. However, processing will be as described
under excnange buffering (see PUT-substitute).

ouTPUT OUTPUT

NEXTREC GET INDCB

PUT LR 0,1

PUT GUTDCE, (0)

B NEXTREC

OouTPUT OUTPUT | INDCB DCB MACRF=(GL),---
OUTDCB DCB MACRF=(PM) ,—--

Ficure 23. Simple Euffering (GL,PM)

Simple Buriferinag -- GET-move, PUT-locate: The PUT macro instruction
locates the address of the next availaonle outout puffer. Its address
is returned in register 1 and is passed to the GET macro instruction
in register 0.

The GET macro instruction specifies the address of the output
buffer into which the system moves the next input record.

A fillea output puffer is not written until the next PUT macro
instruction is issued.

Section II: Data Management Services (Part 2) 119

Simple Buffering -—- GET-move, PUT-move: -The GET macro instruction
(step A, Figure 24) specifies the address of a work area into which
the system moves the next record from the input buffer.

The PUT macro instruction (step B, Figure 24) specifies the address
of a work area from which the system moves the record into the next
output buffer.

OUTPUT | OUTPUT

NEXTREC GET INDCB,WORKAREA
PUT cane
PUT OUTDCB,WORKAREA
B NEXTREC
OUTPUT | ourput WORKAREA DS CL50
INDCB DCB MACRF=(GM) ,—---
ouTbCB DCB MACRF=(PM) ,—--

B.] INPUT

Figure 24. Simple Bufferingy (GM, PM)

Simple Buffering -- GET-locate, PUT-locate: The PUT macro instruction
(step A, Figure 25) locates the address of the next available output
puffer. The address is returned in register 1.

The GET macro instruction (step B, Figure 25) locates the address
of the next input buffer. Its address is returned in register 1. You
must then move the record from the input buffer to the output buffer.
Processing can be done either before or after the move operation.

A filled output pbuffer is not written until the next PUT macro
instruction is issued.

Note: If records other than format F are being moved, the length
attribute of tne MVC instruction must be changed as shown. If tne
record is more than 256 bytes, you wiil have to code a move routine to
process the complete record.

NEXTREC GET INDCR

LR 7,1
PUT OUTDCB
PUT LR 6,1

//I See Note USING IHADCB,5
LA 5,INDCB

OUTPUT OUTPUT LH 4,DCBLRECL
SH 4,=H'1'
EX 4,MOVEREC

GET e

B NEXTREC
MOVEREC MVC 0(1,6),0(7)
OUTPUT outpPUT INDCB DCB MACRF=(GL),
; EODAD=EOF,---
OUTDCB DCB MACRF=(PL),---
DCBD DSORG= (LR)
EOF e

eiigure 25. Simple Buffering (GL, PL)

120

Exchange Buffering

The term "exchange" buffering refers to the relationship of
segments within a buffer. All the segments in an exchange buffer are
not necessarily contiguous in main storage, nor are they always
associated with the same data set. When the buffer pool is
constructed, the system creates a channel command word (CCW) for each
buffer segment in the buffer. This facility makes it possible to
"exchange" the CCWs of different storage locations.

To use exchange buffering, you must provide a work area comparable
in size and alignment to a buffer segment. That work area is
substituted for the next buffer segment. That is, the storage areas
change roles. The CCW created for the buffer segment actually points
to the work area.

Why use exchange buffering? Because there is no need to move the
record. This weans a considerable savings in processing time. On the
other hand, exchange buffering is of no advantage unless substitute
mode or PUTX-output mode is used.

The implementation of exchanae buffering during execution of your
program depends on a number of factors:

Input and output buffers must be .of the same size and alignment.
Records must be blocked format F or unblocked.

Track overflow cannot be used with blocked format ¥ records.
GET-move and PUT-locate modes cannot be used.

Unit record devices must not be specified.

2 & o8

1f you request exchange buffering, but it cannot be implemented,
the system automatically provides simple buffering. Move mode
processing is used in place of substitute mode.

After opening the data set, you can test the DCBCIND1 field of the
data control block to determine if simple buffering was substituted
for exchange buffering because of inconsistencies in the data control
block information. The eighth bit of the DCBCIND1 field is 1 for
exchance buffering and 0 for simple buffering.

If your records are blocked format F, each segment is aligned as
specified in the DCBBFALN field. Therefore, your buffer iength
(DCBBUFL) must be large enough to contain segments that are a multiple
of 16 bytes. Otherwise, the specified boundary alignment cannot be
achieved; simple buffering is used and only the first byte in the
first record is aligned as specified.

To recpen a DCB that has been opened for exchange buffering, you
must first do the following:

* Close all DCBs using the buffer pool associated with the DCB to be
reopened.

» Issue a FREEPOOL macro instruction specifyinc the DCB to be
reopened.

Section II: Data Management Services (pPart 2) 121

There are two possible error conditions that cannot be prechecked
by the system:

¢ Word alignment that does not correspond to the characteristics of
the machine. If, for example, you expect to process your data on
a model 65 or 75, your record length should be a multiple of 16;
on a model 50, a multiple of 8; on a model 40, a multiple of 4.
No error will result if the records are processed on a smaller
system.

¢ An I/0 device that transfers the data faster than the CPU can
exchange the addresses in the CCW.

The following examples illustrate the control of exchange buffers
and the corresponding processing modes that can be used. The buffer
pools may have bheen constructed in any way previously described.

Exchange Buffering -- GET-substitute, PUT-substitute: The GET macro
instruction (step A, Figure 26) specifies the address of a work area.
The work area address is exchanged for the address of the next input
record returned in register 1. After processing, the address of the
record is passed to the PUT macro instruction.

The PUT macro instruction (step B, Figure 26) specifies the address
of the output record. The output record address is exchanged for the
address of the next output buffer available for use as a work area.
The work area address, returned in register 1, is passed to the GET
macro instruction (step C, Pigure 26) in register 0.

Notice that as the areas are exchanged there is no movement of
data. Output records are contained in the original input area and
vice versa, but are logically associated with the correct data set.

WORK OUTPUT | OUTPUT
Exchqnged PUT . LA) O,WORKAREA
4”/’4;,,,/~/“” NEXTREC GET INDCB, (0)
: LR 0,1
INPUT OUTPUT | OUTPUT >
PUT OUTDCE, (0)
] LR 0,1
GET Exchanged B NEXTREC
I WORKAREA DS CL50
INDCB DCB MACRF=(GT),---
INPUT WORK OUTPUT OUTDCB DCB MACRF=(PT),---
Exchanged

Figure 26. Exchange Bufferinc (6T, PT)

Exchange Buffering ~-- GET-locate, PUT'X-output: The GET macro
instruction f(step A, Fiqure 27) locates the address of the next input
record. The address is returned in register 1. The record must be
processed in the ouffer segment before the PUTX macro instruction
(step B, Figure 27) is issued. The PUTX macro instruction specifies
tne address of both the input and output data control block. The two
buffer segments are exchanged without any movement of data. The GET
macro instruction (step C, Figure 27) locates the next record to be
processed.

122

Notice that the DCE macro instruction for the output data set
specifies move mode; this is required.

GET

OUTPUT QUTPUT

PUTX

OUTPUT | OUTPUT NEXTREC GET INDCB

] “ee)
Exchanged PUTX OUIDCB, INDCB
B NEXTREC
- INDCE DCB MACRF=(GL), ---
OUTDCB DCB MACRF=(PM}),-—-

INPUT OUTPUT

Figure 27. Exchance Buffering (GL, PMN)

Exchange Buffering -- GET-locate, PUT-substitute: The GET macro
instruction (step A, Figure 28) locates the next input record. Its
address is returned in register 1. You must then move the record to a
work area. Processing can pe done either before or after the move
operation.

The PUT macro instruction (step B, Figure 28) specifies the address
of the work area containing the next output record. The system
returns the address of the next output buffer available for use as a
work area in reoister 1. That address is passed to the move (MVC)
instruction in register 6.

The GET macro instruction (step C, Figure 28) locates the next
input record. You must then move the record to the new work area.
Notice that the previous work area has become a part of the output
puffer (step C).

Note: If records other than format F are being moved, the lencth
attrioute of the MVC instruction must be changed as shown. If the
recoré is more than 256 bytes long, you must code a move routine to
process the complete record.

GET LA 6,WORRAREA
NEXTREC GET INDCB
LR 7,1

OUTPUT OuTPUT

See Note USING IHADCB,5
LA 5,INDCB
LH 4,DCBLRECL
SH 4,=H"'1'
EX 4,MOVEREC

OUTPUT OQUTPUT i
PUT OUTDCB, (6)
1 LR 6,1

B NEXTREC

MOVEREC MVC 0(1,6),0(7)

WORKAREA DS CL50

OuTPUT INDCB DCB MACRF=(GL),---

OUTDCB DCB MACRF=(PT),---
DCBD DSORG= (LR)

Fioure 2&. Exchance EBuffering (GL, PT)

Section Ii: Data Management Services (Part 2) 123

Buffering Techniques and GET/PUT Processing Modes: As you can see
from the previous examples, the most efficient coding is achieved by
using automatic buffer pool construction, and GET-locate and
PUTX-output with either simple or exchange buffering. Table 14
summarizes the combinations of buffering techniques and processing
modes that can be used. Notice, for example, that if you use
PUT-locate and GET-substitute, you must provide a work area and you
must also move the record from the work area to the output buffer.

® Table 14. Buffering Technique and GET/PUT Processing Modes

Exchange| Simple [Exchange

%2}
3
°
®

Output Buffering: =9 | Simple |Exchange|Simple |Exchange | Simple

Input
Buffering:
Exchange

Input
Buffering: —9
Simple

Actions

GET-move, PUT-locate
GET-move, PUT-move
GET-locate, PUT-locate

GET-move, PUT-move
GET-locate, PUT-move
GET-locate, PUT-move
GET-locate,
GET-locate, PUT-locate
GET-locate, PUT-move
GET-locate, PUT-move
GET-locate,

GET-move,
(logical record),

PUT-locate
GET-substitute,

PUT-locate
GET-substitute,

PUT-move
GET-substitute,

PUT-substitute
PUT-substitute
PUT-move
GET-substitute,
PUT-substitute

GET-locate
- PUT-substitute

x
x
x
bad
x
x

Program must move
record

Systemmovesrecord | X | X | X| X X| X XX X1 X

System moves record X
segment

Record is not moved
Work Area required X X} X X X| X1 X X X

PUTX - output can X]X X1 X
be used

RELSE -~ Release an Input Buffer

When using the queued access technique to process a sequential or
indexed sequential data set, you can direct the system to ignore the
remainine records in the input buffer being processed. The next GET
macro instruction retrieves a record from another buffer. If format V
spanned records are being used, the next logical record obtained may
pegin on any segment in any subsequent block.

If you are using move mode, the buffer is made available for
refilling as soon as the RELSE macro instruction is issued. When used
with locate mode, the system does not refill the buffer until the next
GeT macro instruction is issued. If a PUTX macro instruction has been
used, the block is written before the buffer is refilled.

124

TRUNC -- Truncate an Output Buffer

When using the gueued access technique to process a sequential data
set, you can direct the system to write a short olock. The first
record in the next puffer is the next record processed by a
PUT/PUTX-output mode.

If the locate mode is being used, the system assumes tanat a record
has been placed in the buffer segment pointed to by the last PUT macro
instruction.

The last block 'of a data set is truncated by tne close routine.
Note: A data set containing format F records with truncated blocks
cannot be read from direct access storage as efficiently as standard
format F data sets.

GETBUF -- Get a Buffer From a Pool

The GETBUF macro instruction can be used with the basic access
technique to request a buffer from a buffer pool constructed by the
BUILD, GETPOOL, or OPEN macro instruction. 'The address of the buffer
is returned by the system in a register 'specified by you when the
macro instruction is issued. If no puffer is available, the register
contains zeros instead of an address.

FREEBUF -- Return a Buffer to a Pool

The FREEEUF macro instruction is used with the basic access
technique to return a puffer to the puffer pool from which it was
obtained by a GETBUF macro instruction. Although the obuffers need not
be returned in the order in which they were obtained, they must be
returned when they are no longer needed.

FREEDBUF =-- Return a Dvnamic Buffer to a_Pool

Any buffer obtained using the dynamic buffer option must be
released before it can be used again. When you are processing a
direct data set, if you do not update the block in the buffer and tinus
free the buffer when the plock is written, you must use the FREEDBUF
macro instruction. If there is an uncorrectable input/output error,
the control prograr releases the buffer. When you are processing an
indexed sequential data set, if you dc not update the block in the
puffer or if there is an uncorrectable input error, the control
program releases the buffer when tiie next READ macro instruction is
issued on the same DECE, or you may use the FREEDBUF macro
instruction.

To effect the release, you must specify the address of the DECB
that was created when the block was read using the dynamic buffering
option, as well as the address of the data control block associated
with the data set being processed.

Processihg a Sequential Data Set

Data sets residing on all volumes other than direct access must be
processed sequentially. 1In addition, a data set residing on a direct
access volume, regardless of organization, can be processed
sequentially. This feature of the operating system allows you to
write your program with little regard for the type of device to be
used when the program is executed. Naturally, there are restrictions
against the use of certain device-dependent macro instructions and
processing options.

Section I1I: Data Management Services (Part 2) 125

Either the queued or basic access technique may be used to store
and retrieve the records of a sequential data set. Additionally, a
technique called chained scheduling can be used to accelerate the
input/output operations required for a sequential data set.

DATA FORMAT -- DEVICE TYPE CONSIDERATIONS

Both the record format (RECFM) and device-dependent (DEVD)
information must be provided to the operating system prior to
execution of your program. This information can be supplied by a DCB
macro instruction, a DD statement, or a data set label. The DCE
subparameters for the DD statement differ slightly from those
described here. A complete description of the DD statement and a
glossary of DCE subparameters is contained in the publication 1BM
System/360 Operating System: Job Control Language€.

The record format (RECFM) parameter of the DCB macro instruction
specifies the characteristics of the records in the data set as fixed
length (F), variable-length (V), or undefined length (U).
Fixed-length, blocked records (FB) can be specified as standard (FBS),
i.e., there are no truncated (short) blocks or unfilled tracks within
the data set, with the possible exception of the last block or track.
if the data set resides on a direct access volume, the track overflow
feature (T) cannot be specified for the basic access technique.

If you plan to read a data set backwards or to extend it at a later
time, proceed as follows when coding REC¥FM for the creation of a
sequential data set:

e If you know you will not have any truncated blocks, you can
specify RECFM=FBS.

s If you are uncertain about whether you will have a truncated
block, you should specify RECFM=FB.

As an optional feature, a control character can be contained in
each record. This control character will be recognized and processed
if the data set is printed or punched. The control characters are
transmitted on both tapes and direct access devices. The presence of
a control character is indicated by M or A in the RECFM field of the
data control block. . M denotes machine code; A denotes American
National Standard Code for Information Interchange (ASCII). If either
M or A is specified, the character must be present in every record;
the printer space (PRTSP) or stacker select (STACK) field of the data
control block is icnored. The optional control character must be in
the first byte of format ¥ or U records and in the fifth byte of
format V records. Control character codes are listed in Appendix E.

The device-dependent (DEVD) parametexr of the DCB macro instruction
specifies the type of device on which the data set's volume resides:

TA - magnetic tape

PT - paper tape reader

PR - printer

PC - card punch

RD - card reader

DA - direct access

MAGNETIC TAPE (TA)

Forwat F, V, or U records are acceptable for magnetic tape.
However, format V records are not acceptable on 7-track tape if the

126

data conversion feature® is not available. Data blocks should be at
least 18 bytes long. If a data check occurs when you are reading a
data block shorter than 18 bytes, the error recovery procedures skip
the data block. When you create a tape data set with variable-length
record format, the control program pads any data block shorter than
18 bytes. It pads to the right with binary zeroes so that the data
block length equals 18 or block size, whichever is shorter.

Tape density (DEN) specifies the recording density in bits per inch
per track, as showr in Table 15. 1If this information is not supplied,
the nighest applicable density is assumed.

e Table 15. Tape Density (DEN) Values
r T - -
| | Recording Density i
] | Model 2400 |
| DEN Value | T ———— T |
| | 7-Track | 9-Track | 9-Track (phase | 9-Track (dual |
i | i | encoded) | density) |
— ¥ ¥ t -——+ 1
| 0 | 200 | - | - | - |
I 1 | 556 I - | - | - |
| 2 | 800 | 800] - | 8001 |
| 3 | - | - | 1600 | 16002 |
‘_ - 1 ———— 4 1 _ L {
| iNon-return-to-zero 1IBM (NRZI) mode]
| 2Pnase encoding (PE) mode |
L —— 1

The track recording technique (TRTCH) for 7-track tape can be
specified as: ,

C - data coaversion is to pe used.
E - even parity is to be used; if omitted, odd pvarity is assumed.
T - BCDIC to E£BCDIC translation is required.

PAPER TAPE READER (PT)

The paper tape reader accepts format F or U records. BEach format U
record is followed by an end-of-record character. Data read from
paper tape is optionally converted into the System/360 internal
representation of one of six standard paper tape codes. Any ciharacter
found to have a parity error will not be converted when the record is
transferrea into the input area. Characters deleted in the conversion
prccess are not counted in determining the block size.

The followinc symbols indicate the code in wnich the data was
punched. If this information is omitted, I is assumed.
- IBM BCD perforated tape and transmission code (8 tracks).
- rFriden (8 tracks).
- Burroughs (7 tracks).
National Cash Register (8 tracks).
- ASCII (8 tracks).
- Teletype (5 tracks).
- No conversion.

Z2R P aowEH
1

ipata conversion makes it possible to write eight binary bits of data
on seven tracks. Otherwise, only six bits of an 8-bit byte are
recorded. The lencoth field of format V records contains binary data
and is not recorded correctly without data conversion.

Section II: Data Management Services (Part 2) 127

Note: When using QSAM, the processing mode must be move mode.

CARD READER AND PUNCH (RD/PC)

¥Yormat ¥, V, or U records are acceptable to both the reader and
punch. The device control character, if specified in the RECFM
parameter, is used to select the stacker; it is not punched. The
first four bytes of format V records or record segments (record or
segment descriptor word) are not punched.

Each punched card corresponds to one physical record. Therefore,
you should restrict the maximum record size to 80 (EBCDIC mode) and
160 (column binary mode) data bytes. If mode (C) is used, the DCB
parameters BLKSIZE, LRECL, and BUFL must be specified as 160. 7You can
specify the read/punch mode of operation (MODE) as either card image
(column binary) mode (C) or EBCDIC mode (E). If this information is
omitted, E is assumed.

Stacker selection (STACK) can be specified as either 1 or 2 to ‘
indicate which bin is to receive the card. If it is not specified, 1
is assumed.

Note: When (QSAM is used, punch error correction on the IBM 2540 Card
Read Punch is automatically performed only for data sets using three
or more buffers without the chained scheduling feature.

PRINTER (PR)

records of format ¥, V, or U are acceptable to the printer. The
first four bytes (record descriptor word) of format V records are not
printed. The carriave control character, if specified in the RECFM
parameter, is not printea. However, the system does not position the
printer to channel 1 for the first record.

Because each line of print corresponds to one record, the record
length should not exceed the length of one line on the printer. For
variable-length spanned records, each line corresponds to one record
segment, and block size should not exceed the length of one line on
the printer.

If carriage control characters are not specified, you can indicate
printer spacing (PRTSP) as 0, 1, 2, or 3. If it is not specified, 1
is assumed.

DIRECT ACCESS (DA)

Direct access devices accept records of format ¥, V, or U. If the
records are to be read or written with keys, the key lengtn (KEYLEN)
must be specified. 1In addition, the operating system has a standard
track format for all direct access volumes. Each track contains data
information as well as certain "nondata™ or control information such

as s

The address of the track.
The address of each record.
The length of each record.
Gaps petween areas.

A complete description of track format is contained in the section
"Direct Access Volume Characteristics." Your only concern in creating
a sequential data set is to allow for an 8-byte track descriptor
record (capacity record or RO) when requesting space on a direct

128

access volume. In addition, "device overhead," which varies with the
device, must be allocated for each block on the track.

SEQUENTIAL DATA SETS -- DEVICE CONTROL

The operating system provides you with six macro instructions for
controlling input/output devices. Each is, to varying degrees,
device-dependent. Therefore, you must exercise some care if you wisn
to achieve device independence.

When using the queued access technique, only unit record egquipment
can be controlled directly. When using the basic access technique,
limited device independence can e achieved petween magnetic tape and
direct access devices. All read or write operations must be checked
before issuing a device control macro instruction.

CNTRL -- Control an I/0 Device

The CNTRL macro instruction provides a number of device-dependent
control functions:

» Card reader stacker selection (SS).

e Printer line spacing (SP).

» Printer carriage control (SK).

e Magnetic tape backspace (BSR) over a specified number of blocks.

* Magnetic tape backspace (BSM) past a tapemark and forward space
over the tapemark.

» Magnetic tape forward space (F3R) over a specified number of
blocks. '

e Magnetic tape forward space (FSM) past a tapemark and a backspace
over the tapemark.

Backspaciné moves the tape toward the load point; forward spacing
moves the tape away from the load point.

Note: The CNTRL macro instruction cannot be used with an input data
set containing variable-length records on the card reader.

PRTOV -- Test for Printer Overflow

The PRTOV macro instruction tests for channel 9 or 12 of the
printer carriage control tape. An overflow condition will cause
either an automatic skip to channel 1 or, if specified, transfer of
control to your routine for overflow processing.

If the data set specified in the data control block is not a
printer, no action is taken.

SETPRT -- Load Character Set for UCS Printer

The SETPRT macro instruction indicates the character set to be used
by a 1403 printer with the Universal Character Set feature. It thus
allows your program to change character sets during execution; as an
option, it allows lower-case alphabetic characters to be printed in
uppercase when no uppercases/lowercase print chain is available.

When issued, the SETPRT macro instruction loads a special UCS
puffer from the system library. The library contains images of

Section II: Data Management Services (Part 2) 129

standard IBM character sets and of special user-designed character
sets. The operator can be requested to verify the loaded image after
mounting the appropriate print chain or train.

The SETPRT macro instruction can be used to block or unblock
printer data checks. When data checks are blocked, unprintable
characters are treated as blanks and do not cause an error condition.

BSP -- Backspace a Magnetic Tape or Direct Access Volume

The BSP macro instruction backspaces one block on the magnetic tape
or direct access volume being processed. The block can then be reread
or rewritten. An attempt to rewrite the block destroys the contents
on the remainder of the tape or track.

The direction of movement is toward the load point or beginning of
allocated area. You may not use the BSP macro instruction if the
track overflow option was specified or if the CNTRL, NOTE, or POINT
macro instructions are used. The BSP macro instruction should be used
only when other device control macro instructions could not be used
for backspacing.

NOTE —-- Return the Relative Address of a Block

The NOTE macro instruction requests the relative address of the
block just read or written. The feedback identifies the block for
subsequent repositioning of the volume.

The feedback provided by the operating system is returned in
general register 1. The address is in the form of a U-byte relative
block address for magnetic tape; for a direct-address device, it is a
4-byte relative track address and the amount of unused space available
on the track. ’

POINT -- Position to a Block
The POINT macro instruction causes repositioning of a magnetic tape

or direct access volume to a specified block in the data set. The
next read or write operation begins at this block.

SEQUENTIAL DATA SETS -- DEVICE INDEPENDENCE

Device independence is an important consideration when programming
the System/360. The ability to request input/output operations
without regard for the physical characteristics of the 1I/0 devices
makes it possible for you to write one program that will fulfill a
variety of needs. Device independence may be useful for:

e Accepting data from a number of recording devices, e.g., 2311 disk
pack, 7- or 9-track magnetic tape, or unit record equipment. This
situation could arise when several types of data acquisition
devices are feeding a centralized complex.

s Observing constraints imposed by tne availability of input/output
devices, i.e., devices on order have not been installed.

e Assembling, testing, and debugging on one System/360 configuration
and processing on a different configuration, e.g., a 2311 direct
access device can be used as a substitute for several magnetic
tape units.

Device independence is clearly a valuable concept -- one that is not
difficult to achieve, but which requires some planning and

130

forethought. There are two areas of planning necessary to achieve
device independence -- system generation considerations and
programming considerations.

SYSTEM GENERATION CONSIDERATIONS

The user of the operating system can provide for device
independence when the system is generated. This is achieved by
generating a system that meets not only the current input/output
configuration requirements but includes anticipated device
attachments. Creating such a system entails looking ahead at expected
delivery of input/output devices and, during system generation,
constructing in advance the necessary control plocks and tables.
Trnuus, when the devices are delivered, they need only be physically
attached. The operating system recognizes the devices without
moaification. During the interim, unconnected devices must be placed
off-line. This is accomplished by a VARY command issued by the
operator.

wWhen new device attachments cannot be fully anticipated, new
devices can be added py performing an I/0 device generation. This is
a limited type of system ceneration that enables the user to change
his I/70 configuration without regenerating other parts of the system.

Effecting a smooth transition to new input/output devices must not
be construed to mean the inclusion of unsupported devices. This
discussion is liimited to add-or or substitution device independence.
When support for new devices is provided, a new system will have to be
generated. A complete description of system generation techniques is
contained in the publication IBM System/360 Operating System: System
Generation.

PROGRAMMING CONSIDERATIONS

Each of the data set oraganizations -- partitioned, indexed
sequential, and direct -- requires the use of a direct access device.
Device independence is meaningful, then, only in terms of a
sequentially orcanized data set, that is, in a data set where one
plock cof data follows another, thus allowing input or output to be on
magnetic tape, direct access, card read/punch, or printer.

Your program will be device-independent if you do two things:

e Omit all device-dependent macro instructions or macro instruction
parameters from your program.

e Defer specifyinc any required device-dependent parameters until
the program is ready for execution. That is, supply the
parameters on your data definition (DD) statement.

In examining the following list of macro instructions, consider
only the logical layout of your data record without regard for the
type of device used. Also, consider that any reference to a direct
access volume is to be treated like magnetic tape, i.e., you must
create a new data set rather than attempt to update.

Section I1: Data Management Services (Part 2) 131

OPEN
specify INPUT, OUTPUT, INOUT, or OUTIN. The parameters RDBACK
and UPDATE are device dependent and cause an abnormal termination
if directed to a different device type.

‘READ
specify forward reading only (SF).

WRITE

specify forward writing only (SF); use only to create new
records.

PUTX
use only output mode.

NOTE/POILINT
valid for both magnetic tape and direct access volumes.

BSP
valid for magnetic tape or direct access volumes. However, its
use would be an attempt to perform device-dependent action.

CNTRL/PRTOV
device dependent

DCB Subparameters

MACRF
specify R/W or G/P. Processing mode can also be indicated.

DEVD
specify DA if any direct access device is apt to be used.
Magnetic tape and unit record equipment data control blocks will
fit in the area provided during assemoly. Specify unit record
devices only if you expect never to change to tape or direct
access devices. Key length (KEYLEN) can be specified on the DD
statement if necessary.

RECFM, LRECL, BLKSIZE
these can be specified in the DD statement. However, you must
consider maximum record size for specific devices. Also, track
overflow cannot pbe specified unless supported.

DSORG

specify sequential (PS/PSU).
OPTCD

device dependent; specify in the DD statement.
SYNAD

any device-dependent error checking is automatic. Generalize
your routine so that no device-dependent information is required.

CHAINED SCHEDULING FOR I/O OPERATIONS

To accelerate the input/output overations required for a data set,
the operating system provides a technique called chained scheduling.
When requested, the system bypasses the normal I/O routines and
dynamically chains several input/output operations together. A series
of separate read oxr write operations, functioning with chained
scheduling, is issued to the computing system as one continuous
operation. The program-controlled interruption (PCI) flag in the CCWs
is used for synchronization of the I/0 operations.

132

The 1/0 performance is increased by reducing both the CPU time and
channel start/stop time required to transfer data between main and
secondary storage. The effects of rotational delay are also reduced
since several successive blocks, requested separately, can be
retrieved in a single rotation. Chained scheduling can be used only
with simple buffering. Each data set for which chained schedulina is
specified must be assigned at least two, and preferably three,
buffers.

A request for chained scheduling will be ignored and normal
scheduling used if any of the following are encountered when the data
control block is opened:

¢ BDAM CREATE, i.e., MACRF=(WL).

¢ Track overflow.

e Operand of the OPEN macro instruction specifies UPDAT.
s Exchange buffering.

e CNTRL macro instruction to be used.

+ Device type is paper tape reader.

When chained scheduling is being used, the automatic skip feature
of the PRTOV macro instruction for the printer will not function.
Format control must be acnieved by ASCII or machine control
characters. When using undefined length records with QSAM, the
DCBLRECL field represents the block size instead of the actual record
length.

Chained scheduling is most valuable for programs that require
extensive input and output operations. Because a data set using
chained scheduling may monopolize available time on a channel,

separate channels should@ be assigned, if possible, when more than one
data set is to be processed. ~

CREATING A SEQUENTIAL DATA SET

As discussed earlier, a processing program should be developed
using factors that are constant. To provide for as much flexibility
as possipble, variable factors should be specified at execution time.
For that reason, the following problem examples are generalized as
much as possiple. They are neither exhaustive nor intended as
complete examples. Ratner they are presented as introductory
sequences.

Since the basic access technique for sequential processing is
usually used to create a partitioned data set or a direct data set,
examples of the READ/WRITE macro instructions are deferred for
discussion in those areas. There is no other reason, however, for
them not to be used in place of the gueued access macro instructions
where automatic blocking and anticipatory buffering are not required.

Tape-to-Print, Move Mode -- Simple Buffering: In this problem the
GET-move and PUT-move require two movements of the data records. If
the record length (LRECL) does not change in processing, only one move
is necessary; you can process the record in the input buffer segment.
A GET locate can be used to provide a pointer to the current segment.

Section II: Data Management Services (Part 2) 133

OPEN (INDATA, ,OUTDATA, (OUTPUT))

NEXTREC GET INDATA ,WORKAREA Move Mode
AP NUMBER,=P'1"' .
UNPK COUNT , NUMBER Record count adds 6
PUT CUTDATA, COUNT bytes to each record
B NEXTREC

TAPERROR SYNADAF ACSMETH=QSAM Control program returns mess-
LA 0,68(0,1) age address in register 1.
ST 14,SAVElY SYNAD routine prints part of
PUT OUTDATA, (0) the message (beginning with
SYNADRLS the unit number) as a 56-byte
L 14 ,SAVElL fixed-length record. It then
RETURN returns to the control

ENDJOB CLOSE (INDATA, ,OUTDATA) program.

COUNT DS CL6

WORKAREA Ds CL50

NUMBER DC PL4'Q°

SAVE1lY4 DS F

INDATA DCB DDNAME=INPUTDD, DSORG=PS,MACRF=(GM) , EROPT=ACC, C

SYNAD=TAPERROR, EODAD=ENDJOB

OUTDATA DCB DDNAME=OUTPUTDD, DSORG=PS,MACRF= (PM) , EROPT=ACC

Tape-to-Print, ILocate Mode -- Simple Buffering: This problem is
similar to the previous one. However, since theére is no change in the
record length, the records can be processed in the input buffer. Only
one move of each data record is required.

OPEN (INDATA, ,OUTDATA, (OUTPUT) , ERRORDCB, (OUTPUT))

NEXTREC GET INDATA Locate Mode
LR 2,1 Save Pointer
AP NUMBER,=P*1"
UNPK 0(6,2),NUMBER Process in Input Area
PUT OUTDATA Locate Mode
Mve 0(50,1),0(2) Move record to output buffer
B NEXTREC

TAPERROR SYNADAF ACSMETH=QSAM Message address in register 1
ST 2,SAVE2 Save register 2 contents
L 2,8(0,1) Load pointer to input buffer
MVC 8(70,1),50(1) shift nonblank message fields
Mve 78(50,1),0(2) Add input record to message
LR 0,1 Load address of messace
LR 2,14 Save return address
PUT ERRORDCB, (0) Print message (move mode)
SYNADRLS Release message and save area
LR i4,2 Restore return address
L 2,SAVE2 Restore register 2
RETURN Return to control program

ENDJOB CLOSE

NUMBER DC PL4'Q"

INDATA DCB DDNAME=INPUTDD, DSORG=PS,MACRF= (GL) , EROPT=ACC,

SYNAD=TAPERROR, EODAD=ENDJOB .
DDNAME=OUTPUTDD, DSORG=PS,MACRF= (PL) , EROPT=ACC
DDNAME=SYSOUTDD, DSORG=PS ,MACRF=(PM) ,RECFM=V,

BLKSIZE=128,LRECL=124, EROPT=ACC

SAVE2 Ds F

(INDATA, ,OUTDATA,, ERRORDCB)

OUTDATA DCB
ERRORDCB DCB

Tape-to-Print, Substitute Mode -- Exchange Buffering: Although the
initial problem is the same, the solution described here takes
advantage of two facilities: exchange buffering, which eliminates the

134

need toc move the data record; and direct reference to individual
fields within a record through the use of a dummy control section
(DSECT). The use of the DSECT allows symbolic reference to be made
for storage-to-storage operations; therefore, the length attributes
need not be explicitly stated.

OPEN (INDATA, ,CUTDATA, (OUTPUT), ERRORDCE, (OUTPUT))
LA 0,GIVEAWAY Set up for first buffer
NEXTREC GET INDATA, (0) Substitute Mode
LR 2,1 Pointer to next record
USING RECORD, 2 Establish address of DSECT
AP NUMBER,=P"'1"
UNPK COUNT , NUMBER
PUT OUTDATA ,RECORD Substitute Mode
LR 6,1 Exchange work area
B NEXTREC
TAPERROR SYNADAF ACSMETH=QSAM SYNAD routine is same
cee as in previous example
ENDJOE CLOSE (INDATA, ,OUTDATA,, ERRORDCB)
DS 0D
GIVEAWAY DS CL50
NUMBER BC PL4'0"
INDATA DCB DDNAME=INPUTDD, DSORG=PS, MACRF=(GT) , BFTEK=E, BFALN=D, C
EROPT=ACC,SYNAD=TAPERROR, EODAD=ENDJOB
OUTDATA DCB DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PT) , BFTEK=E, BFALN=D, C
EROPT=ACC
RECORD DSECT
COUNT DS ZL6
RESTOFIT DS CLuy

Processing a Partitioned Data Set

A partitioned data set is divided into sequentially organized
members made up of one or more records (see Figure 22). Each member
has a unique name, one to eight characters long, stored in a
directory. The records of a given member are stored or retrieved
seguentially.

The main advantace of using a partitioned data set is that you can
retrieve any individual member once the data set is opened. ror
exampie, a program liorary can be stored as a partitioned data set,
each member of which is a separate program or subroutine. The
individual members can be addea or deleted as required. When a member
is deleted, only the member name is removed from the directory; the
space used by the memper cannot pe reused until the data set is
reorganized.

The directory, a series of records at the beginning of the data
set, contains an entry for each member. Each directory entry contains
the member name and the starting location of the member within the
data set, as shown in Figure 29. The directory entries are arranged
in alphameric collating sequence by name. In addition, you can
specify up to 62 characters of information in the entry.

The track address of each member is recorded by the system as a
relative track within the data set rather than as an absolute track
address. Thus, an entire data set can be moved without changing the
relative track addresses. The data set can be considered as one
continuous set of data tracks regardless of how the space was actually

Section II: Data Management Services (Part 2) 135

allocated. - If there is not sufficient space available in the
directory for an additional entry, or not enough space available
within the data set for an additional member, no new members can be
stored.

Entry for
Member K

Entry for
Member C

Entry for
Member B

Entry for
Member A

Directory
Records

Space from
|- Deleted
Member

. Available
Area

Figure 29. A Partitioned Data Set

PARTITIONED DATA SET DIRECTORY

The directory of a partitioned data set occupies the beginning of
the area allocated to the data set on a direct access volume. It is
searched and maintained by the FIND and STOW macro instructions. The
directory consists of member entries arranged in ascending order
according to the binary value of the member name or alias.

Member entries vary in length and are plocked into 256-byte blocks.
Each block contains as many complete entries as will fit in a maximum
of 254 pytes; any remaining bytes are left unused and are ignored.
Each directory block contains a 2-byte count field that specifies the
number of active bytes in a block. As shown in Figure 30, each block
is preceded by a hardware-defined key field containing the name of the
last member entry in the block, i.e., the member name with the hichest
binary value.

Count Key Data
Number of
LNGZTEnoi:y Byl::‘s leJrs:d Member Member Member
in Block (Max 256) Entry A Entry B Entry N
— —_————
Rf-/ N4 vV
Bytes 8 2 254

Figure 30. A Partitioned Data Set Directory Block

Each member entry contains a member name or alias; there can be up
to 16 aliases (alternate names) for each member. Each entry also
contains the relative track address of the member and a count field,
as shown in Figure 31. In addition, it may contain a user data field.
The last entry in the last directory block has a name field of maximum
binary value -- all ones.

136

Member TR c Optional User Data
Name TIRN l TIRN l TIRN I
8 3 | = g ~ ~ —
| ~~ - 0-31 halfwords
| ~a (Max 62 bytes)
~
Pointer to l ~
First Record ! ~o
of Member : ~
-~ ~
| ~
~
| ~
~
[TTRT: No. of No. of
Alias User Data User Data
TTRN's Halfwords
Bits 0 1-2 3-7

Figure 31. A Partitioned Data Set Directory Entry

NAME
specifies the member name or alias. It contains up to eight
alphameric characters, left-justified and padded with blanks if

necessary.
TTR
is a pointer to the first block of the member; TT is the relative
track from the beginning of the data set, and R is the relative
block number on that track. .
Note: This pointer is created by adding one to the TTR for the
last block of the previous member (which is an end-of-file mark).
If track TT is full, the next block will begin at record one of
track TT+1, and the pointer will be updated accordingly. The
control program finds the block by searching in multitrack mode
using TT(R-1) as a search argument.
C

specifies the number of halfwords contained in the user data
field. It may also contain additional information about the user
data field, as shown below:

Bits 0 1-2 3-7

| I E B
| IO I RSO |

0 when set to 1, indicates that the NAME field contains an
alias.

1-2 specifies the number of pointers to locations within the
member.

A maximum of three pointers is allowed in the user data
field. Additional pointers may be contained in a record
referred to as a note list discussed below. The pointers can
be updated automatically if the data set is moved or copied
by a utility program such as the IEHMOVE utility program.

The data set must be marked "unmovable" uncder the following
conditions:

¢ More than three pointers are used in the user data field.

e The pointers in the user data field or note list do not
conform to the standard format.

s The pointers are not placed first in the user data field.

o Any direct access addresses (absolute or relative) are
embedded in any data blocks or in another data set that
refers to this data set.

Section II: Data Management Services (Part 2) 137

3-7 contains a binary value indicating the number of halfwords of
user data. This number must include the space used by
pointers in the user data field.

The user data field contains variable user data provided as input to
the STOW macro instruction. If pointers to locations within the
member are provided, they must be four bytes long and placed first in
the user data field. The user data field format is as follows:

User Data

13 T T T . 1
| TTRN | TTRN | TTRN| Optional |
L L L L J

TT 1is the relative track address of the note list or area to
which you are pointing.

R is the relative block number on that track.

N is a binary value that indicates the number of additional
pointers contained in a note list pointed to by the TTR. If
the pointer is not to a note list, N=0.

A note list consists of additional pointers to blocks within the
same member of a partitioned data set. If the existence of a note
list was indicated as shown above, the list can be updated
automatically when the data set is moved or copied by a utility
program such as the IEHMOVE utility program. Each 4-byte entry in the
note list has the following format:

[—=——-

| TTRX |
L4

TT is the relative track address of the area to which you are
pointing.
R is the relative block number on that track.
X is available for any use.
To place the note list in the partitioned data set, you must use
the WRITE macro instruction. After checking the write operation, use

the NOTE macro instruction to determine the address of the list and
place that address in the user data field of the directory entry.

PROCESSING A MEMBER OF A PARTITIONED DATA SET

Because a member of a partitioned data set is sequentially
organized, it is processed in the same manner as a sequential data
set. Either the basic or queued access technigque can be used.
However, you cannot alter the directory when using the queued
technique.

In order to locate a member or to process the directory, several
macro instructions are provided by the operating system. The BLDL
macro instruction can be used to structure a list of directory entries
in main storage; the FIND macro instruction locates a member of the
data set for subsequent processing; the STOW macro instruction adds or
deletes a member name in the directory. To use these macro
instructions, you must specify DSORG=PO or POU in the DCB macro
instruction. Before issuing a FIND, BLDL, or STOW macro instruction,
you must check all preceding input/output operations for completion.

138

BLDL -- Construct a Directory Entry List

The BLDL macro instruction is used to place directory information
in main storage. The data is placed in a "build" 1list constructed by
you before the BLDL macro instruction is issued. The format of the
list is similar to the directory. For each member name in the list,
the system supplies the address of the member and any additional
information contained in the directory entry.

You can optimize retrieval time by directing a subsequent FIND
lmacro instruction to the build list rather than the directory to
locate the member to be processed.

The build 1list, as shown in Figure 32, must be preceded by a U4-byte
list description that indicates the number of entries in tne list and
the length of each entry (14 to 76 bytes). The first eight bytes of
each entry contain the member name or alias. The next six bytes must
be available to contain the starting address of the member plus some
control data. 1f additional information is to be supplied from the
directory, up to 62 bytes can be reserved.

FIND -- Position to a NMember

To determine the startinc address of a specific member you must
issue a FIND macro instruction. If you want to f£find only one member,
the function is performed automatically when you specify the data set
name and member name in the related DD statement. The system places
the correct address in the data control block so that a subsequent
GET/READ macro instruction will begin processing at that point.

Tnere are two ways in which the system can be directed to the
desired member: you can specify the address of either an area
containing the name of the member or an entry in a build list you have
created. 1n the first case, the system searches the directory of the
data set. If a build list is used, no search is reguired; the
relative track address is determined from the list entry.

(Each Entry Starts on Half-Word Boundary)

List Filled in by BLDL
Description FFLL] P A ~
Member TTR K z C User Data
Name (C) (3) Q) MM (C Half Words)
] [v
— | | _—

Programmer Supplies:
FF = Number of member entries in list
LL = Even no. giving byte length of each entry (minimum of 12)
Member name = eight bytes, left—adjusted

BLDL Supplies:

TTR = Member starting location

K =If only data set =0
If concatenation = no.

Z =Normally padding for boundary alignment

C =Same C field from directory. Gives no. of user data
halfwords

User data: as much as will fit in entry

Figure 32. Build List Format

Section II: Data Management Services (Part 2) 139

STOW -- Alter a Directory Entry

Unless you are adding members to a partitioned data set one at a
time, you must issue a STOW macro instruction to enter the member name
in the directory. When adding a single member, the STOW function is
performed automatically when the data set is closed.

Yyou can also use the STOW macro instruction to delete, replace, or
change a name in the directory, as well as store additional
information with the directory entry. Since an alias can also be
stored in the directory in the same way, you should be consistent in
altering all names associated with a given member. For example, if
you replace a member, you must delete related aliases or change them
so that they point to the new member. If you use STOW to change user
data in the directory eatry, you must also move the TTkR of the member
into.the DCERELAD.

If you do not use the STOW macro instruction before closing a
partitioned data set that you have written, your CLOSE request causes
the system to issue a STOW macro instruction. If you specify
DISP=MOD, the system issues a STOW macro instruction with the replace
option, causing replacement of an entry in the directory. 1If you
specify DISP=NEW or DISP=OLD and the member does not exist, the system
issues a STOW macro instruction with the add option, causing addition
of an entry to the directory. If you specify DISP=OLD and the member
already exists, the system issues a message to that effect.

CREATING A PARTITIONED DATA SET

If you have no need to add entries to the directory, i.e., the STOW
and BLDL macro instructions will not be used, you can create a new
data set and write the first member as follows:

Code DSORG=PS or PSU in the DCB macro instruction.

s Indicate in the DD statement that the data is to be stored as a
member of a new partitioned data set, i.e.,
DSNAME=name (membername) and DISP=NEW.

* Request space for the member and the directory in the DD
statement.

e Process the member with an OPEN macro instruction, a series of
PUT/WRITE macro instructions, and then a CLOSE macro instruction.
A STOW macro instruction is issued automatically when the data set
is closed.

As a result of these steps, the data set and its directory are
created, the records of the member are written, and an entry is made
in the directory.

To add additional members to the data set, follow the same
procedure. However, a separate DD statement (with the space request
omitted) is required for each member. The disposition should be
specified as modify, DISP=MOD. The Jata set must be closed and
reopened each time a new member is specified.

140

//PDSDD DD ---,DSNAME=MASTFILE (MEMBERK) ,SPACE=(TRK, (100,5,7)), C
7/ DISP=(NEW,KEEP)

OUTDCBv DCB ---,DSORG=PS,DDNAME=PDSDD, ---
OPEN (ouTbCB, (OUTPUT))
PUT (or WRITE)

CLOSE (0UTDCB) Automatic Stow

To take full advantage of the STOW macro instruction, and thus tne
BLDL and FIND macro instructions in future processing, you can provide
additional information with each directory entry. This is
accomplished by using the basic access technique, which also allows
you to process more than one member without closing and reopening the
data set, as follows:

e Request space in the DD statement for the members and the
directory.

e Define DSORG=PO or POU in the DCB macro instruction.
* WRITE (and CHECK) the member records.

s NOTE the location of any note list written within the member, if
there is a note list.

e When all the member records have been written, issue a STOW macro
instruction to enter the member name, its location pointer, and
any additional data in the directory.

s Continue to WRITE, CHECK, NOTE, and STOW until all the members of
the data set and the directory entries have been written.

//PDSDD DD -~ ,DSNAME=MASTFILE,SPACE=(TRK, (100,5,7)),DISP=MOD

OQUTDCB DCB --,DSORG=PO,DDNAME=PDSDD,~--
OPEN (QUTDCB, (OUTPUT))
WRITE *
CHECK First record of member.
NOTE
WRITE

CHECK Remaining records of member.
(NOTE) Only NOTE first record of a subgroup within member.

WRITE

CHECK Write note lists at end of each

NOTE subgroup.

STOW Member entry in directory after all records and note

lists are written.
Repeat from * for each adaitional member
CLOSE (OUTDCB)

RETRIEVING A MEMBER

To retrieve a specific member from a partitioned data set, either
the basic or queued access technique can be used as follows:

e Code DSORG=PS or PSU in the DCB macro instruction.

Section II: Data Management Services (Part 2) 141

Indicate in the DD statement that the data is a member of an
existing partitioned data set, i.e., DSNAME=name{(membername) and
DISP=0LD.

Process the member with an OPEN macro instruction, a series of
GET/READ macro instructions, and then a CLOSE macro instruction.

When you code RECFM for the DCB macro instruction, note that

standard record format (S) is not allowed for BPAM. 1f you include S
in your record format specification, permanent input/output errors
(no-record-found condition) can occur.

When your program is executed, the directory is searched

automatically and the location of the member is placed in the data
control block.

//7PDSDD DD --,DSNAME=MASTFILE (MEMBERK) ,DISP=0LD
INDCB DCB --,DSORG=PS,DDNAME=PDSDD, -
OPEN (INDCB) Automatic Find

GET (or READ)
CLOSE (INDCB)

In order to process several members without closing and reopening,

or to take advantage of additional data in the directory, the
following technigque should be used:

142

Code DSORG=PO or POU in the DCB macro instruction.
Build a list (BLDL) of needed member entries from the directory.

indicate in the DD statement the data set name of the partitioned
data set, i.e., DSNAME=name, and DISP=0OLD.

Use the FIND or POINT macro instruction to prepare for reading the
member records.

The records may be read from the beginning of the member, or a
note list may be read first, to obtain additional locations that
POINT to sub-categories within the member.

READ (and CHECK) the records until all those required have been
processed. '

POINT to additional categories, if required, and READ the records.

Repeat this procedure for each member to be retrieved.

//PDSDD DD --,DSNAME=MASTFILE,DISP=0LD

INDCB DCB -~ ,DSORG=PO, DDNAME=PDSDD, -~
OPEN (INDCB)
BLDL Build a list of selected member names in main
storage.
FIND (or POINT)
READ *Read note list.
CHECK
POINT Locate subgroup by using note list.
READ
CHECK Read member records

repeat from * for each additional member.
CLOSE (INDCB)

UPDATING & MEMEER

A member of a partitioned data set can be updated in place, or can
be deleted and rewritten as a new member.

UPDATING IN PLACE

When you update in place, you read records, process them, and write
theni back to their original positions without destroying the remaining
records on tne track. The following rules apply:

e You must specify the update option (UPDAT) in the OPEN macro
instruction. To perform the update, you can use only the READ,
WRITE, CHECK, NOTE, POINT, FIND, and BLDL macro instructions.

¢ You cannot use chained scheduling.

¢ You cannot delete any record or change its length; you cannot add
new records.

A record must be retrieved by a READ macro instruction before it
can be updated by a WRITE macro instruction. Both macro instructions
must be "execute" forms that refer to the same data event control
block (DECB); the DECB must be provided by a "list" form. (The
execute and list forms of the READ and WRITE macro instructions are
described in the publication IBM System/360 Operating System:
Supervisor and Data Management Macro Instructions.)

Updating With Overlapped Operations: To overlap input/output and CPU
activity, you can start several read or write operations before
checking the first for completion. You cannot overlap read and write
operations, however, as operations of one type must be checkea for
completion before operations of the other type are started or resumed.
Note that each concurrent read or write operation requires a separate
channel program, and also a separate DECB. If a single DECB were used
for successive read operations, only the last record read could be
updated.

In the followinc example, overlap is achieved by having a read or
write request outstanding while each record is being processed. Note
the use of execute- and list-form macro instructions, identified by
the operands MF=E and MF=L.

Section II: Data Management Services (Part 2) 143

/7PDSDD DD DSNAME=MASTFILE(MEMBERK) ,DISP=CLD,-—-=

UPDATDCB DCB DSORGgPS,DDNAME=PDSDD,MACRF=(R,W),NCP=2,EODAD=FINISH
READ DECBA,S¥,UPDATDCB,AREAA, MF=L Define DECBA
READ DECBB,SF,UPDATDCB, AREAB, MF=L Define DECBB

AREAA DS Define buffers
AREAB DS -
OPEN (UPDATDCB, UPDAT) Open for update
LA 2,DECBA Load DECB addresses
LA 3,DECBB
READRECD READ (2) ,SF,MF=E Read a record
NEXTRECD READ (3),SF,MF=E Read the next record
CHECK (2) Check previous read operation
(If update is required, branch to R2UPDATE)
LR 4,3 If no update is required,
LR 3,2 switch DECB addresses in
LR 2,4 registers 2 and 3
B NEXTRECD and loop

* In the following statements, "R2" and "R3" refer to the records
*# that were read using the DECBs whose addresses are in registers
* 2 and 3, respectively. Either register may point to either
* DECBA or DECBBE. "
R2UPDATE CALL UPDATE, ((2)) Call routine to update R2
CHECK (3) Check read for next record (R3)
WRITE (2),SF,MF=E ; Write updated R2
(If R3 requires an update, branch to R3UPDATE)
CHECK (2) If R3 requires no update, check
B READRECD write for R2 and loop
RBUPDATE CALL UPDATE, ((3)) Call routine to update R3
WRITE (3),SF,MF=E Write updated R3
CHECK (2) Check write for r2
CHECK (3) Check write for R3
B READRECD Loop
FINISH CLOSE (UPDATDCB) End-of-data exit routine

REWRITING A MEMBER

There is no actual update option that can be used to add or extend
records in a partitioned data set. If you want to extend or add a
record within a member, you must rewrite the complete memper in
another area of the data set. Since space is allocated when the data
set is created, there is no need to request additional space. Note,
however, tnat a partitioned data set must be contained on one volume.
If sufficient space has not been allocated, the data set must be
reorganized by the IEBUPDTE utility program.

When you rewrite the member, you must provide two data control
blocks; one for input and one for output. Both DCB macro instructions
can refer to the same data set, i.e., only one DD statement is
required.

You can reflect the change in location of the member either
auatomatically, by indicating a disposition of OLD, or by using the
STOW macro instruction. Although the o0ld member is, in effect,
deleted, its space cannot be reused until the data set is reorganized.

144

Processing an Indexed Sequential Data Set

An indexed sequential data set allows you a great deal of
flexibility in the operations you can perform. The data set can be
read or written sequentially; individual records can be processed in
any order; records can be deleted; or new records can be added. The
system automatically locates the proper position in the data set for
new records and makes any necessary adjustments when records are
deleted. 7This flexibility is possible due to the inherent
organization of the data set.

Although the queued and basic access techniques can be used to
process an indexed segquential data set, each has separate and distinct
functions. The queued access technique must be used to create the
data set. It can also be used to sequentially process or update the
data set and to add records to tne end of the data set. The basic
access technique can be 'used to insert new records between records
already in the data set. It can also be used to update the data set
directly.

INDEXED SEQUENTIAL DATA SET ORGANIZATION

The records in an indexed seguential data set are arranged
according to the collating sequence of a key field in each record.
Eacn block of records is preceded by a key field that corresponds to
the key of the last record in the block.

An indexed sequential data set resides on direct access storage
devices and can occupy up to three different areas:

e Prime Area -- This area contains data records and related track
indexes. It exists for all IsAM data sets.

e Overflow Area -- This area contains overflow from the prime area
when new data records are added. It is optional.

e Index Area -- This area contains master and cylinder indexes
associated with the data set. It exists for a data set that has a
prime area occupying more than one cylinder.

The indexes of an ISAM data set are analogous to the index card
file in a library. Fror example, if the library user knows the name of
the book or the author, he can look in the index card file and obtain
a catalog number that will enable him to locate tne book in the book
files. Hhe would then go to the shelves and proceed through each row
until he found the shelf containing the book. Usually each row
contains a sign to indicate the beginning and ending numbers of all
books in that particular row. Thus, as he proceeded through the rows,
he would compare the catalog numper obtained from the index with the
numbers posted on each row. Upon locating the proper row, ne would
then search that row for the shelf that contained the book. Then he
would look at the individual book numbers on that shelf until he found
the particular book.

ISAM uses the indexes in much the same way to locate records in an
indexed sequential data set. The operating system provides both the
queued and basic access techniques to process an indexed sequential
data set. The queued access technique is used to create the data set
and add records to the end. 1t can also be used to sequentially
process or update the records. The basic access technique is used to
read or update records and to insert new records at any place in the
data set.

Section II: Data Management Services (Part 2) 145

As the records are
area of the data set,
each track in a track

written in what is referred to as the prime

the system accounts for the records contained on
index area. Each entry in the track index
identifies the key of the last record on each track. There is a track
index for each cylinder in the data set. If more than one cylinder is
used, the system develops a higher level index called a cylinder
index. kach entry in the cylinder index identifies the key of the
last record in the cylinder. To increase the speed of searching the
cylinder index, you can request that a master index be developed for a
specified number of cylinders, as shown in Figure 33.

Rather than reorganize the whole data set when records are added,
you can request that space be allocated for additional records in what
is called an overflow area.

Master Index '

450

900

2000

p ® [
Cylinder Index
® 200 300 375 450 [4=
500 600 700 900 (e
1000 | 1200 | 1500 | 2000 [®
[]
Cylinder 1 Cylinder 11 Cylinder 12
& Track >
${ 100 100 200 200 Index 1500 » 2000
Data Data | Data Data | Prime
10 20 40 100 Data
Data | Data Data Data | Prime
150 175 190 200 Data
Overflow

Figure 33. Indexed Sequential Data Set Organization

PRIME AREA

records are written in the prime area when the data set is created
or updated. The portion of Figure 33 labeled Cylinder 1 illiustrates
the initial structure of the prime area. Although the prime area can
extend across several noncontiguous areas of the volume, all the
records are written in key sequence. Each record must contain a key;
the system automatically writes the key of the highest record
preceding each block.

DD statement is
the second
within cylinder

When the ABSTR option of the SPACE parameter of the
used to cenerate a multivolume prime area, the VIroC on
volume and on all succeeding volumes must be contained
zero of the volume. '

INDEX AREAS

The operating system generates track and cylinder indexes
automatically. Up to three levels of master indexes are created if
requested.

146

Track Index: This is the lowest level of index and is always present.
] There is one track index for each cylinder in the prime area; it is
written on the first tracks of the cylinder that it indexes.

The index consists of a series of paired entries, that is, of a
normal entry and an overflow entry for each prime track. The normal
entry contains the key of the highest record on the track and the home
address of the prime track. The overflow entry is oricinally the same
as the normal entry. (This is why 100 appears twice on the track
index for cylinder 1 in Figure 33.) The overflow entry is changed
when records are added to the data set. Then the overflow entry
contains the key of the highest overflow record and the address of the
lowest overflow record logically associated with the particular prime
track. Figure 34 shows the format of a track index.

Normal/Overflow Normal/Overflow
Pair .Pair

r * N % Y

Normat Overflow Normal Overflow

Entry Entry Entry Entry
7 A N/ ~ N/ A N \

Key1 Data2 Key3 Data4 Key1 Data? Key3 Data4 g

"Normal key = key of the highest record on the prime data track.
2Normal data = address of the prime data track.

3Overflow key = key of the highest overflow record logically associated with the prime data track.

4Overflow data = address of the lowest overflow record logically associated with the prime data track.

Notes:

o |f there are no overflow records, overfiow key and data entries are the same as normal key and data entries.
® This figure is a logical representation only; that is, it makes no attempt to show the physical size of track index entries.

® Figure 34. Format of Track Index Entries

If all the tracks allocated for the prime data area are not used,
tneir entries in the index are "flagaed" as inactive. The last entry
of each track index is a dummy entry indicating the end of the index.
When fixed-length record format nas been specified, the remainder of
the last track used for a track index contains prime data records if
there is room for them.

Each index entry has the same format. it is an unblocked,
fixed-length record consistincg of a count, a key, and a data area.
The length of the key corresponds to the lenath of the key area in the
record to which it points. The data area is always ten bytes long.
it contains the full address of the track or record to which the index
points, as well as the level of the index and the entry type.

Cylinder Index: For every track index created, the system generates a
cylinder index entry. There is one cylinder index for a data set,
each entry of which points to a track index. Since there is one track
index per cylinder, there is one cylinder index entry for each
cylinder in the prime data area, except for a one-cylinder prime area.
As with track indexes, inactive entries are created for any unused
cylinders in the prime data area.

Section Ii: Data Management Services (Part 2) 147

Master Index: As an optional feature, the operating system creates,
at your request, a master index. Each entry in the master index
points to a cylinder index track. This facility avoids a serial
search through a large cylinder index.

You can specify the number of entries that are to be included in
each master index. For example, if you indicate that you want a
master index created for every three tracks of cylinder index entries,
a master index is created if the cylinder index exceeds three tracks.
if your data set is extremely large, a higher level master index is
created if the first level master index exceeds three tracks. This
procedure continues up to three levels of master indexes.

OVERFLOW AREAS

As records are added to an indexed sequential data set, space is
required to contain tnose records that will not fit on the prime data
track on which they belong. You can request that a number of tracks
pbe set aside as a cylinder overflow area to contain overflows from
prime tracks in each cylinder. An advantage of using cylinder
overflow areas is a reduction of search time required to locate
overflow records. A disadvantage is that there will be unused space
if the additions are unevenly distributed throughout the data set.

Instead of, or in addition to, cylinder overflow areas, you can
request an independent overflow area. Overflow from anywnere in the
prime data area is placed in a specified number of cylinders reserved
solely for overflow records. An advantage of having an independent
overflow area is a reduction in unused space reserved for overflow. A
disadvantage is the increased search time required to locate overflow
records in an independent area.

If you request both cylinder overflow and independent overflow,
cylinder overflow is used first.

It is a good practice to request cylinder overflow areas large
enough to contain a reasonable number of additional records and an
independent overflow area to be used as the cylinder overflow areas
are filled.

ADDING RECORDS TO AN INDEXED SEQUENTIAL DATA SET

Either the queued or the basic access technique may be used to add
records to an indexed sequential data set. A record to be inserted
between records already in the data set must be inserted by the basic
access method usinc WRITE KN (key new). Records added to the end of a
data set, that is, records with successively higher keys, may be added
to the overflow chain by the basic access method using WRITE KN (key
new); or they may be added to the prime data area by the queued access
technique using the PUT macro instruction.

INSERTING NEW RECORDS INTO AN EXISTING INDEXED SEQUENTIAL DATA SET

As you add records to an indexed sequential data set, the system
inserts each record in its proper sequence according to the record
key. The remaining records on the track are then moved up one
position. If the last record does not fit on the track, it is written
in the first available location in the overflow area. A 10-byte link
field is added to the "bumped" record to connect it logically to the
correct track. The proper adjustments are made to the track index
entries. This procedure is illustrated in figure 35.

148

_Subsequent additions are written either on the prime track where

they belong or as part of the overflow chain from that track.

If the

addition belongs after the last prime record on a track but before a
previous overflow record from that track, it is written in the first
available location in the overflow area.
address of the next record in the chain.

Its link field contains the

Normal Entry Overflow Entry
I T T
Initial Format oo 1 Track 0) Track 200 | Track 200 | Track | Track
! 1 1 1 : 2 : 2 Index
10 20 40 100
Prime
Data
150 175 190 200
Overflow
l| Track : Track 3 : Track |r Track 3 Track
-Add Record N rac
25 anjcl%rl s 40 : 1 100 | Record 1 190 Il 2 200 ! Record 2 Index
10 20 25 40
Prime
Data
101 150 175 190
T ’]
I Track Track
1001 " 200 5 Overflow
i
| Track | Trock 3 | Track | Track 3 | Track
racl racl i racl] rac racl
Add Records 26 | 100 190 | 200
26 and 199 ! 1 : Record 3 X 2 : Record 4 Index
10 20 25 26
Prime
Data
101 150 175 190
— -~ -
| Track i Track | Track 3 i Track 3
100 | 1 200 : 2 ! Record 1 199 : Record 2 Overflow
Figure 35. Adding Records to an Indexed Sequential Data Set

ADDING NEW RECORDS TO THE EWD OF AN INDEXED SEQUENTIAL DATA SET

Records added to the end of a data set, that is, records with
successively higher keys, may oe added by the basic access method
using WRITE KN (key new), or by the queued access method using the PUT
macro instruction (Resume Load). In either case records may pbe added
to the prime data area. When you use the WRITE KN macro instruction,
tne record being added will be placed in the prime data area only if
there is room for it on the prime data track containing the record
with the highest key currently in the data set. If there is not
sufficient room on that track, the record is placed in the overflow
area and linked to that prime track via the overflow chain even though
additional prime data tracks originally allocated have not oeen
filled. When you use the PUT macro instruction (Resume Load), records

Section II: Data Management Services (Part 2) 149

will be added to the prime data area until the space originally
allocated is filled. Once this allocated prime area is filled, you
can add records to the data set using WRITE KN, in which case they
will be placed in the overflow area. You can add variable-length
records to an indexed sequential data set only by using the WRITE KN
macro instruction.

in order to add records with successively higher keys using the PUT
macro instruction (Resume Load):

e The key of any record to be added must be nigher than the highest
key currently in the data set.

* The DD statement must specify DISP=MOD.

* The data set must have been successfully closed when it was
created or when records were previously added using the PUT macro
instruction.

You may continue to add fixed—length records in this manner until the
original space allocated for prime data is exhausted.

When adding records to an indexed sequential data set using the PUT
macro instruction (Resume Load), new entries are also made in the
indexes. During Resume Load on a data set with a partially filled
track and/or a partially filled cylinder, the track index entry and/or
the cylinder index entry is'overlaid when the track or cylinder is
filled. If Resume Load abnormally terminates after these index
entries have been overlaid, a subsequent Resume Load will get a
sequence check when adding a key that is higher than the highest key
at the last successful CLOSE but lower than the key in the overlaid
index entry. When the SYNAD exit is taken for a sequence check,
register 0 contains the address of the high key of the data set.

MAINTAINING AN INDEXED SEQUENTIAL DATA SET

An indexed sequential data set must be reorganized periodically for
two reasons:

¢ The overflow area will eventually be filled.
s Additions increase the time required to locate records directly.

The frequency of reorganization depends on the activity of the data
set and on your timing and storage requirements. There are two ways
you can accomplish reorganizations:

e The data set can be written sequentially into another area of
direct access storage or magnetic tape and then re-created in the
original area.

o It can be reorganized in one pass by writing it directly into
another area of direct access storage. 1In this case, the area
occupied by the original data set cannot be used by the
reorganized data set.

The operating system maintains statistics that are pertinent to
reorganization. The statistics are written on the direct access
volume and are available to you for checking. The information
includes the number of cylinder overflow areas, the number -of unused
tracks in the independent overflow area, and the number of references
to overflow records other than the first.

150

Key Data
¥
Fixed Length XEF' | 3
1

i

Delete Code
Key BDW RDW Data
¥ T T
Variable [V H
ot LLOO | .e£00 : X'FF i #oo i i
Delete Code
| Track ' k | i
Initial Format w00 e w0 LT 200 | Treck 20 | %k
i 1 1 i
10 20 40 100
150 175 190 200
Record 100 is 1 T I T
marked for deletion - 40 : Track 40 : Track 200 : Track 200 : Track
and record 25 is { ! 3 ! | 2 | 2
added to the file
10 20 25 40
150 175 190 200

Figure 36. Deleting Records From an Indexed Sequential Data Set

If you indicate when creating the data set that you want to be able
to flac records for deletion during updating, you can set the delete
code to all ones (X'FF'). The delete code is the first byte of a
fixed-length record or the fifth byte of a variable-length recorxrd. If
a flagced record is forced off its prime track during a subsequent
update, it will not be rewritten in the overflow area, as shown in
Figure 36. Similarly, when you process sequentially, flagged records
are not retrieved for processing. During direct processing, flagged
records are retrieved like any other record and should be caecked by
you for the delete code.

INDEXED SECUENTIAL BUFFER AND WORK AREA REQUIREMENTS

The only reason you will ever have to compute the buffer length
(BUFL) requirements for your program is if you use the BUILD or
GETPOOL macro instruction to construct the buffer area. If you are
creating an indexed sequential data set (PUT macro instruction), each
puffer must be eight bytes longer than the block size to allow for the
hardware count field, that is:

Section II: Data Management Services (Part 2) 151

Buffer length = 8 + Block size

T T 1
| | |
| l Data |
| (8) | (BLKSIZE) |
| | I
L L 1
< Buffer >

One exception to this formula arises when dealing with unblocked
format F records whose key field precedes the data field -- its
relative key position is zero (RKP=0). In that case the key length
must also be added, that is:

Buffer length = 8 + Key length + Record length

-

Data
(LRECL)

Key

(8) (KEYLEN)

. ——
S

A Fp—————
U

Buffer

The buffer requirementé for using the queued access method to read
or update (GET or PUTX macrc instruction) an indexed sequential data
set are discussed below.

For fixed-length, unblocked records when both the key and data are
to be read and for variable-length, unblocked records, padding is
adéed so that the .data will pbe on a doubleword boundary, that is:

Buffer length = Key length + Padding + 10 + Block size

I | i I i
| Key |Padding| Link | Data |
| (KEYLEN) | | oy | (BLKSIZE) |
I | I I |
L i L —— ———— 4
< Buffer >

For fixed-length, unblocked records when only data is to be read:

Buffer length = 16 + LRECL

T
I
Padding |Link Data
(6) | (10) (LRECL)
i
L

TP

A r——
V2 SORp——

Buffer

152

For fixed-length, blocked records:

Buffer length = 16 + BLKSIZE

Padding
(6)

Link
(10)

Data
(BLKSIZE)

S ——
S ——

AN
V b

~— Buffer

For variable-length, blocked records, padding is 2 if the puffer
starts on a fullword boundary that is not also a doubleword boundary
or it is 6 if the buffer starts on a doubleword boundary, that is:

Buffer length = 12 or 16 + Block size

Link
(100

Padding Data

(BLKSIZE)

g e e
=
T S ———

[V S

A

Buffer

If you are using the input data set with fixed-length, unblocked
records as a basis for creating a new data set, a work area is
required. The size of the work area is given by:

Work area = Key length + Record length

r R 1
KRey	Data
	(LRECL)
L 1 J
< - Work Area-——-— - >

Section II: Data Management Services (Part 2) 153

If you are reading only the data portion of fixed-length unblocked
records or variable-length records, the work area is the same size as
the record length, that is:

Work area = Record length

r - 1
| |
| Data i
| (LRECL) |
| |
L 4
< Work Area >

When using the basic access technique to update records in an
indexed sequential data set, the key length field need not be
considered in determining your buffer requirements. The area for
fixed-length records must be:

Buffer length = 16 + Block size

[-

Data
(BLKSIZE)

Padding
6)

o e o e e o
t
[}
=]
2

- Buffer -

V b e

A=

For variable-length records, padding is 2 if the buffer starts on a
fullword boundary that is not also a doubleword boundary or it is 6 if
the buffer starts on a doubleword boundary. Thus, the area must be:

Buffer length = 12 or 16 + Block size

-

Data
(BLKSIZE)

st s oy

Link
(10)

Padding

e e e o e o
i ——

A=
2

Buffer-——-

When adding variable-length records to a data set, you may provide
a special work area for the operating system usinc the MSWA parameter
of the DCB macro instruction. Although not required when adding
fixed-length records, insertion is considerably expedited if you
provide such an area. The size of the work area (SMSW parameter in
the DCB) must be large enough to contain a full track of data plus the
additional space to contain the count fields of each block and the
work space for insertinog the new record.

The size of the work area needed (SMSA parameter) varies according
to the record format and the device type. You can calculate it during
execution using device dependent information obtained with the DEVTYPE
macro instruction and data set information from the data set control
block (DSCB) obtained with the OBTAIN macro instruction. The DEVTYPE
and OBTAIN macro instructions are discussed in the publication IBM
System/360 Operating System: System Proorammer's Guide.

154

Note that you can use the DEVTYPE macro instruction only if the
index and prime areas are on the same type of device or if the index
area is on a device with'a larger track capacity than the device
containing the prime area. If you are not trying to maintain device
independence, you may precalculate the size of the work area needed
and specify it in the SMsW field of the DCB macro instruction. The
maximum value for SMSW is 65,535. :

For calculating the size of the work area, refer to the storage
device capacities shown in Table 16 under "Estimating Space
Requirements"” and the device overhead formulas given in the same
section.

For fixed-length records, SMSW is calculated as follows:

SMSW =(Track Capacity - Bn +A1>(BLKSIZE +.8) + LRECL -+ KEYLEN
Bi . :

where Bn is the length of the last biock on the track and Bi is the
length of any block but the last as given in Table 17 in the section
"Estimating Space Requirements".

For variable-length records, SMSW may be calculated by one of two
methods. Method one may lead to faster processing although it may
require more main storage than méthod two. For either method you must
determine the value for HIRPD from the format 2 data set control block
(DSCB). For the specific location of DS2HIRPD field in the data set
control block, refer to the publication IBM System/360 Operating
System: System Control Blocks.

Method one is as follows:

SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEYLEN + 10

J

Method two is as follows:

SMSW =(Track Capacity-Bn +2)(BLKSIZE) + 8 (HIRPD)+LRECL+KEYLEN+10
Bi ' :

In all of the above formulas, the terms BLKSIZE, LRECL, KEYLEN, and
SMSW are the same as the parameters in the DCB macro instruction.
Method two yields a minimum value for SMsSW. Therefore, method one is
valid only if its application results in a value higher than one that
would be derived from method two. ' If neither MSWA or SMSW are
specified, the control program supplies the work area for variable-
length records, using method two to calculate the size.

Another technique to increase the speed of processing is to provide
space in main storage for the hichest level index. To specify the
address of this area, use the MSHI operand of the DCB. When the
address of this area is specified, you must also specify its size,
which you can do by using the SM3I operand of the DCB. The maximum
value for sM3I is 65,535. 'If you do not use this technique, the index
must be searched on the volume. The size of the storage area (SMSI
parameter) varies. To allocate that space during execution, you can
find the size of the index in the data control block (DCBNCREI field)
after the data set is opened or in the format 2 data set control block
field, DS2NOBYT. Using the procedure discussed under the DCBD macro
instruction, the storage area can be allocated and the sSMSI field
completed.

Section II: Data Management Services (Part 2) 155

CONTROLLING AN INDEXED SEQUENTIAL DATA SET DEVICE

Processing of an indexed sequential data set is generally done in
one of two ways: sequentially or directly. Direct processing is
accomplished by using the basic access technique. Because you provide
the key for the record you want read or written, all device control is
handled automatically by the system. If you are processing the data
set sequentially, using the queued access technique, the device is
automatically positioned at the beginnina of the data set.

In some cases, you may wish to process only a section or several
separate sections of the data set. This is accomplished by using the
SETL macro instruction, which directs the system to begin sequential
retrieval at a specific record key. The processing of succeeding
records is the same as for normal sequential processing, except that
you must recognize when the last desired record has heen processed.

At this point, issue the ESETL macro instruction to terminate
sequential processing. You can then begin processing at another point
in the data set.

SETL -- Specify Start of Sequential Retrieval

The SETL macro instruction enables you to retrieve records starting
at the begirning of an indexed sequential data set or at any point in
the data set. Processing that is to start at a point other than the
becinning can be requested in the form of a record key, a key prefix,
or an actual address of a prime data record.

Use of a key prefix is extremely useful in that you do not have to
know the whole key of the first record to be processed. Any number of
key characters can be used in the key prefix. Key characters to the
right should be represented by binary zeros.

In order to use actual addresses, you must keep an account of where
the records were written when the data set was created. The device
address of the block containing the record just processed by a
PUT-move macro instruction is available in the 8-byte data control
block field DCBLPDA. For blocked records the address is the same for
each record in the block.

ESETL -- End Sequential Retrieval

The ESETL macro instruction directs the system to stop retrieving
records from an indexed sequential data set. A new scan limit can
then be set, or processing terminated. An end-of-data-set indication
automatically terminates retrieval.

You can create an indexed sequential data set in one step or in
several steps. You can create the data set either by writing all
records in a single step or by writing one group of records in omne
step and writing additional groups of records in subsequent steps.
Writing records in subsequent steps is resume loading. When using
either one step or several steps, you must present the records for
writing in ascending order by key.

170 create an indexed sequential data set by the one-step method,
you should proceed as follows:

¢ Code DSORG=IS or ISU and MACRF=PM or PL in the DCB macro
instruction. '

156

e Specify in the DD statement the DCB attributes DSORG=1S or ISU,
record length (LRECL), block size (BLKSIZE), record format
(RECFM), key length (KEYLEN), relative key position (RKP), options
required (OPTCD), cylinder overflow (CYLOFL), and the number of
tracks for a master index (NTM). Specify space requirements with
the SPACE parameter. To reuse previously allocated space, omit
the SPACE parameter and code DISP=(OLD, [KEEP]).

e Open the data set for output.

e Use the PUT macro instruction to place all the records or blocks
on the direct access volume.

e Close the data set.

The records that comprise a newly created data set must be
presented for writing in ascending order by key. You can merge two or
more input data sets.

If records are blocked, you should not write a one-byte record with
the hexadecimal value FF. This value is used for padding; if it
occurs as the last record of a block, the record cannot be retrieved.

When creating an indexed sequential data set, a procedure called
loading, you can increase performance by using the full track-index
write option. You do this by specifying OPTCD=U in the DCB. This
causes the operating system to accumulate track-index entries in main
storage.

If you do not specify this option, the operating system writes each
normal/overflow pair of entries for the track ‘index after the
associated prime data track has been written. If you specify this
option, the operating system accumulates track—index entries in main
storage until either there are enough entries to fill a track or end
of data or end of cylinder is reached. Then the operating system
writes these entries as a group, writing one group for each track of
track index.

When you specify the full track-index write option, the track-index
entries are written in the fixed, unblocked record format. If a large
enough area of main storage is not available, the entries are written
as they are created, that is, in normal/overflow pairs.

Once an indexed sequential data set has been created, its
characteristics cannot be changed. However, for added flexibility,
the system allows you to retrieve records using either the queued
access technique with simple buffering, or the basic access technique
with direct or dynamic buffering.

Tape-to-Disk -- Indexed Sequential Data Set: This example requires
the creation of an indexed sequential data set from an input tape
containing 60-character records. The key by which the data set is
organized 'is in positions 20-29. The output records will be an exact
image of the input, except that the records will be blocked. One
track per cylinder is to be reserved for cylinder overflow. Master
indexes are to be built when the cylinder index exceeds six tracks.
Reorganization information about the status of the cylinder overflow
areas is to be maintained by the system. The delete option will be
used during any future updating.

Section II: Data Management Services (Part 2) 157

//INDEXDD DD DSNAME=SLATE.DICT(PRIME),DCB=(BLKSIZE=2"0,CYLOFL=1,

C

/77 DSORG=IS,0PTCD=MYLR, RECFM=FB, LRECL=60, NTM=6,RKP=19, C
7/ . KEYLEN=10) ,UNIT=2311,SPACE=(CYL, 25, ,CONTIG) ,---
//INPUTDD DD —-——- ~.
ISLOAD START O

DCBD DSORG=IS
ISLOAD CSECT

OPEN (IPDATA, ,ISDATA, (OUTPUT))
NEXTREC GET IPDATA Locate Mode

LR 0,1 Address of Record in Reg. 1

PUT ISDATA, (0) © Move Mode

B NEXTREC
CHECKERR L 3,=A(ISDATA) Initialize Base for Errors

USING IHADCB,3

T™ DCBEXCD1,X' 04"

BO OPERR Uncorrectable Error

TM DCBEXCD1,X"'20"

BO NOSPACE Space Not Found

T™ DCBEXCD2,X'80"'

BO SEQCHK Record Out of Sequence

*REST OF ERROR CHECKING
*ERROR ROUTINE

*END OF JOB ROUTINE (EODAD for IPDATA)

IPDATA DCB --

ISDATA DCB DDNAME=INDEXDD, DSORG=IS , MACRF=(PM) , SYNAD=CHECKERR

To create an indexed sequential data set in more than one step,
create the first group of records using the one step method described
above. This first section must contain at least one data record. The
remaining records can then be added to the end of the data set in-
subsequent steps using Resume Load. Each group to be added must
contain records with successively higher keys. This method allows you
to create the indexed sequential data set in several shorter time
periods rather than in a single long one.

This method also allows you to provide limited recovery from
uncorrectable output errors. When an uncorrectable output error is
detected, do not attempt to continue processing or close the data set.
If you have provided a SYNAD routine, it should issue the ABEND macro
instruction to terminate processing. If no SYNAD routine is provided,
the control program will terminate your processing. You should begin
recovery at the record following the end of the data as of the last
successful close. The rerun time is limited to that necessary only to
add the new records, rather than to that necessary to recreate the
whole data set.

~—When—extending -an indexed sequential data set with Résume Load, the

disposition parameter of the DD statement must specify MOD. To insure
that the necessary control information is in the data set control
block before attempting to add records, you should at least open and
close the data set successfully on a version of the system which
includes Resume Load. This need be done only if the data set Wwas
created on a previous version of the system. Records may be added to
the data set by this procedure until the space allocated for prime
data in the first step has been filled.

During Resume Load on a data set with a partially filled track
and/or a partially filled cylinder, the track index entry and/or the
cylinder index entry is overlaid when the track or cylinder is filled.
If Resume Load abnormally terminates after these index entries have
been overlaid, a subsequent Resume Load will get a sequence check when

158

adding a key that is higher than the highest key at the last

successful CLOSE but lower than the key in the overlaid index entry.

Wnen the SYNAD exit is taken for a sequence check, register 0 contains

the address of the high key of the data set.

UPDATING AN INDEXED SEQUENTIAL DATA SEI

In order to sequentially retrieve and update an indexed sequential

data set:

® Code DSORG=I3 or ISU, to agree with whichever one you specified
when you created the data set, and MACRF=GL, SK, or PU in the DCB

macro instruction.

¢ Code a DD statement for retrieving the data set. The data set

characteristics and options are as defined when the data set was

created.

¢ Open the data set for update.

¢ Set the beginning of sequential retrieval (SETL).

s Retrieve records and process as required marking nonoverflow
records for deletion as required.

s Return records to the data set.

o

* End sequential retrieval as required and reset starting point
(ESETL) .

e Close the data set to end all retrieval.

Sequential Updates -- Indexed Sequential Data Set: Using the data set

created in the previous example, you are to retrieve all records
becinning with 915. Those records with a date (positions 13-16)
previous to today's date are to be deleted. The date is in the

standard form as returned by the system in response to the TIME macro

instruction, i.e., packed decimal 00yyddds. If the record is an
overflow record, the delete code is not to be entered.

Section II: Data Management Services (Part 2)

159

//7INDEXDD DD DSNAME=SLATE.DICT,~-~~

ISRETR START © .
DCBD DSORG=IS
ISRETR CSECT

USING IHADCB,3
La 3,ISDATA
OPEN (ISDATA)
SETL ISDATA,KC,KEYADDR Set Scan Limit

TIME Today's Date in Reg. 1
ST 1,TODAY
NEXTREC GET ISDATA Locate Mode

CLC 19(10,1) ,LIMIT
BNL ENDJOB

™ DCBEXCD2,X'10°* Test for Overflow Record
BO NEXTREC '
CP 12(4,1),TODAY Compare for 01d Date
BNL NEXTREC
MVI 0(1) ,X'FF' Flag 014 Record for Deletion
PUTX ISDATA Return Delete Record
B NEXTREC

TODAY DS F

KEYADDR DC c'915" Key Prefix
DC XL7'0" Key Padding

LIMIT DC c'9ie6*
DC XL7°'0°

oo

CHECKERR
*Test DCBEXCD1 and DCBEXCD2 for error indication
*Error Routines

ENDJOB CLOSE (ISDATA)
ISDATA DCB DDNAME=INDEXDD, DSORG=IS,MACRF=(GL,SK,PU),
SYNAD=CHECKERR

DIRECT RETRIEVAL AND UPDATE OF AN INDEXED SEQUENTIAL DATA SET

By using the basic access technique (BISAM) to process an indexed
sequential data set, you can make direct references to the records ‘in
the data set for the purpose of:

e Direct retrieval of a record by its key.
s Direct update of a record.
¢ Direct insertion of new records.

Because the operations are direct, there can be no anticipatory
buffering. However, the system provides a dynamic buffering service .

~each time a read request is made, if specified.

To ensure that the requested record is in main storage before you
start processing, you must issue a WAIT or CHECK macro instruction.
If you issue a WAIT macro instruction, you must test the exception
code field of the data event control block (DECB). If you issue a
CHECK macro instruction, the system tests the exception code field in
the data event control block (DECB). 1If an error analysis routine has
not been specified and a CHECK is issued, the program will be
abnormally terminated with a completion code X'001'. 1In either case,
to determine whether the record is an overflow record, you should test
the exception code field of the DECB.

After you test the exception code field of the DECB, you need not
zero out this field. If you have used a READ KU macro instruction and

160

if you plan to use the same DECB again to rewrite the updated record
using a WRITE K macro instruction, you should not zero out this field.
If you do, your record may not be rewritten properly.

To update existing records, it is recommended that you use the
READ, type KU, and WRITE, type K, combination. However, if you use a
WRITE, type K, with a DECB not previously used to read the record, you
are responsible for setting the overflow-record bit in the exception
code field of the DECB. For blocked records, the overflow-record bit
must be off when yocu write a prime block and on when you write an
overflow block.

If there is a possibility that another program will require the use
of the data set you are updating, you should -ensure that you maintain
exclusive control of at least the track. If you fail to maintain
exclusive control of the data set that you are updating and if another
data control block is opened before your data control block is closed,
your updated records can become permanently inaccessible. 1In other
words, when more than one data control block is open for updating a
data set, the results are unpredictable. Exclusive control can be
requested by using the EN¢ macro instruction, which is described under
"Supervisor Services."

Direct Update With Exclusive Control -- Indexed Sequential Data Set:
in this problem the previously described data set is to be updated
directly with transaction records on tape. The input tape records are
30 characters long; the key is in positions 1-10; the update
information is in positions 11-30. The update information replaces
data in positions 31-50 of the indexed sequential data record.

Exclusive control of the data set is requested since more than one
task may be referring to the data set at the same time. Notice that
exclusive control is released after each block is written to avoid
tying up the data set until the update is completed.

Section II: Data Management Services (Part-2) 161

//INDEXDD DD DSNAME=SLATE.DICT,DCB={DSORG=IS,BUFNO=1,...),---
//TAPEDD DD -

ISUPDATE START O

NEXTREC GET TPDATA, KEY
ENQ (RESOURCE, ELEMENT, E, , SYSTEM)
READ DECBRW, KU,MF=E
WAIT ECB=DECBRW

TM DECBRW+24 ,X"' FD"' Test for any condition
BM RDCHECK but overflow

L 3,DECBRW+16 Pick up pointer to record
MvC 30(20,3) ,UPDATE Update record

WRITE DECBRW,K,MF=E
WAIT ECB=DECBRW

™ DECBRW+24 ,X'FD' Any errors?
BM WRCHECK
DEQ (RESOURCE, ELEMENT, , SYSTEM)
B NEXTREC
RDCHECK ™ DECBRW+24,X'80" No record found
BZ SYNAD 1f not, go to error routine

FREEDBUF DECBRW,K,ISDATA Otherwise, free buffer

MvVC AREA,KEY

WRITE DECBRW,KN,,AREA-16,'S"',MF=E Add record to file
WAIT ECB=DECBRW

™ DECBRW+24 ,X'FD' Test for errors
BM SYNAD
DEQ (RESOURCE, ELEMENT, , SYSTEM) Release exclusive control
B NEXTREC
Ds 4r BISAM WRITE KN work field
AREA Ds 30C Logical record to be added
KEY Ds CL10
UPDATE DS CL20
RESOURCE bC CL8'SLATE"
ELEMENT DC Cc'DICT'
READ DECBRW,KU,ISDATA,'S','s',KEY,MF=L
ISDATA DCB DDNAME=INDEXDD, DSORG=IS,MACRF=(RUS,WUA),
MSHI=INDEX, SMSI=2000
TPDATA DCB -)
INDEX Ds 2000C

Note the use of the FREEDBUF macro instruction in the above
example. Usually the FREEDBUF macro instruction has two functions:

e To indicate to the ISAM routines that a record that has been read
for update will not be written back, and

¢ To free a dynamically obtained buffer. . .
In the above example, since the read operation was unsuccessful, the
FREEDBUF macro instruction only frees the dynamically obtained pbuffer.

The first function of the FREEDBUF macro instruction described here
allows you to read a record for update and then decide not to update
it without performing a WRITE for update. You can use this function
even when your READ macro instruction does not specify dynamic
buffering, provided that you have included S (for dynamic buffering)
in the MACRF field of your READ DCB.

However, you can accomplish an automatic FREEDBUF simply by reusing
the DECB, that is, by issuing another READ or a WRITE KN to the same
DECB. You should use this feature whenever possible, since it
performs the functions of the FREEDBUF more efficiently. In the above

162

example, the FREEDBUF macro instruction should have been eliminated,
since the WRITE KN addressed the same DECB as the READ KU.

For an indexed sequential data set with variable-length records,
you may make three types of updates by using the basic accéss
technique. You may read a record and write it back with no change in
its length, simply updating some part of the record. This is done
with a READ KU followed by a WRITE K, the same way you update
fixed-length records. Two other methods for updating variable-length
records use the WRITE KN macro instruction and allow you to change the
record length. In one method, a record read for update (READ KU) may
be updated in a manner which will change the record length and then be
written back with its new length using WRITE KN. In the second
method, you may replace a record with another record having the same
key and possibly a different length using the WRITE KN macro
instruction. To replace a record it is not necessary to have first
read the record. 1In either method, when changing the record length,
you must place the new length in the DECBLGTH field of the data event
concrol block before issuing the WRITE KN macro instruction.

Direct Update -- Indexed Sequential Data Set with Variable-Length
Records: 1In the following example an indexed sequential data set with
variable-length records is updated directly with transaction records
on tape. The transaction records are also of variable-length and each
contains a code identifying the type of trxansaction. The transaction
code 1 indicates that an existing record is to be replaced by one with
the same key; 2 indicates that the record is to be updated by
appending additional information, thus changing the record length; 3
or greater indicates that the record is to be updated with no chance
to its length. For this example, the maximum record length of both
data sets is 256 bytes. The key is in positions 6-15 of the records
in p6th data sets. The transaction code is in position 5 of records
on the transaction tape. The work area (REPLAREA) is equal to the
maximum record length plus 16 bytes.

Section II: Data Management Services (Part 2) 163

//INDEXDD DD DSNAME=SLATE.DICT,DCB=(DSORG=1S,BUFNO=1,...),-—-
//TAPEDD DD -

ISUPDVLR START 0

NEXTREC GET TPDATA,TRANAREA

CLI TRANCODE, 2 Determine if replace or other
BL REPLACE Branch if replacement
READ DECBRW,KU,,'s','s',MF=E Read record for update
CHECK DECBRW,DSORG=IS Check exceptional conditions
CLI TRANCODE, 2 Determine if change or

append
BH CHANGE Branch if change

* CODE TO MOVE RECORD INTO REPLAREA+16 AND APPEND DATA FROM TRANSACTION
* RECORD

MvcC DECBRW+6 (2) ,REPLAREA+16 Move new length from RDW

cee into DECBLGTH (DECB+6)
WRITE DECBRW,KN,,REPLAREA,MF=E Rewrite record with changed
e length
CHECK DECBRW,DSORG=IS
B NEXTREC

CHANGE PRPO

CODE TO CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD

WRITE DECBRW,K,MF=E Rewrite record with no
aee change of length
CHECK DECBRW,DSORG=IS
B NEXTREC
REPLACE MVC DECBRW+6(2) ,TRANAREA Move new length from RDW
ees into DECBLGTH (DEC3+6)
WRITE DECBRW,KN,,TRANAREA-16,MF=E Write transaction record
caw as replacement for record
ces with the same key
CHECK DECBRW,DSORG=1IS
B NEXTREC
CHECKERR cas SYNAD Routine
REPLAREA DS CL272
TRANAREA Ds CL4Y
TRANCODE DS CLl
KEY DS CL10
TRANDATA DS CL241
READ DECBRW,KU,ISDATA,'s','s',KEY,MF=L
ISDATA DCB DDNAME=INDEXDD,DSORG=1IS,MACRF=(RUS,WUA) , SYNAD=CHECKERR
TPDATA DCB —-——- . S e S

Processing a Direct Data Set

In a direct data set, there is a definite relationship between the
control number or identification of each record and its location on
the direct access volume. This relationship allows you to gain access
to a record without an index search. The actual organization of the
data set is completely determined by you. If the data set has been
carefully organized, location of a particular record takes less time
than with an indexed sequential data set.

A direct data set can only be processed by the basic access

technique. For that reason, each unit of data transmitted between
main storage and an 1I/0 device is regarded by the system as a record.

164

If, in fact, it is a block, you must perform any blocking or
deolocking required. For that reason, the BLKSIZE value must be equal
to the LRECL value when format F or U records are processed. When .
format V records are used, the BLKSIZE value must be equal to the
LRECL value plus four. Only BLKSIZE must be specified when addinag or
updating records on a direct data set.

As indicated in the discussion of direct access devices, record
keys are optional. If they are specified, they must be used for every
record and must be of a fixed length.

ORGANIZING A DIRECT DATA SET

In developing the organization of your data set, you can use a
technique known as direct addressina. When direct addresses are used,
the location of each record in the data set is known.

1f format F records with keys are being written, the key of each
record can be used. For example, a data set with keys ranging from 0
to 4999 should be allocated space of 5000 records. Each key relates
directly to a location that you can refer to as a relative record
number. The main disadvantage of this type of organization is that
records may not exist for many of the keys even though space has been
reserved for them.

Space could be allocated on the basis of the number of records 1n
the data set rather than on the range of keys. This type ot
organization requires the use of a cross-reference table. Wwhen a
record is written on the data set, you must note the pnysical location
either as an actual address or as a relative track and record number.
The addresses must then be stored in a table that is seaxched wnen a
recoré is to be retrieved. Obvious disadvantages are that
cross-referencing can only be used efficiently with a small data set;
storage is required for the table; processing time is required for
searching and updating the table.

A more common, but somewhat complex, technigue for organizing the
data set involves the use of indirect addressing. In indirect
addressing, the address of each record in the data set is determined
by a mathematical manipulation of the key. This manipulation is
referred to as randomizing or conversion. Since a number of
randomizing procedures could be used, no attempt is made here to
describe or explain those that mighnt be most appropriate for your data
set.

REFERRING TO A RECORD IN A DIRECT DATA SET

Once you have determined how your data set is to be organized, you
must consider how the individual records will pe referred to when the
data set is updated or new records are added. This is important for
determining whether feedback will be required when creating the data;
if so, in what form the returned address will be used. The record
identification can be represented in any of the forms described below.

Relative Block Address: You specify the relative location of the
record (block) within the data set as a 3-byte binary number. <This
type of reference can be used only with format F records. The system
computes the actual track and record number.

Relative Track Address: You specify the relative track as a 2-byte
binary number and the actual record number on that track as a l-byte
binary numoer.

Section II: Data Management Serxrvices (Part 2) 165

Relative Track Address and Actual key: 1In addition to the relative -
track address, you specify the address of a main storage location
containing the record key. The system computes the actual track
address and searches for the record with the correct key.

Actual Address: You supply the actual address in the standard 8-byte
form -- MBBCCHHR. Remember, the use of an actual address may force
you to indicate that the data set is unmovable.

Extended Search Option: You request that the system begin its search
with a specified starting location and continue for a certain number
of records or tracks. This same option can be used to regquest a
search for unused space in which a record can be added.

To use the extended search option, you must indicate in the data
control block the number of tracks (including the starting track) or
records (including the starting record) that are to be searched. If
you indicate a number of records, however, the system may actually
examine more than this number. In searching a track, the system
searches the whole track (starting with the first record); it
therefore may examine records that precede the starting record or
follow the ending record.

If tue data control block specifies a number equal to or greater
“than the number of tracks allocated to the data set or the number of
records within the data set, the entire data set is searched in the
attempt to satisfy your request.

Exclusive Control for Updating: If more than one task in the same job
step is referring to the same data set through the same data control
block, exclusive control can be requested in the DCB macro instruction
to prevent simultaneous reference to the same record. No other task
requesting exclusive control of that record is given access to it
until it is released by means of a WRITE or RELEX macro instruction.

CREATING A DIRECT DATA SET

Once the organization of a direct data set has been determined, the
process of creating it is almost identical to that of creating a
sequential data set. The data set organization field in the DCB macro
instruction is specified as physical sequential (DSORG=PS or PsU).
However, the DD statement must indicate direct access (DSORG=DA or
DAU). The DCB macro instruction must specify a direct access device
(DEVD=DA). If keys are used, a key length (XEYLEN) must also be
specified. Record length (LRECL) should not be specified. The macro
instruction form should indicate the WRITE macro instruction used to
create a direct data set (WL).

If you are using a direct addressing technique with keys, you can
reserve space for future records by writing a dummy record. A track
for format U or V records can be reserved or truncated by writina a
®"capacity" record (see "Direct Access Device Characteristics™).

Format F records are written sequentially as they are presented.
When a track is filled, the system automatically writes the capacity
record and advances to the next track. Because of the form in which
relative track addresses are recorded, direct data sets to be accessed
py means other than actual address must be limited in size to no more
than 65,539 tracks for the entire data set.

Tape-to-Disk -- Direct Data Set: In this problem, a tape containing
204 character records arranged in key sequence is used to create a
direct data set. A U-byte binary key for each record ranges from 1000
to 8999, so space for 8000 records is requested.

166

//DAOUTPUT DD DSNAME=SLATE.INDEX.WORDS,DCB=(DSORG=DA, c

V4 BLKSIZE=200,KEYLEN=4,RECFM=F), SPACE=(204,8000) ,---
//TAPINPUT DD ——
DIRECT START
L 9,=F'1000"
OPEN (DALOAD, (OUTPUT) , TAPEDCB)
LA 10, COMPARE
NEXTREC GET TAPEDCB
LR 2,1
COMPARE Cc 9,0(2) Compare key of input against C
control number
BNE DUMMY
WRITE DECB1,SF,DALOAD, (2) Write data record
CHECK DECB1
AH 9,=H"1"
B NEXTREC
DUMMY o] 9,=F'8999" Have 8000 records been written?
BH ENDJOB

WRITE DECB2,SD,DALOAD,DUMAREA Write dummy
CHECK DECB2

AH 9,=H'1"
BR 10
INPUTEND LA 10, DUMMY
BR 10
ENDJOB CLOSE (TAPEDCB, ,DALOAD)
DUMAREA DS CL5
DALOAD DCB DSORG=PS , MACRF=(WL) , DDNAME=DAOUTPUT, c
DEVD=DA, SYNAD=CHECKER, - -~
TAPEDCB DCB EODAD=INPUTEND, MACRF=(GL) , ---

ADDING/UPDATING RECORDS ON A DIRECT DATA SET

The facilities and the tecnniques for adding records to a direct
data set depend to a great extent on the format of the records and the
orcanization used.

Format F With Keys: The add function is essentially an update by
record icdentification. The reference to the record can be made by
either a relative block address or a relative track aadress.

If you attempt to add a record by relative block address, the
system converts the address to a relative track. That track is
searched and the new record written in place of the first "dummy"
record on the track. If there is no dummy record on the track, you
are informed that the write operation did not take place. However, if
you request the extended search option, the new record will pe written
in place of the first dummy record found within the search limit you
specify. 1If none is found, you are notified that the write operation
could not take place. 1In the same way, a reference by relative track
address causes the record to be written in place of the first dummy
record on that track or the first within the search limit, if
requested.

Format F Without Keys: Here too, the add function is really an update
of dummy records already in the data set. The main difference is that
dummy records cannot be written automatically when the data set is
created. You will have to use your own method for flagging dummy
records. The update form of tne WRITE macro instruction (MACRF=W)
must be used rather than the add form (MACRF=WA).

Section I1: Data Management Services (Part 2) 167

You will have to retrieve the record first (READ macro
‘instruction), test for a dummy record, update, and write.

Format V or U With Keys: The technique used to add records in this
case depends on the way the data set is organized -- indirect
addressing or cross-reference table. If indirect addressing is used
to create the data set, you must at least initialize each track (write
a capacity record) even if no data is actually written. That way the
capacity record indicates how much space is available on the track.

If a cross-reference table is used, you should exhaust the input
and then initialize enough succeeding tracks to contain any additions
that might be required.

To add a new record, use a relative track address. The system
examines the capacity record to see if there is room on the track. If
there is, the new record is written. Under the extended search
option, the record is written in the first available area within the
search limit.

Format V or U Without Keys: This format does not lend itself to
making additions. You can refer to a record only by its relative
track or actual device address.

Tape-to-Disk Add —-- Direct Data Set: This problem involves adding
records to the data set created in the last example. Notice that the
write operation adds the key and the data record to the data set. If
the existing record is not a dummy record, an indication is returned
in the exception code of the DEC3. For that reason, it is better to
use the WAIT macro instruction instead of the CHECK macro instruction
to test for errors or exceptional conditions.

//DIRADD DD DSNAME=SLATE.INDEX.WORDS, -~~~
//TAPEDD DD -

DIRECTAD START
OPEN (DIRECT, (OUTPUT) ,TAPEIN)
NEXTREC GET TAPEIN,KEY

L 4 ,KEY Set up relative record number
SH 4,=H'1000"
ST 4,REF

WRITE DECB,DA,DIRECT,DATA,'S',KEY,REF+1
WAIT ECB=DECB

CLC DECB+1(2) ,=X'0000' Check for any errors
BE NEXTREC
* Check error bits and take required action
" DIRECT DCB DDNAME=DIRADD,DSORG=DA, RECFM=F, KEYLEN=4 , BLKSIZE=200, C
MACRF= (WA)
TAPEIN DCB -
KEY DS F
DATA DS CL200
REF DS F
Tape-to-Disk Update -- Direct Data Set: This problem is similar to

the previous example. However, since you are updating, there is no
check for dummy records. The existing direct data set contains 25,000
records whose 5-byte keys range from 00001 to 25,000. Each data
record is 100 bytes long. The first 30 characters are to be updated.

168

The input tape records are 35 characters long -- 5-byte key and
30-byte data. Notice that only data is brought into main storage for
updating.

//DIRECTDD DD DSNAME=SLATE.INDEX.WORDS, -~~
//TAPINPUT DD -——

DIRUPDAT START
OPEN (DIRECT, (UPDAT) , TAPEDCB)
NEXTREC GET TAPEDCB,KEY
PACK KEY,KEY
CVB 3,KEYFIELD
SH 3,=H'1"
ST 3,REF
READ DECBRD,DI,DIRECT, 'S','S',0,REF+1l
CHECK DECBRD

L 3,DECBRD+12
mMve 0(30,3) ,DATA
ST 3,DECBWR+12

WRITE DECBWR,DI,DIRECT,'S','sS',0,REF+1
CHECK DECBWR

B NEXTREC
KEYFIELD DS 0D
DC XL3*'0"
KEY DS CL5
DATA Ds CL30
REF Ds F
DIRECT DCB DSORG=DA , DDNAME=DIRECTDD,MACRF=(RISC,WIC),
OPTCD=R, BUFNO=1
TAPEDCB DCB -—-

Consideration for User lLabels: User labels must be created when the
data set is created. They may be updated when processing a direct
data set but not added or deleted. When creating a multi-volume
direct data set using BSAM, you should turn off the header exit entry
after OPEN and turn on the trailer label exit entry just prior to
issuing the CLOSE. This eliminates the end-of-volume exits. The
first volume, containing the user label track, must be mounted at
CLOSE time. If you have requested exclusive control, OPEN/CLOSE will
use ENQ/DEG facilities to prevent simultaneous reference to user
labels.

Section II: Data Management Services (Part 2)

169

Part 3: Data Set Disposition and Space Allocation

Allocating Space on Direct Access Volumes

Wnen direct access storage space is required for a data set, you
have to specify the amount of space needed and the device type. Tne
operating system selects the device and allocates the space
accordingly. This facility provides for more flexible and efficient
use of devices and available storage space. It also relieves you of
the responsibility and details involved in efficient space control.

Before a direct access volume can be used for data storage, it must
be initialized by the utility program, Direct Access Storade Device
Initialization (DASDI). The DASDI functions include in part:

e Creating the standard 80-byte volume label and writing it on
cylinder 0, track 0, of the volume.

e Initializing the volume table of contents (VTOC). The location of
the VTOC depends upon the conventions used by your installation
when initializing the volume.

 Writing the home address (HA) and capacity record (R0) for each
track.

* Checking tracks and making alternate track assignments if
necessary.

When the data set is to be stored on a direct access volume, you
must supply control information designating the amount of space to be
allocated and in what manner. This information is supplied in the
data definition (DD) statement for the data set.

SPECIFYING SPACE RECUIREMENTS

The amount of space required can be specified in terms of blocks,
tracks, or cylinders. If you want to maintain device-independence
across direct access device types, specify your space requirements in
terms of blocks. Otherwise, if your request is in terms of tracks or
cylinders, you must be aware of such device considerations as cylinder
or track capacity.

Cylinder allocation allows faster input/output of sequential data
sets than does track allocation. Track allocation stops input/output
at the end of every track to prevent references on the same cylinder
outside of the data set. This difference occurs only when reading,
and then only when the records are not in the fixed standard (FsS)
format.

Allocation by Blocks: When the amount of space required is expressed
in terms of blocks, you must specify the number and average block
length of the blocks within the data set, e.g.:

// DD --,SPACE=(300, (5000,100))

300 = average block length.
5000 = guantity (number of blocks).
100 = increment (to be used if the quantity is not sufficient)

allocated in terms of additional blocks.

Section II: Data Management Services (rart 3) 171

Note: When average block and secondary space allocation are being
used, the BLKSIZE parameter specified must be equal to the maximum
block length.

From this information, the operatina system estimates and allocates
the number of tracks required. Space is always allocated in whole
track units. You may also request that the space allocated for a
specific number of blocks pegin and end on cylinder boundaries.

You must be certain that both the guantity and increment are large
enough to contain the larcest block to be written. Otnerwise, all of
the space requested is allocated but erased as the system tries to
find a space large enouch for the record.

Allocation by Tracks or Cylinders: wWhen the amount of space required
is expressed in terms of tracks or cylinders, you must also specify
tne device type in the DD statement, e.g.: :

// DD --,SPACE=(TRK, (100,5)) ,UNIT=2301
// DD --,SPACE=(CYL, (3,1)) ,UNIT=2311

Allocation by Absolute Address: If the data set contains
location-dependent information in the form of an absolute track
address, i.e., MBBCCHHR, space should be requested in terms of the
number of tracks and the peginning address, e.g.:

7/ DD --,SPACE= (ABSTR, (500, 20)) ,UNIT=2311
where: 500 tracks are required beginning at relative track 20.

Additional Spvace Allocation Options: The DD statement provides you
with a great deal of flexibility in specifying space requirements.
You can request that the space be conticuous (CONTIG) or separated
(SPLIT). These and other options are described in detail in the
publication IBM System/36C Operating System: Job Control Language.

ESTIMATING SPACE REQUIREMENTS

In order to determine now much srace your data set requires, you
must consider a number of variables:

Device type.

Track capacity.

Tracks per cylinder.
Cylinders per volume.
Data length (block size).
Key length.

Device overhead.

Table 16 lists the physical characteristics cf a number of direct
access storage devices.

172

' Table 16. Direct Access Storage Device Capacities

r T 1 1 T 1]
| Device | Volume | Track | { No. of | Total }
| Type | Type | Capacity* |Tracks/Cylinder| Cylinders | Capacity* |
F t + T + + {
2311	Disk	3625	10	200	7,250,000
2314	Disk	7294	20	200	29,176,000
2302	Disk	4984	46	246	56,398,944
2303	Drum	4892	10	80	3,913,600
2301	Drum	20483	8	25%%x	4,096,600
2321	Cell	2000	20%*%*	980***	39,200,000
]'> i L. 4 i L 1					
*Capacity indicated in bytes. {					
**There are 25 locical cylinders in a 2301 Drum.					
***A volume is egqual to one bin in a 2321 Data Cell.					
L J					
The term "device overhead" refers to the space regquired on each					
track for hardware data, i.e., address markers, count areas, gaps					
between records, RO, etc. Device overhead varies with each device and					
depends also on whether the blocks are written with keys. To compute					
the actual space required for each block including device overhead,					
you can use the formulas in Table 17.					
Table 17. Direct Access Device Overhead Formulas					
r T 1					
	Bytes Required by Each Data Block i				
t T : 1					
] Device	Blocks With Keys	Blocks Without Keys			
l % T % T %					
{ Bi	Bn	Bi	Bn		
F ¢ R t e					
2311	81+1i.049(KL+DL)	20+KL+DL	61+1.049(DL) { DL		
2314	146+1.043(KL+DL)	45+KL+DL	101+1.043(DL)	DL	
2302	81i+1.049(KL+DL)	20+KL+DL	61+1.049(DL)	DL	
2303	1u6+KL+DL	38+KL+DL	108+DL	DL	
2301 { 186+KL+DL	53+KL+DL	133+DL	bL		
2321	100+#1.049(KL+DL)	16+KL+DL	84+1.049(DL)	DL	
b i 1 i 4 -]					
i Bi is any block but the last on the track.					
Bn is the last block on the track.					
DL is data lencth.					
KL is key length.					
1 J

The formulas can be combined in the following way:

If you intend to specify your space requirements in terms of tracks
(TRK) or cylinders (CYL), your estimate should be made as shown above.
If you request absclute tracks (ABSTR), rememper that you cannot
allocate track 0, cylinder 0. The amount of space required for the
volume table of contents will reduce the space available on the rest
of the volume.

On the other hand, if you specify your space requirements in terms
of average block length, the system performs the computations for you.

Because a seqguential data set and a direct data set are created in
the same way, the estimate and specification of space requirements are
identical. If you use the WRITE S%Z macro instruction, your secondary
allocation for a direct data set should be at least two tracks. Space
allocation for a partitioned data set requires that you also consider
the space used for the directory. Similarly, allocation for an

Section II: Data Management Services (Part 3) 173

indexed sequential data set requires that you consider the space
needed for the prime area, index areas, and overflow areas.

ALLOCETING SPACE FOR A PARTITIONED DATA SET

What is the average size of the members to be stored on your direct
access volume? How many members will fit on the volume? Will you
need directory entries for the member names only or will aliases be
used? How many? Will members be added or replaced frequently? All
of these questions must be answered if you are to estimate your space
requirements accurately and use the space efficiently. Note, too,
that a partitioned data set cannot extend beyond one volume.

If your data set will be quite large, or you expect to do a lot of
updating, it might be best to allocate a full volume. If it will be
small or seldom subject to change, you should make your estimate as
accurate as possible to avoid wasted space or wasted time used for
recreating the data set.

Because the characteristics of all the members of the data set must
be uniform, the record format could be specified as undefined
(RECFM=U) and the block size (BLKSIZE) as a maximum length. It is a
good practice to indicate a block length equal to track capacity,
e.g., BLKSIZE=3625 for a 2311 disk. You -might then ask for either 200
tracks, or 20 cylinders, thus allowing for 725,000 bytes of data.

Assuming an average length of 70,000 bytes for each member, you
need space for at least 10 directory entries. If each member also has
an average of three aliases, space for an additional 30 directory
entries is required.

Space for the directory is expressed in terms of 256-byte blocks.
Each block contains from three to twenty entries, depending on the
length of the user data field. If you expect #40 directory entries,
request at least eight blocks. Because the space for the directory is
allocated in full track units, any unused space on the track is wasted
unless there is enough space left to contain a block of the first
member. Therefore, the most advisable request in this case would be
for 10 blocks.

Putting the space estimates into specification form, any of the
following would cause the same allocation:

SPACE=(3625, (200,,10))
SPACE=(CYL, (20,,10))
SPACE=(TRK, (200,,10))

Although an increment has been omitted in these examples, it could
have been supplied to provide for extension of the member area. The
directory size, however, cannot be extended.

ALLOCATING SPACE FOR AN INDEXED SEQUENTIAL DATA SET

An indexed sequential data set can be divided into three areas:
prime, index, and overflow. Space for these areas can be subdivided
and allocated in several different ways:

e Prime area -- If you request space in terms of a prime area only,
the system automatically uses a portion of that space for indexes,
taking one cylinder at a time as needed. Any unused space in the
last cylinder used for index will be allocated as an independent
overflow area. More than one volume can be used in most cases,
but all volumes must be of the same device type.

174

» Index area -- You can request that a separate area be allocated to
contain your cylinder and master indexes. The index area must be
contained within one volume, but this volume need not be of the
same device type as the prime area volume. If a separate index
area is requested, you cannot catalog the data set with a DD
statement.

A slight variation for requesting an index area can be used if the
total space occupied by the prime area and index area does not
exceed one volume. In this case, you can request that the
separate index area be embedded in the middle of the prime area
(to reduce access arm movement) by indicating an index size in the
SPACE parameter of the DD statement defining the prime area.

If you request space in terms of prime and index areas only, the
system will automatically use any space remaining on the last
cylinder used for master and cylinder indexes for overflow,
provided the index area is on the same type of device as the prime
area.

e Overflow area -- Although you can request an independent overflow
area, it must be contained within one volume. If no specific
request for index area is made, then it will be allocated from the
specified independent overflow area.

To request that a designated number of tracks on each cylinder be
used for cylinder overflow records, you must use the CYLOFL
parameter of the DCB macro instruction. The number of tracks that
you can use on each cylinder equals the total number of tracks on
the cylinder minus the sum of the tracks needed for track index
and the tracks required for prime data, that is:

Useable tracks =

total tracks - (track index tracks + prime data tracks)

Note that when you create a one-cylinder data set, ISAM reserves one
track on the last cylinder for the end-of-file filemark.

Section II: Data Management Services (Part 3) 175

e Table 18.

when requesting space for an indexed sequential data set, the DD

statement must follow a number of conventions,
summarized in Table 18.

as shown below and

Requests for Indexed Sequential Data Sets

r T T -
| Criteria | | |
t T - T 4 Restrictions on | i
|1. Number |2. Types |3. Index | Unit Types and | Resulting i
| of DD | of DD | Size | Number of Units | Arrangement |
| Statements|Statements| Coded | Requested | of Areas |
t + + -—t- e -—
| 3] INDEX | | None | Separate index, |
| | PRIME | - | |prime, and over- }
| | OVFLOW | | |flow areas. |
t— --1 + +- + e |
| 2 | INDEX | | None | Separate index and |
| | PRIME | - | |prime areas. |
- - + --+ -——-—t -1
| 2 | PRIME | No | None |Prime area and |
| | OVFLOW |] joverflow area with |
| | | | lan index at its |
| | | | |end. |
t- e —t= ————t N
| 2 | PRIME | Yes |The statement |Prime area and |
| | OVFLOW | |defining the | embedded index, |
| | | |prime area cannot |and overflow |
| | | | request more than |area. |
| | | |ore unit. |]
| | | | | |
| | | | | |
pommmm et v 1- -—4- 1
] 1 | PRIME | No | None |Prime area with §
I | | | jindex at its end. |
| | | | |Any unused index |
| | | | |area will be used |
| | | i | for independent |
| | | | |overflow. |
pmmm et o oo . — {
| 1 | PRIME | Yes | Statement cannot |Prime area with |
| | | | request more than |embedded index |
i] i |one unit. |area. |
| R, O L 4 S J

176

Space (SPACE) can be requested only in terms of cylinders (CYL) or

absoliute tracks (ABSTR). If the absolute track technique is used
the designated tracks must encompass an integral number of
cylinders.

Data set organization (D3ORG) must be specified as indexed
sequential (IS or ISU) in both the DCB macro instruction and the
DCE parameter of the DD statement.

All required volumes must be mounted when the data set is opened,
i.e., volume mounting cannot be deferred.

If your prime area extends beyond one volume, you must indicate
the number of units and volumes to be spanned, e.g.,
UNIT=(2311,3),VOLUME=(,,,3).

You can catalog the data set using the DD statement varameter
DIsp=(,CATLG) only if the entire data set is defined by one DD
statement, i.e., you did not request a separate index or
independent overflow area.

4

As your data set is created, the operating system builds the track
indexes in the prime data area. Unless you request a separate index
area or an embedded index area, the cylinder and master indexes are
built in the independent overflow area. If you did not request an
independent overflow area, the cylinder and master indexes are built
from the prime area.

Note: 1f an error is encountered when allocating a multivolume data
set, the IEHPROGM utility program should be used to scratclL the data
set control blocks of the data sets that were successfully allocated.
The IEHLIST utility program can be used to determine whether or not
part of the data set has been allocated. The IEHLIST utility program
is also useful to determine whether space is available or whether
identically named data sets exist before space allocation is attempted
for indexed sequential data sets. These utility programs are
described in the publication IBM System/360 Operating System:
Utilities.

SPECIFYING A PRIME DATA AREA

To request that the system allocate space and subdivide it as
reqguired, you should code:

//ddname DD DSNAME=dsname, DCB=DSORG=IS, c
7/ SPACE= (CYL,quantity, ,CONTIG) ,UNIT=unitname, c
V4 DISP=(,KEEP) ,-—~

You can accomplish the same type of allocation by qualifying your
dsname with the element indication (PRIME). This element is assumed
if omitted. It is required only if you request an independent index
or overflow area. To request an embedded index area when an
independent overflow area is specified, you must indicate
DSNAME=dsname (PRIME). To indicate the size of the embedded index, you
specify SPACE=(CYL, (quantity,,index size)).

SPECIFYING A SEPARATE INDEX AREA

In order to’ request a separate index area, other than an embedded
area as described above, you must use a separate DD statement. The
element name is specified as (INDEX). The space and unit designations
are as required. Notice that only the first DD statement can have a
data definition name. The data set name (dsname) must be the same.

//ddname DD DSNAME=dsname (INDEX) ,---
// DD DSNAME=dsname(PRIME),---

SPECIFYING AN INDEPENDENT OVERFLOW AREA

A request for an independent overflow area is essentially the same
as for a separate index area. Only the element name, OVFLOW, is
changed. If you do not request a separate index area, only two DD
statements are required.

//ddname DD DSNAME=dsname (INDEX) ,---

/7/ DD DSNAME=dsname (PRIME) ,~--

/7 DD DSNAME=dsname(OVFLOW),---

CALCULATING SPACE REZUIREMENTS FOR AN INDEXED SEQUENTIAL DATA SET
To determine the number of cylinders required for an indexed

sequential data set, you must consider the number of blocks that will

Section 1I: Data Manacement Services (Part 3) 177

fit on a cylinder, the number of blocks that will be processed, and
the amount of space required for indexes and overflow areas. 1In
making the computations, consider additional space that is reguired
for device overhead as shown in Table 16. Remember the formula:

Blocks = 1 + Track capacity - Length of the last block
per track Length of other blocks

Bt = 1 + ((Ct-Bn)/Bi)

Step 1

Once you know how many records will fit on a track and the maximum
numpber of records you expect to create, you can determine nhow many
tracks you will need for your data.

Number of tracks = Maximum number of blocks + 1
required Blocks per track

isAM load mode reserves the last prime data track for the filemark.

ixample: Assume the existence of a 200,000 record part-of-speech
dictionary to be stored on an IBM 2311 Disk Storage Unit as an indexed
sequential data set. Eacn record in the dictionary has a 12-byte key
(the word itself) and an 8-byte data area containing a part-of-speech
code and control information. Each block contains 50 records --
LRECL=20 and BLKSIZE=1000. Usinc¢ the formula from Table 16, we find
that each track will contain 3 blocks or 150 records. A total of

1333 1/3 tracks will be required for tne dictionary.

Bt = 1 + 3625 - (20 + 12 + 1000) = 1 + 2593 = 3
81 + 1.049(12 + 1000) 1143

Records per Track- = (3 blocks) (50 records per block) = 150

Prime data tracks required (T) = 200,000 records + 1 = 1334 1/3
150 records per track

Step 2

You will want to anticipate the number of tracks required for
cylinder overflow areas. The computations formula is the same as for
prime data tracks, but you must remember that overflow records are
unolocked and a 10-byte link field is added. Remember, if you exceed
the space allocated for any cylinder overflow area, an independent
overflow area is required. Those records are not placed in another
cylinder overflow area.

Overflow records = 1 + Track capacity - Lenath of last overflow record
per track Length of other overflow records

ot = 1 + ((Ct-Rn)/R1)

Example: Approximately 5000 overflow records are expected for the
data set described in step 1. Since 29 overflow records wili fit on a
track, 173 overflow tracks are required. This is approximately 2
overflow tracks for every 15 prime data tracks. Since the 2311 disk
has 10 tracks per cylinder, it would probably be best to allocate 2
tracks per cylinder for overflow.

Ot = 1 + 3625 - (20 + 12 + 20 + 10) = 1 + 3563 = 29
81 + 1.049(12 + 20 + 10) 126

178

Overflow tracks required = 5000 records = 173
29 records per track

Ooverflow tracks per cylinder (Oc) = 2

Step 3

You will have to set aside space in the prime area for track index
entries. There will be two entries (normal and overflow) for each
track on a cylinder that contains prime data records. The data field
of each index entry is always 10 bytes. The key length corresponds to
the key length for the prime data records. dow many index entries
will fit on a track?

| Index entries = 1 + Track capacity - Length of last index entry
per track Length of other index entries

It =1 + ({(Ct-En)/EiL)
Example: Again assuming a 2311 disk and records with a 12-byte key,
we find that 35 index entries will fit on a track.

it =1 + 3625 - (20 +# 12 + 10) =1 + 3583 =1 + 34 = 35
81 + 1.049(12 + 10) 105

Step 4

Tne number of tracks required for track index entries will depend
on the number of tracks per cylinder and the number of track index
entries per track. Any unused space on the last track of the track
index can be shared with prime data records if they will fit.

Number of track index = 2(Tracks per cylinder) + 1
tracks per cylinder Index entries per track + 2

Ic = (2Tc+1)/7(1t+2)

Note: For variable-length records, the last track of the track index
is not shared with prime data records.

fixample: The 2311 disk has 10 tracks per cylinder. You can fit 35
track index entries vper track. Therefore, you need less than one
track for each cylinder:

Ic = 2(10) + 1 = 21
35 + 2 37

The space remaininag on the track is ((1-21/37)(3625)) = 1567 bytes.
This is enough for ocne block of prime data records. Since the normal
number of blocks per track is 3, the block uses one third of the
track, and the effective value of Ic is therefore 1-1/3 = 2/3.

Steo 5
Next you have to compute the number of tracks available on each

cylinder for prime data records. You cannot include tracks set aside
for cylinder overflow records.

Section II: Data Management Services (pfart 3) 179

Prime data Tracks - Overflow tracks - Index tracks

tracks per = per cylinder per cylinder per cylinder
cylinder
Pc = Tc - OCc = iC

Example: If you set aside 2 cylinder overflow tracks, and you require
273 of a track for the track index, 7 1/3 tracks are available on each
cylinder for prime data records.

Pc =10 - 2 - 2/3 =7 1/3

Step 6

The number of cylinders required for tne prime data records, track
index area, and cylinder overflow area is determined oy the number of
prime data tracks required divided by the number of prime data tracks
available on each cylinder.

Nunber of

cylinders = Prime data tracks required

required Prime data tracks per cylinder
C = ¢/Pc

Example: you need 1333 i/3 tracks for prime data records. You can
use 7 1/3 tracks per cylinder. Therefore, 182 cylinders are required
for your prime area and -cylinder overflow areas.

C = 1333 1/3 = 181.9
7 1/3

Step 7

You will need space for a cylinder index as well as track indexes.
There is a cylinder index entry for each track index, i.e., for each
cylinder allocated for the data set. The size of each entry is the
same as the size of the track index entries; therefore, the number of
entries that will fit on a track is the same as the number of track
index entries. Unused space on a cylinder index track is not shared.
Number of tracks
required for = Track indexes + 1
cylinder index Index entries per track

Ci = (C+1)/It

Example: You have 182 track indexes. Since 35 index entries fit on a
track, you need 5.3 tracks for your cylinder index. The remaining
space on the last track is unused.

Ci = 182 + 1 = 5.3
35

Step 8
If you have a data set larce enough to require master indexes, you
will warnt to calculate the space required according to the number of

tracks for master indexes (NTM parameter) you specified in the DCB
macro instruction or the DD statement.

180

If the cylinder index exceeds the NTM specification, an entry is
made in the master index for each track of the cylinder index.

master index itself exceeds the NTM specification, a second level
master index is started. Up to three levels of master indexes are
created if required.

The space requirements for the master index are computed in the

same way as the cylinder index.

Numober of tracks = Cylinder index tracks + 1
required for Index entries per track
master indexes

My = (Ci+l1)/1It when Ci>NTM
M, = (Ml"'l)/lt when M4 >NTM
Ma = (M,+1) /It when M,>NTM

Example: Assume that your cylinder index will require 22 tracks.
Since large keys are used, only 10 entries will fit on a track.

Assuming that NTM was specified as 2, 3 tracks will be required for a

master index, and two levels of master index will be created.

My = (22+1)/10 = 2.3

Summary: Indexed Sequential Space Requirement Calculations

1.

How many blocks will fit on a track?

Bt = 1 + ((Ct-Bn)/Bi)

How many overflow records will fit on a track?

Ot = 1 + ((Ct-kn)/Ri)

How many index entries will fit on a track?

It = 1 + ((Ct-En)/Ei)

How many track index tracks are needed per cylinder?
Ic = (2Tc+1)/7(it+2)

How many tracks on each cylinder can be used for prime data
records?

Pc = Tc - Oc - Ic
How many cylinders are needed for the prime data area?

c=_T
Pc

How many tracks are reguired for the cylinder index?
Ci = (C+1)/1t
How many tracks are required for master indexes?

M = (Ci+l)/It

Section II: Data Management Services (Part 3)

If the

181

Control and Disposition of Data Sets

There are two levels of status and disposition of the data sets you
use for your processing. The status and disposition information must
be provided to the system in the disposition field of the DD
statement, DISP=(status,disposition). The first level deals with the
status of the data set when you begin processing and the relationship
of the data set to other job steps in your job or other jobs. The
second deals with what is to be done with the data set when you have
‘completed processing. It is at this level of control and disposition
that you can take advantage of the cataloging facilities of the
operating system.

A Gata set that is being used for input has a status of OLD. If it
can be used by more than one job, the status should be specified as
SHR. If you are going to add to the input data set, specify MOD. The
system automatically positions the access mechanism after the last
record when the data set is opened. A NEW output data set should be
so indicated.

daving identified the status of the data set at the beginning of
your job step, you should specify how you want it disposed of at the
end of processing. If the disposition is to be unchanged, you need
not specifyanything more. The status cf an existing data set remains
unchanged; a new data set is deleted.

The requested disposition is performed at the end of the job step.
A data set to pe used in a later job can be kept (XE£P) until a
subsequent request is made to DELETE it. If the data set is to pe
used by more than one joo step in the same job, you can specify that
it is to be passed (PASS). '

The most useful disposition provided by the system is the
cataloging facility (CATIG). The data set name is recorded by the
system and its volume noted. An o0ld data set can subsequently be
removed from the catalog if you so request (UNCATLG).

1f you wish, you can specify one disposition to be performed if the
joo step terminates normally, and a different disposition to be
performed if the job step terminates abnormally. For example, you can
specify DISP=(OLD,DELETE,KEEP) if you wish to Gelete a data set under
normal conditions, but wish to keep it if processing is abnormally
terminated. For normal termination, you can specify any disposition
-- PASS, KEEP, DELLETE, CATLG, or UNCATLG; for abnormal termination,
you can specify any disposition except PASS.

ROUTING DATA SETS THROUGH THE OUTPUT STREAM

Data sets that are to be printed or punched can be routed through
the output stream. This allows greater flexibility in scheduling
print and punch operations, and improves operating system efficiency.

Whnen you route a data set through the output stream, you do not
request a unit record device for exclusive use by your job step.
Instead, you assign the data set to an output class, which may include
data sets from many different jobs. Output classes are identified by
the letters A-Z and the digits 0-9. Each is associated with a
specific device type. By convention, class A consists of high
priority output to be printed (e.g., a listing of job control
statements), and class B consists of output to be punched. Other
classes are defined by the installation.

To route a data set through the output stream, and to assign it to
class A, you would simply code SYSOUT=A in the DD statement. No other

182

parameters are necessary. A description of other parameters that can
be coded appears in the publication IBM System/360 Operating System:
Jop Control Language.

In a system with the primary control program, you write a SYSOUT
data set directly onto the system output device. This device is
assigned to the output class by the operator; it may be either a unit
record device or a magnetic tape unit. If it is a tape unit, the
operator is responsible for transcribing the tape on a punch or
printer. Depending on the output class and on the installation, the
tape may pe transcribed during a later shift or on a smaller, offline
computing system.

In a system with MFT or MVT, you write a SYSOUT data set in one of
two ways, as determined by the operator. Either you write the data
set directly onto the system output device, or you write the data set
into intermediate storage on a direct access device. 1In the latter
case, a system output writer automatically copies your data set onto
the system output device after your job has been completed. The
system output device can be either a unit record device or a magnetic
tape unit, as is true in systems with PCP.

Note: Tne following discussion assumes that, for systems with MFT and
MVT, system output data sets are written into intermediate storage and
copied py a SYSOUT writer. When these data sets are written directly
onto the system output device, they are handled as described for
systems with PCP.

OPENING A SYSOUT DATA SET

You open and close a SYSOUT data set in the same way as any other
data set. If specified in an exit list, the data control block exit
routine is entered in the usual manner. An exit list should not
specify user label exits, because you cannot write labels on a unit
record device.

1f you observe certain restrictions, which are indicated below, you
can create several SYSOUT data sets during a single job step.

Data Sets That Are Open Concurrently: In a system with the primary
control proaram, only one of a group of concurrently open data sets
can be assigned to an output class for which the SYSOUT device is a
magnetic tape unit. If necessary, you can assign data sets to class A
and a maximum of sevemn other output classes.

If a punch or printer is used as a SYSOUT device, any number of
data sets can be assigned to one output class. The data control
blocks for all these data sets can refer to the same DD statement.
When printed or punched, the data sets appear as a single data set
because their records form a single chronological seguence.

In a system with MFT or MVT, SYSOUT data sets must always be
defined by separate DD statements. They can be assigned to the same
output class or to different output classes. There is no special
restriction on the number of output classes that can be used.

Data Sets That Are Not Open Concurrently: To avoid having two data
sets open concurrently, you can open and close each data set as often
as reguired. In a system with the primary control program, records of
tne two data sets will form a single chronological sequence if the
data sets belong to the same output class.

In a system with MFT or MVT, records of two data sets do not form a
chronological sequence, because you write each data set into a

Section I1: Data Management Services (Part 3) 183

separate area of intermediate direct access storage. When copied by a
SYSOUT writer, data sets are written on thne SYSOUT device in the order
of their DD statements.

WRITING A SYSOUT DATA SET

To create a SYSOUT data set, you can use either the basic
sequential or the queued sequential access method. You can write
records in any format defined for the type of unit record device on
which the data set is to be written. Record length must not exceed
the maximum allowable for the device.

Under MFT or MVT, when you use the queued sequential access method
(0sAM) with fixed blocked records or the basic sequential access
method (BSAM), the DCB block size parameter does not have to be a
multiple of logical record length (LRECL) if the block size is
specified through the SYSOUT DD statement. Under these conditions, if
block size is greater than LRECL but not a multiple of LRECL, block
size is reduced to the nearest lower multiple of LRECL when the data
set is opened. This feature allows a cataloged procedure to specify
blocking for SYSOUT data sets, even though the user's LRECL is not
known to the system until execution time. Therefore, the SYSOUY DD
statement of the Go step of a compile-load-go procedure can specify
block size without block size being a multiple of LRECL. For further
information, refer to "Creating Data Sets in the Output Stream™ in the
publication IBM System/360 Operatina System: Job Control Language
User's Guigde.

Because a SYSOUT data set may be written on a magnetic tape or
direct access device, it must be device-independent. You should
tnerefore omit the device dependency operand in the DCB macro
instruction, or should code it as DEVD=DA.

Your SYNAD routine is entered on errors that occur when the data
set is first written. 1In a system with the primary control program,
it is entered when you write the data set on the system output device.
In a system with MFT or MVT, it is entered when you write the data set
into intermediate storage on a direct access device.

Your program is responsible for printing format, pagination, and
header control. Use of control characters must be indicated in the
usual way in the data control block. If you do not use control
characters, a standard control is supplied in systems with MFT or MVT.
Wnen channel 12 is sensed, a printer will space one line and skip to
channel 1; a card punch will select punch pocket 1.

In a system with MFT or MVT, cards can be punched only in EBCDIC
mode.

CONCATENATING SEQUENTIAL AND PARTITIONED DATA SETS

Two or more sequential or partititioned data sets can be
automatically retrieved by the system and processed successively as a
single data set. This reading technique is known as concatenation. A
raximum of 255 data sets (16, if partitioned) can be concatenated, but
they must be used only for input. To save time when processing two
consecutive data sets on a single volume, you specify LEAVE in your
OPEN macro instruction. Concatenated data sets cannot be read
backwards.

When data sets are concatenated, the system treats the group as a
single data set and only one data extent block (DEB) is constructed.
Thus, it is important to consider the characteristics of the

184

individual data sets which are being concatenated. Data sets with
like characteristics are those which may be processed correctly using
the same data control block (DCB), input/output block (IOB), and
channel program. Any exception makes them "unlike". The system must
be informed if "unlike" data sets are concatenated. This is
accomplished by modifying the DCEOFLGS field of the data control
block. The indication must be made before the end of the current data
set is reached. You must set bit 4 to one by using the instruction OI
DCBOFLGS,X"'08' as described in "Modifying the Data Control Block". If
the DCBOFLGS field is X'08', end-of-volume processing for each data
set will issue a CLOSE for the data set just read and an OPEN for the
next concatenated data set. This procedure causes the updating of the
fields in the DCB, and if necessary, the building of a new IOB and
channel program. Unless you have some way of determining the
characteristics of the next data set before it is opened, you should
not reset the field to indicate "like" characteristics during
processing.

When "unlike" data sets have been concatenated, we urge that you do
not issue multiple input requests, i.e., a series of READ or GET macro
instructions in your program. Otherwise, you will have to arrange
some way to determine which requests have been completed and which
must be reissued. In any case, the GET or READ macro instruction that
detected the end of data set will have to be reissued. Figure 37
iilustrates a possible routine for determining when a GET or READ must
be reissued. This restriction does not apply to "like" data sets
since no open or close operation is necessary between data sets.

PROBPROG

DCBEXIT

Set
OFLAGS
to X'08'

Return
Set to Open*

Reread Switch

On
Return to
Check via Open*
Set :
Refeud On Reread Switch
Switch Off *Returns are to control
program address in register 14

Process

Figure 37. Reissuing a READ for "Unlike" Concatenated Data Sets

Wher. the chance is made from one data set to another, label exits
are taken as required; automatic volume switching is also performed
for multiple volume data sets. Your end-of-data-set (EODAD) routine
is not entered until the last data set has been processed. An
exception to this arises with partitioned data sets. Your ©&ODAD
routine receives control at the end of each member. At that time, you
can process the next member or close the data set.

Section II: Data Management Services (Part 3) 185

Further discussion and examples of concatenated data sets are
contained in the publication IBM System/360 Operating System: Job
Control Language Reference.

CATALOGING DATA SETS

To provide the cataloging facilities of the operating system, a
catalog is created that is itself a data set residing on one or more
direct access volumes. It is organized into levels of indexes that
connect the data set names to corresponding volumes and data set
sequence numbers. For each level of gualification in the data set
name, there is an index group in the catalog.

The highest level of the catalog resides on the system residence
volume. The volume table of contents (VIOC) contains an entry for the
data set control block (DSCRB) defining the catalog and its highest
level index, the volume index. The lowest level index contains the
simple name of the data set and the number of the volume on which it
resides.

The complete catalog can exist on the system residence volume, oOr
you can specify that parts of it be constructed on other volumes. Any
volume containing part of the catalog is called a control volume. The
use of control volumes allows data sets that are functionally related
to be cataloged separately. There are several advantages:

e Control volumes can be moved from one processing system to
another.

s System residence regquiremencs can be reduced by placing seldom
used indexes on a control volume.

For any given data set, only one level of control volume, other
than the system residence volume, can be used. Notice that in Figure
38, INDEX E, which is the highest level on the control volume, has an
entry in poth volume indexes.

The same type of cataloging facilities are available for
maintaining generation data groups. Cataloging each new generation
with a unique name would be both inconvenient and inefficient. By
cataloging individual data sets in a chronological collection by
number, the entire collection can be stored under a single data set
name.

Each update of the data set is called a generation; the number
associated with it is called a generation number. A generation data
group is the entire collection of chronologically related data sets
that can be referred to by the same data set name. A particular
cgeneration can be referred to by eitner the absolute generation name
or relative generation number of the data set.

ABSOLUTE GENERATION NAME: The operating system assigns eacn data set
in the generation data group an absolute generation name in the form

Gggggvvv:

* gggg is an unsigned, four digit, decimal generation number.

e vv is an unsigned, two digit, decimal version number.

186

System Residence Volume Control Volume

Volume Table of Contents Volume Table of Contents
. : Volume
Index
DSCB
Volume Index
1
Volume Index I Pointer to
El
T T . Index E
| Poi | Volume Serial |
B| olmrd\ter ;o El Number of 1
| Index l Control Volume
. i I
| | Volume
Index [A | Pointerto | | Number
E | Index A | of F
' T ! i
Ind | Volume : Volume Data
nBex F I Number G Number T T Set
{ of F ! of G Ind I Volume b Volume E.F
nAex L] Number P : Number
/ / l of L | of P
Data Data Data Data
Set Set Set Set
B.F B.G E.A.L E.A.P

Figure 38. Catalog Structure on Two Volumes

The generation numpber indicates how far removed the data set is
from the original generation. The version number indicates how many
times the associated generation has béen replaced. Only the most
recent version of a specific generation is retained.

Generation Increment: You can specify the increment by which the
generation number is changed. For example, if you request a current
generation G0013VO4 and an increment of 2, the new generation would be
assigned the absolute generation name G0015V00.

Version Increment: Wnen you replace tne same generation with a new
version, it is your responsibility to assign the new, nonzero version
numoer.

CONCATENATED GENERATIONS: You can request a concatenation of all
existing data sets in the generation data group, starting with the
most recent and ending with the oldest, by specifying only the data
set name.

RELATIVE GENERATION NUMBER: Rather than request a data set by its
apsolute generation number, you can refer to it relative to the most
recent generation, i.e., DSNAME=dsname(0). Those immediately
preceding the most recent are then identified as -1, -2, etc. New
generations are created by referring to them as
DSNAME=name (+1), (+2), (+3), etc. The last of these is cataloged as (0)
and the other generations in the catalog are adjusted accordingly at
the end of the job.

ENTERING A DATA SET NAME IN TAE CATALOG

The catalog structure, including all levels of indexes, is
initially created or modified by the system utility program IEHKPROGM.
A data set name can then be entered if the proper index levels of the
name exist.

Section II: Data Management Services (Part 3) 187

¥For example, if a data set named A.B.C is to be cataloged, the
volume index on the system residence volume must have an index entry
for index A, which must point to an index B. When the data set A.B.C
is cataloged, C is entered into index B along with the volume serial
number where data set A.B.C resides. The cataloging request is
entered as:

//ddname DD DSNAME=A.B.C,DISP=(,CATLG)

ENTERING A GENERATION DATA GROUP IN THE CATALOG

A data set that is part of a generation data group is represented
in the catalog by an additional level of indexing that contains an
entry for each generation. The system utility program IEdPROGM is
used to create the index levels and to instruct the system as to how
the generations are to be maintained.

CONTROL OF CONFIDENTIIAL DATA -- PASSWORD PROTECTION

in addition to the usual label protection that prevents opening a
data set without the correct data set name, the operating system
provides a data set security facility that prevents unauthorized
access to confidential data. A security protected data set cannot be
made available for gprocessing until a password is entered by the
operator. If an incorrect password is entered twice, the job is
terminated by the system.

You can request password protection when the data set is created.
The system sets the data set security byte in the Standard Data Set
Label 1 as shown in the publication, IBM System/360 Operating System
Tape Labels. Once security protection has been requested, it cannot
be removed without recreating the data set and scratching the
protected data set.

Each protected data set nas at least one entry in a catalog named
PASSWORD that must be created on the system residence volume. Each
entry in the password data set consists of a U4L-byte data set name
field and an 8-pyte password field. The next §0-byte record contains
a 2-byte binary counter that is incremented py one each time the
protected data set is opened successfully. The third byte is used to
indicate that the processina program can read, write, or both read and
write records on the protected data set. The remaining 77 bytes can
pe used at the discretion of your installation.

The password data set can also be protected by a master password
contained in one of its entries. A complete description of password
protection is contained in the publication IBM System/360 Operating
System: System Programmer's Guide.

188

Appendix A: Direct Access Labels

Only standard label formats are used on direct access volumes.
Volume, data set, and optional user labels are used (see Figure 39).
iIn the case of direct access volumes, the data set label group is the
data set control block (DsCB).

Cylinder

Volume Label

Tracks L/{ Additional Labels
—

Track 0 (Optional)
—
— 1
—— ~
T N
VTOC DSCB

Space Accig DSCB

DSCB No. 1 VTOC
DSCB No. 2 T

[oscBNo.N]

All Remaining Track of
Volume

Blank Storage Area
for Data Sets

Figure 39. Direct Access Labeling

VOLUME LABEL GROUP

The volume label group immediately follows the initial program
loading (IPL) records on track 0 (of cylinder 0) of the volume. It
consists of the initial volume label plus a maximum of seven
adaitional volume labels. The initial volume label identifies a
volume and its owner, and is used to verify that the correct volume is
mounted. It can also be used to prevent use of the volume by
unauthorized programs. The additional labels are processed by means
of an installation routine that is incorporated into the system.

The format of the direct access volume label group is shown in
Figure 40.

Appendix A: Direct Access Labels 189

DIRECT ACCESS VOLUME LABEL FORMAT

(Up to 7 Additional Volume Labels)
80 Byte Physical Record

Field 1 (3) Volume Label Identifier (VOL)
2 (1) Volume Label Number (1)
3 (6) Volume Serial Number
4 (1) Volume Security
5 (10) VTOC Pointer
6 (10) Reserved for Manufacturers (Blank)
7 (10) Reserved (Blank)
8 (10 Owner Name and Address Code
9 ig (29 X~ Blank

Figure 40. Initial vVolume Label

Volume Label Identifier (VOL): Field i contains the initial volume
label.

Volume Label Number (1): Field 2 identifies tne relative position
of the volume label in a volume label group. It must be written as 1.

The operating system identifies an initial volume label when, in
reading the initial record, it finds that the first four characters of
the record are VOLL1.

Volume Serial Number: Field 3 contains a unique identification
code assigned when the volume enters the system. You can place the
code on the external surface of the volume for visual identification.
The code is normally numeric (000001-999999), but may be any six
alphameric characters.

Volume Security: Field 4 is reserved for future use by
installation that wish to provide security at the volume level. It
must be written as 0.

VTOC Pointer: Field 5 of direct access volume label 1 contains the
address of the volume table of contents (VTOC).

Reserved for Manufacturers: Field 6 is reserved for future
standardization purposes. Leave it olank.

Reserved: Field 7 is reserved for future developmental purposes.
Leave it blank.

190

Owner Name and Address Code: Field 8 contains a unigque
identification of the owner of the volume.

All of the bytes in Field 9 are left blank.

DATA SET CONTROL BLOCK (DSCB) GROUP

The system automatically constructs a DSCB when space is requested
for a data set on a direct access volume. Each data set on a direct
access volume has a corresponding data set control block to describe
its characteristics. The DSCB appears in the volume table of contents
(VTOC) and contains operating system data, device-dependent
information, and data set characteristics, in addition to space
allocation and other control information. The format of the DSCB is
illustrated in IBM System/360 Operating System: System Control
Blocks.

USER LABEL GROUPS

User header and trailer label groups can be included with data sets
of physically sequential or direct organization. The labels in each
group have the format shown in Figure 33.

Each group can include up to eight labels, but the space required
for both groups must not be more than one track on a direct access
device. The current minimum track size allows a maximum of eight
labels, including both header and trailer labels. Consequently, a
program becomes device-dependent (among direct access devices) when it
creates more than eight labels.

If user labels are specified in the DD statement (LABEL=SUL), an
additional track is normally allocated when the data set is created.
No additional track is allocated when specific tracks are requested
(SPACE=(ABSTR,...)), or when tracks allocated to another data set are
requested (SUBALLOC=...). In either case, labels are written on the
first track that is allocated.

User Header Label Group: The operating system writes these labels as
directed by the problem program recording the data set. The first
four characters of the user header label must pe UuLl, ..., UHL8; you
can specify the remaining 76 characters. When the data set is read,
the operating system makes the user header labels available to the
problem program for processing.

User Trailer Label Group: These labels are recorded (and processed)
as explained in the preceding text for user header labels, except that
the first four characters must be UTL1,...., UTLS.

Appendix A: Direct Access Labels 191

USER HEADER AND TRAILER LABEL FORMAT

(Maximum of 8)
80 Byte Physical Record

Field 1 (3 Label Identifier (UHL if Header, UTL if Trailer)
2 (N Label Number (1-8)

1

3 = (76 -~ User Specified

Figure 41. User Header and Trailer Labels

Label Identifier: Fielé 1 indicates that this is a user neader label
(UHL). UTL indicates a user trailer label.

Label Number: Field 2 identifies the relative position (1-8) of the
label within the user label group.

User Specified: Field 3 (76 bytes).

Appendix B: Control Characters

As an optional feature, all record formats may include a control
character in each logical record. This control character will be
recognized and processed if a data set is being written to a printer
or punch.

For format-F and -U records this character is the first byte of the
logical record.

For format-V records it must be the fifth byte of the logical
record, immediately following the record descriptor word.

Two options are available. If either option is specified in the
data control block, the character must appear in every record and
other line spacing or stacker selection options also specified in the
data control block are ignored.

Machine Code

You can specify in the data control block that the machine code
control character has been placed in each logical record. If the
record is to be written, the appropriate byte must contain the command
code kit configuration specifying boti the write and the desired
carriage or stacker select operation. If the record is not to be
written, the byte can specify any command other than write.

Command codes for specific devices are contained in IBM System
Reference Library publications describing the control units or
devices.

Extended American National Standard Code for Information Interchange

In place of machine code, you can specify control characters
defined by the American National Standards Institute, Inc. (ANSI).
These characters must be represented in EBCDIC.

Appendix B: Control Characters 193

The extended American National Standard Code for Information
Interchange (ASCII) is as follows:

O

ode

S<N@WPOONONEWNR+ | o0

Action Before Writing Record

Space one line before printing (blank code)
Space two lines before printing

Space three lines before printing

Suppress space before printing

Skip
Skip
skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip
Skip

to
to
to
to
to
to
to
to
to
to
to
to

channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel
channel

Select punch pocket 1
Select punch pocket 2

These control characters include those defined by ANSI FORTRAN. If
any other character is specified, it is interpreted as 'b' or V,
depending on the device being used; no error indication is returnec.

194

ABE error option 93
ABEND macro instruction 44-49
handling an abnormal condition 44
issued when job step task active 44
issued during task beside job step
task 45
obtaining a dump 49
STEP operand 44
Abnormal condition
attempting error recovery from 44
control program abnormal termination
routine 44
detection 44
handling 43-49
handling by ABEND 44
Abnormal termination
from DEQ 31,32
from ENQ 31,32
interception u45-49
of job step 45
from program interruption 39
restart after 59
routine 44
Absolute generation name 186
Absolute (actual) address 87,166,172
ACC error option 93
Access method
defined 74
selecting 110
Access techniques
basic 74,106-108
queued 74 105-106

Actual track address (MBBCCHHR) 87,166,172
Additional entry points 28
Address, direct access

absolute (actual) 87,166,172

relative 87,137,167
Alias

effect on, of changing directory

entry 140

number allowed for member of partitioned
data set 136
Alignment, buffer
Answer area 89
Allocation
(see main storage management; space
allocation)
ANSI (American National Standards
Institute, Inc.) 195-196
Anticipatory buffering
omitted with basic access
technique 106,133,160
with queued access technique 105
ASCII control character 126,133,193-194
ATTACH macro instruction
creating subpools 54
ECR operand 19,26,27
ETXR operand 19,26
under MVT 6,23

115,117,121-122

Index

under PCP, MFT without subtasking 19

restriction 19

warning for using task control block 27
Automatic cataloging of data sets 76
Automatic error options (EROPT) 93

Backspace
by BsP 129
by CNTRL 129
Base register
initial 2
permanent 4
Basic access technique
blocking 165
buffer control 114
definition of 74,106
uses
creatinc data sets 133 “
with direct data sets 164
with partitioned data sets 138
with indexed sequential data
sets 145,148,149,160
BDAM CREATE
effect on chained schedulina 132
BFTEK field 83,107,118
Bin, data cell 76,87
BINTVL 34
BLDL macro instruction
required for DE operand 15
description 139
example 19
updating a partitioned data set 143
use 138-139,142,143
using with LINK macro instruction 19
using with LOAD macro instruction 20
BLKSIZE field
device independence 132
requirement for direct data set 165
Block count exit routine 100-101
Block, data
definition 78
descriptor word (BDW) 80
(see also record format)
Block, defined 78
Block descriptor word (BDW) 80
Block size (BLKSIZE) field 90
effect of data check on 78
Blocking
automatic 105
defined 78
with basic access technique 165
with checkpoint/restart 64
with fixed-length records 78-79
with variable-length records 79-84
with undefined-length records 84-85
usefulness 78
Boundary alignment
buffer 115,117,121-122
data control block 101

Index 195 e

Branching table
example 10
use when passing control with return 10
BSP macro instruction 129-130
Buffer
acquisition and control 114-125
alignment 115,117,121-122
defined 114
direct control 114,118,124-125
dynamic control 114,118
length (BUFL) 115,128,151
number (BUFNO) 115
pool 114
segment 114
(see also GETBUF; FREEBUF; FREEDBUF;
RELSE; TRUNC)
Buffer pool construction
automatic 116
examples 116-117
explicit 115-116
static 115
(see also BUILD; GETPOOL; FREEPOOL)
Buffering
dynamic 114
requirements 91
techniques
exchange 114,120-123
simple 114,118-120
summary 123-124
Build list format 139
BUILD macro instruction
description 115
with indexed sequential data set 151
BUILDRCD macro instruction 115-116

115-116

CALL macro instruction
expansion 9
passing control using 20
Calling program, defined 1
Calling sequence identifier
defined 29
specified in CALL or LINK macro
instruction 29
Cancel
at abnormal termination 47
current STAE request 46
time interval 34
CANCEL operand
in CHKPT 61
in TTIMER 36
(see also timing services)
Capacity
cylinder
record 86
track 79,85,155,171-181
used by the dump program 28
Card punch (PC), record format
with 127-128
Card reader (RD)
record format with 127-128
restriction with CNTRL macro
instruction 129
Carriage control 79,84-85,193-194
(see also CNTRL; PRTOV)
Catalog, system 186

77,171-181

®196

control volumes 186
entering a data set name 187-188
entering a generation data group 188
Cataloging data sets
automatic 76
defined 73
CCW
(see channel command word)
Chained scheduling 125,132-133
restriction with partitioned data
set 143
Changing an address in the data control
block 102
Channel command word (CCW)
address of 93
creation by OPEN 110-111
PCI flag in 132
use in exchange buffering 121-122
use in simple buffering 118
Channel program
execute (EXCP) 110
number of (NCP) 106
Channel separation and affinity
(SEP/AFF) field 91
CHAP macro instruction 24-27
dispatching prioxity 25
initial dispatching priority 24
limit priority 25
warning for using TCB operand 27
Character set, changing 129
Characteristics, load module 6

. CHECK macro instruction

DECB 108

description 108

updating a partitioned data set 143

use with SYNAD routine 93-94

using WAIT instead 108,160,168
Checkpoint and restart 59-70

data sets using 63-66

direct access 65-66
disposition 63-64
dummy 66

partitioned 65
preallocated 66
preserving contents of 64-65
SYSIN 64
SYSOUT 64
restarting a job step 68-70
(see also checkpoints; checkpoint data
sets; restart)
Checkpoint data sets
alternating use 68

67-68

closing 67-68
defining 67
opening 67-68

positioning 68
space considerations 68
using 67-68

Checkpoint DD statement
for deferred restart 69
examples 68
requirement 67

Checkpoints
assigning identification of
data management and 62-67

69-70

establishing 60-67
by CHKPT macro instruction 1
restriction with rollout/rollin 60
restriction with STIMER and WFOR 60
suppressed with preallocated data
sets 66
with serially reusable resources 62
(see also checkpoint and restart;
checkpoints; restart)
CHKPT macro instruction 60-61
CANCEL operand 61
requesting identification of
checkpoints 69-70
restriction with rollout/rollin 60
restriction with 'STIMER and WTOR 60
return codes 61
selecting checkpoints 60-61
use in end-of-volume exit routine 100
used to establish checkpoints 61
CLASS parameter of JOB statement with
MFT 25
CLOSE macro instruction
function 110
for more than one data set 112
with partitioned data set 140
temporary close option 112
TYPE=T 112
for more than one data set 112
volume positioning 111,112
Closing a data set 110-113
CNTRL macro instruction 129
device dependence 132
effect on track overflow 132-133
restriction with BSP macro
instruction 129-130
Completion code
in task control block 33
written on SYSOUT for task
termination 45
(see also return code)
Concatenation
defined 184
of generations 187
of partitioned data sets 184-186
of sequential data sets 184-186
of unlike data sets 184-186
COND parameter
EXEC statement 12,44
JOB statement 12,44
Condition, exceptional
analysis of 109
SYNAD routine 92
testing for 105,108
(see also abnormal condition; CHECK;
WAIT; wait condition) '
Conditional requests
from DEQ 31-33
from ENQ 31-33
. from GETMAIN 51-52
Configurations of the operating system
summary 1
options 1
Control character (C)
ASCII 126,133,193-194
carriage 128

explained 85,193-194
with fixed-length records 79
machine code 126,193
specifying 85,193-194
effect of omission for SYSOUT data
set 184
with undefined-length records €4
Control errors 93
Control volume, defined 186
Conversion
BCD to EBCDIC 126-127
paper tape 127
randowizing 165
Core storage
(see main storage; main storage
hierarchy support)
Count area 86-88
device overhead 173
hardware 151
ISAM index entries 147
Cross reference table with direct data
sets 165
Cylinder
allocation by 172
capacity 77
definition 85
index 145-147,180-181
"logical"™ 173
overflow (CYLOFL) 145,157,175

DASDI 171
Data access techniques
(see access techniques)
Data control block (DCB)
attributes of, determining 101
changing an address in 102
completion 89
creation by DCB macro instruction 880
description 89-91
dumnmy control section 101
exit 100
fields 90
modifying 88,100,101-103
primary sources of information 88-89
reopening, with exchange buffering 121
restriction for direct access
devices 111
restriction for DD name 111
sequence of completion 89
use 75
Data control block exit 100
Data control block (DCB) field 90
Data definition name (DDNAME) field 90
Data definition (DD) statement
fields 90-921
relationship to DCB 88-90
relationship to JFCB 88-89
use 75 ‘
Data errors 93
Data event control block (DECB)
checking for errors 106,107
description of 108
Data format in sequential
organization 125-128
Data management, introduction to 73-104

Index 197 e

Data management facilities 73-74
Data mode processing 117-118

Data processing techniques 105-115

basic access technique 106-108
end-of-volume processing 113-1
error handling 108-110

14

queued access technique 105-106

opening and closing a data set 110-113

selecting an access method 110
Data set

characteristics 73-75

control block (DSCB) 65

definition 78

description 90-91

disposition 182-188
cataloging 182,186-188
concatenation 184-186
password protection 188
status 182

disposition (DISP) field 91

identification 75

label
contents 76

(see also magnetic tape volumes;

labels, direct access)
label (LABEL) field 91
like characteristics 185
name 75

DCB operand for ATTACH, LINK, LOAD, and
XCTL 23
DCBIND1 field 121
DCBD macro instruction
restriction on use 102
use 101-102
DCBNCRHI field 155
CD statement fields 90-91
DE operand
of ATTACH 23,58
of LINK 58
of XCTL 58
Deblocking 14,80,84,105,106,165
Defer nonstandard input trailer label
exit 101
DELETE macro instruction 58
using after LOAD macro instruction 17
using to lower responsibility count 17
Deletion
of member name 135,143
of indexed sequential data set
records 151,157
CEN
(see magnetic tape density)
DEQ macro instruction
proper use 31-33
using the list and execute forms 57
DESC operand 37

name (DSNAME) field 90
organization 74
(see also direct data set; indexed
sequential data set; partitioned
data set; sequential data set)

Descriptor codes (with MCS) 36

causing an * in the message 36
Descriptor word

contents of first 4 bytes 80

(see also block descriptor word, record

organization (DSORG) field 90
output class 182,183
record formats
(see record formats)
routing, through the output
stream 182-184
security 188
sequence number 77
sharing 102~103

space allocation for direct access

volumes 171-181
estimation 172-173
for indexed sequential data
sets 174-181
for partitoned data sets 17
specification 171-172
storage 76-78
direct access 76
magnetic tape 77
SYSOUT 183
opening 183-184
writing 184
unlike characteristics 185
unmovable :
indication 87,90,166
partitioned 137
warning for concatenation 185
DCB
(see data control block)
DCB macro instruction
creating data control block 88
defining checkpoint data sets

e 198

4

67

descriptor word)
Designing programs, requirewents for 1-22
DETACH macro instruction 26-27,44-45
DEVD field 126,132
Device control for sequential data
sets 128-130
Device-dependent macro
instructions 128-130
Device independence 130-132
Device type considerations for data format
sequential organization 125-128
DEVTYPE macro instruction 154-155
DINTVL 34
Cirect access storage
access mechanism 85
advantages 85
device characteristics 85-89
record format 128
track addressing 87
track, defined 85
track format 86
track overflow 87-88
write validity check 88
Direct access volumes 76-77
labels 76,189-192
Direct addressing 165
Direct data set
access technique 164
adding records 167-169
creation 167
multivolume direct data set 169
user labels 169

extended search option 166
organization 165
processing 164-169
record format 128
record reference 165-166
updating records 167-169
with exclusive control 166
Format F with keys 167
Format F without keys 167-168
Format U or V with keys 168
Format U or V without keys
Direct organization 74
(see also direct data set)
Directory
(see partitioned data set)
Disk drive
(see 2302 disk storage; 2311 disk drive;
2314 storage drive; 2321 data call)
Dispatching priority 23-26
available in task control block 33
caution about its value 24
computing 23-24
defined 23
(see also priority)
Dispatching priority, initial 23
DPRTY parameter of EXEC statement 23,24

168

specifyinc 24
lowering, using CHAP macro
instruction 24

Disposing of the message to the operator
(with MCS) 36,39
Disposition of data sets
(see data set)
DOM macro instruction
DPMOD operand 24
Drum storace

39

(see 2301 drum storage; 2303 drum
storage)
DSCB (data set control block)
defined 65
DSECT 101
DSNAME field 66,90,177
DSORG field
described 90

device independence 132

with indexed sequential data set 156

with partitioned data set 138,140-142
Dummy contrcl section for DCB 101
Dummy data sets

defining 66

use with checkpoint and restart 66
DUMMY parameter of DD statement 66
Dummy record
with direct access data set 166,167

Dump 49-50

contents 49

data set 49

indicative 50

obtaining 49-50
via ABEND 49-50
via SNAP 50

requirements 49-50

DUMP operand of ABEND 49
Dynamic buffering

buffer pool construction 114,118

release of 125
(see also READ; RELEX; WRITE)
Dynamic structure 5-6,12-13

ECB
(see event control block)
ECB operand of ATTACH
effect on task termination 45

Element type (E) explicit request for main

storage 51
Embedded index area 175,176
End-of-data routine (EODAD) 92
with concatenated data sets
End-of-task exit routine 33
End-of-volume
condition 105
exit 100
processing 113-114
(see also FEOV)
ENQ macro instruction
control program processing of 30-31
controlling load module use 20
exclusive control 30
proper use 31-33

185

requesting control of a resource 29

restriction on gname 30

shared control 30

testing for simultaneous resource
use 29

warning for use in exit routine 31

Entry point identifier

defined 28

used by the dump program 28

specified in SAVE macro instruction
Entry points

added via IDENTIFY 28

requirements for additional 28
EODAD routine 92

with concatenated data sets
EP operand 13-15,18,23
EPLOC operand 13-15,18,23
EROPT field 93
Error

analysis routine

185

92-94

checkinag, automatic 132
control 93

data 93

handling 108-110
options, automatic 93

uncorrectable
Exrror routine
(see error; synchronous error routine
exit)
ESETL macro instruction
with checkpoints 62
description 156
ETXR operand of ATTACH
effect on task termination
use in MVT, MFT with
subtasking 26-27,45
use in PCP, MFT without
subtasking 19,21
Event control block
diagram 27
creation 27

92,98

45

Index

28

199

reusing 27
use with ATTACH 27
use with POST 27
use with WAIT 27
Exceptional condition code
(see condition, exceptional)
Exchange buffering 120-123
) buffer length requirements 121
effect on track overflow 132
examples 122-123
testing for 121
Exclusive control 161
(see also ENQ)
EXCP macro instruction 110
(see also execute channel program)
EXEC statement, PARM field 5
Execute channel program 74-75
(see also EXCP macro instruction)
Execute form of macro instructions
Execution
parallel 23
selecting job steps for 50
serial 6-21
Exit list (EXLST) field of the DCB 94
Exit routine
block count 100-101
conventions 95
data control block (DCB) 100
defer nonstandard input trailer label
exit 101
end-of-data set (EODAD)
end-of-task 33
end-of-volume 100
error analysis 92-94
list (EXLST) 94
register contents on entry 95
user label 96-98
user totaling 98-100
Exit routines identified by DCB 91
EXLST field 94
~ Explicit requests
for main storage
for resource 29
Extended American National Standard Code
for Information Interchange
(ASCII) 126,133,193-194
Extended search option for direct data
sets 166
EXTRACT macro instruction
determining current dispatching
priority 25
determining initial dispatching
priority 24
determining limit priority 25
requires an answer area 33-34
used to obtain information from the task
control block 33
using FIELDS=ALL 33
warning for using task control block 27
with checkpoint/restart 61

56-57

92,185

50-55

Feedback

description 130

request for 107,108,165
FEOV macro instruction 114

® 200

FIELD operand
(see EXTRACT)
FIND macro instruction
description 139
updating a partitioned data set 143
use 136,138
Fixed length records (F)
Flag, save area 11,12
Force end of volume (FEOV) 114
FREEBUF macro instruction 125
FREEDBUF macro instruction
description 125
example 162
FREEMAIN macro instruction
releasing subpools 54
restriction regarding subpool 0 54
returning control of main storage 51
FREEPOOL macro instruction 116
Full track-index write option 157

78-79,126

51-55

Generation data groups
absolute generation name
cataloging facilities 186
entering in the cataloc 73,76,188
generation data group, defined 186
generation, defined 186
generation number, defined 186
Generation
data set 186
data sets concatenated 187
increment 187
numbers, relative 187
version increment 187
GET macro instruction
description 105
used to create a sequential data
set 133-135

with spanned records 83

(see also data mode processing; locate
mode processing; move mode processing;
substitute mode processing)

GETBUF macro instruction 124

GETMAIN macro instruction
creating subpools 53,54
explicit request for main storage

producing reenterable code 51
types 51
specifying length of main storage 51
types of explicit requests for
conditional 51,52
example 52
unconditional 51,52

GETPOOL macro instruction
description 116
with indexed sequential data set 151

GSPL operand of ATTACH 23,54

GSPV operand of ATTACH 23,54

186-187

50-55

Hard copy log

purpose 38

using 38
HIARCHY operand of ATTACH, DCB, GETMAIN,
GETPOOL, LINK, LOAD, and XCTL 59
Hierarchies, main storage 59

examples using
hierarchy 0 52
hierarchy 1 57
(see also main storage hierarchy
support)

IDENTIFY macro instruction
adding entry points 28
restrictions on use 28
Identify option 28
IEBUPDTE utility program 144
IEHATLAS utility program 109-110
IEHMOVE utility program 137,138
IEHPROGM utility program 177,187-188
IHADCB macro instruction 101
Implicit requests for main storage 55-59
ATTACH 52,55,58
LINK 52,55,58
LOAD 52,55,58.
OPEN 55
XCTL 52,55,58
Imprecise interruptions
Independent overflow area
Index
catalog 76,187-188
cylinder 145-147,180-181
master 146,147
space allocation for 175-181
track 146,147
Indexed sequential data set
adding records 148-150
inserting new records 148-149
new records at the end 149-150
areas 145-148
prime 145,146
index 145,146-147
overflow 145-146,148
buffer requirements 151-155
with checkpoint/restart 63,64
creation 156-159
deleting records 151
device control 156
full track-index write option 157
indexes 145-147
cylinder index 145-147
master index 146,147
track index 146,147
track index entries 147
key field 145
loading 157
maintenance 150-151
organization 145-148
processing 145-164
reorganization 150
resume load 149,150,158
space allocation for 174-181
updating 159
sequential 159-160
direct 160-164
work area requirements 151-155
Indexed sequential organization 74
(see also indexed sequential data set)
Indexes of the catalog 186
Indicative dump (PCP, MFT) 50
Indirect addressing 165

41-43

148,150,175-176

INOUT
OPEN macro instruction 111
overriding 111
INPUT option
OPEN macro instruction 111
Input/output device (UNIT) field 91
Input/output device generation 131
Input/output devices
card reader and punch 127-128
direct access 76-77,85-89
magnetic tape 77-78
paper tape reader 127,132-133
printer 128
Interface with the operating system
Instruction length code (ILC) 41,42
Interlock situation 32-33
Interruptions 39-43
imprecise 41-43
precise 41-43
(see also program interruption
processing)
Interval timing 34-36

IsAM
(see indexed sequential data set;
indexed sequential organization)
Job class - 50
Job file control block (JFCR)
Job library 12-13
Job pack area 13-18,28,50
Job priority
effect on execution 50
specifying 24
Job step termination 45

88-89

Key area 86

88-103

Key field, indexed sequential data set 145

Key, record
direct access 86,166-168
indexed sequential 74,160
prefix 156,160

Labels, direct access
data set control block group 191
format 1950
user label groups 191-192
volume label group 189-191
LEAVE option 113,114
Length checking 79

Library
defined 13
job 12-13

link 12-23,55
private 13
step 12-13
Limit priority 33
(see also priority)
Link field 1u48,152-154
Link library 12-23,55
LINK macro instruction
difference from CALL macro
instruction 18
expansion 18
implicit request for main
storage 50,52-55

Index

201 e

in a dynamically structured load
module 17-21
responsibility count with 18
similarity to CALL macro instruction 17
use with BLDL 19
use with the job library 18
use with the link library 18
use with a private library 18
use to pass control with return 17-19
Link pack area (MVT)
contents 13,58
placing modules in 55
searching 28
Linkage conventions 1-5
Linkage registers U4-5
entry point register 5
parameter registers 4
return address register 5
save area register 5
List form of macro instruction 56-57
List type (L) explicit request for main
storage 51
LOAD macro instruction 17,58
use to obtain a usable
copy of a load module 17
responsibility count 17
Load module
attributes 16
characteristics 6
copy
finding a usable 13-15
restriction with CALL 15
reusable 15
using an existing 17
execution
parallel 6
serial 6-21
management 55-58
nonreusable 16
temporarily 58
reenterable 16-17,55-56
refreshable 56
serially reusable 16
structures’ 5-6
(see also dynamic structure; overlay
structure, planned; simple structure)
Loading an indexed sequential data set 157
Locate mode processing 117-118
defined 118
with GET macro instruction
creating a sequential data set 134
exchange buffering 122,123
simple bufferinag 119,120
with PUT macro instruction
creating a sequential data set 134
simple buffering 119,120
Log
hard copy 38
system 38-39
WTL 38-39
Logical record interface
LPMOD operand 24
(see also priority)
LRECL field
with card reader and punch 128

116,118

®202

described 90
device independence 132
omission with direct access data
sets 166
for format for U records 165
and ISAM
buffer requirements 152-155
data set creation 157
with PUT 106
in example of simple buffering 133
with SYSOUT data set 184

Machine check handler 56
Machine code control character 85,133,193
MACRF (macro instruction form) field
described 91
device independence 132
dynamic buffering 162
processing mode 118
Magnetic tape (TA) volumes
density 126-127

labels
none 77
nonstandard 77,91
standard 77
user 98

volume 76
organization 77
positioning 77
record format 126-127
serial numwber 77
tapemarks 77-78
Main storage
blocks
assignment 53
size 53
considerations for PCP job run under MFT
or MVT 50
control 53-55
efficient use of 51-59
example of assionment 53
fragmentation 57-58
hierarchies 59
management 50-59
(see also GETMAIN; FREEMAIN; subpool)

release 58-59
warninag for CLOSE 58
requests

conditional 51,52
control program 50
explicit, via GETMAIN 50,51-55
implicit, via LINK 50
unconditional 51,52
returning control 51
reuse 58
Main storage hierarchy support 59
caution with Model 50 and PCP 59
hierarchies 59
overrun 59
Master console operator answering any
WTOR 37
MBRCCHHR 87,166,172
Member of a partitioned data set
creation 140-141
deletion 144

description 74,135
positioning to a 139
processing a 138-140
retrieving a 141-143
rewriting a 144
updating a 143-145

in place 143
overlapped 143-144
(see also FIND; NOTE; partitioned data
set; POINT; STOW)
Message deletion 39
Message identifier 37
Message output class
specified by MSGCLASS parameter 37
Messages to the operator 36
(see also writinag to the operator)

Messages to the programmer 37-38
Model 65 interruptions 41,42
Model 67 interruptions 41,42
Model 75 interruptions 41,42
Model 85 interruptions 41,42
Model 91 interruptions 41,42
decimal simulation 43
Model 195 interruptions 41,42

Modes, processina
(see data mode; locate mode; move mode;
substitute mode)
Modifying the data control block 101-103
Move mode processing 117-118
defined 118
with GET macro instruction
creating a sequential data set 134
simple buffering 119
with PUT macro instruction
creating a sequential data set 134
simple buffering 119

MSGCLASS parameter of the JOB statement 37

MSHI field 155
MSWA field 155
Multiple console support (MCS)
(see descriptor codes; hard copy log;
message deletion; routing codes;
system 1log)

Multitrack mode 137

Names

data set 75,177,187

generation data group 73,186
New line control character 36
Nonreenterable load modules 57-58
Nonreusable load module 16,20

defined 20

passing control to

under MVT, MFT with subtasking 20

under PCP, MFT without subtasking 20

Nonstandard tape labels 77,91
Note 1list
description 138
use 137
NOTE macro instruction
description 130
device independence 131

restriction with BSP macro
instruction 129-130

updating a partitioned data set 143
use with partitioned data set 138

Obtaining information from the task control

block 33
Offset reading 107
01d program status word (OPSW) 41
OPEN macro instruction
device independence
functions 88,110-112
used for more than one data
volume positioning 111
Opening a data set 110-112
Cpening and closing a data set
OPTCD field
device independence
with ISAM 157
to request totaling 99
Originating task, defined 23
OUTIN option
OPEN macro instruction
overriding 111
Output class 182
Output mode
exchange buffering 122
simple buffering 118,119
OUTPUT option
OPEN mwacro instruction
OV operand of STAE 46
Overflow chain 148
Cverflow
cylinder
entry 147
independent area
printer 129
records 148-151
track 87-88
effect on chained scheduling
restriction on BSP macro
instruction 129-130
Overlap
of input/output 105-107,143
of processing 74
of task execution 23
Overlay structure, planned
advantages 55,58
defined 5,6
passing control in a 12
Overlay a STAE request #46-47
Overrun with main storage hierarchy
support 59

131

set 112

110-113

132

111

111

148-150

148,150

132

Pack areas

(see job pack area; link pack area)
Paper tape reader (PT)

effect on chained scheduling

record format with 127
Parallel execution of a jobstep,
defined 23
Parameter list

from list form 57

from PARM field 6

handling of 7-9

inline 8,9

with CALL 9

132-133

Index

2030

with LINK 18
with XCTL 22
Parameters
(see parameter 115t~ linkage registers)
PARM field 5,7
Partitioned data set
adding members to 140
concatenation 184-186
creation 140-141
with basic access technique 141
defined 135
directory 136-138
obtaining information from 139
defined 135 .
“directory entry
alteration 140
defined 135
described 135-138
length 136
processing 135-144
of several members 142
space allocation for 174
(see also membexr of a partitioned data
set; partitioned organization)
Partitioned organization 74
Partitions (MFT) 50
Passing control
in a dynamic structure
loading the module
with return 17-21
without return 21-22
in a planned overlay structure 12
in a simple structure 6-12
with return 8-10
without return 6-8
(see also ATTACH; LINK; XCTL)
Password protection 73,188
PDS
(see partitioned data set)
PICA (program interruption control
area) 39-40
Planned overlay structure
(see overlay structure, planned)
POINT macro instruction
coding in a reenterable load module 56
device independence 131
explained 130
restriction with BSP macro
instruction 129-130
updating a partitioned data set 143
POST macro instruction 27
Precise interruptions 41-43
Prefix, key 156,160
Prime data area
description 145-146
space allocation for 174-181
Printer (PR)
data checks 129
overflow 129
record format with 128
Priority
assigning 24-25
changing 24-25
dispatching 23-26
job 24

17-22
12-22

® 204

limit 33
subtask 24-25
task 23-25
(see also CHAP macro instruction)
Private library
defined 13
searching 13-16,18
Program, describing the processing
Program exceptions 39
(see also program 1nterru9t10n
processing)
Program interruption control area
(PICA) 39-40
Program interruption element (PIE) 40
Program interruption processing 39-43
imprecise interruptions 41-43
precise interruptions 41-43
standard control program exit
routine 39
user exit routine 39-43
for imprecise interruptions 43
register contents when control
gained 39-40
Program management 1-22
Program management services 28-50
(see also abnormal conditions;
additional entry points; calling
sequence identifiers; deleting
messages; dump; entry-point
identifiers; obtaining information
from the task control block;
processing program interruptions;
serially reusable resources; timing
services; writing to the hard copy
log; writing to the operator; writing
to the system log)
Protection
of main storage 52
of serially reusable resources
PRTOV macro instruction
description 129
device dependence 132
PUT macro instruction
description 105-106
used to create a sequential data
set 133-135
with spanned records 83
(see also data mode processing; locate
mode processing; move mode processing;
substitute mode processing)
PUTX macro instruction
description 106
device independence 131
with exchange buffering 121
processing modes with GET-locate 118
with spanned records 83
(see also output mode; update mode)

21-101

29-33

Qname operand of ENQ 29,30
restriction 30

Queued access technique 105-106
buffer control 117-125
defined 105
introduced 74
processing modes

(see data mode processing; locate
mode processing; move mode
processing; substitute mode
processing)

RDBACK option
OPEN macro instruction 111
Read backward 107
restriction for concatenated data
sets 184
READ macro instruction
description 106-107
device independence 131
updating a partitioned data set 143
with KN 162-163
with KU 160,161,163
Read-only load module
(see reenterable load module)
REAL parameter of STIMER 35,36
RECFM field
(see record format)
Record blocking
(see blocking)
Record, defined 78
Record descriptior word (RDW)
in ISAM data set being updated 16u4
variable-length records 80-81
when replaced by segment descriptor
word 83
Record format 78-85
device independence 132
fixed-length (F) 78-79
for read backwards 126
RECFM field 90,125-126
restriction for partitioned data
set 142
selecting 78
undefined-length (U) 84-85
variable-length (V) 79-84
spanned (basic direct access
method) 83-84
spanned (sequential access
method) 81-83
with card punch 127-128
with card reader 127-128
with control character 126
with direct access storage device 128
with magnetic tape 126-127
with paper tape reader 127
with printer 128
with sequential organization 125
Record length (LRECL) field 90
Reducing main storage required for a job
step 55-59
Reenterable load modules 55-57
defined 20
MFT with subtasking 16-17
MVT 16
Reenterable macro instructions 56-57
Refreshable load module 56
Regions (MVT)
extending by rollout/rollin 50
controlling 53
specifying size on EXEC statement 50
specifying size on JOB statement 50

Register type (R) explicit request for main

storage 51
Registers
(see base register; linkage registers;
reenterable macro instructions)
Relative block address
defined 87
with direct data set 165
Relative key position (KRKP) 152
Relative track address (TTR)
defined 87
with direct access 165,166
Releasing main storage 58-59
(see also DEQ; FREEMAIN)
RELEX macro instruction 103,166
RELSE macro instruction 114,124
RELSE parameter of DD statement 112
Reorganization of indexed sequential data
set 150-151,157
REPLAREA 163-164
Reply
(see WTOR)
REREAD option 113,114
RESERVE macro instruction 62
Resident reenterable module area 13,17
Resource
conditionally requesting, via ENQ 31
control 29
duplicate request for, defined 31
releasing control of with DEQ 31
request for, causing interlock 32
serially reusable 29-33,102-103
unconditionally requesting, via
ENQ 29-31
Responsibility count
ensuring that the proper one is
lowered 22
lowering it via the control proyram 22
lowering it via DELETE 22
with release of main storage 58
Restart
alternate system 70
automatic 60,68
canceling 61
avoiding, from same checkpoint 61
checkpoint 60
deferred 60,64,68-69
job statement for 69
duplicate record indications
following 64
effect on ENQ 61-62
effect on EXTRACT 61
effect on SETPRT 61-62
job step 60,68-70
requesting a resource after 62
step 60,68-70
suppressed with preallocated data
sets 66
via end-of-volume exit routine 100
Resume load 149,150,158
RET operand
RET=HAVE 31-32,57
RET=TEST 31
RET=USE 31-33
Return code

Index 20560

from ATTACH 19,21
from BLDL 15
with block count exit 101
with branching table 10
with checkpoint-restart 61
and COND operand 12
in a dynamic structure 21
in ECB 27
with ENQ, DEQ 31-32,57
example of use 11
with GETMAIN 51
with IDENTIFY 28
requirements 10
from STAE 47-49
with user labels 97
Return of control
of CPU 10-11,17-19,21-22
(see also RETURN)
of main storage
(see FREEMAIN)
of resource
(see DEQ)
to check routine 93
RETURN macro instruction
examples 11,12
with simple structure load module
Returning control in a dynamic
structure 21-22
responsibility count 21
using a branch instruction 21
using LOAD and branch 21
using RETURN macro instruction 21
using the control program 21
using XCTL 21-22
warning against mixing XCTL and
branch 21

11

warning against not using the control

program 22
when ATTACH was used 21
when LINK was used 21
without using the control program

21

Returning control in a simple structure

Reusability 15,16
REWIND option

CLOSE macro instruction 112
"RKP (relative key position) 152
Rname operand of ENQ 29
Rollout/rollin 50
Routing codes (with MCS) 36

Routing the message to the operator (with

MCS) 36

Save area
chaining 4,49
description 3,4
flag 11,12

format 3
provision 3
register 2
trace 4§
user totaling 99
SAVE macro instruction 3
Saving registers 2
providing a save area 3
save area chaining 4,49

® 206

save area format 3

SAVE macro instruction 3
Search option, extended 166
Searching for a usable copy of the load
module 13-15

effect of DE operand on 15

effect of EP operand on 13,14

effect of EPLOC operand on 13,14

order of search 13-15

time involved 14,15

use of BLDL 15
Security, data set 73,188
Segment

buffer 114,116,118

control code 83

descriptor word (SDW)

overflow record 87-88
Selecting an access method 110
Sequence identifier

82-83

calling 28
Sequential data set
creation 134-135

concatenation 184-186
processing 125-135
Sequential organization
defined 74
device control 128-130
device independence 130-132
through programming 131-132
through system generation
Serial execution of a load module 6-21
Serially reusable load module
defined 20
restriction on using LINK macro
instruction 16
using ENQ macro instruction 20
Serially reusable resource
SETL macro instruction
description 156
with checkpoints 62
SETPRT macro instruction 129
Shared control
(see ENQ)
Sharing data sets 102-103
Sharing direct access storage devices
with checkpont and restart 62
SHSPL operand of ATTACH 23,54,55
(see also main storage management)
SHSPV operand of ATTACH 23,54,55
(see also main storage management)
Simple buffering 118-120,133-134
simple structure 5-12
defined 5-6
passing control with return @8
passing control without return 6-8
returning control 10
returning control to the control
program 12
SKP error option 93
SMB (system message block) 37
sMsI field 155
SMSW field 154,155
SNAP macro instruction 49
Space allocation
field (SPACE) 91

130-131

29-33,102-103

estimating reguirements 172-174
for an indexed sequential data
set 174-181
for a partitioned data set 174
specifying 171-172
Spanned records
assempling 116
basic direct access method
sequential access method
segmentinag 116
SPIE macro instruction
description 39
example 40
program interruption control area
(PICA) 39-40
program interruption element (PIE) 40
Stacker selection 79,85,126,128,129,193
STAE exit routine 45-49
conditions when not executed 47
register contents when control
received 47-49
restriction on use of STAE and
ATTACH 46
return codes 49
work area (figure) 48
STAE macro instruction
canceling current STAE 46
example U446
exit routine U45-49
intercepting abnormal termination
OV operand 4é
overriding ABEND 44
register contents after execution 47
XCTL operand Uu46
STAE retry routine 45
Standard fixed-length records 126
Status
of load module 15,20
of serially reusable resource
STEP operand of ABEND 44
STEP operand of ENQ 29
STIMER macro instruction
example 35-36
establisning a time interval for a
task 34
specifying how to decrement the
interval 35
Storage
(see direct access storage; magnetic
tape volumes; main storage; main
storage hierarchy support)
STOW macro instruction
description 140
input for 138
use 136,138
with checkpoint and restart 65
Structure, load module
(see dynamic structure; load module;
overlay structure, planned; simple
structure)
Subpool
creation 54
exclusive use 54
handling
by ATTACH 54

83-84
81-83

45-49

29-32

34-36,60

by GETMAIN 54
MPT with subtasking 52
MFT without subtasking 52
under MVT 52-55
number limits 52
ownership 54-55
restriction on transfer 54
sharing 54,55
in task communication 55
Subpool ¢ 52,54
Subpool 240 52
Subpool 255 52
Substitute mode processing 117-118
creating a sequential data set 134
defined 118
with exchance buffering 120-124
with GET macro instruction 122
with PUT macro instruction 122,123
Subtasks
communication among
creating 23

26-27

defined 23
hierarchy 26
priority 24-25

termination 26
Subtasking, MFT with 16-17,23
Switching, volume
automatic 105,113,114,185
initiated by CHECK 108
SYNAD field
device independence 132
SYNAD routine 92-94
paper tape characters 94
SYNADAF macro instruction
description 109
examples 134
use in SYNAD routine 92-93
SYNADRLS macro instruction
description 109
example 134
use in SYNAD routine 93
Synchronous error routine exit
(SYNAD) 92-94
Synchronization- 74,105,132
(see also task synchronization)
Synchronous error exit (SYNAD) routine
examples 134-135,158
with ISAM 150,159
macro instructions
specifying 132
with a SYSOUT data set 184
writing 92-94
SYSABEND DD statement
if omitted 50
providing 49,50
SYSIN data set 64
SYSOUT data set 64,183-184
System generation considerations 131
System log
alternate data set defined 39
data sets 38-39
defined 38
primary data set defined 38-39
using, via WTL macro instruction 38
System message: blocks (SMBs) 37

108-109

Index 207e

SYSTEM operand of ENQ 29
System output device 183
SYSUDUMP DD statement
if omitted 50
providing 49
SYS1.SVCLIB and checkpoint/restart 100
SYSl.SAMPLiIB 98
SZERO operand of ATTACH 54

Tasks
communication among 26-27
creation of 23-26
hierarchy of 26
management of 26-27
priority of 23-25
signaling task termination 27
synchronization of 27
termination of 26
Task control block (TCB)
address 23
completion code in 27,45
obtaining information from 33
removal from system 26-27
subtask 26 :
warning for using with CHAP, EXTRACT,
DETACH 27
Task input/output table (TIOT) address
in task control block 33
TASK parameter of STIMER 35
TCB
(see task control block)
TIME macro instruction
BIN operand 34
TU operand 34
Time slicing 25-26
effect on using ATTACH and CHAP 25
MFT with subtasking 25
MPFT without subtasking 25
mMvVT 25
Time stamping for the hard copy log 38
Timing services
date and time of day 34
interval option 34
interval timing 34-36
example of interval timing 36
time option 34
TOD 34
Totaling area, user totaling exit
routine 99
Trace, save area U4
Trace table 50
Track
addressing 87
definea 85
format
count-data format 86
count-key-data format 86
index 146-147
overflow option 87-88
effect on chained scheduling 132
restriction on BSP macro
instruction 129-130
TRUNC macro instruction 114,124
Truncated blocks 78 .
TTIMER macro instruction

® 208

canceling time remaining in a time

interval 34
testing time remaining in a time
interval 34
TTR 87,137-138,140

" TUINTVL 34

TYPE=T 112

UHL (user header label) 98
Undefined-length records (U)
UNIT field 91
Unlabeled magnetic tape 77
UNPK instruction

examples 35,134-135

use witn time option 34
UPDAT option

effect on track overflow 133

in OPEN macro instruction 111,i43

Update mode 118
Use count

(see responsibility count)
User header label (UHL) 98
User label exit routine 96-98

78,84-85,90

restriction for data sets on volumes

without standard labels 98
restriction for SYSOUT data sets
with read backward 98

User totaling exit routine 98-100
control program save area 99
control totals 98§
exit list entry 95
image area address 97,99
OPTCD operand 99
restricted to BSAM, wSAM 98
totalino area 99
variable-length records and 99

User trailer label (UTL) 98

UTL (user trailer label) 938

Variable length block 80
Variable-length record (V)
segments 79-80,82-84

spanned 81-84

79-84

98,183

special consideration for, with user

totaling 99

Variable type (V) explicit request for main

storage 51

VARY command 131

VL operand
(see CALL; LINK)

Volume
specified by CLOSE 112
control 186
defined 76
direct access 76
disposition
instructions 113-114
labels 76
magnetic tape 77-78
specifiea by OPEN 111
serial number 77

Volume identification (VOLUME) field

Volume index 186
Volume switching 113-114
automatic 113

91

Volume table of contents (VTocC) 76,77

DSCBs in 77

WAIT condition
effect of 23,27
from ATTACH, LINK, XCTL 16
from ENQ 30-33
from STIMER 34-36
from WAIT 27
WAIT macro instruction
with basic access technique
description 108
examples 162,168
use 27
WAIT parameter of STIMER
WRITE macro instruction
add form 167
description 107-108
device independence
update form 167
updatino a partitioned data set 143
used with note list 138
with K 161,163
with KN 149,162-163
with sZ 173
with WL 166
Write validity check option 88
Writing to the hard copy log 38
Writing to the operator 36-37
using WTO macro instruction 36-37
using WIOR macro instruction 37
Writing to the programmer 37-38
Writing to the system log 38-39
WTL macro instruction 38-39
WTO macro instruction 36-39
example 37
DESC operand 37
ROUTCDE operand 37
used to write to the programmer
used to write to the haré copy log
WTOR macro instruction 36-39
with abnormal termination 45
with checkpoint/restart 60
example 37

106,160

35,36

131

37-

38
38

used to write to the proorammer

37-38

used to write to the hard copy log 38

XCTL macro instruction
and directory entries 19
requesting dynamic acquisition 2
EP, EPLOC, DE operands 13
implied request for storage 52,55,58
issued by interruption handling
routine 40

with main storage hierarchy support
with MFT with subtasking 16
with MVT 16,28
protecting against unusable copy 15
passing control without return 21,22
with PCP, MPFT without subtasking 17
and responsibility count 18
similarity to LINK 22
with STAE 11
XCTL operand of STAE 46
2301 Drum Storage
capacity 173
overhead formula 173
2302 Disk Storage
capacity 173
overhead formula 173
2303 Drum Storage
capacity 173
overhead formula 173
2311 Disk Drive
capacity 173
cylinder description 85~86
overhead formula 173
2314 Storage Drive
capacity 173
overhead formula 173
2321 Data Call
capacity 173
overhead formula 173
2361 Core Storage
hierarchies 59
Models 1 and 2 59
specifying, in GETMAIN 57
Index

59

209 o

GC28-6646-3

BV

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only]

IBM World Trade Corporation

821 United Nations Plaza, New York, New York 10017
[International]

——— — — — — — — — —. — — — — —— — — o— — —— —— — — — —— — —— — — o — — — — — — — e o ety i e . it i S s e et s o w

READER'S COMMENT FORM

IBM System/360 Operating System GC28-6646-3
Supervisor and Data Management Services

® Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is “No” or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes No
® Does this publication meet your needs? O O
® Did you find the material:
Easy to read and understand? | O
Organized for convenient use?] O
Complete? O O
Well illustrated? O (]
Written for your technical level? O O
® What is your occupation?
® How do you use this publication?
As an introduction to the subject? O As an instructor in a class? []
For advanced knowledge of the subject? N As a student in a class? O
For information about operating procedures? [] As a reference manual? O
Other
® Please give specific page and line references with your comments when appropriate.
COMMENTS

® Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6646-3

.

YOUR COMMENTS, PLEASE . ..

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back of
this form, together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving your
locality.

. BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY ., ..

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. D78

TBIM

International Business Machines Corporation
Data Processing Division

112 East Post Road, White Plains, N.Y. 10601
[USA Only])

IBM World Trade Carporation
821 United Nations Plaza, New York, New York 10017
[International]

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

