
File No. S360-36 OS
Order Number GC28-6646-3

Systems Reference Library

IBM System/360 Operating System

Supervisor and Data Management Services

Written for the assembler programmer, this
publication describes the services and facilities
available in the IBM System/360 Operating System to
the user of the supervisor and the data management
macro instructions. It also describes the linkage
conventions that the user should use with the
operating system. Macro instructions used for

I graphics, teleprocessing, optical readers, optical
reader-sorters, or magnetic character readers are
included in separate publications. These publications
are listed in IBM System/360 Bibliography,
Form A22-6 822. . .

. ~l;<j,.,·~~~

This publication covers. the·th~eemain
configurations of the operati:r;l;~ system: systems with
the primary control program rPCP)'i.,sys:tems that provide
mul tiprogramming with a fixed -·number of tasks (MFT) i
and systems that provide multiprogramming with a
variable number of tasks (MVT).

I

,"''1,''

Fourth Edition (June, 1970)

This pUDlication corresponds to Release 19. It is a major revision of
F'orm C28-6646-2, which is now obsolete. Most of the changes to the text
and some of the changes to the illustrations are indicated by a vertical
line in the margin to the left of the change. dowever, a new or
extensively changed illustration is indicated by the symool • to the
left of tile illustration's caption. Similarly, extensive changes to the
text are indicated by the symbol. beside the page number.

Many changes to the book are listed in the section "summary of
Changes." However, this summary does not include all changes; there are
technical changes throughout the book.

specifications contained herein are subject to change from time to
time. Before using this,manual with IBM systems, consult the latest IBM
360 SRL Newsletter, Form N20-0360, for the editions that are current and
applicable.

This publication was prepared for production using an IBM computer
to update the text and to control the page and line format. Page
impressions for photo-off set printing were obtained from an I·BM 1403
Printer using a special print chain.

Requests for copies of IBM publications snould be made to your IBM
representa~ive or to the IBM branch office serving your locality.

A form is provided at the back of this publication for reader's
comments. If the form has been removed, cOlurnents may be addressed to
IBM Corporation, Programming Publications, Department D78, San Jose,
California, 95114. All comments become the property of IBM.

€DCopyright International Business Machines Corporation 1967, 1968, 1970

This publication describes the
supErvisor services and data manaqement
facilitie~ of the 13M system/360 Opera tina
System. It is written for the assembler
programmer who is designing a program using
these services and facilities. Wnen coding
an assemoler program, however, the
programmer needs the specific information
in the publication IBY. System/360 Operating
System: Suoervisor and Data Management
Macro Instructions.

The publication is divided into three
principal parts. Lach section has a format
debigned to fit the illustrations and
examples required to explain the subject.

• Supervisor services -- Thi3 section
covers the supervisor services
avail~ole through the use of assembler
languase macro instructions, and
descriDes linkage conventions,
re~uirements for ?rogram and main
storase management, tnE J:)roqram
management services available~ and task
creation and management.

• Data Manas·€ment Services -- Tt.lis
section covers the data management
services available through the use of
assembler language macro instructions,
ana deocribes the data orqanization and
access features of the operating
system, along with cataloging and space
allocation facilities.

• Appendixes -- Information is presented
on the format and use of direct data
set labels and on control cnaracters.

iii

Preface

PREREQUISITE PUBLICATIONS

IBM System/360 Operating System:

Assemoler Language, Form C28-6514

Concepts and Facilities, Form C28-6535

PUBLICATIONS TO WHICd 'IdE TEXT REFBRS

IBIYl System/360 Operating System:

Job Control Lanquage Reference, Form
C28-6104

Job Control Language User's Guide, Form
C28-6103

Linkage Editor and Loader, Form C28-6538

Model 91 Functional Characteristics,
Form A22-6907

Model 195 Functional Characteristics,
Form A22-6943

Programmer's Guide to Debuggina, Form
C28-6610

Storage Estimates, Form C28-6551

supervisor and Data llJ.anaqement Macro
Instructions, Form C28-6647

system Control Blocks, Form C28-6626

system Proarammer's Guide, Form C28-65S0

system Generation, Form C28-6554

Tape Labels, Form C28-6680

Summary of Changes

Following is a list of the programming changes that affect the
elease 19 version of the manual IBM System/360 Operating system:
upervisor and Data Management Services.

----------------------------T---,
I I

Reasons for Changes: IItems Changed or Added: I
I I

----------------------------+---~
I I

American National Standard I"Spanned Variable-Length Records (Sequen-I
COBOL ltial Access Methods)" I

I I
I"Spanned Variable-Length Records (Basic I
I Direct Access Method)" I
I I
I"Block Size (BLKSIZE)" I
I I
Table 9 I

"Standard User Label Exit"

"Defer Nonstandard Input Trailer Label
Exit"

" PUT X Write an Updated Record"

"READ Read a Block"

"Data Event Control Block (DECB)"

I
I
I
I
I
I
I
I
I
I
I
I

"CLOSE -- Terminate Processing of a Data I

r

Set"

"FEOV -- Force End of Volume"

"BUILDRCD -- Euild a Buffer Pool and a
Record Area"

I"Buffer Control"
I
ITable 13

I
I
I
I
I
I
I
I
I
I

I I
._---------------------------+---~

I I
The IBM system/360 Model 1951"Precise and Imprecise Interruptions" I

I I
ITable 6 I
I I
ITable 7 I . ____________________________ ~ ___ J

(Continued)

v

r----------------------------T--
I I
IReasons for Changes: IItems Changed or Added:
I I
~----------------------------+--
I I
IThe IBM 1285, 1287, and 12881Abstract (on front cover)
I Optical Character Readers, I
I the IBM 1275 Optical Reader I
I sorter, and the IBM 1419 I
I Magnetic Character Reader I
I I
~----------------------------+--
I I
IThe ATLAS macro instruction I"ATLAS -- Perform Alternate Track
I I Location Assignment
I I
~------------------------~---+--
IThe ability to reuse I"Creating an Indexed Sequential Data Set
I previously allocated space I
I and the full track index I
I write option, both in ISAM I
~----------------------------+--
I I
IDifferent density defaults I"Magnetic Tape (TA)"
I for magnetic tape I
I I
I ITable 14
I I
~----------------------------+--
I I
IWriting data sets directly I"SYSIN Data Sets"
I onto the SYSOUT device I
I under MFT and MVT I"Routing Data Sets Through the output
I I Stream"
I I
~------------------~---------+--
I I
IThe ATTACH macro instruc- l"Section I: Supervisor Services"
I tion under MFT without I
I subtasking I
I I
t-~--------------------------+---------------------------------~------
I I
IUsing the WTO and the WTOR I"Writing to the Programmer"
I macro instructions to I
I write messages to the I
I programmer I
I 1
t----------------------------+--.
I I
ITime slicing in MVT with I "Time Slicing"
I the IBM System/360 Model I
I 65 Multiprocessing System I L ____________________________ ~ __ .

vi

Following are some other changed topics:

• "Main Storage Control"

• "Data Sets on Direct Access Devices"

• "Dummy Data Sets"

• "Indexed sequential Data Set Organization"

• "Writing a SYSOUT Data Set"

vii

Preface . iii

Summary of Changes. . . .

Section I: Supervisor Services
Introduction
Program Management

Initial Requirements
Providing an Initial Base Register
Saving Registers•..
Establishing a Permanent Base Register
Linkage Registers

v

1
1
1
2
2
2
4
4

Acquiring the Information in the PARM Field of the EXEC
Statement • . 5

Load Module Structure Types 5
6
6
6
6

Simple Structure
Planned Overlay Structure ..•.
Dynamic Structure . . • .

Load Module Execution
Passing Control in a Simple Structure .

Passing Control Without Return
Passing Control With Return· .
How Control Is Returned

6
6
8

· 10
Return to the Control Program · 12

Passing Control in a Planned Overlay Structure
Passing Control in a Dynamic Structure . • . .

· 12
· . 12

Bringing the Load Module Into Main Storage
Passing Control With Return . .
How Control Is Returned
Passing Control Without Return

Task Creation
Creating the Task
Task Priority

Priority of the Job Step Task
Priority of Subtasks

Time Slicing
Task Management

Task and Subtask Communications .
Task Synchronization

Program Management Services
Additional Entry Points
Entry Point and Calling Sequence Identifiers
Using a Serially Reusable Resource

Naming the Resource
Exclusive and Shared Requests
Processing the Request
Proper Use of ENQ and DEQ . . .

Obtaining Information From the Task Control Block
Timing Services • . .

Date and Time of Day
Interval Timing . •

Writing to One or More Operator Consoles
Writing to the Programmer•.•..
Writing to the Hard Copy Log
Writing to the System Log.
Message Deletion

ix

· . 12
· 17
· 21
· 21

· 23
23

· 23
· • . . . 23

• 24
• • • • • • 25

• • • • • • • 26
• • • • • • • 26

• 27
• 28

• • • • • 28
28

• • 29
• 29
• 30

• • • • • 30
· . • . 31

33
• • • • 34

• • • • • 34
34

· • • • • 36
37

• • • • • 38
38
39

Contellts

Program Interruption Processing
Abnormal Condition Handling

Interception of Abnormal Termination .
The Dump •.•• • . . .

Requirements • • . . .
Indicative Dump

Main Storage Management . . . •
Explicit Requests . . • .

39
43
45
49
49
50
50
50
51
51

Specifying Lengths•..
Types of Explicit Requests ...•.
Subpool Handling (in PCP Systems and in MFT Systems Without
Subtasking) . . •. .••••.•.. 52

52
52
55
55
58
59
59
60
62
62
67
67
67
68

Subpool Handling (in MFT Systems With Subtasking) .•••
Subpool Handling (in MVT Systems)•.••...••

Implicit Request . . • .. .•..
Load Module Management . . . • . .
Releasing Main Storage . . . •
Storage Hierarchies . • • .

Checkpoint and Restart • • • • . • • •
Establishing Checkpoints

Checkpoints and Serially Reusable Resources
Checkpoints and Data Management . . • . .

Checkpoint Data Sets
Defining a Checkpoint Data Set .
Using a Checkpoint Data Set

Restarting a Job Step . • . • . .

Section II: Data Management Services .

Part 1: Introduction to Data Management
Data Set Characteristics

Data Set Identification
Data Set Storage

Direct Access Volumes
Magnetic Tape Volumes

Data Set Record Formats
Fixed-Length Records . .
Variable-Length Records
Undefined-Length Records • .
Control Character •

Direct Access Device Characteristics . .
Track Format. . . . • . • . . • . .
Track Addressing • . •
Track Overflow . . • • •
Write Validity Check ..

Interface With the Operating System ...•.
Data Set Description . • . • • . •
Processing Program Description .
Modifying the Data Control Block • .
Sharing a Data Set •

Part 2: Data Management Processing Procedures
Data Processing Techniques . • .

Queued Access Technique
GET -- Retrieve a Record . .•••
PUT -- Write a Record • • • .
PUTX -- Write an Updated Record . • • .

x

71

73
• • •• 73

• • • • • • • • 75
76
76
77
78
78
79
84

• . .. 85
85

• • • . . 86
87
87
88
88
90
91

101
• • • • . . 102

. • • 105
· 105
• 105
• 105

. • • 105
• 106

Basic Access Technique 106
READ -- Read a Block 106
WRITE -- Write a Block 107
CHECK -- Test Completion of Read/Write Operation 108
WAIT -- Wait for Completion of a Read/Write Operation 108
Data Event Control Block (DECB) 108

Error Handling•........ . 108
SYNADAF -- Perform SYNAD Analysis Function . 109
SYNADRLS -- Release SYNADAF Message and Save Areas 109
ATLAS -- Perform Alternate Track Location Assignment . . 109

Selecting an Access Method 110
Opening and Closing a Data Set 110

OPEN -- Initiate Processing of a Data Set III
CLOSE -- Terminate Processing of a Data Set . 112
End-of-Volume Processing • . 113
FEOV -- Force End of Volume 114

uffer Acquisition and Control 114
Buffer Pool Construction . 115

BUILD -- Construct a Buffer Pool . 115
BUILDRCD -- Build a Buffer Pool and a Record Area . . . 115
GETPOOL -- Get a Buffer Pool . . • . . 116
Automatic Buffer Pool Construction 116
FREEPOOL -- Free a Buffer Pool 116

Buffer Control 117
Simple Buffering 118
Exchange Buffering 121
RELSE -- Release an Input Buffer 124
TRUNC -- Truncate an Output Buffer 125
GETBUF -- Get a Buffer From a Pool 125
FREEBUF -- Return a Buffer to a Pool 125
FREEDBUF -- Return a Dynamic Buffer to a Pool . . 125

'rocessing a Sequential Data Set 125
Data Format -- Device Type Considerations 126

Magnetic Tape (TA) 126
Paper Tape Reader (PT) 127
Card Reader and Punch (RD/PC) 128
Printer (PR) 128
Direct Access (DA) 128

Sequential Data Sets -- Device Control . . 129
CNTRL -- Control an I/O Device 129
PRTOV -- Test for Printer Overflow 129
SETPRT -- Load Character Set for UCS Printer . . . 129
BSP -- Backspace a Magnetic Tape or Direct Access Volume . . . 130
NOTE -- Return the Relative Address of a Block 130
POINT -- Position to a Block. 130

Sequential Data Sets -- Device Independence . 130
System Generation Considerations 131
Programming Considerations 131

Chained Scheduling for I/O Operations 132
Creating a Sequential Data Set 133

'rocessing a Partitioned Data Set 135
Partitioned Data Set Directory 136
Processing a Member of a Partitioned Data Set 138

BLDL Construct a Directory Entry List ..•....•. 139
FIND -- position to a Member. 139
STOW -- Alter a Directory Entry . 140

Creating a Partitioned Data Set 140
Retrieving a Member 141
Updating a Member• 143
Updating in Place . . . • 143
Rewriting a Member . . . 144

xi

Processing an Indexed Sequential Data Set
Indexed Sequential Data Set Organization.

Prime Area· . . • • • .
Index Areas . • • • . • •
Overflow Areas· . • . . • • .

Adding Records to an Indexed Sequential Data Set. . . • •
Inserting New Records Into an Existing Indexed Sequential
Data Set· . • . • • . • . • . • • • • • • . • .
Adding New Records to the End of an Indexed Sequential Data
Set • . • . • . . . • . • • • • • • • . • •

Maintaining an Indexed Sequential Data Set. . • • • .
Indexed Sequential Buffer and Work Area Requirements. . • . • •
Controlling an Indexed Sequential Data Set Device . • • •

SETL -- Specify Start of Sequential Retrieval
ESETL -- End Sequential Retrieval • . . .

Creating an Indexed Sequential Data Set .
Updating an Indexed Sequential Data Set • . . .
Direct Retrieval and Update of an Indexed Sequential Data Set .

Processinq a Direct Data Set· .•..........
Organizing a Direct Data Set
Referring to a Record in a Direct Data Set
Creating a Direct Data Set •..•. . . .
Adding/Updating Records on a Direct Data Set

Part 3: Data Set Disposition and Space Allocation
Allocating Space on Direct Access Volumes .

Specifying Space Requirements . . . • . . .
Estimating Space Requirements . • . • . . . • . . .
Allocating Space for a Partitioned Data Set .
Allocating Space for an Indexed Sequential Data Set .

Specifying a Prime Data Area
Specifying a Separate Index Area •.....
Specifying an Independent Overflow Area . • .
Calculating Space Requirements for an Indexed Sequential
Data Set. • . . • . . • . . . • • • .

Control and Disposition of Data Sets ..•.•
Routing Data Sets Through the Output Stream .

Opening a SYSOUT Data Set •
Writing a SYSOUT Data Set • • . .

Concatenating Sequential and Partitioned Data Sets
Cataloging Data Sets .••.....••

Entering a Data Set Name in the Catalog • . . . • • • .
Entering a Generation Data Group in the Catalog . . • • . . .

Control of Confidential Data -- Password Protection .

Appendix A: Direct Access Labels
Volume Label Group . . . • •
Direct Access VolUme Label Format •
Data Set Control Block (DSCB) Group •
User Label Groups • • .
User Header and Trailer Label Format

Appendix B: Control Characters
Machine Code . . . • . . • • • • . . • • • . •
Extended American National Standard Code for Information
Interchange . • • . . . • . • . • • . . . • . • • . .

Index

xii

145
145
146
146
148
148

148

149
150
151
156
156
156
156
159
160
164
165
165
166
167

171
171
171
172
174
174
177
177
177

177
182
182
183
184
184
186
187
188
188

189
189
190
191
191
192

193
193

193

195

Illustrations

Figures

Figure 1. Save Area Format · · · · · · · · · · 3
Figure 2. Acquiring PARM Field Information 5
Foigure 3. l-J.isusing Control Program Facilities · · · 22
F'igure 4. Task Hierarchy · · · · · · · · 26
Figure 5. Event Control Block · · · · · · 27
Figure 6. EN~ r-:acro Instruction Processing 31
Figure 7. Interlock Condition · · · · · · · · 32
Figure 8. Program Interruption Control Area · 40
F'igure 9. Program Interruption Element · · · · 40
Figure 10. Abnormal Condition Detection · · 44
Figure 11. Work Area for STA~ Exit Routine · · · 48
F'igure 12. Main storage Control · · .• · · · 53
Figure 13. Fixed-Length Records · · · · · · · · 79
Figure 14. Variable-Length Records · · · · · · · 81
Figure 15. Spanned Variable-Length Records · · · 82
Figure 16. Segment Control Codes · · · · · · · · 83
Fi,:}ure 17. Spanned Variable-Length Records for BDAM Data sets · 84
l'''igure 18. Undefined-Length Records 85
Figure 19. 2311 Disk Drive · · · · · · · · · 86
Figure 20. Direct Access Volume 'l'rack Formats 86
Figure 21. Completing the Data Control Block · · · · 89
Figure 22. Source and .Sequence for Completing the Data Control

Block · · · · · · 89
Figure 23. Simple 13ufferin<! (GL,i>M) . . · .119
Figure 24. Simple Buffering (GM, PM) · .120
Figure 25. Simple Buffering (GL, PL) · .120
F'igure 26. Exchange Buffering (GT, PT) · .122
Figure 27. Exchange Buffering (GL, PtlJ.) · .123
Figure 28. Excnange Buffering (GL, PT) · .123
Figure 29. A Partitioned Data Set · .136
Figure 30. A Partitioned Data Set Directory Block · .136
Figure 31. A Partitioned Data Set Directory Entry · .137
Figure 32. Build List Format · · · · · · · · · · · · · .139
Figure 33. Indexed Sequential Data Set Organization · .146

I Figure 34. Format of Track Index Entries · · · · · .147
Figure 35. Adding Records to an Indexed Sequential Data set . . · .149
F'igur:e 36. Deleting Records F'rom an Indexed sequential Data set · .151
Figure 37. Reissuing a READ for "Unlike" Concatenated Data Sets · .185
Figure 38. Catalog Structure on Two Volumes • · · .187
Figure 39. Direct Access Labeling · · · · · .189
Figure 40. Initial Volume Label · · · · · · · .190
Figure 41. User Header and Trailer Labels · .192

xiii

Tables

Table 1.
Iable 2.
Table 3.

Table 4.

Table 5.
I Table 6.

TCj.ble 7.
I'able 8.

;Iable 9.
rable 10.
Table 11.
Table 12.
Table 13.
Table 14.
rable 15.
Tanle 16.
rable 17.
Table 18.

Summary of Characteristics and Available Options • 1
Load t-lodule Characteristics • • • • • • • • 6
Search for IVlodule, .c;p or EPLOC Operands With DCB=O or
DCB Operand Omitted • • • • • • • • • • • • • • 14
Search for Module, EP or EPLOC Operands With DCB Operand
specifying Private Library • • • • • • • • 14
Search for I-jodule Using DE Operand • • • • • • • 16
Using W'l'O and WTOR to ~vrite Messages to the Programmer • • 38
Interrupt jon Code in the Old Program Status Word. • • 42
Precise Inter:ruptions in IBM system/360 Models 65, 67,
7~, 85, 91, and 195 • • • • . • • • • • • 43
Data Management Exit Routines • • • • • 92
Format and Contents of an Bxit List • • • • • 95
system Response to a User Label Exit Routine Return Code 97
system Response to Block Count Exit Return Code •• 101
Data Access Methods • • • . • • • • • • • • • • • • .110
Buffering Technique and GET/PUT Processing Modes. • .124
Tape Density (DEN) Values •• . • . • • • • .127
Direct Access storage Device Capacities •. 173
Direct Access Device Overhead Formulas. • • .173
Requests for Indexed Sequential Data Sets •• 176

xiv

Examples

Example 1.
.E;xample 2.
Example 3.
Example 4.
Example 5.
Example 6.
.E;xample 7.
Example 8.
Example 9.
Example 10.
Example 11.
Example 12.
Example 13.
Example 14.
Example 15.
Example 16.

Example 17.

Example 18.
Example 19.
Example 20.
Example 21.
Example 22.
Example 23.
Example 24.
Example 25.
Example 26.
Example 27.
Example 28.
Example 29.

Example 30.
Example 31.
Example 32.
Example 33.
Example 34.
Example 35.
Example 36.
Example 37.

Control section Addressability
Internal Entry Point Addressability
saving A Range of Registers •• • •
Saving Registers 5-10, 14, and 15
Nonreenterable Save Area Chaining
Reenterable Save Area Chaining • • •
Passing Control in a simple Structure
Passing Control With a Parameter List
Passing Control With Return
Passing Control With CALL
Test for Normal Return
Return Code Test Using Branching Table
Establishing a Return Code
Use of the RETURN l-lacro Instruction
RETURN Macro Instruction With Flag

2
2
3
3

• • •• 4
4
7
8
9
9

• • 10
• • 10

11
• • 12

12
Use of the LINK Macro Instruction With the Job or Link
Library •• • • • • • • • • • • • • • • • . • • • • 18
Use of the LINK Macro Instruction With a Private
Library •• . • • • • • • • • • • •
Use of the BLDL Macro Instruction
The LINK Macro Instruction With a DE Operand
Two Requests for Two Resources
One Request for Two Resources
Day of Year Processing
Interval Timing •• • • • •
Writing to the Operator
Writing to the Operator With a Reply
Use of the SPIE Macro Instruction
Use of the STAE Macro Instruction
Use of the GETMAIN Macro Instruction
Using the List and the Execute Forms of the DEQ Macro

• • 18
• • 19
· • 19

33
• • 33

• 35
• • 36

• 37
• • 37
• • 40
• • 46

52

Instruction .• • • . • • • • • • • • • • • • • 57
E;stablishing a Checkpoint • • • • • • • • • • • • • • • 61
Canceling a Request for Automatic Restart 61
Obtaining Updated TCB Information After Restart • • 61
Requesting a Resource After Restart •• • • • • 62
CheckpOints for Processing Work Data Sets • • 67
Alternating Use of Checkpoint Data Sets • 68
Assigning a Checkpoint Identification • • 69
Recording a Checkpoint Identification Assigned by the
Control Program • • • • • • • • • • • • • • • • • 70

xv

Introduction

The supervisor services section of this
~ublication describes the supervisor
services available from the IBM System/360
Operating System through the use of the
supervisor macro instructions supplied by
IBM. The information in this section
includes a discussion of the standard
linkage conventions to be used with the
operating system, as well as a discussion
of the requirements for using the macro
instructions. 'rhis pubiication is to be
used when designing a program; the
information required to code the macro
instructions is presented in the companion
publication IBM System/360 Operating
System: Supervisor and Data Manag~ment
Macro Instructions.

This section covers the three major
configurations of the operating system:
the operating system with the primary
control program (PCP); the operating system
that provides multiprogramming with a fixed
number of tasks (MFT)i and the operating
system that provides multiprogramming with
a variable number of tasks (MVT). Unless
otherwise indicated in the text, the
descriptions in this section apply to all
configurations of the operating system;
when differences arise because of operating
system options, these differences are
explained.

Section I: Supervisor Services

A brief description of the three
configurations of the operating system is
given in Table 1. This table does not
attempt to cover all of the options
available in the operating system; it only
summarizes the options that affect the
material covered in tnis manual.

Program Management

The following discussion provides the
requirements for the design of programs to
be processed using the rEM System/360
Operating System. Included here are the
procedures required when receiving control
from the control program, the program
design facilities available, and the
conventions established for use in program
management.

This discussion presents the conventions
and procedures in terms of called and
calling programs. Each program given
control during the job step is initially a
called program. During the execution of
that proqram, the services of another
program may be required, at which time the
first program becomes a calling program.
Eor example, the control program passes
control to program A which is, at that
point, a called program. During the
execution of program A, control is passed

Table 1. Summary of Characteristics and Available options
r---------------------T---------------------T---------------------T---------------------,
I I PCP \ MFT I MVT I
~---------------------+---------------------+---------------------+---------------------~
\Brief Description \sequential scheduler, I Priority Scheduler, \Friority scheduler, \

I I lone task per job lone (or, optionally, lone or more tasks perl
I \step, one job Imore than one) task Ijob step, 1 to 15 I
I Iprocessed at a time Iper job step, 1 to I jobs processed I
I I 115 jobs processed I concurrently I
I I I concurrently I I
~---------------------+---------------------+~--------------------+---------------------~
I Multiple wait Option I Optional I Standard I Standard I
~------------~--------+---------------------+---------------------+---------------------~
I Identify Option I Optional I Optional I Standard I
~---------------------+---------------------+---------------------+---------------------~
I rime Option I Optional I Optional \ Standard I
~---------------------+---------------------+---------------------+---------------------~
I Interval Timing I Optional I Optional I Standard I
I Option I I I I
~---------------------+---------------------+---------------------+------------------~--~
I System Log Option INot available I Optional I Optional I l _____________________ ~ _____________________ ~ _____________________ ~ _____________________ J

section I: Supervisor Services 1

to program E. Program A is now a calling
program, program B a called program.
Program B eventually returns control to
program A, which eventually returns control
to the control program. This is one of the
simpler cases, of course. Pronram B could
pass control to progranl C, which passes
control to program D, which returns control
to program C, etc. Each of these programs
has the characteristics of eicher a called
or calling program, regardless of whether
it is the first, fifth or twentieth program
given control during a job step.

The conventions and requirements that
follow are presented in terms of one called
and one calling program; these conventions
and requirements apply to all called and
calling programs in the system.

INITIAL REQUIREMENTS

The following paragraphs discuss the
procedures and conventions to be used when
a program receives control from another
program. Although the discussion is
presented in terms of receiving control
from the control program, the procedures
and conventions apply as well when control
is passed directly from another processing
program. If the requirements presented
here are followed in each of the programs
used in a job step, the called program is
not affected by the method used to pass
control or by the identity of the program
passing control.

PROVIDING AN INITIAL BASE REGISTER

When control is passed to your program
from the control program, the address of
the entry point in your program is
contained in register 15. This address can
be used to establish an initial base
register, as shown in Example 1 and Example
2. In Example 1, the entry point address
is assumed to be the address of the first
byte of the control section; an internal
entry point is assumed in Example 2. Since
register 15 already contains the entry

2

point address in Doth examples, no register
loading ia required.

PROGNAME CSECT
USING *,15

Example 1. Control Section Addressability

PROGNAME DS OH
USING *,15

Example 2. Internal Entry· Point
Addressaoility

SAVING REGISTERS

The first action your program should
take is to save the contents of the general
registers. The contents of any register
your program will modify must be saved,
along with the contents of registers 0, 1,
14, and 15. The latter registers may be
modified, along with the condition code,
when system macro instructions are used to
request data management or supervisor
services.

Tne general registers are saved in an
18-word area provided by the control
program; the format of this area is shown
in Figure 1. When control is passed to
your program from the control program, the
address of the save area is contained in
register 13. As indicated in Figure 1, the
contents of each of the reoisters must be
saved at a predetermined location within
the save area; for example, register 0 is
always stored at word 6 of the save area,
register 9 at word 15. The safest
procedure is to save all of the registers;
this insures that later changes to your
program will not result in the modification
of the contents of a register which has not
been 3aved.

r----T------------------------------------,
IWordl Contents I
~----+------------------------------------~ I 1 IUsed by PL/l language program I
~----+------------------------------------~
I 2 IAddress of previous save area I
I I (stored by calling program) I
~----+------------------------------------~
I 3 IAddress of next save area (stored byl
I Icurrent program) I
~----+------------------------------------~
I 4 IRegister 14 (Return address) I

~----+------------------------------------~ I 5 IRegister 15 (Entry Point address) I
~----+------------------------------------~
I 6 IRegister 0 I
~----+-~----------------------------------~
I 7 IRegister 1 I
~----+------------------------------------~
I 8 IRegister 2 I
~----+------------------------------------~
I 9 IRegister 3 I
~----+------------------------------------~
I 10 IRegister 4 i
~----+------------------------------------~
I 11 IRegister 5 I
~----+------------------------------------~

t-~;-t~~;~;-~--------------------------1 I
~----+------------------------------------~
I 14 IRegister 8 1
~----+------------------------------------~
I 15 IRegister 9 I
~----+------------------------------------~ I 16 iRegister 10 I
~----+------------------------------------~
I 17 IRegister 11 I
~----+------------------------------------~
I 18 IRegister 12 ' I L ____ ~ ____________________________________ J

Figure 1. Save Area Format

To save the contents of the general
registers, a store-multiple instruction,
spch as STM 14,12,12(13), can be written.
rhis instruction places the contents of all
the registers except register 13 in the
proper words of the save area. (saving .the
contents of register 13 is covered later.)
If the contents of only registers 14, 15,
and 0-6 are to be saved, the instruction
would be STM 14,6,12(13).

THE SAVE MACRO INSTRUCTION: The SAVE macro
instruction, provided to save you coding
time, results in the instructions necessary
to store a designated range of registers.
An example of the use of the SAVE macro
instruction is shown in Example 3. The
registers to be saved are coded in the same

order as they would have been designated
had an STM instruction been coded. A
further use of the SAVE macro instruction
is shown in Example 4. The operand T
specifies that the contents of registers 14
and 15 are to be saved in words 4 and 5 of
the save area. The expansion of this SAVE
macro instruction results in the
instructions necessary to store registers
5-10, 14, and 15.

PROGNAME SAVE (14,12)
USING PROGNAME,15

Example 3. saving A Range of Registers

PROGNAME SAVE (5 , 10) , T
USING PROGNAME,15

Example 4. saving Registers 5-10, 14, and
15

When you use the optional identifier­
name operand, you can code the SAVE macro
instruction only at the entry point of a
program. This is because the code
resulting from the macro instruction with
this operand requires that register 15
contain the address of the SAVE macro
instruction.

PROVIDING A SAVE AREA: If your program is
going to use any system macro instructions
(other than SAVE, RETURN, or the register
forms of GETMAIN and FREEMAIN), or if any
control section in your program is going to
pass control to another control section and
receive control back, your program is going
to be a calling program and must provide
another save area. Providing a save area
allows the program you call to save
registers without regard to whether it was
called by your program, another processing
program, or by the control program. If
your program does not use system macro
instructions and if you establish
beforehand what registers are available to
the called program or control section, a
save area is not necessary, but this is
poor practice unless you are writing very
simple routines.

Whether or not your program is going to
provide a save area, the address of the
save area you used must be saved. You will
need this address to restore the registers
before you return to the program that
called your program. If you are not

Section I: Supervisor Services 3

providing a save area, you can keep the
save area address in register 13, or save
it in a fullword in your program. If you
are providing another save area, the
following procedure should be followed:

• Store the address of the .3ave area you
used (that is, the address passed to
you in register 13) in the second word
of the new save area.

• store the address of the new save area
(that is, the a1dress you will pass in
register 13) in the third word of the
save area you used.

The reason for saving both addresses is
discussed more fully under the heading "The
Dump." Briefly, save the address of the
save area you used so you can find the save
area when you ~eed it to restore the
registers; save the a1dress of the new save
area so a trace from save area to save area
is possible.

Example 5 and Example 6 ..:ihow two methods
of obtaining a new save area and of saving
the save area addresses. In Example 5, the
registers are stored in the save area
provided by "the calling program (the
control program). The address of this save
area is then saved at the second word of
the new save area, an 18 fullword area
establisned through a DC instruction.
Register 12 (any register could have been
used) is loaded with the address of the
previous save area. The address of the new
save area is loaded into register 13, then
stored at the third word of tne old save
area.

PROGNAME

SAVEAREA

STM
USING
ST
LR
LA
ST

DC

14,12,12(13)
PROGNAME,15
13,SAVEAREA+4
12,13
13, SAVEAREA
13,8(12)

18A(O)

Example 5. Nonreenterable Save Area
Chaining

In Example 6, the registers are again
stored in the save area provided oy the
calling program. The entry point address
in reqister 15 is loaded into reaister 2,
which-is declared as a base register. The
contents of register 1 are saved in another
register, and a GE'IMAIN maCI'O instruction
is issued. The GETL~IN macro instruction
(discussed in greater detail under the
heading "Main Storage t'lanagernent n) requests

4

the control pIogram to allocate 72 byte..:i of
main storage from an area outside your
program, and to return the address of toe
~re~ in register 1. The addresses of the
new and old save areas are saved in t_he
established locations, and the address of
the new save area is loaded into regidter
13.

PROGNAME

Example 6.

SAVE
LR
USING
LR
GETMAIN
ST
ST
LR

(14,12)
2,15
PROGNAME,2
3,1
R,LV=72
13,4(1)
1,8(13)
13,1

Reenterable Save Area Chaining

ESTAdLISrlING A PEl:<.MANENT BASE REGIS'I'L.t{

if your program does not use sjsterr
macro instructions and does not pass
control to another program, the base
re~ister established using the entry point
address in register 15 is adequate.
Otherwise, after yo~ have saved your
registers, establish base registers u0ing
one or more of registers 2-12. Register 15
is used by both the concrol program and
your program for other purposes.

LINKAGE REGISTERS

Re~isters 0, 1, 13, 14, and 15 are known
as the linkage reaisters, and are used in
an established manner OJ the control
?rogram. It is good practice to use these
registers in the same way in your proqram.
As noted earlier, registers 0, 1, 14, anu
15 may be modified when system macro
instructions are used; registers 2-13
remain unchanged.

REGISTERS 0 AND 1: Registers 0 and 1 are
used to :?ass parameters to the control
program or to a called program. The
expansion of a system wacro instruction
results in instructions required to load a
value into register 0 or 1 or both, or to
load the address of a parameter list into
register 1. The control program also uses
register 1 to pass parameters to your
program or to the program you call. ~his
is why the contents of register 1 Here
loaded into register 3 in Example 6.

REGISTER 13: Register 13 contains the
address of the save area you have provided.
The control program may use this save area
when processing r~quests you have made
using system macro instructions. A program
you call can also use this save area when
it issues a SAVE macro instruction.

REGISTER 14: Register 14 contains the
return address of the program that called
you, or an address within tne control
program to which you are to return when you
have completed processing. The expansion
of most system macro instructions results
in an instruction to load register 14 with
the address of your next sequential
instruction. A BR 14 instruction at the
end of any program will return control to
the calling program as long as the contents
of register 14 have not been altered.

REGISTBR 15: Register 15, as you have
seen, contains an entry point address when
control is passed to a program from the
control program. The entry point address
should also be contained in register 15
when you pass control to another program.
In addition, the expansions of some system
macro instructions result in the .
instructions to load into register 15 the
address of a parameter list to be passed to
the control program. Register 15 is also
used to pass a return code to a calling
program.

ACQUIRING THE INFOR~.ATION IN THE PAID-1 FIELD
OF THE EXEC STAT~MENT

The manner in which the control program
passes the information in the PARt-1 field of
your EXEC statement is a good example of
how the control program uses a parameter
register to pass information. When control
is passed to your program from the control
program, register 1 contains the address of
a fullword on a fullword boundary in your
area of main storage (refer to Figure 2).
The high order bit (bit 0) of this word is
set to 1. This is a convention used by the
control program to indicate tne last word
in a variable-length parameter list; you
must use the same convention when making
requests to the control program. The
low-order three bytes of the full word
contain the address of a two-byte length
field on a halfword boundary. The length
field contains a binary count of the number
of bytes in the PARM field, which
immediately follows the length field. If

the PARM field was omitted in the EXEC
statement, the count is set to zero. To
prevent possible errors, the count should
always be used as a length attribute in
acquiring the information in the PARM
field. If your program is not soing to use
this information immediately, you should
load the address from register 1 into one
of registers 2-12 or store the address in a
fullword in your program.

Register
1

Figure 2.

Full-Word
Boundary

4 ~ytes

2 Bytes
Half-Word
Boundary

o to 100 Bytes

Acquiring PA&~ Field
Information

LOAD MODULE STRUCTURE TYPES

Each load module used during a job step
can be designed in one of three load module
structures: simple, planned overlay, or
dynamic. A simple structure does not pass
control to any other load modules during
its execution, and is brought into main
storage all at one time. A planned overlay
structure does not pass control to any
other load modules during its execution,
and it is not brought into main storage all
at one time. Instead, segments of the load
module reuse the same area of main storage.
A dynamic structure is brought into main
storage all at one time, and passes control
to other load modules during its execution.
Each of the load modules to which control
is passed can be one of the three structure
types.

Table 2 summarizes the characteristics
of these load module structures.

Section I: supervisor Services 5

rable 2. Load Module Characteristics
r-------------T-------------T---.----------,
J I I Passes I
I I I Control to I
I structure ILoaded All atl Other Load I
I Type lOne Time I ·Modules I
r-------------+-------------+-------------~ I Simple I Yes I No I
.------~-~----+-------------+-------------~ I Planned II I
I Overlay I No I No I
• -------------+-------------+-------------~ I Oynamic I Yes I Yes I L ___ ---_______ ~ _________ - ___ ~ _____________ J

The following paragraphs cover the
advantages and disadvantages 6f each type
of structure, and discuss the use of each.

SIMPLE STRUCTURE

A simple structure consists of a single
load module produced by the linkage editor.
rhe single load module contains all of the
instructions required, and is brought into
the main storage all at one time by the
control program. 'I'he simple structure can
be the most efficient of the three
structuJ;e types because the instructions it
uses to pass control do not require control
program intervention. However, when a
program is very large or complex, the main
storage area required for the load module
may exceed that which can be reasonably
re~uested. (f.'lain storage considerations
are discussed under the heading "Main
storage Management.")

PLANNED OVERLAy STRUCTURE

'A planned overlay structure consists of
a singl~ load module produced by the
linkage' edit.or. The entire load module is
not bro\Jght into main storage at once;
different segments of the load module use
the same area of main storage. The planned
overlay structure, while not as efficient
as a siulple structure in terms of execution
speed, is more efficient than a dynamic
structure. When using a planned overlay
structure, control progrqm assistance is
required to locate and load portions of a
single load module in a library; in a,
dynamic structure, many load modules in
different libraries may need to be located
and loaded in order to execute an
equivalent program.

DYNAM~C STRUCTURE

A dynamic structure requires more than
one load ffiOQule during execution. Each

6

load module required can operate as either
a simple structure, a planned overlay
structure, or another dynamic structure.
The advantages of a dynamic structure over
a planned overlay structure increase as the
program becomes more complex, particularly
when the logical path of the program
depends on the data being processed. rhe
load modules required in a dynamic
structure are brought into main storage
when required, and can be deleted from main
storage when their use is completed •

LOAD MODULE EXECUTION

Depending on the configuration of the
operating system and the macro instructions
used to pass control, execution of the load
modules is serial or in parallel.
Execution of the load modules is always

I
serial in an operating system with PCP;
there is only one task in the job step •.
Execution is also serial in an operating
system with MFT ~nd MVT unless an ATTACH
macro instruction is used to create a new
task. The new.task competes for control
independently with all other tasks in the
system. The load module named in the
ATTACH macro instruction is executed in
parallel with the load module containing
the ATTACH macro instruction. rhe
execution of the load modules is serial
within each task.

'rhe following paragraphs discuss passing
control for serial execution of a load
module. Creation and management of new
tasks is discussed under the headings "Task
creation" and "Task Management."

PASSING CONTROL IN A SIMPLE STRUCTURE

There are certain procedures to follow
when passing control to an entry point in
the same load module. 'rhe established
conventions to use when passing control are
also discussed. These procedures and
conventions provide the framework around
which all program interface is built.
Knowledge of the information contained in
the section "Addressing -- Program
sectioning and Linking" in the publication
IBM system/360 Operatin~stem: Assembler
Language is required.

PASSING CONTROL WITHOUT RETURN

A control section is usually written to
perform a specific logical function within
the load module. Therefore, there will be
occasions when control is to be passed to
another control section in the same load

module, and no return of control is
required. An example of this type of
control section is a "housekeepingft routine
at the beginning of a program which
establishes values, initializes switches,
and acquires buffers for the other control
sections in the program. The following
procedures should be used when passinq
control without return.

!~ITIAL REQUIREMENTS: Because control will
not be returned to this control section,
you must restore the contents of register
14. Register 14 originally contained the
address of the location in the calling
program (for example, the control program)
to which control is to be passed when your
program is finished. Since the current
control section will not make the return to
the calling program, the return address
must be passed to the control section that
will make the return. In addition, the
contents of registers 2-12 must be
unchanged when your program eventually
returns control, so these registers must
also be restored.

If control were being passed to the next
entry point from the control program,
register 15 would contain the entry point
address. You should use register 15 in the
same ~'ay, so that the called routine
remains independent of which program passed
control to it.

Register 1 should be used to pass
parameters. A parameter list should be
established, and the address of the list
placed in register 1. The parameter list
should consist of consecutive full words
starting on a fullword boundary, each
fullword containing an address to be passed
to the called control section in the tnree
low oraer bytes of the word. The
high-order bit of the last word should be
set to 1 to indicate the last wora of the
list. The system convention is that the
list contain addresses only. You may, of
course, deviate from this convention;
however, when you deviate from any system
convention, you restrict the use of your
programs to those programmers who are aware
of your special conventions.

Since yOU have reloaded all the
necessary registers, the save area that you
used is now available, and can be reused by
the called control section. You pass the
address of the save area in register 13
just as it was passed to YOU. By passing
the address of the old save area, you save
the 72 bytes of main storage area required
for a second, and unnecessary, save area.

PASSING CONTROL: The common way to pass
control between one control section and an
entry point in the same load module is to
load register 15 with a V-type address
constant for the name of the external ~ntry
point, and then to branch to the address in
register 15. The external entry point must
have been identified using an ENTRY
instruction in the called control section
if the entry pOint is not the same as the
control section name.

An example of proper register loading
and control transfer is shown in Example 7.
In this example, no new save area is used,
so register 13 still contains the address
of the old save area. It is also ass.umed
for this example that the control section
will pass the same parameters it received
to the next entry point. First, register
14 is reloaded with the return address.
Next, register 15 is loaded with the
address of the external entry point NEXT,
using the V-type address constant at the
location NEXTADDR. Reqisters 0-12 are
reloaded, and control is passed by a branch
instruction using register 15. The control
section to which control is passed contains
an ENTRY instruction identifying the entry
point NEXT.

L 14,12(13} CSECT
L 15,NEXTADDR ENTRY NEXT
LM 0,12,20(13)
BR 15-------->NEXT SAVE {14,12}

NEXTADDR DC V(NEXT)

Example 7. Pas;:>ing Control in a Simple
Structure

An example of the use of a parameter
list is shown in Example 8. Early in the
routine the contents of register 1 (that
is, the address of the fullword containing
the PARM field address) were stored at the
fullword PARMADDR. Register 13 is loaded
with the address of the old save area,
which had been saved in word 2 of the new
save area. The contents of register 14 are
restored, and register 15 is loaded with
the entry point address.

The address of the list of parameters is
loaded into register 1. These parameters
include the addresses of two data control
blocks (DeBs) and the original register 1
contents. The high-order bit in the last
address parameter (PARMADDR) is set to 1
using an OR-immediate instruction. The
contents of registers 2-12 are restored.
(Since one of thes~ registers was the base

Section I: supervisor Services 7

EARLY
USING
ST

*,12
1,PARMADDR

Establish addressability
Save parameter address

L
L
L
LA
01
LM
ER

13,4(13)
14,12(13)
15,NEXTADDR
1,PARMLIST
PARMADDR,X'80'
2,12,28(13)

Reload address of old save area
Load return address
Load address of next entry point
Load address of parameter list
Turn on last parameter indicator
Reload remaining registers

PARMLIST DS
DCBADDRS DC

DC
PARMADDR DC
NEXTADDR DC

15

OA
A (INDCB)
A (OUTDCB)
A(O)
V(NEXT)

Pass control

Example 8. Passing Control With a Parameter List

register, restoring the registers earlier
would have made the parameter list
unaddressable.) A branch instruction using
register 15 passes control to entry point
NEXT.

PASSING CONTROL WITH RETURN

The control program passed control to
your program, and your program will return
control when it is through processing.
Similarly, control sections within your
program will pass control to other control
sections, and expect to receive control
back. An example of this type of control
section is a "monitor" portion of a
program; the monitor determines the order
of execution of other control sections
based on the type of input data. The
following procedures should be used when
passing control with return.

INITIAL REQUIREMENTS: Registers 15 and 1
are used in exactly the same manner as they
were used when control was passed without
return. Register 15 contains the entry
point address in the new control section
and register 1 is used to pass a parameter
list.

Using the standard convention, register
14 must contain the address of the location
to which control is to be passed when the
called control section completes
processing. This time, of course, it is a
location in the current control section.
The address can be the instruction
following the instruction which causes
control to pass, or it can be another
location within the current control section
designed to handle all returns. Registers
2-12 are not involved in the passing of

8

control; the called control section should
not depend on the contents of these
registers in any way.

You should provide a new save area for
use by the called control section as
previously described, and the addres3 of
that save area should be passed in register
13. Not.e that the same save area can be
reused after control is returned by the
called control section. One new save area
is ordinarily all you will require
regardless of the number of control
sections called.

PASSING CONTROL: Two standard methods are
available for passing control to another
control section and providing for return of
control. One is merely an extension of the
method used to pass control without a
return, and require~ a v-type address
constant and a branch or a br~nch and link
instruction. The other method uses the
CALL macro instruction to provide a
parameter list and establish the entry
point and return point addresses. Using
either method, the entry point must be
identified by an EN'I'RY instruction in the
called control section if the entry name is
not the same as the control section name.
Example 9 and Example 10 illustrate the two
methods of passing control; in each
example, it is assumed that register 13
already contains the address of a new save
area.

Use of an inline parameter list and an
answer area is also illustrated in Example
9. The address of the external entry point
is loaded into register 15 in the usual
manner. A branch and link instruction is
then used to branch around the parameter

L
CNOP
BAL
DS
DC
DC
DC
DC
DC
BALR

15,NEXTADDR
0,4

Entry point address in register 15

PARMLIST
DCBADDRS

l,GOOUT
OA

Parameter list address in register 1
Start of parameter list

A (INDCB) Input dcb address
A (OUTDCB)
B'10000000'
AL3(AREA)
V(NEXT)
14,15

Output dcb address
ANSWERAD Last parameter bit on

Answer area address
NEXTADDR
GOOUT
RETURNPT
AREA

Address of entry point
Pass control; register 14 contains return address

DC 12F'O' Answer area from NEXT

Example 9. Passing Control With Return

list and to load register 1 with the
address of the parameter list. An inline
t?arameter list such as the one shown in
Example 9 is convenient when you are
debugging because the parameters. involved
are located in the listing (or the dump) at
the point they are used, instead of at the
end of the listing or dump. Note that the
first byte of the last address parameter
(ANSWERAD) is coded with the high-order bit
set to 1 to indicate the end of the list.
rhe area pointed to by the address in the
ANSWERAD parameter is an area to be used by
the called control section to pass
t?arameters back to the calling control
section. This is a possible method to use
when a called control section must pass
parameters back to the calling control
section. Parameters are passed back in
this manner so that no additional registers
are involved. The area used in tnis
example is twelve full words; the size of
the area for any specific application
depends on the requirements of the two
control sections involved.

CALL NEXT,(INDCB,OUTDCB,AREA),VL
RETURNPT
AREA DC 121'" 0'

Example 10. Passing Control With CALL

The CALL macro instruction in Example 10
provides the same functions as the
instructions in Example 9. When the CALL
macro instruction is expanded, the operands
cause the following results:

NEXT
A V-type address constant is created
for NEXT, and the address is loaded
into register 15.

(INDCB,OUTDCB,AREA)
A-type address constants are created

VL

for the three parameters coded wi th.in
parentheses, and the address of the
first A-type address constant is
placed in register 1.

The high order bit of the last A-type
address constant is set to 1.

Control is passed to N:E;XT using a branch
and link instruction. The address of the
instruction following the CALL macro
instruction is loaded into register 14
before control is passed.

In addition to the results described
above, the V-type address constant
generated by the CALL macro instruction
causes the load module with the entry point
NEXT to be automatically edited into the
same load module as the control section
containing the CALL macro instruction.
Refer to the publication IBM System/360
Operating system: Linkaae Editor and
Loader, if you are interested in finding
out more about this service.

The parameter list constructed from the
CALL n~cro instruction in Example 10
contains only A-type address constants. A
variation on this type of parameter list
results from the following coding:

CALL NEXT, (INDCB,(6),(7),VL

In the above CALL macro instruction, two of
the parameters to be passed are coded as
registers rather than symbolic addresses.
The expansion of this macro instruction
again results in a three-word parameter
list; in this example, however, the
expansion also contains the instructions
necessary to store the content's of
reqisters 6 and 7 in the second and third
words, respectively, of the parameter list.
The high-order bit in the third word is set
tol after register 7 is stored. You can

Section I: Supervisor Services 9

specify as many parameters as you need as
address parameters to be passed, and you
can use symbolic addresses or register
contents as you see fit.

ANALYZING THE· RETURN: When control is
returned from the control program after
processing a system macro instruction, the
contents of registers 2-13 are unchanged.
When control is returned to your control
section from the called control section,
registers 2-14 contain the same information
they contained when control was passed, as
long as system conventions are followed.
rhe called control section has no
obligation to restore registers 0 and 1; so
the contents of these registers mayor may
not have been changed.

When contro'l is returned, register 15
can contain a return code indicating tne
results of the processing done by the
called control section. If used, the
return code should be a multiple of 4, so a
branching table can be used easily, and a
return code of 0 snould be used to indicate
a normal return. The control program
frequently uses this method to indicate the
results of the requests you make using
system macro instructions; an example of
the type of return codes the control
program provides is shown in the
description of the IDENTIFY and STOW macro
instructions in the publication IBM
System/360 Operating System: Supervisor
and Data Managemen~ Macro Instructions.

The meaning of each of the codes to be
returned must be agreed upon in advance.
In some cases, either a "good" or "bad"
indication (zero or nonzero) will be
sufficient for you to decide your next
action. If this is true, the code shown in
Example II could be used to analyze the
results. Many times, however, the results
and the alternatives are more complicated,

and a branching table, such as shown in
Example 12, could be used to pass control
to the proper routine.

HOW CONTROL IS RETURNED

In the discussion of the return under
the heading "Analyzing the Return" it was
indicated that the control section
returning control must restore the contents
of registers 2-14. Because these are the
same registers reloaded when control is
passed without a return, refer to the
discussion under "Passing Control Without
Return" for detailed information and
examples. The contents of registers 0 and
1 do not have to be restored.

Register 15 can contain a return code
when control is returned. As indicated
previously, a return code should bea
multiple of four with a return code of zero
indicating a normal return. The return
codes other than zero that you use can have
any meaning, as long as the control section
receiving the return codes is aware of that
meaning.

The return address is the address
orig-inally passed in register 14; return of
control should always be passed to that
address. You can either use a branch
instruction such as BR 14, or you can use
the RETURN macro instruction. An example
of each method of returning control is
discussed in the following paragraphs.

£xample 13 is a portion of a control
section used to analyze input data cards
and to check for an out-of-tolerance
condition. Each time an out-of-tolerance
condition is found, in addition to some
corrective action, one is added to the
value at the address STATUSBY. After the
last data card is analyzed, this control

RETURNPT LTR
BNZ

15,15
ERRORTN

Test return code for zero
Branch if not zero to error routine

Example 11. Test for Normal Return

RETURNPT B RETTAB(15) Branch to table using return code
RETTAB B NORMAL Branch to normal routine

B CONDl Branch to routine for condition 1
B COND2 Branch to routine for condition ~
B GIVEUP Branch to routine to handle impossible situations

Example 12. Return Code Test Using Branching Table

10

L 13,4(13) Load address of previous save area
L 14,12 (13) Load return address
SR 15,15 Set register 15 to zero
IC 15,STATUSBY Load nUfflber of errors
SLA 15,2 Set return code to multiple of 4
LM 2,12,28(13) Reload registers
BR 14 Return

STATUSBY DC x·oo·

Example 13. Establishing a Return Code

section returns to the calling control
section, which proceeds based on the number
of out-of-tolerance conditions·encountered.
The coding shown in Example 13 causes
register 13 to be loaded with the address
of the save area this control section used,
then reloads· register 14 with the proper
return address. The contents of register
15 are set to zero, and the value at the
address STATUS BY (the number of errors) is
placed in the low-order eight bits of the
register. The contents of register 15 are
shifted to t~1e left two places to make the
value a multiple of four. Registers 2-12
are reloaded, and control is returned to
the address in register 14.

'I'he RETURN macro instruction is provided
to save coding time. The expansion of the
RETURN macro instruction provides the
instructions necessary to restore a
designated range of registers, provide the
proper return code value in register 15,
and branch to the address in register 14.
In addition, the RETURN macro instruction
can be used to flag the save area used by
the returning control section; this flag, a
byte containing all ones, is placed in the
high-order byte of word four of ,the save
area after the registers have been
restored. The flag indicates that the
control section that used the save area has
returned to the calling control section.
You will find that the flag is useful when
tracing the flow of your program in a dump.
Fora complete record of program flow, a
separate save area must be provided by each
control section each time control is
passed. This is usually not done because
it requires too much main storage.

2-12

The c01')tents of registe.r 13 must be
restored before the RETURN macro
instruction is issued. The registers to be
reloaded should be coded in the same order
as they would have been designated had a
load-multiple (LM) instruction been coded.
You can load register 15 with the return
code value before you code the RETURN macro
instruction, you can specify the return
code value in the RETURN nacro instruction,
or you can reload register 15 from the save
area.

The code shown in Example 1q provides
the same result as the code shown in
Example 13. Registers 13 and 14 are
reloaded, and the proper value is
established in register 15. Th~ RETURN
macro in~truction causes registers 2-12 to
be reloaded, and control to be passed to
the address in register 14. The saVe area
used is not flagged. Tne RC=(15) operand
indicates that register 15 already contains
the return code value, and the contents of
register 15 are not to oe altered.

Example 15 illustrates another use of
the RETURN macro instruction. The correct
save area address is again established,
then the RETURN macro instruction is
issued. In this example, registers 14 and
0-12 are reloaded, a return code of 8 is
placed in register 15, the save area is
flagged, and control is returned.
Specifying a return code overrides the
request to restore register 15 even though
register 15 is within the designated range
of registers.

Section I: Supervisor services 11

L
L
SR

13,4(13)
14,12(13)
15,15
15,STATUSBY
15,2
(2,12),RC=(15)

Restore save area address
Return address in register 14
Zero register 15

IC Load number of errors
SLA
RETURN

Set return code to multiple of 4
Reload registers and return

STATUSBY DC X'OO'

Example 14. Use of the RETURN Macro Instruction

L
RETURN

13,4(13)
(14,12),T,RC=8

Example 15. RETURN Macro Instruction With
Flag

RETURN TO THE CONTROL PROGRAM

The discussion in the preceding
paragraphs has covered passing control
within one load module, and has been based
on the assumption that the load module was

'brought into main storaqe because of the
program name specified in the EXEC
statement. Whether you were using an
operating system with PCP, MFT, or MVT has
not affected the previous discussion. The
control program established only one task
to be per£ormed for the job step. When the
logical end of the program is reached,
control is returned to the address passed
in register 14 to the first control section
in the program. When the control program
receives control at this point, it
terminates the task it created for the job
step, compares the return code in register
15 with any COND values specified on the
JOB and EX£C statements, and determines
whether or not the following job steps, if
any, should be executed.

PASSING CONTROL IN A PLANNED OVERLAY
STRUCTUR£

A complete discussion of the
requirements for passing control in an
overlay environment is provided in the
publication IBM System/360 Operating
System: Linkage Editor and Loader.

PASSING CONTROL IN A DYNAMIC STRUCTURE

The discussion of passing control in a
simple structure has provided the necessary
background for the discussion of passing
control in a dynamic structure. Within

12

each load module, control should be passed
as in a simple structure or planned overlay
structure. If you can determine which
control sections will make up a load module
before you code the control sections and if
they will fit in the main storage
available, you should pass control within
the load module without involving the
control program. The macro instructions
discussed in this section provide increased
linkage capability, out they require
control program intervention and possibly
increased execution time.

BRINGING THE LOAD MODULE INTO MAIN STORAGE

The load module containing the entry
point name you specified on the EXEC
statement is automatically brought into
main storage by the control program. Any
other load modules you require during your
job step are brought into main stora~e by
the control program as a result of specific
requests for dynamic acquisition; these
requests are made through the use of the
LOAD, LINK, ATrACH., or XCTL macro
instructions. The following paragraphs
discuss the proper use of these rracro
instructions.

LOAD MODULE LOCATION: Initially, each load
module that you can obtain dynamically is
located in a library (partitioned data
set). This library is the link library,
the jon or step library, or a private
library.

• The link library is always present and
is available to all job steps of all
jobs. The control program provides the
necessary data control block for the
library, and logically connects the
library to your program, making the
members of the library available to
your program.

• The job and step libraries are
established by including //JOBLIB and
//STEPLIB DD statements in the input
stream. The //JOBLIB DD statement is

placed immediately after the JOB
statement, while the IISTEPLIB DD
statement is placed among the DD
statements for a particular job step.
The job library is availanle to all
steps of your job, except those that
have step libraries. A step library is
available to a single job step; if
there is a job library, tne step
library replaces the job library ~or
the step. For either the job library
or the step library, the control
program provides the necessary data
control block and issues the OPEN macro
instruction to logically connect the
library to your program •

• A private library is established by
including a DD statement in the input
stream, and is available only to the
job step in which it is defined. You
must provide the necessary data control
block and issue the OPEN macro
instruction for each data set. You may
use more than one private library by
including more than one DD statement
and associated data control block.

A library can be a single partitioned
data set, or a collection of such data
sets. When it is a collection, you define
each data set oy a separate DDstatement,
but you assign a name only to the statement
that defines the first data set. Thus, a
job library consisting of three partitioned
data sets would be defined as follows:

IIJOBLIB DD DSNAME=PDS1,---
II DD DSNAME=PDS2,---
II DD DSNAME=PDS3,---

The three data sets (PDS1, PDS2, PDS3) are
processed as one, and are said to be
concatenated. Concatenation and the use of
partitioned data sets is discussed in more
detail in Section II: Data Management
Services.

If you are using an operating system
with MFT or MVT, some of the load modules
from the link library may already be in
main storage in an area called the resident
reenterable module area (MFT) or the link
pack area (MVT). However, the resident
reenterable module area is optional in an
operating system with MFT. The contents of
this area are determined at Initial Program
Loading time, and will vary depending on
the requirements of your installation. In

I an operating system with MVT, the link pack
area contains frequently used, reenterable
load modules from the link library along
with data management load modules; these
load modules can be used by any job step in

I any job. In an operating system with ~~,

the resident reenterable module area can
contain user-written modules and tne
loader, discussed in the publication IBl"l
System/360 Operating System: Linkage-­
Editor and Loader.

With the exception of those load modules
contained in this area, copies of all of
the load modules you request are brought
into your area of main storage, and are
available to any task in your job step.
The portion of your area containing the
copies of load modules is called the JOD

pack area.

THE SEARCH FOR THE LOAD MODULE: In
response to your request for a copy of a
load module, the control program searches
the libraries, the job pack area, and, when
one exists, the link pack area. If a copy
of the load module is found in one of the
pack areas, the control program determines
whether or not that copy can be used, based
on criteria discussed under the heading
"Using an Existing copy." If an existing
copy can be used, the search stops. If it
can not be used, the search continues until
the module is located in a library. The
load module is then brought into the job
pack area.

The order in which the libraries and
pack areas are searched depends on whether
the system is MVT or ¥£T, and upon the
operands used in the macro instruction
requesting the load module. The operands
that define the order of the search are the
EP, EPLOC, DE, and DCB operands. The BP,
EPLOC, and DE operands are used to specify
the name of the entry point in the load
module; you code one of the three every
time you use a LINK, LOAD, XCTL, or ATTACrl
macro instruction. The DCB operand is used
to indicate the address of the data control
block for the library containing the load
module, and is optional. Omitting the DCB
operand or using the DCB operand with an
address of zero specifies the data control
blocks for the link library and the job or
step library.

The following paragraphs discuss the
order of the search when the entry point
name used is a member name.

The EP and EPLOC operands require the
least effort on your part; you provide only
the entry point name, and the control
program searches for a load module having
that entry point name. Table 3 shows the
order of the search when EP or EPLOC is
coded, and the DCB operand is omitted or
DCB=O is coded.

section I: supervisor Services 13

Table 3. search for Module, EP or EPLOC Operands With DCB=O or DCB Operand omitted
r----------------------------T-----------------------------T----------------------------,
IPCP IMFT IMVT I
t-----------------------~----+-----------------------------+--------~-------------------~
IThe job pack area is IThe partition is searched IThe job pack area of the I
Isearched for an available I Iregion is searched for an I
I copy I lavailable copy I
~----------------------------+-----------------------------+---------~------------------1
IThe step library is IThe resident reenterable loadlThe step library is I
I searched; if there is no Imodule area is searched I searched; if there is no I
Istep library, the job I (optional) Istep librarli, the job I
Ilibrary (if any) is searched I Ilibrary (if any) is searched I
~----------------------------+-----------------------------+----------------------------~
IThe link library is searched I The job library (if any) is IThe link pack area is I
I I searched I searched I
I t-----------------------------+----------------------------~
I I The link library is searched I The link library is searchedl L ____________________________ ~ _____________________________ ~ ____________________________ J

If you know that the load module you are
requesting is a member of one of the
private libraries, you can still use the EP
or EPLOC operands, this time in conjunction
with the DC.S operand. You would specify
the address of the data control block for
the private library in the DCB operand.
The order of the search for EP or EPLOC
with the DCB operand is shown in Table 4.

When used without the DCB operand, the
EP and hPLOC operands provide the easiest
method of requesting a load module from the
link, job, or step library. The job or
step library is searched before the link
library, and the data sets that make up
this library are searched in the order of
their DD statements. Thus, one library or
data set within a library can be used to
hold one version of a load module, while
another can be used to hold another version

with the same entry point name. If one
version is in the link library, you can
ensure that the other will be found first
by including it in the job or step library.
However, if both versions are in the job or
step library, you mU3t define the data set
that contains the version you want to use
before that which contains the other
version. For example, if the wanted
version is in PDSl and the unwanted version
is in PDS2, a step library consisting of
these data sets should be defined as
follows:

//STBPLIB DD DSNAME=PDS1,--­
// DD DSN~lE=PDS2,---

Searching a job or step library slows
the retrieval of load modules from the link
library;. to speed this retrieval, you
should limit the size of the job and step

Table 4. search for Module, E~ or EPLOC Operands With DCB Operand Specifying Private
Library

r----------------------------T-----------------------------T----------------------------,
IPCP IMFT IMVT I
~----------------------------+-----------------------------+----------------------------1
tThe job pack area i.s l'l'he partition is searched IThe job pack area of the I
Isearched for an available I Iregion is searched for an I
I copy I lavailable copy I
t--~-------------------------+-----------------------------+----------------------------~
(The specified library is IThe resident reenterable IThe specified library is I
I searched Iload module area is I searched I
I Isearched (optional) I I
I t-----------------------------+----------------------------~
I I IThe link pack area is I
I I I searched I
I IThe specified library is ~----------------------------1
I I searched IThe link library is searchedl L ____________________________ ~ _____________________________ ~ ____________________________ J

14

libraries. You can best do this by
eliminating the job library altogether_ and
providing step libraries where required.
You can lirrdt each step library to the data
sets required by a single step; some steps
(such as assembly) will not require a step
library, and therefore will not require any
unnecessary search in retrieving modules
from t~e link library. For maximum
efficiency, you should define a job library
only when a step library would be required
for every step, and every step library
would be the same.

The DE operand requires more work than
the EP and EPLOC operands, but it can
reduce the amount of time spent searching
for a load module. Before you can use this
operand, you must use the ELDL macro
instruction to obtain the directory entry
for the module. The directory entry is
part of the library that contains the
module.

To save time, the BLDL macro instruction
used must obtain directory entries for more
than one entry point name. You specify the
names of the load modules and the address
of the data control block for the library
when using the BLDL macro instruction; the
control program places a copy of the
directory entry for each entry point name
requested in a designated location in main
storage. 1f you specify the link library
and the job or step library, the directory
information indicates from which library
the directory entry was taken. The
directory entry always indicates the exact
relative track and block location of the
load module in the library. If the load
module is not located on the library you
indicate, a return code is given. You can
then issue another BLDL macro instruction
specifying a different library.

To use the DB operand, you provide the
address of the directory entry, and code or
omit the DCB operand to indicate the same
library specified in the BLDL macro
instruction. The order of the search when
the DE operand is used is shown in Table 5
for the link, job, step, and private
libraries.

The preceding discussion of the search
is based on the premise that the entry
point name you specified is the member
name. When you are using an operating
system with the primary control program or
MFT, the same search results from

specifying an alias rather than a member
name. When you are using an operating
system that includes MVT, the control
program checks if the entry point name is
an alias when the load module is found in a
library. If the name is an alias, the
control program obtains the corresponding
member name from the library directory,
then searches the link pack and job pack
areas using the member name to determine if
a usable copy of the load module exists in
main storage. If a usable copy does not
exist in a pack area, a new copy is Drought
into the job pack area. Otherwise, the
existing copy is used, conserving main
storage and eliminating the loading time.

As the discussion of the search
indicates, you should choose the operands
for the macro instruction tha.t];Jrovide the
shortest search time. The search of a
library actually involves a search of the
directory, followed by copying the
directory entry into main storage, follo~ed
by loading the load module into main
storage. If you know the location of the
load module, you should use the operands in
your macro instruction that eliminate as
many of these unnecessary searches as
possible, as indicated in Table 3, Table 4,
and Table 5. Examples of the use of these
tables are shown in the discussion of
passing control.

USING AN EXISTING COPY: The control
program will use a copy of the load module
already in the link pack area or job pack
area if the copy can be used. WhEther the
copy can be used or not depends on the
reusability and current status of the load
module; that is, the load module
attributes, as designated using linkage
editor control statements, and whether or
not the load module has already bEen used
or is in use. The status information is
available to the control program only when
you specify the load module entry point
name on an EXEC statement, or when you use
ATTACH, LINK, or XC'l'L macro instructions to
transfer control to the load module. The
control program will protect you from
obtaining an unusable copy of a load module
as long as you always "formally" reque3t a
copy using these macro instructions (or the
EXEC statement); if you ever pass control
in any other manner (for instance, a branch
or a CALL macro instruction), the control
program, because it is not informed, cannot
protect you.

section I: Supervisor services 15

Table 5. Search for Module Using DE Operand
r----------------------------T-----------------------------T----------------------------1
I I I I
IPCP IMFT IMVT I
I I I I
~----------------------------~-----------------------------~------------------------~---~
I Directory Entry Indicates Link Library and DCB=O or DCB Operand omitted I
~----------------------------T--------------~--------------T----------------------------~
IThe job pack area is IThe partition is searched IThe job pack area for the 1
Isearched for an available I Iregion is searched for an I
I copy I I available copy I
~----------------------------+-----------------------------t----------------------------~
IThe module is obtained from IThe resident reenterable IThe link pack area is I
Ithe link library I load module area is searched Isearched I
I I (optional) I I
I t-----------------------------+----------------------------1
I I'The module is obtained from I The module is obtained from I
I Ithe link library Ithe link library I
I I I I
~----------------------------~-----------------------------~----------------------------1
I Directory Entry Indicates Job Library and DCB=O or DCB Operand Omitted I
t----------------------------T-----------------------------T----------------------------1
I The job pack area is l'l'he job pack area for the I The job pack area for the I
Isearched for an available Ipartition is searched for an Iregion is searched for an I
I copy lavailable copy lavailable copy I
~----------------------------+-----------------------------+----------------------------1
IT he module is obtained froIT. I The module is obtained from I The module is obtained from I
Ithe step library; if there Itile step librarYi if there islthe step library; if there I
lis no step library, the Ino step library, the module lis no step library, the I
Imodule is obtained from the lis obtained from the job Imodule is obtained from the 1
Ijob library I library Ijob library I
r---------------------------- i

-----------------------------L----------------------------1
I DCB Operand Indicates Private Library I
r----------------------------T-----------------------------T----------------------------1
IThe job pack area i3 IThe job pack area for the IThe job pack area for the I
Isearched for an available Ipartition is searched for an Iregion is searched for an I
I copy lavailable copy lavailable copy I
t----------------------------+-----------------------------+----------------------------1
I The ITtodule is obtained froIT~ I The module is obtained from I The module is obtained from I
Ithe specified private Ithe specified private librarylthe specified private I
I library I I library I L ____________________________ i _____________________________ i ____________________________ J

Q2~rati~stem With MVT: If you are
using an operating system with MVT, all
reenterable modules <modules designated as
re€nterable using the linkage editor) from
any library are completely reusable; only
one copy is ev~r placed in the link pack
area or brought into your job pack area,
and you get immediate control of the load
module. If the module is serially
reusable, only one copy is ever placed in
the job pack area; this copy will always be
used for a LOAD macro instruction. If the
copy is in use, however, and the request is
made using a LINK, ATTACH, or XCTL macro
instruction, the task requiring the load
module is placed in a wait condition until
the copy is availanle. A LINK macro
instruction should not be issued for a
serially reusable load module currently in
use for the same task; the task will be
abnormally terminated. (This could occur

16

if an exit routine issued a LINK macro
instruction for a load module in use by the
main program.)

If the load module is nonreusable, a
LOAD macro instruction will always bring in
a new copy of the load module; an existing
copy is ~sed only if a LINK,.ATTACH, or
XCTL macro instruction is issued and the
copy has not been used previously.
Remember, the control program can determine
if a load module has been used or is in use
only if all of your requests are made using
LINK, ATTACH, or XCTL macro instructions.

MFT System With Subtaskinq: If you are
using an lvlFT system with subtasking, the
LOAD macro instruction enables all tasks in
a partition to share the same copy of a
reenterable module invoked by a previous
LOAD macro instruction. If the reenterable

module is again invokea hy a LINK, XCTL, or
AT'l'ACH macro instruction and a previous
request is still active, a new copy of the
module will be brought into main storage.

PCP and MFT Systems Without Subtasking: If
you are using an operating system with PCP
or MJ!'T, the macro instruction used to
request the load module also determines if
an existing copy can be used. If a LOAD
macro instruction is issued, an existing
copy is always used to satisfy the request,
~ithout regard to the reusability
designation or the current status of the
copy. However, if an A1~ACh, LINK, or XCTL
macro instruction is issued, an existing
copy is used only if that copy was brought
into main storage as a result of a request
using a LOAD macro instruction and the copy
is not in use; otherwise, a new copy is
brought into the job pack area.

MF12Y§.tems with the Resident Reenterable
Module Area Option: If you are using an
operating system with the MFT resident
reenterable module area option, and you
request use of a module by issuing an
ATTACh, .LINK, LOAD, or XC'l'L macro
instruction, the supervisor will search the
resident reent€rable module area for a copy
of the module before fetching a new copy
into main storage.

USE OF THE LOAD MACRO INSTRuCTION: The
LOAD macro instruction is used to ensure
that a copy of the specified load module is
in main storage in your job pack area if it
is not preloaded into the link pack area.
when a LOAD macro instruction is issued,
the control program searches for the load
module as jiscussed previously, and brings
a copy of the load module into the job pack
area if required. When the control program
returns control, register 0 contains the
main storase address of the entry point
specified for the requested load module.
Normally, the LOAD macro instruction is
used only for a reenterable or serially
reusable load module, since the load mojule
is retain~d even though it is not in use.

The control program also establishes a
"responsibility" count for the copy, and
adds one to the count each time the
requirements of a LOAD macro instruction
are satisfied by the same copy. As long as
the re3ponsibility count is not zero, ti1e
copy is retained in main storage.

The responsibility count for the copy is
lOWEred oy one when a DELETE macro
instruction is issued during the task which
was active when the LOAD macro instruction
was issued. When a task is terminated, the
count is lowered by the number of LOAD

macro instructions issued for the copy when
the task was active minus the number of
deletions.

When the responsibility count for a copy
in a job pack area reaches zero, the main
storage area containing the copy is made
available; the copy is never reused after
the responsibility count established by
LOAD macro instructions reaches zero.

Copies of load modules are not added to
or deleted from the link pack area; LOAD
and DELETE macro instructions issued for
load modules already in the link pack area
result in returns indicating successful
completion, however.

PASSING CON'I'ROL WITd RE'l'U.t<.I.'J

The LINK macro instruction is used to
pass control between load modules and to
provide for return of control. In an
operating system without subtasking (that
is, PCP or MFT without suotasking), the
ATTACH macro instruction is executed i!1 a
similar manner to the LINK macro
instruction. You can also pass control
using branch or branch and iink
instructions or the CALL macro instruction;
however, when you pass control in this
manner you must protect against multiple
uses of nonreusable or serially reusable
modules. The followin~ paragraphs discuss
the requirements for passino control with
return in each case.

THE_LINK J'.1ACRO INSTRUCTION: When you use
the LINK macro instruction, as far· as the
logic of your program is concerned, you are
passing control to another load module.
Remember, however, that you are requesting
the control program to assist JOU in
passing control. You are actually pas~ing
control to the control program, using an
SVC instruction, and requesting the control
program to find a copy of the load modulE
and pass control to the entry point you
designate. There is some similarity
between passing control using a LINK macro
instruction and passing control using a
CALL macro instruction in a simple
structure. These similarities are
discussed first.

The convention regarding registers 2-12
still applies; the control program does not
change the contents of these registers, and
the called load module should restore thEm
before control is returned. You must
provide the address in register 13 of a
save area for use by the called load
module; the control program does not use
this save area. You can pass address

Section I: Supervisor Services 17

pa~ameters in a parameter list to the load
module using register 1; the LINK macro
instruction provides the same facility for
constructing this list as the CALL macro
instruction. Register 0 is used by the
control program and the contents will be
modified.

There is also some difference between
passing control using a LINK macro
instruction and passing control using a
CALL macro instruction. When you pass
control in a simple structure, register 15
contains the entry point address and
register 1.4 contains tne return point
address. When the called load module gets
control, that is still what re~isters i4
and 15 contain, but when you use the LINK
macro instruction, it is the control
program that establishes these addresses.
When you code the LINK macro instruction,
you provide the entry point name and
possibly some library information using the
EP, EPLOC, or DB, and DCB operands. But
you have to get this entry point and
library information to the control program.
rhe expansion of the LINK macro instruction
does this, by creating a control program
parameter list (the information required by
the control program) and placing the
address of this parameter list in register
15. After the control program finds the
entry point, it places the address in
register 15.

The return address in your control
section is alwa}'s the instruction following
the LINK; that is not, however, the address
that the called load module receives in
register 14. Tne control program saves the
address of the location in your program in

its ,own save area, and places in register
14 the address of a routine within the
control program that will receive control.
Because control was passed using the
control program, return must also be made
using the control prograrrl.

The control program establishes a
responsibility count for a load module when
control is passed using the LINK macro
instruction. This is a separate
responsibility count from the count
established for LOAD macro instructions,
but it is used in the same manner. The
count is increased by one when a LINK macro
instruction is issued, and decreased by one
when return is made to the control program
or when the called load modult issues an
XCTL macro instruction.

Examples 16 and 17 show the coding of a
LINK macro instruction used to pass control
to an entry point in a load module. In
Example 16, the load module is from the
link, job, or step library; in Example 17,
the module is from a private library.
Except for the method used to pass control,
this example is similar to Examples 9 and
10. A problem program parameter list
containing the addresses INDCB, OUTDCB, and
AREA is passed to the called load module;
the return point is the instruction
following the LINK macro instruction. A
V-type address constant is not generated,
because the load module containing the
entry point NEXT is not to be edited into
the calling load ITlodule. Note that the BP
operand is chosen, sinc'e the search begins
with the job pack area and the appropriate
library as shown in Table 3.

LINK EP=NEXT,PARAM=(INDCB,OUTDCB,AREA),VL=l
RETURNPT
AREA DC 12F'0'

Example 16. Use of the LINK Macro Instruction With the Job or Link Library

OPEN (PVTLIB)

LINK EP=NEXT,DCB=PVTLIB,PARAM=(INDCB,OUTDCB,AREA),VL=l

PVTLIB DCB DDNAME=PVTLIBDD,DSORG=PO,MACRF=(R)

Example 17. Use of the LINK Macro Instruction With a Private Library

18

BLDL O,LISTADDR

DS
LISTADDR DC

DC
NAMEADDR DC

DS

OH
X'OOOl'
X'003A'
CL8'NEXT'
25H

List description field:
Number of list entries
Length of each entry

Member name
Area required for directory information

Exampl~ 18.", Use of the BLDL Nacro Instruction

LINK DE=NAMEADDR,DCB=O,PARAM=(INDCB,OUTDCB,AREA),VL=l

Example 19. The LINK J.lilacro Instruction 'wi th a DE Operand

Examples 18 and 19 show the use of the
BLDL and LINK macro instructions to pass
control. Assuming control is to be passed
to an entry point in a load module front the
link library, a BLDL macro instruction is
issued to Dring the directory entry for the
member into main storage. (Remember,
however, that time is saved only if more
th~n one directory entry is requested in a
BLDL macro instruction. Only one is
requested here for simplicity.)

The first operand of the BLDL macro
instruction is a zero, which indicates that
the directory entry is on the link or job
library. The second operand is the address
in main storage of the list description
field for the directory entry. The first
two bytes at LISTADDR indicate the number
of directory entries in the list; the
second two bytes indicate the length of
each entry. If the entry is to be used in
a LINK, LOAD, AT'lACd, or XC'I'L macro
instruction, the entry must be 58 bytes in
length (hexadecimal 3A). A character
constant is established to contain the
directory information to be placed there by
the control program as a result of the BLDL
macro instruction. The LINK macro
instruction in hxample 19 can now be
written. Note that the DE operand refers
to the name field, not the list description
field, of the directory entry.

USE OF THE ATTACH MACRO INSTRUCTION (PCP
AND MFT WITHOUT SUBTASKING): This
discussion applies only if you are using an
operating system with the primary control
program or with MFT without subtasking. In
an operating system with MVT or with MFT
with subtasking, you use the ATTACH macro
instruction to cause parallel execution, as
discussed under the heading "Task Creation."

The ATTACH macro instruction performs
exactly the same functions as the LINK
macro instruction, and should be used in
exactly the same way. You should use the
ATTACH macro instruction only when coding
for upward compatibility with an operating
system that includes MVT. There are two
additional optional operands provided with
the ATTACH macro instruction: the ECB and
BTXR operands. They provide a n~ans of
communicating between task.:: from the same
job step when they are used in an operating
system with MVT. They do not provide this
service in the other configurations of the
operating system because there is only one
task for each job step. If your program is
ever to be run in a system with EVT, the
use of these operands in the other
configurations provides an opportunity to
check the routines associated with these
operands. Refer to "Task Management" for a
d.iscussion of the ECB and ETXR operands if
this is the case. You may find ~ther uses
for these operands in your current system.

The ECB operand allows you to specify
the address of an event control block, a
fullword which will be used by the control
program to inform you of the completion of
the called load module. 'l'he return code
from the called load module will also be
placed in the full word. For a complete
discussion of the event control block and,
its purpose, see "'l'ask Mana gement. n

'l'he ETXR operand provides the mean3 of
specifying an end-of-task exit routine to
be given control following the completion
of the called load module. Thi.:: exit
routine must be in main storage when it is
required.rhe routine is given control by
the control program and must return control
to the control program using the address in
register 14. The control program then
returns control to the instruction
following the ATTACh macro instruction.

section I: Supervisor service3 19

USING CALL OR BRANCH AND LINK: You can
save time by passing control to a load
module without using the control program.
Passing control without using the control
program is performed as follows: issue a
LOAD macro instruction to obtain a copy of
the load module, preceded by a BLDL macro
instruction if you can shorten the search
time by using it. The control program
returns the address of the entry point in
register O. Load this address into
register 15. The linkage requirements are
the same when passing control between load
modules as when passing control between
control sections in the same load module:
register 13 must contain a save area
address, register 14 must contain the
return point address, and register 1 is
used to pass parameters in a parameter
list. A branch instruction, a branch and
link instruction, or a CALL macro
instruction can be used to pass control,
using register 15. The return will be made
directly to you.

Note: When control is passed to a load
module without using the control program,
you must check the load module attributes
and current status of the copy yourself,
and you must check the current status in
all succeeding uses of that load module
during the job step, even when the control
program is used to pass control.

The reason you have to keep track of the
usability of the load module has been
discussed previously: you are not allowing
the control program to determine whether
you can use a particular copy of the load
module. 'rhe following paragraphs discuss
your responsibilities when using load
modules with various attributes. You must
always know what the reusability attribute
of the load module is. If you do not know,
you should not attempt to pass control
yourself.

If the load module is reenterable, one
copy of the load module is all that is ever
required for a job step. You do not have
to determine the current status of the
copy; it can always be used. The best way
to pass control is to use a CALL macro
instruction or a branch or branch and link
instruction.

If the load module is serially reusable,
one use of the copy must be completed

20

before the next use begins. If your job
step consists of only one task, preventing
simultaneous use of the same copy involves
making sure that the logic of your program
does not require a second use of t.ile same
load module before completion of the first
use. An exit routine must not require the
use of a serially reusable load module also
required in the main program.

Preventing simultaneous use of the same
copy when you have more than one task in
the jon step requires more effort on your
part. You must still be sure that the
logic of the program for each task does not
require a second use of the same load
module before completion of the first use.
You must also be sure that no more than one
task requires the use of the same copy of
the load module at one time; the ENQ macro
instruction can be used for this purpose.
Properly used, the ENQ macro instruction
prevents the use of a serially reusable
resource, in this case a load module, by
more than one task at a time. Refer to
"Program J.lllanagE'ment Services n for a
complete discussion of the ENQ macro
instruction. A conditional ENQ macro
instruction can also be used to check for
simultaneous use of a serially reusable
resource within one task when using an
operating system wi-th MF'T or t-1V1'.

If the load module is nonreusablE, each
copy can only be used once; you must be
sure that you use a new copy each time you
require the load module. If you are using
an operating system with Mv'r or with MFT
with subtasking, you can ensure that you
always get a new copy by using a LINK macro
instruction or by doing as follows:

• Issue a LOAD macro instruction before
you pass control.

• Pass control using a branch or a branch
and link instruction or a CALL macro
instruction only.

• Issue a DELETE macro instruction as
soon as you are throug-h with the copy.

If you are using an operating system
with PCP or with l'1F'l' without subtasking,
you should perform the same three steps
indicated above, and also make sure that
you do not require a second use of the load
module before completion of the first use.

HOW CONTROL IS RETURN~D

The return of control between load
modules is exactly the same as return of
control between two control sections in the
same load module. The program in the load
module returning control is responsible for
restoring registers 2-14, possibly
establishing a return code in re~ister 15,
and passing control using the address in
register 14. The program in the load
module to which control is returned can
expect the contents of registers 2-13 to be
unchanged, the contents of register 14 to
be the return point address, and
optionally, the contents of register 15 to
be a return code. The return of control
can be made using a -branch instruction or
the RE'I'URN macro instruction. If control
was passed without using the control
program, that is all there is to it.
However, if control was originally passed
using the control program, the return of
control is to ~he control program, then to
the calling program. 'I'he action taken by
the control program is discussed in the
following paragraphs.

When control was passed using a LINK or
ATTACH macro instruction, the
responsibility count was increased by one
for the copy of the load module to which
control was passed to ensure that the copy
would be in main storage as long as it was
required. The return of control indicates
to the control program that this use of the
copy is completed, so the responsibility
count is decremented by one. If you are
using an operating system with the primary
control program or MFT, the main storage
area containing the copy is made available
when the responsibility count reaches zero.
If you are using an operating system with
MV'I', the copy is retained when the
responsibility count reaches zero if all
three of the following requirements are
met:

• The load module attributes are serially
reusable or reenterable.

• The count was not reduced to zero
because of a DELET~ macro instruction.

• The main storage area is not required
for other purposes.

If control was originally passed using
an ATTACH macro instruction (PCP or MFT
without subtasking), the control program
takes the following action:

• If the ECB operand was specified, the
control program posts the return code
in the indicated fullword.

• If the ETXR operand was specified, the
control program passes control to the
designated address, using register 15
to contain the entry point address, and
register 14 to contain the return point
address (to the control program). When
the exit routine returns control, the
control program passes control to the
instruction following the ATrACH macro
instruction without modifying the
contents of any register except
register 14. Register 15 does not, in
this case, contain the return code.

If the ETXR operand was not specified,
or if the LINK macro instruction was us€d
to pass control, the control program only
places the return point address into
register 14, and passes control to that
address. No other register contents are
modified.

PASSING CONTROL WITHOU'I' RETURN

The XCTL macro instruction is used to
pass control between load modules when no
return of control is required. You can
also pass control using a branch
instruction; however, when you pass control
in this manner, you must protect against
multiple uses of non-reusable or serially
reusable modules. The following paragraph::>
discuss the requirements for passing
control without return in each case.

PASSl1~G CON'I'ROL USING A BRANCH INSTRUCTION:
The same requirements and procedures for
protecting against reuse of a nonreusable
copy of a load module apply when passing
control without return as were stated under
"Passing Control With Return." The
procedures for passing control are as
follows.

A LOAD macro instruction should be
issued to obtain a copy of the load module.
The entry point address returned in
register 0 is loaded into register 15. The
linkage requirements are the same when
passing control between load modules as
when passing control between control
sections in the same load module; register
13 must be reloaded with the old save area
address, then registers 14 and 2-12
restored from that old save area.
Registers 1 is used to pass parameters in a
parameter list. A branch instruction is
issued to pass control to the address in
register 15.

section I: supervisor Services 21

lvlixing branch instructions and XCTL
macro instructions is hazardous. 'l'he next
topic explains why.

USE OF THE XCTL MACRO INSTRUCTION: The
XCTL macro instruction, in addition to
being used to pass control, is also used to
indicate to the control program that this
use of the load module containing the XCTL
macro instruction is completed. Because
control is not to be returned, the address
of the old save area must be reloaded into
register 13. The return point address must
be loaded into register 14 from the old
save area, as must the contents of
registers 2-12. The XCTL macro instruction
can be written to request the loading of
registers 2-12, or you can do it yourself.
~hen using the XCTL macro instruction, you
pass parameters in a parameter list, with
the address of the list contained in
register 1. In this case, however, the
parameter list must be established in a
portion of main storage outside the current
load modulE~ containing the XCTL macro
instruction. This is because the copy of
the current load module may be deleted
before the called load module can use the
parameters, as explained in more detail
below.

The XCTL macro instruction is similar to
the LINK macro instruction in the method
used to pass control: control is passed by
way of the control program using a control
program parameter list. The control
program loads a copy of the load module, if
necessary, establishes the entry point
address in register 15, saves the address
passed in register 14 and replaces it with
a new return point address within the
control program, and passes control to the
address in register 15. 'llhe control
program adds one to the responsibility
count for the copy of the load module to
which control is to be passed, and
subtracts one from the responsibility count
for the current load module. The current
load module in this case is the load module
last given control using the control
program in the performance of the active
task. If you have been passing control
between load modules without using the
control program, chances are the
responsibility count will be lowered for
the wrong load module copy. And remember,
when the responsibility count of a copy
reaches zero, that copy may be deleted,
causing unpredicatable results if you try
to return control to it.

Figure 3 shows in detail how this could
happen. Control is given to load module A,
which passes control to load module B (step

22

1) using a LOAD macro instruction and a
branch and link instruction. ~eqister 14
at this time contains the address of the
instruction following the branch and link.
Load module B then is executed, independent
of how control was passed, and issues an
XC'l'L macro instruction when it is finished
(step 2) to pass control to load module c.
The control program, knowing only of load
module A, lowers the responsinility count
of A by one, resulting in its delEd:ion.
Load module C is executed and returns to
the address which used to follow thE: branch
and link instruction. step 3 of Figure 3
indicates the result.

Control Program

Control

ProJr"~

A 1
LOAD B
BALR B

A I
I
I ,

BALR

~ B

~ Control
Program

tJ
Sr

Control Program

I--
I I

? B I : J-C-_ ----.

I I 1 : I
t I

XCTLC _I RETURN I--

Figure 3. Misusing Control Program
Facilities

Step 1

Step 2

Step 3

Two methods are available for ensuring
that the proper responsibility count is
lowered. One way is to always use the
control program to pass control with or
without return. The other method is-to use
only LOAD and DELE~E macro instructions to
determine whether or not a copy of a load
module should remain in main storage.

Task Creation

In any configuration of the operating
system, one task is created by the control
program as a result of initiating execution
of the job step. In an operating system
with ~CP or with MFT without subtasking,
only the control program can create tasks;
your program cannot create tasks.

In an operating system with MVT or with
MFT with subtasking, you can create
additional tasks in your program. If you
do not, however, the job step task is.the
only task in a job being executed under MVT
or under MF1 with subtasking. The benefits
of a multiprogramming environment are still
available even with only one task in the
job step; work is still being performed
when your task is unable to use the system
while waiting for an event, such as an
input operation, to occur.

The advantage in creating additional
tasks within the job step is that more
tasks are competing for control than the
task in the job you are concerned with.
Wnen a wait condition occurs in one of your
tasks, it is not necessarily a task from
some other job that gets control. It may
be one of your tasks, a portion of your
job.

The general rule is that parallel
execution of a job step (that is, more than
one task in a job step) should be chosen
only when a significant amount of overlap
between t'iflO or more tasks can be achieved.
rhe amount of time taken by the control
program in establishing and controlling
additional tasks, and your increased effort
to coordinate the tasks and provide for
communications between them must be taken
into account.

CREATING THE TASK

A new task is created by issuing an
ATTACH macro instruction. The task which
is active when the ~TTACH macro instruction
is issued is the originating task, the
newly created task is the subtask of the
originating task. The subtask competes for
control in the same manner as any otner
task in the system, on the basis of
priority and the current ability to use the
central processing unit. The address of
the task control block for the subtask is
returned in register 1.

The entry point in the load module to be
given control when the subtask becomes
active is specified in the same way as in a
LINK macro instruction, that is, through

the use of the EP, EPLOC, DE, and DCB
operands. The use of these operands is
discussed in the section titled "Program
Management. " Parameters can be passed -co
the subtask using the PA~j and VL
operands, also described in "Program
Management." Ownership of subpools is
transferred or shared using the GSPV, GSPL,
SHSPV, and SclSPL operands discussed in
"Main Storage Management." The only
additional operands are those dealing with
the priority of the subtask, and the"
operands that provide for communication
between tasks.

Note: Although you are using an ~fE'T
system, you can include the subpool and
rollout/rollin parameters for compat-ibility
with an HVT system. If you code these
parameters correctly, a system with NFl
ignores them.

TASK PRIORITY

, - In a system with MVr£ or MFT with
subtasking, tasks compete for control on
the basis of priority. When a task is
created, it is assigned a priority that can
later be revised upward or oownward. It is
also assigned a limit to its priority, a
value equal to the highest priority the
task can be assighed; this value i$ called
the task's limit prioriEY- The task's
actual priority, the basis on which it
competes for control, is called the task's
dispatching priority_

A task can change its own dispatching
priority but not its own limit priority.
It can change both the dispatching and
limit priorities of its subtasks, but
cannot set the limit priority of a subtask
higher than its own limit priority.

PRIORITY OF THE JOB STEP TASK

The limit priority of the job step task
cannot be changed; it is always equal to
the task's initial dispatching priority.
You can specify initial dispatching
r;>riority through the DFRTY parameter of the
EXEC statement:

where value~ and value2 are both inte~ers
from 0 to 15. Dispatching priority is then
computed as follows:

Dispatching Priority
(value~ x 16) + valu€2

Section I: Supervisor Services ~3

For example, if value1 is 6 and value2 is
4:

Dispatching Priority =
(6 x 16) + 4 = 100

Note that you can specify any dispatching
priority from 0 (DPRTY=(O,O» to 255
(DPRTY=(15,15».

If you omit the DPRTY parameter for a
job step, the initial dispatching priority
of the job step task is determined by the
job priority. You specify job priority
through the PRTY parameter of the JOB
statement, or omit this parameter and allow
the job priority to be determined by
default. Job priority is used in selecting
jobs for execution and in assigning
input/output devices.

When you specify job priority, you code
the parameter:

PRTY=value

where value is the job priority, an integer
from 0 to 13. If you do not specify
dispatching priority for a job step, it is
computed from the job priority as follows:

Dispatching Priority
(value x 16) + 11

This is the same priority that would result
from coding the parameter DPRTY=(value,ll).

To specify a dispatchin~ priority equal
to that which would be computed from a
given job priority, you can specify:

DPRTY=value1

where value1 is the job priority. The
omitted value2 has an assumed value of 11.

Whether you specify dispatching priority
or not, you cannot be absolutely certain of
what a JOD step's initial dispatching
priority will be. To achieve best results
from the operating system, the operations
staff may override specified job and
dispatching priorities. Your program,
therefore, cannot simply assume that the
job step task will have a particular
initial dispatching priority. '1'0 detErmine
this priority, your program must issue the
EXTRACT macro instruction, as described
later in "Obtaining Information from the
rask Control Block."

To summarize, tpe initial dispatching
priority of the job step task can be
determined four ways:

24

1. It can be specified directly through
the DPRTY parameter of the EXEC
statement.

2. It can be specified indirectl}l through
the PRTY parameter of the JOB
statement.

3. It can be determined by default when
the PRTY and DPRTY parameters are both
omitted.

4. It can be determined by the operations
staff, overriding your own
specifications.

Whichever way it is determined, the initial
dispatching priority is always the limit
priority for the job step task.

The job step task can lower its initial
dispatching priority by use of the CHAP
macro instruction. It can later use this
macro instruction to revise its dispatching
priority either upward or downward. Of
course, it can never raise its dispatching
priority above its initial dispatching
(limit) priority.

PRIORITY OF SUBTASKS

When a subtask is created, the limit and
dispatching priorities of the subtask are
the same as the current limit and
dispatching prioritiea of the originating
task except when the subtask priorities are
modified by using the LPtvlClJ and DalOD
operands of the ATTACH macro instruction.
The LPMOD operand specifies the number to
be subtracted from the current limit
priority of the originating task. The
result of the subtraction is assigned as
the limit priority of the new task. The
DPMOD operand specifies the number to be
added to the current dispatching priority
of the originating task. The result of tne
addition is assigned as the dispatching
priority of the new task, unless the number
is greater than the limit priority. In
that case, the limit priority value is used
as the dispatching priority.

There are no absolute rules for
assigning priorities to tasks and subtasks.
Priorities should be assigned on the basis
that tasks of higher priority will be given
control when competing with tasks of lower
priority. Tasks with a larae number of
input/output operations should be assigned
a higher priority than tasks with little
input/output because the tasks with much
input/output will be in a wait condition
Ior a greater amount of time. 'I'he lower
priority tasks will be executed when the

higher priority tasks are in a wait
condition. When the input/output operation
has completed, the higher priority tasks
will qet control so that the next operation
can be started. In addition, if one or
more subtasks must be completed before the
originating task can proceed beyond a
certain point, the subtasks that must be
completed should be assigned a priority
which will eliminate as much as possible a
long wait time in the originating task.

since tasks from other job steps are
competing for control, the priority
initially established for the subtasks may
be too high or too low to properly process
the job step. To correct this, the
priorities of these tasks can be chanqed
after the tasks have been created by using
the CHAP macro instruction. The EXTRACT
macro instruction, discussed later, can be
used to determine the current dispatching
and limit priorities of the current task
and its subtasks. Note that each change of
16 in limit or dispatching priority is
equivalent to a change of one in job
priority.

The CtlAP macro instruction changes the
dispatching priority of the active task or
one of its subtasks. By adding a positive
or negative value, the dispatching priority
of the active task or a subtask is changed.
The dispatching priority of the active task
can be made less than the dispatching
priority of another task waiting ~or
control. If this occurs, the waiting task
would be given control after execution of
the CHAP macro instruction.

The CHAP macro instruction can also be
used to increase the limit priority of any
of the active task's subtasks. The active
task cannot change its own limit priority.
The dispatching priority of a subtask can
be raised above its own limit priority, but
not above the limit of the originating
task. When the dispatching priority of a
subtask is raised above its own limit
priority, the subtask's limit priority is
automatically raised to equal its new
dispatching priority.

'rIME SLICING

'I'ime slicing is an optional feature of
the operating system with MFT or MVT. It
enables tasks that are members of the
"time-slice group" to share control of the
CPU. when a member of the time-slice group
has been active for a certain length of
time, it is interrupted, and control is
given to another member of the group. In
this way, all n~mber tasks are given equal

slices of CPU time; no task can use the CPU
to the exclusion of all others.

I
~~T Systems Without Subtasking: At system
generation, your installation designates
certain contiguous main storage partitions
for time slicing. Your tasks (job steps)
are members of the time-slice group if your
job is assigned to one of these partitions.
'{ou control partition assignment through
the CLASS parameter of your JOB statement.

MFT Systems With subtasking: Any task or
subtask is considered a member of a
time-slicing group if its dispatching
priority is within the range of the
dispatching priorities assigned to
partitions designated for time slicing.
The use of the ATTACcl and the CHAP macro
instructions can affect dispatching
priorities, as in MVT systems.

I MVT Systems: At system generat, ion, your
installation designates certain job
priorities for time slicing. Your tasks
are members of the time-slicing group if
their dispatching priorities correspond to
these job priorities. For example, if job
priorities 8 and 9 are designated, tasks
are members of the time-slice group when
their dispatching priorities can be
computed as follows:

For job priority 8,
Dispatching Priority

139

For job priority 9,
Dispatching Priority

155

(8 x 16) + 11

(9 x 16) + 11

In this example, tasks with priorities 139
and 155 are members of the time slice
group. Note that time slicing applies only
to ready tasks with the highest priority; a
task with priority 155 would not be
interrupted to give control to a task with
priority 139.

Time slicing is important chiefly in
real-time applications, but it affects the
use of the ATTACH and CHAP macro
instructions by all tasks in the system.
These macro instructions determine task
priorities, and tnerefore determine
membership in the time slice group. In
using these macro instructions, you must
consider carefully the priorities for which
time slicing is performed at your

I installation. Using the ATTAC.d and the
CHAP macro instructions can affect
dispatching priorities.

consider again the example in which time
slicing is performed for job priorities B

section I: supervisor Servicts 25

and 9. If a job step task has an initial
dispatching priority of 139, it is
initially a mE!mber of the time-slice group.
If it lowers its priority, it is no longer
a member of the group; if it attaches a
sUbtask, the subtask is a member only if it
is assigned a dispatching priority of 139
(the limit priority of the job step task).

If another job step task is assigned an
ini ti·al dispatching priority greater than
155, it is not initially a member of the
time-slice group. However, it can create
lower priority subtasks that are members of
the time-slice group, and can itself become
a member by lowering its own dispatching
priority to 155 or 139. Note that careless
use of the ATTACH and CHAP macro
instructions could result in a task's
becoming a member of the time-slice group
when time slicing is not actually intended.

Task Management

The task manaqement information in this
section is required only for establishing
communications among tasks in the same job
step, and therefore applies only to
operating systems with MVT or with Mili'T with
subtasking. The relationship of tasks in a
job step,is shown in Figure 4.

The horizontal lines in E'igure 4 divide
the tasks into various levels. These
levels have no relation to task priorities;
they serve only to separate originating
tasks and subtasks. Tasks A, B, Al, A2,
A2a, El, and Bla are all subtasks of the
job step task; tasks Ai, A2, and A2a are
subtasks of task A. Tasks A2a, and B1a are
the lowest level tasks in the job step.
Although task B1 is at the same level as
tasks Ai and A2, it is not considered a
subtask of task A.

Task A is the originating task for both
tasks Ai and A2, and task A2 is the
originating task for task A2a. A hierarchy
of tasks exists within the job step.
Therefore the job step task, task A, and
task A2 are predecess'ors of task ~_2a, while
task B has no direct relationship to task
A2a.

All of the tasks in the job step compete
independently for control; if no
constraint~ are provided, the tasks are
performed and arE terminated
asynchronously. However, since each task
is performing a portion of the same job
step, you will usually require some
communication and constraints between
tasks, such as notification of the

26

Job
Step
Task

/ " / \
/ \

I f/I I:~ I
/ \

/ \
/ \

/ \
/ \

I r:;:/ I I :~~k I
I
I

I
I
I

I I~~ I
Figure 4. Tas.k Hierarchy

I
I

~
Y

I
I
I

~
~

completion of subtasks. If termination of
a predecessor task is attempted before all
of the subtasks are complete, those
subtasks and the predecessor task are
abnormally terminated.

TASK AND SUBTASK COMMUNICATIONS

Two operands, the ECB and ~TXR operands,
are provided in the ATTACH macro
instruction to assist in communication
between a subtask and the originating task.
These operands are used to indicate the
normal or abnormal termination of a subtask
to the originating task. If either the ECB
or ETXR operands, or both, are coded in the
AT'I'AC.d macro instruction, the task control
block of the subtask is not removed from
the system when the subtask is terminated.
The originating task must remove the task
control block from the system after
termination of the subtask. This is
accomplished by issuing a DE'I'ACH macro
instruction. The task control blocks for
all subtasks must be removed before the
originating task can terminate normally.

The ETXR operand specifies the address
of an end-of-task exit routine in the
originating task to be given control when

subtask being created is terminated. The
end-of-task routine is given control
asynchronously after the subtask has
terminated, and must be in main storage
when it is required. After the control
program terminates the subtask, the
end-of-task routine specified when the
subtask was created is scheduled to be
executed. The routine competes for control
on the basis of the priority of the
originating task, and can be given control
even though the originating task is in the
wait condition. When theend-of-task
routine returns control to the control
program, the originating task remains in
the wait condition if the event control
block has not been posted.

The end-of-task routine can issue an
EXTRACT macro instruction specifying the
task control block of the terminated
subtask. The address of that task control
block is contained in register 1 when the
routine is given control. 'l'he Ex'rAACT
macro instruction, discussed ur-der the
heading "Obtaining Information From the
l'ask control Block," can be used to obtain
such information as floating-point register
contents and completion code. Although the
DE'1.'ACH macro instruction does not have to
be issued in the end-of-task routine, this
is a good place for it.

The ECB operand specifies the address of
an event control block (discussed under
"Task Synchronization") which is posted by
the control program when the subtask is
terminated. After posting, the event
control block contains the completion code
specified for the subtask.

If neither the EC8 nor ETXR operands are
specified in the ATTACH macro instruction,
the task control block for the subtask is
removed from the system when the subtask is
terminated. No DETACrl macro instruction is
required. Use of the task control block in
a CHAP, EXTRACT, or DETACH macro
instruction in this case is risky as is
task termination; since the originating
task is not notified of subtask
termination, you may refer to a ta~k
control block which has been removed from
the system, which would cause the active
task to be abnormally terminated.

TASK SYNCHRONIZATION

Task synchronization requires some
planning on your part to determine what
portions of one task are dependent on the
completions of portions of all other tasks.
The POST macro instruction is used to
signal cOfiipletion of an event; the WAPl'

macro instruction is used to indicate that
a task c~nnot proceed until one or more
events that have occurred.

The control block used with both the
WAI'!' and POST macro instructions is the
event control block. An event control
block is a fullword on a fullword boundary
and is shown in Figure 5.

o 1 2 31

I W I p I completion code I
Figure 5. Event Control Block

An event control block is used when the
ECB operand is coded in an ATTACH macro
instruction. In this case the control
program issues the POST macro instruction
for the event (subtask termination).
Either the return code in register 15 (if
the task completed normally) or the
completion code specified in the ABEND
macro instruction (if the task was
abnormally terminated) is placed in the
event control block as shown in Fiaure 5.
The originating task can issue a WA1'I' macro
instruction specifying the event control
block; the task will not regain control
until after the event has taken place and
the event control block is posted.

when an event control block is
originally created, bits 0 and 1 must be
set to zero. An event control block can be
reused; if it is reused, bits 0 and 1 must
be set to zero before either the POST or
WAI']: macro instruction can be issued. When
a WAIT macro instruction is issued, bit 0
of the associated event control block is
set to 1. When a POS'l' macro instruction is
issued, bit 1 of the associated event
control Dlock is set to 1, and bit 0 is set
to O.

A WAI'I' macro instruction can specify
more than one event by specifying more than
one event control block. Only one WAIT
macro instruction can refer to an event
control block at one time, however. If
more than one event control block is
specified in a WAIT macro instruction, the
WAIT macro instruction can also specify
that all or only some of the events must
occur before the task is taken out of the
wait condition. When a sufficient number
of events have taken place (event control
blocks have been posted) to satisfy the
number of events indicated in the wAIT
macro instruction, the task is taken out of
the wait condition.

Section I: Supervisor services 27

Program Management Services

The control program provides a set of
optional services which are available to
your program through the use of macro
instructions. The following paragraphs
discuss each of these services and the way
to obtain them. The proper use of any of
these services results in an improved and
more efficient program; the misuse or
overuse of the services wastes main storage
and execution time.

ADDITIONAL ENTRY POINTS

Through the use of linkage editor
facilities you can specify as many as 17
different names <a member name and 16
aliases> and associated entry points within
a load module. It is only through the use
of the member name or the aliases that a
copy of the load module can be brought into
main storage. Once a copy has been broug-ht
into main storage, however, additional
entry points can be provided for the load
module, subject to the following
restrictions:

• The "identify" option must have been
included in the operating system during
system generation <standard in an
operating system with MVT, optional
with the other configurations of the
operating system).

• The load module copy to which the entry
pOint is to be added must be one of the
following:

- a copy which satisfied the
requirements of a LOAD macro
instruction issued during the same
task, or

- the copy of the load module most
recently given control through the
control program in performance of the
same task.

'l'he entry point is added. through the use
of the IDENTIFY macro instruction. An
IDENTIF'Y macro instruction can be issued by
any program in the job step, except by
asynchronous exit routines established
using other supervisor macro instructions.
A further restriction exists for an
operating system with either MFT or the
primary control program: an IDENTIFY macro
instruction cannot be issued when the load
module is given control at an entry point
that was added by an IDENTIFY macro
instruction.

28

When you use the IDENTIFY macro
instruction, you specify the name to be
used to identify the entry point, and the
main storage address of the entry point in
the copy of the load module. The address
must be within a copy of a load module that
meets the requirements listed above; if it
is not, the entry pOint will not be added,
and you will be given a return code of OC
(hexadecimal). The name can be any valid
symbol of up to eight characters, and does
not have to correspond to a name or symbol
within the load module. 'Ihe name must not
be the same as any other name used to
identify any load module available to the
control program; duplicate names would
cause errors. The control prograrrl checks
the names of all load modules currently in
the link pack area and the job pack area of
the job step when you issue an IDENTIf'Y
macro instruction, and provides a return
code of 08 if a duplicate is found. You
are responsible for not duplicating a
member name or an alias in any of the
libraries unintentionally.

The added entry point can be used only
in an ATTACH macro instruction when you are
using an operating system with the primary
control program or ~~T, and can be used in
an ATTACH, LINK, LOAD, DELBTE, or XCTL
macro instruction in an operating system
wi th MVT. 'l'he added entry point can be
used in the performance of any task in the
job step; if the copy is in the link pack
area, the entry point can be used in the
performance of any task in the system.

The added entry point is available for
as long as the copy is retained in main
storage. Proper task synchronization is
required when using an added entry point in
the performance of a task which has not
directly requested the associated copy of
the load module; the load module may
otherwise be deleted before the use is
complete. The added entry pOint is treatej
as an entry point to a reenterable load
module by the control program, regardless
of the actual module attributes of the load
module. You must guard against reuse of
nonreusable code.

ENTRY POINT AND CALLING SBQUBNCE
IDENTIFIERS

An entry point identifier is a character
string of up to 70 characters which can be
specified in a SAVE macro instruction. The
character string is created as part of the
SAVB macro instruction expansion. The dump
program uses the calling sequence
identifier and the entry point identifier
as shown in the publication IBM System/360

Operating System: Programmer's Guide to
Debuggina.

A calling sequence identifier is a
16-bit binary number which can be specified
in a CALL or a LINK macro instruction.
When coded in a CALL or a LINK macro
instruction, the calling sequence
identifier is located in the two low-order
bytes of the fullword at the return point
address. The high-order two bytes of the
fullword form a NOP instruction.

USING A SERIALLY REUSABLE RESOURCE

The example of a serially reusable
resource already encountered was a load
module that was designated serially
reusable. In the discussion of the
serially reusable load module it was
emphasized that simultaneous uses of the
load module must be prevented. This is
true for any serially reusable resource
when one or more of the users will modify
the resource.

consider a data area in main storage
that is being used by programs associated
with several tasks of a job step. Some of
the users are only reading records in the
data area; since they are not changing the
records, their use of the data area can be
simultaneous. Other users of the data
area, however, are reading, updating, and
replacing records in the data area. Each
of thesE users must acquire, update, and
replace records one at a time, not
simultaneously. In addition, none of the
users that are only reading the records
wish to use a record that another user is
updating, until after the record has been
replaced. 'rhis illustrates the manner in
which all serially reusable resources must
be used.

For all of the uses of the serially
reusable resource made during the
performance of a single task, you must
prevent incorrect use of the resource
yourself. You must make sure that the
logic of your program does not require the
second use of the resource before
completion of the first use. Be especially
careful when using a serially reusable
resource in an exit routine; since exit
routines are given control asynchronously
from the standpoint of your program logic,
the exit routine could obtain a resource
already in use by the main program. For
the uses of the serially reusable resource
required by more than one task, the ENQ
macro instruction is provided to ensure use
of the resource in a serial manner. The
ENQ macro instruction cannot be used to

prevent simultaneous use of the resource
within a single task. It can be used to
test for simultaneous use within one task
in an operating system with MFT or MVT
only. The ENQ and DEQ macro instructions
are not available in an operating system
with the primary control program.

The ENQ macro instruction requests the
control program to assign control of a
resource to the active task. The control
program determines the current status of
the resource, and either grants the request
by returning control to the active task or
delays assignment of control by placing the
active task in the wait condition. when
the status of the resource changes so that
control can be given to· a waiting task, the
task is taken out of the wait condition and
placed in the ready condition. The us'e of
the ENQ macro instruction is discussed in
the following paragraphs.

NAMING THE RESOURCE

You represent the resource in the ENQ
macro instruction by two names, known as
the qname and the rname. These names may
or may not have any relation to the actual
name of the resource. The control program
does not associate the name with the actual
resource; it merely processes requests
having the same qname and rname ona
first-in, first-out basis. It is up to you
to associate the names with the actual
resource. It is up to all users of the
resource to use qname and rname to
represent the same resource. 'rhe control
program treats requests having different
qname and rname combinations as requests
for different resources. Because the
actual resource is not identified by the
control program, it is possible to use the
resource without issuing an ENQ macro
instruction requesting it. If this
happens, the control program cannot provide
any protection.

If the resource is used only in the
performance of tasks in your job step, you
can assign the qname and rname combination.
You should, in this case, code the S'I'EP
operand in the ENQ macro instructions that
request the resource, indicating that the
resource is used only in that job step.
The control program will add the job step
identifier to the rname so that no
duplicate qname and rname combination will
be used unintentionally in different job
steps. If the resource is available to any
job step in the system, the qname and rname
combination must be agreed upon by all
users and perhaps published. The SYSTEM
operand should be coded in each ENQ macro

section I: supervisor services 29

instruction requesting one of these
resources.

When selecting a qname for the resource,
do not use SYS as the first three
characters; qnames used by the control
program start with SYS and you might
accidentally duplicate one of these.

EXCLUSIVE AND SHARED REQUESTS

You can request exclusive or shared
control of the re:3ource for a task by
coding either "E" or "S", respectively, in
the ENQ macro instruction. If this use of
the resource will result in modification of
the resource, you must request exclusive
control. If you are requesting use of a
serially reusable load module and passing
control yourself, as discussed previously,
you must request exclusive control, since
that program modifies itself during
execution. If you are updating a record in
a data area, you must request exclusive
control. If you are only reading a record,
and you will not change the record, you can
request shared control. In order to
prot~ct any user of a serially reusable
resource, all users must request exclusive
or shared control on this basis. When a
task is given control of a resource in
response to an exclusive request, no other
task will be given simultaneous control of
the resource. When a task is given control
of a resource in response to a shared
request, control will be given to other
tasks simultaneously only in response to
other requests for shared control, never in
response to requests for exclusive control.
A request for shared control will protect
against modification of the resource by
another task only if the above rules are
followed.

PROCESSING THE REQUEST

The control program essentially
constructs a list for each qname and rname
combination it receives in an ENQ macro
instruction, and makes an entry in the list
representing the task which is active when
the ENQ macro instruction is issued. The
entry is made in an existing list when the
control program receives a request
specifying a qname and rname combination
for which a list exists; if no list exists
for that qname and rname combination, a new
list is built. The entry representing the
task id placed on the list in the order the
request is received by the control program;
the priority of the task has no effect in
this case. Control of the resource is
allocated to a task based on two factors:

30

• The position on the list of the entry
representing the task.

• The exclusive control or shared con"trol
requirements of the request ~~hich
caused the entry to be added to the
list.

'lIne control program uses these two
factors in determining whether control of a
resource can be allocated to a task, as
indicated below. Figure 6 shows the
current status of a list built for a very
popular qname and rname combination. 'I'he S
or E next to the entry indicates that the
request was for shared or exclusive
control, respectively. The task
represented by the first entry on the list
is always given control of the resource, so
the task represented by ENTRY 1 (Figure 6,
Step 1) is assigned the resource. The
reque3t which established ~N'I'RY 2 was for
exclusive control, so the corresponding
task is placed in the wait condition, along
with the tasks represented by all the other
entries in the list.

Eventually control of the resource is
released for the task represented by ENTRY
1 and the entry is removed from the list.
As shown in Figure 6, Step 2, ~NTRY 2 is
now first on the list, and the
corresponding taSK is assiqned control of
the resource. Because the-request which
established EN'IRY 2 was for exclusive
control, the tasks represented by all the
other entries in the list are kept in the
wait condition.

Figure 6, step 3 shows the status of the
list after control of the resource is
released for the task represented by ENTRY
2. Because ENTRY 3 is now at the top of
the list, the task represented by ENTRY 3
is given control of the resource. BNTRY 3
indicated the resource could be shared,
and, because ENTRY 4 also indicated the
resource could be shared, ENTRY 4 is also
given control of the re30urce. In this
case, the task represented by ENTRY 5 will
not be given control of the resource until
control has been released for both the
tasks represented by ENTRY 3 and EN'I;RY 4.
The remainder of the list i-" processed in
the same rna nner •

ENTRY1 (5)

ENTRY2 (E) ENTRY2 (E)

ENTRY3 (5) ENTRY3 (5)

ENTRY4 (5) ENTRY4 (5)

ENTRY5 (E) ENTRY5 (E)

ENTRY6 (5) ENTRY6 (5)
Step 1 5tep 2

Figure 6. ENQ Macro Instruction
Processing

ENTRY3 (5)

ENTRY4 (5)

ENTRY5 (E)

ENTRY6 (5)
5tep 3

The following general rules are used by
the control program:

• A task represented by the first entry
in the list is always given control of
the resource.

• If the request is for exclusive
control, the task is not given control
of the resource until the ~orresponding
entry is the first entry in the list.

• If the request is for shared control,
the task is given control either when
the corresponding entry is first in the
list or when all the entries before it
in ~he list also indicate a shared
request.

PROPER USE OF ENQ AND DEQ

Proper use of the ENQ and DEQ macro
instructions is required to avoid duplicate
requests, to avoid tying up the resource,
and to avoid interlocking the system.
Guides to proper use are given in the
following paragraphs.

DUPLICATE REQUESTS: A duplicate request
occurs when an ENQ macro instruction is
issued to request a resource if a task has
already been assigned control of that
resource or if a task is already waiting
for that resource. If the second request
results in a second entry on the list, the
control program recognizes the
contradiction and refuses to place the task
in the ready condition (for the first
request) and in the wait condition (for the
second request) simultaneously. The second
request results in abnormal termination of
the task. You must plan the logic of your
program to ensure that a second request for
a resource is never issued until control of
the resource is released for the first use.
Again, be especially careful when using an
ENQ macro instruction in an exit routine.

RELEASING COWfROL OF THE RESOURCE: The DEQ
macro instruction is used to release
control of a serially reusable resource
assigned to a task through the use of an
ENQ macro instruction. The task must be in
control of the resource. Control of a
resource cannot be released if the task
does not have control. As you have seen,
it is possible for many tasks to be placed
in the wait condi~ion while one task is
assigned control of the resource. This may
reduce the amount of work being done by the
system. Issue a DEQ macro instruction as
soon as possible to release control of the
resource, so that other tasks can be
performed. If you return to the control
program at the end of processing for any
task which is still assigned control of a
resource, the resource is released
automatically; however, in a system with
MVT, the task is abnormally terminated.

CONDITIONAL AND UNCONDITIONAL REQUE~TS:
The normal use of the ENQ and DEQ macro
instruction is to make unconditional
requests. These are the only requests we
have considered to this point. As you have
seen, abnormal termination of the task
occurs when two ENQ macro instructions are
issued for the same resource in performance
of the same task, without an intervening
DEQ macro instruction. Abnormal
termination also occurs if a DEQ macro
instruction is issued in the performance of
a task which has not been assigned control
of the resource. Both of these abnormal
termination conditions can be avoided by
either more careful program design or
through the use of the RET operand in the
ENQ or DEQ macro instructions. The RET
operand (RE'l'=TEST, RET=USE, and RET=HAVE
for ENQ, RET=HAVE for DEQ) indicates a
conditional request for control or release
of control.

RET=TEST is used to test the status of
the list for the corresponding qname and
rname combination. An entry is never made
in the list when RET=TEST is coded.
Instead a return code is provided
indicating the status of the list at the
time the request was made. A return code
of 8 indicates an entry for the same task
already exists in the list. A return, code
of 4 indicates the task would have been
placed in the wait condition if the request
had been unconditional. A return code of 0
indicates the task would have been given
immediate control of the resource if the
request had been unconditional. RET=TEST
is most useful when used to determine if
the task has already been assigned control
of the resource. It is less useful when
used to determine the current status of the

section I: Supervisor Services 31

list and to take action based on that
status. In the interval between the time
the control program checks the status and
the time the return codes are checked by
your program and another ENQ macro
instruction issued, another task could have
been made active and the status of the list
could have been changed.

RET=USE indicates to the control program
that the active task is to be assigned
control of the resource only if the
resource is immediately available. A
return code of 0 indicates that an entry
has been made on the list and the task has
been assigned control of the resource. A
return code of 4 indicates that the task
would have been placed in the wait
condition if the request had been
unconditional; no entry is made in the
list. A return code of 8 indicates an
entry for the same task already exists in
the list. RET=USE can be best used when
there is other processing that could be
performed without using the resource. You
would not want to wait for the resource as
long as there was other work that you could
do.

RET=HAVE is used in both the ENQ and
DEQ macro instructions. An BNQ macro
instruction is processed as a normal
request for control unless an entry for the
same task already exists. l>. return code of
8 indicates an entry for the same task
already exists in the list. A return code
of 0 indicates that the task has been
assigned control of the resource. A DEQ
macro instruction is processed as a normal
request to return control unless the task
does not have control of the resource. A
return code of 0 indicates that control of
the resource has been released. A return
code of 8 indicates that the task does not
have control of the resource (although the
task may be in the wait condition because
of a request for the resource). RE'l'=HAVE
can be used to good advantage in an exit
routine to avoid abnormal termination.

AVOIDING INTERLOCK: An "interlock"
situation occurs when bN'O or more tasks are
dependent on each other in such a way that
none of the tasks can be taken out of the
wait condition until one of the same tasks
has been performed. An example of a fully
developed interlock situation is shown in
Figure 7. The task represented by ENTRY 1
in ~ist 1 is the same task represented by
hNTRY 2 in List 2. The task represented by
ENTRY 2 in List 1 is the same task
represented by ENTRY 1 in List 2. Control
of the resource represented by List 1 is
assigned to the task which is waiting for

32

the resource represented by List 2.
Control of the resource represented by List
2 is assigned to the task which is waiting
for the resource represented by List 1. .
Other tasks requiring either of the
resources are also in a wait condition
because of the interlock, although in this
case they have not contributed to the
conditions which caused the interlock.

ENTRY 1 (E) ENTRY 1 (E)

ENTRY 2 (E) ENTRY 2 (E)

List 1 List 2

Figure 7. Interlock Condition

The above example involving two tasks
and two resources is a simple example of an
interlock situation. The example could be
expanded to cover many tasks and many
resources. It is imperative that interlock
situations be avoided. The following
procedures indicate sonle \flays of preventing
interlock situations:

• Do not request resources that are not
immediately required. If you can use
the serially reusable resources one at
a time, you should request them one at
a time, and release control for one
before requesting control for the next.

• Request shared control as much as
possible. If the entries in the lists
shown in Figure 7 had indicated shared
requests, there would have been no
interlock. This does not mean you
should indicate a request for shared
control when you will modify the
resource. It does mean that you should
analyze your requirements for the
resources carefully, and not wake
requests for exclusive control \vhen
requests for shared control would
suffice.

• The ENQ macro instruction can be
written to request control of more than
one resource at a time; control of any
of the resources will not be given
until control of all resources
requested in the macro instruction can
be given. For example, instead of
coding the two ENQ macro instructions
shown in Example 20, the oneE'NQ macro
instruction shown in Example 21 could
be coded. If all requests were made in
this manner, it would avoid the
interlock shown in Figure 7. All of
the requests for one task would be

processed before any of tl1e requests
for the second task. The DEQ macro
instruction should be written in the
same manner to release the entire "set"
of resources at once.

ENQ (NAME1ADD,NAME2ADD,E,8,SYSTEM)
ENQ (NAME3ADD,NAME4ADD,E,10,SYSTEM)

Example 20. Two Requests for Two Resources

ENQ (Nru~E1ADD,NAME2ADD,E,8,SYSTEM, C
NAME3ADD,NAME4ADD,E,10,SYSTEM)

Example 21. One Request for Two Resources

• If the use of one resource always
depends on the use of a second
resource, then the pair of resources
can be defined as one resource in the
ENQ and DEQ macro instructions. 'Ihis
procedure can be used for any number of
resources that are always used in
conjunction. There would be no
protection of the resources if they are
also requested independently, however.
The request would always have to be for
the set of resources.

• If there are many users of a group of
resources and some of the users require
control of a second resource while
retaining control of the first
resource, it is still possible to avoid
interlocks. In this case the order in
which control of the resources is
requested should be the same for each
user. For instance, if resources A, B
and C are required in the performance
of many tasks, the requests for control
should always be made in the order of
A, Band C. In this manner an
interlock situation will not develop,
since requests for resource A will
always precede requests for resource B.

The above is not an exhaustive list of
the procedures to be used to avoid an
interlock condition. You could also make
repeated requests for control specifying
the RET=USE operand, which would prevent
the task from being placed in tne wait
condition; if no interlock situation was
developing, of course, this would be an
unnecessary waste of execution time. The
solution to the interlock problem in all
cases requires the cooperation of all the
users of the resources.

OBTAINING INFORt1ATION FROl"j THE TP-.SK CONTROL
BLOCK

Most of the information available from
the task control block is useful primarily
in task management. The following
paragraphs discuss the information
available ahd how to obtain it. ciow you
use the information provided. depends on the
application of your program.

'The EXTkACT macro instruction is used to
obtain the information from the task
control block. The full power of the
EXTRACT macro instruction is available (and
needed) only ih an operating system with
MVl' or with MFT with suotasking. However,
a limited amount of information can be
obtained through the. use of the EXTRACT
macro instruction with the other
configurations of the operating system.

Information can be obtained from the
task control block for the active task or
any of its subtasks. The following
information can be requested:

• The address of the general and floating
point register save areas. Tne3e ar~
the save areas used by the control
program when the task is not active.

• The address of the end-of-task exit
routine to be given control after the
specified task is terminated.

• The limit and dispatching priorities of
the specified task.

• The completion code if the task has
been terminated. If the specified task
has not been terminated, the completion
code value is set to zero.

• The address of the task input/output
table. This is the only information
provided in response to an EXTRACT
macro instruction when using an
operating system with the primary
control program or MF'I'.

You must provide an area into which the
control program places the information you
request. If you request all of the fields
(by coding FIELDS=ALL), the area must be
seven full words long. If you request only
a portion of the information, the area must
be one fullword in length for each item of
information you request. If you request
information other than the address of the
task input/output table when you are using

I an operating system with PCP or with MFT
without subtasking, each additional item of
information requested will result in the

section I: supervisor Services 33

corresponding fullword in the answer area
being set to zero.

TIMING SERVICES

The timing services available depend on
options selected when the operating system
was generated. These options are the time
option, which provides the ability to
request the date and time of day, and the
interval option, which includes the time
option functions and also provides the
ability to set, test, and cancel intervals
of time. The interval option is standard
in an operating system with MVT; either
option can be selected with the other
configurations of the operating system. If
neither of these options was selected, the
date is the only timing service provided.
In the Model 65 Multiprocessing system,
timing services must only be obtained
through the use of the supervisor macro
instructions: STI~lER, TIME, TTIMER.
Direct reference to the interval timer
location in a multiprocessing system may
produce unpredictable results.

DATE AND TIME OF DAY

The operator is responsible for
initially supplying the correct date and
time of day information, based on a 24-hour
clock, for control program use. The
control program updates the time of day
information every 16.7 milliseconds for 60
cycle-per-second line frequency, or every
20 milliseconds for 50 cycle-per-second
line frequency. You request the date and
time of day information using the TIME
macro instruction. The control program
returns the date in register 1 and the time
of day in register o.

The date is returned in register 1 as
packed decimal digits of the form OOYYDDDC,
where YY are the last two digits of the
year and DDD is the day of the year. C is
a sign character which allows the year and
day information to be unpacked directly for
printing. One procedure used to request
the day of the year is shown in Example 22.

The time of day is returned in register
o in the form specified in the TIME macro
instruction. The time of day is returned
as an unsigned 32-bit binary number that
specifies the elapsed number of either
hundredths of a second, if BIN is coded, or
timer units, if TU is coded. (A timer unit

34

is equal to 26.04166 micro-seconds.) If
DEC is coded or the operand is omitted, the
time of day is returned as packed decimal
digits of the form rlHMMSSth (hours,
minutes, seconds, tenths of a second, and
hundredths of a second). The packed
decimal digits can be unpacked by changing
the "h" value to a zone sign and using an
UNPK instruction or by inserting zones
between each decimal digit. If both the
time and interval options have not been
selected, the operand is ignored and the
content of register 0 is set to zero.

INTERVAL TIMING

A time interval can be established for
any task in the job step through the use of
the STIMER macro instruction, and the time
remaining in the interval can be tested and
canceled through the use of the TTIMER
macro instruction. 'When you are usi.ng an
operating system with the primary control
program or MFT, only one time interval can
be in effect at anyone time during the jon
step. With an operating system with MV'I',
each task in the job step can have an
active time interval.

The time interval can be established by
anyone of the following four methods.

• BINTVL - requires an unsigned 32-bit
binary nurrilier, the low order bit having
a value of O.O~ second.

• TUINTVL - requires an unsigned 32-bit
binary number, the low order bit having
a value of 26.04166 micro-seconds (1
timer unit).

• DINTVL - requires an 8-byte field
containing unpacked decimal digits of
the form HHMMSSth (hours, minutes,
seconds, tenths and hundredths of a
second, based on a 24-hour clock).

• TOD - requires an 8-byte field similar
to the field required for DINTVL. The
control program interprets the time
specified as the time of day at which
the interval is to expire.

When you test the time remaining in the
interval, the time remaining is returned as
a 32-bit unsigned binary number in register
0, the low order bit having a value of I 26.04166 micro-seconds. If the interval
has already expired, the content of
register 0 is set to zero.

TIME Request date
ST l,ANS Store packed date
UNPK DOUBLE,ANS Unpack date for printing

ANS DS F Fullword for packed date
DOUBLE DS D Double word for unpacked date

l!:xample 22. Day of Year Processing

When you request a time interval, you
also specify the manner in which the
interval is to be decremented, through the
use of the TASK, REAL, or WAIT parameter
of the ST1~ER macro instruction. REAL and
WAIT both indicate that the interval is to
be decremented continuously whether the
associated task is active or not. TASK
indicates that the interval is to be
decremented only when the associated task
is active. If REAL or TASK is coded, the
task continues to compete with the other
ready tasks for control; if WAIT is coded,
the task is placed in the wait condition
until the interval expires, at which time
the task is placed in the ready condition.
WAIT should not be coded in an operatin~
system with the primary control program,
because no productive work can be performed
when the only task is in a wait condition.

When TASK or REAL is designated, the
address of a timer completion exit routine
can be specified. This is the first
routine to be given control when the
associated task is made active after the
completion of the time interval. (If the
address of the exit routine is not
specified, there is no notification of the
completion of the time interval.) The exit
routine must be in main storage when
required, and must save and restore
registers and return control to the address
in register 14. After control is returned
to the control program, control is passed
to the next instruction in the main
program.

Example 23 shows the use of a time
interval when testing a new loop in a
program. The STIMER macro instruction sets
a time interval of 5.12 seconds, to be
decremented only when the task is active,
and provides the address of a routine
called FIXUP to be given control when the
time interval expires. The loop is
controlled by a BXLE instruction.

The loop continues as long as the value
in register 12 is less than or equal to the
value in register 7. If the loop
completes, the TTIMER macro instruction
causes any time remaining in the interval
to be canceled; the exit routine is not
given control. If, however, the loop is
still in effect when the time interval
expires, control is given to the exit
routine FIXUP. The exit routine saves
registers and turns on the switch tested in
the loop. The FIXUP routine could also
print out a message indicating that the
loop did not complete successfully.
Registers are restored and control is
returned to the control program. The
control program returns control to the main
program and processing continues. When the
switch is tested this time, the branch is
taken out of the loop.

If issued by a timer completion exit
routine, a S'I'IIvlER macro instruction acts as
a NOP instruction only for MFT. An exit
routine therefore cannot be used to set a
new time interval for MFT.

If issued by a timer completion exit
routine, a STIMER macro instruction is
honored for MVT. However, the STIMER
issued from the exit routine should not
specify that same exit routine. If it does
specify the same exit routine, an infinite
loop will occur.

The accuracy of a time interval is
affected by two factors: the resolution of
the timer and the "competition" of other
tasks for control. The resolution of the
timer (the time between successive updating
of the timer) is 16.7 milliseconds for 60
cycle per second line frequency. An
attempt to measure an interval of less than
16.7 milliseconds or an attempt to time to
an accuracy of greater than 16.7
milliseconds can lead to erroneous results.

section I: Supervisor services 35

STIMER TASK,FIXUP,BINTVL=TIME Set time interval
LOOP

TM TIMEXP,X'Ol'
1,NG
12,6,LOOP
CANCEL

Test if fixup routine entered
BC
BXLE
T'l'IMER

Go out of loop if time interval expired
If processing not complete, go through loop again
If loop completes, cancel remaining time

NG

USING FIXUP,15 Provide addressability
FIXUP SAVE (14,12) Save registers

01 TIMEXP,X'Ol' Time interval expired, set switch in loop

RETURN (14,12) Restore register's

I TIME
TIMEXP

DC
DC

X'OOOOO200'
X'OO'

• Example 23. Interval Timing

Time is 5.12
Timer switch

When you are using an operating system
with MFT or MVT, the priorities of other
tasks in the system may also affect the
accuracy of the time interval measurement.
If you code REAL or WAIT, the interval is
decremented continuously and may expire
when the task is not active. (This is
certain to happen when WAI'!' is coded.)
After the time interval expires, assuming
the ta3k is not in the wait condition for
any other reason, the task is placed in the
ready condition and then competes for
control with the other tasks in the system
that are also in the ready condition. The
additional time required before the task
becomes active will then depend on the
relative dispatching priority of the task.

wRITING TO ONE OR MORE OPERATOR CONSOLES

The WTO and the WTOR macro instructions
allow you to write messages to the
operator. The WTOR macro instruction also
allows you to request a reply from the
operator. When an MFT, MVT, or Model 65
Multiprocessing operating system has the
Multiple Console Support (MCS) option,
messages can be sent to (and replies can be
received from) as many as 32 operator
consoles.

To use the W'l'O macro instruction, you
code your message within apostrophes. The
message that the operator receives does not
contain these apostrophes. 'Ine message can
include any character that is valid in a
character (C-type) DC instruction, except
the new line control character (hexadecimal
value 15). It is assembled as a
variable-length record, which is written

36

seconds

automatically; you do not have to provide a
data control block.

Routing of the message (in a system with
the MCS option) is performed using the
routing codes specified in the WTO macro
instruction. At system generation, each
operator's console in the system is
assigned routing codes which correspond to
the functions that the installation wants
that console to perform. When any of the
routing codes assigned to a message match
any of the routing codes assigned to a
console, the message is sent to that
console. F'or more information about
routing codes, refer to the appendix of the
publication IBM System/360 Operatigg
System: supervisor and Data Manaqement
Macro Instructions.

Disposition of the message (in a system
with the MCS option) is indicated through
the descriptor codes specified in the WTO
macro instruction. Descriptor codes
functionally classify WTO messages so that
they may be properly presented on, and
deleted from, display type devices. Eac,h
WTO macro instruction should contain one
descriptor code. The descriptor code is
not printed or displayed as part of the
message text. If a descriptor code of one
or two is coded into the W'I:O macro
instruction, an asterisk C*) is inserted as
the first character of the messaqe. The
asterisk informs the operator that he is
required to take some immediate action. If
a descriptor code other than one or two is
coded, a blank is inserted as the first
character, indicating that no immediate
action is needed. For more information
about descriptor codes, refer to the
appendix of the publication IBM System/360

Operatinq System: Supervisor and Data
Management Macro Instructions.

A sample WTO macro instruction is shown
in Example 24. The routing code (ROUTCDE)
and descriptor code (DESC) keyword
parameters are ignored if the operating
system does not have the MCS option.

WTO 'BREAKOFF POINT REACHED.
TRACKING COMPLETED.',
ROUTCDE=14,DESC=7

Example 24. Writing to the Operator

C
C

To use the WTOR macro instruction, you
code the message exactly as designated in
the WTO macro instruction. When the
message is written, the control program
adds a two-character message identifier
before the message to associate the reply
with the message. The control program also
inserts an asterisk as the first character
of all WTOR messages, thereby informing the
operator that immediate action is required.
You must, however, indicate the operator
response desired. In addition, you must
supply the address of the area in which the
control program is to place the reply, and
you must indicate the length of the reply.
You also supply the address of an event
control block which the control program
will post after the reply has been placed,
left-adjusted, in your designated area.
(The use of tne event control block is
discussed under the heading "Task
Management.")

A sample WTOR macro instruction is shown
in Example 25. The routing code and
descriptor code values are ignored if the
operating system does not have the MCS
option. In an operating system with PCP,
the reply is available when, following
execution of the WTOR macro instruction,
your program regains control. But in a
system with MFT or MVT, the reply is not
necessarily available at the address you
specified until a WAIT macro instruction
has been issued.

WTOR 'STANDARD OPERATING CONDITIONS?

When a WTOR macro instruction is issued
to more than one functional area (where the
WTOR has more than one routing code), any
console within those areas has the
authority to reply. The first reply
received by the operating system is
returned to the issuer of the WTOR,
providing the syntax of the reply is
correct •. If the syntax of the reply is not
correct, anotner reply is accepted. The
WTOR is satisfied when the operating system
moves the reply into the issuer's reply
area and posts the event control block as
completed. Each console that received the
original WTOR will also receive the
accepted reply. The master console
operator may answer any WTOR, even if he
did not receive the original message.

WRI'I'ING TO THE PROGRAMMER

The WTO and the WTOR macro instructions
allow you to write messages to the
programmer, as well as to the operator.

At system generation (SYSGEN) time, your
installation determines how many 176-byte
system message blocks (SMBs) to allow. You
can override this number at initial program
load (IPL) time; however, the number of
5MBs allowed must range from 1 to 20.

When you'submit your job, you can
specify the message output class for your
messages by using the MSGCLASS parameter of
the JOB statement. U'or a description of
the MSGCLASS parameter, refer to the
publication IBM System/360 Oper~ting
System: Job Control Lanquaqe Reference.)
All WTO and WTOR messages within the number
of 5MBs allowed per job will appear in the
designated message output class. When you
exceed the number of allowable 5MBs, no
subsequent messages will appear in the
message output class.

To write a message to the programmer,
you must specify ROUTCDE=11 in the WTO or
the WTOR macro instruction. If you use
routing code 11 alone or together with
other routing codes, the message goes to

REPLY YES OR NO', C
REPLY,3,ECBAD,ROUTCDE=(1,15),DESC=7

WAIT ECB=ECBAD

ECBAD DC E..vent control block
REPLY DC Answer area'

Example 25. Writing to the Operator With a Reply

section I: supervisor services 37

I
the message output class, as described
above. The message can also go to the
console(s) in the situations described by
I'able 6.

• Table 6. Using W'l'O and WTOR to Write
Messages to the Programmer

r---l
I I
I If you specify a routing code of 11 I
I (ROUTCDE=ll) I
I I
~-------------T-------T-------------------~
I I I I
I In this lIn a IYour message I
I macro Isystem:Jgoes to the: I
I instruction: I I I
I I J I
~-------------+-------+-------------------~
I WTO IWith IMessage output I
I IMCS Iclass I
I I IConsoles designated I
I I Ito receive messages I
I I Iwith ROUTCDE=ll I
~-------------+-------+-------------------i
I WTO IWithoutlMessage output I
I IMCS Iclass I
~-------------+-------+-------------------~
I WTOR IWith IMessage output I
I IMCS lclass I
I I IMaster console I
~-------------+-------+-------------------~
I WTOR IWithoutlMessag€ output I
I IMCS Iclass I
I I IMaster console I
~-------------~-------~-------------------~
t---~
I
I
I
I
I
I
I
I
I
I
I
I
I

If, in addition to routing code 11, you
specify the appropriate routing code(s)
in either a WTO or a WTOR macro
instruction with or without MCS, the
message appears on the console(s)
designated to receive the routing
code(s). In addition, the message
appears in the same places as it does
when you specify only routing code 11
(as shown above), with one exception.
For w'lOR with IViCS, the message goes to
the master console only if you specify

I that console's routing code. l __ _

HRITING TO THE HARD COpy LOG

When using an operating system that has
the Ilultiple Console Support (MCS) option,
you can record information on the hard copy

I
log. Since the NCS option allows more than
one console in a system, an installation
might find it helpful to be able to record
all the messages issued by and to a system.
rhe hard copy log provides a place to

38

I collect these messages, and therefore
allows an installation to review system
activity by reviewing messaqe activity.

Since the hard copy log is optional, you
should know whether your system was
generated with it. The hard copy log is

I either an operator's console with output
capability or the system log.

'1'0 record information on the hard copy
log, you use the WTO or WTOR macro
instruction. Your installation must have
decided which system functions are to De
logged and assigned appropriate routing
codes to the hard copy log. The routing
codes that you assign to your WTO or WTOR
macro instruction are compared to the
routing codes assigned to the log. If or.e
or more codes match, the message is entered
in the log. This means you do not have to
issue a WTL macro instruction to record
system and problem program inforwation when
the same information is going to the
operator. You must, however, know which
system functions the log is recording and
assign an appropriate routing code to your
HTO or WTOR macro instruction.

For each entry in the ha rd copy log,
both the time when the messa.ge is received
by the system and the routing codes for the
message are appended to the beginning of
the message text. Recording the time that
the message was received, a procedure
called time stamping, allows you to obtain
a chronological record of system activity.
For a system that does not have the timer
option, the space for time stamping is
filled with zeros.

Whether the hard copy log is the
operator's console or the system log, the
hard copy log information cannot be
confused with other information. This is
because the hard copy log entries are
prefixed with the time stamp and the
routing codes.

\,oJRITING '1'0 'I'HE SYSTEM. LOG

Opera ting systems with MFT, MV'l', or
Model 65 multiprocessing provide a system
log as an optional feature. The system log
consists of two SYSOUT data sets on which
the communication between the operator and
the system is recorded. You can use the
system log by coding the information that
you wish to log in the "text" operand of
the WTL macro instruction.

The data set receiving data from the
system, user programs, and/or operators is
the primary data set. The data set being

written, or waiting to be written, to a
system output device is the alternate data
set. The primary data set, the one that is
currently open and receiving input, is
logically connected to two buffers. The
operating system fills one buffer and
writes it to the primary data set while
filling the other buffer. The alternate
data set has been logically disconnected
from the buffers because it has been filled
and must wait to be written to a system
output device. After being written to a
system output device, the alternate data
set can be used again to receive input.
When receiving input, the alternate data
set becomes the primary data set.

When the WTL macro instruction is
executed, the system places your text in
one of the buffers and, when the buffer is
full, writes the buffer onto the system log
primary data set. The system writes the
text of your WTL macro instruction on the
master console instead of on the system log
if one of the following two conditions
exists:

• The system log is not supported.

• The system log is supported, but the
system log data sets are temporarily
inactive because both are full and
waiting to be written.

Your installation probably has an operator
procedure to follow for both of the above
conditions.

Although when using the WTL macro
instruction you code the message within
apostrophes, the written message does not
contain the apostrophes. The message can
include any character that is valid for the
WTL macro instruction and is assembled and
wri tten the same way as the W'I'O macro
instruction. l'~CS routing codes and
descriptor codes are not assigned since
they are not needed by the WTL macro
instruction.

MESSAGE DE.LETION

If your system is using the Model 85
Operator Console with cathode ray tube
(CRT) display as a console, unnecessary
messages can be deleted from the operator's
screen by the programmer.

'l'he operating system assigns a message
identification number to each WTO and WTOR
message, and returns the message to the
program in register 1. The D01"l macro
instruction uses the identification number
to indicate which message is to be deleted.

The message identification number must not
be confused with the reply identification
number that is assigned to WTOR replies •.

PROGRAM INTERRUPTION PROCESSING

Unu$ual conditions encountered in a
program cause a program interruption.
These conditions include incorrect operands
and operand specifications, as well as
exceptional results, and are know generally
as program exceptions. For certain
exceptions (fixed-point and decimal
overflow, exponent underflow and
significance), interruptions can be
disabled by setting the corresponding bits
in the program status word to zero.

When a task becomes active for the first
time, all program interruptions that can be
disabled are disabled, and a standard
control program exit routine, included when
the system was generated, is provided.
This control program exit routine is given
control when any program interruptions
occur, and issues an ABEND macro
instruction specifying task abnorroal
termination and requesting a dump. By
issuing the SPIE macro instruction, you can
specify your own exit routine to be given
control for one or more types of program
exception. The macro instruction specifies
the address of the exit routine to be given
control when specified program exceptions
occur. If the SPIE macro instruction
specifies an exception for which the
interruption has been disabled, the control
program enables the interruption when the
macro instruction is issued.

The SPIE macro instruction can be issued
by any program being executed in
performance of the task. When the task is
active, your exit routine receives control
for all interruptions resulting from
exceptions specified in the SPIE macro
instruction. For other program
interruptions, control is given to the
control program exit routine. Each
succeeding SPIB macro instruction
completely overrides specifications in the
previous macro instruction.

PROGRAM INTERRUPTION CON'l'ROr. AREA: The
expan.::don of the SPIE macro instruction
results in a control program parameter
list, called a program interruption control
area (PICA). 'I'he PICA, shown in t'igure 8,
contains the new program mask for the
interruption types that can be disabled,
the address of the exit routine to be givtn
control, and a code for interruption types
(exceptions) specified in the SPIE macro
instruction.

Section I: supervisor Services 39

SPIE FIXUP, (8) Provide exit routine for fixed-point overflow
ST 1, HOLD Save address returned in register 1

L 5,HOLD Reload returned address
SPIE MF= (E, (5» Use execute form and old PICA addres1::)

HOLD DC F'O'

Example 26. Use of the SPIE Macro Instruction

DISPLACEMENT
(Bytes) 0 2 3 4 5

I
I Pro- Interruption

0000 I gram Exit Routine Address
Type

t Mask

Figure 8. Program Interruption Control
Area

A program that issues a SPIE macro
instruction must restore the PICA that was
in effect when control was received. It
must do so before it returns control to the
calling program, or transfers control to
another program by issuing an XCTL macro
instruction. When the SPIE macro
instruction is issued, the control program
returns the address of the previous PICA in
register 1. The control program returns
zero in register 1 when there is no
previous PICA, that is, when no SPIE macro
instruction has been issued earlier in
performance of the task.

Example 26 shows how to restore a
previous PICA. The first SPIB macro
instruction designates an exit routine
called FIXUP that is to be givEn control if
fixed-point overflow occurs. The address
returned in register 1 is stored in the
fullword called HOLD. At the end of the
program, the execute form of the SPIE macro
instruction is used to restore the previous
PICA.

PROGRAH IN'.fERRUP'I'ION ELEMENT: At the first
execution of a SPIE macro instruction
during ttle performance of a task, the
control program creates a 32-byte program
interruption element (PIB) in the main
storage area assigned to the job step
(subpool 0 in an operating system with
MVT) • 'I'his program interruption element is
used each time a SPIE macro instruction is
issued during the performance of the task,
and contains the information shown in
l"igure 9.

The PICA address in the program
interruption element is the address of the
program interruption control area used in

40

DISPLACEMENT
(Bytes) 0

4

12

16

20

24

28

32

Reserved I
Old Program
Status Word

2 3

Pica Address

i {Interruption Codes} L- _________

Register 14

Register 15

Register 0

Register 1

Register 2

Figure 9. Program Interruption Llement

the last execution of a SPIE macro
instruction for the task. When control is
passed to the routine indicated in the
PICA, the old program status word contains
the interruption code in bits 16-31; these
bits can be tested to determine the cause
of the program interruption. The contents
of registers 14, 15, 0, 1, and 2 at the
time of the interruption are stored by the
control program as indicated.

REGISTBR CONTENTS: When control is passed
to the designated exit routine the register
contents are as follows:

• Register 0: internal control program
informa tion •

• Register 1: address of the program
interruption element for the task that
caused the interruption.

• Registers 2-12: same as when the
program interruption occurred.

• Register 13: address of the save area
for tne main program. The exit routine
must not use this save area.

• Register 14: return address (to the
control program).

• Reqister 15: address of the exit
routine.

The exit routine must be in main stora~e
when it is required, and must return
control to the control program using the
address passed in register 14. The control
program restores registers 14, 15, 0, 1,
and 2 from the program interruption element
after control is returned, but does not
restore the contents of reqisters 3-13. If
a program interruption occurs when the
program interruption exit routine is in
control, the control program exit routine
is given control.

To determine which type of interruption
occurred, the exit routine can interrogate
bits 28 through 31 of the old program
status word (OPSW) in the program
interruption element. The routine can then
take corrective action or can simply ignore
the exceptional condition.

The exit routine can alter the contents
of the registers when control is returned
to the interrupted program. For resisters
3 through 13, the routine alters the
contents of the actual registers. For
registers 14 through 2, the routine alters
the contents of the register save area in
the progran, interruption element. This is
because the control prograrr reloads these
registers from this area when it returns
control to the interrupted program.

The exit routine can also alter the last
four bytes of the OPSW in the program
interruption element. By changing the
OPsw, the routine can select any return
pOint in the interrupted program.

I
The control program returns control to

the interrupted program by loading a PSW
constructed from the possibly modified OPSil
saved in the program interruption element •

PRECISE AND IMPRECISE INTERRUPTIONS: Aft€'r
an interruption, the old program status
word contains the address of the next
instruction to be executed in bits 40-63,
and the length of the previou3 instruction
in bits 32 and 33. In System/360 Models
65, 67, 75, 85, 91, and 195, however, tne
address of the next instruction may not De
precise; if tne address is not precise, the
instruction length code (lLC) in bits 32-33
is set to zero. You should therefore test
the instruction length code for zero before
using the next instruction address.

In lolodels 65-85, imprecise interruptions
can result only from protection and
addressing exceptions. In the I>1odel 91,
imprecise interruptions result from these

I and eight other types of exceptions. In
the Model 195, irrlprecise interruptions
result from nine other types of exceptions.
Table 7 summarizes the types of program
exceptions that can result in an imprecise
interruption.

Except for the protection exception in
the Model 91, any exception that can result
in an imprecise interruption can also
result in a precise interruption. You
therefore should not assume that a specific
type of exception will always produce an
imprecise interruption. Table 8 defines
the conditions under which interruptions

I are precise in r-~odels 65-195. Note that
interruptions are always precise in systems
with lower model numbers.

Section I: SuperviHor 3ervic~,: 41

eTable 7. Interruption Code in the Old Program status Word

Type of Interruption

Type of Exception Precise (I LC =1= 0) Imprecise (I LC = 0)

All Models Models 65-85 Model 91 Model 195
Bits 16-27 28-31 Bits 16-27

Operation (zero) 0001
Privileged Operation (zero) 0010
Execute (zero) 0011
Protection (zero) 0100 (zero)
Addressing (zero) 0101 (zero)
Specification (zero) 0110
Data (zero) 0111
Fixed-point Overflow (zero) 1000
Fixed-point Divide (zero) 1001
Decimal Overflow (zero) 1010
Decimal Divide (zero) 1011
Exponent Overflow (zero) 1100
Exponept Underflow (zero) 1101
Significance (zero) 1110
Floating-point Divide (zero) 1111

I Interruptions in the Models 91 and 195: As
shown in Table 7, the interruption code in

I the Models 91 and 195 differs for precise
and imprecise interruptions. For precise
interruptions (as for all interruptions in
other modeis), exceptions are indicated in

I bits 28-31 of the old program status word.
For imprecise interruptions, bits 28~31 are
zero, and exceptions are indicated in bits
16-21.

Before testing the interruption code to
determine the cause of an interruption, you
should test the instruction length code to
determine whether the interruption is
precise or imprecise. If the instruction
length code is zero, indicating an
imprecise interruption, you should test
bits 28-31 of the old program status word
to determine whether the interruption has
occurred on a Model 91 or 195. If bits
28-31 are zero, the interruption has
occurred on a Model 91 or 195 and the cause
of the interruption is indicated in bits

42

28-31 Bits 16-27 28-31 Bits 16-27 28-31

0100 100000000000 (zero) 100000000000 (zero)

0101 010000000000 (zero) 010000000000 (zero)
001000000000 (zero)
000100000000 (zero) 000100000000 (zero)
000010000000 (zero) 000010000000 (zero)

000001000000 (zero) 000001000000 (zero)
000000000010 (zero)
000000000001 (zero)

000000100000 (zero) 000000100000 (zero)

000000010000 (zero) 000000010000 (zero)
000000001000 (zero) 000000001000 (zero)
000000000100 (zero) 000000000100 (zero)

I 16-27. If bits 28-31 are not zero, the
interruption has not occurred on a Model 91

lor 195, and these bits themselves indicate
the cause of the interruption.

In the Model 91, there are ten types of
program exceptions that can cause an
imprecise interruption. In the Model 195,
there are eleven types of program
exceptions that can cause an imprecise
interruption_ Each is represented by a
separate bit in the interruption code (bits
16-27). After an imprecise interruption,
the interruption code may indicate more
than one type of exception. When it does,
the indicated exceptions may be due to a
single instruction, or to several
instructions whose execution was
overlapped. Note that each of the
indicated exceptions may have occurred more
than once, and there is no indication as to
which occurred first.

• Table 8. Precise Interruptions in IBM. System/360 Models 65, 67, 75, 85, 91, and 195

Models 65-85 Model 91 Model 195
Precise in Precise Precise in

Type of Exception
INHIBIT for INHIBIT

Always Sometimes Always Sometimes OVERLAP Decimal Always Sometimes OVERLAP
Precise Precise 1 Precise Precise2 Mode3 Simulation4 Precise Precise5 Mode3

Operation X X X
Privileged Operation X X X
Execute X X X
Protection X X
Addressing X X X X
Specification X X X X
Data X X X X
Fixed-point Overflow X X X
Fixed-point Divide X X X
Decimal Overflow X X X
Decimal Divide X X X
Exponent Overflow X X X
Exponent Underflow X X X
Significance X X X
Floating-point Divide X X X

1 A protection or addressing exception results in a precise or imprecise interruption, depending on the cause of the exception.

2An.addressing or specification exception results in a precise or imprecise interruption, depending on the cause of the exception. For details, refer to the
publication IBM System/360 Model 91 Functional Characteristics.

3The indicated interruptions are precise if the INHIBIT OVERLAP switch is set on the system control panel.

4The interruption for a protection exception is precise only when simulated by the control program decimal simulator routine. Interruptions for decimal
overflow and decimal divide exceptions occur only as simulated interruptions; they do not occur if the control program does not include the decimal
simulator routine.

5An addressing exception results in a precise or imprecise interruption, depending on the cause of the exception. For details, refer to the publication
IBM System/360 Model 195 Functional Characteristics.

If you provide an exit routine to handle
any of the exceptions that may result in an
imprecise interruption, you should specify
all ten such exceptions in the SPIE macro
instruction. When an imprecise
interruption occurs, your exit routine will
be entered only if the PICA indicates all
of the exceptions that are indicated in the
old program status word. For example, if
you provide a routine to handle fixed-point
overflow, and if you specify only
fixed-point overflow in the SPIE macro
instruction, the routine will not be
entered if both fixed-point overflow and
specification exce~tions are indicated for
the same interruption.

Decimal Simulation in the Model 91: The
instruction set for the Model 91 does not
include the decimal instructions AP, CP,
DP, MP, SP, and ZAP; each of these
instructions causes an operation exception,
which results in a precise interruption.
If the decimal simulator routine was

specified at system generation, the control
program simulates the decimal operation.
otherwise, control is passed to your
program interruption exit routine, or to
the control program exit routine.

Decimal simulation may result in an
exceptional condition. When it does, the
control program simulates a precise
interruption as indicated in Table 8 •. Eor
decimal overflow, execution is completed
and the condition code is set. For other
exceptions, execution is suppressed; the
condition code and the contents of main
storage remain unchanged. Note that the
control program does not simulate an
interruption for decimal overflow if the
interruption is disabled.

ABNORMAL CONDITION HANDLING

It is not possible to provide procedures
for all possible conditions which can occur

section I: Supervisor Services 43

during the execution of a program. You
should, of course, be sure that you can
process all valid data, and that your
program satisfies all the requirements of
the problem. The more general you make the
program, the greater the number of
additional routines you will require to
handle special cases. But you will not be
able to provide routines to detect and
correct all of the special or abnormal
conditions that can occur.

The control program does a great deal of
checking for abnormal conditions. A
standard program interruption routine is
provided to detect and process errors such
as protection violations or addressing
errors. 'J'he data management and supervisor
routines provide some error checking
facilities to ensure that, based on the
information you have provided, only valid
data is being processed, and that no
requests with conflicting requirements have
been made. For the abnormal conditions
that can possibly be corrected, control is
returned to your program with a return code
indicating the probable source of the
error. E'or conditions that indicate that
further processing would result in
degradation of the system or destruction of
existing data, the control program abnormal
termination routine is given control.

There will be abnormal conditions unique
to your program, of course, that the
control program cannot detect. Figure 10
is an example of one of these. The routine
shown in F'igure 10 checks a control field
in an input parameter list to determine
which function the program is to perform.
Only characters between 1 and 4 are valid
in the control field. The presence of any
other character is invalid, but the routine
must be prepared to detect and handle these
characters. The routine should indicate
its inability to continue processing by
returning control to the calling program
with an error return code. The calling
program should then try to interpret the
return code and to recover from the error.
If it cannot do so, the calling program
should detach its incomplete subtasks,
execute its usual termination procedures,
and return control to its calling program,
again with an error return code. This
procedure may result in termination of all
the tasks of a job step; if it does, the
COND parameters of the JOB and EXEC
statements may be used to determine whether
or not subsequent job steps should be
executed.

An alternative to this procedure is to
pass control to the control program
abnormal termination routine by issuing an

44

RTNl

RTN2

RTN3

RTN4

Figure 10. Abnormal Condition Detection

ABEND macro instruction. This alternative
is simpler, but it offers less opportunity
for error recovery and continued processing
unless a STAE macro instruction, specifying
a STAE exit routine address, is issued to
override the ABEND. 'J'he abnormal
termination facilities available through
the use of the ABEND macro instruction are
discussed below; an explanation of the
facility to intercept abnormal termination
through the STAE macro instruction is
presented following the ABEND discussion.

The position within the job step
hierarchy of the task for which the ABEND
macro instruction is issued determines the
exact function of the abnormal termination
routine.

If an ABEND macro instruction is issued
when the job step task (the highest level
or only task) is active, or if the STEP
operand is coded in an ABEND macro
instruction issued during the performance
of any task in the job step, all the tasks
in the job step are terminated. An ABEND
macro instruction (without a STEP operand)
that is issued in performance of any task
other than the job step task causes only
that task and the subtasks of that task to

be abnormally terminated. The abnormal
termination routine works in the same
manner whether it is given control from the
control program or a problem program.

When a task is abnormally terminated,
the control program performs the following
functions:

• Lowers the responsibility counts for
the load modules brought into main
storage during the performance of the
task.

• Releases the main storage subpools
owned by the tasks.

• Cancels the time interval if one had
been established for the task.

• Issues a CLOSE macro instruction for
any data control blocks which were
opened during the performance of the
task.

• Purges any outstanding input or output
requests.

• Cancels any requests for operator
replies made using a WTOR macro
instruction.

• Cancels any requests for resources made
using an ENQ macro instruction.

If the job step is not to be terminated,
the following action is taken:

• The abnormal termination functions
listed above are performed, starting
with the lowest level task, for each of
the subtasks of the task which was
active when the ABEND macro instruction
was issued. A DETACH macro instruction
is issued by the control program for
each of the subtasks.

• The completion code specified in the
ABEND macro instruction is placed in
the task control block of the active
task (the task for which the ABEND
macro instruction was issued).

• If the ECB operand was designated in
the A"£TACH macro instruction issued to
create the active task, the completion
code specified in the ABEND macro
instruction is placed in the designated
event control block, and the completion
bit is turned on.

• If the ETXR operand was designated in
the ATTACH macro instruction issued to
create the active task, the end-of-task
exit routine is scheduled to be given

control when the originating task
becomes active.

• If neither the ECB nor ETXR operands
were designated when the ATTACH macro
instruction was issued, a DETACH macro
instruction is issued by the control
program for the active task.

If the job step is to be terminated, the
following action is taken:

• The abnormal termination functions
listed above are performed, starting
with the lowest level task, for all
tasks in the job step. All main
storage belonging to the job step is
released. None of the end-of-task exit
routines are given control.

• The completion code specified in the
ABEND macro instruction is written on
the system output device.

• Unless you specify otherwise in your
job control statements, the remaining
job steps in the job are skipped.
However, the statements defining these
steps are checked for proper syntax.

In a system with PCP, MFT, or MVT, it is
possible to restart a job step that has
been abnormally terminated. Restart can
occur either at the beginning of the job
step or at an internal checkpoint. A
detailed discussion of checkpoint and
restart appears later in this section.

INTERCEPTION OF ABNORMAL TERtvlINATION

Abnormal termination of a task can be
intercepted through the use of the STAB
macro instruction. When an ABEND macro
instruction is scheduled for a task that
has previously issued a STAE macro
instruction, the ABEND macro instruction is
intercepted and control is returned to the
user at his STAE exit routine address, as
specified in the STAE macro instruction.
Within the STAE exit routine, the user can
perform pre-termination functions or
diagnose the error. He can also determine
whether abnormal termination should
continue for the task, or whether a STAE
retry routine, which would circumvent
abnormal termination, should be scheduled.
For fUrther information on the facility of
scheduling a STAE retry routine, see the
publication IBM System/360 Operating
system: system programmer's Guide.

The STAE exit routine can contain an
ABEND macro instruction, but it must not
contain a STAE or an ATTACH macro

section I: Supervisor services 45

instruction. At the time the ABEND macro
instruction is scheduled, the S'l'AE. exit
routine must be resident; it either must be
part of the program issuing STAE, or
brought into storage via the LOAD macro
instruction.

The user can also issue a STAE macro
instruction to cancel (make the previous
STAE request active) or to overlay the
current STAE request. The STAE request
that is canceled or overlaid is the one
most recently made. If no STAE requests
are active for the task at the time a
cancel or overlay is issued, or if the user
attempts to cancel or overlay a STAE
request not associated with his Request
Block level of control, he will be informed
that his request is invalid by a return
code. A STAE request can be canceled by
issuing the STAE macro instruction with the
STAE exit routine address specified as
zero.

When a program using STA.E returns
control to a previous level via an SVC 3,

LISTl

EXITl
EXIT2

STAE

LA
STAE

DC
DC
EQU
EQU

EXIT1,CT,PARAM=LIST1,XCTL=YES

5,EXIT2
(5) ,OV

F'O'
X'AO'

*
*

all STAE requests are canceled. 1f a STAE
request specifies the "XCTL=YES" option,
that STAE request is not canceled when the
STAE user issues an XC'I'L macro instruction.
If a program terminates by any means other
than an SVC 3, all STAB requests n:ust be
canceled by the terminating program before
returning control to another program.

Example 27 shows the use of the STAE
macro instruction. 'I'he STAE: request is
initially made specifying a STAE. exit
routine address ("EXIT1") and parameter
list address ("LIST1"). The "XCTL=YES"
parameter indicates that this STAE rEquest
will not be canceled if the program
terminates via the XCTL macro instruction.
In the second issuance of STAE, the
previous STAE request is modified through
the overlay ("OV") option. 'I'he STAE exit
routine address is now "EXIT2", but the
parameter list address and the "XCTL=YES"
request remain the same.

Initial STAE request.

Put new exit routine address in register 5.
STAE request to overlay exit routine address.

Parameter list for exit routines.

Entry ooint of first exit routine.
En,try point of second exit routine.

Example 27. Use of the STAE Macro Instruction

46

After a STAB macro instruction has been
issued, the register contents upon return
to the user are as follows:

• Registers 0, 1:

• Registers 2-13:

• Register 14:

• Register 15:

Decimal Code

o

4

8

12

16

Unpredictable.

Same as when STAE was
issued.

Unpredictable.

Error/completion
code.

Indication

Successful completion
of creating,
overlaying, or
canceling a STAE
request.

No storage obtainable
for a STAE request.

A STAE request to be
canceled or overlaid
did not exist, or a
STAE was issued in
the user's exit
routine.

Invalid exit routine
or parameter list
address.

Attempt to cancel or
overlay another
user's STAE request~

When a program with an active STAE
environment encounters an ABEND situation,
control will be returned to the user at the
STAE exit routine address. However, if the
abnormal termination is caused by either an
operator's CANCEL, job step timer
expiration. or the detaching of an
incomplete task, ABEND processing
continues, and the STAE exit routine is not
executed. At this time, active I/O for the
failing task either has been quiesced and
is restorable at a later time, or has been
halted and is not restorable. The register
contents upon entry to the STAE exit
routine are as follows:

• Register 0:

Decimal Code

o

4

8

Indication

Active I/O at t.he
time of the.ABBND was
quiesced and is
restorable.

Act~ve I/O at the
time of the ABEND was
ha'l ted and is not
restorable.

No I/O was active at
the time of the
ABE-NO.

Section I: Su~ervisor Services 47

o
Address of STAE exit routine

ABEND completion code parameter list or 0

PSW at time of ABEND 8

16

24
last problem program PSW before ABEND

Contents of registers 0-15 at
time of ABEND (64 bytes)

If a problem program issued STAE:

88

96
Name of abnormally terminated program or 0

Address of entry poi nt to
abnormally terminated program I

If supervisor program issued STAE:

88 Address of request block of
abnormally terminated program I

96 0

Figure 11~ Work Area for STAE Exit Routine

• Register 1: Address of a 104-byte
work area, as shown
in Fi.gure 11.

0

o

• Register 0:

• Register 1:

12

ABEND completion code
as follows:

• Registers 2-12: Unpredictable • Content Indication

• Register 13:

• H.Eg.1.S-t.t:T 14:

• Register 15:

Address of a
supervisor-provided
register save area.

R.eturn address.

Address of the STAE
exit routine.

~ote: Registers 13 and 14, if used by the
S'fAE exit routine, must be saved and
restored prior to returning to the calling
program. Standard subroutine linkage
conventions apply.

If main storage was not available for
the work area, the reqist .• ?:'r contents upon
entry to the STAB exit routine are as
follows:

48

o 1

o o

1 1

1 o

2-7

8-19

20-31

• Register 2:

Dump to be given.

Dump not to be given.

Job step to be
terminated.

Only failing task to
be terminated.

Not used.

System completion code
(packed, unsigned,
decimal).

User completion code
(hexadecimal).

Address of STAE exit
parameter list.

• Regi~ter 3-13: Unpredictable.

• Register 14: Return address.

• Register 15: Exit routine address.

Upon completion of the STA~ exit
routine, the user must indicate whether
ABEND processing is to be continued for the
task or whether a STAB retry routine should
be scheduled. The return codes to be
placed in register 15 are defined as
follows:

o

4

8

Indication

ABEND processing ·is to continue.

A retry routine has been provided
and the Request Block chain should
be purged.

A retry routine has been provided
and the Request Block chain should
not be purged.

For further information on the option of
STAE retry, see the publication IB~
System/360 Operating System: System
Prograrr~er's Guide.

THE DUMP

There are two ways in which dumps of
main storage can be obtained: through the
use of the DUMP operand in the ABEND macro
instruction and through the use of the SNAP
macro instruction. When the dump is
requested using an ABEND macro instruction,
no fUrther processing is performed for the
active task; use of the SNAP macro
instruction allows the task to continue
after the completion of the dump. The
control proyram generally requests a dump
for you when it issues an ABEND macro
instruction.

The data set containing the dump can
reside on any device which is supported by
the basic access technique using sequential
organization (BSAM). 'l'he dump is placed in
the data set described by the DD statement
you provide. If a printer is selected the
dump is·printed immediately. However, if a
direct access or tape device is designated,
a separate job is scheduled to obtain a
listing of the dump, and to release the
space on the device.

The format of the dump is shown in the
publication IBM system/360 Operating
System: Programmer's Guide to Debugging.
The entire dump shown in that publication
is provided in an abnormal termination dump

if a DD statement with a ddname of SYSABEND
is provided; only the problem program areas
are dumped if a DD statement with a ddname
of SYSUDUMP is provided. Use of the SNAP
macro instruction allows you to request
only selected portions of the entire dump
for any task in the job step; the format of
the portions selected is the same as the
format of the same portions of an abnormal
termination dump.

When an abnormal termination dump is
requested, the entire dump is provided for
the active task, along with a dump of the
control blocks and save area for each of
the higher level tasks which are
predecessors of the active task being
terminated and for each of the subtasks of
the active task. The control program dump
routine uses the addresses you stored in
words 2 and 3 of each save area to follow
the "chain" of save areas provided by each
calling program in each task. If an ABEND
macro instruction was issued when task Bl
(Figure 4) was active, for example, a
complete dump would be provided for task
Bl. The control blocks and save areas for
task B, task Bla, and the job step task
would also be provided in separate dumps.

REQUIREMENTS

To get a dump:

• You must provide a DD statement for
each job step in which a dump is
requested. For an abnormal tern'ination
dump, the ddname must be SYSABEND or
SYSUDUMPi for a SNAP macro instruction
dump, the ddname must be any name
except SYSABEND or SYSUDUMP. The
requirements for writing the DD
statement are described in the
publication IBM system/360 Operating
System: programmer's Guide to
Debugging.

• To obtain a dump using the SNAP macro
instruction, you must provide a data
control block, and issue an OP~N macro
instruction for the data set before any
SNAP macro instructions are issued.
The data control block must contain
the following parameters:- DSORG=PS,
RECFM=VBA, MACRF=W, BLKSIZE=nnn, and
LRECL=125, where nnn is 882 for NFT and
either 882 or 1632 for PCP and MVT.
(The data control block is discussed in
section II of this manual.)

• sufficient unused main storage must be
available in the area assigned to the
job step to hold the control program
dump routine and, if not already in

section I: supervisor Services 49

main storage, the BSAM data management
routines. For an abnormal termination
dump, additional main storage is
required for the routines to process
the OPEN macro instruction issued by
the control program, and for the trace
table. Refer to the publication IBM
System/360 Operatinq System: storage
Estimates for storage requirements.

INDICATIVE DUMP

In an operating system with the primary
control program or MFT, you can obtain an
indicative dump, as shown in the
publication IBM System/360 Operating
System: Programmer's Guide to Debuqging.
This dump is provided in response to a
request for an abnormal termination dump
when either you did not provide a DD
statement with the ddname SYSABEND or
SYSUDUMP, or the control program entry for
that DD statement was destroyed. 'The
indicative dump is printed on the system
output device. The indicative dump is not
provided in an operating system with MVT.

Main Storage Management

No matter which configuration of the
operating system you are using, there is a
finite amount of main storage available to
your job step. If you are using the
primary control program, you have available
all main storage not used by the control
program; if you are using an operating
system with Mi'T or MV'l', you have a
partition or region of fixed size available
to your job step. You should remember the
following requirements when using the
primary control program if your job is ever
going to be run in an operating system with
£V1FT or f.'NT.

In an operating system with MFT, the
main storage available to problem programs
is divided into 1 to 15 fixed partitions.
The division is made during system
generation, but the operator can enlar~e a
partition by combining it with others.
Each partition is associated with one or
more "job classes," which can be varied by
the operator. On the basis of job class
and priority specified in a JOB statement,
a job is assigned to a partition and
scheduled for execution. A job step wi~l
be abnormally terminated if it reyuires
more main storage than is available in the
partition.

In a system with MVT, available main
storage is divided into regions, which vary

50

in size and number according to the
requirements of the job steps being
performed. Job steps are selected for
execution according to job class and
priority, and each is assigned a region of
the size specified in a JOB or EXEC
statement. If the highest priority job
step requires a larger region than can be
made available, its execution is delayed,
and a lower priority job step (one with
sufficiently lower storage requirements) is
initiated. After a job step has been
initiated, its region can be extended only
if the rollout/rollin option has been
incl uded in the system. (For a description
of rollout/rollin, refer to the publication
IBM System/360 Operating System: System
Programmer's Guide.)

You obtain the use of the main storage
area assigned to your job step through
implicit and explicit requests for main
storage. The use of a LINK macro
instruction is an implicit request for main
storage; the control program allocates
space before bringing the load module into
your job pack area. The use of the GEr~~IN
macro instruction is an explicit request
for a certain number of bytes of main
storage to be allocated to the active task.
In addition to your requests for main
storage, requests are made by the control
program and data management routines for
areas to contain some of the control blocks
required to manage your tasks.

The following paragraphs discuss some of
the techniques that can be applied for
efficient use of the main storage area
reserved for your job step. TheSE
techniques apply as well to the data
management portions of your programs. The
specific data management main storage
allocation facilities are discussed in
Section II of this publication; the
principles discussed here provide the
background you will need to use these
facilities.

EXPLICIT REQUESTS

Main storage can be explicitly requested
for the use of the active task by issuing a
GETMAIN macro instruction. The main
storage request is satisfied by allocating
a portion of the main storace area reserved
for the job step to the active task. You
cannot use the main storage area reserved
for the job step without first requesting
it; if you attempt to use it without
requesting it, the task is abnormally
terminated. The main storaoe area is not
set to zero when allocated.

You return control of main storage by
issuing a FREB~~IN macro instruction. This
does not release the area from control of
the job step; it only makes the area
available to satisfy the requirements of
additional requests for any task in the job
step. The main storage assigned to a task
is also released for otner uses when the
task terminates, except as indicated under
"Subpool Handling."

SPECIFYING LENGTHS

Main storage areas are always allocated
to the task in multiples of eight bytes and
begin on a double word boundary. The
request for main storage is given in terms
of bytes; if the number specified is not a
multiple of eight, it is rounded to the
next higher multiple of eight. You can
make repeated requests for a small number
of bytes as you need the area or you can
make one large request to completely
satisfy the requirements of the task.
There are two reasons for making one large
request: it is the only way you can De
sure of getting contiguous storage area
and, because you only make one request, the
amount of control program overhead is less.

TYPES OF EXPLICIT REQUESTS

There are four methods of explicitly
requesting main storage using a GET~~IN
macro instruction. Each of the methods,
which are designated by coding an
associated character in the operand field
of the GETMAIN macro instruction, has
certain advantages, depending on the
requirements of your program. The last
three methods do not produce reenterable
code unless coded in the list and execute
forms as indicated in the paragraph
~Implicit Requests." Tne methods are as
follows:

REGISTER TYPE (R): Specifies a request for
a single area of main storage of a
specified length. The address of the area
is returned in register 1. This type of
request produces reenterable code, because
parameters are passed to the control
program in registers, not in a parameter
list.

ELEMENT TYPE (E): Specifies a request for
a single area of main storage of a
specified length. The control program
places the address of the allocated area in
a fullword you supply.

LIST TYPE (L): Specifies a request for one
or more areas of main storage. You place
the length of each area in a list; eacn
list entry represents a request for one
area of main storaqe. The control program
places the addresses of the allocated areas
in consecutive full words in another list
you supply. The addresses are placed in
the list in the same order they were
requested. This type of request can be
made only in an operating system with MVT.

VARIABLE TYPE (V): specifies a request for
a single area of main storaqe with a length
between two values you specify. 'l'he
control program will attempt to allocate
the maximum length you specify; if not
enough storage is available to allocate the
maximum length, the largest area witn a
length between the two values is allocated.
The control program places the address of
the area and the length allocated in two
consecutive fullwords you supply.

In addition to the above methods of
requesting main storage, you can designate
the request as conditional or
unconditional. (A register type request is
always unconditional.) If the request is
unconditional and sufficient main storage
is not available to fill the request, the
active task is abnormally terminated. If
the request is conditional, however, and
insufficient main storage is available, a
return code of four is provided in reqister
15; a return code of zero is provided if
the request was satisfied. When a
conditional list-type request is made, no
main storage is allocated unless all of the
requested areas can be allocated.

An example of the use of the GET~~IN
macro instruction is shown in Example 28.
The example assumes a program which
operates most efficiently with a work area
of 16,000 bytes, with a fair degree of
efficiency with 8000 bytes or more,
inefficiently with 4000 to 8000 bytes, and
not at all with ~ess than 4000 bytes. The
program uses a reenterable load module with
an entry point name of REENTMOD, and will
use it a9ain later in the program; to save
time, the load module was brought into the
job pack area using a LOAD macro
instruction so that it would De available
when it was required.

A conditional request for a single
element of main storage with a length of
16000 bytes is requested in Example 28.
The return code in register 15 is tested to
determine if the area was available; if the
return code was zero (the 16,000 bytes were
allocated), control is passed to the
processing routine. If sufficient area was

Section I: Supervisor Services 51

PROCEED2
PROCEED1
MIN
SIZES

ANSWADD

GETMAIN

LTR
BZ
DELETE
GETMAIN

L
CH
BNL

DC
DC
DC
DC
DC

EC,LV=16000,A=ANSWADD,
HIARCHY=O
15,15
PROCEED1
EP=REENTMOD
VU,LA=SIZES,A=ANSWADD,
HIARCHY=O
4,ANSWADD+4
4,MIN
PROCEED1

H'8000'
F'4000'
F'16000'
E" O'
F' 0'

Conditional request for l6000 bytes
In processor storage
Test return code
If 16000 Dytes allocated, proceed
If not, free main storage
Attempt to get smaller amount
In processor storage
Load and test allocated length
If 8000 or more, use procedure 1
If less than 8000, use procedure 2

Minimum size for procedure 1
Minimum size to proceed at all
Size of area for maximum efficiency
Address of allocated area
Size of allocated area

Example 28. Use of the GET~~IN Macro Instruction

not available, an attempt to obtain more
main storage area is made by issuing a
DELETE macro instruction to free the area
occupied by the load module RBENTMOD. A
second GET~~IN macro instruction is issued,
this time an unconditional request for an
area between 40QP and 16000 bytes in
length. If the-minimum size is not
available, the task is abnormally
terminated. If at least 4000 bytes was
available, however, the task can continue.
The size of the area actually allocated is
determined and one of the two procedures
(efficient or inefficient) ia given
control.

SUBPOOL HANDLING (IN PCP SYSTEMS AND IN MFT
SYSTEMS WITHOUT SUBTASKING)

There is only one unnumbered subpool in
an operating system with the primary
control program or MFT. In these
configurations of the operating system all
main storage requests are satisfied by
allocating storage from this unnumbered
subpool. If subpool numbers are specified,
the numbers are ignored if they are not
greater than 127 (the greatest number that
is valid in a system with MVT). If subpool
numbers greater than 127 are specified, the
job step is abnormally terminated.

52

SUBPOOL HANDLING (IN MFT SYSTEMS WITH
SUBTASKING)

Although subpools are not created in
MFT systems, it is convenient to call the
partition itself "subpool 0." That is, all
main storage in a partition is shared by
all tasks active in that partitiorlo tJlain
storage not allocated to any task is called
"free storage." "Subpool 240" is used by
the supervisor to enable the sharing of a
reenterable program invoked by a LOAD macro
instruction. "Subpool 255" is used by the
supervisor to request storage from the
system queue area. User programs may
request main storage from the partition by
specifying any subpool number from 0 to 127
or by specifying no number at all (this
provides compatibility with MVT)o User­
program implied requests for storage,
initiated when the user executes an ATTACH,
LINK, LOAD, or XCTL macro instruction, are
recorded by the supervisor in order for the
storage to be freed during termination.

SUBPOOL HANDLING (IN MVT SYSTEMS)

In an operating system with MVT,
subpools of main storage are provided to
assist in main-storage management and for
communications between tasks in the same
job step. Because the use of subpools
requires some knowledge of how the control
program manages main storage, a discussion
of main storage control is presented here.

MAIN STORAGE CONTROL: When the job step is
given a region of main storage, all of the
storage area available for your use within
that region is unassigned. Subpools are
created only when a GETMAIN macro
instruction is issued designating a subpool
number. If no subpool number is
designated, the main storage is allocated
from subpool 0, which is created for the
job step by the control program when the
job step task is initiated.

Note: If main storage is allocated to a
subtask by the user program while the
system is executing in the supervisor state
or with a protection key of 0, no other
task should free that main storage. If
some other task does free that main
storage, you get unpredictable results.

E'or purposes of control and main storage
protection, the control program considers
all main storage within the region in terms
of 2048-byte blocks. These blocks are
assigned to a subpool, and space within the
blocks is allocated to a task, by the
control program when requests for main
storage are made. When there is sufficient
unallocated main storage within any block
assigned to the designated subpool to fill
a request, the main storage is allocated to
the active task from that block. If there
is insufficient unallocated main storage
within any block assigned to the subpool, a
new block (or blocks, depending on the size
of the request) is assigned to the subpool,
and the storage is allocated to the active
task. The blocks assigned to a subpool are
not necessarily contiguous unless they are
assigned as a result of one request. Only
blocks within the region reserved for the
associated job step can be assigned to a
subpool.

Figure 12 is a simplified view of a main
storage region containing four 2048-byte
blocks of storage. All the requests are
for main storage from sub pool O. The first
request from some task in the job step is
for 504 bytes; the request is satisfied
from the block shown as BLOCK A in the
figure. The second request, for 2000
bytes, is too large to be satisfied from
the unused portion of BLOCK A, so the
control program assigns the next available
block, BLOCK B, to subpool 0, and allocates
2000 bytes from BLOCK B to the active task.
A third request is then received, this time
for 1000 bytes. There is not sufficient
unallocated area remaining in BLOCK B
(blocks are checked in the order last in,
first out), but there is enough space in
BLOCK A, so an additional 1000 bytes are
allocated to the task from BLOCK A. I Because all tasks can share subpool 0,

I Request 1 and Request 2 do not have to be
made from the same task, even though the
areas are contiguous and from the same
2048-byte block. Request 4, for 3000
bytes, requires that the control program
allocate the area from 2 contiguous blocks
which were previously unassigned, BLOCK D
and BLOCK C. These blocks are assigned to
subpool O.

2048 Bytes

Request 1 - 504 bytes

Request 2 - 2000 bytes

Request 3 - 1000 bytes.

Figure 12. Main storage Control

As indicated in the preceding example,
it is possible for one 2048-byte block in
subpool 0 to contain many small areas
allocated to many different tasks in the
job step, and it is possible that numerous
blocks could be split up in this manner.
Areas acquired by a task other than the job
step task are not released automatically on
task termination. Even if FREEMAIN macro
instructions were issued for each of the
small areas before a task t:.erminated, t:.he
probable result would be that many small
unused areas would exist within each block,
while the control program would be
continually assigning new blocks to satisfy
new requests. '1'0 avoid this situation, you
can define subpools for exclusive use by
individual tasks.

Any subpool can be used exclusively by a
single task or shared by several tasks.
Each time that you create a task, you can
specify which subpools are to be shared.
Unlike other subpools, subpool 0 is shared
by a task and its subtask, unless you
specify otherwise. When subpool 0 is not
shared, the control program creates a new
subpool 0 for use by the subtask. As a
result, both the task and its sUbtask can
request storage from sunpool 0, but both
will not receive storage from the same
2048-byte block. When the subtask
terminates, its main storage areas in
subpool 0 are released; since no other

Section I: supervisor Services 53

tasks share this subpool, complete
2048-byte blocks are made available for
reallocation.

When there is a need to share subpool 0,
you can define other subpools for exclusive
use by individual tasks. When you first
request storage from a subpool other than
subpool 0, the control program assigns a
new 2048-byte block to that subpool, and
allocates storage from that block. The
task that is then active is assigned
ownership of the subpool and, therefore, of
the block. When additional requests are
made by the same task for the same subpool,
the requests are satisfied by allocating
areas from that block and as many
additional blocks as are required. If
another task is active when a request is
made with the same subpool number, the
control program assigns a new block to a
new subpool, allocates storage from the new
block, and assigns ownership of the new
subpool. to the second task.

A task can specify subpools numbered
from 0 to 127. FRBEMAIN macro instructions
can be issued to release any subpool except
subpool 0, thus releasing complete
2048-byte blocks. When a task terminates,
its unshared subpools are released
automatically.

Owning and Sharing: A subpool is initially
owned by the task that was active when the
subpool was created. The sub pool can be
shared with other tasks, and ownership of
the subpool can be assigned to other tasks.
Two macro instructions are used in the
handling of subpools: the GETMAIN macro
instruction and the ATTACh macro
instruction. In the GETMAIN macro
instruction, ~he SF operand can be written
to request storage from subpools 0 to 127;
if this operand is omitted, subpool 0 is
assumed. The operands that deal with
subpools in the ATTACH macro instruction
are:

• GSPV and GSPL, which give ownership of
one or more subpools (other than
subpool 0) to the task being created.

• SHSPV and SHSPL, which share ownership
of one or more subpools (other than
subpool 0) with the new subtask.

• SZERO, which determines whether subpool
o is shared with the subtask.

All of these operands are optional. If
they are omitted, no subpools are given to
the subtask, and only subpool 0 is shared.

54

creating a Subpool: A new subpool is
created whenever any of the operands
described above is written in an ATTACH or
a GETMAIN macro instruction, and that
operand specifies a subpool which is not
currently owned by or shared with the
active task. If one of the ATTACH macro
instruction operands causes the subpool to
be created; the subpool number is entered
in the list of subpools owned by the task,
but no blocks are assigned and no storage
is actually allocated. If a GETMAIN macro
instruction results in the creation of a
subpool, the sub pool number is assigned to
one or more 2048-byte blocks, and the
requested storage is allocated to the
active task. In either case, ownership of
the subpool belongs to the active task; if
the subpool is created because of an ATTACH
macro instruction, ownership is transferred
or retained depending on the operand used.

Transferring Ownership: An owning task
gives ownership of a subpool to a direct
subtask by using the GSPV or GSPL operands
in the ATTACH macro instruction issued when
that subtask is created. Ownership of a
subpool can be given to any subtask of any
task, regardless of the control level of
the two tasks involved and regardless of
how ownership was obtained. A subpool
cannot be shared with one or more subtasks
and then transferred to another subtask,
however; an attempt to do this results in
abnormal termination of the active task.
ownership of a subpool can only be
transferred if the active task has
ownership; if the active task is sharing
the subpool and an attempt is made to pass
ownership to a suhtask, tne subtask
receives shared control and the originating
task relinquish~s the subpool. Once
ownership is transferred to a subtask or
relinquished, any subsequent use of that
subpool number by the originating task
results in the creation of a new subpool.
When a task that has ownership of one or
more subpools termi~ates, all of the main
storage areas in those subpools are
released. Therefore, the task with
ownership of a subpool,should not terminate
until all tasks or subtasks sharing the
subpool have completed their use of the
subpool.

Sharing a subpool: Shared use of a subpool
can be given to a direct subtask of any
task with ownership or shared control of
the subpool. Shared use is given by
specifying the SHSPV and SHSPL operands in
the ATTACH macro instruction issued when
the subtask is created. Any task with
ownership or shared control of the subpool
can add to or reduce the size of the

subpool through the use of GETMAIN and
FREEMAIN macro instructions. When a task
that has shared control of the subpool
terminates, the subpool is not affected.

SUBPOOLS IN TASK COMMUNICATION: The
advantage of subpools in main storage
management is that, by assigning separate
subpools to separate subtasks, the
breakdown of main storage into small
fragments is reduced. An additional
benefit from the use of subpools can be
realized in task communication. A subpool
can be created for an originating task and
all parameters to be passed to the subtask
placed in the subpool. When the subtask is
created, the ownership of the subpool can
be passed to the subtask. After all
parameters have been acquired by the
subtask, a FREEMAIN macro instruction can
be issued, under control of the subtask, to
release the subpool main storage areas. In
a similar manner, a second subpool can be
created for the originating task, to be
used as an answer area in the performance
of the subtask. When the subtask is
created, the subpool ownership would be
shared with the subtask. Before the
subtask is terminated, all parameters to be
passed to the originating task are placed
in the subpool area; when the subtask is
terminated, the subpool is not released,
and the originating task can acquire the
parameters. After all parameters have been
acquired for the originating task, a
FREEMAIN macro instruction again makes the
area available for reuse.

IMPLICIT REQUES'I'

You make an implicit request for main
storage every time you issue a LINK, LOAD,
ATTACH, or XCTL macro instruction. In
addition, you make an implicit request for
main storage when you issue an OPEN macro
instruction for a data set. The data
management routines required to process the
data set must be in main storage; the main
stora£e areas used as buffers may also be
allocated. When you make an implicit
request for more main storage than is
available, the active task is abnormally
terminated.

This section discusses some of the
techniques you can use to cut down on the
amount of main storage required by a job
step, and the assistance given you by the
control program.

LOAD MODULE MANAGEM~NT

The discussion of program structures
indicates the advantages and disadvantages
of each of the three types of program
designs; simple, planned overlay, and
dynamic. The program structure you
selected was based on the complexity of the
program and the execution time
considerations. Once you have selected the
program structure, you should plan
efficient use of the main storage area that
will be assigned to your job step. Note
that main storage is assigned in 2048-byte
blocks for implicit requests made in an
operating system with MVT. The size of
your load modules should be planned to take
advantage of this method of allocation.
The maximum size load module that can be
brought into main storage is 524,248 bytes
in an operating system with the primar~'
control program or MFT.

REENTERABLE LOAD MODULES: A reenterable
load module is designed so that it does not
in any way modify itself during execution.
It is "read-only". The advantage of a
reenterable load module is most apparent in
an operating system with l-lVTi only one copy
of the load module is brought into main
storage to satisfy the requirements of any
number of tasks in a job step. This means
that even though there are six tasks in the
job step and each task concurrently
requires the load module, the only main
storage area requirement is for an area
large enough to hold one copy of the load
module (plus a few bytes for control
blocks). The same main storage requirement
would apply if the load module were
serially reusablei however, the load module
could not be used by more than one task at
a time.

An additional benefit of a reenterable
load module occurs when the module is
placed in the link pack area. In this case
not only is time saved because no loading
must be performed, but in addition no main
storage area assigned to the jOb step is
required to hold the load module. A link
pack area exists only in an operating
system with MVT. The contents are
established when the operating system is
generated and when the operator performs
the initial program loading procedure. Any
reenterable load module from the link
library may oe placed in the link pack
area. Many of the frequently used data
management routines are also placed in the
link pack area. If any of your reenterable
load modules are used frequently or are
used by many jobs, it may save considerable

Section I: Supervisor services 55

time and space to have those load modules
placed in the link pack area.

Because a reenterable module does not
modify itself, it offers greater
reliability than a nonreenterable module.
When there is a machine check due to a
parity error, a fresh copy can be loaded to
overlay the copy in main storage, and
execution can be resumed. If the module is
designated as "refreshable" when processed
by the linkage editor, a fresh copy is
loaded automatically by the machine check
handler. The machine check handler,
available with MFT or MVT, is optional
programming support with Model 65, and
standard programming support with Model 65
Multiprocessor and Model 85; it is not
available with the primary control program.

You can designate a module as
refreshable without also designating it as
reenterable. However, the module must
actually be reenterable in its design,
because it must not modify itself during
execution.

REENTERABLE MACRO INSTRUCTIONS: All of the
macro instructions described in the
publication IBM System/360 Operatino
system: Supervisor and Data Manacement
Macro Instructions can be written in
reenterable forri,. From the standpoint of
reenterability, these macro instructions
are classified as one of two types: macro
instructions which pass parameters in
registers 1 and 0, and macro instructions
which pass parameters in a list. The use
of the macro instructions which pass
parameters in registers presents little
problem in a reenterable program; when the
macro instruction is coded, the required
operand values should be contained in
registers. For example, the POINT wacro
instruction requires that the dcb address
and block address be coded as follows:

r--------T-----T--------------------------,
I [symbolllPOINTldcb address,block address I L ________ ~ _____ ~ __________________________ J

One method of coding a reenterable program
would be to require that both of these
addresses refer to a portion of main
storage allocated to the active task
through the use of a GETMAIN macro
instruction. The addresses would change
for each use of the load module.
rherefore, you would load one of general
registers 2-12 with the address, and
designate the appropriate registers when
you code the macro instruction. If
register 4 contained the dcb address and
register 6 contained the block address, the

56

POINT macro instruction would be written as
follows: POINT (4),(6).

The macro instructions which pass
parameters in a list require the use of
special forms of the macro instruction when
used in a reenter able program. The macro
instructions that pass parameters in a list
are identified in "Section III: List and
Execute Forms" of the publication IBM
Systern/360 Operating System: supervisor
and Data Management Macro Instructions.
The expansion of the standard form of these
macro instructions (that is, the form
described in Section II of that
publication) results in an inline
parameter list and executable instructions
required to branch around the list, to load
the address of the list, and to pass
control to the required control program
routine. The expansions of the list and
execute forms of the macro instruction
simply divide the functions provided in the
standard form expansion: the list form
provides only the parameter list, and the
execute form provides executable
instructions to modify the list and pass
control. You provide the instructions to
load the address of the list into a
register.

The list and execute forms of a macro
instruction are used in conjunction to
provide the same services available from
the standard form of the macro instruction.
The advantages of using list and execute
forms are as follows:

• Any operands which remain constant in
every use of the macro instruction can
be coded in tile list form. These
operands can then be omitted in each of
the execute forms of the macro
instruction which use the list. 'I'his
can save appreciable coding time and
main storage area when you use a macro
instruction many times. (Any
exceptions to this rule are listed in
the description of the execute form of
the applicable macro instruction.)

• The execute form of the macro
instruction can modify any of the
operands previously designated.
(Again, there are exceptions to this
rule.)

• The list used by the execute form of
the macro instruction can be located in
a portion of main storage assigned to
the task through the use of the GETMAIN
macro instruction. This ensures that
the program remains reenterable.

LA
LA
SR
BAL
DEQ

3,MACNAME
5,NSIADDR
5,3
14,MOVERTN
, MF= (E, (4))

Load address of list form
Load address of end of list
Length to be moved in register 5
Go to routine to move list
Release allocated resource

* The MOVERTN allocates storage from subpool 0 and moves up to 255 bytes into the
* allocated area. Register 3 is from address, register 5 is length. Area address
* returned in register 4.

MOVER TN GETMAIN

LR
BCTR
EX
BR
MVC

R,LV=(5),
HIARCHY=l
4,1
5,0
5,MOVEINST
14
0(1,4),0(3)

Allocate main storage for list
In IBM 2361 Core storage
Address of area in register 4
Subtract 1 from area length
Move list to allocated area
Return

MOVEINST

MACNAME
NSIADDR
NAME1
NAME 2

DEQ (NAME1,NAME2,8,SYSTEM),RET=HAVE,MF=L

DC
DC

CL8' MAJOR'
CL8'MINOR'

Example 29. Using the List and the Execute Forms of. the DEQ Macro Instruction

Example 29 shows the use of the list and
execute forms of a DEQ macro instruction in
a reenterable program. The length of the
list constructed by the list form of the
macro instruction is obtained by
subtracting two symbolic addresses; main
storage is allocated and the list is moved
into the allocated area. The execute form
of the DEQ macro instruction does not
modify any of the operands in the list
form. The list had to be moved to
allocated storage'because the control
program can store a return code in the list
~hen RET=HAVE is coded. Note that the code
in the routine labeled MOVERTN is valid for
lengths up to 255 bytes only. Some macro
instructions do produce lists greater than
255 bytes when many operands are coded (for
example, OPEN and CLOSE with many data
control blocks, or ENQ and DEQ with many
resources), so in actual practice a length
check should be made.

NONREENTERABLE LOAD MODULES: The use of
reenterable load modules does not
automatically conserve main storage; in
many applications it will actually prove
wasteful. If a load module is not used in
many jobs and if it is not employed by more
than one task in a job step, there is no
reason to make the load module reenterable.
The allocation of main storage for the
purpose of moving code from the load module
to the allocated area is a waste of both
time and main storage when only one task
requires the use of the load module.

You may remember that, in an operating
system with MVT, the area occupied by a
reenterable or serially reusable load
module is not released automatically when
the module returns control to the control
program. (Refer to "How Control is
Returned" in the discussion of "Passing
Control in a Dynamic Structure.") In
anticipation of future use, the used copy
of the module is retained intact for as
long as possible; its area is available to
fill both implicit and explicit requests
for storage, but only after all other
available storage has been allocated. If
copies of several modules are retained when
they are not needed, available storage may
be fragmented as first the areas between
the modules are allocated, and then the
module areas themselves.

'I'o prevent this fragmentation, you
should not make a load module reenterable
or serially reusable if reusability is not
really important to the logic of your
program. Of course, if reusability is
important, you can issue a LOAU macro
instruction·to load a reusable module, and
later issue a DELE~E macro instruction to
release its area. If reusability is not
important, but you need to execute a module
that has been made reusable, you can make
the module temporarily nonreusable by
bringing its directory entry into storage,
modifying the contents of the entry, and
using the entry to refer to the module.
After issuing a BLDL macro instruction to
build a list containing the directory

Section I: Supervisor Services 51

entry, you need only set the first two bits
of the twenty-third byte in the entry to
zero; the module will then be treated as
nonreu8able when given control by a LINK,
ATTACH, or XCTL macro instruction with a DE
operand that points to the entry. To set
the appropriate bits to zero, you can use
an AND-immediate instruction like the
following, which could be placed after the
BLDL macro instruction in Example 18:

NI NAMEADDR+22,B'OOllllll'

This instruction ensures the nonreusability
of the module to which NAMEADDR refers.

One method of conserving main storage
when reusability is not a consideration is
to use a planned overlay structure. A
complete description of the planned overlay
structure is contained in the publication
IBM System/360 Operating system: Linkage
Bditor and Loader. Briefly, in a planned
overlay structure only portions of the load
modules are brought into main storage at a
time; when a portion of the load module not
in main storage is required, it is loaded
in the area occupied by existing portions
of the load module. While the use of an
overlay structure requires more planning on
your part to determine all the portions of
a load module required at anyone time, it
can result in a considerable saving of
storage. A well-planned overlay structure
can result in a savings of 50 percent or
more over bringing the entire load module
into main storage at once. This does
increase the amount of time spent in
bringing in portions of the load module,
however.

It is also possible for you to use an
overlay type of approach in the design of
your load module without using the linkage
editor by reusing the areas containing
completed routines within a load module.
E'or example, if your load module consists
of three control sections of 2000 bytes
each which are always executed
sequentially, as soon as control is passed
to the second control section you have 2000
bytes (the size of the first control
section) available to use as a data area.
If you reuse this area, you can save up to
2000 bytes of additional main storage which
would otherwise be allocated using OS
instructions or GETMAIN macro instructions.

RELEASING MAIN STORAGE

As indicated in Program ~anagement, the
control program establishes two
responsibility counts for every load module
brought into main storage in response to

58

your requests for that load module. The
responsibility counts are lowered as
follows:

• If the load module was requested in
a LOAD macro instruction, that
responsibility count is lowered using a
DELETE macro instruction.

• If the load module was requested in a
LINK, ATTACH, or XCTL macro
instruction, that responsibility count
is lowered using an XC'I'L macro
instruction or by returning- control to
the control program.

• When a task is terminated, the
responsibility counts are lowered by
the number of requests for the load
module made in LINK, LOAD, ATTACH, and
XCTL macro instructions during the
performance of that task, minus the
number of deletions indicated above.

Except for those modules contained in
the link pack area, the main storage area
occupied by a load module is available for
reuse when the responsibility counts reach
zero. When you plan your program, you can
design the load modules to give you the
best trade-off between execution time and
efficient main storage use. Naturally, if
you will use a load module many times in
the course of a job step, you will issue a
LOAD macro instruction to bring it into
main storage, and you will not issue a
DELETE macro instruction until all uses of
the load module have completed. In this
case it is better to have the load module
in main storage all the time than to bring
it in every time you require it.
Conversely, if a load module is used only
once during the job step, or if its uses
are widely separated, it will conserve main
storage if you issue a LINK macro
instruction to load the module and issue an
XCTL from the module (or return control to
the control program) when it has completed.

There is a minor problem involved in the
deletion of load modules containing data
control blocks. An OPEN macro instruction
must be issued before the data control
block is used, and a CLOS~ macro
instruction issued after the use is
finished. If you do not issue a CLOSE
macro instruction for the data control
block, the control program will issue one
for you when the task is terminated.
However, if the load module containing the
data control block has been removed from
main storage, the attempt to issue the
CLOSE macro instruction will cause abnormal
termination of the task. You must either
issue the CLOSE macro instruction yourself

before deleting the load module, or ensure
that the data control block is still in
main storage when the task is terminated.

STORAGE HIERARCHIES

Main storage may be expanded by
including IBM 2361 Core storage in the
system (excluding the Model 65
Multiprocessing System). Main storage
Hierarchy Support for IBM 2361 Models 1 and
2 permits selective access to either
processor storage (storage associated with
the Central Processing Unit) or IBN 2361
Core Storage. Processor storage is
referenced as hierarchy 0; IBM 2361 Core
storage is referenced as hierarchy 1. The
first address in IBM 2361 Core storage is
one higher than the last address in
processor storage.

Since IBM 2361 Core Storage is an
extension of main storage, no special
instructions are required for its use.
Hierarchies 0 and 1 may be specified by
using the hierarchy parameter (HIARCHY=) in
the ATTACH, DCB, GETMAIN, GETPOOL, LINK,
LOAD, and XCTL macro instructions. If the
hierarchy parameter is omitted, requested
storage, if available, is obtained from
processor storage.

In using Main Storage Hierarchy support
on a Model 50 under the primary control
program, MFT, or MVT, use caution in
directing programs containing CCws for
direct access devices to be loaded into
hierarchy 1. (Under MFT, this includes
readers and writers.) If this is
disregarded, overrun will occur wnich will
degrade the performance or result in an
unrecoverable I/O error.

If IBM 2361 Core storage is not included
in a PCP or MFT system generated with
storage hierarchies, requests £or storage
within hierarchy 1 are obtained from
hierarchy o. If IBM 2361 Core storage is
not included in anMVT system generated
with storage hierarchies, the hierarchy
structure is· contained wholly within
processor storage. Example 28 shows two
GETMAIN requests for hierarchy O. Example
29 shows a request for hierarchy 1.
Requirements for writing macro instructions
with the hierarchy parameter are described
in the publication IBM System/360 Operating
System: Supervisor and Date Management
Macro Instructions.

Checkpoint and Restart

When you submit a job for execution, you
expect it to be executed quickly and
efficiently. But if a job step terminates
abnormally, you may have to submit the job
again. You then lose valuable computer
time and must wait longer for your results.

With the primary control program, ~FT,
or MVT, the operating system provides
special facilities to reduce the effects of
abnormal termination. When a job step
terminates abnormally, you can restart it,
either from the beginning or from a
checkpoint within the job step itself. You
can request that the restart automatically
follow abnormal termination, or you can
request restart later by submitting a new
job.

When you submit a new job, you actually
resubmit the original job with certain
changes indicating where restart is to
occur. If necessary, you can make more
extensive changes, such as corrections to
data that will be processed after restart.
At times, you may wish to make such changes
and then restart a job step that has
terminated normally but has proauced
incorrect results.

When you restart a job step, the step
mayor may not be completed successfully.
You can expect successful completion if
abnormal termination was the result of a
chance error, such as a parity error,
because such an error should not recur
after restart. If abnormal termination
resulted from an error in data or job
control statements, you can expect
successful completion if you correct the
error and request restart by submitting a
new jOb. Onviously, you cannot expect
successful completion if the cause of
abnormal termination was an error in the
logic of your program.

TYPES OF RESTART: You can request two
basic types of restart:

• step restart, which is a restart from
the beginning of a job step.

• Checkpoint restart, which is a restart
from a checkpoint within a job step. A
job step can include any number of
checkpoints. Each checkpoint is
established by a CHKP~ macro
instruction.

You can request that either type of
restart automatically follow abnormal
termination. You can also request either
type by submitting a new job.

section I: supervisor Services 59

AUTOMATIC RESTART: You request automatic
step restart through job control
statements; you request automatic
checkpoint restart through the CHKPT macro
instruction.

If you request automatic step restart,
the job step will be restarted from the
beginning if it terminates abnormally
without issuing a CHKPT macro instruction.
If the step terminates after issuing a
CHKPT macro instruction, it will be
restarted from the most recent checkpoint,
unless automatic checkpoint restart is
suppressed.

You can suppress automatic checkpoint
restart through either a job control
statement or the ChKPT macro instruction.
If you do so, and you request automatic
step restart, the job step will be
restarted from the beginning in the event
of abnormal termination. However,
automatic step restart is also suppressed
if abnormal termination occurs after
restart from a checkpoint within the same
step.

Automatic step or checkpoint restart is
possible only when the abnormal completion
code is one of a set of codes specified at
system generation. (In a system with MET
or MVT, this set may include the code that
represents a system failure requiring a
system restart.) All automatic restarts
must be authorized by the operator.

DEFERRED RESTART: Restart is deferred when
you do not request automatic restart or
when automatic restart is not allowed or is
not successful. You request deferred
restart by submitting a new job.

With deferrea restart, you can consider
the cause of abnormal termination, decide
whether restart is likely to be successful,
and make any necessary changes in data and
job control statements. You can also
decide whether to restart the job step from
the beginning or from a checkpoint, and can
choose a checkpoint other than the most
recent one. In some cases, you may have
the option of restarting the job step on an
alternate computing system.

ESTABLISHING CHECKPOINTS

To establish a checkpoint, you use the
CriKPT macro instruction. This macro
instruction records the information

60

necessary to restart the job step; it
records this information in a checkpoint
data set.

Checkpoint data sets are a special topic
discussed later. The following discussion
concerns the use of the CHKPT macro
instruction, and the selection of
checkpoints. You must be careful in
selecting checkpoints, because their
placement is important to successful
restart.

In selecting a checkpoint, consider the
following restrictions:

• When the checkpoint is established, the
job step must comprise a single task.
The job step task must be your only
task when the job step is restarted.

• A checkpoint cannot be established by
an exit routine that returns control to
the control program. This type of
routine is specified by the ATTACH,
SPIE, and STIMER macro instructions,
and by the EXLST and SYNAD operands of
the DCB macro instruction. (There is
one exception, a special EXLST routine
that is discussed later.)

• If a STIMER or WTOR macro instruction
has been issued, a checkpoint cannot be
established before the time interval is
completed or the operator's reply is
received. After a restart, no timer
interruption or operator reply could be
expected.

• In a system with MVT and the
rollout/rollin option, a checkpoint
cannot be established when the job step
has been allocated storage from outside
its region.

In selecting a checkpoint, you must also
consider the handling of data sets and
serially reusable resources. First,
however, it may help to consider how the
CHKPT macro instruction is used to
establish checkpoints.

Example 30 shows a CHKPT macro
instruction and a DCB macro instruction for
the checkpoint data set. The CriKPT macro
instruction records information in the
checkpoint data set and requests automatic
restart if the job step later terminates
abnormally. When the step is restarted,
execution resumes with the instruction that
follows the CHKPT macro instruction.

CHKPT CHKPTDCB

CHKPTDCB DCB DSORG=PS,MACRF=(W),RECFM=U,BLKSIZE=32760,
DDNAME=CHKPTDD

C

Example 30. Establishing a Checkpoint

CHKPT CHKPTDCB
CH 15,=H'4'
BNE NRESTART
CHKPT CANCEL

Establish checkpoint
Restart in progress?
No, branch to NRESTART
Yes, cancel restart request

NRESTART

Example 31. Canceling a Request for Automatic Restart

When automatic restart is not possible,
you can request a deferred restart by
submitting a new job. The JOB statement
for the new job refers to the checkpoint by
an identification that (in Example 30) is
generated by the control program and
printed in a message to the operator.

After being restarted, the job step may
again terminate abnormally. If it does, it
may be automatically restarted from the
same checkpoint, subject to operator
authorization. To ensure that the job step
is not restarted twice from the same
checkpoint, you can code the sequence shown
in Example 31.

The instruction that follows the
checkpoint tests the return code register
to determine whether control has been
returned as the result of a restart. If
the return code is four, a restart has just
occurred, and a second CHKPT macro
instruction is executed. 'rhi3 macro
instruction has a CANCEL operand,' which
cancels the request of the previous macro
instruction for an automatic restart. If
the job step terminates abnormally after
issuing CHKPT CANCEL, automatic restart can

NRESTART

EXTRACT

CHKPT
CH
BNE
EXTRACT

ANSADDR,FIELDS=(ALL)

CHKPTDCB
15,=H'4'
NRESTART
ANSADDR,FIELDS=(ALL)

occur only at a later checkpoint. Because
the step was restarted from a checkpoint,
automatic restart cannot occur.

Restart from a checkpoint invalidates
the results of certain macro instructions.
One of these is the EXTRACT macro
instructiGn which is used to obtain
information from the task control block.
This information is subject to change when
the task is terminated and the job step is
restarted. If the information is needed
after restart, it should be updated by
reissuing the EXTRACT macro instruction as
shown in Example 32.

Restart also invalidates the results of
the ENQ and SETPRT macro instructions. The
ENQ macro instruction, to be discussed in
the next topic, is used to request control
of serially reusable resources. The S~TPRT
macro instruction is used in data
management to load the UCS buffer for a
1403 printer with the Universal Character
Set feature. The buffer contents are not
saved when a checkpoint is taken. To
reload the buffer upon restart, you must
reissue the SETPRT macro instruction in the

Obtain TCB information

Establish checkpoint
Restart in progress?
No, branch to NRESTART
Yes, obtain new information

Example 32. Obtaining Updated TCB Information After Restart

Section I: Supervisor Serviced 61

ENQ

CHKPT
ENQ

DEQ

(QADDR,RADDR)

CHKPTDCB
(QADDR,RADDR),RET=HAVE

(QADDR,RADDR)

Example 33. Requesting a Resource After Restart

same manner as the EXTRACT macro
instruction.

CHECKPOINTS AND SERIALLY REUSABLE RESOURCES

When a job step terminates, it loses
control of serially reusable resources. If
the step is restarted, it must request all
of the resources that it requires to
continue processing.

Example 33 shows a program that requests
a serially reusable resource before
establishing a checkpoint. After the
checkpoint~ it conditionally requests the
same resource. If the job step still has
control of the resource, the control
program ignores the request. It fills the
request if the job step has terminated
abnormally, has lost control of the
resource, and has been restarted from the
checkpoint.

SHARED DIRECT ACCESS STORAGE DEVICE: At
some installations, a direct access storage
device is shared by two or more independent
computing systems. This device is a
serially reusable resource; if it is being
used when a checkpoint is taken, it must be
requested after a restart from the
checkpoint. This resource is requested not
by the ENQ macro instruction, but by a
special macro instruction (RESERVE)
described in the publication, IBM
system/360 operating System: system
Programmer's Guide.

Other Serially Reusable Resources: There
are some resources that you request
impliCitly by issuing data management macro
instructions. These resources may be
records that you are processing, or tracks
on a direct access device. Since you
cannot conditionally request control of
these resources after a restart, you should
not establish checkpoints while you have
control of these resources.

62

• If you use the basic direct access
method (BD~l), do not take a checkpoint

before releasing a record that has been
read with exclusive control. When you
add a record to a data set, do not take
a checkpoint before checking for
completion of the write operation if
the record format is variable-length or
undefined.

• If you use the basic indexed sequential
access method (BISAM), do not take a
checkpoint before waiting for
completion of a write operation. If
you read a record for update, do not
take a checkpoint before writing the
updated record and waiting for
completion of the write operation.

• If you use the queued indexed
sequential access method (QISAM), issue
an E8ETL macro instruction before
taking a checkpoint if you have
previously issued a SErL macro
instruction,. You can issue another
SETL macro instruction after the
checkpoint.

CHECKPOINTS AND DATA MANAGEMENT

Data management is not discussed in
detail until section II of this
publication, but it is one of the most
important considerations in selecting
checkpoints. The following discussion
should be understandable if you have a
basic knowledge of data management concepts
and facilities.

DISPOSITION OF DATA SETS: At the end of a
job step, data sets are disposed of
according to your specifications in DD
control statements. If a job step
terminates abnormally, you should keep or
catalog data sets that you may need for a
deferred restart.

When you catalog a data set, you enable
the operating system to retrieve the data
set by name alone. You therefore do not
have to provide volume and device-type
information when you request deferred

restart. providing such information could
require you to write new DD statements.

If you request automatic restart, the
system keeps data sets for you, except when
the restart is not actually performed. The
kept data sets include "temporary" data
sets and others that normally would be
deleted. Data sets are deleted only if
created by a job step that is to be
restarted from the beginning.

Guidelines for specifying data set
disposition appear in the topic "Using the
Restart Facilities" in the publication, IBM
eystem/360 operating' System: Job Control
Language Reference.

POSITIONING OF DATA SETS: If you take a
checkpoint while processing a data set, you
may continue processing for some time
before abnormal termination. On restart,
you must be able to resume processing at
the correct location in the data set.

When the control prog'ram restarts a job
step, it automatically repositions data
sets on magnetic tape and direct access
devices. It does not reposition data sets
on unit record equipment; such data sets
must be repositioned manually or by your
program.

Unit Record Data sets: Unit record output
can be either punched cards or printed
pages. Input can only be punched cards.

To reposition an output data set, you
simply discard data punched or printed
after a checkpoint. This data is recreated
when the job step is restarted. Note that
when pagination is important, you should
take a checkpoint only after printing the
last line on a page.

To reposition an input data set, you
include a repositioning routine as part of
your program. such a routine should first
determine whether repositioning is
necessary, since the data set may have been
transcribed onto a magnetic tape or direct
access volume. If the data set has been
transcribed, it is repositioned
automatically by the control program;
otherwise, it must be repositioned by your
routine.

If you provide a repositioning routine,
your program might operate as follows:

• The program saves the first record read
from the data set and keeps a count of
the total number of records read before
each checkpoint.

• After a restart, the repositioning
routine reads a record from the data
set and compares it with the first
record read before abnormal
termina tion..

• If the records are identical, the data
set has been positioned to the
beginning. The routine repositions it
by reading (without otherwise
processing) the number of records read
before the checkpoint.

• If the records differ, no repositioning
is necessary. The data set presumably
has been transcribed onto a magnetic
tape or direct access volume, and has
been repositioned by the control
program.

Tape and Direct Access Data Sets: When the
control program repositions a tape or
direct access data set, it ensures that the
correct volume is mounted. During an
automatic restart, it may ask the operator
to demount the current volume of a
multivolume data set, and to replace it
with an earlier volume. However, if the
data set is physically sequential, you can
ensure that it can be repositioned without
changing volumes simply by taking a
checkpoint each time a new volume is
mounted. To do so, you provide a routine
for taking a checkpoint, and specify its
address in the data control block exit
list. The control program gives control to
this routine at the appropriate time. The
requirements for writing an end-of-volume
routine are described in "Processing
Program Description," section II, Part 1.

Positioning becomes especially important
when you modify a physically sequential or
partitioned data set (and specify DISP=MOD
in the DD statement). In each case, you
must take a checkpoint inunediately after
opening the data set, before writing any
records. If you do not, errors will occur
if:

• You take a checkpoint before opening
the data set.

• You open the data set and begin writing
records.

• The job step terminates and is
restarted from the checkpoint.

• You reopen the data set after restart.

I
If you are using BISAM to add records

an ISAM data set, you must anticipate
duplicate record indications following a
restart. These duplicate record

to

section I: Supervisor Services 63

indications can occur when you attempt to
add records that were already added before
the restart. On the other hand, if you are
using QISAM to add records to an IS~1 data
set, or if you are creating the data set,
all records added after the checkpoint will
be lost after the restart.

If you are modifying a sequential or
partitioned data set, the data set will be
positioned incorrectly when. you reopen it
after restart. Because of the parameter
DISP=lv10D, the data set is positioned to the
end; that is, the data set is positioned
after records that were added prior to
abnormal termination. Thus, records added
after restart will duplicate those added
before restart.

When you open a data set before taking a
checkpoint, the data set is repositioned
during a checkpoint restart. Also, when
you specify DISP=MOD for a data set on a
direct access device, the data set is
repositioned (when opened) after an
automatic step restart.

SYSIN and SYSOUT Data sets: System input
(SYSIN) data sets are data sets that you
include with your job control statements in
the system input stream. System output
(SYSOUT) data sets are data sets that you
route to a printer or card punch through
the system output stream. By routing data
sets through the input and output streams,
you avoid having to request unit record
devices for exclusive use by your job step.

A SYSIN or SYSOUT data set mayor may
not be on a unit record device at the time
it is processed by your program. In a
system with PCP, the data set may be on a
unit record device or on magnetic tape. In
a system with foI.:FT or MVT, a SiSIN data set
is always on a direct access device, while
a SYSOU'I' data set may be on a unit record
device, ma~n€tic tape unit, or direct
access device. Transcription from one type
of device to another (such as card-to-tape
transcription for SYSIN data sets) is
handled by the operator or the operating
system.

When a job step is restarted, the
repositioning of a SYSIN or SYSOU'l' data. set
depends on the type of device that is
actually used by your program. If the
device is a unit record device, you must
reposition the data set yourself just as
you do any other unit record data set. If
the d€vice is a magnetic tape unit or
direct access device, the data set is
repositioned automatically.

64

A SYSOUT data set has the implied status
DISP=MOD. Therefore, a checkpoint should
be taken immediately after a SYSOUT data
set is opened. For automatic step restart,
the implied status DISP=MOD means that
SYSOUT data sets on magnetic tape are not
repositioned in the same way as SYSOUT data
sets on direct access devices. SYSOU'l' data
sets on tape are positioned to the end;
SYSOU'!' data sets on direct access devices
are positioned to the beginning.

For deferred checkpoint restart, note
that:

• If a SYSIN data set was read completely
before the checkpoint, you need not
include the data set ~hen you request
restart from the checkpoint. If only
part of the data set was read, you must
include the complete data set so that
it can be properly repositioned.

• If the checkpoint was taken while a
SYSIN or SYSOUT data set was being
processed, the type of device used
directly by your program must be the
same for restart as for original
execution. The blocking factor (number
of records per block) must also be the
same.

PRESERVATION OF DATA SETS: The control
program repositions data sets but does not
preserve their contents. After taking a
checkpoint, you must ensure that the data
set contents are not changed in a manner
that would make successful restart
impossible.

If you read records from a data set,
update them, and write them-back to their
original locations, it may be useless to
take a checkpoint before completing this
processing. If you take a checkpoint
earlier, restart w~ll produce invalid
results if you update a record before
abnormal termination, update it again after
restart, and actually change the record in
both cases. For example, suppose the
purpose of the update is to switch the
positions of two fields in each record. If
you update a record twice, you return the
fields to their original positions, and the
results are invalid. In a different
application, an update might simply place a
value in a record field, regardless of the
field's original contents. In this case,
you could restart the step at a checkpoint
taken before or during the update
procedure, because an updated record would
not be changed if updated again after
restart.

Partitioned Data sets: When you process a
partitioned data set, you must be careful
to preserve the contents of the directory.
The directory consists of entries that
point to each member of the data set.

When you add a member to a partitioned
set, you also add an entry to the
directory. If you add only one member, you
can use the STOW macro instruction to
create the entry, or you can specify the
member name in the DO statement; in the
latter case, the control program creates
the directory entry when you close the data
set or when the job step terminates. If
you add more than one member, you must use
the STOW macro instruction to create an
entry for each member.

When you add one or more members to a
partitioned data set, you roust take a
checkpoint immediately after opening the
data set. After taking the checkpoint, you
can write the new member and add its entry
to the directory. Then, if the step is
restarted from the checkpoint, the data set
is repositioned; the new member and its
directory entry are deleted, and are
recreated after restart.

If you do not take a checkpoint after
opening the data set, various errors may
occur. As an example, assume that:

• You take a checkpoint before opening a
partitioned data set.

• You open the data set and begin writing
a new member.

• The'step terminates abnormally; the
control program creates a directory
entry for the new member, using the
member name specified in the DO
statement.

• The step is automatically restarted
from the checkpoint; the data set is
not open, and therefore it is not
repositioned.

• You reopen the data set after restart;
the' control program positions the data
set after the member that was just
created.

• You write the member again and close
the data set; the control program tries
to create a directory entry, again
using the member name specified in the
DO statement.

The attempt to create a directory entry
after restart is unsuccessful, because the
member name already appears in the entry

that was created before abnormal
termination. The step again terminates
abnormally, and the member created after
restart is deleted.

Note that when a partitioned data set is
repositioned after restart from a
checkpoint, the control program deletes all
members that have been added to the data
set since the checkpoint was taken. You
therefore should not request a deferred
checkpoint restart if it would delete
members that have been added by other jobs.

To update a member of a partitioned data
set, you can either write updated records
back to their original locations, or
rewrite the entire member (in updated form)
as a new member of the data set. In the
latter case, you update the directory entry
to point to the rewritten member.

If you take a checkpoint before
rewriting a member, you must also take one
immediately after updating the directory.
You must do so because the control program
will delete the updated directory entry if
it repositions the data set for restart
from the earlier checkpoint. Since no
entry then points to the original member,
execution after restart will be
unsuccessful.

Data Sets on Direct Access Devices: For
every data set on a direct access device,
there is a standard data set label called a
data set control block (OSCB). The OSCB is
part of the volume table of contents
(VTOC); it defines the location and extent
of the data set on a particular volume.

If you take a checkpoint while
processing a data set on a direct access
device, the job step can be restarted from
the checkpoint only if the OSCB has not
been changed since the checkpoint was
taken, or if the only changes result from:

• Secondary allocation. In the DO
statement, you can request that
additional space be allocated to the
data set when the space currently
available is exhausted. If space is
allocated after a checkpoint is taken,
this space is indicated in the OSCB; on
restart from the checkpoint, the space
is released and the oseB is changed
accordingly.

• Release of unused space. In the DO
statement, you can request that unused
space be released at the end of the job
step. If space is released, the DSCB
may indicate a reduced extent for the
data set when checkpoint restart is

section I: Supervisor services 65

deferred; no space is allocated to
replace that which was released. Note
that space is not released when step
termination is followed by automatic
restart.

If the DSCB is changed by moving the data
set to a new location on the same volume,
or by moving the data set to a new volume,
the job step cannot be restarted from the
checkpoint unless:

• Restart is deferred.

• 'I'he data set is replaced by a dummy
data set. (Refer to the discussion of
"Dummy Data sets" below.)

If a data set occupies more than one
volume, there is a DSCB for the data set on
each volume. If the data set is processed
sequentially, only one volume is being
processed when the checkpoint is taken; if
the DSCB for this volume has not been
changed, the jOb step can be restarted from
the checkpoint even though there may be
changes in the DSCBs for the data set on
other volumes.

When end-of-volume is reached in writing
a data set, secondary allocation may cause
the data set to be continued on another
volume. If the allocation occurs after a
checkpoint, the volume used for
continuation will not be mounted on restart
from the checkpoint. The control program
therefore cannot release the allocated
space, even though it no longer recognizes
this space as a part of the data set.

To release space on a volume that is not
mounted on restart, you should use a
utility program to delete the extension of
the data set on the volume. If you do not
release the space before the job step is
restarted, the step will be abnormally
terminated if the data set is again
extended to the same volume. Note that if
the data set organization is physically
sequential, you can provide an
end-of-volume exit routine to ensure that a
checkpoint is taken each time the data set
is extended to a new volume.

Work Data Sets: Many programs use "work"
data sets, which are alternately written
and read, rewritten and reread. If you use
a work data set, you should take a
checkpoint each time you have finished
reading the data set.' before rewriting it.
Then, if the job step is restarted, you
will not need to read records that you have

66

destroyed by rewriting the data set. If
you use the data set many times, you can
reduce the frequency of checkpoints by
using two data sets, as shown in Example
34. If you use two data sets on separate
volumes, you can assign both to one device
through the UN! 'I' parameter in the
associated DD control statements.

Dummy Data sets: When you request deferred
checkpoint restart, you can sometimes use
dummy data sets to replace data sets that
were used during the original execution of
your program. For example, your program
may have taken a checkpoint while
processing a data set; it may have finished
processing the data set prior to abnormal
termination, or the data set may have been
deleted. If there is no need to process
the data set after restart, you can replace
it with a dummy data set, provided that:

• The data set is sequentially organized
and is processed by the basic or the
queued sequential access method (BSAM
or QSAM).

• The job step is not restarted from a
checkpoint that i3 within the data
set's end-of-volume exit routine.

Of course, the data set must not be the
checkpoint data set that is being used to
restart the job step.

After restart~ an input request for a
dummy data set results in an immediate
end-of-data-set condition. An output
request is processed normally, except that
no data is actually written.

You define a dummy data set by means of
a DD statement containing the parameter
DUMMY or DSNAME=NULLFILE. The name of the
DD statement must be the same as that of
the DD statement for the data set being
replaced.

PRE-ALLOCATED DATA SETS: In systems with
MVT, direct access space for temporary data
sets can be pre-allocated to save time.
However, you cannot use this facility with
checkpoint/restart. Checkpoints and
automatic restarts are suppressed for any
job step that uses a pre-allocated
temporary data set~

Pre-allocated data sets are discussed in
detail in the chapter "System Reader,
Initiator and Writer Cataloged Procedures"
in the publication IBM System/360 Operating
System: System Programmer's Guide.

Using One Data set (A) Using Two Data sets (Ai and A2)

Open A Open Ai
Write and read back A Write and read back Ai

CheckEoint Close Ai and open A2
Rewrite and read back A Write and read back A2

CheckEoint Checkpoint
Rewrite and read back A Rewrite and read back A2

Checkpoint Close A2 and open Ai
Rewrite and read back A Rewrite and read back Ai

Close A Close Ai

Example 34. Checkpoints for Processing Work Data sets

CHECKPOINT DATA SETS

When you establish a checkpoint, the
control program creates an entry in a
checkpoint data set. The entry contains
the information necessary to restart the
job step from the checkpoint.

DEFINING A CHECKPOINT DATA SET

~o define a checkpoint data set, you use
the DCB macro instruction. This macro
instruction creates a data control block,
which describes the data set to the control
program. The data control block contains
information that you specify in the DCB
macro instruction or in a DD job control
statement.

The DCB macro instruction must specify
the data set organization and the type of
instruction that the control program will
use to write entries in the data set.
other information, such as block size and
record format, can be specified either in
the DCB macro instruction or in the DD
statement. Some information is optional
and some required; the following examples
provide all of the required information
that can oe coded in the macro instruction:

D1 DCB DSORG=PS,MACRF=(W),RECFM=U,
BLKSIZE=32760,DDNAME=CHECKDDi

D2 DCB DSORG=PO,~ACRF=(W),RECFM=U,
BLKSIZE=600,DDNAME=CHECKDD2

A checKpoint data set must be physically
sequential (DSORG=PS) or partitioned
(DSORG=PO), and must be processed using the
WRITE macroinstruction (MACRF=(W». The
record format must be undefined (RECFM=U).
The block size must be at least 600 bytes
(BLKSIZE=600>, but not greater than 32,760
bytes for magnetic tape, and not greater
than the track length for direct access..
You can omit block si~e information if you

allow the control program to open the data
set (as discussed in the next topic); in
this case, the control program determines
the maximum block size for the device oeing
used, and places it in tne data control
block.

The data control block must refer to a
DD statement (DDNAME=CHECKDD1, for example)
for such additional information as the data
set name and the type of labels used for
.magnetic tape. (A tape can have standard
labels, nonstandard labels, or no labels.)

For seven-track tape, you must specify
the tape recording technique (TRTCH=C, data
conversion with odd parity). If you
specify it in the DCB macro instruction,
you must also specify device dependency
(DEVD=TA). For direct access, you must not
speci~y key length unless you specify a
length of zero (KBYLEN=O).

As an optional service, you can request
chained scheduling of input/output
operations (OPTCD=C and NCP=2 channel
programs). With direct access, you can
request validity checking for write
operations, with or without chained
scheduling (OPTCD=WC or OPTCD=W). With
direct access and normal scheduling, you
can request use of track overflow
(RECFM=UT) •

USING A CHECKPOINT DATA SET

Before any data set can be used, it must
be opened by issuing the OPEN macro
instruction. When you use a checkpoint
data set, you can open it yourself or allow
the control program to open it for you. If
the data set is not open when you issue the
CHKPT macro instruction, the control
program opens it, writes a checkpoint
entry, and then closes the data set before
returning control to your program.

Section I: supervisor Services 67

If you open the checkpoint data set
yourself, you need not close it until after
taking the last checkpoint for the job
step. If you take many checkpoints, you
will save a considerable amount 9f time if
you allow the data set to remain open. You
will also save all of the checkpoint
entries and thus be able to request a
deferred restart from any of the
checkpoints.

If the control program opens the data
set, the data set is positioned for each
checkpoint according to your specifications
in the DD statement. If you ~pecify
DISP=MOD, the data set is positioned to the
end and each entry is written after that
for the previous checkpoint. If you
specify anything else, the data set is
positioned to the beginning and each entry
is written over the previous entry.

By allowing the control program to write
over a previous entry, you can save space
in external storage. You should not allow
it to write over the most recent entry,
however, because the job step might be
terminated while the new entry was being
written. To save the most recent entry,
you can use two checkpoint data sets in
alternation; the new entry is then written
in one data set while the previous entry is
saved in the other.

Example 35 shows a way of alternating
data sets when all checkpoints are taken by
one CHKPT macro instruction. The data sets
are opened by the control program, and are
identified by two DD statements, CHECKDDl
and CHECKDD2. The data control block
initially refers to CHECKDD2, but is
changed before the first checkpoint to
refer to CHECKDD1. Before the second
checkpoint, it is changed to refer to
CHECKDD2; before the third checkpoint, it
is again changed to refer to CHECKDD1, and

so forth. In this way, one data control
block can be used for two data sets that
are not open at the same time. (The DeBD
macro instruction, used in Example 35, is
described, in "Modifying the Data Control
Block," Section II, Part 1.)

with direct access, a checkpoint data
set must be written entirely on one volume.
Also, it must be written entirely in the
space originally allocated to the data set.
When the available space cannot contain a
complete checkpoint entry, an attempt to
take a checkpoint results in abnormal
termination, unless you have requested
secondary space allocation in the DD
statement. If you have requested ~econdary
allocation, abnormal termination does not
occur, even though the space cannot be
used. Control is returned to your program
with an error indication in register 15.

With magnetic tape, a checkpoint data
set can be written on more than one volume.
If end-of-volume is reached in writing an
entry, the entire entry is written on the
next volume. The volume that contains the
complete entry is indicated in the message
that identifies the checkpoint.

Note that you must use a checkpoint data
set only for taking checkpoints. If you
use a data set for any other purpose, you
cannot use it as a checkpoint data set.

RESTARTING A JOB STEP

If you request an autorratic restart, the
control program uses the most recent entry
in the checkpoint data set (or the most
recent valid entry if an uncorrectable
error occurred in writing the most recent
entry). If you request a deferred restart,
you must specify the appropriate checkpoint
entry when you submit the job for restart.

DCBD
CSECT

DSORG=PS Define IHADCB (dummy section that defines
DCBDDNAM)

LA
USING
XC
XC
XC
CHKPT

DDHOLD DC
CHECKDCB DCB

2,CHECKDCB
IHADCB,2
DCBDDNAM(8),DDHOLD
DDHOLD(8),DCBDDNAM
DCBDDNAM(8),DDHOLD
CHECKDCB

C'CHECKDD1'

Establish CHECKDCB as base address
for IHADCB

Exchange ddname in CHECKDCB
for ddname in DDHOLD

Open, checkpoint, close

DSORG= PS, MACRF= (W) , DDNAlV'JE=CHEC KDD 2

Example 35. Alternating Use of Checkpoint Data Sets

68

CHKPT CHECKDCB,CHECKID3,16

CHECKID3
CHECKDCB

DC
DCB

C'ENDOFDATAONINPUT'
DSORG=PS,MACRF=(W),DDNAME=CHKDD

Example 36. Assigning a Checkpoint Identification

DEFERRED RESTART: To identify the
checkpoint data set, you include an
appropriate DD statement after the JOB
statement, or after the //JOBLIB DD
statement if you define a job library. The
name of the statement must be SYSCHK.

In the JOB statement, you specify the
name of the job step to be restarted and
the checkpoint at which restart is to
occur. You specify the checkpoint by an
identification that was printed on the
operator's console when the checkpoint was
taken.

CHECKPOINT IDENTIFICATION: The control
program assigns the identification for each
checkpoint, unless you assign it yourself
when you issue the CHKPT macro instruction.
Example 36 shows a macro instruction that
assigns the identification
"ENDOFDATAONINPUT". The identification is
16 characters in length -- the maximum
length allowed for a physically sequential
data set. For a partitioned data set, the
identification is used as a member name
and, therefore, cannot exceed eight
characters.

If you assign checkpoint
identifications, you should not assign the
same identification to two or more
checkpoints. If you do, you will be able
to restart the JOD step, from only one of
the checkpoints if you save the entries in

the same checkpoint data set. In the case
of a physically sequential data set, you
can restart the step only from the earliest
checkpOint, because the control program ,
will find its entry first when it searches
the data set. In the case of a partitioned
data set, you can restart the step only
from the latest checkpoint, because its
entry is a member of the data set and
replaces any previous entry with the same
identification (member name).

When the control program assigns
identifications, the identification for
each checkpoint is unique. The
identification is eight bytes in length,
and consists of the letter C followed by a
seven-digit decimal number. The number is
the total number of checkpoints taken by
the job, including the current checkpOint,
checkpOints taken earlier in the job step,
and checkpoints taken by any previous job
steps.

The control program identifies each
checkpOint in a message to the operator; on
request, it also makes the identification
available to your program. In Example 37,
the CHKPT macro instruction requests the
control program to supply an identification
and place it in the eight-byte field named
ID. When the checkpoint is successfully
taken, the program prints the
identification as part of a message to the
programmer.

Section I: Supervisor Services 69

PHASE2

CHKPT
LTR
BNZ
PUT

MESSAGE DC
DC

ID DS
STEPLOG DCB

CHKDcB DCB

CHKDCB,ID,'S'
15,15
PHASE2
STEPLOG,MESSAGE

Take checkpoint
Checkpoint taken?
No, branch to PHASE2
Yes, print checkpoint ID

H'45,0' Record length, etc.
C'SUCCESSFUL CHKPT AT PHASE2. ID='
CL8
DSORG=PS,MACRF=(PM),RECFM=V,BLKSIZE=128,
LRECL=124,DDNAME=LOGDD
DSORG=PS,MACRF=(W),RECFM=U,BLKSIZE=32760,
DDNAME=CHKDD

Example 37. Recording a Checkpoint Identification Assigned by the Control Program

RESTART ON AN ALTERNATE SYSTEM: You can
request deferred restart on a system other
than the one on which your job was
originally executed. Of course, the
alternate system must have facilities
adequate to process your job, and, in the
case of checkpoint restart, it must be
identical in certain respects to the
original system.

• If your job step uses data management
access methods, the resident routines
for these access methods must have the
same main storage locations in both
systems. In systems with MVT, these
routines are located in the link pack
area. If your job step uses other
modules in the link pack area, these
modules must also have the same
locations in both systems.

C

C

• The type of operating system (primary
control program, MFT, or MVT) must be
the same for both systems. Also, the
release level must be the same.

• The nucleus of the alternate system
must be identical to that of the
original system.

• If your job step uses main storage
hierarchy 1, the boundary between
hierarchies 0 and 1 must be the same in
both systems.

70

• The main storage area available to your
job step must be the same in Doth
systems. 'l'herefore, with the primary
control program, the main storage size
for the alternate system must be at
least as large as that for the original
system.

FURTHER INFORMATION ON RESTART: For
further information on restart, refer to
the topic "Using the Restart Facilities"
in the publication IBM System/360
Operating System: Job Control Language

I Reference.

Section II: Data Management Services

section II describes the data management features and facilities of
the operating system. The reader should be familiar with the theory and
philosophy of system/360 Operating System data management and with the
various general terms and concepts necessary to begin preparation for
actual coding. Each rracro instruction is discussed in sufficient detail
so that the reader can turn directly to the macro instruction format
description to determine the operand requirement3. Format descriptions
are in the public"ation IBM System/360 Operating System: Supervisor and
Data Management ~lacro Instructions.

Part 1, Introduction to Data Management, is concerned with the
characteristics of data sets and direct access devices. It also
describes the means and methods used to communicate with the operating
system during program assembly and execution. It contains a general
description of the various cont:rol blocks, their contents, and their
functions.

Part 2, Data Management Processing procedures, describes data access
and processing techniques in terms of data set organization, buffer
acquisition and control, and jobs to be done. The major emphasis is on
work requirements rather than access methods.

Part 3, Data Set Disposition and Space Allocation, describes the
techniques required for efficient and effective data set disposition and
space allocation. A sufficiently detailed description of the data
definition (DD) statement is included to get the reader "on-the-air."

Section II: Data Management Services 71

Part 1: Introduction to Data Management

Data Set Characteristics

The manner in which data is transferred between main storage and
external devices is of paramount importance in most data processing
applications. The data management function of the System/360 Operating
System assists you in achieving maximum efficiency in managing the mass
of data associated with the many programs that are processed at an
installation. To attain this objective, data management facilities have
been designed to provide systematic and effective means of organizing,
identifying, storing, cataloging, and retrieving all data, including
loadable programs, processed by the operating system.

Data set storage control, supported by an extensive catalog system,
makes it possible for you to retrieve data by symbolic name alone,
without specifying device types and volume serial numbers. In freeing
computer personnel from the necessity of maintaining involved volume
serial number inventory lists of data and programs stored within the
system, the catalog reduces manual intervention and the possibility of
human error.

Data sets stored within the cataloging system can be classified
according to installation needs. For example, a sales department could
classify the data it uses by geographic area, by individual salesman, or
by any other logical plan.

Tne cataloging system al30 makes it possible for you to classify
successive generations or updates of related data. These generations
can be givEn an identical name and subsequently be referred to relative
to the current generation. The system automatically maintains a list of
the most recent generations.

Data from a direct access volume, a remote terminal, or a tape, and
data organized sequentially or as in a library, may be requested by
you in essentially the same way. In addition, data management provides:

• Allocation of space on direct access volumes. Flexibility and
efficiency of direct access devices is improved through greater use
of available space.

• Automatic retrieval of data sets by name alone.

• Freedom to defer specifications such as buffer length, block size,
and device type until tne job is submitted for processing. This
permits the creation of programs that are in many ways independent
of their operating environment.

Control of confidential data is provided by the data set security
facility of the System/360 Operating System. Using this facility, you
can prevent unauthorized access to payroll data, sales forecast data,
and all other data sets requiring special security attention. The
security-protected data set is available for processing only when a
correct password is furnished.

The data access facilities provided by the operating system are a
major extension of previous input/output control systems. Input/output
routines are provided to efficiently schedule and control the transfer
of data between main storage and input/output devices. Routines are
available to:

Section II: Data Management Services (Part 1) 73

• Read data.
• Write data.
• Block and deblock records.
• Overlap reading, writing, and processing operations.
• Read and verify volume and data set labels.
• Write data set labels.
• Automatically position and reposition volumes.
• Detect error conditions and correct when possible.
• Provide exits to user-written error and label routines.

Corresponding to the range of system facilities available for control
of data is an equal range of facilities for access to the data. The
variety of techniques for gaining access to a data set is derived from
two variables: data set organization and data access technique.

Operating System/360 data sets can be organized in four ways:

• Sequential: This is the familiar tape-like structure, in which
records are placed in physical rather than logical sequence. Thus,
given one record, the location of the next record is determined by
its physical position in the data set. The sequential organization
is used for all magnetic tapes, and may be selected for direct
access devices. Punched tape, punched cards, and printed output are
considered to be sequentially organized.

• Indexed seguential: Records are arranged in collating sequence,
according to a key that is a part of every record, on the tracks of
a direct access volume. In addition, a separate index or set of
indexes maintained by the system gives the location of certain
principal records. This permits direct as well as sequential access
to any record.

• Direct: This organization is available for data sets on direct
access volumes. The records within the data set may be organized in
any manner you choose. All space allocated to the data set is
available for data records. No space is required for indexes.
Records are stored and retrieved directly with addressing specified
by you.

• Partitioned: This structure has characteristics of both the
sequential and the indexed sequential organizations. Independent
g-roups of sequentially organized data, called members, are in direct
access storage. Each member has a simple name stored in a directory
that is part of the data set and contains the location of the
member's starting point. Partitioned data sets are generally used
to store programs. As a result, they are often referred to as
libraries.

Requests for input/output operations on data sets through macro
instructions are divided into two categories or techniques: the
technique for queued access and the technique for basic access. Each
technique is identified according to its treatment of buffering and
input/output synchronization with processing. The COmbination of an
access technique and a given data set organization is called an access
method. In choosing an access method for a data set, therefore, you
must consider not only its organization, but also the macro instruction
capabilities. Also, you may choose a data organization according to the
access techniques and processing capabilities available. The code
generated by the macro instructions for both techniques is optionally
reenterable depending on the form in which parameters are expressed.

In addition to the access methods provided by the operating system,
an elementary access technique called execute channel urogram is also
provided. To use this technique, you must establish your own system for

74

organizing, storing, and retrieving data. Its primary advantage is the
complete flexibility it allows you in using the computing facilities
directly.

An important feature of data management is that much of the detailed
information needed to store and retrieve data, such as device type,
buffer processing technique, and format of output records need not be
supplied until the job is ready to be executed. This device
independence permits changes to be made in those details without
requiring changes in the program. Therefore, you may design and test a
program without knowing the exact input/output devices that will be used
when it is executed.

Device independence is a feature of both access techniques when you
are processing a sequential data set. The degree of device independence
achieved is to some extent determined by you. Many useful
device-dependent features are available as part of special macro
instructions, and achieving device independence requires some
selectivity in their use.

DATA SET IDENTIFICATION

Any information that is a named, organized collection of logically
related records can be classified as a data set. The information is not
restricted to a specific type, purpose, or storage medium. A data set
may be, for example, a source program, a library of macro instructions,
or a file of data records used by a processing program.

Whenever you indicate that a new data set is to be created and placed
on auxiliary storage, you (or the operating system) must give the data
set a name. The data set name identifies a group of records as a data
set. All data sets recognized by name (i.e., referred to without volume
identification) and all data sets residing on a given volume must be
distinguisned from one another by unique names. To assist in this, the
system provides a means of qualifying data set names.

A data set name is one simple name or a series of simple names joined
together so that each represents a level of qualification. For example,
the data set name DEPT58.SMITH.DATA3 is composed of three simple names
that are delimited to indicate a hierarchy of categories. Proceeding
from the left, each simple name is a category within which the next
simple name is a subcategory.

Each simple name consists of one to eight alphameric characters, the
first of which must be alphabetic. The special character period (.)
separates simple names from each other. Including all simple names and
periods, the length of the data set name must not exceed 44 characters.
Thus, a maximum of 22 qualification levels is possible for a data set
name.

To permit different data sets to oe processed without program
reassembly, the data set is not referred to by name in the processing
pro9,ram. When the program is executed, the data set name and other
pertinent information (e.g., unit type and volume serial number) is
specified in a job control statement called the data definition (DD)
statement. To gain access to the data set during processing, a
reference is made to a data control block associated with the name of
the DD statement. Space for a data control block is reserved by a DCB
macro instruction when your program is assembled.

section II: Data Management Services (Part 1) 75

DATA SET STORAGE

System/360 provides a variety of devices for collecting, storing, and
distrinuting data. Despite the variety, the devices have many common
characteristics. For convenience, therefore, the generic term volume is
used to refer to a standard unit of auxiliary storage. A volume may be
anyone of the following:

• A reel of magnetic tape.
• A disk pack.
• A bin in a data cell.
• A drum.
• That part of an IBM 2302 disk storage device served by one access

mechanism (the device would have either two or four volumes in all).

Each data set stored on a volume has its name, location,
organization, and other control information stored in the data set label
or volume table of contents (direct access volumes only). Thus, when
-the name of the data set and the volume on which it is stored are made
known to the operating system, a complete description of the data set,
including its location on the volume, can be retrieved. Following this,
the data itself can be retrieved, or new data added to the data set.

various groups of labels are used in secondary storage of the
system/360 Operating System to identify magnetic tape and direct access
volurr,es, as well as the data sets they contain. ~J.agnetic tape volumes
can have standard or nonstandard labels, or they can be unlabeled.
Direct access volumes must use standard labels. Standard label support
includes a volume labe~ data set label for each data set, and
optional user labels.

Keeping track of the volume on which a particular data set reside3
can be a burden and often a source of error. To alleviate this problem,
the system provides for automatic cataloging of data sets. A cataloged
data set can be retrieved by the system if given only the name of the
data set. If the name is qualified, each qualifier corresponds to one
of the indexes in the catalog. For example(the data set
DB2T56.SMITH.DATA3 is found by searching a master index to determine the
location of the index name DEPT58. That index is then searched to find
tne location of the index SMITd. Finally, that index is searched for
DATA3 to find the identificati.on of the volume containing the required
data set.

By use of the catalog, collections of data sets related by a corrmon
external name and the time sequence in which they were cataloged (i.e.,
their generation) can be identified, and are called generation data
groups. For example, a data set name LAB.PAtROLL(O) refers to the most
recent data set of the group; LAB. PP.~YROLL (-1) refers to the second most
recent data set, etc. The same collection of data set names can be used
repeatedly -- with no requirement to keep track of the volume serial
numbers used.

DIRECT ACCESS VOLUMES

Direct access volumes play a major role in the System/360 Operating
System. They are used to store executable programs, including the
operating system itself. Direct access storage is also used for data
and for temporary workin~ storage. One direct access storage volume may
be used for many different dat~ sets, and space on it may be reallocated
and reused. A voluffie table of contents (VTOC) is used to account for
each data set and available space on the volume.

Each direct access volume is identified by a volume label, which is
usually stored in track 0 of cylinder o. You may specify up to seven

76

additional labels for further identification. These are located after
the standard volume label.

The volume table of contents describes the contents of the direct
access volume. It is a data set that is composed of a series of data
set control blocks (DSCE), each of which is composed of one or more-­
control blocks. The VTOC can contain the following data set control
blocks:

• A DSCB for each data set on the volume.
• A DSCB that indicates the space 4110cated to the VTOC itself.
• A DSCB for all tracks on the volume that are available for

allocation.

'rhe DSCE for each data set contains the name, description, and
location of the data set on the volume. Its size depends on the
organization and the number of noncontiguous areas of the data set.

Each direct access volume is initialized by a utility program before
being used on the system. The initialization program generates the
proper volume label and constructs the table of contents. For
additional information on direct access labels, see Appendix A.

When a data set is to be stored on a direct access volume, you must
supply the operating system with control information designating the
amount of space to be allocated to the data set. The amount of space
can be expressed in terms of blocks, tracks, or cylinders. Space can be
allocated in a device-independent manner if the request is expressed in
terms of blocks. If the request is made in terms of tracks or
cylinders, you must be aware of such device considerations as cylinder
capacity and track size.

MAGNETIC TAPE VOLUMES

Because of the sequential organization of magnetic tape devices, the
operating system does not require space allocation facilities comparable
to those for direct access devices. When a new data set is to be placed
on a magnetic tape volume, you must specify the data set sequence number
if it is not the first data set on the reel. A volume with standard
labels or no labels will be positioned by the operating system so that
the data set can be read or written. If the data set has nonstandard
labels, the installation must provide volume-positioning in its
nonstandard label processing routines. All data sets stoI:"ed on a given
magnetic tape voluroe must be recorded in the same density.

When a data set is to be stored on an unlabeled tape volume and you
have not specified a volume serial number, the system assigns a serial
nunilier to that volume and to any additional volumes required for the
data set. Each such volume is assigned a serial number of tne form
Lxxxyy where xxx will indicate the data set sequence number from IPL to
IPL and yy will indicate the volume sequence number for the data set.
If you specify volume serial numbers for unlabeled volumes on which a
data set is to be stored, the system assigns volume serial numbers to
any additional volumes required. If data sets residing on unlabeled
volumes are to be cataloged or passed, you should specify the volume
serial numbers for the volumes required. This will prevent data sets
residing on different volumes from being cataloged or passed under
identical volume serial numbers. Retrieval of such data sets could
result in unpredictable errors.

Each data set and each data set label group on magnetic tape that is
to be processed by the operating system must be followed by a tapemark.
Tapemarks cannot exist within a data set. When the operating system is
used to create a tape with standard labels or no labels, all tapemarks

section II: Data Management Services (Part 1) 77

are automatically written. Two tapemarks are written following the last
trailer label group on a volume to indicate the last data set on the
volume. On an unlabeled volume, the two tapemarks are written following
the last data set.

When the operating system is used to create a tape data set with
nonstandard labels, the delimiting tapemarks are not written. If the
data set is to be retrieved by the operating system, those tapemarks
must be written by an appropriate installation nonstandard label
processing routine. Otherwise, tapemarks are not required following
nonstandard labels since positioning of the tape volumes must be handled
by the installation routines.

For more information on labels for magnetic tape volumes, refer to
the publication IBM system/360 Operating System: Tape Labels.

DATA SET RECORD FORMATS

A data set is composed of a collection of records that usually have
some logical relation to one another. The record is the basic unit of
information used by a processing program. It might be a single
character, all information resulting from a given business transaction,
or parameters recorded at a given point in an experiment. Much data
processing consists of reading, processing, and writing individual
records.

The process of grouping a number of records before writing them on a
volume is referred to as blocking. A block is considered to be made up
of the data between interrecord gaps (IRG). Each block can consist of
one or more records. Blocking conserves storage space on the volume
because it reduces the number of interrecord gaps in the data set. In
many cases, blocking also increases processing efficiency by reducing
the nunilier of input/output operations required to process a data set.

Records may be in one of three formats: fixed-length (format F),
variable-length (format V), or undefined-length (format U). The prime
consideration in the selection of a record format is the nature of the
data set itself. You must know the type of input your program will
receive and the type of output it will produce. Selection of a record
format is based on this knowledge, as well as on an understanding of the
type of input/output devices that are used to contain the data set and
the access method used to read and write the data records. 'I'he record
format of a data set is indicated in the data control block according to
specifications in the DCB macro instruction, the DD statement, or the
data set label.

Note: There is no minimum requirement for block size; however, if a data
check occurs on a magnetic tape device, any records shorter than 12
bytes in a read operation or 18 bytes in a write operation will be
treated as a noise record and lost. No check for noise will be made
unless a data check occurs.

FIXED-LENGTH RECORDS

The size of fixed-length (format F) records, shown in F'igure 13, is
constant for all records in the data set. The number of records within
a block is usually constant for every block in the data set, unless the
data set contains truncated (short) blocks. If the data set contains
unblocked format F records, one record constitutes one block.

78

Block
.A

Blocked Records Record A Record B

Block

Unblocked Records ~

Block
.A

Record C Record D Record E

'. , , , ,

Block

, ,
, Record '1 ' A DOW'] \ J OpHoool Coo,«1 /

\ Character - 1 byte \ I
\ I
\ I

~
\ I

B
Figure 13. Fixed-Length Records

Record F

Block

~
The system automatically performs physical length checking on blocked

format F records, making allowance for truncated blocks. Because the
channel and interrupt system can be used to accommodate length checking,
and the blocking/deblocking is based on a constant record length, format
F records can be processed faster than format v.

A sequential data set is said to contain records in standard format F
if:

• All records in the data set are format F.

• Every track except the last is filled to capacity (no room for
another record).

• No blocks except the last are truncated.

standard format F data sets can be read from direct access storage more
efficiently than data sets with truncated blocks because the system can
determine the location of each block to be read. If you use standard
format F records to create a sequential data set in direct access
storage, the system puts the same number of blocks on eacnt.rack.

Format F records aI:e shm,m in Figure 13. The optional control
character (e), used for stacker selection or carriage control, nay be
included in each record to be printed or punched.

VARIABLE-LENGTH RECORDS

Format V provides for (1) variable-length records, (2)
variable-length record segments, each of which describes its own
characteristics, and (3) variable-length blocks of such records or
record segments. The control program performs length checking of the
block and uses the record or segment length information in blocking and

section II: Data Management Services (Part 1) 79

deblocking. The first four bytes of each record, record segment, or
block are a descriptor word containing control information. You must
allow for these additional four bytes in both your input and output
buffers.

Block Descriptor Word: A variable-length block consists of a block
descriptor word (BDW) followed by one or more log'ical records or record
segments. The block descriptor word is a four-oyte field which
describes the block. The first two bytes specify the block length
(• LL') -- four bytes for the BDTI'l plus the total length of all records or
segments within the block. This length must be in the range 8~LL~32,760
or, when using WRITE with tape, 18~LL~32,760. The third and fourth
bytes are reserved for future system use and must be zero. If the
system does your blocking -- that is, when you use the queued access
technique -- the operating system automatically provides the BOW when
it writes the data set. If you do your own blocking -- that is, when
you use the basic access technique -- you must supply the BOW.

Record Descriptor Word: A variable-length logical record consists of a
record descriptor word (RDW) followed by the data. The record
descriptor word is a four-byte field describing the record. The first
two bytes contain the length ('ii.') of the logical record (including the
four-byte RDW). The length must be in the range 45iQ532,756. All bits
of the third and fourth bytes must be zero as other values are used for
spanned records. For output, you must provide the ROW. for input, the
operatin9 system provides the RDW except in data mode (spanned records).
In data mode, the system passes the record length to the user in the
logical record length field (DeBLREeL) of the data control block. The
optional control character (e) may be specified as the fifth byte of
each record and must be followed by at least one byte of data. The RDW
and the control character, if specified, are not punched or printed.

80

Figure 14 shows blocked and unblocked variable-length records without
the spanning feature.

Blocked Records

Unblocked Records

BDW

~
I

LL 00 Record A Record B Record C LL 00 Record D.

1 L- Reserved - 2 Bytes /"
/

Block Length - / / 2 Bytes

L!
RDW Data
~ "

Record 11 00 c

I
I

/
~OPtional Control Character .,

Reserved - 2 Bytes

Record Length- I

I
I 2 Bytes

I Block

~I/, LL

r---r----.f------,r"

LL 00 Record C

Reserved - 2 Bytes

Block Length - 2 Bytes

LL 00 Record D

Figure 14. Variable-Length Records

Block

"
LL

"

Record E

,

BDW

LL 00

Record F

Block
A.

Record

Record E

,

3~ANNBD VArtIAB~E-LENGTrl RECORDS (SEQUENTIAL ACCESS ~~THODS): The
spannin<; feature of the queued and basic sequential access methods
enables the user to create and process variable-length logical records
wnich are larger than one physical block and/or to pack blocks with
variable-length records. This is done by splitting the records into
segments so that they can be written into more than one block, as shown
in Figure 15.

Section II: Data Management Services (l?art 1) 81

BOW

LL
Last Segment
of Logical
Record A

Reserved -
2 Bytes

Block Length
2 Bytes

First

1

First Segment
Logical Record B

it
.A

SOW

\
\
\

\
\

Data

Block

rr----------~~~----------~,
A

LL Intermediate Segment of
Logical Record B

, , ,
\ ,

\ ,
\ , , ,

\
\ 11

~ 'I
A

SOW Data

Intermediate

_.

Last Segment First Segment of
LL of Logical Logical

Record B Record C

\
'. I \

I ,
\
\
\
\
\
\

~

I '
I \
I ,
I \

I ' I \
I \
I
I U ,
r----SD-W--~A. -Da--ta--..... ~

Last
Segment 11

of 'logical
Segment U

'of Logical
Segment J1

of Logical
Record Record

Optional Control
Character

Reserved - 1 Byte

Segment Control Code -
1 Byte (See Figure 16)

1----Segment Length - 2 Bytes

11

Segment Control
Code

Record

{r ______________________ ~A, _______________________ \

Logical Record
{In User's Work Area)

ROW Data Portion of Logical Record B

~
I

Data Portion : Data Portion
11 c of I of

First Segment
I

Intermediate Segment I
I
I

l.!: Optional Control Character

Reserved - 2 Bytes

Record Len th - 2 B yt es

Note: Not All Segment and Block Combinations are Represented

Figure 15. Spanned Variable-Length Records

:
I Data Portion I

of I
I Last Segment I
I

Segment Control
Code

When spanning is specified for blocked records, the system tries to
fill all blocks. For unblocked records, a record which is larger than
block size is split and written in two or more blocks -- each block
containing only one record or record segment. Thus the block size may be
set to the one which is best for a given device or processing situation.
It is not restricted by the maximum record length of a data set. A
record may, therefore, span several blocks, and may even span volumes.

I (Note that a logical record spanning three or more volumes cannot be
processed in update mode using QSAM.) A block can contain a combination
of records and record segments but not multiple segments of the same
record. When records are added to or d.eleted from a data set, or when
the data set is processed again with different block- or record-size
parameters, the record segmenting will change.

Segment Descriptor Word: Each record segment consists of a seg'ment
descriptor word (SDW) followed by the data. The segment descriptor
word, similar to the record descriptor word, is a four-byte field which
describes the segment. The first two bytes contain the length ('~') of
the segment including the four-byte SDW. The length must be in the
range 4$1a$32,756 or, when using WRITE with tape, 18$~$32,756. The
third byte of the SDW contains the segment control code, which specifies
the relative position of the segment in the logical record. The segment
control code is in the rightmost two bits of the byte. The segment
control codes are shown in Figure 16. The remaining bits of the third

82

byte and all of the fourth byte are reserved for future system use and
must be zero.

r--------------------T---,
I Binary Code I Relative position of Segment I
r--------------------+---~
I 00 I Complete logical record. I
r--------------------+---~
I 01 I First segment of a multi-segment record. I
r--------------------+---~
I 10 I Last segment of a multi-segment record. I
r--------------------+---------------------~---------------------------~
I 11 I Neither first nor last segment of a I
I I multi-segment record. I L ____________________ ~ ___ J

Figure 16. Segment Control Codes

The SDW for the first segment replaces the l<DW for the record after
the record has been segmented. The SDW may be built by the user or the
system depending on which mode of processing is used. In the basic
sequential access method, the user must create and interpret the spanned
records himself. In the queued sequential access method move mode,
complete logical records, including the RDW, are processed in the user's
work area. GET consolidates segments into logical records and creates
the RDW. PUT forms segments as required and creates the SDW for each
segment. Data mode is similar to move mode but allows reference only to
the data portion of the logical record in the user's work area. The
logical record length is passed to the user through the DCBLRECL field
of the data control block. In the locate mode, both GET and PUT process
one segment at a time. However, in the locate mode, if the user
provides his own record area using the BUILDRCD macro instruction or if
he asks the system to provide his record area by specifying BFTEK=A,
GET, PUT, and PUTX process one log1cal record at a time. A logical
record spanning three or more volumes cannot be processed when the data
set is opened for update.

When unit record devices are used with spanned records, the system
assumes unblocked records and the block $ize must be equivalent to one
print line or one card. Kecords which span blocks are written one
segment at a time.

SPANNED VARIABLE-LENGTH RECORDS (BASIC DIRECT' ACCESS METHOD): The
spanning feature of the basic direct access method enables the user to
create and process variable-length unblocked logical records that are
longer than one track. The feature also enables the user to pack tracks
with variable-length records by splitting the records into segments.
The3e segments can then be written onto more than one track, as 3hown in
Figure 17.

Section II: Data Management Services (Pare 1) 83

Track 1 Track 2
.A

(Block
, __ ------~A--------~

LL

BOW

First Segment
Logical Record A

\ ,
\ " Reserved - \ ,

/

LL

-LL - track sIze

A.

LL
,

A-

Intermediate Segment of
Logical Record A

\ ,
\ \ 2 Bytes \ "

Block Length - \ "-
2 Bytes \ "

\ \
\ \

,

, " \ \
\ \ , ""

'~r'------~~'-----'-"~\
SOW Data

\ LL \
\r -------A,-----~

SOW Data

First Intermediate
Segment U

of Logical
Segment U

of logical
Record Record

Optional Control
Character

Reserved - 1 Byte

Segment Control Code -
1 Byte (See Figure 16)

'-----Segment Length - 2 Bytes

LL
A

U

Segment Control
Code

LL

Last
Segment

of Logical
Record

,
f~----------------------A~-----------------------\

Reserved -
2 Bytes

BOW

Block Length - ___J

2 Bytes

ROW

Data Portion
of

First Segment

Data Portion of Logical Record A

Data Portion
of

Intermediate Segment

Optional Control Character

Reserved - 2 Bytes 1..-___ Record Length - 2 Bytes

Nate: Not All Segment and Block Combinations are Represented

Data Portion
of

Last Segment

Track 3

"

Last Segment
of Logical
Record A

I \
I \
I \
I \
I \
I \
I \
I \

I, u \
r---SD-W--~A'-~--ta--~~

Seament Control
Code

• Figure 17. Spanned Variable-Length Records for BDAM Data sets

When you specify spanned, unblocked record format for the basic
direct access method and when a complete loqical record cannot fit on
the track, the system tries to fill the track with a record segment.
This aspect of spanning means that the maximum record length of a data
set is not restricted by block aize. Furthermore, it allows a record to
span several tracks, with each segment of the record on a different
track. However, since the system does not allow a record to span
volumes, all segments of a logical record in a direct data set are on
the same volume.

UNDEFINED-LENGTH RECORDS

Format U is provided to permit processing of any records that do not
conform to the F or V formats. As shown in Figure 18, each block ia
treated as a record; therefore, deblocking must be performed by your
program. The optional control character may be used in the first byte
of each record. Because the system does not perform length checking on
format U records, your program may be designed to read less tnan a
complete block into main storage.

84

Record
.A.

C Data

\L I ,
\ Optional Control Character
\ I
\ I

Record A

\ I
\ Block I Block

GG
Block

.A.

Figure 18. Undefined-Length Records

CONTROL CHARACTER

You may specify in the DD statement, the DCB macro instruction, or
the d~ta set label that an optional control character is part of each
record in the data set. The one-byte character is used to indicate a
carriage control channel when the data set is printed or a stacker bin
when the data set is punched. Although the character is a part of the
record in storage, it is never printed or punched. For that reason,
buffer areas must be large enough to accommodate the character. If the
immediate destination of the record is a device that does not recognize
the control character, e.g., disk, the system assumes that the control
character is the first byte of the data portion of the record. If the
destination of the record is a printer or punch and you have not
indicated the presence of a control character, the system regards it as
the first byte of data. A list of the control characters is in Appendix
n
D.

Direct Access Device Characteristics

Regardless of organization, data sets created using the operating
system can be stored on a direct access volume. Each block has a
distinct location and a unique address making it possible to locate any
record without extensive searching. ThUS, records can be stored and
retrieved either directly or sequentially.

Although direct access devices differ in physical appearance,
capacity, and speed, they are functionally and logically similar in
terms of data recording, checkin~, format, and programming. The
recording surface of each volume is divided into many tracks, each
defined as the circumference of the recording surface. The tracks are
arranged concentrically; their number and capacity varies with the
device. Each device has some type of access mechanism, containing a
number of read/write heads that transfer data as the recording surface
rotates past.

The logical arrangement of related tracks is vertical rather than
horizontal. As shown in Figure 19, a 2311 cylinder is comprised of ten
tracks, which is equal to the number of recording surfaces. Because
there are 203 tracks per disk, there are 203 vertical cylinders of ten
tracks each.

Section II: Data Management Services (Part 1) 85

Figure 19. 2311 Disk Drive

TRACK FORMAT

Information is recorded on all direct access volumes in a standard
format.. In addition to device data, each track contains a track
descriptor record ("capacity record" or RO), and data records. As shown
in Figure 20, there are two possible data record formats -- Count-Data
and Count-Key-Data -- only one of which can be used for a particular
data set.

r-----' r-----'
I Count I IData I L _____ J L _____ J

Track Descriptor
Record (RO)

r-----' r-----'
I Count I IData I l _____ J L _____ J

Track Descriptor
Record (RO)

Count-Data Format
r-----' r-----'
I Count I IData I
l _____ J l _____ J

Data Record
(Rl)

r-----' r-----'
ICount I I Da ta I L _____ J l _____ J

Data Record
(Rn)

Count-Key-Data Format
r-----' r----' r-----'
I Count I IRey I I~ata I L _____ J L ____ J L _____ J

Data Record (Rl)

r-----' r----' r-----'
ICountl IKey I IData I
L _____ J L ____ J L _____ J

Data Record (Rn)

Figure 20. Direct Access Volume Track Formats

In addition to device data, the count area contains eight bytes that
identify the location of the record in terms of the cylinder, head, and
record numbers; its kty length (0 if no keys are used); and its data
length.

If the records are written with keys, the key area (1 to 255 bytes)
contains a record key that identifies the following data area in terms
of a part number, account number, sequence number, etc. In oome cases,
records are written with keys so that they can be located quickly.

86

TRACK ADDRESSING

There are two types of addresses that can be used to store and
retrieve data on a direct access volume: actual and relative. The only
real advantage of using ac'tual addresses is the reduction in time
required to convert from relative to actual address and vice versa.
When sequentially processing a multiple volume data set, you can refer
only to records of the current volume.

Actual Addresses: When the system returns the actual address of a
record on a direct access volume to your program, it is in tne form
MBBCCHHR, where:

M
is a one-byte binary number specifying the relative location of an
entry in a data extent block (DEB). The data extent block is
created by the system when the data set is opened. Each extent
entry describes a set of contiguous tracks allocated for the data
set.

BBCCHH

R

is three two-byte binary numbers specifying the cell (bin),
cylinder, and head number for the record, i.e., its track address.
The cylinder and head numbers are recorded in the count area for
each record.

is a one-byte binary number specifying the relative block number on
the track. The block number is also recorded in the count area.

If you use actual addresses in your program, the data set must be
treated as "unmovable."

Relative Addresses: There are two kinds of relative addresses that can
be used to refer to records in a direct access data set: relative block
address or relative track address.

The relative block address is provided as a three-byte binary number
that indicates the position of the block in relation to the first block
of the data set. Allocation of noncontiguous tracks does not affect the

I number. Therefore, the first block of a data set always has a relative
block address of zero.

TT

R

The relative track address is provided in the form TTR, where:

is a two-byte binary number specifying the position of the track in
relation to the first track allocated for the data set. The TT £or
the first track is ZEro. Allocation of noncontiguous tracks does
not affect the number.

is a one-byte binary number specifying the number of the block in
relation to the first block on the track 'I'll. The first block of
data on a track has a record value of one.

TRACK OVERFLOW

If the record overflow feature is available for the direct access
device being used, you can reduce the amount of unused space on the
volume by specifying the track overflow option in the DD statement or
the DCB macro instruction associated with the data set. If thE option
is used, a block that does not fit on the track is partially written on
that track and continued on the next available track. Each segment of

Section II: Data Management Services (Part 1) 87

an overflow block (the portion written on one track) has a count area.
The data length field in the count area specifies the length of that
segment only. If the block is written with a key, there is only one key
area for the block. It is written with the first segment. If the
option is not used, blocks are not split between tracks.

Although a block can begin on one track and continue on the next, it
cannot be continued on a noncontiguous track or from one separately
allocated area to another.

WRITE VALIDITY CHECK

You can specify the write validity option in either the DD statement
or the DeB macro instruction. The system will read each record back
(wi-thout data transfer) and, by testing for a data check from the I/O
device, verify that the record transferred from main to secondary
storage was written correctly. This verification requires an additional
revolution of the device for each record tnat was written. Standard
error recovery procedures are initiated if an error condition is
detected.

Interface with the Operating System

You must describe the characteristics of a data set, the volume on
which it resides, and its processing requirements before processing can
begin. During execution, the descriptive information is made available
to the operating system in the data control block. A data control block
is required for each data set, and is created in a processing program by
a DeB macro instruction.

Primary sources of information to be placed in the data control block
are a DCB macro instruction, a data definition (DD) statement, or a data
set label. In addition, you can provide or modify some of the
information during execution by storing the pertinent data in the
appropriate field of the data control block. The specifications needed
for input/output operations are supplied during the initialization
procedures of the OPEN macro instruction. Therefore, the pertinent data
can be provided when your job is to be executed rather than when you
write your program (see Figure 21).

When the OPEN macro instruction is executed, the open routine
performs four primary functions:

• Completes the data control block.
• Loads all necessary data access routines not already in main

storage.
• Initializes data sets by reading or writing labels and control

information.
• Constructs the necessary system control blocks.

Information from a DD statement is stored in the job file control
block (JFCB) by the operating system. When the job is to be executed,
the JFCB is made available to the open routine. The data control block
is filled by using information from the DCB macro instruction, the JFCB,
or an existing data set label. If more than one source specifies a
particular field, only one source is used. A DD statement takes
precedence over a data set label; a DCB macro instruction over both.
However, you can modify any data control block field either before the
data set is opened, or when control is returned to your program by the
operating system (during the data control Dlock exit). Some fields can
be modified during processing.

88

DCB Macro Data Set

B F G H J C o A

ABCDEFGHIJ

Figure 21. Completing the Data Control Block

E'igure 22 illustrates the process and the sequence of filling in the
data control block from various sources. The primary source is your
program, i.e., the DCB macro instruction. In general, you should use
only those DCB parameters that are needed to ensure correct processing.
The other parameters can be filled in when your program is to be
executed. When a data set is opened, any field in the JFCB not
completed by a DD statement is filled in from the data set label (if one
exists). Any field not completed in the data control block is filled in
from the JFCB. Any field in the data control block then can be
completed or modified by your own DCB exit routine.

Old
Data Set

Label

DCB
Exit

Routine

New
Data Set

Label

Figure 22. Source and Sequence for Completing the Data Control Block

When the data set is closed, the data control block is returned to
its condition prior to opening; it is then available for reuse with
another data set. The open and close routines also use the updated JFCE
to write the data set labels for output data sets. If the data set is
not closed when your job terminates, the operating system will perform
the close functions automatically.

There is usuall~l one data control block for each data set. It is
possible to concurrently open more than one data control block for
processing the same data set on a direct access volume. however, you
must exercise caution with respect to volume positioning, switctdng,
space allocation, label processing, and device control.

section II: Data Management Services (Part 1) 89

DATA SET DESCRIPTION

For each data set you are going to process there must be a
corresponding data control block and data definition statement. The
characteristics of the data set and device-dependent information can be
supplied by either source. In addition, the DD statement must supply
data set identification, device characteristics, space allocation
requests, and related information. The logical connection between a
data control block and a DD statement is made DY specifying the name of
the DD statement in the DCB macro instruction (DDNAME), or by completing
the field yourself before opening the data set.

Once the data set characteristics have been specified in the DCB
macro instruction, they can only be changed by modifying the data
control block during execution. The fields of the data control block
discussed below are common to most data organizations and access
techniques.

Data Set Organization (DSORG): 3pecifies the organization of the data
set as physical sequential (PSl, indexed sequential (IS), partitioned
(PO), or direct (DA). If the data set contains location-dependent
information (i.e., absolute rather than relative addresses), it must be
marked as unmovable; e.g., PSU. You must specify the data set
organization in the DCB macro instruction. When creating an indexed
sequential or direct organization data set, this information must also
be supplied in the DD statement.

Record Format (RECFM): specifies the characteristics of the records in
the data set as fixed-length (F), variable-length (V), or
undefined-length (U). Blocked records are specified as beins FB or VB.
Track overflow can be requested, e.g., ?BT.

Record Lenqth (LRECL): specifies the length, in bytes, of each record
in the data set. If the records are variable-length, the maximum record
length must be specified. For input, the field should De omitted for
format·U records.

Block Size (BLKSIZE): specifies the maximum length, in bytes, of a
Dlock·. If the records are focmat F, the block size must be an integral
multiple of the record length, including the key length, except for
SYSOUT data sets. (See "Writing a SYSOUT Data Set" in Section II, Part
3, of this book.) If the records are format V, the Dlock size must be
the maximum block size. If records are unblocked, the block size must
be four bytes greater than the record length (LRECL).~hen 3panned
variable-length records are specified, the block size is independent of
tile record length (LRECL).

Each of the data set description fields of the data control block,
except as noted for data set organization, can De specified when your
JOD is to be executed. In addition, data set identification and
disposition, as well as device characteristics, can be specified at that
time. The parameters of the DD statement discussed below are cornman to
most data set organizations and devices.

Data Definition Name (DDNAME): is the name of the DD statement and
provides a logical relationship to the data control block that specifies
the same ddname.

Data Set Name (DSNAME): specifies the name of a newly defined data set,
or refers to a previously defined data set.

Data Control Block (DCB): provides, by means of subparameters,
information to be used to complete those fields of the data control
block that were not specified in the DeB macro instruction. This
pazameter cannot be used to modify a data control block.

90

Channel separation and Affinity (SEP/AFF): requests that specified data
sets use different channels during input/output operations.

Input/Output Device (UNIT): specifies the quantity and type of I/O
devices to be allocated for use by the data set.

Space Allocation (SPACE): designates the amount of space on a direct
access volume that should be allocated for the data set. Unused space
can be released when your job is finished.

Volume Identification (VOLUME): identifies the particular volume or
volumes, or the number of volumes to be assigned to the data set or the
volumes on which existing data sets reside.

Data Set Label (LABEL): indicates the type and contents of the label or
labels associated with the data set. The operating system verifies
standard labels (SL) or standard user labels (SUL). Nonstandard labels
(NSL) can be specified only if your installation has incorporated into
the operating system routines to write and process nonstandard labels.

Data Set Disposition (DISP): describes tne status of a data set and
indicates what is to be done with it at the end of the job step.

PROCESSING PROGRAM DESCRIPTION

There are several types of processing information required by the
operating system to ensure proper control of your input/output
operations. The forms of macro instructions in the program, buffering
requirements, and the addresses of your special processing routines must
be specified during either the assemoly or the execution of your
program. The DCB parameters specifying buffer requirements are
discussed in the section "Buffer Acquisition and Control."

Because macro instructions are expanded during the assembly of your
program, you must supply the macro instruction forms that are to be used
in processing each data set in the associated DCB macro instruction.
Buffering requirements and related information can be supplied in the
DCB macro instruction, the DD statement, or by storing the pertinent
data in the appropriate field of the data control block before the end
of your DCB exit routine. If the addresses of special processing
routines are omitted from the DCB macro instruction, you must complete
them in the data control block before opening the data set.

Macro Instruction Form (MACRF): specifies not only the macro
instructions used in your program, but also the processing- mode as
discussed in the section "Buffer Control." The organization of your
data set, the macro instruction form, and the processing mode determine
which of the data access routines will be used during execution.

Exits to Special Processing Routines: The DCB macro instruction can be
used to identify the location of:

• A routine that performs end-of-data procedures.
• A routine that supplements the o?erating system's error recovery

routine.
• A list that contains aadresses of special exit routines.

The exit addresses can be specified in the DCB macro instruction or
you can complete the data control block fields before opening the data
set. Table 9 summarizes the exits that you can specify eitner
explicitly in the data control block, or implicitly by specifying the
address of an exit list in the data control block.

section II: Data Management Services (Part 1) 91

Table 9. Data Management Exit Routines
r--------------------T------------------------T------------------------,
IExit Routine IWhen Available IWhere Specified I
~--------------------+------------------------+------------------------1
I End-of-Data-Set INo more sequential IEODAD operand I
j Irecords or blocks are I I
I I available I I
t--------------------+------------------------f------------------------~
IError Analysis IAfter an uncorrectable ISYNAD operand I
I linput/output error I I
r--------------------+---------~--------------+------------------------~
IStandard User Label IOpening and closing IEXLST operand and I
I (physically sequen- tor reaching the end lexit list I
Itial or direct lof a data set, and I I
lorganization.) Iwhen changing I I
I I volumes. I I
~--------------------+_-----------~-----------+------------------------i
IData Control Block IOpening a data set IEXLST operand and I
I I lexit list I
~--------------------+------------------------+------------------------~
I End-of-Volume IWhen changing volumes IEXLST operand and I
I I I exit list I
~--------------------+------------------------+------------------------~
IBlock Count IAfter unequal block IEXLST operand and I
I I count compare by EOV I exit list I L ____________________ ~ ________________________ ~ ________________________ J

End-of-Data-set Exit Routine (EODAD): specifies ·the address of your
end-of-data routine that performs any final processing on an input data
set. This routine is entered when a READ or GET request is made and
there are no more records or blocks to be retrieved. (On a READ
request, your routine is entered when you issue a CHECK macro
instruction to check for completion of the read operation.) Your
routine can reposition the volume for continued processing (BPAM only),

I close the data set, or process the next sequential data set. Under no
condition should you issue another GET request after the data set has
encountered the end-of-data condition (QSAM only). If no routine is
provided, the task will be abnormally terminated.

Synchronous Error Routine Exit (SYNAD): specifies the address of an
error routine that is to be given control when an input/output error
occurs. This routine can be used to analyze exceptional conditions or
uncorrectable errors. The error can be skipped, accepted, or processing
can be terminated.

If an input/output error occurs during data transmission, standard
error recovery procedures, provided by the operating system, attempt to
correct the error before returning control to your program. An
uncorrectable error usually causes an abnormal termination of the task.
However, if you specify in the DCB macro instruction the address of an
error anal}·sis routine, the routine is given control in the event of an
uncorrectable error.

You can write a SYNAD routine to determine the cause and type of
error that occurred by examining:

• The contents of the general registers.
• The data event control block (discussed in Part 2).
• The exceptional condition code.
• The standard status and sense indicators.

There is a special macro instruction, SYNADAF, that you can use to
perform this function automatically. This macro instruction produces a

92

descriptive error message that can be printed by a subsequent PUT or
WRITE macro instruction.

Having completed the analysis, you can return control to the
operating system or close the erroneous data set and terminate
processing. In no case can you attempt to reread or rewrite the record
since the system has already attempted to recover from the error.

When using GET/PUT macro instructions to process a sequential data
set, the operating system provides three automatic error options (EROPT)
to be used if there is no SYNAD routine or if you want to return control
to your program from the SYNAD routine:

• ACC
• SKP
• ABE

accept the erroneous block.
skip the erroneous block.
abnormally terminate the task.

These options are applicable only to data errors, as control errors will
result in abnormal termination of the task. Data errors affect only the
validity of a block of data. Control errors affect information or
operations necessary for continued processing of the data set. These
options are not applicable to output errors, with the exception of
output errors on the printer. when chained scheduling is used, the SKP
option is not available, and defaults to the ACC option if coded. If
the EROPT and SYNAD fields are not completed, ABE is assumed.

Upon entry to your SYNAD routine register 0 will contain either the
address of standard status indicators and a displacement value to reach
the channel command word (GET/PUT), or the address of the data event
control block (READ/WRITE). Register 1 indicates which macro
instruction caused the error and the address of the data control block.
Registers 2 through 13 remain as they were. Register 14 contains a
return address and 15 the address of your SYNAD routine.

Your SYNAD routine can end by branching to another routine in your
program, such as a routine that closes the data set. It can also end by
returning control to the control program, which then returns control to
the next sequential instruction (after GET, PUT, etc.) in your program.
If your routine returns control, the conventions for saving and
restoring registers are as follows:

• The SYNAD routine must preserve the contents of registers 13 and 14.
If required by the logic of your program, the routine must also
preserve the contents of reg'isters 2 through 1.2. Upon return to
your program, the contents of registers 2 through 12 will be the
same as upon return to the control program from the SYNAD routine.

• The SYNAD routine must not use the save area whose address is in
register 13, because this area is used by the control program. If
the routine saves and restores registers, it must provide its own
save area.

• If the SYNAD routine calls another routine or issues supervisor or
data management macro instructions, it must provide a save area in
the usual way or by means of a SYNADAF macro instruction. The
SYNADAF macro instruction provides a save area for its own use, and
then makes this area available to the SYNAD routine. such a save
area must be removed from the save area chain by issuing a S~NADRLS
macro instruction before returning control to the control program.

When you use READ/WRI'I'E macro instructions, errors are detected when
you issue a CHECK macro instruction. If you are processing a direct or
sequential data set and you return directly to the CHECK routine from
your SYNAD routine, the operating system regards that as an acceptance
of the bad record. If you are creating a direct data set and you return

section II: Data Management Services (Part 1) 93

to the CHECK routine from your SYNAD routine, your task will be
annormally terminated.

When you use QSA~ to read and translate paper tape characters, your
SYNAD routine receives control when you request the record precedina the
record in error. However, before giving control to your SYNAD routine,
tne system translates the requested record into your buffer.

More specifically, suppose that you are using QSAM to read and
translate a paper tape data set and that you have specified in your DCB
SYNAD=(addre3s) and EROPT=ACC. Suppose also that the third record of
the data set has a parity error. When you issue a GET request for the
second record, the system translates that record into your buffer and,
as a result of the error in the third record, passes control to your
SYNAD routine. Because you specified the accept option, the system
returns control to your program after your SYNAD error analysis routine
completes its processins. When you issue a GET request for the third
record, that record is translated into your buffer as follows:

• The system translates the characters, up to the character in error,
into your buffer.

• The system moves the character in error into your buffer without
translating it.

• The system translates the remaining characters of the record into
your buffer.

Exit List (EXLST): specifies the address of special processing
routines. An exit list must be created if user lanel, data control
block, -end-of-volume, or block count exits are used.

The exit list is constructed of four-byte entries that must be
aligned on fullword boundaries. The exit routine type is specified by a
code in the high-order byte, and the address of the routine is specified
in the three low-order bytes. Codes and addresses for the exit routines
are shown in Table 10.

You can activate or deactivate any entry in the list by placinq the
required code in the high-order byte. Care must be taken, however, 30

as not to destroy the last entry indication. The list will be scanned
from top to bottom by the operating system. The first active entry
found with the proper code will be selected.

94

• Table 10. Format and Contents of an Exit List
r-----------------------T--------~--T----------------------------------,
I I Hexadecimal I J
IRoutine Type I Code 13-Byte Routine Address - Purpose I
r-----------------------+-----------+----------------------------------~
I Inactive entry I 00 I Ignored; the entry is not active I
r-----------------------+-----------+----------------------------------~
IInput header label I 01 I Process a user input header label I
r-----------------------+-----------+----------------------------------~
loutput header label I 02 ICreate a user output header label I
r-----------------------+-----------+---------------------------------~
IInput trailer label I 03 IProcess a user input trailer label I
r-----------------------+-----------+----------------------~-----------~
IOutput trailer label I 04 ICreate a user output trailer labell
r-----------------------+-----------+----------------------------------~
IData control block exitl 05 IData control block exit routine I
r-----------------------+-----------+----------------------------------~
I End-of-volume I 06 IEnd-of-volume exit routine I
r-----------------------+-----------+----------------------------------~
luser totaling I OA IPointer to user's totaling area I
r-----------------------+-----------+----------------------------------~
IBlock count exit I OB I Block count unequal exit routine I
r-----------------------+-----------+----------------------------------~
jDefer input trailer I OC IDefer processing of a user input I
I label I Itrailer label from Eon until 1
1 I I CLOSE I
r-----------------------+-----------+----------------------------------1
I Defer nonstandard I 00 I Defer processing a nonstandard I
linput trailer label I I input trailer label on magnetic I
I I !tape unit from Eon until CLOSE I
I I I (no exit routine address> I
r-----------------------+-----------+----------------------------------1
ILast entry I 80 ILast entry in list. This code canl
I I Ibe specified with any of the above I
I I Ibut must always be specified with I
I I I the last entry. I L _______________________ ~ ___________ ~ _________________________________ -J

The list can be shortened during execution by setting the high-order
four bits to the hexadecimal value 8. The list can be extended by
setting the high-order four bits to zero.

when control is passed to an exit routine, the general registers
contain the following information:

Register

o
1

2-13
14
15

Contents

Variable; see exit routine description.
Address of data control block currently being processed.
Contents prior to execution of the macro instruction.
Return address (must not be altered by the exit routine).
Address of exit routine entry point.

The conventions for saving and restoring registers are as follows:

• The exit routine must preserve the contents of register 14. It need
not preserve the contents of other registers. The control program
restores registers 2-13 before returning control to your program.

• The exit routine must not use the save area whose address is in
register 13, because this area is used by the centrol program. If
the exit routine calls another routine or issues supervisor or data
management macro instructions, it must provide the address of a new
save area in register 13.

section II: Data Management services (Part 1) 95

Standard User Label Exit: When you create a data set with physically
sequential or direct organization, you can provide routines to create
your own data set labels. You can also provide routines to verify thes€
labels when you use the data set as input. The labels are 80 characters
long with the first four characters UHL1,UHL2, ••• , UrlLB for header
labels or UTL1,UTL2, ••• , UTL8 for trailer labels.

The physical location of the labels on the data set depends on the
data set organization. For direct data sets (using BDAI"l), user labels
are placed on a separate user label track in the first volume. User
label exits are taken only during OPEN and CLOSE. Thus you may create
or examine up to eight user header labels only during OPEN and up to
eight trailer labels only during CLOSE. Since the trailer labels are on
the same track as the header labels, the first volume of the data set
must be mounted when the data set is closed. For physically sequential
data sets (using BSAM or QSAM), you may create or examine up to eight
header labels and eight trailer labels on each volume of the data set.
The user label exits are taken during OPEN, CLOSE, and EOV processing.

To create or verify labels, you must specify the addresses of your
label exit routines in an exit list for use during standard label
processing. Thus you may have separate routines for creating or
verifying header and trailer label groups. Care must be taken if a
magnetic tape is read backwards since the trailer label qroup is
processed as header labels and the header label group is processed as
trailer labels.

When your routine receives control, the contents of general register
o are unpredictable. Register 1 contains the address of a parameter
list. 'l'he contents of registers 2-13 are the same as when the macro
instruction was issued. However, if your program does not issue the
CLOSE macro instruction, or abnormally terminates before issuing CLOSE,
the CLOSE macro instruction will be issued by the control program, with
control program information in these registers.

The parameter list pointed to by register 1 is a 16-byte area aligned
on a fullword boundary and contains the following:

o
Address of 80 byte buffer area

4
Address of DeB being processed

8
Address of status information

12
Address of user totaling image area

The first address in tne parameter list points to an 80-byte label
buffer area. For input, the control program reads a user label into
this area before passing control to the label routine. For output, the
user label routine constructs labels in this area and returns to the
control program, which writes the label. When an input trailer label
routine receives control, the EOF flag (high-order byte of the second
entry in the parameter list) will be as follows:

bit 0 = 0:
bit 0 = 1:
bits 1-7 :

Entered at end-of-volume.
Entered at end-of-file.
Reserved.

When a user label exit routinE receives control after an
uncorrectable I/O error has occurred, the third entry of the parameter

96

list contains the address of the standard status information. The error
flag (high-order byte of the third entry in the parameter list> will be
as follows:

bit 0 = 1
bit 1 = 1
bits 2-7

Uncorrectable I/O error.
Error occurred when writing updated label.
Reserved.

The fourth entry in the parameter list is the address of the user
totaling image area. This image area is the entry in the user totaling
save area which corresponds to the last record physically written on the
volume. The image area is discussed further under "User Totaling."

Ea.ch routine must crea"te or verify one label of a header or trailer
labEl group, place a return code in register 15, and return control to
tne operatinq system. The operating system responds to the decimal
return code as ~hown in Table 11.

Table 11. System Response to a User Label Exit Routine Return Code

r--------------T-----------T---,
IKoutine Type IReturn Codel System Response I
r--------------+-----------+---~
Input header I 0 Normal processing is resumed. If ti1ere

or J are any remaining labels in the label
trailer label group, they are ignored.

4

8

12

The next user label is read into the
label buffer area and control is returned
to the exit routine. If there are uo
more labels in the label group, normal
processing is resumed.

The label is written from the label
buffer area and normal processing is
resumed.·

The label is written from the label area,
then the next label is read into the
label buffer area and control is returned
to the label processing routine. If
there are no more labels, processing is

I resumed.·
r--------------+-----------+---~
Output header 0 Normal processing is resumed; no label I
or trailer is written from the label buffer area. I
label I

4

8

User label is written from the label
buffer area. Normal processing is
resumed.

User label is written from the label
buffer area. If less than eight labels
have been created, control is returned to
the exit routine, which then creates the
next label. If eight labels have been

I
I
I
I
I
I
I
I
I
I

created, normal processing is resunled. I
~--------------+-----------+---~
I *Only for a physically sequential data set opened for UPDA'I'E or a I
I direct data set opened for UPDATE or OUTPUT. I L __ J

You can create user labels only for data sets on direct access or
magnetic tape volumes with standard labels. When you specify standard

section II: Data Management Services (Part 1) 97

and user labels in a DD statement (LABEL=SUL) and there is an active
entry in the exit list, a label exit is always taken. A label exit
may be taken when an input data set does not contain user labels, or
when no user label track has been allocated for writing labels on a
direct access volume. In either case, the appropriate exit routine is
entered with the buffer area address parameter set to zero. On return
from the exit routine, normal processing is resumed; no return code is
necessary.

Label exits ·are not taken for system output (SYSOUT) data sets, or
for data sets on volumes that do not have standard labels. For other
data sets, exits are taken as follows:

• When the data set is opened, header label exits are taken, except
when the data set already exists and DISP=MOD is coded in the DD
statement. In the latter case, the volume is positioned to the
end of the data sEt, and input trailer label exits are taken.

• When end-of-volume is reached, trailer label exits are taken;
header label exits are taken after volume switching. Input
trailer label exits are not taken, however, if you force
end-of-volume by issuing an FEOV macro instruction.

• When end-of-data is reached, input trailer label exits are taken
before the EODAD exit, unless the data control block (DCB) exit
list indicates defer input trailer label processing. When an
output data set is closed, output trailer label exits are taken.

• When end-of-data is reached for a direct access data set and the
data control block (nCB) exit list indicates defer input trailer
label processing, the system changes the OC to ODe When the Close
routine has finished processing, the sY3tem changes the code back
to OC.

To process records in reverse order, a data set on magnetic tape
can be read backwards. When you read backwards, header label exits
are taken to process trailer labels, and trailer label exits are taken
to process header labels. The system presents labels from a label
group in ascending order by label number, which is the order in which
the labels were created. If necessary, an exit routine can determine
label type (UHL or UTL) and number (1 to 8) by examining the first
four characters of each label.

If an uncorrectable error occurs while reading or writing a user
label, the system passes control to the appropriate exit routine with
the third word of the parameter list flagged and pointing to status
information.

After an input error, the exit routine must return control with an
appropriate return code (0 or 4). No return code is required after an
output error. If an output error occurs while the system is opening a
data set, the data set is not opened <DCB is flagged) and control is
returned to your program. If an output error occurs at any other
time, the system attempts to resume normal processing.

A sample program illustrating user label processing is included in
SYS1.Sru~PLIB. This program, named USERLABL, is discussed in the
publication, IBM System/360 Operating System: System Generation.

User Totaling: (BSAM, QSAM .only) When creating or processing a data
set with user labels, you may develop control totals for each volume
of the data set and store this information in your user labels. For
example, a control total that was accumulated as the data set was
created can be stored in your user label and later compared with a
total accumulated while processing the volume. The user totaling

98

facility assists you by synchronizing the control data which you
create with records physically written on a volume. For an output
data set without user labels, you can also develop a control total
which will be available to your end-of-volume routine.

To request this facility, you must specify OPTCD=T in the DCB macro
instruction or in the DCB parameter of the DD statement. Tne area in
which you accumulate the control data, the user's totaling area, must
be identified to the control program by an X'OA' entry in the data
control block (DCB) exit list.

'I'he user I s totaling area, an area in storage that you provide, must
begin on a halfworo boundary and be large enough to contain your
accumulated dp,ta plus a two-byte length field. The length field must
be the first two bytes of the area and specify the length of the
entire area. A data set for which you have specified user totalinq
(OP'rCD=T) will not be opened if either the totaling area length or the
address in the exit list is zero, or if there is no X'OA' entry in the
exit list.

The control program establishes a user totaling save area, in which
the control prograrr. preserves an image of your totaling area, when an
I/O operation is scheduled. When the output user label exits are
taken, the address of the save area entry (user totaling image area)
corresponding to the last record physically written on a volume is
passed to you in the fourth entry in the User Label parameter list.
l'uis parameter list is described in the section "Standard User Label
Exit." When an end-of-volume exit is taken for an output data set and
user totaling has beEn specified, the address of the user totaling
image area is in register o.

When using this facility for an output data set, i.e., when
creating the data set, you must update your control data in your
totaling area prior to issuing a PUT or a WRITE macro instruction.
'Ihe control program places an image of your totaling area in the user
totaling save area when an I/O operation is scheduled. A pointer to
the save area entry (user totaling image area) corresponding to the
last record physically written on the volume, is presented to you in
your label procesqing routine. Thus, you can include the control
total in your user labels. when subsequently using this data set for
input, you can accumulate the same information as you read each record
and compare this total with the one previously stored in the user
trailer label. If you have stored the total from the preceding volumE.
in the user header label of the current volume, you can process each
volume of a multi-volume data set independently and still maintain
this sytem of control.

When variable-length records are specified with the totalins
facility for user labels, special considerations are necessary. since
the control progralr deterrr.ines whether a variable-length recol.-d will
fit in a buffer a~ter a PUT or a WRITE has been issued, the total you
have accumulated may include one more record than is actually written
on the volume. In tIle case of variable-length spanned records, the
accumulated total will include the control data from the
volwne-spanning record although only a segment of the record is on
that volume. However, when processing such a data set, the
volume-spa.nning record or the first record on the next volume will not
be available to you until after the volume switch and user label
processing is completed. Thus the totaling information in the user
label may not agree with that developed while processing t.ne volume.
One way you can resolve this situation is to maintain, when you are
creatins a data set, control data pertaining to each of the last two
records and include both totals in your user labels. Then the total
related to the last complete record on the volume and the
volume-spanning record or the first record on the next volume would be

Section II: Data Management Services (Part 1) 99

available to your user label routine3. During subsequent processing
of the data set, your user label routines can determine if there is
agreement' between the generated information and one of the two totals
previously saved.

Data Control Block Exit: You can specify in an exit list the address
of a routine that completes or modifies a data control block ana does
any additional processing required before the data set is completely
open. The routine is entered during the opening process after the job
file control block has been used to supply information for the data
control block. The routine can be used to determine data set
characteristics by examining fields completed by the data set labels.

As with label processing routines, register 14 must be preserved
and restored if any macro instructions are used in the routine.
Control is returned to the operatin~ system by a RETURN macro
instruction; no return code is required.

End-of-Volume Exit: You can specify in an exit list the address oi a
routine that is entered when end-of-volume is reached in processing a
physically sequential data set.

When the end-of-volume routine is entered, register 0 contains zero
unless user totaling was specified. If you specified user totaling in
the DCB macro instruction (OPTCD=T) or in the DD statement for an
output data set, register 0 will contain the address of the user
totaling image area. The routine is entered after a new volume has
been mounted and all necessary label processing has been completed.
If the volume is a reel of magnetic tape, the tape is positioned after
the tapemark that precedes the beginning of th.e data.

The end-of-volume exit routine can be used to take a checkpoint by
issuing the CHKPT macro instruction, which is discussed in "Section 1:
supervisor services". If the job step terminates abnormally, i~ can
be restarted from this checkpoint. When the job step is restarted,
the volume is mounted and positioned as upon entry to the routine.
Note that restart becomes impossible if changes are subsequently made
to the system SVC library (SYS1.SVCLIB). When the step is restarted,
pOinters to end-of-volume modules must be the same as when the
checkpoint was taken.

The end-of-volume exit routine returns control in the same manner
as the data control block exit routine. Register 14 must oe preserved
and restored if any macro instructions are used in the routine.
Control is returned to the operating system by a RETURN macro
instruction; no return code is required.

Block Count Exit: You can specify in an exit list the address of a
routine that will allow you to abnormally terminate the task or
continue processing when the end-of-volume routine finds an unequal
block count condition. When using standarQ label input tapes, toe
block count in the trailer laoel is conlpared by end-of-volume with the
block count in the data control block. The count in the trailer label
reflects the number of blocks written when the data set was created.
The number of blocks read when the tape is used as input is contained
in the DCBBLKCT field of the data control block.

The routine is entered during end-of-volume processing. The
trailer label block count will be passed in register o. The user may
access the count field in the data control block by addressing the
address passed in register 1 plus the proper displacement as given in
IBM System/360 Operating System: system Control Blocks. If the block
count in the data control block differs from that in the trailer label
when no exit routine is provided, the task is abnormally terndnated.

100

'The routine must terminate with a RETURN macro instruction and a
return code that indicates what action is to De taken by the operating
system as shown in Table 12. As with otner exit routines, register 14
must be saved and restored if any macro instructions are used.

Table 12. Sys.tem Response to Block Count Exit Return Code
r--------------T-------------------------------~-----------------------,
I Return Code I System Action I
t--------------t---~
I 0 I The task is abnormally terminated. I
I I I
I I I
I 4 I Normal processing is resumed. I L ______________ ~ ___ J

Defer Nonstandard Input Trailer Label Exit: In an exit list, you can
specify a code that indicates that you want to defer nonstandard input
trailer label processing from end-of-data time until close time. The
address portion of the entry is not used by the operating system.

An end-of-volume condition exists in several situations. Two are
when the system reads a filemark or tapemark at the end of a volume of
a multivolume data set but that volume is not tne last, and when the
system reads a filemark or tapemark at the end of a data set. 'l'he
first situation is referred to here as an end-of-volume condition, the
second, as an end-of-data condition, although it, too, can occur at
tne end of a volume.

For an end-of-volume condition, the EOV routine will pass control
to the user's nonstandard input trailer label routine, whether or not
this exit code is specified. For an end-of-data condition when this
exit code is specified, the EOV routine does not pass control to the
user's nonstandard input trailer label routine. Instead, the Close
routine passes control to the user's routine.

MODIFYING THE DATA. CONTROL BLOCK

You can complete or modify the data control block during execution
of your program. You can also determine aata set characteristics from
information supplied by the data set labels. Changes or additions can
De made prior to opening the data set, after closing it, during the
DCB' exit routine, or while the data set is open. Naturally, any
informa.tion must be supplied before it is needed.

Because each data control block does not have a symbolic name for
eacn field, a DCBD macro instruction must be used to supply the
symbolic names. By loading a base register witn the address of the
data control block to be processed, any field can be referred to
symbolically.

The DCBD macro instruction generates a dummy control section
(DSECT) named IHADCB. The name of each field begins with DCB followed
by the first five letters of the keyword operand that represents tne
field in the DCB macro instruction. For example, the field reserved
for block 3ize would be referred to as DCBBLKSI.

The attributes of each data control block field are defined in the
QU~~y control section. Because each field in tne data control block
is not necessarily aligned on a fullword boundary, care must be taken
when storing or moving data into the field. The length attrioute and
-c.ne alignment of each field can be determined from an assembly listing
of the DCBD macro instruction.

section II: Data Management Services (Part 1) 101

The DCBD macro instruction can be coded. once to describe all data
control blocks, even though their fields differ due to differences in
data set organization and access technique. It must not be coded more
than once for a single assembly. If it is coded before the end of a
control section, it must be followed by a CSECT or D§ECT statement to
resume the original control section.

Chanaing an Address in the Data Control Block: The following example
illustrates now you can modify a field in the data control block. The
DCBD macro instruction defines the symbolic name of each field.

The data set defined. oy the data control :alock TEX'l'DCB is opE-ned
for use as both an input and an output data set. When its use ad an
input data set is completed, the EODA.D routine closes the data set
temporarily in order to reposition the volume for output. The EODAD
routinE. then uses the dummy control section IHADCB to change the error
exit address (SYNAD) from INERROR to OUTERROR.

'I'he EODAD routine loads the addre3s TEXTDCB into register 10, which
it uses as a oase register for IrlA..DC2,. It then move$ the address
OUT£RkOR into the DCESYNAD field of tile data control block. Thi.::.
field is a £ullword, but contains information in the high order oyte
wnich must not be disturbed. For this rea30n, care is taken to change
only the three low order bytes of the field.

OPEN (TEXTDCB,INOUT)

EOFEXIT CLOSE (TEXTDCB,REREAD),TYPE=T
LA 10,TEXTDCB
USING IHADCB,lO
MVC DCBSYNAD+1(3),=AL3(OUTERROR)
B OUTPUT

INERROR STM 14,12,SYNADSA+12

OUT ERROR STM 14, 12,SYNADSA+12

TEXTDCB DCB DSORG=PS,MACRF=(R,W),DDNAME=TEXTTAPE,
EODAD=EOFEXIT,SYNAD=INERROR

DCBD DSORG=PS

SHARING A DATA SET

A data set can be shared by all the tasks of a job step. If
requested in the DD statement, a data set can be shared by all the
taSKS in the system. (Remember that there is only one task in a
system with PCP.)

W~len a aata set is Sl,area D'j several tasks, you must treat it as a
serially reusable resource. You must have exclusive control of a da~a

set in order to add or update records, and you must have sharea
control in order to read records.

In performing a task, you gain exclusive or shared control of a
data set by issuing tne ZNQ and DEC: macro instructions, wnicn are
described in "Section I: SupErvisor Services." Note t~at taese macro
instructions must be used by all of the tasks that process a shared
data set.

When you process a direct organization data set, you need to use
the ENQ and DEC: macro instructions only when tasks that snare a data
set do not refer to the same data control block. When all tasks do
refer to tne same data control block, you must have exclusivE control
of a olock of records tnat you are updating, but you do not need
either shared or exclusive control of the entire data set. You can

102

r~quest exclusive control of a block of records through the DCB, READ,
WRITE, and RELEX macro instructions.

Shared Direct Access storage Devices: At some installations, a
direct access storage device is shared by two or more independent
computing- systems. 'I'asks executed on these systems can share data
s~ts stored on the device. For detaild, refer to the publication IBM
System/360 Operating System: System Programmer's Guide. --

Section II: Data Management Services (Part 1) 103

Part 2: Data Management Processing Procedures

Data Processing Techniques

The operating system allows you to concentrate your efforts on
processing the records read or written by the data management
routines. Your main res~onsibility is to describe the data set to ne
processed, the bufferins techniques to be used, and the access n,ethod.
An access method can be defined as the combination of data set
orqanizaticin and the technique used to process the data. Data access
techniques can be divided into two categories -- queued and Dasic.

QUEUED ACCESS TECHNIQUE

The queued access technique provides GE~ and PUT macro instructions
for transmitting data between main and secondary storage. These macro
instructions cause automatic blocking and deblocking of the records
stored and retrieved. Anticipatory (look-ahead) buffering and
synchronization (overlap) of input and output operations with Cf'U
processing are automatic features of the queued access technique.

Eecause the operating system controls buffer processing, you can
use as man} I/O buffers as needed without reis3uing GET/PUT macro
instructions to fill or empty buffers. Usually, more than one input
block is in main storage at any given time to prevent I/O opE-rations
from delaying record processing.

Because the operating system synchronizes input/output witl1
processing, you need not test for completion, errors, or exceptional
conditions. After a GET or PU'l' macro instruction is issued, control
is not returned to your program until an input area is filled or an
output area is available. Exits to error analysis (SYNAD) and
end-of-volume or end-of-data (EODAD) routines are automatically taken
when necEssary.

GET -- Retrieve a Record

The GET macro instruction obtains a record from an input data set.
I t operates in a logicall.y sequential and device-independent manner.
As required, the GET macro instruction schedules the filling of input
buffer;;;:>, deblock3 records, and directs input error recovery
procedures. E'or sequential data sets, it will also merge record
segments into logical records. After all records have been pl.-ocessed
and the GET macro instruction detects an end-of-data indication, the
sY3tem automatically checks labels on sequential data sets and passes
control to your end-of-data (.t:;ODf\~D) routine. If an end-af-volume
condition is detected for a sequential data set, the system provides
automatic volume switching if the data set extends across several
volumes or if concatenated data sets are being processed.

PUT -- Write a Record

The PUT macro instruction places a record into an output data set.
Like the G~T macro instruction, it operates in a logically sequential
and device-ind~pendent manner. As required, the PUT macro instruction
schedules the emptying of output buffers, blocks records, and handles
output error correction procedures. For sequential data sets, it also
initiates automatic volume switching and label creation, and also
seqments records for spanning.

Section I~: Data Management Services (Part 2) 105

If the PUT macro instruction is directed to a card punch or
printer, the system automatically adjusts the number of records or
record segments per block of format F or V blocks to 1. 'l'hus, you can
specify a record length (LRECL) ahd block size (BLKSIZE) to provide an
optimum block size if the records are temporarily placed on magnetic
tape or a direct access volume.

For spanned variable-length record.s, the block size must be
equivalent to one card or one print line. Record size may be greater
than block size in this case.

PUTX -- write an Updated Record

The PUTX macro instruction is used to update a data set or to
create an output data set using records from an input data set as a
base. PUTX updates, replaces, or inserts records from existing data
sets but does not create records or add records from other data sets.

~ihen you use the PUTX macro instruction to update, each record is
returned to the data set referred to by a previous GET macro
instruction. The buffer containing the updated record is flagged and
written back to the same location on the direct access storage device
from which it was read. 'l'he block is not written out until a GB'I'
macro instruction is used fOL- the next buffer, except when a spanned
record is to be updated. In that case, the block is written out with
tne next GET macro instruction.

When the PUTX macro instruction is used to create an output data
set, you can add new records by using the pm' lTlacro instruction. As
required, the PUTX macro instruction blocks records, schedules the
writing of output buffers, and handles output error correction
procedures.

BASIC ACCESS TECHNIQUE

'l'he basic access technique provides the READ and Wj;{ITE macro
instructions for transmitting data between main and secondary storage.
This technique is used when the operating system cannot predict the
sequence in which the records are to be processed or when you do not
want some or all of the automatic functions performed by the queued
aCCESS techniqu€. Although the system does not provide anticipatory
buffering or synchronized scheduling, macro instructions are provided
to help you program these functions.

rrne READ and WRITE macro instructions process blocks, not records.
Thus, blocking and deblocking of records is your responsibility.
Buffers, allocated either by you or the operating system, are filled
or emptied individually each time a READ or WRITE macro instruction is
issued. Moreover, the READ and WRITE macro instructions only initiate
input/output operation.s. To ensure tnat the operation is completed
successfully, you must issue a CHECK macro instruction to test the
DECB or a WAIT macro instruction and then check the DBCB yourself.
The nUIftDer of READ or WRI'lE macro instructions issued before a CHECi-\
macro instruction is used should not exceed the specified number of
channel programs (NCP).

READ -- Read a Block

The READ macro instruction retrieves a data block from an input
data set and places i.t in a designated area of main storage. 'ro allow
overlap of the input operation with processing, the system returns
control to your program before the read· operation is completed. The
DECB created for the read operation must be tested for successful
completion before processing the record or reusing the DEC3.

106

I

If an indexed sequential data set is being read, the block is
brought into main storage and the address of the desired record is
returned to you in the DECS.

When you use t.he RbAD macro instruct.ion for BSAM to read a direct
data set with spann€:d records and keys and you specify BF'l'EK=R in :y·our
DCB, the data management routines offset record segments by key length
after the first segment of a record. Thus, you can expect the block
descriptor word and the segment descriptor word at the same locations
in your buffer, or buffers, regardless of whether you read the first
segment of a record, which is preceded in the buffer by its key, or
}'ou read a subsequent sesment, which does not have a key. This
facility is called offset reading because the data management routines
offset the location of subsequent segments in the buffer by the value
of KEYLEN.

iou c~n specify variations of the READ macro instruction accotding
to the organization of the data set being processed and the type of
processing to be done by the system as follows:

§.~uential
SF - Read the data set sequentially.
SB - Reading the data set backward (magnetic tape, fornlat F and U

only). When aEC~M=FBS, data sets containing a last truncated
block cannot De read backwards.

Indexed Seguential
K - Read tne data set.
KU - read for update. The system maintains the device address of

the record; tnus, when a WRITE macro instruction returns the
record, no index search is required.

Q~!:E.c!:.
D
I
K
F
X
R
U

- use the direct access method.
- locate the block using a block identification.
- locate the block usinS a key.
- provide device position feedoack.
- maintain exclusive control of the block.
- provide next-address feedback.

next address can be a capacity record or logical record,
wnichever occurred first.

WRITE -- write a Block

Th~ WHITE macro instruction places a data block in an output data
set from a designated area of main storage. The WRIT£ macro
instruction can also DE: used to return an updated record to a data
set. ~o allow overlap of out~ut operations with processing, the
systE.m returns cont:r-ol to your program before the write operation is
con~l€ted. The DECB created for the write operation must be tested
for successful completion before the DE CD can De reused.

As with the READ macro instruction, you can specify variations of
tnE: WRITE macro instruction accordina to the organization of the data
set and the type of processing to be done by the system as follows:

sequential
SF - Write the data set sequentially.
SFR - Write the data set sequentially with next-address feedDack.

Indexed seguential
K - write a block containing an updated record, or re~lace a

record wi th an unblocKed record having the same key. 'rhe
record to be replaced need not have oeen read into main
storage.

KN - write a new record or change the length of a variable-length
record.

section II: Data Nanagement Services O:'art 2) 107

Direct
SD - write a dummy fixed-length record.
SZ - write a capacity record (RO). The system supplies the data,

writes the capacity record, and advancEs to the next track.
D - use the direct access method.
I - search argument identifies a block.
K - search argument is a key.
A - add a new block.
F - provide record location data (feedback).
X - release exclusive control.

CHECK -- Test Completion of Read/Write Operation

When processinq a data set, ~'ou can wait and test for completion of
a read or write request by issuing a C!fECK macro instruction. 'l'he
sy'stem tests for errors and exceptional conditions in the data event
contro.l block. Successive C.dl.CK macro instruc-tions issued for the
same data set should be issued in the same order as the associated
READ/wRI'I'E macro instructions.

The check routine will pass control to the appropriate exit
routines specified in the data control block for error analysis
(SYNAD) or, for sec..;:uential data ,sets, end-of-data CBODAD). It will
also automatically initia-te end-of-volume procedures, i.e., volume
switching or extending output data sets.

WAIT Wait for Comoletion of a Read.lilrite operation

Ahen processing a data set, you can test for completion of any read
or write operation by issuing a wAIT macro instruction. The
input/output operation will be synchronized with processing, but the
DECB will not be checked for errors or exceptional conditions, nor
will end-of-volume proc€dures be initiated. These functions must be
tested,l for and performed by your program.

'rhe WAI'I' macro instruction can be used to await completion of
multiple read/wri te operations. Each operation lllUSt then be checked
or tested separately.

Data Event Control Block (DECB)

A data event control block is a 16- to 32-byte area reserved by
each READ/WRITE macro instruction. It contains control information
and pointers to standard status indicators. It is described in detail
in the publication IBM System/360 Operating System: supervisor and.
Data Manaqement Macro Instructions.

'l'be DECB is examined by the check routine when the I/O operation is
completed to determine if an uncorrectable error or exceptional
condition exists. If it does,' control is passE-d to your SYNAD
routine. If you have no SYNAD routine, the task is abnormally
terminated.

ERROR HANDLING

'l'he basic and queued access techniques both provide special macro
instructions for analyzing input/output errors. These macro
instructions can be used in SYNAD routines and in error analysis
routines that are entered directly when using the basic access
technique with indexed sequential data sets.

108

SYNADAF -- Perform SYNAD Analysis Function

The SYNADAF macro instruction analyzes the status, sense, and
exceptional condition code data that is available to your error
analysis routine. It produces a descriptive error message that your
routine can write into any appropriate data set. The message is in
the form of an unblocKed variable-length record, but it can be written
as a fixed-length record by omitting the block ana record length
fields that precede the message text.

The text of the message is 120 characters in length, and oegins
with a field of 36 or 42 blanks; you can use the blank field to add
your own remarks to the message. Following is a typical message with
the blank field omitted:

,TESTJOB ,STEP2 ,283,TA,MASTER ,READ ,DATA CHECK ,0000015,BSAM

This message indicates that a data check occurred ·v'1hile reading the
fifteenth block of a data set. The data set was identified by a DD
statement named ~~STER, and was on a magnetic tape volume on unit 283.
The name of the job was TESTJOB; the name of the job step was STEP2.

If the error analYclis routine is entered because of an input error,

'

the first six bytes of the message (bytes 8-13) contain binary
information. If no data was transmitted or if the access metnod is
Q1SAM, the first six nytes are blank. If the error did not prevent
data transmi~sion, the first- six bytes contain the address of the
input buffer and the number of bytes read. You can use this
information to process records from the block; for example, you might
print each record after printing the error message. Before printing
the message, however, you snould replace thi.3 binary information with
EBCDIC characters.

The SYNADAF macro instruction provides its own save area and makes
this area available to your error analysis routine. ~hen used at the
entry point of a SYNAD routine, it fulfills the routine's
res~onsibility for providing a save area~

SYNADRLS -- Release SYNADAF Messaqe and Save Areas

'I°he SYNADRLS macro instruction releases the mesaage and save areas
provided by the SYNADAF macro instruction. You must issue this macro
instruction before returning from the error analysis routine.

ATLAS -- Perform Alternate Track Location Assignment

The ATLAS macro instruction enables your program to recover from
permanent input/output errors when processing a data set in direct
access storage. After a data check, or in certain missing address
marker conditions, you can issue A'rLAS to:

• Assi9n an alternate track to replace the error track.

• Transfer data from the error track to the alternate track.

Use of the ATLAS macro instruction requires a knowledge of channel
programrrang. For this reason, a detailed description of the macro
indtruction and its use is included in the publication IBM System/360
Operating System: System Programmer's Guide.

If you do not use the ATLAS macro instruction, you can use the
IEHATLAS utility program to perform the same function. The principal
difference between the macro instruction and the utility program is
that the latter provides error recovery only after your own program

Section II: Data t-1anagement Services (Part 2) 109

I has been completed. For a detailed description of IEHATLAS, refer to
the publication IBM System/360 Operating System: Utilities.

SELECTING AN ACCESS METHOD

Access methods are identified primarily by the data set
organization to which they apply. For instancE, we speak of a oasic
access method for direcl:. organization (BDArvl). Nevertheless, -there are
times when an access method identified with one organization can be
used to process a data set usually thought of as organized in a
different manner. 'Thus, a data set is created using the Dasic access
method for sequential organization (BSAM). It is processed using the
basic direct access method (BDAM). If the queued access technique is
used to process a sequential data set, the access method is referred
to as QSAM.

The basic access methods are used for all data organizations, while
the queued access methods apply only to sequential and indexed
sequential data sets as shown in Table 13.

Table 13. Data Access Methods
r------------------------T---,
I Data Set I Access Technique I
I t--------------------T------------------------~
I Organization I Basic I Queued I
r------------------------+--------------------+------------------------1
I Sequential I BSAM I QSAM I
I Partitioned I BPAM I I
I Indexed Sequential I BISAM I QISAM I
I Direct i BDAM I I L ________________________ ~ ____________________ ~ ________________________ J

It is possible to directly control an I/O device while processing
any data organization withou-t using a specific acceS3 metnod. The
execute channel program (.E.XCP) macro instruction uses the system
functions that provide for scheduling and queuing I/O requests,
efficient use of channels and devices, data protection, interruption
procedures, error recognition and retry. Complete details about the
EXCP macro instruction are in the publication IBM System/360 Operating
System: system Programmer's Guide.

OPENING AND CLOSING A DATA SET

Although your program has been assembled, the various data
management routines required for I/O operations are not a part of the
oDject code. In other wordS, your program is not completely asserr~led
until it is initiated for execution. Initiation is accomplished by
issuing the OPEN macro instruction. After all data control blocK.s
have been completed, the system ensures that all required access
method routines are loaded and ready for use and that all channel
command word lists and buffer areas are ready.

Access method routines are selected and loaded according to oata
control fields that indicate:

• Data organization.
a Buffering technique •
• Access technique •
• I/O unit characteristics.

110

Tnis information is used by the system to allocate main storage space
and load tne appropriate routines. These routines, the CCd lists, and
buffer areas created automatically by the system remain in main
storage until the close routine signals that they are no longer needed.
Dy that aata control block.

When I/O optrations are completed for a data set, a CLOS£ macro
instruction should be issued to return the data control block to its
orisinal status, handle volume disposition, create data set labEls,
complete writing of queued output Duffers, and free main and secondary
storage. After the data set has been closed, the data control block
Ca.i:l be used. for anothE::r data set. If you do not close the data set
Defore a task terminates, the operating system closes it
automat.ically. If the data control block is not available to tne
system at that time, the operating system aonormally terminates the
task, and data results can be unpredictable.

An OP~N or CLOSE macro instruction can be used to initiate or
terminate processin(J of more than one data set. Simultaneous opening
or closing is faster than issuing separate macro instructions;
no~ever, additional storage space is required for each data set
s.c?ecified.

Notes:

1. Two or more data control blocks should never be opened
concurrently for output to the same data set on a direct access
device. 'Ihis may result in the end-of-file record written by the
CLOSE for one data control block overlaying data associated with
another data control block.

2. Two or more data control olocks should never be opened
concurrently using ttJ.e same DDNA.I~jE. This is true for Doth input
and output and especiall:r important when using more tnan one
access method. Any action on one DCB that alters the TIOT or
JFCB affects the other DCB(s) and thus can cause unpredictable
results.

Volume aisposition specified in the OPEN or CLOS~ macro instruction
can De overridden by the system if necessary. rlowever, you need not
De concerned; the system automatically requests the mounting and
demounl:ing of volumes, depending upon the availability of devices at a
particular time.

OPEN -- Initiate Processing of a Data Set

'l.'he OPEN macro instruction is used to complete a data control block
for an associated data set. The method of processing and the volume
pOSitioning instruction in the event of an end-of-volume condition can
be specified.

Processing Method: A data set can be processed as either input or
outE;>ut (INPUT, OUTPUT) or a combination of the two (INOU'I', OU'I'IN -­
ES~~~ only). If the data set resides on a direct access volume,
records can be updated (UPDA'l:). Magnetic tape volumes can al30 be
read backwards (RDBACK -- ESAM and QSAM only). If the processing
method operand is omitted from the OPEN macro instruction, INPUT is
assumed. The operand is ignored by BISAMi it must be specified as
OUTPUT when using QISAN to create an indexed sequential data set. You
can override the OPEN options INOUT and OUTIN at execution time by
usinq the LABEL parameter of the ~D card. Use of this facility is
discussed in the publication IBM System/360 Operating System: Job
Control Language Reference.

Section II: Data Management Services (Part 2) 111

simultaneous Openinq of Data Sets: In this example of the OPEN macro
instruction, the data sets associated with three data control blocks
are to be opened simultaneously with the indicated options.

OPEN
+ CNOP
..- BAL
+ DC
+ DC
+ DC
+ DC
+ DC
+ DC
+ SVC

(TEXTDCB"CONVDCB, (OUTPUT),PRINTDCB,{OUTPUT»
0,4
1,*+16 LOAD REG1 W/LIST ADDR.
AL1(0) OPTION BYTE
AL3(TEXTDCB) DCB ADDRESS
ALl (15) OPTION BYTE
AL3(CONVDCB) DCB ADDRESS
AL1(143) OPTION BYTE
AL3{PRINTDCB) DCB ADDRESS
19 ISSUE OPEN SVC

since no processing method operand is specified for TEXTDCB, the
s.i"stem assumes INPUI. Both CONVDCB and PRINTDCB are opened for
output. No volume positioning options are specified; tnus, t.ne
position indicated by the DD statement DISP parameter is used.

At execution time, the SVC 19 instruction passes control to the
open routine, which. then initiates the three data control blocks and
loads the appropriate access method routines.

CLOSE -- Terminate Processing of a Data Set

The CLOSE macro instruction is used to terminate processing of a
data set and release it from a data control block. 'rhe volume
positioning that is to result from closing the data set can also be
specified. Volume positioning options are the same as those that can
be specified for end-of-volume conditions, as specified in the OPEN
macro instruction or the DD statement. An additional volume
positioning option, REWIND, is available and can be specified by the
CLOSE.. macro instruction for magnetic t.ape volumes. REWIND pOSitions
the tape at the load point regardless of the direction of processing.

The operating system provides a temporary closing option, CLOSE
('l'iPE='l'), for data sets being processed by ESAJ.Vi. CLOSE (TYPE = T)
causes the RLSE parameter on the DD card to be ignored. When the
macro instruction is executed for data sets on magnetic tape or direct
access VOlumes, the system processes labels and repositions the volume
as required. However, the data control block Illaintains its open
sta·tus. Processing of the data set can be continued at a later stage
in your program without reissuing the OPEN macro instruction.
Performance is thus improved significantly. Magnetic tape volumes
will be repositioned either preceding the first data block or
followin~ the last data block of the data set. The presence of tape
labels has no effect on repositioning.

Simultaneous Closing of Data Sets: In this example of the CLOSE macro
ins~ruction, the data sets associated with three data control blocks
are to be closed simultaneously.

CLOSE (TEXTDCB"CONVDCB"PRINTDCB)
+ CNOP 0,4
+ BAL 1,*+16 BRANCH AROUND LIST
+ DC AL1(0) OPTION BYTE
+ DC AL3 (TEXTDCB) DCB ADDRESS
+ DC AL1(0) OPTION BYTE
+ DC AL3 <CONVDCB) DCB ADDRESS
+ DC AL1(128)OPTION BYTE
+ DC AL3(PRINTDCB) DCB ADDRESS
+ SVC 20 ISSUE CLOSE SVC

112

Because no volume positioning operands are specified, the position
indicated by the DD statement DISP parameter is used.

At execution tiwe, the SVC 20 instruction passes control to the
close routine which terminates processing of the three data sets and
returns the thrEe data control blocks to their original status.

End-of-Volume Processing

Control is passed automatically to the data management
end-of-volume routine when any of the followin9 conditions is
detected:

• End-of-data indicator (input volume).
• Tapemark (input tape volume).
• Filemark (input direct access volume).
• End of reel (output tape volume).
• End of extent (output direct access volume>.

You may issue a force end-of-volume (FEOV) macro instruction before
the end-of-volume condition is detected.

The end-of-volume routine checks or creates standard trailer
labels, if the LABEL parameter of the associated DO statement
indicates standard labels. control is then passed to the appropriate
user label routine if it is specified in your exit list.

Multiple volume data sets can be specified in your DD statement
whereby automatic volume switching is accomplished by the
end-of-volume routine. When an end-of-volume condition exists on an
output data set, additional space is allocated as indicated in your DD
statement. If no more volumes are specified or if more are required
than specified, the storage is obtained from any available volume of
toe same device type. If no device is available, your job is
terminated.

Volume Positioning: When an end-of-volume condition is detected, the
system positions the volume according to the disposition specified in
the DD statement unless the volume disposition is specified in the
OPEN macro instruction. Volume positioning instructions for a
sequential data set on tape or direct access can be specified as LEAVE
or REREAD.

LEAVE
positions the volume at the logical end of the data set just read
or written. If the data set has been read backwards, the logical
end is the physical beginning of the data set.

REREAD
positions the volume at the logical beginning of the data set
just read or written.

A volume positioning instruction can be specified only if the
processing method operand has been specified. It will be ignored if
devices other than magnetic tape or direct access are used. It will
also be ignored if the number of volume3 exceeds the number of
available units.

E'or magnetic tape volume3, positioning varies according to tne
direction of the last input operation and the existence of tape
labels. If the tape was last read forward:

LEAVE
will position a labeled tape following the tapemark that follows

section II: Data Management Services (~art 2) 113

the data set trailer label group; an unlabeled volume following
the tapemark that follows the last block of the data set.

REREAD
will position a labeled tape preceding the data set header label
group; an unlabeled tape preceding the first block of the data
set.

If the tape was last read backwards:

LEAVE
will position a labeled tape preceding the data set header label
group; an unlabeled tape prE~ceding the first block of the data
set.

REREAD
will position a labeled tape following the tape mark that follows
the data set trailer label group; an unlabeled tape following the
tape mark that follows the last block of the data set.

FEOV -- Force End of Volume

The FEOV macJ::-o instruction directs the operating system to initiate
end-of-volume processing oefore the physical end of the current volume
is reached. If another volume has been specified for the data set,

I volume switching takes place automatically. The volume positioning
options REWIND and LEAVE are available.

The FEOV macro instruction can only be used when processing data
sequentially, i.e., BSA!.Il and QSAt1.

Buffer Acquisition and Control

The buffering facilities of the operating system provide several
methods of acquisition and control. Each buffer, i.e., main storage
area used for intermediate storage of input/output data, usually
corresponds in length to the size of a block in the data set being
processed. When using the queued access technique, any reference to a
buffer actually refers to the next record, i.e., buffer segment.

You can assign more than one buffer to a data set by associating
the buffer with a buffer pool. A buffer pool must be constructed in a
main storage area allocated for a given number of buffers of a given
length.

Buffer segments and buffers within the buffer pool are controlled
automatically by the system when the queued access technique is used.
However, you can terminate processing of a buffer by issuing a release
(RELSE) macro instruction for input or a truncate (TRUNC) macro
instruction for output. Two buffering techniques, simple and
exchange, can be used to process a sequential data set. Only simple
buffering can be used to process an indexed sequential data set.

If you use the basic access technique, you can use buffers as work
areas rather than as intermediate storage areas. They can be
controlled either directly by usin,g the GETBUF/FREEBUF macro
instruction, or dynamically by requesting dynamic buffering in your
DCB macro instruction and your READ/~.JRITE macro instruction. If you
request dynamic buffering, the system will automatically provide a
buffer each time a READ macro instruction is issued. That buffer will
be freed when you iSSUE: a WRIT!!; or FREE:DBUF macro instruction.

114

BUFFER POOL CONSTRUCTION

Buffer pool construction can be accomplished in any of three ways:

• statically usinS the BUILD macro instruction.
• Explicitly using the GETPOOL macro instruction.
• Automatically by the systerr when the data set is opened.

If ~SAM simple buffering is used, the buffers are automatically
returned to the pool when the data set is closed. If the buffer pool
is constructed explicitly or automatically, the main storage area mU3t
De returned to the system by using the FREEPOOL macro instruction.

In many applications, singleword or doubleword alignment of a block
within a buffer is important. You can specify in the data control
block tnat buffers are to start on either a doubleword or a fullword
boundary that is not also a doubleword boundary (BFALN=D or F). If
douoleword alignment is specified for format V records, the fifth byt~
of the first record in the block is so aligned. For that reason,
fullword alignment must be requested to align the first byte of the
variable-length record on a doubleword boundary. The alignment of the
records following the first in the block depends on the length of the
previous record.

If the BUILD macro instruction is used to construct the butfer
pool, alignment depends on the aligmuent of the first byte of the
reserved storage area.

when you process mUltiple QISA.I'1 data sets, you can use a common
buffer pool. '1'0 do this, however, you must use the BUILD macro
instruction to reformat the buffer pool before opening each data set.

BUILD -- Construct a Buffer Pool

When you know, prior to program assembly, both the number and size
of the buffers required for a given data set, you can reserve an area
of appropriate size to be used as a buffer pool. Any type of area can
be used -- a predefined storage area, or an area of coding no longer
needed, for example.

A BUILD macro instruction, issued during execution of your program,
structures the reserved storage area into a buffer pool. The address
of the buffer pool must be the same as that specified for the buffer
pool control block (BUFCB) in your data control block. The buffer
pool control block is an 8-byte field preceding the buffers in the
buffer pool. The number (BUFNO) and length (BUFL) of the buffers must
also be specified.

When the data set using the buffer pool is closed, you can reuse
the area as required. You can also reissue the BUILD macro
instruction to reconstruct the area into a new buffer pool to be used
by another data set.

You can assign the buffer pool to two or more data sets that
require buffers of the same length. To do this, you must construct an
area large enou9h to accommodate the total number of buffers required
at anyone time during execution. That is, if each of two data sets
requires five buffers (BUf'NO=5), the BUILD macro instruction should
sp€:cify ten buffers. Tne area must also be large enough to contain
the 8-byte buffer pool control block.

I

BUILDRCD -- Build a Buffer Pool and a Record Area

The BUILDRCD macro instruction performs the same functions as the
BUILD macro instruction and the following functions, as well:

Section II: Data Management Services (Part 2) 115

• It provides the logical record interface necessary for a
sequential data set accessed by QSAM in the locate mode and riaving
a record format of VS or VBS. Logical record interface, unlike
segment interface, enables the user to access an entire logical
record, not just a segment.

~ It links a record area to the buffer control block by extending
the buffer contr'ol block to twelve bytes. Thus, a spanned record
can be assembled or segmented in the record area.

GETPOOL -- Get a Buffer Pool

If a specified area is not reserved for use as a buffer pool, or
you want to defer specifying the number and length of the buffers
until execution of your program, you should use the GETPOOL macro
instruction. Tnis facility enables you to vary the size and number of
buffe:r-s according to the needs of the data set being processed.

The GETPOOL macro instruction structures a main storage area
allocated by tne system into a buffer pool, assigns a buffer pool
control block, and associates the pool with ~cific data set. The
G~TPOOL macro in3truction should be issued either before opening the
data set or during your DCB exit routine.

Automatic Buffer Pool Construction

If you have requested a buffer pool ana nave not used an
appropriate macro instruction by the end of your DCB exit routine, the
system automatically allocates main stora~e space for a buffer pool.
The buffer pool control block is also assigned and the pool is
associated with a specific data set. If you are using the basic
access technique to process an indexed sequential or direct data set,
you must indicate dynamic buffer control. Otherwise, the systertl (loes
not construct the buffer pool automatically.

FREEPOOL -- Free a Buffer Pool

Any buffer pool assigned to a data set either automatically by the
OPJ!:H macro instruction (except when dynamic buffer control is used) or
explicitly by the GET POOL macro instruction must be released Defore
your program is terminated. The FREEPOOL macro instruction should be
issu~d to release the main storage area as soon as the buffers are no
longer needed. As a general rule, when you are usinq the queued
access technique, an output data set should be closed first to ensure
that all the records have been written out. However, when llsin-?
exchange buffering or when processinq an indexed sequential data set
using the queued access technique, the buffer pool must not be
releasEd until all the data sets have been closed.

Constructing a Buffer Pool: Tne following examples illustrate several
possible methods of constructing a buffer pool. The examples do not
consider the method of processing or controlling the buffers in the
pool.

116

BUILD
OPEN

ENDJOB CLOSE

RETURN
INDCB DCB
OUTDCB DCB

CNOP
I NPOOL DS

INPOOL, 10, 52
(INDCB"OUTDCB, (OUTPUT»

(I NDCB, ,OUTDCB)

Processing
Structure a buffer 2001

Processing

Processing
Return to System

BUFNO=5,BUFCB=INPOOL,EODAD=ENDJOB,--­
Control

BUFNO=5,BUFCB=INPOOL,---
0,8
CL564

Force boundary alignment
Buffer pool

In the first example, a static storage area named INPOOL is
allocated durins program assembly. The BUILD macro instruction,
issued during execution, arranges the buffer pool into ten buffers,
each 52 bytes lo~g. Five buffers are assigned to INDCB and five to
OUTDCB, as specified in the DCB macro instruction for each. The two
data sets share the buffer pool because both specify INPOOL as the
buffer pool control block. Notice that an additional eignt bytes have
been allocated for the buffer pool to contain the buffer pool control
block.

ENDJOB

INDCB
OUTDCB

GETPOOL
GET POOL
OPEN

CLOSE
FREEPOOL
FREEPOOL

INDCB,10,52 Construct a 10-buffer pool
OUTDCB,5,112 Construct a 5-buffer pool
(I NDCB, , OUTDCB, (OUTPUT»

(INDCB, ,OUTDCB)
INDCB
OUTDCB

Release buffer pools after all
I/O is complete

RETURN
DCB
DCB

Return to System Control
DSORG=PS,BFALN=F,LRECL=52,RECFM=F,EODAD=ENDJOB,--­
DSORG=IS,BFALN=D,LRECL=52,KEYLEN=10,BLKSIZE=104,

RKP=O,RECFM=FB,---

In the second example, two buffer pools are constructed explicitly
oy the GET POOL macro instructions. Ten input buffers are provided,
each 52 bytes long, to contain one fixed-length record; five output
Duffers are provided, each 112 bytes long, to contain two blocked
records plus an 8-byte count field (required D.i the Indexed Sequential
Access l"1.ethod). Notice that both data sets are closed before the
buffer pools are released by the FREEPOOL macro instructions. The
same procedure should be used if the buffer pools were constructed
automatically by the OPEN macro instruction.

BUFFER CONTROL

There are four techniques that can be used to control the buffers
used by your program. The advantages of each depend to a great extent
upon the t:ype of job you are doing. Both simple and exchange
buffering are provide6 for the queued access technique. The basic
access technique provides for either direct or dynamic buffer control.

Although only simple buffering can be used to process an indexed
sequential data set, buffer segments and buffers within a buffer pool
are controlled automatically by the operating system.

In addition, the queued access technique provides four processing
modes that determine the extent of data movement in main storage.
Move, data, locate, or substitute mode processing can be specified for
either the GET or PUT macro instructions. The buffer processing- mode

c

section II: Data lVlanagement Services (Part 2) 117

is specified in the MACRF field of the DeB macro instruction. The
movement of a record is determined as follows:

• Move mode: The record is Inoved from an input buffer to your work
area, or from your work area to an output buffer.

• Data mcde (QSAM V fcrmat spanned reccrds cnly): The same as the
move mode except only the data portion of the record is moved.

• Locate mode: The record is not moved. instead, the address of
the next input or output buffer is placed in register 1.

For QSAM format V spanned records, the record is not moved.
Instead, if lcgical record interface has been requested by
specifying BFTEK=A cr by issuing the BUI.LDRCD macro instruction,
thE: address returned in register 1 points to a record area where
the spanned record is assembled or segmented •

• substitute mode: The reccrd is nct rnoved. Instead, the address
of the next input or output buffer is interchanged with the
address of your wcrk area.

Two processing modes of the PUTX macro instructicn can be used in
conjunction with a GET-locate macro instruction. The uodate mode
returns an updated record to the data set from which it was read; the
output mode transfers an updated reccrd to an output data set. There
is no actual movement of data in main storage. The processing II;ode
must be specified in the MACRF parameter of the DCB macrO' instruction.

If you use the basic access technique, you can control buffer.:> in
one of two ways:

• Directly using the GETBUF macro instruction to retrieve a buffer
constructed as descrined anove. A buffer can then be returned to
the pool using the E'REEBUE' macro instruction •

• Dynamically by requesting a dynamic buffer in your READ/wRI'I'£
macro instruction. This technique can be used when processing an
indexed sequential or direct organization data set. .1.1: you
request dynamic Duffering, the system will autcmatically proviae a
buffer each time a READ macro instruction is issued. 'The nuffer
is supplied from a buffer pocl which is created by the system when
the data control block of the data set is cpened. 'I'he buffer will
be released (returned 'to the pool) upon completion of a iVRITB
macro instruction when you are updating. If ~lOU do not update the
record in the buffer and thU3 release the buffer when the record
is written, the FREEDdUF macro instruction rr~y oe used. If you
are processing an indexed sequential data set, the buffer is
automatically released upcn the next issuance cf the READ macro
instruction if there has been no intervening WRITE or FREEDBUF
macro instruction issued.

Simple Buffering

Th.€ term "simple" buffering refers to the relaticnship of segments
wi~hin the buffer. All segments in a simple buffer are contiguous in
main storage and are always associated with the same data set. When
tne buffer pool is constructed, the system creates a channel comnland
word (CCW) for each buffer in the buffer pool. For this reason, each
record must be physically moved from an input Duffer segment to an
output buffer segment. It can be processed within either segment or
in a work area.

11.8

If :irou use simple oufferin,=, records of any .format can be
processed. New records can be inserted and old records deleted as
requireu to create a new data set. Records can be moved and processed
as follows:

• Processed in an input buffer and then moved to an output bu££er
(GET-locate, PUT-meve/PUTx-output).

• Moved from an input buffer to an output Duffer where it can be
processed (GET-move, PUT-locate).

• Moved from an input buffer to a work area where it can be
processed and then move~ to an output buffer (Ghr-mOve, PUT-move).

• Processed in an input buffer and returned to the data set
(GET-locate, PUTX-update).

The following examples illustrate the control of simple buffers and
the processi!lg rr.odes that can be used. The buffer pools may have been
constructed in any vay previously described.

Simple Buffering -- Gl::.'I-locate, PUT-move/PUTx-output: The Gi:.T macro
instruction (step A, Figure 23) locates the next input record to ~e
processed. Its address is returned in register 1 by the system. The
djuress is passed to the FUT macro instructipn in register o.

The PUT macro instruction (step B, Figure 23) specifies the address
of the record in register O. The system then moves the record to the
next output buffer.

Note: The PUTX-outpUt macro instruction can be used in place of tne
PUT-move macro instruction. However, proce~sing will be as described
under excnange buffering (see PU'I'-substitute).

GET

OUTPUT OUTPUT

B.

Fisure 23. Simple Buffering (GL,PM)

NEXTREC GET INDCB

INDCB
OUTDCB

LR
PUT
B
DCB
DCB

0,1
OUTDCB, (0)
NEXTREC
MACRF=(GL),--­
MACRF=(PM),---

Simple Buiferino -- GET-move, PUT-locate: The PUT macro instruction
locates the address of the next availaDle output Duffer. Its address
is r"eturned in register 1 and is passed to the GET macro instruction
in r€<jister O.

The GET macro instruction specifies the address of the output
buffer into which the system moves the next input record.

A fillec output buffer is not written until the next PUT macro
instruction is issued.

Section II: Data Management Services (Part 2) 119

Simple Buffering -- GET-move, PUT-move: The GBT macro instruction
(step A, Figure 24) specifies the address of a work area into which
the system moves the next record from the input buffer.

'I'he PUT macro instruction (step B, Figure 24) specifies the address
of a work area from which the system moves the record into tne next
output buffer.

GET

A. I OUTPUT OUTPUT

PUT

B.! INPUT ED

Figure 24. Simple Buffering (Gt-1, PM)

NEXTREC GET INDCB,WORKAREA

WORKAREA
INDCB
OU'l'DCB

PUT
B
DS
DCB
DCB

OUTDCB,WORKAREA
NEXTREC
CLSO
MACRF=(GM),--­
MACRF=(PM),---

Simple Buffering -- GET-locate, PU'l'-locate: The PUT macro instruction
(step A, Figure 25) locates the address of the next available output
Duffer. The address is returned in register 1.

The GET macro instruction (step B, Figure 25) locates che address
of the next input buffer. Its address is returned in register 1. You
must then move the record from the input buffer to the output buffer.
Processing can be done either before or after the move operation.

A filled output buffer is not written until the next PUT macro
instruction is issued.

Note: If records other than format F are being moved, the length
attribute of tne MVC instruction must be changed as shown. If the
record is more than 256 bytes, you will have to code a move routine to
process the complete record.

PUT

GET

B.

• Figure 25. Simple Buffering (GL,PL)

120

NEXTREC GET INDCB
LR 7,1
PUT OUTDCB
LR 6,1

See Note USING IHADCB,S
LA 5,INDCB

MOVEREC
INDCB

OUTDCB

EOF

LH 4,DCBLRECL
SH 4,=H'1'
EX 4,MOVEREC

B NEXTREC
MVC 0(1,6),0(7)
DCB MACRF=(GL),

EODAD=EOF,--­
DCB MACRF=(PL),--­
DCBD DSORG= (LR)

Exchange Buffering

'rhe term "exchange" buffering refers to the relationship of
segments within a buffer. All the segments in an exchange buffer are
not necessarily contiguous in main storage, nor are they always
associated with the same data set. When the buffer pool is
constructed, the system creates a channel command word (CCW) for each
buffer segment in the buffer. This facility makes it possible to
"exchange" the CCWs of different storage locations.

To use exchange buffering, you must provide a work area comparable
in size and alignment to a buffer segment. That work area is
substituted for the next buffer segment. That is, the storage areas
change roles. The CCW created for the buffer segment actually points
to the work area.

Why use exchange buffering? Because there is no need to move the
record. This Ineans a considerable savings in processing time. On the
other hand, exchange buffering is of no advantage unless subs~itute
mode or PUTX-output mode is used.

The implementation of exchan(Je buffering during execution of your
program depends on a number of factors:

• Input and output buffers must be of the same size and alignment.
• Records must bE blocked format F or unblocked.
• Track overflow cannot be used with blocked format F records.
• GET-move and PUT-locate modes cannot be used.
• Unit record devices must not be specified.

If you request exchange buffering, but it cannot be implemented,
the system automatically provides simple buffering. Move mode
processing is used in place of substitute mode.

After opening the data set, you can test -lhe DCBCINDl field of the
data control block to de,termine if simple buffering was substituted
for exchange buffering because of inconsistencies in the data control
block information. The eighth bit of the DCBCINDl field is 1 for
exchanoe buffering and 0 for simple buffering.

If your records are blocked format F, each segment is aligned as
specified in the DCBBFALN field. Therefore, your buffer length
(DCBBUFL) must be large enough to contain segments that are a multiple
of 16 bytes. Otherwise, the specified boundary alignment cannot be
acnieved; simple buffering is used and only the first byte in the
first record is aligned as specified.

To reopen a DeB that has been opened for exchange buffering, you
must first do thE following:

• Close all DCBs using the buffer pool associated with the DCB to be
reopened.

• Issue a FRBEPOOL macro instruction specifyina the DCB to be
reopened.

Section II: Data Management Services (~art 2) 121

There are two possible error conditions that cannot be prechecked
by the system:

• Word alignment that does not correspond to the characteristics of
the machine. If, for examplE:, you expect to process your data on
a model 65 or 75, your record length should be a multiple of 16;
on a model 50, a multiple of 8; on a model 40, a multiple of 4.
No error will result if the records are processed on a smaller
system.

• An I/O device that transfers the data faster than the CPU can
exchange t"he addresses in the CCW.

The following examples illustrate the control of exchang-e buffers
and the corresponding processing modes that can be used. The buffer
pools may have been constructed in any way previously described.

Exchanqe Buffering -- GET-substitute, PUT-substitute: The GET macro
instruction (step A, Figure 26) specifies' the address of a work area.
The work area address is exchanged for the address of the next input
record returned in register 1. After processing, the address of the
record is passed to the PUT macro instruction.

The PU'!' macro instruction (step B, Figure 26) specifies the address
of the output record. The output record address is exchanged for the
address of the next output buffer available. for use as a work area.
The work area address, returned in register 1, is passed to the GET
macro instruction (step C, Figure 26) in register o.

Notice that as the areas are exchanged there is no movement of
data. Output_ records are contained in the original input area and
vice versa, but are logically associated with the correct data set.

A OUTPUT I OUTPUT I
PUT

c.~_

Figure L6. Exchange Buffering (GT, PT)

LA 0, WORRAREA
NEXTREC GET INDCB,(O)

LR 0,1

WORKAREA
INDCB
OU'l'DCB

PUT
LR
B
DS
DCB
DCB

OUTDCB, (0)
0,1
NEXl'REC
CL50
HACRF=(GT),--­
MACRF=(PT),---

Exchanq€ Buffering -- GET-locate, purx-output: The GET macro
instruction (step A, Figure 27) locates the address of the next input
record. The address is return€d in register 1. The record must be
processed in the Duffer segment before 'C.he PU'l'X macro instruction
(step B, Figure 27) is issued. The PUTX macro instruction specifies
toe address of both the input and output data control block. The two
buffer segments are exchanged without any mOVtment of data. The GET
macro instruction (step C, Figure 27) locates the next record to be
processed.

122

Notice that the DCB macro instruction for the output data set
specifies mOVE mode; this is required.

G

A.
lilllillMilliliiil

B.

GET

""

OUTPUT OUTPUT

INPUT OUTPUT

Figure 27. Exchan~e Buffering (GL, P~)

NEXTREC GE'I' INDCS

INDCB
OUTDCB

PUTX OUfDCB,INDCB
B NEX'rKBC
DCB Y~CRF=(GL),--­
DCB MACKF= (PJ.vJ , ---

Excha!!..ge Buffering -- GET-locate, PUT-substitute: The GET macro
instruction (step A, Fiyure 28) locates the next input record. Its
address is returned in re9ister 1. You must then move the record to a
work area. Processing can be done either before or after the move
operation.

'The PUT macro instruction (step B, Figure 28) specifies the address
of the work ar~a containing the next output record. The system
returns the address of thE~ next output buffer available for use as a
work area in re~ister 1. That address is passed to the move (~VC)
instruc~ion in register 6.

'The G.E.T macro instruction (step C, Figure 28) locates the next
input record. You must then move the record to the new work area.
Notice that the previous work area has become a part of the output
buffer (step C).

Note: If records other than format F are being moved, the lensth
attrioute of the MVC i~struction must be changed as shown. If the
record is more than 256 bytes long, you must code a move routine to
process the complete record.

GET

OUTPUT OUTPUT I

BollNPUT 1m
GET

c.

Figure 28. Exchan?e Buffering (GL, PT)

NEXTREC

MOVEREC
WORKAREA
INDCB
OUTOCB

LA 6,WORRAREA
GET INDCB
LR 7,1.
USING IliADCB,5
LA 5,INDCB
LH 4, DCBLRECL
SH 4,=Ii'1'
EX 4"MOVEREC

PUT
LR
B
MVC
DS
DCB
DCB
DCBD

OUTDCB, (6)
6,1
NEXTREC
0(1,6),0(7)
CLSO
MACRF=(GL),--­
MACRF=(PT),--­
DSORG=(LR)

Section II: Data Management Services (Part 2) 123

Buffering 'Techniques and GET/PUT Processing Modes: As you can see
from the previous examples, the most efficient coding is aChieved by
using automatic buffer pool construction, and GET-locate and
pu'rX-output with either simple or exchange buffering. Table 14
su~narizes the combinations of buffering techniques and processinq
modes that can be used. Notice, for example, that if you use
PUT-locate and GET-substitute, you must provide a work area and you
must also move the record from the work area to the output buffer.

• Table 14. Buffering Technique and GET/PUT Processing Modes

Output Buffering:-. Simple Exchange Simple Exchange Simple Simple Exchange Simple Exchange

Q)
Q)

Q) Q)
Q) Q) Q)

Q) Q) +" +" +" co > > co > > co > > (.) 0 0 (.) 0 0 (.) 0 0 .2 E E 0 E E 0 E E ~ Input ~ .,.:. .,.:. .,.:. .,.:. .,.:. Input .,.:. .,.:.
.e~ Q) Q) Q)~ Q)

Buffering: -+ ::::> ::::> :::> Q) :::> :::> ::::> Q) Buffering: :::> :::> ::::> $ +" +" +"+" +" 0.. 0.. 0.. +" "E 0.. 0.. 0.. 0.. 0.. 0.. ~ $~'E Q)~ ,€ ~ ~ ~ ~ ~
Simple .+" Q) Q)~ Q)~

8 Exchange Q)~ Q)~ Q)~

'E$
+" +" +"+"

Q) Q)' Q) ~'t; +" +" +" +" +" +" +" +" '.jj Q) '.jj Q) e,t:;ez:;
> > > co co co co 1/1 ~ ~ ~ co co co co 1/1 13~ 1/1 > 1/1 > 1/11/1
0 0 0 0.0 .(.) (.) (.) (.).0 (.) (.) (.) (.).0 .00 .00 .0.0
E E E E ~ 0 0 0 o :::l ~~~ 0 0 0 o :::l ~~ ~ E ~ E :::l :::l

~ ~ ~ ~.! ~ ~ ~ ~.!
1/11/1

Actions .,.:. .,.:. .,.:. .,.:.'1' I- '0,1- 1-1- .,.:..,.:. .,.:..,.:. .,.:..,.:.
w w w wI- w w w w::::> We::::> w w w w::::> w::::> w::::> w::::> w:::>

+ (!) (!) (!) (!)~ (!) (!) (!) (!)o.. (!)::::o.. (!) (!) (!) (!)o.. (!)o.. (!)o.. (!)o.. (!)o..

Program must move X X X X X X
record

System moves record X X X X X X X X X X

System moves record X
segment

Record is not moved X

Work Area required X X X X X X X X X

PUTX - output can X X X X
be used

RELSE -- Relea3e an Input Buffer

~hen using the queued access technique to process a sequential or
indexed sequential data set, you can direct the system to ignore the
r€mainin~ records in the input buffer being processed. The next GET
macro instruction retrieves a record from another buffer. If format V
spanned records are being used, the next logical record obtained may
oegin on any segment in any subsequent block.

If you are using move mode, the buffer is made available for
refilling as soon as the RELSE: macro instruction is issued. When used
with locate mode, the system does not refill the buffer until the next
G.t,'l' macro instruction is issued. If a PUTX macro instruction has been
used, the block is written before the buffer is refilled.

124

'TRUNC -- 'I'runcate an Output Buffer

when using the queued access technique to process a sequential data
set, you can direct the sy~tem to write a short clock. The first
record in the next buffer is the next record processed by a
PUT/PUTX-output mode.

If the locate mode is being used, the system assumes that a record
has been placed in the buffer segment pointed to by the last PUT macro
instruction.

The last block ~f a data set is truncated by the close routine.

Note: A data set containing format F records -with truncated blocks
cannot be read frorr direct access 3torage as efficiently as standard
format F data sets.

GETBUF -- Get a Buffer From a Pool

'l'he GETBUF macro instruction can be used with the basic access
technique to request a buffer from a buffer pool constructed by the
BUILD, GETPOOL, or OPEN macro instruction. 'The address of the buffer
is returned by the system in a register 'specified by you when the
macro instruction is issued. If no nuffer is available, the register
contains zeros instead of an address.

FREEBUF -- Return a Buffer to a Pool

The FREEBUF macro instruction is used with the basic access
technique to return a buffer to the buffer pool froITi which it was
obtained by a GETBUF macro instruction. Although the Duffers need not
be returned in the order in which they were obtained, they must be
returned when they are no longer needed.

F~£EDBUF -- Return a Dynamic Buffer to a Pool

Any buffer o~tained using the cynamic buffer option must be
released before it can be used again. When you are processing a
direct data set, if you do not update the block in the buffer and thus
free the buffer when the Dlock is written, you must use the E'REEDBUF'
macro instruction. If there is an uncorrectable input/output error,
the control prograro releases the buffer. when you are processing an
indexed sequential data set, if you do not update the block in the
buffer or if there is an uncorrectable input error, the control
program releases the buffer when the next READ macro instruction is
issued on the same DECB, or you may use the FRhEDBUF macro
instruction.

To effect the release, you must specify the address of the DECB
that was created when the block was read using the dynamic buffering
option, as well as the address of the data control block associated
with the data set being processed.

Processing a Sequential Data Set

Data sets residing on all volumes other than direct access must be
processed sequentially. In addition, a data set residing on a direct
access volume, regardless of organization, can be processed
sequentially. This feature of the operating system allows you to
write your program with little regard for the type of device to be
used when the program is executed. ~aturally, there are restrictions
against the use of certain device-dependent macro instruction3 and
processing options.

Section II: Data Management Services (Part 2) 125

Either the queued or basic access technique may be used to store
and retrieve the records of a sequential data set. Additionally, a
technique called chained scheduling can be used to accelerate the
input/output operations required for a sequential data set.

DA'I'A FORMAT -- DEVICE TYPE CONSIDERATIONS

Both the record format,(RECFM) and device-dependent (DEVD)
information must be provided to the operating system prior to
execution of your program. This information can be supplied by a DCB
macro instruction, a DD statement, or a data set label. The DCB
subpararneters for the DD statement differ slightly from those
described here. A complete description of the DD statement and a
glossary of DCE subparameters is contained in the publication IBM
System/360 Operating System: Job Control Language.

The record format (RECFM) parameter of the DCB macro instruction
specifies the characteristics of the records in the data set as fixed
length (F), variable-length (V), or undefined length (U).
Fixed-length, blocked records (FB) can be specified as standard (FBS),
i.e., there are no truncated (short) blocks or unfilled tracks within
the data set, with the possible exception of the last block or track.
If the data set resides on a direct access volume, the track overflow
feature (T) cannot be specified for the nasic access technique.

If you plan to read a data set backwards or to extend it at a later
time, proceed as follows when coding RECFM for the creation of a
sequential data set:

• If you know you will not have any truncated blocks, you can
specify RECFM=FBS .

• If you are uncertain about whether you will have a truncated
block, you should specify RECFM=FB.

As an optional feature, a control character can be contained in
each record. This control character will be recognized and processed
if the data set is printed or punched. The control characters are
transmitted on both tapes and direct access devices. The presence of
a control character is indicated by M or A in the RECFM field of the
data control block. M denotes machine code; A denotes American
National Standard Code for Information Interchange (ASCII). If either
M or A is specified, the character must be present in every recorj;
the printer space (PRTSP) or stacker select (STACK) field of the data
control block is ignored. The optional control character must be in
the first byte of format F or U records and in the fifth byte of
format V records. Control charact-er codes are listed in Appendix E.

The device-dependent (DEVD) parameter of the DCB macro instruction
specifies the type of device on which the data set's volume resides:

TA - magnetic tape
PT - paper tape reader
PR - printer
PC - card punCh
RD - card reader
DA - direct access

MAGNETIC TAPE (TA)

Format F, V, or U records are acceptable for magnetic tape.
However, format V records are not acceptable on 7-track tape if the

126

data conversion feature 1 is not available. Data blocks should be at
least 18 bytes long. If a data check occurs when you are reading a
data block shorter than 18 bytes, the error recovery procedures skip
the data block. When you create a tape data set with variable-length
record format, the control program pads any data block shorter than
18 bytes. It pads to the right with binary zeroes so that the data
block length equals 18 or block size, whichever is shorter.

Tape density (DEN) specifies the recording density in bits per inch

I per track, as shown in 'Iable 15. If this information is not supplied,
tile highest applicable density is assumed •

I

• Ta~le 15. Tape Den~ity (DEN) Values
r-----------T--,
I I Recording Density 1
I I Model 2400 I
1 DEN Value I----------T----------T------------------T-----------------1
I I 7-Track I 9-Track I 9-Track (phase I 9-Track (dual I
j I I I encoded), I density) I
r-----~-----+----------+----------+------------------+-----------------~
I 0 I 200 I I I I
I 1 I 556 I I I I
I 2 I 8 0 0 I 8 0 0 I I 8 001 I
I 3 I I I 1600 I 16002 I
t-----------~----------~----------~------------------~-----------------~
I 1Non-return-to-zero IBM (NRZI) mode I
I 2Pnase encoding (PB) mode I L __ J

The track recording technique (TRTCrl) for 7-track tape can be
specified as:

C - data conver3ion is to De used.
E - even parity is to be used; if omitted, odd parity is assumed.
T - BCDIC to BECDle translation is required.

PAPER TAPE READER (PT)

The 'paper tape reader accepts format F' or U records. Each format U
record is followed by an end-of-record character. Data read from
paper tape is optionally converted into the System/360 internal
representation of one of six standard paper tape codes. Any character
found to have a parity error will not be converted when the record is
transferrea in~o the input area. Characters deleted in tne conversion
precess are not counted in determining the block size.

The followin9 syrr~ols indicate the code in wnich the data was
punched. If this information is omitted, I is assumed.

I - 1B£.1 BCD perforated tape and transmission code (8 tracks).
F - Friden (8 tracks).
B - Burroughs (7 tracks).
C - National Cash Register (8 tracks).
A - ASCII (8 tracks).
T - Teletype (5 tracks).
N - No conversion.

1Uata conversion makes it possible to write eight binary bits of data
on seven traCKs. Otnerwise, only six bits of an 8-bit byte are
recorded. The length field of format V records contains binary data
and is not recorded correctly without data conversion.

section II: Data Management Services (Part 2) 127

Note: When using QSAM, the processing mode must be move mode.

CARD READER AND PUNCH (RD/PC)

Format F, V, or U records are acceptable to both the reader and
punch. The device control character, if specified in the RECFM
parameter, is used to select the stacker; it is not punched. 'I'he
first four bytes of format V records or record segments (record or
segment descriptor word) are not punched.

I Each punched card corresponds to one physical record. Therefore,
you should restrict the maximum record size to 80 (EBCDIC mode) and
160 (column binary mode) data bytes. If mode (C) is used, the DCB
parameters BLKSIZE, LRECL, and BUFL must be specified as 160. You can
specify the read/punch mode of operation (MODE) as either card image
(column binary) mode (C) or EBCDIC mode (E). If this information is
omitted, E is assumed.

Stacker selection (STACK) can be specified as either 1 or 2 to
indicate which bin is to receive the card. If it is not specified, 1
is assumed.

Note: When QSAM is used, punch error correction on the IBM 2540 Card
Read Punch is automatically performed only for data sets using three
or more buffers without the chained scheduling feature.

PRINTER (PR)

Records of format £, V, or U are acceptable to the printer. The
first four bytes (record descriptor word) of format V records are not
printed. The carriaqe control character, if specified in the RECFM
parameter, is not printea. dowever, the system does not position the
2rinter to channel 1 for the first record.

Because each line of print corresponds to one record, the record
length should not exceed the length of one line on the printer. For
variable-length spanned records, each line corresponds to one record
segment, and block size should not exceed the length of one line on
thE:: printer.

If carriage control characters are not specified, you can indicate
printer spacing (PRTSP) as 0, 1, 2, or 3. If it is not specified, 1
is assumed.

DIRECT ACCESS (DA)

Direct access devices accept records of format F, V, or U. If the
records are to be read or written with keys, the key length (KEYLEN)
must ,be specified. In addition, the operating system has a standard
track format for all direct access volumes. Each track contains data
information as well as certain "nondata" or control information such
as:

• The address of the track.
• The address of each record.
• The length of each record.
• Gaps becween areas.

A complete description of track format is contained in the section
"Direct Access Volume Characteristics." Your only concern in creating
a sequential data set is to allow for an 8-byte track descriptor
rEcord (capacity record or RO) when requesting space on a direct

128

access volume. In addition, "device overhead," which varies with the
device, must be allocated for each block on the track.

SEQUENTIAL DATA SETS -- DEVICE CONTROL

The operating system provides you with six macro instructions for
controlling input/output devices. Each is, to varying degrees,
device-dependent. Therefore, you must exercise some care if JOU wish
to achieve device independence.

When using the queued access technique, only unit record equipment
can be controlled directly. When using the basic access technique,
limited device indepenQenc~ can be achieved oetween magnetic tape and
direct access devices. All read or write operations must be checked
before issuing a device control macro instruction.

CNTRL -- Control an I/O Device

The CNTRL macro instruction provides a numoer of device-dependent
control functions:

, Card reader stacker selection (SS).

• Printer line spacing (SP).

v Printer carriage control (SK).

• Magnetic tape backspace (BSR) over a specified number of blocks.

• Magnetic tape backspace (BSM) past a tapemark and forward space
over the tapemark.

• Magnetic tape forward space (F3R) over a specified number of
blocks.

• Magnetic tape forward space (FSM) past a tapemark and a backspace
over the tapemar~.

-
Eackspacing moves the tape toward the load point; forward spacing

moves the tape away from the load point.

Note: The CNTRL macro instruction cannot be used with an input data
set containing variable-length records on the card reader.

PRTOV -- Test for Printer Overflow

The PRTOV macro instruction tests for channel 9 or 12 of the
printer carriage control tape. An overflow condition will cause
either an automatic skip to channell or, if specified, transfer of
control to your routine for overflow processing.

If the data set specified in the data control block is not a
printer, no action is tak~n.

SETPRT -- Load Character Set for DCS Printer

The SETPRT macro instruction indicates the character set to be used
by a 1403 printer with the Universal Character Set feature. It thus
allows your program to chanqe character sets during execution; as an
option, it allows lower-case alphabetic characters to be printed in
uppercase when no uppercase/lowercase print chain is available.

When issued, the SETPRT macro instruction loads a special UCS
buffer from the system library. The library contains images of

Section II: Data Management Services (Part 2) 129

standard IBM character sets and of special user-designed character
sets. The operator can be requested to verify the loaded image after
mounting the appropriate print chain or train.

The SETPRT macro instruction can be used to block or unblock
printer data checks. When data checks are blocked, unprintable
characters are treated as blanks and do not cause an error condition.

BSP -- Backspace a Magnetic Tape or Direct Access Volume

The BSP macro instruction backspaces one block on the magnetic tape
or direct access volume being processed. The block can then be reread
or rewritten. An attempt to rewrite the block destroys the contents
on the remainder of the tape or track.

The direction of movement is toward the load point or beginninq of
allocated area. You may not use the BSP macro instruction if the
track overflow option was specified or if the CNTRL, Na£E, or POINT
macro instructions are used. The BSP macro instruction should be used
only when other device control macro instructions could not be used
for backspacing.

NOTE -- Return the Relative Address of a Block

The NOTE macro instruction requests the relative address of the
block just read or written. The feedback identifies the block for
subsequent repositioning of the volume.

The feedback provided by the operating system is returned in
general register 1. The address is in the form of a 4-byte relative
block address for magnetic tape; for a direct-address device, it is a
4-byte relative track address and the amount of unused space available
on the track. '

POINT -- Position to a Block

The POINT macro instruction causes repositioning of a magnetic tape
or direct access volume to a specified block in the data set. The
next read or write operation begins at this block.

SEQUENTIAL DATA SETS -- DEVICE INDEPENDENCE

Device independence is an important consideration when programming
the system/360. The ability to request input/output operations
without regard for the physical characteristics of the I/O devices
makes it possible for you to write one program that will fulfill a
variety of needs. Device independence may De useful for:

• Accepting data from a number of recording devices, e.g., 2311 disk
pack, 7- or 9-track magnetic tape, or unit record equipment. This
situation could arise when several types of data acquisition
devices are feeding a centralized complex.

• Observing constraints imposed by tne availability of input/output
devices, i.e., devices on order have not been installed •

• Assembling, testing, and debugging on one System/360 configuration
and processing on a different configuration, e.g., a 2311 direct
access device can be used as a substitute for several magnetic
tape units.

Device independence is clearly a valuable concept -- one that is not
difficult to achieve, but which requires some planning and

130

forethought. There are two areas of planning necessary to achieve
device independence -- system generation considerations and
prograrr@ing considerations.

SYSTEM GENERATION CONSIDERATIONS

The user of the operating system can provide for device
independence when the system is generated. This is achieved by
generating a system that meets not only the current input/output
configuration requirements but includes anticipated device
attachments. Creating such a system entails looking ahead at expected
delivery of input/output devices and, during system generation,
constructing in advance the necessary control blocks and tables.
TaUs, when the devices are delivered, they need only be physically
attached. The operating system recognizes the devices without
illoaification. During the interim, unconnected devices must be placed
of~-line. This is accomplished by a VARY command issued by the
operator.

When new device attachments cannot be fully anticipated, new
devices can be add€d by performing an I/O device generation. This is
a limited type of system ,?eneration that enables the user to change
his I/O configuration without regenerating other parts of the system.

Effecting a smooth transition to new input/output devices must not
be construed to mean tile inclusion of unsupported devices. This
discussion is limited to add-or. or SUbstitution device independence.
When support for new devices is provided, a new system will have to be
generated. A complete description of system generation techniques is
contained in the publication IBM System/360 Operatinq System: system
Generation.

PROGRAMMING CONSIDERATIONS

Each of the data set organizations -- partitioned, indexed
sequential, and direct -- requires the use of a direct access device.
Device independence is meaningful, then, only in terms of a
sequentially ors·anizea data set, that is, in a data set where one
Dlock of data follows another, thus allowing input or output to be on
magnetic tape, direct access, card read/punch, or printer.

Your program will be device-independent if you do two things:

• omit all device-dependent macro instructions or macro instruction
parameters from your program.

• Defer specify ins any required device-dependent parameters until
the program is ready for execution. That is, supply the
parameters on your data definition (DD) statement.

In examining the following list of macro instructions, consider
only the logical layout of your data record without regard for the
type of device used. Also, consider that any reference to a direct
access volume is to be treated like magnetic tape, i.e., you must
create a new data set rather than attempt to update.

Section II: Data Management Services (Part 2) 131

OPEN

-READ

WRITE

PUTX

specify INPUT, OUTPUT, INOOT, or OUTIN. The parameters ROBACK
and UPDATE are device dependent and cause an abnormal termination
if directed to a different device type.

specify forward reading only (SF).

specify forward writing only (SF); use only to create new
records.

use only output mode.

NO'I'E/POINT

BSP

valid for both magnetic tape and direct access volumes.

valid for rragnetic tape or direct access volumes. However, its
use would be an attempt to perform device-dependent action.

CNTRL/PRTOV
device dependent

DCB SUbparameters

MACRF

DEVO

specify R/W or G/P. Processing mode can also be indicated.

specify DA if any direct access device is apt to be used.
Magnetic tape and unit rEcord equipment data control blocks will
fit in the area prov~ded during assemoly. Specify unit record
devices only if you expect never to change to tape or direct
access devices. Key length (KEYLEN) can be specified on the DO
statement if necessary.

RECFM, LRECL, BLKSIZE

DSORG

OPTCD

these can be specified in the DD statement. However, you must
consider maximum record size for specific devices. Also, track
overflow cannot be specified unless supported.

specify sequential (PS/PSU).

device dependent; specify in the DD statement.

SYNAD
any device-dependent error checking is automatic. Generalize
your routine so that no device-dependent information is required.

CHAINED SCHEDULING FOR I/O OPERATIONS

To accelerate the input/output o?erations required for a data set,
the operating system provides a technique called chained scheduling.
When requested, the system bypasses the normal I/O routines and
dynamically chains several input/output operations together. A series
of separate read or write operations, functioning with chained
scheduling, is issued to the computing system as one continuous
operation. The program-controlled interruption (PCl) flag in the CCws
is used for synchronization of the I/O operations.

132

The I/O performance is increased by reducing both the CPU time and
channel start/stop time required to transfer data between main and
secondary storage. The effects of rotational delay are also reduced
since several successive blocks, requested separately, can be
retrieved in a single rotation. Chained scheduling can be used only
with simple buffering. Each data set for which chained schedulinq is
specified must be assigned at least two, and preferably three,
buffers.

A request for chained scheduling will be ignored and normal
scheduling used if any of the following are encountered when the data
control bloc~ is opened:

• BDAM CREATE, i.e., MACRF=(WL).

• Track overflow.

• Operand of the OPEN macro instruction specifies UPDAT.

• Exchange buffering.

• CNTRL macro instruction to be used.

• Device type is paper tape reader.

When chained scheduling is being used, the automatic skip feature
of the PRTOV macro instruction for the printer will not function.

I Format control must be acnieved by ASCII or machine control
characters. When using undefined length records with QSAM, the
DCBLRECL field represents the block size instead of the actual record
length.

Chained scheduling is most valuable for programs that require
extensive input and output operations. Because a data set using
chained scheduling may monopolize available time on a channel,
separate channels should be assigned, if possible, when more than one
data set is to be processed.

CREATING A SEQUENTIAL DATA SET

As discussed earlier, a processing program should be developed
using- factors that are constant. To provide for as much flexibility
as possible, variable factors should be specified at execution time.
For that reason, the following problem examples are generalized as
much as possinle. They are neither exhaustive nor intended as
complete examples. Rather they are presented as introductory
sequences.

since the basic access technique for sequential processing is
usually used to create a partitioned data set or a direct data set,
examples of the READ/WRITE macro instructions are deferred for
discussion in thOSE areas. There is no other reason, however, for
them not to be used in place of the queued access macro instructions
where automatic blocking and anticipatory buffering are not required.

Tape-to-Print, MOVE Mode -- Simple Buffering..: In this problem the
GET-move and PUT-move require two movements of the data records. If
the record length (LRECL) does not change in processing, only one move
is necessary; you can process the record in the input buffer segment.
A GET locate can be used to provide a pointer to the current segment.

section II: Data Management Services (Part 2) 133

OPEN
NEXTREC GET

AP
UNPK
PUT
B

TAP ERROR SYNADAF
LA
ST
PUT
SYNADRLS
L
RETURN

ENDJOB CLOSE

COUNT DS
WORKAREA DS
NUMBER DC
SAVE14 DS

(INDATA"OUTDATA,(OUTPUT»
INDATA,WORKAREA Move Mode
NUMBER,=P'l'
COUNT, NUMBER
OUTDATA,COUNT
NEXTREC
ACSMETH=QSAM
0,68(0,1)
14,SAVE14
OUTDATA, (0)

14,SAVE14

(INDATA"OUTDATA)

CL6
CLSO
PL4'0'
F

Record count adds 6
bytes to each record

Control program returns mess­
age address in register 1.
SYNAD routine prints part of
the message (beginning with
the unit number) as a 56-byte
fixed-length record. It then
returns to the control
program.

INDATA DCB DDNAME=INPUTDD,DSORG=PS,MACRF=(GM),EROPT=ACC, C

OUTDATA DCB
SYNAD=TAPERROR,EODAD=ENDJOB

DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PM),EROPT=ACC

Tape-to-Print, Locate Mode -- Simple Buffering: This probl~~ is
similar to the previous one. However, since there is no change in the
record length, the records can be processed in the input Duffer. Only
one move of each data record is required.

OPEN
NEXT;REC GET

LR
AP
UNPK
PUT
MVC
B

(INDATA"OUTDATA,(OUTPUT),ERRORDCB, (OUTPUT»
INDATA Locate Mode
2,1 Save Pointer

Process in Input Area
Locate Mode
Move record to output buffer

TAPERROR SYNADAF
ST

NUMBER,=P'l'
0(6,2),NUMBER
OUT DATA
0(50,1),0(2)
NEXTREC
ACSMETH=QSAM
2,SAVE2
2,8(0,1)
8(70,1),50(1)
78(50,1),0(2)
0,1

Message address in register 1
Save register 2 contents

L
MVC
MVC
LR
LR

Load pointer to input buffer
Shift nonblank message fields
Add input record to message
Load address of message
Save return address

PUT
SYNADRLS
LR

2,14
ERRORDCB, (0)

14,2

Print message (move mode)
Release message and save area
Restore return address
Restore register 2 L

RETURN
ENDJOB CLOSE

NUMBER DC
INDATA DCB

OUTDATA DCB
ERRORDCB DCB

SAVE 2 DS

2, SAVE 2
Return to control program

(INDATA"OUTDATA"ERRORDCB)

PL4'0'
DDNAME=INPUTDD,DSORG=PS,MACRF=(GL),EROPT=ACC,

SYNAD=TAPERROR,EODAD=ENDJOB
DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PL),EROPT=ACC
DDNAME=SYSOUTDD,DSORG=PS,MACRF=(PM),RECFM=V,

BLKSIZE=128,LRECL=124,EROPT=ACC
F

Tape-to-Print, substitute Mode -- Exchanqe Bufferinq: Although the
initial problem is the same, the solution described here takes
advantage of two facilities: exchange buffering, which eliminates the

134

c

C

need to move the data record; and direct reference to individual
fields within a record through the use of a durruny control section
(DSECT) . 'I'he use of the DSECT allows symbolic reference to ne made
for storage-to-storage operations; therefore, the length attributes
need not be explicitly stated.

OPEN
LA

NEXTREC GET
LR
USING
AP
UNPK
PUT
LR
B

(INDATA, ,OUTDATA, (OUTPUT) ,ERRORDCB, (OUTPUT»
a ,GIVEAWAY Set up for first buffer
INDATA, (0) Substi tute Mode
2,1 Pointer to next record
RECORD,2 Establish address of DSECT
NUMBER,=P'l'
COUNT ,NUMBER
OUTDATA,RECORD
0,1

Substitute Mode
Exchange work area

TAP ERROR SYNADAF
NEXTREC
ACSMETH=QSAM SYNAD routine i3 same

as in previous example
(INDATA"OUTDATA"ERRORDCB) ENDJOE CLOSE

OS
GIVEAWAY DS
NUMBER DC
INDATA DCB

OUTDA.TA DCB

RECORD DSECT
COUNT DS
RESTOFIT DS

aD
eLSa
PL4'O'
DDNAME=INPUTDD,DSORG=PS,MACRF=(GT),BFTEK=E,BFALN=D, C

EROPT=ACC,SYNAD=TAPERROR,EODAD=ENDJOB
DDNAME=OUTPUTDD,DSORG=PS,MACRF=(PT),BFTEK=E,BFALN=D,C

EROPT=ACC

ZL6
CL44

Processing a Partitioned Data Set

A partitioned data set is divided into sequentially organized
members made up o~ one or more records (see Figure 22). Each member
nas a unique name, one to eight characters long, stored in a
directory. The records of a given member are stored or retrieved
sequentially.

The main advantaqe of using a partitioned data set is that you can
retrieve any individual member once the data set is opened. ,i!'or
example, a program liorary can be stored as a partitioned data set,
each rr~ember of which is a separate program or subroutine. The
individual members can be added or deleted as required. When a member
is deleted, only the member name is removed from the directory; the
space used by the member cannot oe reused until the data set is
reorganized.

The directory, a series of records at the beginning of the data
set, contains an entry for each member. Each directory entry contains
the member name and the starting location of tne member Nithin the
data set, as shown in Figure 29. The directory entries are arranged
in alphameric collating- sequence by name. In addition, you can
specify up to 62 characters of information in the entry.

The track address of eacn wember is recorded by the system as a
relative track within the data set rather than as an absolute track
address. Thus, an entire data set can be moved without changing the
relative track addresses. The data set can be considered as one
continuous set of data tracks regardless of how the space was actually

Section II: Data Management Services (Part 2) 135

allocated. If there is not sufficient space available in the
directory for an additional entry, or not enough space available
within the data set for an additional member, no new members can be
stored.

Directory
Records

Figure 29. A Partitioned Data Set

PARTITIONED DATA SET DIRECTORY

Space from
Deleted
Member

Available
Area

The directory of a partitioned data set occupies the beginning of
the area allocated to the data set on a direct access volume. It is
searched and maintained by the FIND and STOW macro instructions. The
directory consists of member entries arranged in ascending order
according to the binary value of the member name or alias.

Member entries vary in length and are nlocked into 256-byte blocks.
Each block contains as many complete entries as will fit in a maximum
of 254 Dytes; any remaining bytes are left unused and are ignored.
Each directory block contains a 2-byte count field that specifies the
number of active bytes in a block. As shown in Figure 30, each block
is preceded by a hardware-defined key field containing the name of the
last member entry in the block, i.e., the member name with the highest
binary value.

Count Key

Name of
Last Entry
in Block

Data

Number of
Bytes Used
(Max 256)

Member
Entry A

Member
Entry B

Member
EntryN

~'~----------------------~vr-----------------------~
2 254

Figure 30. A Partitioned Data set Directory Block

Each member entry contains a member name or alias; there can be up
to l6 aliases <alternate names) for each member. Each entry also
contains the relative track address of the member and a count field,
a.s shown in Figure 31. In addition, it may contain a user data field.
The last entry in the last directory block has a name field of maximum
binary value -- all ones.

136

I

Member
Name

8

Pointer to
First Record
of Member

TTR

Bits

Optional User Data
C

I I I TTRN TTRN TTRN
......
~'~,~--------------~~------------~ ,

"1" If
Alias

o

..................... 0-31 halfwords
, , (Max 62 bytes)

........ , , ,
........

No. of
User Data

TIRNls

1-2

..........
.......... , ,

No. of
USAr Data
Halfwords

3-7

......... ,
........

Figure 31. A Partitioned Data set Directory Entry

NAIVIE

TTR

c

specifies the member name or alias. It contains up to eight
alpharr,eric characters, left-justified and padded with blanks if
necessary.

is a pointer to the first block of the member; TT is the relative
track from the beginning of the data set, and R is the relative
block number on that track.

Note: This pointer is created by adding one to the TTR for the
last block of the previous member (which is an end-of-file mark).
If track TT is full, the next block will begin at record one of
track TT+1, and the pointer will be updated accordingly. The
control progranl finds the block by searching in multitrack mode
using T7(R-1) as a search argument.

specifies the number of halfwords contained in the user data
field. It may also contain additional information about the user
data field, as shown below:

Bits o 1-2 3-7
r-T---T-----' L_.L ___ .L _____ J

o when set to 1, indicates that the NAME field contains an
alias.

1-2 specifies the number of pointers to locations within the
member.

A maximum of thr~e pointers is allowed in the user data
field. Additional pointers may be contained in a record
referred to as a note list discussed below. The pointers can
be updated automatically if the data set is moved or copied
by a utility program such as the IEHMOVE utility program.
The data set must be marked "unmovable" under the following
conditions:

• More than three pointers are used in the user data field.
• The pointers in the user data field or note list do not

conform to the standard format.
• The pointers are not placed first in the user data field.
• Any direct access addresses (absolute or relative) are

embedded in any data blocks or in another data set that
refers to this data set.

section II: Data Management Services (Part 2) 137

3-7 contains a binary value indicating the number of halfwords of
user data. This number must include the space used by
pointers in the user data field.

The user data field contains variable user data provided as input to
the STOW macro instruction. If pointers to locations within the
member are provided, they must be four bytes long and placed first in I the user data field. The user data field format is as follows:

User Data
r----T----T----T--------,
I TTRN I TTRN I TTRN I Optional I L ____ ~ ____ ~ ____ ~ ________ J

TT is the relative track address of the note list or area to
which you are pointing.

R is the relative block number on that track.

N is a binary value that indicates the number of additional
pointers contained in a note list pointed to by the TTR. If
the pointer is not to a note list, N=O.

A note list consists of additional pointers to blocks within the
same mewber of a partitioned data set. If the existence of a note
list was indicated as shown above, the list can be updated
automatically when the data set is moved or copied by a utility
program such as the IEHMOVE utility program. Each 4-byte entry in the
note list has the following format:

r----'
I 'I'TRX I
L ____ J

TT is the relative track address of the area to which you are
pointing.

R is the relative block number on that track.

x is available for any use.

To place the note list in the partitioned data set, you must use
the WRI'l'E macro instruction. After checking the write operation, use
the NO'I'E macro instruction to determine the address of the list and
place that address in the user data field of the directory entry.

PROCESSING A MEMBER OF A PARTITIONED DATA SET

Because a member of a partitioned data set is sequentially
organized, it is processed in the same manner as a sequential data
set. Either the basic or queued access technique can be used.
However, you cannot alter the directory when using the queued
technique.

In order to locate a member or to process the directory, several
macro instructions are provided by the operating system. The BLDL
macro instruction can be used to structure a list of directory entries
in main storage; the FIND macro instruction locates a member of the
data set for subsequent processing; the STOW macro instruction adds or
deletes a member name in the directory. To use these macro
instructions, you must specify DSORG=PO or POU in the DCB macro
instruction. Before issuing a FIND, BLDL, or STOW macro instruction,
you must check all preceding input/output operations for completion.

138

BLDL -- Construct a Directory Entry List

The BLDL macro instruction is used to place directory information
in main storage. The data is placed in a "build" list constructed by
you before the BLDL macro instruction is issued. The format of the
list is similar to the directory. li"'or each member name in the list,
the system supplies the address of the menilier and any additional
information contained in the directory entry.

You can optimize retrieval time by directing a subsequent FIND
macro instruction to the build list rather than the directory to
locate the member to be processed.

The build list, as shown in Figure 32, must be preceded by a 4-byte
list description that indicates the number of entries in tne list and
the length of each entry (14 to 76 bytes). The first eight bytes of
each entry contain the member name or alias. The next six bytes must
be available to contain the starting address of the member plus some
control data. If additional information is to be supplied from the
directory, up to 62 bytes can be reserved.

FIND -- Position to a Member

To determine the starting address of a specific member you must
issue a FIND macro instruction. If you want to find only one member,
the function is performed automatically when you specify the data set
name and member name in the related DD statement. The system places
the correct address in the data control block so that a subsequent
GET/READ macro instruction will begin processing at that point.

Tnere are two ways in which the system can be directed to the
desired member: you can specify the address of either an area
containing the name of the member or an entry in a build list you have
created. In the first case, the system searches the directory of the
data set. If a build list is used, no search is required; the
relative track address is determined from ~he list entry.

(Each Entry Starts on Half-Word Boundary)

List

I FFLL I Description

Member TTR K Z
Name (C) (3) (I) (I)

- -

Programmer Suppl ies:
FF = Number of member entries in list
LL = Even no. giving byte length of each entry (minimum of 12)
Member name = eight bytes, left-adjusted

BLDL Supplies:
TTR = Member starting location
K = If only data set = 0

If concatenation = no.
Z = Normally padding for boundary alignment
C = Same C field from directory. Gives no. of user data

halfwords
User data: as much as will fit in entry

Figure 32. Build List F'ormat

Filled in by BLDL
....

C User
(I) (C Half

--

Section II: Data Management Services

~

J

Data
Words)

(Part 2) 139

STOW -- Alter a Directory Entry

Unless you are adding members to a partitioned data set one at a
time, you must issue a STOW macro instruction to enter the member name
in the directory. When adding a single member, the STOW function is
performed automatically when the data set is closed.

iou can also use the STOW macro instruction to delete, replace, or
change a name in the directory, as well as store additional
inforrnation with the directory entry. Since an alias can also be
stored in the directory in the same way, you should be consistent in
altering all names associated with a given member. For example, if
you replace a member, you must delete related aliases or change them
so that they point to the new member. If you use STOW to change user
data in the directory entry, you must also mOVE the TTR of the member
into. the DCBRELAD.

If you do not use the STOW macro instruction before closing a
partitioned data set that you have written, your CLOSE request causes
the system to issue a STOW macro instruction. If you specify
DISP=MOD, the system issues a STOW macro instruction with the replace
option, causing replacement of an entry in the directory. If you
specify DISP=NEW or DISP=OLD and the member does not exist, the system
issues a STOW macro instruction with the add option, causing addition
of an entry to the directory. If you specify DISP=OLD and, the member
already exists, the system issues a message to that effect.

CREATING A PARTITIONED DATA SET

If you have no need to add entries to the directory, i.e., the STOW
and BLDL macro instructions will not be used, you can create a new
data set and write the first merr~er as follows:

• Code DSORG=PS or PSU in the DCB macro instruction.

• Indicate in the DD statement that the data is to be stored as a
member of a new partitioned data set, i.e.,
DSNAME=name(membername) and DISP=NEW.

• Request space for the member and the directory in the DO
statement.

• Process the member with an OPEN macro instruction, a series of
PUT/WRITE macro instructions, and then a CLOSE macro instruction.
A STOW macro instruction is issued automatically when the data set
is closed.

As a result of these steps, the data set and its directory are
crE'ated, the records of the member are written, and an entry is made
in the directory.

'1'0 add additional members to the data set, follow the same
procedure. However, a separate DD statement (with the space request
omitted) is required for each member. The disposition should be
specified as modify, DISP=MOD. The data set must be closed and
reopened each time a new member is specified.

140

//PDSDD DD
//

---,DSNAME=MASTFILE(MEMBERK),SPACE=(TRK,(lOO,5,7», C
DISP=(NEW,KEEP)

OUTDCB DCB

OPEN
PUT

CLOSE

---,DSORG=PS,DDNAME=PDSDD,---

(OUTDCB, (OUTPUT»
(or WRITE)

<ourOCB) Automatic Stow

To take full advantage of the STm-J macro instruction, and thus tne
B~DL and FIND macro instructions in future processing, you can provide
additional information with each directory entry. This is
accomplished by using the basic access technique, which also allows
you to process more than one member without closing and reopening the
data set, as follows:

• Request space in the DD statement for the members and the
directory.

• Define DSORG=PO or POU in the DCB macro instruction.

• WRITE <and CHECK) the member records.

• NOTE the location of any note list written within the member, if
there is a note list. ---- ----

• When all the member records have been written, issue a STOW macro
instruction to enter the member name, its location pointer, and
any additional data in the directory.

• Continue to WRITE, CHECK, NOTE, and STOW until all the members of
the data set and the directory entries have been written.

//PDSDD DD --,DSNAME=MASTFILE,SPACE=(TRK,(100,5,7»,DISP=MOD

OUTDCB DCB --,DSORG=PO,DDNAME=PDSDD,-­
OPEN (OUTDCB,(OUTPUT»
WRITE *
CHECK First record of member.
NOTE
WRITE
CHECK Remaining records of member.
(NOTE) Only NOTE first record of a subgroup within member.
WRITE
CHECK viri te note lists at end of each
NOTE subgroup.
STOW Member entry in directory after all records and note

lists are written.
Repeat from * for each additional member

CLOSE (OUTDCB)

RETRIEVING A MEMBER

To retrieve a specific member from a partitioned data set, either
the basic or queued access technique can be used as follows:

• Code DSORG=PS or PSU in the DCB macro instruction.

section II: Data Management Services (Part 2) 141

• Indicate in the DD statement that the data is a member of an
existing partitioned data set, i.e., DSN~lE=name(membername) and
DISP=OLD.

• Process the member with an OPEN macro instruction, a series of
GET/READ macro instructions, and ,then a CLOSE macro instruction.

When you code RECFM for the DCB macro instruction, note that
standard record format (S) is not allowed for BPAM. If you include S
in your record format specification, permanent input/output errors
(no-record-found condition) can occur.

When your program is executed, the directory is searched
automatically and the location of the member is placed in the data
control block.

//PDSDD DD --,DSNAME=MASTFILE(MEMBERK),DISP=OLD

INDCB DCB --,DSORG=PS,DDNAME=PDSDD,-­
OPEN (INDCB) Automatic Find
GET (or READ)
CLOSE (INDCB)

In order to process several members without closing and reopening,
or to take advantage of additional data in the directory, the
following technique should be used:

• Code DSORG=PO or POU in the DCB macro instruction.

• Build a list (BLDL) of needed member entries from the directory.

• lndicate in the DD statement the data set name of the partitioned
data set, i.e., DSNAMB=name, and DISP=OLD.

• Use the FIND or POINT macro instruction to prepare for reading the
member records.

• The records may be read from the beginning of the member, or a
note list may be read first, to obtain additional locations that
POINT to sub-categories within the member.

• READ (and CHECK) the records until all those required have been
processed.

• POINT to additional categories, if required, and READ the records.

• Repeat this procedure for each member to be retrieved.

142

//PDSDD DD --,DSNAME=MASTFILE,DISP=OLD

INDCB DCB
OPEN
BLDL

--,DSORG=PO,DDNAME=PDSDD,-­
(INDCB)

Build a list of selected member names in main
storage.

FIND (or POINT)
READ *Read note list.
CHECK
POINT Locate subgroup by using note list.
READ
CHECK Read member records

~€peat from * for each additional memner.
CLOSE (INDCB)

UPDATING A ME~BER

A member of a partitioned data set can be updated in place, or can
be deleted and rewritten as a new member.

UPDATING IN PLACE

When you update in place, you read records, process them, and write
them back to their original positions without destroying the remaining
records on the track. The following rules apply:

• You must specify the update option (UPDAT) in the OPEN macro
instruction. To perform the update, you can use only the RBAD,
WRITE, CHECK, NOTE, POINT, FIND, and BLDL macro instructions.

• You cannot use chained scheduling,.

• You cannot delete any record or cnange its length; you cannot add
new records.

A record must be retrieved by a READ macro instruction before it
can be updated by a WRITE maCI:O instruction. Both macro instructions
must be "execute" forms that refer to the same data event control
blOCK (DECB); the DECB must be provided by a "list" form. ('I'he
execute and list forms of the READ and WRITE macro instructions are
described in the publication IBM System/360 Operating system:
Supervisor and Data Management Macro Instructions.)

Updating With Overlapoed operations: To overlap input/output and CPU
activity, you can start several read or write operations before
checking the first for completion. You cannot overlap read and write
operations, however, as operations of one type must be checked for
completion before operations of the other type are started or resumed.
Note that each concurrent read or write operation requirea a separate
channel program, and also a separate DECB. If a single DECB were used
for successive read operations, only the last record read could be
updated.

In tne following example, overlap is achieved by having a read or
write request outstanding while each record is being processed. Note
the use of execute- and list-form macro instructions, identified by
tne operands MF=E and MF=L.

Section II: Data Management Services (Part 2) 143

//PDSDD

UPDATDCB

AREAA
AREAB

READRECD
NEXTRECD

DD DSNAME=MASTFILE(MEMBERK),DISP=OLD,---

DCB
READ
READ
DS
DS

DSORG=PS, DDNAME=PDSDD, MACRF= (R, W) ,.NCP=2, EODAD=FINISH
DECBA, SF, UPDATDCB,AREAA,MF=L Define DECBA
DECBB,SF,UPDATDCB,AREAB,MF=L Define DECBB

OPEN (UPDATDCB,UPDAT)
LA 2,DECBA
LA 3,DECBB
READ (2),SF,MF=E
READ (3),SF,MF=E
CHECK (2)
(If update is required,
LR 4,3
LR 3,2
LR 2,4
B NEXTRECD

D·efine buffers

Open for update
Load DECB addresses

Read a record
Read the next record
Check previous read operation

branch to R2UPDATE)
If no update is required,

switch DECB addresses in
registers 2 and 3
and loop

* In the following statements, "R2" and nR3" refer to the records
* that were read using the DECBs whose addresses are in registers
* 2 and 3, respectively. Either register may point to either
* DECBA or DECBB.

R2UPDATE CALL UPDATE, «2» Call routine to update R2
CHECK (3) Check read for next record (R3)
WRITE (2),SF,MF=E Write updated R2
(If R3 requires an update, branch to R3UPDATE)
CHECK (2) If R3 requires no update, check
B READRECD write for R2 and loo~

RBUPDATE CALL UPDATE, « 3» Call routine to update R3
WRITE (3),SF,MF=E Write updated R3
CHECK (2) Check write for R2
CHECK (3) Check write for R3
B READRECD LOOp

FINISH CLOsE (UPDATDCB) End-of-data exit routine

REWRITING A MEMBER

There is no actual update option that can be used to add or extend
records in a partitioned data set. If you want to extend or add a
record within a member, you must rewrite the complete memoer in
another area of the aata set. Since space is allocated when the data
set is created, there is no need to request additional space. Note,
however, tnat a partitioned data set must be contained on one volume.
If sufficient space has not been allocated, the data set must be
reorganizea by the IEBUPDTE utility program.

When you rewrite the member, you must provide two data control
blocks; one for input and one for output. Both DCB macro instructions
can refer to the same data set, i.e., only one DD statement is
required.

you can reflect the change in location of the member either
automatically, by indicating a disposition of OLD, or by using the
S'l'OW macro instruction. Although the old member is, in effect,
deleted, its space cannot be reused until the data set is reorganized.

144

Processing an Indexed Sequential Data Set

An indexed sequential data set allows you a great deal. of
flexibility in the operations you can perform. The data set can be
read or written sequentially; individual records can be processed in
any order; records can be deleted; or new records can be added. The
system automatically locates the proper position in the data set for
new records and makes any necessary adjustments when records are
deleted. 1J:'his flexibility is possible due to the inherent
organization of the data set.

Although the queued and basic access techniques can be used to
process an indexed sequential data set, each has separate ana distinct
functions. The queued access technique must be used to create the
data set. It can also be used to sequentially process or update the
data set and to add records to tile end of the data set. The basic
access technique can be'used to insert new records between records
already in the data set. It can also be used to update the data set
directly.

INDEXED SEQUENTIAL DATA SET ORGANIZATION

The records in an indexed sequential data set are arranged
according to the collating sequence of a key field in each record.
Each block of records is preceded by a key field that corresponds to
the key of the last record in the block.

An indexed sequential data set resides on direct access storage
devices and can occupy up to three different areas:

• Prime Area -- This area contains data records and related track
indexes. It exists for all ISAM data sets.

• Overflow Area -- This area contains overflow from the prime area
when new data records are added. It is optional.

• Index Area This area contains master and cylinder indexes
associated with the data set. It exists for a data set that has a
prime area occupying more than one cylinder.

The indexes of an ISfu~ data set are analogous to the index card
file in a library. For example, if the library user knows the name of
the book or the author, he can look in the index card file and obtain
a catalog number that will enable him to locate the book in the Dook
files. lie would then go to the shelves and proceed through each row
·until he found the shelf containing the book. Usually each row
contains a sign to indicate the beginning and ending numbers of all
books in that particular row. ThUS, as he proceeded through the rows,
he would compare the catalo~ nurr~er obtained from the index with the
numbers posted on each row. Upon locating the proper row, he would
then search that row for the shelf that contained the book. 'rhen he
would look at the individual book numbers on that shelf until he found
the particular book.

ISAM uses the indexes in much the same way to locate records in an
indexed sequential data set. The operating system provides both the
queued and basic access techniques to process an indexed sequential
data set. The queued access technique is used to create the data set
and add records to the end. It can also be used to sequentially
process or update the records. The basic access technique is used to
read or update records and to insert new records at any place in the
data set.

section II: Data Management services (Part 2) 145

As the records are written in what is referred to as the Erime
area of the data set, the system accounts for the records contained on
each track in a track index area. Each entry in the track index
identifies the key of the last record on each track. There is a track
index for each cylinder in the data set. If more than one cylinder is
used, the system develops a higher level index called a cylinder
index. hach entry in the cylinder index identifies the key of the
last record in the cylinder. To increase the speed of searching the
cylinder index, you can request that a master index be developed for a
specified number of cylinders, as shown in Figure 33.

Rather than reorganize the whole data set when records are added,
you can request that space be allocated for additional records in what
is called an overflow area.

Master Index

/ 450/ 900 2000 /

Cyli~der Index

200 300 375 450 """-

500 600 700 900 ~

~

""-
1000 1200 1~0 2000 ~

Cylinder 1 \~ Cylinder 11 Cylinder 12

~ 100 100 200 200 Track
/1500 / 2000 Index

Data Data Data Data Prime
10 20 40 100 Data

Data Data Data Data Prime
150 175 190 200 Data

Overflow

Figure 33. Indexed sequential Data Set Organization

PRIlVlE AREA

~ecords are written in the prime area when the data set is created
or updated. The portion of Figure 33 labeled Cylinder 1 illustrates
the initial structure of the prime area. Although the prime area can
extend across several noncontiguous areas of the volume, all the
records are written in key sequence. Each record must contain a key;
the system automatically writes the key of the highest record
preceding each block.

When the ABSTR option of the SPACE parameter of the DD statement is
used to generate a multivolume prime area, the VTOC on the second
volume and on all succeeding volumes must be contained within cylinder
zero of the volume.

INDEX AREAS

The operating system generates track and cylinder indexes
automatically. Up to three levels of master indexes are created if
requested.

146

Track Index: This is the lowest level of index and is always present.
There is one track index for each cylinder in the prime area; it ia
written on the first tracks of the cylinder that it indexes.

The index consists of a series of paired entries, that is, of a
normal entry and an overflow entry for each prime track. The normal
entry contains the key of the highest record on the track and the home
address of the prime track. The overflow entry is originally the same
as the normal entry. (This is why 100 appears twice on the track
index for cylinder 1 in Figure 33.) The overflow entry is changed
when records are added to the data set. Then the overflow entry
contains the key of the highest overflow record and the address of the
lowest overflow record logically associated with the particular prime
track. Figure 34 shows the format of a track index.

Normal/Overflow Normal/Overflow
Pair .Pair

A A

r
"

Normal Overflow Normal Overflow
Entry Entry Entry Entry

A A ~

\1
~

f 'f \f

Key 1 Data2 Key3 Data4 Key1 Data2 Key3 Data4

1 Normal key = key of the highest record on the prime data track.

2Normal data = address of the prime data track.

30verflow key = key of the highest overflow record logically associated with the prime data track.

40verflow data = address of the lowest overflow record logically associated with the prime data track.

Notes:

,

,

~

• If there are no overflow records, overflow key and data entries are the same as normal key and data entries .
• This figure is a logical representation only; that is, it makes no attempt to show the physical size of track index entries.

eFisure 34. Format of Track Index Entries

If all the tracks allocated for the prime data area are not used,
tneir entries in the index are "flagged" as inactive. The last entry
of each track index is a dumm}' entry indicating the end of the index.
When fixed-length record format aas been specified, the remainder of
the last track used for a track index contains prime data records if
there is room for them.

Each index entry has the same format. It is an unblocked,
fixed-length record consisting of a count, a Key, and a data area.
The length of the key corresponds to the length of the key area in the
record to which it points. The data area is always ten bytes long.
It contains the full address of the track or record to which the index
points, as well as the level of the index and the entry type.

Cylinder Index: For every track index created, the system generates a
cylinder index entry. There is one cylinder index for a data set,
each entry of which points to a track index. since there is one track
index per cylinder, there is one cylinder index entry for each
cylinder in the prime data area, except for a one-cylinder prime area.
As with track indexes, inactive entries are created for any unused
cylinders in the prime data area.

section II: Data Management Services (Part 2) 147

Master Index: As an optional feature, the operating system creates,
at your request, a master index. Each entry in the master index
points to a cylinder index track. This facility avoids a serial
search through a large cylinder index.

You can specify the number of entries that are to be included in
each master index. For example, if you indicate that you want a
master index created for every three tracks of cylinder index entries,
a master index is created if the cylinder index exceeds three tracks.
If your data set is extremely large, a higher level master index is
created if the first level master index exceeds three tracks. This
procedure continues up to three levels of master indexes.

OVERFLOW AREAS

As records are added to an indexed sequential data set, space is
required to contain those records that will not fit on the prime data
track on which they belong. You can request that a number of tracks
be set aside as a cylinder overflow area to contain overflows from
prime tracks in each cylinder. An advantage of using cylinder
overflow areas is a reduction of search time required to locate
overflow records. A disadvantage is that there will be unused space
if the additions are unevenly distributed throughout the data set.

Instead of, or in addition to, cylinder overflow areas, you can
request an independent overflow area. Overflow from anyw-nere in the
prime data area is placed in a specified number of cylinders reserved
solely for overflow records. An advantage of having an independent
overflow area is a reduction in unused space reserved for overflow. A
disadvantage is the increased search time required to locate overflow
records in an independent area.

If you request both cylinder overflow and independent overflow,
cylinder overflow is used first.

It io3 a good practice to request cylinder overflow areas large
enough to contain a reasonable number of additional records and an
independent overflow area to be used as the cylinder overflow areas
are filled.

A.DDING RECORDS TO AN INDEXED SEQUENTIAL DATA SET

Either the queued or tne basic access technique may be used to add
records to an indexed sequential data set. A record to be inserted
between records already in the data set must be inserted by the basic
access method using WRI'IE KN (key new). Records added to the end of a
data set, that is, records with successively higher keys, may be added
to the overflow chain by the basic access method using WRI'r£ KN (key
new); or they may be added to the prime data area by the queued access
technique using the PU'I' macro instruction.

INSERTING NEW RECORDS INTO AN EXISTING INDEXED SEQUENTIAL DATA SET

As you add records to an indexed sequential data set, the system
inserts each record in its proper sequence according to tne record
key. Tne remaining records on the track are then moved up one
position. If the last record does not fit on the track, it is written
in the first available location in the overflow area. A lO-byte link
field is added to the "bumped" record to connect it logically to the
correct track. The proper adjustments are made to the track index
entries. This procedure is illustrated in, Figure 35.

148

subsequent additions are written either on the prime track where
they belong or as part of the overflow chain from that track. If the
addition belongs after the last prime record on a track but before a
previous overflow record from that track, it is written in the first
available location in the overflow area. Its link field contains the
address of the next record in the chain.

Normal Entry Overflow Entry

Initial Format Track
Index

10 20 40 100
Prime
Data

150 175 190 200

Overflow

Track
Index

Add Records
25 and 101

10 20 25 40
Prime
Data

101 150 175 190

Overflow 100
Track Track

I 200 2

Track
Index Add Records

26 and 199

10 20 25 26
Prime
Data

101 150 175 190

Overflow

Figure 35. Adding Records to an Indexed sequential Data set

ADDING NE'il RECORDS TO THE END OF AN I NDEXED SEQUENTIAL DATA SET

Records added to the end of a data set, that is, records with
successively higher keys, may be added by the basic access method
using WRIT}:; KN (key new), or by the queued access method using the PUT
macro instruction (Resume Load). In either case records may be added
to the prime data area. When you use the WRITE KN macro instruction,
the record being added will be placed in the prime data area only if
there is room for it on the prime data track containing the record
with the highest key currently in the data set. If there is not
sufficient room on that track, the record is placed in the overflow
area and linked to that prime track via the overflow chain even though
additional prime data tracks originally allocated have not oeen
filled. When you use the PUT macro instruction (Resume Load), records

Section II: Data Management Services (Part 2) 149

will be added to the prime data area until the space originally
allocated is filled. Once this allocated prime area is filled, you
can add records to the data set using WRITE KN, in which case they
will be placed in the overflow area. You can add variable-length
records to an indexed sequential data set only by using the WRITE KN
macro instruction.

In order to add records with successively higher keys using the PUT
macro instruction (Resume Load):

• The key of any record to be added must be nigher than the highest
key currently in the data set.

• The DD statement must specify DISP=MOD.

• The data set must have been successfully closed when it was
created or when records were previously added using the PUT macro
instruction~

You may continue to add fixed-length records in this manner until the
original space allocated for prime data is exhausted.

When adding records to an indexed sequential data set using the PUT
macro instruction (Resume Load), newentrie3 are also made in the
indexes. During Resume Load on a data set with a partially filled
track and/or a partially filled cylinder, the track index entry and/or
the cylinder index entry is'9verlaid when the track or cylinder is
filled. If Resume Load abnormally terminates after these index
entr~es have been overlaid, a subsequent Resume Load will get a
sequence check when adding a key that is higher than the highest key
at the last successful CLOSE but lower than the key in the overlaid
index entry. When the SYNAD exit is taken for a sequence check,
register 0 contains the address of the high key of the data set.

MAINTAINING AN INDEXED SEQUENTIAL DATA SET

An indexed sequential data set must be reorganized periodically for
two reasons:

• The overflow area will eventually be filled.
• Additions increase the time required to locate records directly.

The frequency of reorganization depends on the activity of the data
set and on your timing and storage requirements. There are two ways
you can accomplish reorganizations:

• The data set can be written sequentially into another area of
direct access storage or magnetic tape and then re-created in the
original area.

• It can be reorganized in one pass by writing it directly into
another area of direct access storage. In this case, the area
occupied by the original data set cannot be used by the
reorganized data set.

The operating system maintains statistics that are pertinent to
reorganization. rhe statistics are written on the direct access
volume and are available to you for checking. The information
includes the number of cylinder overflow areas, the number·of unused
tracks in the independent overflow area, and the number of references
to overflow records other than the first.

150

Fixed Length

Variable
Length

Initial Format

Record 100 is
marked for deletion
and record 25 is
added to the fi I e

.E'ig ure 36.

Key Data

I
Delete Code

Key BOW ROW D t
~ aa

I LLOO I Moo i X'FF' !

t
I Boo i !

Delete Code

10 20 40 100

150 175 190 200

10 20 25 40

150 175 190 200

Deleting Records From an Indexed sequential Data Set

If }'ou indicate when creating the data set that you want to be able
to flag records for deletion during updating, you can set the delete
cooe to all ones (X'PP'). The delete code is the first byte of a
fixed-length record or the fifth byte of a variable-length record. If
a flagged record is forced off its prime track during a subsequent
update, it will not be rewritten in the overflow area, as shown in
Figure 36. Similarly, when you process sequentially, flagged records
are not retrieved for processing. During direct processing, flagged
records are retrieved like any other record and should be caecked by
you for the delete code.

INDEXED SEQUENTIAL BUFFER AND WORK AREA REQUIR~~NTS

The only reason you will ever have to compute the buffer length
(BUFL) requirements for your program is if you use the BUILD or
GETPOOL macro instruction to construct the buffer area. If you are
creating an indexed sequential data set (PUT macro instruction), each
Duffer must be eight bytes longer than the block size to allow for the
hardware count field, that is:

section II: Data Management Services (Part 2) 151

Buffer length = 8 + Block size

r---------T-------------------------------------,
I I I
I I Data I
I (8) I (BLKSIZE) I
I I I L _________ 4 _____________________________________ J

<------------------- Buffer -------------------~

One exception to this formula arises when dealing with unblocked
format F records whose key field precedes the data field -- its
relative key position is zero (RKP=O). In that case the key length
must alsb be added, that is:

Buffer length = 8 + Key length + Record length

r---------T----------T--------------------------,
I 'I I
I I I I
I I Key I Data I
I (8) I (KEYLEN) I (LRECL) I
I I I I L _________ 4 __________ ~ _________________________ -J

<------------------ Buffer --------------------->
The buffer requirements for using the queued access method to read

or update (GET or PUTX macro instruction) an indexed sequential data
set are discussed below.

For fixed-length, unblocked records when both the key and data are

I
to be read and for variable-length, unblocked records, padding is
added so that the data will be on a doubleword boundary, that is:

Buffer length = Key length + Padding + 10 + Block size

r---------T-------T-------T-~-------------------,
I j I I I
IKey I Padding I Link I Data I
I (KEYLEN) I 1 (10) I (BLKSIZE) I
I I I I I L _________ ~ _______ ~ _______ 4 _____________________ J

<------------------- Buffer -------------------->

For fixed-length, unblocked records when only data is to be read:

Buffer length = 16 + LRECL

r---------T-------T-----------------------------,
I I I I
I Padding I Link I Data I
I (6) I (10) I (LRECL) I
I i I I L _________ 4 _______ ~ _____________________________ J

<------------------- Buffer -------------------->

152

For fixed-length, blocked records:

Buffer length = 16 + BLKSIZE

r---------T-------T-----------------------------,
I I I I
I Padding I Link I Data I
I (6) I (10) I (BLKSIZE) I
I I I I L _________ ~ _______ ~ _____________________________ J

<------------------- Buffer -------------------->

For variable-length, blocked records, padding is 2 if the buffer
starts on a fullword boundary that is not also a doubleword boundary
or it is 6 if the buffer starts on a doubleword boundary, that is:

Buffer length = 12 or 16 + Block size

r---------T-------T-----------------------------,
I I I I
I I I I
I Padding I Link I Data I
I I (10) I (BLKSIZE) I
I I I I
I I I I L _________ ~ _______ ~ _____________________________ J

<------------------- Buffer -------------------->

If you are using the input data set with fixed-length, unblocked
records as a basis for creating a new data set, a work area is
required. The size of the work area is given by:

Work area = Key length + Record length

r-------T---------------------------------------,
I I I
I Key I Data I
I I (LRECL) I
I I I L _______ ~ _______________________________________ J

<------------------Work A.rea-------------------->

Section II: Data Management Services (Part 2) 153

If you are reading only the data portion of fixed-length unblocked
records or variable-length records, the work area is the same size as
the record length, that is:

Work area = Record length

r---,
I I
I Da·ta I
I (LRECL) I
I I L ___ J

<------------------Work Area-------------------->

When using the basic access technique to update records in an
indexed sequential data set, the key length field need not be
considered in determining your buffer requirements. The area for
fixed-length records must be:

Buffer length = 16 + Block size

r-------T---------------T-----------------------,
I I I I
I Padding I Link I Data I
I (6) I (10) I (BLKSIZE) I
I I I I L _______ ~ _______________ L _______________________ J

<------------------- Buffer -------------------->

For variable-length records, padding is 2 if the buffer starts on a
fullword boundary t.hat is not also a doubleword boundary or it is 6 if
the buffer starts on a doubleword boundary. Thus, the area must be:

Buffer length = 12 or 16 + Block size

r-------T---------------T-----------------------,
I I I I
I Padding I Link I Data I
I I (10) I (BLKSIZE) I
I I I I L ______ ~~ _______________ L _______________________ J

<-------------------Buffer---------------------->

I When adding variable-length records to a data set, you may provide
a special work area for the operating system using the MSwA parameter
of the DCB macro instruction. Although not required when adding
fixed-length records, insertion is considerably expedited if you
provide such an area. The size of the work area (SMSW parameter in
the DCB) must be large enough to contain a full track of data plus the
additional space to contain the count fields of each block and the
work space for inserting the new record.

The size of the work area needed (Sl'1SIl parameter) varies according
I to the record format and the device type. You can calculate it during

execution using device dependent information obtained with the DEVTYPE

I

macro instruction and data set information from the data set control
block (DSCB) obtained with ·the OBTAIN macro instruction. The DBVTYPE
and OBTAIN macro instructions are discussed in the publication IBM
Systern/360 Operating system: System Proarammer's Guide.

154

I
Note that you can use the DEVTYPE macro instruction only if the

index and prime areas are on the same type of device or if the index
area is on a device with:a. larger track capacity than the device
containing the prime area.· If· you are not trying to maintain device
independence, you may precalculate the size of the work area needed
and specify it in the SMSW field of the DCB macro instruction. 'I'he
maximum value for SMSW is 65,535.

For calculating the size of the work area, refer to the storage
device capacities shown in Table 16 under "Estimating Space
Requirements" and the device overhead formulas given in the same
section.

..
For fixed-length records, SKSW is calculated as follows:

SMSW = (Track capacity - Bn +·1). (BLKSIZE +,8) + LR-E<2L·+ KEYLEN
\ . B1.

where Bn is the lenqth of the last block on the track and Bi is the
length of any block-but the l~st, as given in Table 17 iri the section
"Bstimating Space Requirements".

I

For variable-length records, SMSW may be calculated by one of two
methods. Method one may lead to 'faster processing although it may
require more main stora~e'than method two. For either method you must
determine the value for HIRPD from the format 2 data set control block
(DSCB).. For the specific location of Ds2HIRPD field in the data set
control block, refer to the publication IBM System/360 Operating
system: System Control Blocks.

lvlethod one is as follows:

SMSW = HIRPD(BLKSIZE + 8) + LRECL + KEY LEN + 10

Method two is as follows:

SMSW =(TraCk Capacity-Bn +2) (BL.KSIZE) + 8(HIRPD)+LRECL+KEYLEN+l0
Bi ..

In all of the above formulas, the terms BLKSIZE., LRECL, KE:iLEN, and
SMSW are the same as thE pariu"Uet~rs in the DCB macro instruction.
Method two, yields a minimum value for SMSW. Therefore, method one is
valid only if its application results in a value higher than onE that
would be derived from method two. If neither MSWA or SMSW are
specified, the control program supplies the work area for variable­
length records, using method two· to calculate the size.

Another teChnique to increase the speed of processing is to provide
space in main storage for the highest level index. To specify the
address ·of this area, use the MSBI operand of the DCB. When the
address of this area is specified, you must also specify its size,
which you can do by using the SMSI operand of the DCB. The maximum
value for 8M31 is 65,535. If you do not use this technique, the index
must be searched on the volum~. The size of the storage area (8MSI
parameter) varies. To allocate that space during execution, you can
find the size of the index in the data control block (DCBNCRHI field)
after the data set is opened or in the format 2 data set control block
field, DS2NOBYT. Using the procedure discussed un.der the DCBD nacro
instruction, the storage area can be allocated and the SM31 field
completed.

section II: ~ata Management Services (Part 2) 155

CONTROLLING AN INDEXED SEQUENTIAL DATA SET DEVICE

Processing of an indexed sequential data set is generally done in
one of two ways: sequentially or directly. Direct processing is
accomplished by using the basic access technique. Because you provide
the key for the record you want read or written, all device control is
handled automatically by the system. If you are processing the data
set sequentially, using the queued access technique, the device is
automatically positioned at the beginning of the data set.

In some cases, you may wish to process only a section or several
separate sections of the data set. This is accomplished by using the
SETL macro instruction, which directs the system to begin sequential
retrieval at a specific record key. The processing of succeeding
records is the same as for normal sequential processing, except that
you must recognize when the ··last desired record has heen processed.
At this point, issue the ESETL macro instruction to terminate
sequential processing. You can then begin processing at another point
in the data set.

SETL -- specify start of seguential Retrieval

The SETL macro instruc·tion enables you to retrieve records starting
at the beginning of an indexed sequential data set or at any point in
the data set. Processing that is to start at a point other than the
beginning can be requested in the form of a record key, a key prefix,
or an actual address of a prime data record.

Use of a key prefix is extremely useful in that you do not have to
know the whole key of the first record to be processed. Any number of
key characters can be u3ed in the key prefix. Key characters to the
right should be represented by binary zeros.

In order to use actual addresses, you must keep an account of where
the records were written when the data set was created. The device
address of the block containing the record just processed by a
PUT-move macro instruction is available in the 8-byte data control
block field DCBLPDA. For blocked records the addres3 is the same for
each record in the block.

ESETL -- End Sequential Retrieval

The ESETL macro instruction directs the system to stop retrieving
records from an indexed sequential data set. A new scan limi·t can
then be set, or processing terminated. An end-of-data-set indication
automatically terminates retrieval.

CREATING AN INDEXED SEQUEl~~~~LH?~~~SE;'I.'

You can create an indexed sequential data set in one step orin
several steps. You can create the data set either by writing all
records in a single step or by writing one group of records in one
step and writing additional groups of records in subsequent steps.
Writing records in subsequent steps is resume loading. When using
either one step or several steps, you must present the records for
writing in ascending order by key.

'1'0 create an indexed sequential data set by the oae-step method,
you should proceed as follows:

• Code DSORG=IS or ISU and ~illCRF=PM or PL in the DCB macro
instruction.

156

,
• Specify in the DD statement the DCB attributes DSORG=IS or ISU,

record length (LRECL), block size (BLKSIZE), record format
(RECFM), key length (KEYLEN), relative key position (RKP), options
required (OPTCD), cylinder overflow (CYLOFL), and the number of
tracks for a master index (NTM). specify space requirements with
the SPACE parameter. To reuse previously allocated space, omit
the SPACE parameter and code DISP=(OLu,[KEEP).

• Open the data set for output.

• Use the PUT macro instruction to place all the records or blocks
on the direct access volume.

• Close the data set.

The records that comprise a newly created data set must be
presented for writing in ascending order by key. You can merge two or
more input data sets.

If records are blocked, you should not write a one-byte record with
the hexadecimal value FF. This value is used for padding; if it
occurs as the last record of a block, the record cannot be retrieved.

When creating an indexed sequential data set, a procedure called
loading, you can increase performance by using the full track-index
write option. You do this by specifying OPTCD=U in the DCB. This
causes the operating system to accumulate track-index entries in main
storage.

If you do not specify this option, the operating system writes each
normal/overflow pair of entries for the track ·index after the
associated prime data track has been written. If you specify this
option, the operating system accumulates track-index entries in main
storage until either there are enough entries to fill a track or end
of data or end of cylinder is reached. Then the operating system
writes these entries as a group, writing one group for each track of
track· index.

When you specify the full track-index write option, the track-index
entries are written in the fixed, unblocked record format. If a large
enough area of main storage is not available, the entries are written
as they are created, that is, in normal/overflow pairs.

Once an indexed sequential data set has been created, its
characteristics cannot be changed. However, for added flexibility,
the system allows you to retrieve records using either the queued
access technique with simple buffering, or the basic access technique
with direct or dynamic buffering.

Tape-to-Disk -- Indexed Sequential Data Set: This example requires
the creation of an indexed sequential data set from an input tape
containing 60-character records. The key by which the data set is
organized is in positions 20-29. The output records will be an exact
image of the input, except that the records will be blocked. One
track per cylinder is to be reserved for cylinder overflow. Master
indexes are to be built when the cylinder index exceeds six tracks.
Reorganization information about the status of the cylinder overflow
areas is to be maintained by the system. The delete option will be
used during any future updating.

section II: Data Management Services (Part 2) 157

//INDEXDD DD
//
//

DSN~lE=SLATE.DICTCPRIME),DCB=CBLKSIZE=240,CYLOFL=1,
DSORG=IS,OPTCD=MYLR,RECFM=FB,LRECL=60,NTM=6,RKP=19,
KEYLEN=10),UNIT=2311,SPACE=CCYL,25"CONTIG),---

//INPUTDD DD

ISLOAD START 0

ISLOAD

NEXTREC

CHECKERR

DCBD
CSECT
OPEN
GET
LR
PUT
B

L
USING
TM
BO
TM
BO
TM
BO

DSORG=IS

CIPDATA"ISDATA, (OUTPUT»
IPDATA Locate Mode
0,1 Address of Record in Reg. 1
ISDATA,CO) Move Mode
NEXTREC

3,=ACISDATA)
IHADCB,3
DCBEXCD1,X'04'
OPERR
DCBEXCD1,X'20'
NOS PACE
DCBEXCD2,X'80'
SEQCHK

Initialize Base for Errors

Uncorrectable Error

Space Not Found

Record Out of sequence
*REST OF ERROR
*ERROR ROUTINE

CHECKING

* END OF JOB ROUrrINE (EODAD for IPDATA)
IPDATA DCB
ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(PM),SYNAD=CHECKERR

To create an indexed sequential data set in more than one step,
create the first group of records using the one step method described
above. This first section must contain at least one data record. 'l'he
remaining records can then be added to the end of the data set in
subsequent steps using Resume Load. Each group to be added must
contain records with successively higher keys. This method allows you
to create the indexed sequential data set in several shorter time
periods rather than in a single long one.

This method also allows you to provide limited recovery from
uncorrectable output errors. When an uncorrectable output error is
detected, do not attempt to continue processing or close the data set.
If you have provided a SYNAD routine, it should issue the ABEND macro
instruction to terminate processing. If no SYNAD routine is provided,
the control program will terminate your processing. You should begin
recovery at the record following the end of the data as of the last
succesqful close. The rerun time is limited to that necessary only to
add the new records, rather than to that necessary to recreate the
whole data set.

---Whe-n--extending·····-an _. tndex-edse-quefitiaT-~a-ta----Se£--wiEli---Resume-L-o-a(r;--·fhe-·­
disposition parameter of the DD statement must specify MOD. To insure
that the necessary control information is in the data set control
block before attempting to add records, you should at least open and
close the data set successfully on a version of the system which
includes Resume Load. This need be done only if the data set was
created on a previous version of the system. Records may be added to
the data set by this procedure until the space allocated for prime
data in the first step has been filled.

During Resume Load on a data set with a partially filled track
and/or a partially filled cylinder, the track index entry and/or the
cylinder index entry is overlaid when the track or cylinder is filled.
If Resume Load abnormally terminates after these index entries have
been overlaid, a subsequent Resume Load will get a sequence check when

158

C
C

adding a key that is higher than the highest key at the last
successful CLOSE but lower than t.he key in the overlaid index entry.
When the SYNAD exit is taken for a sequence check, register 0 contains
the address 9f the high key of the data set.

UPDATING AN INDEXED SEQUENTIAL DATA SE'I'

In order to sequentially retrieve and update an indexed sequential
data set:

• Code DSORG=IS or ISU, to agree with whichever one you specified
when you created the data set, and MACRF=GL, SK, or PU in the DCB
macro instruction.

• Code a DD statement for retrieving the data set. The data set
characteristics and options are as defined when the data set was
created.

• Open the data set for update.

• set the beginning of sequential retrieval (SETL).

• Retrieve records and process as required marking nonoverflow
records for deletion as required.

• Return records to the data set.

• End sequential retrieval as required and reset starting point
(ESETL).

• Close the data set to end all retrieval.

Sequential Updates -- Indexed sequential Data set: Using the data set
created in the previous example, you are to retrieve all records
beginning with 915. Those records with a date (positions 13-16)
previous to today's date are to be deleted. The date is in the
standard form as returned by the system in response to the TIME macro
instruction, i.e., packed decimal OOyyddds. If the record is an
overflow record, the delete code is not to be entered.

section II: Data Management Services (Part 2) 159

//INDEXDD DD DSNAME=SLATB.DICT,---

ISRETR

ISRETR

START
DCBD
CSECT

o
DSORG=IS

IHADCB,3
3, ISDATA
(ISDATA)

USING
LA
OPEN
SETL
TIME
ST
GET
CLC
BNL
TM

ISDATA,KC,KEYADDR Set Scan Limit

NEXTREC

TODAY
KEYADDR

LIMIT

CHECKERR

BO
CP
BNL
MVI
PUTX
B
DS
DC
DC
DC
DC

1,TODAY
ISDATA
19(10,1),LIMIT
END JOB
DCBEXCD2,X'10'
NEXTREC
12(4,1),TODAY
NEXTREC'
O(l),X'FF'
ISDATA
NEXTREC
F
C' 915'
XL7'O'
C'916'
XL7'O'

Today's Date in Reg. 1

Locate Mode

Test for Overflow Record

Compare for Old Date

Flag Old Record for Deletion
Return Delete Record

Key Prefix
Key Padding

*T€st DCBEXCD1 and DCBEXCD2 for error indication
*Error Routines
ENDJOB CLOSE (ISDATA)

ISDATA DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(GL,SK,PU),
SYNAD=CHECKERR

DIRECT RETRIEVAL AND UPDATE OF AN INDEXED SEQUENTIAL DATA SET

By using the basic access technique (BISAM) to process an indexed
sequential data set, you can make direct references to the records 'in
the data set for the purpose of:

• Direct retrieval of a record by its key.
• Direct update of a record.
• Direct insertion of new records.

Because the operations are direct, there can be no anticipatory
buffering. Howev~r, ... the. sys1::em provides a gy.n.?!.!!l~J'~ .. ~;mf_t~r_iJl-9-.. _~_eX)lice __ _

---eachl:ime a read ie-g-ue-g-f-rs----made ;----li--specIi ied.

To ensure that the requested record is in main storage before you
start processing, you must issue a HAlT or CHECK macro instruction.
If you issue a WAIT macro instruction, you must test the exception
code field of the data event control block (DECB). If you issue a
CHECK macro instruction, the system tests the exception code field in
the data event .control block (DECB). If an error analysis routine has
not been specified and a CHECK is issued, the program will be
abnormally terminated with a completion code X'OOl'. In either case,
to determine whether the record is an overflow record, you shou~d test
the exception code field of the DECB.

I After you test the exception code field of the DECB, you need not
zero out this field. If you have used a READ KU macro instruction and

160

C

if you plan to use the same DECB again to rewrite the updated record
using a WRITE K macro instruction, you should not zero out this field.
If you do, your record may not be rewritten properly.

To update existing records, it is recommended that you use the
READ, type KU, and WRITB, type K, combination. However, if you use a
WkITE, type K, with a DECB not previously used to read the record, you
are responsible for setting the overflow-record bit in the exception
code field of the DEeB. For blocked records, the overflow-record bit
must be off when you write a prime block and on when you write an
overflow block.

If there is a possibility that another program will require the use
of the data set you are updating, you should ,ensure that you maintain
exclusive control of at least the track. If you fail to maintain
exclusive control of the data set that you are updating and if another
data control block is opened before your data control bl'ock is closed,
your updated records can beconle permanently inaccessible. In other
words, when more than one data control block is open for updating a
data set, the results are unpredictable. Exclusive control can be
requested by using the ENQ macro instruction, which is described under
"Supervisor Services."

Direct Update With Exclusive Control -- Indexed seguential Data set:
In this problem the previously' described data set is to be updated
directly with transaction records on tape. The input tape records are
30 characters long; the key is in positions 1-10; the update
information is in positions 11-30. The update information replaces
data in positions 31-50 of the indexed sequential data record.

Exclusive control of the data set is requested since more than one
task may be referring to the data set at the same time. Notice that
exclusive control is released after each block is written to avoid
tying up the data set until the update is completed.

Section II: Data Management Services (Part 2) 161

//INDEXDD DD
//TAPEDD DD

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=l, •••),---

ISUPDATE

NEXTREC

RDCHECK

START 0

GET TPDATA,KEY
ENQ (RESOURCE,ELEMENT,E"SYSTEM)
READ DECBRW,KU,MF=E
WAIT ECB=DECBRW
TM DECBRW+24,X'FD'
BM RDCHECK
L 3,DECBRW+16
MVC 30(20,3),UPDATE
WRITE DECBRW,K,MF=E
WAIT ECB=DECBRW
TM DECBRW+24,X'FD'
BM WRCHECK

Test for any condition
but overflow
Pick up pointer to record
Update record

Any errors?

DEQ (RESOURCE,ELEMENT"SYSTEM)
B NEXTREC
TM DECBRW+24,X'SO'
BZ SYNAD
FREEDBUF DECBRW,K,ISDATA
MVC AREA, KEY

No record found
If not, go to error routine
Otherwise, free buffer

WRITE DECBRW,KN"AREA-16,'S',MF=E Add record to file
WAIT ECB=DECBRW
TM DECBRW+24,X'FD' Test for errors
BM SYNAD
DEQ (RESOURCE,ELENENT"SYSTEM) Release exclusive control

AREA
KEY
UPDATE
RESOURCE
ELEMENT

ISDATA

TPDATA
INDEX

B NEXTREC
DS 4i'
DS 30C
DS CL10
DS CL20
DC CLS ' SLA'I' E '
DC C'DICT'

BISAM WRITE KN work field
Logical record to be added

READ DECBRW, KU, ISDATA, 's' ,'S' ,KEY,MF=L
DCB DDNAME=INDEXDD,DSORG=IS,MACRF=(RUS,WUA),

DCB
DS

MSHI=INDEX,SMSI=2000

2000C

Note the use of the FREEDBUF macro instruction in the above
example. Usually the FREEDBUF macro instruction has two functions:

• To indicate to the ISAM routines that a record that has been read
for update will not be written back, and

• To free a dynamically obtained buffer.

In the above example, since the read operation was unsuccessful, the
FREEDBUF macro instruction only frees the dynamically obtained buffer.

The first function of the FREEDBUF macro instruction described here
allows you to read a record for update and then decide not to update
it without performing a WRITE for upoate. You can use this function
even when your READ macro instruction does not specify dynamic
buffering, provided that you have included S (for dynamic buffering)
in the ~~CRF field of your READ DCB.

However, you can accomplish an automatic FREEDBUF simply by reusing
the DECB, that is, by issuing another READ or a WRITE KN to the same
DECB. You should use this feature whenever possible, since it
perforrr,s the functions of the FREEDBUF more efficiently. In the above

162

c

I example, the FREEDBUF macro instruction should have been eliminated,
since the WRITE KN addressed the same DECB as the READ KU.

For an indexed sequential data set with variable-length records,
you may make three types of updates by using the basic access
technique. You may read a record and write it back with no change in
its length, simply updating some part of the record. This is done
with a READ KU followed by a WRITE K, the same way you update
fixed-length record3. Two other methods for updating variable-length
records use the WRITE KN macro instruction and allow you to change the
record length. In one method, a record read for update (READ KU) may
be updated in a manner which will change the record length and then be
written back with its new length using WRITE KN. In the second
method, you may replace a record with another record having the same
key and possibly a different length using the wRITE KN macro
instruction. To replace a record it is not necessary to have first
read the record. In either method, when changing the record length,
}'OU must place the new length in the DECBLGTH field of the data event
control block before issuing the WRITE KN macro instruction.

Direct Update -- Indexed seguential Data Set with Variable~Length
Records: In the following example an indexed sequential data set with
variable-length records is updated directly with transaction records
on tape. The transaction records are also of variable-length and each
contains a code identifying the type of transaction. The transaction
code 1 indicates that an existing record is to· be· replaced by one with
the same key; 2 indicates that the record is to be updated by
appending additional information, thus changing the record length; 3
or greater indicates that the record is to be updated with no change
to its length. For this example, the maximum record length of both
data sets is 256 bytes. The key is in positions 6-15 of the records
in both data sets. The transaction code is in position 5 of records
on the transaction tape. The work area (REPLAREA) is equal to the
maximum record length plus 16 bytes.

section II: Data Management Services (Part 2) 163

//INDEXDD DD
//TAPEDD DD

DSNAME=SLATE.DICT,DCB=(DSORG=IS,BUFNO=l, •••),---

ISUPDVLR

NEXTREC

START 0

GET
CLI
BL
READ
CHECK
CLI

BH

TPDATA,TRANAREA
TRANCODE,2
REPLACE
DECBRW,KU,,' S' ,·s' ,MF=E
DECBRW,DSORG=IS
TRANCODE,2

CHANGE

Determine if replace or other
Branch if replacement
Read record for update
Check exceptional conditions
Determine if change or

append
Branch if change

* CODE TO MOVE RECORD INTO REPLAREA+16 AND APPEND DATA FROM TRANSACTION
* RECORD

MVC DECBRW+6(2),REPLAREA+16

WRITE DECBRW,KN"REPLAREA,MF=E

CHECK DECBRW,DSORG=IS
B NEXTREC

CHANGE

Move new length from RDW
into DECBLGTH (DECB+6)
Rewrite record with changed
length

* CODE TO CHANGE FIELDS OR UPDATE FIELDS OF THE RECORD

REPLACE

CIiECKERR

REPLAREA
TRANAREA
TRANCODE
KEY
TRANDjI ... TA

ISDA'I'A
TPDATA

wRITE DECBRW,K,MF=E

CHECK DECBRW,DSORG=IS
B NEXTREC
I"iVC DECBRW+ 6 (2) , TRANAREA

Rewrite record with no
change of length

Move ne'N' length from RDW
into DECBLGTH (DECB+6)

WRITE DECBRW,KN, ,TRA.NAREA-16,MF=E Write transaction record
as replacement for record
with the same key

CHECK DECBRW,DSORG=IS
B NEXTREC

OS
DS
DS
DS
DS
READ
DCB
DCB

CL272
CL4
CLl
CLiO
CL241

SYNAD Routine

DECBRW,KU,ISDATA,'S' ,'S',KEy,MF=L
DDNAME=INDEXDD,DSORG=IS,.t-'lACRF=(RUS,WUA),SYNAD=CHECKERR

Processing a Direct Data Set

In a direct data set, there is a definite relationship between the
control number or identification of each record and its location on
the d.irect access volume. This relationship allows you to gain access
to a record without an index search. The actual organization of the
data set is completely determined by you. If the data set ha.:3 been
carefully organized, location of a particular record takes less time
than with an indexed sequential data set.

A direct data set can only be processed by the basic access
technique. E'or that reason, each unit of data transmitted bet'lI1een
main storage and an I/O device is regarded by the system as a record.

164

If, in fact, it is a block, you must perform any blocking or
deDlocking required. For that reason, the BLKSIZE value must be equal
to the LRECL value when format F or U records are processed. lNhen
format V records are used, the BLKSIZE value must be equal to the
LRECL value plus four. Only BLKSIZE must be s2ecified when adding or
updating records on a direct data set.

As indicated in the discussion of direct access devices, record
keys are optional. If they are specified, they must be used for every
record and must be of a fixed length.

ORGANIZING A DIRECT DATA SET

In developing the organization of your data set, you can use a
technique known as direct addressinq. When direct addresses are used,
the location of each record in the data set is known.

If format F records with keys are being written, the key of each
record can be used. For example, a data set with keys ranging from 0
to 4999 should be allocated space of 5000 records. Each Key relates
directly to a location that you can refer to as a relative record
nurriller. The main disadvantage of this type of organization is that
records may not exist for many of the keys even though space has been
reserved for them.

Space could be allocated on the basis of the number of records in
the data set rather than on -the range of keys. This type of
organization requires the use of a cross-reference table. When a
record is written on -the data set, you must note the pnysical location
either as an actual address or as a relative track and record number.
The addresses must then be stored in a table that is searched wnen a
record is to be retrieved. Obvious disadvantages are that
cross-referencing can only be used efficiently with a small data set;
storage is required for the table; processing time is required for
searching and updating the table.

A more common, but somewhat complex, technique for organizing the
data set involves the use of indirect addressing. In indirect
addressing, the address of each record in the data set is deterluned
by a mathematical manipulation of the key. This manipulation is
referred to as randomizing or conversion. since a number of
randomizing procedures could be used, no attempt is made here to
describe or explain those that might be most appropriate for your data
set.

RBFERRING TO A RECOR~ IN A DIRECT DATA SET

Once you have determined how your data set is to be organized, you
must consider how the individual records will De referred to when the
data set is updated or new records are added. This is important for
determining whether feedback will be required when creating the data;
if so, in what form the returned address will be used. The record
identification can be represented in any of the forms described below.

Relative Block Address: You specify the relative location of the
record (block) within the data set as a 3-byte binary number. ~his
type of reference can be used only with format F records. The system
computes the actual track and record number.

Relative Track Address: You specify the relative track as a 2-byte
binary number and the actual record nurriller on that track as a i-byte
binary numoer.

Section II: Data Management Services (Part 2) 165

Relative Track Address and Actual Key: In addition to the relative
track address, you specify the addres3 of a main storage location
containing the record key io The s}7stem computes the actual track
address and searches for the record with the correct key.

Actual Address: You supply the actual address in the standard 8-byte
form -- MBBCCHHR. Remember, the use of an actual address may force
you to indicate that the data set is unmovable.

Extended Search Option: You request that the system begin its search
with a specified starting location and continue for a certain nmnber
of records or tracks. This same option can be used to request a
search for unused space in which a record can be added.

To use the exteneed search option, you must indicate in the data
control block the number of tracks (including the starting track) or
records (including the starting record) that are to be searched. If
you indicate a number of records, however, the system may actually
examine more than this number. In searching a track, the system
searches the whole track (starting with the first record); it
therefore may examine records that precede the starting record or
follow the ending record.

If tne data control block specifies a number equal to or greater
than the number of tracks allocated to the data set or the number of
records within toe data set, the entire data set is searched in the
attempt to satisfy your request.

Exclusive Control for Updating: If more than one task in the same job
step is referring to the same data set through the same data control
block, exclusive control can be requested in the DCB macro instruction
to prevent simultaneous reference to the same record. No other task
requesting exclusive control of that record is given access to it
until it is released by means of a WRITE or RELEX macro instruction.

CREATING A DIRECT DATA SET

Once the organization of a direct data set has been determined, the
process of creating it is almost identical to that of creating a
sequential data set. The data set organization field in the DCB macro
instruction is specified as physical sequential (DSORG=PS or PSU).
However, the DD statement must indicate direct access (DSORG=DA or
DAU). The DCB macro instruction must specify a direct access device
(DEVD=DA). If keys are used, a key length (KEYLEN) must also be
specified. Record length (LRECL) should not be specified. The macro
instruction form should indicate the WRITE macro instruction used to
create a direct data set (WL).

If you are using a direct addressing technique with keys, you can
reserve space for future records by writing a dummy record. A track
for format U or V records can be reserved or truncated by writing a
"capacity" record (see "Direct Access Device Characteristics").

Format F records are written sequentially as they are presented.
When a track is filled, the system automatically writes the capacity
record and advances to the next track. Because of the form in which
relative track addresses are recorded, direct data sets to be accessed
by means other than actual address must be limited in size to no more
tnan 65,539 tracks for the entire data set.

Tape-to-Disk -- Direct Data Set: In this problem, a tape containing
204 character records arranged in key sequence is used to create a
direct data set. A 4-byte binary key for each record ranges from 1000
to 8999, so space for 8000 records is requested.

166

//DAOUTPUT DD
//

DSNAME=SLATE. INDEX. WORDS, DCB= (DSORG=DA,
BLKSIZE=200,KEYLEN=4,RECFM=F),SPACE=(204,SOOO),---

//TAPINPUT DD

DIRECT

NEXTREC

COMPARE

START

L
OPEN
LA
GET
LR
C

9,=F'1000'
(DALOAD, (OUTPUT),TAPEDCB)
10, COMPARE
TAPEDCB
2,1
9,0(2) Compare key of input against

control number
DUMMY BNE

WRITE
CHECK
1\H
B

DECB1,SF,DALOAD,(2)
DECBl
9,=H'1'
NEXTREC

Write data record

C

C

DUMMY C 9,=F'S999' Have 8000 records been written?

I NPUTl:!:ND

~NDJOB

DUMAREA
DALOAD

TAPEDCB

BH
WRITE
CHECK
AH
BR
LA
BR
CLOSE

ENDJOB
DECB2,SD,DALOAD,DUMAREA
DECB2
9,=H'1'
10
10, DUMMY
10
(TAPEDCB"DALOAD)

DS CL5

Write gummy

DCB DSORG=PS,MACRF=(WL),DDNAME=DAOUTPUT,
DEVD=DA,SYNAD=CHECKER,---

DCB EODAD=INPUTEND,MACRF=(GL), ---

ADDING/UPDATING RECORDS ON A DIRECT DATA SET

The facilities and the techniques for adding records to a direct
data set depend to a great extent on the format of the records and the
or~anization used.

Format F With Keys: The add function is essentially an update by
record identification. The reference to the record can be made by
either a relative bloc~ address or a relative track address.

If you attempt to add a record by relative block address, the
system converts the address to a relative track. That track is
searched and the new record written in place of the first "dummy"
record on the track. If there is no dummy record on the track, you
are informed that the write operation did not take place. rlowever, if
you request the extended search option, the new record will oe written
in place of the first dummy record found within the aearch limit you
specify. If none is found, you are notified that the write operation
could not take place. In the same way, a reference by relative track
address causes the record to be written in place of the first dummy
record on that track or the first within the search limit, if
requested.

Format F Without Keys: Here too, the add function is really an update
of dummy records already in the data set. The main difference is that
dummy recorda cannot be written automatically when the data set is
created. You will have to use your own method for flagging dummy
records. The update form of the WRITE macro instruction (MACRF=W)
must be used rather than the add form (MACRF=~iA).

C

Section II: Data Management services (Part 2) 167

You will have to retrieve the record first (READ macro
'instruction), test for a dummy record, update, and write.

E'ormat V or U With Keys: The technique used to add records in this
case depends on the way the data set is organized -- indirect
addressing or cross-reference table. If indirect addressing is used
to create the data set, you must at least initialize each track (write
a capacity record) even if no data is actu~lly written. That way the
capacity record indicates how much space i~ available on the track.

If a cross-reference table is used, you should exhaust the input
and then initialize enough succeeding tracks to contain any additions
that might be required.

To add a new record, use a relative track address. 'rhe system
examines the capacity record to see if there is room on the track. If
there is, the new record is written. Under the extended search
option, the record is written in the first available area within the
search limit.

F'ormat V or U Without Keys: This format does not lend itself to
making additions. You can refer to a record only by its relative
track or actual device address.

Tape-to-Disk Add -- Direct Data set: This problem involves adding
records to the data set created in the last example. Notice that the
write operation adds the key and the data record to the data set. If
the existing record is not a dummy record, an indication is returned
in the exception code of the DECB. For that reason, it is better to
use the WAIT macro instruction instead of the CHECK macro instruction
to test for errors or exceptional conditions.

//DIRADD
//TAPEDD

DIRECTAD

NEXTREC

* Check
DIRECT

TAPEIN
KEY
DATA
REF

DD
DD

START

DSNAME=SLATE.INDEX.WORDS,---

OPEN (DIRECT, (OUTPUT),TAPEIN)
GET TAPEIN,KEY
L 4,KEY Set up relative record number
SH 4,=H'1000'
ST 4,REF
WRITE DECB,DA,DIRECT,DATA,'S',KEY,REF+l
WAIT ECB=DECB
CLC DECB+l(2),=X'0000' Check for any errors
BE NEXTREC

error bits and take required action
DCB DDNAME=DlRADD,DSORG=DA,RECFM=F,KEYLEN=4,BLKSIZE=200, C

DCB
DS
DS
DS

MACRF=(WA)

F'
CL200
F

Tape-to-Disk Update -- Direct Data Set: This problem is similar to.
the previous example. However, since you are updating, there is no
check for dummy records. The existing direct data set contains 25,000
records whose 5-byte keys range from 00001 to 25,000. Each data
record is 100 bytes long. The first 30 characters are to be updated.

168

'Jlhe input tape records are 35 characters long -- 5-byte key and
30-oyte data. Notice that only data is brought into main storage for
updating.

//DIRECTDD DD
//TAPINPUT DD

DIRUPDAT

NEXTREC

KEYFIELD

KEY
DATA
REF
DIRECT

START

OPEN
GET
PACK
CVB
SH
ST
READ
CHECK
L
MVC
ST
WRITE
CHECK
B

DS
DC
DS
DS
DS
DCB

DSNAME=SLATE.INDEX.WORDS,---

(DIRECT, (UPDAT),TAPEDCB)
TAPEDCB,KEY
KEY,KEY
3,KEYFIELD
3,=H'1'
3,REF
DECBRD,DI,DIRECT,'S','S',O,REF+1
DECBRD
3,DECBRD+12
O(30,3),DATA
3,DECBWR+12
DECBWR,DI,DIRECT,'S' ,'S',O,REF+l
DECBWR
NEXTREC

OD
XL3'O'
CL5
CL30
F
DSORG=DA,DDNAME=DIRECTDD,MACRF=(RISC,WIC),

OPTCD=R, BUFNO= 1
TAPEDCB DCB

Consideration for User Lanels: User labels must be created when the
data set is created. They may be updated when processing a direct
data set but not added or deleted. when creating a multi-volume
direct data set using BS~l, you should turn off the header exit entry
after OPEN and turn on the trailer label exit entry just prior to
iS3uing the CLOSE. This eliminates the end-af-volume exits. The
first volume, containing the user lanel track, must be mounted at
CLOSE time. If you have requested exclusive control, OPEN/CLOSE will
use hNQ/DEQ facilities to prevent simultaneous reference to user
labels.

C

Section II: Data Management Services (Part 2) 169

Part 3: Data Set Disposition and Space Allocation

Allocating Space on Direct Access Volumes

When direct access storage space is required for a data set, you
have to specify the amount of space needed and the device type. Tne
operating system selects the device and allocates the space
accordingly. This facility provides for more flexible and efficient
use of devices and available storage space. It also relieves you of
the responsibility and details involved in efficient space control.

Before a direct access volume can be used for data storage, it must
be initialized by the utility program, Direct Access Storaae Device
Initialization (DASDI). The DASDI functions include in part:

• Creating the standard aD-byte volume label and writing it on
cylinder 0, track 0, of the volume.

• Initializing the volume table of contents (VTOC). The location of
the VTOC depends upon the conventions used by your installation
when initializing the volume.

II Writing the home address (HA) and capacity record (RO) for each
track.

• Checking tracks and making alternate track assignments if
necessary.

When the data set is to be stored on a direct access volume, you
must supply control information designating the amount of space to be
allocated and in what manner. This information is supplied in the
data definition (DD) statement for the data set.

SPECIFYING SPACE RE~UIREMBNTS

The amount of space required can be specified in terms of blocks,
tracks, or cylinders. If you want to maintain device-independence
across direct access device types, specify your space requirements in
terms of blocks. Otherwise, if your request is in terms of tracks or
cylinders, you must be aware of such device considerations as cylinder
or track capacity.

Cylinder allocation allows faster input/output of sequential data
sets than does track allocation. Track allocation stops input/output
at the end of every track to prevent references on the same cylinder
outside of the data set. This difference occurs only when reading,
and then only when the records are not in the fixed standard (FS)
format.

Allocation by Blocks: When the amount of space required is expressed
in terms of blocks, you must specify the number and average block
length of the blocks within the data set, e.g.:

// DD --,SPACE=(300,(SOOO,lOO»

300 = average block length.
5000 = quantity (number of blocks).

100 = increment (to be used if the quantity is not sufficient)
allocated in terms of additional blocks.

Section II: Data Management Services (~art 3) 171

Note: When average block and secondary space allocation are being
used, the BLKSIZE parameter specified must be equal to the maximum
block length.

From this infornation, the operating system estimates and allocates
the number of tracks required. Space is always allocated in whole
track units. You may also request that the space allocated for a
specific number of blocks begin and end on cylinder ooundaries.

You must be certain that both the quantity and increment are large
enough to contai~ the largest block to be written. Otherwise, all of
the space requested is allocated but erased as the system tries to
find a space large enough for the record.

Allocation by Tracks or Cylinder3: when the amount of space required
is expressed in terms of tracks or cylinders, you must also specify
the device type in the DD statement, e.g.:

// DD
// DD

--, SPACE= (TRK, (lOO,S»,UNIT=2301
--,SPACE=(CYL,(3,1»,UNIT=2311

Allocation by Absolute Address: If the data set contains
location-dependent information in the form of an absolute track
address, i.e., ~illBCCriHR, space shoul1 be requested in terms of the
number of tracks and the oeginning address, e.g.:

// DD --,SPACE=(ABSTR,(SOO,20»,UNIT=2311

where: 500 tracks are required beginning at relative track 20.

Additional Soace Allocation Options: The DD statement provides you
with a great deal of flexibility in specifying space requirements.
You can request tnat tne space be contiguous (CONTIG) or separated
(SPLIT). These and other options are described in detail in the
publication IBM System/360 Operating System: Job Control Language.

ESTIMATING SPACE REQUIRE~lliNTS

In order to determine how much space your data set requires, you
must consider a number of variables:

• Device type.
• Track capacity.
• Tracks per cylinder.
• Cylinders per volume.
• Data length (block size).
• Key length.
• Device overhead.

Table 16 lists the physical characteristics of a number of direct
access storage devices.

172

Table 16. Direct Access Storase Device Capacities
r--------T--------T-----------T---------------T-----------T------------,
I Device I Volume I Track I I No. of I 'Iotal I
I Type I Type I Capacity* I Tracks/Cylinder I Cylinders I Capacity* I
r--------t--------t-----------t---------------t-----------t------------i
I 2311 I Disk I 3625 I 10 I 200 I 7,250,000 I
I 2314 I Disk I 7294 I 20 I 200 I 29,176,000 I
I 2302 I Disk I 4984 I 46 I 246 I 56,398,944 I
I 2303 I Drum I 4892 I 10 I 80 I 3,913,600 I
I 2301 I Drum I 20483 I 8 I 25** I 4,096,600 I
I 2321 I Cell I 2000 I 20*** I 980*** I 39,200,000 I
t--------~-------~-----------~---------------~-----------~-----------_i
I *Capacity indicated in bytes. I
I **There are 25 l~ical cylinders in a 2301 Drum. I
I ***A volume is equal to one bin in a 2321 Data Cell. I L __ --____________________ J

The term "device overhead" refers to the space required on each
track for hardware data, i.e., address markers, count aread, gaps
oetween records, RO, etc. Device overhead varies with each device and
depends also on whether the blocks are written with keys. To compute
the actual space required for each block including device overhead,
you can use the formulas in Table 17.

Table 17. Direct Access Device Overhead Formulas
r------------T---,
I I Bytes Required by Each Data Block i
I ~---------------------------------T------------·-----------~
I Device I Blocks With Keys I Blocks Without Keys I
I ~--------------------T------------+_----------------T-----~
I I Bi I Bn I Bi I Bn I
r------------+--------------------+------------+-----------------+-----~
I 2311 I 81+1. 049 (KL+DL) I 20+KL+DL I 61+1.049(DL) I DL I
I 2314 I 146+1.043 (KL+DL) I 45+KL+DL I 101+1.043 (DL) I DL I
I 2302 I 81+1. 049 (KL+DL) I 20+KL+DL I 61+1.049(DL) I DL I
I 2303 I 146+KL+DL I 38+KL+DL I 108+DL I DL I
I 2301 I 186+KL+DL I 53+KL+DL I 133+DL I DL I
I 2321 I 100+1.049 (KL+DL) I 16+KL+DL I 84+1.049 (DL) I DL I
~------------~--------------------~------------~-----------------~-----i
I Bi is any block but the last on the track. I
I Bn is the last block on the track. I
I DL is data length. I
I KL is key length. I L __ J

The formulas can be combined in the following way:

If you intend to specify your space requirements in terms of tracks
(TRK) or cylinders (CYL), your estimate should be made as shown above.
If you request absolute tracks (ABSTR), remember that you cannot
allocate track 0, cylinder O. The amount of space required for the
volume table of contents will reduce the space available on the rest
of the volume.

On the other hand, if you specify your space requirements in terms
of average block length, the system performs the computations for you.

Because a. sequential data set and a direct data set are created in
the same way, the estimate and specification of space requirements are

I iaentical. If you use the WRITE SZ macro instruction, your secondary
allocation for a direct data set should be at least two tracks. Space
allocation for a partitioned data set requires that you also consider
the space used for the directory. Similarly, allocation for an

Section II: Data Management Services (Part 3) 173

indexed sequential data set requires that you consider the space
needed for the prime area, index areas, and overflo-w areas.

ALLOCF ... 'I'ING SPACE FOR A PARTITIONED D~TA SET

What is the average size of the members to be stored on your direct
access volume? How many members will fit on the volume? Will you
need directory entries for the member names only or will aliases be
used? How many? Will members be added or replaced frequently? All
of these questions must be answered if you are to estimate your space
requirements accurately and use the space efficiently. Note, too,
that a partitioned data set cannot extend beyond one volume.

If your data set will be quite large, or you expect to do a lot of
updating, it might be best to allocate a full volume. If it will be
small or seldom subject to change, you should make your estimate as
accurate as possible to avoid wasted space or wasted time used for
recreating the data set.

Because the characteristics of all the members of the data set must
be uniform, the record format could be specified as undefined
(RECFM=U) and the block size (BLKSIZ~) as a maximum length. It is a
good practice to indicate a block length equal to track capacity,
e.g., BLKSIZE=3625 for a 2311 disk. You-might then ask for either 200
tracks, or 20 cylinders, thus allowing for 725,000 bytes of data.

Assuming an average length of 70,000 bytes for each member, you
need space for at least 10 directory entries. ·If each member also has
an average of three aliases, space for an additional 30 directory
entries is required.

Space for the directory is expressed in terms of 256-byte blocks.
Each block contains from three to twenty entries, depending on the
length of the user data field. If you expect 40 directory entries,
request at least eight blocks. Because the space for the directory is
allocated in full track units, any unused space on the track is wasted
unless there is enough space left to contain a block of the first
member. Therefore, the most advisable request in this case would be
for 10 blocks.

Putting the space estimates into specification form, any of the
following would cause the same allocation:

SPACE=(3625,(200,,10»
SPACE=(CYL,(20,,10»)
SPACE=(TRK,(200,,10»

Although an increment has been omitted in these examples, it could
have been supplied to provide for extension of the member area. The
directory size, however, cannot be extended.

ALLOCATING SPACE FOR AN INDEXED SEQUENTIAL DATA SET

An indexed sequential data set can be divided into three areas:
prime, index, and overflow. Space for these areas can be subdivided
and allocated in several different ways:

• Prime area -- If you request space in terms of a prime area only,
the system automatically uses a portion of that space for indexe3,
taking one cylinder at a time as needed. Any unused space in the
last cylinder used for index will be allocated as an independent
overflow area. More than one volume can be used in most cases,
but all volumes must be of the same device type.

174

• Index area -- You can request that a separate area be allocated to
contain your cy'linder and master indexes. The index area must be
contained within one volume, but this volume need not be of the
same device type as the prime area volume. If a separate index
area is requested, you cannot catalog the data set with a DD
statement.

A slight variation for requesting an index area can be used if the
total space occupied by the prime area and index area does not
exceed one volume. In this case, you can request that the
separate index area be embedded in the middle of the prime area
(to reduce access arm movement) by indicating an index size in the
SPACE parameter of the DD statement defining the prime area.

If you request space in terms of prime and index areas only, the
system will automatically use any space remaining on the last
cylinder used for master and cylinder indexes for overflow,
provided the index area is on the same type of device as the prime
area •

• Overflow area -- Although you can request an independent overfloW'
area, it must be contained within one volume. If no specific
request for index area is made, then it will be allocated from the
specified independent overflow area.

'I'o request that a designated number of tracks on each cylinder be
used for cylinder overflow records, you must use the CYLOFL
parameter of the DCB macro instruction. The number of tracks that
you can use on each cylinder equals the total number of tracks on
the cylinder minus the sum of the tracks needed for track index
and the tracks required for prime data, that is:

Useable tracks

total tracks - (track index tracks + prime data tracks)

Note that when you create a one-cylinder data set, ISAM reserves one
track on the last cylinder for the end-of-file filemark.

Section II: Data Management Services (Part 3) 175

When requesting space for an indexed sequential data set, the DD
statement must follow a number of conventions, as shown below and
summarized in Table 18 •

• 'l'able 18. Requests for Indexed sequential Data sets
r-------------------------------T------------------T-------------------,
I Criteria I I I
~----------T----------T---------~ Restrictions on I I
11. Nurr~er 12. Types 13. Index I Unit Types and I Resulting I
I of DD 'I of DD 1 Size I Number of Units 1 Arrangement I
I Statements I Statements I Coded I Requested 1 of Areas I
t----------+----------+---------+------------------+-------------------~
I 3 I INDEX I I None Iseparate index, I
J I PRIME I I Iprime, and over- I
I I OVFLOW 1 I I flow areas. I
r----------+----------t---------t------------------+-------------------~
I 2 I INDEX 1 I None Iseparate index and I
I I PRIME 1 I Iprime areas. I
r----------+----------+---------t------------------+-------------------~
1 2 1 PRIME I No I None IPrime area and 1
I I OVFLOW I I loverflow area with I
I I I I Ian index at its I
I I I I I end. I
t----------+----------+---------+------------------+-------------------~
I 2 I PRIME I Yes IThe statement IPrime area and I
I I OVFLOW I Idefining the lembedded index, I
I I I Iprime area cannot land overflow I
I I I I request more than larea. I
I I I lone unit. I I
I I I I I I
I I I I 1 I
r----------+----------+---------+------------------+-------------------~
I 1 I PRIME J No I None IPrime area with I
I I I I I index at its end. I
I I I I IAny unused index I
I I I I larea will be used 1
I I I I Ifor independent 1
I 1 1 I I overflow. I
t----------t----------+---------t------------------t-------------------1
I 1 I PRIME I Yes IStatement cannot IPrime area with I
I 1 I Irequest more than lembedded index I
I I I lone unit. larea. I l __________ ~ __________ ~ _________ ~ __________________ ~ ___________________ J

• Space (SPACE) can be requested only in terms of cylinders (CYL) or
absolute tracks (ABSTR). If the absolute track technique is used,
the designated tracks must encompass an integral number of
cl'linders.

• Data set organization (DSORG) must be specified as indexed
sequential (IS or ISU) in both the DCB macro instruction and the
DCE parameter of the DD statement.

• All required volumes must be mounted when the data set is opened,
i.e., volume mounting cannot be deferred.

• If your prime area extends beyond one volume, you must indicate
the number of units and volumes to be spanned, e.g.,
UN IT= (2311, 3) , VOL Ul\1E= (, , , 3) •

• You can catalog the data set using the DD statement parameter
DISP=(,CATLG) only if the entire data set is defined by ont DD
statement, i.e., you did not request a separate index or
independent overflow area.

176

As your data set is created, the operating system builds the track
indexes in the prime data area. Unless you request a separate index
area or an embedded index area, the cylinder and master indexes are
built in the independent overflow area. If you did not request an
independent overflow area, the cyiinder and master indexes are built
from the prime area.

Note: If an error is encountered when allocating a multivolume data
set, the IEHPROGM utility program should be used-to scratcL the data
set control blocks of the data sets that were successfully allocated.
The IEHLIST utility program can be used to determine whether or not
part of the data set has been allocated. The IEHLIST utility program
is also useful to determine whether space is available or whether
identically named data sets exist before space allocation is attempted
for indexed sequential data sets. 'I'hese utility programs are
described in the publication IBM system/360 Operating System:
utilities.

SPECIFYING A PRIME DATA AREA

To request that the system allocate space and subdivide it as
required, you should code:

//ddname
//
//

DD DSNAME=dsname,DCB=DSORG=IS,
SPACE= (CYL, quantity, ,CONTIG) , UNIT=unitname,
DISP=t,KEEP),---

iou can accomplish the same type of allocation by qualifying your
dsname with the element indication (PRIME). This element is assumed
if omitted. It is required only if you request an independent index
or overflow area. To request an embedded index area when an
independent overflow area is specified, you must indicate
DSNAl'1E=dsname (PRIME) . To indicate the size of the embedded index, you
specify SPACE=(CYL, (quantity"index size».

SPECIFYING A SEPARATE INDEX AREA

In order to' request a separate index area, other than an embedded
area as described above, you must use a separate DD statement. The
element name is specified as (INDEX). The space and unit designations
are as required. Notice that only the first DD statement can have a
data definition name. The data set name (dsname) must be the same.

//ddname
//

DD DSNAME=dsname(INDEX),--­
DD DSNAME=dsname(PRIME),---

SPECIFYING AN INDEPENDEN'I' OVERFLOW AREA

A request for an independent overflow area is essentially the same
as for a separate index area. Only the element name, OVFLOw, is
changed. If you do not request a separate index area, only two DD
statements are required.

//ddname
//
//

DD DSNAME=dsname(INDEX),--­
DD DSNAME=dsnameCPRIME),--­
DD DSNAME=dsnameCOVFLOW),---

CALCULATING SPACE REQUIRElv.l.ENTS FOR AN INDEXED SEQUENTIAL DATA SE.T

To determine the number of cylinders required for an indexed
sequential data set, you must consider the number of blocks that will

C
C

Section II: Data Management Services (Part 3) 177

fit on a cylinder, the number of blocks that will be processed, and
the amount of space required for indexes and overflow areas. In
makinq the computations, consider additional space that is required
for device overhead as shown in Table 16. Remember the formula:

Blocks
per track

= 1 + Track capacity - Length of the last block
Length of other blocks

Bt = 1 + «Ct-Bn)/Bi)

step 1

Once you know how many records will fit on a track and the maximum
number of records you expect to create, you can determine how many
tracks you will need for your data.

Number of tracks = Maximum number of blocks + 1
required Blocks per track

ISAlYJ. load mode reserves the last prime data track for tne filemark.

~xample: Assume the existence of a 200,000 record part-of-speech
dictionary to be stored on an IBM 2311 Disk Storage Unit as an indexed
sequential data set. Each record in the dictionary has a 12-nyte key
(the word itself) and an 8-byte data area containing a part-of-speech
code and control information. Each block contains 50 records -­
LRECL=20 and BLKSIZE=1000. Using the formula from Table l6, we find
that each track will contain 3 blocks or 150 records. A total of
1333 1/3 tracks will be required for tne dictionary.

Bt = 1 + 3625 - (20 + 12 + 1000) = 1 + 2593 = 3
81 + 1.049(12 + 1000) 1143

Records per Track = (3 blocks) (50 records per block) = 150

Prime data tracks required (T) = 200,000 records + 1 = 1334 1/3
150 records per track

Step 2

You will want to anticipate the number of tracks required for
c}linder overflow areas. The computations formula is the same as for
prime data tracks, but you must remember that overflow records are
unolocked and a 10-byte link field is added. Remember, if you exceed
tne space allocated for any cylinder overflow area, an independent
overf~ow area is required. Those records are not placed in another
cylinder overflow area.

Overflow records = 1 + Track capacity - Lenqth of last overflow record
per track Length of other overflow records

Ot = 1 + «Ct-Rn)/Ri)

Example: Approximately 5000 overflow records are expected for the

I data set described in step 1. Since 29 overflow records will fit on a
track, 173 overflow tracks are required. This is approximately 2
overflow tracks for every 15 prime data tracks. Since the 2311 disk
has 10 tracKS per cylinder, it would probably be best to allocate 2
tracks per <cylinder for overflow.

Ot = 1 + 3625 - (20 + 12 + 20 + 10) =
81 + 1.049(12 + 20 + 10)

178

1 + 3563 = 29
126

I Overflow tracks required =
29

5000 records = 173
records per track

Overflow tracks per cylinder (Oc) = 2

Step 3

You will have to set aside space in the prime area for track index
entries. There will be two entries Cnormal and overflow) for each
track on a cylinder that contains prime data records. The data field
of each index entry is always 10 bytes. The key length corresponds to
the key length for the prime data records. dow many index entries
will fit on a track?

Index entries = 1 + Track capacity - Length of last index entry
per track Length of other index entries

It = 1 + CCCt-En)/Ei)

Example: Again assuming a 2311 disk and records with a 12-byte key,
we find that 35 index entries will fit on a track.

It = 1 + 3625 - (20 + 12 + 10) = 1 + 3583 = 1 + 34 = 35
81 + 1.049(12 + 10) 105

step 4

Tne number of tracks required for track index entries will depend
on the number of tracks per cylinder and the number of track index
entries per track. Any unused space on the last track of the track
index can be shared with prime data records if they will fit.

Number of track index
tracks per cylinder

= 2(Tracks per cylinder) + 1
Index entries per track + 2

Ic = C2Tc+1)/(It+2)

~ote: For variable-length reco~ds, the last track of the track index
is not shared with prime data records.

£xample: The 2311 disk has 10 tracks per cylinder. iou can fit 35
track index entries per track. Therefore, you need less than one
track for each cylinder:

Ic = 2(10) + 1 = 21
35 + 2 37

'l'ne space remainin<:i on the track is «1-21/37) (3625» = 1567 bytes.
This is enough for one block of prime data records. Since the normal
nurr~er of blocks per track is 3, the block uses one third of the
track, and the effective value of Ic is therefore 1-1/3 = 2/3.

steo 5

Next you have to compute the number of tracks available on each
cylinder for prime data records. You cannot include tracks set aside
for cylinder overflow records.

section II: Data Management services (~art 3) 179

Prime data
tracks per
cylinder

=
Tracks
per cylinder

Pc = Tc - Oc - ~c

- Overflow tracks - Index tracks
per cylinder per cylinder

Example: If you set aside 2 cylinder overflow tracks, and you require
2/3 of a track for the track index, 7 1/3 tracks are available on each
cylinder for prime data records.

Pc = 10 - 2 - 2/3 = 7 1/3

Step 6

The number of cylinders required for the prime data records, track
index area, and cylinder overflow area is determined oy the number of
prime data tracks required divided by the number of prime data tracks
available on each cylinder.

Number of
cylinders =
required

Prime data tracks reguired
Prime data tracks per cylinder

C = T/Pc

.l!:xample: iOU need 1333 1/3 tracks for prime data records. You can
~se 7 1/3 tracks per cylinder. Therefore, 182 cylinders are required
for your prime area and cylinder overflow areas.

C = 1333 1/3 = 181.9
7 1/3

Step 7

You will need space for a cylinder index as well as track indexes.
ThE.:re is a cylinder index entry for each track index, i.e., for each
cylinder allocated for the data set. The size of each entry is the
same as the size of tne track index entries; therefore, the number of
entries that will fit on a track is the same as the number of track
index entries. Unused space on a cylinder index track is not shared.

Number of tracks
required for
cylinder in:1ex

Track indexes + 1
Index entrie3 per track

Ci = (C+l)/It

Example: You have 182 track indexes. Since 35 index entries fit on a
track, ,},ou need 5.3 tracks for your cylinder index. The remaining
space on the last track is unused.

Ci = 182 + 1 = 5.3
35

Step 8

If you have a data set large enough to require master indexes, you
will want to calculate the space required according to the number of
tracks for master indexes (NTM parameter) you specified in the DCB
macro instruction or the DD statement.

180

I

If the cylinder index exceeds the NTM specification, an entry is
made in the master index for each track of the cylinder index. If the
master index itself exceeds the NTM specification, a second level
master index is started. Up to three levels of master indexes are
created if required.

The space requirements for the master index are computed in the
same way as the cylinder index.

Number of tracks = Cylinder index tracks + 1
required for Index entries per track
master indexes

M!l. = (Ci+1)/It when Ci>NTM

M2 = (M!l. +l)/It when M!l.>N'llM

M3 = (M2+1)/It when M2>N'I'M

Example: Assume that your cylinder index will require 22 tracks.
Since large keys are used, only 10 entries will fit on a track.
Assuming that NTM was specified as 2, 3 tracks will be required for a
master index, and two levels of master index will be created.

M!l. = (22+1)/10 = 2.3

surrmary: Indexed Sequential Space Requirement Calculations

1. How many blocks will fit on a track?

Bt = 1 + «Ct-Bn)/Bi)

2. How many overflow records will fit on a track?

Ot = 1 + «Ct-Rn)/Ri)

3. How many index entries will fit on a track?

It = 1 + «Ct-En)/Ei)

4. How many track index tracks are needed per cylinder?

Ic = (2Tc+1)/(It+2)

5. How many tracks on each cylinder can be used for prime data
records?

Pc = Tc - Oc - Ic

6. How many cylinders are needed for the prime data area?

C = --±:
Pc

7. How many tracks are required for the cylinder index?

Ci = (C+1)/It

8. How many tracks are required for master indexes?

M = (Ci+l)/It

Section II: Data Management Services (Part 3) 181

Control and Disposition of Data Sets
There are two levels of status and disposition of the data sets you

use for your processing. The status and disposition information mU3t
be provided to the system in the disposition field of the DD
statement, DISP=(status,disposition). The fir3t level deals with the
status of the data set when you begin processing and the relationship
of the data set to other job steps in your job or other jobs. 'l'he
second deals with what is tooe done with the data set when you have
completed processing. It is at tnis level of control and disposition
that you can take advantage of the cataloging facilities of the
operating system.

A aata set that is being used for input has a status of OLD. If it
can be used by more than one job, the status should be specified as
SH~. If you are going to add to the input data set, specify MOD. The
system automatically positions the access mechanism a.fter the last
record when the data set is opened. A NEW output data set 3hould be
so indicated.

Having identified the status of the data set at the beginning of
your job step, you should specify how you want it disposed of at the
end of processing. If the disoosition is to be unchanged, you need
not specifyanything more. The status of an existing data set remains
unchanged; a new data set is deleted.

The requested disposition is performed at the end of the job step.
A data set to be used in a later job can be kept (KEBP) until a
subsequent request is made to DELETE it. If the data set is to De
used by more than one job step. in the same job, you can specify that
it is to be passed (PASS).

The most useful disposition provided by the system is the
cataloging facility (CATLG). The data set name is recorded by the
system and its volume noted. An old data set can subsequently be
removed from the catalog if you so request (UNCATLG).

If you wish, you can specify one disposition to be performed if the
job step terminates normally, and a different disposition to be
performed if tne job step terminates abnormally. For example, you can
specify DISP=<OLD,DELETE,KEEP) if you wish to aelete a data set under
normal conditions, but wish to keep it if processing is abnormally
terminated. For normal termination, you can specify any disposition
-- PASS, KEEP, DELETE, CATLG, or UNCATLG; for abnormal termination,
you can specify any disposition except PASS.

ROUTING DATA SETS THROUGH THE OUTPUT STREAM

Data sets that are to be printed or punched can be routed through
the output stream. This allows ~reater flexibility in scheduling
print and punch operations, and improves operating system efficiency.

when you route a data set through the output stream, you do not
requeat a unit record device for exclusive use by your job ste?
Instead, you assign the data set to an output class, which may include
data sets from many different jobs. Output classes are identified by
the letters A-Z and the digits 0-9. Each is associated with a
specific device type. By convention, class A consists of high
priority output to be printed (e.g., a listing of job control
statements), and class B consists of output to be punched. Other
classes are def~ned by the installation.

To route a da~a set through the output stream, and to assign it to
class A, you wo~ld simply code SYSOUT=A in the DD statement. No other

182

parameters are necessary. A description of other parameters that can
be coded appears in the publication IBM System/360 Operating System:
JOon Control Lanquage.

In a system with the primary control program, you write a SYSOUT
data set directly onto the system output device. This device is
assigned to the output class by the operator; it may be either a unit
record device or a magnetic tape unit. If it is a tape unit, the
operator is responsible for transcribing the tape on a punch or
printer. Depending on the output class and on the installation, the
tape may De transcribed during a later shift or on a smaller, offline
computing system.

In a system with MFT or MVT, you write a SYSOUT data set in one of
two ways, as determined by the operator. Either you write the data
set directly onto the system output device, or you write the data set
into intermediate storage on a direct access device. In the latter
case, a system output writer automatically copies your data set onto
the system output device after your job has been completea. The
system output device can be either a unit record device or a magnetic
tape unit, as is true in systems with PCP.

Note: The following discussion assumes that, Ior systems with ~FT and
MVT, system output data sets are written into intermediate storage and
copied by a SYSOUT writer. ~hen these data sets are written directly
onto the system output device, they are handled as described for
systems with PCP.

OPENING A SYSOUT DATA SET

You open and close a SYSOUT data set in the same way as any other
data set. If specified in an exit list, the data control Dlock exit
routine is entered in the usual manner. An exit list should not
specify user label exits, because you cannot write labels on a unit
record device.

If you observe certain restrictions, which are indicated below, you
can create several SYSOUT data sets during a single job step.

Data Sets That Are Open Concurrently: In a system with the prirrary
control program, only one of a grou9 of concurrently open data sets
can be assigned to an output class for which the SYSOUT device is a
magnetic tape unit. If necessary, you can assign data sets to class A
and a maximum of seven other output classes.

If a punch or printer is used as a SYSOUT device, any number of
data sets can be assigned to one output class. The data control
blocks for all these data sets can refer to the same DD statement.
When printed or punched, the data sets appear as a single data set
because their records form a single chronological sequence.

In a system with MFT or fvWT, SYSOUT data sets must always be
defined by separate DD statements. They can be assigned to the same
output class or to different output classes. There is no special
restriction on the number of output classes that can be used.

Data Sets 'That Are Not Open Concurrel1tly: 'ro avoid having two data
sets open concurrently, you can open and close each data set as often
as required. In a system with the primary control program, records of
the two data sets will form a single chronological sequence if the
data sets belong to the same output class.

In a system with ME'T or MVT, records of two data sets do not form a
chronological sequence, because you write each data set into a

Section II: Data Management Services (Part 3) 183

separate area of intermediate direct access storage. When copied by a
SYSOUT writer, data sets are written on the SYSOUT dev'ice in the order
of their DD statements.

WRITING A SYSOUT DATA SET

To create a SYSOUT data set, you can use either the basic
sequential or the queued sequential access method. You can write
records in any format defined for the type of unit record device on
which the data set is to be written. Record length must not exceed
the maximum allowable for the device.

Under I~T or MVT, when you use the queued sequential access method
(QSAM) with fixed blocked records or the basic sequential access
method (BS&~), the DCB block size parameter does not have to be a
multiple of logical record length (LRECL) if the block size is
s2ecified through the SYSOUT DD statement. Under these conditions, if
block size is greater than LRECL but not a multiple of LRECL, block
size is reduced to the nearest lower multiple of LRECL when the data
set is opened. This feature allows a cataloged procedure to speci~y
olocking for SYSOUT data sets, even though the user's LRECL is not
known to the system until execution time. Therefore, the SYSOU'l' DD
statement of the Go step of a compile-Ioad-go procedure can specify
block size without block size being a multiple of LRECL. For further
information, refer to "Creating Data sets in the Output stream" in the
publication IB~ System/360 Operatina System: Job Control Language
User's Guide.

Because a SYSOUT data set may be written on a magnetic tape or
direct access device, it must be device-independent. You should
tnerefore omit the device dependency operand in the DCB macro
instruction, or should code it as DEVD=DA.

Your SYNAD routine is entered on errors that occur when the data
set is first written. In a system with the primary control program,
it is entered "when you write the data set on the system output device.
In a sl'stem with MFT or l'lVT, it is entered when you writ:.e the data set
into intermediate storage on a direct access device.

Your program is responsible for printing format, pagination, and
header control. Use of control characters must be indicated in the
usual way in the data control block. If you do not use control
characters, a standard control is supplied in systems with MFT or MVT.
Wnen channel 12 is sensed, a printer will space one line and skip to
channell; a card punch will select punch pocket 1.

In a system with M~~ or MV£, cards can be punched only in EBCDIC
mode.

CONCATENATING SEQUENTIAL AND PARTITIONED DATA SETS

Two or more sequential or partititioned data sets can be
automatically retrieved by the system and processed successively as a
single data set. This reading technique is known as concatenation. A
reaximum of 255 data sets (16, if partitioned) can be concatenated, but
they rr.ust be used only for input. To save time when processing two
consecutive data sets on a sing"le volume, you specify LEAVE in your
OPEN macro instruction. concatenated data sets cannot be read
backwards.

When data sets are concatenated, the system treats the group as a
single data set and only one data extent block (DBB) is constructed.
Thus, it is important to consider the characteristics of the

184

individual data sets which are being concatenated. Data sets with
like characteristics are those which may be processed correctly using
the same data control block (DCB), input/output block (lOB), and
channel program. Any exception makes them "unlike". The system must
be informed.if "unlike" data sets are concatenated. This is
accomplished by modifying the DCBOFLGS field of the data control
block. The indication must be made before the end of the current data
set is reached. You must set bit 4 to one oy using the instruction 01
DCBOFLGS,X'08' as described in "Modifying the Data Control Block". If
the DCBOFLGS field is X'OS', end-of-volume processing for each data
set will issue a CLOSE for the data set just read and an OPEN for the
next concatenated data set •. This procedure causes the updating of the
fields in the DCB, and if necessary, the building of a new lOB and
channel program. Unless you have some way of determining the
characteristics of the next data set before it is opened, you should
not reset the field to indicate "like" characteristics during
processing.

When "unlike" data sets have been concatenated, we urge that you do
not issue multiple input reguests, i.e., a series of READ or GET macro
instructions in your program. Otherwise, you will have to arrange
some way to determine which requests have been completed and which
must be reissued. In any case, the GET or READ macro instruction that
detected the end of data set will have to be reissued. Figure 37
illustrates a pos3ible routine for determining when a GET or READ must
be reissued. This restriction does not apply to "like" data sets
since no open or close operation is necessary between data sets.

Process

Figure 37.

On Set
~----~ Reread Switch

Off

Set
Reread Switch

On

*Retums are to control

Yes

program address in register 14

Reissuing a READ for "Unlike" Concatenated Data Sets

Set
OFLAGS
to X'08'

When the change is made from one data set to another, label exits
are taken as required; automatic volume switching is also performed
for multiple volume data sets. Your end-of-data-set (EODAD) routine
is not entered until the last aata set has been processed. An
exception to this arises with partitioned data sets. Your EODAD
routine receives control at the end of each member. At that time, you
can process the next member or close the data set.

section II: Data Management Services (Part 3) 185

Further discussion and examples of concatenated data sets are
contained in the publication IBM System/360 Operating System: Job I Control Language Reference.

CATALOGING DATA SETS

To provide the cataloging facilities of the operating system, a
catalog is created that is itself a data set residing on one or more
direct access volumes. It is organized into levels of indexes that
connect the" data set names to corresponding volumes and data set
sequence numbe~s. For each level of qualification in the data set
name, there is an index group in the catalog.

The highest level of the catalog resides on the system residence
volume. The volume table of contents (VTOC) contains an entry for the
data set control block (DSCB) defining the catalog and its highest
level index, the volume index. The lowest level index contains the
simple name of the data set and the number of the volume on which it
resides.

The complete catalog can exist on the system residence volume, or
you can specify that parts of it be constructed on other volumes. Any
volume containing part of the catalog is called a control volume. The
use of control volumes allows data sets that are functionally related
to be cataloged separately. There are several advantages:

• Control volumes can be moved from one processing system to
another.

• System residence requiremen~s can be reduced by placing seldom
used indexes on a centrol volume.

For any given data set, only one level of control volume, other
than the system residence volume, can be used. Notice that in Figure
38, INDhX E, which is the highest level on the control volume, has an
entry in Doth volume indexes.

The same type of cataloging facilities are available for
maintaining generation data groups. Cataloging each new generation
with a unique name would be both inconvenient and inefficient. By
cataloging individual data sets in a chronological collection by
number, the entire collection can be stored under a single data set
name.

Each update of the data set is called a aenerationi the number
associated with it is called a generation number. A generation data
aroup is the entire collection of chronologically related data sets
that can ne referred to by the same data set name. A particular
generation can be referred to ny eitner the absolute generation name
or relative generation number of the data set.

ABSOLUTE GENERATION NAME: The operating system assigns each data set
in the generation data group an absolute generation name in the form
GgqqaVvv:

• ggg"g is an unsigned, four digit, decimal generation number.

• vv is an unsigned, two digit, decimal version number.

186

Index
B

Data
Set
B.F

Figure 38.

Residence Volume

Volume Table of Contents

Data
Set
B.G

Data
Set

E.A.L

Catalog Structure on Two Volumes

I Volume

Volume Table of Contents

Data
Set

E.A.P

The generation numoer indicates how far removed the data set is
from the original generation. The version number indicates how many
times the associated generation ha3 been replaced. Only the most
recent version of a specific generation is retained.

Generation Increment: You can specify the increment by which the
generation number is changed. For example, if you request a current
generation G0013V04 and an increment of 2, the new generation would be
assigned the absolute generation name G0015VOO.

Version Increment: Wnen you replace tne same generation with a new
version, it is your responsibility to assign the new, nonzero version
number.

CONCATENATED GENERATIONS: You can request a concatenation of all
existing data sets in the generation data group, starting with the
most recent and ending with the oldest, by specifying only the data
set name.

RELATIVE GENERATION NUMBER: Rather than request a data set by its
aosolute generation number, you can refer to it relative to the most
recent generation, i.e., DSNAME=dsname(O). Those immediately
preceding the most recent are then identified as -1, -2, etc. New
generations are created by referring to them as
DSNAME=name(+1),(+2), (+3), etc. The last of these is cataloged as (0)
and the other generations in the catalog are adjusted accordingly at
the end of the job.

ENTERING A DATA SET NAME IN TrlE CATALOG

The catalog structure, including all levels of indexes, is
initially created orrnodified by the system utility program IEHPROGM.
A data set name can then be entered if the proper index levels of the
name exist.

Section II: Data Management Services (Part 3) 187

For example, if a data set named A.B.C is to be cataloged, the
volume index on the system residence volume must have an index entry
for index A, which must point to an index B. When the data set A.B.C
is cataloged, C is entered into index B along with the volume serial
nmnber where data set A.B.C resides. The cataloging request is
entered as:

//ddname DD DSNAME=A.B.C,DISP=(,CATLG)

ENTERING A GENBRATION DATA GROUP IN THE CATALOG

A data set that is part of a generation data group is represented
in the catalog by an additional level of indexing that contains an
entry for each generation. The system utility program IErlPROGM is
used to create the index levels and to instruct the system as to how
the .generations are to be maintained.

CONTROL OF CONF'IDEN'I'IAL DATA -- PASSWORD PROTECTION

In addition to the usual label protection that prevents opening a
data set without the correct data set name, the operating system
provides a data set security facility that prevents unauthorized
access to confidential data. A security protected data set cannot be
ITlade available for [trocessing unti I a password is entered by the
operator. If an incorrect password is entered twice, the job is
t€rminated by the system.

fou can request password protection when the data set is created.
The system sets the data set security byte in the Standard Data Set
Label 1 as shown in tne publication, IBM System/360 Operating S"lstem
Tapt:; Labels. Once security protection has been requested, it cannot
oe removed without recreating the data SEt and scratching the
protected data set.

Each protected data set nas at least one entry in a catalog named
~ASS·tlORD tl1at must be created on the system residence volume. Each
entry in the password data set consists of a 44-byte data set name
field and an 8-nyte password field. The next SO-byte record contains
a 2-byte binary counter that is incremented oy one each time the
protected data set is opened successfully. The third byte is used to
indicate that the processina program can read, write, or both read and
write records on the protected data .3et~ The remaining 77 bytes can
oe used at the discretion of your installation.

The passwora data set can also be protected by a master password
contained in one of its entries. A complete description of password
protection is contained in the publication IBM System/360 Operating
system: System Programmer's Guide.

188

Appendix A: Direct Access Labels

Only standard label formats are used on direct access volumes.
Volume, data set, and optional user labels are used (see Figure 39).
In the case of direct access volumes, the data set label group is the
data set control block (DSCB).

Tracks

Cylinder

All Remaining Track of
Volume

Figure 39. Direct Access Labeling

VOLUME LABEL GROUP

[

[

Volume Label

-\ Additional Labels
(Optional) _

-1

VTOC DSCB

Space Acctg DSCB

DSCB No.1

DSCB No.2

D~

)

VTOC

...

Blank Storage Area
for Data Sets

The volume label group immediately follows the initial prog-ram
loadinq (IPL) records on track 0 (of cylinder 0) of the volume. It
consists of the initial volume label plus a maximum of seven
ad6itional volume labels. The initial volwne label identifies a
volume and its owner, and is used to verify that the correct volume is
mounted. It can also be used to prevent use of the volume by
unauthorized programs. The additional labels are processed by means
of an installation routine that is incorporated into the system.

The format of the direct access volume label group is shown in
Figure 40.

A?pendix A: Direct Access Labels 189

DIRECT ACCESS VOLUME LABEL FORMAT

Field 1

2

3

4

5

6

7

8

~~

(3)

(1)

(6)

(1)

(10)

(10)

(10)

(10)

(Up to 7 Additional Volume Labels)
80 Byte Physical Record

....

Volume Label Identifier (VOL)

Volume Label Number (1)

Volume Serial Number

Volume Security

VTOC Pointer

Reserved for Manufacturers (Blank)

Reserved (BI ank)

Owner Name and Address Code

Blank

Figure 40. Initial Volume Label

Volume Label Identifier (VOL): Field 1 contains the initial volume
label.

Volume Label Number (1): :I!'ield 2 identifies tile relative position
of the volume label in a volume label group. It must be written as 1.

The operating system identifies an initial volume label when, in
reading the initial record, it finds that the first four characters of
the record are VOLle

Volume Serial Number: Field 3 contains a unique identification
code assigned when the volume enters the system. . tou can place the
code on the external surface of the volume for visual identification.
The code is normally numeric (000001-999999), but may be any six
alphameric characters.

Volume security: Field 4 is reserved for future use by
installation that wish to provide security at the volume level. It
must oe written as o.

VTOC Pointer: Field 5 of direct access volume label 1 contains the
addresd of the volume table of contents (VTOC).

Reserved for Manufacturers: Field 6 is reserved for future
standardization purposes. Leave it Dlank.

Reserved: Field 7 is reserved for future developmental purposes.
Leave it blank.

190

Owner Name and Address Code: Field 8 contains a unique
identification of the owner of the volume.

All of the bytes in Field 9 are left blank.

DA'I'A SET CONTROL BLOCK (DSCB) GROUP

The system automatically constructs a DSCB when space is requested
for a data set on a direct access volume. Each data set on a direct
access volume has a corresponding data set control block to describe
its characteristics. The DSCB appears in the volume table of contents
(VTOC) and contains operating system data, device-dependent
information, and data set characteristics, in addition to space
allocation and other control information. The format of the DSCB is
illustrated in IBM System/360 Operating System: system Control
Blocks.

USER LABEL GROUPS

User header and trailer label groups can be included with data sets
of physically sequential or direct organization. The labels in each
group have the format shown in Figure 33.

Bach group can include up to eight labels, but the space required
for both groups must not be more than one tracK on a direct access
device. The current minimum track size allows a maximum of eight
labels, including both header and trailer labels. Consequently, a
program becomes device-dependent (among direct access devices) when it
creates more than eight labels.

If user labels are specified in the DD statement (LABEL=SUL), an
additional track is normally allocated when the data set is created.
No additional track is allocated when specific tracks are requested
(SPACE=(ABSTR, ••• », or when tracks allocated to another data set are
requested (SUBALLOC= •••). In either case, labels are written on the
first track that is allocated.

User Header Label Group: The operating system writes these labels as
directed by the problem program recording the data set. The first
four characters of the user header label must be UriLl, .•• , UHL8; you
can specify the remaining 76 characters. When the data set is read,
the operating system makes the user header labels available to the
problem program for processing.

User Trailer Label Group: These labels are recorded Cand processed)
as explained in the preceding text for user header labels, except that
the first four characters must be UTL1, •... , UTL8.

Appendix A: Direct Access Labels 191

USER HEADER ANB TRAILER LABEL FORMAT

Field (3)

2 (I)

(76)

(Maximum of 8)
80 Byte Physical Record

.....

Label Identifier (UHL if Header, un if Trailer)

Label Number (1-8)

User Specified

:r'igure 41. User Header and Trailer Labels

Lanel Identifier: Field 1 indicates that this is a user neader label
(UHL). UTL indicates a user trailer label.

LabeL Number: Field 2 identifies the relative position (1-8) of the
label within the user label group.

User Specified: Field 3 (76 bytes).

192

Appendix B: Control Characters

As an optional feature, all record formats may include a control
character in each logical record. This control character will be
recognized and processed if a data set is being written to a printer
or punch.

For format-F and -u records this character is the first byte of the
logical record.

For format-V records it must be the fifth byte of the logical
record, immediately following the record descriptor word.

Two options are available. If either option is spe9ified in the
data control block, the character must appear in every record and
other line spacing or stacker selection options also specified in the
data control block are ignored.

Machine Code

You can specify in the data control block that the machine code
control character has been placed in each logical record. If the
record is to be written, the appropriate byte must contain the command
code bit configuration specifying both the write and the desired
carriage or stacker select operation. If the record is not to be
written, the byte can specify any command other than write.

Comwand codes for specific devices are contained in IBM System
Reference Library publications describing the control units or
devic€~.

Extended American National Standard Code for Information Interchange

In place of machine code, you can specify control characters
defined by the American National standards Institute, Inc. (ANSI).
These characters must be represented in EBCDIC.

Appendix B: Control Characters 193

The extended American National Standard Code for Information
Interchange (ASCII) is as follows:

Code
-b-

o

+
1
2
3
4
5
6
1
8
9
A
B
C
V
W

Action Before Writing Record
Space one line before printing (blank code)
Space two lines before printing
Space three lines before printing
suppress space before printing
Skip to channel 1
Skip to channel 2
Skip to channel 3
Skip to channel 4
Skip to cnannel 5
Skip to channel 6
Skip to channel 1
Skip to channel 8
Skip to channel 9
Skip to channel 10
Skip to channel 11
Skip to channel 12
Select punch pocket 1
Select punch pocket 2

These control characters include those defined by ANSI FORTRAN. If
any other character is specified, it is interpreted as 'b' or V,
depending on the device being used; no error indication is returned.

194

ABE error option 93
ABEND macro 'instruction 44-49

handling an abnormal condition 44
issued when job step task active 44
issued during task beside job step

task 45
obtaining a dump 49
STEP operand 44

Abnormal condition
attempting error recovery from 44
control program abnormal termination

routine 44
detection 44
handling 43-49
handling by ABEND 44

Abnormal termination
from DEQ 31,32
from ENQ 31,32
interception 45-49
of job step 45
from program interruption 39
restart after 59
routine 44

Absolute qeneration name 186
Absolute (actual) address 87,166,172
ACC error option 93
Access method

defined 74
selecting 110

Access techniques
basic 74,106-108
queued 74,105-106

Actual track address (MBBCCHHR) 87,166,172
Additional entry points 28
Address, direct access

absolute (actual) 87,166,172
relative 87,137,167

Alias
effect on, of changing directory

entry 140
number allowed for member of partitioned

data set 136
Alignment, buffer 115,117,121-122
Answer area 89
Allocation

(see main storage management; space
allocation)

ANSI (American National Standards
Institute, Inc.) 195-196

AntiCipatory buffering
omitted with basic access

technique 106,133,160
with queued access teChnique 105

ASCII control character 126,133,193-194
ATTACH macro instruction

creating subpools 54
ECB operand 19,26,27
ETXR operand 19,26
under MVT 6,23

Index

under PCP, MFT without subtasking 19
restriction 19
warning for using task control block 27

Automatic cataloging of data sets 76
Automatic error options (EROPT) 93

Backspace
by BSP 129
by CNTRL 129

Sase reqister
initial 2
permanent 4

Basic access technique
blocking 165
buffer control 114
definition of 74,106
uses

creating data sets 133 '-"
with direct data sets 164
with partitioned data set8 138
with indexed sequential data

sets 145,148,149,160
BDAM CREATE

effect on chained scheduling 132
BFTEK field 83.107,118
Bin, data cell 76,87
BINTVL 34
BLDL macro instruction

required for DE operand 15
description 139
example 19
updating a partitioned data set 143
use 138-139,142,143
using with LINK macro instruction 19
using with LOAD macro instruction 20

BLKSIZE field
device independence 132
requirement for direct data set 165

Block count exit routine 100-101
Block, data

definition 78
descriptor word (BOW) 80
(see also record format)

Block, defined 78
Block descriptor word (BOW) 80
Block size (BLKSIZE) field 90

effect of data check on 78
Blockina

automatic 105
defined 78
with basic access technique 165
with checkpoint/restart 64
with fixed-length records 78-79
with variable-length records 79~84
with undefined-length records 84-85
usefulness 78

Boundary alignment
buffer 115,117,121-122
data control block 101

Index 195.

Branching table
example 10
use when passing control with return 10

BSP macro instruction 129-130
Buffer

acquisition and control 114-125
alignment 115,117,121-122
defined 114
direct control 114,118,124-125
dynamic control 114,118
length (BUFL) 115,128,151
number (BUFNO) 115
pool 114
segment 114
(see also GETBUF; FREEBUF; FREEDBUF;

RELSE; TRUNC)
Buffer pool construction 115-116

automatic 116
examples 116-117
explicit 115-116
static 115
(see also BUILD; GETPOOL; FREEPOOL)

Buffering
dynamic 114
requirements 91
techniques

exchange 114,120-123
simple 114,118-120
summary 123-124

Build list format 139
BUILD macro instruction

description 115
with indexed sequential data set 151

BUILDRCD macro instruction 115-116

CALL macro instruction
expansion 9
passing control using 20

Calling program, defined 1
Calling sequence identifier

defined 29
specified in CALL or LINK macro

instruction 29
Cancel

at abnormal termination 47
current STAE request 46
time interval 34

CANCEL operand
in CHl<PT 61
in TTl MER 36
(see also timing services)

Capacity
cylinder 77,171-181
record 86
track 79,85,155,171-181
used by the dump program 28

Card punch (PC), record format
with 127-128

Card reader (RD)
record format with 127-128
restriction with CNTRL macro

instruction 129
Carriage control 79,84-85,193-194

(see also CNTRL; PRTOV)
Catalog, system 186

e196

control volumes 186
entering a data set name 187-~88
entering a generation data group 188

Cataloging data sets
automatic 76
defined 73

CCW
(see channel command word)

Chained scheduling 125,132-133
restriction with partitioned data

set 143
Changing an address in the data control
block 102

Channel command word (CCW)
address of 93
creation by OPEN 110-111
PCI flag in 132
use in exchange bufferinq 121-122
use in simple buffering 118

Channel program
execute (EXCP) 110
number of (NCP) 106

Channel separation and affinity
(SEP/AFF) field 91

CHAP macro instruction 24-27
dispatching priority 25
initial dispatching priority 24
limit priority 25
warning for using TCB operand 27

Character set, changing 129
Characteristics, load module 6
CHECK macro instruction

DECB 108
description 108
updating a partitioned data set 143
use with SYNAD routine 93-94
using WAIT instead 108,160,168

Checkpoint and restart 59-70
data sets using 63-66

direct access 65-66
disposition 63-64
dummy 66
partitioned 65
preallocated 66
preserving contents of 64-65
SYSIN 64
SYSOUT 64

restarting a job step 68-70
(see also checkpoints; checkpoint data

sets; restart)
Checkpoint data sets 67-68

alternating use 68
closing 67-68
defining 67
opening 67-68
positioning 68
space considerations 68
using 67-68

Checkpoint DD statement
for deferred restart 69
examples 68
requirement 67

Checkpoints
assigning identification of 69-70
data management and 62-67

establishing 60-67
by CHKPT macro instruction 1

restriction with rollout/rollin 60
restriction with STIMER and WTOR 60
suppressed with preallocated data

sets 66
with serially reusable resources 62
(see also checkpoint and restart;

checkpoints; restart)
CHKPT macro instruction 60-61

CANCEL operand 61
requesting identification of

checkpoints 69-70
restriction with rollout/rollin 60
restriction with 'STlMER and WTOR 60
return codes 61
selecting checkpoints 60-61
use in end-of-volume exit routine 100
used to establish checkpoints 61

CLASS parameter of JOB statement with
MFT 25

CLOSE macro instruction
function 110
for more than one data set 112
with partitioned data set 140
temporary close option 112
TYPE=T 112
for more than one data set 112
volume positioning 111,112

Closing a data set 110-113
CNTRL macro instruction 129

device dependence 132
effect on track overflow 132-133
restriction with BSP macro

instruction 129-130
Completion code

in task control block 33
written on SYSOUT for task

termination 45
(see also return code)

Concatenation
defined 184
of generations 187
of partitioned data sets 184-186
of sequential data sets 184-186
of unlike data sets 184-186

COND parameter
EXEC statement 12,44
JOB statement 12,44

Condition, exceptional
analysis of 109
SYNAD routine 92
testing for 105,108
(see also abnormal condition; CHECK;

WAIT; wait condition)
Conditional requests

from DEQ 31-33
from ENQ 31-33
from GETMAIN 51-52

Configurations of the operating system
summary 1
options 1

Control character (C)
ASCII 126,133,193-194
carriage 128

explained 85,193-194
with fixed-length records 79
machine code 126,193
specifying 85,193-194
effect of omission for SYSOUT data

set 184
with undefined-length records 84

Control errors 93
Control volume, defined 186
Conversion

BCD to EBCDIC 126-127
paper tape 127
randoroizing 165

Core storage
(see main storaqe; main storage

hierarchy support)
Count area 86-88

device overhead 173
hardware 151
ISAM index entries 147

Cross reference table with direct data
sets 165

Cylinder
allocation by 172
capacity 77
definition 85
index 145-147,180-181
nloqical" 173
overflow (CYLOFL) 145,157,175

DASDI 171
Data access techniques

(see access techniques)
Data control block (DCB)

attributes of, determining 101
changing an address in 102
.:=ompletion 89
creation by DCB macro instruction 880
description 89-91
dummy control section 101
exit 100
fields 90
modifying 88,100,101-103
primary sources of information 88-89
reopening, with exchange buffering 121
restriction for direct access

devices 111
restriction for DD name 111
sequence of completion 89
use 75

Data control block exit 100
Data control block (DCB) field 90
Data definition name (DDNAME) field 90
Data definition (DD) statement

fields 90-91
relationship to DCB 88-90
relationship to JFCB 88-89
use 75

Data errors 93
Data event control block (DECB)

checking for errors 106,107
description of 108

Data format in sequential
organization 125-128

Data management, introduction to 73-104

Index 197.

Data management facilities 73-74
Data mode processing 117-118
Data processing techniques 105-115

basic access technique 106-108
end-of-volume processinq 113-114
error handling 108-110
queued access technique 105-106
opening and closing a data set 110-113
selecting an access method 110

Data set
characteristics 73-75
control block (DSCB) 65
definition 78
description 90-91
disposition 182-188

cataloging 182,186-188
concatenation 184-186
password protection 188
status 182

disposition (DISP) field 91
identification 75
label

contents 76
(see also magnetic tape volumes;

labels, direct access)
label (LABEL) field 91
like characteristics 185
name 75
name (DSNAME) field 90
organization 74

(see also direct data set: indexed
sequential data set: partitioned
data set; sequential data set)

organization (DSORG) field 90
output class 182,183
record formats

(see record formats)
routing, through the output

stream 182-184
security 188
sequence number 77
sharing 102-103
space allocation for direct access

volumes 171-181
estimation 172-173
for indexed sequential data

sets 174-181
for partitoned data sets 174
specification 171-172

storage 76-78
direct access 76
magnetic tape 77

SYSOUT 183
opening 183-184
writing 184

unlike characteristics 185
unmovable

indication 87,90,166
partitioned 137

warning for concatenation 185
DCB

(see data control block)
DCB macro instruction

• 198

creatinq data control block 88
defining checkpoint data sets 67

DCB operand for ATTACH, LINK, LOAD, and
XCTL 23

DCBINDl field 121
DCBD macro instruction

restriction on use 102
use 101-102

DCBNCRHI field 155
DD statement fields 90-91
DE operand

of ATTACH 23,58
of LINK 58
of XCTL 58

Deblocking 14,80,84,105,106,165
Defer nonstandard input trailer label
exit 101

DELETE macro instruction 58
using after LOAD macro instruction
using to lower responsibility count

Deletion

DEN

of member name 135,143
of indexed sequential data set

records 151,157

(see magnetic tape density)
DEQ macro instruction

proper use 31-33
using the list oand execute forms 57

DESC operand 37
Descriptor codes (with MCS) 36

causinq an * in the message 36
Descriptor word

contents of first 4 bytes 80

17
17

(see also block descriptor word, record
descriptor word)

Designing programs, requireroents for 1-22
DETACH macro instruction 26-27,44-45
DEVD field 126,132
Device control for sequential data
sets 128-130

Device-dependent macro
instructions 128-130

Device independence 01 30-132
Device type considerations for data format

sequential organization 125-128
DEVTYPE macro instruction 154-155
DINTVL 34
Direct access storage

access mechanism 85
advantages 85
device characteristics 85-89
record format 128
track addressing 87
track, defined 85
track format 86
track over!low 87-88
write validity check 88

Direct access volumes 76-77
labels 76,189-192

Direct addressing 165
Direct data set

access technique 164
adding records 167-169
creation 167

multivolume direct data set 169
user labels 169

extended search option 166
organization 165
processing 164-169
record format 128
record reference 165-166
updating records 167-169

with exclusive control 166
Format F with keys 167
Format F without keys 167-168
Format U or V with keys 168
Format U or V without keys 168

Direct organization 74
(see also direct data set)

Directory
(see partitioned data set)

Disk drive
(see 2302 disk storage; 2311 disk drive;

2314 storage drive; 2321 data call)
Dispatching priority 23-26

available in task control block 33
caution about its value 24
computing 23-24
defined 23
(see also priority)

Dispatching priority, initial 23
DPRTY parameter of EXEC statement 23,24
specifyin~ 24
lowering, using CHAP macro

instruction 24
Disposing of the message to the operator

(with MCS) 36,39
Disposition of data sets

(see data set)
DOM macro instruction 39
DPMOD operand 24
Drum storaqe

(see 2301 drum storage; 2303 drum
storage)
DSCB (data set control block)

defined 65
DSE.CT 101
DSNAME field 66,90,177
DSORG field

described 90
device independence 132
with indexed sequential data set 156
with partitioned data set 138,140-142

Dummy control section for DCB 101
Dummy data sets

defining 66
use with checkpoint and restart 66

DUMMY parameter of DD statement 66
Dummy record

with direct access data set 166,167
Dump 49-50

contents 49
data set 49
indicative 50
obtaining 49-50

via ABEND 49-50
via SNAP 50

requirements 49-50
DUMP operand of ABEND 49
Dynamic buffering

buffer pool construction 114,118

release of 125
(see also READ; RELEXi WRITE)

Dynamic structure 5-6,12-13

ECB
(see event control block)

ECB operand of ATTACH
effect on task termination 45

Element type (E) explicit request for main
storage 51

Embedded index area 175,176
End-of-da'ta routine (EODAD) 92

with concatenated data sets 185
End-of-task exit routine 33
End-of-volume

condition 105
exit 100
processing 113-114
(see also FEOV) .

ENQ macro instruction
control program processing of 30-31
controlling load module use 20
exclusive control 30
proper use 31-33
requesting control of a resource 29
restriction on qname 30
shared control 30
testing for simultaneous resource

use 29
warning for use in exit routine 31

Entry point identifier
defined 28
used by the dump program 28
specified in SAVE macro instruction 28

Entry points
added via IDENTIFY 28
requirements for additional 28

EODAD routine 92
with concatenated data sets 185

EP operand 13-15,18,23
EPLOC operand 13-15,18,23
EROPT field 93
Error

analysis routine 92-94
checking, automatic 132
control 93
data 93
handling 108-110
options, automatic 93
uncorrectable 92,98

Error routine
(see error; synchronous error routine

exit)
ESETL macro instruction

with checkpoints 62
description 156

ETXR operand of ATTACH
effect on task termination 45
use in MVT, MFT with

subtasking 26-27,45
use in PCP, MFT without

subtasking 19,21
Event control block

diagram 27
creation 27

Index 199.

reusing 27
use with ATTACH 27
use with POST 27
use wi~h WAIT 27

Exceptional condition code
(see condition, exceptional)

Exchange buffering 120-123
buffer length requirements 121
effect on track overflow 132
examples 122-123
testing for 121

Exclusive control 161
(see also ENQ)'

EXCP macro instruction 110
(see also execute channel program)

EXEC statement, PARM field 5
Execute channel program 74-75

(see also EXCP macro instruction>
Execute form of macro instructions 56-57
Execution

parallel 23
selecting job steps for 50
serial 6-21

Exit list (EXLST) field of the DCB 94
Exit routine

block count 100-101
conventions 95
data control block (DeB) 100
defer nonstandard input trailer label

exit 101
end-of-data set (EODAD) 92,185
end-of-task 33
end-of-volume 100
error analysis 92-94
list (EXLST) 94
register contents on entry 95
user label 96-98
user totaling 98-100

Exit routines identified by DCB 91
EXLST field 94
Explicit requests

for main storaqe 50-55
for resource 29

Extended American National Standard Code
for Information Interchange
(ASCII) 126,133,193-194-

Extended search option for direct data
sets 166

EXTRACT macro instruction
determining current dispatching

priority 25
determining initial dispatching

priority 24
determining limit priority 25
requires an answer area 33-34
used to obtain information from the task

control block 33
using FIELDS=ALL 33
warning for using task control block 27
with checkpoint/restart 61

Feedback
description 130
request for 107,108,165

FEOV macro instruction 114

.200

FIELD operand
(see EXTRACT)

FIND macro instruction
description 139
updating a partitioned data set 143
use 136,138

Fixed length records (F) 78-79,126
Flag, save area 11,12
Force end of volume (FEOV) 114
FREEBUF macro instruction 125
FREEDBUF macro instruction

description 125
example 162

FREEMAIN macro instruction 51-55
releasing subpools 54
restriction regarding subpool 0 54
returning control of main storage 51

FREEPOOL macro instruction 116
Full track-index write option 157

Generation data groups
absolute generation name 186-187
cataloging facilities 186
entering in the catalog 73,76,188
generation data group, defined 186
generation, defined 186
generation number, defined 186

Generation
data set 186
data sets concatenated 187
increment 187
numbers, relative 187
version increment 187

GET macro instruction
description 105
used to create a sequential data

set 133-135
with spanned records 83
(see also data mode processing; locate

mode processing: move mode processing;
substitute mode processing)

GET.BUF macro instruction 124
GETMAIN macro instruction

creating subpools 53,54
explicit request for main storage 50-55

producing reenterable code 51
types 51

specifying length of main storage 51
types of explicit requests for

conditional 51,52
example 52
unconditional 51,52

GETPOOL macro instruction
description 116
with indexed sequential data set 151

GSPL operand of ATTACH 23,54
GSPV operand of ATTACH 23,54

Hard copy log
purpose 38
using 38

HIARCHY operand of ATTACH, DCB, GETMAIN,
GETPOOL, LINK, LOAD, and XCTL 59

Hierarchies, main storage 59

examples using
hierarchy 0 52
hierarchy 1 57

(see also main storage hierarchy
support)

IDENTIFY macro instruction
adding entry pOints 28
restrictions on use 28

Identify option 28
IEBUPDTE utility program 144
IEHATLAS utility program 109-110
IEHMOVE utility program 137,138
IEHPROGM utility program 177,187-188
IHADCB macro instruction 101
Implicit requests for main storage 55-59

ATTACH 52,55,58
LINK 52,55,58
LOAD 52,55,58
OPEN 55
XCTL 52,55,58

Imprecise interruptions 41-43
Independent overflow area 148,150,175-176
Index

catalog 76,187-188
cylinder 145-147,180-181
master 146,147
space allocation for 175-181
track 146,147

Indexed sequential data set
adding records 148-150

inserting new records 148-149
new records at the end 149-150

areas 145-148
prime 145,146
index 145,146-147
overflow 145-146,148

buffer requirements 151-155
with checkpoint/restart 63,64
creation 156-159
deletinq records 151
device control 156
full track-index write option 157
indexes 145-147

cylinder index 145-147
master index 146,147
track index 146,147
track index entries 147

key field 145
loading 157
maintenance 150-151
organization 145-148
processing 145-164
reorganization 150
resume load 149,150,158
space allocation for 174-181
updating 159

sequential 159-160
direct 160-164

work area requirements 151-155
Indexed sequential organization 74

(see also indexed sequential data set)
Indexes of the catalog 186
Indicative dump (PCP, MFT) 50
Indirect addressing 165

INOUT
OPEN macro instruction 111
overriding 111

INPUT option
OPEN macro instruction 111

Input/output device (UNIT) field 91
Input/output device generation 131
Input/output devices

card reader and punch 121-128
direct access 76-77,85-89
magnetic tape 77-78
paper tape reader 127,132-133
printer 128

Interface with the operating system 88-103
Instruction length code (ILC) 41,42
Interlock situation 32-33
Interruptions 39-43

imprecise 41-43
precise 41-43
(see also program interruption

processing)
Interval timing 34-36

ISAM
(see indexed sequential data set;

indexed sequential organization)
Job class 50
Job file control block (JFCB) 88-89
Job library 12-13
Job pack area 13-18,28,50
Job priority

effect on execution 50
specifying 24

Job step termination 45

Key area 86
Key field, indexed sequential data set 145
Key, record

direct access 86,166-168
indexed sequential 74,160
prefix 156,160

Labels, direct access
data set control block group 191
format 190
user label groups 191-192
volume label group 189-191

LEAVE option 113,114
Length checking 79
Library

defined 13
job 12-13
link 12-23,55
orivate 13
step 12-13

Limit priority 33
(see also priority)

Link field 148,152-154
Link library 12-23,55
LINK macro instruction

difference from CALL macro
instruction 18

expansion 18
implicit request for main

storage 50,52-55

Index 201_

in a dynamically structured load
module 17-21

responsibility count with 18
similarity to CALL macro instruction 17
use with BLDL 19
use with the job library 18
use with the link library 19
use with a private library 18
use to pass control with return 17-19

Link pack area (MVT)

contents 13,58
placing modules in 55
searching 28

Linkage conventions 1-5
Linkage registers 4-5

entry point register 5
parameter registers 4
return address register 5
save area register 5

List form of macro instruction 56-57
List type (L) explicit request for main
storaqe 51

LOAD macro instruction 17,58
use to obtain a usable

copy of a load module 17
responsibility count 17

Load module
attributes 16
characteristics 6
copy

finding a usable 13-15
restriction with CALL 15
reusable 15
using an existing 17

execution
parallel 6
serial 6-21

management 55-58
nonreusable 16

temporarily 58
reenterable 16-17,55-56
refreshable 56
serially reusable 16
structures' 5-6
(see also dynamic structure; overlay

structure, planned; simple structure)
Loading an indexed sequential data set 157
Locate mode processing 117-118

Log

defined 118
with GET macro instruction

creating a sequential data set 134
exchange buffering 122,123
simple buffering 119,120

with PUT macro instruction
creating a sequential data set 134
simple buffering 119,120

hard copy 38
system 38-39
WTL 38-39

Logical record interface 116,118
LPMOD operand 24

(see also priority)
LRECL field

with card reader and punch 128

.202

described 90
device independence 132
omission with direct access data

sets 166
for format for U records 165
and ISAM

buffer requirements 152-155
data set creation 157

with PUT 106
in example of simple buffering 133
with SYSOUT data set 184

Machine check handler 56
~achine code control character 85,133,193
~ACRF (macro instruction forw) . field

described 91
device independence 132
dynamic buffering 162
processing mode 118

Magnetic tape (TA) volumes
density 126-127
labels

none 77
nonstandard 77,91
standard 77
user 98
volume 76

orqanization 77
positioning 77
record format 126-127
serial nu~ber 77
taoemarks 77-78

Main storaqe
blocks

assignment 53
size 53

considerations for PCP job run under MFT
or MVT 50

control 53-55
efficient use of 51-59
example of assignment 53
fragmentation 57-58
hierarchies 59
management 50-59

(see also GET~AIN; FREEMAIN; subpool)
release 58-59

warning for CLOSE 58
requests

conditional 51,52
control program 50
explicit, via GETMAIN 50,51-55
implicit, via LINK 50
unconditional 51,52

returning control 51
reuse 58

Main storage hierarchy support 59
caution with Model 50 and PCP 59
hierarchies 59
overrun 59

Master console operator answering any
WTOR 37

MBBCCHHR 87,166,172
Member of a partitioned data set

creation 140-141
deletion 144

description 74,135
positioning to a 139
processing a 138-140
retrieving a 141-143
rewriting a 144
updating a 143-145

in place 143
overlapped 143-144

(see also FIND; NOTE; partitioned data
set; POINT; STOW)

Message deletion 39
Message identifier 37
Message output class

specified by MSGCLASS parameter 37
Messages to the operator 36

(see also writing to the operator)
Messages to the programmer 37-38
Model 65 interruptions 41,42
Model 67 interruptions 41,42
Model 75 interruptions 41,42
Model 85 interruptions 41,42
Model 91 interruptions 41,42

decimal simulation 43
Model 195 interruptions 41,42
Modes. processing

(see data mode; locate mode; move mode;
substitute mode)

Modifying the data control block 101-103
Move mode processing 117-118

defined 118
with GE~ macro instruction

creating a sequential data set 134
simple buffering 119

with PUT macro instruction
creating a sequential data set 134
simple buffering 119

MSGCLASS parameter of the JOB statement 37
MSHI field 155
MSWA field 155
Multiple console support (MCS)

(see descriptor codes; hard copy log;
message deletion; routing codes;
system log)

Multitrack mode 137

Names
data set 75,177,187
generation data group 73,186

New line control character 36
Nonreenterable load modules 57-58
Nonreusable load module 16,20

defined 20
passing control to

under MVT, MFT with subtaskin~ 20
under PCP, MFT without subtasking 20

Nonstandard tape labels 77,91
Note list

description 138
use 137

NOTE macro instruction
description 130
device independence 131
restriction with BSP macro

instruction 129-130

updating a partitioned data set 143
use with partitioned data set 138

Obtaining information from the task control
block 33

Offset reading 107
Old program status word (OPSW) 41
OPEN macro instruction

device independence 131
functions 88,110-112
used for more than one data set 112
volume positioning 111

Opening a data set 110-112
Opening and closing a data set 110-113
OP'l'CD field

device independence 132
with ISA~1 157
to request totaling 99

Originating task, defined 23
OUTIN option

OPEN macro instruction 111
overriding 111

Output class 182
Output mode

exchange buffering 122
simple buffering 118,119

OUTPUT option
OPEN macro instruction 111

OV operand of STAE 46
Overflow chain 148
Overflow

cylinder 148-150
entry 147
independent area 148,150
printer 129
records 148-151
track 87-88

effect on chained scheduling 132
restriction on BSP macro

instruction 129-130
Overlap

of input/output 105-107,143
of processing 74
of task execution 23

Overlay structure, planned
advantages 55,58
defined 5,6
passing control in a 12

Overlay a STAE request 46-47
Overrun with main storage hierarchy
support 59

Pack areas
(see job pack area; link pack area)

Paper tape reader (PT)
effect on chained scheduling 132-133
record format with 127

Parallel execution of a jobstep,
defined 23

Parameter list
from list form 57
from PARl'-l field 6
handling of 7-9
inline 8,9
with CALL 9

Index 203.

with LINK 18
with XCTL 22

Parameters
(see parameter list; linkage registers)

PARM field 5,7
Partitioned data set

adding members to 140
concatenation 184-186
creation 140-141

with basic access technique 141
defined 135
directory 136-138

obtaining information from 139
defined 135

c di rectory entry
alteration 140
defined 135
described 135-138
length 136

processing 135-144
of several members 142

space allocation for 174
(see also member of a partitioned data

set; partitioned organization)
Partitioned organization 74
Partitions (MFT) 50
Passing control

in a dynamic structure 17-22
loading the module 12-22

with return 17-21
without return 21-22
in a planned overlay structure 12
in a simple structure 6-12

with return 8-10
without return 6-8

(see also ATTACH; LINK; XCTL)
Password protection 73,188
PDS

(see partitioned data set)
PICA (program interruption control
area) 39-40

Planned overlay structure
(see overlay structure, planned)

POINT macro instruction
coding in a reenterable load module 56
device independence 131
explained 130
restriction with BSP macro

instruction 129-130
updating a partitioned data set 143

POST macro instruction 27
Precise interruptions 41-43
Prefix, key 156,160
Prime data area

description 145-146
space allocation for 174-181

Printer (PR)
data checks 129
overflow 129
record format with 128

Priority

.204

assigning 24-25
changing 24-25
dispatching 23-26
job 24

limit 33
subtask 24-25
task 23-25
(see also CHAP macro instruction)

Pri vate library
defined 13
searching 13-16,18

Program, describing the processing 91-101
Program exceptions 39

(see also program interrupti'on
processing)

Program interruption control area
(PICA) 39-40

Program interruption element (PIE) 40
Program interruption processing 39-43

imprecise interruptions 41-43
precise interruptions 41-43
standard control program exit

routine 39
user exit routine 39-43

for imprecise interruptions 43
register contents when control

gained 39-40
Program management 1-22
Program management services 28-50

(see also abnormal conditions;
additional entry points; calling
sequence identifiers; deleting
messages; dump; entry-point
identifiers; obtaining information
from the task control block;
processing program interruptions;
serially reusable resources; timing
services; writing to the hard copy
log; writing to the operator; writing
to the system log)

Protection
of main storage 52
of serially reusable resources 29-33

PRTOV macro instruction
description 129
device dependence 132

POl' macro instruction
description 105-106
used to create a sequential data

set 133-135
with spanned records 83
(see also data mode processing; locate

mode processing; move mode processing;
substitute mode proces.sing)

PUTX macro instruction
description 106
device independence 131
with exchange buffering 121
processing modes with GET~locate 118
with spanned records 83
(see also output mode; update mode)

Qname operand of ENQ 29,30
restriction 30

Queued access technique 105-106
buffer control 117-125
defined 105
introduced 74
processing modes

(see data mode processing; locate
mode processing; move mode
processing; substitute mode
processing)

RDBACK option
OPEN macro instruction 111

Read backward 107
restriction for concatenated data

sets 184
READ macro instruction

description 106-107
device independence 131
updating a partitioned data set 143
with KN 162-163
with KU 160,161,163

Read-only load module
(see reenterable load module)

REAL parameter of S'l'.IMER 35,36
RECFM field

(see record format)
Record blocking

(see blocking)
Record, defined 78
Record descriptior word (ROW)

in ISAM data set being updated 164
variable-length records 80-81
when replaced by segment descriptor

word 83
Record format 78-85

device independence 132
fixed-length (F) 78-79
for read backwards 126
RECFM field 90,125-126
restriction for partitioned data

set 142
selecting 78
undefined-length (U) 84-85
variable-length (V) 79-84

spanned (basic direct access
method) 83-84

spanned (sequential access
method) 81-83

with card punch 127-128
with card reader 127-128
with control character 126
with direct access storage device 128
with magnetic tape 126-127
with paper tape reader 127
with printer 128
with sequential organization 125

Record length (LRECL) field 90
Reducing main storage required for a job
step 55-59

Reenterable load modules 55-57
defined 20
MFT with subtasking 16-17
MVT 16

Reenterable macro instructions 56-57
Refreshable load module 56
Re9ions (MV'l')

extending by rollout/rollin 50
controlling 53
specifying size on EXEC statement 50
specifying size on JOB statement 50

Register type (R) explicit request for main
storage 51

Registers
(see base register; linkage registers;

reenterable macro instructions)
Relative block address

defined 87
with direct data set 165

Relative key position (RKP) 152
Relative track address (TTR)

defined 87
with direct access 165,166

Releasing main storage 58-59
(see also DEQi FREEMAIN)

RELEX macro instruction 103,166
RELSE macro instruction 114,124
RELSE parameter of OD statement 112
Reorganization of indexed sequential data
set 150-151,157

REPLAREA 163-164
Reply

(see WTOR)
REREAD option 113,114
RESERVE macro instruction 62
Resident reenterable module area 13,17
Resource

conditionally requesting, via ENQ 31
control 29
duplicate request for~ defined 31
releasing control of with DEQ 31
request for, causing interlock 32
serially reusable 29-33,102~103

unconditionally requesting, via
ENQ 29-31

Responsibility count
ensuring that the proper one is

lowered 22
lowering it via the control program 22
lowering it via DELETE 22
with release of main storage 58

Restart
alternate system 70
automatic 60,68

canceling 61
avoiding, from same checkpoint 61
checkpoint 60
deferred 60,64,68-69

job statement for 69
duplicate record indications

following 64
effect on ENQ 61-62
effect on EXTRACT 61
effect on SETPRT 61-62
job step 60,68-70
requesting ~ resource after 62
step 60,68-70
suppressed with preallocated data

sets 66
via end-of-volume exit routine 100

Resume load 149,150,158
RET operand

RET=HAVE 31-32,57
RET=TEST 31
RET=USE 31-33

Return code

Index 205.

from ATTACH 19,21
from BLDL 15
with block count exit 101
with branching table 10
with checkpoint-restart 61
and COND operand 12
in a dynamic structure 21
in ECB 27
with ENQ, DEQ 31-32,57
example of use 11
with GETMAIN 51
with IDENTIFY 28
requirements 10
from STAE 47-49
with user labels 97

Return of control
of CPU 10-11,17-19,21-22
(see also RETURN)
of main storage
(see FREEMAIN)
of resource
(see DEQ)
to check routine 93

RETURN macro instruction
examples 11,12
with simple structure load module 11

Returning control in a dynamic
structure 21-22

responsibility count 21
using a branch instruction 21
using LOAD and branch 21
using RE~URN macro instruction 21
using the control program 21
using XCTL 21-22
warning against mixing XCTL and

branch 21
warning against not using the control

program 22
when ATTACH was used 21
when LINK was used 21
without using the control program 21

Returning control in a simple structure 10
Reusability 15,16
REWIND option

CLOSE macro instruction 112
RKP (relative key position) 152
Rname operand of ENQ 29
Rollout/rollin 50
Routing codes (with MCS) 36
Routing the message to the operator (with

MCS) 36

Save area
chaining 4,49
description 3,4
flag 11,12
format 3
provision 3
register 2
trace 4
user totaling 99

SAVE macro instruction 3
Saving registers 2

providing a save area 3
save area chaining 4,49

.206

save area format 3
SAVE macro instruction 3

Search option, extended 166
searching for a usable copy of the load

module 13-15
effect of DE operand on 15
effect of EP operand on 13,lQ
effect of EPLOC operand on 13,14
order of search 13-15
time involved 14,15
use of BLOL 15

security, data set 73,188
Segment

buffer 114,116,118
control code 83
descriptor word (SOW) 82-83
overflow record 87-88

selecting an access method 110
Sequence identifier

calling 28
Sequential data set

creation 134-135
concatenation 184-186
processing 125-135

Sequential organization
defined 74
device control 128-130
device independence 130-132

through programming 131-132
through system generation 130-131

Serial execution of a load module 6-21
serially reusable load module

defined 20
restriction on using L!NK macro

instruction 16
using ENQ macro instruction 20

serially reusable resource 29-33,102-103
SETL macro instruction

description 156
with Checkpoints 62

SETPRT macro instruction 129
Shared control

(see ENQ)
Sharing data sets 102-103
Sharing direct access storage devices 103

with checkpont and restart 62
SHSPL operand of ATTACH 23,54,55

(see also main storage management)
SHSPV operand of ATTACH 23,54,55

(see also main storage management)
Simple buffering 118-120,133-13Q
Simple structure 5-12

defined 5-6
passing control with return 8
passing control without return 6-8
returning control 10
returning control to the control

program 12
SKP error option 93
5MB (system message block) 37
SMSI field 155
SMSW field 154,155
SNAP macro instruction 49
Space allocation

field (SPACE) 91

estimating requirements 172-174
for an indexed sequential data

set 174-181
for a partitioned data set 174
specifying 171-172

Spanned records
assemoling 116
basic direct access method 83-84
sequential access method 81-83
segmentinQ 116

SPIE macro instruction
description 39
example 40
program interruption control area

(PICA) 39-40
program interruption element (PIE) 40

Stacker selection 79,85,126,128,129,193
STAE exit routine 45-49

conditions when not executed 47
register contents when control

received 47-49
restriction on use ofSTAE and

AT TAC ti 46
return codes 49
work area (figure) 48

STAE macro instruction
canceling current STAE 46
example 46
exit routine 45-49
intercepting abnormal termination 45-49
OV operand 46
overriding ABEND 44
register contents after execution 47
XCTL operand 46

STAE retry routine 45
Standard fixed-length records 126
Status

of load module 15,20
of serially reusable resource 29-32

STEP operand of ABEND 44
STBP operand of ENQ 29
STIMER macro instruction 34-36,60

example 35-36
establishing a time interval for a

task 34
specifying how to decrement the

interval 35
Storage

(see direct access storage; magnetic
tape volumes; main storage; main
storage hierarchy support)

STOW macro instruction
description 140
input for 138
use 136,138
with checkpoint and restart 65

Structure, load module
(see dynamic structure; load module;

overlay structure, planned; simple
structure)

subpool
creation 54
exclusive use 54
handlins

by ATTACri 54

by GETMAIN 54
MFT with subtasking 52
MFT without subtasking 52
under NVT 52-55

number limits 52
ownership 54-55

restriction on transfer 54
sharing 54,55
in task communication 55

Subpool 0 52,54
Subpool 240 52
Subpool 255 52
Substitute mode processing 117-118

creating a sequential data set 134
defined 118
with exchange buffering 120-124
with GET macro instruction 122
with PUT macro instruction 122,123

Subtasks
communication among 26-27
creating 23
defined 23
hierarchy 26
priority 24-25
termination 26

Subtasking, MFT with 16-17,23
switching, volume

automatic 105,113,114,185
initiated by CHECK 108

SYNAD field
device independence 132

SYNAD routine 92-94
paper tape characters 94

SYNADAF macro instruction
description 109
examples 134
use in SYNAD routine 92-93

SYNADRLS macro instruction
description 109
example 134
use in SYNAD routine 93

Synchronous error routine exit
(SYNAD) 92-94

Synchronization 74,105,132
(see also task synchronization)

Synchronous error exit (SYNAD) routine
examples 134-135,158
with ISAM 150,159
macro instructions 108-109
specifying 132
with a SYSOUT data set 184
writing 92-94

SYSABEND DD statement
if omitted 50
providing 49,50

SYSIN data set 64
SYSOUT data set 64,183-184
System generation .considerations 131
System log

alternate data set defined 39
data sets 38-39
defined 38
primary data set defined 38-39
using, via WTL macro instruction 38

system message blocks (SMBs) 37

Index 207.

SYSTEM operand of ENQ 29
system output device 183
SYSUDUMP DD statement

if omitted 50
providing 49

SYS1.SVCLIB and checkpoint/restart 100
SYS1,. SAMPLIB 98
SZERO operand of ATTACH 54

Tasks
communication among 26-27
creation of 23-26
hierarchy of 26
management of 26-27
priority of 23-25
signaling task termination 27
synchronization of 27
termination of 26

Task control block (TCB)
address 23
completion code in 27,45
obtaining information from 33
removal from system 26-27
subtask 26
warning for using with CHAP, EXTRACT,

DETACH 27
Task input/output table (TIOT) address

in task control block 33
TASK parameter of STIMER 35
TCB

(see task control block)
TIME macro instruction

BIN operand 34
TU operand 34

Time slicing 25-26
effect on using ATTACH and CHAP 25
MFT with subtasking 25
MFT without subtasking 25
MVT 25

Time stamping for the hard copy log 38
Timing services

date and time of day 34
interval option 34
interval timing 34-36

example of interval timing 36
time option 34

TOD 34
Totaling area, user totaling exit

routine 99
Trace, save area 4
Trace table 50
Track

addressing 87
defined 85
format

count-data format 86
count-key-data format 86

index 146-147
overflow,option 87~88

effect on chained scheduling 132
restriction on BSP macro

instruction 129-130
TRUNC macro instruction 114,124
Truncated blocks 78
TTIMER macro instruction

.208

canceling time remaining in a time
interval 34

testing time remaining in a time
interval 34

TTR 87,137-138,140
TUINTVL 34
TYPE=T 112

UHL (user header label) 98
Undefined-length records (U) 78,84-85,90
UNIT field 91
Unlabeled magnetic tape 77
UNPK instruction

examples 35,134-l35
use witn time option 34

UPDAT option
effect on track overflow 133
in OPEN macro instruction 111,143

Update mode 118
Use count

(see responsibility count)
User header label (UriL) 98
User label exit routine 96-98

restriction for data sets on volumes
without standard labels 98

restriction for SYSOUT aata sets 98,183
with read backward 98

User totaling exit routine 98-100
control program save area 99
control totals 98
exit list entry 95
image area address 97,99
OPTCD operand 99
restricted to BSAM, ~SAM 98
totaling area 99
variable-length records and 99

User trailer label (UTL) 98
UTL (user trailer label) 98

Variable length block 80
Variable-length record (V) 79-84

segments 79-80,82-84
spanned 81-84
special consideration for, with user

totaling 99
Variable type (V) ex~licit request for main
storage 51

VARY command 131
VL operand

(see CALL; LI~K)

Volume
specified by CLOSE 112
control 186
defined 76
direct access 76
disposition
instructions 113-114
labels 76
magnetic tape 77-78
specified by OPEN 111
serial number 77

Volume identification (VOLUME) field 91
Volume index 186
Volume switchinq 113-114

automatic li3

Volume table of contents CVTOC> 76,77
DSCBS in 77

WAIT condition
effect of 23,27
from ATTACH, LINK, XCTL 16
from ENQ 30-33
from STIMER 34-36
from WAIT 27

WAIT macro instruction
with basic access technique 106,160
description 108
examples 162,168
use 27

WAIT parameter of STIMER 35,36
WRITE macro instruction

add form 167
description 107-108
device independence 131
update form 167
updating a partitioned data set 143
used with note list 138
with K 161,163
with KN 149,162-163
with tiZ 173
with WL 166

Write validity check option 88
Writing to the hard copy log 38
Writing to the operator 36-37

using WTO macro instruction 36-37
using W~OR macro instruction 37

Writing to the programmer 37-38
Writing to the system log 38-39
WTL macro instruction 38-39
WTO macro instruction 36-39

example 37
DESC operand 37
ROUTCDE operand 37
used to write to the programmer 37-38
used to write to the hard copy log 38

WTOR macro instruction 36-39
with abnormal termination 45
with Checkpoint/restart 60
example 37

used to write to the proarammer 37-38
used to write to the hard copy log 38

XCTL macro instruction
and directory entries 19
requesting dynamic acquisition 2
EP, EPLOC, DE operands 13
implied request for storage 52,55,58
issued by interruption handling

routine 40
with main storage hierarchy support 59
with MFT with subtasking 16
with MVT 16,"28
protecting against unusable copy 15
passing control without return 21,22
with PCP, MFT without subtasking 17
and responsibility count 18
similarity to LINK 22
with STAE 11

XCTL operand of STAE 46

2301 Drum Storage
capacity 173
overhead formula 173

2302 Disk Storage
capacity 173
overhead formula 173

2303 Drum Storage
capacity 173
overhead formula 173

2311 Disk Drive
capacity 173
cylinder description 85-86
overhead formula 173

2314 Storage Drive
capacity 173
overhead formula 173

2321 Data Call
capacity 173
overhead formula 173

2361 Core Storage
hierarchies 59
Models 1 and 2 59
specifying, in GETMAIN 57

Index 209.

GC28-6646-3

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10S01
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10011
[International]

READER'S COMMENT FORM

IBM System/360 Operating System
Supervisor and Data Management Services

GC28-6646-3

• Your comments, accompanied by answers to the following questions, help us produce better
publications for your use. If your answer to a question is "No" or requires qualification,
please explain in the space provided below. Comments and suggestions become the property of
IBM.

Yes
• Does this publication meet your needs? D
• Did you find the material:

Easy to read and understand? D
Organized for convenient use? D
Complete? D
Well illustrated? D
Written for your technical level? D

No

D

D
D
D
o
o

• 'Vhat is your occupation? _________________________ _

• How do you use this publication?
As an introduction to the subject? D
For advanced knowledge of the subject? D
For information about operating procedures? D

As an instructor in a class? 0
As a student in a class? 0
As a reference manual? D

Other __ ___

• Please give specific page and line references with your comments when appropriate.

COMMENTS

• Thank you for your cooperation. No postage necessary if mailed in the U.S.A.

GC28-6646-3

YOUR COMMENTS, PLEASE ...

This publication is one of a series which serves as a reference source for systems analysts,
programmers, and operators of IBM systems. Your answers to the questions on the back of
this form, together with your comments, will help us produce better publications for your
use. Each reply will be carefully reviewed by the persons responsible for writing and
publishing this material. All comments and suggestions become the property of IBM.

Please note: Requests for copies of publications and for assistance in utilizing your IBM
system should be directed to your IBM representative or to the IBM sales office serving your
locality.

fold

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY ...

IBM Corporation
Monterey & Cottle Rds.
San Jose, California
95114

Attention: Programming Publications, Dept. D78

fold

International Business Machines Corporation
Data Processing Division
112 East Post Road, White Plains, N.Y.10B01
[USA Only]

IBM World Trade Corporation
821 United Nations Plaza, New York, New York 10017
I International]

fold

FIRST CLASS
PERMIT NO. 2078
SAN JOSE, CALIF.

fold

